-
Notifications
You must be signed in to change notification settings - Fork 1
/
confuseMatrix.py
72 lines (57 loc) · 2.96 KB
/
confuseMatrix.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
from sklearn.metrics import confusion_matrix
import numpy as np
import matplotlib.pyplot as plt
import numpy as np
import itertools
def plot_confusion_matrix(cm,
target_names,
title='Confusion matrix',
cmap=plt.cm.Greens, # 这个地方设置混淆矩阵的颜色主题,这个主题看着就干净~
normalize=True):
accuracy = np.trace(cm) / float(np.sum(cm))
misclass = 1 - accuracy
if cmap is None:
cmap = plt.get_cmap('Blues')
plt.figure(figsize=(15, 12))
plt.imshow(cm, interpolation='nearest', cmap=cmap)
plt.title(title)
plt.colorbar()
if target_names is not None:
tick_marks = np.arange(len(target_names))
plt.xticks(tick_marks, target_names, rotation=45)
plt.yticks(tick_marks, target_names)
if normalize:
cm = cm.astype('float') / cm.sum(axis=1)[:, np.newaxis]
thresh = cm.max() / 1.5 if normalize else cm.max() / 2
for i, j in itertools.product(range(cm.shape[0]), range(cm.shape[1])):
if normalize:
plt.text(j, i, "{:0.4f}".format(cm[i, j]),
horizontalalignment="center",
color="white" if cm[i, j] > thresh else "black")
else:
plt.text(j, i, "{:,}".format(cm[i, j]),
horizontalalignment="center",
color="white" if cm[i, j] > thresh else "black")
plt.tight_layout()
plt.ylabel('True label')
plt.xlabel('Predicted label\naccuracy={:0.4f}; misclass={:0.4f}'.format(accuracy, misclass))
# 这里这个savefig是保存图片,如果想把图存在什么地方就改一下下面的路径,然后dpi设一下分辨率即可。
# plt.savefig('/content/drive/My Drive/Colab Notebooks/confusionmatrix32.png',dpi=350)
plt.show()
# 显示混淆矩阵
def plot_confuse(model, x_val, y_val, labels):
predictions = model.predict_classes(x_val, batch_size=batch)
truelabel = y_val.argmax(axis=-1) # 将one-hot转化为label
conf_mat = confusion_matrix(y_true=truelabel, y_pred=predictions)
plt.figure()
plot_confusion_matrix(conf_mat, normalize=False, target_names=labels, title='Confusion Matrix')
# =========================================================================================
# 最后调用这个函数即可。 test_x是测试数据,test_y是测试标签(这里用的是One——hot向量)
# labels是一个列表,存储了你的各个类别的名字,最后会显示在横纵轴上。
# 比如这里我的labels列表
labels = ['StandingUpFS', 'StandingupFL', 'Walking', 'Running', 'GoingUpS', 'Jumping', 'GoingdownS', 'LyingDownS',
'SittingDown',
'Falling Forw',
'Falling right', 'FallingBack', 'HittingObstacle', 'Falling with ps', 'FallingBackSC', 'Syncope',
'falling left']
plot_confuse(model, test_x, test_y,labels)