-
Notifications
You must be signed in to change notification settings - Fork 122
/
Copy path_eif.pyx
82 lines (70 loc) · 2.77 KB
/
_eif.pyx
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
# Cython wrapper for Extended Isolation Forest
# distutils: language = C++
# distutils: sources = eif.cxx
# cython: language_level = 3
import cython
import numpy as np
cimport numpy as np
from version import __version__
cimport __eif
np.import_array()
cdef class iForest:
cdef int size_X
cdef int dim
cdef int _ntrees
cdef int _limit
cdef int sample
cdef int tree_index
cdef int exlevel
cdef __eif.iForest* thisptr
@cython.boundscheck(False)
@cython.wraparound(False)
def __cinit__ (self, np.ndarray[double, ndim=2] X not None, int ntrees, int sample_size, int limit=0, int ExtensionLevel=0, int seed=-1):
if ExtensionLevel < 0:
raise Exception("Wrong Extension")
self.thisptr = new __eif.iForest (ntrees, sample_size, limit, ExtensionLevel, seed)
if not X.flags['C_CONTIGUOUS']:
X = X.copy(order='C')
self.size_X = X.shape[0]
self.dim = X.shape[1]
self.sample = sample_size
self._ntrees = ntrees
self._limit = self.thisptr.limit
self.exlevel = ExtensionLevel
self.thisptr.fit (<double*> np.PyArray_DATA(X), self.size_X, self.dim)
@property
def ntrees(self):
return self._ntrees
@property
def limit(self):
return self._limit
def __dealloc__ (self):
del self.thisptr
@cython.boundscheck(False)
@cython.wraparound(False)
def compute_paths (self, np.ndarray[double, ndim=2] X_in=None):
cdef np.ndarray[double, ndim=1, mode="c"] S
if X_in is None:
S = np.empty(self.size_X, dtype=np.float64, order='C')
self.thisptr.predict (<double*> np.PyArray_DATA(S), NULL, 0)
else:
if not X_in.flags['C_CONTIGUOUS']:
X_in = X_in.copy(order='C')
S = np.empty(X_in.shape[0], dtype=np.float64, order='C')
self.thisptr.predict (<double*> np.PyArray_DATA(S), <double*> np.PyArray_DATA(X_in), X_in.shape[0])
return S
@cython.boundscheck(False)
@cython.wraparound(False)
def compute_paths_single_tree (self, np.ndarray[double, ndim=2] X_in=None, tree_index=0):
cdef np.ndarray[double, ndim=1, mode="c"] S
if X_in is None:
S = np.empty(self.size_X, dtype=np.float64, order='C')
self.thisptr.predictSingleTree (<double*> np.PyArray_DATA(S), NULL, 0, tree_index)
else:
if not X_in.flags['C_CONTIGUOUS']:
X_in = X_in.copy(order='C')
S = np.empty(X_in.shape[0], dtype=np.float64, order='C')
self.thisptr.predictSingleTree (<double*> np.PyArray_DATA(S), <double*> np.PyArray_DATA(X_in), X_in.shape[0], tree_index)
return S
def output_tree_nodes (self, int tree_index):
self.thisptr.OutputTreeNodes (tree_index)