-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy patheegml.py
303 lines (250 loc) · 9.84 KB
/
eegml.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
# /usr/bin/env python
# Copyright 2013, 2014 Justis Grant Peters and Sagar Jauhari
# This file is part of BCIpy.
#
# BCIpy is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# BCIpy is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with BCIpy. If not, see <http://www.gnu.org/licenses/>.
import csv
import time
import re
from datetime import datetime
from decimal import Decimal
from matplotlib import *
import matplotlib.pyplot as plt
import matplotlib.pylab as pylab
pylab.rcParams['figure.figsize'] = 15, 6
from os import listdir
from os.path import join, isfile
import numpy as np
import pandas as pd
import pickle
from scipy.stats.stats import pearsonr
import warnings
warnings.filterwarnings('ignore', 'DeprecationWarning')
try: # Import config params
import dev_settings as config
except ImportError:
print "Please create a dev_settings.py using dev_settings.py.example as an example"
def print_config():
print config.DATA_URL
print config.SAVE_URL
def format_time(ti):
"""
Converts format '2010-12-14 16:56:36.996' to Decimal
"""
to = datetime.strptime(ti, '%Y-%m-%d %H:%M:%S.%f')
#Decimal not losing precision
to = Decimal(to.strftime('%s.%f'))
return str(to)
def format_task_xls(indir, outdir):
path_task_xls = join(indir, "task.xls")
path_task_xls_labels = join(outdir, "task_xls_labels.csv")
with open(path_task_xls, 'rb') as fi,\
open(path_task_xls_labels, 'w') as fo:
fr = csv.reader(fi, delimiter='\t')
fw = csv.writer(fo, delimiter='\t')
h = fr.next()
fw.writerow(['taskid',h[0], h[1], h[2], h[3], h[-1]]) #header
for idx, row in enumerate(fr):
row[2] = format_time(row[2])
row[3] = format_time(row[3])
fw.writerow([idx, row[0], row[1], row[2], row[3], row[-1]])
def label_data(in_file, out_file, compressed_label_file, subj_t, time_t, dbg=False):
if dbg: print "#"+subj_t + "--------"
with open(in_file, 'rb') as fi,\
open(out_file, 'rb') as fi2,\
open(compressed_label_file, 'w') as fo:
day = time_t[0:4]+"-"+time_t[4:6]+"-"+time_t[6:8]
fr1 = csv.reader(fi, delimiter=',') # combined.csv
fr2 = csv.reader(fi2, delimiter='\t')# xls_labels.csv
fw = csv.writer(fo, delimiter='\t')# combined_label_uncompress.csv
if dbg: print "day: " + day
#headers
fw.writerow(next(fr1, None) + ['Difficulty', 'taskid'] )
next(fr2, None)
#forward till subject data starts
lab_row = fr2.next()
while subj_t != lab_row[2]:
lab_row = fr2.next()
if dbg: print "start: " + str(lab_row[0])
for idx, row in enumerate(fr1):
row[0] = datetime.strptime(day+' '+row[0]+'.0',\
'%Y-%m-%d %H:%M:%S.%f').strftime('%s.%f')
if Decimal(row[0]) < Decimal(lab_row[3]): # t < start_time
if dbg: print str(idx)+": t<start_time"
label = -1
fw.writerow(row + [label, lab_row[0]])
continue
if Decimal(row[0]) <= Decimal(lab_row[4]): # t <= end_time
if dbg: print str(idx)+": t <= end_time"
label = lab_row[5]
fw.writerow(row + [label, lab_row[0]])
continue
while Decimal(row[0] > lab_row[4]): # t > end_time
try:
lab_row = next(fr2)
label = lab_row[5]
if lab_row[2] != subj_t:
raise Exception("Reached end of data for subject" + subj_t)
except Exception as e: # reached end of file, or next subject
label = -1
if dbg: print e
break
fw.writerow(row + [label,lab_row[0]])
if dbg: print "end: "+str(lab_row[0])
return
def plot_signal(x_ax, y_ax, label, ax=None):
if ax==None:
fig, ax = plt.subplots()
ax.plot(x_ax, y_ax, label=label)
ax.grid(True)
fig.tight_layout()
plt.legend(loc='upper left')
plt.show()
return ax
def create_sub_dict(indir):
""" Create dict of subject data [1Hz conmbined files]"""
onlyfiles = [ f for f in listdir(indir) if isfile(join(indir,f)) ]
pat = re.compile("[0-9]*\.[0-9]*\.combined\.csv")
temp_dat = [f.split('.')[0:2] for f in onlyfiles if pat.match(f)]
sub_dict = {i[1]: i[0] for i in temp_dat}
return sub_dict
def label_sub_files(indir, outdir):
""" Label each subject file [1Hz conmbined files]"""
sub_dict = create_sub_dict(indir)
for i in sub_dict:
label_data(indir + "/"+sub_dict[i] + "." +i+".combined.csv",
outdir + "/task_xls_labels.csv",
outdir + "/"+sub_dict[i] + "." +i+".labelled.csv",
i, sub_dict[i])
def get_subject_list(dir_url):
onlyfiles = [ f for f in listdir(dir_url) if isfile(join(dir_url,f)) ]
pat = re.compile("[0-9]*\.[0-9]*\.labelled\.csv")
temp_dat = [f.split('.')[0:2] for f in onlyfiles if pat.match(f)]
sub_dict = {i[1]: i[0] for i in temp_dat}
return sub_dict
def get_data(subj_list, dir_url):
subj_data = {}
for s_id in subj_list.keys():
s_time = subj_list[s_id]
s_file = s_time + "." + s_id + ".labelled.csv"
with open(join(dir_url,s_file), 'rb') as fi:
fr = csv.reader(fi,delimiter="\t")
next(fr) #header
s_data = list(fr)
subj_data[int(s_id)] = s_data
return subj_data
def plot_subject(s_comb, pdfpages, title=None):
"""
Plot each subject's data (1Hz)
"""
fig, ax = plt.subplots()
x_ax = [int(i[0].split('.')[0]) for i in s_comb]
sig_q = [int(i[1]) for i in s_comb]
atten = [int(i[2]) for i in s_comb]
medit = [int(i[3]) for i in s_comb]
diffi = [int(i[4])*50 for i in s_comb]
taskid= [int(i[5]) for i in s_comb]
taskid_set = list(set(taskid))
taskid_norm = [taskid_set.index(i) for i in taskid]
ax.plot(x_ax, sig_q, label='Quality')
ax.plot(x_ax, atten, label='Attention')
ax.plot(x_ax, medit, label='Meditation')
ax.plot(x_ax, diffi, label='Difficulty')
#ax.plot(x_ax, taskid_norm, label='taskid')
ax.grid(True)
fig.tight_layout()
plt.legend(loc='upper left')
plt.title(title)
pdfpages.savefig(fig)
return
def plot_subjects(subj_list, data, pdfpages, count=None):
for i in range(count if count else len(subj_list.keys())):
s1 = subj_list.keys()[i]
plot_subject(data[int(s1)], pdfpages, "Subject: "+s1)
return
def plot_avg_rows(targets, features, pdfpages, n, title):
"""
Given targets (difficulty) and features, plot the average of each features
grouped by the difficulty.
"""
print "Plotting Avg of dataframe"
avg_all = features.mean()
features['difficulty']=targets
grouped = features.groupby(by='difficulty')
fig, ax = plt.subplots()
ax.plot(avg_all, label='all')
for d in range(1, 5):
ax.plot(grouped.get_group(d).mean()[0:n-1],
label="difficulty: %d (%d tasks)" % (d,len(grouped.get_group(d))))
plt.legend(loc='upper right')
plt.title(title)
ax.grid(True)
pdfpages.savefig(fig)
def get_num_words(DATA_URL):
path_task_xls = DATA_URL + "/task.xls"
with open(path_task_xls, 'rb') as fi:
fr = csv.reader(fi, delimiter='\t')
next(fr)#header
data = list(fr)
data_cols = zip(*data)
l=len(data_cols[0])
num_words_stim = [float(len(i.split())) for i in data_cols[4]]
num_chars_stim = [float(len(i)) for i in data_cols[4]]
difficulty = [float(i) for i in data_cols[-1]]
time_diff = [float(Decimal(format_time(data_cols[3][i]))-\
Decimal(format_time(data_cols[2][i])))\
for i in xrange(l)]
time_per_word = [time_diff[i]/num_words_stim[i] for i in range(l)]
time_per_char = [time_diff[i]/num_chars_stim[i] for i in range(l)]
sentence_idx=[i for i in xrange(l) if num_words_stim[i] > 1]
print pearsonr(time_per_word, difficulty)
print pearsonr(time_per_char, difficulty)
print pearsonr([time_per_word[i] for i in sentence_idx],
[difficulty[i] for i in sentence_idx])
print pearsonr([time_per_char[i] for i in sentence_idx],
[difficulty[i] for i in sentence_idx])
tpa = [difficulty[i] for i in sentence_idx]
plt.hist(tpa)
def get_performance(x,y):
""" Measures the performance metrics for x(actual)
and y (experimental).
"""
if len(x) != len(y):
print "Error: Lengths not same"
return
TP = FN = FP = TN = 0.0
for i in range(0,len(x)):
for j in range(0, len(x)):
if i == j:
continue
if x[i]==x[j] and y[i]==y[j]:
TP = TP + 1
elif x[i]!=x[j] and y[i]!=y[j]:
TN = TN + 1
elif x[i]==x[j] and y[i]!=y[j]:
FN = FN + 1
elif x[i]!=x[j] and y[i]==y[j]:
FP = FP + 1
TP = TP/2
TN = TN/2
FN = FN/2
FP = FP/2
accuracy = (TP + TN) / (TP + TN + FP + FN)
precision = TP/(TP + FP)
recall = TP/(TP + FN)
fscore = 2*precision*recall/(precision + recall)
print " Accuracy: \t" + str(round(accuracy, 3))
print " Precision: \t" + str(round(precision, 3))
print " Recall: \t" + str(round(recall, 3))
print " F-Score: \t" + str(round(fscore, 3))