-
Notifications
You must be signed in to change notification settings - Fork 0
/
iri.py
41 lines (36 loc) · 1.07 KB
/
iri.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
from scipy.spatial import distance
def eucli(a,b):
return distance.euclidean(a,b)
class myKNN():
#fit method of classifier
def fit(self,X_train,Y_train):
self.X_train=X_train
self.Y_train=Y_train
#predict method of classifier
def predict(self,X_train):
predictions=[]
for row in X_test:
labels=self.closest(row)
predictions.append(labels)
return predictions
def closest(self,row):
best_dist=eucli(row,self.X_train[0])
best_index=0
for i in range(1,len(self.X_train)):
dist=eucli(row,self.X_train[i])
if dist < best_dist:
best_dist=dist
best_index=i
return self.Y_train[best_index]
from sklearn.neighbors import KNeighborsClassifier
from sklearn.datasets import load_iris
iris=load_iris()
features=iris.data
labels=iris.target
from sklearn.cross_validation import train_test_split
X_train,X_test,Y_train,Y_test=train_test_split(features,labels,test_size=.3)
clf=myKNN()
clf.fit(X_train,Y_train)
p=clf.predict(X_test)
from sklearn.metrics import accuracy_score
print ("accuracy = ",accuracy_score(Y_test,p))