From 34ce6402259a8c16cce956cda0cae890aef02a46 Mon Sep 17 00:00:00 2001 From: Salsabil Maulana Akbar Date: Fri, 31 May 2024 23:00:10 +0700 Subject: [PATCH] Closes #228 | Add M3LS dataloader (#675) * add m3ls * Update seacrowd/sea_datasets/m3ls/m3ls.py * Apply suggestions from code review update to comply w/ `black` formatter Co-authored-by: Frederikus Hudi * Update m3ls.py * Update m3ls.py * Update m3ls.py following `black` formatter --------- Co-authored-by: Lj Miranda <12949683+ljvmiranda921@users.noreply.github.com> Co-authored-by: Frederikus Hudi --- seacrowd/sea_datasets/m3ls/__init__.py | 0 seacrowd/sea_datasets/m3ls/m3ls.py | 403 +++++++++++++++++++++++++ 2 files changed, 403 insertions(+) create mode 100644 seacrowd/sea_datasets/m3ls/__init__.py create mode 100644 seacrowd/sea_datasets/m3ls/m3ls.py diff --git a/seacrowd/sea_datasets/m3ls/__init__.py b/seacrowd/sea_datasets/m3ls/__init__.py new file mode 100644 index 000000000..e69de29bb diff --git a/seacrowd/sea_datasets/m3ls/m3ls.py b/seacrowd/sea_datasets/m3ls/m3ls.py new file mode 100644 index 000000000..02833aa4a --- /dev/null +++ b/seacrowd/sea_datasets/m3ls/m3ls.py @@ -0,0 +1,403 @@ +""" +SEA Crowd Data Loader for M3LS. +""" +import json +import os +from collections.abc import Iterable +from copy import deepcopy +from typing import Dict, Generator, List, Tuple, Union + +try: + import PIL +except (ImportError, ModuleNotFoundError): + raise ImportError("Please install `PIL` to load image-based data from this dataloader.") +else: + PIL.__version__ # to avoid being marked by formatter + +import datasets +from datasets.download.download_manager import DownloadManager + +from seacrowd.utils import schemas +from seacrowd.utils.configs import SEACrowdConfig +from seacrowd.utils.constants import TASK_TO_SCHEMA, Licenses, Tasks + +_CITATION = r""" +@inproceedings{verma-etal-2023-large, + title = "Large Scale Multi-Lingual Multi-Modal Summarization Dataset", + author = "Verma, Yash and + Jangra, Anubhav and + Verma, Raghvendra and + Saha, Sriparna", + editor = "Vlachos, Andreas and + Augenstein, Isabelle", + booktitle = "Proceedings of the 17th Conference of the European Chapter of the Association for Computational Linguistics", + month = may, + year = "2023", + address = "Dubrovnik, Croatia", + publisher = "Association for Computational Linguistics", + url = "https://aclanthology.org/2023.eacl-main.263", + doi = "10.18653/v1/2023.eacl-main.263", + pages = "3620--3632", +} +""" + +logger = datasets.logging.get_logger(__name__) + +_LOCAL = False +_LANGUAGES = ["ind"] + + +_DATASETNAME = "m3ls" +_DESCRIPTION = r""" +The multilingual multimodal summarization dataset (M3LS) consists of over a million instances of document-image pairs +along with a professionally annotated multimodal summary for each pair. +It is derived from news articles published by the British Broadcasting Corporation (BBC) over a decade and spans 20 total languages, +which Indonesian is the only SEA language available on this dataset. +""" + +_HOMEPAGE = "https://github.com/anubhav-jangra/M3LS/tree/main" +_LICENSE = Licenses.MIT.value + +_URL = "https://drive.google.com/uc?id=1Kznkw7YpRiWpdgH4_SVNwp0uGf3j-5e2" + +_SUPPORTED_TASKS = [Tasks.SUMMARIZATION, Tasks.IMAGE_CAPTIONING] +_SOURCE_VERSION = "1.0.0" +_SEACROWD_VERSION = "1.0.0" + +_CONFIG_SUFFIXES_FOR_TASK = [TASK_TO_SCHEMA.get(task).lower() for task in _SUPPORTED_TASKS] + + +class M3LSDataset(datasets.GeneratorBasedBuilder): + """M3LS dataset of Indonesian Language (from BBC Indonesian)""" + + BUILDER_CONFIGS = [ + SEACrowdConfig( + name=f"{_DATASETNAME}_source", + version=datasets.Version(_SOURCE_VERSION), + description=f"{_DATASETNAME} source schema", + schema="source", + subset_id=f"{_DATASETNAME}", + ), + *[ + SEACrowdConfig( + name=f"{_DATASETNAME}_seacrowd_{cfg_sufix}", + version=datasets.Version(_SEACROWD_VERSION), + description=f"{_DATASETNAME} seacrowd schema for {task.name}", + schema=f"seacrowd_{cfg_sufix}", + subset_id=f"{_DATASETNAME}", + ) + for task, cfg_sufix in zip(_SUPPORTED_TASKS, _CONFIG_SUFFIXES_FOR_TASK) + ], + ] + + def _info(self) -> datasets.DatasetInfo: + _config_schema_name = self.config.schema + logger.info(f"Received schema name: {self.config.schema}") + + if _config_schema_name == "source": + features = datasets.Features( + { + "id": datasets.Value("string"), + "date": datasets.Value("string"), + "url": datasets.Value("string"), + "title": datasets.Value("string"), + "summary": datasets.Value("string"), + "keyword": datasets.Sequence(datasets.Value("string")), + "related": datasets.Sequence(datasets.Value("string")), + "section_headers": datasets.Sequence(datasets.Value("string")), + "paragraphs": datasets.Sequence(datasets.Value("string")), + "images": datasets.Sequence(datasets.Image()), + "captions": datasets.Sequence(datasets.Value("string")), + } + ) + + # speech-text schema + elif _config_schema_name == "seacrowd_t2t": + features = schemas.text2text_features + + elif _config_schema_name == "seacrowd_imtext": + features = schemas.image_text_features() + + else: + raise ValueError(f"Received unexpected config schema of {_config_schema_name}!") + + return datasets.DatasetInfo( + description=_DESCRIPTION, + features=features, + homepage=_HOMEPAGE, + license=_LICENSE, + citation=_CITATION, + ) + + def _split_generators(self, dl_manager: DownloadManager) -> List[datasets.SplitGenerator]: + try: + import gdown + except ImportError: + raise ImportError("Please install `gdown` to enable downloading data from google drive.") + + # Download from Google drive + output_dir = os.path.join(os.getcwd(), "data", "m3ls") + if not os.path.exists(output_dir): + os.makedirs(output_dir) + output_file = output_dir + "/m3ls.zip" + if not os.path.exists(output_file): + gdown.download(_URL, str(output_file), fuzzy=True) + else: + logger.info(f"File already downloaded: {str(output_file)}") + + local_path = os.path.join(dl_manager.extract(output_file).title(), "bbcindonesia") + + # there are two folders all containing json files, namely "processed" and "articles" + # both are having articles info with url, text, and accompanied resource scrapped (i.e image & captions, related articles) + + # the "processed" contains only 244 data, which 156 of them doesn't have any title info + # whereas "articles" contains 56108 data (the same reported as the wholly data in paper), all having title info + + # no intersection of links for both, nor information provided, hence we will only take "articles" due to matched info w/ their paper + # the original paper mentioned 80:10:10 splits for over, but there is no info for such splitting index on the extracted folder + article_data_dir = os.path.join(local_path, "articles") + + return [ + datasets.SplitGenerator( + name=datasets.Split.TRAIN, + gen_kwargs={ + "article_data_dir": article_data_dir, + "image_folder": os.path.join(local_path, "imagefolder"), + }, + ) + ] + + def _generate_examples(self, article_data_dir: str, image_folder: str) -> Generator[Tuple[int, Dict], None, None]: + _config_schema_name = self.config.schema + all_image_filename = os.listdir(image_folder) + + idx = 1 + im_data_idx = 1 + for filename in os.listdir(article_data_dir): + root_data, content_data = self.__json_read_and_process(os.path.join(article_data_dir, filename)) + + # for images, it has around 6.7% missing rate (15625 out of 230163) + if _config_schema_name == "source": + content_data = self.__m3ls_content_data_reconstructor_and_validator(content_data, mode="all") + image_path, captions = self.__m3ls_filter_image_and_captions_data(content_data["image_paths"], content_data["captions"], image_folder, all_image_filename) + + yield idx, { + "id": idx, + "date": root_data["date"], + "url": root_data["url"], + "title": root_data["title"], + "summary": root_data["summary"], + "keyword": root_data["keyword"], + "related": root_data["related"], + "section_headers": content_data["section_headers"], + "paragraphs": content_data["paragraphs"], + "images": image_path, + "captions": captions, + } + + elif _config_schema_name == "seacrowd_t2t": + content_data = self.__m3ls_content_data_reconstructor_and_validator(content_data, mode="text") + yield idx, { + "id": idx, + "text_1": "\n".join(content_data["paragraphs"]), + "text_2": root_data["summary"], + "text_1_name": "texts", + "text_2_name": "summary", + } + + elif _config_schema_name == "seacrowd_imtext": + content_data = self.__m3ls_content_data_reconstructor_and_validator(content_data, mode="image") + image_path, captions = self.__m3ls_filter_image_and_captions_data(content_data["image_paths"], content_data["captions"], image_folder, all_image_filename, both_exists=True) + + if image_path == []: + continue + + for path_idx in range(len(image_path)): + yield im_data_idx, { + "id": im_data_idx, + "image_paths": [image_path[path_idx]], + "texts": captions[path_idx], + "metadata": { + "context": root_data["url"], + "labels": None, + }, + } + im_data_idx += 1 + + else: + raise ValueError(f"Received unexpected config schema of {_config_schema_name}!") + + idx += 1 + + @staticmethod + def __check_only_1level_iterables(iter_obj): + return all([not isinstance(data, Iterable) or isinstance(data, str) for data in iter_obj]) + + @classmethod + def __json_read_and_process(cls, path: str) -> Dict: + + # to check (for compulsory keys) and reconstruct (for optional keys) the json data + def base_data_reconstructor(json_data: dict, return_split: bool = True) -> Union[Dict, Tuple[Dict, Dict]]: + + # for detecting content-based dict-keys (it's denoted by int-based keys in string type) + def parse_or_check_int(val: Union[int, str, float], is_parse: bool = True): + try: + int(val) + except (ValueError, TypeError): + return val if is_parse else False + else: + return int(val) if is_parse else True + + compulsory_keys = ["summary", "url", "title"] + optional_keys = ["date", "keyword", "related"] + optional_key_mapper = list(zip(optional_keys, ["Not available", [], []])) + + if any(key not in json_data.keys() for key in compulsory_keys): + raise KeyError(f"Missing keys of {list(set(compulsory_keys).difference(json_data.keys()))}") + + for key, default_val in optional_key_mapper: + _existing_val = json_data.get(key) + new_data = {key: json_data.get(key) if _existing_val is not None else default_val} + json_data.update(new_data) + + all_content_keys = [key for key in json_data.keys() if parse_or_check_int(key, is_parse=False)] + + if sorted(compulsory_keys + optional_keys + all_content_keys) != sorted(json_data.keys()): + raise KeyError("Some keys are unexpectedly missing or present!") + + content_data = {key: json_data[key] for key in all_content_keys} + + if not return_split: + json_data.update(content_data) + return json_data + else: + root_data = {key: val for key, val in json_data.items() if key not in all_content_keys} + return root_data, content_data + + def non_content_data_validator(json_data: dict): + non_content_dtypes = [("url", str), ("title", str), ("date", str), ("summary", str), ("keyword", list), ("related", list)] + + for key, _type in non_content_dtypes: + if not isinstance(json_data[key], _type): + raise TypeError(f"The dict has key {key} that doesn't match with expected type {_type}!") + + # assert only 1-level for list types + if _type == list: + if not cls.__check_only_1level_iterables(json_data[key]): + raise ValueError(f"Found iterables in {key} for val {json_data[key]}") + + with open(path, "r") as f: + json_input = json.load(f) + + base_data, content_data = base_data_reconstructor(json_input) + + non_content_data_validator(base_data) + + return base_data, content_data + + @classmethod + def __m3ls_content_data_reconstructor_and_validator(cls, json_content_data: Dict, mode: str = "all") -> Dict: + # `mode` variable scope will be shared to all subfunctions under this fn + if mode not in ("all", "image", "text"): + raise ValueError("Unexpected `mode`! Accepted: 'all', 'image', or 'text'.") + + all_content_ftrs = ("images", "para", "subheading") + expected_dtypes = (list, list, str) + default_values = ([["", ""]], [], "") + + _all_ftr_validation_info = {all_content_ftrs[_idx]: {"dtype": expected_dtypes[_idx], "default_val": default_values[_idx]} for _idx in range(len(all_content_ftrs))} + + if mode == "all": + ftr_idx = list(range(3)) + elif mode == "image": + ftr_idx = list(range(1)) + elif mode == "text": + ftr_idx = list(range(1, 3)) + + ftr_validation_info = {all_content_ftrs[_idx]: _all_ftr_validation_info[all_content_ftrs[_idx]] for _idx in ftr_idx} + + def content_data_reconstructor(json_data: dict): + json_data = deepcopy(json_data) + + for key, content_dict in json_data.items(): + for ftr, ftr_info in ftr_validation_info.items(): + if content_dict.get(ftr) is None: + json_data[key][ftr] = ftr_info["default_val"] + + return json_data + + def content_data_validator(content_data: dict): + for content_dict in content_data.values(): + if not isinstance(content_dict, dict): + raise TypeError("Unexpected type found on content data!") + + for ftr_name, ftr_info in ftr_validation_info.items(): + _type = ftr_info["dtype"] + if not isinstance(content_dict[ftr_name], _type): + raise TypeError(f"Unexpected type found on content {ftr_name} data! Expected {_type}, got {type(content_dict[ftr_name])}") + + if "para" in ftr_validation_info.keys() and not cls.__check_only_1level_iterables(content_dict["para"]): + raise ValueError("Found iterable in the 'paragraph' data!") + + if "images" in ftr_validation_info.keys() and not all([isinstance(image_data, list) for image_data in content_dict["images"]]): + raise ValueError("Found non-list in the 'images' data!") + + if "images" in ftr_validation_info.keys() and not all([len(image_data) == 2 for image_data in content_dict["images"]]): + raise ValueError("Found non-paired tuples in the 'images' data!") + + if "images" in ftr_validation_info.keys() and not all([cls.__check_only_1level_iterables(image_data) for image_data in content_dict["images"]]): + raise ValueError("Found iterable in the 'images' individual data!") + + def m3ls_content_data_post_process(content_data: dict) -> Dict: + output_json = {} + for _ftr in ftr_validation_info.keys(): + output_data = [] + for value in content_data.values(): + output_data.append(value[_ftr]) + output_json[_ftr] = output_data + + # post process each features + if "para" in ftr_validation_info.keys(): + paragraphs = [] + for section_data in output_json.pop("para"): + paragraphs.append("".join([val for val in section_data if val.strip() != ""])) + output_json["paragraphs"] = paragraphs + + if "images" in ftr_validation_info.keys(): + list_image_paths = [] + list_captions = [] + for sectioned_data in output_json.pop("images"): + for val in sectioned_data: + list_image_paths.append(val[0]) + list_captions.append("" if val[1] is None else val[1].strip()) + output_json["image_paths"] = list_image_paths + output_json["captions"] = list_captions + + if "subheading" in ftr_validation_info.keys(): + output_json["section_headers"] = output_json.pop("subheading") + + return output_json + + content_data = content_data_reconstructor(json_content_data) + + content_data_validator(content_data) + + content_data = m3ls_content_data_post_process(content_data) + + return content_data + + @staticmethod + def __m3ls_filter_image_and_captions_data(image_data: list, captions_data: list, base_image_folder: str, all_images: list, both_exists: bool = False) -> Tuple[List, List]: + image_path, captions = [], [] + + if len(captions_data) != len(image_data): + raise ValueError("Not a 1-1 mapping of image-captions!") + + for idx, img_path in enumerate(image_data): + if img_path in all_images: + if both_exists and captions_data[idx] == "": + continue + image_path.append(os.path.join(base_image_folder, img_path)) + captions.append(captions_data[idx]) + + return image_path, captions