-
Notifications
You must be signed in to change notification settings - Fork 0
/
appendixA.tex
176 lines (168 loc) · 8.81 KB
/
appendixA.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
%!TEX root = main.tex
%
% appendixA.tex
%
\chapter{Finite Topological Spaces}
Most can be found in \cite{barmak11}.
%-----------------------------------------------------------------------------
\begin{definition}
Denote the category of finite topological spaces by $\mathbf{FinTop}$.
The morphisms are continuous maps.
Denote the category of finite preordered sets by $\mathbf{FinPre}$.
The morphisms are order-preserving maps. That is, $f : X \to Y$ is a
morphism between preordered sets if and only if
$x \leq x' \Longrightarrow f(x) \leq f(x')$.
Denote the category of finite directed graphs by $\mathbf{FinGraph}$.
\end{definition}
%-----------------------------------------------------------------------------
\begin{definition}
If $X \in \mathbf{FinTop}$ and $x \in X$, define the \emph{open hull} of
$x$ as
\[ U_x := \bigcap_{x \in U \subseteq X} U,\]
where $U$ ranges over all open neighborhoods of $x$.
If necessary, we may write $U_x^X$ to make clear that we are talking about
the open hull of a specific space $X$.
Similarly, we define the \emph{closed hull} of $x$ as
\[ F_x := \bigcap_{x \in F \subseteq X} F,\]
where $F$ ranges over all closed neighborhoods of $x$.
\end{definition}
%-----------------------------------------------------------------------------
\begin{remark}
The open hull $U_x$ of a point $x \in X$ is an open set.
It is the smallest open set that contains the point $x$.
Similarly, $F_x$ is the smallest closed set that contains $x$.
Observe too, that $F_x = \overline{\{x\}}$.
\end{remark}
%-----------------------------------------------------------------------------
\begin{lemma} \label{lem:closed hulls and open hulls}
Let $X \in \mathbf{FinTop}$ and $x,y \in X$.
Then $x \in F_y \iff y \in U_x$.
\end{lemma}
\begin{proof}
For two points $x,y \in X$, we have
\begin{align*}
x \in F_y &\iff x \in \overline{\{y\}} \\
&\iff x = y \text{ or } x \text{ is a limit point of } y \\
&\iff x = y \text{ or for every open } U \subseteq X \text{ with }
x \in U \text{ it also holds } y \in U \\
&\iff y \text{ is in every open neighborhood of } x \\
&\iff y \in U_x
\end{align*}
\end{proof}
Recall that a topological space $X$ is called a $T_0$-space if for every two
points $x,y \in X$, with $x \neq y$ there exists an open set $U \subseteq X$
such that $x \in U$ and $y \not\in U$. If $X$ has the trivial topology, then
$X$ is not $T_0$. Every discrete space has the $T_0$-property. Every
Hausdorff space is $T_0$. Not every $T_0$-space is a Hausdorff space.
For instance, a set with two points $\{0,1\}$ where the topology is given
by
\[ \emptyset, \{0,1\}, \{1\} \]
is a $T_0$-space, but is not Hausdorff.
A $T_1$-space is a topological space $X$ such that for every two points
$x,y \in X$, with $x \neq y$ there exist two open sets $U,V \subseteq X$ such
that $x \in U$, $y \not\in U$ and $x \not\in V$, $y \in V$. Clearly a space
being $T_1$ is also $T_0$. Not every $T_1$-space is Hausdorff. For instance,
take $\Z$ with the cofinite topology. More generally, every irreducible
$T_1$-space with more than one point is not Hausdorff.
%-----------------------------------------------------------------------------
\begin{definition}
Given $X \in \mathbf{FinTop}$, we define a relation
\[ x \leq y \iff x \in F_y. \]
\end{definition}
%-----------------------------------------------------------------------------
Given $P \in \mathbf{FinPre}$, we can also construct a graph
$(P,E) \in \mathbf{FinGraph}$ where the vertices are the elements of $P$
and we construct an edge $(x,y) \in E$ if $x \geq y$. A graph morphism
between two directed graphs $(V,E),(V',E') \in \mathbf{FinGraph}$ is a map
of sets $f : V \to V'$ with the property that whenever $(v,w) \in E$, then
$(f(v),f(w)) \in E'$. In other words, graph morphisms respect edges.
Given $(V,E) \in \mathbf{FinGraph}$, we can also decree the sets
\[ U_x := \{ y \in V : y \leq x \}, \qquad x \in V \]
as a basis of open sets for $V$, endowing $V$ with a topology.
These three constructions give us equivalent objects in their respective
categories.
%-----------------------------------------------------------------------------
\begin{proposition}
Let $X \in \mathbf{FinTop}$.
\begin{enumerate}[label=\romansmallnumbering]
\item \label{prop:p1i} $x \leq y \iff F_x \subseteq F_y$.
\item \label{prop:p1ii} $\leq$ is a preordering.
\item \label{prop:p1iii} $X$ is $T_0 \iff \leq$ is a partial order
$\iff X$ has no directed cycles in its graph.
\item \label{prop:p1iv} $X$ is $T_1 \iff X$ is discrete $\iff$ no
two distinct points are comparable $\iff$ the graph of $X$ contains
no edges.
\end{enumerate}
\end{proposition}
\begin{proof}
For (\ref{prop:p1i}), suppose that $x \leq y$. Then $x \in F_y$. So $F_y$ is a
closed neighborhood for $x$. $F_x$ is the smallest closed neighborhood for
$x$. Hence $F_x \subseteq F_y$. On the other hand, suppose that
$F_x \subseteq F_y$. Then $x \in F_y$, so $x \leq y$. For (\ref{prop:p1ii}),
we have $x \in F_x$, so $x \leq x$. Suppose that $x \leq y$ and $y \leq z$ for
three points $x,y,z \in X$. Then by (\ref{prop:p1i}), we have
$F_x \subseteq F_y \subseteq F_z$, so $x \leq y$. For (\ref{prop:p1iii}),
Suppose that $X$ is $T_0$.
Assume we have two points $x,y \in X$ such that
$x \leq y$ and $y \leq x$.
Then $U_x = U_y$ by (\ref{prop:p1i}) and Lemma
\ref{lem:closed hulls and open hulls}.
Since $U_x$ and $U_y$ are the smallest
open sets that contain $x,y$, there exists no open $U \subseteq X$ such that
$x \in U$ and $y \not\in U$.
Therefore $x=y$. Hence $\leq$ is antisymmetric.
On the other hand, if $\leq$ is antisymmetric, assume we have two distinct
points $x,y \in X$.
If $x$ and $y$ are incomparable, we may take $U = X \setminus F_y$.
If $x$ and $y$ are comparable, let's say $x \leq y$ without loss of
generality.
Since $\leq$ is assumed to be a partial order and $x \neq y$, we know that
$x < y$, hence $y \not\in F_x \iff x \not\in U_y$ by Lemma
\ref{lem:closed hulls and open hulls}.
So we may take $U = U_y$.
\end{proof}
%-----------------------------------------------------------------------------
\begin{definition}
Given $X \in \mathbf{FinPre}$, define for every $x \in X$ the set
\[ U_x := \{y \in X : x \leq y \}. \]
\end{definition}
%-----------------------------------------------------------------------------
\begin{proposition}
Let $X \in \mathbf{FinPre}$. Then the set $\{U_x : x \in X\}$ is a basis of
open sets for a topology on $X$.
\end{proposition}
\begin{proof}
Clearly $\bigcup_{x \in X} U_x = X$.
Let $x,y \in X$ be such that $U_x \cap U_y \neq \emptyset$.
If $z \in U_x \cap U_y$, then $x \leq z$ and $y \leq z$. So if $w \in U_z$,
then $w \leq z \leq x,y$, therefore $U_z \subseteq U_x \cap U_y$.
\end{proof}
To every finite space $X$, we can associate a simplicial set. For any $n \in \N$, define
\[ [n] := \left\{0,1,2,\ldots,n-1,n\right\} \subset \N. \]
The subsets of the form $[n]$ together with monotonic maps between them forms a category denoted by $\Delta$. In $\Delta$, define the morphisms
\[ d^i_n : [n-1] \to [n], \qquad j \mapsto \left\{ \begin{array}{ll} j ,& \text{if } j < i, \\ j+1 ,& \text{if } j \geq i. \end{array} \right. , \qquad 0 \leq i \leq n. \]
Informally, $d_n^i$ skips $i$. When it is clear from context, we sometimes omit the subscript $n$ and just write $d^i$. We call the $d^i$ \emph{coboundary} maps. Now let us define
\[ s^i_n : [n+1] \to [n], \qquad j \mapsto \left\{ \begin{array}{ll} j ,& \text{if } j < i, \\ j-1,& \text{if } j \geq i. \end{array} \right. , \qquad 0 \leq i \leq n. \]
Informally, $s_n^i$ repeats $i$. Just like with $d^i$ we write $s^i$ if there's no ambiguity over what the value of $n$ is. We call the $s^i$ \emph{codegeneracy} maps.
\begin{proposition}[The cosimplicial identities]
\label{cosimplicial identities}
The following diagrams commute. TODO
\[ \begin{tikzcd}
\left[n-1\right] \arrow[r, "d^i_n"] \arrow[d, swap, "d^{j+1}_n"] & \left[n\right] \arrow[d, "d_{n+1}^j"] \\
\left[n\right] \arrow[r, swap, "d^i_{n+1}"] & \left[n+1\right]
\end{tikzcd} \]
\end{proposition}
\begin{proof}
Easy diagram chasing.
\end{proof}
\begin{definition}
We call the presheaves of $\Delta$, i.e. the objects of $\widehat{\Delta}$ \emph{simplicial sets}.
\end{definition}
Given a finite $T_0$ space $X$, the set $X$ is partially ordered. Thus we may define a functor $\mathcal{K}$ given by
\[ \mathcal{K} : \mathbf{FinTop} \to \widehat{\Delta}, \qquad X \mapsto \Hom_{\mathbf{Poset}}\left(\cdot, X\right). \]
More explicitly, the contravariant functor $\mathcal{K}X$ is defined, for each $n \in \N$, by
\[ \left( \mathcal{K}X \right)_n = \Hom_{\mathbf{Poset}}\left([n], X \right), \]
and for each monotonic map $f : [m] \to [n]$,
\[ (\mathcal{K}X)(f) : \Hom_{\mathbf{Poset}}\left([n], X \right) \to \Hom_{\mathbf{Poset}} \left( [m], X \right), \qquad \alpha \mapsto \alpha \circ f. \]
We also have a functor
\[ \Sing : \mathbf{Top} \to \widehat{\Delta}, \qquad X \mapsto \left( [n] \mapsto \Hom_{\mathbf{Top}}\left(\Delta_n, X\right) \right). \]