forked from jbornschein/mpi4py-examples
-
Notifications
You must be signed in to change notification settings - Fork 0
/
10-task-pull-spawn.py
executable file
·104 lines (83 loc) · 2.96 KB
/
10-task-pull-spawn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
""" A different implementation of task-pull with less communication and full
use of resources (mainly-idle parent shares with worker). Sentinels are used in
place of tags. Start parent with 'python <filename.py>' rather than mpirun;
parent will then spawn specified number of workers. Work is randomized to
demonstrate dynamic allocation. Worker logs are collectively passed back to
parent at the end in place of results. Comments and output are both
deliberately excessive for instructional purposes. """
from mpi4py import MPI
import random
import time
import sys
n_workers = 10
n_tasks = 50
start_worker = 'worker'
usage = 'Program should be started without argument'
# Parent
if len(sys.argv) == 1:
# Start clock
start = MPI.Wtime()
# Random 1-9s tasks
task_list = [random.randint(1, 9) for task in range(n_tasks)]
total_time = sum(task_list)
# Append stop sentinel for each worker
msg_list = task_list + ([StopIteration] * n_workers)
# Spawn workers
comm = MPI.COMM_WORLD.Spawn(
sys.executable,
args=[sys.argv[0], start_worker],
maxprocs=n_workers)
# Reply to whoever asks until done
status = MPI.Status()
for position, msg in enumerate(msg_list):
comm.recv(source=MPI.ANY_SOURCE, status=status)
comm.send(obj=msg, dest=status.Get_source())
# Simple (loop position) progress bar
percent = ((position + 1) * 100) // (n_tasks + n_workers)
sys.stdout.write(
'\rProgress: [%-50s] %3i%% ' %
('=' * (percent // 2), percent))
sys.stdout.flush()
# Gather reports from workers
reports = comm.gather(root=MPI.ROOT)
# Print summary
workers = 0; tasks = 0; time = 0
print '\n\n Worker Tasks Time'
print '-' * 26
for worker, report in enumerate(reports):
print '%8i%8i%8i' % (worker, len(report), sum(report))
workers += 1; tasks += len(report); time += sum(report)
print '-' * 26
print '%8i%8i%8i' % (workers, tasks, time)
# Check all in order
assert workers == n_workers, 'Missing workers'
assert tasks == n_tasks, 'Lost tasks'
assert time == total_time, 'Output != assigned input'
# Final statistics
finish = MPI.Wtime() - start
efficiency = (total_time * 100) / (finish * n_workers)
print '\nProcessed in %.2f secs' % finish
print '%.2f%% efficient' % efficiency
# Shutdown
comm.Disconnect()
# Worker
elif sys.argv[1] == start_worker:
# Connect to parent
try:
comm = MPI.Comm.Get_parent()
rank = comm.Get_rank()
except:
raise ValueError('Could not connect to parent - ' + usage)
# Ask for work until stop sentinel
log = []
for task in iter(lambda: comm.sendrecv(dest=0), StopIteration):
log.append(task)
# Do work (or not!)
time.sleep(task)
# Collective report to parent
comm.gather(sendobj=log, root=0)
# Shutdown
comm.Disconnect()
# Catch
else:
raise ValueError(usage)