diff --git a/AgentQnA/docker_compose/intel/cpu/xeon/README.md b/AgentQnA/docker_compose/intel/cpu/xeon/README.md
index 852a0476c6..8d373c2ddb 100644
--- a/AgentQnA/docker_compose/intel/cpu/xeon/README.md
+++ b/AgentQnA/docker_compose/intel/cpu/xeon/README.md
@@ -1,3 +1,100 @@
-# Deployment on Xeon
+# Single node on-prem deployment with Docker Compose on Xeon Scalable processors
-We deploy the retrieval tool on Xeon. For LLMs, we support OpenAI models via API calls. For instructions on using open-source LLMs, please refer to the deployment guide [here](../../../../README.md).
+This example showcases a hierarchical multi-agent system for question-answering applications. We deploy the example on Xeon. For LLMs, we use OpenAI models via API calls. For instructions on using open-source LLMs, please refer to the deployment guide [here](../../../../README.md).
+
+## Deployment with docker
+
+1. First, clone this repo.
+ ```
+ export WORKDIR=
+ cd $WORKDIR
+ git clone https://github.com/opea-project/GenAIExamples.git
+ ```
+2. Set up environment for this example
+
+ ```
+ # Example: host_ip="192.168.1.1" or export host_ip="External_Public_IP"
+ export host_ip=$(hostname -I | awk '{print $1}')
+ # if you are in a proxy environment, also set the proxy-related environment variables
+ export http_proxy="Your_HTTP_Proxy"
+ export https_proxy="Your_HTTPs_Proxy"
+ # Example: no_proxy="localhost, 127.0.0.1, 192.168.1.1"
+ export no_proxy="Your_No_Proxy"
+
+ export TOOLSET_PATH=$WORKDIR/GenAIExamples/AgentQnA/tools/
+ #OPANAI_API_KEY if you want to use OpenAI models
+ export OPENAI_API_KEY=
+ ```
+
+3. Deploy the retrieval tool (i.e., DocIndexRetriever mega-service)
+
+ First, launch the mega-service.
+
+ ```
+ cd $WORKDIR/GenAIExamples/AgentQnA/retrieval_tool
+ bash launch_retrieval_tool.sh
+ ```
+
+ Then, ingest data into the vector database. Here we provide an example. You can ingest your own data.
+
+ ```
+ bash run_ingest_data.sh
+ ```
+
+4. Launch Tool service
+ In this example, we will use some of the mock APIs provided in the Meta CRAG KDD Challenge to demonstrate the benefits of gaining additional context from mock knowledge graphs.
+ ```
+ docker run -d -p=8080:8000 docker.io/aicrowd/kdd-cup-24-crag-mock-api:v0
+ ```
+5. Launch `Agent` service
+
+ The configurations of the supervisor agent and the worker agent are defined in the docker-compose yaml file. We currently use openAI GPT-4o-mini as LLM, and llama3.1-70B-instruct (served by TGI-Gaudi) in Gaudi example. To use openai llm, run command below.
+
+ ```
+ cd $WORKDIR/GenAIExamples/AgentQnA/docker_compose/intel/cpu/xeon
+ bash launch_agent_service_openai.sh
+ ```
+
+6. [Optional] Build `Agent` docker image if pulling images failed.
+
+ ```
+ git clone https://github.com/opea-project/GenAIComps.git
+ cd GenAIComps
+ docker build -t opea/agent-langchain:latest -f comps/agent/langchain/Dockerfile .
+ ```
+
+## Validate services
+
+First look at logs of the agent docker containers:
+
+```
+# worker agent
+docker logs rag-agent-endpoint
+```
+
+```
+# supervisor agent
+docker logs react-agent-endpoint
+```
+
+You should see something like "HTTP server setup successful" if the docker containers are started successfully.
+
+Second, validate worker agent:
+
+```
+curl http://${host_ip}:9095/v1/chat/completions -X POST -H "Content-Type: application/json" -d '{
+ "query": "Most recent album by Taylor Swift"
+ }'
+```
+
+Third, validate supervisor agent:
+
+```
+curl http://${host_ip}:9090/v1/chat/completions -X POST -H "Content-Type: application/json" -d '{
+ "query": "Most recent album by Taylor Swift"
+ }'
+```
+
+## How to register your own tools with agent
+
+You can take a look at the tools yaml and python files in this example. For more details, please refer to the "Provide your own tools" section in the instructions [here](https://github.com/opea-project/GenAIComps/tree/main/comps/agent/langchain/README.md).
diff --git a/AgentQnA/docker_compose/intel/hpu/gaudi/README.md b/AgentQnA/docker_compose/intel/hpu/gaudi/README.md
new file mode 100644
index 0000000000..21735e3984
--- /dev/null
+++ b/AgentQnA/docker_compose/intel/hpu/gaudi/README.md
@@ -0,0 +1,105 @@
+# Single node on-prem deployment AgentQnA on Gaudi
+
+This example showcases a hierarchical multi-agent system for question-answering applications. We deploy the example on Gaudi using open-source LLMs,
+For more details, please refer to the deployment guide [here](../../../../README.md).
+
+## Deployment with docker
+
+1. First, clone this repo.
+ ```
+ export WORKDIR=
+ cd $WORKDIR
+ git clone https://github.com/opea-project/GenAIExamples.git
+ ```
+2. Set up environment for this example
+
+ ```
+ # Example: host_ip="192.168.1.1" or export host_ip="External_Public_IP"
+ export host_ip=$(hostname -I | awk '{print $1}')
+ # if you are in a proxy environment, also set the proxy-related environment variables
+ export http_proxy="Your_HTTP_Proxy"
+ export https_proxy="Your_HTTPs_Proxy"
+ # Example: no_proxy="localhost, 127.0.0.1, 192.168.1.1"
+ export no_proxy="Your_No_Proxy"
+
+ export TOOLSET_PATH=$WORKDIR/GenAIExamples/AgentQnA/tools/
+ # for using open-source llms
+ export HUGGINGFACEHUB_API_TOKEN=
+ # Example export HF_CACHE_DIR=$WORKDIR so that no need to redownload every time
+ export HF_CACHE_DIR=
+
+ ```
+
+3. Deploy the retrieval tool (i.e., DocIndexRetriever mega-service)
+
+ First, launch the mega-service.
+
+ ```
+ cd $WORKDIR/GenAIExamples/AgentQnA/retrieval_tool
+ bash launch_retrieval_tool.sh
+ ```
+
+ Then, ingest data into the vector database. Here we provide an example. You can ingest your own data.
+
+ ```
+ bash run_ingest_data.sh
+ ```
+
+4. Launch Tool service
+ In this example, we will use some of the mock APIs provided in the Meta CRAG KDD Challenge to demonstrate the benefits of gaining additional context from mock knowledge graphs.
+ ```
+ docker run -d -p=8080:8000 docker.io/aicrowd/kdd-cup-24-crag-mock-api:v0
+ ```
+5. Launch `Agent` service
+
+ To use open-source LLMs on Gaudi2, run commands below.
+
+ ```
+ cd $WORKDIR/GenAIExamples/AgentQnA/docker_compose/intel/hpu/gaudi
+ bash launch_tgi_gaudi.sh
+ bash launch_agent_service_tgi_gaudi.sh
+ ```
+
+6. [Optional] Build `Agent` docker image if pulling images failed.
+
+ ```
+ git clone https://github.com/opea-project/GenAIComps.git
+ cd GenAIComps
+ docker build -t opea/agent-langchain:latest -f comps/agent/langchain/Dockerfile .
+ ```
+
+## Validate services
+
+First look at logs of the agent docker containers:
+
+```
+# worker agent
+docker logs rag-agent-endpoint
+```
+
+```
+# supervisor agent
+docker logs react-agent-endpoint
+```
+
+You should see something like "HTTP server setup successful" if the docker containers are started successfully.
+
+Second, validate worker agent:
+
+```
+curl http://${host_ip}:9095/v1/chat/completions -X POST -H "Content-Type: application/json" -d '{
+ "query": "Most recent album by Taylor Swift"
+ }'
+```
+
+Third, validate supervisor agent:
+
+```
+curl http://${host_ip}:9090/v1/chat/completions -X POST -H "Content-Type: application/json" -d '{
+ "query": "Most recent album by Taylor Swift"
+ }'
+```
+
+## How to register your own tools with agent
+
+You can take a look at the tools yaml and python files in this example. For more details, please refer to the "Provide your own tools" section in the instructions [here](https://github.com/opea-project/GenAIComps/tree/main/comps/agent/langchain/README.md).