diff --git a/AgentQnA/docker_compose/intel/cpu/xeon/README.md b/AgentQnA/docker_compose/intel/cpu/xeon/README.md index 852a0476c6..8d373c2ddb 100644 --- a/AgentQnA/docker_compose/intel/cpu/xeon/README.md +++ b/AgentQnA/docker_compose/intel/cpu/xeon/README.md @@ -1,3 +1,100 @@ -# Deployment on Xeon +# Single node on-prem deployment with Docker Compose on Xeon Scalable processors -We deploy the retrieval tool on Xeon. For LLMs, we support OpenAI models via API calls. For instructions on using open-source LLMs, please refer to the deployment guide [here](../../../../README.md). +This example showcases a hierarchical multi-agent system for question-answering applications. We deploy the example on Xeon. For LLMs, we use OpenAI models via API calls. For instructions on using open-source LLMs, please refer to the deployment guide [here](../../../../README.md). + +## Deployment with docker + +1. First, clone this repo. + ``` + export WORKDIR= + cd $WORKDIR + git clone https://github.com/opea-project/GenAIExamples.git + ``` +2. Set up environment for this example
+ + ``` + # Example: host_ip="192.168.1.1" or export host_ip="External_Public_IP" + export host_ip=$(hostname -I | awk '{print $1}') + # if you are in a proxy environment, also set the proxy-related environment variables + export http_proxy="Your_HTTP_Proxy" + export https_proxy="Your_HTTPs_Proxy" + # Example: no_proxy="localhost, 127.0.0.1, 192.168.1.1" + export no_proxy="Your_No_Proxy" + + export TOOLSET_PATH=$WORKDIR/GenAIExamples/AgentQnA/tools/ + #OPANAI_API_KEY if you want to use OpenAI models + export OPENAI_API_KEY= + ``` + +3. Deploy the retrieval tool (i.e., DocIndexRetriever mega-service) + + First, launch the mega-service. + + ``` + cd $WORKDIR/GenAIExamples/AgentQnA/retrieval_tool + bash launch_retrieval_tool.sh + ``` + + Then, ingest data into the vector database. Here we provide an example. You can ingest your own data. + + ``` + bash run_ingest_data.sh + ``` + +4. Launch Tool service + In this example, we will use some of the mock APIs provided in the Meta CRAG KDD Challenge to demonstrate the benefits of gaining additional context from mock knowledge graphs. + ``` + docker run -d -p=8080:8000 docker.io/aicrowd/kdd-cup-24-crag-mock-api:v0 + ``` +5. Launch `Agent` service + + The configurations of the supervisor agent and the worker agent are defined in the docker-compose yaml file. We currently use openAI GPT-4o-mini as LLM, and llama3.1-70B-instruct (served by TGI-Gaudi) in Gaudi example. To use openai llm, run command below. + + ``` + cd $WORKDIR/GenAIExamples/AgentQnA/docker_compose/intel/cpu/xeon + bash launch_agent_service_openai.sh + ``` + +6. [Optional] Build `Agent` docker image if pulling images failed. + + ``` + git clone https://github.com/opea-project/GenAIComps.git + cd GenAIComps + docker build -t opea/agent-langchain:latest -f comps/agent/langchain/Dockerfile . + ``` + +## Validate services + +First look at logs of the agent docker containers: + +``` +# worker agent +docker logs rag-agent-endpoint +``` + +``` +# supervisor agent +docker logs react-agent-endpoint +``` + +You should see something like "HTTP server setup successful" if the docker containers are started successfully.

+ +Second, validate worker agent: + +``` +curl http://${host_ip}:9095/v1/chat/completions -X POST -H "Content-Type: application/json" -d '{ + "query": "Most recent album by Taylor Swift" + }' +``` + +Third, validate supervisor agent: + +``` +curl http://${host_ip}:9090/v1/chat/completions -X POST -H "Content-Type: application/json" -d '{ + "query": "Most recent album by Taylor Swift" + }' +``` + +## How to register your own tools with agent + +You can take a look at the tools yaml and python files in this example. For more details, please refer to the "Provide your own tools" section in the instructions [here](https://github.com/opea-project/GenAIComps/tree/main/comps/agent/langchain/README.md). diff --git a/AgentQnA/docker_compose/intel/hpu/gaudi/README.md b/AgentQnA/docker_compose/intel/hpu/gaudi/README.md new file mode 100644 index 0000000000..21735e3984 --- /dev/null +++ b/AgentQnA/docker_compose/intel/hpu/gaudi/README.md @@ -0,0 +1,105 @@ +# Single node on-prem deployment AgentQnA on Gaudi + +This example showcases a hierarchical multi-agent system for question-answering applications. We deploy the example on Gaudi using open-source LLMs, +For more details, please refer to the deployment guide [here](../../../../README.md). + +## Deployment with docker + +1. First, clone this repo. + ``` + export WORKDIR= + cd $WORKDIR + git clone https://github.com/opea-project/GenAIExamples.git + ``` +2. Set up environment for this example
+ + ``` + # Example: host_ip="192.168.1.1" or export host_ip="External_Public_IP" + export host_ip=$(hostname -I | awk '{print $1}') + # if you are in a proxy environment, also set the proxy-related environment variables + export http_proxy="Your_HTTP_Proxy" + export https_proxy="Your_HTTPs_Proxy" + # Example: no_proxy="localhost, 127.0.0.1, 192.168.1.1" + export no_proxy="Your_No_Proxy" + + export TOOLSET_PATH=$WORKDIR/GenAIExamples/AgentQnA/tools/ + # for using open-source llms + export HUGGINGFACEHUB_API_TOKEN= + # Example export HF_CACHE_DIR=$WORKDIR so that no need to redownload every time + export HF_CACHE_DIR= + + ``` + +3. Deploy the retrieval tool (i.e., DocIndexRetriever mega-service) + + First, launch the mega-service. + + ``` + cd $WORKDIR/GenAIExamples/AgentQnA/retrieval_tool + bash launch_retrieval_tool.sh + ``` + + Then, ingest data into the vector database. Here we provide an example. You can ingest your own data. + + ``` + bash run_ingest_data.sh + ``` + +4. Launch Tool service + In this example, we will use some of the mock APIs provided in the Meta CRAG KDD Challenge to demonstrate the benefits of gaining additional context from mock knowledge graphs. + ``` + docker run -d -p=8080:8000 docker.io/aicrowd/kdd-cup-24-crag-mock-api:v0 + ``` +5. Launch `Agent` service + + To use open-source LLMs on Gaudi2, run commands below. + + ``` + cd $WORKDIR/GenAIExamples/AgentQnA/docker_compose/intel/hpu/gaudi + bash launch_tgi_gaudi.sh + bash launch_agent_service_tgi_gaudi.sh + ``` + +6. [Optional] Build `Agent` docker image if pulling images failed. + + ``` + git clone https://github.com/opea-project/GenAIComps.git + cd GenAIComps + docker build -t opea/agent-langchain:latest -f comps/agent/langchain/Dockerfile . + ``` + +## Validate services + +First look at logs of the agent docker containers: + +``` +# worker agent +docker logs rag-agent-endpoint +``` + +``` +# supervisor agent +docker logs react-agent-endpoint +``` + +You should see something like "HTTP server setup successful" if the docker containers are started successfully.

+ +Second, validate worker agent: + +``` +curl http://${host_ip}:9095/v1/chat/completions -X POST -H "Content-Type: application/json" -d '{ + "query": "Most recent album by Taylor Swift" + }' +``` + +Third, validate supervisor agent: + +``` +curl http://${host_ip}:9090/v1/chat/completions -X POST -H "Content-Type: application/json" -d '{ + "query": "Most recent album by Taylor Swift" + }' +``` + +## How to register your own tools with agent + +You can take a look at the tools yaml and python files in this example. For more details, please refer to the "Provide your own tools" section in the instructions [here](https://github.com/opea-project/GenAIComps/tree/main/comps/agent/langchain/README.md).