forked from ashleve/lightning-hydra-template
-
Notifications
You must be signed in to change notification settings - Fork 0
/
test_train.py
108 lines (82 loc) · 3.29 KB
/
test_train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
import os
from pathlib import Path
import pytest
from hydra.core.hydra_config import HydraConfig
from omegaconf import DictConfig, open_dict
from src.train import train
from tests.helpers.run_if import RunIf
def test_train_fast_dev_run(cfg_train: DictConfig) -> None:
"""Run for 1 train, val and test step.
:param cfg_train: A DictConfig containing a valid training configuration.
"""
HydraConfig().set_config(cfg_train)
with open_dict(cfg_train):
cfg_train.trainer.fast_dev_run = True
cfg_train.trainer.accelerator = "cpu"
train(cfg_train)
@RunIf(min_gpus=1)
def test_train_fast_dev_run_gpu(cfg_train: DictConfig) -> None:
"""Run for 1 train, val and test step on GPU.
:param cfg_train: A DictConfig containing a valid training configuration.
"""
HydraConfig().set_config(cfg_train)
with open_dict(cfg_train):
cfg_train.trainer.fast_dev_run = True
cfg_train.trainer.accelerator = "gpu"
train(cfg_train)
@RunIf(min_gpus=1)
@pytest.mark.slow
def test_train_epoch_gpu_amp(cfg_train: DictConfig) -> None:
"""Train 1 epoch on GPU with mixed-precision.
:param cfg_train: A DictConfig containing a valid training configuration.
"""
HydraConfig().set_config(cfg_train)
with open_dict(cfg_train):
cfg_train.trainer.max_epochs = 1
cfg_train.trainer.accelerator = "cpu"
cfg_train.trainer.precision = 16
train(cfg_train)
@pytest.mark.slow
def test_train_epoch_double_val_loop(cfg_train: DictConfig) -> None:
"""Train 1 epoch with validation loop twice per epoch.
:param cfg_train: A DictConfig containing a valid training configuration.
"""
HydraConfig().set_config(cfg_train)
with open_dict(cfg_train):
cfg_train.trainer.max_epochs = 1
cfg_train.trainer.val_check_interval = 0.5
train(cfg_train)
@pytest.mark.slow
def test_train_ddp_sim(cfg_train: DictConfig) -> None:
"""Simulate DDP (Distributed Data Parallel) on 2 CPU processes.
:param cfg_train: A DictConfig containing a valid training configuration.
"""
HydraConfig().set_config(cfg_train)
with open_dict(cfg_train):
cfg_train.trainer.max_epochs = 2
cfg_train.trainer.accelerator = "cpu"
cfg_train.trainer.devices = 2
cfg_train.trainer.strategy = "ddp_spawn"
train(cfg_train)
@pytest.mark.slow
def test_train_resume(tmp_path: Path, cfg_train: DictConfig) -> None:
"""Run 1 epoch, finish, and resume for another epoch.
:param tmp_path: The temporary logging path.
:param cfg_train: A DictConfig containing a valid training configuration.
"""
with open_dict(cfg_train):
cfg_train.trainer.max_epochs = 1
HydraConfig().set_config(cfg_train)
metric_dict_1, _ = train(cfg_train)
files = os.listdir(tmp_path / "checkpoints")
assert "last.ckpt" in files
assert "epoch_000.ckpt" in files
with open_dict(cfg_train):
cfg_train.ckpt_path = str(tmp_path / "checkpoints" / "last.ckpt")
cfg_train.trainer.max_epochs = 2
metric_dict_2, _ = train(cfg_train)
files = os.listdir(tmp_path / "checkpoints")
assert "epoch_001.ckpt" in files
assert "epoch_002.ckpt" not in files
assert metric_dict_1["train/acc"] < metric_dict_2["train/acc"]
assert metric_dict_1["val/acc"] < metric_dict_2["val/acc"]