-
Notifications
You must be signed in to change notification settings - Fork 0
/
tf_dendritic.py
426 lines (389 loc) · 19.7 KB
/
tf_dendritic.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
import numpy as np
import tensorflow as tf
import copy
from keras.backend import floatx
from keras.engine.topology import Layer
from keras.activations import get
#mxnet pick :https://mxnet.incubator.apache.org/api/python/ndarray/ndarray.html#mxnet.ndarray.pick
#cntk gather : https://cntk.ai/pythondocs/cntk.ops.html?highlight=load_model#cntk.ops.gather
#chainer selct : http://docs.chainer.org/en/stable/reference/generated/chainer.functions.select_item.html#chainer.functions.select_item
class minval_constraint():
def __init__(self,minval=0.0001):
self.minvalval=minval
self.minval=tf.constant(minval,dtype=floatx())
def get_config(self):
return({"minimal value":self.minvalval})
def __call__(self,w):
return(tf.maximum(w, self.minval))
class maxval_constraint():
def __init__(self,maxval=4.0):
self.maxvalval=maxval
self.maxval=tf.constant(maxval,dtype=floatx())
def get_config(self):
return({"maximal value":self.maxvalval})
def __call__(self,w):
return(tf.minimum(w, self.maxval))
class minmax_constraint():
def __init__(self,minval=0.0001,maxval=0.0001):
self.maxvalval=maxval
self.maxval=tf.constant(maxval,dtype=floatx())
self.minvalval=minval
self.minval=tf.constant(minval,dtype=floatx())
def get_config(self):
return({"maximal value":self.maxvalval,"minimal value":self.minvalval})
def __call__(self,w):
return(tf.maximum(tf.minimum(w, self.maxval),self.minval))
class dendriter(Layer):
def __init__(self,units,dendrite_size,bigger_dendrite=False,activation=None,function:int=0,one_permutation:bool=False,idx=-2,
weight_twice=True,custom_dendrites=None,dendrite_conf='normal',
dendrite_shift=1,#sequences
bias:bool=True,uniqueW=False,trainable=True,activity_regularizer=None,
W_init=tf.glorot_normal_initializer(),B_init=tf.glorot_normal_initializer(),
W_reg=None,B_reg=None,
W_constrain=minval_constraint(minval=0.00005),B_constrain=None,version=1,**kwargs):
"""
size=number of cells/nodes
dendrite_size=size of connections for each dendrite
dendrite_mode=normal: all inputs used once, sparse: some input not used, overlap: duplicate input for some dendrites
dendrite_shift: number of input to ignore or duplicate depending on the mode
bigger_dendrite= if the number of input is uneven, will make the last dendrite bigger or smaller
function= use simple addition or average,only addition is supported for now (0)
one_permitation=use only one connection scheme for every cells or not
idx=dimention of the input to use to make segments
#extra:
theorical backprop/weight update
wi=0.001#input weight
wdi=1.0#dendrite weight
wi=max((wi(1+changeW),0.001))
wdi=wdi*(1+changeW)
#changeW indicate the error?
changeW=max_learn_r*exp(-abs(delta)/scaler)*sign(delta)#bigger value = smaller change, max = 0.05, min =-0.05
"""
super(dendriter, self).__init__(trainable=trainable,
#activity_regularizer=activity_regularizer,
**kwargs)
self.units=units
self.modes=['normal','sparse','overlap']
try:
self.function=[tf.unsorted_segment_sum,tf.unsorted_segment_mean][function%2]
#cannot import unsorted_segment_mean, with tf1.7 on my setup, but worth trying
except (ImportError,AttributeError):
self.function=tf.unsorted_segment_sum
if isinstance(dendrite_conf, int):
assert dendrite_conf <=2 and dendrite_conf >=0
dendrite_conf=self.modes[dendrite_conf]
else:
assert dendrite_conf in self.modes
if dendrite_conf==self.modes[1] or dendrite_conf==self.modes[2]:
raise Exception("tensorflow only allows for normal mode currently")
self.dendrite_size=dendrite_size
self.bigger_dendrite=bigger_dendrite
self.one_perm=one_permutation
self.idx=idx
self.dendrite_mode=dendrite_conf
#only normal
self.dendrite_shift=dendrite_shift
self.weight_twice=weight_twice
self.use_bias=bias
self.uniqueW=uniqueW
self.dendrites=custom_dendrites
self.Weight_initializer=W_init
if B_init is None:
self.Bias_initializer=tf.initializers.ones
else:
self.Bias_initializer=B_init
self.Weight_regularizer=W_reg
self.Weight_constraint=W_constrain
self.Bias_regularizer=B_reg
self.Bias_constraint=B_constrain
if isinstance(activation, str):
self.activation=get(activation)
else:
self.activation=activation
self.version=version
def segmenter(self,):
"""
must work on the node (units) and not the data itself?
makes list with permuted index
connections= size of input sequence
permutations= number of lists
connection_size=size of tuples in the list
"""
#if self.dendrite_mode!=self.modes[0]:
# altered_vals=[]
full_conn_storage=[]
connections_list=[]
for i in range(self.units):#for each unit, make connections
con_pre_tup=np.random.permutation(self.connections).tolist()
if len(full_conn_storage)>=self.connections:
full_conn_storage.clear()
while con_pre_tup in connections_list:#full_conn_storage:
if len(connections_list)>(self.connections**2):
break
else:
np.random.shuffle(con_pre_tup)
connections_list.append(con_pre_tup)
#full_conn_storage.append(copy.deepcopy(con_pre_tup))
"""
Could be made to work by isolating elements with an extra index and removing/slicing them from the dendrites
if self.dendrite_mode==self.modes[1]:#sparse
if len(altered_vals)>=self.connections:
altered_vals.clear()
popval=np.random.randint(self.connections)
while con_pre_tup[popval] in altered_vals:
popval=np.random.randint(self.connections)
altered_vals.append((con_pre_tup.pop(popval),))
There are no known workaround for overlapping since each element can only have 1 index, so duplication would entail manual slicing and addition
elif self.dendrite_mode==self.modes[2]:#overlap
if len(altered_vals)>=self.connections:
position=np.random.randint(self.connections)
inval=np.random.randint(self.connections)
while inval in altered_vals:#make sure you get unique value
inval=np.random.randint(self.connections)
while inval in con_pre_tup[position-self.dendrite_size:position+self.dendrite_size]:#ensure no proximal duplicates
position=np.random.randint(self.connections)
altered_vals.append(inval)
else:
altered_vals.clear()"""
del full_conn_storage
tuples=[]
if self.dendrite_mode==self.modes[1]:#sparse
connections=self.connections-self.dendrite_shift
elif self.dendrite_mode==self.modes[2]:#overlap:
connections=self.connections+self.dendrite_shift
else:
connections=self.connections
bigger=False if (connections%self.dendrite_size)==0 else self.bigger_dendrite
groups = (connections//self.dendrite_size)
if bigger:
groups-=1
for perm in connections_list:#turn list to tuples
temp=[perm[self.dendrite_size*i:self.dendrite_size*(i+1)] for i in range(groups)]
if len(perm)>self.dendrite_size*groups:
temp.append(list(perm[self.dendrite_size*groups:]))
#print(self.dendrite_size,groups,perm)
#print(perm[self.dendrite_size*groups:])
#print(temp)
tuples.append(temp)
self.seql=len(tuples[0])
if self.version==2:
self.num_id=self.seql*len(tuples)
else:
self.num_id=self.seql
output=np.empty((self.units,connections,),dtype=int)
for iseq,sequence in enumerate(tuples):
for value,indexes in enumerate(sequence):
for index in indexes:
if self.version==2:
output[iseq,index]=value+iseq*self.seql
else:
output[iseq,index]=value
return(output)
def build(self,input_shape):
print("building")
self.input_shapes=input_shape.shape.as_list()
self.len_input=len(self.input_shapes)
self.connections=self.input_shapes[-1]
if self.dendrite_mode==self.modes[1]:#sparse
self.connections-=self.dendrite_shift
elif self.dendrite_mode==self.modes[2]:#overlap:
self.connections+=self.dendrite_shift
if self.dendrites is None:
self.dendrites=self.segmenter()#list of dendrites per neuron
if self.version==4:
self.dendrites=tf.constant(self.dendrites)
self.pre_dendrites=self.connections*self.units#neurons*previous_layer_neurons
if self.version==1:
dwshape=[self.seql,self.units]
else:
dwshape=[self.seql,self.units]
#dwshape=[self.units,self.seql,*[1 for _ in range(self.len_input-1)]]
#self.num_dendrites=self.pre_dendrites/self.dendrite_size
#if self.bigger_dendrite:
# self.num_dendrites=math.floor(self.num_dendrites)
#else:
# self.num_dendrites=math.ceil(self.num_dendrites)
#input_shape = tensor_shape.TensorShape(input_shape)
if self.version==2:
if len(self.input_shapes)>2:
part_inshape=(*self.input_shapes[1:-1],-1)
else:
part_inshape=(-1,)
self.debuildshape=(self.units*self.connections,*part_inshape)
self.deseqshape=(self.units*self.connections,)
self.rebuildshape=(self.units,self.seql,*part_inshape)
print('line228')
if self.weight_twice:
"""if self.uniqueW==2:#useless since all input are there once, could also work with sparse
print([self.dendrite_size,self.seql, self.units])
self.kernel=self.add_variable('Weight',shape=[*[1 for _ in range(self.len_input-1)],self.dendrite_size,self.seql, self.units],
initializer=self.Weight_initializer,regularizer=self.Weight_regularizer,
constraint=self.Weight_constraint,dtype=self.dtype,
trainable=True)"""
if self.uniqueW:
self.kernel=self.add_weight('Weight',shape=[*[1 for _ in range(self.len_input-1)],self.input_shapes[-1], self.units],
initializer=self.Weight_initializer,regularizer=self.Weight_regularizer,
constraint=self.Weight_constraint,#dtype=self.dtype,
trainable=True)
else:
self.kernel=self.add_weight('Weight',shape=[1, self.units],
initializer=self.Weight_initializer,regularizer=self.Weight_regularizer,
constraint=self.Weight_constraint,#dtype=self.dtype,
trainable=True)
print('line246')
self.dendriticW=self.add_weight('dendriticWeight',shape=dwshape,
initializer=self.Weight_initializer,regularizer=self.Weight_regularizer,
constraint=self.Weight_constraint,#dtype=self.dtype,
trainable=True)
print("added dendw")
if self.use_bias:
if self.weight_twice:
if self.uniqueW:
self.bias=self.add_weight('bias',shape=[self.input_shapes[-1],self.units,],
initializer=self.Bias_initializer,regularizer=self.Bias_regularizer,
constraint=self.Bias_constraint,#dtype=self.dtype,
trainable=True)
else:
self.bias=self.add_weight('bias',shape=[self.units,],
initializer=self.Bias_initializer,regularizer=self.Bias_regularizer,
constraint=self.Bias_constraint,# dtype=self.dtype,
trainable=True)
if self.uniqueW:
self.dendriticB=self.add_weight('dendriticBias',shape=[self.seql,self.units,],
initializer=self.Bias_initializer,regularizer=self.Bias_regularizer,
constraint=self.Bias_constraint,#dtype=self.dtype,
trainable=True)
else:
self.dendriticB=self.add_weight('dendriticB',shape=[self.units,],
initializer=self.Bias_initializer,regularizer=self.Bias_regularizer,
constraint=self.Bias_constraint,#dtype=self.dtype,
trainable=True)
self.input_spec = tf.layers.InputSpec(min_ndim=2,max_ndim=3,axes={-1: self.connections})
super(dendriter, self).build(input_shape)
print("supered")
self.built=True
print('builded')
def get_connections(self,):
"return the connections for replication"
return(self.dendrites)
def call(self, inputs):
return(self.__call__(inputs))
def compute_output_shape(self, input_shape):
input_shape = tf.TensorShape(input_shape)#tf.shape(input_shape)#
input_shape = input_shape.with_rank_at_least(2)
if input_shape[-1].value is None:
raise ValueError(
'The innermost dimension of input_shape must be defined, but saw: %s'
% input_shape)
print('outputshape is {}'.format(input_shape[:-1].concatenate(self.units)))
return input_shape[:-1].concatenate(self.units)
def __call__(self,inputs):
try:
assert not(self.dendriticW.dtype is None)
except:
self.build(inputs)#.shape)
#inputs = tf.ops.convert_to_tensor(inputs, dtype=self.dtype)
if not(inputs.dtype==self.dendriticW.dtype):
print("casting")
inputs=tf.cast(inputs,dtype=self.dendriticW.dtype)
print('input shape',inputs.shape)
if self.weight_twice:
#each dendrit COULD have unique weight for each input, meaning Wshape=[input,dendrite,units]
output=tf.expand_dims(inputs,-1)
if self.uniqueW:
output=tf.multiply(output, self.kernel)
else:
output=tf.tensordot(output,self.kernel,(-1,0))
print(output.shape,'first weighting')
if self.use_bias:
output=tf.transpose(tf.nn.bias_add(output,self.bias))
print(output.shape,'bias1')
else:
output=tf.transpose(inputs)#units,x,batch
if self.version==4:#https://stackoverflow.com/questions/37441140/how-to-use-tf-while-loop-in-tensorflow
#loopv2
#output=tf.unstack(output)
ix=tf.constant(0,dtype=tf.int32)
holder=tf.TensorArray(output.dtype,size=self.units)
incr=tf.constant(1,dtype=tf.int32)
def test_condition(i, *args):
return(tf.less( i , self.units))
def iteration(i, outputs_):
print(i,'I')
if self.weight_twice:
intermid= tf.unsorted_segment_sum(output[i],self.dendrites[i],self.seql)
else:
outputs_ = outputs_.write(i,intermid)
print(intermid.shape,'while loop data')
outputs_ = outputs_.write(i,intermid)
return( tf.add(i,incr), outputs_)
i, output = tf.while_loop(test_condition, iteration,[ix,holder])
output=output.stack()
print(output.shape,'stacked')
#loopv1
#condition= lambda inn,hold: tf.less(inn,self.input_shapes[-1])
#looper=lambda inn,hold : [tf.add(inn,incr), tf.unsorted_segment_sum(output[inn],self.dendrites[inn],self.seql)]
#output=tf.while_loop(condition,looper,[ix,hold])
#output=tf.stack(output[1])
if self.version==3:
if self.weight_twice:
output=tf.unstack(output)
output=tf.stack([tf.unsorted_segment_sum(data, self.dendrites[i],self.seql) for i,data in enumerate(output)])
else:
output=tf.stack([tf.unsorted_segment_sum(output, seq,self.seql) for seq in self.dendrites])
if self.version==2:
if self.weight_twice:
print(self.debuildshape)
output=tf.reshape(output,self.debuildshape)
output=tf.unsorted_segment_sum(output,tf.reshape(self.dendrites,self.deseqshape),self.num_id)
output=tf.reshape(output,self.rebuildshape)
print(tf.transpose(output).shape,self.rebuildshape)
else:
print(self.debuildshape)
output=tf.multiply(tf.expand_dims(output,0),tf.ones((self.units,*[1 for _ in range(self.len_input)]),dtype=output.dtype))
output=tf.reshape(tf.transpose(output),self.debuildshape)
output=tf.unsorted_segment_sum(output,tf.reshape(self.dendrites,self.deseqshape),self.num_id)
output=tf.reshape(output,self.rebuildshape)
print(tf.transpose(output).shape,self.rebuildshape)
if self.version==1:
output=self.function(output, self.dendrites, self.num_id,)
#too much squashing
print(output.shape,'unsorted shape')
output=tf.tensordot(tf.transpose(output),self.dendriticW,(-1,0))
else:
print(output.shape,self.dendriticW.shape)
output=tf.multiply(tf.transpose(output),self.dendriticW)#perfect since it's elementwise and not dot product
print(output.shape,'2w shape')
if self.use_bias:
output=tf.nn.bias_add(output, self.dendriticB)
print(output.shape,'2b shape')
output=tf.reduce_sum(output,-2)#sum the dendrites
if self.activation is not None:
return self.activation(output)
print('outshap is {}'.format(output.shape))
#print('GOOD OUTPUT SHAPE') if output.shape==(*self.input_shapes[:-1],self.units) else print("BAD OUTPUT SHAPE")
return(output)
#FORWARD
"""
input->Basalcomp->(soma*W_neuron_inter)->basal_inter->soma_inter
soma-(soma_inter*W_inter_neuron) ->apical
(soma*W_neuron_neuron)->basal(new_neuron)"""
#BACKWARDpg6
"""Loss(apical)->soma(change it, lead to change in incoming weight for basal comp)
#v2:
soma_up + apical-soma inter->soma ->soma_up (error)?
"""
"""
from tensorflow.python.framework import ops
from tensorflow.python.ops import gen_nn_ops
def _GuidedReluGrad(op, grad):
return tf.select(0. < grad, gen_nn_ops._relu_grad(grad, op.outputs[0]), tf.zeros(grad.get_shape()))
with tf.Session() as sess:
g = tf.get_default_graph()
x = tf.constant([10., 2.])
with g.gradient_override_map({'Relu': 'GuidedRelu'}):
y = tf.nn.relu(x)
z = tf.reduce_sum(-y ** 2)
tf.initialize_all_variables().run()
print x.eval(), y.eval(), z.eval(), tf.gradients(z, x)[0].eval()# > [ 10. 2.] [ 10. 2.] -104.0 [ 0. 0.]
"""