forked from raversa/models
-
Notifications
You must be signed in to change notification settings - Fork 0
/
resnet_model.py
297 lines (248 loc) · 10.8 KB
/
resnet_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
# Copyright 2016 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""ResNet model.
Related papers:
https://arxiv.org/pdf/1603.05027v2.pdf
https://arxiv.org/pdf/1512.03385v1.pdf
https://arxiv.org/pdf/1605.07146v1.pdf
"""
from collections import namedtuple
import numpy as np
import tensorflow as tf
from tensorflow.python.training import moving_averages
HParams = namedtuple('HParams',
'batch_size, num_classes, min_lrn_rate, lrn_rate, '
'num_residual_units, use_bottleneck, weight_decay_rate, '
'relu_leakiness, optimizer')
class ResNet(object):
"""ResNet model."""
def __init__(self, hps, images, labels, mode):
"""ResNet constructor.
Args:
hps: Hyperparameters.
images: Batches of images. [batch_size, image_size, image_size, 3]
labels: Batches of labels. [batch_size, num_classes]
mode: One of 'train' and 'eval'.
"""
self.hps = hps
self._images = images
self.labels = labels
self.mode = mode
self._extra_train_ops = []
def build_graph(self):
"""Build a whole graph for the model."""
self.global_step = tf.Variable(0, name='global_step', trainable=False)
self._build_model()
if self.mode == 'train':
self._build_train_op()
self.summaries = tf.merge_all_summaries()
def _stride_arr(self, stride):
"""Map a stride scalar to the stride array for tf.nn.conv2d."""
return [1, stride, stride, 1]
def _build_model(self):
"""Build the core model within the graph."""
with tf.variable_scope('init'):
x = self._images
x = self._conv('init_conv', x, 3, 3, 16, self._stride_arr(1))
strides = [1, 2, 2]
activate_before_residual = [True, False, False]
if self.hps.use_bottleneck:
res_func = self._bottleneck_residual
filters = [16, 64, 128, 256]
else:
res_func = self._residual
filters = [16, 16, 32, 64]
# Uncomment the following codes to use w28-10 wide residual network.
# It is more memory efficient than very deep residual network and has
# comparably good performance.
# https://arxiv.org/pdf/1605.07146v1.pdf
# filters = [16, 160, 320, 640]
# Update hps.num_residual_units to 9
with tf.variable_scope('unit_1_0'):
x = res_func(x, filters[0], filters[1], self._stride_arr(strides[0]),
activate_before_residual[0])
for i in xrange(1, self.hps.num_residual_units):
with tf.variable_scope('unit_1_%d' % i):
x = res_func(x, filters[1], filters[1], self._stride_arr(1), False)
with tf.variable_scope('unit_2_0'):
x = res_func(x, filters[1], filters[2], self._stride_arr(strides[1]),
activate_before_residual[1])
for i in xrange(1, self.hps.num_residual_units):
with tf.variable_scope('unit_2_%d' % i):
x = res_func(x, filters[2], filters[2], self._stride_arr(1), False)
with tf.variable_scope('unit_3_0'):
x = res_func(x, filters[2], filters[3], self._stride_arr(strides[2]),
activate_before_residual[2])
for i in xrange(1, self.hps.num_residual_units):
with tf.variable_scope('unit_3_%d' % i):
x = res_func(x, filters[3], filters[3], self._stride_arr(1), False)
with tf.variable_scope('unit_last'):
x = self._batch_norm('final_bn', x)
x = self._relu(x, self.hps.relu_leakiness)
x = self._global_avg_pool(x)
with tf.variable_scope('logit'):
logits = self._fully_connected(x, self.hps.num_classes)
self.predictions = tf.nn.softmax(logits)
with tf.variable_scope('costs'):
xent = tf.nn.softmax_cross_entropy_with_logits(
logits, self.labels)
self.cost = tf.reduce_mean(xent, name='xent')
self.cost += self._decay()
tf.scalar_summary('cost', self.cost)
def _build_train_op(self):
"""Build training specific ops for the graph."""
self.lrn_rate = tf.constant(self.hps.lrn_rate, tf.float32)
tf.scalar_summary('learning rate', self.lrn_rate)
trainable_variables = tf.trainable_variables()
grads = tf.gradients(self.cost, trainable_variables)
if self.hps.optimizer == 'sgd':
optimizer = tf.train.GradientDescentOptimizer(self.lrn_rate)
elif self.hps.optimizer == 'mom':
optimizer = tf.train.MomentumOptimizer(self.lrn_rate, 0.9)
apply_op = optimizer.apply_gradients(
zip(grads, trainable_variables),
global_step=self.global_step, name='train_step')
train_ops = [apply_op] + self._extra_train_ops
self.train_op = tf.group(*train_ops)
# TODO(xpan): Consider batch_norm in contrib/layers/python/layers/layers.py
def _batch_norm(self, name, x):
"""Batch normalization."""
with tf.variable_scope(name):
params_shape = [x.get_shape()[-1]]
beta = tf.get_variable(
'beta', params_shape, tf.float32,
initializer=tf.constant_initializer(0.0, tf.float32))
gamma = tf.get_variable(
'gamma', params_shape, tf.float32,
initializer=tf.constant_initializer(1.0, tf.float32))
if self.mode == 'train':
mean, variance = tf.nn.moments(x, [0, 1, 2], name='moments')
moving_mean = tf.get_variable(
'moving_mean', params_shape, tf.float32,
initializer=tf.constant_initializer(0.0, tf.float32),
trainable=False)
moving_variance = tf.get_variable(
'moving_variance', params_shape, tf.float32,
initializer=tf.constant_initializer(1.0, tf.float32),
trainable=False)
self._extra_train_ops.append(moving_averages.assign_moving_average(
moving_mean, mean, 0.9))
self._extra_train_ops.append(moving_averages.assign_moving_average(
moving_variance, variance, 0.9))
else:
mean = tf.get_variable(
'moving_mean', params_shape, tf.float32,
initializer=tf.constant_initializer(0.0, tf.float32),
trainable=False)
variance = tf.get_variable(
'moving_variance', params_shape, tf.float32,
initializer=tf.constant_initializer(1.0, tf.float32),
trainable=False)
tf.histogram_summary(mean.op.name, mean)
tf.histogram_summary(variance.op.name, variance)
# elipson used to be 1e-5. Maybe 0.001 solves NaN problem in deeper net.
y = tf.nn.batch_normalization(
x, mean, variance, beta, gamma, 0.001)
y.set_shape(x.get_shape())
return y
def _residual(self, x, in_filter, out_filter, stride,
activate_before_residual=False):
"""Residual unit with 2 sub layers."""
if activate_before_residual:
with tf.variable_scope('shared_activation'):
x = self._batch_norm('init_bn', x)
x = self._relu(x, self.hps.relu_leakiness)
orig_x = x
else:
with tf.variable_scope('residual_only_activation'):
orig_x = x
x = self._batch_norm('init_bn', x)
x = self._relu(x, self.hps.relu_leakiness)
with tf.variable_scope('sub1'):
x = self._conv('conv1', x, 3, in_filter, out_filter, stride)
with tf.variable_scope('sub2'):
x = self._batch_norm('bn2', x)
x = self._relu(x, self.hps.relu_leakiness)
x = self._conv('conv2', x, 3, out_filter, out_filter, [1, 1, 1, 1])
with tf.variable_scope('sub_add'):
if in_filter != out_filter:
orig_x = tf.nn.avg_pool(orig_x, stride, stride, 'VALID')
orig_x = tf.pad(
orig_x, [[0, 0], [0, 0], [0, 0],
[(out_filter-in_filter)//2, (out_filter-in_filter)//2]])
x += orig_x
tf.logging.info('image after unit %s', x.get_shape())
return x
def _bottleneck_residual(self, x, in_filter, out_filter, stride,
activate_before_residual=False):
"""Bottleneck resisual unit with 3 sub layers."""
if activate_before_residual:
with tf.variable_scope('common_bn_relu'):
x = self._batch_norm('init_bn', x)
x = self._relu(x, self.hps.relu_leakiness)
orig_x = x
else:
with tf.variable_scope('residual_bn_relu'):
orig_x = x
x = self._batch_norm('init_bn', x)
x = self._relu(x, self.hps.relu_leakiness)
with tf.variable_scope('sub1'):
x = self._conv('conv1', x, 1, in_filter, out_filter/4, stride)
with tf.variable_scope('sub2'):
x = self._batch_norm('bn2', x)
x = self._relu(x, self.hps.relu_leakiness)
x = self._conv('conv2', x, 3, out_filter/4, out_filter/4, [1, 1, 1, 1])
with tf.variable_scope('sub3'):
x = self._batch_norm('bn3', x)
x = self._relu(x, self.hps.relu_leakiness)
x = self._conv('conv3', x, 1, out_filter/4, out_filter, [1, 1, 1, 1])
with tf.variable_scope('sub_add'):
if in_filter != out_filter:
orig_x = self._conv('project', orig_x, 1, in_filter, out_filter, stride)
x += orig_x
tf.logging.info('image after unit %s', x.get_shape())
return x
def _decay(self):
"""L2 weight decay loss."""
costs = []
for var in tf.trainable_variables():
if var.op.name.find(r'DW') > 0:
costs.append(tf.nn.l2_loss(var))
# tf.histogram_summary(var.op.name, var)
return tf.mul(self.hps.weight_decay_rate, tf.add_n(costs))
def _conv(self, name, x, filter_size, in_filters, out_filters, strides):
"""Convolution."""
with tf.variable_scope(name):
n = filter_size * filter_size * out_filters
kernel = tf.get_variable(
'DW', [filter_size, filter_size, in_filters, out_filters],
tf.float32, initializer=tf.random_normal_initializer(
stddev=np.sqrt(2.0/n)))
return tf.nn.conv2d(x, kernel, strides, padding='SAME')
def _relu(self, x, leakiness=0.0):
"""Relu, with optional leaky support."""
return tf.select(tf.less(x, 0.0), leakiness * x, x, name='leaky_relu')
def _fully_connected(self, x, out_dim):
"""FullyConnected layer for final output."""
x = tf.reshape(x, [self.hps.batch_size, -1])
w = tf.get_variable(
'DW', [x.get_shape()[1], out_dim],
initializer=tf.uniform_unit_scaling_initializer(factor=1.0))
b = tf.get_variable('biases', [out_dim],
initializer=tf.constant_initializer())
return tf.nn.xw_plus_b(x, w, b)
def _global_avg_pool(self, x):
assert x.get_shape().ndims == 4
return tf.reduce_mean(x, [1, 2])