forked from celestiaorg/go-square
-
Notifications
You must be signed in to change notification settings - Fork 0
/
builder.go
439 lines (388 loc) · 14.4 KB
/
builder.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
package square
import (
"bytes"
"errors"
"fmt"
"sort"
"github.com/celestiaorg/go-square/inclusion"
"github.com/celestiaorg/go-square/share"
"golang.org/x/exp/constraints"
"google.golang.org/protobuf/proto"
)
type Builder struct {
// maxSquareSize is the maximum number of rows (or columns) in the original data square
maxSquareSize int
// currentSize is an overestimate for the number of shares used by this builder.
currentSize int
// here we keep track of the pending data to go in a square
Txs [][]byte
Pfbs []*share.IndexWrapper
Blobs []*Element
// for compact shares we use a counter to track the amount of shares needed
TxCounter *share.CompactShareCounter
PfbCounter *share.CompactShareCounter
done bool
subtreeRootThreshold int
}
func NewBuilder(maxSquareSize int, subtreeRootThreshold int, txs ...[]byte) (*Builder, error) {
if maxSquareSize <= 0 {
return nil, errors.New("max square size must be strictly positive")
}
if !IsPowerOfTwo(maxSquareSize) {
return nil, errors.New("max square size must be a power of two")
}
builder := &Builder{
maxSquareSize: maxSquareSize,
subtreeRootThreshold: subtreeRootThreshold,
Blobs: make([]*Element, 0),
Pfbs: make([]*share.IndexWrapper, 0),
Txs: make([][]byte, 0),
TxCounter: share.NewCompactShareCounter(),
PfbCounter: share.NewCompactShareCounter(),
}
seenFirstBlobTx := false
for idx, tx := range txs {
blobTx, isBlobTx := share.UnmarshalBlobTx(tx)
if isBlobTx {
seenFirstBlobTx = true
if !builder.AppendBlobTx(blobTx) {
return nil, fmt.Errorf("not enough space to append blob tx at index %d", idx)
}
} else {
if seenFirstBlobTx {
return nil, fmt.Errorf("normal tx at index %d can not be appended after blob tx", idx)
}
if !builder.AppendTx(tx) {
return nil, fmt.Errorf("not enough space to append tx at index %d", idx)
}
}
}
return builder, nil
}
// AppendTx attempts to allocate the transaction to the square. It returns false if there is not
// enough space in the square to fit the transaction.
func (b *Builder) AppendTx(tx []byte) bool {
lenChange := b.TxCounter.Add(len(tx))
if b.canFit(lenChange) {
b.Txs = append(b.Txs, tx)
b.currentSize += lenChange
b.done = false
return true
}
b.TxCounter.Revert()
return false
}
// AppendBlobTx attempts to allocate the blob transaction to the square. It returns false if there is not
// enough space in the square to fit the transaction.
func (b *Builder) AppendBlobTx(blobTx *share.BlobTx) bool {
iw := &share.IndexWrapper{
Tx: blobTx.Tx,
TypeId: share.ProtoIndexWrapperTypeID,
ShareIndexes: worstCaseShareIndexes(len(blobTx.Blobs)),
}
size := proto.Size(iw)
pfbShareDiff := b.PfbCounter.Add(size)
// create a new blob element for each blob and track the worst-case share count
blobElements := make([]*Element, len(blobTx.Blobs))
maxBlobShareCount := 0
for idx, protoBlob := range blobTx.Blobs {
blob, err := share.NewBlobFromProto(protoBlob)
if err != nil {
// TODO: we should look at having a go native BlobTx type
// that we have already verified instead of doing it twice here
panic(fmt.Sprintf("invalid blob %d: %v", idx, err))
}
blobElements[idx] = newElement(blob, len(b.Pfbs), idx, b.subtreeRootThreshold)
maxBlobShareCount += blobElements[idx].maxShareOffset()
}
if b.canFit(pfbShareDiff + maxBlobShareCount) {
b.Blobs = append(b.Blobs, blobElements...)
b.Pfbs = append(b.Pfbs, iw)
b.currentSize += (pfbShareDiff + maxBlobShareCount)
b.done = false
return true
}
b.PfbCounter.Revert()
return false
}
// Export constructs the square.
func (b *Builder) Export() (Square, error) {
// if there are no transactions, return an empty square
if b.IsEmpty() {
return EmptySquare(), nil
}
// calculate the square size.
// NOTE: A future optimization could be to recalculate the currentSize based on the actual
// interblob padding used when the blobs are correctly ordered instead of using worst case padding.
ss := inclusion.BlobMinSquareSize(b.currentSize)
// Sort the blobs by shares. This uses SliceStable to preserve the order
// of blobs within a namespace because b.Blobs are already ordered by tx
// priority.
sort.SliceStable(b.Blobs, func(i, j int) bool {
ns1 := b.Blobs[i].Blob.Namespace().Bytes()
ns2 := b.Blobs[j].Blob.Namespace().Bytes()
return bytes.Compare(ns1, ns2) < 0
})
// write all the regular transactions into compact shares
txWriter := share.NewCompactShareSplitter(share.TxNamespace, share.ShareVersionZero)
for _, tx := range b.Txs {
if err := txWriter.WriteTx(tx); err != nil {
return nil, fmt.Errorf("writing tx into compact shares: %w", err)
}
}
// begin to iteratively add blobs to the sparse share splitter calculating the actual padding
nonReservedStart := b.TxCounter.Size() + b.PfbCounter.Size()
cursor := nonReservedStart
endOfLastBlob := nonReservedStart
blobWriter := share.NewSparseShareSplitter()
for i, element := range b.Blobs {
// NextShareIndex returned where the next blob should start so as to comply with the share commitment rules
// We fill out the remaining
cursor = inclusion.NextShareIndex(cursor, element.NumShares, b.subtreeRootThreshold)
if i == 0 {
nonReservedStart = cursor
}
// defensively check that the actual padding never exceeds the max padding initially allocated for it
padding := cursor - endOfLastBlob
if padding > element.MaxPadding {
return nil, fmt.Errorf("blob has %d padding shares, but %d was the max possible", padding, element.MaxPadding)
}
// record the starting share index of the blob in the PFB that paid for it
b.Pfbs[element.PfbIndex].ShareIndexes[element.BlobIndex] = uint32(cursor)
// If this is not the first blob, we add padding by writing padded shares to the previous blob
// (which could be of a different namespace)
if i > 0 {
if err := blobWriter.WriteNamespacePaddingShares(padding); err != nil {
return nil, fmt.Errorf("writing padding into sparse shares: %w", err)
}
}
// Finally write the blob itself
if err := blobWriter.Write(element.Blob); err != nil {
return nil, fmt.Errorf("writing blob into sparse shares: %w", err)
}
// increment the cursor by the size of the blob
cursor += element.NumShares
endOfLastBlob = cursor
}
// write all the pay for blob transactions into compact shares. We need to do this after allocating the blobs to their
// appropriate shares as the starting index of each blob needs to be included in the PFB transaction
pfbWriter := share.NewCompactShareSplitter(share.PayForBlobNamespace, share.ShareVersionZero)
for _, iw := range b.Pfbs {
iwBytes, err := proto.Marshal(iw)
if err != nil {
return nil, fmt.Errorf("marshaling pay for blob tx: %w", err)
}
if err := pfbWriter.WriteTx(iwBytes); err != nil {
return nil, fmt.Errorf("writing pay for blob tx into compact shares: %w", err)
}
}
// defensively check that the counter is always greater in share count than the pfbTxWriter.
if b.PfbCounter.Size() < pfbWriter.Count() {
return nil, fmt.Errorf("pfbCounter.Size() < pfbTxWriter.Count(): %d < %d", b.PfbCounter.Size(), pfbWriter.Count())
}
// Write out the square
square, err := WriteSquare(txWriter, pfbWriter, blobWriter, nonReservedStart, ss)
if err != nil {
return nil, fmt.Errorf("writing square: %w", err)
}
b.done = true
return square, nil
}
// FindBlobStartingIndex returns the starting share index of the blob in the square. It takes
// the index of the pfb in the tx set and the index of the blob within the PFB.
func (b *Builder) FindBlobStartingIndex(pfbIndex, blobIndex int) (int, error) {
if pfbIndex < len(b.Txs) {
return 0, fmt.Errorf("pfbIndex %d does not match a pfb", pfbIndex)
}
pfbIndex -= len(b.Txs)
if pfbIndex >= len(b.Pfbs) {
return 0, fmt.Errorf("pfbIndex %d out of range", pfbIndex)
}
if blobIndex < 0 {
return 0, fmt.Errorf("blobIndex %d must not be negative", blobIndex)
}
// The share indexes of each blob needs to be computed thus we need to ensure
// that we have called Export() before we can return the share index of a blob
if !b.done {
_, err := b.Export()
if err != nil {
return 0, fmt.Errorf("building square: %w", err)
}
}
if blobIndex >= len(b.Pfbs[pfbIndex].ShareIndexes) {
return 0, fmt.Errorf("blobIndex %d out of range", blobIndex)
}
return int(b.Pfbs[pfbIndex].ShareIndexes[blobIndex]), nil
}
// BlobShareLength returns the amount of shares a blob takes up in the square. It takes
// the index of the pfb in the tx set and the index of the blob within the PFB.
// TODO: we could look in to creating a map to avoid O(n) lookup when we expect large
// numbers of blobs
func (b *Builder) BlobShareLength(pfbIndex, blobIndex int) (int, error) {
if pfbIndex < len(b.Txs) {
return 0, fmt.Errorf("pfbIndex %d does not match a pfb", pfbIndex)
}
pfbIndex -= len(b.Txs)
if pfbIndex >= len(b.Pfbs) {
return 0, fmt.Errorf("pfbIndex %d out of range", pfbIndex)
}
if blobIndex < 0 {
return 0, fmt.Errorf("blobIndex %d must not be negative", blobIndex)
}
for _, blob := range b.Blobs {
if blob.PfbIndex == pfbIndex && blob.BlobIndex == blobIndex {
return blob.NumShares, nil
}
}
return 0, fmt.Errorf("blob not found")
}
// FindTxShareRange returns the range of shares occupied by the tx at txIndex.
// The indexes are both inclusive.
func (b *Builder) FindTxShareRange(txIndex int) (share.Range, error) {
// the square must be built before we can find the share range as we need to compute
// the wrapped indexes for the PFBs. NOTE: If a tx isn't a PFB, we could theoretically
// calculate the index without having to build the entire square.
if !b.done {
_, err := b.Export()
if err != nil {
return share.Range{}, fmt.Errorf("building square: %w", err)
}
}
if txIndex < 0 {
return share.Range{}, fmt.Errorf("txIndex %d must not be negative", txIndex)
}
if txIndex >= len(b.Txs)+len(b.Pfbs) {
return share.Range{}, fmt.Errorf("txIndex %d out of range", txIndex)
}
txWriter := share.NewCompactShareCounter()
pfbWriter := share.NewCompactShareCounter()
for i := 0; i < txIndex; i++ {
if i < len(b.Txs) {
_ = txWriter.Add(len(b.Txs[i]))
} else {
size := proto.Size(b.Pfbs[i-len(b.Txs)])
_ = pfbWriter.Add(size)
}
}
start := txWriter.Size() + pfbWriter.Size() - 1
// the chosen tx is a regular tx
if txIndex < len(b.Txs) {
// If the remainder is 0, it means the tx will begin with the next share
// so we need to increment the start index.
if txWriter.Remainder() == 0 {
start++
}
_ = txWriter.Add(len(b.Txs[txIndex]))
} else { // the chosen tx is a PFB
// If the remainder is 0, it means the tx will begin with the next share
// so we need to increment the start index.
if pfbWriter.Remainder() == 0 {
start++
}
size := proto.Size(b.Pfbs[txIndex-len(b.Txs)])
_ = pfbWriter.Add(size)
}
end := txWriter.Size() + pfbWriter.Size()
return share.NewRange(start, end), nil
}
func (b *Builder) GetWrappedPFB(txIndex int) (*share.IndexWrapper, error) {
if txIndex < 0 {
return nil, fmt.Errorf("txIndex %d must not be negative", txIndex)
}
if txIndex < len(b.Txs) {
return nil, fmt.Errorf("txIndex %d does not match a pfb", txIndex)
}
if txIndex >= len(b.Txs)+len(b.Pfbs) {
return nil, fmt.Errorf("txIndex %d out of range", txIndex)
}
if !b.done {
_, err := b.Export()
if err != nil {
return nil, fmt.Errorf("building square: %w", err)
}
}
return b.Pfbs[txIndex-len(b.Txs)], nil
}
func (b *Builder) CurrentSize() int {
return b.currentSize
}
func (b *Builder) SubtreeRootThreshold() int {
return b.subtreeRootThreshold
}
func (b *Builder) NumPFBs() int {
return len(b.Pfbs)
}
func (b *Builder) NumTxs() int {
return len(b.Txs) + len(b.Pfbs)
}
func (b *Builder) canFit(shareNum int) bool {
return b.currentSize+shareNum <= (b.maxSquareSize * b.maxSquareSize)
}
func (b *Builder) IsEmpty() bool {
return b.TxCounter.Size() == 0 && b.PfbCounter.Size() == 0
}
type Element struct {
Blob *share.Blob
PfbIndex int
BlobIndex int
NumShares int
MaxPadding int
}
func newElement(blob *share.Blob, pfbIndex, blobIndex, subtreeRootThreshold int) *Element {
numShares := share.SparseSharesNeeded(uint32(len(blob.Data())))
return &Element{
Blob: blob,
PfbIndex: pfbIndex,
BlobIndex: blobIndex,
NumShares: numShares,
//
// For calculating the maximum possible padding consider the following tree
// where each leaf corresponds to a share.
//
// Depth Position
// 0 0
// / \
// / \
// 1 0 1
// /\ /\
// 2 0 1 2 3
// /\ /\ /\ /\
// 3 0 1 2 3 4 5 6 7
//
// Imagine if, according to the share commitment rules, a transcation took up 11 shares
// and had the merkle mountain tree commitment of 4,4,2,1. The first part of the share commitment
// would then be something that spans 4 shares and has a depth of 1. The worst case padding
// would be if the last transaction had a share at leaf index 0. Thus three padding shares would
// be needed to start the transaction at index 4 and be aligned with the first commitment.
// Thus the rule is to take the subtreewidh of the share size and subtract 1.
//
// Note that the padding would actually belong to the namespace of the transaction before it, but
// this makes no difference to the total share size.
MaxPadding: inclusion.SubTreeWidth(numShares, subtreeRootThreshold) - 1,
}
}
func (e Element) maxShareOffset() int {
return e.NumShares + e.MaxPadding
}
// worstCaseShareIndexes returns the largest possible share indexes for a set of
// blobs. Largest possible is "worst" in that protobuf uses varints to encode
// integers, so larger integers can require more bytes to encode.
//
// Note: the implementation of this function assumes that the worst case share
// index is always 128 * 128 to preserve backwards compatibility with
// celestia-app v1.x.
func worstCaseShareIndexes(blobs int) []uint32 {
// TODO: de-duplicate this constant with celestia-app SquareSizeUpperBound constant.
// https://github.com/celestiaorg/celestia-app/blob/a93bb625c6dc0ae6c7c357e9991815a68ab33c79/pkg/appconsts/v1/app_consts.go#L5
squareSizeUpperBound := 128
worstCaseShareIndex := squareSizeUpperBound * squareSizeUpperBound
shareIndexes := make([]uint32, blobs)
for i := range shareIndexes {
shareIndexes[i] = uint32(worstCaseShareIndex)
}
return shareIndexes
}
// IsPowerOfTwo returns true if input is a power of two.
func IsPowerOfTwo[I constraints.Integer](input I) bool {
return input&(input-1) == 0 && input != 0
}