Skip to content

Latest commit

 

History

History
45 lines (36 loc) · 3.12 KB

README.md

File metadata and controls

45 lines (36 loc) · 3.12 KB

logo

Get Started | Contributing | Publication | License

Write and optimize high-performance native loop-based tensor programs in Python.

Features

  • Compiling loop-based tensor programs in Python to native code
  • Dynamic tensor shapes supported
  • Accept explicit transformations to programs for optimization, including parallelization, loop transformations and memory optimizations
  • Parallelization with OpenMP or CUDA
  • Reverse-mode Automatic Differentiation

Features by Example

Code Structure

ffi/ ------------------------------------------------------- Interface between C++ and Python
grammar/ --------------------------------------------------- ANTLR grammar files used for serialization
include/ --------------------------------------------------- C++ headers
|- ref.h --------------------------------------------------- A smart pointer, based on std::shared_ptr, used all around the code
|- ast.h --------------------------------------------------- Base class for AST (IR of FreeTensor) nodes
|- stmt.h -------------------------------------------------- Statement nodes of an AST
|- expr.h -------------------------------------------------- Expression nodes of an AST
|- visitor.h ----------------------------------------------- Inherit Visitor in this file to examine an AST
|- mutator.h ----------------------------------------------- Inherit Mutator in this file to modify an AST
|- schedule.h ---------------------------------------------- All user specified transformations (schedules). Main interface. Details are in schedule/
|- frontend/ ----------------------------------------------- C++ utilities used in Python API
|- math/ --------------------------------------------------- Math utilities
|- schedule/ ----------------------------------------------- All user specified transformations (schedules)
|- pass/ --------------------------------------------------- All user agnostic transformations (used inside or after schedules)
|- analyze/ ------------------------------------------------ Passes to extract information from an AST
|- codegen/ ------------------------------------------------ Passes to generate a target code from an AST
`- driver/ ------------------------------------------------- Infrastructure to run a generated target code
src/ ------------------------------------------------------- C++ sources (the structure is almost same with include/)
python/ ---------------------------------------------------- Python API
runtime/ --------------------------------------------------- (Minimal) runtime code to be compiled into target exexutables
test/ ------------------------------------------------------ Unit tests

Acknowledgement

Many designs in FreeTensor are inspired by TVM. Thank the TVM community for their contributions on tensor program compiling.