forked from tensorflow/tensorflow
-
Notifications
You must be signed in to change notification settings - Fork 0
/
configure
executable file
·581 lines (514 loc) · 18.7 KB
/
configure
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
#!/usr/bin/env bash
set -e
set -o pipefail
# Find out the absolute path to where ./configure resides
pushd `dirname $0` > /dev/null
SOURCE_BASE_DIR=`pwd -P`
popd > /dev/null
PLATFORM="$(uname -s | tr 'A-Z' 'a-z')"
function is_linux() {
if [[ "${PLATFORM}" == "linux" ]]; then
true
else
false
fi
}
function is_macos() {
if [[ "${PLATFORM}" == "darwin" ]]; then
true
else
false
fi
}
function is_windows() {
# On windows, the shell script is actually running in msys
if [[ "${PLATFORM}" =~ msys_nt*|mingw*|cygwin*|uwin* ]]; then
true
else
false
fi
}
function bazel_clean_and_fetch() {
# bazel clean --expunge currently doesn't work on Windows
# TODO(pcloudy): Re-enable it after bazel clean --expunge is fixed.
if ! is_windows; then
bazel clean --expunge
fi
bazel fetch "//tensorflow/... -//tensorflow/contrib/nccl/... \
-//tensorflow/examples/android/..."
}
# Delete any leftover BUILD files from the Makefile build, which would interfere
# with Bazel parsing.
MAKEFILE_DOWNLOAD_DIR=tensorflow/contrib/makefile/downloads
if [ -d "${MAKEFILE_DOWNLOAD_DIR}" ]; then
find ${MAKEFILE_DOWNLOAD_DIR} -type f -name '*BUILD' -delete
fi
## Set up python-related environment settings
while true; do
fromuser=""
if [ -z "$PYTHON_BIN_PATH" ]; then
default_python_bin_path=$(which python || which python3 || true)
read -p "Please specify the location of python. [Default is $default_python_bin_path]: " PYTHON_BIN_PATH
fromuser="1"
if [ -z "$PYTHON_BIN_PATH" ]; then
PYTHON_BIN_PATH=$default_python_bin_path
fi
fi
if [ -e "$PYTHON_BIN_PATH" ]; then
break
fi
echo "Invalid python path. ${PYTHON_BIN_PATH} cannot be found" 1>&2
if [ -z "$fromuser" ]; then
exit 1
fi
PYTHON_BIN_PATH=""
# Retry
done
## Set up MKL related environment settings
if false; then # Disable building with MKL for now
while [ "$TF_NEED_MKL" == "" ]; do
fromuser=""
read -p "Do you wish to build TensorFlow with MKL support? [y/N] " INPUT
fromuser="1"
case $INPUT in
[Yy]* ) echo "MKL support will be enabled for TensorFlow"; TF_NEED_MKL=1;;
[Nn]* ) echo "No MKL support will be enabled for TensorFlow"; TF_NEED_MKL=0;;
"" ) echo "No MKL support will be enabled for TensorFlow"; TF_NEED_MKL=0;;
* ) echo "Invalid selection: " $INPUT;;
esac
done
OSNAME=`uname -s`
if [ "$TF_NEED_MKL" == "1" ]; then # TF_NEED_MKL
DST=`dirname $0`
ARCHIVE_BASENAME=mklml_lnx_2017.0.2.20170110.tgz
GITHUB_RELEASE_TAG=v0.3
MKLURL="https://github.com/01org/mkl-dnn/releases/download/$GITHUB_RELEASE_TAG/$ARCHIVE_BASENAME"
if ! [ -e "$DST/third_party/mkl/$ARCHIVE_BASENAME" ]; then
wget --no-check-certificate -P $DST/third_party/mkl/ $MKLURL
fi
tar -xzf $DST/third_party/mkl/$ARCHIVE_BASENAME -C $DST/third_party/mkl/
extracted_dir_name="${ARCHIVE_BASENAME%.*}"
MKL_INSTALL_PATH=$DST/third_party/mkl/$extracted_dir_name
MKL_INSTALL_PATH=`${PYTHON_BIN_PATH} -c "import os; print(os.path.realpath(os.path.expanduser('${MKL_INSTALL_PATH}')))"`
if [ "$OSNAME" == "Linux" ]; then
# Full MKL configuration
MKL_RT_LIB_PATH="lib/intel64/libmkl_rt.so" #${TF_MKL_EXT}#TODO version?
MKL_RT_OMP_LIB_PATH="../compiler/lib/intel64/libiomp5.so" #TODO VERSION?
# MKL-ML configuration
MKL_ML_LIB_PATH="lib/libmklml_intel.so" #${TF_MKL_EXT}#TODO version?
MKL_ML_OMP_LIB_PATH="lib/libiomp5.so" #TODO VERSION?
elif [ "$OSNAME" == "Darwin" ]; then
echo "Darwin is unsupported yet";
exit 1
fi
if [ -e "$MKL_INSTALL_PATH/${MKL_ML_LIB_PATH}" ]; then
ln -sf $MKL_INSTALL_PATH/${MKL_ML_LIB_PATH} third_party/mkl/
ln -sf $MKL_INSTALL_PATH/${MKL_ML_OMP_LIB_PATH} third_party/mkl/
ln -sf $MKL_INSTALL_PATH/include third_party/mkl/
ln -sf $MKL_INSTALL_PATH/include third_party/eigen3/mkl_include
else
echo "ERROR: $MKL_INSTALL_PATH/${MKL_ML_LIB_PATH} does not exist";
exit 1
fi
if [ -z "$fromuser" ]; then
exit 1
fi
cat > third_party/mkl/mkl.config <<EOF
# MKL_INSTALL_PATH refers to the location of MKL root folder. The MKL header and library
# files can be either in this directory, or under include/ and lib64/
MKL_INSTALL_PATH=$MKL_INSTALL_PATH
EOF
fi # TF_NEED_MKL
################## MKL
fi # Disable building with MKL for now
## Set up architecture-dependent optimization flags.
if [ -z "$CC_OPT_FLAGS" ]; then
default_cc_opt_flags="-march=native"
read -p "Please specify optimization flags to use during compilation when bazel option "\
"\"--config=opt\" is specified [Default is $default_cc_opt_flags]: " CC_OPT_FLAGS
if [ -z "$CC_OPT_FLAGS" ]; then
CC_OPT_FLAGS=$default_cc_opt_flags
fi
fi
if is_windows; then
TF_NEED_GCP=0
TF_NEED_HDFS=0
TF_NEED_JEMALLOC=0
TF_NEED_OPENCL=0
fi
if is_linux; then
while [ "$TF_NEED_JEMALLOC" == "" ]; do
read -p "Do you wish to use jemalloc as the malloc implementation? [Y/n] "\
INPUT
case $INPUT in
[Yy]* ) echo "jemalloc enabled"; TF_NEED_JEMALLOC=1;;
[Nn]* ) echo "jemalloc disabled"; TF_NEED_JEMALLOC=0;;
"" ) echo "jemalloc enabled"; TF_NEED_JEMALLOC=1;;
* ) echo "Invalid selection: " $INPUT;;
esac
done
else
TF_NEED_JEMALLOC=0
fi
if [ "$TF_NEED_JEMALLOC" == "1" ]; then
sed -i -e "s/WITH_JEMALLOC = False/WITH_JEMALLOC = True/" tensorflow/core/platform/default/build_config.bzl
else
sed -i -e "s/WITH_JEMALLOC = True/WITH_JEMALLOC = False/" tensorflow/core/platform/default/build_config.bzl
fi
while [ "$TF_NEED_GCP" == "" ]; do
read -p "Do you wish to build TensorFlow with "\
"Google Cloud Platform support? [y/N] " INPUT
case $INPUT in
[Yy]* ) echo "Google Cloud Platform support will be enabled for "\
"TensorFlow"; TF_NEED_GCP=1;;
[Nn]* ) echo "No Google Cloud Platform support will be enabled for "\
"TensorFlow"; TF_NEED_GCP=0;;
"" ) echo "No Google Cloud Platform support will be enabled for "\
"TensorFlow"; TF_NEED_GCP=0;;
* ) echo "Invalid selection: " $INPUT;;
esac
done
if [ "$TF_NEED_GCP" == "1" ]; then
## Verify that libcurl header files are available.
# Only check Linux, since on MacOS the header files are installed with XCode.
if is_linux && [[ ! -f "/usr/include/curl/curl.h" ]]; then
echo "ERROR: It appears that the development version of libcurl is not "\
"available. Please install the libcurl3-dev package."
exit 1
fi
# Update Bazel build configuration.
sed -i -e "s/WITH_GCP_SUPPORT = False/WITH_GCP_SUPPORT = True/" tensorflow/core/platform/default/build_config.bzl
else
# Update Bazel build configuration.
sed -i -e "s/WITH_GCP_SUPPORT = True/WITH_GCP_SUPPORT = False/" tensorflow/core/platform/default/build_config.bzl
fi
while [ "$TF_NEED_HDFS" == "" ]; do
read -p "Do you wish to build TensorFlow with "\
"Hadoop File System support? [y/N] " INPUT
case $INPUT in
[Yy]* ) echo "Hadoop File System support will be enabled for "\
"TensorFlow"; TF_NEED_HDFS=1;;
[Nn]* ) echo "No Hadoop File System support will be enabled for "\
"TensorFlow"; TF_NEED_HDFS=0;;
"" ) echo "No Hadoop File System support will be enabled for "\
"TensorFlow"; TF_NEED_HDFS=0;;
* ) echo "Invalid selection: " $INPUT;;
esac
done
if [ "$TF_NEED_HDFS" == "1" ]; then
# Update Bazel build configuration.
sed -i -e "s/WITH_HDFS_SUPPORT = False/WITH_HDFS_SUPPORT = True/" tensorflow/core/platform/default/build_config.bzl
else
# Update Bazel build configuration.
sed -i -e "s/WITH_HDFS_SUPPORT = True/WITH_HDFS_SUPPORT = False/" tensorflow/core/platform/default/build_config.bzl
fi
## Enable XLA.
while [ "$TF_ENABLE_XLA" == "" ]; do
read -p "Do you wish to build TensorFlow with the XLA just-in-time compiler (experimental)? [y/N] " INPUT
case $INPUT in
[Yy]* ) echo "XLA JIT support will be enabled for TensorFlow"; TF_ENABLE_XLA=1;;
[Nn]* ) echo "No XLA JIT support will be enabled for TensorFlow"; TF_ENABLE_XLA=0;;
"" ) echo "No XLA support will be enabled for TensorFlow"; TF_ENABLE_XLA=0;;
* ) echo "Invalid selection: " $INPUT;;
esac
done
if [ "$TF_ENABLE_XLA" == "1" ]; then
# Update Bazel build configuration.
sed -i -e "s/^WITH_XLA_SUPPORT = [FT].*/WITH_XLA_SUPPORT = True/" tensorflow/core/platform/default/build_config_root.bzl
else
# Update Bazel build configuration.
sed -i -e "s/^WITH_XLA_SUPPORT = [FT].*/WITH_XLA_SUPPORT = False/" tensorflow/core/platform/default/build_config_root.bzl
fi
# Invoke python_config and set up symlinks to python includes
./util/python/python_config.sh --setup "$PYTHON_BIN_PATH"
# Append CC optimization flags to bazel.rc
echo >> tools/bazel.rc
for opt in $CC_OPT_FLAGS; do
echo "build:opt --cxxopt=$opt --copt=$opt" >> tools/bazel.rc
done
# Run the gen_git_source to create links where bazel can track dependencies for
# git hash propagation
GEN_GIT_SOURCE=tensorflow/tools/git/gen_git_source.py
chmod a+x ${GEN_GIT_SOURCE}
"${PYTHON_BIN_PATH}" ${GEN_GIT_SOURCE} --configure "${SOURCE_BASE_DIR}"
## Set up SYCL-related environment settings
while [ "$TF_NEED_OPENCL" == "" ]; do
read -p "Do you wish to build TensorFlow with OpenCL support? [y/N] " INPUT
case $INPUT in
[Yy]* ) echo "OpenCL support will be enabled for TensorFlow"; TF_NEED_OPENCL=1;;
[Nn]* ) echo "No OpenCL support will be enabled for TensorFlow"; TF_NEED_OPENCL=0;;
"" ) echo "No OpenCL support will be enabled for TensorFlow"; TF_NEED_OPENCL=0;;
* ) echo "Invalid selection: " $INPUT;;
esac
done
## Set up Cuda-related environment settings
while [ "$TF_NEED_CUDA" == "" ]; do
read -p "Do you wish to build TensorFlow with CUDA support? [y/N] " INPUT
case $INPUT in
[Yy]* ) echo "CUDA support will be enabled for TensorFlow"; TF_NEED_CUDA=1;;
[Nn]* ) echo "No CUDA support will be enabled for TensorFlow"; TF_NEED_CUDA=0;;
"" ) echo "No CUDA support will be enabled for TensorFlow"; TF_NEED_CUDA=0;;
* ) echo "Invalid selection: " $INPUT;;
esac
done
export TF_NEED_CUDA
export TF_NEED_OPENCL
if [[ "$TF_NEED_CUDA" == "0" ]] && [[ "$TF_NEED_OPENCL" == "0" ]]; then
echo "Configuration finished"
bazel_clean_and_fetch
exit
fi
if [ "$TF_NEED_CUDA" == "1" ]; then
# Set up which gcc nvcc should use as the host compiler
# No need to set this on Windows
while ! is_windows && true; do
fromuser=""
if [ -z "$GCC_HOST_COMPILER_PATH" ]; then
default_gcc_host_compiler_path=$(which gcc || true)
read -p "Please specify which gcc should be used by nvcc as the host compiler. [Default is $default_gcc_host_compiler_path]: " GCC_HOST_COMPILER_PATH
fromuser="1"
if [ -z "$GCC_HOST_COMPILER_PATH" ]; then
GCC_HOST_COMPILER_PATH="$default_gcc_host_compiler_path"
fi
fi
if [ -e "$GCC_HOST_COMPILER_PATH" ]; then
export GCC_HOST_COMPILER_PATH
break
fi
echo "Invalid gcc path. ${GCC_HOST_COMPILER_PATH} cannot be found" 1>&2
if [ -z "$fromuser" ]; then
exit 1
fi
GCC_HOST_COMPILER_PATH=""
# Retry
done
# Find out where the CUDA toolkit is installed
while true; do
# Configure the Cuda SDK version to use.
if [ -z "$TF_CUDA_VERSION" ]; then
read -p "Please specify the CUDA SDK version you want to use, e.g. 7.0. [Leave empty to use system default]: " TF_CUDA_VERSION
fi
fromuser=""
if [ -z "$CUDA_TOOLKIT_PATH" ]; then
default_cuda_path=/usr/local/cuda
if is_windows; then
if [ -z "$CUDA_PATH" ]; then
default_cuda_path="C:/Program Files/NVIDIA GPU Computing Toolkit/CUDA/v8.0"
else
default_cuda_path="$(cygpath -m "$CUDA_PATH")"
fi
fi
read -p "Please specify the location where CUDA $TF_CUDA_VERSION toolkit is installed. Refer to README.md for more details. [Default is $default_cuda_path]: " CUDA_TOOLKIT_PATH
fromuser="1"
if [ -z "$CUDA_TOOLKIT_PATH" ]; then
CUDA_TOOLKIT_PATH="$default_cuda_path"
fi
fi
if [[ -z "$TF_CUDA_VERSION" ]]; then
TF_CUDA_EXT=""
else
TF_CUDA_EXT=".$TF_CUDA_VERSION"
fi
if is_windows; then
CUDA_RT_LIB_PATH="lib/x64/cudart.lib"
elif is_linux; then
CUDA_RT_LIB_PATH="lib64/libcudart.so${TF_CUDA_EXT}"
elif is_macos; then
CUDA_RT_LIB_PATH="lib/libcudart${TF_CUDA_EXT}.dylib"
fi
if [ -e "${CUDA_TOOLKIT_PATH}/${CUDA_RT_LIB_PATH}" ]; then
export CUDA_TOOLKIT_PATH
export TF_CUDA_VERSION
break
fi
echo "Invalid path to CUDA $TF_CUDA_VERSION toolkit. ${CUDA_TOOLKIT_PATH}/${CUDA_RT_LIB_PATH} cannot be found"
if [ -z "$fromuser" ]; then
exit 1
fi
# Retry
TF_CUDA_VERSION=""
CUDA_TOOLKIT_PATH=""
done
# Find out where the cuDNN library is installed
while true; do
# Configure the Cudnn version to use.
if [ -z "$TF_CUDNN_VERSION" ]; then
read -p "Please specify the Cudnn version you want to use. [Leave empty to use system default]: " TF_CUDNN_VERSION
fi
fromuser=""
if [ -z "$CUDNN_INSTALL_PATH" ]; then
default_cudnn_path=${CUDA_TOOLKIT_PATH}
read -p "Please specify the location where cuDNN $TF_CUDNN_VERSION library is installed. Refer to README.md for more details. [Default is $default_cudnn_path]: " CUDNN_INSTALL_PATH
fromuser="1"
if [ -z "$CUDNN_INSTALL_PATH" ]; then
CUDNN_INSTALL_PATH=$default_cudnn_path
fi
# Result returned from "read" will be used unexpanded. That make "~" unuseable.
# Going through one more level of expansion to handle that.
CUDNN_INSTALL_PATH=`"${PYTHON_BIN_PATH}" -c "import os; print(os.path.realpath(os.path.expanduser('${CUDNN_INSTALL_PATH}')))"`
fi
if [[ -z "$TF_CUDNN_VERSION" ]]; then
TF_CUDNN_EXT=""
else
TF_CUDNN_EXT=".$TF_CUDNN_VERSION"
fi
if is_windows; then
CUDA_DNN_LIB_PATH="lib/x64/cudnn.lib"
CUDA_DNN_LIB_ALT_PATH="lib/x64/cudnn.lib"
elif is_linux; then
CUDA_DNN_LIB_PATH="lib64/libcudnn.so${TF_CUDNN_EXT}"
CUDA_DNN_LIB_ALT_PATH="libcudnn.so${TF_CUDNN_EXT}"
elif is_macos; then
CUDA_DNN_LIB_PATH="lib/libcudnn${TF_CUDNN_EXT}.dylib"
CUDA_DNN_LIB_ALT_PATH="libcudnn${TF_CUDNN_EXT}.dylib"
fi
if [ -e "$CUDNN_INSTALL_PATH/${CUDA_DNN_LIB_ALT_PATH}" -o -e "$CUDNN_INSTALL_PATH/${CUDA_DNN_LIB_PATH}" ]; then
export TF_CUDNN_VERSION
export CUDNN_INSTALL_PATH
break
fi
if is_linux; then
CUDNN_PATH_FROM_LDCONFIG="$(ldconfig -p | sed -n 's/.*libcudnn.so .* => \(.*\)/\1/p')"
if [ -e "${CUDNN_PATH_FROM_LDCONFIG}${TF_CUDNN_EXT}" ]; then
export TF_CUDNN_VERSION
export CUDNN_INSTALL_PATH="$(dirname ${CUDNN_PATH_FROM_LDCONFIG})"
break
fi
fi
echo "Invalid path to cuDNN ${CUDNN_VERSION} toolkit. Neither of the following two files can be found:"
echo "${CUDNN_INSTALL_PATH}/${CUDA_DNN_LIB_PATH}"
echo "${CUDNN_INSTALL_PATH}/${CUDA_DNN_LIB_ALT_PATH}"
if is_linux; then
echo "${CUDNN_PATH_FROM_LDCONFIG}${TF_CUDNN_EXT}"
fi
if [ -z "$fromuser" ]; then
exit 1
fi
# Retry
TF_CUDNN_VERSION=""
CUDNN_INSTALL_PATH=""
done
# Configure the compute capabilities that TensorFlow builds for.
# Since Cuda toolkit is not backward-compatible, this is not guaranteed to work.
while true; do
fromuser=""
default_cuda_compute_capabilities="3.5,5.2"
if [ -z "$TF_CUDA_COMPUTE_CAPABILITIES" ]; then
cat << EOF
Please specify a list of comma-separated Cuda compute capabilities you want to build with.
You can find the compute capability of your device at: https://developer.nvidia.com/cuda-gpus.
Please note that each additional compute capability significantly increases your build time and binary size.
EOF
read -p "[Default is: \"3.5,5.2\"]: " TF_CUDA_COMPUTE_CAPABILITIES
fromuser=1
fi
if [ -z "$TF_CUDA_COMPUTE_CAPABILITIES" ]; then
TF_CUDA_COMPUTE_CAPABILITIES=$default_cuda_compute_capabilities
fi
# Check whether all capabilities from the input is valid
COMPUTE_CAPABILITIES=${TF_CUDA_COMPUTE_CAPABILITIES//,/ }
ALL_VALID=1
for CAPABILITY in $COMPUTE_CAPABILITIES; do
if [[ ! "$CAPABILITY" =~ [0-9]+.[0-9]+ ]]; then
echo "Invalid compute capability: " $CAPABILITY
ALL_VALID=0
break
fi
done
if [ "$ALL_VALID" == "0" ]; then
if [ -z "$fromuser" ]; then
exit 1
fi
else
export TF_CUDA_COMPUTE_CAPABILITIES
break
fi
TF_CUDA_COMPUTE_CAPABILITIES=""
done
if is_windows; then
# The following three variables are needed for MSVC toolchain configuration in Bazel
export CUDA_PATH="$CUDA_TOOLKIT_PATH"
export CUDA_COMPUTE_CAPABILITIES="$TF_CUDA_COMPUTE_CAPABILITIES"
export NO_WHOLE_ARCHIVE_OPTION=1
# Set GCC_HOST_COMPILER_PATH to keep cuda_configure.bzl happy
export GCC_HOST_COMPILER_PATH="/usr/bin/dummy_compiler"
fi
# end of if "$TF_NEED_CUDA" == "1"
fi
# OpenCL configuration
if [ "$TF_NEED_OPENCL" == "1" ]; then
# Determine which C++ compiler should be used as the host compiler
while true; do
fromuser=""
if [ -z "$HOST_CXX_COMPILER" ]; then
default_cxx_host_compiler=$(which clang++-3.6 || true)
read -p "Please specify which C++ compiler should be used as the host C++ compiler. [Default is $default_cxx_host_compiler]: " HOST_CXX_COMPILER
fromuser="1"
if [ -z "$HOST_CXX_COMPILER" ]; then
HOST_CXX_COMPILER=$default_cxx_host_compiler
fi
fi
if [ -e "$HOST_CXX_COMPILER" ]; then
export HOST_CXX_COMPILER
break
fi
echo "Invalid C++ compiler path. ${HOST_CXX_COMPILER} cannot be found" 1>&2
if [ -z "$fromuser" ]; then
exit 1
fi
HOST_CXX_COMPILER=""
# Retry
done
# Determine which C compiler should be used as the host compiler
while true; do
fromuser=""
if [ -z "$HOST_C_COMPILER" ]; then
default_c_host_compiler=$(which clang-3.6 || true)
read -p "Please specify which C compiler should be used as the host C compiler. [Default is $default_c_host_compiler]: " HOST_C_COMPILER
fromuser="1"
if [ -z "$HOST_C_COMPILER" ]; then
HOST_C_COMPILER=$default_c_host_compiler
fi
fi
if [ -e "$HOST_C_COMPILER" ]; then
export HOST_C_COMPILER
break
fi
echo "Invalid C compiler path. ${HOST_C_COMPILER} cannot be found" 1>&2
if [ -z "$fromuser" ]; then
exit 1
fi
HOST_C_COMPILER=""
# Retry
done
while true; do
# Configure the OPENCL version to use.
TF_OPENCL_VERSION="1.2"
# Point to ComputeCpp root
if [ -z "$COMPUTECPP_TOOLKIT_PATH" ]; then
default_computecpp_toolkit_path=/usr/local/computecpp
read -p "Please specify the location where ComputeCpp for SYCL $TF_OPENCL_VERSION is installed. [Default is $default_computecpp_toolkit_path]: " COMPUTECPP_TOOLKIT_PATH
fromuser="1"
if [ -z "$COMPUTECPP_TOOLKIT_PATH" ]; then
COMPUTECPP_TOOLKIT_PATH=$default_computecpp_toolkit_path
fi
fi
if is_linux; then
SYCL_RT_LIB_PATH="lib/libComputeCpp.so"
fi
if [ -e "${COMPUTECPP_TOOLKIT_PATH}/${SYCL_RT_LIB_PATH}" ]; then
export COMPUTECPP_TOOLKIT_PATH
break
fi
echo "Invalid SYCL $TF_OPENCL_VERSION library path. ${COMPUTECPP_TOOLKIT_PATH}/${SYCL_RT_LIB_PATH} cannot be found"
if [ -z "$fromuser" ]; then
exit 1
fi
# Retry
TF_OPENCL_VERSION=""
COMPUTECPP_TOOLKIT_PATH=""
done
# end of if "$TF_NEED_OPENCL" == "1"
fi
bazel_clean_and_fetch
echo "Configuration finished"