-
Notifications
You must be signed in to change notification settings - Fork 1
/
E.cpp
122 lines (93 loc) · 2.71 KB
/
E.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
// #pragma GCC optimize("Ofast,unroll-loops")
// #pragma GCC target("avx,avx2,fma")
#include <bits/stdc++.h>
using namespace std;
#define ll long long
#define ull unsigned long long
#define dd double
#define ld long double
#define sl(n) scanf("%lld", &n)
#define si(n) scanf("%d", &n)
#define sd(n) scanf("%lf", &n)
#define pll pair <ll, ll>
#define pii pair <int, int>
#define mp make_pair
#define pb push_back
#define all(v) v.begin(), v.end()
#define inf (1LL << 62)
#define loop(i, start, stop, inc) for(ll i = start; i <= stop; i += inc)
#define for1(i, stop) for(ll i = 1; i <= stop; ++i)
#define for0(i, stop) for(ll i = 0; i < stop; ++i)
#define rep1(i, start) for(ll i = start; i >= 1; --i)
#define rep0(i, start) for(ll i = (start-1); i >= 0; --i)
#define ms(n, i) memset(n, i, sizeof(n))
#define casep(n) printf("Case %lld:", ++n)
#define pn printf("\n")
#define pf printf
#define EL '\n'
#define fastio std::ios_base::sync_with_stdio(false);cin.tie(NULL);cout.tie(NULL);
const ll sz = 2e5 + 10;
ll ara[sz], pre[sz], mpre[sz];
int pnt[sz];
struct Line {
ll m, c;
} tree[4*sz];
bool exist[4*sz];
inline ll f(Line &line, ll x) {
return line.m*x + line.c;
}
void add(ll lo, ll hi, Line line, ll node)
{
exist[node] = 1;
if(lo == hi) {
if(f(line, pnt[lo]) > f(tree[node], pnt[lo]))
tree[node] = line;
return;
}
ll mid = lo+hi >> 1;
bool l = f(line, pnt[lo]) > f(tree[node], pnt[lo]);
bool m = f(line, pnt[mid]) > f(tree[node], pnt[mid]);
if(m) swap(tree[node], line);
if(l != m) add(lo, mid, line, node<<1);
else add(mid +1, hi, line, node<<1|1);
}
ll query(ll lo, ll hi, ll idx, ll node)
{
if(lo == hi)
return f(tree[node], pnt[idx]);
ll mid = lo+hi >> 1, ret = f(tree[node], pnt[idx]);
if(idx <= mid && exist[node<<1]) ret = max(ret, query(lo, mid, idx, node<<1));
else if(idx > mid && exist[node<<1|1]) ret = max(ret, query(mid+1, hi, idx, node<<1|1));
return ret;
}
int main()
{
ll n;
cin >> n;
for1(i, n) {
sl(ara[i]);
pre[i] = pre[i-1] + ara[i];
mpre[i] = mpre[i-1] + i*ara[i];
pnt[i] = i;
}
for0(i, 4*sz) tree[i] = {0, -inf};
ll ans = mpre[n];
for1(i, n) {
if(i != 1) {
ll val = query(1, n, i, 1) + mpre[n] - pre[i];
//cout << val << " " << i << endl;
ans = max(ans, val);
}
add(1, n, {ara[i], mpre[i-1]-mpre[i]+pre[i]}, 1);
}
for0(i, 4*sz) tree[i] = {0, -inf};
rep1(i, n) {
if(i != n) {
ll val = query(1, n, i, 1) + mpre[n] - pre[i-1];
ans = max(ans, val);
}
add(1, n, {ara[i], mpre[i-1]-mpre[i]+pre[i-1]}, 1);
}
cout << ans << EL;
return 0;
}