-
Notifications
You must be signed in to change notification settings - Fork 1
/
E.cpp
144 lines (111 loc) · 2.84 KB
/
E.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
// #pragma GCC optimize("Ofast,unroll-loops")
// #pragma GCC target("avx,avx2,fma")
#include <bits/stdc++.h>
using namespace std;
#define ll long long
#define ull unsigned long long
#define dd double
#define ld long double
#define sl(n) scanf("%lld", &n)
#define si(n) scanf("%d", &n)
#define sd(n) scanf("%lf", &n)
#define pll pair <ll, ll>
#define pii pair <int, int>
#define mp make_pair
#define pb push_back
#define all(v) v.begin(), v.end()
#define inf (1LL << 61)
#define loop(i, start, stop, inc) for(ll i = start; i <= stop; i += inc)
#define for1(i, stop) for(ll i = 1; i <= stop; ++i)
#define for0(i, stop) for(ll i = 0; i < stop; ++i)
#define rep1(i, start) for(ll i = start; i >= 1; --i)
#define rep0(i, start) for(ll i = (start-1); i >= 0; --i)
#define ms(n, i) memset(n, i, sizeof(n))
#define casep(n) printf("Case %lld:", ++n)
#define pn printf("\n")
#define pf printf
#define EL '\n'
#define fastio std::ios_base::sync_with_stdio(false);cin.tie(NULL);cout.tie(NULL);
const ll sz = 1e5 + 10, mod = 1e9 + 7;
ll fact[sz], inv[sz], ara[sz];
ll fastPow(ll x, ll n, ll MOD)
{
ll ret = 1;
while (n)
{
if (n & 1) ret = (ret * x) % mod;
x = (x * x) % mod;
n >>= 1;
}
return ret % MOD;
}
inline ll nCr(ll n, ll r)
{
if(n < r) return 0;
ll den = (inv[r] * inv[n-r] ) % mod;
return (fact[n] * den) % mod;
}
inline bool isLucky(ll num)
{
while(num) {
if(num % 10 != 4 && num % 10 != 7)
return 0;
num /= 10;
}
return 1;
}
unordered_map <int, int> ase;
vector < vector <ll> > dp;
vector <ll> way;
ll solve(ll pos, ll rest)
{
if(pos == 0) {
return rest == 0;
}
if(rest < 0)
return 0;
ll &ret = dp[pos][rest];
if(ret != -1)
return ret;
ret = solve(pos-1, rest);
ret += (way[pos] * solve(pos-1, rest-1)) % mod;
if(ret >= mod) ret -= mod;
return ret;
}
int main()
{
fact[0] = 1;
for1(i, sz-1) fact[i] = (fact[i-1] * i) % mod;
inv[sz-1] = fastPow(fact[sz-1], mod-2, mod);
rep0(i, sz-1) inv[i] = (inv[i+1] * (i+1)) % mod;
ll n, k, unlucky = 0;
sl(n), sl(k);
for1(i, n) {
sl(ara[i]);
if(isLucky(ara[i]))
++ase[ ara[i] ];
else
unlucky++;
}
ll totLucky = ase.size();
dp.resize(totLucky+1);
way.resize(totLucky+1);
for(ll i = 0; i <= totLucky; i++) {
dp[i].resize(totLucky+1);
for(ll &val : dp[i]) val = -1;
}
ll idx = 0;
for(pii p : ase) way[++idx] = p.second;
dp[totLucky][0] = 1;
for1(i, totLucky) {
dp[totLucky][i] = solve(totLucky, i);
}
ll ans = 0;
for(ll i = 0; i <= min(k, totLucky); i++) {
ll rest = k - i, way = nCr(unlucky, rest);
ans += (dp[totLucky][i] * way) % mod;
if(ans >= mod) ans -= mod;
}
cout << ans << EL;
return 0;
}