-
Notifications
You must be signed in to change notification settings - Fork 1
/
C.cpp
106 lines (85 loc) · 2.14 KB
/
C.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
// #pragma GCC optimize("Ofast,unroll-loops")
// #pragma GCC target("avx,avx2,fma")
#include <bits/stdc++.h>
using namespace std;
#define ll long long
#define ull unsigned long long
#define dd double
#define ld long double
#define sl(n) scanf("%lld", &n)
#define si(n) scanf("%d", &n)
#define sd(n) scanf("%lf", &n)
#define pll pair <ll, ll>
#define pii pair <int, int>
#define mp make_pair
#define pb push_back
#define all(v) v.begin(), v.end()
#define inf (1LL << 62)
#define loop(i, start, stop, inc) for(ll i = start; i <= stop; i += inc)
#define for1(i, stop) for(ll i = 1; i <= stop; ++i)
#define for0(i, stop) for(ll i = 0; i < stop; ++i)
#define rep1(i, start) for(ll i = start; i >= 1; --i)
#define rep0(i, start) for(ll i = (start-1); i >= 0; --i)
#define ms(n, i) memset(n, i, sizeof(n))
#define casep(n) printf("Case %lld:", ++n)
#define pn printf("\n")
#define pf printf
#define EL '\n'
#define fastio std::ios_base::sync_with_stdio(false);cin.tie(NULL);cout.tie(NULL);
const ll sz = 1e5 + 10;
vector <ll> g[sz];
ll pep[sz], h[sz];
bool ok;
pll dfs(ll u, ll par)
{
ll good = 0, bad = 0;
for(ll &v : g[u]) {
if(v == par)
continue;
pll got = dfs(v, u);
good += got.first, bad += got.second;
}
ll diff = good - bad;
ll need = h[u] - diff, p = pep[u];
if(need > 0) {
ll mn = min(need / 2, bad);
bad -= mn, good += mn;
need -= (mn*2);
}
ll sum = need+p;
if(sum & 1) {
ok = 0;
return mp(-1,-1);
}
ll g = sum / 2, b = p - g;
if(g < 0 || b < 0) {
//cout << u << " " << good << " " << bad << endl;
ok = 0;
return mp(-1, -1);
}
good += g, bad += b;
return mp(good, bad);
}
int main()
{
ll t;
cin >> t;
while(t--) {
ll n, m;
sl(n), sl(m);
for1(i, n) sl(pep[i]);
for1(i, n) sl(h[i]);
for(ll i = 1; i < n; i++) {
ll u, v;
sl(u), sl(v);
g[u].pb(v);
g[v].pb(u);
}
ok = 1;
dfs(1, -1);
if(ok) pf("YES\n");
else pf("NO\n");
for1(i, n) g[i].clear();
}
return 0;
}