forked from MarkFzp/act-plus-plus
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathvinn_select_k.py
134 lines (112 loc) · 4.85 KB
/
vinn_select_k.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
import torch
import torch.nn.functional as F
import numpy as np
import h5py
import pathlib
import os
import argparse
import matplotlib.pyplot as plt
import IPython
e = IPython.embed
# modified from https://github.com/jyopari/VINN/blob/main/nearest-neighbor-eval/handle_nn.ipynb
def calculate_nearest_neighbors(query_inputs, query_targets, support_inputs, support_targets, max_k):
with torch.no_grad():
pairwise_dist = []
for q_in in query_inputs:
diff = support_inputs - q_in.unsqueeze(0)
dist = torch.norm(diff, dim=1)
pairwise_dist.append(dist)
pairwise_dist = torch.stack(pairwise_dist)
sorted_dist, index = torch.sort(pairwise_dist, dim=1) # sort the support axis
permuted_support_targets = support_targets[index]
errors = []
for k in range(1, max_k):
topk_dist = pairwise_dist[:, :k]
topk_support_targets = permuted_support_targets[:, :k]
weights = F.softmax(-topk_dist, dim=1)
weighted_support_targets = weights.unsqueeze(2) * topk_support_targets
prediction = torch.sum(weighted_support_targets, dim=1)
error = F.mse_loss(prediction, query_targets)
errors.append(error)
return errors
def chunks(lst, n):
"""Yield successive n-sized chunks from lst."""
for i in range(0, len(lst), n):
yield lst[i:i + n]
def main(args):
# TODO ######################
dataset_dir = args['dataset_dir']
ckpt_dir = args['ckpt_dir']
seed = 0
max_k = 400
batch_size = 100
# TODO ######################
repr_type = 'byol'
if 'cotrain' in ckpt_dir:
repr_type += '_cotrain'
e() # make sure!
if not os.path.isdir(ckpt_dir):
os.makedirs(ckpt_dir)
episode_idxs = [int(name.split('_')[1].split('.')[0]) for name in os.listdir(dataset_dir) if ('.hdf5' in name) and ('features' not in name)]
episode_idxs.sort()
assert len(episode_idxs) == episode_idxs[-1] + 1 # no holes
num_episodes = len(episode_idxs)
val_split = int(num_episodes * 0.8)
# load train data
X = []
Y = []
for episode_id in range(0, val_split):
dataset_path = os.path.join(dataset_dir, f'episode_{episode_id}.hdf5')
with h5py.File(dataset_path, 'r') as root:
action = root['/action'][:]
camera_names = list(root[f'/observations/images/'].keys())
all_cam_feature = []
feature_dataset_path = os.path.join(dataset_dir, f'{repr_type}_features_seed{seed}_episode_{episode_id}.hdf5')
with h5py.File(feature_dataset_path, 'r') as root:
for cam_name in camera_names:
cam_feature = root[f'/features/{cam_name}'][:]
all_cam_feature.append(cam_feature)
cam_feature = np.concatenate(all_cam_feature, axis=1)
X.append(cam_feature)
Y.append(action)
X = np.concatenate(X)
Y = np.concatenate(Y)
train_inputs = torch.from_numpy(X).cuda()
train_targets = torch.from_numpy(Y).cuda()
print(f'All features: {train_inputs.shape}')
# load test data
X = []
Y = []
for episode_id in range(val_split, num_episodes):
dataset_path = os.path.join(dataset_dir, f'episode_{episode_id}.hdf5')
with h5py.File(dataset_path, 'r') as root:
action = root['/action'][:]
all_cam_feature = []
feature_dataset_path = os.path.join(dataset_dir, f'{repr_type}_features_seed{seed}_episode_{episode_id}.hdf5')
with h5py.File(feature_dataset_path, 'r') as root:
for cam_name in camera_names:
cam_feature = root[f'/features/{cam_name}'][:]
all_cam_feature.append(cam_feature)
cam_feature = np.concatenate(all_cam_feature, axis=1)
X.append(cam_feature)
Y.append(action)
X = np.concatenate(X)
Y = np.concatenate(Y)
val_inputs = torch.from_numpy(X).cuda()
val_targets = torch.from_numpy(Y).cuda()
val_losses = []
for inputs, targets in zip(chunks(val_inputs, batch_size), chunks(val_targets, batch_size)):
val_loss = calculate_nearest_neighbors(inputs, targets, train_inputs, train_targets, max_k)
val_loss = torch.stack(val_loss)
val_losses.append(val_loss)
val_losses = torch.mean(torch.stack(val_losses), dim=0)
val_loss = val_losses
val_loss = torch.tensor(val_loss).cpu().numpy()
print(f'min val loss of {np.min(val_loss)} at k={np.argmin(val_loss)}')
plt.plot(np.arange(1, max_k), val_loss)
plt.savefig(os.path.join(ckpt_dir, f'k_select-seed{seed}.png'))
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--dataset_dir', action='store', type=str, help='The text to parse.', required=True)
parser.add_argument('--ckpt_dir', action='store', type=str, help='The text to parse.', required=True)
main(vars(parser.parse_args()))