-
Notifications
You must be signed in to change notification settings - Fork 1
/
start_panda_training.launch
31 lines (27 loc) · 1.57 KB
/
start_panda_training.launch
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
<!--
This launch can be used to train a Soft Actor-Critic (SAC) algorithm on the panda task environments found in the
ros-gazebo-gym package. The training parameters can be set in the ros-gazebo-gym-examples/config/panda_example_training_params.yaml
Control arguments:
- control_type: The control type used for controlling the panda robot (Options: trajectory, position, effort, end_effector).
- environment_type: The panda task environment (Options: Reach, PickAndPlace, Slide, Push).
-->
<launch>
<!--Control arguments-->
<!-- The control type used for controlling the panda robot (Options: trajectory, position, effort, end_effector)-->
<arg name="control_type" default="effort"/>
<!--Task environment arguments-->
<!-- The panda task environment.
NOTE: Options: Reach, PickAndPlace, Slide, Push
-->
<arg name="environment_type" default="reach"/>
<!-- Whether to use positive reward or not.-->
<arg name="positive_reward" default="false"/>
<!--Retrieve ros_gazebo_gym panda environment training parameters-->
<include file="$(find ros_gazebo_gym_examples)/launch/load_panda_example_training_params.launch.xml"/>
<!--Launch the training system-->
<node pkg="ros_gazebo_gym_examples" name="ros_gazebo_gym_panda_training_example" type="start_panda_training_sac_example.py" output="screen">
<param name="control_type" value="$(arg control_type)"/>
<param name="positive_reward" value="$(arg positive_reward)"/>
<param name="environment_type" value="$(arg environment_type)"/>
</node>
</launch>