generated from langchain-ai/langchain-nextjs-template
-
Notifications
You must be signed in to change notification settings - Fork 0
/
route.ts
172 lines (148 loc) · 5.02 KB
/
route.ts
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
import { NextRequest, NextResponse } from "next/server";
import { Message as VercelChatMessage, StreamingTextResponse } from "ai";
import { createClient } from "@supabase/supabase-js";
import { ChatOpenAI, OpenAIEmbeddings } from "@langchain/openai";
import { PromptTemplate } from "@langchain/core/prompts";
import { SupabaseVectorStore } from "@langchain/community/vectorstores/supabase";
import { Document } from "@langchain/core/documents";
import { RunnableSequence } from "@langchain/core/runnables";
import {
BytesOutputParser,
StringOutputParser,
} from "@langchain/core/output_parsers";
export const runtime = "edge";
const combineDocumentsFn = (docs: Document[]) => {
const serializedDocs = docs.map((doc) => doc.pageContent);
return serializedDocs.join("\n\n");
};
const formatVercelMessages = (chatHistory: VercelChatMessage[]) => {
const formattedDialogueTurns = chatHistory.map((message) => {
if (message.role === "user") {
return `Human: ${message.content}`;
} else if (message.role === "assistant") {
return `Assistant: ${message.content}`;
} else {
return `${message.role}: ${message.content}`;
}
});
return formattedDialogueTurns.join("\n");
};
const CONDENSE_QUESTION_TEMPLATE = `Given the following conversation and a follow up question, rephrase the follow up question to be a standalone question, in its original language.
<chat_history>
{chat_history}
</chat_history>
Follow Up Input: {question}
Standalone question:`;
const condenseQuestionPrompt = PromptTemplate.fromTemplate(
CONDENSE_QUESTION_TEMPLATE,
);
const ANSWER_TEMPLATE = `You are an energetic talking puppy named Dana, and must answer all questions like a happy, talking dog would.
Use lots of puns!
Answer the question based only on the following context and chat history:
<context>
{context}
</context>
<chat_history>
{chat_history}
</chat_history>
Question: {question}
`;
const answerPrompt = PromptTemplate.fromTemplate(ANSWER_TEMPLATE);
/**
* This handler initializes and calls a retrieval chain. It composes the chain using
* LangChain Expression Language. See the docs for more information:
*
* https://js.langchain.com/v0.2/docs/how_to/qa_chat_history_how_to/
*/
export async function POST(req: NextRequest) {
try {
const body = await req.json();
const messages = body.messages ?? [];
const previousMessages = messages.slice(0, -1);
const currentMessageContent = messages[messages.length - 1].content;
const model = new ChatOpenAI({
model: "gpt-3.5-turbo-0125",
temperature: 0.2,
});
const client = createClient(
process.env.SUPABASE_URL!,
process.env.SUPABASE_PRIVATE_KEY!,
);
const vectorstore = new SupabaseVectorStore(new OpenAIEmbeddings(), {
client,
tableName: "documents",
queryName: "match_documents",
});
/**
* We use LangChain Expression Language to compose two chains.
* To learn more, see the guide here:
*
* https://js.langchain.com/docs/guides/expression_language/cookbook
*
* You can also use the "createRetrievalChain" method with a
* "historyAwareRetriever" to get something prebaked.
*/
const standaloneQuestionChain = RunnableSequence.from([
condenseQuestionPrompt,
model,
new StringOutputParser(),
]);
let resolveWithDocuments: (value: Document[]) => void;
const documentPromise = new Promise<Document[]>((resolve) => {
resolveWithDocuments = resolve;
});
const retriever = vectorstore.asRetriever({
callbacks: [
{
handleRetrieverEnd(documents) {
resolveWithDocuments(documents);
},
},
],
});
const retrievalChain = retriever.pipe(combineDocumentsFn);
const answerChain = RunnableSequence.from([
{
context: RunnableSequence.from([
(input) => input.question,
retrievalChain,
]),
chat_history: (input) => input.chat_history,
question: (input) => input.question,
},
answerPrompt,
model,
]);
const conversationalRetrievalQAChain = RunnableSequence.from([
{
question: standaloneQuestionChain,
chat_history: (input) => input.chat_history,
},
answerChain,
new BytesOutputParser(),
]);
const stream = await conversationalRetrievalQAChain.stream({
question: currentMessageContent,
chat_history: formatVercelMessages(previousMessages),
});
const documents = await documentPromise;
const serializedSources = Buffer.from(
JSON.stringify(
documents.map((doc) => {
return {
pageContent: doc.pageContent.slice(0, 50) + "...",
metadata: doc.metadata,
};
}),
),
).toString("base64");
return new StreamingTextResponse(stream, {
headers: {
"x-message-index": (previousMessages.length + 1).toString(),
"x-sources": serializedSources,
},
});
} catch (e: any) {
return NextResponse.json({ error: e.message }, { status: e.status ?? 500 });
}
}