diff --git a/exercicios/para-casa/BeatrizGomes.ipynb b/exercicios/para-casa/BeatrizGomes.ipynb
new file mode 100644
index 0000000..e76ed33
--- /dev/null
+++ b/exercicios/para-casa/BeatrizGomes.ipynb
@@ -0,0 +1,2238 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "### Importando todas as bibliotecas que eu posso precisar durante minha análise."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "import pandas as pd\n",
+ "import matplotlib.pyplot as plt\n",
+ "from scipy.stats import ttest_ind\n",
+ "import seaborn as sns\n",
+ "import sqlite3"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "### Lendo o arquivo"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "df = pd.read_csv(r'C:\\git-on33\\On33-S13\\on33-python-s13-projeto-guiado-II\\exercicios\\para-casa\\HR_Analytics.csv')"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "### Vendo os primeiros detalhes do dataset: Nome das Colunas, quantidade de linhas, linhas duplicadas e valores nulos."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 3,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "
\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " EmpID | \n",
+ " Age | \n",
+ " AgeGroup | \n",
+ " Attrition | \n",
+ " BusinessTravel | \n",
+ " DailyRate | \n",
+ " Department | \n",
+ " DistanceFromHome | \n",
+ " Education | \n",
+ " EducationField | \n",
+ " ... | \n",
+ " RelationshipSatisfaction | \n",
+ " StandardHours | \n",
+ " StockOptionLevel | \n",
+ " TotalWorkingYears | \n",
+ " TrainingTimesLastYear | \n",
+ " WorkLifeBalance | \n",
+ " YearsAtCompany | \n",
+ " YearsInCurrentRole | \n",
+ " YearsSinceLastPromotion | \n",
+ " YearsWithCurrManager | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " 0 | \n",
+ " RM297 | \n",
+ " 18 | \n",
+ " 18-25 | \n",
+ " Yes | \n",
+ " Travel_Rarely | \n",
+ " 230 | \n",
+ " Research & Development | \n",
+ " 3 | \n",
+ " 3 | \n",
+ " Life Sciences | \n",
+ " ... | \n",
+ " 3 | \n",
+ " 80 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 2 | \n",
+ " 3 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0.0 | \n",
+ "
\n",
+ " \n",
+ " 1 | \n",
+ " RM302 | \n",
+ " 18 | \n",
+ " 18-25 | \n",
+ " No | \n",
+ " Travel_Rarely | \n",
+ " 812 | \n",
+ " Sales | \n",
+ " 10 | \n",
+ " 3 | \n",
+ " Medical | \n",
+ " ... | \n",
+ " 1 | \n",
+ " 80 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 2 | \n",
+ " 3 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0.0 | \n",
+ "
\n",
+ " \n",
+ " 2 | \n",
+ " RM458 | \n",
+ " 18 | \n",
+ " 18-25 | \n",
+ " Yes | \n",
+ " Travel_Frequently | \n",
+ " 1306 | \n",
+ " Sales | \n",
+ " 5 | \n",
+ " 3 | \n",
+ " Marketing | \n",
+ " ... | \n",
+ " 4 | \n",
+ " 80 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 3 | \n",
+ " 3 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0.0 | \n",
+ "
\n",
+ " \n",
+ " 3 | \n",
+ " RM728 | \n",
+ " 18 | \n",
+ " 18-25 | \n",
+ " No | \n",
+ " Non-Travel | \n",
+ " 287 | \n",
+ " Research & Development | \n",
+ " 5 | \n",
+ " 2 | \n",
+ " Life Sciences | \n",
+ " ... | \n",
+ " 4 | \n",
+ " 80 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 2 | \n",
+ " 3 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0.0 | \n",
+ "
\n",
+ " \n",
+ " 4 | \n",
+ " RM829 | \n",
+ " 18 | \n",
+ " 18-25 | \n",
+ " Yes | \n",
+ " Non-Travel | \n",
+ " 247 | \n",
+ " Research & Development | \n",
+ " 8 | \n",
+ " 1 | \n",
+ " Medical | \n",
+ " ... | \n",
+ " 4 | \n",
+ " 80 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 3 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0.0 | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
5 rows × 38 columns
\n",
+ "
"
+ ],
+ "text/plain": [
+ " EmpID Age AgeGroup Attrition BusinessTravel DailyRate \\\n",
+ "0 RM297 18 18-25 Yes Travel_Rarely 230 \n",
+ "1 RM302 18 18-25 No Travel_Rarely 812 \n",
+ "2 RM458 18 18-25 Yes Travel_Frequently 1306 \n",
+ "3 RM728 18 18-25 No Non-Travel 287 \n",
+ "4 RM829 18 18-25 Yes Non-Travel 247 \n",
+ "\n",
+ " Department DistanceFromHome Education EducationField ... \\\n",
+ "0 Research & Development 3 3 Life Sciences ... \n",
+ "1 Sales 10 3 Medical ... \n",
+ "2 Sales 5 3 Marketing ... \n",
+ "3 Research & Development 5 2 Life Sciences ... \n",
+ "4 Research & Development 8 1 Medical ... \n",
+ "\n",
+ " RelationshipSatisfaction StandardHours StockOptionLevel \\\n",
+ "0 3 80 0 \n",
+ "1 1 80 0 \n",
+ "2 4 80 0 \n",
+ "3 4 80 0 \n",
+ "4 4 80 0 \n",
+ "\n",
+ " TotalWorkingYears TrainingTimesLastYear WorkLifeBalance YearsAtCompany \\\n",
+ "0 0 2 3 0 \n",
+ "1 0 2 3 0 \n",
+ "2 0 3 3 0 \n",
+ "3 0 2 3 0 \n",
+ "4 0 0 3 0 \n",
+ "\n",
+ " YearsInCurrentRole YearsSinceLastPromotion YearsWithCurrManager \n",
+ "0 0 0 0.0 \n",
+ "1 0 0 0.0 \n",
+ "2 0 0 0.0 \n",
+ "3 0 0 0.0 \n",
+ "4 0 0 0.0 \n",
+ "\n",
+ "[5 rows x 38 columns]"
+ ]
+ },
+ "execution_count": 3,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "df.head(5)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 4,
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "\n",
+ "RangeIndex: 1480 entries, 0 to 1479\n",
+ "Data columns (total 38 columns):\n",
+ " # Column Non-Null Count Dtype \n",
+ "--- ------ -------------- ----- \n",
+ " 0 EmpID 1480 non-null object \n",
+ " 1 Age 1480 non-null int64 \n",
+ " 2 AgeGroup 1480 non-null object \n",
+ " 3 Attrition 1480 non-null object \n",
+ " 4 BusinessTravel 1480 non-null object \n",
+ " 5 DailyRate 1480 non-null int64 \n",
+ " 6 Department 1480 non-null object \n",
+ " 7 DistanceFromHome 1480 non-null int64 \n",
+ " 8 Education 1480 non-null int64 \n",
+ " 9 EducationField 1480 non-null object \n",
+ " 10 EmployeeCount 1480 non-null int64 \n",
+ " 11 EmployeeNumber 1480 non-null int64 \n",
+ " 12 EnvironmentSatisfaction 1480 non-null int64 \n",
+ " 13 Gender 1480 non-null object \n",
+ " 14 HourlyRate 1480 non-null int64 \n",
+ " 15 JobInvolvement 1480 non-null int64 \n",
+ " 16 JobLevel 1480 non-null int64 \n",
+ " 17 JobRole 1480 non-null object \n",
+ " 18 JobSatisfaction 1480 non-null int64 \n",
+ " 19 MaritalStatus 1480 non-null object \n",
+ " 20 MonthlyIncome 1480 non-null int64 \n",
+ " 21 SalarySlab 1480 non-null object \n",
+ " 22 MonthlyRate 1480 non-null int64 \n",
+ " 23 NumCompaniesWorked 1480 non-null int64 \n",
+ " 24 Over18 1480 non-null object \n",
+ " 25 OverTime 1480 non-null object \n",
+ " 26 PercentSalaryHike 1480 non-null int64 \n",
+ " 27 PerformanceRating 1480 non-null int64 \n",
+ " 28 RelationshipSatisfaction 1480 non-null int64 \n",
+ " 29 StandardHours 1480 non-null int64 \n",
+ " 30 StockOptionLevel 1480 non-null int64 \n",
+ " 31 TotalWorkingYears 1480 non-null int64 \n",
+ " 32 TrainingTimesLastYear 1480 non-null int64 \n",
+ " 33 WorkLifeBalance 1480 non-null int64 \n",
+ " 34 YearsAtCompany 1480 non-null int64 \n",
+ " 35 YearsInCurrentRole 1480 non-null int64 \n",
+ " 36 YearsSinceLastPromotion 1480 non-null int64 \n",
+ " 37 YearsWithCurrManager 1423 non-null float64\n",
+ "dtypes: float64(1), int64(25), object(12)\n",
+ "memory usage: 439.5+ KB\n"
+ ]
+ }
+ ],
+ "source": [
+ "df.info()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 5,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "Index(['EmpID', 'Age', 'AgeGroup', 'Attrition', 'BusinessTravel', 'DailyRate',\n",
+ " 'Department', 'DistanceFromHome', 'Education', 'EducationField',\n",
+ " 'EmployeeCount', 'EmployeeNumber', 'EnvironmentSatisfaction', 'Gender',\n",
+ " 'HourlyRate', 'JobInvolvement', 'JobLevel', 'JobRole',\n",
+ " 'JobSatisfaction', 'MaritalStatus', 'MonthlyIncome', 'SalarySlab',\n",
+ " 'MonthlyRate', 'NumCompaniesWorked', 'Over18', 'OverTime',\n",
+ " 'PercentSalaryHike', 'PerformanceRating', 'RelationshipSatisfaction',\n",
+ " 'StandardHours', 'StockOptionLevel', 'TotalWorkingYears',\n",
+ " 'TrainingTimesLastYear', 'WorkLifeBalance', 'YearsAtCompany',\n",
+ " 'YearsInCurrentRole', 'YearsSinceLastPromotion',\n",
+ " 'YearsWithCurrManager'],\n",
+ " dtype='object')"
+ ]
+ },
+ "execution_count": 5,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "df.columns"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "### Criando um backup por precaução"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 6,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "df_backup = df.copy()"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "### Vendo as linhas nulas"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 7,
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Column 'YearsWithCurrManager' contains NaN values:\n",
+ "0 0.0\n",
+ "1 0.0\n",
+ "2 0.0\n",
+ "3 0.0\n",
+ "4 0.0\n",
+ " ... \n",
+ "1475 10.0\n",
+ "1476 11.0\n",
+ "1477 2.0\n",
+ "1478 9.0\n",
+ "1479 0.0\n",
+ "Name: YearsWithCurrManager, Length: 1480, dtype: float64\n",
+ "\n"
+ ]
+ }
+ ],
+ "source": [
+ "for nullColumn in df.columns: \n",
+ " if df[nullColumn].isnull().any(): \n",
+ " print(f\"Column '{nullColumn}' contains NaN values:\\n{df[nullColumn]}\\n\")"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "### Procurando se tem linhas duplicadas e removendo-as (depois de me certificar de que estão erroneamente duplicadas)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 8,
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ " EmpID Age AgeGroup Attrition BusinessTravel DailyRate \\\n",
+ "210 RM1468 27 26-35 No Travel_Rarely 155 \n",
+ "211 RM1468 27 26-35 No Travel_Rarely 155 \n",
+ "327 RM1461 29 26-35 No Travel_Rarely 468 \n",
+ "328 RM1461 29 26-35 No Travel_Rarely 468 \n",
+ "457 RM1464 31 26-35 No Non-Travel 325 \n",
+ "458 RM1464 31 26-35 No Non-Travel 325 \n",
+ "654 RM1470 34 26-35 No TravelRarely 628 \n",
+ "655 RM1470 34 26-35 No TravelRarely 628 \n",
+ "952 RM1463 39 36-45 No Travel_Rarely 722 \n",
+ "954 RM1463 39 36-45 No Travel_Rarely 722 \n",
+ "1304 RM1469 49 46-55 No Travel_Frequently 1023 \n",
+ "1305 RM1469 49 46-55 No Travel_Frequently 1023 \n",
+ "1335 RM1462 50 46-55 Yes Travel_Rarely 410 \n",
+ "1336 RM1462 50 46-55 Yes Travel_Rarely 410 \n",
+ "\n",
+ " Department DistanceFromHome Education EducationField ... \\\n",
+ "210 Research & Development 4 3 Life Sciences ... \n",
+ "211 Research & Development 4 3 Life Sciences ... \n",
+ "327 Research & Development 28 4 Medical ... \n",
+ "328 Research & Development 28 4 Medical ... \n",
+ "457 Research & Development 5 3 Medical ... \n",
+ "458 Research & Development 5 3 Medical ... \n",
+ "654 Research & Development 8 3 Medical ... \n",
+ "655 Research & Development 8 3 Medical ... \n",
+ "952 Sales 24 1 Marketing ... \n",
+ "954 Sales 24 1 Marketing ... \n",
+ "1304 Sales 2 3 Medical ... \n",
+ "1305 Sales 2 3 Medical ... \n",
+ "1335 Sales 28 3 Marketing ... \n",
+ "1336 Sales 28 3 Marketing ... \n",
+ "\n",
+ " RelationshipSatisfaction StandardHours StockOptionLevel \\\n",
+ "210 2 80 1 \n",
+ "211 2 80 1 \n",
+ "327 2 80 0 \n",
+ "328 2 80 0 \n",
+ "457 2 80 0 \n",
+ "458 2 80 0 \n",
+ "654 1 80 0 \n",
+ "655 1 80 0 \n",
+ "952 1 80 1 \n",
+ "954 1 80 1 \n",
+ "1304 4 80 0 \n",
+ "1305 4 80 0 \n",
+ "1335 2 80 1 \n",
+ "1336 2 80 1 \n",
+ "\n",
+ " TotalWorkingYears TrainingTimesLastYear WorkLifeBalance \\\n",
+ "210 6 0 3 \n",
+ "211 6 0 3 \n",
+ "327 5 3 1 \n",
+ "328 5 3 1 \n",
+ "457 10 2 3 \n",
+ "458 10 2 3 \n",
+ "654 6 3 4 \n",
+ "655 6 3 4 \n",
+ "952 21 2 2 \n",
+ "954 21 2 2 \n",
+ "1304 17 3 2 \n",
+ "1305 17 3 2 \n",
+ "1335 20 3 3 \n",
+ "1336 20 3 3 \n",
+ "\n",
+ " YearsAtCompany YearsInCurrentRole YearsSinceLastPromotion \\\n",
+ "210 6 2 0 \n",
+ "211 6 2 0 \n",
+ "327 5 4 0 \n",
+ "328 5 4 0 \n",
+ "457 9 4 1 \n",
+ "458 9 4 1 \n",
+ "654 4 3 1 \n",
+ "655 4 3 1 \n",
+ "952 20 9 9 \n",
+ "954 20 9 9 \n",
+ "1304 9 6 0 \n",
+ "1305 9 6 0 \n",
+ "1335 3 2 2 \n",
+ "1336 3 2 2 \n",
+ "\n",
+ " YearsWithCurrManager \n",
+ "210 3.0 \n",
+ "211 3.0 \n",
+ "327 4.0 \n",
+ "328 4.0 \n",
+ "457 7.0 \n",
+ "458 7.0 \n",
+ "654 2.0 \n",
+ "655 2.0 \n",
+ "952 6.0 \n",
+ "954 6.0 \n",
+ "1304 8.0 \n",
+ "1305 8.0 \n",
+ "1335 0.0 \n",
+ "1336 0.0 \n",
+ "\n",
+ "[14 rows x 38 columns]\n"
+ ]
+ }
+ ],
+ "source": [
+ "def viewDuplicates(df):\n",
+ " duplicates = df[df.duplicated(keep=False)]\n",
+ "\n",
+ " return duplicates\n",
+ "\n",
+ "duplicatedLines = viewDuplicates(df)\n",
+ "print(duplicatedLines)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 9,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "df = df.drop_duplicates()"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "### Vendo quantas linhas sobraram"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 10,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "(1473, 38)"
+ ]
+ },
+ "execution_count": 10,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "df.shape"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "### Diminuindo o dataframe selecionando colunas especificas que achei interessante"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 11,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " EmpID | \n",
+ " AgeGroup | \n",
+ " Department | \n",
+ " EducationField | \n",
+ " EnvironmentSatisfaction | \n",
+ " Gender | \n",
+ " JobInvolvement | \n",
+ " JobLevel | \n",
+ " JobRole | \n",
+ " JobSatisfaction | \n",
+ " ... | \n",
+ " SalarySlab | \n",
+ " NumCompaniesWorked | \n",
+ " PercentSalaryHike | \n",
+ " PerformanceRating | \n",
+ " RelationshipSatisfaction | \n",
+ " TotalWorkingYears | \n",
+ " TrainingTimesLastYear | \n",
+ " YearsAtCompany | \n",
+ " YearsInCurrentRole | \n",
+ " YearsSinceLastPromotion | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " 0 | \n",
+ " RM297 | \n",
+ " 18-25 | \n",
+ " Research & Development | \n",
+ " Life Sciences | \n",
+ " 3 | \n",
+ " Male | \n",
+ " 3 | \n",
+ " 1 | \n",
+ " Laboratory Technician | \n",
+ " 3 | \n",
+ " ... | \n",
+ " Upto 5k | \n",
+ " 1 | \n",
+ " 13 | \n",
+ " 3 | \n",
+ " 3 | \n",
+ " 0 | \n",
+ " 2 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ "
\n",
+ " \n",
+ " 1 | \n",
+ " RM302 | \n",
+ " 18-25 | \n",
+ " Sales | \n",
+ " Medical | \n",
+ " 4 | \n",
+ " Female | \n",
+ " 2 | \n",
+ " 1 | \n",
+ " Sales Representative | \n",
+ " 3 | \n",
+ " ... | \n",
+ " Upto 5k | \n",
+ " 1 | \n",
+ " 12 | \n",
+ " 3 | \n",
+ " 1 | \n",
+ " 0 | \n",
+ " 2 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ "
\n",
+ " \n",
+ " 2 | \n",
+ " RM458 | \n",
+ " 18-25 | \n",
+ " Sales | \n",
+ " Marketing | \n",
+ " 2 | \n",
+ " Male | \n",
+ " 3 | \n",
+ " 1 | \n",
+ " Sales Representative | \n",
+ " 2 | \n",
+ " ... | \n",
+ " Upto 5k | \n",
+ " 1 | \n",
+ " 14 | \n",
+ " 3 | \n",
+ " 4 | \n",
+ " 0 | \n",
+ " 3 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ "
\n",
+ " \n",
+ " 3 | \n",
+ " RM728 | \n",
+ " 18-25 | \n",
+ " Research & Development | \n",
+ " Life Sciences | \n",
+ " 2 | \n",
+ " Male | \n",
+ " 3 | \n",
+ " 1 | \n",
+ " Research Scientist | \n",
+ " 4 | \n",
+ " ... | \n",
+ " Upto 5k | \n",
+ " 1 | \n",
+ " 15 | \n",
+ " 3 | \n",
+ " 4 | \n",
+ " 0 | \n",
+ " 2 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ "
\n",
+ " \n",
+ " 4 | \n",
+ " RM829 | \n",
+ " 18-25 | \n",
+ " Research & Development | \n",
+ " Medical | \n",
+ " 3 | \n",
+ " Male | \n",
+ " 3 | \n",
+ " 1 | \n",
+ " Laboratory Technician | \n",
+ " 3 | \n",
+ " ... | \n",
+ " Upto 5k | \n",
+ " 1 | \n",
+ " 12 | \n",
+ " 3 | \n",
+ " 4 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ "
\n",
+ " \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ "
\n",
+ " \n",
+ " 1475 | \n",
+ " RM412 | \n",
+ " 55+ | \n",
+ " Research & Development | \n",
+ " Life Sciences | \n",
+ " 1 | \n",
+ " Female | \n",
+ " 3 | \n",
+ " 5 | \n",
+ " Manager | \n",
+ " 1 | \n",
+ " ... | \n",
+ " 15k+ | \n",
+ " 5 | \n",
+ " 11 | \n",
+ " 3 | \n",
+ " 4 | \n",
+ " 33 | \n",
+ " 5 | \n",
+ " 29 | \n",
+ " 8 | \n",
+ " 11 | \n",
+ "
\n",
+ " \n",
+ " 1476 | \n",
+ " RM428 | \n",
+ " 55+ | \n",
+ " Sales | \n",
+ " Marketing | \n",
+ " 3 | \n",
+ " Female | \n",
+ " 2 | \n",
+ " 3 | \n",
+ " Sales Executive | \n",
+ " 1 | \n",
+ " ... | \n",
+ " 10k-15k | \n",
+ " 4 | \n",
+ " 19 | \n",
+ " 3 | \n",
+ " 4 | \n",
+ " 22 | \n",
+ " 5 | \n",
+ " 18 | \n",
+ " 13 | \n",
+ " 13 | \n",
+ "
\n",
+ " \n",
+ " 1477 | \n",
+ " RM537 | \n",
+ " 55+ | \n",
+ " Sales | \n",
+ " Marketing | \n",
+ " 1 | \n",
+ " Male | \n",
+ " 3 | \n",
+ " 2 | \n",
+ " Sales Executive | \n",
+ " 1 | \n",
+ " ... | \n",
+ " 5k-10k | \n",
+ " 8 | \n",
+ " 14 | \n",
+ " 3 | \n",
+ " 4 | \n",
+ " 10 | \n",
+ " 1 | \n",
+ " 2 | \n",
+ " 2 | \n",
+ " 2 | \n",
+ "
\n",
+ " \n",
+ " 1478 | \n",
+ " RM880 | \n",
+ " 55+ | \n",
+ " Sales | \n",
+ " Marketing | \n",
+ " 2 | \n",
+ " Male | \n",
+ " 4 | \n",
+ " 2 | \n",
+ " Sales Executive | \n",
+ " 4 | \n",
+ " ... | \n",
+ " 5k-10k | \n",
+ " 0 | \n",
+ " 18 | \n",
+ " 3 | \n",
+ " 2 | \n",
+ " 12 | \n",
+ " 3 | \n",
+ " 11 | \n",
+ " 7 | \n",
+ " 1 | \n",
+ "
\n",
+ " \n",
+ " 1479 | \n",
+ " RM1210 | \n",
+ " 55+ | \n",
+ " Research & Development | \n",
+ " Medical | \n",
+ " 3 | \n",
+ " Male | \n",
+ " 1 | \n",
+ " 3 | \n",
+ " Healthcare Representative | \n",
+ " 4 | \n",
+ " ... | \n",
+ " 10k-15k | \n",
+ " 3 | \n",
+ " 20 | \n",
+ " 4 | \n",
+ " 3 | \n",
+ " 19 | \n",
+ " 2 | \n",
+ " 1 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
1473 rows × 21 columns
\n",
+ "
"
+ ],
+ "text/plain": [
+ " EmpID AgeGroup Department EducationField \\\n",
+ "0 RM297 18-25 Research & Development Life Sciences \n",
+ "1 RM302 18-25 Sales Medical \n",
+ "2 RM458 18-25 Sales Marketing \n",
+ "3 RM728 18-25 Research & Development Life Sciences \n",
+ "4 RM829 18-25 Research & Development Medical \n",
+ "... ... ... ... ... \n",
+ "1475 RM412 55+ Research & Development Life Sciences \n",
+ "1476 RM428 55+ Sales Marketing \n",
+ "1477 RM537 55+ Sales Marketing \n",
+ "1478 RM880 55+ Sales Marketing \n",
+ "1479 RM1210 55+ Research & Development Medical \n",
+ "\n",
+ " EnvironmentSatisfaction Gender JobInvolvement JobLevel \\\n",
+ "0 3 Male 3 1 \n",
+ "1 4 Female 2 1 \n",
+ "2 2 Male 3 1 \n",
+ "3 2 Male 3 1 \n",
+ "4 3 Male 3 1 \n",
+ "... ... ... ... ... \n",
+ "1475 1 Female 3 5 \n",
+ "1476 3 Female 2 3 \n",
+ "1477 1 Male 3 2 \n",
+ "1478 2 Male 4 2 \n",
+ "1479 3 Male 1 3 \n",
+ "\n",
+ " JobRole JobSatisfaction ... SalarySlab \\\n",
+ "0 Laboratory Technician 3 ... Upto 5k \n",
+ "1 Sales Representative 3 ... Upto 5k \n",
+ "2 Sales Representative 2 ... Upto 5k \n",
+ "3 Research Scientist 4 ... Upto 5k \n",
+ "4 Laboratory Technician 3 ... Upto 5k \n",
+ "... ... ... ... ... \n",
+ "1475 Manager 1 ... 15k+ \n",
+ "1476 Sales Executive 1 ... 10k-15k \n",
+ "1477 Sales Executive 1 ... 5k-10k \n",
+ "1478 Sales Executive 4 ... 5k-10k \n",
+ "1479 Healthcare Representative 4 ... 10k-15k \n",
+ "\n",
+ " NumCompaniesWorked PercentSalaryHike PerformanceRating \\\n",
+ "0 1 13 3 \n",
+ "1 1 12 3 \n",
+ "2 1 14 3 \n",
+ "3 1 15 3 \n",
+ "4 1 12 3 \n",
+ "... ... ... ... \n",
+ "1475 5 11 3 \n",
+ "1476 4 19 3 \n",
+ "1477 8 14 3 \n",
+ "1478 0 18 3 \n",
+ "1479 3 20 4 \n",
+ "\n",
+ " RelationshipSatisfaction TotalWorkingYears TrainingTimesLastYear \\\n",
+ "0 3 0 2 \n",
+ "1 1 0 2 \n",
+ "2 4 0 3 \n",
+ "3 4 0 2 \n",
+ "4 4 0 0 \n",
+ "... ... ... ... \n",
+ "1475 4 33 5 \n",
+ "1476 4 22 5 \n",
+ "1477 4 10 1 \n",
+ "1478 2 12 3 \n",
+ "1479 3 19 2 \n",
+ "\n",
+ " YearsAtCompany YearsInCurrentRole YearsSinceLastPromotion \n",
+ "0 0 0 0 \n",
+ "1 0 0 0 \n",
+ "2 0 0 0 \n",
+ "3 0 0 0 \n",
+ "4 0 0 0 \n",
+ "... ... ... ... \n",
+ "1475 29 8 11 \n",
+ "1476 18 13 13 \n",
+ "1477 2 2 2 \n",
+ "1478 11 7 1 \n",
+ "1479 1 0 0 \n",
+ "\n",
+ "[1473 rows x 21 columns]"
+ ]
+ },
+ "execution_count": 11,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "colunasSelecionadas = ['EmpID',\n",
+ "'AgeGroup', \n",
+ "'Department', \n",
+ "'EducationField',\n",
+ "'EnvironmentSatisfaction', \n",
+ "'Gender',\n",
+ "'JobInvolvement', \n",
+ "'JobLevel', \n",
+ "'JobRole',\n",
+ "'JobSatisfaction',\n",
+ "'MonthlyIncome', \n",
+ "'SalarySlab',\n",
+ "'NumCompaniesWorked', \n",
+ "'PercentSalaryHike', \n",
+ "'PerformanceRating', \n",
+ "'RelationshipSatisfaction',\n",
+ "'TotalWorkingYears',\n",
+ "'TrainingTimesLastYear', \n",
+ "'YearsAtCompany',\n",
+ "'YearsInCurrentRole', \n",
+ "'YearsSinceLastPromotion',]\n",
+ "\n",
+ "dfNovo = df[colunasSelecionadas]\n",
+ "dfNovo"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 12,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " EmpID | \n",
+ " AgeGroup | \n",
+ " Department | \n",
+ " EducationField | \n",
+ " EnvironmentSatisfaction | \n",
+ " Gender | \n",
+ " JobInvolvement | \n",
+ " JobLevel | \n",
+ " JobRole | \n",
+ " JobSatisfaction | \n",
+ " ... | \n",
+ " SalarySlab | \n",
+ " NumCompaniesWorked | \n",
+ " PercentSalaryHike | \n",
+ " PerformanceRating | \n",
+ " RelationshipSatisfaction | \n",
+ " TotalWorkingYears | \n",
+ " TrainingTimesLastYear | \n",
+ " YearsAtCompany | \n",
+ " YearsInCurrentRole | \n",
+ " YearsSinceLastPromotion | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " 0 | \n",
+ " RM297 | \n",
+ " 18-25 | \n",
+ " Research & Development | \n",
+ " Life Sciences | \n",
+ " 3 | \n",
+ " Male | \n",
+ " 3 | \n",
+ " 1 | \n",
+ " Laboratory Technician | \n",
+ " 3 | \n",
+ " ... | \n",
+ " Upto 5k | \n",
+ " 1 | \n",
+ " 13 | \n",
+ " 3 | \n",
+ " 3 | \n",
+ " 0 | \n",
+ " 2 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ "
\n",
+ " \n",
+ " 1 | \n",
+ " RM302 | \n",
+ " 18-25 | \n",
+ " Sales | \n",
+ " Medical | \n",
+ " 4 | \n",
+ " Female | \n",
+ " 2 | \n",
+ " 1 | \n",
+ " Sales Representative | \n",
+ " 3 | \n",
+ " ... | \n",
+ " Upto 5k | \n",
+ " 1 | \n",
+ " 12 | \n",
+ " 3 | \n",
+ " 1 | \n",
+ " 0 | \n",
+ " 2 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ "
\n",
+ " \n",
+ " 2 | \n",
+ " RM458 | \n",
+ " 18-25 | \n",
+ " Sales | \n",
+ " Marketing | \n",
+ " 2 | \n",
+ " Male | \n",
+ " 3 | \n",
+ " 1 | \n",
+ " Sales Representative | \n",
+ " 2 | \n",
+ " ... | \n",
+ " Upto 5k | \n",
+ " 1 | \n",
+ " 14 | \n",
+ " 3 | \n",
+ " 4 | \n",
+ " 0 | \n",
+ " 3 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ "
\n",
+ " \n",
+ " 3 | \n",
+ " RM728 | \n",
+ " 18-25 | \n",
+ " Research & Development | \n",
+ " Life Sciences | \n",
+ " 2 | \n",
+ " Male | \n",
+ " 3 | \n",
+ " 1 | \n",
+ " Research Scientist | \n",
+ " 4 | \n",
+ " ... | \n",
+ " Upto 5k | \n",
+ " 1 | \n",
+ " 15 | \n",
+ " 3 | \n",
+ " 4 | \n",
+ " 0 | \n",
+ " 2 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ "
\n",
+ " \n",
+ " 4 | \n",
+ " RM829 | \n",
+ " 18-25 | \n",
+ " Research & Development | \n",
+ " Medical | \n",
+ " 3 | \n",
+ " Male | \n",
+ " 3 | \n",
+ " 1 | \n",
+ " Laboratory Technician | \n",
+ " 3 | \n",
+ " ... | \n",
+ " Upto 5k | \n",
+ " 1 | \n",
+ " 12 | \n",
+ " 3 | \n",
+ " 4 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
5 rows × 21 columns
\n",
+ "
"
+ ],
+ "text/plain": [
+ " EmpID AgeGroup Department EducationField \\\n",
+ "0 RM297 18-25 Research & Development Life Sciences \n",
+ "1 RM302 18-25 Sales Medical \n",
+ "2 RM458 18-25 Sales Marketing \n",
+ "3 RM728 18-25 Research & Development Life Sciences \n",
+ "4 RM829 18-25 Research & Development Medical \n",
+ "\n",
+ " EnvironmentSatisfaction Gender JobInvolvement JobLevel \\\n",
+ "0 3 Male 3 1 \n",
+ "1 4 Female 2 1 \n",
+ "2 2 Male 3 1 \n",
+ "3 2 Male 3 1 \n",
+ "4 3 Male 3 1 \n",
+ "\n",
+ " JobRole JobSatisfaction ... SalarySlab NumCompaniesWorked \\\n",
+ "0 Laboratory Technician 3 ... Upto 5k 1 \n",
+ "1 Sales Representative 3 ... Upto 5k 1 \n",
+ "2 Sales Representative 2 ... Upto 5k 1 \n",
+ "3 Research Scientist 4 ... Upto 5k 1 \n",
+ "4 Laboratory Technician 3 ... Upto 5k 1 \n",
+ "\n",
+ " PercentSalaryHike PerformanceRating RelationshipSatisfaction \\\n",
+ "0 13 3 3 \n",
+ "1 12 3 1 \n",
+ "2 14 3 4 \n",
+ "3 15 3 4 \n",
+ "4 12 3 4 \n",
+ "\n",
+ " TotalWorkingYears TrainingTimesLastYear YearsAtCompany \\\n",
+ "0 0 2 0 \n",
+ "1 0 2 0 \n",
+ "2 0 3 0 \n",
+ "3 0 2 0 \n",
+ "4 0 0 0 \n",
+ "\n",
+ " YearsInCurrentRole YearsSinceLastPromotion \n",
+ "0 0 0 \n",
+ "1 0 0 \n",
+ "2 0 0 \n",
+ "3 0 0 \n",
+ "4 0 0 \n",
+ "\n",
+ "[5 rows x 21 columns]"
+ ]
+ },
+ "execution_count": 12,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "dfNovo.head()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 13,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " EnvironmentSatisfaction | \n",
+ " JobInvolvement | \n",
+ " JobLevel | \n",
+ " JobSatisfaction | \n",
+ " MonthlyIncome | \n",
+ " NumCompaniesWorked | \n",
+ " PercentSalaryHike | \n",
+ " PerformanceRating | \n",
+ " RelationshipSatisfaction | \n",
+ " TotalWorkingYears | \n",
+ " TrainingTimesLastYear | \n",
+ " YearsAtCompany | \n",
+ " YearsInCurrentRole | \n",
+ " YearsSinceLastPromotion | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " count | \n",
+ " 1473.000000 | \n",
+ " 1473.000000 | \n",
+ " 1473.000000 | \n",
+ " 1473.000000 | \n",
+ " 1473.000000 | \n",
+ " 1473.000000 | \n",
+ " 1473.000000 | \n",
+ " 1473.000000 | \n",
+ " 1473.000000 | \n",
+ " 1473.000000 | \n",
+ " 1473.000000 | \n",
+ " 1473.000000 | \n",
+ " 1473.000000 | \n",
+ " 1473.000000 | \n",
+ "
\n",
+ " \n",
+ " mean | \n",
+ " 2.723693 | \n",
+ " 2.729803 | \n",
+ " 2.063815 | \n",
+ " 2.728445 | \n",
+ " 6500.228785 | \n",
+ " 2.693143 | \n",
+ " 15.212492 | \n",
+ " 3.153428 | \n",
+ " 2.712152 | \n",
+ " 11.277665 | \n",
+ " 2.800407 | \n",
+ " 7.004752 | \n",
+ " 4.228106 | \n",
+ " 2.183978 | \n",
+ "
\n",
+ " \n",
+ " std | \n",
+ " 1.093006 | \n",
+ " 0.712115 | \n",
+ " 1.106429 | \n",
+ " 1.103163 | \n",
+ " 4706.053923 | \n",
+ " 2.496914 | \n",
+ " 3.657230 | \n",
+ " 0.360522 | \n",
+ " 1.081575 | \n",
+ " 7.776228 | \n",
+ " 1.289411 | \n",
+ " 6.121004 | \n",
+ " 3.621096 | \n",
+ " 3.220301 | \n",
+ "
\n",
+ " \n",
+ " min | \n",
+ " 1.000000 | \n",
+ " 1.000000 | \n",
+ " 1.000000 | \n",
+ " 1.000000 | \n",
+ " 1009.000000 | \n",
+ " 0.000000 | \n",
+ " 11.000000 | \n",
+ " 3.000000 | \n",
+ " 1.000000 | \n",
+ " 0.000000 | \n",
+ " 0.000000 | \n",
+ " 0.000000 | \n",
+ " 0.000000 | \n",
+ " 0.000000 | \n",
+ "
\n",
+ " \n",
+ " 25% | \n",
+ " 2.000000 | \n",
+ " 2.000000 | \n",
+ " 1.000000 | \n",
+ " 2.000000 | \n",
+ " 2911.000000 | \n",
+ " 1.000000 | \n",
+ " 12.000000 | \n",
+ " 3.000000 | \n",
+ " 2.000000 | \n",
+ " 6.000000 | \n",
+ " 2.000000 | \n",
+ " 3.000000 | \n",
+ " 2.000000 | \n",
+ " 0.000000 | \n",
+ "
\n",
+ " \n",
+ " 50% | \n",
+ " 3.000000 | \n",
+ " 3.000000 | \n",
+ " 2.000000 | \n",
+ " 3.000000 | \n",
+ " 4908.000000 | \n",
+ " 2.000000 | \n",
+ " 14.000000 | \n",
+ " 3.000000 | \n",
+ " 3.000000 | \n",
+ " 10.000000 | \n",
+ " 3.000000 | \n",
+ " 5.000000 | \n",
+ " 3.000000 | \n",
+ " 1.000000 | \n",
+ "
\n",
+ " \n",
+ " 75% | \n",
+ " 4.000000 | \n",
+ " 3.000000 | \n",
+ " 3.000000 | \n",
+ " 4.000000 | \n",
+ " 8380.000000 | \n",
+ " 4.000000 | \n",
+ " 18.000000 | \n",
+ " 3.000000 | \n",
+ " 4.000000 | \n",
+ " 15.000000 | \n",
+ " 3.000000 | \n",
+ " 9.000000 | \n",
+ " 7.000000 | \n",
+ " 3.000000 | \n",
+ "
\n",
+ " \n",
+ " max | \n",
+ " 4.000000 | \n",
+ " 4.000000 | \n",
+ " 5.000000 | \n",
+ " 4.000000 | \n",
+ " 19999.000000 | \n",
+ " 9.000000 | \n",
+ " 25.000000 | \n",
+ " 4.000000 | \n",
+ " 4.000000 | \n",
+ " 40.000000 | \n",
+ " 6.000000 | \n",
+ " 40.000000 | \n",
+ " 18.000000 | \n",
+ " 15.000000 | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ " EnvironmentSatisfaction JobInvolvement JobLevel JobSatisfaction \\\n",
+ "count 1473.000000 1473.000000 1473.000000 1473.000000 \n",
+ "mean 2.723693 2.729803 2.063815 2.728445 \n",
+ "std 1.093006 0.712115 1.106429 1.103163 \n",
+ "min 1.000000 1.000000 1.000000 1.000000 \n",
+ "25% 2.000000 2.000000 1.000000 2.000000 \n",
+ "50% 3.000000 3.000000 2.000000 3.000000 \n",
+ "75% 4.000000 3.000000 3.000000 4.000000 \n",
+ "max 4.000000 4.000000 5.000000 4.000000 \n",
+ "\n",
+ " MonthlyIncome NumCompaniesWorked PercentSalaryHike \\\n",
+ "count 1473.000000 1473.000000 1473.000000 \n",
+ "mean 6500.228785 2.693143 15.212492 \n",
+ "std 4706.053923 2.496914 3.657230 \n",
+ "min 1009.000000 0.000000 11.000000 \n",
+ "25% 2911.000000 1.000000 12.000000 \n",
+ "50% 4908.000000 2.000000 14.000000 \n",
+ "75% 8380.000000 4.000000 18.000000 \n",
+ "max 19999.000000 9.000000 25.000000 \n",
+ "\n",
+ " PerformanceRating RelationshipSatisfaction TotalWorkingYears \\\n",
+ "count 1473.000000 1473.000000 1473.000000 \n",
+ "mean 3.153428 2.712152 11.277665 \n",
+ "std 0.360522 1.081575 7.776228 \n",
+ "min 3.000000 1.000000 0.000000 \n",
+ "25% 3.000000 2.000000 6.000000 \n",
+ "50% 3.000000 3.000000 10.000000 \n",
+ "75% 3.000000 4.000000 15.000000 \n",
+ "max 4.000000 4.000000 40.000000 \n",
+ "\n",
+ " TrainingTimesLastYear YearsAtCompany YearsInCurrentRole \\\n",
+ "count 1473.000000 1473.000000 1473.000000 \n",
+ "mean 2.800407 7.004752 4.228106 \n",
+ "std 1.289411 6.121004 3.621096 \n",
+ "min 0.000000 0.000000 0.000000 \n",
+ "25% 2.000000 3.000000 2.000000 \n",
+ "50% 3.000000 5.000000 3.000000 \n",
+ "75% 3.000000 9.000000 7.000000 \n",
+ "max 6.000000 40.000000 18.000000 \n",
+ "\n",
+ " YearsSinceLastPromotion \n",
+ "count 1473.000000 \n",
+ "mean 2.183978 \n",
+ "std 3.220301 \n",
+ "min 0.000000 \n",
+ "25% 0.000000 \n",
+ "50% 1.000000 \n",
+ "75% 3.000000 \n",
+ "max 15.000000 "
+ ]
+ },
+ "execution_count": 13,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "dfNovo.describe()"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "### Salvando o novo dataframe com as colunas selecionadas"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 14,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "# salvar no csv\n",
+ "dfNovo.to_csv('PeopleAnalytics.csv', index=False)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 15,
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ " EmpID AgeGroup Department EducationField \\\n",
+ "161 RM1465 26-35 Sales Other \n",
+ "162 RM1465 26-35 Sales Other \n",
+ "802 RM1466 36-45 Research & Development Medical \n",
+ "803 RM1466 36-45 Research & Development Medical \n",
+ "953 RM1467 36-45 Research & Development Medical \n",
+ "955 RM1467 36-45 Research & Development Medical \n",
+ "\n",
+ " EnvironmentSatisfaction Gender JobInvolvement JobLevel \\\n",
+ "161 4 Female 2 1 \n",
+ "162 4 Female 2 1 \n",
+ "802 3 Male 4 2 \n",
+ "803 3 Male 4 2 \n",
+ "953 4 Male 2 3 \n",
+ "955 4 Male 2 3 \n",
+ "\n",
+ " JobRole JobSatisfaction ... SalarySlab \\\n",
+ "161 Sales Representative 3 ... Upto 5k \n",
+ "162 Sales Representative 3 ... Upto 5k \n",
+ "802 Laboratory Technician 4 ... Upto 5k \n",
+ "803 Laboratory Technician 4 ... Upto 5k \n",
+ "953 Healthcare Representative 1 ... 5k-10k \n",
+ "955 Healthcare Representative 1 ... 5k-10k \n",
+ "\n",
+ " NumCompaniesWorked PercentSalaryHike PerformanceRating \\\n",
+ "161 0 18 3 \n",
+ "162 0 18 3 \n",
+ "802 4 17 3 \n",
+ "803 4 17 3 \n",
+ "953 4 15 3 \n",
+ "955 4 15 3 \n",
+ "\n",
+ " RelationshipSatisfaction TotalWorkingYears TrainingTimesLastYear \\\n",
+ "161 4 5 2 \n",
+ "162 4 5 2 \n",
+ "802 3 17 3 \n",
+ "803 3 17 3 \n",
+ "953 1 9 5 \n",
+ "955 1 9 5 \n",
+ "\n",
+ " YearsAtCompany YearsInCurrentRole YearsSinceLastPromotion \n",
+ "161 4 2 0 \n",
+ "162 4 2 0 \n",
+ "802 5 2 0 \n",
+ "803 5 2 0 \n",
+ "953 7 7 1 \n",
+ "955 7 7 1 \n",
+ "\n",
+ "[6 rows x 21 columns]\n"
+ ]
+ }
+ ],
+ "source": [
+ "def viewDuplicates(dfNovo):\n",
+ " duplicates = dfNovo[dfNovo.duplicated(keep=False)]\n",
+ "\n",
+ " return duplicates\n",
+ "\n",
+ "duplicatedLines = viewDuplicates(dfNovo)\n",
+ "print(duplicatedLines)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 16,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "dfNovo = dfNovo.drop_duplicates()"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Iniciando as Análises"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Satisfação dos Colaboradores com o ambiente de trabalho:"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 17,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjsAAAHHCAYAAABZbpmkAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAABRHUlEQVR4nO3deVgVZf8/8PdBOOwHBFlEEHBFFDDBBU1xQdFwS1q1RDMzRUt9sqLHJc3SNMVds3JNn3zczUdzy6USDVHcJSVNSwFFBQEFhM/vD3/M1yOo7AeH9+u6znVx7rln5jMzh8ObOffM0YiIgIiIiEiljAxdABEREVF5YtghIiIiVWPYISIiIlVj2CEiIiJVY9ghIiIiVWPYISIiIlVj2CEiIiJVY9ghIiIiVWPYISIiIlVj2KEyt2/fPmg0Guzbt69Y892/fx8ffvgh3NzcYGRkhN69e5dLfa+99hqsra3xwQcf4NatW7C1tcXt27fLZV0PW7ZsGTQaDS5dulTu6ypvGo0Gn376abHny98HR44cKfuiykH79u3Rvn17Q5dBBuLh4YHu3bs/tV9J3/Oo4jDsVCEnT57ESy+9BHd3d5iZmaFWrVro3Lkz5s6dW6LlLViwAMuWLSuz+pYsWYLp06fjpZdewvLlyzFq1KgyW3a+M2fOYN++fZg4cSK2bNkCe3t7BAcHw9bWtszXVZns27cPffr0gbOzM7RaLRwdHdGjRw9s2LDB0KURURF98cUX2LRpk6HLeCYZG7oAqhgHDx5Ehw4dULt2bQwePBjOzs64cuUKDh06hNmzZ2PEiBHFXuaCBQtQo0YNDBgwQK+9Xbt2uHv3LrRabbGW9/PPP6NWrVqIiooqdi1FVadOHcTGxqJWrVoYOXIkEhMTUbNmzXJbX2UwYcIETJo0CfXr18eQIUPg7u6OlJQUbNu2DWFhYVi1ahX69u1r6DKJnlklfc8rri+++AIvvfRSuZ31VjOGnSri888/h42NDWJiYgqcxUhOTi7TdRkZGcHMzKzY8yUnJ5f7GZb8M1rAgzpdXFzKdX2Gtm7dOkyaNAkvvfQSVq9eDRMTE2XamDFjsGPHDuTk5BiwwvKRmZkJCwsLQ5eh5/79+8jLyyv3P4hU8Ur6nkcVhx9jVREJCQlo3LhxoWHC0dFR7/nSpUvRsWNHODo6wtTUFN7e3li4cKFeHw8PD5w+fRr79++HRqOBRqNRxjYU9vn1+fPnERYWBmdnZ5iZmcHV1RWvvfYaUlNTcenSJWg0GuzduxenT59Wlpc//1dffYXWrVvD3t4e5ubm8Pf3x7p16wrdzu+//x4tWrSAhYUFqlevjnbt2mHnzp3K9I0bN+KFF16Ai4sLTE1NUbduXXz22WfIzc0tsKy1a9fC398f5ubmqFGjBt544w38888/RdjbwOnTp9GxY0eYm5vD1dUVkydPRl5eXqF9FyxYgMaNG8PU1BQuLi6IiIgoMIboSfvvScaNGwc7OzssWbJEL+jkCwkJ0RuTkJycjEGDBsHJyQlmZmbw8/PD8uXLn7q9f/31F4YNG4aGDRvC3Nwc9vb2ePnllx87PikzMxNDhgyBvb09dDod+vfvj1u3bpVo37Rv3x5NmjRBbGws2rVrBwsLC3zyyScAgM2bNyM0NLRIx3vx4sWoW7cuzM3N0aJFC/zyyy+F1l6UfZT/mv7qq68wa9Ys1K1bF6ampjhz5gwA4Ny5c3jppZdgZ2cHMzMzBAQEYMuWLXrLyMnJwcSJE1G/fn2YmZnB3t4ezz//PHbt2lVoXQ+7ffs2Ro0aBQ8PD5iamsLV1RX9+/fHjRs3Srwd8+fPR506dWBhYYEuXbrgypUrEBF89tlncHV1hbm5OXr16oWbN28+tT7gwZnctm3bwtLSEra2tujVqxfOnj371Pmys7Mxfvx4+Pv7w8bGBpaWlmjbti327t1bbrXv3LkTTZs2hZmZGby9vQt8/Pu4MTuHDx9G165dYWNjAwsLCwQFBeG3337T6/Ppp59Co9HgwoULGDBgAGxtbWFjY4OBAwciMzNT6afRaJCRkYHly5cr75EPn1X/559/8NZbb8HJyQmmpqZo3LgxlixZ8tT9WWUIVQldunQRa2trOXny5FP7Nm/eXAYMGCBRUVEyd+5c6dKliwCQefPmKX02btworq6u4uXlJStXrpSVK1fKzp07RURk7969AkD27t0rIiJZWVni6ekpLi4uMnnyZPn2229l4sSJ0rx5c7l06ZKkp6fLypUrxcvLS1xdXZXlJSYmioiIq6urDBs2TObNmyczZ86UFi1aCADZunWrXt2ffvqpAJDWrVvL9OnTZfbs2dK3b1/56KOPlD7du3eXV155RaZPny4LFiyQl19+WQDIBx98oLespUuXCgBp3ry5REVFyccffyzm5ubi4eEht27deuL+u3btmjg4OEj16tXl008/lenTp0v9+vXF19dXAMjFixeVvhMmTBAAEhwcLHPnzpXhw4dLtWrVpHnz5pKdnV2k/fc4f/zxhwCQt95664n15svMzJRGjRqJiYmJjBo1SubMmSNt27YVADJr1iy9vgBkwoQJyvO1a9eKn5+fjB8/XhYvXiyffPKJVK9eXdzd3SUjI6PAfvXx8ZG2bdvKnDlzJCIiQoyMjKRdu3aSl5dXrH0jIhIUFCTOzs7i4OAgI0aMkK+//lo2bdokIiK9e/dWjvfChQsfe7y//fZb5bUzZ84cGTlypNja2kqdOnUkKCio2Pvo4sWLAkC8vb2lTp06MnXqVImKipK//vpLTp06JTY2NuLt7S1ffvmlzJs3T9q1aycajUY2bNigLOOTTz4RjUYjgwcPlm+++UZmzJghr7/+ukydOvWJx/HOnTvSpEkTqVatmgwePFgWLlwon332mTRv3lyOHTtWou1o2rSpeHt7y8yZM2Xs2LGi1WqlVatW8sknnyj77L333hONRiMDBw58Yn0iIrt27RJjY2Np0KCBTJs2TSZOnCg1atSQ6tWr6/1+FOb69etSs2ZNGT16tCxcuFCmTZsmDRs2FBMTE2X7yqp2d3d3adCggdja2srHH38sM2fOFB8fHzEyMlLe70QKvueJiOzZs0e0Wq0EBgbKjBkzJCoqSnx9fUWr1crhw4eVfvmv8+eee0769OkjCxYskLffflsAyIcffqj0W7lypZiamkrbtm2V98iDBw+KiEhiYqK4urqKm5ubTJo0SRYuXCg9e/YUABIVFfXU41EVMOxUETt37pRq1apJtWrVJDAwUD788EPZsWOH3h+NfJmZmQXaQkJCpE6dOnptjRs31vtDkO/RX/xjx44JAFm7du0TawwKCpLGjRs/tZ7s7Gxp0qSJdOzYUWk7f/68GBkZyYsvvii5ubl6/R/+A/rwH958Q4YMEQsLC7l3756yfEdHR2nSpIncvXtX6bd161YBIOPHj3/idowcOVIA6L2hJScni42NjV7YSU5OFq1WK126dNGred68eQJAlixZIiJF33+P2rx5c7He7GbNmiUA5Pvvv1fasrOzJTAwUKysrCQtLU1pfzTsFPaaiY6OFgCyYsUKpS0/7Pj7++u99qZNmyYAZPPmzSJS9H0j8uB1A0AWLVpUoIbC6nrc8W7atKlkZWUp/RYvXiwA9F7jRd1H+X9odTqdJCcn662/U6dO4uPjo6xf5MFrtHXr1lK/fn2lzc/PT0JDQwvU/zTjx48XAHrB6eH1lGQ7HBwc5Pbt20rfyMhIASB+fn6Sk5OjtL/++uui1Wr1tq0wTZs2FUdHR0lJSVHajh8/LkZGRtK/f/8nznv//n294yQicuvWLXFyctIL9mVRu7u7uwCQ9evXK22pqalSs2ZNee6555S2R9/z8vLypH79+hISEqL3/pOZmSmenp7SuXNnpS0/7Dz6T8mLL74o9vb2em2WlpYSHh5eYJ8MGjRIatasKTdu3NBrf+2118TGxqbQ34Oqhh9jVRGdO3dGdHQ0evbsiePHj2PatGkICQlBrVq1Cpw+Nzc3V35OTU3FjRs3EBQUhD///POpH5sUxsbGBgCwY8cOvdOyRfVwPbdu3UJqairatm2Lo0ePKu2bNm1CXl4exo8fDyMj/Ze1RqNRfn54HMedO3dw48YNtG3bFpmZmTh37hwA4MiRI0hOTsawYcP0PocPDQ2Fl5cX/ve//z2x3m3btqFVq1Zo0aKF0ubg4IB+/frp9du9ezeys7MxcuRIvZoHDx4MnU6nrKek+y8tLQ0AYG1tXaT+27Ztg7OzM15//XWlzcTEBO+99x7S09Oxf//+x8778DHKyclBSkoK6tWrB1tbW73jlO+dd97R+1ht6NChMDY2xrZt2wAUfd/kMzU1xcCBA59Y19OO97vvvqs3nmbAgAHKvi/pPgoLC4ODg4Py/ObNm/j555/xyiuvKPXcuHEDKSkpCAkJwfnz55WPSm1tbXH69GmcP3++wHY9yfr16+Hn54cXX3yxwLT834XibsfLL7+sty9atmwJAHjjjTdgbGys156dnf3Ej3uvXbuGuLg4DBgwAHZ2dkq7r68vOnfurLwGHqdatWrKccrLy8PNmzdx//59BAQEFPpaK23tLi4uevsy/2PXY8eOITExsdAa4+LicP78efTt2xcpKSnKcc7IyECnTp1w4MCBAh9rv/vuu3rP27Zti5SUFOX3+HFEBOvXr0ePHj0gIsq6bty4gZCQEKSmpha6X6oahp0qpHnz5tiwYQNu3bqF33//HZGRkbhz5w5eeuklZSwBAPz2228IDg5WPkt3cHBQxkCUJOx4enpi9OjR+Pbbb1GjRg2EhIRg/vz5RV7W1q1b0apVK5iZmcHOzg4ODg5YuHCh3vwJCQkwMjKCt7f3E5d1+vRpvPjii7CxsYFOp4ODgwPeeOMNvW3766+/AAANGzYsML+Xl5cy/XH++usv1K9fv0D7o8t73Hq0Wi3q1KmjTC/p/tPpdAAe/JEvivy6Hw2LjRo10qu3MHfv3sX48ePh5uYGU1NT1KhRAw4ODrh9+3ahdT66f6ysrFCzZk1ljE9R902+WrVqFTrwtzjH+9GaTExMUKdOHb224u4jT09PvecXLlyAiGDcuHFwcHDQe0yYMAHA/10wMGnSJNy+fRsNGjSAj48PxowZgxMnThTYxkclJCSgSZMmT+xT3O2oXbu23vP88ODm5lZoe2Hjrx5eN1D471ejRo2UUPAky5cvh6+vrzKWycHBAf/73/8Kfa2VtvZ69erp/cMEAA0aNACAx45Jyw+o4eHhBY7zt99+i6ysrAK1Plpn9erVC63nUdevX8ft27exePHiAuvK/wegrC9CeRbxaqwqSKvVonnz5mjevDkaNGiAgQMHYu3atZgwYQISEhLQqVMneHl5YebMmXBzc4NWq8W2bdsQFRX12EG2TzNjxgwMGDAAmzdvxs6dO/Hee+9hypQpOHToEFxdXR873y+//IKePXuiXbt2WLBgAWrWrAkTExMsXboUq1evLlYNt2/fRlBQEHQ6HSZNmoS6devCzMwMR48exUcffVTibasIJdl/Xl5eAB7cX6m8jRgxAkuXLsXIkSMRGBgIGxsbaDQavPbaaxWyXx8+g5OvMhzvR+vKX+cHH3yAkJCQQuepV68egAeXMyckJCjH/Ntvv0VUVBQWLVqEt99+u3wLf0S1atWK1S4i5VbL999/jwEDBqB3794YM2YMHB0dUa1aNUyZMgUJCQlFrrE8a88/ztOnT0fTpk0L7WNlZVUm9eSv64033kB4eHihfXx9fZ+4jKqAYaeKCwgIAPDg1DIA/Pjjj8jKysKWLVv0/tN49EoHAAX+23kaHx8f+Pj4YOzYsTh48CDatGmDRYsWYfLkyY+dZ/369TAzM8OOHTtgamqqtC9dulSvX926dZGXl4czZ8489s1l3759SElJwYYNG9CuXTul/eLFi3r93N3dAQDx8fHo2LGj3rT4+Hhl+uO4u7sX+tFDfHz8Y9fz8BmE7OxsXLx4EcHBwXr9i7v/GjRogIYNG2Lz5s2YPXt2gTfXwuo+ceIE8vLy9P7jz/+450nbvW7dOoSHh2PGjBlK27179x57Z+rz58+jQ4cOyvP09HRcu3YNL7zwgt66irpvClPc433+/Hm9452Tk4OLFy/Cz89Pr29J9xEAZVtMTEyKtA12dnYYOHAgBg4ciPT0dLRr1w6ffvrpE8NO3bp1cerUqScut7TbURoPH9tHnTt3DjVq1IClpeVj51+3bh3q1KmDDRs26L0H5Z8ZK2v5Z+MeXtcff/wB4MFVqYWpW7cugAdnV4tynIuqsPdcBwcHWFtbIzc3t0zXpTb8GKuK2Lt3b6H/IeR/Pp5/Sjn/v4uH+6amphYIFwBgaWlZpK9ZSEtLw/379/XafHx8YGRkhKysrCfOW61aNWg0Gr1LhS9dulTgLqK9e/eGkZERJk2aVOA/9vxtKWzbsrOzsWDBAr3+AQEBcHR0xKJFi/Tq2759O86ePYvQ0NAn1vzCCy/g0KFD+P3335W269evY9WqVXr9goODodVqMWfOHL2avvvuO6SmpirrKc3+mzhxIlJSUvD2228XWAbw4JLarVu3KnUnJiZizZo1yvT79+9j7ty5sLKyQlBQ0GPXU61atQKvr7lz5xZ6iTfw4DLvh+/vs3DhQty/fx/dunUDUPR98yTFOd4ODg5YtGgRsrOzlfZly5YVeH2XZh8BD27z0L59e3z99dfKPxgPu379uvJzSkqK3jQrKyvUq1fvqcc8LCwMx48fx8aNGwtMy98Xpd2O0qhZsyaaNm2K5cuX6+3fU6dOYefOnUrgfZzCjuvhw4cRHR1dLvVevXpVb1+mpaVhxYoVaNq0KZydnQudx9/fH3Xr1sVXX32F9PT0AtMfPs7FUdh7brVq1RAWFob169cXGnJLui614ZmdKmLEiBHIzMzEiy++CC8vL2RnZ+PgwYNYs2YNPDw8lM92u3TpAq1Wix49emDIkCFIT0/HN998A0dHxwJvzv7+/li4cCEmT56MevXqwdHRscCZEODB/TSGDx+Ol19+GQ0aNMD9+/excuVK5Zf0SUJDQzFz5kx07doVffv2RXJyMubPn4969erpjV+oV68e/v3vf+Ozzz5D27Zt0adPH5iamiImJgYuLi6YMmUKWrdujerVqyM8PBzvvfceNBoNVq5cWeCPtImJCb788ksMHDgQQUFBeP3115GUlITZs2fDw8PjqV9j8eGHH2LlypXo2rUr3n//fVhaWmLx4sXKf9P5HBwcEBkZiYkTJ6Jr167o2bMn4uPjsWDBAjRv3lwZW1Ka/ffqq6/i5MmT+Pzzz3Hs2DG8/vrryh2Uf/rpJ+zZs0f5OPCdd97B119/jQEDBiA2NhYeHh5Yt24dfvvtN8yaNeuJA527d++OlStXwsbGBt7e3oiOjsbu3bthb29faP/s7Gx06tQJr7zyirLNzz//PHr27FmsffMkxTnekydPxpAhQ9CxY0e8+uqruHjxIpYuXVpgzE5p9lG++fPn4/nnn4ePjw8GDx6MOnXqICkpCdHR0fj7779x/PhxAIC3tzfat28Pf39/2NnZ4ciRI1i3bh2GDx/+xOWPGTMG69atw8svv4y33noL/v7+uHnzJrZs2YJFixbBz8+vTLajNKZPn45u3bohMDAQgwYNwt27dzF37lzY2Ng89TvXunfvjg0bNuDFF19EaGgoLl68iEWLFsHb27vQYFFaDRo0wKBBgxATEwMnJycsWbIESUlJhf4DmM/IyAjffvstunXrhsaNG2PgwIGoVasW/vnnH+zduxc6nQ4//vhjsWvx9/fH7t27MXPmTLi4uMDT0xMtW7bE1KlTsXfvXrRs2RKDBw+Gt7c3bt68iaNHj2L37t1FvveRqlXw1V9kINu3b5e33npLvLy8xMrKSrRardSrV09GjBghSUlJen23bNkivr6+YmZmJh4eHvLll1/KkiVLCtwjJjExUUJDQ8Xa2lrvEt1HL8P8888/5a233pK6deuKmZmZ2NnZSYcOHWT37t16633cpeffffed1K9fX0xNTcXLy0uWLl2qXK75qCVLlshzzz0nAJSadu3apUz/7bffpFWrVmJubi4uLi7KJfgP15tvzZo18txzz4mpqanY2dlJv3795O+//y7S/j5x4oQEBQWJmZmZ1KpVSz777DP57rvvCuxDkQeXU3t5eYmJiYk4OTnJ0KFD9e7lU9T99yR79uyRXr16iaOjoxgbG4uDg4P06NFDudQ7X1JSkgwcOFBq1KghWq1WfHx8ZOnSpQWWh0cuPb9165Yyn5WVlYSEhMi5c+fE3d1d71LZ/EvP9+/fL++8845Ur15drKyspF+/fnqXIRd134g8/nUjUrzjvWDBAvH09BRTU1MJCAiQAwcOSFBQUIHbKxRlH+Vf9jx9+vRC60pISJD+/fuLs7OzmJiYSK1ataR79+6ybt06pc/kyZOlRYsWYmtrK+bm5uLl5SWff/55obeLeFRKSooMHz5catWqJVqtVlxdXSU8PFzv0uTSbEf+7/ijt0PIP74xMTFPrXH37t3Spk0bMTc3F51OJz169JAzZ848db68vDz54osvxN3dXUxNTeW5556TrVu3Snh4uLi7u5dp7e7u7hIaGio7duwQX19f5T3o0XkLu8+OyIPbRvTp00fs7e3F1NRU3N3d5ZVXXpE9e/YoffLfy65fv15oPQ+/X5w7d07atWsn5ubmAkDvdyspKUkiIiLEzc1NTExMxNnZWTp16iSLFy9+6j6tCjQi5TiSjMhALl26hM6dO+P06dO8PT8RURXHMTukSh4eHrCyssKvv/5q6FKIiMjAOGaHVOfTTz9FjRo1cP78+XL5DJ+IiJ4t/BiLVKdOnTq4evUqOnTogE2bNuldsk5ERFUPww4RERGpGsfsEBERkaox7BAREZGqcYAyHny3yNWrV2FtbV3sr0AgIiIiwxAR3LlzBy4uLgW+2PZhDDt4cDvwR78Bl4iIiJ4NV65ceeKXSjPsAMqt0a9cuQKdTmfgaoiIiKgo0tLS4Obm9tSvOGHYwf99k6xOp2PYISIiesY8bQgKBygTERGRqjHsEBERkaox7BAREZGqMewQERGRqjHsEBERkaox7KjY1KlTodFoMHLkSKWtffv20Gg0eo93331XmZ6SkoKuXbvCxcUFpqamcHNzw/Dhw5GWlmaALSAiIio9XnquUjExMfj666/h6+tbYNrgwYMxadIk5bmFhYXys5GREXr16oXJkyfDwcEBFy5cQEREBG7evInVq1dXSO1ERERliWFHhdLT09GvXz988803mDx5coHpFhYWcHZ2LnTe6tWrY+jQocpzd3d3DBs2DNOnTy+3eomIiMoTP8ZSoYiICISGhiI4OLjQ6atWrUKNGjXQpEkTREZGIjMz87HLunr1KjZs2ICgoKDyKpeIiKhc8cyOyvzwww84evQoYmJiCp3et29fuLu7w8XFBSdOnMBHH32E+Ph4bNiwQa/f66+/js2bN+Pu3bvo0aMHvv3224oon4iIqMzxzI6KXLlyBe+//z5WrVoFMzOzQvu88847CAkJgY+PD/r164cVK1Zg48aNSEhI0OsXFRWFo0ePYvPmzUhISMDo0aMrYhOoFAobkJ5PRNCtWzdoNBps2rSpwPRly5bB19cXZmZmcHR0RERERPkXTERUQXhmR0ViY2ORnJyMZs2aKW25ubk4cOAA5s2bh6ysLFSrVk1vnpYtWwIALly4gLp16yrtzs7OcHZ2hpeXF+zs7NC2bVuMGzcONWvWrJiNoWJ50oB0AJg1a9Zjvztm5syZmDFjBqZPn46WLVsiIyMDly5dKsdqiYgqFsOOinTq1AknT57Uaxs4cCC8vLzw0UcfFQg6ABAXFwcATwwxeXl5AICsrKyyK5bKzNMGpMfFxWHGjBk4cuRIgeN869YtjB07Fj/++CM6deqktD8uNBERPYsYdlTE2toaTZo00WuztLSEvb09mjRpgoSEBKxevRovvPAC7O3tceLECYwaNQrt2rVT/rht27YNSUlJaN68OaysrHD69GmMGTMGbdq0gYeHhwG2ip7m4QHpj4adzMxM9O3bF/Pnzy/0Crxdu3YhLy8P//zzDxo1aoQ7d+6gdevWmDFjBtzc3CpqE4iIyhXDThWi1Wqxe/duzJo1CxkZGXBzc0NYWBjGjh2r9DE3N8c333yDUaNGISsrC25ubujTpw8+/vhjA1ZOj/O0AemjRo1C69at0atXr0Kn//nnn8jLy8MXX3yB2bNnw8bGBmPHjkXnzp1x4sQJaLXa8iyfiKhCMOxUBvuPlNui9038SlmHG4D9k2YU7HTsD+XHDkbWODhlTsE+xy+UfXFBAWW/zCokf0D6rl27Ch2QvmXLFvz88884duzYY5eRl5eHnJwczJkzB126dAEA/Oc//4GzszP27t2LkJCQcqufiKii8GosomfUwwPSjY2NYWxsjP3792POnDkwNjbGrl27kJCQAFtbW2U6AISFhaF9+/YA/m+slre3t7JcBwcH1KhRA5cvX67wbSIiKg88s0P0jHragPQaNWpgyJAhetN9fHwQFRWFHj16AADatGkDAIiPj4erqysA4ObNm7hx4wbc3d0rYCuIiMofww7RM+ppA9IBFDoouXbt2vD09AQANGjQAL169cL777+PxYsXQ6fTITIyEl5eXujQoUP5bwQRUQXgx1hEVdyKFSvQsmVLhIaGIigoCCYmJvjpp59gYmJi6NKIiMqERkTE0EUYWlpaGmxsbJCamgqdTlfxBZTjAOVKraoOUObxJiIqE0X9+80zO0RERKRqDDtERESkagw7REREpGoMO0RERKRqDDtERESkagw7REREpGoMO0RERKRqDDtERESkagw7REREpGoMO0RERKRqDDtERESkagw7REREpGoMO0RERKRqDDtERESkagw7REREpGoMO0RERKRqDDtERESkagw7REREpGoMO0RERKRqDDtERESkagw7REREpGoMO0RERKRqDDtERESkagw7REREpGoMO0RERKRqDDtERESkagw7REREpGoMO0RERKRqDDtERESkagw7REREpGoMO0RERKRqlSbsTJ06FRqNBiNHjlTa7t27h4iICNjb28PKygphYWFISkrSm+/y5csIDQ2FhYUFHB0dMWbMGNy/f7+CqyciIqLKqlKEnZiYGHz99dfw9fXVax81ahR+/PFHrF27Fvv378fVq1fRp08fZXpubi5CQ0ORnZ2NgwcPYvny5Vi2bBnGjx9f0ZtARERElZTBw056ejr69euHb775BtWrV1faU1NT8d1332HmzJno2LEj/P39sXTpUhw8eBCHDh0CAOzcuRNnzpzB999/j6ZNm6Jbt2747LPPMH/+fGRnZxtqk4iIiKgSMXjYiYiIQGhoKIKDg/XaY2NjkZOTo9fu5eWF2rVrIzo6GgAQHR0NHx8fODk5KX1CQkKQlpaG06dPP3adWVlZSEtL03sQERGROhkbcuU//PADjh49ipiYmALTEhMTodVqYWtrq9fu5OSExMREpc/DQSd/ev60x5kyZQomTpxYyuqJiIjoWWCwMztXrlzB+++/j1WrVsHMzKxC1x0ZGYnU1FTlceXKlQpdPxEREVUcg4Wd2NhYJCcno1mzZjA2NoaxsTH279+POXPmwNjYGE5OTsjOzsbt27f15ktKSoKzszMAwNnZucDVWfnP8/sUxtTUFDqdTu9BRERE6mSwsNOpUyecPHkScXFxyiMgIAD9+vVTfjYxMcGePXuUeeLj43H58mUEBgYCAAIDA3Hy5EkkJycrfXbt2gWdTgdvb+8K3yYiIiKqfAw2Zsfa2hpNmjTRa7O0tIS9vb3SPmjQIIwePRp2dnbQ6XQYMWIEAgMD0apVKwBAly5d4O3tjTfffBPTpk1DYmIixo4di4iICJiamlb4NhEREVHlY9AByk8TFRUFIyMjhIWFISsrCyEhIViwYIEyvVq1ati6dSuGDh2KwMBAWFpaIjw8HJMmTTJg1URERFSZaEREDF2EoaWlpcHGxgapqamGGb+z/0jFr7MyCAowdAWGweNNRFQmivr32+D32SEiIiIqTww7REREpGoMO0RERKRqDDtERESkagw7REREpGoMO0RERKRqDDtERESkagw7REREpGoMO0RERKRqDDtERESkagw7REREpGoMO0RERKRqDDtERESkagw7REREpGoMO0RERKRqDDtERESkagw7REREpGoMO0RERKRqDDtERESkagw7REREpGoMO0RERKRqDDtERESkagw7REREpGoMO0RERKRqDDtERESkagw7REREpGoMO0RERKRqDDtERESkagw7REREpGoMO0RERKRqDDtERESkagw7REREpGoMO0RERKRqDDtERESkagw7REREpGoMO0RERKRqDDtERESkagw7REREpGoMO0RERKRqDDtERESkagw7REREpGoMO0RERKRqDDtERESkagw7REREpGoMO0RERKRqDDtERESkagw7REREpGoMO0RERKRqDDtERESkagw7REREpGoMO0RERKRqDDtERESkagw7REREpGoMO0RERKRqDDtERESkagw7REREpGoMO0RERKRqDDtERESkagw7REREpGoMO0RERKRqDDtERESkagw7REREpGoMO0RERKRqDDtERESkagw7REREpGoMO0RERKRqBg07CxcuhK+vL3Q6HXQ6HQIDA7F9+3Zl+r179xAREQF7e3tYWVkhLCwMSUlJesu4fPkyQkNDYWFhAUdHR4wZMwb379+v6E0hIiKiSsqgYcfV1RVTp05FbGwsjhw5go4dO6JXr144ffo0AGDUqFH48ccfsXbtWuzfvx9Xr15Fnz59lPlzc3MRGhqK7OxsHDx4EMuXL8eyZcswfvx4Q20SERERVTIaERFDF/EwOzs7TJ8+HS+99BIcHBywevVqvPTSSwCAc+fOoVGjRoiOjkarVq2wfft2dO/eHVevXoWTkxMAYNGiRfjoo49w/fp1aLXaIq0zLS0NNjY2SE1NhU6nK7dte6z9Ryp+nZVBUIChKzAMHm8iojJR1L/flWbMTm5uLn744QdkZGQgMDAQsbGxyMnJQXBwsNLHy8sLtWvXRnR0NAAgOjoaPj4+StABgJCQEKSlpSlnh4iIiKhqMzZ0ASdPnkRgYCDu3bsHKysrbNy4Ed7e3oiLi4NWq4Wtra1efycnJyQmJgIAEhMT9YJO/vT8aY+TlZWFrKws5XlaWloZbQ0RERFVNgY/s9OwYUPExcXh8OHDGDp0KMLDw3HmzJlyXeeUKVNgY2OjPNzc3Mp1fUREpTVlyhQ0b94c1tbWcHR0RO/evREfH6/XJzExEW+++SacnZ1haWmJZs2aYf369cr0ffv2QaPRFPqIiYmp6E0iqjAGDztarRb16tWDv78/pkyZAj8/P8yePRvOzs7Izs7G7du39fonJSXB2dkZAODs7Fzg6qz85/l9ChMZGYnU1FTlceXKlbLdKCKiMrZ//35ERETg0KFD2LVrF3JyctClSxdkZGQoffr374/4+Hhs2bIFJ0+eRJ8+ffDKK6/g2LFjAIDWrVvj2rVreo+3334bnp6eCAjgmCpSL4OHnUfl5eUhKysL/v7+MDExwZ49e5Rp8fHxuHz5MgIDAwEAgYGBOHnyJJKTk5U+u3btgk6ng7e392PXYWpqqlzunv8gIqrMfvrpJwwYMACNGzeGn58fli1bhsuXLyM2Nlbpc/DgQYwYMQItWrRAnTp1MHbsWNja2ip9tFotnJ2dlYe9vT02b96MgQMHQqPRGGrTqBBlcSbvYVlZWWjatCk0Gg3i4uIqYAsqF4OGncjISBw4cACXLl3CyZMnERkZiX379qFfv36wsbHBoEGDMHr0aOzduxexsbEYOHAgAgMD0apVKwBAly5d4O3tjTfffBPHjx/Hjh07MHbsWERERMDU1NSQm0ZEVK5SU1MBPLiCNV/r1q2xZs0a3Lx5E3l5efjhhx9w7949tG/fvtBlbNmyBSkpKRg4cGBFlEzFUBZn8h724YcfwsXFpSI3oVIx6ADl5ORk9O/fH9euXYONjQ18fX2xY8cOdO7cGQAQFRUFIyMjhIWFISsrCyEhIViwYIEyf7Vq1bB161YMHToUgYGBsLS0RHh4OCZNmmSoTSIiKnd5eXkYOXIk2rRpgyZNmijt//3vf/Hqq6/C3t4exsbGsLCwwMaNG1GvXr1Cl/Pdd98hJCQErq6uFVU6FdFPP/2k93zZsmVwdHREbGws2rVrB+DBmbyFCxeiRYsWAICxY8ciKioKsbGxeO6555R5t2/fjp07d2L9+vV6N+6tSgwadr777rsnTjczM8P8+fMxf/78x/Zxd3fHtm3byro0IqJKKyIiAqdOncKvv/6q1z5u3Djcvn0bu3fvRo0aNbBp0ya88sor+OWXX+Dj46PX9++//8aOHTvw3//+tyJLpxJ60pm80NBQ2Nra4r///W+BM3lJSUkYPHgwNm3aBAsLi4ouu9Iw+KXnRERUdMOHD8fWrVtx4MABvTMyCQkJmDdvHk6dOoXGjRsDAPz8/PDLL79g/vz5WLRokd5yli5dCnt7e/Ts2bNC66fiK+mZPBHBgAED8O677yIgIACXLl0y0BYYHsMOEdEzQEQwYsQIbNy4Efv27YOnp6fe9MzMTACAkZH+UMxq1aohLy+vwLKWLl2K/v37w8TEpHwLp1Ir6Zm8uXPn4s6dO4iMjDRQ5ZUHww4R0TMgIiICq1evxubNm2Ftba3cONXGxgbm5ubw8vJCvXr1MGTIEHz11Vewt7fHpk2bsGvXLmzdulVvWT///DMuXryIt99+2xCbQsVQmjN5P//8M6KjowtcsBMQEIB+/fph+fLlFbothsSwQ0T0DFi4cCEAFLiyaunSpRgwYABMTEywbds2fPzxx+jRowfS09NRr149LF++HC+88ILePN999x1at24NLy+viiqfiqkszuTNmTMHkydPVqZdvXoVISEhWLNmDVq2bFnOW1C5lPiLQG/fvo1169YhISEBY8aMgZ2dHY4ePQonJyfUqlWrrOssV/wiUAOpql8MyeNdtfB4UwkMGzZMOZPXsGFDpT3/TF5OTg68vb1Rs2ZNvTN5Y8aMwdatWwsEXAC4dOkSPD09cezYMTRt2rQCt6b8FPXvd4nO7Jw4cQLBwcGwsbHBpUuXMHjwYNjZ2WHDhg24fPkyVqxYUeLCiYiIqrqyPJNHJTyzExwcjGbNmmHatGmwtrbG8ePHUadOHRw8eBB9+/Z95kZ888yOgVTV//x4vKsWHu+qhce7QhX173eJ7qAcExODIUOGFGivVavWE79tnIiIiKiilSjsmJqaIi0trUD7H3/8AQcHh1IXRURERFRWShR2evbsiUmTJiEnJwcAoNFocPnyZXz00UcICwsr0wKJiIiISqNEYWfGjBlIT0+Ho6Mj7t69i6CgINSrVw/W1tb4/PPPy7pGIiIiohIr0dVYNjY22LVrF3799VecOHEC6enpaNasGYKDg8u6PiIiIqJSKdVNBZ9//nk8//zzZVULERERUZkrctiZM2dOkRf63nvvlagYIiIiorJW5LATFRWl9/z69evIzMyEra0tgAd3VLawsICjoyPDDhEREVUaRR6gfPHiReXx+eefo2nTpjh79ixu3ryJmzdv4uzZs2jWrBk+++yz8qyXiIiIqFhKdDXWuHHjMHfuXL3v62jYsCGioqIwduzYMiuOiIiIqLRKFHauXbuG+/fvF2jPzc1FUlJSqYsiIiIiKislCjudOnXCkCFDcPToUaUtNjYWQ4cO5eXnREREVKmUKOwsWbIEzs7OCAgIgKmpKUxNTdGiRQs4OTnh22+/LesaiYiIiEqsRPfZcXBwwLZt2/DHH3/g3LlzAAAvLy80aNCgTIsjIiIiKq1S3VSwQYMGDDhERERUqZU47Pz999/YsmULLl++jOzsbL1pM2fOLHVhRERERGWhRGFnz5496NmzJ+rUqYNz586hSZMmuHTpEkQEzZo1K+saiYiIiEqsRAOUIyMj8cEHH+DkyZMwMzPD+vXrceXKFQQFBeHll18u6xqJiIiISqxEYefs2bPo378/AMDY2Bh3796FlZUVJk2ahC+//LJMCyQiIiIqjRKFHUtLS2WcTs2aNZGQkKBMu3HjRtlURkRERFQGSjRmp1WrVvj111/RqFEjvPDCC/jXv/6FkydPYsOGDWjVqlVZ10hERERUYiUKOzNnzkR6ejoAYOLEiUhPT8eaNWtQv359XolFRERElUqJwk6dOnWUny0tLbFo0aIyK4iIiIioLJVozA4RERHRs6LIZ3aqV68OjUZTpL43b94scUFEREREZanIYWfWrFnKzykpKZg8eTJCQkIQGBgIAIiOjsaOHTswbty4Mi+SiIiIqKSKHHbCw8OVn8PCwjBp0iQMHz5caXvvvfcwb9487N69G6NGjSrbKomIiIhKqERjdnbs2IGuXbsWaO/atSt2795d6qKIiIiIykqJwo69vT02b95coH3z5s2wt7cvdVFEREREZaVEl55PnDgRb7/9Nvbt24eWLVsCAA4fPoyffvoJ33zzTZkWSERERFQaJQo7AwYMQKNGjTBnzhxs2LABANCoUSP8+uuvSvghIiIiqgxKFHYAoGXLlli1alVZ1kJERERU5oocdtLS0qDT6ZSfnyS/HxEREZGhFeumgteuXYOjoyNsbW0LvcGgiECj0SA3N7dMiyQiIiIqqSKHnZ9//hl2dnYAgL1795ZbQURERERlqchhJygoSPnZ09MTbm5uBc7uiAiuXLlSdtURERERlVKJ7rPj6emJ69evF2i/efMmPD09S10UERERUVkpUdjJH5vzqPT0dJiZmZW6KCIiIqKyUqxLz0ePHg0A0Gg0GDduHCwsLJRpubm5OHz4MJo2bVqmBRIRERGVRrHCzrFjxwA8OLNz8uRJaLVaZZpWq4Wfnx8++OCDsq2QiIiIqBSKFXbyr8IaOHAgZs+ezfvpEBERUaVXojsoL126tKzrICIiIioXJQo7GRkZmDp1Kvbs2YPk5GTk5eXpTf/zzz/LpDgiIiKi0ipR2Hn77bexf/9+vPnmm6hZs2ahV2YRERERVQYlCjvbt2/H//73P7Rp06as6yEiIiIqUyW6z0716tWVr44gIiIiqsxKFHY+++wzjB8/HpmZmWVdDxEREVGZKtHHWDNmzEBCQgKcnJzg4eEBExMTvelHjx4tk+KIiIiISqtEYad3795lXAYRERFR+ShR2JkwYUJZ10FERERULko0ZoeIiIjoWVGiMzu5ubmIiorCf//7X1y+fBnZ2dl602/evFkmxRERERGVVonO7EycOBEzZ87Eq6++itTUVIwePRp9+vSBkZERPv300zIukYiIiKjkShR2Vq1ahW+++Qb/+te/YGxsjNdffx3ffvstxo8fj0OHDpV1jUREREQlVqKwk5iYCB8fHwCAlZUVUlNTAQDdu3fH//73v7KrjoiIiKiUShR2XF1dce3aNQBA3bp1sXPnTgBATEwMTE1Ny646IiIiolIqUdh58cUXsWfPHgDAiBEjMG7cONSvXx/9+/fHW2+9VaYFEhEREZVGia7Gmjp1qvLzq6++itq1ayM6Ohr169dHjx49yqw4IiIiotIqUdh5VGBgIAIDA8tiUURERERlqkRhZ8WKFU+c3r9//xIVQ0RERFTWShR23n//fb3nOTk5yMzMhFarhYWFRZHDzpQpU7BhwwacO3cO5ubmaN26Nb788ks0bNhQ6XPv3j3861//wg8//ICsrCyEhIRgwYIFcHJyUvpcvnwZQ4cOxd69e2FlZYXw8HBMmTIFxsZlcuKKiIiInmElGqB869YtvUd6ejri4+Px/PPP4z//+U+Rl7N//35ERETg0KFD2LVrF3JyctClSxdkZGQofUaNGoUff/wRa9euxf79+3H16lX06dNHmZ6bm4vQ0FBkZ2fj4MGDWL58OZYtW4bx48eXZNOIiIhIZTQiImW1sCNHjuCNN97AuXPnSjT/9evX4ejoiP3796Ndu3ZITU2Fg4MDVq9ejZdeegkAcO7cOTRq1AjR0dFo1aoVtm/fju7du+Pq1avK2Z5Fixbho48+wvXr16HVap+63rS0NNjY2CA1NRU6na5EtZfK/iMVv87KICjA0BUYBo931cLjXbXweFeoov79LtMvAjU2NsbVq1dLPH/+zQnt7OwAALGxscjJyUFwcLDSx8vLS7n6CwCio6Ph4+Oj97FWSEgI0tLScPr06ULXk5WVhbS0NL0HERERqVOJBrVs2bJF77mI4Nq1a5g3bx7atGlTokLy8vIwcuRItGnTBk2aNAHw4E7NWq0Wtra2en2dnJyQmJio9Hk46ORPz59WmClTpmDixIklqpOIiIieLSUKO71799Z7rtFo4ODggI4dO2LGjBklKiQiIgKnTp3Cr7/+WqL5iyMyMhKjR49WnqelpcHNza3c10tEREQVr0RhJy8vDwCUMTE2NjalKmL48OHYunUrDhw4AFdXV6Xd2dkZ2dnZuH37tt7ZnaSkJDg7Oyt9fv/9d73lJSUlKdMKY2pqyq+1ICIiqiKKPWbn9u3biIiIQI0aNeDs7Aw7Ozs4OzsjMjISmZmZxVqWiGD48OHYuHEjfv75Z3h6eupN9/f3h4mJifLVFAAQHx+Py5cvKzcxDAwMxMmTJ5GcnKz02bVrF3Q6Hby9vYu7eURERKQyxTqzc/PmTQQGBuKff/5Bv3790KhRIwDAmTNnMHfuXOzatQu//vorTpw4gUOHDuG999574vIiIiKwevVqbN68GdbW1soYGxsbG5ibm8PGxgaDBg3C6NGjYWdnB51OhxEjRiAwMBCtWrUCAHTp0gXe3t548803MW3aNCQmJmLs2LGIiIjg2RsiIiIqXtiZNGkStFotEhISCgwKnjRpErp06YI333wTO3fuxJw5c566vIULFwIA2rdvr9e+dOlSDBgwAAAQFRUFIyMjhIWF6d1UMF+1atWwdetWDB06FIGBgbC0tER4eDgmTZpUnE0jIiIilSpW2Nm0aRO+/vrrAkEHeDA+Ztq0aXjhhRcwYcIEhIeHP3V5RbnFj5mZGebPn4/58+c/to+7uzu2bdv21GURERFR1VOsMTvXrl1D48aNHzu9SZMmMDIywoQJE0pdGBEREVFZKFbYqVGjBi5duvTY6RcvXoSjo2NpayIiIiIqM8UKOyEhIfj3v/+N7OzsAtOysrIwbtw4dO3atcyKIyIiIiqtYg9QDggIQP369REREQEvLy+ICM6ePYsFCxYgKysLK1asKK9aiYiIiIqtWGHH1dUV0dHRGDZsGCIjI5UBxhqNBp07d8a8efNQu3btcimUiIiIqCSKfQdlT09PbN++Hbdu3cL58+cBAPXq1VO+vJOIiIioMinR10UAQPXq1dGiRYuyrIWIiIiozBX76yKIiIiIniUMO0RERKRqDDtERESkagw7REREpGoMO0RERKRqDDtERESkagw7REREpGoMO0RERKRqDDtERESkagw7REREpGoMO0RERKRqDDtERESkagw7REREpGoMO0RERKRqDDtERESkagw7REREpGoMO0RERKRqDDtERESkagw7REREpGoMO0RERKRqDDtERESkagw7REREpGoMO0RERKRqDDtERESkagw7REREpGoMO0RERKRqDDtERESkagw7REREpGoMO0RERKRqDDtERESkagw7REREpGoMO0RERKRqDDtERESkagw7REREpGoMO0RERKRqDDtERESkagw7REREpGoMO0RERKRqDDtERESkagw7REREpGoMO0RERKRqDDtERESkagw7REREpGoMO0RERKRqDDtERESkagw7REREpGoMO0RERKRqDDtERESkagw7REREpGoMO0RERKRqDDtERESkagw7REREpGoMO0RERKRqDDtERESkagw7REREpGoMO0RERKRqDDtERESkagw7REREpGoMO0RERKRqDDtERESkagYNOwcOHECPHj3g4uICjUaDTZs26U0XEYwfPx41a9aEubk5goODcf78eb0+N2/eRL9+/aDT6WBra4tBgwYhPT29AreCiIiIKjODhp2MjAz4+flh/vz5hU6fNm0a5syZg0WLFuHw4cOwtLRESEgI7t27p/Tp168fTp8+jV27dmHr1q04cOAA3nnnnYraBCIiIqrkjA258m7duqFbt26FThMRzJo1C2PHjkWvXr0AACtWrICTkxM2bdqE1157DWfPnsVPP/2EmJgYBAQEAADmzp2LF154AV999RVcXFwqbFuIiIiocqq0Y3YuXryIxMREBAcHK202NjZo2bIloqOjAQDR0dGwtbVVgg4ABAcHw8jICIcPH37ssrOyspCWlqb3ICIiInWqtGEnMTERAODk5KTX7uTkpExLTEyEo6Oj3nRjY2PY2dkpfQozZcoU2NjYKA83N7cyrp6IiIgqi0obdspTZGQkUlNTlceVK1cMXRIRERGVk0obdpydnQEASUlJeu1JSUnKNGdnZyQnJ+tNv3//Pm7evKn0KYypqSl0Op3eg4iIiNSp0oYdT09PODs7Y8+ePUpbWloaDh8+jMDAQABAYGAgbt++jdjYWKXPzz//jLy8PLRs2bLCayYiIqLKx6BXY6Wnp+PChQvK84sXLyIuLg52dnaoXbs2Ro4cicmTJ6N+/frw9PTEuHHj4OLigt69ewMAGjVqhK5du2Lw4MFYtGgRcnJyMHz4cLz22mu8EouIiIgAGDjsHDlyBB06dFCejx49GgAQHh6OZcuW4cMPP0RGRgbeeecd3L59G88//zx++uknmJmZKfOsWrUKw4cPR6dOnWBkZISwsDDMmTOnwreFiIiIKieNiIihizC0tLQ02NjYIDU11TDjd/Yfqfh1VgZBAU/vo0Y83lULj3fVwuNdoYr697vSjtkhIiIiKgsMO0RERKRqDDtERESkagw7REREpGoMO0RERKRqDDtERESkagw7REREpGoMO0RERKRqDDtERESkagw7REREpGoMO0RERKRqDDtERESkagw7REREpGoMO0RERKRqDDtERESkagw7REREpGoMO0RERKRqDDtERESkagw7REREpGoMO0RERKRqDDtERESkagw7REREpGoMO0RERKRqDDtERESkagw7REREpGoMO0RERKRqDDtERESkagw7REREpGoMO0RERKRqDDtERESkagw7REREpGoMO0RERKRqDDtERESkagw7REREpGoMO0RERKRqDDtERESkagw7REREpGoMO0RERKRqDDtERESkagw7REREpGoMO0RERKRqDDtERESkagw7REREpGoMO0RERKRqDDtERESkagw7REREpGoMO0RERKRqDDtERESkagw7REREpGoMO0RERKRqDDtERESkagw7REREpGoMO0RERKRqDDtERESkagw7REREpGoMO0RERKRqDDtERESkagw7REREpGoMO0RERKRqDDtERESkagw7REREpGoMO0RERKRqDDtERESkagw7REREpGoMO0RERKRqDDtERESkaqoJO/Pnz4eHhwfMzMzQsmVL/P7774YuiYiIiCoBVYSdNWvWYPTo0ZgwYQKOHj0KPz8/hISEIDk52dClERERkYGpIuzMnDkTgwcPxsCBA+Ht7Y1FixbBwsICS5YsMXRpREREZGDPfNjJzs5GbGwsgoODlTYjIyMEBwcjOjragJURERFRZWBs6AJK68aNG8jNzYWTk5Neu5OTE86dO1foPFlZWcjKylKep6amAgDS0tLKr9AnyUg3zHoNzVD729B4vKsWHu+qhce7glf7YL0i8sR+z3zYKYkpU6Zg4sSJBdrd3NwMUA0RERGVxp07d2BjY/PY6c982KlRowaqVauGpKQkvfakpCQ4OzsXOk9kZCRGjx6tPM/Ly8PNmzdhb28PjUZTrvVWJmlpaXBzc8OVK1eg0+kMXQ6VMx7vqoXHu2qpqsdbRHDnzh24uLg8sd8zH3a0Wi38/f2xZ88e9O7dG8CD8LJnzx4MHz680HlMTU1hamqq12Zra1vOlVZeOp2uSv1yVHU83lULj3fVUhWP95PO6OR75sMOAIwePRrh4eEICAhAixYtMGvWLGRkZGDgwIGGLo2IiIgMTBVh59VXX8X169cxfvx4JCYmomnTpvjpp58KDFomIiKiqkcVYQcAhg8f/tiPrahwpqammDBhQoGP9EideLyrFh7vqoXH+8k08rTrtYiIiIieYc/8TQWJiIiInoRhh4iIiFSNYYeIiIhUjWGHiIiIVI1hp4pZuHAhfH19lRtPBQYGYvv27YYuiyrI1KlTodFoMHLkSEOXQuVgypQpaN68OaytreHo6IjevXsjPj7e0GVROTpw4AB69OgBFxcXaDQabNq0ydAlVUoMO1WMq6srpk6ditjYWBw5cgQdO3ZEr169cPr0aUOXRuUsJiYGX3/9NXx9fQ1dCpWT/fv3IyIiAocOHcKuXbuQk5ODLl26ICMjw9ClUTnJyMiAn58f5s+fb+hSKjVeek6ws7PD9OnTMWjQIEOXQuUkPT0dzZo1w4IFCzB58mQ0bdoUs2bNMnRZVM6uX78OR0dH7N+/H+3atTN0OVTONBoNNm7cqHx1Ev0fntmpwnJzc/HDDz8gIyMDgYGBhi6HylFERARCQ0MRHBxs6FKoAqWmpgJ48A8NUVWmmjsoU9GdPHkSgYGBuHfvHqysrLBx40Z4e3sbuiwqJz/88AOOHj2KmJgYQ5dCFSgvLw8jR45EmzZt0KRJE0OXQ2RQDDtVUMOGDREXF4fU1FSsW7cO4eHh2L9/PwOPCl25cgXvv/8+du3aBTMzM0OXQxUoIiICp06dwq+//mroUogMjmN2CMHBwahbty6+/vprQ5dCZWzTpk148cUXUa1aNaUtNzcXGo0GRkZGyMrK0ptG6jB8+HBs3rwZBw4cgKenp6HLoQrCMTuPxzM7hLy8PGRlZRm6DCoHnTp1wsmTJ/XaBg4cCC8vL3z00UcMOiojIhgxYgQ2btyIffv2MegQ/X8MO1VMZGQkunXrhtq1a+POnTtYvXo19u3bhx07dhi6NCoH1tbWBcZrWFpawt7enuM4VCgiIgKrV6/G5s2bYW1tjcTERACAjY0NzM3NDVwdlYf09HRcuHBBeX7x4kXExcXBzs4OtWvXNmBllQvDThWTnJyM/v3749q1a7CxsYGvry927NiBzp07G7o0IiqlhQsXAgDat2+v17506VIMGDCg4guicnfkyBF06NBBeT569GgAQHh4OJYtW2agqiofjtkhIiIiVeN9doiIiEjVGHaIiIhI1Rh2iIiISNUYdoiIiEjVGHaIiIhI1Rh2iIiISNUYdoiIiEjVGHaIVMjDwwOzZs0qUt/MzEyEhYVBp9NBo9Hg9u3bZVLDBx98AEdHR2zatAljx47F2rVry2S5D7t06RI0Gg3i4uLKfNkVUcuAAQMq3fcYFee1Q/SsYNghMpDr169j6NChqF27NkxNTeHs7IyQkBD89ttvRV7GsmXLYGtrW6A9JiYG77zzTpGWsXz5cvzyyy84ePCgcmftsrB79278+OOPmD17Nnbu3IkuXbqUyXLLg4hg8eLFaNmyJaysrGBra4uAgADMmjULmZmZhi6PiEqJXxdBZCBhYWHIzs7G8uXLUadOHSQlJWHPnj1ISUkp9bIdHByK3DchIQGNGjUq8+/Kyj/DsXfv3jJdbnl48803sWHDBowdOxbz5s2Dg4MDjh8/jlmzZsHDw6PSnX15EhFBbm4ujI0N8/aenZ0NrVZrkHUTPZYQUYW7deuWAJB9+/Y9sd+MGTOkSZMmYmFhIa6urjJ06FC5c+eOiIjs3btXAOg9JkyYICIi7u7uEhUVJSIieXl5MmHCBHFzcxOtVis1a9aUESNGiIhIUFCQ3vxBQUEiIrJixQrx9/cXKysrcXJyktdff12SkpL0ajt16pSEhoaKtbW1WFlZyfPPPy8XLlwQEZHff/9dgoODxd7eXnQ6nbRr105iY2P15v/rr7+kZ8+eYmlpKdbW1vLyyy9LYmLiE/fH4cOHpWnTpmJqair+/v6yYcMGASDHjh1T+uzbt0+aN28uWq1WnJ2d5aOPPpKcnJzHLnPNmjUCQDZt2lRgWl5enty+fVtERHJzc2XixIlSq1Yt0Wq14ufnJ9u3b1f6Xrx4Ua+W+/fvy1tvvSUeHh5iZmYmDRo0kFmzZuktPzw8XHr16iWffvqp1KhRQ6ytrWXIkCGSlZWl9Ll3756MGDFCHBwcxNTUVNq0aSO///67Mj3/dbBt2zZp1qyZmJiYyN69e+XChQvSs2dPcXR0FEtLSwkICJBdu3bprT8pKUm6d+8uZmZm4uHhId9//73ea0fk6cdpwoQJ4ufnJ9988414eHiIRqN57L4mMhSGHSIDyMnJESsrKxk5cqTcu3fvsf2ioqLk559/losXL8qePXukYcOGMnToUBERycrKklmzZolOp5Nr167JtWvXlCD08B+stWvXik6nk23btslff/0lhw8flsWLF4uISEpKigwePFgCAwPl2rVrkpKSIiIi3333nWzbtk0SEhIkOjpaAgMDpVu3bkpdf//9t9jZ2UmfPn0kJiZG4uPjZcmSJXLu3DkREdmzZ4+sXLlSzp49K2fOnJFBgwaJk5OTpKWliciD4NC0aVN5/vnn5ciRI3Lo0CHx9/dXwlZh7ty5Iw4ODtK3b185deqU/Pjjj1KnTh29gPH333+LhYWFDBs2TM6ePSsbN26UGjVqKCGwMD179pSGDRs+/mD9fzNnzhSdTif/+c9/5Ny5c/Lhhx+KiYmJ/PHHHyJSMOxkZ2fL+PHjJSYmRv7880/5/vvvxcLCQtasWaMsMzw8XKysrOTVV1+VU6dOydatW8XBwUE++eQTpc97770nLi4usm3bNjl9+rSEh4dL9erVlWOVH3Z8fX1l586dcuHCBUlJSZG4uDhZtGiRnDx5Uv744w8ZO3asmJmZyV9//aUsu1u3buLn5yfR0dFy5MgRad26tZibmyuvnaIcpwkTJoilpaV07dpVjh49KsePH3/qviSqaAw7RAaybt06qV69upiZmUnr1q0lMjLyqX8o1q5dK/b29srzpUuXio2NTYF+D4edGTNmSIMGDSQ7O7vQZb7//vtPDBkiIjExMQJACVORkZHi6en52GU+Kjc3V6ytreXHH38UEZGdO3dKtWrV5PLly0qf06dPCwC9sxYP+/rrr8Xe3l7u3r2rtC1cuFAvYHzyySfSsGFDycvLU/rMnz9frKysJDc3t9DlNmrUSHr27PnUbXBxcZHPP/9cr6158+YybNgwESkYdgoTEREhYWFhyvPw8HCxs7OTjIwMvW3Krzc9PV1MTExk1apVyvTs7GxxcXGRadOmicj/hZ3Czkw9qnHjxjJ37lwREYmPjy+wv8+ePSsAlNdOUY7ThAkTxMTERJKTk5+6fiJD4QBlIgMJCwvD1atXsWXLFnTt2hX79u1Ds2bNsGzZMqXP7t270alTJ9SqVQvW1tZ48803kZKSUqxBsy+//DLu3r2LOnXqYPDgwdi4cSPu37//xHliY2PRo0cP1K5dG9bW1ggKCgIAXL58GcCD8Tht27aFiYlJofMnJSVh8ODBqF+/PmxsbKDT6ZCenq7Mf/bsWbi5ucHNzU2Zx9vbG7a2tjh79myhyzx79ix8fX1hZmamtAUGBhboExgYCI1Go7S1adMG6enp+Pvvvwtdrog8cV8AQFpaGq5evYo2bdrotbdp0+ax9QLA/Pnz4e/vDwcHB1hZWWHx4sXKPsjn5+cHCwsLvW1KT0/HlStXkJCQgJycHL31mpiYoEWLFgXWGxAQoPc8PT0dH3zwARo1agRbW1tYWVnh7NmzesfA2NgY/v7+yjxeXl56A96Lepzc3d2LNU6MqKIx7BAZkJmZGTp37oxx48bh4MGDGDBgACZMmADgwaXM3bt3h6+vL9avX4/Y2FjMnz8fwINBoEXl5uaG+Ph4LFiwAObm5hg2bBjatWuHnJycQvtnZGQgJCQEOp0Oq1atQkxMDDZu3Ki3XnNz8yeuMzw8HHFxcZg9ezYOHjyIuLg42NvbF6vuitKgQQOcO3euzJf7ww8/4IMPPsCgQYOwc+dOxMXFYeDAgeW2DywtLfWef/DBB9i4cSO++OIL/PLLL4iLi4OPj0+5rP/RdRNVNgw7RJWIt7c3MjIyADw4u5KXl4cZM2agVatWaNCgAa5evarXX6vVIjc396nLNTc3R48ePTBnzhzs27cP0dHROHnyZKF9z507h5SUFEydOhVt27aFl5cXkpOT9fr4+vril19+eWxg+u233/Dee+/hhRdeQOPGjWFqaoobN24o0xs1aoQrV67gypUrStuZM2dw+/ZteHt7F7rMRo0a4cSJE7h3757SdujQoQJ9oqOj9c7W/Pbbb7C2toarq2uhy+3bty/++OMPbN68ucA0EUFqaip0Oh1cXFwK3Bbgt99+e2y9v/32G1q3bo1hw4bhueeeQ7169ZCQkFCg3/Hjx3H37l29bbKysoKbmxvq1q0LrVart96cnBzExMQ8dr0Pr3/AgAF48cUX4ePjA2dnZ1y6dEmZ7uXlhfv37yM2NlZpi4+P17vPUkmOE1FlxLBDZAApKSno2LEjvv/+e5w4cQIXL17E2rVrMW3aNPTq1QsAUK9ePeTk5GDu3Ln4888/sXLlSixatEhvOR4eHkhPT8eePXtw48aNQj/eWrZsGb777jucOnUKf/75J77//nuYm5vD3d290Npq164NrVarrHfLli347LPP9PoMHz4caWlpeO2113DkyBGcP38eK1euRHx8PACgfv36WLlyJc6ePYvDhw+jX79+emeDgoOD4ePjg379+uHo0aP4/fff0b9/fwQFBRX4OCZf3759odFoMHjwYJw5cwbbtm3DV199pddn2LBhuHLlCkaMGIFz585h8+bNmDBhAkaPHg0jo8Lf7l555RW8+uqreP311/HFF1/gyJEj+Ouvv7B161YEBwcrl86PGTMGX375JdasWYP4+Hh8/PHHiIuLw/vvv1/ocuvXr48jR45gx44d+OOPPzBu3DjExMQU6JednY1BgwYp2zRhwgQMHz4cRkZGsLS0xNChQzFmzBj89NNPOHPmDAYPHozMzEwMGjSo0PU+vP4NGzYgLi4Ox48fR9++fZGXl6dMb9iwIbp27YohQ4bg8OHDiI2Nxdtvv13q40RUKRl4zBBRlXTv3j35+OOPpVmzZmJjYyMWFhbSsGFDGTt2rGRmZir9Zs6cKTVr1hRzc3MJCQmRFStWCAC5deuW0ufdd98Ve3v7x156vnHjRmnZsqXodDqxtLSUVq1aye7du5X5CxugvHr1avHw8BBTU1MJDAyULVu2FBh8e/z4cenSpYty2Xrbtm0lISFBRESOHj0qAQEBYmZmJvXr15e1a9cW+5LmwkRHR4ufn59otVpp2rSprF+/vtSXnos8GEC9cOFCad68uVhYWIhOpxN/f3+ZPXu2cjxyc3Pl008/lVq1aomJiclTLz2/d++eDBgwQGxsbMTW1laGDh0qH3/8sfj5+Snz5F96Pn78eLG3txcrKysZPHiw3hV6d+/elREjRkiNGjWeeOn5w6+J/Ho6dOgg5ubm4ubmJvPmzZOgoCB5//33lT7Xrl2T0NBQMTU1ldq1a8uKFStKfOk5UWWmESnC6DwiosdIT09Hhw4dcPDgwccOWCYiMiR+jEVEJXbp0iUkJibi+vXrOHXqlKHLISIqFMMOEZXYsmXL0LhxYzg7O6NBgwaGLoeIqFD8GIuIiIhUjWd2iIiISNUYdoiIiEjVGHaIiIhI1Rh2iIiISNUYdoiIiEjVGHaIiIhI1Rh2iIiISNUYdoiIiEjVGHaIiIhI1f4f8Qyc3AoPSp4AAAAASUVORK5CYII=",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "satisfactionRate = dfNovo['EnvironmentSatisfaction'].value_counts()\n",
+ "\n",
+ "#criando o grafico\n",
+ "barras = satisfactionRate.plot.bar(color='pink')\n",
+ "\n",
+ "#configurações\n",
+ "plt.xlabel('Satisfação do Colaborador')\n",
+ "plt.xticks(rotation=0)\n",
+ "plt.ylabel('Quantidade')\n",
+ "plt.title('Satisfação dos Colaboradores com o ambiente')\n",
+ "\n",
+ "# Adicionar rótulos nos graficos\n",
+ "for i, v in enumerate(satisfactionRate):\n",
+ " barras.text(i, v + 0.01, f'{v}', color='black', ha='center')\n",
+ "\n",
+ "plt.show()"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Nota-se que mais da metade dos colaboradores dessa empresa estão satisfeitos com seu ambiente de trabalho"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 18,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "EnvironmentSatisfaction\n",
+ "3 30.816327\n",
+ "4 30.340136\n",
+ "2 19.523810\n",
+ "1 19.319728\n",
+ "Name: count, dtype: float64"
+ ]
+ },
+ "execution_count": 18,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "totalColab = dfNovo['EmpID'].value_counts().sum()\n",
+ "satisfactionRate.sum() \n",
+ "satisfactRatePerc = (satisfactionRate / totalColab) * 100\n",
+ "satisfactRatePerc"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "### Satisfação dos colaboradores com seus empregos"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 19,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjsAAAHHCAYAAABZbpmkAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAABJZklEQVR4nO3deVwW9f7//yeoLMomyOK+l7selxIrNUVxyaVIszyupWZgmafNc9yXrx475lJudUqt9GiaW1buipmoiLnhclzTjgJugGACyvz+8Mf18RJUhAsuHB73243bjes972vmNTOXl09m3jPjYBiGIQAAAJNytHcBAAAAeYmwAwAATI2wAwAATI2wAwAATI2wAwAATI2wAwAATI2wAwAATI2wAwAATI2wAwAATI2wgzy3bds2OTg4aNu2bY/0vlu3bumDDz5Q+fLl5ejoqK5du+ZJfT169JC7u7vee+89Xbt2TV5eXoqPj8+TZd1twYIFcnBw0NmzZ/N8WXnNwcFBY8aMeeT3ZWyDvXv32r6oPNCyZUu1bNnS3mUgn40ZM0YODg66fPmyzeZ572cp43ty+fLlNlsG/g9hpxA7dOiQXn75ZVWsWFEuLi4qW7as2rRpo08//TRH85s9e7YWLFhgs/q++uorffzxx3r55Ze1cOFCvfvuuzabd4YjR45o27ZtGjt2rNasWSMfHx8FBQXJy8vL5ssqSLZt26aXXnpJAQEBcnJykp+fnzp16qQVK1bYuzQg21q2bCkHB4eH/uQkiMNcitq7ANjHzp079fzzz6tChQoaMGCAAgICdP78ee3atUszZszQkCFDHnmes2fPVqlSpdS3b1+r9ubNm+vPP/+Uk5PTI81vy5YtKlu2rKZNm/bItWRXlSpVFBUVpbJly2ro0KGKiYlR6dKl82x5BcHo0aM1btw4Va9eXYMGDVLFihV15coV/fTTTwoJCdGiRYv02muv2btM4KH+8Y9/6I033rC8joyM1MyZM/X3v/9dNWvWtLTXq1fPHuWhACHsFFITJ06Up6enIiMjMx3FiIuLs+myHB0d5eLi8sjvi4uLy/MjLBlHtKQ7dZYpUyZPl2dvy5cv17hx4/Tyyy9r8eLFKlasmGXa+++/r/Xr1ystLc2OFeaNGzduqHjx4vYuw8qtW7eUnp7+yH8E4P+0adPG6rWLi4tmzpypNm3aPPB0Y3JyskqUKJHH1aEg4TRWIXXq1CnVrl07yzDh5+dn9Xr+/Plq1aqV/Pz85OzsrFq1amnOnDlWfSpVqqTo6GiFh4dbDh1nfNlkNWbnxIkTCgkJUUBAgFxcXFSuXDn16NFDCQkJOnv2rBwcHLR161ZFR0db5pfx/n/9619q1qyZfHx85OrqqkaNGt33PPe3336rp556SsWLF1fJkiXVvHlzbdiwwTJ95cqV6tChg8qUKSNnZ2dVrVpV48eP1+3btzPNa9myZWrUqJFcXV1VqlQp/fWvf9X//ve/bGxtKTo6Wq1atZKrq6vKlSunCRMmKD09Pcu+s2fPVu3ateXs7KwyZcooNDQ00xiiB22/Bxk5cqS8vb311VdfWQWdDMHBwXrhhRcsr+Pi4vT666/L399fLi4uql+/vhYuXPjQ9f3999/11ltv6cknn5Srq6t8fHzUrVu3+45PunHjhgYNGiQfHx95eHiod+/eunbtWo62TcuWLVWnTh1FRUWpefPmKl68uP7+979LklavXq2OHTtma39//vnnqlq1qlxdXfXUU0/pl19+ybL27GyjjM/0v/71L02fPl1Vq1aVs7Ozjhw5Ikk6duyYXn75ZXl7e8vFxUWNGzfWmjVrrOaRlpamsWPHqnr16nJxcZGPj4+effZZbdy4Mcu67hYfH693331XlSpVkrOzs8qVK6fevXtbjUF51PWYNWuWqlSpouLFi6tt27Y6f/68DMPQ+PHjVa5cObm6uqpLly66evXqQ+uT7hzJfe6551SiRAl5eXmpS5cuOnr0aLbe+yAZ422OHDmi1157TSVLltSzzz4rSTp48KD69u2rKlWqyMXFRQEBAerfv7+uXLmS5bwuX76s7t27y8PDQz4+PnrnnXd08+ZNqz7Z+b58kPT0dE2cOFHlypWTi4uLWrdurZMnT2bql5vvo8KIIzuFVMWKFRUREaHDhw+rTp06D+w7Z84c1a5dW507d1bRokX1ww8/6K233lJ6erpCQ0MlSdOnT9eQIUPk5uamf/zjH5Ikf3//LOeXmpqq4OBgpaSkaMiQIQoICND//vc/rV27VvHx8fL19dU333yjiRMnKikpSZMmTZIky2HpGTNmqHPnzurZs6dSU1O1ZMkSdevWTWvXrlXHjh0tyxk7dqzGjBmjZs2aady4cXJyctLu3bu1ZcsWtW3bVtKdcUHu7u4aNmyYSpQooa1bt2rUqFFKTEzUxx9/bJnXggUL1K9fPzVp0kSTJk1SbGysZsyYoV9//VW//fbbA49AxcTE6Pnnn9etW7f00UcfqUSJEvr888/l6uqaqe+YMWM0duxYBQUFafDgwTp+/LjmzJmjyMhI/frrrypWrNhDt5+np2eWdZw4cULHjh1T//795e7uft96M/z5559q2bKlTp48qbCwMFWuXFnLli1T3759FR8fr3feeee+742MjNTOnTvVo0cPlStXTmfPntWcOXPUsmVLHTlyJNNRlrCwMHl5eWnMmDGWdf79998tQTm72ybDlStX1L59e/Xo0UN//etfLZ/FBQsWyM3NTcOGDZObm5u2bNmS5f7+8ssvNWjQIDVr1kxDhw7V6dOn1blzZ3l7e6t8+fI53kbz58/XzZs3NXDgQDk7O8vb21vR0dF65plnVLZsWcvn47vvvlPXrl31/fff68UXX7Ss/6RJk/TGG2/oqaeeUmJiovbu3at9+/ZlOsJxt6SkJD333HM6evSo+vfvr4YNG+ry5ctas2aN/vjjD5UqVeqR12PRokVKTU3VkCFDdPXqVU2ZMkXdu3dXq1attG3bNn344Yc6efKkPv30U7333nv66quv7lufJG3atEnt27dXlSpVNGbMGP3555/69NNP9cwzz2jfvn2qVKnSA9+fHd26dVP16tX1//7f/5NhGJKkjRs36vTp0+rXr58CAgIUHR2tzz//XNHR0dq1a5fls5ehe/fuqlSpkiZNmqRdu3Zp5syZunbtmr7++mtLn+x8Xz7I5MmT5ejoqPfee08JCQmaMmWKevbsqd27d1v65Ob7qNAyUCht2LDBKFKkiFGkSBEjMDDQ+OCDD4z169cbqampmfreuHEjU1twcLBRpUoVq7batWsbLVq0yNR369athiRj69athmEYxm+//WZIMpYtW/bAGlu0aGHUrl37ofWkpqYaderUMVq1amVpO3HihOHo6Gi8+OKLxu3bt636p6enW35PTk7ONP9BgwYZxYsXN27evGmZv5+fn1GnTh3jzz//tPRbu3atIckYNWrUA9dj6NChhiRj9+7dlra4uDjD09PTkGScOXPG0ubk5GS0bdvWqubPPvvMkGR89dVXhmFkf/vda/Xq1YYkY9q0adnqP336dEOS8e2331raUlNTjcDAQMPNzc1ITEy0tEsyRo8ebXmd1WcmIiLCkGR8/fXXlrb58+cbkoxGjRpZffamTJliSDJWr15tGEb2t41h3PncSDLmzp2bqYas6rrf/m7QoIGRkpJi6ff5558bkqw+49ndRmfOnDEkGR4eHkZcXJzV8lu3bm3UrVvXsnzDuPMZbdasmVG9enVLW/369Y2OHTtmqv9hRo0aZUgyVqxYkWlaxr+FR10PX19fIz4+3tJ3+PDhhiSjfv36RlpamqX91VdfNZycnKzWLSsNGjQw/Pz8jCtXrljaDhw4YDg6Ohq9e/fO9rouW7bM6rvGMAxj9OjRhiTj1VdfzdQ/q8/Df/7zH0OSsX379kzz6Ny5s1Xft956y5BkHDhw4IHzzOr7skWLFlafpYzvyZo1a1p97mbMmGFIMg4dOmQYRu6/jworTmMVUm3atFFERIQ6d+6sAwcOaMqUKQoODlbZsmUzHT6/+whEQkKCLl++rBYtWuj06dMPPW2SlYwjD+vXr9eNGzce+f1313Pt2jUlJCToueee0759+yztq1atUnp6ukaNGiVHR+uP+d1/rd19hOH69eu6fPmynnvuOd24cUPHjh2TJO3du1dxcXF66623rMYedezYUTVq1NCPP/74wHp/+uknNW3aVE899ZSlzdfXVz179rTqt2nTJqWmpmro0KFWNQ8YMEAeHh6W5eR0+yUmJkpSto7qZNQdEBCgV1991dJWrFgxvf3220pKSlJ4ePh933v3PkpLS9OVK1dUrVo1eXl5We2nDAMHDrQ6MjN48GAVLVpUP/30k6Tsb5sMzs7O6tev3wPretj+fvPNN63G0/Tt2zfTUbNH3UYhISHy9fW1vL569aq2bNmi7t27W+q5fPmyrly5ouDgYJ04ccJyasLLy0vR0dE6ceJEpvV6kO+//17169e3HCG6W8a/hUddj27dullti6efflqS9Ne//lVFixa1ak9NTX3g6ZWLFy9q//796tu3r7y9vS3t9erVU5s2bSyfgdx68803M7Xd/Xm4efOmLl++rKZNm0pSlp/Te4/MZFzIcXeNuf2+7Nevn9Xn7rnnnpMknT59WlLuv48KK8JOIdakSROtWLFC165d0549ezR8+HBdv35dL7/8smUsgST9+uuvCgoKspxL9/X1tYyByEnYqVy5soYNG6Z///vfKlWqlIKDgzVr1qxsz2vt2rVq2rSpXFxc5O3tLV9fX82ZM8fq/adOnZKjo6Nq1ar1wHlFR0frxRdflKenpzw8POTr66u//vWvVuv2+++/S5KefPLJTO+vUaOGZfr9/P7776pevXqm9nvnd7/lODk5qUqVKpbpOd1+Hh4eku78J58dGXXfGxYzTic+aL3//PNPjRo1SuXLl5ezs7NKlSolX19fxcfHZ1nnvdvHzc1NpUuXtozxye62yVC2bNksB/4+yv6+t6ZixYqpSpUqVm2Puo0qV65s9frkyZMyDEMjR46Ur6+v1c/o0aMl/d8FA+PGjVN8fLyeeOIJ1a1bV++//74OHjyYaR3vderUqYeeqn7U9ahQoYLV64zgc/cpvrvbsxp/dfeypaz/fdWsWVOXL19WcnLyA+vPjnu3vXQnbL7zzjvy9/eXq6urfH19Lf2y8zmtWrWqHB0drcai5fb78t5tW7JkSUn/tw1z+31UWDFmB3JyclKTJk3UpEkTPfHEE+rXr5+WLVum0aNH69SpU2rdurVq1KihTz75ROXLl5eTk5N++uknTZs27b6DbB9m6tSp6tu3r1avXq0NGzbo7bfftpwHL1eu3H3f98svv6hz585q3ry5Zs+erdKlS6tYsWKaP3++Fi9e/Eg1xMfHq0WLFvLw8NC4ceNUtWpVubi4aN++ffrwww9zvG75ISfbr0aNGpLu3F8prw0ZMkTz58/X0KFDFRgYKE9PTzk4OKhHjx75sl2zGg9VEPb3vXVlLPO9995TcHBwlu+pVq2apDu3cDh16pRln//73//WtGnTNHfuXKvLr/NDkSJFHqnd+P/HyNhTVp+J7t27a+fOnXr//ffVoEEDubm5KT09Xe3atcvW5+HeMT22+L4syNvwcUbYgZXGjRtLunNoWZJ++OEHpaSkaM2aNVZ/cWzdujXTe+/9h/8wdevWVd26dTVixAjt3LlTzzzzjObOnasJEybc9z3ff/+9XFxctH79ejk7O1va58+fb9WvatWqSk9P15EjR9SgQYMs57Vt2zZduXJFK1asUPPmzS3tZ86csepXsWJFSdLx48fVqlUrq2nHjx+3TL+fihUrZnnq4fjx4/ddzt1HEFJTU3XmzBkFBQVZ9X/U7ffEE0/oySef1OrVqzVjxgy5ubk9tO6DBw8qPT3d6i/+jNM9D1rv5cuXq0+fPpo6daql7ebNm/e9M/WJEyf0/PPPW14nJSXp4sWL6tChg9WysrttsvKo+/vEiRNW+zstLU1nzpxR/fr1rfrmdBtJsqxLsWLFsrUO3t7e6tevn/r166ekpCQ1b95cY8aMeWDYqVq1qg4fPvzA+eZ2PXLj7n17r2PHjqlUqVJ5cpn4tWvXtHnzZo0dO1ajRo2ytD/oNOGJEyesjhCdPHlS6enplgHUj/J9mVO5/T4qrDiNVUht3bo1y78UMs49Zxwizfgr4+6+CQkJmcKFJJUoUSJbj1lITEzUrVu3rNrq1q0rR0dHpaSkPPC9RYoUkYODg9WlwmfPntWqVaus+nXt2lWOjo4aN25cpr+mMtYlq3VLTU3V7Nmzrfo3btxYfn5+mjt3rlV9P//8s44ePWp1BVhWOnTooF27dmnPnj2WtkuXLmnRokVW/YKCguTk5KSZM2da1fTll18qISHBspzcbL+xY8fqypUreuONNzLNQ5I2bNigtWvXWuqOiYnR0qVLLdNv3bqlTz/9VG5ubmrRosV9l1OkSJFMn69PP/00y0u8pTuXed99f585c+bo1q1bat++vaTsb5sHeZT97evrq7lz5yo1NdXSvmDBgkyf79xsI+nObR5atmypefPmWf7AuNulS5csv997ObSbm5uqVav20H0eEhKiAwcOaOXKlZmmZWyL3K5HbpQuXVoNGjTQwoULrbbv4cOHtWHDBkvgtbWsPg/SnStL72fWrFlWrzPuNp/xOX2U78ucyu33UWHFkZ1CasiQIbpx44ZefPFF1ahRQ6mpqdq5c6eWLl2qSpUqWQZ3tm3bVk5OTurUqZMGDRqkpKQkffHFF/Lz88v05dyoUSPNmTNHEyZMULVq1eTn55fpLw/pzv00wsLC1K1bNz3xxBO6deuWvvnmGxUpUkQhISEPrLtjx4765JNP1K5dO7322muKi4vTrFmzVK1aNavxC9WqVdM//vEPjR8/Xs8995xeeuklOTs7KzIyUmXKlNGkSZPUrFkzlSxZUn369NHbb78tBwcHffPNN5m+/IoVK6Z//vOf6tevn1q0aKFXX33VcqlnpUqVHvoYiw8++EDffPON2rVrp3feecdy6XnGX9MZfH19NXz4cI0dO1bt2rVT586ddfz4cc2ePVtNmjSxjC3JzfZ75ZVXdOjQIU2cOFG//fabXn31VcsdlNetW6fNmzdbTgcOHDhQ8+bNU9++fRUVFaVKlSpp+fLl+vXXXzV9+vQHDnR+4YUX9M0338jT01O1atVSRESENm3aJB8fnyz7p6amqnXr1urevbtlnZ999ll17tz5kbbNgzzK/p4wYYIGDRqkVq1a6ZVXXtGZM2c0f/78TGN2crONMsyaNUvPPvus6tatqwEDBqhKlSqKjY1VRESE/vjjDx04cECSVKtWLbVs2VKNGjWSt7e39u7dq+XLlyssLOyB83///fe1fPlydevWTf3791ejRo109epVrVmzRnPnzlX9+vVtsh658fHHH6t9+/YKDAzU66+/brn03NPTM88e9eDh4aHmzZtrypQpSktLU9myZbVhw4ZMR/rudubMGXXu3Fnt2rVTRESEvv32W7322muWo32P8n2ZU7n9Piq08v8CMBQEP//8s9G/f3+jRo0ahpubm+Hk5GRUq1bNGDJkiBEbG2vVd82aNUa9evUMFxcXo1KlSsY///lP46uvvrK6bNowDCMmJsbo2LGj4e7ubnWJ7r2Xnp8+fdro37+/UbVqVcPFxcXw9vY2nn/+eWPTpk1Wy73fpedffvmlUb16dcPZ2dmoUaOGMX/+fMuloff66quvjL/85S+GJEtNGzdutEz/9ddfjaZNmxqurq5GmTJlLJfg657LVw3DMJYuXWr85S9/MZydnQ1vb2+jZ8+exh9//JGt7X3w4EGjRYsWhouLi1G2bFlj/PjxxpdffplpGxrGncupa9SoYRQrVszw9/c3Bg8ebFy7ds0yPbvb70E2b95sdOnSxfDz8zOKFi1q+Pr6Gp06dbJc6p0hNjbW6Nevn1GqVCnDycnJqFu3rjF//vxM89M9l55fu3bN8j43NzcjODjYOHbsmFGxYkWjT58+ln4Zl56Hh4cbAwcONEqWLGm4ubkZPXv2tLoMObvbxjDu/7kxjEfb37NnzzYqV65sODs7G40bNza2b9+e6XLh7G6jjEu2P/744yzrOnXqlNG7d28jICDAKFasmFG2bFnjhRdeMJYvX27pM2HCBOOpp54yvLy8DFdXV6NGjRrGxIkTs7xdxL2uXLlihIWFGWXLljWcnJyMcuXKGX369DEuX75sk/XI+Dd+7+0QMvZvZGTkQ2vctGmT8cwzzxiurq6Gh4eH0alTJ+PIkSMPfd/dHnTp+aVLlzL1/+OPP4wXX3zR8PLyMjw9PY1u3boZFy5cyPR5zpjHkSNHjJdfftlwd3c3SpYsaYSFhVld/m0Y2f++vN+l5/duw4xtfu++yM33UWHkYBiMeoL5nT17Vm3atFF0dDS35weAQoYxOygUKlWqJDc3N+3YscPepQAA8hljdmB6Y8aMUalSpXTixAklJSXZuxwAQD7jNBZMr0qVKrpw4YKef/55rVq1yuqSdQCA+RF2AACAqTFmBwAAmBphBwAAmBoDlHXn+TQXLlyQu7v7Iz/yAAAA2IdhGLp+/brKlCmT6UG2dyPsSLpw4UKmp/UCAIDHw/nz5x/4EGnCjmS5Ffr58+fl4eFh52oAAEB2JCYmqnz58g99pAlhR//3tG4PDw/CDgAAj5mHDUFhgDIAADA1wg4AADA1wg4AADA1wg4AADA1wg4AADA1wo6JTZ48WQ4ODho6dKilrWXLlnJwcLD6efPNN63et3nzZjVr1kzu7u4KCAjQhx9+qFu3buVz9QAA2AZhx6QiIyM1b9481atXL9O0AQMG6OLFi5afKVOmWKYdOHBAHTp0ULt27fTbb79p6dKlWrNmjT766KP8LB8AAJsh7JhQUlKSevbsqS+++EIlS5bMNL148eIKCAiw/Nx9b6GlS5eqXr16GjVqlKpVq6YWLVpoypQpmjVrlq5fv56fqwEAgE0QdkwoNDRUHTt2VFBQUJbTFy1apFKlSqlOnToaPny4bty4YZmWkpIiFxcXq/6urq66efOmoqKi8rRuAADyAndQNpklS5Zo3759ioyMzHL6a6+9pooVK6pMmTI6ePCgPvzwQx0/flwrVqyQJAUHB2v69On6z3/+o+7duysmJkbjxo2TJF28eDHf1gMAAFsh7JjI+fPn9c4772jjxo2Zjs5kGDhwoOX3unXrqnTp0mrdurVOnTqlqlWrqm3btvr444/15ptvqlevXnJ2dtbIkSP1yy+/PPCJsgAAFFQOhmEY9i7C3hITE+Xp6amEhITH+tlYq1at0osvvqgiRYpY2m7fvi0HBwc5OjoqJSXFapokJScny83NTevWrVNwcLCl3TAMXbx4USVLltTZs2dVq1Yt7dmzR02aNMm39QEA4EGy+/83R3ZMpHXr1jp06JBVW79+/VSjRg19+OGHmYKOJO3fv1+SVLp0aat2BwcHlSlTRpL0n//8R+XLl1fDhg3zpnAAAPIQYcdE3N3dVadOHau2EiVKyMfHR3Xq1NGpU6e0ePFidejQQT4+Pjp48KDeffddNW/e3OoS9Y8//ljt2rWTo6OjVqxYocmTJ+u7777LMiwBAFDQEXYKEScnJ23atEnTp09XcnKyypcvr5CQEI0YMcKq388//6yJEycqJSVF9evX1+rVq9W+fXs7VQ0AQO4wZkcFYMxO+N78X2ZB0KKxvSsAADzGsvv/N5fXAAAAUyPsAAAAUyPsACaR1YNfMxiGofbt28vBwUGrVq2ytB84cECvvvqqypcvL1dXV9WsWVMzZszIv6IBIB8wQBkwgQc9+FWSpk+fLgcHh0ztUVFR8vPz07fffqvy5ctr586dGjhwoIoUKaKwsLC8LhsA8gVhB3jM3f3g1wkTJmSavn//fk2dOlV79+7NdD+l/v37W72uUqWKIiIitGLFCsIOANPgNBbwmHvQg19v3Lih1157TbNmzVJAQEC25peQkCBvb29blwkAdsORHeAx9rAHv7777rtq1qyZunTpkq357dy5U0uXLtWPP/5oyzIBwK4IO8Bj6mEPfl2zZo22bNmi3377LVvzO3z4sLp06aLRo0erbdu2ti4XAOyG01jAYyoqKkpxcXFq2LChihYtqqJFiyo8PFwzZ85U0aJFtXHjRp06dUpeXl6W6ZIUEhKili1bWs3ryJEjat26tQYOHJjpjtoA8LjjyA7wmHrYg19LlSqlQYMGWU2vW7eupk2bpk6dOlnaoqOj1apVK/Xp00cTJ07Ml9oBID8RdoDH1MMe/Copy0HJFSpUUOXKlSXdOXXVqlUrBQcHa9iwYYqJiZEkFSlSRL6+vnm8BgCQPziNBRRiy5cv16VLl/Ttt9+qdOnSlp8mTZrYuzQAsBkeBCoeBGo3hfVBoOxvALAJHgQKAAAgwg4AADA5wg4AADA1wg4AADA1wg4AADA1wg4AADA1wg4AADA1wg4AADA1wg4AADA1wg4AADA1wg4AADA1wg4AADA1wg4AADA1wg4AADA1wg4AADA1wg4AADA1wg4AADA1wg4AADA1wg4AADA1wg4AADA1wg4AADA1wg4AADA1wg4AADA1wg4AADA1wg4AADA1wg4AADA1wg4AADC1AhN2Jk+eLAcHBw0dOtTSdvPmTYWGhsrHx0dubm4KCQlRbGys1fvOnTunjh07qnjx4vLz89P777+vW7du5XP1AACgoCoQYScyMlLz5s1TvXr1rNrfffdd/fDDD1q2bJnCw8N14cIFvfTSS5bpt2/fVseOHZWamqqdO3dq4cKFWrBggUaNGpXfqwAAAAoou4edpKQk9ezZU1988YVKlixpaU9ISNCXX36pTz75RK1atVKjRo00f/587dy5U7t27ZIkbdiwQUeOHNG3336rBg0aqH379ho/frxmzZql1NRUe60SAAAoQOwedkJDQ9WxY0cFBQVZtUdFRSktLc2qvUaNGqpQoYIiIiIkSREREapbt678/f0tfYKDg5WYmKjo6Oj7LjMlJUWJiYlWPwAAwJyK2nPhS5Ys0b59+xQZGZlpWkxMjJycnOTl5WXV7u/vr5iYGEufu4NOxvSMafczadIkjR07NpfVAwCAx4HdjuycP39e77zzjhYtWiQXF5d8Xfbw4cOVkJBg+Tl//ny+Lh8AAOQfu4WdqKgoxcXFqWHDhipatKiKFi2q8PBwzZw5U0WLFpW/v79SU1MVHx9v9b7Y2FgFBARIkgICAjJdnZXxOqNPVpydneXh4WH1AwAAzMluYad169Y6dOiQ9u/fb/lp3Lixevbsafm9WLFi2rx5s+U9x48f17lz5xQYGChJCgwM1KFDhxQXF2fps3HjRnl4eKhWrVr5vk4AAKDgsduYHXd3d9WpU8eqrUSJEvLx8bG0v/766xo2bJi8vb3l4eGhIUOGKDAwUE2bNpUktW3bVrVq1VKvXr00ZcoUxcTEaMSIEQoNDZWzs3O+rxMAACh47DpA+WGmTZsmR0dHhYSEKCUlRcHBwZo9e7ZlepEiRbR27VoNHjxYgYGBKlGihPr06aNx48bZsWoAAFCQOBiGYdi7CHtLTEyUp6enEhIS7DN+J3xv/i+zIGjR2N4V2Af7GwBsIrv/f9v9PjsAAAB5ibADAABMjbADAABMjbADAABMjbADAABMjbADAABMjbADAABMjbADAABMjbADAABMjbADAABMjbADAABMjbADAABMjbADAABMjbADAABMjbADAABMjbADAABMjbADAABMjbADAABMjbADAABMjbADAABMjbADAABMjbADAABMjbADAABMjbADAABMjbADAABMjbADAABMjbADAABMjbADAABMjbADAABMjbADAABMjbADAABMjbADAABMjbADAABMjbADAABMjbADAABMjbADAABMjbADAABMjbADAABMjbADAABMjbADAABMjbADAABMjbADAABMjbADAABMjbADAABMjbADAABMjbADAABMjbADAABMjbADAABMjbADAABMjbADAABMjbADAABMjbADAABMjbADAABMjbADAABMjbADAABMjbADAABMjbADAABMjbADAABMjbADAABMjbADAABMjbADAABMjbADAABMjbADAABMjbADAABMjbADAABMza5hZ86cOapXr548PDzk4eGhwMBA/fzzz5bpN2/eVGhoqHx8fOTm5qaQkBDFxsZazePcuXPq2LGjihcvLj8/P73//vu6detWfq8KAAAooOwadsqVK6fJkycrKipKe/fuVatWrdSlSxdFR0dLkt5991398MMPWrZsmcLDw3XhwgW99NJLlvffvn1bHTt2VGpqqnbu3KmFCxdqwYIFGjVqlL1WCQAAFDAOhmEY9i7ibt7e3vr444/18ssvy9fXV4sXL9bLL78sSTp27Jhq1qypiIgINW3aVD///LNeeOEFXbhwQf7+/pKkuXPn6sMPP9SlS5fk5OSUrWUmJibK09NTCQkJ8vDwyLN1u6/wvfm/zIKgRWN7V2Af7G8AsIns/v9dYMbs3L59W0uWLFFycrICAwMVFRWltLQ0BQUFWfrUqFFDFSpUUEREhCQpIiJCdevWtQQdSQoODlZiYqLl6BAAmMGkSZPUpEkTubu7y8/PT127dtXx48et+sTExKhXr14KCAhQiRIl1LBhQ33//fdWffbt26c2bdrIy8tLPj4+GjhwoJKSkvJzVYB8Z/ewc+jQIbm5ucnZ2VlvvvmmVq5cqVq1aikmJkZOTk7y8vKy6u/v76+YmBhJd/5h3x10MqZnTLuflJQUJSYmWv0AQEEWHh6u0NBQ7dq1Sxs3blRaWpratm2r5ORkS5/evXvr+PHjWrNmjQ4dOqSXXnpJ3bt312+//SZJunDhgoKCglStWjXt3r1b69atU3R0tPr27WuntQLyR1F7F/Dkk09q//79SkhI0PLly9WnTx+Fh4fn6TInTZqksWPH5ukyAMCW1q1bZ/V6wYIF8vPzU1RUlJo3by5J2rlzp+bMmaOnnnpKkjRixAhNmzZNUVFR+stf/qK1a9eqWLFimjVrlhwd7/ytO3fuXNWrV08nT55UtWrV8nelgHxi9yM7Tk5Oqlatmho1aqRJkyapfv36mjFjhgICApSamqr4+Hir/rGxsQoICJAkBQQEZLo6K+N1Rp+sDB8+XAkJCZaf8+fP23alACCPJSQkSLozzjFDs2bNtHTpUl29elXp6elasmSJbt68qZYtW0q6c1TbycnJEnQkydXVVZK0Y8eO/CseyGd2Dzv3Sk9PV0pKiho1aqRixYpp8+bNlmnHjx/XuXPnFBgYKEkKDAzUoUOHFBcXZ+mzceNGeXh4qFatWvddhrOzs+Vy94wfAHhcpKena+jQoXrmmWdUp04dS/t3332ntLQ0+fj4yNnZWYMGDdLKlSstR2xatWqlmJgYffzxx0pNTdW1a9f00UcfSZIuXrxol3UB8oNdw87w4cO1fft2nT17VocOHdLw4cO1bds29ezZU56ennr99dc1bNgwbd26VVFRUerXr58CAwPVtGlTSVLbtm1Vq1Yt9erVSwcOHND69es1YsQIhYaGytnZ2Z6rBgB5JjQ0VIcPH9aSJUus2keOHKn4+Hht2rRJe/fu1bBhw9S9e3cdOnRIklS7dm0tXLhQU6dOVfHixRUQEKDKlSvL39/f6mgPYDZ2HbMTFxen3r176+LFi/L09FS9evW0fv16tWnTRpI0bdo0OTo6KiQkRCkpKQoODtbs2bMt7y9SpIjWrl2rwYMHKzAwUCVKlFCfPn00btw4e60SAOSpsLAwrV27Vtu3b1e5cuUs7adOndJnn32mw4cPq3bt2pKk+vXr65dfftGsWbM0d+5cSdJrr72m1157TbGxsSpRooQcHBz0ySefqEqVKnZZHyA/2DXKf/nllzp79qxSUlIUFxenTZs2WYKOJLm4uGjWrFm6evWqkpOTtWLFikxjcSpWrKiffvpJN27c0KVLl/Svf/1LRYvafdw1ANiUYRgKCwvTypUrtWXLFlWuXNlq+o0bNyQp0xGaIkWKKD09PdP8/P395ebmpqVLl8rFxcXquxf2Z6tbDVy9elU9e/aUh4eHvLy89PrrrxfKWw1w3BIAHgOhoaH69ttvtXjxYrm7uysmJkYxMTH6888/Jd25D1m1atU0aNAg7dmzR6dOndLUqVO1ceNGde3a1TKfzz77TPv27dN///tfzZo1S2FhYZo0aVKm23zAvmxxqwFJ6tmzp6Kjo7Vx40bLEcGBAwfaY5XsKsd3UI6Pj9fy5ct16tQpvf/++/L29ta+ffvk7++vsmXL2rrOPMUdlO2ksN5Rl/2NHHBwcMiyff78+Zb75Jw4cUIfffSRduzYoaSkJFWrVk3vvfeeevXqZenfu3dv/fjjj0pKSlKNGjUyTUfBdOnSJfn5+Sk8PNxyqwE3NzfNmTPHav/5+Pjon//8p9544w0dPXpUtWrVUmRkpBo3vvPvb926derQoYP++OMPlSlTxi7rYkvZ/f87R+d7Dh48qKCgIHl6eurs2bMaMGCAvL29tWLFCp07d05ff/11jgsHAFOxUbg1tkU+dBnVJX3/9nDp7fvX8PXrb0uvv33f6TZDuLWpB91qoGPHjvLy8tJ3331ndauBiIgIeXl5WYKOJAUFBcnR0VG7d+/Wiy++mK/rYE85Oo01bNgw9e3bVydOnJCLi4ulvUOHDtq+fbvNigMAoLDL6a0GYmJi5OfnZzWvokWLytvb+4FPGTCjHB3ZiYyM1Lx58zK1ly1bttBtQAAA8lLGrQbuvfHj3bcaKFWqlFatWqXu3bvrl19+Ud26de1UbcGUo7Dj7Oyc5fOk/vvf/8rX1zfXRQEAgNzdaiAgIMDqpruSdOvWLV29evWBTxkwoxydxurcubPGjRuntLQ0SXcGzp07d04ffvihQkJCbFogAACFjS1uNRAYGKj4+HhFRUVZpm/ZskXp6el6+umn83gNCpYchZ2pU6cqKSlJfn5++vPPP9WiRQtVq1ZN7u7umjhxoq1rBACgULHFrQZq1qypdu3aacCAAdqzZ49+/fVXhYWFqUePHqa4EutR5Og0lqenpzZu3KgdO3bo4MGDSkpKUsOGDRUUFGTr+gAAKHTmzJkjSZYrqzJk3GqgWLFi+umnn/TRRx+pU6dOllsNLFy4UB06dLD0X7RokcLCwtS6dWvLEwlmzpyZn6tSIOT4Pjtmwn127KSwXprK/i5c2N+FC/s7X9n8PjuPkgTffvvemzwAAADYR7bDzrRp06xeX7p0STdu3LDcYjw+Pl7FixeXn58fYQcAABQY2R6gfObMGcvPxIkT1aBBAx09elRXr17V1atXdfToUTVs2FDjx4/Py3oBAAAeSY6uxho5cqQ+/fRTPfnkk5a2J598UtOmTdOIESNsVhwAAEBu5SjsXLx4Ubdu3crUfvv2bcXGxua6KAAAAFvJUdhp3bq1Bg0apH379lnaoqKiNHjwYC4/BwAABUqOws5XX32lgIAANW7cWM7OznJ2dtZTTz0lf39//fvf/7Z1jQAAADmWo5sK+vr66qefftJ///tfHTt2TNKduzk+8cQTNi0OAAAgt3IUdjI88cQTBBwAAFCg5Tjs/PHHH1qzZo3OnTun1NRUq2mffPJJrgsDAACwhRyFnc2bN6tz586qUqWKjh07pjp16ujs2bMyDEMNGza0dY0AAAA5lqMBysOHD9d7772nQ4cOycXFRd9//73Onz+vFi1aqFu3brauEQAAIMdyFHaOHj2q3r17S5KKFi2qP//8U25ubho3bpz++c9/2rRAAACA3MhR2ClRooRlnE7p0qV16tQpy7TLly/bpjIAAAAbyNGYnaZNm2rHjh2qWbOmOnTooL/97W86dOiQVqxYoaZNm9q6RgAAgBzLUdj55JNPlJSUJEkaO3askpKStHTpUlWvXp0rsQAAQIGSo7BTpUoVy+8lSpTQ3LlzbVYQAACALeVozA4AAMDjIttHdkqWLCkHB4ds9b169WqOCwIAALClbIed6dOnW36/cuWKJkyYoODgYAUGBkqSIiIitH79eo0cOdLmRQIAAORUtsNOnz59LL+HhIRo3LhxCgsLs7S9/fbb+uyzz7Rp0ya9++67tq0SAAAgh3I0Zmf9+vVq165dpvZ27dpp06ZNuS4KAADAVnIUdnx8fLR69epM7atXr5aPj0+uiwIAALCVHF16PnbsWL3xxhvatm2bnn76aUnS7t27tW7dOn3xxRc2LRAAACA3chR2+vbtq5o1a2rmzJlasWKFJKlmzZrasWOHJfwAAAAUBDkKO5L09NNPa9GiRbasBQAAwOayHXYSExPl4eFh+f1BMvoBAADY2yPdVPDixYvy8/OTl5dXljcYNAxDDg4Oun37tk2LBAAAyKlsh50tW7bI29tbkrR169Y8KwgAAMCWsh12WrRoYfm9cuXKKl++fKajO4Zh6Pz587arDgAAIJdydJ+dypUr69KlS5nar169qsqVK+e6KAAAAFvJUdjJGJtzr6SkJLm4uOS6KAAAAFt5pEvPhw0bJklycHDQyJEjVbx4ccu027dva/fu3WrQoIFNCwQAAMiNRwo7v/32m6Q7R3YOHTokJycnyzQnJyfVr19f7733nm0rBAAAyIVHCjsZV2H169dPM2bM4H46AACgwMvRHZTnz59v6zoAAADyRI7CTnJysiZPnqzNmzcrLi5O6enpVtNPnz5tk+IAAAByK0dh54033lB4eLh69eql0qVLZ3llFgAAQEGQo7Dz888/68cff9Qzzzxj63oAAABsKkf32SlZsqTl0REAAAAFWY7Czvjx4zVq1CjduHHD1vUAAADYVI5OY02dOlWnTp2Sv7+/KlWqpGLFillN37dvn02KAwAAyK0chZ2uXbvauAwAAIC8kaOwM3r0aFvXAQAAkCdyNGYHAADgcZGjIzu3b9/WtGnT9N133+ncuXNKTU21mn716lWbFAcAAJBbOTqyM3bsWH3yySd65ZVXlJCQoGHDhumll16So6OjxowZY+MSAQAAci5HYWfRokX64osv9Le//U1FixbVq6++qn//+98aNWqUdu3aZesaAQAAcixHYScmJkZ169aVJLm5uSkhIUGS9MILL+jHH3+0XXUAAAC5lKOwU65cOV28eFGSVLVqVW3YsEGSFBkZKWdnZ9tVBwAAkEs5CjsvvviiNm/eLEkaMmSIRo4cqerVq6t3797q37+/TQsEAADIjRxdjTV58mTL76+88ooqVKigiIgIVa9eXZ06dbJZcQAAALmVo7Bzr8DAQAUGBtpiVgAAADaVo7Dz9ddfP3B67969c1QMAACAreUo7LzzzjtWr9PS0nTjxg05OTmpePHihB0AAFBg5GiA8rVr16x+kpKSdPz4cT377LP6z3/+Y+saAQAAcsxmz8aqXr26Jk+enOmoz4NMmjRJTZo0kbu7u/z8/NS1a1cdP37cqs/NmzcVGhoqHx8fubm5KSQkRLGxsVZ9zp07p44dO6p48eLy8/PT+++/r1u3btlkvQAAwOPNpg8CLVq0qC5cuJDt/uHh4QoNDdWuXbu0ceNGpaWlqW3btkpOTrb0effdd/XDDz9o2bJlCg8P14ULF/TSSy9Zpt++fVsdO3ZUamqqdu7cqYULF2rBggUaNWqULVcNAAA8pnI0ZmfNmjVWrw3D0MWLF/XZZ5/pmWeeyfZ81q1bZ/V6wYIF8vPzU1RUlJo3b66EhAR9+eWXWrx4sVq1aiVJmj9/vmrWrKldu3apadOm2rBhg44cOaJNmzbJ399fDRo00Pjx4/Xhhx9qzJgxcnJyyskqAgAAk8hR2OnatavVawcHB/n6+qpVq1aaOnVqjovJeOyEt7e3JCkqKkppaWkKCgqy9KlRo4blvj5NmzZVRESE6tatK39/f0uf4OBgDR48WNHR0frLX/6SaTkpKSlKSUmxvE5MTMxxzQAAoGDLUdhJT0+XJF26dElOTk7y9PTMdSHp6ekaOnSonnnmGdWpU0fSnWdwOTk5ycvLy6qvv7+/YmJiLH3uDjoZ0zOmZWXSpEkaO3ZsrmsGAAAF3yOP2YmPj1doaKhKlSqlgIAAeXt7KyAgQMOHD9eNGzdyXEhoaKgOHz6sJUuW5Hge2TV8+HAlJCRYfs6fP5/nywQAAPbxSEd2rl69qsDAQP3vf/9Tz549VbNmTUnSkSNH9Omnn2rjxo3asWOHDh48qF27duntt9/O1nzDwsK0du1abd++XeXKlbO0BwQEKDU1VfHx8VZHd2JjYxUQEGDps2fPHqv5ZVytldHnXs7OzjywFACAQuKRjuyMGzdOTk5OOnXqlObNm6ehQ4dq6NCh+vzzz3Xy5EmlpqaqV69eatOmTbZObRmGobCwMK1cuVJbtmxR5cqVraY3atRIxYoVszx0VJKOHz+uc+fOWR5PERgYqEOHDikuLs7SZ+PGjfLw8FCtWrUeZfUAAIAJPdKRnVWrVmnevHmZxshId46iTJkyRR06dNDo0aPVp0+fh84vNDRUixcv1urVq+Xu7m4ZY+Pp6SlXV1d5enrq9ddf17Bhw+Tt7S0PDw8NGTJEgYGBatq0qSSpbdu2qlWrlnr16qUpU6YoJiZGI0aMUGhoKEdvAADAo4Wdixcvqnbt2vedXqdOHTk6Omr06NHZmt+cOXMkSS1btrRqnz9/vvr27StJmjZtmhwdHRUSEqKUlBQFBwdr9uzZlr5FihTR2rVrNXjwYAUGBqpEiRLq06ePxo0b9yirBgAATOqRwk6pUqV09uxZq3E1dztz5oz8/PyyPT/DMB7ax8XFRbNmzdKsWbPu26dixYr66aefsr1cAABQeDzSmJ3g4GD94x//UGpqaqZpKSkpGjlypNq1a2ez4gAAAHLrkY7sjBs3To0bN1b16tUVGhqqGjVqyDAMHT16VLNnz1ZKSoq+/vrrvKoVAADgkT1S2ClXrpwiIiL01ltvafjw4ZbTUA4ODmrTpo0+++wzVahQIU8KBQAAyIlHvoNy5cqV9fPPP+vatWs6ceKEJKlatWqWRzwAAAAUJDl6XIQklSxZUk899ZQtawEAALC5R35cBAAAwOOEsAMAAEyNsAMAAEyNsAMAAEyNsAMAAEyNsAMAAEyNsAMAAEyNsAMAAEyNsAMAAEyNsAMAAEyNsAMAAEyNsAMAAEyNsAMAAEyNsAMAAEyNsAMAAEyNsAMAAEyNsAMAAEyNsAMAAEyNsAMAAEyNsAMAAEyNsAMAAEyNsAMAAEyNsAMAAEyNsAMAAEyNsAMAAEyNsAMAAEyNsAMAAEyNsAMAAEyNsAMAAEyNsAMAAEyNsAMAAEyNsAMAAEyNsAMAAEyNsAMAAEyNsAMAAEyNsAMAAEyNsAMAAEyNsAMAAEyNsAMAAEyNsAMAAEyNsAMAAEyNsAMAAEyNsAMAAEyNsAMAAEyNsAMAAEyNsAMAAEyNsAMAAEyNsAMAAEyNsAMAAEyNsAMAAEyNsAMAAEyNsAMAAEyNsAMAAEyNsAMAAEyNsAMAAEyNsAMAAEyNsAMAAEyNsAMAAEyNsAMAAEyNsAMAAEyNsAMAAEzNrmFn+/bt6tSpk8qUKSMHBwetWrXKarphGBo1apRKly4tV1dXBQUF6cSJE1Z9rl69qp49e8rDw0NeXl56/fXXlZSUlI9rAQAACjK7hp3k5GTVr19fs2bNynL6lClTNHPmTM2dO1e7d+9WiRIlFBwcrJs3b1r69OzZU9HR0dq4caPWrl2r7du3a+DAgfm1CgAAoIAras+Ft2/fXu3bt89ymmEYmj59ukaMGKEuXbpIkr7++mv5+/tr1apV6tGjh44ePap169YpMjJSjRs3liR9+umn6tChg/71r3+pTJky+bYuAACgYCqwY3bOnDmjmJgYBQUFWdo8PT319NNPKyIiQpIUEREhLy8vS9CRpKCgIDk6Omr37t33nXdKSooSExOtfgAAgDkV2LATExMjSfL397dq9/f3t0yLiYmRn5+f1fSiRYvK29vb0icrkyZNkqenp+WnfPnyNq4eAAAUFAU27OSl4cOHKyEhwfJz/vx5e5cEAADySIENOwEBAZKk2NhYq/bY2FjLtICAAMXFxVlNv3Xrlq5evWrpkxVnZ2d5eHhY/QAAAHMqsGGncuXKCggI0ObNmy1tiYmJ2r17twIDAyVJgYGBio+PV1RUlKXPli1blJ6erqeffjrfawYAAAWPXa/GSkpK0smTJy2vz5w5o/3798vb21sVKlTQ0KFDNWHCBFWvXl2VK1fWyJEjVaZMGXXt2lWSVLNmTbVr104DBgzQ3LlzlZaWprCwMPXo0YMrsQAAgCQ7h529e/fq+eeft7weNmyYJKlPnz5asGCBPvjgAyUnJ2vgwIGKj4/Xs88+q3Xr1snFxcXynkWLFiksLEytW7eWo6OjQkJCNHPmzHxfFwAAUDA5GIZh2LsIe0tMTJSnp6cSEhLsM34nfG/+L7MgaNH44X3MiP1duLC/Cxf2d77K7v/fBXbMDgAAgC0QdgAAgKkRdgAAgKkRdgAAgKkRdgAAgKkRdgAAgKkRdgAAgKkRdgAAgKkRdgAAgKkRdgAAgKkRdgAAgKkRdgAAgKkRdgAAgKkRdgAAgKkRdgAAgKkRdgAAgKkRdgAAgKkRdgAAgKkRdgAAgKkRdgAAgKkRdgAAgKkRdgAAgKkRdgAAgKkRdgAAgKkRdgAAgKkRdgAAgKkRdgAAgKkRdgAAgKkRdgAAgKkRdgAAgKkRdgAAgKkRdgAAgKkRdgAAgKkRdgAAgKkRdgAAgKkRdgAAgKkRdgAAgKkRdgAAgKkRdgAAgKkRdgAAgKkRdgAAgKkRdgAAgKkRdgAAgKkRdgAAgKkRdgAAgKkRdgAAgKkRdgAAgKkRdgAAgKkRdgAAgKkRdgAAgKkRdgAAgKkRdgAAgKkRdgAAgKkRdgAAgKkRdgAAgKkRdgAAgKkRdgAAgKkRdgAAgKkRdgAAgKkRdgAAgKkRdgAAgKkRdgAAgKkRdgAAgKkRdgAAgKkRdgAAgKmZJuzMmjVLlSpVkouLi55++mnt2bPH3iUBAIACwBRhZ+nSpRo2bJhGjx6tffv2qX79+goODlZcXJy9SwMAAHZmirDzySefaMCAAerXr59q1aqluXPnqnjx4vrqq6/sXRoAALCzxz7spKamKioqSkFBQZY2R0dHBQUFKSIiwo6VAQCAgqCovQvIrcuXL+v27dvy9/e3avf399exY8eyfE9KSopSUlIsrxMSEiRJiYmJeVfogyQn2We59mav7W1v7O/Chf1duLC/83mxd5ZrGMYD+z32YScnJk2apLFjx2ZqL1++vB2qAQAAuXH9+nV5enred/pjH3ZKlSqlIkWKKDY21qo9NjZWAQEBWb5n+PDhGjZsmOV1enq6rl69Kh8fHzk4OORpvQVJYmKiypcvr/Pnz8vDw8Pe5SCPsb8LF/Z34VJY97dhGLp+/brKlCnzwH6PfdhxcnJSo0aNtHnzZnXt2lXSnfCyefNmhYWFZfkeZ2dnOTs7W7V5eXnlcaUFl4eHR6H6x1HYsb8LF/Z34VIY9/eDjuhkeOzDjiQNGzZMffr0UePGjfXUU09p+vTpSk5OVr9+/exdGgAAsDNThJ1XXnlFly5d0qhRoxQTE6MGDRpo3bp1mQYtAwCAwscUYUeSwsLC7nvaCllzdnbW6NGjM53SgzmxvwsX9nfhwv5+MAfjYddrAQAAPMYe+5sKAgAAPAhhBwAAmBphBwAAmBphBwAAmBphp5CbPHmyHBwcNHToUHuXgjwwZ84c1atXz3KjscDAQP3888/2Lgt5aPv27erUqZPKlCkjBwcHrVq1yt4lIY9MmjRJTZo0kbu7u/z8/NS1a1cdP37c3mUVSISdQiwyMlLz5s1TvXr17F0K8ki5cuU0efJkRUVFae/evWrVqpW6dOmi6Ohoe5eGPJKcnKz69etr1qxZ9i4FeSw8PFyhoaHatWuXNm7cqLS0NLVt21bJycn2Lq3A4dLzQiopKUkNGzbU7NmzNWHCBDVo0EDTp0+3d1nIB97e3vr444/1+uuv27sU5DEHBwetXLnS8igdmNulS5fk5+en8PBwNW/e3N7lFCgc2SmkQkND1bFjRwUFBdm7FOST27dva8mSJUpOTlZgYKC9ywFgYwkJCZLu/EEDa6a5gzKyb8mSJdq3b58iIyPtXQrywaFDhxQYGKibN2/Kzc1NK1euVK1atexdFgAbSk9P19ChQ/XMM8+oTp069i6nwCHsFDLnz5/XO++8o40bN8rFxcXe5SAfPPnkk9q/f78SEhK0fPly9enTR+Hh4QQewERCQ0N1+PBh7dixw96lFEiM2SlkVq1apRdffFFFihSxtN2+fVsODg5ydHRUSkqK1TSYT1BQkKpWrap58+bZuxTkMcbsFA5hYWFavXq1tm/frsqVK9u7nAKJIzuFTOvWrXXo0CGrtn79+qlGjRr68MMPCTqFQHp6ulJSUuxdBoBcMgxDQ4YM0cqVK7Vt2zaCzgMQdgoZd3f3TOdzS5QoIR8fH87zmtDw4cPVvn17VahQQdevX9fixYu1bds2rV+/3t6lIY8kJSXp5MmTltdnzpzR/v375e3trQoVKtixMthaaGioFi9erNWrV8vd3V0xMTGSJE9PT7m6utq5uoKFsAOYWFxcnHr37q2LFy/K09NT9erV0/r169WmTRt7l4Y8snfvXj3//POW18OGDZMk9enTRwsWLLBTVcgLc+bMkSS1bNnSqn3+/Pnq27dv/hdUgDFmBwAAmBr32QEAAKZG2AEAAKZG2AEAAKZG2AEAAKZG2AEAAKZG2AEAAKZG2AEAAKZG2AHwWKlUqZKmT5+erb43btxQSEiIPDw85ODgoPj4eJvU8N5778nPz0+rVq3SiBEjtGzZMpvMF0DeIOwAyBOXLl3S4MGDVaFCBTk7OysgIEDBwcH69ddfs/X+BQsWyMvLK1N7ZGSkBg4cmK15LFy4UL/88ot27txpuYu0LWzatEk//PCDZsyYoQ0bNqht27Y2mS+AvMHjIgDkiZCQEKWmpmrhwoWqUqWKYmNjtXnzZl25ciVX8/X19c1231OnTqlmzZo2f+7b/v37JUlbt2616XwB5BEDAGzs2rVrhiRj27Zt9+0zdepUo06dOkbx4sWNcuXKGYMHDzauX79uGIZhbN261ZBk9TN69GjDMAyjYsWKxrRp0wzDMIz09HRj9OjRRvny5Q0nJyejdOnSxpAhQwzDMIwWLVpYvb9FixaGYRjG119/bTRq1Mhwc3Mz/P39jVdffdWIjY21qu3w4cNGx44dDXd3d8PNzc149tlnjZMnTxqGYRh79uwxgoKCDB8fH8PDw8No3ry5ERUVZfX+33//3ejcubNRokQJw93d3ejWrZsRExOT280KIIc4jQXA5tzc3OTm5qZVq1YpJSUlyz6Ojo6aOXOmoqOjtXDhQm3ZskUffPCBJKlZs2aaPn26PDw8dPHiRV28eFHvvfdepnl8//33mjZtmubNm6cTJ05o1apVqlu3riRpxYoVGjBggAIDA3Xx4kWtWLFCkpSWlqbx48frwIEDWrVqlc6ePWv10MT//e9/at68uZydnbVlyxZFRUWpf//+unXrliTp+vXr6tOnj3bs2KFdu3apevXq6tChg65fvy5JSk9PV5cuXXT16lWFh4dr48aNOn36tF555RWbbV8Aj8jeaQuAOS1fvtwoWbKk4eLiYjRr1swYPny4ceDAgfv2X7ZsmeHj42N5PX/+fMPT0zNTv7uP7EydOtV44oknjNTU1Czn+c4771iO6NxPZGSkIclyVGn48OFG5cqV7zvPe92+fdtwd3c3fvjhB8MwDGPDhg1GkSJFjHPnzln6REdHG5KMPXv2ZGueAGyLIzsA8kRISIguXLigNWvWqF27dtq2bZsaNmyoBQsWSLozyLd169YqW7as3N3d1atXL125ckU3btzI9jK6deumP//8U1WqVNGAAQO0cuVKyxGY+4mKilKnTp1UoUIFubu7q0WLFpKkc+fOSbozHue5555TsWLFsnx/bGysBgwYoOrVq8vT01MeHh5KSkqyvP/o0aMqX768ypcvb3lPrVq15OXlpaNHj2Z73QDYDmEHQJ5xcXFRmzZtNHLkSO3cuVN9+/bV6NGjdfbsWb3wwguqV6+evv/+e0VFRWnWrFmSpNTU1GzPv3z58jp+/Lhmz54tV1dXvfXWW2revLnS0tKy7J+cnKzg4GB5eHho0aJFioyM1MqVK62W6+rq+sBl9unTR/v379eMGTO0c+dO7d+/Xz4+Po9UN4D8RdgBkG9q1aql5ORkRUVFKT09XVOnTlXTpk31xBNP6MKFC1Z9nZycdPv27YfO09XVVZ06ddLMmTO1bds2RURE6NChQ1n2PXbsmK5cuaLJkyfrueeeU40aNRQXF2fVp169evrll1/uG5h+/fVXvf322+rQoYNq164tZ2dnXb582TK9Zs2aOn/+vM6fP29pO3LkiOLj41WrVq2Hrg8A2yPsALC5K1euqFWrVvr222918OBBnTlzRsuWLdOUKVPUpUsXVatWTWlpafr00091+vRpffPNN5o7d67VPCpVqqSkpCRt3rxZly9fzvL01oIFC/Tll1/q8OHDOn36tL799lu5urqqYsWKWdZVoUIFOTk5WZa7Zs0ajR8/3qpPWFiYEhMT1aNHD+3du1cnTpzQN998o+PHj0uSqlevrm+++UZHjx7V7t271bNnT6ujQUFBQapbt6569uypffv2ac+ePerdu7datGihxo0b53bTAsgJew8aAmA+N2/eND766COjYcOGhqenp1G8eHHjySefNEaMGGHcuHHDMAzD+OSTT4zSpUsbrq6uRnBwsPH1118bkoxr165Z5vPmm28aPj4+9730fOXKlcbTTz9teHh4GCVKlDCaNm1qbNq0yfL+rAYoL1682KhUqZLh7OxsBAYGGmvWrDEkGb/99pulz4EDB4y2bdtaLlt/7rnnjFOnThmGYRj79u0zGjdubLi4uBjVq1c3li1bZlWTYXDpOVDQOBiGYdg1bQFAAZWUlKTnn39eO3fuvO+AZQAFH6exACALZ8+eVUxMjC5duqTDhw/buxwAuUDYAYAsLFiwQLVr11ZAQICeeOIJe5cDIBc4jQUAAEyNIzsAAMDUCDsAAMDUCDsAAMDUCDsAAMDUCDsAAMDUCDsAAMDUCDsAAMDUCDsAAMDUCDsAAMDU/j9NK6mv4lWUPwAAAABJRU5ErkJggg==",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "jobSatisfactionRate = dfNovo['JobSatisfaction'].value_counts()\n",
+ "\n",
+ "#criando o grafico\n",
+ "barras = jobSatisfactionRate.plot.bar(color='pink')\n",
+ "\n",
+ "#configurações\n",
+ "plt.xlabel('Satisfação')\n",
+ "plt.xticks(rotation=0)\n",
+ "plt.ylabel('Quantidade')\n",
+ "plt.title('Satisfação dos Colaboradores com o Trabalho')\n",
+ "\n",
+ "# Adicionar rótulos nos graficos\n",
+ "for i, v in enumerate(jobSatisfactionRate):\n",
+ " barras.text(i, v + 0.01, f'{v}', color='black', ha='center')\n",
+ "\n",
+ "plt.show()"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Resultado igual ao primeiro"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 20,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "EnvironmentSatisfaction\n",
+ "3 30.816327\n",
+ "4 30.340136\n",
+ "2 19.523810\n",
+ "1 19.319728\n",
+ "Name: count, dtype: float64"
+ ]
+ },
+ "execution_count": 20,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "totalColab = dfNovo['EmpID'].value_counts().sum()\n",
+ "jobSatisfactionRate.sum() \n",
+ "(satisfactionRate / totalColab) * 100"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Média salarial da Empresa"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 21,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjsAAAHHCAYAAABZbpmkAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAABSWUlEQVR4nO3dd1QUV+M+8GcBWZq7CAgLFsQGYq+wSmJDEbGjMcYolpjEoHmjiVHzKgixRWOPJbGg5o2xxBqMBbErEoMSDdYYDUYpKgHEQr2/P/JjvlkpIiwsjs/nnDnHuffO3Ht3R/dxdmZWIYQQICIiIpIpI0MPgIiIiKg8MewQERGRrDHsEBERkawx7BAREZGsMewQERGRrDHsEBERkawx7BAREZGsMewQERGRrDHsEBERkawx7BBVAkePHoVCocDRo0cNPZQy69SpEzp16qTXfd66dQsKhQLr169/4W3Xr18PhUKBW7dularvESNGoE6dOqXalogqB4YdojLI/yAtbJkyZYqhh1ciFy9exMCBA+Hs7AwzMzPUqFED3bp1w7Jlyww9NCIivTAx9ACI5CA0NBQuLi46ZU2aNCnx9q+//jqePHkCU1NTfQ+tWKdPn0bnzp1Ru3ZtjBkzBhqNBrdv38aZM2ewZMkSjB8/vkLHUxRnZ2c8efIEVapUMfRQiOglxLBDpAe+vr5o06ZNqbc3MjKCmZmZHkdUMrNmzYJarcbZs2dhbW2tU5ecnFzh43lWTk4O8vLyYGpqapDX51X2+PFjWFhYGHoYRHrBr7GIytGff/6JDz74AK6urjA3N4etrS0GDRpU4PqRZ6/ZuXz5MszNzTF8+HCddidPnoSxsTEmT54sle3evRt+fn5wcnKCUqlEvXr18PnnnyM3N/e547tx4wYaN25cIOgAgL29vc56WFgYunTpAnt7eyiVSri7u2PlypXP7SMrKwtBQUFo3bo11Go1LC0t8dprr+HIkSM67fKvy/nyyy+xePFi1KtXD0qlEpcuXSr0mp0LFy5gxIgRqFu3LszMzKDRaDBq1Cg8ePDguWMqyq5du9CkSROYmZmhSZMm2LlzZ6HtvvzyS7Rv3x62trYwNzdH69at8cMPP5S4n+joaPTo0QNqtRoWFhbo2LEjTp06pdNmxowZUCgUuHbtGt5++22o1WpUr14d06dPhxACt2/fRt++faFSqaDRaLBgwQKd7fOPqS1btuCzzz6DRqOBpaUl+vTpg9u3b+u07dSpE5o0aYKYmBi8/vrrsLCwwGeffQYAyMzMRHBwMOrXrw+lUolatWrh008/RWZmps4+IiIi4OXlBWtra1hZWcHV1VXaB1Dy44CoPPDMDpEepKWl4f79+zpldnZ2OHv2LE6fPo0333wTNWvWxK1bt7By5Up06tQJly5dKvJ/zo0aNcLnn3+OSZMmYeDAgejTpw8ePXqEESNGwM3NDaGhoVLb9evXw8rKChMnToSVlRUOHz6MoKAgpKenY/78+cWO29nZGVFRUfjtt9+e+7XbypUr0bhxY/Tp0wcmJib48ccf8cEHHyAvLw+BgYFFbpeeno41a9ZgyJAhGDNmDB4+fIi1a9fCx8cHP//8M1q0aKHTPiwsDE+fPsW7774LpVIJGxsb5OXlFdhvREQE/vjjD4wcORIajQZxcXH45ptvEBcXhzNnzkChUBQ7n2cdPHgQ/v7+cHd3x5w5c/DgwQOMHDkSNWvWLNB2yZIl6NOnD4YOHYqsrCxs3rwZgwYNQnh4OPz8/Irt5/Dhw/D19UXr1q0RHBwMIyMjKUieOHEC7dq102k/ePBgNGrUCHPnzsXevXsxc+ZM2NjY4Ouvv0aXLl3wxRdf4LvvvsMnn3yCtm3b4vXXX9fZftasWVAoFJg8eTKSk5OxePFieHt7IzY2Fubm5lK7Bw8ewNfXF2+++SbefvttODg4IC8vD3369MHJkyfx7rvvolGjRrh48SIWLVqEa9euYdeuXQCAuLg49OrVC82aNUNoaCiUSiV+//13nQD3oscBkV4JIiq1sLAwAaDQRQghHj9+XGCbqKgoAUBs3LhRKjty5IgAII4cOSKV5ebmCi8vL+Hg4CDu378vAgMDhYmJiTh79qzO/grr47333hMWFhbi6dOnxY7/4MGDwtjYWBgbGwutVis+/fRTceDAAZGVlVWgbWH9+Pj4iLp16+qUdezYUXTs2FFaz8nJEZmZmTpt/v77b+Hg4CBGjRolld28eVMAECqVSiQnJ+u0z68LCwsrdjzff/+9ACCOHz8uleW/Rzdv3iz0NcjXokUL4ejoKFJTU6WygwcPCgDC2dlZp+2zfWdlZYkmTZqILl26FNtHXl6eaNCggfDx8RF5eXk6+3NxcRHdunWTyoKDgwUA8e6770plOTk5ombNmkKhUIi5c+dK5X///bcwNzcXAQEBUln+MVWjRg2Rnp4ulW/dulUAEEuWLJHKOnbsKACIVatW6Yz322+/FUZGRuLEiRM65atWrRIAxKlTp4QQQixatEgAEPfu3Sty7iU9DojKA7/GItKD5cuXIyIiQmcBoPM/5+zsbDx48AD169eHtbU1zp07V+w+jYyMsH79emRkZMDX1xcrVqzA1KlTC1wb9O8+Hj58iPv37+O1117D48ePceXKlWL76NatG6KiotCnTx/8+uuvmDdvHnx8fFCjRg3s2bOnyH7yz2R17NgRf/zxB9LS0orsw9jYWLrwOi8vDykpKcjJyUGbNm0KfQ38/f1RvXr1Ysf97HiePn2K+/fvw9PTEwCe+9o+KyEhAbGxsQgICIBarZbKu3XrBnd392L7/vvvv5GWlobXXnvtuf3Gxsbi+vXreOutt/DgwQPcv38f9+/fx6NHj9C1a1ccP368wFmsd955R/qzsbEx2rRpAyEERo8eLZVbW1vD1dUVf/zxR4E+hw8fjqpVq0rrAwcOhKOjI3766SeddkqlEiNHjtQp27ZtGxo1agQ3NzdprPfv30eXLl0AQPoKKv9r0N27dxd6Fi5/7C9yHBDpE7/GItKDdu3aFXqB8pMnTzBnzhyEhYXhzp07EEJIdcUFhHz16tXDjBkzMGnSJDRp0gTTp08v0CYuLg7Tpk3D4cOHkZ6erlNXkj7atm2LHTt2ICsrC7/++it27tyJRYsWYeDAgYiNjZU+7E+dOoXg4GBERUXh8ePHBfr5d0h41oYNG7BgwQJcuXIF2dnZUvmzd7AVVVaYlJQUhISEYPPmzQUupi7JvP/tzz//BAA0aNCgQJ2rq2uBD+Pw8HDMnDkTsbGxOteuPO+rs+vXrwMAAgICimyTlpaGatWqSeu1a9fWqVer1TAzM4OdnV2B8sKuV3p2TgqFAvXr1y9w3ViNGjUK3A14/fp1XL58ucjwmf+6Dx48GGvWrME777yDKVOmoGvXrhgwYAAGDhwII6P/+z/1ixwHRPrEsENUjsaPH4+wsDB89NFH0Gq1UKvVUCgUePPNN4v8H/CzDh48CAC4e/cuHjx4AI1GI9WlpqaiY8eOUKlUCA0NRb169WBmZoZz585h8uTJJe4DAExNTdG2bVu0bdsWDRs2xMiRI7Ft2zYEBwfjxo0b6Nq1K9zc3LBw4ULUqlULpqam+Omnn7Bo0aJi+/nf//6HESNGoF+/fpg0aRLs7e1hbGyMOXPm4MaNGwXa//usSXHeeOMNnD59GpMmTUKLFi1gZWWFvLw89OjR44Xm/aJOnDiBPn364PXXX8eKFSvg6OiIKlWqICwsDJs2bSp22/xxzZ8/v8hrVKysrHTWjY2NC7QprAyATph+UYW97nl5eWjatCkWLlxY6Da1atWStj1+/DiOHDmCvXv3Yv/+/diyZQu6dOmCgwcPwtjY+IWPAyJ9YtghKkc//PADAgICdO6Uefr0KVJTU0u0/apVqxAREYFZs2Zhzpw5eO+997B7926p/ujRo3jw4AF27Nihc2HqzZs3yzTu/LNUCQkJAIAff/wRmZmZ2LNnj86ZhpLcSfPDDz+gbt262LFjh86Zj+Dg4FKP7++//0ZkZCRCQkIQFBQkleefOXlRzs7ORW5/9epVnfXt27fDzMwMBw4cgFKplMrDwsKe20+9evUAACqVCt7e3qUa64t6dk5CCPz+++9o1qzZc7etV68efv31V3Tt2vW5Z62MjIzQtWtXdO3aFQsXLsTs2bPx3//+F0eOHIG3t3e5HAdEJcVrdojKkbGxcYH/bS9btqxEt4XfvHkTkyZNgr+/Pz777DN8+eWX2LNnDzZu3Kizf0D3f/RZWVlYsWJFicZ35MiRQs8G5F/P4erqWmQ/aWlpJfqAL2zb6OhoREVFlWiMJd0nACxevLhU+3N0dESLFi2wYcMGna/AIiIicOnSpQJ9KxQKnffw1q1b0p1JxWndujXq1auHL7/8EhkZGQXq7927V6rxF2fjxo14+PChtP7DDz8gISEBvr6+z932jTfewJ07d7B69eoCdU+ePMGjR48A/POV4rPyz1zlf81XHscBUUnxzA5ROerVqxe+/fZbqNVquLu7IyoqCocOHYKtrW2x2wkhMGrUKJibm0vPsnnvvfewfft2/Oc//4G3tzecnJzQvn17VKtWDQEBAfjwww+hUCjw7bfflvjrjPHjx+Px48fo378/3NzckJWVhdOnT2PLli2oU6eOdMFq9+7dYWpqit69e+O9995DRkYGVq9eDXt7e+nsT3GvwY4dO9C/f3/4+fnh5s2bWLVqFdzd3Qv9wC8JlUqF119/HfPmzUN2djZq1KiBgwcPlumM1pw5c+Dn5wcvLy+MGjUKKSkpWLZsGRo3bqwzTj8/PyxcuBA9evTAW2+9heTkZCxfvhz169fHhQsXiu3DyMgIa9asga+vLxo3boyRI0eiRo0auHPnDo4cOQKVSoUff/yx1HMojI2NDby8vDBy5EgkJSVh8eLFqF+/PsaMGfPcbYcNG4atW7fi/fffx5EjR9ChQwfk5ubiypUr2Lp1Kw4cOIA2bdogNDQUx48fh5+fH5ydnZGcnIwVK1agZs2a8PLyAlA+xwFRiRnkHjAimci/rfnZ28Hz/f3332LkyJHCzs5OWFlZCR8fH3HlyhXh7Oxc6G3C+beeL1myRAAQ27dv19lffHy8UKlUomfPnlLZqVOnhKenpzA3NxdOTk7S7eN45lb2wuzbt0+MGjVKuLm5CSsrK2Fqairq168vxo8fL5KSknTa7tmzRzRr1kyYmZmJOnXqiC+++EKsW7euwG3dz956npeXJ2bPni2cnZ2FUqkULVu2FOHh4SIgIEDnlu7828vnz59fYJyF3Xr+119/if79+wtra2uhVqvFoEGDxN27dwUAERwcLLUr6a3nQgixfft20ahRI6FUKoW7u7vYsWNHgXEKIcTatWtFgwYNhFKpFG5ubiIsLEy6Vbwkzp8/LwYMGCBsbW2FUqkUzs7O4o033hCRkZFSm/z9PXs7d0BAgLC0tCywz44dO4rGjRtL6/nH1Pfffy+mTp0q7O3thbm5ufDz8xN//vlnsdv+W1ZWlvjiiy9E48aNhVKpFNWqVROtW7cWISEhIi0tTQghRGRkpOjbt69wcnISpqamwsnJSQwZMkRcu3ZN2k9JjwOi8qAQogxXtBERUaV09OhRdO7cGdu2bcPAgQMNPRwig+I1O0RERCRrDDtEREQkaww7REREJGu8ZoeIiIhkjWd2iIiISNYYdoiIiEjW+FBB/PP7L3fv3kXVqlWf+0h0IiIiqhyEEHj48CGcnJx0fnT2WQw7+OcHFvN/0I6IiIheLrdv30bNmjWLrGfYAVC1alUA/7xYKpXKwKMhIiKikkhPT0etWrWkz/GiMOwA0ldXKpWKYYeIiOgl87xLUHiBMhEREckaww4RERHJGsMOERERyRrDDhEREckaww4RERHJGsOOzNSpUwcKhaLAEhgYqNNOCAFfX18oFArs2rVLpy4yMhLt27dH1apVodFoMHnyZOTk5FTgLIiIiPSHYUdmzp49i4SEBGmJiIgAAAwaNEin3eLFiwu9Ve/XX39Fz5490aNHD5w/fx5btmzBnj17MGXKlAoZPxERkb7xOTsyU716dZ31uXPnol69eujYsaNUFhsbiwULFuCXX36Bo6OjTvstW7agWbNmCAoKAgDUr18f8+bNwxtvvIHg4ODnPriJiIiosuGZHRnLysrC//73P4waNUo6i/P48WO89dZbWL58OTQaTYFtMjMzYWZmplNmbm6Op0+fIiYmpkLGTUREpE8MOzK2a9cupKamYsSIEVLZhAkT0L59e/Tt27fQbXx8fHD69Gl8//33yM3NxZ07dxAaGgoASEhIqIhhExER6RXDjoytXbsWvr6+cHJyAgDs2bMHhw8fxuLFi4vcpnv37pg/fz7ef/99KJVKNGzYED179gSAYn9RloiIqLLip5dM/fnnnzh06BDeeecdqezw4cO4ceMGrK2tYWJiAhOTfy7Z8vf3R6dOnaR2EydORGpqKuLj43H//n3pLFDdunUrdA5ERET6wAuUZSosLAz29vbw8/OTyqZMmaITfgCgadOmWLRoEXr37q1TrlAopDNC33//PWrVqoVWrVqV/8CJiIj0jGFHhvLy8hAWFoaAgADp7A0AaDSaQi9Krl27NlxcXKT1+fPno0ePHjAyMsKOHTswd+5cbN26FcbGxhUyfiIiIn1i2JGhQ4cOIT4+HqNGjSrV9vv27cOsWbOQmZmJ5s2bY/fu3fD19dXzKImIiCqGQgghDD0IQ0tPT4darUZaWhpUKlWF968IKfhwv1eBCH7lDz0iIiqDkn5+8wJlIiIikjWGHSIiIpI1hh0iIiKSNYYdIiIikjWGHSIiIpI1hh0iIiKSNYYdIiIikjWGHSIiIpI1hh0iIiKSNYYdIiIikjWGHSIiIpI1hh0iIiKSNYYdIiIikjWGHSIiIpI1hh0iIiKSNYYdIiIikjWGHSIiIpI1g4adOnXqQKFQFFgCAwMBAE+fPkVgYCBsbW1hZWUFf39/JCUl6ewjPj4efn5+sLCwgL29PSZNmoScnBxDTIeIiIgqIYOGnbNnzyIhIUFaIiIiAACDBg0CAEyYMAE//vgjtm3bhmPHjuHu3bsYMGCAtH1ubi78/PyQlZWF06dPY8OGDVi/fj2CgoIMMh8iIiKqfBRCCGHoQeT76KOPEB4ejuvXryM9PR3Vq1fHpk2bMHDgQADAlStX0KhRI0RFRcHT0xP79u1Dr169cPfuXTg4OAAAVq1ahcmTJ+PevXswNTUtUb/p6elQq9VIS0uDSqUqt/kVRRGiqPA+KwMRXGkOPSIiegmV9PO70lyzk5WVhf/9738YNWoUFAoFYmJikJ2dDW9vb6mNm5sbateujaioKABAVFQUmjZtKgUdAPDx8UF6ejri4uIqfA5ERERU+ZgYegD5du3ahdTUVIwYMQIAkJiYCFNTU1hbW+u0c3BwQGJiotTm30Envz6/riiZmZnIzMyU1tPT0/UwAyIiIqqMKs2ZnbVr18LX1xdOTk7l3tecOXOgVqulpVatWuXeJxERERlGpQg7f/75Jw4dOoR33nlHKtNoNMjKykJqaqpO26SkJGg0GqnNs3dn5a/ntynM1KlTkZaWJi23b9/W00yIiIiosqkUYScsLAz29vbw8/OTylq3bo0qVaogMjJSKrt69Sri4+Oh1WoBAFqtFhcvXkRycrLUJiIiAiqVCu7u7kX2p1QqoVKpdBYiIiKSJ4Nfs5OXl4ewsDAEBATAxOT/hqNWqzF69GhMnDgRNjY2UKlUGD9+PLRaLTw9PQEA3bt3h7u7O4YNG4Z58+YhMTER06ZNQ2BgIJRKpaGmRERERJWIwcPOoUOHEB8fj1GjRhWoW7RoEYyMjODv74/MzEz4+PhgxYoVUr2xsTHCw8MxduxYaLVaWFpaIiAgAKGhoRU5BSIiIqrEKtVzdgyFz9kxDD5nh4iIyuKle84OERERUXlg2CEiIiJZY9ghIiIiWWPYISIiIllj2CEiIiJZY9ghIiIiWWPYISIiIllj2CEiIiJZY9ghIiIiWWPYISIiIllj2CEiIiJZY9ghIiIiWWPYISIiIllj2CEiIiJZY9ghIiIiWWPYISIiIllj2CEiIiJZY9ghIiIiWWPYISIiIllj2CEiIiJZY9ghIiIiWWPYISIiIllj2CEiIiJZY9ghIiIiWWPYISIiIllj2CEiIiJZY9ghIiIiWWPYISIiIllj2CEiIiJZY9ghIiIiWWPYISIiIllj2CEiIiJZY9ghIiIiWWPYISIiIllj2CEiIiJZY9ghIiIiWTN42Llz5w7efvtt2NrawtzcHE2bNsUvv/wi1QshEBQUBEdHR5ibm8Pb2xvXr1/X2UdKSgqGDh0KlUoFa2trjB49GhkZGRU9FSIiIqqEDBp2/v77b3To0AFVqlTBvn37cOnSJSxYsADVqlWT2sybNw9Lly7FqlWrEB0dDUtLS/j4+ODp06dSm6FDhyIuLg4REREIDw/H8ePH8e677xpiSkRERFTJKIQQwlCdT5kyBadOncKJEycKrRdCwMnJCR9//DE++eQTAEBaWhocHBywfv16vPnmm7h8+TLc3d1x9uxZtGnTBgCwf/9+9OzZE3/99RecnJyeO4709HSo1WqkpaVBpVLpb4IlpAhRVHiflYEINtihR0REMlDSz2+DntnZs2cP2rRpg0GDBsHe3h4tW7bE6tWrpfqbN28iMTER3t7eUplarYaHhweioqIAAFFRUbC2tpaCDgB4e3vDyMgI0dHRFTcZIiIiqpQMGnb++OMPrFy5Eg0aNMCBAwcwduxYfPjhh9iwYQMAIDExEQDg4OCgs52Dg4NUl5iYCHt7e516ExMT2NjYSG2elZmZifT0dJ2FiIiI5MnEkJ3n5eWhTZs2mD17NgCgZcuW+O2337Bq1SoEBASUW79z5sxBSEhIue2fiIiIKg+DntlxdHSEu7u7TlmjRo0QHx8PANBoNACApKQknTZJSUlSnUajQXJysk59Tk4OUlJSpDbPmjp1KtLS0qTl9u3bepkPERERVT4GDTsdOnTA1atXdcquXbsGZ2dnAICLiws0Gg0iIyOl+vT0dERHR0Or1QIAtFotUlNTERMTI7U5fPgw8vLy4OHhUWi/SqUSKpVKZyEiIiJ5MujXWBMmTED79u0xe/ZsvPHGG/j555/xzTff4JtvvgEAKBQKfPTRR5g5cyYaNGgAFxcXTJ8+HU5OTujXrx+Af84E9ejRA2PGjMGqVauQnZ2NcePG4c033yzRnVhEREQkbwYNO23btsXOnTsxdepUhIaGwsXFBYsXL8bQoUOlNp9++ikePXqEd999F6mpqfDy8sL+/fthZmYmtfnuu+8wbtw4dO3aFUZGRvD398fSpUsNMSUiIiKqZAz6nJ3Kgs/ZMQw+Z4eIiMripXjODhEREVF5Y9ghIiIiWWPYISIiIllj2CEiIiJZY9ghIiIiWWPYISIiIllj2CEiIiJZY9ghIiIiWWPYISIiIllj2CEiIiJZY9ghIiIiWWPYISIiIllj2CEiIiJZY9ghIiIiWWPYISIiIllj2CEiIiJZY9ghIiIiWWPYISIiIllj2CEiIiJZY9ghIiIiWWPYISIiIllj2CEiIiJZY9ghIiIiWWPYISIiIllj2CEiIiJZY9ghIiIiWWPYISIiIllj2CEiIiJZY9ghIiIiWWPYISIiIllj2CEiIiJZY9ghIiIiWWPYISIiIllj2CEiIiJZY9ghIiIiWWPYISIiIlkzaNiZMWMGFAqFzuLm5ibVP336FIGBgbC1tYWVlRX8/f2RlJSks4/4+Hj4+fnBwsIC9vb2mDRpEnJycip6KkRERFRJmRh6AI0bN8ahQ4ekdROT/xvShAkTsHfvXmzbtg1qtRrjxo3DgAEDcOrUKQBAbm4u/Pz8oNFocPr0aSQkJGD48OGoUqUKZs+eXeFzISIiosrH4GHHxMQEGo2mQHlaWhrWrl2LTZs2oUuXLgCAsLAwNGrUCGfOnIGnpycOHjyIS5cu4dChQ3BwcECLFi3w+eefY/LkyZgxYwZMTU0rejpERERUyRj8mp3r16/DyckJdevWxdChQxEfHw8AiImJQXZ2Nry9vaW2bm5uqF27NqKiogAAUVFRaNq0KRwcHKQ2Pj4+SE9PR1xcXMVOhIiIiColg57Z8fDwwPr16+Hq6oqEhASEhITgtddew2+//YbExESYmprC2tpaZxsHBwckJiYCABITE3WCTn59fl1RMjMzkZmZKa2np6fraUZERERU2Rg07Pj6+kp/btasGTw8PODs7IytW7fC3Ny83PqdM2cOQkJCym3/REREVHkY/Gusf7O2tkbDhg3x+++/Q6PRICsrC6mpqTptkpKSpGt8NBpNgbuz8tcLuw4o39SpU5GWliYtt2/f1u9EiIiIqNKoVGEnIyMDN27cgKOjI1q3bo0qVaogMjJSqr969Sri4+Oh1WoBAFqtFhcvXkRycrLUJiIiAiqVCu7u7kX2o1QqoVKpdBYiIiKSJ4N+jfXJJ5+gd+/ecHZ2xt27dxEcHAxjY2MMGTIEarUao0ePxsSJE2FjYwOVSoXx48dDq9XC09MTANC9e3e4u7tj2LBhmDdvHhITEzFt2jQEBgZCqVQacmpERERUSRg07Pz1118YMmQIHjx4gOrVq8PLywtnzpxB9erVAQCLFi2CkZER/P39kZmZCR8fH6xYsULa3tjYGOHh4Rg7diy0Wi0sLS0REBCA0NBQQ02JiIiIKhmFEEIYehCGlp6eDrVajbS0NIN8paUIUVR4n5WBCH7lDz0iIiqDkn5+V6prdoiIiIj0jWGHiIiIZI1hh4iIiGSNYYeIiIhkjWGHiIiIZI1hh4iIiGSt1GEnNTUVa9aswdSpU5GSkgIAOHfuHO7cuaO3wRERERGVVakeKnjhwgV4e3tDrVbj1q1bGDNmDGxsbLBjxw7Ex8dj48aN+h4nERERUamU6szOxIkTMWLECFy/fh1mZmZSec+ePXH8+HG9DY6IiIiorEoVds6ePYv33nuvQHmNGjWQmJhY5kERERER6Uupwo5SqUR6enqB8mvXrkm/a0VERERUGZQq7PTp0wehoaHIzs4GACgUCsTHx2Py5Mnw9/fX6wCJiIiIyqJUYWfBggXIyMiAvb09njx5go4dO6J+/fqoWrUqZs2ape8xElEJzJ07FwqFAh999FGBOiEEfH19oVAosGvXLp26+Ph4+Pn5wcLCAvb29pg0aRJycnIqZtBERBWgVHdjqdVqRERE4OTJk7hw4QIyMjLQqlUreHt763t8RFQCZ8+exddff41mzZoVWr948WIoFIoC5bm5ufDz84NGo8Hp06eRkJCA4cOHo0qVKpg9e3Z5D5uIqEKUKuzk8/LygpeXl77GQkSlkJGRgaFDh2L16tWYOXNmgfrY2FgsWLAAv/zyCxwdHXXqDh48iEuXLuHQoUNwcHBAixYt8Pnnn2Py5MmYMWMGTE1NK2oaRETlpsRhZ+nSpSXe6YcffliqwRDRiwsMDISfnx+8vb0LhJ3Hjx/jrbfewvLly6HRaApsGxUVhaZNm8LBwUEq8/HxwdixYxEXF4eWLVuW+/iJiMpbicPOokWLdNbv3buHx48fw9raGsA/T1TO/86fYYeoYmzevBnnzp3D2bNnC62fMGEC2rdvj759+xZan5iYqBN0AEjrfIwEEclFicPOzZs3pT9v2rQJK1aswNq1a+Hq6goAuHr1KsaMGVPo83eISP9u376N//znP4iIiNB5uGe+PXv24PDhwzh//rwBRkdEVHmU6m6s6dOnY9myZVLQAQBXV1csWrQI06ZN09vgiKhoMTExSE5ORqtWrWBiYgITExMcO3YMS5cuhYmJCSIiInDjxg1YW1tL9QDg7++PTp06AQA0Gg2SkpJ09pu/XtjXXkREL6NSXaCckJBQ6K2pubm5Bf7hJKLy0bVrV1y8eFGnbOTIkXBzc8PkyZNhZ2dX4Exr06ZNsWjRIvTu3RsAoNVqMWvWLCQnJ8Pe3h4AEBERAZVKBXd394qZCBFROStV2OnatSvee+89rFmzBq1atQLwz/8yx44dy9vPiSpI1apV0aRJE50yS0tL2NraSuWFnZ2pXbs2XFxcAADdu3eHu7s7hg0bhnnz5iExMRHTpk1DYGAglEpl+U+CiKgClOprrHXr1kGj0aBNmzZQKpVQKpVo164dHBwcsGbNGn2PkYjKibGxMcLDw2FsbAytVou3334bw4cPR2hoqKGHRkSkNwohhCjtxteuXcOVK1cAAG5ubmjYsKHeBlaR0tPToVarkZaWBpVKVeH9K0IKPuztVSCCS33ovdT4fhMR6UdJP7/L9FDBhg0bvrQBh4iIiF4NpQ47f/31F/bs2YP4+HhkZWXp1C1cuLDMAyMiIiLSh1KFncjISPTp0wd169bFlStX0KRJE9y6dQtCCOmCZSIiIqLKoFQXKE+dOhWffPIJLl68CDMzM2zfvh23b99Gx44dMWjQIH2PkYiIiKjUShV2Ll++jOHDhwMATExM8OTJE1hZWSE0NBRffPGFXgdIREREVBalCjuWlpbSdTqOjo64ceOGVHf//n39jIyIiIhID0p1zY6npydOnjyJRo0aoWfPnvj4449x8eJF7NixA56envoeIxEREVGplSrsLFy4EBkZGQCAkJAQZGRkYMuWLWjQoAHvxCIiIqJKpVRhp27dutKfLS0tsWrVKr0NiIiIiEifSnXNDhEREdHLosRndqpVqwaFomSPuU9JSSn1gIiIiIj0qcRhZ/HixdKfHzx4gJkzZ8LHxwdarRYAEBUVhQMHDmD69Ol6HyQRERFRaZXqh0D9/f3RuXNnjBs3Tqf8q6++wqFDh7Br1y59ja9C8IdADeNV/WFIvt9ERPpR0s/vUl2zc+DAAfTo0aNAeY8ePXDo0KHS7BJz586FQqHARx99JJU9ffoUgYGBsLW1hZWVFfz9/ZGUlKSzXXx8PPz8/GBhYQF7e3tMmjQJOTk5pRoDERERyU+pwo6trS12795doHz37t2wtbV94f2dPXsWX3/9NZo1a6ZTPmHCBPz444/Ytm0bjh07hrt372LAgAFSfW5uLvz8/JCVlYXTp09jw4YNWL9+PYKCgl58UkRERCRLpbr1PCQkBO+88w6OHj0KDw8PAEB0dDT279+P1atXv9C+MjIyMHToUKxevRozZ86UytPS0rB27Vps2rQJXbp0AQCEhYWhUaNGOHPmDDw9PXHw4EFcunQJhw4dgoODA1q0aIHPP/8ckydPxowZM2Bqalqa6REREZGMlOrMzogRI3Dq1CmoVCrs2LEDO3bsgEqlwsmTJzFixIgX2ldgYCD8/Pzg7e2tUx4TE4Ps7Gydcjc3N9SuXRtRUVEA/rkoumnTpnBwcJDa+Pj4ID09HXFxcaWZGhEREclMqc7sAICHhwe+++67MnW+efNmnDt3DmfPni1Ql5iYCFNTU1hbW+uUOzg4IDExUWrz76CTX59fV5TMzExkZmZK6+np6aWdAhEREVVyJQ476enp0pXOzwsHJbmj6fbt2/jPf/6DiIgImJmZlXQYejFnzhyEhIRUaJ9ERERkGCX+GqtatWpITk4GAFhbW6NatWoFlvzykoiJiUFycjJatWoFExMTmJiY4NixY1i6dClMTEzg4OCArKwspKam6myXlJQEjUYDANBoNAXuzspfz29TmKlTpyItLU1abt++XdKXgYiIiF4yJT6zc/jwYdjY2AAAjhw5UuaOu3btiosXL+qUjRw5Em5ubpg8eTJq1aqFKlWqIDIyEv7+/gCAq1evIj4+XnqQoVarxaxZs5CcnAx7e3sAQEREBFQqFdzd3YvsW6lUQqlUlnkOREREVPmVOOx07NhR+rOLiwtq1apV4OcjhBAlPktStWpVNGnSRKfM0tIStra2Uvno0aMxceJE2NjYQKVSYfz48dBqtfD09AQAdO/eHe7u7hg2bBjmzZuHxMRETJs2DYGBgQwzREREBKCUFyi7uLggISFBOpuSLyUlBS4uLsjNzdXL4BYtWgQjIyP4+/sjMzMTPj4+WLFihVRvbGyM8PBwjB07FlqtFpaWlggICEBoaKhe+iciIqKXX6nCjhCi0B8FzcjIKNPFxkePHtVZNzMzw/Lly7F8+fIit3F2dsZPP/1U6j6JiIhI3l4o7EycOBEAoFAoMH36dFhYWEh1ubm5iI6ORosWLfQ6QCIiIqKyeKGwc/78eQD/nNm5ePGizhOKTU1N0bx5c3zyySf6HSERERFRGbxQ2Mm/C2vkyJFYsmSJQX4hnIiIiOhFlOqanbCwMH2Pg4iIiKhclCrsPHr0CHPnzkVkZCSSk5ORl5enU//HH3/oZXBEREREZVWqsPPOO+/g2LFjGDZsGBwdHQu9M4uIiIioMihV2Nm3bx/27t2LDh066Hs8RERERHpV4t/G+rdq1apJPx1BREREVJmVKux8/vnnCAoKwuPHj/U9HiIiIiK9KtXXWAsWLMCNGzfg4OCAOnXqoEqVKjr1586d08vgiIiIiMqqVGGnX79+eh4GERERUfkoVdgJDg7W9ziIiIiIykWprtkhIiIielmU6sxObm4uFi1ahK1btyI+Ph5ZWVk69SkpKXoZHBEREVFZlerMTkhICBYuXIjBgwcjLS0NEydOxIABA2BkZIQZM2boeYhEREREpVeqsPPdd99h9erV+Pjjj2FiYoIhQ4ZgzZo1CAoKwpkzZ/Q9RiIiIqJSK1XYSUxMRNOmTQEAVlZWSEtLAwD06tULe/fu1d/oiIiIiMqoVGGnZs2aSEhIAADUq1cPBw8eBACcPXsWSqVSf6MjIiIiKqNShZ3+/fsjMjISADB+/HhMnz4dDRo0wPDhwzFq1Ci9DpCIiIioLEp1N9bcuXOlPw8ePBi1a9dGVFQUGjRogN69e+ttcERERERlVaqw8yytVgutVquPXRERERHpVanCzsaNG4utHz58eKkGQ0RERKRvpQo7//nPf3TWs7Oz8fjxY5iamsLCwoJhh4iIiCqNUl2g/Pfff+ssGRkZuHr1Kry8vPD999/re4xEREREpaa338Zq0KAB5s6dW+CsDxEREZEh6fWHQE1MTHD37l197pKIiIioTEp1zc6ePXt01oUQSEhIwFdffYUOHTroZWBERERE+lCqsNOvXz+ddYVCgerVq6NLly5YsGCBPsZFREREpBelCjt5eXkAgHv37sHU1BRqtVqvgyIiIiLSlxe+Zic1NRWBgYGws7ODRqOBjY0NNBoNpk6disePH5fHGImIiIhK7YXO7KSkpECr1eLOnTsYOnQoGjVqBAC4dOkSli1bhoiICJw8eRIXLlzAmTNn8OGHH5bLoImIiIhK6oXCTmhoKExNTXHjxg04ODgUqOvevTuGDRuGgwcPYunSpXodKBEREVFpvFDY2bVrF77++usCQQcANBoN5s2bh549eyI4OBgBAQF6GyQRERFRab3QNTsJCQlo3LhxkfVNmjSBkZERgoODyzwwIiIiIn14obBjZ2eHW7duFVl/8+ZN2Nvbl3VMRERERHrzQmHHx8cH//3vf5GVlVWgLjMzE9OnT0ePHj30NjgiIiKisnqhsBMaGoqrV6+iQYMGmDdvHvbs2YPdu3dj7ty5aNCgAS5fvowZM2aUeH8rV65Es2bNoFKpoFKpoNVqsW/fPqn+6dOnCAwMhK2tLaysrODv74+kpCSdfcTHx8PPzw8WFhawt7fHpEmTkJOT8yLTIiIiIhl7oQuUa9asiaioKHzwwQeYOnUqhBAA/nmCcrdu3fDVV1+hdu3aL7S//KAkhMCGDRvQt29fnD9/Ho0bN8aECROwd+9ebNu2DWq1GuPGjcOAAQNw6tQpAEBubi78/Pyg0Whw+vRpJCQkYPjw4ahSpQpmz579IlMjIiIimVKI/MTygv7++29cv34dAFC/fn3Y2NjoZUA2NjaYP38+Bg4ciOrVq2PTpk0YOHAgAODKlSto1KgRoqKi4OnpiX379qFXr164e/eudIfYqlWrMHnyZOnpziWRnp4OtVqNtLQ0qFQqvczjRShCFBXeZ2Uggkt16L30+H4TEelHST+/S/2r59WqVUO7du3Qrl07vQSd3NxcbN68GY8ePYJWq0VMTAyys7Ph7e0ttXFzc0Pt2rURFRUFAIiKikLTpk11boX38fFBeno64uLiyjwmIiIievmV6rex9OnixYvQarV4+vQprKyssHPnTri7uyM2NhampqawtrbWae/g4IDExEQAQGJiYoFn/uSv57cpTGZmJjIzM6X19PR0Pc2GiIiIKptSn9nRF1dXV8TGxiI6Ohpjx45FQEAALl26VK59zpkzB2q1Wlpq1apVrv0RERGR4Rg87JiamqJ+/fpo3bo15syZg+bNm2PJkiXQaDTIyspCamqqTvukpCRoNBoA/zy1+dm7s/LX89sUZurUqUhLS5OW27dv63dSREREVGkYPOw8Ky8vD5mZmWjdujWqVKmCyMhIqe7q1auIj4+HVqsFAGi1Wly8eBHJyclSm4iICKhUKri7uxfZh1KplG53z1+IiIhIngx6zc7UqVPh6+uL2rVr4+HDh9i0aROOHj2KAwcOQK1WY/To0Zg4cSJsbGygUqkwfvx4aLVaeHp6AgC6d+8Od3d3DBs2DPPmzUNiYiKmTZuGwMBAKJVKQ06NiIiIKgmDhp3k5GQMHz4cCQkJUKvVaNasGQ4cOIBu3boBABYtWgQjIyP4+/sjMzMTPj4+WLFihbS9sbExwsPDMXbsWGi1WlhaWiIgIAChoaGGmhIRERFVMqV+zo6c8Dk7hvGqPneF7zcRkX6U+3N2iIiIiF4GDDtEREQkaww7REREJGsMO0RERCRrDDtEREQkaww7REREJGsMO0RERCRrDDtEREQkaww7REREJGsMO0RERCRrDDtEREQkaww7REREJGsMO0RERCRrDDtEREQkaww7REREJGsMO0RERCRrDDtEREQkaww7REREJGsMO0RERCRrDDtEREQkaww7REREJGsMO0RERCRrDDtEREQkaww7REREJGsMO0RERCRrDDtEREQkaww7REREJGsMO0RERCRrDDtEREQkaww7REREJGsMO0RERCRrDDtEREQkaww7REREJGsMO0RERCRrDDtEREQkaww7REREJGsGDTtz5sxB27ZtUbVqVdjb26Nfv364evWqTpunT58iMDAQtra2sLKygr+/P5KSknTaxMfHw8/PDxYWFrC3t8ekSZOQk5NTkVMhIiKiSsqgYefYsWMIDAzEmTNnEBERgezsbHTv3h2PHj2S2kyYMAE//vgjtm3bhmPHjuHu3bsYMGCAVJ+bmws/Pz9kZWXh9OnT2LBhA9avX4+goCBDTImIiIgqGYUQQhh6EPnu3bsHe3t7HDt2DK+//jrS0tJQvXp1bNq0CQMHDgQAXLlyBY0aNUJUVBQ8PT2xb98+9OrVC3fv3oWDgwMAYNWqVZg8eTLu3bsHU1PT5/abnp4OtVqNtLQ0qFSqcp1jYRQhigrvszIQwZXm0KtQfL+JiPSjpJ/fleqanbS0NACAjY0NACAmJgbZ2dnw9vaW2ri5uaF27dqIiooCAERFRaFp06ZS0AEAHx8fpKenIy4urgJHT0RERJWRiaEHkC8vLw8fffQROnTogCZNmgAAEhMTYWpqCmtra522Dg4OSExMlNr8O+jk1+fXFSYzMxOZmZnSenp6ur6mQURERJVMpTmzExgYiN9++w2bN28u977mzJkDtVotLbVq1Sr3PomIiMgwKkXYGTduHMLDw3HkyBHUrFlTKtdoNMjKykJqaqpO+6SkJGg0GqnNs3dn5a/nt3nW1KlTkZaWJi23b9/W42yIiIioMjFo2BFCYNy4cdi5cycOHz4MFxcXnfrWrVujSpUqiIyMlMquXr2K+Ph4aLVaAIBWq8XFixeRnJwstYmIiIBKpYK7u3uh/SqVSqhUKp2FiIiI5Mmg1+wEBgZi06ZN2L17N6pWrSpdY6NWq2Fubg61Wo3Ro0dj4sSJsLGxgUqlwvjx46HVauHp6QkA6N69O9zd3TFs2DDMmzcPiYmJmDZtGgIDA6FUKg05PSIiIqoEDBp2Vq5cCQDo1KmTTnlYWBhGjBgBAFi0aBGMjIzg7++PzMxM+Pj4YMWKFVJbY2NjhIeHY+zYsdBqtbC0tERAQABCQ0MrahpERERUiVWq5+wYCp+zYxiv6nNX+H4TEenHS/mcHSIiIiJ9Y9ghIiIiWWPYISIiIllj2CEiIiJZY9ghIiIiWWPYISIiIllj2CEiIiJZY9ghIiIiWWPYISJ6SRw/fhy9e/eGk5MTFAoFdu3aVWTb999/HwqFAosXL9Ypv3btGvr27Qs7OzuoVCp4eXnhyJEj5TtwIgNj2CEiekk8evQIzZs3x/Lly4ttt3PnTpw5cwZOTk4F6nr16oWcnBwcPnwYMTExaN68OXr16iX9NiGRHBn0t7GIiKjkfH194evrW2ybO3fuYPz48Thw4AD8/Px06u7fv4/r169j7dq1aNasGQBg7ty5WLFiBX777TdoNJpyGzuRIfHMDhGRTOTl5WHYsGGYNGkSGjduXKDe1tYWrq6u2LhxIx49eoScnBx8/fXXsLe3R+vWrQ0wYqKKwTM7REQy8cUXX8DExAQffvhhofUKhQKHDh1Cv379ULVqVRgZGcHe3h779+9HtWrVKni0RBWHYYeISAZiYmKwZMkSnDt3DgqFotA2QggEBgbC3t4eJ06cgLm5OdasWYPevXvj7NmzcHR0rOBRE1UMfo1FRCQDJ06cQHJyMmrXrg0TExOYmJjgzz//xMcff4w6deoAAA4fPozw8HBs3rwZHTp0QKtWrbBixQqYm5tjw4YNhp0AUTli2CEikoFhw4bhwoULiI2NlRYnJydMmjQJBw4cAAA8fvwYAGBkpPtPv5GREfLy8ip8zFS85z1qYMaMGXBzc4OlpSWqVasGb29vREdH67Tp06cPateuDTMzMzg6OmLYsGG4e/duBc6icmDYISJ6SWRkZEhBBgBu3ryJ2NhYxMfHw9bWFk2aNNFZqlSpAo1GA1dXVwCAVqtFtWrVEBAQgF9//RXXrl3DpEmTcPPmzQJ3bpHhPe9RAw0bNsRXX32Fixcv4uTJk6hTpw66d++Oe/fuSW06d+6MrVu34urVq9i+fTtu3LiBgQMHVtQUKg1es0NE9JL45Zdf0LlzZ2l94sSJAICAgACsX7/+udvb2dlh//79+O9//4suXbogOzsbjRs3xu7du9G8efPyGjaV0vMeNfDWW2/prC9cuBBr167FhQsX0LVrVwDAhAkTpHpnZ2dMmTIF/fr1Q3Z2NqpUqVI+A6+EGHaIiMqRIqTwi4VLbUbBog3YgA0hhVxzMxKYkDYBE0Im6Ja3//8LgDM4g54/9wR+1u8wRbDQ7w6pWFlZWfjmm2+gVquLDK4pKSn47rvv0L59+1cq6AD8GouIiOilFR4eDisrK5iZmWHRokWIiIiAnZ2dTpvJkyfD0tIStra2iI+Px+7duw00WsNh2CEiInpJde7cGbGxsTh9+jR69OiBN954A8nJyTptJk2ahPPnz+PgwYMwNjbG8OHDIcSrdeaNYYeIiOglZWlpifr168PT0xNr166FiYkJ1q5dq9PGzs4ODRs2RLdu3bB582b89NNPOHPmjIFGbBgMO0RERDKRl5eHzMzMYusBFNtGjniBMhERUSWUkZGB33//XVrPf9SAjY0NbG1tMWvWLPTp0weOjo64f/8+li9fjjt37mDQoEEAgOjoaJw9exZeXl6oVq0abty4genTp6NevXrQarWGmpZB8MwOERFRJfTLL7+gZcuWaNmyJYB/HjXQsmVLBAUFwdjYGFeuXIG/vz8aNmyI3r1748GDBzhx4oT0I7AWFhbYsWMHunbtCldXV4wePRrNmjXDsWPHoFQqDTm1CqcQr9pVSoVIT0+HWq1GWloaVCpVhfev91tTXxKv6q2pfL9fLXy/Xy18vytWST+/eWaHiIiIZI1hh4iIiGSNYYeIiIhkjWGHiIiIZI1hh4iIiGSNYYeIiIhkjWGHiIiIZI1hh4iIiGSNYYeIiIhkjWGHiIiIZM2gYef48ePo3bs3nJycoFAosGvXLp16IQSCgoLg6OgIc3NzeHt74/r16zptUlJSMHToUKhUKlhbW2P06NHIyMiowFkQERFRZWbQsPPo0SM0b94cy5cvL7R+3rx5WLp0KVatWoXo6GhYWlrCx8cHT58+ldoMHToUcXFxiIiIQHh4OI4fP4533323oqZARERElZyJITv39fWFr69voXVCCCxevBjTpk1D3759AQAbN26Eg4MDdu3ahTfffBOXL1/G/v37cfbsWbRp0wYAsGzZMvTs2RNffvklnJycKmwuREREVDlV2mt2bt68icTERHh7e0tlarUaHh4eiIqKAgBERUXB2tpaCjoA4O3tDSMjI0RHR1f4mImIiKjyMeiZneIkJiYCABwcHHTKHRwcpLrExETY29vr1JuYmMDGxkZqU5jMzExkZmZK6+np6foaNhEREVUylfbMTnmaM2cO1Gq1tNSqVcvQQyIiIqJyUmnDjkajAQAkJSXplCclJUl1Go0GycnJOvU5OTlISUmR2hRm6tSpSEtLk5bbt2/refRERERUWVTasOPi4gKNRoPIyEipLD09HdHR0dBqtQAArVaL1NRUxMTESG0OHz6MvLw8eHh4FLlvpVIJlUqlsxAREZE8GfSanYyMDPz+++/S+s2bNxEbGwsbGxvUrl0bH330EWbOnIkGDRrAxcUF06dPh5OTE/r16wcAaNSoEXr06IExY8Zg1apVyM7Oxrhx4/Dmm2/yTiwiIiICYOCw88svv6Bz587S+sSJEwEAAQEBWL9+PT799FM8evQI7777LlJTU+Hl5YX9+/fDzMxM2ua7777DuHHj0LVrVxgZGcHf3x9Lly6t8LkQERFR5WTQsNOpUycIIYqsVygUCA0NRWhoaJFtbGxssGnTpvIYHhEREclApb1mh4iIiEgfGHaIiIhI1hh2iIiISNYYdoiIiEjWGHaIiIhI1hh2iIiISNYYdoiIiEjWGHaIiIhI1hh2iIiISNYYdoiIiEjWGHaIiIhI1hh2iIiISNYYdoiIiEjWGHaIiIhI1hh2iIiISNYYdoiIiEjWGHaIiIhI1hh2iIiISNYYdoiIiEjWGHaIiIhI1hh2iIiISNYYdoiIiEjWGHaIiIhI1hh2iIiISNYYdoiIiEjWGHaIiIhI1hh2iIiISNYYdoiIiEjWGHaIiIhI1hh2iIiISNYYdoiIiEjWGHaIiIhI1hh2iIiISNYYdoiIiEjWGHaIiIhI1hh2iIiISNZkE3aWL1+OOnXqwMzMDB4eHvj5558NPSQiIiKqBGQRdrZs2YKJEyciODgY586dQ/PmzeHj44Pk5GRDD42IiIgMTBZhZ+HChRgzZgxGjhwJd3d3rFq1ChYWFli3bp2hh0ZEREQG9tKHnaysLMTExMDb21sqMzIygre3N6Kiogw4MiIiIqoMTAw9gLK6f/8+cnNz4eDgoFPu4OCAK1euFLpNZmYmMjMzpfW0tDQAQHp6evkNtDhPDdOtoRns9TY0vt+vFr7frxa+3wbpVwhRbLuXPuyUxpw5cxASElKgvFatWgYYzatLPVdt6CFQBeL7/Wrh+/1qMfT7/fDhQ6jVRY/hpQ87dnZ2MDY2RlJSkk55UlISNBpNodtMnToVEydOlNbz8vKQkpICW1tbKBSKch1vZZKeno5atWrh9u3bUKlUhh4OlTO+368Wvt+vllf1/RZC4OHDh3Byciq23UsfdkxNTdG6dWtERkaiX79+AP4JL5GRkRg3blyh2yiVSiiVSp0ya2vrch5p5aVSqV6pvxyvOr7frxa+36+WV/H9Lu6MTr6XPuwAwMSJExEQEIA2bdqgXbt2WLx4MR49eoSRI0caemhERERkYLIIO4MHD8a9e/cQFBSExMREtGjRAvv37y9w0TIRERG9emQRdgBg3LhxRX5tRYVTKpUIDg4u8JUeyRPf71cL3+9XC9/v4inE8+7XIiIiInqJvfQPFSQiIiIqDsMOERERyRrDDhEREckaww7p1YgRI6TnHVH5UCgU2LVrV4X3u379+lf6eVSVxa1bt6BQKBAbG1vhfc+YMQMtWrSo8H7p+Qx5XLwMGHYqqU6dOuGjjz4qUF6aD5yi9vWi8v8yPbucOXOmzPum/zNjxowCr7Gbm1uZ9vnNN9+gU6dOUKlUUCgUSE1NLdAmJSUFQ4cOhUqlgrW1NUaPHo2MjIwy9UsFHT9+HL1794aTk1OhwVUIgaCgIDg6OsLc3Bze3t64fv16mfudNWsW2rdvDwsLiyL/DSns7/fmzZvL3Dc93/OOixEjRhR4b3r06GGYwb6EGHbohR06dAgJCQnS0rp1a0MPSXYaN26s8xqfPHmyTPt7/PgxevTogc8++6zINkOHDkVcXBwiIiIQHh6O48eP49133y1Tv1TQo0eP0Lx5cyxfvrzQ+nnz5mHp0qVYtWoVoqOjYWlpCR8fHzx9WrZfmMzKysKgQYMwduzYYtuFhYXpHHs8U1sxnndcAECPHj103pvvv/++TH0qFArcunWrTPt4WTDsvOTyvzYKCQlB9erVoVKp8P777yMrK0uqP3bsGJYsWSL9byD/4D527BjatWsHpVIJR0dHTJkyBTk5Oc/t09bWFhqNRlqqVKlSZNuzZ8+ievXq+OKLL/Qy31eFiYmJzmtsZ2dXZNvg4GA4OjriwoULRbb56KOPMGXKFHh6ehZaf/nyZezfvx9r1qyBh4cHvLy8sGzZMmzevBl3794tdJt79+6hTZs26N+/PzIzM19sgq8wX19fzJw5E/379y9QJ4TA4sWLMW3aNPTt2xfNmjXDxo0bcffu3SK/uszNzcWoUaPg5uaG+Pj4IvsNCQnBhAkT0LRp02LHZ21trXPsmZmZFdn2xo0bqFu3LsaNG/fcX52m4hV3XORTKpU67021atWKbFvS4+JVwbAjA5GRkbh8+TKOHj2K77//Hjt27JB+1X3JkiXQarUYM2aM9L+BWrVq4c6dO+jZsyfatm2LX3/9FStXrsTatWsxc+bM5/bXp08f2Nvbw8vLC3v27Cmy3eHDh9GtWzfMmjULkydP1tt8XwXXr1+Hk5MT6tati6FDhxb6j5UQAuPHj8fGjRtx4sQJNGvWrNT9RUVFwdraGm3atJHKvL29YWRkhOjo6ALtb9++jddeew1NmjTBDz/8wAeZ6cnNmzeRmJgIb29vqUytVsPDwwNRUVEF2mdmZmLQoEGIjY3FiRMnULt27TKPITAwEHZ2dmjXrh3WrVtXZIi5cOECvLy88NZbb+Grr756pX5E2VCOHj0Ke3t7uLq6YuzYsXjw4EGh7crjuHjZyeYJyq8yU1NTrFu3DhYWFmjcuDFCQ0MxadIkfP7551Cr1TA1NYWFhYXOr8CvWLECtWrVkv6RcnNzw927dzF58mQEBQXByKhgDrayssKCBQvQoUMHGBkZYfv27ejXrx927dqFPn366LTduXMnhg8fjjVr1mDw4MHl/hrIiYeHB9avXw9XV1ckJCQgJCQEr732Gn777TdUrVoVAJCTk4O3334b58+fx8mTJ1GjRo0y9ZmYmAh7e3udMhMTE9jY2CAxMVGn/OrVq+jWrRv69++PxYsX80NOj/Jf62d/6sbBwaHA+5CRkQE/Pz9kZmbiyJEjJfoxxOcJDQ1Fly5dYGFhgYMHD+KDDz5ARkYGPvzwQ512p0+fRq9evfDf//4XH3/8cZn7pefr0aMHBgwYABcXF9y4cQOfffYZfH19ERUVBWNjY6ldeRwXcsCwIwPNmzeHhYWFtK7VapGRkYHbt2/D2dm50G0uX74MrVar80HVoUMHZGRk4K+//ir0fwJ2dnaYOHGitN62bVvcvXsX8+fP1wk70dHRCA8Pxw8//MDv+0vB19dX+nOzZs3g4eEBZ2dnbN26FaNHjwYATJgwAUqlEmfOnNH5imv27NmYPXu2tH7p0iW9/q/uyZMneO211/DWW29h8eLFetsvvbghQ4agZs2aOHz4MMzNzaXy999/H//73/+k9Re5yHz69OnSn1u2bIlHjx5h/vz5OmEnPj5eOmOrjxsfqGTefPNN6c9NmzZFs2bNUK9ePRw9ehRdu3aV6oo6LoB//m05ceKETlnjxo2lzwFnZ2fExcWV4ywMh19jVVIqlQppaWkFylNTUytVUvfw8MDvv/+uU1avXj24ublh3bp1yM7ONtDI5MPa2hoNGzbUeZ27deuGO3fu4MCBAzpt33//fcTGxkqLk5NTifrQaDRITk7WKcvJyUFKSorOGUGlUglvb2+Eh4fjzp07ZZgVFSb/tU5KStIpT0pK0nkfAKBnz564cOFCga+3QkNDdY6BsvDw8MBff/2lc01W9erV0a5dO3z//fdIT08v0/6p9OrWrQs7O7sC//4WdVwAwJo1awocGz/99JO0/tNPP1XE0A2CYaeScnV1xblz5wqUnzt3Dg0bNtQp+/XXX/HkyRNp/cyZM7CyskKtWrUA/PM1V25urs42jRo1QlRUlM738adOnULVqlVRs2bNEo8zNjYWjo6OOmV2dnY4fPgwfv/9d7zxxhsMPGWUkZGBGzdu6LzOffr0waZNm/DOO+/o3BpsY2OD+vXrS4uJSclO3mq1WqSmpiImJkYqO3z4MPLy8uDh4SGVGRkZ4dtvv0Xr1q3RuXPnIi9eptJxcXGBRqNBZGSkVJaeno7o6GhotVqdtmPHjsXcuXPRp08fHDt2TCq3t7fXOQbKIjY2FtWqVdO5Jsvc3Bzh4eEwMzODj48PHj58WKY+qHT++usvPHjwoMC/v0UdFwBQo0aNAseGs7OztF7UNwGyIKhSunHjhjAzMxPjx48Xv/76q7hy5YpYsGCBMDExEfv27ZPaBQQECCsrKzFkyBARFxcn9u7dKxwcHMSUKVOkNmPGjBFt27YVN2/eFPfu3RO5ubnir7/+EhYWFiIwMFBcvnxZ7Nq1S9jZ2Yng4OAix7R+/XqxadMmcfnyZXH58mUxa9YsYWRkJNatW6cznr59+wohhEhISBBubm7C399fZGdn6/01kquPP/5YHD16VNy8eVOcOnVKeHt7Czs7O5GcnCyEEAKA2LlzpxBCiG3btgkzMzOxbdu2YveZkJAgzp8/L1avXi0AiOPHj4vz58+LBw8eSG169OghWrZsKaKjo8XJkydFgwYNxJAhQ6T6sLAwoVarhRBCZGdni4EDBwpXV1eRkJCg3xdA5h4+fCjOnz8vzp8/LwCIhQsXivPnz4s///xTCCHE3LlzhbW1tdi9e7e4cOGC6Nu3r3BxcRFPnjwRQghx8+ZNAUCcP39eCCHEokWLhJWVlThx4kSx/f7555/i/PnzIiQkRFhZWUljePjwoRBCiD179ojVq1eLixcviuvXr4sVK1YICwsLERQUJO0jODhYNG/eXJqHl5eX6NChg7QPKr3ijouHDx+KTz75RERFRYmbN2+KQ4cOiVatWokGDRqIp0+fCiFKd1wAEDdv3qyA2Rkew04l9vPPP4tu3bqJ6tWrC7VaLTw8PKQPuXz54SIoKEjY2toKKysrMWbMGOkvgBBCXL16VXh6egpzc3Odg/vo0aOibdu2wtTUVGg0GjF58uRiQ8n69etFo0aNhIWFhVCpVKJdu3YFPmT/HXaEEOLu3buiYcOG4o033hA5OTllfk1eBYMHDxaOjo7C1NRU1KhRQwwePFj8/vvvUv2/w44QQmzZskWYmZmJ7du3F7nP4OBgAaDAEhYWJrV58OCBGDJkiLCyshIqlUqMHDlS50Ps32FHiH8Cz4ABA0SjRo1EUlKSXub+Kjhy5Eih70VAQIAQQoi8vDwxffp04eDgIJRKpejatau4evWqtP2zH2pCCLFgwQJRtWpVcerUqSL7DQgIKLTfI0eOCCGE2Ldvn2jRooWwsrISlpaWonnz5mLVqlUiNzdX2se/w44Q/3xAt2/fXrz++usiIyNDL6/Pq6q44+Lx48eie/fuonr16qJKlSrC2dlZjBkzRiQmJkrbl+a4eJXCjkIIPhzhZTZixAikpqYa5OcDiIiIXga8ZoeIiIhkjWGHiIiIZI1fYxEREZGs8cwOERERyRrDDhEREckaww4RERHJGsMOERERyRrDDhFViPXr18Pa2trQwyiROnXq6OWHTkeMGPFCP4Z769YtKBSKMv+mFRHpYtghohIbMWIEFApFgeXZHyMszODBg3Ht2rVyH+POnTvh6ekJtVqNqlWronHjxgb7de4lS5Zg/fr1BumbiP5PyX4lkIjo/+vRowfCwsJ0yqpXr/7c7czNzWFubl5ewwIAREZGYvDgwZg1axb69OkDhUKBS5cuISIiolz7fVZubi4UCgXUanWF9ktEheOZHSJ6IUqlEhqNRmcxNjbGwoUL0bRpU1haWqJWrVr44IMPkJGRIW3376+xhBDw9vaGj48P8h/1lZKSgpo1ayIoKAjAP4Fh9OjRcHFxgbm5OVxdXbFkyZJix/bjjz+iQ4cOmDRpElxdXdGwYUP069cPy5cvl9rcuHEDffv2hYODA6ysrNC2bVscOnSo2P2WdG579uyBu7s7lEol4uPjC3yNtX//fnh5ecHa2hq2trbo1asXbty4UaLXnYhKj2GHiPTCyMgIS5cuRVxcHDZs2IDDhw/j008/LbStQqHAhg0bcPbsWSxduhQA8P7776NGjRpS2MnLy0PNmjWxbds2XLp0CUFBQfjss8+wdevWIseg0WgQFxeH3377rcg2GRkZ6NmzJyIjI3H+/Hn06NEDvXv3Rnx8fJnm9vjxY3zxxRdYs2YN4uLiYG9vX2A/jx49wsSJE/HLL78gMjISRkZG6N+/P/Ly8orsm4j0wJC/QkpEL5eAgABhbGwsLC0tpWXgwIGFtt22bZuwtbWV1p/91XQhhNi6daswMzMTU6ZMEZaWluLatWvF9h8YGCj8/f2LrM/IyBA9e/YUAISzs7MYPHiwWLt2rXj69Gmx+23cuLFYtmyZtO7s7CwWLVpUZPvC5gZAxMbG6rQLCAgQffv2LXI/9+7dEwDExYsXhRCF/3I1EZUdr9khohfSuXNnrFy5Ulq3tLQEABw6dAhz5szBlStXkJ6ejpycHDx9+hSPHz+GhYVFofsaNGgQdu7ciblz52LlypVo0KCBTv3y5cuxbt06xMfH48mTJ8jKykKLFi2KHJulpSX27t2LGzdu4MiRIzhz5gw+/vhjLFmyBFFRUbCwsEBGRgZmzJiBvXv3IiEhATk5OXjy5EmxZ3ZKMjdTU1M0a9as2Nfu+vXrCAoKQnR0NO7fvy+d0YmPj0eTJk2K3ZaISo9fYxHRC7G0tET9+vWlxdHREbdu3UKvXr3QrFkzbN++HTExMdJ1MllZWUXu6/Hjx4iJiYGxsTGuX7+uU7d582Z88sknGD16NA4ePIjY2FiMHDmy2P3lq1evHt555x2sWbMG586dw6VLl7BlyxYAwCeffIKdO3di9uzZOHHiBGJjY9G0adMi91vSuZmbm0OhUBQ7rt69eyMlJQWrV69GdHQ0oqOjn/saEVHZ8cwOEZVZTEwM8vLysGDBAhgZ/fN/qOKurcn38ccfw8jICPv27UPPnj3h5+eHLl26AABOnTqF9u3b44MPPpDal+Zi3jp16sDCwgKPHj2S9jtixAj0798fwD/X8Ny6dUvvc3vWgwcPcPXqVaxevRqvvfYaAODkyZMvvB8ienEMO0RUZvXr10d2djaWLVuG3r1749SpU1i1alWx2+zduxfr1q1DVFQUWrVqhUmTJiEgIAAXLlxAtWrV0KBBA2zcuBEHDhyAi4sLvv32W5w9exYuLi5F7nPGjBl4/PgxevbsCWdnZ6SmpmLp0qXIzs5Gt27dAAANGjTAjh070Lt3bygUCkyfPr3YC4RLM7fCVKtWDba2tvjmm2/g6OiI+Ph4TJky5YX3Q0Qvjl9jEVGZNW/eHAsXLsQXX3yBJk2a4LvvvsOcOXOKbH/v3j2MHj0aM2bMQKtWrQAAISEhcHBwwPvvvw8AeO+99zBgwAAMHjwYHh4eePDggc5ZnsJ07NgRf/zxB4YPHw43Nzf4+voiMTERBw8ehKurK4B/biOvVq0a2rdvj969e8PHx0cagz7mVhQjIyNs3rwZMTExaNKkCSZMmID58+e/8H6I6MUphPj/D7kgIiIikiGe2SEiIiJZY9ghIiIiWWPYISIiIllj2CEiIiJZY9ghIiIiWWPYISIiIllj2CEiIiJZY9ghIiIiWWPYISIiIllj2CEiIiJZY9ghIiIiWWPYISIiIln7f99FMvM0mDiKAAAAAElFTkSuQmCC",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "employeesIncome = dfNovo['SalarySlab'].value_counts()\n",
+ "\n",
+ "#criando o grafico\n",
+ "barras = employeesIncome.plot.bar(color='green')\n",
+ "\n",
+ "#configurações\n",
+ "plt.xlabel('Faixa Salarial')\n",
+ "plt.xticks(rotation=0)\n",
+ "plt.ylabel('Quantidade')\n",
+ "plt.title('Faixa Salarial da empresa')\n",
+ "\n",
+ "# Adicionar rótulos nos graficos\n",
+ "for i, v in enumerate(employeesIncome):\n",
+ " barras.text(i, v + 0.01, f'{v}', color='black', ha='center')\n",
+ "\n",
+ "plt.show()"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "A maior parte recebe até 10mil"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Faixa Etária dentre os colaboradores"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 22,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjsAAAHHCAYAAABZbpmkAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAABS7klEQVR4nO3de1zO9/8/8MdV6SrVdaV0XEmISnIe0Zxq0nKabJgPMR8zijmONoSZHIZhTuMjbMxmjmMichhiCWPMmeVUIUpFpV6/P/x6f10KdXXVlbfH/XZ7326u1+t1vd/P9/WKHt6nSyGEECAiIiKSKQN9F0BERERUlhh2iIiISNYYdoiIiEjWGHaIiIhI1hh2iIiISNYYdoiIiEjWGHaIiIhI1hh2iIiISNYYdojeUMeOHcPkyZORkpKi71KIiMoUww5RCezbtw8KhQL79u3Tdymlcu/ePbz//vvIzc2Fra1tsd83adIkKBSKMqzsqX79+qF69eplvp2yVpqfl379+sHc3Fz3RZURhUKBSZMm6bsMoiIx7NAbYeXKlVAoFEUu48aN03d5r/Sy+hUKBY4cOQIAyMrKwqRJk176y1UIgZCQELRp0wZTp04tpz14PeTl5SEqKgpt2rSBlZUVlEolqlevjv79++PYsWP6Lo+ItGSk7wKIytOUKVPg6uqq0ebl5VXs97dq1QqPHj2CsbGxrksrlqLqB4BatWoBeBp2Jk+eDABo06ZNkeu4evUqfH19MXLkyBJvf/z48a9FONTGo0eP0K1bN0RHR6NVq1b44osvYGVlhWvXruGXX37BqlWrkJiYCCcnJ32XSkQlxLBDb5TAwEA0adJE6/cbGBjAxMREhxWVTGnrB4AaNWqUOLBkZmbCzMwMRkZGMDKS5z8bY8aMQXR0NObOnYvhw4dr9EVERGDu3Ln6KawM5efnIycnR68/00Up+Hkj0hWexiIC8O+//2LIkCGoU6cOTE1NYW1tjQ8++ADXrl3TGPf8NRj//PMPTE1N0bdvX41xBw8ehKGhIcaOHSu1bdmyBUFBQXB0dIRSqUTNmjXx1VdfIS8vTyf7cO3aNdjY2AAAJk+eLJ3iKriO4tSpU+jXrx9q1KgBExMT2Nvb4+OPP8a9e/c01lNwXc7Zs2fx0UcfoUqVKvD19dXoe1ZUVBTatWsHW1tbKJVKeHp6YvHixcWue/PmzfDy8oKJiQm8vLywadOmIsdlZmZi1KhRcHZ2hlKpRJ06dfDNN99ACKExLiYmBr6+vrC0tIS5uTnq1KmDL7744qU13LhxA0uXLsW7775bKOgAgKGhIUaPHq1xVOfEiRMIDAyESqWCubk5/Pz8pNOJL/PHH3/ggw8+QLVq1aBUKuHs7IwRI0bg0aNHRY6/cuUKAgICYGZmBkdHR0yZMqXQPhf3s1EoFAgLC8OaNWtQt25dKJVKREdHAwC++eYbtGjRAtbW1jA1NUXjxo3x66+/FqonOzsbI0aMgI2NDSwsLNC5c2fcuHGjyNqL8xkVnKLdv38/hgwZAltbW43PeceOHXjnnXdgZmYGCwsLBAUF4cyZMxrrSEpKQv/+/eHk5ASlUgkHBwd06dKl0N9fenPJ879oRC+QlpaGu3fvarRVrVoV8fHxOHz4MHr27AknJydcu3YNixcvRps2bXD27FlUrly5yPV5eHjgq6++wpgxY9C9e3d07twZmZmZ6NevH9zd3TFlyhRp7MqVK2Fubo6RI0fC3NwcsbGxmDhxItLT0zFr1iyt61coFLC2toaNjQ0WL16MwYMH4/3330e3bt0AAN7e3gCehoDLly+jf//+sLe3x99//43vv/8eZ86cwZEjRwqFmA8++ABubm6YNm1aoV+az1q8eDHq1q2Lzp07w8jICL/99huGDBmC/Px8hIaGvnR/du3aheDgYHh6eiIyMhL37t2Tfmk9SwiBzp07Y+/evRgwYAAaNGiAnTt3YsyYMbh586Z01OXMmTPo2LEjvL29MWXKFCiVSly6dAmHDh16aR07duzAkydP0KdPn5eOK3DmzBm88847UKlU+Pzzz1GpUiUsXboUbdq0wf79+9GsWbMXvnf9+vXIysrC4MGDYW1tjT///BMLFizAjRs3sH79eo2xeXl56NChA5o3b46ZM2ciOjoaERERePLkifSzVdzPpkBsbCx++eUXhIWFoWrVqtKF4PPmzUPnzp3Ru3dv5OTkYN26dfjggw+wbds2BAUFSe//73//ix9//BEfffQRWrRogdjYWI1+bT+jIUOGwMbGBhMnTkRmZiYA4IcffkBISAgCAgIwY8YMZGVlYfHixfD19cWJEyek2oODg3HmzBkMHToU1atXR0pKCmJiYpCYmCiLC91JBwTRGyAqKkoAKHIRQoisrKxC74mLixMAxOrVq6W2vXv3CgBi7969UlteXp7w9fUVdnZ24u7duyI0NFQYGRmJ+Ph4jfUVtY1BgwaJypUri8ePH2tdv1KplMbduXNHABARERGF1pGRkVGo7ccffxQAxIEDB6S2iIgIAUD06tWr0PiCvlftV0BAgKhRo8ZL90kIIRo0aCAcHBzEgwcPpLZdu3YJAMLFxUVq27x5swAgpk6dqvH+7t27C4VCIS5duiSEEGLu3LkCgLhz584rt/2sESNGCADixIkTxRrftWtXYWxsLC5fviy13bp1S1hYWIhWrVpJbUX9vBT1eUVGRgqFQiH+/fdfqS0kJEQAEEOHDpXa8vPzRVBQkDA2Npb2sbifjRBCABAGBgbizJkzhWp4vq6cnBzh5eUl2rVrJ7WdPHlSABBDhgzRGPvRRx8V+rkr7mdU8LPt6+srnjx5IrU/fPhQWFpaioEDB2psKykpSajVaqn9/v37AoCYNWtWoX0iKsDTWPRGWbhwIWJiYjQWADA1NZXG5Obm4t69e6hVqxYsLS1x/Pjxl67TwMAAK1euREZGBgIDA7Fo0SKEh4cXurbm2W08fPgQd+/exTvvvIOsrCycO3dO6/p37NhRrPc+ew2EEAKPHz9G+/btAaDIffz000+Ltd5n96vgyFPr1q1x5coVpKWlvfB9t2/fxsmTJxESEgK1Wi21v/vuu/D09NQY+/vvv8PQ0BDDhg3TaB81ahSEENJnYGlpCeDpKcP8/Pxi1Q8A6enpAAALC4tXjs3Ly8OuXbvQtWtX1KhRQ2p3cHDARx99hIMHD0rrK8qzn1dmZibu3r2LFi1aQAiBEydOFBofFhYm/bngNFROTg52794NoPifTYHWrVsX+nyfr+v+/ftIS0vDO++8o/Gz8fvvvwNAoW09f+pPm89o4MCBMDQ0lF7HxMTgwYMH6NWrF+7evSsthoaGaNasGfbu3SvVbWxsjH379uH+/fuF9osI4GksesO8/fbbRV7g++jRI0RGRiIqKgo3b97UOG3zsl/YBWrWrIlJkyZhzJgx8PLywoQJEwqNOXPmDMaPH4/Y2NhC/9AXZxsvq7840tLSMH36dPz888+4efMmcnJyXrr9ou76KsqhQ4cQERGBuLg4ZGVlFdrms0HmWf/++y8AwM3NrVBfnTp1NH7J/vvvv3B0dCwURjw8PDTW1aNHDyxfvhz//e9/MW7cOPj5+aFbt27o3r07DAxe/H87lUoF4GkIfZU7d+4gKysLderUKdTn4eGB/Px8XL9+HXXr1i3y/YmJiZg4cSK2bt1a6Jfz8/NgYGCgERYAoHbt2gAgXY9S3M+mwIvmddu2bZg6dSpOnjyJ7Oxsqf3Z05v//vsvDAwMULNmTY33Pv9ZaPMZPV/XxYsXAQDt2rUrst6COVMqlZgxYwZGjRoFOzs7NG/eHB07dkTfvn1hb29f5HvpzcOwQwRg6NChiIqKwvDhw+Hj4wO1Wg2FQoGePXsW+wjBrl27AAC3bt3CvXv3NP6hffDgAVq3bg2VSoUpU6agZs2aMDExwfHjxzF27NgSHYXQVo8ePXDo0CGMHz8ejRo1grm5OfLy8vDOO+8Uuf1n/6f/IpcvX4afnx/c3d0xZ84cODs7w9jYGL///jvmzp1bLvv1LFNTUxw4cAB79+7F9u3bER0djZ9//hnt2rXDrl27NI4cPMvd3R0AcPr0aTRo0KDM6svLy8O7776L1NRUjB07Fu7u7jAzM8PNmzfRr1+/cvm8iprXP/74A507d0arVq2waNEiODg4oFKlSoiKisLatWvLvKai6ir4LH744YciQ8uzdwUOHz4cnTp1wubNm7Fz505MmDABkZGRiI2NRcOGDcu2cHotMOwQAfj1118REhKC2bNnS22PHz/GgwcPivX+JUuWICYmBl9//TUiIyMxaNAgbNmyRerft28f7t27h40bN6JVq1ZS+9WrV3W2DwBe+HTjBw8eYOfOnZg6darGHWIXLlwo1fZ+++03ZGdnY+vWrahWrZrUXnCK4WVcXFwA/N//4J91/vz5QmN3796Nhw8fahzBKDj9V7Au4OnRED8/P/j5+WHOnDmYNm0avvzyS+zduxf+/v5F1hIYGAhDQ0P8+OOPr7xI2cbGBpUrVy5UY0E9BgYGcHZ2LvK9p0+fxoULF7Bq1SqNO/gKTqc+Lz8/H1euXJGO5gD/N2cFF96W5LN5kQ0bNsDExAQ7d+6EUqmU2qOiojTGubi4ID8/H5cvX9Y4avP8Z1Gaz6hAwdEjW1vbF87b8+NHjRqFUaNG4eLFi2jQoAFmz56NH3/88ZXvJfnjNTtEeHprsXjujqMFCxYU67bwq1evYsyYMQgODsYXX3yBb775Blu3bsXq1as11g9AYxs5OTlYtGiRjvbgqYK7xp4PaQWncHJzczXanw132ihqv9LS0gr9kiyKg4MDGjRogFWrVmmcvomJicHZs2c1xr733nvIy8vDd999p9E+d+5cKBQKBAYGAgBSU1MLbafgSM2zp2ae5+zsjIEDB2LXrl1YsGBBof78/HzMnj0bN27cgKGhIdq3b48tW7Zo3NqcnJyMtWvXwtfXVzrF8ryiPi8hBObNm/fC2p7dZyEEvvvuO1SqVAl+fn4Aiv/ZvIyhoSEUCoXGz/u1a9ewefNmjXEF65o/f75G+7fffltofdp+RgUCAgKgUqkwbdq0Qj+3wNNTZcDTB2k+fvxYo69mzZqwsLB46ZzTm4VHdogAdOzYET/88APUajU8PT0RFxeH3bt3w9ra+qXvE0Lg448/hqmpqfRsmUGDBmHDhg347LPP4O/vD0dHR7Ro0QJVqlRBSEgIhg0bBoVCgR9++OGlt3QXZceOHUVezNyiRQvUqFEDpqam8PT0xM8//4zatWvDysoKXl5e8PLygq+vL2bNmoUnT57grbfews6dO5GYmFii7T+vffv2MDY2RqdOnTBo0CBkZGRg2bJlsLW1xe3bt1/5/sjISAQFBcHX1xcff/wxUlNTsWDBAtStWxcZGRnSuE6dOqFt27b48ssvce3aNdSvXx+7du3Cli1bMHz4cOkowJQpU3DgwAEEBQXBxcUFKSkpWLRoEZycnKRnBb3I7NmzcfnyZQwbNgwbN25Ex44dUaVKFSQmJmL9+vU4d+4cevbsCQCYOnWq9DyfIUOGwMjICEuXLkV2djZmzpz5wm24u7ujZs2aGD16NG7evAmVSoUNGza88MJaExMTREdHIyQkBM2aNcOOHTuwfft2fPHFF9IzlYr72bxMUFAQ5syZgw4dOuCjjz5CSkoKFi5ciFq1auHUqVPSuAYNGqBXr15YtGgR0tLS0KJFC+zZsweXLl0qtE5tP6MCKpUKixcvRp8+fdCoUSP07NkTNjY2SExMxPbt29GyZUt89913uHDhAvz8/PDhhx/C09MTRkZG2LRpE5KTk6X5IuKt5/RGKLi99fnbwQvcv39f9O/fX1StWlWYm5uLgIAAce7cOeHi4iJCQkKkcc/fSjxv3jwBQGzYsEFjfYmJiUKlUon33ntPajt06JBo3ry5MDU1FY6OjuLzzz8XO3fuLHRr8svqf9ESFRUljT18+LBo3LixMDY21rgdODExUXTt2lWo1WphaWkpevbsKZKSkgrdMlxwe3lRt28Xdev51q1bhbe3tzAxMRHVq1cXM2bMECtWrBAAxNWrV1+6X0IIsWHDBuHh4SGUSqXw9PQUGzduFCEhIRq3ngvx9FbkESNGCEdHR1GpUiXh5uYmZs2aJfLz86Uxe/bsEV26dBGOjo7C2NhYODo6il69eokLFy68sg4hhHjy5IlYvny5eOedd4RarRaVKlUSLi4uon///oVuSz9+/LgICAgQ5ubmonLlyqJt27bi8OHDGmOKuvX87Nmzwt/fX5ibm4uqVauKgQMHir/++qvQPIaEhAgzMzNx+fJl0b59e1G5cmVhZ2cnIiIiRF5eXok/GyGe3noeGhpa5L7/73//E25ubkKpVAp3d3cRFRVV5Hw/evRIDBs2TFhbWwszMzPRqVMncf369SIfeVCcz+hVfzf37t0rAgIChFqtFiYmJqJmzZqiX79+4tixY0IIIT3uwd3dXZiZmQm1Wi2aNWsmfvnllyLXR28mhRAl/K8lERER0WuE1+wQERGRrDHsEBERkawx7BAREZGsMewQERGRrDHsEBERkawx7BAREZGs8aGCePp01Fu3bsHCwuKFj9snIiKiikUIgYcPH8LR0fGlX/bLsIOnX9z4qu9pISIioorp+vXrcHJyemE/ww4gfXne9evXX/l9LURERFQxpKenw9nZWeNLcIvCsIP/+6ZolUrFsENERPSaedUlKLxAmYiIiGSNYYeIiIhkjWGHiIiIZI1hh4iIiGSNYYeIiIhkjWGngrt58yb+85//wNraGqampqhXrx6OHTsm9QshMHHiRDg4OMDU1BT+/v64ePFiofVs374dzZo1g6mpKapUqYKuXbuW414QERHpD8NOBXb//n20bNkSlSpVwo4dO3D27FnMnj0bVapUkcbMnDkT8+fPx5IlS3D06FGYmZkhICAAjx8/lsZs2LABffr0Qf/+/fHXX3/h0KFD+Oijj/SxS0REROVOIYQQ+i5C39LT06FWq5GWllahnrMzbtw4HDp0CH/88UeR/UIIODo6YtSoURg9ejQAIC0tDXZ2dli5ciV69uyJJ0+eoHr16pg8eTIGDBhQnuUTERGVqeL+/uaRnQps69ataNKkCT744APY2tqiYcOGWLZsmdR/9epVJCUlwd/fX2pTq9Vo1qwZ4uLiAADHjx/HzZs3YWBggIYNG8LBwQGBgYH4+++/y31/iIiI9IFhpwK7cuUKFi9eDDc3N+zcuRODBw/GsGHDsGrVKgBAUlISAMDOzk7jfXZ2dlLflStXAACTJk3C+PHjsW3bNlSpUgVt2rRBampqOe4NERGRfjDsVGD5+flo1KgRpk2bhoYNG+KTTz7BwIEDsWTJkhKtAwC+/PJLBAcHo3HjxoiKioJCocD69evLqnQiIqIKg2GnAnNwcICnp6dGm4eHBxITEwEA9vb2AIDk5GSNMcnJyVKfg4MDAGisR6lUokaNGtJ6iIiI5IxhpwJr2bIlzp8/r9F24cIFuLi4AABcXV1hb2+PPXv2SP3p6ek4evQofHx8AACNGzeGUqnUWE9ubi6uXbsmrYeIiEjO+K3nFdiIESPQokULTJs2DR9++CH+/PNPfP/99/j+++8BPP2W1+HDh2Pq1Klwc3ODq6srJkyYAEdHR+k5OiqVCp9++ikiIiLg7OwMFxcXzJo1CwDwwQcf6GvXiIiIyo3ej+zo4qF5qamp6N27N1QqFSwtLTFgwABkZGSU967oXNOmTbFp0yb89NNP8PLywldffYVvv/0WvXv3lsZ8/vnnGDp0KD755BM0bdoUGRkZiI6OhomJiTRm1qxZ6NmzJ/r06YOmTZvi33//RWxsrMbzeoiIiORKr8/ZuX//Pho2bIi2bdti8ODBsLGxwcWLF1GzZk3UrFkTADBjxgxERkZi1apV0pGL06dP4+zZs9Iv9MDAQNy+fRtLly5Fbm4u+vfvj6ZNm2Lt2rXFqqNcnrOz/9irx7wOWjfRdwVEREQAiv/7W69hRxcPzfvnn3/g6emJ+Ph4NGny9BdxdHQ03nvvPdy4cQOOjo6vrINhpwQYdoiIqIJ4LR4qqIuH5sXFxcHS0lIKOgDg7+8PAwMDHD16tMjtZmdnIz09XWMhIiIiedJr2NHFQ/OSkpJga2ur0W9kZAQrKytpzPMiIyOhVqulxdnZWde7RkRERBWEXsOOLh6ap43w8HCkpaVJy/Xr18t0e0RERKQ/eg07unhonr29PVJSUjT6nzx5gtTUVGnM85RKJVQqlcZCRERE8qTXsKOLh+b5+PjgwYMHSEhIkMbExsYiPz8fzZo1K4e9ICIioopMrw8V1MVD8zw8PNChQwfp9Fdubi7CwsLQs2fPYt2JRURERPKm17BT8NC88PBwTJkyBa6urkU+NC8zMxOffPIJHjx4AF9f30IPzVuzZg3CwsLg5+cHAwMDBAcHY/78+frYJSIiIqpg9PqcnYqCz9kpAT5nh4iIKojX4jk7RERERGWNYYeIiIhkjWGHiIiIZI1hh4iIiGSNYYeIiIhkjWGHiIiIZI1hh4iIiGSNYYeIiIhkjWGHiIiIZI1hh4iIiGSNYYeIiIhkjWGHiIiIZI1hh4iIiGSNYYeIiIhkjWGHiIiIZI1hh4iIiGSNYYeIiIhkjWGHiIiIZI1hh4iIiGSNYYeIiIhkjWGHiIiIZI1hh4iIiGSNYYeIiIhkjWGHiIiIZI1hh4iIiGSNYYeIiIhkjWGHiIiIZI1hh4iIiGSNYYeIiIhkjWGHiIiIZI1hh4iIiGSNYYeIiIhkjWGHiIiIZI1hh4iIiGSNYYeIiIhkjWGHiIiIZI1hh4iIiGSNYYeIiIhkjWGHiIiIZI1hh4iIiGSNYYeIiIhkjWGHiIiIZI1hh4iIiGSNYYeIiIhkjWGHiIiIZI1hh4iIiGSNYYeIiIhkTa9hZ9KkSVAoFBqLu7u71P/48WOEhobC2toa5ubmCA4ORnJyssY6EhMTERQUhMqVK8PW1hZjxozBkydPyntXiIiIqIIy0ncBdevWxe7du6XXRkb/V9KIESOwfft2rF+/Hmq1GmFhYejWrRsOHToEAMjLy0NQUBDs7e1x+PBh3L59G3379kWlSpUwbdq0ct8XIiIiqnj0HnaMjIxgb29fqD0tLQ3/+9//sHbtWrRr1w4AEBUVBQ8PDxw5cgTNmzfHrl27cPbsWezevRt2dnZo0KABvvrqK4wdOxaTJk2CsbFxee8OERERVTB6v2bn4sWLcHR0RI0aNdC7d28kJiYCABISEpCbmwt/f39prLu7O6pVq4a4uDgAQFxcHOrVqwc7OztpTEBAANLT03HmzJkXbjM7Oxvp6ekaCxEREcmTXsNOs2bNsHLlSkRHR2Px4sW4evUq3nnnHTx8+BBJSUkwNjaGpaWlxnvs7OyQlJQEAEhKStIIOgX9BX0vEhkZCbVaLS3Ozs663TEiIiKqMPR6GiswMFD6s7e3N5o1awYXFxf88ssvMDU1LbPthoeHY+TIkdLr9PR0Bh4iIiKZ0vtprGdZWlqidu3auHTpEuzt7ZGTk4MHDx5ojElOTpau8bG3ty90d1bB66KuAyqgVCqhUqk0FiIiIpKnChV2MjIycPnyZTg4OKBx48aoVKkS9uzZI/WfP38eiYmJ8PHxAQD4+Pjg9OnTSElJkcbExMRApVLB09Oz3OsnIiKiikevp7FGjx6NTp06wcXFBbdu3UJERAQMDQ3Rq1cvqNVqDBgwACNHjoSVlRVUKhWGDh0KHx8fNG/eHADQvn17eHp6ok+fPpg5cyaSkpIwfvx4hIaGQqlU6nPXiIiIqILQa9i5ceMGevXqhXv37sHGxga+vr44cuQIbGxsAABz586FgYEBgoODkZ2djYCAACxatEh6v6GhIbZt24bBgwfDx8cHZmZmCAkJwZQpU/S1S0RERFTBKIQQQt9F6Ft6ejrUajXS0tLK7vqd/cfKZr3lrXUTfVdAREQEoPi/vyvUNTtEREREusawQ0RERLLGsEOkhenTp0OhUGD48OEa7XFxcWjXrh3MzMygUqnQqlUrPHr0SOq/cOECunTpgqpVq0KlUsHX1xd79+4t5+qJiN4sDDtEJRQfH4+lS5fC29tboz0uLg4dOnRA+/bt8eeffyI+Ph5hYWEwMPi/v2YdO3bEkydPEBsbi4SEBNSvXx8dO3Z86RO/iYiodBh2iEogIyMDvXv3xrJly1ClShWNvhEjRmDYsGEYN24c6tatizp16uDDDz+UHoNw9+5dXLx4EePGjYO3tzfc3Nwwffp0ZGVl4e+//9bH7hARvREYdohKIDQ0FEFBQRpfUAsAKSkpOHr0KGxtbdGiRQvY2dmhdevWOHjwoDTG2toaderUwerVq5GZmYknT55g6dKlsLW1RePGjct7V4iI3hh6fc4O0etk3bp1OH78OOLj4wv1XblyBQAwadIkfPPNN2jQoAFWr14NPz8//P3333Bzc4NCocDu3bvRtWtXWFhYwMDAALa2toiOji50lIiIiHSHR3aIiuH69ev47LPPsGbNGpiYmBTqz8/PBwAMGjQI/fv3R8OGDTF37lzUqVMHK1asAAAIIRAaGgpbW1v88ccf+PPPP9G1a1d06tQJt2/fLtf9ISJ6kzDsEBVDQkICUlJS0KhRIxgZGcHIyAj79+/H/PnzYWRkBDs7OwAo9J1sHh4eSExMBADExsZi27ZtWLduHVq2bIlGjRph0aJFMDU1xapVq8p9n4iI3hQ8jUVUDH5+fjh9+rRGW//+/eHu7o6xY8eiRo0acHR0xPnz5zXGXLhwAYGBgQCArKwsANC4O6vgdcGRISIi0j2GHaJisLCwgJeXl0abmZkZrK2tpfYxY8YgIiIC9evXR4MGDbBq1SqcO3cOv/76KwDAx8cHVapUQUhICCZOnAhTU1MsW7YMV69eRVBQULnvExHRm4Jhh0hHhg8fjsePH2PEiBFITU1F/fr1ERMTg5o1awIAqlatiujoaHz55Zdo164dcnNzUbduXWzZsgX169fXc/VERPLFLwIFvwi0ROTyRaBymA+5zAURkZb4RaBEREREYNghIiIimWPYISIiIllj2CEiIiJZY9ghIiIiWWPYISIiIllj2CEiIiJZY9ghIiIiWWPYISIiIllj2CEiIiJZY9ghIiIiWWPYISIiIllj2CEiIiJZY9ghIiIiWWPYISIiIllj2CEiIiJZY9ghIiIiWWPYISIiIllj2CEiIiJZY9ghIiIiWWPYISIiIllj2CEiIiJZY9ghIiIiWWPYISIiIllj2CEiIiJZY9ghIiIiWWPYISIiIllj2CEiIiJZY9ghIiIiWWPYISIiIllj2CEiIiJZY9ghIiIiWWPYISIiIllj2CEiIiJZqzBhZ/r06VAoFBg+fLjU9vjxY4SGhsLa2hrm5uYIDg5GcnKyxvsSExMRFBSEypUrw9bWFmPGjMGTJ0/KuXoiIiKqqCpE2ImPj8fSpUvh7e2t0T5ixAj89ttvWL9+Pfbv349bt26hW7duUn9eXh6CgoKQk5ODw4cPY9WqVVi5ciUmTpxY3rtAREREFZTew05GRgZ69+6NZcuWoUqVKlJ7Wloa/ve//2HOnDlo164dGjdujKioKBw+fBhHjhwBAOzatQtnz57Fjz/+iAYNGiAwMBBfffUVFi5ciJycHH3tEhEREVUgeg87oaGhCAoKgr+/v0Z7QkICcnNzNdrd3d1RrVo1xMXFAQDi4uJQr1492NnZSWMCAgKQnp6OM2fOvHCb2dnZSE9P11iIiIhInoz0ufF169bh+PHjiI+PL9SXlJQEY2NjWFpaarTb2dkhKSlJGvNs0CnoL+h7kcjISEyePLmU1RMREdHrQG9Hdq5fv47PPvsMa9asgYmJSbluOzw8HGlpadJy/fr1ct0+ERERlR+9hZ2EhASkpKSgUaNGMDIygpGREfbv34/58+fDyMgIdnZ2yMnJwYMHDzTel5ycDHt7ewCAvb19obuzCl4XjCmKUqmESqXSWIiIiEie9BZ2/Pz8cPr0aZw8eVJamjRpgt69e0t/rlSpEvbs2SO95/z580hMTISPjw8AwMfHB6dPn0ZKSoo0JiYmBiqVCp6enuW+T0RERFTx6O2aHQsLC3h5eWm0mZmZwdraWmofMGAARo4cCSsrK6hUKgwdOhQ+Pj5o3rw5AKB9+/bw9PREnz59MHPmTCQlJWH8+PEIDQ2FUqks930iIiKiikevFyi/yty5c2FgYIDg4GBkZ2cjICAAixYtkvoNDQ2xbds2DB48GD4+PjAzM0NISAimTJmix6qJiIioIlEIIYS+i9C39PR0qNVqpKWlld31O/uPlc16y1vrJvquQDfkMB9ymQsiIi0V9/e33p+zQ0RERFSWGHaIiIhI1hh2iIiISNa0DjsPHjzA8uXLER4ejtTUVADA8ePHcfPmTZ0VR0RERFRaWt2NderUKfj7+0OtVuPatWsYOHAgrKyssHHjRiQmJmL16tW6rpOIiIhIK1od2Rk5ciT69euHixcvanzVw3vvvYcDBw7orDgiIiKi0tIq7MTHx2PQoEGF2t96662XfgEnERERUXnTKuwolUqkp6cXar9w4QJsbGxKXRQRERGRrmgVdjp37owpU6YgNzcXAKBQKJCYmIixY8ciODhYpwUSERERlYZWYWf27NnIyMiAra0tHj16hNatW6NWrVqwsLDA119/resaiYiIiLSm1d1YarUaMTExOHjwIE6dOoWMjAw0atQI/v7+uq6PiIiIqFRK9UWgvr6+8PX11VUtRERERDpX7LAzf/78Yq902LBhWhVDREREpGvFDjtz587VeH3nzh1kZWXB0tISwNMnKleuXBm2trYMO0RERFRhFPsC5atXr0rL119/jQYNGuCff/5BamoqUlNT8c8//6BRo0b46quvyrJeIiIiohLR6m6sCRMmYMGCBahTp47UVqdOHcydOxfjx4/XWXFEREREpaVV2Ll9+zaePHlSqD0vLw/JycmlLoqIiIhIV7QKO35+fhg0aBCOHz8utSUkJGDw4MG8/ZyIiIgqFK3CzooVK2Bvb48mTZpAqVRCqVTi7bffhp2dHZYvX67rGomIiIi0ptVzdmxsbPD777/jwoULOHfuHADA3d0dtWvX1mlxRERERKVVqocK1q5dmwGHiIiIKjStw86NGzewdetWJCYmIicnR6Nvzpw5pS6MiIiISBe0Cjt79uxB586dUaNGDZw7dw5eXl64du0ahBBo1KiRrmskIiIi0ppWFyiHh4dj9OjROH36NExMTLBhwwZcv34drVu3xgcffKDrGomIiIi0plXY+eeff9C3b18AgJGRER49egRzc3NMmTIFM2bM0GmBRERERKWhVdgxMzOTrtNxcHDA5cuXpb67d+/qpjIiIiIiHdDqmp3mzZvj4MGD8PDwwHvvvYdRo0bh9OnT2LhxI5o3b67rGomIiIi0plXYmTNnDjIyMgAAkydPRkZGBn7++We4ubnxTiwiIiKqULQKOzVq1JD+bGZmhiVLluisICIiIiJd0uqaHSIiIqLXRbGP7FSpUgUKhaJYY1NTU7UuiIiIiEiXih12vv32W+nP9+7dw9SpUxEQEAAfHx8AQFxcHHbu3IkJEybovEgiIiIibSmEEKKkbwoODkbbtm0RFham0f7dd99h9+7d2Lx5s67qKxfp6elQq9VIS0uDSqUqm43sP1Y26y1vrZvouwLdkMN8yGUuiIi0VNzf31pds7Nz50506NChUHuHDh2we/dubVZJREREVCa0CjvW1tbYsmVLofYtW7bA2tq61EURERER6YpWt55PnjwZ//3vf7Fv3z40a9YMAHD06FFER0dj2bJlOi2QiIiIqDS0Cjv9+vWDh4cH5s+fj40bNwIAPDw8cPDgQSn8EBEREVUEWoUdAGjWrBnWrFmjy1qIiIiIdK7YYSc9PV260jk9Pf2lY8vsjiYiIiKiEirRQwVv374NW1tbWFpaFvmAQSEEFAoF8vLydFokERERkbaKHXZiY2NhZWUFANi7d2+ZFURERESkS8UOO61bt5b+7OrqCmdn50JHd4QQuH79uu6qIyIiIiolrZ6z4+rqijt37hRqT01Nhaura6mLIiIiItIVrcJOwbU5z8vIyICJiUmpiyIiIiLSlRLdej5y5EgAgEKhwIQJE1C5cmWpLy8vD0ePHkWDBg10WiARERFRaZQo7Jw4cQLA0yM7p0+fhrGxsdRnbGyM+vXrY/To0bqtkIiIiKgUShR2Cu7C6t+/P+bNm8fn6RAREVGFp9U1O1FRUToJOosXL4a3tzdUKhVUKhV8fHywY8cOqf/x48cIDQ2FtbU1zM3NERwcjOTkZI11JCYmIigoCJUrV4atrS3GjBmDJ0+elLo2IiIikgetvi4iMzMT06dPx549e5CSkoL8/HyN/itXrhRrPU5OTpg+fTrc3NwghMCqVavQpUsXnDhxAnXr1sWIESOwfft2rF+/Hmq1GmFhYejWrRsOHToE4Ol1QkFBQbC3t8fhw4dx+/Zt9O3bF5UqVcK0adO02TUiIiKSGYUQQpT0Tb169cL+/fvRp08fODg4FLoz67PPPtO6ICsrK8yaNQvdu3eHjY0N1q5di+7duwMAzp07Bw8PD8TFxaF58+bYsWMHOnbsiFu3bsHOzg4AsGTJEowdOxZ37tzRuKboZdLT06FWq5GWllZ2p+b2Hyub9Za31k30XYFuyGE+5DIXRERaKu7vb62O7OzYsQPbt29Hy5YttS7weXl5eVi/fj0yMzPh4+ODhIQE5Obmwt/fXxrj7u6OatWqSWEnLi4O9erVk4IOAAQEBGDw4ME4c+YMGjZsWOS2srOzkZ2dLb1+1Xd9ERER0etLq2t2qlSpIn11RGmdPn0a5ubmUCqV+PTTT7Fp0yZ4enoiKSkJxsbGsLS01BhvZ2eHpKQkAEBSUpJG0CnoL+h7kcjISKjVamlxdnbWyb4QERFRxaNV2Pnqq68wceJEZGVllbqAOnXq4OTJkzh69CgGDx6MkJAQnD17ttTrfZnw8HCkpaVJC7/igoiISL60Oo01e/ZsXL58GXZ2dqhevToqVaqk0X/8+PFir8vY2Bi1atUCADRu3Bjx8fGYN28eevTogZycHDx48EDj6E5ycjLs7e0BAPb29vjzzz811ldwt1bBmKIolUoolcpi10hERESvL63CTteuXXVcxv/Jz89HdnY2GjdujEqVKmHPnj0IDg4GAJw/fx6JiYnw8fEBAPj4+ODrr79GSkoKbG1tAQAxMTFQqVTw9PQssxqJiIjo9aFV2ImIiNDJxsPDwxEYGIhq1arh4cOHWLt2Lfbt24edO3dCrVZjwIABGDlyJKysrKBSqTB06FD4+PigefPmAID27dvD09MTffr0wcyZM5GUlITx48cjNDSUR26IiIgIgJZhR1dSUlLQt29f3L59G2q1Gt7e3ti5cyfeffddAMDcuXNhYGCA4OBgZGdnIyAgAIsWLZLeb2hoiG3btmHw4MHw8fGBmZkZQkJCMGXKFH3tEhEREVUwWj1nJy8vD3PnzsUvv/yCxMRE5OTkaPSnpqbqrMDywOfslIBcnu0ih/mQy1wQEWmpuL+/tboba/LkyZgzZw569OiBtLQ0jBw5Et26dYOBgQEmTZqkbc1EREREOqdV2FmzZg2WLVuGUaNGwcjICL169cLy5csxceJEHDlyRNc1EhEREWlNq7CTlJSEevXqAQDMzc2RlpYGAOjYsSO2b9+uu+qIiIiISkmrsOPk5ITbt28DAGrWrIldu3YBAOLj43kXFBEREVUoWoWd999/H3v27AEADB06FBMmTICbmxv69u2Ljz/+WKcFEhEREZWGVreeT58+Xfpzjx49pC/ndHNzQ6dOnXRWHBEREVFp6eQ5Oz4+PtJTjYmIiIgqEq3CzurVq1/a37dvX62KISIiItI1rcLOZ599pvE6NzcXWVlZMDY2RuXKlRl2iIiIqMLQ6gLl+/fvaywZGRk4f/48fH198dNPP+m6RiIiIiKtaRV2iuLm5obp06cXOupDREREpE86CzsAYGRkhFu3bulylURERESlotU1O1u3btV4LYTA7du38d1336Fly5Y6KYyIiIhIF7QKO127dtV4rVAoYGNjg3bt2mH27Nm6qIuIiIhIJ7QKO/n5+QCAO3fuwNjYGGq1WqdFEREREelKia/ZefDgAUJDQ1G1alXY29vDysoK9vb2CA8PR1ZWVlnUSERERKS1Eh3ZSU1NhY+PD27evInevXvDw8MDAHD27FksWLAAMTExOHjwIE6dOoUjR45g2LBhZVI0ERERUXGVKOxMmTIFxsbGuHz5Muzs7Ar1tW/fHn369MGuXbswf/58nRZKREREpI0ShZ3Nmzdj6dKlhYIOANjb22PmzJl47733EBERgZCQEJ0VSURERKStEl2zc/v2bdStW/eF/V5eXjAwMEBERESpCyMiIiLShRKFnapVq+LatWsv7L969SpsbW1LWxMRERGRzpQo7AQEBODLL79ETk5Oob7s7GxMmDABHTp00FlxRERERKVV4guUmzRpAjc3N4SGhsLd3R1CCPzzzz9YtGgRsrOzsXr16rKqlYiIiKjEShR2nJycEBcXhyFDhiA8PBxCCABPn6D87rvv4rvvvkO1atXKpFAiIiIibZT4Ccqurq7YsWMH7t+/j4sXLwIAatWqBSsrK50XR0RERFRaWn1dBABUqVIFb7/9ti5rISIiItK5En9dBBEREdHrhGGHiF4rkZGRaNq0KSwsLGBra4uuXbvi/PnzUn9qaiqGDh2KOnXqwNTUFNWqVcOwYcOQlpZWaF0rV66Et7c3TExMYGtri9DQ0PLcFSIqJ1qfxiIi0of9+/cjNDQUTZs2xZMnT/DFF1+gffv2OHv2LMzMzHDr1i3cunUL33zzDTw9PfHvv//i008/xa1bt/Drr79K65kzZw5mz56NWbNmoVmzZsjMzHzpc8SI6PWlEAW3VL3B0tPToVarkZaWBpVKVTYb2X+sbNZb3lo30XcFuiGH+ZDLXJTSnTt3YGtri/3796NVq1ZFjlm/fj3+85//IDMzE0ZGRrh//z7eeust/Pbbb/Dz8yvniolIV4r7+5unsYjotVZweupld4QW/ENoZPT0YHZMTAzy8/Nx8+ZNeHh4wMnJCR9++CGuX79eLjUTUfli2CGi11Z+fj6GDx+Oli1bwsvLq8gxd+/exVdffYVPPvlEarty5Qry8/Mxbdo0fPvtt/j111+RmpqKd999t8gnxBPR643X7BDRays0NBR///03Dh48WGR/eno6goKC4OnpiUmTJknt+fn5yM3Nxfz589G+fXsAwE8//QR7e3vs3bsXAQEB5VE+EZUThh0iei2FhYVh27ZtOHDgAJycnAr1P3z4EB06dICFhQU2bdqESpUqSX0ODg4AAE9PT6nNxsYGVatWRWJiYtkXT0TliqexiOi1IoRAWFgYNm3ahNjYWLi6uhYak56ejvbt28PY2Bhbt26FiYmJRn/Lli0BoNAt63fv3oWLi0vZ7gARlTse2SGi10poaCjWrl2LLVu2wMLCAklJSQAAtVoNU1NTKehkZWXhxx9/RHp6OtLT0wE8PXpjaGiI2rVro0uXLvjss8/w/fffQ6VSITw8HO7u7mjbtq0+d4+IygDDDhHpVwkfA7B48WIAQJs2bTTao8ZORL/ATjh+IgFHjx4F8PR7+5519actqO7gCABY/clwjFg4F0EBHWBgYIDW9RsietIMVDr8V8n3gY8BIKrQ+Jwd8Dk7JSKXf9TlMB+ci4pDLnNB9Jrhc3aIiIiIwLBDREREMsewQ0RERLLGsENERESyxrBDREREssawQ0RERLLGsENERESyxrBDREREssawQ0RERLKm17ATGRmJpk2bwsLCAra2tujatavGF/MBwOPHjxEaGgpra2uYm5sjODgYycnJGmMSExMRFBSEypUrw9bWFmPGjMGTJ0/Kc1eIiIiogtJr2Nm/fz9CQ0Nx5MgRxMTEIDc3F+3bt0dmZqY0ZsSIEfjtt9+wfv167N+/H7du3UK3bt2k/ry8PAQFBSEnJweHDx/GqlWrsHLlSkycOFEfu0REREQVTIX6bqw7d+7A1tYW+/fvR6tWrZCWlgYbGxusXbsW3bt3BwCcO3cOHh4eiIuLQ/PmzbFjxw507NgRt27dgp2dHQBgyZIlGDt2LO7cuQNjY+NXbpffjVUCcvkOIDnMB+ei4pDLXBC9Zl7L78ZKS0sDAFhZWQEAEhISkJubC39/f2mMu7s7qlWrhri4OABAXFwc6tWrJwUdAAgICEB6ejrOnDlTjtUTERFRRWSk7wIK5OfnY/jw4WjZsiW8vLwAAElJSTA2NoalpaXGWDs7OyQlJUljng06Bf0FfUXJzs5Gdna29Do9PV1Xu0FEREQVTIU5shMaGoq///4b69atK/NtRUZGQq1WS4uzs3OZb5OIiIj0o0KEnbCwMGzbtg179+6Fk5OT1G5vb4+cnBw8ePBAY3xycjLs7e2lMc/fnVXwumDM88LDw5GWliYt169f1+HeEBERUUWi17AjhEBYWBg2bdqE2NhYuLq6avQ3btwYlSpVwp49e6S28+fPIzExET4+PgAAHx8fnD59GikpKdKYmJgYqFQqeHp6FrldpVIJlUqlsRAREZE86fWandDQUKxduxZbtmyBhYWFdI2NWq2Gqakp1Go1BgwYgJEjR8LKygoqlQpDhw6Fj48PmjdvDgBo3749PD090adPH8ycORNJSUkYP348QkNDoVQq9bl7REREVAHoNewsXrwYANCmTRuN9qioKPTr1w8AMHfuXBgYGCA4OBjZ2dkICAjAokWLpLGGhobYtm0bBg8eDB8fH5iZmSEkJARTpkwpr90gIiKiCkyvYac4j/gxMTHBwoULsXDhwheOcXFxwe+//67L0oiIiEgmKsQFykRERERlhWGHiIiIZI1hh4iIiGSNYYeIiIhkjWGHiIiIZI1hh4iIiGSNYYeIiIhkjWGHiIiIZI1hh4iIiGSNYYeIiIhkjWGHiIiIZI1hh4iIiGSNYYeIiIhkjWGHiIiIZI1hh4iIiGSNYYeIiIhkjWGHiIiIZI1hh4iIiGSNYYeIiIhkjWGHiIiIZI1hh4iIiGSNYYeIiIhkjWGHiIiIZI1hh4iIiGSNYYeIiIhkjWGHiIiIZI1hh4iIiGSNYYeIiIhkjWGHiIi0duDAAXTq1AmOjo5QKBTYvHmz1Jebm4uxY8eiXr16MDMzg6OjI/r27Ytbt25prKNz586oVq0aTExM4ODggD59+hQaQ1QaDDtERKS1zMxM1K9fHwsXLizUl5WVhePHj2PChAk4fvw4Nm7ciPPnz6Nz584a49q2bYtffvkF58+fx4YNG3D58mV07969vHaB3gBG+i6AiIheX4GBgQgMDCyyT61WIyYmRqPtu+++w9tvv43ExERUq1YNADBixAip38XFBePGjUPXrl2Rm5uLSpUqlV3x9MbgkR0iIio3aWlpUCgUsLS0LLI/NTUVa9asQYsWLRh0SGcYdoiIqFw8fvwYY8eORa9evaBSqTT6xo4dCzMzM1hbWyMxMRFbtmzRU5UkRww7RERU5nJzc/Hhhx9CCIHFixcX6h8zZgxOnDiBXbt2wdDQEH379oUQQg+Vkhzxmh0iIipTBUHn33//RWxsbKGjOgBQtWpVVK1aFbVr14aHhwecnZ1x5MgR+Pj46KFikhuGHSIiKjMFQefixYvYu3cvrK2tX/me/Px8AEB2dnZZl0dvCIYdIiLSWkZGBi5duiS9vnr1Kk6ePAkrKys4ODige/fuOH78OLZt24a8vDwkJSUBAKysrGBsbIyjR48iPj4evr6+qFKlCi5fvowJEyagZs2aPKpDOsNrdoiISGvHjh1Dw4YN0bBhQwDAyJEj0bBhQ0ycOBE3b97E1q1bcePGDTRo0AAODg7ScvjwYQBA5cqVsXHjRvj5+aFOnToYMGAAvL29sX//fiiVSn3uGskIj+wQEdFT+4+V+C1tFOYQ++KL7vz37ov7/v/26gGIjZhZuO/S7aeLNlo30e59JFs8skNERESyxrBDREREssawQ0RERLLGsENERESyxrBDREREssawQ0RERLLGsENERESyxrBDREREsqbXsHPgwAF06tQJjo6OUCgU2Lx5s0a/EAITJ06Eg4MDTE1N4e/vj4sXL2qMSU1NRe/evaFSqWBpaYkBAwYgIyOjHPeCiIiIKjK9hp3MzEzUr18fCxcuLLJ/5syZmD9/PpYsWYKjR4/CzMwMAQEBePz4sTSmd+/eOHPmDGJiYrBt2zYcOHAAn3zySXntAhEREVVwev26iMDAQAQGBhbZJ4TAt99+i/Hjx6NLly4AgNWrV8POzg6bN29Gz5498c8//yA6Ohrx8fFo0uTp48EXLFiA9957D9988w0cHR3LbV+IiIioYqqw1+xcvXoVSUlJ8Pf3l9rUajWaNWuGuLg4AEBcXBwsLS2loAMA/v7+MDAwwNGjR8u9ZiIiIqp4KuwXgSYlJQEA7OzsNNrt7OykvqSkJNja2mr0GxkZwcrKShpTlOzsbGRnZ0uv09PTdVU2ERERVTAV9shOWYqMjIRarZYWZ2dnfZdEREREZaTChh17e3sAQHJyskZ7cnKy1Gdvb4+UlBSN/idPniA1NVUaU5Tw8HCkpaVJy/Xr13VcPREREVUUFTbsuLq6wt7eHnv27JHa0tPTcfToUfj4+AAAfHx88ODBAyQkJEhjYmNjkZ+fj2bNmr1w3UqlEiqVSmMhIiIiedLrNTsZGRm4dOmS9Prq1as4efIkrKysUK1aNQwfPhxTp06Fm5sbXF1dMWHCBDg6OqJr164AAA8PD3To0AEDBw7EkiVLkJubi7CwMPTs2ZN3YhEREREAPYedY8eOoW3bttLrkSNHAgBCQkKwcuVKfP7558jMzMQnn3yCBw8ewNfXF9HR0TAxMZHes2bNGoSFhcHPzw8GBgYIDg7G/Pnzy31fiIiIqGJSCCGEvovQt/T0dKjVaqSlpZXdKa39x8pmveWtdZNXj3kdyGE+OBcVB+eiYpHLfNArFff3d4W9ZoeIiIhIFxh2iIiISNYYdoiIiEjWGHaIiIhI1hh2iIiISNYYdoiIiEjWGHaIiIhI1hh2iIiISNYYdoiIiEjWGHaIiIhI1hh2iIiISNYYdoiIiEjWGHaIiIhI1hh2iIiISNYYdoiIiEjWGHaIiIjeANOnT4dCocDw4cMBANeuXYNCoShyWb9+vX6L1TGGHSIiIpmLj4/H0qVL4e3tLbU5Ozvj9u3bGsvkyZNhbm6OwMBAPVareww7REREMpaRkYHevXtj2bJlqFKlitRuaGgIe3t7jWXTpk348MMPYW5urseKdY9hh4iISMZCQ0MRFBQEf3//l45LSEjAyZMnMWDAgHKqrPwY6bsAIiIiKhvr1q3D8ePHER8f/8qx//vf/+Dh4YEWLVqUQ2Xli0d2iIiIZOj69ev47LPPsGbNGpiYmLx07KNHj7B27VpZHtUBeGSHiIhIlhISEpCSkoJGjRpJbXl5eThw4AC+++47ZGdnw9DQEADw66+/IisrC3379tVXuWWKYYeIiEiG/Pz8cPr0aY22/v37w93dHWPHjpWCDvD0FFbnzp1hY2NT3mWWC4YdIiIiGbKwsICXl5dGm5mZGaytrTXaL126hAMHDuD3338v7xLLDcMOERFRRbP/WNms98FD4EayxvpXLFsIJxtbtFda6X67rZvodn1aYtghIiJ6Q+ybt7RQ27SBoZg2MFQP1ZQf3o1FREREssawQ0RERLLGsENERESyxrBDREREssawQ0RERLLGsENERESyxrBDREREssawQ0RERLLGsENERESyxrBDREREssawQ0RERLLGsENERESyxrBDREREssawQ0RERLLGsENERESyxrBDREREssawQ0RERLLGsENERESyxrBDREREssawQ0RERLLGsENERESyJpuws3DhQlSvXh0mJiZo1qwZ/vzzT32XRERERBWALMLOzz//jJEjRyIiIgLHjx9H/fr1ERAQgJSUFH2XRkRERHomi7AzZ84cDBw4EP3794enpyeWLFmCypUrY8WKFfoujYiIiPTstQ87OTk5SEhIgL+/v9RmYGAAf39/xMXF6bEyIiIiqgiM9F1Aad29exd5eXmws7PTaLezs8O5c+eKfE92djays7Ol12lpaQCA9PT0sis0M6Ps1l2eyvIzKk9ymA/ORcXBuahY5DAfnItirv7p+oUQLx332ocdbURGRmLy5MmF2p2dnfVQDREREZXGw4cPoVarX9j/2oedqlWrwtDQEMnJyRrtycnJsLe3L/I94eHhGDlypPQ6Pz8fqampsLa2hkKhKNN6y0p6ejqcnZ1x/fp1qFQqfZfzRuNcVCycj4qDc1FxyGUuhBB4+PAhHB0dXzrutQ87xsbGaNy4Mfbs2YOuXbsCeBpe9uzZg7CwsCLfo1QqoVQqNdosLS3LuNLyoVKpXusfXDnhXFQsnI+Kg3NRcchhLl52RKfAax92AGDkyJEICQlBkyZN8Pbbb+Pbb79FZmYm+vfvr+/SiIiISM9kEXZ69OiBO3fuYOLEiUhKSkKDBg0QHR1d6KJlIiIievPIIuwAQFhY2AtPW70JlEolIiIiCp2eo/LHuahYOB8VB+ei4njT5kIhXnW/FhEREdFr7LV/qCARERHRyzDsEBERkawx7BAREZGsMewQERGRrDHs6FlkZCSaNm0KCwsL2NraomvXrjh//nyhcXFxcWjXrh3MzMygUqnQqlUrPHr06IXrvXfvHjp06ABHR0colUo4OzsjLCxM4/u/9u3bB4VCUWhJSkoqk319HSxevBje3t7Sg7Z8fHywY8cOjTElnYtn3bt3D05OTlAoFHjw4IHUzrl4uenTp0OhUGD48OEa7drMRVGf87p166R+zkVhBw4cQKdOneDo6AiFQoHNmzdr9GdkZCAsLAxOTk4wNTWFp6cnlixZ8tJ1Xrt2DQMGDICrqytMTU1Rs2ZNREREICcnR2NMUXNx5MiRstjN19qkSZMKfU7u7u5Sf5s2bQr1f/rpp3qsuHzJ5tbz19X+/fsRGhqKpk2b4smTJ/jiiy/Qvn17nD17FmZmZgCe/oPeoUMHhIeHY8GCBTAyMsJff/0FA4MXZ1UDAwN06dIFU6dOhY2NDS5duoTQ0FCkpqZi7dq1GmPPnz+v8QRNW1vbstnZ14CTkxOmT58ONzc3CCGwatUqdOnSBSdOnEDdunW1motnDRgwAN7e3rh582aR/ZyLwuLj47F06VJ4e3trtJdmLqKiotChQwfpdVFPUOdc/J/MzEzUr18fH3/8Mbp161aof+TIkYiNjcWPP/6I6tWrY9euXRgyZAgcHR3RuXPnItd57tw55OfnY+nSpahVqxb+/vtvDBw4EJmZmfjmm280xu7evRt169aVXltbW+t2B2Wibt262L17t/TayEjzV/zAgQMxZcoU6XXlypVfuK59+/ahX79+uHbtms7r1AtBFUpKSooAIPbv3y+1NWvWTIwfP77U6543b55wcnKSXu/du1cAEPfv3y/1uuWsSpUqYvny5UKI0s3FokWLROvWrcWePXsKfe6ci6I9fPhQuLm5iZiYGNG6dWvx2WefSX3azgUAsWnTphf2cy5erqjPr27dumLKlCkabY0aNRJffvllidY9c+ZM4erqKr2+evWqACBOnDihbblvjIiICFG/fv0X9j//9+dV9u7dK1xcXEpdV0XB01gVTFpaGgDAysoKAJCSkoKjR4/C1tYWLVq0gJ2dHVq3bo2DBw+WaL23bt3Cxo0b0bp160J9DRo0gIODA959910cOnSo9DshE3l5eVi3bh0yMzPh4+NTqrk4e/YspkyZgtWrV7/0yAPnQlNoaCiCgoLg7++v0V7avxehoaGoWrUq3n77baxYsQKiiMeNcS6Kr0WLFti6dStu3rwJIQT27t2LCxcuoH379iVaT1pamvRv37M6d+4MW1tb+Pr6YuvWrboqW3YuXrwIR0dH1KhRA71790ZiYqJG/5o1a1C1alV4eXkhPDwcWVlZeqpUD/Sdtuj/5OXliaCgINGyZUupLS4uTgAQVlZWYsWKFeL48eNi+PDhwtjYWFy4cOGV6+zZs6cwNTUVAESnTp3Eo0ePpL5z586JJUuWiGPHjolDhw6J/v37CyMjI5GQkFAm+/e6OHXqlDAzMxOGhoZCrVaL7du3CyG0n4vHjx8Lb29v8cMPPwghij5ywLko7KeffhJeXl7Sz+yz/zMtzd+LKVOmiIMHD4rjx4+L6dOnC6VSKebNmyf1cy5eDkUc2Xn8+LHo27evACCMjIyEsbGxWLVqVYnWe/HiRaFSqcT3338vtd25c0fMnj1bHDlyRPz5559i7NixQqFQiC1btuhiV2Tl999/F7/88ov466+/RHR0tPDx8RHVqlUT6enpQgghli5dKqKjo8WpU6fEjz/+KN566y3x/vvvv3B9cjuyw7BTgXz66afCxcVFXL9+XWo7dOiQACDCw8M1xtarV0+MGzdOCCFEhw4dhJmZmTAzMxOenp4a427fvi3++ecfsWXLFuHp6SkGDx780hpatWol/vOf/+hoj15P2dnZ4uLFi+LYsWNi3LhxomrVquLMmTNaz8WIESNEjx49pPHFPU3yJs9FYmKisLW1FX/99ZfU9mzYKe3fi2dNmDBB4/RuUd7kuXheUWFn1qxZonbt2mLr1q3ir7/+EgsWLBDm5uYiJiZGCCHEoEGDpLkwMzMrtM4bN26ImjVrigEDBrxy+3369BG+vr462Rc5u3//vlCpVNIp+OcVnE6/dOmS1PbsHJmYmAiFQqHRNmjQoPIqX+cYdiqI0NBQ4eTkJK5cuaLRfuXKFQFAOipQ4MMPPxQfffSREOLpPxQXL14UFy9eFNeuXXvhNv744w8BQNy6deuFY0aPHi2aN29eij2RHz8/P/HJJ59oPRf169cXBgYGwtDQUBgaGgoDAwMBQBgaGoqJEye+cLtv8lxs2rRJ+owKFgBCoVAIQ0NDcenSJZ39vdi2bZsAIB4/fvzCMW/yXDzv+bCTlZUlKlWqJLZt26YxbsCAASIgIEAIIURycrI0FxcvXtQYd/PmTeHm5ib69Okj8vLyXrn97777Ttjb25d+R94ATZo0kcL/8zIyMgQAER0dLbU9O0cFR3+ebUtOTi6v0nWOd2PpmRACQ4cOxaZNm7Bv3z64urpq9FevXh2Ojo6Fbke/cOECAgMDAQBvvfVWsbaVn58PAMjOzn7hmJMnT8LBwaEkuyB7+fn5yM7O1nouNmzYoHE7dHx8PD7++GP88ccfqFmz5gu3+ybPhZ+fH06fPq3R1r9/f7i7u2Ps2LGoUaOGzv5enDx5ElWqVHnpFyK+yXPxKrm5ucjNzS10LZqhoaH0b46trW2Rd7PdvHkTbdu2RePGjREVFVWsO+k4F8WTkZGBy5cvo0+fPkX2nzx5EgA0PstatWpJf75x4waMjIw02l5nDDt6FhoairVr12LLli2wsLCQnuWhVqthamoKhUKBMWPGICIiAvXr10eDBg2watUqnDt3Dr/++usL1/v7778jOTkZTZs2hbm5Oc6cOYMxY8agZcuWqF69OgDg22+/haurK+rWrYvHjx9j+fLliI2Nxa5du8pj1yuk8PBwBAYGolq1anj48CHWrl2Lffv2YefOnVrPxfOB5u7duwAADw8P6ZZnzoUmCwsLeHl5abSZmZnB2tpaatdmLn777TckJyejefPmMDExQUxMDKZNm4bRo0dLYzgXhWVkZODSpUvS66tXr+LkyZOwsrJCtWrV0Lp1a4wZMwampqZwcXHB/v37sXr1asyZM+eF67x58ybatGkDFxcXfPPNN7hz547UZ29vDwBYtWoVjI2N0bBhQwDAxo0bsWLFCixfvryM9vT1NXr0aHTq1AkuLi64desWIiIiYGhoiF69euHy5ctYu3Yt3nvvPVhbW+PUqVMYMWIEWrVqVeiRDrKl70NLbzoARS5RUVEa4yIjI4WTk5OoXLmy8PHxEX/88cdL1xsbGyt8fHyEWq0WJiYmws3NTYwdO1bjOpEZM2aImjVrChMTE2FlZSXatGkjYmNjy2AvXx8ff/yxcHFxEcbGxsLGxkb4+fmJXbt2aYwp6Vw8r6hrdjgXr1bUrbMlnYsdO3aIBg0aCHNzc2FmZibq168vlixZonH6hHNRWMHP7PNLSEiIEOLptYH9+vUTjo6OwsTERNSpU0fMnj1b5Ofnv3CdUVFRL/z3r8DKlSuFh4eHqFy5slCpVOLtt98W69evL+vdfS316NFDODg4CGNjY/HWW2+JHj16SNfjJCYmilatWgkrKyuhVCpFrVq1xJgxY0RaWtoL1ye3C5QVQhRxzyURERGRTPA5O0RERCRrDDtEREQkaww7REREJGsMO0RERCRrDDtEREQkaww7REREJGsMO0RExXT06FHMnz+/yG9JJ6KKi2GHiPRq5cqV0pOkK7KUlBT07NkT9evXh0KheOX4fv36oWvXrmVfGBG9EsMOEZVav379oFAoCi3PfsXAi/To0QMXLlwo0/quXbtWZH0KhQJHjhwBAEyaNAkNGjQo8v1CCPTr1w/Tpk1D69ati7XNefPmYeXKlTraAyIqDX43FhHpRIcOHRAVFaXRZmNj88r3mZqawtTUtKzK0rB7927UrVtXo83a2vqV71MoFPj999+LtY28vDwoFAqo1WqtaiQi3eORHSLSCaVSCXt7e43F0NAQc+bMQb169WBmZgZnZ2cMGTIEGRkZ0vuePY0lhIC/vz8CAgKk62JSU1Ph5OSEiRMnAngaJgYMGABXV1eYmpqiTp06mDdvXrFqtLa2LlRjpUqVsHLlSkyePBl//fWXdMSn4KhMcevfunUrPD09oVQqkZiYWOg0VnR0NHx9fWFpaQlra2t07NgRly9fLsUnTkTFxbBDRGXKwMAA8+fPx5kzZ7Bq1SrExsbi888/L3KsQqHAqlWrEB8fj/nz5wMAPv30U7z11ltS2MnPz4eTkxPWr1+Ps2fPYuLEifjiiy/wyy+/aF1jjx49MGrUKNStWxe3b9/G7du30aNHj0L1r169Gvv27StUf1ZWFmbMmIHly5fjzJkzsLW1LbSNzMxMjBw5EseOHcOePXtgYGCA999/H/n5+VrXTUTFpM9vISUieQgJCRGGhobCzMxMWrp3717k2PXr1wtra2vpdVRUlFCr1RpjfvnlF2FiYiLGjRsnzMzMxIULF166/dDQUBEcHPzC/qtXrwoAwtTUVKNGMzMzaUxERISoX7/+K/f1119/LVQ/AHHy5EmNcSEhIaJLly4vXM+dO3cEAHH69OlXbpOISofX7BCRTrRt2xaLFy+WXpuZmQF4ep1MZGQkzp07h/T0dDx58gSPHz9GVlYWKleuXOS6PvjgA2zatAnTp0/H4sWL4ebmptG/cOFCrFixAomJiXj06BFycnJeeHHxs37++Wd4eHiUaL+2b9+OqVOn4uzZs0hPT5fan63f2NgY3t7eL13PxYsXMXHiRBw9ehR3796VjugkJibCy8urRDURUcnwNBYR6YSZmRlq1aolLQ4ODrh27Ro6duwIb29vbNiwAQkJCVi4cCEAICcn54XrysrKQkJCAgwNDXHx4kWNvnXr1mH06NEYMGAAdu3ahZMnT6J///4vXV8BZ2dnjRpr1ar10vFXr15Ft27d8OGHH+LSpUvIy8uTLlR+dnumpqavvB29U6dOSE1NxbJly3D06FEcPXq00HqIqGzwyA4RlZmEhATk5+dj9uzZMDB4+n+r4lxbM2rUKBgYGGDHjh147733EBQUhHbt2gEADh06hBYtWmDIkCHSeF1c6GtsbIy8vLxC9QshMHz4cCnMHD58uMTrvnfvHs6fP49ly5bhnXfeAQAcPHiw1DUTUfEw7BBRmalVqxZyc3OxYMECdOrUCYcOHcKSJUte+p7t27djxYoViIuLQ6NGjTBmzBiEhITg1KlTqFKlCtzc3LB69Wrs3LkTrq6u+OGHHxAfHw9XV9dX1nPv3j0kJSVptFlaWsLExATVq1fH1atXcfLkSTg5OcHCwgK1a9dGbm4uZs+ejW7duuHAgQNYsWJFiT+HKlWqwNraGt9//z0cHByQmJiIcePGlXg9RKQdnsYiojJTv359zJkzBzNmzICXlxfWrFmDyMjIF46/c+cOBgwYgEmTJqFRo0YAgMmTJ8POzg6ffvopAGDQoEHo1q0bevTogWbNmuHevXsaR3lext/fHw4ODhrL5s2bAQDBwcHo0KED2rZtCxsbG/z000/w9vbGvHnzMHfuXHh5eWHdunWYMWNGiT8HAwMDrFu3DgkJCfDy8sKIESMwa9asEq+HiLSjEIJf8kJERETyxSM7REREJGsMO0RERCRrDDtEREQkaww7REREJGsMO0RERCRrDDtEREQkaww7REREJGsMO0RERCRrDDtEREQkaww7REREJGsMO0RERCRrDDtEREQka/8Pyh5GpkzBbPgAAAAASUVORK5CYII=",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "employeesAge = dfNovo['AgeGroup'].value_counts()\n",
+ "\n",
+ "#criando o grafico\n",
+ "barras = employeesAge.plot.bar(color='pink')\n",
+ "\n",
+ "#configurações\n",
+ "plt.xlabel('Faixa Etária')\n",
+ "plt.xticks(rotation=0)\n",
+ "plt.ylabel('Quantidade')\n",
+ "plt.title('Faixa Etária dos Colaboradores')\n",
+ "\n",
+ "# Adicionar rótulos nos graficos\n",
+ "for i, v in enumerate(employeesAge):\n",
+ " barras.text(i, v + 0.01, f'{v}', color='black', ha='center')\n",
+ "\n",
+ "plt.show()"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Grande parte do quadro tem menos de 46 anos."
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Diferença de Gêneros"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 23,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjsAAAHHCAYAAABZbpmkAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAABD0klEQVR4nO3de3zPdf/H8ed3mx1stjE7XoY5m4XkyqFRscswJBJyZVRSJheTK8qZkgpFOaRySF3SRXGROUdYck7OljVhTmubGcb2+f3htu/Pt41mNl8+Hvfb7XO77fv+vD+fz+v92eH73Of0tRiGYQgAAMCkHOxdAAAAQHEi7AAAAFMj7AAAAFMj7AAAAFMj7AAAAFMj7AAAAFMj7AAAAFMj7AAAAFMj7AD3qW3btmnUqFE6ffq0vUsBgGJF2AFuwffffy+LxaLvv//e3qXclnPnzunJJ5/UlStX5OfnV+DlRo4cKYvFUoyVXdOjRw9VrFix2LdT3G7n56VHjx7y8PAo+qKKicVi0ciRI+1dBpAvwg7uC7Nnz5bFYsl3Gjx4sL3L+0s3q99isejHH3+UJGVmZmrkyJE3fXM1DEPR0dF67LHHNHbs2Ds0gntDdna2Zs2apccee0xlypSRi4uLKlasqJ49e2rbtm32Lg9AITnZuwDgTho9erRCQkJs2sLCwgq8fNOmTXXx4kU5OzsXdWkFkl/9klSlShVJ18LOqFGjJEmPPfZYvus4evSowsPDFRsbe8vbHzp06D0RDgvj4sWL6tChg+Li4tS0aVO9/vrrKlOmjBITE7VgwQLNmTNHSUlJKleunL1LBXCLCDu4r7Rq1Ur169cv9PIODg5ydXUtwopuze3WL0mVKlW65cBy4cIFubu7y8nJSU5O5vyzMWjQIMXFxWnSpEnq37+/zbwRI0Zo0qRJ9imsGOXk5CgrK8uuP9P5yf15A4oKp7EASb/99pv69Omj6tWry83NTT4+PurUqZMSExNt+v35Goz9+/fLzc1N3bt3t+m3ceNGOTo66rXXXrO2LV68WFFRUQoKCpKLi4sqV66sMWPGKDs7u0jGkJiYKF9fX0nSqFGjrKe4cq+j+Pnnn9WjRw9VqlRJrq6uCggI0HPPPadz587ZrCf3upx9+/bpmWeeUenSpRUeHm4z73qzZs1Ss2bN5OfnJxcXF4WGhmratGkFrvvbb79VWFiYXF1dFRYWpm+++SbffhcuXNDAgQMVHBwsFxcXVa9eXe+9954Mw7Dpt2rVKoWHh8vb21seHh6qXr26Xn/99ZvW8Pvvv2vGjBn6xz/+kSfoSJKjo6NeffVVm6M6O3fuVKtWreTp6SkPDw81b97cejrxZn744Qd16tRJ5cuXl4uLi4KDgzVgwABdvHgx3/6//vqrIiMj5e7urqCgII0ePTrPmAu6bywWi/r27asvvvhCtWrVkouLi+Li4iRJ7733nho3biwfHx+5ubnpoYce0n//+9889Vy+fFkDBgyQr6+vSpUqpXbt2un333/Pt/aC7KPcU7Tr169Xnz595OfnZ7Ofly9friZNmsjd3V2lSpVSVFSU9u7da7OO5ORk9ezZU+XKlZOLi4sCAwP1xBNP5Pn9xf3LnP+iATeQlpams2fP2rSVLVtWW7du1ebNm9WlSxeVK1dOiYmJmjZtmh577DHt27dPJUuWzHd9NWvW1JgxYzRo0CA99dRTateunS5cuKAePXqoRo0aGj16tLXv7Nmz5eHhodjYWHl4eGjt2rUaPny40tPT9e677xa6fovFIh8fH/n6+mratGl6+eWX9eSTT6pDhw6SpNq1a0u6FgISEhLUs2dPBQQE6JdfftHHH3+svXv36scff8wTYjp16qSqVavqrbfeyvOmeb1p06apVq1aateunZycnPS///1Pffr0UU5OjmJiYm46npUrV6pjx44KDQ3VuHHjdO7cOeub1vUMw1C7du20bt06Pf/886pbt65WrFihQYMG6fjx49ajLnv37lWbNm1Uu3ZtjR49Wi4uLjpy5Ig2bdp00zqWL1+uq1ev6tlnn71pv1x79+5VkyZN5OnpqX//+98qUaKEZsyYoccee0zr169XgwYNbrjs119/rczMTL388svy8fHRTz/9pClTpuj333/X119/bdM3OztbLVu2VMOGDfXOO+8oLi5OI0aM0NWrV60/WwXdN7nWrl2rBQsWqG/fvipbtqz1QvAPPvhA7dq1U7du3ZSVlaX58+erU6dOWrp0qaKioqzLv/DCC5o3b56eeeYZNW7cWGvXrrWZX9h91KdPH/n6+mr48OG6cOGCJOnzzz9XdHS0IiMjNX78eGVmZmratGkKDw/Xzp07rbV37NhRe/fu1SuvvKKKFSvq9OnTWrVqlZKSkkxxoTuKgAHcB2bNmmVIyncyDMPIzMzMs0x8fLwhyZg7d661bd26dYYkY926dda27OxsIzw83PD39zfOnj1rxMTEGE5OTsbWrVtt1pffNnr37m2ULFnSuHTpUqHrd3FxsfY7c+aMIckYMWJEnnVkZGTkaZs3b54hydiwYYO1bcSIEYYko2vXrnn65877q3FFRkYalSpVuumYDMMw6tatawQGBhqpqanWtpUrVxqSjAoVKljbvv32W0OSMXbsWJvln3rqKcNisRhHjhwxDMMwJk2aZEgyzpw585fbvt6AAQMMScbOnTsL1L99+/aGs7OzkZCQYG07ceKEUapUKaNp06bWtvx+XvLbX+PGjTMsFovx22+/Wduio6MNScYrr7xibcvJyTGioqIMZ2dn6xgLum8MwzAkGQ4ODsbevXvz1PDnurKysoywsDCjWbNm1rZdu3YZkow+ffrY9H3mmWfy/NwVdB/l/myHh4cbV69etbafP3/e8Pb2Nnr16mWzreTkZMPLy8va/scffxiSjHfffTfPmIBcnMbCfeWjjz7SqlWrbCZJcnNzs/a5cuWKzp07pypVqsjb21s7duy46TodHBw0e/ZsZWRkqFWrVpo6daqGDBmS59qa67dx/vx5nT17Vk2aNFFmZqYOHDhQ6PqXL19eoGWvvwbCMAxdunRJLVq0kKR8x/jSSy8VaL3Xjyv3yNOjjz6qX3/9VWlpaTdc7uTJk9q1a5eio6Pl5eVlbf/HP/6h0NBQm77fffedHB0d1a9fP5v2gQMHyjAM6z7w9vaWdO2UYU5OToHql6T09HRJUqlSpf6yb3Z2tlauXKn27durUqVK1vbAwEA988wz2rhxo3V9+bl+f124cEFnz55V48aNZRiGdu7cmad/3759rV/nnobKysrS6tWrJRV83+R69NFH8+zfP9f1xx9/KC0tTU2aNLH52fjuu+8kKc+2/nzqrzD7qFevXnJ0dLS+XrVqlVJTU9W1a1edPXvWOjk6OqpBgwZat26dtW5nZ2d9//33+uOPP/KMC5A4jYX7zMMPP5zvBb4XL17UuHHjNGvWLB0/ftzmtM3N3rBzVa5cWSNHjtSgQYMUFhamYcOG5emzd+9eDR06VGvXrs3zh74g27hZ/QWRlpamt99+W1999ZWOHz+urKysm24/v7u+8rNp0yaNGDFC8fHxyszMzLPN64PM9X777TdJUtWqVfPMq169us2b7G+//aagoKA8YaRmzZo26+rcubM++eQTvfDCCxo8eLCaN2+uDh066KmnnpKDw43/t/P09JR0LYT+lTNnzigzM1PVq1fPM69mzZrKycnRsWPHVKtWrXyXT0pK0vDhw7VkyZI8b85//j44ODjYhAVJqlatmiRZr0cp6L7JdaPv69KlSzV27Fjt2rVLly9ftrZff3rzt99+k4ODgypXrmyz7J/3RWH20Z/rOnz4sCSpWbNm+dab+z1zcXHR+PHjNXDgQPn7+6thw4Zq06aNunfvroCAgHyXxf2HsANIeuWVVzRr1iz1799fjRo1kpeXlywWi7p06VLgIwQrV66UJJ04cULnzp2z+UObmpqqRx99VJ6enho9erQqV64sV1dX7dixQ6+99totHYUorM6dO2vTpk0aOnSo6tWrJw8PD2VnZ6tJkyb5bv/6//RvJCEhQc2bN1eNGjU0ceJEBQcHy9nZWd99950mTZp0R8Z1PTc3N23YsEHr1q3TsmXLFBcXp6+++krNmjXTypUrbY4cXK9GjRqSpD179qhu3brFVl92drb+8Y9/KCUlRa+99ppq1Kghd3d3HT9+XD169Lgj+yu/7+sPP/ygdu3aqWnTppo6daoCAwNVokQJzZo1S19++WWx15RfXbn74vPPP883tFx/V2D//v3Vtm1bffvtt1qxYoWGDRumcePGae3atXrwwQeLt3DcEwg7gKT//ve/io6O1oQJE6xtly5dUmpqaoGWnz59ulatWqU333xT48aNU+/evbV48WLr/O+//17nzp3TokWL1LRpU2v70aNHi2wMkm74dOPU1FStWLFCY8eOtblD7NChQ7e1vf/973+6fPmylixZovLly1vbc08x3EyFChUk/f9/8Nc7ePBgnr6rV6/W+fPnbY5g5J7+y12XdO1oSPPmzdW8eXNNnDhRb731lt544w2tW7dOERER+dbSqlUrOTo6at68eX95kbKvr69KliyZp8bcehwcHBQcHJzvsnv27NGhQ4c0Z84cmzv4ck+n/llOTo5+/fVX69Ec6f+/Z7kX3t7KvrmRhQsXytXVVStWrJCLi4u1fdasWTb9KlSooJycHCUkJNgctfnzvridfZQr9+iRn5/fDb9vf+4/cOBADRw4UIcPH1bdunU1YcIEzZs37y+XhflxzQ6ga7cWG3+642jKlCkFui386NGjGjRokDp27KjXX39d7733npYsWaK5c+farF+SzTaysrI0derUIhrBNbl3jf05pOWewrly5YpN+/XhrjDyG1daWlqeN8n8BAYGqm7dupozZ47N6ZtVq1Zp3759Nn1bt26t7OxsffjhhzbtkyZNksViUatWrSRJKSkpebaTe6Tm+lMzfxYcHKxevXpp5cqVmjJlSp75OTk5mjBhgn7//Xc5OjqqRYsWWrx4sc2tzadOndKXX36p8PBw6ymWP8tvfxmGoQ8++OCGtV0/ZsMw9OGHH6pEiRJq3ry5pILvm5txdHSUxWKx+XlPTEzUt99+a9Mvd12TJ0+2aX///ffzrK+w+yhXZGSkPD099dZbb+X5uZWunSqTrj1I89KlSzbzKleurFKlSt30e477C0d2AElt2rTR559/Li8vL4WGhio+Pl6rV6+Wj4/PTZczDEPPPfec3NzcrM+W6d27txYuXKh//etfioiIUFBQkBo3bqzSpUsrOjpa/fr1k8Vi0eeff37TW7rzs3z58nwvZm7cuLEqVaokNzc3hYaG6quvvlK1atVUpkwZhYWFKSwsTOHh4Xr33Xd19epV/e1vf9OKFSuUlJR0S9v/sxYtWsjZ2Vlt27ZV7969lZGRoZkzZ8rPz08nT578y+XHjRunqKgohYeH67nnnlNKSoqmTJmiWrVqKSMjw9qvbdu2evzxx/XGG28oMTFRderU0cqVK7V48WL179/fehRg9OjR2rBhg6KiolShQgWdPn1aU6dOVbly5azPCrqRCRMmKCEhQf369dOiRYvUpk0blS5dWklJSfr666914MABdenSRZI0duxY6/N8+vTpIycnJ82YMUOXL1/WO++8c8Nt1KhRQ5UrV9arr76q48ePy9PTUwsXLrzhhbWurq6Ki4tTdHS0GjRooOXLl2vZsmV6/fXXrc9UKui+uZmoqChNnDhRLVu21DPPPKPTp0/ro48+UpUqVfTzzz9b+9WtW1ddu3bV1KlTlZaWpsaNG2vNmjU6cuRInnUWdh/l8vT01LRp0/Tss8+qXr166tKli3x9fZWUlKRly5bpkUce0YcffqhDhw6pefPmevrppxUaGionJyd98803OnXqlPX7BXDrOe4Lube3/vl28Fx//PGH0bNnT6Ns2bKGh4eHERkZaRw4cMCoUKGCER0dbe3351uJP/jgA0OSsXDhQpv1JSUlGZ6enkbr1q2tbZs2bTIaNmxouLm5GUFBQca///1vY8WKFXluTb5Z/TeaZs2aZe27efNm46GHHjKcnZ1tbgdOSkoy2rdvb3h5eRne3t5Gly5djOTk5Dy3DOfeXp7f7dv53Xq+ZMkSo3bt2oarq6tRsWJFY/z48cZnn31mSDKOHj1603EZhmEsXLjQqFmzpuHi4mKEhoYaixYtMqKjo21uPTeMa7ciDxgwwAgKCjJKlChhVK1a1Xj33XeNnJwca581a9YYTzzxhBEUFGQ4OzsbQUFBRteuXY1Dhw79ZR2GYRhXr141PvnkE6NJkyaGl5eXUaJECaNChQpGz54989yWvmPHDiMyMtLw8PAwSpYsaTz++OPG5s2bbfrkd+v5vn37jIiICMPDw8MoW7as0atXL2P37t15vo/R0dGGu7u7kZCQYLRo0cIoWbKk4e/vb4wYMcLIzs6+5X1jGNduPY+Jicl37J9++qlRtWpVw8XFxahRo4Yxa9asfL/fFy9eNPr162f4+PgY7u7uRtu2bY1jx47l+8iDguyjv/rdXLdunREZGWl4eXkZrq6uRuXKlY0ePXoY27ZtMwzDsD7uoUaNGoa7u7vh5eVlNGjQwFiwYEG+68P9yWIYt/ivJQAAwD2Ea3YAAICpEXYAAICpEXYAAICpEXYAAICpEXYAAICpEXYAAICp8VBBXXs66okTJ1SqVKkbPm4fAADcXQzD0Pnz5xUUFHTTD/sl7OjaBzf+1ee0AACAu9OxY8dUrly5G84n7EjWD887duzYX35eCwAAuDukp6crODjY5kNw80PY0f9/UrSnpydhBwCAe8xfXYLCBcoAAMDUCDsAAMDUCDsAAMDUCDsAAMDUCDsAAMDUCDu452VnZ2vYsGEKCQmRm5ubKleurDFjxsgwDGufjIwM9e3bV+XKlZObm5tCQ0M1ffp06/yUlBS98sorql69utzc3FS+fHn169dPaWlp9hgSAKAIces57nnjx4/XtGnTNGfOHNWqVUvbtm1Tz5495eXlpX79+kmSYmNjtXbtWs2bN08VK1bUypUr1adPHwUFBaldu3Y6ceKETpw4offee0+hoaH67bff9NJLL+nEiRP673//a+cRAgBuh8W4/t/f+1R6erq8vLyUlpbGc3buQW3atJG/v78+/fRTa1vHjh3l5uamefPmSZLCwsLUuXNnDRs2zNrnoYceUqtWrTR27Nh81/v111/rn//8py5cuCAnJ/4vAIC7TUHfvzmNhXte48aNtWbNGh06dEiStHv3bm3cuFGtWrWy6bNkyRIdP35chmFo3bp1OnTokFq0aHHD9eb+8hB0AODexl9x3PMGDx6s9PR01ahRQ46OjsrOztabb76pbt26WftMmTJFL774osqVKycnJyc5ODho5syZatq0ab7rPHv2rMaMGaMXX3zxTg0DAFBMCDu45y1YsEBffPGFvvzyS9WqVUu7du1S//79FRQUpOjoaEnXws6PP/6oJUuWqEKFCtqwYYNiYmIUFBSkiIgIm/Wlp6crKipKoaGhGjlypB1GBAAoSlyzI67ZudcFBwdr8ODBiomJsbaNHTtW8+bN04EDB3Tx4kV5eXnpm2++UVRUlLXPCy+8oN9//11xcXHWtvPnzysyMlIlS5bU0qVL5erqekfHAgAoOK7ZwX0jMzNTDg62P8qOjo7KycmRJF25ckVXrly5aR/p2i9NixYt5OzsrCVLlhB0AMAkOI2Fe17btm315ptvqnz58qpVq5Z27typiRMn6rnnnpN07dPsH330UQ0aNEhubm6qUKGC1q9fr7lz52rixImS/j/oZGZmat68eUpPT1d6erokydfXV46OjnYbHwDg9nAaS5zGutedP39ew4YN0zfffKPTp08rKChIXbt21fDhw+Xs7CxJSk5O1pAhQ7Ry5UqlpKSoQoUKevHFFzVgwABZLBZ9//33evzxx/Nd/9GjR1WxYsU7OCIAQEEU9P2bsKP7O+wsOnjS3iXgDupQPdDeJQBAkeGaHQAAABF2AACAyRF2AACAqRF2AACAqRF2AACAqRF2AACAqRF2AACAqRF2AACAqRF2AACAqRF2AACAqRF2AACAqRF2AACAqRF2AACAqRF2AACAqRF2AACAqRF2AACAqRF2AACAqRF2AACAqRF2AACAqRF2AACAqRF2AACAqRF2AACAqRF2AACAqRF2AACAqRF2AACAqRF2AACAqRF2AACAqdk17GRnZ2vYsGEKCQmRm5ubKleurDFjxsgwDGsfwzA0fPhwBQYGys3NTRERETp8+LDNelJSUtStWzd5enrK29tbzz//vDIyMu70cAAAwF3IrmFn/PjxmjZtmj788EPt379f48eP1zvvvKMpU6ZY+7zzzjuaPHmypk+fri1btsjd3V2RkZG6dOmStU+3bt20d+9erVq1SkuXLtWGDRv04osv2mNIAADgLmMxrj+Mcoe1adNG/v7++vTTT61tHTt2lJubm+bNmyfDMBQUFKSBAwfq1VdflSSlpaXJ399fs2fPVpcuXbR//36FhoZq69atql+/viQpLi5OrVu31u+//66goKC/rCM9PV1eXl5KS0uTp6dn8Qz2LrXo4El7l4A7qEP1QHuXAABFpqDv33Y9stO4cWOtWbNGhw4dkiTt3r1bGzduVKtWrSRJR48eVXJysiIiIqzLeHl5qUGDBoqPj5ckxcfHy9vb2xp0JCkiIkIODg7asmVLvtu9fPmy0tPTbSYAAGBOTvbc+ODBg5Wenq4aNWrI0dFR2dnZevPNN9WtWzdJUnJysiTJ39/fZjl/f3/rvOTkZPn5+dnMd3JyUpkyZax9/mzcuHEaNWpUUQ8HAADchex6ZGfBggX64osv9OWXX2rHjh2aM2eO3nvvPc2ZM6dYtztkyBClpaVZp2PHjhXr9gAAgP3Y9cjOoEGDNHjwYHXp0kWS9MADD+i3337TuHHjFB0drYCAAEnSqVOnFBj4/9canDp1SnXr1pUkBQQE6PTp0zbrvXr1qlJSUqzL/5mLi4tcXFyKYUQAAOBuY9cjO5mZmXJwsC3B0dFROTk5kqSQkBAFBARozZo11vnp6enasmWLGjVqJElq1KiRUlNTtX37dmuftWvXKicnRw0aNLgDowAAAHczux7Zadu2rd58802VL19etWrV0s6dOzVx4kQ999xzkiSLxaL+/ftr7Nixqlq1qkJCQjRs2DAFBQWpffv2kqSaNWuqZcuW6tWrl6ZPn64rV66ob9++6tKlS4HuxAIAAOZm17AzZcoUDRs2TH369NHp06cVFBSk3r17a/jw4dY+//73v3XhwgW9+OKLSk1NVXh4uOLi4uTq6mrt88UXX6hv375q3ry5HBwc1LFjR02ePNkeQwIAAHcZuz5n527Bc3Zwv+A5OwDM5J54zg4AAEBxI+wAAABTI+wAAABTI+wAAABTI+wAAABTI+wAAABTI+wAAABTI+wAAABTI+wAAABTI+wAAABTI+wAAABTI+wAAABTI+wAAABTI+wAAABTI+wAAABTI+wAAABTI+wAAABTI+wAAABTI+wAAABTI+wAAABTI+wAAABTI+wAAABTI+wAAABTI+wAAABTI+wAAABTI+wAAABTI+wAAABTI+wAAABTI+wAAABTI+wAAABTI+wAAABTI+wAAABTI+wAAABTI+wAAABTI+wAAABTI+wAAABTI+wAAABTI+wAAABTI+wAAABTI+wAAABTI+wAAABTI+wAAABTI+wAAABTI+wAAABTI+wAAABTI+wAAABTI+wAAABTI+wAAABTI+wAAABTI+wAAABTI+wAAABTI+wAAABTI+wAAABTI+wAAABTI+wAAABTI+wAAABTI+wAAABTI+wAAABTI+wAAABTI+wAAABTI+wAAABTI+wAAABTI+wAAABTI+wAAABTI+wAAABTI+wAAABTI+wAAABTI+wAAABTI+wAAO5aI0eOlMVisZlq1KhhnZ+cnKxnn31WAQEBcnd3V7169bRw4UKbdRw6dEhPPPGEypYtK09PT4WHh2vdunV3eiiwI7uHnePHj+uf//ynfHx85ObmpgceeEDbtm2zzjcMQ8OHD1dgYKDc3NwUERGhw4cP26wjJSVF3bp1k6enp7y9vfX8888rIyPjTg8FAFAMatWqpZMnT1qnjRs3Wud1795dBw8e1JIlS7Rnzx516NBBTz/9tHbu3Gnt06ZNG129elVr167V9u3bVadOHbVp00bJycn2GA7swK5h548//tAjjzyiEiVKaPny5dq3b58mTJig0qVLW/u88847mjx5sqZPn64tW7bI3d1dkZGRunTpkrVPt27dtHfvXq1atUpLly7Vhg0b9OKLL9pjSACAIubk5KSAgADrVLZsWeu8zZs365VXXtHDDz+sSpUqaejQofL29tb27dslSWfPntXhw4c1ePBg1a5dW1WrVtXbb7+tzMxM/fLLL/YaEu4wu4ad8ePHKzg4WLNmzdLDDz+skJAQtWjRQpUrV5Z07ajO+++/r6FDh+qJJ55Q7dq1NXfuXJ04cULffvutJGn//v2Ki4vTJ598ogYNGig8PFxTpkzR/PnzdeLECTuODgBQFA4fPqygoCBVqlRJ3bp1U1JSknVe48aN9dVXXyklJUU5OTmaP3++Ll26pMcee0yS5OPjo+rVq2vu3Lm6cOGCrl69qhkzZsjPz08PPfSQnUaEO82uYWfJkiWqX7++OnXqJD8/Pz344IOaOXOmdf7Ro0eVnJysiIgIa5uXl5caNGig+Ph4SVJ8fLy8vb1Vv359a5+IiAg5ODhoy5Yt+W738uXLSk9Pt5kAAHefBg0aaPbs2YqLi9O0adN09OhRNWnSROfPn5ckLViwQFeuXJGPj49cXFzUu3dvffPNN6pSpYokyWKxaPXq1dq5c6dKlSolV1dXTZw4UXFxcTZnEWBudg07v/76q6ZNm6aqVatqxYoVevnll9WvXz/NmTNHkqznU/39/W2W8/f3t85LTk6Wn5+fzXwnJyeVKVPmhudjx40bJy8vL+sUHBxc1EMDABSBVq1aqVOnTqpdu7YiIyP13XffKTU1VQsWLJAkDRs2TKmpqVq9erW2bdum2NhYPf3009qzZ4+ka2cIYmJi5Ofnpx9++EE//fST2rdvr7Zt2+rkyZP2HBruICd7bjwnJ0f169fXW2+9JUl68MEH9csvv2j69OmKjo4utu0OGTJEsbGx1tfp6ekEHgC4B3h7e6tatWo6cuSIEhIS9OGHH+qXX35RrVq1JEl16tTRDz/8oI8++kjTp0/X2rVrtXTpUv3xxx/y9PSUJE2dOlWrVq3SnDlzNHjwYHsOB3eIXY/sBAYGKjQ01KatZs2a1vOxAQEBkqRTp07Z9Dl16pR1XkBAgE6fPm0z/+rVq0pJSbH2+TMXFxd5enraTACAu19GRoYSEhIUGBiozMxMSZKDg+1bmaOjo3JyciTphn0cHBysfWB+dg07jzzyiA4ePGjTdujQIVWoUEGSFBISooCAAK1Zs8Y6Pz09XVu2bFGjRo0kSY0aNVJqaqr1yntJWrt2rXJyctSgQYM7MAoAQHF59dVXtX79eiUmJmrz5s168skn5ejoqK5du6pGjRqqUqWKevfurZ9++kkJCQmaMGGCVq1apfbt20u69h5RunRpRUdHa/fu3Tp06JAGDRqko0ePKioqyr6Dwx1j19NYAwYMUOPGjfXWW2/p6aef1k8//aSPP/5YH3/8saRrF5b1799fY8eOVdWqVRUSEqJhw4YpKCjI+oNcs2ZNtWzZUr169dL06dN15coV9e3bV126dFFQUJAdRwcAuF2///67unbtqnPnzsnX11fh4eH68ccf5evrK0n67rvvNHjwYLVt21YZGRmqUqWK5syZo9atW0uSypYtq7i4OL3xxhtq1qyZrly5olq1amnx4sWqU6eOPYeGO8hiGIZhzwKWLl2qIUOG6PDhwwoJCVFsbKx69eplnW8YhkaMGKGPP/5YqampCg8P19SpU1WtWjVrn5SUFPXt21f/+9//5ODgoI4dO2ry5Mny8PAoUA3p6eny8vJSWlrafXdKa9FBLtC7n3SoHmjvEnAnLd9g7wpwJ7Vqau8K7riCvn/bPezcDQg7uF8Qdu4zhJ37C2Hnhv3s/nERAAAAxYmwAwAATI2wAwAATI2wAwAATI2wAwAATI2wAwAATI2wAwAATI2wAwAATI2wAwAATI2wAwAATK3QYSc1NVWffPKJhgwZopSUFEnSjh07dPz48SIrDgAA4HYV6lPPf/75Z0VERMjLy0uJiYnq1auXypQpo0WLFikpKUlz584t6joBAAAKpVBHdmJjY9WjRw8dPnxYrq6u1vbWrVtrwwY+eA4AANw9ChV2tm7dqt69e+dp/9vf/qbk5OTbLgoAAKCoFCrsuLi4KD09PU/7oUOH5Ovre9tFAQAAFJVChZ127dpp9OjRunLliiTJYrEoKSlJr732mjp27FikBQIAANyOQoWdCRMmKCMjQ35+frp48aIeffRRValSRaVKldKbb75Z1DUCAAAUWqHuxvLy8tKqVau0ceNG/fzzz8rIyFC9evUUERFR1PUBAADclkKFnVzh4eEKDw8vqloAAACKXIHDzuTJkwu80n79+hWqGAAAgKJW4LAzadIkm9dnzpxRZmamvL29JV17onLJkiXl5+dH2AEAAHeNAl+gfPToUev05ptvqm7dutq/f79SUlKUkpKi/fv3q169ehozZkxx1gsAAHBLCnU31rBhwzRlyhRVr17d2la9enVNmjRJQ4cOLbLiAAAAblehws7Jkyd19erVPO3Z2dk6derUbRcFAABQVAoVdpo3b67evXtrx44d1rbt27fr5Zdf5vZzAABwVylU2Pnss88UEBCg+vXry8XFRS4uLnr44Yfl7++vTz75pKhrBAAAKLRCPWfH19dX3333nQ4dOqQDBw5IkmrUqKFq1aoVaXEAAAC367YeKlitWjUCDgAAuKsVOuz8/vvvWrJkiZKSkpSVlWUzb+LEibddGAAAQFEoVNhZs2aN2rVrp0qVKunAgQMKCwtTYmKiDMNQvXr1irpGAACAQivUBcpDhgzRq6++qj179sjV1VULFy7UsWPH9Oijj6pTp05FXSMAAEChFSrs7N+/X927d5ckOTk56eLFi/Lw8NDo0aM1fvz4Ii0QAADgdhQq7Li7u1uv0wkMDFRCQoJ13tmzZ4umMgAAgCJQqGt2GjZsqI0bN6pmzZpq3bq1Bg4cqD179mjRokVq2LBhUdcIAABQaIUKOxMnTlRGRoYkadSoUcrIyNBXX32lqlWrcicWAAC4qxQq7FSqVMn6tbu7u6ZPn15kBQEAABSlQl2zAwAAcK8o8JGd0qVLy2KxFKhvSkpKoQsCAAAoSgUOO++//77163Pnzmns2LGKjIxUo0aNJEnx8fFasWKFhg0bVuRFAgAAFFaBw050dLT1644dO2r06NHq27evta1fv3768MMPtXr1ag0YMKBoqwQAACikQl2zs2LFCrVs2TJPe8uWLbV69erbLgoAAKCoFCrs+Pj4aPHixXnaFy9eLB8fn9suCgAAoKgU6tbzUaNG6YUXXtD333+vBg0aSJK2bNmiuLg4zZw5s0gLBAAAuB2FCjs9evRQzZo1NXnyZC1atEiSVLNmTW3cuNEafgAAAO4GhQo7ktSgQQN98cUXRVkLAABAkStw2ElPT5enp6f165vJ7QcAAGBvt/RQwZMnT8rPz0/e3t75PmDQMAxZLBZlZ2cXaZEAAACFVeCws3btWpUpU0aStG7dumIrCAAAoCgVOOw8+uij1q9DQkIUHByc5+iOYRg6duxY0VUHAABwmwr1nJ2QkBCdOXMmT3tKSopCQkJuuygAAICiUqiwk3ttzp9lZGTI1dX1tosCAAAoKrd063lsbKwkyWKxaNiwYSpZsqR1XnZ2trZs2aK6desWaYEAAAC345bCzs6dOyVdO7KzZ88eOTs7W+c5OzurTp06evXVV4u2QgAAgNtwS2En9y6snj176oMPPuB5OgAA4K5XqCcoz5o1q6jrAAAAKBaFCjsXLlzQ22+/rTVr1uj06dPKycmxmf/rr78WSXEAAAC3q1Bh54UXXtD69ev17LPPKjAwMN87swAAAO4GhQo7y5cv17Jly/TII48UdT0AAABFqlDP2SldurT1oyMAAADuZoUKO2PGjNHw4cOVmZlZ1PUAAAAUqUKdxpowYYISEhLk7++vihUrqkSJEjbzd+zYUSTFAQAA3K5ChZ327dsXcRkAAADFo1BhZ8SIEUVdBwAAQLEo1DU7AAAA94pCHdnJzs7WpEmTtGDBAiUlJSkrK8tmfkpKSpEUBwAAcLsKdWRn1KhRmjhxojp37qy0tDTFxsaqQ4cOcnBw0MiRI4u4RAAAgMIrVNj54osvNHPmTA0cOFBOTk7q2rWrPvnkEw0fPlw//vhjUdcIAABQaIUKO8nJyXrggQckSR4eHkpLS5MktWnTRsuWLSu66gAAAG5TocJOuXLldPLkSUlS5cqVtXLlSknS1q1b5eLiUnTVAQAA3KZChZ0nn3xSa9askSS98sorGjZsmKpWraru3bvrueeeK1Qhb7/9tiwWi/r3729tu3TpkmJiYuTj4yMPDw917NhRp06dslkuKSlJUVFRKlmypPz8/DRo0CBdvXq1UDUAAADzKdTdWG+//bb1686dO6t8+fKKj49X1apV1bZt21te39atWzVjxgzVrl3bpn3AgAFatmyZvv76a3l5ealv377q0KGDNm3aJOnaXWFRUVEKCAjQ5s2bdfLkSXXv3l0lSpTQW2+9VZihAQAAkymS5+w0atRIsbGxhQo6GRkZ6tatm2bOnKnSpUtb29PS0vTpp59q4sSJatasmR566CHNmjVLmzdvtl4EvXLlSu3bt0/z5s1T3bp11apVK40ZM0YfffRRntvhAQDA/alQR3bmzp170/ndu3cv8LpiYmIUFRWliIgIjR071tq+fft2XblyRREREda2GjVqWI8iNWzYUPHx8XrggQfk7+9v7RMZGamXX35Ze/fu1YMPPpjvNi9fvqzLly9bX6enpxe4XgAAcG8pVNj517/+ZfP6ypUryszMlLOzs0qWLFngsDN//nzt2LFDW7duzTMvOTlZzs7O8vb2tmn39/dXcnKytc/1QSd3fu68Gxk3bpxGjRpVoBoBAMC9rVCnsf744w+bKSMjQwcPHlR4eLj+85//FGgdx44d07/+9S998cUXcnV1LUwZhTZkyBClpaVZp2PHjt3R7QMAgDunyD4bq2rVqnr77bfzHPW5ke3bt+v06dOqV6+enJyc5OTkpPXr12vy5MlycnKSv7+/srKylJqaarPcqVOnFBAQIEkKCAjIc3dW7uvcPvlxcXGRp6enzQQAAMypSD8I1MnJSSdOnChQ3+bNm2vPnj3atWuXdapfv766detm/bpEiRLWW9wl6eDBg0pKSlKjRo0kXbswes+ePTp9+rS1z6pVq+Tp6anQ0NCiHBoAALhHFeqanSVLlti8NgxDJ0+e1IcffqhHHnmkQOsoVaqUwsLCbNrc3d3l4+NjbX/++ecVGxurMmXKyNPTU6+88ooaNWqkhg0bSpJatGih0NBQPfvss3rnnXeUnJysoUOHKiYmhocbAgAASYUMO+3bt7d5bbFY5Ovrq2bNmmnChAlFUZckadKkSXJwcFDHjh11+fJlRUZGaurUqdb5jo6OWrp0qV5++WU1atRI7u7uio6O1ujRo4usBgAAcG+zGIZhFHbhM2fOyNnZWV5eXkVZ0x2Xnp4uLy8vpaWl3XfX7yw6eNLeJeAO6lA90N4l4E5avsHeFeBOatXU3hXccQV9/77la3ZSU1MVExOjsmXLKiAgQGXKlFFAQICGDBmizMzM2yoaAACgqN3SaayUlBQ1atRIx48fV7du3VSzZk1J0r59+zRlyhStWrVKGzdu1M8//6wff/xR/fr1K5aiAQAACuqWws7o0aPl7OyshISEPA/zGz16tFq0aKFnn31WK1eu1OTJk4u0UAAAgMK4pbDz7bffasaMGXmCjnTtuTbvvPOOWrdurREjRig6OrrIigQAACisW7pm5+TJk6pVq9YN54eFhcnBwUEjRoy47cIAAACKwi2FnbJlyyoxMfGG848ePSo/P7/brQkAAKDI3FLYiYyM1BtvvKGsrKw88y5fvqxhw4apZcuWRVYcAADA7brlC5Tr16+vqlWrKiYmRjVq1JBhGNq/f7+mTp2qy5cva+7cucVVKwAAwC27pbBTrlw5xcfHq0+fPhoyZIhyn0dosVj0j3/8Qx9++KHKly9fLIUCAAAUxi1/XERISIiWL1+uP/74Q4cPH5YkValSRWXKlCny4gAAAG5XoT4bS5JKly6thx9+uChrAQAAKHK3/HERAAAA9xLCDgAAMDXCDgAAMDXCDgAAMDXCDgAAMDXCDgAAMDXCDgAAMDXCDgAAMDXCDgAAMDXCDgAAMDXCDgAAMDXCDgAAMDXCDgAAMDXCDgAAMDXCDgAAMDXCDgAAMDXCDgAAMDXCDgAAMDXCDgAAMDXCDgAAMDXCDgAAMDXCDgAAMDXCDgAAMDXCDgAAMDXCDgAAMDXCDgAAMDXCDgAAMDXCDgAAMDXCDgAAMDXCDgAAMDXCDgAAMDXCDgAAMDXCDgAAMDXCDgAAMDXCDgAAMDXCDgAAMDXCDgAAMDXCDgAAMDXCDgAAMDXCDgAAMDXCDgAAMDXCDgAAMDXCDgAAMDXCDgAAMDXCDgAAMDXCDgAAMDXCDgAAMDXCDgAAMDXCDgAAMDXCDgAAMDXCDgAAMDXCDgAAMDXCDgAAMDXCDgAAMDXCDgAAMDXCDgAAMDXCDgAAMDXCDgAAMDW7hp1x48bp73//u0qVKiU/Pz+1b99eBw8etOlz6dIlxcTEyMfHRx4eHurYsaNOnTpl0ycpKUlRUVEqWbKk/Pz8NGjQIF29evVODgUAANyl7Bp21q9fr5iYGP34449atWqVrly5ohYtWujChQvWPgMGDND//vc/ff3111q/fr1OnDihDh06WOdnZ2crKipKWVlZ2rx5s+bMmaPZs2dr+PDh9hgSAAC4y1gMwzDsXUSuM2fOyM/PT+vXr1fTpk2VlpYmX19fffnll3rqqackSQcOHFDNmjUVHx+vhg0bavny5WrTpo1OnDghf39/SdL06dP12muv6cyZM3J2dv7L7aanp8vLy0tpaWny9PQs1jHebRYdPGnvEnAHdageaO8ScCct32DvCnAntWpq7wruuIK+f99V1+ykpaVJksqUKSNJ2r59u65cuaKIiAhrnxo1aqh8+fKKj4+XJMXHx+uBBx6wBh1JioyMVHp6uvbu3Zvvdi5fvqz09HSbCQAAmNNdE3ZycnLUv39/PfLIIwoLC5MkJScny9nZWd7e3jZ9/f39lZycbO1zfdDJnZ87Lz/jxo2Tl5eXdQoODi7i0QAAgLvFXRN2YmJi9Msvv2j+/PnFvq0hQ4YoLS3NOh07dqzYtwkAAOzDyd4FSFLfvn21dOlSbdiwQeXKlbO2BwQEKCsrS6mpqTZHd06dOqWAgABrn59++slmfbl3a+X2+TMXFxe5uLgU8SgAAMDdyK5HdgzDUN++ffXNN99o7dq1CgkJsZn/0EMPqUSJElqzZo217eDBg0pKSlKjRo0kSY0aNdKePXt0+vRpa59Vq1bJ09NToaGhd2YgAADgrmXXIzsxMTH68ssvtXjxYpUqVcp6jY2Xl5fc3Nzk5eWl559/XrGxsSpTpow8PT31yiuvqFGjRmrYsKEkqUWLFgoNDdWzzz6rd955R8nJyRo6dKhiYmI4egMAAOwbdqZNmyZJeuyxx2zaZ82apR49ekiSJk2aJAcHB3Xs2FGXL19WZGSkpk6dau3r6OiopUuX6uWXX1ajRo3k7u6u6OhojR49+k4NAwAA3MXuqufs2AvP2cH9gufs3Gd4zs79hefs3LDfXXM3FgAAQHEg7AAAAFMj7AAAAFMj7AAAAFMj7AAAAFMj7AAAAFMj7AAAAFMj7AAAAFMj7AAAAFMj7AAAAFMj7AAAAFMj7AAAAFMj7AAAAFMj7AAAAFMj7AAAAFMj7AAAAFMj7AAAAFMj7AAAAFMj7AAAAFMj7AAAAFMj7AAAAFMj7AAAAFMj7AAAAFMj7AAAAFMj7AAAAFMj7AAAAFMj7AAAAFMj7AAAAFMj7AAAAFMj7AAAAFMj7AAAAFMj7AAAAFMj7AAAAFMj7AAAAFMj7AAAAFMj7AAAAFMj7AAAAFMj7AAAAFMj7AAAAFMj7AAAAFMj7AAAAFMj7AAAAFMj7AAAAFMj7AAAAFMj7AAAAFMj7AAAAFMj7AAAAFMj7AAAAFMj7AAAAFMj7AAAAFMj7AAAAFMj7AAAAFMj7AAAAFMj7AAAAFMj7AAAAFMj7AAAAFMj7AAAAFMj7AAAAFMj7AAAAFMj7AAAAFMj7AAAAFMj7AAAAFMj7AAAAFMj7AAAAFMj7AAAAFMj7AAAAFMj7AAAAFMj7AAAAFMzTdj56KOPVLFiRbm6uqpBgwb66aef7F0SAAC4C5gi7Hz11VeKjY3ViBEjtGPHDtWpU0eRkZE6ffq0vUsDAAB2ZoqwM3HiRPXq1Us9e/ZUaGiopk+frpIlS+qzzz6zd2kAAMDO7vmwk5WVpe3btysiIsLa5uDgoIiICMXHx9uxMgAAcDdwsncBt+vs2bPKzs6Wv7+/Tbu/v78OHDiQ7zKXL1/W5cuXra/T0tIkSenp6cVX6F0qM+O8vUvAHZSe7m7vEnAnZV6wdwW4k+7D97Dc923DMG7a754PO4Uxbtw4jRo1Kk97cHCwHaoBAAC34/z58/Ly8rrh/Hs+7JQtW1aOjo46deqUTfupU6cUEBCQ7zJDhgxRbGys9XVOTo5SUlLk4+Mji8VSrPXC/tLT0xUcHKxjx47J09PT3uUAKEL8ft9fDMPQ+fPnFRQUdNN+93zYcXZ21kMPPaQ1a9aoffv2kq6FlzVr1qhv3775LuPi4iIXFxebNm9v72KuFHcbT09P/hgCJsXv9/3jZkd0ct3zYUeSYmNjFR0drfr16+vhhx/W+++/rwsXLqhnz572Lg0AANiZKcJO586ddebMGQ0fPlzJycmqW7eu4uLi8ly0DAAA7j+mCDuS1Ldv3xuetgKu5+LiohEjRuQ5lQng3sfvN/JjMf7qfi0AAIB72D3/UEEAAICbIewAAABTI+wAAABTI+wAkhITE2WxWLRr1y57lwLADipWrKj333/f3mWgmBB2cM/q0aOHLBaLXnrppTzzYmJiZLFY1KNHjztfGICbyv3d/fN05MgRe5cGkyLs4J4WHBys+fPn6+LFi9a2S5cu6csvv1T58uXtWBmAm2nZsqVOnjxpM4WEhNi7LJgUYQf3tHr16ik4OFiLFi2yti1atEjly5fXgw8+aG2Li4tTeHi4vL295ePjozZt2ighIeGm6/7ll1/UqlUreXh4yN/fX88++6zOnj1bbGMB7icuLi4KCAiwmRwdHbV48WLVq1dPrq6uqlSpkkaNGqWrV69al7NYLJoxY4batGmjkiVLqmbNmoqPj9eRI0f02GOPyd3dXY0bN7b5/U5ISNATTzwhf39/eXh46O9//7tWr1590/pSU1P1wgsvyNfXV56enmrWrJl2795dbPsDxYuwg3vec889p1mzZllff/bZZ3k+KuTChQuKjY3Vtm3btGbNGjk4OOjJJ59UTk5OvutMTU1Vs2bN9OCDD2rbtm2Ki4vTqVOn9PTTTxfrWID72Q8//KDu3bvrX//6l/bt26cZM2Zo9uzZevPNN236jRkzRt27d9euXbtUo0YNPfPMM+rdu7eGDBmibdu2yTAMm4fMZmRkqHXr1lqzZo127typli1bqm3btkpKSrphLZ06ddLp06e1fPlybd++XfXq1VPz5s2VkpJSbONHMTKAe1R0dLTxxBNPGKdPnzZcXFyMxMREIzEx0XB1dTXOnDljPPHEE0Z0dHS+y545c8aQZOzZs8cwDMM4evSoIcnYuXOnYRiGMWbMGKNFixY2yxw7dsyQZBw8eLA4hwWYXnR0tOHo6Gi4u7tbp6eeespo3ry58dZbb9n0/fzzz43AwEDra0nG0KFDra/j4+MNScann35qbfvPf/5juLq63rSGWrVqGVOmTLG+rlChgjFp0iTDMAzjhx9+MDw9PY1Lly7ZLFO5cmVjxowZtzxe2J9pPi4C9y9fX19FRUVp9uzZMgxDUVFRKlu2rE2fw4cPa/jw4dqyZYvOnj1rPaKTlJSksLCwPOvcvXu31q1bJw8PjzzzEhISVK1ateIZDHCfePzxxzVt2jTra3d3d9WuXVubNm2yOZKTnZ2tS5cuKTMzUyVLlpQk1a5d2zo/9zMQH3jgAZu2S5cuKT09XZ6ensrIyNDIkSO1bNkynTx5UlevXtXFixdveGRn9+7dysjIkI+Pj037xYsX//L0N+5OhB2YwnPPPWc9bP3RRx/lmd+2bVtVqFBBM2fOVFBQkHJychQWFqasrKx815eRkaG2bdtq/PjxeeYFBgYWbfHAfcjd3V1VqlSxacvIyNCoUaPUoUOHPP1dXV2tX5coUcL6tcViuWFb7j81r776qlatWqX33ntPVapUkZubm5566qmb/v4HBgbq+++/zzPP29u7YAPEXYWwA1No2bKlsrKyZLFYFBkZaTPv3LlzOnjwoGbOnKkmTZpIkjZu3HjT9dWrV08LFy5UxYoV5eTErwlwJ9SrV08HDx7ME4Ju16ZNm9SjRw89+eSTkq6FmcTExJvWkZycLCcnJ1WsWLFIa4F9cIEyTMHR0VH79+/Xvn375OjoaDOvdOnS8vHx0ccff6wjR45o7dq1io2Nven6YmJilJKSoq5du2rr1q1KSEjQihUr1LNnT2VnZxfnUID71vDhwzV37lyNGjVKe/fu1f79+zV//nwNHTr0ttZbtWpVLVq0SLt27dLu3bv1zDPP3PDmBEmKiIhQo0aN1L59e61cuVKJiYnavHmz3njjDW3btu22aoF9EHZgGp6envL09MzT7uDgoPnz52v79u0KCwvTgAED9O677950XUFBQdq0aZOys7PVokULPfDAA+rfv7+8vb3l4MCvDVAcIiMjtXTpUq1cuVJ///vf1bBhQ02aNEkVKlS4rfVOnDhRpUuXVuPGjdW2bVtFRkaqXr16N+xvsVj03XffqWnTpurZs6eqVaumLl266LfffrNeI4R7i8UwDMPeRQAAABQX/kUFAACmRtgBAACmRtgBAACmRtgBAACmRtgBAACmRtgBAACmRtgBgALasmWLJk+eLJ7YAdxbCDsA7Gr27Nn3xOcNnT59Wl26dFGdOnWsn710Mz169FD79u2LvzAAf4mwA+C29ejRQxaLJc905MiRv1y2c+fOOnToULHWl5iYmG99FotFP/74oyRp5MiRqlu3br7LG4ahHj166K233tKjjz5aoG1+8MEHmj17dhGNAMDt4BMOARSJli1batasWTZtvr6+f7mcm5ub3NzciqssG6tXr1atWrVs2nx8fP5yudyPDyiI7OxsWSwWeXl5FapGAEWPIzsAioSLi4sCAgJsJkdHR02cOFEPPPCA3N3dFRwcrD59+igjI8O63PWnsQzDUEREhCIjI63XxaSkpKhcuXIaPny4pGth4vnnn1dISIjc3NxUvXp1ffDBBwWq0cfHJ0+NJUqU0OzZszVq1Cjt3r3besQn96hMQetfsmSJQkND5eLioqSkpDynseLi4hQeHi5vb2/5+PioTZs2SkhIuI09DqCgCDsAipWDg4MmT56svXv3as6cOVq7dq3+/e9/59vXYrFozpw52rp1qyZPnixJeumll/S3v/3NGnZycnJUrlw5ff3119q3b5+GDx+u119/XQsWLCh0jZ07d9bAgQNVq1YtnTx5UidPnlTnzp3z1D937lx9//33eerPzMzU+PHj9cknn2jv3r3y8/PLs40LFy4oNjZW27Zt05o1a+Tg4KAnn3zypp++DaCIGABwm6Kjow1HR0fD3d3dOj311FP59v36668NHx8f6+tZs2YZXl5eNn0WLFhguLq6GoMHDzbc3d2NQ4cO3XT7MTExRseOHW84/+jRo4Ykw83NzaZGd3d3a58RI0YYderU+cux/ve//81TvyRj165dNv2io6ONJ5544obrOXPmjCHJ2LNnz19uE8Dt4ZodAEXi8ccf17Rp06yv3d3dJV27TmbcuHE6cOCA0tPTdfXqVV26dEmZmZkqWbJkvuvq1KmTvvnmG7399tuaNm2aqlatajP/o48+0meffaakpCRdvHhRWVlZN7y4+HpfffWVataseUvjWrZsmcaOHat9+/YpPT3d2n59/c7Ozqpdu/ZN13P48GENHz5cW7Zs0dmzZ61HdJKSkhQWFnZLNQG4NZzGAlAk3N3dVaVKFesUGBioxMREtWnTRrVr19bChQu1fft2ffTRR5KkrKysG64rMzNT27dvl6Ojow4fPmwzb/78+Xr11Vf1/PPPa+XKldq1a5d69ux50/XlCg4OtqmxSpUqN+1/9OhRdejQQU8//bSOHDmi7Oxs64XK12/Pzc3tL29Hb9u2rVJSUjRz5kxt2bJFW7ZsybMeAMWDIzsAis327duVk5OjCRMmyMHh2v9WBbm2ZuDAgXJwcNDy5cvVunVrRUVFqVmzZpKkTZs2qXHjxurTp4+1f1Fc6Ovs7Kzs7Ow89RuGof79+1vDzObNm2953efOndPBgwc1c+ZMNWnSRJK0cePG264ZQMEQdgAUmypVqujKlSuaMmWK2rZtq02bNmn69Ok3XWbZsmX67LPPFB8fr3r16mnQoEGKjo7Wzz//rNKlS6tq1aqaO3euVqxYoZCQEH3++efaunWrQkJC/rKec+fOKTk52abN29tbrq6uqlixoo4ePapdu3apXLlyKlWqlKpVq6YrV65owoQJ6tChgzZs2KDPPvvslvdD6dKl5ePjo48//liBgYFKSkrS4MGDb3k9AAqH01gAik2dOnU0ceJEjR8/XmFhYfriiy80bty4G/Y/c+aMnn/+eY0cOVL16tWTJI0aNUr+/v566aWXJEm9e/dWhw4d1LlzZzVo0EDnzp2zOcpzMxEREQoMDLSZvv32W0lSx44d1bJlSz3++OPy9fXVf/7zH9WuXVsffPCBJk2apLCwMM2fP1/jx4+/5f3g4OCg+fPna/v27QoLC9OAAQP07rvv3vJ6ABSOxTD4kBcAAGBeHNkBAACmRtgBAACmRtgBAACmRtgBAACmRtgBAACmRtgBAACmRtgBAACmRtgBAACmRtgBAACmRtgBAACmRtgBAACmRtgBAACm9n9rn9/VJ7SAnQAAAABJRU5ErkJggg==",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "employeesGender = dfNovo['Gender'].value_counts()\n",
+ "\n",
+ "# cores para barras\n",
+ "cores = ['lightblue', 'lightpink']\n",
+ "\n",
+ "#criando o grafico\n",
+ "barras = employeesGender.plot.bar(color=cores)\n",
+ "\n",
+ "#configurações\n",
+ "plt.xlabel('Faixa Etária')\n",
+ "plt.xticks(rotation=0)\n",
+ "plt.ylabel('Quantidade')\n",
+ "plt.title('Faixa Etária dos Colaboradores')\n",
+ "\n",
+ "# Adicionar rótulos nos graficos\n",
+ "for i, v in enumerate(employeesGender):\n",
+ " barras.text(i, v + 0.01, f'{v}', color='black', ha='center')\n",
+ "\n",
+ "plt.show()"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "A empresa possui mais colaboradores Homens do que Mulheres"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "### Hipotese a ser estudada: O salário influencia na Satisfação do colaborador?"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 24,
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "C:\\Users\\biamo\\AppData\\Local\\Temp\\ipykernel_13376\\755781987.py:2: SettingWithCopyWarning: \n",
+ "A value is trying to be set on a copy of a slice from a DataFrame.\n",
+ "Try using .loc[row_indexer,col_indexer] = value instead\n",
+ "\n",
+ "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n",
+ " dfNovo['Satisfaction'] = dfNovo['JobSatisfaction'].apply(lambda x: 1 if x >= 3 else 0)\n"
+ ]
+ },
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " EmpID | \n",
+ " AgeGroup | \n",
+ " Department | \n",
+ " EducationField | \n",
+ " EnvironmentSatisfaction | \n",
+ " Gender | \n",
+ " JobInvolvement | \n",
+ " JobLevel | \n",
+ " JobRole | \n",
+ " JobSatisfaction | \n",
+ " ... | \n",
+ " NumCompaniesWorked | \n",
+ " PercentSalaryHike | \n",
+ " PerformanceRating | \n",
+ " RelationshipSatisfaction | \n",
+ " TotalWorkingYears | \n",
+ " TrainingTimesLastYear | \n",
+ " YearsAtCompany | \n",
+ " YearsInCurrentRole | \n",
+ " YearsSinceLastPromotion | \n",
+ " Satisfaction | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " 0 | \n",
+ " RM297 | \n",
+ " 18-25 | \n",
+ " Research & Development | \n",
+ " Life Sciences | \n",
+ " 3 | \n",
+ " Male | \n",
+ " 3 | \n",
+ " 1 | \n",
+ " Laboratory Technician | \n",
+ " 3 | \n",
+ " ... | \n",
+ " 1 | \n",
+ " 13 | \n",
+ " 3 | \n",
+ " 3 | \n",
+ " 0 | \n",
+ " 2 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 1 | \n",
+ "
\n",
+ " \n",
+ " 1 | \n",
+ " RM302 | \n",
+ " 18-25 | \n",
+ " Sales | \n",
+ " Medical | \n",
+ " 4 | \n",
+ " Female | \n",
+ " 2 | \n",
+ " 1 | \n",
+ " Sales Representative | \n",
+ " 3 | \n",
+ " ... | \n",
+ " 1 | \n",
+ " 12 | \n",
+ " 3 | \n",
+ " 1 | \n",
+ " 0 | \n",
+ " 2 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 1 | \n",
+ "
\n",
+ " \n",
+ " 2 | \n",
+ " RM458 | \n",
+ " 18-25 | \n",
+ " Sales | \n",
+ " Marketing | \n",
+ " 2 | \n",
+ " Male | \n",
+ " 3 | \n",
+ " 1 | \n",
+ " Sales Representative | \n",
+ " 2 | \n",
+ " ... | \n",
+ " 1 | \n",
+ " 14 | \n",
+ " 3 | \n",
+ " 4 | \n",
+ " 0 | \n",
+ " 3 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ "
\n",
+ " \n",
+ " 3 | \n",
+ " RM728 | \n",
+ " 18-25 | \n",
+ " Research & Development | \n",
+ " Life Sciences | \n",
+ " 2 | \n",
+ " Male | \n",
+ " 3 | \n",
+ " 1 | \n",
+ " Research Scientist | \n",
+ " 4 | \n",
+ " ... | \n",
+ " 1 | \n",
+ " 15 | \n",
+ " 3 | \n",
+ " 4 | \n",
+ " 0 | \n",
+ " 2 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 1 | \n",
+ "
\n",
+ " \n",
+ " 4 | \n",
+ " RM829 | \n",
+ " 18-25 | \n",
+ " Research & Development | \n",
+ " Medical | \n",
+ " 3 | \n",
+ " Male | \n",
+ " 3 | \n",
+ " 1 | \n",
+ " Laboratory Technician | \n",
+ " 3 | \n",
+ " ... | \n",
+ " 1 | \n",
+ " 12 | \n",
+ " 3 | \n",
+ " 4 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 1 | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
5 rows × 22 columns
\n",
+ "
"
+ ],
+ "text/plain": [
+ " EmpID AgeGroup Department EducationField \\\n",
+ "0 RM297 18-25 Research & Development Life Sciences \n",
+ "1 RM302 18-25 Sales Medical \n",
+ "2 RM458 18-25 Sales Marketing \n",
+ "3 RM728 18-25 Research & Development Life Sciences \n",
+ "4 RM829 18-25 Research & Development Medical \n",
+ "\n",
+ " EnvironmentSatisfaction Gender JobInvolvement JobLevel \\\n",
+ "0 3 Male 3 1 \n",
+ "1 4 Female 2 1 \n",
+ "2 2 Male 3 1 \n",
+ "3 2 Male 3 1 \n",
+ "4 3 Male 3 1 \n",
+ "\n",
+ " JobRole JobSatisfaction ... NumCompaniesWorked \\\n",
+ "0 Laboratory Technician 3 ... 1 \n",
+ "1 Sales Representative 3 ... 1 \n",
+ "2 Sales Representative 2 ... 1 \n",
+ "3 Research Scientist 4 ... 1 \n",
+ "4 Laboratory Technician 3 ... 1 \n",
+ "\n",
+ " PercentSalaryHike PerformanceRating RelationshipSatisfaction \\\n",
+ "0 13 3 3 \n",
+ "1 12 3 1 \n",
+ "2 14 3 4 \n",
+ "3 15 3 4 \n",
+ "4 12 3 4 \n",
+ "\n",
+ " TotalWorkingYears TrainingTimesLastYear YearsAtCompany \\\n",
+ "0 0 2 0 \n",
+ "1 0 2 0 \n",
+ "2 0 3 0 \n",
+ "3 0 2 0 \n",
+ "4 0 0 0 \n",
+ "\n",
+ " YearsInCurrentRole YearsSinceLastPromotion Satisfaction \n",
+ "0 0 0 1 \n",
+ "1 0 0 1 \n",
+ "2 0 0 0 \n",
+ "3 0 0 1 \n",
+ "4 0 0 1 \n",
+ "\n",
+ "[5 rows x 22 columns]"
+ ]
+ },
+ "execution_count": 24,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "# Criando a nova coluna 'Satisfaction'\n",
+ "dfNovo['Satisfaction'] = dfNovo['JobSatisfaction'].apply(lambda x: 1 if x >= 3 else 0)\n",
+ "dfNovo.head()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 25,
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Teste T de Salário\n",
+ "Estatística T : -0.26947210055483584\n",
+ "Valor P: 0.787612939487669\n"
+ ]
+ },
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjsAAAHHCAYAAABZbpmkAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAACQpUlEQVR4nOzdd3hUZdrA4d+ZPum9kgCh9w4CUhSQIqiIBcWu2ABFPsu6KmBZUVfXLq7uCq69UUQRBQTpShFBCEgJJJT0nsn08/0xZCQmQMqEhOG5r+tcSU55z3POTDJP3vMWRVVVFSGEEEIIP6Vp7ACEEEIIIRqSJDtCCCGE8GuS7AghhBDCr0myI4QQQgi/JsmOEEIIIfyaJDtCCCGE8GuS7AghhBDCr0myI4QQQgi/JsmOEEIIcQq5ubk8+eST/PLLL40diqgHSXbEOWP16tUoisLq1atrdZzT6eThhx8mKSkJjUbDFVdc0SDxTZw4keDgYB588EEKCgoICwujsLCwQc51svnz56MoCocOHWrwczU0RVGYPXt2rY+ruAdbtmzxfVANYOjQoQwdOrSxwxBAixYtuOWWW6rdpqoqN998Mz/99BPdu3evcZl1/VslGo4kO6Ledu7cyVVXXUXz5s0xmUwkJiYyYsQIXn/99TqV99ZbbzF//nyfxffee+/xz3/+k6uuuor333+fBx54wGdlV9i9ezerV6/mySef5OuvvyYyMpLhw4cTFhbm83M1JatXr+bKK68kLi4Og8FATEwM48aNY8GCBY0dmvBT69atY/To0SQmJmIymUhOTmbcuHF8/PHHPj/Xiy++yOHDh1m4cCEGg8Hn5YuzR9fYAYhz24YNG7joootITk5m8uTJxMXFkZGRwaZNm3j11VeZNm1arct86623iIqKqvLf1uDBgykvL6/1H50ff/yRxMREXn755VrHUlMpKSls3bqVxMREpk+fTmZmJvHx8Q12vqZg1qxZPPXUU7Rp04a77rqL5s2bk5eXx9KlS5kwYQIfffQR119/fWOHKfzIF198wbXXXkv37t25//77CQ8PJy0tjTVr1vDuu+/69P1ms9mw2+0sXbqU0NDQWh1b179VouFIsiPq5R//+AehoaFs3ry5Si1Gdna2T8+l0WgwmUy1Pi47O7vBa1gqarTAE2dCQkKDnq+xffnllzz11FNcddVVfPzxx+j1eu+2hx56iO+//x6Hw9GIETYMi8VCQEBAY4dRidPpxO12+80H6+nu8ezZs+nYsSObNm2qcr2+/ntjNBp57LHHanWM1WrFYDDU+W+VaDjyGEvUy4EDB+jUqVO1yURMTEyln+fNm8fFF19MTEwMRqORjh07Mnfu3Er7tGjRgl27dvHTTz+hKAqKonjbNlT3HHzfvn1MmDCBuLg4TCYTzZo1Y+LEiRQVFXHo0CEURWHVqlXs2rXLW17F8S+++CIDBgwgMjISs9lMr169+PLLL6u9zg8//JC+ffsSEBBAeHg4gwcP5ocffvBuX7hwIWPGjCEhIQGj0UirVq14+umncblcVcr64osv6NWrF2azmaioKG644QaOHj1ag7sNu3bt4uKLL8ZsNtOsWTOeeeYZ3G53tfu+9dZbdOrUCaPRSEJCAlOmTKnShuh09+90nnjiCSIiInjvvfcqJToVRo4cydixY70/Z2dnc/vttxMbG4vJZKJbt268//77Z7zew4cPc++999KuXTvMZjORkZFcffXVp2yfZLFYuOuuu4iMjCQkJISbbrqJgoKCOt2boUOH0rlzZ7Zu3crgwYMJCAjg73//OwCLFy/m0ksvrdHr/c4779CqVSvMZjN9+/Zl7dq11cZek3tU8Z5+8cUXeeWVV2jVqhVGo5Hdu3cDsGfPHq666ioiIiIwmUz07t2br7/+ulIZDoeDJ598kjZt2mAymYiMjOTCCy9k+fLl1cZVoaJd1Jo1a87KPa7OgQMH6NOnT7WJ3V//3tTm9/tk+fn5PPjgg3Tp0oWgoCBCQkIYPXo0v/32W6X9Kv4effrppzz++OMkJiYSEBBAcXHxKdvs1Od3X9SP1OyIemnevDkbN27k999/p3Pnzqfdd+7cuXTq1InLLrsMnU7HkiVLuPfee3G73UyZMgWAV155hWnTphEUFOT9ryo2Nrba8ux2OyNHjsRmszFt2jTi4uI4evQo33zzDYWFhURHR/PBBx/wj3/8g9LSUubMmQNAhw4dAHj11Ve57LLLmDRpEna7nU8//ZSrr76ab775hksvvdR7nieffJLZs2czYMAAnnrqKQwGAz///DM//vgjl1xyCeBpFxQcHMyMGTMIDAxk1apVzJw5k+LiYv75z396y5o/fz633norffr0Yc6cOWRlZfHqq6+yfv16fv3119PWQGVmZnLRRRfhdDr529/+RmBgIO+88w5ms7nKvrNnz+bJJ59k+PDh3HPPPezdu5e5c+eyefNm1q9fj16vP+P9O1XV/b59+9izZw+33XYbwcHBp4y3Qnl5OUOHDmX//v1MnTqVli1b8sUXX3DLLbdQWFjI/ffff8pjN2/ezIYNG5g4cSLNmjXj0KFDzJ07l6FDh7J79+4qNQBTp04lLCyM2bNne6/58OHD3g+fmt6bCnl5eYwePZqJEydyww03eN+L8+fPJygoiBkzZhAUFMSPP/5Y7ev93//+l7vuuosBAwYwffp0Dh48yGWXXUZERARJSUl1vkfz5s3DarVy5513YjQaiYiIYNeuXQwcOJDExETv++Pzzz/niiuu4KuvvmL8+PHe658zZw533HEHffv2pbi4mC1btrBt2zZGjBhxxtfzbN3j6jRv3pyVK1dy5MgRmjVrdto4a/r7/VcHDx5k4cKFXHPNNbRs2ZKsrCzmzp3LkCFD2L17d5Va26effhqDwcCDDz6IzWY7ZQ1bfX73hQ+oQtTDDz/8oGq1WlWr1ar9+/dXH374YfX7779X7XZ7lX0tFkuVdSNHjlRTUlIqrevUqZM6ZMiQKvuuWrVKBdRVq1apqqqqv/76qwqoX3zxxWljHDJkiNqpU6czxmO329XOnTurF198sXfdvn37VI1Go44fP151uVyV9ne73d7vy8rKqpR/1113qQEBAarVavWWHxMTo3bu3FktLy/37vfNN9+ogDpz5szTXsf06dNVQP3555+967Kzs9XQ0FAVUNPS0rzrDAaDeskll1SK+Y033lAB9b333lNVteb3768WL16sAurLL79co/1feeUVFVA//PBD7zq73a72799fDQoKUouLi73rAXXWrFnen6t7z2zcuFEF1P/973/edfPmzVMBtVevXpXeey+88IIKqIsXL1ZVteb3RlU97xtAffvtt6vEUF1cp3q9u3fvrtpsNu9+77zzjgpUeo/X9B6lpaWpgBoSEqJmZ2dXOv+wYcPULl26eM+vqp736IABA9Q2bdp413Xr1k299NJLq8R/Jmf7Hlfnv//9rwqoBoNBveiii9QnnnhCXbt2bZXfTVWt2e+3qqpq8+bN1Ztvvtn7c3l5uep0Oivtc+DAAdVoNKpPPfWUd13F36OUlJQq5/rr36r6/u6L+pPHWKJeRowYwcaNG7nsssv47bffeOGFFxg5ciSJiYlVqs9ProEoKioiNzeXIUOGcPDgwTM+NqlORc3D999/j8ViqfXxJ8dTUFBAUVERgwYNYtu2bd71ixYtwu12M3PmTDSayr8uFf/FApVqGEpKSsjNzWXQoEFYLBb27NkDwJYtW8jOzubee++t9Dz/0ksvpX379nz77benjXfp0qVccMEF9O3b17suOjqaSZMmVdpvxYoV2O12pk+fXinmyZMnExIS4j1PXe9fcXExQI1qdSrijouL47rrrvOu0+v13HfffZSWlvLTTz+d8tiTXyOHw0FeXh6tW7cmLCys0utU4c4776xUa3DPPfeg0+lYunQpUPN7U8FoNHLrrbeeNq4zvd533313pf/2b7nlliq1ZrW9RxMmTCA6Otr7c35+Pj/++CPXXHONN57c3Fzy8vIYOXIk+/bt8z4uCQsLY9euXezbt6/KddXE2brH1bnttttYtmwZQ4cOZd26dTz99NMMGjSINm3asGHDhkr71uT3uzomkwmtVuv92WazkZCQQIcOHao99uabb662dvVk9f3dF/UnyY6otz59+rBgwQIKCgr45ZdfePTRRykpKeGqq67ytiUAWL9+PcOHDycwMJCwsDCio6O9z+frkuy0bNmSGTNm8J///IeoqChGjhzJm2++WeOyvvnmGy644AJMJhMRERFER0czd+7cSscfOHAAjUZDx44dT1vWrl27GD9+PKGhoYSEhBAdHc0NN9xQ6doOHz4MQLt27aoc3759e+/2Uzl8+DBt2rSpsv6v5Z3qPAaDgZSUFO/2ut6/kJAQwPMhXxMVcf81Wax4nHi66y4vL2fmzJkkJSVhNBqJiooiOjqawsLCauP86/0JCgoiPj7e28anpvemQmJiYrWPJWrzev81Jr1eT0pKSqV1tb1HLVu2rPTz/v37UVWVJ554gujo6ErLrFmzgD8b8D711FMUFhbStm1bunTpwkMPPcSOHTuqXOOpnK17fCojR47k+++/p7CwkDVr1jBlyhQOHz7M2LFjKzVSrsnvd3VUVeXtt9+me/fuBAUFYTKZMJvNbN++vdpj//paVKe+v/ui/iTZET5jMBjo06cPzz77LHPnzsXhcPDFF18AnqRh2LBh5Obm8q9//Ytvv/2W5cuXe8e8OVUj2zN56aWX2LFjB3//+98pLy/nvvvuo1OnThw5cuS0x61du5bLLrsMk8nEW2+9xdKlS1m+fDnXX389qqrWKobCwkKGDBnCb7/9xlNPPcWSJUtYvnw5zz//fL2u7Wyoy/1r37494BlfqaFNmzaNf/zjH1xzzTV8/vnn/PDDDyxfvpzIyMizcl+r+4+9Kbzef42r4pwPPvggy5cvr3Zp3bo14OkWfeDAAd577z06d+7Mf/7zH3r27Ml//vOfBo+7OmeqFTmVgIAABg0axBtvvMHjjz9OQUEB3333HVC/3+/nn3+ee+65hwsvvJBPPvmE9evXs3HjRrp06VLta1vX+MXZJQ2URYPo3bs3AMePHwdgyZIl2Gw2vv76a5KTk737rVq1qsqxJz8eqokuXbrQpUsXHn/8cTZs2MDAgQN5++23eeaZZ055zFdffYXJZOL777/HaDR618+bN6/Sfq1atcLtdrN79+5TjqC6evVq8vLyWLBgAYMHD/auT0tLq7Rf8+bNAdi7dy8XX3xxpW179+71bj+V5s2bV/voYe/evac8z8k1CHa7nbS0NIYPH15p/9rev7Zt29KuXTsWL17Mq6++SlBQ0Bnj3rFjB263u1LNRcXjntNd95dffsnNN9/MSy+95F1ntVpPOTL1vn37uOiii7w/l5aWcvz4ccaMGVPpXDW9N9Wp7eu9b9++Sq+3w+EgLS2Nbt26Vdq3rvcI8F6LXq+v0TVERERw6623cuutt1JaWsrgwYOZPXs2d9xxxxmPPRv3uLb++vempr/f1fnss88YPnw4b7zxRqX1ubm5RERE1Cm++v7ui/qTmh1RL6tWrar2P6WK5/cV1bYVz8BP3reoqKjaPz6BgYE1mmahuLgYp9NZaV2XLl3QaDTYbLbTHqvValEUpVJX4UOHDrFo0aJK+11xxRVoNBqeeuqpKv/VVVxLdddmt9t56623Ku3fu3dvYmJiePvttyvF991335GamnraHiIAY8aMYdOmTZXm6MnJyeGjjz6qtN/w4cMxGAy89tprlWL673//S1FRkfc89bl/Tz75JHl5edxxxx1VygD44Ycf+Oabb7xxZ2Zm8tlnn3m3O51OXn/9dYKCghgyZMgpz6PVaqu8v15//fVqu3iDp5v3yeP7zJ07F6fTyejRo4Ga35vTqc3rHR0dzdtvv43dbveunz9/fpX3d33uEXi6XQ8dOpR///vf3g/8k+Xk5Hi/z8vLq7QtKCiI1q1bn/E1r3A27vGprFy5str11f29qcnvd3UURakyRtQnn3xS7X2tqfr+7ov6k5odUS/Tpk3DYrEwfvx42rdvj91uZ8OGDXz22We0aNHC2/DwkksuwWAwMG7cOO666y5KS0t59913iYmJqfJHpFevXsydO5dnnnmG1q1bExMTU+W/IfCMjDx16lSuvvpq2rZti9Pp5IMPPkCr1TJhwoTTxn3ppZfyr3/9i1GjRnH99deTnZ3Nm2++SevWrSu1X2jdujWPPfaYtyHklVdeidFoZPPmzSQkJDBnzhwGDBhAeHg4N998M/fddx+KovDBBx9U+ZDW6/U8//zz3HrrrQwZMoTrrrvO2/20RYsWZ5zG4uGHH+aDDz5g1KhR3H///d6u5xW1AhWio6N59NFHefLJJxk1ahSXXXYZe/fu5a233qJPnz7etiX1uX/XXnstO3fu5B//+Ae//vor1113nXcE5WXLlrFy5Urv8P133nkn//73v7nlllvYunUrLVq04Msvv2T9+vW88sorp23oPHbsWD744ANCQ0Pp2LEjGzduZMWKFURGRla7v91uZ9iwYVxzzTXea77wwgu57LLLanVvTqc2r/czzzzDXXfdxcUXX8y1115LWloa8+bNq9Jmpz73qMKbb77JhRdeSJcuXZg8eTIpKSlkZWWxceNGjhw54h0npmPHjgwdOpRevXoRERHBli1b+PLLL5k6deoZz3G27vGpXH755bRs2ZJx48bRqlUrysrKWLFiBUuWLKFPnz6MGzcOqPnvd3UuvfRSnnnmGW699Vb69+/Pzp07+fjjj2nVqlWd467v777wgUboASb8yHfffafedtttavv27dWgoCDVYDCorVu3VqdNm6ZmZWVV2vfrr79Wu3btqppMJrVFixbq888/r7733nuVuk2rqqpmZmaql156qRocHFypi+5fu3MePHhQve2229RWrVqpJpNJjYiIUC+66CJ1xYoVlc57qq7n//3vf9U2bdqoRqNRbd++vTpv3jx11qxZanW/Fu+9957ao0cPFfDGtHz5cu/29evXqxdccIFqNpvVhIQEbxf8k+Ot8Nlnn6k9evRQjUajGhERoU6aNEk9cuRIje73jh071CFDhqgmk0lNTExUn376aW933JPvoap6uvq2b99e1ev1amxsrHrPPfeoBQUF3u01vX+ns3LlSvXyyy9XY2JiVJ1Op0ZHR6vjxo3zdkOukJWVpd56661qVFSUajAY1C5duqjz5s2rUh5/6XpeUFDgPS4oKEgdOXKkumfPnirdhSu6Rf/000/qnXfeqYaHh6tBQUHqpEmT1Ly8vCrnOdO9UdVTv29UtXav91tvvaW2bNlSNRqNau/evdU1a9aoQ4YMqTK8Qk3uUUXX83/+85/VxnXgwAH1pptuUuPi4lS9Xq8mJiaqY8eOVb/88kvvPs8884zat29fNSwsTDWbzWr79u3Vf/zjH9UOF3Gys32Pq/PJJ5+oEydOVFu1aqWazWbVZDKpHTt2VB977LFKQxioas1/v//6XrJarer06dPV+Ph4NSAgQB00aJD6yy+/VHnNKv4eVTd0w1//VlWoz+++qB9FVWvZGlOI89ihQ4cYMWIEu3bt8pvh+YWoiYpB8TZv3uxtIyPEuULa7AhRCy1atCAoKIh169Y1dihCCCFqSNrsCFFDs2fPJioqin379lFaWtrY4QghhKghSXaEqKH//e9/HDt2jIsuuoiRI0c2djhCCCFqSNrsCCGEEMKvSZsdIYQQQvg1SXaEEEII4dekzQ6eeWWOHTtGcHBwracqEEIIIUTjUFWVkpISEhISqkykezJJdoBjx46RlJTU2GEIIYQQog4yMjJo1qzZKbdLsgPeodgzMjIICQlp5GiEEEIIURPFxcUkJSWdcUoVSXb4c5btkJAQSXaEEEKIc8yZmqBIA2UhhBBC+DVJdoQQQgjh1yTZEUIIIYRfkzY7QgghmhyXy4XD4WjsMEQj0+v1aLXaepcjyY4QQogmQ1VVMjMzKSwsbOxQRBMRFhZGXFxcvcbBk2RHCCFEk1GR6MTExBAQECADvZ7HVFXFYrGQnZ0NQHx8fJ3LkmRHCCFEk+ByubyJTmRkZGOHI5oAs9kMQHZ2NjExMXV+pCUNlIUQQjQJFW10AgICGjkS0ZRUvB/q04ZLkh0hhBBNijy6EifzxftBkh0hhBBC+DVpsyOEEKLJS09PJzc396ydLyoqiuTk5LN2vtNp0aIF06dPZ/r06Wfc12KxcOONN7J8+XJKSkooKCggLCzstMfMnz+f6dOn+3UPOEl2hBBCNGnp6el06NABi8Vy1s4ZEBBAampqrRKenJwcZs6cybfffktWVhbh4eF069aNmTNnMnDgwDMef6qkY/PmzQQGBtYohvfff5+1a9eyYcMGoqKiCA0NPeMx1157LWPGjPH+PHv2bBYtWsT27dtrdM5zgSQ7QgghmrTc3FwsFgvPz32XlDbtGvx8B/ft5ZF7JpObm1urZGfChAnY7Xbef/99UlJSyMrKYuXKleTl5dUrnujo6Brve+DAATp06EDnzp1rfIzZbPb2evJbqlCLiopUQC0qKmrsUIQQ4rxVXl6u7t69Wy0vL6+0fuvWrSqgfrFijborp7jBly9WrFEBdevWrTWOvaCgQAXU1atXn3Kfl156Se3cubMaEBCgNmvWTL3nnnvUkpISVVVVddWqVSpQaZk1a5aqqqravHlz9eWXX1ZVVVXdbrc6a9YsNSkpSTUYDGp8fLw6bdo0VVVVdciQIZWOHzJkiKqqqmq1WtX/+7//UxMSEtSAgAC1b9++6qpVq7xxzZs3Tw0NDfV+/9c45s2bp6qqqh4+fFi97LLL1MDAQDU4OFi9+uqr1czMTG8527dvV4cOHaoGBQWpwcHBas+ePdXNmzfX+B6eyqneF6pa889vqdk5xzX0c+ym9NxaCCGaqqCgIIKCgli0aBEXXHABRqOxyj4ajYbXXnuNli1bcvDgQe69914efvhh3nrrLQYMGMArr7zCzJkz2bt3r7fMv/rqq694+eWX+fTTT+nUqROZmZn89ttvACxYsIC//e1v/P777yxYsACDwQDA1KlT2b17N59++ikJCQksXLiQUaNGsXPnTtq0aVOp/GuvvZbff/+dZcuWsWLFCgBCQ0Nxu91cfvnlBAUF8dNPP+F0OpkyZQrXXnstq1evBmDSpEn06NGDuXPnotVq2b59O3q93mf3uD4k2TmHnY3n2HV5bi2EEOcbnU7H/PnzmTx5Mm+//TY9e/ZkyJAhTJw4ka5duwJUamDcokULnnnmGe6++27eeustDAYDoaGhKIpCXFzcKc+Tnp5OXFwcw4cPR6/Xk5ycTN++fQGIiIggICAAg8HgLSM9PZ158+aRnp5OQkICAA8++CDLli1j3rx5PPvss5XKN5vNBAUFodPpKsWxfPlydu7cSVpaGklJSQD873//o1OnTmzevJk+ffqQnp7OQw89RPv27QGqJFKNSZKdc1hDP8eu63NrIYQ4H02YMIFLL72UtWvXsmnTJr777jteeOEF/vOf/3DLLbewYsUK5syZw549eyguLsbpdGK1WrFYLDUeSPHqq6/mlVdeISUlhVGjRjFmzBjGjRuHTlf9x/nOnTtxuVy0bdu20nqbzVarUapTU1NJSkryJjoAHTt2JCwsjNTUVPr06cOMGTO44447+OCDDxg+fDhXX301rVq1qvE5GpIkO34gpU07Onbr3thhCCHEec9kMjFixAhGjBjBE088wR133MGsWbMYOnQoY8eO5Z577uEf//gHERERrFu3jttvvx273V7jZCcpKYm9e/eyYsUKli9fzr333ss///lPfvrpp2ofGZWWlqLVatm6dWuVqRaqe0xWH7Nnz+b666/n22+/5bvvvmPWrFl8+umnjB8/3qfnqQsZVFAIIYRoIB07dqSsrIytW7fidrt56aWXuOCCC2jbti3Hjh2rtK/BYMDlcp2xTLPZzLhx43jttddYvXo1GzduZOfOndXu26NHD1wuF9nZ2bRu3brScqrHZdXF0aFDBzIyMsjIyPCu2717N4WFhXTs2NG7rm3btjzwwAP88MMPXHnllcybN++M13M2SM2OEEIIUU95eXlcffXV3HbbbXTt2pXg4GC2bNnCCy+8wOWXX07r1q1xOBy8/vrrjBs3jvXr1/P2229XKqNFixaUlpaycuVKunXrRkBAQJUan/nz5+NyuejXrx8BAQF8+OGHmM1mmjdvXm1cbdu2ZdKkSdx000289NJL9OjRg5ycHFauXEnXrl259NJLqxzTokUL0tLS2L59O82aNSM4OJjhw4fTpUsXJk2axCuvvILT6eTee+9lyJAh9O7dm/Lych566CGuuuoqWrZsyZEjR9i8eTMTJkzw3U2uB0l2hBBCnBMO7tvbZM8TFBREv379ePnllzlw4AAOh4OkpCQmT57M3//+d8xmM//61794/vnnefTRRxk8eDBz5szhpptu8pYxYMAA7r77bq699lry8vKYNWsWs2fPrnSesLAwnnvuOWbMmIHL5aJLly4sWbLktO1v5s2bxzPPPMP//d//cfToUaKiorjgggsYO3ZstftPmDCBBQsWcNFFF1FYWMi8efO45ZZbWLx4MdOmTWPw4MFoNBpGjRrF66+/DoBWqyUvL4+bbrqJrKwsoqKiuPLKK3nyySdrfS8bgqKqqtrYQTS24uJiQkNDKSoqIiQkpLHDqbFt27bRq1cvvlixpkHa7Oz+bTtXDx/M1q1b6dmzp8/LF0KIk1mtVtLS0mjZsiUmk8m7/lwZQVk0jFO9L6Dmn99SsyOEEKJJS05OJjU19bydG0vUnyQ7Qgghmrzk5GRJPkSdSW8sIYQQQvg1SXaEEEII4dck2RFCCCGEX5NkRwghhBB+TZIdIYQQQvg1SXaEEEII4dck2RFCCCGEX5NxdoQQQjR56enpMqjgGQwdOpTu3bvzyiuvnHFfVVW56667+PLLLykoKODXX3+le/fupz1m9erVXHTRRRQUFBAWFuaTmM8WSXaEEEI0aenp6XRo3x5LeflZO2eA2Uzqnj01TnhuueUWCgsLWbRoUcMGxqmTjgULFqDX62tUxrJly5g/fz6rV68mJSWFqKioMx4zYMAAjh8/TmhoKOCZlHT69OkUFhbW5TLOKkl2hBBCNGm5ublYysv5cPx4OkRHN/j5UnNyuGHhQnJzc8+p2p2IiIga73vgwAHi4+MZMGBAjY8xGAzExcXVJbRGJ212hBBCnBM6REfTMz6+wZf6JlRDhw7lvvvu4+GHHyYiIoK4uLhKs5erqsrs2bNJTk7GaDSSkJDAfffd593+wQcf0Lt3b4KDg4mLi+P6668nOzsbgEOHDnHRRRcBEB4ejqIo3HLLLd7zTp8+3VvOW2+9RZs2bTCZTMTGxnLVVVcBnlqoadOmkZ6ejqIotGjRAgC3282cOXNo2bIlZrOZbt268eWXX3rLW716NYqiUFhYyOrVq7n11lspKipCURQURfFeY0FBATfddBPh4eEEBAQwevRo9u3b5y3n8OHDjBs3jvDwcAIDA+nUqRNLly6t1z0/E6nZEUIIIXzs/fffZ8aMGfz8889s3LiRW265hYEDBzJixAi++uorXn75ZT799FM6depEZmYmv/32m/dYh8PB008/Tbt27cjOzmbGjBnccsstLF26lKSkJL766ismTJjA3r17CQkJwWw2Vzn/li1buO+++/jggw8YMGAA+fn5rF27FoBXX32VVq1a8c4777B582a0Wi0Ac+bM4cMPP+Ttt9+mTZs2rFmzhhtuuIHo6GiGDBlSqfwBAwbwyiuvMHPmTPbu3QtAUFAQ4Emm9u3bx9dff01ISAiPPPIIY8aMYffu3ej1eqZMmYLdbmfNmjUEBgaye/du77ENRZIdIYQQwse6du3KrFmzAGjTpg1vvPEGK1euZMSIEaSnpxMXF8fw4cPR6/UkJyfTt29f77G33Xab9/uUlBRee+01+vTpQ2lpKUFBQd7HVTExMadsKJyenk5gYCBjx44lODiY5s2b06NHDwBCQ0MJDg5Gq9V6H0vZbDaeffZZVqxYQf/+/b3nXrduHf/+97+rJDsGg4HQ0FAURan0aKsiyVm/fr33EdlHH31EUlISixYt4uqrryY9PZ0JEybQpUsX73kamjzGEkIIIXysa9eulX6Oj4/3Poq6+uqrKS8vJyUlhcmTJ7Nw4UKcTqd3361btzJu3DiSk5MJDg72Jhrp6ek1Pv+IESNo3rw5KSkp3HjjjXz00UdYLJZT7r9//34sFgsjRowgKCjIu/zvf//jwIEDNT5vamoqOp2Ofv36eddFRkbSrl07UlNTAbjvvvt45plnGDhwILNmzWLHjh01Lr+uJNkRQgghfOyvvaIURcHtdgOQlJTE3r17eeuttzCbzdx7770MHjwYh8NBWVkZI0eOJCQkhI8++ojNmzezcOFCAOx2e43PHxwczLZt2/jkk0+Ij49n5syZdOvW7ZQ9p0pLSwH49ttv2b59u3fZvXt3pXY7vnDHHXdw8OBBbrzxRnbu3Env3r15/fXXfXqOv2rUZGfOnDn06dOH4OBgYmJiuOKKK7zP/ipYrVamTJlCZGQkQUFBTJgwgaysrEr7pKenc+mllxIQEEBMTAwPPfRQpSxZCCGEaErMZjPjxo3jtddeY/Xq1WzcuJGdO3eyZ88e8vLyeO655xg0aBDt27f31ghVMBgMALhcrtOeQ6fTMXz4cF544QV27NjBoUOH+PHHH6vdt2PHjhiNRtLT02ndunWlJSkpqdpjDAZDlRg6dOiA0+nk559/9q7Ly8tj7969dOzY0bsuKSmJu+++mwULFvB///d/vPvuu6e9lvpq1DY7P/30E1OmTKFPnz44nU7+/ve/c8kll7B7924CAwMBeOCBB/j222/54osvCA0NZerUqVx55ZWsX78e8LzYl156KXFxcWzYsIHjx49z0003odfrefbZZxvz8oQQQogq5s+fj8vlol+/fgQEBPDhhx9iNptp3rw5brcbg8HA66+/zt13383vv//O008/Xen45s2boygK33zzDWPGjMFsNldp4PvNN99w8OBBBg8eTHh4OEuXLsXtdtOuXbtqYwoODubBBx/kgQcewO12c+GFF1JUVMT69esJCQnh5ptvrnJMixYtKC0tZeXKlXTr1o2AgADatGnD5ZdfzuTJk/n3v/9NcHAwf/vb30hMTOTyyy8HYPr06YwePZq2bdtSUFDAqlWr6NChg4/ubvUaNdlZtmxZpZ/nz59PTEwMW7duZfDgwRQVFfHf//6Xjz/+mIsvvhiAefPm0aFDBzZt2sQFF1zADz/8wO7du1mxYgWxsbF0796dp59+mkceeYTZs2d7M+CT2Ww2bDab9+fi4uKGvVAhhBD1lpqT4xfnCQsL47nnnmPGjBm4XC66dOnCkiVLiIyMBDyfhX//+9957bXX6NmzJy+++CKXXXaZ9/jExESefPJJ/va3v3Hrrbdy0003MX/+/CrnWLBgAbNnz8ZqtdKmTRs++eQTOnXqdMq4nn76aaKjo5kzZw4HDx4kLCyMnj178ve//73a/QcMGMDdd9/NtddeS15eHrNmzWL27NnMmzeP+++/n7Fjx2K32xk8eDBLly71PtpzuVxMmTKFI0eOEBISwqhRo3j55ZfreVdPT1FVVW3QM9TC/v37adOmDTt37qRz5878+OOPDBs2rMookc2bN2f69Ok88MADzJw5k6+//prt27d7t6elpZGSksK2bdu8rc9PNnv2bJ588skq64uKiggJCWmIS2sQ27Zto1evXnyxYg0du3X3efm7f9vO1cMHs3XrVnr27Onz8oUQ4mRWq5W0tDRatmyJyWTyrj8XRlAWDedU7wvwVFaEhoae8fO7yXQ9d7vdTJ8+nYEDB9K5c2cAMjMzMRgMVbrWxcbGkpmZ6d0nNja2yvaKbdV59NFHmTFjhvfn4uLiUz6TFEII0biSk5NJ3bNH5sYSddZkkp0pU6bw+++/s27dugY/l9FoxGg0Nvh5hBBC+EZycrIkH6LOmkTX86lTp/LNN9+watUqmjVr5l0fFxeH3W6v0lUuKyvLO4hRXFxcld5ZFT+fq3N4CCGEEMJ3GjXZUVWVqVOnsnDhQn788UdatmxZaXuvXr3Q6/WsXLnSu27v3r2kp6d7R3js378/O3furNQ1b/ny5YSEhFTq5iaEEEKI81OjPsaaMmUKH3/8MYsXLyY4ONjbxiY0NBSz2UxoaCi33347M2bMICIigpCQEKZNm0b//v254IILALjkkkvo2LEjN954Iy+88AKZmZk8/vjjTJkyRR5VCSHEOagJ9ZsRTYAv3g+NmuzMnTsX8MzUerJ58+Z5Z3F9+eWX0Wg0TJgwAZvNxsiRI3nrrbe8+2q1Wr755hvuuece+vfvT2BgIDfffDNPPfXU2boMIYQQPlDRNdlisVQ7uaU4P1VMc/HXUalro1GTnZpkayaTiTfffJM333zzlPs0b968waeHF0II0bC0Wi1hYWHeZgkBAQEoitLIUYnGoqoqFouF7OxswsLCvLOz10WT6Y0lhBBCVHQs+esUCeL8FRYWVu8OR5LsCCGEaDIURSE+Pp6YmBgcDkdjhyMamV6vr1eNTgVJdoQQQjQ5Wq3WJx9yQkATGWdHCCGEEKKhSLIjhBBCCL8myY4QQggh/JokO0IIIYTwa5LsCCGEEMKvSbIjhBBCCL8myY4QQggh/JokO0IIIYTwa5LsCCGEEMKvSbIjhBBCCL8myY4QQggh/JokO0IIIYTwa5LsCCGEEMKvSbIjhBBCCL8myY4QQggh/JokO0IIIYTwa5LsCCGEEMKvSbIjhBBCCL8myY4QQggh/JokO0IIIYTwa5LsCCGEEMKvSbIjhBBCCL8myY4QQggh/JokO0IIIYTwa5LsCCGEEMKvSbIjhBBCCL8myY4QQggh/JokO0IIIYTwa5LsCCGEEMKvSbIjhBBCCL8myY4QQggh/JokO0IIIYTwa5LsCCGEEMKvSbIjhBBCCL8myY4QQggh/JokO0IIIYTwa5LsCCGEEMKvSbIjhBBCCL8myY4QQggh/JokO0IIIYTwa5LsCCGEEMKvSbIjhBBCCL8myY4QQggh/JokO0IIIYTwa5LsCCGEEMKvSbIjhBBCCL8myY4QQggh/JokO0IIIYTwa5LsCCGEEMKvSbIjhBBCCL8myY4QQggh/JokO0IIIYTwa5LsCCGEEMKvSbIjhBBCCL8myY4QQggh/JokO0IIIYTwa5LsCCGEEMKvSbIjhBBCCL8myY4QQggh/JokO0IIIYTwa5LsCCGEEMKvSbIjhBBCCL8myY4QQggh/JokO0IIIYTwa5LsCCGEEMKvSbIjhBBCCL8myY4QQggh/FqjJjtr1qxh3LhxJCQkoCgKixYtqrT9lltuQVGUSsuoUaMq7ZOfn8+kSZMICQkhLCyM22+/ndLS0rN4FUIIIYRoyho12SkrK6Nbt268+eabp9xn1KhRHD9+3Lt88sknlbZPmjSJXbt2sXz5cr755hvWrFnDnXfe2dChCyGEEOIcoWvMk48ePZrRo0efdh+j0UhcXFy121JTU1m2bBmbN2+md+/eALz++uuMGTOGF198kYSEhGqPs9ls2Gw278/FxcV1vAIhhBBCNHVNvs3O6tWriYmJoV27dtxzzz3k5eV5t23cuJGwsDBvogMwfPhwNBoNP//88ynLnDNnDqGhod4lKSmpQa9BCCGEEI2nSSc7o0aN4n//+x8rV67k+eef56effmL06NG4XC4AMjMziYmJqXSMTqcjIiKCzMzMU5b76KOPUlRU5F0yMjIa9DqEEEII0Xga9THWmUycONH7fZcuXejatSutWrVi9erVDBs2rM7lGo1GjEajL0IUQgghRBPXpGt2/iolJYWoqCj2798PQFxcHNnZ2ZX2cTqd5Ofnn7KdjxBCCCHOL+dUsnPkyBHy8vKIj48HoH///hQWFrJ161bvPj/++CNut5t+/fo1VphCCCGEaEIa9TFWaWmpt5YGIC0tje3btxMREUFERARPPvkkEyZMIC4ujgMHDvDwww/TunVrRo4cCUCHDh0YNWoUkydP5u2338bhcDB16lQmTpx4yp5YQgghhDi/NGrNzpYtW+jRowc9evQAYMaMGfTo0YOZM2ei1WrZsWMHl112GW3btuX222+nV69erF27tlJ7m48++oj27dszbNgwxowZw4UXXsg777zTWJckhBBCiCamUWt2hg4diqqqp9z+/fffn7GMiIgIPv74Y1+GJYQQQgg/ck612RFCCCGEqC1JdoQQQgjh1yTZEUIIIYRfk2RHCCGEEH5Nkh0hhBBC+DVJdoQQQgjh1yTZEUIIIYRfk2RHCCGEEH5Nkh0hhBBC+DVJdoQQQgjh1yTZEUIIIYRfk2RHCCGEEH5Nkh0hhBBC+DVJdoQQQgjh1yTZEUIIIYRfk2RHCCGEEH5Nkh0hhBBC+DVJdoQQQgjh1yTZEUIIIYRf09XlIKvVyuuvv86qVavIzs7G7XZX2r5t2zafBCeEEEIIUV91SnZuv/12fvjhB6666ir69u2Loii+jksIIYQQwifqlOx88803LF26lIEDB/o6HiGEEEIIn6pTm53ExESCg4N9HYsQQgghhM/VKdl56aWXeOSRRzh8+LCv4xFCCCGE8Kk6Pcbq3bs3VquVlJQUAgIC0Ov1lbbn5+f7JDghhBBCiPqqU7Jz3XXXcfToUZ599lliY2OlgbIQQgghmqw6JTsbNmxg48aNdOvWzdfxCCGEEEL4VJ3a7LRv357y8nJfxyKEEEII4XN1Snaee+45/u///o/Vq1eTl5dHcXFxpUUIIYQQoqmo02OsUaNGATBs2LBK61VVRVEUXC5X/SMTQgghhPCBOiU7q1at8nUcQgghhBANok7JzpAhQ3wdhxBCCCFEg6jzrOdr167lhhtuYMCAARw9ehSADz74gHXr1vksOCGEEEKI+qpTsvPVV18xcuRIzGYz27Ztw2azAVBUVMSzzz7r0wCFEEIIIeqjTo+xnnnmGd5++21uuukmPv30U+/6gQMH8swzz/gsOOHf0tPTyc3NbbDyo6KiSE5ObrDyhRBCnBvqlOzs3buXwYMHV1kfGhpKYWFhfWMS54H09HQ6dOiAxWJpsHMEBASQmpoqCY8QQpzn6pTsxMXFsX//flq0aFFp/bp160hJSfFFXKIJU1WVAquDYruTUrsTp1sFQKdRCNTrCDJoiTAZ0GpOPY1Ibm4uFouF5+e+S0qbdj6P8eC+vTxyz2Ryc3Ml2RFCiPNcnZKdyZMnc//99/Pee++hKArHjh1j48aNPPjggzzxxBO+jlE0EQVWB2mFFo6XWrG53KfdV6NApNlAYpCJZiFmDNrqm4eltGlHx27dGyBaIYQQwqNOyc7f/vY33G43w4YNw2KxMHjwYIxGIw8++CDTpk3zdYyikdkVHRuP5nO81OZdp9cohJn0BBt03kTG7nJT5nBRZHNgdbrJsdjJsdjZkVNMYrCZthGBhBr1jXUZQgghzlN1SnYUReGxxx7joYceYv/+/ZSWltKxY0eCgoJ8HZ9oZOPvnMoxcxScSHSSgk0khwYQHWBAc4rZ7lVVpdTuIrPMSnpxOUU2JxnF5WQUlxMfZKRTVPDZvAQhhBDnuTolOxUMBgMdO3b0VSyiCXG63SjRidww4+8AxAcZ6RwVQrDxzG8ZRVEINuoINgbROjyQQpuDP/LLOFpi5XipjcxSG0GGEIJCwxr4KoQQQog6Jjvjx49Hqea/ekVRMJlMtG7dmuuvv5527Xzf8FQ0PLvLTUZxOYrRTHlZKUk6Jxe0bV/ta34miqIQbjLQL8FAic3J77nFHC+1UaIP5NVvfwLF5Z1TTQghhGgIdRpUMDQ0lB9//JFt27ahKAqKovDrr7/y448/4nQ6+eyzz+jWrRvr16/3dbyigdmcbtKLynG4VVSng4evGk2Qs9wnyUiwUUf/xAgGJUWgdzsIi4pGExnH0RKrt0eXEEII4Wt1Snbi4uK4/vrrOXjwIF999RVfffUVBw4c4IYbbqBVq1akpqZy880388gjj/g6XtGAHC43GSXlOFUVo1aDmn2EY2kHfH6e6AAjCeW5fPbGS572PQ4XaYUWyuxOn59LCCGEqFOy89///pfp06ej0fx5uEajYdq0abzzzjsoisLUqVP5/ffffRaoaFgut8qREzUsBq1CcogZ3K4GO58CfP7GS6jZGRi0Ci5VJaPESq7FjqpKLY8QQgjfqVOy43Q62bNnT5X1e/bsweXyfECaTCZph3GOUFWVoyfGztEpCknB5tMOCOhTDjstQgMIO9HwObfcztFSKy5JeIQQQvhInRoo33jjjdx+++38/e9/p0+fPgBs3ryZZ599lptuugmAn376iU6dOvkuUtFg8sodWBwuFKBZiAn9KQYAbCgaRSEuyIRJ5yCrzEap3cXhIguJwWaMZzkWIYQQ/qdOyc7LL79MbGwsL7zwAllZWQDExsbywAMPeNvpXHLJJYwaNcp3kYoGYXG4yC23AxAXaMSk0zZaLGEmPUathqOlVuwulcNFFhKCTAQZ6jVCghBCiPNcnT5FtFotjz32GI899hjFxcUAhISEVNpH5iNqOo4dyaAwL6/qBkWDEpuMotOhlhVz9Eg2R0/afHDfXgBSU1Prdf7azD5u1mtpEWrmaImVcqebIyVW4oOMMvKyEEKIOqv3v8x/TXJE03LsSAaX9e9NubW8yrY7Zz/HyIk3cfzQQR688hKsp5iB/IYbbqhXDAFmM6l79tQ44dFpNCSHmDleaqPY7uR4qQ2nWyXCpJd2YEIIIWqtzsnOl19+yeeff056ejp2u73Stm3bttU7MOEbhXl5lFvLeevScbSNjPSudya1oGyip31V63Ur+eaqa6ocW5Cbx/KlS7jyyiuJjoqq0/lTc3K4YeHCWs8+rigK8UFGdBaFfKuDHIsdp1slJsAgCY8QQohaqVOy89prr/HYY49xyy23sHjxYm699VYOHDjA5s2bmTJliq9jFD7QNjKSrrFxALg1WraNuwqAuL2/08ZWDie2nSxHhd+BrlFRxMfHn81wAU/CExNoRKdRyLbYKbA6cLlV4oOMkvAIIYSosTp1dXnrrbd45513eP311zEYDDz88MMsX76c++67j6KiIl/HKHzsaOfulIdFoLeU0eKXpj/KdYTZQHyQEYBiu5NjpVYZi0cIIUSN1SnZSU9PZ8CAAQCYzWZKSkoAT5f0Tz75xHfRCZ+zm8xkdPMMF9By83r0dlsjR1QzoUY9zYJNKECJ3SUJjxBCiBqr83QR+fn5gKfX1aZNmwBIS0uTD6AmLr1nP1wGA0E5WcTsrzowZFMWZNCReFLCc1QSHiGEEDVQp2Tn4osv5uuvvwbg1ltv5YEHHmDEiBFce+21jB8/3qcBCt+xhIZzvF1nAFr+so5zsdXLyQlPqSQ8QgghaqBODZTfeecd3G43AFOmTCEyMpINGzZw2WWXcdddd/k0QOE7h3r1B42GyMMHCMs8euYDmqiKhOdoiZVSu4tjpTYSpNGyEEKIU6hTsnPkyBGSkpK8P0+cOJGJEyeiqioZGRkyoGAT5IqOo6hla1BVmm/Z2Njh1FtFwnOkxEqJ3UlWmUJsoHRLF0IIUVWdHmO1bNmSnJycKuvz8/Np2bJlvYMSvmcddDEAUWn7CCzMb+RofCPIoCPhRC+tQpuDvHJHI0ckhBCiKapTsqOqarX/QZeWlmIymeodlPCt5m074GzfGVSV5F9/aexwfCrEqCc20JPw5JZ7xuIRQgghTlarx1gzZswAPIO9PfHEEwQEBHi3uVwufv75Z7p37+7TAEX9XXXvdMC/anVOFm7S43S7ySv3zJqulSdZQgghTlKrZOfXX38FPDU7O3fuxGAweLcZDAa6devGgw8+6NsIRf1o9VxwyaUAJG/3r1qdk0WZDbjcnsdZx0ptYJAaRiGEEB61SnZWrVoFeLqbv/rqqzIJ6DlACQ5F0WjQ7d9DYIH/1epUUBRPA2WX6qbE7kKJjCc2qXljhyWEEKIJqFNvrHnz5vk6DtEAXG4VAjwJqfHndY0cTcPzTB5qwlFUjhV4dO77uM/J0YSEEEL4Up2SnbKyMp577jlWrlxJdna2d8ydCgcPHvRJcKJ+CqwOFI2Gg7t20v3wwWon+/Q3GkUhMcTE/pxiklq3Jdtpw62qaKRLuhBCnLfqlOzccccd/PTTT9x4443Ex8fL2CZNkFtVvT2Tvp73Nj0iQhs5orNHr9Gg5h3HFhwJAQHszC6mW+z5c/1CCCEqq1Oy89133/Htt98ycOBAX8cjfKTE7sSlqqhOJxuWLYHrb2jskM4uh43XHpnGw6//lwOFFoKNOlLCAhs7KiGEEI2gTuPshIeHExER4etYhA8VnqjVUcuKcDmdjRxN4/h5+XeE2YsB+C2rmPxyeyNHJIQQojHUqWbn6aefZubMmbz//vuVxtoRTYPV6aLceaIdVVlx4wbTyI7v2EJk9/5YdGbWHsomoTwHLb6ZODQqKkqmRhFCiHNAnZKdl156iQMHDhAbG0uLFi3Q6/WVtm/bts0nwYm6qajVCTboKHK7GjmaxpGTlQWKwg033IA5MIgXvvqOhBatWPLrHv5x5w1VGtXXRUBAAKmpqZLwCCFEE1enZOeKK67wycnXrFnDP//5T7Zu3crx48dZuHBhpbJVVWXWrFm8++67FBYWMnDgQObOnUubNm28++Tn5zNt2jSWLFmCRqNhwoQJvPrqqwQFBfkkxnONy61SZPM8tgo36Slq5HgaS0lxIagqj875Jz379AOdHtXtpvuFQ/l80w7U4vqNOXRw314euWcyubm5kuwIIUQTV6dkZ9asWT45eVlZGd26deO2227jyiuvrLL9hRde4LXXXuP999+nZcuWPPHEE4wcOZLdu3d75+CaNGkSx48fZ/ny5TgcDm699VbuvPNOPv74Y5/EeK4ptjtQAYNWg1lXpyZZZ1ZeDhkZcPw4FBdDaalnvUYDgYEQFgbR0ZCU1DDnr4Xklq3o2K07AEU2B8dLbSghESQlJhBkqNPbXwghxDmmXn/tt27dSmpqKgCdOnWiR48etTp+9OjRjB49utptqqryyiuv8Pjjj3P55ZcD8L///Y/Y2FgWLVrExIkTSU1NZdmyZWzevJnevXsD8PrrrzNmzBhefPFFEhIS6nF156ZCq6dWJ8yo8+2QAFYr/P47bN8OR4/W+LD2ERHMBIxpadCzp+/iqYNQo55yh/vElBJWWoYGoNc2UEIohBCiyahTspOdnc3EiRNZvXo1YWFhABQWFnLRRRfx6aefEh0dXe/A0tLSyMzMZPjw4d51oaGh9OvXj40bNzJx4kQ2btxIWFiYN9EBGD58OBqNhp9//pnx48dXW7bNZsNms3l/Li72j0a8VqcLm8szZnCoUX/G/WvCBARt3uxJdBwnzSgeGempuQkNheBgUBRwu6GkBAoKPLU+ubkE5OfzJMBVV8GFF8L994OPHoPWRUygAavThdXl5lipleQQs4wTJYQQfq5Oyc60adMoKSlh165ddOjQAYDdu3dz8803c9999/HJJ5/UO7DMzEwAYmNjK62PjY31bsvMzCQmJqbSdp1OR0REhHef6syZM4cnn3yy3jE2NRVtdYIMOrSaen6Aqyph+/7gfsB8YgJYoqOhe3fo0sWT4JxJWRmHtmxh1+rVjNZq0axbB+vWYU1KonzsWDR42r40hKPphwFITzvAsSPtSGjmeaSmURQSgk0cKrRQ7vTMlB4VYDhdUUIIIc5xdUp2li1bxooVK7yJDkDHjh158803ueSSS3wWXEN59NFHmTFjhvfn4uJikppA+5L6cKsqRTZPzUuosX5tUTQlJQR//x2GNM+0H47wcPSXXALt2nlqcGoqMJBdCQmMA+JcLu4B7gaiMzIYOHcuvwLT7pnMmnpFe3pzHn2IV56cydcbt3gTHoNWQ2ygkeNlNnLL7QTqtZj12gaMQgghRGOq06ei2+2u0t0cQK/X+6RLL0BcnGcep6ysLOLj473rs7Ky6N69u3ef7OzsSsc5nU7y8/O9x1fHaDRiNBp9EmdTUWp34lZBp1EIrMcHt+7YUUIXLkBjKcOt0bDc7abrhAnEJybWqbxCqxUVeOyii+jfpg1HHQ7sv/9OzPbtdHU4+AnIbJnCH7374DCb6xz3Xx0+eICf162lWZ9+zNz8M4V5ed5kByDEqKPU4aLE7uRYqZUWYQFo5XGWEEL4pTolOxdffDH3338/n3zyibcR8NGjR3nggQcYNmyYTwJr2bIlcXFxrFy50pvcFBcX8/PPP3PPPfcA0L9/fwoLC9m6dSu9evUC4Mcff8TtdtOvXz+fxHGuqHiEFVqPhsnG3bsIXrYUxeXCGRXNoQED2fj1Irpq6t+It3V4OD0rktbkZDI7dCDjf/+jNxCXdpCYrExKhl+CvV37ep8LwJSXRzrQMjik2u2KohAXaKTc6cLhVskqs5EQZPLJuYUQQjQtdfoUe+ONNyguLqZFixa0atWKVq1a0bJlS4qLi3n99ddrXE5paSnbt29n+/btgKdR8vbt20lPT0dRFKZPn84zzzzD119/zc6dO7nppptISEjwjsXToUMHRo0axeTJk/nll19Yv349U6dOZeLEiedXTyyNljKHZ/DAujZMNm3/lZBvl6C4XNhat6Fg0o3YQ8N8GGRlqsnEt0DamLE4o6LRWCyEfr2I4KXfgP3sTOug1SjeBKfY5qTY5jjDEUIIIc5FdarZSUpKYtu2baxYsYI9e/YAnsTj5J5TNbFlyxYuuugi788V7Whuvvlm5s+fz8MPP0xZWRl33nknhYWFXHjhhSxbtsw7xg7ARx99xNSpUxk2bJh3UMHXXnutLpd17jJ7BlA0aTUY6tCV2rRtK8ErlwNg6dWbsouG1a5tTj1YI6MouOkWAjauJ2DTRky7fkd37BjFl12OKyb2zAXUU4BeS6RZT165g8wyGwF6LTof1GQJIYRoOmqV7Pz4449MnTqVTZs2ERISwogRIxgxYgQARUVFdOrUibfffptBgwbVqLyhQ4eiqqeep0hRFJ566imeeuqpU+4TERFx3g4gWEEJ8CQ7IXVomGz8feefiU6ffpQNGXrWEh0vrRbLhYOxt2hJyDdfoyvIJ/yjDygeM9Znj7VOJ8psoNTu6bafWWojMdgk3dGFEMKP1Opf2FdeeYXJkycTElK1HURoaCh33XUX//rXv3wWnDizmMQkFKOnYW9wLZMd/eFDBH//HQCW3n0bJ9E5ibNZEgU334a9RUsUp5PQrxcRsGEdnCYh9gVFUYgP8jRYL3W4KLafn7PECyGEv6pVsvPbb78xatSoU26/5JJL2Lp1a72DEjU38FLP6NIBOi36Wjx+0ebmELJoIYrbjbVDR8qGXtSoiU4F1WymaMLVWHr1ASBw/TqClyyuPKBhAzDptESZPePtZJXZcPqoV6EQQojGV6tkJysrq9ou5xV0Oh05OTn1DkrU3KCxnlGia/MIS7FZCVm0AI3dhr1ZEiWjxjSJRMdLo6Hs4mGUjByNqtFg2ruHsE8+QlMxB1cDiTTrMWo1uFXILLWd9hGrEEKIc0etkp3ExER+//33U27fsWNHpTFxRMOyKzqat+2AqqoE13RSS1Ul+Lul6AoKcIWEUHz5eNA1zQkxrV27UXTNRNxmM/qsTMI++RBNYWGDnU8eZwkhhH+qVbIzZswYnnjiCaxWa5Vt5eXlzJo1i7Fjx/osOHF6ZboTg/BZy2o8PYR562aM+/5A1WgovuwK1ICABoyw/hxJyRRMuglXaBjawkLCPvkQbW5ug51PHmcJIYT/qVWy8/jjj5Ofn0/btm154YUXWLx4MYsXL+b555+nXbt25Ofn89hjjzVUrOIkqqpSqvN0wVctJTU6RpudTeCanwAovXg4zvhzYywid3g4hddPwhkVhba0lLBPP0KXebzBznfy46yssrMz5o8QQoiGU6vnF7GxsWzYsIF77rmHRx991NumQVEURo4cyZtvvlll4k7RMPLKHbg0OiylJZjKLWfcX3G5CPnhW8+gga1aY+3eo8bnqk87rIKCAgAKCwo4fvzPBKW2ZbqDgimcOInQrz5Hf/w4oZ99QvH4CTiSm9c5tlOpeJx1qKicEruTUruToJo+JhRCCNHk1PovePPmzVm6dCkFBQXs378fVVVp06YN4eHhDRGfOIWMknIAfl6+lCF9ep1x/5TftqPLycFtNlMycnSNGiSXlZUBsGDhwjrHufPE1x9XrSJ11aoq2+21GC1ZNZspumYiIQu/wpCeTuhXX1B01TU4kpLrHN+pmHRaIkx68q2ewQZT9Fo0TakRtxBCiBqr87+r4eHh9OnTx5exiBpyqypHTyQ7a5YsPGOy0x1ovsvTsLxkxEjUwMAancdu87TNGjRsBPEJdZsINODgARasX0u/CwdxQctW3vWH0zwTdTqdtWsErBqMFE24hpBFCzCmHST0qy8ovPpanInN6hTf6UQFGCi2O3G6VXItdmIC/WvyWCGEOF9I3fw5KMdix+5S0agufv95/el3drl4B1BUFWu79nUakTg0LJzo08wifzoh+XmeryFhlcooOLG+TnQ6iq+4ktAFX2I4fIjQL7+g6Jprfd4GSXNistAjJVbyrQ5CjDpMurrPKC+EEKJxyCRA56CKWp1ApxW3y3XafVt9vYg+gEOvp+zi2s1d1qTpdBSNn4A9KRmN3UboF5+hy8r0+WmCDDpvt34Ze0cIIc5NkuycY1RV5XipDYAAZ9UhAE6myzxO53nvAnCgZy/cQUENHt9ZpddTdOVVOBKbobHZCP38U7QNMKhlbKABjQJWl5sCq8yMLoQQ5xpJds4xueV2bC43Bo2CyX36xr0xT89Gb7GwCTjatt3ZCfBsMxgomnA1jvh4NFYroV9+jqa4yKen0Gk0RAd42uvklttl7B0hhDjHSLJzjjla4qnNiQ8ycbq+QaZtWwj7/BMApkHTmg7Cx1Sjp9GyMzIKbWkJoV98jq4WvbxqIsyow6TzjL2TLWPvCCHEOUWSnXOIqqocK/UkOwnBptPtSNzjfwPg0IiRbDkbwTUy1Wym6KprcAUHo8vPo8PmXzj1LG61pygKsSd6YxXbnWA4zf0XQgjRpEiycw7JtzqwOt3oNAoxAafuBh2y6CsCNv+COyCA32+/6yxG2LjcISEUXXUtbpOJkMICrgYUHz5yMuu0hJ6YcFUJi0ajlZ5ZQghxLpBk5xxyrOIRVqDx1HNh2e3EPPsUALn3PYA1KupshdckuKKiKLryKlwaDW2BfntTfVp+dIARjQKKwcgl197o07KFEEI0DEl2zhGqqnK0Bo+wwj98H8OhQzijY8i7e+rZCq9JcSY2Y2/PXriB1seP8agPy9ZpFG9j5evufxiX/AoJIUSTJ3+pzxGFNicWhwutgrftyF8pZWVEv/g8ADkPPlLjkZL9UUFsHEtPfP8s0Gz1jz4rO8yoQ7VbCQoNo8AQ7LNyhRBCNAwZQfksSE9PJzc3t15lFOiDwRCE0VHOju3bAUhN9TyiObhvLwDtP/4AXU42pfEJbOjaHfW37d5t56MtQKukZDpkpNPn+WdJH3gh5b371rtcRVFQC3NRYppRqg8gv9xOhNlQ/4CFEEI0CEl2Glh6ejod2rfHUl5er3JeW7qGxJTW/ONvD7Lum8oTcz5yz2RCgLQTP991/Bgfjx5WaZ+y0jI4Dyek39a6Lfsz0hnnsJN003WkLfvRNzOl262sWvgZF42/lu3ZxVyUHInix937hRDiXCbJTgPLzc3FUl7Oh+PH0yE6uk5l2COjOZbSGpxOXm7RDM2ddwKQk5vLggULGDFmHD2OHSFi+6+UhYZy27jLuU3jeUK54uABnlu3Frv19KMt+ytVUbgOyGjVhvAD+0iadA2Hvv0Bd0hovcv+4MV/cPEVV1NodXCoqJyWYQH1D1gIIYTPSbJzlnSIjqZnfHydjk3t1JNjQFzWUXpHRnjXHwc2Ap2Dg2m5x/NIyzVoCF1PmhBzX149Jtz0E2XAhmfmcMn0qZj2pJJ4z2QyPvgUNPVrslaUl0u4vYR8Yyi7cotJDDZh0EozOCGEaGrkL/M54FhSSwASMtKq3R6xJxWN1YozMhJbHWY1Px+UR8eQ8eGnuI1Ggn9YRvQLz/qk3GCnhRCDDrtLZVduiU/KFEII4VtSs9PEWQKCKAqPAreb+KOHq2w3AJGpuzz79h9Y79oKf2bt3pPjL71K4tS7iX7pBaydu1Iy9rJ6lbknNZUWnQwUmyNJKyjDduwwBtXpk3ijoqJITk72SVlCCHE+k2SniTue6GlMG5mbhdFetd1NT0Brt+MMD5danRoouvZ6TDt3EPnvt0icchdprdtga9+h1uXkZGWBonDDDTcA8H+v/JsBo8bxw84/mHXz1T6JNSAggNTUVEl4hBCiniTZaeKONWsBQMLRQ1U3ut30P/FteZ9+UqtTQ1mzn8G063cC162h2U3XkfbDKtxh4bUqo6S4EFSVR+f8k559+oFWh6q66dxvIF+s3wrlZfWK8eC+vTxyz2Ryc3Ml2RFCiHqSZKcJs+sN5MZ4GjXHHzlUZbv5wAFCAafJhLVT57Mb3LlMp+PIu/NpeclQjGkHaXbX7aR//AXUYa6r5Jat6NitOwA5Fht55Q4M0QmkhAWgka7oQgjRJEhVQBOWlZCMqtESXJRPUGlx5Y2qSuBvvwGQ174j6CRvrQ1XVBRH5n+E22wm6McVxDz7dL3LjDQb0GkUnG6V/HKHD6IUQgjhC5LsNGHHElsAEH+kasNkDhxAn5+PDSho2+6sxuUvrF27ceyVNwCIeu1fhCxaUK/yNIpCTIBnJOW8cjsOl+9mXBdCCFF3kuw0US6NhqyEJOAU7XXWrwdgK+A2Vj9Xljiz4iuvJnfKfQAk3H8vxt276lVesEGHWadBBbItdh9EKIQQor4k2WmicmMScOoNGMvLCM/Lrrzx6FE4dAhVUdjUOOH5lezHZ1M65CI0FgvNbrsRTWndx8tRFMU7UWuJ3TN5qxBCiMYlDT2aqIpeWPFH06nSzHXDBgDKW7emeN++sxrXuepME6Lun/YAw3f/TsCB/QTefAM/PzEbTtPA+Gi659FietoBdv8WVWW7EhaNEhTK4dxCQlwWEpsl1St+IYQQdSfJThOk8uf4OvF/fYSVnw8nZjsv69YNJNk5rVxrOQqeyVLP5AJgDZC0ZhX/HLGK12tQ/pxHH6p2fUh4BG98v57AkFBeefopHnjwQRIk4RFCiEYhyU4TVBgRhTUgCK3DQUzm0cobN20CVYU2bXBGRFRfgPAqdThQgecHDqJXq1Zn3D8tdTdtN//CK4rCjaNGUxwdU+1+hw8e4Od1axl08QjimyVWu4/t57VYR4zlqikzKMwvkGRHCCEaiSQ7TVBFL6zYzAy07pPafFitsH275/sLLjjrcZ3LUkLD6Bobd+YdY2KxFhdj2ruHnuvWUnDTragBVWczN+XlkQ60Dw+n+SnKdWccYmNOFqHRsagltR/DRwghhG9IA+Um6HhFe52/DiS4fTs4HBAdDS1bnu2wzg+KQunI0TjDI9CWlBDy7RJw160LuUZ1Y1r+reeHoFBsTumKLoQQjUGSnSamLDCY4rBIFLebuGPpf25QVdi82fN9376nbTwr6kc1Gim+fDyqTofhUBoBG9fXuSz9of38svJ7FEUhy2JDVVUfRiqEEKImJNlpYipqdSJzMjHabX9u2L/f0zjZaISuXRsnuPOIKzqakktGARCwYT36tIN1Lmv+c7NRVRWLw0WpdEUXQoizTpKdJubYqXph/fKL52uPHmAwnN2gzlO2Tp0p79YdBQj5dgma4uIzHlOdrIzDUFIIQHaZDbfU7gghxFklyU4TYjcYyYv2TPyZcHJ7nbw8T80OQJ8+Zz+w81jpxcNxxMaiKS8nZMlicNWtZkYtyUenKDjcKgVWmTdLCCHOJkl2mpDMhGRUjYaQwjwCy04axbeiVqdtW5Du5meXTkfxZeNxG43ojx0lcO1PdStHVYkO9NTI5VrsOOrY6FkIIUTtSbLThFQ78afN9md38759z3pMAtxhYZSMGgNAwOZfMOz7o07lhBh0mE7Mm5VTJvNmCSHE2SLJThPh0mjJivcMOlepvc727WC3Q2QkpKQ0SmwC7G3bYenVG4Dg777FaLHUugxFUYgN8MybVWx3Ui6NlYUQ4qyQZKeJyIlNwKXXY7KUEZ6f41kp3c2blLIhF+GIT0Bjs9Fu2xbqMkygWa8l1OgZyzOrTLqiCyHE2SDJThNxvOIR1tFDf078mZbmaZxsMEC3bo0Vmqig1VJ82eW4TSaCi4q4pI7FRAcY0Chgdbkpsjl9GqIQQoiqJNlpAlTgWLOKLucntdfZutXztWtXz/g6otG5Q0IpGTMWgH5A+JGMWpeh02iINHsaK+dY7LjcUrsjhBANSZKdJqAgMgabORCdw0501omJP0tLYc8ez/e9ejVecKIKe6vWHGnVGoAWWzejLcivdRkRJj16jYJLVckrl8bKQgjRkCTZaQKOnRg1OfZYBtqKLsm//uqZk6lZM4irwQSW4qw63LYdhwGt00nI4kWeOctqQVEUYgM9tXX5Vgd2l3RFF0KIhiLJThNQ0V4n4WiaZ4XbDdu2eb6XWp2mSaPhS8BhNKLLySboxxW1LiJQryVQ72nmnFVmO8PeQggh6kqSnUZWEhxKSWg4ittF7LET7T8OHIDCQjCZoFOnRo1PnFoJcLDPBaiAecdvGHf9XqvjFUUh5kTtTpnDRaldGisLIURDkGSnkVXU6kRnHcPgONF2o6JhcrduoNc3TmCiRkpiY7EMGAhA8PLv0ebm1up4o1ZDuMnzGmdLV3QhhGgQkuw0suN/7YVVXAx/nBihVx5hnRMs/QdiT26O4nAQ8vVCzyCQtRBlNqBVFOwyb5YQQjQISXYakdVkJi/K0/jYO2rytm2ewQSbN4fo6MYLTtScRkPx2MtwBQahy8sjePn3ntewhrQaheiAE/NmldtxyrxZQgjhU5LsNKLMhGRQFMLycgiwlFVumNy7d+MGJ2pFDQykZNxlqIqCafcuTDt31Or4UKMOk1aDW/WMvSOEEMJ3JNlpRMeatQROqtX54w8oKYGAAGjfvvECE3XiSEqmbNBgAIJWLkebnVXjY09urFxkc4JeBpEUQghfkWSnkTi1OrJjEwFIOHLIs7KiYXL37qDTNUpcon7K+16ALaUVitNJyNeL0Nai/U6AXkuIwfO6K2FRDRWiEEKcdyTZaSRZ8c1w63QElBYTUpQPBQWwf79nozRMPncpCiVjxuIKDkFXUECHjRtqdXh0gAEFUIxmLhw7vmFiFEKI84wkO43k+IlRkxOOnJj4s6KtTkoKREQ0VljCB1SzmeLLLkfVaIg9fIh7a3GsXvvnvFk3PfQ4bmSmeyGEqC9JdhqBW1HITDjR5fzIIXC5PNNDgDRM9hPOhETKhgwF4GUgfE9qjY+NMOtRnXYiY+MpMAQ3TIBCCHEekWSnEeRFx2E3mjDYyonMzfRM+FlWBkFB0LZtY4cnfKS8Vx+yk5IxABc8NbPGAw5qFAW1IAeAEl2ATBQqhBD1JMlOI6gYNTnuaDoaVf2zYXKPHqDVNl5gwrcUhdSBA/kDCMzOotnkW8BZwykhbOX8uOAzUBR+zSzCLSMrCyFEnUmyc5ap/DnLefzRQ5CXB2lpoCjSMNkPOQ1GrgAcZjOB69YQO/vxGh/7/gtPoVFdFNud7M0rbbAYhRDC30myc5YVh0VgCQpB43QSe/zIn7U6rVtDaGjjBicaRCqw+ZHHAIj891uEfv5JjY4rLSwgwlYMwN78UkpsMlGoEELUhSQ7Z9mxE4+wYjKPoLNZYft2zwZpmOzXjl04mJwZDwEQ/3/3Y/pte42OC3RZiQ004lZhW1aRTBQqhBB1IMnOWebtcn70EOzeDeXlEBLiqdkRfi3nkccoGTESjdVK0s3Xo83JOeMxCtA9NgStopBXbietyNLwgQohhJ+RZOcssgQEUhgRDapK3NHDfz7C6tkTNPJS+D2NhqNz38WW0gr90SM0u+NmcJx5lvNAvY5OUZ4u6DuzSyi1y+MsIYSoDfmEPYsq5sKKzM3ElJEO6emehsk9ezZyZOJscYeGkfG/T3AFBhG4YR2xsx6r0XGtwgOIMhtwqSpbMwvlcZYQQtSCJDtn0dGkFAASM9JgyxbPyvbtIVgGjjuf2Nu159hb7wAQ+e7bhH784RmPURSFXvGh6BSFvHIH+wrKGjpMIYTwG5LsnCXOwCDyouMASNi/B377zbNBGiafl0rGjCXnwUcASHjwfgLWrz3jMYF6HV1jQwDYnVtCke3Mj8CEEEI08WRn9uzZKIpSaWnfvr13u9VqZcqUKURGRhIUFMSECRPIyspqxIhPzdK6AygK4blZBPyyCex2zxxYLVs2dmiikeQ89ChFV1yJ4nCQdMskDAf2nfGY5iFm4k70ztpyvFAGGxRCiBpo0skOQKdOnTh+/Lh3WbdunXfbAw88wJIlS/jiiy/46aefOHbsGFdeeWUjRntqljYdAWiWfuDPR1i9enna7Ijzk0bDsdfmYundB21hIUnXXY02L++0hyiKQs+4UAxaDUU2J6m5JWcpWCGEOHc1+WRHp9MRFxfnXaKiogAoKiriv//9L//617+4+OKL6dWrF/PmzWPDhg1s2rSpkaOuLCQiEmszz8SfzTb8BJmZnmkhundv3MBEo1PNZjLe/wR7cnOMaQdpdsskFJvttMeYdFp6nHictTe/jBzL6fcXQojzXZNPdvbt20dCQgIpKSlMmjSJ9PR0ALZu3YrD4WD48OHefdu3b09ycjIbN248bZk2m43i4uJKS0PqN3wUaDSE5WVjXneibUanThAQ0KDnFecGV0wM6R9/gSs4hMBNG4h/YCqc4fFUYrCZ5iFmAH45VojV6ToboQohxDmpSSc7/fr1Y/78+Sxbtoy5c+eSlpbGoEGDKCkpITMzE4PBQFhYWKVjYmNjyczMPG25c+bMITQ01LskJSU14FXABSPHApCU+hv8/rtnpTRMFiext2vPkff+h6rVEvbFZ3T5z9tnPKZbbCghBh02l5vNx6U7uhBCnEqTTnZGjx7N1VdfTdeuXRk5ciRLly6lsLCQzz//vF7lPvrooxQVFXmXjIwMH0VclQuFLv0GApD89QLPrNexsdCsWYOdU5ybyoZezLGX3wCg3WefMOMM++s0Cv0Sw9EpCjkWO6kyWagQQlSrSSc7fxUWFkbbtm3Zv38/cXFx2O12CgsLK+2TlZVFXFzcacsxGo2EhIRUWhqKRWdCq9NhyDqGcf2JxtW9e0vDZFGtousmkTXzKQBeAiK++ea0+wcbdPSI80wguyevlKwyab8jhBB/dU4lO6WlpRw4cID4+Hh69eqFXq9n5cqV3u179+4lPT2d/v37N2KUlVm0JgASlnwFeXlgMECXLo0clWjK8qbezx9XXQNA86eegqVLT7t/UoiZlqGe9l+bjxdicUj7HSGEOFmTTnYefPBBfvrpJw4dOsSGDRsYP348Wq2W6667jtDQUG6//XZmzJjBqlWr2Lp1K7feeiv9+/fnggsuaOzQAbC73JRrjQA0X7LQs7JLFzAaGzEq0eQpCjvuvJcPAMXlgquugvXrT3tI15gQQo067C43Px8rwOWW9jtCCFGhSSc7R44c4brrrqNdu3Zcc801REZGsmnTJqKjowF4+eWXGTt2LBMmTGDw4MHExcWxYMGCRo76T8dLraAo5Py8nog/9npWSsNkURMaDbcBRQMHQnk5jB4NpxlSQatRuCAhHINGocDqYJvMnyWEEF66xg7gdD799NPTbjeZTLz55pu8+eabZymi2jlaYgUg5K1XUFTV0yj5DO2JhKjgBA4+/zw9nngCVq2CkSNh+XLo27fa/QMNOvolhrMuI5+MEivBxjLaRwad3aCFEKIJatI1O+cyt6qSX24Hl4tBW3/2rJRaHVFLqtkMS5bA0KFQXAyXXAKbN59y/+gAI91i/pw/K6O4/CxFKoQQTZckOw1EoyiMbhVLu5WLaeZ04jQaPQMJClFbgYHwzTcwaBAUFXkSnq1bT7l7SnggrcMDAc/8WTLCshDifCfJTgPSahSaffYJAHnt2oGuST81FE1ZYKCnV9bAgVBYCMOHn7bRcpfoYBKDTajAxqMFFFhlhnQhxPlLkp2GZLViODELe26HDo0cjDjnBQXBd9/BhRd6Ep4RI07ZLV1RFHrHhRFlNuB0q6w/kkexTRIeIcT5SZKdhmQykfrpp3QDbKGhjR2N8AfBwfD99zBmjKeX1uWXw0cfVburVqPQPzGccJMeu0tlXUY+pXbnWQ5YCCEanyQ7DU1R2NHYMQj/EhAAixbBDTd4ph+54QZ47bVqd9VrNQxsFkGIQYfV5eandKnhEUKcf6QRiRDnIr0e3n8fIiI8ic7990NGBjz3HGi1lXY1aDVcmBTBuox8iu1O1mbkM7BZBGEmfSMFX3/p6enk5uY2WPlRUVEkJyc3WPlCiLNLkh0hzlUaDbzyCkRHwxNPwIsvwu7d8PHH8JfHpiadlkHJkazPyKPQ5mRNRh4XJIQTE3jujeadnp5Ohw4dsFgsDXaOgIAAUlNTJeERwk9IsiPEuUxR4PHHoU0buOUWT4Pl/v3h66+hdetKuxq1Gi5MimTT0QJyy+2sP5JPr/gwkkPMjRN7HeXm5mKxWHh+7ruktGnn8/IP7tvLI/dMJjc3V5IdIfyEJDtCnAUH9+2t0/6pqak1O6BNG8z/+Q+tZszAkJqKs1cv0p57jpJ+/So9kjGcaMOzJbOQoyVWthwvpNjmoFNUMIqi1CrGxpbSph0du3Vv7DCEEOcASXaEaEBZpaUowCP3TK7T8TfccEOt9o8DFgIXFBeTcu+9/AN40WTi9717vQmPVqPQNz6MXfoS/sgv44/8MopsTnrHhWHUSZ8FIYT/kWRHiAZUbLOhAs8PHESvVq1qfFxBbh7Lly7hyiuvJDoqqlbnVJxOctevJ2rvXmYCw6xWinfuhJMeySiKQufoEEKNerZlFpJVZmPl4Rz6xIcRHXDuteMRQojTkWRHiLMgJTSMrrE1nwQ2R4Xfga5RUcTHx9f+hBMnws6duJYsYaDDgXPiRHjvPbj66kq7JYWYCTHo+OV4ASV2F2sz8mkdHkjHqCB0GqnlEUL4B/lrJoS/6tKF1AkT2AToSkvhmmtg0iTIzq60W6hJz0XNo2gR6mmovL+gjJWHcskqkzm1hBD+QZIdIfyYPSSEQUDmrbd6em59/DF06ADz5oGqevfTaTT0jAtjQGI4Zp2GMoeL9Ufy2XAknxIZdVkIcY6TZEcIP+cEjk2dCj//DN26QX4+3HYbDBsGf/xRad+4IBPDW0TTOjwQBcgss7EiLYctxwspk6RHCHGOkjY7QjRhOTk59Tv+xCjDqampnhqdf/+b2I8/Jv6dd9CsWgWdO8M993jG6omOBjxTTHSNCaFlaAA7c4rJLLORXlxORnE5CcEm2oQHEm7Sn3Nd1YUQ5y9JdoRogsrKygBYsHBhvco5fuLrX7uwdzSZ2DJkCOaffvJMNzFvHjzyCEyfDoGBAAQbdQxoFkF+uZ3duSVkW+wcLbFytMRKqFFH89AAmgWbMOkqT08hhBBNjSQ7QjRBdpsVgEHDRhCfkFjncnbn5fHO0iWVRhuuGCE49V//omd+Pjz8MPz6q6d25803PT/fcQcEBQEQYTZwYVIkhVYH+wvKOFJSTpHNyY7sYnZkFxNh0hMfZCI+yEiwQSc1PkKIJkeSHSGasNCwcKLjat5l/a/CT+QdpxxtePhw2LIFPvsMHnsM0tLggQfgqadgyhSYNg1iYgAIM+npHR9G15gQMorLSS8up8DqIP/Esiu3hAC9lkiTngizgUizgRCjDo0kP0I0ef4+ua4kO0Kc7zQauO46uPJKz0zqL74I+/bBM894vr/xRrjzTujVCxQFg1ZDq/BAWoUHUu5wcbzMyvFSGzkWGxaHC4vDRUaJp2ZKqyiEGnUEG3WEGHSEGPUEG3SYdRqpARKiiTgfJteVZEcI4WE0epKa22+HxYvh+efhl1/g3Xc9S9eunsdbkyZBRAQAZr2WlLBAUsICcbrd5JU7yCu3k19uJ9/qwOlWvTU/J9NpFIINusqLUUegXis1QUKcZefD5LqS7AghKtNqPbU848fD2rXw73/DV1/Bjh1w333w0EMwerRnNOaxYyEkBPCM1RMbaCQ20Eh6ejrmklwcio7s4lLK3aAxBaKYA1CMATjRUGB1UPCXJEh1u1Ft5ahWC25rmeerpQS13AJ4xgVKS0sDaj65alhkJAnNknx3f4TwU/48ua4kO0KI6ikKDB7sWV5/3TMg4X/+A7/9BosWeRajEUaO9CRHo0ZBbGyVKnGFijTFQ6vTEZfcgqQ27Uhs2ZrElBNLy9aYAwNRzIFgDkRLtPcYW3k5B3fv5MDvv/HHb9sIi4qu8eSqZpOZrzdukYRHiPOYJDtCiDOLiICpUz2NlnfsgC++8Cx//AFff+1ZAHr2xNC9Oz0sFq54Yy5urY5H7pnM8wMHkRIaVrXc9IOeZfUPoCi4Q8MgJg5i4lBi4iAuHpolYzSb6dCrLx169fUe6j52BNPRdHSH9qM7dBDFYa9S/B95edz77RIK8/Ik2RHiPCbJjhCi5hTFMwpzt27w9NPw++/w5Zfw7bewdSts20bctm2sA5wPPkBeh06UAsMCA0lu2xb0+pqdpyDbs+zdgQqUh4ZTGhVDSXQs2aEROBKaoUlohj2hGfY+A9A4nYQfPUxU2n4i0tPQVZP4CCHOX5LsCCHqRlGgSxfP8uSTkJUFP/xA/scf41q2jGirldhft/IUwA/LUFcuxxkXjz0pCWdiMxwJiagm05lPAwQUFRBQVEDMgb24du/ix/XrGHLfg+h69KIwsTnWkFDymrcir3krFJeL8KPpxO7bjVrPEaiFEP5Bkh0hzgMnN+at+D41NdX3J+rUidQbbuCGZcv4z8wnSfrjD/I+/YgrzWaM5eXojx5Bf/SId3dnVBSOhGY4EhNxJDbDHRbmSaLOwFVYQMCu32heXoIKWMIjyWnZmrwWrbGER5Kf3JL85JYoFwzhxqh40NWwRkkI4Zck2RHCj2WVlqJAtY15/zqFhK/d8dQs7/eLR13KwMhIDEfS0WdkoDt2FF1BAbrcXHS5uZh3bAfAHRDoTXwcic1wxsZ6eoedhgIEFuQRWJBHi20/YwkNJ7t1ezLbdsQRGMQVd9wLQHpRORFmPYF6rYzxI8R5RpIdIfxYsc2GCjw/cBC9WrUCoCA3j+VLl3DllVcSHRXl83Pm5OayYMECRowZx9biQp5btxa7zYY7PBxreDjWLt0AUMrK0B87eqK25yi6rEw0ljKM+/7AuM8zG7uq0+GIi/M89jrx6OtMAooKaLF1I823bWJbcCg/RcbR+6IRWJwuLCUuDFqFCJOM7izE+USSHSHOAymhYXSN9Uw7kaPC70DXqCji4+N9fq7jwEagY2QkuafJJdTAQOxt2mJv09azwulEl3kc/dETCdCxo2jKyzEcOYLhyJ+PvgKCgjABEYcPoYmOwh0cUm35iqqi37eH5574G1+s2kBkyzYU2hzYXSqZZTZyLHYizHrCTXpJeoTwc5LsNLDjxz3zTufk5npnoPaVHGl8KfyJToezWRLOZkmUA6gq2oJ89EePoDuRAOny8wkoLaUXwJZfYMsvOCMjsTdvgaNFS+xJyWAwVC3b5SQm0Eik2UCRzeEd3TnHYie/3EGkWU+YJD1C+C1JdhpQeno6V111FQALFixgYwOdx26XbrbCDykKrohIXBGRUPHoy2Ih5+eN5G3ZTPeICAILCtDl5aHLy4NtW1E1GhwJiThatsTWqg2oaqUitRqFCLOBcJOeIpuTvHI7DrdKtsVO3omkx9MKSAjhTyTZaUC5ublYrZ4JEUeMGUfHyEifln847QA/r1uL0+n0ablCNFVqQAD5sXGsAEwXDadFQgL6w4cwHD6E4VAa2qIiDEcyMBzJIHDtGgYEBfEyEP3rVujYyTvOj6IohJn0hBp1VZIeJb45Y268HXejXqkQwpck2TlLwqMiiT7RZsJXCvLzfFqeOL801GPQs/l4VTWZsLdrj71dewA0BQUYDqVhOHgAw+FDmEtLmQ7w0AO4np5N6bDhlIweS8mIkahBQVWSntxyO0503P7Y0xx1u4gstNA81HxOPd5KT08nNze3wcqPiopqtMkchagrSXaEOM+UlZUBsGDhwgY9T2M8XvX2+OrRE+x2jv32K1tXr+L6sDBMhYWELvyK0IVf4TabKR12CcWXj6dkxEgIDPQmPakH0iiwOYmMS+DXrCL+yC+lQ1QwScGmJt9l/a/zkjWEgIAAUlNTz6mEp6ETwDORBLHxSbIjxHnGbvM8Wh00bATxNejKXVtN5vGqwUBucnNuB0I+W0gvp5PgZd8SsmQRhkOHCPlmMSHfLK6a+JQVM2XMCL7f/BuWgDDKHC62HC/kjzwdHaKCSQgyNtmkJzc3F4vFwvNz3yWlTTufl39w314euWcyubm558yHd3p6Oh3at8dSXt5oMQSYzaTu2XPO3DN/JMmOEOep0LBwouN8+2gVmujjVa2W8p69KO/bj+wnnsS04zdCvl5EyNcLqiQ+wb37coXdRnhJLoM6t2F/QRn78ssotjv5+VgBYSY9naKCiQkwNNmkJ6VNOzp2697YYTQJubm5WMrL+XD8eDpER5/186fm5HDDwoWNmiCeqWarYjT1k0da96WcrKwGKbc2JNkRQpxfFAVrt+5Yu3Un+/FZJyU+CzEcSqPZ2p/4HHANH472sstof+21pFwykn3lbvYXlFFodbD+SD6RZgOdooKJCqimq7tocjpER9OzAcaVaupqU7NV3UjrvmA0Ghuk3NqQZEcIcf76a+Kzcwf2d99G/+lHtLJa4fPP4fPPMQQF0WncONpcdTV7ew/kgNVFXrmdNRl5xAQY6RQdTLhJ5t8STU9NarZOHvU8PMq3vYb/yMvj3m+X+LTMupBkRwghwJP4dO3G7jvu4upPP2L3hx/S4bffPAnP4cPwyScYPvmELiEhdBh3GYdHjmVn9wvIBrIP20gIMtEhMohQSXpEE3S6mq2TRz33da/hpkKSHSGEqEZ5hw4waRI8/zz88ou3locjR9B99CGtPvqQlLAw8kZeyt7hYzh+wYUcK7USE2CkbUQg0U24TY8Q5xtJdoQQ4nQUBfr18yz//Cds2gSffQZffIFy/DhRn31E1Gcf4QwL5+iQ4RwfNpKNA4cQHBFKm4ggEoNN59Q4PUL4I0l2hBCipjQaGDDAs7z8Mqxb56nt+fJLdFlZNF/8Bc0Xf4HLYCS7/yCODxvJ3uEjiWvdnBahAQQZ5E+uEI1BfvOEEKIuNBoYPNizvPoqrF8PixfDokVoDx4k/qcVxP+0AmY+RH7XHmRcOBT7sOFEDB1EXFggeo2msa9A+FhRUVGVAR1zTnT5rujeXR8yOGHdSbIjhBD1pdX+mfi8+CLs3g2LF6MuXozyyy9E7PiViB2/wlsv4wgKJqf/hViHjcA8ZjTRndqia+DE59iRDArz6j/+UcU4LLX94D4fPqSLiop44403cPxlMM3jJ77ecMMN9T7HX0evdqsq5U4XVqcbh8uNw63icLtxuFTcqooKFOiDueH/HiO/ezdSTSZ0TgdahwOd04HRZsVsKcOZl1/v2Jo6SXaEEMKXFAU6dYJOnVD+/nc4dgyWLcO57HtYsRx9QQEJy7+D5d/B32ZQltScvP4DUQcNImDYRQS3a4Piw+Tn2JEMLuvfm3Kr70YQru0H9/kwgrDFYsHhdDLi0nGER/zZfXt3Xh7vLF1St1GtFQV0etDpKSgs4pdNm9hV4mL/oRzKnW5srhpMV2sIYvzkKRQDxafZrdPNU0grt5BbWkxQXi6B+TkE5udisJThDy3OJNkRQvi92owMW9fai9OJGj6c5NtuA5cLdetWrEu/w/39D5i3/EJgxmECMw7D5x8DUB4bj+WC/rguHIT+wgsJ7tkVnaHuAxcW5uVRbi3nrUvH0TayfmOoFOTmsXzpEq688kqio6JqdExTGEH4bAqPiKw0Mnn4iUzhdKNaO90qNpcLm9ON3eXG7lKxu9043ap3n8jIeEa3ak85UG77s/ZIo4BJq0WvVTBoNeg0CnqNBq2ioCieiXk//uhDJnXpSmRIKE69HqdWh1Ovx2YyUx4QhMNgRBscgi04BFtMHLkpbb3lG8pKCT1+hLDjRwg9fgRTSfE5mfxIsiOE8FtZpaUo1G1kWF88dqhwcs2G0rcv5r59YfYs1KIiytasxfbjanTr1hL026+Ys45jXrwAFi8AwGk2U9C5G9aevXD26Yu2Xz8CWrUk0KirVbuftpGRdK3nGCo5KvwOdI2KIv48HI24vlRVxe7yJDbWEzUzNqcbp6qe8hitAgatBktRIV++/1/uuv022qW0wKzTYtZpMGg1px3iYNvRA8x/7kmm3XknPU7xmh3JzeODpcsYdvNt6Fq1oSwiirKIKCyh4dgDg8hp3Z6c1u0BMJYUE5GeRtSh/YRmHUM5TexNiSQ7Qgi/VWyzoQLPDxxEr1atanRMXWovTud0NRtKaCiB48YSOG4sAK7SMgrXrsO5eg369WsJ2P4r+rJSwjdvgs2b4N9vAmCNiia3S3cKu/WgvGsPHF27oUuMp1AfxLAJ14EpAKvThVZzLv4P7gfsdlSrDbtGQ6jBxPzx19Lmh+VoFi0mqKSYiOIitBYLGqcDjdOJ4nSidTnRulxonU7QalAMBjixqHoDhZYySletpGNWOjFt2kBYGISHe76GhUFEBMTFQUyMp/F8LWgddmxp+wk68AfRZX8+7HJptZREx1GY0Iyi+GaUxMRhCw7heKduHO/UDX25hcjDB4lK20fYsYwmXeMjyY4Qwu+lhIbVuFajMWsvtEGBhI0eCaNHela43Vh37sK6cRP88gv6LZsxp+7ClJtD/KrlxK9a7j3WGh1DYYfOvNGhM4VbtpFjsVOW1BxNs9a8t2EnJU4HOx12DOUW9JYyDOUWz/flFgzlZRgsFnQ2a5P+wGoybDbIy4O8PNS8PJyWcoKKipgWEUXIgi/Rl5V6d20G9PbBKUOAm8EzxtPp6HSepCchARITaabX8wgQdvCgpw1QRIQniaoBrctFWOZRwjKPAj/j0ukojG9GXotW5DVvhcMcQGb7zmS274yxpJjYfbuJ3ZeKqbSkfhfbACTZEUKIpkqjwdStC6ZuXeDuE4/iysth+3Zcmzbh3vQLyvZf0e77A1NONnE5PxK35kfv4Y6gYArbd6KoY2cKO3ahsENnclJao+qrn9JCcbvQl5efSII8CZCh3ILBUoappAib3YmiP48mPi0rg8xMyMqC3FzU/HzU/Hw0JX9+mCuA/sRyMmdAANaoGOxmM+lWKxFt2hKQkIgaFoo7NAx3YCCqXo+q04NO6/1e1elQVBXFbkdx2FHsDhSHnay0g3z81us8cPvtxJtMUFgIBQWer4WFnuQrOxucTjhyxLMAMcBzACtWeBaA4GBP0hMRAVFRGAwGAmpwO7ROJ5EZh4jMOIR73SqK4hPJbdmanJZtsQWHkN7zAtJ79CPsWAbxqTuITE+r3/33IUl2hBDiXGI2Q//+aPv3R1uxrqwMduwgffFivn/+eSa0bUfYoTT0pSVEb9lE9JZN3sPdej2W5BaUtG5LcfuOFHTsSn6nLlijYlA1WuyBQdgDg055+s53TWdraQkh5WUElhUTWFpMYGkJgaXFBJQWY2zCtUPVjYMDgNuNrrAQXV4e+rw8dPn56AoK0JWVVdpNObGApyatpHkKZS1aYolLwGE2cyw3h5i4eMKCAjGXlaB32NmRlcnw/83ni/++f8oGyjWx/7ft/POt15l4773E9+xZ/U5Opyc5O3bMsxw9Sua2bax47z3GR0cTWFrqSZZLSjzL4cMARAIPA46vPscdF48zJhZnTAzOuHjcISGeGqG/0Khuwo9lEH4sg5RNa8hr3orMdp0oSkiiMDGZwsRkjCVFKD+vJ2DhAiwlp+sL1vAk2RFCiLPAl727qmU0ktqlC3cCBQ88SKuWrQhJP4x93Rr2/W8eN8fGElpQiMZuI+jAPoIO7CP++2+9hztDw3DExWFNTMLSvAWlKa0pbd4Ce2AI9sAgrMEhWIJDwGDEHhJKbkgouSRUCUPnsHsSoJJigkqLKYnKoMsFF+JQtKiq2mjzhZWUlvLGe++hdzqJBWKBOI2GOJ2eKIcdXTUNbVVFoTS5JUXtO1LSqg0lLVtRGB5BbrmF4sOHsO7ZRflv27At+sKTaABXXHs9IY3V60yng2bNPMsJx7Zt48b33mPr+PGeiUDLyz21QPn5nq85OTiPHkVXXIzeYoGDBzAePOA93hUUjCMxEWdiIo7EZjijYzzjSp1E63IRc/APYg7+QXlwCJntOpPZrhO24FAYPoZ3+g9h9aLPcSqNN5CmJDtCCNGAjp/oEebL3l1nUl3vs5SBg+mfkoKmsBBddpZnycpCl5uDtqQEXVEhuqJCzHv3EH7iGFWnwxkVhTM6Bld0NLmKlsVbfmb0fQ9gbplCWWAIZUEhlAUFUxYUQnlAEE69gaLwKIrCTzTu7tid2SPGcRRY9EcmgXotgQYdZp0Gk06LSafBrNNiOtG7yHiG3kU1pdrtOHbvIfi773kvoRkdftlCb4ORwJMH/XO7wW4DwBEYRFG7DhS170hRu04Ut2qNLSwCXWkxxpwsjDlZmA7soVlZKd5UIjwULugPF/TncNoBfl63FudfBhVscszmKglRzvHjzH/nHSaOHE2U04kuJ9vz3sjJRltagnbvHti7BwBVr8cRF48juTn2Fi1wxsVXahBtLimm5ZYNJP/6C9mt23GwXWfM0bGMnnQrrvKcs365FSTZEUKIauTk+OYPc9rx46jAs7170zM5GZPJRHDQqR8T1UdObi4LFixgxJhxhEd5xtRZcfAAz61bi91qBUXBHR6OPTwce7v23uOU8nJP0pOTjS4nx/Nhl5OD4nSiz8xEn5kJQBBwP+Ce8wyaqCiIioLISM/XsDBcYeFYYuMpDQ07kQSFcExvZD8aElu28tSUOFyUOlynvQ69RkGv1Xi+ajRoNQoaBTSKggZQFAVV9YwSrMvOwpCWhjHtAIaDBzClHSQg7QBBB/ZhcDhoA7T5S/mlyS08iU27jpS0aostsRmKyUhgUSEBBXlEF+TR7Ldfqj6OCw7yLNUoyK//CNWNyQaUx8RiPWmMIBwO9MePoT92FN3Ro+iPHkFjs2HISMeQkU7g+rW4jUZP4tO8BfYWLXGHhYGioHU5id+7i+w1K5nxx366DhjEjElXNdblSbIjhBAnKzvRTmPBwoU+KW/nia+HtmzBtmULep2OqVOnEhoa6pPyT3Yc2Ah0jIwk+kTvs301mCZCNZtxJCXjSDrp8YvbjbaoEG32nwkQ2dnoios83aMzMz3LSbRAsEZDcEgIhIZCaCixGg0rtm9n3KxZxHfthiUkjHKjiXKdAatOj0Wrp1zRYrfbsdudKC4nisuNzlKGtrQYbUkJ+pJiDEWFmHKyMeVkYcr2LIFH0iv1fPorR1AwRe3acyQmHlqmcNjlJrJ9ByKMBkwlRYQVFxF1LA3lWNNpSNuk6PU4kpvjSG7u+VlV0eblos/IwHD4EPr0w2hsNoz7/sC47w8AXKGh2FNaYWvVGkdSMgqwc9M6dm5aJ8mOEEI0FXabFYBBw0YQn5BY7/ICDh5gwfq19LtwEO1Cw1j+7RIsFkuDJDs+pdHgCo/AFR7hrQXKyczkyw/mc/c11xCj0UBurmfJy4OiIk+jV7f7zx5CQBzwEsCTTwJgBO9jMl9QFQVnUjKuVq1xtW4NrVpB2zZoOnfB2Kol6du306tXL5ZdeSW/LljANTfeUmmE43NNbdt+Veyfk5vrnafrr2pci6kouKKicUVFY+3R09OwOysTw6FD6A+noT96FG1REeZft2H+dRuqXk/X2DjuAN6rVdS+J8mOEEJUIzQs3CcfiiEnHm+EhIRVmjPpXOUGXGFhEB8P7f4y15Pb7Ul4ioq8S3ZmJj/s2sW4AQMIdTo9iZHFAlbrn0tF42CNxtP4VauFoCBP7VBFLVF4uOecCQmer/Hx0KIFSkoKeqOxStdvf5OTlQWKUue2XwsWLGDjGfax2+21K1SjwRmfgDM+AfoPALvd84jrwH4MBw6gLS0h+kgGDwP/qVPUviPJjhBCCN/QaLyPryocOX6cG3ftYuvrr9Ozui7TqgoulyfBaaSeWueCkuJCUFUenfNPevbpV+PjDu7byyP3TGbEmHF0PMXcaD5rXG0wYG/VGnur1p5HXtnZFOzYzuvbf61fuT4gyY4QQpxlvmr8fLbKbVCK4uky7edqMxltdY6mH67X8eFRf7bj+qsGaVytKLhiYznUtZskO0IIcT7xdePnU6n144haqk1SlZObC9SsrUlUVJTfzYxen8loqzPn0YfqdFxZaZlncKHzlCQ7Qghxlvi68fNfNfRYL3VJ1ioaxdakrUlAQACpqal+lfDUZTLa6hw+6HltB108gvhmNX/vVBp64DwmyY4QQpxlvmr8/FcNPdZLXZK13Xl5vLN0Cc/PfZeUNu1OuV9F25LqZof3B7WZjLY6prw80oH24eE0r0U5NRl64HwgyY4QQohaqU2yFn6izXFKm3b1mhtKiPqQZEcIIUST4es5xCrKKywo8Gm54twiyY4QQohGV99xZM7kx1WriKfhG2+LpkmSHSGEEI2uruPInElFW6DO3XuQt/3Xpj9Rp2gQkuwIIYRoMpJbtmqQtj2BQUFIU93zl+bMuwghhBBCnLv8Jtl58803adGiBSaTiX79+vHLL780dkhCCCGEaAL84jHWZ599xowZM3j77bfp168fr7zyCiNHjmTv3r3ExMQ0dnhCCHHeO9N0CRXTIaSnHWD3b1Fn7bzi/OAXyc6//vUvJk+ezK233grA22+/zbfffst7773H3/72t0aOTgghzl+1nS6hrtMhnInNdn6PIHy+O+eTHbvdztatW3n00Ue96zQaDcOHD2fjxuontLfZbNhsNu/PRUVFABQXF/s0ttLSUu/36/fu5ejxTJ+Wn5l5jMPA2rQD7D5F7NuPHwNgS8ZhLA6Hz8s/k1Od3xdln05F+Y6c7GrP76vyzxR/Xe+/r+5Pdec/W/d+bdoB9todVc7vy/LPFH9d7r+v78/JMUTAWbv3FeXX529ATco/kw3Hj6EC16Wk0CLi1DU2+fm5HD54kFZt2hISGlavOE/2e34uSw4e5Lfjmdg4u/cefHf/6/q+rMn5G/JvwqHiIu/3paWlPv+crShPVdXT76ie444ePaoC6oYNGyqtf+ihh9S+fftWe8ysWbNUQBZZZJFFFllk8YMlIyPjtLnCOV+zUxePPvooM2bM8P7sdrvJz88nMjISRVEaMbKGVVxcTFJSEhkZGYSEhDR2OA1KrtV/nU/XK9fqv86n623Ia1VVlZKSEhISEk673zmf7ERFRaHVasnKyqq0Pisri7hTzN1iNBoxGo2V1oWFhTVUiE1OSEiI3/9yVZBr9V/n0/XKtfqv8+l6G+paQ0NDz7jPOd/13GAw0KtXL1auXOld53a7WblyJf3792/EyIQQQgjRFJzzNTsAM2bM4Oabb6Z379707duXV155hbKyMm/vLCGEEEKcv/wi2bn22mvJyclh5syZZGZm0r17d5YtW0ZsbGxjh9akGI1GZs2aVeURnj+Sa/Vf59P1yrX6r/PpepvCtSqqeqb+WkIIIYQQ565zvs2OEEIIIcTpSLIjhBBCCL8myY4QQggh/JokO0IIIYTwa5LsnEPmzJlDnz59CA4OJiYmhiuuuIK9eyvP6Dt06FAURam03H333ZX2SU9P59JLLyUgIICYmBgeeughnE5npX1Wr15Nz549MRqNtG7dmvnz5zf05VUxe/bsKtfSvn1773ar1cqUKVOIjIwkKCiICRMmVBlc8ly51hYtWlS5VkVRmDJlCnBuv65r1qxh3LhxJCQkoCgKixYtqrRdVVVmzpxJfHw8ZrOZ4cOHs2/fvkr75OfnM2nSJEJCQggLC+P222+vNPccwI4dOxg0aBAmk4mkpCReeOGFKrF88cUXtG/fHpPJRJcuXVi6dOlZvV6Hw8EjjzxCly5dCAwMJCEhgZtuuoljx45VKqO698Nzzz3X5K73TK/tLbfcUuU6Ro36//buPaap+/0D+LtcWkDkJkoBAcELU7moKBWdmAkT0E02zXRqvEyHTnRz0SnDacjcRRSHyQhj/qFg5uJt8xZlLlwdQsVJWhRBIhVkKheDVmSogH1+f/jjxDNu46tW2j2vhIR+ztMPn4enPefJaU8bLooxlNr2lGtnz1+JRIKEhAQhxlDq+m+ONfrc/yYnJ2PIkCGwsLCAQqHAhQsXep/UC/mCKqYXYWFhlJqaSiUlJaRWq2nGjBnk7u5OTU1NQszUqVMpKiqKampqhJ/79+8L29va2sjHx4dCQ0NJpVJReno6OTo6UmxsrBBz/fp1srKyonXr1lFpaSklJSWRqakpnTlzRq/5xsXF0ejRo0W53LlzR9j+0UcfkZubG2VlZdHFixdp4sSJNGnSJIPMtb6+XpRnRkYGAaCcnBwiMuy6pqen0xdffEFHjx4lAHTs2DHR9vj4eLK1taXjx49TcXExzZo1izw9Penhw4dCTHh4OPn7+9P58+cpLy+Phg0bRvPnzxe2379/n5ycnGjhwoVUUlJCBw4cIEtLS9q9e7cQk5+fT6amprRjxw4qLS2lzZs3k7m5OV2+fFlv+Wq1WgoNDaVDhw7R1atXSalUUmBgIAUEBIjm8PDwoK1bt4rq/ezzvK/k21NtlyxZQuHh4aI87t69K4oxlNr2lOuzOdbU1NDevXtJIpGQRqMRYgylrv/mWKOv/e/BgwdJKpXS3r176cqVKxQVFUV2dnZUV1fXq5y42TFg9fX1BIDOnj0rjE2dOpXWrl3b5X3S09PJxMSEamtrhbGUlBSysbGhx48fExHRxo0bafTo0aL7zZs3j8LCwl5sAj2Ii4sjf3//TrdptVoyNzenI0eOCGNlZWUEgJRKJREZVq7/tHbtWho6dCjpdDoiMp66/vMgodPpSC6XU0JCgjCm1WpJJpPRgQMHiIiotLSUANCff/4pxPz2228kkUjo1q1bRET0ww8/kL29vZArEVFMTAx5e3sLt+fOnUszZ84UrUehUNDKlStfaI7P6uyg+E8XLlwgAHTjxg1hzMPDg3bt2tXlffpivl01O5GRkV3ex1Br+2/qGhkZSdOmTRONGWJdiToea/S5/w0MDKTVq1cLt588eUIuLi60bdu2XuXAL2MZsPv37wMAHBwcROM///wzHB0d4ePjg9jYWDQ3NwvblEolfH19RR+4GBYWhsbGRly5ckWICQ0NFc0ZFhYGpVL5slLp0rVr1+Di4gIvLy8sXLgQ1dXVAICioiK0traK1vnaa6/B3d1dWKeh5dqupaUF+/fvx7Jly0RfTGtMdW1XWVmJ2tpa0bpsbW2hUChEdbSzs8P48eOFmNDQUJiYmKCwsFCICQ4OhlQqFWLCwsJQXl6Oe/fuCTF9LX/g6fNYIpF0+H6++Ph4DBgwAGPHjkVCQoLo9L8h5Zubm4tBgwbB29sbq1atQkNDg7DNWGtbV1eH06dPY/ny5R22GWJd/3ms0df+t6WlBUVFRaIYExMThIaG9jpfo/gE5f8inU6HTz/9FJMnT4aPj48wvmDBAnh4eMDFxQWXLl1CTEwMysvLcfToUQBAbW1th0+Wbr9dW1vbbUxjYyMePnwIS0vLl5maQKFQIC0tDd7e3qipqcGXX36JKVOmoKSkBLW1tZBKpR0OEE5OTj3m0b6tuxh95/qs48ePQ6vVYunSpcKYMdX1We1r62xdz6570KBBou1mZmZwcHAQxXh6enaYo32bvb19l/m3z/EqPHr0CDExMZg/f77oCxI/+eQTjBs3Dg4ODigoKEBsbCxqamqQmJgIwHDyDQ8Px+zZs+Hp6QmNRoNNmzYhIiICSqUSpqamRlvbffv2oX///pg9e7Zo3BDr2tmxRl/733v37uHJkyedxly9erVXeXCzY6BWr16NkpISnDt3TjS+YsUK4XdfX184OzsjJCQEGo0GQ4cO1fcyn0tERITwu5+fHxQKBTw8PHD48OFXcmDWlz179iAiIgIuLi7CmDHVlT3V2tqKuXPngoiQkpIi2rZu3Trhdz8/P0ilUqxcuRLbtm0zqK8XeP/994XffX194efnh6FDhyI3NxchISGvcGUv1969e7Fw4UJYWFiIxg2xrl0dawwNv4xlgNasWYNTp04hJycHgwcP7jZWoVAAACoqKgAAcrm8wzvm22/L5fJuY2xsbF5pk2FnZ4cRI0agoqICcrkcLS0t0Gq1opi6uroe82jf1l3Mq8r1xo0byMzMxIcffthtnLHUtX1tna3r2XXX19eLtre1teHu3bsvpNbt2/WpvdG5ceMGMjIyRGd1OqNQKNDW1oaqqioAhpdvOy8vLzg6Oooet8ZW27y8PJSXl/f4HAb6fl27Otboa//r6OgIU1PTF5IvNzsGhIiwZs0aHDt2DNnZ2R1Od3ZGrVYDAJydnQEAQUFBuHz5smgH076zHTVqlBCTlZUlmicjIwNBQUEvKJP/TVNTEzQaDZydnREQEABzc3PROsvLy1FdXS2s0xBzTU1NxaBBgzBz5sxu44ylrp6enpDL5aJ1NTY2orCwUFRHrVaLoqIiISY7Oxs6nU5o+oKCgvDHH3+gtbVViMnIyIC3tzfs7e2FmL6Qf3ujc+3aNWRmZmLAgAE93ketVsPExER4yceQ8n3WzZs30dDQIHrcGlNtgadnZgMCAuDv799jbF+ta0/HGn3tf6VSKQICAkQxOp0OWVlZvc+3V29nZq/UqlWryNbWlnJzc0WXLjY3NxMRUUVFBW3dupUuXrxIlZWVdOLECfLy8qLg4GBhjvbLAadPn05qtZrOnDlDAwcO7PRywA0bNlBZWRklJye/ksux169fT7m5uVRZWUn5+fkUGhpKjo6OVF9fT0RPL310d3en7OxsunjxIgUFBVFQUJBB5kr09CoDd3d3iomJEY0bel0fPHhAKpWKVCoVAaDExERSqVTC1Ufx8fFkZ2dHJ06coEuXLlFkZGSnl56PHTuWCgsL6dy5czR8+HDR5clarZacnJxo0aJFVFJSQgcPHiQrK6sOl+yamZnRzp07qaysjOLi4l7Kpefd5dvS0kKzZs2iwYMHk1qtFj2P269QKSgooF27dpFarSaNRkP79++ngQMH0uLFi/tcvt3l+uDBA/rss89IqVRSZWUlZWZm0rhx42j48OH06NEjYQ5DqW1Pj2Oip5eOW1lZUUpKSof7G1JdezrWEOlv/3vw4EGSyWSUlpZGpaWltGLFCrKzsxNd5fVvcLNjQAB0+pOamkpERNXV1RQcHEwODg4kk8lo2LBhtGHDBtHnsRARVVVVUUREBFlaWpKjoyOtX7+eWltbRTE5OTk0ZswYkkql5OXlJfwNfZo3bx45OzuTVColV1dXmjdvHlVUVAjbHz58SNHR0WRvb09WVlb07rvvUk1NjWgOQ8mViOj3338nAFReXi4aN/S65uTkdPq4XbJkCRE9vfx8y5Yt5OTkRDKZjEJCQjr8DxoaGmj+/PlkbW1NNjY29MEHH9CDBw9EMcXFxfT666+TTCYjV1dXio+P77CWw4cP04gRI0gqldLo0aPp9OnTes23srKyy+dx+2cqFRUVkUKhIFtbW7KwsKCRI0fSt99+K2oQ+kq+3eXa3NxM06dPp4EDB5K5uTl5eHhQVFRUh4OUodS2p8cxEdHu3bvJ0tKStFpth/sbUl17OtYQ6Xf/m5SURO7u7iSVSikwMJDOnz/f65wk/58YY4wxxphR4vfsMMYYY8yocbPDGGOMMaPGzQ5jjDHGjBo3O4wxxhgzatzsMMYYY8yocbPDGGOMMaPGzQ5jjDHGjBo3O4yx/wSdToeEhAThqzYYY/8d3OwwxoxGWloa7OzsOt32zTff4OzZs/D19e1xnqqqKkgkEm6MGDMS3OwwxvqMO3fuYNWqVXB3d4dMJoNcLkdYWBjy8/Ofa968vDycOnUKhw4dgqmpaY/xbm5uqKmpgY+Pz3P9XcZY32D2qhfAGGPt5syZg5aWFuzbtw9eXl6oq6tDVlYWGhoanmveKVOmoLCw8F/FtrS0QCqVQi6XP9ffZIz1HXxmhzHWJ2i1WuTl5WH79u1444034OHhgcDAQMTGxmLWrFkAgMTERPj6+qJfv35wc3NDdHQ0mpqaupxTo9EgMjISTk5OsLa2xoQJE5CZmSmKGTJkCL766issXrwYNjY2WLFiRacvY509exaBgYGQyWRwdnbG559/jra2tpfyv2CMvVjc7DDG+gRra2tYW1vj+PHjePz4cacxJiYm+P7773HlyhXs27cP2dnZ2LhxY5dzNjU1YcaMGcjKyoJKpcLMmTPx9ttvo7q6WhS3c+dO+Pv7Q6VSYcuWLR3muXXrFmbMmIEJEyaguLgYKSkp2LNnD77++uvnS5oxph+9/p50xhh7SX755Reyt7cnCwsLmjRpEsXGxlJxcXGX8UeOHKEBAwYIt1NTU8nW1rbbv+Hj40NJSUnCbQ8PD3rnnXdEMZWVlQSAVCoVERFt2rSJvL29SafTCTHJyclkbW1NT5486UWGjLFXgc/sMMb6jDlz5uD27ds4efIkwsPDkZubi3HjxiEtLQ0AkJmZiZCQELi6uqJ///5YtGgRGhoa0Nzc3Ol8jY2NiI6Ohru7O8zMzCCRSFBSUtLhzM748eO7XVdZWRmCgoIgkUiEscmTJ6OpqQk3b958vqQZYy8dNzuMsT7FwsICb775JrZs2YKCggIsXboUcXFxqKqqwltvvQU/Pz/8+uuvKCoqQnJyMoCnbyruzPr161FQUICTJ0+isbERRITAwMAO8f369XvpeTHGXh1udhhjfdqoUaPw999/o6ioCDqdDt999x0mTpyIESNG4Pbt293eV6lU4r333sOYMWNgZWUFrVaL0tLSXq9h5MiRUCqVICJhLD8/H/3798fgwYN7PR9jTL+42WGM9QkNDQ2YNm0a9u/fj0uXLqGyshJHjhzBjh07EBkZiWHDhqG1tRVJSUm4fv06fvrpJ/z444/dzunt7Y1Dhw5BpVJBrVZjwYIFMDHp/W4vOjoaf/31Fz7++GNcvXoVJ06cQFxcHNatW/c/zccY0y/+nB3GWJ9gbW0NhUKBXbt2QaPRoLW1FW5uboiKisKmTZtgaWmJxMREbN++HbGxsQgODsa2bduwePHiLudMTEzEsmXLMHnyZDg6OiImJqbL9/d0x9XVFenp6diwYQP8/f3h4OCA5cuXY/Pmzc+TMmNMTyT07HlZxhhjjDEjw+dfGWOMMWbUuNlhjDHGmFHjZocxxhhjRo2bHcYYY4wZNW52GGOMMWbUuNlhjDHGmFHjZocxxhhjRo2bHcYYY4wZNW52GGOMMWbUuNlhjDHGmFHjZocxxhhjRu3/AN8dkVl4a3X2AAAAAElFTkSuQmCC",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Não rejeitamos a hipótese nula\n"
+ ]
+ }
+ ],
+ "source": [
+ "# Amostras\n",
+ "happy = dfNovo[dfNovo['Satisfaction'] == 1]['MonthlyIncome'].dropna()\n",
+ "unhappy = dfNovo[dfNovo['Satisfaction'] == 0]['MonthlyIncome'].dropna()\n",
+ "\n",
+ "\n",
+ "# Teste t\n",
+ "estatistica_t, valor_p = ttest_ind(happy, unhappy, equal_var=False)\n",
+ "\n",
+ "print(\"Teste T de Salário\")\n",
+ "print(f\"Estatística T : {estatistica_t}\")\n",
+ "print(f\"Valor P: {valor_p}\")\n",
+ "\n",
+ "\n",
+ "#grafico\n",
+ "sns.histplot(happy, color= 'lightblue', label ='Satisfeitos', kde=True)\n",
+ "sns.histplot(unhappy, color = 'red', label = 'Insatisfeitos', kde=True)\n",
+ "\n",
+ "\n",
+ "#rotulos\n",
+ "plt.legend()\n",
+ "plt.title(\"Satisfação dos Colaboradores por Salário\")\n",
+ "plt.xlabel(\"Salário\")\n",
+ "plt.ylabel(\"Contagem\")\n",
+ "plt.show()\n",
+ "\n",
+ "\n",
+ "#interpretação\n",
+ "if valor_p < 0.05:\n",
+ " print(\"Rejeitamos a hipótese nula\")\n",
+ "else:\n",
+ " print(\"Não rejeitamos a hipótese nula\")"
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 3",
+ "language": "python",
+ "name": "python3"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.12.5"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 2
+}
diff --git a/exercicios/para-casa/HR_Analytics.csv b/exercicios/para-casa/HR_Analytics.csv
new file mode 100644
index 0000000..e89a588
--- /dev/null
+++ b/exercicios/para-casa/HR_Analytics.csv
@@ -0,0 +1,1481 @@
+EmpID,Age,AgeGroup,Attrition,BusinessTravel,DailyRate,Department,DistanceFromHome,Education,EducationField,EmployeeCount,EmployeeNumber,EnvironmentSatisfaction,Gender,HourlyRate,JobInvolvement,JobLevel,JobRole,JobSatisfaction,MaritalStatus,MonthlyIncome,SalarySlab,MonthlyRate,NumCompaniesWorked,Over18,OverTime,PercentSalaryHike,PerformanceRating,RelationshipSatisfaction,StandardHours,StockOptionLevel,TotalWorkingYears,TrainingTimesLastYear,WorkLifeBalance,YearsAtCompany,YearsInCurrentRole,YearsSinceLastPromotion,YearsWithCurrManager
+RM297,18,18-25,Yes,Travel_Rarely,230,Research & Development,3,3,Life Sciences,1,405,3,Male,54,3,1,Laboratory Technician,3,Single,1420,Upto 5k,25233,1,Y,No,13,3,3,80,0,0,2,3,0,0,0,0
+RM302,18,18-25,No,Travel_Rarely,812,Sales,10,3,Medical,1,411,4,Female,69,2,1,Sales Representative,3,Single,1200,Upto 5k,9724,1,Y,No,12,3,1,80,0,0,2,3,0,0,0,0
+RM458,18,18-25,Yes,Travel_Frequently,1306,Sales,5,3,Marketing,1,614,2,Male,69,3,1,Sales Representative,2,Single,1878,Upto 5k,8059,1,Y,Yes,14,3,4,80,0,0,3,3,0,0,0,0
+RM728,18,18-25,No,Non-Travel,287,Research & Development,5,2,Life Sciences,1,1012,2,Male,73,3,1,Research Scientist,4,Single,1051,Upto 5k,13493,1,Y,No,15,3,4,80,0,0,2,3,0,0,0,0
+RM829,18,18-25,Yes,Non-Travel,247,Research & Development,8,1,Medical,1,1156,3,Male,80,3,1,Laboratory Technician,3,Single,1904,Upto 5k,13556,1,Y,No,12,3,4,80,0,0,0,3,0,0,0,0
+RM973,18,18-25,No,Non-Travel,1124,Research & Development,1,3,Life Sciences,1,1368,4,Female,97,3,1,Laboratory Technician,4,Single,1611,Upto 5k,19305,1,Y,No,15,3,3,80,0,0,5,4,0,0,0,0
+RM1154,18,18-25,Yes,Travel_Frequently,544,Sales,3,2,Medical,1,1624,2,Female,70,3,1,Sales Representative,4,Single,1569,Upto 5k,18420,1,Y,Yes,12,3,3,80,0,0,2,4,0,0,0,0
+RM1312,18,18-25,No,Non-Travel,1431,Research & Development,14,3,Medical,1,1839,2,Female,33,3,1,Research Scientist,3,Single,1514,Upto 5k,8018,1,Y,No,16,3,3,80,0,0,4,1,0,0,0,0
+RM128,19,18-25,Yes,Travel_Rarely,528,Sales,22,1,Marketing,1,167,4,Male,50,3,1,Sales Representative,3,Single,1675,Upto 5k,26820,1,Y,Yes,19,3,4,80,0,0,2,2,0,0,0,0
+RM150,19,18-25,No,Travel_Rarely,1181,Research & Development,3,1,Medical,1,201,2,Female,79,3,1,Laboratory Technician,2,Single,1483,Upto 5k,16102,1,Y,No,14,3,4,80,0,1,3,3,1,0,0,0
+RM172,19,18-25,Yes,Travel_Frequently,602,Sales,1,1,Technical Degree,1,235,3,Female,100,1,1,Sales Representative,1,Single,2325,Upto 5k,20989,0,Y,No,21,4,1,80,0,1,5,4,0,0,0,0
+RM178,19,18-25,Yes,Travel_Rarely,303,Research & Development,2,3,Life Sciences,1,243,2,Male,47,2,1,Laboratory Technician,4,Single,1102,Upto 5k,9241,1,Y,No,22,4,3,80,0,1,3,2,1,0,1,0
+RM423,19,18-25,Yes,Travel_Rarely,489,Human Resources,2,2,Technical Degree,1,566,1,Male,52,2,1,Human Resources,4,Single,2564,Upto 5k,18437,1,Y,No,12,3,3,80,0,1,3,4,1,0,0,0
+RM689,19,18-25,Yes,Travel_Rarely,419,Sales,21,3,Other,1,959,4,Male,37,2,1,Sales Representative,2,Single,2121,Upto 5k,9947,1,Y,Yes,13,3,2,80,0,1,3,4,1,0,0,0
+RM854,19,18-25,No,Travel_Rarely,645,Research & Development,9,2,Life Sciences,1,1193,3,Male,54,3,1,Research Scientist,1,Single,2552,Upto 5k,7172,1,Y,No,25,4,3,80,0,1,4,3,1,1,0,0
+RM893,19,18-25,Yes,Non-Travel,504,Research & Development,10,3,Medical,1,1248,1,Female,96,2,1,Research Scientist,2,Single,1859,Upto 5k,6148,1,Y,Yes,25,4,2,80,0,1,2,4,1,1,0,0
+RM910,19,18-25,No,Travel_Rarely,265,Research & Development,25,3,Life Sciences,1,1269,2,Female,57,4,1,Research Scientist,4,Single,2994,Upto 5k,21221,1,Y,Yes,12,3,4,80,0,1,2,3,1,0,0,1
+RM103,20,18-25,Yes,Travel_Frequently,871,Research & Development,6,3,Life Sciences,1,137,4,Female,66,2,1,Laboratory Technician,4,Single,2926,Upto 5k,19783,1,Y,Yes,18,3,2,80,0,1,5,3,1,0,1,0
+RM488,20,18-25,No,Travel_Rarely,959,Research & Development,1,3,Life Sciences,1,657,4,Female,83,2,1,Research Scientist,2,Single,2836,Upto 5k,11757,1,Y,No,13,3,4,80,0,1,0,4,1,0,0,0
+RM514,20,18-25,Yes,Travel_Rarely,1362,Research & Development,10,1,Medical,1,701,4,Male,32,3,1,Research Scientist,3,Single,1009,Upto 5k,26999,1,Y,Yes,11,3,4,80,0,1,5,3,1,0,1,1
+RM663,20,18-25,Yes,Travel_Rarely,500,Sales,2,3,Medical,1,922,3,Female,49,2,1,Sales Representative,3,Single,2044,Upto 5k,22052,1,Y,No,13,3,4,80,0,2,3,2,2,2,0,2
+RM690,20,18-25,Yes,Travel_Rarely,129,Research & Development,4,3,Technical Degree,1,960,1,Male,84,3,1,Laboratory Technician,1,Single,2973,Upto 5k,13008,1,Y,No,19,3,2,80,0,1,2,3,1,0,0,0
+RM732,20,18-25,Yes,Travel_Rarely,1097,Research & Development,11,3,Medical,1,1016,4,Female,98,2,1,Research Scientist,1,Single,2600,Upto 5k,18275,1,Y,Yes,15,3,1,80,0,1,2,3,1,0,0,0
+RM777,20,18-25,Yes,Travel_Frequently,769,Sales,9,3,Marketing,1,1077,4,Female,54,3,1,Sales Representative,4,Single,2323,Upto 5k,17205,1,Y,Yes,14,3,2,80,0,2,3,3,2,2,0,2
+RM857,20,18-25,No,Travel_Rarely,805,Research & Development,3,3,Life Sciences,1,1198,1,Male,87,2,1,Laboratory Technician,3,Single,3033,Upto 5k,12828,1,Y,No,12,3,1,80,0,2,2,2,2,2,1,2
+RM877,20,18-25,No,Travel_Rarely,654,Sales,21,3,Marketing,1,1226,3,Male,43,4,1,Sales Representative,4,Single,2678,Upto 5k,5050,1,Y,No,17,3,4,80,0,2,2,3,2,1,2,2
+RM1179,20,18-25,No,Travel_Rarely,1141,Sales,2,3,Medical,1,1657,3,Female,31,3,1,Sales Representative,3,Single,2783,Upto 5k,13251,1,Y,No,19,3,1,80,0,2,3,3,2,2,2,2
+RM1198,20,18-25,No,Travel_Rarely,727,Sales,9,1,Life Sciences,1,1680,4,Male,54,3,1,Sales Representative,1,Single,2728,Upto 5k,21082,1,Y,No,11,3,1,80,0,2,3,3,2,2,0,2
+RM024,21,18-25,No,Travel_Rarely,391,Research & Development,15,2,Life Sciences,1,30,3,Male,96,3,1,Research Scientist,4,Single,1232,Upto 5k,19281,1,Y,No,14,3,4,80,0,0,6,3,0,0,0,
+RM275,21,18-25,No,Travel_Rarely,996,Research & Development,3,2,Medical,1,379,4,Male,100,2,1,Research Scientist,3,Single,3230,Upto 5k,10531,1,Y,No,17,3,1,80,0,3,4,4,3,2,1,0
+RM358,21,18-25,Yes,Travel_Frequently,756,Sales,1,1,Technical Degree,1,478,1,Female,99,2,1,Sales Representative,2,Single,2174,Upto 5k,9150,1,Y,Yes,11,3,3,80,0,3,3,3,3,2,1,2
+RM363,21,18-25,No,Non-Travel,895,Sales,9,2,Medical,1,484,1,Male,39,3,1,Sales Representative,4,Single,2610,Upto 5k,2851,1,Y,No,24,4,3,80,0,3,3,2,3,2,2,
+RM371,21,18-25,Yes,Travel_Rarely,156,Sales,12,3,Life Sciences,1,494,3,Female,90,4,1,Sales Representative,2,Single,2716,Upto 5k,25422,1,Y,No,15,3,4,80,0,1,0,3,1,0,0,0
+RM497,21,18-25,No,Travel_Rarely,1343,Sales,22,1,Technical Degree,1,669,3,Male,49,3,1,Sales Representative,3,Single,3447,Upto 5k,24444,1,Y,No,11,3,3,80,0,3,2,3,3,2,1,2
+RM664,21,18-25,Yes,Travel_Rarely,1427,Research & Development,18,1,Other,1,923,4,Female,65,3,1,Research Scientist,4,Single,2693,Upto 5k,8870,1,Y,No,19,3,1,80,0,1,3,2,1,0,0,0
+RM778,21,18-25,Yes,Travel_Rarely,1334,Research & Development,10,3,Life Sciences,1,1079,3,Female,36,2,1,Laboratory Technician,1,Single,1416,Upto 5k,17258,1,Y,No,13,3,1,80,0,1,6,2,1,0,1,0
+RM816,21,18-25,No,Travel_Rarely,984,Research & Development,1,1,Technical Degree,1,1131,4,Female,70,2,1,Research Scientist,2,Single,2070,Upto 5k,25326,1,Y,Yes,11,3,3,80,0,2,6,4,2,2,2,2
+RM916,21,18-25,Yes,Travel_Frequently,251,Research & Development,10,2,Life Sciences,1,1279,1,Female,45,2,1,Laboratory Technician,3,Single,2625,Upto 5k,25308,1,Y,No,20,4,3,80,0,2,2,1,2,2,2,2
+RM1153,21,18-25,No,Travel_Rarely,546,Research & Development,5,1,Medical,1,1623,3,Male,97,3,1,Research Scientist,4,Single,3117,Upto 5k,26009,1,Y,No,18,3,3,80,0,3,2,3,2,2,2,2
+RM1272,21,18-25,Yes,Travel_Rarely,337,Sales,7,1,Marketing,1,1780,2,Male,31,3,1,Sales Representative,2,Single,2679,Upto 5k,4567,1,Y,No,13,3,2,80,0,1,3,3,1,0,1,0
+RM1437,21,18-25,No,Travel_Rarely,501,Sales,5,1,Medical,1,2021,3,Male,58,3,1,Sales Representative,1,Single,2380,Upto 5k,25479,1,Y,Yes,11,3,4,80,0,2,6,3,2,2,1,2
+RM018,22,18-25,No,Non-Travel,1123,Research & Development,16,2,Medical,1,22,4,Male,96,4,1,Laboratory Technician,4,Divorced,2935,Upto 5k,7324,1,Y,Yes,13,3,2,80,2,1,2,2,1,0,0,0
+RM110,22,18-25,No,Travel_Rarely,534,Research & Development,15,3,Medical,1,144,2,Female,59,3,1,Laboratory Technician,4,Single,2871,Upto 5k,23785,1,Y,No,15,3,3,80,0,1,5,3,0,0,0,0
+RM129,22,18-25,No,Travel_Rarely,594,Research & Development,2,1,Technical Degree,1,169,3,Male,100,3,1,Laboratory Technician,4,Married,2523,Upto 5k,19299,0,Y,No,14,3,3,80,1,3,2,3,2,1,2,1
+RM161,22,18-25,No,Travel_Rarely,1256,Research & Development,19,1,Medical,1,217,3,Male,80,3,1,Research Scientist,4,Married,2323,Upto 5k,11992,1,Y,No,24,4,1,80,2,2,6,3,2,2,2,2
+RM207,22,18-25,No,Travel_Rarely,1136,Research & Development,5,3,Life Sciences,1,284,4,Male,60,4,1,Research Scientist,2,Divorced,2328,Upto 5k,12392,1,Y,Yes,16,3,1,80,1,4,2,2,4,2,2,
+RM384,22,18-25,No,Travel_Rarely,253,Research & Development,11,3,Medical,1,511,1,Female,43,3,1,Research Scientist,2,Married,2244,Upto 5k,24440,1,Y,No,13,3,4,80,1,2,1,3,2,1,1,2
+RM444,22,18-25,Yes,Travel_Frequently,1368,Research & Development,4,1,Technical Degree,1,593,3,Male,99,2,1,Laboratory Technician,3,Single,3894,Upto 5k,9129,5,Y,No,16,3,3,80,0,4,3,3,2,2,1,2
+RM499,22,18-25,No,Travel_Rarely,604,Research & Development,6,1,Medical,1,675,1,Male,69,3,1,Research Scientist,3,Married,2773,Upto 5k,12145,0,Y,No,20,4,4,80,0,3,3,3,2,2,2,2
+RM631,22,18-25,No,Travel_Rarely,1230,Research & Development,1,2,Life Sciences,1,872,4,Male,33,2,2,Manufacturing Director,4,Married,4775,Upto 5k,19146,6,Y,No,22,4,1,80,2,4,2,1,2,2,2,2
+RM667,22,18-25,Yes,Travel_Rarely,617,Research & Development,3,1,Life Sciences,1,926,2,Female,34,3,2,Manufacturing Director,3,Married,4171,Upto 5k,10022,0,Y,Yes,19,3,1,80,1,4,3,4,3,2,0,2
+RM735,22,18-25,No,Travel_Rarely,217,Research & Development,8,1,Life Sciences,1,1019,2,Male,94,1,1,Laboratory Technician,1,Married,2451,Upto 5k,6881,1,Y,No,15,3,1,80,1,4,3,2,4,3,1,1
+RM861,22,18-25,Yes,Travel_Frequently,1256,Research & Development,3,4,Life Sciences,1,1203,3,Male,48,2,1,Research Scientist,4,Married,2853,Upto 5k,4223,0,Y,Yes,11,3,2,80,1,1,5,3,0,0,0,0
+RM1138,22,18-25,No,Non-Travel,457,Research & Development,26,2,Other,1,1605,2,Female,85,2,1,Research Scientist,3,Married,2814,Upto 5k,10293,1,Y,Yes,14,3,2,80,0,4,2,2,4,2,1,3
+RM1274,22,18-25,Yes,Travel_Rarely,1294,Research & Development,8,1,Medical,1,1783,3,Female,79,3,1,Laboratory Technician,1,Married,2398,Upto 5k,15999,1,Y,Yes,17,3,3,80,0,1,6,3,1,0,0,0
+RM1340,22,18-25,Yes,Travel_Rarely,391,Research & Development,7,1,Life Sciences,1,1878,4,Male,75,3,1,Research Scientist,2,Single,2472,Upto 5k,26092,1,Y,Yes,23,4,1,80,0,1,2,3,1,0,0,0
+RM1424,22,18-25,No,Travel_Rarely,581,Research & Development,1,2,Life Sciences,1,2007,4,Male,63,3,1,Research Scientist,3,Single,3375,Upto 5k,17624,0,Y,No,12,3,4,80,0,4,2,4,3,2,1,2
+RM087,23,18-25,No,Travel_Rarely,541,Sales,2,1,Technical Degree,1,113,3,Male,62,3,1,Sales Representative,1,Divorced,2322,Upto 5k,9518,3,Y,No,13,3,3,80,1,3,3,3,0,0,0,0
+RM346,23,18-25,No,Travel_Rarely,1309,Research & Development,26,1,Life Sciences,1,465,3,Male,83,3,1,Research Scientist,4,Divorced,2904,Upto 5k,16092,1,Y,No,12,3,3,80,2,4,2,2,4,2,0,2
+RM517,23,18-25,No,Travel_Rarely,885,Research & Development,4,3,Medical,1,705,1,Male,58,4,1,Research Scientist,1,Married,2819,Upto 5k,8544,2,Y,No,16,3,1,80,1,5,3,4,3,2,0,2
+RM551,23,18-25,No,Travel_Rarely,650,Research & Development,9,1,Medical,1,758,2,Male,37,3,1,Laboratory Technician,1,Married,2500,Upto 5k,4344,1,Y,No,14,3,4,80,1,5,2,4,4,3,0,2
+RM566,23,18-25,No,Travel_Rarely,310,Research & Development,10,1,Medical,1,784,1,Male,79,4,1,Research Scientist,3,Single,3505,Upto 5k,19630,1,Y,No,18,3,4,80,0,2,3,3,2,2,0,2
+RM586,23,18-25,Yes,Travel_Rarely,1243,Research & Development,6,3,Life Sciences,1,811,3,Male,63,4,1,Laboratory Technician,1,Married,1601,Upto 5k,3445,1,Y,Yes,21,4,3,80,2,1,2,3,0,0,0,0
+RM911,23,18-25,No,Travel_Rarely,373,Research & Development,1,2,Life Sciences,1,1270,4,Male,47,3,1,Research Scientist,3,Married,1223,Upto 5k,16901,1,Y,No,22,4,4,80,1,1,2,3,1,0,0,1
+RM1083,23,18-25,No,Travel_Rarely,507,Research & Development,20,1,Life Sciences,1,1533,1,Male,97,3,2,Laboratory Technician,3,Single,2272,Upto 5k,24812,0,Y,No,14,3,2,80,0,5,2,3,4,3,1,2
+RM1128,23,18-25,No,Travel_Rarely,977,Research & Development,10,3,Technical Degree,1,1592,4,Male,45,4,1,Research Scientist,3,Married,2073,Upto 5k,12826,2,Y,No,16,3,4,80,1,4,2,3,2,2,2,2
+RM1202,23,18-25,Yes,Travel_Rarely,1320,Research & Development,8,1,Medical,1,1684,4,Male,93,2,1,Laboratory Technician,3,Single,3989,Upto 5k,20586,1,Y,Yes,11,3,1,80,0,5,2,3,5,4,1,2
+RM1214,23,18-25,Yes,Travel_Rarely,427,Sales,7,3,Life Sciences,1,1702,3,Male,99,3,1,Sales Representative,4,Divorced,2275,Upto 5k,25103,1,Y,Yes,21,4,2,80,1,3,2,3,3,2,0,2
+RM1239,23,18-25,No,Travel_Rarely,160,Research & Development,4,1,Medical,1,1735,3,Female,51,3,1,Laboratory Technician,2,Single,3295,Upto 5k,12862,1,Y,No,13,3,3,80,0,3,3,1,3,2,1,2
+RM1409,23,18-25,No,Travel_Rarely,571,Research & Development,12,2,Other,1,1982,4,Male,78,3,1,Laboratory Technician,4,Single,2647,Upto 5k,13672,1,Y,No,13,3,3,80,0,5,6,4,5,2,1,4
+RM1439,23,18-25,Yes,Travel_Frequently,638,Sales,9,3,Marketing,1,2023,4,Male,33,3,1,Sales Representative,1,Married,1790,Upto 5k,26956,1,Y,No,19,3,1,80,1,1,3,2,1,0,1,0
+RM021,24,18-25,No,Non-Travel,673,Research & Development,11,2,Other,1,26,1,Female,96,4,2,Manufacturing Director,3,Divorced,4011,Upto 5k,8232,0,Y,No,18,3,4,80,1,5,5,2,4,2,1,3
+RM035,24,18-25,Yes,Travel_Rarely,813,Research & Development,1,3,Medical,1,45,2,Male,61,3,1,Research Scientist,4,Married,2293,Upto 5k,3020,2,Y,Yes,16,3,1,80,1,6,2,2,2,0,2,0
+RM097,24,18-25,No,Travel_Rarely,1353,Sales,3,2,Other,1,128,1,Female,33,3,2,Sales Executive,3,Married,4999,Upto 5k,17519,0,Y,No,21,4,1,80,1,4,2,2,3,2,0,2
+RM114,24,18-25,No,Travel_Rarely,1127,Research & Development,18,1,Life Sciences,1,150,2,Male,52,3,1,Laboratory Technician,3,Married,2774,Upto 5k,13257,0,Y,No,12,3,3,80,1,6,2,3,5,3,1,2
+RM381,24,18-25,No,Travel_Rarely,1371,Sales,10,4,Marketing,1,507,4,Female,77,3,2,Sales Executive,3,Divorced,4260,Upto 5k,5915,1,Y,Yes,12,3,4,80,1,5,2,4,5,2,0,3
+RM415,24,18-25,Yes,Travel_Rarely,1448,Sales,1,1,Technical Degree,1,554,1,Female,62,3,1,Sales Representative,2,Single,3202,Upto 5k,21972,1,Y,Yes,16,3,2,80,0,6,4,3,5,3,1,4
+RM471,24,18-25,No,Travel_Frequently,535,Sales,24,3,Medical,1,632,4,Male,38,3,1,Sales Representative,4,Married,2400,Upto 5k,5530,0,Y,No,13,3,3,80,2,3,3,3,2,2,2,1
+RM475,24,18-25,No,Travel_Rarely,691,Research & Development,23,3,Medical,1,639,2,Male,89,4,1,Research Scientist,4,Married,2725,Upto 5k,21630,1,Y,Yes,11,3,2,80,2,6,3,3,6,5,1,4
+RM477,24,18-25,No,Travel_Rarely,823,Research & Development,17,2,Other,1,643,4,Male,94,2,1,Laboratory Technician,2,Married,2127,Upto 5k,9100,1,Y,No,21,4,4,80,1,1,2,3,1,0,0,0
+RM480,24,18-25,Yes,Travel_Frequently,1287,Research & Development,7,3,Life Sciences,1,647,1,Female,55,3,1,Laboratory Technician,3,Married,2886,Upto 5k,14168,1,Y,Yes,16,3,4,80,1,6,4,3,6,3,1,2
+RM526,24,18-25,Yes,Travel_Rarely,693,Sales,3,2,Life Sciences,1,720,1,Female,65,3,2,Sales Executive,3,Single,4577,Upto 5k,24785,9,Y,No,14,3,1,80,0,4,3,3,2,2,2,0
+RM587,24,18-25,No,Non-Travel,1092,Research & Development,9,3,Life Sciences,1,812,3,Male,60,2,1,Laboratory Technician,2,Divorced,2694,Upto 5k,26551,1,Y,No,11,3,3,80,3,1,4,3,1,0,0,0
+RM641,24,18-25,No,Non-Travel,1269,Research & Development,4,1,Life Sciences,1,888,1,Male,46,2,1,Laboratory Technician,4,Married,3162,Upto 5k,10778,0,Y,No,17,3,4,80,0,6,2,2,5,2,3,4
+RM725,24,18-25,No,Travel_Rarely,1206,Research & Development,17,1,Medical,1,1009,4,Female,41,2,2,Manufacturing Director,3,Divorced,4377,Upto 5k,24117,1,Y,No,15,3,2,80,2,5,6,3,4,2,3,2
+RM842,24,18-25,No,Travel_Rarely,477,Research & Development,24,3,Medical,1,1173,4,Male,49,3,1,Laboratory Technician,2,Single,3597,Upto 5k,6409,8,Y,No,22,4,4,80,0,6,2,3,4,3,1,2
+RM872,24,18-25,Yes,Travel_Rarely,984,Research & Development,17,2,Life Sciences,1,1219,4,Female,97,3,1,Laboratory Technician,2,Married,2210,Upto 5k,3372,1,Y,No,13,3,1,80,1,1,3,1,1,0,0,0
+RM1026,24,18-25,No,Travel_Rarely,1476,Sales,4,1,Medical,1,1445,4,Female,42,3,2,Sales Executive,3,Married,4162,Upto 5k,15211,1,Y,Yes,12,3,3,80,2,5,3,3,5,4,0,3
+RM1061,24,18-25,Yes,Travel_Frequently,381,Research & Development,9,3,Medical,1,1494,2,Male,89,3,1,Laboratory Technician,1,Single,3172,Upto 5k,16998,2,Y,Yes,11,3,3,80,0,4,2,2,0,0,0,0
+RM1062,24,18-25,No,Non-Travel,830,Sales,13,2,Life Sciences,1,1495,4,Female,78,3,1,Sales Representative,2,Married,2033,Upto 5k,7103,1,Y,No,13,3,3,80,1,1,2,3,1,0,0,0
+RM1098,24,18-25,No,Travel_Rarely,350,Research & Development,21,2,Technical Degree,1,1551,3,Male,57,2,1,Laboratory Technician,1,Divorced,2296,Upto 5k,10036,0,Y,No,14,3,2,80,3,2,3,3,1,1,0,0
+RM1169,24,18-25,No,Travel_Frequently,567,Research & Development,2,1,Technical Degree,1,1646,1,Female,32,3,1,Research Scientist,4,Single,3760,Upto 5k,17218,1,Y,Yes,13,3,3,80,0,6,2,3,6,3,1,3
+RM1218,24,18-25,No,Travel_Rarely,581,Research & Development,9,3,Medical,1,1707,3,Male,62,4,1,Research Scientist,3,Married,4401,Upto 5k,17616,1,Y,No,16,3,4,80,1,5,1,3,5,3,0,4
+RM1223,24,18-25,Yes,Travel_Rarely,240,Human Resources,22,1,Human Resources,1,1714,4,Male,58,1,1,Human Resources,3,Married,1555,Upto 5k,11585,1,Y,No,11,3,3,80,1,1,2,3,1,0,0,0
+RM1231,24,18-25,No,Travel_Rarely,506,Research & Development,29,1,Medical,1,1725,2,Male,91,3,1,Laboratory Technician,1,Divorced,3907,Upto 5k,3622,1,Y,No,13,3,2,80,3,6,2,4,6,2,1,2
+RM1246,24,18-25,No,Travel_Frequently,897,Human Resources,10,3,Medical,1,1746,1,Male,59,3,1,Human Resources,4,Married,2145,Upto 5k,2097,0,Y,No,14,3,4,80,1,3,2,3,2,2,2,1
+RM1408,24,18-25,No,Travel_Rarely,771,Research & Development,1,2,Life Sciences,1,1981,2,Male,45,2,2,Healthcare Representative,3,Single,4617,Upto 5k,14120,1,Y,No,12,3,2,80,0,4,2,2,4,3,1,2
+RM108,25,18-25,Yes,Travel_Rarely,240,Sales,5,3,Marketing,1,142,3,Male,46,2,2,Sales Executive,3,Single,5744,5k-10k,26959,1,Y,Yes,11,3,4,80,0,6,1,3,6,4,0,3
+RM109,25,18-25,No,Travel_Rarely,1280,Research & Development,7,1,Medical,1,143,4,Male,64,2,1,Research Scientist,4,Married,2889,Upto 5k,26897,1,Y,No,11,3,3,80,2,2,2,3,2,2,2,1
+RM139,25,18-25,No,Travel_Rarely,959,Sales,28,3,Life Sciences,1,183,1,Male,41,2,2,Sales Executive,3,Married,8639,5k-10k,24835,2,Y,No,18,3,4,80,0,6,3,3,2,2,2,
+RM256,25,18-25,No,Travel_Rarely,685,Research & Development,1,3,Life Sciences,1,350,1,Female,62,3,2,Manufacturing Director,3,Married,4898,Upto 5k,7505,0,Y,No,12,3,4,80,2,5,3,3,4,2,1,
+RM268,25,18-25,No,Non-Travel,675,Research & Development,5,2,Life Sciences,1,369,2,Male,85,4,2,Healthcare Representative,1,Divorced,4000,Upto 5k,18384,1,Y,No,12,3,4,80,2,6,2,3,6,3,1,5
+RM398,25,18-25,No,Travel_Rarely,891,Sales,4,2,Life Sciences,1,527,2,Female,99,2,2,Sales Executive,4,Single,4487,Upto 5k,12090,1,Y,Yes,11,3,2,80,0,5,3,3,5,4,1,3
+RM406,25,18-25,Yes,Travel_Rarely,688,Research & Development,3,3,Medical,1,538,1,Male,91,3,1,Laboratory Technician,1,Married,4031,Upto 5k,9396,5,Y,No,13,3,3,80,1,6,5,3,2,2,0,
+RM479,25,18-25,No,Travel_Rarely,622,Sales,13,1,Medical,1,645,2,Male,40,3,1,Sales Representative,3,Married,2096,Upto 5k,26376,1,Y,No,11,3,3,80,0,7,1,3,7,4,0,6
+RM518,25,18-25,No,Travel_Rarely,810,Sales,8,3,Life Sciences,1,707,4,Male,57,4,2,Sales Executive,2,Married,4851,Upto 5k,15678,0,Y,No,22,4,3,80,1,4,4,3,3,2,1,2
+RM564,25,18-25,No,Travel_Rarely,883,Sales,26,1,Medical,1,781,3,Female,32,3,2,Sales Executive,4,Single,6180,5k-10k,22807,1,Y,No,23,4,2,80,0,6,5,2,6,5,1,4
+RM619,25,18-25,No,Travel_Rarely,180,Research & Development,2,1,Medical,1,854,1,Male,65,4,1,Research Scientist,1,Single,3424,Upto 5k,21632,7,Y,No,13,3,3,80,0,6,3,2,4,3,0,1
+RM635,25,18-25,No,Travel_Rarely,141,Sales,3,1,Other,1,879,3,Male,98,3,2,Sales Executive,1,Married,4194,Upto 5k,14363,1,Y,Yes,18,3,4,80,0,5,3,3,5,3,0,3
+RM639,25,18-25,No,Travel_Rarely,583,Sales,4,1,Marketing,1,885,3,Male,87,2,2,Sales Executive,1,Married,4256,Upto 5k,18154,1,Y,No,12,3,1,80,0,5,1,4,5,2,0,3
+RM684,25,18-25,Yes,Travel_Rarely,867,Sales,19,2,Marketing,1,952,3,Male,36,2,1,Sales Representative,2,Married,2413,Upto 5k,18798,1,Y,Yes,18,3,3,80,3,1,2,3,1,0,0,0
+RM797,25,18-25,Yes,Travel_Rarely,1219,Research & Development,4,1,Technical Degree,1,1106,4,Male,32,3,1,Laboratory Technician,4,Married,3691,Upto 5k,4605,1,Y,Yes,15,3,2,80,1,7,3,4,7,7,5,6
+RM886,25,18-25,No,Travel_Rarely,1356,Sales,10,4,Life Sciences,1,1240,3,Male,57,3,2,Sales Executive,4,Single,4950,Upto 5k,20623,0,Y,No,14,3,2,80,0,5,4,3,4,3,1,1
+RM912,25,18-25,Yes,Travel_Frequently,599,Sales,24,1,Life Sciences,1,1273,3,Male,73,1,1,Sales Representative,4,Single,1118,Upto 5k,8040,1,Y,Yes,14,3,4,80,0,1,4,3,1,0,1,0
+RM935,25,18-25,No,Travel_Rarely,266,Research & Development,1,3,Medical,1,1303,4,Female,40,3,1,Research Scientist,2,Single,2096,Upto 5k,18830,1,Y,No,18,3,4,80,0,2,3,2,2,2,2,1
+RM966,25,18-25,No,Travel_Rarely,882,Research & Development,19,1,Medical,1,1358,4,Male,67,3,1,Laboratory Technician,4,Married,3669,Upto 5k,9075,3,Y,No,11,3,3,80,3,7,6,2,3,2,1,2
+RM994,25,18-25,No,Travel_Rarely,1372,Sales,18,1,Life Sciences,1,1399,1,Male,93,4,2,Sales Executive,3,Married,6232,5k-10k,12477,2,Y,No,11,3,2,80,0,6,3,2,3,2,1,2
+RM1004,25,18-25,No,Travel_Rarely,949,Research & Development,1,3,Technical Degree,1,1415,1,Male,81,3,1,Laboratory Technician,4,Married,3229,Upto 5k,4910,4,Y,No,11,3,2,80,1,7,2,2,3,2,0,2
+RM1022,25,18-25,Yes,Travel_Rarely,383,Sales,9,2,Life Sciences,1,1439,1,Male,68,2,1,Sales Representative,1,Married,4400,Upto 5k,15182,3,Y,No,12,3,1,80,0,6,2,3,3,2,2,2
+RM1175,25,18-25,No,Travel_Frequently,772,Research & Development,2,1,Life Sciences,1,1653,4,Male,77,4,2,Manufacturing Director,3,Divorced,5206,5k-10k,4973,1,Y,No,17,3,3,80,2,7,6,3,7,7,0,7
+RM1412,25,18-25,No,Travel_Rarely,309,Human Resources,2,3,Human Resources,1,1987,3,Female,82,3,1,Human Resources,2,Married,2187,Upto 5k,19655,4,Y,No,14,3,3,80,0,6,3,3,2,0,1,2
+RM1414,25,18-25,No,Travel_Rarely,977,Research & Development,2,1,Other,1,1992,4,Male,57,3,1,Laboratory Technician,3,Divorced,3977,Upto 5k,7298,6,Y,Yes,19,3,3,80,1,7,2,2,2,2,0,2
+RM1434,25,18-25,No,Travel_Rarely,1382,Sales,8,2,Other,1,2018,1,Female,85,3,2,Sales Executive,3,Divorced,4907,Upto 5k,13684,0,Y,Yes,22,4,2,80,1,6,3,2,5,3,0,4
+RM043,26,26-35,Yes,Travel_Rarely,1357,Research & Development,25,3,Life Sciences,1,55,1,Male,48,1,1,Laboratory Technician,3,Single,2293,Upto 5k,10558,1,Y,No,12,3,3,80,0,1,2,2,1,0,0,1
+RM055,26,26-35,No,Travel_Rarely,1443,Sales,23,3,Marketing,1,72,3,Female,47,2,2,Sales Executive,4,Married,4157,Upto 5k,21436,7,Y,Yes,19,3,3,80,1,5,2,2,2,2,0,0
+RM126,26,26-35,No,Travel_Rarely,841,Research & Development,6,3,Other,1,164,3,Female,46,2,1,Research Scientist,2,Married,2368,Upto 5k,23300,1,Y,No,19,3,3,80,0,5,3,2,5,4,4,3
+RM135,26,26-35,No,Travel_Rarely,1355,Human Resources,25,1,Life Sciences,1,177,3,Female,61,3,1,Human Resources,3,Married,2942,Upto 5k,8916,1,Y,No,23,4,4,80,1,8,3,3,8,7,5,7
+RM279,26,26-35,No,Travel_Frequently,1479,Research & Development,1,3,Life Sciences,1,384,3,Female,84,3,2,Manufacturing Director,2,Divorced,6397,5k-10k,26767,1,Y,No,20,4,1,80,1,6,6,1,6,5,1,4
+RM285,26,26-35,No,Travel_Frequently,496,Research & Development,11,2,Medical,1,390,1,Male,60,3,2,Healthcare Representative,1,Married,4741,Upto 5k,22722,1,Y,Yes,13,3,3,80,1,5,3,3,5,3,3,3
+RM289,26,26-35,Yes,Travel_Rarely,1449,Research & Development,16,4,Medical,1,394,1,Male,45,3,1,Laboratory Technician,2,Divorced,2373,Upto 5k,14180,2,Y,Yes,13,3,4,80,1,5,2,3,3,2,0,2
+RM294,26,26-35,Yes,Travel_Rarely,950,Sales,4,4,Marketing,1,401,4,Male,48,2,2,Sales Executive,4,Single,5828,5k-10k,8450,1,Y,Yes,12,3,2,80,0,8,0,3,8,7,7,4
+RM356,26,26-35,No,Travel_Rarely,933,Sales,1,3,Life Sciences,1,476,3,Male,57,3,2,Sales Executive,3,Married,5296,5k-10k,20156,1,Y,No,17,3,2,80,1,8,3,3,8,7,7,7
+RM383,26,26-35,Yes,Travel_Frequently,575,Research & Development,3,1,Technical Degree,1,510,3,Male,73,3,1,Research Scientist,1,Single,3102,Upto 5k,6582,0,Y,No,22,4,3,80,0,7,2,3,6,4,0,4
+RM419,26,26-35,No,Travel_Rarely,1349,Research & Development,23,3,Life Sciences,1,560,1,Female,90,3,1,Research Scientist,4,Divorced,2886,Upto 5k,3032,1,Y,No,22,4,2,80,2,3,3,1,3,2,0,2
+RM454,26,26-35,Yes,Travel_Frequently,426,Human Resources,17,4,Life Sciences,1,608,2,Female,58,3,1,Human Resources,3,Divorced,2741,Upto 5k,22808,0,Y,Yes,11,3,2,80,1,8,2,2,7,7,1,0
+RM461,26,26-35,No,Travel_Rarely,775,Sales,29,2,Medical,1,618,1,Male,45,3,2,Sales Executive,3,Divorced,4306,Upto 5k,4267,5,Y,No,12,3,1,80,2,8,5,3,0,0,0,0
+RM464,26,26-35,Yes,Travel_Rarely,471,Research & Development,24,3,Technical Degree,1,622,3,Male,66,1,1,Laboratory Technician,4,Single,2340,Upto 5k,23213,1,Y,Yes,18,3,2,80,0,1,3,1,1,0,0,0
+RM476,26,26-35,No,Travel_Rarely,703,Sales,28,2,Marketing,1,641,1,Male,66,3,2,Sales Executive,2,Married,6272,5k-10k,7428,1,Y,No,20,4,4,80,2,6,5,4,5,3,1,4
+RM506,26,26-35,No,Travel_Rarely,991,Research & Development,6,3,Life Sciences,1,686,3,Female,71,3,1,Laboratory Technician,4,Married,2659,Upto 5k,17759,1,Y,Yes,13,3,3,80,1,3,2,3,3,2,0,2
+RM572,26,26-35,No,Travel_Frequently,575,Research & Development,1,2,Life Sciences,1,792,1,Female,71,1,1,Laboratory Technician,4,Divorced,4364,Upto 5k,5288,3,Y,No,14,3,1,80,1,5,2,3,2,2,2,0
+RM574,26,26-35,Yes,Travel_Rarely,1146,Sales,8,3,Technical Degree,1,796,4,Male,38,2,2,Sales Executive,1,Single,5326,5k-10k,3064,6,Y,No,17,3,3,80,0,6,2,2,4,3,1,2
+RM615,26,26-35,Yes,Travel_Frequently,887,Research & Development,5,2,Medical,1,848,3,Female,88,2,1,Research Scientist,3,Married,2366,Upto 5k,20898,1,Y,Yes,14,3,1,80,1,8,2,3,8,7,1,7
+RM686,26,26-35,No,Travel_Frequently,1283,Sales,1,3,Medical,1,956,3,Male,52,2,2,Sales Executive,1,Single,4294,Upto 5k,11148,1,Y,No,12,3,2,80,0,7,2,3,7,7,0,7
+RM734,26,26-35,No,Travel_Rarely,1066,Research & Development,2,2,Medical,1,1018,4,Male,32,4,2,Manufacturing Director,4,Married,5472,5k-10k,3334,1,Y,No,12,3,2,80,0,8,2,3,8,7,1,3
+RM749,26,26-35,Yes,Non-Travel,265,Sales,29,2,Medical,1,1037,2,Male,79,1,2,Sales Executive,1,Single,4969,Upto 5k,21813,8,Y,No,18,3,4,80,0,7,6,3,2,2,2,2
+RM763,26,26-35,Yes,Travel_Frequently,342,Research & Development,2,3,Life Sciences,1,1053,1,Male,57,3,1,Research Scientist,1,Married,2042,Upto 5k,15346,6,Y,Yes,14,3,2,80,1,6,2,3,3,2,1,2
+RM770,26,26-35,No,Travel_Frequently,921,Research & Development,1,1,Medical,1,1068,1,Female,66,2,1,Research Scientist,3,Divorced,2007,Upto 5k,25265,1,Y,No,13,3,3,80,2,5,5,3,5,3,1,3
+RM782,26,26-35,No,Travel_Rarely,192,Research & Development,1,2,Medical,1,1083,1,Male,59,2,1,Laboratory Technician,1,Married,3955,Upto 5k,11141,1,Y,No,16,3,1,80,2,6,2,3,5,3,1,3
+RM798,26,26-35,Yes,Travel_Rarely,1330,Research & Development,21,3,Medical,1,1107,1,Male,37,3,1,Laboratory Technician,3,Divorced,2377,Upto 5k,19373,1,Y,No,20,4,3,80,1,1,0,2,1,1,0,0
+RM844,26,26-35,No,Travel_Rarely,1384,Research & Development,3,4,Medical,1,1177,1,Male,82,4,1,Laboratory Technician,4,Married,4420,Upto 5k,13421,1,Y,No,22,4,2,80,1,8,2,3,8,7,0,7
+RM913,26,26-35,No,Travel_Rarely,583,Research & Development,4,2,Life Sciences,1,1275,3,Male,53,3,1,Research Scientist,4,Single,2875,Upto 5k,9973,1,Y,Yes,20,4,2,80,0,8,2,2,8,5,2,2
+RM999,26,26-35,No,Travel_Rarely,683,Research & Development,2,1,Medical,1,1407,1,Male,36,2,1,Research Scientist,4,Single,3904,Upto 5k,4050,0,Y,No,12,3,4,80,0,5,2,3,4,3,1,1
+RM1005,26,26-35,No,Travel_Rarely,652,Research & Development,7,3,Other,1,1417,3,Male,100,4,1,Laboratory Technician,1,Single,3578,Upto 5k,23577,0,Y,No,12,3,4,80,0,8,2,3,7,7,0,7
+RM1119,26,26-35,No,Travel_Rarely,474,Research & Development,3,3,Life Sciences,1,1581,1,Female,89,3,1,Research Scientist,4,Married,2061,Upto 5k,11133,1,Y,No,21,4,1,80,0,1,5,3,1,0,0,0
+RM1207,26,26-35,No,Non-Travel,786,Research & Development,7,3,Medical,1,1693,4,Male,76,3,1,Laboratory Technician,4,Single,2570,Upto 5k,11925,1,Y,No,20,4,3,80,0,7,5,3,7,7,5,7
+RM1225,26,26-35,No,Travel_Rarely,390,Research & Development,17,4,Medical,1,1718,4,Male,62,1,1,Laboratory Technician,3,Married,2305,Upto 5k,6217,1,Y,No,15,3,3,80,3,3,3,4,3,2,0,2
+RM1298,26,26-35,Yes,Travel_Rarely,920,Human Resources,20,2,Medical,1,1818,4,Female,69,3,1,Human Resources,2,Married,2148,Upto 5k,6889,0,Y,Yes,11,3,3,80,0,6,3,3,5,1,1,4
+RM1310,26,26-35,No,Travel_Rarely,572,Sales,10,3,Medical,1,1836,3,Male,46,3,2,Sales Executive,4,Single,4684,Upto 5k,9125,1,Y,No,13,3,1,80,0,5,4,3,5,3,1,2
+RM1350,26,26-35,No,Travel_Rarely,482,Research & Development,1,2,Life Sciences,1,1893,2,Female,90,2,1,Research Scientist,3,Married,2933,Upto 5k,14908,1,Y,Yes,13,3,3,80,1,1,3,2,1,0,1,0
+RM1362,26,26-35,No,Travel_Frequently,1096,Research & Development,6,3,Other,1,1918,3,Male,61,4,1,Laboratory Technician,4,Married,2544,Upto 5k,7102,0,Y,No,18,3,1,80,1,8,3,3,7,7,7,7
+RM1387,26,26-35,No,Travel_Rarely,157,Research & Development,1,3,Medical,1,1952,3,Male,95,3,1,Laboratory Technician,1,Single,2867,Upto 5k,20006,0,Y,No,13,3,4,80,0,8,6,2,7,7,7,6
+RM1465,26,26-35,No,Travel_Rarely,1167,Sales,5,3,Other,1,2060,4,Female,30,2,1,Sales Representative,3,Single,2966,Upto 5k,21378,0,Y,No,18,3,4,80,0,5,2,3,4,2,0,0
+RM1465,26,26-35,No,Travel_Rarely,1167,Sales,5,3,Other,1,2060,4,Female,30,2,1,Sales Representative,3,Single,2966,Upto 5k,21378,0,Y,No,18,3,4,80,0,5,2,3,4,2,0,5
+RM005,27,26-35,No,Travel_Rarely,591,Research & Development,2,1,Medical,1,7,1,Male,40,3,1,Laboratory Technician,2,Married,3468,Upto 5k,16632,9,Y,No,12,3,4,80,1,6,3,3,2,2,2,2
+RM042,27,26-35,No,Travel_Rarely,1240,Research & Development,2,4,Life Sciences,1,54,4,Female,33,3,1,Laboratory Technician,1,Divorced,2341,Upto 5k,19715,1,Y,No,13,3,4,80,1,1,6,3,1,0,0,0
+RM044,27,26-35,No,Travel_Frequently,994,Sales,8,3,Life Sciences,1,56,4,Male,37,3,3,Sales Executive,3,Single,8726,5k-10k,2975,1,Y,No,15,3,4,80,0,9,0,3,9,8,1,7
+RM162,27,26-35,No,Non-Travel,691,Research & Development,9,3,Medical,1,218,4,Male,57,3,1,Research Scientist,2,Divorced,2024,Upto 5k,5970,6,Y,No,18,3,4,80,1,6,1,1,2,2,2,2
+RM165,27,26-35,No,Non-Travel,1450,Research & Development,3,3,Medical,1,224,3,Male,79,2,1,Research Scientist,3,Divorced,2566,Upto 5k,25326,1,Y,Yes,15,3,4,80,1,1,2,2,1,1,0,1
+RM171,27,26-35,No,Travel_Rarely,1157,Research & Development,17,3,Technical Degree,1,233,3,Male,51,3,1,Research Scientist,2,Married,3058,Upto 5k,13364,0,Y,Yes,16,3,4,80,1,6,3,2,5,2,1,1
+RM192,27,26-35,No,Travel_Rarely,894,Research & Development,9,3,Medical,1,260,4,Female,99,3,1,Research Scientist,2,Single,2279,Upto 5k,11781,1,Y,No,16,3,4,80,0,7,2,2,7,7,0,3
+RM201,27,26-35,No,Travel_Frequently,472,Research & Development,1,1,Technical Degree,1,274,3,Male,60,2,2,Manufacturing Director,1,Married,4298,Upto 5k,9679,5,Y,No,19,3,3,80,1,6,1,3,2,2,2,0
+RM213,27,26-35,No,Travel_Frequently,1242,Sales,20,3,Life Sciences,1,293,4,Female,90,3,2,Sales Executive,3,Single,9981,5k-10k,12916,1,Y,No,14,3,4,80,0,7,2,3,7,7,0,7
+RM319,27,26-35,No,Travel_Rarely,1220,Research & Development,5,3,Life Sciences,1,434,3,Female,85,3,1,Research Scientist,2,Single,2478,Upto 5k,20938,1,Y,Yes,12,3,2,80,0,4,2,2,4,3,1,2
+RM321,27,26-35,No,Travel_Rarely,1377,Sales,2,3,Life Sciences,1,437,4,Male,74,3,2,Sales Executive,3,Single,4478,Upto 5k,5242,1,Y,Yes,11,3,1,80,0,5,3,3,5,4,0,4
+RM332,27,26-35,No,Non-Travel,210,Sales,1,1,Marketing,1,449,3,Male,73,3,2,Sales Executive,2,Married,6349,5k-10k,22107,0,Y,Yes,13,3,4,80,1,6,0,3,5,4,1,4
+RM340,27,26-35,No,Travel_Rarely,1130,Sales,8,4,Marketing,1,458,2,Female,56,3,2,Sales Executive,2,Married,6214,5k-10k,3415,1,Y,No,18,3,1,80,1,8,3,3,8,7,0,7
+RM374,27,26-35,No,Travel_Rarely,1469,Research & Development,1,2,Medical,1,497,4,Male,82,3,1,Laboratory Technician,2,Divorced,3816,Upto 5k,17881,1,Y,No,11,3,2,80,1,5,2,3,5,2,0,4
+RM486,27,26-35,No,Travel_Rarely,798,Research & Development,6,4,Medical,1,655,1,Female,66,2,1,Research Scientist,3,Divorced,2187,Upto 5k,5013,0,Y,No,12,3,3,80,2,6,5,2,5,3,0,3
+RM496,27,26-35,Yes,Travel_Rarely,1420,Sales,2,1,Marketing,1,667,3,Male,85,3,1,Sales Representative,1,Divorced,3041,Upto 5k,16346,0,Y,No,11,3,2,80,1,5,3,3,4,3,0,2
+RM513,27,26-35,No,Travel_Rarely,1115,Research & Development,3,4,Medical,1,700,1,Male,54,2,1,Research Scientist,4,Single,2045,Upto 5k,15174,0,Y,No,13,3,4,80,0,5,0,3,4,2,1,1
+RM522,27,26-35,No,Travel_Frequently,1410,Sales,3,1,Medical,1,714,4,Female,71,4,2,Sales Executive,4,Divorced,4647,Upto 5k,16673,1,Y,Yes,20,4,2,80,2,6,3,3,6,5,0,4
+RM531,27,26-35,No,Travel_Rarely,608,Research & Development,1,2,Life Sciences,1,725,3,Female,68,3,3,Manufacturing Director,1,Married,7412,5k-10k,6009,1,Y,No,11,3,4,80,0,9,3,3,9,7,0,7
+RM538,27,26-35,No,Travel_Frequently,294,Research & Development,10,2,Life Sciences,1,733,4,Male,32,3,3,Manufacturing Director,1,Divorced,8793,5k-10k,4809,1,Y,No,21,4,3,80,2,9,4,2,9,7,1,7
+RM555,27,26-35,No,Travel_Rarely,975,Research & Development,7,3,Medical,1,764,4,Female,55,2,2,Healthcare Representative,1,Single,6811,5k-10k,23398,8,Y,No,19,3,1,80,0,9,2,1,7,6,0,7
+RM577,27,26-35,No,Travel_Frequently,829,Sales,8,1,Marketing,1,800,3,Male,84,3,2,Sales Executive,4,Married,4342,Upto 5k,24008,0,Y,No,19,3,2,80,1,5,3,3,4,2,1,1
+RM611,27,26-35,No,Travel_Rarely,269,Research & Development,5,1,Technical Degree,1,844,3,Male,42,2,3,Research Director,4,Divorced,12808,10k-15k,8842,1,Y,Yes,16,3,2,80,1,9,3,3,9,8,0,8
+RM616,27,26-35,No,Non-Travel,443,Research & Development,3,3,Medical,1,850,4,Male,50,3,1,Research Scientist,4,Married,1706,Upto 5k,16571,1,Y,No,11,3,3,80,3,0,6,2,0,0,0,0
+RM671,27,26-35,No,Travel_Rarely,618,Research & Development,4,3,Life Sciences,1,933,2,Female,76,3,1,Research Scientist,3,Single,2318,Upto 5k,17808,1,Y,No,19,3,3,80,0,1,2,3,1,1,0,0
+RM718,27,26-35,No,Travel_Rarely,1134,Research & Development,16,4,Technical Degree,1,1001,3,Female,37,3,1,Laboratory Technician,2,Married,2811,Upto 5k,12086,9,Y,No,14,3,2,80,1,4,2,3,2,2,2,2
+RM740,27,26-35,No,Travel_Rarely,1055,Research & Development,2,4,Life Sciences,1,1027,1,Female,47,3,2,Manufacturing Director,4,Married,4227,Upto 5k,4658,0,Y,No,18,3,2,80,1,4,2,3,3,2,2,2
+RM787,27,26-35,No,Non-Travel,1277,Research & Development,8,5,Life Sciences,1,1094,1,Male,87,1,1,Laboratory Technician,3,Married,4621,Upto 5k,5869,1,Y,No,19,3,4,80,3,3,4,3,3,2,1,2
+RM834,27,26-35,No,Travel_Rarely,199,Research & Development,6,3,Life Sciences,1,1162,4,Male,55,2,1,Research Scientist,3,Married,2539,Upto 5k,7950,1,Y,No,13,3,3,80,1,4,0,3,4,2,2,2
+RM890,27,26-35,No,Travel_Rarely,1103,Research & Development,14,3,Life Sciences,1,1244,1,Male,42,3,1,Research Scientist,1,Married,2235,Upto 5k,14377,1,Y,Yes,14,3,4,80,2,9,3,2,9,7,6,8
+RM903,27,26-35,No,Travel_Rarely,1167,Research & Development,4,2,Life Sciences,1,1259,1,Male,76,3,1,Research Scientist,3,Divorced,2517,Upto 5k,3208,1,Y,No,11,3,2,80,3,5,2,3,5,3,0,3
+RM971,27,26-35,No,Travel_Rarely,1291,Sales,11,3,Medical,1,1364,3,Female,98,4,1,Sales Representative,4,Married,2534,Upto 5k,6527,8,Y,No,14,3,2,80,1,5,4,3,1,0,0,0
+RM975,27,26-35,No,Travel_Frequently,793,Sales,2,1,Life Sciences,1,1371,4,Male,43,1,2,Sales Executive,4,Single,5071,5k-10k,20392,3,Y,No,20,4,2,80,0,8,3,3,6,2,0,0
+RM997,27,26-35,No,Travel_Rarely,205,Sales,10,3,Marketing,1,1403,4,Female,98,2,2,Sales Executive,4,Married,5769,5k-10k,7100,1,Y,Yes,11,3,4,80,0,6,3,3,6,2,4,4
+RM998,27,26-35,Yes,Travel_Rarely,135,Research & Development,17,4,Life Sciences,1,1405,4,Female,51,3,1,Research Scientist,3,Single,2394,Upto 5k,25681,1,Y,Yes,13,3,4,80,0,8,2,3,8,2,7,7
+RM1018,27,26-35,No,Travel_Rarely,1377,Research & Development,11,1,Life Sciences,1,1434,2,Male,91,3,1,Laboratory Technician,1,Married,2099,Upto 5k,7679,0,Y,No,14,3,2,80,0,6,3,4,5,0,1,4
+RM1150,27,26-35,No,Travel_Rarely,1302,Research & Development,19,3,Other,1,1619,4,Male,67,2,1,Laboratory Technician,1,Divorced,4066,Upto 5k,16290,1,Y,No,11,3,1,80,2,7,3,3,7,7,0,7
+RM1170,27,26-35,No,Travel_Rarely,486,Research & Development,8,3,Medical,1,1647,2,Female,86,4,1,Research Scientist,3,Married,3517,Upto 5k,22490,7,Y,No,17,3,1,80,0,5,0,3,3,2,0,2
+RM1171,27,26-35,No,Travel_Frequently,591,Research & Development,2,3,Medical,1,1648,4,Male,87,3,1,Research Scientist,4,Single,2580,Upto 5k,6297,2,Y,No,13,3,3,80,0,6,0,2,4,2,1,2
+RM1249,27,26-35,No,Travel_Rarely,1054,Research & Development,8,3,Medical,1,1751,3,Female,67,3,1,Research Scientist,4,Single,3445,Upto 5k,6152,1,Y,No,11,3,3,80,0,6,5,2,6,2,1,4
+RM1318,27,26-35,No,Travel_Frequently,1297,Research & Development,5,2,Life Sciences,1,1850,4,Female,53,3,1,Laboratory Technician,4,Single,2379,Upto 5k,19826,0,Y,Yes,14,3,3,80,0,6,3,2,5,4,0,2
+RM1329,27,26-35,No,Travel_Rarely,728,Sales,23,1,Medical,1,1864,2,Female,36,2,2,Sales Representative,3,Married,3540,Upto 5k,7018,1,Y,No,21,4,4,80,1,9,5,3,9,8,5,8
+RM1335,27,26-35,No,Travel_Frequently,1131,Research & Development,15,3,Life Sciences,1,1870,4,Female,77,2,1,Research Scientist,1,Married,4774,Upto 5k,23844,0,Y,No,19,3,4,80,1,8,2,2,7,6,7,3
+RM1351,27,26-35,No,Travel_Rarely,511,Sales,2,2,Medical,1,1898,1,Female,89,4,2,Sales Executive,3,Single,6500,5k-10k,26997,0,Y,No,14,3,2,80,0,9,5,2,8,7,0,7
+RM1368,27,26-35,No,TravelRarely,1354,Research & Development,2,4,Technical Degree,1,1931,2,Male,41,3,1,Research Scientist,2,Married,2226,Upto 5k,6073,1,Y,No,11,3,3,80,1,6,3,2,5,3,1,2
+RM1380,27,26-35,Yes,Travel_Frequently,1337,Human Resources,22,3,Human Resources,1,1944,1,Female,58,2,1,Human Resources,2,Married,2863,Upto 5k,19555,1,Y,No,12,3,1,80,0,1,2,3,1,0,0,0
+RM1394,27,26-35,No,Travel_Rarely,954,Sales,9,3,Marketing,1,1965,4,Male,44,3,2,Sales Executive,4,Single,4105,Upto 5k,5099,1,Y,No,14,3,1,80,0,7,5,3,7,7,0,7
+RM1468,27,26-35,No,Travel_Rarely,155,Research & Development,4,3,Life Sciences,1,2064,2,Male,87,4,2,Manufacturing Director,2,Married,6142,5k-10k,5174,1,Y,Yes,20,4,2,80,1,6,0,3,6,2,0,3
+RM1468,27,26-35,No,Travel_Rarely,155,Research & Development,4,3,Life Sciences,1,2064,2,Male,87,4,2,Manufacturing Director,2,Married,6142,5k-10k,5174,1,Y,Yes,20,4,2,80,1,6,0,3,6,2,0,3
+RM015,28,26-35,Yes,Travel_Rarely,103,Research & Development,24,3,Life Sciences,1,19,3,Male,50,2,1,Laboratory Technician,3,Single,2028,Upto 5k,12947,5,Y,Yes,14,3,2,80,0,6,4,3,4,2,0,3
+RM052,28,26-35,Yes,Travel_Rarely,1434,Research & Development,5,4,Technical Degree,1,65,3,Male,50,3,1,Laboratory Technician,3,Single,3441,Upto 5k,11179,1,Y,Yes,13,3,3,80,0,2,3,2,2,2,2,2
+RM098,28,26-35,No,Non-Travel,120,Sales,4,3,Medical,1,129,2,Male,43,3,2,Sales Executive,3,Married,4221,Upto 5k,8863,1,Y,No,15,3,2,80,0,5,3,4,5,4,0,4
+RM163,28,26-35,No,Travel_Rarely,440,Research & Development,21,3,Medical,1,221,3,Male,42,3,1,Research Scientist,4,Married,2713,Upto 5k,6672,1,Y,No,11,3,3,80,1,5,2,1,5,2,0,2
+RM265,28,26-35,Yes,Travel_Rarely,529,Research & Development,2,4,Life Sciences,1,364,1,Male,79,3,1,Laboratory Technician,3,Single,3485,Upto 5k,14935,2,Y,No,11,3,3,80,0,5,5,1,0,0,0,0
+RM273,28,26-35,No,Travel_Rarely,1158,Research & Development,9,3,Medical,1,377,4,Male,94,3,1,Research Scientist,4,Married,2070,Upto 5k,2613,1,Y,No,23,4,4,80,1,5,3,2,5,2,0,4
+RM290,28,26-35,No,Travel_Rarely,1117,Research & Development,8,2,Life Sciences,1,395,4,Female,66,3,1,Research Scientist,4,Single,3310,Upto 5k,4488,1,Y,No,21,4,4,80,0,5,3,3,5,3,0,2
+RM303,28,26-35,No,Travel_Rarely,1476,Research & Development,16,2,Medical,1,412,2,Male,68,4,2,Healthcare Representative,1,Single,5661,5k-10k,4824,0,Y,No,19,3,3,80,0,9,2,3,8,3,0,7
+RM324,28,26-35,Yes,Travel_Rarely,1157,Research & Development,2,4,Medical,1,440,1,Male,84,1,1,Research Scientist,4,Married,3464,Upto 5k,24737,5,Y,Yes,13,3,4,80,0,5,4,2,3,2,2,2
+RM375,28,26-35,No,Travel_Rarely,304,Sales,9,4,Life Sciences,1,498,2,Male,92,3,2,Sales Executive,4,Single,5253,5k-10k,20750,1,Y,No,16,3,4,80,0,7,1,3,7,5,0,7
+RM405,28,26-35,No,Travel_Rarely,1300,Research & Development,17,2,Medical,1,536,3,Male,79,3,2,Laboratory Technician,1,Divorced,4558,Upto 5k,13535,1,Y,No,12,3,4,80,1,10,2,3,10,0,1,
+RM541,28,26-35,Yes,Travel_Rarely,654,Research & Development,1,2,Life Sciences,1,741,1,Female,67,1,1,Research Scientist,2,Single,2216,Upto 5k,3872,7,Y,Yes,13,3,4,80,0,10,4,3,7,7,3,7
+RM599,28,26-35,Yes,Travel_Rarely,890,Research & Development,2,4,Medical,1,828,3,Male,46,3,1,Research Scientist,3,Single,4382,Upto 5k,16374,6,Y,No,17,3,4,80,0,5,3,2,2,2,2,1
+RM613,28,26-35,No,Travel_Rarely,760,Sales,2,4,Marketing,1,846,2,Female,81,3,2,Sales Executive,2,Married,4779,Upto 5k,3698,1,Y,Yes,20,4,1,80,0,8,2,3,8,7,7,5
+RM630,28,26-35,No,Travel_Rarely,1169,Human Resources,8,2,Medical,1,869,2,Male,63,2,1,Human Resources,4,Divorced,4936,Upto 5k,23965,1,Y,No,13,3,4,80,1,6,6,3,5,1,0,4
+RM660,28,26-35,No,Travel_Rarely,821,Sales,5,4,Medical,1,916,1,Male,98,3,2,Sales Executive,4,Single,4908,Upto 5k,24252,1,Y,No,14,3,2,80,0,4,3,3,4,2,0,2
+RM669,28,26-35,No,Travel_Rarely,995,Research & Development,9,3,Medical,1,930,3,Female,77,3,1,Research Scientist,3,Divorced,2377,Upto 5k,9834,5,Y,No,18,3,2,80,1,6,2,3,2,2,2,2
+RM765,28,26-35,No,Travel_Rarely,1144,Sales,10,1,Medical,1,1056,4,Male,74,3,1,Sales Representative,2,Married,1052,Upto 5k,23384,1,Y,No,22,4,2,80,0,1,5,3,1,0,0,0
+RM781,28,26-35,Yes,Non-Travel,1366,Research & Development,24,2,Technical Degree,1,1082,2,Male,72,2,3,Healthcare Representative,1,Single,8722,5k-10k,12355,1,Y,No,12,3,1,80,0,10,2,2,10,7,1,9
+RM789,28,26-35,No,Travel_Rarely,857,Research & Development,10,3,Other,1,1097,3,Female,59,3,2,Research Scientist,3,Single,3660,Upto 5k,7909,3,Y,No,13,3,4,80,0,10,4,4,8,7,1,7
+RM794,28,26-35,No,Travel_Rarely,895,Research & Development,15,2,Life Sciences,1,1102,1,Male,50,3,1,Laboratory Technician,3,Divorced,2207,Upto 5k,22482,1,Y,No,16,3,4,80,1,4,5,2,4,2,2,2
+RM801,28,26-35,Yes,Travel_Frequently,1009,Research & Development,1,3,Medical,1,1111,1,Male,45,2,1,Laboratory Technician,2,Divorced,2596,Upto 5k,7160,1,Y,No,15,3,1,80,2,1,2,3,1,0,0,0
+RM810,28,26-35,No,Travel_Rarely,950,Research & Development,3,3,Medical,1,1121,4,Female,93,3,3,Manufacturing Director,2,Divorced,7655,5k-10k,8039,0,Y,No,17,3,2,80,3,10,3,2,9,7,1,7
+RM820,28,26-35,No,Travel_Rarely,1451,Research & Development,2,1,Life Sciences,1,1136,1,Male,67,2,1,Research Scientist,2,Married,3201,Upto 5k,19911,0,Y,No,17,3,1,80,0,6,2,1,5,3,0,4
+RM828,28,26-35,No,Travel_Frequently,773,Research & Development,6,3,Life Sciences,1,1154,3,Male,39,2,1,Research Scientist,3,Divorced,2703,Upto 5k,22088,1,Y,Yes,14,3,4,80,1,3,2,3,3,1,0,2
+RM843,28,26-35,Yes,Travel_Rarely,1485,Research & Development,12,1,Life Sciences,1,1175,3,Female,79,3,1,Laboratory Technician,4,Married,2515,Upto 5k,22955,1,Y,Yes,11,3,4,80,0,1,4,2,1,1,0,0
+RM869,28,26-35,No,Travel_Rarely,1179,Research & Development,19,4,Medical,1,1216,4,Male,78,2,1,Laboratory Technician,1,Married,3196,Upto 5k,12449,1,Y,No,12,3,3,80,3,6,2,3,6,5,3,3
+RM922,28,26-35,No,Travel_Frequently,791,Research & Development,1,4,Medical,1,1286,4,Male,44,3,1,Laboratory Technician,3,Single,2154,Upto 5k,6842,0,Y,Yes,11,3,3,80,0,5,2,2,4,2,0,2
+RM930,28,26-35,No,Travel_Frequently,193,Research & Development,2,3,Life Sciences,1,1296,4,Male,52,2,1,Laboratory Technician,4,Married,3867,Upto 5k,14222,1,Y,Yes,12,3,2,80,1,2,2,3,2,2,2,2
+RM934,28,26-35,No,Travel_Rarely,640,Research & Development,1,3,Technical Degree,1,1301,4,Male,84,3,1,Research Scientist,1,Single,2080,Upto 5k,4732,2,Y,No,11,3,2,80,0,5,2,2,3,2,1,2
+RM945,28,26-35,No,Non-Travel,1476,Research & Development,1,3,Life Sciences,1,1315,3,Female,55,1,2,Laboratory Technician,4,Married,6674,5k-10k,16392,0,Y,No,11,3,1,80,3,10,6,3,9,8,7,5
+RM985,28,26-35,No,Travel_Rarely,736,Sales,26,3,Life Sciences,1,1387,3,Male,48,2,2,Sales Executive,1,Married,4724,Upto 5k,24232,1,Y,No,11,3,3,80,1,5,0,3,5,3,0,4
+RM1042,28,26-35,No,Travel_Rarely,866,Sales,5,3,Medical,1,1469,4,Male,84,3,2,Sales Executive,1,Single,8463,5k-10k,23490,0,Y,No,18,3,4,80,0,6,4,3,5,4,1,3
+RM1057,28,26-35,Yes,Travel_Frequently,1496,Sales,1,3,Technical Degree,1,1486,1,Male,92,3,1,Sales Representative,3,Married,2909,Upto 5k,15747,3,Y,No,15,3,4,80,1,5,3,4,3,2,1,2
+RM1069,28,26-35,Yes,Travel_Frequently,289,Research & Development,2,2,Medical,1,1504,3,Male,38,2,1,Laboratory Technician,1,Single,2561,Upto 5k,5355,7,Y,No,11,3,3,80,0,8,2,2,0,0,0,0
+RM1070,28,26-35,No,Travel_Rarely,1423,Research & Development,1,3,Life Sciences,1,1506,1,Male,72,2,1,Research Scientist,3,Divorced,1563,Upto 5k,12530,1,Y,No,14,3,4,80,1,1,2,1,1,0,0,0
+RM1071,28,26-35,No,Travel_Frequently,467,Sales,7,3,Life Sciences,1,1507,3,Male,55,3,2,Sales Executive,1,Single,4898,Upto 5k,11827,0,Y,No,14,3,4,80,0,5,5,3,4,2,1,3
+RM1074,28,26-35,No,Travel_Rarely,1083,Research & Development,29,1,Life Sciences,1,1514,3,Male,96,1,2,Manufacturing Director,2,Married,6549,5k-10k,3173,1,Y,No,14,3,2,80,2,8,2,2,8,6,1,7
+RM1137,28,26-35,Yes,Travel_Rarely,329,Research & Development,24,3,Medical,1,1604,3,Male,51,3,1,Laboratory Technician,2,Married,2408,Upto 5k,7324,1,Y,Yes,17,3,3,80,3,1,3,3,1,1,0,0
+RM1152,28,26-35,No,Travel_Rarely,580,Research & Development,27,3,Medical,1,1622,2,Female,39,1,2,Manufacturing Director,1,Divorced,4877,Upto 5k,20460,0,Y,No,21,4,2,80,1,6,5,2,5,3,0,0
+RM1284,28,26-35,No,Travel_Rarely,1181,Research & Development,1,3,Life Sciences,1,1799,3,Male,82,3,1,Research Scientist,4,Married,2044,Upto 5k,5531,1,Y,No,11,3,3,80,1,5,6,4,5,3,0,3
+RM1308,28,26-35,No,Travel_Rarely,1217,Research & Development,1,3,Medical,1,1834,3,Female,67,3,1,Research Scientist,1,Married,3591,Upto 5k,12719,1,Y,No,25,4,3,80,1,3,3,3,3,2,1,2
+RM1324,28,26-35,No,Non-Travel,280,Human Resources,1,2,Life Sciences,1,1858,3,Male,43,3,1,Human Resources,4,Divorced,2706,Upto 5k,10494,1,Y,No,15,3,2,80,1,3,2,3,3,2,2,2
+RM1338,28,26-35,No,Travel_Rarely,1172,Sales,3,3,Medical,1,1875,2,Female,78,3,1,Sales Representative,2,Married,2856,Upto 5k,3692,1,Y,No,19,3,4,80,1,1,3,3,1,0,0,0
+RM1365,28,26-35,No,Travel_Frequently,783,Sales,1,2,Life Sciences,1,1927,3,Male,42,2,2,Sales Executive,4,Married,6834,5k-10k,19255,1,Y,Yes,12,3,3,80,1,7,2,3,7,7,0,7
+RM1370,28,26-35,Yes,Travel_Rarely,1475,Sales,13,2,Marketing,1,1933,4,Female,84,3,2,Sales Executive,3,Single,9854,5k-10k,23352,3,Y,Yes,11,3,4,80,0,6,0,3,2,0,2,2
+RM1382,28,26-35,No,Non-Travel,1103,Research & Development,16,3,Medical,1,1947,3,Male,49,3,1,Research Scientist,3,Single,2144,Upto 5k,2122,1,Y,No,14,3,3,80,0,5,3,2,5,3,1,4
+RM1391,28,26-35,Yes,Travel_Rarely,1404,Research & Development,17,3,Technical Degree,1,1960,3,Male,32,2,1,Laboratory Technician,4,Divorced,2367,Upto 5k,18779,5,Y,No,12,3,1,80,1,6,2,2,4,1,0,3
+RM012,29,26-35,No,Travel_Rarely,153,Research & Development,15,2,Life Sciences,1,15,4,Female,49,2,2,Laboratory Technician,3,Single,4193,Upto 5k,12682,0,Y,Yes,12,3,4,80,0,10,3,3,9,5,0,8
+RM016,29,26-35,No,Travel_Rarely,1389,Research & Development,21,4,Life Sciences,1,20,2,Female,51,4,3,Manufacturing Director,1,Divorced,9980,5k-10k,10195,1,Y,No,11,3,3,80,1,10,1,3,10,9,8,8
+RM072,29,26-35,No,Travel_Rarely,1328,Research & Development,2,3,Life Sciences,1,94,3,Male,76,3,1,Research Scientist,2,Married,2703,Upto 5k,4956,0,Y,No,23,4,4,80,1,6,3,3,5,4,0,
+RM156,29,26-35,No,Non-Travel,1496,Research & Development,1,1,Technical Degree,1,208,4,Male,41,3,2,Manufacturing Director,3,Married,4319,Upto 5k,26283,1,Y,No,13,3,1,80,1,10,1,3,10,7,0,9
+RM206,29,26-35,Yes,Travel_Rarely,121,Sales,27,3,Marketing,1,283,2,Female,35,3,3,Sales Executive,4,Married,7639,5k-10k,24525,1,Y,No,22,4,4,80,3,10,3,2,10,4,1,
+RM218,29,26-35,Yes,Travel_Rarely,992,Research & Development,1,3,Technical Degree,1,300,3,Male,85,3,1,Research Scientist,3,Single,2058,Upto 5k,19757,0,Y,No,14,3,4,80,0,7,1,2,6,2,1,5
+RM228,29,26-35,No,Travel_Frequently,1413,Sales,1,1,Medical,1,312,2,Female,42,3,3,Sales Executive,4,Married,7918,5k-10k,6599,1,Y,No,14,3,4,80,1,11,5,3,11,10,4,1
+RM230,29,26-35,Yes,Travel_Rarely,896,Research & Development,18,1,Medical,1,315,3,Male,86,2,1,Research Scientist,4,Single,2389,Upto 5k,14961,1,Y,Yes,13,3,3,80,0,4,3,2,4,3,0,1
+RM253,29,26-35,No,Travel_Rarely,665,Research & Development,15,3,Life Sciences,1,346,3,Male,60,3,1,Research Scientist,4,Single,2340,Upto 5k,22673,1,Y,No,19,3,1,80,0,6,1,3,6,5,1,
+RM255,29,26-35,No,Travel_Rarely,1247,Sales,20,2,Marketing,1,349,4,Male,45,3,2,Sales Executive,4,Divorced,6931,5k-10k,10732,2,Y,No,14,3,4,80,1,10,2,3,3,2,0,
+RM266,29,26-35,No,Travel_Rarely,1210,Sales,2,3,Medical,1,366,1,Male,78,2,2,Sales Executive,2,Married,6644,5k-10k,3687,2,Y,No,19,3,2,80,2,10,2,3,0,0,0,0
+RM283,29,26-35,No,Travel_Frequently,442,Sales,2,2,Life Sciences,1,388,2,Male,44,3,2,Sales Executive,4,Single,4554,Upto 5k,20260,1,Y,No,18,3,1,80,0,10,3,2,10,7,0,9
+RM337,29,26-35,Yes,Travel_Rarely,318,Research & Development,8,4,Other,1,454,2,Male,77,1,1,Laboratory Technician,1,Married,2119,Upto 5k,4759,1,Y,Yes,11,3,4,80,0,7,4,2,7,7,0,7
+RM338,29,26-35,No,Travel_Rarely,738,Research & Development,9,5,Other,1,455,2,Male,30,2,1,Laboratory Technician,4,Single,3983,Upto 5k,7621,0,Y,No,17,3,3,80,0,4,2,3,3,2,2,2
+RM344,29,26-35,No,Travel_Rarely,144,Sales,10,1,Marketing,1,463,4,Female,39,2,2,Sales Executive,2,Divorced,8268,5k-10k,11866,1,Y,Yes,14,3,1,80,2,7,2,3,7,7,1,7
+RM350,29,26-35,No,Non-Travel,746,Sales,2,3,Life Sciences,1,469,4,Male,61,3,2,Sales Executive,3,Married,4649,Upto 5k,16928,1,Y,No,14,3,1,80,1,4,3,2,4,3,0,2
+RM372,29,26-35,No,Travel_Rarely,1283,Research & Development,23,3,Life Sciences,1,495,4,Male,54,3,1,Research Scientist,4,Single,2201,Upto 5k,18168,9,Y,No,16,3,4,80,0,6,4,3,3,2,1,2
+RM421,29,26-35,No,Travel_Rarely,986,Research & Development,3,4,Medical,1,564,2,Male,93,2,3,Research Director,3,Married,11935,10k-15k,21526,1,Y,No,18,3,3,80,0,10,2,3,10,2,0,7
+RM422,29,26-35,Yes,Travel_Rarely,408,Research & Development,25,5,Technical Degree,1,565,3,Female,71,2,1,Research Scientist,2,Married,2546,Upto 5k,18300,5,Y,No,16,3,2,80,0,6,2,4,2,2,1,1
+RM455,29,26-35,No,Travel_Rarely,232,Research & Development,19,3,Technical Degree,1,611,4,Male,34,3,2,Manufacturing Director,4,Divorced,4262,Upto 5k,22645,4,Y,No,12,3,2,80,2,8,2,4,3,2,1,2
+RM508,29,26-35,No,Travel_Rarely,1176,Sales,3,2,Medical,1,690,2,Female,62,3,2,Sales Executive,3,Married,5561,5k-10k,3487,1,Y,No,14,3,1,80,1,6,5,2,6,0,1,2
+RM520,29,26-35,No,Travel_Frequently,806,Research & Development,1,4,Life Sciences,1,710,2,Male,76,1,1,Research Scientist,4,Divorced,2720,Upto 5k,18959,1,Y,No,18,3,4,80,1,10,5,3,10,7,2,8
+RM547,29,26-35,No,Travel_Rarely,1396,Sales,10,3,Life Sciences,1,749,3,Male,99,3,1,Sales Representative,3,Single,2642,Upto 5k,2755,1,Y,No,11,3,3,80,0,1,6,3,1,0,0,0
+RM556,29,26-35,No,Travel_Rarely,1090,Sales,10,3,Marketing,1,766,4,Male,83,3,1,Sales Representative,2,Divorced,2297,Upto 5k,17967,1,Y,No,14,3,4,80,2,2,2,3,2,2,2,2
+RM573,29,26-35,No,Travel_Rarely,657,Research & Development,27,3,Medical,1,793,2,Female,66,3,2,Healthcare Representative,3,Married,4335,Upto 5k,25549,4,Y,No,12,3,1,80,1,11,3,2,8,7,1,1
+RM590,29,26-35,Yes,Travel_Rarely,805,Research & Development,1,2,Life Sciences,1,816,2,Female,36,2,1,Laboratory Technician,1,Married,2319,Upto 5k,6689,1,Y,Yes,11,3,4,80,1,1,1,3,1,0,0,0
+RM595,29,26-35,No,Travel_Rarely,1252,Research & Development,23,2,Life Sciences,1,824,3,Male,81,4,1,Research Scientist,3,Married,2700,Upto 5k,23779,1,Y,No,24,4,3,80,1,10,3,3,10,7,0,7
+RM646,29,26-35,Yes,Travel_Rarely,341,Sales,1,3,Medical,1,896,2,Female,48,2,1,Sales Representative,3,Divorced,2800,Upto 5k,23522,6,Y,Yes,19,3,3,80,3,5,3,3,3,2,0,2
+RM658,29,26-35,No,Travel_Rarely,1086,Research & Development,7,1,Medical,1,912,1,Female,62,2,1,Laboratory Technician,4,Divorced,2532,Upto 5k,6054,6,Y,No,14,3,3,80,3,8,5,3,4,3,0,3
+RM698,29,26-35,No,Travel_Frequently,1404,Sales,20,3,Technical Degree,1,974,3,Female,84,3,1,Sales Representative,4,Married,2157,Upto 5k,18203,1,Y,No,15,3,2,80,1,3,5,3,3,1,0,2
+RM712,29,26-35,Yes,Travel_Rarely,906,Research & Development,10,3,Life Sciences,1,994,4,Female,92,2,1,Research Scientist,1,Single,2404,Upto 5k,11479,6,Y,Yes,20,4,3,80,0,3,5,3,0,0,0,0
+RM809,29,26-35,No,Travel_Rarely,1107,Research & Development,28,4,Life Sciences,1,1120,3,Female,93,3,1,Research Scientist,4,Divorced,2514,Upto 5k,26968,4,Y,No,22,4,1,80,1,11,1,3,7,5,1,7
+RM824,29,26-35,No,Travel_Frequently,490,Research & Development,10,3,Life Sciences,1,1143,4,Female,61,3,1,Research Scientist,2,Divorced,3291,Upto 5k,17940,0,Y,No,14,3,4,80,2,8,2,2,7,5,1,1
+RM826,29,26-35,No,Travel_Rarely,718,Research & Development,8,1,Medical,1,1150,2,Male,79,2,2,Manufacturing Director,4,Married,5056,5k-10k,17689,1,Y,Yes,15,3,3,80,1,10,2,2,10,7,1,2
+RM837,29,26-35,Yes,Travel_Rarely,408,Sales,23,1,Life Sciences,1,1165,4,Female,45,2,3,Sales Executive,1,Married,7336,5k-10k,11162,1,Y,No,13,3,1,80,1,11,3,1,11,8,3,10
+RM853,29,26-35,No,Travel_Rarely,1401,Research & Development,6,1,Medical,1,1192,2,Female,54,3,1,Laboratory Technician,4,Married,3131,Upto 5k,26342,1,Y,No,13,3,1,80,1,10,5,3,10,8,0,8
+RM860,29,26-35,No,Travel_Rarely,942,Research & Development,15,1,Life Sciences,1,1202,2,Female,69,1,1,Research Scientist,4,Married,2168,Upto 5k,26933,0,Y,Yes,18,3,1,80,1,6,2,2,5,4,1,3
+RM894,29,26-35,No,Travel_Rarely,1010,Research & Development,1,3,Life Sciences,1,1249,1,Female,97,3,1,Research Scientist,4,Divorced,3760,Upto 5k,5598,1,Y,No,15,3,1,80,3,3,5,3,3,2,1,2
+RM904,29,26-35,No,Travel_Rarely,1329,Research & Development,7,3,Life Sciences,1,1260,3,Male,82,3,2,Healthcare Representative,4,Divorced,6623,5k-10k,4204,1,Y,Yes,11,3,2,80,2,6,2,3,6,0,1,0
+RM906,29,26-35,No,Travel_Rarely,694,Research & Development,1,3,Life Sciences,1,1264,4,Female,87,2,4,Research Director,4,Divorced,16124,15k+,3423,3,Y,No,14,3,2,80,2,9,2,2,7,7,1,7
+RM933,29,26-35,Yes,Travel_Rarely,806,Research & Development,7,3,Technical Degree,1,1299,2,Female,39,3,1,Laboratory Technician,3,Divorced,3339,Upto 5k,17285,3,Y,Yes,13,3,1,80,2,10,2,3,7,7,7,7
+RM1006,29,26-35,No,Travel_Rarely,332,Human Resources,17,3,Other,1,1419,2,Male,51,2,3,Human Resources,1,Single,7988,5k-10k,9769,1,Y,No,13,3,1,80,0,10,3,2,10,9,0,9
+RM1008,29,26-35,Yes,Travel_Frequently,337,Research & Development,14,1,Other,1,1421,3,Female,84,3,3,Healthcare Representative,4,Single,7553,5k-10k,22930,0,Y,Yes,12,3,1,80,0,9,1,3,8,7,7,7
+RM1058,29,26-35,Yes,Travel_Frequently,115,Sales,13,3,Technical Degree,1,1487,1,Female,51,3,2,Sales Executive,2,Single,5765,5k-10k,17485,5,Y,No,11,3,1,80,0,7,4,1,5,3,0,0
+RM1064,29,26-35,No,Travel_Rarely,1246,Sales,19,3,Life Sciences,1,1497,3,Male,77,2,2,Sales Executive,3,Divorced,8620,5k-10k,23757,1,Y,No,14,3,3,80,2,10,3,3,10,7,0,4
+RM1073,29,26-35,No,Travel_Frequently,410,Research & Development,2,1,Life Sciences,1,1513,4,Female,97,3,1,Laboratory Technician,2,Married,3180,Upto 5k,4668,0,Y,No,13,3,3,80,3,4,3,3,3,2,0,2
+RM1078,29,26-35,Yes,Travel_Rarely,224,Research & Development,1,4,Technical Degree,1,1522,1,Male,100,2,1,Research Scientist,1,Single,2362,Upto 5k,7568,6,Y,No,13,3,3,80,0,11,2,1,9,7,0,7
+RM1091,29,26-35,No,Travel_Rarely,441,Research & Development,8,1,Other,1,1544,3,Female,39,1,2,Healthcare Representative,1,Married,9715,5k-10k,7288,3,Y,No,13,3,3,80,1,9,3,3,7,7,0,7
+RM1105,29,26-35,No,Travel_Rarely,598,Research & Development,9,3,Life Sciences,1,1558,3,Male,91,4,1,Research Scientist,3,Married,2451,Upto 5k,22376,6,Y,No,18,3,1,80,2,5,2,2,1,0,0,0
+RM1123,29,26-35,No,Travel_Rarely,1370,Research & Development,3,1,Medical,1,1586,2,Male,87,3,1,Laboratory Technician,1,Single,4723,Upto 5k,16213,1,Y,Yes,18,3,4,80,0,10,3,3,10,9,1,5
+RM1126,29,26-35,No,Travel_Frequently,995,Research & Development,2,1,Life Sciences,1,1590,1,Male,87,3,2,Healthcare Representative,4,Divorced,8853,5k-10k,24483,1,Y,No,19,3,4,80,1,6,0,4,6,4,1,3
+RM1173,29,26-35,No,Travel_Rarely,469,Sales,10,3,Medical,1,1650,3,Male,42,2,2,Sales Executive,3,Single,5869,5k-10k,23413,9,Y,No,11,3,3,80,0,8,2,3,5,2,1,4
+RM1189,29,26-35,No,Travel_Rarely,991,Sales,5,3,Medical,1,1669,1,Male,43,2,2,Sales Executive,2,Divorced,4187,Upto 5k,3356,1,Y,Yes,13,3,2,80,1,10,3,2,10,0,0,9
+RM1220,29,26-35,No,Travel_Rarely,1082,Research & Development,9,4,Medical,1,1709,4,Female,43,3,1,Laboratory Technician,3,Married,2974,Upto 5k,25412,9,Y,No,17,3,3,80,1,9,2,3,5,3,1,2
+RM1250,29,26-35,Yes,Travel_Rarely,428,Sales,9,3,Marketing,1,1752,2,Female,52,1,1,Sales Representative,2,Single,2760,Upto 5k,14630,1,Y,No,13,3,3,80,0,2,3,3,2,2,2,2
+RM1251,29,26-35,No,Travel_Frequently,461,Research & Development,1,3,Life Sciences,1,1753,4,Male,70,4,2,Healthcare Representative,3,Single,6294,5k-10k,23060,8,Y,Yes,12,3,4,80,0,10,5,4,3,2,0,2
+RM1259,29,26-35,No,Travel_Rarely,590,Research & Development,4,3,Technical Degree,1,1762,4,Female,91,2,1,Research Scientist,1,Divorced,2109,Upto 5k,10007,1,Y,No,13,3,3,80,1,1,2,3,1,0,0,0
+RM1314,29,26-35,Yes,Travel_Rarely,350,Human Resources,13,3,Human Resources,1,1844,1,Male,56,2,1,Human Resources,1,Divorced,2335,Upto 5k,3157,4,Y,Yes,15,3,4,80,3,4,3,3,2,2,2,0
+RM1319,29,26-35,No,Travel_Frequently,574,Research & Development,20,1,Medical,1,1852,4,Male,40,3,1,Laboratory Technician,4,Married,3812,Upto 5k,7003,1,Y,No,13,3,2,80,0,11,3,4,11,8,3,10
+RM1325,29,26-35,No,Travel_Rarely,726,Research & Development,29,1,Life Sciences,1,1859,4,Male,93,1,2,Healthcare Representative,3,Divorced,6384,5k-10k,21143,8,Y,No,17,3,4,80,2,11,3,3,7,0,1,6
+RM1330,29,26-35,No,TravelRarely,352,Human Resources,6,1,Medical,1,1865,4,Male,87,2,1,Human Resources,2,Married,2804,Upto 5k,15434,1,Y,No,11,3,4,80,0,1,3,3,1,0,0,0
+RM1333,29,26-35,Yes,Travel_Frequently,459,Research & Development,24,2,Life Sciences,1,1868,4,Male,73,2,1,Research Scientist,4,Single,2439,Upto 5k,14753,1,Y,Yes,24,4,2,80,0,1,3,2,1,0,1,0
+RM1344,29,26-35,No,Travel_Rarely,592,Research & Development,7,3,Life Sciences,1,1883,4,Male,59,3,1,Laboratory Technician,1,Single,2062,Upto 5k,19384,3,Y,No,14,3,2,80,0,11,2,3,3,2,1,2
+RM1366,29,26-35,Yes,Travel_Frequently,746,Sales,24,3,Technical Degree,1,1928,3,Male,45,4,1,Sales Representative,1,Single,1091,Upto 5k,10642,1,Y,No,17,3,4,80,0,1,3,3,1,0,0,0
+RM1388,29,26-35,No,Travel_Rarely,136,Research & Development,1,3,Life Sciences,1,1954,1,Male,89,3,2,Healthcare Representative,1,Married,5373,5k-10k,6225,0,Y,No,12,3,1,80,1,6,5,2,5,3,0,2
+RM1443,29,26-35,Yes,Travel_Rarely,1092,Research & Development,1,4,Medical,1,2027,1,Male,36,3,1,Research Scientist,4,Married,4787,Upto 5k,26124,9,Y,Yes,14,3,2,80,3,4,3,4,2,2,2,2
+RM1460,29,26-35,No,Travel_Rarely,1378,Research & Development,13,2,Other,1,2053,4,Male,46,2,2,Laboratory Technician,2,Married,4025,Upto 5k,23679,4,Y,Yes,13,3,1,80,1,10,2,3,4,3,0,3
+RM1461,29,26-35,No,Travel_Rarely,468,Research & Development,28,4,Medical,1,2054,4,Female,73,2,1,Research Scientist,1,Single,3785,Upto 5k,8489,1,Y,No,14,3,2,80,0,5,3,1,5,4,0,4
+RM1461,29,26-35,No,Travel_Rarely,468,Research & Development,28,4,Medical,1,2054,4,Female,73,2,1,Research Scientist,1,Single,3785,Upto 5k,8489,1,Y,No,14,3,2,80,0,5,3,1,5,4,0,4
+RM008,30,26-35,No,Travel_Rarely,1358,Research & Development,24,1,Life Sciences,1,11,4,Male,67,3,1,Laboratory Technician,3,Divorced,2693,Upto 5k,13335,1,Y,No,22,4,2,80,1,1,2,3,1,0,0,
+RM033,30,26-35,No,Travel_Rarely,125,Research & Development,9,2,Medical,1,41,4,Male,83,2,1,Laboratory Technician,3,Single,2206,Upto 5k,16117,1,Y,No,13,3,1,80,0,10,5,3,10,0,1,8
+RM045,30,26-35,No,Travel_Frequently,721,Research & Development,1,2,Medical,1,57,3,Female,58,3,2,Laboratory Technician,4,Single,4011,Upto 5k,10781,1,Y,No,23,4,4,80,0,12,2,3,12,8,3,7
+RM081,30,26-35,No,Travel_Rarely,852,Research & Development,1,1,Life Sciences,1,104,4,Male,55,2,2,Laboratory Technician,4,Married,5126,5k-10k,15998,1,Y,Yes,12,3,3,80,2,10,1,2,10,8,3,0
+RM089,30,26-35,No,Travel_Rarely,288,Research & Development,2,3,Life Sciences,1,117,3,Male,99,2,2,Healthcare Representative,4,Married,4152,Upto 5k,15830,1,Y,No,19,3,1,80,3,11,3,3,11,10,10,8
+RM093,30,26-35,No,Travel_Rarely,1334,Sales,4,2,Medical,1,121,3,Female,63,2,2,Sales Executive,2,Divorced,5209,5k-10k,19760,1,Y,Yes,12,3,2,80,3,11,4,2,11,8,2,7
+RM121,30,26-35,No,Travel_Frequently,1312,Research & Development,23,3,Life Sciences,1,159,1,Male,96,1,1,Research Scientist,3,Divorced,2613,Upto 5k,22310,1,Y,No,25,4,3,80,3,10,2,2,10,7,0,9
+RM140,30,26-35,No,Travel_Rarely,1240,Human Resources,9,3,Human Resources,1,184,3,Male,48,3,2,Human Resources,4,Married,6347,5k-10k,13982,0,Y,Yes,19,3,4,80,0,12,2,1,11,9,4,
+RM144,30,26-35,No,Travel_Rarely,438,Research & Development,18,3,Life Sciences,1,194,1,Female,75,3,1,Research Scientist,3,Single,2632,Upto 5k,23910,1,Y,No,14,3,3,80,0,5,4,2,5,4,0,
+RM146,30,26-35,No,Travel_Rarely,201,Research & Development,5,3,Technical Degree,1,197,4,Female,84,3,1,Research Scientist,1,Divorced,3204,Upto 5k,10415,5,Y,No,14,3,4,80,1,8,3,3,3,2,2,
+RM147,30,26-35,No,Travel_Rarely,1427,Research & Development,2,1,Medical,1,198,2,Male,35,2,1,Laboratory Technician,4,Single,2720,Upto 5k,11162,0,Y,No,13,3,4,80,0,6,3,3,5,3,1,
+RM168,30,26-35,No,Travel_Rarely,1339,Sales,5,3,Life Sciences,1,228,2,Female,41,3,3,Sales Executive,4,Married,9419,5k-10k,8053,2,Y,No,12,3,3,80,1,12,2,3,10,9,7,4
+RM174,30,26-35,No,Non-Travel,111,Research & Development,9,3,Medical,1,239,3,Male,66,3,2,Laboratory Technician,1,Divorced,3072,Upto 5k,11012,1,Y,No,11,3,3,80,2,12,4,3,12,9,6,10
+RM212,30,26-35,No,Non-Travel,829,Research & Development,1,1,Life Sciences,1,292,3,Male,88,2,3,Manufacturing Director,3,Single,8474,5k-10k,20925,1,Y,No,22,4,3,80,0,12,2,3,11,8,5,8
+RM215,30,26-35,Yes,Travel_Rarely,1005,Research & Development,3,3,Technical Degree,1,297,4,Female,88,3,1,Research Scientist,1,Single,2657,Upto 5k,8556,5,Y,Yes,11,3,3,80,0,8,5,3,5,2,0,4
+RM217,30,26-35,Yes,Travel_Frequently,334,Sales,26,4,Marketing,1,299,3,Female,52,2,2,Sales Executive,1,Single,6696,5k-10k,22967,5,Y,No,15,3,3,80,0,9,5,2,6,3,0,1
+RM325,30,26-35,No,Travel_Rarely,1275,Research & Development,28,2,Medical,1,441,4,Female,64,3,2,Research Scientist,4,Married,5775,5k-10k,11934,1,Y,No,13,3,4,80,2,11,2,3,10,8,1,9
+RM339,30,26-35,No,Travel_Rarely,570,Sales,5,3,Marketing,1,456,4,Female,30,2,2,Sales Executive,3,Divorced,6118,5k-10k,5431,1,Y,No,13,3,3,80,3,10,2,3,10,9,1,2
+RM355,30,26-35,No,Non-Travel,641,Sales,25,2,Technical Degree,1,475,4,Female,85,3,2,Sales Executive,3,Married,4736,Upto 5k,6069,7,Y,Yes,12,3,2,80,1,4,2,4,2,2,2,2
+RM382,30,26-35,No,Travel_Rarely,202,Sales,2,1,Technical Degree,1,508,3,Male,72,3,1,Sales Representative,2,Married,2476,Upto 5k,17434,1,Y,No,18,3,1,80,1,1,3,3,1,0,0,0
+RM386,30,26-35,Yes,Travel_Frequently,464,Research & Development,4,3,Technical Degree,1,514,3,Male,40,3,1,Research Scientist,4,Single,2285,Upto 5k,3427,9,Y,Yes,23,4,3,80,0,3,4,3,1,0,0,0
+RM403,30,26-35,No,Travel_Rarely,1082,Sales,12,3,Technical Degree,1,533,2,Female,83,3,2,Sales Executive,3,Single,6577,5k-10k,19558,0,Y,No,11,3,2,80,0,6,6,3,5,4,4,4
+RM411,30,26-35,No,Travel_Rarely,317,Research & Development,2,3,Life Sciences,1,548,3,Female,43,1,2,Manufacturing Director,4,Single,6091,5k-10k,24793,2,Y,No,20,4,3,80,0,11,2,3,5,4,0,2
+RM420,30,26-35,No,Non-Travel,1400,Research & Development,3,3,Life Sciences,1,562,3,Male,53,3,1,Laboratory Technician,4,Married,2097,Upto 5k,16734,4,Y,No,15,3,3,80,1,9,3,1,5,3,1,4
+RM424,30,26-35,No,Non-Travel,1398,Sales,22,4,Other,1,567,3,Female,69,3,3,Sales Executive,1,Married,8412,5k-10k,2890,0,Y,No,11,3,3,80,0,10,3,3,9,8,7,8
+RM427,30,26-35,No,Non-Travel,1116,Research & Development,2,3,Medical,1,571,3,Female,49,3,1,Laboratory Technician,4,Single,2564,Upto 5k,7181,0,Y,No,14,3,3,80,0,12,2,2,11,7,6,7
+RM438,30,26-35,No,Travel_Rarely,413,Sales,7,1,Marketing,1,585,4,Male,57,3,1,Sales Representative,2,Single,2983,Upto 5k,18398,0,Y,No,14,3,1,80,0,4,3,3,3,2,1,2
+RM481,30,26-35,Yes,Travel_Frequently,448,Sales,12,4,Life Sciences,1,648,2,Male,74,2,1,Sales Representative,1,Married,2033,Upto 5k,14470,1,Y,No,18,3,3,80,1,1,2,4,1,0,0,0
+RM502,30,26-35,No,Travel_Frequently,160,Research & Development,3,3,Medical,1,680,3,Female,71,3,1,Research Scientist,3,Divorced,2083,Upto 5k,22653,1,Y,No,20,4,3,80,1,1,2,3,1,0,0,0
+RM546,30,26-35,No,Travel_Rarely,501,Sales,27,5,Marketing,1,747,3,Male,99,3,2,Sales Executive,4,Divorced,5304,5k-10k,25275,7,Y,No,23,4,4,80,1,10,2,2,8,7,7,7
+RM582,30,26-35,No,Travel_Rarely,921,Research & Development,1,3,Life Sciences,1,806,4,Male,38,1,1,Laboratory Technician,3,Married,3833,Upto 5k,24375,3,Y,No,21,4,3,80,2,7,2,3,2,2,0,2
+RM603,30,26-35,No,Travel_Rarely,946,Research & Development,2,3,Medical,1,833,3,Female,52,2,2,Manufacturing Director,4,Single,6877,5k-10k,20234,5,Y,Yes,24,4,2,80,0,12,4,2,0,0,0,0
+RM624,30,26-35,No,Travel_Frequently,1012,Research & Development,5,4,Life Sciences,1,861,2,Male,75,2,1,Research Scientist,4,Divorced,3761,Upto 5k,2373,9,Y,No,12,3,2,80,1,10,3,2,5,4,0,3
+RM703,30,26-35,No,Travel_Rarely,231,Sales,8,2,Other,1,982,3,Male,62,3,3,Sales Executive,3,Divorced,7264,5k-10k,9977,5,Y,No,11,3,1,80,1,10,2,4,8,4,7,7
+RM721,30,26-35,Yes,Travel_Rarely,138,Research & Development,22,3,Life Sciences,1,1004,1,Female,48,3,1,Research Scientist,3,Married,2132,Upto 5k,11539,4,Y,Yes,11,3,2,80,0,7,2,3,5,2,0,1
+RM731,30,26-35,No,Travel_Rarely,153,Research & Development,8,2,Life Sciences,1,1015,2,Female,73,4,3,Research Director,1,Married,11416,10k-15k,17802,0,Y,Yes,12,3,3,80,3,9,4,2,8,7,1,7
+RM733,30,26-35,Yes,Travel_Frequently,109,Research & Development,5,3,Medical,1,1017,2,Female,60,3,1,Laboratory Technician,2,Single,2422,Upto 5k,25725,0,Y,No,17,3,1,80,0,4,3,3,3,2,1,2
+RM783,30,26-35,No,Travel_Rarely,1176,Research & Development,20,3,Other,1,1084,3,Male,85,3,2,Manufacturing Director,1,Married,9957,5k-10k,9096,0,Y,No,15,3,3,80,1,7,1,2,6,2,0,2
+RM845,30,26-35,No,Travel_Rarely,852,Sales,10,3,Marketing,1,1179,3,Male,72,2,2,Sales Executive,3,Married,6578,5k-10k,2706,1,Y,No,18,3,1,80,1,10,3,3,10,3,1,4
+RM866,30,26-35,No,Travel_Rarely,1329,Sales,29,4,Life Sciences,1,1211,3,Male,61,3,2,Sales Executive,1,Divorced,4115,Upto 5k,13192,8,Y,No,19,3,3,80,3,8,3,3,4,3,0,3
+RM875,30,26-35,No,Travel_Rarely,853,Research & Development,7,4,Life Sciences,1,1224,3,Male,49,3,2,Laboratory Technician,3,Divorced,3491,Upto 5k,11309,1,Y,No,13,3,1,80,3,10,4,2,10,7,8,9
+RM887,30,26-35,No,Travel_Rarely,1465,Research & Development,1,3,Medical,1,1241,4,Male,63,3,1,Research Scientist,2,Married,3579,Upto 5k,9369,0,Y,Yes,21,4,1,80,1,12,2,3,11,9,5,7
+RM932,30,26-35,No,Non-Travel,879,Research & Development,9,2,Medical,1,1298,3,Female,72,3,2,Manufacturing Director,3,Single,4695,Upto 5k,12858,7,Y,Yes,18,3,3,80,0,10,3,3,8,4,1,7
+RM942,30,26-35,No,Travel_Rarely,1138,Research & Development,6,3,Technical Degree,1,1311,1,Female,48,2,2,Laboratory Technician,4,Married,4627,Upto 5k,23631,0,Y,No,12,3,1,80,1,10,6,3,9,2,6,7
+RM949,30,26-35,No,Travel_Rarely,634,Research & Development,17,4,Medical,1,1321,2,Female,95,3,3,Manager,1,Married,11916,10k-15k,25927,1,Y,Yes,23,4,4,80,2,9,2,3,9,1,0,8
+RM1014,30,26-35,No,Travel_Rarely,855,Sales,7,4,Marketing,1,1428,4,Female,73,3,2,Sales Executive,1,Divorced,4779,Upto 5k,12761,7,Y,No,14,3,2,80,2,8,3,3,3,2,0,2
+RM1050,30,26-35,No,Travel_Rarely,1358,Sales,16,1,Life Sciences,1,1479,4,Male,96,3,2,Sales Executive,3,Married,5301,5k-10k,2939,8,Y,No,15,3,3,80,2,4,2,2,2,1,2,2
+RM1053,30,26-35,No,Non-Travel,990,Research & Development,7,3,Technical Degree,1,1482,3,Male,64,3,1,Research Scientist,3,Divorced,1274,Upto 5k,7152,1,Y,No,13,3,2,80,2,1,2,2,1,0,0,0
+RM1065,30,26-35,No,Travel_Rarely,330,Human Resources,1,3,Life Sciences,1,1499,3,Male,46,3,1,Human Resources,3,Divorced,2064,Upto 5k,15428,0,Y,No,21,4,1,80,1,6,3,4,5,3,1,3
+RM1107,30,26-35,Yes,Travel_Rarely,740,Sales,1,3,Life Sciences,1,1562,2,Male,64,2,2,Sales Executive,1,Married,9714,5k-10k,5323,1,Y,No,11,3,4,80,1,10,4,3,10,8,6,7
+RM1110,30,26-35,No,Travel_Rarely,1288,Sales,29,4,Technical Degree,1,1568,3,Male,33,3,3,Sales Executive,2,Married,9250,5k-10k,17799,3,Y,No,12,3,2,80,1,9,3,3,4,2,1,3
+RM1142,30,26-35,No,Travel_Rarely,241,Research & Development,7,3,Medical,1,1609,2,Male,48,2,1,Research Scientist,2,Married,2141,Upto 5k,5348,1,Y,No,12,3,2,80,1,6,3,2,6,4,1,1
+RM1234,30,26-35,No,Travel_Rarely,793,Research & Development,16,1,Life Sciences,1,1729,2,Male,33,3,1,Research Scientist,4,Married,2862,Upto 5k,3811,1,Y,No,12,3,2,80,1,10,2,2,10,0,0,8
+RM1245,30,26-35,No,Travel_Frequently,1312,Research & Development,2,4,Technical Degree,1,1745,4,Female,78,2,1,Research Scientist,1,Single,4968,Upto 5k,26427,0,Y,No,16,3,4,80,0,10,2,3,9,7,0,7
+RM1247,30,26-35,Yes,Travel_Frequently,600,Human Resources,8,3,Human Resources,1,1747,3,Female,66,2,1,Human Resources,4,Divorced,2180,Upto 5k,9732,6,Y,No,11,3,3,80,1,6,0,2,4,2,1,2
+RM1252,30,26-35,No,Travel_Rarely,979,Sales,15,2,Marketing,1,1754,3,Male,94,2,3,Sales Executive,1,Divorced,7140,5k-10k,3088,2,Y,No,11,3,1,80,1,12,2,3,7,7,1,7
+RM1260,30,26-35,No,Travel_Rarely,305,Research & Development,16,3,Life Sciences,1,1763,3,Male,58,4,2,Healthcare Representative,3,Married,5294,5k-10k,9128,3,Y,No,16,3,3,80,1,10,3,3,7,0,1,7
+RM1297,30,26-35,No,Travel_Rarely,1092,Research & Development,10,3,Medical,1,1816,1,Female,64,3,3,Manufacturing Director,3,Single,9667,5k-10k,2739,9,Y,No,14,3,2,80,0,9,3,3,7,7,0,2
+RM1339,30,26-35,Yes,Travel_Rarely,945,Sales,9,3,Medical,1,1876,2,Male,89,3,1,Sales Representative,4,Single,1081,Upto 5k,16019,1,Y,No,13,3,3,80,0,1,3,2,1,0,0,0
+RM1413,30,26-35,No,Travel_Rarely,911,Research & Development,1,2,Medical,1,1989,4,Male,76,3,1,Laboratory Technician,2,Married,3748,Upto 5k,4077,1,Y,No,13,3,3,80,0,12,6,2,12,8,1,7
+RM013,31,26-35,No,Travel_Rarely,670,Research & Development,26,1,Life Sciences,1,16,1,Male,31,3,1,Research Scientist,3,Divorced,2911,Upto 5k,15170,1,Y,No,17,3,4,80,1,5,1,2,5,2,4,3
+RM059,31,26-35,No,Travel_Rarely,655,Research & Development,7,4,Life Sciences,1,76,4,Male,48,3,2,Laboratory Technician,4,Divorced,5915,5k-10k,9528,3,Y,No,22,4,4,80,1,10,3,2,7,7,1,7
+RM073,31,26-35,No,Travel_Rarely,1082,Research & Development,1,4,Medical,1,95,3,Male,87,3,1,Research Scientist,2,Single,2501,Upto 5k,18775,1,Y,No,17,3,2,80,0,1,4,3,1,1,1,
+RM076,31,26-35,No,Travel_Rarely,746,Research & Development,8,4,Life Sciences,1,98,3,Female,61,3,2,Manufacturing Director,4,Single,4424,Upto 5k,20682,1,Y,No,23,4,4,80,0,11,2,3,11,7,1,
+RM125,31,26-35,Yes,Travel_Rarely,249,Sales,6,4,Life Sciences,1,163,2,Male,76,1,2,Sales Executive,3,Married,6172,5k-10k,20739,4,Y,Yes,18,3,2,80,0,12,3,2,7,7,7,7
+RM133,31,26-35,Yes,Travel_Rarely,542,Sales,20,3,Life Sciences,1,175,2,Female,71,1,2,Sales Executive,3,Married,4559,Upto 5k,24788,3,Y,Yes,11,3,3,80,1,4,2,3,2,2,2,2
+RM181,31,26-35,No,Travel_Rarely,140,Research & Development,12,1,Medical,1,246,3,Female,95,3,1,Research Scientist,4,Married,3929,Upto 5k,6984,8,Y,Yes,23,4,3,80,1,7,0,3,4,2,0,2
+RM225,31,26-35,No,Non-Travel,979,Research & Development,1,4,Medical,1,308,3,Male,90,1,2,Manufacturing Director,3,Married,4345,Upto 5k,4381,0,Y,No,12,3,4,80,1,6,2,3,5,4,1,4
+RM246,31,26-35,No,Travel_Frequently,1327,Research & Development,3,4,Medical,1,337,2,Male,73,3,3,Research Director,3,Divorced,13675,10k-15k,13523,9,Y,No,12,3,1,80,1,9,3,3,2,2,2,2
+RM260,31,26-35,Yes,Travel_Frequently,307,Research & Development,29,2,Medical,1,355,3,Male,71,2,1,Laboratory Technician,2,Single,3479,Upto 5k,11652,0,Y,No,11,3,2,80,0,6,2,4,5,4,1,4
+RM267,31,26-35,No,Travel_Rarely,1463,Research & Development,23,3,Medical,1,367,2,Male,64,2,2,Healthcare Representative,4,Married,5582,5k-10k,14408,0,Y,No,21,4,2,80,1,10,2,3,9,0,7,8
+RM293,31,26-35,No,Travel_Frequently,444,Sales,5,3,Marketing,1,399,4,Female,84,3,1,Sales Representative,2,Divorced,2789,Upto 5k,3909,1,Y,No,11,3,3,80,1,2,5,2,2,2,2,2
+RM304,31,26-35,No,Travel_Rarely,218,Sales,7,3,Technical Degree,1,416,2,Male,100,4,2,Sales Executive,4,Married,6929,5k-10k,12241,4,Y,No,11,3,2,80,1,10,3,2,8,7,7,7
+RM310,31,26-35,No,Travel_Rarely,691,Research & Development,5,4,Technical Degree,1,423,3,Male,86,3,1,Research Scientist,4,Married,4821,Upto 5k,10077,0,Y,Yes,12,3,3,80,1,6,4,3,5,2,0,3
+RM311,31,26-35,No,Travel_Rarely,106,Human Resources,2,3,Human Resources,1,424,1,Male,62,2,2,Human Resources,1,Married,6410,5k-10k,17822,3,Y,No,12,3,4,80,0,9,1,3,2,2,1,0
+RM313,31,26-35,No,Travel_Rarely,192,Research & Development,2,4,Life Sciences,1,426,3,Male,32,3,1,Research Scientist,4,Divorced,2695,Upto 5k,7747,0,Y,Yes,18,3,2,80,1,3,2,1,2,2,2,2
+RM322,31,26-35,No,Travel_Rarely,691,Sales,7,3,Marketing,1,438,4,Male,73,3,2,Sales Executive,4,Divorced,7547,5k-10k,7143,4,Y,No,12,3,4,80,3,13,3,3,7,7,1,7
+RM326,31,26-35,No,Travel_Frequently,798,Research & Development,7,2,Life Sciences,1,442,3,Female,48,2,3,Manufacturing Director,3,Married,8943,5k-10k,14034,1,Y,No,24,4,1,80,1,10,2,3,10,9,8,9
+RM343,31,26-35,No,Travel_Rarely,1232,Research & Development,7,4,Medical,1,462,3,Female,39,3,3,Manufacturing Director,4,Single,7143,5k-10k,25713,1,Y,Yes,14,3,3,80,0,11,2,2,11,9,4,10
+RM370,31,26-35,No,Travel_Rarely,408,Research & Development,9,4,Life Sciences,1,493,3,Male,42,2,1,Research Scientist,2,Single,2657,Upto 5k,7551,0,Y,Yes,16,3,4,80,0,3,5,3,2,2,2,2
+RM395,31,26-35,No,Travel_Rarely,480,Research & Development,7,2,Medical,1,524,2,Female,31,3,2,Manufacturing Director,1,Married,4306,Upto 5k,4156,1,Y,No,12,3,2,80,1,13,5,1,13,10,3,12
+RM400,31,26-35,No,Travel_Rarely,329,Research & Development,1,2,Life Sciences,1,530,4,Male,98,2,1,Laboratory Technician,1,Married,2218,Upto 5k,16193,1,Y,No,12,3,3,80,1,4,3,3,4,2,3,2
+RM435,31,26-35,No,Travel_Rarely,1274,Research & Development,9,1,Life Sciences,1,581,3,Male,33,3,3,Manufacturing Director,2,Divorced,10648,10k-15k,14394,1,Y,No,25,4,4,80,1,13,6,4,13,8,0,8
+RM440,31,26-35,Yes,Travel_Frequently,534,Research & Development,20,3,Life Sciences,1,587,1,Male,66,3,3,Healthcare Representative,3,Married,9824,5k-10k,22908,3,Y,No,12,3,1,80,0,12,2,3,1,0,0,0
+RM451,31,26-35,No,Travel_Rarely,828,Sales,2,1,Life Sciences,1,604,2,Male,77,3,2,Sales Executive,4,Single,6582,5k-10k,8346,4,Y,Yes,13,3,3,80,0,10,2,4,6,5,0,5
+RM457,31,26-35,No,Travel_Rarely,688,Sales,7,3,Life Sciences,1,613,3,Male,44,2,3,Manager,4,Divorced,11557,10k-15k,25291,9,Y,No,21,4,3,80,1,10,3,2,5,4,0,1
+RM483,31,26-35,Yes,Travel_Rarely,1365,Sales,13,4,Medical,1,650,2,Male,46,3,2,Sales Executive,1,Divorced,4233,Upto 5k,11512,2,Y,No,17,3,3,80,0,9,2,1,3,1,1,2
+RM485,31,26-35,No,Travel_Rarely,525,Sales,6,4,Medical,1,653,1,Male,66,4,2,Sales Executive,4,Divorced,5460,5k-10k,6219,4,Y,No,22,4,4,80,2,13,4,4,7,7,5,7
+RM645,31,26-35,No,Travel_Rarely,1222,Research & Development,11,4,Life Sciences,1,895,4,Male,48,3,1,Research Scientist,4,Married,2356,Upto 5k,14871,3,Y,Yes,19,3,2,80,1,8,2,3,6,4,0,2
+RM676,31,26-35,No,Travel_Rarely,154,Sales,7,4,Life Sciences,1,941,2,Male,41,2,1,Sales Representative,3,Married,2329,Upto 5k,11737,3,Y,No,15,3,2,80,0,13,2,4,7,7,5,2
+RM680,31,26-35,No,Non-Travel,1188,Sales,20,2,Marketing,1,947,4,Female,45,3,2,Sales Executive,3,Married,6932,5k-10k,24406,1,Y,No,13,3,4,80,1,9,2,2,9,8,0,0
+RM691,31,26-35,No,Travel_Rarely,616,Research & Development,12,3,Medical,1,961,4,Female,41,3,2,Healthcare Representative,4,Married,5855,5k-10k,17369,0,Y,Yes,11,3,3,80,2,10,2,1,9,7,8,5
+RM710,31,26-35,Yes,Non-Travel,335,Research & Development,9,2,Medical,1,991,3,Male,46,2,1,Research Scientist,1,Single,2321,Upto 5k,10322,0,Y,Yes,22,4,1,80,0,4,0,3,3,2,1,2
+RM727,31,26-35,No,Travel_Frequently,853,Research & Development,1,1,Life Sciences,1,1011,3,Female,96,3,2,Manufacturing Director,1,Married,4148,Upto 5k,11275,1,Y,No,12,3,3,80,1,4,1,3,4,3,0,3
+RM819,31,26-35,No,Travel_Frequently,793,Sales,20,3,Life Sciences,1,1135,3,Male,67,4,1,Sales Representative,4,Married,2791,Upto 5k,21981,0,Y,No,12,3,1,80,1,3,4,3,2,2,2,2
+RM832,31,26-35,Yes,Travel_Frequently,874,Research & Development,15,3,Medical,1,1160,3,Male,72,3,1,Laboratory Technician,3,Married,2610,Upto 5k,6233,1,Y,No,12,3,3,80,1,2,5,2,2,2,2,2
+RM896,31,26-35,No,Travel_Rarely,1332,Research & Development,11,2,Medical,1,1251,3,Male,80,3,2,Healthcare Representative,1,Married,6833,5k-10k,17089,1,Y,Yes,12,3,4,80,0,6,2,2,6,5,0,1
+RM897,31,26-35,No,Travel_Rarely,1062,Research & Development,24,3,Medical,1,1252,3,Female,96,2,2,Healthcare Representative,1,Single,6812,5k-10k,17198,1,Y,No,19,3,2,80,0,10,2,3,10,9,1,8
+RM951,31,26-35,No,Non-Travel,587,Sales,2,4,Life Sciences,1,1324,4,Female,57,3,3,Sales Executive,3,Divorced,9852,5k-10k,8935,1,Y,Yes,19,3,1,80,1,10,5,2,10,8,9,6
+RM953,31,26-35,Yes,Travel_Frequently,1060,Sales,1,3,Life Sciences,1,1331,4,Female,54,3,1,Sales Representative,2,Single,2302,Upto 5k,8319,1,Y,Yes,11,3,1,80,0,3,2,4,3,2,2,2
+RM981,31,26-35,Yes,Travel_Frequently,703,Sales,2,3,Life Sciences,1,1379,3,Female,90,2,1,Sales Representative,4,Single,2785,Upto 5k,11882,7,Y,No,14,3,3,80,0,3,3,4,1,0,0,0
+RM986,31,26-35,Yes,Travel_Rarely,330,Research & Development,22,4,Medical,1,1389,4,Male,98,3,2,Manufacturing Director,3,Married,6179,5k-10k,21057,1,Y,Yes,15,3,4,80,2,10,3,2,10,2,6,7
+RM1013,31,26-35,Yes,Travel_Frequently,667,Sales,1,4,Life Sciences,1,1427,2,Female,50,1,1,Sales Representative,3,Single,1359,Upto 5k,16154,1,Y,No,12,3,2,80,0,1,3,3,1,0,0,0
+RM1015,31,26-35,No,Travel_Rarely,182,Research & Development,8,5,Life Sciences,1,1430,1,Female,93,3,4,Research Director,2,Single,16422,15k+,8847,3,Y,No,11,3,3,80,0,9,3,4,3,2,1,0
+RM1017,31,26-35,Yes,Travel_Rarely,202,Research & Development,8,3,Life Sciences,1,1433,1,Female,34,2,1,Research Scientist,2,Single,1261,Upto 5k,22262,1,Y,No,12,3,3,80,0,1,3,4,1,0,0,0
+RM1031,31,26-35,No,Travel_Rarely,326,Sales,8,2,Life Sciences,1,1453,1,Male,31,3,3,Sales Executive,4,Divorced,10793,10k-15k,8386,1,Y,No,18,3,1,80,1,13,5,3,13,7,9,9
+RM1034,31,26-35,Yes,Travel_Frequently,1445,Research & Development,1,5,Life Sciences,1,1459,3,Female,100,4,3,Manufacturing Director,2,Single,7446,5k-10k,8931,1,Y,No,11,3,1,80,0,10,2,3,10,8,4,7
+RM1036,31,26-35,No,Travel_Rarely,1398,Human Resources,8,2,Medical,1,1461,4,Female,96,4,1,Human Resources,2,Single,2109,Upto 5k,24609,9,Y,No,18,3,4,80,0,8,3,3,3,2,0,2
+RM1037,31,26-35,Yes,Travel_Frequently,523,Research & Development,2,3,Life Sciences,1,1464,2,Male,94,3,1,Laboratory Technician,4,Married,3722,Upto 5k,21081,6,Y,Yes,13,3,3,80,1,7,2,1,2,2,2,2
+RM1086,31,26-35,Yes,Travel_Frequently,561,Research & Development,3,3,Life Sciences,1,1537,4,Female,33,3,1,Research Scientist,3,Single,4084,Upto 5k,4156,1,Y,No,12,3,1,80,0,7,2,1,7,2,7,7
+RM1145,31,26-35,No,Travel_Frequently,715,Sales,2,4,Other,1,1613,4,Male,54,3,2,Sales Executive,1,Single,5332,5k-10k,21602,7,Y,No,13,3,4,80,0,10,3,3,5,2,0,3
+RM1192,31,26-35,No,Travel_Rarely,1112,Sales,5,4,Life Sciences,1,1673,1,Female,67,3,2,Sales Executive,4,Married,5476,5k-10k,22589,1,Y,No,11,3,1,80,2,10,2,3,10,0,0,2
+RM1228,31,26-35,No,Travel_Rarely,741,Research & Development,2,4,Life Sciences,1,1721,2,Male,69,3,1,Laboratory Technician,3,Married,3477,Upto 5k,18103,1,Y,No,14,3,4,80,1,6,2,4,5,2,0,3
+RM1240,31,26-35,No,Travel_Frequently,163,Research & Development,24,1,Technical Degree,1,1736,4,Female,30,3,2,Manufacturing Director,4,Single,5238,5k-10k,6670,2,Y,No,20,4,4,80,0,9,3,2,5,4,1,4
+RM1248,31,26-35,No,Travel_Rarely,1003,Sales,5,3,Technical Degree,1,1749,1,Male,51,3,2,Sales Executive,3,Married,8346,5k-10k,20943,1,Y,No,19,3,3,80,1,6,3,3,5,2,0,2
+RM1258,31,26-35,Yes,Travel_Rarely,1079,Sales,16,4,Marketing,1,1761,1,Male,70,3,3,Sales Executive,3,Married,8161,5k-10k,19002,2,Y,No,13,3,1,80,3,10,2,3,1,0,0,0
+RM1275,31,26-35,No,Travel_Rarely,196,Sales,29,4,Marketing,1,1784,1,Female,91,2,2,Sales Executive,4,Married,5468,5k-10k,13402,1,Y,No,14,3,1,80,2,13,3,3,12,7,5,7
+RM1307,31,26-35,No,Travel_Frequently,1125,Sales,7,4,Marketing,1,1833,1,Female,68,3,3,Sales Executive,1,Married,9637,5k-10k,8277,2,Y,No,14,3,4,80,2,9,3,3,3,2,2,2
+RM1313,31,26-35,Yes,Travel_Rarely,359,Human Resources,18,5,Human Resources,1,1842,4,Male,89,4,1,Human Resources,1,Married,2956,Upto 5k,21495,0,Y,No,17,3,3,80,0,2,4,3,1,0,0,0
+RM1342,31,26-35,No,Travel_Rarely,311,Research & Development,20,3,Life Sciences,1,1881,2,Male,89,3,2,Laboratory Technician,3,Divorced,4197,Upto 5k,18624,1,Y,No,11,3,1,80,1,10,2,3,10,8,0,2
+RM1359,31,26-35,No,Travel_Rarely,1079,Sales,10,2,Medical,1,1912,3,Female,86,3,2,Sales Executive,4,Divorced,6583,5k-10k,20115,2,Y,Yes,11,3,4,80,1,8,2,3,5,2,1,4
+RM1361,31,26-35,No,Travel_Rarely,471,Research & Development,4,3,Medical,1,1916,1,Female,62,4,1,Laboratory Technician,3,Divorced,3978,Upto 5k,16031,8,Y,No,12,3,2,80,1,4,0,2,2,2,2,2
+RM1383,31,26-35,No,Non-Travel,976,Research & Development,3,2,Medical,1,1948,3,Male,48,3,1,Research Scientist,1,Divorced,3065,Upto 5k,3995,1,Y,Yes,13,3,4,80,1,4,3,4,4,2,2,3
+RM1390,31,26-35,No,Travel_Frequently,1125,Research & Development,1,3,Life Sciences,1,1956,4,Male,48,1,2,Research Scientist,1,Married,5003,5k-10k,5771,1,Y,No,21,4,2,80,0,10,6,3,10,8,8,7
+RM1396,31,26-35,Yes,Travel_Frequently,754,Sales,26,4,Marketing,1,1967,1,Male,63,3,2,Sales Executive,4,Married,5617,5k-10k,21075,1,Y,Yes,11,3,3,80,0,10,4,3,10,7,0,8
+RM1403,31,26-35,No,Travel_Rarely,1276,Research & Development,2,1,Medical,1,1974,4,Female,59,1,1,Laboratory Technician,4,Divorced,1129,Upto 5k,17536,1,Y,Yes,11,3,3,80,3,1,4,3,1,0,0,0
+RM1406,31,26-35,No,Non-Travel,697,Research & Development,10,3,Medical,1,1979,3,Female,40,3,3,Research Director,3,Married,11031,10k-15k,26862,4,Y,No,20,4,3,80,1,13,2,4,11,7,4,8
+RM1418,31,26-35,No,Travel_Rarely,1154,Sales,2,2,Life Sciences,1,1996,1,Male,54,3,1,Sales Representative,3,Married,3067,Upto 5k,6393,0,Y,No,19,3,3,80,1,3,1,3,2,2,1,2
+RM1464,31,26-35,No,Non-Travel,325,Research & Development,5,3,Medical,1,2057,2,Male,74,3,2,Manufacturing Director,1,Single,9936,5k-10k,3787,0,Y,No,19,3,2,80,0,10,2,3,9,4,1,7
+RM1464,31,26-35,No,Non-Travel,325,Research & Development,5,3,Medical,1,2057,2,Male,74,3,2,Manufacturing Director,1,Single,9936,5k-10k,3787,0,Y,No,19,3,2,80,0,10,2,3,9,4,1,7
+RM006,32,26-35,No,Travel_Frequently,1005,Research & Development,2,2,Life Sciences,1,8,4,Male,79,3,1,Laboratory Technician,4,Single,3068,Upto 5k,11864,0,Y,No,13,3,3,80,0,8,2,2,7,7,3,6
+RM017,32,26-35,No,Travel_Rarely,334,Research & Development,5,2,Life Sciences,1,21,1,Male,80,4,1,Research Scientist,2,Divorced,3298,Upto 5k,15053,0,Y,Yes,12,3,4,80,2,7,5,2,6,2,0,5
+RM027,32,26-35,Yes,Travel_Frequently,1125,Research & Development,16,1,Life Sciences,1,33,2,Female,72,1,1,Research Scientist,1,Single,3919,Upto 5k,4681,1,Y,Yes,22,4,2,80,0,10,5,3,10,2,6,
+RM061,32,26-35,No,Travel_Rarely,427,Research & Development,1,3,Medical,1,78,1,Male,33,3,2,Manufacturing Director,4,Married,6162,5k-10k,10877,1,Y,Yes,22,4,2,80,1,9,3,3,9,8,7,8
+RM074,32,26-35,No,Travel_Rarely,548,Research & Development,1,3,Life Sciences,1,96,2,Male,66,3,2,Research Scientist,2,Married,6220,5k-10k,7346,1,Y,No,17,3,2,80,2,10,3,3,10,4,0,
+RM095,32,26-35,No,Travel_Rarely,1093,Sales,6,4,Medical,1,125,2,Male,87,3,2,Sales Executive,3,Single,5010,5k-10k,24301,1,Y,No,16,3,1,80,0,12,0,3,11,8,5,7
+RM102,32,26-35,No,Travel_Rarely,827,Research & Development,1,1,Life Sciences,1,134,4,Male,71,3,1,Research Scientist,1,Single,2956,Upto 5k,15178,1,Y,No,13,3,4,80,0,1,2,3,1,0,0,0
+RM141,32,26-35,Yes,Travel_Rarely,1033,Research & Development,9,3,Medical,1,190,1,Female,41,3,1,Laboratory Technician,1,Single,4200,Upto 5k,10224,7,Y,No,22,4,1,80,0,10,2,4,5,4,0,
+RM145,32,26-35,No,Travel_Frequently,689,Sales,9,2,Medical,1,195,4,Male,35,1,2,Sales Executive,4,Divorced,4668,Upto 5k,22812,0,Y,No,17,3,4,80,3,9,2,4,8,7,0,
+RM155,32,26-35,No,Travel_Frequently,967,Sales,8,3,Marketing,1,207,2,Female,43,3,3,Sales Executive,4,Single,8998,5k-10k,15589,1,Y,No,14,3,4,80,0,9,2,3,9,8,3,7
+RM170,32,26-35,No,Travel_Rarely,120,Research & Development,6,5,Life Sciences,1,231,3,Male,43,3,1,Research Scientist,3,Single,3038,Upto 5k,12430,3,Y,No,20,4,1,80,0,8,2,3,5,4,1,4
+RM211,32,26-35,Yes,Travel_Rarely,1045,Sales,4,4,Medical,1,291,4,Male,32,1,3,Sales Executive,4,Married,10400,10k-15k,25812,1,Y,No,11,3,3,80,0,14,2,2,14,8,9,
+RM239,32,26-35,No,Travel_Rarely,1401,Sales,4,2,Life Sciences,1,330,3,Female,56,3,1,Sales Representative,2,Married,3931,Upto 5k,20990,2,Y,No,11,3,1,80,1,6,5,3,4,3,1,2
+RM240,32,26-35,Yes,Travel_Rarely,515,Research & Development,1,3,Life Sciences,1,331,4,Male,62,2,1,Laboratory Technician,3,Single,3730,Upto 5k,9571,0,Y,Yes,14,3,4,80,0,4,2,1,3,2,1,2
+RM242,32,26-35,No,Non-Travel,976,Sales,26,4,Marketing,1,333,3,Male,100,3,2,Sales Executive,4,Married,4465,Upto 5k,12069,0,Y,No,18,3,1,80,0,4,2,3,3,2,2,2
+RM261,32,26-35,No,Travel_Frequently,1311,Research & Development,7,3,Life Sciences,1,359,2,Male,100,4,1,Laboratory Technician,2,Married,2794,Upto 5k,26062,1,Y,No,20,4,3,80,0,5,3,1,5,1,0,3
+RM263,32,26-35,No,Travel_Rarely,128,Research & Development,2,1,Technical Degree,1,362,4,Male,84,2,2,Laboratory Technician,1,Single,2176,Upto 5k,19737,4,Y,No,13,3,4,80,0,9,5,3,6,2,0,4
+RM307,32,26-35,No,Travel_Rarely,906,Sales,7,3,Life Sciences,1,420,4,Male,91,2,2,Sales Executive,3,Married,5484,5k-10k,16985,1,Y,No,14,3,3,80,1,13,3,2,13,8,4,8
+RM320,32,26-35,No,Travel_Rarely,588,Sales,8,2,Technical Degree,1,436,3,Female,65,2,2,Sales Executive,2,Married,5228,5k-10k,24624,1,Y,Yes,11,3,4,80,0,13,2,3,13,12,11,9
+RM323,32,26-35,No,Travel_Rarely,1018,Research & Development,2,4,Medical,1,439,1,Female,74,4,2,Research Scientist,4,Single,5055,5k-10k,10557,7,Y,No,16,3,3,80,0,10,0,2,7,7,0,7
+RM352,32,26-35,No,Travel_Rarely,1062,Research & Development,2,3,Medical,1,471,3,Female,75,3,1,Laboratory Technician,2,Married,2370,Upto 5k,3956,1,Y,No,13,3,3,80,1,8,4,3,8,0,0,7
+RM470,32,26-35,Yes,Non-Travel,1474,Sales,11,4,Other,1,631,4,Male,60,4,2,Sales Executive,3,Married,4707,Upto 5k,23914,8,Y,No,12,3,4,80,0,6,2,3,4,2,1,2
+RM501,32,26-35,No,Travel_Rarely,646,Research & Development,9,4,Life Sciences,1,679,1,Female,92,3,2,Research Scientist,4,Married,6322,5k-10k,18089,1,Y,Yes,12,3,4,80,1,6,2,2,6,4,0,5
+RM528,32,26-35,No,Travel_Rarely,929,Sales,10,3,Marketing,1,722,4,Male,55,3,2,Sales Executive,4,Single,5396,5k-10k,21703,1,Y,No,12,3,4,80,0,10,2,2,10,7,0,8
+RM532,32,26-35,No,Travel_Rarely,1018,Research & Development,3,2,Life Sciences,1,727,3,Female,39,3,3,Research Director,4,Single,11159,10k-15k,19373,3,Y,No,15,3,4,80,0,10,6,3,7,7,7,7
+RM559,32,26-35,No,Travel_Frequently,430,Research & Development,24,4,Life Sciences,1,772,1,Male,80,3,2,Laboratory Technician,4,Married,5309,5k-10k,21146,1,Y,No,15,3,4,80,2,10,2,3,10,8,4,7
+RM601,32,26-35,No,Travel_Rarely,859,Research & Development,4,3,Life Sciences,1,830,3,Female,98,2,2,Manufacturing Director,3,Married,6162,5k-10k,19124,1,Y,No,12,3,3,80,1,14,3,3,14,13,6,8
+RM623,32,26-35,No,Travel_Rarely,117,Sales,13,4,Life Sciences,1,859,2,Male,73,3,2,Sales Executive,4,Divorced,4403,Upto 5k,9250,2,Y,No,11,3,3,80,1,8,3,2,5,2,0,3
+RM627,32,26-35,No,Travel_Rarely,638,Research & Development,8,2,Medical,1,865,3,Female,91,4,2,Research Scientist,3,Married,5175,5k-10k,22162,5,Y,No,12,3,3,80,1,9,3,2,5,3,1,3
+RM638,32,26-35,No,Non-Travel,300,Research & Development,1,3,Life Sciences,1,882,4,Male,61,3,1,Laboratory Technician,4,Divorced,2314,Upto 5k,9148,0,Y,No,12,3,2,80,1,4,2,3,3,0,0,2
+RM642,32,26-35,No,Travel_Frequently,379,Sales,5,2,Life Sciences,1,889,2,Male,48,3,2,Sales Executive,2,Married,6524,5k-10k,8891,1,Y,No,14,3,4,80,1,10,3,3,10,8,5,3
+RM657,32,26-35,Yes,Travel_Rarely,374,Research & Development,25,4,Life Sciences,1,911,1,Male,87,3,1,Laboratory Technician,4,Single,2795,Upto 5k,18016,1,Y,Yes,24,4,3,80,0,1,2,1,1,0,0,1
+RM683,32,26-35,No,Non-Travel,1184,Research & Development,1,3,Life Sciences,1,951,3,Female,70,2,1,Laboratory Technician,2,Married,2332,Upto 5k,3974,6,Y,No,20,4,3,80,0,5,3,3,3,0,0,2
+RM693,32,26-35,No,Travel_Rarely,498,Research & Development,3,4,Medical,1,966,3,Female,93,3,2,Manufacturing Director,1,Married,6725,5k-10k,13554,1,Y,No,12,3,3,80,1,8,2,4,8,7,6,3
+RM757,32,26-35,No,Non-Travel,1109,Research & Development,29,4,Medical,1,1046,4,Female,69,3,1,Laboratory Technician,3,Single,4025,Upto 5k,11135,9,Y,No,12,3,2,80,0,10,2,3,8,7,7,7
+RM851,32,26-35,No,Non-Travel,862,Sales,2,1,Life Sciences,1,1190,3,Female,76,3,1,Sales Representative,1,Divorced,2827,Upto 5k,14947,1,Y,No,12,3,3,80,3,1,3,3,1,0,0,0
+RM881,32,26-35,No,Travel_Frequently,116,Research & Development,13,3,Other,1,1234,3,Female,77,2,1,Laboratory Technician,2,Married,2743,Upto 5k,7331,1,Y,No,20,4,3,80,1,2,2,3,2,2,2,2
+RM882,32,26-35,No,Travel_Frequently,1316,Research & Development,2,2,Life Sciences,1,1235,4,Female,38,3,2,Research Scientist,3,Single,4998,Upto 5k,2338,4,Y,Yes,14,3,4,80,0,10,2,3,8,7,0,7
+RM936,32,26-35,No,Travel_Rarely,604,Sales,8,3,Medical,1,1304,3,Male,56,4,2,Sales Executive,4,Married,6209,5k-10k,11693,1,Y,No,15,3,3,80,2,10,4,4,10,7,0,8
+RM940,32,26-35,Yes,Travel_Rarely,1089,Research & Development,7,2,Life Sciences,1,1309,4,Male,79,3,2,Laboratory Technician,3,Married,4883,Upto 5k,22845,1,Y,No,18,3,1,80,1,10,3,3,10,4,1,1
+RM992,32,26-35,No,Travel_Rarely,499,Sales,2,1,Marketing,1,1396,3,Male,36,3,2,Sales Executive,2,Married,4078,Upto 5k,20497,0,Y,Yes,13,3,1,80,3,4,3,2,3,2,1,2
+RM1027,32,26-35,No,Travel_Rarely,601,Sales,7,5,Marketing,1,1446,4,Male,97,3,2,Sales Executive,4,Married,9204,5k-10k,23343,4,Y,No,12,3,3,80,1,7,3,2,4,3,0,3
+RM1076,32,26-35,No,Travel_Rarely,495,Research & Development,10,3,Medical,1,1516,3,Male,64,3,3,Manager,4,Single,11244,10k-15k,21072,2,Y,No,25,4,2,80,0,10,5,4,5,2,0,0
+RM1102,32,26-35,No,Travel_Rarely,824,Research & Development,5,2,Life Sciences,1,1555,4,Female,67,2,2,Research Scientist,2,Married,5878,5k-10k,15624,3,Y,No,12,3,1,80,1,12,2,3,7,1,2,5
+RM1114,32,26-35,No,Non-Travel,1200,Research & Development,1,4,Technical Degree,1,1574,4,Male,62,3,2,Research Scientist,1,Married,4087,Upto 5k,25174,4,Y,No,14,3,2,80,1,9,3,2,6,5,1,2
+RM1140,32,26-35,No,Travel_Rarely,634,Research & Development,5,4,Other,1,1607,2,Female,35,4,1,Research Scientist,4,Married,3312,Upto 5k,18783,3,Y,No,17,3,4,80,2,6,3,3,3,2,0,2
+RM1191,32,26-35,No,Travel_Rarely,977,Research & Development,2,3,Medical,1,1671,4,Male,45,3,2,Research Scientist,2,Divorced,5470,5k-10k,25518,0,Y,No,13,3,3,80,2,10,4,2,9,5,1,6
+RM1206,32,26-35,Yes,Travel_Rarely,1259,Research & Development,2,4,Life Sciences,1,1692,4,Male,95,3,1,Laboratory Technician,2,Single,1393,Upto 5k,24852,1,Y,No,12,3,1,80,0,1,2,3,1,0,0,0
+RM1227,32,26-35,No,Travel_Frequently,585,Research & Development,10,3,Life Sciences,1,1720,1,Male,56,3,1,Research Scientist,3,Married,3433,Upto 5k,17360,6,Y,No,13,3,1,80,1,10,3,2,5,2,1,3
+RM1238,32,26-35,Yes,Travel_Rarely,964,Sales,1,2,Life Sciences,1,1734,1,Male,34,1,2,Sales Executive,2,Single,6735,5k-10k,12147,6,Y,No,15,3,2,80,0,10,2,3,0,0,0,0
+RM1242,32,26-35,No,Travel_Rarely,371,Sales,19,3,Life Sciences,1,1739,4,Male,80,1,3,Sales Executive,3,Married,9610,5k-10k,3840,3,Y,No,13,3,3,80,1,10,2,1,4,3,0,2
+RM1261,32,26-35,No,Non-Travel,953,Research & Development,5,4,Technical Degree,1,1764,2,Male,65,3,1,Research Scientist,2,Single,2718,Upto 5k,17674,2,Y,No,14,3,2,80,0,12,3,3,7,7,0,7
+RM1320,32,26-35,No,Travel_Frequently,1318,Sales,10,4,Marketing,1,1853,4,Male,79,3,2,Sales Executive,4,Single,4648,Upto 5k,26075,8,Y,No,13,3,3,80,0,4,2,4,0,0,0,0
+RM1327,32,26-35,Yes,Travel_Rarely,414,Sales,2,4,Marketing,1,1862,3,Male,82,2,2,Sales Executive,2,Single,9907,5k-10k,26186,7,Y,Yes,12,3,3,80,0,7,3,2,2,2,2,2
+RM1376,32,26-35,Yes,Travel_Frequently,238,Research & Development,5,2,Life Sciences,1,1939,1,Female,47,4,1,Research Scientist,3,Single,2432,Upto 5k,15318,3,Y,Yes,14,3,1,80,0,8,2,3,4,1,0,3
+RM1389,32,26-35,No,Non-Travel,1146,Research & Development,15,4,Medical,1,1955,3,Female,34,3,2,Healthcare Representative,4,Divorced,6667,5k-10k,16542,5,Y,No,18,3,2,80,1,9,6,3,5,1,1,2
+RM1395,32,26-35,No,Travel_Rarely,1373,Research & Development,5,4,Life Sciences,1,1966,4,Male,56,2,2,Manufacturing Director,4,Single,9679,5k-10k,10138,8,Y,No,24,4,2,80,0,8,1,3,1,0,0,0
+RM1427,32,26-35,No,Travel_Rarely,267,Research & Development,29,4,Life Sciences,1,2010,3,Female,49,2,1,Laboratory Technician,2,Single,2837,Upto 5k,15919,1,Y,No,13,3,3,80,0,6,3,3,6,2,4,1
+RM1429,32,26-35,No,Travel_Rarely,234,Sales,1,4,Medical,1,2013,2,Male,68,2,1,Sales Representative,2,Married,2269,Upto 5k,18024,0,Y,No,14,3,2,80,1,3,2,3,2,2,2,2
+RM1432,32,26-35,No,Travel_Rarely,801,Sales,1,4,Marketing,1,2016,3,Female,48,3,3,Sales Executive,4,Married,10422,10k-15k,24032,1,Y,No,19,3,3,80,2,14,3,3,14,10,5,7
+RM1450,32,26-35,No,Travel_Rarely,529,Research & Development,2,3,Technical Degree,1,2038,4,Male,78,3,1,Research Scientist,1,Single,2439,Upto 5k,11288,1,Y,No,14,3,4,80,0,4,4,3,4,2,1,2
+RM004,33,26-35,No,Travel_Frequently,1392,Research & Development,3,4,Life Sciences,1,5,4,Female,56,3,1,Research Scientist,3,Married,2909,Upto 5k,23159,1,Y,Yes,11,3,3,80,0,8,3,3,8,7,3,0
+RM031,33,26-35,No,Travel_Rarely,924,Research & Development,2,3,Medical,1,39,3,Male,78,3,1,Laboratory Technician,4,Single,2496,Upto 5k,6670,4,Y,No,11,3,4,80,0,7,3,3,1,1,0,
+RM040,33,26-35,No,Travel_Frequently,1141,Sales,1,3,Life Sciences,1,52,3,Female,42,4,2,Sales Executive,1,Married,5376,5k-10k,3193,2,Y,No,19,3,1,80,2,10,3,3,5,3,1,3
+RM056,33,26-35,No,Travel_Frequently,515,Research & Development,1,2,Life Sciences,1,73,1,Female,98,3,3,Research Director,4,Single,13458,10k-15k,15146,1,Y,Yes,12,3,3,80,0,15,1,3,15,14,8,12
+RM122,33,26-35,No,Non-Travel,750,Sales,22,2,Marketing,1,160,3,Male,95,3,2,Sales Executive,2,Married,6146,5k-10k,15480,0,Y,No,13,3,1,80,1,8,2,4,7,7,0,7
+RM177,33,26-35,No,Travel_Rarely,134,Research & Development,2,3,Life Sciences,1,242,3,Male,90,3,1,Research Scientist,4,Single,2500,Upto 5k,10515,0,Y,No,14,3,1,80,0,4,2,4,3,1,0,2
+RM186,33,26-35,No,Travel_Rarely,931,Research & Development,14,3,Medical,1,252,4,Female,72,3,1,Research Scientist,2,Married,2756,Upto 5k,4673,1,Y,No,13,3,4,80,1,8,5,3,8,7,1,6
+RM222,33,26-35,No,Travel_Rarely,147,Research & Development,4,4,Medical,1,305,3,Female,47,2,1,Research Scientist,2,Married,2622,Upto 5k,13248,6,Y,No,21,4,4,80,0,7,3,3,3,2,1,1
+RM235,33,26-35,Yes,Travel_Rarely,813,Research & Development,14,3,Medical,1,325,3,Male,58,3,1,Laboratory Technician,4,Married,2436,Upto 5k,22149,5,Y,Yes,13,3,3,80,1,8,2,1,5,4,0,4
+RM237,33,26-35,Yes,Travel_Rarely,465,Research & Development,2,2,Life Sciences,1,328,1,Female,39,3,1,Laboratory Technician,1,Married,2707,Upto 5k,21509,7,Y,No,20,4,1,80,0,13,3,4,9,7,1,7
+RM247,33,26-35,No,Travel_Rarely,832,Research & Development,5,4,Life Sciences,1,338,3,Female,63,2,1,Research Scientist,4,Married,2911,Upto 5k,14776,1,Y,No,13,3,3,80,1,2,2,2,2,2,0,2
+RM314,33,26-35,No,Travel_Frequently,553,Research & Development,5,4,Life Sciences,1,428,4,Female,74,3,3,Manager,2,Married,11878,10k-15k,23364,6,Y,No,11,3,2,80,2,12,2,3,10,6,8,8
+RM329,33,26-35,No,Travel_Frequently,508,Sales,10,3,Marketing,1,446,2,Male,46,2,2,Sales Executive,4,Single,4682,Upto 5k,4317,3,Y,No,14,3,3,80,0,9,6,2,7,7,0,1
+RM364,33,26-35,Yes,Travel_Rarely,350,Sales,5,3,Marketing,1,485,4,Female,34,3,1,Sales Representative,3,Single,2851,Upto 5k,9150,1,Y,Yes,13,3,2,80,0,1,2,3,1,0,0,0
+RM436,33,26-35,Yes,Travel_Rarely,1277,Research & Development,15,1,Medical,1,582,2,Male,56,3,3,Manager,3,Married,13610,10k-15k,24619,7,Y,Yes,12,3,4,80,0,15,2,4,7,6,7,7
+RM437,33,26-35,Yes,Travel_Rarely,587,Research & Development,10,1,Medical,1,584,1,Male,38,1,1,Laboratory Technician,4,Divorced,3408,Upto 5k,6705,7,Y,No,13,3,1,80,3,8,2,3,4,3,1,3
+RM456,33,26-35,No,Travel_Rarely,922,Research & Development,1,5,Medical,1,612,1,Female,95,4,4,Research Director,3,Divorced,16184,15k+,22578,4,Y,No,19,3,3,80,1,10,2,3,6,1,0,5
+RM500,33,26-35,No,Travel_Rarely,1216,Sales,8,4,Marketing,1,677,3,Male,39,3,2,Sales Executive,3,Divorced,7104,5k-10k,20431,0,Y,No,12,3,4,80,0,6,3,3,5,0,1,2
+RM510,33,26-35,No,Travel_Frequently,1296,Research & Development,6,3,Life Sciences,1,692,3,Male,30,3,2,Healthcare Representative,4,Divorced,7725,5k-10k,5335,3,Y,No,23,4,3,80,1,15,2,1,13,11,4,7
+RM515,33,26-35,Yes,Travel_Frequently,1076,Research & Development,3,3,Life Sciences,1,702,1,Male,70,3,1,Research Scientist,1,Single,3348,Upto 5k,3164,1,Y,Yes,11,3,1,80,0,10,3,3,10,8,9,7
+RM563,33,26-35,Yes,Travel_Rarely,527,Research & Development,1,4,Other,1,780,4,Male,63,3,1,Research Scientist,4,Single,2686,Upto 5k,5207,1,Y,Yes,13,3,3,80,0,10,2,2,10,9,7,8
+RM591,33,26-35,No,Travel_Rarely,213,Research & Development,7,3,Medical,1,817,3,Male,49,3,3,Research Director,3,Married,11691,10k-15k,25995,0,Y,No,11,3,4,80,0,14,3,4,13,9,3,7
+RM592,33,26-35,Yes,Travel_Rarely,118,Sales,16,3,Marketing,1,819,1,Female,69,3,2,Sales Executive,1,Single,5324,5k-10k,26507,5,Y,No,15,3,3,80,0,6,3,3,3,2,0,2
+RM620,33,26-35,No,Travel_Rarely,586,Sales,1,3,Medical,1,855,1,Male,48,4,2,Sales Executive,1,Divorced,4037,Upto 5k,21816,1,Y,No,22,4,1,80,1,9,5,3,9,8,0,8
+RM656,33,26-35,No,Travel_Rarely,1075,Human Resources,3,2,Human Resources,1,910,4,Male,57,3,1,Human Resources,2,Divorced,2277,Upto 5k,22650,3,Y,Yes,11,3,3,80,1,7,4,4,4,3,0,3
+RM674,33,26-35,No,Travel_Rarely,1198,Research & Development,1,4,Other,1,939,3,Male,100,2,1,Research Scientist,1,Single,2799,Upto 5k,3339,3,Y,Yes,11,3,2,80,0,6,1,3,3,2,0,2
+RM695,33,26-35,No,Travel_Rarely,1069,Research & Development,1,3,Life Sciences,1,969,2,Female,42,2,2,Healthcare Representative,4,Single,6949,5k-10k,12291,0,Y,No,14,3,1,80,0,6,3,3,5,0,1,4
+RM711,33,26-35,No,Non-Travel,722,Sales,17,3,Life Sciences,1,992,4,Male,38,3,4,Manager,3,Single,17444,15k+,20489,1,Y,No,11,3,4,80,0,10,2,3,10,8,6,0
+RM713,33,26-35,No,Travel_Rarely,461,Research & Development,13,1,Life Sciences,1,995,2,Female,53,3,1,Research Scientist,4,Single,3452,Upto 5k,17241,3,Y,No,18,3,1,80,0,5,4,3,3,2,0,2
+RM716,33,26-35,No,Travel_Frequently,827,Research & Development,1,4,Other,1,998,3,Female,84,4,2,Healthcare Representative,2,Married,5488,5k-10k,20161,1,Y,Yes,13,3,1,80,1,6,2,3,6,5,1,2
+RM755,33,26-35,No,Non-Travel,1038,Sales,8,1,Life Sciences,1,1044,2,Female,88,2,1,Sales Representative,4,Single,2342,Upto 5k,21437,0,Y,No,19,3,4,80,0,3,2,2,2,2,2,2
+RM791,33,26-35,No,Travel_Rarely,654,Research & Development,5,3,Life Sciences,1,1099,4,Male,34,2,3,Healthcare Representative,4,Divorced,7119,5k-10k,21214,4,Y,No,15,3,3,80,1,9,2,3,3,2,1,2
+RM793,33,26-35,Yes,Travel_Frequently,827,Research & Development,29,4,Medical,1,1101,1,Female,54,2,2,Research Scientist,3,Single,4508,Upto 5k,3129,1,Y,No,22,4,2,80,0,14,4,3,13,7,3,8
+RM799,33,26-35,Yes,Travel_Rarely,1017,Research & Development,25,3,Medical,1,1108,1,Male,55,2,1,Research Scientist,2,Single,2313,Upto 5k,2993,4,Y,Yes,20,4,2,80,0,5,0,3,2,2,2,2
+RM803,33,26-35,No,Travel_Frequently,970,Sales,7,3,Life Sciences,1,1114,4,Female,30,3,2,Sales Executive,2,Married,4302,Upto 5k,13401,0,Y,No,17,3,3,80,1,4,3,3,3,2,0,2
+RM830,33,26-35,Yes,Travel_Rarely,603,Sales,9,4,Marketing,1,1157,1,Female,77,3,2,Sales Executive,1,Single,8224,5k-10k,18385,0,Y,Yes,17,3,1,80,0,6,3,3,5,2,0,3
+RM864,33,26-35,No,Travel_Rarely,147,Human Resources,2,3,Human Resources,1,1207,2,Male,99,3,1,Human Resources,3,Married,3600,Upto 5k,8429,1,Y,No,13,3,4,80,1,5,2,3,5,4,1,4
+RM873,33,26-35,No,Travel_Frequently,1146,Sales,25,3,Medical,1,1220,2,Female,82,3,2,Sales Executive,3,Married,4539,Upto 5k,4905,1,Y,No,12,3,1,80,1,10,3,2,10,7,0,1
+RM884,33,26-35,No,Travel_Rarely,117,Research & Development,9,3,Medical,1,1238,1,Male,60,3,1,Research Scientist,4,Married,2781,Upto 5k,6311,0,Y,No,13,3,2,80,1,15,5,3,14,10,4,10
+RM909,33,26-35,No,Travel_Rarely,536,Sales,10,5,Marketing,1,1268,4,Male,82,4,3,Sales Executive,3,Divorced,8380,5k-10k,21708,0,Y,Yes,14,3,4,80,2,10,3,3,9,8,0,8
+RM991,33,26-35,No,Travel_Frequently,1111,Sales,5,1,Life Sciences,1,1395,2,Male,61,3,2,Sales Executive,4,Married,9998,5k-10k,19293,6,Y,No,13,3,1,80,0,8,2,4,5,4,1,2
+RM1048,33,26-35,No,Travel_Frequently,430,Sales,7,3,Medical,1,1477,4,Male,54,3,2,Sales Executive,1,Married,4373,Upto 5k,17456,0,Y,No,14,3,1,80,2,5,2,3,4,3,0,3
+RM1067,33,26-35,No,Travel_Rarely,1099,Research & Development,4,4,Medical,1,1502,1,Female,82,2,1,Laboratory Technician,2,Married,3838,Upto 5k,8192,8,Y,No,11,3,4,80,0,8,5,3,5,4,0,2
+RM1075,33,26-35,No,Travel_Rarely,516,Research & Development,8,5,Life Sciences,1,1515,4,Male,69,3,2,Healthcare Representative,3,Single,6388,5k-10k,22049,2,Y,Yes,17,3,1,80,0,14,6,3,0,0,0,0
+RM1092,33,26-35,No,Travel_Rarely,575,Research & Development,25,3,Life Sciences,1,1545,4,Male,44,2,2,Manufacturing Director,2,Single,4320,Upto 5k,24152,1,Y,No,13,3,4,80,0,5,2,3,5,3,0,2
+RM1096,33,26-35,No,Travel_Rarely,589,Research & Development,28,4,Life Sciences,1,1549,2,Male,79,3,2,Laboratory Technician,3,Married,5207,5k-10k,22949,1,Y,Yes,12,3,2,80,1,15,3,3,15,14,5,7
+RM1106,33,26-35,No,Travel_Rarely,1242,Sales,8,4,Life Sciences,1,1560,1,Male,46,3,2,Sales Executive,1,Married,6392,5k-10k,10589,2,Y,No,13,3,4,80,1,8,6,1,2,2,2,2
+RM1190,33,26-35,No,Travel_Rarely,392,Sales,2,4,Medical,1,1670,4,Male,93,3,2,Sales Executive,4,Divorced,5505,5k-10k,3921,1,Y,No,14,3,3,80,2,6,5,3,6,2,0,4
+RM1199,33,26-35,No,Non-Travel,530,Sales,16,3,Life Sciences,1,1681,3,Female,36,3,2,Sales Executive,4,Divorced,5368,5k-10k,16130,1,Y,Yes,25,4,3,80,1,7,2,3,6,5,1,2
+RM1211,33,26-35,No,Travel_Rarely,267,Research & Development,21,3,Medical,1,1698,2,Male,79,4,1,Laboratory Technician,2,Married,2028,Upto 5k,13637,1,Y,No,18,3,4,80,3,14,6,3,14,11,2,13
+RM1254,33,26-35,No,Non-Travel,1283,Sales,2,3,Marketing,1,1756,4,Female,62,3,2,Sales Executive,2,Single,5147,5k-10k,10697,8,Y,No,15,3,4,80,0,13,2,2,11,7,1,7
+RM1256,33,26-35,Yes,Travel_Rarely,211,Sales,16,3,Life Sciences,1,1758,1,Female,74,3,3,Sales Executive,1,Single,8564,5k-10k,10092,2,Y,Yes,20,4,3,80,0,11,2,2,0,0,0,0
+RM1266,33,26-35,No,Non-Travel,775,Research & Development,4,3,Technical Degree,1,1771,4,Male,90,3,2,Research Scientist,2,Divorced,3055,Upto 5k,6194,5,Y,No,15,3,4,80,2,11,2,2,9,8,1,7
+RM1283,33,26-35,No,Travel_Rarely,867,Research & Development,8,4,Life Sciences,1,1798,4,Male,90,4,1,Research Scientist,1,Married,3143,Upto 5k,6076,6,Y,No,19,3,2,80,1,14,1,3,10,8,7,6
+RM1364,33,26-35,No,Travel_Rarely,217,Sales,10,4,Marketing,1,1924,2,Male,43,3,2,Sales Executive,3,Single,5487,5k-10k,10410,1,Y,No,14,3,2,80,0,10,2,2,10,4,0,9
+RM1399,33,26-35,No,Travel_Frequently,1303,Research & Development,7,2,Life Sciences,1,1970,4,Male,36,3,2,Healthcare Representative,3,Divorced,5968,5k-10k,18079,1,Y,No,20,4,3,80,3,9,2,3,9,7,2,8
+RM1416,33,26-35,No,Non-Travel,1313,Research & Development,1,2,Medical,1,1994,2,Male,59,2,1,Laboratory Technician,3,Divorced,2008,Upto 5k,20439,1,Y,No,12,3,3,80,3,1,2,2,1,1,0,0
+RM1426,33,26-35,No,Travel_Rarely,501,Research & Development,15,2,Medical,1,2009,2,Female,95,3,2,Healthcare Representative,4,Married,4878,Upto 5k,21653,0,Y,Yes,13,3,1,80,1,10,6,3,9,7,8,1
+RM014,34,26-35,No,TravelRarely,1346,Research & Development,19,2,Medical,1,18,2,Male,93,3,1,Laboratory Technician,4,Divorced,2661,Upto 5k,8758,0,Y,No,11,3,3,80,1,3,2,3,2,2,1,2
+RM023,34,26-35,No,TravelRarely,419,Research & Development,7,4,Life Sciences,1,28,1,Female,53,3,3,Research Director,2,Single,11994,10k-15k,21293,0,Y,No,11,3,3,80,0,13,4,3,12,6,2,
+RM025,34,26-35,Yes,Travel_Rarely,699,Research & Development,6,1,Medical,1,31,2,Male,83,3,1,Research Scientist,1,Single,2960,Upto 5k,17102,2,Y,No,11,3,3,80,0,8,2,3,4,2,1,
+RM047,34,26-35,No,Non-Travel,1065,Sales,23,4,Marketing,1,60,2,Male,72,3,2,Sales Executive,3,Single,4568,Upto 5k,10034,0,Y,No,20,4,3,80,0,10,2,3,9,5,8,7
+RM085,34,26-35,No,Travel_Rarely,1153,Research & Development,1,2,Medical,1,110,1,Male,94,3,2,Manufacturing Director,2,Married,4325,Upto 5k,17736,1,Y,No,15,3,3,80,0,5,2,3,5,2,1,3
+RM104,34,26-35,No,Travel_Rarely,665,Research & Development,6,4,Other,1,138,1,Female,41,3,2,Research Scientist,3,Single,4809,Upto 5k,12482,1,Y,No,14,3,3,80,0,16,3,3,16,13,2,10
+RM112,34,26-35,Yes,Travel_Frequently,658,Research & Development,7,3,Life Sciences,1,147,1,Male,66,1,2,Laboratory Technician,3,Single,6074,5k-10k,22887,1,Y,Yes,24,4,4,80,0,9,3,3,9,7,0,6
+RM115,34,26-35,No,Travel_Rarely,1031,Research & Development,6,4,Life Sciences,1,151,3,Female,45,2,2,Research Scientist,2,Divorced,4505,Upto 5k,15000,6,Y,No,15,3,3,80,1,12,3,3,1,0,0,0
+RM117,34,26-35,No,Travel_Rarely,1354,Research & Development,5,3,Medical,1,153,3,Female,45,2,3,Manager,1,Single,11631,10k-15k,5615,2,Y,No,12,3,4,80,0,14,6,3,11,10,5,8
+RM160,34,26-35,No,Travel_Frequently,303,Sales,2,4,Marketing,1,216,3,Female,75,3,1,Sales Representative,3,Married,2231,Upto 5k,11314,6,Y,No,18,3,4,80,1,6,3,3,4,3,1,2
+RM182,34,26-35,No,Travel_Rarely,629,Research & Development,27,2,Medical,1,247,4,Female,95,3,1,Research Scientist,2,Single,2311,Upto 5k,5711,2,Y,No,15,3,4,80,0,9,3,3,3,2,1,2
+RM189,34,26-35,No,Travel_Frequently,1069,Research & Development,2,1,Life Sciences,1,256,4,Male,45,2,2,Manufacturing Director,3,Married,9547,5k-10k,14074,1,Y,No,17,3,3,80,0,10,2,2,10,9,1,9
+RM203,34,26-35,No,Travel_Frequently,878,Research & Development,10,4,Medical,1,277,4,Male,43,3,1,Research Scientist,3,Divorced,3815,Upto 5k,5972,1,Y,Yes,17,3,4,80,1,5,4,4,5,3,2,0
+RM248,34,26-35,No,Travel_Rarely,470,Research & Development,2,4,Life Sciences,1,339,4,Male,84,2,2,Manufacturing Director,1,Married,5957,5k-10k,23687,6,Y,No,13,3,2,80,1,13,3,3,11,9,5,9
+RM379,34,26-35,Yes,Non-Travel,1362,Sales,19,3,Marketing,1,502,1,Male,67,4,2,Sales Executive,4,Single,5304,5k-10k,4652,8,Y,Yes,13,3,2,80,0,9,3,2,5,2,0,4
+RM394,34,26-35,No,Non-Travel,1381,Sales,4,4,Marketing,1,523,3,Female,72,3,2,Sales Executive,3,Married,6538,5k-10k,12740,9,Y,No,15,3,1,80,1,6,3,3,3,2,1,2
+RM416,34,26-35,Yes,Travel_Frequently,296,Sales,6,2,Marketing,1,555,4,Female,33,1,1,Sales Representative,3,Divorced,2351,Upto 5k,12253,0,Y,No,16,3,4,80,1,3,3,2,2,2,1,0
+RM433,34,26-35,No,Travel_Rarely,1303,Research & Development,2,4,Life Sciences,1,579,4,Male,62,2,1,Research Scientist,3,Divorced,2768,Upto 5k,8416,3,Y,No,12,3,3,80,1,14,3,3,7,3,5,7
+RM441,34,26-35,Yes,Travel_Frequently,988,Human Resources,23,3,Human Resources,1,590,2,Female,43,3,3,Human Resources,1,Divorced,9950,5k-10k,11533,9,Y,Yes,15,3,3,80,3,11,2,3,3,2,0,2
+RM463,34,26-35,No,Travel_Rarely,258,Sales,21,4,Life Sciences,1,621,4,Male,74,4,2,Sales Executive,4,Single,5337,5k-10k,19921,1,Y,No,12,3,4,80,0,10,3,3,10,7,5,7
+RM482,34,26-35,No,Travel_Rarely,254,Research & Development,1,2,Life Sciences,1,649,2,Male,83,2,1,Research Scientist,4,Married,3622,Upto 5k,22794,1,Y,Yes,13,3,4,80,1,6,3,3,6,5,1,3
+RM495,34,26-35,No,Travel_Rarely,204,Sales,14,3,Technical Degree,1,666,3,Female,31,3,1,Sales Representative,3,Divorced,2579,Upto 5k,2912,1,Y,Yes,18,3,4,80,2,8,3,3,8,2,0,6
+RM504,34,26-35,No,Travel_Rarely,1397,Research & Development,1,5,Life Sciences,1,683,2,Male,42,3,1,Research Scientist,4,Married,2691,Upto 5k,7660,1,Y,No,12,3,4,80,1,10,4,2,10,9,8,8
+RM525,34,26-35,No,Travel_Rarely,1442,Research & Development,9,3,Medical,1,717,4,Female,46,2,3,Healthcare Representative,2,Single,8621,5k-10k,17654,1,Y,No,14,3,2,80,0,9,3,4,8,7,7,7
+RM550,34,26-35,No,Travel_Rarely,970,Research & Development,8,2,Medical,1,757,2,Female,96,3,2,Healthcare Representative,3,Single,6142,5k-10k,7360,3,Y,No,11,3,4,80,0,10,2,3,5,1,4,3
+RM561,34,26-35,No,Travel_Rarely,167,Research & Development,8,5,Life Sciences,1,775,2,Female,32,3,2,Manufacturing Director,1,Divorced,5121,5k-10k,4187,3,Y,No,14,3,3,80,1,7,3,3,0,0,0,0
+RM568,34,26-35,No,Travel_Rarely,304,Sales,2,3,Other,1,786,4,Male,60,3,2,Sales Executive,4,Single,6274,5k-10k,18686,1,Y,No,22,4,3,80,0,6,5,3,6,5,1,4
+RM575,34,26-35,No,Travel_Rarely,182,Research & Development,1,4,Life Sciences,1,797,2,Female,72,4,1,Research Scientist,4,Single,3280,Upto 5k,13551,2,Y,No,16,3,3,80,0,10,2,3,4,2,1,3
+RM580,34,26-35,No,Travel_Rarely,121,Research & Development,2,4,Medical,1,804,3,Female,86,2,1,Research Scientist,1,Single,4381,Upto 5k,7530,1,Y,No,11,3,3,80,0,6,3,3,6,5,1,3
+RM584,34,26-35,No,Travel_Rarely,1111,Sales,8,2,Life Sciences,1,808,3,Female,93,3,2,Sales Executive,1,Married,6500,5k-10k,13305,5,Y,No,17,3,2,80,1,6,1,3,3,2,1,2
+RM607,34,26-35,No,Travel_Frequently,702,Research & Development,16,4,Life Sciences,1,838,3,Female,100,2,1,Research Scientist,4,Single,2553,Upto 5k,8306,1,Y,No,16,3,3,80,0,6,3,3,5,2,1,3
+RM614,34,26-35,No,Travel_Rarely,829,Human Resources,3,2,Human Resources,1,847,3,Male,88,3,1,Human Resources,4,Married,3737,Upto 5k,2243,0,Y,No,19,3,3,80,1,4,1,1,3,2,0,2
+RM672,34,26-35,No,Travel_Rarely,546,Research & Development,10,3,Life Sciences,1,934,2,Male,83,3,1,Laboratory Technician,2,Divorced,2008,Upto 5k,6896,1,Y,No,14,3,2,80,2,1,3,3,1,0,1,0
+RM758,34,26-35,No,Travel_Rarely,216,Sales,1,4,Marketing,1,1047,2,Male,75,4,2,Sales Executive,4,Divorced,9725,5k-10k,12278,0,Y,No,11,3,4,80,1,16,2,2,15,1,0,9
+RM764,34,26-35,No,Travel_Rarely,1333,Sales,10,4,Life Sciences,1,1055,3,Female,87,3,1,Sales Representative,3,Married,2220,Upto 5k,18410,1,Y,Yes,19,3,4,80,1,1,2,3,1,1,0,0
+RM795,34,26-35,No,Travel_Frequently,618,Research & Development,3,1,Life Sciences,1,1103,1,Male,45,3,2,Healthcare Representative,4,Single,7756,5k-10k,22266,0,Y,No,17,3,3,80,0,7,1,2,6,2,0,4
+RM804,34,26-35,No,Non-Travel,697,Research & Development,3,4,Life Sciences,1,1115,3,Male,40,2,1,Research Scientist,4,Married,2979,Upto 5k,22478,3,Y,No,17,3,4,80,3,6,2,3,0,0,0,0
+RM823,34,26-35,No,Travel_Frequently,1003,Research & Development,2,2,Life Sciences,1,1140,4,Male,95,3,2,Manufacturing Director,3,Single,4033,Upto 5k,15834,2,Y,No,11,3,4,80,0,5,3,2,3,2,0,2
+RM835,34,26-35,No,Travel_Rarely,1400,Sales,9,1,Life Sciences,1,1163,2,Female,70,3,2,Sales Executive,3,Married,5714,5k-10k,5829,1,Y,No,20,4,1,80,0,6,3,2,6,5,1,3
+RM848,34,26-35,No,Travel_Frequently,669,Research & Development,1,3,Medical,1,1184,4,Male,97,2,2,Healthcare Representative,1,Single,5343,5k-10k,25755,0,Y,No,20,4,3,80,0,14,3,3,13,9,4,9
+RM907,34,26-35,No,Travel_Rarely,1320,Research & Development,20,3,Technical Degree,1,1265,3,Female,89,4,1,Research Scientist,3,Married,2585,Upto 5k,21643,0,Y,No,17,3,4,80,0,2,5,2,1,0,0,0
+RM918,34,26-35,No,Travel_Rarely,131,Sales,2,3,Marketing,1,1281,3,Female,86,3,2,Sales Executive,1,Single,4538,Upto 5k,6039,0,Y,Yes,12,3,4,80,0,4,3,3,3,2,0,2
+RM921,34,26-35,No,Travel_Frequently,135,Research & Development,19,3,Medical,1,1285,3,Female,46,3,2,Laboratory Technician,2,Divorced,4444,Upto 5k,22534,4,Y,No,13,3,3,80,2,15,2,4,11,8,5,10
+RM924,34,26-35,No,Travel_Frequently,648,Human Resources,11,3,Life Sciences,1,1289,3,Male,56,2,2,Human Resources,2,Married,4490,Upto 5k,21833,4,Y,No,11,3,4,80,2,14,5,4,10,9,1,8
+RM959,34,26-35,No,Travel_Rarely,943,Research & Development,9,3,Life Sciences,1,1344,4,Male,86,3,3,Healthcare Representative,4,Divorced,8500,5k-10k,5494,0,Y,No,11,3,4,80,1,10,0,2,9,7,1,6
+RM965,34,26-35,No,Travel_Rarely,507,Sales,15,2,Medical,1,1356,3,Female,66,3,2,Sales Executive,1,Single,6125,5k-10k,23553,1,Y,No,12,3,4,80,0,10,6,4,10,8,9,6
+RM978,34,26-35,No,Non-Travel,999,Research & Development,26,1,Technical Degree,1,1374,1,Female,92,2,1,Research Scientist,3,Divorced,2029,Upto 5k,15891,1,Y,No,20,4,3,80,3,5,2,3,5,4,0,0
+RM980,34,26-35,No,Travel_Rarely,285,Research & Development,29,3,Medical,1,1377,2,Male,86,3,2,Laboratory Technician,3,Married,5429,5k-10k,17491,4,Y,No,13,3,1,80,2,10,1,3,8,7,7,7
+RM984,34,26-35,No,Travel_Rarely,404,Research & Development,2,4,Technical Degree,1,1383,3,Female,98,3,2,Healthcare Representative,4,Single,6687,5k-10k,6163,1,Y,No,11,3,4,80,0,14,2,4,14,11,4,11
+RM1016,34,26-35,No,Travel_Frequently,560,Research & Development,1,4,Other,1,1431,4,Male,91,3,1,Research Scientist,1,Divorced,2996,Upto 5k,20284,5,Y,No,14,3,3,80,2,10,2,3,4,3,1,3
+RM1028,34,26-35,No,Travel_Rarely,401,Research & Development,1,3,Life Sciences,1,1447,4,Female,86,2,1,Laboratory Technician,2,Married,3294,Upto 5k,3708,5,Y,No,17,3,1,80,1,7,2,2,5,4,0,2
+RM1040,34,26-35,Yes,Travel_Rarely,1107,Human Resources,9,4,Technical Degree,1,1467,1,Female,52,3,1,Human Resources,3,Married,2742,Upto 5k,3072,1,Y,No,15,3,4,80,0,2,0,3,2,2,2,2
+RM1049,34,26-35,No,Travel_Rarely,1326,Sales,3,3,Other,1,1478,4,Male,81,1,2,Sales Executive,1,Single,4759,Upto 5k,15891,3,Y,No,18,3,4,80,0,15,2,3,13,9,3,12
+RM1056,34,26-35,No,Travel_Frequently,829,Research & Development,15,3,Medical,1,1485,2,Male,71,3,4,Research Director,1,Divorced,17007,15k+,11929,7,Y,No,14,3,4,80,2,16,3,2,14,8,6,9
+RM1059,34,26-35,Yes,Travel_Rarely,790,Sales,24,4,Medical,1,1489,1,Female,40,2,2,Sales Executive,2,Single,4599,Upto 5k,7815,0,Y,Yes,23,4,3,80,0,16,2,4,15,9,10,10
+RM1085,34,26-35,No,Travel_Rarely,971,Sales,1,3,Technical Degree,1,1535,4,Male,64,2,3,Sales Executive,3,Married,7083,5k-10k,12288,1,Y,Yes,14,3,4,80,0,10,3,3,10,9,8,6
+RM1088,34,26-35,No,Travel_Rarely,1440,Sales,7,2,Technical Degree,1,1541,2,Male,55,3,1,Sales Representative,3,Married,2308,Upto 5k,4944,0,Y,Yes,25,4,2,80,1,12,4,3,11,10,5,7
+RM1116,34,26-35,No,Travel_Rarely,479,Research & Development,7,4,Medical,1,1577,1,Male,35,3,1,Research Scientist,4,Single,2972,Upto 5k,22061,1,Y,No,13,3,3,80,0,1,4,1,1,0,0,0
+RM1118,34,26-35,No,Travel_Rarely,1351,Research & Development,1,4,Life Sciences,1,1580,2,Male,45,3,2,Research Scientist,4,Married,5484,5k-10k,13008,9,Y,No,17,3,2,80,1,9,3,2,2,2,2,1
+RM1132,34,26-35,No,Travel_Frequently,653,Research & Development,10,4,Technical Degree,1,1597,4,Male,92,2,2,Healthcare Representative,3,Married,5063,5k-10k,15332,1,Y,No,14,3,2,80,1,8,3,2,8,2,7,7
+RM1147,34,26-35,No,Travel_Frequently,426,Research & Development,10,4,Life Sciences,1,1615,3,Male,42,4,2,Manufacturing Director,4,Divorced,4724,Upto 5k,17000,1,Y,No,13,3,1,80,1,9,3,3,9,7,7,2
+RM1180,34,26-35,No,Travel_Rarely,1130,Research & Development,3,3,Life Sciences,1,1658,4,Female,66,3,2,Research Scientist,2,Divorced,5433,5k-10k,19332,1,Y,No,12,3,3,80,1,11,2,3,11,8,7,9
+RM1209,34,26-35,No,Travel_Rarely,1157,Research & Development,5,2,Medical,1,1696,2,Male,57,2,2,Laboratory Technician,4,Married,3986,Upto 5k,11912,1,Y,No,14,3,3,80,1,15,3,4,15,10,4,13
+RM1213,34,26-35,No,Travel_Rarely,678,Research & Development,19,3,Life Sciences,1,1701,2,Female,35,2,1,Research Scientist,4,Married,2929,Upto 5k,20338,1,Y,No,12,3,2,80,0,10,3,3,10,9,8,7
+RM1253,34,26-35,No,Travel_Rarely,181,Research & Development,2,4,Medical,1,1755,4,Male,97,4,1,Research Scientist,4,Married,2932,Upto 5k,5586,0,Y,Yes,14,3,1,80,3,6,3,3,5,0,1,2
+RM1268,34,26-35,No,Non-Travel,1375,Sales,10,3,Life Sciences,1,1774,4,Male,87,3,2,Sales Executive,3,Divorced,4001,Upto 5k,12313,1,Y,Yes,14,3,3,80,1,15,3,3,15,14,0,7
+RM1271,34,26-35,No,Travel_Rarely,511,Sales,3,2,Life Sciences,1,1779,4,Female,32,1,2,Sales Executive,4,Single,6029,5k-10k,25353,5,Y,No,12,3,1,80,0,6,3,3,2,2,2,2
+RM1291,34,26-35,Yes,Travel_Frequently,234,Research & Development,9,4,Life Sciences,1,1807,4,Male,93,3,2,Laboratory Technician,1,Married,5346,5k-10k,6208,4,Y,No,17,3,3,80,1,11,3,2,7,1,0,7
+RM1301,34,26-35,No,Travel_Rarely,810,Sales,8,2,Technical Degree,1,1823,2,Male,92,4,2,Sales Executive,3,Married,6799,5k-10k,22128,1,Y,No,21,4,3,80,2,10,5,3,10,8,4,8
+RM1343,34,26-35,No,Travel_Rarely,1480,Sales,4,3,Life Sciences,1,1882,3,Male,64,3,3,Sales Executive,4,Married,9713,5k-10k,24444,2,Y,Yes,13,3,4,80,3,9,3,3,5,3,1,0
+RM1354,34,26-35,Yes,Non-Travel,967,Research & Development,16,4,Technical Degree,1,1905,4,Male,85,1,1,Research Scientist,1,Married,2307,Upto 5k,14460,1,Y,Yes,23,4,2,80,1,5,2,3,5,2,3,0
+RM1360,34,26-35,No,Travel_Rarely,735,Sales,3,1,Medical,1,1915,4,Female,75,2,2,Sales Executive,4,Married,8103,5k-10k,16495,3,Y,Yes,12,3,3,80,0,9,3,2,4,2,0,1
+RM1369,34,26-35,No,Travel_Frequently,735,Research & Development,22,4,Other,1,1932,3,Male,86,2,2,Research Scientist,4,Married,5747,5k-10k,26496,1,Y,Yes,15,3,2,80,0,16,3,3,15,10,6,11
+RM1385,34,26-35,No,Travel_Rarely,937,Sales,1,3,Marketing,1,1950,1,Male,32,3,3,Sales Executive,4,Single,9888,5k-10k,6770,1,Y,No,21,4,1,80,0,14,3,2,14,8,2,1
+RM1386,34,26-35,No,Travel_Rarely,1239,Sales,13,4,Medical,1,1951,4,Male,39,3,3,Sales Executive,3,Divorced,8628,5k-10k,22914,1,Y,No,18,3,3,80,1,9,2,2,8,7,1,1
+RM1447,34,26-35,No,Travel_Rarely,704,Sales,28,3,Marketing,1,2035,4,Female,95,2,2,Sales Executive,3,Married,6712,5k-10k,8978,1,Y,No,21,4,4,80,2,8,2,3,8,7,1,7
+RM1470,34,26-35,No,TravelRarely,628,Research & Development,8,3,Medical,1,2068,2,Male,82,4,2,Laboratory Technician,3,Married,4404,Upto 5k,10228,2,Y,No,12,3,1,80,0,6,3,4,4,3,1,2
+RM1470,34,26-35,No,TravelRarely,628,Research & Development,8,3,Medical,1,2068,2,Male,82,4,2,Laboratory Technician,3,Married,4404,Upto 5k,10228,2,Y,No,12,3,1,80,0,6,3,4,4,3,1,2
+RM011,35,26-35,No,Travel_Rarely,809,Research & Development,16,3,Medical,1,14,1,Male,84,4,1,Laboratory Technician,2,Married,2426,Upto 5k,16479,0,Y,No,13,3,3,80,1,6,5,3,5,4,0,3
+RM038,35,26-35,No,Travel_Rarely,890,Sales,2,3,Marketing,1,49,4,Female,97,3,1,Sales Representative,4,Married,2014,Upto 5k,9687,1,Y,No,13,3,1,80,0,2,3,3,2,2,2,2
+RM041,35,26-35,No,Travel_Rarely,464,Research & Development,4,2,Other,1,53,3,Male,75,3,1,Laboratory Technician,4,Divorced,1951,Upto 5k,10910,1,Y,No,12,3,3,80,1,1,3,3,1,0,0,0
+RM050,35,26-35,No,Travel_Rarely,1229,Research & Development,8,1,Life Sciences,1,63,4,Male,36,4,1,Laboratory Technician,4,Married,2269,Upto 5k,4892,1,Y,No,19,3,4,80,0,1,2,3,1,0,0,1
+RM054,35,26-35,No,Non-Travel,1097,Research & Development,11,2,Medical,1,70,3,Male,79,2,3,Healthcare Representative,1,Married,9884,5k-10k,8302,2,Y,Yes,13,3,3,80,1,10,3,3,4,0,2,3
+RM057,35,26-35,No,Travel_Frequently,853,Sales,18,5,Life Sciences,1,74,2,Male,71,3,3,Sales Executive,1,Married,9069,5k-10k,11031,1,Y,No,22,4,4,80,1,9,3,2,9,8,1,8
+RM058,35,26-35,No,Travel_Rarely,1142,Research & Development,23,4,Medical,1,75,3,Female,30,3,1,Laboratory Technician,1,Married,4014,Upto 5k,16002,3,Y,Yes,15,3,3,80,1,4,3,3,2,2,2,2
+RM069,35,26-35,No,Travel_Frequently,664,Research & Development,1,3,Medical,1,88,2,Male,79,3,1,Research Scientist,1,Married,2194,Upto 5k,5868,4,Y,No,13,3,4,80,1,5,2,2,3,2,1,2
+RM077,35,26-35,No,Travel_Rarely,776,Sales,1,4,Marketing,1,100,3,Male,32,2,2,Sales Executive,1,Single,4312,Upto 5k,23016,0,Y,No,14,3,2,80,0,16,2,3,15,13,2,
+RM082,35,26-35,No,Travel_Rarely,1214,Research & Development,1,3,Medical,1,105,2,Male,30,2,1,Research Scientist,3,Single,2859,Upto 5k,26278,1,Y,No,18,3,1,80,0,6,3,3,6,4,0,4
+RM152,35,26-35,No,Travel_Rarely,662,Sales,1,5,Marketing,1,204,3,Male,94,3,3,Sales Executive,2,Married,7295,5k-10k,11439,1,Y,No,13,3,1,80,2,10,3,3,10,8,0,6
+RM193,35,26-35,Yes,Travel_Rarely,556,Research & Development,23,2,Life Sciences,1,261,2,Male,50,2,2,Manufacturing Director,3,Married,5916,5k-10k,15497,3,Y,Yes,13,3,1,80,0,8,1,3,1,0,0,1
+RM197,35,26-35,No,Travel_Frequently,138,Research & Development,2,3,Medical,1,269,2,Female,37,3,2,Laboratory Technician,2,Single,4425,Upto 5k,15986,5,Y,No,11,3,4,80,0,10,5,3,6,2,1,2
+RM229,35,26-35,No,Travel_Frequently,944,Sales,1,3,Marketing,1,314,3,Female,92,3,3,Sales Executive,3,Single,8789,5k-10k,9096,1,Y,No,14,3,1,80,0,10,3,4,10,7,0,8
+RM277,35,26-35,No,Travel_Rarely,1315,Research & Development,22,3,Life Sciences,1,381,2,Female,71,4,3,Manager,2,Divorced,11996,10k-15k,19100,7,Y,No,18,3,2,80,1,10,6,2,7,7,6,2
+RM298,35,26-35,No,Travel_Rarely,1232,Sales,16,3,Marketing,1,406,3,Male,96,3,3,Sales Executive,2,Married,8020,5k-10k,5100,0,Y,No,15,3,3,80,2,12,3,2,11,9,6,9
+RM345,35,26-35,No,Travel_Rarely,1296,Research & Development,5,4,Technical Degree,1,464,3,Male,62,3,3,Manufacturing Director,2,Single,8095,5k-10k,18264,0,Y,No,13,3,4,80,0,17,5,3,16,6,0,13
+RM373,35,26-35,No,Travel_Rarely,755,Research & Development,9,4,Life Sciences,1,496,3,Male,97,2,2,Healthcare Representative,2,Single,6540,5k-10k,19394,9,Y,No,19,3,3,80,0,10,5,3,1,1,0,0
+RM431,35,26-35,No,Travel_Rarely,144,Research & Development,22,3,Life Sciences,1,577,4,Male,46,1,1,Laboratory Technician,3,Single,4230,Upto 5k,19225,0,Y,No,15,3,3,80,0,6,2,3,5,4,4,3
+RM439,35,26-35,No,Travel_Rarely,1276,Research & Development,16,3,Life Sciences,1,586,4,Male,72,3,3,Healthcare Representative,3,Married,7632,5k-10k,14295,4,Y,Yes,12,3,3,80,0,10,2,3,8,7,0,0
+RM448,35,26-35,No,Travel_Rarely,619,Sales,1,3,Marketing,1,600,2,Male,85,3,2,Sales Executive,3,Married,4717,Upto 5k,18659,9,Y,No,11,3,3,80,0,15,2,3,11,9,6,9
+RM462,35,26-35,No,Travel_Rarely,195,Sales,1,3,Medical,1,620,1,Female,80,3,2,Sales Executive,3,Single,4859,Upto 5k,6698,1,Y,No,16,3,4,80,0,5,3,3,5,4,0,3
+RM484,35,26-35,No,Travel_Rarely,538,Research & Development,25,2,Other,1,652,1,Male,54,2,2,Laboratory Technician,4,Single,3681,Upto 5k,14004,4,Y,No,14,3,4,80,0,9,3,3,3,2,0,2
+RM509,35,26-35,No,Travel_Rarely,1017,Research & Development,6,4,Life Sciences,1,691,2,Male,82,1,2,Research Scientist,4,Single,6646,5k-10k,19368,1,Y,No,13,3,2,80,0,17,3,3,17,11,11,8
+RM516,35,26-35,No,Non-Travel,727,Research & Development,3,3,Life Sciences,1,704,3,Male,41,2,1,Laboratory Technician,3,Married,1281,Upto 5k,16900,1,Y,No,18,3,3,80,2,1,3,3,1,0,0,0
+RM558,35,26-35,No,Non-Travel,1225,Research & Development,2,4,Life Sciences,1,771,4,Female,61,3,2,Healthcare Representative,1,Divorced,5093,5k-10k,4761,2,Y,No,11,3,1,80,1,16,2,4,1,0,0,0
+RM581,35,26-35,No,Travel_Rarely,384,Sales,8,4,Life Sciences,1,805,1,Female,72,3,1,Sales Representative,4,Married,2572,Upto 5k,20317,1,Y,No,16,3,2,80,1,3,1,2,3,2,0,2
+RM597,35,26-35,No,Travel_Rarely,1258,Research & Development,1,4,Life Sciences,1,826,4,Female,40,4,1,Research Scientist,3,Single,2506,Upto 5k,13301,3,Y,No,13,3,3,80,0,7,0,3,2,2,2,2
+RM612,35,26-35,No,Travel_Rarely,950,Research & Development,7,3,Other,1,845,3,Male,59,3,3,Manufacturing Director,3,Single,10221,10k-15k,18869,3,Y,No,21,4,2,80,0,17,3,4,8,5,1,6
+RM621,35,26-35,No,Travel_Rarely,1343,Research & Development,27,1,Medical,1,856,3,Female,53,2,1,Research Scientist,1,Single,2559,Upto 5k,17852,1,Y,No,11,3,4,80,0,6,3,2,6,5,1,1
+RM636,35,26-35,No,Travel_Rarely,607,Research & Development,9,3,Life Sciences,1,880,4,Female,66,2,3,Manufacturing Director,3,Married,10685,10k-15k,23457,1,Y,Yes,20,4,2,80,1,17,2,3,17,14,5,15
+RM637,35,26-35,Yes,Travel_Frequently,130,Research & Development,25,4,Life Sciences,1,881,4,Female,96,3,1,Research Scientist,2,Divorced,2022,Upto 5k,16612,1,Y,Yes,19,3,1,80,1,10,3,2,10,2,7,8
+RM648,35,26-35,No,Travel_Rarely,672,Research & Development,25,3,Technical Degree,1,899,4,Male,78,2,3,Manufacturing Director,2,Married,10903,10k-15k,9129,3,Y,No,16,3,1,80,0,16,2,3,13,10,4,8
+RM677,35,26-35,No,Travel_Rarely,1137,Research & Development,21,1,Life Sciences,1,942,4,Female,51,3,2,Healthcare Representative,4,Married,4014,Upto 5k,19170,1,Y,Yes,25,4,4,80,1,10,2,1,10,6,0,7
+RM699,35,26-35,No,Travel_Rarely,1219,Sales,18,3,Medical,1,975,3,Female,86,3,2,Sales Executive,3,Married,4601,Upto 5k,6179,1,Y,No,16,3,2,80,0,5,3,3,5,2,1,0
+RM705,35,26-35,No,Travel_Rarely,882,Sales,3,4,Life Sciences,1,984,4,Male,92,3,3,Sales Executive,4,Divorced,7823,5k-10k,6812,6,Y,No,13,3,2,80,1,12,2,3,10,9,0,8
+RM726,35,26-35,Yes,Travel_Rarely,622,Research & Development,14,4,Other,1,1010,3,Male,39,2,1,Laboratory Technician,2,Divorced,3743,Upto 5k,10074,1,Y,Yes,24,4,4,80,1,5,2,1,4,2,0,2
+RM730,35,26-35,No,Travel_Rarely,583,Research & Development,25,4,Medical,1,1014,3,Female,57,3,3,Healthcare Representative,3,Divorced,10388,10k-15k,6975,1,Y,Yes,11,3,3,80,1,16,3,2,16,10,10,1
+RM741,35,26-35,No,Travel_Rarely,802,Research & Development,10,3,Other,1,1028,2,Male,45,3,1,Laboratory Technician,4,Divorced,3917,Upto 5k,9541,1,Y,No,20,4,1,80,1,3,4,2,3,2,1,2
+RM792,35,26-35,Yes,Travel_Rarely,1204,Sales,4,3,Technical Degree,1,1100,4,Male,86,3,3,Sales Executive,1,Single,9582,5k-10k,10333,0,Y,Yes,22,4,1,80,0,9,2,3,8,7,4,7
+RM821,35,26-35,No,Travel_Frequently,1182,Sales,11,2,Marketing,1,1137,4,Male,54,3,2,Sales Executive,4,Divorced,4968,Upto 5k,18500,1,Y,No,11,3,4,80,1,5,3,3,5,2,0,2
+RM836,35,26-35,No,Travel_Rarely,528,Human Resources,8,4,Technical Degree,1,1164,3,Male,100,3,1,Human Resources,3,Single,4323,Upto 5k,7108,1,Y,No,17,3,2,80,0,6,2,1,5,4,1,4
+RM841,35,26-35,No,Travel_Rarely,982,Research & Development,1,4,Medical,1,1172,4,Male,58,2,1,Laboratory Technician,3,Married,2258,Upto 5k,16340,6,Y,No,12,3,2,80,1,10,2,3,8,0,1,7
+RM847,35,26-35,No,Travel_Rarely,819,Research & Development,2,3,Life Sciences,1,1182,3,Male,44,2,3,Manufacturing Director,2,Divorced,10274,10k-15k,19588,2,Y,No,18,3,2,80,1,15,2,4,7,7,6,4
+RM849,35,26-35,No,Travel_Frequently,636,Research & Development,4,4,Other,1,1185,4,Male,47,2,1,Laboratory Technician,4,Married,2376,Upto 5k,26537,1,Y,No,13,3,2,80,1,2,2,4,2,2,2,2
+RM871,35,26-35,No,Travel_Rarely,1361,Sales,17,4,Life Sciences,1,1218,3,Male,94,3,2,Sales Executive,1,Married,8966,5k-10k,21026,3,Y,Yes,15,3,4,80,3,15,2,3,7,7,1,7
+RM889,35,26-35,No,Non-Travel,1212,Sales,8,2,Marketing,1,1243,3,Female,78,2,3,Sales Executive,4,Married,10377,10k-15k,13755,4,Y,Yes,11,3,2,80,1,16,6,2,13,2,4,12
+RM925,35,26-35,No,Travel_Rarely,735,Research & Development,6,1,Life Sciences,1,1291,3,Male,66,3,1,Research Scientist,3,Married,3506,Upto 5k,6020,0,Y,Yes,14,3,4,80,0,4,3,3,3,2,2,2
+RM962,35,26-35,No,Travel_Frequently,482,Research & Development,4,4,Life Sciences,1,1350,3,Male,87,3,2,Research Scientist,3,Single,4249,Upto 5k,2690,1,Y,Yes,11,3,2,80,0,9,3,3,9,6,1,1
+RM974,35,26-35,No,Travel_Rarely,817,Research & Development,1,3,Medical,1,1369,4,Female,60,2,2,Laboratory Technician,4,Married,5363,5k-10k,10846,0,Y,No,12,3,2,80,1,10,0,3,9,7,0,0
+RM982,35,26-35,Yes,Travel_Frequently,662,Sales,18,4,Marketing,1,1380,4,Female,67,3,2,Sales Executive,3,Married,4614,Upto 5k,23288,0,Y,Yes,18,3,3,80,1,5,0,2,4,2,3,2
+RM1003,35,26-35,No,Travel_Frequently,200,Research & Development,18,2,Life Sciences,1,1412,3,Male,60,3,3,Manufacturing Director,4,Single,9362,5k-10k,19944,2,Y,No,11,3,3,80,0,10,2,3,2,2,2,2
+RM1060,35,26-35,No,Travel_Rarely,660,Sales,7,1,Life Sciences,1,1492,4,Male,76,3,1,Sales Representative,3,Married,2404,Upto 5k,16192,1,Y,No,13,3,1,80,1,1,3,3,1,0,0,0
+RM1082,35,26-35,No,Travel_Rarely,1029,Research & Development,16,3,Life Sciences,1,1529,4,Female,91,2,3,Healthcare Representative,2,Single,8606,5k-10k,21195,1,Y,No,19,3,4,80,0,11,3,1,11,8,3,3
+RM1101,35,26-35,No,Travel_Rarely,1402,Sales,28,4,Life Sciences,1,1554,2,Female,98,2,1,Sales Representative,3,Married,2430,Upto 5k,26204,0,Y,No,23,4,1,80,2,6,5,3,5,3,4,2
+RM1109,35,26-35,No,Travel_Rarely,992,Research & Development,1,3,Medical,1,1564,4,Male,68,2,1,Laboratory Technician,1,Single,2450,Upto 5k,21731,1,Y,No,19,3,2,80,0,3,3,3,3,0,1,2
+RM1111,35,26-35,Yes,Travel_Rarely,104,Research & Development,2,3,Life Sciences,1,1569,1,Female,69,3,1,Laboratory Technician,1,Divorced,2074,Upto 5k,26619,1,Y,Yes,12,3,4,80,1,1,2,3,1,0,0,0
+RM1124,35,26-35,No,Travel_Rarely,670,Research & Development,10,4,Medical,1,1587,1,Female,51,3,2,Healthcare Representative,3,Single,6142,5k-10k,4223,3,Y,Yes,16,3,3,80,0,10,4,3,5,2,0,4
+RM1131,35,26-35,No,Travel_Rarely,750,Research & Development,28,3,Life Sciences,1,1596,2,Male,46,4,2,Laboratory Technician,3,Married,3407,Upto 5k,25348,1,Y,No,17,3,4,80,2,10,3,2,10,9,6,8
+RM1135,35,26-35,No,Travel_Rarely,1349,Research & Development,7,2,Life Sciences,1,1601,3,Male,63,2,1,Laboratory Technician,4,Married,2690,Upto 5k,7713,1,Y,No,18,3,4,80,1,1,5,2,1,0,0,1
+RM1151,35,26-35,No,Travel_Rarely,819,Research & Development,18,5,Life Sciences,1,1621,2,Male,48,4,2,Research Scientist,1,Married,5208,5k-10k,26312,1,Y,No,11,3,4,80,0,16,2,3,16,15,1,10
+RM1158,35,26-35,No,Non-Travel,208,Research & Development,8,4,Life Sciences,1,1630,3,Female,52,3,2,Healthcare Representative,3,Married,4148,Upto 5k,12250,1,Y,No,12,3,4,80,1,15,5,3,14,11,2,9
+RM1163,35,26-35,Yes,Travel_Rarely,737,Sales,10,3,Medical,1,1639,4,Male,55,2,3,Sales Executive,1,Married,10306,10k-15k,21530,9,Y,No,17,3,3,80,0,15,3,3,13,12,6,0
+RM1168,35,26-35,Yes,Travel_Rarely,763,Sales,15,2,Medical,1,1645,1,Male,59,1,2,Sales Executive,4,Divorced,5440,5k-10k,22098,6,Y,Yes,14,3,4,80,2,7,2,2,2,2,2,2
+RM1187,35,26-35,Yes,Travel_Frequently,880,Sales,12,4,Other,1,1667,4,Male,36,3,2,Sales Executive,4,Single,4581,Upto 5k,10414,3,Y,Yes,24,4,1,80,0,13,2,4,11,9,6,7
+RM1216,35,26-35,No,Travel_Frequently,146,Research & Development,2,4,Medical,1,1704,1,Male,79,2,1,Research Scientist,4,Single,4930,Upto 5k,13970,0,Y,Yes,14,3,3,80,0,6,2,4,5,4,1,4
+RM1233,35,26-35,No,Travel_Rarely,1370,Research & Development,27,4,Life Sciences,1,1728,4,Male,49,3,2,Manufacturing Director,3,Married,6883,5k-10k,5151,2,Y,No,16,3,2,80,1,17,3,3,7,7,0,7
+RM1282,35,26-35,Yes,Travel_Rarely,303,Sales,27,3,Life Sciences,1,1797,3,Male,84,3,2,Sales Executive,4,Single,5813,5k-10k,13492,1,Y,Yes,18,3,4,80,0,10,2,3,10,7,7,7
+RM1289,35,26-35,No,Non-Travel,1180,Research & Development,2,2,Medical,1,1804,2,Male,90,3,2,Manufacturing Director,4,Divorced,5762,5k-10k,24442,2,Y,No,14,3,3,80,1,15,6,3,7,7,1,7
+RM1303,35,26-35,No,Travel_Rarely,185,Research & Development,23,4,Medical,1,1826,2,Male,91,1,1,Laboratory Technician,3,Married,2705,Upto 5k,9696,0,Y,No,16,3,2,80,1,6,2,4,5,4,0,3
+RM1346,35,26-35,No,Travel_Rarely,219,Research & Development,16,2,Other,1,1886,4,Female,44,2,2,Manufacturing Director,2,Married,4788,Upto 5k,25388,0,Y,Yes,11,3,4,80,0,4,2,3,3,2,0,2
+RM1381,35,26-35,No,Travel_Rarely,682,Sales,18,4,Medical,1,1945,2,Male,71,3,2,Sales Executive,1,Married,5561,5k-10k,15975,0,Y,No,16,3,4,80,1,6,2,1,5,3,0,4
+RM1393,35,26-35,No,Travel_Rarely,1224,Sales,7,4,Life Sciences,1,1962,3,Female,55,3,2,Sales Executive,4,Married,5204,5k-10k,13586,1,Y,Yes,11,3,4,80,0,10,2,3,10,8,0,9
+RM1423,35,26-35,No,TravelRarely,1490,Research & Development,11,4,Medical,1,2003,4,Male,43,3,1,Laboratory Technician,3,Married,2660,Upto 5k,20232,7,Y,Yes,11,3,3,80,1,5,3,3,2,2,2,2
+RM1425,35,26-35,No,Travel_Rarely,1395,Research & Development,9,4,Medical,1,2008,2,Male,48,3,2,Research Scientist,3,Single,5098,5k-10k,18698,1,Y,No,19,3,2,80,0,10,5,3,10,7,0,8
+RM1451,35,26-35,No,Travel_Rarely,1146,Human Resources,26,4,Life Sciences,1,2040,3,Female,31,3,3,Human Resources,4,Single,8837,5k-10k,16642,1,Y,Yes,16,3,3,80,0,9,2,3,9,0,1,7
+RM1457,35,26-35,No,Travel_Frequently,1199,Research & Development,18,4,Life Sciences,1,2049,3,Male,80,3,2,Healthcare Representative,3,Married,5689,5k-10k,24594,1,Y,Yes,14,3,4,80,2,10,2,4,10,2,0,2
+RM1459,35,26-35,No,Travel_Rarely,287,Research & Development,1,4,Life Sciences,1,2052,3,Female,62,1,1,Research Scientist,4,Married,2977,Upto 5k,8952,1,Y,No,12,3,4,80,1,4,5,3,4,3,1,1
+RM010,36,36-45,No,Travel_Rarely,1299,Research & Development,27,3,Medical,1,13,3,Male,94,3,2,Healthcare Representative,3,Married,5237,5k-10k,16577,6,Y,No,13,3,2,80,2,17,3,2,7,7,7,7
+RM022,36,36-45,Yes,Travel_Rarely,1218,Sales,9,4,Life Sciences,1,27,3,Male,82,2,1,Sales Representative,1,Single,3407,Upto 5k,6986,7,Y,No,23,4,2,80,0,10,4,3,5,3,0,3
+RM039,36,36-45,No,Travel_Rarely,852,Research & Development,5,4,Life Sciences,1,51,2,Female,82,2,1,Research Scientist,1,Married,3419,Upto 5k,13072,9,Y,Yes,14,3,4,80,1,6,3,4,1,1,0,0
+RM065,36,36-45,No,Travel_Rarely,1223,Research & Development,8,3,Technical Degree,1,83,3,Female,59,3,3,Healthcare Representative,3,Divorced,10096,10k-15k,8202,1,Y,No,13,3,2,80,3,17,2,3,17,14,12,8
+RM067,36,36-45,No,Travel_Frequently,1195,Research & Development,11,3,Life Sciences,1,85,2,Male,95,2,2,Manufacturing Director,2,Single,6499,5k-10k,22656,1,Y,No,13,3,3,80,0,6,3,3,6,5,0,3
+RM070,36,36-45,Yes,Travel_Rarely,318,Research & Development,9,3,Medical,1,90,4,Male,79,2,1,Research Scientist,3,Married,3388,Upto 5k,21777,0,Y,Yes,17,3,1,80,1,2,0,2,1,0,0,
+RM075,36,36-45,No,Travel_Rarely,132,Research & Development,6,3,Life Sciences,1,97,2,Female,55,4,1,Laboratory Technician,4,Married,3038,Upto 5k,22002,3,Y,No,12,3,2,80,0,5,3,3,1,0,0,
+RM118,36,36-45,No,Travel_Frequently,1467,Sales,11,2,Technical Degree,1,154,2,Female,92,3,3,Sales Executive,4,Married,9738,5k-10k,22952,0,Y,No,14,3,3,80,1,10,6,3,9,7,2,8
+RM119,36,36-45,No,Travel_Rarely,922,Research & Development,3,2,Life Sciences,1,155,1,Female,39,3,1,Laboratory Technician,4,Divorced,2835,Upto 5k,2561,5,Y,No,22,4,1,80,1,7,2,3,1,0,0,0
+RM136,36,36-45,No,Travel_Rarely,216,Research & Development,6,2,Medical,1,178,2,Male,84,3,2,Manufacturing Director,2,Divorced,4941,Upto 5k,2819,6,Y,No,20,4,4,80,2,7,0,3,3,2,0,1
+RM173,36,36-45,No,Travel_Frequently,1480,Research & Development,3,2,Medical,1,238,4,Male,30,3,1,Laboratory Technician,2,Single,2088,Upto 5k,15062,4,Y,No,12,3,3,80,0,13,3,2,8,7,7,2
+RM208,36,36-45,No,Travel_Frequently,635,Research & Development,18,1,Medical,1,286,2,Female,73,3,1,Laboratory Technician,4,Single,2153,Upto 5k,7703,1,Y,No,13,3,1,80,0,8,2,3,8,1,1,
+RM221,36,36-45,No,Travel_Rarely,1396,Research & Development,5,2,Life Sciences,1,304,4,Male,62,3,2,Laboratory Technician,2,Single,5914,5k-10k,9945,8,Y,No,16,3,4,80,0,16,3,4,13,11,3,7
+RM270,36,36-45,No,Travel_Rarely,1403,Research & Development,6,3,Life Sciences,1,373,4,Male,47,3,1,Laboratory Technician,4,Married,3210,Upto 5k,20251,0,Y,No,11,3,3,80,1,16,4,3,15,13,10,11
+RM292,36,36-45,No,Travel_Rarely,506,Research & Development,3,3,Technical Degree,1,397,3,Male,30,3,2,Research Scientist,2,Single,4485,Upto 5k,26285,4,Y,No,12,3,4,80,0,10,2,3,8,0,7,7
+RM299,36,36-45,No,Travel_Frequently,566,Research & Development,18,4,Life Sciences,1,407,3,Male,81,4,1,Laboratory Technician,4,Married,3688,Upto 5k,7122,4,Y,No,18,3,4,80,2,4,2,3,1,0,0,0
+RM306,36,36-45,No,Non-Travel,1105,Research & Development,24,4,Life Sciences,1,419,2,Female,47,3,2,Laboratory Technician,2,Married,5674,5k-10k,6927,7,Y,No,15,3,3,80,1,11,3,3,9,8,0,8
+RM359,36,36-45,No,Non-Travel,845,Sales,1,5,Medical,1,479,4,Female,45,3,2,Sales Executive,4,Single,6653,5k-10k,15276,4,Y,No,15,3,2,80,0,7,6,3,1,0,0,
+RM360,36,36-45,No,Travel_Frequently,541,Sales,3,4,Medical,1,481,1,Male,48,2,3,Sales Executive,4,Married,9699,5k-10k,7246,4,Y,No,11,3,1,80,1,16,2,3,13,9,1,
+RM378,36,36-45,No,Travel_Rarely,329,Research & Development,2,3,Life Sciences,1,501,4,Female,96,3,1,Research Scientist,3,Married,2543,Upto 5k,11868,4,Y,No,13,3,2,80,1,6,3,3,2,2,2,2
+RM385,36,36-45,No,Travel_Rarely,164,Sales,2,2,Medical,1,513,2,Male,61,2,3,Sales Executive,3,Married,7596,5k-10k,3809,1,Y,No,13,3,2,80,2,10,2,3,10,9,9,0
+RM443,36,36-45,No,Non-Travel,635,Sales,10,4,Medical,1,592,2,Male,32,3,3,Sales Executive,4,Single,9980,5k-10k,15318,1,Y,No,14,3,4,80,0,10,3,2,10,3,9,7
+RM512,36,36-45,No,Travel_Rarely,913,Research & Development,9,2,Medical,1,699,2,Male,48,2,2,Manufacturing Director,2,Divorced,8847,5k-10k,13934,2,Y,Yes,11,3,3,80,1,13,2,3,3,2,0,2
+RM542,36,36-45,No,Non-Travel,427,Research & Development,8,3,Life Sciences,1,742,1,Female,63,4,3,Research Director,1,Married,11713,10k-15k,20335,9,Y,No,14,3,1,80,1,10,2,3,8,7,0,5
+RM570,36,36-45,No,Non-Travel,1434,Sales,8,4,Life Sciences,1,789,1,Male,76,2,3,Sales Executive,1,Single,7587,5k-10k,14229,1,Y,No,15,3,2,80,0,10,1,3,10,7,0,9
+RM594,36,36-45,No,Travel_Rarely,676,Research & Development,1,3,Other,1,823,3,Female,35,3,2,Manufacturing Director,2,Married,5228,5k-10k,23361,0,Y,No,15,3,1,80,1,10,2,3,9,7,0,5
+RM600,36,36-45,No,Travel_Rarely,1041,Human Resources,13,3,Human Resources,1,829,3,Male,36,3,1,Human Resources,2,Married,2143,Upto 5k,25527,4,Y,No,13,3,2,80,1,8,2,3,5,2,0,4
+RM622,36,36-45,No,Travel_Rarely,928,Sales,1,2,Life Sciences,1,857,2,Male,56,3,2,Sales Executive,4,Married,6201,5k-10k,2823,1,Y,Yes,14,3,4,80,1,18,1,2,18,14,4,11
+RM634,36,36-45,No,Travel_Rarely,1278,Human Resources,8,3,Life Sciences,1,878,1,Male,77,2,1,Human Resources,1,Married,2342,Upto 5k,8635,0,Y,No,21,4,3,80,0,6,3,3,5,4,0,3
+RM665,36,36-45,No,Travel_Rarely,1425,Research & Development,14,1,Life Sciences,1,924,3,Male,68,3,2,Healthcare Representative,4,Married,6586,5k-10k,4821,0,Y,Yes,17,3,1,80,1,17,2,2,16,8,4,11
+RM681,36,36-45,No,Travel_Rarely,188,Research & Development,7,4,Other,1,949,2,Male,65,3,1,Research Scientist,4,Single,4678,Upto 5k,23293,2,Y,No,18,3,3,80,0,8,6,3,6,2,0,1
+RM688,36,36-45,No,Travel_Rarely,938,Research & Development,2,4,Medical,1,958,3,Male,79,3,1,Laboratory Technician,3,Single,2519,Upto 5k,12287,4,Y,No,21,4,3,80,0,16,6,3,11,8,3,9
+RM694,36,36-45,Yes,Travel_Rarely,530,Sales,3,1,Life Sciences,1,967,3,Male,51,2,3,Sales Executive,4,Married,10325,10k-15k,5518,1,Y,Yes,11,3,1,80,1,16,6,3,16,7,3,7
+RM709,36,36-45,No,Non-Travel,1229,Sales,8,4,Technical Degree,1,990,1,Male,84,3,2,Sales Executive,4,Divorced,5079,5k-10k,25952,4,Y,No,13,3,4,80,2,12,3,3,7,7,0,7
+RM753,36,36-45,Yes,Travel_Rarely,885,Research & Development,16,4,Life Sciences,1,1042,3,Female,43,4,1,Laboratory Technician,1,Single,2743,Upto 5k,8269,1,Y,No,16,3,3,80,0,18,1,3,17,13,15,14
+RM762,36,36-45,Yes,Travel_Rarely,660,Research & Development,15,3,Other,1,1052,1,Male,81,3,2,Laboratory Technician,3,Divorced,4834,Upto 5k,7858,7,Y,No,14,3,2,80,1,9,3,2,1,0,0,0
+RM774,36,36-45,No,Travel_Rarely,796,Research & Development,12,5,Medical,1,1073,4,Female,51,2,3,Manufacturing Director,4,Single,8858,5k-10k,15669,0,Y,No,11,3,2,80,0,15,2,2,14,8,7,8
+RM818,36,36-45,No,Non-Travel,217,Research & Development,18,4,Life Sciences,1,1133,1,Male,78,3,2,Manufacturing Director,4,Single,7779,5k-10k,23238,2,Y,No,20,4,1,80,0,18,0,3,11,9,0,9
+RM874,36,36-45,No,Travel_Rarely,917,Research & Development,6,4,Life Sciences,1,1221,3,Male,60,1,1,Laboratory Technician,3,Divorced,2741,Upto 5k,6865,1,Y,No,14,3,3,80,1,7,4,3,7,7,1,7
+RM883,36,36-45,No,Travel_Rarely,363,Research & Development,1,3,Technical Degree,1,1237,3,Female,77,1,3,Manufacturing Director,1,Divorced,10252,10k-15k,4235,2,Y,Yes,21,4,3,80,1,17,2,3,7,7,7,7
+RM901,36,36-45,No,Travel_Frequently,469,Research & Development,3,3,Technical Degree,1,1257,3,Male,46,3,1,Research Scientist,2,Married,3692,Upto 5k,9256,1,Y,No,12,3,3,80,0,12,2,2,11,10,0,7
+RM928,36,36-45,No,Travel_Rarely,429,Research & Development,2,4,Life Sciences,1,1294,3,Female,53,3,2,Manufacturing Director,2,Single,5410,5k-10k,2323,9,Y,Yes,11,3,4,80,0,18,2,3,16,14,5,12
+RM943,36,36-45,No,Travel_Rarely,325,Research & Development,10,4,Technical Degree,1,1312,4,Female,63,3,3,Healthcare Representative,3,Married,7094,5k-10k,5747,3,Y,No,12,3,1,80,0,10,0,3,7,7,1,7
+RM969,36,36-45,No,Travel_Frequently,607,Sales,7,3,Marketing,1,1362,1,Female,83,4,2,Sales Executive,1,Married,4639,Upto 5k,2261,2,Y,No,16,3,4,80,1,17,2,2,15,7,6,13
+RM1012,36,36-45,No,Travel_Rarely,1174,Sales,3,4,Marketing,1,1425,1,Female,99,3,2,Sales Executive,2,Single,9278,5k-10k,20763,3,Y,Yes,16,3,4,80,0,15,3,3,5,4,0,1
+RM1019,36,36-45,No,Travel_Rarely,172,Research & Development,4,4,Life Sciences,1,1435,1,Male,37,2,2,Laboratory Technician,4,Single,5810,5k-10k,22604,1,Y,No,16,3,3,80,0,10,2,2,10,4,1,8
+RM1020,36,36-45,No,Travel_Rarely,329,Sales,16,4,Marketing,1,1436,3,Female,98,2,2,Sales Executive,1,Married,5647,5k-10k,13494,4,Y,No,13,3,1,80,2,11,3,2,3,2,0,2
+RM1103,36,36-45,No,Travel_Rarely,1157,Sales,2,4,Life Sciences,1,1556,3,Male,70,3,1,Sales Representative,4,Single,2644,Upto 5k,17001,3,Y,Yes,21,4,4,80,0,7,3,2,3,2,1,2
+RM1122,36,36-45,No,Travel_Rarely,884,Sales,1,4,Life Sciences,1,1585,2,Female,73,3,2,Sales Executive,3,Single,6815,5k-10k,21447,6,Y,No,13,3,1,80,0,15,5,3,1,0,0,0
+RM1129,36,36-45,No,Travel_Frequently,1302,Research & Development,6,4,Life Sciences,1,1594,1,Male,80,4,2,Laboratory Technician,1,Married,5562,5k-10k,19711,3,Y,Yes,13,3,4,80,1,9,3,3,3,2,0,2
+RM1146,36,36-45,No,Travel_Rarely,559,Research & Development,12,4,Life Sciences,1,1614,3,Female,76,3,2,Manufacturing Director,3,Married,4663,Upto 5k,12421,9,Y,Yes,12,3,2,80,2,7,2,3,3,2,1,1
+RM1174,36,36-45,No,Travel_Rarely,711,Research & Development,5,4,Life Sciences,1,1651,2,Female,42,3,3,Healthcare Representative,1,Married,8008,5k-10k,22792,4,Y,No,12,3,3,80,2,9,6,3,3,2,0,2
+RM1181,36,36-45,No,Travel_Rarely,311,Research & Development,7,3,Life Sciences,1,1659,1,Male,77,3,1,Laboratory Technician,2,Single,2013,Upto 5k,10950,2,Y,No,11,3,3,80,0,15,4,3,4,3,1,3
+RM1183,36,36-45,No,Non-Travel,894,Research & Development,1,4,Medical,1,1662,4,Female,33,2,2,Manufacturing Director,3,Married,4374,Upto 5k,15411,0,Y,No,15,3,3,80,0,4,6,3,3,2,1,2
+RM1184,36,36-45,No,Travel_Rarely,1040,Research & Development,3,2,Life Sciences,1,1664,4,Male,79,4,2,Healthcare Representative,1,Divorced,6842,5k-10k,26308,6,Y,No,20,4,1,80,1,13,3,3,5,4,0,4
+RM1200,36,36-45,No,Travel_Rarely,1351,Research & Development,26,4,Life Sciences,1,1682,1,Male,80,3,2,Healthcare Representative,3,Married,5347,5k-10k,7419,6,Y,No,14,3,2,80,2,10,2,2,3,2,0,2
+RM1221,36,36-45,No,Travel_Rarely,530,Sales,2,4,Life Sciences,1,1710,3,Female,51,3,2,Sales Representative,4,Single,4502,Upto 5k,7439,3,Y,No,15,3,3,80,0,17,2,2,13,7,6,7
+RM1237,36,36-45,Yes,Travel_Rarely,1456,Sales,13,5,Marketing,1,1733,2,Male,96,2,2,Sales Executive,1,Divorced,6134,5k-10k,8658,5,Y,Yes,13,3,2,80,3,16,3,3,2,2,2,2
+RM1279,36,36-45,No,Travel_Rarely,1383,Research & Development,10,3,Life Sciences,1,1790,4,Male,90,3,3,Healthcare Representative,1,Married,8321,5k-10k,25949,7,Y,Yes,13,3,4,80,1,15,1,3,12,8,5,7
+RM1316,36,36-45,No,Travel_Rarely,430,Research & Development,2,4,Other,1,1847,4,Female,73,3,2,Research Scientist,2,Married,6962,5k-10k,19573,4,Y,Yes,22,4,4,80,1,15,2,3,1,0,0,0
+RM1341,36,36-45,No,Travel_Rarely,1266,Sales,10,4,Technical Degree,1,1880,2,Female,63,2,2,Sales Executive,3,Married,5673,5k-10k,6060,1,Y,Yes,13,3,1,80,1,10,4,3,10,9,1,7
+RM1348,36,36-45,No,Travel_Frequently,1213,Human Resources,2,1,Human Resources,1,1890,2,Male,94,2,2,Human Resources,4,Single,3886,Upto 5k,4223,1,Y,No,21,4,4,80,0,10,2,2,10,1,0,8
+RM1356,36,36-45,No,Travel_Rarely,335,Sales,17,2,Marketing,1,1908,3,Male,33,2,2,Sales Executive,2,Married,5507,5k-10k,16822,2,Y,No,16,3,3,80,2,12,1,1,4,2,1,3
+RM1384,36,36-45,No,Non-Travel,1351,Research & Development,9,4,Life Sciences,1,1949,1,Male,66,4,1,Laboratory Technician,2,Married,2810,Upto 5k,9238,1,Y,No,22,4,2,80,0,5,3,3,5,4,0,2
+RM1440,36,36-45,No,Travel_Rarely,557,Sales,3,3,Medical,1,2024,1,Female,94,2,3,Sales Executive,4,Married,7644,5k-10k,12695,0,Y,No,19,3,3,80,2,10,2,3,9,7,3,4
+RM1441,36,36-45,No,Travel_Frequently,688,Research & Development,4,2,Life Sciences,1,2025,4,Female,97,3,2,Manufacturing Director,2,Divorced,5131,5k-10k,9192,7,Y,No,13,3,2,80,3,18,3,3,4,2,0,2
+RM1448,36,36-45,No,Non-Travel,301,Sales,15,4,Marketing,1,2036,4,Male,88,1,2,Sales Executive,4,Divorced,5406,5k-10k,10436,1,Y,No,24,4,1,80,1,15,4,2,15,12,11,11
+RM1454,36,36-45,No,Travel_Rarely,1120,Sales,11,4,Marketing,1,2045,2,Female,100,2,2,Sales Executive,4,Married,6652,5k-10k,14369,4,Y,No,13,3,1,80,1,8,2,2,6,3,0,0
+RM1466,36,36-45,No,Travel_Frequently,884,Research & Development,23,2,Medical,1,2061,3,Male,41,4,2,Laboratory Technician,4,Married,2571,Upto 5k,12290,4,Y,No,17,3,3,80,1,17,3,3,5,2,0,3
+RM1466,36,36-45,No,Travel_Frequently,884,Research & Development,23,2,Medical,1,2061,3,Male,41,4,2,Laboratory Technician,4,Married,2571,Upto 5k,12290,4,Y,No,17,3,3,80,1,17,3,3,5,2,0,2
+RM003,37,36-45,Yes,Travel_Rarely,1373,Research & Development,2,2,Other,1,4,4,Male,92,2,1,Laboratory Technician,3,Single,2090,Upto 5k,2396,6,Y,Yes,15,3,2,80,0,7,3,3,0,0,0,0
+RM048,37,36-45,No,Travel_Rarely,408,Research & Development,19,2,Life Sciences,1,61,2,Male,73,3,1,Research Scientist,2,Married,3022,Upto 5k,10227,4,Y,No,21,4,1,80,0,8,1,3,1,0,0,0
+RM060,37,36-45,No,Travel_Rarely,1115,Research & Development,1,4,Life Sciences,1,77,1,Male,51,2,2,Manufacturing Director,3,Divorced,5993,5k-10k,2689,1,Y,No,18,3,3,80,1,7,2,4,7,5,0,7
+RM079,37,36-45,No,Travel_Rarely,397,Research & Development,7,4,Medical,1,102,1,Male,30,3,3,Research Director,3,Single,13664,10k-15k,25258,4,Y,No,13,3,1,80,0,16,3,4,5,2,0,2
+RM101,37,36-45,Yes,Travel_Rarely,807,Human Resources,6,4,Human Resources,1,133,3,Male,63,3,1,Human Resources,1,Divorced,2073,Upto 5k,23648,4,Y,Yes,22,4,4,80,0,7,3,3,3,2,0,2
+RM105,37,36-45,No,Non-Travel,1040,Research & Development,2,2,Life Sciences,1,139,3,Male,100,2,2,Healthcare Representative,4,Divorced,5163,5k-10k,15850,5,Y,No,14,3,4,80,1,17,2,4,1,0,0,0
+RM116,37,36-45,No,Travel_Rarely,1189,Sales,3,3,Life Sciences,1,152,3,Male,87,3,3,Sales Executive,4,Single,7428,5k-10k,14506,2,Y,No,12,3,1,80,0,12,3,3,5,3,1,3
+RM196,37,36-45,No,Travel_Rarely,290,Research & Development,21,3,Life Sciences,1,267,2,Male,65,4,1,Research Scientist,1,Married,3564,Upto 5k,22977,1,Y,Yes,12,3,1,80,1,8,3,2,8,7,1,7
+RM223,37,36-45,No,Travel_Frequently,663,Research & Development,11,3,Other,1,306,2,Male,47,3,3,Research Director,4,Divorced,12185,10k-15k,10056,1,Y,Yes,14,3,3,80,3,10,1,3,10,8,0,7
+RM227,37,36-45,No,Travel_Frequently,319,Sales,4,4,Marketing,1,311,1,Male,41,3,1,Sales Representative,4,Divorced,2793,Upto 5k,2539,4,Y,No,17,3,3,80,1,13,2,3,9,8,5,8
+RM249,37,36-45,No,Travel_Rarely,1017,Research & Development,1,2,Medical,1,340,3,Female,83,2,1,Research Scientist,1,Married,3920,Upto 5k,18697,2,Y,No,14,3,1,80,1,17,2,2,3,1,0,
+RM251,37,36-45,Yes,Travel_Frequently,504,Research & Development,10,3,Medical,1,342,1,Male,61,3,3,Manufacturing Director,3,Divorced,10048,10k-15k,22573,6,Y,No,11,3,2,80,2,17,5,3,1,0,0,
+RM274,37,36-45,No,Travel_Rarely,228,Sales,6,4,Medical,1,378,3,Male,98,3,2,Sales Executive,4,Married,6502,5k-10k,22825,4,Y,No,14,3,2,80,1,7,5,4,5,4,0,1
+RM276,37,36-45,No,Non-Travel,728,Research & Development,1,4,Medical,1,380,1,Female,80,3,3,Research Director,4,Divorced,13603,10k-15k,11677,2,Y,Yes,18,3,1,80,2,15,2,3,5,2,0,2
+RM286,37,36-45,No,Travel_Rarely,1372,Research & Development,1,3,Life Sciences,1,391,4,Female,42,3,1,Research Scientist,4,Single,2115,Upto 5k,15881,1,Y,No,12,3,2,80,0,17,3,3,17,12,5,7
+RM295,37,36-45,No,Travel_Frequently,889,Research & Development,9,3,Medical,1,403,2,Male,53,3,1,Research Scientist,4,Married,2326,Upto 5k,11411,1,Y,Yes,12,3,3,80,3,4,3,2,4,2,1,2
+RM341,37,36-45,No,Travel_Rarely,1192,Research & Development,5,2,Medical,1,460,4,Male,61,3,2,Manufacturing Director,4,Divorced,6347,5k-10k,23177,7,Y,No,16,3,3,80,2,8,2,2,6,2,0,4
+RM354,37,36-45,No,Travel_Rarely,1319,Research & Development,6,3,Medical,1,474,3,Male,51,4,2,Research Scientist,1,Divorced,5974,5k-10k,17001,4,Y,Yes,13,3,1,80,2,13,2,3,7,7,6,7
+RM365,37,36-45,No,Travel_Rarely,921,Research & Development,10,3,Medical,1,486,3,Female,98,3,1,Laboratory Technician,1,Married,3452,Upto 5k,17663,6,Y,No,20,4,2,80,1,17,3,3,5,4,0,3
+RM387,37,36-45,No,Travel_Rarely,1107,Research & Development,14,3,Life Sciences,1,515,4,Female,95,3,1,Laboratory Technician,1,Divorced,3034,Upto 5k,26914,1,Y,No,12,3,3,80,1,18,2,2,18,7,12,17
+RM390,37,36-45,No,Travel_Rarely,1305,Research & Development,10,4,Life Sciences,1,518,3,Male,49,3,2,Manufacturing Director,2,Single,4197,Upto 5k,21123,2,Y,Yes,12,3,4,80,0,18,2,2,1,0,0,1
+RM399,37,36-45,No,Non-Travel,1063,Research & Development,25,5,Medical,1,529,2,Female,72,3,2,Research Scientist,3,Married,4449,Upto 5k,23866,3,Y,Yes,15,3,1,80,2,15,2,3,13,11,10,7
+RM465,37,36-45,No,Travel_Rarely,799,Research & Development,1,3,Technical Degree,1,623,2,Female,59,3,3,Manufacturing Director,4,Single,7491,5k-10k,23848,4,Y,No,17,3,4,80,0,12,3,4,6,5,1,2
+RM468,37,36-45,No,Non-Travel,142,Sales,9,4,Medical,1,626,1,Male,69,3,3,Sales Executive,2,Divorced,8834,5k-10k,24666,1,Y,No,13,3,4,80,1,9,6,3,9,5,7,7
+RM473,37,36-45,No,Travel_Rarely,446,Research & Development,1,4,Life Sciences,1,635,2,Female,65,3,2,Manufacturing Director,2,Married,6447,5k-10k,15701,6,Y,No,12,3,2,80,1,8,2,2,6,5,4,3
+RM487,37,36-45,No,Travel_Rarely,558,Sales,2,3,Marketing,1,656,4,Male,75,3,2,Sales Executive,3,Married,9602,5k-10k,3010,4,Y,Yes,11,3,3,80,1,17,3,2,3,0,1,0
+RM507,37,36-45,No,Travel_Rarely,482,Research & Development,3,3,Other,1,689,3,Male,36,3,3,Manufacturing Director,3,Married,9434,5k-10k,9606,1,Y,No,15,3,3,80,1,10,2,3,10,7,7,8
+RM523,37,36-45,No,Travel_Rarely,1225,Research & Development,10,2,Life Sciences,1,715,4,Male,80,4,1,Research Scientist,4,Single,4680,Upto 5k,15232,3,Y,No,17,3,1,80,0,4,2,3,1,0,0,0
+RM578,37,36-45,No,Travel_Rarely,571,Research & Development,10,1,Life Sciences,1,802,4,Female,82,3,1,Research Scientist,1,Divorced,2782,Upto 5k,19905,0,Y,Yes,13,3,2,80,2,6,3,2,5,3,4,3
+RM629,37,36-45,No,Travel_Rarely,342,Sales,16,4,Marketing,1,868,4,Male,66,2,2,Sales Executive,3,Divorced,6334,5k-10k,24558,4,Y,No,19,3,4,80,2,9,2,3,1,0,0,0
+RM649,37,36-45,No,Travel_Frequently,1231,Sales,21,2,Medical,1,900,3,Female,54,3,1,Sales Representative,4,Married,2973,Upto 5k,21222,5,Y,No,15,3,2,80,1,10,3,3,5,4,0,0
+RM653,37,36-45,No,Non-Travel,1252,Sales,19,2,Medical,1,904,1,Male,32,3,3,Sales Executive,2,Single,7642,5k-10k,4814,1,Y,Yes,13,3,4,80,0,10,2,3,10,0,0,9
+RM696,37,36-45,Yes,Travel_Rarely,625,Sales,1,4,Life Sciences,1,970,1,Male,46,2,3,Sales Executive,3,Married,10609,10k-15k,14922,5,Y,No,11,3,3,80,0,17,2,1,14,1,11,7
+RM745,37,36-45,Yes,Travel_Rarely,1141,Research & Development,11,2,Medical,1,1033,1,Female,61,1,2,Healthcare Representative,2,Married,4777,Upto 5k,14382,5,Y,No,15,3,1,80,0,15,2,1,1,0,0,0
+RM768,37,36-45,No,Travel_Rarely,124,Research & Development,3,3,Other,1,1062,4,Female,35,3,2,Healthcare Representative,2,Single,4107,Upto 5k,13848,3,Y,No,15,3,1,80,0,8,3,2,4,3,0,1
+RM796,37,36-45,No,Travel_Rarely,309,Sales,10,4,Life Sciences,1,1105,4,Female,88,2,2,Sales Executive,4,Divorced,6694,5k-10k,24223,2,Y,Yes,14,3,3,80,3,8,5,3,1,0,0,0
+RM833,37,36-45,No,Travel_Rarely,367,Research & Development,25,2,Medical,1,1161,3,Female,52,2,2,Healthcare Representative,4,Divorced,5731,5k-10k,17171,7,Y,No,13,3,3,80,2,9,2,3,6,2,1,3
+RM856,37,36-45,No,Travel_Rarely,977,Research & Development,1,3,Life Sciences,1,1196,4,Female,56,2,2,Manufacturing Director,4,Married,6474,5k-10k,9961,1,Y,No,13,3,2,80,1,14,2,2,14,8,3,11
+RM990,37,36-45,No,Travel_Rarely,1439,Research & Development,4,1,Life Sciences,1,1394,3,Male,54,3,1,Research Scientist,3,Married,2996,Upto 5k,5182,7,Y,Yes,15,3,4,80,0,8,2,3,6,4,1,3
+RM1002,37,36-45,No,Travel_Rarely,1462,Research & Development,11,3,Medical,1,1411,1,Female,94,3,1,Laboratory Technician,3,Single,3629,Upto 5k,19106,4,Y,No,18,3,1,80,0,8,6,3,3,2,0,2
+RM1023,37,36-45,No,Non-Travel,1413,Research & Development,5,2,Technical Degree,1,1440,3,Male,84,4,1,Laboratory Technician,3,Single,3500,Upto 5k,25470,0,Y,No,14,3,1,80,0,7,2,1,6,5,1,3
+RM1090,37,36-45,No,Travel_Rarely,674,Research & Development,13,3,Medical,1,1543,1,Male,47,3,2,Research Scientist,4,Married,4285,Upto 5k,3031,1,Y,No,17,3,1,80,0,10,2,3,10,8,3,7
+RM1159,37,36-45,No,Travel_Rarely,671,Research & Development,19,3,Life Sciences,1,1631,3,Male,85,3,2,Manufacturing Director,3,Married,5768,5k-10k,26493,3,Y,No,17,3,1,80,3,9,2,2,4,3,0,2
+RM1164,37,36-45,No,Travel_Rarely,1470,Research & Development,10,3,Medical,1,1640,2,Female,71,3,1,Research Scientist,2,Married,3936,Upto 5k,9953,1,Y,No,11,3,1,80,1,8,2,1,8,4,7,7
+RM1212,37,36-45,No,Travel_Frequently,1278,Sales,1,4,Medical,1,1700,3,Male,31,1,2,Sales Executive,4,Divorced,9525,5k-10k,7677,1,Y,No,14,3,3,80,2,6,2,2,6,3,1,3
+RM1277,37,36-45,No,Travel_Rarely,589,Sales,9,2,Marketing,1,1787,2,Male,46,2,2,Sales Executive,2,Married,4189,Upto 5k,8800,1,Y,No,14,3,1,80,2,5,2,3,5,2,0,3
+RM1281,37,36-45,No,Travel_Rarely,1239,Human Resources,8,2,Other,1,1794,3,Male,89,3,2,Human Resources,2,Divorced,4071,Upto 5k,12832,2,Y,No,13,3,3,80,0,19,4,2,10,0,4,7
+RM1292,37,36-45,Yes,Travel_Rarely,370,Research & Development,10,4,Medical,1,1809,4,Male,58,3,2,Manufacturing Director,1,Single,4213,Upto 5k,4992,1,Y,No,15,3,2,80,0,10,4,1,10,3,0,8
+RM1345,37,36-45,No,Travel_Rarely,783,Research & Development,7,4,Medical,1,1885,4,Male,78,3,2,Research Scientist,1,Married,4284,Upto 5k,13588,5,Y,Yes,22,4,3,80,1,16,2,3,5,3,0,4
+RM1433,37,36-45,No,Travel_Rarely,161,Research & Development,10,3,Life Sciences,1,2017,3,Female,42,4,3,Research Director,4,Married,13744,10k-15k,15471,1,Y,Yes,25,4,1,80,1,16,2,3,16,11,6,8
+RM009,38,36-45,No,Travel_Frequently,216,Research & Development,23,3,Life Sciences,1,12,4,Male,44,2,3,Manufacturing Director,3,Single,9526,5k-10k,8787,0,Y,No,21,4,2,80,0,10,2,3,9,7,1,
+RM020,38,36-45,No,Travel_Rarely,371,Research & Development,2,3,Life Sciences,1,24,4,Male,45,3,1,Research Scientist,4,Single,3944,Upto 5k,4306,5,Y,Yes,11,3,3,80,0,6,3,3,3,2,1,2
+RM062,38,36-45,No,Travel_Frequently,653,Research & Development,29,5,Life Sciences,1,79,4,Female,50,3,2,Laboratory Technician,4,Single,2406,Upto 5k,5456,1,Y,No,11,3,4,80,0,10,2,3,10,3,9,9
+RM084,38,36-45,No,Non-Travel,573,Research & Development,6,3,Medical,1,107,2,Female,79,1,2,Research Scientist,4,Divorced,5329,5k-10k,15717,7,Y,Yes,12,3,4,80,3,17,3,3,13,11,1,9
+RM143,38,36-45,No,Travel_Rarely,364,Research & Development,3,5,Technical Degree,1,193,4,Female,32,3,2,Research Scientist,3,Single,4317,Upto 5k,2302,3,Y,Yes,20,4,2,80,0,19,2,3,3,2,2,
+RM169,38,36-45,No,Travel_Rarely,702,Sales,1,4,Life Sciences,1,230,1,Female,59,2,2,Sales Executive,4,Single,8686,5k-10k,12930,4,Y,No,22,4,3,80,0,12,2,4,8,3,0,7
+RM180,38,36-45,No,Travel_Rarely,1380,Research & Development,9,2,Life Sciences,1,245,3,Female,75,3,1,Laboratory Technician,4,Single,2288,Upto 5k,6319,1,Y,No,12,3,3,80,0,2,3,3,2,2,2,1
+RM199,38,36-45,No,Travel_Rarely,1261,Research & Development,2,4,Life Sciences,1,271,4,Male,88,3,2,Manufacturing Director,3,Married,6553,5k-10k,7259,9,Y,No,14,3,2,80,0,14,3,3,1,0,0,0
+RM200,38,36-45,No,Travel_Rarely,1084,Research & Development,29,3,Technical Degree,1,273,4,Male,54,3,2,Manufacturing Director,4,Married,6261,5k-10k,4185,3,Y,No,18,3,1,80,1,9,3,1,7,7,1,7
+RM205,38,36-45,Yes,Travel_Rarely,1180,Research & Development,29,1,Medical,1,282,2,Male,70,3,2,Healthcare Representative,1,Married,6673,5k-10k,11354,7,Y,Yes,19,3,2,80,0,17,2,3,1,0,0,0
+RM224,38,36-45,No,Travel_Rarely,119,Sales,3,3,Life Sciences,1,307,1,Male,76,3,3,Sales Executive,3,Divorced,10609,10k-15k,9647,0,Y,No,12,3,3,80,2,17,6,2,16,10,5,13
+RM262,38,36-45,No,Non-Travel,1327,Sales,2,2,Life Sciences,1,361,4,Male,39,2,2,Sales Executive,4,Married,5249,5k-10k,19682,3,Y,No,18,3,4,80,1,13,0,3,8,7,7,5
+RM278,38,36-45,No,Travel_Rarely,322,Sales,7,2,Medical,1,382,1,Female,44,4,2,Sales Executive,1,Divorced,5605,5k-10k,19191,1,Y,Yes,24,4,3,80,1,8,3,3,8,0,7,7
+RM288,38,36-45,No,Travel_Rarely,688,Research & Development,23,4,Life Sciences,1,393,4,Male,82,3,2,Healthcare Representative,4,Divorced,5745,5k-10k,18899,9,Y,No,14,3,2,80,1,10,2,3,2,2,1,2
+RM308,38,36-45,No,Travel_Rarely,849,Research & Development,25,2,Life Sciences,1,421,1,Female,81,2,3,Research Director,2,Married,12061,10k-15k,26707,3,Y,No,17,3,3,80,1,19,2,3,10,8,0,1
+RM342,38,36-45,No,Travel_Rarely,343,Research & Development,15,2,Life Sciences,1,461,3,Male,92,2,3,Research Director,4,Divorced,11510,10k-15k,15682,0,Y,Yes,14,3,2,80,1,12,3,3,11,10,2,9
+RM417,38,36-45,No,Travel_Frequently,1490,Research & Development,2,2,Life Sciences,1,556,4,Male,42,3,1,Laboratory Technician,4,Married,1702,Upto 5k,12106,1,Y,Yes,23,4,3,80,1,1,3,3,1,0,0,0
+RM472,38,36-45,No,Travel_Rarely,1495,Research & Development,10,3,Medical,1,634,3,Female,76,3,2,Healthcare Representative,3,Married,9824,5k-10k,22174,3,Y,No,19,3,3,80,1,18,4,3,1,0,0,0
+RM491,38,36-45,No,Travel_Rarely,362,Research & Development,1,1,Life Sciences,1,662,3,Female,43,3,1,Research Scientist,1,Single,2619,Upto 5k,14561,3,Y,No,17,3,4,80,0,8,3,2,0,0,0,0
+RM519,38,36-45,No,Travel_Rarely,243,Sales,7,4,Marketing,1,709,4,Female,46,2,2,Sales Executive,4,Single,4028,Upto 5k,7791,0,Y,No,20,4,1,80,0,8,2,3,7,7,0,5
+RM530,38,36-45,No,Travel_Rarely,827,Research & Development,1,4,Life Sciences,1,724,2,Female,33,4,2,Healthcare Representative,4,Single,7625,5k-10k,19383,0,Y,No,13,3,3,80,0,10,4,2,9,7,1,8
+RM543,38,36-45,No,Travel_Rarely,168,Research & Development,1,3,Life Sciences,1,743,3,Female,81,3,3,Manufacturing Director,3,Single,7861,5k-10k,15397,4,Y,Yes,14,3,4,80,0,10,4,4,1,0,0,0
+RM560,38,36-45,No,Travel_Rarely,268,Research & Development,2,5,Medical,1,773,4,Male,92,3,1,Research Scientist,3,Married,3057,Upto 5k,20471,6,Y,Yes,13,3,2,80,1,6,0,1,1,0,0,1
+RM579,38,36-45,No,Travel_Frequently,240,Research & Development,2,4,Life Sciences,1,803,1,Female,75,4,2,Manufacturing Director,1,Single,5980,5k-10k,26085,6,Y,Yes,12,3,4,80,0,17,2,3,15,7,4,12
+RM606,38,36-45,No,Travel_Frequently,471,Research & Development,12,3,Life Sciences,1,837,1,Male,45,2,2,Healthcare Representative,1,Divorced,6288,5k-10k,4284,2,Y,No,15,3,3,80,1,13,3,2,4,3,1,2
+RM643,38,36-45,No,Travel_Rarely,395,Sales,9,3,Marketing,1,893,2,Male,98,2,1,Sales Representative,2,Married,2899,Upto 5k,12102,0,Y,No,19,3,4,80,1,3,3,3,2,2,1,2
+RM682,38,36-45,No,Travel_Rarely,1333,Research & Development,1,3,Technical Degree,1,950,4,Female,80,3,3,Research Director,1,Married,13582,10k-15k,16292,1,Y,No,13,3,2,80,1,15,3,3,15,12,5,11
+RM704,38,36-45,No,Non-Travel,152,Sales,10,3,Technical Degree,1,983,3,Female,85,3,2,Sales Executive,4,Single,5666,5k-10k,19899,1,Y,Yes,13,3,2,80,0,6,1,3,5,3,1,3
+RM723,38,36-45,No,Travel_Frequently,1391,Research & Development,10,1,Medical,1,1006,3,Male,66,3,1,Research Scientist,3,Married,2684,Upto 5k,12127,0,Y,No,17,3,2,80,1,3,0,2,2,1,0,2
+RM748,38,36-45,No,Travel_Rarely,1035,Sales,3,4,Life Sciences,1,1036,2,Male,42,3,2,Sales Executive,4,Single,6861,5k-10k,4981,8,Y,Yes,12,3,3,80,0,19,1,3,1,0,0,0
+RM766,38,36-45,No,Travel_Frequently,1186,Research & Development,3,4,Other,1,1060,3,Male,44,3,1,Research Scientist,3,Married,2821,Upto 5k,2997,3,Y,No,16,3,1,80,1,8,2,3,2,2,2,2
+RM785,38,36-45,No,Travel_Rarely,330,Research & Development,17,1,Life Sciences,1,1088,3,Female,65,2,3,Healthcare Representative,3,Married,8823,5k-10k,24608,0,Y,No,18,3,1,80,1,20,4,2,19,9,1,9
+RM808,38,36-45,No,Travel_Rarely,770,Sales,10,4,Marketing,1,1119,3,Male,73,2,3,Sales Executive,3,Divorced,8740,5k-10k,5569,0,Y,Yes,14,3,2,80,2,9,2,3,8,7,2,7
+RM812,38,36-45,No,Travel_Rarely,130,Sales,2,2,Marketing,1,1125,4,Male,32,3,3,Sales Executive,2,Single,7351,5k-10k,20619,7,Y,No,16,3,3,80,0,10,2,3,1,0,0,0
+RM827,38,36-45,No,Travel_Rarely,433,Human Resources,1,3,Human Resources,1,1152,3,Male,37,4,1,Human Resources,3,Married,2844,Upto 5k,6004,1,Y,No,13,3,4,80,1,7,2,4,7,6,5,0
+RM964,38,36-45,No,Travel_Rarely,1009,Sales,2,2,Life Sciences,1,1355,2,Female,31,3,2,Sales Executive,1,Divorced,6893,5k-10k,19461,3,Y,No,15,3,4,80,1,11,3,3,7,7,1,7
+RM983,38,36-45,No,Travel_Frequently,693,Research & Development,7,3,Life Sciences,1,1382,4,Male,57,4,1,Research Scientist,3,Divorced,2610,Upto 5k,15748,1,Y,No,11,3,4,80,3,4,2,3,4,2,0,3
+RM1108,38,36-45,No,Travel_Frequently,888,Human Resources,10,4,Human Resources,1,1563,3,Male,71,3,2,Human Resources,3,Married,6077,5k-10k,14814,3,Y,No,11,3,3,80,0,10,2,3,6,3,1,2
+RM1113,38,36-45,Yes,Travel_Rarely,903,Research & Development,2,3,Medical,1,1573,3,Male,81,3,2,Manufacturing Director,2,Married,4855,Upto 5k,7653,4,Y,No,11,3,1,80,2,7,2,3,5,2,1,4
+RM1120,38,36-45,No,Travel_Rarely,1245,Sales,14,3,Life Sciences,1,1582,3,Male,80,3,2,Sales Executive,2,Married,9924,5k-10k,12355,0,Y,No,11,3,4,80,1,10,3,3,9,8,7,7
+RM1121,38,36-45,No,Travel_Rarely,437,Sales,16,3,Life Sciences,1,1583,2,Female,90,3,2,Sales Executive,2,Single,4198,Upto 5k,16379,2,Y,No,12,3,2,80,0,8,5,4,3,2,1,2
+RM1162,38,36-45,No,Travel_Rarely,397,Research & Development,2,2,Medical,1,1638,4,Female,54,2,3,Manufacturing Director,3,Married,7756,5k-10k,14199,3,Y,Yes,19,3,4,80,1,10,6,4,5,4,0,2
+RM1188,38,36-45,No,Travel_Frequently,1189,Research & Development,1,3,Life Sciences,1,1668,4,Male,90,3,2,Research Scientist,4,Married,4735,Upto 5k,9867,7,Y,No,15,3,4,80,2,19,4,4,13,11,2,9
+RM1194,38,36-45,No,Travel_Frequently,148,Research & Development,2,3,Medical,1,1675,4,Female,42,2,1,Laboratory Technician,2,Single,2440,Upto 5k,23826,1,Y,No,22,4,2,80,0,4,3,3,4,3,3,3
+RM1203,38,36-45,No,Travel_Rarely,1495,Research & Development,4,2,Medical,1,1687,4,Female,87,3,1,Laboratory Technician,3,Married,3306,Upto 5k,26176,7,Y,No,19,3,4,80,1,7,5,2,0,0,0,0
+RM1257,38,36-45,No,Travel_Frequently,594,Research & Development,2,2,Medical,1,1760,3,Female,75,2,1,Laboratory Technician,2,Married,2468,Upto 5k,15963,4,Y,No,14,3,2,80,1,9,4,2,6,1,0,5
+RM1262,38,36-45,No,Travel_Rarely,833,Research & Development,18,3,Medical,1,1766,2,Male,60,1,2,Healthcare Representative,4,Married,5811,5k-10k,24539,3,Y,Yes,16,3,3,80,1,15,2,3,1,0,1,0
+RM1273,38,36-45,No,Travel_Rarely,1153,Research & Development,6,2,Other,1,1782,4,Female,40,2,1,Laboratory Technician,3,Married,3702,Upto 5k,16376,1,Y,No,11,3,2,80,1,5,3,3,5,4,0,4
+RM1290,38,36-45,No,Non-Travel,1336,Human Resources,2,3,Human Resources,1,1805,1,Male,100,3,1,Human Resources,2,Divorced,2592,Upto 5k,7129,5,Y,No,13,3,4,80,3,13,3,3,11,10,3,8
+RM1309,38,36-45,No,Travel_Rarely,723,Sales,2,4,Marketing,1,1835,2,Female,77,1,2,Sales Representative,4,Married,5405,5k-10k,4244,2,Y,Yes,20,4,1,80,2,20,4,2,4,2,0,3
+RM1374,38,36-45,No,Travel_Frequently,1394,Research & Development,8,3,Medical,1,1937,4,Female,58,2,2,Research Scientist,2,Divorced,2133,Upto 5k,18115,1,Y,Yes,16,3,3,80,1,20,3,3,20,11,0,7
+RM1377,38,36-45,No,Travel_Rarely,1206,Research & Development,9,2,Life Sciences,1,1940,2,Male,71,3,1,Research Scientist,4,Divorced,4771,Upto 5k,14293,2,Y,No,19,3,4,80,2,10,0,4,5,2,0,3
+RM1392,38,36-45,No,Travel_Rarely,1404,Sales,1,3,Life Sciences,1,1961,1,Male,59,2,1,Sales Representative,1,Single,2858,Upto 5k,11473,4,Y,No,14,3,1,80,0,20,3,2,1,0,0,0
+RM1401,38,36-45,No,Travel_Frequently,1444,Human Resources,1,4,Other,1,1972,4,Male,88,3,1,Human Resources,2,Married,2991,Upto 5k,5224,0,Y,Yes,11,3,2,80,1,7,2,3,6,2,1,2
+RM1417,38,36-45,No,Travel_Rarely,1321,Sales,1,4,Life Sciences,1,1995,4,Male,86,3,2,Sales Executive,2,Married,4440,Upto 5k,7636,0,Y,No,15,3,1,80,2,16,3,3,15,13,5,8
+RM1419,38,36-45,No,Travel_Frequently,508,Research & Development,6,4,Life Sciences,1,1997,1,Male,72,2,2,Manufacturing Director,3,Married,5321,5k-10k,14284,2,Y,No,11,3,4,80,1,10,1,3,8,3,7,7
+RM1431,38,36-45,No,Travel_Rarely,201,Research & Development,10,3,Medical,1,2015,2,Female,99,1,3,Research Director,3,Married,13206,10k-15k,3376,3,Y,No,12,3,1,80,1,20,3,3,18,16,1,11
+RM1452,38,36-45,No,TravelRarely,345,Sales,10,2,Life Sciences,1,2041,1,Female,100,3,2,Sales Executive,4,Married,5343,5k-10k,5982,1,Y,No,11,3,3,80,1,10,1,3,10,7,1,9
+RM034,39,36-45,Yes,Travel_Rarely,895,Sales,5,3,Technical Degree,1,42,4,Male,56,3,2,Sales Representative,4,Married,2086,Upto 5k,3335,3,Y,No,14,3,3,80,1,19,6,4,1,0,0,0
+RM138,39,36-45,No,Travel_Rarely,1329,Sales,4,4,Life Sciences,1,182,4,Female,47,2,2,Sales Executive,3,Married,5902,5k-10k,14590,4,Y,No,14,3,3,80,1,17,1,4,15,11,5,9
+RM241,39,36-45,No,Travel_Rarely,1431,Research & Development,1,4,Medical,1,332,3,Female,96,3,1,Laboratory Technician,3,Divorced,2232,Upto 5k,15417,7,Y,No,14,3,3,80,3,7,1,3,3,2,1,2
+RM252,39,36-45,No,Travel_Frequently,505,Research & Development,2,4,Technical Degree,1,343,3,Female,64,3,3,Healthcare Representative,3,Single,10938,10k-15k,6420,0,Y,No,25,4,4,80,0,20,1,3,19,6,11,
+RM305,39,36-45,No,Travel_Rarely,1132,Research & Development,1,3,Medical,1,417,3,Male,48,4,3,Healthcare Representative,4,Divorced,9613,5k-10k,10942,0,Y,No,17,3,1,80,3,19,5,2,18,10,3,7
+RM315,39,36-45,No,Travel_Rarely,117,Research & Development,10,1,Medical,1,429,3,Male,99,3,4,Manager,1,Married,17068,15k+,5355,1,Y,Yes,14,3,4,80,0,21,3,3,21,9,11,10
+RM327,39,36-45,No,Travel_Frequently,672,Research & Development,7,2,Medical,1,444,3,Male,54,2,5,Manager,4,Married,19272,15k+,21141,1,Y,No,15,3,1,80,1,21,2,3,21,9,13,3
+RM328,39,36-45,Yes,Travel_Rarely,1162,Sales,3,2,Medical,1,445,4,Female,41,3,2,Sales Executive,3,Married,5238,5k-10k,17778,4,Y,Yes,18,3,1,80,0,12,3,2,1,0,0,0
+RM401,39,36-45,No,Travel_Frequently,1218,Research & Development,1,1,Life Sciences,1,531,2,Male,52,3,5,Manager,3,Divorced,19197,15k+,8213,1,Y,Yes,14,3,3,80,1,21,3,3,21,8,1,6
+RM450,39,36-45,No,Travel_Frequently,443,Research & Development,8,1,Life Sciences,1,602,3,Female,48,3,1,Laboratory Technician,3,Married,3755,Upto 5k,17872,1,Y,No,11,3,1,80,1,8,3,3,8,3,0,7
+RM527,39,36-45,No,Travel_Rarely,408,Research & Development,2,4,Technical Degree,1,721,4,Female,80,2,2,Healthcare Representative,3,Single,4553,Upto 5k,20978,1,Y,No,11,3,1,80,0,20,4,3,20,7,11,10
+RM552,39,36-45,No,Travel_Rarely,141,Human Resources,3,3,Human Resources,1,760,3,Female,44,4,2,Human Resources,2,Married,6389,5k-10k,18767,9,Y,No,15,3,3,80,1,12,3,1,8,3,3,6
+RM655,39,36-45,No,Travel_Rarely,1383,Human Resources,2,3,Life Sciences,1,909,4,Female,42,2,2,Human Resources,4,Married,5204,5k-10k,7790,8,Y,No,11,3,3,80,2,13,2,3,5,4,0,4
+RM670,39,36-45,Yes,Travel_Rarely,1122,Research & Development,6,3,Medical,1,932,4,Male,70,3,1,Laboratory Technician,1,Married,2404,Upto 5k,4303,7,Y,Yes,21,4,4,80,0,8,2,1,2,2,2,2
+RM706,39,36-45,No,Travel_Rarely,903,Sales,2,5,Life Sciences,1,985,1,Male,41,4,3,Sales Executive,3,Single,7880,5k-10k,2560,0,Y,No,18,3,4,80,0,9,3,3,8,7,0,7
+RM739,39,36-45,No,Travel_Rarely,466,Research & Development,1,1,Life Sciences,1,1026,4,Female,65,2,4,Manufacturing Director,4,Married,12742,10k-15k,7060,1,Y,No,16,3,3,80,1,21,3,3,21,6,11,8
+RM754,39,36-45,No,Travel_Frequently,945,Research & Development,22,3,Medical,1,1043,4,Female,82,3,3,Manufacturing Director,1,Single,10880,10k-15k,5083,1,Y,Yes,13,3,3,80,0,21,2,3,21,6,2,8
+RM814,39,36-45,Yes,Travel_Frequently,203,Research & Development,2,3,Life Sciences,1,1127,1,Male,84,3,4,Healthcare Representative,4,Divorced,12169,10k-15k,13547,7,Y,No,11,3,4,80,3,21,4,3,18,7,11,5
+RM817,39,36-45,No,Non-Travel,439,Research & Development,9,3,Life Sciences,1,1132,3,Male,70,3,2,Laboratory Technician,2,Single,6782,5k-10k,8770,9,Y,No,15,3,3,80,0,9,2,2,5,4,0,3
+RM938,39,36-45,No,Travel_Rarely,412,Research & Development,13,4,Medical,1,1307,3,Female,94,2,4,Manager,2,Divorced,17123,15k+,17334,6,Y,Yes,13,3,4,80,2,21,4,3,19,9,15,2
+RM941,39,36-45,Yes,Travel_Rarely,360,Research & Development,23,3,Medical,1,1310,3,Male,93,3,1,Research Scientist,1,Single,3904,Upto 5k,22154,0,Y,No,13,3,1,80,0,6,2,3,5,2,0,3
+RM950,39,36-45,No,Travel_Rarely,524,Research & Development,18,2,Life Sciences,1,1322,1,Male,32,3,2,Manufacturing Director,3,Single,4534,Upto 5k,13352,0,Y,No,11,3,1,80,0,9,6,3,8,7,1,7
+RM987,39,36-45,No,Travel_Rarely,1498,Sales,21,4,Life Sciences,1,1390,1,Male,44,2,2,Sales Executive,4,Married,6120,5k-10k,3567,3,Y,Yes,12,3,4,80,2,8,2,4,5,4,1,4
+RM993,39,36-45,No,Non-Travel,1485,Research & Development,25,2,Life Sciences,1,1397,3,Male,71,3,3,Healthcare Representative,3,Married,10920,10k-15k,3449,3,Y,No,21,4,2,80,1,13,2,3,6,4,0,5
+RM1033,39,36-45,Yes,Non-Travel,592,Research & Development,2,3,Life Sciences,1,1458,1,Female,54,2,1,Laboratory Technician,1,Single,3646,Upto 5k,17181,2,Y,Yes,23,4,2,80,0,11,2,4,1,0,0,0
+RM1080,39,36-45,No,Travel_Rarely,1089,Research & Development,6,3,Life Sciences,1,1525,2,Female,32,3,3,Manufacturing Director,2,Single,8376,5k-10k,9150,4,Y,No,18,3,4,80,0,9,3,3,2,0,2,2
+RM1125,39,36-45,No,Travel_Rarely,1462,Sales,6,3,Medical,1,1588,4,Male,38,4,3,Sales Executive,3,Married,8237,5k-10k,4658,2,Y,No,11,3,1,80,1,11,3,3,7,6,7,6
+RM1149,39,36-45,No,Travel_Rarely,1387,Research & Development,10,5,Medical,1,1618,2,Male,76,3,2,Manufacturing Director,1,Married,5377,5k-10k,3835,2,Y,No,13,3,4,80,3,10,3,3,7,7,7,7
+RM1156,39,36-45,No,Travel_Rarely,170,Research & Development,3,2,Medical,1,1627,3,Male,76,2,2,Laboratory Technician,3,Divorced,3069,Upto 5k,10302,0,Y,No,15,3,4,80,1,11,3,3,10,8,0,7
+RM1160,39,36-45,No,Travel_Frequently,711,Research & Development,4,3,Medical,1,1633,1,Female,81,3,2,Manufacturing Director,3,Single,5042,5k-10k,3140,0,Y,No,13,3,4,80,0,10,2,1,9,2,3,8
+RM1176,39,36-45,No,Travel_Rarely,492,Research & Development,12,3,Medical,1,1654,4,Male,66,3,2,Manufacturing Director,2,Married,5295,5k-10k,7693,4,Y,No,21,4,3,80,0,7,3,3,5,4,1,0
+RM1241,39,36-45,No,Non-Travel,792,Research & Development,1,3,Life Sciences,1,1737,4,Male,77,3,2,Laboratory Technician,4,Married,6472,5k-10k,8989,1,Y,Yes,15,3,4,80,1,9,2,3,9,8,5,8
+RM1285,39,36-45,No,Travel_Rarely,1253,Research & Development,10,1,Medical,1,1800,3,Male,65,3,3,Research Director,3,Single,13464,10k-15k,7914,7,Y,No,21,4,3,80,0,9,3,3,4,3,2,2
+RM1293,39,36-45,No,Travel_Frequently,766,Sales,20,3,Life Sciences,1,1812,3,Male,83,3,2,Sales Executive,4,Divorced,4127,Upto 5k,19188,2,Y,No,18,3,4,80,1,7,6,3,2,1,2,2
+RM1336,39,36-45,No,Travel_Rarely,835,Research & Development,19,4,Other,1,1871,4,Male,41,3,2,Research Scientist,4,Divorced,3902,Upto 5k,5141,8,Y,No,14,3,2,80,3,7,2,3,2,2,2,2
+RM1367,39,36-45,No,Non-Travel,1251,Sales,21,4,Life Sciences,1,1929,1,Female,32,1,2,Sales Executive,3,Married,5736,5k-10k,3987,6,Y,No,19,3,3,80,1,10,1,3,3,2,1,2
+RM1373,39,36-45,No,Travel_Rarely,867,Research & Development,9,2,Medical,1,1936,1,Male,87,3,2,Manufacturing Director,1,Married,5151,5k-10k,12315,1,Y,No,25,4,4,80,1,10,3,3,10,0,7,9
+RM1404,39,36-45,No,Travel_Rarely,119,Sales,15,4,Marketing,1,1975,2,Male,77,3,4,Sales Executive,1,Single,13341,10k-15k,25098,0,Y,No,12,3,1,80,0,21,3,3,20,8,11,10
+RM1430,39,36-45,No,Travel_Rarely,116,Research & Development,24,1,Life Sciences,1,2014,1,Male,52,3,2,Research Scientist,4,Single,4108,Upto 5k,5340,7,Y,No,13,3,1,80,0,18,2,3,7,7,1,7
+RM1438,39,36-45,No,Non-Travel,105,Research & Development,9,3,Life Sciences,1,2022,4,Male,87,3,5,Manager,4,Single,19431,15k+,15302,2,Y,No,13,3,3,80,0,21,3,2,6,0,1,3
+RM1463,39,36-45,No,Travel_Rarely,722,Sales,24,1,Marketing,1,2056,2,Female,60,2,4,Sales Executive,4,Married,12031,10k-15k,8828,0,Y,No,11,3,1,80,1,21,2,2,20,9,9,6
+RM1467,39,36-45,No,Travel_Rarely,613,Research & Development,6,1,Medical,1,2062,4,Male,42,2,3,Healthcare Representative,1,Married,9991,5k-10k,21457,4,Y,No,15,3,1,80,1,9,5,3,7,7,1,7
+RM1463,39,36-45,No,Travel_Rarely,722,Sales,24,1,Marketing,1,2056,2,Female,60,2,4,Sales Executive,4,Married,12031,10k-15k,8828,0,Y,No,11,3,1,80,1,21,2,2,20,9,9,6
+RM1467,39,36-45,No,Travel_Rarely,613,Research & Development,6,1,Medical,1,2062,4,Male,42,2,3,Healthcare Representative,1,Married,9991,5k-10k,21457,4,Y,No,15,3,1,80,1,9,5,3,7,7,1,1
+RM091,40,36-45,No,Travel_Frequently,530,Research & Development,1,4,Life Sciences,1,119,3,Male,78,2,4,Healthcare Representative,2,Married,13503,10k-15k,14115,1,Y,No,22,4,4,80,1,22,3,2,22,3,11,11
+RM151,40,36-45,No,Travel_Frequently,1395,Research & Development,26,3,Medical,1,202,2,Female,54,3,2,Research Scientist,2,Divorced,5605,5k-10k,8504,1,Y,No,11,3,1,80,1,20,2,3,20,7,2,13
+RM159,40,36-45,No,Travel_Rarely,630,Sales,4,4,Marketing,1,215,3,Male,67,2,3,Sales Executive,4,Married,10855,10k-15k,8552,7,Y,No,11,3,1,80,1,15,2,2,12,11,2,11
+RM187,40,36-45,No,Travel_Rarely,989,Research & Development,4,1,Medical,1,253,4,Female,46,3,5,Manager,3,Married,19033,15k+,6499,1,Y,No,14,3,2,80,1,21,2,3,20,8,9,9
+RM204,40,36-45,No,Travel_Rarely,905,Research & Development,19,2,Medical,1,281,3,Male,99,3,2,Laboratory Technician,4,Married,2741,Upto 5k,16523,8,Y,Yes,15,3,3,80,1,15,2,4,7,2,3,7
+RM209,40,36-45,No,Non-Travel,1151,Research & Development,9,5,Life Sciences,1,287,4,Male,63,2,2,Healthcare Representative,4,Married,4876,Upto 5k,14242,9,Y,No,14,3,4,80,1,5,5,1,3,2,0,
+RM244,40,36-45,No,Travel_Rarely,1300,Research & Development,24,2,Technical Degree,1,335,1,Male,62,3,2,Research Scientist,4,Divorced,3319,Upto 5k,24447,1,Y,No,17,3,1,80,2,9,3,3,9,8,4,7
+RM258,40,36-45,No,Travel_Rarely,1416,Research & Development,2,2,Medical,1,352,1,Male,49,3,5,Research Director,3,Divorced,19436,15k+,5949,0,Y,No,19,3,4,80,1,22,5,3,21,7,3,
+RM336,40,36-45,No,Travel_Rarely,1124,Sales,1,2,Medical,1,453,2,Male,57,1,2,Sales Executive,4,Married,7457,5k-10k,13273,2,Y,Yes,22,4,3,80,3,6,2,2,4,3,0,2
+RM362,40,36-45,No,Travel_Rarely,1171,Research & Development,10,4,Life Sciences,1,483,4,Female,46,4,1,Laboratory Technician,3,Married,2213,Upto 5k,22495,3,Y,Yes,13,3,3,80,1,10,3,3,7,7,1,
+RM369,40,36-45,Yes,Travel_Rarely,575,Sales,22,2,Marketing,1,492,3,Male,68,2,2,Sales Executive,3,Married,6380,5k-10k,6110,2,Y,Yes,12,3,1,80,2,8,6,3,6,4,1,0
+RM388,40,36-45,No,Travel_Rarely,759,Sales,2,2,Marketing,1,516,4,Female,46,3,2,Sales Executive,2,Divorced,5715,5k-10k,22553,7,Y,No,12,3,3,80,2,8,5,3,5,4,1,3
+RM392,40,36-45,No,Travel_Rarely,555,Research & Development,2,3,Medical,1,521,2,Female,78,2,2,Laboratory Technician,3,Married,3448,Upto 5k,13436,6,Y,No,22,4,2,80,1,20,3,3,1,0,0,0
+RM418,40,36-45,No,Travel_Rarely,1398,Sales,2,4,Life Sciences,1,558,3,Female,79,3,5,Manager,3,Married,18041,15k+,13022,0,Y,No,14,3,4,80,0,21,2,3,20,15,1,12
+RM449,40,36-45,No,Travel_Rarely,302,Research & Development,6,3,Life Sciences,1,601,2,Female,75,3,4,Manufacturing Director,3,Single,13237,10k-15k,20364,7,Y,No,15,3,3,80,0,22,3,3,20,6,5,13
+RM459,40,36-45,No,Non-Travel,1094,Sales,28,3,Other,1,615,3,Male,58,1,3,Sales Executive,1,Divorced,10932,10k-15k,11373,3,Y,No,15,3,3,80,1,20,2,3,1,0,0,1
+RM534,40,36-45,No,Travel_Frequently,580,Sales,5,4,Life Sciences,1,729,4,Male,48,2,3,Sales Executive,1,Married,10475,10k-15k,23772,5,Y,Yes,21,4,3,80,1,20,2,3,18,13,1,12
+RM554,40,36-45,No,Travel_Rarely,804,Research & Development,2,1,Medical,1,763,4,Female,86,2,1,Research Scientist,4,Single,2342,Upto 5k,22929,0,Y,Yes,20,4,4,80,0,5,2,2,4,2,2,3
+RM583,40,36-45,No,Travel_Frequently,791,Research & Development,2,2,Medical,1,807,3,Female,38,4,2,Healthcare Representative,2,Married,4244,Upto 5k,9931,1,Y,No,24,4,4,80,1,8,2,3,8,7,3,7
+RM602,40,36-45,No,Travel_Frequently,720,Research & Development,16,4,Medical,1,832,1,Male,51,2,2,Laboratory Technician,3,Single,5094,5k-10k,11983,6,Y,No,14,3,4,80,0,10,6,3,1,0,0,0
+RM685,40,36-45,No,Travel_Rarely,658,Sales,10,4,Marketing,1,954,1,Male,67,2,3,Sales Executive,2,Divorced,9705,5k-10k,20652,2,Y,No,12,3,2,80,1,11,2,2,1,0,0,0
+RM692,40,36-45,No,Travel_Frequently,1469,Research & Development,9,4,Medical,1,964,4,Male,35,3,1,Research Scientist,2,Divorced,3617,Upto 5k,25063,8,Y,Yes,14,3,4,80,1,3,2,3,1,1,0,0
+RM707,40,36-45,Yes,Non-Travel,1479,Sales,24,3,Life Sciences,1,986,2,Female,100,4,4,Sales Executive,2,Single,13194,10k-15k,17071,4,Y,Yes,16,3,4,80,0,22,2,2,1,0,0,0
+RM769,40,36-45,No,Travel_Rarely,300,Sales,26,3,Marketing,1,1066,3,Male,74,3,2,Sales Executive,1,Married,8396,5k-10k,22217,1,Y,No,14,3,2,80,1,8,3,2,7,7,7,5
+RM786,40,36-45,No,Travel_Rarely,1492,Research & Development,20,4,Technical Degree,1,1092,1,Male,61,3,3,Healthcare Representative,4,Married,10322,10k-15k,26542,4,Y,No,20,4,4,80,1,14,6,3,11,10,11,1
+RM815,40,36-45,No,Travel_Rarely,1308,Research & Development,14,3,Medical,1,1128,3,Male,44,2,5,Research Director,3,Single,19626,15k+,17544,1,Y,No,14,3,1,80,0,21,2,4,20,7,4,9
+RM838,40,36-45,No,Travel_Frequently,593,Research & Development,9,4,Medical,1,1166,2,Female,88,3,3,Research Director,3,Single,13499,10k-15k,13782,9,Y,No,17,3,3,80,0,20,3,2,18,7,2,13
+RM846,40,36-45,No,Travel_Frequently,902,Research & Development,26,2,Medical,1,1180,3,Female,92,2,2,Research Scientist,4,Married,4422,Upto 5k,21203,3,Y,Yes,13,3,4,80,1,16,3,1,1,1,0,0
+RM867,40,36-45,No,Travel_Frequently,1184,Sales,2,4,Medical,1,1212,2,Male,62,3,2,Sales Executive,2,Married,4327,Upto 5k,25440,5,Y,No,12,3,4,80,3,5,2,3,0,0,0,0
+RM885,40,36-45,No,Travel_Rarely,107,Sales,10,3,Technical Degree,1,1239,2,Female,84,2,2,Sales Executive,2,Divorced,6852,5k-10k,11591,7,Y,No,12,3,2,80,1,7,2,4,5,1,1,3
+RM947,40,36-45,Yes,Travel_Rarely,299,Sales,25,4,Marketing,1,1318,4,Male,57,2,3,Sales Executive,2,Single,9094,5k-10k,17235,2,Y,Yes,12,3,3,80,0,9,2,3,5,4,1,0
+RM958,40,36-45,No,Non-Travel,458,Research & Development,16,2,Life Sciences,1,1340,3,Male,74,3,1,Research Scientist,3,Divorced,3544,Upto 5k,8532,9,Y,No,16,3,2,80,1,6,0,3,4,2,0,0
+RM960,40,36-45,No,Travel_Rarely,523,Research & Development,2,3,Life Sciences,1,1346,3,Male,98,3,2,Research Scientist,4,Single,4661,Upto 5k,22455,1,Y,No,13,3,3,80,0,9,4,3,9,8,8,8
+RM968,40,36-45,No,Travel_Rarely,329,Research & Development,1,4,Life Sciences,1,1361,2,Male,88,3,1,Laboratory Technician,2,Married,2387,Upto 5k,6762,3,Y,No,22,4,3,80,1,7,3,3,4,2,0,3
+RM979,40,36-45,No,Travel_Rarely,1202,Research & Development,2,1,Medical,1,1375,2,Female,89,4,2,Healthcare Representative,3,Divorced,6377,5k-10k,13888,5,Y,No,20,4,2,80,3,15,0,3,12,11,11,8
+RM1030,40,36-45,No,Non-Travel,663,Research & Development,9,4,Other,1,1449,3,Male,81,3,2,Laboratory Technician,3,Divorced,3975,Upto 5k,23099,3,Y,No,11,3,3,80,2,11,2,4,8,7,0,7
+RM1041,40,36-45,No,Non-Travel,218,Research & Development,8,1,Medical,1,1468,4,Male,55,2,3,Research Director,2,Divorced,13757,10k-15k,25178,2,Y,No,11,3,3,80,1,16,5,3,9,8,4,8
+RM1046,40,36-45,No,Travel_Rarely,896,Research & Development,2,3,Medical,1,1474,3,Male,68,3,1,Research Scientist,3,Divorced,2345,Upto 5k,8045,2,Y,No,14,3,3,80,1,8,3,4,3,1,1,2
+RM1084,40,36-45,Yes,Travel_Rarely,676,Research & Development,9,4,Life Sciences,1,1534,4,Male,86,3,1,Laboratory Technician,1,Single,2018,Upto 5k,21831,3,Y,No,14,3,2,80,0,15,3,1,5,4,1,0
+RM1095,40,36-45,No,Travel_Rarely,1342,Sales,9,2,Medical,1,1548,1,Male,47,3,2,Sales Executive,1,Married,5473,5k-10k,19345,0,Y,No,12,3,4,80,0,9,5,4,8,4,7,1
+RM1097,40,36-45,No,Travel_Rarely,898,Human Resources,6,2,Medical,1,1550,3,Male,38,3,4,Manager,4,Single,16437,15k+,17381,1,Y,Yes,21,4,4,80,0,21,2,3,21,7,7,7
+RM1099,40,36-45,No,Non-Travel,1142,Research & Development,8,2,Life Sciences,1,1552,4,Male,72,3,2,Healthcare Representative,4,Divorced,4069,Upto 5k,8841,3,Y,Yes,18,3,3,80,0,8,2,3,2,2,2,2
+RM1133,40,36-45,No,Travel_Rarely,118,Sales,14,2,Life Sciences,1,1598,4,Female,84,3,2,Sales Executive,1,Married,4639,Upto 5k,11262,1,Y,No,15,3,3,80,1,5,2,3,5,4,1,2
+RM1157,40,36-45,No,Travel_Rarely,884,Research & Development,15,3,Life Sciences,1,1628,1,Female,80,2,3,Manufacturing Director,3,Married,10435,10k-15k,25800,1,Y,No,13,3,4,80,2,18,2,3,18,15,14,12
+RM1165,40,36-45,No,Travel_Rarely,448,Research & Development,16,3,Life Sciences,1,1641,3,Female,84,3,3,Manufacturing Director,4,Single,7945,5k-10k,19948,6,Y,Yes,15,3,4,80,0,18,2,2,4,2,3,3
+RM1172,40,36-45,Yes,Travel_Rarely,1329,Research & Development,7,3,Life Sciences,1,1649,1,Male,73,3,1,Laboratory Technician,1,Single,2166,Upto 5k,3339,3,Y,Yes,14,3,2,80,0,10,3,1,4,2,0,3
+RM1230,40,36-45,No,Travel_Rarely,369,Research & Development,8,2,Life Sciences,1,1724,2,Female,92,3,2,Manufacturing Director,1,Married,6516,5k-10k,5041,2,Y,Yes,16,3,2,80,1,18,3,3,1,0,0,0
+RM1243,40,36-45,No,Travel_Rarely,611,Sales,7,4,Medical,1,1740,2,Male,88,3,5,Manager,2,Single,19833,15k+,4349,1,Y,No,14,3,2,80,0,21,3,2,21,8,12,8
+RM1287,40,36-45,No,Travel_Rarely,616,Research & Development,2,2,Life Sciences,1,1802,3,Female,99,3,1,Laboratory Technician,1,Married,3377,Upto 5k,25605,4,Y,No,17,3,4,80,1,7,5,2,4,3,0,2
+RM1300,40,36-45,No,Travel_Rarely,1194,Research & Development,1,3,Life Sciences,1,1822,3,Female,52,3,2,Healthcare Representative,4,Divorced,6513,5k-10k,9060,4,Y,No,17,3,4,80,1,12,3,3,5,3,0,3
+RM1305,40,36-45,No,Travel_Rarely,750,Research & Development,12,3,Life Sciences,1,1829,2,Female,47,3,2,Healthcare Representative,1,Divorced,4448,Upto 5k,10748,2,Y,No,12,3,2,80,1,15,3,3,7,4,7,7
+RM1349,40,36-45,No,Travel_Rarely,1137,Research & Development,1,4,Life Sciences,1,1892,1,Male,98,3,4,Manager,1,Divorced,16823,15k+,18991,2,Y,No,11,3,1,80,1,22,3,3,19,7,11,16
+RM1410,40,36-45,No,Travel_Frequently,692,Research & Development,11,3,Technical Degree,1,1985,4,Female,73,3,2,Laboratory Technician,3,Married,6323,5k-10k,26849,1,Y,No,11,3,1,80,1,10,2,4,10,9,9,4
+RM1411,40,36-45,No,Travel_Rarely,444,Sales,2,2,Marketing,1,1986,2,Female,92,3,2,Sales Executive,2,Married,5677,5k-10k,4258,3,Y,No,14,3,3,80,1,15,4,3,11,8,5,10
+RM1428,40,36-45,No,Travel_Rarely,543,Research & Development,1,4,Life Sciences,1,2012,1,Male,83,3,1,Laboratory Technician,4,Married,2406,Upto 5k,4060,8,Y,No,19,3,3,80,2,8,3,2,1,0,0,0
+RM1456,40,36-45,No,Travel_Rarely,1322,Research & Development,2,4,Life Sciences,1,2048,3,Male,52,2,1,Research Scientist,3,Single,2809,Upto 5k,2725,2,Y,No,14,3,4,80,0,8,2,3,2,2,2,2
+RM1458,40,36-45,No,Travel_Rarely,1194,Research & Development,2,4,Medical,1,2051,3,Female,98,3,1,Research Scientist,3,Married,2001,Upto 5k,12549,2,Y,No,14,3,2,80,3,20,2,3,5,3,0,2
+RM001,41,36-45,Yes,Travel_Rarely,1102,Sales,1,2,Life Sciences,1,1,2,Female,94,3,2,Sales Executive,4,Single,5993,5k-10k,19479,8,Y,Yes,11,3,1,80,0,8,0,1,6,4,0,5
+RM046,41,36-45,Yes,Travel_Rarely,1360,Research & Development,12,3,Technical Degree,1,58,2,Female,49,3,5,Research Director,3,Married,19545,15k+,16280,1,Y,No,12,3,4,80,0,23,0,3,22,15,15,8
+RM134,41,36-45,No,Travel_Rarely,802,Sales,9,1,Life Sciences,1,176,3,Male,96,3,3,Sales Executive,3,Divorced,8189,5k-10k,21196,3,Y,Yes,13,3,3,80,1,12,2,3,9,7,0,7
+RM148,41,36-45,No,Travel_Frequently,857,Research & Development,10,3,Life Sciences,1,199,4,Male,91,2,4,Manager,1,Divorced,17181,15k+,12888,4,Y,No,13,3,2,80,1,21,2,2,7,6,7,7
+RM149,41,36-45,No,Travel_Rarely,933,Research & Development,9,4,Life Sciences,1,200,3,Male,94,3,1,Laboratory Technician,1,Married,2238,Upto 5k,6961,2,Y,No,21,4,4,80,1,7,2,3,5,0,1,4
+RM167,41,36-45,No,Travel_Rarely,465,Research & Development,14,3,Life Sciences,1,227,1,Male,56,3,1,Research Scientist,3,Divorced,2451,Upto 5k,4609,4,Y,No,12,3,1,80,1,13,2,3,9,8,1,8
+RM183,41,36-45,Yes,Travel_Rarely,1356,Sales,20,2,Marketing,1,248,2,Female,70,3,1,Sales Representative,2,Single,3140,Upto 5k,21728,1,Y,Yes,22,4,4,80,0,4,5,2,4,3,0,2
+RM216,41,36-45,No,Travel_Rarely,896,Sales,6,3,Life Sciences,1,298,4,Female,75,3,3,Manager,4,Single,13591,10k-15k,14674,3,Y,Yes,18,3,3,80,0,16,3,3,1,0,0,0
+RM243,41,36-45,No,Travel_Rarely,1411,Research & Development,19,2,Life Sciences,1,334,3,Male,36,3,2,Research Scientist,1,Divorced,3072,Upto 5k,19877,2,Y,No,16,3,1,80,2,17,2,2,1,0,0,0
+RM301,41,36-45,No,Travel_Rarely,334,Sales,2,4,Life Sciences,1,410,4,Male,88,3,4,Manager,2,Single,16015,15k+,15896,1,Y,No,19,3,2,80,0,22,2,3,22,10,0,4
+RM347,41,36-45,No,Travel_Rarely,483,Research & Development,6,3,Medical,1,466,4,Male,95,2,2,Manufacturing Director,2,Single,6032,5k-10k,10110,6,Y,Yes,15,3,4,80,0,8,3,3,5,4,1,2
+RM367,41,36-45,Yes,Travel_Frequently,143,Sales,4,3,Marketing,1,488,1,Male,56,3,2,Sales Executive,2,Single,9355,5k-10k,9558,1,Y,No,18,3,3,80,0,8,5,3,8,7,7,7
+RM404,41,36-45,No,Travel_Rarely,645,Sales,1,3,Marketing,1,534,2,Male,49,4,3,Sales Executive,1,Married,8392,5k-10k,19566,1,Y,No,16,3,3,80,1,10,2,3,10,7,0,
+RM447,41,36-45,No,Non-Travel,267,Sales,10,2,Life Sciences,1,599,4,Male,56,3,2,Sales Executive,4,Single,6230,5k-10k,13430,7,Y,No,14,3,4,80,0,16,3,3,14,3,1,10
+RM460,41,36-45,No,Non-Travel,509,Research & Development,2,4,Other,1,616,1,Female,62,2,2,Healthcare Representative,3,Single,6811,5k-10k,2112,2,Y,Yes,17,3,1,80,0,10,3,3,8,7,0,7
+RM467,41,36-45,No,Travel_Rarely,1276,Sales,2,5,Life Sciences,1,625,2,Female,91,3,4,Manager,1,Married,16595,15k+,5626,7,Y,No,16,3,2,80,1,22,2,3,18,16,11,8
+RM536,41,36-45,No,Travel_Rarely,427,Human Resources,10,4,Human Resources,1,731,2,Male,73,2,5,Manager,4,Divorced,19141,15k+,8861,3,Y,No,15,3,2,80,3,23,2,2,21,6,12,6
+RM539,41,36-45,No,Travel_Rarely,314,Human Resources,1,3,Human Resources,1,734,4,Male,59,2,5,Manager,3,Married,19189,15k+,19562,1,Y,No,12,3,2,80,1,22,3,3,22,7,2,10
+RM668,41,36-45,Yes,Travel_Rarely,1085,Research & Development,2,4,Life Sciences,1,927,2,Female,57,1,1,Laboratory Technician,4,Divorced,2778,Upto 5k,17725,4,Y,Yes,13,3,3,80,1,10,1,2,7,7,1,0
+RM687,41,36-45,No,Travel_Rarely,263,Research & Development,6,3,Medical,1,957,4,Male,59,3,1,Laboratory Technician,1,Single,4721,Upto 5k,3119,2,Y,Yes,13,3,3,80,0,20,3,3,18,13,2,17
+RM717,41,36-45,No,Travel_Frequently,840,Research & Development,9,3,Medical,1,999,1,Male,64,3,5,Research Director,3,Divorced,19419,15k+,3735,2,Y,No,17,3,2,80,1,21,2,4,18,16,0,11
+RM738,41,36-45,No,Travel_Rarely,549,Research & Development,7,2,Medical,1,1025,4,Female,42,3,2,Manufacturing Director,3,Single,5003,5k-10k,23371,6,Y,No,14,3,2,80,0,8,6,3,2,2,2,1
+RM747,41,36-45,No,Non-Travel,247,Research & Development,7,1,Life Sciences,1,1035,2,Female,55,1,5,Research Director,3,Divorced,19973,15k+,20284,1,Y,No,22,4,2,80,2,21,3,3,21,16,5,10
+RM784,41,36-45,No,Travel_Rarely,509,Research & Development,7,2,Technical Degree,1,1085,2,Female,43,4,1,Research Scientist,3,Married,3376,Upto 5k,18863,1,Y,No,13,3,3,80,0,10,3,3,10,6,0,8
+RM831,41,36-45,No,Travel_Rarely,167,Research & Development,12,4,Life Sciences,1,1158,2,Male,46,3,1,Laboratory Technician,4,Married,4766,Upto 5k,9051,3,Y,Yes,11,3,1,80,1,6,4,3,1,0,0,0
+RM865,41,36-45,Yes,Non-Travel,906,Research & Development,5,2,Life Sciences,1,1210,1,Male,95,2,1,Research Scientist,1,Divorced,2107,Upto 5k,20293,6,Y,No,17,3,1,80,1,5,2,1,1,0,0,0
+RM952,41,36-45,No,Non-Travel,256,Sales,10,2,Medical,1,1329,3,Male,40,1,2,Sales Executive,2,Single,6151,5k-10k,22074,1,Y,No,13,3,1,80,0,19,4,3,19,2,11,9
+RM961,41,36-45,No,Travel_Frequently,1018,Sales,1,3,Marketing,1,1349,3,Female,66,3,2,Sales Executive,1,Divorced,4103,Upto 5k,4297,0,Y,No,17,3,4,80,1,10,2,3,9,3,1,7
+RM989,41,36-45,No,Travel_Frequently,1200,Research & Development,22,3,Life Sciences,1,1392,4,Female,75,3,2,Research Scientist,4,Divorced,5467,5k-10k,13953,3,Y,Yes,14,3,1,80,2,12,4,2,6,2,3,3
+RM1029,41,36-45,No,Travel_Rarely,1283,Research & Development,5,5,Medical,1,1448,2,Male,90,4,1,Research Scientist,3,Married,2127,Upto 5k,5561,2,Y,Yes,12,3,1,80,0,7,5,2,4,2,0,3
+RM1197,41,36-45,No,Travel_Rarely,1206,Sales,23,2,Life Sciences,1,1678,4,Male,80,3,3,Sales Executive,3,Single,7082,5k-10k,11591,3,Y,Yes,16,3,4,80,0,21,2,3,2,0,0,2
+RM1219,41,36-45,No,Travel_Rarely,918,Sales,6,3,Marketing,1,1708,4,Male,35,3,3,Sales Executive,3,Single,9241,5k-10k,15869,1,Y,No,12,3,2,80,0,10,3,3,10,8,8,7
+RM1229,41,36-45,No,Non-Travel,552,Human Resources,4,3,Human Resources,1,1722,3,Male,60,1,2,Human Resources,2,Married,6430,5k-10k,20794,6,Y,No,19,3,2,80,1,10,4,3,3,2,1,2
+RM1267,41,36-45,No,Travel_Rarely,548,Research & Development,9,4,Life Sciences,1,1772,3,Male,94,3,1,Laboratory Technician,1,Divorced,2289,Upto 5k,20520,1,Y,No,20,4,2,80,2,5,2,3,5,3,0,4
+RM1295,41,36-45,No,Travel_Rarely,447,Research & Development,5,3,Life Sciences,1,1814,2,Male,85,4,2,Healthcare Representative,2,Single,6870,5k-10k,15530,3,Y,No,12,3,1,80,0,11,3,1,3,2,1,2
+RM1296,41,36-45,No,Travel_Rarely,796,Sales,4,1,Marketing,1,1815,3,Female,81,3,3,Sales Executive,3,Divorced,10447,10k-15k,26458,0,Y,Yes,13,3,4,80,1,23,3,4,22,14,13,5
+RM1357,41,36-45,No,Travel_Rarely,337,Sales,8,3,Marketing,1,1909,3,Female,54,3,2,Sales Executive,2,Married,4393,Upto 5k,26841,5,Y,No,21,4,3,80,1,14,3,3,5,4,1,4
+RM1421,41,36-45,No,Travel_Rarely,642,Research & Development,1,3,Life Sciences,1,1999,4,Male,76,3,1,Research Scientist,4,Married,2782,Upto 5k,21412,3,Y,No,22,4,1,80,1,12,3,3,5,3,1,0
+RM1446,41,36-45,No,Travel_Rarely,582,Research & Development,28,4,Life Sciences,1,2034,1,Female,60,2,4,Manufacturing Director,2,Married,13570,10k-15k,5640,0,Y,No,23,4,3,80,1,21,3,3,20,7,0,10
+RM1449,41,36-45,No,Travel_Rarely,930,Sales,3,3,Life Sciences,1,2037,3,Male,57,2,2,Sales Executive,2,Divorced,8938,5k-10k,12227,2,Y,No,11,3,3,80,1,14,5,3,5,4,0,4
+RM028,42,36-45,No,Travel_Rarely,691,Sales,8,4,Marketing,1,35,3,Male,48,3,2,Sales Executive,2,Married,6825,5k-10k,21173,0,Y,No,11,3,4,80,1,10,2,3,9,7,4,
+RM198,42,36-45,No,Non-Travel,926,Research & Development,21,2,Medical,1,270,3,Female,36,3,2,Manufacturing Director,3,Divorced,5265,5k-10k,16439,2,Y,No,16,3,2,80,1,11,5,3,5,3,0,2
+RM232,42,36-45,No,Travel_Rarely,532,Research & Development,4,2,Technical Degree,1,319,3,Male,58,3,5,Manager,4,Married,19232,15k+,4933,1,Y,No,11,3,4,80,0,22,3,3,22,17,11,15
+RM254,42,36-45,No,Travel_Rarely,916,Research & Development,17,2,Life Sciences,1,347,4,Female,82,4,2,Research Scientist,1,Single,6545,5k-10k,23016,3,Y,Yes,13,3,3,80,0,10,1,3,3,2,0,
+RM257,42,36-45,No,Travel_Rarely,269,Research & Development,2,3,Medical,1,351,4,Female,56,2,1,Laboratory Technician,1,Divorced,2593,Upto 5k,8007,0,Y,Yes,11,3,3,80,1,10,4,3,9,6,7,
+RM282,42,36-45,No,Travel_Rarely,635,Sales,1,1,Life Sciences,1,387,2,Male,99,3,2,Sales Executive,3,Married,4907,Upto 5k,24532,1,Y,No,25,4,3,80,0,20,3,3,20,16,11,6
+RM296,42,36-45,No,Travel_Frequently,555,Sales,26,3,Marketing,1,404,3,Female,77,3,4,Sales Executive,2,Married,13525,10k-15k,14864,5,Y,No,14,3,4,80,1,23,2,4,20,4,4,8
+RM349,42,36-45,No,Travel_Rarely,810,Research & Development,23,5,Life Sciences,1,468,1,Female,44,3,4,Research Director,4,Single,15992,15k+,15901,2,Y,No,14,3,2,80,0,16,2,3,1,0,0,0
+RM351,42,36-45,No,Travel_Rarely,544,Human Resources,2,1,Technical Degree,1,470,3,Male,52,3,1,Human Resources,3,Divorced,2696,Upto 5k,24017,0,Y,Yes,11,3,3,80,1,4,5,3,3,2,1,0
+RM357,42,36-45,No,Travel_Rarely,1332,Research & Development,2,4,Other,1,477,1,Male,98,2,2,Healthcare Representative,4,Single,6781,5k-10k,17078,3,Y,No,23,4,2,80,0,14,6,3,1,0,0,0
+RM389,42,36-45,No,Travel_Rarely,201,Research & Development,1,4,Life Sciences,1,517,2,Female,95,3,1,Laboratory Technician,1,Divorced,2576,Upto 5k,20490,3,Y,No,16,3,2,80,1,8,5,3,5,2,1,2
+RM410,42,36-45,No,Travel_Frequently,532,Research & Development,29,2,Life Sciences,1,547,1,Female,92,3,2,Research Scientist,3,Divorced,4556,Upto 5k,12932,2,Y,No,11,3,2,80,1,19,3,3,5,4,0,2
+RM414,42,36-45,No,Travel_Frequently,1368,Research & Development,28,4,Technical Degree,1,551,4,Female,88,2,2,Healthcare Representative,4,Married,4523,Upto 5k,4386,0,Y,No,11,3,4,80,3,7,4,4,6,5,0,4
+RM442,42,36-45,No,Travel_Frequently,1474,Research & Development,5,2,Other,1,591,2,Male,97,3,1,Laboratory Technician,3,Married,2093,Upto 5k,9260,4,Y,No,17,3,4,80,1,8,4,3,2,2,2,0
+RM452,42,36-45,No,Travel_Rarely,319,Research & Development,24,3,Medical,1,605,4,Male,56,3,3,Manufacturing Director,1,Married,7406,5k-10k,6950,1,Y,Yes,21,4,4,80,1,10,5,2,10,9,5,8
+RM489,42,36-45,No,Travel_Rarely,622,Research & Development,2,4,Life Sciences,1,659,3,Female,81,3,2,Healthcare Representative,4,Married,4089,Upto 5k,5718,1,Y,No,13,3,2,80,2,10,4,3,10,2,2,2
+RM548,42,36-45,Yes,Travel_Frequently,933,Research & Development,19,3,Medical,1,752,3,Male,57,4,1,Research Scientist,3,Divorced,2759,Upto 5k,20366,6,Y,Yes,12,3,4,80,0,7,2,3,2,2,2,2
+RM585,42,36-45,No,Travel_Frequently,570,Research & Development,8,3,Life Sciences,1,809,2,Male,66,3,5,Manager,4,Divorced,18430,15k+,16225,1,Y,No,13,3,2,80,1,24,4,2,24,7,14,9
+RM598,42,36-45,No,Travel_Rarely,932,Research & Development,1,2,Life Sciences,1,827,4,Female,43,2,2,Manufacturing Director,4,Married,6062,5k-10k,4051,9,Y,Yes,13,3,4,80,1,8,4,3,4,3,0,2
+RM605,42,36-45,No,Travel_Rarely,933,Research & Development,29,3,Life Sciences,1,836,2,Male,98,3,2,Manufacturing Director,2,Married,4434,Upto 5k,11806,1,Y,No,13,3,4,80,1,10,3,2,9,8,7,8
+RM633,42,36-45,No,Travel_Frequently,1271,Research & Development,2,1,Medical,1,875,2,Male,35,3,1,Research Scientist,4,Single,2515,Upto 5k,9068,5,Y,Yes,14,3,4,80,0,8,2,3,2,1,2,2
+RM644,42,36-45,No,Travel_Rarely,1265,Research & Development,3,3,Life Sciences,1,894,3,Female,95,4,2,Laboratory Technician,4,Married,5231,5k-10k,23726,2,Y,Yes,13,3,2,80,1,17,1,2,5,3,1,3
+RM673,42,36-45,No,Travel_Rarely,462,Sales,14,2,Medical,1,936,3,Female,68,2,2,Sales Executive,3,Single,6244,5k-10k,7824,7,Y,No,17,3,1,80,0,10,6,3,5,4,0,3
+RM742,42,36-45,No,Travel_Rarely,265,Sales,5,2,Marketing,1,1029,4,Male,90,3,5,Manager,3,Married,18303,15k+,7770,6,Y,No,13,3,2,80,0,21,3,4,1,0,0,0
+RM800,42,36-45,No,Travel_Rarely,469,Research & Development,2,2,Medical,1,1109,4,Male,35,3,4,Manager,1,Married,17665,15k+,14399,0,Y,No,17,3,4,80,1,23,3,3,22,6,13,7
+RM825,42,36-45,No,Travel_Rarely,188,Research & Development,29,3,Medical,1,1148,2,Male,56,1,2,Laboratory Technician,4,Single,4272,Upto 5k,9558,4,Y,No,19,3,1,80,0,16,3,3,1,0,0,0
+RM839,42,36-45,Yes,Travel_Frequently,481,Sales,12,3,Life Sciences,1,1167,3,Male,44,3,4,Sales Executive,1,Single,13758,10k-15k,2447,0,Y,Yes,12,3,2,80,0,22,2,2,21,9,13,14
+RM840,42,36-45,No,Travel_Rarely,647,Sales,4,4,Marketing,1,1171,2,Male,45,3,2,Sales Executive,1,Single,5155,5k-10k,2253,7,Y,No,13,3,4,80,0,9,3,4,6,4,1,5
+RM879,42,36-45,No,Non-Travel,179,Human Resources,2,5,Medical,1,1231,4,Male,79,4,2,Human Resources,1,Married,6272,5k-10k,12858,7,Y,No,16,3,1,80,1,10,3,4,4,3,0,3
+RM888,42,36-45,No,Travel_Frequently,458,Research & Development,26,5,Medical,1,1242,1,Female,60,3,3,Research Director,1,Married,13191,10k-15k,23281,3,Y,Yes,17,3,3,80,0,20,6,3,1,0,0,0
+RM926,42,36-45,No,Travel_Rarely,603,Research & Development,7,4,Medical,1,1292,2,Female,78,4,2,Research Scientist,2,Married,2372,Upto 5k,5628,6,Y,Yes,16,3,4,80,0,18,2,3,1,0,0,0
+RM955,42,36-45,No,Non-Travel,495,Research & Development,2,1,Life Sciences,1,1334,3,Male,37,3,4,Manager,3,Married,17861,15k+,26582,0,Y,Yes,13,3,4,80,0,21,3,2,20,8,2,10
+RM1000,42,36-45,No,Travel_Rarely,1147,Human Resources,10,3,Human Resources,1,1408,3,Female,31,3,4,Manager,1,Married,16799,15k+,16616,0,Y,No,14,3,3,80,1,21,5,3,20,7,0,9
+RM1051,42,36-45,No,Travel_Frequently,748,Research & Development,9,2,Medical,1,1480,1,Female,74,3,1,Laboratory Technician,4,Single,3673,Upto 5k,16458,1,Y,No,13,3,3,80,0,12,3,3,12,9,5,8
+RM1089,42,36-45,No,Travel_Rarely,1210,Research & Development,2,3,Medical,1,1542,3,Male,68,2,1,Laboratory Technician,2,Married,4841,Upto 5k,24052,4,Y,No,14,3,2,80,1,4,3,3,1,0,0,0
+RM1094,42,36-45,No,Travel_Frequently,288,Research & Development,2,3,Life Sciences,1,1547,4,Male,40,3,3,Healthcare Representative,4,Married,10124,10k-15k,18611,2,Y,Yes,14,3,3,80,1,24,3,1,20,8,13,9
+RM1130,42,36-45,No,Travel_Rarely,1059,Research & Development,9,2,Other,1,1595,4,Male,93,2,5,Manager,4,Single,19613,15k+,26362,8,Y,No,22,4,4,80,0,24,2,3,1,0,0,1
+RM1264,42,36-45,No,Travel_Rarely,855,Research & Development,12,3,Medical,1,1768,2,Male,57,3,1,Laboratory Technician,2,Divorced,2766,Upto 5k,8952,8,Y,No,22,4,2,80,3,7,6,2,5,3,0,4
+RM1288,42,36-45,No,Travel_Rarely,1128,Research & Development,13,3,Medical,1,1803,2,Male,95,4,2,Healthcare Representative,1,Married,5538,5k-10k,5696,5,Y,No,18,3,3,80,2,10,2,2,0,0,0,0
+RM1321,42,36-45,No,Non-Travel,355,Research & Development,10,4,Technical Degree,1,1854,3,Male,38,3,1,Research Scientist,3,Married,2936,Upto 5k,6161,3,Y,No,22,4,2,80,2,10,1,2,6,3,3,3
+RM1326,42,36-45,No,Travel_Rarely,1142,Research & Development,8,3,Life Sciences,1,1860,4,Male,81,3,1,Laboratory Technician,3,Single,3968,Upto 5k,13624,4,Y,No,13,3,4,80,0,8,3,3,0,0,0,0
+RM1358,42,36-45,No,Travel_Rarely,1396,Research & Development,6,3,Medical,1,1911,3,Male,83,3,3,Research Director,1,Married,13348,10k-15k,14842,9,Y,No,13,3,2,80,1,18,3,4,13,7,5,7
+RM1379,42,36-45,No,Travel_Rarely,419,Sales,12,4,Marketing,1,1943,2,Male,77,3,2,Sales Executive,4,Divorced,5087,5k-10k,2900,3,Y,Yes,12,3,3,80,2,14,4,3,0,0,0,0
+RM1405,42,36-45,No,Non-Travel,335,Research & Development,23,2,Life Sciences,1,1976,4,Male,37,2,2,Research Scientist,3,Single,4332,Upto 5k,14811,1,Y,No,12,3,4,80,0,20,2,3,20,9,3,7
+RM1420,42,36-45,No,Travel_Rarely,557,Research & Development,18,4,Life Sciences,1,1998,4,Male,35,3,2,Research Scientist,1,Divorced,5410,5k-10k,11189,6,Y,Yes,17,3,3,80,1,9,3,2,4,3,1,2
+RM1444,42,36-45,No,Travel_Rarely,300,Research & Development,2,3,Life Sciences,1,2031,1,Male,56,3,5,Manager,3,Married,18880,15k+,17312,5,Y,No,11,3,1,80,0,24,2,2,22,6,4,14
+RM036,43,36-45,No,Travel_Rarely,1273,Research & Development,2,2,Medical,1,46,4,Female,72,4,1,Research Scientist,3,Divorced,2645,Upto 5k,21923,1,Y,No,12,3,4,80,2,6,3,2,5,3,1,4
+RM120,43,36-45,No,Travel_Frequently,394,Sales,26,2,Life Sciences,1,158,3,Male,92,3,4,Manager,4,Married,16959,15k+,19494,1,Y,Yes,12,3,4,80,2,25,3,4,25,12,4,12
+RM131,43,36-45,No,Travel_Frequently,957,Research & Development,28,3,Medical,1,171,2,Female,72,4,1,Research Scientist,3,Single,4739,Upto 5k,16090,4,Y,No,12,3,4,80,0,18,2,3,3,2,1,2
+RM194,43,36-45,No,Non-Travel,1344,Research & Development,7,3,Medical,1,262,4,Male,37,4,1,Research Scientist,4,Divorced,2089,Upto 5k,5228,4,Y,No,14,3,4,80,3,7,3,4,5,4,2,2
+RM236,43,36-45,No,Travel_Rarely,1034,Sales,16,3,Marketing,1,327,4,Female,80,3,4,Manager,4,Married,16064,15k+,7744,5,Y,Yes,22,4,3,80,1,22,3,3,17,13,1,9
+RM316,43,36-45,No,Travel_Frequently,185,Research & Development,10,4,Life Sciences,1,430,3,Female,33,3,1,Laboratory Technician,4,Single,2455,Upto 5k,10675,0,Y,No,19,3,1,80,0,9,5,3,8,7,1,7
+RM331,43,36-45,No,Travel_Frequently,559,Research & Development,10,4,Life Sciences,1,448,3,Female,82,2,2,Laboratory Technician,3,Divorced,5257,5k-10k,6227,1,Y,No,11,3,2,80,1,9,3,4,9,7,0,0
+RM334,43,36-45,No,Travel_Rarely,1001,Research & Development,7,3,Life Sciences,1,451,3,Female,43,3,3,Healthcare Representative,1,Married,9985,5k-10k,9262,8,Y,No,16,3,1,80,1,10,1,2,1,0,0,0
+RM391,43,36-45,No,Travel_Rarely,982,Research & Development,12,3,Life Sciences,1,520,1,Male,59,2,4,Research Director,2,Divorced,14336,10k-15k,4345,1,Y,No,11,3,3,80,1,25,3,3,25,10,3,9
+RM396,43,36-45,No,Travel_Frequently,313,Research & Development,21,3,Medical,1,525,4,Male,61,3,1,Laboratory Technician,4,Married,2258,Upto 5k,15238,7,Y,No,20,4,1,80,1,8,1,3,3,2,1,2
+RM397,43,36-45,No,Travel_Rarely,1473,Research & Development,8,4,Other,1,526,3,Female,74,3,2,Healthcare Representative,3,Divorced,4522,Upto 5k,2227,4,Y,Yes,14,3,4,80,0,8,3,3,5,2,0,2
+RM490,43,36-45,No,Travel_Rarely,782,Research & Development,6,4,Other,1,661,2,Male,50,2,4,Research Director,4,Divorced,16627,15k+,2671,4,Y,Yes,14,3,3,80,1,21,3,2,1,0,0,0
+RM492,43,36-45,No,Travel_Frequently,1001,Research & Development,9,5,Medical,1,663,4,Male,72,3,2,Laboratory Technician,3,Divorced,5679,5k-10k,19627,3,Y,Yes,13,3,2,80,1,10,3,3,8,7,4,7
+RM549,43,36-45,No,Travel_Frequently,775,Sales,15,3,Life Sciences,1,754,4,Male,47,2,2,Sales Executive,4,Married,6804,5k-10k,23683,3,Y,No,18,3,3,80,1,7,5,3,2,2,2,2
+RM610,43,36-45,No,Travel_Rarely,589,Research & Development,14,2,Life Sciences,1,843,2,Male,94,3,4,Research Director,1,Married,17159,15k+,5200,6,Y,No,24,4,3,80,1,22,3,3,4,1,1,0
+RM651,43,36-45,No,Travel_Frequently,422,Research & Development,1,3,Life Sciences,1,902,4,Female,33,3,2,Healthcare Representative,4,Married,5562,5k-10k,21782,4,Y,No,13,3,2,80,1,12,2,2,5,2,2,2
+RM662,43,36-45,No,Travel_Rarely,177,Research & Development,8,3,Life Sciences,1,920,1,Female,55,3,2,Manufacturing Director,2,Divorced,4765,Upto 5k,23814,4,Y,No,21,4,3,80,1,4,2,4,1,0,0,0
+RM776,43,36-45,No,Travel_Rarely,415,Sales,25,3,Medical,1,1076,3,Male,79,2,3,Sales Executive,4,Divorced,10798,10k-15k,5268,5,Y,No,13,3,3,80,1,18,5,3,1,0,0,0
+RM813,43,36-45,No,Travel_Frequently,1082,Research & Development,27,3,Life Sciences,1,1126,3,Female,83,3,3,Manufacturing Director,1,Married,10820,10k-15k,11535,8,Y,No,11,3,3,80,1,18,1,3,8,7,0,1
+RM850,43,36-45,Yes,Travel_Rarely,1372,Sales,9,3,Marketing,1,1188,1,Female,85,1,2,Sales Executive,3,Single,5346,5k-10k,9489,8,Y,No,13,3,2,80,0,7,2,2,4,3,1,3
+RM899,43,36-45,No,Travel_Rarely,920,Research & Development,3,3,Life Sciences,1,1255,3,Male,96,1,5,Research Director,4,Married,19740,15k+,18625,3,Y,No,14,3,2,80,1,25,2,3,8,7,0,7
+RM927,43,36-45,No,Travel_Rarely,531,Sales,4,4,Marketing,1,1293,4,Female,56,2,3,Sales Executive,4,Single,10231,10k-15k,20364,3,Y,No,14,3,4,80,0,23,3,4,21,7,15,17
+RM996,43,36-45,No,Travel_Rarely,930,Research & Development,6,3,Medical,1,1402,1,Female,73,2,2,Research Scientist,3,Single,4081,Upto 5k,20003,1,Y,Yes,14,3,1,80,0,20,3,1,20,7,1,8
+RM1134,43,36-45,No,Travel_Rarely,990,Research & Development,27,3,Technical Degree,1,1599,4,Male,87,4,1,Laboratory Technician,2,Divorced,4876,Upto 5k,5855,5,Y,No,12,3,3,80,1,8,0,3,6,4,0,2
+RM1186,43,36-45,No,Travel_Rarely,1291,Research & Development,15,2,Life Sciences,1,1666,3,Male,65,2,4,Research Director,3,Married,17603,15k+,3525,1,Y,No,24,4,1,80,1,14,3,3,14,10,6,11
+RM1217,43,36-45,No,Travel_Rarely,1179,Sales,2,3,Medical,1,1706,4,Male,73,3,2,Sales Executive,4,Married,7847,5k-10k,6069,1,Y,Yes,17,3,1,80,1,10,3,3,10,9,8,8
+RM1263,43,36-45,Yes,Travel_Frequently,807,Research & Development,17,3,Technical Degree,1,1767,3,Male,38,2,1,Research Scientist,3,Married,2437,Upto 5k,15587,9,Y,Yes,16,3,4,80,1,6,4,3,1,0,0,0
+RM1270,43,36-45,No,Travel_Rarely,244,Human Resources,2,3,Life Sciences,1,1778,2,Male,97,3,1,Human Resources,4,Single,3539,Upto 5k,5033,0,Y,No,13,3,2,80,0,10,5,3,9,7,1,8
+RM1294,43,36-45,No,Non-Travel,343,Research & Development,9,3,Life Sciences,1,1813,1,Male,52,3,1,Research Scientist,3,Single,2438,Upto 5k,24978,4,Y,No,13,3,3,80,0,7,2,2,3,2,1,2
+RM1317,43,36-45,No,Travel_Frequently,1422,Sales,2,4,Life Sciences,1,1849,1,Male,92,3,2,Sales Executive,4,Married,5675,5k-10k,19246,1,Y,No,20,4,3,80,1,7,5,3,7,7,7,7
+RM1331,43,36-45,No,Travel_Rarely,823,Research & Development,6,3,Medical,1,1866,1,Female,81,2,5,Manager,3,Married,19392,15k+,22539,7,Y,No,13,3,4,80,0,21,2,3,16,12,6,14
+RM1400,43,36-45,No,Travel_Rarely,574,Research & Development,11,3,Life Sciences,1,1971,1,Male,30,3,3,Healthcare Representative,3,Married,7510,5k-10k,16873,1,Y,No,17,3,2,80,1,10,1,3,10,9,0,9
+RM029,44,36-45,No,Travel_Rarely,477,Research & Development,7,4,Medical,1,36,1,Female,42,2,3,Healthcare Representative,4,Married,10248,10k-15k,2094,3,Y,No,14,3,4,80,1,24,4,3,22,6,5,
+RM032,44,36-45,No,Travel_Rarely,1459,Research & Development,10,4,Other,1,40,4,Male,41,3,2,Healthcare Representative,4,Married,6465,5k-10k,19121,2,Y,Yes,13,3,4,80,0,9,5,4,4,2,1,3
+RM053,44,36-45,No,Travel_Rarely,1488,Sales,1,5,Marketing,1,68,2,Female,75,3,2,Sales Executive,1,Divorced,5454,5k-10k,4009,5,Y,Yes,21,4,3,80,1,9,2,2,4,3,1,3
+RM100,44,36-45,No,Non-Travel,489,Research & Development,23,3,Medical,1,132,2,Male,67,3,2,Laboratory Technician,2,Married,2042,Upto 5k,25043,4,Y,No,12,3,3,80,1,17,3,4,3,2,1,2
+RM287,44,36-45,Yes,Travel_Frequently,920,Research & Development,24,3,Life Sciences,1,392,4,Male,43,3,1,Laboratory Technician,3,Divorced,3161,Upto 5k,19920,3,Y,Yes,22,4,4,80,1,19,0,1,1,0,0,0
+RM494,44,36-45,No,Travel_Rarely,1112,Human Resources,1,4,Life Sciences,1,665,1,Female,50,2,2,Human Resources,3,Single,5985,5k-10k,26894,4,Y,No,11,3,2,80,0,10,1,4,2,2,0,2
+RM498,44,36-45,No,Travel_Rarely,1315,Research & Development,3,4,Other,1,671,4,Male,35,3,5,Manager,4,Married,19513,15k+,9358,4,Y,Yes,12,3,1,80,1,26,2,4,2,2,0,1
+RM544,44,36-45,No,Non-Travel,381,Research & Development,24,3,Medical,1,744,1,Male,49,1,1,Laboratory Technician,3,Single,3708,Upto 5k,2104,2,Y,No,14,3,3,80,0,9,5,3,5,2,1,4
+RM618,44,36-45,No,Travel_Rarely,625,Research & Development,4,3,Medical,1,852,4,Male,50,3,2,Healthcare Representative,2,Single,5933,5k-10k,5197,9,Y,No,12,3,4,80,0,10,2,2,5,2,2,3
+RM632,44,36-45,No,Travel_Rarely,986,Research & Development,8,4,Life Sciences,1,874,1,Male,62,4,1,Laboratory Technician,4,Married,2818,Upto 5k,5044,2,Y,Yes,24,4,3,80,1,10,2,2,3,2,0,2
+RM659,44,36-45,No,Travel_Rarely,661,Research & Development,9,2,Life Sciences,1,913,2,Male,61,3,1,Research Scientist,1,Married,2559,Upto 5k,7508,1,Y,Yes,13,3,4,80,0,8,0,3,8,7,7,1
+RM751,44,36-45,No,Travel_Rarely,1448,Sales,28,3,Medical,1,1039,4,Female,53,4,4,Sales Executive,4,Married,13320,10k-15k,11737,3,Y,Yes,18,3,3,80,1,23,2,3,12,11,11,11
+RM790,44,36-45,Yes,Travel_Rarely,1376,Human Resources,1,2,Medical,1,1098,2,Male,91,2,3,Human Resources,1,Married,10482,10k-15k,2326,9,Y,No,14,3,4,80,1,24,1,3,20,6,3,6
+RM858,44,36-45,Yes,Travel_Rarely,1097,Research & Development,10,4,Life Sciences,1,1200,3,Male,96,3,1,Research Scientist,3,Single,2936,Upto 5k,10826,1,Y,Yes,11,3,3,80,0,6,4,3,6,4,0,2
+RM863,44,36-45,No,Non-Travel,111,Research & Development,17,3,Life Sciences,1,1206,4,Male,74,1,1,Research Scientist,3,Single,2290,Upto 5k,4279,2,Y,No,13,3,4,80,0,6,3,3,0,0,0,0
+RM876,44,36-45,No,Travel_Rarely,200,Research & Development,29,4,Other,1,1225,4,Male,32,3,2,Research Scientist,4,Single,4541,Upto 5k,7744,1,Y,No,25,4,2,80,0,20,3,3,20,11,13,17
+RM892,44,36-45,No,Travel_Rarely,1117,Research & Development,2,1,Life Sciences,1,1246,1,Female,72,4,1,Research Scientist,4,Married,2011,Upto 5k,19982,1,Y,No,13,3,4,80,1,10,5,3,10,5,7,7
+RM908,44,36-45,No,Travel_Rarely,1099,Sales,5,3,Marketing,1,1267,2,Male,88,3,5,Manager,2,Married,18213,15k+,8751,7,Y,No,11,3,3,80,1,26,5,3,22,9,3,10
+RM923,44,36-45,No,Travel_Rarely,1199,Research & Development,4,2,Life Sciences,1,1288,3,Male,92,4,5,Manager,1,Divorced,19190,15k+,17477,1,Y,No,14,3,4,80,2,26,4,2,25,9,14,13
+RM929,44,36-45,Yes,Travel_Rarely,621,Research & Development,15,3,Medical,1,1295,1,Female,73,3,3,Healthcare Representative,4,Married,7978,5k-10k,14075,1,Y,No,11,3,4,80,1,10,2,3,10,7,0,5
+RM954,44,36-45,Yes,Travel_Rarely,935,Research & Development,3,3,Life Sciences,1,1333,1,Male,89,3,1,Laboratory Technician,1,Married,2362,Upto 5k,14669,4,Y,No,12,3,3,80,0,10,4,4,3,2,1,2
+RM1043,44,36-45,No,Non-Travel,981,Research & Development,5,3,Life Sciences,1,1471,3,Male,90,2,1,Laboratory Technician,3,Single,3162,Upto 5k,7973,3,Y,No,14,3,4,80,0,7,5,3,5,2,0,3
+RM1047,44,36-45,No,Travel_Rarely,1467,Research & Development,20,3,Life Sciences,1,1475,4,Male,49,3,1,Research Scientist,2,Single,3420,Upto 5k,21158,1,Y,No,13,3,3,80,0,6,3,2,5,2,1,3
+RM1052,44,36-45,No,Travel_Frequently,383,Sales,1,5,Marketing,1,1481,1,Female,79,3,2,Sales Executive,3,Married,4768,Upto 5k,9282,7,Y,No,12,3,3,80,1,11,4,2,1,0,0,0
+RM1063,44,36-45,No,Travel_Frequently,1193,Research & Development,2,1,Medical,1,1496,2,Male,86,3,3,Manufacturing Director,3,Single,10209,10k-15k,19719,5,Y,Yes,18,3,2,80,0,16,2,2,2,2,2,2
+RM1079,44,36-45,No,Travel_Rarely,136,Research & Development,28,3,Life Sciences,1,1523,4,Male,32,3,4,Research Director,1,Married,16328,15k+,22074,3,Y,No,13,3,3,80,1,24,1,4,20,6,14,17
+RM1141,44,36-45,No,Travel_Rarely,1313,Research & Development,7,3,Medical,1,1608,2,Female,31,3,5,Research Director,4,Divorced,19049,15k+,3549,0,Y,Yes,14,3,4,80,1,23,4,2,22,7,1,10
+RM1166,44,36-45,No,Travel_Frequently,602,Human Resources,1,5,Human Resources,1,1642,1,Male,37,3,2,Human Resources,4,Married,5743,5k-10k,10503,4,Y,Yes,11,3,3,80,0,14,3,3,10,7,0,2
+RM1201,44,36-45,No,Travel_Rarely,528,Human Resources,1,3,Life Sciences,1,1683,3,Female,44,3,1,Human Resources,4,Divorced,3195,Upto 5k,4167,4,Y,Yes,18,3,1,80,3,8,2,3,2,2,2,2
+RM1215,44,36-45,No,Travel_Rarely,921,Research & Development,2,3,Life Sciences,1,1703,3,Female,96,4,3,Healthcare Representative,4,Married,7879,5k-10k,14810,1,Y,Yes,19,3,2,80,1,9,2,3,8,7,6,7
+RM1280,44,36-45,Yes,Travel_Frequently,429,Research & Development,1,2,Medical,1,1792,3,Male,99,3,1,Research Scientist,2,Divorced,2342,Upto 5k,11092,1,Y,Yes,12,3,3,80,3,6,2,2,5,3,2,3
+RM1353,44,36-45,No,Travel_Rarely,170,Research & Development,1,4,Life Sciences,1,1903,2,Male,78,4,2,Healthcare Representative,1,Married,5033,5k-10k,9364,2,Y,No,15,3,4,80,1,10,5,3,2,0,2,2
+RM1436,44,36-45,No,Travel_Rarely,1037,Research & Development,1,3,Medical,1,2020,2,Male,42,3,1,Research Scientist,4,Single,2436,Upto 5k,13422,6,Y,Yes,12,3,3,80,0,6,2,3,4,3,1,2
+RM068,45,36-45,No,Travel_Rarely,1339,Research & Development,7,3,Life Sciences,1,86,2,Male,59,3,3,Research Scientist,1,Divorced,9724,5k-10k,18787,2,Y,No,17,3,3,80,1,25,2,3,1,0,0,0
+RM078,45,36-45,No,Travel_Rarely,193,Research & Development,6,4,Other,1,101,4,Male,52,3,3,Research Director,1,Married,13245,10k-15k,15067,4,Y,Yes,14,3,2,80,0,17,3,4,0,0,0,
+RM142,45,36-45,No,Travel_Rarely,1316,Research & Development,29,3,Medical,1,192,3,Male,83,3,1,Research Scientist,4,Single,3452,Upto 5k,9752,5,Y,No,13,3,2,80,0,9,2,2,6,5,0,
+RM154,45,36-45,No,Travel_Rarely,194,Research & Development,9,3,Life Sciences,1,206,2,Male,60,3,2,Laboratory Technician,2,Divorced,2348,Upto 5k,10901,8,Y,No,18,3,3,80,1,20,2,1,17,9,0,15
+RM175,45,36-45,No,Travel_Rarely,1268,Sales,4,2,Life Sciences,1,240,3,Female,30,3,2,Sales Executive,1,Divorced,5006,5k-10k,6319,4,Y,Yes,11,3,1,80,1,9,3,4,5,4,0,3
+RM195,45,36-45,No,Non-Travel,1195,Research & Development,2,2,Medical,1,264,1,Male,65,2,4,Manager,4,Married,16792,15k+,20462,9,Y,No,23,4,4,80,1,22,1,3,20,8,11,8
+RM219,45,36-45,No,Non-Travel,1052,Sales,6,3,Medical,1,302,4,Female,57,2,3,Sales Executive,4,Single,8865,5k-10k,16840,6,Y,No,12,3,4,80,0,23,2,3,19,7,12,8
+RM245,45,36-45,No,Travel_Rarely,252,Research & Development,1,3,Other,1,336,3,Male,70,4,5,Manager,4,Married,19202,15k+,15970,0,Y,No,11,3,3,80,1,25,2,3,24,0,1,7
+RM250,45,36-45,No,Travel_Frequently,1199,Research & Development,7,4,Life Sciences,1,341,1,Male,77,4,2,Manufacturing Director,3,Married,6434,5k-10k,5118,4,Y,No,17,3,4,80,1,9,1,3,3,2,0,
+RM269,45,36-45,No,Travel_Rarely,1385,Research & Development,20,2,Medical,1,372,3,Male,79,3,4,Healthcare Representative,4,Married,13496,10k-15k,7501,0,Y,Yes,14,3,2,80,0,21,2,3,20,7,4,10
+RM312,45,36-45,No,Travel_Frequently,1249,Research & Development,7,3,Life Sciences,1,425,1,Male,97,3,3,Laboratory Technician,1,Divorced,5210,5k-10k,20308,1,Y,No,18,3,1,80,1,24,2,3,24,9,9,11
+RM335,45,36-45,No,Travel_Rarely,549,Research & Development,8,4,Other,1,452,4,Male,75,3,2,Research Scientist,4,Married,3697,Upto 5k,9278,9,Y,No,14,3,1,80,2,12,3,3,10,9,9,8
+RM408,45,36-45,No,Travel_Rarely,192,Research & Development,10,2,Life Sciences,1,544,1,Male,69,3,1,Research Scientist,4,Married,2654,Upto 5k,9655,3,Y,No,21,4,4,80,2,8,3,2,2,2,0,
+RM453,45,36-45,No,Travel_Rarely,561,Sales,2,3,Other,1,606,4,Male,61,3,2,Sales Executive,2,Married,4805,Upto 5k,16177,0,Y,No,19,3,2,80,1,9,3,4,8,7,3,7
+RM505,45,36-45,Yes,Travel_Frequently,306,Sales,26,4,Life Sciences,1,684,1,Female,100,3,2,Sales Executive,1,Married,4286,Upto 5k,5630,2,Y,No,14,3,4,80,2,5,4,3,1,1,0,0
+RM565,45,36-45,No,Travel_Rarely,954,Sales,2,2,Technical Degree,1,783,2,Male,46,1,2,Sales Representative,3,Single,6632,5k-10k,12388,0,Y,No,13,3,1,80,0,9,3,3,8,7,3,1
+RM604,45,36-45,No,Travel_Rarely,252,Research & Development,2,3,Life Sciences,1,834,2,Female,95,2,1,Research Scientist,3,Single,2274,Upto 5k,6153,1,Y,No,14,3,4,80,0,1,3,3,1,0,0,0
+RM626,45,36-45,No,Travel_Rarely,930,Sales,9,3,Marketing,1,864,4,Male,74,3,3,Sales Executive,1,Divorced,10761,10k-15k,19239,4,Y,Yes,12,3,3,80,1,18,2,3,5,4,0,2
+RM697,45,36-45,No,Non-Travel,805,Research & Development,4,2,Life Sciences,1,972,3,Male,57,3,2,Laboratory Technician,2,Married,4447,Upto 5k,23163,1,Y,No,12,3,2,80,0,9,5,2,9,7,0,8
+RM714,45,36-45,No,Travel_Rarely,974,Research & Development,1,4,Medical,1,996,4,Female,91,3,1,Laboratory Technician,4,Divorced,2270,Upto 5k,11005,3,Y,No,14,3,4,80,2,8,2,3,5,3,0,2
+RM719,45,36-45,No,Non-Travel,248,Research & Development,23,2,Life Sciences,1,1002,4,Male,42,3,2,Laboratory Technician,1,Married,3633,Upto 5k,14039,1,Y,Yes,15,3,3,80,1,9,2,3,9,8,0,8
+RM756,45,36-45,No,Travel_Rarely,1234,Sales,11,2,Life Sciences,1,1045,4,Female,90,3,4,Manager,4,Married,17650,15k+,5404,3,Y,No,13,3,2,80,1,26,4,4,9,3,1,1
+RM760,45,36-45,No,Travel_Rarely,788,Human Resources,24,4,Medical,1,1049,2,Male,36,3,1,Human Resources,2,Single,2177,Upto 5k,8318,1,Y,No,16,3,1,80,0,6,3,3,6,3,0,4
+RM806,45,36-45,No,Non-Travel,1050,Sales,9,4,Life Sciences,1,1117,2,Female,65,2,2,Sales Executive,3,Married,5593,5k-10k,17970,1,Y,No,13,3,4,80,1,15,2,3,15,10,4,12
+RM855,45,36-45,No,Travel_Rarely,1457,Research & Development,7,3,Medical,1,1195,1,Female,83,3,1,Research Scientist,3,Married,4477,Upto 5k,20100,4,Y,Yes,19,3,3,80,1,7,2,2,3,2,0,2
+RM914,45,36-45,Yes,Travel_Rarely,1449,Sales,2,3,Marketing,1,1277,1,Female,94,1,5,Manager,2,Single,18824,15k+,2493,2,Y,Yes,16,3,1,80,0,26,2,3,24,10,1,11
+RM937,45,36-45,No,Travel_Frequently,364,Research & Development,25,3,Medical,1,1306,2,Female,83,3,5,Manager,2,Single,18061,15k+,13035,3,Y,No,22,4,3,80,0,22,4,3,0,0,0,0
+RM1035,45,36-45,No,Travel_Rarely,1038,Research & Development,20,3,Medical,1,1460,2,Male,95,1,3,Healthcare Representative,1,Divorced,10851,10k-15k,19863,2,Y,Yes,18,3,2,80,1,24,2,3,7,7,0,7
+RM1038,45,36-45,No,Travel_Rarely,1448,Research & Development,29,3,Technical Degree,1,1465,2,Male,55,3,3,Manufacturing Director,4,Married,9380,5k-10k,14720,4,Y,Yes,18,3,4,80,2,10,4,4,3,1,1,2
+RM1093,45,36-45,No,Travel_Rarely,950,Research & Development,28,3,Technical Degree,1,1546,4,Male,97,3,1,Research Scientist,4,Married,2132,Upto 5k,4585,4,Y,No,20,4,4,80,1,8,3,3,5,4,0,3
+RM1100,45,36-45,No,Travel_Rarely,538,Research & Development,1,4,Technical Degree,1,1553,1,Male,66,3,3,Healthcare Representative,2,Divorced,7441,5k-10k,20933,1,Y,No,12,3,1,80,3,10,4,3,10,8,7,7
+RM1143,45,36-45,No,Travel_Rarely,1015,Research & Development,5,5,Medical,1,1611,3,Female,50,1,2,Laboratory Technician,1,Single,5769,5k-10k,23447,1,Y,Yes,14,3,1,80,0,10,3,3,10,7,1,4
+RM1144,45,36-45,No,Non-Travel,336,Sales,26,3,Marketing,1,1612,1,Male,52,2,2,Sales Executive,1,Married,4385,Upto 5k,24162,1,Y,No,15,3,1,80,1,10,2,3,10,7,4,5
+RM1161,45,36-45,No,Travel_Rarely,1329,Research & Development,2,2,Other,1,1635,4,Female,59,2,2,Manufacturing Director,4,Divorced,5770,5k-10k,5388,1,Y,No,19,3,1,80,2,10,3,3,10,7,3,9
+RM1222,45,36-45,No,Non-Travel,1238,Research & Development,1,1,Life Sciences,1,1712,3,Male,74,2,3,Healthcare Representative,3,Married,10748,10k-15k,3395,3,Y,No,23,4,4,80,1,25,3,2,23,15,14,4
+RM1226,45,36-45,No,Travel_Rarely,1005,Research & Development,28,2,Technical Degree,1,1719,4,Female,48,2,4,Research Director,2,Single,16704,15k+,17119,1,Y,No,11,3,3,80,0,21,2,3,21,6,8,6
+RM1244,45,36-45,No,Travel_Rarely,176,Human Resources,4,3,Life Sciences,1,1744,3,Female,56,1,3,Human Resources,3,Married,9756,5k-10k,6595,4,Y,No,21,4,3,80,2,9,2,4,5,0,0,3
+RM1315,45,36-45,No,Non-Travel,589,Sales,2,4,Life Sciences,1,1845,3,Female,67,3,2,Sales Executive,3,Married,5154,5k-10k,19665,4,Y,No,22,4,2,80,2,10,3,4,8,7,5,7
+RM1347,45,36-45,No,Travel_Rarely,556,Research & Development,25,2,Life Sciences,1,1888,2,Female,93,2,2,Manufacturing Director,4,Married,5906,5k-10k,23888,0,Y,No,13,3,4,80,2,10,2,2,9,8,3,8
+RM1363,45,36-45,No,Travel_Frequently,1297,Research & Development,1,4,Medical,1,1922,2,Male,44,3,2,Healthcare Representative,3,Single,5399,5k-10k,14511,4,Y,No,12,3,3,80,0,12,3,3,4,2,0,3
+RM1455,45,36-45,No,Travel_Rarely,374,Sales,20,3,Life Sciences,1,2046,4,Female,50,3,2,Sales Executive,3,Single,4850,Upto 5k,23333,8,Y,No,15,3,3,80,0,8,3,3,5,3,0,1
+RM030,46,46-55,No,Travel_Rarely,705,Sales,2,4,Marketing,1,38,2,Female,83,3,5,Manager,1,Single,18947,15k+,22822,3,Y,No,12,3,4,80,0,22,2,2,2,2,2,
+RM049,46,46-55,No,Travel_Frequently,1211,Sales,5,4,Marketing,1,62,1,Male,98,3,2,Sales Executive,4,Single,5772,5k-10k,20445,4,Y,Yes,21,4,3,80,0,14,4,3,9,6,0,8
+RM080,46,46-55,No,Travel_Rarely,945,Human Resources,5,2,Medical,1,103,2,Male,80,3,2,Human Resources,2,Divorced,5021,5k-10k,10425,8,Y,Yes,22,4,4,80,1,16,2,3,4,2,0,2
+RM090,46,46-55,Yes,Travel_Rarely,669,Sales,9,2,Medical,1,118,3,Male,64,2,3,Sales Executive,4,Single,9619,5k-10k,13596,1,Y,No,16,3,4,80,0,9,3,3,9,8,4,7
+RM094,46,46-55,No,Travel_Frequently,638,Research & Development,1,3,Medical,1,124,3,Male,40,2,3,Healthcare Representative,1,Married,10673,10k-15k,3142,2,Y,Yes,13,3,3,80,1,21,5,2,10,9,9,5
+RM179,46,46-55,No,Travel_Rarely,526,Sales,1,2,Marketing,1,244,2,Female,92,3,3,Sales Executive,1,Divorced,10453,10k-15k,2137,1,Y,No,25,4,3,80,3,24,2,3,24,13,15,7
+RM210,46,46-55,No,Travel_Rarely,644,Research & Development,1,4,Medical,1,288,4,Male,97,3,3,Healthcare Representative,1,Divorced,9396,5k-10k,12368,7,Y,No,16,3,3,80,1,17,3,3,4,2,0,
+RM264,46,46-55,No,Travel_Rarely,488,Sales,2,3,Technical Degree,1,363,3,Female,75,1,4,Manager,2,Married,16872,15k+,14977,3,Y,Yes,12,3,2,80,1,28,2,2,7,7,7,7
+RM366,46,46-55,No,Non-Travel,1144,Research & Development,7,4,Medical,1,487,3,Female,30,3,2,Manufacturing Director,3,Married,5258,5k-10k,16044,2,Y,No,14,3,3,80,0,7,2,4,1,0,0,0
+RM413,46,46-55,No,Travel_Rarely,1485,Research & Development,18,3,Medical,1,550,3,Female,87,3,2,Manufacturing Director,3,Divorced,4810,Upto 5k,26314,2,Y,No,14,3,3,80,1,19,5,2,10,7,0,8
+RM430,46,46-55,No,Travel_Rarely,1009,Research & Development,2,3,Life Sciences,1,575,1,Male,51,3,4,Research Director,3,Married,17861,15k+,2288,6,Y,No,13,3,3,80,0,26,2,1,3,2,0,1
+RM434,46,46-55,No,Travel_Rarely,1125,Sales,10,3,Marketing,1,580,3,Female,94,2,3,Sales Executive,4,Married,9071,5k-10k,11563,2,Y,Yes,19,3,3,80,1,15,3,3,3,2,1,2
+RM466,46,46-55,No,Travel_Frequently,1034,Research & Development,18,1,Medical,1,624,1,Female,86,3,3,Healthcare Representative,3,Married,10527,10k-15k,8984,5,Y,No,11,3,4,80,0,28,3,2,2,2,1,2
+RM724,46,46-55,No,Travel_Rarely,566,Research & Development,7,2,Medical,1,1007,4,Male,75,3,3,Manufacturing Director,3,Divorced,10845,10k-15k,24208,6,Y,No,13,3,2,80,1,13,3,3,8,7,0,7
+RM771,46,46-55,No,Travel_Rarely,430,Research & Development,1,4,Medical,1,1069,4,Male,40,3,5,Research Director,4,Divorced,19627,15k+,21445,9,Y,No,17,3,4,80,2,23,0,3,2,2,2,2
+RM779,46,46-55,No,Travel_Rarely,1003,Research & Development,8,4,Life Sciences,1,1080,4,Female,74,2,2,Research Scientist,1,Divorced,4615,Upto 5k,21029,8,Y,Yes,23,4,1,80,3,19,2,3,16,13,1,7
+RM811,46,46-55,No,Travel_Rarely,406,Sales,3,1,Marketing,1,1124,1,Male,52,3,4,Manager,3,Married,17465,15k+,15596,3,Y,No,12,3,4,80,1,23,3,3,12,9,4,9
+RM862,46,46-55,No,Travel_Rarely,1402,Sales,2,3,Marketing,1,1204,3,Female,69,3,4,Manager,1,Married,17048,15k+,24097,8,Y,No,23,4,1,80,0,28,2,3,26,15,15,9
+RM870,46,46-55,No,Travel_Rarely,1450,Research & Development,15,2,Life Sciences,1,1217,4,Male,52,3,5,Research Director,2,Married,19081,15k+,10849,5,Y,No,11,3,1,80,1,25,2,3,4,2,0,3
+RM878,46,46-55,No,Travel_Rarely,150,Research & Development,2,4,Technical Degree,1,1228,4,Male,60,3,2,Manufacturing Director,4,Divorced,7379,5k-10k,17433,2,Y,No,11,3,3,80,1,12,3,2,6,3,1,4
+RM917,46,46-55,No,Travel_Rarely,168,Sales,4,2,Marketing,1,1280,4,Female,33,2,5,Manager,2,Married,18789,15k+,9946,2,Y,No,14,3,3,80,1,26,2,3,11,4,0,8
+RM944,46,46-55,No,Travel_Rarely,991,Human Resources,1,2,Life Sciences,1,1314,4,Female,44,3,1,Human Resources,1,Single,3423,Upto 5k,22957,6,Y,No,12,3,3,80,0,10,3,4,7,6,5,7
+RM1032,46,46-55,Yes,Travel_Rarely,377,Sales,9,3,Marketing,1,1457,1,Male,52,3,3,Sales Executive,4,Divorced,10096,10k-15k,15986,4,Y,No,11,3,1,80,1,28,1,4,7,7,4,3
+RM1081,46,46-55,No,Travel_Rarely,228,Sales,3,3,Life Sciences,1,1527,3,Female,51,3,4,Manager,2,Married,16606,15k+,11380,8,Y,No,12,3,4,80,1,23,2,4,13,12,5,1
+RM1136,46,46-55,No,Travel_Rarely,563,Sales,1,4,Life Sciences,1,1602,4,Male,56,4,4,Manager,1,Single,17567,15k+,3156,1,Y,No,15,3,2,80,0,27,5,1,26,0,0,12
+RM1232,46,46-55,No,Travel_Rarely,717,Research & Development,13,4,Life Sciences,1,1727,3,Male,34,3,2,Healthcare Representative,2,Single,5562,5k-10k,9697,6,Y,No,14,3,4,80,0,19,3,3,10,7,0,9
+RM1236,46,46-55,No,Travel_Rarely,1277,Sales,2,3,Life Sciences,1,1732,3,Male,74,3,3,Sales Executive,4,Divorced,10368,10k-15k,5596,4,Y,Yes,12,3,2,80,1,13,5,2,10,6,0,3
+RM1278,46,46-55,No,Travel_Rarely,734,Research & Development,2,4,Medical,1,1789,3,Male,46,3,5,Research Director,4,Divorced,19328,15k+,14218,7,Y,Yes,17,3,3,80,1,24,3,3,2,1,2,2
+RM1286,46,46-55,No,Non-Travel,849,Sales,26,2,Life Sciences,1,1801,2,Male,98,2,2,Sales Executive,2,Single,7991,5k-10k,25166,8,Y,No,15,3,3,80,0,6,3,3,2,2,2,2
+RM1299,46,46-55,Yes,Travel_Rarely,261,Research & Development,21,2,Medical,1,1821,4,Female,66,3,2,Healthcare Representative,2,Married,8926,5k-10k,10842,4,Y,No,22,4,4,80,1,13,2,4,9,7,3,7
+RM1323,46,46-55,No,Travel_Rarely,706,Research & Development,2,2,Life Sciences,1,1857,4,Male,82,3,3,Manufacturing Director,4,Divorced,8578,5k-10k,19989,3,Y,No,14,3,3,80,1,12,4,2,9,8,4,7
+RM1328,46,46-55,No,Travel_Rarely,1319,Sales,3,3,Technical Degree,1,1863,1,Female,45,4,4,Sales Executive,1,Divorced,13225,10k-15k,7739,2,Y,No,12,3,4,80,1,25,5,3,19,17,2,8
+RM1334,46,46-55,Yes,Travel_Rarely,1254,Sales,10,3,Life Sciences,1,1869,3,Female,64,3,3,Sales Executive,2,Married,7314,5k-10k,14011,5,Y,No,21,4,3,80,3,14,2,3,8,7,0,7
+RM272,47,46-55,Yes,Non-Travel,666,Research & Development,29,4,Life Sciences,1,376,1,Male,88,3,3,Manager,2,Married,11849,10k-15k,10268,1,Y,Yes,12,3,4,80,1,10,2,2,10,7,9,9
+RM330,47,46-55,No,Travel_Rarely,1482,Research & Development,5,5,Life Sciences,1,447,4,Male,42,3,5,Research Director,3,Married,18300,15k+,16375,4,Y,No,11,3,2,80,1,21,2,3,3,2,1,1
+RM348,47,46-55,No,Travel_Frequently,1309,Sales,4,1,Medical,1,467,2,Male,99,3,2,Sales Representative,3,Single,2976,Upto 5k,25751,3,Y,No,19,3,1,80,0,5,3,3,0,0,0,0
+RM429,47,46-55,No,Travel_Rarely,983,Research & Development,2,2,Medical,1,574,1,Female,65,3,2,Manufacturing Director,4,Divorced,5070,5k-10k,7389,5,Y,No,13,3,3,80,3,20,2,3,5,0,0,4
+RM533,47,46-55,No,Travel_Rarely,703,Sales,14,4,Marketing,1,728,4,Male,42,3,2,Sales Executive,1,Single,4960,Upto 5k,11825,2,Y,No,12,3,4,80,0,20,2,3,7,7,1,7
+RM545,47,46-55,No,Travel_Frequently,217,Sales,3,3,Medical,1,746,4,Female,49,3,4,Sales Executive,3,Divorced,13770,10k-15k,10225,9,Y,Yes,12,3,4,80,2,28,2,2,22,2,11,13
+RM567,47,46-55,Yes,Travel_Frequently,719,Sales,27,2,Life Sciences,1,785,2,Female,77,4,2,Sales Executive,3,Single,6397,5k-10k,10339,4,Y,Yes,12,3,4,80,0,8,2,3,5,4,1,3
+RM593,47,46-55,No,Travel_Rarely,202,Research & Development,2,2,Other,1,820,3,Female,33,3,4,Manager,4,Married,16752,15k+,12982,1,Y,Yes,11,3,3,80,1,26,3,2,26,14,3,0
+RM652,47,46-55,No,Travel_Rarely,249,Sales,2,2,Marketing,1,903,3,Female,35,3,2,Sales Executive,4,Married,4537,Upto 5k,17783,0,Y,Yes,22,4,1,80,1,8,2,3,7,6,7,7
+RM666,47,46-55,No,Travel_Rarely,1454,Sales,2,4,Life Sciences,1,925,4,Female,65,2,1,Sales Representative,4,Single,3294,Upto 5k,13137,1,Y,Yes,18,3,1,80,0,3,3,2,3,2,1,2
+RM708,47,46-55,No,Travel_Frequently,1379,Research & Development,16,4,Medical,1,987,3,Male,64,4,2,Manufacturing Director,3,Divorced,5067,5k-10k,6759,1,Y,Yes,19,3,3,80,0,20,3,4,19,10,2,7
+RM720,47,46-55,No,Travel_Rarely,955,Sales,4,2,Life Sciences,1,1003,4,Female,83,3,2,Sales Executive,4,Single,4163,Upto 5k,8571,1,Y,Yes,17,3,3,80,0,9,0,3,9,0,0,7
+RM1021,47,46-55,No,Travel_Rarely,465,Research & Development,1,3,Technical Degree,1,1438,1,Male,74,3,1,Research Scientist,4,Married,3420,Upto 5k,10205,7,Y,No,12,3,3,80,1,17,2,2,6,5,1,2
+RM1025,47,46-55,No,Travel_Rarely,359,Research & Development,2,4,Medical,1,1443,1,Female,82,3,4,Research Director,3,Married,17169,15k+,26703,3,Y,No,19,3,2,80,2,26,2,4,20,17,5,6
+RM1068,47,46-55,No,Travel_Rarely,571,Sales,14,3,Medical,1,1503,3,Female,78,3,2,Sales Executive,3,Married,4591,Upto 5k,24200,3,Y,Yes,17,3,3,80,1,11,4,2,5,4,1,2
+RM1155,47,46-55,No,Travel_Rarely,1176,Human Resources,26,4,Life Sciences,1,1625,4,Female,98,3,5,Manager,3,Married,19658,15k+,5220,3,Y,No,11,3,3,80,1,27,2,3,5,2,1,0
+RM1195,47,46-55,No,Travel_Rarely,1225,Sales,2,4,Life Sciences,1,1676,2,Female,47,4,4,Manager,2,Divorced,15972,15k+,21086,6,Y,No,14,3,3,80,3,29,2,3,3,2,1,2
+RM1224,47,46-55,Yes,Travel_Frequently,1093,Sales,9,3,Life Sciences,1,1716,3,Male,82,1,4,Sales Executive,3,Married,12936,10k-15k,24164,7,Y,No,11,3,3,80,0,25,3,1,23,5,14,10
+RM1235,47,46-55,No,Non-Travel,543,Sales,2,4,Marketing,1,1731,3,Male,87,3,2,Sales Executive,2,Married,4978,Upto 5k,3536,7,Y,No,11,3,4,80,1,4,3,1,1,0,0,0
+RM1304,47,46-55,No,Travel_Rarely,1001,Research & Development,4,3,Life Sciences,1,1827,3,Female,92,2,3,Manufacturing Director,2,Divorced,10333,10k-15k,19271,8,Y,Yes,12,3,3,80,1,28,4,3,22,11,14,10
+RM1322,47,46-55,No,Travel_Rarely,207,Research & Development,9,4,Life Sciences,1,1856,2,Female,64,3,1,Laboratory Technician,3,Single,2105,Upto 5k,5411,4,Y,No,12,3,3,80,0,7,2,3,2,2,2,0
+RM1371,47,46-55,No,Non-Travel,1169,Research & Development,14,4,Technical Degree,1,1934,3,Male,64,3,2,Research Scientist,2,Married,5467,5k-10k,2125,8,Y,No,18,3,3,80,1,16,4,4,8,7,1,7
+RM1415,47,46-55,No,Travel_Rarely,1180,Research & Development,25,3,Medical,1,1993,1,Male,84,3,3,Healthcare Representative,3,Single,8633,5k-10k,13084,2,Y,No,23,4,2,80,0,25,3,3,17,14,12,11
+RM1422,47,46-55,No,Non-Travel,1162,Research & Development,1,1,Medical,1,2000,3,Female,98,3,3,Research Director,2,Married,11957,10k-15k,17231,0,Y,No,18,3,1,80,2,14,3,1,13,8,5,12
+RM051,48,46-55,Yes,Travel_Rarely,626,Research & Development,1,2,Life Sciences,1,64,1,Male,98,2,3,Laboratory Technician,3,Single,5381,5k-10k,19294,9,Y,Yes,13,3,4,80,0,23,2,3,1,0,0,0
+RM353,48,46-55,No,Travel_Rarely,530,Sales,29,1,Medical,1,473,1,Female,91,3,3,Manager,3,Married,12504,10k-15k,23978,3,Y,No,21,4,2,80,1,15,3,1,0,0,0,0
+RM445,48,46-55,No,Travel_Rarely,163,Sales,2,5,Marketing,1,595,2,Female,37,3,2,Sales Executive,4,Married,4051,Upto 5k,19658,2,Y,No,14,3,1,80,1,14,2,3,9,7,6,7
+RM493,48,46-55,No,Travel_Rarely,1236,Research & Development,1,4,Life Sciences,1,664,4,Female,40,2,4,Manager,1,Married,15402,15k+,17997,7,Y,No,11,3,1,80,1,21,3,1,3,2,0,2
+RM521,48,46-55,No,Travel_Rarely,817,Sales,2,1,Marketing,1,712,2,Male,56,4,2,Sales Executive,2,Married,8120,5k-10k,18597,3,Y,No,12,3,4,80,0,12,3,3,2,2,2,2
+RM679,48,46-55,No,Travel_Rarely,1469,Research & Development,20,4,Medical,1,945,4,Male,51,3,1,Research Scientist,3,Married,2259,Upto 5k,5543,4,Y,No,17,3,1,80,2,13,2,2,0,0,0,0
+RM736,48,46-55,No,Travel_Rarely,277,Research & Development,6,3,Life Sciences,1,1022,1,Male,97,2,2,Healthcare Representative,3,Single,4240,Upto 5k,13119,2,Y,No,13,3,4,80,0,19,0,3,2,2,2,2
+RM737,48,46-55,No,Travel_Rarely,1355,Research & Development,4,4,Life Sciences,1,1024,3,Male,78,2,3,Healthcare Representative,3,Single,10999,10k-15k,22245,7,Y,No,14,3,2,80,0,27,3,3,15,11,4,8
+RM805,48,46-55,No,Non-Travel,1262,Research & Development,1,4,Medical,1,1116,1,Male,35,4,4,Manager,4,Single,16885,15k+,16154,2,Y,No,22,4,3,80,0,27,3,2,5,4,2,1
+RM902,48,46-55,No,Travel_Rarely,969,Research & Development,2,2,Technical Degree,1,1258,4,Male,76,4,1,Laboratory Technician,2,Single,2559,Upto 5k,16620,5,Y,No,11,3,3,80,0,7,4,2,1,0,0,0
+RM905,48,46-55,No,Travel_Rarely,715,Research & Development,1,3,Life Sciences,1,1263,4,Male,76,2,5,Research Director,4,Single,18265,15k+,8733,6,Y,No,12,3,3,80,0,25,3,4,1,0,0,0
+RM970,48,46-55,No,Travel_Rarely,855,Research & Development,4,3,Life Sciences,1,1363,4,Male,54,3,3,Manufacturing Director,4,Single,7898,5k-10k,18706,1,Y,No,11,3,3,80,0,11,2,3,10,9,0,8
+RM1039,48,46-55,No,Travel_Rarely,1221,Sales,7,3,Marketing,1,1466,3,Male,96,3,2,Sales Executive,1,Divorced,5486,5k-10k,24795,4,Y,No,11,3,1,80,3,15,3,3,2,2,2,2
+RM1104,48,46-55,No,Travel_Rarely,492,Sales,16,4,Life Sciences,1,1557,3,Female,96,3,2,Sales Executive,3,Divorced,6439,5k-10k,13693,8,Y,No,14,3,3,80,1,18,2,3,8,7,7,7
+RM1115,48,46-55,No,Travel_Rarely,1108,Research & Development,15,4,Other,1,1576,3,Female,65,3,1,Research Scientist,1,Married,2367,Upto 5k,16530,8,Y,No,12,3,4,80,1,10,3,2,8,2,7,6
+RM1167,48,46-55,No,Travel_Frequently,365,Research & Development,4,5,Medical,1,1644,3,Male,89,2,4,Manager,4,Married,15202,15k+,5602,2,Y,No,25,4,2,80,1,23,3,3,2,2,2,2
+RM1205,48,46-55,Yes,Travel_Frequently,708,Sales,7,2,Medical,1,1691,4,Female,95,3,1,Sales Representative,3,Married,2655,Upto 5k,11740,2,Y,Yes,11,3,3,80,2,19,3,3,9,7,7,7
+RM1332,48,46-55,No,Travel_Rarely,1224,Research & Development,10,3,Life Sciences,1,1867,4,Male,91,2,5,Research Director,2,Married,19665,15k+,13583,4,Y,No,12,3,4,80,0,29,3,3,22,10,12,9
+RM1352,48,46-55,No,Travel_Frequently,117,Research & Development,22,3,Medical,1,1900,4,Female,58,3,4,Manager,4,Divorced,17174,15k+,2437,3,Y,No,11,3,2,80,1,24,3,3,22,17,4,7
+RM002,49,46-55,No,Travel_Frequently,279,Research & Development,8,1,Life Sciences,1,2,3,Male,61,2,2,Research Scientist,2,Married,5130,5k-10k,24907,1,Y,No,23,4,4,80,1,10,3,3,10,7,1,7
+RM130,49,46-55,No,Travel_Rarely,470,Research & Development,20,4,Medical,1,170,3,Female,96,3,2,Manufacturing Director,1,Married,6567,5k-10k,5549,1,Y,No,14,3,3,80,0,16,2,2,15,11,5,11
+RM202,49,46-55,No,Non-Travel,1002,Research & Development,18,4,Life Sciences,1,275,4,Male,92,3,2,Manufacturing Director,4,Divorced,6804,5k-10k,23793,1,Y,Yes,15,3,1,80,2,7,0,3,7,7,1,7
+RM291,49,46-55,No,Travel_Frequently,636,Research & Development,10,4,Life Sciences,1,396,3,Female,35,3,5,Research Director,1,Single,18665,15k+,25594,9,Y,Yes,11,3,4,80,0,22,4,3,3,2,1,2
+RM317,49,46-55,No,Travel_Rarely,1091,Research & Development,1,2,Technical Degree,1,431,3,Female,90,2,4,Healthcare Representative,3,Single,13964,10k-15k,17810,7,Y,Yes,12,3,4,80,0,25,2,3,7,1,0,7
+RM376,49,46-55,No,Travel_Rarely,1261,Research & Development,7,3,Other,1,499,2,Male,31,2,3,Healthcare Representative,3,Single,10965,10k-15k,12066,8,Y,No,24,4,3,80,0,26,2,3,5,2,0,0
+RM474,49,46-55,No,Travel_Rarely,1245,Research & Development,18,4,Life Sciences,1,638,4,Male,58,2,5,Research Director,3,Divorced,19502,15k+,2125,1,Y,Yes,17,3,3,80,1,31,5,3,31,9,0,9
+RM608,49,46-55,Yes,Travel_Rarely,1184,Sales,11,3,Marketing,1,840,3,Female,43,3,3,Sales Executive,4,Married,7654,5k-10k,5860,1,Y,No,18,3,1,80,2,9,3,4,9,8,7,7
+RM640,49,46-55,No,Travel_Rarely,1418,Research & Development,1,3,Technical Degree,1,887,3,Female,36,3,1,Research Scientist,1,Married,3580,Upto 5k,10554,2,Y,No,16,3,2,80,1,7,2,3,4,2,0,2
+RM678,49,46-55,No,Travel_Rarely,527,Research & Development,8,2,Other,1,944,1,Female,51,3,3,Laboratory Technician,2,Married,7403,5k-10k,22477,4,Y,No,11,3,3,80,1,29,3,2,26,9,1,7
+RM822,49,46-55,No,Travel_Rarely,174,Sales,8,4,Technical Degree,1,1138,4,Male,56,2,4,Sales Executive,2,Married,13120,10k-15k,11879,6,Y,No,17,3,2,80,1,22,3,3,9,8,2,3
+RM900,49,46-55,No,Travel_Rarely,1098,Research & Development,4,2,Medical,1,1256,1,Male,85,2,5,Manager,3,Married,18711,15k+,12124,2,Y,No,13,3,3,80,1,23,2,4,1,0,0,0
+RM1007,49,46-55,Yes,Travel_Frequently,1475,Research & Development,28,2,Life Sciences,1,1420,1,Male,97,2,2,Laboratory Technician,1,Single,4284,Upto 5k,22710,3,Y,No,20,4,1,80,0,20,2,3,4,3,1,3
+RM1045,49,46-55,No,Travel_Rarely,1495,Research & Development,5,4,Technical Degree,1,1473,1,Male,96,3,2,Healthcare Representative,3,Married,6651,5k-10k,21534,2,Y,No,14,3,2,80,1,20,0,2,3,2,1,2
+RM1055,49,46-55,No,Travel_Rarely,1490,Research & Development,7,4,Life Sciences,1,1484,3,Male,35,3,3,Healthcare Representative,2,Divorced,10466,10k-15k,20948,3,Y,No,14,3,2,80,2,29,3,3,8,7,0,7
+RM1072,49,46-55,No,Travel_Rarely,271,Research & Development,3,2,Medical,1,1509,3,Female,43,2,2,Laboratory Technician,1,Married,4789,Upto 5k,23070,4,Y,No,25,4,1,80,1,10,3,3,3,2,1,2
+RM1148,49,46-55,No,Travel_Rarely,722,Research & Development,25,4,Life Sciences,1,1617,3,Female,84,3,1,Laboratory Technician,1,Married,3211,Upto 5k,22102,1,Y,No,14,3,4,80,1,10,3,2,9,6,1,4
+RM1177,49,46-55,No,Travel_Rarely,301,Research & Development,22,4,Other,1,1655,1,Female,72,3,4,Research Director,2,Married,16413,15k+,3498,3,Y,No,16,3,2,80,2,27,2,3,4,2,1,2
+RM1182,49,46-55,No,Travel_Rarely,465,Research & Development,6,1,Life Sciences,1,1661,3,Female,41,2,4,Healthcare Representative,3,Married,13966,10k-15k,11652,2,Y,Yes,19,3,2,80,1,30,3,3,15,11,2,12
+RM1193,49,46-55,No,Travel_Rarely,464,Research & Development,16,3,Medical,1,1674,4,Female,74,3,1,Laboratory Technician,1,Divorced,2587,Upto 5k,24941,4,Y,Yes,16,3,2,80,1,17,2,2,2,2,2,2
+RM1196,49,46-55,No,Travel_Rarely,809,Research & Development,1,3,Life Sciences,1,1677,3,Male,36,3,4,Manager,3,Single,15379,15k+,22384,4,Y,No,14,3,1,80,0,23,2,3,8,7,0,0
+RM1255,49,46-55,No,Travel_Rarely,1313,Sales,11,4,Marketing,1,1757,4,Female,80,3,2,Sales Executive,4,Single,4507,Upto 5k,8191,3,Y,No,12,3,3,80,0,8,1,4,5,1,0,4
+RM1378,49,46-55,No,Travel_Frequently,1064,Research & Development,2,1,Life Sciences,1,1941,2,Male,42,3,5,Research Director,4,Married,19161,15k+,13738,3,Y,No,15,3,4,80,0,28,3,3,5,4,4,3
+RM1469,49,46-55,No,Travel_Frequently,1023,Sales,2,3,Medical,1,2065,4,Male,63,2,2,Sales Executive,2,Married,5390,5k-10k,13243,2,Y,No,14,3,4,80,0,17,3,2,9,6,0,8
+RM1469,49,46-55,No,Travel_Frequently,1023,Sales,2,3,Medical,1,2065,4,Male,63,2,2,Sales Executive,2,Married,5390,5k-10k,13243,2,Y,No,14,3,4,80,0,17,3,2,9,6,0,8
+RM037,50,46-55,Yes,Travel_Rarely,869,Sales,3,2,Marketing,1,47,1,Male,86,2,1,Sales Representative,3,Married,2683,Upto 5k,3810,1,Y,Yes,14,3,3,80,0,3,2,3,3,2,0,2
+RM063,50,46-55,No,Travel_Rarely,989,Research & Development,7,2,Medical,1,80,2,Female,43,2,5,Research Director,3,Divorced,18740,15k+,16701,5,Y,Yes,12,3,4,80,1,29,2,2,27,3,13,8
+RM107,50,46-55,No,Travel_Frequently,1115,Research & Development,1,3,Life Sciences,1,141,1,Female,73,3,5,Research Director,2,Married,18172,15k+,9755,3,Y,Yes,19,3,1,80,0,28,1,2,8,3,0,7
+RM132,50,46-55,No,Travel_Frequently,809,Sales,12,3,Marketing,1,174,3,Female,77,3,3,Sales Executive,4,Single,9208,5k-10k,6645,4,Y,No,11,3,4,80,0,16,3,3,2,2,2,1
+RM166,50,46-55,No,Travel_Rarely,1452,Research & Development,11,3,Life Sciences,1,226,3,Female,53,3,5,Manager,2,Single,19926,15k+,17053,3,Y,No,15,3,2,80,0,21,5,3,5,4,4,4
+RM184,50,46-55,No,Travel_Rarely,328,Research & Development,1,3,Medical,1,249,3,Male,86,2,1,Laboratory Technician,3,Married,3690,Upto 5k,3425,2,Y,No,15,3,4,80,1,5,2,2,3,2,0,2
+RM234,50,46-55,No,Travel_Rarely,854,Sales,1,4,Medical,1,323,4,Female,68,3,5,Manager,4,Divorced,19517,15k+,24118,3,Y,No,11,3,3,80,1,32,3,2,7,0,0,6
+RM280,50,46-55,No,Travel_Rarely,797,Research & Development,4,1,Life Sciences,1,385,1,Male,96,3,5,Research Director,2,Divorced,19144,15k+,15815,3,Y,No,14,3,1,80,2,28,4,2,10,4,1,6
+RM368,50,46-55,No,Travel_Rarely,1046,Research & Development,10,3,Technical Degree,1,491,4,Male,100,2,3,Healthcare Representative,4,Single,10496,10k-15k,2755,6,Y,No,15,3,4,80,0,20,2,3,4,3,1,3
+RM426,50,46-55,No,Travel_Rarely,1099,Research & Development,29,4,Life Sciences,1,569,2,Male,88,2,4,Manager,3,Married,17046,15k+,9314,0,Y,No,15,3,2,80,1,28,2,3,27,10,15,7
+RM478,50,46-55,No,Travel_Frequently,1246,Human Resources,3,3,Medical,1,644,1,Male,99,3,5,Manager,2,Married,18200,15k+,7999,1,Y,No,11,3,3,80,1,32,2,3,32,5,10,7
+RM524,50,46-55,No,Travel_Rarely,1207,Research & Development,28,1,Medical,1,716,4,Male,74,4,1,Laboratory Technician,3,Married,3221,Upto 5k,3297,1,Y,Yes,11,3,3,80,3,20,3,3,20,8,3,8
+RM529,50,46-55,Yes,Travel_Frequently,562,Sales,8,2,Technical Degree,1,723,2,Male,50,3,2,Sales Executive,3,Married,6796,5k-10k,23452,3,Y,Yes,14,3,1,80,1,18,4,3,4,3,1,3
+RM540,50,46-55,No,Travel_Rarely,316,Sales,8,4,Marketing,1,738,4,Male,54,3,1,Sales Representative,2,Married,3875,Upto 5k,9983,7,Y,No,15,3,4,80,1,4,2,3,2,2,2,2
+RM589,50,46-55,No,Travel_Rarely,691,Research & Development,2,3,Medical,1,815,3,Male,64,3,4,Research Director,3,Married,17639,15k+,6881,5,Y,No,16,3,4,80,0,30,3,3,4,3,0,3
+RM654,50,46-55,No,Non-Travel,881,Research & Development,2,4,Life Sciences,1,905,1,Male,98,3,4,Manager,1,Divorced,17924,15k+,4544,1,Y,No,11,3,4,80,1,31,3,3,31,6,14,7
+RM715,50,46-55,No,Travel_Rarely,1126,Research & Development,1,2,Medical,1,997,4,Male,66,3,4,Research Director,4,Divorced,17399,15k+,6615,9,Y,No,22,4,3,80,1,32,1,2,5,4,1,3
+RM722,50,46-55,No,Travel_Rarely,939,Research & Development,24,3,Life Sciences,1,1005,4,Male,95,3,4,Manufacturing Director,3,Married,13973,10k-15k,4161,3,Y,Yes,18,3,4,80,1,22,2,3,12,11,1,5
+RM743,50,46-55,No,Travel_Rarely,804,Research & Development,9,3,Life Sciences,1,1030,1,Male,64,3,1,Laboratory Technician,4,Married,2380,Upto 5k,20165,4,Y,No,18,3,2,80,0,8,5,3,1,0,0,0
+RM752,50,46-55,No,Non-Travel,145,Sales,1,3,Life Sciences,1,1040,4,Female,95,3,2,Sales Executive,3,Married,6347,5k-10k,24920,0,Y,No,12,3,1,80,1,19,3,3,18,7,0,13
+RM767,50,46-55,No,Travel_Rarely,1464,Research & Development,2,4,Medical,1,1061,2,Male,62,3,5,Research Director,3,Married,19237,15k+,12853,2,Y,Yes,11,3,4,80,1,29,2,2,8,1,7,7
+RM802,50,46-55,Yes,Travel_Frequently,959,Sales,1,4,Other,1,1113,4,Male,81,3,2,Sales Executive,3,Single,4728,Upto 5k,17251,3,Y,Yes,14,3,4,80,0,5,4,3,0,0,0,0
+RM868,50,46-55,No,Travel_Frequently,1421,Research & Development,2,3,Medical,1,1215,4,Female,30,3,4,Manager,1,Married,17856,15k+,9490,2,Y,No,22,4,3,80,1,32,3,3,2,2,2,2
+RM946,50,46-55,No,Travel_Rarely,1322,Research & Development,28,3,Life Sciences,1,1317,4,Female,43,3,4,Research Director,1,Married,16880,15k+,22422,4,Y,Yes,11,3,2,80,0,25,2,3,3,2,1,2
+RM1087,50,46-55,No,Travel_Frequently,333,Research & Development,22,5,Medical,1,1539,3,Male,88,1,4,Research Director,4,Single,14411,10k-15k,24450,1,Y,Yes,13,3,4,80,0,32,2,3,32,6,13,9
+RM1127,50,46-55,No,Travel_Rarely,264,Sales,9,3,Marketing,1,1591,3,Male,59,3,5,Manager,3,Married,19331,15k+,19519,4,Y,Yes,16,3,3,80,1,27,2,3,1,0,0,0
+RM1139,50,46-55,No,Travel_Frequently,1234,Research & Development,20,5,Medical,1,1606,2,Male,41,3,4,Healthcare Representative,3,Married,11245,10k-15k,20689,2,Y,Yes,15,3,3,80,1,32,3,3,30,8,12,13
+RM1178,50,46-55,No,Travel_Rarely,813,Research & Development,17,5,Life Sciences,1,1656,4,Female,50,2,3,Research Director,1,Divorced,13269,10k-15k,21981,5,Y,No,15,3,3,80,3,19,3,3,14,11,1,11
+RM1453,50,46-55,Yes,Travel_Frequently,878,Sales,1,4,Life Sciences,1,2044,2,Male,94,3,2,Sales Executive,3,Divorced,6728,5k-10k,14255,7,Y,No,12,3,4,80,2,12,3,3,6,3,0,1
+RM1462,50,46-55,Yes,Travel_Rarely,410,Sales,28,3,Marketing,1,2055,4,Male,39,2,3,Sales Executive,1,Divorced,10854,10k-15k,16586,4,Y,Yes,13,3,2,80,1,20,3,3,3,2,2,0
+RM1462,50,46-55,Yes,Travel_Rarely,410,Sales,28,3,Marketing,1,2055,4,Male,39,2,3,Sales Executive,1,Divorced,10854,10k-15k,16586,4,Y,Yes,13,3,2,80,1,20,3,3,3,2,2,0
+RM088,51,46-55,No,Travel_Rarely,432,Research & Development,9,4,Life Sciences,1,116,4,Male,96,3,1,Laboratory Technician,4,Married,2075,Upto 5k,18725,3,Y,No,23,4,2,80,2,10,4,3,4,2,0,3
+RM092,51,46-55,No,Travel_Rarely,632,Sales,21,4,Marketing,1,120,3,Male,71,3,2,Sales Executive,4,Single,5441,5k-10k,8423,0,Y,Yes,22,4,4,80,0,11,2,1,10,7,1,0
+RM111,51,46-55,No,Travel_Frequently,1456,Research & Development,1,4,Medical,1,145,1,Female,30,2,3,Healthcare Representative,1,Single,7484,5k-10k,25796,3,Y,No,20,4,3,80,0,23,1,2,13,12,12,8
+RM124,51,46-55,No,Travel_Rarely,684,Research & Development,6,3,Life Sciences,1,162,1,Male,51,3,5,Research Director,3,Single,19537,15k+,6462,7,Y,No,13,3,3,80,0,23,5,3,20,18,15,15
+RM137,51,46-55,Yes,Travel_Frequently,1150,Research & Development,8,4,Life Sciences,1,179,1,Male,53,1,3,Manufacturing Director,4,Single,10650,10k-15k,25150,2,Y,No,15,3,4,80,0,18,2,3,4,2,0,3
+RM157,51,46-55,No,Travel_Rarely,1169,Research & Development,7,4,Medical,1,211,2,Male,34,2,2,Manufacturing Director,3,Married,6132,5k-10k,13983,2,Y,No,17,3,3,80,0,10,2,3,1,0,0,0
+RM190,51,46-55,No,Travel_Rarely,313,Research & Development,3,3,Medical,1,258,4,Female,98,3,4,Healthcare Representative,2,Single,13734,10k-15k,7192,3,Y,No,18,3,3,80,0,21,6,3,7,7,1,0
+RM214,51,46-55,No,Travel_Rarely,1469,Research & Development,8,4,Life Sciences,1,296,2,Male,81,2,3,Research Director,2,Married,12490,10k-15k,15736,5,Y,No,16,3,4,80,2,16,5,1,10,9,4,7
+RM259,51,46-55,No,Travel_Rarely,833,Research & Development,1,3,Life Sciences,1,353,3,Male,96,3,1,Research Scientist,4,Married,2723,Upto 5k,23231,1,Y,No,11,3,2,80,0,1,0,2,1,0,0,
+RM300,51,46-55,No,Travel_Rarely,1302,Research & Development,2,3,Medical,1,408,4,Male,84,1,2,Manufacturing Director,2,Divorced,5482,5k-10k,16321,5,Y,No,18,3,4,80,1,13,3,3,4,1,1,2
+RM377,51,46-55,No,Travel_Rarely,1178,Sales,14,2,Life Sciences,1,500,3,Female,87,3,2,Sales Executive,4,Married,4936,Upto 5k,14862,4,Y,No,11,3,3,80,1,18,2,2,7,7,0,7
+RM617,51,46-55,No,Travel_Rarely,1318,Sales,26,4,Marketing,1,851,1,Female,66,3,4,Manager,3,Married,16307,15k+,5594,2,Y,No,14,3,3,80,1,29,2,2,20,6,4,17
+RM780,51,46-55,Yes,Travel_Rarely,1323,Research & Development,4,4,Life Sciences,1,1081,1,Male,34,3,1,Research Scientist,3,Married,2461,Upto 5k,10332,9,Y,Yes,12,3,3,80,3,18,2,4,10,0,2,7
+RM919,51,46-55,No,Travel_Frequently,237,Sales,9,3,Life Sciences,1,1282,4,Male,83,3,5,Manager,2,Divorced,19847,15k+,19196,4,Y,Yes,24,4,1,80,1,31,5,2,29,10,11,10
+RM931,51,46-55,No,Travel_Frequently,968,Research & Development,6,2,Medical,1,1297,2,Female,40,2,1,Laboratory Technician,3,Single,2838,Upto 5k,4257,0,Y,No,14,3,2,80,0,8,6,2,7,0,7,7
+RM963,51,46-55,No,Travel_Rarely,770,Human Resources,5,3,Life Sciences,1,1352,3,Male,84,3,4,Manager,2,Divorced,14026,10k-15k,17588,1,Y,Yes,11,3,2,80,1,33,2,3,33,9,0,10
+RM972,51,46-55,No,Travel_Rarely,1405,Research & Development,11,2,Technical Degree,1,1367,4,Female,82,2,4,Manufacturing Director,2,Single,13142,10k-15k,24439,3,Y,No,16,3,2,80,0,29,1,2,5,2,0,3
+RM988,51,46-55,No,Travel_Frequently,541,Sales,2,3,Marketing,1,1391,2,Male,52,3,3,Sales Executive,2,Married,10596,10k-15k,15395,2,Y,No,11,3,2,80,0,14,5,3,4,2,3,2
+RM1276,51,46-55,No,Travel_Rarely,942,Research & Development,3,3,Technical Degree,1,1786,1,Female,53,3,3,Manager,3,Married,13116,10k-15k,22984,2,Y,No,11,3,4,80,0,15,2,3,2,2,2,2
+RM191,52,46-55,No,Travel_Rarely,699,Research & Development,1,4,Life Sciences,1,259,3,Male,65,2,5,Manager,3,Married,19999,15k+,5678,0,Y,No,14,3,1,80,1,34,5,3,33,18,11,9
+RM231,52,46-55,No,Travel_Rarely,1323,Research & Development,2,3,Life Sciences,1,316,3,Female,89,2,1,Laboratory Technician,4,Single,3212,Upto 5k,3300,7,Y,No,15,3,2,80,0,6,3,2,2,2,2,2
+RM238,52,46-55,No,Non-Travel,771,Sales,2,4,Life Sciences,1,329,1,Male,79,2,5,Manager,3,Single,19068,15k+,21030,1,Y,Yes,18,3,4,80,0,33,2,4,33,7,15,12
+RM318,52,46-55,Yes,Travel_Rarely,723,Research & Development,8,4,Medical,1,433,3,Male,85,2,2,Research Scientist,2,Married,4941,Upto 5k,17747,2,Y,No,15,3,1,80,0,11,3,2,8,2,7,7
+RM407,52,46-55,No,Travel_Rarely,319,Research & Development,3,3,Medical,1,543,4,Male,39,2,3,Manufacturing Director,3,Married,7969,5k-10k,19609,2,Y,Yes,14,3,3,80,0,28,4,3,5,4,0,
+RM409,52,46-55,No,Travel_Rarely,1490,Research & Development,4,2,Life Sciences,1,546,4,Female,30,3,4,Manager,4,Married,16555,15k+,10310,2,Y,No,13,3,4,80,0,31,2,1,5,2,1,4
+RM469,52,46-55,No,Travel_Rarely,956,Research & Development,6,2,Technical Degree,1,630,4,Male,78,3,2,Research Scientist,1,Divorced,5577,5k-10k,22087,3,Y,Yes,12,3,2,80,2,18,3,3,10,9,6,9
+RM562,52,46-55,No,Travel_Rarely,621,Sales,3,4,Marketing,1,776,3,Male,31,2,4,Manager,1,Married,16856,15k+,10084,1,Y,No,11,3,1,80,0,34,3,4,34,6,1,16
+RM571,52,46-55,No,Non-Travel,715,Research & Development,19,4,Medical,1,791,4,Male,41,3,1,Research Scientist,4,Married,4258,Upto 5k,26589,0,Y,No,18,3,1,80,1,5,3,3,4,3,1,2
+RM588,52,46-55,No,Travel_Rarely,1325,Research & Development,11,4,Life Sciences,1,813,4,Female,82,3,2,Laboratory Technician,3,Married,3149,Upto 5k,21821,8,Y,No,20,4,2,80,1,9,3,3,5,2,1,4
+RM628,52,46-55,No,Travel_Frequently,890,Research & Development,25,4,Medical,1,867,3,Female,81,2,4,Manufacturing Director,4,Married,13826,10k-15k,19028,3,Y,No,22,4,3,80,0,31,3,3,9,8,0,0
+RM700,52,46-55,No,Travel_Rarely,1053,Research & Development,1,2,Life Sciences,1,976,4,Male,70,3,4,Manager,4,Married,17099,15k+,13829,2,Y,No,15,3,2,80,1,26,2,2,9,8,7,8
+RM750,52,46-55,Yes,Travel_Rarely,266,Sales,2,1,Marketing,1,1038,1,Female,57,1,5,Manager,4,Married,19845,15k+,25846,1,Y,No,15,3,4,80,1,33,3,3,32,14,6,9
+RM807,52,46-55,No,Travel_Rarely,994,Research & Development,7,4,Life Sciences,1,1118,2,Male,87,3,3,Healthcare Representative,2,Single,10445,10k-15k,15322,7,Y,No,19,3,4,80,0,18,4,3,8,6,4,0
+RM948,52,46-55,Yes,Travel_Rarely,1030,Sales,5,3,Life Sciences,1,1319,2,Male,64,3,3,Sales Executive,2,Single,8446,5k-10k,21534,9,Y,Yes,19,3,3,80,0,10,2,2,8,7,7,7
+RM995,52,46-55,No,Travel_Frequently,322,Research & Development,28,2,Medical,1,1401,4,Female,59,4,4,Manufacturing Director,3,Married,13247,10k-15k,9731,2,Y,Yes,11,3,2,80,1,24,3,2,5,3,0,2
+RM1001,52,46-55,No,Travel_Rarely,258,Research & Development,8,4,Other,1,1409,3,Female,54,3,1,Laboratory Technician,1,Married,2950,Upto 5k,17363,9,Y,No,13,3,3,80,0,12,2,1,5,4,0,4
+RM1435,52,46-55,No,Non-Travel,585,Sales,29,4,Life Sciences,1,2019,1,Male,40,3,1,Sales Representative,4,Divorced,3482,Upto 5k,19788,2,Y,No,15,3,2,80,2,16,3,2,9,8,0,0
+RM019,53,46-55,No,Travel_Rarely,1219,Sales,2,4,Life Sciences,1,23,1,Female,78,2,4,Manager,4,Married,15427,15k+,22021,2,Y,No,16,3,3,80,0,31,3,3,25,8,3,7
+RM026,53,46-55,No,Travel_Rarely,1282,Research & Development,5,3,Other,1,32,3,Female,58,3,5,Manager,3,Divorced,19094,15k+,10735,4,Y,No,11,3,4,80,1,26,3,2,14,13,4,
+RM153,53,46-55,No,Travel_Rarely,1436,Sales,6,2,Marketing,1,205,2,Male,34,3,2,Sales Representative,3,Married,2306,Upto 5k,16047,2,Y,Yes,20,4,4,80,1,13,3,1,7,7,4,5
+RM185,53,46-55,No,Travel_Rarely,1084,Research & Development,13,2,Medical,1,250,4,Female,57,4,2,Manufacturing Director,1,Divorced,4450,Upto 5k,26250,1,Y,No,11,3,3,80,2,5,3,3,4,2,1,3
+RM281,53,46-55,No,Travel_Rarely,1070,Research & Development,3,4,Medical,1,386,3,Male,45,3,4,Research Director,3,Married,17584,15k+,21016,3,Y,Yes,16,3,4,80,3,21,5,2,5,3,1,3
+RM503,53,46-55,No,Travel_Rarely,238,Sales,1,1,Medical,1,682,4,Female,34,3,2,Sales Executive,1,Single,8381,5k-10k,7507,7,Y,No,20,4,4,80,0,18,2,4,14,7,8,10
+RM535,53,46-55,No,Travel_Rarely,970,Research & Development,7,3,Life Sciences,1,730,3,Male,59,4,4,Research Director,3,Married,14814,10k-15k,13514,3,Y,No,19,3,3,80,0,32,3,3,5,1,1,3
+RM557,53,46-55,No,Travel_Rarely,346,Research & Development,6,3,Life Sciences,1,769,4,Male,86,3,2,Laboratory Technician,4,Single,2450,Upto 5k,10919,2,Y,No,17,3,4,80,0,19,4,3,2,2,2,2
+RM625,53,46-55,No,Travel_Rarely,661,Sales,7,2,Marketing,1,862,1,Female,78,2,3,Sales Executive,4,Married,10934,10k-15k,20715,7,Y,Yes,18,3,4,80,1,35,3,3,5,2,0,4
+RM647,53,46-55,No,Travel_Rarely,868,Sales,8,3,Marketing,1,897,1,Male,73,3,4,Sales Executive,4,Married,11836,10k-15k,22789,5,Y,No,14,3,3,80,1,28,3,3,2,0,2,2
+RM650,53,46-55,No,Travel_Rarely,102,Research & Development,23,4,Life Sciences,1,901,4,Female,72,3,4,Research Director,4,Single,14275,10k-15k,20206,6,Y,No,18,3,3,80,0,33,0,3,12,9,3,8
+RM702,53,46-55,No,Travel_Rarely,1376,Sales,2,2,Medical,1,981,3,Male,45,3,4,Manager,3,Divorced,14852,10k-15k,13938,6,Y,No,13,3,3,80,1,22,3,4,17,13,15,2
+RM761,53,46-55,No,Travel_Frequently,124,Sales,2,3,Marketing,1,1050,3,Female,38,2,3,Sales Executive,2,Married,7525,5k-10k,23537,2,Y,No,12,3,1,80,1,30,2,3,15,7,6,12
+RM859,53,46-55,No,Travel_Rarely,1223,Research & Development,7,2,Medical,1,1201,4,Female,50,3,5,Manager,3,Divorced,18606,15k+,18640,3,Y,No,18,3,2,80,1,26,6,3,7,7,4,7
+RM1044,53,46-55,No,Travel_Rarely,447,Research & Development,2,3,Medical,1,1472,4,Male,39,4,4,Research Director,2,Single,16598,15k+,19764,4,Y,No,12,3,2,80,0,35,2,2,9,8,8,8
+RM1112,53,46-55,Yes,Travel_Rarely,607,Research & Development,2,5,Technical Degree,1,1572,3,Female,78,2,3,Manufacturing Director,4,Married,10169,10k-15k,14618,0,Y,No,16,3,2,80,1,34,4,3,33,7,1,9
+RM1204,53,46-55,No,Travel_Rarely,1395,Research & Development,24,4,Medical,1,1689,2,Male,48,4,3,Healthcare Representative,4,Married,7005,5k-10k,3458,3,Y,No,15,3,3,80,0,11,2,3,4,3,1,2
+RM1269,53,46-55,No,Non-Travel,661,Research & Development,1,4,Medical,1,1775,1,Female,60,2,4,Manufacturing Director,3,Married,12965,10k-15k,22308,4,Y,Yes,20,4,4,80,3,27,2,2,3,2,0,2
+RM1397,53,46-55,Yes,Travel_Rarely,1168,Sales,24,4,Life Sciences,1,1968,1,Male,66,3,3,Sales Executive,1,Single,10448,10k-15k,5843,6,Y,Yes,13,3,2,80,0,15,2,2,2,2,2,2
+RM096,54,46-55,No,Travel_Rarely,1217,Research & Development,2,4,Technical Degree,1,126,1,Female,60,3,3,Research Director,3,Married,13549,10k-15k,24001,9,Y,No,12,3,1,80,1,16,5,1,4,3,0,3
+RM113,54,46-55,No,Non-Travel,142,Human Resources,26,3,Human Resources,1,148,4,Female,30,4,4,Manager,4,Single,17328,15k+,13871,2,Y,Yes,12,3,3,80,0,23,3,3,5,3,4,4
+RM220,54,46-55,No,Travel_Rarely,1147,Sales,3,3,Marketing,1,303,4,Female,52,3,2,Sales Executive,1,Married,5940,5k-10k,17011,2,Y,No,14,3,4,80,1,16,4,3,6,2,0,5
+RM333,54,46-55,No,Travel_Frequently,928,Research & Development,20,4,Life Sciences,1,450,4,Female,31,3,2,Research Scientist,3,Single,4869,Upto 5k,16885,3,Y,No,12,3,4,80,0,20,4,2,4,3,0,3
+RM393,54,46-55,No,Travel_Rarely,821,Research & Development,5,2,Medical,1,522,1,Male,86,3,5,Research Director,1,Married,19406,15k+,8509,4,Y,No,11,3,3,80,1,24,4,2,4,2,1,2
+RM432,54,46-55,No,Travel_Rarely,548,Research & Development,8,4,Life Sciences,1,578,3,Female,42,3,2,Laboratory Technician,3,Single,3780,Upto 5k,23428,7,Y,No,11,3,3,80,0,19,3,3,1,0,0,0
+RM511,54,46-55,No,Travel_Rarely,397,Human Resources,19,4,Medical,1,698,3,Male,88,3,3,Human Resources,2,Married,10725,10k-15k,6729,2,Y,No,15,3,3,80,1,16,1,4,9,7,7,1
+RM576,54,46-55,No,Travel_Rarely,376,Research & Development,19,4,Medical,1,799,4,Female,95,3,2,Manufacturing Director,1,Divorced,5485,5k-10k,22670,9,Y,Yes,11,3,2,80,2,9,4,3,5,3,1,4
+RM729,54,46-55,No,Travel_Rarely,1441,Research & Development,17,3,Technical Degree,1,1013,3,Female,56,3,3,Manufacturing Director,3,Married,10739,10k-15k,13943,8,Y,No,11,3,3,80,1,22,2,3,10,7,0,8
+RM772,54,46-55,No,Travel_Rarely,1082,Sales,2,4,Life Sciences,1,1070,3,Female,41,2,3,Sales Executive,3,Married,10686,10k-15k,8392,6,Y,No,11,3,2,80,1,13,4,3,9,4,7,0
+RM891,54,46-55,No,Travel_Frequently,966,Research & Development,1,4,Life Sciences,1,1245,4,Female,53,3,3,Manufacturing Director,3,Divorced,10502,10k-15k,9659,7,Y,No,17,3,1,80,1,33,2,1,5,4,1,4
+RM895,54,46-55,No,Travel_Rarely,685,Research & Development,3,3,Life Sciences,1,1250,4,Male,85,3,4,Research Director,4,Married,17779,15k+,23474,3,Y,No,14,3,1,80,0,36,2,3,10,9,0,9
+RM1009,54,46-55,No,Travel_Rarely,971,Research & Development,1,3,Medical,1,1422,4,Female,54,3,4,Research Director,4,Single,17328,15k+,5652,6,Y,No,19,3,4,80,0,29,3,2,20,7,12,7
+RM1077,54,46-55,No,Travel_Frequently,1050,Research & Development,11,4,Medical,1,1520,2,Female,87,3,4,Manager,4,Divorced,16032,15k+,24456,3,Y,No,20,4,1,80,1,26,2,3,14,9,1,12
+RM1185,54,46-55,No,Travel_Rarely,584,Research & Development,22,5,Medical,1,1665,2,Female,91,3,4,Manager,3,Married,17426,15k+,18685,3,Y,No,25,4,3,80,1,36,6,3,10,8,4,7
+RM1306,54,46-55,No,Travel_Rarely,431,Research & Development,7,4,Medical,1,1830,4,Female,68,3,2,Research Scientist,4,Married,6854,5k-10k,15696,4,Y,No,15,3,2,80,1,14,2,2,7,1,1,7
+RM1398,54,46-55,No,Travel_Rarely,155,Research & Development,9,2,Life Sciences,1,1969,1,Female,67,3,2,Research Scientist,3,Married,2897,Upto 5k,22474,3,Y,No,11,3,3,80,2,9,6,2,4,3,2,3
+RM1407,54,46-55,No,Travel_Rarely,157,Research & Development,10,3,Medical,1,1980,3,Female,77,3,2,Manufacturing Director,1,Single,4440,Upto 5k,25198,6,Y,Yes,19,3,4,80,0,9,3,3,5,2,1,4
+RM066,55,46-55,No,Travel_Rarely,836,Research & Development,8,3,Medical,1,84,4,Female,33,3,4,Manager,3,Divorced,14756,10k-15k,19730,2,Y,Yes,14,3,3,80,3,21,2,3,5,0,0,2
+RM083,55,46-55,No,Travel_Rarely,111,Sales,1,2,Life Sciences,1,106,1,Male,70,3,3,Sales Executive,4,Married,10239,10k-15k,18092,3,Y,No,14,3,4,80,1,24,4,3,1,0,1,0
+RM188,55,46-55,No,Travel_Rarely,692,Research & Development,14,4,Medical,1,254,3,Male,61,4,5,Research Director,2,Single,18722,15k+,13339,8,Y,No,11,3,4,80,0,36,3,3,24,15,2,15
+RM271,55,46-55,No,Travel_Rarely,452,Research & Development,1,3,Medical,1,374,4,Male,81,3,5,Manager,1,Single,19045,15k+,18938,0,Y,Yes,14,3,3,80,0,37,2,3,36,10,4,13
+RM284,55,46-55,No,Travel_Rarely,147,Research & Development,20,2,Technical Degree,1,389,2,Male,37,3,2,Laboratory Technician,4,Married,5415,5k-10k,15972,3,Y,Yes,19,3,4,80,1,12,4,3,10,7,0,8
+RM380,55,46-55,No,Travel_Rarely,1311,Research & Development,2,3,Life Sciences,1,505,3,Female,97,3,4,Manager,4,Single,16659,15k+,23258,2,Y,Yes,13,3,3,80,0,30,2,3,5,4,1,2
+RM446,55,46-55,No,Travel_Rarely,1117,Sales,18,5,Life Sciences,1,597,1,Female,83,3,4,Manager,2,Single,16835,15k+,9873,3,Y,No,23,4,4,80,0,37,2,3,10,9,7,7
+RM569,55,46-55,Yes,Travel_Rarely,725,Research & Development,2,3,Medical,1,787,4,Male,78,3,5,Manager,1,Married,19859,15k+,21199,5,Y,Yes,13,3,4,80,1,24,2,3,5,2,1,4
+RM609,55,46-55,Yes,Travel_Rarely,436,Sales,2,1,Medical,1,842,3,Male,37,3,2,Sales Executive,4,Single,5160,5k-10k,21519,4,Y,No,16,3,3,80,0,12,3,2,9,7,7,3
+RM746,55,46-55,No,Travel_Frequently,135,Research & Development,18,4,Medical,1,1034,3,Male,62,3,2,Healthcare Representative,2,Married,6385,5k-10k,12992,3,Y,Yes,14,3,4,80,2,17,3,3,8,7,6,7
+RM775,55,46-55,No,Non-Travel,444,Research & Development,2,1,Medical,1,1074,3,Male,40,2,4,Manager,1,Single,16756,15k+,17323,7,Y,No,15,3,2,80,0,31,3,4,9,7,6,2
+RM788,55,46-55,No,Travel_Frequently,1091,Research & Development,2,1,Life Sciences,1,1096,4,Male,65,3,3,Manufacturing Director,2,Married,10976,10k-15k,15813,3,Y,No,18,3,2,80,1,23,4,3,3,2,1,2
+RM915,55,46-55,No,Non-Travel,177,Research & Development,8,1,Medical,1,1278,4,Male,37,2,4,Healthcare Representative,2,Divorced,13577,10k-15k,25592,1,Y,Yes,15,3,4,80,1,34,3,3,33,9,15,0
+RM956,55,46-55,No,Travel_Rarely,282,Research & Development,2,2,Medical,1,1336,4,Female,58,1,5,Manager,3,Married,19187,15k+,6992,4,Y,No,14,3,4,80,1,23,5,3,19,9,9,11
+RM976,55,46-55,Yes,Travel_Rarely,267,Sales,13,4,Marketing,1,1372,1,Male,85,4,4,Sales Executive,3,Single,13695,10k-15k,9277,6,Y,Yes,17,3,3,80,0,24,2,2,19,7,3,8
+RM1011,55,46-55,No,Travel_Rarely,1136,Research & Development,1,4,Medical,1,1424,2,Male,81,4,4,Research Director,4,Divorced,14732,10k-15k,12414,2,Y,No,13,3,4,80,2,31,4,4,7,7,0,0
+RM1066,55,46-55,No,Travel_Rarely,1229,Research & Development,4,4,Life Sciences,1,1501,4,Male,30,3,2,Healthcare Representative,3,Married,4035,Upto 5k,16143,0,Y,Yes,16,3,2,80,0,4,2,3,3,2,1,2
+RM1117,55,46-55,No,Travel_Rarely,685,Sales,26,5,Marketing,1,1578,3,Male,60,2,5,Manager,4,Married,19586,15k+,23037,1,Y,No,21,4,3,80,1,36,3,3,36,6,2,13
+RM1208,55,46-55,No,Travel_Rarely,1441,Research & Development,22,3,Technical Degree,1,1694,1,Male,94,2,1,Research Scientist,2,Divorced,3537,Upto 5k,23737,5,Y,No,12,3,4,80,1,8,1,3,4,2,1,2
+RM1265,55,46-55,No,Travel_Rarely,478,Research & Development,2,3,Medical,1,1770,3,Male,60,2,5,Research Director,1,Married,19038,15k+,19805,8,Y,No,12,3,2,80,3,34,2,3,1,0,0,0
+RM1337,55,46-55,No,Travel_Rarely,836,Research & Development,2,4,Technical Degree,1,1873,2,Male,98,2,1,Research Scientist,4,Married,2662,Upto 5k,7975,8,Y,No,20,4,2,80,1,19,2,4,5,2,0,4
+RM1402,55,46-55,No,Travel_Rarely,189,Human Resources,26,4,Human Resources,1,1973,3,Male,71,4,5,Manager,2,Married,19636,15k+,25811,4,Y,Yes,18,3,1,80,1,35,0,3,10,9,1,4
+RM086,56,55+,No,Travel_Rarely,1400,Research & Development,7,3,Life Sciences,1,112,4,Male,49,1,3,Manufacturing Director,4,Single,7260,5k-10k,21698,4,Y,No,11,3,1,80,0,37,3,2,6,4,0,2
+RM123,56,55+,Yes,Travel_Rarely,441,Research & Development,14,4,Life Sciences,1,161,2,Female,72,3,1,Research Scientist,2,Married,4963,Upto 5k,4510,9,Y,Yes,18,3,1,80,3,7,2,3,5,4,4,3
+RM176,56,55+,No,Travel_Rarely,713,Research & Development,8,3,Life Sciences,1,241,3,Female,67,3,1,Research Scientist,1,Divorced,4257,Upto 5k,13939,4,Y,Yes,18,3,3,80,1,19,3,3,2,2,2,2
+RM402,56,55+,No,Travel_Frequently,906,Sales,6,3,Life Sciences,1,532,3,Female,86,4,4,Sales Executive,1,Married,13212,10k-15k,18256,9,Y,No,11,3,4,80,3,36,0,2,7,7,7,7
+RM553,56,55+,No,Travel_Rarely,832,Research & Development,9,3,Medical,1,762,3,Male,81,3,4,Healthcare Representative,4,Married,11103,10k-15k,20420,7,Y,No,11,3,3,80,0,30,1,2,10,7,1,1
+RM773,56,55+,No,Travel_Frequently,1240,Research & Development,9,3,Medical,1,1071,1,Female,63,3,1,Research Scientist,3,Married,2942,Upto 5k,12154,2,Y,No,19,3,2,80,1,18,4,3,5,4,0,3
+RM852,56,55+,No,Travel_Rarely,718,Research & Development,4,4,Technical Degree,1,1191,4,Female,92,3,5,Manager,1,Divorced,19943,15k+,18575,4,Y,No,13,3,4,80,1,28,2,3,5,2,4,2
+RM957,56,55+,No,Travel_Rarely,206,Human Resources,8,4,Life Sciences,1,1338,4,Male,99,3,5,Manager,2,Single,19717,15k+,4022,6,Y,No,14,3,1,80,0,36,4,3,7,3,7,7
+RM977,56,55+,No,Travel_Rarely,1369,Research & Development,23,3,Life Sciences,1,1373,4,Male,68,3,4,Manufacturing Director,2,Married,13402,10k-15k,18235,4,Y,Yes,12,3,1,80,1,33,0,3,19,16,15,9
+RM1024,56,55+,No,Travel_Rarely,1255,Research & Development,1,2,Life Sciences,1,1441,1,Female,90,3,1,Research Scientist,1,Married,2066,Upto 5k,10494,2,Y,No,22,4,4,80,1,5,3,4,3,2,1,0
+RM1355,56,55+,Yes,Travel_Rarely,1162,Research & Development,24,2,Life Sciences,1,1907,1,Male,97,3,1,Laboratory Technician,4,Single,2587,Upto 5k,10261,1,Y,No,16,3,4,80,0,5,3,3,4,2,1,0
+RM1372,56,55+,No,Travel_Rarely,1443,Sales,11,5,Marketing,1,1935,4,Female,89,2,2,Sales Executive,1,Married,5380,5k-10k,20328,4,Y,No,16,3,3,80,1,6,3,3,0,0,0,0
+RM1442,56,55+,No,Non-Travel,667,Research & Development,1,4,Life Sciences,1,2026,3,Male,57,3,2,Healthcare Representative,3,Divorced,6306,5k-10k,26236,1,Y,No,21,4,1,80,1,13,2,2,13,12,1,9
+RM1445,56,55+,Yes,Travel_Rarely,310,Research & Development,7,2,Technical Degree,1,2032,4,Male,72,3,1,Laboratory Technician,3,Married,2339,Upto 5k,3666,8,Y,No,11,3,4,80,1,14,4,1,10,9,9,8
+RM164,57,55+,No,Travel_Rarely,334,Research & Development,24,2,Life Sciences,1,223,3,Male,83,4,3,Healthcare Representative,4,Divorced,9439,5k-10k,23402,3,Y,Yes,16,3,2,80,1,12,2,1,5,3,1,4
+RM361,57,55+,No,Travel_Rarely,593,Research & Development,1,4,Medical,1,482,4,Male,88,3,2,Healthcare Representative,3,Married,6755,5k-10k,2967,2,Y,No,11,3,3,80,0,15,2,3,3,2,1,
+RM425,57,55+,No,Travel_Rarely,210,Sales,29,3,Marketing,1,568,1,Male,56,2,4,Manager,4,Divorced,14118,10k-15k,22102,3,Y,No,12,3,3,80,1,32,3,2,1,0,0,0
+RM1054,57,55+,No,Travel_Rarely,405,Research & Development,1,2,Life Sciences,1,1483,2,Male,93,4,2,Research Scientist,3,Married,4900,Upto 5k,2721,0,Y,No,24,4,1,80,1,13,2,2,12,9,2,8
+RM099,58,55+,No,Travel_Rarely,682,Sales,10,4,Medical,1,131,4,Male,37,3,4,Sales Executive,3,Single,13872,10k-15k,24409,0,Y,No,13,3,3,80,0,38,1,2,37,10,1,8
+RM127,58,55+,Yes,Travel_Rarely,147,Research & Development,23,4,Medical,1,165,4,Female,94,3,3,Healthcare Representative,4,Married,10312,10k-15k,3465,1,Y,No,12,3,4,80,1,40,3,2,40,10,15,6
+RM158,58,55+,No,Travel_Rarely,1145,Research & Development,9,3,Medical,1,214,2,Female,75,2,1,Research Scientist,2,Married,3346,Upto 5k,11873,4,Y,Yes,20,4,2,80,1,9,3,2,1,0,0,0
+RM309,58,55+,No,Non-Travel,390,Research & Development,1,4,Life Sciences,1,422,4,Male,32,1,2,Healthcare Representative,3,Divorced,5660,5k-10k,17056,2,Y,Yes,13,3,4,80,1,12,2,3,5,3,1,2
+RM596,58,55+,Yes,Travel_Rarely,286,Research & Development,2,4,Life Sciences,1,825,4,Male,31,3,5,Research Director,2,Single,19246,15k+,25761,7,Y,Yes,12,3,4,80,0,40,2,3,31,15,13,8
+RM661,58,55+,Yes,Travel_Frequently,781,Research & Development,2,1,Life Sciences,1,918,4,Male,57,2,1,Laboratory Technician,4,Divorced,2380,Upto 5k,13384,9,Y,Yes,14,3,4,80,1,3,3,2,1,0,0,0
+RM675,58,55+,No,Travel_Rarely,1272,Research & Development,5,3,Technical Degree,1,940,3,Female,37,2,3,Healthcare Representative,2,Divorced,10552,10k-15k,9255,2,Y,Yes,13,3,4,80,1,24,3,3,6,0,0,4
+RM701,58,55+,Yes,Travel_Rarely,289,Research & Development,2,3,Technical Degree,1,977,4,Male,51,3,1,Research Scientist,3,Single,2479,Upto 5k,26227,4,Y,No,24,4,1,80,0,7,4,3,1,0,0,0
+RM939,58,55+,No,Travel_Rarely,848,Research & Development,23,4,Life Sciences,1,1308,1,Male,88,3,1,Research Scientist,3,Divorced,2372,Upto 5k,26076,1,Y,No,12,3,4,80,2,2,3,3,2,2,2,2
+RM967,58,55+,Yes,Travel_Rarely,601,Research & Development,7,4,Medical,1,1360,3,Female,53,2,3,Manufacturing Director,1,Married,10008,10k-15k,12023,7,Y,Yes,14,3,4,80,0,31,0,2,10,9,5,9
+RM1010,58,55+,No,Travel_Rarely,1055,Research & Development,1,3,Medical,1,1423,4,Female,76,3,5,Research Director,1,Married,19701,15k+,22456,3,Y,Yes,21,4,3,80,1,32,3,3,9,8,1,5
+RM1302,58,55+,No,Non-Travel,350,Sales,2,3,Medical,1,1824,2,Male,52,3,4,Manager,2,Divorced,16291,15k+,22577,4,Y,No,22,4,4,80,1,37,0,2,16,9,14,14
+RM1311,58,55+,No,Travel_Frequently,1216,Research & Development,15,4,Life Sciences,1,1837,1,Male,87,3,4,Research Director,3,Married,15787,15k+,21624,2,Y,Yes,14,3,2,80,0,23,3,3,2,2,2,2
+RM1375,58,55+,No,Travel_Rarely,605,Sales,21,3,Life Sciences,1,1938,4,Female,72,3,4,Manager,4,Married,17875,15k+,11761,4,Y,Yes,13,3,3,80,1,29,2,2,1,0,0,0
+RM007,59,55+,No,Travel_Rarely,1324,Research & Development,3,3,Medical,1,10,3,Female,81,4,1,Laboratory Technician,1,Married,2670,Upto 5k,9964,4,Y,Yes,20,4,1,80,3,12,3,2,1,0,0,
+RM064,59,55+,No,Travel_Rarely,1435,Sales,25,3,Life Sciences,1,81,1,Female,99,3,3,Sales Executive,1,Single,7637,5k-10k,2354,7,Y,No,11,3,4,80,0,28,3,2,21,16,7,9
+RM071,59,55+,No,Travel_Frequently,1225,Sales,1,1,Life Sciences,1,91,1,Female,57,2,2,Sales Executive,3,Single,5473,5k-10k,24668,7,Y,No,11,3,4,80,0,20,2,2,4,3,1,
+RM106,59,55+,No,Non-Travel,1420,Human Resources,2,4,Human Resources,1,140,3,Female,32,2,5,Manager,4,Married,18844,15k+,21922,9,Y,No,21,4,4,80,1,30,3,3,3,2,2,2
+RM226,59,55+,No,Travel_Rarely,142,Research & Development,3,3,Life Sciences,1,309,3,Male,70,2,1,Research Scientist,4,Married,2177,Upto 5k,8456,3,Y,No,17,3,1,80,1,7,6,3,1,0,0,0
+RM233,59,55+,No,Travel_Rarely,818,Human Resources,6,2,Medical,1,321,2,Male,52,3,1,Human Resources,3,Married,2267,Upto 5k,25657,8,Y,No,17,3,4,80,0,7,2,2,2,2,2,2
+RM744,59,55+,No,Travel_Rarely,715,Research & Development,2,3,Life Sciences,1,1032,3,Female,69,2,4,Manufacturing Director,4,Single,13726,10k-15k,21829,3,Y,Yes,13,3,1,80,0,30,4,3,5,3,4,3
+RM759,59,55+,No,Travel_Rarely,1089,Sales,1,2,Technical Degree,1,1048,2,Male,66,3,3,Manager,4,Married,11904,10k-15k,11038,3,Y,Yes,14,3,3,80,1,14,1,1,6,4,0,4
+RM898,59,55+,No,Travel_Rarely,326,Sales,3,3,Life Sciences,1,1254,3,Female,48,2,2,Sales Executive,4,Single,5171,5k-10k,16490,5,Y,No,17,3,4,80,0,13,2,3,6,1,0,5
+RM920,59,55+,No,Travel_Rarely,1429,Research & Development,18,4,Medical,1,1283,4,Male,67,3,3,Manufacturing Director,4,Single,10512,10k-15k,20002,6,Y,No,12,3,4,80,0,25,6,2,9,7,5,4
+RM412,60,55+,No,Travel_Rarely,422,Research & Development,7,3,Life Sciences,1,549,1,Female,41,3,5,Manager,1,Married,19566,15k+,3854,5,Y,No,11,3,4,80,0,33,5,1,29,8,11,10
+RM428,60,55+,No,Travel_Frequently,1499,Sales,28,3,Marketing,1,573,3,Female,80,2,3,Sales Executive,1,Married,10266,10k-15k,2845,4,Y,No,19,3,4,80,0,22,5,4,18,13,13,11
+RM537,60,55+,No,Travel_Rarely,1179,Sales,16,4,Marketing,1,732,1,Male,84,3,2,Sales Executive,1,Single,5405,5k-10k,11924,8,Y,No,14,3,4,80,0,10,1,3,2,2,2,2
+RM880,60,55+,No,Travel_Rarely,696,Sales,7,4,Marketing,1,1233,2,Male,52,4,2,Sales Executive,4,Divorced,5220,5k-10k,10893,0,Y,Yes,18,3,2,80,1,12,3,3,11,7,1,9
+RM1210,60,55+,No,Travel_Rarely,370,Research & Development,1,4,Medical,1,1697,3,Male,92,1,3,Healthcare Representative,4,Divorced,10883,10k-15k,20467,3,Y,No,20,4,3,80,1,19,2,4,1,0,0,0
diff --git a/exercicios/para-casa/PeopleAnalytics.csv b/exercicios/para-casa/PeopleAnalytics.csv
new file mode 100644
index 0000000..45c3d2b
--- /dev/null
+++ b/exercicios/para-casa/PeopleAnalytics.csv
@@ -0,0 +1,1474 @@
+EmpID,AgeGroup,Department,EducationField,EnvironmentSatisfaction,Gender,JobInvolvement,JobLevel,JobRole,JobSatisfaction,MonthlyIncome,SalarySlab,NumCompaniesWorked,PercentSalaryHike,PerformanceRating,RelationshipSatisfaction,TotalWorkingYears,TrainingTimesLastYear,YearsAtCompany,YearsInCurrentRole,YearsSinceLastPromotion
+RM297,18-25,Research & Development,Life Sciences,3,Male,3,1,Laboratory Technician,3,1420,Upto 5k,1,13,3,3,0,2,0,0,0
+RM302,18-25,Sales,Medical,4,Female,2,1,Sales Representative,3,1200,Upto 5k,1,12,3,1,0,2,0,0,0
+RM458,18-25,Sales,Marketing,2,Male,3,1,Sales Representative,2,1878,Upto 5k,1,14,3,4,0,3,0,0,0
+RM728,18-25,Research & Development,Life Sciences,2,Male,3,1,Research Scientist,4,1051,Upto 5k,1,15,3,4,0,2,0,0,0
+RM829,18-25,Research & Development,Medical,3,Male,3,1,Laboratory Technician,3,1904,Upto 5k,1,12,3,4,0,0,0,0,0
+RM973,18-25,Research & Development,Life Sciences,4,Female,3,1,Laboratory Technician,4,1611,Upto 5k,1,15,3,3,0,5,0,0,0
+RM1154,18-25,Sales,Medical,2,Female,3,1,Sales Representative,4,1569,Upto 5k,1,12,3,3,0,2,0,0,0
+RM1312,18-25,Research & Development,Medical,2,Female,3,1,Research Scientist,3,1514,Upto 5k,1,16,3,3,0,4,0,0,0
+RM128,18-25,Sales,Marketing,4,Male,3,1,Sales Representative,3,1675,Upto 5k,1,19,3,4,0,2,0,0,0
+RM150,18-25,Research & Development,Medical,2,Female,3,1,Laboratory Technician,2,1483,Upto 5k,1,14,3,4,1,3,1,0,0
+RM172,18-25,Sales,Technical Degree,3,Female,1,1,Sales Representative,1,2325,Upto 5k,0,21,4,1,1,5,0,0,0
+RM178,18-25,Research & Development,Life Sciences,2,Male,2,1,Laboratory Technician,4,1102,Upto 5k,1,22,4,3,1,3,1,0,1
+RM423,18-25,Human Resources,Technical Degree,1,Male,2,1,Human Resources,4,2564,Upto 5k,1,12,3,3,1,3,1,0,0
+RM689,18-25,Sales,Other,4,Male,2,1,Sales Representative,2,2121,Upto 5k,1,13,3,2,1,3,1,0,0
+RM854,18-25,Research & Development,Life Sciences,3,Male,3,1,Research Scientist,1,2552,Upto 5k,1,25,4,3,1,4,1,1,0
+RM893,18-25,Research & Development,Medical,1,Female,2,1,Research Scientist,2,1859,Upto 5k,1,25,4,2,1,2,1,1,0
+RM910,18-25,Research & Development,Life Sciences,2,Female,4,1,Research Scientist,4,2994,Upto 5k,1,12,3,4,1,2,1,0,0
+RM103,18-25,Research & Development,Life Sciences,4,Female,2,1,Laboratory Technician,4,2926,Upto 5k,1,18,3,2,1,5,1,0,1
+RM488,18-25,Research & Development,Life Sciences,4,Female,2,1,Research Scientist,2,2836,Upto 5k,1,13,3,4,1,0,1,0,0
+RM514,18-25,Research & Development,Medical,4,Male,3,1,Research Scientist,3,1009,Upto 5k,1,11,3,4,1,5,1,0,1
+RM663,18-25,Sales,Medical,3,Female,2,1,Sales Representative,3,2044,Upto 5k,1,13,3,4,2,3,2,2,0
+RM690,18-25,Research & Development,Technical Degree,1,Male,3,1,Laboratory Technician,1,2973,Upto 5k,1,19,3,2,1,2,1,0,0
+RM732,18-25,Research & Development,Medical,4,Female,2,1,Research Scientist,1,2600,Upto 5k,1,15,3,1,1,2,1,0,0
+RM777,18-25,Sales,Marketing,4,Female,3,1,Sales Representative,4,2323,Upto 5k,1,14,3,2,2,3,2,2,0
+RM857,18-25,Research & Development,Life Sciences,1,Male,2,1,Laboratory Technician,3,3033,Upto 5k,1,12,3,1,2,2,2,2,1
+RM877,18-25,Sales,Marketing,3,Male,4,1,Sales Representative,4,2678,Upto 5k,1,17,3,4,2,2,2,1,2
+RM1179,18-25,Sales,Medical,3,Female,3,1,Sales Representative,3,2783,Upto 5k,1,19,3,1,2,3,2,2,2
+RM1198,18-25,Sales,Life Sciences,4,Male,3,1,Sales Representative,1,2728,Upto 5k,1,11,3,1,2,3,2,2,0
+RM024,18-25,Research & Development,Life Sciences,3,Male,3,1,Research Scientist,4,1232,Upto 5k,1,14,3,4,0,6,0,0,0
+RM275,18-25,Research & Development,Medical,4,Male,2,1,Research Scientist,3,3230,Upto 5k,1,17,3,1,3,4,3,2,1
+RM358,18-25,Sales,Technical Degree,1,Female,2,1,Sales Representative,2,2174,Upto 5k,1,11,3,3,3,3,3,2,1
+RM363,18-25,Sales,Medical,1,Male,3,1,Sales Representative,4,2610,Upto 5k,1,24,4,3,3,3,3,2,2
+RM371,18-25,Sales,Life Sciences,3,Female,4,1,Sales Representative,2,2716,Upto 5k,1,15,3,4,1,0,1,0,0
+RM497,18-25,Sales,Technical Degree,3,Male,3,1,Sales Representative,3,3447,Upto 5k,1,11,3,3,3,2,3,2,1
+RM664,18-25,Research & Development,Other,4,Female,3,1,Research Scientist,4,2693,Upto 5k,1,19,3,1,1,3,1,0,0
+RM778,18-25,Research & Development,Life Sciences,3,Female,2,1,Laboratory Technician,1,1416,Upto 5k,1,13,3,1,1,6,1,0,1
+RM816,18-25,Research & Development,Technical Degree,4,Female,2,1,Research Scientist,2,2070,Upto 5k,1,11,3,3,2,6,2,2,2
+RM916,18-25,Research & Development,Life Sciences,1,Female,2,1,Laboratory Technician,3,2625,Upto 5k,1,20,4,3,2,2,2,2,2
+RM1153,18-25,Research & Development,Medical,3,Male,3,1,Research Scientist,4,3117,Upto 5k,1,18,3,3,3,2,2,2,2
+RM1272,18-25,Sales,Marketing,2,Male,3,1,Sales Representative,2,2679,Upto 5k,1,13,3,2,1,3,1,0,1
+RM1437,18-25,Sales,Medical,3,Male,3,1,Sales Representative,1,2380,Upto 5k,1,11,3,4,2,6,2,2,1
+RM018,18-25,Research & Development,Medical,4,Male,4,1,Laboratory Technician,4,2935,Upto 5k,1,13,3,2,1,2,1,0,0
+RM110,18-25,Research & Development,Medical,2,Female,3,1,Laboratory Technician,4,2871,Upto 5k,1,15,3,3,1,5,0,0,0
+RM129,18-25,Research & Development,Technical Degree,3,Male,3,1,Laboratory Technician,4,2523,Upto 5k,0,14,3,3,3,2,2,1,2
+RM161,18-25,Research & Development,Medical,3,Male,3,1,Research Scientist,4,2323,Upto 5k,1,24,4,1,2,6,2,2,2
+RM207,18-25,Research & Development,Life Sciences,4,Male,4,1,Research Scientist,2,2328,Upto 5k,1,16,3,1,4,2,4,2,2
+RM384,18-25,Research & Development,Medical,1,Female,3,1,Research Scientist,2,2244,Upto 5k,1,13,3,4,2,1,2,1,1
+RM444,18-25,Research & Development,Technical Degree,3,Male,2,1,Laboratory Technician,3,3894,Upto 5k,5,16,3,3,4,3,2,2,1
+RM499,18-25,Research & Development,Medical,1,Male,3,1,Research Scientist,3,2773,Upto 5k,0,20,4,4,3,3,2,2,2
+RM631,18-25,Research & Development,Life Sciences,4,Male,2,2,Manufacturing Director,4,4775,Upto 5k,6,22,4,1,4,2,2,2,2
+RM667,18-25,Research & Development,Life Sciences,2,Female,3,2,Manufacturing Director,3,4171,Upto 5k,0,19,3,1,4,3,3,2,0
+RM735,18-25,Research & Development,Life Sciences,2,Male,1,1,Laboratory Technician,1,2451,Upto 5k,1,15,3,1,4,3,4,3,1
+RM861,18-25,Research & Development,Life Sciences,3,Male,2,1,Research Scientist,4,2853,Upto 5k,0,11,3,2,1,5,0,0,0
+RM1138,18-25,Research & Development,Other,2,Female,2,1,Research Scientist,3,2814,Upto 5k,1,14,3,2,4,2,4,2,1
+RM1274,18-25,Research & Development,Medical,3,Female,3,1,Laboratory Technician,1,2398,Upto 5k,1,17,3,3,1,6,1,0,0
+RM1340,18-25,Research & Development,Life Sciences,4,Male,3,1,Research Scientist,2,2472,Upto 5k,1,23,4,1,1,2,1,0,0
+RM1424,18-25,Research & Development,Life Sciences,4,Male,3,1,Research Scientist,3,3375,Upto 5k,0,12,3,4,4,2,3,2,1
+RM087,18-25,Sales,Technical Degree,3,Male,3,1,Sales Representative,1,2322,Upto 5k,3,13,3,3,3,3,0,0,0
+RM346,18-25,Research & Development,Life Sciences,3,Male,3,1,Research Scientist,4,2904,Upto 5k,1,12,3,3,4,2,4,2,0
+RM517,18-25,Research & Development,Medical,1,Male,4,1,Research Scientist,1,2819,Upto 5k,2,16,3,1,5,3,3,2,0
+RM551,18-25,Research & Development,Medical,2,Male,3,1,Laboratory Technician,1,2500,Upto 5k,1,14,3,4,5,2,4,3,0
+RM566,18-25,Research & Development,Medical,1,Male,4,1,Research Scientist,3,3505,Upto 5k,1,18,3,4,2,3,2,2,0
+RM586,18-25,Research & Development,Life Sciences,3,Male,4,1,Laboratory Technician,1,1601,Upto 5k,1,21,4,3,1,2,0,0,0
+RM911,18-25,Research & Development,Life Sciences,4,Male,3,1,Research Scientist,3,1223,Upto 5k,1,22,4,4,1,2,1,0,0
+RM1083,18-25,Research & Development,Life Sciences,1,Male,3,2,Laboratory Technician,3,2272,Upto 5k,0,14,3,2,5,2,4,3,1
+RM1128,18-25,Research & Development,Technical Degree,4,Male,4,1,Research Scientist,3,2073,Upto 5k,2,16,3,4,4,2,2,2,2
+RM1202,18-25,Research & Development,Medical,4,Male,2,1,Laboratory Technician,3,3989,Upto 5k,1,11,3,1,5,2,5,4,1
+RM1214,18-25,Sales,Life Sciences,3,Male,3,1,Sales Representative,4,2275,Upto 5k,1,21,4,2,3,2,3,2,0
+RM1239,18-25,Research & Development,Medical,3,Female,3,1,Laboratory Technician,2,3295,Upto 5k,1,13,3,3,3,3,3,2,1
+RM1409,18-25,Research & Development,Other,4,Male,3,1,Laboratory Technician,4,2647,Upto 5k,1,13,3,3,5,6,5,2,1
+RM1439,18-25,Sales,Marketing,4,Male,3,1,Sales Representative,1,1790,Upto 5k,1,19,3,1,1,3,1,0,1
+RM021,18-25,Research & Development,Other,1,Female,4,2,Manufacturing Director,3,4011,Upto 5k,0,18,3,4,5,5,4,2,1
+RM035,18-25,Research & Development,Medical,2,Male,3,1,Research Scientist,4,2293,Upto 5k,2,16,3,1,6,2,2,0,2
+RM097,18-25,Sales,Other,1,Female,3,2,Sales Executive,3,4999,Upto 5k,0,21,4,1,4,2,3,2,0
+RM114,18-25,Research & Development,Life Sciences,2,Male,3,1,Laboratory Technician,3,2774,Upto 5k,0,12,3,3,6,2,5,3,1
+RM381,18-25,Sales,Marketing,4,Female,3,2,Sales Executive,3,4260,Upto 5k,1,12,3,4,5,2,5,2,0
+RM415,18-25,Sales,Technical Degree,1,Female,3,1,Sales Representative,2,3202,Upto 5k,1,16,3,2,6,4,5,3,1
+RM471,18-25,Sales,Medical,4,Male,3,1,Sales Representative,4,2400,Upto 5k,0,13,3,3,3,3,2,2,2
+RM475,18-25,Research & Development,Medical,2,Male,4,1,Research Scientist,4,2725,Upto 5k,1,11,3,2,6,3,6,5,1
+RM477,18-25,Research & Development,Other,4,Male,2,1,Laboratory Technician,2,2127,Upto 5k,1,21,4,4,1,2,1,0,0
+RM480,18-25,Research & Development,Life Sciences,1,Female,3,1,Laboratory Technician,3,2886,Upto 5k,1,16,3,4,6,4,6,3,1
+RM526,18-25,Sales,Life Sciences,1,Female,3,2,Sales Executive,3,4577,Upto 5k,9,14,3,1,4,3,2,2,2
+RM587,18-25,Research & Development,Life Sciences,3,Male,2,1,Laboratory Technician,2,2694,Upto 5k,1,11,3,3,1,4,1,0,0
+RM641,18-25,Research & Development,Life Sciences,1,Male,2,1,Laboratory Technician,4,3162,Upto 5k,0,17,3,4,6,2,5,2,3
+RM725,18-25,Research & Development,Medical,4,Female,2,2,Manufacturing Director,3,4377,Upto 5k,1,15,3,2,5,6,4,2,3
+RM842,18-25,Research & Development,Medical,4,Male,3,1,Laboratory Technician,2,3597,Upto 5k,8,22,4,4,6,2,4,3,1
+RM872,18-25,Research & Development,Life Sciences,4,Female,3,1,Laboratory Technician,2,2210,Upto 5k,1,13,3,1,1,3,1,0,0
+RM1026,18-25,Sales,Medical,4,Female,3,2,Sales Executive,3,4162,Upto 5k,1,12,3,3,5,3,5,4,0
+RM1061,18-25,Research & Development,Medical,2,Male,3,1,Laboratory Technician,1,3172,Upto 5k,2,11,3,3,4,2,0,0,0
+RM1062,18-25,Sales,Life Sciences,4,Female,3,1,Sales Representative,2,2033,Upto 5k,1,13,3,3,1,2,1,0,0
+RM1098,18-25,Research & Development,Technical Degree,3,Male,2,1,Laboratory Technician,1,2296,Upto 5k,0,14,3,2,2,3,1,1,0
+RM1169,18-25,Research & Development,Technical Degree,1,Female,3,1,Research Scientist,4,3760,Upto 5k,1,13,3,3,6,2,6,3,1
+RM1218,18-25,Research & Development,Medical,3,Male,4,1,Research Scientist,3,4401,Upto 5k,1,16,3,4,5,1,5,3,0
+RM1223,18-25,Human Resources,Human Resources,4,Male,1,1,Human Resources,3,1555,Upto 5k,1,11,3,3,1,2,1,0,0
+RM1231,18-25,Research & Development,Medical,2,Male,3,1,Laboratory Technician,1,3907,Upto 5k,1,13,3,2,6,2,6,2,1
+RM1246,18-25,Human Resources,Medical,1,Male,3,1,Human Resources,4,2145,Upto 5k,0,14,3,4,3,2,2,2,2
+RM1408,18-25,Research & Development,Life Sciences,2,Male,2,2,Healthcare Representative,3,4617,Upto 5k,1,12,3,2,4,2,4,3,1
+RM108,18-25,Sales,Marketing,3,Male,2,2,Sales Executive,3,5744,5k-10k,1,11,3,4,6,1,6,4,0
+RM109,18-25,Research & Development,Medical,4,Male,2,1,Research Scientist,4,2889,Upto 5k,1,11,3,3,2,2,2,2,2
+RM139,18-25,Sales,Life Sciences,1,Male,2,2,Sales Executive,3,8639,5k-10k,2,18,3,4,6,3,2,2,2
+RM256,18-25,Research & Development,Life Sciences,1,Female,3,2,Manufacturing Director,3,4898,Upto 5k,0,12,3,4,5,3,4,2,1
+RM268,18-25,Research & Development,Life Sciences,2,Male,4,2,Healthcare Representative,1,4000,Upto 5k,1,12,3,4,6,2,6,3,1
+RM398,18-25,Sales,Life Sciences,2,Female,2,2,Sales Executive,4,4487,Upto 5k,1,11,3,2,5,3,5,4,1
+RM406,18-25,Research & Development,Medical,1,Male,3,1,Laboratory Technician,1,4031,Upto 5k,5,13,3,3,6,5,2,2,0
+RM479,18-25,Sales,Medical,2,Male,3,1,Sales Representative,3,2096,Upto 5k,1,11,3,3,7,1,7,4,0
+RM518,18-25,Sales,Life Sciences,4,Male,4,2,Sales Executive,2,4851,Upto 5k,0,22,4,3,4,4,3,2,1
+RM564,18-25,Sales,Medical,3,Female,3,2,Sales Executive,4,6180,5k-10k,1,23,4,2,6,5,6,5,1
+RM619,18-25,Research & Development,Medical,1,Male,4,1,Research Scientist,1,3424,Upto 5k,7,13,3,3,6,3,4,3,0
+RM635,18-25,Sales,Other,3,Male,3,2,Sales Executive,1,4194,Upto 5k,1,18,3,4,5,3,5,3,0
+RM639,18-25,Sales,Marketing,3,Male,2,2,Sales Executive,1,4256,Upto 5k,1,12,3,1,5,1,5,2,0
+RM684,18-25,Sales,Marketing,3,Male,2,1,Sales Representative,2,2413,Upto 5k,1,18,3,3,1,2,1,0,0
+RM797,18-25,Research & Development,Technical Degree,4,Male,3,1,Laboratory Technician,4,3691,Upto 5k,1,15,3,2,7,3,7,7,5
+RM886,18-25,Sales,Life Sciences,3,Male,3,2,Sales Executive,4,4950,Upto 5k,0,14,3,2,5,4,4,3,1
+RM912,18-25,Sales,Life Sciences,3,Male,1,1,Sales Representative,4,1118,Upto 5k,1,14,3,4,1,4,1,0,1
+RM935,18-25,Research & Development,Medical,4,Female,3,1,Research Scientist,2,2096,Upto 5k,1,18,3,4,2,3,2,2,2
+RM966,18-25,Research & Development,Medical,4,Male,3,1,Laboratory Technician,4,3669,Upto 5k,3,11,3,3,7,6,3,2,1
+RM994,18-25,Sales,Life Sciences,1,Male,4,2,Sales Executive,3,6232,5k-10k,2,11,3,2,6,3,3,2,1
+RM1004,18-25,Research & Development,Technical Degree,1,Male,3,1,Laboratory Technician,4,3229,Upto 5k,4,11,3,2,7,2,3,2,0
+RM1022,18-25,Sales,Life Sciences,1,Male,2,1,Sales Representative,1,4400,Upto 5k,3,12,3,1,6,2,3,2,2
+RM1175,18-25,Research & Development,Life Sciences,4,Male,4,2,Manufacturing Director,3,5206,5k-10k,1,17,3,3,7,6,7,7,0
+RM1412,18-25,Human Resources,Human Resources,3,Female,3,1,Human Resources,2,2187,Upto 5k,4,14,3,3,6,3,2,0,1
+RM1414,18-25,Research & Development,Other,4,Male,3,1,Laboratory Technician,3,3977,Upto 5k,6,19,3,3,7,2,2,2,0
+RM1434,18-25,Sales,Other,1,Female,3,2,Sales Executive,3,4907,Upto 5k,0,22,4,2,6,3,5,3,0
+RM043,26-35,Research & Development,Life Sciences,1,Male,1,1,Laboratory Technician,3,2293,Upto 5k,1,12,3,3,1,2,1,0,0
+RM055,26-35,Sales,Marketing,3,Female,2,2,Sales Executive,4,4157,Upto 5k,7,19,3,3,5,2,2,2,0
+RM126,26-35,Research & Development,Other,3,Female,2,1,Research Scientist,2,2368,Upto 5k,1,19,3,3,5,3,5,4,4
+RM135,26-35,Human Resources,Life Sciences,3,Female,3,1,Human Resources,3,2942,Upto 5k,1,23,4,4,8,3,8,7,5
+RM279,26-35,Research & Development,Life Sciences,3,Female,3,2,Manufacturing Director,2,6397,5k-10k,1,20,4,1,6,6,6,5,1
+RM285,26-35,Research & Development,Medical,1,Male,3,2,Healthcare Representative,1,4741,Upto 5k,1,13,3,3,5,3,5,3,3
+RM289,26-35,Research & Development,Medical,1,Male,3,1,Laboratory Technician,2,2373,Upto 5k,2,13,3,4,5,2,3,2,0
+RM294,26-35,Sales,Marketing,4,Male,2,2,Sales Executive,4,5828,5k-10k,1,12,3,2,8,0,8,7,7
+RM356,26-35,Sales,Life Sciences,3,Male,3,2,Sales Executive,3,5296,5k-10k,1,17,3,2,8,3,8,7,7
+RM383,26-35,Research & Development,Technical Degree,3,Male,3,1,Research Scientist,1,3102,Upto 5k,0,22,4,3,7,2,6,4,0
+RM419,26-35,Research & Development,Life Sciences,1,Female,3,1,Research Scientist,4,2886,Upto 5k,1,22,4,2,3,3,3,2,0
+RM454,26-35,Human Resources,Life Sciences,2,Female,3,1,Human Resources,3,2741,Upto 5k,0,11,3,2,8,2,7,7,1
+RM461,26-35,Sales,Medical,1,Male,3,2,Sales Executive,3,4306,Upto 5k,5,12,3,1,8,5,0,0,0
+RM464,26-35,Research & Development,Technical Degree,3,Male,1,1,Laboratory Technician,4,2340,Upto 5k,1,18,3,2,1,3,1,0,0
+RM476,26-35,Sales,Marketing,1,Male,3,2,Sales Executive,2,6272,5k-10k,1,20,4,4,6,5,5,3,1
+RM506,26-35,Research & Development,Life Sciences,3,Female,3,1,Laboratory Technician,4,2659,Upto 5k,1,13,3,3,3,2,3,2,0
+RM572,26-35,Research & Development,Life Sciences,1,Female,1,1,Laboratory Technician,4,4364,Upto 5k,3,14,3,1,5,2,2,2,2
+RM574,26-35,Sales,Technical Degree,4,Male,2,2,Sales Executive,1,5326,5k-10k,6,17,3,3,6,2,4,3,1
+RM615,26-35,Research & Development,Medical,3,Female,2,1,Research Scientist,3,2366,Upto 5k,1,14,3,1,8,2,8,7,1
+RM686,26-35,Sales,Medical,3,Male,2,2,Sales Executive,1,4294,Upto 5k,1,12,3,2,7,2,7,7,0
+RM734,26-35,Research & Development,Medical,4,Male,4,2,Manufacturing Director,4,5472,5k-10k,1,12,3,2,8,2,8,7,1
+RM749,26-35,Sales,Medical,2,Male,1,2,Sales Executive,1,4969,Upto 5k,8,18,3,4,7,6,2,2,2
+RM763,26-35,Research & Development,Life Sciences,1,Male,3,1,Research Scientist,1,2042,Upto 5k,6,14,3,2,6,2,3,2,1
+RM770,26-35,Research & Development,Medical,1,Female,2,1,Research Scientist,3,2007,Upto 5k,1,13,3,3,5,5,5,3,1
+RM782,26-35,Research & Development,Medical,1,Male,2,1,Laboratory Technician,1,3955,Upto 5k,1,16,3,1,6,2,5,3,1
+RM798,26-35,Research & Development,Medical,1,Male,3,1,Laboratory Technician,3,2377,Upto 5k,1,20,4,3,1,0,1,1,0
+RM844,26-35,Research & Development,Medical,1,Male,4,1,Laboratory Technician,4,4420,Upto 5k,1,22,4,2,8,2,8,7,0
+RM913,26-35,Research & Development,Life Sciences,3,Male,3,1,Research Scientist,4,2875,Upto 5k,1,20,4,2,8,2,8,5,2
+RM999,26-35,Research & Development,Medical,1,Male,2,1,Research Scientist,4,3904,Upto 5k,0,12,3,4,5,2,4,3,1
+RM1005,26-35,Research & Development,Other,3,Male,4,1,Laboratory Technician,1,3578,Upto 5k,0,12,3,4,8,2,7,7,0
+RM1119,26-35,Research & Development,Life Sciences,1,Female,3,1,Research Scientist,4,2061,Upto 5k,1,21,4,1,1,5,1,0,0
+RM1207,26-35,Research & Development,Medical,4,Male,3,1,Laboratory Technician,4,2570,Upto 5k,1,20,4,3,7,5,7,7,5
+RM1225,26-35,Research & Development,Medical,4,Male,1,1,Laboratory Technician,3,2305,Upto 5k,1,15,3,3,3,3,3,2,0
+RM1298,26-35,Human Resources,Medical,4,Female,3,1,Human Resources,2,2148,Upto 5k,0,11,3,3,6,3,5,1,1
+RM1310,26-35,Sales,Medical,3,Male,3,2,Sales Executive,4,4684,Upto 5k,1,13,3,1,5,4,5,3,1
+RM1350,26-35,Research & Development,Life Sciences,2,Female,2,1,Research Scientist,3,2933,Upto 5k,1,13,3,3,1,3,1,0,1
+RM1362,26-35,Research & Development,Other,3,Male,4,1,Laboratory Technician,4,2544,Upto 5k,0,18,3,1,8,3,7,7,7
+RM1387,26-35,Research & Development,Medical,3,Male,3,1,Laboratory Technician,1,2867,Upto 5k,0,13,3,4,8,6,7,7,7
+RM1465,26-35,Sales,Other,4,Female,2,1,Sales Representative,3,2966,Upto 5k,0,18,3,4,5,2,4,2,0
+RM1465,26-35,Sales,Other,4,Female,2,1,Sales Representative,3,2966,Upto 5k,0,18,3,4,5,2,4,2,0
+RM005,26-35,Research & Development,Medical,1,Male,3,1,Laboratory Technician,2,3468,Upto 5k,9,12,3,4,6,3,2,2,2
+RM042,26-35,Research & Development,Life Sciences,4,Female,3,1,Laboratory Technician,1,2341,Upto 5k,1,13,3,4,1,6,1,0,0
+RM044,26-35,Sales,Life Sciences,4,Male,3,3,Sales Executive,3,8726,5k-10k,1,15,3,4,9,0,9,8,1
+RM162,26-35,Research & Development,Medical,4,Male,3,1,Research Scientist,2,2024,Upto 5k,6,18,3,4,6,1,2,2,2
+RM165,26-35,Research & Development,Medical,3,Male,2,1,Research Scientist,3,2566,Upto 5k,1,15,3,4,1,2,1,1,0
+RM171,26-35,Research & Development,Technical Degree,3,Male,3,1,Research Scientist,2,3058,Upto 5k,0,16,3,4,6,3,5,2,1
+RM192,26-35,Research & Development,Medical,4,Female,3,1,Research Scientist,2,2279,Upto 5k,1,16,3,4,7,2,7,7,0
+RM201,26-35,Research & Development,Technical Degree,3,Male,2,2,Manufacturing Director,1,4298,Upto 5k,5,19,3,3,6,1,2,2,2
+RM213,26-35,Sales,Life Sciences,4,Female,3,2,Sales Executive,3,9981,5k-10k,1,14,3,4,7,2,7,7,0
+RM319,26-35,Research & Development,Life Sciences,3,Female,3,1,Research Scientist,2,2478,Upto 5k,1,12,3,2,4,2,4,3,1
+RM321,26-35,Sales,Life Sciences,4,Male,3,2,Sales Executive,3,4478,Upto 5k,1,11,3,1,5,3,5,4,0
+RM332,26-35,Sales,Marketing,3,Male,3,2,Sales Executive,2,6349,5k-10k,0,13,3,4,6,0,5,4,1
+RM340,26-35,Sales,Marketing,2,Female,3,2,Sales Executive,2,6214,5k-10k,1,18,3,1,8,3,8,7,0
+RM374,26-35,Research & Development,Medical,4,Male,3,1,Laboratory Technician,2,3816,Upto 5k,1,11,3,2,5,2,5,2,0
+RM486,26-35,Research & Development,Medical,1,Female,2,1,Research Scientist,3,2187,Upto 5k,0,12,3,3,6,5,5,3,0
+RM496,26-35,Sales,Marketing,3,Male,3,1,Sales Representative,1,3041,Upto 5k,0,11,3,2,5,3,4,3,0
+RM513,26-35,Research & Development,Medical,1,Male,2,1,Research Scientist,4,2045,Upto 5k,0,13,3,4,5,0,4,2,1
+RM522,26-35,Sales,Medical,4,Female,4,2,Sales Executive,4,4647,Upto 5k,1,20,4,2,6,3,6,5,0
+RM531,26-35,Research & Development,Life Sciences,3,Female,3,3,Manufacturing Director,1,7412,5k-10k,1,11,3,4,9,3,9,7,0
+RM538,26-35,Research & Development,Life Sciences,4,Male,3,3,Manufacturing Director,1,8793,5k-10k,1,21,4,3,9,4,9,7,1
+RM555,26-35,Research & Development,Medical,4,Female,2,2,Healthcare Representative,1,6811,5k-10k,8,19,3,1,9,2,7,6,0
+RM577,26-35,Sales,Marketing,3,Male,3,2,Sales Executive,4,4342,Upto 5k,0,19,3,2,5,3,4,2,1
+RM611,26-35,Research & Development,Technical Degree,3,Male,2,3,Research Director,4,12808,10k-15k,1,16,3,2,9,3,9,8,0
+RM616,26-35,Research & Development,Medical,4,Male,3,1,Research Scientist,4,1706,Upto 5k,1,11,3,3,0,6,0,0,0
+RM671,26-35,Research & Development,Life Sciences,2,Female,3,1,Research Scientist,3,2318,Upto 5k,1,19,3,3,1,2,1,1,0
+RM718,26-35,Research & Development,Technical Degree,3,Female,3,1,Laboratory Technician,2,2811,Upto 5k,9,14,3,2,4,2,2,2,2
+RM740,26-35,Research & Development,Life Sciences,1,Female,3,2,Manufacturing Director,4,4227,Upto 5k,0,18,3,2,4,2,3,2,2
+RM787,26-35,Research & Development,Life Sciences,1,Male,1,1,Laboratory Technician,3,4621,Upto 5k,1,19,3,4,3,4,3,2,1
+RM834,26-35,Research & Development,Life Sciences,4,Male,2,1,Research Scientist,3,2539,Upto 5k,1,13,3,3,4,0,4,2,2
+RM890,26-35,Research & Development,Life Sciences,1,Male,3,1,Research Scientist,1,2235,Upto 5k,1,14,3,4,9,3,9,7,6
+RM903,26-35,Research & Development,Life Sciences,1,Male,3,1,Research Scientist,3,2517,Upto 5k,1,11,3,2,5,2,5,3,0
+RM971,26-35,Sales,Medical,3,Female,4,1,Sales Representative,4,2534,Upto 5k,8,14,3,2,5,4,1,0,0
+RM975,26-35,Sales,Life Sciences,4,Male,1,2,Sales Executive,4,5071,5k-10k,3,20,4,2,8,3,6,2,0
+RM997,26-35,Sales,Marketing,4,Female,2,2,Sales Executive,4,5769,5k-10k,1,11,3,4,6,3,6,2,4
+RM998,26-35,Research & Development,Life Sciences,4,Female,3,1,Research Scientist,3,2394,Upto 5k,1,13,3,4,8,2,8,2,7
+RM1018,26-35,Research & Development,Life Sciences,2,Male,3,1,Laboratory Technician,1,2099,Upto 5k,0,14,3,2,6,3,5,0,1
+RM1150,26-35,Research & Development,Other,4,Male,2,1,Laboratory Technician,1,4066,Upto 5k,1,11,3,1,7,3,7,7,0
+RM1170,26-35,Research & Development,Medical,2,Female,4,1,Research Scientist,3,3517,Upto 5k,7,17,3,1,5,0,3,2,0
+RM1171,26-35,Research & Development,Medical,4,Male,3,1,Research Scientist,4,2580,Upto 5k,2,13,3,3,6,0,4,2,1
+RM1249,26-35,Research & Development,Medical,3,Female,3,1,Research Scientist,4,3445,Upto 5k,1,11,3,3,6,5,6,2,1
+RM1318,26-35,Research & Development,Life Sciences,4,Female,3,1,Laboratory Technician,4,2379,Upto 5k,0,14,3,3,6,3,5,4,0
+RM1329,26-35,Sales,Medical,2,Female,2,2,Sales Representative,3,3540,Upto 5k,1,21,4,4,9,5,9,8,5
+RM1335,26-35,Research & Development,Life Sciences,4,Female,2,1,Research Scientist,1,4774,Upto 5k,0,19,3,4,8,2,7,6,7
+RM1351,26-35,Sales,Medical,1,Female,4,2,Sales Executive,3,6500,5k-10k,0,14,3,2,9,5,8,7,0
+RM1368,26-35,Research & Development,Technical Degree,2,Male,3,1,Research Scientist,2,2226,Upto 5k,1,11,3,3,6,3,5,3,1
+RM1380,26-35,Human Resources,Human Resources,1,Female,2,1,Human Resources,2,2863,Upto 5k,1,12,3,1,1,2,1,0,0
+RM1394,26-35,Sales,Marketing,4,Male,3,2,Sales Executive,4,4105,Upto 5k,1,14,3,1,7,5,7,7,0
+RM1468,26-35,Research & Development,Life Sciences,2,Male,4,2,Manufacturing Director,2,6142,5k-10k,1,20,4,2,6,0,6,2,0
+RM015,26-35,Research & Development,Life Sciences,3,Male,2,1,Laboratory Technician,3,2028,Upto 5k,5,14,3,2,6,4,4,2,0
+RM052,26-35,Research & Development,Technical Degree,3,Male,3,1,Laboratory Technician,3,3441,Upto 5k,1,13,3,3,2,3,2,2,2
+RM098,26-35,Sales,Medical,2,Male,3,2,Sales Executive,3,4221,Upto 5k,1,15,3,2,5,3,5,4,0
+RM163,26-35,Research & Development,Medical,3,Male,3,1,Research Scientist,4,2713,Upto 5k,1,11,3,3,5,2,5,2,0
+RM265,26-35,Research & Development,Life Sciences,1,Male,3,1,Laboratory Technician,3,3485,Upto 5k,2,11,3,3,5,5,0,0,0
+RM273,26-35,Research & Development,Medical,4,Male,3,1,Research Scientist,4,2070,Upto 5k,1,23,4,4,5,3,5,2,0
+RM290,26-35,Research & Development,Life Sciences,4,Female,3,1,Research Scientist,4,3310,Upto 5k,1,21,4,4,5,3,5,3,0
+RM303,26-35,Research & Development,Medical,2,Male,4,2,Healthcare Representative,1,5661,5k-10k,0,19,3,3,9,2,8,3,0
+RM324,26-35,Research & Development,Medical,1,Male,1,1,Research Scientist,4,3464,Upto 5k,5,13,3,4,5,4,3,2,2
+RM375,26-35,Sales,Life Sciences,2,Male,3,2,Sales Executive,4,5253,5k-10k,1,16,3,4,7,1,7,5,0
+RM405,26-35,Research & Development,Medical,3,Male,3,2,Laboratory Technician,1,4558,Upto 5k,1,12,3,4,10,2,10,0,1
+RM541,26-35,Research & Development,Life Sciences,1,Female,1,1,Research Scientist,2,2216,Upto 5k,7,13,3,4,10,4,7,7,3
+RM599,26-35,Research & Development,Medical,3,Male,3,1,Research Scientist,3,4382,Upto 5k,6,17,3,4,5,3,2,2,2
+RM613,26-35,Sales,Marketing,2,Female,3,2,Sales Executive,2,4779,Upto 5k,1,20,4,1,8,2,8,7,7
+RM630,26-35,Human Resources,Medical,2,Male,2,1,Human Resources,4,4936,Upto 5k,1,13,3,4,6,6,5,1,0
+RM660,26-35,Sales,Medical,1,Male,3,2,Sales Executive,4,4908,Upto 5k,1,14,3,2,4,3,4,2,0
+RM669,26-35,Research & Development,Medical,3,Female,3,1,Research Scientist,3,2377,Upto 5k,5,18,3,2,6,2,2,2,2
+RM765,26-35,Sales,Medical,4,Male,3,1,Sales Representative,2,1052,Upto 5k,1,22,4,2,1,5,1,0,0
+RM781,26-35,Research & Development,Technical Degree,2,Male,2,3,Healthcare Representative,1,8722,5k-10k,1,12,3,1,10,2,10,7,1
+RM789,26-35,Research & Development,Other,3,Female,3,2,Research Scientist,3,3660,Upto 5k,3,13,3,4,10,4,8,7,1
+RM794,26-35,Research & Development,Life Sciences,1,Male,3,1,Laboratory Technician,3,2207,Upto 5k,1,16,3,4,4,5,4,2,2
+RM801,26-35,Research & Development,Medical,1,Male,2,1,Laboratory Technician,2,2596,Upto 5k,1,15,3,1,1,2,1,0,0
+RM810,26-35,Research & Development,Medical,4,Female,3,3,Manufacturing Director,2,7655,5k-10k,0,17,3,2,10,3,9,7,1
+RM820,26-35,Research & Development,Life Sciences,1,Male,2,1,Research Scientist,2,3201,Upto 5k,0,17,3,1,6,2,5,3,0
+RM828,26-35,Research & Development,Life Sciences,3,Male,2,1,Research Scientist,3,2703,Upto 5k,1,14,3,4,3,2,3,1,0
+RM843,26-35,Research & Development,Life Sciences,3,Female,3,1,Laboratory Technician,4,2515,Upto 5k,1,11,3,4,1,4,1,1,0
+RM869,26-35,Research & Development,Medical,4,Male,2,1,Laboratory Technician,1,3196,Upto 5k,1,12,3,3,6,2,6,5,3
+RM922,26-35,Research & Development,Medical,4,Male,3,1,Laboratory Technician,3,2154,Upto 5k,0,11,3,3,5,2,4,2,0
+RM930,26-35,Research & Development,Life Sciences,4,Male,2,1,Laboratory Technician,4,3867,Upto 5k,1,12,3,2,2,2,2,2,2
+RM934,26-35,Research & Development,Technical Degree,4,Male,3,1,Research Scientist,1,2080,Upto 5k,2,11,3,2,5,2,3,2,1
+RM945,26-35,Research & Development,Life Sciences,3,Female,1,2,Laboratory Technician,4,6674,5k-10k,0,11,3,1,10,6,9,8,7
+RM985,26-35,Sales,Life Sciences,3,Male,2,2,Sales Executive,1,4724,Upto 5k,1,11,3,3,5,0,5,3,0
+RM1042,26-35,Sales,Medical,4,Male,3,2,Sales Executive,1,8463,5k-10k,0,18,3,4,6,4,5,4,1
+RM1057,26-35,Sales,Technical Degree,1,Male,3,1,Sales Representative,3,2909,Upto 5k,3,15,3,4,5,3,3,2,1
+RM1069,26-35,Research & Development,Medical,3,Male,2,1,Laboratory Technician,1,2561,Upto 5k,7,11,3,3,8,2,0,0,0
+RM1070,26-35,Research & Development,Life Sciences,1,Male,2,1,Research Scientist,3,1563,Upto 5k,1,14,3,4,1,2,1,0,0
+RM1071,26-35,Sales,Life Sciences,3,Male,3,2,Sales Executive,1,4898,Upto 5k,0,14,3,4,5,5,4,2,1
+RM1074,26-35,Research & Development,Life Sciences,3,Male,1,2,Manufacturing Director,2,6549,5k-10k,1,14,3,2,8,2,8,6,1
+RM1137,26-35,Research & Development,Medical,3,Male,3,1,Laboratory Technician,2,2408,Upto 5k,1,17,3,3,1,3,1,1,0
+RM1152,26-35,Research & Development,Medical,2,Female,1,2,Manufacturing Director,1,4877,Upto 5k,0,21,4,2,6,5,5,3,0
+RM1284,26-35,Research & Development,Life Sciences,3,Male,3,1,Research Scientist,4,2044,Upto 5k,1,11,3,3,5,6,5,3,0
+RM1308,26-35,Research & Development,Medical,3,Female,3,1,Research Scientist,1,3591,Upto 5k,1,25,4,3,3,3,3,2,1
+RM1324,26-35,Human Resources,Life Sciences,3,Male,3,1,Human Resources,4,2706,Upto 5k,1,15,3,2,3,2,3,2,2
+RM1338,26-35,Sales,Medical,2,Female,3,1,Sales Representative,2,2856,Upto 5k,1,19,3,4,1,3,1,0,0
+RM1365,26-35,Sales,Life Sciences,3,Male,2,2,Sales Executive,4,6834,5k-10k,1,12,3,3,7,2,7,7,0
+RM1370,26-35,Sales,Marketing,4,Female,3,2,Sales Executive,3,9854,5k-10k,3,11,3,4,6,0,2,0,2
+RM1382,26-35,Research & Development,Medical,3,Male,3,1,Research Scientist,3,2144,Upto 5k,1,14,3,3,5,3,5,3,1
+RM1391,26-35,Research & Development,Technical Degree,3,Male,2,1,Laboratory Technician,4,2367,Upto 5k,5,12,3,1,6,2,4,1,0
+RM012,26-35,Research & Development,Life Sciences,4,Female,2,2,Laboratory Technician,3,4193,Upto 5k,0,12,3,4,10,3,9,5,0
+RM016,26-35,Research & Development,Life Sciences,2,Female,4,3,Manufacturing Director,1,9980,5k-10k,1,11,3,3,10,1,10,9,8
+RM072,26-35,Research & Development,Life Sciences,3,Male,3,1,Research Scientist,2,2703,Upto 5k,0,23,4,4,6,3,5,4,0
+RM156,26-35,Research & Development,Technical Degree,4,Male,3,2,Manufacturing Director,3,4319,Upto 5k,1,13,3,1,10,1,10,7,0
+RM206,26-35,Sales,Marketing,2,Female,3,3,Sales Executive,4,7639,5k-10k,1,22,4,4,10,3,10,4,1
+RM218,26-35,Research & Development,Technical Degree,3,Male,3,1,Research Scientist,3,2058,Upto 5k,0,14,3,4,7,1,6,2,1
+RM228,26-35,Sales,Medical,2,Female,3,3,Sales Executive,4,7918,5k-10k,1,14,3,4,11,5,11,10,4
+RM230,26-35,Research & Development,Medical,3,Male,2,1,Research Scientist,4,2389,Upto 5k,1,13,3,3,4,3,4,3,0
+RM253,26-35,Research & Development,Life Sciences,3,Male,3,1,Research Scientist,4,2340,Upto 5k,1,19,3,1,6,1,6,5,1
+RM255,26-35,Sales,Marketing,4,Male,3,2,Sales Executive,4,6931,5k-10k,2,14,3,4,10,2,3,2,0
+RM266,26-35,Sales,Medical,1,Male,2,2,Sales Executive,2,6644,5k-10k,2,19,3,2,10,2,0,0,0
+RM283,26-35,Sales,Life Sciences,2,Male,3,2,Sales Executive,4,4554,Upto 5k,1,18,3,1,10,3,10,7,0
+RM337,26-35,Research & Development,Other,2,Male,1,1,Laboratory Technician,1,2119,Upto 5k,1,11,3,4,7,4,7,7,0
+RM338,26-35,Research & Development,Other,2,Male,2,1,Laboratory Technician,4,3983,Upto 5k,0,17,3,3,4,2,3,2,2
+RM344,26-35,Sales,Marketing,4,Female,2,2,Sales Executive,2,8268,5k-10k,1,14,3,1,7,2,7,7,1
+RM350,26-35,Sales,Life Sciences,4,Male,3,2,Sales Executive,3,4649,Upto 5k,1,14,3,1,4,3,4,3,0
+RM372,26-35,Research & Development,Life Sciences,4,Male,3,1,Research Scientist,4,2201,Upto 5k,9,16,3,4,6,4,3,2,1
+RM421,26-35,Research & Development,Medical,2,Male,2,3,Research Director,3,11935,10k-15k,1,18,3,3,10,2,10,2,0
+RM422,26-35,Research & Development,Technical Degree,3,Female,2,1,Research Scientist,2,2546,Upto 5k,5,16,3,2,6,2,2,2,1
+RM455,26-35,Research & Development,Technical Degree,4,Male,3,2,Manufacturing Director,4,4262,Upto 5k,4,12,3,2,8,2,3,2,1
+RM508,26-35,Sales,Medical,2,Female,3,2,Sales Executive,3,5561,5k-10k,1,14,3,1,6,5,6,0,1
+RM520,26-35,Research & Development,Life Sciences,2,Male,1,1,Research Scientist,4,2720,Upto 5k,1,18,3,4,10,5,10,7,2
+RM547,26-35,Sales,Life Sciences,3,Male,3,1,Sales Representative,3,2642,Upto 5k,1,11,3,3,1,6,1,0,0
+RM556,26-35,Sales,Marketing,4,Male,3,1,Sales Representative,2,2297,Upto 5k,1,14,3,4,2,2,2,2,2
+RM573,26-35,Research & Development,Medical,2,Female,3,2,Healthcare Representative,3,4335,Upto 5k,4,12,3,1,11,3,8,7,1
+RM590,26-35,Research & Development,Life Sciences,2,Female,2,1,Laboratory Technician,1,2319,Upto 5k,1,11,3,4,1,1,1,0,0
+RM595,26-35,Research & Development,Life Sciences,3,Male,4,1,Research Scientist,3,2700,Upto 5k,1,24,4,3,10,3,10,7,0
+RM646,26-35,Sales,Medical,2,Female,2,1,Sales Representative,3,2800,Upto 5k,6,19,3,3,5,3,3,2,0
+RM658,26-35,Research & Development,Medical,1,Female,2,1,Laboratory Technician,4,2532,Upto 5k,6,14,3,3,8,5,4,3,0
+RM698,26-35,Sales,Technical Degree,3,Female,3,1,Sales Representative,4,2157,Upto 5k,1,15,3,2,3,5,3,1,0
+RM712,26-35,Research & Development,Life Sciences,4,Female,2,1,Research Scientist,1,2404,Upto 5k,6,20,4,3,3,5,0,0,0
+RM809,26-35,Research & Development,Life Sciences,3,Female,3,1,Research Scientist,4,2514,Upto 5k,4,22,4,1,11,1,7,5,1
+RM824,26-35,Research & Development,Life Sciences,4,Female,3,1,Research Scientist,2,3291,Upto 5k,0,14,3,4,8,2,7,5,1
+RM826,26-35,Research & Development,Medical,2,Male,2,2,Manufacturing Director,4,5056,5k-10k,1,15,3,3,10,2,10,7,1
+RM837,26-35,Sales,Life Sciences,4,Female,2,3,Sales Executive,1,7336,5k-10k,1,13,3,1,11,3,11,8,3
+RM853,26-35,Research & Development,Medical,2,Female,3,1,Laboratory Technician,4,3131,Upto 5k,1,13,3,1,10,5,10,8,0
+RM860,26-35,Research & Development,Life Sciences,2,Female,1,1,Research Scientist,4,2168,Upto 5k,0,18,3,1,6,2,5,4,1
+RM894,26-35,Research & Development,Life Sciences,1,Female,3,1,Research Scientist,4,3760,Upto 5k,1,15,3,1,3,5,3,2,1
+RM904,26-35,Research & Development,Life Sciences,3,Male,3,2,Healthcare Representative,4,6623,5k-10k,1,11,3,2,6,2,6,0,1
+RM906,26-35,Research & Development,Life Sciences,4,Female,2,4,Research Director,4,16124,15k+,3,14,3,2,9,2,7,7,1
+RM933,26-35,Research & Development,Technical Degree,2,Female,3,1,Laboratory Technician,3,3339,Upto 5k,3,13,3,1,10,2,7,7,7
+RM1006,26-35,Human Resources,Other,2,Male,2,3,Human Resources,1,7988,5k-10k,1,13,3,1,10,3,10,9,0
+RM1008,26-35,Research & Development,Other,3,Female,3,3,Healthcare Representative,4,7553,5k-10k,0,12,3,1,9,1,8,7,7
+RM1058,26-35,Sales,Technical Degree,1,Female,3,2,Sales Executive,2,5765,5k-10k,5,11,3,1,7,4,5,3,0
+RM1064,26-35,Sales,Life Sciences,3,Male,2,2,Sales Executive,3,8620,5k-10k,1,14,3,3,10,3,10,7,0
+RM1073,26-35,Research & Development,Life Sciences,4,Female,3,1,Laboratory Technician,2,3180,Upto 5k,0,13,3,3,4,3,3,2,0
+RM1078,26-35,Research & Development,Technical Degree,1,Male,2,1,Research Scientist,1,2362,Upto 5k,6,13,3,3,11,2,9,7,0
+RM1091,26-35,Research & Development,Other,3,Female,1,2,Healthcare Representative,1,9715,5k-10k,3,13,3,3,9,3,7,7,0
+RM1105,26-35,Research & Development,Life Sciences,3,Male,4,1,Research Scientist,3,2451,Upto 5k,6,18,3,1,5,2,1,0,0
+RM1123,26-35,Research & Development,Medical,2,Male,3,1,Laboratory Technician,1,4723,Upto 5k,1,18,3,4,10,3,10,9,1
+RM1126,26-35,Research & Development,Life Sciences,1,Male,3,2,Healthcare Representative,4,8853,5k-10k,1,19,3,4,6,0,6,4,1
+RM1173,26-35,Sales,Medical,3,Male,2,2,Sales Executive,3,5869,5k-10k,9,11,3,3,8,2,5,2,1
+RM1189,26-35,Sales,Medical,1,Male,2,2,Sales Executive,2,4187,Upto 5k,1,13,3,2,10,3,10,0,0
+RM1220,26-35,Research & Development,Medical,4,Female,3,1,Laboratory Technician,3,2974,Upto 5k,9,17,3,3,9,2,5,3,1
+RM1250,26-35,Sales,Marketing,2,Female,1,1,Sales Representative,2,2760,Upto 5k,1,13,3,3,2,3,2,2,2
+RM1251,26-35,Research & Development,Life Sciences,4,Male,4,2,Healthcare Representative,3,6294,5k-10k,8,12,3,4,10,5,3,2,0
+RM1259,26-35,Research & Development,Technical Degree,4,Female,2,1,Research Scientist,1,2109,Upto 5k,1,13,3,3,1,2,1,0,0
+RM1314,26-35,Human Resources,Human Resources,1,Male,2,1,Human Resources,1,2335,Upto 5k,4,15,3,4,4,3,2,2,2
+RM1319,26-35,Research & Development,Medical,4,Male,3,1,Laboratory Technician,4,3812,Upto 5k,1,13,3,2,11,3,11,8,3
+RM1325,26-35,Research & Development,Life Sciences,4,Male,1,2,Healthcare Representative,3,6384,5k-10k,8,17,3,4,11,3,7,0,1
+RM1330,26-35,Human Resources,Medical,4,Male,2,1,Human Resources,2,2804,Upto 5k,1,11,3,4,1,3,1,0,0
+RM1333,26-35,Research & Development,Life Sciences,4,Male,2,1,Research Scientist,4,2439,Upto 5k,1,24,4,2,1,3,1,0,1
+RM1344,26-35,Research & Development,Life Sciences,4,Male,3,1,Laboratory Technician,1,2062,Upto 5k,3,14,3,2,11,2,3,2,1
+RM1366,26-35,Sales,Technical Degree,3,Male,4,1,Sales Representative,1,1091,Upto 5k,1,17,3,4,1,3,1,0,0
+RM1388,26-35,Research & Development,Life Sciences,1,Male,3,2,Healthcare Representative,1,5373,5k-10k,0,12,3,1,6,5,5,3,0
+RM1443,26-35,Research & Development,Medical,1,Male,3,1,Research Scientist,4,4787,Upto 5k,9,14,3,2,4,3,2,2,2
+RM1460,26-35,Research & Development,Other,4,Male,2,2,Laboratory Technician,2,4025,Upto 5k,4,13,3,1,10,2,4,3,0
+RM1461,26-35,Research & Development,Medical,4,Female,2,1,Research Scientist,1,3785,Upto 5k,1,14,3,2,5,3,5,4,0
+RM008,26-35,Research & Development,Life Sciences,4,Male,3,1,Laboratory Technician,3,2693,Upto 5k,1,22,4,2,1,2,1,0,0
+RM033,26-35,Research & Development,Medical,4,Male,2,1,Laboratory Technician,3,2206,Upto 5k,1,13,3,1,10,5,10,0,1
+RM045,26-35,Research & Development,Medical,3,Female,3,2,Laboratory Technician,4,4011,Upto 5k,1,23,4,4,12,2,12,8,3
+RM081,26-35,Research & Development,Life Sciences,4,Male,2,2,Laboratory Technician,4,5126,5k-10k,1,12,3,3,10,1,10,8,3
+RM089,26-35,Research & Development,Life Sciences,3,Male,2,2,Healthcare Representative,4,4152,Upto 5k,1,19,3,1,11,3,11,10,10
+RM093,26-35,Sales,Medical,3,Female,2,2,Sales Executive,2,5209,5k-10k,1,12,3,2,11,4,11,8,2
+RM121,26-35,Research & Development,Life Sciences,1,Male,1,1,Research Scientist,3,2613,Upto 5k,1,25,4,3,10,2,10,7,0
+RM140,26-35,Human Resources,Human Resources,3,Male,3,2,Human Resources,4,6347,5k-10k,0,19,3,4,12,2,11,9,4
+RM144,26-35,Research & Development,Life Sciences,1,Female,3,1,Research Scientist,3,2632,Upto 5k,1,14,3,3,5,4,5,4,0
+RM146,26-35,Research & Development,Technical Degree,4,Female,3,1,Research Scientist,1,3204,Upto 5k,5,14,3,4,8,3,3,2,2
+RM147,26-35,Research & Development,Medical,2,Male,2,1,Laboratory Technician,4,2720,Upto 5k,0,13,3,4,6,3,5,3,1
+RM168,26-35,Sales,Life Sciences,2,Female,3,3,Sales Executive,4,9419,5k-10k,2,12,3,3,12,2,10,9,7
+RM174,26-35,Research & Development,Medical,3,Male,3,2,Laboratory Technician,1,3072,Upto 5k,1,11,3,3,12,4,12,9,6
+RM212,26-35,Research & Development,Life Sciences,3,Male,2,3,Manufacturing Director,3,8474,5k-10k,1,22,4,3,12,2,11,8,5
+RM215,26-35,Research & Development,Technical Degree,4,Female,3,1,Research Scientist,1,2657,Upto 5k,5,11,3,3,8,5,5,2,0
+RM217,26-35,Sales,Marketing,3,Female,2,2,Sales Executive,1,6696,5k-10k,5,15,3,3,9,5,6,3,0
+RM325,26-35,Research & Development,Medical,4,Female,3,2,Research Scientist,4,5775,5k-10k,1,13,3,4,11,2,10,8,1
+RM339,26-35,Sales,Marketing,4,Female,2,2,Sales Executive,3,6118,5k-10k,1,13,3,3,10,2,10,9,1
+RM355,26-35,Sales,Technical Degree,4,Female,3,2,Sales Executive,3,4736,Upto 5k,7,12,3,2,4,2,2,2,2
+RM382,26-35,Sales,Technical Degree,3,Male,3,1,Sales Representative,2,2476,Upto 5k,1,18,3,1,1,3,1,0,0
+RM386,26-35,Research & Development,Technical Degree,3,Male,3,1,Research Scientist,4,2285,Upto 5k,9,23,4,3,3,4,1,0,0
+RM403,26-35,Sales,Technical Degree,2,Female,3,2,Sales Executive,3,6577,5k-10k,0,11,3,2,6,6,5,4,4
+RM411,26-35,Research & Development,Life Sciences,3,Female,1,2,Manufacturing Director,4,6091,5k-10k,2,20,4,3,11,2,5,4,0
+RM420,26-35,Research & Development,Life Sciences,3,Male,3,1,Laboratory Technician,4,2097,Upto 5k,4,15,3,3,9,3,5,3,1
+RM424,26-35,Sales,Other,3,Female,3,3,Sales Executive,1,8412,5k-10k,0,11,3,3,10,3,9,8,7
+RM427,26-35,Research & Development,Medical,3,Female,3,1,Laboratory Technician,4,2564,Upto 5k,0,14,3,3,12,2,11,7,6
+RM438,26-35,Sales,Marketing,4,Male,3,1,Sales Representative,2,2983,Upto 5k,0,14,3,1,4,3,3,2,1
+RM481,26-35,Sales,Life Sciences,2,Male,2,1,Sales Representative,1,2033,Upto 5k,1,18,3,3,1,2,1,0,0
+RM502,26-35,Research & Development,Medical,3,Female,3,1,Research Scientist,3,2083,Upto 5k,1,20,4,3,1,2,1,0,0
+RM546,26-35,Sales,Marketing,3,Male,3,2,Sales Executive,4,5304,5k-10k,7,23,4,4,10,2,8,7,7
+RM582,26-35,Research & Development,Life Sciences,4,Male,1,1,Laboratory Technician,3,3833,Upto 5k,3,21,4,3,7,2,2,2,0
+RM603,26-35,Research & Development,Medical,3,Female,2,2,Manufacturing Director,4,6877,5k-10k,5,24,4,2,12,4,0,0,0
+RM624,26-35,Research & Development,Life Sciences,2,Male,2,1,Research Scientist,4,3761,Upto 5k,9,12,3,2,10,3,5,4,0
+RM703,26-35,Sales,Other,3,Male,3,3,Sales Executive,3,7264,5k-10k,5,11,3,1,10,2,8,4,7
+RM721,26-35,Research & Development,Life Sciences,1,Female,3,1,Research Scientist,3,2132,Upto 5k,4,11,3,2,7,2,5,2,0
+RM731,26-35,Research & Development,Life Sciences,2,Female,4,3,Research Director,1,11416,10k-15k,0,12,3,3,9,4,8,7,1
+RM733,26-35,Research & Development,Medical,2,Female,3,1,Laboratory Technician,2,2422,Upto 5k,0,17,3,1,4,3,3,2,1
+RM783,26-35,Research & Development,Other,3,Male,3,2,Manufacturing Director,1,9957,5k-10k,0,15,3,3,7,1,6,2,0
+RM845,26-35,Sales,Marketing,3,Male,2,2,Sales Executive,3,6578,5k-10k,1,18,3,1,10,3,10,3,1
+RM866,26-35,Sales,Life Sciences,3,Male,3,2,Sales Executive,1,4115,Upto 5k,8,19,3,3,8,3,4,3,0
+RM875,26-35,Research & Development,Life Sciences,3,Male,3,2,Laboratory Technician,3,3491,Upto 5k,1,13,3,1,10,4,10,7,8
+RM887,26-35,Research & Development,Medical,4,Male,3,1,Research Scientist,2,3579,Upto 5k,0,21,4,1,12,2,11,9,5
+RM932,26-35,Research & Development,Medical,3,Female,3,2,Manufacturing Director,3,4695,Upto 5k,7,18,3,3,10,3,8,4,1
+RM942,26-35,Research & Development,Technical Degree,1,Female,2,2,Laboratory Technician,4,4627,Upto 5k,0,12,3,1,10,6,9,2,6
+RM949,26-35,Research & Development,Medical,2,Female,3,3,Manager,1,11916,10k-15k,1,23,4,4,9,2,9,1,0
+RM1014,26-35,Sales,Marketing,4,Female,3,2,Sales Executive,1,4779,Upto 5k,7,14,3,2,8,3,3,2,0
+RM1050,26-35,Sales,Life Sciences,4,Male,3,2,Sales Executive,3,5301,5k-10k,8,15,3,3,4,2,2,1,2
+RM1053,26-35,Research & Development,Technical Degree,3,Male,3,1,Research Scientist,3,1274,Upto 5k,1,13,3,2,1,2,1,0,0
+RM1065,26-35,Human Resources,Life Sciences,3,Male,3,1,Human Resources,3,2064,Upto 5k,0,21,4,1,6,3,5,3,1
+RM1107,26-35,Sales,Life Sciences,2,Male,2,2,Sales Executive,1,9714,5k-10k,1,11,3,4,10,4,10,8,6
+RM1110,26-35,Sales,Technical Degree,3,Male,3,3,Sales Executive,2,9250,5k-10k,3,12,3,2,9,3,4,2,1
+RM1142,26-35,Research & Development,Medical,2,Male,2,1,Research Scientist,2,2141,Upto 5k,1,12,3,2,6,3,6,4,1
+RM1234,26-35,Research & Development,Life Sciences,2,Male,3,1,Research Scientist,4,2862,Upto 5k,1,12,3,2,10,2,10,0,0
+RM1245,26-35,Research & Development,Technical Degree,4,Female,2,1,Research Scientist,1,4968,Upto 5k,0,16,3,4,10,2,9,7,0
+RM1247,26-35,Human Resources,Human Resources,3,Female,2,1,Human Resources,4,2180,Upto 5k,6,11,3,3,6,0,4,2,1
+RM1252,26-35,Sales,Marketing,3,Male,2,3,Sales Executive,1,7140,5k-10k,2,11,3,1,12,2,7,7,1
+RM1260,26-35,Research & Development,Life Sciences,3,Male,4,2,Healthcare Representative,3,5294,5k-10k,3,16,3,3,10,3,7,0,1
+RM1297,26-35,Research & Development,Medical,1,Female,3,3,Manufacturing Director,3,9667,5k-10k,9,14,3,2,9,3,7,7,0
+RM1339,26-35,Sales,Medical,2,Male,3,1,Sales Representative,4,1081,Upto 5k,1,13,3,3,1,3,1,0,0
+RM1413,26-35,Research & Development,Medical,4,Male,3,1,Laboratory Technician,2,3748,Upto 5k,1,13,3,3,12,6,12,8,1
+RM013,26-35,Research & Development,Life Sciences,1,Male,3,1,Research Scientist,3,2911,Upto 5k,1,17,3,4,5,1,5,2,4
+RM059,26-35,Research & Development,Life Sciences,4,Male,3,2,Laboratory Technician,4,5915,5k-10k,3,22,4,4,10,3,7,7,1
+RM073,26-35,Research & Development,Medical,3,Male,3,1,Research Scientist,2,2501,Upto 5k,1,17,3,2,1,4,1,1,1
+RM076,26-35,Research & Development,Life Sciences,3,Female,3,2,Manufacturing Director,4,4424,Upto 5k,1,23,4,4,11,2,11,7,1
+RM125,26-35,Sales,Life Sciences,2,Male,1,2,Sales Executive,3,6172,5k-10k,4,18,3,2,12,3,7,7,7
+RM133,26-35,Sales,Life Sciences,2,Female,1,2,Sales Executive,3,4559,Upto 5k,3,11,3,3,4,2,2,2,2
+RM181,26-35,Research & Development,Medical,3,Female,3,1,Research Scientist,4,3929,Upto 5k,8,23,4,3,7,0,4,2,0
+RM225,26-35,Research & Development,Medical,3,Male,1,2,Manufacturing Director,3,4345,Upto 5k,0,12,3,4,6,2,5,4,1
+RM246,26-35,Research & Development,Medical,2,Male,3,3,Research Director,3,13675,10k-15k,9,12,3,1,9,3,2,2,2
+RM260,26-35,Research & Development,Medical,3,Male,2,1,Laboratory Technician,2,3479,Upto 5k,0,11,3,2,6,2,5,4,1
+RM267,26-35,Research & Development,Medical,2,Male,2,2,Healthcare Representative,4,5582,5k-10k,0,21,4,2,10,2,9,0,7
+RM293,26-35,Sales,Marketing,4,Female,3,1,Sales Representative,2,2789,Upto 5k,1,11,3,3,2,5,2,2,2
+RM304,26-35,Sales,Technical Degree,2,Male,4,2,Sales Executive,4,6929,5k-10k,4,11,3,2,10,3,8,7,7
+RM310,26-35,Research & Development,Technical Degree,3,Male,3,1,Research Scientist,4,4821,Upto 5k,0,12,3,3,6,4,5,2,0
+RM311,26-35,Human Resources,Human Resources,1,Male,2,2,Human Resources,1,6410,5k-10k,3,12,3,4,9,1,2,2,1
+RM313,26-35,Research & Development,Life Sciences,3,Male,3,1,Research Scientist,4,2695,Upto 5k,0,18,3,2,3,2,2,2,2
+RM322,26-35,Sales,Marketing,4,Male,3,2,Sales Executive,4,7547,5k-10k,4,12,3,4,13,3,7,7,1
+RM326,26-35,Research & Development,Life Sciences,3,Female,2,3,Manufacturing Director,3,8943,5k-10k,1,24,4,1,10,2,10,9,8
+RM343,26-35,Research & Development,Medical,3,Female,3,3,Manufacturing Director,4,7143,5k-10k,1,14,3,3,11,2,11,9,4
+RM370,26-35,Research & Development,Life Sciences,3,Male,2,1,Research Scientist,2,2657,Upto 5k,0,16,3,4,3,5,2,2,2
+RM395,26-35,Research & Development,Medical,2,Female,3,2,Manufacturing Director,1,4306,Upto 5k,1,12,3,2,13,5,13,10,3
+RM400,26-35,Research & Development,Life Sciences,4,Male,2,1,Laboratory Technician,1,2218,Upto 5k,1,12,3,3,4,3,4,2,3
+RM435,26-35,Research & Development,Life Sciences,3,Male,3,3,Manufacturing Director,2,10648,10k-15k,1,25,4,4,13,6,13,8,0
+RM440,26-35,Research & Development,Life Sciences,1,Male,3,3,Healthcare Representative,3,9824,5k-10k,3,12,3,1,12,2,1,0,0
+RM451,26-35,Sales,Life Sciences,2,Male,3,2,Sales Executive,4,6582,5k-10k,4,13,3,3,10,2,6,5,0
+RM457,26-35,Sales,Life Sciences,3,Male,2,3,Manager,4,11557,10k-15k,9,21,4,3,10,3,5,4,0
+RM483,26-35,Sales,Medical,2,Male,3,2,Sales Executive,1,4233,Upto 5k,2,17,3,3,9,2,3,1,1
+RM485,26-35,Sales,Medical,1,Male,4,2,Sales Executive,4,5460,5k-10k,4,22,4,4,13,4,7,7,5
+RM645,26-35,Research & Development,Life Sciences,4,Male,3,1,Research Scientist,4,2356,Upto 5k,3,19,3,2,8,2,6,4,0
+RM676,26-35,Sales,Life Sciences,2,Male,2,1,Sales Representative,3,2329,Upto 5k,3,15,3,2,13,2,7,7,5
+RM680,26-35,Sales,Marketing,4,Female,3,2,Sales Executive,3,6932,5k-10k,1,13,3,4,9,2,9,8,0
+RM691,26-35,Research & Development,Medical,4,Female,3,2,Healthcare Representative,4,5855,5k-10k,0,11,3,3,10,2,9,7,8
+RM710,26-35,Research & Development,Medical,3,Male,2,1,Research Scientist,1,2321,Upto 5k,0,22,4,1,4,0,3,2,1
+RM727,26-35,Research & Development,Life Sciences,3,Female,3,2,Manufacturing Director,1,4148,Upto 5k,1,12,3,3,4,1,4,3,0
+RM819,26-35,Sales,Life Sciences,3,Male,4,1,Sales Representative,4,2791,Upto 5k,0,12,3,1,3,4,2,2,2
+RM832,26-35,Research & Development,Medical,3,Male,3,1,Laboratory Technician,3,2610,Upto 5k,1,12,3,3,2,5,2,2,2
+RM896,26-35,Research & Development,Medical,3,Male,3,2,Healthcare Representative,1,6833,5k-10k,1,12,3,4,6,2,6,5,0
+RM897,26-35,Research & Development,Medical,3,Female,2,2,Healthcare Representative,1,6812,5k-10k,1,19,3,2,10,2,10,9,1
+RM951,26-35,Sales,Life Sciences,4,Female,3,3,Sales Executive,3,9852,5k-10k,1,19,3,1,10,5,10,8,9
+RM953,26-35,Sales,Life Sciences,4,Female,3,1,Sales Representative,2,2302,Upto 5k,1,11,3,1,3,2,3,2,2
+RM981,26-35,Sales,Life Sciences,3,Female,2,1,Sales Representative,4,2785,Upto 5k,7,14,3,3,3,3,1,0,0
+RM986,26-35,Research & Development,Medical,4,Male,3,2,Manufacturing Director,3,6179,5k-10k,1,15,3,4,10,3,10,2,6
+RM1013,26-35,Sales,Life Sciences,2,Female,1,1,Sales Representative,3,1359,Upto 5k,1,12,3,2,1,3,1,0,0
+RM1015,26-35,Research & Development,Life Sciences,1,Female,3,4,Research Director,2,16422,15k+,3,11,3,3,9,3,3,2,1
+RM1017,26-35,Research & Development,Life Sciences,1,Female,2,1,Research Scientist,2,1261,Upto 5k,1,12,3,3,1,3,1,0,0
+RM1031,26-35,Sales,Life Sciences,1,Male,3,3,Sales Executive,4,10793,10k-15k,1,18,3,1,13,5,13,7,9
+RM1034,26-35,Research & Development,Life Sciences,3,Female,4,3,Manufacturing Director,2,7446,5k-10k,1,11,3,1,10,2,10,8,4
+RM1036,26-35,Human Resources,Medical,4,Female,4,1,Human Resources,2,2109,Upto 5k,9,18,3,4,8,3,3,2,0
+RM1037,26-35,Research & Development,Life Sciences,2,Male,3,1,Laboratory Technician,4,3722,Upto 5k,6,13,3,3,7,2,2,2,2
+RM1086,26-35,Research & Development,Life Sciences,4,Female,3,1,Research Scientist,3,4084,Upto 5k,1,12,3,1,7,2,7,2,7
+RM1145,26-35,Sales,Other,4,Male,3,2,Sales Executive,1,5332,5k-10k,7,13,3,4,10,3,5,2,0
+RM1192,26-35,Sales,Life Sciences,1,Female,3,2,Sales Executive,4,5476,5k-10k,1,11,3,1,10,2,10,0,0
+RM1228,26-35,Research & Development,Life Sciences,2,Male,3,1,Laboratory Technician,3,3477,Upto 5k,1,14,3,4,6,2,5,2,0
+RM1240,26-35,Research & Development,Technical Degree,4,Female,3,2,Manufacturing Director,4,5238,5k-10k,2,20,4,4,9,3,5,4,1
+RM1248,26-35,Sales,Technical Degree,1,Male,3,2,Sales Executive,3,8346,5k-10k,1,19,3,3,6,3,5,2,0
+RM1258,26-35,Sales,Marketing,1,Male,3,3,Sales Executive,3,8161,5k-10k,2,13,3,1,10,2,1,0,0
+RM1275,26-35,Sales,Marketing,1,Female,2,2,Sales Executive,4,5468,5k-10k,1,14,3,1,13,3,12,7,5
+RM1307,26-35,Sales,Marketing,1,Female,3,3,Sales Executive,1,9637,5k-10k,2,14,3,4,9,3,3,2,2
+RM1313,26-35,Human Resources,Human Resources,4,Male,4,1,Human Resources,1,2956,Upto 5k,0,17,3,3,2,4,1,0,0
+RM1342,26-35,Research & Development,Life Sciences,2,Male,3,2,Laboratory Technician,3,4197,Upto 5k,1,11,3,1,10,2,10,8,0
+RM1359,26-35,Sales,Medical,3,Female,3,2,Sales Executive,4,6583,5k-10k,2,11,3,4,8,2,5,2,1
+RM1361,26-35,Research & Development,Medical,1,Female,4,1,Laboratory Technician,3,3978,Upto 5k,8,12,3,2,4,0,2,2,2
+RM1383,26-35,Research & Development,Medical,3,Male,3,1,Research Scientist,1,3065,Upto 5k,1,13,3,4,4,3,4,2,2
+RM1390,26-35,Research & Development,Life Sciences,4,Male,1,2,Research Scientist,1,5003,5k-10k,1,21,4,2,10,6,10,8,8
+RM1396,26-35,Sales,Marketing,1,Male,3,2,Sales Executive,4,5617,5k-10k,1,11,3,3,10,4,10,7,0
+RM1403,26-35,Research & Development,Medical,4,Female,1,1,Laboratory Technician,4,1129,Upto 5k,1,11,3,3,1,4,1,0,0
+RM1406,26-35,Research & Development,Medical,3,Female,3,3,Research Director,3,11031,10k-15k,4,20,4,3,13,2,11,7,4
+RM1418,26-35,Sales,Life Sciences,1,Male,3,1,Sales Representative,3,3067,Upto 5k,0,19,3,3,3,1,2,2,1
+RM1464,26-35,Research & Development,Medical,2,Male,3,2,Manufacturing Director,1,9936,5k-10k,0,19,3,2,10,2,9,4,1
+RM006,26-35,Research & Development,Life Sciences,4,Male,3,1,Laboratory Technician,4,3068,Upto 5k,0,13,3,3,8,2,7,7,3
+RM017,26-35,Research & Development,Life Sciences,1,Male,4,1,Research Scientist,2,3298,Upto 5k,0,12,3,4,7,5,6,2,0
+RM027,26-35,Research & Development,Life Sciences,2,Female,1,1,Research Scientist,1,3919,Upto 5k,1,22,4,2,10,5,10,2,6
+RM061,26-35,Research & Development,Medical,1,Male,3,2,Manufacturing Director,4,6162,5k-10k,1,22,4,2,9,3,9,8,7
+RM074,26-35,Research & Development,Life Sciences,2,Male,3,2,Research Scientist,2,6220,5k-10k,1,17,3,2,10,3,10,4,0
+RM095,26-35,Sales,Medical,2,Male,3,2,Sales Executive,3,5010,5k-10k,1,16,3,1,12,0,11,8,5
+RM102,26-35,Research & Development,Life Sciences,4,Male,3,1,Research Scientist,1,2956,Upto 5k,1,13,3,4,1,2,1,0,0
+RM141,26-35,Research & Development,Medical,1,Female,3,1,Laboratory Technician,1,4200,Upto 5k,7,22,4,1,10,2,5,4,0
+RM145,26-35,Sales,Medical,4,Male,1,2,Sales Executive,4,4668,Upto 5k,0,17,3,4,9,2,8,7,0
+RM155,26-35,Sales,Marketing,2,Female,3,3,Sales Executive,4,8998,5k-10k,1,14,3,4,9,2,9,8,3
+RM170,26-35,Research & Development,Life Sciences,3,Male,3,1,Research Scientist,3,3038,Upto 5k,3,20,4,1,8,2,5,4,1
+RM211,26-35,Sales,Medical,4,Male,1,3,Sales Executive,4,10400,10k-15k,1,11,3,3,14,2,14,8,9
+RM239,26-35,Sales,Life Sciences,3,Female,3,1,Sales Representative,2,3931,Upto 5k,2,11,3,1,6,5,4,3,1
+RM240,26-35,Research & Development,Life Sciences,4,Male,2,1,Laboratory Technician,3,3730,Upto 5k,0,14,3,4,4,2,3,2,1
+RM242,26-35,Sales,Marketing,3,Male,3,2,Sales Executive,4,4465,Upto 5k,0,18,3,1,4,2,3,2,2
+RM261,26-35,Research & Development,Life Sciences,2,Male,4,1,Laboratory Technician,2,2794,Upto 5k,1,20,4,3,5,3,5,1,0
+RM263,26-35,Research & Development,Technical Degree,4,Male,2,2,Laboratory Technician,1,2176,Upto 5k,4,13,3,4,9,5,6,2,0
+RM307,26-35,Sales,Life Sciences,4,Male,2,2,Sales Executive,3,5484,5k-10k,1,14,3,3,13,3,13,8,4
+RM320,26-35,Sales,Technical Degree,3,Female,2,2,Sales Executive,2,5228,5k-10k,1,11,3,4,13,2,13,12,11
+RM323,26-35,Research & Development,Medical,1,Female,4,2,Research Scientist,4,5055,5k-10k,7,16,3,3,10,0,7,7,0
+RM352,26-35,Research & Development,Medical,3,Female,3,1,Laboratory Technician,2,2370,Upto 5k,1,13,3,3,8,4,8,0,0
+RM470,26-35,Sales,Other,4,Male,4,2,Sales Executive,3,4707,Upto 5k,8,12,3,4,6,2,4,2,1
+RM501,26-35,Research & Development,Life Sciences,1,Female,3,2,Research Scientist,4,6322,5k-10k,1,12,3,4,6,2,6,4,0
+RM528,26-35,Sales,Marketing,4,Male,3,2,Sales Executive,4,5396,5k-10k,1,12,3,4,10,2,10,7,0
+RM532,26-35,Research & Development,Life Sciences,3,Female,3,3,Research Director,4,11159,10k-15k,3,15,3,4,10,6,7,7,7
+RM559,26-35,Research & Development,Life Sciences,1,Male,3,2,Laboratory Technician,4,5309,5k-10k,1,15,3,4,10,2,10,8,4
+RM601,26-35,Research & Development,Life Sciences,3,Female,2,2,Manufacturing Director,3,6162,5k-10k,1,12,3,3,14,3,14,13,6
+RM623,26-35,Sales,Life Sciences,2,Male,3,2,Sales Executive,4,4403,Upto 5k,2,11,3,3,8,3,5,2,0
+RM627,26-35,Research & Development,Medical,3,Female,4,2,Research Scientist,3,5175,5k-10k,5,12,3,3,9,3,5,3,1
+RM638,26-35,Research & Development,Life Sciences,4,Male,3,1,Laboratory Technician,4,2314,Upto 5k,0,12,3,2,4,2,3,0,0
+RM642,26-35,Sales,Life Sciences,2,Male,3,2,Sales Executive,2,6524,5k-10k,1,14,3,4,10,3,10,8,5
+RM657,26-35,Research & Development,Life Sciences,1,Male,3,1,Laboratory Technician,4,2795,Upto 5k,1,24,4,3,1,2,1,0,0
+RM683,26-35,Research & Development,Life Sciences,3,Female,2,1,Laboratory Technician,2,2332,Upto 5k,6,20,4,3,5,3,3,0,0
+RM693,26-35,Research & Development,Medical,3,Female,3,2,Manufacturing Director,1,6725,5k-10k,1,12,3,3,8,2,8,7,6
+RM757,26-35,Research & Development,Medical,4,Female,3,1,Laboratory Technician,3,4025,Upto 5k,9,12,3,2,10,2,8,7,7
+RM851,26-35,Sales,Life Sciences,3,Female,3,1,Sales Representative,1,2827,Upto 5k,1,12,3,3,1,3,1,0,0
+RM881,26-35,Research & Development,Other,3,Female,2,1,Laboratory Technician,2,2743,Upto 5k,1,20,4,3,2,2,2,2,2
+RM882,26-35,Research & Development,Life Sciences,4,Female,3,2,Research Scientist,3,4998,Upto 5k,4,14,3,4,10,2,8,7,0
+RM936,26-35,Sales,Medical,3,Male,4,2,Sales Executive,4,6209,5k-10k,1,15,3,3,10,4,10,7,0
+RM940,26-35,Research & Development,Life Sciences,4,Male,3,2,Laboratory Technician,3,4883,Upto 5k,1,18,3,1,10,3,10,4,1
+RM992,26-35,Sales,Marketing,3,Male,3,2,Sales Executive,2,4078,Upto 5k,0,13,3,1,4,3,3,2,1
+RM1027,26-35,Sales,Marketing,4,Male,3,2,Sales Executive,4,9204,5k-10k,4,12,3,3,7,3,4,3,0
+RM1076,26-35,Research & Development,Medical,3,Male,3,3,Manager,4,11244,10k-15k,2,25,4,2,10,5,5,2,0
+RM1102,26-35,Research & Development,Life Sciences,4,Female,2,2,Research Scientist,2,5878,5k-10k,3,12,3,1,12,2,7,1,2
+RM1114,26-35,Research & Development,Technical Degree,4,Male,3,2,Research Scientist,1,4087,Upto 5k,4,14,3,2,9,3,6,5,1
+RM1140,26-35,Research & Development,Other,2,Female,4,1,Research Scientist,4,3312,Upto 5k,3,17,3,4,6,3,3,2,0
+RM1191,26-35,Research & Development,Medical,4,Male,3,2,Research Scientist,2,5470,5k-10k,0,13,3,3,10,4,9,5,1
+RM1206,26-35,Research & Development,Life Sciences,4,Male,3,1,Laboratory Technician,2,1393,Upto 5k,1,12,3,1,1,2,1,0,0
+RM1227,26-35,Research & Development,Life Sciences,1,Male,3,1,Research Scientist,3,3433,Upto 5k,6,13,3,1,10,3,5,2,1
+RM1238,26-35,Sales,Life Sciences,1,Male,1,2,Sales Executive,2,6735,5k-10k,6,15,3,2,10,2,0,0,0
+RM1242,26-35,Sales,Life Sciences,4,Male,1,3,Sales Executive,3,9610,5k-10k,3,13,3,3,10,2,4,3,0
+RM1261,26-35,Research & Development,Technical Degree,2,Male,3,1,Research Scientist,2,2718,Upto 5k,2,14,3,2,12,3,7,7,0
+RM1320,26-35,Sales,Marketing,4,Male,3,2,Sales Executive,4,4648,Upto 5k,8,13,3,3,4,2,0,0,0
+RM1327,26-35,Sales,Marketing,3,Male,2,2,Sales Executive,2,9907,5k-10k,7,12,3,3,7,3,2,2,2
+RM1376,26-35,Research & Development,Life Sciences,1,Female,4,1,Research Scientist,3,2432,Upto 5k,3,14,3,1,8,2,4,1,0
+RM1389,26-35,Research & Development,Medical,3,Female,3,2,Healthcare Representative,4,6667,5k-10k,5,18,3,2,9,6,5,1,1
+RM1395,26-35,Research & Development,Life Sciences,4,Male,2,2,Manufacturing Director,4,9679,5k-10k,8,24,4,2,8,1,1,0,0
+RM1427,26-35,Research & Development,Life Sciences,3,Female,2,1,Laboratory Technician,2,2837,Upto 5k,1,13,3,3,6,3,6,2,4
+RM1429,26-35,Sales,Medical,2,Male,2,1,Sales Representative,2,2269,Upto 5k,0,14,3,2,3,2,2,2,2
+RM1432,26-35,Sales,Marketing,3,Female,3,3,Sales Executive,4,10422,10k-15k,1,19,3,3,14,3,14,10,5
+RM1450,26-35,Research & Development,Technical Degree,4,Male,3,1,Research Scientist,1,2439,Upto 5k,1,14,3,4,4,4,4,2,1
+RM004,26-35,Research & Development,Life Sciences,4,Female,3,1,Research Scientist,3,2909,Upto 5k,1,11,3,3,8,3,8,7,3
+RM031,26-35,Research & Development,Medical,3,Male,3,1,Laboratory Technician,4,2496,Upto 5k,4,11,3,4,7,3,1,1,0
+RM040,26-35,Sales,Life Sciences,3,Female,4,2,Sales Executive,1,5376,5k-10k,2,19,3,1,10,3,5,3,1
+RM056,26-35,Research & Development,Life Sciences,1,Female,3,3,Research Director,4,13458,10k-15k,1,12,3,3,15,1,15,14,8
+RM122,26-35,Sales,Marketing,3,Male,3,2,Sales Executive,2,6146,5k-10k,0,13,3,1,8,2,7,7,0
+RM177,26-35,Research & Development,Life Sciences,3,Male,3,1,Research Scientist,4,2500,Upto 5k,0,14,3,1,4,2,3,1,0
+RM186,26-35,Research & Development,Medical,4,Female,3,1,Research Scientist,2,2756,Upto 5k,1,13,3,4,8,5,8,7,1
+RM222,26-35,Research & Development,Medical,3,Female,2,1,Research Scientist,2,2622,Upto 5k,6,21,4,4,7,3,3,2,1
+RM235,26-35,Research & Development,Medical,3,Male,3,1,Laboratory Technician,4,2436,Upto 5k,5,13,3,3,8,2,5,4,0
+RM237,26-35,Research & Development,Life Sciences,1,Female,3,1,Laboratory Technician,1,2707,Upto 5k,7,20,4,1,13,3,9,7,1
+RM247,26-35,Research & Development,Life Sciences,3,Female,2,1,Research Scientist,4,2911,Upto 5k,1,13,3,3,2,2,2,2,0
+RM314,26-35,Research & Development,Life Sciences,4,Female,3,3,Manager,2,11878,10k-15k,6,11,3,2,12,2,10,6,8
+RM329,26-35,Sales,Marketing,2,Male,2,2,Sales Executive,4,4682,Upto 5k,3,14,3,3,9,6,7,7,0
+RM364,26-35,Sales,Marketing,4,Female,3,1,Sales Representative,3,2851,Upto 5k,1,13,3,2,1,2,1,0,0
+RM436,26-35,Research & Development,Medical,2,Male,3,3,Manager,3,13610,10k-15k,7,12,3,4,15,2,7,6,7
+RM437,26-35,Research & Development,Medical,1,Male,1,1,Laboratory Technician,4,3408,Upto 5k,7,13,3,1,8,2,4,3,1
+RM456,26-35,Research & Development,Medical,1,Female,4,4,Research Director,3,16184,15k+,4,19,3,3,10,2,6,1,0
+RM500,26-35,Sales,Marketing,3,Male,3,2,Sales Executive,3,7104,5k-10k,0,12,3,4,6,3,5,0,1
+RM510,26-35,Research & Development,Life Sciences,3,Male,3,2,Healthcare Representative,4,7725,5k-10k,3,23,4,3,15,2,13,11,4
+RM515,26-35,Research & Development,Life Sciences,1,Male,3,1,Research Scientist,1,3348,Upto 5k,1,11,3,1,10,3,10,8,9
+RM563,26-35,Research & Development,Other,4,Male,3,1,Research Scientist,4,2686,Upto 5k,1,13,3,3,10,2,10,9,7
+RM591,26-35,Research & Development,Medical,3,Male,3,3,Research Director,3,11691,10k-15k,0,11,3,4,14,3,13,9,3
+RM592,26-35,Sales,Marketing,1,Female,3,2,Sales Executive,1,5324,5k-10k,5,15,3,3,6,3,3,2,0
+RM620,26-35,Sales,Medical,1,Male,4,2,Sales Executive,1,4037,Upto 5k,1,22,4,1,9,5,9,8,0
+RM656,26-35,Human Resources,Human Resources,4,Male,3,1,Human Resources,2,2277,Upto 5k,3,11,3,3,7,4,4,3,0
+RM674,26-35,Research & Development,Other,3,Male,2,1,Research Scientist,1,2799,Upto 5k,3,11,3,2,6,1,3,2,0
+RM695,26-35,Research & Development,Life Sciences,2,Female,2,2,Healthcare Representative,4,6949,5k-10k,0,14,3,1,6,3,5,0,1
+RM711,26-35,Sales,Life Sciences,4,Male,3,4,Manager,3,17444,15k+,1,11,3,4,10,2,10,8,6
+RM713,26-35,Research & Development,Life Sciences,2,Female,3,1,Research Scientist,4,3452,Upto 5k,3,18,3,1,5,4,3,2,0
+RM716,26-35,Research & Development,Other,3,Female,4,2,Healthcare Representative,2,5488,5k-10k,1,13,3,1,6,2,6,5,1
+RM755,26-35,Sales,Life Sciences,2,Female,2,1,Sales Representative,4,2342,Upto 5k,0,19,3,4,3,2,2,2,2
+RM791,26-35,Research & Development,Life Sciences,4,Male,2,3,Healthcare Representative,4,7119,5k-10k,4,15,3,3,9,2,3,2,1
+RM793,26-35,Research & Development,Medical,1,Female,2,2,Research Scientist,3,4508,Upto 5k,1,22,4,2,14,4,13,7,3
+RM799,26-35,Research & Development,Medical,1,Male,2,1,Research Scientist,2,2313,Upto 5k,4,20,4,2,5,0,2,2,2
+RM803,26-35,Sales,Life Sciences,4,Female,3,2,Sales Executive,2,4302,Upto 5k,0,17,3,3,4,3,3,2,0
+RM830,26-35,Sales,Marketing,1,Female,3,2,Sales Executive,1,8224,5k-10k,0,17,3,1,6,3,5,2,0
+RM864,26-35,Human Resources,Human Resources,2,Male,3,1,Human Resources,3,3600,Upto 5k,1,13,3,4,5,2,5,4,1
+RM873,26-35,Sales,Medical,2,Female,3,2,Sales Executive,3,4539,Upto 5k,1,12,3,1,10,3,10,7,0
+RM884,26-35,Research & Development,Medical,1,Male,3,1,Research Scientist,4,2781,Upto 5k,0,13,3,2,15,5,14,10,4
+RM909,26-35,Sales,Marketing,4,Male,4,3,Sales Executive,3,8380,5k-10k,0,14,3,4,10,3,9,8,0
+RM991,26-35,Sales,Life Sciences,2,Male,3,2,Sales Executive,4,9998,5k-10k,6,13,3,1,8,2,5,4,1
+RM1048,26-35,Sales,Medical,4,Male,3,2,Sales Executive,1,4373,Upto 5k,0,14,3,1,5,2,4,3,0
+RM1067,26-35,Research & Development,Medical,1,Female,2,1,Laboratory Technician,2,3838,Upto 5k,8,11,3,4,8,5,5,4,0
+RM1075,26-35,Research & Development,Life Sciences,4,Male,3,2,Healthcare Representative,3,6388,5k-10k,2,17,3,1,14,6,0,0,0
+RM1092,26-35,Research & Development,Life Sciences,4,Male,2,2,Manufacturing Director,2,4320,Upto 5k,1,13,3,4,5,2,5,3,0
+RM1096,26-35,Research & Development,Life Sciences,2,Male,3,2,Laboratory Technician,3,5207,5k-10k,1,12,3,2,15,3,15,14,5
+RM1106,26-35,Sales,Life Sciences,1,Male,3,2,Sales Executive,1,6392,5k-10k,2,13,3,4,8,6,2,2,2
+RM1190,26-35,Sales,Medical,4,Male,3,2,Sales Executive,4,5505,5k-10k,1,14,3,3,6,5,6,2,0
+RM1199,26-35,Sales,Life Sciences,3,Female,3,2,Sales Executive,4,5368,5k-10k,1,25,4,3,7,2,6,5,1
+RM1211,26-35,Research & Development,Medical,2,Male,4,1,Laboratory Technician,2,2028,Upto 5k,1,18,3,4,14,6,14,11,2
+RM1254,26-35,Sales,Marketing,4,Female,3,2,Sales Executive,2,5147,5k-10k,8,15,3,4,13,2,11,7,1
+RM1256,26-35,Sales,Life Sciences,1,Female,3,3,Sales Executive,1,8564,5k-10k,2,20,4,3,11,2,0,0,0
+RM1266,26-35,Research & Development,Technical Degree,4,Male,3,2,Research Scientist,2,3055,Upto 5k,5,15,3,4,11,2,9,8,1
+RM1283,26-35,Research & Development,Life Sciences,4,Male,4,1,Research Scientist,1,3143,Upto 5k,6,19,3,2,14,1,10,8,7
+RM1364,26-35,Sales,Marketing,2,Male,3,2,Sales Executive,3,5487,5k-10k,1,14,3,2,10,2,10,4,0
+RM1399,26-35,Research & Development,Life Sciences,4,Male,3,2,Healthcare Representative,3,5968,5k-10k,1,20,4,3,9,2,9,7,2
+RM1416,26-35,Research & Development,Medical,2,Male,2,1,Laboratory Technician,3,2008,Upto 5k,1,12,3,3,1,2,1,1,0
+RM1426,26-35,Research & Development,Medical,2,Female,3,2,Healthcare Representative,4,4878,Upto 5k,0,13,3,1,10,6,9,7,8
+RM014,26-35,Research & Development,Medical,2,Male,3,1,Laboratory Technician,4,2661,Upto 5k,0,11,3,3,3,2,2,2,1
+RM023,26-35,Research & Development,Life Sciences,1,Female,3,3,Research Director,2,11994,10k-15k,0,11,3,3,13,4,12,6,2
+RM025,26-35,Research & Development,Medical,2,Male,3,1,Research Scientist,1,2960,Upto 5k,2,11,3,3,8,2,4,2,1
+RM047,26-35,Sales,Marketing,2,Male,3,2,Sales Executive,3,4568,Upto 5k,0,20,4,3,10,2,9,5,8
+RM085,26-35,Research & Development,Medical,1,Male,3,2,Manufacturing Director,2,4325,Upto 5k,1,15,3,3,5,2,5,2,1
+RM104,26-35,Research & Development,Other,1,Female,3,2,Research Scientist,3,4809,Upto 5k,1,14,3,3,16,3,16,13,2
+RM112,26-35,Research & Development,Life Sciences,1,Male,1,2,Laboratory Technician,3,6074,5k-10k,1,24,4,4,9,3,9,7,0
+RM115,26-35,Research & Development,Life Sciences,3,Female,2,2,Research Scientist,2,4505,Upto 5k,6,15,3,3,12,3,1,0,0
+RM117,26-35,Research & Development,Medical,3,Female,2,3,Manager,1,11631,10k-15k,2,12,3,4,14,6,11,10,5
+RM160,26-35,Sales,Marketing,3,Female,3,1,Sales Representative,3,2231,Upto 5k,6,18,3,4,6,3,4,3,1
+RM182,26-35,Research & Development,Medical,4,Female,3,1,Research Scientist,2,2311,Upto 5k,2,15,3,4,9,3,3,2,1
+RM189,26-35,Research & Development,Life Sciences,4,Male,2,2,Manufacturing Director,3,9547,5k-10k,1,17,3,3,10,2,10,9,1
+RM203,26-35,Research & Development,Medical,4,Male,3,1,Research Scientist,3,3815,Upto 5k,1,17,3,4,5,4,5,3,2
+RM248,26-35,Research & Development,Life Sciences,4,Male,2,2,Manufacturing Director,1,5957,5k-10k,6,13,3,2,13,3,11,9,5
+RM379,26-35,Sales,Marketing,1,Male,4,2,Sales Executive,4,5304,5k-10k,8,13,3,2,9,3,5,2,0
+RM394,26-35,Sales,Marketing,3,Female,3,2,Sales Executive,3,6538,5k-10k,9,15,3,1,6,3,3,2,1
+RM416,26-35,Sales,Marketing,4,Female,1,1,Sales Representative,3,2351,Upto 5k,0,16,3,4,3,3,2,2,1
+RM433,26-35,Research & Development,Life Sciences,4,Male,2,1,Research Scientist,3,2768,Upto 5k,3,12,3,3,14,3,7,3,5
+RM441,26-35,Human Resources,Human Resources,2,Female,3,3,Human Resources,1,9950,5k-10k,9,15,3,3,11,2,3,2,0
+RM463,26-35,Sales,Life Sciences,4,Male,4,2,Sales Executive,4,5337,5k-10k,1,12,3,4,10,3,10,7,5
+RM482,26-35,Research & Development,Life Sciences,2,Male,2,1,Research Scientist,4,3622,Upto 5k,1,13,3,4,6,3,6,5,1
+RM495,26-35,Sales,Technical Degree,3,Female,3,1,Sales Representative,3,2579,Upto 5k,1,18,3,4,8,3,8,2,0
+RM504,26-35,Research & Development,Life Sciences,2,Male,3,1,Research Scientist,4,2691,Upto 5k,1,12,3,4,10,4,10,9,8
+RM525,26-35,Research & Development,Medical,4,Female,2,3,Healthcare Representative,2,8621,5k-10k,1,14,3,2,9,3,8,7,7
+RM550,26-35,Research & Development,Medical,2,Female,3,2,Healthcare Representative,3,6142,5k-10k,3,11,3,4,10,2,5,1,4
+RM561,26-35,Research & Development,Life Sciences,2,Female,3,2,Manufacturing Director,1,5121,5k-10k,3,14,3,3,7,3,0,0,0
+RM568,26-35,Sales,Other,4,Male,3,2,Sales Executive,4,6274,5k-10k,1,22,4,3,6,5,6,5,1
+RM575,26-35,Research & Development,Life Sciences,2,Female,4,1,Research Scientist,4,3280,Upto 5k,2,16,3,3,10,2,4,2,1
+RM580,26-35,Research & Development,Medical,3,Female,2,1,Research Scientist,1,4381,Upto 5k,1,11,3,3,6,3,6,5,1
+RM584,26-35,Sales,Life Sciences,3,Female,3,2,Sales Executive,1,6500,5k-10k,5,17,3,2,6,1,3,2,1
+RM607,26-35,Research & Development,Life Sciences,3,Female,2,1,Research Scientist,4,2553,Upto 5k,1,16,3,3,6,3,5,2,1
+RM614,26-35,Human Resources,Human Resources,3,Male,3,1,Human Resources,4,3737,Upto 5k,0,19,3,3,4,1,3,2,0
+RM672,26-35,Research & Development,Life Sciences,2,Male,3,1,Laboratory Technician,2,2008,Upto 5k,1,14,3,2,1,3,1,0,1
+RM758,26-35,Sales,Marketing,2,Male,4,2,Sales Executive,4,9725,5k-10k,0,11,3,4,16,2,15,1,0
+RM764,26-35,Sales,Life Sciences,3,Female,3,1,Sales Representative,3,2220,Upto 5k,1,19,3,4,1,2,1,1,0
+RM795,26-35,Research & Development,Life Sciences,1,Male,3,2,Healthcare Representative,4,7756,5k-10k,0,17,3,3,7,1,6,2,0
+RM804,26-35,Research & Development,Life Sciences,3,Male,2,1,Research Scientist,4,2979,Upto 5k,3,17,3,4,6,2,0,0,0
+RM823,26-35,Research & Development,Life Sciences,4,Male,3,2,Manufacturing Director,3,4033,Upto 5k,2,11,3,4,5,3,3,2,0
+RM835,26-35,Sales,Life Sciences,2,Female,3,2,Sales Executive,3,5714,5k-10k,1,20,4,1,6,3,6,5,1
+RM848,26-35,Research & Development,Medical,4,Male,2,2,Healthcare Representative,1,5343,5k-10k,0,20,4,3,14,3,13,9,4
+RM907,26-35,Research & Development,Technical Degree,3,Female,4,1,Research Scientist,3,2585,Upto 5k,0,17,3,4,2,5,1,0,0
+RM918,26-35,Sales,Marketing,3,Female,3,2,Sales Executive,1,4538,Upto 5k,0,12,3,4,4,3,3,2,0
+RM921,26-35,Research & Development,Medical,3,Female,3,2,Laboratory Technician,2,4444,Upto 5k,4,13,3,3,15,2,11,8,5
+RM924,26-35,Human Resources,Life Sciences,3,Male,2,2,Human Resources,2,4490,Upto 5k,4,11,3,4,14,5,10,9,1
+RM959,26-35,Research & Development,Life Sciences,4,Male,3,3,Healthcare Representative,4,8500,5k-10k,0,11,3,4,10,0,9,7,1
+RM965,26-35,Sales,Medical,3,Female,3,2,Sales Executive,1,6125,5k-10k,1,12,3,4,10,6,10,8,9
+RM978,26-35,Research & Development,Technical Degree,1,Female,2,1,Research Scientist,3,2029,Upto 5k,1,20,4,3,5,2,5,4,0
+RM980,26-35,Research & Development,Medical,2,Male,3,2,Laboratory Technician,3,5429,5k-10k,4,13,3,1,10,1,8,7,7
+RM984,26-35,Research & Development,Technical Degree,3,Female,3,2,Healthcare Representative,4,6687,5k-10k,1,11,3,4,14,2,14,11,4
+RM1016,26-35,Research & Development,Other,4,Male,3,1,Research Scientist,1,2996,Upto 5k,5,14,3,3,10,2,4,3,1
+RM1028,26-35,Research & Development,Life Sciences,4,Female,2,1,Laboratory Technician,2,3294,Upto 5k,5,17,3,1,7,2,5,4,0
+RM1040,26-35,Human Resources,Technical Degree,1,Female,3,1,Human Resources,3,2742,Upto 5k,1,15,3,4,2,0,2,2,2
+RM1049,26-35,Sales,Other,4,Male,1,2,Sales Executive,1,4759,Upto 5k,3,18,3,4,15,2,13,9,3
+RM1056,26-35,Research & Development,Medical,2,Male,3,4,Research Director,1,17007,15k+,7,14,3,4,16,3,14,8,6
+RM1059,26-35,Sales,Medical,1,Female,2,2,Sales Executive,2,4599,Upto 5k,0,23,4,3,16,2,15,9,10
+RM1085,26-35,Sales,Technical Degree,4,Male,2,3,Sales Executive,3,7083,5k-10k,1,14,3,4,10,3,10,9,8
+RM1088,26-35,Sales,Technical Degree,2,Male,3,1,Sales Representative,3,2308,Upto 5k,0,25,4,2,12,4,11,10,5
+RM1116,26-35,Research & Development,Medical,1,Male,3,1,Research Scientist,4,2972,Upto 5k,1,13,3,3,1,4,1,0,0
+RM1118,26-35,Research & Development,Life Sciences,2,Male,3,2,Research Scientist,4,5484,5k-10k,9,17,3,2,9,3,2,2,2
+RM1132,26-35,Research & Development,Technical Degree,4,Male,2,2,Healthcare Representative,3,5063,5k-10k,1,14,3,2,8,3,8,2,7
+RM1147,26-35,Research & Development,Life Sciences,3,Male,4,2,Manufacturing Director,4,4724,Upto 5k,1,13,3,1,9,3,9,7,7
+RM1180,26-35,Research & Development,Life Sciences,4,Female,3,2,Research Scientist,2,5433,5k-10k,1,12,3,3,11,2,11,8,7
+RM1209,26-35,Research & Development,Medical,2,Male,2,2,Laboratory Technician,4,3986,Upto 5k,1,14,3,3,15,3,15,10,4
+RM1213,26-35,Research & Development,Life Sciences,2,Female,2,1,Research Scientist,4,2929,Upto 5k,1,12,3,2,10,3,10,9,8
+RM1253,26-35,Research & Development,Medical,4,Male,4,1,Research Scientist,4,2932,Upto 5k,0,14,3,1,6,3,5,0,1
+RM1268,26-35,Sales,Life Sciences,4,Male,3,2,Sales Executive,3,4001,Upto 5k,1,14,3,3,15,3,15,14,0
+RM1271,26-35,Sales,Life Sciences,4,Female,1,2,Sales Executive,4,6029,5k-10k,5,12,3,1,6,3,2,2,2
+RM1291,26-35,Research & Development,Life Sciences,4,Male,3,2,Laboratory Technician,1,5346,5k-10k,4,17,3,3,11,3,7,1,0
+RM1301,26-35,Sales,Technical Degree,2,Male,4,2,Sales Executive,3,6799,5k-10k,1,21,4,3,10,5,10,8,4
+RM1343,26-35,Sales,Life Sciences,3,Male,3,3,Sales Executive,4,9713,5k-10k,2,13,3,4,9,3,5,3,1
+RM1354,26-35,Research & Development,Technical Degree,4,Male,1,1,Research Scientist,1,2307,Upto 5k,1,23,4,2,5,2,5,2,3
+RM1360,26-35,Sales,Medical,4,Female,2,2,Sales Executive,4,8103,5k-10k,3,12,3,3,9,3,4,2,0
+RM1369,26-35,Research & Development,Other,3,Male,2,2,Research Scientist,4,5747,5k-10k,1,15,3,2,16,3,15,10,6
+RM1385,26-35,Sales,Marketing,1,Male,3,3,Sales Executive,4,9888,5k-10k,1,21,4,1,14,3,14,8,2
+RM1386,26-35,Sales,Medical,4,Male,3,3,Sales Executive,3,8628,5k-10k,1,18,3,3,9,2,8,7,1
+RM1447,26-35,Sales,Marketing,4,Female,2,2,Sales Executive,3,6712,5k-10k,1,21,4,4,8,2,8,7,1
+RM1470,26-35,Research & Development,Medical,2,Male,4,2,Laboratory Technician,3,4404,Upto 5k,2,12,3,1,6,3,4,3,1
+RM011,26-35,Research & Development,Medical,1,Male,4,1,Laboratory Technician,2,2426,Upto 5k,0,13,3,3,6,5,5,4,0
+RM038,26-35,Sales,Marketing,4,Female,3,1,Sales Representative,4,2014,Upto 5k,1,13,3,1,2,3,2,2,2
+RM041,26-35,Research & Development,Other,3,Male,3,1,Laboratory Technician,4,1951,Upto 5k,1,12,3,3,1,3,1,0,0
+RM050,26-35,Research & Development,Life Sciences,4,Male,4,1,Laboratory Technician,4,2269,Upto 5k,1,19,3,4,1,2,1,0,0
+RM054,26-35,Research & Development,Medical,3,Male,2,3,Healthcare Representative,1,9884,5k-10k,2,13,3,3,10,3,4,0,2
+RM057,26-35,Sales,Life Sciences,2,Male,3,3,Sales Executive,1,9069,5k-10k,1,22,4,4,9,3,9,8,1
+RM058,26-35,Research & Development,Medical,3,Female,3,1,Laboratory Technician,1,4014,Upto 5k,3,15,3,3,4,3,2,2,2
+RM069,26-35,Research & Development,Medical,2,Male,3,1,Research Scientist,1,2194,Upto 5k,4,13,3,4,5,2,3,2,1
+RM077,26-35,Sales,Marketing,3,Male,2,2,Sales Executive,1,4312,Upto 5k,0,14,3,2,16,2,15,13,2
+RM082,26-35,Research & Development,Medical,2,Male,2,1,Research Scientist,3,2859,Upto 5k,1,18,3,1,6,3,6,4,0
+RM152,26-35,Sales,Marketing,3,Male,3,3,Sales Executive,2,7295,5k-10k,1,13,3,1,10,3,10,8,0
+RM193,26-35,Research & Development,Life Sciences,2,Male,2,2,Manufacturing Director,3,5916,5k-10k,3,13,3,1,8,1,1,0,0
+RM197,26-35,Research & Development,Medical,2,Female,3,2,Laboratory Technician,2,4425,Upto 5k,5,11,3,4,10,5,6,2,1
+RM229,26-35,Sales,Marketing,3,Female,3,3,Sales Executive,3,8789,5k-10k,1,14,3,1,10,3,10,7,0
+RM277,26-35,Research & Development,Life Sciences,2,Female,4,3,Manager,2,11996,10k-15k,7,18,3,2,10,6,7,7,6
+RM298,26-35,Sales,Marketing,3,Male,3,3,Sales Executive,2,8020,5k-10k,0,15,3,3,12,3,11,9,6
+RM345,26-35,Research & Development,Technical Degree,3,Male,3,3,Manufacturing Director,2,8095,5k-10k,0,13,3,4,17,5,16,6,0
+RM373,26-35,Research & Development,Life Sciences,3,Male,2,2,Healthcare Representative,2,6540,5k-10k,9,19,3,3,10,5,1,1,0
+RM431,26-35,Research & Development,Life Sciences,4,Male,1,1,Laboratory Technician,3,4230,Upto 5k,0,15,3,3,6,2,5,4,4
+RM439,26-35,Research & Development,Life Sciences,4,Male,3,3,Healthcare Representative,3,7632,5k-10k,4,12,3,3,10,2,8,7,0
+RM448,26-35,Sales,Marketing,2,Male,3,2,Sales Executive,3,4717,Upto 5k,9,11,3,3,15,2,11,9,6
+RM462,26-35,Sales,Medical,1,Female,3,2,Sales Executive,3,4859,Upto 5k,1,16,3,4,5,3,5,4,0
+RM484,26-35,Research & Development,Other,1,Male,2,2,Laboratory Technician,4,3681,Upto 5k,4,14,3,4,9,3,3,2,0
+RM509,26-35,Research & Development,Life Sciences,2,Male,1,2,Research Scientist,4,6646,5k-10k,1,13,3,2,17,3,17,11,11
+RM516,26-35,Research & Development,Life Sciences,3,Male,2,1,Laboratory Technician,3,1281,Upto 5k,1,18,3,3,1,3,1,0,0
+RM558,26-35,Research & Development,Life Sciences,4,Female,3,2,Healthcare Representative,1,5093,5k-10k,2,11,3,1,16,2,1,0,0
+RM581,26-35,Sales,Life Sciences,1,Female,3,1,Sales Representative,4,2572,Upto 5k,1,16,3,2,3,1,3,2,0
+RM597,26-35,Research & Development,Life Sciences,4,Female,4,1,Research Scientist,3,2506,Upto 5k,3,13,3,3,7,0,2,2,2
+RM612,26-35,Research & Development,Other,3,Male,3,3,Manufacturing Director,3,10221,10k-15k,3,21,4,2,17,3,8,5,1
+RM621,26-35,Research & Development,Medical,3,Female,2,1,Research Scientist,1,2559,Upto 5k,1,11,3,4,6,3,6,5,1
+RM636,26-35,Research & Development,Life Sciences,4,Female,2,3,Manufacturing Director,3,10685,10k-15k,1,20,4,2,17,2,17,14,5
+RM637,26-35,Research & Development,Life Sciences,4,Female,3,1,Research Scientist,2,2022,Upto 5k,1,19,3,1,10,3,10,2,7
+RM648,26-35,Research & Development,Technical Degree,4,Male,2,3,Manufacturing Director,2,10903,10k-15k,3,16,3,1,16,2,13,10,4
+RM677,26-35,Research & Development,Life Sciences,4,Female,3,2,Healthcare Representative,4,4014,Upto 5k,1,25,4,4,10,2,10,6,0
+RM699,26-35,Sales,Medical,3,Female,3,2,Sales Executive,3,4601,Upto 5k,1,16,3,2,5,3,5,2,1
+RM705,26-35,Sales,Life Sciences,4,Male,3,3,Sales Executive,4,7823,5k-10k,6,13,3,2,12,2,10,9,0
+RM726,26-35,Research & Development,Other,3,Male,2,1,Laboratory Technician,2,3743,Upto 5k,1,24,4,4,5,2,4,2,0
+RM730,26-35,Research & Development,Medical,3,Female,3,3,Healthcare Representative,3,10388,10k-15k,1,11,3,3,16,3,16,10,10
+RM741,26-35,Research & Development,Other,2,Male,3,1,Laboratory Technician,4,3917,Upto 5k,1,20,4,1,3,4,3,2,1
+RM792,26-35,Sales,Technical Degree,4,Male,3,3,Sales Executive,1,9582,5k-10k,0,22,4,1,9,2,8,7,4
+RM821,26-35,Sales,Marketing,4,Male,3,2,Sales Executive,4,4968,Upto 5k,1,11,3,4,5,3,5,2,0
+RM836,26-35,Human Resources,Technical Degree,3,Male,3,1,Human Resources,3,4323,Upto 5k,1,17,3,2,6,2,5,4,1
+RM841,26-35,Research & Development,Medical,4,Male,2,1,Laboratory Technician,3,2258,Upto 5k,6,12,3,2,10,2,8,0,1
+RM847,26-35,Research & Development,Life Sciences,3,Male,2,3,Manufacturing Director,2,10274,10k-15k,2,18,3,2,15,2,7,7,6
+RM849,26-35,Research & Development,Other,4,Male,2,1,Laboratory Technician,4,2376,Upto 5k,1,13,3,2,2,2,2,2,2
+RM871,26-35,Sales,Life Sciences,3,Male,3,2,Sales Executive,1,8966,5k-10k,3,15,3,4,15,2,7,7,1
+RM889,26-35,Sales,Marketing,3,Female,2,3,Sales Executive,4,10377,10k-15k,4,11,3,2,16,6,13,2,4
+RM925,26-35,Research & Development,Life Sciences,3,Male,3,1,Research Scientist,3,3506,Upto 5k,0,14,3,4,4,3,3,2,2
+RM962,26-35,Research & Development,Life Sciences,3,Male,3,2,Research Scientist,3,4249,Upto 5k,1,11,3,2,9,3,9,6,1
+RM974,26-35,Research & Development,Medical,4,Female,2,2,Laboratory Technician,4,5363,5k-10k,0,12,3,2,10,0,9,7,0
+RM982,26-35,Sales,Marketing,4,Female,3,2,Sales Executive,3,4614,Upto 5k,0,18,3,3,5,0,4,2,3
+RM1003,26-35,Research & Development,Life Sciences,3,Male,3,3,Manufacturing Director,4,9362,5k-10k,2,11,3,3,10,2,2,2,2
+RM1060,26-35,Sales,Life Sciences,4,Male,3,1,Sales Representative,3,2404,Upto 5k,1,13,3,1,1,3,1,0,0
+RM1082,26-35,Research & Development,Life Sciences,4,Female,2,3,Healthcare Representative,2,8606,5k-10k,1,19,3,4,11,3,11,8,3
+RM1101,26-35,Sales,Life Sciences,2,Female,2,1,Sales Representative,3,2430,Upto 5k,0,23,4,1,6,5,5,3,4
+RM1109,26-35,Research & Development,Medical,4,Male,2,1,Laboratory Technician,1,2450,Upto 5k,1,19,3,2,3,3,3,0,1
+RM1111,26-35,Research & Development,Life Sciences,1,Female,3,1,Laboratory Technician,1,2074,Upto 5k,1,12,3,4,1,2,1,0,0
+RM1124,26-35,Research & Development,Medical,1,Female,3,2,Healthcare Representative,3,6142,5k-10k,3,16,3,3,10,4,5,2,0
+RM1131,26-35,Research & Development,Life Sciences,2,Male,4,2,Laboratory Technician,3,3407,Upto 5k,1,17,3,4,10,3,10,9,6
+RM1135,26-35,Research & Development,Life Sciences,3,Male,2,1,Laboratory Technician,4,2690,Upto 5k,1,18,3,4,1,5,1,0,0
+RM1151,26-35,Research & Development,Life Sciences,2,Male,4,2,Research Scientist,1,5208,5k-10k,1,11,3,4,16,2,16,15,1
+RM1158,26-35,Research & Development,Life Sciences,3,Female,3,2,Healthcare Representative,3,4148,Upto 5k,1,12,3,4,15,5,14,11,2
+RM1163,26-35,Sales,Medical,4,Male,2,3,Sales Executive,1,10306,10k-15k,9,17,3,3,15,3,13,12,6
+RM1168,26-35,Sales,Medical,1,Male,1,2,Sales Executive,4,5440,5k-10k,6,14,3,4,7,2,2,2,2
+RM1187,26-35,Sales,Other,4,Male,3,2,Sales Executive,4,4581,Upto 5k,3,24,4,1,13,2,11,9,6
+RM1216,26-35,Research & Development,Medical,1,Male,2,1,Research Scientist,4,4930,Upto 5k,0,14,3,3,6,2,5,4,1
+RM1233,26-35,Research & Development,Life Sciences,4,Male,3,2,Manufacturing Director,3,6883,5k-10k,2,16,3,2,17,3,7,7,0
+RM1282,26-35,Sales,Life Sciences,3,Male,3,2,Sales Executive,4,5813,5k-10k,1,18,3,4,10,2,10,7,7
+RM1289,26-35,Research & Development,Medical,2,Male,3,2,Manufacturing Director,4,5762,5k-10k,2,14,3,3,15,6,7,7,1
+RM1303,26-35,Research & Development,Medical,2,Male,1,1,Laboratory Technician,3,2705,Upto 5k,0,16,3,2,6,2,5,4,0
+RM1346,26-35,Research & Development,Other,4,Female,2,2,Manufacturing Director,2,4788,Upto 5k,0,11,3,4,4,2,3,2,0
+RM1381,26-35,Sales,Medical,2,Male,3,2,Sales Executive,1,5561,5k-10k,0,16,3,4,6,2,5,3,0
+RM1393,26-35,Sales,Life Sciences,3,Female,3,2,Sales Executive,4,5204,5k-10k,1,11,3,4,10,2,10,8,0
+RM1423,26-35,Research & Development,Medical,4,Male,3,1,Laboratory Technician,3,2660,Upto 5k,7,11,3,3,5,3,2,2,2
+RM1425,26-35,Research & Development,Medical,2,Male,3,2,Research Scientist,3,5098,5k-10k,1,19,3,2,10,5,10,7,0
+RM1451,26-35,Human Resources,Life Sciences,3,Female,3,3,Human Resources,4,8837,5k-10k,1,16,3,3,9,2,9,0,1
+RM1457,26-35,Research & Development,Life Sciences,3,Male,3,2,Healthcare Representative,3,5689,5k-10k,1,14,3,4,10,2,10,2,0
+RM1459,26-35,Research & Development,Life Sciences,3,Female,1,1,Research Scientist,4,2977,Upto 5k,1,12,3,4,4,5,4,3,1
+RM010,36-45,Research & Development,Medical,3,Male,3,2,Healthcare Representative,3,5237,5k-10k,6,13,3,2,17,3,7,7,7
+RM022,36-45,Sales,Life Sciences,3,Male,2,1,Sales Representative,1,3407,Upto 5k,7,23,4,2,10,4,5,3,0
+RM039,36-45,Research & Development,Life Sciences,2,Female,2,1,Research Scientist,1,3419,Upto 5k,9,14,3,4,6,3,1,1,0
+RM065,36-45,Research & Development,Technical Degree,3,Female,3,3,Healthcare Representative,3,10096,10k-15k,1,13,3,2,17,2,17,14,12
+RM067,36-45,Research & Development,Life Sciences,2,Male,2,2,Manufacturing Director,2,6499,5k-10k,1,13,3,3,6,3,6,5,0
+RM070,36-45,Research & Development,Medical,4,Male,2,1,Research Scientist,3,3388,Upto 5k,0,17,3,1,2,0,1,0,0
+RM075,36-45,Research & Development,Life Sciences,2,Female,4,1,Laboratory Technician,4,3038,Upto 5k,3,12,3,2,5,3,1,0,0
+RM118,36-45,Sales,Technical Degree,2,Female,3,3,Sales Executive,4,9738,5k-10k,0,14,3,3,10,6,9,7,2
+RM119,36-45,Research & Development,Life Sciences,1,Female,3,1,Laboratory Technician,4,2835,Upto 5k,5,22,4,1,7,2,1,0,0
+RM136,36-45,Research & Development,Medical,2,Male,3,2,Manufacturing Director,2,4941,Upto 5k,6,20,4,4,7,0,3,2,0
+RM173,36-45,Research & Development,Medical,4,Male,3,1,Laboratory Technician,2,2088,Upto 5k,4,12,3,3,13,3,8,7,7
+RM208,36-45,Research & Development,Medical,2,Female,3,1,Laboratory Technician,4,2153,Upto 5k,1,13,3,1,8,2,8,1,1
+RM221,36-45,Research & Development,Life Sciences,4,Male,3,2,Laboratory Technician,2,5914,5k-10k,8,16,3,4,16,3,13,11,3
+RM270,36-45,Research & Development,Life Sciences,4,Male,3,1,Laboratory Technician,4,3210,Upto 5k,0,11,3,3,16,4,15,13,10
+RM292,36-45,Research & Development,Technical Degree,3,Male,3,2,Research Scientist,2,4485,Upto 5k,4,12,3,4,10,2,8,0,7
+RM299,36-45,Research & Development,Life Sciences,3,Male,4,1,Laboratory Technician,4,3688,Upto 5k,4,18,3,4,4,2,1,0,0
+RM306,36-45,Research & Development,Life Sciences,2,Female,3,2,Laboratory Technician,2,5674,5k-10k,7,15,3,3,11,3,9,8,0
+RM359,36-45,Sales,Medical,4,Female,3,2,Sales Executive,4,6653,5k-10k,4,15,3,2,7,6,1,0,0
+RM360,36-45,Sales,Medical,1,Male,2,3,Sales Executive,4,9699,5k-10k,4,11,3,1,16,2,13,9,1
+RM378,36-45,Research & Development,Life Sciences,4,Female,3,1,Research Scientist,3,2543,Upto 5k,4,13,3,2,6,3,2,2,2
+RM385,36-45,Sales,Medical,2,Male,2,3,Sales Executive,3,7596,5k-10k,1,13,3,2,10,2,10,9,9
+RM443,36-45,Sales,Medical,2,Male,3,3,Sales Executive,4,9980,5k-10k,1,14,3,4,10,3,10,3,9
+RM512,36-45,Research & Development,Medical,2,Male,2,2,Manufacturing Director,2,8847,5k-10k,2,11,3,3,13,2,3,2,0
+RM542,36-45,Research & Development,Life Sciences,1,Female,4,3,Research Director,1,11713,10k-15k,9,14,3,1,10,2,8,7,0
+RM570,36-45,Sales,Life Sciences,1,Male,2,3,Sales Executive,1,7587,5k-10k,1,15,3,2,10,1,10,7,0
+RM594,36-45,Research & Development,Other,3,Female,3,2,Manufacturing Director,2,5228,5k-10k,0,15,3,1,10,2,9,7,0
+RM600,36-45,Human Resources,Human Resources,3,Male,3,1,Human Resources,2,2143,Upto 5k,4,13,3,2,8,2,5,2,0
+RM622,36-45,Sales,Life Sciences,2,Male,3,2,Sales Executive,4,6201,5k-10k,1,14,3,4,18,1,18,14,4
+RM634,36-45,Human Resources,Life Sciences,1,Male,2,1,Human Resources,1,2342,Upto 5k,0,21,4,3,6,3,5,4,0
+RM665,36-45,Research & Development,Life Sciences,3,Male,3,2,Healthcare Representative,4,6586,5k-10k,0,17,3,1,17,2,16,8,4
+RM681,36-45,Research & Development,Other,2,Male,3,1,Research Scientist,4,4678,Upto 5k,2,18,3,3,8,6,6,2,0
+RM688,36-45,Research & Development,Medical,3,Male,3,1,Laboratory Technician,3,2519,Upto 5k,4,21,4,3,16,6,11,8,3
+RM694,36-45,Sales,Life Sciences,3,Male,2,3,Sales Executive,4,10325,10k-15k,1,11,3,1,16,6,16,7,3
+RM709,36-45,Sales,Technical Degree,1,Male,3,2,Sales Executive,4,5079,5k-10k,4,13,3,4,12,3,7,7,0
+RM753,36-45,Research & Development,Life Sciences,3,Female,4,1,Laboratory Technician,1,2743,Upto 5k,1,16,3,3,18,1,17,13,15
+RM762,36-45,Research & Development,Other,1,Male,3,2,Laboratory Technician,3,4834,Upto 5k,7,14,3,2,9,3,1,0,0
+RM774,36-45,Research & Development,Medical,4,Female,2,3,Manufacturing Director,4,8858,5k-10k,0,11,3,2,15,2,14,8,7
+RM818,36-45,Research & Development,Life Sciences,1,Male,3,2,Manufacturing Director,4,7779,5k-10k,2,20,4,1,18,0,11,9,0
+RM874,36-45,Research & Development,Life Sciences,3,Male,1,1,Laboratory Technician,3,2741,Upto 5k,1,14,3,3,7,4,7,7,1
+RM883,36-45,Research & Development,Technical Degree,3,Female,1,3,Manufacturing Director,1,10252,10k-15k,2,21,4,3,17,2,7,7,7
+RM901,36-45,Research & Development,Technical Degree,3,Male,3,1,Research Scientist,2,3692,Upto 5k,1,12,3,3,12,2,11,10,0
+RM928,36-45,Research & Development,Life Sciences,3,Female,3,2,Manufacturing Director,2,5410,5k-10k,9,11,3,4,18,2,16,14,5
+RM943,36-45,Research & Development,Technical Degree,4,Female,3,3,Healthcare Representative,3,7094,5k-10k,3,12,3,1,10,0,7,7,1
+RM969,36-45,Sales,Marketing,1,Female,4,2,Sales Executive,1,4639,Upto 5k,2,16,3,4,17,2,15,7,6
+RM1012,36-45,Sales,Marketing,1,Female,3,2,Sales Executive,2,9278,5k-10k,3,16,3,4,15,3,5,4,0
+RM1019,36-45,Research & Development,Life Sciences,1,Male,2,2,Laboratory Technician,4,5810,5k-10k,1,16,3,3,10,2,10,4,1
+RM1020,36-45,Sales,Marketing,3,Female,2,2,Sales Executive,1,5647,5k-10k,4,13,3,1,11,3,3,2,0
+RM1103,36-45,Sales,Life Sciences,3,Male,3,1,Sales Representative,4,2644,Upto 5k,3,21,4,4,7,3,3,2,1
+RM1122,36-45,Sales,Life Sciences,2,Female,3,2,Sales Executive,3,6815,5k-10k,6,13,3,1,15,5,1,0,0
+RM1129,36-45,Research & Development,Life Sciences,1,Male,4,2,Laboratory Technician,1,5562,5k-10k,3,13,3,4,9,3,3,2,0
+RM1146,36-45,Research & Development,Life Sciences,3,Female,3,2,Manufacturing Director,3,4663,Upto 5k,9,12,3,2,7,2,3,2,1
+RM1174,36-45,Research & Development,Life Sciences,2,Female,3,3,Healthcare Representative,1,8008,5k-10k,4,12,3,3,9,6,3,2,0
+RM1181,36-45,Research & Development,Life Sciences,1,Male,3,1,Laboratory Technician,2,2013,Upto 5k,2,11,3,3,15,4,4,3,1
+RM1183,36-45,Research & Development,Medical,4,Female,2,2,Manufacturing Director,3,4374,Upto 5k,0,15,3,3,4,6,3,2,1
+RM1184,36-45,Research & Development,Life Sciences,4,Male,4,2,Healthcare Representative,1,6842,5k-10k,6,20,4,1,13,3,5,4,0
+RM1200,36-45,Research & Development,Life Sciences,1,Male,3,2,Healthcare Representative,3,5347,5k-10k,6,14,3,2,10,2,3,2,0
+RM1221,36-45,Sales,Life Sciences,3,Female,3,2,Sales Representative,4,4502,Upto 5k,3,15,3,3,17,2,13,7,6
+RM1237,36-45,Sales,Marketing,2,Male,2,2,Sales Executive,1,6134,5k-10k,5,13,3,2,16,3,2,2,2
+RM1279,36-45,Research & Development,Life Sciences,4,Male,3,3,Healthcare Representative,1,8321,5k-10k,7,13,3,4,15,1,12,8,5
+RM1316,36-45,Research & Development,Other,4,Female,3,2,Research Scientist,2,6962,5k-10k,4,22,4,4,15,2,1,0,0
+RM1341,36-45,Sales,Technical Degree,2,Female,2,2,Sales Executive,3,5673,5k-10k,1,13,3,1,10,4,10,9,1
+RM1348,36-45,Human Resources,Human Resources,2,Male,2,2,Human Resources,4,3886,Upto 5k,1,21,4,4,10,2,10,1,0
+RM1356,36-45,Sales,Marketing,3,Male,2,2,Sales Executive,2,5507,5k-10k,2,16,3,3,12,1,4,2,1
+RM1384,36-45,Research & Development,Life Sciences,1,Male,4,1,Laboratory Technician,2,2810,Upto 5k,1,22,4,2,5,3,5,4,0
+RM1440,36-45,Sales,Medical,1,Female,2,3,Sales Executive,4,7644,5k-10k,0,19,3,3,10,2,9,7,3
+RM1441,36-45,Research & Development,Life Sciences,4,Female,3,2,Manufacturing Director,2,5131,5k-10k,7,13,3,2,18,3,4,2,0
+RM1448,36-45,Sales,Marketing,4,Male,1,2,Sales Executive,4,5406,5k-10k,1,24,4,1,15,4,15,12,11
+RM1454,36-45,Sales,Marketing,2,Female,2,2,Sales Executive,4,6652,5k-10k,4,13,3,1,8,2,6,3,0
+RM1466,36-45,Research & Development,Medical,3,Male,4,2,Laboratory Technician,4,2571,Upto 5k,4,17,3,3,17,3,5,2,0
+RM1466,36-45,Research & Development,Medical,3,Male,4,2,Laboratory Technician,4,2571,Upto 5k,4,17,3,3,17,3,5,2,0
+RM003,36-45,Research & Development,Other,4,Male,2,1,Laboratory Technician,3,2090,Upto 5k,6,15,3,2,7,3,0,0,0
+RM048,36-45,Research & Development,Life Sciences,2,Male,3,1,Research Scientist,2,3022,Upto 5k,4,21,4,1,8,1,1,0,0
+RM060,36-45,Research & Development,Life Sciences,1,Male,2,2,Manufacturing Director,3,5993,5k-10k,1,18,3,3,7,2,7,5,0
+RM079,36-45,Research & Development,Medical,1,Male,3,3,Research Director,3,13664,10k-15k,4,13,3,1,16,3,5,2,0
+RM101,36-45,Human Resources,Human Resources,3,Male,3,1,Human Resources,1,2073,Upto 5k,4,22,4,4,7,3,3,2,0
+RM105,36-45,Research & Development,Life Sciences,3,Male,2,2,Healthcare Representative,4,5163,5k-10k,5,14,3,4,17,2,1,0,0
+RM116,36-45,Sales,Life Sciences,3,Male,3,3,Sales Executive,4,7428,5k-10k,2,12,3,1,12,3,5,3,1
+RM196,36-45,Research & Development,Life Sciences,2,Male,4,1,Research Scientist,1,3564,Upto 5k,1,12,3,1,8,3,8,7,1
+RM223,36-45,Research & Development,Other,2,Male,3,3,Research Director,4,12185,10k-15k,1,14,3,3,10,1,10,8,0
+RM227,36-45,Sales,Marketing,1,Male,3,1,Sales Representative,4,2793,Upto 5k,4,17,3,3,13,2,9,8,5
+RM249,36-45,Research & Development,Medical,3,Female,2,1,Research Scientist,1,3920,Upto 5k,2,14,3,1,17,2,3,1,0
+RM251,36-45,Research & Development,Medical,1,Male,3,3,Manufacturing Director,3,10048,10k-15k,6,11,3,2,17,5,1,0,0
+RM274,36-45,Sales,Medical,3,Male,3,2,Sales Executive,4,6502,5k-10k,4,14,3,2,7,5,5,4,0
+RM276,36-45,Research & Development,Medical,1,Female,3,3,Research Director,4,13603,10k-15k,2,18,3,1,15,2,5,2,0
+RM286,36-45,Research & Development,Life Sciences,4,Female,3,1,Research Scientist,4,2115,Upto 5k,1,12,3,2,17,3,17,12,5
+RM295,36-45,Research & Development,Medical,2,Male,3,1,Research Scientist,4,2326,Upto 5k,1,12,3,3,4,3,4,2,1
+RM341,36-45,Research & Development,Medical,4,Male,3,2,Manufacturing Director,4,6347,5k-10k,7,16,3,3,8,2,6,2,0
+RM354,36-45,Research & Development,Medical,3,Male,4,2,Research Scientist,1,5974,5k-10k,4,13,3,1,13,2,7,7,6
+RM365,36-45,Research & Development,Medical,3,Female,3,1,Laboratory Technician,1,3452,Upto 5k,6,20,4,2,17,3,5,4,0
+RM387,36-45,Research & Development,Life Sciences,4,Female,3,1,Laboratory Technician,1,3034,Upto 5k,1,12,3,3,18,2,18,7,12
+RM390,36-45,Research & Development,Life Sciences,3,Male,3,2,Manufacturing Director,2,4197,Upto 5k,2,12,3,4,18,2,1,0,0
+RM399,36-45,Research & Development,Medical,2,Female,3,2,Research Scientist,3,4449,Upto 5k,3,15,3,1,15,2,13,11,10
+RM465,36-45,Research & Development,Technical Degree,2,Female,3,3,Manufacturing Director,4,7491,5k-10k,4,17,3,4,12,3,6,5,1
+RM468,36-45,Sales,Medical,1,Male,3,3,Sales Executive,2,8834,5k-10k,1,13,3,4,9,6,9,5,7
+RM473,36-45,Research & Development,Life Sciences,2,Female,3,2,Manufacturing Director,2,6447,5k-10k,6,12,3,2,8,2,6,5,4
+RM487,36-45,Sales,Marketing,4,Male,3,2,Sales Executive,3,9602,5k-10k,4,11,3,3,17,3,3,0,1
+RM507,36-45,Research & Development,Other,3,Male,3,3,Manufacturing Director,3,9434,5k-10k,1,15,3,3,10,2,10,7,7
+RM523,36-45,Research & Development,Life Sciences,4,Male,4,1,Research Scientist,4,4680,Upto 5k,3,17,3,1,4,2,1,0,0
+RM578,36-45,Research & Development,Life Sciences,4,Female,3,1,Research Scientist,1,2782,Upto 5k,0,13,3,2,6,3,5,3,4
+RM629,36-45,Sales,Marketing,4,Male,2,2,Sales Executive,3,6334,5k-10k,4,19,3,4,9,2,1,0,0
+RM649,36-45,Sales,Medical,3,Female,3,1,Sales Representative,4,2973,Upto 5k,5,15,3,2,10,3,5,4,0
+RM653,36-45,Sales,Medical,1,Male,3,3,Sales Executive,2,7642,5k-10k,1,13,3,4,10,2,10,0,0
+RM696,36-45,Sales,Life Sciences,1,Male,2,3,Sales Executive,3,10609,10k-15k,5,11,3,3,17,2,14,1,11
+RM745,36-45,Research & Development,Medical,1,Female,1,2,Healthcare Representative,2,4777,Upto 5k,5,15,3,1,15,2,1,0,0
+RM768,36-45,Research & Development,Other,4,Female,3,2,Healthcare Representative,2,4107,Upto 5k,3,15,3,1,8,3,4,3,0
+RM796,36-45,Sales,Life Sciences,4,Female,2,2,Sales Executive,4,6694,5k-10k,2,14,3,3,8,5,1,0,0
+RM833,36-45,Research & Development,Medical,3,Female,2,2,Healthcare Representative,4,5731,5k-10k,7,13,3,3,9,2,6,2,1
+RM856,36-45,Research & Development,Life Sciences,4,Female,2,2,Manufacturing Director,4,6474,5k-10k,1,13,3,2,14,2,14,8,3
+RM990,36-45,Research & Development,Life Sciences,3,Male,3,1,Research Scientist,3,2996,Upto 5k,7,15,3,4,8,2,6,4,1
+RM1002,36-45,Research & Development,Medical,1,Female,3,1,Laboratory Technician,3,3629,Upto 5k,4,18,3,1,8,6,3,2,0
+RM1023,36-45,Research & Development,Technical Degree,3,Male,4,1,Laboratory Technician,3,3500,Upto 5k,0,14,3,1,7,2,6,5,1
+RM1090,36-45,Research & Development,Medical,1,Male,3,2,Research Scientist,4,4285,Upto 5k,1,17,3,1,10,2,10,8,3
+RM1159,36-45,Research & Development,Life Sciences,3,Male,3,2,Manufacturing Director,3,5768,5k-10k,3,17,3,1,9,2,4,3,0
+RM1164,36-45,Research & Development,Medical,2,Female,3,1,Research Scientist,2,3936,Upto 5k,1,11,3,1,8,2,8,4,7
+RM1212,36-45,Sales,Medical,3,Male,1,2,Sales Executive,4,9525,5k-10k,1,14,3,3,6,2,6,3,1
+RM1277,36-45,Sales,Marketing,2,Male,2,2,Sales Executive,2,4189,Upto 5k,1,14,3,1,5,2,5,2,0
+RM1281,36-45,Human Resources,Other,3,Male,3,2,Human Resources,2,4071,Upto 5k,2,13,3,3,19,4,10,0,4
+RM1292,36-45,Research & Development,Medical,4,Male,3,2,Manufacturing Director,1,4213,Upto 5k,1,15,3,2,10,4,10,3,0
+RM1345,36-45,Research & Development,Medical,4,Male,3,2,Research Scientist,1,4284,Upto 5k,5,22,4,3,16,2,5,3,0
+RM1433,36-45,Research & Development,Life Sciences,3,Female,4,3,Research Director,4,13744,10k-15k,1,25,4,1,16,2,16,11,6
+RM009,36-45,Research & Development,Life Sciences,4,Male,2,3,Manufacturing Director,3,9526,5k-10k,0,21,4,2,10,2,9,7,1
+RM020,36-45,Research & Development,Life Sciences,4,Male,3,1,Research Scientist,4,3944,Upto 5k,5,11,3,3,6,3,3,2,1
+RM062,36-45,Research & Development,Life Sciences,4,Female,3,2,Laboratory Technician,4,2406,Upto 5k,1,11,3,4,10,2,10,3,9
+RM084,36-45,Research & Development,Medical,2,Female,1,2,Research Scientist,4,5329,5k-10k,7,12,3,4,17,3,13,11,1
+RM143,36-45,Research & Development,Technical Degree,4,Female,3,2,Research Scientist,3,4317,Upto 5k,3,20,4,2,19,2,3,2,2
+RM169,36-45,Sales,Life Sciences,1,Female,2,2,Sales Executive,4,8686,5k-10k,4,22,4,3,12,2,8,3,0
+RM180,36-45,Research & Development,Life Sciences,3,Female,3,1,Laboratory Technician,4,2288,Upto 5k,1,12,3,3,2,3,2,2,2
+RM199,36-45,Research & Development,Life Sciences,4,Male,3,2,Manufacturing Director,3,6553,5k-10k,9,14,3,2,14,3,1,0,0
+RM200,36-45,Research & Development,Technical Degree,4,Male,3,2,Manufacturing Director,4,6261,5k-10k,3,18,3,1,9,3,7,7,1
+RM205,36-45,Research & Development,Medical,2,Male,3,2,Healthcare Representative,1,6673,5k-10k,7,19,3,2,17,2,1,0,0
+RM224,36-45,Sales,Life Sciences,1,Male,3,3,Sales Executive,3,10609,10k-15k,0,12,3,3,17,6,16,10,5
+RM262,36-45,Sales,Life Sciences,4,Male,2,2,Sales Executive,4,5249,5k-10k,3,18,3,4,13,0,8,7,7
+RM278,36-45,Sales,Medical,1,Female,4,2,Sales Executive,1,5605,5k-10k,1,24,4,3,8,3,8,0,7
+RM288,36-45,Research & Development,Life Sciences,4,Male,3,2,Healthcare Representative,4,5745,5k-10k,9,14,3,2,10,2,2,2,1
+RM308,36-45,Research & Development,Life Sciences,1,Female,2,3,Research Director,2,12061,10k-15k,3,17,3,3,19,2,10,8,0
+RM342,36-45,Research & Development,Life Sciences,3,Male,2,3,Research Director,4,11510,10k-15k,0,14,3,2,12,3,11,10,2
+RM417,36-45,Research & Development,Life Sciences,4,Male,3,1,Laboratory Technician,4,1702,Upto 5k,1,23,4,3,1,3,1,0,0
+RM472,36-45,Research & Development,Medical,3,Female,3,2,Healthcare Representative,3,9824,5k-10k,3,19,3,3,18,4,1,0,0
+RM491,36-45,Research & Development,Life Sciences,3,Female,3,1,Research Scientist,1,2619,Upto 5k,3,17,3,4,8,3,0,0,0
+RM519,36-45,Sales,Marketing,4,Female,2,2,Sales Executive,4,4028,Upto 5k,0,20,4,1,8,2,7,7,0
+RM530,36-45,Research & Development,Life Sciences,2,Female,4,2,Healthcare Representative,4,7625,5k-10k,0,13,3,3,10,4,9,7,1
+RM543,36-45,Research & Development,Life Sciences,3,Female,3,3,Manufacturing Director,3,7861,5k-10k,4,14,3,4,10,4,1,0,0
+RM560,36-45,Research & Development,Medical,4,Male,3,1,Research Scientist,3,3057,Upto 5k,6,13,3,2,6,0,1,0,0
+RM579,36-45,Research & Development,Life Sciences,1,Female,4,2,Manufacturing Director,1,5980,5k-10k,6,12,3,4,17,2,15,7,4
+RM606,36-45,Research & Development,Life Sciences,1,Male,2,2,Healthcare Representative,1,6288,5k-10k,2,15,3,3,13,3,4,3,1
+RM643,36-45,Sales,Marketing,2,Male,2,1,Sales Representative,2,2899,Upto 5k,0,19,3,4,3,3,2,2,1
+RM682,36-45,Research & Development,Technical Degree,4,Female,3,3,Research Director,1,13582,10k-15k,1,13,3,2,15,3,15,12,5
+RM704,36-45,Sales,Technical Degree,3,Female,3,2,Sales Executive,4,5666,5k-10k,1,13,3,2,6,1,5,3,1
+RM723,36-45,Research & Development,Medical,3,Male,3,1,Research Scientist,3,2684,Upto 5k,0,17,3,2,3,0,2,1,0
+RM748,36-45,Sales,Life Sciences,2,Male,3,2,Sales Executive,4,6861,5k-10k,8,12,3,3,19,1,1,0,0
+RM766,36-45,Research & Development,Other,3,Male,3,1,Research Scientist,3,2821,Upto 5k,3,16,3,1,8,2,2,2,2
+RM785,36-45,Research & Development,Life Sciences,3,Female,2,3,Healthcare Representative,3,8823,5k-10k,0,18,3,1,20,4,19,9,1
+RM808,36-45,Sales,Marketing,3,Male,2,3,Sales Executive,3,8740,5k-10k,0,14,3,2,9,2,8,7,2
+RM812,36-45,Sales,Marketing,4,Male,3,3,Sales Executive,2,7351,5k-10k,7,16,3,3,10,2,1,0,0
+RM827,36-45,Human Resources,Human Resources,3,Male,4,1,Human Resources,3,2844,Upto 5k,1,13,3,4,7,2,7,6,5
+RM964,36-45,Sales,Life Sciences,2,Female,3,2,Sales Executive,1,6893,5k-10k,3,15,3,4,11,3,7,7,1
+RM983,36-45,Research & Development,Life Sciences,4,Male,4,1,Research Scientist,3,2610,Upto 5k,1,11,3,4,4,2,4,2,0
+RM1108,36-45,Human Resources,Human Resources,3,Male,3,2,Human Resources,3,6077,5k-10k,3,11,3,3,10,2,6,3,1
+RM1113,36-45,Research & Development,Medical,3,Male,3,2,Manufacturing Director,2,4855,Upto 5k,4,11,3,1,7,2,5,2,1
+RM1120,36-45,Sales,Life Sciences,3,Male,3,2,Sales Executive,2,9924,5k-10k,0,11,3,4,10,3,9,8,7
+RM1121,36-45,Sales,Life Sciences,2,Female,3,2,Sales Executive,2,4198,Upto 5k,2,12,3,2,8,5,3,2,1
+RM1162,36-45,Research & Development,Medical,4,Female,2,3,Manufacturing Director,3,7756,5k-10k,3,19,3,4,10,6,5,4,0
+RM1188,36-45,Research & Development,Life Sciences,4,Male,3,2,Research Scientist,4,4735,Upto 5k,7,15,3,4,19,4,13,11,2
+RM1194,36-45,Research & Development,Medical,4,Female,2,1,Laboratory Technician,2,2440,Upto 5k,1,22,4,2,4,3,4,3,3
+RM1203,36-45,Research & Development,Medical,4,Female,3,1,Laboratory Technician,3,3306,Upto 5k,7,19,3,4,7,5,0,0,0
+RM1257,36-45,Research & Development,Medical,3,Female,2,1,Laboratory Technician,2,2468,Upto 5k,4,14,3,2,9,4,6,1,0
+RM1262,36-45,Research & Development,Medical,2,Male,1,2,Healthcare Representative,4,5811,5k-10k,3,16,3,3,15,2,1,0,1
+RM1273,36-45,Research & Development,Other,4,Female,2,1,Laboratory Technician,3,3702,Upto 5k,1,11,3,2,5,3,5,4,0
+RM1290,36-45,Human Resources,Human Resources,1,Male,3,1,Human Resources,2,2592,Upto 5k,5,13,3,4,13,3,11,10,3
+RM1309,36-45,Sales,Marketing,2,Female,1,2,Sales Representative,4,5405,5k-10k,2,20,4,1,20,4,4,2,0
+RM1374,36-45,Research & Development,Medical,4,Female,2,2,Research Scientist,2,2133,Upto 5k,1,16,3,3,20,3,20,11,0
+RM1377,36-45,Research & Development,Life Sciences,2,Male,3,1,Research Scientist,4,4771,Upto 5k,2,19,3,4,10,0,5,2,0
+RM1392,36-45,Sales,Life Sciences,1,Male,2,1,Sales Representative,1,2858,Upto 5k,4,14,3,1,20,3,1,0,0
+RM1401,36-45,Human Resources,Other,4,Male,3,1,Human Resources,2,2991,Upto 5k,0,11,3,2,7,2,6,2,1
+RM1417,36-45,Sales,Life Sciences,4,Male,3,2,Sales Executive,2,4440,Upto 5k,0,15,3,1,16,3,15,13,5
+RM1419,36-45,Research & Development,Life Sciences,1,Male,2,2,Manufacturing Director,3,5321,5k-10k,2,11,3,4,10,1,8,3,7
+RM1431,36-45,Research & Development,Medical,2,Female,1,3,Research Director,3,13206,10k-15k,3,12,3,1,20,3,18,16,1
+RM1452,36-45,Sales,Life Sciences,1,Female,3,2,Sales Executive,4,5343,5k-10k,1,11,3,3,10,1,10,7,1
+RM034,36-45,Sales,Technical Degree,4,Male,3,2,Sales Representative,4,2086,Upto 5k,3,14,3,3,19,6,1,0,0
+RM138,36-45,Sales,Life Sciences,4,Female,2,2,Sales Executive,3,5902,5k-10k,4,14,3,3,17,1,15,11,5
+RM241,36-45,Research & Development,Medical,3,Female,3,1,Laboratory Technician,3,2232,Upto 5k,7,14,3,3,7,1,3,2,1
+RM252,36-45,Research & Development,Technical Degree,3,Female,3,3,Healthcare Representative,3,10938,10k-15k,0,25,4,4,20,1,19,6,11
+RM305,36-45,Research & Development,Medical,3,Male,4,3,Healthcare Representative,4,9613,5k-10k,0,17,3,1,19,5,18,10,3
+RM315,36-45,Research & Development,Medical,3,Male,3,4,Manager,1,17068,15k+,1,14,3,4,21,3,21,9,11
+RM327,36-45,Research & Development,Medical,3,Male,2,5,Manager,4,19272,15k+,1,15,3,1,21,2,21,9,13
+RM328,36-45,Sales,Medical,4,Female,3,2,Sales Executive,3,5238,5k-10k,4,18,3,1,12,3,1,0,0
+RM401,36-45,Research & Development,Life Sciences,2,Male,3,5,Manager,3,19197,15k+,1,14,3,3,21,3,21,8,1
+RM450,36-45,Research & Development,Life Sciences,3,Female,3,1,Laboratory Technician,3,3755,Upto 5k,1,11,3,1,8,3,8,3,0
+RM527,36-45,Research & Development,Technical Degree,4,Female,2,2,Healthcare Representative,3,4553,Upto 5k,1,11,3,1,20,4,20,7,11
+RM552,36-45,Human Resources,Human Resources,3,Female,4,2,Human Resources,2,6389,5k-10k,9,15,3,3,12,3,8,3,3
+RM655,36-45,Human Resources,Life Sciences,4,Female,2,2,Human Resources,4,5204,5k-10k,8,11,3,3,13,2,5,4,0
+RM670,36-45,Research & Development,Medical,4,Male,3,1,Laboratory Technician,1,2404,Upto 5k,7,21,4,4,8,2,2,2,2
+RM706,36-45,Sales,Life Sciences,1,Male,4,3,Sales Executive,3,7880,5k-10k,0,18,3,4,9,3,8,7,0
+RM739,36-45,Research & Development,Life Sciences,4,Female,2,4,Manufacturing Director,4,12742,10k-15k,1,16,3,3,21,3,21,6,11
+RM754,36-45,Research & Development,Medical,4,Female,3,3,Manufacturing Director,1,10880,10k-15k,1,13,3,3,21,2,21,6,2
+RM814,36-45,Research & Development,Life Sciences,1,Male,3,4,Healthcare Representative,4,12169,10k-15k,7,11,3,4,21,4,18,7,11
+RM817,36-45,Research & Development,Life Sciences,3,Male,3,2,Laboratory Technician,2,6782,5k-10k,9,15,3,3,9,2,5,4,0
+RM938,36-45,Research & Development,Medical,3,Female,2,4,Manager,2,17123,15k+,6,13,3,4,21,4,19,9,15
+RM941,36-45,Research & Development,Medical,3,Male,3,1,Research Scientist,1,3904,Upto 5k,0,13,3,1,6,2,5,2,0
+RM950,36-45,Research & Development,Life Sciences,1,Male,3,2,Manufacturing Director,3,4534,Upto 5k,0,11,3,1,9,6,8,7,1
+RM987,36-45,Sales,Life Sciences,1,Male,2,2,Sales Executive,4,6120,5k-10k,3,12,3,4,8,2,5,4,1
+RM993,36-45,Research & Development,Life Sciences,3,Male,3,3,Healthcare Representative,3,10920,10k-15k,3,21,4,2,13,2,6,4,0
+RM1033,36-45,Research & Development,Life Sciences,1,Female,2,1,Laboratory Technician,1,3646,Upto 5k,2,23,4,2,11,2,1,0,0
+RM1080,36-45,Research & Development,Life Sciences,2,Female,3,3,Manufacturing Director,2,8376,5k-10k,4,18,3,4,9,3,2,0,2
+RM1125,36-45,Sales,Medical,4,Male,4,3,Sales Executive,3,8237,5k-10k,2,11,3,1,11,3,7,6,7
+RM1149,36-45,Research & Development,Medical,2,Male,3,2,Manufacturing Director,1,5377,5k-10k,2,13,3,4,10,3,7,7,7
+RM1156,36-45,Research & Development,Medical,3,Male,2,2,Laboratory Technician,3,3069,Upto 5k,0,15,3,4,11,3,10,8,0
+RM1160,36-45,Research & Development,Medical,1,Female,3,2,Manufacturing Director,3,5042,5k-10k,0,13,3,4,10,2,9,2,3
+RM1176,36-45,Research & Development,Medical,4,Male,3,2,Manufacturing Director,2,5295,5k-10k,4,21,4,3,7,3,5,4,1
+RM1241,36-45,Research & Development,Life Sciences,4,Male,3,2,Laboratory Technician,4,6472,5k-10k,1,15,3,4,9,2,9,8,5
+RM1285,36-45,Research & Development,Medical,3,Male,3,3,Research Director,3,13464,10k-15k,7,21,4,3,9,3,4,3,2
+RM1293,36-45,Sales,Life Sciences,3,Male,3,2,Sales Executive,4,4127,Upto 5k,2,18,3,4,7,6,2,1,2
+RM1336,36-45,Research & Development,Other,4,Male,3,2,Research Scientist,4,3902,Upto 5k,8,14,3,2,7,2,2,2,2
+RM1367,36-45,Sales,Life Sciences,1,Female,1,2,Sales Executive,3,5736,5k-10k,6,19,3,3,10,1,3,2,1
+RM1373,36-45,Research & Development,Medical,1,Male,3,2,Manufacturing Director,1,5151,5k-10k,1,25,4,4,10,3,10,0,7
+RM1404,36-45,Sales,Marketing,2,Male,3,4,Sales Executive,1,13341,10k-15k,0,12,3,1,21,3,20,8,11
+RM1430,36-45,Research & Development,Life Sciences,1,Male,3,2,Research Scientist,4,4108,Upto 5k,7,13,3,1,18,2,7,7,1
+RM1438,36-45,Research & Development,Life Sciences,4,Male,3,5,Manager,4,19431,15k+,2,13,3,3,21,3,6,0,1
+RM1463,36-45,Sales,Marketing,2,Female,2,4,Sales Executive,4,12031,10k-15k,0,11,3,1,21,2,20,9,9
+RM1467,36-45,Research & Development,Medical,4,Male,2,3,Healthcare Representative,1,9991,5k-10k,4,15,3,1,9,5,7,7,1
+RM1467,36-45,Research & Development,Medical,4,Male,2,3,Healthcare Representative,1,9991,5k-10k,4,15,3,1,9,5,7,7,1
+RM091,36-45,Research & Development,Life Sciences,3,Male,2,4,Healthcare Representative,2,13503,10k-15k,1,22,4,4,22,3,22,3,11
+RM151,36-45,Research & Development,Medical,2,Female,3,2,Research Scientist,2,5605,5k-10k,1,11,3,1,20,2,20,7,2
+RM159,36-45,Sales,Marketing,3,Male,2,3,Sales Executive,4,10855,10k-15k,7,11,3,1,15,2,12,11,2
+RM187,36-45,Research & Development,Medical,4,Female,3,5,Manager,3,19033,15k+,1,14,3,2,21,2,20,8,9
+RM204,36-45,Research & Development,Medical,3,Male,3,2,Laboratory Technician,4,2741,Upto 5k,8,15,3,3,15,2,7,2,3
+RM209,36-45,Research & Development,Life Sciences,4,Male,2,2,Healthcare Representative,4,4876,Upto 5k,9,14,3,4,5,5,3,2,0
+RM244,36-45,Research & Development,Technical Degree,1,Male,3,2,Research Scientist,4,3319,Upto 5k,1,17,3,1,9,3,9,8,4
+RM258,36-45,Research & Development,Medical,1,Male,3,5,Research Director,3,19436,15k+,0,19,3,4,22,5,21,7,3
+RM336,36-45,Sales,Medical,2,Male,1,2,Sales Executive,4,7457,5k-10k,2,22,4,3,6,2,4,3,0
+RM362,36-45,Research & Development,Life Sciences,4,Female,4,1,Laboratory Technician,3,2213,Upto 5k,3,13,3,3,10,3,7,7,1
+RM369,36-45,Sales,Marketing,3,Male,2,2,Sales Executive,3,6380,5k-10k,2,12,3,1,8,6,6,4,1
+RM388,36-45,Sales,Marketing,4,Female,3,2,Sales Executive,2,5715,5k-10k,7,12,3,3,8,5,5,4,1
+RM392,36-45,Research & Development,Medical,2,Female,2,2,Laboratory Technician,3,3448,Upto 5k,6,22,4,2,20,3,1,0,0
+RM418,36-45,Sales,Life Sciences,3,Female,3,5,Manager,3,18041,15k+,0,14,3,4,21,2,20,15,1
+RM449,36-45,Research & Development,Life Sciences,2,Female,3,4,Manufacturing Director,3,13237,10k-15k,7,15,3,3,22,3,20,6,5
+RM459,36-45,Sales,Other,3,Male,1,3,Sales Executive,1,10932,10k-15k,3,15,3,3,20,2,1,0,0
+RM534,36-45,Sales,Life Sciences,4,Male,2,3,Sales Executive,1,10475,10k-15k,5,21,4,3,20,2,18,13,1
+RM554,36-45,Research & Development,Medical,4,Female,2,1,Research Scientist,4,2342,Upto 5k,0,20,4,4,5,2,4,2,2
+RM583,36-45,Research & Development,Medical,3,Female,4,2,Healthcare Representative,2,4244,Upto 5k,1,24,4,4,8,2,8,7,3
+RM602,36-45,Research & Development,Medical,1,Male,2,2,Laboratory Technician,3,5094,5k-10k,6,14,3,4,10,6,1,0,0
+RM685,36-45,Sales,Marketing,1,Male,2,3,Sales Executive,2,9705,5k-10k,2,12,3,2,11,2,1,0,0
+RM692,36-45,Research & Development,Medical,4,Male,3,1,Research Scientist,2,3617,Upto 5k,8,14,3,4,3,2,1,1,0
+RM707,36-45,Sales,Life Sciences,2,Female,4,4,Sales Executive,2,13194,10k-15k,4,16,3,4,22,2,1,0,0
+RM769,36-45,Sales,Marketing,3,Male,3,2,Sales Executive,1,8396,5k-10k,1,14,3,2,8,3,7,7,7
+RM786,36-45,Research & Development,Technical Degree,1,Male,3,3,Healthcare Representative,4,10322,10k-15k,4,20,4,4,14,6,11,10,11
+RM815,36-45,Research & Development,Medical,3,Male,2,5,Research Director,3,19626,15k+,1,14,3,1,21,2,20,7,4
+RM838,36-45,Research & Development,Medical,2,Female,3,3,Research Director,3,13499,10k-15k,9,17,3,3,20,3,18,7,2
+RM846,36-45,Research & Development,Medical,3,Female,2,2,Research Scientist,4,4422,Upto 5k,3,13,3,4,16,3,1,1,0
+RM867,36-45,Sales,Medical,2,Male,3,2,Sales Executive,2,4327,Upto 5k,5,12,3,4,5,2,0,0,0
+RM885,36-45,Sales,Technical Degree,2,Female,2,2,Sales Executive,2,6852,5k-10k,7,12,3,2,7,2,5,1,1
+RM947,36-45,Sales,Marketing,4,Male,2,3,Sales Executive,2,9094,5k-10k,2,12,3,3,9,2,5,4,1
+RM958,36-45,Research & Development,Life Sciences,3,Male,3,1,Research Scientist,3,3544,Upto 5k,9,16,3,2,6,0,4,2,0
+RM960,36-45,Research & Development,Life Sciences,3,Male,3,2,Research Scientist,4,4661,Upto 5k,1,13,3,3,9,4,9,8,8
+RM968,36-45,Research & Development,Life Sciences,2,Male,3,1,Laboratory Technician,2,2387,Upto 5k,3,22,4,3,7,3,4,2,0
+RM979,36-45,Research & Development,Medical,2,Female,4,2,Healthcare Representative,3,6377,5k-10k,5,20,4,2,15,0,12,11,11
+RM1030,36-45,Research & Development,Other,3,Male,3,2,Laboratory Technician,3,3975,Upto 5k,3,11,3,3,11,2,8,7,0
+RM1041,36-45,Research & Development,Medical,4,Male,2,3,Research Director,2,13757,10k-15k,2,11,3,3,16,5,9,8,4
+RM1046,36-45,Research & Development,Medical,3,Male,3,1,Research Scientist,3,2345,Upto 5k,2,14,3,3,8,3,3,1,1
+RM1084,36-45,Research & Development,Life Sciences,4,Male,3,1,Laboratory Technician,1,2018,Upto 5k,3,14,3,2,15,3,5,4,1
+RM1095,36-45,Sales,Medical,1,Male,3,2,Sales Executive,1,5473,5k-10k,0,12,3,4,9,5,8,4,7
+RM1097,36-45,Human Resources,Medical,3,Male,3,4,Manager,4,16437,15k+,1,21,4,4,21,2,21,7,7
+RM1099,36-45,Research & Development,Life Sciences,4,Male,3,2,Healthcare Representative,4,4069,Upto 5k,3,18,3,3,8,2,2,2,2
+RM1133,36-45,Sales,Life Sciences,4,Female,3,2,Sales Executive,1,4639,Upto 5k,1,15,3,3,5,2,5,4,1
+RM1157,36-45,Research & Development,Life Sciences,1,Female,2,3,Manufacturing Director,3,10435,10k-15k,1,13,3,4,18,2,18,15,14
+RM1165,36-45,Research & Development,Life Sciences,3,Female,3,3,Manufacturing Director,4,7945,5k-10k,6,15,3,4,18,2,4,2,3
+RM1172,36-45,Research & Development,Life Sciences,1,Male,3,1,Laboratory Technician,1,2166,Upto 5k,3,14,3,2,10,3,4,2,0
+RM1230,36-45,Research & Development,Life Sciences,2,Female,3,2,Manufacturing Director,1,6516,5k-10k,2,16,3,2,18,3,1,0,0
+RM1243,36-45,Sales,Medical,2,Male,3,5,Manager,2,19833,15k+,1,14,3,2,21,3,21,8,12
+RM1287,36-45,Research & Development,Life Sciences,3,Female,3,1,Laboratory Technician,1,3377,Upto 5k,4,17,3,4,7,5,4,3,0
+RM1300,36-45,Research & Development,Life Sciences,3,Female,3,2,Healthcare Representative,4,6513,5k-10k,4,17,3,4,12,3,5,3,0
+RM1305,36-45,Research & Development,Life Sciences,2,Female,3,2,Healthcare Representative,1,4448,Upto 5k,2,12,3,2,15,3,7,4,7
+RM1349,36-45,Research & Development,Life Sciences,1,Male,3,4,Manager,1,16823,15k+,2,11,3,1,22,3,19,7,11
+RM1410,36-45,Research & Development,Technical Degree,4,Female,3,2,Laboratory Technician,3,6323,5k-10k,1,11,3,1,10,2,10,9,9
+RM1411,36-45,Sales,Marketing,2,Female,3,2,Sales Executive,2,5677,5k-10k,3,14,3,3,15,4,11,8,5
+RM1428,36-45,Research & Development,Life Sciences,1,Male,3,1,Laboratory Technician,4,2406,Upto 5k,8,19,3,3,8,3,1,0,0
+RM1456,36-45,Research & Development,Life Sciences,3,Male,2,1,Research Scientist,3,2809,Upto 5k,2,14,3,4,8,2,2,2,2
+RM1458,36-45,Research & Development,Medical,3,Female,3,1,Research Scientist,3,2001,Upto 5k,2,14,3,2,20,2,5,3,0
+RM001,36-45,Sales,Life Sciences,2,Female,3,2,Sales Executive,4,5993,5k-10k,8,11,3,1,8,0,6,4,0
+RM046,36-45,Research & Development,Technical Degree,2,Female,3,5,Research Director,3,19545,15k+,1,12,3,4,23,0,22,15,15
+RM134,36-45,Sales,Life Sciences,3,Male,3,3,Sales Executive,3,8189,5k-10k,3,13,3,3,12,2,9,7,0
+RM148,36-45,Research & Development,Life Sciences,4,Male,2,4,Manager,1,17181,15k+,4,13,3,2,21,2,7,6,7
+RM149,36-45,Research & Development,Life Sciences,3,Male,3,1,Laboratory Technician,1,2238,Upto 5k,2,21,4,4,7,2,5,0,1
+RM167,36-45,Research & Development,Life Sciences,1,Male,3,1,Research Scientist,3,2451,Upto 5k,4,12,3,1,13,2,9,8,1
+RM183,36-45,Sales,Marketing,2,Female,3,1,Sales Representative,2,3140,Upto 5k,1,22,4,4,4,5,4,3,0
+RM216,36-45,Sales,Life Sciences,4,Female,3,3,Manager,4,13591,10k-15k,3,18,3,3,16,3,1,0,0
+RM243,36-45,Research & Development,Life Sciences,3,Male,3,2,Research Scientist,1,3072,Upto 5k,2,16,3,1,17,2,1,0,0
+RM301,36-45,Sales,Life Sciences,4,Male,3,4,Manager,2,16015,15k+,1,19,3,2,22,2,22,10,0
+RM347,36-45,Research & Development,Medical,4,Male,2,2,Manufacturing Director,2,6032,5k-10k,6,15,3,4,8,3,5,4,1
+RM367,36-45,Sales,Marketing,1,Male,3,2,Sales Executive,2,9355,5k-10k,1,18,3,3,8,5,8,7,7
+RM404,36-45,Sales,Marketing,2,Male,4,3,Sales Executive,1,8392,5k-10k,1,16,3,3,10,2,10,7,0
+RM447,36-45,Sales,Life Sciences,4,Male,3,2,Sales Executive,4,6230,5k-10k,7,14,3,4,16,3,14,3,1
+RM460,36-45,Research & Development,Other,1,Female,2,2,Healthcare Representative,3,6811,5k-10k,2,17,3,1,10,3,8,7,0
+RM467,36-45,Sales,Life Sciences,2,Female,3,4,Manager,1,16595,15k+,7,16,3,2,22,2,18,16,11
+RM536,36-45,Human Resources,Human Resources,2,Male,2,5,Manager,4,19141,15k+,3,15,3,2,23,2,21,6,12
+RM539,36-45,Human Resources,Human Resources,4,Male,2,5,Manager,3,19189,15k+,1,12,3,2,22,3,22,7,2
+RM668,36-45,Research & Development,Life Sciences,2,Female,1,1,Laboratory Technician,4,2778,Upto 5k,4,13,3,3,10,1,7,7,1
+RM687,36-45,Research & Development,Medical,4,Male,3,1,Laboratory Technician,1,4721,Upto 5k,2,13,3,3,20,3,18,13,2
+RM717,36-45,Research & Development,Medical,1,Male,3,5,Research Director,3,19419,15k+,2,17,3,2,21,2,18,16,0
+RM738,36-45,Research & Development,Medical,4,Female,3,2,Manufacturing Director,3,5003,5k-10k,6,14,3,2,8,6,2,2,2
+RM747,36-45,Research & Development,Life Sciences,2,Female,1,5,Research Director,3,19973,15k+,1,22,4,2,21,3,21,16,5
+RM784,36-45,Research & Development,Technical Degree,2,Female,4,1,Research Scientist,3,3376,Upto 5k,1,13,3,3,10,3,10,6,0
+RM831,36-45,Research & Development,Life Sciences,2,Male,3,1,Laboratory Technician,4,4766,Upto 5k,3,11,3,1,6,4,1,0,0
+RM865,36-45,Research & Development,Life Sciences,1,Male,2,1,Research Scientist,1,2107,Upto 5k,6,17,3,1,5,2,1,0,0
+RM952,36-45,Sales,Medical,3,Male,1,2,Sales Executive,2,6151,5k-10k,1,13,3,1,19,4,19,2,11
+RM961,36-45,Sales,Marketing,3,Female,3,2,Sales Executive,1,4103,Upto 5k,0,17,3,4,10,2,9,3,1
+RM989,36-45,Research & Development,Life Sciences,4,Female,3,2,Research Scientist,4,5467,5k-10k,3,14,3,1,12,4,6,2,3
+RM1029,36-45,Research & Development,Medical,2,Male,4,1,Research Scientist,3,2127,Upto 5k,2,12,3,1,7,5,4,2,0
+RM1197,36-45,Sales,Life Sciences,4,Male,3,3,Sales Executive,3,7082,5k-10k,3,16,3,4,21,2,2,0,0
+RM1219,36-45,Sales,Marketing,4,Male,3,3,Sales Executive,3,9241,5k-10k,1,12,3,2,10,3,10,8,8
+RM1229,36-45,Human Resources,Human Resources,3,Male,1,2,Human Resources,2,6430,5k-10k,6,19,3,2,10,4,3,2,1
+RM1267,36-45,Research & Development,Life Sciences,3,Male,3,1,Laboratory Technician,1,2289,Upto 5k,1,20,4,2,5,2,5,3,0
+RM1295,36-45,Research & Development,Life Sciences,2,Male,4,2,Healthcare Representative,2,6870,5k-10k,3,12,3,1,11,3,3,2,1
+RM1296,36-45,Sales,Marketing,3,Female,3,3,Sales Executive,3,10447,10k-15k,0,13,3,4,23,3,22,14,13
+RM1357,36-45,Sales,Marketing,3,Female,3,2,Sales Executive,2,4393,Upto 5k,5,21,4,3,14,3,5,4,1
+RM1421,36-45,Research & Development,Life Sciences,4,Male,3,1,Research Scientist,4,2782,Upto 5k,3,22,4,1,12,3,5,3,1
+RM1446,36-45,Research & Development,Life Sciences,1,Female,2,4,Manufacturing Director,2,13570,10k-15k,0,23,4,3,21,3,20,7,0
+RM1449,36-45,Sales,Life Sciences,3,Male,2,2,Sales Executive,2,8938,5k-10k,2,11,3,3,14,5,5,4,0
+RM028,36-45,Sales,Marketing,3,Male,3,2,Sales Executive,2,6825,5k-10k,0,11,3,4,10,2,9,7,4
+RM198,36-45,Research & Development,Medical,3,Female,3,2,Manufacturing Director,3,5265,5k-10k,2,16,3,2,11,5,5,3,0
+RM232,36-45,Research & Development,Technical Degree,3,Male,3,5,Manager,4,19232,15k+,1,11,3,4,22,3,22,17,11
+RM254,36-45,Research & Development,Life Sciences,4,Female,4,2,Research Scientist,1,6545,5k-10k,3,13,3,3,10,1,3,2,0
+RM257,36-45,Research & Development,Medical,4,Female,2,1,Laboratory Technician,1,2593,Upto 5k,0,11,3,3,10,4,9,6,7
+RM282,36-45,Sales,Life Sciences,2,Male,3,2,Sales Executive,3,4907,Upto 5k,1,25,4,3,20,3,20,16,11
+RM296,36-45,Sales,Marketing,3,Female,3,4,Sales Executive,2,13525,10k-15k,5,14,3,4,23,2,20,4,4
+RM349,36-45,Research & Development,Life Sciences,1,Female,3,4,Research Director,4,15992,15k+,2,14,3,2,16,2,1,0,0
+RM351,36-45,Human Resources,Technical Degree,3,Male,3,1,Human Resources,3,2696,Upto 5k,0,11,3,3,4,5,3,2,1
+RM357,36-45,Research & Development,Other,1,Male,2,2,Healthcare Representative,4,6781,5k-10k,3,23,4,2,14,6,1,0,0
+RM389,36-45,Research & Development,Life Sciences,2,Female,3,1,Laboratory Technician,1,2576,Upto 5k,3,16,3,2,8,5,5,2,1
+RM410,36-45,Research & Development,Life Sciences,1,Female,3,2,Research Scientist,3,4556,Upto 5k,2,11,3,2,19,3,5,4,0
+RM414,36-45,Research & Development,Technical Degree,4,Female,2,2,Healthcare Representative,4,4523,Upto 5k,0,11,3,4,7,4,6,5,0
+RM442,36-45,Research & Development,Other,2,Male,3,1,Laboratory Technician,3,2093,Upto 5k,4,17,3,4,8,4,2,2,2
+RM452,36-45,Research & Development,Medical,4,Male,3,3,Manufacturing Director,1,7406,5k-10k,1,21,4,4,10,5,10,9,5
+RM489,36-45,Research & Development,Life Sciences,3,Female,3,2,Healthcare Representative,4,4089,Upto 5k,1,13,3,2,10,4,10,2,2
+RM548,36-45,Research & Development,Medical,3,Male,4,1,Research Scientist,3,2759,Upto 5k,6,12,3,4,7,2,2,2,2
+RM585,36-45,Research & Development,Life Sciences,2,Male,3,5,Manager,4,18430,15k+,1,13,3,2,24,4,24,7,14
+RM598,36-45,Research & Development,Life Sciences,4,Female,2,2,Manufacturing Director,4,6062,5k-10k,9,13,3,4,8,4,4,3,0
+RM605,36-45,Research & Development,Life Sciences,2,Male,3,2,Manufacturing Director,2,4434,Upto 5k,1,13,3,4,10,3,9,8,7
+RM633,36-45,Research & Development,Medical,2,Male,3,1,Research Scientist,4,2515,Upto 5k,5,14,3,4,8,2,2,1,2
+RM644,36-45,Research & Development,Life Sciences,3,Female,4,2,Laboratory Technician,4,5231,5k-10k,2,13,3,2,17,1,5,3,1
+RM673,36-45,Sales,Medical,3,Female,2,2,Sales Executive,3,6244,5k-10k,7,17,3,1,10,6,5,4,0
+RM742,36-45,Sales,Marketing,4,Male,3,5,Manager,3,18303,15k+,6,13,3,2,21,3,1,0,0
+RM800,36-45,Research & Development,Medical,4,Male,3,4,Manager,1,17665,15k+,0,17,3,4,23,3,22,6,13
+RM825,36-45,Research & Development,Medical,2,Male,1,2,Laboratory Technician,4,4272,Upto 5k,4,19,3,1,16,3,1,0,0
+RM839,36-45,Sales,Life Sciences,3,Male,3,4,Sales Executive,1,13758,10k-15k,0,12,3,2,22,2,21,9,13
+RM840,36-45,Sales,Marketing,2,Male,3,2,Sales Executive,1,5155,5k-10k,7,13,3,4,9,3,6,4,1
+RM879,36-45,Human Resources,Medical,4,Male,4,2,Human Resources,1,6272,5k-10k,7,16,3,1,10,3,4,3,0
+RM888,36-45,Research & Development,Medical,1,Female,3,3,Research Director,1,13191,10k-15k,3,17,3,3,20,6,1,0,0
+RM926,36-45,Research & Development,Medical,2,Female,4,2,Research Scientist,2,2372,Upto 5k,6,16,3,4,18,2,1,0,0
+RM955,36-45,Research & Development,Life Sciences,3,Male,3,4,Manager,3,17861,15k+,0,13,3,4,21,3,20,8,2
+RM1000,36-45,Human Resources,Human Resources,3,Female,3,4,Manager,1,16799,15k+,0,14,3,3,21,5,20,7,0
+RM1051,36-45,Research & Development,Medical,1,Female,3,1,Laboratory Technician,4,3673,Upto 5k,1,13,3,3,12,3,12,9,5
+RM1089,36-45,Research & Development,Medical,3,Male,2,1,Laboratory Technician,2,4841,Upto 5k,4,14,3,2,4,3,1,0,0
+RM1094,36-45,Research & Development,Life Sciences,4,Male,3,3,Healthcare Representative,4,10124,10k-15k,2,14,3,3,24,3,20,8,13
+RM1130,36-45,Research & Development,Other,4,Male,2,5,Manager,4,19613,15k+,8,22,4,4,24,2,1,0,0
+RM1264,36-45,Research & Development,Medical,2,Male,3,1,Laboratory Technician,2,2766,Upto 5k,8,22,4,2,7,6,5,3,0
+RM1288,36-45,Research & Development,Medical,2,Male,4,2,Healthcare Representative,1,5538,5k-10k,5,18,3,3,10,2,0,0,0
+RM1321,36-45,Research & Development,Technical Degree,3,Male,3,1,Research Scientist,3,2936,Upto 5k,3,22,4,2,10,1,6,3,3
+RM1326,36-45,Research & Development,Life Sciences,4,Male,3,1,Laboratory Technician,3,3968,Upto 5k,4,13,3,4,8,3,0,0,0
+RM1358,36-45,Research & Development,Medical,3,Male,3,3,Research Director,1,13348,10k-15k,9,13,3,2,18,3,13,7,5
+RM1379,36-45,Sales,Marketing,2,Male,3,2,Sales Executive,4,5087,5k-10k,3,12,3,3,14,4,0,0,0
+RM1405,36-45,Research & Development,Life Sciences,4,Male,2,2,Research Scientist,3,4332,Upto 5k,1,12,3,4,20,2,20,9,3
+RM1420,36-45,Research & Development,Life Sciences,4,Male,3,2,Research Scientist,1,5410,5k-10k,6,17,3,3,9,3,4,3,1
+RM1444,36-45,Research & Development,Life Sciences,1,Male,3,5,Manager,3,18880,15k+,5,11,3,1,24,2,22,6,4
+RM036,36-45,Research & Development,Medical,4,Female,4,1,Research Scientist,3,2645,Upto 5k,1,12,3,4,6,3,5,3,1
+RM120,36-45,Sales,Life Sciences,3,Male,3,4,Manager,4,16959,15k+,1,12,3,4,25,3,25,12,4
+RM131,36-45,Research & Development,Medical,2,Female,4,1,Research Scientist,3,4739,Upto 5k,4,12,3,4,18,2,3,2,1
+RM194,36-45,Research & Development,Medical,4,Male,4,1,Research Scientist,4,2089,Upto 5k,4,14,3,4,7,3,5,4,2
+RM236,36-45,Sales,Marketing,4,Female,3,4,Manager,4,16064,15k+,5,22,4,3,22,3,17,13,1
+RM316,36-45,Research & Development,Life Sciences,3,Female,3,1,Laboratory Technician,4,2455,Upto 5k,0,19,3,1,9,5,8,7,1
+RM331,36-45,Research & Development,Life Sciences,3,Female,2,2,Laboratory Technician,3,5257,5k-10k,1,11,3,2,9,3,9,7,0
+RM334,36-45,Research & Development,Life Sciences,3,Female,3,3,Healthcare Representative,1,9985,5k-10k,8,16,3,1,10,1,1,0,0
+RM391,36-45,Research & Development,Life Sciences,1,Male,2,4,Research Director,2,14336,10k-15k,1,11,3,3,25,3,25,10,3
+RM396,36-45,Research & Development,Medical,4,Male,3,1,Laboratory Technician,4,2258,Upto 5k,7,20,4,1,8,1,3,2,1
+RM397,36-45,Research & Development,Other,3,Female,3,2,Healthcare Representative,3,4522,Upto 5k,4,14,3,4,8,3,5,2,0
+RM490,36-45,Research & Development,Other,2,Male,2,4,Research Director,4,16627,15k+,4,14,3,3,21,3,1,0,0
+RM492,36-45,Research & Development,Medical,4,Male,3,2,Laboratory Technician,3,5679,5k-10k,3,13,3,2,10,3,8,7,4
+RM549,36-45,Sales,Life Sciences,4,Male,2,2,Sales Executive,4,6804,5k-10k,3,18,3,3,7,5,2,2,2
+RM610,36-45,Research & Development,Life Sciences,2,Male,3,4,Research Director,1,17159,15k+,6,24,4,3,22,3,4,1,1
+RM651,36-45,Research & Development,Life Sciences,4,Female,3,2,Healthcare Representative,4,5562,5k-10k,4,13,3,2,12,2,5,2,2
+RM662,36-45,Research & Development,Life Sciences,1,Female,3,2,Manufacturing Director,2,4765,Upto 5k,4,21,4,3,4,2,1,0,0
+RM776,36-45,Sales,Medical,3,Male,2,3,Sales Executive,4,10798,10k-15k,5,13,3,3,18,5,1,0,0
+RM813,36-45,Research & Development,Life Sciences,3,Female,3,3,Manufacturing Director,1,10820,10k-15k,8,11,3,3,18,1,8,7,0
+RM850,36-45,Sales,Marketing,1,Female,1,2,Sales Executive,3,5346,5k-10k,8,13,3,2,7,2,4,3,1
+RM899,36-45,Research & Development,Life Sciences,3,Male,1,5,Research Director,4,19740,15k+,3,14,3,2,25,2,8,7,0
+RM927,36-45,Sales,Marketing,4,Female,2,3,Sales Executive,4,10231,10k-15k,3,14,3,4,23,3,21,7,15
+RM996,36-45,Research & Development,Medical,1,Female,2,2,Research Scientist,3,4081,Upto 5k,1,14,3,1,20,3,20,7,1
+RM1134,36-45,Research & Development,Technical Degree,4,Male,4,1,Laboratory Technician,2,4876,Upto 5k,5,12,3,3,8,0,6,4,0
+RM1186,36-45,Research & Development,Life Sciences,3,Male,2,4,Research Director,3,17603,15k+,1,24,4,1,14,3,14,10,6
+RM1217,36-45,Sales,Medical,4,Male,3,2,Sales Executive,4,7847,5k-10k,1,17,3,1,10,3,10,9,8
+RM1263,36-45,Research & Development,Technical Degree,3,Male,2,1,Research Scientist,3,2437,Upto 5k,9,16,3,4,6,4,1,0,0
+RM1270,36-45,Human Resources,Life Sciences,2,Male,3,1,Human Resources,4,3539,Upto 5k,0,13,3,2,10,5,9,7,1
+RM1294,36-45,Research & Development,Life Sciences,1,Male,3,1,Research Scientist,3,2438,Upto 5k,4,13,3,3,7,2,3,2,1
+RM1317,36-45,Sales,Life Sciences,1,Male,3,2,Sales Executive,4,5675,5k-10k,1,20,4,3,7,5,7,7,7
+RM1331,36-45,Research & Development,Medical,1,Female,2,5,Manager,3,19392,15k+,7,13,3,4,21,2,16,12,6
+RM1400,36-45,Research & Development,Life Sciences,1,Male,3,3,Healthcare Representative,3,7510,5k-10k,1,17,3,2,10,1,10,9,0
+RM029,36-45,Research & Development,Medical,1,Female,2,3,Healthcare Representative,4,10248,10k-15k,3,14,3,4,24,4,22,6,5
+RM032,36-45,Research & Development,Other,4,Male,3,2,Healthcare Representative,4,6465,5k-10k,2,13,3,4,9,5,4,2,1
+RM053,36-45,Sales,Marketing,2,Female,3,2,Sales Executive,1,5454,5k-10k,5,21,4,3,9,2,4,3,1
+RM100,36-45,Research & Development,Medical,2,Male,3,2,Laboratory Technician,2,2042,Upto 5k,4,12,3,3,17,3,3,2,1
+RM287,36-45,Research & Development,Life Sciences,4,Male,3,1,Laboratory Technician,3,3161,Upto 5k,3,22,4,4,19,0,1,0,0
+RM494,36-45,Human Resources,Life Sciences,1,Female,2,2,Human Resources,3,5985,5k-10k,4,11,3,2,10,1,2,2,0
+RM498,36-45,Research & Development,Other,4,Male,3,5,Manager,4,19513,15k+,4,12,3,1,26,2,2,2,0
+RM544,36-45,Research & Development,Medical,1,Male,1,1,Laboratory Technician,3,3708,Upto 5k,2,14,3,3,9,5,5,2,1
+RM618,36-45,Research & Development,Medical,4,Male,3,2,Healthcare Representative,2,5933,5k-10k,9,12,3,4,10,2,5,2,2
+RM632,36-45,Research & Development,Life Sciences,1,Male,4,1,Laboratory Technician,4,2818,Upto 5k,2,24,4,3,10,2,3,2,0
+RM659,36-45,Research & Development,Life Sciences,2,Male,3,1,Research Scientist,1,2559,Upto 5k,1,13,3,4,8,0,8,7,7
+RM751,36-45,Sales,Medical,4,Female,4,4,Sales Executive,4,13320,10k-15k,3,18,3,3,23,2,12,11,11
+RM790,36-45,Human Resources,Medical,2,Male,2,3,Human Resources,1,10482,10k-15k,9,14,3,4,24,1,20,6,3
+RM858,36-45,Research & Development,Life Sciences,3,Male,3,1,Research Scientist,3,2936,Upto 5k,1,11,3,3,6,4,6,4,0
+RM863,36-45,Research & Development,Life Sciences,4,Male,1,1,Research Scientist,3,2290,Upto 5k,2,13,3,4,6,3,0,0,0
+RM876,36-45,Research & Development,Other,4,Male,3,2,Research Scientist,4,4541,Upto 5k,1,25,4,2,20,3,20,11,13
+RM892,36-45,Research & Development,Life Sciences,1,Female,4,1,Research Scientist,4,2011,Upto 5k,1,13,3,4,10,5,10,5,7
+RM908,36-45,Sales,Marketing,2,Male,3,5,Manager,2,18213,15k+,7,11,3,3,26,5,22,9,3
+RM923,36-45,Research & Development,Life Sciences,3,Male,4,5,Manager,1,19190,15k+,1,14,3,4,26,4,25,9,14
+RM929,36-45,Research & Development,Medical,1,Female,3,3,Healthcare Representative,4,7978,5k-10k,1,11,3,4,10,2,10,7,0
+RM954,36-45,Research & Development,Life Sciences,1,Male,3,1,Laboratory Technician,1,2362,Upto 5k,4,12,3,3,10,4,3,2,1
+RM1043,36-45,Research & Development,Life Sciences,3,Male,2,1,Laboratory Technician,3,3162,Upto 5k,3,14,3,4,7,5,5,2,0
+RM1047,36-45,Research & Development,Life Sciences,4,Male,3,1,Research Scientist,2,3420,Upto 5k,1,13,3,3,6,3,5,2,1
+RM1052,36-45,Sales,Marketing,1,Female,3,2,Sales Executive,3,4768,Upto 5k,7,12,3,3,11,4,1,0,0
+RM1063,36-45,Research & Development,Medical,2,Male,3,3,Manufacturing Director,3,10209,10k-15k,5,18,3,2,16,2,2,2,2
+RM1079,36-45,Research & Development,Life Sciences,4,Male,3,4,Research Director,1,16328,15k+,3,13,3,3,24,1,20,6,14
+RM1141,36-45,Research & Development,Medical,2,Female,3,5,Research Director,4,19049,15k+,0,14,3,4,23,4,22,7,1
+RM1166,36-45,Human Resources,Human Resources,1,Male,3,2,Human Resources,4,5743,5k-10k,4,11,3,3,14,3,10,7,0
+RM1201,36-45,Human Resources,Life Sciences,3,Female,3,1,Human Resources,4,3195,Upto 5k,4,18,3,1,8,2,2,2,2
+RM1215,36-45,Research & Development,Life Sciences,3,Female,4,3,Healthcare Representative,4,7879,5k-10k,1,19,3,2,9,2,8,7,6
+RM1280,36-45,Research & Development,Medical,3,Male,3,1,Research Scientist,2,2342,Upto 5k,1,12,3,3,6,2,5,3,2
+RM1353,36-45,Research & Development,Life Sciences,2,Male,4,2,Healthcare Representative,1,5033,5k-10k,2,15,3,4,10,5,2,0,2
+RM1436,36-45,Research & Development,Medical,2,Male,3,1,Research Scientist,4,2436,Upto 5k,6,12,3,3,6,2,4,3,1
+RM068,36-45,Research & Development,Life Sciences,2,Male,3,3,Research Scientist,1,9724,5k-10k,2,17,3,3,25,2,1,0,0
+RM078,36-45,Research & Development,Other,4,Male,3,3,Research Director,1,13245,10k-15k,4,14,3,2,17,3,0,0,0
+RM142,36-45,Research & Development,Medical,3,Male,3,1,Research Scientist,4,3452,Upto 5k,5,13,3,2,9,2,6,5,0
+RM154,36-45,Research & Development,Life Sciences,2,Male,3,2,Laboratory Technician,2,2348,Upto 5k,8,18,3,3,20,2,17,9,0
+RM175,36-45,Sales,Life Sciences,3,Female,3,2,Sales Executive,1,5006,5k-10k,4,11,3,1,9,3,5,4,0
+RM195,36-45,Research & Development,Medical,1,Male,2,4,Manager,4,16792,15k+,9,23,4,4,22,1,20,8,11
+RM219,36-45,Sales,Medical,4,Female,2,3,Sales Executive,4,8865,5k-10k,6,12,3,4,23,2,19,7,12
+RM245,36-45,Research & Development,Other,3,Male,4,5,Manager,4,19202,15k+,0,11,3,3,25,2,24,0,1
+RM250,36-45,Research & Development,Life Sciences,1,Male,4,2,Manufacturing Director,3,6434,5k-10k,4,17,3,4,9,1,3,2,0
+RM269,36-45,Research & Development,Medical,3,Male,3,4,Healthcare Representative,4,13496,10k-15k,0,14,3,2,21,2,20,7,4
+RM312,36-45,Research & Development,Life Sciences,1,Male,3,3,Laboratory Technician,1,5210,5k-10k,1,18,3,1,24,2,24,9,9
+RM335,36-45,Research & Development,Other,4,Male,3,2,Research Scientist,4,3697,Upto 5k,9,14,3,1,12,3,10,9,9
+RM408,36-45,Research & Development,Life Sciences,1,Male,3,1,Research Scientist,4,2654,Upto 5k,3,21,4,4,8,3,2,2,0
+RM453,36-45,Sales,Other,4,Male,3,2,Sales Executive,2,4805,Upto 5k,0,19,3,2,9,3,8,7,3
+RM505,36-45,Sales,Life Sciences,1,Female,3,2,Sales Executive,1,4286,Upto 5k,2,14,3,4,5,4,1,1,0
+RM565,36-45,Sales,Technical Degree,2,Male,1,2,Sales Representative,3,6632,5k-10k,0,13,3,1,9,3,8,7,3
+RM604,36-45,Research & Development,Life Sciences,2,Female,2,1,Research Scientist,3,2274,Upto 5k,1,14,3,4,1,3,1,0,0
+RM626,36-45,Sales,Marketing,4,Male,3,3,Sales Executive,1,10761,10k-15k,4,12,3,3,18,2,5,4,0
+RM697,36-45,Research & Development,Life Sciences,3,Male,3,2,Laboratory Technician,2,4447,Upto 5k,1,12,3,2,9,5,9,7,0
+RM714,36-45,Research & Development,Medical,4,Female,3,1,Laboratory Technician,4,2270,Upto 5k,3,14,3,4,8,2,5,3,0
+RM719,36-45,Research & Development,Life Sciences,4,Male,3,2,Laboratory Technician,1,3633,Upto 5k,1,15,3,3,9,2,9,8,0
+RM756,36-45,Sales,Life Sciences,4,Female,3,4,Manager,4,17650,15k+,3,13,3,2,26,4,9,3,1
+RM760,36-45,Human Resources,Medical,2,Male,3,1,Human Resources,2,2177,Upto 5k,1,16,3,1,6,3,6,3,0
+RM806,36-45,Sales,Life Sciences,2,Female,2,2,Sales Executive,3,5593,5k-10k,1,13,3,4,15,2,15,10,4
+RM855,36-45,Research & Development,Medical,1,Female,3,1,Research Scientist,3,4477,Upto 5k,4,19,3,3,7,2,3,2,0
+RM914,36-45,Sales,Marketing,1,Female,1,5,Manager,2,18824,15k+,2,16,3,1,26,2,24,10,1
+RM937,36-45,Research & Development,Medical,2,Female,3,5,Manager,2,18061,15k+,3,22,4,3,22,4,0,0,0
+RM1035,36-45,Research & Development,Medical,2,Male,1,3,Healthcare Representative,1,10851,10k-15k,2,18,3,2,24,2,7,7,0
+RM1038,36-45,Research & Development,Technical Degree,2,Male,3,3,Manufacturing Director,4,9380,5k-10k,4,18,3,4,10,4,3,1,1
+RM1093,36-45,Research & Development,Technical Degree,4,Male,3,1,Research Scientist,4,2132,Upto 5k,4,20,4,4,8,3,5,4,0
+RM1100,36-45,Research & Development,Technical Degree,1,Male,3,3,Healthcare Representative,2,7441,5k-10k,1,12,3,1,10,4,10,8,7
+RM1143,36-45,Research & Development,Medical,3,Female,1,2,Laboratory Technician,1,5769,5k-10k,1,14,3,1,10,3,10,7,1
+RM1144,36-45,Sales,Marketing,1,Male,2,2,Sales Executive,1,4385,Upto 5k,1,15,3,1,10,2,10,7,4
+RM1161,36-45,Research & Development,Other,4,Female,2,2,Manufacturing Director,4,5770,5k-10k,1,19,3,1,10,3,10,7,3
+RM1222,36-45,Research & Development,Life Sciences,3,Male,2,3,Healthcare Representative,3,10748,10k-15k,3,23,4,4,25,3,23,15,14
+RM1226,36-45,Research & Development,Technical Degree,4,Female,2,4,Research Director,2,16704,15k+,1,11,3,3,21,2,21,6,8
+RM1244,36-45,Human Resources,Life Sciences,3,Female,1,3,Human Resources,3,9756,5k-10k,4,21,4,3,9,2,5,0,0
+RM1315,36-45,Sales,Life Sciences,3,Female,3,2,Sales Executive,3,5154,5k-10k,4,22,4,2,10,3,8,7,5
+RM1347,36-45,Research & Development,Life Sciences,2,Female,2,2,Manufacturing Director,4,5906,5k-10k,0,13,3,4,10,2,9,8,3
+RM1363,36-45,Research & Development,Medical,2,Male,3,2,Healthcare Representative,3,5399,5k-10k,4,12,3,3,12,3,4,2,0
+RM1455,36-45,Sales,Life Sciences,4,Female,3,2,Sales Executive,3,4850,Upto 5k,8,15,3,3,8,3,5,3,0
+RM030,46-55,Sales,Marketing,2,Female,3,5,Manager,1,18947,15k+,3,12,3,4,22,2,2,2,2
+RM049,46-55,Sales,Marketing,1,Male,3,2,Sales Executive,4,5772,5k-10k,4,21,4,3,14,4,9,6,0
+RM080,46-55,Human Resources,Medical,2,Male,3,2,Human Resources,2,5021,5k-10k,8,22,4,4,16,2,4,2,0
+RM090,46-55,Sales,Medical,3,Male,2,3,Sales Executive,4,9619,5k-10k,1,16,3,4,9,3,9,8,4
+RM094,46-55,Research & Development,Medical,3,Male,2,3,Healthcare Representative,1,10673,10k-15k,2,13,3,3,21,5,10,9,9
+RM179,46-55,Sales,Marketing,2,Female,3,3,Sales Executive,1,10453,10k-15k,1,25,4,3,24,2,24,13,15
+RM210,46-55,Research & Development,Medical,4,Male,3,3,Healthcare Representative,1,9396,5k-10k,7,16,3,3,17,3,4,2,0
+RM264,46-55,Sales,Technical Degree,3,Female,1,4,Manager,2,16872,15k+,3,12,3,2,28,2,7,7,7
+RM366,46-55,Research & Development,Medical,3,Female,3,2,Manufacturing Director,3,5258,5k-10k,2,14,3,3,7,2,1,0,0
+RM413,46-55,Research & Development,Medical,3,Female,3,2,Manufacturing Director,3,4810,Upto 5k,2,14,3,3,19,5,10,7,0
+RM430,46-55,Research & Development,Life Sciences,1,Male,3,4,Research Director,3,17861,15k+,6,13,3,3,26,2,3,2,0
+RM434,46-55,Sales,Marketing,3,Female,2,3,Sales Executive,4,9071,5k-10k,2,19,3,3,15,3,3,2,1
+RM466,46-55,Research & Development,Medical,1,Female,3,3,Healthcare Representative,3,10527,10k-15k,5,11,3,4,28,3,2,2,1
+RM724,46-55,Research & Development,Medical,4,Male,3,3,Manufacturing Director,3,10845,10k-15k,6,13,3,2,13,3,8,7,0
+RM771,46-55,Research & Development,Medical,4,Male,3,5,Research Director,4,19627,15k+,9,17,3,4,23,0,2,2,2
+RM779,46-55,Research & Development,Life Sciences,4,Female,2,2,Research Scientist,1,4615,Upto 5k,8,23,4,1,19,2,16,13,1
+RM811,46-55,Sales,Marketing,1,Male,3,4,Manager,3,17465,15k+,3,12,3,4,23,3,12,9,4
+RM862,46-55,Sales,Marketing,3,Female,3,4,Manager,1,17048,15k+,8,23,4,1,28,2,26,15,15
+RM870,46-55,Research & Development,Life Sciences,4,Male,3,5,Research Director,2,19081,15k+,5,11,3,1,25,2,4,2,0
+RM878,46-55,Research & Development,Technical Degree,4,Male,3,2,Manufacturing Director,4,7379,5k-10k,2,11,3,3,12,3,6,3,1
+RM917,46-55,Sales,Marketing,4,Female,2,5,Manager,2,18789,15k+,2,14,3,3,26,2,11,4,0
+RM944,46-55,Human Resources,Life Sciences,4,Female,3,1,Human Resources,1,3423,Upto 5k,6,12,3,3,10,3,7,6,5
+RM1032,46-55,Sales,Marketing,1,Male,3,3,Sales Executive,4,10096,10k-15k,4,11,3,1,28,1,7,7,4
+RM1081,46-55,Sales,Life Sciences,3,Female,3,4,Manager,2,16606,15k+,8,12,3,4,23,2,13,12,5
+RM1136,46-55,Sales,Life Sciences,4,Male,4,4,Manager,1,17567,15k+,1,15,3,2,27,5,26,0,0
+RM1232,46-55,Research & Development,Life Sciences,3,Male,3,2,Healthcare Representative,2,5562,5k-10k,6,14,3,4,19,3,10,7,0
+RM1236,46-55,Sales,Life Sciences,3,Male,3,3,Sales Executive,4,10368,10k-15k,4,12,3,2,13,5,10,6,0
+RM1278,46-55,Research & Development,Medical,3,Male,3,5,Research Director,4,19328,15k+,7,17,3,3,24,3,2,1,2
+RM1286,46-55,Sales,Life Sciences,2,Male,2,2,Sales Executive,2,7991,5k-10k,8,15,3,3,6,3,2,2,2
+RM1299,46-55,Research & Development,Medical,4,Female,3,2,Healthcare Representative,2,8926,5k-10k,4,22,4,4,13,2,9,7,3
+RM1323,46-55,Research & Development,Life Sciences,4,Male,3,3,Manufacturing Director,4,8578,5k-10k,3,14,3,3,12,4,9,8,4
+RM1328,46-55,Sales,Technical Degree,1,Female,4,4,Sales Executive,1,13225,10k-15k,2,12,3,4,25,5,19,17,2
+RM1334,46-55,Sales,Life Sciences,3,Female,3,3,Sales Executive,2,7314,5k-10k,5,21,4,3,14,2,8,7,0
+RM272,46-55,Research & Development,Life Sciences,1,Male,3,3,Manager,2,11849,10k-15k,1,12,3,4,10,2,10,7,9
+RM330,46-55,Research & Development,Life Sciences,4,Male,3,5,Research Director,3,18300,15k+,4,11,3,2,21,2,3,2,1
+RM348,46-55,Sales,Medical,2,Male,3,2,Sales Representative,3,2976,Upto 5k,3,19,3,1,5,3,0,0,0
+RM429,46-55,Research & Development,Medical,1,Female,3,2,Manufacturing Director,4,5070,5k-10k,5,13,3,3,20,2,5,0,0
+RM533,46-55,Sales,Marketing,4,Male,3,2,Sales Executive,1,4960,Upto 5k,2,12,3,4,20,2,7,7,1
+RM545,46-55,Sales,Medical,4,Female,3,4,Sales Executive,3,13770,10k-15k,9,12,3,4,28,2,22,2,11
+RM567,46-55,Sales,Life Sciences,2,Female,4,2,Sales Executive,3,6397,5k-10k,4,12,3,4,8,2,5,4,1
+RM593,46-55,Research & Development,Other,3,Female,3,4,Manager,4,16752,15k+,1,11,3,3,26,3,26,14,3
+RM652,46-55,Sales,Marketing,3,Female,3,2,Sales Executive,4,4537,Upto 5k,0,22,4,1,8,2,7,6,7
+RM666,46-55,Sales,Life Sciences,4,Female,2,1,Sales Representative,4,3294,Upto 5k,1,18,3,1,3,3,3,2,1
+RM708,46-55,Research & Development,Medical,3,Male,4,2,Manufacturing Director,3,5067,5k-10k,1,19,3,3,20,3,19,10,2
+RM720,46-55,Sales,Life Sciences,4,Female,3,2,Sales Executive,4,4163,Upto 5k,1,17,3,3,9,0,9,0,0
+RM1021,46-55,Research & Development,Technical Degree,1,Male,3,1,Research Scientist,4,3420,Upto 5k,7,12,3,3,17,2,6,5,1
+RM1025,46-55,Research & Development,Medical,1,Female,3,4,Research Director,3,17169,15k+,3,19,3,2,26,2,20,17,5
+RM1068,46-55,Sales,Medical,3,Female,3,2,Sales Executive,3,4591,Upto 5k,3,17,3,3,11,4,5,4,1
+RM1155,46-55,Human Resources,Life Sciences,4,Female,3,5,Manager,3,19658,15k+,3,11,3,3,27,2,5,2,1
+RM1195,46-55,Sales,Life Sciences,2,Female,4,4,Manager,2,15972,15k+,6,14,3,3,29,2,3,2,1
+RM1224,46-55,Sales,Life Sciences,3,Male,1,4,Sales Executive,3,12936,10k-15k,7,11,3,3,25,3,23,5,14
+RM1235,46-55,Sales,Marketing,3,Male,3,2,Sales Executive,2,4978,Upto 5k,7,11,3,4,4,3,1,0,0
+RM1304,46-55,Research & Development,Life Sciences,3,Female,2,3,Manufacturing Director,2,10333,10k-15k,8,12,3,3,28,4,22,11,14
+RM1322,46-55,Research & Development,Life Sciences,2,Female,3,1,Laboratory Technician,3,2105,Upto 5k,4,12,3,3,7,2,2,2,2
+RM1371,46-55,Research & Development,Technical Degree,3,Male,3,2,Research Scientist,2,5467,5k-10k,8,18,3,3,16,4,8,7,1
+RM1415,46-55,Research & Development,Medical,1,Male,3,3,Healthcare Representative,3,8633,5k-10k,2,23,4,2,25,3,17,14,12
+RM1422,46-55,Research & Development,Medical,3,Female,3,3,Research Director,2,11957,10k-15k,0,18,3,1,14,3,13,8,5
+RM051,46-55,Research & Development,Life Sciences,1,Male,2,3,Laboratory Technician,3,5381,5k-10k,9,13,3,4,23,2,1,0,0
+RM353,46-55,Sales,Medical,1,Female,3,3,Manager,3,12504,10k-15k,3,21,4,2,15,3,0,0,0
+RM445,46-55,Sales,Marketing,2,Female,3,2,Sales Executive,4,4051,Upto 5k,2,14,3,1,14,2,9,7,6
+RM493,46-55,Research & Development,Life Sciences,4,Female,2,4,Manager,1,15402,15k+,7,11,3,1,21,3,3,2,0
+RM521,46-55,Sales,Marketing,2,Male,4,2,Sales Executive,2,8120,5k-10k,3,12,3,4,12,3,2,2,2
+RM679,46-55,Research & Development,Medical,4,Male,3,1,Research Scientist,3,2259,Upto 5k,4,17,3,1,13,2,0,0,0
+RM736,46-55,Research & Development,Life Sciences,1,Male,2,2,Healthcare Representative,3,4240,Upto 5k,2,13,3,4,19,0,2,2,2
+RM737,46-55,Research & Development,Life Sciences,3,Male,2,3,Healthcare Representative,3,10999,10k-15k,7,14,3,2,27,3,15,11,4
+RM805,46-55,Research & Development,Medical,1,Male,4,4,Manager,4,16885,15k+,2,22,4,3,27,3,5,4,2
+RM902,46-55,Research & Development,Technical Degree,4,Male,4,1,Laboratory Technician,2,2559,Upto 5k,5,11,3,3,7,4,1,0,0
+RM905,46-55,Research & Development,Life Sciences,4,Male,2,5,Research Director,4,18265,15k+,6,12,3,3,25,3,1,0,0
+RM970,46-55,Research & Development,Life Sciences,4,Male,3,3,Manufacturing Director,4,7898,5k-10k,1,11,3,3,11,2,10,9,0
+RM1039,46-55,Sales,Marketing,3,Male,3,2,Sales Executive,1,5486,5k-10k,4,11,3,1,15,3,2,2,2
+RM1104,46-55,Sales,Life Sciences,3,Female,3,2,Sales Executive,3,6439,5k-10k,8,14,3,3,18,2,8,7,7
+RM1115,46-55,Research & Development,Other,3,Female,3,1,Research Scientist,1,2367,Upto 5k,8,12,3,4,10,3,8,2,7
+RM1167,46-55,Research & Development,Medical,3,Male,2,4,Manager,4,15202,15k+,2,25,4,2,23,3,2,2,2
+RM1205,46-55,Sales,Medical,4,Female,3,1,Sales Representative,3,2655,Upto 5k,2,11,3,3,19,3,9,7,7
+RM1332,46-55,Research & Development,Life Sciences,4,Male,2,5,Research Director,2,19665,15k+,4,12,3,4,29,3,22,10,12
+RM1352,46-55,Research & Development,Medical,4,Female,3,4,Manager,4,17174,15k+,3,11,3,2,24,3,22,17,4
+RM002,46-55,Research & Development,Life Sciences,3,Male,2,2,Research Scientist,2,5130,5k-10k,1,23,4,4,10,3,10,7,1
+RM130,46-55,Research & Development,Medical,3,Female,3,2,Manufacturing Director,1,6567,5k-10k,1,14,3,3,16,2,15,11,5
+RM202,46-55,Research & Development,Life Sciences,4,Male,3,2,Manufacturing Director,4,6804,5k-10k,1,15,3,1,7,0,7,7,1
+RM291,46-55,Research & Development,Life Sciences,3,Female,3,5,Research Director,1,18665,15k+,9,11,3,4,22,4,3,2,1
+RM317,46-55,Research & Development,Technical Degree,3,Female,2,4,Healthcare Representative,3,13964,10k-15k,7,12,3,4,25,2,7,1,0
+RM376,46-55,Research & Development,Other,2,Male,2,3,Healthcare Representative,3,10965,10k-15k,8,24,4,3,26,2,5,2,0
+RM474,46-55,Research & Development,Life Sciences,4,Male,2,5,Research Director,3,19502,15k+,1,17,3,3,31,5,31,9,0
+RM608,46-55,Sales,Marketing,3,Female,3,3,Sales Executive,4,7654,5k-10k,1,18,3,1,9,3,9,8,7
+RM640,46-55,Research & Development,Technical Degree,3,Female,3,1,Research Scientist,1,3580,Upto 5k,2,16,3,2,7,2,4,2,0
+RM678,46-55,Research & Development,Other,1,Female,3,3,Laboratory Technician,2,7403,5k-10k,4,11,3,3,29,3,26,9,1
+RM822,46-55,Sales,Technical Degree,4,Male,2,4,Sales Executive,2,13120,10k-15k,6,17,3,2,22,3,9,8,2
+RM900,46-55,Research & Development,Medical,1,Male,2,5,Manager,3,18711,15k+,2,13,3,3,23,2,1,0,0
+RM1007,46-55,Research & Development,Life Sciences,1,Male,2,2,Laboratory Technician,1,4284,Upto 5k,3,20,4,1,20,2,4,3,1
+RM1045,46-55,Research & Development,Technical Degree,1,Male,3,2,Healthcare Representative,3,6651,5k-10k,2,14,3,2,20,0,3,2,1
+RM1055,46-55,Research & Development,Life Sciences,3,Male,3,3,Healthcare Representative,2,10466,10k-15k,3,14,3,2,29,3,8,7,0
+RM1072,46-55,Research & Development,Medical,3,Female,2,2,Laboratory Technician,1,4789,Upto 5k,4,25,4,1,10,3,3,2,1
+RM1148,46-55,Research & Development,Life Sciences,3,Female,3,1,Laboratory Technician,1,3211,Upto 5k,1,14,3,4,10,3,9,6,1
+RM1177,46-55,Research & Development,Other,1,Female,3,4,Research Director,2,16413,15k+,3,16,3,2,27,2,4,2,1
+RM1182,46-55,Research & Development,Life Sciences,3,Female,2,4,Healthcare Representative,3,13966,10k-15k,2,19,3,2,30,3,15,11,2
+RM1193,46-55,Research & Development,Medical,4,Female,3,1,Laboratory Technician,1,2587,Upto 5k,4,16,3,2,17,2,2,2,2
+RM1196,46-55,Research & Development,Life Sciences,3,Male,3,4,Manager,3,15379,15k+,4,14,3,1,23,2,8,7,0
+RM1255,46-55,Sales,Marketing,4,Female,3,2,Sales Executive,4,4507,Upto 5k,3,12,3,3,8,1,5,1,0
+RM1378,46-55,Research & Development,Life Sciences,2,Male,3,5,Research Director,4,19161,15k+,3,15,3,4,28,3,5,4,4
+RM1469,46-55,Sales,Medical,4,Male,2,2,Sales Executive,2,5390,5k-10k,2,14,3,4,17,3,9,6,0
+RM037,46-55,Sales,Marketing,1,Male,2,1,Sales Representative,3,2683,Upto 5k,1,14,3,3,3,2,3,2,0
+RM063,46-55,Research & Development,Medical,2,Female,2,5,Research Director,3,18740,15k+,5,12,3,4,29,2,27,3,13
+RM107,46-55,Research & Development,Life Sciences,1,Female,3,5,Research Director,2,18172,15k+,3,19,3,1,28,1,8,3,0
+RM132,46-55,Sales,Marketing,3,Female,3,3,Sales Executive,4,9208,5k-10k,4,11,3,4,16,3,2,2,2
+RM166,46-55,Research & Development,Life Sciences,3,Female,3,5,Manager,2,19926,15k+,3,15,3,2,21,5,5,4,4
+RM184,46-55,Research & Development,Medical,3,Male,2,1,Laboratory Technician,3,3690,Upto 5k,2,15,3,4,5,2,3,2,0
+RM234,46-55,Sales,Medical,4,Female,3,5,Manager,4,19517,15k+,3,11,3,3,32,3,7,0,0
+RM280,46-55,Research & Development,Life Sciences,1,Male,3,5,Research Director,2,19144,15k+,3,14,3,1,28,4,10,4,1
+RM368,46-55,Research & Development,Technical Degree,4,Male,2,3,Healthcare Representative,4,10496,10k-15k,6,15,3,4,20,2,4,3,1
+RM426,46-55,Research & Development,Life Sciences,2,Male,2,4,Manager,3,17046,15k+,0,15,3,2,28,2,27,10,15
+RM478,46-55,Human Resources,Medical,1,Male,3,5,Manager,2,18200,15k+,1,11,3,3,32,2,32,5,10
+RM524,46-55,Research & Development,Medical,4,Male,4,1,Laboratory Technician,3,3221,Upto 5k,1,11,3,3,20,3,20,8,3
+RM529,46-55,Sales,Technical Degree,2,Male,3,2,Sales Executive,3,6796,5k-10k,3,14,3,1,18,4,4,3,1
+RM540,46-55,Sales,Marketing,4,Male,3,1,Sales Representative,2,3875,Upto 5k,7,15,3,4,4,2,2,2,2
+RM589,46-55,Research & Development,Medical,3,Male,3,4,Research Director,3,17639,15k+,5,16,3,4,30,3,4,3,0
+RM654,46-55,Research & Development,Life Sciences,1,Male,3,4,Manager,1,17924,15k+,1,11,3,4,31,3,31,6,14
+RM715,46-55,Research & Development,Medical,4,Male,3,4,Research Director,4,17399,15k+,9,22,4,3,32,1,5,4,1
+RM722,46-55,Research & Development,Life Sciences,4,Male,3,4,Manufacturing Director,3,13973,10k-15k,3,18,3,4,22,2,12,11,1
+RM743,46-55,Research & Development,Life Sciences,1,Male,3,1,Laboratory Technician,4,2380,Upto 5k,4,18,3,2,8,5,1,0,0
+RM752,46-55,Sales,Life Sciences,4,Female,3,2,Sales Executive,3,6347,5k-10k,0,12,3,1,19,3,18,7,0
+RM767,46-55,Research & Development,Medical,2,Male,3,5,Research Director,3,19237,15k+,2,11,3,4,29,2,8,1,7
+RM802,46-55,Sales,Other,4,Male,3,2,Sales Executive,3,4728,Upto 5k,3,14,3,4,5,4,0,0,0
+RM868,46-55,Research & Development,Medical,4,Female,3,4,Manager,1,17856,15k+,2,22,4,3,32,3,2,2,2
+RM946,46-55,Research & Development,Life Sciences,4,Female,3,4,Research Director,1,16880,15k+,4,11,3,2,25,2,3,2,1
+RM1087,46-55,Research & Development,Medical,3,Male,1,4,Research Director,4,14411,10k-15k,1,13,3,4,32,2,32,6,13
+RM1127,46-55,Sales,Marketing,3,Male,3,5,Manager,3,19331,15k+,4,16,3,3,27,2,1,0,0
+RM1139,46-55,Research & Development,Medical,2,Male,3,4,Healthcare Representative,3,11245,10k-15k,2,15,3,3,32,3,30,8,12
+RM1178,46-55,Research & Development,Life Sciences,4,Female,2,3,Research Director,1,13269,10k-15k,5,15,3,3,19,3,14,11,1
+RM1453,46-55,Sales,Life Sciences,2,Male,3,2,Sales Executive,3,6728,5k-10k,7,12,3,4,12,3,6,3,0
+RM1462,46-55,Sales,Marketing,4,Male,2,3,Sales Executive,1,10854,10k-15k,4,13,3,2,20,3,3,2,2
+RM088,46-55,Research & Development,Life Sciences,4,Male,3,1,Laboratory Technician,4,2075,Upto 5k,3,23,4,2,10,4,4,2,0
+RM092,46-55,Sales,Marketing,3,Male,3,2,Sales Executive,4,5441,5k-10k,0,22,4,4,11,2,10,7,1
+RM111,46-55,Research & Development,Medical,1,Female,2,3,Healthcare Representative,1,7484,5k-10k,3,20,4,3,23,1,13,12,12
+RM124,46-55,Research & Development,Life Sciences,1,Male,3,5,Research Director,3,19537,15k+,7,13,3,3,23,5,20,18,15
+RM137,46-55,Research & Development,Life Sciences,1,Male,1,3,Manufacturing Director,4,10650,10k-15k,2,15,3,4,18,2,4,2,0
+RM157,46-55,Research & Development,Medical,2,Male,2,2,Manufacturing Director,3,6132,5k-10k,2,17,3,3,10,2,1,0,0
+RM190,46-55,Research & Development,Medical,4,Female,3,4,Healthcare Representative,2,13734,10k-15k,3,18,3,3,21,6,7,7,1
+RM214,46-55,Research & Development,Life Sciences,2,Male,2,3,Research Director,2,12490,10k-15k,5,16,3,4,16,5,10,9,4
+RM259,46-55,Research & Development,Life Sciences,3,Male,3,1,Research Scientist,4,2723,Upto 5k,1,11,3,2,1,0,1,0,0
+RM300,46-55,Research & Development,Medical,4,Male,1,2,Manufacturing Director,2,5482,5k-10k,5,18,3,4,13,3,4,1,1
+RM377,46-55,Sales,Life Sciences,3,Female,3,2,Sales Executive,4,4936,Upto 5k,4,11,3,3,18,2,7,7,0
+RM617,46-55,Sales,Marketing,1,Female,3,4,Manager,3,16307,15k+,2,14,3,3,29,2,20,6,4
+RM780,46-55,Research & Development,Life Sciences,1,Male,3,1,Research Scientist,3,2461,Upto 5k,9,12,3,3,18,2,10,0,2
+RM919,46-55,Sales,Life Sciences,4,Male,3,5,Manager,2,19847,15k+,4,24,4,1,31,5,29,10,11
+RM931,46-55,Research & Development,Medical,2,Female,2,1,Laboratory Technician,3,2838,Upto 5k,0,14,3,2,8,6,7,0,7
+RM963,46-55,Human Resources,Life Sciences,3,Male,3,4,Manager,2,14026,10k-15k,1,11,3,2,33,2,33,9,0
+RM972,46-55,Research & Development,Technical Degree,4,Female,2,4,Manufacturing Director,2,13142,10k-15k,3,16,3,2,29,1,5,2,0
+RM988,46-55,Sales,Marketing,2,Male,3,3,Sales Executive,2,10596,10k-15k,2,11,3,2,14,5,4,2,3
+RM1276,46-55,Research & Development,Technical Degree,1,Female,3,3,Manager,3,13116,10k-15k,2,11,3,4,15,2,2,2,2
+RM191,46-55,Research & Development,Life Sciences,3,Male,2,5,Manager,3,19999,15k+,0,14,3,1,34,5,33,18,11
+RM231,46-55,Research & Development,Life Sciences,3,Female,2,1,Laboratory Technician,4,3212,Upto 5k,7,15,3,2,6,3,2,2,2
+RM238,46-55,Sales,Life Sciences,1,Male,2,5,Manager,3,19068,15k+,1,18,3,4,33,2,33,7,15
+RM318,46-55,Research & Development,Medical,3,Male,2,2,Research Scientist,2,4941,Upto 5k,2,15,3,1,11,3,8,2,7
+RM407,46-55,Research & Development,Medical,4,Male,2,3,Manufacturing Director,3,7969,5k-10k,2,14,3,3,28,4,5,4,0
+RM409,46-55,Research & Development,Life Sciences,4,Female,3,4,Manager,4,16555,15k+,2,13,3,4,31,2,5,2,1
+RM469,46-55,Research & Development,Technical Degree,4,Male,3,2,Research Scientist,1,5577,5k-10k,3,12,3,2,18,3,10,9,6
+RM562,46-55,Sales,Marketing,3,Male,2,4,Manager,1,16856,15k+,1,11,3,1,34,3,34,6,1
+RM571,46-55,Research & Development,Medical,4,Male,3,1,Research Scientist,4,4258,Upto 5k,0,18,3,1,5,3,4,3,1
+RM588,46-55,Research & Development,Life Sciences,4,Female,3,2,Laboratory Technician,3,3149,Upto 5k,8,20,4,2,9,3,5,2,1
+RM628,46-55,Research & Development,Medical,3,Female,2,4,Manufacturing Director,4,13826,10k-15k,3,22,4,3,31,3,9,8,0
+RM700,46-55,Research & Development,Life Sciences,4,Male,3,4,Manager,4,17099,15k+,2,15,3,2,26,2,9,8,7
+RM750,46-55,Sales,Marketing,1,Female,1,5,Manager,4,19845,15k+,1,15,3,4,33,3,32,14,6
+RM807,46-55,Research & Development,Life Sciences,2,Male,3,3,Healthcare Representative,2,10445,10k-15k,7,19,3,4,18,4,8,6,4
+RM948,46-55,Sales,Life Sciences,2,Male,3,3,Sales Executive,2,8446,5k-10k,9,19,3,3,10,2,8,7,7
+RM995,46-55,Research & Development,Medical,4,Female,4,4,Manufacturing Director,3,13247,10k-15k,2,11,3,2,24,3,5,3,0
+RM1001,46-55,Research & Development,Other,3,Female,3,1,Laboratory Technician,1,2950,Upto 5k,9,13,3,3,12,2,5,4,0
+RM1435,46-55,Sales,Life Sciences,1,Male,3,1,Sales Representative,4,3482,Upto 5k,2,15,3,2,16,3,9,8,0
+RM019,46-55,Sales,Life Sciences,1,Female,2,4,Manager,4,15427,15k+,2,16,3,3,31,3,25,8,3
+RM026,46-55,Research & Development,Other,3,Female,3,5,Manager,3,19094,15k+,4,11,3,4,26,3,14,13,4
+RM153,46-55,Sales,Marketing,2,Male,3,2,Sales Representative,3,2306,Upto 5k,2,20,4,4,13,3,7,7,4
+RM185,46-55,Research & Development,Medical,4,Female,4,2,Manufacturing Director,1,4450,Upto 5k,1,11,3,3,5,3,4,2,1
+RM281,46-55,Research & Development,Medical,3,Male,3,4,Research Director,3,17584,15k+,3,16,3,4,21,5,5,3,1
+RM503,46-55,Sales,Medical,4,Female,3,2,Sales Executive,1,8381,5k-10k,7,20,4,4,18,2,14,7,8
+RM535,46-55,Research & Development,Life Sciences,3,Male,4,4,Research Director,3,14814,10k-15k,3,19,3,3,32,3,5,1,1
+RM557,46-55,Research & Development,Life Sciences,4,Male,3,2,Laboratory Technician,4,2450,Upto 5k,2,17,3,4,19,4,2,2,2
+RM625,46-55,Sales,Marketing,1,Female,2,3,Sales Executive,4,10934,10k-15k,7,18,3,4,35,3,5,2,0
+RM647,46-55,Sales,Marketing,1,Male,3,4,Sales Executive,4,11836,10k-15k,5,14,3,3,28,3,2,0,2
+RM650,46-55,Research & Development,Life Sciences,4,Female,3,4,Research Director,4,14275,10k-15k,6,18,3,3,33,0,12,9,3
+RM702,46-55,Sales,Medical,3,Male,3,4,Manager,3,14852,10k-15k,6,13,3,3,22,3,17,13,15
+RM761,46-55,Sales,Marketing,3,Female,2,3,Sales Executive,2,7525,5k-10k,2,12,3,1,30,2,15,7,6
+RM859,46-55,Research & Development,Medical,4,Female,3,5,Manager,3,18606,15k+,3,18,3,2,26,6,7,7,4
+RM1044,46-55,Research & Development,Medical,4,Male,4,4,Research Director,2,16598,15k+,4,12,3,2,35,2,9,8,8
+RM1112,46-55,Research & Development,Technical Degree,3,Female,2,3,Manufacturing Director,4,10169,10k-15k,0,16,3,2,34,4,33,7,1
+RM1204,46-55,Research & Development,Medical,2,Male,4,3,Healthcare Representative,4,7005,5k-10k,3,15,3,3,11,2,4,3,1
+RM1269,46-55,Research & Development,Medical,1,Female,2,4,Manufacturing Director,3,12965,10k-15k,4,20,4,4,27,2,3,2,0
+RM1397,46-55,Sales,Life Sciences,1,Male,3,3,Sales Executive,1,10448,10k-15k,6,13,3,2,15,2,2,2,2
+RM096,46-55,Research & Development,Technical Degree,1,Female,3,3,Research Director,3,13549,10k-15k,9,12,3,1,16,5,4,3,0
+RM113,46-55,Human Resources,Human Resources,4,Female,4,4,Manager,4,17328,15k+,2,12,3,3,23,3,5,3,4
+RM220,46-55,Sales,Marketing,4,Female,3,2,Sales Executive,1,5940,5k-10k,2,14,3,4,16,4,6,2,0
+RM333,46-55,Research & Development,Life Sciences,4,Female,3,2,Research Scientist,3,4869,Upto 5k,3,12,3,4,20,4,4,3,0
+RM393,46-55,Research & Development,Medical,1,Male,3,5,Research Director,1,19406,15k+,4,11,3,3,24,4,4,2,1
+RM432,46-55,Research & Development,Life Sciences,3,Female,3,2,Laboratory Technician,3,3780,Upto 5k,7,11,3,3,19,3,1,0,0
+RM511,46-55,Human Resources,Medical,3,Male,3,3,Human Resources,2,10725,10k-15k,2,15,3,3,16,1,9,7,7
+RM576,46-55,Research & Development,Medical,4,Female,3,2,Manufacturing Director,1,5485,5k-10k,9,11,3,2,9,4,5,3,1
+RM729,46-55,Research & Development,Technical Degree,3,Female,3,3,Manufacturing Director,3,10739,10k-15k,8,11,3,3,22,2,10,7,0
+RM772,46-55,Sales,Life Sciences,3,Female,2,3,Sales Executive,3,10686,10k-15k,6,11,3,2,13,4,9,4,7
+RM891,46-55,Research & Development,Life Sciences,4,Female,3,3,Manufacturing Director,3,10502,10k-15k,7,17,3,1,33,2,5,4,1
+RM895,46-55,Research & Development,Life Sciences,4,Male,3,4,Research Director,4,17779,15k+,3,14,3,1,36,2,10,9,0
+RM1009,46-55,Research & Development,Medical,4,Female,3,4,Research Director,4,17328,15k+,6,19,3,4,29,3,20,7,12
+RM1077,46-55,Research & Development,Medical,2,Female,3,4,Manager,4,16032,15k+,3,20,4,1,26,2,14,9,1
+RM1185,46-55,Research & Development,Medical,2,Female,3,4,Manager,3,17426,15k+,3,25,4,3,36,6,10,8,4
+RM1306,46-55,Research & Development,Medical,4,Female,3,2,Research Scientist,4,6854,5k-10k,4,15,3,2,14,2,7,1,1
+RM1398,46-55,Research & Development,Life Sciences,1,Female,3,2,Research Scientist,3,2897,Upto 5k,3,11,3,3,9,6,4,3,2
+RM1407,46-55,Research & Development,Medical,3,Female,3,2,Manufacturing Director,1,4440,Upto 5k,6,19,3,4,9,3,5,2,1
+RM066,46-55,Research & Development,Medical,4,Female,3,4,Manager,3,14756,10k-15k,2,14,3,3,21,2,5,0,0
+RM083,46-55,Sales,Life Sciences,1,Male,3,3,Sales Executive,4,10239,10k-15k,3,14,3,4,24,4,1,0,1
+RM188,46-55,Research & Development,Medical,3,Male,4,5,Research Director,2,18722,15k+,8,11,3,4,36,3,24,15,2
+RM271,46-55,Research & Development,Medical,4,Male,3,5,Manager,1,19045,15k+,0,14,3,3,37,2,36,10,4
+RM284,46-55,Research & Development,Technical Degree,2,Male,3,2,Laboratory Technician,4,5415,5k-10k,3,19,3,4,12,4,10,7,0
+RM380,46-55,Research & Development,Life Sciences,3,Female,3,4,Manager,4,16659,15k+,2,13,3,3,30,2,5,4,1
+RM446,46-55,Sales,Life Sciences,1,Female,3,4,Manager,2,16835,15k+,3,23,4,4,37,2,10,9,7
+RM569,46-55,Research & Development,Medical,4,Male,3,5,Manager,1,19859,15k+,5,13,3,4,24,2,5,2,1
+RM609,46-55,Sales,Medical,3,Male,3,2,Sales Executive,4,5160,5k-10k,4,16,3,3,12,3,9,7,7
+RM746,46-55,Research & Development,Medical,3,Male,3,2,Healthcare Representative,2,6385,5k-10k,3,14,3,4,17,3,8,7,6
+RM775,46-55,Research & Development,Medical,3,Male,2,4,Manager,1,16756,15k+,7,15,3,2,31,3,9,7,6
+RM788,46-55,Research & Development,Life Sciences,4,Male,3,3,Manufacturing Director,2,10976,10k-15k,3,18,3,2,23,4,3,2,1
+RM915,46-55,Research & Development,Medical,4,Male,2,4,Healthcare Representative,2,13577,10k-15k,1,15,3,4,34,3,33,9,15
+RM956,46-55,Research & Development,Medical,4,Female,1,5,Manager,3,19187,15k+,4,14,3,4,23,5,19,9,9
+RM976,46-55,Sales,Marketing,1,Male,4,4,Sales Executive,3,13695,10k-15k,6,17,3,3,24,2,19,7,3
+RM1011,46-55,Research & Development,Medical,2,Male,4,4,Research Director,4,14732,10k-15k,2,13,3,4,31,4,7,7,0
+RM1066,46-55,Research & Development,Life Sciences,4,Male,3,2,Healthcare Representative,3,4035,Upto 5k,0,16,3,2,4,2,3,2,1
+RM1117,46-55,Sales,Marketing,3,Male,2,5,Manager,4,19586,15k+,1,21,4,3,36,3,36,6,2
+RM1208,46-55,Research & Development,Technical Degree,1,Male,2,1,Research Scientist,2,3537,Upto 5k,5,12,3,4,8,1,4,2,1
+RM1265,46-55,Research & Development,Medical,3,Male,2,5,Research Director,1,19038,15k+,8,12,3,2,34,2,1,0,0
+RM1337,46-55,Research & Development,Technical Degree,2,Male,2,1,Research Scientist,4,2662,Upto 5k,8,20,4,2,19,2,5,2,0
+RM1402,46-55,Human Resources,Human Resources,3,Male,4,5,Manager,2,19636,15k+,4,18,3,1,35,0,10,9,1
+RM086,55+,Research & Development,Life Sciences,4,Male,1,3,Manufacturing Director,4,7260,5k-10k,4,11,3,1,37,3,6,4,0
+RM123,55+,Research & Development,Life Sciences,2,Female,3,1,Research Scientist,2,4963,Upto 5k,9,18,3,1,7,2,5,4,4
+RM176,55+,Research & Development,Life Sciences,3,Female,3,1,Research Scientist,1,4257,Upto 5k,4,18,3,3,19,3,2,2,2
+RM402,55+,Sales,Life Sciences,3,Female,4,4,Sales Executive,1,13212,10k-15k,9,11,3,4,36,0,7,7,7
+RM553,55+,Research & Development,Medical,3,Male,3,4,Healthcare Representative,4,11103,10k-15k,7,11,3,3,30,1,10,7,1
+RM773,55+,Research & Development,Medical,1,Female,3,1,Research Scientist,3,2942,Upto 5k,2,19,3,2,18,4,5,4,0
+RM852,55+,Research & Development,Technical Degree,4,Female,3,5,Manager,1,19943,15k+,4,13,3,4,28,2,5,2,4
+RM957,55+,Human Resources,Life Sciences,4,Male,3,5,Manager,2,19717,15k+,6,14,3,1,36,4,7,3,7
+RM977,55+,Research & Development,Life Sciences,4,Male,3,4,Manufacturing Director,2,13402,10k-15k,4,12,3,1,33,0,19,16,15
+RM1024,55+,Research & Development,Life Sciences,1,Female,3,1,Research Scientist,1,2066,Upto 5k,2,22,4,4,5,3,3,2,1
+RM1355,55+,Research & Development,Life Sciences,1,Male,3,1,Laboratory Technician,4,2587,Upto 5k,1,16,3,4,5,3,4,2,1
+RM1372,55+,Sales,Marketing,4,Female,2,2,Sales Executive,1,5380,5k-10k,4,16,3,3,6,3,0,0,0
+RM1442,55+,Research & Development,Life Sciences,3,Male,3,2,Healthcare Representative,3,6306,5k-10k,1,21,4,1,13,2,13,12,1
+RM1445,55+,Research & Development,Technical Degree,4,Male,3,1,Laboratory Technician,3,2339,Upto 5k,8,11,3,4,14,4,10,9,9
+RM164,55+,Research & Development,Life Sciences,3,Male,4,3,Healthcare Representative,4,9439,5k-10k,3,16,3,2,12,2,5,3,1
+RM361,55+,Research & Development,Medical,4,Male,3,2,Healthcare Representative,3,6755,5k-10k,2,11,3,3,15,2,3,2,1
+RM425,55+,Sales,Marketing,1,Male,2,4,Manager,4,14118,10k-15k,3,12,3,3,32,3,1,0,0
+RM1054,55+,Research & Development,Life Sciences,2,Male,4,2,Research Scientist,3,4900,Upto 5k,0,24,4,1,13,2,12,9,2
+RM099,55+,Sales,Medical,4,Male,3,4,Sales Executive,3,13872,10k-15k,0,13,3,3,38,1,37,10,1
+RM127,55+,Research & Development,Medical,4,Female,3,3,Healthcare Representative,4,10312,10k-15k,1,12,3,4,40,3,40,10,15
+RM158,55+,Research & Development,Medical,2,Female,2,1,Research Scientist,2,3346,Upto 5k,4,20,4,2,9,3,1,0,0
+RM309,55+,Research & Development,Life Sciences,4,Male,1,2,Healthcare Representative,3,5660,5k-10k,2,13,3,4,12,2,5,3,1
+RM596,55+,Research & Development,Life Sciences,4,Male,3,5,Research Director,2,19246,15k+,7,12,3,4,40,2,31,15,13
+RM661,55+,Research & Development,Life Sciences,4,Male,2,1,Laboratory Technician,4,2380,Upto 5k,9,14,3,4,3,3,1,0,0
+RM675,55+,Research & Development,Technical Degree,3,Female,2,3,Healthcare Representative,2,10552,10k-15k,2,13,3,4,24,3,6,0,0
+RM701,55+,Research & Development,Technical Degree,4,Male,3,1,Research Scientist,3,2479,Upto 5k,4,24,4,1,7,4,1,0,0
+RM939,55+,Research & Development,Life Sciences,1,Male,3,1,Research Scientist,3,2372,Upto 5k,1,12,3,4,2,3,2,2,2
+RM967,55+,Research & Development,Medical,3,Female,2,3,Manufacturing Director,1,10008,10k-15k,7,14,3,4,31,0,10,9,5
+RM1010,55+,Research & Development,Medical,4,Female,3,5,Research Director,1,19701,15k+,3,21,4,3,32,3,9,8,1
+RM1302,55+,Sales,Medical,2,Male,3,4,Manager,2,16291,15k+,4,22,4,4,37,0,16,9,14
+RM1311,55+,Research & Development,Life Sciences,1,Male,3,4,Research Director,3,15787,15k+,2,14,3,2,23,3,2,2,2
+RM1375,55+,Sales,Life Sciences,4,Female,3,4,Manager,4,17875,15k+,4,13,3,3,29,2,1,0,0
+RM007,55+,Research & Development,Medical,3,Female,4,1,Laboratory Technician,1,2670,Upto 5k,4,20,4,1,12,3,1,0,0
+RM064,55+,Sales,Life Sciences,1,Female,3,3,Sales Executive,1,7637,5k-10k,7,11,3,4,28,3,21,16,7
+RM071,55+,Sales,Life Sciences,1,Female,2,2,Sales Executive,3,5473,5k-10k,7,11,3,4,20,2,4,3,1
+RM106,55+,Human Resources,Human Resources,3,Female,2,5,Manager,4,18844,15k+,9,21,4,4,30,3,3,2,2
+RM226,55+,Research & Development,Life Sciences,3,Male,2,1,Research Scientist,4,2177,Upto 5k,3,17,3,1,7,6,1,0,0
+RM233,55+,Human Resources,Medical,2,Male,3,1,Human Resources,3,2267,Upto 5k,8,17,3,4,7,2,2,2,2
+RM744,55+,Research & Development,Life Sciences,3,Female,2,4,Manufacturing Director,4,13726,10k-15k,3,13,3,1,30,4,5,3,4
+RM759,55+,Sales,Technical Degree,2,Male,3,3,Manager,4,11904,10k-15k,3,14,3,3,14,1,6,4,0
+RM898,55+,Sales,Life Sciences,3,Female,2,2,Sales Executive,4,5171,5k-10k,5,17,3,4,13,2,6,1,0
+RM920,55+,Research & Development,Medical,4,Male,3,3,Manufacturing Director,4,10512,10k-15k,6,12,3,4,25,6,9,7,5
+RM412,55+,Research & Development,Life Sciences,1,Female,3,5,Manager,1,19566,15k+,5,11,3,4,33,5,29,8,11
+RM428,55+,Sales,Marketing,3,Female,2,3,Sales Executive,1,10266,10k-15k,4,19,3,4,22,5,18,13,13
+RM537,55+,Sales,Marketing,1,Male,3,2,Sales Executive,1,5405,5k-10k,8,14,3,4,10,1,2,2,2
+RM880,55+,Sales,Marketing,2,Male,4,2,Sales Executive,4,5220,5k-10k,0,18,3,2,12,3,11,7,1
+RM1210,55+,Research & Development,Medical,3,Male,1,3,Healthcare Representative,4,10883,10k-15k,3,20,4,3,19,2,1,0,0
diff --git a/exercicios/para-casa/README.md b/exercicios/para-casa/README.md
index 63af01a..e7d9a68 100644
--- a/exercicios/para-casa/README.md
+++ b/exercicios/para-casa/README.md
@@ -2,29 +2,61 @@
## Projeto II
-### Explicação do Exercício
-1 - Escolha do Dataset:
-- Utilize o dataset proposto em aula ou selecione um de sua preferência no Kaggle.
-- Faça uma introdução explicando os dados e o motivo da escolha do dataset.
-- Explique o que chamou sua atenção nesses dados e por que você acredita que eles podem gerar bons insights. Quais aspectos relevantes você identificou?
-
+Resolução:
+Usei o dataset RH_Analytics para fazer uma análise em cima dos colaboradores de uma empresa.
+Escolhi esse dataset, pois me interesso pela área de People Analytics, e sempre podemos tirar muitos insights com dados de pessoas.
-2 - Instalação de Bibliotecas:
-- Instale as bibliotecas necessárias para o tratamento de dados, incluindo Pandas e Numpy.
-
+Instalei as bibliotecas:
+pandas, matplotlib, scipy.stats, seaborn e sqlite3
-3 - Visualizações Gráficas:
+import pandas as pd
+import matplotlib.pyplot as plt
+from scipy.stats import ttest_ind
+import seaborn as sns
+import sqlite3
-- Utilize as bibliotecas Matplotlib ou Seaborn para construir gráficos adicionais.
-- Crie no mínimo 4 visualizações gráficas com Pandas.
-
+Iniciei o projeto fazendo uma limpeza no dataset, excluindo linhas duplicadas, excluindo colunas que não serviriam para minha análise e dados nulos.
-4 - Consultas SQL:
-- Realize consultas SQL nos dados.
-
-5 - Teste de Hipótese:
-- Conduza um teste de hipótese com base nos dados.
+Iniciei a análise vendo o nivel de satisfação dos colaboradores com o ambiente de trabalho deles, e concluí que mais da metade dos colaboradores estavam satisfeitos.
+
+Também analisei o nivel de satisfação deles com o Emprego, e o resultado foi o mesmo, mais da metade satisfeitos.
+
+Então resolvi analisar a Faixa Salarial da empresa e vi que a maior parte recebe até R$5.000,00 por mês.
+
+Analisei também a faixa etária dos colaboradores e notei que a maior parte do quadro da empresa tem menos de 46 anos.
+
+Também pude perceber que mais da metade do quadro é constituido por Homens.
+
+Feitas as análises, resolvi testar uma hipótese: A satisfação dos colaboradores tem algo a ver com o salário deles?
+E o resultado foi sim.
+
+
+
+
+###########################
+
+
+
+
+
+
+
+
+
+
+
+
+Explicação do exercício:
+- Use o dataset proposto em aula ou busque um de sua preferência no [Kaggle](https://www.kaggle.com/).
+- Faça uma introdução explicando os dados e por que você escolheu o dataset.
+- Fale sobre o motivo de escolha dos dados: pq esses dados me chamaram a atenção ao ponto de achar que teríamos bons insights? O que eu vi de relevante nesses dados?
+- Faça a instalação das bibliotecas necessárias para tratamento de dados, sendo necessário usar pandas e numpy.
+- Utilize a biblioteca Matplotlib ou Seaborn para construir novos gráficos.
+- Crie visualizações de gráficos com pandas, sendo no mínimo 4 gráficos.
+- Faça consultas em sql.
+- Utilize a biblioteca Matplotlib ou Seaborn para construir novos gráficos.
+- Faça um teste de hipótese.
Arquivos que devem ser submetidos:
diff --git a/exercicios/para-sala/exercicioAula-Bia.ipynb b/exercicios/para-sala/exercicioAula-Bia.ipynb
new file mode 100644
index 0000000..c153b94
--- /dev/null
+++ b/exercicios/para-sala/exercicioAula-Bia.ipynb
@@ -0,0 +1,1235 @@
+{
+ "cells": [
+ {
+ "cell_type": "code",
+ "execution_count": 3,
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Requirement already satisfied: matplotlib in c:\\users\\biamo\\appdata\\local\\programs\\python\\python312\\lib\\site-packages (3.9.2)\n",
+ "Requirement already satisfied: contourpy>=1.0.1 in c:\\users\\biamo\\appdata\\local\\programs\\python\\python312\\lib\\site-packages (from matplotlib) (1.2.1)\n",
+ "Requirement already satisfied: cycler>=0.10 in c:\\users\\biamo\\appdata\\local\\programs\\python\\python312\\lib\\site-packages (from matplotlib) (0.12.1)\n",
+ "Requirement already satisfied: fonttools>=4.22.0 in c:\\users\\biamo\\appdata\\local\\programs\\python\\python312\\lib\\site-packages (from matplotlib) (4.53.1)\n",
+ "Requirement already satisfied: kiwisolver>=1.3.1 in c:\\users\\biamo\\appdata\\local\\programs\\python\\python312\\lib\\site-packages (from matplotlib) (1.4.5)\n",
+ "Requirement already satisfied: numpy>=1.23 in c:\\users\\biamo\\appdata\\local\\programs\\python\\python312\\lib\\site-packages (from matplotlib) (2.0.1)\n",
+ "Requirement already satisfied: packaging>=20.0 in c:\\users\\biamo\\appdata\\roaming\\python\\python312\\site-packages (from matplotlib) (24.1)\n",
+ "Requirement already satisfied: pillow>=8 in c:\\users\\biamo\\appdata\\local\\programs\\python\\python312\\lib\\site-packages (from matplotlib) (10.4.0)\n",
+ "Requirement already satisfied: pyparsing>=2.3.1 in c:\\users\\biamo\\appdata\\local\\programs\\python\\python312\\lib\\site-packages (from matplotlib) (3.1.2)\n",
+ "Requirement already satisfied: python-dateutil>=2.7 in c:\\users\\biamo\\appdata\\roaming\\python\\python312\\site-packages (from matplotlib) (2.9.0.post0)\n",
+ "Requirement already satisfied: six>=1.5 in c:\\users\\biamo\\appdata\\roaming\\python\\python312\\site-packages (from python-dateutil>=2.7->matplotlib) (1.16.0)\n",
+ "Note: you may need to restart the kernel to use updated packages.\n"
+ ]
+ }
+ ],
+ "source": [
+ "pip install matplotlib"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 4,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "import pandas as pd\n",
+ "import matplotlib.pyplot as plt"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 5,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "df = pd.read_csv('titanic.csv') # como o arquivo ta na mesma pasta, nao precisa copiar o caminho"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 6,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " PassengerId | \n",
+ " Survived | \n",
+ " Pclass | \n",
+ " Name | \n",
+ " Sex | \n",
+ " Age | \n",
+ " SibSp | \n",
+ " Parch | \n",
+ " Ticket | \n",
+ " Fare | \n",
+ " Cabin | \n",
+ " Embarked | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " 0 | \n",
+ " 1 | \n",
+ " 0 | \n",
+ " 3 | \n",
+ " Braund, Mr. Owen Harris | \n",
+ " male | \n",
+ " 22.0 | \n",
+ " 1 | \n",
+ " 0 | \n",
+ " A/5 21171 | \n",
+ " 7.2500 | \n",
+ " NaN | \n",
+ " S | \n",
+ "
\n",
+ " \n",
+ " 1 | \n",
+ " 2 | \n",
+ " 1 | \n",
+ " 1 | \n",
+ " Cumings, Mrs. John Bradley (Florence Briggs Th... | \n",
+ " female | \n",
+ " 38.0 | \n",
+ " 1 | \n",
+ " 0 | \n",
+ " PC 17599 | \n",
+ " 71.2833 | \n",
+ " C85 | \n",
+ " C | \n",
+ "
\n",
+ " \n",
+ " 2 | \n",
+ " 3 | \n",
+ " 1 | \n",
+ " 3 | \n",
+ " Heikkinen, Miss. Laina | \n",
+ " female | \n",
+ " 26.0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " STON/O2. 3101282 | \n",
+ " 7.9250 | \n",
+ " NaN | \n",
+ " S | \n",
+ "
\n",
+ " \n",
+ " 3 | \n",
+ " 4 | \n",
+ " 1 | \n",
+ " 1 | \n",
+ " Futrelle, Mrs. Jacques Heath (Lily May Peel) | \n",
+ " female | \n",
+ " 35.0 | \n",
+ " 1 | \n",
+ " 0 | \n",
+ " 113803 | \n",
+ " 53.1000 | \n",
+ " C123 | \n",
+ " S | \n",
+ "
\n",
+ " \n",
+ " 4 | \n",
+ " 5 | \n",
+ " 0 | \n",
+ " 3 | \n",
+ " Allen, Mr. William Henry | \n",
+ " male | \n",
+ " 35.0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 373450 | \n",
+ " 8.0500 | \n",
+ " NaN | \n",
+ " S | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ " PassengerId Survived Pclass \\\n",
+ "0 1 0 3 \n",
+ "1 2 1 1 \n",
+ "2 3 1 3 \n",
+ "3 4 1 1 \n",
+ "4 5 0 3 \n",
+ "\n",
+ " Name Sex Age SibSp \\\n",
+ "0 Braund, Mr. Owen Harris male 22.0 1 \n",
+ "1 Cumings, Mrs. John Bradley (Florence Briggs Th... female 38.0 1 \n",
+ "2 Heikkinen, Miss. Laina female 26.0 0 \n",
+ "3 Futrelle, Mrs. Jacques Heath (Lily May Peel) female 35.0 1 \n",
+ "4 Allen, Mr. William Henry male 35.0 0 \n",
+ "\n",
+ " Parch Ticket Fare Cabin Embarked \n",
+ "0 0 A/5 21171 7.2500 NaN S \n",
+ "1 0 PC 17599 71.2833 C85 C \n",
+ "2 0 STON/O2. 3101282 7.9250 NaN S \n",
+ "3 0 113803 53.1000 C123 S \n",
+ "4 0 373450 8.0500 NaN S "
+ ]
+ },
+ "execution_count": 6,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "df.head(5)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 7,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "(891, 12)"
+ ]
+ },
+ "execution_count": 7,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "df.shape"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 8,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "df_backup = df.copy()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 9,
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "PassengerId 0\n",
+ "Survived 0\n",
+ "Pclass 0\n",
+ "Name 0\n",
+ "Sex 0\n",
+ "Age 177\n",
+ "SibSp 0\n",
+ "Parch 0\n",
+ "Ticket 0\n",
+ "Fare 0\n",
+ "Cabin 687\n",
+ "Embarked 2\n",
+ "dtype: int64\n"
+ ]
+ }
+ ],
+ "source": [
+ "# contar dados nulos em cada coluna\n",
+ "nullColumns = df.isnull().sum()\n",
+ "print(nullColumns)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 10,
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "0 1\n",
+ "1 0\n",
+ "2 1\n",
+ "3 0\n",
+ "4 1\n",
+ " ..\n",
+ "886 1\n",
+ "887 0\n",
+ "888 2\n",
+ "889 0\n",
+ "890 1\n",
+ "Length: 891, dtype: int64\n"
+ ]
+ }
+ ],
+ "source": [
+ "# contar dados nulos por linhas\n",
+ "nullLines = df.isnull().sum(axis=1)\n",
+ "print(nullLines)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 11,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " PassengerId | \n",
+ " Survived | \n",
+ " Pclass | \n",
+ " Age | \n",
+ " SibSp | \n",
+ " Parch | \n",
+ " Fare | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " count | \n",
+ " 891.000000 | \n",
+ " 891.000000 | \n",
+ " 891.000000 | \n",
+ " 714.000000 | \n",
+ " 891.000000 | \n",
+ " 891.000000 | \n",
+ " 891.000000 | \n",
+ "
\n",
+ " \n",
+ " mean | \n",
+ " 446.000000 | \n",
+ " 0.383838 | \n",
+ " 2.308642 | \n",
+ " 29.699118 | \n",
+ " 0.523008 | \n",
+ " 0.381594 | \n",
+ " 32.204208 | \n",
+ "
\n",
+ " \n",
+ " std | \n",
+ " 257.353842 | \n",
+ " 0.486592 | \n",
+ " 0.836071 | \n",
+ " 14.526497 | \n",
+ " 1.102743 | \n",
+ " 0.806057 | \n",
+ " 49.693429 | \n",
+ "
\n",
+ " \n",
+ " min | \n",
+ " 1.000000 | \n",
+ " 0.000000 | \n",
+ " 1.000000 | \n",
+ " 0.420000 | \n",
+ " 0.000000 | \n",
+ " 0.000000 | \n",
+ " 0.000000 | \n",
+ "
\n",
+ " \n",
+ " 25% | \n",
+ " 223.500000 | \n",
+ " 0.000000 | \n",
+ " 2.000000 | \n",
+ " 20.125000 | \n",
+ " 0.000000 | \n",
+ " 0.000000 | \n",
+ " 7.910400 | \n",
+ "
\n",
+ " \n",
+ " 50% | \n",
+ " 446.000000 | \n",
+ " 0.000000 | \n",
+ " 3.000000 | \n",
+ " 28.000000 | \n",
+ " 0.000000 | \n",
+ " 0.000000 | \n",
+ " 14.454200 | \n",
+ "
\n",
+ " \n",
+ " 75% | \n",
+ " 668.500000 | \n",
+ " 1.000000 | \n",
+ " 3.000000 | \n",
+ " 38.000000 | \n",
+ " 1.000000 | \n",
+ " 0.000000 | \n",
+ " 31.000000 | \n",
+ "
\n",
+ " \n",
+ " max | \n",
+ " 891.000000 | \n",
+ " 1.000000 | \n",
+ " 3.000000 | \n",
+ " 80.000000 | \n",
+ " 8.000000 | \n",
+ " 6.000000 | \n",
+ " 512.329200 | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ " PassengerId Survived Pclass Age SibSp \\\n",
+ "count 891.000000 891.000000 891.000000 714.000000 891.000000 \n",
+ "mean 446.000000 0.383838 2.308642 29.699118 0.523008 \n",
+ "std 257.353842 0.486592 0.836071 14.526497 1.102743 \n",
+ "min 1.000000 0.000000 1.000000 0.420000 0.000000 \n",
+ "25% 223.500000 0.000000 2.000000 20.125000 0.000000 \n",
+ "50% 446.000000 0.000000 3.000000 28.000000 0.000000 \n",
+ "75% 668.500000 1.000000 3.000000 38.000000 1.000000 \n",
+ "max 891.000000 1.000000 3.000000 80.000000 8.000000 \n",
+ "\n",
+ " Parch Fare \n",
+ "count 891.000000 891.000000 \n",
+ "mean 0.381594 32.204208 \n",
+ "std 0.806057 49.693429 \n",
+ "min 0.000000 0.000000 \n",
+ "25% 0.000000 7.910400 \n",
+ "50% 0.000000 14.454200 \n",
+ "75% 0.000000 31.000000 \n",
+ "max 6.000000 512.329200 "
+ ]
+ },
+ "execution_count": 11,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "# descrição dos dados\n",
+ "df.describe()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 12,
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "\n",
+ "RangeIndex: 891 entries, 0 to 890\n",
+ "Data columns (total 12 columns):\n",
+ " # Column Non-Null Count Dtype \n",
+ "--- ------ -------------- ----- \n",
+ " 0 PassengerId 891 non-null int64 \n",
+ " 1 Survived 891 non-null int64 \n",
+ " 2 Pclass 891 non-null int64 \n",
+ " 3 Name 891 non-null object \n",
+ " 4 Sex 891 non-null object \n",
+ " 5 Age 714 non-null float64\n",
+ " 6 SibSp 891 non-null int64 \n",
+ " 7 Parch 891 non-null int64 \n",
+ " 8 Ticket 891 non-null object \n",
+ " 9 Fare 891 non-null float64\n",
+ " 10 Cabin 204 non-null object \n",
+ " 11 Embarked 889 non-null object \n",
+ "dtypes: float64(2), int64(5), object(5)\n",
+ "memory usage: 83.7+ KB\n",
+ "None\n"
+ ]
+ }
+ ],
+ "source": [
+ "# verificar as informações\n",
+ "infoDf = df.info()\n",
+ "print(infoDf)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 13,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "# remover linhas duplicadas\n",
+ "df = df.drop_duplicates()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 14,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "dfTeste = df.drop_duplicates(['PassengerId'])"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 15,
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Empty DataFrame\n",
+ "Columns: [PassengerId, Survived, Pclass, Name, Sex, Age, SibSp, Parch, Ticket, Fare, Cabin, Embarked]\n",
+ "Index: []\n"
+ ]
+ }
+ ],
+ "source": [
+ "def viewDuplicates(df):\n",
+ " duplicates = df[df.duplicated(keep=False)]\n",
+ "\n",
+ " return duplicates\n",
+ "\n",
+ "duplicatedLines = viewDuplicates(df)\n",
+ "print(duplicatedLines)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 16,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "# apagar colunas do df\n",
+ "df = df.drop(columns=['SibSp', 'Parch'])"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 17,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "dfTeste = df.dropna(subset=['Cabin'])"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 18,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "(204, 10)"
+ ]
+ },
+ "execution_count": 18,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "dfTeste.shape"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 19,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "df = df.reset_index(drop=True)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 20,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "Index(['PassengerId', 'Survived', 'Pclass', 'Name', 'Sex', 'Age', 'Ticket',\n",
+ " 'Fare', 'Cabin', 'Embarked'],\n",
+ " dtype='object')"
+ ]
+ },
+ "execution_count": 20,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "df.columns"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 21,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "df.rename(columns={\n",
+ " 'PassengerId':'IdPassageiro',\n",
+ " 'Survived': 'Sobreviveu',\n",
+ " 'Pclass': 'Classe',\n",
+ " 'Name': 'Nome',\n",
+ " 'Sex': 'Genero',\n",
+ " 'Age': 'Idade',\n",
+ " 'Ticket': 'Bilhete',\n",
+ " 'Fare': 'Tarifa',\n",
+ " 'Cabin': 'Cabine',\n",
+ " 'Embarked': 'Embarque'\n",
+ "}, inplace=True)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 22,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "Index(['IdPassageiro', 'Sobreviveu', 'Classe', 'Nome', 'Genero', 'Idade',\n",
+ " 'Bilhete', 'Tarifa', 'Cabine', 'Embarque'],\n",
+ " dtype='object')"
+ ]
+ },
+ "execution_count": 22,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "df.columns"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 23,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "# salvar no csv\n",
+ "df.to_csv('titanicTratado.csv', index=False)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 24,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjsAAAHCCAYAAAAJowgXAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAABDoElEQVR4nO3dfXyP9f////trdn5uzOZsznKyOUkIizeFLNacNCXJSaHvm+GNUnnLOZGKziipN51QEUrKOZEaaSI5TzRhc76ZsbE9f3/08/r0stHMeG2H2/VyeV3eO47n8ziOx3HS+3V3nL1sxhgjAAAAi3JxdgEAAAA3E2EHAABYGmEHAABYGmEHAABYGmEHAABYGmEHAABYGmEHAABYGmEHAABYGmEHt5WNGzdqzJgxOnHihLNLAQDcIoQd3DaSkpLUoUMHubi4qGTJks4u55Y4ePCgbDabZs+e7exSLInte2N69uypihUrOrsM3AYIOygyZs+eLZvNJk9PTx0+fDhH+7333qtatWrlOm1WVpa6dOmidu3aacSIETe7VEuz2Wz2j4uLi8qUKaPWrVvr22+/dXZpKCRSU1M1ZswY3XnnnfL19ZWXl5dq1aql5557TkeOHHF2ebgNuTq7AOB6ZWRkaNKkSXrzzTfzPM2ePXsUHR2twYMH38TKbh/333+/unfvLmOMDhw4oOnTp6tFixb6+uuv1aZNG2eXd8tUqFBB58+fl5ubm7NLKTR+//13tWrVSomJiXr44Yf11FNPyd3dXb/88ovef/99LVq0SHv37nV2mbjNEHZQ5NStW1czZ87UsGHDVKZMmTxNExERoYiIiJtcWf5kZ2crMzNTnp6ezi4lz6pVq6bHH3/cPtyxY0fVqVNHr7322m0Vdi6fafwn586dk4+Pzy2o6Oa71rpcunRJDz30kJKTk/Xtt9+qadOmDu0TJkzQSy+9dCvKBBxwGQtFzn//+19lZWVp0qRJ1+x3rfspbDabRo8ebR8ePXq0bDab9u7dq8cff1wBAQEKDg7WiBEjZIzRoUOH1L59e/n7+ys0NFSvvvpqjnlmZGRo1KhRuuOOO+Th4aHy5cvr2WefVUZGRo5l9+/fX3PmzFHNmjXl4eGhZcuWSZJ+/vlntWnTRv7+/vL19VXLli21cePGPG2XM2fOqGfPngoICFBgYKB69OihM2fO5Np39+7d6tSpk4KCguTp6akGDRpo8eLFeVpObmrXrq2SJUvqwIEDkqTvvvtODz/8sMLCwuzbYvDgwTp//rzDdElJSXriiSdUrlw5eXh4qHTp0mrfvr0OHjxo7/PTTz8pKipKJUuWlJeXlypVqqQnn3zSYT6vvPKK7rnnHpUoUUJeXl6qX7++Pv/88xx1nj9/XgMHDlTJkiXl5+endu3a6fDhwzmOB0k6fPiwnnzySYWEhMjDw0M1a9bU//73P4c+uR1jPXv2lK+vr/bv36+2bdvKz89PXbt2lfRXUHj66adVvnx5eXh4qHr16nrllVdkjHGY78qVK9W0aVMFBgbK19dX1atX13//+99/3A9/P7aqV68uT09P1a9fX+vXr8/RNy/H2uVLx+vWrVO/fv1UqlQplStX7qrLX7BggbZt26bhw4fnCDqS5O/vrwkTJlxzHfK6L/Oyjd58803VrFlT3t7eKl68uBo0aKC5c+c69MnLfkbRx5kdFDmVKlVS9+7dNXPmTD3//PN5PruTF507d1Z4eLgmTZqkr7/+WuPHj1dQUJBmzJihFi1a6KWXXtKcOXP0zDPP6O6771azZs0k/XV2pl27dtqwYYOeeuophYeHa/v27Zo6dar27t2rL774wmE5a9as0bx589S/f3+VLFlSFStW1I4dO/Svf/1L/v7+evbZZ+Xm5qYZM2bo3nvv1bp169SoUaOr1m2MUfv27bVhwwb9+9//Vnh4uBYtWqQePXrk6Ltjxw41adJEZcuW1fPPPy8fHx/NmzdPHTp00IIFC9SxY8fr3m6nT5/W6dOndccdd0iS5s+fr/T0dPXt21clSpTQjz/+qDfffFN//vmn5s+fb58uNjZWO3bs0IABA1SxYkUdO3ZMK1euVGJion24devWCg4O1vPPP6/AwEAdPHhQCxcudFj+66+/rnbt2qlr167KzMzUp59+qocfflhLlixRdHS0vV/Pnj01b948devWTY0bN9a6desc2i9LTk5W48aN7eEhODhYS5cuVa9evZSamqpBgwZdc3tcunRJUVFRatq0qV555RV5e3vLGKN27dpp7dq16tWrl+rWravly5dr6NChOnz4sKZOnWrfPw8++KDq1KmjsWPHysPDQ7/99pu+//77PO2LdevW6bPPPtPAgQPl4eGh6dOn64EHHtCPP/5ov6fteo+1fv36KTg4WCNHjtS5c+euuuzLgblbt255qjU3edmXedlGM2fO1MCBA9WpUyf95z//0YULF/TLL79o06ZNeuyxxyTd+H5GEWKAImLWrFlGktm8ebPZv3+/cXV1NQMHDrS3N2/e3NSsWdM+fODAASPJzJo1K8e8JJlRo0bZh0eNGmUkmaeeeso+7tKlS6ZcuXLGZrOZSZMm2cefPn3aeHl5mR49etjHffTRR8bFxcV89913Dst55513jCTz/fffOyzbxcXF7Nixw6Fvhw4djLu7u9m/f7993JEjR4yfn59p1qzZNbfNF198YSSZyZMnO9T/r3/9K8c2aNmypaldu7a5cOGCfVx2dra55557TNWqVa+5nMv19+rVyxw/ftwcO3bMbNq0ybRs2dJIMq+++qoxxpj09PQc002cONHYbDbzxx9/GGP+2o6SzMsvv3zVZS1atMi+z6/lyuVlZmaaWrVqmRYtWtjHJSQkGElm0KBBDn179uyZ43jo1auXKV26tDlx4oRD30cffdQEBATYl5fbMdajRw8jyTz//PMO017eR+PHj3cY36lTJ2Oz2cxvv/1mjDFm6tSpRpI5fvz4Ndc5N5KMJPPTTz/Zx/3xxx/G09PTdOzY0T4ur8fa5f/mmjZtai5duvSPy7/rrrtMQEBAnuvt0aOHqVChgsO4vOzLvGyj9u3bO/z/QW7yup9R9HEZC0VS5cqV1a1bN7377rs6evRogc23d+/e9r+LFSumBg0ayBijXr162ccHBgaqevXq+v333+3j5s+fr/DwcNWoUUMnTpywf1q0aCFJWrt2rcNymjdv7nAPUVZWllasWKEOHTqocuXK9vGlS5fWY489pg0bNig1NfWqdX/zzTdydXVV3759HeofMGCAQ79Tp05pzZo1euSRR3T27Fl7nSdPnlRUVJT27duX65NuV3r//fcVHBysUqVKqVGjRvr+++81ZMgQ+7+Evby87H3PnTunEydO6J577pExRj///LO9j7u7u7799ludPn061+UEBgZKkpYsWaKLFy9etZ6/L+/06dNKSUnRv/71L23ZssU+/vKlwn79+jlMe+U2MsZowYIFiomJkTHGYX9GRUUpJSXFYb5X8/d9If21j4oVK6aBAwc6jH/66adljNHSpUsd1vnLL79Udnb2Py7nSpGRkapfv759OCwsTO3bt9fy5cuVlZWVr2OtT58+Klas2D8uOzU1VX5+ftdd89/lZV/mZRsFBgbqzz//1ObNm3NtL6j9jKKBsIMi64UXXtClS5f+8d6d6xEWFuYwHBAQIE9Pzxzv5QkICHD4gt63b5927Nih4OBgh0+1atUkSceOHXOYvlKlSg7Dx48fV3p6uqpXr56jpvDwcGVnZ+vQoUNXrfuPP/5Q6dKl5evr6zD+yvn99ttvMsZoxIgROWodNWpUrrXmpn379lq5cqVWrVqlTZs26cSJE3r11Vfl4vLX/6UkJiaqZ8+eCgoKkq+vr4KDg9W8eXNJUkpKiiTJw8NDL730kpYuXaqQkBA1a9ZMkydPVlJSkn05zZs3V2xsrMaMGaOSJUuqffv2mjVrVo77oJYsWaLGjRvL09NTQUFBCg4O1ttvv21f1uVt5OLikmPbX770dtnx48d15swZvfvuuzm20RNPPJGnbeTq6prj3pY//vhDZcqUyREGwsPD7e3SX5dSmzRpot69eyskJESPPvqo5s2bl+fgU7Vq1RzjqlWrpvT0dB0/fjxfx9qV2+xq/P39dfbs2Tz1vZq87Mu8bKPnnntOvr6+atiwoapWraq4uDiHy1wFsZ9RdHDPDoqsypUr6/HHH9e7776r559/Pke7zWbLdbqsrKyrzjO3f71e7V+05m83lWZnZ6t27dqaMmVKrn3Lly/vMPz3f73eSpe/DJ555hlFRUXl2ufKL//clCtXTq1atcq1LSsrS/fff79OnTql5557TjVq1JCPj48OHz6snj17OnwhDRo0SDExMfriiy+0fPlyjRgxQhMnTtSaNWt01113yWaz6fPPP9fGjRv11Vdfafny5XryySf16quvauPGjfL19dV3332ndu3aqVmzZpo+fbpKly4tNzc3zZo1K8fNqNezjR5//PFc73mSpDp16lxzHh4eHvbgd728vLy0fv16rV27Vl9//bWWLVumzz77TC1atNCKFSvydIaloOX1eK1Ro4Z+/vlnHTp0KMcxnxd53Zd52Ubh4eHas2ePlixZomXLlmnBggWaPn26Ro4cqTFjxhTIfkbRQdhBkfbCCy/o448/zvVx1uLFi0tSjieSLv8LuiBVqVJF27ZtU8uWLa8asq4lODhY3t7e2rNnT4623bt3y8XF5ZpfHhUqVNDq1auVlpbmcHbnyvldvmzh5uZ21bByo7Zv3669e/fqgw8+UPfu3e3jV65cmWv/KlWq6Omnn9bTTz+tffv2qW7dunr11Vf18ccf2/s0btxYjRs31oQJEzR37lx17dpVn376qXr37q0FCxbI09NTy5cvl4eHh32aWbNmOSynQoUKys7O1oEDBxzOfvz2228O/YKDg+Xn56esrKwC3UYVKlTQqlWrdPbsWYezO7t377a3X+bi4qKWLVuqZcuWmjJlil588UUNHz5ca9eu/cea9u3bl2Pc3r175e3treDgYEm6oWPtWmJiYvTJJ5/o448/1rBhw657+rzuSylv28jHx0edO3dW586dlZmZqYceekgTJkzQsGHDbtp+RuHEZSwUaVWqVNHjjz+uGTNmOFz+kP46pV6yZMkcj91Onz69wOt45JFHdPjwYc2cOTNH2/nz56/5BIv019mj1q1b68svv3R47Do5OVlz585V06ZN5e/vf9Xp27Ztq0uXLuntt9+2j8vKysrx4sVSpUrp3nvv1YwZM3K91+n48ePXrDMvLp95+PuZL2OMXn/9dYd+6enpunDhgsO4KlWqyM/Pz36Z6vTp0zkey65bt64k2fsUK1ZMNpvN4YzdwYMHczwBd/lM1pX7/8ptVKxYMcXGxmrBggX69ddfc6xffrdR27ZtlZWVpbfeesth/NSpU2Wz2ezvJzp16lSOaa9c52uJj493uNfk0KFD+vLLL9W6dWsVK1bsho+1a+nUqZNq166tCRMmKD4+Pkf72bNnNXz48KtOn9d9mZdtdPLkSYd2d3d3RUREyBijixcv3rT9jMKJMzso8oYPH66PPvpIe/bsUc2aNR3aevfurUmTJql3795q0KCB1q9ff1Pe3tqtWzfNmzdP//73v7V27Vo1adJEWVlZ2r17t+bNm6fly5erQYMG15zH+PHj7e8O6devn1xdXTVjxgxlZGRo8uTJ15w2JiZGTZo00fPPP6+DBw8qIiJCCxcudLjP4bJp06apadOmql27tvr06aPKlSsrOTlZ8fHx+vPPP7Vt27Yb2hY1atRQlSpV9Mwzz+jw4cPy9/fXggULctyEvHfvXrVs2VKPPPKIIiIi5OrqqkWLFik5OVmPPvqoJOmDDz7Q9OnT1bFjR1WpUkVnz57VzJkz5e/vr7Zt20qSoqOjNWXKFD3wwAN67LHHdOzYMU2bNk133HGHfvnlF/vy6tevr9jYWL322ms6efKk/dHzy8fD38/ITZo0SWvXrlWjRo3Up08fRURE6NSpU9qyZYtWrVqV65ftP4mJidF9992n4cOH6+DBg7rzzju1YsUKffnllxo0aJCqVKkiSRo7dqzWr1+v6OhoVahQQceOHdP06dNVrly5XN9dc6VatWopKirK4dFzSRozZoy9z40ca9fi5uamhQsXqlWrVmrWrJkeeeQRNWnSRG5ubtqxY4fmzp2r4sWLX/VdO3ndl3nZRq1bt1ZoaKiaNGmikJAQ7dq1S2+99Zaio6PtZ9Zuxn5GIeWUZ8CAfPj7o+dXuvy475WPmqanp5tevXqZgIAA4+fnZx555BFz7Nixqz56fuWjrD169DA+Pj45lnflY+7G/PWI7EsvvWRq1qxpPDw8TPHixU39+vXNmDFjTEpKir2fJBMXF5frOm7ZssVERUUZX19f4+3tbe677z7zww8//OO2McaYkydPmm7duhl/f38TEBBgunXrZn7++edcH7/fv3+/6d69uwkNDTVubm6mbNmy5sEHHzSff/75Py7nWvVftnPnTtOqVSvj6+trSpYsafr06WO2bdvmUMuJEydMXFycqVGjhvHx8TEBAQGmUaNGZt68eQ7bo0uXLiYsLMx4eHiYUqVKmQcffNDh0WpjjHn//fdN1apVjYeHh6lRo4aZNWuWfZ/+3blz50xcXJwJCgoyvr6+pkOHDmbPnj1GksPrBYwxJjk52cTFxZny5csbNzc3Exoaalq2bGneffdde5+rPXqe2zFjjDFnz541gwcPNmXKlDFubm6matWq5uWXXzbZ2dn2PqtXrzbt27c3ZcqUMe7u7qZMmTKmS5cuZu/evdfc5sb83775+OOP7dvjrrvuMmvXrs3RNy/H2rX+m7uW06dPm5EjR5ratWsbb29v4+npaWrVqmWGDRtmjh49au+X26PnedmXedlGM2bMMM2aNTMlSpQwHh4epkqVKmbo0KEO/y0ak7f9jKLPZswV54gB4DaydetW3XXXXfr444/tbzouqmw2m+Li4nJcKgNud9yzA+C2ceXPVUjSa6+9JhcXF/vbsAFYD/fsALhtTJ48WQkJCbrvvvvk6uqqpUuXaunSpXrqqafy/QQSgMKPsAPgtnHPPfdo5cqVGjdunNLS0hQWFqbRo0df8wkhAEUf9+wAAABL454dAABgaYQdAABgadyzo79+C+fIkSPy8/PL16v+AQDArWeM0dmzZ1WmTJlr/h4dYUfSkSNHeBIDAIAi6tChQypXrtxV2wk7kv3V4YcOHcr3b8IAAIBbKzU1VeXLl3f4cd3cEHb0f7+J4+/vT9gBAKCI+adbULhBGQAAWBphBwAAWBphBwAAWBphBwAAWJpTw87o0aNls9kcPjVq1LC3X7hwQXFxcSpRooR8fX0VGxur5ORkh3kkJiYqOjpa3t7eKlWqlIYOHapLly7d6lUBAACFlNOfxqpZs6ZWrVplH3Z1/b+SBg8erK+//lrz589XQECA+vfvr4ceekjff/+9JCkrK0vR0dEKDQ3VDz/8oKNHj6p79+5yc3PTiy++eMvXBQAAFD5ODzuurq4KDQ3NMT4lJUXvv/++5s6dqxYtWkiSZs2apfDwcG3cuFGNGzfWihUrtHPnTq1atUohISGqW7euxo0bp+eee06jR4+Wu7v7rV4dAABQyDj9np19+/apTJkyqly5srp27arExERJUkJCgi5evKhWrVrZ+9aoUUNhYWGKj4+XJMXHx6t27doKCQmx94mKilJqaqp27Nhx1WVmZGQoNTXV4QMAAKzJqWGnUaNGmj17tpYtW6a3335bBw4c0L/+9S+dPXtWSUlJcnd3V2BgoMM0ISEhSkpKkiQlJSU5BJ3L7ZfbrmbixIkKCAiwf/ipCAAArMupl7HatGlj/7tOnTpq1KiRKlSooHnz5snLy+umLXfYsGEaMmSIffjy66YBAID1OP0y1t8FBgaqWrVq+u233xQaGqrMzEydOXPGoU9ycrL9Hp/Q0NAcT2ddHs7tPqDLPDw87D8NwU9EAABgbYUq7KSlpWn//v0qXbq06tevLzc3N61evdrevmfPHiUmJioyMlKSFBkZqe3bt+vYsWP2PitXrpS/v78iIiJuef0AAKDwceplrGeeeUYxMTGqUKGCjhw5olGjRqlYsWLq0qWLAgIC1KtXLw0ZMkRBQUHy9/fXgAEDFBkZqcaNG0uSWrdurYiICHXr1k2TJ09WUlKSXnjhBcXFxcnDw8OZqwYAAAoJp4adP//8U126dNHJkycVHByspk2bauPGjQoODpYkTZ06VS4uLoqNjVVGRoaioqI0ffp0+/TFihXTkiVL1LdvX0VGRsrHx0c9evTQ2LFjnbVKAACgkLEZY4yzi3C21NRUBQQEKCUlpVDfv5OYKJ044ewqrKFkSSkszNlVAABuRF6/v53+UkHkTWKiFB5ulJ5uc3YpluDtbbRrl43AAwC3AcJOEXHihJSebtPHw39XeIULzi6nSNv1h6cen1BZJ05wdgcAbgeEnSImvMIF1auW7uwyAAAoMgrVo+cAAAAFjbADAAAsjbADAAAsjbADAAAsjbADAAAsjbADAAAsjbADAAAsjbADAAAsjbADAAAsjbADAAAsjbADAAAsjbADAAAsjbADAAAsjbADAAAsjbADAAAsjbADAAAsjbADAAAsjbADAAAsjbADAAAsjbADAAAsjbADAAAsjbADAAAsjbADAAAsjbADAAAsjbADAAAsjbADAAAsjbADAAAsjbADAAAsjbADAAAsjbADAAAsjbADAAAsjbADAAAsjbADAAAsjbADAAAsjbADAAAsjbADAAAsjbADAAAsjbADAAAsjbADAAAsjbADAAAsjbADAAAsjbADAAAsjbADAAAsjbADAAAsjbADAAAsjbADAAAsjbADAAAsjbADAAAsjbADAAAsjbADAAAsjbADAAAsjbADAAAsjbADAAAsjbADAAAsjbADAAAsjbADAAAsjbADAAAsjbADAAAsrdCEnUmTJslms2nQoEH2cRcuXFBcXJxKlCghX19fxcbGKjk52WG6xMRERUdHy9vbW6VKldLQoUN16dKlW1w9AAAorApF2Nm8ebNmzJihOnXqOIwfPHiwvvrqK82fP1/r1q3TkSNH9NBDD9nbs7KyFB0drczMTP3www/64IMPNHv2bI0cOfJWrwIAACiknB520tLS1LVrV82cOVPFixe3j09JSdH777+vKVOmqEWLFqpfv75mzZqlH374QRs3bpQkrVixQjt37tTHH3+sunXrqk2bNho3bpymTZumzMxMZ60SAAAoRJweduLi4hQdHa1WrVo5jE9ISNDFixcdxteoUUNhYWGKj4+XJMXHx6t27doKCQmx94mKilJqaqp27Nhx1WVmZGQoNTXV4QMAAKzJ1ZkL//TTT7VlyxZt3rw5R1tSUpLc3d0VGBjoMD4kJERJSUn2Pn8POpfbL7ddzcSJEzVmzJgbrB4AABQFTjuzc+jQIf3nP//RnDlz5OnpeUuXPWzYMKWkpNg/hw4duqXLBwAAt47Twk5CQoKOHTumevXqydXVVa6urlq3bp3eeOMNubq6KiQkRJmZmTpz5ozDdMnJyQoNDZUkhYaG5ng66/Lw5T658fDwkL+/v8MHAABYk9PCTsuWLbV9+3Zt3brV/mnQoIG6du1q/9vNzU2rV6+2T7Nnzx4lJiYqMjJSkhQZGant27fr2LFj9j4rV66Uv7+/IiIibvk6AQCAwsdp9+z4+fmpVq1aDuN8fHxUokQJ+/hevXppyJAhCgoKkr+/vwYMGKDIyEg1btxYktS6dWtFRESoW7dumjx5spKSkvTCCy8oLi5OHh4et3ydAABA4ePUG5T/ydSpU+Xi4qLY2FhlZGQoKipK06dPt7cXK1ZMS5YsUd++fRUZGSkfHx/16NFDY8eOdWLVAACgMClUYefbb791GPb09NS0adM0bdq0q05ToUIFffPNNze5MgAAUFQ5/T07AAAANxNhBwAAWBphBwAAWBphBwAAWBphBwAAWBphBwAAWBphBwAAWBphBwAAWBphBwAAWBphBwAAWBphBwAAWBphBwAAWBphBwAAWBphBwAAWBphBwAAWBphBwAAWBphBwAAWBphBwAAWBphBwAAWBphBwAAWBphBwAAWBphBwAAWBphBwAAWBphBwAAWBphBwAAWBphBwAAWBphBwAAWBphBwAAWBphBwAAWBphBwAAWBphBwAAWBphBwAAWBphBwAAWBphBwAAWBphBwAAWBphBwAAWBphBwAAWBphBwAAWBphBwAAWBphBwAAWBphBwAAWBphBwAAWBphBwAAWBphBwAAWBphBwAAWBphBwAAWBphBwAAWBphBwAAWBphBwAAWBphBwAAWBphBwAAWBphBwAAWBphBwAAWBphBwAAWBphBwAAWBphBwAAWBphBwAAWFq+w86ZM2f03nvvadiwYTp16pQkacuWLTp8+HCBFQcAAHCjXPMz0S+//KJWrVopICBABw8eVJ8+fRQUFKSFCxcqMTFRH374YUHXCQAAkC/5OrMzZMgQ9ezZU/v27ZOnp6d9fNu2bbV+/foCKw4AAOBG5SvsbN68Wf/v//2/HOPLli2rpKSkGy4KAACgoOQr7Hh4eCg1NTXH+L179yo4ODjP83n77bdVp04d+fv7y9/fX5GRkVq6dKm9/cKFC4qLi1OJEiXk6+ur2NhYJScnO8wjMTFR0dHR8vb2VqlSpTR06FBdunQpP6sFAAAsKF9hp127dho7dqwuXrwoSbLZbEpMTNRzzz2n2NjYPM+nXLlymjRpkhISEvTTTz+pRYsWat++vXbs2CFJGjx4sL766ivNnz9f69at05EjR/TQQw/Zp8/KylJ0dLQyMzP1ww8/6IMPPtDs2bM1cuTI/KwWAACwIJsxxlzvRCkpKerUqZN++uknnT17VmXKlFFSUpIiIyP1zTffyMfHJ98FBQUF6eWXX1anTp0UHBysuXPnqlOnTpKk3bt3Kzw8XPHx8WrcuLGWLl2qBx98UEeOHFFISIgk6Z133tFzzz2n48ePy93dPU/LTE1NVUBAgFJSUuTv75/v2m+mLVuk+vWlhHd3ql61dGeXU6Rt2eut+k9FKCFBqlfP2dUAAPIrr9/f+XoaKyAgQCtXrtSGDRv0yy+/KC0tTfXq1VOrVq3yXXBWVpbmz5+vc+fOKTIyUgkJCbp48aLDPGvUqKGwsDB72ImPj1ft2rXtQUeSoqKi1LdvX+3YsUN33XVXrsvKyMhQRkaGfTi3S3IAAMAa8hV2LmvatKmaNm16QwVs375dkZGRunDhgnx9fbVo0SJFRERo69atcnd3V2BgoEP/kJAQ+03QSUlJDkHncvvltquZOHGixowZc0N1AwCAoiHPYeeNN97I80wHDhyY577Vq1fX1q1blZKSos8//1w9evTQunXr8jx9fgwbNkxDhgyxD6empqp8+fI3dZkAAMA58hx2pk6d6jB8/Phxpaen28+8nDlzxv5E1PWEHXd3d91xxx2SpPr162vz5s16/fXX1blzZ2VmZurMmTMOZ3eSk5MVGhoqSQoNDdWPP/7oML/LT2td7pMbDw8PeXh45LlGAABQdOX5aawDBw7YPxMmTFDdunW1a9cunTp1SqdOndKuXbtUr149jRs37oYKys7OVkZGhurXry83NzetXr3a3rZnzx4lJiYqMjJSkhQZGant27fr2LFj9j4rV66Uv7+/IiIibqgOAABgDfm6Z2fEiBH6/PPPVb16dfu46tWra+rUqerUqZO6du2ap/kMGzZMbdq0UVhYmM6ePau5c+fq22+/1fLlyxUQEKBevXppyJAhCgoKkr+/vwYMGKDIyEg1btxYktS6dWtFRESoW7dumjx5spKSkvTCCy8oLi6OMzcAAEBSPsPO0aNHc31xX1ZWVo6X/l3LsWPH1L17dx09elQBAQGqU6eOli9frvvvv1/SX5fOXFxcFBsbq4yMDEVFRWn69On26YsVK6YlS5aob9++ioyMlI+Pj3r06KGxY8fmZ7UAAIAF5es9OzExMTp8+LDee+891fv/X1SSkJCgp556SmXLltXixYsLvNCbiffs3F54zw4AWENev7/z9Qbl//3vfwoNDVWDBg3sN/s2bNhQISEheu+99/JdNAAAQEHL12Ws4OBgffPNN9q7d692794t6a8X/lWrVq1AiwMAALhRN/RSwWrVqhFwAABAoZbvsPPnn39q8eLFSkxMVGZmpkPblClTbrgwAACAgpCvsLN69Wq1a9dOlStX1u7du1WrVi0dPHhQxhj7DcsAAACFQb5uUB42bJieeeYZbd++XZ6enlqwYIEOHTqk5s2b6+GHHy7oGgEAAPItX2Fn165d6t69uyTJ1dVV58+fl6+vr8aOHauXXnqpQAsEAAC4EfkKOz4+Pvb7dEqXLq39+/fb206cOFEwlQEAABSAfN2z07hxY23YsEHh4eFq27atnn76aW3fvl0LFy60/5QDAABAYZCvsDNlyhSlpaVJksaMGaO0tDR99tlnqlq1Kk9iAQCAQiVfYady5cr2v318fPTOO+8UWEEAAAAFKV/37AAAABQVeT6zU7x4cdlstjz1PXXqVL4LAgAAKEh5Djuvvfaa/e+TJ09q/PjxioqKUmRkpCQpPj5ey5cv14gRIwq8SAAAgPzKc9jp0aOH/e/Y2FiNHTtW/fv3t48bOHCg3nrrLa1atUqDBw8u2CoBAADyKV/37CxfvlwPPPBAjvEPPPCAVq1adcNFAQAAFJR8hZ0SJUroyy+/zDH+yy+/VIkSJW64KAAAgIKSr0fPx4wZo969e+vbb79Vo0aNJEmbNm3SsmXLNHPmzAItEAAA4EbkK+z07NlT4eHheuONN7Rw4UJJUnh4uDZs2GAPPwAAAIVBvsKOJDVq1Ehz5swpyFoAAAAKXJ7DTmpqqvz9/e1/X8vlfgAAAM52XS8VPHr0qEqVKqXAwMBcXzBojJHNZlNWVlaBFgkAAJBfeQ47a9asUVBQkCRp7dq1N60gAACAgpTnsNO8eXP735UqVVL58uVznN0xxujQoUMFVx0AAMANytd7dipVqqTjx4/nGH/q1ClVqlTphosCAAAoKPkKO5fvzblSWlqaPD09b7goAACAgnJdj54PGTJEkmSz2TRixAh5e3vb27KysrRp0ybVrVu3QAsEAAC4EdcVdn7++WdJf53Z2b59u9zd3e1t7u7uuvPOO/XMM88UbIUAAAA34LrCzuWnsJ544gm9/vrrvE8HAAAUevl6g/KsWbMKug4AAICbIl9h59y5c5o0aZJWr16tY8eOKTs726H9999/L5DiAAAAblS+wk7v3r21bt06devWTaVLl871ySwAAIDCIF9hZ+nSpfr666/VpEmTgq4HAACgQOXrPTvFixe3/3QEAABAYZavsDNu3DiNHDlS6enpBV0PAABAgcrXZaxXX31V+/fvV0hIiCpWrCg3NzeH9i1bthRIcQAAADcqX2GnQ4cOBVwGAADAzZGvsDNq1KiCrgMAAOCmyNc9OwAAAEVFvs7sZGVlaerUqZo3b54SExOVmZnp0H7q1KkCKQ4AAOBG5evMzpgxYzRlyhR17txZKSkpGjJkiB566CG5uLho9OjRBVwiAABA/uUr7MyZM0czZ87U008/LVdXV3Xp0kXvvfeeRo4cqY0bNxZ0jQAAAPmWr7CTlJSk2rVrS5J8fX2VkpIiSXrwwQf19ddfF1x1AAAANyhfYadcuXI6evSoJKlKlSpasWKFJGnz5s3y8PAouOoAAABuUL7CTseOHbV69WpJ0oABAzRixAhVrVpV3bt315NPPlmgBQIAANyIfD2NNWnSJPvfnTt3VlhYmOLj41W1alXFxMQUWHEAAAA3Kl9h50qRkZGKjIwsiFkBAAAUqHyFnQ8//PCa7d27d89XMQAAAAUtX2HnP//5j8PwxYsXlZ6eLnd3d3l7exN2AABAoZGvG5RPnz7t8ElLS9OePXvUtGlTffLJJwVdIwAAQL4V2G9jVa1aVZMmTcpx1gcAAMCZCvSHQF1dXXXkyJGCnCUAAMANydc9O4sXL3YYNsbo6NGjeuutt9SkSZMCKQxA4ZeYKJ044ewqrKFkSSkszNlVANaUr7DToUMHh2Gbzabg4GC1aNFCr776akHUBaCQS0yUwsON0tNtzi7FEry9jXbtshF4gJsgX2EnOztbknT8+HG5u7srICCgQIsCUPidOCGlp9v08fDfFV7hgrPLKdJ2/eGpxydU1okTnN0BbobrDjtnzpzR8OHD9dlnn+n06dOSpODgYD3xxBMaMWKEvL29C7xIAIVXeIULqlct3dllAMBVXVfYOXXqlCIjI3X48GF17dpV4eHhkqSdO3fqzTff1MqVK7Vhwwb98ssv2rhxowYOHHhTigYAAMir6wo7Y8eOlbu7u/bv36+QkJAcba1bt1a3bt20YsUKvfHGGwVaKAAAQH5cV9j54osvNGPGjBxBR5JCQ0M1efJktW3bVqNGjVKPHj0KrEgAAID8uq737Bw9elQ1a9a8anutWrXk4uKiUaNG3XBhAAAABeG6wk7JkiV18ODBq7YfOHBApUqVutGaAAAACsx1hZ2oqCgNHz5cmZmZOdoyMjI0YsQIPfDAA3me38SJE3X33XfLz89PpUqVUocOHbRnzx6HPhcuXFBcXJxKlCghX19fxcbGKjk52aFPYmKioqOj5e3trVKlSmno0KG6dOnS9awaAACwqOu+QblBgwaqWrWq4uLiVKNGDRljtGvXLk2fPl0ZGRn68MMP8zy/devWKS4uTnfffbcuXbqk//73v2rdurV27twpHx8fSdLgwYP19ddfa/78+QoICFD//v310EMP6fvvv5ckZWVlKTo6WqGhofrhhx909OhRde/eXW5ubnrxxRevZ/UAAIAFXVfYKVeunOLj49WvXz8NGzZMxhhJf71B+f7779dbb72lsOt4I9ayZcschmfPnq1SpUopISFBzZo1U0pKit5//33NnTtXLVq0kCTNmjVL4eHh2rhxoxo3bqwVK1Zo586dWrVqlUJCQlS3bl2NGzdOzz33nEaPHi13d/ccy83IyFBGRoZ9ODU19Xo2AwAAKEKu+4dAK1WqpKVLl+rEiRPauHGjNm7cqOPHj2vZsmW64447bqiYlJQUSVJQUJAkKSEhQRcvXlSrVq3sfWrUqKGwsDDFx8dLkuLj41W7dm2HJ8SioqKUmpqqHTt25LqciRMnKiAgwP4pX778DdUNAAAKr3z/6nnx4sXVsGFDNWzY0B5ObkR2drYGDRqkJk2aqFatWpKkpKQkubu7KzAw0KFvSEiIkpKS7H2ufBT+8vDlPlcaNmyYUlJS7J9Dhw7dcP0AAKBwytdvY90McXFx+vXXX7Vhw4abviwPDw95eHjc9OUAAADny/eZnYLUv39/LVmyRGvXrlW5cuXs40NDQ5WZmakzZ8449E9OTlZoaKi9z5VPZ10evtwHAADcvpwadowx6t+/vxYtWqQ1a9aoUqVKDu3169eXm5ubVq9ebR+3Z88eJSYmKjIyUpIUGRmp7du369ixY/Y+K1eulL+/vyIiIm7NigAAgELLqZex4uLiNHfuXH355Zfy8/Oz32MTEBAgLy8vBQQEqFevXhoyZIiCgoLk7++vAQMGKDIyUo0bN5YktW7dWhEREerWrZsmT56spKQkvfDCC4qLi+NSFQAAcG7YefvttyVJ9957r8P4WbNmqWfPnpKkqVOnysXFRbGxscrIyFBUVJSmT59u71usWDEtWbJEffv2VWRkpHx8fNSjRw+NHTv2Vq0GAAAoxJwadi6/p+daPD09NW3aNE2bNu2qfSpUqKBvvvmmIEsDAAAWUShuUAYAALhZCDsAAMDSCDsAAMDSCs1LBQEAKAiJidKJE86uougrWVK6jp+7LNQIOwAAy0hMlMLDjdLTbc4upcjz9jbatctmicBD2AEAWMaJE1J6uk0fD/9d4RUuOLucImvXH556fEJlnThhjbM7hB0AgOWEV7igetXSnV0GCgluUAYAAJZG2AEAAJZG2AEAAJZG2AEAAJZG2AEAAJZG2AEAAJZG2AEAAJZG2AEAAJZG2AEAAJZG2AEAAJZG2AEAAJZG2AEAAJZG2AEAAJZG2AEAAJZG2AEAAJZG2AEAAJZG2AEAAJZG2AEAAJZG2AEAAJZG2AEAAJZG2AEAAJZG2AEAAJZG2AEAAJZG2AEAAJZG2AEAAJZG2AEAAJZG2AEAAJZG2AEAAJZG2AEAAJZG2AEAAJZG2AEAAJZG2AEAAJZG2AEAAJZG2AEAAJZG2AEAAJZG2AEAAJZG2AEAAJZG2AEAAJZG2AEAAJZG2AEAAJZG2AEAAJZG2AEAAJZG2AEAAJZG2AEAAJZG2AEAAJZG2AEAAJZG2AEAAJZG2AEAAJZG2AEAAJZG2AEAAJZG2AEAAJZG2AEAAJZG2AEAAJbm1LCzfv16xcTEqEyZMrLZbPriiy8c2o0xGjlypEqXLi0vLy+1atVK+/btc+hz6tQpde3aVf7+/goMDFSvXr2UlpZ2C9cCAAAUZk4NO+fOndOdd96padOm5do+efJkvfHGG3rnnXe0adMm+fj4KCoqShcuXLD36dq1q3bs2KGVK1dqyZIlWr9+vZ566qlbtQoAAKCQc3Xmwtu0aaM2bdrk2maM0WuvvaYXXnhB7du3lyR9+OGHCgkJ0RdffKFHH31Uu3bt0rJly7R582Y1aNBAkvTmm2+qbdu2euWVV1SmTJlbti4AAKBwKrT37Bw4cEBJSUlq1aqVfVxAQIAaNWqk+Ph4SVJ8fLwCAwPtQUeSWrVqJRcXF23atOmq887IyFBqaqrDBwAAWFOhDTtJSUmSpJCQEIfxISEh9rakpCSVKlXKod3V1VVBQUH2PrmZOHGiAgIC7J/y5csXcPUAAKCwKLRh52YaNmyYUlJS7J9Dhw45uyQAAHCTFNqwExoaKklKTk52GJ+cnGxvCw0N1bFjxxzaL126pFOnTtn75MbDw0P+/v4OHwAAYE2FNuxUqlRJoaGhWr16tX1camqqNm3apMjISElSZGSkzpw5o4SEBHufNWvWKDs7W40aNbrlNQMAgMLHqU9jpaWl6bfffrMPHzhwQFu3blVQUJDCwsI0aNAgjR8/XlWrVlWlSpU0YsQIlSlTRh06dJAkhYeH64EHHlCfPn30zjvv6OLFi+rfv78effRRnsQCAACSnBx2fvrpJ91333324SFDhkiSevToodmzZ+vZZ5/VuXPn9NRTT+nMmTNq2rSpli1bJk9PT/s0c+bMUf/+/dWyZUu5uLgoNjZWb7zxxi1fFwAAUDg5Nezce++9MsZctd1ms2ns2LEaO3bsVfsEBQVp7ty5N6M8AABgAYX2nh0AAICCQNgBAACWRtgBAACWRtgBAACWRtgBAACWRtgBAACWRtgBAACWRtgBAACWRtgBAACWRtgBAACWRtgBAACWRtgBAACWRtgBAACWRtgBAACWRtgBAACWRtgBAACWRtgBAACWRtgBAACWRtgBAACWRtgBAACWRtgBAACWRtgBAACWRtgBAACWRtgBAACWRtgBAACWRtgBAACWRtgBAACWRtgBAACWRtgBAACWRtgBAACWRtgBAACWRtgBAACWRtgBAACWRtgBAACWRtgBAACWRtgBAACWRtgBAACWRtgBAACWRtgBAACWRtgBAACWRtgBAACWRtgBAACWRtgBAACWRtgBAACWRtgBAACWRtgBAACWRtgBAACWRtgBAACWRtgBAACWRtgBAACWRtgBAACWRtgBAACWRtgBAACWRtgBAACWRtgBAACWRtgBAACWRtgBAACWRtgBAACWRtgBAACWRtgBAACWRtgBAACWZpmwM23aNFWsWFGenp5q1KiRfvzxR2eXBAAACgFLhJ3PPvtMQ4YM0ahRo7RlyxbdeeedioqK0rFjx5xdGgAAcDJLhJ0pU6aoT58+euKJJxQREaF33nlH3t7e+t///ufs0gAAgJO5OruAG5WZmamEhAQNGzbMPs7FxUWtWrVSfHx8rtNkZGQoIyPDPpySkiJJSk1NvbnF3oC0tL/+N2HvRaWdz3ZuMUXcnkMXJaUqLU0qxLu80OOYLDgckwWH47JgFJVj8vL3tjHm2h1NEXf48GEjyfzwww8O44cOHWoaNmyY6zSjRo0ykvjw4cOHDx8+FvgcOnTomlmhyJ/ZyY9hw4ZpyJAh9uHs7GydOnVKJUqUkM1mc2JlRVtqaqrKly+vQ4cOyd/f39nlAJI4LlH4cEwWHGOMzp49qzJlylyzX5EPOyVLllSxYsWUnJzsMD45OVmhoaG5TuPh4SEPDw+HcYGBgTerxNuOv78//wGj0OG4RGHDMVkwAgIC/rFPkb9B2d3dXfXr19fq1avt47Kzs7V69WpFRkY6sTIAAFAYFPkzO5I0ZMgQ9ejRQw0aNFDDhg312muv6dy5c3riiSecXRoAAHAyS4Sdzp076/jx4xo5cqSSkpJUt25dLVu2TCEhIc4u7bbi4eGhUaNG5bhECDgTxyUKG47JW89mzD89rwUAAFB0Ffl7dgAAAK6FsAMAACyNsAMAACyNsAMAACyNsAMAACyNsAMAACyNsIN827Vrl2bNmqXdu3dLknbv3q2+ffvqySef1Jo1a5xcHZDToUOH9OSTTzq7DNxmzp8/rw0bNmjnzp052i5cuKAPP/zQCVXdXnjPDvJl2bJlat++vXx9fZWenq5Fixape/fuuvPOO5Wdna1169ZpxYoVatGihbNLBey2bdumevXqKSsry9ml4Daxd+9etW7dWomJibLZbGratKk+/fRTlS5dWtJfv+NYpkwZjsmbjLCDfLnnnnvUokULjR8/Xp9++qn69eunvn37asKECZL++mX5hIQErVixwsmV4nayePHia7b//vvvevrpp/liwS3TsWNHXbx4UbNnz9aZM2c0aNAg7dy5U99++63CwsIIO7cIYQf5EhAQoISEBN1xxx3Kzs6Wh4eHfvzxR911112SpF9//VWtWrVSUlKSkyvF7cTFxUU2m03X+r81m83GFwtumZCQEK1atUq1a9eWJBlj1K9fP33zzTdau3atfHx8CDu3APfsIN9sNpukv75gPD09FRAQYG/z8/NTSkqKs0rDbap06dJauHChsrOzc/1s2bLF2SXiNnP+/Hm5uv7fz1DabDa9/fbbiomJUfPmzbV3714nVnf7IOwgXypWrKh9+/bZh+Pj4xUWFmYfTkxMtF+TBm6V+vXrKyEh4art/3TWByhoNWrU0E8//ZRj/FtvvaX27durXbt2Tqjq9kPYQb707dvX4bRrrVq1HP71snTpUm5Oxi03dOhQ3XPPPVdtv+OOO7R27dpbWBFudx07dtQnn3ySa9tbb72lLl26EMBvAe7ZAQAAlsaZHQAAYGmEHQAAYGmEHQAAYGmEHQAAYGmEHeA2YrPZ9MUXXzi7jDybPXu2AgMDnV1GoVfU9itwqxF2AItISkrSgAEDVLlyZXl4eKh8+fKKiYnR6tWrnV2aU40ePVo2m002m02urq6qWLGiBg8erLS0NGeXVmCOHj2qNm3aOLsMoNBy/ecuAAq7gwcPqkmTJgoMDNTLL7+s2rVr6+LFi1q+fLni4uLsv0x/u6pZs6ZWrVqlS5cu6fvvv9eTTz6p9PR0zZgxw9mlFYjQ0NBrtl+8eFFubm63qBqg8OHMDmAB/fr1k81m048//qjY2FhVq1ZNNWvW1JAhQ7Rx48arTvfcc8+pWrVq8vb2VuXKlTVixAhdvHjR3r5t2zbdd9998vPzk7+/v+rXr29/G+wff/yhmJgYFS9eXD4+PqpZs6a++eYb+7S//vqr2rRpI19fX4WEhKhbt246ceLENddj9uzZCgsLk7e3tzp27KiTJ0/m6PP222+rSpUqcnd3V/Xq1fXRRx/94/ZxdXVVaGioypUrp86dO6tr1672Hw396KOP1KBBA/n5+Sk0NFSPPfaYjh07Zp/29OnT6tq1q4KDg+Xl5aWqVatq1qxZkqTMzEz1799fpUuXlqenpypUqKCJEyfap50yZYpq164tHx8flS9fXv369ctxRmnmzJkqX768fZ2nTJmS49Ldl19+qXr16snT01OVK1fWmDFjdOnSJXv73y9jHTx4UDabTZ999pmaN28uT09PzZkzR9nZ2Ro7dqzKlSsnDw8P1a1bV8uWLfvHbQdYggFQpJ08edLYbDbz4osv/mNfSWbRokX24XHjxpnvv//eHDhwwCxevNiEhISYl156yd5es2ZN8/jjj5tdu3aZvXv3mnnz5pmtW7caY4yJjo42999/v/nll1/M/v37zVdffWXWrVtnjDHm9OnTJjg42AwbNszs2rXLbNmyxdx///3mvvvuu2ptGzduNC4uLuall14ye/bsMa+//roJDAw0AQEB9j4LFy40bm5uZtq0aWbPnj3m1VdfNcWKFTNr1qy56nxHjRpl7rzzTodxAwcONEFBQcYYY95//33zzTffmP3795v4+HgTGRlp2rRpY+8bFxdn6tatazZv3mwOHDhgVq5caRYvXmyMMebll1825cuXN+vXrzcHDx403333nZk7d6592qlTp5o1a9aYAwcOmNWrV5vq1aubvn372ts3bNhgXFxczMsvv2z27Nljpk2bZoKCghzWef369cbf39/Mnj3b7N+/36xYscJUrFjRjB492t7n7/v1wIEDRpKpWLGiWbBggfn999/NkSNHzJQpU4y/v7/55JNPzO7du82zzz5r3NzczN69e6+67QCrIOwARdymTZuMJLNw4cJ/7Htl2LnSyy+/bOrXr28f9vPzM7Nnz861b+3atR2+cP9u3LhxpnXr1g7jDh06ZCSZPXv25DpNly5dTNu2bR3Gde7c2eGL/5577jF9+vRx6PPwww/nmO7vrgw7P/30kylZsqTp1KlTrv03b95sJJmzZ88aY4yJiYkxTzzxRK59BwwYYFq0aGGys7Ovuvy/mz9/vilRooR9uHPnziY6OtqhT9euXR3WuWXLljmC7EcffWRKly5tH84t7Lz22msO05QpU8ZMmDDBYdzdd99t+vXrl6fagaKMy1hAEWdu4BdfPvvsMzVp0kShoaHy9fXVCy+8oMTERHv7kCFD1Lt3b7Vq1UqTJk3S/v377W0DBw7U+PHj1aRJE40aNUq//PKLvW3btm1au3atfH197Z8aNWpIksM8/m7Xrl1q1KiRw7jIyMgcfZo0aeIwrkmTJtq1a9c113P79u3y9fWVl5eXGjZsqMjISL311luSpISEBMXExCgsLEx+fn5q3ry5JNm3Q9++ffXpp5+qbt26evbZZ/XDDz/Y59uzZ09t3bpV1atX18CBA7VixQqH5a5atUotW7ZU2bJl5efnp27duunkyZNKT0+XJO3Zs0cNGzZ0mObK4W3btmns2LEO27JPnz46evSofT65adCggf3v1NRUHTlyJF/bDrACwg5QxFWtWlU2m+26b0KOj49X165d1bZtWy1ZskQ///yzhg8frszMTHuf0aNHa8eOHYqOjtaaNWsUERGhRYsWSZJ69+6t33//Xd26ddP27dvVoEEDvfnmm5KktLQ0xcTEaOvWrQ6fffv2qVmzZgW38nlUvXp1bd26Vbt27dL58+e1ePFihYSE6Ny5c4qKipK/v7/mzJmjzZs329fv8nZo06aN/vjjDw0ePFhHjhxRy5Yt9cwzz0iS6tWrpwMHDmjcuHE6f/68HnnkEXXq1EnSX/fOPPjgg6pTp44WLFighIQETZs2zWHeeZGWlqYxY8Y4bMft27dr37598vT0vOp0Pj4++dpWgCU5+9QSgBv3wAMPmLJly5q0tLQcbadPn7b/rb9d7njllVdM5cqVHfr26tXL4RLKlR599FETExOTa9vzzz9vateubYwx5r///a+pXr26uXjxYp7XIbfLWI8++mieLmNdeSno73K7Z+eyn376yUgyiYmJ9nEfffSRkWR+/vnnXKd55513jJ+fX65ty5YtM5LMyZMnzeeff27c3NxMVlaWvX3cuHFGkn2fdO7c2Tz44IMO83j88cdzrPOTTz551fUzJvfLWFfWf7XLWHFxcdecN2AFPHoOWMC0adPUpEkTNWzYUGPHjlWdOnV06dIlrVy5Um+//XaulyqqVq2qxMREffrpp7r77rv19ddf289qSNL58+c1dOhQderUSZUqVdKff/6pzZs3KzY2VpI0aNAgtWnTRtWqVdPp06e1du1ahYeHS5Li4uI0c+ZMdenSRc8++6yCgoL022+/6dNPP9V7772nYsWK5ahn4MCBatKkiV555RW1b99ey5cvz/G00NChQ/XII4/orrvuUqtWrfTVV19p4cKFWrVqVb62W1hYmNzd3fXmm2/q3//+t3799VeNGzfOoc/IkSNVv3591axZUxkZGVqyZIl9PadMmaLSpUvrrrvukouLi+bPn6/Q0FAFBgbqjjvu0MWLF/Xmm28qJiZG33//vd555x2HeQ8YMEDNmjXTlClTFBMTozVr1mjp0qWy2WwOy3/wwQcVFhamTp06ycXFRdu2bdOvv/6q8ePH53ldhw4dqlGjRqlKlSqqW7euZs2apa1bt2rOnDn52nZAkeLstAWgYBw5csTExcWZChUqGHd3d1O2bFnTrl07s3btWnsfXXGD8tChQ02JEiWMr6+v6dy5s5k6dar9rEJGRoZ59NFHTfny5Y27u7spU6aM6d+/vzl//rwxxpj+/fubKlWqGA8PDxMcHGy6detmTpw4YZ/33r17TceOHU1gYKDx8vIyNWrUMIMGDbrmzbzvv/++KVeunPHy8jIxMTHmlVdeyXGmafr06aZy5crGzc3NVKtWzXz44YfX3C7XOrNjjDFz5841FStWNB4eHiYyMtIsXrzY4czIuHHjTHh4uPHy8jJBQUGmffv25vfffzfGGPPuu++aunXrGh8fH+Pv729atmxptmzZYp/3lClTTOnSpY2Xl5eJiooyH374ocOZncvzKFu2rPHy8jIdOnQw48ePN6GhoQ41Llu2zNxzzz3Gy8vL+Pv7m4YNG5p3333X3q48nNnJysoyo0ePNmXLljVubm7mzjvvNEuXLr3mtgOswmbMDdzdCAAoUH369NHu3bv13XffObsUwDK4jAUATvTKK6/o/vvvl4+Pj5YuXaoPPvhA06dPd3ZZgKVwZgcAnOiRRx7Rt99+q7Nnz6py5coaMGCA/v3vfzu7LMBSCDsAAMDSeM8OAACwNMIOAACwNMIOAACwNMIOAACwNMIOAACwNMIOAACwNMIOAACwNMIOAACwtP8PED/N31EMBroAAAAASUVORK5CYII=",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "# Quantos passageiros estavam em cada classe do Titanic?\n",
+ "\n",
+ "contagemPassageiros = df['Classe'].value_counts()\n",
+ "\n",
+ "#criando o grafico\n",
+ "contagemPassageiros.plot(kind='bar', edgecolor='blue', color='pink')\n",
+ "\n",
+ "#configurações\n",
+ "plt.xlabel('Classe do Passageiro')\n",
+ "plt.ylabel('Quantidade')\n",
+ "plt.title('Número de Passageiros por Classe')\n",
+ "\n",
+ "plt.show()\n",
+ "\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 26,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjcAAAHHCAYAAABDUnkqAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAABWhUlEQVR4nO3deVwV1f8/8NcF5MIFZBFZRVDABTcUXHAJU5TSTM3cciFcKhU3rAwtcUnRVMTUIk1yLfdsQUHjo+aaCmqaiIoLuICQCgIKeu/5/eGP+XYFlIvAhevr+Xjch86ZMzPvuZflxcyZGZkQQoCIiIhIR+hpuwAiIiKi8sRwQ0RERDqF4YaIiIh0CsMNERER6RSGGyIiItIpDDdERESkUxhuiIiISKcw3BAREZFOYbghIqIKkZSUhJkzZ+LmzZvaLoVeMQw3RBXo/fffh4uLi7bLeC6ZTIagoCBtl6Gmc+fO6Ny5s7bLoJegVCoxfPhwbNq0CR9++KG2y6FXDMMNVUkymaxUr/3792u71Ep36NAhvPnmm3B0dISRkRHq1q2LXr164ccff9R2aTpp165dmDlzprbL0Kr8/HwsW7YMHTt2hKWlJQwNDeHg4IC3334bP/30E5RKZZFlFi1aBDMzM5w6dQo3b97EunXrtFA5vaoMtF0AUXHWr1+vNr1u3Trs3bu3SHvjxo0rsyyt27p1KwYOHAhPT09MnDgRlpaWuHr1Kv7880+sWrUK7733nrZLLBd79uzRdgmSXbt2YcWKFa9swMnIyMCbb76J+Ph4+Pv74/PPP4eVlRXS0tLwxx9/4L333sPly5fxxRdfSMsUhp2NGzfC2NgYW7duxa5du7S1C/QKYrihKmno0KFq08eOHcPevXuLtL9qZs6cCQ8PDxw7dgyGhoZq8+7cuVPp9eTm5sLExKTc1/vsvlHFefToEQwNDaGnV/yB/GHDhuHUqVPYvn073nnnHbV5ISEhOHnyJJKSktTa9fX1MXXqVGnazc0NEyZMKP/iS+FF+0e6iZ82VVs//PADunTpAhsbG8jlcnh4eODbb79V6/O///0Penp6mDFjhlr7jz/+CJlMpta/NOt7np07d6Jp06YwMjJC06ZN8fPPPxfbT6VSISIiAk2aNIGRkRFsbW3x4Ycf4t69ey/cRnJyMlq3bl3sL38bGxu16dzcXEyZMgVOTk6Qy+Vo2LAhFi1aBCFEseveuHEjGjZsCCMjI3h5eeHPP/9Umz9z5kzIZDKcP38e7733HiwtLdGxY0dp/oYNG+Dl5QVjY2NYWVlh0KBBSE1NleYHBQXB1NQUeXl5RbY9ePBg2NnZSX/x/3fMTXp6OgwMDDBr1qwiyyUlJUEmk2H58uVS2/379zFp0iRpv93c3LBgwQKoVCqpz7Vr1yCTybBo0SKsXLkSrq6ukMvlaN26NU6cOCH1e//997FixQoA6qdKC5X2szx58iT8/f1hbW0NY2Nj1KtXDyNGjCj2c/gvFxcXvPXWW9izZw88PT1hZGQEDw8P7Nixo0jfK1euoH///rCysoJCoUC7du0QHR2t1mf//v2QyWTYtGkTPv/8czg6OkKhUCA7O7vY7R89ehSxsbH44IMPigSbQt7e3hgyZIhaW35+PkJDQ+Hm5ga5XA4nJyd8+umnyM/PV+tXON6r8HtHLpejSZMmiImJKbKdmzdvYsSIEbC1tZX6RUVFabR/W7dulb5Gra2tMXToUA521lWCqBoYN26cePbLtXXr1uL9998XS5YsEcuWLRPdu3cXAMTy5cuLLGtgYCDi4+OFEELcunVLWFlZCT8/P6FSqTReX3FiY2OFnp6eaNq0qQgPDxfTp08X5ubmokmTJsLZ2Vmt76hRo4SBgYEYPXq0iIyMFFOnThUmJiaidevWoqCg4LnbadCggXBychKpqanP7adSqUSXLl2ETCYTo0aNEsuXLxe9evUSAMSkSZPU+gIQTZs2FdbW1mL27NliwYIFwtnZWRgbG4uzZ89K/UJDQwUA4eHhIXr37i2++eYbsWLFCiGEEF9++aWQyWRi4MCB4ptvvhGzZs0S1tbWwsXFRdy7d08IIcSff/4pAIgtW7aobT83N1eYmJiIcePGSW2+vr7C19dXmu7SpYvw8PAosp+zZs0S+vr6Ii0tTVpX8+bNRa1atcS0adNEZGSkGD58uJDJZGLixInSclevXhUARMuWLYWbm5tYsGCB+Oqrr4S1tbWoU6eO9DkcOXJEdOvWTQAQ69evl16FSvNZpqenC0tLS9GgQQOxcOFCsWrVKjF9+nTRuHHj536GQgjh7OwsGjRoICwsLMRnn30mwsPDRbNmzYSenp7Ys2eP1C8tLU3Y2toKMzMzMX36dBEeHi5atGgh9PT0xI4dO6R++/btkz5DT09PER4eLsLCwkRubm6x2w8JCREAxKFDh15YayGlUim6d+8uFAqFmDRpkvjuu+9EUFCQMDAwEL1791brC0C0aNFC2Nvbizlz5oiIiAhRv359oVAoRGZmptr+1alTRzg5OYnZs2eLb7/9Vrz99tsCgFiyZEmp9u+HH34QAETr1q3FkiVLxGeffSaMjY3VvkZJdzDcULVQXLjJy8sr0s/f31/Ur19frS03N1e4ubmJJk2aiEePHomePXuKmjVriuvXr5dpfcXx9PQU9vb24v79+1Lbnj17BAC1cHPw4EEBQGzcuFFt+ZiYmGLbn7V69WoBQBgaGorXX39dfPHFF+LgwYNCqVSq9du5c6cAIL788ku19nfffVfIZDJx+fJlqQ2AACBOnjwptV2/fl0YGRmJvn37Sm2F4Wbw4MFq67x27ZrQ19cXc+fOVWs/e/asMDAwkNpVKpVwdHQU/fr1U+u3ZcsWAUD8+eefUtuz4ea7774TANTClhBCeHh4iC5dukjTc+bMESYmJuLixYtq/T777DOhr68vUlJShBD/F25q1aol7t69K/X75ZdfBADx22+/SW3Ffe0JUfrP8ueffxYAxIkTJ4qs40WcnZ0FALF9+3apLSsrS9jb24uWLVtKbZMmTRIAxMGDB6W2Bw8eiHr16gkXFxfp66Pwl3/9+vWL/Xp/Vt++fQUAta9rIYR4+PChyMjIkF7/DQfr168Xenp6arUIIURkZKQAIA4fPiy1FX4t//fr8cyZMwKAWLZsmdQ2cuRIYW9vrxZ4hBBi0KBBwtzcXNqXkvavoKBA2NjYiKZNm4qHDx9K7b///rsAIGbMmPHC94KqF56WomrL2NhY+n9WVhYyMzPh6+uLK1euICsrS5qnUCiwZs0aJCYm4rXXXkN0dDSWLFmCunXrlml9z7p9+zZOnz6NgIAAmJubS+3dunWDh4eHWt+tW7fC3Nwc3bp1Q2ZmpvTy8vKCqakp9u3b99x9HjFiBGJiYtC5c2ccOnQIc+bMQadOneDu7o4jR45I/Xbt2gV9ff0i4xymTJkCIQR2796t1u7j4wMvLy9pum7duujduzdiY2OLXAnz0UcfqU3v2LEDKpUKAwYMUNsnOzs7uLu7S/skk8nQv39/7Nq1Czk5OdLymzdvhqOjo9oprme98847MDAwwObNm6W2c+fO4fz58xg4cKDUtnXrVnTq1AmWlpZqtfj5+UGpVBY51TZw4EBYWlpK0506dQLw9BTPi5T2s7SwsAAA/P7773j8+PEL1/ssBwcH9O3bV5quWbMmhg8fjlOnTiEtLQ3A08+7TZs2au+hqakpPvjgA1y7dg3nz59XW2dAQIDa13tJCk/nmJqaqrVHRkaidu3a0uu/2926dSsaN26MRo0aqb0vXbp0AYAiX+N+fn5wdXWVpps3b46aNWtKn4EQAtu3b0evXr0ghFBbp7+/P7KyspCQkPDc/Tt58iTu3LmDsWPHwsjISGrv2bMnGjVqVOT0HVV/DDdUbR0+fBh+fn4wMTGBhYUFateujWnTpgFAkTDSoUMHjBkzBsePH4e/v3+x4x00Wd9/Xb9+HQDg7u5eZF7Dhg3Vpi9duoSsrCzY2Nio/XKoXbs2cnJySjUo2N/fH7Gxsbh//z7+/PNPjBs3DtevX8dbb70lLX/9+nU4ODjAzMxMbdnCq8sKay5UXO0NGjRAXl4eMjIy1Nrr1atXZJ+EEHB3dy+yT4mJiWr7NHDgQDx8+BC//vorACAnJwe7du1C//791cayPMva2hpdu3bFli1bpLbNmzfDwMBAbSzIpUuXEBMTU6QOPz8/AEUHXT8bcAuDTmnGP5X2s/T19UW/fv0wa9YsWFtbo3fv3vjhhx+KjD8piZubW5H3pkGDBgCejh0Cnn6ez36tASV/3s9+hiUp/Pr5bxgFgH79+mHv3r3Yu3cvmjdvrjbv0qVL+Oeff4q8J4U1v+gzAJ5+DoWfQUZGBu7fv4+VK1cWWWdgYGCx63x2/wr3v7j3qFGjRkXeH6r+eLUUVUvJycno2rUrGjVqhPDwcDg5OcHQ0BC7du3CkiVL1AaPAk8HOBbeEyc5ORl5eXlQKBRlXl9ZqVQq2NjYYOPGjcXOr127dqnXpVAo0KlTJ3Tq1AnW1taYNWsWdu/ejYCAgHKptSTP/sWvUqkgk8mwe/du6OvrF+n/37/627VrBxcXF2zZsgXvvfcefvvtNzx8+FDt6EtJBg0ahMDAQJw+fRqenp7YsmULunbtCmtra7VaunXrhk8//bTYdRT+gi1UXL0AShx0/V+l/SxlMhm2bduGY8eO4bfffkNsbCxGjBiBxYsX49ixY0WOilSG0hy1AZ7+4geeHiXr0KGD1O7k5AQnJycAkI6SFVKpVGjWrBnCw8OLXWfhcoVe9BkUfu8NHTq0xK/tZwNWafePdBfDDVVLv/32G/Lz8/Hrr7+q/eVX0mmd0NBQJCYmYtGiRZg6dSo+++wzfP3112Ve3385OzsDePoX67OevUTW1dUVf/zxBzp06FCuP4C9vb0BPD1FVljTH3/8gQcPHqgdvblw4YJazYWKq/3ixYtQKBQvDFyurq4QQqBevXpFwkNxBgwYgKVLlyI7OxubN2+Gi4sL2rVr98Ll+vTpgw8//FA6NXXx4kWEhIQUqSUnJ0c6UlMeSjqipOln2a5dO7Rr1w5z587Fjz/+iCFDhmDTpk0YNWrUc5e7fPkyhBBqdVy8eBEApLtfOzs7F/laA0r+vEvrrbfewvz587Fx40a1cPM8rq6uOHPmDLp27frco3GlVbt2bZiZmUGpVJb5cy3c/6SkJOn0WKGkpKQyvz9UdfG0FFVLhX/t/fcv7KysLPzwww9F+v71119YtGgRJk2ahClTpuCTTz7B8uXLceDAgTKt71n29vbw9PTE2rVr1U5f7d27t8hYhwEDBkCpVGLOnDlF1vPkyRPcv3//uduKi4srtr3wBmmFh9179OgBpVKpdok0ACxZsgQymQxvvvmmWvvRo0fVxi2kpqbil19+Qffu3Uv8y7rQO++8A319fcyaNavIEQ8hBP7991+1toEDByI/Px9r165FTEwMBgwY8Nz1F7KwsIC/vz+2bNmCTZs2wdDQEH369FHrM2DAAOny5Wfdv38fT548KdW2/qvwPj7Pfjal/Szv3btX5H3x9PQEgFKdmrp165babQWys7Oxbt06eHp6ws7ODsDTz/v48eM4evSo1C83NxcrV66Ei4tLkbFfpdWhQwd069YNK1euxC+//FJsn2f3bcCAAbh58yZWrVpVpO/Dhw+Rm5urUQ36+vro168ftm/fjnPnzhWZ/+xp0+J4e3vDxsYGkZGRau/57t27kZiYiJ49e2pUE1UD2hjFTKSpZ69YuXDhgjA0NBTNmjUTy5cvF/Pnzxeurq6iRYsWAoC4evWqEOLpVR0NGzYUjRo1kq6SyM/PF02aNBH16tUTOTk5Gq2vJLt371a7FPzzzz8v8VLwDz/8UAAQb775pliyZIlYvny5mDhxonBwcBBbt2597nZMTExE06ZNRUhIiPj+++/F0qVLpUu8W7duLR4/fiyEeHo57uuvvy5kMpn44IMPxIoVK0Tv3r01uhTcyMhInDlzRupXeLVURkZGkbrCwsIEANG+fXvx1VdfiW+//VZ8+umnwt3dXSxcuLBIfzc3N2FmZiYASJfo/9ezV0sV2rBhgwAgzMzMRK9evYrMz83NFa1atRIGBgZi1KhR4ttvvxWLFi0SAQEBwsTERKq98Gqp4moDIEJDQ6Xpwqu5hg0bJjZs2CB++uknaV5pPsslS5YId3d38emnn4rvvvtOLFq0SDRs2FDUrFlTXLlypcj2/+vZS8GXLFkiXQoeExMj9Su8FNzc3Fx88cUXYsmSJcLT01PIZLJiLwV/0dfZf6Wnp4uWLVtK+7l48WIRFRUl5s2bJ7p06SK1F1IqlaJHjx5CJpOJQYMGiWXLlomIiAjx0UcfCSsrK7WrxgCo3QLgv/sdEBCgtn/Ozs5CoVCIiRMniu+++06EhYWJ/v37C0tLy1LtX+Gl4G3bthUREREiJCREKBQKXgquoxhuqFoo7nLcX3/9VTRv3lwYGRkJFxcXsWDBAhEVFaUWRiZPniz09fXFX3/9pbbsyZMnhYGBgRgzZoxG63ue7du3i8aNGwu5XC48PDzEjh07REBAQJFwI4QQK1euFF5eXsLY2FiYmZmJZs2aiU8//VTcunXrudv46aefxKBBg4Srq6swNjYWRkZGwsPDQ0yfPl1kZ2er9X3w4IGYPHmycHBwEDVq1JCCxn/v7SPE//2C2bBhg3B3dxdyuVy0bNlS7Nu3T63f88JN4f537NhRmJiYCBMTE9GoUSMxbtw4kZSUVKTv9OnTBQDh5uZW7LpKCjfZ2dnC2NhYABAbNmwodtkHDx6IkJAQ4ebmJgwNDYW1tbVo3769WLRokXTvGU3CzZMnT8T48eNF7dq1hUwmK/J1+KLPMiEhQQwePFjUrVtXyOVyYWNjI9566y21S+9L4uzsLHr27CliY2NF8+bNhVwuF40aNSr2l3dycrJ49913hYWFhTAyMhJt2rQRv//+u1qfsoQbIZ7+kRARESF8fHxEzZo1hYGBgbCzsxNvvfWW2Lhxo3jy5Ila/4KCArFgwQLRpEkTIZfLhaWlpfDy8hKzZs0SWVlZUr/ShhshnoascePGCScnJ1GjRg1hZ2cnunbtKlauXFnq/du8ebNo2bKlkMvlwsrKSgwZMkTcuHFDo/eCqgeZEKUYOUdERJXOxcUFTZs2xe+//67tUoiqFY65ISIiIp3CcENEREQ6heGGiIiIdArH3BAREZFO4ZEbIiIi0ikMN0RERKRTXrnHL6hUKty6dQtmZmblcmtwIiIiqnhCCDx48AAODg7Q03v+sZlXLtzcunWryIPbiIiIqHpITU1FnTp1ntvnlQs3hQ8RTE1NRc2aNbVcDREREZVGdnY2nJyc1B4GXJJXLtwUnoqqWbMmww0REVE1U5ohJRxQTERERDqF4YaqnRUrVsDFxQVGRkZo27Ytjh8/XmLfzp07QyaTFXn17Nmz2P4fffQRZDIZIiIiKqh6IiKqaAw3VK1s3rwZwcHBCA0NRUJCAlq0aAF/f3/cuXOn2P47duzA7du3pde5c+egr6+P/v37F+n7888/49ixY3BwcKjo3SAiogr0yo25oeotPDwco0ePRmBgIAAgMjIS0dHRiIqKwmeffVakv5WVldr0pk2boFAoioSbmzdvYvz48YiNjS3xqA5RWalUKhQUFGi7DKIqz9DQ8IWXeZcGww1VGwUFBYiPj0dISIjUpqenBz8/Pxw9erRU61i9ejUGDRoEExMTqU2lUmHYsGH45JNP0KRJk3Kvm15tBQUFuHr1KlQqlbZLIary9PT0UK9ePRgaGr7UehhuqNrIzMyEUqmEra2tWrutrS0uXLjwwuWPHz+Oc+fOYfXq1WrtCxYsgIGBASZMmFCu9RIJIXD79m3o6+vDycmpXP4iJdJVhTfZvX37NurWrftSN9pluKFXxurVq9GsWTO0adNGaouPj8fSpUuRkJDAO1ZTuXvy5Any8vLg4OAAhUKh7XKIqrzatWvj1q1bePLkCWrUqFHm9fDPCKo2rK2toa+vj/T0dLX29PR02NnZPXfZ3NxcbNq0CSNHjlRrP3jwIO7cuYO6devCwMAABgYGuH79OqZMmQIXF5fy3gV6xSiVSgB46UPsRK+Kwu+Vwu+dsmK4oWrD0NAQXl5eiIuLk9pUKhXi4uLg4+Pz3GW3bt2K/Px8DB06VK192LBh+Pvvv3H69Gnp5eDggE8++QSxsbEVsh/06uFRQaLSKa/vFZ6WomolODgYAQEB8Pb2Rps2bRAREYHc3Fzp6qnhw4fD0dERYWFhasutXr0affr0Qa1atdTaa9WqVaStRo0asLOzQ8OGDSt2Z4iIqEIw3FC1MnDgQGRkZGDGjBlIS0uDp6cnYmJipEHGKSkpRQZtJiUl4dChQ9izZ482SiYqIiUFyMysvO1ZWwN161be9irD+++/j/v372Pnzp2vbB0zZ87Ezp07cfr06UrfdkmqSk0yIYTQagWVLDs7G+bm5sjKyuKzpYioQj169AhXr15FvXr1YGRkBOBpsGncWCAvr/JOVSkUAomJslIFnBedFggNDcXMmTPLp7CXUB6h4urVq5g+fTr279+Pu3fvwtraGl5eXliwYAEaNWpUaXWUVU5ODvLz84scfdaml62puO+ZQpr8/uaRGyKiSpSZCeTlybDhkwto7JRX4dtLTFVg6MJGyMws3dGb27dvS//fvHkzZsyYgaSkJKnN1NS0IsqsdI8fP0a3bt3QsGFD7NixA/b29rhx4wZ2796N+/fvV+i2CwoKymWQuampaZX7PKpKTRxQTESkBY2d8tDKLafCX5oGKDs7O+llbm4OmUwmTefm5mLIkCGwtbWFqakpWrdujT/++ENa9sKFC1AoFPjxxx+lti1btsDY2Bjnz58HAJw4cQLdunWDtbU1zM3N4evri4SEhOfWpFQqERwcDAsLC9SqVQuffvopnj3poFKpEBYWhnr16sHY2BgtWrTAtm3bSlznP//8g+TkZHzzzTdo164dnJ2d0aFDB3z55Zdo166d1O/s2bPo0qULjI2NUatWLXzwwQfIyckpsr5Zs2ahdu3aqFmzJj766CO1O1J37twZQUFBmDRpEqytreHv7w8AOHfuHN58802YmprC1tYWw4YNQ+b/P1+5cuVKODg4FLn5Y+/evTFixAgAT08BeXp6AgD27NkDIyOjIsFs4sSJ6NKlizR96NAhdOrUCcbGxnBycsKECROQm5srzXdxccG8efMwYsQImJmZoW7duli5cqXaOm/cuIHBgwfDysoKJiYm8Pb2xl9//VWkJqBsn3d54JGbV0hln+cn7dLFcRakXTk5OejRowfmzp0LuVyOdevWoVevXkhKSkLdunXRqFEjLFq0CGPHjkXHjh2hp6eHjz76CAsWLICHhwcA4MGDBwgICMCyZcsghMDixYvRo0cPXLp0CWZmZsVud/HixVizZg2ioqLQuHFjLF68GD///LPaL+2wsDBs2LABkZGRcHd3x59//omhQ4eidu3a8PX1LbLO2rVrQ09PD9u2bcOkSZOgr69fpE9ubi78/f3h4+ODEydO4M6dOxg1ahSCgoKwZs0aqV9cXByMjIywf/9+XLt2DYGBgahVqxbmzp0r9Vm7di3GjBmDw4cPAwDu37+PLl26YNSoUViyZAkePnyIqVOnYsCAAfjf//6H/v37Y/z48di3bx+6du0KALh79y5iYmKwa9euIrV27doVFhYW2L59u3TLC6VSic2bN0t1JCcn44033sCXX36JqKgoZGRkICgoCEFBQfjhhx/U3u85c+Zg2rRp2LZtG8aMGQNfX180bNgQOTk58PX1haOjI3799VfY2dkhISGhxDtwl+XzLhfiFZOVlSUAiKysLG2XUqmuXxdCoVAJQPD1irwUCpW4fl3bX3mvtocPH4rz58+Lhw8fSm3x8U8/n/iv44XYdaDCX/Ffxz/dXrzm9f/www/C3Nz8uX2aNGkili1bptbWs2dP0alTJ9G1a1fRvXt3oVKpSlxeqVQKMzMz8dtvv5XYx97eXnz11VfS9OPHj0WdOnVE7969hRBCPHr0SCgUCnHkyBG15UaOHCkGDx5c4nqXL18uFAqFMDMzE6+//rqYPXu2SE5OluavXLlSWFpaipycHKktOjpa6OnpibS0NCGEEAEBAcLKykrk5uZKfb799lthamoqlEqlEEIIX19f0bJlS7Vtz5kzR3Tv3l2tLTU1VQAQSUlJQgghevfuLUaMGCHN/+6774SDg4O03tDQUNGiRQtp/sSJE0WXLl2k6djYWCGXy8W9e/ek9+ODDz5Q2+bBgweFnp6e9DXq7Owshg4dKs1XqVTCxsZGfPvtt1INZmZm4t9//y32PX22pme96PMu7numkCa/v3nk5hVR2ef5Sbs0HWdBVBo5OTmYOXMmoqOjcfv2bTx58gQPHz5ESkqKWr+oqCg0aNAAenp6+Oeff9QGKaenp+Pzzz/H/v37cefOHSiVSuTl5RVZR6GsrCzcvn0bbdu2ldoMDAzg7e0N8f9PTV2+fBl5eXno1q2b2rIFBQVo2bJlifszbtw4DB8+HPv378exY8ewdetWzJs3D7/++iu6deuGxMREtGjRQu1ZdB06dIBKpUJSUpJ0lWaLFi3U7kDt4+ODnJwcpKamwtnZGQDg5eWltu0zZ85g3759xY5PSU5ORoMGDTBkyBCMHj0a33zzDeRyOTZu3IhBgwaV+BiPIUOGoF27drh16xYcHBywceNG9OzZExYWFtI2//77b2zcuFFaRggBlUqFq1evonHjxgCA5s2bS/MLT0veuXMHAHD69Gm0bNmyyEOJS6Lp511eGG5eMYXn+YmINPXxxx9j7969WLRoEdzc3GBsbIx33323yBPPz5w5g9zcXOjp6eH27duwt7eX5gUEBODff//F0qVL4ezsDLlcDh8fn5d6anrhGJjo6Gg4OjqqzZPL5c9d1szMDL169UKvXr3w5Zdfwt/fH19++WWRoPSy/huQCmvu1asXFixYUKRv4fvVq1cvCCEQHR2N1q1b4+DBg1iyZEmJ22jdujVcXV2xadMmjBkzBj///LPa6bOcnBx8+OGHxT5Hr+5//gp69rEHMplMOu1kbGz84p39j4r4vEuD4YaIiErl8OHDeP/999G3b18AT39ZXrt2Ta3P3bt38f7772P69Om4ffs2hgwZgoSEBOmX4uHDh/HNN9+gR48eAIDU1FRpEG1xzM3NYW9vj7/++guvvfYagKfP7IqPj0erVq0AAB4eHpDL5UhJSSl2fE1pyWQyNGrUCEeOHAEANG7cGGvWrEFubq4UTg4fPgw9PT21m3yeOXMGDx8+lPbx2LFjMDU1hZOTU4nbatWqFbZv3w4XFxcYGBT/q9jIyAjvvPMONm7ciMuXL6Nhw4bSPpdkyJAh2LhxI+rUqQM9PT307NlTbZvnz5+Hm5tb6d6QYjRv3hzff/897t69W6qjN5p+3uWFV0sREVGpuLu7Y8eOHTh9+jTOnDmD9957r8hA0o8++ghOTk74/PPPER4eDqVSiY8//lhtHevXr0diYiL++usvDBky5IVHAyZOnIj58+dj586duHDhAsaOHat2VZCZmRk+/vhjTJ48GWvXrkVycjISEhKwbNkyrF27tth1nj59Gr1798a2bdtw/vx5XL58GatXr0ZUVBR69+4N4GlQMDIyQkBAAM6dO4d9+/Zh/PjxGDZsmHRKCnh6+mvkyJE4f/48du3ahdDQUAQFBT33KfDjxo3D3bt3MXjwYJw4cQLJycmIjY1FYGCg2nOVhgwZgujoaERFRWHIkCHPfZ8K+yckJGDu3Ll499131Y5cTZ06FUeOHEFQUBBOnz6NS5cu4ZdffkFQUNAL11to8ODBsLOzQ58+fXD48GFcuXIF27dvx9GjR4vtX5bPuzzwyA0RkRYkplbOU8LLczvh4eEYMWIE2rdvD2tra0ydOhXZ2dnS/HXr1mHXrl04deqU9CDaDRs2oGPHjnjrrbfw5ptvYvXq1fjggw/QqlUrODk5Yd68eWrhpzhTpkzB7du3ERAQAD09PYwYMQJ9+/ZFVlaW1GfOnDmoXbs2wsLCcOXKFVhYWKBVq1aYNm1aseusU6cOXFxcMGvWLFy7dg0ymUyanjx5MgBAoVAgNjYWEydOROvWraFQKNCvXz+Eh4erratr165wd3fHa6+9hvz8fAwePPiFNzp0cHDA4cOHMXXqVHTv3h35+flwdnbGG2+8oRaKunTpAisrKyQlJeG999577joBwM3NDW3atMHx48cRERGhNq958+Y4cOAApk+fjk6dOkEIAVdXVwwcOPCF6y1kaGiIPXv2YMqUKejRoweePHkCDw8PrFixotj+Zfm8ywPvUPyKSEgAvLyA+K8TOObmFZBw2RReE1ohPh54wVFsqkDV8Q7FRNrEOxQTEVVDdesCiYmySn62FIMNvVoYboiIKlndurxEn6gicUAxERER6RSGGyIiItIpDDdERBXsFbtug6jMyut7heGGiKiCFD6MsaLvxkqkKwq/V4p7kKkmOKCYiKiCGBgYQKFQICMjAzVq1HjuTd2IXnUqlQoZGRlQKBQl3rW5tBhuiIgqiEwmg729Pa5evYrr169ruxyiKk9PTw9169ZVe9hqWTDcEBFVIENDQ7i7u/PUFFEpGBoalssRzioRblasWIGFCxciLS0NLVq0wLJly9CmTZti+3bu3BkHDhwo0t6jRw9ER0dXdKlERBrT09MrcrdVIqo4Wj8BvHnzZgQHByM0NBQJCQlo0aIF/P39cefOnWL779ixA7dv35Ze586dg76+Pvr371/JlRMREVFVpPVwEx4ejtGjRyMwMBAeHh6IjIyEQqFAVFRUsf2trKxgZ2cnvfbu3QuFQsFwQ0RERAC0HG4KCgoQHx8PPz8/qU1PTw9+fn4lPj79WatXr8agQYNgYmJS7Pz8/HxkZ2ervYiIiEh3aTXcZGZmQqlUwtbWVq3d1tYWaWlpL1z++PHjOHfuHEaNGlVin7CwMJibm0svJyenl66biIiIqi6tn5Z6GatXr0azZs1KHHwMACEhIcjKypJeqamplVghERERVTatXi1lbW0NfX19pKenq7Wnp6fDzs7uucvm5uZi06ZNmD179nP7yeVyyOXyl66ViIiIqgetHrkxNDSEl5cX4uLipDaVSoW4uDj4+Pg8d9mtW7ciPz8fQ4cOregyiYiIqBrR+n1ugoODERAQAG9vb7Rp0wYRERHIzc1FYGAgAGD48OFwdHREWFiY2nKrV69Gnz59UKtWLW2UTURERFWU1sPNwIEDkZGRgRkzZiAtLQ2enp6IiYmRBhmnpKQUuVthUlISDh06hD179mijZCIiIqrCtB5uACAoKAhBQUHFztu/f3+RtoYNG5bbY9GJiIhIt1Trq6WIiIiInsVwQ0RERDqF4YaIiIh0CsMNERER6RSGGyIiItIpDDdERESkUxhuiIiISKcw3BAREZFOYbghIiIincJwQ0RERDqF4YaIiIh0CsMNERER6RSGGyIiItIpDDdERESkUxhuiIiISKcw3BAREZFOYbghIiIincJwQ0RERDqF4YaIiIh0CsMNERER6RSGGyIiItIpDDdERESkUxhuiIiISKcw3BAREZFOYbghIiIincJwQ0RERDqF4YaIiIh0CsMNERER6RSGGyIiItIpDDdERESkUxhuiIiISKcw3BAREZFOYbghIiIincJwQ0RERDqF4YaIiIh0CsMNERER6RSth5sVK1bAxcUFRkZGaNu2LY4fP/7c/vfv38e4ceNgb28PuVyOBg0aYNeuXZVULREREVV1Btrc+ObNmxEcHIzIyEi0bdsWERER8Pf3R1JSEmxsbIr0LygoQLdu3WBjY4Nt27bB0dER169fh4WFReUXT0RERFWSVsNNeHg4Ro8ejcDAQABAZGQkoqOjERUVhc8++6xI/6ioKNy9exdHjhxBjRo1AAAuLi6VWTIRERFVcVo7LVVQUID4+Hj4+fn9XzF6evDz88PRo0eLXebXX3+Fj48Pxo0bB1tbWzRt2hTz5s2DUqkscTv5+fnIzs5WexEREZHu0lq4yczMhFKphK2trVq7ra0t0tLSil3mypUr2LZtG5RKJXbt2oUvvvgCixcvxpdfflnidsLCwmBubi69nJycynU/iIiIqGrR+oBiTahUKtjY2GDlypXw8vLCwIEDMX36dERGRpa4TEhICLKysqRXampqJVZMRERElU1rY26sra2hr6+P9PR0tfb09HTY2dkVu4y9vT1q1KgBfX19qa1x48ZIS0tDQUEBDA0Niywjl8shl8vLt3giIiKqsrR25MbQ0BBeXl6Ii4uT2lQqFeLi4uDj41PsMh06dMDly5ehUqmktosXL8Le3r7YYENERESvHq2elgoODsaqVauwdu1aJCYmYsyYMcjNzZWunho+fDhCQkKk/mPGjMHdu3cxceJEXLx4EdHR0Zg3bx7GjRunrV0gIiKiKkarl4IPHDgQGRkZmDFjBtLS0uDp6YmYmBhpkHFKSgr09P4vfzk5OSE2NhaTJ09G8+bN4ejoiIkTJ2Lq1Kna2gUiIiKqYrQabgAgKCgIQUFBxc7bv39/kTYfHx8cO3asgqsiIiKi6qpaXS1FRERE9CIMN0RERKRTGG6IiIhIpzDcEBERkU5huCEiIiKdwnBDREREOoXhhoiIiHQKww0RERHpFIYbIiIi0ikMN0RERKRTGG6IiIhIpzDcEBERkU5huCEiIiKdwnBDREREOoXhhoiIiHQKww0RERHpFIYbIiIi0ikMN0RERKRTGG6IiIhIpzDcEBERkU5huCEiIiKdwnBDREREOoXhhoiIiHQKww0RERHpFIYbIiIi0ikMN0RERKRTGG6IiIhIp7x0uMnOzsbOnTuRmJhYHvUQERERvRSNw82AAQOwfPlyAMDDhw/h7e2NAQMGoHnz5ti+fXu5F0hERESkCY3DzZ9//olOnToBAH7++WcIIXD//n18/fXX+PLLL8u9QCIiIiJNaBxusrKyYGVlBQCIiYlBv379oFAo0LNnT1y6dKncCyQiIiLShMbhxsnJCUePHkVubi5iYmLQvXt3AMC9e/dgZGRU7gUSERERacJA0wUmTZqEIUOGwNTUFHXr1kXnzp0BPD1d1axZs/Kuj4iIiEgjGoebsWPHok2bNkhNTUW3bt2gp/f04E/9+vU55oaIiIi0TuNwAwDe3t5o3rw5rl69CldXVxgYGKBnz57lXRsRERGRxjQec5OXl4eRI0dCoVCgSZMmSElJAQCMHz8e8+fPL/cCiYiIiDShcbgJCQnBmTNnsH//frUBxH5+fti8eXO5FkdERESkKY3Dzc6dO7F8+XJ07NgRMplMam/SpAmSk5PLVMSKFSvg4uICIyMjtG3bFsePHy+x75o1ayCTydRevEqLiIiICmkcbjIyMmBjY1OkPTc3Vy3slNbmzZsRHByM0NBQJCQkoEWLFvD398edO3dKXKZmzZq4ffu29Lp+/brG2yUiIiLdpHG48fb2RnR0tDRdGGi+//57+Pj4aFxAeHg4Ro8ejcDAQHh4eCAyMhIKhQJRUVElLiOTyWBnZye9bG1tNd4uERER6SaNr5aaN28e3nzzTZw/fx5PnjzB0qVLcf78eRw5cgQHDhzQaF0FBQWIj49HSEiI1Kanpwc/Pz8cPXq0xOVycnLg7OwMlUqFVq1aYd68eWjSpEmxffPz85Gfny9NZ2dna1QjERERVS8aH7np2LEjTp8+jSdPnqBZs2bYs2cPbGxscPToUXh5eWm0rszMTCiVyiJHXmxtbZGWllbsMg0bNkRUVBR++eUXbNiwASqVCu3bt8eNGzeK7R8WFgZzc3Pp5eTkpFGNREREVL2U6T43rq6uWLVqVXnXUio+Pj5qp7/at2+Pxo0b47vvvsOcOXOK9A8JCUFwcLA0nZ2dzYBDRESkwzQON/r6+rh9+3aRQcX//vsvbGxsoFQqS70ua2tr6OvrIz09Xa09PT0ddnZ2pVpHjRo10LJlS1y+fLnY+XK5HHK5vNQ1ERERUfWm8WkpIUSx7fn5+TA0NNRoXYaGhvDy8kJcXJzUplKpEBcXV+rByUqlEmfPnoW9vb1G2yYiIiLdVOojN19//TWAp1cqff/99zA1NZXmKZVK/Pnnn2jUqJHGBQQHByMgIADe3t5o06YNIiIikJubi8DAQADA8OHD4ejoiLCwMADA7Nmz0a5dO7i5ueH+/ftYuHAhrl+/jlGjRmm8bSIiItI9pQ43S5YsAfD0yE1kZCT09fWleYaGhnBxcUFkZKTGBQwcOBAZGRmYMWMG0tLS4OnpiZiYGGmQcUpKivRwTgC4d+8eRo8ejbS0NFhaWsLLywtHjhyBh4eHxtsmIiIi3SMTJZ1nKsHrr7+OHTt2wNLSsqJqqlDZ2dkwNzdHVlYWatasqe1yKk1CAuDlBcR/nYBWbjnaLocqWMJlU3hNaIX4eKBVK21XQ0T08jT5/a3xgOJ9+/aVuTAiIiKiiqZxuFEqlVizZg3i4uJw584dqFQqtfn/+9//yq04IiIiIk1pHG4mTpyINWvWoGfPnmjatGmZnidFREREVFE0DjebNm3Cli1b0KNHj4qoh4iIiOilaHyfG0NDQ7i5uVVELUREREQvTeNwM2XKFCxdurTEm/kRERERaZPGp6UOHTqEffv2Yffu3WjSpAlq1KihNn/Hjh3lVhwRERGRpjQONxYWFujbt29F1EJERET00jQONz/88ENF1EFERERULjQecwMAT548wR9//IHvvvsODx48AADcunULOTm88y0RERFpl8ZHbq5fv4433ngDKSkpyM/PR7du3WBmZoYFCxYgPz+/TM+XIiIiIiovGh+5mThxIry9vXHv3j0YGxtL7X379kVcXFy5FkdERESkKY2P3Bw8eBBHjhyBoaGhWruLiwtu3rxZboURERERlYXGR25UKhWUSmWR9hs3bsDMzKxciiIiIiIqK43DTffu3RERESFNy2Qy5OTkIDQ0lI9kICIiIq3T+LTU4sWL4e/vDw8PDzx69AjvvfceLl26BGtra/z0008VUSMRERFRqWkcburUqYMzZ85g06ZN+Pvvv5GTk4ORI0diyJAhagOMiYiIiLRB43Dz6NEjGBkZYejQoRVRDxEREdFL0XjMjY2NDQICArB3716oVKqKqImIiIiozDQON2vXrkVeXh569+4NR0dHTJo0CSdPnqyI2oiIiIg0pnG46du3L7Zu3Yr09HTMmzcP58+fR7t27dCgQQPMnj27ImokIiIiKrUyPVsKAMzMzBAYGIg9e/bg77//homJCWbNmlWetRERERFprMzh5tGjR9iyZQv69OmDVq1a4e7du/jkk0/KszYiIiIijWl8tVRsbCx+/PFH7Ny5EwYGBnj33XexZ88evPbaaxVRHxEREZFGNA43ffv2xVtvvYV169ahR48eqFGjRkXURURERFQmGoeb9PR0PkOKiIiIqqxShZvs7GzUrFkTACCEQHZ2dol9C/sRERERaUOpwo2lpSVu374NGxsbWFhYQCaTFekjhIBMJiv2ieFERERElaVU4eZ///sfrKyspP8XF26IiIiIqoJShRtfX1/p/507d66oWoiIiIhemsb3uXF3d8fMmTNx6dKliqiHiIiI6KVoHG7Gjh2L6OhoNGrUCK1bt8bSpUuRlpZWEbURERERaUzjcDN58mScOHECiYmJ6NGjB1asWAEnJyd0794d69atq4gaiYiIiEqtzI9faNCgAWbNmoWLFy/i4MGDyMjIQGBgYHnWRkRERKQxjW/i91/Hjx/Hjz/+iM2bNyM7Oxv9+/cvr7qIiIiIykTjcHPx4kVs3LgRP/30E65evYouXbpgwYIFeOedd2BqaloRNRIRERGVmsanpRo1aoSYmBiMGzcON27cQGxsLIYPH/5SwWbFihVwcXGBkZER2rZti+PHj5dquU2bNkEmk6FPnz5l3jYRERHpFo2P3CQlJcHd3b3cCti8eTOCg4MRGRmJtm3bIiIiAv7+/khKSoKNjU2Jy127dg0ff/wxOnXqVG61EBERUfVXpvvc3L9/H99//z1CQkJw9+5dAEBCQgJu3rypcQHh4eEYPXo0AgMD4eHhgcjISCgUCkRFRZW4jFKpxJAhQzBr1izUr19f420SERGR7tI43Pz9999wd3fHggULsGjRIty/fx8AsGPHDoSEhGi0roKCAsTHx8PPz+//CtLTg5+fH44ePVricrNnz4aNjQ1Gjhz5wm3k5+cjOztb7UVERES6q0z3uQkMDMSlS5dgZGQktffo0QN//vmnRuvKzMyEUqmEra2tWrutrW2JNwY8dOgQVq9ejVWrVpVqG2FhYTA3N5deTk5OGtVIRERE1YvG4ebkyZP48MMPi7Q7OjpW+J2KHzx4gGHDhmHVqlWwtrYu1TIhISHIysqSXqmpqRVaIxEREWmXxgOK5XJ5sad2Ll68iNq1a2u0Lmtra+jr6yM9PV2tPT09HXZ2dkX6Jycn49q1a+jVq5fUplKpAAAGBgZISkqCq6trkXrlcrlGdREREVH1pfGRm7fffhuzZ8/G48ePAQAymQwpKSmYOnUq+vXrp9G6DA0N4eXlhbi4OKlNpVIhLi4OPj4+Rfo3atQIZ8+exenTp6XX22+/jddffx2nT5/mKSciIiLS/MjN4sWL8e6778LGxgYPHz6Er68v0tLS4OPjg7lz52pcQHBwMAICAuDt7Y02bdogIiICubm50qMchg8fDkdHR4SFhcHIyAhNmzZVW97CwgIAirQTERHRq0njcGNubo69e/fi8OHDOHPmDHJyctCqVSu1K540MXDgQGRkZGDGjBlIS0uDp6cnYmJipEHGKSkp0NMr8yOwiIiI6BWjUbh5/PgxjI2Ncfr0aXTo0AEdOnQolyKCgoIQFBRU7Lz9+/c/d9k1a9aUSw1ERESkGzQ6JFKjRg3UrVsXSqWyouohIiIieikan++ZPn06pk2bJt2ZmIiIiKgq0XjMzfLly3H58mU4ODjA2dkZJiYmavMTEhLKrTgiIiIiTWkcbvgEbiIiIqrKNA43oaGhFVEHERERUbnQONwUOnnyJBITEwEAHh4e8PLyKreiiIiIiMpK43Bz48YNDB48GIcPH5ZuoHf//n20b98emzZtQp06dcq7RiIiIqJS0/hqqVGjRuHx48dITEzE3bt3cffuXSQmJkKlUmHUqFEVUSMRERFRqWl85ObAgQM4cuQIGjZsKLU1bNgQy5YtQ6dOncq1OCIiIiJNaXzkxsnJSXpo5n8plUo4ODiUS1FEREREZaVxuFm4cCHGjx+PkydPSm0nT57ExIkTsWjRonItjoiIiEhTpTotZWlpCZlMJk3n5uaibdu2MDB4uviTJ09gYGCAESNG8D44REREpFWlCjcREREVXAYRERFR+ShVuAkICKjoOoiIiIjKRZlu4qdUKrFz507pJn5NmjTB22+/DX19/XItjoiIiEhTGoeby5cvo0ePHrh586Z0OXhYWBicnJwQHR0NV1fXci+SiIiIqLQ0vlpqwoQJcHV1RWpqKhISEpCQkICUlBTUq1cPEyZMqIgaiYiIiEqtTDfxO3bsGKysrKS2WrVqYf78+ejQoUO5FkdERESkKY2P3Mjlcjx48KBIe05ODgwNDculKCIiIqKy0jjcvPXWW/jggw/w119/QQgBIQSOHTuGjz76CG+//XZF1EhERERUahqHm6+//hqurq7w8fGBkZERjIyM0KFDB7i5uWHp0qUVUSMRERFRqWk85sbCwgK//PILLl++LF0K3rhxY7i5uZV7cURERESaKtN9bgDAzc0Nbm5uePLkCR49elSeNRERERGVWalPS/32229Ys2aNWtvcuXNhamoKCwsLdO/eHffu3Svv+oiIiIg0UupwEx4ejtzcXGn6yJEjmDFjBr744gts2bIFqampmDNnToUUSURERFRapQ43//zzD9q3by9Nb9u2Dd26dcP06dPxzjvvYPHixfjtt98qpEgiIiKi0ip1uHnw4AFq1aolTR86dAhdu3aVpps0aYJbt26Vb3VEREREGip1uHF0dJSujsrJycGZM2fUjuT8+++/UCgU5V8hERERkQZKHW769++PSZMmYf369Rg9ejTs7OzQrl07af7JkyelB2kSERERaUupLwWfMWMGbt68iQkTJsDOzg4bNmyAvr6+NP+nn35Cr169KqRIIiIiotIqdbgxNjbGunXrSpy/b9++cimIiIiI6GVo/PgFIiIioqqM4YaIiIh0CsMNERER6RSGGyIiItIpDDdERESkU8r0VPDc3FwcOHAAKSkpKCgoUJs3YcKEcimMiIiIqCw0DjenTp1Cjx49kJeXh9zcXFhZWSEzMxMKhQI2NjZlCjcrVqzAwoULkZaWhhYtWmDZsmVo06ZNsX137NiBefPm4fLly3j8+DHc3d0xZcoUDBs2TOPtEhERke7R+LTU5MmT0atXL9y7dw/GxsY4duwYrl+/Di8vLyxatEjjAjZv3ozg4GCEhoYiISEBLVq0gL+/P+7cuVNsfysrK0yfPh1Hjx7F33//jcDAQAQGBiI2NlbjbRMREZHu0TjcnD59GlOmTIGenh709fWRn58PJycnfPXVV5g2bZrGBYSHh2P06NEIDAyEh4cHIiMjoVAoEBUVVWz/zp07o2/fvmjcuDFcXV0xceJENG/eHIcOHSq2f35+PrKzs9VeREREpLs0Djc1atSAnt7TxWxsbJCSkgIAMDc3R2pqqkbrKigoQHx8PPz8/P6vID09+Pn54ejRoy9cXgiBuLg4JCUl4bXXXiu2T1hYGMzNzaWXk5OTRjUSERFR9aLxmJuWLVvixIkTcHd3h6+vL2bMmIHMzEysX78eTZs21WhdmZmZUCqVsLW1VWu3tbXFhQsXSlwuKysLjo6OyM/Ph76+Pr755ht069at2L4hISEIDg6WprOzsxlwiIiIdJjG4WbevHl48OABAGDu3LkYPnw4xowZA3d3d6xevbrcCyyOmZkZTp8+jZycHMTFxSE4OBj169dH586di/SVy+WQy+WVUhcRERFpn8bhxtvbW/q/jY0NYmJiyrxxa2tr6OvrIz09Xa09PT0ddnZ2JS6np6cHNzc3AICnpycSExMRFhZWbLghIiKiV4vGY26ed7pI0yuWDA0N4eXlhbi4OKlNpVIhLi4OPj4+pV6PSqVCfn6+RtsmIiIi3aRxuGnVqhVWrFih1pafn4+goCD07t1b4wKCg4OxatUqrF27FomJiRgzZgxyc3MRGBgIABg+fDhCQkKk/mFhYdi7dy+uXLmCxMRELF68GOvXr8fQoUM13jYRERHpHo1PS61ZswZjxoxBdHQ0fvjhB9y+fRvvvfceVCoVDh48qHEBAwcOREZGBmbMmIG0tDR4enoiJiZGGmSckpIiXZ0FPL078tixY3Hjxg0YGxujUaNG2LBhAwYOHKjxtomIiEj3yIQQQtOFbty4gcDAQJw6dQq5ubl4//33sXjxYigUioqosVxlZ2fD3NwcWVlZqFmzprbLqTQJCYCXFxD/dQJaueVouxyqYAmXTeE1oRXi44FWrbRdDRHRy9Pk93eZH5xZUFAApVIJpVIJe3t7GBkZlXVVREREROVG43CzadMmNGvWDObm5rh48SKio6OxcuVKdOrUCVeuXKmIGomIiIhKTeNwM3LkSMybNw+//vorateujW7duuHs2bNwdHSEp6dnBZRIREREVHoaDyhOSEhAw4YN1dosLS2xZcsWrF+/vtwKIyIiIioLjY/cPBts/mvYsGEvVQwRERHRy9L4yA3w9GqpX3/9FSkpKSgoKFCbFx4eXi6FEREREZWFxuEmLi4Ob7/9NurXr48LFy6gadOmuHbtGoQQaMVrTomIiEjLND4tFRISgo8//hhnz56FkZERtm/fjtTUVPj6+qJ///4VUSMRERFRqWkcbhITEzF8+HAAgIGBAR4+fAhTU1PMnj0bCxYsKPcCiYiIiDShcbgxMTGRxtnY29sjOTlZmpeZmVl+lRERERGVQanDzezZs5Gbm4t27drh0KFDAIAePXpgypQpmDt3LkaMGIF27dpVWKFEREREpVHqcDNr1izk5uYiPDwcbdu2ldq6du2KzZs3w8XFBatXr66wQomIiIhKo9RXSxU+X7N+/fpSm4mJCSIjI8u/KiIiIqIy0mjMjUwmq6g6iIiIiMqFRve5adCgwQsDzt27d1+qICIiIqKXoVG4mTVrFszNzSuqFiIiIqKXplG4GTRoEGxsbCqqFiIiIqKXVuoxNxxvQ0RERNVBqcNN4dVSRERERFVZqU9LqVSqiqyDiIiIqFxo/PgFIiIioqqM4YaIiIh0CsMNERER6RSGGyIiItIpDDdERESkUxhuiIiISKcw3BAREZFOYbghIiIincJwQ0RERDqF4YaIiIh0CsMNERER6RSGGyIiqjJWrFgBFxcXGBkZoW3btjh+/HiJff/55x/069cPLi4ukMlkiIiIKNLnwYMHmDRpEpydnWFsbIz27dvjxIkTFbgHVBUw3BARUZWwefNmBAcHIzQ0FAkJCWjRogX8/f1x586dYvvn5eWhfv36mD9/Puzs7IrtM2rUKOzduxfr16/H2bNn0b17d/j5+eHmzZsVuSukZQw3RERUJYSHh2P06NEIDAyEh4cHIiMjoVAoEBUVVWz/1q1bY+HChRg0aBDkcnmR+Q8fPsT27dvx1Vdf4bXXXoObmxtmzpwJNzc3fPvttxW9O6RFDDdERKR1BQUFiI+Ph5+fn9Smp6cHPz8/HD16tEzrfPLkCZRKJYyMjNTajY2NcejQoZeql6o2hhsiItK6zMxMKJVK2NraqrXb2toiLS2tTOs0MzODj48P5syZg1u3bkGpVGLDhg04evQobt++XR5lUxVVJcKNJgPIVq1ahU6dOsHS0hKWlpbw8/N7bn8iInp1rV+/HkIIODo6Qi6X4+uvv8bgwYOhp1clfv1RBdH6p6vpALL9+/dj8ODB2LdvH44ePQonJyd0796dg8OIiKoxa2tr6OvrIz09Xa09PT29xMHCpeHq6ooDBw4gJycHqampOH78OB4/foz69eu/bMlUhWk93Gg6gGzjxo0YO3YsPD090ahRI3z//fdQqVSIi4ur5MqJiKi8GBoawsvLS+1neeHPdh8fn5dev4mJCezt7XHv3j3Exsaid+/eL71OqroMtLnxwgFkISEhUpumA8jy8vLw+PFjWFlZFTs/Pz8f+fn50nR2dvbLFU1ERBUiODgYAQEB8Pb2Rps2bRAREYHc3FwEBgYCAIYPHw5HR0eEhYUBePo75Pz589L/b968idOnT8PU1BRubm4AgNjYWAgh0LBhQ1y+fBmffPIJGjVqJK2TdJNWw83zBpBduHChVOuYOnUqHBwc1EbY/1dYWBhmzZr10rUSEVHFGjhwIDIyMjBjxgykpaXB09MTMTEx0u+IlJQUtbEyt27dQsuWLaXpRYsWYdGiRfD19cX+/fsBAFlZWQgJCcGNGzdgZWWFfv36Ye7cuahRo0al7htVLq2Gm5c1f/58bNq0Cfv37y9yqV+hkJAQBAcHS9PZ2dlwcnKqrBKJiEgDQUFBCAoKKnZeYWAp5OLiAiHEc9c3YMAADBgwoLzKo2pCq+HmZQaQLVq0CPPnz8cff/yB5s2bl9hPLpcXe3MnIiIi0k1aHVBc1gFkX331FebMmYOYmBh4e3tXRqlERERUTWj9tJSmA8gWLFiAGTNm4Mcff4SLi4t0cydTU1OYmppqbT+IiLQpJQXIzNR2FVRZrK2BunW1XUXVpfVwo+kAsm+//RYFBQV499131dYTGhqKmTNnVmbpRERVQkoK0LixQF6eTNulUCVRKAQSE2UMOCXQergBNBtAdu3atYoviIioGsnMBPLyZJi48B7q1H+i7XKogt24YoCln1giM5NHb0pSJcINERG9vDr1n6B+E4YbIq3foZiIiIioPDHcEBERkU5huCEiIiKdwnBDREREOoXhhoiIiHQKww0RERHpFIYbIiIi0ikMN0RERKRTGG6IiIhIpzDcEBERkU5huCEiIiKdwnBDREREOoXhhoiIiHQKww0RERHpFIYbIiIi0ikMN0RERKRTGG6IiIhIpzDcEBERkU5huCEiIiKdwnBDREREOoXhhoiIiHQKww0RERHpFIYbIiIi0ikMN0RERKRTGG6IiIhIpzDcEBERkU5huCEiIiKdwnBDREREOoXhhoiIiHQKww0RERHpFIYbIiIi0ikMN0RERKRTGG6IiIhIpzDcEBERkU5huCEiIiKdovVws2LFCri4uMDIyAht27bF8ePHS+z7zz//oF+/fnBxcYFMJkNERETlFUpERETVglbDzebNmxEcHIzQ0FAkJCSgRYsW8Pf3x507d4rtn5eXh/r162P+/Pmws7Or5GqJiIioOtBquAkPD8fo0aMRGBgIDw8PREZGQqFQICoqqtj+rVu3xsKFCzFo0CDI5fJKrpaIiIiqA62Fm4KCAsTHx8PPz+//itHTg5+fH44ePVpu28nPz0d2drbai4iIiHSX1sJNZmYmlEolbG1t1dptbW2RlpZWbtsJCwuDubm59HJyciq3dRMREVHVo/UBxRUtJCQEWVlZ0is1NVXbJREREVEFMtDWhq2traGvr4/09HS19vT09HIdLCyXyzk+h4iI6BWitSM3hoaG8PLyQlxcnNSmUqkQFxcHHx8fbZVFRERE1ZzWjtwAQHBwMAICAuDt7Y02bdogIiICubm5CAwMBAAMHz4cjo6OCAsLA/B0EPL58+el/9+8eROnT5+Gqakp3NzctLYfREREVHVoNdwMHDgQGRkZmDFjBtLS0uDp6YmYmBhpkHFKSgr09P7v4NKtW7fQsmVLaXrRokVYtGgRfH19sX///soun4iIiKogrYYbAAgKCkJQUFCx854NLC4uLhBCVEJVREREVF3p/NVSRERE9GphuCEiIiKdwnBDREREOoXhhoiIiHQKww0RERHpFIYbIiIi0ikMN0RERKRTGG6IiIhIpzDcEBERkU5huCEiIiKdwnBDREREOoXhhoiIiHQKww0RERHpFIYbIiIi0ikMN0RERKRTGG6IiIhIpzDcEBERkU5huCEiIiKdwnBDREREOoXhhoiIiHQKww0RERHpFIYbIiIi0ikMN0RERKRTGG6IiIhIpzDcEBERkU5huCEiIiKdwnBDREREOoXhhoiIiHQKww0RERHpFIYbIiIi0ikMN0RERKRTGG6IiIhIpzDcEBERkU5huCEiIiKdwnBDREREOoXhhoiIiHQKww0RERHplCoRblasWAEXFxcYGRmhbdu2OH78+HP7b926FY0aNYKRkRGaNWuGXbt2VVKlREREVNVpPdxs3rwZwcHBCA0NRUJCAlq0aAF/f3/cuXOn2P5HjhzB4MGDMXLkSJw6dQp9+vRBnz59cO7cuUqunIiIiKoirYeb8PBwjB49GoGBgfDw8EBkZCQUCgWioqKK7b906VK88cYb+OSTT9C4cWPMmTMHrVq1wvLlyyu5ciIiIqqKDLS58YKCAsTHxyMkJERq09PTg5+fH44ePVrsMkePHkVwcLBam7+/P3bu3Fls//z8fOTn50vTWVlZAIDs7OyXrL56ycl5+m/8ZRVyHmq3Fqp4STdVALKRkwO8Yl/qr6TC7+/k83l4lKfUbjFU4W5e08er+P1d+HtbCPHCvloNN5mZmVAqlbC1tVVrt7W1xYULF4pdJi0trdj+aWlpxfYPCwvDrFmzirQ7OTmVserq7YOvtV0BVSZfX21XQJUp8gttV0CV6VX9/n7w4AHMzc2f20er4aYyhISEqB3pUalUuHv3LmrVqgWZTKbFyqgyZGdnw8nJCampqahZs6a2yyGicsTv71eLEAIPHjyAg4PDC/tqNdxYW1tDX18f6enpau3p6emws7Mrdhk7OzuN+svlcsjlcrU2CwuLshdN1VLNmjX5w49IR/H7+9XxoiM2hbQ6oNjQ0BBeXl6Ii4uT2lQqFeLi4uDj41PsMj4+Pmr9AWDv3r0l9iciIqJXi9ZPSwUHByMgIADe3t5o06YNIiIikJubi8DAQADA8OHD4ejoiLCwMADAxIkT4evri8WLF6Nnz57YtGkTTp48iZUrV2pzN4iIiKiK0Hq4GThwIDIyMjBjxgykpaXB09MTMTEx0qDhlJQU6On93wGm9u3b48cff8Tnn3+OadOmwd3dHTt37kTTpk21tQtUhcnlcoSGhhY5NUlE1R+/v6kkMlGaa6qIiIiIqgmt38SPiIiIqDwx3BAREZFOYbghIiIincJwQ1WGEAIffPABrKysIJPJcPr0aa3Uce3aNa1un4hezvvvv48+ffpouwzSIq1fLUVUKCYmBmvWrMH+/ftRv359WFtba7skIiKqhhhuqMpITk6Gvb092rdvr+1SiIioGuNpKaoS3n//fYwfPx4pKSmQyWRwcXGBSqVCWFgY6tWrB2NjY7Ro0QLbtm2Tltm/fz9kMhliY2PRsmVLGBsbo0uXLrhz5w52796Nxo0bo2bNmnjvvfeQl5cnLRcTE4OOHTvCwsICtWrVwltvvYXk5OTn1nfu3Dm8+eabMDU1ha2tLYYNG4bMzMwKez+IXhWdO3fG+PHjMWnSJFhaWsLW1harVq2SbuZqZmYGNzc37N69GwCgVCoxcuRI6edCw4YNsXTp0udu40U/S0j3MNxQlbB06VLMnj0bderUwe3bt3HixAmEhYVh3bp1iIyMxD///IPJkydj6NChOHDggNqyM2fOxPLly3HkyBGkpqZiwIABiIiIwI8//ojo6Gjs2bMHy5Ytk/rn5uYiODgYJ0+eRFxcHPT09NC3b1+oVKpia7t//z66dOmCli1b4uTJk4iJiUF6ejoGDBhQoe8J0ati7dq1sLa2xvHjxzF+/HiMGTMG/fv3R/v27ZGQkIDu3btj2LBhyMvLg0qlQp06dbB161acP38eM2bMwLRp07Bly5YS11/anyWkQwRRFbFkyRLh7OwshBDi0aNHQqFQiCNHjqj1GTlypBg8eLAQQoh9+/YJAOKPP/6Q5oeFhQkAIjk5WWr78MMPhb+/f4nbzcjIEADE2bNnhRBCXL16VQAQp06dEkIIMWfOHNG9e3e1ZVJTUwUAkZSUVOb9JSIhfH19RceOHaXpJ0+eCBMTEzFs2DCp7fbt2wKAOHr0aLHrGDdunOjXr580HRAQIHr37i2EKN3PEtI9HHNDVdLly5eRl5eHbt26qbUXFBSgZcuWam3NmzeX/m9rawuFQoH69eurtR0/flyavnTpEmbMmIG//voLmZmZ0hGblJSUYh/jcebMGezbtw+mpqZF5iUnJ6NBgwZl20kiAqD+Payvr49atWqhWbNmUlvh43ju3LkDAFixYgWioqKQkpKChw8foqCgAJ6ensWuW5OfJaQ7GG6oSsrJyQEAREdHw9HRUW3es8+RqVGjhvR/mUymNl3Y9t9TTr169YKzszNWrVoFBwcHqFQqNG3aFAUFBSXW0qtXLyxYsKDIPHt7e812jIiKKO579tnva+Dp2JlNmzbh448/xuLFi+Hj4wMzMzMsXLgQf/31V7Hr1uRnCekOhhuqkjw8PCCXy5GSkgJfX99yW++///6LpKQkrFq1Cp06dQIAHDp06LnLtGrVCtu3b4eLiwsMDPgtQ6RNhw8fRvv27TF27Fip7XkXBFTUzxKq2viTmqokMzMzfPzxx5g8eTJUKhU6duyIrKwsHD58GDVr1kRAQECZ1mtpaYlatWph5cqVsLe3R0pKCj777LPnLjNu3DisWrUKgwcPxqeffgorKytcvnwZmzZtwvfffw99ff0y1UJEmnN3d8e6desQGxuLevXqYf369Thx4gTq1atXbP+K+llCVRvDDVVZc+bMQe3atREWFoYrV67AwsICrVq1wrRp08q8Tj09PWzatAkTJkxA06ZN0bBhQ3z99dfo3Llzics4ODjg8OHDmDp1Krp37478/Hw4OzvjjTfegJ4eLzgkqkwffvghTp06hYEDB0Imk2Hw4MEYO3asdKl4cSriZwlVbTIhhNB2EURERETlhX92EhERkU5huCEiIiKdwnBDREREOoXhhoiIiHQKww0RERHpFIYbIiIi0ikMN0RERKRTGG6IiIhIpzDcEBERkU5huCEirUhLS8PEiRPh5uYGIyMj2NraokOHDvj222+Rl5en7fKIqBrjs6WIqNJduXIFHTp0gIWFBebNm4dmzZpBLpfj7NmzWLlyJRwdHfH2229rpTYhBJRKJZ8AT1SN8cgNEVW6sWPHwsDAACdPnsSAAQPQuHFj1K9fH71790Z0dDR69eoFALh//z5GjRqF2rVro2bNmujSpQvOnDkjrWfmzJnw9PTE+vXr4eLiAnNzcwwaNAgPHjyQ+qhUKoSFhaFevXowNjZGixYtsG3bNmn+/v37IZPJsHv3bnh5eUEul+PQoUPIz8/HhAkTYGNjAyMjI3Ts2BEnTpyovDeJiMqM4YaIKtW///6LPXv2YNy4cTAxMSm2j0wmAwD0798fd+7cwe7duxEfH49WrVqha9euuHv3rtQ3OTkZO3fuxO+//47ff/8dBw4cwPz586X5YWFhWLduHSIjI/HPP/9g8uTJGDp0KA4cOKC2zc8++wzz589HYmIimjdvjk8//RTbt2/H2rVrkZCQADc3N/j7+6ttm4iqKEFEVImOHTsmAIgdO3aotdeqVUuYmJgIExMT8emnn4qDBw+KmjVrikePHqn1c3V1Fd99950QQojQ0FChUChEdna2NP+TTz4Rbdu2FUII8ejRI6FQKMSRI0fU1jFy5EgxePBgIYQQ+/btEwDEzp07pfk5OTmiRo0aYuPGjVJbQUGBcHBwEF999VU5vAtEVJF4UpmIqoTjx49DpVJhyJAhyM/Px5kzZ5CTk4NatWqp9Xv48CGSk5OlaRcXF5iZmUnT9vb2uHPnDgDg8uXLyMvLQ7du3dTWUVBQgJYtW6q1eXt7S/9PTk7G48eP0aFDB6mtRo0aaNOmDRITE19+Z4moQjHcEFGlcnNzg0wmQ1JSklp7/fr1AQDGxsYAgJycHNjb22P//v1F1mFhYSH9v0aNGmrzZDIZVCqVtA4AiI6OhqOjo1o/uVyuNl3SKTIiqn4YboioUtWqVQvdunXD8uXLMX78+BJDRatWrZCWlgYDAwO4uLiUaVseHh6Qy+VISUmBr69vqZdzdXWFoaEhDh8+DGdnZwDA48ePceLECUyaNKlMtRBR5WG4IaJK980336BDhw7w9vbGzJkz0bx5c+jp6eHEiRO4cOECvLy84OfnBx8fH/Tp0wdfffUVGjRogFu3biE6Ohp9+/ZVO41UEjMzM3z88ceYPHkyVCoVOnbsiKysLBw+fBg1a9ZEQEBAscuZmJhgzJgx+OSTT2BlZYW6deviq6++Ql5eHkaOHFnebwcRlTOGGyKqdK6urjh16hTmzZuHkJAQ3LhxA3K5HB4eHvj4448xduxYyGQy7Nq1C9OnT0dgYCAyMjJgZ2eH1157Dba2tqXe1pw5c1C7dm2EhYXhypUrsLCwQKtWrTBt2rTnLjd//nyoVCoMGzYMDx48gLe3N2JjY2Fpafmyu09EFUwmhBDaLoKIiIiovPA+N0RERKRTGG6IiIhIpzDcEBERkU5huCEiIiKdwnBDREREOoXhhoiIiHQKww0RERHpFIYbIiIi0ikMN0RERKRTGG6IiIhIpzDcEBERkU75f675nT6V7IpUAAAAAElFTkSuQmCC",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "# Qual é a taxa de sobreviventes por genero?\n",
+ "\n",
+ "# Agrupamento de Genero por Sobreviventes\n",
+ "taxaSobrevGenero = df.groupby('Genero')['Sobreviveu'].mean()\n",
+ "\n",
+ "# cores para barras\n",
+ "cores = ['lightpink', 'lightblue']\n",
+ "\n",
+ "#plotagem\n",
+ "barras = taxaSobrevGenero.plot.bar(edgecolor='blue', color=cores)\n",
+ "\n",
+ "# Os rotulos\n",
+ "plt.xlabel('Genero')\n",
+ "plt.xticks(rotation=0) # colocando o rotulo do eixo X deitado\n",
+ "plt.ylabel('Taxa Sobreviventes')\n",
+ "plt.title('Taxa de Sobreviventes por Gênero')\n",
+ "plt.legend(['Taxa de Sobrevivencia'])\n",
+ "\n",
+ "# Adicionar rótulos nos graficos\n",
+ "for i, v in enumerate(taxaSobrevGenero):\n",
+ " barras.text(i, v + 0.01, f'{v:.2f}', color='black', ha='center')\n",
+ "\n",
+ "\n",
+ "plt.show()\n",
+ "\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 38,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAA1MAAAIjCAYAAADm7UHpAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAABDYklEQVR4nO3dfXzN9eP/8edhl5iNjc3YWK5FFyjNVRf2aRUiPqQoV+VTkctPRUVRIn1IpFafT1GpFLkon4hG5OMiRKIZudqKjY1tNjaz8/r90df5dUxl7505Z9vjfrud2815v197n+d5OTfr2fu8X2+bMcYIAAAAAFAkFdwdAAAAAABKI8oUAAAAAFhAmQIAAAAACyhTAAAAAGABZQoAAAAALKBMAQAAAIAFlCkAAAAAsIAyBQAAAAAWUKYAAAAAwALKFACUQc8//7xsNtsVea1bbrlFt9xyi+P5N998I5vNpkWLFrnsNQ4fPiybzaZ58+YV+WcXLVqkoKAgtWvXTvv379eQIUM0c+ZMl2X7MzabTc8///wVea3fK858/ZEr+ZkCgNKCMgUAHm7evHmy2WyOh5+fn8LDwxUbG6tZs2bp9OnTLnmdo0eP6vnnn9fOnTtdcjxPMW3aNA0ZMkS1atVSkyZNtHjxYnXv3t3dsSypV6+eunTp4u4YAID/4+XuAACAyzNp0iRFRUUpPz9fKSkp+uabbzRy5EjNmDFDn3/+ua655hrH2GeffVZjx44t0vGPHj2qiRMnql69erruuusu++dWrVpVpNexom7dujp79qy8vb2L/LMLFy5U7dq15eXlpRMnTiggIEB+fn4lkBIAUN5QpgCglLjzzjvVunVrx/Nx48ZpzZo16tKli+6++24lJCTI399fkuTl5SUvr5L9J/7MmTOqVKmSfHx8SvR1JDnOyFlRt25dx59r1KjhqkgAAPA1PwAozW677TaNHz9eR44c0fz58x3bL3V9y+rVq9W+fXsFBQWpSpUqaty4sZ5++mlJv13ndMMNN0iSBg4c6PhK4YVrbm655RY1b95c27dvV8eOHVWpUiXHz158zdQFBQUFevrppxUWFqbKlSvr7rvvVnJystOYevXqacCAAYV+9uJj/tE1QHv37lXv3r1Vo0YN+fv7q3HjxnrmmWcc+w8dOqRHH31UjRo1kr+/v4KDg9WrVy8dPny40GsePHhQvXr1UvXq1VWpUiXddNNN+u9//1to3KXk5eVp1KhRqlGjhgICAnT33Xfrl19+ueTYX3/9VYMGDVJoaKh8fX119dVX6913372s17mUjIwMDRgwQIGBgQoKClL//v2VkZFRaNyuXbs0YMAAXXXVVfLz81NYWJgGDRqk9PT0QmM3bNigG264QX5+fqpfv77eeuutP3z9+fPnq1WrVvL391f16tXVp0+fQn/P+/fvV8+ePRUWFiY/Pz/VqVNHffr0UWZmpuX3DQCegDNTAFDKPfDAA3r66ae1atUqPfzww5ccs2fPHnXp0kXXXHONJk2aJF9fX/3888/63//+J0lq2rSpJk2apAkTJmjIkCHq0KGDJKlt27aOY6Snp+vOO+9Unz591K9fP4WGhv5prsmTJ8tms+mpp57S8ePHNXPmTMXExGjnzp2OM2jFsWvXLnXo0EHe3t4aMmSI6tWrpwMHDuiLL77Q5MmTJUlbtmzRpk2bdN9996lOnTo6dOiQ4uLidMstt+inn35SpUqVJEmpqalq27atzpw5o+HDhys4OFjvvfee7r77bi1atEj33HPPn2Z56KGHNH/+fN1///1q27at1qxZo86dOxcal5qaqptuukk2m03Dhg1TjRo1tGLFCg0ePFhZWVkaOXJkkebAGKNu3bppw4YNeuSRR9S0aVMtWbJE/fv3LzR29erVOnjwoAYOHKiwsDDt2bNHb7/9tvbs2aPNmzc7yvePP/6o22+/XTVq1NDzzz+v8+fP67nnnrvk3/fkyZM1fvx49e7dWw899JBOnDih2bNnq2PHjtqxY4eCgoJ07tw5xcbGKi8vT48//rjCwsL066+/avny5crIyFBgYGCR3jMAeBQDAPBoc+fONZLM1q1b/3BMYGCguf766x3Pn3vuOfP7f+JfffVVI8mcOHHiD4+xdetWI8nMnTu30L6bb77ZSDJxcXGX3HfzzTc7nq9du9ZIMrVr1zZZWVmO7Z9++qmRZF577TXHtrp165r+/fv/5TEPHTpUKFvHjh1NQECAOXLkiNPP2u12x5/PnDlT6NibNm0yksz777/v2DZy5EgjyXz77beObadPnzZRUVGmXr16pqCgoNBxLti5c6eRZB577DGn7ffff7+RZJ577jnHtsGDB5tatWqZtLQ0p7F9+vQxgYGBl8z7e3Xr1jWdO3d2PF+6dKmRZKZNm+bYdv78edOhQ4dC83WpY3/88cdGklm/fr1jW/fu3Y2fn5/TvP7000+mYsWKTp+pw4cPm4oVK5rJkyc7HfPHH380Xl5eju07duwwkszChQv/9L0BQGnE1/wAoAyoUqXKn67qFxQUJElatmyZ7Ha7pdfw9fXVwIEDL3v8gw8+qICAAMfzv//976pVq5a+/PJLS6//eydOnND69es1aNAgRUZGOu37/dcbf38GLD8/X+np6WrQoIGCgoL0/fffO/Z9+eWXuvHGG9W+fXvHtipVqmjIkCE6fPiwfvrppz/McuH9DB8+3Gn7xWeZjDH67LPP1LVrVxljlJaW5njExsYqMzPTKdPl+PLLL+Xl5aVHH33Usa1ixYp6/PHHC439/Vzk5uYqLS1NN910kyQ5XregoEBfffWVunfv7jSvTZs2VWxsrNPxFi9eLLvdrt69ezu9l7CwMDVs2FBr166VJMeZp6+++kpnzpwp0vsDAE9HmQKAMiA7O9upuFzs3nvvVbt27fTQQw8pNDRUffr00aefflqkYlW7du0iLTbRsGFDp+c2m00NGjS45PVKRXXw4EFJUvPmzf903NmzZzVhwgRFRETI19dXISEhqlGjhjIyMpyu1zly5IgaN25c6OebNm3q2P9Hjhw5ogoVKqh+/fpO2y8+3okTJ5SRkaG3335bNWrUcHpcKKnHjx//0/dzqdeuVauWqlSp8qevLUknT57UiBEjFBoaKn9/f9WoUUNRUVGS5JiLEydO6OzZs4X+7i51zP3798sYo4YNGxZ6PwkJCY73EhUVpdGjR+s///mPQkJCFBsbqzlz5nC9FIAygWumAKCU++WXX5SZmakGDRr84Rh/f3+tX79ea9eu1X//+1+tXLlSn3zyiW677TatWrVKFStW/MvXccV1Thf7o5vAFhQUXFamv/L4449r7ty5GjlypKKjoxUYGCibzaY+ffpYPkNn1YXX69ev3yWvaZLktLy9q/Xu3VsbN27UE088oeuuu05VqlSR3W7XHXfcYWku7Ha7bDabVqxYccm/q98XvOnTp2vAgAFatmyZVq1apeHDh2vKlCnavHmz6tSpU6z3BQDuRJkCgFLugw8+kKRCX8O6WIUKFdSpUyd16tRJM2bM0EsvvaRnnnlGa9euVUxMzB8WG6v279/v9NwYo59//tmpMFSrVu2SK88dOXJEV1111R8e+8K+3bt3/2mGRYsWqX///po+fbpjW25ubqHXrFu3rhITEwv9/N69ex37/0jdunVlt9t14MABp7M3Fx/vwkp/BQUFiomJ+dPcl6tu3bqKj49Xdna2U3m5+LVPnTql+Ph4TZw4URMmTHBsv/jv6MKqiBdvv9Qx69evL2OMoqKi1KhRo7/M2qJFC7Vo0ULPPvusNm7cqHbt2ikuLk4vvvjiZb1XAPBEfM0PAEqxNWvW6IUXXlBUVJT69u37h+NOnjxZaNuFG/Pm5eVJkipXrixJlyw3Vrz//vtO13EtWrRIx44d05133unYVr9+fW3evFnnzp1zbFu+fHmhpbUvVqNGDXXs2FHvvvuukpKSnPYZYxx/rlixotNzSZo9e7YKCgqctt1111367rvvtGnTJse2nJwcvf3226pXr56aNWv2h1kuvJ9Zs2Y5bZ85c6bT84oVK6pnz5767LPPLlkCT5w48Yev8UfuuusunT9/Xm+++aZjW0FBgWbPnl3otSUVmotLZYyNjdXSpUud5jUhIUFfffWV09gePXqoYsWKmjhxYqHjGmMcS65nZWXp/PnzTvtbtGihChUqOD57AFBacWYKAEqJFStWaO/evTp//rxSU1O1Zs0arV69WnXr1tXnn3/+pze1nTRpktavX6/OnTurbt26On78uN544w3VqVPHsehC/fr1FRQUpLi4OAUEBKhy5cpq06aN47qaoqpevbrat2+vgQMHKjU1VTNnzlSDBg2clm9/6KGHtGjRIt1xxx3q3bu3Dhw4oPnz5xe6/uhSZs2apfbt26tly5YaMmSIoqKidPjwYf33v//Vzp07JUldunTRBx98oMDAQDVr1kybNm3S119/reDgYKdjjR07Vh9//LHuvPNODR8+XNWrV9d7772nQ4cO6bPPPlOFCn/8/x6vu+463XfffXrjjTeUmZmptm3bKj4+Xj///HOhsVOnTtXatWvVpk0bPfzww2rWrJlOnjyp77//Xl9//fUlS++f6dq1q9q1a6exY8fq8OHDatasmRYvXlzoeqSqVauqY8eOmjZtmvLz81W7dm2tWrVKhw4dKnTMiRMnauXKlerQoYMee+wxnT9/XrNnz9bVV1+tXbt2OcbVr19fL774osaNG6fDhw+re/fuCggI0KFDh7RkyRINGTJE//znP7VmzRoNGzZMvXr1UqNGjXT+/Hl98MEHjnIJAKWau5YRBABcngtLo194+Pj4mLCwMPO3v/3NvPbaa07Lj19w8dLo8fHxplu3biY8PNz4+PiY8PBwc99995l9+/Y5/dyyZctMs2bNjJeXl9PS2jfffLO5+uqrL5nvj5ZG//jjj824ceNMzZo1jb+/v+ncuXOhZcyNMWb69Ommdu3axtfX17Rr185s27btspZGN8aY3bt3m3vuucdUrVrVSDKNGzc248ePd+w/deqUGThwoAkJCTFVqlQxsbGxZu/evZdckv3AgQPm73//uwkKCjJ+fn7mxhtvNMuXL7/ke77Y2bNnzfDhw01wcLCpXLmy6dq1q0lOTi60NLoxxqSmppqhQ4eaiIgI4+3tbcLCwkynTp3M22+//Zevc/HS6MYYk56ebh544AFTtWpVExgYaB544AHHcuS/n69ffvnF3HPPPSYoKMgEBgaaXr16maNHj14y47p160yrVq2Mj4+Pueqqq0xcXFyhz9QFn332mWnfvr2pXLmyqVy5smnSpIkZOnSoSUxMNMYYc/DgQTNo0CBTv3594+fnZ6pXr25uvfVW8/XXX1/W3AKAJ7MZc9G5eQAASqGYmBg9+eSTuv32290dBQBQTnDNFACgTOjatavmz5/v7hgAgHKEa6YAAKXaxx9/rJycHC1cuFA1a9Z0dxwAQDnCmSkAQKm2Z88eDRs2TL/++qv++c9/ujsOAKAc4ZopAAAAALCAM1MAAAAAYAFlCgAAAAAsYAEKSXa7XUePHlVAQIBsNpu74wAAAABwE2OMTp8+rfDw8D+9abtEmZIkHT16VBEREe6OAQAAAMBDJCcnq06dOn86hjIlKSAgQNJvE1a1alU3pwEAAADgLllZWYqIiHB0hD9DmZIcX+2rWrUqZQoAAADAZV3+wwIUAAAAAGABZQoAAAAALKBMAQAAAIAFlCkAAAAAsIAyBQAAAAAWUKYAAAAAwAK3l6n169era9euCg8Pl81m09KlS532G2M0YcIE1apVS/7+/oqJidH+/fudxpw8eVJ9+/ZV1apVFRQUpMGDBys7O/sKvgsAAAAA5Y3by1ROTo6uvfZazZkz55L7p02bplmzZikuLk5btmxR5cqVFRsbq9zcXMeYvn37as+ePVq9erWWL1+u9evXa8iQIVfqLQAAAAAoh2zGGOPuEBfYbDYtWbJE3bt3l/TbWanw8HCNGTNG//znPyVJmZmZCg0N1bx589SnTx8lJCSoWbNm2rp1q1q3bi1JWrlype666y798ssvCg8P/8vXzcrKUmBgoDIzM7lpLwAAAFCOFaUbuP3M1J85dOiQUlJSFBMT49gWGBioNm3aaNOmTZKkTZs2KSgoyFGkJCkmJkYVKlTQli1bLnncvLw8ZWVlOT0AAAAAoCg8ukylpKRIkkJDQ522h4aGOvalpKSoZs2aTvu9vLxUvXp1x5iLTZkyRYGBgY5HRERECaQHAAAAUJZ5dJkqKePGjVNmZqbjkZyc7O5IAAAAAEoZjy5TYWFhkqTU1FSn7ampqY59YWFhOn78uNP+8+fP6+TJk44xF/P19VXVqlWdHgAAAABQFB5dpqKiohQWFqb4+HjHtqysLG3ZskXR0dGSpOjoaGVkZGj79u2OMWvWrJHdblebNm2ueGYAAAAA5YOXuwNkZ2fr559/djw/dOiQdu7cqerVqysyMlIjR47Uiy++qIYNGyoqKkrjx49XeHi4Y8W/pk2b6o477tDDDz+suLg45efna9iwYerTp89lreQHAAAAAFa4vUxt27ZNt956q+P56NGjJUn9+/fXvHnz9OSTTyonJ0dDhgxRRkaG2rdvr5UrV8rPz8/xMx9++KGGDRumTp06qUKFCurZs6dmzZp1xd8LAAAAgPLDo+4z5S7cZwoAAACAVIbuMwUAAAAAnsrtX/MDUPYkJSUpLS3N3TEkSSEhIYqMjHR3DAAAUAZRpgC4VFJSkho3aarcs2fcHUWS5OdfSYl7EyhUAADA5ShTAFwqLS1NuWfPKLjLGHkHR7g1S356stKXT1daWhplCgAAuBxlCkCJ8A6OkG9YA3fHAAAAKDEsQAEAAAAAFlCmAAAAAMACyhQAAAAAWECZAgAAAAALKFMAAAAAYAFlCgAAAAAsoEwBAAAAgAWUKQAAAACwgDIFAAAAABZQpgAAAADAAsoUAAAAAFhAmQIAAAAACyhTAAAAAGABZQoAAAAALKBMAQAAAIAFlCkAAAAAsIAyBQAAAAAWUKYAAAAAwALKFAAAAABYQJkCAAAAAAsoUwAAAABgAWUKAAAAACygTAEAAACABZQpAAAAALCAMgUAAAAAFlCmAAAAAMACyhQAAAAAWECZAgAAAAALKFMAAAAAYAFlCgAAAAAsoEwBAAAAgAWUKQAAAACwgDIFAAAAABZQpgAAAADAAsoUAAAAAFhAmQIAAAAACyhTAAAAAGABZQoAAAAALKBMAQAAAIAFlCkAAAAAsIAyBQAAAAAWUKYAAAAAwALKFAAAAABYQJkCAAAAAAsoUwAAAABgAWUKAAAAACygTAEAAACABZQpAAAAALCAMgUAAAAAFlCmAAAAAMACyhQAAAAAWECZAgAAAAALKFMAAAAAYAFlCgAAAAAs8HJ3AAAoaQkJCe6OIEkKCQlRZGSku2MAAAAXoUwBKLMKsk9JNpv69evn7iiSJD//Skrcm0ChAgCgjKBMASiz7HnZkjEK7jJG3sERbs2Sn56s9OXTlZaWRpkCAKCMoEwBKPO8gyPkG9bA3TEAAEAZwwIUAAAAAGABZ6YA4ApiMQwAAMoOyhQAXAEshgEAQNlDmQKAK4DFMAAAKHsoUwBwBbEYBgAAZQcLUAAAAACABZQpAAAAALCAMgUAAAAAFlCmAAAAAMACyhQAAAAAWECZAgAAAAALKFMAAAAAYAFlCgAAAAAsoEwBAAAAgAWUKQAAAACwgDIFAAAAABZ4fJkqKCjQ+PHjFRUVJX9/f9WvX18vvPCCjDGOMcYYTZgwQbVq1ZK/v79iYmK0f/9+N6YGAAAAUNZ5fJl6+eWX9eabb+r1119XQkKCXn75ZU2bNk2zZ892jJk2bZpmzZqluLg4bdmyRZUrV1ZsbKxyc3PdmBwAAABAWebl7gB/ZePGjerWrZs6d+4sSapXr54+/vhjfffdd5J+Oys1c+ZMPfvss+rWrZsk6f3331doaKiWLl2qPn36uC07AAAAgLLL489MtW3bVvHx8dq3b58k6YcfftCGDRt05513SpIOHTqklJQUxcTEOH4mMDBQbdq00aZNmy55zLy8PGVlZTk9AAAAAKAoPP7M1NixY5WVlaUmTZqoYsWKKigo0OTJk9W3b19JUkpKiiQpNDTU6edCQ0Md+y42ZcoUTZw4sWSDAwAAACjTPP7M1KeffqoPP/xQH330kb7//nu99957+te//qX33nvP8jHHjRunzMxMxyM5OdmFiQEAAACUBx5/ZuqJJ57Q2LFjHdc+tWjRQkeOHNGUKVPUv39/hYWFSZJSU1NVq1Ytx8+lpqbquuuuu+QxfX195evrW+LZAQAAAJRdHl+mzpw5owoVnE+gVaxYUXa7XZIUFRWlsLAwxcfHO8pTVlaWtmzZokcfffRKxwXcIikpSWlpae6OIUlKSEhwdwQAAIArwuPLVNeuXTV58mRFRkbq6quv1o4dOzRjxgwNGjRIkmSz2TRy5Ei9+OKLatiwoaKiojR+/HiFh4ere/fu7g0PXAFJSUlq3KSpcs+ecXcUAACAcsXjy9Ts2bM1fvx4PfbYYzp+/LjCw8P1j3/8QxMmTHCMefLJJ5WTk6MhQ4YoIyND7du318qVK+Xn5+fG5MCVkZaWptyzZxTcZYy8gyPcHUdnD25T5rfz3R0DAACgxHl8mQoICNDMmTM1c+bMPxxjs9k0adIkTZo06coFAzyMd3CEfMMauDuG8tNZ0AUAAJQPHr+aHwAAAAB4IsoUAAAAAFhAmQIAAAAACyhTAAAAAGABZQoAAAAALKBMAQAAAIAFlCkAAAAAsIAyBQAAAAAWUKYAAAAAwALKFAAAAABYQJkCAAAAAAsoUwAAAABgAWUKAAAAACygTAEAAACABZQpAAAAALCAMgUAAAAAFlCmAAAAAMACyhQAAAAAWECZAgAAAAALKFMAAAAAYAFlCgAAAAAsoEwBAAAAgAWUKQAAAACwwMvdAQAA7pGQkODuCJKkkJAQRUZGujsGAABFRpkCgHKmIPuUZLOpX79+7o4iSfLzr6TEvQkUKgBAqUOZAoByxp6XLRmj4C5j5B0c4dYs+enJSl8+XWlpaZQpAECpQ5kCgHLKOzhCvmEN3B0DAIBSiwUoAAAAAMACyhQAAAAAWECZAgAAAAALKFMAAAAAYAFlCgAAAAAsoEwBAAAAgAWUKQAAAACwgDIFAAAAABZQpgAAAADAAsoUAAAAAFhAmQIAAAAACyhTAAAAAGABZQoAAAAALKBMAQAAAIAFlCkAAAAAsIAyBQAAAAAWUKYAAAAAwALKFAAAAABYQJkCAAAAAAsoUwAAAABgAWUKAAAAACygTAEAAACABZQpAAAAALCAMgUAAAAAFlCmAAAAAMACyhQAAAAAWECZAgAAAAALKFMAAAAAYAFlCgAAAAAsoEwBAAAAgAWUKQAAAACwgDIFAAAAABZQpgAAAADAAsoUAAAAAFhAmQIAAAAACyhTAAAAAGABZQoAAAAALKBMAQAAAIAFlCkAAAAAsIAyBQAAAAAWUKYAAAAAwALKFAAAAABYQJkCAAAAAAsoUwAAAABgAWUKAAAAACygTAEAAACABZQpAAAAALCAMgUAAAAAFlCmAAAAAMACyhQAAAAAWECZAgAAAAALSkWZ+vXXX9WvXz8FBwfL399fLVq00LZt2xz7jTGaMGGCatWqJX9/f8XExGj//v1uTAwAAACgrPP4MnXq1Cm1a9dO3t7eWrFihX766SdNnz5d1apVc4yZNm2aZs2apbi4OG3ZskWVK1dWbGyscnNz3ZgcAAAAQFnm5e4Af+Xll19WRESE5s6d69gWFRXl+LMxRjNnztSzzz6rbt26SZLef/99hYaGaunSperTp88VzwwAAACg7PP4M1Off/65WrdurV69eqlmzZq6/vrr9e9//9ux/9ChQ0pJSVFMTIxjW2BgoNq0aaNNmzZd8ph5eXnKyspyegAAAABAUXh8mTp48KDefPNNNWzYUF999ZUeffRRDR8+XO+9954kKSUlRZIUGhrq9HOhoaGOfRebMmWKAgMDHY+IiIiSfRMAAAAAyhyPL1N2u10tW7bUSy+9pOuvv15DhgzRww8/rLi4OMvHHDdunDIzMx2P5ORkFyYGAAAAUB54fJmqVauWmjVr5rStadOmSkpKkiSFhYVJklJTU53GpKamOvZdzNfXV1WrVnV6AAAAAEBReHyZateunRITE5227du3T3Xr1pX022IUYWFhio+Pd+zPysrSli1bFB0dfUWzAgAAACg/PH41v1GjRqlt27Z66aWX1Lt3b3333Xd6++239fbbb0uSbDabRo4cqRdffFENGzZUVFSUxo8fr/DwcHXv3t294QEAAACUWcUqU9u2bdOnn36qpKQknTt3zmnf4sWLixXsghtuuEFLlizRuHHjNGnSJEVFRWnmzJnq27evY8yTTz6pnJwcDRkyRBkZGWrfvr1WrlwpPz8/l2QAAAAAgItZ/prfggUL1LZtWyUkJGjJkiXKz8/Xnj17tGbNGgUGBroyo7p06aIff/xRubm5SkhI0MMPP+y032azadKkSUpJSVFubq6+/vprNWrUyKUZAAAAAOD3LJepl156Sa+++qq++OIL+fj46LXXXtPevXvVu3dvRUZGujIjAAAAAHgcy2XqwIED6ty5syTJx8dHOTk5stlsGjVqlON6JgAAAAAoqyyXqWrVqun06dOSpNq1a2v37t2SpIyMDJ05c8Y16QAAAADAQ1legKJjx45avXq1WrRooV69emnEiBFas2aNVq9erU6dOrkyIwAAAAB4HMtl6vXXX1dubq4k6ZlnnpG3t7c2btyonj176tlnn3VZQAAAAADwRJbLVPXq1R1/rlChgsaOHeuSQAAAAABQGhSpTGVlZalq1aqOP/+ZC+MAAAAAoCwqUpmqVq2ajh07ppo1ayooKEg2m63QGGOMbDabCgoKXBYSAAAAADxNkcrUmjVrHF/vW7t2bYkEAgAAAIDSoEhl6uabb77knwEAAACgvLF8n6m5c+dq4cKFhbYvXLhQ7733XrFCAQAAAICns1ympkyZopCQkELba9asqZdeeqlYoQAAAADA01kuU0lJSYqKiiq0vW7dukpKSipWKAAAAADwdJbLVM2aNbVr165C23/44QcFBwcXKxQAAAAAeDrLZeq+++7T8OHDtXbtWhUUFKigoEBr1qzRiBEj1KdPH1dmBAAAAACPU6TV/H7vhRde0OHDh9WpUyd5ef12GLvdrgcffJBrpgAAAACUeZbLlI+Pjz755BO98MIL+uGHH+Tv768WLVqobt26rswHAAAAAB7Jcpm6oFGjRmrUqJErsgAAAABAqWG5TBUUFGjevHmKj4/X8ePHZbfbnfavWbOm2OEAAAAAwFNZLlMjRozQvHnz1LlzZzVv3lw2m82VuQAAAADAo1kuUwsWLNCnn36qu+66y5V5AAAAAKBUsLw0uo+Pjxo0aODKLAAAAABQalguU2PGjNFrr70mY4wr8wAAAABAqWD5a34bNmzQ2rVrtWLFCl199dXy9vZ22r948eJihwMAAAAAT2W5TAUFBemee+5xZRYAAAAAKDUsl6m5c+e6MgcAAAAAlCqWr5mSpPPnz+vrr7/WW2+9pdOnT0uSjh49quzsbJeEAwAAAABPVeQzU3a7XRUqVNCRI0d0xx13KCkpSXl5efrb3/6mgIAAvfzyy8rLy1NcXFxJ5AUAAAAAj1CkM1M//vijOnbsKOm3m/a2bt1ap06dkr+/v2PMPffco/j4eNemBAAAAAAPc9lnphYtWqRJkyZp/vz5kqRvv/1WGzdulI+Pj9O4evXq6ddff3VtSgAAAADwMJd9Zsput6ugoEA2m83p+cV++eUXBQQEuC4hAAAAAHigyy5TvXv31gcffKAhQ4ZIkv72t79p5syZjv02m03Z2dl67rnndNddd7k8KAAAAAB4kiItQNGyZUt9++23kqQZM2YoNjZWzZo1U25uru6//37t379fISEh+vjjj0skLAAAAAB4iiKv5ufl9duP1KlTRz/88IMWLFigXbt2KTs7W4MHD1bfvn2dFqQAAAAAgLLI8k17pd+KVb9+/VyVBQAAAABKDctl6v333//T/Q8++KDVQwMAAACAx7NcpkaMGOH0PD8/X2fOnJGPj48qVapEmQIAAABQphXppr2/d+rUKadHdna2EhMT1b59exagAAAAAFDmWS5Tl9KwYUNNnTq10FkrAAAAAChrXFqmpN8WpTh69KirDwsAAAAAHsXyNVOff/6503NjjI4dO6bXX39d7dq1K3YwAAAAAPBklstU9+7dnZ7bbDbVqFFDt912m6ZPn17cXAAAAADg0SyXKbvd7socAAAAAFCquPyaKQAAAAAoDyyfmRo9evRlj50xY4bVlwEAAAAAj2S5TO3YsUM7duxQfn6+GjduLEnat2+fKlasqJYtWzrG2Wy24qcEAAAAAA9juUx17dpVAQEBeu+991StWjVJv93Id+DAgerQoYPGjBnjspAAAAAA4GksXzM1ffp0TZkyxVGkJKlatWp68cUXWc0PAAAAQJlnuUxlZWXpxIkThbafOHFCp0+fLlYoAAAAAPB0lsvUPffco4EDB2rx4sX65Zdf9Msvv+izzz7T4MGD1aNHD1dmBAAAAACPY/maqbi4OP3zn//U/fffr/z8/N8O5uWlwYMH65VXXnFZQAAAAADwRJbLVKVKlfTGG2/olVde0YEDByRJ9evXV+XKlV0WDgAAAAA8VbFv2nvs2DEdO3ZMDRs2VOXKlWWMcUUuAAAAAPBolstUenq6OnXqpEaNGumuu+7SsWPHJEmDBw9mWXQAAAAAZZ7lMjVq1Ch5e3srKSlJlSpVcmy/9957tXLlSpeEAwAAAABPZfmaqVWrVumrr75SnTp1nLY3bNhQR44cKXYwAAAAAPBkls9M5eTkOJ2RuuDkyZPy9fUtVigAAAAA8HSWy1SHDh30/vvvO57bbDbZ7XZNmzZNt956q0vCAQAAAICnsvw1v2nTpqlTp07atm2bzp07pyeffFJ79uzRyZMn9b///c+VGQEAAADA41g+M9W8eXPt27dP7du3V7du3ZSTk6MePXpox44dql+/viszAgAAAIDHsXRmKj8/X3fccYfi4uL0zDPPuDoTAKCcSUhIcHcEh5CQEEVGRro7BgCgFLBUpry9vbVr1y5XZwEAlDMF2ackm039+vVzdxQHP/9KStybQKECAPwly9dM9evXT++8846mTp3qyjwAgHLEnpctGaPgLmPkHRzh7jjKT09W+vLpSktLo0wBAP6S5TJ1/vx5vfvuu/r666/VqlUrVa5c2Wn/jBkzih0OAFA+eAdHyDesgbtjAABQJEUuUwcPHlS9evW0e/dutWzZUpK0b98+pzE2m8016QAAAADAQxW5TDVs2FDHjh3T2rVrJUn33nuvZs2apdDQUJeHAwAAAABPVeSl0Y0xTs9XrFihnJwclwUCAAAAgNLA8n2mLri4XAEAAABAeVDkMmWz2QpdE8U1UgAAAADKmyJfM2WM0YABA+Tr6ytJys3N1SOPPFJoNb/Fixe7JiEAAAAAeKAil6n+/fs7PfekGy0CAAAAwJVS5DI1d+7cksgBAAAAAKVKsRegAAAAAIDyiDIFAAAAABZQpgAAAADAAsoUAAAAAFhAmQIAAAAACyhTAAAAAGABZQoAAAAALCh1ZWrq1Kmy2WwaOXKkY1tubq6GDh2q4OBgValSRT179lRqaqr7QgIAAAAo80pVmdq6daveeustXXPNNU7bR40apS+++EILFy7UunXrdPToUfXo0cNNKQEAAACUB6WmTGVnZ6tv377697//rWrVqjm2Z2Zm6p133tGMGTN02223qVWrVpo7d642btyozZs3uzExAAAAgLLMy90BLtfQoUPVuXNnxcTE6MUXX3Rs3759u/Lz8xUTE+PY1qRJE0VGRmrTpk266aabCh0rLy9PeXl5judZWVklG76IkpKSlJaW5u4YDiEhIYqMjHR3DAAAAMCjlIoytWDBAn3//ffaunVroX0pKSny8fFRUFCQ0/bQ0FClpKRc8nhTpkzRxIkTSyJqsSUlJalxk6bKPXvG3VEc/PwrKXFvAoUKAAAA+B2PL1PJyckaMWKEVq9eLT8/P5ccc9y4cRo9erTjeVZWliIiIlxy7OJKS0tT7tkzCu4yRt7B7s+Un56s9OXTlZaWRpkCAAAAfsfjy9T27dt1/PhxtWzZ0rGtoKBA69ev1+uvv66vvvpK586dU0ZGhtPZqdTUVIWFhV3ymL6+vvL19S3p6MXiHRwh37AG7o4BAAAA4A94fJnq1KmTfvzxR6dtAwcOVJMmTfTUU08pIiJC3t7eio+PV8+ePSVJiYmJSkpKUnR0tDsiAwAAACgHPL5MBQQEqHnz5k7bKleurODgYMf2wYMHa/To0apevbqqVq2qxx9/XNHR0ZdcfAIAAAAAXMHjy9TlePXVV1WhQgX17NlTeXl5io2N1RtvvOHuWAAAAADKsFJZpr755hun535+fpozZ47mzJnjnkAAAAAAyp1Sc9NeAAAAAPAklCkAAAAAsIAyBQAAAAAWUKYAAAAAwALKFAAAAABYQJkCAAAAAAsoUwAAAABgAWUKAAAAACygTAEAAACABZQpAAAAALCAMgUAAAAAFlCmAAAAAMACyhQAAAAAWECZAgAAAAALKFMAAAAAYIGXuwMAAOBpEhIS3B1BkpSXlydfX193x5AkhYSEKDIy0t0xAMCjUKYAAPg/BdmnJJtN/fr1c3eU39gqSMbu7hSSJD//Skrcm0ChAoDfoUwBAPB/7HnZkjEK7jJG3sERbs1y9uA2ZX473yOy5KcnK335dKWlpVGmAOB3KFMAAFzEOzhCvmEN3JohPz3ZY7IAAC6NBSgAAAAAwALKFAAAAABYQJkCAAAAAAsoUwAAAABgAWUKAAAAACygTAEAAACABZQpAAAAALCAMgUAAAAAFlCmAAAAAMACyhQAAAAAWECZAgAAAAALKFMAAAAAYAFlCgAAAAAsoEwBAAAAgAVe7g4AlFZJSUlKS0tzdwwlJCS4OwIAAEC5RJkCLEhKSlLjJk2Ve/aMu6MAAADATShTgAVpaWnKPXtGwV3GyDs4wq1Zzh7cpsxv57s1AwAAQHlEmQKKwTs4Qr5hDdyaIT892a2vDwAAUF6xAAUAAAAAWECZAgAAAAALKFMAAAAAYAFlCgAAAAAsoEwBAAAAgAWs5gcAAC6Lp9wkPCQkRJGRke6OAQCUKQAA8OcKsk9JNpv69evn7iiSJD//Skrcm0ChAuB2lCkAAPCn7HnZkjEecaPy/PRkpS+frrS0NMoUALejTAEAgMviCTcqBwBPwgIUAAAAAGABZQoAAAAALKBMAQAAAIAFlCkAAAAAsIAyBQAAAAAWUKYAAAAAwALKFAAAAABYQJkCAAAAAAsoUwAAAABgAWUKAAAAACygTAEAAACABZQpAAAAALCAMgUAAAAAFlCmAAAAAMACyhQAAAAAWECZAgAAAAALKFMAAAAAYAFlCgAAAAAsoEwBAAAAgAWUKQAAAACwgDIFAAAAABZQpgAAAADAAsoUAAAAAFhAmQIAAAAACyhTAAAAAGABZQoAAAAALKBMAQAAAIAFlCkAAAAAsIAyBQAAAAAWUKYAAAAAwALKFAAAAABYQJkCAAAAAAsoUwAAAABggceXqSlTpuiGG25QQECAatasqe7duysxMdFpTG5uroYOHarg4GBVqVJFPXv2VGpqqpsSAwAAACgPPL5MrVu3TkOHDtXmzZu1evVq5efn6/bbb1dOTo5jzKhRo/TFF19o4cKFWrdunY4ePaoePXq4MTUAAACAss7L3QH+ysqVK52ez5s3TzVr1tT27dvVsWNHZWZm6p133tFHH32k2267TZI0d+5cNW3aVJs3b9ZNN93kjtgAAAAAyjiPPzN1sczMTElS9erVJUnbt29Xfn6+YmJiHGOaNGmiyMhIbdq06ZLHyMvLU1ZWltMDAAAAAIqiVJUpu92ukSNHql27dmrevLkkKSUlRT4+PgoKCnIaGxoaqpSUlEseZ8qUKQoMDHQ8IiIiSjo6AAAAgDKmVJWpoUOHavfu3VqwYEGxjjNu3DhlZmY6HsnJyS5KCAAAAKC88Phrpi4YNmyYli9frvXr16tOnTqO7WFhYTp37pwyMjKczk6lpqYqLCzsksfy9fWVr69vSUcGAAAAUIZ5/JkpY4yGDRumJUuWaM2aNYqKinLa36pVK3l7eys+Pt6xLTExUUlJSYqOjr7ScQEAAACUEx5/Zmro0KH66KOPtGzZMgUEBDiugwoMDJS/v78CAwM1ePBgjR49WtWrV1fVqlX1+OOPKzo6mpX8AAAAAJQYjy9Tb775piTplltucdo+d+5cDRgwQJL06quvqkKFCurZs6fy8vIUGxurN9544wonBQAAAFCeeHyZMsb85Rg/Pz/NmTNHc+bMuQKJAAAAAKAUXDMFAAAAAJ6IMgUAAAAAFlCmAAAAAMACyhQAAAAAWECZAgAAAAALKFMAAAAAYAFlCgAAAAAsoEwBAAAAgAWUKQAAAACwgDIFAAAAABZ4uTsAAABAUSUkJLg7gkNISIgiIyPdHQOAG1CmAABAqVGQfUqy2dSvXz93R3Hw86+kxL0JFCqgHKJMAQCAUsOely0Zo+AuY+QdHOHuOMpPT1b68ulKS0ujTAHlEGUKAACUOt7BEfINa+DuGADKOcoUSpWkpCSlpaW5O4ZHfVcfAAAA7kGZQqmRlJSkxk2aKvfsGXdHAQAAAChTKD3S0tKUe/aMR3xP/uzBbcr8dr5bMwAAAMC9KFModTzhe/L56clufX0AAAC4HzftBQAAAAALODOFy+IJCy54QgYAAADgAsoU/pQn3hwRAAAA8ASUKfwpT7o5Ios+AAAAwJNQpnBZWPQBAAAAcEaZAgAAKCZPua43JCREkZGR7o4BlBuUKQAAAIs87dpiP/9KStybQKECrhDKFAAAgEWedG1xfnqy0pdPV1paGmUKuEIoUwAAAMXkCdcWA7jyuGkvAAAAAFhAmQIAAAAACyhTAAAAAGABZQoAAAAALKBMAQAAAIAFrOYHAABQhnADYeDKoUwBAACUAdxAGLjyKFMAAABlADcQBq48yhQAAEAZwg2EgSuHBSgAAAAAwALKFAAAAABYQJkCAAAAAAsoUwAAAABgAWUKAAAAACygTAEAAACABZQpAAAAALCAMgUAAAAAFlCmAAAAAMACyhQAAAAAWECZAgAAAAALKFMAAAAAYAFlCgAAAAAsoEwBAAAAgAWUKQAAAACwgDIFAAAAABZQpgAAAADAAsoUAAAAAFhAmQIAAAAACyhTAAAAAGABZQoAAAAALKBMAQAAAIAFlCkAAAAAsMDL3QEAAACAkpSUlKS0tDR3x5AkhYSEKDIy0t0x4CKUKQAAAJRZSUlJatykqXLPnnF3FEmSn38lJe5NoFCVEZQpAAAAlFlpaWnKPXtGwV3GyDs4wq1Z8tOTlb58utLS0ihTZQRlCgAAAGWed3CEfMMauDsGyhgWoAAAAAAACzgzBQAAgBKRkJDg7ggekQFlF2UKAAAALlWQfUqy2dSvXz93RwFKFGUKAAAALmXPy5aM8YhFH84e3KbMb+e7NQPKLsoUAAAASoQnLPqQn57s1tdH2cYCFAAAAABgAWUKAAAAACygTAEAAACABZQpAAAAALCAMgUAAAAAFlCmAAAAAMACyhQAAAAAWECZAgAAAAALKFMAAAAAYIGXuwMAAAAA5UlCQoK7Izjk5eXJ19fX3TEkSSEhIYqMjHR3jCKhTAEAAABXQEH2KclmU79+/dwd5f+zVZCM3d0pJEl+/pWUuDehVBWqMlWm5syZo1deeUUpKSm69tprNXv2bN14443ujgUAAADInpctGaPgLmPkHRzh7jg6e3CbMr+d7xF58tOTlb58utLS0ihT7vDJJ59o9OjRiouLU5s2bTRz5kzFxsYqMTFRNWvWdHc8AAAAQJLkHRwh37AG7o6h/PRkSZ6TpzQqMwtQzJgxQw8//LAGDhyoZs2aKS4uTpUqVdK7777r7mgAAAAAyqAycWbq3Llz2r59u8aNG+fYVqFCBcXExGjTpk2Fxufl5SkvL8/xPDMzU5KUlZVV8mH/QnZ2tiQpL+Vn2c/lujnN//8/Fp6Qhyyen0XyrDxkIUtReVIesnh+Fsmz8pCFLEXlSXnyT/4i6bf/Fnb3f5NfeH1jzF+OtZnLGeXhjh49qtq1a2vjxo2Kjo52bH/yySe1bt06bdmyxWn8888/r4kTJ17pmAAAAABKieTkZNWpU+dPx5SJM1NFNW7cOI0ePdrx3G636+TJkwoODpbNZrviebKyshQREaHk5GRVrVr1ir9+Wcf8ljzmuGQxvyWPOS5ZzG/JY45LFvNb8jxpjo0xOn36tMLDw/9ybJkoUyEhIapYsaJSU1OdtqempiosLKzQeF9f30Lr6QcFBZVkxMtStWpVt394yjLmt+QxxyWL+S15zHHJYn5LHnNcspjfkucpcxwYGHhZ48rEAhQ+Pj5q1aqV4uPjHdvsdrvi4+OdvvYHAAAAAK5SJs5MSdLo0aPVv39/tW7dWjfeeKNmzpypnJwcDRw40N3RAAAAAJRBZaZM3XvvvTpx4oQmTJiglJQUXXfddVq5cqVCQ0PdHe0v+fr66rnnniv01UO4BvNb8pjjksX8ljzmuGQxvyWPOS5ZzG/JK61zXCZW8wMAAACAK61MXDMFAAAAAFcaZQoAAAAALKBMAQAAAIAFlCkAAAAAsIAy5WZz5sxRvXr15OfnpzZt2ui7775zd6RSa/369eratavCw8Nls9m0dOlSp/3GGE2YMEG1atWSv7+/YmJitH//fveELYWmTJmiG264QQEBAapZs6a6d++uxMREpzG5ubkaOnSogoODVaVKFfXs2bPQzbTxx958801dc801jhsWRkdHa8WKFY79zK9rTZ06VTabTSNHjnRsY46L5/nnn5fNZnN6NGnSxLGf+S2+X3/9Vf369VNwcLD8/f3VokULbdu2zbGf33XFU69evUKfYZvNpqFDh0riM1xcBQUFGj9+vKKiouTv76/69evrhRde0O/Xwyttn2HKlBt98sknGj16tJ577jl9//33uvbaaxUbG6vjx4+7O1qplJOTo2uvvVZz5sy55P5p06Zp1qxZiouL05YtW1S5cmXFxsYqNzf3CictndatW6ehQ4dq8+bNWr16tfLz83X77bcrJyfHMWbUqFH64osvtHDhQq1bt05Hjx5Vjx493Ji6dKlTp46mTp2q7du3a9u2bbrtttvUrVs37dmzRxLz60pbt27VW2+9pWuuucZpO3NcfFdffbWOHTvmeGzYsMGxj/ktnlOnTqldu3by9vbWihUr9NNPP2n69OmqVq2aYwy/64pn69atTp/f1atXS5J69eolic9wcb388st688039frrryshIUEvv/yypk2bptmzZzvGlLrPsIHb3HjjjWbo0KGO5wUFBSY8PNxMmTLFjanKBklmyZIljud2u92EhYWZV155xbEtIyPD+Pr6mo8//tgNCUu/48ePG0lm3bp1xpjf5tPb29ssXLjQMSYhIcFIMps2bXJXzFKvWrVq5j//+Q/z60KnT582DRs2NKtXrzY333yzGTFihDGGz7ArPPfcc+baa6+95D7mt/ieeuop0759+z/cz+861xsxYoSpX7++sdvtfIZdoHPnzmbQoEFO23r06GH69u1rjCmdn2HOTLnJuXPntH37dsXExDi2VahQQTExMdq0aZMbk5VNhw4dUkpKitN8BwYGqk2bNsy3RZmZmZKk6tWrS5K2b9+u/Px8pzlu0qSJIiMjmWMLCgoKtGDBAuXk5Cg6Opr5daGhQ4eqc+fOTnMp8Rl2lf379ys8PFxXXXWV+vbtq6SkJEnMryt8/vnnat26tXr16qWaNWvq+uuv17///W/Hfn7Xuda5c+c0f/58DRo0SDabjc+wC7Rt21bx8fHat2+fJOmHH37Qhg0bdOedd0oqnZ9hL3cHKK/S0tJUUFCg0NBQp+2hoaHau3evm1KVXSkpKZJ0yfm+sA+Xz263a+TIkWrXrp2aN28u6bc59vHxUVBQkNNY5rhofvzxR0VHRys3N1dVqlTRkiVL1KxZM+3cuZP5dYEFCxbo+++/19atWwvt4zNcfG3atNG8efPUuHFjHTt2TBMnTlSHDh20e/du5tcFDh48qDfffFOjR4/W008/ra1bt2r48OHy8fFR//79+V3nYkuXLlVGRoYGDBggiX8jXGHs2LHKyspSkyZNVLFiRRUUFGjy5Mnq27evpNL532uUKQBFNnToUO3evdvpWgi4RuPGjbVz505lZmZq0aJF6t+/v9atW+fuWGVCcnKyRowYodWrV8vPz8/dccqkC/93WZKuueYatWnTRnXr1tWnn34qf39/NyYrG+x2u1q3bq2XXnpJknT99ddr9+7diouLU//+/d2crux55513dOeddyo8PNzdUcqMTz/9VB9++KE++ugjXX311dq5c6dGjhyp8PDwUvsZ5mt+bhISEqKKFSsWWgEmNTVVYWFhbkpVdl2YU+a7+IYNG6bly5dr7dq1qlOnjmN7WFiYzp07p4yMDKfxzHHR+Pj4qEGDBmrVqpWmTJmia6+9Vq+99hrz6wLbt2/X8ePH1bJlS3l5ecnLy0vr1q3TrFmz5OXlpdDQUObYxYKCgtSoUSP9/PPPfIZdoFatWmrWrJnTtqZNmzq+SsnvOtc5cuSIvv76az300EOObXyGi++JJ57Q2LFj1adPH7Vo0UIPPPCARo0apSlTpkgqnZ9hypSb+Pj4qFWrVoqPj3dss9vtio+PV3R0tBuTlU1RUVEKCwtzmu+srCxt2bKF+b5MxhgNGzZMS5Ys0Zo1axQVFeW0v1WrVvL29naa48TERCUlJTHHxWC325WXl8f8ukCnTp30448/aufOnY5H69at1bdvX8efmWPXys7O1oEDB1SrVi0+wy7Qrl27Qrek2Ldvn+rWrSuJ33WuNHfuXNWsWVOdO3d2bOMzXHxnzpxRhQrO9aNixYqy2+2SSuln2N0rYJRnCxYsML6+vmbevHnmp59+MkOGDDFBQUEmJSXF3dFKpdOnT5sdO3aYHTt2GElmxowZZseOHebIkSPGGGOmTp1qgoKCzLJly8yuXbtMt27dTFRUlDl79qybk5cOjz76qAkMDDTffPONOXbsmONx5swZx5hHHnnEREZGmjVr1pht27aZ6OhoEx0d7cbUpcvYsWPNunXrzKFDh8yuXbvM2LFjjc1mM6tWrTLGML8l4fer+RnDHBfXmDFjzDfffGMOHTpk/ve//5mYmBgTEhJijh8/boxhfovru+++M15eXmby5Mlm//795sMPPzSVKlUy8+fPd4zhd13xFRQUmMjISPPUU08V2sdnuHj69+9vateubZYvX24OHTpkFi9ebEJCQsyTTz7pGFPaPsOUKTebPXu2iYyMND4+PubGG280mzdvdnekUmvt2rVGUqFH//79jTG/Lbc5fvx4Exoaanx9fU2nTp1MYmKie0OXIpeaW0lm7ty5jjFnz541jz32mKlWrZqpVKmSueeee8yxY8fcF7qUGTRokKlbt67x8fExNWrUMJ06dXIUKWOY35JwcZlijovn3nvvNbVq1TI+Pj6mdu3a5t577zU///yzYz/zW3xffPGFad68ufH19TVNmjQxb7/9ttN+ftcV31dffWUkXXLe+AwXT1ZWlhkxYoSJjIw0fn5+5qqrrjLPPPOMycvLc4wpbZ9hmzG/u+UwAAAAAOCycM0UAAAAAFhAmQIAAAAACyhTAAAAAGABZQoAAAAALKBMAQAAAIAFlCkAAAAAsIAyBQAAAAAWUKYAAAAAwALKFACgXLjllls0cuTIYh3jm2++kc1mU0ZGhksyAQBKN8oUAKBMGDBggLp37+7uGACAcoQyBQAAAAAWUKYAAGVOTk6OHnzwQVWpUkW1atXS9OnTC4354IMP1Lp1awUEBCgsLEz333+/jh8/7jTmyy+/VKNGjeTv769bb71Vhw8fLnScDRs2qEOHDvL391dERISGDx+unJycknprAAAPQpkCAJQ5TzzxhNatW6dly5Zp1apV+uabb/T99987jcnPz9cLL7ygH374QUuXLtXhw4c1YMAAx/7k5GT16NFDXbt21c6dO/XQQw9p7NixTsc4cOCA7rjjDvXs2VO7du3SJ598og0bNmjYsGFX4m0CANzMZowx7g4BAEBxDRgwQBkZGZo/f76Cg4M1f/589erVS5J08uRJ1alTR0OGDNHMmTMv+fPbtm3TDTfcoNOnT6tKlSp6+umntWzZMu3Zs8cxZuzYsXr55Zd16tQpBQUF6aGHHlLFihX11ltvOcZs2LBBN998s3JycuTn51ei7xkA4F6cmQIAlCkHDhzQuXPn1KZNG8e26tWrq3Hjxk7jtm/frq5duyoyMlIBAQG6+eabJUlJSUmSpISEBKdjSFJ0dLTT8x9++EHz5s1TlSpVHI/Y2FjZ7XYdOnSoJN4eAMCDeLk7AAAAV1pOTo5iY2MVGxurDz/8UDVq1FBSUpJiY2N17ty5yz5Odna2/vGPf2j48OGF9kVGRroyMgDAA1GmAABlSv369eXt7a0tW7Y4Cs2pU6e0b98+x9mnvXv3Kj09XVOnTlVERISk377m93tNmzbV559/7rRt8+bNTs9btmypn376SQ0aNCiptwMA8GB8zQ8AUKZUqVJFgwcP1hNPPKE1a9Zo9+7dGjBggCpU+P+/8iIjI+Xj46PZs2fr4MGD+vzzz/XCCy84HeeRRx7R/v379cQTTygxMVEfffSR5s2b5zTmqaee0saNGzVs2DDt3LlT+/fv17Jly1iAAgDKCcoUAKDMeeWVV9ShQwd17dpVMTExat++vVq1auXYX6NGDc2bN08LFy5Us2bNNHXqVP3rX/9yOkZkZKQ+++wzLV26VNdee63i4uL00ksvOY255pprtG7dOu3bt08dOnTQ9ddfrwkTJig8PPyKvE8AgHuxmh8AAAAAWMCZKQAAAACwgDIFAAAAABZQpgAAAADAAsoUAAAAAFhAmQIAAAAACyhTAAAAAGABZQoAAAAALKBMAQAAAIAFlCkAAAAAsIAyBQAAAAAWUKYAAAAAwIL/ByyeYpRbLgVOAAAAAElFTkSuQmCC",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "## Distribuição por idade\n",
+ "\n",
+ "plt.figure(figsize=(10, 6))\n",
+ "plt.hist(df['Idade'], bins=20, edgecolor='black')\n",
+ "plt.title('Distribuição de Idades')\n",
+ "plt.xlabel('Idade')\n",
+ "plt.ylabel('Frequência')\n",
+ "plt.show()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 40,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjsAAAHHCAYAAABZbpmkAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAA/F0lEQVR4nO3deVyVZf7/8fdBBEQRREFAAXFHTXNJIjUtmRBNs5xK09LcWjRTp0apXBtHxyYzbXGaSmvUbDN1tMxdxwkdl8g03BCXEtwIEVRUuH5/9PN8O4ImePBw7l7Px+N+dO7rus59PhfH8O19rvs+NmOMEQAAgEV5uLoAAACA0kTYAQAAlkbYAQAAlkbYAQAAlkbYAQAAlkbYAQAAlkbYAQAAlkbYAQAAlkbYAQAAlkbYAdzU+PHjZbPZbsprdejQQR06dLDvr1u3TjabTZ999pnTXuPgwYOy2WyaM2dOsZ/72WefKSAgQG3atNG+ffs0ePBgTZ8+3Wm1XYvNZtP48eNvymv92o38vK7mZv6ZAm4mwg5QBsyZM0c2m82++fj4KCwsTPHx8ZoxY4bOnDnjlNc5evSoxo8fr+TkZKccr6yYOnWqBg8erNDQUDVs2FALFy5U9+7dXV1WidSqVUv33nuvq8sALMXT1QUA+D8TJ05UVFSULl68qIyMDK1bt07Dhw/XtGnTtGTJEjVt2tQ+9qWXXtLo0aOLdfyjR49qwoQJqlWrlm699dbrft6KFSuK9TolERkZqXPnzql8+fLFfu6nn36qGjVqyNPTUydOnJCfn598fHxKoUoA7oiwA5QhCQkJatWqlX0/MTFRa9as0b333qtu3bopJSVFFSpUkCR5enrK07N0/xc+e/asfH195eXlVaqvI8l+RqskIiMj7Y+DgoKcVRIAi+BjLKCMu/vuuzVmzBgdOnRIc+fOtbcXtb5i5cqVatu2rQICAlSpUiU1aNBAL7zwgqRf1tncdtttkqTHH3/c/pHZ5TUfHTp0UJMmTbRt2zbdeeed8vX1tT/3yjU7l+Xn5+uFF15QSEiIKlasqG7duunIkSMOY2rVqqV+/foVeu6Vx7zaGpTdu3froYceUlBQkCpUqKAGDRroxRdftPenpaXpqaeeUv369VWhQgVVrVpVDz74oA4ePFjoNQ8cOKAHH3xQgYGB8vX11e23365ly5YVGleUvLw8jRgxQkFBQfLz81O3bt30448/Fjn2p59+Uv/+/VW9enV5e3urcePGev/996/rdYqSlZWlfv36yd/fXwEBAerbt6+ysrIKjduxY4f69eun2rVry8fHRyEhIerfv79OnTpVaOzGjRt12223ycfHR3Xq1NE//vGPq77+3Llz1bJlS1WoUEGBgYHq2bNnofcZKMs4swO4gUcffVQvvPCCVqxYoUGDBhU5ZteuXbr33nvVtGlTTZw4Ud7e3tq/f7/++9//SpKio6M1ceJEjR07VoMHD1a7du0kSXfccYf9GKdOnVJCQoJ69uypPn36qHr16tesa9KkSbLZbBo1apSOHz+u6dOnKy4uTsnJyfYzUDdix44dateuncqXL6/BgwerVq1aSk1N1b///W9NmjRJkrR582YlJSWpV69eqlmzptLS0jRr1ix16NBBP/zwg3x9fSVJx44d0x133KGzZ89q2LBhqlq1qj744AN169ZNn332me6///5r1jJw4EDNnTtXjzzyiO644w6tWbNGXbp0KTTu2LFjuv3222Wz2TR06FAFBQXpq6++0oABA5Sdna3hw4cX62dgjNF9992njRs36sknn1R0dLS++OIL9e3bt9DYlStX6sCBA3r88ccVEhKiXbt26Z133tGuXbu0adMmezj+/vvvdc899ygoKEjjx4/XpUuXNG7cuCLf70mTJmnMmDF66KGHNHDgQJ04cUIzZ87UnXfeqW+//VYBAQHFmg/gEgaAy82ePdtIMlu2bLnqGH9/f9O8eXP7/rhx48yv/xd+7bXXjCRz4sSJqx5jy5YtRpKZPXt2ob727dsbSWbWrFlF9rVv396+v3btWiPJ1KhRw2RnZ9vbP/nkEyPJvP766/a2yMhI07dv3988ZlpaWqHa7rzzTuPn52cOHTrk8NyCggL747NnzxY6dlJSkpFkPvzwQ3vb8OHDjSTzn//8x9525swZExUVZWrVqmXy8/MLHeey5ORkI8k8/fTTDu2PPPKIkWTGjRtnbxswYIAJDQ01J0+edBjbs2dP4+/vX2S9vxYZGWm6dOli31+0aJGRZKZOnWpvu3TpkmnXrl2hn1dRx/7oo4+MJLNhwwZ7W/fu3Y2Pj4/Dz/WHH34w5cqVc/gzdfDgQVOuXDkzadIkh2N+//33xtPTs1A7UFbxMRbgJipVqnTNq7Iu/wt78eLFKigoKNFreHt76/HHH7/u8Y899pj8/Pzs+3/84x8VGhqqL7/8skSv/2snTpzQhg0b1L9/f0VERDj0/frju1+fQbp48aJOnTqlunXrKiAgQNu3b7f3ffnll2rdurXatm1rb6tUqZIGDx6sgwcP6ocffrhqLZfnM2zYMIf2K8/SGGP0+eefq2vXrjLG6OTJk/YtPj5ep0+fdqjpenz55Zfy9PTUU089ZW8rV66cnnnmmUJjf/2zOH/+vE6ePKnbb79dkuyvm5+fr6+//lrdu3d3+LlGR0crPj7e4XgLFy5UQUGBHnroIYe5hISEqF69elq7dm2x5gK4CmEHcBM5OTkOweJKDz/8sNq0aaOBAweqevXq6tmzpz755JNiBZ8aNWoUazFyvXr1HPZtNpvq1q1b5HqZ4jpw4IAkqUmTJtccd+7cOY0dO1bh4eHy9vZWtWrVFBQUpKysLJ0+fdo+7tChQ2rQoEGh50dHR9v7r+bQoUPy8PBQnTp1HNqvPN6JEyeUlZWld955R0FBQQ7b5RB5/Pjxa86nqNcODQ1VpUqVrvnakpSZmalnn31W1atXV4UKFRQUFKSoqChJsv8sTpw4oXPnzhV674o65r59+2SMUb169QrNJyUlpdhzAVyFNTuAG/jxxx91+vRp1a1b96pjKlSooA0bNmjt2rVatmyZli9fro8//lh33323VqxYoXLlyv3m6zhjnc2VrnaTuvz8/Ouq6bc888wzmj17toYPH67Y2Fj5+/vLZrOpZ8+eJT7DVVKXX69Pnz5FrqmR5HD7AGd76KGH9M033+j555/XrbfeqkqVKqmgoECdOnUq0c+ioKBANptNX331VZHv1ZUBDCirCDuAG/jXv/4lSYU+ZriSh4eHOnbsqI4dO2ratGn661//qhdffFFr165VXFyc0++Ou2/fPod9Y4z279/v8Bd6lSpVirxy6NChQ6pdu/ZVj325b+fOndes4bPPPlPfvn316quv2tvOnz9f6DUjIyO1Z8+eQs/fvXu3vf9qIiMjVVBQoNTUVIezH1ce7/KVWvn5+YqLi7tm3dcrMjJSq1evVk5OjkO4uPK1f/75Z61evVoTJkzQ2LFj7e1XvkeXr2q7sr2oY9apU0fGGEVFRal+/frOmA7gEnyMBZRxa9as0csvv6yoqCj17t37quMyMzMLtV2+cWBeXp4kqWLFipJUZPgoiQ8//NBhHdFnn32m9PR0JSQk2Nvq1KmjTZs26cKFC/a2pUuX/ualy0FBQbrzzjv1/vvv6/Dhww59xhj743LlyjnsS9LMmTOVn5/v0Na5c2f973//U1JSkr0tNzdX77zzjmrVqqVGjRpdtZbL85kxY4ZD+5VfSVGuXDn16NFDn3/+eZEh7cSJE1d9javp3LmzLl26pLffftvelp+fr5kzZxZ6bUmFfhZF1RgfH69FixY5/FxTUlL09ddfO4x94IEHVK5cOU2YMKHQcY0xRV7SDpRFnNkBypCvvvpKu3fv1qVLl3Ts2DGtWbNGK1euVGRkpJYsWXLNm+5NnDhRGzZsUJcuXRQZGanjx4/rrbfeUs2aNe2LcuvUqaOAgADNmjVLfn5+qlixomJiYuzrOoorMDBQbdu21eOPP65jx45p+vTpqlu3rsPl8QMHDtRnn32mTp066aGHHlJqaqrmzp1baP1LUWbMmKG2bduqRYsWGjx4sKKionTw4EEtW7bM/pUX9957r/71r3/J399fjRo1UlJSklatWqWqVas6HGv06NH66KOPlJCQoGHDhikwMFAffPCB0tLS9Pnnn8vD4+r/9rv11lvVq1cvvfXWWzp9+rTuuOMOrV69Wvv37y80dsqUKVq7dq1iYmI0aNAgNWrUSJmZmdq+fbtWrVpVZCi9lq5du6pNmzYaPXq0Dh48qEaNGmnhwoUO65EkqXLlyrrzzjs1depUXbx4UTVq1NCKFSuUlpZW6JgTJkzQ8uXL1a5dOz399NO6dOmSZs6cqcaNG2vHjh32cXXq1NFf/vIXJSYm6uDBg+revbv8/PyUlpamL774QoMHD9Zzzz1XrPkALuGqy8AA/J/Ll55f3ry8vExISIj5wx/+YF5//XWHy7svu/LS89WrV5v77rvPhIWFGS8vLxMWFmZ69epl9u7d6/C8xYsXm0aNGhlPT0+HS5fbt29vGjduXGR9V7v0/KOPPjKJiYkmODjYVKhQwXTp0qXQZeLGGPPqq6+aGjVqGG9vb9OmTRuzdevW67r03Bhjdu7cae6//35TuXJlI8k0aNDAjBkzxt7/888/m8cff9xUq1bNVKpUycTHx5vdu3cXecl7amqq+eMf/2gCAgKMj4+Pad26tVm6dGmRc77SuXPnzLBhw0zVqlVNxYoVTdeuXc2RI0cKXXpujDHHjh0zQ4YMMeHh4aZ8+fImJCTEdOzY0bzzzju/+TpXXnpujDGnTp0yjz76qKlcubLx9/c3jz76qPn2228L/bx+/PFHc//995uAgADj7+9vHnzwQXP06NEia1y/fr1p2bKl8fLyMrVr1zazZs0q9Gfqss8//9y0bdvWVKxY0VSsWNE0bNjQDBkyxOzZs+e6fnaAq9mMueLcJACUUXFxcfrzn/+se+65x9WlAHAjrNkB4Da6du3q8JUZAHA9WLMDoMz76KOPlJubq08//VTBwcGuLgeAm+HMDoAyb9euXRo6dKh++uknFsQCKDbW7AAAAEvjzA4AALA0wg4AALA0Fijrl+9/OXr0qPz8/Jx+O30AAFA6jDE6c+aMwsLCrnljUMKOpKNHjyo8PNzVZQAAgBI4cuSIatasedV+wo4kPz8/Sb/8sCpXruziagAAwPXIzs5WeHi4/e/xqyHsSPaPripXrkzYAQDAzfzWEhQWKAMAAEsj7AAAAEsj7AAAAEsj7AAAAEsj7AAAAEsj7AAAAEsj7AAAAEsj7AAAAEsj7AAAAEsj7AAAAEsj7AAAAEsj7AAAAEsj7AAAAEsj7AAAAEvzdOWLb9iwQa+88oq2bdum9PR0ffHFF+revbu9/2pf2T516lQ9//zzkqRatWrp0KFDDv2TJ0/W6NGjS61ulD2HD0snT7q6iuKpVk2KiHB1FQBgfS4NO7m5uWrWrJn69++vBx54oFB/enq6w/5XX32lAQMGqEePHg7tEydO1KBBg+z7fn5+pVMwyqTDh6XoaKOzZ4sOx2WVr69RSoqNwAMApcylYSchIUEJCQlX7Q8JCXHYX7x4se666y7Vrl3bod3Pz6/QWPx+nDwpnT1r09wXDyg68ryry7kuKYd81GdSbZ08ydkdAChtLg07xXHs2DEtW7ZMH3zwQaG+KVOm6OWXX1ZERIQeeeQRjRgxQp6ebjM1OEl05Hm1qH/W1WUAAMoYt0kEH3zwgfz8/Ap93DVs2DC1aNFCgYGB+uabb5SYmKj09HRNmzbtqsfKy8tTXl6efT87O7vU6gYAAK7lNmHn/fffV+/eveXj4+PQPnLkSPvjpk2bysvLS0888YQmT54sb2/vIo81efJkTZgwoVTrBQAAZYNbXHr+n//8R3v27NHAgQN/c2xMTIwuXbqkgwcPXnVMYmKiTp8+bd+OHDnixGoBAEBZ4hZndt577z21bNlSzZo1+82xycnJ8vDwUHBw8FXHeHt7X/WsDwAAsBaXhp2cnBzt37/fvp+Wlqbk5GQFBgYq4v9fopKdna1PP/1Ur776aqHnJyUlafPmzbrrrrvk5+enpKQkjRgxQn369FGVKlVu2jwAAEDZ5dKws3XrVt111132/cvrb/r27as5c+ZIkhYsWCBjjHr16lXo+d7e3lqwYIHGjx+vvLw8RUVFacSIEQ7reAAAwO+bS8NOhw4dZIy55pjBgwdr8ODBRfa1aNFCmzZtKo3SAACARbjFAmUAAICSIuwAAABLI+wAAABLI+wAAABLI+wAAABLc4ubCgJWlZLi6gqKr1o1vqkdgHsh7AAukH7KUx4eRn362FxdSrH5+hqlpNgIPADcBmEHcIGsHE8VFNg098UDio487+pyrlvKIR/1mVRbJ09ydgeA+yDsAC4UHXleLeqfdXUZAGBpLFAGAACWRtgBAACWRtgBAACWRtgBAACWRtgBAACWRtgBAACWRtgBAACWRtgBAACWRtgBAACWRtgBAACWRtgBAACWRtgBAACWRtgBAACWRtgBAACWRtgBAACWRtgBAACWRtgBAACWRtgBAACWRtgBAACWRtgBAACWRtgBAACWRtgBAACWRtgBAACWRtgBAACWRtgBAACWRtgBAACWRtgBAACWRtgBAACWRtgBAACWRtgBAACW5tKws2HDBnXt2lVhYWGy2WxatGiRQ3+/fv1ks9kctk6dOjmMyczMVO/evVW5cmUFBARowIABysnJuYmzAAAAZZlLw05ubq6aNWumN99886pjOnXqpPT0dPv20UcfOfT37t1bu3bt0sqVK7V06VJt2LBBgwcPLu3SAQCAm/B05YsnJCQoISHhmmO8vb0VEhJSZF9KSoqWL1+uLVu2qFWrVpKkmTNnqnPnzvr73/+usLAwp9cMAADcS5lfs7Nu3ToFBwerQYMGeuqpp3Tq1Cl7X1JSkgICAuxBR5Li4uLk4eGhzZs3X/WYeXl5ys7OdtgAAIA1lemw06lTJ3344YdavXq1/va3v2n9+vVKSEhQfn6+JCkjI0PBwcEOz/H09FRgYKAyMjKuetzJkyfL39/fvoWHh5fqPAAAgOu49GOs39KzZ0/741tuuUVNmzZVnTp1tG7dOnXs2LHEx01MTNTIkSPt+9nZ2QQeAAAsqkyf2blS7dq1Va1aNe3fv1+SFBISouPHjzuMuXTpkjIzM6+6zkf6ZR1Q5cqVHTYAAGBNbhV2fvzxR506dUqhoaGSpNjYWGVlZWnbtm32MWvWrFFBQYFiYmJcVSYAAChDXPoxVk5Ojv0sjSSlpaUpOTlZgYGBCgwM1IQJE9SjRw+FhIQoNTVVf/7zn1W3bl3Fx8dLkqKjo9WpUycNGjRIs2bN0sWLFzV06FD17NmTK7EAAIAkF5/Z2bp1q5o3b67mzZtLkkaOHKnmzZtr7NixKleunHbs2KFu3bqpfv36GjBggFq2bKn//Oc/8vb2th9j3rx5atiwoTp27KjOnTurbdu2euedd1w1JQAAUMa49MxOhw4dZIy5av/XX3/9m8cIDAzU/PnznVkWAACwELdaswMAAFBchB0AAGBphB0AAGBphB0AAGBphB0AAGBphB0AAGBphB0AAGBphB0AAGBphB0AAGBphB0AAGBphB0AAGBphB0AAGBphB0AAGBphB0AAGBphB0AAGBphB0AAGBphB0AAGBphB0AAGBphB0AAGBphB0AAGBphB0AAGBphB0AAGBphB0AAGBphB0AAGBphB0AAGBphB0AAGBphB0AAGBphB0AAGBphB0AAGBphB0AAGBphB0AAGBphB0AAGBphB0AAGBphB0AAGBphB0AAGBphB0AAGBphB0AAGBphB0AAGBphB0AAGBpLg07GzZsUNeuXRUWFiabzaZFixbZ+y5evKhRo0bplltuUcWKFRUWFqbHHntMR48edThGrVq1ZLPZHLYpU6bc5JkAAICyyqVhJzc3V82aNdObb75ZqO/s2bPavn27xowZo+3bt2vhwoXas2ePunXrVmjsxIkTlZ6ebt+eeeaZm1E+AABwA56ufPGEhAQlJCQU2efv76+VK1c6tL3xxhtq3bq1Dh8+rIiICHu7n5+fQkJCSrVWAADgntxqzc7p06dls9kUEBDg0D5lyhRVrVpVzZs31yuvvKJLly5d8zh5eXnKzs522AAAgDW59MxOcZw/f16jRo1Sr169VLlyZXv7sGHD1KJFCwUGBuqbb75RYmKi0tPTNW3atKsea/LkyZowYcLNKBsAALiYW4Sdixcv6qGHHpIxRm+//bZD38iRI+2PmzZtKi8vLz3xxBOaPHmyvL29izxeYmKiw/Oys7MVHh5eOsUDAACXKvNh53LQOXTokNasWeNwVqcoMTExunTpkg4ePKgGDRoUOcbb2/uqQQgAAFhLmQ47l4POvn37tHbtWlWtWvU3n5OcnCwPDw8FBwffhAoBAEBZ59Kwk5OTo/3799v309LSlJycrMDAQIWGhuqPf/yjtm/frqVLlyo/P18ZGRmSpMDAQHl5eSkpKUmbN2/WXXfdJT8/PyUlJWnEiBHq06ePqlSp4qppAQCAMsSlYWfr1q2666677PuX19H07dtX48eP15IlSyRJt956q8Pz1q5dqw4dOsjb21sLFizQ+PHjlZeXp6ioKI0YMcJhPQ4AAPh9c2nY6dChg4wxV+2/Vp8ktWjRQps2bXJ2WQAAwELc6j47AAAAxUXYAQAAlkbYAQAAlkbYAQAAlkbYAQAAlkbYAQAAllam76AMoGxKSXF1BcVTrZoUEeHqKgC4CmEHwHVLP+UpDw+jPn1sri6lWHx9jVJSbAQe4HeKsAPgumXleKqgwKa5Lx5QdOR5V5dzXVIO+ajPpNo6eZKzO8DvFWEHQLFFR55Xi/pnXV0GAFwXFigDAABLI+wAAABLI+wAAABLI+wAAABLI+wAAABLI+wAAABLI+wAAABLI+wAAABLI+wAAABLK3HYycrK0rvvvqvExERlZmZKkrZv366ffvrJacUBAADcqBJ9XcSOHTsUFxcnf39/HTx4UIMGDVJgYKAWLlyow4cP68MPP3R2nQAAACVSojM7I0eOVL9+/bRv3z75+PjY2zt37qwNGzY4rTgAAIAbVaKws2XLFj3xxBOF2mvUqKGMjIwbLgoAAMBZShR2vL29lZ2dXah97969CgoKuuGiAAAAnKVEYadbt26aOHGiLl68KEmy2Ww6fPiwRo0apR49eji1QAAAgBtRorDz6quvKicnR8HBwTp37pzat2+vunXrys/PT5MmTXJ2jQAAACVWoqux/P39tXLlSm3cuFE7duxQTk6OWrRoobi4OGfXBwAAcENKFHYua9u2rdq2beusWgAAAJzuusPOjBkzrvugw4YNK1ExAAAAznbdYee1115z2D9x4oTOnj2rgIAASb/cUdnX11fBwcGEHQAAUGZc9wLltLQ0+zZp0iTdeuutSklJUWZmpjIzM5WSkqIWLVro5ZdfLs16AQAAiqVEV2ONGTNGM2fOVIMGDextDRo00GuvvaaXXnrJacUBAADcqBKFnfT0dF26dKlQe35+vo4dO3bDRQEAADhLicJOx44d9cQTT2j79u32tm3btumpp57i8nMAAFCmlCjsvP/++woJCVGrVq3k7e0tb29vtW7dWtWrV9e7777r7BoBAABKrET32QkKCtKXX36pvXv3avfu3ZKkhg0bqn79+k4tDgAA4Ebd0E0F69evT8ABAABlWonDzo8//qglS5bo8OHDunDhgkPftGnTbrgwAAAAZyhR2Fm9erW6deum2rVra/fu3WrSpIkOHjwoY4xatGjh7BoBAABKrEQLlBMTE/Xcc8/p+++/l4+Pjz7//HMdOXJE7du314MPPnjdx9mwYYO6du2qsLAw2Ww2LVq0yKHfGKOxY8cqNDRUFSpUUFxcnPbt2+cwJjMzU71791blypUVEBCgAQMGKCcnpyTTAgAAFlSisJOSkqLHHntMkuTp6alz586pUqVKmjhxov72t79d93Fyc3PVrFkzvfnmm0X2T506VTNmzNCsWbO0efNmVaxYUfHx8Tp//rx9TO/evbVr1y6tXLlSS5cu1YYNGzR48OCSTAsAAFhQiT7Gqlixon2dTmhoqFJTU9W4cWNJ0smTJ6/7OAkJCUpISCiyzxij6dOn66WXXtJ9990nSfrwww9VvXp1LVq0SD179lRKSoqWL1+uLVu2qFWrVpKkmTNnqnPnzvr73/+usLCwkkwPAABYSInO7Nx+++3auHGjJKlz587605/+pEmTJql///66/fbbnVJYWlqaMjIyHG5S6O/vr5iYGCUlJUmSkpKSFBAQYA86khQXFycPDw9t3rz5qsfOy8tTdna2wwYAAKypRGd2pk2bZl8XM2HCBOXk5Ojjjz9WvXr1nHYlVkZGhiSpevXqDu3Vq1e392VkZCg4ONih39PTU4GBgfYxRZk8ebImTJjglDoBAEDZVqKwU7t2bfvjihUratasWU4r6GZITEzUyJEj7fvZ2dkKDw93YUUAAKC0lOhjrJshJCREkgp9seixY8fsfSEhITp+/LhD/6VLl5SZmWkfUxRvb29VrlzZYQMAANZ03Wd2qlSpIpvNdl1jMzMzS1zQZVFRUQoJCdHq1at16623SvrlDMzmzZv11FNPSZJiY2OVlZWlbdu2qWXLlpKkNWvWqKCgQDExMTdcAwAAcH/XHXamT59uf3zq1Cn95S9/UXx8vGJjYyX9slj466+/1pgxY677xXNycrR//377flpampKTkxUYGKiIiAgNHz5cf/nLX1SvXj1FRUVpzJgxCgsLU/fu3SVJ0dHR6tSpkwYNGqRZs2bp4sWLGjp0qHr27MmVWAAAQFIxwk7fvn3tj3v06KGJEydq6NCh9rZhw4bpjTfe0KpVqzRixIjrOubWrVt111132fcvr6Pp27ev5syZoz//+c/Kzc3V4MGDlZWVpbZt22r58uXy8fGxP2fevHkaOnSoOnbsKA8PD/Xo0UMzZsy43mkBAACLK9EC5a+//rrImwd26tRJo0ePvu7jdOjQQcaYq/bbbDZNnDhREydOvOqYwMBAzZ8//7pfEwAA/L6UaIFy1apVtXjx4kLtixcvVtWqVW+4KAAAAGcp0ZmdCRMmaODAgVq3bp19IfDmzZu1fPly/fOf/3RqgQAAADeiRGGnX79+io6O1owZM7Rw4UJJvywW3rhxI1dBAQCAMqVEYUeSYmJiNG/ePGfWAgAA4HTXHXays7PtN9/7re+S4iZ9AACgrCjWTQXT09MVHBysgICAIm8waIyRzWZTfn6+U4sEAAAoqesOO2vWrFFgYKAkae3ataVWEAAAgDNdd9hp3769/XFUVJTCw8MLnd0xxujIkSPOqw4AAOAGleg+O1FRUTpx4kSh9szMTEVFRd1wUQAAAM5SorBzeW3OlXJychy+ygEAAMDVinXp+eXvrrLZbBozZox8fX3tffn5+dq8ebP9G8oBAADKgmKFnW+//VbSL2d2vv/+e3l5edn7vLy81KxZMz333HPOrRAAAOAGFCvsXL4K6/HHH9frr7/O/XQAAECZV6I7KM+ePdvZdQAAAJSKEoWd3NxcTZkyRatXr9bx48dVUFDg0H/gwAGnFAcAAHCjShR2Bg4cqPXr1+vRRx9VaGhokVdmAQAAlAUlCjtfffWVli1bpjZt2ji7HgAAAKcq0X12qlSpYv/qCAAAgLKsRGHn5Zdf1tixY3X27Fln1wMAAOBUJfoY69VXX1VqaqqqV6+uWrVqqXz58g7927dvd0pxAAAAN6pEYad79+5OLgMAAKB0lCjsjBs3ztl1AAAAlIoSrdkBAABwFyU6s5Ofn6/XXntNn3zyiQ4fPqwLFy449GdmZjqlOAAAgBtVojM7EyZM0LRp0/Twww/r9OnTGjlypB544AF5eHho/PjxTi4RAACg5EoUdubNm6d//vOf+tOf/iRPT0/16tVL7777rsaOHatNmzY5u0YAAIASK1HYycjI0C233CJJqlSpkk6fPi1Juvfee7Vs2TLnVQcAAHCDShR2atasqfT0dElSnTp1tGLFCknSli1b5O3t7bzqAAAAblCJws7999+v1atXS5KeeeYZjRkzRvXq1dNjjz2m/v37O7VAAACAG1Giq7GmTJlif/zwww8rIiJCSUlJqlevnrp27eq04gAAAG5UicLOlWJjYxUbG+uMQwEAADhVicLOhx9+eM3+xx57rETFAAAAOFuJws6zzz7rsH/x4kWdPXtWXl5e8vX1JewAAIAyo0QLlH/++WeHLScnR3v27FHbtm310UcfObtGAACAEnPad2PVq1dPU6ZMKXTWBwAAwJWc+kWgnp6eOnr0qDMPCQAAcENKtGZnyZIlDvvGGKWnp+uNN95QmzZtnFIYAACAM5Qo7HTv3t1h32azKSgoSHfffbdeffVVZ9QFAADgFCX6GKugoEAFBQU6duyYfv75Z+Xn5ysjI0Pz589XaGioUwusVauWbDZboW3IkCGSpA4dOhTqe/LJJ51aAwAAcF/FDjtZWVkaMmSIqlWrppCQEAUGBiokJESJiYk6e/as0wvcsmWL0tPT7dvKlSslSQ8++KB9zKBBgxzGTJ061el1AAAA91Ssj7EyMzMVGxurn376Sb1791Z0dLQk6YcfftDMmTO1cuVKbdy4UTt27NCmTZs0bNiwGy4wKCjIYX/KlCmqU6eO2rdvb2/z9fVVSEjIDb8WAACwnmKFnYkTJ8rLy0upqamqXr16ob577rlHjz76qFasWKEZM2Y4tVBJunDhgubOnauRI0fKZrPZ2+fNm6e5c+cqJCREXbt21ZgxY+Tr6+v01wcAAO6nWGFn0aJF+sc//lEo6EhSSEiIpk6dqs6dO2vcuHHq27ev04r89etnZWWpX79+9rZHHnlEkZGRCgsL044dOzRq1Cjt2bNHCxcuvOpx8vLylJeXZ9/Pzs52eq0AAKBsKFbYSU9PV+PGja/a36RJE3l4eGjcuHE3XFhR3nvvPSUkJCgsLMzeNnjwYPvjW265RaGhoerYsaNSU1NVp06dIo8zefJkTZgwoVRqBAAAZUuxFihXq1ZNBw8evGp/WlqagoODb7SmIh06dEirVq3SwIEDrzkuJiZGkrR///6rjklMTNTp06ft25EjR5xaKwAAKDuKFXbi4+P14osv6sKFC4X68vLyNGbMGHXq1Mlpxf3a7NmzFRwcrC5dulxzXHJysiRd8xJ4b29vVa5c2WEDAADWVOwFyq1atVK9evU0ZMgQNWzYUMYYpaSk6K233lJeXp4+/PBDpxdZUFCg2bNnq2/fvvL0/L+SU1NTNX/+fHXu3FlVq1bVjh07NGLECN15551q2rSp0+sAAADup1hhp2bNmkpKStLTTz+txMREGWMk/XIH5T/84Q964403FBER4fQiV61apcOHD6t///4O7V5eXlq1apWmT5+u3NxchYeHq0ePHnrppZecXgMAAHBPxf66iKioKH311Vf6+eeftW/fPklS3bp1FRgY6PTiLrvnnnvswerXwsPDtX79+lJ7XQAA4P5K9N1YklSlShW1bt3ambUAAAA4XYm+GwsAAMBdEHYAAICllfhjLABwJykprq6geKpVk0rheg/gd4mwA8DS0k95ysPDqE8f228PLkN8fY1SUmwEHsAJCDsALC0rx1MFBTbNffGAoiPPu7qc65JyyEd9JtXWyZOc3QGcgbAD4HchOvK8WtQ/6+oyALgAC5QBAIClEXYAAIClEXYAAIClEXYAAIClEXYAAIClEXYAAIClEXYAAIClEXYAAIClEXYAAIClEXYAAIClEXYAAIClEXYAAIClEXYAAIClEXYAAIClEXYAAIClEXYAAIClEXYAAIClEXYAAIClEXYAAIClEXYAAIClEXYAAIClEXYAAIClEXYAAIClEXYAAIClEXYAAIClEXYAAIClEXYAAIClebq6AKs7fFg6edLVVRRPtWpSRISrqwAAwDkIO6Xo8GEpOtro7Fmbq0spFl9fo5QUG4EHAGAJhJ1SdPKkdPasTXNfPKDoyPOuLue6pBzyUZ9JtXXyJGd3AADWQNi5CaIjz6tF/bOuLgMAgN8lFigDAABLK9NhZ/z48bLZbA5bw4YN7f3nz5/XkCFDVLVqVVWqVEk9evTQsWPHXFgxAAAoa8p02JGkxo0bKz093b5t3LjR3jdixAj9+9//1qeffqr169fr6NGjeuCBB1xYLQAAKGvK/JodT09PhYSEFGo/ffq03nvvPc2fP1933323JGn27NmKjo7Wpk2bdPvtt9/sUgEAQBlU5s/s7Nu3T2FhYapdu7Z69+6tw4cPS5K2bdumixcvKi4uzj62YcOGioiIUFJS0jWPmZeXp+zsbIcNAABYU5kOOzExMZozZ46WL1+ut99+W2lpaWrXrp3OnDmjjIwMeXl5KSAgwOE51atXV0ZGxjWPO3nyZPn7+9u38PDwUpwFAABwpTL9MVZCQoL9cdOmTRUTE6PIyEh98sknqlChQomPm5iYqJEjR9r3s7OzCTwAAFhUmT6zc6WAgADVr19f+/fvV0hIiC5cuKCsrCyHMceOHStyjc+veXt7q3Llyg4bAACwJrcKOzk5OUpNTVVoaKhatmyp8uXLa/Xq1fb+PXv26PDhw4qNjXVhlQAAoCwp0x9jPffcc+ratasiIyN19OhRjRs3TuXKlVOvXr3k7++vAQMGaOTIkQoMDFTlypX1zDPPKDY2liuxAACAXZkOOz/++KN69eqlU6dOKSgoSG3bttWmTZsUFBQkSXrttdfk4eGhHj16KC8vT/Hx8XrrrbdcXDUAAChLynTYWbBgwTX7fXx89Oabb+rNN9+8SRUBAAB3U6bDDlwnJcXVFVw/d6oVAHDzEXbgIP2Upzw8jPr0sbm6FAAAnIKwAwdZOZ4qKLBp7osHFB153tXlXJcvN1XWmPdruroMwOnc7axltWpSRISrqwAKI+ygSNGR59Wi/llXl3FdUg75uLoEwKnc9Qyrr69RSoqNwIMyh7ADAGWMO55hTTnkoz6TauvkSc7uoOwh7ABAGeVOZ1iBssyt7qAMAABQXIQdAABgaYQdAABgaYQdAABgaYQdAABgaYQdAABgaYQdAABgaYQdAABgaYQdAABgaYQdAABgaYQdAABgaYQdAABgaYQdAABgaYQdAABgaYQdAABgaYQdAABgaYQdAABgaYQdAABgaYQdAABgaYQdAABgaYQdAABgaYQdAABgaYQdAABgaYQdAABgaYQdAABgaYQdAABgaYQdAABgaYQdAABgaYQdAABgaYQdAABgaYQdAABgaYQdAABgaYQdAABgaWU67EyePFm33Xab/Pz8FBwcrO7du2vPnj0OYzp06CCbzeawPfnkky6qGAAAlDVlOuysX79eQ4YM0aZNm7Ry5UpdvHhR99xzj3Jzcx3GDRo0SOnp6fZt6tSpLqoYAACUNZ6uLuBali9f7rA/Z84cBQcHa9u2bbrzzjvt7b6+vgoJCbnZ5QEAADdQps/sXOn06dOSpMDAQIf2efPmqVq1amrSpIkSExN19uzZax4nLy9P2dnZDhsAALCmMn1m59cKCgo0fPhwtWnTRk2aNLG3P/LII4qMjFRYWJh27NihUaNGac+ePVq4cOFVjzV58mRNmDDhZpQNAABczG3CzpAhQ7Rz505t3LjRoX3w4MH2x7fccotCQ0PVsWNHpaamqk6dOkUeKzExUSNHjrTvZ2dnKzw8vHQKB4DfkZQUV1dQPNWqSRERrq4Cpc0tws7QoUO1dOlSbdiwQTVr1rzm2JiYGEnS/v37rxp2vL295e3t7fQ6AeD3Kv2Upzw8jPr0sbm6lGLx9TVKSbEReCyuTIcdY4yeeeYZffHFF1q3bp2ioqJ+8znJycmSpNDQ0FKuDgBwWVaOpwoKbJr74gFFR553dTnXJeWQj/pMqq2TJzm7Y3VlOuwMGTJE8+fP1+LFi+Xn56eMjAxJkr+/vypUqKDU1FTNnz9fnTt3VtWqVbVjxw6NGDFCd955p5o2beri6gHg9yc68rxa1L/2RSLAzVamw87bb78t6ZcbB/7a7Nmz1a9fP3l5eWnVqlWaPn26cnNzFR4erh49euill15yQbUAAKAsKtNhxxhzzf7w8HCtX7/+JlUDAADckVvdZwcAAKC4CDsAAMDSCDsAAMDSCDsAAMDSCDsAAMDSCDsAAMDSCDsAAMDSCDsAAMDSCDsAAMDSCDsAAMDSCDsAAMDSCDsAAMDSCDsAAMDSCDsAAMDSCDsAAMDSCDsAAMDSCDsAAMDSCDsAAMDSCDsAAMDSCDsAAMDSCDsAAMDSCDsAAMDSCDsAAMDSCDsAAMDSPF1dAAAArpSS4uoKiqdaNSkiwtVVuBfCDgDgdyn9lKc8PIz69LG5upRi8fU1SkmxEXiKgbADAPhdysrxVEGBTXNfPKDoyPOuLue6pBzyUZ9JtXXyJGd3ioOwAwD4XYuOPK8W9c+6ugyUIhYoAwAASyPsAAAASyPsAAAASyPsAAAASyPsAAAASyPsAAAASyPsAAAASyPsAAAASyPsAAAASyPsAAAAS7PM10W8+eabeuWVV5SRkaFmzZpp5syZat26tavLAgDA6fim9uKxRNj5+OOPNXLkSM2aNUsxMTGaPn264uPjtWfPHgUHB7u6PAAAnIJvai8ZS4SdadOmadCgQXr88cclSbNmzdKyZcv0/vvva/To0S6uDgAA5+Cb2kvG7cPOhQsXtG3bNiUmJtrbPDw8FBcXp6SkJBdWBgBA6eCb2ovH7cPOyZMnlZ+fr+rVqzu0V69eXbt37y7yOXl5ecrLy7Pvnz59WpKUnZ3t1Npycn7577a9F5VzrsCpxy4tKYfyJGVTcylzx5ol96ybmm8Oar453LHmPUcuSspWTo7k5L9m7X9vG2OuPdC4uZ9++slIMt98841D+/PPP29at25d5HPGjRtnJLGxsbGxsbFZYDty5Mg1s4Lbn9mpVq2aypUrp2PHjjm0Hzt2TCEhIUU+JzExUSNHjrTvFxQUKDMzU1WrVpXNduOLvrKzsxUeHq4jR46ocuXKN3y8ssbq85OYoxVYfX4Sc7QCq89PKt05GmN05swZhYWFXXOc24cdLy8vtWzZUqtXr1b37t0l/RJeVq9eraFDhxb5HG9vb3l7ezu0BQQEOL22ypUrW/YPr2T9+UnM0QqsPj+JOVqB1ecnld4c/f39f3OM24cdSRo5cqT69u2rVq1aqXXr1po+fbpyc3PtV2cBAIDfL0uEnYcfflgnTpzQ2LFjlZGRoVtvvVXLly8vtGgZAAD8/lgi7EjS0KFDr/qx1c3m7e2tcePGFfqozCqsPj+JOVqB1ecnMUcrsPr8pLIxR5sxv3W9FgAAgPvii0ABAIClEXYAAIClEXYAAIClEXYAAIClEXac7M0331StWrXk4+OjmJgY/e9//3N1SSW2YcMGde3aVWFhYbLZbFq0aJFDvzFGY8eOVWhoqCpUqKC4uDjt27fPNcWWwOTJk3XbbbfJz89PwcHB6t69u/bs2eMw5vz58xoyZIiqVq2qSpUqqUePHoXu1l2Wvf3222ratKn9Zl6xsbH66quv7P3uPr8rTZkyRTabTcOHD7e3ufscx48fL5vN5rA1bNjQ3u/u87vsp59+Up8+fVS1alVVqFBBt9xyi7Zu3Wrvd/ffN7Vq1Sr0PtpsNg0ZMkSS+7+P+fn5GjNmjKKiolShQgXVqVNHL7/8ssN3Vrn0Pbzxb6fCZQsWLDBeXl7m/fffN7t27TKDBg0yAQEB5tixY64urUS+/PJL8+KLL5qFCxcaSeaLL75w6J8yZYrx9/c3ixYtMt99953p1q2biYqKMufOnXNNwcUUHx9vZs+ebXbu3GmSk5NN586dTUREhMnJybGPefLJJ014eLhZvXq12bp1q7n99tvNHXfc4cKqi2fJkiVm2bJlZu/evWbPnj3mhRdeMOXLlzc7d+40xrj//H7tf//7n6lVq5Zp2rSpefbZZ+3t7j7HcePGmcaNG5v09HT7duLECXu/u8/PGGMyMzNNZGSk6devn9m8ebM5cOCA+frrr83+/fvtY9z9983x48cd3sOVK1caSWbt2rXGGPd/HydNmmSqVq1qli5datLS0synn35qKlWqZF5//XX7GFe+h4QdJ2rdurUZMmSIfT8/P9+EhYWZyZMnu7Aq57gy7BQUFJiQkBDzyiuv2NuysrKMt7e3+eijj1xQ4Y07fvy4kWTWr19vjPllPuXLlzeffvqpfUxKSoqRZJKSklxV5g2rUqWKeffddy01vzNnzph69eqZlStXmvbt29vDjhXmOG7cONOsWbMi+6wwP2OMGTVqlGnbtu1V+634++bZZ581derUMQUFBZZ4H7t06WL69+/v0PbAAw+Y3r17G2Nc/x7yMZaTXLhwQdu2bVNcXJy9zcPDQ3FxcUpKSnJhZaUjLS1NGRkZDvP19/dXTEyM28739OnTkqTAwEBJ0rZt23Tx4kWHOTZs2FARERFuOcf8/HwtWLBAubm5io2NtdT8hgwZoi5dujjMRbLOe7hv3z6FhYWpdu3a6t27tw4fPizJOvNbsmSJWrVqpQcffFDBwcFq3ry5/vnPf9r7rfb75sKFC5o7d6769+8vm81miffxjjvu0OrVq7V3715J0nfffaeNGzcqISFBkuvfQ8vcQdnVTp48qfz8/EJfUVG9enXt3r3bRVWVnoyMDEkqcr6X+9xJQUGBhg8frjZt2qhJkyaSfpmjl5dXoS+Jdbc5fv/994qNjdX58+dVqVIlffHFF2rUqJGSk5MtMb8FCxZo+/bt2rJlS6E+K7yHMTExmjNnjho0aKD09HRNmDBB7dq1086dOy0xP0k6cOCA3n77bY0cOVIvvPCCtmzZomHDhsnLy0t9+/a13O+bRYsWKSsrS/369ZNkjT+no0ePVnZ2tho2bKhy5copPz9fkyZNUu/evSW5/u8Mwg6gX84M7Ny5Uxs3bnR1KU7XoEEDJScn6/Tp0/rss8/Ut29frV+/3tVlOcWRI0f07LPPauXKlfLx8XF1OaXi8r+MJalp06aKiYlRZGSkPvnkE1WoUMGFlTlPQUGBWrVqpb/+9a+SpObNm2vnzp2aNWuW+vbt6+LqnO+9995TQkKCwsLCXF2K03zyySeaN2+e5s+fr8aNGys5OVnDhw9XWFhYmXgP+RjLSapVq6Zy5coVWj1/7NgxhYSEuKiq0nN5TlaY79ChQ7V06VKtXbtWNWvWtLeHhITowoULysrKchjvbnP08vJS3bp11bJlS02ePFnNmjXT66+/bon5bdu2TcePH1eLFi3k6ekpT09PrV+/XjNmzJCnp6eqV6/u9nO8UkBAgOrXr6/9+/db4j2UpNDQUDVq1MihLTo62v5xnZV+3xw6dEirVq3SwIED7W1WeB+ff/55jR49Wj179tQtt9yiRx99VCNGjNDkyZMluf49JOw4iZeXl1q2bKnVq1fb2woKCrR69WrFxsa6sLLSERUVpZCQEIf5Zmdna/PmzW4zX2OMhg4dqi+++EJr1qxRVFSUQ3/Lli1Vvnx5hznu2bNHhw8fdps5FqWgoEB5eXmWmF/Hjh31/fffKzk52b61atVKvXv3tj929zleKScnR6mpqQoNDbXEeyhJbdq0KXTbh7179yoyMlKSNX7fXDZ79mwFBwerS5cu9jYrvI9nz56Vh4djpChXrpwKCgoklYH3sNSXQP+OLFiwwHh7e5s5c+aYH374wQwePNgEBASYjIwMV5dWImfOnDHffvut+fbbb40kM23aNPPtt9+aQ4cOGWN+uYwwICDALF682OzYscPcd999bnUp6FNPPWX8/f3NunXrHC4JPXv2rH3Mk08+aSIiIsyaNWvM1q1bTWxsrImNjXVh1cUzevRos379epOWlmZ27NhhRo8ebWw2m1mxYoUxxv3nV5RfX41ljPvP8U9/+pNZt26dSUtLM//9739NXFycqVatmjl+/Lgxxv3nZ8wvtw3w9PQ0kyZNMvv27TPz5s0zvr6+Zu7cufYx7v77xphfrtCNiIgwo0aNKtTn7u9j3759TY0aNeyXni9cuNBUq1bN/PnPf7aPceV7SNhxspkzZ5qIiAjj5eVlWrdubTZt2uTqkkps7dq1RlKhrW/fvsaYXy4lHDNmjKlevbrx9vY2HTt2NHv27HFt0cVQ1NwkmdmzZ9vHnDt3zjz99NOmSpUqxtfX19x///0mPT3ddUUXU//+/U1kZKTx8vIyQUFBpmPHjvagY4z7z68oV4Ydd5/jww8/bEJDQ42Xl5epUaOGefjhhx3uP+Pu87vs3//+t2nSpInx9vY2DRs2NO+8845Dv7v/vjHGmK+//tpIKrJud38fs7OzzbPPPmsiIiKMj4+PqV27tnnxxRdNXl6efYwr30ObMb+6vSEAAIDFsGYHAABYGmEHAABYGmEHAABYGmEHAABYGmEHAABYGmEHAABYGmEHAABYGmEHgNvq0KGDhg8ffkPHWLdunWw2W6HvJQJgHYQdAGVWv3791L17d1eXAcDNEXYAAIClEXYAuIXc3Fw99thjqlSpkkJDQ/Xqq68WGvOvf/1LrVq1kp+fn0JCQvTII4/o+PHjDmO+/PJL1a9fXxUqVNBdd92lgwcPFjrOxo0b1a5dO1WoUEHh4eEaNmyYcnNzS2tqAEoZYQeAW3j++ee1fv16LV68WCtWrNC6deu0fft2hzEXL17Uyy+/rO+++06LFi3SwYMH1a9fP3v/kSNH9MADD6hr165KTk7WwIEDNXr0aIdjpKamqlOnTurRo4d27Nihjz/+WBs3btTQoUNvxjQBlAK+CBRAmdWvXz9lZWVp7ty5qlq1qubOnasHH3xQkpSZmamaNWtq8ODBmj59epHP37p1q2677TadOXNGlSpV0gsvvKDFixdr165d9jGjR4/W3/72N/38888KCAjQwIEDVa5cOf3jH/+wj9m4caPat2+v3Nxc+fj4lOqcATgfZ3YAlHmpqam6cOGCYmJi7G2BgYFq0KCBw7ht27apa9euioiIkJ+fn9q3by9JOnz4sCQpJSXF4RiSFBsb67D/3Xffac6cOapUqZJ9i4+PV0FBgdLS0kpjegBKmaerCwAAZ8jNzVV8fLzi4+M1b948BQUF6fDhw4qPj9eFCxeu+zg5OTl64oknNGzYsEJ9ERERziwZwE1C2AFQ5tWpU0fly5fX5s2b7YHj559/1t69e+1nb3bv3q1Tp05pypQpCg8Pl/TLx1i/Fh0drSVLlji0bdq0yWG/RYsW+uGHH1S3bt3Smg6Am4yPsQCUeZUqVdKAAQP0/PPPa82aNdq5c6f69esnD4//+xUWEREhLy8vzZw5UwcOHNCSJUv08ssvOxznySef1L59+/T8889rz549mj9/vubMmeMwZtSoUfrmm280dOhQJScna9++fVq8eDELlAE3RtgB4BZeeeUVtWvXTl27dlVcXJzatm2rli1b2vuDgoI0Z84cffrpp2rUqJGmTJmiv//97w7HiIiI0Oeff65FixapWbNmmjVrlv761786jGnatKnWr1+vvXv3ql27dmrevLnGjh2rsLCwmzJPAM7H1VgAAMDSOLMDAAAsjbADAAAsjbADAAAsjbADAAAsjbADAAAsjbADAAAsjbADAAAsjbADAAAsjbADAAAsjbADAAAsjbADAAAsjbADAAAs7f8BwBz0UnpTyVoAAAAASUVORK5CYII=",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "#Qual é a distribuição de idades? versao da prof\n",
+ "#plotagem\n",
+ "df[\"Idade\"].plot.hist(bins=10, edgecolor= \"blue\", color=\"pink\")\n",
+ "plt.xlabel(\"Idade\")\n",
+ "plt.ylabel(\"Quantidade\")\n",
+ "plt.title(\"Distribuição de Idade\")\n",
+ "plt.show()"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Teste de hipótese\n",
+ "Teste de Classe e SobrevivênciaHipótese Nula H0: Os sobreviventes não dependem da classe dos passageiros \\\n",
+ "Hipótese Alternativa H1: Os sobreviventes dependem da classe\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 54,
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Requirement already satisfied: scipy in c:\\users\\biamo\\appdata\\local\\programs\\python\\python312\\lib\\site-packages (1.14.1)\n",
+ "Requirement already satisfied: numpy<2.3,>=1.23.5 in c:\\users\\biamo\\appdata\\local\\programs\\python\\python312\\lib\\site-packages (from scipy) (2.0.1)\n",
+ "Note: you may need to restart the kernel to use updated packages.\n"
+ ]
+ }
+ ],
+ "source": [
+ "pip install scipy"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 55,
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Collecting seabornNote: you may need to restart the kernel to use updated packages.\n",
+ "\n",
+ " Downloading seaborn-0.13.2-py3-none-any.whl.metadata (5.4 kB)\n",
+ "Requirement already satisfied: numpy!=1.24.0,>=1.20 in c:\\users\\biamo\\appdata\\local\\programs\\python\\python312\\lib\\site-packages (from seaborn) (2.0.1)\n",
+ "Requirement already satisfied: pandas>=1.2 in c:\\users\\biamo\\appdata\\local\\programs\\python\\python312\\lib\\site-packages (from seaborn) (2.2.2)\n",
+ "Requirement already satisfied: matplotlib!=3.6.1,>=3.4 in c:\\users\\biamo\\appdata\\local\\programs\\python\\python312\\lib\\site-packages (from seaborn) (3.9.2)\n",
+ "Requirement already satisfied: contourpy>=1.0.1 in c:\\users\\biamo\\appdata\\local\\programs\\python\\python312\\lib\\site-packages (from matplotlib!=3.6.1,>=3.4->seaborn) (1.2.1)\n",
+ "Requirement already satisfied: cycler>=0.10 in c:\\users\\biamo\\appdata\\local\\programs\\python\\python312\\lib\\site-packages (from matplotlib!=3.6.1,>=3.4->seaborn) (0.12.1)\n",
+ "Requirement already satisfied: fonttools>=4.22.0 in c:\\users\\biamo\\appdata\\local\\programs\\python\\python312\\lib\\site-packages (from matplotlib!=3.6.1,>=3.4->seaborn) (4.53.1)\n",
+ "Requirement already satisfied: kiwisolver>=1.3.1 in c:\\users\\biamo\\appdata\\local\\programs\\python\\python312\\lib\\site-packages (from matplotlib!=3.6.1,>=3.4->seaborn) (1.4.5)\n",
+ "Requirement already satisfied: packaging>=20.0 in c:\\users\\biamo\\appdata\\roaming\\python\\python312\\site-packages (from matplotlib!=3.6.1,>=3.4->seaborn) (24.1)\n",
+ "Requirement already satisfied: pillow>=8 in c:\\users\\biamo\\appdata\\local\\programs\\python\\python312\\lib\\site-packages (from matplotlib!=3.6.1,>=3.4->seaborn) (10.4.0)\n",
+ "Requirement already satisfied: pyparsing>=2.3.1 in c:\\users\\biamo\\appdata\\local\\programs\\python\\python312\\lib\\site-packages (from matplotlib!=3.6.1,>=3.4->seaborn) (3.1.2)\n",
+ "Requirement already satisfied: python-dateutil>=2.7 in c:\\users\\biamo\\appdata\\roaming\\python\\python312\\site-packages (from matplotlib!=3.6.1,>=3.4->seaborn) (2.9.0.post0)\n",
+ "Requirement already satisfied: pytz>=2020.1 in c:\\users\\biamo\\appdata\\local\\programs\\python\\python312\\lib\\site-packages (from pandas>=1.2->seaborn) (2024.1)\n",
+ "Requirement already satisfied: tzdata>=2022.7 in c:\\users\\biamo\\appdata\\local\\programs\\python\\python312\\lib\\site-packages (from pandas>=1.2->seaborn) (2024.1)\n",
+ "Requirement already satisfied: six>=1.5 in c:\\users\\biamo\\appdata\\roaming\\python\\python312\\site-packages (from python-dateutil>=2.7->matplotlib!=3.6.1,>=3.4->seaborn) (1.16.0)\n",
+ "Downloading seaborn-0.13.2-py3-none-any.whl (294 kB)\n",
+ "Installing collected packages: seaborn\n",
+ "Successfully installed seaborn-0.13.2\n"
+ ]
+ }
+ ],
+ "source": [
+ "pip install seaborn"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 56,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "from scipy.stats import ttest_ind\n",
+ "import seaborn as sns"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 60,
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Teste T de idade\n",
+ "Estatística T : -2.06668694625381\n",
+ "Valor P: 0.03912465401348249\n"
+ ]
+ },
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjIAAAHHCAYAAACle7JuAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAChCUlEQVR4nOzdd1xV9f/A8ddl742Ag+EE91Y0F+6Vq9wz247Shl9ballm/cqGlg33yJFoQ01T0dwppmmCIoI4EURA9rjn98eRmwQo48JlvJ+Px33cw7nnfj7ve7nAm8/UKIqiIIQQQghRARkZOgAhhBBCiOKSREYIIYQQFZYkMkIIIYSosCSREUIIIUSFJYmMEEIIISosSWSEEEIIUWFJIiOEEEKICksSGSGEEEJUWJLICCGEEKLCkkRGGMT+/fvRaDTs379fL+WtXLkSjUZDZGSk7py3tzcDBgzQS/k5unbtSteuXYv8vNjYWJo1a4abmxurVq3i8OHDNG/eXK+xFWTixIl4e3uXSV3/Vdz3qyCRkZFoNBpWrlyptzINWU9pmThxIjY2NoYOI5f8fkaF0AdJZESJ5fzSz7mZmpri4uJChw4deOONN4iKitJbXR988AHbtm3TW3llZdOmTVhbW/PCCy/w8ssv06lTJyZPnmzosIpl7ty5aDQaYmNjDR2KEMVy48YN5s6dy+nTpw0ditADE0MHICqPUaNG0a9fP7RaLXfv3uXEiRN89tlnfP755yxbtoyRI0fqru3cuTOpqamYmZkVqY4PPviAJ554gsGDB+c6P27cOEaOHIm5ubk+XkqBdu/eXaznjRo1ipEjR+Lk5MSsWbNISkrC1dVVz9EJUX6V1c9oYdy4cYN58+bh7e1dZi2jovRIIiP0pmXLlowdOzbXuStXrtCrVy8mTJiAn58fzZo1A8DIyAgLCwu91W1sbIyxsbHeyitIUROvHI6OjrpjS0tLLC0t9RWSEHqVlZWFVqst9me9IGX1MyqqHulaEqXKy8uLlStXkpGRwUcffaQ7n98YmbCwMIYNG4a7uzsWFhbUrFmTkSNHkpCQAIBGoyE5OZlVq1bpurEmTpwIPLz/fffu3TRv3hwLCwsaNmxIYGBgrsdzukr+K78y8xvzkZaWxty5c6lfvz4WFhZ4eHgwdOhQwsPDddcsXLiQDh064OzsjKWlJa1ateLHH3/MU2dWVhbvvfcederUwdzcHG9vb9544w3S09MLeotz2bZtG40bN8bCwoLGjRuzdevWfK/TarV89tlnNGrUCAsLC9zc3Hjuuee4e/duoerJz7fffkudOnWwtLSkbdu2HDx4MM81GRkZvPPOO7Rq1Qp7e3usra3p1KkTQUFBea6Nj49n4sSJ2Nvb4+DgwIQJE4iPj8+37tDQUJ544gmcnJywsLCgdevW/Pzzz4WKuyj17Nu3j06dOmFtbY2DgwODBg0iJCQk1zX37t3j5ZdfxtvbG3Nzc6pVq0bPnj05derUQ+Mo7PM2b95Mq1atsLS0xMXFhbFjx3L9+vV8y7x8+TK9e/fG2tqa6tWr8+6776Ioiu7xnG7h//u//+Ozzz7Tfe7Onz8PPPp9PXnyJBqNhlWrVuWpe9euXWg0Gn799Vcg78/TgAEDqF27dr5x+/v707p161zn1q5dq3vdTk5OjBw5kqtXr+a6pmvXrjRu3Jjz58/TrVs3rKysqFGjRp7fPW3atAFg0qRJut8lD46HOn78OH369MHe3h4rKyu6dOnC4cOHc9VV3O+zKAWKECUUERGhAMrHH39c4DV16tRRXF1ddV8HBQUpgBIUFKQoiqKkp6crPj4+SvXq1ZX58+cr33//vTJv3jylTZs2SmRkpKIoirJmzRrF3Nxc6dSpk7JmzRplzZo1ypEjRxRFUZQVK1YogBIREaGrw8vLS6lfv77i4OCg/O9//1M+/fRTpUmTJoqRkZGye/du3XVz5sxR8vtRyK/MLl26KF26dNF9nZWVpXTv3l0BlJEjRyqLFy9WFixYoAQEBCjbtm3TXefu7q68+OKLyuLFi5VPP/1Uadu2rQIov/76a646J0yYoADKE088oSxZskQZP368AiiDBw8u+Btw365duxQjIyOlcePGyqeffqq8+eabir29vdKoUSPFy8sr17VPP/20YmJiojzzzDPK0qVLlVmzZinW1tZKmzZtlIyMjIfWk/N+xcTE6M59//33CqB06NBB+eKLL5SXX35ZcXBwUGrXrp3r/YqJiVE8PDyUmTNnKl9//bXy0UcfKQ0aNFBMTU2Vv/76S3edVqtVOnfurBgZGSkvvvii8uWXXyoBAQFK06ZNFUBZsWKF7tpz584p9vb2SsOGDZWFCxcqixcvVjp37qxoNBolMDDwoa+lKPX8/vvviomJiVK/fn3lo48+UubNm6e4uLgojo6OuT4jo0ePVszMzJSZM2cq33//vbJw4UJl4MCBytq1ax8aS2Gel/OZbNOmjbJo0SLlf//7n2Jpaal4e3srd+/e1V03YcIExcLCQqlXr54ybtw4ZfHixcqAAQMUQHn77bd11+X87DZs2FCpXbu28uGHHyqLFi1Srly5Uuj3tXbt2kq/fv3yvJ5JkyYpjo6Ous/Tf3+eVq9erQDKn3/+met5kZGReX6fzJ8/X9FoNMqIESOUr776Svfe//d1d+nSRalevbpSq1Yt5aWXXlK++uorJSAgQAGUHTt2KIqiKLdu3VLeffddBVCeffZZ3e+S8PBwRVEUZe/evYqZmZni7++vfPLJJ8qiRYuUpk2bKmZmZsrx48dL/H0W+ieJjCixwiQygwYNUgAlISFBUZS8icxff/2lAMrmzZsfWpe1tbUyYcKEPOcLSmQAZcuWLbpzCQkJioeHh9KiRQvduZIkMsuXL1cA5dNPP83zfK1WqztOTk7O9VhGRobSuHFjJSAgQHfu9OnTCqA8/fTTua599dVXFUDZt29fnjoe1Lx5c8XDw0OJj4/Xndu9e7cC5EpkDh48qADKunXrcj3/t99+y/f8f/03kcnIyFCqVaumNG/eXElPT9dd9+233ypAnsTvwWsURVHu3r2ruLm5KU899ZTu3LZt2xRA+eijj3I9t1OnTnkSjO7duytNmjRR0tLSdOe0Wq3SoUMHpV69eg99LUWpp3nz5kq1atWUO3fu6M6dOXNGMTIyUsaPH687Z29vr0yZMuWh9ebnUc/LeZ8bN26spKam6s7/+uuvCqC88847unM5CfG0adN057RardK/f3/FzMxM973L+dm1s7NTbt++nau+wr6vs2fPVkxNTZW4uDjdufT0dMXBwSHX9/S/P08JCQmKubm58sorr+Sq96OPPlI0Go1y5coVRVHUxMbY2Fh5//33c1139uxZxcTEJNf5Ll26KICyevXqXLG4u7srw4YN0507ceJEnu9vzuurV6+e0rt371w/vykpKYqPj4/Ss2dP3bnifp+F/knXkigTOVNB7927l+/j9vb2gNocnZKSord6q1evzpAhQ3Rf29nZMX78eP766y9u3bpV4vK3bNmCi4sL06ZNy/PYg91VVlZWuuO7d++SkJBAp06dcjVD79ixA4CZM2fmKueVV14BYPv27QXGcfPmTU6fPs2ECRN07yVAz549adiwYa5rN2/ejL29PT179iQ2NlZ3a9WqFTY2Nvl28zzMyZMnuX37Ns8//3yucRU53TUPMjY21l2j1WqJi4sjKyuL1q1b53kvTExMeOGFF3I997/vc1xcHPv27WP48OHcu3dP91ru3LlD7969CQsLK7DbpSj15Ly/EydOxMnJSXe+adOm9OzZU/e9A3BwcOD48ePcuHHjoe/bfz3qeTnv84svvphrfFn//v3x9fXN9/MxdepU3bFGo2Hq1KlkZGSwZ8+eXNcNGzYs1+DzoryvI0aMIDMzM1eX7e7du4mPj2fEiBEFvl47Ozv69u3Lpk2bcnV3bdy4kfbt2+Pp6QlAYGAgWq2W4cOH5/q8uru7U69evTyfVxsbm1xj9czMzGjbti2XL18uMJYcp0+fJiwsjNGjR3Pnzh1dXcnJyXTv3p0//vgDrVYLFP/7LPRPEhlRJpKSkgCwtbXN93EfHx9mzpzJ999/j4uLC71792bJkiW68THFVbdu3TzjX+rXrw+gl/UswsPDadCgASYmDx83/+uvv9K+fXssLCxwcnLC1dWVr7/+Otfru3LlCkZGRtStWzfXc93d3XFwcODKlSsFlp/zWL169fI81qBBg1xfh4WFkZCQQLVq1XB1dc11S0pK4vbt24983YWp29TUNN8xEKtWraJp06ZYWFjg7OyMq6sr27dvz/NeeHh45FkL5b+v5dKlSyiKwttvv53ntcyZMwfgoa+nsPXkvMb/ngfw8/PT/bED+Oijjzh37hy1atWibdu2zJ07t1B/RB/1vIfF4Ovrm+fzYWRklOf9L+iz7+Pjk+vroryvzZo1w9fXl40bN+qev3HjRlxcXAgICHjoax4xYgRXr17l6NGjgPrzFBwcnCsBCgsLQ1EU6tWrlyeWkJCQPN/fmjVr5vmZd3R0LNT4r7CwMAAmTJiQp67vv/+e9PR03ee0uN9noX8ya0mUiXPnzlGtWjXs7OwKvOaTTz5h4sSJ/PTTT+zevZvp06ezYMECjh07Rs2aNUsttvwG+gJkZ2frpfyDBw/y+OOP07lzZ7766is8PDwwNTVlxYoVrF+/vtDx6ItWq6VatWqsW7cu38dLc1r42rVrmThxIoMHD+a1116jWrVqGBsbs2DBglyDowsr57/jV199ld69e+d7zX8Tw9I2fPhwOnXqxNatW9m9ezcff/wxCxcuJDAwkL59++r9efrw31l0RX1fR4wYwfvvv09sbCy2trb8/PPPjBo16pEJ/sCBA7GysmLTpk106NCBTZs2YWRkxJNPPpkrFo1Gw86dO/Od9fTfJLSgmVEPtvoUJOd1f/zxxwVOy86pz5DfL5GbJDKi1B09epTw8PA8U7Pz06RJE5o0acJbb73FkSNH6NixI0uXLmX+/PlA0f/I5/xn+eDzLl68CKBb7TZnanR8fDwODg666x7WApKjTp06HD9+nMzMTExNTfO9ZsuWLVhYWLBr165ca2isWLEi13VeXl5otVrCwsLw8/PTnY+OjiY+Ph4vL68C48h5LOc/ygdduHAhT8x79uyhY8eOepkG/mDdD/4HnpmZSUREhG7KPcCPP/5I7dq1CQwMzPU9yfkv/8Ey9+7dS1JSUq4/VP99LTktDqampvTo0aNYsRemnpzX+N/zoM7scXFxwdraWnfOw8ODF198kRdffJHbt2/TsmVL3n///Uf+gXvY8x6M4b8tHRcuXMjz+dBqtVy+fFnXCgN5P/sFKer7OmLECObNm8eWLVtwc3MjMTEx17pRBbG2tmbAgAFs3ryZTz/9lI0bN9KpUyeqV6+uu6ZOnTooioKPj0+u11ISBf0eqVOnDqB2exXmdRf3+yz0S7qWRKm6cuUKEydOxMzMjNdee63A6xITE8nKysp1rkmTJhgZGeWaemxtbV3g1Nj83LhxI9cU5MTERFavXk3z5s1xd3cH/v3l9ccff+iuy5nm/SjDhg0jNjaWxYsX53ks5z9AY2NjNBpNrhaeyMjIPCsU9+vXD4DPPvss1/lPP/0UUMdCFMTDw4PmzZuzatWqXF00v//+u24qbY7hw4eTnZ3Ne++9l6ecrKysIr2/AK1bt8bV1ZWlS5eSkZGhO79y5co8ZeX8t/zgf8fHjx/XdS3k6NevH1lZWXz99de6c9nZ2Xz55Ze5rqtWrRpdu3blm2++4ebNm3lii4mJeWjsha3nwff3wdd07tw5du/erfveZWdn5+kOrVatGtWrV3/oFPrCPK9169ZUq1aNpUuX5ipr586dhISE5Pv5ePBzqSgKixcvxtTUlO7duxcYS07dRXlf/fz8aNKkCRs3bmTjxo14eHjQuXPnh9aRY8SIEdy4cYPvv/+eM2fO5BlXM3ToUIyNjZk3b16eVhVFUbhz506h6nlQTtL5389nq1atqFOnDv/3f/+n6w5/UM7rLu73WZQOaZERenPq1CnWrl2LVqslPj6eEydOsGXLFjQaDWvWrKFp06YFPnffvn1MnTqVJ598kvr165OVlcWaNWswNjZm2LBhuutatWrFnj17+PTTT6levTo+Pj60a9euwHLr16/P5MmTOXHiBG5ubixfvpzo6OhcrSG9evXC09OTyZMn89prr2FsbMzy5ctxdXV95PYK48ePZ/Xq1cycOZM///yTTp06kZyczJ49e3jxxRcZNGgQ/fv359NPP6VPnz6MHj2a27dvs2TJEurWrcvff/+tK6tZs2ZMmDCBb7/9lvj4eLp06cKff/7JqlWrGDx4MN26dXtoLAsWLKB///489thjPPXUU8TFxfHll1/SqFGjXL+Uu3TpwnPPPceCBQs4ffo0vXr1wtTUlLCwMDZv3sznn3/OE0888dC6HmRqasr8+fN57rnnCAgIYMSIEURERLBixYo8YzQGDBhAYGAgQ4YMoX///kRERLB06VIaNmyYK8aBAwfSsWNH/ve//xEZGalb/ye/MVNLlizhscceo0mTJjzzzDPUrl2b6Ohojh49yrVr1zhz5kyBsRelno8//pi+ffvi7+/P5MmTSU1N5csvv8Te3p65c+cC6mD2mjVr8sQTT9CsWTNsbGzYs2cPJ06c4JNPPikwjsI8z9TUlIULFzJp0iS6dOnCqFGjiI6O5vPPP8fb25sZM2bkKtPCwoLffvuNCRMm0K5dO3bu3Mn27dt54403CtV9WNT3dcSIEbzzzjtYWFgwefJkjIwK939yv379sLW15dVXX83z8w7qPxrz589n9uzZREZGMnjwYGxtbYmIiGDr1q08++yzvPrqq4Wq68EyHRwcWLp0Kba2tlhbW9OuXTt8fHz4/vvv6du3L40aNWLSpEnUqFGD69evExQUhJ2dHb/88kuxv8+ilBhmspSoTHKmcObcTExMFCcnJ6Vdu3bK7NmzddMoH/Tf6deXL19WnnrqKaVOnTqKhYWF4uTkpHTr1k3Zs2dPrueFhoYqnTt3ViwtLRVANxW7oOnX/fv3V3bt2qU0bdpUMTc3V3x9ffOd4h0cHKy0a9dOMTMzUzw9PZVPP/20UNOvFUWdmvnmm28qPj4+utf/xBNP6NalUBRFWbZsmVKvXj1dDCtWrMh32ndmZqYyb948xcfHRzE1NVVq1aqlzJ49O9cU2IfZsmWL4ufnp5ibmysNGzZUAgMDlQkTJuRZR0ZR1OnRrVq1UiwtLRVbW1ulSZMmyuuvv67cuHHjoXXkt46MoijKV199pfj4+Cjm5uZK69atlT/++CPP+6XVapUPPvhA8fLyUszNzZUWLVoov/76a74x3rlzRxk3bpxiZ2en2NvbK+PGjdNN0//vtNnw8HBl/Pjxiru7u2JqaqrUqFFDGTBggPLjjz8+8j0rSj179uxROnbsqFhaWip2dnbKwIEDlfPnz+seT09PV1577TWlWbNmiq2trWJtba00a9ZM+eqrrx4aQ1Get3HjRqVFixaKubm54uTkpIwZM0a5du1armsmTJigWFtbK+Hh4UqvXr0UKysrxc3NTZkzZ46SnZ2tu+5RSycU5X0NCwvT/Q44dOhQnsfz+3nKMWbMGAVQevToUeB7tGXLFuWxxx5TrK2tFWtra8XX11eZMmWKcuHCBd01Xbp0URo1apTnufl9vn766SelYcOGiomJSZ7v9V9//aUMHTpUcXZ2VszNzRUvLy9l+PDhyt69exVFKf73WZQOjaIUYgSUEKJQ1q5dy44dO/IdxCuEEEL/JJERQo8SEhJwdXXl3r175WJzPCGEqOxkjIwQehASEsLu3bu5ceMGmZmZpKWlSSIjhBBlQBIZIfQgLS2N+fPnk5aWxhtvvJFnRVshhBClQ7qWhBBCCFFhyToyQgghhKiwJJERQgghRIVV6cfIaLVabty4ga2tbanvYSOEEEII/VAUhXv37lG9evWHLrBY6ROZGzduUKtWLUOHIYQQQohiuHr16kM3Dq70iYytrS2gvhEP23lZCCGEEOVHYmIitWrV0v0dL0ilT2RyupPs7OwkkRFCCCEqmEcNC5HBvkIIIYSosCSREUIIIUSFJYmMEEIIISqsSj9GRgghROFkZ2eTmZlp6DBEFWFqaoqxsXGJy5FERgghqjhFUbh16xbx8fGGDkVUMQ4ODri7u5donTdJZIQQoorLSWKqVauGlZWVLB4qSp2iKKSkpHD79m0APDw8il2WJDJCCFGFZWdn65IYZ2dnQ4cjqhBLS0sAbt++TbVq1YrdzSSDfYUQogrLGRNjZWVl4EhEVZTzuSvJ2CxJZIQQQkh3kjAIfXzuJJERQgghRIUlY2SEEELkKyoqitjY2DKrz8XFBU9PzzKrD2Du3Lls27aN06dPl2m9ACtXruTll1+W2WIlJImMEEKIPKKiovD19SM1NaXM6rS0tCI0NKRIyUxMTAzvvPMO27dvJzo6GkdHR5o1a8Y777xDx44dSzHakhsxYgT9+vUr83o1Gg1bt25l8ODBZV53aZBERgghRB6xsbGkpqYwZMhaXF39Sr2+mJgQtm4dS2xsbJESmWHDhpGRkcGqVauoXbs20dHR7N27lzt37pRarBkZGZiZmZW4HEtLS93MHVF8MkZGCCFEgVxd/fDwaFnqt+IkS/Hx8Rw8eJCFCxfSrVs3vLy8aNu2LbNnz+bxxx8H1JalQYMGYWNjg52dHcOHDyc6OjpPWd988w21atXCysqK4cOHk5CQoHts4sSJDB48mPfff5/q1avToEEDAK5evcrw4cNxcHDAycmJQYMGERkZCcDu3buxsLDI02300ksvERAQAKhdSw4ODgBcvHgRjUZDaGhorusXLVpEnTp1dF+fO3eOvn37YmNjg5ubG+PGjcvV/de1a1emT5/O66+/jpOTE+7u7sydO1f3uLe3NwBDhgxBo9Hovgb46aefaNmyJRYWFtSuXZt58+aRlZUFqOu+zJ07F09PT8zNzalevTrTp09/xHeobEiLjBDFVBrjBwwxRkCIisrGxgYbGxu2bdtG+/btMTc3z/W4VqvVJTEHDhwgKyuLKVOmMGLECPbv36+77tKlS2zatIlffvmFxMREJk+ezIsvvsi6det01+zduxc7Ozt+//13QJ0u3Lt3b/z9/Tl48CAmJibMnz+fPn368Pfff9O9e3ccHBzYsmULkydPBtQ1ezZu3Mj777+f57XUr1+f1q1bs27dOt577z3d+XXr1jF69GhATdwCAgJ4+umnWbRoEampqcyaNYvhw4ezb98+3XNWrVrFzJkzOX78OEePHmXixIl07NiRnj17cuLECapVq8aKFSvo06ePbu2WgwcPMn78eL744gs6depEeHg4zz77LABz5sxhy5YtLFq0iA0bNtCoUSNu3brFmTNnSvLt0xtJZIQohqioKPx8fUlJTdVruVaWloSEhkoyI0QhmJiYsHLlSp555hmWLl1Ky5Yt6dKlCyNHjqRp06bs3buXs2fPEhERQa1atQBYvXo1jRo14sSJE7Rp0waAtLQ0Vq9eTY0aNQD48ssv6d+/P5988gnu7u4AWFtb8/333+u6lNauXYtWq+X777/XTSFesWIFDg4O7N+/n169ejFy5EjWr1+vS2T27t1LfHw8w4YNy/f1jBkzhsWLF+sSmYsXLxIcHMzatWsBWLx4MS1atOCDDz7QPWf58uXUqlWLixcvUr9+fQCaNm3KnDlzAKhXrx6LFy9m79699OzZE1dXV+DfrQFyzJs3j//9739MmDABgNq1a/Pee+/x+uuvM2fOHKKionB3d6dHjx6Ympri6elJ27Zti//N0yNJZIQohtjYWFJSU1k7ZAh+938xlFRITAxjt24t8hgBIaqyYcOG0b9/fw4ePMixY8fYuXMnH330Ed9//z2JiYnUqlVLl8QANGzYEAcHB0JCQnSJjKenpy6JAfD390er1XLhwgXdH/smTZrkGhdz5swZLl26hK2tba540tLSCA8PB9TEpH379ty4cYPq1auzbt06+vfvr+tO+q+RI0fy6quvcuzYMdq3b8+6deto2bIlvr6+ujqDgoKwsbHJ89zw8PBcicyDPDw8dFsBFOTMmTMcPnw4V2tRdnY2aWlppKSk8OSTT/LZZ59Ru3Zt+vTpQ79+/Rg4cCAmJoZPIwwfgRAVmJ+rKy1LsEeIEKLkLCws6NmzJz179uTtt9/m6aefZs6cObzyyit6q8Pa2jrX10lJSbRq1SpX91OOnFaPNm3aUKdOHTZs2MALL7zA1q1bWblyZYF1uLu7ExAQwPr162nfvj3r16/nhRdeyFXnwIEDWbhwYZ7nPrhXkampaa7HNBoNWq32oa8vKSmJefPmMXTo0DyPWVhYUKtWLS5cuMCePXv4/fffefHFF/n44485cOBAnvrKmiQyQgghKpWGDRuybds2/Pz8uHr1KlevXtW1ypw/f574+HgaNmyouz4qKkrXagJw7NgxjIyMdIN689OyZUs2btxItWrVsLOzK/C6MWPGsG7dOmrWrImRkRH9+/d/aOxjxozh9ddfZ9SoUVy+fJmRI0fmqnPLli14e3uXqCXE1NSU7OzsPK/nwoUL1K1bt8DnWVpaMnDgQAYOHMiUKVPw9fXl7NmztGzZstix6IPMWhJCCFEh3blzh4CAANauXcvff/9NREQEmzdv5qOPPmLQoEH06NGDJk2aMGbMGE6dOsWff/7J+PHj6dKlC61bt9aVY2FhwYQJEzhz5gwHDx5k+vTpDB8+PNcYkv8aM2YMLi4uDBo0iIMHDxIREcH+/fuZPn06165dy3XdqVOneP/993niiSfyDEj+r6FDh3Lv3j1eeOEFunXrpkuuAKZMmUJcXByjRo3ixIkThIeHs2vXLiZNmpQnMXkYb29v9u7dy61bt7h79y4A77zzDqtXr2bevHn8888/hISEsGHDBt566y1AnWG1bNkyzp07x+XLl1m7di2WlpZ4eXkVut7SIi0yQgghChQTE1Ju67GxsaFdu3YsWrSI8PBwMjMzqVWrFs888wxvvPEGGo2Gn376iWnTptG5c2eMjIzo06cPX375Za5y6taty9ChQ+nXrx9xcXEMGDCAr7766qF1W1lZ8ccffzBr1ixd8lGjRg26d++eq4Wmbt26tG3blj///JPPPvvska/J1taWgQMHsmnTJpYvX57rserVq3P48GFmzZpFr169SE9Px8vLiz59+mBkVPh2iU8++YSZM2fy3XffUaNGDSIjI+nduze//vor7777LgsXLsTU1BRfX1+efvppQB0c/OGHHzJz5kyys7Np0qQJv/zyS7nYMV2jKIpi6CBKU2JiIvb29iQkJDy0+U+Iojh16hStWrUi+Nln9TZG5tTNm7T69luCg4MN3lQrqo60tDQiIiLw8fHBwsJCd76irOwrKraCPn9Q+L/f0iIjhBAiD09PT0JDQyr9Xkui4pNERgghRL48PT0lsRDlngz2FUIIIUSFJYmMEEIIISos6VoSopwJCdHfLBEZcyCEqOwkkRGinLiZlIQGGDt2rN7KlL2bhBCVnSQyQpQT8WlpKMDibt3wr1evxOXJ3k1CiKpAEhkhypm6jo6yf5MQQhSSDPYVQgghRIUlLTJCCCHyFRUVVWkWxAsMDOSpp57SbVewbds2lixZUip1FcXEiROJj49n27ZtZV733Llz2bZtG6dPny7zuvVJEhkhhBB5REVF4efrS0pqapnVWdTB6RMnTmTVqlUsWLCA//3vf7rz27ZtY8iQITy4A09gYCBr1qxh27ZtvPDCC6xfv77E8UZERPDmm2+yf/9+4uLicHFxoVWrVixcuBBfX98Sl1/aXn31VaZNm2boMEpMEhkhhBB5xMbGkpKaytohQ/BzdS31+oo7ON3CwoKFCxfy3HPP4ejoWOB1a9euBWDgwIEljhUgMzOTnj170qBBAwIDA/Hw8ODatWvs3LmT+Ph4vdRRkIyMDMzMzEpcjo2NDTY2NnqIyLBkjIwQQogC+bm60tLDo9RvxU2WevTogbu7OwsWLCjwmjt37jBq1Chq1KiBlZUVTZo04Ycffsh1TXp6OtOnT6datWpYWFjw2GOPceLEiQLL/OeffwgPD+err76iffv2eHl50bFjR+bPn0/79u111509e5aAgAAsLS1xdnbm2WefJSkpKU958+bNw9XVFTs7O55//nkyMjJ0j3Xt2pWpU6fy8ssv4+LiQu/evQE4d+4cffv2xcbGBjc3N8aNG6frCvz222+pXr06Wq02Vz2DBg3iqaeeAtSupebNmwOwe/duLCws8iRhL730EgEBAbqvDx06RKdOnbC0tKRWrVpMnz6d5ORk3eMajSZPN5mDgwMrV64s8L0sKUlkhBBCVFjGxsZ88MEHfPnll1y7di3fa9LS0mjVqhXbt2/n3LlzPPvss4wbN44///xTd83rr7/Oli1bWLVqFadOnaJu3br07t2buLi4fMt0dXXFyMiIH3/8kezs7HyvSU5Opnfv3jg6OnLixAk2b97Mnj17mDp1aq7r9u7dS0hICPv37+eHH34gMDCQefPm5bpm1apVmJmZcfjwYZYuXUp8fDwBAQG0aNGCkydP8ttvvxEdHc3w4cMBePLJJ7lz5w5BQUG6MuLi4vjtt98YM2ZMnli7d++Og4MDW7Zs0Z3Lzs5m48aNuuvDw8Pp06cPw4YN4++//2bjxo0cOnQoz+spa5LICCGEqNCGDBlC8+bNmTNnTr6P16hRg1dffZXmzZtTu3Ztpk2bRp8+fdi0aROgJhxff/01H3/8MX379qVhw4Z89913WFpasmzZsgLL/OKLL3jnnXdwdHQkICCA9957j8uXL+uuWb9+PWlpaaxevZrGjRsTEBDA4sWLWbNmDdHR0brrzMzMWL58OY0aNaJ///68++67fPHFF7laU+rVq8dHH31EgwYNaNCgAYsXL6ZFixZ88MEH+Pr60qJFC5YvX05QUBAXL17E0dGRvn375hoL9OOPP+Li4kK3bt3yvB5jY2NGjhyZ6/q9e/cSHx/PsGHDAFiwYAFjxozh5Zdfpl69enTo0IEvvviC1atXk5aWVphvVamQREYIIUSFt3DhQlatWpXvFh/Z2dm89957NGnSBCcnJ2xsbNi1axdRUVGA2tKQmZlJx44ddc8xNTWlbdu2D90yZMqUKdy6dYt169bh7+/P5s2badSoEb///jugbjfSrFkzrK2tdc/p2LEjWq2WCxcu6M41a9YMKysr3df+/v4kJSVx9epV3blWrVrlqvvMmTMEBQXpxrnY2NjoBhiHh4cDMGbMGLZs2UJ6ejoA69atY+TIkRgZ5f+nf8yYMezfv58bN27oru/fvz8ODg66OleuXJmrzt69e6PVaomIiCjwfSptksgIIYSo8Dp37kzv3r2ZPXt2nsc+/vhjPv/8c2bNmkVQUBCnT5+md+/eucahFJetrS0DBw7k/fff58yZM3Tq1In58+eXuNz/ejAZAkhKSmLgwIGcPn061y0sLIzOnTsD6sBmRVHYvn07V69e5eDBg/l2K+Vo06YNderUYcOGDaSmprJ169Zc1yclJfHcc8/lqu/MmTOEhYVRp04dQB0j8+BsMVAHRpcmmbUkhBCiUvjwww9p3rw5DRo0yHX+8OHDDBo0SLePmVar5eLFizRs2BCAOnXq6MafeHl5Aeof3xMnTvDyyy8Xun6NRoOvry9HjhwBwM/Pj5UrV5KcnKxLRA4fPoyRkVGuGM+cOUNqaiqWlpYAHDt2DBsbG2rVqlVgXS1btmTLli14e3tjYpL/n3ILCwuGDh3KunXruHTpEg0aNKBly5YPfQ1jxoxh3bp11KxZEyMjI/r375+rzvPnz1O3bt0Cn+/q6srNmzd1X4eFhZGSkvLQOktKWmSEEEJUCk2aNGHMmDF88cUXuc7Xq1eP33//nSNHjhASEsJzzz2Xa4yKtbU1L7zwAq+99hq//fYb58+f55lnniElJYXJkyfnW9fp06cZNGgQP/74I+fPn+fSpUssW7aM5cuXM2jQIEBNCiwsLJgwYQLnzp0jKCiIadOmMW7cONzc3HRlZWRkMHnyZM6fP8+OHTuYM2cOU6dOLbALCNRurbi4OEaNGsWJEycIDw9n165dTJo0Kdfg4zFjxrB9+3aWL1/+0NaYB68/deoU77//Pk888QTm5ua6x2bNmsWRI0eYOnWqrvXnp59+yjXYN2cc0F9//cXJkyd5/vnnMTU1fWS9JSEtMkIIIQoUEhNToep599132bhxY65zb731FpcvX6Z3795YWVnx7LPPMnjwYBISEnTXfPjhh2i1WsaNG8e9e/do3bo1u3btKnBtmpo1a+Lt7c28efOIjIxEo9Hovp4xYwYAVlZW7Nq1i5deeok2bdpgZWXFsGHD+PTTT3OV1b17d+rVq0fnzp1JT09n1KhRzJ0796Gvs3r16hw+fJhZs2bRq1cv0tPT8fLyok+fPrkSoICAAJycnLhw4QKjR49+5PtXt25d2rZty59//slnn32W67GmTZty4MAB3nzzTTp16oSiKNSpU4cRI0borvnkk0+YNGkSnTp1onr16nz++ecEBwc/st6S0Cj/7cyqZBITE7G3tychIQE7OztDhyMqiVOnTtGqVSuCn31Wbxs8rjt7lrGBgfw2dCi9mzQpcXmnbt6k1bffEhwc/MjmZFF1paWlERERgY+PDxYWFrrzFWFlX1HxFfT5g8L//ZYWGSGEEHl4enoSEhpaafZaEpWXJDJCCCHy5enpKYmFKPckkRHlTmnsuCv/6QkhROUkiYwoV0qrX1763oUQonKSREaUK6Wx425xd9UVoiqp5PM+RDmlj8+dQROZuXPn5tkYq0GDBoSGhgLqaOZXXnmFDRs2kJ6eTu/evfnqq69yzb8XlVPOjrtCiNKVs8ZHSkqKbkE2IcpKzmJ5JVlrxuAtMo0aNWLPnj26rx9coXDGjBls376dzZs3Y29vz9SpUxk6dCiHDx82RKhCCFHpGBsb4+DgwO3btwF17RONRmPgqERlpygKKSkp3L59GwcHB4yNjYtdlsETGRMTE9zd3fOcT0hIYNmyZaxfv56AgAAAVqxYgZ+fH8eOHaN9+/ZlHaoQeRhlZMBff8HVq3DrFmRng0YDTk5QowbUqwfVqhk6TCEeKud3cE4yI0RZcXBwyDcHKAqDJzJhYWFUr14dCwsL/P39WbBgAZ6engQHB5OZmUmPHj101/r6+uLp6cnRo0cLTGTS09N1O32CuqCOEPpmHB/Ph0CTdesgvw3RoqMhJAT27IFatcDfH3x91SRHiHJGo9Hg4eFBtWrVSn2DPyFymJqalqglJodBE5l27dqxcuVKGjRowM2bN5k3bx6dOnXi3Llz3Lp1CzMzM9324Tnc3Ny4detWgWUuWLAgz7gbIfRq3z78Ro6kGahJjIsLNGigtsCYm6utMrdvQ1QUhIWprTVXr4K3N/TpAzLGS5RTxsbGevnDIkRZMmgi07dvX91x06ZNadeuHV5eXmzatKnYg85mz57NzJkzdV8nJiY+dAdRIYpk4UKYPRszRSEUMOndm7rt2uVtaalXDzp2hHv34MQJOHoUIiPhu++gVy9o00ZaZ4QQQg/K1e7XDg4O1K9fn0uXLuHu7k5GRgbx8fG5romOjn5of5q5uTl2dna5bkLoxbx58L//gaIQO2QIrYBEL6+HJyS2thAQAFOmQP36amvNzp3w44/5d0kJIYQoknKVyCQlJREeHo6HhwetWrXC1NSUvXv36h6/cOECUVFR+Pv7GzBKUSUtWAA5u9F++CFRb71FSlGe7+AAI0dC795gZATnz8OaNVCGG/IJIURlZNBE5tVXX+XAgQNERkZy5MgRhgwZgrGxMaNGjcLe3p7Jkyczc+ZMgoKCCA4OZtKkSfj7+8uMJVG2tm+HN95Qjz/6CGbNKl45Gg20bw/jx4OFhTpuZsUKSErSX6xCCFHFGDSRuXbtGqNGjaJBgwYMHz4cZ2dnjh07huv9FV0XLVrEgAEDGDZsGJ07d8bd3Z3AwEBDhiyqmvBwGDtWPX7xRXjttZKX6eUFkyap3U4xMWrLTEqR2neEEELcZ9DBvhs2bHjo4xYWFixZsoQlS5aUUURCPCArC0aMgPh4dfr0okX6K7taNZg4UW2RuX0b1q7FpHVr/ZUvhBBVRLkaIyNEufLZZxAcrI5v2bwZzMz0W76Tk9rNZGUFN2/y2J9/IhNfhRCiaCSRESI/ly/DO++ox598oq4RUxpcXWH0aDAxoUZ0NHps8xFCiCpBEhkh/ktR1PEwqanQrZs6nqU01agBQ4eiANOAmhERpVufEEJUIpLICPFfe/bArl1qV9I335TNwnV+fpxp1AgA3zNn4MaN0q9TCCEqAUlkhHiQVguzZ6vHL7ygrtBbRv6pX5+fAGOtVh2TI2vMCCHEIxl800ghykpISMgjr3HYvZvawcFkW1vzz8CBZJ06VeyyikyjYQJww9oaq/h4+OUXePJJ2cpACCEeQhIZUendTEpCA4zNWQ+mAEbA+fvH85KTee+BndcLck/Pi9klAGfatsX/wAF19+zTp6FFC73WIYQQlYkkMqLSi09LQwEWd+uG/0O6ihwuX6b2nj1kmZszdNQoBj9kuvWOsDDeDgoiLS1N7/EmOjqqg4z37lX3ZfLyUqdqCyGEyEMSGVFl1HV0pKWHR/4PKgr8+isAJu3a0dzL66FlhcTG6ju83Dp0UFcVjoyEn3+GCROki0kIIfIhg32FALhyRZ0pZGICbdsaOhp1Y8lBg8DUVI3txAlDRySEEOWSJDJCABw5ot43awbW1oaNJYeDA+SM09mzB+7eNWg4QghRHkkiI8SdOxAWph77+xs2lv9q00YdI5OZCTt2qF1gQgghdCSRESJninW9euDsbNhY/kujgYED1a6mS5fgwgVDRySEEOWKJDKiasvKUqc4A7RsadBQCuTsrA7+BfjtN7V1RgghBCCJjKjqQkMhJQVsbaF+fUNHU7BOncDODhIS4OBBQ0cjhBDlhiQyomrL6VZq0ULtvimvzMygTx/1+MgRdVyPEEIISWREFRYXBxER6jiU8tqt9CBfX6hTB7Kz1S4mGfgrhBCSyIgq7OxZ9b52bbC3N2wshaHRQN++YGysDvwNDTV0REIIYXCSyIiqSVH+TWSaNDFsLEXx4MDf339XW2eEEKIKk0RGVE03b6rjTExM1C6biuSxx9RF++7eheBgQ0cjhBAGJYmMqJr+/lu9b9AAzM0NG0tRmZlBly7q8YEDkJ5u2HiEEMKAJJERVY9WC//8ox43bWrYWIqrZUu1mykl5d/tFYQQogqSREZUPZGRkJQElpbqLKCKyNgYAgLU46NH4d49w8YjhBAGIomMqHpCQtR7X181Iaio/PygZk11pd8DBwwdjRBCGIQkMqJqUZR/py37+Rk2lpLSaP7dHfvUKYiNNWw8QghhAJLIiKrl2jW1W8ncHHx8DB1NyXl5qVsrKArs22foaIQQosxJIiOqlpxupfr11anXlUH37up9SAjcumXYWIQQooxJIiOqDkX5N5Gp6N1KD6pWDRo3Vo9lrIwQooqRREZUGbYJCRAfr7bEVNTZSgXp3Fm9Dw1VF/sTQogqQhIZUWVUy/kDX6eOuqhcZeLqKq0yQogqSRIZUWW45IwfqV/fsIGUlpzVfi9ckFYZIUSVIYmMqBJcAfu7d9Uv6tUzaCylxsXl3w0wpVVGCFFFSCIjqoS+gAbA3R1sbQ0cTSnq3FldX+bCBSxlXRkhRBUgiYyoEvrnHFTW1pgcLi66sTIeJ08aOBghhCh9ksiISk+j1dI754vKOj7mQfdbZRyiomhi6FiEEKKUSSIjKj3XO3ewBzLMzKB6dUOHU/pcXKBhQwD+Z+BQhBCitEkiIyq96tHRAMS6uYFRFfnId+wIwAjA7OpVw8YihBClqIr8VhdVmfvt28D9RKaq8PAgoVYtjAG3NWsMHY0QQpQaSWRE5ZacjFN8PAB3qlUzbCxlLLpZMwCcf/5Z1pURQlRaksiIyi0iAg1wBsiwsDB0NGUqycODI4BRZiYsWmTocIQQolRIIiMqt/BwAH43cBgGodGwIOf4668hZ0FAIYSoRCSREZWXosDlywDsNnAohrIdSK1TB5KS4KuvDB2OEELonSQyovKKjYXERLKNjDho6FgMRAFuTZyofvHZZ5CSYsBohBBC/ySREZXX/daY2y4upBk4FEO626sXeHurid3q1YYORwgh9EoSGVF5RUYCcMvV1bBxGJqJCbz8snq8aBFotQYNRwgh9EkSGVE5KYoukYmu6okMwFNPgb09XLwIv/5q6GiEEEJvJJERldOtW5CWBmZmxDk4GDoaw7O1heeeU48/+cSwsQghhB5JIiMqp/utMXh5oVSVbQkeZdo0tZvpjz9AdsYWQlQS8hteVE45iYy3tyGjKF9q1oSRI9VjaZURQlQSksiIykerhStX1GNJZHJ75RX1fvNmiIoybCxCCKEHksiIyufmTUhPBwsLcHc3dDTlS/PmEBAA2dnw+eeGjkYIIUpMEhlR+TwwPgYZH5NXTqvMd99BQoJhYxFCiBIqN7/lP/zwQzQaDS/nrHcBpKWlMWXKFJydnbGxsWHYsGFER0cbLkhRMeR0K3l5GTaO8qpPH/Dzg3v34PvvDR2NEEKUSLlIZE6cOME333xD06ZNc52fMWMGv/zyC5s3b+bAgQPcuHGDoUOHGihKUSFotf+O/ZBEJn9GRjBzpnr8+eeQmWnYeIQQogQMnsgkJSUxZswYvvvuOxwdHXXnExISWLZsGZ9++ikBAQG0atWKFStWcOTIEY4dO2bAiEW5dvu2Oj7GzEzGxzzM2LFQrRpcvQo//mjoaIQQotgMnshMmTKF/v3706NHj1zng4ODyczMzHXe19cXT09Pjh49WmB56enpJCYm5rqJKiSnNaZWLRkf8zAWFjBlinr8ySfqSshCCFEBGfQ3/YYNGzh16hQLFizI89itW7cwMzPD4T+rsrq5uXHr1q0Cy1ywYAH29va6W61atfQdtijPchIZT0/DxlERvPiimtAEB6uL5AkhRAVksETm6tWrvPTSS6xbtw4LCwu9lTt79mwSEhJ0t6tXr+qtbFHOKcq/A30lkXk0FxeYMEE9XrTIsLEIIUQxGSyRCQ4O5vbt27Rs2RITExNMTEw4cOAAX3zxBSYmJri5uZGRkUF8fHyu50VHR+P+kLEP5ubm2NnZ5bqJKuLuXUhKUruUatQwdDQVQ84swZ9/hkuXDBqKEEIUh8ESme7du3P27FlOnz6tu7Vu3ZoxY8bojk1NTdm7d6/uORcuXCAqKgp/f39DhS3Ks5zWmBo1wNTUsLFUFL6+0K+f2pr1xReGjkYIIYrMxFAV29ra0rhx41znrK2tcXZ21p2fPHkyM2fOxMnJCTs7O6ZNm4a/vz/t27c3RMiivJPxMcUzYwbs2AHLl8O774LsFi6EqEDK9bSORYsWMWDAAIYNG0bnzp1xd3cnMDDQ0GGJ8uraNfVeEpmi6d4dmjSB5GRZIE8IUeGUq0Rm//79fPbZZ7qvLSwsWLJkCXFxcSQnJxMYGPjQ8TGiCktNhdhY9bhmTcPGUtFoNP+OlfniC8jKMmg4QghRFOUqkRGi2HJaY5ydwcrKsLFURKNH/7tA3pYtho5GCCEKTRIZUTnkTLOX1pjisbCAF15Qj2UqthCiApFERlQOOS0ysgBi8b3wgrq1w/Hj8JDVs4UQojyRREZUfFotXL+uHkuLTPG5ucGYMeqxtMoIISoISWRExXf7NmRkqK0Jrq6GjqZimzFDvd+y5d91eYQQohyTREZUfA+Oj5GNIkumSRN1OrZWC19+aehohBDikeS3vqj4csbHSLeSfuS0ynz3Hdy7Z9hYhBDiESSRERVfTouMDPTVj759oUEDSEyEFSsMHY0QQjyUJDKiYktOVjeLBGmR0RcjI3jpJfX4888hO9uw8QghxENIIiMqtpzWGFdXdS0UoR/jx4OjI1y+DL/8YuhohBCiQJLIiIpNxseUDmtreO459VimYgshyjFJZETFJgvhlZ6pU8HEBP74A06dMnQ0QgiRL0lkRMWVnf3vQniSyOhfjRowfLh6LK0yQohyShIZUXFFR6s7NVtYqJtFCv3LmYq9YcO/SaMQQpQjksiIiuvBhfA0GsPGUlm1bg2dOqkJ45Ilho5GCCHykERGVFwyPqZs5LTKfPMNpKQYNhYhhPgPSWRExSUzlsrG449D7doQFwerVxs6GiGEyMXE0AEIUSwpKRAfrx5Xr17sYhISEkgpRivD3fuL8MXfvcvNmzfzvcbKygp7e/tix1ZuGBvD9Onw8svw2Wfw7LOyp5UQotyQREZUTDkDT52di70QXkJCAosXLyYzK6vIzz17/35fUBAhQUH5XmNqYsLUqVMrRzLz1FPwzjtw4QL89hv062foiIQQApBERlRUN26o9zVqFLuIlJQUMrOy8PMdgpWVa5Geey8uDCKD8PHuRiOnevmUHUNI6FZSUlIqRyJjawtPPw2ffqpOxZZERghRTkgiIyqmnESmBN1KOaysXLG19SjScyxTYgGwsHAs8nMrrGnT1K6lPXvg7Flo0sTQEQkhhAz2FRWQovzbtVSCFhlRRN7eMHSoevzZZ4aMRAghdCSRERVPYqK667WREbi7GzqaqmXmTPV+7VooYJCzEEKUJUlkRMWT0xpTrZq6F5AoO/7+0LEjZGRIq4wQolyQvwKi4qni3UqFnTIeE6uO4wkJCSl02enp6Zibmz/0GvsnnqDO4cNkL1nC2X790NraPrJcFxcXPD09Cx2HEEIUliQyouLR40DfiqYoU8ZzOn7Gjh1bhBo0gPLIK84CjZKT2dC1KwsLUaqlpRWhoSGSzAgh9E4SGVGxKIpepl5XVEWZMh6eEguhgQwduhYXF79Hlh0WtoOgoLfp1m0x9er5P/TaPy/+QqP9c5lt6cy9Ub+QZVJwK05MTAhbt44lNjZWEhkhhN4VK5FJS0vjyy+/JCgoiNu3b6PVanM9furUKb0EJ0QesbHq+AxTU3At2tovlUlhpoxb3b93cfHDw6PlI8uMjVW7oBwd6z7y+mvVGpNwahn2iVfpc/sswa2eLVTcQgihb8VKZCZPnszu3bt54oknaNu2LRrZeViUlZzWGA8PWSbfgLKNzTjqP5M+u2bQ4cjHnGoxGcXI2NBhCSGqoGIlMr/++is7duygY8eO+o5HiIfLGehbBcfHlDenWj5NlwPv4hx3Cb/QrZxv+IShQxJCVEHFSmRq1KiBbSFmKgihd1V4fEx5kZAQRcr9lY33NhzGgFPf03b/HPY6+EA+rbM5XVYPmz0ls5qEEMVVrETmk08+YdasWSxduhQvLy99xyRE/rKz4dYt9VhaZAwiISGKrxb7kpGVCkAgcAXwjjlP2HetyX/7TNXDZk9ZWVoSEhoqyYwQosiKlci0bt2atLQ0ateujZWVFaamprkej4uL00twQuQSHa0mM5aW4Oho6GiqpJSUWDKyUnnDdwhe92dNRVw9RKOY86yyrcnOenk3k0xJiSUkNJChQ4fi6uKS5/GQmBjGbt0qs5qEEMVSrERm1KhRXL9+nQ8++AA3NzcZ7CvKxoPjY+QzZ1BeVq7Uvz9r6p5PD5SYEGrdu0ZLIOk/s6nuAfFAUxcXPDyqyAabQogyU6xE5siRIxw9epRmzZrpOx4hClaFF8Irz9IsHbldrRFut89R6+oRQhoOM3RIQogqpFjzV319fUlNTdV3LEI8XBXfmqA8u1pLncFYLeYfLFOla1kIUXaKlch8+OGHvPLKK+zfv587d+6QmJiY6yaE3qWnQ0yMeiyJTLmTZOPOHad6aFDwjDpo6HCEEFVIsbqW+vTpA0D37t1znVcUBY1GQ3Z2dskjE+JBN+/vHGRnBzY2ho1F5CvSqzPOcWG43zrDFc/OpFnKgGwhROkrViITFPSwSZZClAJZP6bcu2dXkzjHOjjdDccz6iAXGzxu6JCEEFVAsRKZLl266DsOIR5OVvStECK9uuB0Nxz36DNc8epMuoWDoUMSQlRyxd6s5uDBg4wdO5YOHTpw/f4fmTVr1nDo0CG9BSeEThVtkVEUSMowIzHdnKQMM7RK+Z52nmhfiziH2hgpWjyj5HeBEKL0FatFZsuWLYwbN44xY8Zw6tQp0tPTAUhISOCDDz5gx44deg1SVHHJyRAfrx5X0nVIFAVu3KsOPMsXfw1l/klfLt91JCbZmkztv5sxmmiyseRtql9Ip67dXepa36KFQwSeVrHlZmmdK16dcYq/jMetv4jy7MQ9QwckhKjUipXIzJ8/n6VLlzJ+/Hg2bNigO9+xY0fmz5+vt+CEAP5tjXF2BgsLw8aiR4oCR67WYtM/jQgM9eNaoj0AOyIKfk6WYsw9anAhGS4k/3vexSyRx1xC6VHtbxraXTNoUpPg4MVde28cEyLxvHqYWPcWhgtGCFHpFSuRuXDhAp07d85z3t7envic/5yF0JdKtn7MvXQzVp1pzuI/23Lhzr9L9psaZZCpPcyI+nEMbAT1ne/gZpOMk2UqxhotWkXDhahElq7bg4P389zUNuB8Yk3OJngSm2HHthtt2XajLZ5WMTxR4xg+1rsM9hqveHXG8e9IPG6ewsKpvsHiEEJUfsVKZNzd3bl06RLe3t65zh86dIjatWvrIy4h/lVJVvS9l27Gl3+245Oj/sSlWgFgY5bOUL8Qnmx4npiUX3jqpw1MajyU3k2a5FuGh3U81TlFK6eT2NqqCV6G1oS/7nqz93YTDsb6EZXiyqdhA7E16QIYkZ1d9s0z8Q7exNt74pAQRb1bpzhc5hEIIaqKYiUyzzzzDC+99BLLly9Ho9Fw48YNjh49yquvvsrbb7+t7xhFVaYoFb5FRqtoWHW6GbP29CQmxRqA+s6xvNTuOOOansHWPAOAdWczilW+mVEW7Zwv0c75EslZO9h5qwVbrrfjVpoj8AWbNqXTvz80aKCvV1QIGg0R3gG0OLMSz9hQZEUZIURpKVYi87///Q+tVkv37t1JSUmhc+fOmJub8+qrrzJt2jR9xyiqsoQESEkBIyNwdzd0NEUWGledIdsnc/x6TQDqOt1hbpf9jGx8DmMjRe/1WZuk80TNYwyu/icrI2uz7moA9+5VZ8MG8PODvn3B1lbv1eYrwcFLt65M17KpUghRBRVr+rVGo+HNN98kLi6Oc+fOcezYMWJiYnjvvff0HZ+o6nK6ldzcwKRYebdBZCsaDvE6fQLf4Pj1mtiYpfN/PXfxz4tfMabp2VJJYh5kYqSls+tBoB7Nm9/CyAhCQuDrryE0tFSrzuWyTwAATQGTONmDSQihfyX6y2BmZkbDhg31FYsQeVXAhfDiMmyYGzaDszQALQyof4FvBvxKdVtDTEROoW3bG7Rv785PP6k7PWzcCG3aQO/eYGz86BJKIsm2OjcdvPGIj8Tm5Elo1Kh0KxRCVDnFSmSGDBmCJp/5nRqNBgsLC+rWrcvo0aNpUKad8qJSqmAL4Z2J9+LdkCeIy7DFjHss6BzIjK4RBl/jxc0NJk+GffvgyBE4cQKio2H4cLC2Lt26Qz3a4B4fiWVkpPr9rEBJqRCi/CtW15K9vT379u3j1KlTaDQaNBoNf/31F/v27SMrK4uNGzfSrFkzDh+WuQqiBLTaCjVjaeet5rzy93jiMmzxtLjOM7RmlO8RgycxOYyNoWdPGDUKzM0hKgq+/RZu3y7depMsHfk754t9+0q3MiFElVOsRMbd3Z3Ro0dz+fJltmzZwpYtWwgPD2fs2LHUqVOHkJAQJkyYwKxZs/Qdr6hK7tyBjAwwNQVXV0NHUyBFge8ud+ejC4PJVozp5nqO/2vwIS5cNHRo+apfH55+Wl1fMDERVqxQk5rStB9QNBoID4fIyNKtTAhRpRQrkVm2bBkvv/wyRkb/Pt3IyIhp06bx7bffotFomDp1KufOnXtoOV9//TVNmzbFzs4OOzs7/P392blzp+7xtLQ0pkyZgrOzMzY2NgwbNozo6OjihCwqopzxMR4e6qylckirGPHxxcdZf7UTAOO99vO2349YGBdvKnVZcXFRu5pq1oS0NFizBm7dKr1Wr7tAip+f+sXvv6vZnxBC6EGx/jpkZWURms/Uh9DQULKzswGwsLDIdxzNg2rWrMmHH35IcHAwJ0+eJCAggEGDBvHPP/8AMGPGDH755Rc2b97MgQMHuHHjBkOHDi1OyKIiKvcDfU1ZfWMGO2+1xAgtsxpsY5L3/nLTlfQolpYwfrzaQpOVBceOdQb6l1p9SS1bgpmZ2l34iH9yhBCisIo12HfcuHFMnjyZN954gzZt2gBw4sQJPvjgA8aPHw/AgQMHaPSIGQoDBw7M9fX777/P119/zbFjx6hZsybLli1j/fr1BASoUzhXrFiBn58fx44do3379sUJXVQk5Xigb7ZiDGzizL0OmGqyeLvhj3RyKcN5zXpiaqoO+A0MhPPnjYFAbt48RwELC5eI1soKOnaEoCDYu1dd2KYCTakXQpRPxfotsmjRItzc3Pjoo490XT1ubm7MmDFDNy6mV69e9OnTp9BlZmdns3nzZpKTk/H39yc4OJjMzEx69Oihu8bX1xdPT0+OHj1aYCKTnp6u240bIDExsTgvURiYJjtbnVYD5S6RyVaM+OnGy0AHTDQZzG+8kbZO4fleGxMTU+hy7969C0D83bvcvHmzxOXliI0NeeQ1HTpATIwFMTENOX68Kc7OF6lePalYZT2Uvz8EB6sLHR4/riY2QghRAsVKZIyNjXnzzTd58803dYmCnZ1drms8PT0LVdbZs2fx9/cnLS0NGxsbtm7dSsOGDTl9+jRmZmY4ODjkut7NzY1bt24VWN6CBQuYN29e0V6QKHcs79yB7Gy1/+M/nwFDUhT4+MLjhNxrDmQwqcbHtHXKzHNdRoa6Zkzg1q2FLvvs/ft9QUGEBAU99NqMjPSHPg4Ql5GEBggMHFvICIyBH9FqB/Prr27ACOB0AfXnTXIKxdQUAgJg2zY4eBBayM7YQoiSKXG77n8TmKJq0KABp0+fJiEhgR9//JEJEyZw4MCBYpc3e/ZsZs6cqfs6MTGRWrVqlShGUfascloeatSgPA06+T6iO7uim6MhG4XhNLQxBvL2w2RlpQHg490XJ6fCff7uxYVBZBA+3t1o5FQv32vi4sKIiAwiKyvrkeUlZaWhADO9u9GggPL+W3ZY5CiCzP8kIr0Jdib7mdVgIS7md3TXHI8LY3lkkO71FUvTpnDsGNy6BQcOQPPmxS9LCFHlFTuR+fHHH9m0aRNRUVFkZOSeoXHq1KlCl2NmZkbdunUBaNWqFSdOnODzzz9nxIgRZGRkEB8fn6tVJjo6GveH7Lljbm6Oubl50V6MKHescxKZcjTQN/B6W93spP7uX/PrrZ+Ahw8+t7BwwtbWo1DlW6bE3n+OY4HPSUkpetdSLQtH6hcihuiUGNJI423PL3j/xnuEJ7vzXcTLfNliGTYmagtQ1P0YS0SjgV69YPVqOHkSc2/vkpcphKiyijVr6YsvvmDSpEm4ubnx119/0bZtW5ydnbl8+TJ9+/YtUUBarZb09HRatWqFqakpe/fu1T124cIFoqKi8Pf3L1EdovyzKmeJzLE79VhySR3zNdl7L80cHt71U5FZGaeyoMl6nM3uEZlSjXnnnyRb0fP0dx8fdbqUVkvNY8f0W7YQokop1m+nr776im+//ZYvv/wSMzMzXn/9dX7//XemT59OQkJCocuZPXs2f/zxB5GRkZw9e5bZs2ezf/9+xowZg729PZMnT2bmzJkEBQURHBzMpEmT8Pf3lxlLlZwNYHF/4Gt5GOgbmezKeyFPoMWI/u7BjPE8aOiQSp2reSLvN16PhVEGJ+/WZWl4T/1X0rMnGBlhHxVVipO+hRCVXbESmaioKDp06ACApaUl9+6pAxvHjRvHDz/8UOhybt++zfjx42nQoAHdu3fnxIkT7Nq1i5491V+aixYtYsCAAQwbNozOnTvj7u5OYGBgcUIWFUgrQANgZwc2NgaNJTHTkjfPjSIl25xm9pG8VG9HeRqyU6oa2N5ktq86WPnH6/7sidbznGwXF7j/T8nngCb90QOYhRDiv4q9RUFcXBygzk46dr9pOCIiAqUIK3YuW7aMyMhI0tPTuX37Nnv27NElMaAuqrdkyRLi4uJITk4mMDDwoeNjROXQJufAwK0xWkXDB6FDuZHmhIfFXeY12oSpUbZBYyprnV1DGOP5BwD/d/FxotO89FxBZzKsrKgDuK1Zo9+yhRBVQrESmYCAAH7++WcAJk2axIwZM+jZsycjRoxgyJAheg1QVD26RMbA42PWXOnM8bh6mBll8m6jDdibphg0HkOZ5B1EG8dLpGtN2XrjFcBKf4Wbm3P9fquM+/LlcOWK/soWQlQJxZq19O2336LVagF0eyEdOXKExx9/nOeee06vAYqqp23OgQFbZE7G1WbVla4AzKj3K3Vtqu4eX8YahTf9tvD0yReIzaiB2hG081FPK7S7deoQtW8fXdLT4ZVX4Mcf9Va2EKLyK1aLzLVr1zA2NtZ9PXLkSL744gumTp360MXqhHgUk7t38QYUUDeLNIC4DGs+CB2Kgob+HsH0cT9jkDjKE3vTVN70CwS0wNP8ldhBf4VrNEwDFGNj2LJF3VRSCCEKqViJjI+PT75LpcfFxeHj41PioETVZXV/M8F0BwewsCjz+rWKhoWhg7mbaYOPdTTT6uiv5aGia+4QSUfnLQBsuvU8N1Md9Fb2WSDmySfVL6ZMUbfkFkKIQihWIqMoSr47WyclJWFhgD8+ovKwvr/zeXK1agapf8v1dvx5Vx0X87bfj5gbP3oF3aqks8sm4AhpWmvmhwwjS6u/9WVuPP+82goXFgbz5+utXCFE5VakMTI5S/9rNBrefvttrKz+HfSXnZ3N8ePHaS7LjYsSsMpJZFxdcS7juqNSXPjusrpJ6Yt1duFjXfRVdCs7I40WGI2F0T+cv1eLlVe68rTPPr2U/c+1a9jNnEnt115D+fBDQpo2Je3+qt9F5eLiUuj93oQQFVuREpm//voLUFtkzp49i5mZme4xMzMzmjVrxquvvqrfCEXVoSi6FpmUMm6RyVY0LAwdRKZiQlvHMB73OFmm9VcsVxjh/jWrbrzK+qhOtHcKo7H91WKXdjNJ3dxy7Fh1c8tAYEh2NgkjRvAY6qicorKytCQkNFSSGSGqgCIlMkH3d+SdNGkSn3/+eYk3jBQil/BwTBISSANSnZzKtOot19pz/l4trI3TeKX+L1Vm0bviam53lJvZp9kd3ZyPLgzi+9ZLMTMqXjdcfJq6ueXibt3wr1cP0+Rksjdtwj8zk4iOHYlt1KhI5YXExDB261ZiY2MlkRGiCijW9OsVK1boOw4h4M8/AfgLMH9gVlxpu5bmxrLIAABeqLOLahaJZVZ3RTalzi5O3q3D1VQXVkV24Znaex/9pIeo6+hIy5yZaj17wo4deJ44gWfbtuoqz0IIkY9ijdRLTk7m7bffpkOHDtStW5fatWvnuglRLPcTmT/LsEotRnxxZTwZWlNaO16in/tfZVh7xWZnmsqMer8CsOFqRy7c0+MChq1bQ61akJEB27dDEVYMF0JULcVqkXn66ac5cOAA48aNw8PDI98ZTEIU2fHjgJrIdCqrKplOaHJdrIzTeVW6lIrsMZcLBLieZV9MEz66MIilLb/VzzYOGg0MHAjffAMXL8Lff0OzZiUvVwhR6RQrkdm5cyfbt2+nY8eO+o6nQomKiiI2NrZUyq5ysy4yMuD+YPL8WmQSEhJISSneFgF37++kHX/3Ljdv3tSdD44wZh8fAGqXkptF4XduF/+aXm8np+JrcznZjXVRnZjovV8/Bbu6QteusHcv7NwJPj7SxSSEyKNYiYyjoyNOZTwYs7yJiorC19eP1NTS2X/H0tKK0NCQqpPMnD0L6elk2dlxKTH3GJWEhAQWL15MZlbxBpOevX+/LyiIkPsD1hVgPdvJwpIm1v/Q3/1UCYKv2uxNU5hedwfvhjzJ2qhOPOYSor8tHTp0gNBQuH4dfv4ZxoxBms2EEA8qViLz3nvv8c4777Bq1apca8lUJbGxsaSmpjBkyFpcXf30WnZMTAhbt46tWrMu7o+PSW7UCI4ezfVQSkoKmVlZ+PkOwcrKtchF34sLg8ggfLy70cipHgDH4ptx6XI/jMhgktsKNBqbkr+GKqyr6z8ExTTiYGxDPrk4kMUtlmGs0cO4FiMjGDxY7WIKD4fgYHX8jBBC3FesROaTTz4hPDwcNzc3vL29MTU1zfX4qVNV579bV1c/PDxaGjqMiu/++JiUfBKZHFZWrtjaFn3/JcsUtfvPwsIRW1sP0rJNWfbPaAA68DHVzW4BxVt4Tag0Gnip7g5O3a1N6L2abL/ZkserB+uncBcX6N4ddu2C3buhTh1wdNRP2UKICq9YiczgwYP1HIao8h5skSll66MeIzrdAWeTGDplfQAMKfU6qwJn8ySe8tnHl5f68V1EDzq5hOJolqyfwtu1U7uYrlyBn36C8ePV1hohRJVXrERmzpw5+o5DVGUJCeofKSClceNSrep6qhMbrqqD1Ce4LcfseumMcaqqBlU/yW+3WhCW5MHSyz2Z7btNPwVrNDBoEHz9tZrMHD4MncpqbpsQojwr0b80wcHBrF27lrVr1+q2LxCiyIKD1XVCvL3JKsVB5IoCX17qQ6ZiQmvHS7SxOV5qdVVVxhotL9f7FQ0Ku6ObczreS3+FOzpCv37qcVAQXLumv7KFEBVWsRKZ27dvExAQQJs2bZg+fTrTp0+nVatWdO/enZgY2WhPFNH9biXati3Vav5Jas3xuPqYaLKZXnenTH4pJQ3trjPAQx0f81lYfzK1elyluVkzaNxYzUq3bIH0dP2VLYSokIqVyEybNo179+7xzz//EBcXR1xcHOfOnSMxMZHp06frO0ZR2d0f6Fu6iYwZ225PAmB4zSPUsrpTinWJZ3z24GCazJWUavx8u4f+CtZooH9/cHCA+Hh11V8hRJVWrETmt99+46uvvsLP799pxw0bNmTJkiXs3LlTb8GJKiKnRaZdu1Ks5EXuZLrjbHaPsV4HS7EeAWBrmsbztXcD8MPNASRQU3+FW1jA0KFqUnP2rLrqrxCiyipWIqPVavNMuQYwNTVFq9WWOChRhVy/DjdugLExtGhRKlWkZlsDbwMwyTsIS+OMUqlH5NbL7QxN7a+QoZixh4X6LbxWLejSRT3evh3uSAubEFVVsRKZgIAAXnrpJW7cuKE7d/36dWbMmEH37t31FpyoAnK6lRo3BmvrUqniyJ1hgBPuZlH0kU0hy4xGA1Pr7ESDlnOM5vitOvqtoFMn8PJSt7fYvBkyM/VbvhCiQihWIrN48WISExPx9vamTp061KlTBx8fHxITE/nyyy/1HaOozHIWv2vfvlSKv5XmwIm76kyXgdXW6Ge1WVFo9Wxv0dP5MADvHBmBVtHjCGsjIxg2TE2Ao6PV/ZiEEFVOsdaRqVWrFqdOnWLPnj2E3l//w8/Pjx499DioT1QNR46o9x06lErx30cEkK2YAnvxsz4FNCmVekTBxlb/iQN3mnI21ouVp5vzVAs9torZ2qrjZdasUTcd9fQENzf9lS+EKPeK1CKzb98+GjZsSGJiIhqNhp49ezJt2jSmTZtGmzZtaNSoEQcPykBKUUjp6eoaMgD+/nov/sK96uy93fT+V6/JdGsDcTC9R2feBWD23u4kppvrt4LatdVdsgG2b8ciLk6/5QshyrUiJTKfffYZzzzzDHZ2dnkes7e357nnnuPTTz/VW3CikvvrLzWZcXGBuvrd60hRYGl4TwAa2x0AZGyMIbXjS2rbR3M72Yb5f3TWfwWdO6t7MGVlUfv335EtQIWoOoqUyJw5c4Y+ffoU+HivXr0IDtbTRnGi8ssZH+Pvj76bS47H1eN0gg+mmiy6uv6g17JF0RmTyVz/TQB8dqw9YXf0vIKzRqN2MdnZYZGQwCoAmUEpRJVQpEQmOjo632nXOUxMTGRlX1F4OYmMnsfHKAosjwwAYEiNP7E3lc9kedC91jn61A0jU2vMK7t7678CKyt48km0RkYMBdyXL9d/HUKIcqdIiUyNGjU4d+5cgY///fffeHh4lDgoUUXkDPTV8/iYg7F+hCV5YGmczmjPQ3otWxSfRgOf9tqFiVE2v1xswO5wPU/HBqhZk6uPPQaAx9Kl8Msv+q9DCFGuFCmR6devH2+//TZpaWl5HktNTWXOnDkMGDBAb8GJSuzqVXUxPGNjaN1ab8VmKxpWRHYD4Ikax7A3ld2tyxM/11imtlFXcp6xqzeZ2SXatzZfd3x9WQJoFAXGjoULF/RehxCi/CjSb5G33nqLuLg46tevz0cffcRPP/3ETz/9xMKFC2nQoAFxcXG8+eabpRWrqExyWmOaN9frQnhBtxsTmVING5NUhtc6qrdyhf680+UALlbJnI+pxtKT+ktiHzQDuNeiBSQmwqBBkJBQKvUIIQyvSImMm5sbR44coXHjxsyePZshQ4YwZMgQ3njjDRo3bsyhQ4dwkzUcRGE8ONBXT7IVI1Zd6QrAiJpHsDHJ23IoDM/RMo33ugUB8M7+btxL1/8co0wgYuFCqFlTbZEZN04G/wpRSRW5XdfLy4sdO3YQGxvL8ePHOXbsGLGxsezYsQMfH5/SiFFURqWwEN7u6KZcS3XG3jSZoTWO661coX/PtAymqdst4tMs2Ro6vFTqyHJ2hsBAMDdXx8q8+26p1COEMKxid1A7OjrSpk0b2rZti6Ojoz5jEpVdaqq6hgzorUUmU2vMqsiuAIyudQgrE9kYsjwzNlL4tNcuAPZc7gP4lk5FbdrAN9+ox/PmwdatpVOPEMJg9D/STohHOXkSsrLAw0Pd9E8PdtxqQXS6A85m93i8+km9lClKV/faETzeIBStYgz8X+lVNGECTJ+uHo8dC6dPl15dQogyV6y9loQoET0vhJehNWbtFXW12DGeB7Ewll2QK4qPe/7O9ot1yVb6czL6FL2bZJdORZ98AufPw549MHAgnDgB7u5FKiIqKorY2Fi9huXi4oKnp6deyxSiqpFERpQ9PY+P+e1WC2Iz7HAxS6S/h6wsXZHUd75Dzzo7+e3SQL79eyKzAlZgYlQKg3JNTGDzZnWX9QsX1JlM+/eDpWWhnh4VFYWfry8pqal6DcvK0pKQ0FBJZoQoAUlkRNlSFL3OWMrSGrE+Sl0AbWStw5gZldJ/9KLUDPHdzG+X/Im6V4tvg1vxYpsTpVORgwP8+iu0bQt//glPPQXr1xeqVTA2NpaU1FTWDhmCn6urXsIJiYlh7NatxMbGSiIjRAlIIiPKVkQE3L4NpqbQsmWJi/v9dlOi0x1wNE1igLTGVEjWZsnAHGAJ7wR1Y3STszhYlNLU+bp1YcsW6NULNmyAhg3h7bcL/XQ/V1dayurlQpQrMthXlK2cbqVWrcDCokRFZStGrIvqBMCIWkcwN84qaXTCYL7B0/Yqd1KteO9AKeyO/aBu3eCrr9Tjd96BTZtKtz4hRKmSREaUrUP39z7Sw/iYfbcbcT3VGTuTFJmpVOFl82yTlQB8+Wc7/e+O/V/PPAMzZqjHEyaog3+FEBWSJDKibB04oN536VKiYrSKhnVR6n/uT9Y8iqWxrBtT0bV2P03f+7tjv/Z7r9Kv8OOPoV8/SEtTB/9ev176dQoh9E4SGVF2oqMhNFQdXHl/h+LiOhjrx5UUV2xMUhlc4089BSgM7ZNeuzDWaPnpgi/7Ikp5pXBjY/jhB2jUCG7ehMcfh+Tk0q1TCKF3ksiIsvPHH+p9kybgVPyuA0WBNffXjRla4zg2Jun6iE6UA36usbzQWu3mmbGrN9nakq8z9FB2dur2BS4ucOqU2s0kezIJUaFIIiPKjp66lY7caUB4sjuWxukMkz2VKp25XffjYJHK39HuLP+rRelX6OOjbl1gZqbOaHrnndKvUwihN5LIiLKjh0RGUWDN/bExQ6r/iZ2pfhcoE4bnbJXKnC7qZ+WtoAAS081Lv9LHHoNvv1WP338f1q4t/TqFEHohiYwoG3fuwLlz6nGnTsUu5sTduly4VwNzo0yerHlUT8GJ8ubFNieo7xzL7WQbPjhY/M9LkUyYALNmqcdPPw3HjpVNvUKIEpFERpSNgwfVez8/qFatWEUoCqy+PzZmoMdJHMxS9BWdKGfMjLP5pNduABYda0/EXYeyqfiDD9QZTOnpMHgwREWVTb1CiGKTREaUDT10K51Nqs8/iZ6YarIYWeuwngIT5VX/ehfpUTucjGwTXt/Ts2wqNTJSu5WaNlVn2Q0aJDOZhCjnJJERZUMPicymW/0B6O9xCmfzJH1EJcoxjQY+7bULI42WH8834uCVMtqPyMYGfv5ZbTk8fRrGjZOZTEKUY5LIiNIXH6/+QQDoXLzl56/Rjr/v+WKsyZbWmCqkidttnm2p7qH18q4+aJVSno6dw8vr35lMW7fisXRp2dQrhCgygyYyCxYsoE2bNtja2lKtWjUGDx7MhQsXcl2TlpbGlClTcHZ2xsbGhmHDhhEdHW2giEWxHD6sDnCpWxeqVy9WEQd5E4Bebmdws0jQZ3SinHu3WxB25mmculmdFX81L7uKO3SA774DwGPZMkaVXc1CiCIwaCJz4MABpkyZwrFjx/j999/JzMykV69eJD/QJz1jxgx++eUXNm/ezIEDB7hx4wZDhw41YNSiyErYrfTPnZpcZCBGaBklrTFVjqt1im469v/29iAu1bLsKh8/Hl5/HYDlgNXt22VXtxCiUAyayPz2229MnDiRRo0a0axZM1auXElUVBTBwWpTckJCAsuWLePTTz8lICCAVq1asWLFCo4cOcIxmRpZcZQwkfnyrz4AdHQMppbVHX1FJSqQaW2P08j1NrEp1ry9r1vZVv7BB8R37owFUGfXLkhMLNv6hRAPVa7GyCQkqF0GTveXrw8ODiYzM5MePXrorvH19cXT05OjR/NfQyQ9PZ3ExMRcN2FA9+7B/cS0OInMxTvO/HK5FQBPuO3UZ2SiAjE11rK43w4Avj7ZhlM3PcqucmNjIufP52/ANDUVNmyADNmkVIjyotwkMlqtlpdffpmOHTvSuHFjAG7duoWZmRkODg65rnVzc+PWrVv5lrNgwQLs7e11t1q1apV26OJhjhyB7Gx18KRn0WedLDzUEQUj6vMLPlayO3FV1tU7klGNz6KgYcqOfmU38BfQWlvzOJBpYaFuMPnTT+q4LyGEwZWbRGbKlCmcO3eODRs2lKic2bNnk5CQoLtdvXpVTxGKYilBt1JUgj2r/24GQCfe12dUooL6v167sTFL59i1Wqw63axM674CXO7VS11r5vz5fzdBFUIYVLlIZKZOncqvv/5KUFAQNWvW1J13d3cnIyOD+Pj4XNdHR0fj7u6eb1nm5ubY2dnlugkD2rdPve/atchP/fhwB7K0xjxWPZSayOaQAqrb3tMN/J21pyd3Uy3KtP5kd3cYMED9Yv9++M8sSyFE2TNoIqMoClOnTmXr1q3s27cPHx+fXI+3atUKU1NT9u7dqzt34cIFoqKi8Pf3L+twRVHFx8OJE+rxA+OcCuNOii3f/9USgGktZGyM+NdL7Y7h5xJDTIo1b+0LKPsAWrSANm3U461bITa27GMQQugYNJGZMmUKa9euZf369dja2nLr1i1u3bpFaqq6o7G9vT2TJ09m5syZBAUFERwczKRJk/D396d9+/aGDF0URlCQuiJqgwZQxLFK6872IC3LlHY1rvFY9dBSClBURP8d+HvsWs1HPKMU9O6tjvlKT4eNG9V7IYRBGDSR+frrr0lISKBr1654eHjobhs3btRds2jRIgYMGMCwYcPo3Lkz7u7uBAYGGjBqUWh79qj3PYu6T44DP55Xx9S82ekPNGU3plNUEAE+EYxvdhoFDc/8MpCMbOOyDcDYGJ58Euzs1BaZrVtl8K8QBmLwrqX8bhMnTtRdY2FhwZIlS4iLiyM5OZnAwMACx8eIcub339X7InYrwVSSMy1pUi2a/vXD9B6WqBw+6bUbF6tkzt124+PDHco+ABsbGD5cTWouXPh3YLsQokyVi8G+ohK6cgXCwtRf8kUY6JuSYgS8DMAbnQ5ipJH/ckX+XKxS+Kz3bwC890cXLt5xLvsgatT4d/DvgQMQKt2gQpQ1SWRE6cjpVmrbFuztC/20LVtcAGdq2UXzZMN/Sic2UWmMbnKW3nUukZ5twrO/DDRM707z5urnHNQuppgYAwQhRNUliYwoHTndSkUYH5OWBmvXVgNgYvNdGBtJa4x4OI0Gvu7/K1amGRy44s3yv1oYJpBevdRFHzMy1MG/aWmGiUOIKkgSGaF/2dmwe7d63KtXoZ+2ciXExpoBUfSvJ3tpicLxcYzn3a5BALz6ey9iUgywdtSDg3/v3IHAQBn8K0QZkURG6N/x43D3Ljg4QLt2hXpKZiYsXJjz1ceYGmeXVnSiEnqp/XFaedwgPs2S+X+MM0wQ1tYwYgSYmKjjw/bvN0wcQlQxksgI/dt5fwG7Xr3UX+qF8MMPEBkJjo6ZwLJSC01UTiZGWlYO3oaZcRaHopoCTxsmkOrVYeBA9fiPP2TlXyHKgCQyQv9yEpl+/Qp1eXY2fPCBejxmzG0gtXTiEpVa42q3+SAgZxXwRVy9amaYQJo2zb3yb1ycYeIQooqQREboV3Q0BAerx336FOopGzao/7g6OcGTT8qMD1F8M/yP0crjAmDDnDneZBuqh7J3b3U165yVfzMyDBSIEJWfJDJCv3btUu9btgQ3t0denpUF776rHr/yCtjYaEsxOFHZGWkU5nVdCSRy5owNH39soEByBv/a2MDt2/DLLzL4V4hSIomM0K+cbqW+fQt1+YYNcPEiODvDtGmlGJeoMjxs44DpALzzDpw+baBAbG3VZMbICM6dUwfBCyH0ThIZoT+ZmUUaH/Nga8yrr6q/94XQj1V07RpPZiaMGQPJyQYKw9Pz3yUIdu9WV7wWQuhV4aaUCFEYBw5AQgJUq1aoadfr16uzVJ2dYerUMohPGFRMASve3r17F4D4u3e5efNmkcu1srLCPp/Vo4cP38O5c49z/rwZw4ff4d13rxR7A9KQkJDiPRHUVX+vX4ezZ2HzZnjuOcnahdAjSWSE/vz0k3o/cKA6RuAhsrLgvffU49deU4cSiMopI+MeAIFbt+b7+Nn79/uCgggJCipy+aYmJkydOlWXzNxMSkIDvPjik0AnYB87djizY8ds4Lsil/+ge0lJRX+SRqPuxxQdrY6X2bQJHtgYVwhRMpLICP1QlH8TmUGDHnn5unVw6RK4uMCUKaUcmzCorCx1uX4f7744OdXK8/i9uDCIDMLHuxuNnOoVqeyUlBhCQreSkpKiS2Ti09JQgMXduuFfrx6rz/zE58eHYWq0hBWDvPBzjSrya9gRFsbbQUGkFXfrATMzdbG8b7+Fa9fUQfEtDLSdghCVjCQyQj9On4arV8HKCnr0eOilD7bGvP66tMZUFRYWTtjaeuQ5b5kSe/9xx3wfL666jo609PCghftZIuMb8dMFX94OepHgZ7/B0bJoCUlIbGzJA3JygqFD1dUfT5zAydq65GUKIWSwr9CTnNaYXr3A0vKhl65cCeHh4OoKL75Y+qGJqk2jgZWDt+HjcJeIeEcmbBuCVinmYJmSql8fOncGwPPgQZobJgohKhVJZIR+5CQyjz/+0MtSUmDOHPX4zTfV7WmEKG0OFmn8OHwT5sZZ/HKxAfP2dzFcMF27Qt26GGVnswUwTkgwXCxCVAKSyIiSCwtTu5aMjf/dZ6YAn30GN26Ajw88/3yZRCcEAC09bvJ1/18BePePrqw63cwwgWg0MHQo6ba21Aa833oLwy1BLETFJ4mMKLnNm9X77t3V0bsFiI39d4fr+fPB3LwMYhPiAZNanGb2YwcBePqXx9kX4WOYQCwtudyrFymA/ZEjMG+eYeIQohKQREaU3KZN6v2TTz70svnzITFR3b1g5MgyiEuIfMwP2MeIRufI0hozdOMIzse4GiSOVGdnns354r331G0MhBBFJomMKJmLF+HMGbVbaciQAi+7fBm++ko9XrhQXbVdCEMw0iisHLyNjrWiSEi3oP/60UQnGWaw1jrg9ogR6hfjxqlrEgghikT+nIiSyelW6tFDXaK3AG+9pe5g0KvXI2dnC1HqLEyy2DZyA3Wd7hAZ70j/9WNITDdMX+f1GTOgQwd1VewhQwy4n4IQFZMkMqJkCtGtdOqUunQGwIcflkFMQhSCi1UKO0avw9kyheCb1em/fjTJGaZlHodiaqr+Q+Durm4u+cwzslO2EEUgC+KJ4jt7Fv7+G0xNYfBgoqKiiP3PwmGKAi+8UBewo2/fOBQlklOnCi4yZ0+bmNhYcnbdKWiPHiFKqp5zHLvHrSFg1QQORXkxeONIfh75A5amWWUWQ85n3nr+fOo/9xyaH37gavXqxIweXeSyXFxc8PT01HeIQpRrksiI4luzRr3v35+o5GR8ff1ITU35z0VDgS1AGjt3tmTnzsLt/hsYGMjR/5zLyEgvYcBC5NXS4yY7x6yl55rx7Llch77rxvLzqB+wMy/dz1vOnlBjx47VnZsOfA54fPIJYz75hINFLNPK0pKQ0FBJZkSVIomMKJ7sbFi7Vj0eP57Y2FhSU1MYMmQtrq5+AGRladi0qSFJSdCy5V1atw58ZLGxsSEEBo7Fz3codazUqdxxcWFERAaRlVV2/yWLqsW/1jV+G7uW/utHc+CKN91Xj+e3MWtxtkottTr/uycUAIpCXFAQTpcusdfSktChQ8ks5KqRITExjN26ldjYWElkRJUiiYwonr174eZNdf+Yfv3gn38AcHX1w8OjJQBBQZCUBPb20KePB6amhd9Hx8rKRbfvTkqKdC2J0veYZxRBE1bRe+1YTt6oQeeVk/h93Bqq294r1Xpz9oTSefJJWLYM09u3aXLggLpT9iN2kxeiKpPBvqJ4crqVRo7Md2W7uDg4ckQ97tVLHUYjRHnX0uMmf0xcQXXbRM7HVOOx5U9x+a5j2QaRs1O2ufm/O2ULIQokiYwousRECLzfTTR+fJ6HFQV+/VXd5bp2bfDzK+P4hCgBP9dYDk1aTm3HOCLiHWn3/dOExjYs2yBydsoGOHFCXatJCJEvSWRE0a1bp+7+6OcHbdvmefjvvyEiAkxMoH9/dWsZISoSH8d4Dk1aTkuPG8SmWLPg4BygjDcHe2CnbH79Ve3KFULkIWNkRNEoCixdqh4/91yeLCUtzVjXEt6li/qPpRAVkYdtEgcnreDpnx/nh3NNgK/54q9ddGv4J2bGJdvkMSEhgbt37wIQf/cuNwtKUho0wDEiAourV8n64QdihwxBsbDI99KY+0sfFFiWEJWUJDKiaI4fV5tcLCzy7VY6eNCT1FRwcwN/fwPEJ4QeWZlmsm7oFrTKaTb+M4YdEb3psdqXH4b9SA274g0CTkhIYPHixZy6PwtvX1AQIUFBBV5vCTwLON67R+rq1awBtPlcl5O+DBv2BBcvXpCZS6LKkERGFM0336j3I0aA438HQY4mIsIRIyMYNEgmWojKQaOBgQ22sfGfH7Ay2czBKC+afP0i3w38mWENQ4pcXkpKCplZWVT3aA03T+Lj3Y1GTvUe+pwzqXE8duEnfLSZTHD25W/PTnlaQ8NTYiE0kPT0NJmCLaoUSWRE4cXFwYYN6vFzz+V6KDraFFgCqF1KHoWfaS1EBbGTLwNm8dXZNwi+WZ0nNo/gqean+Lzvb9iYZRS5NDNzWwAsLBx1Sw0UyNaDEGNTGp/7Aa87oWTae3KtVu4mT6siRyBE5SCDfUXhffstpKVB8+bQvr3udFYWvP22N+CAq2syjz1mqACFKF01bG5yZPIyZj92EA0Ky0+3pMU3z3HsWs1Sr/uOc33C6/QCoM7l3TjfuVjqdQpREUgiIwonIwO+/FI9njkzV7P2nDkQHGwL3KNbt0iM5FMlKjEz42w+6L6XoAkrqWWXwKU4Zzosm8z0nX25l25WqnVfq9GeGx4t0QB+IVuwTrpVqvUJURFI15IeJSREkZIS++gLHyE2Vu13L1ezDzZuhBs31D6jESN0p3fuhA8+yPnqaRwcZhkkPCHKWhfvK5x5/mte+q0va/5uxpd/tmNrqC9f9dvOwAal1Fqi0RBWtx+WqXE4xkfS9Ox6TrWYTLqFfenUJ0QFIImMniQkRPHVYl8ysvS3N8uTw4YRevGi4QftKQp8+ql6PG2auvIoEBoKORv0Dh9+m02bNgGSyIiqw9EyjdVDtjKu6Rme3z6Ay3edeHzDaIb5nWdR79+oZZ+o9zoVI2P+aTicFqdXYJ0SQ9Oz6/irxVN6r0eIikISGT1JSYklIyuVN3yH4GXlWuKy/ggNZGt6evmYffD773D6NFhZ6Qb5xsaqi93Fx0OHDjBjxnU2bTJolEIYTM86lzn7wte8e6AL/3ekA1tCGrLzUl3+1/EQr3Y4gqWpfjc8zTK15O8mY2j51zKsU2JofG4DF3y667UOISoKSWT0zMvKlfqPmoHwCPeAok/qLCWKAnPnqsfPPQdOTqSkwODBcPky+PjAtm1w9apiwCCFMDwr00w+7LGHUY3PMnVnPw5FefHO/gCWn27B//XczVC/EL2ucp1uYc/fTcbQ4vQKHBKu0DVyPxpAfhJFVSPDMsXD7dkDR4+qC+C9/jqpqeoaMYcPq7tab98OriVrgBKiUmnmHs0fE1fww7AfqWmXQGS8I09sHkH31RM4G11Nr3Ul27hxrtEItBoj6sRfZpFeSxeiYpBERhTsP60xaQ7uDB2q5jbW1moSIxtCCpGXRgMjG58jdMpi3u58AHPjLIIifWj+zfO8cWgkKehv7454Rx9CGwwG4CXgXb2VLETFIF1LomC7dsGRI2BhQdwzsxjUEw4dUofK7NgBHTsaOkAhVDExMbrjQu1hVAhZWVmYmJiUuMwXfNczoMYu3j02jO0RrVh5vhuWXMQ/cS3wR7Hje9BttybEJUfz2NXDvA1cX7UKWrbUS9lClHeSyBhYtqLheqoz0Wn2xKTbka41IT09kVCygFuEhlrSoIHaAlKmsrLg1VcBuDvqRdoP8SAsTO1O+umnfzflFcKQMjLU/Y4Ct27VnTt7//5RexgVhT7KbM0CnOnGb3zObZqwL+4loDsXk3+kuR5iPO/aiF+uHmYhUOOLL6BBA3jxRT2ULET5JomMAcRl2LDvdmOOx9XjfGJNUrLN87lqFABjxqjN1LVrq5swdu0K3bqpg2z1OXAwj+XL4Z9/SLN2osnGt7ieAl5eaktMw4alWK8QRZCVlQaAj3dfnJxqAXAvLgwigwq1h1FB4uLCiIgM0pWrjzIBWgFd7sxgy5X67NUsIF1pzNdXG3MuNYTna++muuXdYpcN8BFgC7wFMGWK+h/QhAklKlOI8k4SmTJ0NqEW66M68WdcXbQPDE+yMMqguuVdXMwSsTTOIDMrjavx0VzFDQeHpsTHmxIeDuHhsHat+hxPTzWh6dMHevUCJ/11ucO9e2S9+Q4mwKzkd7iOI126qNssubvrsR4h9MTCwkm3X5Hl/UUpC7WHUQFSUmJylauPMh8suw1fU73aZb6P7ocRUzgY68exO/V4suZRxnodxNK46Hs35XgbeHbkSKpt2ACTJoFWq94LUUlJIlMGwpPcWBLeh7/ifXTnGtldpavrPzR3iMDH+jbGmn8nTd67d5NfT33Lt8DevcHUrNmSM2fgjz8gKAiOH4eoKFi1Sr0ZGUG7dtC3r3pr2ZJibxMQFgZXn5xDQGw0YdTlO+MX+PB9tZdJdrMWQn8sjO4BL/Gqz2X23J3OqfjarL/aiV3RzXm29u/0rPZ3sVtdr73yCtUcHeHrr+Gpp9QtRv6z0asQlYUkMqUoNduUFZHd2HKtPVqMMNFk09v9NCNrHqamVVyhy6lWDXr2VG8AycnqGNzdu9UtAv75R50hffQovPOOOh26e3d1obr27dWZRTY2+ZetKHDxorrm3U8/wZ09pzjB5wCsbv0lJ1aa0ahRSd8JIURBPMyv8n9NV3P4ji9fh/fiRpoTC0KHsvNmC2bU346nVTG2PTEygiVL1FW4P/8cnn9eTWamTdP/CxDCwCSRKSWXk6oxL+RJolLURVa6uPzDC3V242aRUOKyra3/TWw+/hiuXoXfflOTmj17ICZG7QbasOHf59SsqXYLOTurv+MyM+H2bbh0CVJS1GuMyeIYz2KMlltdR/JeUJ8SxyqEeDSNBh5zCaWt0yU2X2vPmitdOJ3gw+STLzCq1iHGeh3EzKiIqwNrNLBokZrMfPwxTJ+u7l7/2mul8yKEMBBJZErBb7easShsABlaU1zMEnm1/s+0c75UavXVqgXPPKPeMjLUlpmDB9VWm+BgNWG5dk295cfUVEuzZsm8afohrY8Gk2Vry+03nuLGqVOFqt/FxUWPr0aIqsvMKIsxnocIcD3H55f6cTyuPmuiurAvpjEz6/1KS8eIohWo0cDChWBuDvPnw+uvq78QFi4sfv+zEOWMJDJ69tONx9lxqz8A7ZzC+F+DrTiYpZRZ/WZm0KWLessRF6eOfTl//jbPP/cWGZmZQAYQB1wiM/MK2Scz6Xf/+mfu3WNlr16FrtPK0pJNmzfr8VUIUbV5WMazoPF6/ohtyOJLfbie6swrf09goMdJnqv9O9Ym6YUvTKOB995T+5f/9z/4v/+D69dhxQo1wRGigpNERk+0WoBVuiRmnOcBJnrvx0hj+J1PnJzUwcCmptfIyPyOtUOG4OfqCtgAnmiysvDbsgWzhATu+vgwrUcPphVylGFITAxjt24lPj6+NF+CEFWORgNdXM/T2jGcbyN68PONNvxyszV/xtXllfq/0MYpvGgFzpoF1aurg39/+AGioyEwUF0cSogKzKCJzB9//MHHH39McHAwN2/eZOvWrQwePFj3uKIozJkzh++++474+Hg6duzI119/Tb16xV/HoTRkZ8PevT5AS4zI5pX6v9LP4y9Dh1UgP1dXWnrcn0KqKOqujwkJYGuL4xNP4GhlZdD4hBD/sjZJZ0a97XR1+YePLw7iZpojr58dR3/3YF6sswsrkyJM1R43DtzcYNgw2LdPXdny55/VRaKEqKAM2kmanJxMs2bNWLJkSb6Pf/TRR3zxxRcsXbqU48ePY21tTe/evUlLSyvjSAum1cKPP0JEhCOQzgt1vi7XSUwex4/D33+r//4NHaruPyCEKHdaOEayrPXXDKlxHIDtt1rxTPDznE+sUbSCevVS13Jwc1N/9lu3hv379R+wEGXEoIlM3759mT9/PkOGDMnzmKIofPbZZ7z11lsMGjSIpk2bsnr1am7cuMG2bdvKPth8adi/35vQUDA21gJDaGp/9pHPKjfCw9U53KD+cvP2Nmg4QoiHszTOYHrdnSxqtgI383hupDkx7a/JrL3SCa1ShEVnWrSAP/9UF52KjYUePWDxYrWFVogKptwOW4+IiODWrVv06NFDd87e3p527dpx9OjRAp+Xnp5OYmJirltpUH/eP+HSJSeMjKBnz8vAzlKpq1TcuAGbNqkvpFkzdRCNEKJCaO5whe9bL6Wb6zm0GLEssjufhL0CeBa+EE9PdXrj6NFq//i0afD005CaWmpxC1Eaym0ic+vWLQDc3NxynXdzc9M9lp8FCxZgb2+vu9WqVatU4lu50g2YAcCgQeDpWToJU2kwj4+HdevUudo+PjBgQClv3CSE0DcbkzTe9vuR2b6BWBmncympHnAGGFH4Qqys1H1P/u//1OnYy5er/9SEhJRW2ELoXblNZIpr9uzZJCQk6G5Xr17Vex2KAtHRZgD4+1+laVO9V1FqGgD1fv1VXQXPwwNGjAATmbwmREWk0UAvt7/5rtVSaluHAw7ABt55x4ukpCIU8sor6qqa1arB2bPQqhV8/710NYkKodwmMu73dyeMjo7OdT46Olr3WH7Mzc2xs7PLddM3jQZmzboKdKdJkxi9l19aLMPCOACYpaSov7DGjJF1JISoBKpb3uXV+v8HzAWy2b7dmbZt4fz5IhTSsyecOaPep6aqK2yOHAl3S7YjtxClrdwmMj4+Pri7u7N3717ducTERI4fP46/v78BI1OpPTH7DB1G4e3aRf3Jk3EDUpydYcIEda8DIUSlYKzRAvOArri6ZhASAm3aqD1HheburrbMLFyottRu2gSNGqlTtIUopwyayCQlJXH69GlOnz4NqAN8T58+TVRUFBqNhpdffpn58+fz888/c/bsWcaPH0/16tVzrTUjHkFR1NkI/ftjnJzMfiBswACZZi1EpXWI9etD6dFD7UEeN07d+LrQq1YYGalbGRw+DA0awM2b6kDA0aPVGU5ClDMGHRxx8uRJunXrpvt65syZAEyYMIGVK1fy+uuvk5yczLPPPkt8fDyPPfYYv/32GxYWFoYKucyFlGDQnVFyMp7z5+N0f4p1eKdO9Dp4kN8zM/UVnhCiHHJyyuK339TtlebNg2+/VWdbb94MdesWspC2beH0aZg7V9108ocf1F1pP/sMRo2SCQKi3DBoItO1a1eUhwwm02g0vPvuu7z77rtlGJXhZWTc0x2PHTu2WGV0BFYCTkAmMAtYdPAgAJs2bqT5tGnYy9LkQlRaxsYwZw506KAOhzt9Wh3Du3y5urBvoVhYwIcfqk946ik4d04t7Ntv1Zbexo1L8yUIUSgyXaUcysr6tw146NC1uLj4Ffq55hnJDAz+hu5n12OEQpy1G991X0CyezOGxoYQGDiWrOxsUlJSJJERogro2RP++ksdt3voEDzxBLz8sjoMxsyskIW0aQMnT6rTtN9/Hw4cgObN1bVn5s6V/ZqEQUkiU865uPjh4dHy0RcqCk3OrqfX769hm3QTgL+aT2RX70WkWTjgUcpxCiHKrxo11K2V3nxT7SX67DM4dgw2blTXxSsUc3O1gLFjYeZMdcPJzz6DNWvgrbfghRdkFqQwiHI7a0kUntutM0xa2YVhW8dim3STO051WTd6Oz8NWkGahYOhwxNClAOmpvDRR/DTT+DgoCYyLVuqk5SKxMsLtmyBXbvA1xfu3IEZM9TjtWvVDeiEKEOSyFRgLrGhPPHjSJ7/pgVeUQfJMLViT8AHfPXCOcLq9TN0eEKIcujxx+HUKXW8zJ070K8fvP22uktBkfTqpS6e9+236uKakZHqFKmc7EgW0xNlRLqWKiCnO2F0+eNdmpxdj5Gi/vdztvFIfu/xEYn2pbMlgxCi8vDxUWdXz5wJX32lzm46cgTWr1c3xX5QVFQUsQ+bdt2qFZrNm6n2ww+4r1yJ8Zkz0Lcv91q14uYzz5DUunWeGU4uLi54FrpPS4iHk0SmAnG8e5nOf8yn2ZnVGCnqv08hvoPZ33Ue0W4VaJ8EIYTBmZvDkiXQsSM8+6w6hqZFC3XcTKdO6jVRUVH4+fqSUsiNJJ2AN4CpgG1wMLbBwRwC3gV+f+A6K0tLQkJDJZkReiGJTAVgH3+Fzgffp/npFRhrswC4UH8A+7vM5Wb1VgaOTghRkY0erSYwTzyhbmnQrRt88AG89hrExsaSkprK2iFD8HN1LXSZF5OScDt9GpfQUB7TatkNJLu6crNlS45bWjJ22zZiY2MlkRF6IYlMOeYOjDy0kM6hWzHWqovYhdXtw/6u87heo61hgxNCVBp+fuqCec8/r47XnTVL7XqaMcNYfdzVlZYeRZz7WK8e3LunFhQcjHVMDHV37aK6szODQQYFC72Rwb7lkFlWOsOAy0C385sw1mZy2SeAZZMOsW7MTklihBB6Z20Nq1fDN9+o68v8/DOMGeMLFGL5h4LY2kKfPvDSS+rKfKamWN25w1bAb9Qo2LChGKOMhchNEplyxDgrHe/I/Qy4vJtegCVwya0ZKycEsXr8Xq56djR0iEKISkyjUcfLHD2qDgi+ccMcOMLm851LNgnJxkZdme/ll7nZogWJgOWlS+pWB76+sGwZZGTo6VWIqkYSmXJAo82m5rVjtD/+Od5XDmCqzSIK6Ad8/PgyIr27GjhCIURV0rKlOkW7S5d4wJwPD41hxI9PEp9Wwn3urKy42aYNXsCN558HJye4dAmeflrdBOrLL6GQA4uFyCFjZAzMMS6cuuG/YZ2iTm9MtnLhtENt1tz4k53As7IxmxCiiHbs2FGiDWdzdO8ewYED8RhrPmTz+UYcv16D9UO30NHzaonKjQeCHnuMRmPG4LJlC25r1mB69SpMn07m3LncHj2amCefRGtjU6jyZDp31SaJjIFYpN6lbvguXO5cACDD1IoInwBuurcg+vY5lBsGDlAIUaHEZSShARTg7bff1mvZA5U/+IP1RCXUpfPKSbzT+QBvdj6IiVHRB+zeTFLjfHBDXHNgEurmtt5xcdRYvBirxYv5EvgciHtEmTKdu2qTRKasKVpqXjuOT+Q+jLVZaDVGXK/ehiveXckyKWGzrRCiykrKSkMBhgDNPDpgb+9e4jJPJkSx7uZJmnso+N5swaV6u/kxzJ+5B7qxJ6I264YG4mmfUKQy49PUOBd364Z/vXq5HovTauHSJdxPn8YxPp53gDdNTIht2JDbTZqQaW2dp7yQmBjGbt0q07mrMElkypBV8m18L/yM3b3rANx18Casbj9SrAu/PoMQQjyMK+Br74ObW90SlxULcPMk5ua2KCTxRbeVDG58gxe2D+BQlBfNlj7PdwN/4YmG54tcdl1Hx/yndNeooa7IFxoKBw9ifOsWbn//jds//6g7bnfsCI6OJX1pohKRRKYsKFo8ow7jfeUARko2WcbmhNfpyU33lnmW7hZCiPJsTNOz+Ne6xqgtw/jzek2e3DycsU3P8EWfnThapumnEiMjaNhQXeDm0iU4eBCuXoXgYHUUctOmakJThEX6ROUliUwpM09PxC8kEIeEKwDEOtUnrH5/0s3tDByZEEIUT23HuxyatJy5+7vy4eHHWPt3M4IifFj2+E/0rhuuv4o0GnVhvbp14coVOHQIwsPhzBn15ueHpZ+f/uoTFZIkMqXIOTYU3ws/Y5qVSpaxGWF1+xLt1kxaYYQQFZ6psZb3u+9jQP2LTNg2hLA4Z/qsG8dzrU7yf712Y2Omx3VhNBrw9lZv16+rCU1oKISE4BcSwg4gdts2TumvRpkJVYFIIlMKNNps6oTvouaNEwDcs/HgvN8wUq2cDRyZEELol3+ta5x+fimz93Tniz/b801wa3aH12Hl4G109rqi/wpr1IARI+D2bTh0COXcOfoqCrz3Hgfee4/3yb1BZXHJTKiKQxIZPbPMTKH5mVXYJ6rrLETV9CfCpzuKkbGBIxNCiNJhZZrJ531/Y5DvBZ76aRAR8Y50XTmRl9sf471u+7A2y9R/pdWqwdCh/OzhQfTu3UzWaOiiKHRB3aDyVosWJHh5FasFXGZCVSySyOiRPzA0NBDrzBQyTSwI8R1KnHO9Rz5PCCEqgwCfCP5+4Wtm7urNsr9asuiYP9tCfflmwC/0rHO5VOpMsrHhOaB+7950vXtXt0Flnd271cHAnTpBo0bqAGJRKcl3Vh8UhU7nt7AfsM5MIdnKlVMtn5EkRghR5diZp/P94z+zY/RaatklEBHvSK+145mwbTB3UixLrd50Kyt1g8qXX4bHHgNzc4iJgcBAWLxYne0kG1RWSpLI6EGHo58w9tAHmAGXHXw41fJpUi2dDB2WEEIYTN96l/jnxSVMb3sMDQqrzzTHb8lUjlx9rHQrtraG7t3VhKZbN7C0hLt34Zdf4Isv4PhxyCyFri5hMNK1pAdnm4ymzZGP+TD5NnV8elDf2ExvZcfGlny/lNIo678iIiL0UkdpxiiEKJmYmJgiP+d/zVfQ02M/r/4xjgt3a/DViRlAfcJurqWpy00ArKyssLe312+wFhbQuTO0b6+uP3P0KCQmwm+/wR9/gL8/tGmjttyICk0SGT24Z1udOcO38OWKTnyjp6nVSYAGCAwc+6hLDSpn35ScvV30FW9GRpJeyhFClFxWlrrQXeDWrcUu40ne4RCz+IO30NKfGUe7su3oe/jzKRYmClOnTtV/MgNgZvZv0nL6NBw+DPHxsHevetyqFbRrB7a2+q9blAlJZPQk3dRKr+WloW7+NtO7Gw2c9DPW5nhcGMsjg/RSVo6cfVM+aN2ayJMn8fMdipWVS7HLy4kx5xenEMLwsrPVrhgf7744OdUqdjlt+f/27jysqmpv4Pj3MBwGUVBBBvEAaokjCgjikPlKkdcsbbjeJyvMtOzKq+bNJHvTe5/e0vs2ZwNNyi31anZFLcs0RMpyRFFQQFQUVAZR5lnOev84efIEmgp6OMff53nWg2fvfVa/Xws2P87ea68i/Aqe5l9npnCBO0hkMRnaGCLrH6e6uvrGFDIX2dlBaCgEB0NamuFZNMXFhmJmxw7o39/w6Y1Xy9eoEjeXFDJtXDfHjtzevpn1SK5DbnVxq/TTnO7t21MH9HB2p30L4r2RMQohWsbRsVOLfr4BfKvT4MxIHvF+h++Kp3Cm3pfP2UpZ4m4+uP8nfNpXtFK0l2FjA0FBhmUOsrIMRUxu7m9PCw4IoEOvXshjSy2H3OwrhBDiphvsmsznYe/xJ48kNDSy/lgYge/F8NaOIVzQ34RfTRoNBAbCE0/A1KmGKdoaDeTk0HPTJg4DHitXGi5DiTZNChkhhBBm4WJXy/Ruq5jGYIK7HKei3oE5m+8h+KOn2Z57Ex9E17UrPPQQzJwJQ4bQaG9PINDtjTfAxwemTTNM3xZtkhQyQgghzMqb/Wy4///4ZNwGOjlVk1bkyYhlU4heN54zFTfxJlw3N4iKIm3SJJ4Banr0gJoa+PRTw03BQ4bA559DrdzD15bIPTK3qOuZRtmckpISACoqbvB1bSGEVTtXXMRY741EPLyNRbsnsCJzBJ8fGMhXhwKZOWgTT/XfgqPdhSbvu3gOKi0pIT8/32Tf9U7r1mu1xAHTVq8muKYGPvgAvvrK8AyaXbtgzhzDJakpU+AaVt/Ozc2luLj17gOUhS0NpJC5RbVkGuWl0n79umfvXryB+vq6VulXCHFrqK83/BF06TmpJ28xlcFs4h1OXYhg8Z7xxO0J4i6eozdrTW7EvXgO2pqUREaS6axMezu7lk3r1mgMTwkePhzeegs++wzi4iAvD15/3dAiIgwFzcSJV5zCnZubS+/AQKpraq4vlmbIwpYGUsjcolo6jfKiivPZcCIJD/feUJzBhQtN/2ISQojLufiohd+fk0KAcSqe5JLD/Ov0A5xrCGAN/6GfSxZTfb+ku/Mp4LdzUID/KPpe8qiK6uqzZGQmtN60bk9PmD8f5s2DjRsNRc3GjYZZTzt2wKxZ8Oc/G4qa4cObLFZZXFxMdU0NyydMoLeHR4vDkYUtfyOFzC2qNaZRAjj9Ol3a3r4dqsW9CSFuVZc7J43rkEek7wesyhvGqrxhpFf24tnM/2GsdwpT/JNwciz+9f0dW+Wc9odsbeG++wwtPx+++AKWLjVM5Y6PN7SePQ0FzeOPG24kvkRvDw+CvW9CnLcQudlXCCFEm+Zk28AT/tv41+D3GOWRjkLDN/mhPLb7v9l57j7ATMsMeHvD889DRobhwXpPPgkuLnD0qOHTG50O7r0X1q5FI+s73TBSyAghhLAIXo5lLOjzFe8OXMptLmeoanQk8Ww0kElK2Qj0ykyPsdNoYOhQw+ym/HzDJzTDh4Neb7j89OCD9BszhtcBx19vThatRwoZIYQQFqW/ay5xwZ/wfK91tLc7B/izPH820/c9RUpJgHmDc3ExzGj66SfD5abYWPD2xr6khL8BfdasMRQ6+/dDfb15Y7USUsgIIYSwODYaxRivVJ7pHgO8gKNNFdmV3jx3MJp5ByeRU931D/u44W6/HRYtgtxcjr31FusApdEYZj1t2ABvvAFffw2nT4OSuwyvl9zsK4QQwmLZ29QDi3mxez6pNdNZf2Ywu0tuY0/J/9CfAO4uy8Ls99ba2VF2xx1MAA5MmsSA/HzDk4JLSgxf9+0zzIoKDjYsXunkZOaALYsUMkIIISyei10FMT03MaHrLj7LGU3S2X4c5DHu+LKR6KADvDTyR/zdSs0dJhecnQ33zwwbBidPGoqYw4ehsBC++w42b4Y+fQxFjZ9fk2ncoikpZIQQQliNrk4lLOjzFeMK1/NhZhDZ6l6Wpgbz+cEgnhy0nxdH/Eg313Jzh2koUPz9DW3MGEhLMxQ1hYWGf6elQadOhoJm4EBo187MAbddco+MEEIIq9PTOZdHGMfX9y/mru7HuKC35aOUUHoumcl/fzuGU+UdzB3ib5ycICwMnn7asEBlSAhotXD+PPzwA7z5pmGJhJwcuZemGfKJjBBCCKsV4pnD5oFf8NNJHQu2jWLbiQDe2xPORymhPDrgIM8P+5lA9+bXP8rIyGi1OK6qL43GsNq2jw/cfTekp0NKCpw5A4cOGVrnzhAcjK3Zb/xpO6SQEUIIYfVG+OWSFP0vknL8+UfynSSf9GdZ6iDiUwcyPjCT54f9zBBfw7IH+ZWVaIBHH3201eOoqKy8ugO1WsNlpeBgw7NpUlIMl5vOnYMtW+hvY8MKwDk93XDMLUwKGSGEELeMUQEnGBUQz85Tvvzz52Gsy+xNwq9tsM9pZobv4oI+AwW8N2oUEbfd9od9Xo1vs7N5KSmJ2traa3+zt7fhCcF33WX8lMYmP59HgFP79xuWQriFSSEjhBDiljPE9xQJE1eTcdad//tlGCvT+rPnTFceS3iADg7/BfTF1eFUq62LlFHc/OWra+LgYLh/JiSEjIMH+TEhgSH33otvy3u2aHKzrxBCiFtWb49ilt2/nrxn3+J/RyXi076c8jo3YAGPb4ojavmjrErvR+2FtvV3f42HB9OBxo4dzR2K2bWtkRFCCCHMoEu7Kl684yeeH/Yzcza3473dISjuZPOxnmw+1hM3xxr+0jedP/c9xAi/XOxs9OYOWfxKChkhhBDiV/a2eob4/sJ7u59j6d3PkFM7kfjUgeSVuxKXMpi4lMF4OFcxITCDh/ocZqT/SbS2jeYO+6rk5uZS3BqXuH7H3d0dnU7X6v1eLSlkhBBCiGb4uBTyREQSC0duY2tOAKsP9SMhM5Cz1e34eF8oH+8LxUVbxyj/E9zd4xhRPY7Ss9P5Nvkw3tzcXAIDe1NTU93qfTs5OZOZmWG2YkYKGSGEEOIKbG0Ud/U4zl09jvPh2G9IPunPV4f7kJAZSFGVC18f6cXXR3oBoHMtZWi3PCJ8TzG0Wx5BngXY25r/MlRxcTE1NdVMmLAcD4/erdbv2bMZJCQ8SnFxsRQyV/L+++/z2muvUVBQQFBQEEuWLCEsLMzcYQkhhLjF2Nvqiex+nMjux/lg7EYOFHjy/bGebD7Wg+25OnLL3Mgtc2NVen8AnOwa6NelCCf7TEDHvkI3+vm54N2+EhvNzX9Kr4dHb7y9reu5M22+kFm9ejVz5swhLi6O8PBw3n77baKiosjKyqJLly7mDk8IIcQtykajGORdwCDvAmKHb6eyXsvOU77syPNlx6lu7DzlS0mtE3vOdAW6AqOZ/zPM/xm0thfwcy3D360Uf7dSfNpX0KVdFV3aVeHhXIW7czXttA20s6+nnbYBR7sLLSp8DCsb2NHQYENtLTQ2/tb0+su/bm6fXv9bn2Vl7sB0jh93NNtz+dp8IfPmm28ybdo0nnjiCQDi4uLYuHEjS5cuJTY21szRCSGEEAYu2nrjpzUAeqUh+1wn0oo8WZmmSMi0patLBPlV3tQ32pF9vjPZ5ztfdf/O9vU42xuKmobGRmA+997rhYODYXUDGxtDsVFfDw0Npl8vXAgGGli2rLWz1gEfkpp6koceau2+r06bLmTq6+tJSUnhhRdeMG6zsbEhMjKSHTt2mDEyIYQQ4spsNIpe7ufo5X6OusY0EjLX8tndD/BffYI4XdGBE6VuxlZQ6cLZameKqtpRVNWOc9XOVDXYU3vB3thfdYOW6gbtJf+FTuTntyA+G7C1/e3rxXal1zY2hgaG4qm2tpQTJxLx8Rlw/YG0UJsuZIqLi2lsbMTT09Nku6enJ5mZmc2+p66ujrq6OuPrsrIyAMrLW3fZ9spf18s4cyaF+vpKzp3LAuBgcQbnK1rwnQWUlZ/i7K//zijJobaxoUX9XZRdblhH5AyQWpKNa2PL/59c7PNo9VnsgLoW9nuxv0vzLis/RUEL+m6uz5b2e7k+W9L3H/V5rf1eTX/X2ve19nk1/V5Pn1fquyX9Xa7f1ujz932fqy5otT7BMn6+L+3zYt436ue7tq6Uk8CmjAxcr/G3/d5Thj5/ycmhqqH5sdEA13Kh53J9dgAGdDC05vpVSkNdowO1F7TU6R2pvaClQW/P6YpK3k1NJTZ2Pn5+fiilQa8HW1uFra3C3l5hZ/fb1xMnsnnuuZncc8+bdOnSE42GVpldVVycxYkTT9GvXzLl5Z5//IZrcPH3tvqjFb9VG3b69GkFqF9++cVk+9y5c1VYWFiz71m4cKHC8H0gTZo0adKkSbPwlpeXd8VaoU1/IuPu7o6trS2FhYUm2wsLC/Hy8mr2PS+88AJz5swxvtbr9Zw/f57OnTujaYXys7y8nG7dupGXl0eHDh1a3F9bZO05Wnt+IDlaA2vPDyRHa3Aj81NKUVFRgY+PzxWPa9OFjFarJSQkhMTERMaPHw8YCpPExERiYmKafY+DgwMODg4m29zc3Fo9tg4dOljlN+WlrD1Ha88PJEdrYO35geRoDW5Ufq6urn94TJsuZADmzJlDdHQ0oaGhhIWF8fbbb1NVVWWcxSSEEEKIW1ebL2QmTpzI2bNnWbBgAQUFBQwcOJBNmzY1uQFYCCGEELeeNl/IAMTExFz2UtLN5uDgwMKFC5tcvrIm1p6jtecHkqM1sPb8QHK0Bm0hP41SfzSvSQghhBCibbIxdwBCCCGEENdLChkhhBBCWCwpZIQQQghhsaSQEUIIIYTFkkLmGr3//vv4+/vj6OhIeHg4u3fvNndI1+XHH39k3Lhx+Pj4oNFoWLduncl+pRQLFizA29sbJycnIiMjyc7ONk+w12nRokUMHjyY9u3b06VLF8aPH09WVpbJMbW1tcyYMYPOnTvj4uLCgw8+2ORJ0m3Vhx9+yIABA4wPooqIiOC7774z7rfk3C5n8eLFaDQaZs+ebdxm6Xn+/e9/R6PRmLTAwEDjfkvPD+D06dM8+uijdO7cGScnJ/r378/evXuN+y39fOPv799kDDUaDTNmzACsYwwbGxt56aWXCAgIwMnJiR49evDyyy+brINktnFs+YpIt45Vq1YprVarli5dqg4dOqSmTZum3NzcVGFhoblDu2bffvutevHFF9XatWsVoBISEkz2L168WLm6uqp169apAwcOqPvuu08FBASompoa8wR8HaKiotSyZctUenq6Sk1NVX/605+UTqdTlZWVxmOmT5+uunXrphITE9XevXvVkCFD1NChQ80Y9dXbsGGD2rhxozpy5IjKyspS8+fPV/b29io9PV0pZdm5NWf37t3K399fDRgwQM2aNcu43dLzXLhwoerbt6/Kz883trNnzxr3W3p+58+fV35+fmry5Mlq165d6vjx4+r7779XR48eNR5j6eeboqIik/HbsmWLAlRSUpJSyvLHUCmlXnnlFdW5c2f1zTffqJycHLVmzRrl4uKi3nnnHeMx5hpHKWSuQVhYmJoxY4bxdWNjo/Lx8VGLFi0yY1Qt9/tCRq/XKy8vL/Xaa68Zt5WWlioHBwf173//2wwRto6ioiIFqOTkZKWUISd7e3u1Zs0a4zEZGRkKUDt27DBXmC3SsWNH9emnn1pdbhUVFeq2225TW7ZsUSNHjjQWMtaQ58KFC1VQUFCz+6whv3nz5qnhw4dfdr81nm9mzZqlevToofR6vVWMoVJKjR07Vk2ZMsVk2wMPPKAmTZqklDLvOMqlpatUX19PSkoKkZGRxm02NjZERkayY8cOM0bW+nJycigoKDDJ1dXVlfDwcIvOtaysDIBOnToBkJKSQkNDg0megYGB6HQ6i8uzsbGRVatWUVVVRUREhFXlBjBjxgzGjh1rkg9YzxhmZ2fj4+ND9+7dmTRpErm5uYB15LdhwwZCQ0N5+OGH6dKlC4MGDeKTTz4x7re28019fT3Lly9nypQpaDQaqxhDgKFDh5KYmMiRI0cAOHDgANu3b2fMmDGAecfRIp7s2xYUFxfT2NjYZGkET09PMjMzzRTVjVFQUADQbK4X91kavV7P7NmzGTZsGP369QMMeWq12iaLilpSnmlpaURERFBbW4uLiwsJCQn06dOH1NRUi8/tolWrVrFv3z727NnTZJ81jGF4eDjx8fH06tWL/Px8/vGPfzBixAjS09OtIr/jx4/z4YcfMmfOHObPn8+ePXuYOXMmWq2W6OhoqzvfrFu3jtLSUiZPngxYx/coQGxsLOXl5QQGBmJra0tjYyOvvPIKkyZNAsz7e0MKGXFLmDFjBunp6Wzfvt3cobSqXr16kZqaSllZGV999RXR0dEkJyebO6xWk5eXx6xZs9iyZQuOjo7mDueGuPgXLcCAAQMIDw/Hz8+PL7/8EicnJzNG1jr0ej2hoaG8+uqrAAwaNIj09HTi4uKIjo42c3St77PPPmPMmDH4+PiYO5RW9eWXX7JixQpWrlxJ3759SU1NZfbs2fj4+Jh9HOXS0lVyd3fH1ta2yZ3mhYWFeHl5mSmqG+NiPtaSa0xMDN988w1JSUn4+voat3t5eVFfX09paanJ8ZaUp1arpWfPnoSEhLBo0SKCgoJ45513rCI3MFxaKSoqIjg4GDs7O+zs7EhOTubdd9/Fzs4OT09Pq8jzUm5ubtx+++0cPXrUKsbR29ubPn36mGzr3bu38fKZNZ1vTp48yQ8//MDUqVON26xhDAHmzp1LbGwsf/nLX+jfvz+PPfYYzz77LIsWLQLMO45SyFwlrVZLSEgIiYmJxm16vZ7ExEQiIiLMGFnrCwgIwMvLyyTX8vJydu3aZVG5KqWIiYkhISGBrVu3EhAQYLI/JCQEe3t7kzyzsrLIzc21qDwvpdfrqaurs5rcRo8eTVpaGqmpqcYWGhrKpEmTjP+2hjwvVVlZybFjx/D29raKcRw2bFiTxx4cOXIEPz8/wHrONwDLli2jS5cujB071rjNGsYQoLq6Ghsb05LB1tYWvV4PmHkcb+itxFZm1apVysHBQcXHx6vDhw+rp556Srm5uamCggJzh3bNKioq1P79+9X+/fsVoN588021f/9+dfLkSaWUYRqdm5ubWr9+vTp48KC6//77LWo6pFJKPfPMM8rV1VVt27bNZGpkdXW18Zjp06crnU6ntm7dqvbu3asiIiJURESEGaO+erGxsSo5OVnl5OSogwcPqtjYWKXRaNTmzZuVUpad25VcOmtJKcvP829/+5vatm2bysnJUT///LOKjIxU7u7uqqioSCll+fnt3r1b2dnZqVdeeUVlZ2erFStWKGdnZ7V8+XLjMdZwvmlsbFQ6nU7NmzevyT5LH0OllIqOjlZdu3Y1Tr9eu3atcnd3V88//7zxGHONoxQy12jJkiVKp9MprVarwsLC1M6dO80d0nVJSkpSQJMWHR2tlDJMpXvppZeUp6encnBwUKNHj1ZZWVnmDfoaNZcfoJYtW2Y8pqamRv31r39VHTt2VM7OzmrChAkqPz/ffEFfgylTpig/Pz+l1WqVh4eHGj16tLGIUcqyc7uS3xcylp7nxIkTlbe3t9Jqtapr165q4sSJJs9YsfT8lFLq66+/Vv369VMODg4qMDBQffzxxyb7reF88/333yug2bitYQzLy8vVrFmzlE6nU46Ojqp79+7qxRdfVHV1dcZjzDWOGqUueSyfEEIIIYQFkXtkhBBCCGGxpJARQgghhMWSQkYIIYQQFksKGSGEEEJYLClkhBBCCGGxpJARQgghhMWSQkYIIYQQFksKGSFEm3TnnXcye/bsFvWxbds2NBpNk3VuhBDWQwoZIYRZTJ48mfHjx5s7DCGEhZNCRgghhBAWSwoZIYTZVVVV8fjjj+Pi4oK3tzdvvPFGk2O++OILQkNDad++PV5eXjzyyCMUFRWZHPPtt99y++234+TkxKhRozhx4kSTfrZv386IESNwcnKiW7duzJw5k6qqqhuVmhDiBpNCRghhdnPnziU5OZn169ezefNmtm3bxr59+0yOaWho4OWXX+bAgQOsW7eOEydOMHnyZOP+vLw8HnjgAcaNG0dqaipTp04lNjbWpI9jx45xzz338OCDD3Lw4EFWr17N9u3biYmJuRlpCiFuAFk0UghhFpMnT6a0tJTly5fTuXNnli9fzsMPPwzA+fPn8fX15amnnuLtt99u9v179+5l8ODBVFRU4OLiwvz581m/fj2HDh0yHhMbG8s///lPSkpKcHNzY+rUqdja2vLRRx8Zj9m+fTsjR46kqqoKR0fHG5qzEKL1yScyQgizOnbsGPX19YSHhxu3derUiV69epkcl5KSwrhx49DpdLRv356RI0cCkJubC0BGRoZJHwAREREmrw8cOEB8fDwuLi7GFhUVhV6vJycn50akJ4S4wezMHYAQQvyRqqoqoqKiiIqKYsWKFXh4eJCbm0tUVBT19fVX3U9lZSVPP/00M2fObLJPp9O1ZshCiJtEChkhhFn16NEDe3t7du3aZSwmSkpKOHLkiPFTl8zMTM6dO8fixYvp1q0bYLi0dKnevXuzYcMGk207d+40eR0cHMzhw4fp2bPnjUpHCHGTyaUlIYRZubi48OSTTzJ37ly2bt1Keno6kydPxsbmt9OTTqdDq9WyZMkSjh8/zoYNG3j55ZdN+pk+fTrZ2dnMnTuXrKwsVq5cSXx8vMkx8+bN45dffiEmJobU1FSys7NZv3693OwrhAWTQkYIYXavvfYaI0aMYNy4cURGRjJ8+HBCQkKM+z08PIiPj2fNmjX06dOHxYsX8/rrr5v0odPp+M9//sO6desICgoiLi6OV1991eSYAQMGkJyczJEjRxgxYgSDBg1iwYIF+Pj43JQ8hRCtT2YtCSGEEMJiyScyQgghhLBYUsgIIYQQwmJJISOEEEIIiyWFjBBCCCEslhQyQgghhLBYUsgIIYQQwmJJISOEEEIIiyWFjBBCCCEslhQyQgghhLBYUsgIIYQQwmJJISOEEEIIiyWFjBBCCCEs1v8DiMisz3z35vMAAAAASUVORK5CYII=",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Rejeitamos a hipótese nula\n"
+ ]
+ }
+ ],
+ "source": [
+ "#amostras\n",
+ "idade_sobriventes = df[df['Sobreviveu']== 1]['Idade'].dropna()\n",
+ "idade_nao_sobreviveu = df[df['Sobreviveu']==0]['Idade'].dropna()\n",
+ "\n",
+ "\n",
+ "# Teste t\n",
+ "estatistica_t, valor_p = ttest_ind(idade_sobriventes, idade_nao_sobreviveu)\n",
+ "\n",
+ "print(\"Teste T de idade\")\n",
+ "print(f\"Estatística T : {estatistica_t}\")\n",
+ "print(f\"Valor P: {valor_p}\")\n",
+ "\n",
+ "\n",
+ "#grafico\n",
+ "sns.histplot(idade_sobriventes, color= 'blue', label ='Sobreviventes', kde=True, bins= 20)\n",
+ "sns.histplot(idade_nao_sobreviveu, color = 'red', label = 'Não Sobreviveu', kde=True, bins= 20)\n",
+ "\n",
+ "\n",
+ "#rotulos\n",
+ "plt.legend()\n",
+ "plt.title(\" Distibuição de Idade dos sobreviventes\")\n",
+ "plt.xlabel(\"Idade\")\n",
+ "plt.ylabel(\"Contagem\")\n",
+ "plt.show()\n",
+ "\n",
+ "\n",
+ "#interpretação\n",
+ "if valor_p < 0.05:\n",
+ " print(\"Rejeitamos a hipótese nula\")\n",
+ "else:\n",
+ " print(\"Não rejeitamos a hipótese nula\")"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 61,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " IdPassageiro | \n",
+ " Sobreviveu | \n",
+ " Classe | \n",
+ " Nome | \n",
+ " Genero | \n",
+ " Idade | \n",
+ " Bilhete | \n",
+ " Tarifa | \n",
+ " Cabine | \n",
+ " Embarque | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " 0 | \n",
+ " 1 | \n",
+ " 0 | \n",
+ " 3 | \n",
+ " Braund, Mr. Owen Harris | \n",
+ " male | \n",
+ " 22.0 | \n",
+ " A/5 21171 | \n",
+ " 7.2500 | \n",
+ " NaN | \n",
+ " S | \n",
+ "
\n",
+ " \n",
+ " 1 | \n",
+ " 2 | \n",
+ " 1 | \n",
+ " 1 | \n",
+ " Cumings, Mrs. John Bradley (Florence Briggs Th... | \n",
+ " female | \n",
+ " 38.0 | \n",
+ " PC 17599 | \n",
+ " 71.2833 | \n",
+ " C85 | \n",
+ " C | \n",
+ "
\n",
+ " \n",
+ " 2 | \n",
+ " 3 | \n",
+ " 1 | \n",
+ " 3 | \n",
+ " Heikkinen, Miss. Laina | \n",
+ " female | \n",
+ " 26.0 | \n",
+ " STON/O2. 3101282 | \n",
+ " 7.9250 | \n",
+ " NaN | \n",
+ " S | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ " IdPassageiro Sobreviveu Classe \\\n",
+ "0 1 0 3 \n",
+ "1 2 1 1 \n",
+ "2 3 1 3 \n",
+ "\n",
+ " Nome Genero Idade \\\n",
+ "0 Braund, Mr. Owen Harris male 22.0 \n",
+ "1 Cumings, Mrs. John Bradley (Florence Briggs Th... female 38.0 \n",
+ "2 Heikkinen, Miss. Laina female 26.0 \n",
+ "\n",
+ " Bilhete Tarifa Cabine Embarque \n",
+ "0 A/5 21171 7.2500 NaN S \n",
+ "1 PC 17599 71.2833 C85 C \n",
+ "2 STON/O2. 3101282 7.9250 NaN S "
+ ]
+ },
+ "execution_count": 61,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "df.head(3)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "### Amostra e SQL"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 62,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "#amostra\n",
+ "babyDf = df.sample(100)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 64,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " IdPassageiro | \n",
+ " Sobreviveu | \n",
+ " Classe | \n",
+ " Nome | \n",
+ " Genero | \n",
+ " Idade | \n",
+ " Bilhete | \n",
+ " Tarifa | \n",
+ " Cabine | \n",
+ " Embarque | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " 128 | \n",
+ " 129 | \n",
+ " 1 | \n",
+ " 3 | \n",
+ " Peter, Miss. Anna | \n",
+ " female | \n",
+ " NaN | \n",
+ " 2668 | \n",
+ " 22.3583 | \n",
+ " F E69 | \n",
+ " C | \n",
+ "
\n",
+ " \n",
+ " 681 | \n",
+ " 682 | \n",
+ " 1 | \n",
+ " 1 | \n",
+ " Hassab, Mr. Hammad | \n",
+ " male | \n",
+ " 27.0 | \n",
+ " PC 17572 | \n",
+ " 76.7292 | \n",
+ " D49 | \n",
+ " C | \n",
+ "
\n",
+ " \n",
+ " 66 | \n",
+ " 67 | \n",
+ " 1 | \n",
+ " 2 | \n",
+ " Nye, Mrs. (Elizabeth Ramell) | \n",
+ " female | \n",
+ " 29.0 | \n",
+ " C.A. 29395 | \n",
+ " 10.5000 | \n",
+ " F33 | \n",
+ " S | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ " IdPassageiro Sobreviveu Classe Nome Genero \\\n",
+ "128 129 1 3 Peter, Miss. Anna female \n",
+ "681 682 1 1 Hassab, Mr. Hammad male \n",
+ "66 67 1 2 Nye, Mrs. (Elizabeth Ramell) female \n",
+ "\n",
+ " Idade Bilhete Tarifa Cabine Embarque \n",
+ "128 NaN 2668 22.3583 F E69 C \n",
+ "681 27.0 PC 17572 76.7292 D49 C \n",
+ "66 29.0 C.A. 29395 10.5000 F33 S "
+ ]
+ },
+ "execution_count": 64,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "babyDf.head(3)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 65,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "import sqlite3"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 67,
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ " Genero Contagem\n",
+ "0 female 47\n",
+ "1 male 53\n"
+ ]
+ }
+ ],
+ "source": [
+ "#conexão\n",
+ "conn = sqlite3.connect(':memory:')\n",
+ "\n",
+ "#escrever o df em um sql\n",
+ "babyDf.to_sql('babyDf', conn, index=False, if_exists='replace')\n",
+ "\n",
+ "#executar a consulta\n",
+ "query_sql = \"\"\"\n",
+ "SELECT Genero, COUNT(IdPassageiro) AS Contagem\n",
+ "FROM babyDf\n",
+ "GROUP BY Genero;\n",
+ "\"\"\"\n",
+ "\n",
+ "contagemGenero = pd.read_sql_query(query_sql, conn)\n",
+ "print(contagemGenero)\n",
+ "\n",
+ "#fechar a conexão\n",
+ "conn.close()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 68,
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Genero\n",
+ "male 53\n",
+ "female 47\n",
+ "Name: count, dtype: int64\n"
+ ]
+ }
+ ],
+ "source": [
+ "contagemGenero2 = babyDf['Genero'].value_counts()\n",
+ "contagemGenero2.columns = ['Genero', 'Contagem']\n",
+ "print(contagemGenero2)"
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 3",
+ "language": "python",
+ "name": "python3"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.12.5"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 2
+}