-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathutils.py
67 lines (56 loc) · 2.19 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
# Copyright (c) Zixuan Zhang.
#
# This source code is licensed under the Apache 2.0 license found in the
# LICENSE file in the root directory of this source tree.
from transformers.configuration_utils import PretrainedConfig
class BertConfig(PretrainedConfig):
def __init__(
self,
vocab_size=50265,
hidden_size=1024,
num_hidden_layers=24,
num_attention_heads=16,
intermediate_size=4096,
hidden_act="gelu",
hidden_dropout_prob=0.1,
attention_probs_dropout_prob=0.1,
max_position_embeddings=514,
type_vocab_size=1,
initializer_range=0.02,
layer_norm_eps=1e-05,
pad_token_id=1,
position_embedding_type="absolute",
use_cache=True,
classifier_dropout=None,
activation_function="gelu",
decoder_ffn_dim=4096,
decoder_layers=1,
init_std=0.02,
**kwargs
):
super().__init__(pad_token_id=pad_token_id, **kwargs)
self.vocab_size = vocab_size
self.hidden_size = hidden_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.hidden_act = hidden_act
self.intermediate_size = intermediate_size
self.hidden_dropout_prob = hidden_dropout_prob
self.init_std = init_std
self.attention_probs_dropout_prob = attention_probs_dropout_prob
self.max_position_embeddings = max_position_embeddings
self.type_vocab_size = type_vocab_size
self.initializer_range = initializer_range
self.layer_norm_eps = layer_norm_eps
self.position_embedding_type = position_embedding_type
self.use_cache = use_cache
self.classifier_dropout = classifier_dropout
self.activation_function = activation_function
self.decoder_ffn_dim = decoder_ffn_dim
self.decoder_layers = decoder_layers
class RobertaConfig(BertConfig):
def __init__(self, pad_token_id=1, bos_token_id=0, eos_token_id=2, **kwargs):
super().__init__(pad_token_id=pad_token_id, bos_token_id=bos_token_id, eos_token_id=eos_token_id, **kwargs)
if __name__ == "__main__":
c = BertConfig()
d = RobertaConfig()