Skip to content

Latest commit

 

History

History
 
 

pycuda

Folders and files

NameName
Last commit message
Last commit date

parent directory

..
 
 
 
 
 
 
 
 
 
 

pycuda

CONTAINERS IMAGES RUN BUILD

CONTAINERS
pycuda
   Builds pycuda_jp46 pycuda_jp51 pycuda_jp60
   Requires L4T ['>=32.6']
   Dependencies build-essential cuda python numpy
   Dependants l4t-diffusion l4t-ml l4t-pytorch l4t-tensorflow:tf1 l4t-tensorflow:tf2 stable-diffusion-webui
   Dockerfile Dockerfile
   Images dustynv/pycuda:r32.7.1 (2023-12-06, 0.4GB)
dustynv/pycuda:r35.2.1 (2023-09-07, 5.0GB)
dustynv/pycuda:r35.3.1 (2023-08-29, 5.0GB)
dustynv/pycuda:r35.4.1 (2023-12-06, 5.0GB)
dustynv/pycuda:r36.2.0 (2023-12-06, 3.5GB)
CONTAINER IMAGES
Repository/Tag Date Arch Size
  dustynv/pycuda:r32.7.1 2023-12-06 arm64 0.4GB
  dustynv/pycuda:r35.2.1 2023-09-07 arm64 5.0GB
  dustynv/pycuda:r35.3.1 2023-08-29 arm64 5.0GB
  dustynv/pycuda:r35.4.1 2023-12-06 arm64 5.0GB
  dustynv/pycuda:r36.2.0 2023-12-06 arm64 3.5GB

Container images are compatible with other minor versions of JetPack/L4T:
    • L4T R32.7 containers can run on other versions of L4T R32.7 (JetPack 4.6+)
    • L4T R35.x containers can run on other versions of L4T R35.x (JetPack 5.1+)

RUN CONTAINER

To start the container, you can use jetson-containers run and autotag, or manually put together a docker run command:

# automatically pull or build a compatible container image
jetson-containers run $(autotag pycuda)

# or explicitly specify one of the container images above
jetson-containers run dustynv/pycuda:r32.7.1

# or if using 'docker run' (specify image and mounts/ect)
sudo docker run --runtime nvidia -it --rm --network=host dustynv/pycuda:r32.7.1

jetson-containers run forwards arguments to docker run with some defaults added (like --runtime nvidia, mounts a /data cache, and detects devices)
autotag finds a container image that's compatible with your version of JetPack/L4T - either locally, pulled from a registry, or by building it.

To mount your own directories into the container, use the -v or --volume flags:

jetson-containers run -v /path/on/host:/path/in/container $(autotag pycuda)

To launch the container running a command, as opposed to an interactive shell:

jetson-containers run $(autotag pycuda) my_app --abc xyz

You can pass any options to it that you would to docker run, and it'll print out the full command that it constructs before executing it.

BUILD CONTAINER

If you use autotag as shown above, it'll ask to build the container for you if needed. To manually build it, first do the system setup, then run:

jetson-containers build pycuda

The dependencies from above will be built into the container, and it'll be tested during. Run it with --help for build options.