-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsimulator.cpp
262 lines (261 loc) · 5.88 KB
/
simulator.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
/*
Teddy Masters Copyright 2023
All non commercial use permitted
A numerical simulation of the n body problem using gravitational forces
This project was inspired by the novel "the three body problem" by Cixin Liu
*/
//dependencies
#include<stdio.h>
#include<cmath>
#include<iostream>
#include<cstdlib>
#include<omp.h>
//macros
#define dt 0.001
#define dtao 0.1
#define vinit 0
#define rinit 10
#define nthreads 8
//N: number of bodies, I: number of diffeqs D: number of dimensions
#define N 3
#define I 2
#define D 3
//mass + g (made up units)
#define M 1
#define G 1
//1 for re-centering 0 for not
#define CENTER 1
//for loops
#define FORI for(int i=0;i<I;i++)
#define FORD for(int d=0;d<D;d++)
#define FORN for(int n=0;n<N;n++)
#define FORP for(int p=0;p<N;p++)
//define functions
void derivs(long double[N][I][D], long double[N][I][D]);
void dy(long double[N][I][D], long double[N][I][D],long double[N][I][D]);
void recenter(long double [N][I][D]);
long double randfunc(long double,long double,int);
long double POW(long double);
int main(){
//create arrays
long double y[N][I][D];
long double dydt[N][I][D];
long double deltay[N][I][D];
//random stuff
int RANDSEED = 25258;
//create time variables
double t,tau,tstart,trun;
double tf = 500; //final time
FORN{
FORD{
int seed = (RANDSEED)*(n+1)*(d+1);
y[n][0][d] = randfunc(-rinit,rinit,seed);
y[n][1][d] = randfunc(-vinit,vinit,seed);
}
}
//file setup
FILE* fptr;
fptr = fopen("body_cords.dat","w+");
//beginning output
std::cout << "Program beginning. Final t: " << tf << "\n"; //prints output for user
tstart = omp_get_wtime(); //for recording program runtime
for(t = 0;t<tf;t+=dt){
//update the values
dy(y,dydt,deltay);
FORN{
FORI{
FORD{
y[n][i][d] += deltay[n][i][d];
}
}
}
if(t>=tau){//prints to file
tau += dtao;
fprintf(fptr,"%lf ",t); //prints time
if(CENTER == 1)recenter(y); //re-centers if desired setting is there
FORN{
FORD{
fprintf(fptr,"%Lf ",y[n][0][d]); //prints positions of all bodies
}
}
fprintf(fptr,"\n");
std::cout << "Current Program Time:" << t << "\n"; //prints current time to user
}
}
trun = omp_get_wtime() - tstart; //find the time the program ran for
std::cout << "Program completed. The program took " << trun << " seconds. \n";
}
long double POW(long double x){
return(x*x);
}
long double randfunc(long double lbound, long double ubound,int seed){
srandom(seed);//random number seed
const long max_rand = 1000000;
return lbound + (ubound-lbound) * (random()%max_rand)/max_rand;
}
void recenter(long double y[N][I][D]){
long double sum[D];
long double avg[D];
FORN{
FORD{
sum[d] += y[n][0][d]; //finds the sum in each direction
}
}
FORD{
avg[d] = sum[d]/N;//calculates the center of mass for the system
}
FORD{
FORN{
y[n][0][d] -= avg[d]; //moves the bodies so they are in the center of the cord system
}
}
}
void dy(long double y[N][I][D], long double dydt[N][I][D], long double deltay[N][I][D]){ //the function where we numerically integrate
//temporary variables for RK4 use
long double f1[N][I][D];
long double f2[N][I][D];
long double f3[N][I][D];
long double f4[N][I][D];
long double df1[N][I][D];
long double df2[N][I][D];
long double df3[N][I][D];
long double df4[N][I][D];
omp_set_num_threads(nthreads);
#pragma omp parallel
{
#pragma omp single
{ derivs(y,dydt); } //first step calc
#pragma omp for collapse(3)
FORN{
FORI{
FORD{
f1[n][i][d] = y[n][i][d]; //first RK
}
}
}
#pragma omp single
{ derivs(f1,df1); } //second step calc
#pragma omp for collapse(3)
FORN{
FORI{
FORD{
f2[n][i][d] = y[n][i][d] + df1[n][i][d] * dt/2; //second RK
}
}
}
#pragma omp single
{ derivs(f2,df2); } //third step calc
#pragma omp for collapse(3)
FORN{
FORI{
FORD{
f3[n][i][d] = y[n][i][d] + df2[n][i][d] * dt/2;//third RK
}
}
}
#pragma omp single
{ derivs(f3,df3); }//fourth step calc
#pragma omp for collapse(3)
FORN{
FORI{
FORD{
f4[n][i][d] = y[n][i][d] + df3[n][i][d] * dt;//final RK
}
}
}
#pragma omp single
{ derivs(f4,df4); }//final calc
#pragma omp for collapse(3)
FORN{
FORI{
FORD{
deltay[n][i][d] = (1./6.) * (df1[n][i][d] + 2 * df2[n][i][d] + 2 * df3[n][i][d] + df4[n][i][d]) * dt; //weighted avrage
}
}
}
}
}
void derivs(long double y[N][I][D],long double dydt[N][I][D]){ //the function where the physics lives
long double r[N][D][D];//vector between bodies
long double sqmag[N][N];//square magnitude of r
long double mag[N][N]; //magnitude of r
long double rhat[N][N][D];//unit vectors of r
long double fmag[N][N]; //magnitude of gravitational force between two given bodies
omp_set_num_threads(nthreads);
#pragma omp parallel
{
#pragma omp for collapse(3)
FORN{
FORI{
FORD{
dydt[n][i][d] = 0; // clears the dydt array
}
}
}
#pragma omp nowait
#pragma omp for collapse(2)
FORN{
FORP{
sqmag[n][p] = 0; //clears sqmag variable
}
}
#pragma omp for collapse(2)
FORN{
FORD{
dydt[n][0][d] = y[n][1][d]; //change in position from velocity
}
}
#pragma omp nowait
#pragma omp for collapse(3)
FORN{
FORP{
FORD{
r[n][p][d] = y[p][0][d] - y[n][0][d]; //finds the position vectors between pairs of bodies
}
}
}
#pragma omp for collapse(3)
FORN{
FORP{
FORD{
sqmag[n][p] += POW(r[n][p][d]); //calculates the square magnitude of the r vector
}
}
}
#pragma omp for collapse(2)
FORN{
FORP{
mag[n][p] = sqrt(sqmag[n][p]); //calculates the magnitude of the r vector
}
}
#pragma omp for collapse(3)
FORN{
FORP{
FORD{
if(p!=n){
rhat[n][p][d] = r[n][p][d]/mag[n][p];
}
}
}
}
#pragma omp nowait
#pragma omp for collapse(2)
FORN{
FORP{
if(p!=n){
fmag[n][p] = (G*M*M)/mag[n][p]; //acceleration
}
}
}
#pragma omp for collapse(3)
FORN{
FORD{
FORP{
if(p!=n){
dydt[n][1][d] = (fmag[n][p]/M)*(rhat[n][p][d]*0.5); //change velocity from force data
}
}
}
}
}
}