Skip to content

Latest commit

 

History

History
45 lines (35 loc) · 2.13 KB

File metadata and controls

45 lines (35 loc) · 2.13 KB

Comparing Anomaly-Detection Algorithms for Keystroke Dynamics

What is keystroke dynamics (or keystroke biometrics)?

  • study of whether people can be distinguished by their typing rhythms.

Applications

  • acting as an electronic fingerprint
  • access-control and authentication mechanism
  • detecting computer-based crimes

Existing work

Comparing Anomaly-Detection Algorithms for Keystroke Dynamics

Data

Refer to DataDescription.txt

Detectors implemented and Results

Detector Average Equal-Error Rate Standard deviation of EER
Manhattan Scaled Detector 0.0945 0.068375
Outlier Count (z-score) 0.103167 0.07691
Nearest Neighbor (Mahalanobis) 0.1075 0.06213
SVM (one-class) 0.12068 0.0586
Manhattan Filtered 0.12535 0.081299
Mahalanobis 0.1337 0.06678
Mahalanobis Normed 0.1337 0.06678
Manhattan 0.15 0.09
K-Means 0.1559 0.072
Neural Network (auto-assoc) 0.16417 0.0914199
Euclidean 0.16929 0.0931429
Euclidean Normed 0.2107 0.1174
Neural Network (standard) 0.6551 0.1866

Files for detectors

  • Neural Network (standard) - NeuratNetStandardDetector.ipynb
  • Neural Network (auto-assoc) - NeuratNetAutoAssocDetector.ipynb
  • Svm - svm.ipynb
  • KMeans - kmeans.ipynb
  • Other detectors - KeystrokeDynamics.ipynb