- study of whether people can be distinguished by their typing rhythms.
- acting as an electronic fingerprint
- access-control and authentication mechanism
- detecting computer-based crimes
Comparing Anomaly-Detection Algorithms for Keystroke Dynamics
Refer to DataDescription.txt
Detector | Average Equal-Error Rate | Standard deviation of EER |
---|---|---|
Manhattan Scaled Detector | 0.0945 | 0.068375 |
Outlier Count (z-score) | 0.103167 | 0.07691 |
Nearest Neighbor (Mahalanobis) | 0.1075 | 0.06213 |
SVM (one-class) | 0.12068 | 0.0586 |
Manhattan Filtered | 0.12535 | 0.081299 |
Mahalanobis | 0.1337 | 0.06678 |
Mahalanobis Normed | 0.1337 | 0.06678 |
Manhattan | 0.15 | 0.09 |
K-Means | 0.1559 | 0.072 |
Neural Network (auto-assoc) | 0.16417 | 0.0914199 |
Euclidean | 0.16929 | 0.0931429 |
Euclidean Normed | 0.2107 | 0.1174 |
Neural Network (standard) | 0.6551 | 0.1866 |
- Neural Network (standard) - NeuratNetStandardDetector.ipynb
- Neural Network (auto-assoc) - NeuratNetAutoAssocDetector.ipynb
- Svm - svm.ipynb
- KMeans - kmeans.ipynb
- Other detectors - KeystrokeDynamics.ipynb