-
Notifications
You must be signed in to change notification settings - Fork 1
/
FPMul.v
563 lines (547 loc) · 24.8 KB
/
FPMul.v
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
// megafunction wizard: %ALTFP_MULT%
// GENERATION: STANDARD
// VERSION: WM1.0
// MODULE: ALTFP_MULT
// ============================================================
// File Name: FPMul.v
// Megafunction Name(s):
// ALTFP_MULT
//
// Simulation Library Files(s):
// lpm
// ============================================================
// ************************************************************
// THIS IS A WIZARD-GENERATED FILE. DO NOT EDIT THIS FILE!
//
// 12.1 Build 177 11/07/2012 SJ Full Version
// ************************************************************
//Copyright (C) 1991-2012 Altera Corporation
//Your use of Altera Corporation's design tools, logic functions
//and other software and tools, and its AMPP partner logic
//functions, and any output files from any of the foregoing
//(including device programming or simulation files), and any
//associated documentation or information are expressly subject
//to the terms and conditions of the Altera Program License
//Subscription Agreement, Altera MegaCore Function License
//Agreement, or other applicable license agreement, including,
//without limitation, that your use is for the sole purpose of
//programming logic devices manufactured by Altera and sold by
//Altera or its authorized distributors. Please refer to the
//applicable agreement for further details.
//altfp_mult CBX_AUTO_BLACKBOX="ALL" DEDICATED_MULTIPLIER_CIRCUITRY="YES" DENORMAL_SUPPORT="NO" DEVICE_FAMILY="Stratix III" EXCEPTION_HANDLING="NO" PIPELINE=5 REDUCED_FUNCTIONALITY="NO" ROUNDING="TO_NEAREST" WIDTH_EXP=8 WIDTH_MAN=23 clock dataa datab result
//VERSION_BEGIN 12.1 cbx_alt_ded_mult_y 2012:11:07:18:03:51:SJ cbx_altbarrel_shift 2012:11:07:18:03:51:SJ cbx_altera_mult_add 2012:11:07:18:03:51:SJ cbx_altfp_mult 2012:11:07:18:03:51:SJ cbx_altmult_add 2012:11:07:18:03:51:SJ cbx_cycloneii 2012:11:07:18:03:51:SJ cbx_lpm_add_sub 2012:11:07:18:03:51:SJ cbx_lpm_compare 2012:11:07:18:03:51:SJ cbx_lpm_mult 2012:11:07:18:03:51:SJ cbx_mgl 2012:11:07:18:06:30:SJ cbx_padd 2012:11:07:18:03:51:SJ cbx_parallel_add 2012:11:07:18:03:51:SJ cbx_stratix 2012:11:07:18:03:51:SJ cbx_stratixii 2012:11:07:18:03:51:SJ cbx_util_mgl 2012:11:07:18:03:51:SJ VERSION_END
// synthesis VERILOG_INPUT_VERSION VERILOG_2001
// altera message_off 10463
//synthesis_resources = lpm_add_sub 4 lpm_mult 1 reg 136
//synopsys translate_off
`timescale 1 ps / 1 ps
//synopsys translate_on
module FPMul_altfp_mult_mrn
(
clock,
dataa,
datab,
result) ;
input clock;
input [31:0] dataa;
input [31:0] datab;
output [31:0] result;
reg dataa_exp_all_one_ff_p1;
reg dataa_exp_not_zero_ff_p1;
reg dataa_man_not_zero_ff_p1;
reg dataa_man_not_zero_ff_p2;
reg datab_exp_all_one_ff_p1;
reg datab_exp_not_zero_ff_p1;
reg datab_man_not_zero_ff_p1;
reg datab_man_not_zero_ff_p2;
reg [9:0] delay_exp2_bias;
reg [9:0] delay_exp_bias;
reg delay_man_product_msb;
reg delay_man_product_msb_p0;
reg [8:0] exp_add_p1;
reg [7:0] exp_result_ff;
reg input_is_infinity_dffe_0;
reg input_is_infinity_dffe_1;
reg input_is_infinity_ff1;
reg input_is_nan_dffe_0;
reg input_is_nan_dffe_1;
reg input_is_nan_ff1;
reg input_not_zero_dffe_0;
reg input_not_zero_dffe_1;
reg input_not_zero_ff1;
reg lsb_dffe;
reg [22:0] man_result_ff;
reg [23:0] man_round_p;
reg [24:0] man_round_p2;
reg round_dffe;
reg [0:0] sign_node_ff0;
reg [0:0] sign_node_ff1;
reg [0:0] sign_node_ff2;
reg [0:0] sign_node_ff3;
reg [0:0] sign_node_ff4;
reg sticky_dffe;
wire [8:0] wire_exp_add_adder_result;
wire [9:0] wire_exp_adj_adder_result;
wire [9:0] wire_exp_bias_subtr_result;
wire [24:0] wire_man_round_adder_result;
wire [47:0] wire_man_product2_mult_result;
wire aclr;
wire [9:0] bias;
wire clk_en;
wire [7:0] dataa_exp_all_one;
wire [7:0] dataa_exp_not_zero;
wire [22:0] dataa_man_not_zero;
wire [7:0] datab_exp_all_one;
wire [7:0] datab_exp_not_zero;
wire [22:0] datab_man_not_zero;
wire exp_is_inf;
wire exp_is_zero;
wire [9:0] expmod;
wire [7:0] inf_num;
wire lsb_bit;
wire [23:0] man_result_round;
wire [24:0] man_shift_full;
wire [7:0] result_exp_all_one;
wire [8:0] result_exp_not_zero;
wire round_bit;
wire round_carry;
wire [22:0] sticky_bit;
// synopsys translate_off
initial
dataa_exp_all_one_ff_p1 = 0;
// synopsys translate_on
always @ ( posedge clock or posedge aclr)
if (aclr == 1'b1) dataa_exp_all_one_ff_p1 <= 1'b0;
else if (clk_en == 1'b1) dataa_exp_all_one_ff_p1 <= dataa_exp_all_one[7];
// synopsys translate_off
initial
dataa_exp_not_zero_ff_p1 = 0;
// synopsys translate_on
always @ ( posedge clock or posedge aclr)
if (aclr == 1'b1) dataa_exp_not_zero_ff_p1 <= 1'b0;
else if (clk_en == 1'b1) dataa_exp_not_zero_ff_p1 <= dataa_exp_not_zero[7];
// synopsys translate_off
initial
dataa_man_not_zero_ff_p1 = 0;
// synopsys translate_on
always @ ( posedge clock or posedge aclr)
if (aclr == 1'b1) dataa_man_not_zero_ff_p1 <= 1'b0;
else if (clk_en == 1'b1) dataa_man_not_zero_ff_p1 <= dataa_man_not_zero[10];
// synopsys translate_off
initial
dataa_man_not_zero_ff_p2 = 0;
// synopsys translate_on
always @ ( posedge clock or posedge aclr)
if (aclr == 1'b1) dataa_man_not_zero_ff_p2 <= 1'b0;
else if (clk_en == 1'b1) dataa_man_not_zero_ff_p2 <= dataa_man_not_zero[22];
// synopsys translate_off
initial
datab_exp_all_one_ff_p1 = 0;
// synopsys translate_on
always @ ( posedge clock or posedge aclr)
if (aclr == 1'b1) datab_exp_all_one_ff_p1 <= 1'b0;
else if (clk_en == 1'b1) datab_exp_all_one_ff_p1 <= datab_exp_all_one[7];
// synopsys translate_off
initial
datab_exp_not_zero_ff_p1 = 0;
// synopsys translate_on
always @ ( posedge clock or posedge aclr)
if (aclr == 1'b1) datab_exp_not_zero_ff_p1 <= 1'b0;
else if (clk_en == 1'b1) datab_exp_not_zero_ff_p1 <= datab_exp_not_zero[7];
// synopsys translate_off
initial
datab_man_not_zero_ff_p1 = 0;
// synopsys translate_on
always @ ( posedge clock or posedge aclr)
if (aclr == 1'b1) datab_man_not_zero_ff_p1 <= 1'b0;
else if (clk_en == 1'b1) datab_man_not_zero_ff_p1 <= datab_man_not_zero[10];
// synopsys translate_off
initial
datab_man_not_zero_ff_p2 = 0;
// synopsys translate_on
always @ ( posedge clock or posedge aclr)
if (aclr == 1'b1) datab_man_not_zero_ff_p2 <= 1'b0;
else if (clk_en == 1'b1) datab_man_not_zero_ff_p2 <= datab_man_not_zero[22];
// synopsys translate_off
initial
delay_exp2_bias = 0;
// synopsys translate_on
always @ ( posedge clock or posedge aclr)
if (aclr == 1'b1) delay_exp2_bias <= 10'b0;
else if (clk_en == 1'b1) delay_exp2_bias <= delay_exp_bias;
// synopsys translate_off
initial
delay_exp_bias = 0;
// synopsys translate_on
always @ ( posedge clock or posedge aclr)
if (aclr == 1'b1) delay_exp_bias <= 10'b0;
else if (clk_en == 1'b1) delay_exp_bias <= wire_exp_bias_subtr_result;
// synopsys translate_off
initial
delay_man_product_msb = 0;
// synopsys translate_on
always @ ( posedge clock or posedge aclr)
if (aclr == 1'b1) delay_man_product_msb <= 1'b0;
else if (clk_en == 1'b1) delay_man_product_msb <= delay_man_product_msb_p0;
// synopsys translate_off
initial
delay_man_product_msb_p0 = 0;
// synopsys translate_on
always @ ( posedge clock or posedge aclr)
if (aclr == 1'b1) delay_man_product_msb_p0 <= 1'b0;
else if (clk_en == 1'b1) delay_man_product_msb_p0 <= wire_man_product2_mult_result[47];
// synopsys translate_off
initial
exp_add_p1 = 0;
// synopsys translate_on
always @ ( posedge clock or posedge aclr)
if (aclr == 1'b1) exp_add_p1 <= 9'b0;
else if (clk_en == 1'b1) exp_add_p1 <= wire_exp_add_adder_result;
// synopsys translate_off
initial
exp_result_ff = 0;
// synopsys translate_on
always @ ( posedge clock or posedge aclr)
if (aclr == 1'b1) exp_result_ff <= 8'b0;
else if (clk_en == 1'b1) exp_result_ff <= ((inf_num & {8{((exp_is_inf | input_is_infinity_ff1) | input_is_nan_ff1)}}) | ((wire_exp_adj_adder_result[7:0] & {8{(~ exp_is_zero)}}) & {8{input_not_zero_ff1}}));
// synopsys translate_off
initial
input_is_infinity_dffe_0 = 0;
// synopsys translate_on
always @ ( posedge clock or posedge aclr)
if (aclr == 1'b1) input_is_infinity_dffe_0 <= 1'b0;
else if (clk_en == 1'b1) input_is_infinity_dffe_0 <= ((dataa_exp_all_one_ff_p1 & (~ (dataa_man_not_zero_ff_p1 | dataa_man_not_zero_ff_p2))) | (datab_exp_all_one_ff_p1 & (~ (datab_man_not_zero_ff_p1 | datab_man_not_zero_ff_p2))));
// synopsys translate_off
initial
input_is_infinity_dffe_1 = 0;
// synopsys translate_on
always @ ( posedge clock or posedge aclr)
if (aclr == 1'b1) input_is_infinity_dffe_1 <= 1'b0;
else if (clk_en == 1'b1) input_is_infinity_dffe_1 <= input_is_infinity_dffe_0;
// synopsys translate_off
initial
input_is_infinity_ff1 = 0;
// synopsys translate_on
always @ ( posedge clock or posedge aclr)
if (aclr == 1'b1) input_is_infinity_ff1 <= 1'b0;
else if (clk_en == 1'b1) input_is_infinity_ff1 <= input_is_infinity_dffe_1;
// synopsys translate_off
initial
input_is_nan_dffe_0 = 0;
// synopsys translate_on
always @ ( posedge clock or posedge aclr)
if (aclr == 1'b1) input_is_nan_dffe_0 <= 1'b0;
else if (clk_en == 1'b1) input_is_nan_dffe_0 <= ((dataa_exp_all_one_ff_p1 & (dataa_man_not_zero_ff_p1 | dataa_man_not_zero_ff_p2)) | (datab_exp_all_one_ff_p1 & (datab_man_not_zero_ff_p1 | datab_man_not_zero_ff_p2)));
// synopsys translate_off
initial
input_is_nan_dffe_1 = 0;
// synopsys translate_on
always @ ( posedge clock or posedge aclr)
if (aclr == 1'b1) input_is_nan_dffe_1 <= 1'b0;
else if (clk_en == 1'b1) input_is_nan_dffe_1 <= input_is_nan_dffe_0;
// synopsys translate_off
initial
input_is_nan_ff1 = 0;
// synopsys translate_on
always @ ( posedge clock or posedge aclr)
if (aclr == 1'b1) input_is_nan_ff1 <= 1'b0;
else if (clk_en == 1'b1) input_is_nan_ff1 <= input_is_nan_dffe_1;
// synopsys translate_off
initial
input_not_zero_dffe_0 = 0;
// synopsys translate_on
always @ ( posedge clock or posedge aclr)
if (aclr == 1'b1) input_not_zero_dffe_0 <= 1'b0;
else if (clk_en == 1'b1) input_not_zero_dffe_0 <= (dataa_exp_not_zero_ff_p1 & datab_exp_not_zero_ff_p1);
// synopsys translate_off
initial
input_not_zero_dffe_1 = 0;
// synopsys translate_on
always @ ( posedge clock or posedge aclr)
if (aclr == 1'b1) input_not_zero_dffe_1 <= 1'b0;
else if (clk_en == 1'b1) input_not_zero_dffe_1 <= input_not_zero_dffe_0;
// synopsys translate_off
initial
input_not_zero_ff1 = 0;
// synopsys translate_on
always @ ( posedge clock or posedge aclr)
if (aclr == 1'b1) input_not_zero_ff1 <= 1'b0;
else if (clk_en == 1'b1) input_not_zero_ff1 <= input_not_zero_dffe_1;
// synopsys translate_off
initial
lsb_dffe = 0;
// synopsys translate_on
always @ ( posedge clock or posedge aclr)
if (aclr == 1'b1) lsb_dffe <= 1'b0;
else if (clk_en == 1'b1) lsb_dffe <= lsb_bit;
// synopsys translate_off
initial
man_result_ff = 0;
// synopsys translate_on
always @ ( posedge clock or posedge aclr)
if (aclr == 1'b1) man_result_ff <= 23'b0;
else if (clk_en == 1'b1) man_result_ff <= {((((((man_result_round[22] & input_not_zero_ff1) & (~ input_is_infinity_ff1)) & (~ exp_is_inf)) & (~ exp_is_zero)) | (input_is_infinity_ff1 & (~ input_not_zero_ff1))) | input_is_nan_ff1), (((((man_result_round[21:0] & {22{input_not_zero_ff1}}) & {22{(~ input_is_infinity_ff1)}}) & {22{(~ exp_is_inf)}}) & {22{(~ exp_is_zero)}}) & {22{(~ input_is_nan_ff1)}})};
// synopsys translate_off
initial
man_round_p = 0;
// synopsys translate_on
always @ ( posedge clock or posedge aclr)
if (aclr == 1'b1) man_round_p <= 24'b0;
else if (clk_en == 1'b1) man_round_p <= man_shift_full[24:1];
// synopsys translate_off
initial
man_round_p2 = 0;
// synopsys translate_on
always @ ( posedge clock or posedge aclr)
if (aclr == 1'b1) man_round_p2 <= 25'b0;
else if (clk_en == 1'b1) man_round_p2 <= wire_man_round_adder_result;
// synopsys translate_off
initial
round_dffe = 0;
// synopsys translate_on
always @ ( posedge clock or posedge aclr)
if (aclr == 1'b1) round_dffe <= 1'b0;
else if (clk_en == 1'b1) round_dffe <= round_bit;
// synopsys translate_off
initial
sign_node_ff0 = 0;
// synopsys translate_on
always @ ( posedge clock or posedge aclr)
if (aclr == 1'b1) sign_node_ff0 <= 1'b0;
else if (clk_en == 1'b1) sign_node_ff0 <= (dataa[31] ^ datab[31]);
// synopsys translate_off
initial
sign_node_ff1 = 0;
// synopsys translate_on
always @ ( posedge clock or posedge aclr)
if (aclr == 1'b1) sign_node_ff1 <= 1'b0;
else if (clk_en == 1'b1) sign_node_ff1 <= sign_node_ff0[0:0];
// synopsys translate_off
initial
sign_node_ff2 = 0;
// synopsys translate_on
always @ ( posedge clock or posedge aclr)
if (aclr == 1'b1) sign_node_ff2 <= 1'b0;
else if (clk_en == 1'b1) sign_node_ff2 <= sign_node_ff1[0:0];
// synopsys translate_off
initial
sign_node_ff3 = 0;
// synopsys translate_on
always @ ( posedge clock or posedge aclr)
if (aclr == 1'b1) sign_node_ff3 <= 1'b0;
else if (clk_en == 1'b1) sign_node_ff3 <= sign_node_ff2[0:0];
// synopsys translate_off
initial
sign_node_ff4 = 0;
// synopsys translate_on
always @ ( posedge clock or posedge aclr)
if (aclr == 1'b1) sign_node_ff4 <= 1'b0;
else if (clk_en == 1'b1) sign_node_ff4 <= sign_node_ff3[0:0];
// synopsys translate_off
initial
sticky_dffe = 0;
// synopsys translate_on
always @ ( posedge clock or posedge aclr)
if (aclr == 1'b1) sticky_dffe <= 1'b0;
else if (clk_en == 1'b1) sticky_dffe <= sticky_bit[22];
lpm_add_sub exp_add_adder
(
.aclr(aclr),
.cin(1'b0),
.clken(clk_en),
.clock(clock),
.cout(),
.dataa({1'b0, dataa[30:23]}),
.datab({1'b0, datab[30:23]}),
.overflow(),
.result(wire_exp_add_adder_result)
`ifndef FORMAL_VERIFICATION
// synopsys translate_off
`endif
,
.add_sub(1'b1)
`ifndef FORMAL_VERIFICATION
// synopsys translate_on
`endif
);
defparam
exp_add_adder.lpm_pipeline = 1,
exp_add_adder.lpm_width = 9,
exp_add_adder.lpm_type = "lpm_add_sub";
lpm_add_sub exp_adj_adder
(
.cin(1'b0),
.cout(),
.dataa(delay_exp2_bias),
.datab(expmod),
.overflow(),
.result(wire_exp_adj_adder_result)
`ifndef FORMAL_VERIFICATION
// synopsys translate_off
`endif
,
.aclr(1'b0),
.add_sub(1'b1),
.clken(1'b1),
.clock(1'b0)
`ifndef FORMAL_VERIFICATION
// synopsys translate_on
`endif
);
defparam
exp_adj_adder.lpm_width = 10,
exp_adj_adder.lpm_type = "lpm_add_sub";
lpm_add_sub exp_bias_subtr
(
.cout(),
.dataa({1'b0, exp_add_p1[8:0]}),
.datab({bias[9:0]}),
.overflow(),
.result(wire_exp_bias_subtr_result)
`ifndef FORMAL_VERIFICATION
// synopsys translate_off
`endif
,
.aclr(1'b0),
.add_sub(1'b1),
.cin(),
.clken(1'b1),
.clock(1'b0)
`ifndef FORMAL_VERIFICATION
// synopsys translate_on
`endif
);
defparam
exp_bias_subtr.lpm_direction = "SUB",
exp_bias_subtr.lpm_pipeline = 0,
exp_bias_subtr.lpm_representation = "UNSIGNED",
exp_bias_subtr.lpm_width = 10,
exp_bias_subtr.lpm_type = "lpm_add_sub";
lpm_add_sub man_round_adder
(
.cout(),
.dataa({1'b0, man_round_p}),
.datab({{24{1'b0}}, round_carry}),
.overflow(),
.result(wire_man_round_adder_result)
`ifndef FORMAL_VERIFICATION
// synopsys translate_off
`endif
,
.aclr(1'b0),
.add_sub(1'b1),
.cin(),
.clken(1'b1),
.clock(1'b0)
`ifndef FORMAL_VERIFICATION
// synopsys translate_on
`endif
);
defparam
man_round_adder.lpm_pipeline = 0,
man_round_adder.lpm_width = 25,
man_round_adder.lpm_type = "lpm_add_sub";
lpm_mult man_product2_mult
(
.aclr(aclr),
.clken(clk_en),
.clock(clock),
.dataa({1'b1, dataa[22:0]}),
.datab({1'b1, datab[22:0]}),
.result(wire_man_product2_mult_result)
`ifndef FORMAL_VERIFICATION
// synopsys translate_off
`endif
,
.sum({1{1'b0}})
`ifndef FORMAL_VERIFICATION
// synopsys translate_on
`endif
);
defparam
man_product2_mult.lpm_pipeline = 2,
man_product2_mult.lpm_representation = "UNSIGNED",
man_product2_mult.lpm_widtha = 24,
man_product2_mult.lpm_widthb = 24,
man_product2_mult.lpm_widthp = 48,
man_product2_mult.lpm_widths = 1,
man_product2_mult.lpm_type = "lpm_mult",
man_product2_mult.lpm_hint = "DEDICATED_MULTIPLIER_CIRCUITRY=YES";
assign
aclr = 1'b0,
bias = {{3{1'b0}}, {7{1'b1}}},
clk_en = 1'b1,
dataa_exp_all_one = {(dataa[30] & dataa_exp_all_one[6]), (dataa[29] & dataa_exp_all_one[5]), (dataa[28] & dataa_exp_all_one[4]), (dataa[27] & dataa_exp_all_one[3]), (dataa[26] & dataa_exp_all_one[2]), (dataa[25] & dataa_exp_all_one[1]), (dataa[24] & dataa_exp_all_one[0]), dataa[23]},
dataa_exp_not_zero = {(dataa[30] | dataa_exp_not_zero[6]), (dataa[29] | dataa_exp_not_zero[5]), (dataa[28] | dataa_exp_not_zero[4]), (dataa[27] | dataa_exp_not_zero[3]), (dataa[26] | dataa_exp_not_zero[2]), (dataa[25] | dataa_exp_not_zero[1]), (dataa[24] | dataa_exp_not_zero[0]), dataa[23]},
dataa_man_not_zero = {(dataa[22] | dataa_man_not_zero[21]), (dataa[21] | dataa_man_not_zero[20]), (dataa[20] | dataa_man_not_zero[19]), (dataa[19] | dataa_man_not_zero[18]), (dataa[18] | dataa_man_not_zero[17]), (dataa[17] | dataa_man_not_zero[16]), (dataa[16] | dataa_man_not_zero[15]), (dataa[15] | dataa_man_not_zero[14]), (dataa[14] | dataa_man_not_zero[13]), (dataa[13] | dataa_man_not_zero[12]), (dataa[12] | dataa_man_not_zero[11]), dataa[11], (dataa[10] | dataa_man_not_zero[9]), (dataa[9] | dataa_man_not_zero[8]), (dataa[8] | dataa_man_not_zero[7]), (dataa[7] | dataa_man_not_zero[6]), (dataa[6] | dataa_man_not_zero[5]), (dataa[5] | dataa_man_not_zero[4]), (dataa[4] | dataa_man_not_zero[3]), (dataa[3] | dataa_man_not_zero[2]), (dataa[2] | dataa_man_not_zero[1]), (dataa[1] | dataa_man_not_zero[0]), dataa[0]},
datab_exp_all_one = {(datab[30] & datab_exp_all_one[6]), (datab[29] & datab_exp_all_one[5]), (datab[28] & datab_exp_all_one[4]), (datab[27] & datab_exp_all_one[3]), (datab[26] & datab_exp_all_one[2]), (datab[25] & datab_exp_all_one[1]), (datab[24] & datab_exp_all_one[0]), datab[23]},
datab_exp_not_zero = {(datab[30] | datab_exp_not_zero[6]), (datab[29] | datab_exp_not_zero[5]), (datab[28] | datab_exp_not_zero[4]), (datab[27] | datab_exp_not_zero[3]), (datab[26] | datab_exp_not_zero[2]), (datab[25] | datab_exp_not_zero[1]), (datab[24] | datab_exp_not_zero[0]), datab[23]},
datab_man_not_zero = {(datab[22] | datab_man_not_zero[21]), (datab[21] | datab_man_not_zero[20]), (datab[20] | datab_man_not_zero[19]), (datab[19] | datab_man_not_zero[18]), (datab[18] | datab_man_not_zero[17]), (datab[17] | datab_man_not_zero[16]), (datab[16] | datab_man_not_zero[15]), (datab[15] | datab_man_not_zero[14]), (datab[14] | datab_man_not_zero[13]), (datab[13] | datab_man_not_zero[12]), (datab[12] | datab_man_not_zero[11]), datab[11], (datab[10] | datab_man_not_zero[9]), (datab[9] | datab_man_not_zero[8]), (datab[8] | datab_man_not_zero[7]), (datab[7] | datab_man_not_zero[6]), (datab[6] | datab_man_not_zero[5]), (datab[5] | datab_man_not_zero[4]), (datab[4] | datab_man_not_zero[3]), (datab[3] | datab_man_not_zero[2]), (datab[2] | datab_man_not_zero[1]), (datab[1] | datab_man_not_zero[0]), datab[0]},
exp_is_inf = (((~ wire_exp_adj_adder_result[9]) & wire_exp_adj_adder_result[8]) | ((~ wire_exp_adj_adder_result[8]) & result_exp_all_one[7])),
exp_is_zero = (wire_exp_adj_adder_result[9] | (~ result_exp_not_zero[8])),
expmod = {{8{1'b0}}, (delay_man_product_msb & man_round_p2[24]), (delay_man_product_msb ^ man_round_p2[24])},
inf_num = {8{1'b1}},
lsb_bit = man_shift_full[1],
man_result_round = ((man_round_p2[23:0] & {24{(~ man_round_p2[24])}}) | (man_round_p2[24:1] & {24{man_round_p2[24]}})),
man_shift_full = ((wire_man_product2_mult_result[46:22] & {25{(~ wire_man_product2_mult_result[47])}}) | (wire_man_product2_mult_result[47:23] & {25{wire_man_product2_mult_result[47]}})),
result = {sign_node_ff4[0:0], exp_result_ff[7:0], man_result_ff[22:0]},
result_exp_all_one = {(result_exp_all_one[6] & wire_exp_adj_adder_result[7]), (result_exp_all_one[5] & wire_exp_adj_adder_result[6]), (result_exp_all_one[4] & wire_exp_adj_adder_result[5]), (result_exp_all_one[3] & wire_exp_adj_adder_result[4]), (result_exp_all_one[2] & wire_exp_adj_adder_result[3]), (result_exp_all_one[1] & wire_exp_adj_adder_result[2]), (result_exp_all_one[0] & wire_exp_adj_adder_result[1]), wire_exp_adj_adder_result[0]},
result_exp_not_zero = {(result_exp_not_zero[7] | wire_exp_adj_adder_result[8]), (result_exp_not_zero[6] | wire_exp_adj_adder_result[7]), (result_exp_not_zero[5] | wire_exp_adj_adder_result[6]), (result_exp_not_zero[4] | wire_exp_adj_adder_result[5]), (result_exp_not_zero[3] | wire_exp_adj_adder_result[4]), (result_exp_not_zero[2] | wire_exp_adj_adder_result[3]), (result_exp_not_zero[1] | wire_exp_adj_adder_result[2]), (result_exp_not_zero[0] | wire_exp_adj_adder_result[1]), wire_exp_adj_adder_result[0]},
round_bit = man_shift_full[0],
round_carry = (round_dffe & (lsb_dffe | sticky_dffe)),
sticky_bit = {(sticky_bit[21] | (wire_man_product2_mult_result[47] & wire_man_product2_mult_result[22])), (sticky_bit[20] | wire_man_product2_mult_result[21]), (sticky_bit[19] | wire_man_product2_mult_result[20]), (sticky_bit[18] | wire_man_product2_mult_result[19]), (sticky_bit[17] | wire_man_product2_mult_result[18]), (sticky_bit[16] | wire_man_product2_mult_result[17]), (sticky_bit[15] | wire_man_product2_mult_result[16]), (sticky_bit[14] | wire_man_product2_mult_result[15]), (sticky_bit[13] | wire_man_product2_mult_result[14]), (sticky_bit[12] | wire_man_product2_mult_result[13]), (sticky_bit[11] | wire_man_product2_mult_result[12]), (sticky_bit[10] | wire_man_product2_mult_result[11]), (sticky_bit[9] | wire_man_product2_mult_result[10]), (sticky_bit[8] | wire_man_product2_mult_result[9]), (sticky_bit[7] | wire_man_product2_mult_result[8]), (sticky_bit[6] | wire_man_product2_mult_result[7]), (sticky_bit[5] | wire_man_product2_mult_result[6]), (sticky_bit[4] | wire_man_product2_mult_result[5]), (sticky_bit[3] | wire_man_product2_mult_result[4]), (sticky_bit[2] | wire_man_product2_mult_result[3]), (sticky_bit[1] | wire_man_product2_mult_result[2]), (sticky_bit[0] | wire_man_product2_mult_result[1]), wire_man_product2_mult_result[0]};
endmodule //FPMul_altfp_mult_mrn
//VALID FILE
// synopsys translate_off
`timescale 1 ps / 1 ps
// synopsys translate_on
module FPMul (
clock,
dataa,
datab,
result);
input clock;
input [31:0] dataa;
input [31:0] datab;
output [31:0] result;
wire [31:0] sub_wire0;
wire [31:0] result = sub_wire0[31:0];
FPMul_altfp_mult_mrn FPMul_altfp_mult_mrn_component (
.clock (clock),
.dataa (dataa),
.datab (datab),
.result (sub_wire0));
endmodule
// ============================================================
// CNX file retrieval info
// ============================================================
// Retrieval info: LIBRARY: altera_mf altera_mf.altera_mf_components.all
// Retrieval info: PRIVATE: FPM_FORMAT STRING "Single"
// Retrieval info: PRIVATE: INTENDED_DEVICE_FAMILY STRING "Stratix III"
// Retrieval info: CONSTANT: DEDICATED_MULTIPLIER_CIRCUITRY STRING "YES"
// Retrieval info: CONSTANT: DENORMAL_SUPPORT STRING "NO"
// Retrieval info: CONSTANT: EXCEPTION_HANDLING STRING "NO"
// Retrieval info: CONSTANT: INTENDED_DEVICE_FAMILY STRING "UNUSED"
// Retrieval info: CONSTANT: LPM_HINT STRING "UNUSED"
// Retrieval info: CONSTANT: LPM_TYPE STRING "altfp_mult"
// Retrieval info: CONSTANT: PIPELINE NUMERIC "5"
// Retrieval info: CONSTANT: REDUCED_FUNCTIONALITY STRING "NO"
// Retrieval info: CONSTANT: ROUNDING STRING "TO_NEAREST"
// Retrieval info: CONSTANT: WIDTH_EXP NUMERIC "8"
// Retrieval info: CONSTANT: WIDTH_MAN NUMERIC "23"
// Retrieval info: USED_PORT: clock 0 0 0 0 INPUT NODEFVAL "clock"
// Retrieval info: CONNECT: @clock 0 0 0 0 clock 0 0 0 0
// Retrieval info: USED_PORT: dataa 0 0 32 0 INPUT NODEFVAL "dataa[31..0]"
// Retrieval info: CONNECT: @dataa 0 0 32 0 dataa 0 0 32 0
// Retrieval info: USED_PORT: datab 0 0 32 0 INPUT NODEFVAL "datab[31..0]"
// Retrieval info: CONNECT: @datab 0 0 32 0 datab 0 0 32 0
// Retrieval info: USED_PORT: result 0 0 32 0 OUTPUT NODEFVAL "result[31..0]"
// Retrieval info: CONNECT: result 0 0 32 0 @result 0 0 32 0
// Retrieval info: GEN_FILE: TYPE_NORMAL FPMul.v TRUE FALSE
// Retrieval info: GEN_FILE: TYPE_NORMAL FPMul.qip TRUE FALSE
// Retrieval info: GEN_FILE: TYPE_NORMAL FPMul.bsf FALSE TRUE
// Retrieval info: GEN_FILE: TYPE_NORMAL FPMul_inst.v FALSE TRUE
// Retrieval info: GEN_FILE: TYPE_NORMAL FPMul_bb.v TRUE TRUE
// Retrieval info: GEN_FILE: TYPE_NORMAL FPMul.inc FALSE TRUE
// Retrieval info: GEN_FILE: TYPE_NORMAL FPMul.cmp FALSE TRUE
// Retrieval info: LIB_FILE: lpm