forked from gorgonia/gorgonia
-
Notifications
You must be signed in to change notification settings - Fork 0
/
nn.go
580 lines (487 loc) · 16.9 KB
/
nn.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
package gorgonia
import (
"fmt"
"github.com/pkg/errors"
"gorgonia.org/gorgonia/internal/encoding"
"gorgonia.org/tensor"
)
// BinaryXent is a convenience function for doing binary crossentropy stuff.
// The formula is as below:
// -(y * logprob) + (1-y)(1-logprob)
func BinaryXent(output, target *Node) (retVal *Node, err error) {
var one *Node
var logO, omt, omo, tLogO *Node
// which constant one to use?
var dt tensor.Dtype
if dt, err = dtypeOf(output.t); err != nil {
return nil, errors.Wrapf(err, dtypeExtractionFail, output.t)
}
switch dt {
case Float64:
one = onef64
case Float32:
one = onef32
default:
return nil, errors.Errorf(nyiFail, "BinaryXEnt", dt)
}
if logO, err = Log(output); err != nil {
return nil, errors.Wrap(err, operationError)
}
if omt, err = Sub(one, target); err != nil {
return nil, errors.Wrap(err, operationError)
}
if omo, err = Sub(one, output); err != nil {
return nil, errors.Wrap(err, operationError)
}
if tLogO, err = HadamardProd(target, logO); err != nil {
return nil, errors.Wrap(err, operationError)
}
if retVal, err = Log(omo); err != nil {
return nil, errors.Wrap(err, operationError)
}
if retVal, err = HadamardProd(omt, retVal); err != nil {
return nil, errors.Wrap(err, operationError)
}
if retVal, err = Add(tLogO, retVal); err != nil {
return nil, errors.Wrap(err, operationError)
}
return Neg(retVal)
}
// Dropout is a convenience function to implement dropout.
// It uses randomly zeroes out a *Tensor with a probability drawn from
// a uniform distribution
func Dropout(x *Node, dropProb float64) (retVal *Node, err error) {
return dropout(x, dropProb, UniformRandomNode)
}
type dropoutRandFn func(g *ExprGraph, dt tensor.Dtype, low, high float64, shape ...int) *Node
func dropout(x *Node, dropProb float64, randFn dropoutRandFn) (retVal *Node, err error) {
if dropProb == 0.0 {
return x, nil
}
keepProb := 1.0 - dropProb
var dt tensor.Dtype
if dt, err = dtypeOf(x.t); err != nil {
return nil, errors.Wrap(err, dtypeOfFail)
}
var pr Value
switch dt {
case Float64:
pr, _ = anyToScalar(keepProb)
case Float32:
pr, _ = anyToScalar(float32(keepProb))
default:
return nil, errors.Errorf(nyiTypeFail, "Dropout()", dt)
}
p := NewConstant(pr)
m := randFn(x.g, dt, 0, 1, x.shape...)
if retVal, err = Lt(m, p, true); err != nil {
return nil, errors.Wrap(err, "Greater Than failed")
}
if retVal, err = HadamardProd(x, retVal); err != nil {
return nil, errors.Wrap(err, mulFail)
}
return HadamardDiv(retVal, p)
}
// LeakyRelu returns a node whose underlying value is:
// f(x) = alpha * x if x < 0
// f(x) = x for x ⩾ 0
// applied elementwise.
func LeakyRelu(x *Node, alpha float64) (*Node, error) {
var zero *Node
var dt tensor.Dtype
var err error
var alphaN *Node
// which zero to use?
if dt, err = dtypeOf(x.t); err != nil {
return nil, errors.Wrap(err, dtypeOfFail)
}
switch dt {
case Float64:
zero = zerof64
alphaN = NewConstant(alpha)
case Float32:
zero = zerof32
alphaN = NewConstant(float32(alpha))
default:
return nil, errors.Errorf(nyiFail, "ReLu", dt)
}
gteZeroOp := newElemBinOp(gteOpType, x, zero)
gteZeroOp.retSame = true
xGteZeroCmp, err := ApplyOp(gteZeroOp, x, zero)
if err != nil {
return nil, errors.Wrap(err, applyOpFail)
}
ltZeroOp := newElemBinOp(ltOpType, x, zero)
ltZeroOp.retSame = true
xLtZeroCmp, err := ApplyOp(ltZeroOp, x, zero)
if err != nil {
return nil, errors.Wrap(err, applyOpFail)
}
xGteZero, err := HadamardProd(x, xGteZeroCmp)
if err != nil {
return nil, errors.Wrap(err, applyOpFail)
}
xLtZero, err := HadamardProd(x, xLtZeroCmp)
if err != nil {
return nil, errors.Wrap(err, applyOpFail)
}
xLtZeroAlpha, err := HadamardProd(xLtZero, alphaN)
if err != nil {
return nil, errors.Wrap(err, applyOpFail)
}
return Add(xGteZero, xLtZeroAlpha)
}
// Rectify is a convenience function for creating rectified linear units activation functions.
// This function uses ⩾, which is the canonical version. If you want to use >, you can create
// your own by just following this.
func Rectify(x *Node) (retVal *Node, err error) {
var zero *Node
var dt tensor.Dtype
group := encoding.NewGroup("Rectify")
// which zero to use?
if dt, err = dtypeOf(x.t); err != nil {
return nil, errors.Wrap(err, dtypeOfFail)
}
switch dt {
case Float64:
zero = zerof64
case Float32:
zero = zerof32
default:
return nil, errors.Errorf(nyiFail, "ReLu", dt)
}
cmp := newElemBinOp(gteOpType, x, zero)
cmp.retSame = true
if retVal, err = ApplyOp(cmp, x, zero); err != nil {
return nil, errors.Wrap(err, applyOpFail)
}
retVal.groups = retVal.groups.Upsert(group)
return HadamardProd(x, retVal)
}
// Im2Col converts a BCHW image block to columns. The kernel, pad and stride parameter must be shape of size 2, no more no less
// This poor naming scheme clearly comes from matlab
func Im2Col(n *Node, kernel, pad, stride, dilation tensor.Shape) (retVal *Node, err error) {
if kernel.Dims() != 2 {
return nil, errors.Errorf("kernel shape is supposed to have a dim of 2")
}
if pad.Dims() != 2 {
return nil, errors.Errorf("pad is supposed to have a dim of 2")
}
if stride.Dims() != 2 {
return nil, errors.Errorf("strides is supposed to have a dim of 2")
}
if dilation.Dims() != 2 {
return nil, errors.Errorf("dilation is supposed to have a dim of 2")
}
if kernel[0] <= 0 || kernel[1] <= 0 {
return nil, errors.Errorf("cannot have negative or 0 in kernel shape")
}
if stride[0] <= 0 || stride[1] <= 0 {
return nil, errors.Errorf("cannot have negative or 0 in stride: %v", stride)
}
if pad[0] < 0 || pad[1] < 0 {
return nil, errors.Errorf("cannot have negative padding")
}
if dilation[0] <= 0 || dilation[1] <= 0 {
return nil, errors.Errorf("cannot have negative or 0 in dilation. %v", dilation)
}
op := makeIm2ColOp(kernel[0], kernel[1], pad[0], pad[1], stride[0], stride[1], dilation[0], dilation[1])
return ApplyOp(op, n)
}
// Conv2d is a simple 2D convolution, to be used for CPU computation only.
// If CuDNN is used, use the CUDAConv2D function.
// These are the properties the inputs must fulfil:
//
// - im: must have 4D shape. Expected format is BCHW (batch, channels, height, width)
// - filter: must have 4D shape: (batch, kernel, height, width)
// - kernelShape: shape of the filter kernel
// - pad: len(pad) == 2, defaults to []int{0, 0} if nil is passed
// - stride: len(stride) == 2, example: []int{1, 1}
// - dilation: len(dilation) == 2, defaults to []int{1, 1} if nil is passed
func Conv2d(im, filter *Node, kernelShape tensor.Shape, pad, stride, dilation []int) (retVal *Node, err error) {
group := encoding.NewGroup("Convolution")
// niceness for defaults
if pad == nil {
pad = []int{0, 0}
}
if dilation == nil {
dilation = []int{1, 1}
}
if im.Shape().Dims() != 4 {
return nil, fmt.Errorf("im should have 4 dims, got %v dims", im.Shape().Dims())
}
if filter.Shape().Dims() != 4 {
return nil, fmt.Errorf("filter should have 4 dims, got %v dims", filter.Shape().Dims())
}
// checks
for _, s := range stride {
if s <= 0 {
return nil, errors.Errorf("Cannot use strides of less than or equal 0: %v", stride)
}
}
for _, p := range pad {
if p < 0 {
return nil, errors.Errorf("Cannot use padding of less than 0: %v", pad)
}
}
for _, d := range dilation {
if d <= 0 {
return nil, errors.Errorf("Cannot use dilation less than or eq 0 %v", dilation)
}
}
var colIm *Node
if colIm, err = Im2Col(im, kernelShape, pad, stride, dilation); err != nil {
return nil, fmt.Errorf("Im2Col to failed: %w", err)
}
colIm.groups = colIm.groups.Upsert(group)
layer := filter.Shape()[0]
kernel := filter.Shape()[1]
row := filter.Shape()[2]
col := filter.Shape()[3]
if colIm.Shape()[3] != kernel*row*col {
return nil, fmt.Errorf("%d (kernel) * %d (width) * %d (height) must be %d, got %d", kernel, row, col, colIm.Shape()[3], kernel*row*col)
}
var flattened *Node
if flattened, err = Reshape(filter, tensor.Shape{layer, kernel * row * col}); err != nil {
return nil, fmt.Errorf("reshaping filter from %v to (%v, %v * %v * %v) failed: %w", filter.Shape(), layer, kernel, row, col, err)
}
flattened.groups = flattened.groups.Upsert(group)
// extract patch
batch := colIm.Shape()[0]
m := colIm.Shape()[1]
n := colIm.Shape()[2]
z := colIm.Shape()[3]
var patch, colImLayer *Node
if patch, err = Reshape(colIm, tensor.Shape{batch * m * n, z}); err != nil {
return nil, fmt.Errorf("reshaping colIm from %v to (%v * %v * %v * %v) failed: %w", colIm.Shape(), batch, m, n, z, err)
}
patch.groups = patch.groups.Upsert(group)
op := linAlgBinOp{
āBinaryOperator: matMulOperator,
transA: false,
transB: true,
}
if colImLayer, err = ApplyOp(op, patch, flattened); err != nil {
return nil, fmt.Errorf("failed to apply op: %w", err)
}
colImLayer.groups = colImLayer.groups.Upsert(group)
// now reshape and transpose the values back into the original order
var res *Node
if res, err = Reshape(colImLayer, tensor.Shape{batch, m, n, layer}); err != nil {
return nil, fmt.Errorf("failed to reshape %v to (%v, %v, %v, %v): %w", colImLayer.Shape(), batch, m, n, layer, err)
}
res.groups = res.groups.Upsert(group)
ret, err := Transpose(res, 0, 3, 1, 2)
if err != nil {
return nil, fmt.Errorf("transpose %v failed: %w", res.Shape(), err)
}
ret.groups = ret.groups.Upsert(group)
return ret, nil
}
// Conv1d is a 1D convlution. It relies on Conv2D
func Conv1d(in, filter *Node, kernel, pad, stride, dilation int) (*Node, error) {
return Conv2d(in, filter, tensor.Shape{1, kernel}, []int{0, pad}, []int{1, stride}, []int{1, dilation})
}
// MaxPool2D applies the kernel filter to the input node.
// The pad slice can have two different lengths.
//
// - if len(pad) == 2, padding is assume to be symetric, and a padding is adding up *and* down to each dimension
// paddedOutputH = pad[0] + inputH + pad[0]
// paddedOutputW = pad[1] + inputW + pad[1]
//
// - if len(pad) == 4, padding is explicit and can be asymmetric.
// paddedOutputH = pad[0] + inputH + pad[1]
// paddedOutputW = pad[2] + inputW + pad[3]
func MaxPool2D(x *Node, kernel tensor.Shape, pad, stride []int) (*Node, error) {
group := encoding.NewGroup("Maxpool")
xShape := x.Shape()
h, w := xShape[2], xShape[3]
kh, kw := kernel[0], kernel[1]
// check shape
if xShape.Dims() != 4 {
return nil, errors.Errorf("Expected input to have a shape with dimension 4")
}
if kernel.Dims() != 2 {
return nil, errors.Errorf("Expected kernel to have a shape of dimension 2")
}
// checks
for _, s := range stride {
if s <= 0 {
return nil, errors.Errorf("Cannot use strides of less than or equal 0: %v", stride)
}
}
for _, p := range pad {
if p < 0 {
return nil, errors.Errorf("Cannot use padding of less than 0: %v", pad)
}
}
padNorth := pad[0]
padWest := pad[1]
padSouth := pad[0]
padEast := pad[1]
if len(pad) == 4 {
padNorth = pad[0]
padSouth = pad[1]
padWest = pad[2]
padEast = pad[3]
}
if h-kh+padNorth+padSouth < 0 {
// error
return nil, errors.New("Impossible height/kernel/pad combination")
}
if w-kw+padWest+padEast < 0 {
// error
return nil, errors.New("Impossible width/kernel/pad combination")
}
op := newMaxPoolOp(xShape, kernel, pad, stride)
retVal, err := ApplyOp(op, x)
retVal.groups = retVal.groups.Upsert(group)
return retVal, err
}
// MaxPool1D applies a maxpool on the node x.
func MaxPool1D(x *Node, kernel, pad, stride int) (*Node, error) {
return MaxPool2D(x, tensor.Shape{1, kernel}, []int{0, pad}, []int{1, stride})
}
// BatchNorm applies a batchnormalization. This operator can be used in forward pass or for training.
// In an evaluation only, the "op" output can be discared.
// In training phase, γ, β can be discarded and the op should be used.
func BatchNorm(x, scale, bias *Node, momentum, epsilon float64) (retVal, γ, β *Node, op *BatchNormOp, err error) {
dt, err := dtypeOf(x.Type())
if err != nil {
return nil, nil, nil, nil, err
}
batches := x.Shape()[0]
channels := x.Shape()[1]
spatialDim := x.Shape().TotalSize() / (channels * batches)
mean := tensor.New(tensor.Of(dt), tensor.WithShape(channels))
variance := tensor.New(tensor.Of(dt), tensor.WithShape(channels))
ma := tensor.New(tensor.Of(dt), tensor.WithShape(1))
meanTmp := tensor.New(tensor.Of(dt), tensor.WithShape(channels))
varianceTmp := tensor.New(tensor.Of(dt), tensor.WithShape(channels))
tmp := tensor.New(tensor.Of(dt), tensor.WithShape(x.Shape().Clone()...))
xNorm := tensor.New(tensor.Of(dt), tensor.WithShape(x.Shape().Clone()...))
batchSumMultiplier := tensor.New(tensor.Of(dt), tensor.WithShape(batches))
var uno interface{}
switch dt {
case Float64:
uno = float64(1)
case Float32:
uno = float32(1)
}
spatialSumMultiplier := tensor.New(tensor.Of(dt), tensor.WithShape(spatialDim))
if err = spatialSumMultiplier.Memset(uno); err != nil {
return nil, nil, nil, nil, err
}
numByChans := tensor.New(tensor.Of(dt), tensor.WithShape(channels*batches))
if err = batchSumMultiplier.Memset(uno); err != nil {
return nil, nil, nil, nil, err
}
op = &BatchNormOp{
momentum: momentum,
epsilon: epsilon,
mean: mean,
variance: variance,
ma: ma,
meanTmp: meanTmp,
varianceTmp: varianceTmp,
tmpSpace: tmp,
xNorm: xNorm,
batchSumMultiplier: batchSumMultiplier,
numByChans: numByChans,
spatialSumMultiplier: spatialSumMultiplier,
training: true,
dims: 4,
}
g := x.Graph()
dims := x.Shape().Dims()
if scale == nil {
scale = NewTensor(g, dt, dims, WithShape(x.Shape().Clone()...), WithName(x.Name()+"_γ"), WithInit(GlorotN(1.0)))
}
if bias == nil {
bias = NewTensor(g, dt, dims, WithShape(x.Shape().Clone()...), WithName(x.Name()+"_β"), WithInit(GlorotN(1.0)))
}
if retVal, err = ApplyOp(op, x); err != nil {
return nil, nil, nil, nil, err
}
if retVal, err = HadamardProd(scale, retVal); err != nil {
return nil, nil, nil, nil, err
}
retVal, err = Add(retVal, bias)
return retVal, scale, bias, op, err
}
// BatchNorm1d applies a batchnormalization to a matrix. This operator can be used in forward pass or for training.
// In an evaluation only, the "op" output can be discared.
// In training phase, γ, β can be discarded and the op should be used.
func BatchNorm1d(x, scale, bias *Node, momentum, epsilon float64) (retVal, γ, β *Node, op *BatchNormOp, err error) {
xShape := x.Shape()
if xShape.Dims() != 2 {
return nil, nil, nil, nil, fmt.Errorf("input must be a matrix (batchSize, features)")
}
// NOTE: should we support vectors? and reshape to (1, v) ?
dt, err := dtypeOf(x.Type())
if err != nil {
return nil, nil, nil, nil, err
}
batches, features := xShape[0], xShape[1]
spatialDim := x.Shape().TotalSize()
mean := tensor.New(tensor.Of(dt), tensor.WithShape(features))
variance := tensor.New(tensor.Of(dt), tensor.WithShape(features))
ma := tensor.New(tensor.Of(dt), tensor.WithShape(1))
meanTmp := tensor.New(tensor.Of(dt), tensor.WithShape(features))
varianceTmp := tensor.New(tensor.Of(dt), tensor.WithShape(features))
tmp := tensor.New(tensor.Of(dt), tensor.WithShape(x.Shape().Clone()...))
xNorm := tensor.New(tensor.Of(dt), tensor.WithShape(x.Shape().Clone()...))
batchSumMultiplier := tensor.New(tensor.Of(dt), tensor.WithShape(batches))
var uno interface{}
switch dt {
case Float64:
uno = float64(1)
case Float32:
uno = float32(1)
}
spatialSumMultiplier := tensor.New(tensor.Of(dt), tensor.WithShape(spatialDim))
if err = spatialSumMultiplier.Memset(uno); err != nil {
return nil, nil, nil, nil, err
}
numByChans := tensor.New(tensor.Of(dt), tensor.WithShape(spatialDim))
if err = batchSumMultiplier.Memset(uno); err != nil {
return nil, nil, nil, nil, err
}
op = &BatchNormOp{
momentum: momentum,
epsilon: epsilon,
mean: mean,
variance: variance,
ma: ma,
meanTmp: meanTmp,
varianceTmp: varianceTmp,
tmpSpace: tmp,
xNorm: xNorm,
batchSumMultiplier: batchSumMultiplier,
numByChans: numByChans,
spatialSumMultiplier: spatialSumMultiplier,
training: true,
dims: 2,
}
g := x.Graph()
dims := x.Shape().Dims()
if scale == nil {
scale = NewTensor(g, dt, dims, WithShape(x.Shape().Clone()...), WithName(x.Name()+"_γ"), WithInit(GlorotN(1.0)))
}
if bias == nil {
bias = NewTensor(g, dt, dims, WithShape(x.Shape().Clone()...), WithName(x.Name()+"_β"), WithInit(GlorotN(1.0)))
}
if retVal, err = ApplyOp(op, x); err != nil {
return nil, nil, nil, nil, err
}
if retVal, err = Auto(BroadcastHadamardProd, scale, retVal); err != nil {
return nil, nil, nil, nil, err
}
retVal, err = Auto(BroadcastAdd, retVal, bias)
return retVal, scale, bias, op, err
}
// GlobalAveragePool2D consumes an input tensor X and applies average pooling across the values in the same channel.
// The expected input shape is BCHW where B is the batch size, C is the number of channels, and H and W are the height and the width of the data.
func GlobalAveragePool2D(x *Node) (*Node, error) {
return ApplyOp(&globalAveragePoolOp{}, x)
}