diff --git a/.ipynb_checkpoints/gizaTest1-checkpoint.ipynb b/.ipynb_checkpoints/gizaTest1-checkpoint.ipynb new file mode 100644 index 0000000..81832cc --- /dev/null +++ b/.ipynb_checkpoints/gizaTest1-checkpoint.ipynb @@ -0,0 +1,739 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "id": "afb5d31a-296a-4fb1-90ac-f9a2136e27a4", + "metadata": {}, + "source": [ + "### testing the XGBoost Diabetes example to transpile\n", + "##### used conda env giza from ll laptop" + ] + }, + { + "cell_type": "markdown", + "id": "78186bb5-98ce-471c-93d3-ca19386ca744", + "metadata": {}, + "source": [ + "## Create and Train an XGBoost Model\n", + "### We'll start by creating a simple XGBoost model using Scikit-Learn and train it on diabetes dataset" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "id": "5650a200-f157-4c3d-b352-282380f05abd", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
XGBRegressor(base_score=None, booster=None, callbacks=None,\n", + " colsample_bylevel=None, colsample_bynode=None,\n", + " colsample_bytree=None, device=None, early_stopping_rounds=None,\n", + " enable_categorical=False, eval_metric=None, feature_types=None,\n", + " gamma=None, grow_policy=None, importance_type=None,\n", + " interaction_constraints=None, learning_rate=None, max_bin=None,\n", + " max_cat_threshold=None, max_cat_to_onehot=None,\n", + " max_delta_step=None, max_depth=6, max_leaves=None,\n", + " min_child_weight=None, missing=nan, monotone_constraints=None,\n", + " multi_strategy=None, n_estimators=2, n_jobs=None,\n", + " num_parallel_tree=None, random_state=None, ...)In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
XGBRegressor(base_score=None, booster=None, callbacks=None,\n", + " colsample_bylevel=None, colsample_bynode=None,\n", + " colsample_bytree=None, device=None, early_stopping_rounds=None,\n", + " enable_categorical=False, eval_metric=None, feature_types=None,\n", + " gamma=None, grow_policy=None, importance_type=None,\n", + " interaction_constraints=None, learning_rate=None, max_bin=None,\n", + " max_cat_threshold=None, max_cat_to_onehot=None,\n", + " max_delta_step=None, max_depth=6, max_leaves=None,\n", + " min_child_weight=None, missing=nan, monotone_constraints=None,\n", + " multi_strategy=None, n_estimators=2, n_jobs=None,\n", + " num_parallel_tree=None, random_state=None, ...)
XGBRegressor(base_score=None, booster=None, callbacks=None,\n", + " colsample_bylevel=None, colsample_bynode=None,\n", + " colsample_bytree=None, device=None, early_stopping_rounds=None,\n", + " enable_categorical=False, eval_metric=None, feature_types=None,\n", + " gamma=None, grow_policy=None, importance_type=None,\n", + " interaction_constraints=None, learning_rate=None, max_bin=None,\n", + " max_cat_threshold=None, max_cat_to_onehot=None,\n", + " max_delta_step=None, max_depth=6, max_leaves=None,\n", + " min_child_weight=None, missing=nan, monotone_constraints=None,\n", + " multi_strategy=None, n_estimators=2, n_jobs=None,\n", + " num_parallel_tree=None, random_state=None, ...)In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
XGBRegressor(base_score=None, booster=None, callbacks=None,\n", + " colsample_bylevel=None, colsample_bynode=None,\n", + " colsample_bytree=None, device=None, early_stopping_rounds=None,\n", + " enable_categorical=False, eval_metric=None, feature_types=None,\n", + " gamma=None, grow_policy=None, importance_type=None,\n", + " interaction_constraints=None, learning_rate=None, max_bin=None,\n", + " max_cat_threshold=None, max_cat_to_onehot=None,\n", + " max_delta_step=None, max_depth=6, max_leaves=None,\n", + " min_child_weight=None, missing=nan, monotone_constraints=None,\n", + " multi_strategy=None, n_estimators=2, n_jobs=None,\n", + " num_parallel_tree=None, random_state=None, ...)