forked from udlbook/udlbook
-
Notifications
You must be signed in to change notification settings - Fork 0
/
index.html
166 lines (151 loc) · 19 KB
/
index.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
<h1>Understanding Deep Learning</h1>
by Simon J.D. Prince
<br>
To be published by MIT Press Dec 5th 2023.<br>
<img src="https://raw.githubusercontent.com/udlbook/udlbook/main/UDLCoverSmall.jpg" alt="front cover">
<h2> Download draft PDF </h2>
<a href="https://github.com/udlbook/udlbook/releases/download/v1.1.2/UnderstandingDeepLearning_06_08_23_C.pdf">Draft PDF Chapters 1-21</a><br> 2023-08-06. CC-BY-NC-ND license
<br>
<img src="https://img.shields.io/github/downloads/udlbook/udlbook/total" alt="download stats shield">
<br>
<ul>
<li> Appendices and notebooks coming soon
<li> Report errata via <a href="https://github.com/udlbook/udlbook/issues">github</a> or contact me directly at [email protected]
<li> Follow me on <a href="https://twitter.com/SimonPrinceAI">Twitter</a> or <a href="https://www.linkedin.com/in/simon-prince-615bb9165/">LinkedIn</a> for updates.
</ul>
<h2>Table of contents</h2>
<ul>
<li> Chapter 1 - Introduction
<li> Chapter 2 - Supervised learning
<li> Chapter 3 - Shallow neural networks
<li> Chapter 4 - Deep neural networks
<li> Chapter 5 - Loss functions
<li> Chapter 6 - Training models
<li> Chapter 7 - Gradients and initialization
<li> Chapter 8 - Measuring performance
<li> Chapter 9 - Regularization
<li> Chapter 10 - Convolutional networks
<li> Chapter 11 - Residual networks
<li> Chapter 12 - Transformers
<li> Chapter 13 - Graph neural networks
<li> Chapter 14 - Unsupervised learning
<li> Chapter 15 - Generative adversarial networks
<li> Chapter 16 - Normalizing flows
<li> Chapter 17 - Variational autoencoders
<li> Chapter 18 - Diffusion models
<li> Chapter 19 - Deep reinforcement learning
<li> Chapter 20 - Why does deep learning work?
<li> Chapter 21 - Deep learning and ethics
</ul>
<h2>Resources for instructors </h2>
<p></p>Instructor answer booklet available with proof of credentials via <a href="https://mitpress.mit.edu/9780262048644/understanding-deep-learning"/> MIT Press</a></p>
<p></p>Figures in PDF (vector) / SVG (vector) / Powerpoint (images):
<ul>
<li> Chapter 1 - Introduction: <a href="https://github.com/udlbook/udlbook/raw/main/PDFFigures/UDLChap1PDF.zip">PDF Figures</a> / <a href="https://drive.google.com/uc?export=download&id=1udnl5pUOAc8DcAQ7HQwyzP9pwL95ynnv"> SVG Figures</a> / <a href="https://docs.google.com/presentation/d/1IjTqIUvWCJc71b5vEJYte-Dwujcp7rvG/edit?usp=drive_link&ouid=110441678248547154185&rtpof=true&sd=true">PowerPoint Figures</a>
<li> Chapter 2 - Supervised learning: <a href="https://github.com/udlbook/udlbook/raw/main/PDFFigures/UDLChap2PDF.zip">PDF Figures</a> / <a href="https://drive.google.com/uc?export=download&id=1VSxcU5y1qNFlmd3Lb3uOWyzILuOj1Dla"> SVG Figures</a> / <a href="https://docs.google.com/presentation/d/1Br7R01ROtRWPlNhC_KOommeHAWMBpWtz/edit?usp=drive_link&ouid=110441678248547154185&rtpof=true&sd=true">PowerPoint Figures</a>
<li> Chapter 3 - Shallow neural networks: <a href="https://github.com/udlbook/udlbook/raw/main/PDFFigures/UDLChap3PDF.zip">PDF Figures</a> / <a href="https://drive.google.com/uc?export=download&id=19kZFWlXhzN82Zx02ByMmSZOO4T41fmqI"> SVG Figures</a> / <a href="https://docs.google.com/presentation/d/1e9M3jB5I9qZ4dCBY90Q3Hwft_i068QVQ/edit?usp=drive_link&ouid=110441678248547154185&rtpof=true&sd=true">PowerPoint Figures</a>
<li> Chapter 4 - Deep neural networks: <a href="https://github.com/udlbook/udlbook/raw/main/PDFFigures/UDLChap4PDF.zip">PDF Figures</a> / <a href="https://drive.google.com/uc?export=download&id=1ojr0ebsOhzvS04ItAflX2cVmYqHQHZUa"> SVG Figures</a> / <a href="https://docs.google.com/presentation/d/1LTSsmY4mMrJbqXVvoTOCkQwHrRKoYnJj/edit?usp=drive_link&ouid=110441678248547154185&rtpof=true&sd=true">PowerPoint Figures</a>
<li> Chapter 5 - Loss functions: <a href="https://github.com/udlbook/udlbook/raw/main/PDFFigures/UDLChap5PDF.zip">PDF Figures</a> / <a href="https://drive.google.com/uc?export=download&id=17MJO7fiMpFZVqKeqXTbQ36AMpmR4GizZ"> SVG Figures</a> / <a href="https://docs.google.com/presentation/d/1gcpC_3z9oRp87eMkoco-kdLD-MM54Puk/edit?usp=drive_link&ouid=110441678248547154185&rtpof=true&sd=true">PowerPoint Figures</a>
<li> Chapter 6 - Training models: <a href="https://github.com/udlbook/udlbook/raw/main/PDFFigures/UDLChap6PDF.zip">PDF Figures</a> / <a href="https://drive.google.com/uc?export=download&id=1VPdhFRnCr9_idTrX0UdHKGAw2shUuwhK"> SVG Figures</a> / <a href="https://docs.google.com/presentation/d/1AKoeggAFBl9yLC7X5tushAGzCCxmB7EY/edit?usp=drive_link&ouid=110441678248547154185&rtpof=true&sd=true">PowerPoint Figures</a>
<li> Chapter 7 - Gradients and initialization: <a href="https://github.com/udlbook/udlbook/raw/main/PDFFigures/UDLChap7PDF.zip">PDF Figures</a> / <a href="https://drive.google.com/uc?export=download&id=1TTl4gvrTvNbegnml4CoGoKOOd6O8-PGs"> SVG Figures</a> / <a href="https://docs.google.com/presentation/d/11zhB6PI-Dp6Ogmr4IcI6fbvbqNqLyYcz/edit?usp=drive_link&ouid=110441678248547154185&rtpof=true&sd=true">PowerPoint Figures</a>
<li> Chapter 8 - Measuring performance: <a href="https://github.com/udlbook/udlbook/raw/main/PDFFigures/UDLChap8PDF.zip">PDF Figures</a> / <a href="https://drive.google.com/uc?export=download&id=19eQOnygd_l0DzgtJxXuYnWa4z7QKJrJx"> SVG Figures</a> / <a href="https://docs.google.com/presentation/d/1SHRmJscDLUuQrG7tmysnScb3ZUAqVMZo/edit?usp=drive_link&ouid=110441678248547154185&rtpof=true&sd=true">PowerPoint Figures</a>
<li> Chapter 9 - Regularization: <a href="https://github.com/udlbook/udlbook/raw/main/PDFFigures/UDLChap9PDF.zip">PDF Figures</a> / <a href="https://drive.google.com/uc?export=download&id=1LprgnUGL7xAM9-jlGZC9LhMPeefjY0r0"> SVG Figures</a> / <a href="https://docs.google.com/presentation/d/1VwIfvjpdfTny6sEfu4ZETwCnw6m8Eg-5/edit?usp=drive_link&ouid=110441678248547154185&rtpof=true&sd=true">PowerPoint Figures</a>
<li> Chapter 10 - Convolutional networks: <a href="https://github.com/udlbook/udlbook/raw/main/PDFFigures/UDLChap10PDF.zip">PDF Figures</a> / <a href="https://drive.google.com/uc?export=download&id=1-Wb3VzaSvVeRzoUzJbI2JjZE0uwqupM9"> SVG Figures</a> / <a href="https://docs.google.com/presentation/d/1MtfKBC4Y9hWwGqeP6DVwUNbi1j5ncQCg/edit?usp=drive_link&ouid=110441678248547154185&rtpof=true&sd=true">PowerPoint Figures</a>
<li> Chapter 11 - Residual networks: <a href="https://github.com/udlbook/udlbook/raw/main/PDFFigures/UDLChap11PDF.zip">PDF Figures</a> / <a href="https://drive.google.com/uc?export=download&id=1Mr58jzEVseUAfNYbGWCQyDtEDwvfHRi1"> SVG Figures</a> / <a href="https://docs.google.com/presentation/d/1saY8Faz0KTKAAifUrbkQdLA2qkyEjOPI/edit?usp=drive_link&ouid=110441678248547154185&rtpof=true&sd=true">PowerPoint Figures</a>
<li> Chapter 12 - Transformers: <a href="https://github.com/udlbook/udlbook/raw/main/PDFFigures/UDLChap12PDF.zip">PDF Figures</a> / <a href="https://drive.google.com/uc?export=download&id=1txzOVNf8-jH4UfJ6SLnrtOfPd1Q3ebzd"> SVG Figures</a> / <a href="https://docs.google.com/presentation/d/1GVNvYWa0WJA6oKg89qZre-UZEhABfm0l/edit?usp=drive_link&ouid=110441678248547154185&rtpof=true&sd=true">PowerPoint Figures</a>
<li> Chapter 13 - Graph neural networks: <a href="https://github.com/udlbook/udlbook/raw/main/PDFFigures/UDLChap13PDF.zip">PDF Figures</a> / <a href="https://drive.google.com/uc?export=download&id=1lQIV6nRp6LVfaMgpGFhuwEXG-lTEaAwe"> SVG Figures</a> / <a href="https://docs.google.com/presentation/d/1YwF3U82c1mQ74c1WqHVTzLZ0j7GgKaWP/edit?usp=drive_link&ouid=110441678248547154185&rtpof=true&sd=true">PowerPoint Figures</a>
<li> Chapter 14 - Unsupervised learning: <a href="https://github.com/udlbook/udlbook/raw/main/PDFFigures/UDLChap14PDF.zip">PDF Figures</a> / <a href="https://drive.google.com/uc?export=download&id=1aMbI6iCuUvOywqk5pBOmppJu1L1anqsM"> SVG Figures</a> / <a href="https://docs.google.com/presentation/d/1A-lBGv3NHl4L32NvfFgy1EKeSwY-0UeB/edit?usp=drive_link&ouid=110441678248547154185&rtpof=true&sd=true"> Powerpoint Figures</a>
<li> Chapter 15 - Generative adversarial networks: <a href="https://github.com/udlbook/udlbook/raw/main/PDFFigures/UDLChap15PDF.zip">PDF Figures</a> / <a href="https://drive.google.com/uc?export=download&id=1EErnlZCOlXc3HK7m83T2Jh_0NzIUHvtL"> SVG Figures</a> / <a href="https://docs.google.com/presentation/d/10Ernk41ShOTf4IYkMD-l4dJfKATkXH4w/edit?usp=drive_link&ouid=110441678248547154185&rtpof=true&sd=true">PowerPoint Figures</a>
<li> Chapter 16 - Normalizing flows: <a href="https://github.com/udlbook/udlbook/raw/main/PDFFigures/UDLChap16PDF.zip">PDF Figures</a> / <a href="https://drive.google.com/uc?export=download&id=1B9bxtmdugwtg-b7Y4AdQKAIEVWxjx8l3"> SVG Figures</a> / <a href="https://docs.google.com/presentation/d/1nLLzqb9pdfF_h6i1HUDSyp7kSMIkSUUA/edit?usp=drive_link&ouid=110441678248547154185&rtpof=true&sd=true">PowerPoint Figures</a>
<li> Chapter 17 - Variational autoencoders: <a href="https://github.com/udlbook/udlbook/raw/main/PDFFigures/UDLChap17PDF.zip">PDF Figures</a> / <a href="https://drive.google.com/uc?export=download&id=1SNtNIY7khlHQYMtaOH-FosSH3kWwL4b7"> SVG Figures</a> / <a href="https://docs.google.com/presentation/d/1lQE4Bu7-LgvV2VlJOt_4dQT-kusYl7Vo/edit?usp=drive_link&ouid=110441678248547154185&rtpof=true&sd=true">PowerPoint Figures</a>
<li> Chapter 18 - Diffusion models: <a href="https://github.com/udlbook/udlbook/raw/main/PDFFigures/UDLChap18PDF.zip">PDF Figures</a> / <a href="https://docs.google.com/presentation/d/1x_ufIBtVPzWUvRieKMkpw5SdRjXWwdfR/edit?usp=drive_link&ouid=110441678248547154185&rtpof=true&sd=true"> PowerPoint Figures</a>
<li> Chapter 19 - Deep reinforcement learning: <a href="https://github.com/udlbook/udlbook/raw/main/PDFFigures/UDLChap19PDF.zip">PDF Figures</a> / <a href="https://drive.google.com/uc?export=download&id=1a5WUoF7jeSgwC_PVdckJi1Gny46fCqh0"> SVG Figures</a> / <a href="https://docs.google.com/presentation/d/1TnYmVbFNhmMFetbjyfXGmkxp1EHauMqr/edit?usp=drive_link&ouid=110441678248547154185&rtpof=true&sd=true"> PowerPoint Figures </a>
<li> Chapter 20 - Why does deep learning work?: <a href="https://github.com/udlbook/udlbook/raw/main/PDFFigures/UDLChap20PDF.zip">PDF Figures</a> / <a href="https://drive.google.com/uc?export=download&id=1M2d0DHEgddAQoIedKSDTTt7m1ZdmBLQ3"> SVG Figures</a> / <a href="https://docs.google.com/presentation/d/1coxF4IsrCzDTLrNjRagHvqB_FBy10miA/edit?usp=drive_link&ouid=110441678248547154185&rtpof=true&sd=true"> PowerPoint Figures</a>
<li> Chapter 21 - Deep learning and ethics: <a href="https://github.com/udlbook/udlbook/raw/main/PDFFigures/UDLChap21PDF.zip">PDF Figures</a> / <a href="https://drive.google.com/uc?export=download&id=1jixmFfwmZkW_UVYzcxmDcMsdFFtnZ0bU"> SVG Figures</a>/ <a href="https://docs.google.com/presentation/d/1EtfzanZYILvi9_-Idm28zD94I_6OrN9R/edit?usp=drive_link&ouid=110441678248547154185&rtpof=true&sd=true">PowerPoint Figures</a>
<li> Appendices - <a href="https://github.com/udlbook/udlbook/raw/main/PDFFigures/UDLAppendixPDF.zip">PDF Figures</a> / <a href="https://drive.google.com/uc?export=download&id=1k2j7hMN40ISPSg9skFYWFL3oZT7r8v-l"> SVG Figures</a> / <a href="https://docs.google.com/presentation/d/1_2cJHRnsoQQHst0rwZssv-XH4o5SEHks/edit?usp=drive_link&ouid=110441678248547154185&rtpof=true&sd=true">Powerpoint Figures</a>
</ul>
Instructions for editing figures / equations can be found <a href="https://drive.google.com/file/d/1T_MXXVR4AfyMnlEFI-UVDh--FXI5deAp/view?usp=sharing">here</a>.</p>
<h2>Resources for students</h2>
<p>Answers to selected questions: <a href="https://github.com/udlbook/udlbook/raw/main/UDL_Answer_Booklet_Students.pdf">PDF</a></p>
<p>Python notebooks:</p>
<ul>
<li> Notebook 1.1 - Background mathematics: <a href="https://github.com/udlbook/udlbook/blob/main/Notebooks/Chap01/1_1_BackgroundMathematics.ipynb">ipynb/colab</a>
<li> Notebook 2.1 - Supervised learning: <a href="https://github.com/udlbook/udlbook/blob/main/Notebooks/Chap02/2_1_Supervised_Learning.ipynb"">ipynb/colab</a>
<li> Notebook 3.1 - Shallow networks I: <a href="https://github.com/udlbook/udlbook/blob/main/Notebooks/Chap03/3_1_Shallow_Networks_I.ipynb">ipynb/colab </a>
<li> Notebook 3.2 - Shallow networks II: <a href="https://github.com/udlbook/udlbook/blob/main/Notebooks/Chap03/3_2_Shallow_Networks_II.ipynb">ipynb/colab </a>
<li> Notebook 3.3 - Shallow network regions: <a href="https://github.com/udlbook/udlbook/blob/main/Notebooks/Chap03/3_3_Shallow_Network_Regions.ipynb">ipynb/colab </a>
<li> Notebook 3.4 - Activation functions: <a href="https://github.com/udlbook/udlbook/blob/main/Notebooks/Chap03/3_4_Activation_Functions.ipynb">ipynb/colab </a>
<li> Notebook 4.1 - Composing networks: <a href="https://github.com/udlbook/udlbook/blob/main/Notebooks/Chap04/4_1_Composing_Networks.ipynb">ipynb/colab </a>
<li> Notebook 4.2 - Clipping functions: <a href="https://github.com/udlbook/udlbook/blob/main/Notebooks/Chap04/4_2_Clipping_functions.ipynb">ipynb/colab </a>
<li> Notebook 4.3 - Deep networks: <a href="https://github.com/udlbook/udlbook/blob/main/Notebooks/Chap04/4_3_Deep_Networks.ipynb">ipynb/colab </a>
<li> Notebook 5.1 - Least squares loss: <a href="https://github.com/udlbook/udlbook/blob/main/Notebooks/Chap05/5_1_Least_Squares_Loss.ipynb">ipynb/colab </a>
<li> Notebook 5.2 - Binary cross-entropy loss: <a href="https://github.com/udlbook/udlbook/blob/main/Notebooks/Chap05/5_2_Binary_Cross_Entropy_Loss.ipynb">ipynb/colab </a>
<li> Notebook 5.3 - Multiclass cross-entropy loss: <a href="https://github.com/udlbook/udlbook/blob/main/Notebooks/Chap05/5_3_Multiclass_Cross_entropy_Loss.ipynb">ipynb/colab </a>
<li> Notebook 6.1 - Line search: <a href="https://github.com/udlbook/udlbook/blob/main/Notebooks/Chap06/6_1_Line_Search.ipynb">ipynb/colab </a>
<li> Notebook 6.2 - Gradient descent: <a href="https://github.com/udlbook/udlbook/blob/main/Notebooks/Chap06/6_2_Gradient_Descent.ipynb">ipynb/colab </a>
<li> Notebook 6.3 - Stochastic gradient descent: <a href="https://github.com/udlbook/udlbook/blob/main/Notebooks/Chap06/6_3_Stochastic_Gradient_Descent.ipynb">ipynb/colab </a>
<li> Notebook 6.4 - Momentum: <a href="https://github.com/udlbook/udlbook/blob/main/Notebooks/Chap06/6_4_Momentum.ipynb">ipynb/colab </a>
<li> Notebook 6.5 - Adam: <a href="https://github.com/udlbook/udlbook/blob/main/Notebooks/Chap06/6_5_Adam.ipynb">ipynb/colab </a>
<li> Notebook 7.1 - Backpropagtion in toy model: <a href="https://github.com/udlbook/udlbook/blob/main/Notebooks/Chap07/7_1_Backpropagation_in_Toy_Model.ipynb"">ipynb/colab </a>
<li> Notebook 7.2 - Backpropagation: <a href="https://github.com/udlbook/udlbook/blob/main/Notebooks/Chap07/7_2_Backpropagation.ipynb">ipynb/colab </a>
<li> Notebook 7.3 - Initialization: <a href=""https://github.com/udlbook/udlbook/blob/main/Notebooks/Chap07/7_3_Initialization.ipynb">ipynb/colab </a>
<li> Notebook 8.1 - MNIST-1D performance: <a href="https://github.com/udlbook/udlbook/blob/main/Notebooks/Chap08/8_1_MNIST_1D_Performance.ipynb"">ipynb/colab </a>
<li> Notebook 8.2 - Bias-variance trade-off: <a href="https://github.com/udlbook/udlbook/blob/main/Notebooks/Chap08/8_2_Bias_Variance_Trade_Off.ipynb">ipynb/colab </a>
<li> Notebook 8.3 - Double descent: <a href="https://github.com/udlbook/udlbook/blob/main/Notebooks/Chap08/8_3_Double_Descent.ipynb">ipynb/colab </a>
<li> Notebook 8.4 - High-dimensional spaces: <a href="https://github.com/udlbook/udlbook/blob/main/Notebooks/Chap08/8_4_High_Dimensional_Spaces.ipynb">ipynb/colab </a>
<li> Notebook 9.1 - L2 regularization: <a href="https://github.com/udlbook/udlbook/blob/main/Notebooks/Chap09/9_1_L2_Regularization.ipynb">ipynb/colab </a>
<li> Notebook 9.2 - Implicit regularization: <a href="https://github.com/udlbook/udlbook/blob/main/Notebooks/Chap09/9_2_Implicit_Regularization.ipynb">ipynb/colab </a>
<li> Notebook 9.3 - Ensembling: <a href="https://github.com/udlbook/udlbook/blob/main/Notebooks/Chap09/9_3_Ensembling.ipynb">ipynb/colab </a>
<li> Notebook 9.4 - Bayesian approach: <a href="https://github.com/udlbook/udlbook/blob/main/Notebooks/Chap09/9_4_Bayesian_Approach.ipynb">ipynb/colab </a>
<li> Notebook 9.5 - Augmentation <a href="https://github.com/udlbook/udlbook/blob/main/Notebooks/Chap09/9_5_Augmentation.ipynb">ipynb/colab </a>
<li> Notebook 10.1 - 1D convolution: <a href="https://github.com/udlbook/udlbook/blob/main/Notebooks/Chap10/10_1_1D_Convolution.ipynb">ipynb/colab </a>
<li> Notebook 10.2 - Convolution for MNIST-1D: <a href="https://github.com/udlbook/udlbook/blob/main/Notebooks/Chap10/10_2_Convolution_for_MNIST_1D.ipynb">ipynb/colab </a>
<li> Notebook 10.3 - 2D convolution: <a href="https://github.com/udlbook/udlbook/blob/main/Notebooks/Chap10/10_3_2D_Convolution.ipynb">ipynb/colab </a>
<li> Notebook 10.4 - Downsampling & upsampling: <a href="https://github.com/udlbook/udlbook/blob/main/Notebooks/Chap10/10_4_Downsampling_and_Upsampling.ipynb">ipynb/colab </a>
<li> Notebook 10.5 - Convolution for MNIST: <a href="https://github.com/udlbook/udlbook/blob/main/Notebooks/Chap10/10_5_Convolution_For_MNIST.ipynb">ipynb/colab </a>
<li> Notebook 11.1 - Shattered gradients: (coming soon)
<li> Notebook 11.2 - Residual networks: (coming soon)
<li> Notebook 11.3 - Batch normalization: (coming soon)
<li> Notebook 12.1 - Self-attention: (coming soon)
<li> Notebook 12.2 - Multi-head self-attention: (coming soon)
<li> Notebook 12.3 - Tokenization: (coming soon)
<li> Notebook 12.4 - Decoding strategies: <a href="https://github.com/udlbook/udlbook/blob/main/Notebooks/Chap12/12_4_Decoding_Strategies.ipynb">ipynb/colab </a>
<li> Notebook 13.1 - Encoding graphs: (coming soon)
<li> Notebook 13.2 - Graph classification : (coming soon)
<li> Notebook 13.3 - Neighborhood sampling: (coming soon)
<li> Notebook 13.4 - Graph attention: (coming soon)
<li> Notebook 15.1 - GAN toy example: (coming soon)
<li> Notebook 15.2 - Wasserstein distance: (coming soon)
<li> Notebook 16.1 - 1D normalizing flows: (coming soon)
<li> Notebook 16.2 - Autoregressive flows: (coming soon)
<li> Notebook 16.3 - Contraction mappings: (coming soon)
<li> Notebook 17.1 - Latent variable models: (coming soon)
<li> Notebook 17.2 - Reparameterization trick: (coming soon)
<li> Notebook 17.3 - Importance sampling: (coming soon)
<li> Notebook 18.1 - Diffusion encoder: (coming soon)
<li> Notebook 18.2 - 1D diffusion model: (coming soon)
<li> Notebook 18.3 - Reparameterized model: (coming soon)
<li> Notebook 18.4 - Families of diffusion models: (coming soon)
<li> Notebook 19.1 - Markov decision processes: (coming soon)
<li> Notebook 19.2 - Dynamic programming: (coming soon)
<li> Notebook 19.3 - Monte-Carlo methods: (coming soon)
<li> Notebook 19.4 - Temporal difference methods: (coming soon)
<li> Notebook 19.5 - Control variates: (coming soon)
<li> Notebook 20.1 - Random data: (coming soon)
<li> Notebook 20.2 - Full-batch gradient descent: (coming soon)
<li> Notebook 20.3 - Lottery tickets: (coming soon)
<li> Notebook 20.4 - Adversarial attacks: (coming soon)
<li> Notebook 21.1 - Bias mitigation: (coming soon)
<li> Notebook 21.2 - Explainability: (coming soon)
</ul>
<br>
<h2>Citation:</h2>
<pre><code>
@book{prince2023understanding,
author = "Simon J.D. Prince",
title = "Understanding Deep Learning",
publisher = "MIT Press",
year = 2023,
url = "http://udlbook.com"
}
</code></pre>