-
Notifications
You must be signed in to change notification settings - Fork 1.4k
/
ch14_part2.py
489 lines (317 loc) · 13.3 KB
/
ch14_part2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
# coding: utf-8
import sys
from python_environment_check import check_packages
import torch
import torch.nn as nn
import numpy as np
import matplotlib.pyplot as plt
import torchvision
from torchvision import transforms
from torch.utils.data import DataLoader
from torch.utils.data import Subset
# # Machine Learning with PyTorch and Scikit-Learn
# # -- Code Examples
# ## Package version checks
# Add folder to path in order to load from the check_packages.py script:
sys.path.insert(0, '..')
# Check recommended package versions:
d = {
'numpy': '1.21.2',
'scipy': '1.7.0',
'matplotlib': '3.4.3',
'torch': '1.8.0',
'torchvision': '0.9.0'
}
check_packages(d)
# # Chapter 14: Classifying Images with Deep Convolutional Neural Networks (Part 2/2)
# **Outline**
#
# - [Smile classification from face images using a CNN](#Constructing-a-CNN-in-PyTorch)
# - [Loading the CelebA dataset](#Loading-the-CelebA-dataset)
# - [Image transformation and data augmentation](#Image-transformation-and-data-augmentation)
# - [Training a CNN smile classifier](#Training-a-CNN-smile-classifier)
# - [Summary](#Summary)
# Note that the optional watermark extension is a small IPython notebook plugin that I developed to make the code reproducible. You can just skip the following line(s).
# ## Smile classification from face images using CNN
#
# ### Loading the CelebA dataset
# You can try setting `download=True` in the code cell below, however due to the daily download limits of the CelebA dataset, this will probably result in an error. Alternatively, we recommend trying the following:
#
# - You can download the files from the official CelebA website manually (https://mmlab.ie.cuhk.edu.hk/projects/CelebA.html)
# - or use our download link, https://drive.google.com/file/d/1m8-EBPgi5MRubrm6iQjafK2QMHDBMSfJ/view?usp=sharing (recommended).
#
# If you use our download link, it will download a `celeba.zip` file,
#
# 1. which you need to unpack in the current directory where you are running the code.
# 2. In addition, **please also make sure you unzip the `img_align_celeba.zip` file, which is inside the `celeba` folder.**
# 3. Also, after downloading and unzipping the celeba folder, you need to run with the setting `download=False` instead of `download=True` (as shown in the code cell below).
#
# In case you are encountering problems with this approach, please do not hesitate to open a new issue or start a discussion at https://github.com/ rasbt/machine-learning-book so that we can provide you with additional information.
image_path = './'
celeba_train_dataset = torchvision.datasets.CelebA(image_path, split='train', target_type='attr', download=False)
celeba_valid_dataset = torchvision.datasets.CelebA(image_path, split='valid', target_type='attr', download=False)
celeba_test_dataset = torchvision.datasets.CelebA(image_path, split='test', target_type='attr', download=False)
print('Train set:', len(celeba_train_dataset))
print('Validation set:', len(celeba_valid_dataset))
print('Test set:', len(celeba_test_dataset))
# ### Image transformation and data augmentation
## take 5 examples
fig = plt.figure(figsize=(16, 8.5))
## Column 1: cropping to a bounding-box
ax = fig.add_subplot(2, 5, 1)
img, attr = celeba_train_dataset[0]
ax.set_title('Crop to a \nbounding-box', size=15)
ax.imshow(img)
ax = fig.add_subplot(2, 5, 6)
img_cropped = transforms.functional.crop(img, 50, 20, 128, 128)
ax.imshow(img_cropped)
## Column 2: flipping (horizontally)
ax = fig.add_subplot(2, 5, 2)
img, attr = celeba_train_dataset[1]
ax.set_title('Flip (horizontal)', size=15)
ax.imshow(img)
ax = fig.add_subplot(2, 5, 7)
img_flipped = transforms.functional.hflip(img)
ax.imshow(img_flipped)
## Column 3: adjust contrast
ax = fig.add_subplot(2, 5, 3)
img, attr = celeba_train_dataset[2]
ax.set_title('Adjust constrast', size=15)
ax.imshow(img)
ax = fig.add_subplot(2, 5, 8)
img_adj_contrast = transforms.functional.adjust_contrast(img, contrast_factor=2)
ax.imshow(img_adj_contrast)
## Column 4: adjust brightness
ax = fig.add_subplot(2, 5, 4)
img, attr = celeba_train_dataset[3]
ax.set_title('Adjust brightness', size=15)
ax.imshow(img)
ax = fig.add_subplot(2, 5, 9)
img_adj_brightness = transforms.functional.adjust_brightness(img, brightness_factor=1.3)
ax.imshow(img_adj_brightness)
## Column 5: cropping from image center
ax = fig.add_subplot(2, 5, 5)
img, attr = celeba_train_dataset[4]
ax.set_title('Center crop\nand resize', size=15)
ax.imshow(img)
ax = fig.add_subplot(2, 5, 10)
img_center_crop = transforms.functional.center_crop(img, [0.7*218, 0.7*178])
img_resized = transforms.functional.resize(img_center_crop, size=(218, 178))
ax.imshow(img_resized)
# plt.savefig('figures/14_14.png', dpi=300)
plt.show()
torch.manual_seed(1)
fig = plt.figure(figsize=(14, 12))
for i, (img, attr) in enumerate(celeba_train_dataset):
ax = fig.add_subplot(3, 4, i*4+1)
ax.imshow(img)
if i == 0:
ax.set_title('Orig.', size=15)
ax = fig.add_subplot(3, 4, i*4+2)
img_transform = transforms.Compose([transforms.RandomCrop([178, 178])])
img_cropped = img_transform(img)
ax.imshow(img_cropped)
if i == 0:
ax.set_title('Step 1: Random crop', size=15)
ax = fig.add_subplot(3, 4, i*4+3)
img_transform = transforms.Compose([transforms.RandomHorizontalFlip()])
img_flip = img_transform(img_cropped)
ax.imshow(img_flip)
if i == 0:
ax.set_title('Step 2: Random flip', size=15)
ax = fig.add_subplot(3, 4, i*4+4)
img_resized = transforms.functional.resize(img_flip, size=(128, 128))
ax.imshow(img_resized)
if i == 0:
ax.set_title('Step 3: Resize', size=15)
if i == 2:
break
# plt.savefig('figures/14_15.png', dpi=300)
plt.show()
get_smile = lambda attr: attr[18]
transform_train = transforms.Compose([
transforms.RandomCrop([178, 178]),
transforms.RandomHorizontalFlip(),
transforms.Resize([64, 64]),
transforms.ToTensor(),
])
transform = transforms.Compose([
transforms.CenterCrop([178, 178]),
transforms.Resize([64, 64]),
transforms.ToTensor(),
])
celeba_train_dataset = torchvision.datasets.CelebA(image_path,
split='train',
target_type='attr',
download=False,
transform=transform_train,
target_transform=get_smile)
torch.manual_seed(1)
data_loader = DataLoader(celeba_train_dataset, batch_size=2)
fig = plt.figure(figsize=(15, 6))
num_epochs = 5
for j in range(num_epochs):
img_batch, label_batch = next(iter(data_loader))
img = img_batch[0]
ax = fig.add_subplot(2, 5, j + 1)
ax.set_xticks([])
ax.set_yticks([])
ax.set_title(f'Epoch {j}:', size=15)
ax.imshow(img.permute(1, 2, 0))
img = img_batch[1]
ax = fig.add_subplot(2, 5, j + 6)
ax.set_xticks([])
ax.set_yticks([])
ax.imshow(img.permute(1, 2, 0))
#plt.savefig('figures/14_16.png', dpi=300)
plt.show()
celeba_valid_dataset = torchvision.datasets.CelebA(image_path,
split='valid',
target_type='attr',
download=False,
transform=transform,
target_transform=get_smile)
celeba_test_dataset = torchvision.datasets.CelebA(image_path,
split='test',
target_type='attr',
download=False,
transform=transform,
target_transform=get_smile)
celeba_train_dataset = Subset(celeba_train_dataset, torch.arange(16000))
celeba_valid_dataset = Subset(celeba_valid_dataset, torch.arange(1000))
print('Train set:', len(celeba_train_dataset))
print('Validation set:', len(celeba_valid_dataset))
batch_size = 32
torch.manual_seed(1)
train_dl = DataLoader(celeba_train_dataset, batch_size, shuffle=True)
valid_dl = DataLoader(celeba_valid_dataset, batch_size, shuffle=False)
test_dl = DataLoader(celeba_test_dataset, batch_size, shuffle=False)
# ### Training a CNN Smile classifier
#
# * **Global Average Pooling**
model = nn.Sequential()
model.add_module('conv1', nn.Conv2d(in_channels=3, out_channels=32, kernel_size=3, padding=1))
model.add_module('relu1', nn.ReLU())
model.add_module('pool1', nn.MaxPool2d(kernel_size=2))
model.add_module('dropout1', nn.Dropout(p=0.5))
model.add_module('conv2', nn.Conv2d(in_channels=32, out_channels=64, kernel_size=3, padding=1))
model.add_module('relu2', nn.ReLU())
model.add_module('pool2', nn.MaxPool2d(kernel_size=2))
model.add_module('dropout2', nn.Dropout(p=0.5))
model.add_module('conv3', nn.Conv2d(in_channels=64, out_channels=128, kernel_size=3, padding=1))
model.add_module('relu3', nn.ReLU())
model.add_module('pool3', nn.MaxPool2d(kernel_size=2))
model.add_module('conv4', nn.Conv2d(in_channels=128, out_channels=256, kernel_size=3, padding=1))
model.add_module('relu4', nn.ReLU())
x = torch.ones((4, 3, 64, 64))
model(x).shape
model.add_module('pool4', nn.AvgPool2d(kernel_size=8))
model.add_module('flatten', nn.Flatten())
x = torch.ones((4, 3, 64, 64))
model(x).shape
model.add_module('fc', nn.Linear(256, 1))
model.add_module('sigmoid', nn.Sigmoid())
x = torch.ones((4, 3, 64, 64))
model(x).shape
model
device = torch.device("cuda:0")
# device = torch.device("cpu")
model = model.to(device)
loss_fn = nn.BCELoss()
optimizer = torch.optim.Adam(model.parameters(), lr=0.001)
def train(model, num_epochs, train_dl, valid_dl):
loss_hist_train = [0] * num_epochs
accuracy_hist_train = [0] * num_epochs
loss_hist_valid = [0] * num_epochs
accuracy_hist_valid = [0] * num_epochs
for epoch in range(num_epochs):
model.train()
for x_batch, y_batch in train_dl:
x_batch = x_batch.to(device)
y_batch = y_batch.to(device)
pred = model(x_batch)[:, 0]
loss = loss_fn(pred, y_batch.float())
loss.backward()
optimizer.step()
optimizer.zero_grad()
loss_hist_train[epoch] += loss.item()*y_batch.size(0)
is_correct = ((pred>=0.5).float() == y_batch).float()
accuracy_hist_train[epoch] += is_correct.sum().cpu()
loss_hist_train[epoch] /= len(train_dl.dataset)
accuracy_hist_train[epoch] /= len(train_dl.dataset)
model.eval()
with torch.no_grad():
for x_batch, y_batch in valid_dl:
x_batch = x_batch.to(device)
y_batch = y_batch.to(device)
pred = model(x_batch)[:, 0]
loss = loss_fn(pred, y_batch.float())
loss_hist_valid[epoch] += loss.item()*y_batch.size(0)
is_correct = ((pred>=0.5).float() == y_batch).float()
accuracy_hist_valid[epoch] += is_correct.sum().cpu()
loss_hist_valid[epoch] /= len(valid_dl.dataset)
accuracy_hist_valid[epoch] /= len(valid_dl.dataset)
print(f'Epoch {epoch+1} accuracy: {accuracy_hist_train[epoch]:.4f} val_accuracy: {accuracy_hist_valid[epoch]:.4f}')
return loss_hist_train, loss_hist_valid, accuracy_hist_train, accuracy_hist_valid
torch.manual_seed(1)
num_epochs = 30
hist = train(model, num_epochs, train_dl, valid_dl)
x_arr = np.arange(len(hist[0])) + 1
fig = plt.figure(figsize=(12, 4))
ax = fig.add_subplot(1, 2, 1)
ax.plot(x_arr, hist[0], '-o', label='Train loss')
ax.plot(x_arr, hist[1], '--<', label='Validation loss')
ax.legend(fontsize=15)
ax.set_xlabel('Epoch', size=15)
ax.set_ylabel('Loss', size=15)
ax = fig.add_subplot(1, 2, 2)
ax.plot(x_arr, hist[2], '-o', label='Train acc.')
ax.plot(x_arr, hist[3], '--<', label='Validation acc.')
ax.legend(fontsize=15)
ax.set_xlabel('Epoch', size=15)
ax.set_ylabel('Accuracy', size=15)
#plt.savefig('figures/14_17.png', dpi=300)
plt.show()
accuracy_test = 0
model.eval()
with torch.no_grad():
for x_batch, y_batch in test_dl:
x_batch = x_batch.to(device)
y_batch = y_batch.to(device)
pred = model(x_batch)[:, 0]
is_correct = ((pred>=0.5).float() == y_batch).float()
accuracy_test += is_correct.sum().cpu()
accuracy_test /= len(test_dl.dataset)
print(f'Test accuracy: {accuracy_test:.4f}')
pred = model(x_batch)[:, 0] * 100
fig = plt.figure(figsize=(15, 7))
for j in range(10, 20):
ax = fig.add_subplot(2, 5, j-10+1)
ax.set_xticks([]); ax.set_yticks([])
ax.imshow(x_batch[j].cpu().permute(1, 2, 0))
if y_batch[j] == 1:
label = 'Smile'
else:
label = 'Not Smile'
ax.text(
0.5, -0.15,
f'GT: {label:s}\nPr(Smile)={pred[j]:.0f}%',
size=16,
horizontalalignment='center',
verticalalignment='center',
transform=ax.transAxes)
#plt.savefig('figures/figures-14_18.png', dpi=300)
plt.show()
path = 'models/celeba-cnn.ph'
torch.save(model, path)
# ...
#
#
# ## Summary
#
# ...
#
#
# ----
#
# Readers may ignore the next cell.