-
Notifications
You must be signed in to change notification settings - Fork 1.4k
/
ch14_part1.py
507 lines (300 loc) · 11.8 KB
/
ch14_part1.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
# coding: utf-8
import sys
from python_environment_check import check_packages
import torch
import numpy as np
import scipy.signal
from torchvision.io import read_image
import torch.nn as nn
import torchvision
from torchvision import transforms
from torch.utils.data import Subset
from torch.utils.data import DataLoader
import matplotlib.pyplot as plt
import os
# # Machine Learning with PyTorch and Scikit-Learn
# # -- Code Examples
# ## Package version checks
# Add folder to path in order to load from the check_packages.py script:
sys.path.insert(0, '..')
# Check recommended package versions:
d = {
'numpy': '1.21.2',
'scipy': '1.7.0',
'matplotlib': '3.4.3',
'torch': '1.8.0',
'torchvision': '0.9.0'
}
check_packages(d)
# # Chapter 14: Classifying Images with Deep Convolutional Neural Networks (Part 1/2)
# **Outline**
#
# - [The building blocks of CNNs](#The-building-blocks-of-CNNs)
# - [Understanding CNNs and feature hierarchies](#Understanding-CNNs-and-feature-hierarchies)
# - [Performing discrete convolutions](#Performing-discrete-convolutions)
# - [Discrete convolutions in one dimension](#Discrete-convolutions-in-one-dimension)
# - [Padding inputs to control the size of the output feature maps](#Padding-inputs-to-control-the-size-of-the-output-feature-maps)
# - [Determining the size of the convolution output](#Determining-the-size-of-the-convolution-output)
# - [Performing a discrete convolution in 2D](#Performing-a-discrete-convolution-in-2D)
# - [Subsampling layers](#Subsampling-layers)
# - [Putting everything together -- implementing a CNN](#Putting-everything-together----implementing-a-CNN)
# - [Working with multiple input or color channels](#Working-with-multiple-input-or-color-channels)
# - [Regularizing an NN with L2 regularization and dropout](#Regularizing-an-NN-with-L2-regularization-and-dropout)
# - [Loss functions for classification](#Loss-functions-for-classification)
# - [Implementing a deep CNN using PyTorch](#Implementing-a-deep-CNN-using-PyTorch)
# - [The multilayer CNN architecture](#The-multilayer-CNN-architecture)
# - [Loading and preprocessing the data](#Loading-and-preprocessing-the-data)
# - [Implementing a CNN using the torch.nn module](#Implementing-a-CNN-using-the-torch.nn-module)
# - [Configuring CNN layers in PyTorch](#Configuring-CNN-layers-in-PyTorch)
# - [Constructing a CNN in PyTorch](#Constructing-a-CNN-in-PyTorch)
# ## The building blocks of convolutional neural networks
#
# ### Understanding CNNs and feature hierarchies
#
#
# ### Performing discrete convolutions
#
# ### Discrete convolutions in one dimension
#
#
# ### Padding inputs to control the size of the output feature maps
#
#
# ### Determining the size of the convolution output
print('PyTorch version:', torch.__version__)
print('NumPy version: ', np.__version__)
def conv1d(x, w, p=0, s=1):
w_rot = np.array(w[::-1])
x_padded = np.array(x)
if p > 0:
zero_pad = np.zeros(shape=p)
x_padded = np.concatenate(
[zero_pad, x_padded, zero_pad])
res = []
for i in range(0, (int((len(x_padded) - len(w_rot))/s) + 1) * s, s):
res.append(np.sum(
x_padded[i:i + w_rot.shape[0]] * w_rot))
return np.array(res)
## Testing:
x = [1, 3, 2, 4, 5, 6, 1, 3]
w = [1, 0, 3, 1, 2]
print('Conv1d Implementation:',
conv1d(x, w, p=2, s=1))
print('Numpy Results:',
np.convolve(x, w, mode='same'))
# ### Performing a discrete convolution in 2D
def conv2d(X, W, p=(0, 0), s=(1, 1)):
W_rot = np.array(W)[::-1,::-1]
X_orig = np.array(X)
n1 = X_orig.shape[0] + 2*p[0]
n2 = X_orig.shape[1] + 2*p[1]
X_padded = np.zeros(shape=(n1, n2))
X_padded[p[0]:p[0]+X_orig.shape[0],
p[1]:p[1]+X_orig.shape[1]] = X_orig
res = []
for i in range(0, (int((X_padded.shape[0] -
W_rot.shape[0]) / s[0]) + 1) * s[0], s[0]):
res.append([])
for j in range(0, (int((X_padded.shape[1] -
W_rot.shape[1]) / s[1]) + 1) * s[1], s[1]):
X_sub = X_padded[i:i + W_rot.shape[0],
j:j + W_rot.shape[1]]
res[-1].append(np.sum(X_sub * W_rot))
return(np.array(res))
X = [[1, 3, 2, 4], [5, 6, 1, 3], [1, 2, 0, 2], [3, 4, 3, 2]]
W = [[1, 0, 3], [1, 2, 1], [0, 1, 1]]
print('Conv2d Implementation:\n',
conv2d(X, W, p=(1, 1), s=(1, 1)))
print('SciPy Results:\n',
scipy.signal.convolve2d(X, W, mode='same'))
# ## Subsampling layers
# ## Putting everything together – implementing a CNN
#
# ### Working with multiple input or color channels
#
#
# **TIP: Reading an image file**
img = read_image('example-image.png')
print('Image shape:', img.shape)
print('Number of channels:', img.shape[0])
print('Image data type:', img.dtype)
print(img[:, 100:102, 100:102])
# ## Regularizing a neural network with L2 regularization and dropout
#
#
loss_func = nn.BCELoss()
loss = loss_func(torch.tensor([0.9]), torch.tensor([1.0]))
l2_lambda = 0.001
conv_layer = nn.Conv2d(in_channels=3, out_channels=5, kernel_size=5)
l2_penalty = l2_lambda * sum([(p**2).sum() for p in conv_layer.parameters()])
loss_with_penalty = loss + l2_penalty
linear_layer = nn.Linear(10, 16)
l2_penalty = l2_lambda * sum([(p**2).sum() for p in linear_layer.parameters()])
loss_with_penalty = loss + l2_penalty
# ## Loss Functions for Classification
#
# * **`nn.BCELoss()`**
# * `from_logits=False`
# * `from_logits=True`
#
# * **`nn.CrossEntropyLoss()`**
# * `from_logits=False`
# * `from_logits=True`
#
####### Binary Cross-entropy
logits = torch.tensor([0.8])
probas = torch.sigmoid(logits)
target = torch.tensor([1.0])
bce_loss_fn = nn.BCELoss()
bce_logits_loss_fn = nn.BCEWithLogitsLoss()
print(f'BCE (w Probas): {bce_loss_fn(probas, target):.4f}')
print(f'BCE (w Logits): {bce_logits_loss_fn(logits, target):.4f}')
####### Categorical Cross-entropy
logits = torch.tensor([[1.5, 0.8, 2.1]])
probas = torch.softmax(logits, dim=1)
target = torch.tensor([2])
cce_loss_fn = nn.NLLLoss()
cce_logits_loss_fn = nn.CrossEntropyLoss()
print(f'CCE (w Logits): {cce_logits_loss_fn(logits, target):.4f}')
print(f'CCE (w Probas): {cce_loss_fn(torch.log(probas), target):.4f}')
# ## Implementing a deep convolutional neural network using PyTorch
#
# ### The multilayer CNN architecture
# ### Loading and preprocessing the data
image_path = './'
transform = transforms.Compose([transforms.ToTensor()])
mnist_dataset = torchvision.datasets.MNIST(root=image_path,
train=True,
transform=transform,
download=True)
mnist_valid_dataset = Subset(mnist_dataset, torch.arange(10000))
mnist_train_dataset = Subset(mnist_dataset, torch.arange(10000, len(mnist_dataset)))
mnist_test_dataset = torchvision.datasets.MNIST(root=image_path,
train=False,
transform=transform,
download=False)
batch_size = 64
torch.manual_seed(1)
train_dl = DataLoader(mnist_train_dataset, batch_size, shuffle=True)
valid_dl = DataLoader(mnist_valid_dataset, batch_size, shuffle=False)
# ### Implementing a CNN using the torch.nn module
#
# #### Configuring CNN layers in PyTorch
#
# * **Conv2d:** `torch.nn.Conv2d`
# * `out_channels`
# * `kernel_size`
# * `stride`
# * `padding`
#
#
# * **MaxPool2d:** `torch.nn.MaxPool2d`
# * `kernel_size`
# * `stride`
# * `padding`
#
#
# * **Dropout** `torch.nn.Dropout`
# * `p`
# ### Constructing a CNN in PyTorch
model = nn.Sequential()
model.add_module('conv1', nn.Conv2d(in_channels=1, out_channels=32, kernel_size=5, padding=2))
model.add_module('relu1', nn.ReLU())
model.add_module('pool1', nn.MaxPool2d(kernel_size=2))
model.add_module('conv2', nn.Conv2d(in_channels=32, out_channels=64, kernel_size=5, padding=2))
model.add_module('relu2', nn.ReLU())
model.add_module('pool2', nn.MaxPool2d(kernel_size=2))
x = torch.ones((4, 1, 28, 28))
model(x).shape
model.add_module('flatten', nn.Flatten())
x = torch.ones((4, 1, 28, 28))
model(x).shape
model.add_module('fc1', nn.Linear(3136, 1024))
model.add_module('relu3', nn.ReLU())
model.add_module('dropout', nn.Dropout(p=0.5))
model.add_module('fc2', nn.Linear(1024, 10))
device = torch.device("cuda:0")
# device = torch.device("cpu")
model = model.to(device)
loss_fn = nn.CrossEntropyLoss()
optimizer = torch.optim.Adam(model.parameters(), lr=0.001)
def train(model, num_epochs, train_dl, valid_dl):
loss_hist_train = [0] * num_epochs
accuracy_hist_train = [0] * num_epochs
loss_hist_valid = [0] * num_epochs
accuracy_hist_valid = [0] * num_epochs
for epoch in range(num_epochs):
model.train()
for x_batch, y_batch in train_dl:
x_batch = x_batch.to(device)
y_batch = y_batch.to(device)
pred = model(x_batch)
loss = loss_fn(pred, y_batch)
loss.backward()
optimizer.step()
optimizer.zero_grad()
loss_hist_train[epoch] += loss.item()*y_batch.size(0)
is_correct = (torch.argmax(pred, dim=1) == y_batch).float()
accuracy_hist_train[epoch] += is_correct.sum().cpu()
loss_hist_train[epoch] /= len(train_dl.dataset)
accuracy_hist_train[epoch] /= len(train_dl.dataset)
model.eval()
with torch.no_grad():
for x_batch, y_batch in valid_dl:
x_batch = x_batch.to(device)
y_batch = y_batch.to(device)
pred = model(x_batch)
loss = loss_fn(pred, y_batch)
loss_hist_valid[epoch] += loss.item()*y_batch.size(0)
is_correct = (torch.argmax(pred, dim=1) == y_batch).float()
accuracy_hist_valid[epoch] += is_correct.sum().cpu()
loss_hist_valid[epoch] /= len(valid_dl.dataset)
accuracy_hist_valid[epoch] /= len(valid_dl.dataset)
print(f'Epoch {epoch+1} accuracy: {accuracy_hist_train[epoch]:.4f} val_accuracy: {accuracy_hist_valid[epoch]:.4f}')
return loss_hist_train, loss_hist_valid, accuracy_hist_train, accuracy_hist_valid
torch.manual_seed(1)
num_epochs = 20
hist = train(model, num_epochs, train_dl, valid_dl)
x_arr = np.arange(len(hist[0])) + 1
fig = plt.figure(figsize=(12, 4))
ax = fig.add_subplot(1, 2, 1)
ax.plot(x_arr, hist[0], '-o', label='Train loss')
ax.plot(x_arr, hist[1], '--<', label='Validation loss')
ax.set_xlabel('Epoch', size=15)
ax.set_ylabel('Loss', size=15)
ax.legend(fontsize=15)
ax = fig.add_subplot(1, 2, 2)
ax.plot(x_arr, hist[2], '-o', label='Train acc.')
ax.plot(x_arr, hist[3], '--<', label='Validation acc.')
ax.legend(fontsize=15)
ax.set_xlabel('Epoch', size=15)
ax.set_ylabel('Accuracy', size=15)
#plt.savefig('figures/14_13.png')
plt.show()
torch.cuda.synchronize()
model_cpu = model.cpu()
pred = model(mnist_test_dataset.data.unsqueeze(1) / 255.)
is_correct = (torch.argmax(pred, dim=1) == mnist_test_dataset.targets).float()
print(f'Test accuracy: {is_correct.mean():.4f}')
fig = plt.figure(figsize=(12, 4))
for i in range(12):
ax = fig.add_subplot(2, 6, i+1)
ax.set_xticks([]); ax.set_yticks([])
img = mnist_test_dataset[i][0][0, :, :]
pred = model(img.unsqueeze(0).unsqueeze(1))
y_pred = torch.argmax(pred)
ax.imshow(img, cmap='gray_r')
ax.text(0.9, 0.1, y_pred.item(),
size=15, color='blue',
horizontalalignment='center',
verticalalignment='center',
transform=ax.transAxes)
plt.savefig('figures/14_14.png')
plt.show()
if not os.path.exists('models'):
os.mkdir('models')
path = 'models/mnist-cnn.ph'
torch.save(model, path)
# ----
#
# Readers may ignore the next cell.