-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathrun_model_multi_input.cpp
99 lines (82 loc) · 3.46 KB
/
run_model_multi_input.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
/*
Load and run a saved TensorFlow's multiple-input model
g++ -Wall -fPIC -D_GLIBCXX_USE_CXX11_ABI=1 run_model.cpp -o run_model.o \
-I/usr/local/tensorflow-2.11/include/ -L/usr/local/tensorflow-2.11/lib \
-ltensorflow_cc -ltensorflow_framework
Rangsiman Ketkaew
*/
#include <tensorflow/cc/saved_model/loader.h>
#include <tensorflow/cc/saved_model/tag_constants.h>
using namespace tensorflow;
int main()
{
// load the whole folder
std::string export_dir = "./model/";
// Load
SavedModelBundle model_bundle;
SessionOptions session_options = SessionOptions();
RunOptions run_options = RunOptions();
Status status = LoadSavedModel(session_options, run_options, export_dir, {kSavedModelTagServe}, &model_bundle);
if (!status.ok())
{
std::cerr << "Failed: " << status;
}
auto sig_map = model_bundle.GetSignatures();
auto model_def = sig_map.at("serving_default");
for (auto const &p : sig_map)
{
std::cout << "key: " << p.first.c_str() << std::endl;
}
for (auto const &p : model_def.inputs())
{
std::cout << "key: " << p.first.c_str() << " " << p.second.name().c_str() << std::endl;
}
for (auto const &p : model_def.outputs())
{
std::cout << "key: " << p.first.c_str() << " " << p.second.name().c_str() << std::endl;
}
auto input_tensor_1_name = "serving_default_args_0:0";
auto input_tensor_2_name = "serving_default_args_0_1:0";
auto output_tensor_1_name = "StatefulPartitionedCall:0";
auto output_tensor_2_name = "StatefulPartitionedCall:1";
// Create output placeholder tensors
// I use the size of input that exactly matchs the size of input from Python model
// Use saved_model_cli to check
tensorflow::Tensor input_1(tensorflow::DT_FLOAT, tensorflow::TensorShape({1, 394}));
tensorflow::Tensor input_2(tensorflow::DT_FLOAT, tensorflow::TensorShape({1, 99}));
auto input_mat_1 = input_1.matrix<float>();
// assign random value
for (unsigned i = 0; i < 394; ++i)
input_mat_1(0, i) = 1.0;
auto input_mat_2 = input_2.matrix<float>();
// assign random value
for (unsigned i = 0; i < 99; ++i)
input_mat_2(0, i) = 2.0;
typedef std::vector<std::pair<std::string, tensorflow::Tensor>> tensor_dict;
tensor_dict feed_dict = {
{input_tensor_1_name, input_1},
{input_tensor_2_name, input_2}};
// Create output placeholder tensors for results
std::vector<tensorflow::Tensor> outputs;
std::vector<std::string> output_names = {output_tensor_1_name, output_tensor_2_name};
// Running inference
tensorflow::Status status_run = model_bundle.session->Run(feed_dict,
output_names,
{},
&outputs);
// Check if session is successfully loaded
if (!status_run.ok())
{
std::cerr << "Failed: " << status_run;
}
else
{
std::cout << "Passed: " << status_run << std::endl;
}
std::cout << "input 1 " << input_1.DebugString() << std::endl;
std::cout << "input 2 " << input_2.DebugString() << std::endl;
std::cout << "output " << outputs[0].DebugString() << std::endl;
std::cout << "dense/kernel:0 " << outputs[1].DebugString() << std::endl;
// std::cout << "dense/bias:0 " << outputs[2].DebugString() << std::endl;
return 0;
}