diff --git a/.ipynb_checkpoints/Quikr Analysis-checkpoint.ipynb b/.ipynb_checkpoints/Quikr Analysis-checkpoint.ipynb new file mode 100644 index 0000000..a55c2c3 --- /dev/null +++ b/.ipynb_checkpoints/Quikr Analysis-checkpoint.ipynb @@ -0,0 +1,1592 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "import pandas as pd\n", + "import numpy as np\n", + "import matplotlib.pyplot as plt\n", + "import matplotlib as mpl\n", + "%matplotlib inline\n", + "mpl.style.use('ggplot')" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "car=pd.read_csv('quikr_car.csv')" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
namecompanyyearPricekms_drivenfuel_type
0Hyundai Santro Xing XO eRLX Euro IIIHyundai200780,00045,000 kmsPetrol
1Mahindra Jeep CL550 MDIMahindra20064,25,00040 kmsDiesel
2Maruti Suzuki Alto 800 VxiMaruti2018Ask For Price22,000 kmsPetrol
3Hyundai Grand i10 Magna 1.2 Kappa VTVTHyundai20143,25,00028,000 kmsPetrol
4Ford EcoSport Titanium 1.5L TDCiFord20145,75,00036,000 kmsDiesel
\n", + "
" + ], + "text/plain": [ + " name company year Price \\\n", + "0 Hyundai Santro Xing XO eRLX Euro III Hyundai 2007 80,000 \n", + "1 Mahindra Jeep CL550 MDI Mahindra 2006 4,25,000 \n", + "2 Maruti Suzuki Alto 800 Vxi Maruti 2018 Ask For Price \n", + "3 Hyundai Grand i10 Magna 1.2 Kappa VTVT Hyundai 2014 3,25,000 \n", + "4 Ford EcoSport Titanium 1.5L TDCi Ford 2014 5,75,000 \n", + "\n", + " kms_driven fuel_type \n", + "0 45,000 kms Petrol \n", + "1 40 kms Diesel \n", + "2 22,000 kms Petrol \n", + "3 28,000 kms Petrol \n", + "4 36,000 kms Diesel " + ] + }, + "execution_count": 3, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "car.head()" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "(892, 6)" + ] + }, + "execution_count": 4, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "car.shape" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "RangeIndex: 892 entries, 0 to 891\n", + "Data columns (total 6 columns):\n", + " # Column Non-Null Count Dtype \n", + "--- ------ -------------- ----- \n", + " 0 name 892 non-null object\n", + " 1 company 892 non-null object\n", + " 2 year 892 non-null object\n", + " 3 Price 892 non-null object\n", + " 4 kms_driven 840 non-null object\n", + " 5 fuel_type 837 non-null object\n", + "dtypes: object(6)\n", + "memory usage: 41.9+ KB\n" + ] + } + ], + "source": [ + "car.info()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "##### Creating backup copy" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [], + "source": [ + "backup=car.copy()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Quality\n", + "\n", + "- names are pretty inconsistent\n", + "- names have company names attached to it\n", + "- some names are spam like 'Maruti Ertiga showroom condition with' and 'Well mentained Tata Sumo'\n", + "- company: many of the names are not of any company like 'Used', 'URJENT', and so on.\n", + "- year has many non-year values\n", + "- year is in object. Change to integer\n", + "- Price has Ask for Price\n", + "- Price has commas in its prices and is in object\n", + "- kms_driven has object values with kms at last.\n", + "- It has nan values and two rows have 'Petrol' in them\n", + "- fuel_type has nan values" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Cleaning Data " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### year has many non-year values" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [], + "source": [ + "car=car[car['year'].str.isnumeric()]" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### year is in object. Change to integer" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [], + "source": [ + "car['year']=car['year'].astype(int)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Price has Ask for Price" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [], + "source": [ + "car=car[car['Price']!='Ask For Price']" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Price has commas in its prices and is in object" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [], + "source": [ + "car['Price']=car['Price'].str.replace(',','').astype(int)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### kms_driven has object values with kms at last." + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [], + "source": [ + "car['kms_driven']=car['kms_driven'].str.split().str.get(0).str.replace(',','')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### It has nan values and two rows have 'Petrol' in them" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": {}, + "outputs": [], + "source": [ + "car=car[car['kms_driven'].str.isnumeric()]" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": {}, + "outputs": [], + "source": [ + "car['kms_driven']=car['kms_driven'].astype(int)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### fuel_type has nan values" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": {}, + "outputs": [], + "source": [ + "car=car[~car['fuel_type'].isna()]" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "(816, 6)" + ] + }, + "execution_count": 15, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "car.shape" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### name and company had spammed data...but with the previous cleaning, those rows got removed." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Company does not need any cleaning now. Changing car names. Keeping only the first three words" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": {}, + "outputs": [], + "source": [ + "car['name']=car['name'].str.split().str.slice(start=0,stop=3).str.join(' ')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Resetting the index of the final cleaned data" + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "metadata": {}, + "outputs": [], + "source": [ + "car=car.reset_index(drop=True)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Cleaned Data" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
namecompanyyearPricekms_drivenfuel_type
0Hyundai Santro XingHyundai20078000045000Petrol
1Mahindra Jeep CL550Mahindra200642500040Diesel
2Hyundai Grand i10Hyundai201432500028000Petrol
3Ford EcoSport TitaniumFord201457500036000Diesel
4Ford FigoFord201217500041000Diesel
.....................
811Maruti Suzuki RitzMaruti201127000050000Petrol
812Tata Indica V2Tata200911000030000Diesel
813Toyota Corolla AltisToyota2009300000132000Petrol
814Tata Zest XMTata201826000027000Diesel
815Mahindra Quanto C8Mahindra201339000040000Diesel
\n", + "

816 rows × 6 columns

\n", + "
" + ], + "text/plain": [ + " name company year Price kms_driven fuel_type\n", + "0 Hyundai Santro Xing Hyundai 2007 80000 45000 Petrol\n", + "1 Mahindra Jeep CL550 Mahindra 2006 425000 40 Diesel\n", + "2 Hyundai Grand i10 Hyundai 2014 325000 28000 Petrol\n", + "3 Ford EcoSport Titanium Ford 2014 575000 36000 Diesel\n", + "4 Ford Figo Ford 2012 175000 41000 Diesel\n", + ".. ... ... ... ... ... ...\n", + "811 Maruti Suzuki Ritz Maruti 2011 270000 50000 Petrol\n", + "812 Tata Indica V2 Tata 2009 110000 30000 Diesel\n", + "813 Toyota Corolla Altis Toyota 2009 300000 132000 Petrol\n", + "814 Tata Zest XM Tata 2018 260000 27000 Diesel\n", + "815 Mahindra Quanto C8 Mahindra 2013 390000 40000 Diesel\n", + "\n", + "[816 rows x 6 columns]" + ] + }, + "execution_count": 18, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "car" + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "metadata": {}, + "outputs": [], + "source": [ + "car.to_csv('Cleaned_Car_data.csv')" + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "RangeIndex: 816 entries, 0 to 815\n", + "Data columns (total 6 columns):\n", + " # Column Non-Null Count Dtype \n", + "--- ------ -------------- ----- \n", + " 0 name 816 non-null object\n", + " 1 company 816 non-null object\n", + " 2 year 816 non-null int32 \n", + " 3 Price 816 non-null int32 \n", + " 4 kms_driven 816 non-null int32 \n", + " 5 fuel_type 816 non-null object\n", + "dtypes: int32(3), object(3)\n", + "memory usage: 28.8+ KB\n" + ] + } + ], + "source": [ + "car.info()" + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
namecompanyyearPricekms_drivenfuel_type
count816816816.0000008.160000e+02816.000000816
unique25425NaNNaNNaN3
topMaruti Suzuki SwiftMarutiNaNNaNNaNPetrol
freq51221NaNNaNNaN428
meanNaNNaN2012.4448534.117176e+0546275.531863NaN
stdNaNNaN4.0029924.751844e+0534297.428044NaN
minNaNNaN1995.0000003.000000e+040.000000NaN
25%NaNNaN2010.0000001.750000e+0527000.000000NaN
50%NaNNaN2013.0000002.999990e+0541000.000000NaN
75%NaNNaN2015.0000004.912500e+0556818.500000NaN
maxNaNNaN2019.0000008.500003e+06400000.000000NaN
\n", + "
" + ], + "text/plain": [ + " name company year Price kms_driven \\\n", + "count 816 816 816.000000 8.160000e+02 816.000000 \n", + "unique 254 25 NaN NaN NaN \n", + "top Maruti Suzuki Swift Maruti NaN NaN NaN \n", + "freq 51 221 NaN NaN NaN \n", + "mean NaN NaN 2012.444853 4.117176e+05 46275.531863 \n", + "std NaN NaN 4.002992 4.751844e+05 34297.428044 \n", + "min NaN NaN 1995.000000 3.000000e+04 0.000000 \n", + "25% NaN NaN 2010.000000 1.750000e+05 27000.000000 \n", + "50% NaN NaN 2013.000000 2.999990e+05 41000.000000 \n", + "75% NaN NaN 2015.000000 4.912500e+05 56818.500000 \n", + "max NaN NaN 2019.000000 8.500003e+06 400000.000000 \n", + "\n", + " fuel_type \n", + "count 816 \n", + "unique 3 \n", + "top Petrol \n", + "freq 428 \n", + "mean NaN \n", + "std NaN \n", + "min NaN \n", + "25% NaN \n", + "50% NaN \n", + "75% NaN \n", + "max NaN " + ] + }, + "execution_count": 21, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "car.describe(include='all')" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": 22, + "metadata": {}, + "outputs": [], + "source": [ + "car=car[car['Price']<6000000]" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Checking relationship of Company with Price" + ] + }, + { + "cell_type": "code", + "execution_count": 23, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array(['Hyundai', 'Mahindra', 'Ford', 'Maruti', 'Skoda', 'Audi', 'Toyota',\n", + " 'Renault', 'Honda', 'Datsun', 'Mitsubishi', 'Tata', 'Volkswagen',\n", + " 'Chevrolet', 'Mini', 'BMW', 'Nissan', 'Hindustan', 'Fiat', 'Force',\n", + " 'Mercedes', 'Land', 'Jaguar', 'Jeep', 'Volvo'], dtype=object)" + ] + }, + "execution_count": 23, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "car['company'].unique()" + ] + }, + { + "cell_type": "code", + "execution_count": 24, + "metadata": {}, + "outputs": [], + "source": [ + "import seaborn as sns" + ] + }, + { + "cell_type": "code", + "execution_count": 25, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA3sAAAHbCAYAAAByToMkAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAAsTAAALEwEAmpwYAACYQklEQVR4nOzdd0BTV/sH8G/CFBkRKCgiLpx1iwMEqxa3BatWax1dVq1966j1raO+vq11VDusdVdrreJqawU3YkVAVKRORAVkCYiREaYBMn5/8EteUFSgWYTv5582JDfnMbn35j73nPMcgVKpVIKIiIiIiIiMilDfARAREREREZHmMdkjIiIiIiIyQkz2iIiIiIiIjBCTPSIiIiIiIiPEZI+IiIiIiMgIMdkjIiIiIiIyQqb6DuCf2rRpE65cuQI7Ozt8++23L3x9ZGQkfvvtNwgEAjRv3hxz5szRQZRERERERES6VeeTvQEDBmDYsGHYuHHjC1/74MEDHD58GMuXL4e1tTXy8vJ0ECEREREREZHu1flkr2PHjhCLxZX+lpmZiR07diA/Px8WFhaYMWMGmjZtijNnzmDo0KGwtrYGANjZ2ekjZCIiIiIiIq2r88leVbZt24YPPvgATZo0QXx8PLZv345ly5YhIyMDALB06VIoFAq88cYb6Natm36DJSIiIiIi0gKjS/akUinu3r2L7777Tv03mUwGAFAoFHjw4AGWLVuGnJwcLFu2DN988w0aNmyor3CJiIiIiIi0wuiSPYVCgYYNG2Lt2rVPPWdvb482bdrA1NQUTk5OaNKkCR48eAB3d3c9REpERERERKQ9Rrf0gpWVFZycnHDhwgUAgFKpRHJyMgCgd+/euHXrFgAgPz8fDx48gLOzs75CJSIiIiIi0hqBUqlU6juIf2LdunWIjY1FQUEB7OzsMH78eHTq1Ak//fQTJBIJZDIZ+vXrh3HjxkGpVOLXX3/FtWvXIBQKMWbMGPTr10/f/wQiIiIiIiKNq/PJHhERERERET3N6IZxEhEREREREZM9IiIiIiIio8Rkj4iIiIiIyAjV+aUXVAulExERERER1TcuLi7PfI49e0REREREREaIyR4REREREZERYrJHRERERERkhJjsERERERERGSEme0REREREREaIyR4REREREZERYrJHRERERERkhJjsERERERERGSEme0REREREREaIyR4REREREZERYrJHRERERERkhJjsERkgiUSClStXQiKR6DsUIiIiIqqjmOwRGaDAwEDEx8cjKChI36EQERERUR3FZI/IwEgkEkRERECpVCI8PJy9e0RERERUK0z2iAxMYGAgFAoFAEChULB3j4iIiIhqhckekYG5cOEC5HI5AEAulyMyMlLPERERERFRXcRkj8jAeHp6wsTEBABgYmICLy8vPUdERERERHURkz0iA+Pv7w+hsPzQFAqF8PPz03NERERERFQXMdkjMjAikQje3t4QCATw8fGBSCTSd0hEREREVAeZ6jsAInqav78/0tPT2atHRERERLUmUCqVSn0H8U9kZGToOwQiIiIiIiK9cHFxeeZzHMZJRERERERkhJjsERERERERGSGdzNkrLS3FsmXLIJPJIJfL0bdvX4wfP77Sa8rKyrBhwwYkJibCxsYGc+fOhZOTky7CIyIiIiIiMjo6mbOnVCpRUlICS0tLyGQy/Oc//8E777yDtm3bql9z6tQppKSkYPr06Th//jyioqIwb968F7435+wREREREVF9pfc5ewKBAJaWlgAAuVwOuVwOgUBQ6TXR0dEYMGAAAKBv376IiYlBHa8dQ0REREREpDc6W3pBoVDgs88+Q2ZmJoYOHYo2bdpUej4nJwcODg4AABMTE1hZWaGgoAC2traVXhcSEoKQkBAAwOrVq+Ho6KibfwAREREREVEdorNkTygUYu3atSgqKsI333yD1NRUuLm51fh9fH194evrq36clZWlyTCJiIiIiIjqDL0P46yoYcOGePnll3Ht2rVKf7e3t0d2djaA8qGexcXFsLGx0XV4RERERERERkEnyV5+fj6KiooAlFfmvHHjBpo2bVrpNT179kRoaCgA4OLFi3j55ZefmtdHRERERERE1aOTapwpKSnYuHEjFAoFlEolPD09MW7cOBw4cACtW7eGh4cHSktLsWHDBiQlJcHa2hpz586Fs7PzC9+b1TiJiIiIiKi+et4wTp0ke9rEZI+IiIiIiOorg5qzR0RERERERNrHZI8AABKJBCtXroREItF3KEREREREpAFM9ggAEBgYiPj4eAQFBek7FCIiIiIi0gAmewSJRIKIiAgolUqEh4ezd4+IiIiIyAgw2SMEBgZCoVAAABQKBXv3iIiIiIiMAJM9woULFyCXywGUL2gfGRmp54iIiIiIiOifYrJH8PT0hImJCQDAxMQEXl5eeo6IiIiIiIj+KSZ7BH9/fwiF5buCUCiEn5+fniMiIiIiIqJ/iskeQSQSwdvbGwKBAD4+PhCJRPoOiYiIiIiI/iFTfQdAhsHf3x/p6ens1SMiIiIiMhICpVKp1HcQ/0RGRoa+QyAiIiIiItILFxeXZz7HYZxERERERERGiMkeERERERGREWKyR0REREREZISY7BERERERERkhJntERERERERGiEsvEBERERGRRgUEBCA1NbXK58RiMQDAycnpqefc3NwwadIkrcZWnzDZIyIiIiIinZFKpfoOod7gOntERERERKQzq1atAgAsWrRIz5EYB66zR0REREREVM8w2SMiIiIiIjJCTPaIiIiIiIiMEJM9IiIiIiIiI8Rkj4iIiIiIyAgx2SMiIiIiIjJCTPaIiIiIiIiMEJM9IiIiIiIiI8Rkj4iIiIiIyAgx2SMiIiIiIjJCTPaIiIiIiIiMEJM9IiIiIiIiI8Rkj4iIiIiIyAgx2SMiIiIiIjJCAqVSqdR3EP9ERkaGvkMgIiIiIqp3AgICkJqaWuPtVNu4ubnVaDs3NzdMmjSpxu0ZOxcXl2c+Z6rDOIiIiIiIyEikpqbi/r0UuNk0rdF2lgpzAIBALKt+WwXpNWqDyjHZIyIiIiKiWnGzaYrFfT7WejsrL/2IOj0cUU84Z4+IiIiIiMgIMdkjIiIiIiIyQkz2iIiIiIiIjBCTPSIiIiIiIiPEZI+IiIiIiMgIMdkjIiIiIiIyQkz2iIiIiIiIjBCTPSIiIiIiIiPEZI+IiIiIiMgIMdkjIiIiIiIyQkz2iIiIiIiIjJCpLhrJysrCxo0bIZFIIBAI4OvrixEjRlR6za1bt7BmzRo4OTkBAPr06YNx48bpIjwiIiIiIiKjo5Nkz8TEBFOmTEGrVq3w+PFjLFy4EF26dIGrq2ul13Xo0AELFy7URUhERERERERGTSfDOBs1aoRWrVoBABo0aICmTZsiJydHF00TERERERHVSzrp2atILBYjKSkJ7u7uTz0XFxeHBQsWoFGjRpgyZQqaNWum6/CIiIiIiKgaxGIxpAWPsfLSj1pvK6UgHZZooPV2jI1Okz2pVIpvv/0W77zzDqysrCo917JlS2zatAmWlpa4cuUK1q5di/Xr1z/1HiEhIQgJCQEArF69Go6OjjqJnYiIiIiI/kco1G2tR6FQyGv/GtJZsieTyfDtt9/Cx8cHffr0eer5islfjx49sGPHDuTn58PW1rbS63x9feHr66t+nJWVpb2giYiIiIioSo6OjhAoRFjc52Ott7Xy0o9QOpry2r8KLi4uz3xOJ+m4UqnEli1b0LRpU4waNarK10gkEiiVSgBAQkICFAoFbGxsdBEeERERERGR0dFJz97du3cRFhYGNzc3LFiwAAAwceJEdWY+ZMgQXLx4EcHBwTAxMYG5uTnmzp0LgUCgi/CIiIiIiIiMjk6Svfbt2+PgwYPPfc2wYcMwbNgwXYRDRERERERk9HQ7q5KIiIiIiIh0gskeERERERGREWKyR0REREREZISY7BERERERERkhJntERERERERGiMkeERERERGREdLJ0gtEVLWAgACkpqY+9XexWAwAcHJyqnI7Nzc3TJo0SauxEREREVHdxmSPyABJpVJ9h0BEREREdRyTPSI9elbv3KpVqwAAixYt0mU4RERERGREOGePiIiIiIjICDHZIyIiIiIiMkIcxklERERERLWSWpCOlZd+rNE2D4uzAADOVo41aqeZU/MatUNM9oiIiIiIqBbc3NwAAMoabidNLS3fzqn6qUgzp+bq9qj6mOwREREREVGN1XYZKBai0x3O2SMiIiIiIjJCTPaIiIiIiIiMEJM9IiIiIiIiI8Rkj4iIiIiIyAgx2SMiIiIiIjJCTPaIiIiIiIiMEJM9IiIiIiIiI8Rkj4iIiIiIyAgx2SMiIiIiIjJCTPaIiIiIiIiMEJM9IiIiIiIiI8Rkj4iIiIiIyAgx2SMiIiIiIjJCTPaIiIiIiIiMkKm+AyAiIiIiIuMSEBCA1NTUKp9T/X3VqlVPPefm5oZJkyZpNbb6hMkeERERERHpjKWlpb5DqDeY7BERERERkUaxd84wcM4eERERERGREWKyR0REREREZISY7BERERERERkhJntERERERERGiMkeERERERGREWKyR0REREREZISY7BERERERERkhJntERERERERGiIuqExERERHVMQEBAYiIiHjq71KpFEqlslbvKRAIYGlp+dTfvb29uUh6HcWePSIiIiIiIiPEnj0iIiIiojpm0qRJ7G2jF2LPHhERERERkRFiskdERERERGSEmOwREREREREZISZ7RERERERERojJHhERERERkRHSSTXOrKwsbNy4ERKJBAKBAL6+vhgxYkSl1yiVSuzcuRNXr16FhYUFZs2ahVatWukiPCIiIiIiIqOjk2TPxMQEU6ZMQatWrfD48WMsXLgQXbp0gaurq/o1V69eRWZmJtavX4/4+Hhs374dK1eu1EV4RERERERERkcnwzgbNWqk7qVr0KABmjZtipycnEqviY6ORv/+/SEQCNC2bVsUFRUhNzdXF+EREREREREZHZ0vqi4Wi5GUlAR3d/dKf8/JyYGjo6P6sYODA3JyctCoUSNdh0hEREREVGMBAQFITU2t8jmxWAwAcHJyeuo5Nzc3LpBOWqHTZE8qleLbb7/FO++8Aysrq1q9R0hICEJCQgAAq1evrpQgEhkLMzMzAOD+TUREVIc0aNBA/Rv+pJKSEgCo8vkGDRrwN5+0QmfJnkwmw7fffgsfHx/06dPnqeft7e2RlZWlfpydnQ17e/unXufr6wtfX1/144rbEBmLsrIyANy/iYiI6pIxY8Y887lVq1YBAD799NMqn+dvPtWWi4vLM5/TyZw9pVKJLVu2oGnTphg1alSVr/Hw8EBYWBiUSiXi4uJgZWXFIZxERERERES1pJOevbt37yIsLAxubm5YsGABAGDixInqOxhDhgxB9+7dceXKFcyePRvm5uaYNWuWLkIjIiIiIiIySjpJ9tq3b4+DBw8+9zUCgQDTpk3TRThERERERERGTyfDOImIiIiIiEi3mOwREREREREZISZ7RERERERERojJHhERERERkRFiskdERERERGSEmOwREREREREZIZ0svUBERER1Q0BAACIiIqp8TiqVQqlU1vg9BQIBLC0tq3zO29sbkyZNqvF7EhHRi7Fnj4iIiIiIyAixZ4+IiIjUJk2axJ42IiIjwZ49IiIiIiIiI8Rkj4iIiIiIyAhxGCcREREREdE/YKjFrdizR0REREREZITYs0dERERERPQPGGpxK/bsERERERERGSEme0REREREREaIyR4REREREZERYrJHRERERERkhJjsERERERERGSEme0REREREREaIyR4REREREZERYrJHRERERERkhLioOpGWBQQEIDU1tUbbqF6/atWqGrfn5uZmkIt6kvGQSCTYtGkTZs2aBZFIpO9wiIiI6BmY7BFpWWpqKpIS78KhUfW3Efz/f/Nz79aorezcGr2cqFYCAwMRHx+PoKAgTJ06Vd/hEBER0TMw2SPSAYdGwGuvan/U9JEzCq23QfWbRCJBREQElEolwsPD4efnx949IiIiA8U5e0REVG2BgYFQKMpvKigUCgQFBek5IiIiInoWJntERFRtFy5cgFwuBwDI5XJERkbqOSIiIiJ6FiZ7RERUbZ6enjAxMQEAmJiYwMvLS88RERER0bMw2SMiomrz9/eHUFj+0yEUCuHn56fniIiIiOhZmOwREVG1iUQieHt7QyAQwMfHh8VZiIiIDBircRIRUY34+/sjPT2dvXpEREQGjskeERHViEgkwuLFi/UdBhEREb0Ah3ESEREREREZoRolewUFBQgLC0NgYCAAICcnB9nZ2VoJjIiIiIiIiGqv2slebGws5s6di/DwcPzxxx8AgMzMTPz0009aC46IiIiIiIhqp9rJ3i+//IK5c+diyZIl6jWW3N3dce/ePa0FR0RERERERLVT7WTv0aNH6Ny5c6W/mZqaQi6XazwoIiIiopqSSCRYuXIlJBKJvkMhIjII1U72XF1dce3atUp/u3nzJtzc3DQdExEREVGNBQYGIj4+HkFBQfoOhYjIIFR76YUpU6bg66+/Rvfu3VFaWopt27bh77//xoIFC7QZHxEREdELSSQSREREQKlUIjw8HH5+fhCJRPoOi4hIr6rds9e2bVusXbsWzZo1w8CBA+Hk5ISVK1fC3d1dm/ERERERvVBgYCAUCgUAQKFQsHePiAg16NkrKyuDra0t/P391X+TyWQoKyuDmZmZVoIjIiIiqo4LFy6o6wjI5XJERkZi6tSpeo6KiEi/qt2z99VXXyExMbHS3xITE7FixQqNB0VERERUE56enupq4SYmJvDy8tJzRERE+lftZC81NRVt2rSp9Dd3d3ekpKRoPCgiIiKimvD394dQWH5ZIxQK4efnp+eIiIj0r9rJnpWVFfLy8ir9LS8vDxYWFhoPioiIiKgmRCIRvL29IRAI4OPjw+IsRESoQbLXp08f/PDDD0hNTUVJSQlSU1OxYcMGeHp6ajM+ItKjlJQUfPjhh0hNTdV3KEREL+Tv7482bdqwV4+I6P9VO9l788030bRpUyxevBhTp07FkiVL4OLigokTJ2ozPiLSo61bt+Lx48fYunWrvkMhInohkUiExYsXs1ePiOj/Vbsap7m5OaZNm4b3338fBQUFsLGxgUAg0GZsRKRHKSkpyMjIAACkp6cjNTUVbm5ueo6KdCUgIOCZPbpisRgA4OTk9NRzbm5umDRpklZjIyIioup5brInFovVP+YPHz6s9Nzjx4/V/+/s7KyF0IhIn57szdu6dSur7xqZFyV0Uqm0yudKSkoAoMrnxWLxM9+TiSAREZFuPTfZ+/TTT/Hrr78CAGbPnv3M1x04cOC5jWzatAlXrlyBnZ0dvv3226eev3XrFtasWaNOLPv06YNx48a9MHgi0h5Vr55Kenq6niIhbUlNTcXdpATA0frpJxsAaGBe9YZ55WuZPbZ7+vnHUCC3IPPpbbIK/0GkREREVBvPTfZUiR7w4oTueQYMGIBhw4Zh48aNz3xNhw4dsHDhwlq3QUSa5ezsXKlHv3HjxnqMhrTG0Rqm/l213ows8LrW2yAiIqLKqjVnT6FQYM6cOfjuu+9gZmZW40Y6duyonuNBVN+IxWIUFQJHzii03lZ2LiAt08yx1qxZs0rJXrNmzTTyvkRERESkG9VK9oRCIYRCIUpLS2uV7FVHXFwcFixYgEaNGmHKlCnPvLAMCQlBSEgIAGD16tVwdHTUSjxEmqJa5FeX7WniuIiNja30+NatWzzejIy2zufPa4/7EBHVV6pzLs+DpEvVrsY5YsQIrFu3Dq+//jrs7e0rVeL8pwVaWrZsiU2bNsHS0hJXrlzB2rVrsX79+ipf6+vrC19fX/XjrKysf9Q2kbY5OjrC3CQbr72q/aTvyBkFbBs5auS46NOnD8LCwiCXy2FiYoK+ffvyeDMy6enpQFGhboZYZhUi/XE69yEiqrfKysoA8NqVNM/FxeWZz1U72fv5558BADdu3HjquX8ynw8ArKys1P/fo0cP7NixA/n5+bC1tf1H70tEtefv74+IiAjI5XIIhUIuUmysyuRVF0+RKQClsubvJxAAplXc2CiT1/y9iIgM0PMqGT+PaptVq1bVaDtWMqZ/4oXJXklJCf744w90794drVq1wujRo2Fu/owKbbUkkUhgZ2cHgUCAhIQEKBQK2NjYaLQNIqoZkUgEb29vhIaGwsfHh4sUGyEPD49aLb3wPJaWllWuvweA6zQSkVFITU1FSuJ9uIhqdk4zgyUAoCyn+utUZ0hqnlQSVfTCZG/Hjh24d+8eunfvjkuXLqGwsBDvvfdejRpZt24dYmNjUVBQgJkzZ2L8+PGQyWQAgCFDhuDixYsIDg6GiYkJzM3NMXfuXC7YTmQA/P39kZ6ezl49I8U7xUREteMicsOMgZ9rvZ2tZ78CUItRFkT/74XJ3rVr1/D111+jUaNGGDZsGJYtW1bjZG/u3LnPfX7YsGEYNmxYjd6TiLRPJBJh8eLF+g6DiIiIiGrhhRUjSkpK0KhRIwDlhSaKi4u1HhQRERERERH9My/s2ZPL5YiJiVE/VigUlR4DQKdOnTQfGREREREREdXaC5M9Ozs7bN68Wf3Y2tq60mOBQIANGzZoJzoiIiIiIiKqlRcmexs3btRFHERERERERKRB2l/lmYiIiIiIiHSOyR4REREREZERYrJHRERERERkhJjsERERERERGSEme0REREREREaIyR4REREREZERYrJHRERERERkhJjsERERERERGSEme0REREREREaIyZ6eSSQSrFy5EhKJRN+hEBERERGRETHVdwD1XWBgIOLj4xEUFISpU6fqOxwiIiIieg6xWIzHhVJsPfuV1tvKkKSggcxS6+2Q8WLPnh5JJBJERERAqVQiPDycvXtERERERKQx7NnTo8DAQCgUCgCAQqFg7x4REdELBAQEIDU1tcrnxGIxAMDJyanK593c3DBp0iStxUb1g5OTE8pMBZgx8HOtt7X17Fcws1dqvR0yXuzZ06MLFy5ALpcDAORyOSIjI/UcERERUd0llUohlUr1HQYRkcFgz54eeXp6IiwsDHK5HCYmJvDy8tJ3SERERAbteT1zq1atAgAsWrRIV+EQERk09uzpkb+/P4TC8q9AKBTCz89PzxEREREREZGxYLKnRyKRCN7e3hAIBPDx8YFIJNJ3SEREREREZCQ4jFPP/P39kZ6ezl49IiIiIiLSKCZ7eiYSibB48WJ9h0FEREREREaGwziJiIiIiIiMUL1O9iQSCVauXMnFzImIqFb4O0JV4X5BRIaiXid7gYGBiI+PR1BQkL5DISKiOoi/I1QV7hdEZCjqbbInkUgQEREBpVKJ8PBw3n0jIqIa4e8IVYX7BREZknqb7AUGBkKhUAAAFAoF774REVGN8HeEqsL9gogMSb2txnnhwgXI5XIAgFwuR2RkJKZOnarnqIiIqK7g74h2BQQEIDU1tUbbqF6/atWqGrfn5uaGSZMm1Xi7J3G/ICJDUm+TPU9PT4SFhUEul8PExAReXl76DomIiOoQ/o5oV2pqKu4mJUPo0Lja2ygE5Zc18fnSGrWlyM6s0eufh/sFERmSepvs+fv7IyIiAnK5HEKhkIuaExFRjfB3RPuEDo3RwO9trbfzOGiXxt6L+wURGZJ6O2dPJBLB29sbAoEAPj4+EIlE+g6JiIjqEP6OUFW4XxCRIam3PXtA+d239PR03nUjIqJa4e8IVYX7BREZinqd7IlEIixevFjfYRARUR3F3xGqCvcLIjIU9XYYJxERERERkTGr1z17uvSsEtJisRgA4OTkVOV2mioFTURERERE9QuTPT2TSmtWHpqIiIiIiKg6mOzpyLN651QLvy5atEiX4RARERERkZHjnD0iIiIiIiIjxGSPiIiIiIjICDHZIyIiIiIiMkKcs0dUzz2rUizAarFEREREdRmTPSJ6JlaLJSIiIqq7mOwR1XPP65ljtVgiIiKiuovJHhERERkcsVgMRVExHgft0npbiuxMiKVWWm+HiEjXWKCFiIiIiIjICLFnj4iIiAyOk5MT8vKlaOD3ttbbehy0C062llpvh4hI13TSs7dp0yZMmzYN8+fPr/J5pVKJn3/+GR9//DE+/fRTJCYm6iIsSCQSrFy5EhKJRCft0fPx+yAiIiIi0hydJHsDBgzA4sWLn/n81atXkZmZifXr12P69OnYvn27LsJCYGAg4uPjERQUpJP26Pn4fRARERERaY5Okr2OHTvC2tr6mc9HR0ejf//+EAgEaNu2LYqKipCbm6vVmCQSCSIiIqBUKhEeHs7eJD3j90FEREREpFkGUaAlJycHjo6O6scODg7IycnRapuBgYFQKBQAAIVCwd4kPQsMDIRcLgcAyOVyfh9ERERERP9QnSvQEhISgpCQEADA6tWrKyWJNXHp0qVKycXFixfxySefaCzO6jIzMwOAWv87jMWlS5cqJd/6+j60QfUd67I9Te1P3D+JSF/Kzz9SnbbHcx1Vh5mZGcog02l73Deptgwi2bO3t0dWVpb6cXZ2Nuzt7at8ra+vL3x9fdWPK25XE3369EFYWBjkcjlMTEzQt2/fWr/XP1FWVgag9v8OY9GtWzdERkaqH3fv3t1oPhPVd6zL9jT12XH/JCJ9qcvnTjJu5fumQKftcd+k53FxcXnmcwYxjNPDwwNhYWFQKpWIi4uDlZUVGjVqpNU2/f39oVQqAZRXA/Xz89Nqe/R8AoHuTppERERERPWBTnr21q1bh9jYWBQUFGDmzJkYP348ZLLy7u8hQ4age/fuuHLlCmbPng1zc3PMmjVLF2FVSvZIv/7++++nHn/wwQd6ioaIiIiIqO7TSbI3d+7c5z4vEAgwbdo0XYSiFhgYCIFAAKVSCYFAgKCgIEydOlWnMdD/eHp6VhpW6+Xlpe+QiIiIiKgOCAgIQERExFN/l0qlte7UEQgEsLS0fOrv3t7emDRpUq3eUx8MYhinPly4cKFSQZCK88VI9/z9/SEUlu+OQqGQw2qJiIiIiP4hgyjQog/sSTIsIpEI3t7eCA0NhY+PD0Qikb5DIiIiIqI6YNKkSXWqt02X6m3PXsUCLQDYk2QA/P390aZNG34XREREREQaUG979kQikboCpEAgYE+SARCJRFi8eLG+wyAiIgOhyM7E46Bd1X99Xg4AQGhX9fJNz2sHti1qtA0RUV1Qb5O9mJgY9aLqMpkMt27dwssvv6znqIiIiAgA3NzcarxNqqS80reb7dNFFZ7LtkWt2iMiMnT1NtnbtGnTU483btyop2iIiIiootrMv1m1ahUAYNGiRZoOh4ioTqq3c/aKi4srPS4qKtJTJERUF0gkEqxcuRISiUTfoRARERFVS71N9qysrCo9btiwoZ4iIaK6IDAwEPHx8QgKCtJ3KERERETVUm+TvVmzZj33MRGRikQiQUREBJRKJcLDw9m7R0RERHVCvU32XF1dKz1u2rSpniIhIkMXGBgIhUIBAFAoFOzdIyIiojqh3hZoCQwMhFAohEKhgFAoRFBQEKZOnarvsMhIZecCR84oqv36vILy/9rZ1Lwd20Y124Ze7MKFC+rqvXK5HJGRkTxfEBERkcGrt8nehQsXKt2p58UbaUttynlLClIBALaNaratbaPatUfP5+npibCwMMjlcpiYmMDLy0vfIRERERG9UL1N9njxRrrC8uF1n7+/PyIiIiCXyyEUCuHn56fvkIiIiIheqN4me/Xx4i0gIACpqalVPicWiwEATk5OVT7v5uZWq6SlJiQSCTZt2oRZs2ZBJBJptS2qOwxhvxCJRPD29kZoaCh8fHy4fxIREVGdUG8LtKgu3gQCAS/eAEilUkilUr3GwNL2VBVD2S/8/f3Rpk2benFjiIiIiIxDve3ZA8ov3tLT0+vNxdvzeub0PWzwydL2fn5+9T4BJ8PaL0QiERYvXqyXtomIiIhqw+iTveoMXdy8eXOVz+ti6CKVq6q0PQvmEPcLIiIiotqrt8M4AcMYukjlqiptT8T9goiIiKj2jL5nz5CHLtL/sDoqVYX7BREREVHt1euePTIc/v7+EArLd8f6Uh2VXoz7BRk6iUSClStXQiKR6DsUIiKipzDZI4PA6qhUFe4XZOgMpVosERFRVYx+GCfVHfWtOipVjy73i9quRcliTvWTIVWLJSIiqgqTPTIYLG2vPc9LYp5HtY1qfmt1aTL5MZT9gsWc6EmsFkv6VtsbVABvUhHVF0z2iOqB1NRUJCbehahR7bbPyb1b7ddKcmvXxjPfTyLBpk2bMGvWLK33mrCgE9VEVdVimeyRoeANKiICmOyRHjzrTiTvQmqXqBEwaIhA6+38FazU6PtVnBPFC2kyJKwWS/rGG1RE9CIs0EIGg+se0pOenBPFiodkSFgtloiIDB179kjnnnUnknch6UmcE0WGTFUtNjQ0lNViiYjIIDHZ06DaFMGobQEMgMMayfhxThQZOlYRJiIiQ8ZkT4NSU1NxP/Ee3Oxsqr2NpbK810KQLa5ZW3kFNXo9kaGr6maJhYVFpaG9FhYWT90Y4U0P0idDqRZLRERUFSZ7GuZmZ4MlPr213s6K8ChotgwGkeFxdHREXl4eAEAgEMDR0VHPEREREQEZklRsPftVjbbJKnwIAHC0dq5RO83tm9WoHaKKmOwRkUF4Vu/cnDlzkJeXh4EDB3IIJ6npckkOIqKK3Nzc/v//anbbvaywfKSKmX31t2tu36xCe0Q1x2SPiAyao6MjSktLOSeKKuGSHESkL7WdOsBCdKQPXHqBiAyaqakp3Nzc2HtDalySg4iIqHqY7BERUZ1S1ZIcRERE9DQme0REVKdUtSQHERERPY3JHhER1Smenp4wMTEBAJiYmMDLy0vPERERERkmJntERFSn+Pv7QyAQAChfkoPFe4iIiKrGZI+IiOoUkUgEJycnAICzszOL9xARET0Dkz0iIqpTJBIJxGIxAEAsFrMaJxER0TNwnT0iIqpTAgMDoVSWL0qsqsbJtfbqj4CAAKSmplb5nOrvqvXMnuTm5lbrNdKIiOoi9uwREVGdwmqc9CyWlpawtLTUdxhERAaDPXtERFSn9OzZE+fPn6/0mOoP9szVb//5z3/w6NGjp/5eVlamXn/zSUqlEkqlEgKBQF3cqSKhUAgzM7On/v7SSy/hyy+//OdBE+kRkz0j9LwhLs/yoqEvz8IhMUSka6ohnERU/xQUFODx48e12laV9D1JoVBAJpNV2RZRXcdkzwilpqYi9V4c3Oyq//VaKsuHRCErsfrt5D19YiQi0rYrV65Uevz333/jgw8+0FM0RKRLHh4eVd7QFovFkEqlT/1dqVRW+rulpeVTvXuWlpbqCr8Vubm5aSBiIv1ismek3OxM8W8vkVbbWBMp0er7ExFVxdPTE+fOnYNCoYBQKNT6ourPGy2hqgr6rAtFjnwg0qyaHlO7du1CWFgY5HI5TExM4OXlxYJOVK+wQAsREdUp/v7+MDExAQCYmJjodVF1qVRaZW8CERkGFnSi+o49e1Qv1fZOPcC79UT6JhKJ4O3tjdDQUPj4+Gh9UfXnHe+qec6LFi3SagxEVDuenp5P9ewR1Sc6S/auXbuGnTt3QqFQ4NVXX8Xo0aMrPR8aGordu3fD3t4eADBs2DC8+uqrugqPSI136YkMn7+/P9LT0/Xaq0dEhs/f3x8RERGQy+UQCoU8Z1C9o5NkT6FQYMeOHfj888/h4OCARYsWwcPDA66urpVe5+Xlhffff18XIVE9xzv1RHWbSCTC4sWL9R2GQZBIJNi0aRNmzZql9V5OorpG1yMBiAyNTubsJSQkoHHjxnB2doapqSm8vLxw+fJlXTRNRERk1AIDAxEfH4+goCB9h0JkkPz9/dGmTRv26lG9pJOevZycHDg4OKgfOzg4ID4+/qnXXbp0Cbdv30aTJk3w9ttvw9HRURfhEenNs+YOvmjdw7o6b1CXa0ACdfdzIqouiUSCiIgIKJVKhIeHw8/Pjz0XOsIqrXUHRwJQfWYwBVp69uyJfv36wczMDKdPn8bGjRuxbNmyp14XEhKCkJAQAMDq1av/UUJoZmYGABpLKs3MzKDLlefMzMyqjN3MzAxleo6htu8FaO77qAtxNGjQQN1eRVZWVpViqWq7msT3rPfRlmftFw8ePMC9pLuwsa/+eyn+fzkkcd7dGsVQkGOc+ycZFn3vFwcOHIBCoQBQPmUiODgYs2bN0kss9c2zzt8AUFJSAqDqc29Nz9+1pe99k57G74T0QSfJnr29PbKzs9WPs7Oz1YVYVGxsbNT//+qrr2LPnj1Vvpevry98fX3Vj7OysmodV1lZ2T9+jyffT/Dil2lMWVlZlbGnp6dDWiDT+jp4qXkyWCrSNfr5AZr7PupCHGPGjKn1tjWJT/Vv0pVn7ZtlZWWwsQd6Ddf+kXL5hPKZcdSGoeyf9c2zek8MpWquvveLs2fPVior/9dff2H8+PF6icUY1WY0AlC+kDdQ9bn37t27mD9/fpXbaXK/1fe+SU/jd0La4uLi8szndJLstW7dGg8ePIBYLIa9vT0iIyMxe/bsSq/Jzc1Fo0aNAADR0dFPFW8hIiJSYdXccj169Ki0bljPnj31GI3xSU1Nxd2kFJg4NK3RdgqBOQAgIb/6433k2ek1aoOIqDp0kuyZmJjgvffew4oVK6BQKDBw4EA0a9YMBw4cQOvWreHh4YETJ04gOjoaJiYmsLa25jCUf8DJyQkQFuLfXiKttrMmUgI4Vn1XnYhIE57Vy8GqueUEAl2OJ6mfTByawsbvY623UxD0o9bbIKL6R2dz9nr06IEePXpU+tuECRPU///WW2/hrbfe0lU4REREdd7ff//91OMPPvhAT9EQEZGhMZgCLURk/MRiMQoKy+fTaVtBNoAS8VN/r+0cnNpWBWXlvbqhru4Xnp6eCAsLg1wuh4mJCby8vP7xexIRkfFgskdE9Upqairik+7C0uHFr62o7P9Hy93Pr35VUGn2i19DhqF8blYiBA6NarSd8v/3i7j83Opvk139176Iv78/IiIiIJfLIRQKuY4YERFVwmRPg8RiMaQFBVgRHqX1tlIkBbCUa70ZIo1ycnICLHJ1Vo3Tya7qOaWWDkALP6HWY0gOUmi9DdIcgUMjmPn5vviF/1BZUIjG3kskEqF37944f/48evfuzTX2iIioEqNJ9nS5WDOHZRERkaFQlfkn48VrHCKqLaNJ9lJTU3E/MRHN7aq/WrPl/4+/EWZLqr1NSl7OM59zcnKCwARY4tO72u9XWyvCo6B0YCVMIqL6TCKR4PLlywCAqKgovPHGG+zdM0KpqalISEpFQ0e3am8jF1oCAB4UVL+doqyaz1slIsNmNMkeADS3s8fnPkO12sZX4afAgVlERGQIAgMDoVCU/yopFAoEBQVh6tSpeo6KtKGhoxs6+Wt3qZGYwJr1AtLTntcL+7zeVvaokrZof9IKERERacWFCxcgl5dP4JbL5ZUWWCciw2JpaQlLS0t9h0H1jFH17BEREdUnnTp1QnR0tPpx586d9RgNEbF3jgwNkz0i0qmCnJqts1ecX/5fK9uat+NkV7NtiOqa+/fvP/cxERHVb0z2SCt0WTkM4Fj3usLNrfrFBVRS88r3Cye7mm3rZFe79ojqkocPH1Z6nJmZqadIiIjIEDHZI61ITU1FSuJdNLGr/npqZv9fPrw0O65GbT3IY9nxuqI2Cbkq+V+0SLuFCYjqIhcXF2RkZKgfN23aVI/REBGRoWGyR1rTxE6AGf3Ntd7O1rDSKv9em95FwDjXJhKLxSgsBP4K1n5iLMkFZGVirbdDVJ8863xmZmZW6bGpqelT5y5DPjcREZF2MdnTsNS8AqwIj6r26x8WFgMAnK2tatxOM66z91ypqalITrwLJ1HNtjP5//8W59yt9jZiSc3aICLShIqV/czNzVnpj4iIKmGyp0Gq+UE16TuRFpXfqa3pAunNHJw4H6kanETAxIHa3833nZVpvY1/wsnJCaZmuRg0pPrDamvrr2Al7BvxRgTVLWKxGMqiQpQFhWi9LWV2LsTSshpt87yeuWXLliE1NRWff/45fxc0TCwWQ170GAVBP2q9LXl2OsTSBlpvh4jqFyZ7GsT5SEREpGuWlpZo27YtEz0iInoKkz0iIqr3nJycIMk3g5mfr9bbKgsKgZNtI623Q/+ck5MT8vNlsPH7WOttFQT9CCdbXpYRkWbxrEJE9YpYLIa0CEgOUmi9LWk2IJbWvFjNs4pxiMXl7+XkVPUwWRbiICIiooqY7BER1RFSqVTfIRAREVEdwmSPiOoVJycnlOTnooWfUOttJQcp4GRb82I1z+qd4xxfIiIiqgmjSfbEYjFKCgrxVfgprbaTIsmBhbzqdd2IiKjmarMmZm3XwwQ43JWIiOoPo0n2iIjqEiY4/5Oamoq7SfcgcLCr9jZKQfkiN3H5WTVqS5mdV6PXExER1WVGk+w5OTlBaGKOz32GarWdr8JPQeEg0mobRNogyS1fA68mCgvK/2ttU7N27Flo8IXKE5w4wNG8+hsJy9dzvFuQXLPGsgx/NILAwQ6m/v203o4s8Pwzn1Nm59Z4nT1lXvlBIrCr/kGizM4FWI2TiIh0wGiSPSJ6ttquv1VYUN6TZN+o+tvbN6p9e/WOozlMXtf+AvTyP2teEbS+qe0+myopT/bcapK82TbiMUJERDrBZI+0QiwW43GBElvDtN+j8ECiRAM5L2afp7bD93RZEORZwxpfNHSxNsMTpdk1X3qh9P9H/5lXf6QhpNkAbKt+TiwWA5ISyH9Kq/4byv6/Z9ZUUP1tAKBMCfFjHiPPUxeOESIioppiskdEBs3S0lKj71f7HpzypLOZbQ22t312ezY2Ns9cSqGsrAwKxdPJqEJRnuwJZVUne0KhEGZmZk8/YVLeHhEREdUvTPZIK5ycnFBqIsGM/jWYj1RLW8NKYe6g/aFwpF26Kh5iKD04X3755TOf46Lq9RcL9xgeeXY6CoJ+rNE2irzywkFCO8catQPb5jVqh4joRZjsEREZGF5811/lhXuSIHCwr/Y2SkF5T29cfs0qjSqzc2r0+vqo9iMByqcwuNnW4DLLtjnnchKRxjHZIyIiMiACB3uYvTZK6+2UHTmq9TbqOkMZCUBEVFtM9oxUap4MayIl1X69uEgOAHBqaFKjNtyqP0KFiKhOet7QyucNoeQQSSIi0jcme0aoNsNApMX/fyHjWP1t3RxZYp+I6jdNFxAiIiLSJCZ7Rqg2d5KNcciJWCxGcSGw76xM+21JACsZS9sTGSP2zlFV2ONLRHWBUSV7KXk5+Cr8VLVfn1lYvhhuY+vqlyRPyctBMwdRTUMjIiKieqK+9fg+L/F9XhVhJr5E2mc0yZ5qOGFNlkmWFuWXb1OD5K2Zg4hDF+sIJycnJBfm1ni73MLy/zayrnl7RERUPzBJqZ5nrSdKRLphNMkehy7Sk2qblGcVlt+dtLKv/vYt7Ovu/MXaDkUCeFeWNEMsFkNZVABZ4Hmtt6XMzoNYWpPbgrpV/lkU6qRSpjI7G2JpidbbIeP3vN8BXmsR6ZfRJHtET2LJ7H+uvg1FIiIiIjImTPaI6jn2zJG+OTk5QZIvhKl/P623JQs8Dydbw10zpvyzsNDZOntOtnZab4eMw/NGgTzPi0aIPAtHjhBpBpM9HXnWSdKYh8k9yFNia1hptV+fXagEADhYC2rcTnOHGm1CRGSwlNk5NRrGqcwrn38usLOtcTtgskfVlJqaisSk+7B3aF6j7QSC8hEiknxhtbfJyU6pURtE9GxM9vTMWIfJ1Wb+WllReeJr7lCzbZs71N35ckREFdXmXJYqySvftqaJm60dz51UI/YOzTHM73Ott3My6CvUrOQeET0Lkz0dqau9c7Vl6AVzWJSEqPYkEgk2bdqEWbNmQSQS6Tsco2Lo504iIqpbmOwRPcFYe1uJNCUwMBDx8fEICgrC1KlT9R0OEemAWCxGYVHJ//e6aVdOdgpKpRZab4eoPmCyR/USe+aIakcikSAiIgJKpRLh4eHw8/PTSO+eMjuvRksvKPOKAAACu4Y1bgcGXKCFqCpisRhFRVLEBNasyElNFWWlQvyYNzyJjAmTPSIiqrbAwEAoFOVzaRQKhUZ692o3T624fNuaJm62jnVynhqHnpO8rARFWdWvhqmQlQEAhKZmNWoDqDrZc3Jygnm+UGdz9kS2nLNHpAlM9oiIqNouXLgAuVwOAJDL5YiMjPzHyR7nqf0zHHpu/Dw8PKpM9sViMaRSaZXblMjKkyVzk6rf09LSEk5OTk/9/Xk3Q3KyU6ocxlmQl4kyWckzt3sWM1ML2Ng1rrIdkW2zGr8fET2NyR4R0f+rbe9Jfeo58fT0RFhYGORyOUxMTODl5aXvkOqF+rJ/UdWe9f0/75wlFosBoMqEDqj5eet/SeDTPW6lUkCpVFb7vVQsLFBlD57Itlmd7IEnMkRM9oiIqoG9J+X8/f0REREBuVwOoVAIPz8/fYdEVG/p8iYAbzgQ1U1Gn+xxnsP/8LMgej7u4y8mEong7e2N0NBQ+Pj4cOkFIiIiA2b0yd7z8E79//CzIKLq8vf3R3p6Onv1iIiIDJxAWZtB1gYkIyND3yFQDT2rh1H1t2eN02fvIlH9w/MFERHR87m4uDzzOZ317F27dg07d+6EQqHAq6++itGjR1d6vqysDBs2bEBiYiJsbGwwd+7cZ04qJuPE3kUiqi6eL4iIiF5MJz17CoUCc+bMweeffw4HBwcsWrQIc+bMgaurq/o1p06dQkpKCqZPn47z588jKioK8+bNe+F7s2ePiIiIiIjqq+f17Al1EUBCQgIaN24MZ2dnmJqawsvLC5cvX670mujoaAwYMAAA0LdvX8TExNSqjC8RERERERHpaBhnTk4OHBwc1I8dHBwQHx//zNeYmJjAysoKBQUFsLW1rfS6kJAQhISEAABWr14NR0dHLUdPRERERERU99S5apy+vr7w9fVVP87KytJjNERERERERPqj92Gc9vb2yM7OVj/Ozs6Gvb39M18jl8tRXFwMGxsbXYRHRERERERkdHSS7LVu3RoPHjyAWCyGTCZDZGQkPDw8Kr2mZ8+eCA0NBQBcvHgRL7/8MgQCgS7CIyIiIiIiMjo6W2fvypUr2LVrFxQKBQYOHIgxY8bgwIEDaN26NTw8PFBaWooNGzYgKSkJ1tbWmDt3LpydnV/4vqzGSURERERE9dXzhnFyUXUiIiIiIqI6Su9z9oiIiIiIiEi3mOwREREREREZISZ7RERERERERojJHhERERERkRFiskdERERERGSEmOwREREREREZISZ7RERERERERojJHhERERERkRGq84uqExERERER0dPqfc/ewoUL9R2CQcQAGEYchhADYBhxGEIMgGHEYQgxAIYRhyHEABhGHIYQA2AYcRhCDIBhxGEIMQCGEYchxAAYRhyGEANgGHEYQgyAYcRRH2Ko98keERERERGRMWKyR0REREREZITqfbLn6+ur7xAMIgbAMOIwhBgAw4jDEGIADCMOQ4gBMIw4DCEGwDDiMIQYAMOIwxBiAAwjDkOIATCMOAwhBsAw4jCEGADDiMMQYgAMI476EAMLtBARERERERmhet+zR0REREREZIyY7BEREVGdwQFJRETVZ/TJnkwm03cI9ASpVKrvEAxCfn6+vkMwKAqFQt8hUAXZ2dn6DoEMjKEkWQ8fPtR3CFQFQ9k/SP+e3Be4b+iXUSd7mZmZOH78OBM+lB9oQUFB+g4DUVFROHz4sL7D0LuIiAjExsaqH+vjRGgoyZVCocDjx48hFAr5g2Ag8vPzcfz4cRQWFuothor7pz72C16sVCaTybB582aIxWK9xlFcXIxFixYhOjoagP6+F9X+Wd/3CwDIzc0FAAgEAr2dMwzlezCUONLT01FWVqaXthUKBQQCAQAgLi4OANSPdR3Hkwzl+9E1o072ZDIZBgwYAIlEoreEz1B2tuLiYkRFRWHPnj06b7ui3r17480338TZs2f10r7q+9BXolNYWIiysjL06tULHh4eiIyMVJ8YdblfKBQKCIXlh39GRgYkEonO2n5ScnIy9u7di8zMTKxcuRKJiYl6icMQkl9DiAEArKysMHHiRGRkZODKlSs6bVt1HAiFQmRlZSEnJwclJSU6j0F1cVJQUFDpsT5UvDF0584dvcRgamqKN998Ew0bNkRmZqZeYgDK983x48fjxo0bKCws1NtFpOr8qc+byYZwvpDJZLh06RICAwMRFhaGw4cPo7S0VKcxVEwu9JXgPBmHPiUkJCAoKAhRUVF6aV91bERERODHH3+EWCzW+b6qVCohFAohl8sRFhaG1NRUFBUVQSAQ6DQWfd+0VDHVW8tapDoRu7q6Ijc3F7/99huaNGmC0aNH6zQO1c728OFDXL16FdbW1vD29tbpyUC1czVs2BDvvfceNm/ejGbNmuGVV17RWQxSqRR5eXlwdnZGcXExrKyscPjwYTx8+BBvvvmmzuIAyk9CCQkJuHDhAkQiEYYPHw5TU90cBqWlpTh8+DDy8vLw0Ucf4d69e7h06RIKCwsxZMgQne4XqpPxli1bkJ+fj4KCAowdOxadOnXS2eeRkpKCgoICdOrUCfv27cOCBQswceJEtGrVSiftV1Tx4i05ORktWrTQeQyq8wUAXLt2DRYWFnB2doa9vb3OYlB9DqamppDJZLh37x7+/vtvODk5wdXVVScxqI6DS5cu4dChQ2jXrh0sLS0xcOBANGnSROvtV0zsgoODcf78edja2uKdd96Bvb29Xi7m0tPT8fPPP8PNzQ22trZwd3fX2XFa8diwt7dHUFAQ/vrrL6xatQoNGjTQWQy//PIL/Pz84ODggPbt2yM5ORmZmZlwd3fXaTJe8fPYuHEjioqK4OnpiU6dOqFRo0Y6ieHJOO7cuYMGDRqgefPmOmtfxdTUFB4eHvjss8/QsGFDrFu3Th2XLlQ8bx4+fBj5+flwdnZGv379YG1trbM4VN+HTCbDpk2bMHToULRp00ann4WKu7s74uLikJycDDs7O3Tq1EnnMURHR+O3337DggUL4OTkpNMES3U+KCwsxPfffw8AuHHjBoqLizF//nyYmJjo7Jyh+v6PHDmCoqIi2NjYwNfXFxYWFlpvu1IcOm1NByqeAAHA1tYWHh4eEIvFCAsL00kMqgRLIBDgxo0b+Oabb2BlZYXffvsNe/fu1UkMKgKBAAKBABcuXEBQUBCcnZ1x6NAh3LhxQ2cx5OXlYceOHQgNDcWyZcuQnJyMpUuX4tKlS/jrr790FgcAXLx4EVu3bkXPnj0RERGBbdu26WRYklKphLm5OQYNGgSlUonjx4+jdevW6NevHxITE3HhwgWtx/CkTZs2wcLCAv/+97+hUCiwb98+3Lp1S2cn5YsXL+LcuXO4d+8eevToARcXF/V8Tl3fLRcKhcjPz8eXX36JQ4cOYffu3YiJidFZ+xV/eI4fP45t27YhPDwc33zzDQoKCrTevkKhqHSxkpubC6VSiaFDh+Lll1/GwYMHtT48Sy6Xq/8/JiYGJ06cwJIlS+Do6Ijo6GgEBQXppAda9T2Ehobi+vXr+Oijj9CgQQP88ccfePDggdbbr0j1WzJ48GAUFhYiPj4e77zzDkxNTXVynFb8PVUdm35+fujcuTN+/PFHrbev+vfn5OQgPDwce/fuxZkzZ9CyZUs0bNgQISEhAHQ7REwoFKKoqAgHDx5Eo0aN0KdPH9y9exdhYWEoLi7WSQwVE5w9e/Zg586d+Oabb3D27FmdxVBx/5NKpejatSvMzMxw7949AJWPZ21Sfff79u1DYmIiXn31VQQEBKhHzeiKUChETk4OvvjiCzg6OqJdu3Z6SfSA8s8+OTkZcXFxCA0NRXJystbbfLIHy97eHkKhEOfOnQMAnU7TEAgESE5Oxtdff40+ffpg6dKleOedd9CoUSNs27ZN/Rpd2b9/P65cuYL27dvj4sWLOHbsmM5HRxhVsqf6YSouLsamTZtw5swZxMTEoFevXmjXrh1iY2O1nuRU7MaXy+W4ePEiPvjgA7Rs2RImJiaIiIjQydy5igdeQUEBDh8+jBEjRmDatGnw8/PD7t27tb6zqQ5sZ2dnuLq6YvPmzRg6dChatGgBR0dHzJgxA3/++adWL6qDg4OxYcMG9eOEhATMnj0bQHlCIRaLERwcrPUfSNU+cefOHZibmyMsLAyXL19G79690aZNG9y4caPSUC1NKy4uVg/Hy8nJQX5+Pl577TVMmDAB69atg7u7O/r164c9e/YgMTFRqz+SqvceM2YM7Ozs8Pfff6Nnz55Yvnw5wsPDERwcrO610GYcDx48QEpKCoDyOWpbtmyBr68vJk+ejMjISISFhenkpkjFRC8oKAiZmZlYu3Ytpk+fjvbt2+Obb77RavsSiQTbtm1DdnY2srKy8Nlnn2HHjh34/vvvUVZWhuHDh8Pe3h779+/XWgxpaWnqZDIjIwO2trb4+OOPcePGDZw/fx4TJkxASUkJjh8/rrVhWhUvRG7fvo0zZ86gcePGcHJywvTp0yGXy3Hu3DlkZWVppf2KVPu9QCBAcXExZDIZ/vWvf6FBgwYICAgAgEoXktq4iJLL5ZVGAGzevBlbtmwBALz99tsAgJ9//lnj7Vb0+PFjAICNjQ2GDx+OZs2aobCwED///DPefPNNxMTEqOfu6YpSqcShQ4dw+vRpvPnmm3jllVfQrVs35ObmIjIyUicXtKqhaEFBQcjNzcXXX3+NmTNn4vLly7hx44ZWh1EqlUp1sikWixEXFwdbW1vMnj0bY8eOxU8//YQHDx7AxMREqzdSK/42lJSUQKFQYMqUKbh48SI6duyIAQMGaD3ZevK7TktLQ7t27eDn54e0tDQcPXoUN27c0GlRuqKiInz55Zdo1qwZXn/9dcjlcly+fFmr13uq/eHBgweIiorCnTt30KpVK7z//vtIT0/H+fPnAWg3wXryWsHR0RHJyclISEgAAFhaWmLUqFGQSqXIycnR6nGqem9VTOnp6ZgyZQq6deuGDz/8EJmZmerpKrpKgI0i2VPd+RYKhcjIyMAXX3yBZs2a4fHjxzh48CBiYmLQv39/NG/eHKGhoUhKStJKHBV/HPfs2YPQ0FC88847sLS0xIYNG7BkyRLMnz8fAQEBuHjxolZiACrfjQ0JCUFiYiJsbW3Rtm1biEQiDBgwAC1btsS2bdu0OhdGdWDfv38f7u7uGDx4MC5fvozS0lIoFAq0b98eY8aMwTfffKO1yn+DBg1CUlISTp06BQDqYaP79u3DV199hdmzZ+P48eM4c+aM1k/Iv//+O06fPo2+ffuiY8eOCAkJwZ07d+Dj44PGjRsjODgYOTk5WmnbysoKR48exTfffINvv/0W9+7dQ7NmzZCWlgapVIp3330Xfn5+KCwsRHR0tFZ71lT7Zm5uLsaMGYPc3FyEhYVBKBTiX//6FwIDA3Hu3DksXLgQERERWomhtLQUgYGBOH/+PMRiMSwsLDB69Gi4u7vju+++g6+vL0QiESIiItR3qrVFIBCoP++EhAQkJSWpK7VOnToVIpFIqwmfSCRCaWkpDh06hJCQEAwfPhxz5syBSCTCd999B0tLS4wcORK5ubn4448/NN6+XC7HnTt3cOTIESxduhTBwcFwc3ODnZ0dbt++jU8++QR9+vQBUD7ENj4+XuMxqBLu0tJSKJVKuLu7w9PTE+np6bh79656vlpSUhIiIiK0Pi+o4vl7w4YNOHXqFGxtbfGf//wHoaGh6uMiIiICcrlcoxdRqkTBxMQEcrkcQUFBkMvlmDJlClJSUrBp0yaYmppi2rRpuHv3Ln7//XeNtV2RWCzGRx99hDt37sDCwgJdunTBjRs38Nprr0Eul+P48ePo0aMHoqKiUFRUpJUYgKd7LAQCAUaNGgUrKyscPHgQANCzZ0+0atUKd+/exd9//62VOJ68KLx//z7u3buHhw8fQqlU4uWXX0afPn1w/vx53L17V2s9a6rP4Pr161ixYgWuXbuGBQsWIDU1FV5eXujTpw/WrVuHoKAg7NmzR2sjAoRCIdLT05Gamqqem/X1118jJycHCxcuhLm5Of766y+tjQaoeGNfdUPG0tISOTk5WLZsGUJDQ3Hz5k31b4y2PJnkFBQUQC6X47XXXkO3bt0wfPhwZGRkICoqSmsVwAUCAa5evYpvvvkGeXl52LRpE8LCwtCpUyf0798fERERWr2pX/Ga9/z58+phzatWrUJ4eDhiY2NhamqKBg0aIC8vD0KhUKuJp2oI6eHDh5GdnQ0HBwfEx8fj8ePHcHFxQceOHREREaHTOZ51PtnLyMioNOQqISEBkydPho+PD8LDw9GiRQv8/vvvyMjIgI+PD1q2bAkbGxuNxlBSUoKysjL1j+Off/6J3NxcDBo0CObm5iguLkbjxo3h4OAAGxsbuLu7a+2iHoB6KNYff/yBpKQkdO3aFTKZDLt37wZQ/iPu5uaGgoICrfwwVTz5xMbGIigoCJaWlpg2bRosLCywdetW9VAYHx8fzJs3Dw4ODhqNQfXDaGpqii5duuDAgQO4cOECTE1NUVZWBqFQiAYNGkAmk6Fdu3ZwcnKCpaWlVmJQycvLw/vvv48uXbpg9OjR6NGjB4KCgpCfn49XXnkFr776qsbnZykUCnUc/fv3x9WrV/Hyyy+je/fuAAA7Ozs8fvwYERER2L9/P7p164YRI0bA3Nxco3E8GU94eDh+//135OfnY/To0cjIyEBISAhat26NmTNnIiUlBf3790f//v01HoNMJoO5uTkmTJgAiUSCy5cvQy6Xo23btrhx4wa8vLwwduxYuLm54f79+0hKStLq3bfCwkIcPHgQ165dw6xZs2BtbY2rV6+qbz7MmDEDeXl5SEtL02gcFY/TWbNmobS0FLdu3UKLFi1gZmaGDz74AAKBANu3b8dLL72ECRMmYPDgwRprXxWDiYkJ2rZti3PnzsHU1BRvvPEGgPIfzISEBISHhyMmJgbZ2dl488030bFjR43GoGorNjYWq1evxsaNG3Hp0iX06tVL/aOcmZmJRo0aYeLEiejSpQvMzMw0HsOTTp8+jQsXLmDy5MmIiorC8ePHYW1tjXnz5mHnzp1YsWIFLl68qNGLhcLCQgQFBSErKwsKhQIHDhzA33//DW9vbzg6OuKLL77AzZs3ERQUBHt7e0ybNk0r81sjIyNhbW2Nt956C3/88QdOnjwJd3d39OrVCwcOHMC0adNgbW2NrKwsnDt3TmtLMVS8iDx8+DD+/PNPnD17Fo0aNcK8efNw9epVhIWFQSAQwMPDAx4eHujSpYtW4lB9z2KxGDKZDM2bN8frr7+OJk2a4MSJEwCAV155BU2bNsX58+c1fkMiMDAQ+fn56iTr4MGDWLBgAXr37o3i4mJs3rwZjx49wtixY+Hp6YmUlBRMnTpVa/PmoqOjsWbNGty/fx9mZmawt7eHo6Mjhg0bBgA4evQoTpw4oZWbuBX3i507d2LHjh347rvvYGtrizFjxmD27NmYPHkyPvvsM2RnZ2tt5FDFOPLy8gBAPRrh7NmzUCqVaNu2LRo1aoRLly5pdPRQxWq0EokEp06dwty5c9GiRQsolUps3rxZ/Xvapk0bXL58WWsjdVSfwdq1axEdHY2IiAhs2LABTZo0wcyZM/HFF19g//792LNnD5o2bQqRSKTxGJ78t+Xk5OD69eswMTFB+/bt8eDBA1y9ehVAeUKui/nnFQmUdbwOaU5ODiIiIpCVlYXXXnsNjo6OKCoqwvfff48BAwbAx8cHy5Ytg0wmw5IlS2BpaakeO6ypH8l9+/YhLi4Oy5YtQ0JCAnbt2gVHR0fMmTMHQHkCeurUKZiYmCAhIQHjx49H7969NdL2k1Rzb7Zs2YLs7GxMnDgRbdu2RVZWFlatWoWePXuiadOmCAkJwbvvvqu1YhgymUw9FC8oKAiPHj3CwIED0bx5cyxduhStWrXClStXMG7cOAwaNEgrMYjFYqxduxYDBgzAo0ePcO7cOSxduhRNmzbFr7/+iocPHyIrKwuTJ0+Gh4eHVmLIz8/H7du30atXL+zduxcPHjzAggULAJTPS/rll1/g6uqKjz/+GCYmJhpt+8n5qw8ePEBaWpq6l7lt27bqSmrnz5+Hqakp5s6dC6FQ+NS2mqLaL1JTUxEVFYXS0lK89tpryMjIwKlTp9ClSxf4+PgAgMY/jyf9+uuvSElJQXJyMiZNmqS+QXTgwAEsX74cO3fuxMsvv4xRo0ZpNY6CggKcOXMGEokEgwcPhlAoxLZt2+Dr64tevXrB3Ny80vGkCU/2/nfs2BFWVlbYuHEjPDw8MHDgQJibm6OgoAD//ve/8fbbb6Nv374aa79iERxVz1R0dLR6XkOnTp3g6OiItLQ07NmzByUlJXj99de1ciENlA/b3LdvH2bNmoWLFy/i1KlT+PrrryGRSHDhwgXk5eVh8uTJsLKy0kr7SqUS69evR+fOnTFo0CD1EL2uXbvi3r17CA8Px7x589QXKcnJyXj06BF69eqlsRjy8vJgZ2eH/Px8yGQyFBUVwcLCAgEBAXB3d4ePjw9EIhHS0tIwf/58fPbZZ+jRo4fG2lc5d+4cNm3ahJEjR2LSpEmIjY3F33//DbFYjLFjx+LWrVvqOb5ZWVk4deoUpkyZovE4KtqyZQsKCwsxevRoLF26FDNmzMCAAQNw9epV/Prrr3j//fd1UgQjJCREfZ4UCoWYNGkSrly5gsuXL6N9+/bqwmuFhYUaTbLS0tKQlpaG3r17q88bOTk5SEtLQ0BAAP79739j3759SEtLw7Jly7RSuKfiOauwsBBr1qzBW2+9hfbt26uf37dvHx4+fAipVIqysjL1CAVNKS0tVRewUigU2L9/PwoLCzF9+nTMmjULnp6emDRpEoRCIZKTk7Fz5060bt0aU6dO1VgMKhU/jy1btuDRo0ewsLDA/Pnzce7cOWRkZKiTX9VUDW38lmVmZqJx48aQSCTIzMzEjh078MUXXyAiIgK7d+/Gd999B0dHRwDaGcapupaPjo5GUlIS3njjDaxYsQJOTk54//33IRQKcfjwYfzxxx/47LPP1MepJnOAisdbVlaW+t/7yy+/oLS0FNOnT8fp06cRExOD4uJilJaWVjqf60Kd7dlTZdH29vaQy+XIyclBcHAwioqKYGpqioYNG8LT0xNlZWVo0qQJfHx8YGVlpT44NPElq2KYMGECLC0tcfDgQfUBVVpaisuXLwMor4w0bNgwNGvWDJMnT9Z4ovfkMBNTU1MMHjwYZWVlyMzMhEwmg6OjI+bPnw+lUolbt25h/PjxGk30Kt4zKC0txa5du3DmzBkAwJAhQ2Btba2ewL548WK0bt0aH3zwgUYTvarGz7u6umLkyJF45513MHbsWPzwww8oKSnB1KlT4evri7lz52o00Xsyhps3byIyMhJXrlzBkCFDYGNjg127dgEo75Xu3Lkzxo8fr5XERtXD+9NPP2HDhg3q+avTp0/HmjVrAJSXqW7YsCE+/fRTfPLJJ1pN9NLS0rBixQrIZDK4ubmhS5cuEAgEOH36NNq2bYuuXbsiKSlJ3UuuDarv58CBA8jJycHSpUsxduxYxMTE4Pr16xg0aBC8vLywdetWNG/eXKuJ3l9//YXExETY2NjA09MTtra2OHPmDGxsbDB27FgcOnQIaWlpAKDxyosV74Rev34dlpaWEIlEeOONNxAZGYmrV69CJpPBxsYGK1as0Gii99tvv2Hr1q0Aynuvdu7ciYsXL6Jbt27o378/rl+/juTkZJSWlqK4uBj/+te/sGjRIo0mek/ehZXJZBgyZAgSExMRFRWFjz76CLa2tnBzc0OPHj3g5uam1eppAoEA3t7eOHz4MO7evQuhUAhzc3OsXLkSN2/exBdffAGRSITLly+re181megdOnQI//3vf9Xzr0JDQ3H48GGYm5tj+PDhSEpKwp07d1BcXAxXV1csXbpUaxVrO3fujO7du6O0tBR//PEHOnbsiDfffBMuLi745ptvkJCQgPj4eAiFQjg5OWkl0au4f2RmZsLW1hbz5s3DxYsX4e7ujt9//x3R0dHo3r07Bg8erJNF3kNDQxEeHo6lS5eiQYMG+Ouvv/DHH3+gR48eaNeuHS5fvqwecq6pRK+wsBBffPEFTp48ib59++LUqVOYN28egPJrr4SEBHh4eMDBwQG9e/fGo0ePcPv2bY20XdGTN6fu3r2r7jEBykdXCYVCvPHGG/jwww8xceJELFu2TKMX0zKZDIcOHcL27dsBlJ9D7ezs8Morr2Dbtm1o27YtJk+erO5MiI2NhY+Pj1YSPVX7crkchw4dglAoxMKFC1FSUoKAgAB0794d7du3x+XLl7Fs2TI4ODho5bcsJiYGn332GcRiMUQiEcRiMbp16wYrKyu4uLjA3t4ely5dUhcK1FTPXsXrLNW1vEAgQFJSEr766is0b94cH3zwAYRCIVJTUzF69Gj07dsX+/bte2q7fyoyMhJLlizB48ePcfPmTRw8eBC//vorAGDo0KHqm6YDBw7ErFmzMHHiRPX5XJfqbLKnupBdsWIF0tPT4eTkpO4dsLS0RFlZGTZu3Ih58+bhpZdeUnfta7IjU3XyuXr1Kpo0aYLQ0FCcO3cOffr0QdeuXXHlyhX1mkitW7fGyJEj0a1bN421/2Qcf/31F7Zu3YqjR4/CwcEBY8eOVa8vIpfL4eLigkmTJuHDDz9E586dNdZ+xTskly9fxqFDh9C+fXtER0fjzp07sLS0xKuvvoqbN2/iwIEDKCkpwcCBA9VDCTWhqrHPpqam6vlQcrkco0aNgrm5Ob7++muYmZmhb9++Gr9gUcWgmnzbr18/tGvXDjdv3kRGRgZGjx6NuLg4rF27FsHBwRg1ahRcXFw0GgNQ/p2UlpZi7dq1sLKygoeHB9LT0/HTTz+hb9++6N+/PxYsWIAlS5aox7ADT/cG/hNPnthdXFxgZ2eHTZs2AQDatm2Lpk2b4tKlSzh27BheeeUVTJkyRavDaVXfj0KhUH/uI0aMgKurK/744w/cuXMHb7/9NubNm6fxZUGqGuaxbds2FBUVwdnZGd26dcPDhw8RFBSEDh06YNq0aRq9IZOVlYUTJ06oh3eFhITA0tIS8+fPh4WFBeLi4uDk5ISJEyciMDBQvRiuJocWb9q0CTdu3MCqVatw9OhRREVFoWvXrjhz5gz27t0Ld3d3eHh4IDo6GkuWLEFgYCCsra01Oqy44j4eHBysHoZ/9OhRnD17FrNnz0anTp0QGxuLQ4cOoU2bNhg2bJi6XLcmVZzI37NnT4wYMQLbtm1DVlYWOnbsiM6dO6uHrYaGhmLPnj1aGUIql8tRVFSEw4cPQywWY9CgQXByckJQUBBat26t/k5iY2Mhl8vRqVMnje4XOTk56mFoqvO2nZ0dBAIBTpw4AUtLS0yePBkjRoxAUlISdu3apZUiJBXXeExLS0NqaioaN26MN998E0eOHEFOTg6WL1+O/v37Y/369UhNTcWIESPw6quvajyOxMRE9RBEVU/4okWLcO7cOdy5cwcLFizAuXPncOHCBQwYMAAjRoxA69atNRZDUlISvvzyS/Tp0wfTpk0DAAwfPhwikUhdqMfe3h4PHjzAn3/+ieDgYHz88cda6e19cmpKz549IRQKcezYMQCAhYUFEhISEBERgQYNGqBly5YabV+pVMLExATe3t7qcwVQPnpo48aNcHR0xNy5cyEQCLB//37cunULw4cPh6+vr8bjAP43guv06dOIjo5G27ZtYWZmhn//+99ISEhAWFiYejmM2bNna/yGiOq3rFOnThg5ciR++OEHKBQKWFpaIjs7G/v370dAQABmzZpVKcn8p9cWSqWy0rXe9evX1SP7XnrpJZSVlcHFxQWTJ08GUD7EVlXx/aOPPoK5uTkePHig0fO4l5cXWrdujZ07d6JNmzZ4/fXXkZaWhu3bt+POnTu4f/8+0tPTYWpqCgsLC70sLQXU4WQPAB4+fKgu6jB16lQMHToUmZmZiI6OxoIFCzB8+HBMnz4dY8eOBaDZbluVkJAQ/Prrr+jWrRt8fX1x5MgR3LhxA4MGDYKzszNOnTqltfl5Fe+gHTp0CGfPnkWXLl1QVFSEb7/9Fm3atIGHhwcOHTpUqRKTpj8D1ftFR0fj1KlT6Nu3rzrhPXbsGHJycuDo6IhmzZrB1tZW43Mmgf+dRHbt2oU9e/Zg//796NChA7KyshASEoLS0lLIZDK0b99eK2vf3Lx5U11kQywWY/fu3ZV6Nhs2bIiLFy/C1NQUy5cvx4wZM7B27VqNz1VUUd3plMlkmDRpEvr27YshQ4bA3NwcV69exdSpU/HWW29h9uzZldZc1GSip3qvqKgoxMTEQCgUYvr06SgqKlLPH+3evTvs7Oxga2sLQPM9WBWP+YyMDPVx0Lx5c5SWliIjIwMA8Prrr6OgoAAxMTEoLS3V+DyTipWCt2zZgszMTLz++uto3749Nm7cCABo1aoVHBwckJ6ejsTERHTo0EGjMVhZWaFjx47qZM/NzQ2ZmZlYt24dAgIC8Ntvv+GLL75Ay5Yt4e3trdGhWAUFBVi9ejXu3LmDzp07IyYmBiYmJliyZAlSUlLUx2dQUBD69euHsWPHYuLEieohz5qiqhqXn5+PwMBAnDp1CseOHUOPHj3g6OiIVq1aqdfi/OWXX5668aDJc2fFixbVb8SwYcPQs2dPbN68Gc7OznjllVdw9epVrFmzBqdPn8a///1vtG3bVmPtq3Tv3h2enp5wd3fHnj17YGFhAR8fH8jlchw7dgxeXl5wcXGBTCbTeK97XFwcPvzwQ/z4449IT0+Hra0thg8fjpSUFDg7O+PBgwcIDQ0FALz22mv48MMPsWzZMq3MK1Z9H1FRUVizZo26ZL1QKFT3JALl1UE7dOigtd7eoqIiZGZmYufOnViyZAnu37+PZs2aQSaTIT4+HjNmzED79u3h4uKC7du3Iy8vT+NzWWUyGVJSUtQ3yrdv347Q0FB89tlnuHr1KoKDg+Hj44MuXbogPj4eo0aN0srNbIVCAZlMhi1btiAmJgYDBgwAAIwbNw6XL1/GwYMHERERga1bt2ptRIiqZyojIwMNGzZEZGQkYmNjMXLkSAiFQrRs2RJisRi///47bt68iZdeeknj11lPVnoXCoXo3bs32rdvj5SUFGRkZMDCwgKzZs3CyZMnER4eDnNzc41cY1RMjjIzMxEQEIDc3FwAwPjx4+Hi4oKNGzeid+/e8PLyQnFxMSZMmIB27dqpY9eE3Nxc9XXFb7/9ht9//x2pqanYvHkzMjIy0L17d3W13nXr1uHRo0cYP368evtly5ahSZMmGh3ZBwCzZ89GZmYmDh48iCZNmmDhwoVwdXXFo0ePEBMTgyNHjuhsKZJnqTNz9ipePJaWlqq7Rj///HO8++676NatG2QyGTZs2IBHjx5hzJgx6NmzZ5XbayoOoHw+mpOTE/r27QuFQoHIyEgcOXIE8+fPh5mZGeLj4zU+bLOwsBDfffcdmjRpgg8++ABAefVPLy8v9V2DQ4cO4dGjR5gxYwbWrVsHT09PdUU7Tal4IX3//n3s378fUqkUS5cuBQD10NrLly/D1tYWjRs3xowZMzQag4pCocCmTZsgl8sxYsQI/PLLL+jcuTMGDBiAnTt3wsbGBvHx8Rg0aBD8/f012vapU6fw888/Y/DgwXj55Zfh6emJqKgohIaGYsiQIejWrRskEgmWLFmCPn36wM/PT6td+Glpafj9998xa9YsfPvtt+jSpQtGjhwJAAgICIClpaX6BghQeV1ITSouLsb333+Pxo0bIzk5Ge7u7nj77bfx8OFDLF++HJ06dUJ8fDwGDx6svqDQpIrH6tGjR3Hq1Ck4ODigY8eOGDNmDHbs2AELCwt07NgRcXFxyMvLw7vvvqvxeVmq4yQjIwMbNmxA165dMWHCBADl61Nt2rQJMpkMr7zyCo4ePYopU6Zo7IIe+N9FgkAggFQqxapVq/DKK6/Ay8sLMTExyMnJQc+ePWFvb4+tW7dizJgx6otaTSgrK8PatWvRsWNHeHp6IjQ0FBYWFujduzcyMzNx5swZLFiwACdPnkRwcDD69++P0aNHa6z9J4nFYnz55ZcYPHgwiouLkZKSAg8PD3h6eiIgIACPHz+GRCLBsGHDNH7OrMq+fftw7949WFlZoXfv3vD29sb69ethZmaGDz/8EAqFAvn5+bC2ttbYzZCkpCQcOXIEQ4cORbt27dSLD3t7eyM3Nxc5OTmYNm0a4uLicOrUKXTo0EHjvRQqUqkUGzZswK1btzBgwAA4ODjA2dkZhYWF6NSpE27fvo3bt2+je/fuWp3rrjpXPHz4EOvWrcOMGTPQokULdTXJa9euITY2FikpKbC2tsacOXM0fq548ibZt99+i65du2Lx4sUAyudd7969G6NGjUJaWhoyMjIwaNAguLm5aTQOlZMnTyIqKgqNGjWCUqnE9OnTYWlpidTUVCxbtgwfffQRPDw8tDqnWC6Xw8TEBHfv3sXu3bsxZMgQ+Pj4QCAQIDExEX/99RcUCgW8vb21UrxJ5fjx4zh9+jTGjx+Pmzdv4tGjR3j33XeRnZ2NyMhIFBQUwMzMDDNmzND46JSKgoODERsbC3d3d/Tu3RtyuRynTp2Co6MjvL29IRKJEB8fj5deekkj1xkVvwuJRAIrKyusWbMGHTt2xLBhw2BlZYWsrCx88cUX6NWrV6Vhq5rsYFEdDzt37kRZWRn27NmDjz76CMeOHUNkZCSWLVsGhUKBrKws3L59G0qlEkOGDHnq3/BPPXr0CC+99BKA8iUVysrK0KJFCxQVFWHZsmUYMGAARo0aBblcDrlcjn379qmL1OhTnUj2Kn5Rp0+fRlxcHDp37oz+/fsjJCQEqamp8PX1hZubG7Zv3w5HR0cMHjwYDRs21EocJSUl6jt6qjs5X3zxBYDyk/H333+v7sHR9J2mpKQkbN68GYMGDap0gbx+/Xo0aNBAnfzFx8fj7NmzmD59ulbmYKnes+J/VT17vr6+8PT0VL/28uXLKCsrg5eXl0ZjUJ1ISkpKYGpqis2bN2PcuHFo3LgxAGD+/PnqsdrZ2dnIycnRyo9BTEwMDh48iNdffx0///wzRo0aBWdnZ0ilUpw9exbvvvsu5HI5fv31V/j7+2s8hie/3+TkZJw8eRLTpk3DtWvX8Pfff6Nly5YYMmQIvv/+e7Rr1w4jRozQSk93xZh+/vlnNGnSBCNHjsTy5cuRnJyMUaNG4fXXX0dWVhZu3LgBkUiklWE/FUVFReHixYuYPn06pFIpPv30U0ybNg3dunVDWFgYYmNjYWVlhenTp2u03fz8fHWPZWlpKS5duoRHjx7htddeQ1ZWFm7duoW2bdvCxcUFv/zyC4qLizFkyBD1PBRNU12QXb9+HUFBQfDz80PXrl0BlF9w//LLL8jOzsZnn32m8R5WiUSivvC4fv06rl69CmdnZ+Tm5sLc3Bzjxo3D0aNHkZubi4EDB8LV1VVjbT+5n8fGxiIyMhLTpk1DaWkpkpKScPDgQYwePRqdO3eGTCZDcXGx+rvT9HFS8Xi9cOGCuscuPDwcGRkZcHFxga+vLxYtWoR27drh3Xff1VjbKnFxcVi6dCnat2+PwYMHo1mzZigrK0NYWBgGDBiAkydPwsXFBaNHj8aVK1fg5OSk0e9EFYOVlRVcXV2RlZWF7du3w9bWFoMGDcLWrVuRm5uLf/3rX+jYsSOCg4PRoEEDDB06VKMxAJW/j6KiIpSUlGDfvn1o3rw5JBIJ7t69Czs7OwwZMgTOzs64deuWVoqKVYzj7t27aN26Nc6cOYPs7GzY29urf+8PHTqE3NxcxMbGYt68eRr/Xp70888/4+rVq/jxxx8B/O9me1hYGKKiovDpp59q7bfkr7/+wp07d+Dm5oa+ffvi/v37OHr0KCZNmoTmzZurr6+00X7F70OhUCAgIAAeHh7o0KGDunBTbGwsPvjgA9ja2mq8KE5V9u7di5SUFPWcbhMTE8ycOROZmZk4d+4cGjdujKFDh2psqHfFz+DSpUuIjo7G+PHjIRQKsXHjRvj4+GDgwIGQSqUICAiAVCrFhx9+qL65qGnbt29HSkoKFi1ahP379yMtLQ1WVlaYPXs2zM3NkZiY+NQwSU1e/yYkJODkyZOYNWsWjh49igsXLsDCwgKurq4YMGAAGjZsiJUrV+Ldd9/V+nVNTdWJYZyqL+rEiRO4fPkyXn75ZQQGBiIiIgItWrSAk5MT1q5di6+++grZ2dnw8/NDw4YNNT4ZVFVhadmyZdiwYQOio6MxevRoNGzYUD2GPSkpCZ07d8Y777yjlSEFTw6t2LFjB86ePYupU6fizp076hLMiYmJyMnJ0WrZ4YyMDHz99df4888/ERkZid69e8PT0xPXr1+vVOK3V69eGk30VENrACA1NRU7duzAgwcPUFxcXGm9vokTJyIhIQFmZmZo3Lix1u76derUCaWlpZBKpfjvf/+LsrIyHDhwABKJBD169MAPP/yAdevWYeTIkVqJQXV8qOaHurm54cGDB+px+3369MGZM2ewevVqNGjQACNGjACg+SFpT8Y0fvx49O/fH19++aX6v7///jvOnj0LR0dHDBo0SCsnxIqxJCcn48SJE+p1kEQiERYsWIBt27YhMTERQ4YMwYcffqjxRE8qlSI6OhphYWEICwvD6dOnUVRUhPT0dCxduhSnT5/GuXPncPLkSZSWluK9997DRx99pLFET5Vsq9bR3Lx5MzZs2IBjx46hdevWGDx4MI4ePYrk5GQUFBQgKCgIALBkyRKNJ3pA+Vp+qvNo165d0bZtW+Tn50MulyMwMBDr16/H6dOnMXz4cI1evD459Ako3zf//vtvPHz4EObm5mjatCnMzc1x5MgRxMfHw9TUFLa2tlrp8VYNIy0oKMCVK1eQnJyMtm3bwtLSEq+88go6duyI+Ph4CAQCfPLJJ2jevLnG2q6obdu2+Pjjj5GRkQE7Ozvs2bMHFy5cgEwmg6urKwYPHoxr164hKioKPXr00Oh3UlhYiOXLl+PPP//ETz/9hHPnzsHR0RHjx49HUlIShEIhFi9eDD8/P5iamsLKygqDBg3SaqJXWlqK7777DmfOnIG9vT2aNWuGnJwcvPzyy1iwYAFEIhEkEgmcnZ21Vj1adR4/ePAgtm3bhpycHPj6+qJVq1ZITk5Wr83r7u6OCRMm4Ouvv9Z6ogcA7777LmxtbdVr1aoqUfbv3x+ffvopAM0dI9WZmtKrVy+tT02peGMfgHpdNtUcQZFIBFdXV2RkZGD79u2QyWRaqdRb8bdMIpHAyckJixYtwo0bN1BWVgZHR0fs3r0brVu3RseOHfHSSy9pdE6vap/87rvvcO7cOdy+fRvHjh2DmZkZ3nrrLURGRmL37t1YvHgxmjZtio8++kgra9ipzsXTpk2Dubk5Vq9eDSsrK4hEIsyaNQvm5uY4c+YMdu7c+dS6iprs6JDJZMjOzkZycjLi4uLw3//+F3PnzoW7uztCQkJga2uLyZMn44cffkBWVpbG2tUEg+7Ze3KhxMOHD2PmzJlo3bo1/v77b5w5cwaDBw9G9+7dkZaWhsLCwkpleDXdmxUTE4Pz58+jW7duyM7OxoMHD9ChQwd069YNa9asgUgkQlJSEubPn6+1YRXA00MrZsyYoZ6gvHHjRrRq1QoZGRmYM2eOupdLE3Jzc9GoUSMA5Sfl7du344033kBBQQEOHTqEGTNmoGvXrjhy5AiSk5PxxhtvaHwtEbFYjKVLl2L06NHqeR1nz57FO++8g+PHj+PSpUuYMmUKmjdvjp07d6rXatIW1X526dIlPHjwAKNHj1YvEm9iYoKOHTvC2toaAwcO1OhcxSfvZF6/fh2//vorBgwYgIEDByIzMxORkZGYMGECLCws1OV+Vb0rmjw+KsaimgzdunVrNG/eHGlpadi7dy/+/e9/AwCWLl2qXvtG08dnxYvzvLw8mJmZwcrKCnFxcThy5AgGDRqEDh06wNLSEqdPn8aePXuwdetWmJuba6X66J07d/D999/DysoK33//PYDy3gxTU1O0atUKubm52LBhA6ZPnw5nZ2eNt79582ZIJBI0a9YMcrkcHTp0QHx8PB48eIA5c+bg+PHjiI+Px+TJk2FjY6PxkRBVqbivBAcHQyqVQiqVokOHDmjfvr1GL1Qq7uMBAQFQKpXo2bMn2rVrh6NHj+LevXv4+OOPYWpqih9//BEWFhZwc3PDsGHDtNrrnZOTg19++QV9+/aFo6MjDh06hAkTJqBly5aQSqVYs2YNZs2apS7frU3btm1DgwYN8Prrr2PPnj2Ij4/Hv/71LzRv3hyJiYlo0aKFRpP/pKQkbNmyBa+++iqGDBmC8PBwFBYWYtiwYRAIBIiMjMShQ4cwd+5cuLq6anx4oEpOTg6EQiFEIhGKioqwcuVK9OrVC35+fk+dC+7evYsdO3Zg8uTJWltDT9VmaGgooqKiMHfuXPUavWZmZoiIiMD169cRFxeHQYMGYdy4cRqP43lUpeLff/999OjRQ+PXV4YyNaWie/fuYe/evWjbti0sLCzQp08f/Pnnn3BwcMCECRNw4cIF3L59GwMGDNB40Y379+/DxsYGIpFIPYwVgHot1FOnTmHhwoW4fv06tm3bhj59+mit6mdISAhiY2Mxe/Zs3LlzB9HR0epzRnp6OtLS0vD48WP1TRBtVfOueE7+7LPPUFJSgkGDBuHmzZto0qQJ7ty5g5kzZ2q9AMqPP/4IsViMx48fY8WKFbCwsIBYLMb+/fvRv39/dOvWDdevX1ePmjEUmj+LapBQKIREIoGlpSVatmwJBwcHhIaGokWLFujZsydyc3Nx/PhxNGjQoNIdcU3tbMHBwQDKC2wUFxdj9+7dsLW1RZ8+fVBaWoqIiAjcuXMH9vb2+O9//4vHjx9DIBBodbw2UD6JPyMj46mhFe7u7vjiiy8gl8thY2Oj0R/JQ4cOITw8HB9++CHatm2LoqIifPzxx1AoFPjzzz/xyiuvYMeOHVi4cCEGDBiA8+fPw87OTmPtA+VDVdu3b48ZM2Zg165daNq0KUpLS9VDakeMGAGZTIYTJ04gJycHjRo1UlcR0xbVfmZjY4Pg4GBcvHgRrq6uWLVqFXJyctSL2mvyu7h48SKSkpIwceJEZGZmwsTEBO3atcPixYtx7Ngx7Ny5E48fP1ZXtQPKi3Oo7jxq+mSsauPQoUO4dOkSunXrhoCAAKxevRoODg6wtLTEvn37kJiYiB49euD111/XWNtVxXLjxg3s3r0bzZs3R15eHubNm4c+ffrg4sWLsLCwUA9d69q1q8aP1Sc/2yZNmsDCwkK9DIi7uzuEQiESExOxfft2dOvWTSuJHgC899572LVrFy5cuIBvv/0WlpaWaN++PQIDAxEaGgp/f39s2rQJpaWlOkn0gPLvR/Wj7ePjgyNHjqBVq1YarQ6sIhQKIZVKsX79eri6usLZ2Rk//fQTRo8ejd69e+Phw4f44osvUFBQgDFjxkAqlSI/P18dpzao5u56eHjAy8sL+fn56NixI3777TeMHTsWsbGxMDMz0/pviMoHH3yAxYsXw9XVFTNnzoRYLIaNjQ2EQiHc3d013p5MJkNycrJ6Lk1YWBhkMhmuXbuG8ePHw8vLCzk5OeqROtoo5lVYWIjw8HB1oQ/VfEg/Pz9ER0cjLi4OhYWFmDlzJkJDQ3H69GlMnTpVa+voqXoWzc3NUVJSAldXV5w9exa5ubkICwtTJ8atWrVCWloa+vXrp5U4nsfc3BzLly/HwoULsWHDBo3elHnW1JScnBycOXNGffHeuXNnnD17FkB5QQxtJBQq9+/fx5YtWzBjxgzcunULkZGR6NatG0aNGoX169cjLS0NycnJWLBggVZu7BcUFODLL7/ETz/9BBMTE3XCZ25ujry8PPVN/MzMTPTv319jc1mrujaQyWTqyrft27dHYWEhAgICYGNjg/79+6NZs2bP3V5TVEs3CIVCLFq0CJ999hlKS0sxceJEJCYm4o033oCNjY1GY8jIyMCDBw/QvHlz9c23oUOHIjIyEnl5eTh+/Dhef/11ODk5qecuAtDaerD/hMH17D15R3XPnj2IiYnB6tWrERcXh7CwMLi6ulYav967d2+tDGdQnYBv376NDh06ICYmBuvXr8fMmTPRo0cP5Ofnq5c2GD16tFZK6D+LUqnE559/jv79+2Po0KFaPciA8spHp0+fhru7OyZPngwXFxfk5+fjhx9+wGuvvYZu3brhP//5Dx49eoTvv/9eoxcrjx8/xpo1a+Dk5IS3334bVlZWuHTpEvbv34927drB0tIS7u7ucHNzg62tLYqLi2FqaqrRIhPVsXHjRmRmZmL58uVaa+PkyZM4d+4cPvroI6SmpiIoKAh2dnaws7PDgAED0LFjR4jFYuzduxd3797F0KFDtVrsAig/wR85cgRJSUmYOXMmLC0tsX//fly6dAnff/89EhMTcfnyZfU6SJp28+ZNtG7dGlZWVhCLxfj222/VRU5+//13XL16FWvXrsXhw4eRkZGB1157Dc2aNdN4743q/bKyslBaWgp7e3tYWlri1KlTuH79Ot577z04OjoiOTkZUVFRaNy4Mfr376+x9iu6d+8eWrRogYKCAixduhR9+/bFpEmTAADHjh1DYWEhJkyYoPXzxrOoPiupVKq1xEahUCAxMREJCQnw9fXFunXrUFRUBAcHB/j4+KBr16549OiRemjl2rVr8dprr8Hb21sr8QQHB6N3797466+/EBkZieXLl6NBgwbIy8vDuXPn1FVJZ8yYofW5PxU92WujbSdPnsSlS5fg4OAAuVyOKVOmICwsDKdOncJ3332HBg0a4M8//8TAgQM1XsgqPj4eLVu2hKmpKZKTk5GUlISBAwdixYoVKCgoQOfOneHq6oqjR49iwoQJ6kJJqvmb2iCVSnHw4EE4OzvDx8cHP//8M2xtbeHh4QFLS0sEBARg5syZ6qIQ+qS6JtKk+Ph4fP755zhw4ACA8qkprVq1Qvfu3bF8+XL4+vpi+PDhOHXqFK5evaru9dTkeevJ82BcXBwSEhLQrl07bNmyBZMmTUK3bt1QVlYGpVKpvkGg7UIsUVFR+PzzzyvFKBaL8fXXX6NZs2a4d+8eli1b9o9HAaiWNFD1ICYkJMDU1BQtWrTAgwcPcPz4cXTv3l19flDdyB05cqROr3uB/30Ot2/fxpo1a/DFF1+oE25N/56lpqbijz/+QHFxMcaNG4d27dohJycH3377Lbp3746SkhJkZmaic+fOOHHiBObMmaO19Uf/KYNL9lQqDt/45ptvYG1tjZkzZyIqKgpXrlxBu3btMHDgQK20XXGHEYvFmDt3LubMmYM+ffogPDwcQUFBmDNnjnrMdn5+vtaKKjzPkz/S2iwkkJCQgPDwcPVQ1enTp8Pc3BxbtmzBhAkToFQqERwcrC4uoEnnz5/H9evXMWvWLADlVR6trKzw+++/48SJE+jXrx8EAgFyc3NRUlKilSIo1ZGYmIiQkBC8+eabsLa21vhF9K5duxAaGoopU6Zg0KBB6mpopqamuHPnDs6dO4eJEyeqK0Ndv34d9+/f1/hFfVVzmQ4cOICbN29i3Lhx6vLb33//PbKysrBixQqNtFuVjIwMBAYGwtnZGWPGjEFeXh527dqF2bNnq4+HNWvWoFu3bvDx8UFERAQGDx6stXiuXbuGX375BV5eXrh48SL++9//wsrKCgcOHMCjR4/QqlUrFBQUYPjw4Rpdp+zJY3/x4sVo3749pk6diuTkZKxfvx6+vr4YMWIEvvvuOzg4OKiH/WirF0vXKu7jmZmZOHr0KKZOnQozMzPs3r0bdnZ28Pf3x9dff43i4mJMnDgR7du3x/3793Hw4EH4+PhotNrjk8fc3r171T1Ia9asQcOGDfHRRx+pny8rK9PKGnrVkZOTU6nXRtv7xJNFPwBg7dq18PT01FqynZiYiBMnTqBt27YYPHgwQkJCEB8fj1deeQUdOnRAQUGBOqlbt24d+vTpU6nQmLZIpVJcu3YN0dHR6N+/f6VegZCQEFy4cAFz5szRasKpb/qamgJUPk7Pnj2LTp06QS6X47///S8aNmyIJUuWwN7eHllZWbh48SIGDRqklfl5VdmyZQtMTEzwwQcfPFXYqUmTJmjatKlGzhk5OTnq36Pff/8dV65cQePGjaFQKDBt2jSEhYUhPj4ezs7OEIvFaNCgAXJzc9Vr9uqa6rMIDg7GzZs3MXfuXK0tu1FaWoq//voLZ8+ehaenJ/r166cugDhr1iycOXMGMpkM/fv313niWxMGU6Cl4kTUc+fO4ciRI+riIrNmzUJqaiqOHj2K3r17w83NDcXFxVAqlRpdHFHVVS0UClFYWIiioiI4OTnhk08+wd69e5GUlAQfHx94e3vju+++Q3FxMVxcXPSS6AH/G1qxZcsWjS8wm5SUhA0bNuDu3bsAgMaNGyMtLQ0ikQgtW7bEvn37YG5uDktLS/z222/4/PPP0axZM62U57axscHDhw+Rk5ODEydOYO/evZgzZw7y8/NhaWkJmUyGd999F5988glmzZqll0QPKB+y9/DhQ43fXZLL5VixYgVycnLw2muvqZe0kMlkcHJygr29PTp37owmTZogLS0NANCwYUM4ODjgzp07KCsr0/iwTdVwydOnT+PKlSvqNXUSEhJw//59AMC8efO0sohpRU5OTvD09ERBQQHOnTsHKysrpKSkICwsTH3B2rFjR5ibm6NBgwZaTfQSExNx4MAB/Pvf/0aXLl3w8OFDLFu2DKamphg3bhxeeukl3LhxA0OHDtVoogf8L2FTrdf2ySef4Pbt2wgJCUGLFi3w1ltvYdeuXVi+fDkaN26Mt99+W2sV0/SlYuU8c3Nz9XIXAoEA2dnZ6uHejRo1Qtu2bdULL6uWhNF0WX/VOpcqzZs3h1gsBlD+/WRkZGDfvn3q5/WV6AHli2Nv2LBB/blpm6rox8mTJwEAWVlZyM3N1fhxAfzv5lTz5s3x8ssv4/79+7h69SoGDRqE5s2b49KlS4iNjYWtrS1iY2OxcOFC2NraaiXRi4uLU/9WHzlyBHfu3IGlpSU6duyIzp07qxdMB8pHikRFRWHevHlGnegB5VNTXF1dERcXh9mzZ8PCwqLS1JTJkyerz12aphruvXz5cty+fRsNGzZEo0aN4OvrixYtWkAoFCIpKQlff/01FAqFzhI9AJgxYwZSUlJw7NgxCIVCZGZmYv78+cjLy0OLFi00cs6IiorChx9+iOLiYly4cAEJCQlYuXIlXF1dcenSJRw9ehSDBg3CyJEjoVAo4O7ujg8++ADm5uZamU9bHapzvaOjo9bPm+bm5hg2bJh6Yfply5YhIyMDJiYmsLS0xLhx4/Dmm28adKIHGGDP3uXLl+Hm5oZNmzZh6NCh8PDwgLm5OSIjI7F9+3bMnDkTvXr10vgPUlJSEsLCwvD222/j2rVr+O2332BqaorJkyejTZs2OHbsGMLCwrB48WLY2dkhICAAr776qlZOPjWljaEVLyrNffz4cbRq1QojRoyAWCxGcXGx1rqvCwsLERQUhIiICDRq1AgDBw6EhYUF5HI57t69i5iYGHh6euKtt97SamGF6tBGQYHi4mKEhoZixIgRKCgowLFjx2BlZYWoqCh06dJFvWjorl270KRJE/V8mL1790IqleK9997TaDxA+RCT0NBQjB07Fj///DPGjBmD7t274+DBg3B1dYWHh4fWjo2Kk9dVNm3ahJycHLz11lswNTXFl19+iTfffBOWlpY4fPgw3nzzTXh4eGg0jrCwMABQT94HypOt5ORkHDhwAIsWLcKPP/4IoVCIJUuWaLRtlYo3Fk6cOIH8/HwMHjwY9vb2uHPnDjZv3owpU6bAw8MDp0+fBgCtJrz6duTIETx8+BDTpk3Dr7/+Cnt7e4waNQpXrlzBgQMHYGpqiiZNmuBf//oXAM0P+1Gdf5RKJcrKyrBx40Y0a9YM48aNQ2lpKZYtW4aRI0fC29sbmZmZWLFiBZYuXarzIeeGQDUy5dVXX0VMTAx69OiBUaNGabSN5ORkhIWFqReflslkOHPmDNLT0+Hj44NmzZqpFzxWzYW7d++eej6fJqWkpGD9+vWYOHEiPDw8cPToUfzxxx/44YcfYGtrC7FYjMOHD0MqlWLq1KmQSCQGOyRMG3Q5NeXJ64SQkBDExcWpRw8B5aO6wsLCcOvWLcjlcgwZMkRrvc7PozpOBg4ciAsXLqBfv34YM2aMRttQLWmgujm5e/du5ObmYuLEiVi8eDFGjBihnmuflZWFn376CS+99JLWayI8j0KhwLFjx9C0aVOdLnMQFRWFc+fOITo6GkuXLtXaXF5NM4hkT3Xg5efn4/PPP8eXX36JxMREHDt2DGPGjMHLL7+MGzduICwsDJ06dVKfiDV5YR8bG4uLFy/CxMQEDx48wNSpU3H58mXExcXB398fbdu2xc8//4y7d+9i9erVRnVH/FkiIiLUQ+KCgoLg5uaGx48f45133kFKSgoCAgIwZMgQja+f9yyqNVRUw52uXLmCO3fuqJMdfd1l0rXExERERUXBzMwM165dQ+vWrdGiRQscO3YM77//vlYq0ubk5MDOzg4mJiZQKBT45Zdf8NZbb+Hy5cs4ceIEpk+fjhYtWiApKQn79+/HyJEjtTZJOTY2Ft999x22b98OoDypjY2NRc+ePfHw4UOMGzdOvY5fWloafH19NRqLqnKcSCRS9xoplUosXboUpqam2Lt3LxwdHTFkyBCcOnUKP//8MxYsWKDRZLPiuU8sFsPa2hr37t3DlStX0KRJE/Tr1w8NGzbEgQMHcOzYMXz11VdarRBsCFTLTZw/f169Nt3+/fuxcOFCuLm54f79+8jMzESvXr3Ur9fWvJ+CggLY2NggLS0Ne/bsQZMmTdCmTRtYW1sjJiYGY8eOhYWFBR4/fowGDRpoLIa6Jjc3Fx9++CE+/fRTjd+MAf5309LNzQ29evWCo6MjunXrhvDwcBQXF2PgwIEwMzPDn3/+CXt7e4wePVorCYaqwMbZs2fx999/w8/PD23btsWuXbtw8+ZNfPPNNwCAP//8EwkJCRg8eLB6OHx9ou2pKUDlc6dq7dOGDRsiKysLb7zxhnoeseo6QyaToaSkRGdFrKqiOk7mzp2Lvn37aux9K34Wy5cvR8OGDfHJJ59g3bp1GDNmDNzc3LB+/XqkpKTgP//5D+zs7JCeno6UlBSdXfc9j77mnOfn50MsFmuliJW26C3ZU827Av63w8lkMuzduxd9+vRBu3btcOzYMdy+fRvm5uZISEjAJ598ovE7XRV3lmvXruH8+fMoKCjAwoULAZSvefPo0SOMGzcOzs7OOHz4sNYLXhgSXZfmri6JRIIffvgBHTp0UCd7xq7iifnGjRu4ffs2BAIBJBKJekK/6uSjqTXCCgsL8eOPP6KkpATNmzdHr1690KFDB6xZswbW1tYoLi7G+++/D0dHR9y4cQPt27dHdna2xpfceJKq8qmqyMPs2bMhlUpx6tQpPHr0CH5+fnByctJ4T6uqdPyT634tXboUjo6OmDNnDg4ePIjS0lI4OTnhxo0beO2119CuXTuNxVDRxYsX8eeff2LChAno0aMHIiIiEB8fj+bNm2PQoEEIDQ3FhQsX8N5772mt6qc+VDwWCgsLERYWhlatWqFp06ZYu3Yt3N3d0aZNG+zevRu9e/dW9/KqaPMi4dixY7h27RpatGiBdu3aoUuXLoiPj8e+fftgYmICqVSKFStW1JubUy+i7bmKERER6uHV27ZtQ7t27dSL15uammLMmDEQi8WwtbXV6nDJ+/fv488//0RaWhqkUimWLl2Kl156CatXr4ZSqUSvXr0QEhKCadOm1amLSE3T1fzR6OhonDx5Em+//TYyMjJw+vRpfPrpp+rzxMGDB9G1a1etnbtrSlvHScVz6ezZs9GlSxc4OTmhsLAQMpkMhYWFGDNmDBo3bqz3kVNUe3pJ9hITExEcHIzRo0dDqVSqS9w2adIEJ06cQExMjHpdroSEBDx48AAtW7ZUV9zU1A6n+sFX3XVTKBSIjo5GcHAwBg0apL5zsWnTJggEAkybNk2v8yr0QalUYvHixRgyZAgGDhyoLs2tr7vR+fn5iI2NxYEDB+Dr64uRI0fqJQ5DcP78ecTGxqJXr17qu8CavIhVJTbDhw+Hm5sbrly5ArlcjgkTJuD3339HYGAgdu/eDaC8ty0gIADvv/++1te5UamqyMP9+/dx5swZuLq6amX+6JOV41R3gaVSKebMmYO3334brVu3xqVLl3Dt2jWMGjVKo0NMKq65lJCQgJ9++gnz5s2rNGQ2MjIS0dHRSE9Ph62tLebOnavXu9Ka9mQhFoVCgdjYWERFRWHQoEGwtLREeno6+vXrh40bN0Imk+HTTz/VyWdw9OhR3LlzB++88w727NmDkpISzJ8/H6ampsjNzcXJkychFosxZ84crcdC/7N582Y4ODhg/PjxSE9PR0BAgHpx5Pnz52t8vmZFSqUSubm5+Oabb+Dn54fevXvjxx9/VBfesLCwwO+//w6JRAJvb2+91QAwJNqYmlLxvKFa/7WkpARLly4FUH6d9/jxYzRt2hTJyckwNzfHJ598otEYDJXqs8nJycGiRYvw8ssvo3v37oiIiMBHH30EW1tbvfWikWboJdm7d+8eLl68CKFQiLFjxyIoKAiFhYXq8qZ79uzBuHHjnhp2pMmdTfVeGRkZ2LVrF9q3b4+XXnoJ3t7eCAkJQUJCAry9vdGpUycUFhYiNTVVb4U/9E3XpbmfR6FQIC4uDkqlEh06dNBrLPpS8WZHTEyM1saMP5nYxMTE4OzZs/j4448BlP84isViNGvWDHFxcZg4caJOhx49OcdDRSwWa3UOVHBwMC5duqS+SFDdcT1+/DgyMjLU8xg0fSc2NTVVvcxGWloaHj58iODgYLz++uu4ffs2rl+/DpFIhDlz5qCoqAgxMTEaHfJjaE6ePImTJ09i8eLFcHJyUt+caNasGYRCIWbNmgWFQoGioiKtrNcGPH3j8fjx4/Dw8EBYWBji4uIwZ84cNGzYEEVFRWjYsKFeK27WZ6pzhZeXF0aOHAmpVAqpVIqoqCj1HGdNevJaRSqVYsOGDZg4cSKaNm2qjqdJkyaYMWMGzMzM2GuiRarvQ6FQQC6Xw8zMDFFRUQgODsaAAQPUc/GioqKQn58PpVJp1HObq6L6jFRTlbS5pAHpns6+PVW1TYVCgdatW2PgwIHIyspCWFgYxo0bh8mTJ8PW1hY7duzAjRs31FXlKlbp1MTOlpubq36v27dv49tvv8XAgQNhbW2NgIAAXLt2Da+++ipcXFzw119/IS0tDdbW1vU20QOervqpz2meQqEQ7du3r7eJHvC/hakBqBM9bXwnbdq0wfvvv69eN7CsrAy3bt3Chg0bcOLECcyaNQuvvfYaunbtivnz5+t8jolAIMCyZcsQFBSEK1euqP+u7WIXQ4YMwUsvvYSffvoJANQ9bWVlZZWKxmjqol5VvS8hIQFHjhzBf/7zH/z111/o2bMnTE1NcfLkSdjb22P69OnIzs5GbGwsrK2tjS7Rq/hbEBoaivDwcHzxxRdwcnJCcXExWrZsiTlz5sDOzk49gV4oFKoX2tVGLAKBAMXFxeq//197dx4V1X3+cfzNNmABh9Ug0QYBEU2RLVhZBE1ErTS1mtQTXOpWPWI1MW1a2mjF1np60rSxBhpJLam0RlO1iBjTaOSIgBBQQFxQgUgMESIM+wDDwDC/P/JjKknabIyDw/P6i7ln7tzvmZkz3M/3fu/zdHV1sXnzZtrb23n++eext7enoKCA8vJy+vv7JeiZyMBvxVtvvcWFCxews7PDycnJ6EGvtraWlpYWQ+Xq+vp6uru7sbCwYN68eZSUlFBVVWUYoxh6d0/sb9++nbS0NN544w38/f0JDw/n6tWrXL16FYBp06Yxe/bsERf0AEMYnjRpEvHx8Rw6dIj+/n5DH1Jxf7snn6BerycpKYmysjLDl6aqqopr165x5coVTp06Zah8uWLFCmbPns3Ro0fR6XRD+iXLyMjgN7/5DZWVlQB0dnayadMmxowZw+nTp4mJiSEtLY26ujpmzpzJxIkTjVIK+n50r0tzi//tk5+BsT6TOXPm4ObmRmJiIkeOHGHt2rV4e3tz5coVtmzZgkKh4JFHHjFZNUFTTUR8siS2SqWipKRkyO9VHKhEq9Fo8PPz4+zZs1hZWRnuG/7pT3/K5s2biYmJQaPRoNVqzbZM+8DJSE9PDwqFghkzZlBcXExWVhY7d+4kMzMTJycnFi9ezI4dOwYV/BjK/yM1NTWkp6cDcPXqVXbu3MnLL7/Me++9x6OPPsq0adMM9/2cOHGCw4cP4+npKSdMJjbwW/Hqq68OeauiAQPBoq+vjx07dpCWlkZycjI3b95k5syZZGdnk52dTVlZGYWFhSxdunRETyQb090T+3V1dezdu5f4+Hiio6M5duwYHR0dBAUF8eCDD5KdnU19fb2JR2x6d7c0UCgUcrXZjNyzZZyNjY1s3bqV3bt3c/r0ac6fP88Pf/hDOjo6KCoqIigoyFC+XKvVkp6ezvLlywfdVP91HT58mHfeeQdfX1+WLVuGp6cn7e3t7N69m8cff5ygoCC2bdtGY2Mju3btGtJjC3G/0uv1bN++ncmTJ/PUU08Z/gFcvnyZgIAAUw8PMM49Hl/kmAOl48vLywkLCxvS0vFtbW0olUra29vp7e3l1q1b2NjYcO7cOfz9/QkICMDV1RW9Xk9mZib5+fmsWrXqvikF/UXU1dXxwQcfMH36dPr7+/n973/P/Pnzsba2pri4mObmZqKjo1Gr1VRWVrJkyRIcHBwM+w/18qOzZ8/S2dlJcXExEyZMQKVSMX/+fEpKStBqtYSGhjJ27Fj27NmDi4sLra2tJCQk4ObmNmRjEF+PMX4rmpubsbS0xMnJiebmZgoKCujp6eGJJ54gNzeXf/3rX/z617/mzp07XLx4kffee4/w8HBmzZo1pOMQH8vIyCAvL4+EhAT8/Pyor6/n8uXLuLq6kpGRwbx585gxYwbw8bL/0tJSoqOj72kPveHKVC0NhHHds3Jg7u7uhgIGoaGhJCUlYWlpSVtbGyqVioKCAlxdXfH19aW0tJRLly4Zih98HXf/sw8ODkatVuPk5MQbb7zBunXrsLOzQ6lUMnbsWD766CN8fX2Jjo6WoCfE/7OwsGDLli08++yz+Pj4GErXD5egB9zzoDdwzN/+9rckJCTws5/9jNDQ0CF77U+erBw9epTbt2+zcuVKrK2tOXXqFA4ODjg7O1NZWUlAQAAxMTFmtxLhzp07pKen4+TkhL+/P1ZWVnh7e+Pg4IC3t7fhd7qwsJCamho0Gs2gsDeUQe+VV15BrVYTGxvL7Nmzyc/Px8HBgcmTJ+Pj40NmZiaXL1/G3d2dpKQk+vv7za5xvTkY6t8KtVpNXl6eoSXUQJXH733vewBER0ejUql48cUX2bZtG5MmTRpUjVwMPZ1OR2dnJ5mZmSxduhQLCwvy8vLo7+9n9erV+Pj40NDQQFZWFitXrmTevHmmHvKwYWlpSVxcnKxEMDP39NOcMmUK69ato7e31/BFUiqVBAQEEBYWxvjx4wFwdXVl27Ztg+5/+SpqampISUnhxo0bAHh4ePDhhx/i5OTEhAkTOHjwoGEt/eHDh9m6dSvjx483ShU/Ie5nA0ug9u7da7QlUPcjZ2dn/vGPfwxp0IPBJysNDQ3MmjULd3d3MjIy8PHxITQ0lAsXLpCYmEhWVha+vr5mFfTeeecdysvLCQ4O5oknnuBvf/sbra2tuLq6GloW2NnZ0dXVZagM+8wzzxjlCppOpyMlJYX+/n5+/vOfExwcTEREBDExMdTU1HDp0iUUCgVz5sxBq9WSnZ1Na2srlpaWEvTM3JUrV1AoFCxYsICWlhZyc3OZM2cOkZGRVFdX09bWBsCiRYtwdXVl3759ACO6t6Kx3H1fbnBwMOHh4UycOJHDhw/j7u5OQEAALi4u2NjYUFtbS3JyMqNGjZIWKJ9Bgp75MUk1zj179mBjY2OoWmcsAw1V/f39iY2NZfz48fT29pKbm8vMmTN566238Pb2Zv78+TQ0NNDV1TXkffyEMCemWC45Uty9CqG6upq8vDyUSiXvv/8+CQkJtLS0cPLkSVxcXFiwYAGNjY3U1taa5VKbU6dOcfz4cbZs2YKHhwcHDhygqKgIrVbLokWLsLGxYdy4ceh0OtRqNYGBgVhbWxutatwrr7xCfHw8zs7OhvYX3d3dFBUVUVRUxPLly/H09OTWrVt0dXWN6AJSI0VdXR2ZmZl4eHiwaNEiTp8+TVVVFVFRUUyZMoWXX36ZBx98kLi4OOzt7Yes96n4tJqaGo4fP87cuXOZNGkSarWaXbt2ERUVRXNzM2q1mhUrVnDo0CFUKhXNzc1MmzbNKAV6hBiOTBLf169fz40bNzh27JhRj+Pn58emTZuoq6tDqVSyf/9+CgsL6evrY9y4ccydO5fi4mIKCgoYM2aMBD0hPocEPeP4b6sQnJ2d8fLy4vXXX8fT05PIyEhqa2s5ceIE7u7uZhf0BmbnB66OpKSkoNFoiI+PJzAwkK6uLmxtbbl27RqZmZlUV1cbqpIaK+i1t7dTWVlJa2sr8J+T9VGjRjF16lSUSiV///vf6ezs5KGHHpKgN0KMGTOGiIgI2tvbKSgo4NFHH8XLy4vz589z+/ZtVq9eTUVFBWfOnKGvr0+W9BpRb28v586d48CBA+Tn59PU1ER8fDw1NTUEBwfT0dHBm2++yeLFi9mwYQObNm2SoCdGFJOEPQsLC3bu3Dnkles+S1RUFGFhYVy8eNHQf+rGjRvcvn0bHx8fli1bZtSGqkII8Xn+18lKUFAQWq2WzMxM/Pz8iIiIIDAw0NRDNgpLS0t6e3sBeOqppxg7dizJyclYWFjwgx/8gIcffpimpiYSEhJ47rnniIuLG7SvMYwePZrp06eTl5dHd3c3lpaW9PT0AB8XL/Lw8MDPzw+dTmeU44vho7a21hD6ra2tCQoKoqurizNnzlBRUcFjjz2Go6MjeXl56HQ6VqxYgYeHhywVNLIvMrFfUlJCfn4+8PHtQ0KMJCZbmKtQKO5ZyFq7di0VFRWcP3+e9evXk5iYiIeHB5aWlvj6+soPsRDCpD7vZCU2NpaLFy9SXFxMSEgI48aNM/WQh8z7779PTk4O8PHS+7S0NA4cOEB1dTU//vGP0Wq17Nu3D0dHR+Lj4ykpKaGhocEQroa6h95nCQsLo6+vj9OnTwNga2sLYLii9/3vf99sW16I/+jo6OC5554zPD5w4AB1dXVMmTKFc+fO8dFHHxEbG0tXVxc5OTl4eXkNagEijOfzJvaXLl1qdr1HhfiiTHLPnikMlElfs2aN2S19EkKYh7/85S+MGjWKhQsXsn//fqqqqti4cSMPPfQQN2/exMvLy6wmp3Q6HcePH0ej0RAREcHvfvc7li1bRlVVFVqtlocffpiQkBC2bdtGVFQUCxYsoKenxxC27qWysjLOnDmDVqslJCSEs2fPMmHCBKPfey6Gl1OnTvHuu+/i6uqKTqfj6aefRqPRcPLkSRobG1m0aBE9PT3Y29vLBMA9ptfref7555kzZw6zZs2ioaEBR0dHKYgjRrwRE/bg4144v/jFL0hJScHGxkbWzwshhpWReLJSUVHBnj17iI2NRafTsXDhQjQaDRUVFVy4cIEf/ehHVFZW8vbbb/P000+btFJcd3c3b7/9Nvb29igUCkO5fTGyvPbaa5SVlZGcnGzYVltbS3Z2NuPHj+exxx4z4ehGNpnYF+LTRlTYA6kmKIQY3sz9ZKW/vx+tVjuol+n+/fu5desWarWaZ555Bg8PD1pbW/nTn/7EunXr8PT0NOGIhRhMr9ezdetWoqOjmTt3rmF7Q0MDY8aMMeHIBMjEvhCfNOKaaUjQE0IMZwM9DVNTU9FqtZjTfJxeryc1NZV//vOfFBYWGrZ7enqiVCqZPn06b775Jl1dXfT29qLX6wfdk2dO74W4f1lYWJCUlERWVhalpaWG7RL0hgcXFxdSUlJQKBQS9IRgBF7ZE0KI+4G5rkLo7OyktLSUgwcPMm/ePMLDw7G3t+eXv/wl3/nOd2htbeX69euo1WoWLlxIZGSkqYcsxGeSK0hCiPuBhD0hhBD3XE1NDSdPnqS7u5ugoCD6+/u5c+cOS5YsoampCWtra0OJdL1eLyfSYlgy10kZIYT5kLAnhBDCJDo6Oqivr2fPnj1YWVmh0+l46aWXDMFOQp4QQgjx9UjYE0IIYRIDYa6pqYmSkhJu3rzJ+vXrTT0sIYQQwmxI2BNCCGEyA4Hv7qt4ckVPCCGEGBoS9oQQQgwbEvSEEEKIoTPiWi8IIYQYviToCSGEEENHwp4QQgghhBBCmCEJe0IIIYQQQghhhiTsCSGEEEIIIYQZkrAnhBBCCCGEEGZIwp4QQgghhBBCmCEJe0IIIYQQQghhhiTsCSGEEEIIIYQZsjb1AIQQQghjUKlU7Nu3j2vXrqHX64mMjGTVqlUcPXqU7OxstFotQUFBrF69mm984xs0NDSwceNGEhISOHToEBqNhvj4eLy9vUlNTUWlUjFjxgzWrFkDQE5ODtnZ2Xh5eZGbm4uzszNr1qwhICAAgDNnzpCVlUVTUxOjR49mwYIFxMbGAnD16lWSk5OJi4vj2LFjWFpaEh8fz6xZs6iuruaFF17g1VdfxdLy4znZoqIijhw5wosvvmiaN1MIIcR9Sa7sCSGEMDv9/f288MILuLm58ec//5nU1FQiIyPJyckhJyeHpKQkUlJS0Gg0pKWlDdq3qqqK3bt3s3nzZtLT08nIyOBXv/oVL730EoWFhVRUVAx67gMPPEBaWhqLFy/mD3/4A2q1GgClUkliYiLp6els2LCB9PR0bt68adi3tbWVrq4uUlNTWb9+PWlpaajVanx9fXFwcKC8vNzw3NzcXKKjo438rgkhhDA3EvaEEEKYnerqapqbm1m+fDl2dnYoFAr8/f3Jz8/nu9/9Lg888AB2dnYsWbKEgoICdDqdYd8nn3wShUJBYGAgtra2REVFoVQqcXFxwd/fn5qaGsNzlUolcXFxWFtbExERgaenJ6WlpQCEhITg4eGBhYUFU6ZMYerUqVy/ft2wr5WVFU8++STW1taEhIRgZ2dHXV0dADExMeTl5QGgVqspLy8nKirqXrx1QgghzIgs4xRCCGF2VCoV7u7uWFlZDdre0tKCu7u74bGbmxs6nY62tjbDNqVSafhboVB86rFGozE8dnFxwcLCwvDY3d2d5uZmAMrKyjhy5Ah1dXXo9Xp6enr45je/aXiuo6PjoPHZ2toaXjs6Oppnn30WjUZDQUEBkydPxtnZ+Su/H0IIIUYmubInhBDC7Li5uaFSqQZdsQNwdnamsbHR8FilUmFlZTUo0H0Zzc3N6PX6Qa/n4uJCb28vf/zjH3n88cfZu3cv+/btIzg4+Au/rouLC35+fhQXF5OXl8eMGTO+0viEEEKMbBL2hBBCmB1fX1+cnZ15/fXX0Wg0aLVarl+/TmRkJCdOnKChoQGNRsPBgwcJDw//1BXAL6qtrY1///vf9PX1UVhYyO3btwkODqavr4/e3l5Gjx6NlZUVZWVlXLp06Uu9dnR0NMeOHeODDz7g29/+9lcanxBCiJFNlnEKIYQwO5aWliQmJvLaa6+xYcMGLCwsiIyMZOXKlbS0tJCUlIRWqyUwMJDVq1d/5eNMnDiR+vp61qxZg5OTEz/5yU9wdHQEYNWqVezatYve3l5CQ0N55JFHvtRrT5s2jb/+9a+EhYVha2v7lccohBBi5LLQ373+RAghhBBfyEDrhR07dhjtGJs2bWLt2rVMnTrVaMcQQghhvmQZpxBCCDEMvfvuuwB861vfMvFIhBBC3K9kGacQQggxzGzfvp0PP/yQjRs3GhqrCyGEEF+WLOMUQgghhBBCCDMk04VCCCGEEEIIYYYk7AkhhBBCCCGEGZKwJ4QQQgghhBBmSMKeEEIIIYQQQpghCXtCCCGEEEIIYYYk7AkhhBBCCCGEGfo/OY+Gyfbcik8AAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "plt.subplots(figsize=(15,7))\n", + "ax=sns.boxplot(x='company',y='Price',data=car)\n", + "ax.set_xticklabels(ax.get_xticklabels(),rotation=40,ha='right')\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Checking relationship of Year with Price" + ] + }, + { + "cell_type": "code", + "execution_count": 26, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "c:\\users\\riju dasgupta\\appdata\\local\\programs\\python\\python37\\lib\\site-packages\\seaborn\\categorical.py:1296: UserWarning: 9.3% of the points cannot be placed; you may want to decrease the size of the markers or use stripplot.\n", + " warnings.warn(msg, UserWarning)\n", + "c:\\users\\riju dasgupta\\appdata\\local\\programs\\python\\python37\\lib\\site-packages\\seaborn\\categorical.py:1296: UserWarning: 6.8% of the points cannot be placed; you may want to decrease the size of the markers or use stripplot.\n", + " warnings.warn(msg, UserWarning)\n", + "c:\\users\\riju dasgupta\\appdata\\local\\programs\\python\\python37\\lib\\site-packages\\seaborn\\categorical.py:1296: UserWarning: 10.6% of the points cannot be placed; you may want to decrease the size of the markers or use stripplot.\n", + " warnings.warn(msg, UserWarning)\n", + "c:\\users\\riju dasgupta\\appdata\\local\\programs\\python\\python37\\lib\\site-packages\\seaborn\\categorical.py:1296: UserWarning: 5.5% of the points cannot be placed; you may want to decrease the size of the markers or use stripplot.\n", + " warnings.warn(msg, UserWarning)\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABJIAAAJpCAYAAAD2aBj/AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOz9eXhkd3nn/X/OVqtKe0tq9b7Z3d5XbGy8gA1xCCEbIWESJuskMyRX4swMT8hkJs7vyfNkIASG8ADJJBAISUiYDJOFkBBoHGNjY4PdbtvtrfdVUqu113627++P6pa6Wr2U3WqVSv1+XZevy3XqVNVdqlK1zqfu730sY4wRAAAAAAAAcAF2swsAAAAAAABAayBIAgAAAAAAQEMIkgAAAAAAANAQgiQAAAAAAAA0hCAJAAAAAAAADSFIAgAAAAAAQEPcZhdwsT71qU9px44d6ujo0Ec+8pEL7v/EE0/ob/7mb2RZltatW6df/dVfXYQqAQAAAAAAWl/LB0n33nuvHnjgAX3yk5+84L7Dw8P6u7/7O/3O7/yO2traND09vQgVAgAAAAAALA8tHyRdddVVGh0drds2MjKiz3zmM5qZmVEymdQv/uIvatWqVfrGN76h7/me71FbW5skqaOjoxklAwAAAAAAtKSWD5LO5o//+I/17/7dv9PKlSu1Z88effrTn9ZDDz2koaEhSdJ/+2//TXEc60d/9Ed1ww03NLdYAAAAAACAFrHsgqRKpaJXX31VH/3oR2e3hWEoSYrjWMPDw3rooYc0MTGhhx56SL//+7+vbDbbrHIBAAAAAABaxrILkuI4Vjab1Yc//OF513V3d2vLli1yXVd9fX1auXKlhoeHtXnz5iZUCgAAAAAA0FrsZhew0DKZjPr6+vTtb39bkmSM0cGDByVJb3jDG/Tiiy9KkmZmZjQ8PKz+/v5mlQoAAAAAANBSLGOMaXYRF+NjH/uYXnrpJeXzeXV0dOjd7363rrnmGv3Jn/yJpqamFIah7rzzTr3rXe+SMUaf//zntXPnTtm2rR/+4R/WnXfe2eynAAAAAAAA0BJaPkgCAAAAAADA4lh2S9sAAAAAAABwaRAkAQAAAAAAoCEESQAAAAAAAGiI2+wCLtbQ0FCzSwAAAAAAAFg2BgcHz3kdHUkAAAAAAABoCEESAAAAAAAAGkKQBAAAAAAAgIYQJAEAAAAAAKAhBEkAAAAAAABoCEESAAAAAAAAGkKQBAAAAAAAgIYQJAEAAAAAAKAhBEkAAAAAAABoCEESAAAAAAAAGkKQBAAAAAAAgIYQJAEAAAAAAKAhBEkAAAAAAABoCEESAAAAAAAAGkKQBAAAAAAAgIYQJAEAAAAAAKAhBEkAAAAAAABoCEESAAAAAAAAGkKQBAAAAAAAgIYQJAEAAAAAAKAhbrMLAAAAAAAsL37R1vihpEwsda31lW6Pml0SgAVCkAQAAAAAWDChb2nvt3KKgtoCmInDSW25e0bJtrjJlQFYCCxtAwAAAAAsmJlhbzZEkiQTW5o6lmhiRQAWEkESAAAAAGDBOJ5paBuA1kSQBAAAAABYMLmBQJnuYPZysi1S1xq/iRUBWEjMSAIAAAAALBjblja+saDiuKs4knIrQlm0MADLBkESAAAAAGBBWZbU1hs2uwwAlwC5MAAAAAAAABpCkAQAAAAAAICGECQBAAAAAACgIQRJAAAAAAAAaAhBEgAAAAAAABpCkAQAAAAAAICGECQBAAAAAACgIQRJAAAAAAAAaIi7GA/i+74eeughhWGoKIp0++23693vfnfdPkEQ6BOf+IT279+vXC6nBx98UH19fYtRHgAAAAAAABpgGWPMpX4QY4yq1apSqZTCMNRv/dZv6ad/+qd1xRVXzO7zL//yLzp06JB+4Rd+QY8//ri+853v6Nd+7dcueN9DQ0OXsnQAAAAAAIDLyuDg4DmvW5SlbZZlKZVKSZKiKFIURbIsq26fp59+Wvfee68k6fbbb9euXbu0CBkXAAAAAAAAGrQoS9skKY5j/fqv/7pGRkb0Pd/zPdqyZUvd9RMTE+rp6ZEkOY6jTCajfD6v9vb2xSoRAAAAAAAA57FoQZJt2/rwhz+sYrGo3//939fhw4e1du3a13w/27dv1/bt2yVJH/zgB9Xb27vQpQIAAAAAAOAsFi1IOiWbzerqq6/Wzp0764Kk7u5ujY+Pq6enR1EUqVQqKZfLzbv9/fffr/vvv3/28tjY2KLUDQAAAAAAcDlo+oykmZkZFYtFSbUzuD3//PNatWpV3T4333yzHnnkEUnSk08+qauvvnreHCUAAAAAAAA0z6Kcte3QoUP65Cc/qTiOZYzRG9/4Rr3rXe/SF7/4RW3atEm33HKLfN/XJz7xCR04cEBtbW168MEH1d/ff8H75qxtAAAAAAAAC+d8HUmLEiRdSgRJAAAAAAAAC6fpS9sAAAAAAADQ+giSAAAAAAAA0BCCJAAAAAAAADSEIAkAAAAAAAANIUgCAAAAAABAQwiSAAAAAAAA0BCCJAAAAAAAADSEIAkAAAAAAAANIUgCAAAAAABYwuzpipIvnZA7XGh2KXKbXQAAAAAAAADOzjs8rbaHD8oytcvla1aofOtg0+qhIwkAAAAAAGCJSj8/OhsiSVLqpTFZftS0egiSAAAAAAAAlqrI1F82pvZfkxAkAQAAAAAALFGVq3vrLvubumSSzZtUxIwkAAAAAACAJcrf3K2ZtoS8o3lFXSn5GzqbWg9BEgAAAAAAwBIWDrQpHGhrdhmSWNoGAAAAAACABhEkAQAAAAAAoCEESQAAAAAAAGgIQRIAAAAAAAAaQpAEAAAAAACAhhAkAQAAAAAAoCEESQAAAAAAAGgIQRIAAAAAAAAaQpAEAAAAAACAhhAkAQAAAADQgGjMUXjUkwmbXQnQPG6zCwAAAAAAYKmrPJFReDApSbLSsdJvzctui5tcFbD46EgCAAAAAOA8oklnNkSSJFO2FbycPM8tgOWLIAkAAAAAgPMwvnWWbRxO4/LEOx8AAAAAgPNwVoSy2qPTthi5G6tNqwdoJmYkAQAAAABwHpYtpe/PK3g1KVOx5a735fYzcRuXJ4IkAAAAAAAuwE4ZJa+vNLsMoOlY2gYAAAAAAICGECQBAAAAAACgIQRJAAAAAAAAaAhBEgAAAAAAABpCkAQAAAAAAICGECQBAAAAAACgIQRJAAAAAAAAaAhBEgAAAAAAABpCkAQAAAAAAICGECQBAAAAAACgIQRJAAAAAAAAaAhBEgAAAAAAABpCkAQAAAAAAICGECQBAAAAAACgIQRJAAAAAAAAaAhBEgAAAAAAABpCkAQAAAAAAICGECQBAAAAAACgIQRJAAAAAAAAaAhBEgAAAAAAABpCkAQAAAAAAICGECQBAAAAAACgIQRJAAAAAAAAaAhBEgAAAAAAABpCkAQAAAAAAICGECQBAAAAAACgIQRJAAAAAAAAaAhBEgAAAAAAABpCkAQAAAAAAICGECQBAAAAAACgIQRJAAAAAAAAaAhBEgAAAAAAABpCkAQAAAAAAICGECQBAAAAAACgIQRJAAAAAAAAaAhBEgAAAAAAABpCkAQAAAAAAICGECQBAAAAAACgIQRJAAAAAAAAaAhBEgAAAAAAABriLsaDjI2N6ZOf/KSmpqZkWZbuv/9+vf3tb6/b58UXX9Tv/d7vqa+vT5J022236V3vetdilAcAAAAAAIAGLEqQ5DiO3vve92rjxo0ql8v6wAc+oOuuu06rV6+u22/btm36wAc+sBglAQAAAAAA4DValKVtXV1d2rhxoyQpnU5r1apVmpiYWIyHBgAAAAAAwAJZlI6k042OjurAgQPavHnzvOt2796t97///erq6tJ73/terVmzZrHLAwAAAAAAwDlYxhizWA9WqVT00EMP6Yd/+Id122231V1XKpVk27ZSqZR27Nihz33uc/r4xz8+7z62b9+u7du3S5I++MEPyvf9RakdAAAAAADgcpBIJM553aIFSWEY6kMf+pCuv/56veMd77jg/r/0S7+k//7f/7va29vPu9/Q0NBClQgAAAAAAHDZGxwcPOd1izIjyRijP/qjP9KqVavOGSJNTU3pVKa1d+9exXGsXC63GOUBAAAAAACgAYsyI+nVV1/Vo48+qrVr1+r973+/JOk973mPxsbGJElve9vb9OSTT+prX/uaHMdRIpHQgw8+KMuyFqM8AAAAAAAANGBRZyRdCixtAwAAAAAAWDhNX9oGAAAAAACA1keQBAAAAAAAgIYQJAEAAAAAAKAhBEkAAAAAAABoCEESAAAAAAAAGkKQBAAAAAAAgIYQJAEAAAAAAKAhBEkAAAAAAABoCEESAAAAAAAAGkKQBAAAAAAAgIa4zS4AAAAAAC5ncSyNTrpybKm3M5RlNbsiADg3giQAAAAAaJJqYOnRHTkVyo4kaUVnoDuvLxAmAViyWNoGAAAAAE1ycCgxGyJJ0okpTyPjXhMrAoDzI0gCAAAAgCYJwvmHZEFIOxKApYsgCQAAAACaZE1/VbZlZi8nvVgDPUETKwKA82NGEgAAAAA0SUdbrHtuyuvgcEKOI20crCrhmQvfEACahCAJAAAAAJqoMxfphly52WUAQENY2gYAAAAAAICGECQBAAAAAACgIQRJAAAAAAAAaAhBEgAAAAAAABpCkAQAAAAAAICGECQBAAAAAACgIQRJAAAAAAAAaAhBEgAAAAAAABpCkAQAAAAAAICGECQBAAAAAACgIQRJAAAAAAAAaAhBEgAAAAAAABpCkAQAAAAAAICGECQBAAAAAACgIQRJAAAAAAAAaAhBEgAAAAAAABpCkAQAAAAAAICGECQBAAAAAACgIQRJAAAAAAAAaAhBEgAAAAAAABpCkAQAAAAAAICGECQBAAAAAACgIQRJAAAAAAAAaAhBEgAAAAAAABpCkAQAAAAAAICGECQBAAAAaCkTVVuVqNlVAMDlyW12AQAAAADQiGJo6bN72nSw4Mqzjd6+uqy7+qvNLgsALit0JAEAAABoCQ8PpXSwUPsuPIgtfflIWtO+1eSqAODyQpAEAAAAoCWMVuoPX2JjaaziNKkaALg8ESQBAAAAaAnbOoO6y21urLVtYZOqAYDLEzOSAAAAALSEN67w5ceWnh1PqCMR64FVFXl8NQ4Ai8oyxphmF3ExhoaGml0CAAAAAADAsjE4OHjO68jvAQAAAAAA0BCCJAAAAAAAADSEIAkAAAAAAAANIUgCAAAAAABAQwiSAAAAAAAA0BCCJAAAAAAAADSEIAkAAAAAAAANIUgCAAAAAABAQ9xmFwAAAAAAWF6qBVtjB5IysaWedVWlO6NmlwRggRAkAQAAAAAWTFi1tO/xnKKgtgBm6lhCm++aUSoXN7kyAAuBpW0AAAAAgAUzM+LNhkiSZGJLU0OJJlYEYCERJAEAAAAAFoyTMPO2uWfZBqA1ESQBAAAAABZMe3+gbE8weznVHqprdbWJFQFYSMxIAgAAAAAsGMuWNtxeUGnSkYktZXtCWVazqwKwUAiSAAAAAAALyrKkbDdnagOWI5a2AQAAAAAAoCEESQAAAAAAAGgIQRIAAAAAAAAaQpAEAAAAAACAhhAkAQAAAAAAoCEESQAAAAAAAGgIQRIAAAAAAAAaQpAEAAAAAACAhriL8SBjY2P65Cc/qampKVmWpfvvv19vf/vb6/Yxxuizn/2snn32WSWTSb3vfe/Txo0bF6M8AAAAAAAANGBRgiTHcfTe975XGzduVLlc1gc+8AFdd911Wr169ew+zz77rEZGRvTxj39ce/bs0ac//Wn97u/+7mKUBwAAAABYQEHF0uSRpEwsda32lcjGzS4JwAJZlKVtXV1ds91F6XRaq1at0sTERN0+Tz/9tO6++25ZlqUrrrhCxWJRk5OTi1EeAAAAAGCBRIGlvd9q1/FX0xrdk9aex3LyS0xVAZaLRf9tHh0d1YEDB7R58+a67RMTE+rt7Z293NPTMy9sAgAAAAAsbdMjnsLK3KFmHNqaPJpoYkUAFtKiLG07pVKp6CMf+Yh++qd/WplM5nXdx/bt27V9+3ZJ0gc/+MG68AkAAAAA0FzRTKxjMnXbcu0Z9fa2NakiAAtp0YKkMAz1kY98RHfddZduu+22edd3d3drbGxs9vL4+Li6u7vn7Xf//ffr/vvvn718+m0AAAAAAM1lZaVUe06VmdrhppeOlOjKa2zMXOCWAJaKwcHBc163KEGSMUZ/9Ed/pFWrVukd73jHWfe55ZZb9NWvflV33nmn9uzZo0wmo66ursUoDwAAAACwQGxH2nRnXvnjnuLYUvuAL2dR18IAuJQsY8wlj4VfeeUV/dZv/ZbWrl0ry7IkSe95z3tmu4ne9ra3yRijz3zmM3ruueeUSCT0vve9T5s2bbrgfQ8NDV3S2gEAAAAAAC4n5+tIWpQg6VIiSAIAAAAAAFg45wuSOAcjAAAAAAAAGkKQBAAAAAAAgIYQJAEAAAAAAKAhBEkAAAAAAABoCEESAAAAAAAAGkKQBAAAAAAAgIYQJAEAAAAAAKAhBEkAAAAAAABoiNvsAgAAAAAAWOpMJIVHPJmKLXeNLztrml0S0BQESQAAAAAumTCWHEuyrLlt8cnjb/u0bcZIkZFce/7tz7Ztoe8TuJDKI22KjnuSJP/5tNJvzcvpippcFbD4CJIAAAAALDg/kr54IKsXJj21eUY/sLak67sDfX0opUeGU4ol3d1f0feurujFKU9/eyijad/S1Z2BfnxjUfnA1hf2Z3Wk6GowE+rfbCyqOxEv+H0OpONm/6jQAqIxZzZEkiSFloJXk3JuLzWvKKBJCJIAAAAALLh/HUnpucmEJGkmsPRX+7NyrIL+5Vh6dp9vDKc1mAn1vw5kVY1rrUS7phL6+lCsI0VHR4q1w5Whkqu/3p/Vts7gLPdZvKj7fPDq/KX/YaD1nW0VGyvbcJkiSAIAAACw4E4FNqeExtIrU968/V6dTswGPnO3debd/mjJVdatP3IPjaWXz3qfXsP3aUz9EjngbOzeSHZvqHjs5HvIMfKuqDa3KKBJWBkMAAAAYMFtygV1l5O20fXd/rz9ru/2lXHrl5dtyoXalAvrtm3MBdrcPv8+b+iZfzB/XVfQ8H0SIqERliWl35JX8raiEteVlfneGTk9zEfC5YmOJAAAAAAL7u7+qmYCWzvGE+pIxPr+NWVtaY/0rvVFPTycUmykewequrIj1M9sLujvD2c04du6vivQfSsrKoaWvnQoowN5V2uzkX5kfUkdXtzQfW7tbPw+gUZZruRtmh+GApcbyxjT0is7h4aGml0CAAAAAADAsjE4OHjO6+hIAgAAAAAsqDiSZo57MrGl9gFfDkeewLLBrzMAAAAAYMHEkbTv8ZwqM7XDTS+d0uY35eUmW3oxDICTGLYNAAAAAFgwMyPebIgkSUHZ0eTRRBMrArCQCJIAAAAAAAsmjuefCi+OOD0esFwQJAEAAAAAFkzHQCA3Fc9ett1YXas52xmwXDAjCQAAAACwYBzPaPObZjR5JCkTS11rfCUy8YVvCKAlECQBAAAAABaUlzLq21JpdhkALgGWtgEAAAAAAKAhBEkAAAAAAABoCEESAAAAAAAAGkKQBAAAAAAAgIYQJAEAAAAAAKAhBEkAAAAAAABoCEESAAAAAAAAGkKQBAAAAAAAgIYQJAEAAAAAAKAhBEkAAAAAAABoCEESAAAAAAAAGkKQBAAAAAAAgIYQJAEAAAAAAKAhBEkAAAAAgAVXmnRUHHdlTLMrAbCQ3GYXAAAAAABYPkwsHfxumwonPElSuiPUhjfm5XD0CSwLdCQBAAAAABZMftSbDZEkqTztavJIsokVAVhIBEkAAAAAgAUTVK1528KzbAPQmgiSAAAAAAALpr0/kO3Gs5ct26hz0G9iRQAWEqtUAQAAAAALxksZbbozr/EDKcWx1LOuqlR7fOEbAmgJBEkAAAAAgAWVysVadV2p2WUAuARY2gYAAAAAAICGECQBAAAAAACgIQRJAAAAAAAAaAhBEgAAAAAAABpCkAQAAAAAAICGECQBAAAAAACgIQRJAAAAAAAAaAhBEgAAAAAAABpCkAQAAAAAAICGECQBAAAAAACgIQRJAAAAAAAAaMhrCpLy+bweffRR/f3f/70kaWJiQuPj45ekMAAAAAAAACwtDQdJL730kh588EE99thj+tKXviRJGhkZ0Z/8yZ9csuIAAAAAAACwdDQcJH3uc5/Tgw8+qN/8zd+U4ziSpM2bN2vfvn2XrDgAAIDlIB8GGvbLzS4Dl6nYmGaXAABYRtxGdzxx4oSuvfba+hu7rqIoWvCiAAAAlov/M3ZEfzN2RKEx2pLO6TdWb1PO9ZpdFi4D04HRHx4J9HzeaDBp6RfXuNqSZUQqAODiNPwvyerVq7Vz5866bS+88ILWrl270DUBAAAsC8f9iv76xGGFJztC9pTz+oeJY02uCpeLvxgO9VzeyEg6VjX6+KGA7iQAwEVruCPpve99rz70oQ/pxhtvlO/7+uM//mM988wzev/7338p6wMAAGhZI35ZZx62D/uVptSCy8/eYv27byyQJgOpJ9GkggAAy0LDQdIVV1yhD3/4w3rssceUSqXU29ur3/3d31VPT8+lrA8AAKBlbc20K+e4ykfh7LY35LqbWBEuJ1vbLI1MzIVJ/Qmpm1WVAICLZBnTWH9rEASyLEuuO5c9hWEoY4w8r3n/Ig0NDTXtsQEAAC7kUKWovxk7osnQ1z0dK/S2rpXNLgmXiUJo9OmjoXbmY61JWfq51a7Wp5mRBAC4sMHBwXNe13CQ9NBDD+knfuIndMUVV8xu2717t77whS/ot3/7ty+6yNeLIAkAAAAAAGDhnC9IavgricOHD2vLli112zZv3qxDhw69/soAAAAAAADQMhoOkjKZjKanp+u2TU9PK5lMLnhRAAAAAAAAWHoaDpJuu+02/cEf/IEOHz6sarWqw4cP6xOf+ITe+MY3Xsr6AAAAAAAAsEQ0PCPJ9319/vOf1yOPPKIgCJRIJHTvvffqve99rxKJ5p1DlBlJAAAAALD0lSYd5Uc9JdsidQwGsqxmVwTgXBZk2PYpxhjl83nlcjlZS+A3nyAJAAAAAJa26SFPh3dkJdWOITtXVbXmxlJziwJwTucLktzz3XB0dFR9fX2SpOPHj9ddVy6XZ/+/v7//YuoDAAAAALSw0LdkO0a2M7ctCiUZyfGksQMpnQqRJGnqWEIDV5XlJV9TXwOAJeC8QdJ//s//WZ///OclSb/yK79yzv2++MUvLmxVAAAAAIAlLwqlIzuyyo8mZLtGA1vL6llf1cjLKY0dSMkYqWu1L1lnBEaWWNoGtKjXvLRtqWFpGwAAAAA0x/HdKY3uTp+2xWjtTUUd3tFWt1/PhorGDyYlU0uPutdVtepalrYBS9XrXtp2ShzH+tVf/VV99KMfled5r7mAT33qU9qxY4c6Ojr0kY98ZN71L774on7v935vdhndbbfdpne9612v+XEAAAAAtB5jpKdOJPTqjKeBdKR7BypKOhe+HZqvMnPmC2UpPzb/MNOypS13z8wO2871hYtTIIAF11CQZNu2bNuW7/uvK0i699579cADD+iTn/zkOffZtm2bPvCBD7zm+wYAAADQ2r4xnNJXj9W6Wl6YlI4WHf3cFcXXdB9BXAukEgRQiyrXF2hmZO4s3rZr1LW2qskjc91HkpRbESiVi5XKVZtRJoAF1FCQJElvf/vb9bGPfUw/9EM/pO7u7roztl1o2PZVV12l0dHR118lAAAAgGXrmfFE3eWXpxM6Xi7rq8fSOpB3ta4t1A+tKynnGf3z0bSeHU+oPRHrHWvK2pQL9ZUjaT12PCkj6Y6+qt65psz8nUXStcZXWLU1dTQhNxmrf2tZ2c5Ya28u6sSelEws9Wyoqq2XDiRguWg4SPrTP/1TSdLzzz8/77qFGLa9e/duvf/971dXV5fe+973as2aNRd9nwAAAACWvpwX60RlrpUo5Rj9w+G0Xp2pBUwvTiVUjSxt7Qz0yEhKkjQd2Prsnqx+fENR/3pymyQ9djylTblQ13QFi/skLlOWJfVtqahvS6Vue8dAoI6B+tegMmMrf8JTsi1Wri8g7ANa1AWDpGq1qi996Uu68cYbtXHjRv3gD/6gEonEhW72mmzYsEGf+tSnlEqltGPHDn34wx/Wxz/+8bPuu337dm3fvl2S9MEPflC9vb0LWgsAAACAxfWeq40++nSscijZlvTuK2399Sv1xxx7857SyfoxG5XI1sFqu6T68wdNKafeXvtSl43XYOyI0d7HYp061dPgFZauvIPXCGhFFwySPvOZz2jfvn268cYb9dRTT6lQKOhnf/ZnF7SITCYz+/833XSTPvOZz2hmZkbt7e3z9r3//vt1//33z14eGxtb0FoAAAAALK4uSb95nXSo4Ko/FakzafRoJqeDhbnDlVWZUH1eIGnuDGGuZXRFOq9vqk1Gc+0tq9xpjY1Fi/gMEEe1gdqndxmZk3OrbEfa92ybjJkLAod2x+pYNyk32dInEQeWrYs6a9vOnTv1oQ99SF1dXXrggQf00EMPLXiQNDU1pY6ODlmWpb179yqOY+VyuQV9DAAAAABLV8qRruyYm6Pzo+uL+ot9WQ2Xa+HSj20oqScZ6XjZ0YtTnjKu0Q+sLemKjlA/vqGkh0dSMka6d6CiDTlCpMUSR9LR57KaHvLkJIxWbiura42v0T0pndhbe02611XrBm8DaG0NLW3r6uqSJPX29qpUKr3mB/nYxz6ml156Sfl8Xv/+3/97vfvd71YY1v6ReNvb3qYnn3xSX/va1+Q4jhKJhB588MG6Yd4AAAAALi/96Vj/6Zq8KlEtZDrlp7cUVY0kz64tg5Okm3t93dzrN6fQy9zYgZSmh2rLECPf0tHnM7K9WMdfnescGz+QUs+GskqTjnSyc6xztU83EtCiLhgkRVGkXbt2zV6O47jusiRdc801572PBx988LzXP/DAA3rggQcuVAoAAACAy8zpIdIpybNsQ3OUp854MYyl/Kg3bz/LsrTpTXnlRz0l2yJ1rGQYOtCqLGPMeWPgX/qlXzr/HViWPvGJTyxoUa/F0NBQ0x4bAAAAAC5n4weTGto1N/PWcow2vCGv/d/OSafNrVr/hrxyfeFZ7gHAUnS+GUkXDJKWOoIkAAAAAGgOY6Tjr6Q0eTQpNxVrYGtZuRWhJo8mdGJvSnEs9a6vqndjtdmlAngNCJIAAAAAAADQkPMFSfYi1gEAAAAAAIAWRpAEAAAAAACAhhAkAQAAAAAAoCEESQAAAAAAAGgIQRIAAAAAAAAaQpAEAAAAAACAhrjNLgAAAAAALmcvHUhp/7GkHFvatqGs9Sv9ZpcEAOdERxIAAAAANMnRUU+vHkorCG1VfFvPvprRTJHDNABLF59QAAAAANAk49NnLhKxzrINAJYOgiQAAAAAaJKe9nDetu6zbAOApYKoGwAAAACaZFVfoOliWfuPpeTYRts2lNXRFje7LAA4J8sYY5pdxMUYGhpqdgkAAAAAAADLxuDg4DmvY2kbAAAAAAAAGkKQBAAAAAAAgIYwIwkAAABYhkqR0eeOhdo5E2t1ytLPrHa1JsX3yACAi8O/JAAAAMAy9IWhUI9NxspH0stFo/9xMFSLj0cFACwBBEkAAADAMvRioT40Gq4aTQRNKgYAsGwQJAEAAADL0MaMVXe525O6vCYVAwBYNgiSAAAAgGXoJwddXZWthUn9CemX13qyLesCtwIA4Pws0+ILpYeGhppdAgAAALBk+bGRZ0kWIRIAoEGDg4PnvI6ztgEAAADLWMImQAIALByWtgEAAAAAAKAhdCQBAADgsufHRl8ey2t3ydfWTFLv6G2TRycPALSe0Cj1fEnu8UDhgKfKdRnJ4fN8IREkAQAA4LL36aFJPTpVliQ9V6hqLAj171Z1NbkqAMBrlf1WXsk9FUlS4qgvuxCpdFd7k6taXljaBgAAgMve49Pl814GALSGxL5K3eXkvmqTKlm+CJIAAABw2etxnbrL3Z5zjj0BAEtZnLXPexkXj58oAAAALns/tbJDSas2QyNpW/q3Ax1NrggA8HqU3piTOTnEx7iWSre3NbegZcgyxphmF3ExhoaGml0CAAAAloFCFOtwJdD6lKeMw/etANCqrGosZyJU1OPKJPg8fz0GBwfPeR3DtgEAAABJbY6tq7LJZpcBALhIJmkrXJlodhnLFtEcAAAAAAAAGkKQBAAAAAAAgIYQJAEAAAAAAKAhBEkAAAAAAABoCEESAAAAAAAAGsJZ2wAAAC6hg5Wi/teJw5oKfd3T0afv6V7Z7JIAAABeN4IkAACAS6QSR/q/D+9SPgolSXsqBaUcR/d09DW5MgAAgNeHpW0AAACXyKulmdkQ6ZTv5ieaVA0AAMDFI0gCAAC4RAYSaVlnbBtMpJtSCwAAwEJgaRsAAMAl0p9I6T0r1ul/jR1WaIyuTOf0/T2DzS4LAAAsUVYpUPrZEbmTFfmrc6pc1y9JSj0/Ku/ojKKulMo3DshkPCX2Tyr56rhMwlH5un5FKzKLU6MxxizKI10iQ0NDzS4BAADgvPJRoGIUaoBuJAAAcB65f9wj70Rp9nL52j7JktLPj85uC1dkVLpxQO1f2z+7zXi2pt61TSa1MP1Cg4Pn/uKLjiQAAIBLLOd4yjles8sAAABLmFUK6kIkSUocmtaZ6+TdEyUl903W3zaI5Q3l5W/sutRlMiMJAAAAAACg2UzSUZx06rZFuYSiXKJuW5xwFHUk590+ys3fdikQJAEAAAAAADSbY6t0+yoZtxbVRFlP5VtXqnzLoKJsrbPZuLZKb1ylylW9CgaytW2WVLmqlxlJjWJGEgAAAAAAWDb8SE7BV9SZkuyT69piI2eqoqgtISXmupbs6aqMZ8tkFnYJPTOSAAAAAAAAWkHCUdR9xgk6bGv+NknxWZa4XWosbQMAAAAAAEBD6EgCAADAZa8ax/r7EwXtKfm6MpvQO3tzStjWhW8IAMBlhiAJAAAAl70/OTalb02XJUkvFKuaCCL9wqpLfwplAABaDUvbAAAAcNn79ky57vIT0+Vz7AkAwOWNIAkAAACXvR7Xqbvc6znn2BPA5cqEUrA3If+FlOIZDqVx+eLdDwAAgMveTw92KnVyJlLatvRvV3Y0uSIAS4kxUvnhnKrfycp/Ia3SP7UrGiNwxuWJGUkAAAC47N2US+lTVw7oSCXQ2pSntMP3rQDmxGOO4rHTDp9jS8GepJzeUvOKApqEIAkAAACQlHFsXZlNNrsMAEvR2U7iyIkdcZniqxYAAAAAAM7D6Y3k9AdzG1wj78pq8woCmoiOJAAAAAAALiD15oLCI55MxZa72pedNc0uCWgKgiQAAAAAAC7AsiVvXXDhHYFljqVtAAAAAAAAaAhBEgAAAAAAABrC0jYAAABcVqbCSP80VtBEEOmOzoxuyqUUGqOvjRe1p+zrykxCb+3OyrE4JRMAAGciSAIAAMBlIzZG/8+BMR2thpKkb02X9Z/Wduu5fEXbJ0uSpG9Pl3XcD/VTKzubWCmApcjEkmLJ4kgalzHe/gAAALhs7CsHsyHSKY9MlvR8oTJvG0ESgNMF+xOqPpuWfEvumkDJ24sESrgsMSMJAAAAl42cM//P3w7XVs5x5m0DgFPikqXqUxmpakvGUng4oeCVVLPLApqCfyEBAABw2RhIuvqe7uzs5S7X1jt7c/rJgXadipJcS/o3Ax3NKRDAkhRPOZKpn5sWTTjn2BtY3mjEAwAAwGXlZwY79ZburCaCSFdnk0rYlgaSrrZmk9pf9rU5nVCnxwEigDlObyS5RgrnwiSnPzzPLYDlyzLGmGYXcTGGhoaaXQIAAAAAYJkLR1z5O9MyZVvuhqoS11fEyR2xXA0ODp7zOjqSAAAAAAC4AHcglPtAvtllAE1HkAQAAAAsE7Exemwy1qvFWFsytu7ptmXTMgEAWEAESQAAAMAy8dfDkb58IpIk/etErCMVR/92FX/yAwAWDmdtAwAAAJaJhyei814GAOBiLcrXE5/61Ke0Y8cOdXR06CMf+ci8640x+uxnP6tnn31WyWRS73vf+7Rx48bFKA0AAABYNtK2VIzqLwMAsJAW5Z+We++9V//lv/yXc17/7LPPamRkRB//+Mf1C7/wC/r0pz+9GGUBAAAAkmqzhR6dLOkzQ1N6fKqkVj2x8Y+vdGf/wLckvbHT1mePBvr6WKQwbs3nhKXPGGnySELHXkhrashrdjmXjPEt+S8mVX0mrWjMaXY5CyOUks87Sj/qyT28TJJnY5TYU1bmW3kl9lZqb1AsqEXpSLrqqqs0Ojp6zuuffvpp3X333bIsS1dccYWKxaImJyfV1dW1GOUBAADgMveXIzP6ynhBkvT1iaKOVkP9WH97k6t67e7scrQlY2tPKdZx3+hvRk61J8V6uWjrV9Yt34N8NM/wi2mNH0xJkiYOSdVCWf1XVJpc1cIysVTe3qZ4qnYIHexOKv2Wgpz+sMmVXZzs1xJKHKiFYqkXXBXf4svf1tpLYtNPFZR+oVy78HJZ5cmMyre2NbeoZWZJRI4TExPq7e2dvdzT06OJiYkmVgQAAIDLyfbJYt3lr00UmlTJxetLWrqzy9FTU3Hd9ienYs2EfDOPhWWMNHE4Wbdt4lDtclCx5JeWxCHnRYvH3NkQSZJkLAV7E80raAFYRc2GSKckd7X+cP7Uy/UhZvLlcpMqWb5a7l2yfft2bd++XZL0wQ9+sC6AAgAAAF6PjHNc1XiusyDrui3/d2bu4Amp4s9edm1poLdHGXd5HNhjaTDGyPFihdW5bV7S1tjubg3vrgWXvWukq++1ZTtWk6q8eNXYqKz6cDaVS6m3N9Okii6eyRrFdkmnPy0366q3N9e8ohZAnByXwrmuKjvZ+p/nS82SCJK6u7s1NjY2e3l8fFzd3d1n3ff+++/X/fffP3v59NsBAAAAr8e7VrTp00NTMqrNFnpXb1vL/535zh6jV2ekU01I37/CUWlqQqXmloVlqG9LUkO7TgUqRtm+ioZ3p2evHzsi7X0ur+61/tnvoBXYkrMmq+jIyS6kZKx4fV5jY/H5b7fEpW9wldpRW/JqHKPC9WWFY8UL3GppS96UUeaxvCxJRlLxxpT8Fv88b4bBwcFzXrckgqRbbrlFX/3qV3XnnXdqz549ymQyzEcCAADAormvO6utmYT2lH1dkUloMNn6s4Suy9n62NaEdhVirU5Z2pShEwmXRs/6qrLdgUrTrrLdoQon5v/++MXWG04dT9vyd6VkqrbcDb5SbyoqOl6VKdtyVwWyEq2/VLT8xlD+hkjOlK1gTSSTbXZFF6+6Na2g35M7Gijs9xR3LonYY1mxzCKckuJjH/uYXnrpJeXzeXV0dOjd7363wrDWOvy2t71Nxhh95jOf0XPPPadEIqH3ve992rRpU0P3PTQ0dClLBwAAAAC8Bn7J1u5H2mXiU0vZjDbemVe2q3WGOJtQKv1Dh0xlLoBN3VWQuyZoYlXA4jlfR9KiBEmXEkESAAAAACwthTFXJ/alZOJax1LHytYKYMIhV5VH6mcFuet8pe5s7WVfQKOW/NI2AAAAAEBrqhZsTR1LyPGMulb7chJGbb2h2npb9+yHdnb+7CMrHcnfnZQpW3LX+XI6W3s+EvB6ESQBAAAAAF6XSt7Wvm+1K45qy9gmDiW1+e4ZVfKOxvanZCKpZ0NVbb3hBe5pabE7YnlXVRS8nJSMJbsrVDjiyUzVDqGDl1NK35+X09s6y/WAhUKQBAAAgNfkYLmsPx0Z0bFqVTfncvrZgQGlnNYbpAvg4k0cTs6GSJJULTqaOuZp6MWszMntM6OeNr8pr3RHa4UuyRvK8q6oyFRtGV+qfKN97srYUrA7KaeX8yDi8sOpGwAAANCw2Bh9+MgRvVIqKR9FemRqSn81OtrssgA0iX2WI8ryjDsbIkmSjKXp4dY8E6KdMXK6Illna8EgP8dliiAJAAAADRsNAp0I6ofm7ioyfBa4XHWvq8pJzM0KSneGauudP1jbS7f2PCGnJ5Jz+sBwz8i7stK8goAmYmkbAAAAGtbruupwHE1Hc0tUNqXTTawIQDMlMrGuuHdGMyOeHNcoNxDIsqSOlb6mhxOSpGxPoK7VfpMrvXipewqKhjyZsiVndSA73dInQAdeN8sY09Lv/qGhoWaXAAAAcFnZVSjoj4aGNBoEujab1a+sXq0Ol+8nAdSrFGyZ2FK6vbVmIwGQBgcHz3kdQRIAAABeM2OMAmOUONuAFAAA0NLOFyTx1REAAABeM8uylLCsC+8IoCUZI00Pe/KLjtr7faXaazOOihOOiuOe0h2hcn2hJMkv2poe9uQmjToGfdlO7fbFcVcmltp6Q1m2ZGJpeuT132ezmUgKDyVkKpbcNYHsXGvPfUJrccZK8o7lFXWmFKxtl5r4bzAdSQAAAACAOod3ZDU9VJtxJMto/a0F+WVbQy9kZ/dZsbmsjpWB9j2Rmz1LW6Yr1Ibb8zr4VJuKE7UztSVzkTbdMaNjL5zlPku2hnad5T4fz8nEJ++zO9DGNxaaedwsY6Ty9jbFJ06efc4xSr81L6e7tZftWVUp+awrZ9JWsD6Sv621n89yldg/qew3D+vUr0Dlyh6V7lh9SR+TjiQAAAAAQEP8sjUX+EiSsTS2PyW/VL+UdexASkHFng2RJKk06Wpsf3I2RJKkat7RiX2ps95n9Vz3GZ92nxOeSpOOsk0MbeIxZy5EkqTIUrA7Kef2UtNqWgjZf0rIG6q1eyX2O7J8X9XrCZOWmtSLJ3R6jprcPa7yzStlks1p1WNROwAAAABgwUTB/NahODxLO1Fjmy5wxSJp9uNfAlbemg2RTkm8Sq8JLowgCQAAAAAwK5E26hiszm2wjHo3VrRiU6Vuv96NFfVuqMp25qalZLoD9W6syvHm5gdZtlH3+qo6Bv2G79M67T6z3YEync3tkrF7Itl9wdwGx8i7onruG7QAkzQyTv2kG5Np6ck3y1b5mj6d/spUr+xpWjeSxIwkAAAAAMAZjJFmRjxVi7ba+wOlTg6WLk6eNhh7xcnB2KXTBmOvrA3GrhZtjR9MysRS91pf6Y5o9j79oq3cmfc55indef77bDYTSeHh04Ztt7X+sO3ks67S33ZlGUtx0qjwzqqivpaOCJYtZ/y0YdtrLv2w7fPNSCJIAgAAAAA0ZGx/UhNHknK9WP1XVpTtCRu+7fSwpxP7UjJG6t1QVddq/8I3WkJMKMmWrGW2rseesWRPWQoHYilx4f1xeWDYNgAAAADgokwd8zT8UkaSVJWjg99xdeV903I8o9KUIy9hlMjOdelU8rWh2emOSJUZW4efyerUsKGjO10ls5EyXUt/sLOJpOpTGYWHEpJnlLyhLG9za4Vg5xO3G8XtLd1fMo9VjeVMhIp6XJnEMkv+lgCCJAAAAGCZOlaJ9Xw+1uqUrWtzHEzh4uRHvbrLcWRpZsSrnX2t4Egy6tlQ1cqryjr8TFYzI7X2lkx3oFxfoDMnVudHvZYIkoLdSYUHk7ULvqXqdzNyBsJlsbRtOfIOVdX28LSsUDKepcJ97QrWJJtd1rJCkAQAAAAsQ09PR/ofB0PVDnUjvX2Fo/cO8uc/Xr9k7szQx6g06Z4MkSTJ0viBlJLZaDZEkqTShKfUvNvqrNuWonjyjAFNxlI86RAkLVGZb+dlnVxxaQVGmScLmiZIWlB8LQEAAAAsQ38/Gun0w9x/GYtUipbX8hUsrt71VeX6aku6LMdoYFtZcTR/4G+lMP8w03aNejZUZFlGsoy61lTVvjKYt99S5PSfMQfKNrJ7G58NhcVlF+PzXsbF4ysJAAAAYBk6MzOKTe0/4PWyXWn9G4oKqyXZjpHtSjMjsaaH5rqP3FSs3vVVTR1JzYVMllHnYKB0R6T+K8qSseQklv6bMZqyZdmSu9FXXLQV7k9KXixvsy8rNVe/8aV4xpHdGcniCLvp/E0pJfdUZi9XN9GNtNB4mwMAAADL0Pf2OvrUkbmuibu7bLW5l/Z00bg8uMm5EKV9INDamwqaPJaQmzBasbmiZNZo4x15ndiXlIkt9ayvKt1RW8bmeJK0tEMkE0mVb7YpGqnNhHLX+kreWZRiKXg5Jf+ZjMK9SaXeklc87qryRFYKLSkRK313QU5fayzZW66Kb8opztlyRkOF/Z4q12eaXdKyYxljlvZv8QUMDQ01uwQAAABgSXqlEOu5fKzVKUtv7LRlWwRJwIUEexOqfidbty15a1HV79Zvc7dWFB1OyJTmlvLZ3aEyD+QXpU7gUhocHDzndXQkAQAAAMvU1jZbW9sYiwq8FnFx/u9MNOXM369gy5Trw9mz3RZYbniXAwAAAABwkrsmkKzTFu44Rt6VFVnp+qHNifW+nFX1A8O9tf5ilAg0FR1JAAAAALBIwkgaGfNk29JATyCbr/aXHKc7UuregoLdScmWEtsqctqN0vfl5b+Ykinbcjf4ctcGclYG8nfFiiccOX2hvKsqF36AJcYZtuVMWgrWxDK5lp58M8uZCOWOBgr6PcVdxB4LjRlJAAAAALAIqoGlbz6TU7FSWybV2Rbq7hvzcuavmmp5ftnSxOGkTGSpe21VyTZOwb4UpR93ldpZGypuHKPCO3yFq1v7tUq+VFb28dqcKiOpeE9O/hXp5hbVgpiRBAAAAABNdng4MRsiSdJUwdXwuCfLkg4cS8pxjK5YW1FPR2uf9Sv0Le37VrvCaq3dauJQUpvvnlEy29oBxXJjVaTk83ORgBVZSj3tqrC6tZfnpXcUZv/fkpR+ukiQtMBopAQAAACARRDG88+aN5V39J0Xszox5WlkPKHHn8upXG3ts+vNjHizIZIkxZGlqaOJJlaEs4ok64z3pBW29ntPkqzgjMthSy/CWpIIkgAAAABgEazt9+U6cwe1qUSsILJU65uoiWJLxye8JlS3cGx3/oH72bahuUxW8jfWd79VrwmbVM3CqVxV331UvYpupIXG0jYAAABgmXhuJtZz+Vhr05bu6rLlWK3fXbCcZNOx3nzzjA6NJGTb0vqVVQ2dmN+p05Zu7SVg7f2B0h2hytO1w81EJlLXmtZeLrVcFd/mK3jZkTNpK1gfKVzT2u89SSq/Iauox5U7Gijs9+RvSjW7pGWHYdsAAADAMrB9PNJnjs51E9zVZet9a1u7s+VyEEXSk7vaNDrpSTLaMOjrhitKzS7roplYyp/wZCIp1x/IXoYDxYHljGHbAAAAwDL3tbH6JSrfmoz1U6uMsg5dSUuZ40h3Xl9QoWTLcYzSyZb+nn+WZdc6k7B0WBUp80hC3mFbUU+s0j2Bot7l8X7D4mJG0gVYfqDEoWG5JyabXQoAAAAWyJ6Sr6emyypFc8s4Rv1QT0yVdMJvzRkhiTPyIteSiqHRt6ciHam0/nKV5SyKpXzJUaHkqLXXi2ApSz/uKbHPkRVYckccZf8lIRnJKkreHkf2JKEzGkNH0nnY0wV1/Mu3ZVdr63krm1areMf1Ta4KAAAAF+OPj03q4cna0qGcY+u3N/ZqXynQHx6blFHtm9ZfXt2lOzozTa3ztfqhfkf/42CoU31Jt3Xaev+rgfyTwcSPDTj6wX7+/F9qqoGlb+7IqViurf3q7Qz0pusLYrwVFpo7VN9H4kzZ8nbbyj6cmD17W+lNvqrXR2e7OTCLjqTzSL+4bzZEkqTUvqOypwtNrAgAAAAXY6gazIZIkpSPYn35REF/dXxapxpBYkl/fXymKfVdjJs7HH1ka0I/v9rV/73Z05hvZkMkSfrb45EqEe0uS83BoeRsiCRJY1OeRsaZbYWFF/XXdyZGuVipnd5siCRJ6e94EjkSLoAg6Twsf/6aXvss2wAAANAaimcJUopRPG97MWrNpWD9SUv39TjakrVVPONgMDCqC5awNATh/Najs23D0mACKS7Vvz4mluKiveSXJZbuDBSsqX0wRF2xim/zZZ15Mr1ABEm4IHpbz6O6Za0SR47r1MdE2JVT2NvZzJIAAABwETalPa1LeTpUqX05aEl6c3dWPZ6jr04UZ/d7S3e2SRUunLd0O/qzobl5Tze322p3CSiWmrX9Ve07llR8sisk6cUa6OHL66XIfyUp/7m0FFly+gOl7ioonnRVeSIrU7ZltUVK3VWU07U0kxiTlQrv9KVYsoqW3BOW/M2R0jvm+kv8LZGUaGKRaAmWMUs9Nz2/oaGhS3r/7siYkgeGFGfTqly5TibJbxUAAEArK4Sx/mWioPEg0h0dGV3TllRsjB6eLGlPydeVmYTu7crIXgZDap6aivTsTKw1aUtv7XGUsFv/OS1HU3lHh4YTchxp46qqMqnW7IhbzuKirdI/tEtm7nfIu6as8GBCpjC3NNFeESjz1qU9DiXxqqPMNzxZxpKxjarXhrKqlqLeWNVrIsm58H1g+RscHDzndQRJAAAAAIAFVZ52NLY/KRNb6llfVbanNc+GeEo45KrySK5um73aV3z0jEaDRKy2d00vYmWvXcdnU7JPW54Xdcaa+YlqEyvCUnS+IImlbQAAAACABRNULO1/Iqc4qoUV0yOeNt+VV7p9aS75aoSzIpS8WArmloF5qwKFgaXo+NxwdHdwiS9LNJJVqd9kVehUxGvDsG0AAIAFNBX6yof1BxLlKNR4wLe9wKUyWrb1zZGkXpryFLfAeoti2VZ0RqZSqVryg/oD+qm8o9EJV3GLrXSbOe7NhkiSJGNpeqj1zkRnwlonUjxjy/Kk9JsLcgYC2Z2hEjeW5G3ylbyjKHd9VVZ7JHdzVclbSxe+42ayJH9r/ZvPvzKUPdMiYZIfyy60biC5XNCRBAAAsAAiY/SJod16fGZMtiy9rWtAPzuwUf84fkx/deKwfBPr6kyH3r96q7IOf4IBC+XVaVef2dOm+OTsmlt7q/qxDUvzYL5UsfXtF7KaKbry3Fg3XFHSyt5AT7+c1dCJhCzLaPPqqq7ZVNbTL2d05HhSkpRNRbr7xrxSyRZIySR5qfl1nm3bUhZN2ap8IydTrfVeeFeXlby+ovRb6ucf2Wmj1B1L8/12LqW7A0XdsZzjtoxnlHjZVeo5T2FPrOLbfcXtS/O1Su4qKfOdgqxIClZ6Kry1QyZJb0wz8FMHAABYAN+aOaFvzYzJSIpk9M+Tw3p0alSfHz0o39TaCV4sTevL48eaWyjQIqJY+uZIUp/bk9XDw0mFJ7tydk16+vzerP7+cFrTvqVHRlKzIZIkPT2W0LS/NLsrXtyf1kyxFiQHoa2dr2Z0cCihoRO1OTvGWNpzJKWDQ95siCRJxYqjfceSZ73PpSjXF6i9f+688pmuUF2rW6srM3gxPRsiSVLwUkpxee59ZULJ35VS+dGs/FeTaqnJw45UvT5S6S2BEvtc2Sd/X9xxW+lvL80vOuxCpMyTtRBJkrzhQKnnS7KKkTLfzqtt+7S8AyffY5FR6rmi2r42pdTzJZ1qU0zsq6ht+7TST+ZllVqszW+JWZrvEgAAgBZztDr/G+lXy3mdeWxx1C8vTkFAi/uHI2k9PpqSJO2aSmis4mhrR6DP72ub3eeVaU85r/6A0Mia93u3VOSL9d/jB5Gtqfz8Q7LpwvxtFb91egAsS1p3a1HlmYpMLGU6W28pkjlzbpCxZKqWlK69u6pPZhUergWA0dGETNlS8obKmXezpNlFS3a1/nnak0vzfWZPR7LO+MV2JkK1f2VKznTt/ZU4UFX+vnZ5R32lXq29FolDvux8pLDPU9sjM7O39Y76mvmR7tqbFa/Z0nyXAAAAtJib2rrrLjuydH9Xv7J2/QHhzW1di1kW0LKeGU/Mu/z0WP22ExVHV7YHddHRDd2+OhNLM0oa6Kmfn5bLRFrd59dtsy2jjasrSiVOD8iM1vbX79cK0u1RS4ZIkuRuOON16Qol31Y8bddmJx2pn/kUHmydjrFT4najqKs+iA3WL83XK+zzFCfrQ5+oy50NkU5J7qkoubcyf9ue+m3uZCRnvLXPJNhMdCQBAAAsgG2Zdj04eIW+MjEk17b1Qz2rtSHVpv+29ip98cQRTYa+7ulYoTd39je7VKAl5DyjSlR/uf2MgMiS0fXdga7sCPXilKcVqUjXdy/ds2ZtXV87mB0eT6gtE+nqjWW1pWPdvLWo/ceSchyjK9dWlMsY3XNTXnuPJOUHltYO+FrRxUHvYvI2+rJcU+s6SsUKhzyVt+ckSc7GqpQw0mndPFaqBZdKWVLh+3ylv+3KmbTlr49UuXWJvs88S/m3dyr9dFF2KZa/OSV/fVKp50o6PV6KM7bitC2nENdvy9T30BhLilP01bxeljEttZpznqGhoWaXAAAAAGCBvTRVm4UUGkuOZfRvNha1OhvpD1/JaerkMq+7+yt651qWi+LSqu5MK3gpVbfNu7asYFeqlki4Rqm7C3IHlmgIs4yln8wr/ULtMyDK2sq/o0vOeKC2f52RFUnGkQr3dSjqcNT+lSnZJ2cjlW/IqHxr2/nu+rI3ODh4zusIkgAAAAAsScXQ0tGio8FMpJxXO2wJY+lAwVWHF6sv3YJdIGg5lW9nFB6oX7qWuicvuytSPOXI6Y1kLdHllJcDeyqUXYwVDniSU+tPssqx3LFA4QpP5lTnUWjkHg8Ut9mKO1icdSHnC5Lo5QIAALjEjvsVvVqaUdTa39+hBfmx0SuFWFNBa773sq7RlR3hbIgkSa4tbWkPWzZEimJpbMpV5Ywhx5MzjmaKHJ4tRe76+nlJVjqWEkbGt+QOhi0fIllFyR2ypRZtqIo7XYWrErMhkiSZtK1gTXIuRJIk11K4KtG6IVIYyx0pyCo3f/lui/4EAQAAWsPnjx/QP04MyUgaTKT122uvUZeXuODtgIu1vxTrQwcCzYS146ufWeXqvh6n2WVd1qYLth5/Pqeqb8uyjK7dVNbagaoefz6nyZnaodnqPl+3bCu2/Mmk4lCaHknIxFLHQCCnhcMWd2Wo1D15BfuTshKxoklHla+3S5Kc1b5SbyrKatEMMPmCo/S3PFmxpThtVHhnVVFv675Wy5UzVlLu6wdkV0IZ21Lp9lWqXtnTtHpa9O0OAACw9B2rlvTlkyGSJA35Zf3DxLGm1oTLx18Ph5o52WEQGekvh0L5MQeIzfTSgbSqJ+c7GWPpxf1p7T+WnA2RJOnoaEInJlv7+/44kvY+3q6jO7M69nxWux9tV1Bt7WTMXRUqfVdRTnckMzF3xrboaELRkHeeWy5hvpR+ohYiSZJdtpR6qkWfyzKXeWZYdqX2gW7FRunvDtXW+TZJa39CAQAALGHj4fzTdY8H1SZUgsvRxBmrH8qxVIqkBF8lN02lWv/Dj2JLxfL8LrFytbVfpJkRT9X83PMKK7amjiS0YnPrff7FBVv+zrTiaUfOqvmf6ZJkyq0ZktkVS1ZYX7tdaM3nstzZxfoPdDuIZQWRjNucz4rW/oQCAABYwral29Xj1i9je1PHiiZVg8vNHV31f+pf1Wap0+MgsZlW99UHEV3todYPVmXptBlQjtFAT/NnoFwME89/n8Vn2dYKKt9sU3g4oXjaUfBSWqZiSdZpnX2ukbOqNV+vuN0oHIjqtvlbonPsjWaqbuyquxwMtMmkm9c9RkcSAADAJeLZtv5/667V344f1VTo656OPr0h17yZBri8/GCfo4xtaWc+0pqUrR/oYz5Ss21eU5XrGA2PJ9SWiXTl2oqSCaM7rivowFBSjmO0ZU1VyRaeJyRJ7QO+vN0pBSe7rRwvVtea1uxGiqfrf2/icU+ptxQU7E7Kso28bVXZmdZ9vQpv95V6xpMzacnfEMm/miBpKapc3yeTsOUdzSvqSqlyXV9T67GMae3ThwwNDTW7BAAAAADAaULf0uTRhExsqXNVVYl06x12mkgq/m2H5M919zlrfDkrQsXTjtzBQO6a1uxGAi5kcHDwnNcRJAEAAABYkh4/ntTT4wm1e7HetqqiVRm6JbC4wsOeKt/JSL4tuyOS0pHikbkly8lbSvKuaL1uqzpGSu1w5e1zFHfEKt8WKu5s6Zhg+YlipXcel3csr6gzpdLNK2Wyl3Zp2/mCJGYkAQAAAJKqcawDZb9lz2xWiowOlGKFp31PHJratlLUes/pmbGE/vZwRkeKrl6cSuh/vtqmaiQZIw2XbOWD1py502pMLJWnHUWL2HgTR7XHjE/LDY2RyjOOwkU++5u7NlDmndNKv2NaqfvydSGSJAV7E+e45dJlVSTnhCWdPOlX8llX6Sc9uSdsJfa6avvHhNRCHxlWOZYzHtbeJKeERs5YIIUt9ETOI71jROnnR+WOl5XcN6ncwweaWg8zkgAAAHDZe75Q0R8cnlAxNmpzLP3HtT26KptsdlkNe3wy0p8cDVWNpW5P+vUNnixJHzwQaCKQkrb086tdvamrdeYk7Zqq/7a9FNp6acrTw8MpDZdd2ZbR9wxWdN9gpUkVLn/lGUcHn2pTWLVlO0arri+qc/DSJkqFMVeHn8kqCmw5Xqy1NxeVbIt04KmcqnlHlmXUf2V5Uc4AZ2Kp+t2MwgMJyTVKXFOWHCNFp4VZLTbPKvGio8xjnqzIUtQeq/D9vhIH6vtLnGlb9oSluGfpP7fUzqLSTxdlGSnscpR/e6eciUht35iW7RvFSUuFt3YoXNl6gd/pEodn6i67Y2VZpUAm05yB23QkAQAA4LL3p0NTKp7sRCpERp8bmmpuQa9BEBt99lgtRJKkiUD6wnCoLwxHmjh5zF+Npc8dCxW0ULfVilT9MjZLRq9Oexou174Lj42lrx5LaXKRO1SarVSx9NL+lHbtSytfurSHcyMvpRVWa48RR5aGXsjIxJf0ITW0K6MoqD1mFNga2pXR6J6UqvlaCGqMpZFX0wrKl/51D/clFO5LSrEl+bb8HRl5m04LsByjxLUtFGT6UuZbtRBJkpwZW+mnXEVnLGMzrpFpW/qfFXYhmg2RJMmdjJTeWVL28bxsv7bRrhplnsg3scqFEXXUf7ERJx2ZZPO+GKAjCQAAAJe9E359aHE8aJ1ZPMWo9t/pRn3VnVL+1H6FSOpqka+S7x2oan/e08GCK9cyetuqsg7k6w9fjCxN+o66kmGTqnzthsY87T+alG1LV6ytqLez8dqrvqVHnmlX9WTQcmAoqbfcMqNs+tKkO/4ZQVUU2IpCS+4l7MI58zH9ki0vfcYBs7HkV2x56Uv7exqNn3m4bMnuDZXeNKN42pbTH8puoSHidsmSFdYHcPaMrcIDvpwTttxxW8Y1Kt0VyLRAQ6ZdiGZDpNltM5HsfP37wpm5xOnnIijdulLOVEVO3lecsFW8Y7XkNO/DnCAJAAAAl71b29N6cqY8e/m29lQTq3ltOj1LV2YsvVqaO6K6raN2gPF3o3MHVFdkLHV5S797x4+k8aqtvlSsX96W11jFVsY1yrhG3/WMXp6eW6LS4cVam22dEGlixtFTu7KSaq/DiUlX97+hFgQVy7Yc2yiVPHcwMTTmzYZIkhRGlo4cT2jr+kvTFdO+MtDYvrkQJ9MV6thzGeVPeErmIq2+tqR0Z+09Vi3YchKmLmQKKpZMbCmRqR3I50ddDb2YUVC21bnK1+A1JQUVW8eey6g06SrTHaptRaD88bnXuH0gUFtvoMKJuSU8XjpSpuPSh71Of6hw/2mJimVkt0eyHMlbX2v3iyYcVb+TUTzlyFkZKHVbSVZqaYZLcadR2BPLHT/tPdQXqe0rCTlTlvw1kUpv9mVyTSzyNQhXeIqytpziXFDkb0jKeJaS+6t121pd3JHS9I9slT1TVZxNSG5zvxEgSAIAAMBl7xdXdarHc7S37OvKTEI/0tciR1In/dp6T//7eKgjFaMbcra+v6928J+0pZ35WGtSln6kv/an/7hv9FIh1tq0pXXppdWe9NKUq7/an1U5stXhxfqZLQWtzs4FBrf2+oqMtGM8oU4v1ltXVZp9PHVOUSwdH/dkWVJ/dyDblobHPJ0KkaTa8rzhMU+jk56OT3iSjDYMVnXDFXOhZhxLxyc8GSPZZ8kBXffShRYDV5bluEb5UU+p9lChb2lmuHZQXpl2dWhHVpvuzOvQd9tUnnJlWUYrtlTUt6WiY89nNHkkIclSrt/XqmuLOvxMm+KTy6omjyTlpWMVxlyVJmohUXHcU6Y7UO+mikoTrjJdofquKMtxa3OUp48l5KVj9V1RkbUIr7u73pcp2Ar2JmUljOzOUOWvtUuxJbsnVOqegirfysoUar9v0bGEqjuMUneULn1xr1PhHVWlv+PJnrIUrI+Ves6VXaq9Jokjjswznkr3LuJk9YvhWMp/X6fSO4qyi7H8TSn5V6blb0gqztpyR0OFA57KN2WbXelrZ4zsQqA468394luW4o6l8SWHZYxZmnFpg4aGhppdAgAAANBUsTF6fCrW/pLR1W2Wbuk4++yMZ2cifeRgqFMncXvPSkfv7Fsa3y3HRvp/n+vQ9GkdNxvaAv3StkITq3p9/MDSN5/NqVCqvQ6duVB335DXkeMJPbu7/qB2w2BFB4bqDw7vuiGv3s5QYSQ9+mxO04Xaa9SWjuQ4pu7yPTfllfAW55Du1Yfb5Zfq31vd68uaOJg+bUttKPex59rq9uvdWNbY/nTdtrYVgQonXJ0erlm20TVvn1rgyi9enLdV+nK7Tq/V3VJWuKf+OVltkbLvnFErsKctdfxF/Xsv6o41855LP8gc52ZPVZT7xgE5M77itKvC3WsVDi7+lxuDg4PnvG5p/KsBAAAA4HX7/FCkfxmrde58dUx6z0qj71vh6CsnIj07U+tIeteAq/89Es2GSJL0f45HeqDXUeJsrS6LLIhVFyJJ0li1dc4yd7ojxxOzIZIkTeVdDY15WjPga3jc08h4QpLRugFf1ll+9IWyrd5OaehEYjY0qm13dN3mkjKpimIjDXQHchbxR5TpDuuCJC8dKaycWYCl8tT8w0wTW7IdM9uRJNWWysWhpdKkW7dtKYoLtk4PkSQpLjuy2qLZjiRJcnqXZv1nE+eM4qyRXZx7XuFA688TUhArvaMkdzSodSTdmJXc5n/GNSr75DE5M74kyS6Hyn7riKZ/ZKtSL47JOzqjqCul8o0DMqnmxTkESQAAAEALC43Rw+P182K+NhapEkl/e3JG0itFo8PlQOUzjhH9WAqNtBROjJ10pCvaA+2emZuFc02nr/GKrc5kLOcCx4H5oDZevH2RunPOJwjnFxtGloLA0o1XlhRFZdmWUTpldGLS1f5jc10hjm3U3x2c536klb2XdumRX7LleLGc084sHlQs9W6sKAqs2lK3XKRV15XkF23NjMy9g5xErJ71VU0eScrEp+o36ljlq21FoOEXMwoqtjoHfa3YVFHnKl9HT85IynaFWn19/bKwoGLJsiT35OyoOJSCqq1kdnEDD2dFKCsZy1Tnwk5vTSD76krdjKTkTbVliSaSTNGWlYvPGhYuJqsoyZJM5owrbKnwPb4y3/TkTNaWupXf2CLL2s4j+1heyX21ripvJJBdilW8p73JVTXOmaqfeeYUA6V3DCu9a0yS5B0vypkoK/99W5pRniSWtgEAAAAtLTZG/26Xr9Jpx9WDydqR61C1/k/9H+l39KXjc6HTm7ps/dJaT0tFMbD0z8fSOlZy1JeKtHfG1XTgqN2L9d5NBa3JRvrbwxk9O55QRyLWO9eUdGVHqP99MKPvjtXCjBt7fP34htJZ5wkt2vMo23r46XaFJ7tvEl6s3o5AQydrXLfS141XlGRZ0tiUq+ExV5N5V64jdeYCHR5JyQ8sreqramQsIT+shReuY3TfrTPKpC5NiBJWLR08Ne/IMVq5razudVUdey6jyaO12jtX+1p9fakuHJk4lNDk0aTcZG1+Ubo9UmHM1Yl9KZlY6llfVcfK1xZQxLF09NmspocTkmXUvbaqTFekoV0ZxaGlVC7UujcUlFjEs6ZFU7b8F9IyZVvehqq8Lf5Z9wuHXFW+nZWqtqxspNQ9BTmdTej0iaXMNzwldjuSJfnbotr8o3P9blSl7L8m5B2wFXcaFe8JFA22XodS16dH687mZlxLkz+zonkFvUaZx48otXti9nLQn5VdCeVM1y85nPyxq2Qyl+7z+3xL2wiSAAAAgBb3j6Oh/nK4FhBZkn5pravHJiM9l5/7Uz/rSJ+6KqHn8rGey8dal7L15h5bbrPbJc7hD17K6UhxbgFFXyrSzT2+/vnY3EyahG30o+uL+sv99fN4fnJTQTd0N7ezIl+ydXA4KdsySiViPb+3fjbS7dcUdGgkoeGT4VI6GevWq/J67Nl2mdOO9LeuLymOLRljaf3Kqtoyl+7AfmhXWuMH57qjLMto8NqSjj1fX/vamwtKd4aaOpqULKOu1b68izxTmV+26u4vf8LTsefqH9eyzWldTlLnqqrW3HhpBlvHRat2xjbHyN3oy04ZmUAK9idlKpbcdb6czljGSNERT9G4K6c/kLMyVOnvOmTKc51LTn+g9H2LP+vL2+Oo7Wv1/YaF76sqWH/291D6m55Su+Z+5+K00fRPVaQWW2Ha8cVxOTNzgXnY5WjmXT1NrOg1CiJlnhmRN5RX2JNW6dZBZb91RIlj+dld4oSjqR+76pKevY0ZSQAAAMAy9o4+V1e32dpfNtqatbQqZWt1ytKRSqCJQEpY0k8NukrYlm7tcHTrOYZxLyXHy/U1nqjY2p+vP3zxY0v78vMPaUbLjqTmBkm5TKxrN9WWOb18cP6Zlo5PuLMhkiSVq7Z2H07XhUiSVCw7umXb4pwFrFqs/5kbY6l0lnlHpSlHx57PKDo502r8QEpb7plRWLV0Yl9KkW+pa43fcBdSULa099H2uvvrWDm/2+f0EEmSqoVL8z6Oi5ZK/9wu+bV6gt0ppb93RpV/bVM8Uft5BC+nlL4vr/BIQsErqdlt3nWluhBJkuKZ5vy+OZPzQ2J70pbOESS5I/V122VL9oyluKu1ek+Kd7ap7Rszsn2jOGmpdEdrnYVTnqPS7avqNpVvWSl3siK7FMg4lkq3DV7SEOlCCJIAAABw2RvzQ31maEq7y762ZpL6ucFOdXtLP2w53YaMrQ2nzUBZl7b1B9sSOlw26ktYamuhYbOSdFVnoJ0Tc0HL1o5Aa9sivXraDCXPNrqlx9d3TiQVnwxgLBld1bm05rwM9AR65WBKp9YUWZZRezaat59jG1mWkTFzr1VP++INb27vD1Q4MffzdZOxutdWNXkkIZ2qyTIykWZDH0kKq7amjnoa3ZtWdDJ8yY8mtP4NeeX6QkWBFMeWvORcIBFHUuhbSqSNpo4l5t2fbCPJaHYdlmXkpWIFpwWM7QOX5nUODyRnQyRJMiVbwUvJ2RCp9gQs+buTio7Wd/yEe1Oy+wLFo3M/R2dVc96PwfpIqaddWSdfO2MbhSsjWaUz5iWFklW2FK6M5Y7NPe84YxS3t1aIJEnh6qSm/k2vnKlQUZfbUoO2zyXqTmvqR7fJOzajsCdzSZe0NYIgCQAAAJe9Pzw2qReLtQ6IZ/IVRccm9YH1vU2u6uK5lqWNmdY8iPqRdUWlHaP9eVfr2kJ935qyErbReNXWs+MJdSZivXNtWetzkX56S0GPjKRkjHTPQFWrzxLSNFNXLtJtVxe192hSlqQtayta0RVqz5GUSifPembJqL87VDpldGzUUxDaWreyqvWDZ5/Dcyl0r6sqjqSpoYQSqVj9W8tK5WKtu6WosX1JSVLvxqr80vxOiGrRmQ2RTpkeTqg0eWpWkqX2fl9rbiqqMObp6M5aR1MyF6m9f/5zTOdirbmpqPEDKVm20YrNFSUysY6/kla1aKt9INCKzZV5t7sYcdGSbJ0Msc7gnmWbo9r+p7/dbKPUnUX5z6UVTzhyBkIlrisvaJ2NivqMig/4Su50Jau2VC33t0kploJNkYpvDeQdtJX514TsqqWwK5a/LpJ31FbUaVS6J2i5ZW2zPEvRiqUz/+1i2TNVtX3joNypiuKko+Kb1ihY29G0epiRBAAAgMvee3Yd0+l/FHuW9OdXrzrn/sBCqFQt7T+WlB/a8gPp2IlaWJNwY911Q17tbUtz0HHoW9r7rZyCUi1lSLZFWnVtUfu/XX9mrK61VU0eTtZtG9hWOrn8bS50auvzVS04dfe36U0zchap7cFEUuXxbK27yDJy11cVHfdkTtZjd0RKf8+MKo+1KRo+GU54Rum3ziga8uTvPNXeY5S8vSRv4+KFf41yRiy1f6l+iWXxLl/p73iyq3Nhs78lVPFtS6ujD1LbNw4ocXhm9nKccjX17m2Ss8xnJO3cuVOf/exnFcex7rvvPv3gD/5g3fWPPPKI/vzP/1zd3d2SpAceeED33XffYpUHAACAy9iGtKf95bmDp43pxHn2BhZGKml01caKyhVLX31yrrvAD229ejitW68qNrG6c3MTRlvuntHMcEKypI6VvmxH6l5X0cShpCRLqfZQqfZQUn2QVJme37nkF52z3t9iCQ8m5paoGUvhgZSSd+dry9tsI3d1IMuVUvcUFA15MmVLzupAdtrI6azK6Qtrw7b7QjldS6sb7hRnYn7g4I7adSGSJNln2a+V2JOh0s+XZPlG1a0pBWuSF75RC3Cm6s/YZldCWZVIJtuc12tRgqQ4jvWZz3xG//W//lf19PToN37jN3TLLbdo9erVdfvdcccd+rmf+7nFKAkAcBkqhNNK2ml5NgeIAGpCY5QPY/2HVV36xNFJHaoE2pDy9IurOptST2yM9paMMo60OjV3gHCkEqscSZszluyTZ1mbCIyGq0abM5aSp53rfjIwancl5xxnY5sKjNpczZ6t7dRjpm1pTXruMY9VYhUiactpj4mzCyMpiiwlE69vsYcf2jrznOx+8Pp+5lXfkusYORcZxMSRFIeW3NPmGhkjhdXaNseVutbUOm/CqiXJaNW1Za3YWFUUWPIykULfmnemtY7BQJWCo8rM3KFori9QHFrqXO3r9LdaWLVku+aSh0pnHYZdtuVtqe8ssmzJXT2/W8fujmRlY1kXeea6SylYE8vYRlZ8evdRJHfUljM593sfrFuaQVgjrGqs9i9Pyq7WXgfvYFX5d3QqXNn6f/cFa3JyXpwLk8LulEy2eUv3FiVI2rt3rwYGBtTf3y+pFhh997vfnRckAQBwKZSjov5s+MPaXXpOKTujd674ad3e8dZmlwWgyZ7NV/RHxyY1HcZan/L0n9Z2q9N1lLCbE5rkQ6Pf2RfoSKV2EHR3l63/sNbTJw4FenyqtsRpXcrSf93k6YmpWJ8/FiqS1OZIv7HRU9ax9NGDgQ5XjDpd6T+s9XRdbu4Accw3+ujBQAfKtaDpF9e4ujJr6//ZF+hgufaYd3Ta+uW1rv7nkVDfnKw95pqTj9m+DAbWStLhgqNqbGljLpSzAE9p39GkXjqQVhhZGujxdeu2otzzHGW9cjCl/UNJeY7Rtg1lre4L1NEWqTMXauq0M9CtG6ie+07OIgil77zYptFJT65jdM2mkja8zvlKk0cSGnoprTiwle0JtPbmooKyrcPPZOWXHCUykdbcVFQyE+vQM1kVxz3ZbqyVV5fVtdrX2ItpjR+qdYLk+gLFgaUotNS9rqr2gUCp9kgjL6dVyTtKtYeaHvE0fiClRCbS2puL8tKxDp+6Xy/W4Mn7vVTcVb6Cl2udVJIk2ygu2ir+XYdkGyWursjb5CuashXsSiuuWPLW+/I2+4pGXVWeyMqUbFntkdJ3FWR3LL0liSZnVHiHXxu+HViqXhMqXBer0Okr/YQnZ9JSsCFS5Q2LN9x9oXlH/dkQSaq9mol91WURJJVuWikjS4mjMwq7Uirfeu5lZ4thUYKkiYkJ9fT0zF7u6enRnj175u331FNP6eWXX9bKlSv1Uz/1U+rtbf0BhwCA5vvGxJe0u/ScJKkSl/Sl43+sq7K3qN3tanJlAJolNEZ/dHRS01HtgO9gJdBfjEzrP67tucAtL51/GYtmQyRJenQy1qZMOBsiSdKhitFXxyL944lodr5vIZK+OBzKsy0dPnn7qVD6w8OBPnFVYrYz6QvDoQ6cDIxmQumPDof63hXObIgkSU9MxdqajWZDJEk6UjH62likdw0szKFDbKSXpjyNlB1d2RFozcnB2IcLjnbPeBpIR7q6M9DFNkHN+JaenUjIs41u7PaVcqQ/25vVrqnaQWV/OtIvbc0rc7Yhyg0qlm09vzetUwHEyHhCe49G2rr+7EOgjx739PLBtCSpKunpl7Lqys3Ito0GenwlvViuY7SmP9CKrkAHhxPyA0urVgTKpuvDiWLZ1rETnpKe0eo+X7sPpzQ6WetQCCNLz+3JaGVPoFTytT2/0Ld07IXMbBdRcdzT6J6UShOu/JMzg/ySo2PPZ9TWG6o4XnvMOLQ19EJGlmU0fnBuFk/+eELrbinUnWEtkYm19ubasr09j+YUluvvN9N92v0Gto49n1GuL5D7Oju+LsTpi5R6U1H+q0lZjmT3BwqemzutWfWpjKz2SNXH2mQqtXC2OurJOEbBC2mZk8PHzYyj6tMZpe8rXJI6L1bYH8vfEskKLAVra793cYdR8T5fdsFS3GVmszRnxJZ3xFa4Ila4fukFY2cTn2WZ19m2tSTXVvkNgyq/obkB0ilL5qxtN998s+688055nqevf/3r+uQnP6mHHnpo3n7bt2/X9u3bJUkf/OAHCZsAABc0PjpcdzlSKD9dUG/HliZVBKDZTlR8TUf1J20ZCkxT/7asnJiUVKrbNmWnJNXPySnYSVXj+v1mjKOKX3+QPRVKifZudSVrB+lDe49LmjsgzEfSlBKS6s8oNXmWxyw5SfX2Lkz4/rldsR45Uqv1X46l9e9vsGSM9D9fNrMDz9+y1tK/vdrWzlGjJ44ZdSSlBzZY6kmfPV367rDRUyOxetOWHthgKYqlj+6MVTiZXTwxltWPb7W0a2ruZ3S87Oj5Ypfesen1H2gWh4xO/5lKUjXMqLe37az7v3I4lk4b625kabrUqZ2vGlVPNtx05qStm1P6yjeNTkzWtu0+LL3zzba6O2rPf2zS6OGnY4Un08RjY1klzljlYowly+tWb+9rS+SmR41MXP+c4kpKlXz9ftW8q3Rb/eGkiS3FpfnP3Y5y6u09+8/5hXz9UqpqwVUyM/9+0163Ol7jc3lNeiXdVPvfyccTmq4bv2/JG+lQpVL/O+aMtMk/IzMyM96SPEY1oVH8x2XpRO05ZHZ4sn8hLXMklvlKVfIldVuyfyIlcyiS+Ye5DjDrjZ7st7VAV0+vFB8w0q7p2uX+lLJvWq22dKueem7pWpQgqbu7W+Pj47OXx8fHZ4dqn5LL5Wb//7777tNf/MVfnPW+7r//ft1///2zl8fGxha4WgDAcrPRu0bP6cnZy1k7p/ZqH/+GAJcxS9KapKsj1bllHNekXR0YOa6c25yDjpvSsf5JczFDuyvd1+br606t60iq1X1HNtCRNksvFeYOam/PGY0HRiOnNcKsTVn645dHtXMm1pqUrfUJ6dBp+dCqpKU7soG+ftpjZh3pLVlf33BrXUunHvPmdLAgn5ml0NKjRzp0qu3BSPry7kBGkjnt0OSRI7EG3bz+Yv9cKPH0cKhfv3ZGri2VQylh105YtGM8oS/sz57cy+jZkVDXdvoqBOnZ244Upe8cKUuqP2vV8emyxsZe/6nZPcuS63QojE6bAZQpaGg4UMKrDx2qgaWU60nK1m0/PlZW1Z+rayovffvZkk5MztUfhNKOF0u64YparTteySiM5oYIHx+XNq8uS5q7jefGcsykXuvLFhvJTXYorM4FP8nOknKxq5njc2FC2wpfqc5QGprr3HESsVIrCtLunOZmPhlZqRkdH4nqzsJmjBQFlnIrssqPzqVgbb0n73d47n7dZKxq/Nqfy+sVZjxJ9YGY355X7bWbe63DdEX2Ckfxibn67f6qxsbqg96lwNtvq+3EaYOnK1Lx0RmlXnJl+Sef04RR5Z8KciYsOZp7/ePv+Jq4bmYJtaGcxxuTctZ3Kr2jKGe6qvDLB1W6IyeTWiadSYuo6Wdt27Rpk4aHhzU6Oqru7m498cQT+pVf+ZW6fSYnJ9XVVfuW4+mnn2Z+EgBgwdzZ+b0qxQXtmHlUnW6P3t77k0rYy+MsHgBev/+0tkd/PjKto9VAG9MJ7cxX9NWJolYlXf3qmm6tTS3uINOr2mz9Xxs8PTIRKeNI39/nqCdh67c3e/rKiUilSHpLj6MrsrZ+bZ2nL49GOlo1uiFn6/4eW9VYkkI9n68FRynbaPt4rbNkLIi1Kik90Ovo2ZlIq1K2fnLQ0cqkrd/YaOkb45HSjvR9Kxz1JmuP+Y+jkQqR9OZuW1e3LeBBWG0u89xFqxYqnLnLzon6DohJ39Gr066ePJHUy9MJZZxY37+2rJ3j9fsdLzta3za/c2V1OlTWjVUMa8/FtmpL3i5GwjN647V5vXQgrWpgq7Mt1EsH0np2d1a9nYHecFVRfmDpOy9lNVN0lUlGGlzha2TMk+MYXbWhooo/v9bX03ezsjeQ50pHjieUSsa6emNZrycTtR1p/RsKGnk5Lb9sq3PQV+/GqqI1vuwXjUqTrjJdoVZeVZaTMIoCS1NDCXnpWANXlmUk9W8ta3o4IRkp2Rbp4HdyimOpc9DXqutLKo27OvpcVkHFVqo9VG7AV3XGUab75P16RlFoaXoooUQ61sC28qKexc1ZHcjbVlGwOzk3I2ldIDNTkb8rJRlLdneoxNaKzBWSvyOjaMKR0x8qeePSC5HOxQqtuRDpJHuq9WehpXeWlBiqtSM6+6qyQqPC2zqbW9QyYxlz5sf2pbFjxw792Z/9meI41pvf/Gb98A//sL74xS9q06ZNuuWWW/SFL3xBTz/9tBzHUVtbm37+539eq1atuuD9Dg0NXXAfAACWo+mwpMcLu5W0PN2R26I0Z6MDXrcP7B3VwcrcDJctaU+/s6mviRVdvF972dfIGcvdPnlVQt1ecw8U/8+htJ4YrXXgWDL6yU1FGSP95f6szMkI5U19tdaqb43WdxDd1lvRU2Nz2xzL6JrOQM9Nzn3+WTL65a0z+tO9udnQqC8V6deuntG0b+vR40lVI0u3r6hqQ27hzlAVhtI/f7uzrjtpw2BV+ZKtsanTOm4yke67ZUaWVQvRShVL//pMu/ygVmsuE+nem2b0redzmjx5ZjPXMbrnphlJ0si4J8uSXj6QVnRyjlFPR6C7bihc9FypixGF0oEncypP1WrO9fnq31rW3kc76vZbeXVJJ/am6jqe2lf6Wndz/XLKpcDEkk6+TqfEFUuqWktyoPZ5RVLub5Jyx2s/9zhplH93Vdl/Ssxuk6TyrYHinFH24bnfqcqNgcp3tM4Q7q5Pj8o67aPPONLkz7b253kznK8jadGCpEuFIAkAcDkaC/J6/5EvaCaqLXNYm+jRh9a8Rwm7FfrOgaXnPbuO1U1E8Szpz6++8JeaS9nHDgZ6anruYLfTlf6/qxJym5k2qNZ99NK0p+NlW1d2hFqVqYU5R4uOds+4GkhH2tYRajqw9KlXcpqo1lpR7uiraKLq6JXp+k6xH99Q0D8dzWjmZBDzloGy3r6monxgaefJYds3nBy2fSlNFxw9/HR73bau9lCFkq0grO/oeufdk3JO21TxLR0dTci1a4OzXVeKIunYiYSqgaVVK3wVSo6eeKFNxtRev5W9VfV0REp6Rqv6/Lr7a4axA0kNv5ip29azsaLx/fVhYMdgVdND9V3BiWykK988c8lrvOz5UmKvIyuQ/M2RTFay8pbST7lyJm0F6yNVbg4lW3KOW/KOOgp7Y4XrWis0a//ShNyJueAr7HM18wPd57kFzqbpS9sAAMDC2j6zazZEkqTD/rieLu7XHbkrmlgVJCmIY8mSPGvuqC4yRqGJlVzMtRl4Ta5tS+r5wtzp1q9rS51n79bwk4OuTviB9peNuj3pF9d4TQ+RpFp3x9Wdga7urN++OhtpdXauQ6gzYfTr18xob95V1o21Ohvr0ZFkXZCUdmJd2xXo+u5pHci76krGWpGqHfTmPKO7+qtaLLlMpFQiVsWf+93v7wqUSTo6dmKuu6OnI5CJJXNap0sqYbRhZVWWJdknb+440uo+X8bU/v/ZV1OzIZIkDY8ldN3maWVSC9sXEEe1uk77CKvVa3Te5WVhdf57y03EsmwzewY4SeoYCFSZcVUtzN1ZW28w77ani8LaYzfr7WtOzki3znj+xkiKJKtVjqoTkn/Vyd8xX5KRTM6odP/8n3/UbxT1n9aFdOpXcyn/M+bHUsJW8e6c2h6ekTMTKepwVHxT+4Vvi9ekVd7yAADgNEbzDxzOtg2Lxxijzx0/oK9PjciWpR/sWa13rVijR6ZG9fnRAypEoW7P9eiXBrcQKC1B71vVpc8OT2lPKdDWbEI/vbLjwjdaQoqR0d8dj3SoHOu6nK3vXeGoN2Hpoc2eduVjrU9b6k603rDZp8cT+sqRtCqRpeu7A71rfVHF0NKO8YQ6E7G+b3VZJ09Kpys6mrv0xralN15b0K59aRXKtgZXBLpyXUVhZMm2jcamPLVnQwWhpS9/q0vpZKQbryypryvUc3vSOjiclGNLV64r64q1Ve05ktQrB9OKYmndgD9vjlRtktIZA6cuQhxLx57LaGooIcc16r+yrJ71vk7sS2p0T1omkrrW+Bq8tqRqwdbwSxlV845y/b5WXlVWx2CgsX1zYZftGmU6Qw1sK2vqaEJRaKl7bVUdg4FS7ZGGXjx5+75AK7eV5ZdsDb2YVmXaVVtvoJVXl2RiS4d3ZFUc9+SlYq26vqjcisV9nf2XkvJ3paVYcjf6St5SkmVL4TFX1e9mZUq2nIFAqTuKshY41LsUrKKU/VpC3pCjKBer9OZA4ZrzdBwZKf24p+QuR7Kkyo2hKm9YWsvcnPFA2Ydn5E5FCntcFd7Srul3d8uqGJmU1bwEchljaRsAAC3oeDCt/+vwX6kQ1+aIDHpd+v21P6EkS9ua5tszY/rosVfrtr1/1ZX66LHdik470PvxFWv1I71rFrs8LHP/fb+v5/Nz77Mf6HP0hg5bHzoQaCaUHEv6mVWu7utpnRBzomrrvz/fPjs3SZK+b3VJb165eF1GC+2ZVzI6PDK3rCvhxbpqQ1k7d9efye3mbQU983L9WcM2rapo/7Hk7M9j1Qpfb7h64eYKje1Pavil05emGa27taBD383V7bfquqJO7E3JL829l3o2VDR4dVnFCUfjB5OybCko2yqO17rHMt2BNtxWOG9H097HcipPz/0b1rm61qE1eWTu5+UkYm29b3rRBm9HE47KX63vZkneXpS71lfx7zqk07rP3M1Vpd6w9AdtZ77uKbl77uccp42mf6pyzk4jb5+ttq/WL0XM/2BV4aqls9ztzKVswYCn/Pd3NbGi5YGlbQAALDP9Xoc+uu4n9Vj+FaUsT3flthIiNdm+SmHetp3FqboQSZL2n2U/4GIUQlMXIknSt6ci7S/Fmjl5bBUZ6S+HQt3VZStht8a388Mlpy5EkqRjJVe7pyM9O5FQhxfrrv6qsl7rfC8+la8/WvcDW+PT8z+7RyfmnzHQGOnNt+Q1POapLR1pcMX5l4O9VuXpM5MES/nj8+sojrt1IZIkFcY8SWVluyNlu0uaOe7p0HfngrDShKfJIwn1rD/7WfKiQHUhkiQVTnhyE/VhReTbCsq2km2LE2LEE/PTlXjCkemx60Kkc+27FLkn6uu2y5bsoqW4/ey/R86J+Z2MzglL4VIZIRebuhBJktzxpdUxtRy1Xn8rAAANCOOzrPc3oc5sxI1NpNgs3Fl7FlOP26Yf7LpFD3Rer6yTvPANcEldm6lfCmVJuqujT0mr/s+tazKdi1cULgspR2o74xi2x7M0ccbHYDmWSi30cbeuLZRr1X9mZ91Yf7w7p++OJbV9OK0/fDWnuHVyJK3oqj/AzaQirTxjPpAlozX9vqwzQujerlC5TKSt6yta3R/MzlI6n/g15C1tvfW1WbZR52pfOuM1yPUFcs4IeNLtYd1jBZX5YWVQqS+4krd18LtZ7flmTmMHUvLS9W/OVHuk7Bk1eelIiezidcI4feG852/3h1I2lpWpr8Ppb43wIlh9RjjXHivOmLoVkt5uR7n/nVTb/0nInBHUGpkl1Y0k21IwUB94Bv2eMo/OqP1vxpV5bEZWdQnVe7GipfFcWNoGABfBD6Z04PBnlS++qva2bdqw9mfkuQz0a6YT/pD+Yvh/6Eh1r1YlN+onBn5V3V6//vr4J/R8/gm1OZ36ob6f0/W5O/T18b/RwxP/R0ZGd3d9v97e+xPNLh8t7p8nhvSViWG5lqUf6V2tuzr69EJxSn85ekiToa97Ovr04yvWymZeAxbYY5OR/uRIqMDUQqVf3+jp+XysvxmZOzi/qs3Sf9uUOM+9LD2vTrv6p6NpFQJbt66oarjo6MXp+ufwy9tmtL6tNRKyMJJe2JvR8JinXCbSdVvK6miLtOdIUvuP1WYkbVtf1qq+QMdOeHrlYFphJHW3hxqb8lT1La3q83XTlSU552mAmZh29MyrWRVKjno7A92yrah08vyHfcZIo3tSmjyclJOI1X9lWe39oaaHPR3fnVYcSj3rq1qxqar8qKujz2UVVm2lO0PZjlFx3FUiE2vVtSUl2yLtfqRDcXTys84y2nRnXslsJMerBVyvPtyh8LRwqWd9RTPHPQVlR6n2UGtvLspLxRp+MaOZ456S2Ugrrykr3b64r3V42JP/QlomlOzeUPFxT6ZqyRkIZEJLJu/IWR0oeVOpNYZu+1LmW568g46irlhyjNyjjkxGKt3ly6Sl3N/OfTllbKPKTaESux3JkSo3h/KvXFq/b3YhUubxvNwTgcKBhOTHShybC2irG5Iq3t9ac+/OZJUCtT16WN5wQVF7UsU3rVHYn73wDS/C+Za2ESQBwEV4affvaHJ6x+zl7s7btG3LB5pYET5x5De1v/zS7OU1yc3alr1JX5v4X7PbXCuh9678j/rs0Afrbvvzg7+pq9puWbRaAWAhzYRGw1WjDWlLCdtSbIy+NhZrZz7SmpStH+hz1Oa2doj5vw5k9J2x+g7MX792evZMbYupULI1OumpPRupt7PWjeIHlobGPHmu0cqexrqGLqTqW/rqtzsUn3bGtm3ry9q6vnLW/Y2RvvZUu0qVuaRpsNfXbdcs3DylU48TB5ZGXklr4vBpc4y8WFvvn1a14Ghsf1JxbCnTGWr8YFJB2VGmK1TvprIOP10/eynbE2jD7QVFgSU3sfQOUeOypdLfd0innYEucX1ZiavP/jq0gtRTrtL/f/beO06Su7zzf38rdXXuyXlnZnOUtAqrjCQkQCQRBQZzjmCMfT778Nn3O6ezjXM4H8ERGw5swBiDyQYJAUJIQnG1QZvT7OTcuSt/f3/UbPf0zuxqc4B+v177krq6qvpbcer51PN8nmdr2TxSk9gbPcyd9Rk+5Zc52FuuLPHodDT941RdIplUYf5n2i/fgC4A8UeHiBzJVj/7MZ3cgxvgIpYqNzySGjRo0OAiMZ97oe5zNr/98gykQZVh61D9Z/sQMaX+YdWTDvtKz3Myx61DDSGpQYMGVy0pTZBaJBQpQnB/m8r9bVeHd8uZcE+XxZ6sTtELFZqb2+zLIiKNz+g89WK82qFs7YoKg90O330uie2GY2tJu9x5XXFJw6hiWeHoWCi8DHTbJGOnH3+uqNaJSADzhVMfU8cVdSLSS81/rggBqiEpn+St5LsKTlkhmvbp21pGStj3SC37qDyvMXc8glAkcpEoE0n4CMEVKSIBBPNqnYgE4M9e3deWNlWvdApPIJdRCPymK/OYnAo/o6LN14Qvv+nqlz20mXojd7XsIiouMn55skwbHkkNGjRocB7EoitO+tx/mUbS4ASroptP+ryJNfEtddMiSpTrErcvWXZ1bPOSaQ0aXCiu8iTwBlcg53pOLbfcxTw/z2fVJU8ws6j8qc0M+F/X5PjJVUV+ZWOeBwfC4MoPwjK4Y8VLE9jvH6q1uQc4NGxyaDhSFZEAZnM6U/P1AWzFFnz3uSSHRkwOjZg8+lySyjJ+QotJJ31UpX4ntmVO7cdj6JJkrD57pPU0858JpzuG8eaTjI7NgNy4waHHkhx/Pk55Xq0rYQNwiirdm8soarjiaMajfW19Zs+VdstUW3xQ6wd1tfginQq3u17ElIbEus7DWeMhkWFZ2zUeXm8AV9jxOB3lO1MEsfCc8+MKpTuSL7HEJeYcTm63s76Lo58ykLGlZviXiqtfmmvQ4IcUL3cQ+/BnCOx5jK67iAy88XIPqcEyrB74BfYf+UtsexIz0sWqgfdd7iH9yPP2zl/kc5N/y5HKHvrNdTzY8fOktWZy3izPFx4jo7Xw+rafYk3sGh5sfx+PzH2egIC7m97QEJIaXBSezM/wicmj5HyXO1NtvKdrFbpovMtrcO6UfcnfDXs8mwvojAh+tldjU+Klz6m8J/m74x4vFAK6I4Kf69NYHRN8asznW7M+pgpv69S4t+XCiDEzlsK/Ho1zrKixIu7xjpWls8oe+taYycNjJr4UDCQ8fmZNEV2RfGEoxgtzBik94A0rKgwmPD6yL8n0QhbOxozDT68uLckEOh3fGY/w7XGTQApe1mnxqp7Tlyud7HcbyOU9cIOTMlhGpwxcv3asXF9hZMrA0GXokaRK1vVbdDR7HB0z2HM0iu8LOppdihUFy1Ho63AIAvjq99NIKVjda7Fh0GJyTmPHgRhlS6GtyUXXAgpllfYmj2tWV858ZyzCtQUjL8QpTmuYSZ+ea8vEMj5Sgl1QUA1J57oKgSfIT+gY8YBo2mPqQBSASi7sBhdJ+NiLRL5Eq0fzCodEq8vwC3HKcxpHf5Ck95oS0YzP+IthuZyqSzrWVWhesXy3t0uJiEjMO4s4L0SRFQVt0EFfY4clfjkFEZEo0VAgcHaZOPtMQGJssjA22pd38KfAvs5DKQmMgypBQhKkJJlPmkgdyre7uOt99CMq6Y+ZCAfsTT6V290rPh3F69DJvqMFpRgQJJRa+ZcboOZ8/IwGl6PM1/WJf38YYyhHkDAo39qD23Nm3qqVm7oRXoA+UsBvMinf0sNZ3eQuMA2PpAYNrkCkVyH/2M+BV6tlj278RYyeey/jqBqcCikDXDeLrjchGga6DRo0WETOc/j5Q8/iLXrceld7P29o6b2Mo2ogpWR3yWbW9dmaNElrYYA7bLkcKDusixn0mpfvTe9L8fERl4dma6pFUoWPbDSo+LCnGNBrCvqiSyO9vzvu8uh8bblmHR7sVPn74Vr2igD+fJ1Oj3n+keLf7ktwuFDbj/1xj1/aWDijZacthT/dVW+Oe193BQV4aCxanaYrkjs7LL49Hq2b973rCqxJnVm2yNGCyl/vqw/mfnZNgQ2nyeI5Nm6wfX/N6HZFh83qPotHn0/hL4hHiajPuv4KqgKdLS6qCkPjBs/vrzfIXdVjcXjUrH5WhOTWLUUe31mfRXHD+hIrOh1mcyrf214/3m2bCmzfF68TqVb3WrQ1uTiuQmeLi6Gffdh3/Pk4ubFa6YwR81l5W4FjTyew8hoISfsai45F2USHvp+kkq3PV+i/qcDsMRMrr5Jsd+naVEbVYHh7jOxozV9Jj/q0rbYY27V4H0nW3p0nkrgyulUtRlqCyncSBPPhvtA3WaitHtZ3649d9L5C2AHuCsbYoxL/Tu1YSyTFBxwSXzYQ1J5vS/c4OBuvHr+kE+jHbeLfzqO4ksAUFF+Zweu4tPf56DNjRHdPVz8HhkL2bRsRToA+midIRfBOyjw6F5ScjT5ZxGuJ4rfEznk9DY+kBg2uMrzsvjoRCcCdea4hJF2hCKFgGM2XexgNGjS4AjlilepEJIADlTMLpBtcPD48Ms8TuTBDI6oIfndlGwfKDv80lgVCMeW9PRnubrq4HXHOlUPl+nOq4MOT2YCPj3qc6HL9YKfKmzu00y4358KLhZNbe4fz9ZicN0cL9b8/VDrzTKcZa6mQNWOpWH79Cxs3EExVlq636J75i52h4tKQaKiknVJImpzVyBZUVnZbCAGZpE9vu4OiwD035hmeNFCE5PhEhOf2hUFhKu5z1/V5etodDo9GyC38ZjrhESzJbhIMTy71PZnPq6zohLn80vFOzup1IhKEYtehkfBA6lrA3TcUSETPTowpz9fvW6esMnXADEUkACmYOmDS1ONgxMN1RxJ+nZAkVEm82SPVUcQpK8wdN5g6GKV5hU35pNI/t6JSmj15+wTlrEYkcfmzkk7G2WuGIhKAFLi7TeTapdlH/ox6xQtJ2uRJfkkI9MNqnYgEoE0oV5SQJJyAyN4KSinAWRkJu7ZJiXHQQpvy8Dp1nJUGsccLKG54v1MsSeyJAvk3Xdrnd2263udIcQKMI1niT40i/HBs1voWyree+8sm42iW+KNDVbPx8k1dWJsvvNF4Q0hq0OAKRI33EOaMBoum9V228TRo0KBBg3NjlZlAFwqurN3PN0TPLI29wcVhxHKrIhJAJZB8dabAzkIt+JPA56YKV6yQtD6ucKRSC+TSGjw6VxORAL446fOKFoWHZgJ2FMIspcGoYNSuCUetOlybFHw/W1tOAGvjFya7VhFhyVf181ksO5j0iKkB5UXiyKaMw5ytsi9XyyIwFMnt7RZ7cnrVkDqpBWzIuEvWebrfOpmVieWD/pMzigSSTNInGfNpSvkkYwEbBy2OjEYoLTK8zpdURqYMBroc7r6+UPVOam/yGJowYLz+d9qbXY5PGrAoiG9ZELZa0kvH1tnqMjZj4Hq1/eUtLqHzFF48YnLzpvKSZU9HvNkjO1rbDiPu49onH0mBU1GqQlLHugqVnIZdUFFUSdfmMqoOni049P0kvhMuPzcUIdHm4JQXrT/mk2jzyI0t6swn5BIfpouFdMHZFcWf1lBbPYxrKohFSSt+VsHZFUVaAn3QISgu3RdiGfN0te3yi0jasIL5ggYSrGs9vP76cXpdAZFa01ukkDhrfCJ7VMQiPzCv+wrKDJOS5NeyaDPh/o3sqVB8VRpt1CG6a+E+v7dCZTaKUqwft1K49GKY1xFHn6wlCwQRFWMoWxWRACL7Z6lc24E+UUQfK+A1RbHXt4C6/B1UH8phDOfw0ybWhlai2yfqOtaZL0xibWy74N3dGkJSgwZXIEq0HXPdT2Ed/BQENmrzNUT6H7jcw2rQoEGDBmdJStP51Z51fHLqGFnP4a50O69uPnWq+JXMV2dm+OLMDBJ4oLWVN7S2Xu4hnRP2Mq4OdiCxTppun5wmcgXxYKdK3pc8kwvoigh+ukfjYyMei91wXQmfn/D55kIJ3MGyZGUUbkkrbC8E9Cx4Kw1GBWM2PDzrE1XhwU6NrsiFMUAJTtrVAfDJQ3EeHCjjSfjs0TgH8xrdMZ8HB8p0Rn2+fDzKMzMRYlrA3V0WQ0WNvKPQEgnIuQrXN9tkHYXtcwZpPeCBFWUCBDe2OORcQbsZsK3V5vPHYuyaN2gxA968osyqlMfDYyaPTURQFbivy+L2Dpvd8zqfPxZd2HcnAi1J6RQZTUcXCxyARDBf0HjqxQSvuiVXtSzxl4lRLVvwxM4EU/MamYTP1nUlFAX6Ox2m53VGp3WEgNW9Nr3tLmWrwtExEz+Ald02+aLKVw/EUBXobbeZyepICav7LLpbPYzNJXYcjFK2VOJRv5r1dIL8MplXL0XXpgqBLyhM66FH0jVl7IJCYVHGlBYJyI7pDD2TQIsEdG6osPauPJP7I8wOmUzsieJWFDRDVkUkgMATRBIBqU6ntv4tZcyUj1NSmBuqeSQZL9HZ7kJhPx3DGwqPcTCrISsK5h1h4C89sB5JIheENHtaRzvJIFyYAcZaGyHA3WuCAH2jhdp2eTN4lDlB4qsGYqHsUhtRyL/dJkhLYt/TQ4+kuMRe7aEPq8iIpHKzh98TULrPJfqUhrAF9iYPZ92Vk42kznhVEQlASIjss9BH6rPXIvst3H4DY6g23Rmsv5YvBZVrO1AqLsaxHH7CoHxzD9EXJurmERLMPdNEd4UlcBHm0aZKlO4ZgECi5mz8hA66SmTfLPEnR6rLahPFJWZtwpcL5t4XVkhqeCQ1aHAFI70K0qugmI2yqQYNzpeyX2RfaTtprZlVsU2XezgNGlxV7CmV+N1jx+qm/XZ/P1sS5+/lcCmYc312F236TI0BU+e3j0xzqBJmrAjgNwZa2Fm0+cpMsbrMm9uSvLU9yY6ijRNItiZNjAv8RvdC8tCMz8dHawHV9SmFCVsyZtc/6v/NRoMm/dJsx68/kyFYJni5tc2m7Al2zNfEiHbT544Oiy8M1bJ9FCH5H5tyfOxgkhk7zFqJawH/fVOezEKL+IfHTL45WvNHen1fmbyj8OhkrTYvpgW8tb/MJw/Xn6/vWVvg4wcTeHLpGFcmXH5hQ3HJ9O+/kGA6u7yvyn035ag4Co4rSMU9vrc9Vc0QMvSAppTH5Gxtm5Mxn/u25SlVFGZzGjHTJxUP8AN4YmeCfElDUSSbV1YwjYCn9ywev+TeG/OkEgFzOZWSpdLe5BIxJNPzGk/uiuMH9YJgT5vNtrPMSDoVc8cNsqMGWiTAiAZMH64dA6FI+m8qcuypep+glkGL2aP1NZPdm8u0DFw5RtTFz2ZgcfmkkCTekQXAG9ewvlO/TWqfg9bt4h0zEKbE2FxBSV95InTkeY3Yk/XnbeVmFyREn65Nl5ok+1MWXHqN5ZxQsh6Zz83VTbPXmOgjDkqldhz8hEL+Lc1EnyuhTnt4XTqVrfHLY7h9EvrRLMnvDlU/Oz1J1KKDmluUJSsg/5rVJB49jlp0kJpC6Y4+zF1TaLP1Rvrla9uJ7Ziqfj6fUrmGR1KDBlcpQositOhLz9igQYPTMmEP8+Hh36AShEHBDcm7+PGuX7m8g2rQ4CriQHlp8Lm/XL4qhKTdRZs/HZphwRqDt7Ql+c2BVr49X2LW9bk1HWNNzGBzPEK/qXOo7LAubnBTKsrvHZ1hfzl8g92uq/zBqjZS2qVpL3+2vLJVJaPB9oUytle0qPzfY16dkJRQw3+Xio6oz3hlabhxrKhS9upFjilL5VCuft5ACp6YMqsiEkDJU3hmJsIrui2khEcn6oWJ706YNBv1gXzZU9ibWyr+7J7TlxWRANqjy2ddrOu3mM1rS7qxRfSAXYejTM6FQlHECLh5U5HpeR0EDHTZPPp8fVlroawyNK6zfX8cuSC4XbO6TL6kki+F+yIIBLsOR+nvPNkfSDCb1zg6rnJkwahbUyV3XFtg+4HYEhFJ1wI2rTx9J7qzoXmFU+2kNvRsfQmoDAS58WXENglmyqv6K0USPpmeK0dEAlASAUGudr6JZFD3XX3mGijJAH2Vg77qyvNvWkywjLjlpyWRffU3BOEJtCkFpSBQ5xTcfh+vL1xWG1LQh1X85gBnvX9FdG4LMhr26giRQ+F5FBgC65oYXqdO7LECgvCIVW6IIw2F8q3J067vcuAOZsibGsbxHH4qgr2mmdQ3DtfPpCpEX5hALYbnmfACYk+O4DfXx4lSEdib2vFbYujjodm2s6rpooy7ISQ1aNCgQYMfer4z/8WqiATwXOFR7mt+Cx2Rq9t77JniEb6Z24EhdN7UfCNrzM7LPaQGP6SsjS3t+rIqGmXOdWnWr9zuZgCfn8pXRSSAL88UeG1rgte21gcUQgjuyMS4IxNu67P5SlVEAphyfb49X+aNbVdeIHKCbRmVbZlaYPjObpXhIwEzLpgK/HSPhn4Js6re1F/hE4filE4SjfoTPmUvYOdJGUkrkz47s7X5FCFpMZcKOie2ICwjqw/sBdCf8Bgq1cKcmBawPu3yzEx9msWmJpdnZiNLxKSUHvBAX/1b/hO0NXm88uYcYzM6I5MR5vIq8WjAqh6LnYdqgortKIzPGlyzurae5pTH2Ex9RtLB4WhVRALYe8wknajfZikFscjS/RA3fV44ULs2PV+wb8ikVKnf34qQvOqWHPpFivxiTR75idp2CUWS7nSZP14v8sVbPTo3VihOhSV5yXYX5QrTZSM3lak8FgdbgUhA5KaaiK4kA4wtFs5uE6RAafYw1l84ce5i4g4GOGs8jIPhSeCs8nBX+ahZgX68dhCkJonsUjGOhvOZOzRKL3fAh/iji8oZxz3K9565D9nFpHRPGnudg1IKcPsMpKngN2u4HTratIvXrhNkrmzZw+tK4HXVXsyUt3aSfORo1TupsrWDyIH6zCvF9iluaEWbLiO8UOyrXNOOjKi4/Wnc/vqulxeaK3uPNmjQoEGDBhcAK1iaTWEFywcJVwv7KmP86fiXq44oO8pDfGTgp2jSrkxz4AZXNxvjcd7V0cGXFjyStiYSfGR0lILvM2ia/FpfH63G0i5TVwKVk4x6PAk7ihZfmCow6/rcnonxk51p5jyfj45mOVBxWB8zuDaxtLaj4l85JStjVsBHRzyOViSbEgrv6dUwFfjYqMezuYDOBe+kD24wGLEkbYYgqi4VkQIp+dS4z/fmfFKa4B1dKjemVb475/P5CQ9Hwv2tKm/qOPuwodnw6Y76HCkIFAG+DMWb1/RW8CQ4geBALvRIettgmY6oz7St8PRMhLgW8NreCpsyLk9OmUwtGFcntIBpS/Dbz6dJGZItTfUC0cu7LG5stcm7CrvmdVoiAW/uL7M65TFZqfDYZARVwH3dFuszHj++qsRXhqNkHQVFgq5IXtZpYZxG4IhGJKt6HFb1OAQBKErYye1kXE/wwoEoI5MGUVOybkUFzxdMz2ukkz7XryvzxM76rD7fF3S1uMwsKp+LRXxW99l4geDIqImqSFb2WkTNpb4nvi/oanUZXyRY9bQ7ZyQiyQCcsoIRCxCLtCinpKAaAeopNOPWQRunpDI/Epa6da4PPY26NpWZPmgSBOE86c5QeEh1npkA4VYEQgEtUruGC9Ma43tiuBWFVIdD95Yy6nlEtNIWWE/H8Md1lIxP5KYysTfkcJ6N4o0Y2E/FkNdW0PvDMRtbLLSB0GRb66qVkgZlgf1UPDTpbvGI3FxGxAOcXSbuwQhClxjXVNAHLpP4okDplS72Wo/oUwb6cZX4Q1C+w0XJi9AjKSGpbHOJP1x/L4/s0hAn6ZjGfpXyHe4VUwLndRuosy7Jb2ZR532cPoPyHUmctVdnZYfXkyT71g3oE0W85ihBxkRYXtU3CcBri+H1p8k+uAF9vIifjizJULqYNDySGjRo0KDBDz37Stv56OgfIBc6IfZGVvLfV/wFQlz+2vhz5ePTj/LV7Pa6ab/Q/gruTTf8nxpcXJwg4L0HDlBa5CZ8ezrNL/eee7vii8m35kr841i2+vmGpMmLJRtrkcD0Yx0pdhQs9i7KQNoUNxizPeYX3vQaQvDHq9roMa+MDKz/dcDhWKW2DdvSCq264OszteOS0eDDGw2009zrTvZW0gT8f4Maf3jEY3GQ8P4BjZvSZ5c+8g/7ExzI1/ZXd8zj/ZsKQGjEfTCvEUhYm/JO1ZAIAMuHHXMGbiAouPDIeC0LJ6JIfnxlkQlLZTDhMZg8vRHwnK0wVFRZEfdpMReMyPMqf7+/vuzs59YWWLtMd7RTEQTwrWdSlCrhPhJC0t/pcGy8FmlrquT+W7NIGYpJMTNgck5n77Fa8DfYbXPtmjKHRyKMTBmoqqSnzaG/y0FV4OiYwa5DMfxAkE54qIpkbtE+3raxSHuzy56jUebzGi1pjw0DFbSXEFvK8ypDzybwbAUtErDihiKReMCxZxJUshpCkXRuqNA6ePpStOK0xvHtcXxHQY/69N9YIpr2cW1BaVbDTPqYydMLskEAw8/HwywnIWnpt+neXGHyYISp/VEWi2etKy26Np77iyHrBzG8I7VjJJI++kYL56lFL2WEJPZAHiUe4OyJ4OyMQiBQ2lyid5UQhqTynQT+onI+pdVDX2thP5GoX8/r8igvsf0XDQmpf4mg5msXm73Bo/xyF3VGoMwr+G0+qc+YVVNuALfLR/hhyVt1Vaok+7MWXBm3Q5CS9GdnUQu1fWutMym/7IeoS2ogMXdMYowU8JtMytd3ImMX9wA0PJIaNGjQoMGPNOvjW/nFvg+wPf99MnoLt6Xvv6pFJIB2fenD0XLTGjS40Mx5Xp2IBDBsXbnlHfc1x2nSFLYXbXojGt2GxnOF+vHuLdnsK9d7nBwoO/zftZ18a66EE0jubopdMSKS5cs6EQlgXymg5SQT7awHE7ak1zz1/W7vSS2xPQlPZgNOftO8ryi56SwrJY4U6kONsbLGZ4/GeHN/mb/Zl2R4ofysK+rxixsKmKfQqUwVbm4Lj88/HqjP4LEDgaHCy7te2mvnhVmdTx+JEyAQSN42WKY/7vHxg0u9vo4UtbMSkhQF7tpa4OhYBMcV9HU47Dlanx3g+YLRaYPdh6NVE+6V3RY3bSwyPqPj+YJoxMdxBat6bSZmdaazOjNZnUPDJrduKbLzYIxgoRQvV9RY0WHT3VamVFHobnVpbw7HfO2asxNXRnfF8Ba6kXm2wujOOIk2l0o2PEYyEIzviZLuctDN5fMQpISRnbFqZza3ojK2O0bHugrHnk4gF8SJjvUV2lef+p6RHTFqpXJSMHvMJJrxlohIAKVlMsHOBn+qfnlZUPHHT1qnFPjTKkhwXqiNIZjWcfZGiFxr4U+f5O81o+Gn9WXWo6EkL4+fkihRJyIBaGMK5lMa0WfDsUpN4qz2iRxYOO6KxLrRQ/gQ/0at65u11btyRCRAKQV1IhKAPn5llN5dMBSBtbUTa+uVYWPQEJIaNGjQoMGPBCujG1kZ3Xi5h3HBuC+1maeLh9ldGUEA96Q2sSV2dXs+Nbg66NB1egyDUacWDG1NXrm+QQA3pKLckAqD+qIfYAiBsygpf3XUoOQH1U5uJ6a16Cpv77jyBFpTFfSaghFr0TbEFFp0OLpIYEqqcKgc8B+TPn2m4P5WFVMV7C8FfGfWJ6YKuiL1gbkK3JhWeGSuPihbHTt78X1FwuNIoT7afGYmQnvEr4pIAOMVjednDTqjAY9NhtkhL+uwls0uWhH32LfIOFtXJN2xpfN5QWi8fbig0RfzeHm3xX+ORqtd5CSCr49E2ZB2cYKl6VAr4mcuIp0gYkjWD9QEkuaUx9R8bayqIpmc1asiEsCRsQjdbQ4TswaeL5iYNTg2HmHzqnJdd7iSpXJ4NFIVkWrTFW7YcP6d2OxivYpnlxT06EnKnhRUcirTh3Xsgkqy3aVl0ObEexkZhOJR/XoVJg+YVREJYOqAScuAVS1J82zB1EETu6iS7HBxK0uPR3leY7n25dHM2R+nxagtPt6ibRdxH7XDwz++uGZLorb4BAVlyRiCvLqwHg9/clFGUrOH2urhHT55Pec33vNBxiBIBCjF2v71WwPM52vXovAESkWQf7ONOifw+gKCVHhPyb/TRhtR8FsC/M4rq6gpiCn4cQW1VLtvee0NqeNi0ti7DRo0aNCgwVVIRNH5vd63MmzPElE02vWLa6rY4NQUvFB8SGpX0OvZi4gQgv+5YgX/PDnJqG1zQzLJ29raLvewzpiEqvBLfU18YjzHvOtzazrKA20JbstE+ZuReQ5XXNZEDd7bc3E63Vwo/usKjb897jFkSTbEBT/ToxFRYN71eC4f0GEINiUEfz9cE1kOlCRv7lD5wCGXE1PTKtzZpPBkNiChwru6Na5Lqfxkt+Tzkz6uhFe0qNySOfsWTW8bKPOhPUnKfv2yBW/pumYslS8dj+EvCCV7szq/ujnPjKXw9ZEoRU/hplabe7ssZmyFF+YMUrrkDSvK5BzB/zsUZ6Kssj7j8ub+Mv85EuXxqdDs+WBeZ9pWKXv1IkDFE0umAdzUarPxNAKFlKEp9tB4BEOXbBys0NW6NPthzQqLUkVhZNrANAKuWVPh2NjJpjKC4clQRDpB2VLDbm8noYjQL6m8qIvdid91XEEgwTTCAH82p7LrUIySpdDT5rBldeW05YOpDpfcuFH3OdHqUpyujUOLBEwdjFazlIozOoEvaF9jEfjgOYJEW/0yqU6XcvakrJ+ABWEpHOuJ8rkT62xeUZ+tJJSwvC03ZuC7tY0wUx6d52F2LW2BsbmCtAX+hIaSDojcXEJp9pFZFfdwBHSJscFCSQaIaABGAE5tDFrPgnfS9WXsp+IEcxpKs4d5awmSAdqUhnfcQGgSfUsFZ7+JN6yjJAIiN5RRW09finlBUaD4Kpf4t3WUeYG3IqByg4txuP74CFvgdwX4XfWLB2mJk76E4z0bFEHp3jSx7+VRsz5el44oB2Q+OY3XqVO6PYmMX2HO7lc5DY+kBg0aNGjQoEGDcyCQko9OHObb2UkA7sl08HOdq1Cu8rLJHyUCKZccr+WmXcmcbht+bb9Tl7UEcFeTwqPz9dlGv9yvsS2tLLvdUsrzKgXem9X4p4MJTmRydEU93r2myF+8mKKyIDBFFMktbTaPTtZ3+bqvu8J3x826rmpv6S9xa7tDIENhRUr4010pZhaJK7e02eya1+u6xQkkL+uo/43b2y3Wp10+djBR7ZzWaXq8f3OB0zW3OzZusH1/zUOn1hVNMp3ViOiSplQYcEsJM9nQC6ot4zE+q/P0i7VSuqakR0eLy75j9WVwN6wvsvtIDHtBtFCE5O4bCiiKZM+RKGVLobvNYe0Kmz1HTQ4NmwQSuttctq4r8fBTaZxFosu6/gobB08tuvguTOyLUp7XiDX5dK6roOiSmaMRcqMGuhnQMmBx9Kn6DL1I0qd9TYWxXTF8VyGS8DBTPnZRJZr2iLd4OGWFqUXd5ZIdDs19DnosQNUk+79d/yLETHm0rbaYPWoiVEn7KotEm0clqzJ5wMSzFTK9zkv6NZ0KKcF+JoZ3OBTOtJUOxk1llJOENueAgfNCDDyB0u4SvbNEUFJwdpnIioI26GCss0PfpF1R8AVKp0v0ziJBQcV6LI4sqWAGRO8s4o3puC/WjrMwA2JvyCEuh74RAAvbm/iKUde5rXS3g7PpChWMzgQpSX4tW1fa5vQZFO/PXL4xXaU0PJIaNGjQoEGDBg0uMM8W5/jWgogE8Eh2kusTTWxLtlzGUTU4G5YTTq4mEQlOvw2pkwLUiAIZfen8KU2ccrvP109uQ8bj59cV2T5nkNYDbu+wiWuS/7axwJNTESSh8DNaXqbrmS/qRCSAwwWdwaTHzjmDtBGwMunWiUjhPBoZI6gTklK65DW9FTqiPkeLGv1xj21tDoqA9y4a3x0d9mlFJAiFocUEUjA2o3PgeJTKgs9QX4dd7cp2okQtFfe587oCt11TYHTaIG4GDHbb+AEcG4tgLYhGmYRHb7tLaybPkVET34f+Lod0widfUjB0iar6tGY85gsqB47XxImxaYO46deJSMuN+WRUHXq2LPVValtp07YyFGwCHxRVEizKntLNgNGdcYKFzC67qBFN+7SvthjeHmd+2AwNswcqBH7Y/W3ueITCZCjiNPdbCFUiF63TiAZkul0y3fVZXtGMz8C20mm340zwx3S8Q7XMMO9wBK3LRVlR+72gLHCei8HC+RdM6Th7TIwtFbQeNxSSOl2CvFLvmzSh4+438Ub1UEQCsBSsp+IIo17UlZZCkFdRmy6DaLPo9Cje7xDZraHOC9wBH3flldOd8kwQdoBx0EK4Eme1SZBU0U7yR9LHlvpSCWthOV9irzaRiUbG0tnQEJIaNGjQoEGDBg3OgRF7qS/JiF1uCEkNrhge7NT406MuVhCGuQ92qtzZpPJUNmDCCYPaG1MKG+IXVzxbnfJYnaovFWszAx5YURMuWiIOz6eNqv/RhrTDbe0Wj01Gqr5GADE14K9eTFVL4AYTLmk9ILdIOOmNedzS7vD/Dsap+Aq6InljfxlVgW1tDtva6oPK5cZ3OpqSPsOTi6dI5gtaVUQCGJ6MkE74dT5H+ZLK8QmD1X02Hc31v3fvTXnGZnQ0VdLV6qIoEDMlm1fV9pHtCL63PVn1WBqZMljXvzTLyPUEmirryuUyL9HN7kxQVOjaWGbsxRgyEGiRgJZ+i+J0vUeaVVApzWvIEyKgFOQnIqy/L8fw9hjBomM1NxShfa3F9EETKcN1dqw/9y5sZ0KQW1rjF+RUoCY+yIJaFZEWz1N5JEmwYPDtvGhiXFNhiW9STl1YXw2ZV1DX2gQzi8JvPUC5AMflvNHB3nr5vJvOC0+S+vI8ajbcj+aOMvk3NuG3amgztW3yWk8qFXUCUl+cqxp0mzvL5N/UTJBsiElnSkNIatCgQYMGDRpckewoTfGp6T3kfYd70it4W8u6K6rb3tZEE/86fbza3UoAvpT8yuHnCZA80NzDfU1hdxU78LGDgNSCj9KoXeZjk0c5bpXYmmjipzsGiao/PI9lO4tFPj05Sd73uTuT4cG2tivq2P0o8KVJj0fmfFr10Dz7rmaNzgVj7T9fr7OnKIkpsDp+9t5HZ0rBFXzhWIx9eR0pw7K2twxU6I0vDZ41Bd69tsjEgtFyZzQM8N46UOZrI1EqvmBrs0PRU6oiEsDRos5b+0t8d8JkxlZZlXR5/YoKKV3yW9fmGC+rdEQDolotGyTnCL41FmXGVtiUcbm93eb5WYNHxsPysLs6LW5tP3VnrcFum2xRZXjSQFclm1ZWmMktvX4r9tJzvuIItu+PMTGrk4j5XLO6TDoRcHzC4MhoBFWVCAE9bS6Tcxp7jkRxXMGKLgfTCOqMuqUUWLZAEbLOhLu71aWzxWPHwRgVW9DZ4rJh4MKIM839DqlOF7usEE35CAWMuI9TqgXgyQ6X2aP1ZYqeIxb+e/L5Jkh1uLT02+E60/6SErMLjdrlwQ65SCiSSKD01RRIMNZbaIMOIhIgF4mDSsrD3beoBDEQ+HMqaBIWeW2pPQ5I8I7XPKfULo/INRayqOCP6YiYJHJTCXEF3PaVWUHsMR11XsEd8Cnf4V5RHdlOhz5sV0UkAMWVRPZblO5KEf9OHm3Ow2vVsFcapD4/i3Al9sYYQVTUdXlTbIlx0MK6Pr7czzRYhoZHUoMGDRo0aNDgiiPn2bzvyMM4svaA+L6O67g3038ZR7WUH+Rn+PJc+CyyLdHMp6aH6r7//f4tHLdKfGp6iErgszXexH/vWctvHNvJiFML7O7LdPDertWXdOxnSiAl+8plVCFYF4u95Px5z+MXDhyo64r23u5u7m26OObVdhCwt+TQZqj0RK6c6MdaGFeHodJ9icf15LzPh47X3sarAj643qDFuLRi3j8diLM3Z9RNS+kBv3lN7rTGzycTyPCfpsCnD8d4fq7esPr9m/JEVMloSWFNyiP6EsH5X+5OMl6pzfSyjgqPTZpVnySA960rsOolspSCAIQI/03Nazy+o+YFFTfDMrZvP5vC8Wo+Rz3tDsOTtfHHTJ8tqyo8tcg3SSB52dYCj+1IEizqdraqx+LwaL1As2VVmVTcZ9+Qie8LBntsBrpCEUwu7Lez2dfngl1UmNgXxS6qpDocOtZZjO+N1olJTX0Wqc6wI9vY7lqwbqY8Vt9Z4FLrzN6wjrPXBAlan1NXngYQvbcAusTZEUVWBFq/g9LuYT1c7xGlrbLRV9o4u6JIS4R+S+ttvEkVd69JUFBRWz0iWysIM7wnSh9QuGTbLIqgzij4HQEyetKXElL/EkHN104S61qPyh1LzeOvRPQhm+RDubppletiOAMRhCPx2jQUKyD9b3OIRapHZXOU6O56cbV8Yxxra0NIWkzDI6lBgwYNGjRocMVR9l0eK4xgBz53pHpo1mpPuPsrc3UiEsDO8vQVJyTdkmrlllQrAF+aHVny/VOFWb4+N1bNWtpemuffZobrRCSAXaXckmWvBKwg4PePHeNQJRzv5nic3+jvRzspAtpfLrOrWGQwGkVKWSciAewqFi+KkDRiuXzg6Aw5P3yz/Ma2BD/Wcek7GL5YtNlXtlkdNbg2aTJsufz+0RkKC+N6c1uSt3WkXmItF45dxXqPE1/C3lLAHcaZlW0UPcnj2QBfSm7PqKSX8VU6Ew7mlwpoeVdhrKIyaynM2CqbMg5dsXC8RwoahwsavTGPDQtd02YshZ3zOkldcl2zw52dNruyBu6CwLIh7XAor/GV4SgSgalK3r22wECidv84XlQ5kNfpiPq0Rfw6EQlg57xRJyIBHCxoLykkLc6caW/yuOPaIscnDSK6ZHWvhRmR3HV9gSOjEfxAMNBt8/y+ejG2bKmMzdTvJ4lgaMKoE5EALEfQ0ewwOReKc+mER3+Xja5Be3NxyfiECEXEi00kEdB/Y713UdfGCpG4T2lOQ4sEzB03Q78kJE19FlIKjGhAy6B9yUUkAK3PRetb6Hi3N8LJ5WnehIbW66K2eShpH7XXDfdnp4s/sXC8NIm+1kZt8om+vLb/rSdieMdCsVAkfIxrayIScEnNtY39KrFv64hAIFVJ8X4Hb2BRJk5e1IlIANrIRVYeLyBun4G3qIwtMAXqjEf6hbD03M+oWOujdSISgPAkXpOKNh/eJ4KYgr2uXqRtcHoaQlKDBg0aNGjQ4JJjBz7/6/j3GHXCh+8vzB7gzwfupk0Pg6wBM41C2FjmBIORSy8QnA0DkcSSaTFF5eTU7ynHolkzmPNqpTOD5pX5FvR72WxVRALYXSrxdD7Pbenasfj2/Dx/tyhD/N5Mhlpj75AB8+I8oH9hulAVkQC+PF3klc0JmvVTR2qTjsfXZooU/IC7MzGuTZ7f2L4+U+STEzUh8MH2JMOWVxWRAL44XeCVLXEy2rlHkGVf8tUpn2FLsjWlcE+zcspywcGowndYKiZ9eMglqsBr2lS6zTBY3FkI+O6cT1yF17VpJDX4zYMOUwun51emfP54rbGsSfdL0RPzGSrVhxumKvnWmMmL2VAMeWjU5GfXFpmxVf5jqCay3NtVYUuTy1/vS1ZFo6enDX5hfZFf35xjd9YgowesSrl8YEemKgRZvuAbI1F+fn14b9k+q/PpI/Hq9ze12GhC1pl4t0QCsk79semJnb13TVuTR1tTvfiUiAVcs6Z2DWUSPvlF+8TQAlpSXl2WEkBHs8ux8XqBoynps2aFzXzewg8ELWnvsogwL4XvCgpTGmYyoGWgzJEnE4vMtAW5sQgbXplFuULsaJRlzK6lD5VvJjmx/7XVNua2MubdRfwRnaCioPWFJWz2s1GkFXZxE2ZQFZEAZFHF3W8S2XpxfZ+WRUL08VBEAhC+IPakTn6g1u0uSEiCqESp1E4kv7V27zD2qehHVfxMgL3VQ14BWoso+kR3lVFKAfZqk/zrmzCO2gg3IIgpJB/OV+dVsz5Kdqkg7LXrlG9JYhy1ED44gxGkefUIaFcCDSGpQYMGDRo0aHDJea44URWRAIqByyO5IQYiaf599gCeDLg92cv20iTlwOXWZA+vaVp5GUf80lybyPCmll6+NjeGRHJ/Uxevberia3NjlINaoLI10cRrmrv56/GDTLs266JJfqpjcNl1BlJS8j2S2uUp2cp7Sx/A856HFYT2xxFF4cszM3Xffy+X42c6O/nX6WnKvs+tqRSvabk4BuQ5r14sCYBDZYeH50pMOB43pkze2ZFGX2jDZQcBv3tkmvmF5X6Qq/CbA61sTkRwAokvJdGFOqAhy+VfxnNMOB43LazHkpJPjufYU7JZGdX5ya4MX5kp1I3hqzNFBkx9ybiKXnBeQtJfHXPZXQzluWfzAUVf5YH25R/l72lROFxW+P58gKHAPc0K/zDsVaWlp3IBf7Xe4Lgl+ZMjblX0ezbn8KZ2tSoiAWQ9eGze5/Wn+K3T8eBgiU8eSjBlhdsd1wJe3VPh34dqwmmA4NEJk2mrPoh7bNIk6yhVEQlCP6RjRZX9OZ3tcwYpPUBVZN08AMVFPkKPTtSXrD03Z/DqngrfGI3iS0HG8HnrQJnnZgwenTSREm5rt9mcOXVpj+MKdh6KMpPVaEr6XLOmTDQiq99pqjylz8+mVRXKtsJMVicaCdi6tkR7s0e2qDE0YaAqsK6/Qnebx3Vryrx4NIrnCXraXVb2hgJAU2qp8OF5CxlIC6fY5KzGzkMxyraCpkpW99qsXWFddOHJKioceTyJv2Cone628ez6nRH4gsATKOq5OazIAAJPoBoXxqFF6/TQN1Vw94WlbvoaG29SZ7GI5x02kNdVQJWonR6aIZE+lL+aqnZn844b6JuXNmGQ1mVS+wIQdv0kUREgQViEZW4qlO5ziH9HRykqeJ0+lVvCcz+yUyX22InSVBV9TKHwllN7h10SAknqa1nUfHgNGEdtCvelcdaECpd+ZKn5vFAE5W1xotvL4EvstWY4vyJw1p5c69fgTGkISQ0aNGjQoEGDS88yz9UFz+H/zD5TDXZHnAK/1XMr62PNmMrlfWSRUvLZ6eN8NzdFStV5Z3s/1yWWlmq9s72fB1v7kICxEEn+Rt9GPjM9RNZzuSvdzr2ZDoQQ/PWqG6gEPrFTmGzvL+f50NgBplyb/kiM9/espztyaR96b0un+Y+ZGdyFUrWoonDUsvjEvn0owKubm5c7lNzT1MR9zc24UmJeROfcuzIxXizVIqUBU+eTEzlm3DDI+M/ZEhFFVMvddhXtqogEYdbU97NljloOn58qYAeS29NR3tOd4c+GZpldWM/XZ0uYisKE4/FELswsmHF98t7ckjEJ4GWZGHvLtYBrVVSn1zx3MTDryqqIdILH5gNe3yY5VJYoAlbFavtZE4I3dWjcnA5YlxB8biKoy08q+rCjEPBiMajLHMt6MGovDc7PNQzujAb8+pY8lQWRw1Agu8Rs+ezWv3PO4LGpMGictVUmjqisSbl1ZXTXNdscyGl0RJfPKrqlzebGVod5W6En7qMKuL/X4r5uCwnoL3HKvnAgxuh0GGBXbBXHE2zbVOKZF+NMZ3UMPeDaNWV625eKUaYhufO6Iq4Hmlrzydm6rsw1q8sIUSuZG+xx6O9yQn+oBYEoCGA2pxGNBCRiAVKG4xmaMBAC1vRZDHbbPLkrURXQnECw52gU0wjo71peCJAB5MZ1Al+Q6XHOOVto5rBZFZEAcmMRWgYr2MXavSvR5qJFzk0Eyk/ojO6K4dkK8WaXFTeUznldi4lca2FsDkUIoYL/jeSSbFL3mI6zMwqOgtrtoK+2qyLSCYKchogFyPKJfSDRBi+T+KKCs8Ynsr/2N8Zd4ZP6VAQ1p+A3BRRf5eCtCMg/aBP/hoE+rpL6N5PyXQ7G/vq/TdqEipITBOnLZ7GsTbpVEekEkUMW7mCYBeb2GgRRBaUS3vGkAGe1idehY22OhTd97QpM4ztTXB9tuoyfjiDjxkvPfxFpCEkNGjRo0KDBVUrOK/N48QARoXNbcg1R5fI+VJwNN8Y76TOSDDthNkdKNchokZOKcWBXZZrrEu2XfoAn8Uh2ks8veCDNeg5/NrKPv119I+llMoX0k4STdbEUv9u/Zcl8QohTikhSSv56/CBTbiiSDNll/nHyML+zYvP5bspZ0R2J8PuDgzw0N4cqBD2GwScmw77nPvDl2Vle19LC6OxsdZnXtrRURTT1Iqc/vKwphqEInspXaNdVrk+a/O+j9RlSOws2P9YR/v9yGUGKgE9N1Eohvp+r0KqrVRHpBDuKFlNO/bR9ZYd3dab4l0XLv741yT3NcaKqwlP5Ch2GymtblpY9ng2mAhEF7EUXSFqD3z3kcqAcBnXXJgW/NqijCsEXJj3+fcJHAhkNbs0sVUbSmiCzTEB1Y1phRyFgciH2bdLgjqbzq0FabH7dHAm4rtnhhQWfH0VI7uq0mLUVPr8oU+muTovNGZed8zU/pFVJl2m7fiwVX+HOjhKDCY+JikpbxOe7EyaWr6AIybZWm9GyWhVVbm2zF8YjSer1x1M7Q81zaq7+up3J6uw9ajKdDe8Hjqvw/L44Hc1ZKrYSdmiLBnS1ulXhSF/m0leX2c2KAieGVaooPPZCgsrCPljTZ5FOeAslcKG59v6hKEi5xPMJYGpeX1ZIciuCg99LVQWgsd0xVt1RILpM5tNLEXhLfzfd5WKmAopTOpGkT+vKpVkjZ7RuH4ZfiBEsZJyV5nQm9kXpvXZpFtC5sNi7yNhoYT0er3Z20wYdnOdjsHAu+mMGInryXyxQYgGR6/O4+0ykHZpva52n99q6mJTvcfGbJdqUgtfjY+zWUHML9+d5hfijOoU3O0Sf1tHHwx2gVATxRwzc7vrtk6pEXgDR7nwIoksv0iAqMA5bKKUAZyBC/oEmzN1llKxHkFTDCwNAFSg5D2PIwU8ouAOR8A/AVYI6XSb50BEUx0cKKN/cg72h9bKNpyEkNWjQoEGDBlchM26BXxv+NHk/zI74avZ5/rTvHRiXOXPnTDEUlT/qfxlP5EexpMftyR7GnBLM7q+bb+AK8UXaXa43w3ZlwIFKnpuSF6dky5YB4059sHXMKp1i7ovLqmiU9/X0APC5qakl36c1jT9auZLdxSID0SjXJc5PNDlbbklHuSUdZjvYQUBMEZSDWrDTHdH43GSeccfjhqTJyzIxvpcNA89uQ1tShgYw7/lEFUFl0Xr6TR1TUeoyoLoMjde1JlkTNdhbdlgTNdiUiCwZ1/liqoIf69T457GwPC2uhhlIX56qBfo7CpJncwHr4wpfWBCRIMwymnEkK0zBcSucenNaYVNCsCKq8lQuYGwhC+nOJoUtSZU/WqvwRDYgkHBLRiF1gd/gv3NliWubHGZshY0Zl46FgLw75nMor9MX91ibDoPvX9ucZ+e8TkqXXNPk8NCYyb5c7ZipQtIX99m4YM79N/sSWH4YbAZS8MKcwX/dUOBwQaMzGrAhff7dqFIJn9lcLaBNxnzyJ2Wm+IHg+ITBrsMx5IIY0ddhc+OGcxc9Dhw3qyISwMHhCANdS4+NlMsfr3RieUFj6mC0LotIBoLxF01W3lpCLmgJ4gxFtuYVNrnxWlmYmfSINfnEm32a+84tM0fK8J9TVqoi0gms/MUxWtJWuESTBfwxDSUTIFWJd6Tex0pWFLQ1Ft7BMENOJHz0DRZKTBK54TJ4Ii2HCvb1HjZAALHv1b9wUqcXRKXZ+nNGuAJnnYc2qaBYAikklW2X3yMpyGhYm6OYCx3X/ISCkvVJ7A3F/OizRfKvayKIK5gvuoCLuc+idGsCv0Uj+fUsYuGcdgYiFF9xZTxjnAmx58ZRFl5mCAmxZ8ex1zSfuQJ+gbk6njYbNGjQoEGDBnV8K7+7KiIBHHdmebZ0hNuSay/jqM6OqKLVdWHLaCZvaV7LV+YP4UvJPekV3JbsuYwjrDFoxnk8X8t0EcCUY/PrR19AQfDGlh5uSbVyuFLgU9NDzLkOd6bbeFNLL8oyWTl7yzk+O32cvO9xT7qd17f0MOvafGLyKEetElviGVabCQ5ZNR+pa+OZS7Cl9ewrl/ns5CR53+euTIYtiQSfm56ufi+ALfE4K6NRTEXhXyYm+Pj4ONtSKd7e3r6ku9vFJqIovK+3iX8czZLzA9bFDKYcj+8vlKM9kavwM11pXtfaTsHzGYjq2AF8ciKHt+hF+9ZklBuSUf5prLaeB9uTlAPJXx2fY8T2aNNV3tebAWBdPMK6eGTJeAIp+fxUgSfzYZbTOztSDETPLXPw/jaVm9IKo7ZkbUzw1eml2SJZDwq+5ORvCj784RqNPUVJShcMRBXynuRfxjz8QHJNQvDGDpUNiTAoj6mC+1ounhOyImBL81JBpz/h07/QbS3nCL4yHGOkpLIq5XFLWxlNgXs6LcbKGvtyOlE14PV9FZK6xPbD0rn8SaVzlq/Qagb0J+wlv3euXLe2zNMvJiiUVWKmz/XrS0zN6cwuErgiRsD4jFEn6gxPGqzvr3B03GRiRicR89m8qkIyFnB0zODoaARVDT2SOls8ZrIae4+a2K5Cf5eN5Zx8PQmSMQ9YfO5J+joddF2y52i0mozR1eqyqmf5feAu4+HjWiqTB0xmDoe+Ua2DFp0bLCp5lYm9UdyyQqrboWNtKHjPHI4wPxJBiwR0bylj5VUCT2AVVA49lqR10Kapz8H3YGJvlOKMjpny6dpYxoiGg5w5GmH+uIGiSzrWWiRaPWaPRZjcbxJ4gkyvg1AkcpEnlmoszQo6HVICPogziILVJh91wYhbumDrASwS3NROD32VjbHWJrAU1DbvjAU36QFKKNAFFYHzfBR/VkPt8IhsrSAukP9THQq4PT76aO3adlcE4IDbG6BN1KYHcYm7MiA3YKFNKARpSZC6vNlIJyjfmsTaEEUpBUhDkP7ifPU74YO5u4w+Ui9aRl8o43XoVREJwDhmh1lLmatDEhGV+num8AKE6yMbQlKDBg0aNGjQ4EyRS9wblp92tfGOtg28uWUNAZKocnkMppfjNU3dHLNKPJGfIa5q3Jfp4BNTR6t7/P+M7ucPNYM/HtlLwQ/f+v/r9HFiisarm7uYdCyynsPqaJJy4PFHw3uwgvCJ9pNTx0hpOg/PT7C/Epb6TWQnuDXZQpNmcMQqsjme5qc6Lq3ZeMn3+eOhISoL4/yXyUl+oaeH93V385XZWQIpuTWVojcSIZCSPxkaYsoNH3S/NDODLgRva794ZYlTjse857M6atSV0N2UinJ90qTsB1iB5JcOTNYt92i2TIuu8k9jWea8gGsSEX6hp4mvzhYpegHXJCNck4gQUxVWx3Q+ODzP/rLDbx2Z4ee6M/zFmg7ynk9CVZYVCRfz9dkin58Oj+mY7XHcmuXDazur5t9nS4shaDHCZW/JKHxpyq8KYKYCN6YUWgzBYFRwtFK7H6wwBb+8z2XOhS0JwX/t1/n7YY/n8+GxnXQlhhJUhaQrgU8diXOkEN4DZqZVvADesbKMLwX3dFq8tb9EQpfkXYUP70kyVNJojfisTLrMLMraWZ92iWsX9t6Yigfcty2P7QgMXSJE2I3N9QVjUzqxaMDmVRVePHJyRprg0IjJ0bEwraNYUSmWVbasLvPCgVpZ3w92J7hra4EndibwF0ST3YdjrOypz1JMRH1W9TqoChwaNVGFZF2/RSoekIrbrOqxcX1QRDjOU9Hc71CYqhc44y0uUwdq458+HCWa8RnbHauaZ08fjKKqEtWQTOwLO+7ZRZVKTmPwljyHH09VS8NGdmjo0YDcmMHc8VD4ckoqbkVh9R0FcuM64y/WuvYde1pj4OYCY7tr0+aHl4q1izOpXgpvRMd+JoasKKhdLuZtJUREIh1BMK+iNHmIU+i8Qofo3UXsF6LIsoLS6uHsjeA8H0PtcIncVjojEUl6YD0Zxx/REYbEuL6Cd8TAnwzPda+ogicwbz+7DFRRAXVOwWsP4DR/OkuvcIg9ZqBNCrxWiVIQNH00ip8KsFd7VdGocrsLKqCC11cv1gkL1FkFrzWo1zAvIUFGI8iAOrtMhqGEpY9DslbidvK8VwnOqia05yaqn93uBDJ6+Z6TGkJSgwYNGjRocBVyb2oT38jupBiEgUW33sSN8VWXeVQXhsgVWJ6nKwq/3LOOn+9ajSYUvjAzXPf8KYHv5KaqItIJthfnmXKthU5u0G1EeWNLT1VEOsEzhdmqiHSCfZU8/7Bm28XZoDNgX7lcFZFO8EKhwK/09WEHAZ+YmODzMzN8K5vlPV1dVRHpBNuLxYsmJH1mIseXZ4pIoMNQ+e2BVlqN2nmjCkFSUxF+gCaoyzZKqAp/PTJfLX/bWbTpMDTe0pbkQ8PzfGuuzGPZCu/va+bJXIX9C6bZs67PR0bm+Zt1naTOsPva49n68pasF3DMclkTO38/s15T4bdX6Tw045PzJANRgSMlIPifgzpfnfaZsCXXpwSfGvcpLaQp7SpK/m3c44V8/bHdUTi7zI6LieNTFZFOsC+n89yMwb8di+FLQVQN+Nk1Rb4zYTJUCo/9jK3iS3jTihIH8jpdMZ+7O8/Nj+dMiCzKGlEU2LKqwpZVtWO+utdiZl6r+hX1tDnM5ervb8WKyuhJIo6UgqEJoyoincB1Bds2FhmZMohGAtYsdGEb7HEY7FlaNqaqJ3yXTh8tpzpceq8rMnUwigygZWD5zKXClL6kA1thWl/SPS3wRCj6nFRiV5jWKUzVH9dKVsNzxJLpMhDkxpa7TsJz/AR65MzO2xMCDu6Cx9G4jrPTRO3yQi8kX4AmMe8sonUtXwKotvnEXlEMu7V9MQ0L+8Kf1HFeiGLe+tJli+5eE3843C5pC+wfxJbsJ2/s7P4GGvtVYt/REb4giEiKr3XwuwKUWYE+ouC3SLzeBfPpOJTuD8+V+NcMtBOlbfnwv/mfsGu7V4I2pKDmBO5AQJCW6EcV4g8ZCE8gdUnx/tCs+3Lht+i43Tr6WPj3Rypgb4riN2nEnquJcdY1cbxWDX3YqZW29RkETVfe88apsLa0IyMa+kgeP2Nibbm8/pFXz55r0KBBgysQKX0mph+iUNxPKrGBjrb7EOLKeaPb4IeXdj3N/+l/F48V9mEKnTuT669IAeaHjchCK6PeSGzJd+ujKb6dncJfFLQ1aTpfnRurfh5zKuwp5xHUh3aDkThHrBLTbi2A64vEuZz0RiJLxtlnmlR8n09NTlbLp3Kex7fm54kqSp3w1Be5OK+qJx2vKiKFn33+8NgMd2Zi3N+SIKYqHK04PDJfRhfwquYEX58N548rgpdlYuwo1gfKRyoOOwoW9sIbazuQfGIih35SxlHBD5h2Pbojy78F/t58mV0li35T55XNCebcpeVnbadoCWYHkm/O+IxYkuuSCredgcH12rjCo3M+u4thV7f/nAn49UGda5IKP94d3g+GrYCSXz+OoxVJnykYsmpHt9e8ckxndQVaIj6zizKLOkyfLw1H8ReC7oqv8NWRGPMnCRvzjsp1LS63d1zmNuVAZ4vHPTcWGJ/RSUR9uttcntsXI1eq3at1LSCT9Dg+WX+9tKY9jo7ViybJuE9Pu0vPMt3gzpd0l4tnK1h5Fd0MMOJLxYFkh0t21KgrLTOTPqouydfNKYk1e8wN1S9vJn2spI9r1Y6ZbgaousRMLr1WUh1OmL20SGhJdTrkJ8J9peoB7WvPTCgMCmpVRDqBP6fhjemhiATgCZznY2ivzS+zhkVbV1aQJ513wbyKP6fiHoogVIm+1kZJBgQVgbs/grQUtEEHf+6k61qKk7q8gZI5C5PzAKLfD0UkAMUWxJ7QsK7xiT+sI05cL9e7WLfWC2QnRKQTqHkFYVP1QYp9WyeyLzxX5ROS4usdoo/piAVDdeEKYt/Xyb/zwpWNnguF+zM1s+3BCEFGw+s08Ns01CkPr1PH6wnFu/ybmtGP2QRJFWflZUqnOleEwF7Xgr3u4ngzni2NJ84GDRo0OA+OHP8nJqb+E4Dp2UepWGMMrvjpyzyqBj8qtGgJXp+5HoF4yRKbBmeHKwP009Qp3Jxs4b5MB9/OTiIQvLKpkzvTbdgy4J+njlEJfLbE0tyQbObbuXqDajvw+S/tA3x2+ji2DLgh0cRrW3pYF0vxobGDzHsOPUaUn+kYPP0Yg2BJh7jzZcpx+NTkJCO2zdZEgh/v6OBz09PYQcB1iQSvbW6m4PtVweUEOc/j57u7+ej4OEXfZ3U0ym2pFH88NMSc53FnOs3rW1oQF+A8nXf9JfkV447Pv00V2Fm0eU93ht85Mo27MFNCFfz+ylbyXsDamEFEETRpCvNeLVDeHI/w1dli3TrnXJ+XN8UYsmpBe6uu0mlozLk+n57Iccxy2ZKI8GMdKb4xW+Izk2EA+hgVDpVdlssEiarLH7O/OOqyuxjO/9h8wKwreX17+KjuBnLZcrisK/nOXG07fAlfmfJo0TX+ddxn0pHcmBI06TC/SHvYnFDYllH44JDLtAPtBry799RhwagVVNe3La3QpMEjcwFRFd7SobExcWHPQyHgbYNlPn04Ts5VaDN9XtNb5iP76o1xc45gdcrludlaQNgd8y54Kdv5kE74pBM1YWDzygrFskq2qGHoAVvXlulscZnLa4xMGSgi7MbW2+FScSrsPRrFDwSdLQ6rei9ewD68PU5+Igy2s6MROjeU6bmmxPShBY+klTbpTpfgmjJjL0YJXIVYs0v7GguhSspZjeK0jqJKOtZXaOpxsXIWs8ciyAAyvQ6ZbodYxmPouQR2QUWLBPReW0IIaO63Kc1q5Cd1hALtayyS7T5915VCM3BP0NJv077Gwi5a2CWFeIvHKRpfLkFJ+YhogKws9jhycffUu0cHZQVvXMN50QRPoK+z0QcdgoISlrXlVZQeBxH3kYsM1pUmn8rDyaoo5R4ziL06T+VbSWQxnM87aqCtPukYapLItiL20wlkWUEkfSI3nYUhuxeWmtVta1FgPq9VRSQAc4eGdZ1H9BkdfSQsgfM6fYzDtR3otQZIHZAgigJjX237RBCuUynV34eU4hXw7KEKnLVLGxu4fRHcvnqxyG/W8JsbEsiFQEi5XLHg1cPY2NhLz9SgQYMGF4knn307gay99VTVGLdc/6nLOKIGPyoEUvLxmUf5Vm4XutB4W/PNvK7p+ss9rKuegu/y4dGDvFCap1WP8N7O1VybyABw1CoSUzQ6jFrgUfQ9BBBfFM3YgU8l8MloBm4Q8EuHn2PWq90nfq13PduSLViBjx0EpLVadosvJVnPoUU/9ZvSCafCh0YPcNAq0h+J8Uvda+k3L0z20v84dIjjdi3QeaClhTszGf5mdJSjlkV/JMJ/7e3lo2NjHKjUSnje1dHBA62tuEFA0feJqiq/eOAAhUWZMO/t7ubepqbzHqMnJe8/MMnUMtk+AK9oivPwfL2/yLu70ow4Ho/MlTCE4O6mOIcqDpOOx7ZUlHd1pvnHsXm+t6gU7d6mGD/RleaT4zmeLVh0Gxo/1ZWhP6rzv49MV0veAO5rirG7ZDPh1MYkgFc0x3lorjaWm1Imv7pi6dvkvCd574v1GTQJFf7noM7fDnuM2ZL1ccEv9es067XAbc6V/OKe+uXWxwWzrmR60eRXtCgMW5IJW3JjWuG/dGsYiiCQkqwHGY06MTrnSqYdyUBMoAC/ss+pW99idAEf3GDQpF/4gNKXUHQFqQUfon86EGdvrlbu9PKuCvd02vzH8SgHcjotEZ9X9lisS1++dutnSsUWRHTJYi3YdgWKkOiL4lzPB98XdWV0FxrPEex9KM3i7KdIwqd7S5nRHTGcskqi1aVvawmhSsb3xChOa0TTPl0bKxixACmhOK2hx3zMRG2s5ayC9AXxlvDaqORCs267pJDuduhcb+GUFIa3x6nkNCIJj97rSpiJgJEdcXLjOlpE0r25TLrr/DKx/FkV+/kosqCi9TkY11ewn4rhHavdb7V+G2/YgMVZVy8vhN5KhZqwoq22kHmVIK+i9rhgBHh768UMfV0Fd3/9NLXfRolLvKMGIhpgbK2gdXjIAKQlENHwXD8b4l8zMI7VxmZd76IfU1HnFnXiUyTOGp/I/trJ5Xb6BCmJPqziNwdIQB9VCJKSyo0uie/U/x1ye32CuKxbh73Jo3z3hc+Qa3Bl0N3dfcrvGnJcgwYNGpwHmpbAceeqn3UteRlH0+BHiccK+/h69gUAHOnz8ZnvsSnWy2Dk8tbMX+18Zuo420thB5hp1+aDY/v5y8Gt/OnIXg4vdFB7RaaTn+tahRME7CjO40nJtmQz0QUxKaKo1RI4XVH4vf4tfHF2hHnP4a50O9uSoZBgKiqmUnv4l1Kyp5xj3KlwXbyJ9gXBatgus6eUY2U0wZpokr8fP8zBhbEM2WU+MnaQP1953Xlv+4zj1IlIAM8Vixy1LI5a1sLv2XxkdJTf7u/nizMzjNo2NySTvKKpiTHbZlepxIpIBFfKOhEJ4LlC4YIISZoQ/PZgK1+aKfJMrkLOr2XkqEBmmQ42w7bHNxcEHVdKvjZb5E9WtbHC1DlYdphxPd7d3US7oXGw7LA+FuF1rQl0RfCenibe5vk8l7eYdj2adKVORAJ4vmDRrKuwqF+aqQje2ZGiTVfZXbJZGTV4Q2ti2W0q+ktFAieADx93mVr4qX0lySdGPf77gM7eYsCIJdmcFNySVvhBLtwHgtBw+1/G6/f9UEXya4M6z+YDogqc2EMBcKgUUPLhxrRCUhM8NOPzyTEPX0KLDj/ZrZ1SRAr3J+wuBtx5BqV4Z4sqIL1IQPnxVSW+PeYzVNKIawEr4h4RVfLgQJmPHUxwMK/z0QM61zQ5vGtViXP0NL8kRCNLj3lkGUNsTQVNvbjv/RVVoqgQLDptVD1g+Pl41ROpOKMzvjeKosD8glm2WwnNsge2FTnygyR2QQUkratsOtdXGN4er/ocxVtcVtxQ5NjTieo6Zw5H0XRJfkqnsuAdZRc1xnbHSbS55MbDZT1bMLw9Trwlh3YegpraEnocLSayrYxIBASzGmq7B1oAQ/UCinfMqBORAIJZjei9BbwRA1SJLC2974jY0rEqEUnkugqR6+r904Sy/PxnQukVDv5zGtqMgtsbYF/r4acl8e/URFd7o49xuH4b9AmV+ddXwHCJfk/H3BUeA7UgiD1h4PT7GEPhMlJI7Gs93N6AICXRJhW8rgBr65Uv2ja4ODSEpAYNGjQ4D/r7foKDRz4EBAih0t/7Xy73kBr8iHDInlw6zZpsCEnnyWGr3vC64Hv8x+xIVUQCeDg7wR2pVv5p8gjH7bAEoW0mwp8MXEtKW+qd02GYvLdr9Uv+9kcnDvNwNjyuuhD8Zt8m5jyHD48dqBZIvbOtv24sAMfsEr6UdZ3LzoW0ppFQVYqLBKDeSISdxfrfG7IsYqrKT3R2Vqc9k8/zl8PDnJB0XtXUtMRfqfcMPJOeyOXYWSzSb5rc19R0ytK9NkPj3d0ZXt4U4w+OzlSNs1/fluDVrQl+kK8wbIcBzoaYwXIJ+LuLNh8amWdsYb5XNsf5me7MkvlGbZffOTxNaeE3tsQNmjWFuUWlcT0RnQfaEvzZ0CyuDAWdt3WkMFWF17cleX3b6V8ytOsCQ4CzaJgrTDhUH2tyuBzw6TGPr0yHx0gFfnlA5fqUxrgtuT6t0B0RfG7Sx15kcdOiC35tv0N2IeZbHRP8ziqNPzrisa8U/uhnxuE3Vup8akFEAph14dF5n4hC3fpOpidyaRQbU4VrW1wenzKxA8HO+QhbmhzWpV0O5mvX3s55g305h42ZRqbEmaCo0L62wsTeKCAQqqRlwGZ4e73wWclqdWITQCWnMXnAXBCRAAQzh02MqF9nll2a1Zk+bC5r1l3J1oeklayKepKoJgMRlsO1XFjhQmgQuaZWG+ZPLQ2PlWYPjhvg1c5zkQgofy1dLZUTaQ+R8pH5cD+o7S76OptgXq1mPIlogL7hIpQnGizxP3I2+gQZG+14aLbtrvZR5wXKaE1M8pO1Dm/aVP1xUWyBdZOLu9pHyQncQR+/PTwm1raGeNSgISQ1aNCgwXnR3nIX6cRGCqVDJBNriBitl3tIDX5E2BTtrWYkASgINkR7Lt+AfkjYFEtzxKqVIjVpBtbJkRPwg8JMVUSCMHvp0dwUvZEYX5odRSJ5XXM3NyVrZUxSyqpHkB34fGN+nGNWiWviGa6NZ/hWtiYOulLyH7MjzLh2nRjzH7MjbIileL44X522Lpp8SRHJDQI+Nz3NjmKRFabJO9rbadbrRS9dUfj57m7+bmyMou/TF4nwro4OPiElzxZqAtu6aJSTc0++MDPDYp3h29ks72xv59+np7GlZGMsxgOtp78/fmVmhn+erO2DA5UKv9zbe9plVkYNPryukxdLNl2GRp8ZbtOfrG5nd9FGE4KNcYNn8hYPzdeOlwBGba8qIgE8NFfivuY4h8oO35kvkdAU3tKW4tFsuSoiAewqOfxEZ5ovThfI+wGdhspPdqXpNXU+sq6TfSWHFaZOV+TMH7M1RfBL/Rp/e9yjHECnAb/Yb/CXx1xGFhlir40r/OdM7Xz0ga9MBfy3fp0dBY+PjXhcn1L4qR6VT476VAIYjArSGlURCeBQWfLVab8qIgEUfPjmjF8nZkHorfQzPRr/b9SjEkC/CWldsLMg0QS8rk1lZezCeiSdju9NRLAXlR3tmjeIqUtVrjn74o0pCODIaIT5gkpbxqO/y6mWI0nJWZcmnYpiWWHP0SilikJ3m8PaFfYZr1tKyBZU9g2Z2I5Cf5fNYPepU8vaVtmkOlysghp6D+mSif0+brl2tcdbXNyKglupTdPNYIk4BGAVlmaoyQCEIuvNulM+QoHidO1+FG/xiLd4ddMUTWJegpJFtd1DX2/h7o+EXctWuOirHIQhsZ+JgaugZDyUeIA/vKh0LKcRub2I0CWo4XqEAPO2Mv5aG2kpqJ0u4hJG3153gNdduzbKd7okvi5Q8wpBVOL1BCQ/FyHIBHitAdpkbXuCqMRvlfgdZ2H8XffjEH1GQzuu4rcGVG5xkZewf4SwA6LPlNCmXLxOnfKNcTAu3X3qR4GGkNSgQYMG50kk0kYk0na5h9HgDLGDCnkvS5vRdbmHcl7ckljNj7fcxn9mdxBRdN7efAu9RvPlHtZVz9vaVlD0PZ4pztGlm/xM50rKgc93FhlmxxWNTmOpsee0a/OpqaFq17a95Tx/MnAtk67FJyaPkvNd7ky18Z7OVXxk7CA/KMwC8P38DA80dy+xZXZlgCPrA2RPBry7YyUf5yh7yjlWR5O8p3PVS27XpyYn+fpcWIZ71LIYt23+YOVKpJTMui5Nuo4qBNtSKa5LJMh6Hu1GmE3wc13htbK3VKLfNFGE4Mf27KHbMHhvdzfr43HcoH6cvpTc19zMK5ubKQcBLfryXc4g9Ps6bts8NDdXN/2JXI73dHURU09fMhVXFbalTvIhEYJrk2FpYNbzuWbBEPubs0UiiuCt7SleKCzt9vRktsx/zNQysPaVZrg+aS6Zr9/U+Zt1ncx5Pm26WhUI05rKzeml58aZcGNa5e82KWQ9aNVBCMGv9Gt8bMRjyJJsSSi8vUPlB9n6fe0E8GdHXYYXBKejFZ83d6j87SaDvAdthuBTY0sDcHuZ+NBQYCAqOFapnY23ZhRe1qxyc0aprg9g3pUYCsTVl1Y2vAAmKiptpk9k0eEcLyvENUnqLMqV3GDp7w0mPZ6ZkQQLHj+6ItmUWV40CWQ4lpQekFimlOxMeH5/jOGFLmsjUxHKlsKqPpvn98WYmNVJxgK2rivRkj51EG7ZAscVpBInXTs+qGooBD2+M0HZCndYtqihKLCmrz6jpbiQEZOIhusZmdTZdTiG7QiEgGDBcHm+oKFrkt7TdHyLJAIii8bTf0OJsd0x7KJCst2lc30Fz1FwKwpWQQvNsq8r4buiatQNoEUCWgYt5kciyBMd0YSkqcclmg6qZt3xltCsW/owuitGaV4jlvHpuaaEFpF4liA7ZqCbAV0bK2dsrH2+RK6vYGyykAEoUYm908TdZ4KQ6JsqRK61sHcsvS8QCLTupftXbfVZXPZ6oRBFEI4gaD6z8zhokeTfZaMUQiPt6DML9+VpBT8dYG/00A+rBGlJ+U6HJW8MXmo8JRCWIGiRRJ/UMXeGB0ybUVBzgsKbL10nxfijeYyh8Pe0WQ9hBZRenn6JpRqcDQ0hqUGDBg0a/MjwTO7bfGHqo9jSosvo5909v0mTfvWKgG9u3sabm7dd7mH8UGEqKr/QvWbJ9F/rXc+35idJqBpvaOmhRY/wpdlR5hZMtOOKhqkoLO4nJoHH89N8fX4cb6G06ju5Kdq0CE8tiEgneKowx42JZp4thmKKAF7d1MWMa/OJqWPV+e7LdNJmmPx634az2q7nCvUlewcqFfaUSvzd2BgTjkOTpvHLvb1sjMcxFKUqIgFkdJ1fX7ECgL8bHeXb2SwAo47DX42M8Ndr1/Lqlhb+flEDlJdlMsQXBKDoIiFo3nXZXizSYRhsiseZcV3+cGiIUXtpuUdEUdDOI7XDCgI+eHyO7UUbQwje2p7kb9fXBOS4qvD9XK12rElTmHLrBZdKIFkR0XlKVPAWDu2AqbMhbqAIQbtxYR+ldUXQVtv19JgKv73aqJvnjiaFx+Zrwf5tGYXPTNQHqc/mAjYnFD474ZFz4bqUqCtP6zDggXaVZ/OSUTvcMEPAy1tU3tQh+MKkx7gtuTGt8sqWUKiInDS2MzXXHiqqfPxggqKnEFEk71xZYiDh8Q8HEoyWNRQk93RZvLrXwg1gTzYMbjdmXPRlEghua7fZndWrAslAwuPGVpeUXuTxqQiqgLs6LZoikqmKwtGiRm/cpyfmM28LPnogyZSlogrJa3or3NV5dqVGfgAjU/XHZGgiguUoTMyG0wtlladfTPCqW3IsV52554jJgeMmEkEm4XHbNUXKtsJze+MUyipNKY91KypVEekE4zN6VUgKAnhmT5yxmfA3u1sdNq8q8+y+OHJh35xc0Tk+o59WSDqZaNpn1e319w5VD1hzVwHXEmiG5ERzy76tReZHImiRgPbVFpGEZOUtBWaOmAQBtAzYRDM+0YxPussh8ATaIp+ogW31BvkA3ZsrdG+uLJl+KRARiQC8ER139wlxWOC+GEXrdtFXOrgHTHDDfS3iPlrvpRNKoo/pRHaqCARel0/hdQ4YL70cgtBge6j+3FJzCsXXOJTvObdyUPNJDXN72CnOaw9QTmo8p42rCAvkMvrbxUA/Xn8sjCGbpWdYg/OhISQ1aNDgkhEEDvmJh3EqI8SbbyL+Q9xhaj63nbns00TNXjra7kNVXtobpMGF5UhlDy8UHiejtXJb+lUAfH7qH3Bk+BA+7gzxn7Of5p2dv3w5h9ngKmFbsqVqkn2CPxm8lu9mp/BkwN2Zdo5ZSx9TFSGqItIJjthFTEWlsqhkLqVqvL9nHd/LTTHmWNyUbGZ9LAVATyTGrlKWlWaC21LnVj7bFYkw6dYChLSq8q+Tk0w44cP2vOfxd2Nj/NnKlfy/iQmeKxbpjUT46c5OVpi1J/+Dlfqgbt7zGLEsSr7PTckkuhBsTSbZGIvx58ePc6BcZl0sxs92dTHjuvz+0BD2QvbSyzMZhBDLikgAb21rwziFR9KZ8I3ZEtuL4bodKfnMZJ4bUybdkVCo2Jo0+R8rmnk0WyalKry+NcmTuQpQn6l0fcrk+pTJ47kyKVXljkyUZ/MWeT/gppRJWrvwJtOn4719GpsSodn2tUmFNXHBl6Z8yosSW9qMMEvJWpj2jRnJ2ztUXMAOJBvjCqYq+N3VOo/O+xS9UKDqMcP9/TO9p84gO1u+fDxG0QvXaweCLwzFuL7ZZrQchiEBgkfGo2xucvjMkQRTC+JJR9Tnv23I12UwAaxOefzyhgI75nTShuTGVhsvgGk7zDLakPHoT/hsn9X59JE4ciFL6YG+MpMVtbp+Xwq+PhLl+haH5FlkJikCdE3iuDUhzdAD5vL1YZXlKJQqCvmSiuMJultdIoakUFLYf7yWtZYtahwaiTA2Y1BcKCObz2scHjFRFEmwKAPrRNYRwNiMXhWRws8G8ahfFZGWIxk7jdHVWaKb9fss0+OS6akXIWJNPituWOa+qIYG31cD/uzS69uf0VDiAWqPA65AafUwVjmIC3fZnBZ1SlSzfSAUacxdGvZ6j8iLGsIBe4NP0CLBh8geFWVOwe338QbCc8DPBHW+SFKTKDlBZLdGkAqwN/mgg5IVRPaoSAXsTT4yKREW4e+UBc4aD2lA9PnaxmtTCn6q/lwLohJ5JkLXBSJIq6jZRWXA6YbscaFp7NEGDRpcMib2/QWluWcAyI1/g441v0Sq4+WXeVRnTrkywvDYZ7GdGdqa76Sr4zV4fpnjo5+hUNxPKrGRFT1vZ3b+Bxw8+qHqctncC2xc+5uXceQ/euwtPcc/jv4hciE7ZGfxSX6s479WRaQTTDljyy3e4DJzoDLHF2YPUgk8XpkZ4PbUlen91KQZvKm15uHTokW4J93OdxfK4G5PtfKapm6+NjeOu6hEbVMszTXxJj4+eQQJGELhHe396IrCvU2ddb8x69o8mZ9hxKmQULUl5W9nyk90dDBu20y6LnFF4T0LXkiLmXAc/nlysppxlPM8/nx4mA+tXl0t3doQizG8SPhp0XX+YWyMQwtd3QRhNtLfj42xsxQGkE8XCrhSogtRFZEAvpPNsja6tAzs7e3tbEsm6TPP79X1iFUf1ErgSMXl4bkSBxY6sz3YnuSGpMl/zpb4m9F5mjSFNVGDgxUHVcC2pMknx3MoAh5oTbIxbvAHx2Z4sRQKcJ+ZFHxgZVtVnLrQHCkH/MekT9GXvLxF5c4mFVUI7mquD25/plfjn0ZCD6PuiGBrSuG5fH2W0jFLElPhO3MBX5sO6IkIfnuVzmvbziwceHjG5/F5n4wueGunSq95ZiLf7En+OXlXMGMvDc6fmYlURR6AyYrKC3MGN7ctzfLoifv0xGvb98lDcXbOh1Hqk9Pwlv4S35s0qyISwMNjJj2x+n3iS0HOUUjqZ152JARsWllh+/4YIFCEZNPKCuMzBoVFfkLRiM/z+2PMLZiAv3gk4O4bCpSspfutWFarItIJciWVa1aX2XUohh8IkjEfP4DvPpekvdldtiOdQKIIWc3WOjFNImhNu6zqXVrO2eD0qG0eJ+foBEUFZ3us+llEJcK8dMKYklt6DinzgtS/R1CKCxmEuzXyD9pEn9YxjoTnlrlbo3SPg7PRx7rZC0vO5hSkLrHXeSS/XnvpqQ/5lO92Sf1bBLEgmkb2aOTfYZH4UgRtduF3dqlUbl5aOutnwnu9mlcIIpLyPU6tXeQloHRHksQjOZSKJIgplG9vdFW+0DSEpAYNGlwSPHuuKiKdIDv+jatGSAoClxf3/y6OG5ajFIr7UBSD+dzzzM4/CUCxdBDXy2JZ43XLzueexXZmGkbcl5Answ9VRSSA49ZBnMCmTe9i2q0dn83xmy7H8Bqchqxn8fvDT2DJMLB7sTJDUjW4Jn55SxC/MjvKf8yOAPCGlh7e0NLLjuI8H5s8yrRrc1uqlfd0ruQXutfwjrZ+JJJmPXwo/9WedXxy6hhZz+GudDuvbu5GFYLrE00M2SXWR1PVbm+VwGfaseiJxFCF4E+H93LUDgWZg5UCvpQ82LbirMffa5p8cM0aJhyHVl3HUBSeyud5LJerzrMlHmdvub4eYdJxOG5ZPF0oMOY4bInHuc33ea5YpMcweE1zMx9ZJEhJ4KG5OXaV6rMQdpVKbIrF6qZJYEsiwf5FWU4dus6bWltRzqCkreD55P2AnlOIOFuTZl3pmqkInsiVeb4QCmGHKy5532dV1OCTE7X90K6rfHBNO9Ouzx8em63eSV4s2byvp6kqIgGUfMk3Z0v89DLd3s6Xoif5w8NuNdNoX8kjrsL1KZWsK7ED6FjolnZ7k8oNKYV5T9JpCGZcEHWFlpDQ4JHZmpA3aku+MePz9q6TOmb5kk+OeezIB/RFBT/Vo3GwJPnY6IlgUbK/FPDBDQbGcmrGSVzT7PDEVE0UXJ92ua7FYVe2lp6Q0ALS+tJsmbwr+McDCQ7mNbpjPg8OlOleEIOmKgpxXSIl7JqvPweenIrg+PVjcwPB5iaHQ4XavC0Rv7q+s2Ggy6Et45ErqjSnPUxD0pL2cD0ReiTFffo7bXYcrLkLu57CkdEIGwcrGHqA49ai6t52h7KtkC3UjkVbxmOw26G33cF2FLbvjzEyFd5T5gsaKzpshJDVDCQhJH2dLk2pgBePRLFdwYpOh3UrLDxfEI9euGykHyW0bg/juvKCRxIYmys4L9YL4N4RA3lDGXGJkhO9Pp/AkChO7RwP4rIqIgEIXxDZpVZFpBNEdmv4TZLYozrKvMDp8yi93CXxrfp0IX1EJbIzqIpIAEpFEHleq4pIAEIKtGlBYEoUqzavs8nHHXRRsoIgKS+56uB1GWTf0YpS8AlSKssqrw3Oi4aQ1KBBg0uCUPSwx6qsvbVQ1HMzJL0cFEoHqyLSCWbnf8B8bvuSaanE+rppQqgoyiXM521ARFn+3Lo1fT8vlp7BCspsSdzMy5vfdIlH9qPFU4UxHsuP0KxFeUPzalr0l77md5SmqyJSdT3FsVMKSSXfZXtpkoxmsinaUs2cuZC8WMrxyUU+Rf8yNUSvEeWDYwer5WmP5qZo1Q1+rK2fMafCnOewNdFEQtW4IdnMDcmlRuiGUGjTIyQXHGSfyM/wt+MHsYKANj3CeztXVUWkEzxVmD0nIQnCMrvuSO2N8892dWEqCi+WSqyMRvmJjg7+eXKSkUUZR2lV5ePj4+xZEHsez+V4d1cXv9LXB8DEMmVpMVVlpWly2KplPwyaJq9sbmZnqVQVNzbH47yxtZWC73OoXKbXNHlrW9sZiUhfmS7w2ak8noRuQ+PHOlLcmDLrlr09EyPnBXw3WyKpqry1LcEHjtXfx5/OW8y59efblOtTDCQvlpw6IcaTsLe0NDvGPdmIpjq/ZF/JISKgHEjaDPWsMpdeLAZ15WoAT2cDXixI/nMmFIk2JwS/OqBjqoLjlmTSkcQUQZsRCkD/Ou5hBXB9SmFTXPBI/eYz74Zjn3MlCRUMJTTm/u5c+MPzBclfHfNoN+qPSdaDg2XJpsRLH6sH+irENMmhvE5f3OOV3RZRTeIEJZ6dMUjqkvu6K0RVyaMTJmU/DFLjWsDxosa+XLjPhksa/3I4zvvWF/jHBX8lVUju7aqgCqoeVgARVXJts81/jtbuObe02dzR4SCEYMecTrMR8Ipu65zjy3g0qBNndA22bapdrxOzS8OsIIB8UWV1r8V8QcP1BP2dDpmkT2+bgyIkhbJKe5PHxsEKw5M6piFJxX1mcvXnzkxO47ZrihwaDq/p1X02qXhAKh7Q3VafQxM551zGBv6khogFxF6XRyyYwrsHzPo9qkq4hDqFNKH4RhvzOR1hg73RRy5TnikjIBWJWFQeKXVJ4hsGSjmcZgxrBM+zpOxMComMLLPOZRJFpQmFN9pEn9UQFYGzwcddGV4bQdNlPPdUQZBpyB0Xi8aebdCgwSVB1ZM09TzA/MgXABCKQXPfg5d5VGeOGWknzMkNFk3rxDQ7sayxRdO66O1+kHxxL0EQBhzdHa9H11KXeMQ/2tzT/MaqYASwOb6Nvx/9fSpB2I3phuRdvLLlbZdziD/0/KAwxl+M1bIQny9N8sHBl6OK0+e2dxpL+wN36oll5x11CvzW8e9T8MNr7bZkD+/vvvE8Rr08ByqFJdOeKczVeRwB7C8X+NDoAR7LTwOhAfcHBrbQF4ktWf5z08f595lhAqAvEuP/693ARycOYy2Ufk27Nl+dGyN6kpfSct3izpWYqvKe7u66ae/q6GDGddlbLtOm6/xYezsfHh2tm+c72SwbYjG+MTeHBG5MJnl2wcw7qig80NqKAnxwZIRh22ZFJMLPd3fTZ5r83sAAP8jn6TAMNsRi/NLBg8x74QuGTfE4HcZLi+4zjsenJ/PVQG7M8fg/w3P0RjR+Z7AVU1H47nyJCcfjxlSUP2vtqC7bbqhMOIv3p0aHodVlGWkCWnWVTmNpesF1yQgHKw5DC2VzuoBXNMfZVbR4vmDRE9G5OxOjGAT83pEZxp36ko/Xtyb48c4z6xzUGVkameoCvj5TG//uouSROZ9pB765MN1U4DdX6byyVeXuZoXt+YD9JUneg7QGuYUhCeDapMLvHHQ4WJbEVfipHo1dxXr1atiSrIvVj0XAEnHpVGgK3N9jQU99WdVNrQ43tdYLc7+yqcDT0wZCwLZWm4/srf/bOWWpfHPUrPor+VLwrbEot7fbPLaQ9aQJySu6LdamPdqjPofzGn1xn60t4W/d3m5ze/vZGWyfC+1NHsmYXy13UxWJ6wke3Z6qfr7jugIVS+Hhp1LVMrxrVpfpaHZ5dHuymrXU1eIQ0QPsRVlM8WhAe5NHe9PSsqIGFwbriRjesVCos42A2CsKKOkAY0sF6/E4LGSDGVssXuJP2wXHb5OU7l90/QTgdvvoYwseYIkA+xoPBESfC0VIqUrs9T6Jb9ff27RxhfJdDvqwgvDCbbI3+9jX+BgHA9RsuHFee4B9rYc2rWAcDtcRmBLrWo+gSVJ61bkZdTe4OmkISQ0aNLgklLM7sEtDmKkNRFMbyHS9Fi1y9bQqjxit9Pe+i+Ojn0ZKj3hskN7ut9DctI39h/4czy+iaylW9r+HdHIjN2z5W7L5HUTNHpKJtZd7+D9ydEcG+M3Bv2Vv6XmatDaezn+7KiIBPFd4lPua30JHpO8yjvKHm+/lh+s+T7gl9lfmmfMqvFieYZXZxD3pFagLGSS7StN8df4wADcnunimOE4AbIm18opM/7K/8ZW5w1URCeCJwihvttYwYF7YFr9ro0u9FW5MNvNEYbZO5OkyTB7OTlY/lwKPr8yO8oaWHv59Zpis53JXup2NsRSfmxmuCiHDdpl/nxmm6NcHhJOuxc92ruSj44exZUCHbvLOtuX3xbkwYll8fmaGvOdxVybDyzIZmnSdX+3r42uzs5R9n4yqop1kGB5VFH7r6FEqC6JXRAh+ubcXX0quSyRIaeHj5V+uXk3F96td2w6UyzyRz5PRNO5Ip/nk5GRVRAL4yuws9zc30/oSYtK06y+bXzFiezw8V+JwxeX5QihafH22xC/3NXFrOhTz3t3dxP8dnqXoS1Kqwk93pWkzNA6UHUZsD13ArakoHxmeJ6YKNsUNXiw5CODOTIzrkyYb4xEezZbJewF3pKMcrrj8zeh8dRw7ixbdEW2JiATw1Zkir2qO03oG3d76owqvb1P52rRPAKyPCwZjAubq5xuqSL6/qIubFcCXJn1+dVDh+/MBHx2pjeP6pKDJEBQ9uLtZ4dl8wMFyuDdLPvzjiMfmhGDKqe3hZh3e0qlyuCI5WpGoAt7aodJ2hkLS2dAcCbh/kY9Pf8Kreh8BtJs+Oac+Yg8QbG52uaHVYbyisiblklnIHNnS5LKl6fIEt4oCd12fZ2giguMK2ptcHnuhdi/xA8H+IZNSRa3zctp7zKRQVupK38ZnDTavLLNvKIrnC6KRgC2rLk83s5eiNKcyc9gkCAStgxbJ9qtT6ApySlVEAsBRcPaaGBssvGEdpcVDSQXo6y3UzBVQNqhA8Q0O2rCCcATuQGiWbd3i4a70UecU3D4faULwpESp1M45vzUgslfDawkIkhJ7i4/fHW5T/u02+pACCrgrAlCh9CoHe1RBlAVev49s9JP5kaQhJDVo0OCiY5eGGH3xA7BQrmIXDpLquPcyj+rs6e16Ex1t9+K6OWLRUIAw9CZuuu6fqFhjRM0eFCV862MYzbS33nM5h/sjT1xNcWPqbgC+l/3qku+t4Mp8CP9hoUlbmv/+g8IYX88eAeDh3BBH7Szv6biWYTvPH4w8WXV00RD8bu/tNOkmXcbSbKRJp0RCNSgHSwOUyjLTzpdN8TT/pX2AL86OIIE3NPdwY7KF9/cofGzyCDMLHkm3p9rqhCSAou/xu0O7yfphMLu7nOPB1r4lQkjed1ljJjho1QTPbckW7kq3c1OimRnXpjcSO6OyrzPBDgJ+79gxcn54X95VKmEoCjcmk/zvo0cZXejm9vD8PPdkMjyyYMAdVxRWRCLsXuSBZEvJtOPwxraw/DDvefzDgtl2v2nyc11d5H2fDxw7Vs3pfDyXo1mrfwyVQN73eSk3udVRgyZNYd5bGrxN2F5VRDrBQ7MlMprKJ8ZzTDoeNyZNXtkSZ8A0EMCU6/Enq9qYcHyGLJcPj9REoYQq+NNVbcRVhVZDw/IDPj6e5dm8RaehcX3S5JtzxbrfezpvcVt6+cyxcBuDl9zGE7yzW+M1bSqVQNIVUci5kk8qPvaiTd+YEDw2X79cOQjPsIdm6rPmthckf79JJ6mF59EXJ+u/twO4r0Ul7/kcLEtadXjfCp2MrvBHaw1GrYCkJkhpl6aO5439ZZxAcCCv0R31edtgmeGSyt5cTVxK6QH9cQ9Ngd742fsdXUx0DVb3htlPxbLCyfVPni9wvfpp/jLTAJpSPq++NUvJUkjGAs6joeFFwykrHP1BErlQSlWc0Vh9R4FounZcXFuAXNr17UpDukuPgXQElUeSyAXD9GAG1C73yhCSABTw+peOxW+X+O21Y1C83yH+qI6SFbiDAeq0UvM9moSgRVaFJDRwV520TgFe7xWyzacjkCj5hkfSxaIhJDVo0OCiU5x9qioiAUjpUZp9BqP3DZdxVOeGrqWWlKkpikE8NnB5BtTgjLg1/Up2F59GLoSxvZGVrDDXVL+fc6cYquxnRXQtLXrHqVZz3gRSsrsyjB14XBdbga6c359hN/B4oXyciKKxOdp33iLDvFdiT2WE/kgbvcb5ZQy+sXkNzxcnmfZCwe51Tat4PD9SN88jueP8dPsWnilO1NkCe0gOWPO8LNLL4/lRBiIpeiJJ8p7Nn4w+xQFrHkMo3JNaUVdw2h9JsS56cTIdH2jp4YGW+u5xW+IZfrpj5cL/p1ERDJpxjlqhyCKA1dEkzxTrU0iGrBItmsGsV8umui3VypZYhs9MDzFsl9maaOLNCx3hYqrGCvXCPrLtLZWqItIJfpDLEVOUqogE4b71gD9fuZIn8nnWxWIUvaViXWqRKPT/JiZ4eqHUbX+5zF+NjDBgmiwOO4Ztm23JJDsWCVJ9kQiDZ9CpTVcEvzXQyr9O5nm+YHFiKxTg1nSU7+cqdUKdLgT/5/gcBT8cwWO5Cs26ihPAh4bnyPkBzZrKr65oZmexvuSp6EumXJ+boqFw8W9TeR7Lhuf0UcvlL4/P0nVSdpEK3JaK8uRJ4wi3UWPQPLsObxldMF2SPFXx2ZJU+M2VOl+c8sm5ktUxwaaEysZEwJ5i7dfuawmzwIyTxAZNhP9OcF1KYX+5dh606LAlqXBdSqXsS0yFuvtKzxl2artQpHTJu9fWC3XdMR8vEGyfM0jrAa/sqaBdgaLKySRiAW0Zl+ls7fgPdtkUKyp7j9WEx/6u0GB7dMqoZiolYz4taQ8hIJ24cgP4wpReFZEAkILcuE407SMljO2KMXc8vJbS3S5915UueUnYmaK0+ChNHsH8wvUtJEqLhz9SnzHpHTfQ+6+uki6/OyD/jvBep+QF6X+uv+/qh1WsG6/OTLITaOMOiUfyKJWAIKZQuC+N33Fxumv+qNIQkho0aHDR0c32U06TgUt+6lFca4x48zaiqfVL5m1w+fECi6Nz36HizdKXvp2m6ODlHtJZsT6+lV/s+wDb898no7dwW/r+qinzc/nv8ZmJDxIQIFB4R+cvVTOZLiS+DPi90S/wYiUUU7r1Jv6o720YQufRwh6m3Dy3JtawyjwzISvvV/iN4c8y7mYB2Bzt5Xd63vySHkSnYkdpiD8e/zLuguj7E6138oamG85pXQBteowPrbyP/ZVZmjSTHiPJ86VJ5v1aoG4KFQVBu77UQ6gcuPzikW/hyjBo+sm2zcx5FQ5YYeqFIwMezg3xP7q3sas8TUYzeVVm4LzFtGnX4rvZKXShcE+mnbS2fJmVHfj876HdHF7IIOqPxPnAwBb+94rNPDQ/waxnc0eqjbSm85npobplO40o7+oY4N9nhplzHe5Mt/GydHhP/IXuNUt+azmklPygMMuhSpFN8RTXJ85OQGtbpnys3TCILZPmoAB/NjzMtBsGS9fG46yLRqvd1gZMkxnX5QvT09ydybD3pI5tI7bNqmUEom2pFAPRKE/kcrTpOq9rbT1js/QeU+dX+1uYsD2+Pluk7Afc0xRnUyLCK5vjfHMuHIMu4Ja0yc5SvUC0t+zwVL5CbkFcmvN8Pjae5frk0nG267XH5X0nmW1nvYC3tcc4WHGqZs/3tyS4MR3lN9QWvjtfpuQHCKDX1Hlta+KsDeH/7rjLowula0kVfne1zk1phX8Y9jhckTw86/DePpXrU7CvKNEFOEFo9v3mDpW/OObhL4zttW0qUTX8/Z2FgIInuTElGLMl7YbCO7vUarlpTL1y3+Df3mFze8fF9zm60NyypcjRsQilikJ3q0t7swe4JGI+4zP6QtmaTzLm87KtBYanDExDMthtcxH6CFxw9OjSjDAjFp67xWmNueO1GqjcmEGy3aWpd6mB/eVAeuAdNQhKCtoKF7XZJ3pvEfeggSwraAMOIiJxd9Qvp5xC2AtKAu9oBARoK22U6JWZgRWYEqnLuu5sQerKHOvZEP9+AaUSHhulHBB/vED+zVePpcbVgJDyFK0mrhLGFrWcbdCgwZWJDFzG9/05pbnQeDfRehud696PECpje/6Y0tzTC3MKutb/OonWWy7fYBssQUrJI4d/g5nyPgAEKves/D3aE5su88hOzbP57/J8/nuktRbua34LLUbnKef9wJGfY96brn7OaC38zsp/vOBjeqZ4mD8Z/0rdtHe13M6O8nF2VUI/IQXBb3a/keviL+2D84W5p/nU7BN10/5X1wPcmFhZN63gW/z73FMct2e5Lt7P6zJbEQi+lt3O86Vj9EWaeWvzzfzR2Jc4aE1UlzOFzsdWvpfIeWZNLeaJwij/d+w5goU8jVemB5j1KphCIxfY7C7PAKFH0rRb5ohda8keVTQ2RJt5vjRVt87f7budzbEzLRQ6PdOuxfsPb8daEK/Sqs4HV11PfJlsoEezU3xk/GDdtP+/vfsMbKu8Gjj+v9rLkuU9kjh2trM3BMhihV1ogRZoKR30LbSFUrqhEzoolBJo6WDTQiGlZRMoCYSEEELIgoRMEjveS7asPe59P8iWozgEJySR5J7fl1biSjnH9+pK99znOc/VJSM43d3/WPtnSw3/aa9DJVFwunlY9UcWqAbqkeY9PNfR9xvoiqIKLsgfcljv8VhzM8+0taGRWFXtxxUVOA0Gfldbyzs9I4pcej2znU5e8aTOnfpJRQU6RcEbj3NffT1eVU1uP9Jq5V1f3yiSEpOJHwwdyk/27sXbMwrqBKeTG4Yeux5lH/jDNIZjTM6x4NArXLOtCb/a95P3rHw7S9v9KSOGrDqFu8eU8Ou9bewORlF6tisyGXjXm+h7FFI1VnQGkq/J0ev405gSOmNxNvvClJsNjLUfvYYh9SGVG7enjnZYkKdjvVdNNs0GKDbBxSUG7qnte/LEXB3fqjDSEtZ4z6cy1KIw2p4oFL7SFufB+r5tT8vX8eUh2XO3/t02E+t7RiSdWhYi35y5o3QGwhfQ8dq7TmLxniKeJc6pM70YjtNy8keLpkHdRhud9YnPgD0virM0gtWpEuzS07g19aZB4aggJWNCB3ur4y64zEG8ueczoGhY5vswlPYflRPeZCG61QKagi43hmWhj3iTgdgeM4pVxTQ+BHqNwEtOCCc+b4pVxXaWFyVDp/OZtuqxvWFEiSvEHSq+8yKoeZkZ60C572tB2S8FTQ+eL/W/sS0OreyABTn2JyOShBDHnKIzUlb9I3xtb9Ne9ySBzvdo3vlH3EM+tV8RCUCjs/EFKSQdR75wE+/U/xlPcDdF9gnMGPI1LIZcAPyRFiwGN52hvckiEoBGnF3tSzO2kPSu9w0ea7or+XhHYBM/qvwTeqXvK0/V4nTG2sk15BNQU6dNBOKpoymOFr/a/+55Q7QzWUQCUNF4qWsTekXHw21v0B7zcUrOGL5QcAoGRU9Ui+OJ+Sg0OA/6fj41nLKNoijc3vg87/eMgtocrCWgRtCj8ETHmuRzH4Za8cdT3y+ixYhpMcxH8afCnJxyRlTmsi3YgYrGn5o2JC/k7Tojvxk2F7veSKnJwTc+fDXltWE1xhR7UUohKVdvZrTFfdTi+3dbXbKIBNAVj7K8s5nzDpjSBuA7SC8mfzxGdzyKpoHT0HdR/tmiCs5wl+CNx6gw21JGpERVlc54hEJjYiRMVyzCX5t2s8XvZaTVwVdLRlBsSh0lE9c0lnoaU557vqPhsAtJlxUXM8fp5JGmJvaEw9xdV8dXy8q4cehQtgQCeGMxpjgcPNbc3O+1AVVlltPJi+3tySISQFc8zgirlYim8Z7fzzCzma+Xl1NmsbB41Cg2+HzkGgxU2/qPQjuaxtnNjNuvoPOtoXnc39BJazTOTKeFi4ucNEVibOjuO+4n2M38cV8HTZEY1TYTl5e42OoP81BjoqD5nj/McIuBGTkW3u0OUWzS85UyN0adQqHJwKl5R/9ntf8gLX98MY1AvP92Lx/QD2lNp8rFxSr/bomz0asyxKLwpXIDQ606lh6w7WsdKpeXalgOGIXki2nENXAZM2c4zPp2E4/v6VvdcafXwA8metFn6BSpgahpMiWLSACBkJ7GNiNDi7NrypSiwNCpAYpHh+huM9D4vg1/R+Jc6B4SBkVLrnQGGs6izMgv3qnrKyIBaArRHWbQQWS9FS2ow1ARwTQ1iHlyCOOoMFpYhy43TnyfkfDqvl5+8UYjxtGhZBEJQAvqiO0zYhyVGaOvDhSpjhOtiqPzKsQLtMQw1CwXHWbCVNP3944Ml47gR5sUkoQQx4WmxWndcz+xcGLkR3fLayS+qRTY756womTPHdHB4K19d9Ie2AFAnXcN1CtMLvk8K/f+Gm94HyZ9DhOKL+33Ot1RHKVytG3sXpXy2BNrpSa4gypbNQB7g9t5pPF3dMbacRsKGW+fwfrulcntT3CdfkzimmmvIldvozOeGM1gUvScYB/Bcu+WlO10KNzW+BwBNfED6IXOjeTpHVSaC7mr+WW64gHKjG4+X3AyJmUjkZ6paLl6GxbFyNf23J/c5tri05NFpF6ru3f0m/71Qaiei/Nms6Tj7eRzJzpGYdd/fL+aw1VsslNssvO35k0po0H8apSmqJ8xhjzWdDcwJ6eMf3f0jfiZkzOEs90jiGuw0ruPfKOVS/PHYtIdvVv2OwLd/Z57y9vGGe4SzD3/Tms0xIdBP9VWJ3adHn/Pqm1WnZ594QBf2bEWDZjrKuLrpSOT04Q8sQidsSilJgtmJfFe73S3c2/jLrrjMYaabXx/yDgeadnD2u5ET6VN/k4WN+zg1uGTUmJqjYRSVlEDCMaPrMnwv1pbeT8Q6Pn3/Cyuq+OWqiom2Psu1Oe73Szr7CTe828WGI0YgPf9fg7213cZDNw8fDiqpqUcaza9npNcLjRN44NAgKimMcFuT/6NjqXJORYWjylJiena8jweb+5iVzDKOJuJvaEI2wKJC9utgQhLWrx0HdDQe28oxreH5XPDsLyj1vj8UEbaFIZaFPaFEn97BViYr8dtVHmlvS+2hXl6dgZSY1WAfzfHWNWZeO02v8adNTHuGGPkwF7ZBqV/L9p/NMR4qS2OqsEJuTquGWbAkAHzqzZ2pP5O8ET01Pr1VOZkVqPtw3GwIlgmNtMeKJNdpXOTCU3rO146600Mm+qnvcaMpkFBZRibOzP22UFnhCsQWuGAnsbn0e2WxIij6jBaUJdouJ0TJ1qTOrpUC+pQAwfboccg8KNIs0A8Q0dMHQn/PCfqWh+GlhixEiOBmfaPf5E4LJl7JSCEGFSioZZkEalX2LcTZ8npeJteARJFJPeQi9IR3v+kmBpOFpF6tfjeY2Pjw3jDiVEykXg3W5qfpCxnBg3d6wAw6CyMKTj/uMc7UG5jYcpjBQWXMT/5eEnzvXTG2oFEkckWzuGS4mvZG/yA4daxzHIemxUF7XoLvx76WV7u2kRYjXGaawLDzYWc7BjDKt92AMyKgcm2Yaz170557XvBfbzYtZGuniJUQ9TD0q5N/GropbzatQWLzsAZzkncXL8kZZt/tr+FXWdOGb1UYMhBryjURfoaQNt0Ji50z2SoKY+NgRoqTIWc6Zp4TP4OfXH0X9WqPtzN4sb1qGgYUDjXXYU/HmO4xckZruEAnJc3gvPyRhyTmBwHmcK2M+Tjm7vf5ZcVk/gg4OVPjTvRAD0KVxVX0hgNoWkaQ8w2/trUt99WdLUw1Z7LSa5C/tiwk9e7EiOp3AYTt1RMxG0wJYtIAPvCAR5t2csWf1fKv78j2E1UVTH2XFW+1tnMnxp39YtT69fWeWC2HNDPaEcwmPLvAYy0WvllZSWvezyYdTo2+Xz8Zl/iHDHCYqHEZKKpp0F3qcnESS4XwEELLTFN49a9e9nSU7waZjbzi8pKbPrjM4dn/5gcBh1fLe8b0fa59+tTtt3iDzPFYWFPqG/UhFlRyNHrjksRCRLx3jzCyCttcTqiGie59VQ7dEzK0THUqrLLrzLWoWOuW8d73Tp27I0m+yGdXqBnkze1uNQY1uiIwoXFeu6uiSWPmnML9Zj2qyRt86k839p3kf9Wp8pEh8qC/GO7n7xRhXfbEqvpTS+IkGPsf1znmg4smGlEVHil3oLTpDItL4JJD/6owrp2E3ENpudHcJk0Yips6DDREdYxITdKeYas8lZRGmZPg5lQJPG5y3XEKM3PjNE6R0qLp35GNA3s+TFcZZmXl86pYqiIEOstCuk19CXRfo21481GQl49sQ8To1sUq4q+tH8+xsow8UYjmi/xeVGccQzDMnM00mClmXUETnF+/IbiiEkhSQhxzHhbVuBrexODuRB32fnojbnEexoDA1gcIyka8X848k8kGmrE7p6GcYCNhsUnZ9CZcZmH0hXum1qVZx2JN7QvZbtw3Mv08qsZETqDYLSdcucsrMaDNyxsD+xge9vzoGmMLjiHAvvxb56+0H0RO/ybaInWo6Bjas5JPNf6MGadlQXuC2iOpObXHK3jBNdpnOA67ZjHVmR08vmCU1Keu65kEfMCY2mJeplhr8KsM/Bw2xvJkUYAFaYCNgZSGzbvi3RgVUw49BYsigFVU2mPpU7Tq496uKpwHn9pWUZUi+PS2/h8wckoCuypb6UzHsCg6LmyYC5mnYGTcsZwUs6YY/cH2M8ZuZW87WtkV6gTgFNdFbzaVZPsnxRD411fM3dXHfv90utUdzFbg95+z3tiUZ5tr+Pt7o7khXccjZc8jfxhxDQAnmuv7/e6fZEANSF/soiUeK8Iz3U08Kn88mQRKbl9OMAIaw6b/Z3J54aZbcmijqpp/L0l9TjoNcZ6ZD+YR1itbD5g5bSlHR287/dTZbVyQUEBFp2OkVYrI61WXu3o4LlwX2FydyjE10pLkzHOcjqx7FeE8sXjvObx4IvHOSU3l/pwOFlEAqgNh3m9s5Oz8/uKvcfLpu4Qyzx+rDod5xY4qLIa2R3suyisspq4tNjJ7mCEjpiKXoHLS5zYjvMcqhyDwqdLUn+yKyQuzL0xqAtp+OMw2anjpyOMvNAao8Co8JkSPd0xjaZIXzEmz5iYGrnVpzLOrlBoUliQr6fSqvBUU4xdAY0xdgXbQVKsCx/b0QrdUYU7tzjpjib+8TeaLXxnvJdgXOG1Jgv+qMKMgginlobY6TXSGtKjoDGjIMIDO3OI94x+Wddm5ksjfdy5NYfOSOJCfkWThRvGe3mqxsbWzkRxYFmDhS+N9jHWlf7VqaxmjVNnemloM2LQa5QWRLN6RBJAfmWYuo19x21OUZSm7VbiYQX30AjOkswqKJnn+DFUhtH8OvTlURQdRNZrsN8qdIo9TmxX30hdLagDNHSuOGqXHhQN47gw+oJET6TYPlOi2fbQCIpcdYtBRg5pITKUGulG0ZtQ9Im7HpGG1wjv/TdoGuaK8zENOSPNER6at/k1mncuTj4OdG6iePT1tO6+l2ioGVvuZPIrv4CiKNhyJxOPDENvyk1fwAeIxfyg6DDo+0ZNxNUwajyM0Zi9dzhqOleytXkJcS3G6IJzOGHY9ayp/QNd4X3k20YzY8j/sbPtBba39TXxzbVUYjcVolMMmHOmolMMaJrG+81PsMezHLPByeSSK7Cbilm++2biWuKuW533bRaNvhOnuX9/mYGIqGGiWhi7/vD+3rnGfL43fDH7QrvoirXzcOPtaD0Lj7/vW8so22S2BzYkt6+2D2xlslA8gIaGVd83PPrtzmUs9/wb0JjnvoA5uWceVqyQGHEwzZ66Ct43i8/kgdYVdMUDzHaM5JL8E9gWamB7qK8vzjhLGTfue4xgzxS4l7s2M8pSktIwe7ptOAuc1Uy3V9IY8VBpLsLUMy3xz8O/xIfhFkqMubgMx7ZfDSQuXv/Z9gErvXXkGsxcUTie31TM48NQJzadkWKjjc95U4t83fEIq7vr+VfbdiKaylnuSs5xH5vRSACnOAvZE/LzUkcDB45T8MZj+A4o/OxfCJricPP3lr3JJe4VYJojj+54/4ul7niUfKOZCrONmnBfUWW6w80CVxH3NO7kw5CfoWYb3ygbRVzT8Mai5BgM+OP9L3pHWRxcXXpkf5evlpWxuK6OncEgQ81mhlssPNrTE2mDz0ddOMx39muK3X2QKXRhTePU3Fxeam/ne7t3Y1QULiosZHZODjfv2UN9T+Hp+fZ2zjtIwehg73msbfeH+U1Ne7IwuK47yPcq8nmgoYuaUJQqi5GvledSZjayeHQJH4YiFJkM5GZI9+PnW+M81pj4u23ohl1+lWsrjNy2J4ovDqCx2Rfle8MNdMU0tvg0SkwKXxmq59YPo7T0Do7wa0x26ni1Pc6qnpXhNnbDnFwFvUJydBPA1JxjW9nY2G5KFpEAvFEd69pNrGiy4O15/v1OE18e1c13J3ip8+txGlVerLMmi0gAe30GXm8yJ4tIAP6YjjeazckiEoCKwspmC2NdqQX4dKltMvFhvRm9XkNRoLwwswotA6FpEAsrGMwa7iERjBaV7hYjJnuc5u1W4j0jrrzNJobP6ianKP1FvF6KAoay1HjMJ/qJrLehhRQMQ6Poh0RTCkkAxHVYz/aiduhRLCo6e880VCMYq2QUkhi8pJAkRIbR4mEC791JrHUt6C1YRnwWfW41wS13J7cJfvBndPYhGNzVaYz00LpbV6Y8jgbr0RtslFb/hGhgH9bciegNNsK+PTRu+x3RUCMGcxGlY7+DJWd0mqJO9HLatfdeWtpeQ1F0lBWfy/ChV9LY8hI1+x4lrgZxu6YxesSNKUWmbNAV2sea2j8kiyrrG+5jXuVPOGvMYuJqBL0u8QN7UskVKOho6F6PyzKM0QXn8vLOG/EEd2M2uJg15FpC0U62tDwBQCDaysq9v2Zc4YXJIhKAqkWp61pDddGnDzvW1z3PsLTtn0S0EBPss7ii9AZMOjNtkUZaIg1UWcdh0SeKH4G4j73BbZSaK5LT2nSKjgrraP7d8rdkvgBB1cdExyxcBjd7Q9uptIzjvMIrDxmLpmk83foAqzuXoqFxgut0Lir6Kq92/Iul7Y8nt/tXy58pMpUz0jbhsPM90Jyc0ZzoGEVMi2PsKfzcWHoOj7StZE+4lUm2YRjQJYtIAK2xbi7InU6J0ZXc5vL8kwBw6q04ranHq1FnYIz1o1fjONqWdn7If3p6HrXFgvy2/m3+XHUGVZbc5DYLnMP4b9fe5OOZjhL+0LAuuQcfbHmfEqOd6Y6PXoXvk1AUhSuLK/ls4TC+++FGGqOJ1YQUYGFuMTadnuX7jS6a7nBze902vPEoC13FfHfIOJ5uryOsxplkz6XcZMWi01NqstAY6XuvBa4iNE3jooKhvOJpoisWYarDTZ7BxI9qNhNSVabYc7lhyFj2hnxcu2sd7bEI5SYr0x1u1vr6piWen1fO54uHH3HOxSYTt1ZVEVFVTDodX9u+PeW/r/V6iagq9eEw3fE4s5xO/t3WRrinwbZVp+MEp5ONPh8PNvUVMRfX1fHlkpJkEQkgqmm0R6M49Hp8PcUjo6Jwcs9UuONpdVcwtUdXXKM1EucHFfnsCIQZazfj6ikaGXQKo22Z1aj1TU/q9K7tAY3nW2I9RaSEfSGNPSGNG4Yb2dIdp8KqpyOq9RWRet+rI87G7tTRRhu9Gt8dbuTplhgRFc4s0DPhGBeSDuzRBNAR1iWLSL02dJgY6YwRjCsYdcpBX3ewQWP6g2ynO8IpoUdbY5uR93b3FfTf2WLHNcuLw5Y9q9H5PXr2rbcTDeox2eNUTPfhKIjhKIjhbTYki0i9OutNGVVIOhhjRRTDsC5QQdGDpkIkJ47W3Vuk1DBUhVEU0OdnxjRJIY4XKSQJkWEitS8kikgA8RChHQ9jqujfjybWsTmjC0kG84FTn3R0t79NZ11io1UoYgAAPmZJREFU9IZOb6d8wk9p/fA+oj2jLGLhFpp3/pGKaXf1e7/jpa3jTVralgGgaSr1TU9jt43gw5r7oOdy1tO1noampykvuYi2jpVEY14K8k7CYs7saXktvvdSiioAzb7NWAwuGrzv4jSXU+6ajV5nYkrZF5nCFwFYXXMHnmCi90s41sXaffdQ5EgtlsS1CFE12O/ftBoPf7pKa6SB51ofTvZ8ed+/lpWdLySWrG97NDEqSGfna0N+SkQNc1/9rUS0EDp0XFT0VebkLkq+l8vQfwpekWlIcpvWSCNvdb1Mjt7N1JyTMepMBOI+1ne/QVyLMS1nLnXh3azsfD75+tVdS6mwjOaV9if7vffOwOajUkhSNY23fbuoj3YwzVZJlaWIPIOD60vOSm6zpP3tfq/LMzq43n1Wv+c3+WvYHmpknLWcibZjt+T6obwXaEt5HFRj7Ap5mGzvW473K8UTGWrOYWfQwzhbPqqm8toBo5TeC7Qds0JSL7NOzy+GT+TFjkY8sQinuAqZZM9lot1FhcXOrqCPkRYHT7bVJpttfxDwcmP5WE5xFnJ/84fsDQd4pbOJHw6t5ucVE3mp573mugoZY3Xyk5r32dYzjW6MNYeFuUXc8OHG5GXtRn8nz7fVs8LbSnssceVfHwni0hv5YnElu4M+xtucLMg9OucdU888mjyDAU+s7+LOaTDw5/p6VnkTsRabTHx/6FDe8nppiUQoM5vpisV435c6qkMD6sL9VxbMMRi4tbKSpR0dRDWN091uys3Hv0iTZ+w/sqgpHOXeeg9xDYxKYqW3mc7MvGGQZ1SoCfUVQcw6+jXQBqgPadxbGyGogkKcTxXpDljiAvJNCm6jRtt+A2DyTAqTnTomO00HvuUxMzU/wopmMx3hxL7JN8eZkhfhzZbUESAmncZvNrvo6ikwTXGHMek0Ij1TkMY4o8wvCbGxw0RrKPFeuSaVucVhPGEdGzoSx5te0Zhf0v8YTYdWT+olmYZCa6cBhy17RrTUb0wUkQAifj3179sYMSdxXjBa+xfsjJbsKJIpCvSuKqDowHpaN9HtZrSQDsPwCIaSzC6GCXGsSCFJiAwT99Ue8IyWnN62P31O1fEJ6AjlDf0Mgc7NPQ22FXLLz6er/ll6f76qcT/ttf8k7E/NNxLYh6apKAddQuPY8wf69x/p6n4fDijA+AM1vL/9Znz+xAiLfQ1LmDTu19htw49DlEfGbe1/zGhanFd2fjdZYKp0L2T20G+mbNMZSv2bhONeHKbUC3kFHSPzz6QrtI8mX2LaWLFjMsNcJx12nI3h2n6Ng+tCu9niX5d8Pqj6Wdr2OEHVT0RLjPRQUXm+7VFmOOfzdtcydgbeo8Q0lHJzJfXhPQBMdZxMlTVRgN0X2sXd+35MrGcU1VrvMr5S9mPurL2R9mhias/yjv8w+yC9kz4MfoDab/ITlJuPzufy3pb/sty7FYAn2tfwndJzOMExMmWb01wTeMX7Hh09fZFGmIv7TZED+FfH2zze/lby8ZUFcznfPe2oxHk4qswu1vn6RqwYUPDEQtzR8A65ejPn542k0GhjvK2AveEutgXbGWftX4isNB+f0Su5BhOXFVWkPGdQdJydlxjFta67I1lE6vWWt431fk/y6A2pKo+31PLL4RM5xVVIZyzCWJuT1d62ZBEJYHuwm/96mvuNjdgb9tPcMyqqV10kyM/zjt1Iss+XlPDb2lqCqopRUVjkdvNEa99CCc2RCJv8fqKaxia/n01+P0s7Ojg7r3/R9kSXi9pwmK09PZFy9HoW5eVRZDJxVWnpMcthIE7Ls7OmK5hspH2yy8pyTzA5lSuqwT+aujK2kHRpqZ7dQRVvLHGN+9kSA1OdOlZ4Ivh7Dstys8Km7jjBnq8vDXixTeWsQh0vtSa6kRWb4PwiAxNyVO6piRHRwKKDK0qP/yWCzaDx7Wovmz2JZtuT8iJY9DCnKMTqnmJSkSVORFWSRSSAjR4z14z10hAw4DSqjHdH0Stwfc97xTWY7I5iNWh8rirAlPwoHSEd43KjFGRIMcPl6P99knuQ5zKVpkLYn1qcDXn1hLw62vZY0FRwlkTwNiUKk2ZHnPyqzCjiHS6dVcM8JfTxGwoxyEkh6X+QEg2j6fRwkNVpPoou0I3t3RUY2puJFg8hMH0emunoLwt92NQopvf/jqHhbVRHCZGJX0TtWdknWxkKphJteqPvCZ0Z09BzQIsTrnkO0DANWYShcGbaYhwIo6WE4dP/RKh7BwZzASg6OuufTtkmHunE7p6Kb7+LXFvulLQVkQDcrqnUN/17v2d0FBecSlvHSuLxvl4mZnMxHZ19I0JUNURjy0sMLbuY5tZlgEZRwUIs5iK6fTvZW/cw4UgbhXknM6z8cyjK8e+zUWAfy4Tiz7Gt9T+oWowReafT5t+RMkppr+d1xhdfwraW/ySntuXbRiVXcQNwmocwvugS/JEW9nWtxqi3Mank8+SYy5hf9RM8wT2AdtDC1UCMsFVjUizJAhFApXUcm3yrU7bzxbsIqqkrToXVIC+2/YM3ekYQve9/m8n2OZxf+CWWdfyLjb7V7PrwfT5V+CU+CKxPFpEAPgxuZXnHf5JFJIDueCchNYCCLvl3UlCY6ZzPVv86uuOevhgt45jomH1EOe+vKxbgde8HyccqGs963qXMmMtDbW/QGOlklmMEV+SfxB+GfZ61/t1YFCMz7JUE4mEeaF3BtlADYyylXFU4j2c876a8/zOedWkpJJ2fN5KasJd3fI3Y9Sbm5Qzlnqa+XlXrfE38YtjJ3Fy7koCauMO72lvPWbmVvNZVS0xTOTW3glOcQ4577AdTfJDvwAKjmdABxaWueIS/Ne7mlc5EEa3QaGaus7Dfa+06A1adnuB+r5+ek0d3PMYH+xWdpjhyj1IGB1dtt/Pn0aPZHQoxzGxmZ7D/SMPWSIS3vH0xacDOYJAz8/JY5vGgVxQuyM9nnN3OTcOHs767G188zsycHHIMmfHT067X8asRhewKRrHpFMotRj6/JbVhelcsM4oMB1Nh1XH3OBO7AholZoU8Y2I0zm1jTKz2xDHrFE5y6/jprij7jz8Kq3B+oYEz8qEzpjHSpqBXFPJNev5YraM2pDHcqmA72Dyw48BqgNmFqaNwLqoIckpxGH9UYZgjzsO7+i/jrQNOLk4tTJj1MLMg9b10CozPzbzeQ8NKInR4DdQ0mdDrYExFELczewpJig7sBVH8bcbkc/b8GLtXO1FjiWNJUTQqZnajN2rY3HGO08KHQohjJDO+zcXRFYuiRCNo1gO+aOMxHG+9gmnfTjS9keCkEwmNnTqgt3S8+RLG1kTzXf2eD1BUFd9J/adPHG+mbf/CtOs5AHSBFnSrf0XgzHtBlxnNMI+EqXQeWriTSMMy0JsxlcxFMVixjLwcc9UloGko+uM31HygoqFWoqEGLDlj0OkTF1iKzoDV1Tf9zuqaQLDr/eRjZ/FCcgrnouithLxbsOSMoaDyKgDC/lriMS9W57hk0SUW6SDsr8WSMwq9of8PyaPB5ZzAyMpv0tj0HIrOwJDSz5DjGEX16JupqfsH0aiHwvz55NjH0Nj8bMprVTXKpi03Eo0llu9ubHmRSeNuY+vOW4jFEhdddY1PodfbGVJ64TGJ/+NMKL6ESvcCOoN7KXRU88aeW/tts6X5SfZ4lgOJ/kdO0xBGF5zbM/1tCFPLvohBb2ZOxXeIqdeiU4zo9iuMua39R8UcDrveyVfKf8zS9sfxx73Mdp7GXPe5vO97m13BvuNnhnMBQdXPy+3/7MvPMYuN3akFp83+NeSbStgR2AQkikOPN9/NhIMUfZSD/LLNNRTw+dIbWN7xHzQ05rvPp8pWzdXlN/N82yO0R5qZlHMiZxdcdtDXHw0KCr9qeIbWWDcAz3duwKQYuLzgJBY4+z5jf2p6kXX+DwFo83UTUMMoKP3eKx0sOgPfLZ9FUI1hUnQsblyf8t9bY0Ge69idLCJBYuU2m87Ig6PORtU0zBl0bh9qtnFh/hCeaa9DBUZZc/hUwRDqI0HW7dfDaKrdzYuevibprdEwHdEwZkVHWEsUKsyKjnm5RUxy5PJ4aw1dsSjzXEUscBUx2Z7Lw817+DDkZ4LdxeeLhh/z3Kx6PRPsiXPsRLudfIOB9p7pbgowx+VKKSQB6BWFL5eW8vniYnSAoWeqnEFRmOXMzAUKFEVhlK3v+/SUXBvLPX03DOblHvsm9J+ESadQ7Uj9POcZFc4t6vt5P9etSzblBpiSo8NlVHABxebU1zoM/d8vU7hNKp0RA+1hHTMKImzZr2l2kSVOuS3OLm9iRFKRNXMLgB9FUWDqmACTRgZQFLJyxbahU/w0brUR7NRjz49hzonR3dy3nzRNIeAxUDJWRvMIMRhIIWmQMe96D9v6lehiEaLFQ+g+5dzkyCHLzs2Ya3cAoMQi2NavIFI2HNXp7vc+ukA3ptqdqGYrkbLKZBGpl7Hp4MsPH3VqFEP9GpSQh1jZCWj79dIA0DdvTHmsC7ah665DdaVOR8g25uEXoIZaiOx7iZB3N5F9L2Kf8Ut0loJ0h3ZQnvrnaNvzEKCiM+RQPuGnWBz9VxAqHfcDOuufJRKsx543A2fRfHxta4iFWzBay3CWnI7BlEvzzj/ibX4VAKO1jCETb8XveZeWXfeCFkent1JW/WOsrvHHJJ/igoUUFyxMec7pGMvEsb9EVSOEI22YTUXkOMbS7dsGgE5nwWzMSxaRAGKxbhqan0sWkXp1ejelrZC0x/M679T9EVWLYdBZGFd4Ee2B7X1T2/IW0urbkvIab6SO+YU/Y1rZl/u9n0F3bEYmjrRN4Bu21CLXVWU/YIXnOVoidVQ7ZjDDOR9N03Dq3ewIbKLMPJx57vO5Z9+P8Mb7LuTtegf1oT0p7xXTooyyTmSr7x0iWuIu9kjrBBbkXcjG7lW0RhMX/k69mxnO+TgNbqbkpE7TK7dU8rUhPz3qubsMNhY6x/OqN1E006Fwcs5o7mt9PWW7TYEazolNYbVvJ2bFyJycUWw6YGrmpkAtn8ufwz/a30w+d2HejKMe8+Gw9jQPzzX0n7JbbOx/4Z5rMGNUdKSp/nVIlxVVcFZeKYF4jHJzIvbrykfzQkcDNSE/kx1uCg2mlEISQEhTuWX4JJZ6GtE0jUV5pRSbLBSbLPy8YmLKtvlGMzcMGXvccjqQSafjF5WVvNDejjceZ0FuLhMdDhbk5rK8sxNIjAbpXY3NlI1XwD2+VJZLudnAjkCEMTYzZ+YfmxsWx9N5RQacBoUNXpWhFoWzCzOnGDtQ7SEd927PobOnWfOCkhBfGuVjQ7sJl0llsjvM77Y4k72VTikOccGw/iPpsoE++3ZPktGiMWxa3yhhb5Ox3zYGc2Y0NxdCfHJSSBpElKAf+7rXUHpWUjE212Hd8g6BqacAoPe0pm4PGFrqMW9YibFhL/HcfHyzT0PTG3G98k900cRw4Gh+CfGcXPTdncnXxnP7D8s/Fixv3oqhdTMApq2PE5x7C+p+Sz+rruHoPTuTjzWDFfWAYlM2ivv2Edn3UvKxGmwmXPMM1jH9L+TTTY0Faa/5O709hNRYN+01j1E+/maC3m3EI53Y3FPQ6S3oDXbyKz6XfG3Qu43GbbfRO+w+2Pk+JWO/mywiAUSDDXjqn0k8pyXuqqrxIG17H2Ho5N8etzwBPJ3vsmPPXcRi3VjMxYyuupFgqI5orIsC9xw6vZv6vcZsKkCnmFD3m0Jltw4/jlH3UbU4GxseRNUSIwtiaoh671rOHPV7GrvfJcdcTrlzJqtrb6c70nfhazG4Mekd1HhW0h1poNw584inrX0SVr2dRQWfTXlOURROzD2DE3PPSD53buGVPFD/ayJaCD0Gzi+8Cm/Mw/Zg3zQqi87GVOcpjLZP5r3uNeQYcpnsmINBZ+T6Yb9jY/ebxLQYU50n49Af/9EUXys6lRn2SuoiHUy1D6fUmMtj7asJ7LdKW4kxl2/X/h1vPHHB9FzneoaZCtgd7puaV2Eu4KK8mYyylLCzp9n2OGv5cc/nYM53j2Sdr4nmaGIEyBmu4SxyV7Ep0Mp6fyKHkZZc5ruGpTPMj+U2mHAb+u66W3R6Pl3Q19A8qqkUGc20RPum3cxzFTHcYuf/SlP7XmWqQpOJLx7Q0+jqsjKm5+RQHw4zLSeHiKry3d27qQuFmJaTw9fLynBkyDS2gTIoCucU5HBOugM5yubl6ZmXl70VimWNlmQRCeD1JjMnFoW5fESiaPGfGmuyiASwstnCiYXhrByZNJjkFEfJKYrS3ZIoKFldMdxDs7Mv0v5Ur47IFkuy2baxMnsaogtxNGXXN7w4JH23J1lESj7X2Z78/9GSCix7+vpuaHo9psa9mOoT0yAMnlZyVr5ApLwyWUQCMLY34Zs+D+u2Dej9XmKufHwzFxzjbEDXsTNZRAJQ4mGMu18kPOObEAuDzkCk+nPofPXo27aiml2EJ30ZDInGmDrPbkxbHkUXbCc65BSiYz+TmMSdBbSwZ0DPZYJ43I+mpn6JxiMeGrf/Hl/rSgD0RjdDJ/8ao6WYUPcOIoF6bLmT8XesZf/eDZoWxe9Jne4CEAu3o8ZSe+HEIsf376FpcXbt/ROxnqlFoXAzNfV/Z0zVt9mz70GaWpbicIzGaiknGEr02bBYyigpPAOT0c2e2vuJxX3kOqcwtOwzxzX2XqoWIxJPXVkpGPOQa63AbirCqE98dqaUXoU/0kpHcBdWYz6zh3yDtfvuobZrFZCY+nby8B9Q7szMPl2jbZP4adV91IR2UGauwGnII67F6Y53st67klxDPucVXolFZ8WiszI/74KU11v19pTCVDroFIWZjhHMpK9w/o3iM/hry3I64wHGWcrIMziSRSSAfZF2vpB/MkE1QkPUQ6kxl2uKTgdgom1o2lZr+yj5Rit3VZ7KtmA7Lr2ZoeZEwe5HQ05gd6iTqKYyxuI+ZtMFjxejouPnFRN5rr2ezniUuc5Cpuf0b0ydbXSKwkynk5kkVhm8dudO2qOJ3jPvdHfjaG7m6+WZUbQU2c0bTf3tpqHQHVWwG8Co6//fAbqjOikkpZmiwPBZPoKdelSVQdEXSYtDcFkOWjBxzMUbjSh6DcOwzOu7JcSxJoWkQSSWV4JqtqIL911YRAvLMO96H9XmIDJ8DP5gN5ZdW1DNZoKT5mB/Z3nKe+j9XpRo/5Oh6syj8/yrUMJBNMvx6hlwkOGvagzz27djqF8DJjvhCV8gOPcWjFv+jmnnC1jeXUy0YxuR8ZdjffOXKJHElCLzB/8Eo53oyOy4z6h3j0OxFKKF+kaRGUvnpTGij2Y0F2B1jifo7ZsOZXVNpLOhr39QPOrBU/8sOr0FT12ikbWiM+Eq6d9ny+6ehr9jLfFI79QkBWfxQjQ1gr+jr7m1s2j+Mcnno8TjISLRjpTngsE6du65G09XoplxKNxEXu4shpZ9FtDIy52FXm+mqGA+BXkno6ohDAbHcY17fwadmSGu2ezr6mtuXmKfxAvbv0F3uB63tYo5w24kx1zKwhG30NS9iTzrCDS0ZBEJQENle9tzGVtIgkQxaKy9rwecXtFzQeFVXFB4VRqj+mRmO0Yyw15FQA2To7fyePvqftsUGHNYXPEFvPEgTr0144swBkXHBFv/Ea4jLLnHP5hjqMBo5qqSzF5p85Noj0aTRaReOwKBj9haiMMzPT/Mtq6+aVKF5jjLGyxs7TJiM2hMy08d5ZJnjjPcIUuyZwprbvY0Df848VZDsojUK1pjkkKS+J8khaSPofMHMe1rRrVZiAwpyuzudwYD3gWfwrbxTXQBH9HiIVi3vIMunji5hYeNwnfyOYRHTMC0bxdKKEAsvwS9r6+nS9zhIjRuGuZ9O1FiidfF3EVEi4eCohzHIhKoeaOJF1Sjb0ssga3pTGhGK6Y9ryQ2iHRj3nAvmsmBeXvfKlum3S+imRzJIlIvffP6rCkkKTojjhm3EK55GjXcial0HsYMXqWttPoHeOqeJhKow543A6OlKKWQBIkV2ro61iYfa2qEkG839ryZ+DveIVEwOg173gyG2m/FU/cM8ZgXZ9FC7O4pWJ1j8dQ9Tdi/B1vuZFyli45rjgaDHaejGq9va/K5PPdMmlpeSdmu07uRcaN+2O/1Op0BnS59RaRes4deh8tSgSe4m2LHJHa2LaU7khhB5Ql+yLr6vzC55POs2PMLwnEvOsXAxOLPkZgM21fcVcjgc+Egpld05PSMHDvVOZ6lnZvxqYnGpWVGNzPsI1AUBZchs5sEi+yyKxDg6bY2wqrK6Xl5zHI68USjPNnaSkM4zFSHgwKjkbb9ikmjbXIMiqNjan4UneJjY4eJXJMKmsbKlsR50B9TeKvFwqXD/WztMuIyqswvCaGXryhxDOhs/Ue56Rwy8k38b1I0TcvqrmcNDQ0fv9ER0rd34XrlLZRYopIeGVJE94LMvZg/kGP1Usx7t6U817Xw0+SsfgldKHGnMObMQ3W4MDbVEHcV4Jt9KvG8YnS+Lky1O9BMVsLDx4Chf8O84yIewVC3KtFsu/xEzO//HUPDmpRNopVnYtzzcspzkcpFGPe+iqL13ZGKjLqAyMQrj0vY/+s0LU7N+m8RDfZ+PnWUjLmBpu23p2xndoxi2JTbiIaaURQDBnP+8Q/2MESiHvbuewR/YC+5zskMG/I5Nm/9PoFgX4Njh30kk6t/l8YoBy6mhvnX+6k9h0x6B27rCJp9ff2ejDobZc4Z1HS+AYCCnrmVP6Y0Z2CrPopjpz3mY1X3dsyKgVNyxmLX929gLcQn0RmN8s1duwj3TJ1XgJ8NH85DTU3sCfWtvnSa283uYJB94TDTHA7+Lwt7JInscN8OR8oIJYD/G9PNSKeMQhLHXnijhegHFtAUdK44loXd6KxZfTktxEcqKyv7yP8m3/CHYP3gw2QRCcBU14Le4yXuzsxlbPuJ9/9CNdVuTxaRAAzeDronnUj3/NQeIarDRag6A4pmehOxir7Vs2JFk1IKSZreTHTYPAx7XkHZb7REvGwWam4l5vceRokFiBVOIDLm08c19P9liqJnyMRb6Wp8kVi0C2fhPKyuarpbV/SMPkpwlZ4JgNFSnK5QD4vJ6GZ01XUpz40cfg3bd99OONKKxVzMiIqvpym6w2fQmcm3jaE9sD35XLFjEl2h2pTtomqAKSVXMtQ1B1+kkbKcGTgtQ453uOIg8g0OLnBPT3cYYhDb4PMli0iQGJf4WmdnShEJYGcwyO9G9F+tU4ijbaQzmlJIsuhVhtqliCSOD/OUEMZRYbSwDt0g6PskxJGSQtKhqAfr0ZM9FefQqEmY6naj9Aw6ixaUopkPMtRczZ4hmbHKM4gE2zHUvo5mziUy4QrU/LGEZ16Hadu/QI0SHXEu8eIpie2HzUWJBtEGWb+NbGAw5ZJfcVnKcyVjb8Tb9F8iwTrseTOxu6elKbqjJ8cxmumT/kwk6sFkdKNkSUP3XicOu4F36/9KR3AXxfaJTC//KrvaX+a95seS2xTZJ2A15THENDuNkQoh0qHYZOr33BCzGYtOR2i/3w/FxjSNXBb/c04pDuOL6ljfbsJlUjl3aBBz9i5KJ7KQzq6BffD0fhLiSBy3qW0bN27kwQcfRFVVTj31VD71qU+l/PdoNMo999zDhx9+SE5ODtdffz1FRR+/jPuxnNpmaO7A+eoalJ7iUbQoD++ZJx6zf+9Y0Lc3Y67dgWrLIVRVjS4cxPXSP5KrssUdLjrPviJ9U9eEEBlH01R2ti+lsftdXJZhVBd+GlMam4QLIdLrLw0NLPd40IDxdjvfHzaM1V1d3N/YSFTTKDQa+VFFBeVmmVophBBCDBaHmtp2XApJqqpy3XXXcdNNN5Gfn88Pf/hDrrvuOoYM6Zsa8fLLL1NTU8PVV1/Nm2++ydq1a/n2t7/9se99LAtJAHpPN6baRlSbhXBlORiy/5aHzu/FvGcbmsFAuLIazWxJd0hCCCGEyGBtkQhhTUspFvnicVojEYZZLOhlfocQQggxqKS9R9KuXbsoKSmhuDjRB2XOnDm88847KYWkdevWcfHFFwNwwgkn8MADD6BpWtqXLo67cwi6c9Iaw9Gm2p0EJ8xKdxhCCCGEyBIFB5ni5tDrcVitaYhGCCGEEOl0XJp5dHR0kJ/ftxpTfn4+HR0dH7mNXq/HZrPR3d19PMITQgghhBBCCCGEEAOQdc22X331VV599VUAfvOb31BQUJDmiIQQQgghhBBCCCH+NxyXQlJeXh7t7e3Jx+3t7eTl5R10m/z8fOLxOIFAgJyc/lPKTjvtNE477bTk47a2tmMXuBBCCCGEEEIIIcT/mEP1SDouU9tGjBhBY2MjLS0txGIxVq9ezYwZM1K2mT59Oq+//joAa9asYfz48WnvjySEEEIIIYQQQggh+hyXVdsA1q9fz8MPP4yqqixYsICLLrqIJ554ghEjRjBjxgwikQj33HMPe/bsweFwcP311yebcx/KsV61TQghhBBCCCGEEOJ/yaFGJB23QtKxIoUkIYQQQgghhBBCiKMn7VPbhBBCCCGEEEIIIUT2k0KSEEIIIYQQQgghhBgQKSQJIYQQQgghhBBCiAGRQpIQQgghhBBCCCGEGBApJAkhhBBCCCGEEEKIAZFCkhBCCCGEEEIIIYQYECkkCSGEEEIIIYQQQogBkUKSEEIIIYQQQgghhBgQKSQJIYQQQgghhBBCiAGRQpIQQgghhBBCCCGEGBApJAkhhBBCCCGEEEKIAZFCkhBCCCGEEEIIIYQYECkkCSGEEEIIIYQQQogBkUKSEEIIIYQQQgghhBgQKSQJIYQQQgghhBBCiAFRNE3T0h2EEEIIIYQQQgghhMh8MiJpgH7wgx+kO4SjTnLKDpJTdhiMOcHgzEtyyg6SU3aQnLLHYMxLcsoOklN2kJyyRybkJYUkIYQQQgghhBBCCDEgUkgSQgghhBBCCCGEEAMihaQBOu2009IdwlEnOWUHySk7DMacYHDmJTllB8kpO0hO2WMw5iU5ZQfJKTtITtkjE/KSZttCCCGEEEIIIYQQYkBkRJIQQgghhBBCCCGEGBApJAkhjpnBOOBRchLpEI1G0x3CMSHHXnaQ/ZQ9BuO+kpyyg6qq6Q7hqBps+QCEQqF0h3DMDMbPVKbnJIUkBueJwufzEY/H0x3GMZHpH6rDEQgEBuV+6urqIhaLoShKukM5aj788EMikQiKogyaY3DdunWEQqFBtZ9ef/11ampq0h3GUfX666+zatUqYPB8X9XW1hIMBgfNZwnA7/cPmv3Tq62tLXneG4wG0/7q6OggGo0Oqn3V1NREOBweVDlt3bo1+b07WM5/q1atIhAIoNMNnsvK5cuX89577xGLxdIdylHz+uuv8+yzz6Jp2qA59gB27NhBZ2fnoCqStbe3Z8X53JDuANLt/vvvp7S0lLPPPjvdoRw19957L93d3cRiMS6//HKKi4uxWCzpDusT+fe//01+fj7z5s3L+A/VQD344IN4PB6CwSBf//rXycvLS3dIR8WDDz5IS0sLsVhs0OS1bNkyHnvsMS688ELOPffcQXEMPvbYY3zwwQeMGjUq688PvR599FHWr1/Pd77zHVRVHRQ/ah9//HFeeOEF3G43CxYsGBQ53XfffdTU1GCz2bjwwgsZO3ZsukP6xP72t7/h9/sB+MxnPkNBQUHWf67uvfde2tra0Ol0nHnmmYwePRqn05nusD6xRx99FJfLxfnnnz8oPk8ADzzwAM3NzcRiMS6++GJGjRqFXq9Pd1ifyEMPPcS+ffswmUycd955VFdXpzukT+ytt97ij3/8I6effjpXXnnloPgt8fjjj7N+/Xqqq6ux2WzpDueo+Mc//sH69ev59re/nTxHaJqW1fvrscceY9myZdhsNi6++OKszmV/DzzwADt37qSwsJCpU6cyb968rD+v/+1vf6OjowOLxcK8efOoqqrK2O/e7P5LfwKqqnLXXXfh8Xg4/fTT0x3OUbNq1So6Ojr43ve+R1VVFcuWLWP16tVZXVH/wx/+wGuvvcbq1avZsGEDkN2jkjRN484776S9vZ1rrrmGvLw8HnrooXSH9YlpmsZtt92Gx+Ph+9//Pna7nWeffTbdYR0VpaWljB8/Ho/Hw6uvvprucD4RTdP4+c9/TltbG7/85S9xuVxZ/XnqVV9fT11dHb/5zW8YMmQIkUgk3SF9Iqqqctttt9HS0sKjjz7KqFGjkqOSstl//vMfPB4Pv/zlLxk2bBhr165Nd0if2NNPP01XVxfXX389lZWV/Otf/2LdunVZ/b27YcMGWltbufnmm5k1axY7duzgxRdfzPrP1X333cfGjRtZuXJl8vOUzec/TdNYvHgxHR0d/PCHP2Ts2LG88sorWV1E6v0t0dHRwc0338zQoUN566230h3WUVFRUcEJJ5xAMBjkiSeeSHc4n4imadx+++3U19fz29/+lry8vKw+5/Vqa2ujtraWX/ziFwwZMoRAIJDy37PtfKGqKr/5zW9obW3l/vvvZ9SoUTzzzDPpDuuoePXVV2lra+PXv/41kyZNoqamJuuLSMuWLUteR02bNo3Vq1fz6quvZmx7g+z+ax8hTdN46KGHaGlp4cYbb8RoNFJXV0dnZyfBYDDd4X0iHR0dFBQUAPDZz36WESNGUFtby/r169Mc2ZEbO3Ys119/PfPnz+fll1+mpqYGRVGydkh6e3s75eXlfOtb38JisfD1r3+d9vZ2amtr0x3aJ+L3+5kwYQI33HADAFVVVcTjcVauXJn1nytN04hEIlRWVrJ79262bduGz+dLd1hHRFEU/H4/JpMJgDVr1vDcc8/x/PPP4/V60xzdkevq6sJut2M2m1m1ahX33nsvf//731m9enW6QzsitbW1jBs3juuuuw5FUcjPz6etrQ3I7uk4wWCQyspKAPLy8mhvb+fZZ5/lww8/THNkR87r9SZHVV1wwQX4/X7WrVvH5s2b0xzZkevs7MTlcgFw+umnM2XKFEKhEK+88kqaI/tkRo8ezfe//32uuuoq/vOf/7B9+/as/j0RDAYZNmwYV199NQAXX3wxjY2NbNmyJc2RHTlFUZg2bVryt0Rubi4ej4f//ve/NDQ0pDm6TyYcDtPd3c3ChQupr69nzZo1dHZ2pjusI6IoCtFoFKfTiU6n48033+SJJ57gX//6F3v27El3eEcsHA6Tk5OD3W5n1apV3HXXXTz44IM8/fTTAFk3kqerq4spU6Zw3XXXATB+/Hh8Ph+apmXtea+X1+slNzcXSPxO37NnD08++SRr1qxJb2CfgMfjobS0FIBTTjkFgJ07d7J8+fJ0hvWR/icLSYqiMHfuXKxWK5s2beLxxx/n/vvv5+6772bJkiXs2rUr3SEelkAgkLwLMGvWLAKBANu2bQPgxBNPpKCgIPkjPVsq6YFAIFl9XbRoESNGjGDChAlUV1fz1FNP4fF4sq7qHAgEUFWVgoICFi5ciMlkIhqNEolEUFU1a+8g9vZ5cjgcnHXWWQCsXbuWp59+mjFjxrBmzRqeeeYZuru70xzpwPXuq16VlZVUVFRw4oknMm7cOB599FHuuusuQqFQ1nwRBwKB5GiCX/3qV2zZsoXvfve7LF26lLy8PN59911efPHF5PScbLB/j7GRI0fS0dHBY489xurVqznzzDNxOp1s2bKFdevWpTnSgeu9+zl8+HDOO++85PMTJ07kpZdeorOzMyvPfb3fURMmTGDt2rXceeed/POf/+SUU06hsbGRlStXZtXFx/45DR8+nI6ODrZs2YKqqpjNZnJycrLue3f/c9ns2bPxer3Jz87o0aOprq6mvb2drq6udIV4RPbPa+7cuRQUFFBdXc2iRYt44IEHktP3sklvThaLhVNPPRWn05k8Hu12OwZD9nWu2H8/nXbaaQBs3LiRp556irlz51JbW8t///tf9u7dm6YID19vTr3/W1lZSVlZGZWVlSxatIgnn3ySW2+9td9vjky2f5zf+973qKmp4Uc/+hEvv/wyo0aNoqmpiTfeeCOrbo7un1NJSQl1dXU89NBDrF+/nosvvpjx48dTX1/Pyy+/nMYoD09vTrm5uSxatCj5fEVFBatXr6a5uRmdTpc130+99t9Xc+bMYdOmTfz+97/nkUce4dOf/jQmk4nNmzdn1e++/XOaMGECnZ2drF69mmg0SiAQYOTIkbS3t2dkb6vs+ub8hDZv3sz27dvxer2MHDmSRYsWJXs1/OhHP+Lzn/88DoeD999/H1VVM25nHczSpUu59dZb+eMf/8jy5cvJzc2loqKC9957j6amJkwmEyeccAJvvvkm+/bty4pKem9Of/rTn1IqsDk5OcyZM4fCwkKeeuopIFGlzYaRIb053X333bz++uvJUWMGgwGTyYTT6SQnJweAPXv2ZM3w4N687rnnHl577bXk8TV+/HjuueceTj75ZL785S/zzjvvZM2dxP33Ve/xp9frqa2tJRKJsG3bNlpbW3G5XESj0ay4AOnN6d577+W///0vBoOBm266Cbvdzje+8Q1OPvlkvvnNb7J27Vrq6+vTHe6A7H/svfrqq5hMJs444wx27dqVvOg988wzMZvNWTMirjenu+66q9/dp0mTJjFz5sysu9O2/3fUihUrmDRpEjfeeCMlJSV89atfZcaMGVx22WW0tLTg8XjSHe6A7J/TqlWrqK6uJjc3lyVLlvCzn/2MCRMm8JnPfIaVK1fS0dGRFd+7b775JsuWLSMcDgOJ76aTTz6ZdevWsWfPHgwGA2PHjmXHjh00NzenOdqBOzAvTdOS5+zTTz+dyZMn89e//hWA9957j5aWlrTFOlC9OYVCIXQ6HQ6HAyCZl81mS/bn2rp1a1aMND3YfgKYMmUKd999N7NmzeLSSy+lvr4+a84T++ek0+lQVZVoNEp7ezsej4d3332XUCiE0+nMmkbVB+4nvV7Pt7/9bQoLC/nWt77FrFmz+OIXv0hdXR0dHR1pjnZgDpbTlVdeybZt28jNzWX06NHMnDmT0aNHZ02xb/+cDmzqPnLkSGbPns3SpUuB7Bphtf+5DxJFv1tvvZXx48dz1VVXMWnSJM466yzMZnO/KYmZ6mA5TZ06lRdffJHbbruNMWPGcO6557Ju3Tqam5szbn9l/lnrKHnyySd59NFHeeedd7jjjjv44IMPmDFjBtdeey3XXHMNRqOR4cOH43K56O7uRqfTZdzOOtDWrVt54403+OY3v8npp5/OCy+8wMaNGxk5ciSxWIwVK1Ykp7pVVFRk7PzK/R0spxUrViQ/YHl5eZx33nlomsbVV1/N3//+9+QUnUx1YE7PPfccK1as6LcSSSgU4r777ksWyTLdgXk9//zzyX1lt9uTTRfz8vIoLy/P+M8THPz4672gr6ys5Kc//Snt7e1873vfIy8vj5UrV2Z8wfnAnJYuXcry5cspLi7m5ptvThY1e/dTNvyYPTCnl156iVWrVjFs2DCqqqpYs2YNra2tmM1mOjo6suJC6qPOfb0/biHxA6OxsRHIjlEuB+b07LPP8vrrr1NUVERVVRW1tbWEQiFycnJQFCUrRi3un9Npp53Gv//9b3bs2MHpp5/Od77zHa655hoWLVqEy+Vi1KhRWdF89sUXX2Tx4sXs3Lkz2bPKZDIxbtw4ysrKePbZZ2lsbMTpdOJ2u7Pi5g2k5vXOO+8ApFxUaZrGZZddhtvt5gtf+AJLlizJ2IamvfbPqfeOe29O+5+7o9EoDz30EM8//3zGN33/qP3UO9q09zPkcDiwWCxZcaPtYDnpdDqMRiNjxozh5z//Ofv27eMXv/gFkyZNYunSpRl/Tj9YTgAFBQV885vfTP6W6N1P2bAi8UflVFlZyUknncQbb7xBQ0MDiqKwbdu2rPgtcajzXu8xNn78eKLRaNYUxuCj91Vubi4lJSVs2bIFr9eL2WzOmpGzB8spNzeXk08+mR/96Edce+21nHfeeZjNZoYNG5aR17vZN/b1CNTV1fHBBx9w6623YjKZWLJkCffeey9f+cpXmDBhQvLLNxaL8c4772TNCjImkwmHw0FRURElJSVceeWVvPjii5x//vnMnj2bt956i1tvvRWn04nBYKCqqirdIX+sA3P64he/yPPPP4/L5WLKlCnJL+Jt27ZRXV3N9ddfn+6QP9bH5eTz+fB4PNx5551UVlZy4403pjvkAfm4vCAxf/nPf/4zJpOJ0aNHpzfgAfionEpKSsjLy2PGjBlccsklAJjNZoYOHZrmiD/ewXJ67rnnyMvLS+6n7u5u7r33XkwmEyNHjkxvwANwsHPfCy+8gMvl4sILL8ThcLB48WJsNhtms5lzzjkn3SF/rIF8nmbNmsUNN9zAwoULqaioSG/AA3CoY8/tdtPV1cXdd99NJBJJrk6S6Q6W0wsvvIDNZmPKlCnk5OTQ0tLC3/72N5xOZ8ZfxMfjcUpLS7n55ptpb29n9+7d2Gw2pk+fTklJCSeddBKxWIzbb7+dnJwcTCYT06ZNS3fYH+vAvHbt2oXNZmPatGnJmxqKohCJRKirq2Pq1Kl8+9vfTnPUh/ZxOcViMRRFwefzcc899zB+/Hi+973vpTvsQzpUTvtP9+/o6OCvf/0rVquVmTNnpjHij3eonAAKCws555xzkqtFz5s3L9nnJVN9XE69Uyk9Hg9//etfMZvNTJ8+PZ0hf6yD5WS1Wpk+fToWi4XzzjsPg8HAgw8+iE6nw2q1cumll6Y77EP6uHNEbyFpxIgRLF68mHnz5mXFb/ODfU/Z7fbk8VdUVEROTg6//e1vsVgs2O32lNYAmehQ372QKKDbbDaam5u57777sFqtGbkK9v9EIclms+Fyuairq6Oqqoqzzz6bTZs2sXHjRiorK5O9DO655x5mzZrFpz71qXSH/JFCoRAWiyXZaycvL489e/ZQVVXFpEmTaGlp4Z///Cc33XQTl19+OTNnziQWi2X0sqmHymnixIm0trayZMkSqqurMZlMvPvuu0ydOpUrrrgi3aF/pMPJyeFwYDabGTduHJdddlm6Qz+kw8krEonw1FNPUV5ezuWXX57u0D/Sx+XU3NzMkiVL+OEPf5hyNyCTi0iHs58UReHpp5+mrKwsaz9Tvee+J598kptvvplPfepTzJ49m1AolGzsnIkO99xXVFTEz372s4wuIn1cTi0tLTz11FP8+Mc/5pJLLkn2FZo/f366Q/9IH3fstbW1peyntWvXMmTIEK688sp0h/6RenPS6/VMnToVSDRu9ng8fPDBB1itVqqrq8nPz+eiiy5i1qxZRCKRjL8hdai8tm7ditVqZdy4ccntN2/ezPTp07nooovSFfLHGmhOvRfzZrOZadOm8YUvfCGdYR/S4ewnn8/HK6+8wtChQ7Pit8RH5WSxWKiurmbWrFnJ16iqmtFFpMPZT9FolGXLllFeXp4VvyU+7twHcNZZZ3HiiScSCAQoKytLZ9iHNND91FtMcrvd3HLLLQwbNizNkR/aQPMqLS3l0ksvZcuWLcTjcWbPnp3myD/axx1/Npst5Ttqy5YtjBgxgs9+9rPpCvmQFC3Tx1IeoX379hGNRnG73TidTh555BE0TWPIkCFs3ryZESNGsH37dqZMmcKiRYvo6Ohg586dGX3w7dixgwcffJDRo0eTk5PDZz7zGZYsWYLf7+fcc89NDiu98847GT16dFbchR9oTn/4wx8YPXp08g5OJjvcnM466yxaW1spKipKc+SHdjh5jR07lkWLFuH1ejN6qsDhfKbGjBnD2WefjaZpGT1N70j2k8/nS/bZyESHk9PIkSM599xz0xzxx/tfPvf9/ve/TzY7znSDeT+NGjUKh8PBxRdfnDyntbW18eqrr6IoCueeey7Nzc0ZXzzqNdC8zjvvPFpaWhg+fHh6Ax6Aw8mpubmZysrKrDmfD+T4a2tro6KigkgkkpHTOnodTk4tLS0ZfYOj1+Hk1NrayvDhw4nFYhnd6H0wnvsG43kPBp7XOeecQ1tbW1bkdSTn80yX+c0wjsDKlStZvHgxK1asSPZFuuyyy6iqqqKpqYmxY8dy4YUXsmjRouQcyry8vIwtImmaRmtrK3/5y184//zzOeWUU2hoaOD3v/89F198MT6fjzfeeCO52pzb7cbtdqc56kM73Jxyc3Mz+q4NHFlOLpcLRVEyuoh0JHn1Ng7P1CLSkXymeo+/TC0iHcl+6t0/mXrRcSQ5ZeLQ3/3JuS/xfZup54Ze/wv7ae7cubS0tPCrX/0quU1BQQFz585Fr9fzu9/9jp/+9KcZv1DC4eZ12223cfPNN9PQ0JCxfWmOJKebbrqJxsbGrDmfD+T4+/GPf0xjY2PGFpGOJKef/OQnGf2ZOpKcbrrpJhoaGjK2iDQYz32f5LyXyQ43r9tvvz3j8zqSfdV7nsjU76heg66QFAgEWLFiBddccw1XXXUVCxcu5N5772Xnzp3Mnz+fyy+/PHm3evXq1Rn75bQ/RVFwOByMGjWKqVOnMnLkSL71rW/R2trK448/zle/+lXC4TBLlizht7/9Le+9917G93mSnBI57T98MVMNxrzk+JOc0kVykpzS5WA5feMb3yAQCCRXLgMoKytjw4YNhMNh7rzzzoye0gGfLK9MvTFwJDndddddlJaWpjHqQzuSnP7whz8Mupwy/TN1pPtpsOU0GPdTpucEgzOvwfgdlaQNMs3NzdrPf/5zLRqNapqmaV6vV7vlllu0q6++WmtoaNA0TdO6u7u1n/3sZ9rvfvc7LR6PpzPcj/XGG29oa9euTea1efPm5H8LBoPa9ddfr61fv17TNE1raWnR3nrrLckpDQZjTpo2OPOSnCSndJGcJKd0OVROoVBIu+GGG7Q333xT0zRNa2pq0u68886Mz0nTBmdekpPklC6Sk+SUToMxr8GY0/4GRY8kn8/H8uXLOf/884FE/wWv18sVV1zBa6+9xtChQ/H7/USjUT772c8Si8XYuHEjM2bMSHPkH83n83HHHXfgdrtpbGzkxBNPxGQy8dRTT3Hbbbclp64tX76czs7OjG4U2Utyyo6cYHDmJTlJTukiOUlO6XI4OXV1dXHhhRemOeKBGYx5SU6SU7pITpJTOg3GvAZjTgeT9VPbmpqa+PGPf8xzzz3H/fffD8ANN9zAsGHDWLt2LfF4nEWLFlFRUZEcHmYwGDK6iBSNRnnwwQcZMWIE3/rWt/j+97/P22+/zbhx4zjrrLP41a9+RWdnJ5Do/u71etMb8ABITtmREwzOvCQnySldJCfJKV0ON6fenpGZbjDmJTlJTukiOUlO6TQY8xqMOX2UzOyKdhgMBgMLFixg4cKF3HHHHTzzzDNccMEFXHXVVSnzCuvq6giHw6iqiqIoGT3n0Gg0cvbZZycbMOfm5jJlyhT27t3LRRddRGdnJw899BAAe/bs4atf/Woaox0YySk7coLBmZfkJDmli+QkOaXLYMwJBmdekpPklC6Sk+SUToMxr8GY00cZFFPbQqEQFouFHTt28Le//Y2LL76YWbNmARAMBnnmmWdYvXo1N910U0avjrW/eDyOXq9PPr7vvvvIz89PDn2rra2lra2NIUOGSE5pNBhzgsGZl+QkOaWL5CQ5pctgzAkGZ16Sk+SULpKT5JROgzGvwZjTwWT91DYAi8UCwOjRo/n0pz/NE088QUdHBwA7d+6krKyMO+64I6t2VO/BF4/HgcTSgcOGDQPg0UcfJRaLMW3aNMkpzQZjTjA485KcsoPklB0kp+wwGHOCwZmX5JQdJKfsIDllj8GY12DM6WCyfmrbgU444QRCoRC33HIL8XicCy+8kPnz56c7rCPWeyDm5+ezc+dOXn75ZQoKCqiqqkpzZEdOcsoegzEvySk7SE7ZQXLKDoMxJxiceUlO2UFyyg6SU/YYjHkNxpz2N+gKSQAFBQU0Nzdz6aWXZnURaX+1tbW89dZb/N///R8LFixIdzhHheSUPQZjXpJTdpCcsoPklB0GY04wOPOSnLKD5JQdJKfsMRjzGow5wSDpkbS/WCzGnXfeybx585J9kgaDDRs2ADB16tQ0R3L0SE7ZYzDmJTllB8kpO0hO2WEw5gSDMy/JKTtITtlBcsoegzGvwZgTDMJCEiSKSQbDoBxsJYQQQgghhBBCCJE2g7KQJIQQQgghhBBCCCGOvkGxapsQQgghhBBCCCGEOPakkCSEEEIIIYQQQgghBkQKSUIIIYQQQgghhBBiQKSQJIQQQgghhBBCCCEGRApJQgghhBBCCCGEEGJApJAkhBBCCCGEEEIIIQZECklCCCGEEBkoHo+nOwQhhBBCiH4M6Q5ACCGEECLbPPvss+zYsYMbb7wx+dwDDzyAoihceumlPPzww2zYsAFFUViwYAGXXHIJOp2OpqYm/vKXv1BTU4OiKEyePJkvf/nL2O12AK699lpOP/10Vq1aRUNDA48++ih6vT5daQohhBBC9CMjkoQQQgghDtMpp5zCpk2b8Pv9QGL00OrVq5k3bx5//OMf0ev1LF68mNtuu41NmzaxbNmy5GsvvPBC/vKXv3DnnXfS3t7OkiVLUt77zTff5Ac/+AEPPfSQFJGEEEIIkXGkkCSEEEIIcZjcbjfjxo3jrbfeAmDjxo3k5OSQl5fHhg0b+OIXv4jFYsHlcnHOOeewevVqAEpKSpg0aRJGoxGn08k555zD1q1bU977rLPOoqCgAJPJdNzzEkIIIYT4ODK1TQghhBDiCMybN49XXnmF0047jZUrVzJ37lza2tqIx+NcffXVye00TSM/Px+Azs5OHnroIT744ANCoRCqquJwOFLet6Cg4LjmIYQQQghxOKSQJIQQQghxBGbOnMl9991HbW0t7777LldccQV6vR6DwcD9999/0Glpjz/+OAB33HEHDoeDtWvX8sADDxzv0IUQQgghjphMbRNCCCGEOAImk4nZs2ezePFiRo4cSUFBAW63m8mTJ/PII48QCARQVZWmpqbk9LVgMIjFYsFms9HR0cFzzz2X5iyEEEIIIQ6PFJKEEEIIIY7Q/Pnzqa2tZe7cucnnvvGNbxCLxbjhhhu46qqr+P3vf4/H4wHg4osvZs+ePVx55ZX8+te/ZtasWekKXQghhBDiiCiapmnpDkIIIYQQIhu1tbVx/fXX89e//hWbzZbucIQQQgghjjkZkSSEEEIIcQRUVeX5559nzpw5UkQSQgghxP8MKSQJIYQQQhymUCjElVdeyebNm7nkkkvSHY4QQgghxHEjU9uEEEIIIYQQQgghxIDIiCQhhBBCCCGEEEIIMSBSSBJCCCGEEEIIIYQQAyKFJCGEEEIIIYQQQggxIFJIEkIIIYQQQgghhBADIoUkIYQQQgghhBBCCDEgUkgSQgghhBBCCCGEEAPy/8Eacf5hWHG6AAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "plt.subplots(figsize=(20,10))\n", + "ax=sns.swarmplot(x='year',y='Price',data=car)\n", + "ax.set_xticklabels(ax.get_xticklabels(),rotation=40,ha='right')\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Checking relationship of kms_driven with Price" + ] + }, + { + "cell_type": "code", + "execution_count": 27, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 27, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAv0AAAIBCAYAAADalgB2AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAAsTAAALEwEAmpwYAACPgklEQVR4nOz9eZyT9bk//r/uO5nJZF9nhhk2AQGXilaxWttSLZT6rfaUw1FxqpxaASuogCu4gaJUULGAbFVAj8gH0daixd85Kva0nNrWahWpGyqgggwD2bchM8l9//7I5J5kksySzCSZzOv5ePRRJtv9zjsZ57rf9/W+LkGWZRlERERERFS2xGIPgIiIiIiI+haDfiIiIiKiMsegn4iIiIiozDHoJyIiIiIqcwz6iYiIiIjKHIN+IiIiIqIypy72APK1bt06vPvuuzCbzVixYkWXj//rX/+KF154AYIgYPjw4Zg3b14BRklEREREVDz9Pui/8MILcfHFF2Pt2rVdPraxsRE7duzAAw88AIPBAJ/PV4AREhEREREVV78P+k877TQcO3Ys5bajR49i06ZN8Pv90Gg0+OUvf4nBgwfjjTfewI9+9CMYDAYAgNlsLsaQiYiIiIgKqt8H/Zk88cQTmDVrFurq6vDZZ59h48aNWLx4MY4cOQIAuPfeeyFJEi6//HKcddZZxR0sEREREVEfK7ug/8SJE9i3bx8ee+wx5bZoNAoAkCQJjY2NWLx4MdxuNxYvXoxHH30Uer2+WMMlIiIiIupzZRf0S5IEvV6PRx55JO0+m82G0aNHQ61Wo6amBnV1dWhsbMTJJ59chJESERERERVG2ZXs1Ol0qKmpwd/+9jcAgCzL+OKLLwAA3/rWt/Dhhx8CAPx+PxobG1FbW1usoRIRERERFYQgy7Jc7EHkY+XKlfjoo48QCARgNptxxRVX4Bvf+AaefPJJeL1eRKNRfOc738Fll10GWZbxzDPPYM+ePRBFEVOnTsV3vvOdYr8FIiIiIqI+1e+DfiIiIiIi6lzZpfcQEREREVGqfr+RN1GGs1hsNhvcbndRx9Cfcf7yxznMH+cwf5zD/HEO88c5zA/nL3+lMIf19fUZb+dKf55EkVOYD85f/jiH+eMc5o9zmD/OYf44h/nh/OWvlOewdEdGRERERES9gkE/EREREVGZY9BPRERERFTmGPQTEREREZU5Bv1ERERERGWOQT8RERERUZlj0E9EREREVOYY9BMRERERlTkG/UREREREZY5BPxERERFRmWPQT0RERERU5hj0ExERERGVOQb9RERERERljkE/EREREVGZY9BPRERERFTmGPQTEREREZU5dbEHQHGiIEAb9AJeNwSLDWGDBZIsF3tYRERERFQGGPSXAFEQoNu3F/7VSyBHIhA0GpjmLkJ47DgG/kRERESUN6b3lABt0KsE/AAgRyLwr14SX/knIiIiIsoTg/5S4HUrAX+CHIkAPk+RBkRERERE5YRBfwkQLDYIGk3qbRoNYLYWaUREREREVE4Y9JeAsMEC09xFSuCfyOlvNliKOzAiIiIiKgvcyFsCJFlGeOw4GJdvjKf0mK2s3kNEREREvYZBf4mQZBkhvRnQm+M3MOAnIiIiol7C9B4iIiIiojLHoJ+IiIiIqMwx6CciIiIiKnMM+omIiIiIyhyDfiIiIiKiMleQ6j0tLS1YvHgxotEoYrEYzj//fFxxxRUpj2ltbcWaNWtw4MABGI1GzJ8/HzU1NYUYHhERERFRWSvISn9FRQUWL16MRx55BA8//DD27NmDTz/9NOUxf/zjH6HX6/H444/jkksuwdatWwsxNCIiIiKisleQoF8QBFRVVQEAYrEYYrEYBEFIecw777yDCy+8EABw/vnn44MPPoDMWvVERERERHkrWHMuSZKwYMECHD16FD/60Y8wevTolPvdbjfsdjsAQKVSQafTIRAIwGQyFWqIRERERERlqWBBvyiKeOSRRxAKhfDoo4/iq6++wrBhw3r8Ort27cKuXbsAAMuWLYPD4ejtofaIWq0u+hj6M85f/jiH+eMc5o9zmD/OYf44h/nh/OWvlOewYEF/gl6vx+mnn449e/akBP02mw0ulwt2ux2xWAzhcBhGozHt+ZMmTcKkSZOUn51OZ0HGnY3D4Sj6GPozzl/+OIf54xzmj3OYP85h/jiH+eH85a8U5rC+vj7j7QXJ6ff7/QiFQgDilXz27t2LwYMHpzzmnHPOwZ/+9CcAwN///necfvrpaXn/RERERETUcwVZ6fd4PFi7di0kSYIsy/j2t7+Nc845B9u3b8eoUaMwfvx4/OAHP8CaNWtw0003wWAwYP78+YUYGhERERFR2StI0D98+HA8/PDDabdPmzZN+XdlZSVuueWWQgyHiIiIiGhAYUdeIiIiIqIyx6CfiIiIiKjMMegnIiIiIipzDPqJiIiIiMocg34iIiIiojJX8OZcA50oCNAGvYDXDcFiQ9hggSTLxR4WEREREZUxBv0FJAoCdPv2wr96CeRIBIJGA9PcRQiPHcfAn4iIiIj6DNN7Ckgb9CoBPwDIkQj8q5fEV/6JiIiIiPoIg/5C8rqVgD9BjkQAn6dIAyIiIiKigYBBfwEJFhsEjSb1No0GMFuLNCIiIiIiGggY9BdQ2GCBae4iJfBP5PQ3GyzFHRgRERERlTVu5C0gSZYRHjsOxuUb4yk9Ziur9xARERFRn2PQX2CSLCOkNwN6c/wGBvxERERE1MeY3kNEREREVOYY9BMRERERlTkG/UREREREZY5BPxERERFRmWPQT0RERERU5li9p4BEQYA26AW8bggWG8t1EhEREVFBMOgvEFEQoNu3F/7VSyBHIkpjrvDYcQz8iYiIiKhPMb2nQLRBrxLwA4AcicC/ekl85Z+IiIiIqA8x6C8Ur1sJ+BPkSCTemZeIiIiIqA8x6C8QwWKDoNGk3qbRAGZrkUZERERERAMFg/4CCRssMM1dpAT+iZz+ZoOluAMjIiIiorLHjbwFIskywmPHwbh8Yzylx2xl9R4iIiIiKggG/QUkyTJCejOgN8dvYMBPRERERAXA9B4iIiIiojLHoJ+IiIiIqMwx6CciIiIiKnMM+omIiIiIyhyDfiIiIiKiMsegn4iIiIiozDHoJyIiIiIqcwz6iYiIiIjKHIN+IiIiIqIyx6CfiIiIiKjMMegnIiIiIipzDPqJiIiIiMocg34iIiIiojLHoJ+IiIiIqMwx6CciIiIiKnMM+omIiIiIyhyDfiIiIiKiMsegn4iIiIiozDHoJyIiIiIqcwz6iYiIiIjKHIN+IiIiIqIyx6CfiIiIiKjMMegnIiIiIipzDPqJiIiIiMocg34iIiIiojLHoJ+IiIiIqMwx6CciIiIiKnMM+omIiIiIyhyDfiIiIiKiMsegn4iIiIiozDHoJyIiIiIqcwz6iYiIiIjKHIN+IiIiIqIypy7EQZxOJ9auXQuv1wtBEDBp0iT8+Mc/TnnMhx9+iIcffhg1NTUAgPPOOw+XXXZZIYZHRERERFTWChL0q1QqTJ8+HSNHjkRzczMWLlyIcePGYciQISmPO/XUU7Fw4cJCDImIiIiIaMAoSHqP1WrFyJEjAQBarRaDBw+G2+0uxKGJiIiIiAa8gqz0Jzt27BgOHjyIk08+Oe2+Tz/9FLfffjusViumT5+OoUOHpj1m165d2LVrFwBg2bJlcDgcfT7mzqjV6qKPoT/j/OWPc5g/zmH+OIf54xzmj3OYH85f/kp5DgVZluVCHezEiRNYvHgxpk6divPOOy/lvnA4DFEUUVVVhXfffRdPP/00Vq9e3eVrHjlypK+G2y0OhwNOp7OoY+jPOH/54xzmj3OYP85h/jiH+eMc5ofzl79SmMP6+vqMtxesek80GsWKFSvwve99Ly3gBwCdToeqqioAwNlnn41YLAa/31+o4RERERERla2CBP2yLGPDhg0YPHgwLr300oyP8Xq9SFx0+PzzzyFJEoxGYyGGR0RERERU1gqS079v3z7s3r0bw4YNw+233w4AaGhoUC5/TJ48GX//+9/x2muvQaVSobKyEvPnz4cgCIUYHhERERFRWStI0H/KKafg+eef7/QxF198MS6++OJCDIeIiIiIaEBhR14iIiIiojLHoJ+IiIiIqMwx6CciIiIiKnMM+omIiIiIyhyDfiIiIiKiMsegn4iIiIiozBWkZCf1L6IgQBv0Al43BIsNYYMFUlvjNCIiIiLqfxj0UwpREKDbtxf+1UsgRyIQNBqY5i5CeOw4Bv5ERERE/RTTeyiFNuhVAn4AkCMR+Fcvia/8ExEREVG/xKCfUnndSsCfIEcigM9TpAERERERUb4Y9FMKwWKDoNGk3qbRAGZrkUZERERERPli0E8pwgYLTHMXKYF/Iqe/2WAp7sCIiIiIKGfcyEspJFlGeOw4GJdvjKf0mK2s3kNERETUzzHopzSSLCOkNwN6c/wGBvxERERE/RrTe4iIiIiIyhyDfiIiIiKiMsegn4iIiIiozDHoJyIiIiIqcwz6iYiIiIjKHIN+IiIiIqIyx6CfiIiIiKjMMegnIiIiIipzDPqJiIiIiMocg34iIiIiojLHoJ+IiIiIqMwx6CciIiIiKnMM+omIiIiIyhyDfiIiIiKiMsegn4iIiIiozDHoJyIiIiIqcwz6iYiIiIjKHIN+IiIiIqIyx6CfiIiIiKjMqYs9ACosURCgDXoBrxuCxYawwQJJlos9LCIiIiLqQwz6BxBREKDbtxf+1UsgRyIQNBqY5i5CeOw4Bv5EREREZYzpPQOINuhVAn4AkCMR+Fcvia/8ExEREVHZYtA/kHjdSsCfIEcigM9TpAERERERUSEw6B9ABIsNgkaTeptGA5itRRoRERERERUCg/4BJGywwDR3kRL4J3L6mw2W4g6MiIiIiPoUN/IOIJIsIzx2HIzLN8ZTesxWVu8hIiIiGgAY9A8wkiwjpDcDenP8Bgb8RERERGWP6T1ERERERGWOQT8RERERUZlj0E9EREREVOYY9BMRERERlTlu5B2gREGId+L1uiFYbKziQ0RERFTGGPQPQKIgQLdvL/yrl0CORJR6/eGx4xj4ExEREZUhpvcMQNqgVwn4AUCOROBfvSS+8k9EREREZYdB/0DkdSsBf4IcicQbdhERERFR2WHQPwAJFhsEjSb1No0GMFuLNCIiIiIi6ksM+gegsMEC09xFSuCfyOlvNliKOzAiIiIi6hPcyDsASbKM8NhxMC7fGE/pMVtZvYeIiIiojDHoH6AkWUZIbwb05vgNDPiJiIiIyhbTe4iIiIiIyhyDfiIiIiKiMsegn4iIiIiozDHoJyIiIiIqcwz6iYiIiIjKXEGq9zidTqxduxZerxeCIGDSpEn48Y9/nPIYWZbx1FNP4b333oNGo8GcOXMwcuTIQgyvXxIFAdqgF/C6IVhsLLlJRERERFkVJOhXqVSYPn06Ro4ciebmZixcuBDjxo3DkCFDlMe89957OHr0KFavXo3PPvsMGzduxK9+9atCDK/fEQUBun174V+9BHIkojTXCo8dx8CfiIiIiNIUJL3HarUqq/ZarRaDBw+G2+1Oecw777yDCRMmQBAEjBkzBqFQCB6PpxDD63e0Qa8S8AOAHInAv3pJfOWfiIiIiKiDgjfnOnbsGA4ePIiTTz455Xa32w2Hw6H8bLfb4Xa7YbVaUx63a9cu7Nq1CwCwbNmylOcUg1qtLvgYoscPKwF/ghyJoCIchGP4qIKOJV/FmL9ywznMH+cwf5zD/HEO88c5zA/nL3+lPIcFDfpPnDiBFStW4JprroFOp8vpNSZNmoRJkyYpPzudzt4aXk4cDkfBx2DQGSFoNCmBv6DRoFVngLfI89FTxZi/csM5zB/nMH+cw/xxDvPHOcwP5y9/pTCH9fX1GW8vWPWeaDSKFStW4Hvf+x7OO++8tPttNlvKJLlcLthstkINr18JGywwzV0EQaMBACWnv9lgKe7AiIiIiKgkFWSlX5ZlbNiwAYMHD8all16a8THjx4/H//zP/+A73/kOPvvsM+h0urTUHoqTZBnhseNgXL4R8HkAs5XVe4iIiIgoq4IE/fv27cPu3bsxbNgw3H777QCAhoYGZWV/8uTJ+OY3v4l3330Xc+fORWVlJebMmVOIofVbkiwjpDcDenP8Bgb8RERERJRFQYL+U045Bc8//3ynjxEEATNnzizEcIiIiIiIBhR25CUiIiIiKnMM+omIiIiIyhyDfiIiIiKiMsegn4iIiIiozDHoJyIiIiIqcwXtyEsDgygI0Aa9gNcNwWJjDwEiIiKiImPQX0K0ogitsxEx93GobNVodtShWZKKPaweEQUBun174V+9BHIkonQLDo8dx8CfiIiIqEgY9JcIrSiiYu9bcG54WAmWLdffAYw7r18F/tqgVwn4AUCOROBfvQTG5RvjzcSIiIiIqOCY018itM5GeNsCfiAeLHs3PAyts7HII+shr1t5DwlyJAL4PEUaEBEREREx6C8RMffxjMFyzO0s0ohyI1hsEDSa1Ns0GsBsLdKIiIiIiIhBf4lQ2aozBssqm6NII8pN2GCBae4i5b0kcvqbDZbiDoyIiIhoAGNOf4lodtTBcv0dSopPIqe/2VEHlHhOf8dqPc2nnAnj8o3xlB6zldV7iIiIiIqMQX+JaJYkYNx5cCxZg5jbCZXN0S+q93RarSexcZcBPxEREVFRMb2nhDRLEty2WvhOPh1uW23JB/xA9mo92qC3uAMjIiIiIgWDfsoPq/UQERERlTwG/ZQXVushIiIiKn0M+ikvrNZDREREVPq4kZfyIskywmPHsVoPERERUQlj0E95k2QZIb0ZYLUeIiIiopLE9B4iIiIiojLHoJ+IiIiIqMwx6CciIiIiKnMM+omIiIiIyhyDfiIiIiKiMsegn4iIiIiozDHoJyIiIiIqcwz6iYiIiIjKHIN+IiIiIqIyx4681CVREKANegGvG4LFhrDBAoldd4mIiIj6DQb91ClREKDbtxf+1UsgRyIQNBqY5i5CeOw4Bv5ERERE/QTTe6hT2qBXCfgBQI5E4F+9JL7yT0RERET9AoN+6pzXrQT8CXIkAvg8RRoQEREREfUUg37qlGCxQdBoUm/TaACztUgjIiIiIqKeYtBPnQobLDDNXaQE/omc/maDpbgDIyIiIqJu40Ze6pQkywiPHQfj8o3xlB6zldV7iIiIiPoZBv3UJUmWEdKbAb05fgMDfiIiIqJ+hek9RERERERljkE/EREREVGZY9BPRERERFTmGPQTEREREZU5Bv1ERERERGWOQT8RERERUZnrUdAfCASwe/duvPTSSwAAt9sNl8vVJwMjIiIiIqLe0e2g/6OPPsL8+fPxf//3f/jd734HADh69CiefPLJPhscERERERHlr9tB/9NPP4358+fj7rvvhkqlAgCcfPLJ2L9/f58NjoiIiIiI8tftjrzHjx/HGWeckfpktRqxWKzXBzWQiIIAbdALeN0QLDaEDRZIJdDxtlTHRUREREQ91+2gf8iQIdizZw/OOuss5bZ//etfGDZsWF+Ma0AQBQG6fXvhX70EciQCQaOBae4ihMeOK2qAXarjIiIiIqLcdDu9Z/r06Xj88cexZs0atLS04IknnsC6detw9dVX9+X4ypo26FUCawCQIxH4Vy+Jr7BzXERERETUS7q90j9mzBg88sgj+L//+z9UVVXB4XDgV7/6Fex2e1+Or7x53UpgnSBHIoDPA+jNRRoUSndcRERERJSTbgf9ra2tMJlM+OlPf6rcFo1G0draioqKij4ZXLkTLDYIGk1KgC1oNIDZWsRRle64iIiIiCg33U7vefDBB3HgwIGU2w4cOIClS5f2+qAGirDBAtPcRfGAGlBy55sNFo6LiIiIiHpNt1f6v/rqK4wePTrltpNPPhlffvllrw9qoJBkGeGx42BcvjGeOmO2lkSVnFIdFxERERHlpttBv06ng8/ng8ViUW7z+XzQtK0GU24kWUZIb27PlS+RwLpUx0VEREREPdft9J7zzjsPq1atwldffYVIJIKvvvoKa9aswbe//e2+HB/1I6IgQB/yQf/1QRhCPoiCUOwhERERERF6sNJ/5ZVX4plnnsFdd92F1tZWVFZW4sILL0RDQ0Nfjo/6Cdb2JyIiIipd3Q76KysrMXPmTMyYMQOBQABGoxECV3KpTbba/sblG+NpQlSWVKIIg6cJsssJ0V6NgLUGMUkq9rCIiIiog06D/mPHjqGmpgYA0NTUlHJfc3Oz8u/a2to+GBr1K6ztP+CoRBH6f/0DnvXLlas7ltkLEDrjWwz8iYiISkynQf9tt92GZ555BgAwd+7crI/bvn17746KepUoCPFuul43BIutTyrxsLb/wGPwNCkBPxA/yfOuXw7r0nXwmauLPDoiIiJK1mnQnwj4gfwC+3Xr1uHdd9+F2WzGihUr0u7/8MMP8fDDDytXFc477zxcdtllOR+vP+vtAL03cu27M6ZEbf+04xgsrPzTCwpx4tZTssuZ8eqO7HICDPqJiIhKSrdy+iVJwrx58/DYY4/l1H33wgsvxMUXX4y1a9dmfcypp56KhQsX9vi1y0lfbIbNN9e+u2Nibf++U6qbpEV7dcarO4LdUbQxERERUWbdKtkpiiJEUURLS0tOBznttNNgMBhyeu5Aki1A1wa9ub9oZ7n2vTimlJVosxXNDPh7TZ98L3pBwFoDy+wFKZ2bLbMXIGjlHh8iIqJS0+3qPT/+8Y+xcuVK/Pu//ztsNltK5Z7e2Mj76aef4vbbb4fVasX06dMxdOjQjI/btWsXdu3aBQBYtmwZHI7iriqq1epeG0P0+OGMAXpFOAjH8FE5vaYcjSCQYTW2qmYQtN0Yd3fGJEsSom//BZ5fL1ZWoq033w/1ud+FIHZ+Xtmb81euuvoMijmH0nd/CMewkYi5jkNlrwaGjYJVpSrKWPLB72H+OIf54xzmj3OYH85f/kp5Drsd9G/evBkAsHfv3rT78t3IO2LECKxbtw5VVVV499138cgjj2D16tUZHztp0iRMmjRJ+dnpdOZ17Hw5HI5eG4NBZ8yYLtGqM8Cb4zHEiqqMufaeCi2kbrxmd8akD/kQaAv4gXhA6vn14pQUomylHXtz/spVV59B0efQaIv/DwA83buCVGqKPodlgHOYP85h/jiH+eH85a8U5rC+vj7j7V0G/ZFIBL/73e/wzW9+EyNHjsSUKVNQWVnZq4PT6XTKv88++2xs2rQJfr8fJpOpV49T6vpiM2y+ufbdGlMX5To7K+1IXeMmaSIiIspXl0H/pk2bsH//fnzzm9/EW2+9hWAwiGuvvbZXB+H1emE2myEIAj7//HNIkgSj0dirx+gP+mozrCTL8RX3xMbdHrxed8bUVbnOzko7wmbL670NBNwkTURERPnqMujfs2cPli9fDqvViosvvhiLFy/ucdC/cuVKfPTRRwgEArj++utxxRVXIBqNAgAmT56Mv//973jttdegUqlQWVmJ+fPnD9huv/kE6H2lqzF1tRLdaWnH3LYqDDil+L0gIiKi/qNb6T1Wa3zF1uFwIBwO9/gg8+fP7/T+iy++GBdffHGPX5dKQ1cr0SztSERERFRcXQb9sVgMH3zwgfKzJEkpPwPAN77xjd4fGfUrna1EJ0o7ejvk9AettWC/XiIiIqK+12XQbzabsX79euVng8GQ8rMgCFizZk3fjI7KQkySEDrjW7AuXQfZ5YRgdyBorUVMkoo9NCIiIqIBocugv7MuukTdFZMk+MzVgLk6fgMDfiIiIqKC6VZHXiIiIiIi6r8Y9BMRERERlblud+Sl8iQKArRBL+B1Q7DYWP+diIiIqAwx6B/AREGAbt/e9Pr6Y8cx8CciIiIqI0zvGcC0Qa8S8APxhln+1UviK/9EREREVDYY9A9kXnfGTrnweYo0ICIiIiLqCwz6BzDBYoOg0aTeptEAZrbMIiIiIionDPoHsLDBAtPcRUrgn8jpbzZYijswIiIiIupV3Mg7gEmyjPDYcTAu3xhP6TFbWb2HiIiIqAwx6B/gJFlGSG8G9Ob4Dd0M+Fnqk4iIiKj/YNBPPcZSn0RERET9C3P6qcdY6pOIiIiof2HQTz3HUp9ERERE/QqDfuoxlvokIiIi6l8Y9FOPsdQnERERUf/CjbzUY5Iso/mUM2Fdug6yywnBXo2gtQaSJHXr+cmVf+RoBGJFFTcAExEREfUhBv3UY6IgQPvJ+/DkUL2nY+WfACv/EBEREfU5pvdQj+VTvYeVf4iIiIgKj0E/9Vw+1XtY+YeIiIio4Bj0U4/lU72HlX+IiIiICo9BP/VYPtV7WPmHiIiIqPC4kZd6TJJlhMeOg3H5xnhajtmKsMHSrY24HZ9bVTMIngotN/ESERER9SEG/ZQTSZYR0psBvTl+Qw+C9uTnah0OSE5nH42SiIiIiACm9xARERERlT0G/UREREREZY7pPUSdSO4eLFhs3d67QERERFRKGPQTZdGxe3BPOg8TERERlRKm9xBlwe7BREREVC4Y9BNlw+7BREREVCYY9OdIJYow+46j9e2/wOJzQiWKEAUB+pAP+q8PwhDyQRSEYg+T8sDuwURERFQumNOfA5UoQv+vf8CzfrmS622ZvQCSxQb/QwuY/10mEt2D03L6DZYe9SUgIiIiKjYG/TkweJqUgB+Ip3x41y+Hdf59afnfxuUb442oqN/Jp/MwERERUSlh0J8D2eXMmOstnwin3Qafp71rLfU7+XQeJiIiIioVzOnPgWivzpjrLVTp0m5j/jcRERERFRuD/hwErDWwzF6gBP6JnP6YVptym2nuIjQbLEUcKRERERER03tyEpMkhM74FqxL1wEeN2C1IWithSzLzP/up9h5l4iIiMoZg/4cxSQJPnM1HKNOhdPpBCQJAJj/3Q+x8y4RERGVO6b30IDHzrtERERU7hj0E7HzLhEREZU5Bv004AkWe+ZqTGZbkUZERERE1LsY9NOAJ4sCTA2zUisvNcyCLApFHhkRERFR7+BGXiK3E8GdL8Aw5SoIECBDRnDnC9CPGANojcUeHREREVHeGPTTgCdYbJACXgS2b26/jY3ViIiIqIwwvYcGvLDBAtPcRWysRkRERGWLK/004EmyjPDYcWysRkRERGWLQT8R4oE/G6sRERFRuWLQTxmJghBvTuV1Q7DY+nzlu9DHIyIiIhpIGPRTGlEQoNu3V+lSm8hxD48dlxaI90aw3pPjEREREVHPcSMvpdEGvUoADsS70/pXL4kH90kSwXpgwUz475sH/4KZ0O3bC1HoWX377h6PiIiIiHLDoJ/Sed1KAJ4gRyLxTa5Jei1Y7+bxiIiIiCg3DPopjWCxKeUrldsy1a3vpWC928cjIiIiopww6Kc03a1b31vBOuvkExEREfUtbuSlNN2tWx82WGC67UFIB/ZBkGRAFCGMHIOwwdKjkpesk09ERETUtxj0U0bdrlvf2oLgi1vaq+7MW9S3xyMiIiKiHmN6D+VMG/TCv6rDRt5VrLpDREREVGoKstK/bt06vPvuuzCbzVixYkXa/bIs46mnnsJ7770HjUaDOXPmYOTIkYUYGuWjs428iRV7IiIiIiq6gqz0X3jhhbjrrruy3v/ee+/h6NGjWL16Na677jps3LixEMPqE6IgQN8cgPnY1zB99RkMIT9EQYjfHvJB//VBGEK+LmvZ9/Txvam7x2bVHSJK/Pci+vGegv+3ioiIuq8gK/2nnXYajh07lvX+d955BxMmTIAgCBgzZgxCoRA8Hg+s1v4VPIqCAN3BT4Cvv4Rn25Ptee63Pwi0tCipMF11nC1mh9qeHDtRdSftsT3cyEtE/RO7aRMR9R8lkdPvdrvhcDiUn+12O9xudxFHlBtt0AvpwD742wJ+IJ7uIu3fl5773kkTq542verNqwI9OXZy1R3T/athXL6Rf+yJBhB20yYi6j/6XfWeXbt2YdeuXQCAZcuWpZwsFINarVbGED1+GK2SnJbnLmS4TY5EUBEOwjF8VNprRo8f7vbjZUlC9O2/wPPrxcpKm/Xm+6E+97sQxJ6f0/Xk2Aq7XfmntofHS54/yg3nMH+cw9zk9N8Lyorfw/xxDvPD+ctfKc9hSQT9NpsNTqdT+dnlcsFms2V87KRJkzBp0iTl5+TnFYPD4VDGYNAZ47XqNZrUP4QZbhM0GrTqDPBmGL9BZ+z24/UhHwJtAT8Q/4Pr+fViGJdvjJfA7KGeHLs3JM9fuRIFIb7y6XVDsNh6vQfBQJjDvsY5zE2h/3tR7vg9zB/nMD+cv/yVwhzW19dnvL0k0nvGjx+P3bt3Q5ZlfPrpp9DpdP0unx+I57gLI8fA1DArpbusMGoMTPO633G2Rx1qO6ugk+N7YHfc3pPIeQ4smAn/ffPgXzATun17udmRygL/e0FE1H8Istz3CdgrV67ERx99hEAgALPZjCuuuALRaBQAMHnyZMiyjE2bNuH9999HZWUl5syZg1Gjundp+MiRI3059C4ln9GJggBd0AfRfQwqnQGxlggkkxVhQ3zFXRv0Kh1nm7tY7VVWh7t4vCHkg3/BzLSVNuMjmwFJyml1ubvH7g2lcEbcl/QhHwKZPp8cr8RkUu5zWAicw9wl/ntREQ6iVWfo0/9elDt+D/PHOcwP5y9/pTCH2Vb6C5LeM3/+/E7vFwQBM2fOLMRQ+kzWKhb1Jyl/AHvScba7HWozVtC57UHg8BfdrhaU67E709cpLf0GexlQmUv898IxfFQ8pWcg/p4TEfUDJZHTXw6yVbHozRXdTJIr6CRW5gEB/gUzCj6WBJbxa5foZdBxpZ+9DNrxBJGIiKjvlUROf1no5dz6nkistIXqT0JIb4bsdRVtLADL+CVjznPnuOeBiIioMLjS30tKaUW36GNhSosi05UYrmS3K9YVMiIiooGGK/29pJRWdIs9lsRJR8ptAzilpeOVGAb8SYp4hYyIiGgg4Up/LymlFd1ijyXj5uK5ixA2WLjJj1IU/aoUERHRAMGgvxekbUQcPCIeYBcxwM1WgacQmyZzPeno6dgG2gbQSlGEwdmImPs4VLZqBB11aJGkYg8rLzxBJCIiKgwG/XmSJanfVKrJVlWn+ZQzURXw9Grw3NOynz2t+DPQKgRViiKq9r4F54aHlfdruf4OYNx5xR5aXop9VYqIiGigYE5/vo4d6TeVarJumvz6QNGrp/S04s9AqxBkcDbC2xbwA/H3693wMAzOxiKPLH/c80BERNT3GPTnKeZx9p+NiFk2TbZ+vLf4wXNPN3QOsA2gMffxjO835mbnRCIiIuoag/48qazV/aZSTbaqOnKHvPBiBM89rfgz0CoEqWyZv2cqm6NIIyIiIqL+hEF/vmrqSqZUZ1eSS3mqHLUwNsyEde69ELU6qBy1yuOKETz3tMxoscuSFoIoCNCHfNB/fRBRjRaWeanv13L9HQg66oo8SiIiIuoPBFnu3wm0R44cKerxHQ4H3C5XPB2mbSNicwlvRBQFAbpwAOLBffCuW9a+CfY/b0Dw91shBbw93hCbTxUdh8MBp9OZ+jrdnMeePr4/ybRR2TxvESpq6hA73gSVzaFU70meQ8oN5zB/nMP8cQ7zxznMD+cvf6Uwh/X19RlvZ/WeXtDTSjXFJMkyVK0ReNoCfqAtj/+ZtbDfvxotVboeBe29WUWnp/PYn+a9pzJtVPatautUe/Lp8ROegAcVXjfkaARiRVXZnPAQERFR72N6zwAkuDNvPpYD/h5XTxloVXQKppONyokTrUTFpePzry5KxSUiIiLqPxj0lyG1KMLqaYL58w9h9RyDWkz9mIUqbcZNoUJVVc8PNsCq6BRKZxuVeaJFREREPcWgv8yoRRG6vW/Bde+NcC+/E657b4Bu71spgb+sN8LUMCt1E2zDLMh6U4+PN9Cq6BRKpxuVeaJFREREPcSc/jJjdDXClaGJk/2BNfBY4xV6AmY79DV1MEydDkGSIYsCxJo6BMx2oEP5zq4kgtO0nH6Dpaxy7Auts061iROt5MCfJ1pERETUGQb9ZUZyZc7Xl1xOoC3oj0kSQmPPhKFmEGSXE4LdgaC1FrEeBvxA58Ep5SfbRmWeaBEREVFPMegvM6K9OuMqsGhPbeIUkyT4zNWAuTp+Qw4Bf0I5V9EpRR1PtKpqBsFToeWJFhEREWXFnP4CSTRaMhz5AmafE/qmQzCEfBAFIaUJU+K2XAXsg2C5/o60Jk4Be/k3cerNeSx1iROtUP1JEAYNYcBPREREneJKfwFkrGV/5UwEX3sJhmvnAa0t8K/Kv849AEQlCeFx58H+wBpILidEuwMBex2ibSv5+TTSKmW92S+AiIiIqNxwpb8AMpZYfG4jdBMmQzqwTwn4lfvyLL8YlSR4rLXwnXw6PNbalIA/ub67f8HMsqnvzjKWRERERNkx6C+ELCUWBQjx6jkFKr9Y1oExy1gSERERZcWgP0eJ/PHox3u6zB/PVstehgyIYuHq3JdxYMx+AURERETZMejPQXKajOuuOSlpMpk2k2ZstHTlTIR3vwZh5BiY5mVpwtTLyjkw7rSZFREREdEAJ8hy/97leOTIkYIfUx/yIbBgZsqquapuCMy3LoF87Chihw4i9PrLkAJeZTMpEE+vEXweqPR6RCMRQG9UglJt0KvUuW/uo821uW52zWfzb1fPdTgccDqdeb6zDsfqpXlUiSIMnibILidEezUC1pqcehn0td6cw3LW2XeRc5g/zmH+OIf54xzmh/OXv1KYw/r6+oy3s3pPLjqkyagctTBM/ik8d89Orc7zym/hX70ExuUb4+UVk2vZJ7QFHYWoc59LI618quIUuqJOb/YLUIki9P/6Bzzrlytjt8xegNAZ3yrJwJ86x+pOREQ00DG9Jwcd02R0Ey+B/7mN6dV5Jl5ScjnzyfXdQ3pzlwFPPpt/+/PGYYOnCd62gB+Ij927fjkMnqYij4xy0Z+/i0RERL2BQX8O0vLHRTF7dZ4Sy5nvcQOrfDb/5vHcYjfakl3OjGOXXbzs2S+V8SZ2IiKi7mB6Tw6S02QqwkHIlRoIL25JCSoEjQayKMRTCAyWPkvZ6YlcUhwEiz3+Xjq8t+6cyCSuiPT0uaWQiiHaqzOOXbA7CnJ86l25fheJiIjKBVf6c5RIk1GfeiYCluq0yjGWG+6E8O2LSipnuKcpDqIgAMcbYWqYlVoVZ173quLkWlGnt1Ix8rlaELDWwDJ7QepnOnsBgtbaHo2BSgOrOxER0UDHlf5ekGmDbDCxQbZEAn4Anac4dNxgjLbg+9F7IBotMEy5CgIEyKIAechJ3TqRyWXjcC7jzCTfqwUxSULojG/BunQdZJcTgt2BoLWWm3j7qZy/i0RERGWCQX+eZEmCPuRrKwNoh2y1A24ndEBOQUU+5TG70uMUh7bgOxZpQmD7ZuVm60mjYait79bYEldEVEYrDJ4mGPZ/BNFejZC1BjpPE1oPfgKLzYGgtQaagAfwulFhMOadipHtakGiklJ3xCQJPnM1YK5uezMM+Puz3qzuRERE1N8w6M+DShQhffQe8NH7gCQjuPtVGH40BcGdL6TU6O9JTfvurk7nUkM+bLDAdNuDkA7sgyC1dQMeOSbrnoNsJwnRA/sQfGxRt99fxvKX19+BwGsvo/Xj96GqGwLTFb+Ad8PDkCMRqOqGwDJ7gVI9R5mHnuyN6KWrBZ2dgPXlCRoRERFRb2LQnyNREKD/+D24Hn8wtTb/qzugm3gJAts393hlubur03nVkG9tQbBt03EiPz+bRB50yklIW/+BnqycGzxNylgT78u74WFY5y2C++P3oZswWQn4ASDWeBj+7ZthXboO0VAop1SMfDdudnUCVgqbjYmIiIi6ixt5c6QNeuFtC/iBpNr8EyZDgKDc1rEkYKebS7tZVjDXGvLaoBf+VR1OKlZl3yCbnAdtvXM5DFOuQvCV3yLmbMo6tkyylr+MnACA+F6BDvfHGg8jGgp1u59AR/lu3OxqMzHrvhMREVF/wpX+XGUJ0AVRhNy22t5xZbmr1eHurk53WkM+kX/egzF3lvKSyIM21ALBxxbltHKetfylpirl594sp5j3xs2u5qoX0oeIiIiICoUr/Tnq2JUXiAeqFSNGI/zGKxlXlrtaHe7u6nQiiO547K5qyGcbc3eC63xWzjOWv7z+DgT+8DwAILT7VViuv6PXyyn2tPtwsq7mKp+5JCIiIio0QZb7dwLykSNHinLcTKv2lpvuQeykkwHXccBsRXOHlWX91wfhv29e2muZ7l+NUP1Jyutqg15ldbrjawDtOf3eHub055uH3p2xZZO88ViwOxC21kLnaQI8bsBqQ8haG6/ek8Nr94X+lNPvcDjgdLJTcD44h/njHOaPc5g/zmF+OH/5K4U5rK+vz3g7g/4ciYIAbdiPynAQsVAIkr0GYUPnq8mGkA/+BTPT0lh6stk3oWMQ3d0a8rkG7qmVauyQRQFwOyFYbGg2WlHVVm4zWxWbjpVuEs+pCAcQ1RlLsvJNylxZ7RAkGbLXpbxHAMr9gtmWMieFfD+l8B+Y/o5zmD/OYf44h/njHOaH85e/UpjDbEE/c/pzkG2VF2PHdfq8jNVwelqKsk2uNeRzqVWe8f02zEJw5wtARQVM065NL6+ZtOLd8fmquiFdPqcUJOZKNFiyruon3x8ogVV/IiIioky40p8DfciHQI4r9vmkyPSGXGrLZ3u/hilXAQCCO7Z2Ohcdn2+cdm2XzyklXX3e+XwfekMprCr0d5zD/HEO88c5zB/nMD+cv/yVwhxypb835VG5pZhdQXPOQ89WqSi5NGmH+1LmosPzM5XoLOnKN6zkQ0RERP0cq/fkoFQqt3Ra8z+DXGvLZ3u/MmTl3x3vS56LrPPVyXNKCSv5EBERUX/HoD8HYYMFpnkdylfOy7/EZE8kVu0DC2bCf988+BfMhG7f3s4D/242/0q8fuKEAqKY/n4bZiH8xivxcpsdynF2LLfZsdxnd57TF3p6kpTQVbnSfBuBEREREfU15vTnQBQE6A5+AunAvnhFF1GAOHIswiNOyZom09Nc+q4ebwj54V8wo0d55IaQD8Hld8a7BldUQj14GKIBHypPGo3W5rDSwApAehrQbQ8C1XWQfW6IZhtEKQr5eBPEtspBXZXb7LiX4YRSvSeIVp0hp70NPZnTvihXCiC9opHHVfC9GqWQP9jfcQ7zxznMH+cwf5zD/HD+8lcKc8ic/l6kDXrhf/SebgfcPQ04u1MjXjzyVeY8+07yyJuN1pSqOaq6ITBd/gu47r0h5Tjy0JPS04AevQfG5RvRPHgEdPv2wpNpbJ3sU0jbyyBJCOnNcAwfBa/T2eO9DT2d02ypTd3dbNtx/CIynBglH79/n0sTERFRmWF6Ty56kCYD9DyXvqvHa4NexA4dzJhHrtLrsw67KuBRAn4A0E2YDO9vHk47jjoUgGHKVTBNmwHTtBlQOWqV96cNehF8dr1yv3HK1Qg+u77LfQG9rcf7E3r4mfX68YmIiIiKiCv9OUhs3Oy40i9aHbB6miC5nBDt1QjYByEqSRkDTtFogTochD5Tako3qsWEXn8Zpitnwv/cxvauvDNvQbTteZlSX7pdRcfjUkpqChoNTFfORPC1l+IbU4N+GCb/NOW4pitnQg4FCluppocVc7J9ZjlvtmXFHiIiIupHGPTnIGOTrdsfhHDgE7iSGk5Zrr8D4XHnpQWcKkctDJdeDs/98zOmhnQWoIqCALXBCCngRfCV38Iw5ap48C4KiDaHIOiN2ZuHDR6e8XU7/tx66GDqCvZzG2G/51G0iiLUVVq42wL+lPsfWAN8fVA5wRAEQekYLNqrEbDWdKtjcHf1NIhPbL72r0qak3m5NUbL5fhERERExcT0nhxIsozmU86Edek62O56GNal61FhdaSkzsiRCLwbHobR1ZhW3UX3w5/Av+3JrKkh2arBnDBaodu3F74Vi2C66npIAS8C2zcjsONZiJoqiHVD0WywZE09gSimVM0J7X4VlutuTTmO5YY7EX79DynvV45EEHO7EHxoASRnU8YV7pYP3muvIvTFJ9B/8DY8d8+B56EFcN89G/p//QMqsfe+bh3nSFU3BLa7H4Hg82SvzFNRCcPU6TBNmwHD1OlARWWvHZ8Ve4iIiKiUcaU/B6IgQPvJ+ymbWS3zFsM4bQbQFhCH3tiJmDOe6iNZa5WTBNnlhMpgRPj1PyAWaVJeMzk1RJJlhMeOg3H5RqVaTNhggTbgUYL54MvPwThtBlRWO1TVdWgxmdGsM8VThLKknojHj8K/fXP8efYaRI8eRvB/dsAwdTrUw0ZCqhsGSRQgBbwpzxU0GkSPHoZuwmTEvjyQ5WrBCeU40v598L+4JfUEaP1yWJeug89c3SufQcochQJQeVxwL70966benm6+7tHxkz6jYnRXjh4/DIPOWPDjExERUf/Blf4cdFxJF40WSMeOILB9E/zbNyGw41kYLrkMqrohEO2O9pOEtpVv15KbYbj0cqgctcprZk0NkWUoa9ZeN0SjBcZp10I/8VIgEoF/6xNoiUUR0hqVgC9bsyihSotY42H4n1kH/5b1gCRBe/a3UXnGOYgNHg7Z6wIAWG64K3X1f9atEDQ6VJw0Gs3vvJl2v+mq6xF+45X2Y0lyxpMO2dVewipRMz/68R5lZb6ndfTbK+oY4X38wc431eawkber8SSOH6o/CaG2k7VCSe7T4LprTvf6NJShXHsvEBERDTRc6c9FhwBSN/GS9HSd5zbCvnAZAva6lBV65f5tT8IwdToC2za2r0y35ZdnzckfPhKGSy9XjpVokiVb7SnDy7jnYO4ixIwmZZU+5mxCYPtmCBoNbKeficDt17aX8fz5DTBMnQ5BpUbFsBHwPvU4Yo2HlQAfRmP8/rYeBahMPcGAKGa8GiDYHfG7M72/2x4EWltSc+67W0e/G5tqe5qDn29d/76WbwnSclDqnxEREVEp4Up/DjqupGergtMqqrJW75EjEahrBsHUMBPWpevSU1EyBHTqE83pJxfbnoQgpQY4yaknpvtXw7h8I8JjxyGsM8E0dxFUdUNgnHYtTA0zYb/7Efi3bUot4/nr+3Dinb+icsxpcK9YhFjj4fbjbd0AlSCiYtgoNL/7NwS2bYT/qVXQ/fAn8bnQaCAMGgzL9XekXi24/g6ErLVZ3590YJ8S8Ce/5+6UwMx2ZSM5oO9pDn7Jl+Ts5RKk/VHJf0ZEREQlhCv9Oei4kp5tZVtuCzqzrTJHjx5BYPtmmE4ZB8mcFLhnCegk1/HMaTM+N6A3pdye1gyr7YSi+ZQzYbrql0o6jFKS8/hRxJxNECBAPWwUDBdPQcvHezNv2v34XwjseBaW625FEEDrZx9BffJpMN2/Gmp1BaL7/gX/6y+3VxaCDP/zT0E/YgyibSVHO75utpSg7pTAzHZlI7kyT/Lma9nlhGCvRtBaAylbRaESL8nJ6kEo+c+IiIiolHClPwcp1XvufhgV534HpnnZV5GbjVZYbron9f4rZyL8xisZA7VsK9ei3dHlinZXqgKe9Pz35zZCN/ES5THGqdPhfWIFIMkZjycjHqB7n1gB479fBUGjQcxejVD9SYjpDUBrC9Da2v4cCPGf21ahM72/xIlTtvfWWe52tisbySkeHfdVeO6eDe0n72fNAe/O1YNiYvWg0v+MiIiISglX+nOQqXqP6bYHYVq+Kb7qnlTJJfFY/9bfxFe+RREVI0bD/8J/QQp401akgewr1wFrbZcr2l3KsjoqtJXTDO1+FebhIyFHIgi9sTOtAZjpypkIvvJb5Xly5ETKGMIGC0xnnAODpirr3oNmoxWW2QuUEqeCRgPV0JNg+s8b4H9mbVodfRHoMnc725WNhJ7mwHfn6kExJZ/oVISDaNUZBlz1nlL/jIiIiEoJg/4cZKzec2Af1KIIyV6TEnwlPzawfTOA+GqkdfFKRLMEalnLQUpS3mUis6WFqM/5NkynjIs3AGuJB1AxZ1N7AzBRROWpZ8Kz+kHEnE3K81SDhyFoG5QSfMd0xox7D0xnnQ8gfrXBv31zavrPlvXQ/ejfU5qNyUNOgiTL0Id8+W9a7WEqSCmU5OxK4kTHMXwUvE7ngAt0+8NnREREVCoKFvTv2bMHTz31FCRJwsSJEzFlypSU+//0pz9hy5YtsNlsAICLL74YEydOLNTweiYpgFQ5amG45LLU1fDkVegswWa0tTUesHYVoMgyBAjQhv1AKIhKlYiYxx3vcmu0QpIkqEURRlcjpET3W/ug+AbiDkRBgCyKsNxwJ7xrH0q9imCpad9X0NwIy3W3wfvEo/HAf8dWWH55O1oDfuh++JP4xmG9AZUnjUJrczN0QW9KsCV5XVkCbDf0kKFqOgL9hB8h9MZOAPHqR/oJP4K6th6+TSsRczZB5aiF9fSzoWo8DJXBCNFoSetrIPg80Ld9HolOwB1TenRBH0RXE1R6I1R1Q5RNyUDXqSBdXT2g4uNnRERE1D0FCfolScKmTZtwzz33wG63484778T48eMxZMiQlMddcMEFmDFjRiGGlJfk1XLdxEuUgB9IX4XOZcNlxlKE/3kDRLMFrseXtjcEm70AJ874Fqr2vgXXhofbb7/+DoTHnacE/ipRhMHnhHzoILzrlsVr/V85C+rBQyEYTIgaUjcBC0YzYDTBOv8+yCfCEKp0kDUVEAFIWh3Ug4YALSfQ8vG/EHr95fY0pbYTHcFiz3w1QQDcC2a2v6errgcqKuF/enVK+lD4r/8L3Xd+ANcDN6ekBwV3vpBylaFCENDy1u6MYxAFAbpP96aUALVcdxv8v/2v9vKjTAUhIiKiAaIgG3k///xzDBo0CLW1tVCr1bjgggvw9ttvF+LQfSJ5E2W2cp2JTau5bLjMmH/+zFpEv/4qrcutwdkIb1vAr9y+4WEYXY0A4gG//l//QOvbf4F33TLlcQJkeFYsguuu2fDffm1KY6eKcBDeFYvgXn4nPKsegHv5nfA/uRIIhSBKEjwr7oX70UUIvPgMDJdcBtFoiZ/oNB2GoTkAOBthapiVWrLzpnvgXZ86Tv/WDZD8nrRNxeb/nI3gqzvS0oOSy4KaGmbBs/rBtDEkyjVqg960EqDeJx6F+T9vgPXexzJu9u0pNoYiIiKi/qIgK/1utxt2e3sDKbvdjs8++yztcW+99RY+/vhj1NXV4ec//zkcDkfaY3bt2oVdu3YBAJYtW5bxMYUgn/99VI/cAtnnhbDj2bRV7aqaQdC2jS3x2JjHBZXVDtTUo0rMfr4VPX4482bbDvX45UgEMfdxiEYLdFMuiVfJARB6YycktwuO0adDOvgpnOuXwzjl6vZa/FmuTlSv3AJh0BC0fvWZklufeD3dhMmIHjmE4Itb0oJ0w5SrENi+GdHPPoa6tg7Rr/YDGh2M02YAkQhkUYBosaak1nT2nlo+eh+GyT9F8JXfKiv7ciSCypFjYV+8Ei2ffoDgzhcAAIYpV0FuicA8Yx58m1ahIhyEY/iorHMY/eJzVJw5HpXDR0Gb9RPomixJiL79F3h+vVi5kmC9+X6oz/2usim6UNRqdcrvgSxJwLEjiHmcUFmrgZq6go+pv+k4h9RznMP8cQ7zxznMD+cvf6U8hyWzkfecc87Bd77zHVRUVOD111/H2rVrsXjx4rTHTZo0CZMmTVJ+djqdhRxmKnUV7KNPy1hBxFOhhZQ8NnUVUD04/m+3u9OXNeiMmev+i6kryYJGA1X1oIxdesXqGjidTpiON7Wv7re9pgAh44nCiWNH0VyhhTEcQnDH1pSUG1mlAkKhzCcjEKCqGwKVXg/PyvtSK/28sRMxZxNsy37T7fckSxICSScTyu1WG6LBIALbNmbeS9EwC60GE7xOZ6dz2KozxDe+5kEf8iHQFvAn5sHz68VF6YjrcDiU3wN2qc1N8hxSbjiH+eMc5o9zmB/OX/5KYQ7r6+sz3l6Q5T+bzQaXy6X87HK5lA27CUajERUVFQCAiRMn4sCBA4UYWt4EUeyyRnxPZUwJ+s8boB48LDVlZvYCRNWVGSvlRFWVAADRXg1Bo1HKbwoaDaDVw3Dp5Qju2Ar/9k0I7HgWhksvB6x2aINeeNYsTVvN14w6NWstfVkUYJ11C7wbH8tY/1/QaIDKqrSUH9NV10NdPzRj/4LkMqKJ9xq01ip7JDJerUjqThw2WNJ7JzTMgjhybO/Usi+hjriyJClpRkbvcQSfXc8utURERJSiICv9o0aNQmNjI44dOwabzYa//vWvmDt3bspjPB4PrNb45tZ33nknbZNvKevtCiIdSxEKZhtkUUAsHIL9gTWIedwQ7A4ErbWoOrQ/c/feti69AWuNUhM/+MpvYZg6HZUnj4HrgVszltSUswSzrdFWCKPGwNQwK+WqgmXWrRDtDrR+dTBr/X/TbQ9CPvo1gjtfSCnTGXz5OegvnQbrvMWIHjoAWZKUlB5Bo0HlN8+D9aTRynuNSZJyQiQfzny8RHdiSZYRHjMOpuWbILqOQdBqETWY0Kwz9cqKd6l0xBUFAdG3/6JcdUjupZCcGsUutURERANbQYJ+lUqFa6+9FkuXLoUkSbjoooswdOhQbN++HaNGjcL48ePx3//933jnnXegUqlgMBgwZ86cQgyt14iCEF9NzVI+MufnyDIAGc06MyStESEAsNbGnxvwQF1ZmTH4rNDrIQoCYpKE0BnfgnXpOsguJwS7A61Z0nRknztrMCuZrWg2WKCtqYdtzOlAOATRYESsJQKhQgNV/bCMz6scdy7kigq0/vNvkAJeJV0ncb8cCcO3eRUMl1yGQFKqjuWW+4HWVggqFSS1BnJSH4Dw2HEw1tZBSNpfkHi95KBbkmUE9SZAb8r5M8qmNxpD9WQ82R6rDXqVfQVA+xUW67zF8G1epZxACWZbxtclIiKigUGQ5f6d6HvkyJGiHt/hcMDtcvU4j7qz3Gug8w60yc8VjZb0nP4rZyL42kswXD074xgMIR/8baUzEwSNBsblG9FssHT5XjKO/Zq5QGsL/Fs3pJXZ1P/wJwi9/oe0HHzLrFshRaPwP7Uqvsfghz+BethIqMwWtH6+L/W15i1CeEwXY+hkzvsi110JxNsaQzX34CSiJ+Pp7LHawwfgv29e2uubGmZCqNTEvwc/mgIMHo7wiFOY159FKeRg9necw/xxDvPHOcwP5y9/pTCH2XL6GfTnyeFwoPnL/QhkCKJNyzfFV5oz0Id8GZ9jXL4RALLeF9Kb056rctTGA+aaOkSPfo3wG68oK7yZNpZ2FXB2FczqmwOQ//a/Sv586I2dkAJeGBquAyLNqBh1Clr3f4Lw639AzNkE07QZCOx4Nh7YT7xE6bgLjRbhnc/Hxz5oMFR1QyCpK9D69l9SqgR1fP/J7yN5nCeMVlQFPBlXzjub74yv2QtXAzrT3fF09VgByHgCZ5hyFYI7tsI6bxF8m1dDCniLssm4vyiF/0j3d5zD/HEO88c5zA/nL3+lMIfZgv6Sqd7T31SIIozORrR+9SkqJDljuox45CuIY87IHDR2thFUzvx6Sl52h+fGnE0IbNsYD66T0mey5XKn7BkIBaDWaBALhVI662bboyAKAlRffAZvW1AuaDSw3HAXJL8Xok6PWFMYsigisG2j8pzEJmL/cxsR2L65/WrEzudTxo4qHQBAyDKfHd9L8jhFQYDuk/ezr5x3Nt9tr1nQyjfdGE93HhsePALWm+9PKR2ayOmXIxFEvzyg5PYzr5+IiGjgYtCfgwpRhHbvW3A//xQMk38KuaUlYz579NABaOuHZlxd7WwjqABkvS/xXFXdEOgmTG4vubn71YzlL7NtLJVkOZ7K8/VX8CQFuZYb70b4tLOVbr4daYNeeNc+pIxNNFoguY+nbu698W6o6oYodfljziYEX3spvq/A50P0849SNpomKgAJdgcECJAaD2V8/53lpWdsaNbDzshdvUZv6slG4M4eK8ky1Od+F7al69D6z7+lbYaWIXf62kRERDQwsGNPDoxtXXB1EybD/9xGhF5/ub0cJpJKT77+h6wlHDvr1NtVF99moxWmademlNw0TbsW4thv5N3517tmKYyHPocqWzOnDqvOuomXpJUM9a5ZCsvsO1LGYrh6NgKWGgSHj4Y4dASkgLd9nA2zoB46AkFrLQLWGlScfGp6ec+GWWknNZ2NKzGWHnVGLmAZzp50au7qsYIowm+pgTBkBII7tioBv6lhFsJvvNKt7wIRERGVN6705yDmPq40pZIjEcQiTfFymG3lKNXDR8G3eVU8sO1kpT25LCfM1pT88fDYcTA+shnqoB9ycxiSvVZ5blXAA//2zSldc/3bN8OwYFnW1wM65KvbHBBdxzOX+wyHYHYfhaSqgHT8KER7NQLWGsQkKW3VOTEHHV8DLS2w3bkcgkoF6AwIWKohtV09CI8ZB/PyTRCdRyFWaSHp9AiaHYi13d8ai6WX99z5AvSjT4NekjLm23e1ct7VfHfnNXpTd8bTk8dmK/OqHzGm09cmIiKigYFBfw5UtnjDK6GqSgkSY84mJV/dOG0GpIAXlpvuQbCTEo5d1fcXDn2RknqTyC8XQgEY/q0Bkt8DSDIgijD8WwMQ8iNUM6Q9Rx3xTaCJIB+Hv4B/VXvFHwmZ04hav9wPz6olSvUdKeCFZfYChM74FsIGCyw33QPv4w/Gn9fWsKvja7Ts/wRiUvUYXW09QmPGISZJkGQZgbZSmg6HAx6nE0hOJzJb08p7quqGQOVxwbvk5oz59t0podnVfPdGGc6e6El/h+48Nu0xAKA1dvnaREREVP5YvScHFaII7b/+gajfC1GSUstlNsyCaugICLEoWuuHIaTR53SMziq2VMaiaP3XP9OOW3HG2fCYHADSN6UaG2YqFXGMbalBhobrIEJOL/eZlBNumHKVcjJjW7oeXrMD6rZNzIg0QwqHIajV8G5aiVjj4ZTXkAJepYqMYep0VJz7XURFVcpKvdVqxYlDB1NuA5BSklT3w5+g4qTRiH7xOUKvv5yyFyA53z6fEpoJvfEahVYKlQL6O85h/jiH+eMc5o9zmB/OX/5KYQ5Zvae3GYyo0FTBt2lVWhqK6apZ8G19EvqbF0Ovj+ZW/rGz/HJRTMuj9297EvZRK4C2CqGJfH3RaIFh+s+grh4E+8LlkKQYosePxYP85jCCb+yEYcpVUA8ajOjRr9M6uaoHDYZp2gyE3tgJ2XUcamsNqg58jNavv0zdvDtnIWIeD+TmYOom3bb0H0Gjg3zoIALrlqXU3o9WVSGw/K601ftEepPqi8+UjcMdT0o6VrvpaWfkbOU5e7O7MhEREVEpYNCfA6PrKJyP3APTlTMzdpmNHj0CVFR0mo6SkBx4ihY7RCkK+XgTVFZ79ootrmOZc/FbWpR0nopKDdTDRkH3/R/Bv2Vd6pWI6jpUnHomACjjN02bgfDu15Q6+kC8IlD06NcI7tgKy6xboLI7YHQdReTAvpQ6+nIkAu+6ZTBMnZ7ecRcyBI0G6to6eFbel3qismoJDFOnZ6yWc8JoReWJMFxJlYIS3WaTrz6o9Xrovz7Y45OqgpbnJCIiIioyBv05kDwuiEYLUKWDqWFWanrMVdcj+N+/g2X2HXAvvb3T8o8ZA8+2PHpUVMBy/R3wbng4Lb/cHG3NeEIg6vWQ3/ozBElGqyjCNG0G3I/clXZFwDB1Osw/mwXPumVK/fzmd/8G02U/h/eJR9tX76+7FcH/2REP6p98LJ6iM+QkCCp1xpMO9bCRsC14CHJzCIJOj1i4GcEXNsPUMAtA5tr7iQZfKbf5PNB/8Rlamo5kfg6E+PhmL4BvxeL2tKIeBO3ZynOalm+Kl7ns4+ZcRERERIXEoD8Hgt4A3Q9/Av/Tq+PpM4n0HlGAauw3oB83HlGfJ2t6jmiwQBv0Qh0KKht1E/f7tz2prGT7n38K9gfWoKW5OaUCixwKKMF68slG7PhRZQU+kXKTLdCW/F7of/hvkAUVrPMWAaJKafCUeJz3iRWwzluM6Jf7EXpjJwRJRvTwl1APH5nxpENtssK5ZH778WcvgPXm+yGp1ZBEVcbnZOotUKHVwvWr5TBOuTrzcc4cD+u5FygBvzJ3PampnyV9SjzyFbyr7m9/Dzfdg5jFBsFg4gkAERER9Vus058DWW+CetDglKo9/u2bENi2EdETzfGg02xV6qonCBoNYLVDt28vAgtmIrr3nawr2QAQazyMmMeNUP1JCOnNSsApVlbFq+JMuQqmaTNgmHIVJMjwrvlVStMsQVOVcQyyKACiCv5n1sH/9Gq4H74b0S8/zziW6Jf7EdjxLAz/diVkrQ6h118GVKqMfQki+z9OPWlYvxyAjKhaDSnog+Wme1Kfc9X1EE3W1NvmLkIsGIAciSidfDveH6wdCtnnVQL+5PF2t6Z+ojxnx7mJHjqQ+h4efxDyv/4J/4KZ0O3bC1HopFdAB6IgQB/yQf/1QRhCvh49txT15/dT7LEX+/hERERc6c9BwGSFyebotKb7CaMVlhvuTNmEapm9ALIkw5e0up9x9RsyVI5a6H74EwgqFQwhX8oqs3QiDMPkn6as9Ftvult5HZWjFoZ/uxK+/1oL0/Q5aTn9Yk0dYlqtcmxBo0HFqWdmHYscicC/dQNM0+dACnghqCqUkw5lA/NrL0E3YXLKPMmRCGJffwnB50Fw5wsQqwfBft8qSN54YB54cQskjyv+OqII9TkXIFqpgXCsEaaGWQi9/nJ7/wNRROU3z4PfXgftJ+8jdviLHnftTZapPKflhjvhf2Z92ntIbEbuyZWEctsz0J/fT7HHXuzjExERAQz6cxKTJATqR8By493wrlmalnMvAtB9/B782zYqAWvFSaPh3/H/YLjsP5VANbGSnZKm0zAL4Tf/CMOll6fuFUgOEoyWtKA75vcpQbD+x/8B/9YNkCMRBHf8P5imz4HKXgPRYICkNyJodkCW5ZRmT61qdfr+hLZKOUBb6ovRBFPDLEjRCAyXXJ5yMmGZvRD+7ZtS5knQaCBoquIpSw3XQZQluO6bl7Z/IbhjKyy3LkHsWCMCq5KC8Fm3IBYMAZFmqIaeBL+9Lt6YrK0qUaa567Rrb5JMDa8kUVQ6BSe/BxmyMgfJ1YI6k23PQLfTj0pMf34/xR57sY9PREQEMOjPWVSSEDz1m6heuQUnjh1NybnXh3xK86pENZtEzXtBq09p6BV85bcwTJ0Odc0gqByDIOkNMI86Ba4Hb80aJASs1TBdOQPe5PKXM25WVvVVFpvy3JizCb6NvwYAWO99DDGjClWH9rdvUm0LOvRfH1S64FaOHIuWLz5LLb2p0UBlcyDmOo7Ywc+h+eb5sN7+K0T3fwxZkhD6yy6YLvtPeJ9Y0R60//IORP1+GKdcDXX9UHhW3Ju2f8E6bzFav/wcKoMZ3vvnpabWPPmYUuffNG8RZFlWcvEzdUEO/P5ZGMecDr3b2a1NuB3Lc4qCkN6cK+nEp2N3XpUowuBpguxypnQtBtB5ydX+GOj15/fTydgT+2uixw/DoDP2zb6N/jx3RERUNhj050GSZQiDhiCkrorfkAgWsvyRF0QRUYMx5QqBFPBCrNTA//zTMN96P3xGGwwBf+bntwUJMUlC6Bvnwrp0HXC8Ca1ffI7g808BAAxTroLKmjn1SFVRAW9bw6+OVw8Ei00p32m7dwVETZWy6p1YRYcgIrB9U/z5L26B5fo7cOKzj6EZNRZVo06B1NIK+72PIeZsgspeA9//exKtH7+fln6U/J6iX+5HcMdWVIw6Jev+hkR5T+PyjUoufvJ+CkGjgaHhOui+8wN47p+f8f119/NMrP4LPg/UAuBd/7DSqCy5O69KFKH/1z/gWb88JX0rdMa3EJOklHEmfwbJJw3dka2XQKH11vsphqxjb9tf09dpN/nOXUVbM7yY+zhUtmoEHHVoTe5gTURE1A3cyNtLkjfqVRiMGTeJVpw6Ds06E8KnnQ37ncthapgZX8l+7SWYpl2LoLUWAKDSGzI+X6Vv7+4bkyT4zNVQ2aoR3LEVMWeTEgS3HDoIU8Os1A2wDbMQ+eIzJfBQDxsFlSjC+PmHsPicOGG0wnTbgzA2zIwfoEoHw9TpME2bAeOVs6AePhIx1zEYp1wNlaM2Hog//xT0352E4I6t8G/fBP/Tq9F64FOoauoQ+WgPtOPGwzRtBkSjBdGvD2XdVGxqmAXYqjPf3yG1JpGL33ETsSDL6Q3LVi+JB8w9kFj9D9afBH/9COgXPATT/athXL4xJRg0eJrgbQv4E8fzrl8Ogyd+ZSTjOOcuQnNbx+HuSOSCBxbMhP++eTltJu4tvfF+iiXb2AVJzph209PvTK7H787cVYgitHvfgnPRjXAvvwvORTdCu/ctVIj8TzcREfUMV/p7QceNeqq6IbDMXqAEhYnSj4HBIyFJEiRZhn/oyTAYjJBdTpjP/Q6C1lolNSR6ojk9X/3KmYh2WAkHgICjLq2ev8pRA7myEoap0yFIMmRRgDioHsGNqwAAFaNPg+HiKUqzLEGjgWXeIsgAgi9ugXrYKBh+2gDJ5wa0eqgMeriX3ZmW8qKbMBne9ctSg6atG2BfuCyldKjpypkI//V/YZlzJ7zrkjY2z7wF0eYQxEGDEbRWdyu1JrEab1q+CeLRwxBkGdGmRqjM5l5PoeisO6/scmY8nuxyAubqjHsGerpKX0q54L3xfool29i1hw/0+nemJ8fvztwZnY1wtv1uJ8bn3fAwHEvWwG2r7bUxEhFR+WPQnydZkmD0HkP08EEYp1yN0Bs7EWs8DP/2zbAuXYdoKARY7ZAkOSWXPiZJCFhqoFVXAl43tOpKJRAQDKaM1XH03zw/Yx5587jz4FiyBjG3EyqbAwFHHWKyDK1jEODzQGjbpIqKChinXYuK4ScjeuggRKMFsUhTPM3m0EElUK86+3z4t/4GugmToa4ZBE9b3XogtSuuIIoZg6aWTz9Mf/zU6RDqh8E6bxHklghUjhpIsRjUruMQTBbIPUitkWQZMmR4k/oKmH9+Q8YUigq9HqIgZAyw8kmdEe3VmasH2R3Kz52dNHRLieWC5/1+upDL59Hd52QaeyFTlnKdu5j7eMbvQMztBBj0ExFRDzDoz4MoCIi+/RelqVVi9Tr42kto/ewjREMhNA8ekTFvuPmUM6H95P2M+cRhgwWGq2enlpO86R40G60Z88jDZ3wLEU0VoNUhpqlCrC0wTg4yVKII07RrU64+JFbSY86m+BWBtuBCgIBY42EEtm+GadqMzLn29mpoho6AtaYOQpUOgRe3oPWzj+JBVId8YzkSQcXIMZCbvlY2OCdX75ECXuW9J8YsCgL0Cx7KvjKaFBCrHLVZuyN7VyyG4erZaXnaoiBA9+le+JOqBZnmLUJ4TPfyuQPWmvSrObMXxFO0einfuj/k0ffWnoNcylrmWwozU9nW5JPLUqCyZT65VNkcnTyLiIgonSDLJfLXLUdHjhwp2rH1IR8CbRtjEwSNBrZblsD79OPxoBXI+Bjr0nXw3D0n7XbjI5sBSYLg86CishItn30EORREePdrsN50N1xtG1UTVHVDYPrZdemlQzsEPtnGmuj+a2qYhcCLz0CORGCaNgOBHc+m/Tuh4tQzYZj8U3g3JAW8192K4K5XYPjxf8D//55IaZwlaDRw3LcKzvvmZT2+oNGkpK10FUwaQj74296Pcdq1CO7YCtFogW7iJUp3ZGi0CDz9ePwzWboOfkuN8hrGkB++BTPSxmNevgkBvalbn79aFGF0NUJKXHWxD0K0FzdYdjeodTgccDqdvXbc3h5fd2T7fnaWypTLczK9B23Qi4pwEK06A5pLLGUpkdOfnL5nuf4ONI87r+Q28xbre1hOOIf54xzmh/OXv1KYw/r6+oy3c6U/H1nSL1q/+AyW2XfAb7BA9/XBrLnfHW8XjRaovvgspaGX6cqZCL3xSnyjbtORtOfoJkxWAv7Ea/tXL4Fp+ab4Jti2oBk+T9bqOKq6Iag8/SxY6gbDu/aheP+AGTdD8jgBlRq2Wx+A96nViDUejgcdV/8SziU3p+YZP7ECjvsfh6+6HqaGmanvoWEWIh/uyXr8xL8TaSvdWYVvNlphu/sRtH68F6rqQfGUh0iTUiIVAEzTZrR/Jv/8G3RDRigBqeg8mnE8ovMo0I2gXxQEVH3yPlx9WPmlO7ngoiBAPnoY+qbGPqvuk+0ErFf3HOSSytQL6U+JK2KO4aPgdTpLZoU/oVWSgAzpe6UW8BMRUelj0J+HbOkXsiQh2hY7qAUh42NEe3pZTd0Pf6IEy0Bq/nxg+2YIVbqU56gctag4aTSMl/8C6sHDEG06CjSHEHpjJ8QjX8HblosvaDSw3f1oxnFUjjsHqiHD4XrgFohGCwxTp6NizKmQfT74kzbjWmbdipgUQ2X9cMR83sx5xj43qqq0gMUG6/z7IKhVaDnwKYI7X4Dxil+kjV33w59APXwUbAseQuDl55S0FV3Qh/Afno/n/59ohqDVI/Dyc9D9cjiCelM8CP3kfbjbAs5EpaK0z6Gt8o+g0UDWaCEfPghDVRUkew1EnSHz56Kp6tZnX6hNtp3lgidW2o/34YlHZ6v5vbnnIJdUpv6Q/tQbWiUpvmk3kcPPgJ+IiHLAum95CBsssM69N618ZHj3a5DNVmiDXnjXL4+XlEx6jOWmexCt1MIybzFMDbOgctTGN50OOanT1fDgn/8HltkL2ir01MJw6eXwrLwP/mc3wLPyfghyDKHdr8Jw6eWItkZgnbcI1rn3wHrHrxBrOgLrvEUpxzPNXYQWo1m5UhBzNiGwbSNwoiW9HOWTK1BhtsH1wM1A24lMMkGjgcpoAd7aDf/qpfCsvA9SKIgT7/wVuomXoGL4yUpwnhh78MUtcC+7E56V98Ew+d8QMcaDNTEcgGHSJfCsWgLP6gfb7v8pKlpOKKvOyQF36PWXM5YoDb/xSvzf18yFKIoIvrgFngduhX/BTMRcx2D6xby050h6Q/c+/M4C3gLJduLRmyUnOztGIuhOlmvQnUtZy/5cRpSIiKjQuNKfB0mWoTrv+7DdbULrx3shS1K86s7Vs5WSgLHGwymdY2XIgFYL/+2/SNoAuhBRvwcxryvzyqVGA1XdEOjP/z6Cr74E67xFELU6uJYtzHhVIPzW/8Ew+d/gWbUkvnp/6eUpG1wtN9yJ2EmjEdaZMpctbA5lTVuSIxEEXtwCy3W3pnbfve42eJ9ajehX+5UNwt71y2G7dQncKxahYugIpeOv5pQz0sbu3fAwrEvXwWeuhlpUwdn22u33L4dh6nTohoyAbLakjC/mbEJw5wuwLl6JaGsrRLMN6lgLTGYrhCotYq7j8G/dkPp6a5bCfvcjqWVNa+oQNDu6tZJaEqvMhaju08kxmoeMzLiZOWS09ng1Opeylv25jCgREVGhMejPk6hSwTd4JAw6fVvN/e8iaK2BlNSVNdE0C2jbvDp1emoAun4ZDFOugqTVp1egaZgF1alnwjzuHPhWLIZuwmREvzwAVW1d1qsCxp9cAU9bPrxuyiVpTau8ax+CcflGpRNvWvCq02dNWwKA1s8+QhCAdd4iQBAACEr1HgApKUmtB+MnCqLZonT8Vc+9J/PYPW6orLWIZetorFJDOnwQFZpTYGqYheZ33kTV2efHr4SIIiSDGc06I3T79qbk2luzHK9VBirO+TZklxOC3ZHSK6Erxa78ohJFVOr0MDXMBCQ5Xiq2rbxpb554dHZyUxXwwL99c8oJrX/7ZuhPGp1TilMuZS37uowoERFRuWDQnydZkqD95H14spTeNM1bBH/birvuhz9BxZDhiB07CpWjFjFnvHurksLTHEbwjZ2p9fl3vgD9iDGASgXD5J8qDbtM186DsWEmBCke5ITe2Akp4IUMGXLkhBKkCRA6XQ3OFLzGws2w/PJ2eH/zSPsK7sxb4H9xi/IarZ99BM+qJbBcfwc8qx5Ie30BgpJLb5x2LVq/Ogj7wuXwPPEoBG3mk4qWA/ugDwWgGjYyc839oSPgfmxRytUF/2//q32D8aB66EeMha9DOkr08FeZT2LMVvj0ZsBcHb+xB6vTxVxlVoki9P/6B1wdy68mXWXqreC3s5ObxJWs5M3TAIrWR6AYeqtkKRER9W+JvwfR44dh0BlL8u8Bg/4cJT5cydWYMec5UT1HpTfAesevIHtc8D65IjVIS9TIb9t0KkBQVsMTBI0GlaIIoaISzraAX+WohQAgkNz1tmEWoNEi+PI2WG9YmBLkdpaGkhy8CqEAKioqEPP7oDZZYb/3MUihAESdAbFIM0z/MR3eJx9LOREQTJbMr1+lheWW+yE1NcKfKKf5w5/AfPX1EO0OWGYvVLr5Js+HFPDCsWRNxpMO79OPd6gY9KhyRUGOROBdtwz2e3+ddpITev3l+PM3PpYWuOYTHBdrldngaVJ6NQDtqV32B9bAZxsUTzvL0MStu1cxknV2clMSKU5FlG+vByIiKg+9WcK6LzHoz0Hyh2uccnXm0o9J1XOMDTOVbreJ+xMpMMEdW2G57jYEd+2E9tzvwDJnIWJHjyD0+svxplUNs+BZ9QD0P/4P5fm6iZek5aj7tz0J660PQDdhMvw7tim51qE3dqanDM1dhBNGK8xJQWHQWoOqr79KLUF5zVzIJ5qhstoh6AwIvBrvEqweNBhSKAjBaoPYdsLRMSVJPe5cCFIM3scWx/cVXHKZcpVC0GhgmnEz7Hc/gpYP349f0Wg7AQKA6JGvIEWjsN7+KyASRuvhLxELhVJq/yfed2KTc+JnuTmUFohKAS+ioSAMU65CxUmjEa0bEg/4Ea/1XqqrtNlWkTOVe5UjEcQ8bkjWWuVKQMcmbqEzvpVz4J/p5KbYKU7Fpgv6lIAfaPs9XBU/4Q92s9cDERH1f4Wq6JcvBv056PjhZlrtjB5q3yCb3O02QY5EoB40GIap0yFV6WCYeEnKlQDLnDsR9bkRfHl7PBhuuz0R6GZ6vej+fUqjq9g1N8K6dF08X716EGzfOBuS6zhEuwMhay10HYJC+92PKAE/EO8ZgEgzAs8lBfO/mAc5HATUFagYPAyeJ1ZAP+FHCGVISTJXD0Lr4S/a9xW0BfyJsfo3/RqO+1alNf4SNBoImir4Nzwcf01tvJqOurau07KcynP1hrRA1DLzFsRCIYR2vwbzud9BSG+GCBT9rLyz1JDOVg1Ee7xLa3IzMogihOp4ScdMVwK865crG6V7Sz4pTuWQFiO6mjKf8LuOdavXA1Ae80BENOAVorBGL2DQn4ukDzf0xk6YrpyZsoptueFO+J9Zn/KUTAGryl6D6LFGyE1fw7t9U2qQtu4hGKZcpax+Jx8n2+uph4+Kl64cOQbhKgMkjR6ipSYteLTceDf8bSkxQDzAj3lcKa+nm5i6AVg0WoATYQTaxplIyZEFFVBR0T4OCEBFBVoPfwFBkuOBeJaTlMhnH6XP3XW3IvD7rfGfRRGhndthuPRy+J5Zm/7Y6++A//mnlPdvuup6RA1mhGuGwLx8E8SvD6L18Jfwb98MKeCF5fo7ELLWApLUrbPy3kqRyaSrS4GdjS9grYFl3iJIxxpTr7AMPQmiyZ71SoDscrbvX+gluaQ49ZfLoF0RtLqMv4eCVtut55fLPBARDXT9Jd2VQX8Okj/cmLMpXpJz6nSoTz4NMXs1VLEopIBXeXzGFJt5i+AfPAJVJgtUGTrtJoLehJizCcHXXoL9gTVoaW2FZehJ8D7+YEpKjW/zqnhK0LxFyvOSg8eK0afB+O9XQY6cgHXOAvieWQ/J44L52rmIHvoidR9AUqCuctTCfO1cpSJQYnz+5zbCeM1NMF32n6nlO2cviOfne1zxE4OWlsyr9KEgQm+8El/RF0VUnjoOvi0b0PrZR/G9DN88D6oRY6CyO2Ad8w3EvC5Yb18KORRE9OhhBP9/v4PuwouhHjQYMbcLFSPHwK83QZIkyAA8qx9MOaZ3w8PtqRddnJX3dopMR12edHjd8ZX8KZcoKUyhN3YCPg9iejPk+uEZU0uMyzcqVwLSglG7I+9x94Zs793+wFr47YN67cSqr8UMpoypbVFD91b5+8vlYCIi6lx/SXdl0J+Djh+uFPBCHDICweGj45soD32esiotBbyARtuewy4KQEUl5LZVUkNt5pX7yrHfaE/p0WhgmnYt/PY6xCQJYu1QGJdvhMp1HNHPP0Jw5wvKVYFE8JcIHhMBv+HiKUrgnqh+IwkqRA8dROj1P6SMGaKopJAYLrkM0UMHM6comW3wtO1dSNzmXR+vqR/YthHBV34L3aVXwDLr1qwbmRMbl00NM5WA3zR3EXy2QYBtELRBL1SB44h9eQDQaJSrDQCUxxumXIWWTz+E1mCOd+11H8uceuGOp150dVbe5ykyXZx0CDZHWn8FU8MsyFY7AEDyurI+P5Clfn6w7SpH0WV57y3v/R362vpeO7Hqa2GdCbrBw1N6PWDwcDTrTN37j3w/uRxMRESdS053rQgH0aozlGS6JoP+HHT14YomC/yvvQRDw3WoqKmDfCIMye+F1BKBf/smAPEAMxGYJ5f2TL4SEBh6cntefoc68om0Cr3XHe+ii/iKfCLHuyIcglmKQVSp4sf696vSVuq9TzwK6x2/AqqqoP/hTwAAhobrIERboR5zGux3LofU3AzPyvtgnHJ15iC57bWSJfYrJHoUBLc9AduCh+LBkUoNzalnwr1mqXKSknityjPPhemUcYDZimajFbqAF+KRrxA7dBD+to3NltkLMx5PEEXIkRNQteVTq3SGzClVOj2AzGfllpvuQSzoh0EUITY3wzjlagBQauD3ZopMl5cCJTmtv4J/25MwnXV+l8+PSRJCZ3wr63en2LKNXZakPtl70FckWUZ4xCnQVg8CfB4IPSzb2l8uBxMRUdcScZlj+Ch4nc6SWuFPYNCfo84+3IC1BqbpsyEda1RWwQWNBqbpc5T6/GkrehWVqSuGFZUpx0uuUpO8+a/CYISqbgjQ2ppaIWfHszA1zELwg/dgue42JNfuV17HaIEc8KWsCJuunInwP/8Gg9UO1xOPKtWJmt/9W8YuvDHP8YyBS8x1HMZpM6CyVyN69Gu0HvgU4df/AMMllyGy/xMY/r//UCoQJfLxUVGBkL0unuv8yfupl8mumRuvzFNVlbmG/0mj4X36cZjPPBcAEGs5AdNV16cdI9bSonx+zaecqQTGKrMFLQf3A87jEA0GuDJclZAC3l5Lkcl2ope4FChnWcmXfW5Ab4o//7YHIR3YF+/VIIrxvRxtz49JUjxwzqEHQV/LeBm0bY77au9BX8mnbGt/uRxMRETlgUF/H4hJUuac6y3rlLryySt62qAX/kfjXWMTq/XygX0wGc2IfPoBEArB//TjME27FuEzvoWqT95H8Nn10E2YjFZRhPWXtyFyrBH+TSvTVobtdz8K37aNMP9sZlqwrPvhT5SAX3nOcxvhuG8VnPfNa8/v12hQdfb58P/2mdTuq7/9L+h+9O9pG2xNDbMQfvOPqDr7fMSON6Fi+CiIRjPkWBT+5zZCPWwUDD+9MuUkR7TZEQuHAJMjLdc5UUmo+e03YZzyM1jn3guoVAju2gnN6FNRMXgYoq5jMPz0Z5AM8eBLsjiAysOpJ1KVGkiWeHqMKAjpTdUaZsVXm9sC/uQ5MUydDnVtfe+myHRyotetVeDWFqUUbOKkoT9IXCmzP7AWLe/9HbIkpfSsKJW9B32tmA3eiIho4GHQ30ey5VwnOtWmrOi15faqHLWpq/UvbomvgO5+Nd6Nd/tmWOuHwvPs+pTuvIJGA+sNd8Wr8ETiKTOJk4eY6xhM//4zBP7432kr9RWDh2ccYzRpY3GiapDcEsnYfVVI6iKsHjQYMa8H4vCR0FXpIPncQGsrol8egGr0KagYOgJyJIKqs8+H9/GlaQGt/YE18R865DrrJl6C8Fv/B8OkS+BJ7sg7ewGifi+ih74ERBGqIcMhSLG2D0CC/6lVaccwLY+nV2XcRLntSVh+eXvGOakYNgpyRe/9uiSf6CWPLyXlq5NVYG3Qm3Ujb3/YBCrJMvz2QdDX1pfu3oMCKFaDNyIiGngY9PeRbCu16jPHw/jtC1NW9BKP1U28BMHXXlJW0wEg+NpL8YZbbc28JJdT+Tk54POs/ZWyeTbt5KEtmIrJAux3PwopFAQAxNzHMo9x0BCo6oZAN2FyfFVfUEE9YkzKY1WOWuh++BOoqgdBP/FShHa/Cv0P/y2eV681QDoRTl2Fvup6VIwa02kJz9bmZsCaPncCBBh/ckX6noS2DcP+7ZuUlfoKqyMeQPmybZKMp8dk20QpaPUZ56T1i88Q3LG1YBt5u1wF7uL5Pan/Xqxa8aW+94C6pz+0niciIgb9fSbbSm2gZkj8D6IstwdbPg9sdz+K6NGv01bwTVfOhFypUTarivZqCF/t73TzrG5iejMs7/rlMEy5Cq4Ny2Cdey/cj9wDlaM2Y2pOi/s4TJf9HN4nHm0/aZi3CJa59yJ6+AsIKjUqho2E96nViDUeVmrmw2hGbP8+SH5v+ibUrRtgvHJW5yU821JXOs4d2jbpZgzSJbn9GNuehP2eR2EI+aDWZ9nIq49v5M12UtbadCR9Tvog37w76TudrQJ39nxREKD7dG/6foEx6fXfi10rvpT3HlDXiv39ISKi7hO7fgh1RRQE6EM+6L8+CEPIB1EQUlZqTfevhnH5xpQ/hIk/loEFM+FbPBfupbehcsjw9M61z21E5dCTlBKeAfsgVJx6plI5J0HQaKCy2mG/+1GoBw3OmlokRyKIHv6yvbLOK7+FYcpVMDXMhHXeIgR3vgC5qVEJ+JVxbFkPxKIIvrgF/mc3wL3iXhgm/xQqR238pGLDw4h9dQCBF58BWlsyr0LHovHgWVMFy8xblPeQCBSaDRYAqZtsrXcuR8W534Gq7YSm43tO7sgrR+J9E/wLZkLyumG6Zi6MDTNhmjYDpoZZMP1yAdAahf7rgwAEmG57MHUMDbMQ3vk8gq+9BMfilTA1zIRhylV9km+eOLHJNgddaTZaYZm9IOX5ltkLcMJohS7oy5j6owv60l4nW614bdCb/5ukssfvDxFR/8GV/jzJktTpSle2ldpMfywjn/wrY7Ac87hhufFuBIaejKgkITB4BCw33ZPanGvuIgQHj4T+4CeIHT2SeSW9LUAOvf6yUjc/5mxCcMdWmK6cCd/m1Yg5m6AyW1LTeCZegorhJ6fV40+kHAXauvuqa+viZS61WuX4ShlRTRU0p44D1JVAcwjBN9+AYep0VI75Blqt9tSSp5k22d77WFrteVPDLAR3vpDyHqVQKD5nRw5BAJQUI1XdEJgu+zk8981NWf02PrIZ8LggmG2QRQH6EWMAsxV+oxW6Y419lm+e7ybOqoAH/u2bUzdWb98M/UmjIbqy9ChoK2eagrXiKR/8/hAR9RsM+nOUSM2JHd4P+fAXyibaxEpXlxsqM/yxRFtwmZaSUjcYPtsgSG3BZkySEDzlrJSAsdlohfaT99F6+AuEdr+alqJimXkL/G2bcKWAF9FgQNl8Gz3WqKxmA4Cg06c05vI/txHGy3+R9epBYpytXx1EcMdWWK67DaZr5iL48raM6UrB3a/C8KMpwODhUI0bD6/bnfWESKlm9OF7EM67ELal6yE7j0FltaPl8BdK5+PEvgHVoMEwTZsBQRQRfOUFJShWnzQKvmfWpXS5lQ99gcraOsRONEPUtyJaqYEsyxDQllrTRb55d3LhO3uMIAhQR1sgn2iGqDfghCB0fyOn151xYzV8HghaXcbvkaDVpr1MKdaKL+QeA+aj56cUvz9ERJQZg/4cZMxjTeow23GlK1MQk+mPZWj3q7DccCe8ax9KWV322+uUgD+h41UEfcAD/+olSqCubAgWRVSO/QZ8259SUlQsN90D/9bfINZ4WNn0mxw8C5oqmBpmQYqcgP+5jRCNFlQMG5H16kHHvHfvE4/CeOUsmK+5Sam2A6ReHfBvexK2pesR27c3PdjqrJpR21UU7eEDCG3bmLLSHXz5OWVTsfWGO2GaOh3ejY+lbCZGRSX8T69un1+7A/7nNkMKeGFqmIXQzhfi/247TrZ88+7kMmd6jOWGOyGdNBon9GboDn4MtEaB5hBkWYLe60JoxKnd2sgqWGwpm60T3x+YrYiJKpgaZqV1840Z0k9CS61WfCFzxHvjWMXaBF0qSu37Q0RE2Qmy3L//y3zkyJGCH1Mf8iGwYGZaAJxcgz+x0p8tsGg+5UxoOzagmrsIJ045E3pPU5fVTNSiCKOrEZLLCdFejRYI8N8xA0BqZ171meMRrB2KqoBHuSpwwmiF9sDHSmMnQauFesxpiLZGoa6ogP+px6H7wSUQq6rgWfUAjNOuRXj3a2mr9pbZC4HKSkS/3I/wG6+kdNi13bUcYkUlWj75AEB7V1sAME2bAf/2TTA1zIR/28a0YMsQ8iG4/E6Yp89OqdiTmGfj8o0QAPgzfQYN10HUVEFlscGz8r70+9sqHGX73DJ9hj35DiQ/xxDyw79gRsYxaM65ALEv96dulr7uNoijToW3YwpOBipRhP5f/0hLPwqd8S1UhXwQPnofks/d3gfBbIN82pkIaY1pr5W8oRxmK5qLGLh2Z15L5VjcxBqX+P4kupMX8/vT3zkcDjidzmIPo1/jHOaH85e/UpjD+vr6jLdzI28uspV7TKrBn9iQmW2jW1XAk3Gjb7Stmol/5KnwmauzBvy6vW/Bde+NcC+/E657b4Dq6y9Qef73AQAxZxMC2zcjsONZRHWGeGlEvRmh+pMQ0pshy7LS2Mm/fRP8255E1OtBePAIRHUGRL/aj+DvnoGgNyolNmONh9s3/U6bAcOUq4DKCgiCiOCOrSkBv6puCOSAH65lC+HfvgmBHc/CcMllUDlqU64OyG3vrePmv2ajFaZp1yJ66GDWfOGMG2GvjDcgQ6QZ0SwVjhLVfjp+bpn+DZ+nx9+BxHNEQYB45KusYxAiJ9I2S3ufeBRiczD7MZNUBTxpjdW865fHT+7cTgR/+1/tVyYkKf6zx5XxtRJXjRLfj6IGbF3Maykdi5tY4xLfH/WpZxb/+0NERFkxvScHPanBD687JY8ciK96w+cBEpVa2vLIu8voaoRrw8OpAd+Gh+G4fzUiI8Yg9PrL8RSVefHL7CKQkoIACFkbOyVfrm89cijepbZtFTNxMgHEA3vz9NmIHTsC+70r0HLgUyAUiqco/eImuFekp/VY59+HmNeN4MvblHSgBDkSAUIB6AGoQ0H4tm+GefocmBpmApKsXClI5Asnb4RVuY4j+vlHCL7yW5ivnQfPqvthnHJ1xvQXWUyd6eQNzh3/3Vlecle5zNqgF7FDB7OmRMX83sybtn1ewJH5DD1FJ98rwWKDFPCm5Pv3lzzrQuaI532sAbKJdaCnMBERlQuu9OcgW7nFQM2QtJUuweaA4dLLEdyxtX3V+9LLAXu1UrLTf988+BfMhG7fXohC1+G/5HJmDhhdxxB48RmYpl0Lw4z5UJss0DUdguGTPSnHEY8eyrwC7fOkBNPquiHxEp4dSmwqlXBWLYHvqcfheuBWCLEYQrtfhblhFqRIJOPrR7/aD7GyEtab7oGsSj3fVNUNgcrjQmDBTEQ/+xiG/+8/4Fl1P/zbNrZfKagbAtO81NKeIb0ZweGjIY4cC90PfwII8WM1v/s3mC77z5R5N132c4jV9allLq+/A+E3Xmkv2Zn4dxflM7ssuel1I/T6y+1XHxLHm3lL/BgVlRlLkIq27pUEzfq9aquElE850GIq5NjzPVbipCHltn5yctVdyaWFe/rfKSIiKi1c6c9BcmCcyGPNuvolyemNqrY9Cds3zoY7Q2qAafkmBLvI6Rbt1RlXKEWjOf46L26Baep0uB+4Jb5pdsfWlOMIbY/v+PwKQOkxENKbYaiNV/oJPP14fFNtYmPwaWfB9eCtGTfoetb+Ctb5izOvcEsSvE88Cuu8RQhs3QDLrFsQC4aASDMqTz8Trgfir6muHwLfU6vTOhPb5t6DlpYT7fPQtgIp+DxQa6rg/dP/wDD5pxA0GlSdfT68T6xIS58xtqUmCRAgiwLUQ06C+Rc3QWVzIBZthfn62xFzDELY0HmaQlclNxOr7YmUqMTxoqFgvHpShTqtBKll9gIE7IO6VxI0y/fKdNb5eZcDLaZCjr1Hv8cZDIRNrNlSmPpijwUREfUtBv05SgTGjuGj4HU6s/6Rl72ujKvekut45lrqR76COOaMTgOPFr0RluvvgLctxSexYu1/eTsAQDdhcnvVmraGXMmiRxthmXlLamWbK2fCs+Fh6Bc8pPwxTw5qkuv5t+z7IOueBjkSQbTpaKddbaNH4lcavE8+Fm9+tWMrLPZb28ueRlszlvqMfPYRBEmC3lqDkM6YsYJS+K//C9NV10NuDmVOvWhtUTbqWn55O9yPLVa6CpuunBmvenT1bGDsuE4+/bjO+jAkz51yvJvuQcxqV9KoxCEnw/7AmrbN2A4E7HWIdrMHQLbvlexzA3pTp2MrdYUce3d/j7M9t7+eXHXbAElhIiIaCBj097FsecOi3ZHx9uihA9DWD+18Fe34UYTe/CPsdz8CKRiAaDDB//JzaHnnzfjriGL6KnvyH+5IM2Ii2lfSNRpIggj9hB9BHQ5BbAtcsuXN6yde2mn5Trk5iNAbr8A6bzGihw5AliSE//q/8YpCogj14GFQOWrjOfptJwreJ1colXVUBhO8HfccPLcR9rsfhWf9clhPPhVaKZa+Atl2tSH48nMwz5iX+WrGORfAdMo4VGq18D21JiXnP/jaS9BNmNztlczOcp0zBYTB5ICwbX491lrAWhu/rQdNv1gfvTT055Or7ujO94y9DoiI+gfm9PexsMEC07wOecPzFiFgrYXlhjvTqs+EX/9Dl9VDBIsNrf96B85Fc+HbvBqt+z9B67/eUV6nYsRo5XVDb+xMyytXDR+BirqhCO7YitAbOyEIAoLbnoB/+yZ47p+XkrObkjc/ZASkgDf+mg2z0se++7X4/7eV7/RtWQeVrRrh3a9Bd8FF8fzzbRvhWXk/DFN+BuO1c6EaNgK2O34F4+W/gObUcVDVDUHMk3nPQsvnH8Mw+aeQW1s6raAUczbB98w6WGbdkjrGhlmQRRGh+pPQ2toK3YTJgNj2KyCKMPxbAwStoVsVXERBgO7gJ5Df+jPw8V7Ib+2G7uAnKbnOfVkVp9lohWX2gtT9ArMX4ISRQT/1nq72PSTn/LvumsOcfyKiEsaV/j4mCAJEAIap09trpgOoOvY1xCEjYLxyFnCiOd5c6pXfxptkdbFam5Z289pLsN39CKIyoNLr0RqNwXLTPfA+/mDa/bLZCkkUEVz/MCwzb0HUfVxJowGy5+wmVq6ti1YiuvcdSBBgnDYDKnsNhEoNou7jsFxzE7xPP65U2TFM/imCr72UuUnXlnUw/fxGSMcaU2v/z7oFqtr6zFcSIicQ2LEVjiVrIGi0XTQLm4HQ/+2Cdd4iyJETEDRaBH7/LAx1QyGa7KioqkKsQg3/i1va04MaZkE9ZHi3Vsy1YT/w9ZcIJj3fMusWGI4chGTKnuaR6eoAgB5XR6kKeODfvjmlOZl/+2boTxrNXGvqNV2lMDHnn4io/2DQ38cMnqaMDaas8xbBvWpJvOPu9s3teeXd2AiY6Q+xv0OgKDrqst4vCgJ0l14B/7PrYbr8mm7n7EqyjJjegMCOZ5XnqBy1MFx6OQLbnoyXkPzhT1Ax/OR4Y6/fPIpY42HI4WDGY6isdnhW3p+62fbJx2BfvAqmeYuUsqId9wS07P8EwjfOgWXOQnjXLWsPum+4C5K9GsZvXwQRArQ+rzL3gibekVeorYdu315EDh9UAvbEsf3bnoT1liXd+gzUAT88HTbSJu9RyNSkKWMzp9seBFpbUt9rdxo8ed2INR5OKcsJoOxzrVk+svA6TWFizj8RUb/BoL8XdBaIyFnKa8qRE0pDJevSdYiGQj3aCNhVLnFn9ydOGvQLHoIQDvUoNzxxlSH47Pp4PrwoQj3mdJiXb4LkcwNmKwIGC1SCANst9yN2rBGizpB5X0OVNvMm53AQ4THjYFu6Dq3//BtkSULwld8qVxAknwcVnuOIVVTCfvejkAJeiCYLWgN+yEYzQlojjCE//Fs3pAb1WzfAdtr6+ErklKszBysqFcKjToMky51/rifCGevkJ/YoZFrtzLQqKh3Yl37y0Y2V0oGY098XHXCZj56fgfg9JCLqr5jTnydZkjqtY50or5lM0GggaKriz49EEA2FCt4NNXFSEKgZnJKzq6obAtvdj0DweWAI+dJycyVZRvMpZ8J01S+VHH33/fMhf/0lmgePUALVyoAHkVAQ0uCTALMlfQ9AwyxIsVjGuZEcgwAArZVVUA0arHT8Td47oDKYIDaH4Vp6G9yP3AvXg7dBbA5D3RIPPgRXU+aTLecx5fZMx445BikBf2efq1Rdl7FOvqzVKcdK2xeQYVVUkOTsK6Wd6M+1+HPV2x1wmY+ev4H4PSQi6q+40p+vY0c6zWkNWGvS67FfdysCv98KoPirYimpQqEAVB4X3Etv73QltSrggffxBzO+52aDJXMKy5DhqfsaHLUI/G5LemnPeYsQNlqg++R9+FcvgWi0wDB1OtSDBiPmOh4vqfmjKUBLC7xPPJpWh99x32oAgKDVZb66YLFC0GiUDc5pxzaYAVnuOldZkjLWyTdOm6Ecq+PnmmlVFKKY00ppvjXm+6VeTiVhPnr+BuT3kIion+JKf56yVZpJrNTGJAnSyafCOv8+WOcvgv2eFQjuegWtn31UMqti7alAxozBfNpKaifBV8ZA6tF7oLJVJx1QQvClbag661yoR58G69J1MN+/Ol6/fsy4+CbVtteIOZsQ2LYR3nXLoB40BLoLLwYGD0fM58k4hlhi3g2mjFcXWgwmmOYuam+cNXU6rHf8CqblmxAek3Ry01mAiex18pF0stTxc820KiqMHJNe3amb34nE56Y+9cyCXiUqll7vgNvFZ0zdM9C+h0RE/RVX+vOksmbujpsciISrDNBJEvzrlyubXQ0/mQapfliXnV8LqpsrqZ3m8WZ5Dfl4PHhP1vrZR7D/aj185mrA3HZSIMvZX0OlgnDe9+PBs/d4xjEIjhoAQFhngm5w6tUFDB6O5ioDkK1+ftLn0FWucrb71WeOh/HbF2Zc7cxWCQVAeTd46iW93QGX+ehERDSQFCzo37NnD5566ilIkoSJEydiypQpKfe3trZizZo1OHDgAIxGI+bPn4+amppCDS93NXVdBiKdNmoqoeCuu0FQZ8GXDunNwASNBoI988mRymrv9jhitfXxKxKynDltavYCBKw1gCTF53zEKdBWDwJ8HggdgumuGip1FWBmuz9QM6TTzzXbButybvDUW3q7A25vn0QQERGVMkGW+/6vmyRJmDdvHu655x7Y7XbceeedmDdvHoYMGaI85tVXX8WXX36J6667Dm+++Sb+8Y9/4Oabb+7ytY8cOdKXQ++Sw+GA2+WKp8C0BSLN/XSltifVUZTKNh3ec7bXaD7lTGjb8vSTb9ec/3243O6cxqESRRg8TZBdTgh2B4LWWsR60NW2O/PR2efa1f2F4nA44HQ6C37ccpD4DBP56P31d7cU8HuYP85h/jiH+eH85a8U5rC+vj7j7QVZ6f/8888xaNAg1NbWAgAuuOACvP322ylB/zvvvIPLL78cAHD++edj8+bNkGUZQj+opNFV+cz+oicrqdnec9bXkKSMt1eJ6dtKujuOmCSlpgb1YsDf2Xvs7v1U+hKfoWP4KHidTn6GRERUtgoS9Lvdbtjt7Wkcdrsdn332WdbHqFQq6HQ6BAIBmEymlMft2rULu3btAgAsW7YMDoejj0ffObVaXfQx9Lqkz0rb26/R4fZO5683xjEAlOV3sMA4h/njHOaPc5g/zmF+OH/5K+U57HcbeSdNmoRJkyYpPxf7EkopXMbpzzh/+eMc5o9zmD/OYf44h/njHOaH85e/UpjDbOk9BSnZabPZ4HK5lJ9dLhdsNlvWx8RiMYTDYRiNxkIMj4iIiIiorBUk6B81ahQaGxtx7NgxRKNR/PWvf8X48eNTHnPOOefgT3/6EwDg73//O04//fR+kc9PRERERFTqCpLeo1KpcO2112Lp0qWQJAkXXXQRhg4diu3bt2PUqFEYP348fvCDH2DNmjW46aabYDAYMH/+/EIMjYiIiIio7BUsp//ss8/G2WefnXLbtGnTlH9XVlbilltuKdRwiIiIiIgGjIKk9xARERERUfEw6CciIiIiKnMM+omIiIiIyhyDfiIiIiKiMsegn4iIiIiozDHoJyIiIiIqcwz6iYiIiIjKHIN+IiIiIqIyx6CfiIiIiKjMMegnIiIiIipzDPqJiIiIiMqcIMuyXOxBEBERERFR3+FKf54WLlxY7CH0a5y//HEO88c5zB/nMH+cw/xxDvPD+ctfKc8hg34iIiIiojLHoJ+IiIiIqMwx6M/TpEmTij2Efo3zlz/OYf44h/njHOaPc5g/zmF+OH/5K+U55EZeIiIiIqIyx5V+IiIiIqIyx6CfiIiIiKjMqYs9gP5qz549eOqppyBJEiZOnIgpU6YUe0hFd8MNN6CqqgqiKEKlUmHZsmUIBoP49a9/jePHj6O6uho333wzDAYDZFnGU089hffeew8ajQZz5szByJEjAQB/+tOf8OKLLwIApk6digsvvBAAcODAAaxduxYtLS345je/iV/84hcQBKFYb7dXrFu3Du+++y7MZjNWrFgBAAWZs2zH6G8yzd/zzz+PN954AyaTCQDQ0NCAs88+GwDw+9//Hn/84x8hiiJ+8Ytf4KyzzgKQ/ff52LFjWLlyJQKBAEaOHImbbroJarUara2tWLNmDQ4cOACj0Yj58+ejpqam4O+/NzidTqxduxZerxeCIGDSpEn48Y9/zO9hD2SbQ34Xu6+lpQWLFy9GNBpFLBbD+eefjyuuuCKn991bc9ufZJu/tWvX4qOPPoJOpwMQ/zt90kkn8fe4E5IkYeHChbDZbFi4cGF5fQdl6rFYLCbfeOON8tGjR+XW1lb5tttukw8dOlTsYRXdnDlzZJ/Pl3Lbli1b5N///veyLMvy73//e3nLli2yLMvyP//5T3np0qWyJEnyvn375DvvvFOWZVkOBALyDTfcIAcCgZR/y7IsL1y4UN63b58sSZK8dOlS+d133y3cm+sjH374obx//375lltuUW4rxJxlO0Z/k2n+tm/fLr/00ktpjz106JB82223yS0tLXJTU5N84403yrFYrNPf5xUrVsh/+ctfZFmW5d/85jfyq6++KsuyLP/P//yP/Jvf/EaWZVn+y1/+Ij/22GN9/Vb7jNvtlvfv3y/LsiyHw2F57ty58qFDh/g97IFsc8jvYvdJkiQ3NzfLsizLra2t8p133inv27evx++7N+e2P8k2f2vWrJH/9re/pT2ev8fZ/eEPf5BXrlwpP/TQQ7Is9/x3r5S/g0zvycHnn3+OQYMGoba2Fmq1GhdccAHefvvtYg+rJL399tv4/ve/DwD4/ve/r8zTO++8gwkTJkAQBIwZMwahUAgejwd79uzBuHHjYDAYYDAYMG7cOOzZswcejwfNzc0YM2YMBEHAhAkTymLOTzvttLQVkULMWbZj9DeZ5i+bt99+GxdccAEqKipQU1ODQYMG4fPPP8/6+yzLMj788EOcf/75AIALL7ww5bNIrH6df/75+OCDDyD305oIVqtVWeHTarUYPHgw3G43v4c9kG0Os+F3MZ0gCKiqqgIAxGIxxGIxCILQ4/fdm3Pbn2Sbv2z4e5yZy+XCu+++i4kTJwJATr97pfwdZNCfA7fbDbvdrvxst9s7/Q/8QLJ06VIsWLAAu3btAgD4fD5YrVYAgMVigc/nAxCfQ4fDoTwvMYcd59Zms2W8vZznvBBzlu0Y5eLVV1/FbbfdhnXr1iEYDAJI/73tap4CgQB0Oh1UKlXK4zu+lkqlgk6nQyAQKNTb6zPHjh3DwYMHcfLJJ/N7mKPkOQT4XewJSZJw++23Y+bMmTjjjDNQW1vb4/fdm3Pb33Scv9GjRwMAtm3bhttuuw1PP/00WltbAfD3OJunn34aV199tXLClMvvXil/B/tX0hqVtAceeAA2mw0+nw8PPvgg6uvrU+4XBKHf5+AXWiHmrNw+l8mTJ+Oyyy4DAGzfvh3PPPMM5syZU+RRlb4TJ05gxYoVuOaaa5T83wR+D7un4xzyu9gzoijikUceQSgUwqOPPoojR44Ue0j9Ssf5++qrr/Czn/0MFosF0WgUv/nNb/DSSy8p38m+0J9/j//5z3/CbDZj5MiR+PDDD4s9nD7Blf4c2Gw2uFwu5WeXywWbzVbEEZWGxByYzWace+65+Pzzz2E2m+HxeAAAHo9H2dBms9ngdDqV5ybmsOPcut3ujLeX85wXYs6yHaMcWCwWiKIIURQxceJE7N+/H0D6721X82Q0GhEOhxGLxVIe3/G1YrEYwuEwjEZjod5ir4tGo1ixYgW+973v4bzzzgPA72FPZZpDfhdzo9frcfrpp+PTTz/t8fvuzbntrxLzt2fPHlitVgiCgIqKClx00UX4/PPPAfD3OJN9+/bhnXfewQ033ICVK1figw8+wNNPP11W30EG/TkYNWoUGhsbcezYMUSjUfz1r3/F+PHjiz2sojpx4gSam5uVf+/duxfDhg3D+PHj8ec//xkA8Oc//xnnnnsuAGD8+PHYvXs3ZFnGp59+Cp1OB6vVirPOOgvvv/8+gsEggsEg3n//fZx11lmwWq3QarX49NNPIcsydu/eXbZzXog5y3aMcpD44wMA//jHPzB06FAA8ff817/+Fa2trTh27BgaGxtx8sknZ/19FgQBp59+Ov7+978DiFe0SMzfOeecgz/96U8AgL///e84/fTT++3qlizL2LBhAwYPHoxLL71UuZ3fw+7LNof8Lnaf3+9HKBQCEK9Es3fvXgwePLjH77s357Y/yTZ/ie9gItc8+TvI3+NUP/vZz7BhwwasXbsW8+fPxze+8Q3MnTu3rL6D7Mibo3fffRf/9V//BUmScNFFF2Hq1KnFHlJRNTU14dFHHwUQP+P97ne/i6lTpyIQCODXv/41nE5nWtm/TZs24f3330dlZSXmzJmDUaNGAQD++Mc/4ve//z2AeLmwiy66CACwf/9+rFu3Di0tLTjrrLNw7bXX9ss/bslWrlyJjz76CIFAAGazGVdccQXOPffcPp+zbJ9Lf5Np/j788EN88cUXEAQB1dXVuO6665R80xdffBH/+7//C1EUcc011+Cb3/wmgOy/z01NTVi5ciWCwSBGjBiBm266CRUVFWhpacGaNWtw8OBBGAwGzJ8/H7W1tUWbh3x88sknWLRoEYYNG6b8PjU0NGD06NH8HnZTtjl88803+V3spi+//BJr166FJEmQZRnf/va3cdlll+X0vntrbvuTbPN3//33w+/3AwCGDx+O6667DlVVVfw97sKHH36IP/zhD1i4cGFZfQcZ9BMRERERlTmm9xARERERlTkG/UREREREZY5BPxERERFRmWPQT0RERERU5hj0ExERERGVOQb9RERERERljkE/EVE/dsMNN2Dv3r3FHgaef/55rF69Ouv9TqcT06dPhyRJBRwVERElqIs9ACIiKn8OhwNbtmwp9jCIiAYsrvQTEVGfisVixR4CEdGAx5V+IqIycfjwYTz00ENoaGjAtm3b8KMf/Qi7d+9GU1MTLrjgAjQ0NGDdunX45JNPMHr0aNx8880wGAxoaWnBhg0bsGfPHkiShLq6OixYsAAWiyXrsY4dO4a1a9fi4MGDGD16NOrr61Puu/HGG3H99dfjhRdeQE1NDW644QbceOON2LZtG9566y28/PLLWLZsmfKcnTt34sMPP8SCBQvQ2tqKbdu24W9/+xui0SjOPfdcXHPNNaisrMSHH36Ixx9/HJdccgleeukliKKIhoYGXHTRRX05tURE/R5X+omIysCBAwewdOlSXHvttfjud78LAHjrrbdwzz33YNWqVfjnP/+pnBBs3LgRkiThv//7vwEAf/7znxEOh7F+/Xps3rwZs2bNQmVlZafHW7VqFUaOHIlNmzbhP/7jP/DnP/857TEfffQRfv3rX+Puu+9Ouf2cc87BkSNH0NjYqNz25ptvKuPeunUrGhsb8cgjj2D16tVwu9347W9/qzzW6/UiHA5jw4YNuP7667Fp0yYEg8HcJo6IaIBg0E9E1M998sknePjhh3HjjTfinHPOUW6/+OKLYbFYYLPZcMopp+Dkk0/GiBEjUFlZiW9961s4ePAgAEClUiEYDOLo0aMQRREjR46ETqfLejyn04n9+/dj2rRpqKiowGmnnZZy3ITLL78cVVVVaScQGo0G48ePx5tvvgkAaGxsxNdff43x48dDlmW88cYb+PnPfw6DwQCtVoupU6cqj02M97LLLoNarcbZZ5+NqqoqHDlyJK85JCIqd0zvISLq515//XWceuqpOP3001NuN5vNyr8rKyvTfo5EIgCACRMmwOVyYeXKlQiHw/je976HK6+8Emp15j8Rbrcber0eVVVVym3V1dVwOp0pj7Pb7VnH/N3vfhdbtmzBZZddhr/85S8499xzodFo4PP5EIlEsHDhQuWxsiynVP0xGo1QqVTKzxqNBidOnMh6LCIiYtBPRNTvzZo1Cy+99BKefvppXHPNNT1+vlqtxuWXX47LL78cx44dw0MPPYT6+nr84Ac/yPh4q9WKUCiEEydOKIF/x4AfAARByHrMcePGwe/344svvsCbb76Jn//85wDiAX1lZSUee+wx2Gy2Hr8XIiLKjOk9RET9XFVVFe666y58/PHH2Lp1a4+f/8EHH+Crr76CJEnQ6XRQq9WdBuzV1dUYNWoUnn/+eUSjUXzyySf45z//2aNjqtVqnH/++diyZQuCwSDGjRsHABBFERMnTsTTTz8Nn88HIH5lYc+ePT1+X0RE1I4r/UREZUCv1+Pee+/F/fffn5L60h1erxdPPvkk3G43qqqq8O1vfxsTJkzo9Dlz587F2rVr8Ytf/AJjxozBhAkTEPr/t2vHNgzCUBBAf1ZgC3cegBaWsLwIFCzEdojaKaNINChKIlnvlS78r7zizvPW3XEcY9u2mOf5LXMpJfZ9j3Vd4ziOGIYhpmmKnPOt/wF4ebTW2r9DAAAA32PeAwAAnTPvAeBSrfXyfVmWSCn9OA0AnzDvAQCAzpn3AABA55R+AADonNIPAACdU/oBAKBzT31yisLz5gRMAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "sns.relplot(x='kms_driven',y='Price',data=car,height=7,aspect=1.5)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Checking relationship of Fuel Type with Price" + ] + }, + { + "cell_type": "code", + "execution_count": 28, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 28, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA0MAAAG3CAYAAAB2XI7JAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAAsTAAALEwEAmpwYAAAybUlEQVR4nO3dfXRU9YH/8c/MJCEEyEwSTCSQWOXh+LgWjCUhEaFmrQedrnoUjUdaV2zWg62btqJo7bIeH0pAuxYBFcEn9FC71V077Xpao5WQkKA0UKtsNTxoghOISZwAAgmZe39/5JesI+QJwty5c9+vczzJd+5N5hPPcCeffO/9XpdpmqYAAAAAwGHcVgcAAAAAACtQhgAAAAA4EmUIAAAAgCNRhgAAAAA4EmUIAAAAgCNRhgAAAAA4UoLVAU7WqlWrVFdXJ6/Xq8cee2zA/Tdt2qT//M//lMvl0hlnnKF//dd/jUJKAAAAALHG9mVo1qxZuuKKK7Ry5coB921qatJ///d/68EHH9To0aPV3t4ehYQAAAAAYpHty9C5556r5ubmiMf27t2rtWvXav/+/RoxYoT+5V/+RePHj9dbb72l73znOxo9erQkyev1WhEZAAAAQAywfRk6ntWrV+sHP/iBxo0bp/r6eq1Zs0aLFy9WMBiUJP385z+XYRi6/vrr9c1vftPasAAAAAAsEXdl6MiRI/roo4/0y1/+svexrq4uSZJhGGpqatLixYvV1tamxYsX69FHH9WoUaOsigsAAADAInFXhgzD0KhRo7Rs2bJjtqWnp2vy5MlKSEhQZmamxo0bp6amJk2aNMmCpAAAAACsFHdLa6ekpCgzM1M1NTWSJNM09cknn0iSvvWtb+nDDz+UJO3fv19NTU3KysqyKioAAAAAC7lM0zStDnEyHn/8cW3fvl0HDhyQ1+vV3Llzdf755+uZZ55RKBRSV1eXCgsLdd1118k0Tb344ovatm2b3G63rr32WhUWFlr9IwAAAACwgO3LEAAAAACciLg7TQ4AAAAABoMyBAAAAMCRbL+aXM+9gwAAAADg67Kzs/vcxswQAAAAAEeiDAEAAABwJMoQAAAAAEeiDAEAAABwJMoQAAAAAEeiDAEAAABwJMoQAAAAAEeiDAEAAABwJMoQAAAAAEeiDAEAAABwJMoQAAAAAEeiDAEAAABwJMoQbC0UCqm8vFzt7e1WRwEAAIDNUIZga4FAQPX19QoEAlZHAQAAgM1QhmBboVBI1dXVMk1TVVVVzA4BAABgSChDsK1AICDDMCRJhmEwOwQAAIAhoQzBtmpraxUOhyVJ4XBYNTU1FicCAACAnVCGYFv5+fnyeDySJI/Ho4KCAosTAQAAwE4oQ7Atv98vt7v7Jex2u+X3+y1OBAAAADuhDMG2fD6fCgsL5XK5VFRUJK/Xa3UkAAAA2EiC1QGAk+H3+xUMBpkVAgAAwJC5TNM0rQ5xMoLBoNURAAAAAMSo7OzsPrdxmhwAAAAAR6IMAQAAAHCkqFwz1NnZqcWLF6urq0vhcFj5+fmaO3duxD5Hjx7VihUrtGvXLo0ZM0ZlZWXKzMyMRjwAAAAADhSVa4ZM01RHR4eSk5PV1dWlf/u3f9Mtt9yiKVOm9O7zxz/+UZ9++qlKS0tVXV2td999Vz/+8Y8H/N5cMwQAAACgL5ZfM+RyuZScnCxJCofDCofDcrlcEfts2bJFs2bNktR9M80PPvhANl/bAQAAAEAMi9rS2oZh6J577tHevXv1ne98R5MnT47Y3tbWpoyMDEmSx+NRSkqKDhw4oNTU1Ij9KioqVFFRIUlasmSJxo4dG50fAAAAAEBciVoZcrvdWrZsmb788ks9+uijamhoUG5u7pC/T3FxsYqLi3vHLS0twxkTAAAAQByx/DS5rxo1apTOO+88bdu2LeLx9PR0tba2Suo+le7QoUMaM2ZMtOMBAAAAcIiolKH9+/fryy+/lNS9stz777+v8ePHR+xz0UUX6Z133pEk1dbW6rzzzjvmuiIAAAAAGC5RWU3u008/1cqVK2UYhkzTVEFBga677jq98sormjhxovLy8tTZ2akVK1Zo9+7dGj16tMrKypSVlTXg92Y1OQAAAAB96e80uaiUoVOJMgQAAACgLzF1zRAAAAAAxALKEAAgboRCIZWXl6u9vd3qKAAAG6AMAQDiRiAQUH19vQKBgNVRAAA2QBkCAMSFUCik6upqmaapqqoqZocAAAOiDAEA4kIgEJBhGJIkwzCYHQIADIgyBACIC7W1tQqHw5K6b95dU1NjcSIAQKyjDAEA4kJ+fr48Ho8kyePxqKCgwOJEAIBYRxkCAMQFv98vt7v7bc3tdsvv91ucCAAQ6yhDAIC44PP5VFhYKJfLpaKiInm9XqsjAQBiXILVAQAAGC5+v1/BYJBZIQDAoLhM0zStDnEygsGg1REAAAAAxKjs7Ow+t3GaHAAAAABHogzB1kKhkMrLy7m5IgAAAIaMMgRbCwQCqq+v5+aKAAAAGDLKEGwrFAqpurpapmmqqqqK2SEAAAAMCWUIthUIBGQYhiTJMAxmhwAAADAklCHYVm1trcLhsCQpHA6rpqbG4kQAAACwE8oQbCs/P18ej0eS5PF4VFBQYHEiAAAA2AllCLbl9/vldne/hN1uNzdZBAAAwJBQhmBbPp9PhYWFcrlcKioqktfrtToSAAAAbCTB6gDAyfD7/QoGg8wKAQAAYMhcpmmaVoc4GcFg0OoIAAAAAGJUdnZ2n9s4TQ4AAACAI1GGAAAAADgSZQgAAACAI1GGAAAAADgSZQgAAACAI1GGAAAAADgSZQgAAACAI1GGAAAAADgSZQgAAACAI1GGAAAAADgSZQgAAACAI1GGAAAAADgSZQgAAACAI1GGAAAAADgSZQgAAACAI1GGAAAAADgSZQgAAACAI1GGAAAAADgSZQgAAACAI1GGAAAAADgSZQgAAACAI1GGAAAAADgSZQgAAACAI1GGAAAAADgSZQgAAACAIyVE40laWlq0cuVKhUIhuVwuFRcXa86cORH7fPjhh1q6dKkyMzMlSdOnT9d1110XjXgAAAAAHCgqZcjj8WjevHk666yzdPjwYS1atEj/8A//oAkTJkTsd84552jRokXRiAQAAADA4aJymlxaWprOOussSdLIkSM1fvx4tbW1ReOpAQAAAOC4ojIz9FXNzc3avXu3Jk2adMy2jz/+WAsXLlRaWprmzZunnJycY/apqKhQRUWFJGnJkiUaO3bsKc8MAAAAIP64TNM0o/VkR44c0eLFi3Xttddq+vTpEdsOHTokt9ut5ORk1dXV6fnnn9fy5csH/J7BYPBUxQUAAABgc9nZ2X1ui9pqcl1dXXrsscd0ySWXHFOEJCklJUXJycmSpGnTpikcDmv//v3RigcAAADAYaJShkzT1FNPPaXx48frqquuOu4+oVBIPZNUO3bskGEYGjNmTDTiAQAAAHCgqFwz9NFHH6myslK5ublauHChJKmkpEQtLS2SpMsvv1y1tbX605/+JI/Ho6SkJJWVlcnlckUjHgAAAAAHiuo1Q6cC1wwBAAAA6EtMXDMEAAAAALGEMgQAAADAkShDAAAAAByJMgQAiBuhUEjl5eVqb2+3OgoAwAYoQwCAuBEIBFRfX69AIGB1FACADVCGAABxIRQKqbq6WqZpqqqqitkhAMCAKEMAgLgQCARkGIYkyTAMZocAAAOiDAEA4kJtba3C4bAkKRwOq6amxuJEAIBYRxkCAMSF/Px8eTweSZLH41FBQYHFiQAAsY4yBACIC36/X25399ua2+2W3++3OBEAINZRhgAAccHn86mwsFAul0tFRUXyer1WRwIAxLgEqwMAADBc/H6/gsEgs0IAgEFxmaZpWh3iZASDQasjAAAAAIhR2dnZfW7jNDkAAAAAjkQZAgAAAOBIlCEAAAAAjkQZAgAAAOBIlCEAAAAAjkQZAgAAAOBIlCEAAAAAjkQZAgAAAOBIlCEAAAAAjkQZAgAAAOBIlCEAAAAAjkQZAgAAAOBIlCEAQNwIhUIqLy9Xe3u71VEAADZAGQIAxI1AIKD6+noFAgGrowAAbIAyBACIC6FQSNXV1TJNU1VVVcwOAQAGRBkCAMSFQCAgwzAkSYZhMDsEABgQZQgAEBdqa2sVDoclSeFwWDU1NRYnAgDEOsoQACAu5Ofny+PxSJI8Ho8KCgosTgQAiHWUIQBAXPD7/XK7u9/W3G63/H6/xYkAALGOMgQAiAs+n0+FhYVyuVwqKiqS1+u1OhIAIMYlWB0AAIDh4vf7FQwGmRUCAAyKyzRN0+oQJyMYDFodAQAAAECMys7O7nMbp8kBAOJGKBRSeXk59xgCAAwKZQgAEDcCgYDq6+u5xxAAYFAoQwCAuBAKhVRdXS3TNFVVVcXsEABgQJQhAEBcCAQCMgxDkmQYBrNDAIABUYYAAHGhtrZW4XBYkhQOh1VTU2NxIgBArKMMAQDiQn5+vjwejyTJ4/GooKDA4kQAgFhHGQIAxAW/3y+3u/ttze12c68hAMCAKEMAgLjg8/lUWFgol8uloqIieb1eqyMBAGJcgtUBAAAYLn6/X8FgkFkhAMCguEzTNK0OcTKCwaDVEQAAAADEqOzs7D63cZocAAAAAEeiDAEAAABwpKhcM9TS0qKVK1cqFArJ5XKpuLhYc+bMidjHNE0999xz2rp1q0aMGKEFCxborLPOikY8AECcCIVCevrpp3X77bezgAIAYEBRmRnyeDyaN2+e/uM//kMPP/yw/vjHP2rPnj0R+2zdulV79+7V8uXLVVpaqjVr1kQjGgAgjgQCAdXX1ysQCFgdBQBgA1EpQ2lpab2zPCNHjtT48ePV1tYWsc+WLVs0c+ZMuVwuTZkyRV9++aW++OKLaMQDAMSBUCik6upqmaapqqoqtbe3Wx0JABDjon7NUHNzs3bv3q1JkyZFPN7W1qaxY8f2jjMyMo4pTAAA9CUQCMgwDEmSYRjMDgEABhTV+wwdOXJEjz32mG655RalpKSc0PeoqKhQRUWFJGnJkiURBQoA4FybN29WOByWJIXDYdXW1qqsrMzaUACAmBa1MtTV1aXHHntMl1xyiaZPn37M9vT0dLW0tPSOW1tblZ6efsx+xcXFKi4u7h1/9WsAAM41ffp0bdy4UeFwWB6PR/n5+bxHAACsv8+QaZp66qmnNH78eF111VXH3ScvL0+VlZUyTVMff/yxUlJSlJaWFo14AIA44Pf75XZ3v6253W75/X6LEwEAYl1UZoY++ugjVVZWKjc3VwsXLpQklZSU9P7F7vLLL9fUqVNVV1enO++8U0lJSVqwYEE0ogEA4oTP51NhYaE2bNigoqIiltYGAAzIZZqmaXWIkxEMBq2OAACIEdxnCADwdf2dJkcZAgAAABC3LL9mCAAAAABiDWUIABA3QqGQysvLueEqAGBQKEOwtZdeeknz58/Xr3/9a6ujAIgBgUBA9fX13HAVADAolCHY2p///GdJ0ptvvmlxEgBWC4VCqq6ulmmaqqqqYnYIADAgyhBs66WXXooYMzsEOFsgEJBhGJIkwzCYHQIADIgyBNvqmRXqwewQ4Gy1tbUKh8OSpHA4rJqaGosTAQBiHWUIABAX8vPz5XZ3v6253W4VFBRYnAgAEOsoQwCAuOD3+9Vz6zzTNOX3+y1OBACIdZQh2Nbs2bMjxv/4j/9oURIAscLlckV8BACgP5Qh2NbNN98cMb7xxhstSgIgFgQCgYgyxAIKAICBUIZgaz2zQ8wKAWABBQDAUCVYHQA4GTfffPMxM0QAnCk/P18bN25UOByWx+NhAQUAwICYGQIAxAW/3x+xmhwLKAAABkIZAgDEBZ/Pp8LCQrlcLhUVFcnr9VodCQAQ4zhNDgAQN/x+v4LBILNCAIBBcZk9N2WwqWAwaHUEAAAAADEqOzu7z22cJgcAAADAkShDAAAAAByJMgQAAADAkShDAAAAAByJMgQAAADAkShDAIC4EQqFVF5ervb2dqujAABsgDIEAIgbgUBA9fX1CgQCVkcBANgAZQgAEBdCoZCqq6tlmqaqqqqYHQIADIgyBACIC4FAQIZhSJIMw2B2CAAwIMoQACAu1NbWKhwOS5LC4bBqamosTgQAiHWUIQBAXMjPz5fH45EkeTweFRQUWJwIABDrKEMAgLjg9/vldne/rbndbvn9fosTAQBiHWUIABAXfD6fCgsL5XK5VFRUJK/Xa3UkAECMS7A6AAAAw8Xv9ysYDDIrBAAYFJdpmqbVIU5GMBi0OgIAAACAGJWdnd3nNk6TAwAAAOBIQypDBw4cUGVlpV5//XVJUltbm1pbW09JMAAAAAA4lQZdhrZv366ysjJt3LhRr776qiRp7969euaZZ05ZOAAAAAA4VQZdhp5//nmVlZXpZz/7We99HCZNmqSdO3eesnAAAAAAcKoMugx9/vnnuuCCCyIeS0hI6L3bN2CFUCik8vJytbe3Wx0FQAzgmAAAGIpBl6EJEyZo27ZtEY/97W9/U25u7nBnAgYtEAiovr5egUDA6igAYgDHBADAUAy6DM2bN09PPPGEVqxYoc7OTq1evVqrVq3SzTfffCrzAX0KhUKqrq6WaZqqqqriL8GAw3FMAAAM1aDL0JQpU7Rs2TLl5ORo9uzZyszM1COPPKJJkyadynxAnwKBgAzDkCQZhsFfggGH45gAABiqQd909ejRo3K5XEpISOh9rKurS6ZpKjEx8ZQFHAg3XXWuO+64Q0eOHOkdJycna+XKlRYmAmAljgkAgOMZlpuuPvTQQ9q1a1fEY7t27dLDDz984smAk5Cfn9+7sqHH41FBQYHFiQBYiWMCAGCoBl2GGhoaNHny5IjHJk2apE8//XTYQwGD4ff75XK5JEkul0t+v9/iRACs5Pf75XZ3v6253W6OCQCAAQ26DKWkpBxzMWp7e7tGjBgx7KGAwfD5fDrttNMkSZmZmfJ6vRYnAmAln8+nwsJCuVwuFRUVcUwAAAxo0GVo+vTp+tWvfqWGhgZ1dHSooaFBK1as4DQEWCYUCunzzz+X1H0fLFaOAjBt2rSIjwAA9GfQZejGG2/U+PHjdd999+l73/uefvaznyk7O1slJSWnMh/Qp0AgoJ71P1g5CoAkrV+/XqZpav369VZHAQDYQMLAu3RLSkrSbbfdpvnz5+vAgQMaM2ZM7/UagBVqa2sVDoclSeFwWDU1Ndz3CnCwhoYGNTU1SepeabSxsVE5OTkWpwIAxLJ+Z4aam5t7P9+3b5/27dun5uZmHT58WM3Nzb2PAVZg5SgAX7V69ep+xwAAfF2/M0N33XWXXnzxRUnSnXfe2ed+r7zySr9PsmrVKtXV1cnr9eqxxx47ZvuHH36opUuXKjMzU1L39UnXXXfdgOHhbH6/X5WVlZIk0zRZOQpwuJ5ZoR7chw4AMJB+y1BPEZIGLjz9mTVrlq644op+b353zjnnaNGiRSf8HHCmnmuGBnnvYABxLDk5+ZibrgIA0J9BLaBgGIZ+9KMf6ejRoyf0JOeee65Gjx59Ql8L9CUQCETcZ4gFFABn+2oROt4YAICvG9QCCm63W263W52dnUpMTDwlQT7++GMtXLhQaWlpmjdvXp8XvVZUVKiiokKStGTJEo0dO/aU5EHs27x5swzDkNRd2Gtra1VWVmZtKAAxhfcIAEB/Br2a3Jw5c/T444/rmmuuUXp6esRKcllZWScV4swzz9SqVauUnJysuro6LVu2TMuXLz/uvsXFxSouLu4dt7S0nNRzw76mT5+ujRs3KhwOy+PxKD8/n9cDgAgcEwAA2dnZfW4bdBl69tlnJUnvv//+MdtO5noiSUpJSen9fNq0aVq7dq3279+v1NTUk/q+iG9+v1/V1dUKh8Nyu90soAA43IgRI9TR0dE75pohAMBABixDHR0devXVVzV16lSdddZZuvrqq5WUlDSsIUKhkLxer1wul3bs2CHDMDRmzJhhfQ7EH5/Pp8LCQm3YsEFFRUXyer1WRwJgoa8WIYlrhgAAAxuwDK1du1Y7d+7U1KlTtXnzZh08eFC33nrrkJ7k8ccf1/bt23XgwAHdfvvtmjt3rrq6uiRJl19+uWpra/WnP/1JHo9HSUlJKisr44auGBS/369gMMisEACNGzcuYnnt/k6LAABAklzmAGsSl5aWqry8XGlpaWppadHixYv7XSI72riPBABAkhoaGvTAAw/0jv/93/+9z8V4AADO0d8fxwZcWrujo0NpaWmSulflOXTo0PAlAwBgmOTm5mrcuHGSut/4KEIAgIEMWIbC4bA++OCD3v8Mw4gYf/DBB9HICRxXKBRSeXm52tvbrY4CIAaUlpZq5MiRKi0ttToKAMAGBjxN7o477uj/G7hcWrFixbCGGgpOk3O2devWacOGDZo1a5Zuvvlmq+MAAAAgxvR3mtyAZSjWUYacKxQKadGiRTp69KgSExNVXl7OinIAAACIcFLXDAGxKhAIyDAMSZJhGAoEAhYnAgAAgJ1QhmBbtbW1CofDkrqvbaupqbE4EQAAAOyEMgTbys/Pl8fjkSR5PB4VFBRYnAgAAAB2QhmCbfn9frnd3S9ht9vNjVcBsMIkAGBIKEOwLZ/Pp8LCQrlcLhUVFbF4AgAFAgHV19dzDSEAYFAoQ7A1v9+vyZMnMysEQKFQSNXV1TJNU1VVVcwOAQAGRBmCrfl8Pt1zzz3MCgFghUkAwJBRhgAAcYEVJgEAQ0UZAgDEBVaYBAAMFWUIABAXvn7tINcSAgAGQhkCAMQFn8+nESNGSJJGjBjBtYQAgAFRhgAAcaGhoUGHDh2SJB06dEiNjY0WJwIAxDrKEAAgLqxevbrfMQAAX0cZAgDEhaampohxMBi0KAkAwC4oQwCAuDBu3LiIcXZ2tkVJAAB2QRkCAMSF0tLSfscAAHwdZQgAEBdyc3N7Z4eys7OVk5NjcSIAQKyjDAEA4kZJSYlcLpdKSkqsjgIAsAHKEAAgbtTV1UV8BACgP5QhAEBcCIVCqq6ulmmaqqqqUnt7u9WRAAAxjjIEWwuFQiovL+eXHgAKBAIyDEOSZBiGAoGAxYkAALGOMgRbCwQCqq+v55ceAKqtrVU4HJYkhcNh1dTUWJwIABDrKEOwLU6JAfBV559/fr9jAAC+jjIE2+KUGABf1dDQEDFubGy0KAkAwC4oQ7AtTokB8FXNzc0R43379lmUBABgF5Qh2FZ+fr48Ho8kyePxqKCgwOJEAKzUc8PVHtnZ2RYlAQDYBWUItuX3++V2d7+E3W63/H6/xYkAWKm0tLTfMQAAX0cZgm35fD4VFhbK5XKpqKhIXq/X6kgALJSamtrvGACAr6MMwdb8fr8mT57MrBAABQKBiFNnWVQFADAQyhBszefz6Z577mFWCACLqgAAhowyBACIC9OmTYsYX3TRRRYlAQDYBWUIABAXTNPsdwwAwNdRhgAAcWHr1q0R47q6OouSAADsgjIEAIgL+fn5Ecvtc+8xAMBAKEMAgLjg9/vlcrkkce8xAMDgUIYAAHHB5/MpMTFRkpSYmMgqkwCAAVGGAABxoaGhQUeOHJEkHT58WI2NjRYnAgDEOsoQACAuPPXUUxHjJ5980qIkAAC7oAwBAOLCvn37+h0DAPB1lCEAAAAAjkQZAgDEhby8vIjxxRdfbFESAIBdUIYAAHGhpKSk3zEAAF+XYHUA4GQ0NDRo6dKluueee5STk2N1HMB21q9fH1erriUkJKirq0ujR4/W008/bXWcYZGTk0OxA4BTJCozQ6tWrdJtt92mn/70p8fdbpqmnn32Wf3oRz/SXXfdpV27dkUjFuLA6tWrdfjwYa1evdrqKABiQEJCglwul7KysqyOAgCwgajMDM2aNUtXXHGFVq5cedztW7du1d69e7V8+XLV19drzZo1euSRR6IRDTbW0NCgpqYmSVIwGFRjYyOzQ8AQxduMw9KlSyVJd999t8VJAAB2EJWZoXPPPVejR4/uc/uWLVs0c+ZMuVwuTZkyRV9++aW++OKLaESDjX19NojZIQAAAAxFTFwz1NbWprFjx/aOMzIy1NbWprS0tGP2raioUEVFhSRpyZIlEV8HZ+mZFeoRDAZ5PQAOl5iYKEkcCwAAgxITZWgoiouLVVxc3DtuaWmxMA2sNG7cuIhClJ2dzesBcLijR49K4r0BAPB/srOz+9wWE0trp6enR7xxtba2Kj093cJEsIPS0tJ+xwAAAEB/YqIM5eXlqbKyUqZp6uOPP1ZKSspxT5EDvio3N1cpKSmSpJSUFBZPAAAAwJBE5TS5xx9/XNu3b9eBAwd0++23a+7cuerq6pIkXX755Zo6darq6up05513KikpSQsWLIhGLNhcKBRSR0eHJKmzs1Pt7e3yer0WpwIAAIBdRKUMlZWV9bvd5XLptttui0YUxJFAIND7uWmaCgQCuvnmmy1MBAAAADuJidPkgBNRW1urcDgsSQqHw6qpqbE4EQAAAOyEMgTbys/Pl9vd/RJ2u90qKCiwOBEAAADshDIE2/L7/TJNU1L3aXJ+v9/iRAAAALATyhBs7atlCAAAABgKyhBs69VXX+13DAAAAPSHMgTb2rx5c8S4trbWoiQAAACwI8oQAAAAAEeiDMG2vvWtb0WMp0+fblESAAAA2BFlCLZ1+eWX9zsGAAAA+kMZgm1t2LBBLpdLkuRyubRhwwaLEwEAAMBOKEOwrdra2oiltWtqaixOBAAAADuhDMG28vPz5fF4JEkej0cFBQUWJwIAAICdUIZgW36/X25390vY7XbL7/dbnAgAAAB2QhmCbfl8Pl188cWSuleW83q9FicCAACAnVCGYGsdHR0RHwEAAIDBogzBtkKhkOrq6iRJf/nLX9Te3m5xIgAAANgJZQi29dvf/jZiNbnf/va3FicCAACAnVCGYFvvvvtuxHjz5s0WJQEAAIAdUYYAAAAAOBJlCLY1derUfscAAABAfyhDsK3ExMSIcVJSkkVJAAAAYEcJVgdAdK1fv16NjY1WxxgW9fX1EePa2lq1trZalGb45OTkqKSkxOoYAAAAcY+ZIdjWmDFj+h0DAAAA/WFmyGHiacYhFArprrvukmmaSkxM1OLFi+X1eq2OBQAAAJtgZgi25fP5lJqaKkkqKiqiCAEAAGBImBmCrY0dO1adnZ3y+/1WRwEAAIDNMDMEW0tISFBubi6zQgAAABgyyhAAAAAAR6IMAQAAAHAkyhAAAAAAR6IMAQAAAHAkyhAAAAAAR6IMAQAAAHAkyhAAAAAAR6IMAQAAAHAkyhAAAAAAR6IMAQAAAHAkyhAAAAAAR6IMAQAAAHAkyhAAAAAAR6IMAQAAAHCkBKsDAICdrF+/Xo2NjVbHQB8aGhokSUuXLrU4CfqSk5OjkpISq2MAgCTKEAAMSWNjo/6+Y7c0Ot3qKDiesEuS9Pe97RYHwXEdbLM6AQBEoAwBwFCNTpdx4VVWpwBsx/3X31sdAQAicM0QAAAAAEeiDAEAAABwJMoQAAAAAEeK2jVD27Zt03PPPSfDMHTZZZfp6quvjtj+zjvvaN26dUpP774o+YorrtBll10WrXgAAAAAHCYqZcgwDK1du1b333+/MjIydO+99yovL08TJkyI2G/GjBmaP39+NCIBAAAAcLionCa3Y8cOnX766crKylJCQoJmzJih9957LxpPDQAAAADHFZWZoba2NmVkZPSOMzIyVF9ff8x+mzdv1v/+7/9q3Lhx+v73v6+xY8dGIx4AAAAAB4qZ+wxddNFFKiwsVGJiot58802tXLlSixcvPma/iooKVVRUSJKWLFlCYXK4xMRESeJ1gKjpec0BODGJiYkcswHEjKiUofT0dLW2tvaOW1tbexdK6DFmzJjezy+77DK99NJLx/1excXFKi4u7h23tLQMc1rYydGjRyXxOkD09LzmAJyYo0ePcswGEFXZ2dl9bovKNUMTJ05UU1OTmpub1dXVpU2bNikvLy9iny+++KL38y1bthyzuAIAAAAADKeozAx5PB7deuutevjhh2UYhmbPnq2cnBy98sormjhxovLy8vTGG29oy5Yt8ng8Gj16tBYsWBCNaAAAAAAcKmrXDE2bNk3Tpk2LeOyGG27o/fymm27STTfdFK04AAAAABwuKqfJAQAAAECsoQwBAAAAcCTKEAAAAABHogwBAAAAcCTKEAAAAABHogwBAAAAcCTKEAAAAABHitp9huxq/fr1amxstDoG+tDQ0CBJWrp0qcVJ0J+cnByVlJRYHWNYNDc3SwcPyv3X31sdBbCfg61qbu6wOgUA9KIMDaCxsVGffvyRTvdYnQTHkxDu/tix8yNrg6BPe8NWJwAAADg+ytAgnO6Rbkt1WR0DsKU1+02rIwyrzMxMtRkjZFx4ldVRANtx//X3ysz0Wh0DAHpxzRAAAAAAR6IMAQAAAHAkyhAAAAAAR6IMAQAAAHAkyhAAAAAAR6IMAQAAAHAkyhAAAAAAR+I+QwAAAND69evV2NhodYxhs2/fPklSVlaWxUmGT05OjkpKSqyOEVcoQwAAAIg7HR0dVkeADVCGAAAAEHczDkuXLpUk3X333RYnQSzjmiEAAAAAjkQZAgAAAOBInCYHAEN1sE3uv/7e6hQ4nsP7uz+OTLU2B47vYJskr9Uphk28LTgQbxoaGiT93+lyiD2xsCAEZWgAzc3NOtQlrdlvWh0FsKWmLimludnqGMMmJyfH6gjoR0NDuyQp9/T4+YU7vnjj6t9QY2Ojdu38VD7v6VZHwfGY3b/mtrWwkEIsCrXvtTqCJMoQAAyJ1X/BQv+4YBrR5vOertlFt1kdA7CdP1etsTqCJMrQgDIzM9Vx4AvdluqyOgpgS2v2mxqRmWl1DAAAgGOwgAIAAAAAR2JmCAAA4AQ0Nzfr4IFDMXO6D2AnofYmdRkpVsdgZggAAACAMzEzBAAAcAIyMzOV4O5gAQXgBPy5ao3Sx46wOgYzQwAAAACciTIEAAAAwJE4TQ4AAOAEhdr3soBCjDr4ZaskafSoDIuT4HhC7XuVPvYMq2NQhgAAAE5ETk6O1RHQj4OHuiQpJq5LwbHSx54RE/+GKEMAAAAnoKSkxOoI6MfSpUslSXfffbfFSRDLKEODsDcsrdlvWh0Dx9Ea7v6Y4bE2B/q2NyxZPwkOAABwLMrQAGJh+g5962pokCSNyM21OAn6cob4dwQAdrB+/Xo1NjZaHWPYNPz/3xF6ZojiQU5ODjOSw4wyNABecLGNKXAAAHA8I0ZwrRAGRhkCAAAAfwCGI3GfIQAAAACORBkCAAAA4EiUIQAAAACORBkCAAAA4EiUIQAAAACORBkCAAAA4EiUIQAAAACOxH2GAMDBuON87OOO8wBw6lCGHIZffGIfv/gAJ447zgMAhiJqZWjbtm167rnnZBiGLrvsMl199dUR248ePaoVK1Zo165dGjNmjMrKypSZmRmteLApfvEBTg7FGwDgZFEpQ4ZhaO3atbr//vuVkZGhe++9V3l5eZowYULvPm+//bZGjRqlJ554QtXV1Xr55Zf14x//OBrxHIVffAAAAIBuUVlAYceOHTr99NOVlZWlhIQEzZgxQ++9917EPlu2bNGsWbMkSfn5+frggw9kmmY04gEAAABwoKjMDLW1tSkjI6N3nJGRofr6+j738Xg8SklJ0YEDB5SamhqxX0VFhSoqKiRJS5Ys0dixY09xegAAAADxyHYLKBQXF6u4uLh33NLSYmEaAAAAALEsOzu7z21ROU0uPT1dra2tvePW1lalp6f3uU84HNahQ4c0ZsyYaMQDAAAA4EBRKUMTJ05UU1OTmpub1dXVpU2bNikvLy9in4suukjvvPOOJKm2tlbnnXeeXC5XNOIBAAAAcCCXGaVVCurq6vTCCy/IMAzNnj1b1157rV555RVNnDhReXl56uzs1IoVK7R7926NHj1aZWVlysrKGvD7BoPBKKQHAAAAYEf9nSYXtTJ0qlCGAAAAAPTF8muGAAAAACDWUIYAAAAAOBJlCAAAAIAjUYYAAAAAOBJlCAAAAIAjUYYAAAAAOBJlCAAAAIAjUYYAAAAAOJLtb7oKAAAAACeCmSHY3qJFi6yOACCGcEwA0IPjAQZCGQIAAADgSJQhAAAAAI5EGYLtFRcXWx0BQAzhmACgB8cDDIQFFAAAAAA4EjNDAAAAAByJMgQAAADAkRKsDgB81Q033KDc3FwZhqHx48frjjvu0IgRI4677yeffKK2tjZNmzZtSM/xm9/8RsnJyfrud787HJEBnAI9x4JwOCyPx6OZM2fqyiuvlNvt1s6dO7Vhwwbdeuutw/Z8d9xxh37xi18oNTV12L4ngFNv3rx5WrduXcRjv/nNb/TWW28pNTVVhmGopKREeXl5kqTKykr97ne/k2EY8ng8mjhxoubNm6dRo0ZZER8xgDKEmJKUlKRly5ZJkpYvX64333xTV1111XH3/eSTT7Rz587jlqGeX6AA2NNXjwXt7e1avny5Dh8+rLlz52rixImaOHGixQkBxLIrr7xS3/3ud7Vnzx4tXrxYzzzzjN5//3394Q9/0H333af09HQZhqF33nlH7e3tlCEHowwhZp199tlqaGjQkSNH9Oyzz6qxsVHhcFjXX3+9pk6dqldeeUWdnZ36+9//rmuuuUZ79uzRvn371NzcrIyMDN1000168skndeDAAaWmpmrBggUaO3as1T8WgCHyer0qLS3Vvffeq+uvv17bt29XIBDQokWLjnt8uPjii9XY2KhVq1apq6tLpmnqpz/9qcaNG6fKykq98cYb6urq0uTJk3XbbbfJ7eaMcSBeTZgwQW63WwcOHNBrr72mefPmKT09XZLkdrv17W9/2+KEsBplCDEpHA5r27Zt+uY3v6nXXntN559/vhYsWKAvv/xS9913ny644ALdcMMN2rlzp+bPny+pe1p8z549evDBB5WUlKQlS5bo0ksv1axZs/T222/r2Wef1d13323xTwbgRGRlZckwDLW3t0c83tfx4c0339ScOXN0ySWXqKurS4ZhaM+ePdq0aZMefPBBJSQkaM2aNdq4caMuvfRSi34qAKdafX293G63UlNT1djYqLPOOsvqSIgxlCHElM7OTi1cuFCSdM455+jb3/627r//fv3lL39RIBDo3aelpeW4X5+Xl6ekpCRJ3QfAu+66S5I0c+ZMvfzyy1H4CQBE0/vvv3/c48OUKVP02muvqbW1VdOnT9e4ceP0wQcfaPfu3br33nt79+UaISA+/eEPf9DGjRs1cuRIlZWVyeVyRWxvaGjQE088oSNHjqikpEQzZsywKCmsRhlCTPnqdQI9ek5xyc7Ojnh8x44dx3x9X4stALC3ffv2ye12y+v16rPPPut9vK/jw4QJEzRp0iTV1dXpF7/4hUpLS2Wapi699FLddNNN0Y4PIMp6rhn6qpycHO3atUvnn3++cnNztWzZMq1du1adnZ0WpUQs4ERpxLwLL7xQb7zxhnruD7x7925JUnJysg4fPtzn102ZMkWbNm2SJFVVVenss88+9WEBDLv9+/frmWee0RVXXHHMX3f7Oj7s27dPWVlZmjNnjvLy8vTpp5/qggsuUG1tbe+pdgcPHtTnn38e3R8GgGWuvvpqrVu3Tq2trb2PUYTAzBBi3nXXXafnn39ed911l0zTVGZmphYtWqTzzz9fr7/+uhYuXKhrrrnmmK+79dZbtWrVKv3ud7/rXUABgD30nDLbszLkJZdcctyVJfs6PtTU1KiyslIej0c+n0/XXnutRo8erRtvvFEPPfSQTNOUx+PR/Pnzddppp1nwEwIYDp2dnbr99tt7x32tQCtJ06ZN0/79+/XII4/IMAyNGjVKOTk5uvDCC6MRFTHKZfb8OQ0AAAAAHITT5AAAAAA4EmUIAAAAgCNRhgAAAAA4EmUIAAAAgCNRhgAAAAA4EmUIAHDKBYNBLVy4UN/73vf0P//zPyf8fVauXKlf//rXw5gMAOBklCEAwCn3+uuv67zzztOLL76oOXPmnNLn+vDDDyPuOwIAQF8oQwCAU66lpUU5OTlWxwAAIAI3XQUAnFIPPPCAtm/froSEBLndbqWkpGju3Lm67LLLJEnvvPOO3nrrLT344IOSpM8++0zPPvusdu3apdTUVN1www2aMWOGpO7T5DIyMnTjjTce97mOHDmi+fPnq6urS0lJSZKkX/3qV7rzzjv15JNPasyYMZKkXbt26eGHH9bTTz+tqqoqvfXWW/rGN76hyspKpaWlaf78+brgggskSYcOHdILL7ygrVu3yuVyafbs2Zo7d67cbv6eCAB2x5EcAHBKLV68WOecc45uvfVWrVu3TuPGjetz3yNHjuihhx5SUVGR1qxZo7KyMq1du1Z79uwZ1HMlJyfrvvvuU1pamtatW6d169YpPT1d5513nmpqanr3q6ysVGFhoRISEiRJ9fX1ysrK0tq1azV37lw9+uijOnjwoKTuAubxeLR8+XItXbpUf/3rX/XWW2+dxP8RAECsoAwBAGJGXV2dTjvtNM2ePVsej0dnnnmmpk+fHlFkTsSll16qjRs3SpIMw1B1dbVmzpzZu93r9erKK69UQkKCZsyYoezsbNXV1SkUCmnr1q265ZZblJyc3Lvfpk2bTioPACA2JFgdAACAHp9//rnq6+t1yy239D4WDocjisuJyMvL0zPPPKPm5mYFg0GlpKRo0qRJvdvT09Plcrl6x6eddpra2trU0tKicDis0tLS3m2maSojI+Ok8gAAYgNlCAAQVSNGjFBHR0fvOBQK9X6ekZGhc889Vz//+c9P+Pt/tdT0SEpKUkFBgSorKxUMBo8pV21tbTJNs/drW1palJeXp4yMDCUkJGjt2rXyeDwnnAkAEJs4TQ4AEFXf+MY39O6776qjo0N79+7V22+/3bvtoosuUlNTkyorK9XV1aWuri7t2LFj0NcMSd2nvB04cECHDh2KeHzmzJnasGGDtmzZckwZam9v1xtvvKGuri7V1NTos88+09SpU5WWlqYLL7xQL774og4dOiTDMLR3715t37795P4nAABiAjNDAICouvLKK7Vz50794Ac/0BlnnKGioiL97W9/kySNHDlS999/v1544QW98MILMk1TZ5xxhr7//e8P+vuPHz9ehYWF+uEPfyjDMPTLX/5S6enpOvvss+VyuXTmmWfqtNNOi/iayZMnq6mpSfPnz5fP59NPfvKT3pXnfvjDH+rll1/WT37yEx0+fFhZWVn6p3/6p+H7HwIAsAxLawMAHOOBBx5QUVFR77Le0rFLewMAnIPT5AAAjrBjxw7t3r27955FAABwmhwAwHZee+01/dd//dcxj59zzjm67777jnl8xYoVeu+99/TP//zPGjlyZDQiAgBsgNPkAAAAADgSp8kBAAAAcCTKEAAAAABHogwBAAAAcCTKEAAAAABHogwBAAAAcKT/B4azs8Y/PXCnAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "plt.subplots(figsize=(14,7))\n", + "sns.boxplot(x='fuel_type',y='Price',data=car)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Relationship of Price with FuelType, Year and Company mixed" + ] + }, + { + "cell_type": "code", + "execution_count": 29, + "metadata": { + "scrolled": true + }, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 29, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABEAAAAIlCAYAAADVFo2cAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOzdeXxU1f3/8de9d7ZM9oUsJKyyGDZBUUBRUUDRqihUrbXutlVr0Vr9iq3UWjdcaK2KtdaNqm3Vn61Ytyq4L7gBoizKIlsIgZA9mcx27+8PSjRNIkvIzCR5Px+PPh7NOZM7b5KYzP3MOZ9jOI7jICIiIiIiIiLShZnxDiAiIiIiIiIi0tFUABERERERERGRLk8FEBERERERERHp8lQAEREREREREZEuTwUQEREREREREenyVAARERERERERkS7PFe8A7XX//fezePFi0tPTmTNnzm4f//777/PMM89gGAZ9+vThiiuuiEFKEREREREREYmnTl8AmTBhAlOmTGHu3Lm7fWxpaSnPPfccN910EykpKVRXV8cgoYiIiIiIiIjEW6cvgAwZMoRt27Y1G9u6dSsPP/wwNTU1eL1efvrTn1JYWMjChQs5/vjjSUlJASA9PT0ekUVEREREREQkxjp9AaQ1Dz74ID/+8Y8pKChg9erVPPTQQ9xwww1s2bIFgFmzZmHbNqeffjojR46Mb1gRERERERER6XBdrgDS2NjIl19+ye9///umsUgkAoBt25SWlnLDDTdQUVHBDTfcwF133UVycnK84oqIiIiIiIhIDHS5Aoht2yQnJ3PnnXe2mMvKymLgwIG4XC5yc3MpKCigtLSUAQMGxCGpiIiIiIiIiMRKlzsG1+/3k5ubywcffACA4zisX78egMMOO4zly5cDUFNTQ2lpKXl5efGKKiIiIiIiIiIxYjiO48Q7RHvcfffdrFixgtraWtLT0znjjDMYNmwYf/nLX6iqqiISiXDEEUfw/e9/H8dx+Otf/8rSpUsxTZNp06ZxxBFHxPufICIiIiIiIiIdrNMXQEREREREREREdqfLbYEREREREREREflfKoCIiIiIiIiISJfX6U+B2bJlS7wj7LGsrCwqKiriHaNJouWBxMuUaHkg8TIpz+4lWqZEywOJl0l5di/RMiVaHki8TMqze4mWKdHyQOJlUp7dS7RMiZYHEjNTW3r27BnvCJ2aVoDEkGkm1pc70fJA4mVKtDyQeJmUZ/cSLVOi5YHEy6Q8u5domRItDyReJuXZvUTLlGh5IPEyKc/uJVqmRMsDiZlJOoa+0yIiIiIiIiLS5akAIiIiIiIiIiJdngogIiIiIiIiItLlqQAiIiIiIiIiIl2eCiAiIiIiIiIi0uWpACIiIiIiIiIiXZ4KICIiIiIiIiLS5akAIiIiIiIiIiJdngogIiIiIiIiItLlqQAiIiIiIiIiIl2eCiAiIiIiIiIi0uWpACIiIiIiIiIiXZ4KICIiIiIiIiLS5akAIiIiIiIiIiJdniveAUSk87Esi6SGWoyKcqI7tpKclknAm4Rt2/GOJiIiIiIi0ioVQERkr7gMSFr9OTX33opdVwOAld2DtF/8lrqCPiqCiIiIiIhIQtIWGBHZK/6KbVTd/qum4gdAdMd2qn53Fck1FXFMJiIiIiIi0jYVQERkj7lcLoJvvwqtrPJwQkHsr5Zjmvq1IiIiIiIiiUd3KiKyx0zTILpxXZvz0S2bVAAREREREZGEpDsVEdlj0aiNe+Rhbc67Bg4hGo3GMJGIiIiIiMieUQFERPZYNBrFPWochj+5xZzVIx+j7wAcx4lDMhERERERke+mAoiI7JW6tEwyb5qL95BxOwdMi6Sjjidt1hzqfC0LIyIiIiIiIolAx+CKyF6xbZvqtCy8l15HRn0tHp+PWpeHGtsBrf4QEREREZEEpRUgIrJPgg7U+lMxcgsI2Sp8iIiIiIhIYlMBRERERERERES6PBVARERERERERKTLUwFERERERERERLo8FUBEREREREREpMuLySkwoVCIG264gUgkQjQaZezYsZxxxhnNHhMOh7nvvvtYt24dqampXHnlleTm5sYinoiIiIiIiIh0cTFZAeJ2u7nhhhu48847ueOOO1i6dClfffVVs8e8/vrrJCcnc++99/K9732PJ598MhbRRERERERERKQbiEkBxDAMfD4fANFolGg0imEYzR7zySefMGHCBADGjh3LF198gePoaE0RERERERERab+YbIEBsG2ba6+9lq1bt3L88cczcODAZvMVFRVkZ2cDYFkWfr+f2tpa0tLSYhVRRERERERERLqomBVATNPkzjvvpL6+nrvuuouNGzfSu3fvvb7OggULWLBgAQCzZ88mJydnf0ftMC6XK6HyJloeSLxMiZYHEi+T8uxeomVKtDyQeJmUZ/cSLVOi5YHEy6Q8u5domRItDyReJuXZvUTLlGh5IDEzSceIWQFkl+TkZIYOHcrSpUubFUCysrLYsWMH2dnZRKNRGhoaSE1NbfH5kyZNYtKkSU0fl5eXxyT3/pCTk5NQeRMtDyRepkTLA4mXSXl2L9EyJVoeSLxMyrN7iZYp0fJA4mVSnt1LtEyJlgcSL5Py7F6iZUq0PJCYmdrSs2fPeEfo1GLSA6Smpob6+npg54kwy5Yto7CwsNljDjnkEN58800AFi1axNChQ1v0CRERERERERER2RcxWQFSWVnJ3LlzsW0bx3EYN24chxxyCE899RQHHHAAo0eP5thjj+W+++7j5z//OSkpKVx55ZWxiCYiIiIiIiIi3UBMCiB9+vThjjvuaDF+5plnNv1/j8fDVVddFYs4IiIiIiIiItLNxGQLjIiIiIiIiIhIPKkAIiIiIiIiIiJdngogIiIiIiIiItLlxfwYXJHWGIaBy6UfRxEREREREekYuuOUuDIMgzq8fFUeYEnJdvJSazm0KI0eXhvDjsQ7noiIiIiIiHQRKoBIXFU5Xn7x3Ap21Ieaxh4EfnnMARxZlKQiiIiIiIiIiOwX6gEicWO7vNz1+rpmxY9d5ryxlu1B/XiKiIiIiIjI/qE7TImbikaHZaU1bc5/sKEKy7JimEhERERERES6KhVAJG4aI/Z3zm+vC2Ka+hEVERERERGR9tPdpcRNus/C62r7R3BUUTqRiHqAiIiIiIiISPupACJxk25F+dHoXq3OZfrdHNjDj+M4MU4lIiIiIiIiXZFOgZG4saMRpgzMAOCJTzYR/O+WmCH5qfzfsQeQQhCVP0RERERERGR/UAFE4spjBzl1UCrHHDCcqkCUlCQv6VYYM9qIFn+IiIiIiIjI/qItMBJ3djRCKkF6JUUYmJOEGW15LK6IiIiIiIhIe6gAIiIiIiIiIiJdngogIiIiIiIiItLlqQAiIiIiIiIiIl2eCiAiIiIiIiJdjMc0SA0FoLIcl6XbPhHQKTAiIiIiIiJdhmmapFbvoOG5J6l6/3UMtxf/CdPwH/s9arz+eMcTiSsVQERERERERLqIlJpKKn99GU6gHgAnEqH+n48T/OQ9Uq69jTpPUpwTisSP1kKJiIiIiIh0AS7LJPTWK03Fj2+LbFwHm77GMIw4JBNJDCqAiIiIiIiIdAHucIjgR++0OR/+7GMsy4phIpHEogKIiIiIiIhIF+BYLsy0jDbnzewcHMeJXSCRBKMCiIiIiIiISBcQxCDplB+0Oe8ecSjRaDSGiUQSiwogIiIiIiIiXYDjOET7D8J/4unNJ0yTtJ//mkBmj/gEE0kQOgVGRERERESkiwhYHrxTf0jmhOOJbvoal9eH07M3DakZRFADVOneVAARERERERHpQoKmRTAzFyMrj+zsbMrLy+MdSSQhaAuMiIiIiIhIF6SGpyLNqQAiIiIiIiIiIl2eCiAiIiIiIiIi0uWpACIiIiIiIiIiXZ4KICIiIiIiIiLS5akAIiIiIiIiIiJdngogIiIiIiIiItLlqQAiIiIiIiIiIl2eCiAiIiIiIiIi0uWpACIiIiIiIiIiXZ4KICIiIiIiIiLS5akAIiIiIiIiIiJdngogIiIiIiIiItLlqQAiIiIiIiIiIl2eCiAiIiIiIiIi0uWpACIiIiIiIiIiXZ4KICIiIiIiIiLS5akAIiIiIiIiIiJdngogIiIiIiIiItLlqQAiIiIiIiIiIl2eCiAiIiIiIiIi0uWpACIiIiIiIiIiXZ4KICIiIiIiIiLS5akAIiIiIiIiIiJdngogIiIiIiIiItLlqQAiIiIiIiIiIl2eCiAiIiIiIiIi0uWpACIiIiIiIiIiXZ4KICIiIiIiIiLS5akAIiIiIiIiIiJdngogIiIiIiIiItLlqQAiIiIiIiIiIl2eKxZPUl5ezty5c6mqqsIwDCZNmsSJJ57Y7DHLly/njjvuIDc3F4AxY8bw/e9/PxbxRERERERERKSLi0kBxLIszjnnHPr3708gEGDmzJmMGDGCoqKiZo8rLi5m5syZsYgkIiIiIiIiIt1ITLbAZGZm0r9/fwCSkpIoLCykoqIiFk8tIiIiIiIiIoLhOI4Tyyfctm0bN9xwA3PmzMHv9zeNL1++nDlz5pCdnU1mZibnnHMOvXr1avH5CxYsYMGCBQDMnj2bUCgUs+zt5XK5iEQi8Y7RJNHyQOJlSrQ8kHiZlGf3Ei1TouWBxMukPLuXaJkSLQ8kXibl2b1Ey5RoeSDxMinP7iVapkTLA4mZqS0ejyfeETq1mBZAGhsbueGGG5g2bRpjxoxpNtfQ0IBpmvh8PhYvXsxjjz3GPffcs9trbtmypaPi7nc5OTmUl5fHO0aTRMsDiZcp0fJA4mVSnt1LtEyJlgcSL5Py7F6iZUq0PJB4mZRn9xItU6LlgcTLpDy7l2iZEi0PJGamtvTs2TPeETq1mJ0CE4lEmDNnDkceeWSL4geA3+/H5/MBcPDBBxONRqmpqYlVPBERERERERHpwmJSAHEchwceeIDCwkJOOumkVh9TVVXFrsUoa9aswbZtUlNTYxFPRERERERERLq4mJwC8+WXX/L222/Tu3dvrrnmGgDOOuuspmVGxx13HIsWLeLVV1/Fsiw8Hg9XXnklhmHEIp6IiIiIiIiIdHExKYAceOCBPP3009/5mClTpjBlypRYxBERERERERGRbiZmPUBEREREREREROJFBRARERERERER6fJUABERERERERGRLk8FEBERERERERHp8lQAEZF95na7dVqTiIiIiIh0CjE5BUZEupaQ6WFDTZQ3Vm/D597B0QdkUZhs4LLD8Y4mIiIiIiLSKhVARGSvhEwPf/pwC69/Vd409uxnW/jR6CKmFWdiqQgiIiIiIiIJSFtgRGSvbKyJNit+7PLEJ5spD2o7jIiIiIiIJCYVQERkj7ndbt5eu6PN+VXb6tQTREREREREEpIKICKyxxzHweNq+9fGd82JiIiIiIjEk+5WRGSPRSIRjj4gq835wT2ScRwnholERERERET2jAogIrJXCvwGF4zp3WzMAK6bNJBMVzQ+oURERERERHZDp8CIyF5x2WFOHpTO4X1H8NX2BnxuF/2zvGS6ohh2JN7xREREREREWqUCiIjsNcsOk+uCvJ5usrOzKS8vBzveqURERERERNqmLTAiss/U70NERERERDoLFUBEREREREREpMtTAUREREREREREujwVQERERERERESky1MBRERERERERES6PBVARERERERERKTLUwFERERERERERLo8FUBEREREREREpMtTAUREREREREREujwVQERERERERESky1MBRERERERERES6PBVARERERERERKTLUwFERERERERERLo8FUBEREREREREpMtTAUREREREREREujwVQERERERERESky1MBRERERERERES6PFe8A4iIiIiIiMj+ZRgGbrcbwzDiHUUkYagAIiIiIiIi0oUEDQ/rqsMs/KqUZO92Jg3MpqffwLLD8Y4mElcqgIiIiIiIiHQRQdPLve9t5p11O5rGnltWyqVH9OW4/imYdiSO6UTiSz1AREREREREuohNNZFmxY9dHnhvPdURKw6JRBKHCiAiIiIiIiJdgMvl4sMNla3OOUBpbSi2gUQSjAogIiIiIiIiXYDjOKT52u5y4LbUEFW6NxVAREREREREuoBoNMqYPhmtziV7LHqmemIbSCTBqAAiIiIiIiLSRfTw2sw6bhAe65tbvXSfi7umDiXV0BYY6d50CoyIiIiIiEgXYUQjHJrn5uEfjKCsLoTP7SbbBylGGNu24x1PJK5UABEREREREelCHDtKGlHSUiAnJ5Xy8nJsJ96pROJPW2BEREREREREpMtTAUREREREREREujwVQERERERERNrJ5drZXcCyrDgnEZG2qAeIiIiIiIjIPjJMkx0RN2+vrGR5WQkjCtIY3y+DbJeajookGhVARERERERE9oFhGGwMWPziX8sIR3d2Gf1oQyWPf7KJP542jJ7eMI6j7qMiiUJbYERERERERPZByPRw24I1TcWPXYIRmzvfWEvY9MQpmYi0RgUQERERERGRfVDRaFNSFWh1bm15PVVBrf4QSSQqgIiIiIiIiOwD0zB2Mx+jICKyR1QAERERERER2QeZXoOBPZJbnRtekEqGVxUQkUSiAoiIiIiIiMg+cNshrp04gBRv87Ml0n0urppwAGYkGKdkItIanQIjIiIiIiKyDxzHIc8d5oHvD2PFtnrW7QgwIMdPca6fNCOETsEVSSwqgIiIiIiIiOwj27ZJpZGxeS5OGtqP8vJyHKcRW/1PRRKOtsCIiIiIiIi0k+M4Tf8TkcSkAoiIiIiIiIiIdHkqgIiIiIiIiIhIl6cCiIiIiIiIiIh0eSqAiIiIiIhIp2EYBiHTS0nQxedb6wgYXizLincsEekEYnIKTHl5OXPnzqWqqgrDMJg0aRInnnhis8c4jsOjjz7KkiVL8Hq9XHbZZfTv3z8W8UREREREpBMwTZPNjS5++8oqymqDAKT7XFw3eSDFGRbY0TgnFJFEFpMVIJZlcc455/CHP/yBW265hf/85z9s3ry52WOWLFnC1q1bueeee/jJT37CQw89FItoIiIiIiLSSVTZHn7x3BdNxQ+A6sYIv3phJdtCMXlvV0Q6sZgUQDIzM5tWcyQlJVFYWEhFRUWzx3zyySccddRRGIbBoEGDqK+vp7KyMhbxREREREQkwRmGwcpt9TSG7RZztgP/WbUdt9sdh2Qi0lnEvEy6bds2vv76awYMGNBsvKKigpycnKaPs7OzqaioIDMzs9njFixYwIIFCwCYPXt2s89JdC6XK6HyJloeSLxMiZYHEi+T8uxeomVKtDyQeJmUZ/cSLVOi5YHEy6Q8u5domRItD8Q/0+avNrY5t25HA6lp/TGNGAb6H/H++rQm0TIlWh5IzEzSMWJaAGlsbGTOnDmcf/75+P3+fbrGpEmTmDRpUtPH5eXl+yteh8vJyUmovImWBxIvU6LlgcTLpDy7l2iZEi0PJF4m5dm9RMuUaHkg8TIpz+4lWqZEywPxzWQYBoNy2r6HGN0rneqqSqLR+PUB0fds9xItDyRmprb07Nkz3hE6tZidAhOJRJgzZw5HHnkkY8aMaTGflZXV7Idux44dZGVlxSqeiIiIiIgkMMdxOCDLR16qt8Wc321xRL/MuBY/RCTxxaQA4jgODzzwAIWFhZx00kmtPmb06NG8/fbbOI7DV199hd/vb7H9RUREREREuq9kgsyZOoRJg3o0bXUZ3SuDe6cPJ8sKxTeciCS8mGyB+fLLL3n77bfp3bs311xzDQBnnXVW04qP4447jlGjRrF48WJmzJiBx+Phsssui0U0ERERERHpJBzHIZUAPx+bzwWHFuLyuPFEg5jRRuyWvVFFRJqJSQHkwAMP5Omnn/7OxxiGwcUXXxyLOCIiIiIi0plFw6QQJicthfLy2ninEZFOImY9QERERERERERE4kUFEBERERERERHp8lQAEREREREREZEuTwUQEdknlmURNr3UBqNYlhXvOCIiIiIiso/uueceiouLOfvss/f6c/v27dt0wMn/qqqq4v77729vvP0mJk1QRaTrMAyDWsfLG6sreWlFGZZhMP2gAsb2TiPJbox3PBERERER2Uv3338/CxYsoKioaL9ed1cBJFFOedUKEBHZK3V4+eXzK3nogw1sqW5kU1WAu99ax42vrqXR9MY7nohIXGWFGsjcvI7UJe8T+ehtsgO1eL363SgiIonrkksuYd26dZxwwgmkp6dz1113Nc0NGzaM9evXA/DEE09w2GGHMXLkSH76058SjUZ3e+2ZM2eydu1aRo4cyTXXXMO5557Lc8891zR/9tlnM3/+fB577DGmTp3KhAkTGDhwIDfeeGPTY/bleduiAoiI7DHLsvhwUw1ba4Mt5laW1bKuMoRhGHFIJiISf9mBWqrvv53yG6+k6v7Z7LhtJjtu/AUp27fEO5qIiEibHnjgAXr27Mkbb7zBL37xi1Yfs3LlSp566inee+89li5dimVZPPnkk7u99uzZsznggANYunQpd955JxdddBGPPfYYANXV1bz//vt873vfA+Cjjz7i2WefZdmyZTzzzDN88skn+/y8bdEWGBHZYxHDxSsrt7U5/+aaHRw0No9wOBzDVCIi8ZeWlkbjWy8SWr6k2Xh0xzaqHr6bnF/cQLledomISCe1cOFCPv30Uw499FAAAoEAubm5e32do48+mssuu4zt27fz7LPPMn36dFyunX8fJ0+eTHZ2NgDTpk3j3XffxeVy7Zfn3UV/iUVkj1k4JHvabnia6nPhOE4ME4mIJAb3jjJqXn2+1bnQis+wK8ohKz/GqURERPaOy+XCtu2mjxsbd/b4cxyH8847j9tuu63dz3HuuefyxBNP8I9//INHH320afx/V5IbhrFfnxe0BUZE9oITDTP9oII25ycckE0kEolhIhGRBOE4EG3795/zrReTIiIiiapv374sXrwYgMWLF/P1118DMHHiRP7f//t/bNu2czV4RUUFGzZs2O31UlNTqa2tbTZ2/vnnc/fddwMwZMiQpvHXXnuNiooKAoEAzz33HEccccQ+P29bVAARkT3mOA4Ds7wcN7hHi7nzD+tFT38cQomIJIBwTj5JR09pdc7dfxBmVk6ME4mIyHcxDIOw6aXK9rK1LoRlaXMEwPTp06moqGDo0KHcd999DBo0CNhZqLj55ps57rjjGDFiBJMnT6a0tHS318vOzuaII45g2LBhXHPNNQDk5eVRXFzMBRdc0Oyxhx12GNOnT2fEiBFMnz6d0aNH7/PztkXfZRHZK147yE8OK+CUYXl8urkGn9tiZM9UcrwOlq3eHyLSPdXU1JB99HE0fvwOkU3rm8YNfzIZP76KKncStKNrvYiI7D+O6WJ1jcPdb33F5qoAXpfJtBE9OXVoDj67Md7x4mLXSS8Ar776aquPOfPMMznzzDO/83Nb87e//a3Zxw0NDaxevZqzzjqr2XhRUVGzE2J297z7QgUQEdlrbjtELx/0HZxKZmYm5eXloNXdItLN7fCnk33NLUQ2rCW0dhWu/CLcA4tpzO9FtKEh3vFEROS/NjUYXD3/i6aPgxGbvy/ezMaqAL8cX4gVDcUxXde2YMECLrroIn7xi1+Qnp4e8+dXAURE9ll7zuAWEemKdiSlwoEjSTvsKDwez84CsYofIiIJw7E8/OWD9a3OvbduB+eNLiTPHdtMXcGOHTuYOHFii/GFCxc2newCMGnSpFZ7eJx//vmcf/75HRkRUAFEREREZL+rqakhJ0d9P0REEk3QMVlVVtfmfEVDmLzYL0zo9LKzs1m6dGm8Y+yWmqCKiIiIiIhIt+A2HHqm+9qcT/VaMUwjsaYCiIiIiIiIiHQLLjvExWN7tzp3QE4yeckqgHRlKoCIiIiIiIhIt+A4DsXZbi4/sh9e1ze3wyMK0vjdlEG4o8E4ppOOph4gIiIiIiIi0m247DDH90tmbO/hVAYipPp9pJlhrGgg3tG6BMuyGD58OJFIhOLiYubNm4ff72/1sUuXLmXLli2ceOKJe/Ucv/3tb0lJSeHqq6/eq8/TChARERERERHpVuxohFSC9E6KMjA7SUff7kdJSUksXbqUL774Ao/HwwMPPNDmY5cuXcpLL73U6lwkEtnv2bQCRERERERERKQbCm8toebxPxGp2I4rqwdp51yKO79wv13/yCOPZNmyZdTX1/Pzn/+cL774gnA4zG9/+1tOOOEEfvOb3xAIBHj33Xe57rrrWLlyJWvXrmXdunX07t2b2267jQsvvJDy8nJ69OjBo48+Su/erfdw2RNaASIiIiIiIiLSzYS3lrD91z+j4c1XCC37lIY3X2H7r39GeGvJfrl+JBLh5ZdfZvjw4dxyyy0ce+yxfPTRR7zxxhtcc801hMNhfve733HmmWeydOlSzjzzTABWrFjBggUL+Pvf/87Pf/5zzjvvPJYtW8bZZ5/NjBkz2pVJBRARERERERGRbqbm8T8R3bq52Vh062ZqHv9Tu64bCAQYOXIko0ePpnfv3lx00UW8+uqrzJ49m5EjRzJhwgQaGxvZuHFjq59/yimnkJSUBMAHH3zAD3/4QwDOOecc3n333XZl0xYYERERERERkW4mUrG91fFoG+N7alcPkG9zHIdnn32WwYMHNxv/8MMPW3x+cnJyu57/u2gFiIiIiIiIiEg348rq0eq41cZ4exx//PHce++9OI4DwJIlSwBITU2ltra2zc87/PDD+cc//gHAk08+yZFHHtmuHCqAiIiIiIiIiHQzaedcipVf1GzMyi8i7ZxL9/tzzZo1i3A4zIgRIxg6dCizZs0C4JhjjmHFihWMHDmSp556qsXn3XvvvTz66KOMGDGCxx9/nD/+8Y/tyqEtMCIiIiIiIiLdjDu/kB63zN3ZC6RiO9Z+OgWmrq6uxVhSUhJ//vOfW4xnZWXx8ccft3mtPn368Prrr7cY/+1vf7tP2VQAERERAUzTpMHxUB6IUFZWR4bbSxJhbNuOdzQRERGRDuHOLyT7mpvjHSNmVAAREZFuzzAt1tQZ3PzqCnbUhwDokeJh1nGD6JsMjoogIiIiIp2eeoCIiEi3Vx5xcfX85U3FD4DtdSF+OX85FRF3HJOJiIiIyP6iAoiIiHRrlmXx/voqorbTYi4cdfi0pBbT1J9LERERkc5Or+hERKRbsyyLNdvr25xft6Mey7JimEhEREREOoIKICIi0q1FIhEO6ZXe5vxBPdOIRqMxTCQiIiIiHUEFEBER6dZs22ZUz1TSfC37gmf63QzNTdZJMCIiIiJ7yLIsRo4cydChQznooIOYM2dO02upTz75hBkzZuzX5+vbty/l5eV79FidAiMiIt1euhninmnDeOD9DSxaX4kBjO+fxY/H9SbVCOK0bA8iIiIiIq1ISkpi6dKlAGzbto0f/vCH1NTUcOONNzJ69GhGjx4dt2xaASIiIt2ebdtkGo1cd1Qvnjj7IJ664DCuHl9IOo04qn6IiIhIF1VSFWDWC8u55B+LmfXCckqqAvv1+rm5uTz44IPcd999OI7Dm2++yUknnQRAfX09F154IYcddhijRo1i/vz5ACxfvpzDDjuMkSNHMmLECFavXg3AE0880TT+05/+dJ+2KKsAIiIisks0RCpBCtM8EA3HO42IiIhIhympCnD5M0t5ZWUZn26q4pWVZVz+zNL9XgTp378/0WiUbdu2NRu/5ZZbOPbYY/noo4944403uOaaa6ivr+eBBx7giiuuYOnSpXzyyScUFRWxcuVKnnrqKd577z2WLl2KZVk8+eSTe51FW2BEREREREREupkH3l3H5v8pdmyuCvDAu+u46aShHf78r776Ks8//zx33XUXAI2NjWzcuJFx48Zxyy23sHnzZqZNm8bAgQNZuHAhn376KYceeigAgUCA3NzcvX5OFUBEREREREREupntdcG9Gt9X69atw7IscnNzWblyZdO44zg8++yzDB48uNnji4uLGTNmDC+++CInnngif/7zn3Ech/POO4/bbrutXVm0BUZERERERESkm+mR4t2r8X2xfft2LrnkEi6//HIMw2g2d/zxx3Pvvfc29VtbsmQJsLNg0r9/f2bMmMHUqVNZtmwZEydO5P/9v//XtI2moqKCDRs27HUerQARERERERER6WYuGd+fL0prmm2DKcpI4pLx/dt13UAgwMiRIwmHw7hcLs455xyuuuqqFo+bNWsWV155JSNGjMC2bfr168cLL7zA008/zeOPP47b7SY/P59f/epXZGVlcfPNN3Pcccdh2zZut5u5c+fSp0+fvcqmAoiIiIiIiIhIN1OYkcR9p4/kgXfXsb0uSI8UL5eM709hRlK7rvtdp7NMmDCBCRMmADuPy/3zn//c4jEzZ85k5syZLcbPPPNMzjzzzBbj69ev3+Nse1UAqa2tZcmSJVRWVjJ16lQqKipwHIfs7Oy9uYyIiIiIiIiIxFlhRlJMGp4mij3uAbJixQquvPJK3nnnHZ599lkAtm7dyl/+8pcOCyciIiIiIiIisj/scQHkscce48orr+TXv/41lmUBMGDAANauXdth4UQkcTmWh2rHS0lNCFzueMcREZE2uCyTlFAjVGzHZar/vYiIdF97vAVm+/btDB8+vPknu1zfub9HRLoewzCotL3c88Z6Pt1UhWnA0QNy+PGYXiQ7gd1fQEREYiYlFCDy+ovUvPA0NY5D0nFTSTphOrWe9u3vFhER6Yz2+G2AoqIili5d2mzs888/p3fv3vs7k4gksHq8XPnccj7dVAWA7cAbq8uZ9cpXhK39d2SWiIi0jxcIPfUI9c/+FSfYiBMK0vDC0wQeuRufY8c7noiISMzt8QqQc845h9tvv51Ro0YRCoV48MEH+fTTT7nmmms6Mp+IJJgNVUEqG8ItxteW17O1PkovXxxCiYhIC57aSqreebXFePDTD0iqrqAxIycOqUREROJnj1eADBo0iDvvvJNevXpxzDHHkJuby6233sqAAQM6Mp+IJBDDMNheH2pzvi6oLXEiIgkjFATHaX0uqC2LIiLSMVJSUlqM/fa3v6WwsJCRI0cybNgwnn/++aa5J554ghEjRjB06FAOOuggLr74Yqqqqjok2x6vAAmHw6SlpTF16tSmsUgkQjgcxu1WA0SR7sBxHPpktr1vvEeyBwjGLpCIiLTJTs/Eyu5BdMf2ZuNmShpORnacUomISHf1i1/8gquvvpqVK1dy5JFHsm3bNl599VX+8Ic/8PLLL1NYWEg0GmXevHmUlZWRkZGx3zPs8QqQm2++mXXr1jUbW7duHbfccst+DyUiiatnssWhvTNajJ82PJ8sj/aUi4gkioAnibQrf4vh/VZ/JpeLtKt+S8CfGrdcIiKSOGqqQyx8eTP/fmY9C1/eTE1126u995fi4mJcLhfl5eXccsst3HXXXRQWFgJgWRYXXnghgwcP7pDn3uMVIBs3bmTgwIHNxgYMGMCGDRv2eygRSVxuO8jVR/dlaWk9z32+Fbdl8P2DelKc48G0O/4XpoiI7Bnbtqnr2Yf0Ox6GrVswTQO7Rz4NqRk6xU9ERKipDvHisxuoqf6mv9+20gDfm96HtHRPhz3vhx9+iGma9OjRg+XLl3PwwQd32HP9rz1eAeL3+6murm42Vl1djderUx9Euhuf3cjhBW5mT+nPH6cNZ2S2gUfFD+nkLMMgNVBL6sbVRJZ9TGqgDss04h1LpF1s26bWn0Zt/wNxjz6C2uR0onYbfUFERKRb+fj9bc2KHwA11WE+fn9bhzzfH/7wB0aOHMnVV1/NU089hWE0f531+eefM3LkSA444ACeeuqpDsmwxytAxowZwx//+EcuuOAC8vLyKCsrY968eYwbN65DgolIYrNtG+wgHisVp60meyKdhBvwrlhM9X234oR29rExvD7Sr/gNgUHDiOhHXERERLqYhrrIXo23164eIN82dOhQFi9ezDHHHMPw4cNZunQpl19+OYFAxzTr3uMVID/4wQ8oLCzkV7/6Feeeey6//vWv6dmzJ2eddVaHBBMR2RtBVzJfB9y8ubaSsmgSUbfO45U9l1S5jeo//Lap+AHgBBupuut6/JXbv+MzRURERDonf0rr6yHaGu8I1113HVdffTWbN29uGuuo4gfsxQoQj8fDxRdfzEUXXURtbS2pqaktlqyIiMRDJcnc8O+VbKhoaBqbUpzLeYcW4Y82fMdnioDL5SL0wZutHxdq24SXfoQ18RT1TBAREZEu5dDDc9lWGmi2DSYt3c2hh+e267oNDQ0UFRU1fXzVVVe1+dgTTzyR7du3c8IJJxCNRsnIyGDYsGEcf/zx7crQlu8sgGzbto3c3J3/+LKysmZz367K5OXldUA0EUlUhmEQNj1UNNpU7wiQYnlx2aG4bIUJuZL53QurmhU/AF5ZuY2+WclMHZRKKKT+JNI20zSJlm1pcz66tWTnY1QAERERkS4kLd3D96b34eP3t9FQF8Gf4uLQw3Pb3QDVtvfuZMjzzjuP8847r13Puae+swBy9dVX89e//hWAGTNmtPm4jmpQIiKJxzRNShpd3PzaV2yu2lkIPTAvhZkTB5BlBmNeBNlSF2bdjnoADshJJsvv4esd9ZTXh/j74s0cPWAEflQAkbZFIhGSDhlH4/uvtzrvOegw6iMdsxdWRET2jWmaeOwI1NdhWZaK1CL7KC3dw8QTinb/wC7iOwsgu4of0L4ix/3338/ixYtJT09nzpw5LeaXL1/OHXfc0bTaZMyYMXz/+9/f5+cTkY5TGXVz5XOf0xj+prK7qqyOX85fwdzThpBEY0zzNISiDOiRzOmjilhRWsO22iAnDy8g3efmz+99TSSq7pXy3Wzbxhw0DKtHPtEd23D36gdAeNPXWLk9MfoPUqNfEZEEkhwOwqrPCLzwDDvCIZImn4J18Dhqvf54RxORBLdHPUBs2+aKK67g97//PW63e6+fZMKECUyZMoW5c+e2+Zji4mJmzpy519cWkdgxDIMVZQ3Nih+77KgPUVIbZkBKbDMVpHmZdlAhd7z2FdH/3qR+sL6C3BQv104aRJLLgfBuLiLdXl1SCtZNf2ZjeT3vbK7DwODIXin0zfZTa6nflYhIovDZEUJ/f5DGd15rGqt95I+43/oPyb/8HfVqgi4i32GPCiCmaWKaJqFQaJ8KIEOGDGHbto45S1hEYsc0TUqq217hUR2MQowLIH6XwWOLNjQVP3bZVhdkTXkdo3MttChWdidouJm3rIwXVnzT7+qpVZVMP6gnPxyRg8vWNioRkUTgqdhO5beKH7uE167Cv/lr6Fcch1Qi0lns8TG4J554InfffTcrVqxg69atlJWVNf1vf/jqq6+45ppruPXWW9m0adN+uaaI7H/9spPbnMtI2vsCaXtVBUJsqwu2Orfwy+002laME0lntLku2qz4scuzn21hS8PeNfISEZGOY+9o+03VyKovsCz93ReRtu3xMbiPPPIIAMuWLWsx194mqP369eP+++/H5/OxePFi7rzzTu65555WH7tgwQIWLFgAwOzZs8nJyWnXc8eSy+VKqLyJlgcSL1Oi5YH4Z8qsr2FAj2TWbK9vNj6mbxbJXhc5OekxzVNX2faKlDSfi/TUZPzu1Bgmaine37P/lWh5IL6ZDMPgwddWtzn/zrpKrjy6f1z7gOh7tnuJlgcSL5Py7F6iZUq0PBD/TJEtaW3OufMLScnMjGGaluL99WlNomVKtDyQmJmkY+y2ABIMBnn22WcZNWoU/fv359RTT8Xjad+xOP/L7/+mYdHBBx/Mww8/TE1NDWlpLX/BTZo0iUmTJjV9XF5evl+zdKScnJyEyptoeSDxMiVaHoh/pnSPlynF+VT1DfPOmnJclsExg3rg2JBs2THPluzyMLZvJovWV7aYO+uQQgI1lTTEuYFlvL9n/yvR8kB8M7ndbiJ22z8joahDZWUlkTieBKPv2e4lWh5IvEzKs3uJlinR8kD8M6Xk5GNmZmNX7mg2bni8GAOHxP3rFe+vT2sSLVOi5YHEzNSWnj17xjtCp7bbLTAPP/wwn376KUVFRXz44Yc88cQT+z1EVVVV0ztra9aswbZtUlPj+46tiLQu2xWhZ5qH99ft4OBeGQzJT+O1lWUcXJRKuhn7bqNGJMSM8X05MPeb5iMGcNbBhQzN8er0Dtktl8vF6N5tv2M4sjBdS6pFRBJEvddPxqzf4+43qGnMyi0g4ze/py4tK47JROTbEvVo6t2uAFm6dCm33347mZmZTJkyhRtuuIELL7xwr55kV++Q2tpaLrnkEs4444ymd9KOO+44Fi1axKuvvoplWXg8Hq688koMQ133RRKSHWV4pslNUwZQVh/G63bzw5G5pBhhbDs+vRKSnQC3TDmAbQ02jTZkeE0y3VGMqBpXyp4JR2zG9c3ig/UVzcaPHpBDIBzV3yQRkQThOA41aVn4rrud5ModuC2TYHIatW4vTpxeh4h0dr/5zW/IysriyiuvBODXv/41ubm5hEIhnn76aYLBIKeddho33ngjAKeeeiqbNm2isbGRK664gp/85CcApKSk8NOf/pQFCxYwd+5cxo8fH69/Upv2aAtM5n/30uXk5NDQ0LDXT7LrC9mWKVOmMGXKlL2+rojEh23bpBAkJRlyclIpLy/nO3YQxIQrGqSn91tLGBOz6CwJKBAIkJ7koigziSv7DeCzzdVg7Fz5sb6igexkD42NbfeaERGR2HIch4BhQVYuOTk51JeXg1Z8iuyzCy+8kGnTpnHllVdi2zb/+Mc/uPXWW1m4cCEfffQRjuNwyimn8Pbbb3PUUUfxyCOPkJWVRSAQ4NBDD2X69OlkZ2dTX1/PmDFjmDNnTrz/SW3abQEkGo3yxRdfNH1s23azjwGGDRu2/5OJiIjEyAFZPl5YvpXnlm2hOD8NHId731rLEf2z6Z3uhmj8+n+IiIiIdKS+ffuSnZ3NkiVLKCsrY9SoUXz88ce8+uqrjBo1CoC6ujpWr17NUUcdxT333MO//vUvADZt2sTq1avJzs7GsiymT58ez3/Kbu22AJKens6f/vSnpo9TUlKafWwYBvfdd1/HpBMREYmBpGgDM8b3ZW1FPv9ZVYZlGPzue0Pon+khKRqIdzwRERGRDnXxxRfz2GOPsXXrVi688EIWLlzIddddx09/+tNmj3vzzTdZsGABH3zwAX6/nwkTJjStlPX5fAnfN223BZC5c+fGIoeIiEhc+e0GhmfA2Il9SU5OZtu2baDih4iIiHQDp512Gr/5zW8Ih8P87W9/w+VyMWvWLM4++2xSUlIoKSnB7XZTXV1NZmYmfr+fVatWsWjRonhH3yu7LYCIiIh0J/X19SQlJcU7hoiIiEjMeDwejjnmGDIyMrAsi+OOO46VK1cybtw4YOdOkCeeeIIpU6bwwAMPUFxczODBgxk7dmyck+8dFUBERERERKTTsAzw11XjlG4mvNomLa8ngdRMwoYZ72ginZZt2yxatIhnnnmmaeyKK67giiuuaPHYl19+udVr1NXVdVi+/UUFEBERERER6RRcQNJXn1M15zcQ/e+Rb4ZB6rk/wzx8IkEzsfsPiCSiFStWcNJJJ3HaaacxcODAeMfpUCqAiIiIiIhIp+CvraTyrllg298MOg618+4jc9AQgrlF8Qsn0kkNGTKEdevWxTtGTGidmIiIiIiIJDzDMIhuWNu8+PEtwQ/exOXS+7si0jYVQEREREREpFNwGhvanqurxTCMGKYRkc5GBRAREREREUl4juPg6tt2fwLPuAmEw+EYJhKRzkYFEBHZZ5alRmMiIiISO6GsHvhPmN5i3HPQoTi9+sUhkYh0JiqAiMhei5puSoJu5q+u4x9LS9kW9mCb2nMrIiIiHavRdGFO/SEZs+bgGzcB7yHjSL/6Znw/vYZ6ty/e8UQEuPDCC8nNzWXYsGFNY5999hnjxo1j+PDhnHzyydTU1AAQCoW44IILGD58OAcddBBvvvlm0+eEQiF+8pOfMGjQIA488ECeffbZdmfTHYuI7BXbdPP8l1U89tGmZuMzJw1kXIEH7GickomIiEh3ELDc0Hsg7p9eS0Z6Ojt27MBxnHjHEpH/Ov/887n88ss599xzm8Yuvvhi7rrrLo4++mgeeeQR7rzzTm666Sb+8pe/APD555+zbds2TjjhBD7++GNM0+SWW24hNzeXr776Ctu2qaioaHc2rQARkb2yPWi0KH4A3Pn6GqqjqqmKiIhIbOzq96Hih0hiOeqoo8jKymo29tVXX3HUUUcBMHny5KbVHCtWrODYY48FIDc3l4yMDD755BMAHnnkEa677joATNMkJyen3dlUABGRPWYYBmvKW+++HrUdttap8ZiIiIiISGexadMmzj//fKZOncp5553Hpk0t3+jcH4YOHcr8+fMBeOaZZ5qe56CDDuL5558nEonw9ddf8+mnn7Jp0yaqqqoAmDVrFgcffDCnn346ZWVl7c6hAoiI7DHHcUhyt9341G3q6DkRERERkc5i1qxZfPHFF5SUlLB8+XJmzZrVIc/zyCOPcP/993PIIYdQW1uLx+MBdvYLKSoqYvTo0Vx55ZUcfvjhWJZFJBJh8+bNHH744SxevJhx48Zx9dVXtzuH1quLyF45IDsJl2kQsZsvN033uchPcYOjHiAiIiIiIp1BZWVls493rbzY3w488EBeffVVYOd2mBdffBEAl8vFH/7wh6bHHX744QwaNIjs7Gz8fj/Tpk0D4PTTT+fhhx9udw6tAOmGDMtDteNlzY4AAcOro0xlr2RYYW4/ZQgp3m/qp9nJHu48ZSgpRiiOyUREpC0ulwvD0Co9ERFpLiMj4zs/3l+2bdsGgG3b3HzzzVxyySUANDQ0UF9fD8Brr72Gy+ViyJAhGIbBySef3HQqzMKFCxkyZEi7c2gFSDdTbyTxyIebef2r7dgOZCS5ueSIvhxa4MNlq3+D7J5jRxmUavKX04dRVh/G63aT5QU/IWzbjnc8ERH5lqjpYmvA4O2VFThOJeP7Z9LTb+hvvoiIAHDzzTcza9YsqqqqyMjI4Kabbmr3Nc866yzefPNNysvLKSoq4sYbb6Suro65c+cCMG3aNC644AJgZ2Hk+OOPxzRNCgsLefzxx5uuc/vtt3POOedw5ZVX0qNHDx599NF2Z1MBpBtpNH1c9+IqNlQEmsaqAmFmL1jNtRMHcGShl2hU2xdk92zbxk8j/fyQk5NJeXk5Kn2IiCQY08WbG+q55+2vm4aeWlLChWN6c8qgNAw7EsdwIiKSCHr16sVjjz22X6/597//vdXxK664osVY3759+fLLL1t9fJ8+fXj77bf3azZtgelGNtWEmhU/vu2B99ZTa6seJiIi0lVURS3mvrO+xfgjH26kIqztryIi0v2oANJNWJbFirK6NuerGyPUBPUevoiISFexvT5M1HFanSurU88mERHpflQA6SYcxyHH72lz3gC8Lv04iIiIdBVJrrZXefi/40hzERGRrkp3vN2EbdsMyUumrf7vh/fLItPT+rtEIiIi0vnkJZsckJPcYrxnmo+CFG17FRGR7kcFkG4k0xXhhimDWxRBCtJ8XHpEH4hoOayIiEhX4Y4GuWnKIMb3z2r62z+mTya3n1yMzwnGNZuIiEg8qPzfndhRRvZw8fAPDuLz0lrKGyIMyUumX6YXv9OI1n+IiIh0LclOgGvGF/LTsb1wezwkOUGIBGijNYiIiEiXphUg3YxhR8m2ghzb28clh/dmaAYk2Y04eiUkIiLSNUXDpBlBeqV7tdpTREQ63KZNmzjmmGMYMmQIQ4cO5Y9//CMAFRUVTJ48mYEDBzJ58mQqKyuBnf0qZ8yYwYABAxgxYgSLFy9uuta8efMYOHAgAwcOZN68ee3OpgJIN2XbO098UeFDRERERDojw2iru52IxJPL5WLOnDmsWLGCRYsWMXfuXFasWMHs2bOZOHEiq1evZuLEicyePRuAl19+mdWrV7N69WoefPBBLr30UmBnweTGG2/kww8/5KOPPuLGG29sKprsKxVARERERESk0zBMi0rbywdbI8z/ooztEQ+OqZ39IvvCcRw++OAD7r77bj744IP98gZ5QUEBBx98MACpqakUFxdTUlLC/PnzOe+88wA477zzeO655wCYP38+5557LoZhMHbsWKqqqigtLeU///kPkydPJisri8zMTCZPnswrr7zSrmz6TSEiIiIiIp2CaZqsrTO4ev4yIvY3N2q/njyQMQUenGg0julEOhfHcbj66qv56KOPCAQCPPvssxx22GHcdddd+22F1fr161myZAljxoyhrKyMgoICAPLz8ykrKwOgpKSEXr16NX1OUVERJSUlbY63h1aAxIDLNPFHQlBbg2VZ8Y4jIiKyz0zLRcj0UhuKYpp6GSF7zzAMHMtDZSACLk+840gn04ibW19b3az4AXDn62upjrrjlEqkc1q0aFFT8QMgEAjw0UcfsWjRov1y/bq6OqZPn87dd99NWlpasznDMOKyjU0rQDqQaZqk1FQQeuNlGt5bQIPbg//E72MdPI5arz/e8URERPaYYZqURzzM/2wr735dQYrHxZmjenJIYQo+uzHe8aSTCJse1lZFeOKT9WypaWRgj2R+eHAhvZLBtCPxjiedQHXIYVtdy2OcQ1GbHQ1h0vQSW2SPffjhh03Fj112FUHGjRvXrmuHw2GmT5/O2WefzbRp0wDIy8ujtLSUgoICSktLyc3NBaCwsJBNmzY1fe7mzZspLCyksLCQN998s9n4hAkT2pVLb910oNTqHVT9+lLqn/870R3biW4tofaRP1J3x3WkBhviHU9ERGSPGIZBadDNJU8vY/4XW9lRH2JDZQN3vL6GW19fR6PpjXdE6QRs08ULX1Zy7b9X8HlpDTvqQyxaX8mMf37Bh6VBTFOrZGX3fC4Tt9X6u8bJHv0MieyNMWPGkJSU1GwsKSmJww47rF3XdRyHiy66iOLiYq666qqm8VNOOaXpJJd58+YxderUpvG//vWvOI7DokWLSE9Pp6CggOOPP55XX32VyspKKisrefXVVzn++OPblU0FkA7iMaDhmcdwGupbzEU2fo29fImWDouISKcQNd388e11hKJ2i7nPSmpYWxnSaQyyWxVhi8c+2tTq3B/eXEu1re0LsntpVoSzDylqMT6+fzbZqsWK7JWxY8dy2GGHNRVBdhU/xo4d267rvvfeezz++OO8/vrrjBw5kpEjR/LSSy8xc+ZMXnvtNQYOHMiCBQuYOXMmACeeeCL9+/dnwIAB/PjHP+b+++8HICsri1mzZnHooYdy6KGH8pvf/IasrKx2ZdMWmA7ibaij6sO32pwP/OdfeA4+nEb0glFERBJbVchgxdbaNuf/vbyMg44uIhIOxTCVdCaGYfB1RaDN+WDEZmtdiNSUGIaSTsmJRvje4EzyUr08+WkJ4ajNqcMLOPaADKyotuOJ7A3DMLjrrruaeoGMGTOGMWPGtPtNjfHjx7d5mszChQtbzTF37txWH3/hhRdy4YUXtivPt6kA0pHslu+UNYlGMRwH9I6ZiIgkOHs3R+JFo47+nMluRe3v/jnaDycvSjfhsUOM7+nhsMJB+Hx+nMYaoip+iOwTwzAYN25cu3t+dBbag9FBQknJeEe2vXfKN/EkQi4t9RQRkcSX4TXol9V2Z8ETh+QSCYdjmEg6G8dx6J+V1Oa8yzTIS9GJMLLnbNvGFQ2SkWQR1dG3IrKHVADpIEEMkn/4E2ilyGFl98A1cox+WYuISKfgtkNcNeEAzFZWefTN8nNgjq/Npa6SGCwr/s0hs70OpwzLb3Xu4nF9yHDpFBgREelY2gLTgWqz8si67QEann2cxo/ewXC78R9/Kp5JJ1PrT9VaTxER6RQcx6F3ss393x/Box9t4uONlSS5Lc4YVcjkgVkkOVp6nqgcy0VZo8mn66pxqOfgolTyfGDZsV+xY9lhzhmVx9D8VB79aBNbaxrpl+Xn4nF9ODDLhRPVKiIREelYKoB0INtxqM7ogffHV5FxzqV4fUlUGRaN0aiKHyIi0rnYUQo8Ua47uheNTh/8Ph9GsBZb++4TlmFavFfSyB0L1zQbv/zIfkzqm4xhx37FhccOcniBm0NOHYzl9mGHG3HbIZw4FGRERKT70RaYGAjaUOtJgqwcIgmw7SVqeSkLe/hsSy01+DAs1cFERGTPGNEQSXYj2X4XdgL8TZO2VUXdzHljbYvxue98TWUkfltibNvGHQ2Sm+LGFQ1q+5SIiMSMCiDdiGEY1JDE9a+u4ydPL+OyZz7jwn98xvNf1RIy1XhMRESkK9lWH2r15BUH2FqrI4tFRKRjbNq0iWOOOYYhQ4YwdOhQ/vjHPwJQUVHB5MmTGThwIJMnT6ayshLYudV2xowZDBgwgBEjRrB48eJm16upqaGoqIjLL7+83dlUAOlGgqaX615cxYqttU1j4ajDQ4s28GlpANPUj4OIiEhX4XO1/Xc9ya2/+SIi0jFcLhdz5sxhxYoVLFq0iLlz57JixQpmz57NxIkTWb16NRMnTmT27NkAvPzyy6xevZrVq1fz4IMPcumllza73qxZszjqqKP2Szb99etGttRG2FwVaHXuLx9sIIBWgYiIiHQV+ckWvTNaHj3bI8VDQUrLU+pERKT7WbZsGTNmzODcc89lxowZLFu2rN3XLCgo4OCDDwYgNTWV4uJiSkpKmD9/Pueddx4A5513Hs899xwA8+fP59xzz8UwDMaOHUtVVRWlpaUAfPrpp5SVlXHccce1OxeoANKt1Abbbna2oz5EyI5hGBEREelQHjvErScdyKii9Kaxofmp3HnKEJKcYByTiYhIIli2bBnXXnst77//PitWrOD999/n2muv3S9FkF3Wr1/PkiVLGDNmDGVlZRQUFACQn59PWVkZACUlJfTq1avpc4qKiigpKcG2bX75y19y11137bc86n7ZjWQktf3tzkv14rMA9bMTERHpEhzHIZUANxzbh8qwgdvlJtkIYUYbdRidiIjw0EMPsX379mZj27dv56GHHuKee+5p9/Xr6uqYPn06d999N2lpac3mDMPAMIzv/Pz777+fE088kaKionZn2UUFkG4kP9nigJxk1pbXt5i79Ii+eJ0QWgQiIiLStRjREFkm5GSlUl5eF+84IiKSIKqqqvZqfG+Ew2GmT5/O2WefzbRp0wDIy8ujtLSUgoICSktLyc3NBaCwsJBNmzY1fe7mzZspLCzkgw8+4J133uH++++nrq6OUChESkpKU++QfaEtMN2IOxrkpimDOLxfVtNYssfiqgkHMLyHB9tW+UNERKQr2t27bCIi0v1kZGTs1fiechyHiy66iOLiYq666qqm8VNOOYV58+YBMG/ePKZOndo0/te//hXHcVi0aBHp6ekUFBTw5JNPsnHjRtavX89dd93Fueee267iB2gFSLeT7AT4vyOLqBrbC8e08BpR0swI0Wg43tFE9plhGNTjZUN1kMqyMnqle8n3m7htHfMoIt2caVEZcbG2IgDl5fTL9JLlimLYbfcFExGR7uHiiy9m9erVzbbB9OjRgx//+Mftuu57773H448/zvDhwxk5ciQAt956KzNnzuSMM87g4Ycfpk+fPjz99NMAnHjiibz00ksMGDAAv9/Po48+2q7n/y4qgHQzhmlSEzXZUBWgujFKnwwf7hQXHjX/kE6s2vFx5XPL2VH/TcHjqAOyufzwIry2Gv2JSPdkmBbLKqL85qXl2N/q+XH9cYM4NM8Ntv72i4h0ZyNGjOD222/noYceoqqqioyMDH784x8zfPjwdl13/PjxOG00m1q4cGGLMcMwmDt37nde8/zzz+f8889vVy5QAaRbMU2TtXUm1/57GcHIN9tdhuanMmvyASTZjXFMJ7KPLDcPvruhWfED4O21OzhucA9GZBlt/gIWEenKamw3N/1nZbPiB8Btr63mkbNGkGGoACIi0t2NGDFivzQ87SzUA6QbqbE9XPfCymbFD4DlW2t5fnk5pqV6mHQ+9bbFu+sqWp17edU23G53jBOJiCSGsrpQi7/5AFHHobRWW19FRKT7UQGkG9lSGyIQbv3dnmeXbaHeUQFEOh/TAI+r9V9laV63Vn+ISLflNttufOrWK0AREemG9OevG2ntXaBvz33HtEjCSjYinD6yZ6tz3xuSSzisdzlFpHvKT3HTI8XTYjzN56JnastxERGRrk5v+Xcj+d/xYmd4QSrJLgfUFF46GTsa4eTiHMpqg7z25c4O1j63yYyj+lPoB1TYE5FuyucEuePkIcx5cx39spMxDFhbXs8VR/UjxQi16A0iIiLS1akA0o1keR1OGprHC8vLmo1bhsGl4/tiRnRahnROPruRy8cUcNaonoQcg1QXpJlhbFurP0Sk+3Ich2QXfG9IHv/vsy3YjsNpI3qS7jGwbVWHRUSk+9EWmG7EioY57+B8Zk4cQM90H16Xybi+Wdx/+ggKfXohJJ1cNES2FWR4fgopNGLreEcR6eailoc/fbCZ2xeuZm15PV/vaOD3b6zhzjfXEza98Y4nIiJd1KZNmzjmmGMYMmQIQ4cO5Y9//CMAFRUVTJ48mYEDBzJ58mQqKyuBnQX7GTNmMGDAAEaMGMHixYubrvV///d/DB06lOLiYmbMmNHu/n4qgMSAaZp4LQMjEsEw2m5IFgseO8iRRT7uOW0oj58zmpnH9CHfHQTdLMpesiyLJCcKgXpMU79KREQSzbYAvLGmvMX4J5uq2Nqgv/siIrJTXV0da9asoa6ubr9cz+VyMWfOHFasWMGiRYuYO3cuK1asYPbs2UycOJHVq1czceJEZs+eDcDLL7/M6tWrWb16NQ8++CCXXnopAO+//z7vvfcey5Yt44svvuDjjz/mrbfeal+2dv/r9sD999/P4sWLSU9PZ86cOS3mHcfh0UcfZcmSJXi9Xi677DL69+8fi2gdLjVYj718KY1vvESlN4nkKadh9x1Igys+zceCVhKLtjTw90/XUdEQYmRROj88pBc9vRGcqBqAABimRVXUxYaqIOEd5fRO95DtsTFtfX0ADMMgNVBL5JP3CLz+IkHLRdIJ0zGGHUydJyne8URE5L92NIQozEji9JGFADjs3Pb6z89KKK0J0cun4rWISHcWDoe5+eabWbJkCVVVVWRkZDBq1Ciuv/563G73Pl+3oKCAgoICAFJTUykuLqakpIT58+fz5ptvAnDeeecxYcIEbr/9dubPn8+5556LYRiMHTuWqqoqSktLMQyDxsZGQqEQjuMQDofJy8tr1785JgWQCRMmMGXKFObOndvq/JIlS9i6dSv33HMPq1ev5qGHHuLWW2+NRbQOldpYT93smURKNjSNBT/7CN/4SSSdfSkB177/UO2LiOXjgUWbef2r7U1jb6/ZwbtrdzDn1OEckGx0+yNDTdNkdS1c++9lhKPffC0uOaIvx/VPxVJPCVIaaqm5+Sqi27Y2jYX/dDvugUNIufIGFUFERBJEtt/Njw7txd1vrGk6Cc5tGcw4egA9072A/qaJiHRnN998My+99FLTPWBDQwOlpaUA3HjjjfvlOdavX8+SJUsYM2YMZWVlTYWR/Px8ysp29qYsKSmhV69eTZ9TVFRESUkJ48aN45hjjqGgoADHcbj88sspLi5uV56YlP6HDBlCSkpKm/OffPIJRx11FIZhMGjQIOrr65v2A3VWlmURXfxBs+LHLo3vLsC1rSTmmUobnGbFj11sB+a8sYaw5Yt5pkRT63iY9dKqZsUPgAfeW8/2YHy3LyUCy7KIfPR2s+LHLuHVK2Ddl3Hf5iUiIjuleN3c99bapuIHQDjqcM9ba0jxxvZNGBERSSx1dXUsWbKkxRvgjuOwZMmS/bIdpq6ujunTp3P33XeTlpbWbM4wjN3eN6xZs4aVK1eyefNmSkpKeP3113nnnXfalSkh1j5WVFSQk5PT9HF2djYVFRVxTNR+nkiIwIJ/tzkf/vQDXK7YHcJjWRZLS6rbnN9cFaA8oEao2+rD1IeiuC2DQ3tncni/LNJ9O79Py7bUdPteF55Q43f+XDcufBF3DH+uRUSkbdvqgtSHWvb6CEcdymob45BIREQSxdatW6mqqmp1rqqqiq1bW77huTfC4TDTp0/n7LPPZtq0aQDk5eU1rTApLS0lNzcXgMLCQjZt2tT0uZs3b6awsJB//etfjB07lpSUFFJSUjjhhBP44IMP2pWr092pLFiwgAULFgAwe/bsZoWThBKoJ/gdN8uGx01GRkbs8gCW2fDd85YV96+ny+WKa4bNW2o5dURP+mb7+WRDJY0Rmx8c0gsD8LktsrKy4pZtl7h+jepraTStNqcNy9pZ3Y3jKpB4/wy1JtEyJVoeSLxMyrN7iZYp0fJA/DNtDNa2OeeyLHJy4vs3Ld5fn9YkWqZEywOJl0l5di/RMiVaHkjMTB0tPz+fjIwMGhpa3iNmZGSQn5+/z9d2HIeLLrqI4uJirrrqqqbxU045hXnz5jFz5kzmzZvH1KlTm8bvu+8+fvCDH/Dhhx+Snp5OQUEBvXv35i9/+QvXXXcdjuPw1ltvceWVV+5zLkiQAkhWVhbl5d90Kd+xY0ebN5qTJk1i0qRJTR9/+/MSiWmaJJ0wnfADd7Q67x41NubZh/dMa3PugJxkMnxm3L+eOTk5cc2Q6fNT1xjm7jfWNI19srGSftl+fjPlwLh/fSC+XyPLskiachq1j/yx1Xnv5FPYUVER114y8f4Zak2iZUq0PJB4mZRn9xItU6LlgfhnyvH5SPe5qG5s3sQ7yW2R57fi/vWK99enNYmWKdHyQOJlUp7dS7RMiZYHEjNTW3r27LlfrpOSksKoUaMoLS1t9trdMAxGjRr1nS0sdue9997j8ccfZ/jw4YwcORKAW2+9lZkzZ3LGGWfw8MMP06dPH55++mkATjzxRF566SUGDBiA3+/n0UcfBeD73/8+r7/+OsOHD8cwDKZMmcLJJ5+87/9oEqQAMnr0aF555RWOOOIIVq9ejd/vJzMzM96x2sW2bYzhh+AeNJTwV8ubzfm/dzqh7H2vqO0rn2Vw6vACnvu8tNm4xzK57Mj+OgUGqGgIs6CVPilf72hg6eZqJvfxEY1236MDo9Eo1sHjcC18gciGtc3mvKPG4vQ+oNs30hURSRQpRojZJw9h5gsrqQ7sbHia4nVx6/eKSTND2Nr5KiIxZJomjbjZVh/GsDwY0VC8I3V7119/PUCrp8C0x/jx49u8J1i4cGGLMcMwWj0wxbIs/vznP7cry/+KSQHk7rvvZsWKFdTW1nLJJZdwxhlnEInsvNk+7rjjGDVqFIsXL2bGjBl4PB4uu+yyWMTqcA2+ZDIu+T/CX35B49IPMdwefIeNx+o3mCqXG2J8o5hkQV6al5u+N4R/LdvCjvoQhxRlMGFQD1aWVjMoNYXu/FrIsiwWbWi7+e78z0s5us9ALLpvAQSg1usn5ZpbcL5aTuPCf+/8uT5uKk7fgdS7vfGOJyIi/2XbNkW+CH+ePoSy+gim5SLHZ5BihLBV/RCRGAqaXj7cXMe8j9ZQ0RBiZFEGPx7bm56+KNjd+7V1PLndbm688Ubq6urYunUr+fn57Vr50RnEpACyu306hmFw8cUXxyJKTKVUlVN+3U/BNPEccCB2JEzl3Tdh9cgjZdbvqfP6Y5on1QxzcFEmd7+5hkG5KRxUmM5nJdW8s6ac00bkY0frY5onEen8kj1T5/VjHjQG98ixpKWnU15ZGfeVH47loSIEW0rrSHX7SLPCON14tY6ICOwsgiQRpK8fcnIyKS8vx9ZCPRGJIcd087elZTz3+TdNNRdvquLyzdXMPX04BW69Xou3lJQUBgwYEO8YMZEQW2C6IrdpElz4b5xQEIDg8iVNc9GyLbBhDcbgg2J60xg0XNz66io2VAZYWfZNY7TFm6oYnJvMmDxXt35HKBqNMqZPBo9/srnV+dOG5+Mh0s3Xf3zDtm2CgGOacS9+NJo+HlxUwsL/bl/yukyuOLo/43r6MG1t7RIRERGJl4qw2az4sUvUcXj4g438+pje2g4jMdO9z/TsQK5wiNCSD9ucDy9fimW1fZpGRyirj7KhMtDq3CMfbiRouGOaJxEV+E2mDm/Zn2VATjKH9Urr1v0/EpVlWSxcW9lU/AAIRmzuWLiGrQGt6RERERGJp/L6cJtzi0uqCTq6JZXY0QqQDmK7XJjZuVDa+moCKzefcIxXWzSE2n6+stogUcegu5dAXHaIH43M5aj+2fx7eRkN4SgnHNiD4h5JJDmN8Y4nrQjg5uklW1qde+frSs4eltHUc0hEREREYivJ3XaBIyfZg2VoX57EjgogHSSEQcopZxH6YjEAZkoaTjSKE6gH08Q17JCYbzfJ8rf97R5ekIbHtOnWXVD/y2OHGJAC/ze+gLT0dCp27MBxgvGOJW1wHAe7jS04EW10FxEREYmr/BSLwnQfJdUt30w8/7BeeJ2wbkEkZlQA6SCO4xDufQAZN9zNttQ8tgZsXKZJT3eU7EgtdenZMc+U7XU4bXguZxzSh/pglEA4SnqSmy2VDaT6LMyI9t59WzgcxoC497eQ7+Y3Ipw6vIC/frypxdxR/TO1+kNEREQkjrx2iFu/dyC/enFVUxHEAKYfVMDonsnYtt5o7Go2bdrEueeeS1lZGYZh8JOf/IQrrriCiooKzjzzTNavX0/fvn15+umnyczMZNWqVVxwwQUsXryYW265hauvvvo7r9MeKoB0INuw+E8om7tfKSEY2VnXzPS7+d3RRQw0IBLj+2ozGmbaqN488fEm/rOyjIjtkJfq5ceH96NvTjKE296fJ5KootEoJx6YzYqttXyyqQoAyzD46RF96ek3tKpJREREJI4cxyHTDHL3KYMpa4gSsg0yvSaZHhsjquJHvAWDQZ5//nlWrVrFgQceyCmnnILX623XNV0uF3PmzOHggw+mtraWQw45hMmTJ/PYY48xceJEZs6cyezZs5k9eza33347WVlZ3HPPPTz33HN7dJ0hQ4bse7Z2/cukTZZlsWZHA7d/UNpsvLIhzC9f3cAjUweQmhTbhj9BTxp3L/iKT/97kwg7e3/c/J9V3HbyUEbmeAiFtApEOp8ku5HrjulDeWMvGqMGGV6DdFcUI6qinoiIiEi8OY6DxwnSywc5OTmUl5ejoxXjb8mSJdx8881s2rQJ27b597//zT/+8Q+uv/56Ro0atc/XLSgooKCgAIDU1FSKi4spKSlh/vz5vPnmmwCcd955TJgwgdtvv53c3Fxyc3N58cUX9+g67SmAqOVuB/FGo/xt+Y5W50JRmyWbqvC6YnsKzNbaYLPix7c9+uEG6vDFNI/I/uSKBsl3hxldlEaGEcSIauuLiIiIiEhrgsEgN998Mxs2bGjqTWnbNhs2bODmm28mGNw/q3PWr1/PkiVLGDNmDGVlZU0Fjfz8fMrKyvbpOu2hAkgHCUdsNtW2/e7z1zVhvEZsj+isCrSdZ215fdM2HREREREREem6nn/+eTZtatlDD3b23nj++efb/Rx1dXVMnz6du+++m7S0tGZzhmFg7OH98HddZ2+pANJBfC6DYdmeNueHZnuJWrFdAZLua3vHU1FGEt7vOKJKRDo/y7JIjoagshy3GdsCrIiIiIgkjlWrVrV5Kqlt23z55Zftun44HGb69OmcffbZTJs2DYC8vDxKS3e2iCgtLSU3N3efrtMeuuPtIEG3hzOG5mC1UtXKSHIzvCCNhmBs+230TPNRnJfS6tzF4/riC9fFNI+IxE5KqBHv269Q/+tL2fazszCe+BPptRWYpv4MiIiIiHQ3Bx54YJuvA03TZPDgwft8bcdxuOiiiyguLuaqq65qGj/llFOYN28eAPPmzWPq1Kn7dJ320CvfDhIKh8lN9fG7Ew+kV0ZS0/iInmncdlIxmT4z5serNkainHZQIYf2zmwaS/ZYXDi2L+FoFCvGK1JE9qeo5WVr2M2nm2uodrxgqcfzLv5IiMCfbqP2sXuJ7tiOE6gn8MZLVP76MlKqW+9VJCIiIiJd1ymnnEKvXr1anevVqxennHLKPl/7vffe4/HHH+f1119n5MiRjBw5kpdeeomZM2fy2muvMXDgQBYsWMDMmTMB2Lp1K0VFRfz+97/n5ptvpqioiJqamjav0x66Q+ggpmny8bYIf3hrLd8bWkCPFA+mYbCqrJYr/vk5900fTp47titAttWFuP21r5gwMIdfHDOAiO1g2w4vrdjKjvoQfzlzJD50aoZ0Pg1mEne+/jWLN1cBO4/BvXBsb6YMSMdl62Qjq6yE0BdLWow7gQaC//kX7jMuJtzGEkgRERER6Xq8Xi/XX399s1NgTNOkV69eXH/99e06Cnf8+PFtvtm/cOHCFmP5+fls3rx5r66zr1QA6SBBw81DH35NTWOEv3/asrnMK6u2c9GobCKR2J1U0Ri2iToOC7/azsKvtjeb81hmXE+iMpNSqAs5bKsP47YsolGdiyV7xnC5mfdRSVPxAyDqOPzlgw0MzBnC4Pb1Ser0LMsi8uUXbc43fvg2KaeeTdjVvvPeRURERKRzGTVqFH/72994/vnn+fLLLxk8eDCnnHJKu4ofiU4FkA4ScQy2VAXanF9dXo9Njxgmggy/G8s0iNotq2hH9M/GHYdeAKbLQ0nQ4um3N7B4UxXZyR7OGFXEiIIU/NH6mOeRzqcmYvLaqu2tzv2/z0qZdWwv7HD3XQXiOA5Ganqb82ZyKrap7W8iIiIi3ZHX6+X000+Pd4yYUQ+QDuI2HPpk+ducH5KXgklsl5x7TIMfje7dYjzV6+LYQT0wnNitRtllU8Dk588s5fWvtlMVCLO2vJ7bXvuSJxeXEHa1/fUT2SVi71zx0Zq6UIRW6n3dim3buAYNhTaOGfOf+kOCrrZPrBIRERER6SpUAOkgbjvExeP6tDpnGQbHDe4R0+0vAJk+A9uxuWbiIA7vl83g3BROH1XIpUf2J8lt4o02xjRP1JvCg+99TTja8g71hS+2sj2gngSye2lu2jzd6MQhuZh27At7iaYhPYv0K2a1KIJ4xx4NQw9u8wg0EREREZGuRFtgOojjOBRnublsfD8efH89kf++DZ3qdXH9cYPIcUeJ8QIQ3OEGphTn8uQnm3Ech95ZflZvq+XAvFT6pVnY0djeKNaGHJaWVLc5v6W6kZ45MQz0LabLRb3toqwujOnyYES67xaKROeyQ/xywgHM+OcXNIS/6R1TnJfK6J6p2HZsC3vfZpomlsuF0cbqi1iJYNA49BAy5zxG9OuvMBoDmH0HEM7Oo95yxzWbiIiIiEisqADSgTxEmZ5vc/iELLbWhXAZBoVpXrKTAtTa8WkskxKt52djCykLQjBsk+5zkWmFCIWCMc9iGgZel0kw0nolyOMyiXWVyDAMavHx3GdlPP/FVkIRm8P7ZXHBmF7kusM4eqc84TiOQ54nzJ/PGM6KsnpKa4MU56bQN8ONL47Fj3rDx2db6nljTSl5qds44cAeFCQ5cVuREsGgJjUT46CxZGdnU15eHpccIiIiIiLxogJIB0qpqaDq+svw19fR/1vjdX0HkHL1LdR5k2KeKWAm8Y+PS3lh+VYitkNuipcrju5HcZYLK8Y3Zj08NicOyedfy7a0mPO6TIoykoDYNkKtw8sv569ga+03BaH3vq7g441V3H/6cHpYsS8Uye45jkNBtIZCpwzT04hjZxKMZhE04rPLr97wcc2/V1FS/U0B5t9fbOX/Jg7giJ4+iOO2nP19lJiIiIiIyLdt2rSJc889l7KyMgzD4Cc/+QlXXHEFFRUVnHnmmaxfv56+ffvy9NNPk5mZyapVq7jgggtYvHgxt9xyC1dffXXTtaqqqrj44ov54osvMAyDRx55hHHjxu1zNvUA6SBu0yD42nyc+roWc5H1a2D9VzFfFh+1PNz99nqe+7y0aUvOtrogv35xFetrnZjnCTY2MO2gnvTPTm42bpkGv5lSTA9XbG8STdPks9K6ZsWPXUJRm79+vBlc2i6QiNLqq2m46SqqZv2Mipt+SeU1F+I89RDJcdi6ZFkW735d1az4scsf3lxLja0TV0REREQkMbz77rtcccUVXHzxxcyYMYN333233dd0uVzMmTOHFStWsGjRIubOncuKFSuYPXs2EydOZPXq1UycOJHZs2cDkJWVxT333NOs8LHLFVdcwZQpU1i1ahWfffYZxcXF7cvWrs+WNnmCjdS9u7DN+eB7C3EPP5RQKHY3aNsbHRZtqGx17s/vb2D2lAMwo7Fd4ZBm13HT9w5kQ2UjK7bWkJPsZWhBGnk+m2gottsXDMvFq1+2XI2yy7vrdnDZ4b1IIhzDVLI7SXaU2ntvJlKysdl4YOELuAcUYx52dEybfIZw8dLKba3OhaMO2+rCpLXes1VEREREJGZuvfVWXnnlFRoaGprGli5dypQpU/jVr361z9ctKCigoKAAgNTUVIqLiykpKWH+/Pm8+eabAJx33nlMmDCB22+/ndzcXHJzc3nxxRebXae6upq3336bxx57DACPx4PH077TC7UCpIM4ponh9bU5b/hTYr4UvToQbXNuTXk9QSc+jRpTovUMTYvyo+FZnH5QPrlmA06Mix+w8z+GJHfb/0l4XKb+g0lArqpywmtWtTpX/8/H8YVjW9SzDAe/u+1VHi4zvg1R492QVURERETi7913321R/ABoaGjglVde2S8rQQDWr1/PkiVLGDNmDGVlZU2Fkfz8fMrKyr7zc7/++mt69OjBBRdcwKhRo7j44oupr29fiwTdz3WQoMeH/6Qz2pz3HnUc4XBsVxKketu+KeudkYTHiG9vgGAwvv01wuEQpwzLb3P+tBEFJBk6UjXhfEcDX7uuBtNuu/DXEYxomNNH9Wx1LiPJTV5yfLZRuR2HtOpy/J+8Q2D+30jbuhG/TjcSERER6ZaeeeaZFsWPXRoaGnjmmWfa/Rx1dXVMnz6du+++m7S0tGZzhmHs9o25SCTC4sWLufTSS1myZAnJyclN22b2lQogHSQajWIdcjjugUNazPlPmE44rzDmmXL9JkPyW197/+NxfXDZuhnqn+HmmAEtz94tTPdxUnFuzI8Klt1zMntgJCWD24PnjIthxu/wjJ8EgPvQIwn7/LHN4zgM6+HjhOLcZuPJHovbTiom2Yj9f2dux8bz2SJCrz2PGQljmCbRVcuIPP0wKeH4nZQjnZTLQ8D0saMhgmWpp42IiEhntLuVFO1daREOh5k+fTpnn30206ZNAyAvL4/S0lIASktLyc3N/a5LUFRURFFREWPGjAHg+9//PosXL25XLvUA6UC1Xj/JV/4W/6Z1hN5/A8OfjPfwYwjl9qTRiv27wK5okOsnDeS+9zbw/tcVwM6bskuP6MvgLBeOrd4WXjvIpeN6cuKQXJ5fXkZDKMqUA3swLC8ZvxOIdzxpxTZvJt6ZcyjNKOK5FdvZsj3I6MMv5pgzZuCvr8RruIDYFh08dpCLR+dx6vB8ttQESfV56JlskWqGYtqPZJekmgpwuQmsXkn9f54DwEzLIHX6ORhrVmENO4RoNLYrZaTzMU2TbWEPD723kUXrK0j2uvjhIYVMPCAzrkdOi4iIyN5LTk5u1/x3cRyHiy66iOLiYq666qqm8VNOOYV58+Yxc+ZM5s2bx9SpU7/zOvn5+fTq1Ysvv/ySwYMHs3DhQoYMabnAYG+oANLB6j0+jAFDcR14EOkZGWzfvj2ueZKdAP93ZBGVY3oRwSTZskmzIkSjKn7s4rVDDEqF644qJDU1jarKCmy9uE9YlmWwNr0P1z73Of893IjlpTW8tMLD7KnD8REmHpu7XHaYfDfkZxvk5KRTXl5OHGofWJaFWVNF5cN3Y9fVNI3bNVVUP3ovGT+7Dl8oQL3VvoZS0vXtiHr42bPLaAzv/EGuC0Z48P0NrNxaxy/GF2JFtYpQOi+fHcFdWY7TWIeVlEpUR4aLSBd3+umns2TJkla3wfj9fk4//fR9vvZ7773H448/zvDhwxk5ciSws+HqzJkzOeOMM3j44Yfp06cPTz/9NABbt25l9OjR1NTUYJomd999NytWrCAtLY17772Xs88+m1AoRP/+/Xn00Uf3OReoABITjuMQDodj3vS0NaZpUmebVATCBKIOOUkWviQLC737u4thWtThprYB7IY6UlxeUswIplbIJCbTxZ/e+aqp+LHL9roQH62v4LQD0wl2451LlmUR2byhWfHj2+pf+Sdpww6OcSrpbCyXi/98vr2p+PFt76zbwY9GF5KvU8Klk/LgwKvPUfXsX8GyyLzhbmp79k2I120iIh1l/PjxTJkypUUjVL/fz5QpUxg/fny7rt3W79CFC1uelJqfn8/mzZtbffzIkSP55JNP9jnL/1IBpBsxTZOSRhfXPP8Ftd+6Izy8XxZXjO+tJcwApkVJ0MWSkmreXL2dYMRmXN8sDu2dSd80L64YHxMsu1cXirJuR+t7FJdsrmLa0Byg+/5sO45DeMPaNufDX6/BceKwNEU6lSgWn26ubnO+oiFMfnoMA4nsR55QkOrn/7Hzg2iUxrdfxfWjy2LerF5EJNZ+9atfcdRRR/HMM89QX19PcnIyp59+eruKH4lOBZBupM7x8H//bl78AHj/6wqK81I4bVBqt+8DUG17+dN7a1lW8s0L/Q0VDbz25TZuPWkoBW5D7wglGK/LpEeKh+11LZff98tOxnDi8zPtWC6qwhbb68OUhGvJ8XrxOaGY//xEo1E8vfq1OW/l5hM29adAvptl2PTL8vPVtrpW53eeMtaNl1pJpxZxufGOPIzgxzuPfPSMGE1DN389JCLdx/jx47t0weN/6VVvN7KlNkxNY+svUP+xuITjBg7H1423wpimybryQLPixy476kP8Z1UZ5x+cByE1Q00kWa4wF4ztyx0Lvmo27nWZTBzUg0Abx3t1pLDpYf6KCp78dHPT1pzcFC+3nVRMD1cwpkUQ27axhh8ClgWtvKBPOeNCGtxe4tKgRDqNaDjMacPzeXXVthY9dfpl+8nzW2CrACKdU6NpkXLBDHyTT8admk5DVl5cGlaLiEjH0zG43UggHCU72cMl4/vzi2MG8POjD+CaiYP43tB86kNRWtna3a14PB7eWVve5vwbq7fTENV/MruYpkmy19PqTXUshYJBDilM5dfHHUhhRhKWYXBwUQa/nzaCQl/ssxmGwfLyII9/srlZX5JtdUGueX45DXhjnqk+PZuM627HSPrWkcCGQfLUs7CHjNQLfdkjBT6bW08qJsv/TbOPQ3plcPMJg/HY2h4onVud20ddv2KsA0cQNHW8s4hIV6UVIN1IQZqXS8b358F31zG8MJ2MJDerympJ9ri4dtIg/JZDN14Agm3buC0Tv9vizEGpjPI1YkSjbDKSeWx1gKjj4DJ0owiQFgrAmpU0LHyBkNtD+vFTifY+gLo4nSTii9QzvtDD8FOHErHBb4ErXE8kHPvtShHTw18/XtPqXEVDmNK6MP33/VSxfRJ1HOr7Dib9jodh2xZM28bJ6kFjWiaNGLENI52XHWFYpsmfpg2lMhglxeclxQhhRLUqTkRERDoHFUC6EbfbzYdfb+HcMX1Y8OU2vtxWx8jCdEYUprNhRz1H9Uoi0o0LIKFQiJOG5PLDjFrS/nYH9oadN7G9MrM5+KyfszKvGL8Robu3RPMDoReepv7lZ5vGGj99n/QLfo7nqBMIReKzDD4UCpFEiJycHMrLy+Ny9C1AxIHyurbfDQ/EaamV7TjU+pKh98Cmr5HI3rJtGx+NFHggJyud8vLWe4KIiIiIJCKt5+8mDMNgS1WAPtnJzHl9NZ+VVFNSFeDF5Vu576219M7ysyPSvethbreb4uA2Un9/dVPxA8Cu3IHn/t9ypL0VX6Rlo83uxltRRv0r/2wxXvOPh0mu3hGHRIkl2WVwcK/MNuczk2O/BUZERERERFQA6TZM08SyTP72yaYWc7XBCCu31hK1u/fpJh6Ph+An7+AEWz8yteHJP+NSV3jsmipopYmnE2jAqa+NfaAEUx0xOXpgDm6r5daSI/pnE4jYmKZ+9YqIiIiIxJpehXcTtm3jsLMRams+31JDkrt7N/0yohHszz5ucz6yZgURFUAwM7KhlQZxRkoqRkpaHBIllpqQzUPvr2fm5MEc2jsTyzDI8rs557DeDMpN4Y2vtuPxxKdXioiIiIhId6YCSDfhOA4ZSd907k9yW2QnezD/+yZ1XqqXlO69A4aQ7UCPvDbnzfRMbHWGpzEjh9RpP2oxnn7ez6hNy4pDosTic5lsrWnk1v98SYrXxU/H9+PkYT1Z+OU2Hl20gbxUL5E49UmRzscwDGyXh8rGCLjcu/8EEREREWlTN7/l7V48Jkwdls8BPVIJhKNUN4YpSPOxpbqR0b0zqAqESY13yDgKhUIkTzqV0Nuvtjrvm3YuQa8PuvnNawBIOfYksgcPo+HdBRgeL0lHTiaUVxTXG/uQ5WVrXZQv11eR5fOS7bEx7di3rO3hjTL5wFxeXlHGG6u388bq7U1zBnBo7wwikda3WXU0y7LwBQNQWY7bNAnr+NuEFjY9rK4M88SnX1NWE6Q4L5WzDu5JzyQHw+7ev4dk7/gcG3dNJXZDDUlJyQQMFfNFRKR7UgGkGwmEIkw8MI9rnvucYOSbG58RPdM5dlAP3KYN3fx+KJxfhHXWJUT//kDziYOPwBx9FMFuXvzYpc7thb6DSSoeSUpKCtu3b9/9J3VkHiOJX7/wJesrGprGThuezw9H5uKxY9u4NhIMcvboItZsr2f19m9OyDANmDl5MHleOy7HTaeEG7E/eJf6+X+ntqEB37gJpJ98BrVp2dgqhCScqOnmmS928NSSkqaxd9bt4J11O7jxhMEcnGPp+yZ7JC1QR/2Dd1H/xWIA3IOGkv6z66hJTsdppZ+TiIhIV6YCSDeSmuThimeXNSt+ACzbUs0nGys5bXAawbZP7+wWvqp1eMYcxtnXziWrdA2EGqnvNYg36/z41gc4daifcLi7H4T7jUAgQHJycnxDWG4eeHdjs+IHwL8+38rBvTI4KMuI+Yv81Gg9N50wiE01Ib4sqyMjyc2BeSn08EQgDicJJUXDNP7lDwSXfNA0Fnj9RRo/fIuMm++nJiUj5pnku+0IGs2KH992x8I1PHTGcPzEZyWRdB5Jjk39n2YTWrmsaSz81XJq5vyGpF/dSYOlbVUiItK9qADSjZTVNrKjvvWbrxe+KGXigEy68wGdPp+P/3yyiXdLGni3BNJ8vXBbJhUfh3CoJjs5wAkH9lDjnARTEzF5d13rx+/+a1kpB03sE6eiQwODkmHIoBQyMjIoLy+HOC0gcpeXUfet4scuTn0doXdexXXSD4hEtZogUZimyYqyujbn60NRyurD9PPHMJR0Sq6aCuq+VfzYJbJxHVbVDsjOj0MqERGR+NG9XDfyXaulI7ZDd18IaxgG4W8dBVzTGGFHfajp67LzmODu/lVKPLbT9nclFI3/9yveDU8NwyC6eX2b88GP38WtVU0JJ7KbY8ltbV2QPfFdhU0VPUVEpBtSAaQbyU/zkuptfdHP8cV5pBrd+yYoFApxXP/MNudPHJhJqqWbjkST5nEYVZTe6typw/O7fbNIx3EwUlv/+gBYmdnYLi0GTCS2bTMkP6XNea/LJC9ZWxdk96IZmbh6928xbvXIx87KiUMiERGR+FIBpIOZpkmmEyU7UIOzeT1pVvy+5NlWiOuOG4xlGM3Ge2ckMXlwblx7W5iWi6jlies79oZh0DszieEFaS3mMv1ujhvaEzsYiEMy+S5mJMQVR/Uj0++mMN3HsII00nwuxvbNYnhukhpFAkZRXwxv6xvckk7+AcHdrDaQ2Mv1GUwclIPXZTJ1QDqXDk/n6D5pmAZcNr4faVYcOulKpxOwPKT94gas/MKmMSs7l/T/u5UGd3fe9CoiIt2V3vbrQF7LwLe9lJp/PEJoyQfgcuM79ntknvh9qlMzYn5jVh118fTitVw9cSAbKhrYUR9iYG4Ktu3w5prtnDYwhWg0ti+qTdOkIurh1eXlfLShisxkN2eMLKBfmoUrxkeYRiIRNlZFGNM3izF9s3hj9XYaIzaH98uib1Yyb325lTNHFUCjiiCJJtsV5q6pw3h/fSUbK+o5eVg+w/JT8NkNu//kbqA+JZ30639P9exrcer/21vCNEk+4yIifQbEN5y0ymWH+MXoHlyVXUH0ufuxy0qYMmgEv5r6Q0K5fuxo916xJ3vGcRwCKZlkXnsb9tbNAJh5PWlIzdQJMCIi0i2pANKBfOXbqJx1OU7ov0erRMI0vvocoSUfknX9HVT6216W3hHWV4VYWlLD0pIaCtN9pPncvP/1DupDUfxui0kDRuAntjf35REPzy/fxoAeKUxK8uBzm6yvDPL1DptJ/ZIxY7h9Icnj4eON23l6xQ6y/G6O6J+D2zL4ZGMlzywpoTAjiWkHZoGx+2tJ7BiGwaaAyRX/XEr4vyuIXvtyO30yk7jte4NJdnRSRsDw8kBpCmN/9geG+KNYTpQyx8f9myL8yEglExWKEo1lmfgWvUHNg3O+GVz0OvUfvUXmTfdSm9dLN7CyWy7DwL34Pcrvn91sPPWCn+M+fBJh/UETEZFuRgWQDpJmQv2Lz3xT/PgWe3spwTVf4Rl9BKFQbE6nMAyDbXXfZCmpbqSk+psbw4ZwlEDEwR/DHTqOy8OXJQ1sq23kX8u2NI2nel1cdexAaqMu0o3YFUCMSJhsz87/X9EQ5t9flDabT/dauO0wQcuKWSbZvbDp4a7XVzcVP3bZUBlg0cYajuubFPOVTYlma32U9EgD/Rp24H5lPkZDLRljJnNs4XDeWFPOGUMyiMTod5HsGX9dDdXz7ms5YUepe+xefNfcSsDQ7yL5bkl1VVQ9eFeL8drH7iNz+GjCqW33vRL5Nq/Xy7aQi4qGMNu2NZCblALBtk+rEhFJVCqAdBB3oIHw4pbHTu4S+vAtksceRazuORzHoWear8359CQ3yW4DYnifGHQsAqEI731d0Wy8NhjhgXfXcdOJxaTH8Cc0bBgcmufjT23M/2BQKi4nShDddCSS2rDDuh2tr2B49cvtHNuvH0Ysf7ATjGmahOvrmLbpLcyX/9F0Eq97zSqK84vwXXgjAScbtdRMMJXlOMGWBXSA8OqVJDfUQ3LLfkUizZRvg9ZOonIc7G2loAKI7IGgy89ra6p5dNF66kNRDOCoA3L48eF9SbVVBBGRzkVNUDuKaWIkt93F38zIxo7x0tM+6W4K0nxYpsH3R+Tzs8N6Mqpw5wvoC8b2IZnYvgNsmhbPfbG11bmy2mDMVsfsEo7a+LOyuHR8f8z/+dZMHpxLUX42AU/bRSSJD7dl4vrfb9h/Zfvd3b5cZds2g5wazJf/0WLO2bqZPluW441jc2Zpg6ftBpWGxwuW3r+QPdBG82MAw6u/Z7J7LpeLZVsbuO/ttdSHdr6Z4ABvrS3n92+uIeJp+7WuiEgi0iuoDlKXkk7SKWdR18rSUwDv+InUNsR2373HsLn3xH74N68l+trDGJXlTDloDK6TjqEsPQ3bjm3/D284QGO47Xfm7WAI/LH7ETVNk2WlDby5eju/OGYggXCUcNQhy+/mk42VPPLpFq49shfYrb8rK/GR6wQ4ZWA6//yyqsXcGQNSMJ0I3f0cGF9FGW21zPR+tBD30RNRp5TEYmTm4OrVj8imr1vM+SedTCglrfV39kW+xc7Jx9WzF5Etm5qNm1k5OLk945RKOpM6w8eji75odW7xpipK68L08sQ4lIhIO6gA0kEitgODR+E+5HDCn77fbC75BxezIzUPr2HEtIldNBTB+9LfaHz+798MfrWcyPNP0vOGewkW9sUJxe42KDlYy/G9fPx1RcuCQpLbItdoxDBSY/Y1crvdrCmvYGVZLSvLavFYJpZpEPhvkaYw3YdaDiYeq3QTZ7CVmr6FLFxfiwP43CaXD8+g6D9/xXfm+dTFYeWOy+XCFQjg1FTRUF+LNz2DYCQ+W3EsX9uvTs2MrJivRpM9UFNF6rRzqHniT0R3bG8a9gweiruoD9RVE/QlxzyWaZo04qY6aNNQFcTv8kBE/WMSVYPbS9q1t1H35zsJrfgMAPfAYlIvm0mNNwnUSFd2IxTd2TfO6zI57sA8+mb7qQtGeHlFGVtrGqkORFQAEZFORQWQDmID/9oY5JyTf4AzeSqh1SswvD48/QYS8qfxcZ3JkWmxLYCklm+m7tvFj/9ygkECc2/F/7v7YnoWhG26OC65nldSvM0atAJcMyqDrEAlgYzYLa20bZtBWd8sFw5F7WY9UQZlJZHscVEX0QqQhBIJ4/nzzfzsiMn88NDJNOAiI1hDyrMPYG9ci3HGuTGP5DZMzBVLCTz8e+yKcjAMXGOOJvlHl1Efj2XnuT0x/Mk4DfUtpnzHnUqtVhIkFNM0iXz5OXV/+wupp52NmZKKEw5heH1ENm+g6i+/J+M3f4Ci/jEO5mJltc2cN1ZRVrvz9+AR/bK47Ig+pDg6HjwROY5DtT8N3y9uxF9ThdvlIpCUQo1p6RQh2SNea+d/5xMG5vLsZyX8+4tSMv1uph1USEVDiEy/m5g2kBMRaScVQDqIEY1wenIVVb+9CkwTK7cAIhEaysvA5WbibQ/RaMeu7aDb7Sb0ybttzkdL1sP2rZCdG7NM4eRUcqpK+UPfNJa483i73KFnksGU7CgFb/0dfnRpzLIAhMNhhvdIIsXroi7Y/IbQAM46KBdHb5QnnuxcDI8X573XyHjvNTL+O2wD3kPHE/L5ifXSHXfJemrv/NU3A45DZNGb1JVtIWnmHTSase25YfuTSbn2duruvA6nrnbnoGniPuNiormFMc0ie8hxcAL11PztwZ0fG8b/vFsf+5vXLY0m1z7/RbNnfu/rCjZXBbjr5MF4otpIlagaMWlMyyInJ4dAeblWfsge89sBzjy4F7/45zKi//25qWwI8/AH6zl7dC8K0zwQ0H/7ItJ5qADSQfyOTcO/Htv5gW0T3VryzWQkjLHkPdzHnUY43NbO/P3LNE2i9d/dqduOUZZdwrbD4h7DGLnmPY53b+J7vfpDY4D6dz+g9NjTcVspZBK71RamaZK3ZSV/PDSN2StDrN6x8x3N7GQP14xIpWjJAoITT4pZnm+zTBN/Qw3U1+FEg7jcSUTs7t7ZYqeG5DRSL5xBzQN3Nhs3vD6Sz7yQ6hi/zvdaFg3PPNrqnP31V1C2BQqKYpqpohGuXupw0SVz6BOqwIqGqUzJ4cmNUc6qijIg3+r2RwUnEtu2cQ0c0nzwWzeshtcH2XkxzWS4PPztg51/x47olcq4HIu6CPxrfYANlQG21Ebo649pJBGJAdsw+deykqbix7f9v6UlnDA4m9Q45BIR2VcqgHQQVzDQavO6XSKrl+M68fSYFUBCoRCeUWMJv/qvVucNfzJGVo+YZGnKZBt8Xt7IyILeBJ5+gEjpZgyPF/ekqVTbLlyBCJkx3OLu8Xio/XotWf+cx23Hf5+KkQcRxSCzciNJDz5ONDMb86gTYhfov7zRCNaH71D9xAM4jQEMr5eUMy/CffhEApYOL406DuGDjyDzd70JvPg00a1b8Iw8DM/RU6hJy4r5O51GMIizYU2b83ZNVcwLIJvqwmysDPCvUg/jDxiIYcDX5fUs3b4N35oafl2UQUAFkIQSysolacIJBN58ucVc6oVX0JCcBjEsgoZsg+pAkIePSCXzjX/Cs+9jJqdwzOTT+WzQCHY0hOjr12lCIl1N2DFZVdb6G2jBiE1dMEpq24cNiYgkHBVAOkjUn4q7qC+hL7/Ad/A4vENH4kQjBBa9RXjtl7gPOJBoDF+8Oo5DqGgARlFfnM3rW8x7fngptak5uII1McuU5DY439pA5I+3smvDiRMKEnrpaQauWIx1ze1Eid0NfiQSwerZm3BjAHP+4+TweNNcFLAOOQLH5YJQ7PolGIaBZ+Maqh76Q9OYEwxS+9f7Sc/JwxhysPZxAyHDJFTQB89PryXL56OqsZHGqB2XZd6Ox4vZqx/2iqWtzptp6bENBIQcg/+bNIilm6t54N11RGyHIfmpXD1xEB9vqCBq6MY10TSaFv4zLyJt2Cjq/988ouVluPsPJvnMCwn26h/Tvx8AbtPm+gNduG/5OU5o58q8aEM97r/dx+ghB2Nfcj2gnyORrsZtOAzOTaa0puU2F49lkuzVf/ci0rmoANJBIl4fyaeeTXKgnsD7r1P95J8x3B78R04m+bipWEX9qI/xC9gVIR8DrrwVz0t/J/L2yxCJYGXn4j770v/P3n3HSVVlix7/nXMqV3d1pAM0uYmSaYmSg4CoIIqYwxgxzDBmHcdxHK85jFlHxQBmEREDSQHJIEjOuemcu6q6wgnvj55uu2lQ77vWqVL29/N5nzfujbhu1akT1ll7bRba29I3pOExMR5nVRnV775wwjnt0D7ijh3A166zaQ/4qqoit8qu3RWjoqzxpKxgDJuIpJm7TMiOgf+z2Sec833yNo6/9aBGUkyNKZaFNB2cLlSfuVtMNxTUNZxT/4T3H7c0mZPbZCOlm99zo0WKh1e+2sXh8p8+lx0F1ewu2s3Tk7ujhkRj31jkt9iQew/C1S0Hl0XBpxt4o9S80q6FUOa/Q+hEx8qOjSSVHcXboq3pcQmCEFmGGuKiPi1Yvr8U/bhTzyU5LUhUNHRRQCgIwu+ISIBEiKW6EllRKHvlcYxg7Q2jodXgWzQPZfMGEv70Z2STGyGmexxc8uFOzuw0mYvGTsWiq+TpNh7bUEaflgpjbAZmbnAiVVWge09ecRLcsBJLx26m9kn5rkxh4N3PoEsKRZZ4VN2gmRImKVTF8wclpjdXMLPbuaSp6JXlJ5zTqyuRNQ0s5idAJFmhSrdS6A1xOFBFM6eDOCmELvqSABBu0Yb42x7C98Yztck0ScKWcwbOK27Ga/LvHqCgOoiMzqyxGaQHyyEcJhCfwpuHVOZtzefPAzNMXU4h/Hq6ruNXLLhSotu80haowb9h5Unn1c3rUVpli14ywi+SJImAZCffq7LjQDkeu5V0l4xVE4nYWJVh1/j3ed15fvkB9hT7SHBYuLp/awa1cqNr0d0G22oVS4EFQfjfMS0B8uOPPzJz5kx0XWfUqFFMmjSp0fzSpUt59913SU5OBmDcuHGMGjXKrPB+c7Ii41s8vz750ZBWlIdWlIfUtbepMTWzqNx3Zmce/Gon83b+dBPdKsnJlF4tUIM/3yT1t2Yov3D4OZymvuk0DINOyTYqbZk8+d1+dhXmAZAWZ+e2kdlM7arWbsRgWkQQstpxDB+Ht24niAYcQ0YTtDvB7AcO2cIPxWEeXbyToFr70Oy2KTx8VhfaxyGSIIDP6maJ5zQy//oiyS4rBrDmmJ/B9lSSaboVbSQpikJRdQ2v93Pgf/1hqvfvBkD2JHLzlTezxJVNUJexmRqV8LsjyUhWW/3ylybTLhMbNh1HVhRqDCsF3jCKxYakRveBTPh5VTi454tdHK34aevkbpke7hvdHpcutlOOSbpGa6fOo+OzqdEk4lx2lKAXLYrJDysGzqI8Ags+ozJYQ/yYcwm1bE9QFlWxgiD8PFMSILqu88Ybb/C3v/2NlJQU7rnnHnJycsjKatwIcNCgQfzpT38yI6SIM8IhAj+z7WzN6qVYBo81MSIwDA2bBC9O7cXW/CqKqwN0y0wg02Ov3QHG5GuGkdQMS/OWqHlHTzhv7z8Mr2pevw3DMIhzOrn3q92NlgoUeYPc/+VOnp/SHUxeAqNpGtaBI7AsW4B67HD9uJKWgX30OVRF4W1rUUjmn9/sbpQI8oU07pi3nTcu7EGCJN7iFXrDuGwWvthfwYbDeSS5rJzVLZM1h8oY06kZVhN77ei6zriEAN6H70crLvxpvKqCyucfZvQD/6ZKzqzdN1iIOZIkEZZtlPhVdIsNOUoP9zVON85xk/DP+/CE89ZufaPSSDcgO1i0p5z3N+biC2mc3iqR6we2Jt0WFsnYGKQpNh5fvL9R8gNgW34V723K57q+zdBVc6+zwq9jGAaKFiQOSHXFUeKPXrWXJEk4cw9S/o8/148F1n6P58a7UE8fKirRBEH4WaYkQPbt20dGRgbp6bXb9g0aNIj169c3SYD8kSjyf9+WaSd+myHZHEiKYurb+2pd4YFvdhBSdab0ak7rJBfvbzjCziIvV/RrydQuCagmJhwCrjhqrrwD6xO3Q7jxTb0+4hxKEzMxs7G4zWbjaGmoUfKjTkjT2ZxfTdtsDzUhc/e7r3K4ibv3cThyAO3QPmxt2qO3bEe1w216ObyiKKzYW37CKpiwZrC/NEDfZvIp3Zg1MTGRXUe9PPPdXnyh2t+3v1LjtZUHObd7JtUBjWTJvHgMw8BSeAytuBCldTaBkZPR7Q4cm1dhrP2O4NKvSLyqA5XmhST8SiHZztaiAG+v20uhN0DntDiu6t+KVm6QdfPO1QCqpuEaM4ng+lVo+Y2T1nEXXUPQ5F3EoPZh+sUVR1l+oLR+bP2RCrbkVfHKBT1Ils09Vwu/rCwIW/JOnAD+akchF/bMIB6RABF+nt3Q8M56tcm4992Xie/eF6/VEYWoBEH4vTAlAVJWVkZKSkr9P6ekpLB3794mf27t2rXs3LmTzMxMrrjiClJTU5v8mcWLF7N48WIAHn300RP+mZjg9+EaeRa+rz454bR75ASsHg9xJoZUUxGkfaqbyT1asOpQKbsKi+jbOpkzT8tgb6GXpKQkUx9cS8q9PHzQws23/5vUzcuwbl+PkZBC5bBzWRROoXtAYVDzZNPikSQJX37xSecrasJoyNE75pq3hAHDsFgsqKpqanKojiRJlHhLTjpfGdRISTH/Qaghi8US3fOCJLEpt6I++dHQ/G0FjO+aQWqGufGFtlUTuu4+Ftla88GeamrCGmd0OJ+rRl6AY9FsbIYe9XNp1L+340Q7Hn9Y591Vh/nkx2P1Yz8eq+LPc7bxjwldGNMhGrGlkvLP51D3bKdmzTKUxGScZ4xCzmoLLjfxJkezu9jfKPlRJ6jqfL2rmFuGtEU2Mdl4ItE+jo4X7XgKTrKdKoCmG0iKhdQkcS5qKNbigRiIqbKc4rKiJsO6twq7LOMQ17MmYi2mWIsHYjMmITJipglq3759GTx4MFarlUWLFvHiiy/ywAMPNPlzo0ePZvTo0fX/XFJy8oexaIqLi8M1fByB9SvQigsazdl75CBntaG0tNTUhIPD4mBSj+b8z8Jd9W/wt+VX0TzBwf1ndqakpMTUeFy6TuuUeA6H/CSf1hdrVktUhwu/O4mN+8MMc8iUlZWZVsZst9tpmejEIkuox7c6B3pnJaDKStSPudTU1KjFIEkSA9sk8eWOwhPOZ6c4TunPB0ByetiWf+I3nJph4AuppsdnbduNp9aWsj6/on5s+ZFqfihQeHXKDSiyhcAp/r0dL9rxFKu2RsmPhp5aspfOyXacRjQqHBSkTj2xdsshLiGB4uJi8NfU/j+TFVXVZjdOy/QwokMzFFnicJmfr3cUsDG3gtKKKqQoN2iM9nF0vGjHE2+x47YpJ0wQt0x0YidMSYm5/ciOF+3P6HixFg9EPyaLIuMcMR7fp+82Grf37o9PsYrr2QnEWkyxFg/EZkwn07x582iH8LtmSgIkOTmZ0tKf3tKUlpbWNzutEx//07ujUaNGMWvWLDNCi5hAIICCgefSG9AKcgn8uB7JZsPRZyBKswy0KGxlqBrw1trDTZYv5FUGOFLuJyvDYmpM9pCfGztYCT7xCEbuIeoWnjSTZR697X+QDT9h3bzWjLquUxMyuKxfK97bcJScVklYFYmteVV0bBaHN6Bit0icyi3aDMOgQ7KdTmludhc1buZ5RrtkMlzyKd9Lwq5Au1T3SZMgLpsFTC7xzrV4WJ9/pMm4L6SxtFRicppYLx1rjlTUJjfcNoURHZqR5LZxtNzP9/tLqQ6qFPtVWjmjE5thGIRCoagvdYuzK1zQu3Zb6ddWHiSk6XRMi+PO0R3ZdLQCi2SYuGeX8Gt4ZJVbh7bjkcWNq4AlYMbwdtj0kKmNxoXfJ1XTcY44C/uBPQQ3rQXA0ro9ritvpYool30JghDzTNmPsX379uTn51NUVISqqqxatYqcnJxGf6a8/KetPjds2PC77w8iGwa+ue8R3rcTOSkFR84g7L37I7nd+L/7EnX/LiTJ3JO0L2yQV3niN4YbjpSjKOZ2Qa1JSMGyehFG7qHGE7pO+KV/EX+S/imRYhgG2/IrSXBYuXtMJ8KaTpkvxGWnt2JSj+bM2ZyHoZm77r6OpFioxs6xgIWjlUGkX9pBJ4IcRpB/jO3AjOHtaJ/qplNaHH8b25FbB7fEqovdF3w1QcZ1SUc5we97SPsUEh3mf3fFNSc/btflVqFL5m/NK/w8RZY4u1smVw9sw55iL/O25uMNatw5uiO9WiSgROke32KxUC272O+3sqXAi2p1RScQoHm8hWZxdj7edIyQVpt53VPk5T+rDnF+r+ZooplmzNE0jdMzHTw16TR6ZHpIdFoZ0CaJly7oQbt4op5UE34/qu0uLDfeQ+ITb9LsqZk4732CKpfZC/EEQfg9MuVOXFEUrr76ah5++GF0XWfEiBG0bNmSDz/8kPbt25OTk8PXX3/Nhg0bUBSFuLg4pk+fbkZoESPpOkZJEd5V3yHZ7Fjbd8YIhwjv3wWGgbVTdyRJMrfiQoEEh4XKQNOHoY7N4kzvmC/7vfi//eqEc4bPi1pZAa4E0+LRdZ1umR4+3ZLP8n0/lcBtyauiZaKT6we3Nb3pKEBYtrFgbyVvrTtCWDNQZIlpvVtwbtcU7Hp0dlxxGQFGtnQwpFV7PHFx1FRXoEcpllhjkQwUSeKesZ14Z91hjpTXYJElxnROY0LXDPyhMC6T8w0JtpP/B9unOJEN/VQv3Ik57VNcbDhaxfPL9tePbThSzoYj5cwYkU1GvA3C5iZkJdnCjkp46JstVP33OtKrRQK3j+pAvGb+sgXJMFiws+lyvIKqAL5gmKRoNEoSfpGih+kQJ/HgmDZYHC70oB/U0ClfPSj87wUkmUBiKqmpqfh/J0sXBEGIPtNeRfbp04c+ffo0Grvwwgvr//fFF1/MxRdfbFY4kWezYu/dn9Ce7RihIKG920E36h+grS3b4jc54RAnq1w7sDVPfre/0bjTqtC/VQKaZvZ6cql2J5yTMEwuY9R1HQNLo+RHnaMVNeRXBVBTzX1ylWWZLUUB/rP6py1wNd1g9g+5ZHjsjGjpiNp2b7quoxDCaZXxie0m61kViZUHywirOjNGdCAQ1rBbFGrCKo8t2s1DE7uaHlOW4aeFx8axqsYVOrIEZ2VasEoS0altEk4mqOp8uT2fsW09TGimYw3V4LW5ee+IxptrDtM/6zTMXgFTqtu474sf66stAH48VsnsDUe5eUAGatDcJKiEgU058Tk52s1PhZ8nKRZ8qozmD2NFIl5R0MXWpYIgCIIJYqYJ6h+NLRBAymiB+9yLcfYdgO6tRlIsSHYHvtVL0aqrsNvtBE28YdQ0jQFZbu4f25HXVh+mxBvi9NaJXDugNUlKCLOfYYM2O84J51P9xrNN5uTEZIyUNFPjsVqtrN1VdtL5+dsLGNuxK6jmvekMS1beXnfohHNvrTvKgJZdsIlV7jGlWrdiUyR2F/l5f2Nu/bhNkbltVAeKqkMkm1ila7PZkOe+w6Pdh/LkITebC2p7t6S6bdzZM56UWU/imn4XNfboLWUQmjpaEeDJQcm0W/A2+g8rapPnFisPnHkBSzsMo9hnfg+QYxWBRsmPOot2FXFJ3yziMTcBImthLslpwd++3NVoPLuZm2ZOGXFqjE0B2cFnW4uZszmfkKbjsipc0a8lI9slYBOVhIIgCEKEiQRIhEiyRKBVRxyGQdnjf0P31jZEVDJakDj9bqoVe1Q+fIek0aV5Ag+d1ZWwbuC2KTgVCV01fzcBTdOQ+wzEtm45oa0b68clu52E2x7C63BhZlZGlmWsP/PasHbK3NeKqiFRXnPivhoV/jC6IV5zxhpJqm10uvZQ42RaSNN5dcUBHj77NDCx3kKSJNB13E/ext9HnkN5rwGEkUguO4z9lXcxavy//JcIputgD+N65TH0Qw2aRaph+PI9ho8L4+1ylekxnaxtlWxyP6s6hmHQJdnK3aM68OrqQ1TWhBme3Yw/9c/CanIPKeHX0RUbr67O5du9P1Va+sMaL688RE24Jed1Tohary1BEATh1CASIBESsjtxeo9Q9vzDjfpGaAXHKH/8PhL/8W8qTS4XBigznLy96hBL9hQDYLfI/O3MznRLcyOHfL/wb//2vDYnrun34i7OJ7x/N9bUNIxW7fDGJZrekyQUCjEw08k7J5mf0jERp6SauguMU9YYmp3K/G0FTeYGt0vBIWti3XSMiVd0VuwvPeFcmT9MUNVNPfMGg0GSTj8D39dzkBZ+SvLCT+vndMA9/jxqElOgRjwwxpK06kKqD+098eSiOTQfNwmfxdyGf1kJDlxWBX+4cWnFxG4ZJFlV1Ci8vLfoYc5oYaPPlNOw2OxYwjUYIvkRs0qDNEp+NDT7h1xGdUjBIxbkCYIgCBEkWv9HiEXTCK5ecsKmmbq3Cv3oAWw287Z4BbDb7Rwt99cnP6B2nflzy/ZREcXNO/wWGzUt2qAMHI6tz0C87gTTkx8ADkUmfdO3nN/B02Suc4qDvuV7sFdVmBqTroaZ2jODBKe10bjbpnBVv6zaN8JCTFFVFflnzqxWyfxGukZ6C5xDxzYZV1LScI89F79IfsQcqTgPAFuHriRceTMJV9+K56JrUdKbg6YhV558uV6kJMsBHju3G+nxtd1FJWB4h2ac3zPT9P4fDRmGgUUysCkSkthENaaV+U+e3AhrBhU14pomCIIgRJaoAIkQGwbB4qbd6esYVRXIP/eUFAFWq5W8qmqgdjmHVZEJqjrF3hD+kEayufmY2jhkmfiKEmq++JDqTWvwJ6finnIFWnYXahTrL/8FvyFF17Es/YILu+RxxoDRLCiR8WswOtWgQ9EebK89i/HsO2A1d2uBRCnIi+edxobcKrbkVdGteQI5LeKj0rdF+GW6GmZS90w2HKloMpfittX2JjD5e6uwOYmbdh3yoNGEFn6G5PciDxqDvVcO5W6PqUvNhF9Hjk/Ac9mNaIV5VL33H4xQENmTSNzEqaj5ueBwRCWu7loxzw1Nowg7TotERqAMZ00pXlt04gnJdn4sqGH2D4eoCoQZlp3K5G7p/z0/iuM61jitP3/f47IpiOYtwv+GTVGQVNX0nRUFQfj9EgmQCDEsFuzd+xL4YfUJ55UWrQma3PHcH9bo1CyOl6b2oswfoqImTFaii3J/EI/TgqSbf/GIryim/N4bMYK1PUj0ynIqn/wbcdOuwTrmXMK6efEEZQV7tz6oX39Cq8WfcVPHrkhWG6F9uzBqfCgZLcDpNi2eOoZhEE+AUa0cnNkuDo/HQ0lJiXhmjVGGYZCV5GZI+xS+b7AUxmGVmTEiG6dFRje54somK7yzq4oPdsic3uMqXDL8WFSD67sSnjrTg+XkmzEJUaK0aE3NV58S/HFt/ZheVUHVe6/hmXYNempG7c5iJoqvKKH83uuxBoO0+O9YCJD6DMR53e2mJ611xcp7Pxbx2Zb8+rHPtuSzZE8xL5zXjQTJ/N5Wws/LcCs0T3CQV9n0u+nbMpFkO2a2SBJ+xxRJIq44D//c2ZTX1BA/6SJqstoRlkRxuyAIP08kQCJEVhSs3fsiJ6eilzVe72rr1hspvcVJ/s3IqVJlHDa4/bOtVAV+usMY2j6V7GZxKHYXasC8PiBWWabmq0/rkx8NeT+eSWL/YYTjEkyLxzAMHH0H4lv0OagqoV1bG83Hn30huiQRrQprXdcJhaK4VinGKYqCV7dytDKIVbFj1UNReRtks9tZsrWIKb1aMKpTGkfLaoh3WMhKcrK/2EtanI10kxMOxTU6c/dWMqOHhw56JbIa5szTUph5MMz63CqGZicRDovS81iie6saJT8aqv78fRIGjwKHeQlZqyITWDgXyebAPf58lKQUJFkmsGU9gQ2rcJUVU9OsuWnxAJSF5EbJjzpVAZVv95UxpXO82Fo1xtiNEA9P6Mzt83ZQ6vvpetYm2cVfh7VFVsVyPOHXcVcUU/a36fDf33hwy3qSHnqBcEarKEcmCEKsEwmQCAn6A9SUlpMw7RqCe7YRWPc9ks2Ba+hYJJeLskofccnNTH3osCgyD3+xo1HyA2D5/hKGtkumb+tEU5vCWEMBfJvWnHhS06CiFExMgDgMHe83n5F03e1UfTQTraR2CZPkdBN/7jSC2zcR1603uMyLqU5ItpPv0yj1h0kLVdPM4cCui7ebdUKyjeUHq5m57ijeoErrJBczhrejbZwBurkPQCoKndM93Dl3GyFNx21TCGk6Yc1gaHYqPZp7wOwEiC/M872seF65B728tiolwWLhgWk38Y23F1aLVSRAYkzd93QiRo0PyVttbgIkGCRYcIyEy6dT9ek7aAXHQJZxnH4Gidfdhl6UDyYnQIq9J08IrzxYxqQuiUhiOUVMMQyDFCXIi+d1Ja86THVIJ8mhkBmnYBPNa4VfSZIk1L076pMfdQLffYX18lvE9UwQhJ8lEiARIisyLqtC+UuPYuvQFfeZkzHCIfwrFqNXlpPw8ECCqnl1nna7naKqGg6Xn/gG49Mt+ZzeNtm0eAB0iwUlOa1JhUw9p9PUeGSLBYIBKme/invsOSieJAxdB0PHt+RLtKJ84i+61tSYAPySgwcX7mNXobd+rE2yi/+Z0Am3IW4YZUXh2/3VvLzyYP3Y4XI/f527jVcu6EG61dwHIEWCJXuKCGm1a5R8oZ/++8v3lTCtT5ap8QBkWwMYz99bvx03AKqKMuvfjLv7GQzMj0n4eYb9589/usNlUiT//e9ZLcSNOZuyZx786aFD1wmsXY5eWU78VbeYGg+A23byW5j0eDsKYpOsWGQYBk4jQHs3pLZOpaSkBMTWt8L/khzXtGG9kppOWPQBEQThF4iFchES0jX0Y4ewdutNaO8Oqj9+C+/c99CK8nGfexH6sUOoJiZArFYr/MzyCc0wsNSYuw1uUFJwTbnshHPW9p3QkpqZGk+NAe4zJ6FXllP98dtUvPEslTOfo/KtF1CPHsQ1eiJGirkxKYqFuTuKGyU/AA6V+Zm18RiSyWvuY1G1buXtdUeajOsGzNlSgGwx9zOq0SR+OFJ+0vkKn/mVO3HlBY2THw24VnyJKnYTijne5ObInsQTzsm9B1ERl2JqPJrFRnBP0zeuQO1ywSgsNUmJs5PhOXHz1XN7ZKKrYsmgIPwRGYaB1LYjlhZt6sdkTwLWQSNNvbcWBOH3SVSARIjV0Cm2eTh67i20br8M6/L5yA4nNeMvYn1GV3qV70GWZdO61Ou6TqrhJ8PjoKCq6QPYpCwLlhovqt28HU4Mw0Bt24m4y27E+/7r9Vu6WrM7E3fr/VTJ5h+elswWuCecT3laG4pSWqEikRasIHHjd7iGnYmEZGo8PsPC3BOscQdYsKuYS/s0x82p/fAaVHX8YY1Mj4PxXTNw2xWOltewYGchB8r8aIa535o9HCDZbaMycOKbMJcWQpYdpu5QIZ2gz04do7QYxeRmmsIv26u7ybjpIeKeuwfD91MCVGrehqNnXY01BJkm7twlAeqRAyed16KwlXKRN8S1g9owf1s+XTI8uG0WtudX0jXDw66Canp2S6ZGbPEsCH9I1XYXcfc+hlSQiwJozTKpdsWDqAARBOEXiARIhCjuOPLSO3D7d3m0T8lh/GWD8Wvw+SE/pQeKeXtib5JMfGMWCoXwhP38vYeTGWtCBNWfHr56pzvpG8pHdrYwvV9CQLFgGT6BxJzBUFGG1R1PwJNIlWT+thSSJBEqKmT/mMv526L9lB2qfWi0W5zMGHsjZ+zfQFKbbNPj0v77cNo+1U1WopP8qgB7irzouiGu80CcVeaivi1x2xQ++fEYFTVhOjSL468jOlAdCKGgmVoG76go4vJ2dh4s9TeZS3RayazIxZLZ2dSGtlJq+knn7INHEjQtEuHXirfJ/GWLxozpT9OmpghLdTnB5Aw2k8Br6yt59fxWYGLyU9N17H0GEPxxXdNJSUJKNHcJJUBY09ldWM0Z7VP5aGMulYEwQ9qn0irZxbe7i0Ayt0pGEARzeW1OaNWB1NRUKkpKRPJDEIRfRSRAIkRDokSuXcO9v7SGF0obv4WqtjhJMjEeVVWpTkin5bxn+E+/M9mtJFEcNOjiNmh+8EcS3G2ptrlRAicuk49obLpBtcsDLg+pqan4S07SE8QEBVldmfH5nkYJoqCq8+jSgzw/oR8ev7lvE12yxnk9mtOuWRy7i6rZX+KjU1o85/dqwfa8SuItOsYpXu2Z6LKS6LTy8oqf3k7vLfby6KLdvHBBT3TN3CUnFovCabu/Y1rnwXy4q7J+06AUt41He7tI2LECvXMnU2MiKRnX6HPwL57XaFhJTcfZrTd+sVNGzGnmlGiV5ORv6ytQJDsOa3P8hzUMKrh2YGs8impqvlrTNMLdBiAnvIteedwSr7FTqE5MB93carSWiQ42HJF4ftn++rFFu4r44Ug5/5p4GsGAaBQtCIIgCEJjIgESIcFg8KRrky2yRJzThmGY995VkiQOqVayzr8Oz/z3GFRRBMmp6EcOIU2Yyr60jsQFNVOTMrHGYrGwuaSKoKrTOtnFiA7NsCgSm45W8MPRCmZvL6Nzqrm7HKiGzNAOzbh97hYC4dqkzJZjlXyzs4AnJ/VANUzfUCTmlFUHeWfd4SbjmmHwxdY8bj2jFUG/9wT/ZmQYcR6ch3cxNe8QY4dNokh24kAno+Qgjn//B+XORwibnHCwlJcQtttJuOIm/Cu/xfD7cPQdiCUzi9C+XVhzhoiu+THGogW5a0Q7Zq4/xqLdRfhCGg6rzGU5LRmbnYCumdzfwmLj0e0Bpt38GOnrvkZZtxQ5zoN/3DSWONrRpVqnvXmb0gCgaxpzt+Y1GS/zh8mvCpCVau6SRUEQBEEQYp9IgESI3W4nw3uA4a08tPfInGYPYcgK35bJtIqTSasuIpxg3naqhmHgsirsCMbhOucGlu4r5lhlkKGDkklPdOILafS0ynAK94xTFIVDFQFuHdaegqogn2/NIxDWGdQ2mfvO7MxnPx7DJ9mRaLq0IVI0WWHmmgP1yY86Yc3glRUHeHB8RxTt1F7AUBNUG+200tC+Uj9q2Nxkgz+kU3be9SQ8eyeJG5aT2HDy/Ks5Zk2gmYn9fwDUw/vxfvkxkjsOZ85gJIeTwKY1qF8cxprdhcTeAygzLRrh13LqNdwwuA1TemfhDaokOq2kOWW0mmrTYwnrEnuKvUzfH6BXxmiGXjmeyjDMO+Sj3F/J37MywG1uwsEbUhtV6zV0pMxH/zQPmqhuEgRBEAShAZEAiRCLBHFL5/L3/iOofvsFtKO15fk39O6Pe+KFhI8eRUvqZ+pDkNuuECzXuX/+jvqxjUcrSI+386+JXVFO8T2BQqEQQzqk8e9lB9hb/FPFwJI9xaw9XM7fzuxMvMXAa+KSE1Wv/Y5OZGdhNUHVwLy2tbEpzmEhxW2j1Nc0e5eT7sSiSGgmFje4ZIPP83X6XPM/dKg8jHPHBvSEZEq7DuCjIivTLDYME9cpW61WjP9Wdxg+L/5lCxr/gXCodgtKSVwOYk2lHMcz3+xm07FKABRJYkK3DC7s1YJ43byqJgCnVaJLejwFVQF+LPDxY0Hj+SS3HbMz6PE2hXi7hepg05Ny57Q4kfwQBEEQBKGJU/yRN3I0w8DVbwgVj92NXngMa3YXrG2yCf+4jupXHseZ0cLUhyCAQFjn+WX7mowXVgdZfbAcu3JqlwsHg0Gqglqj5Ecdb1Bl87EKdMXcBScyOh7HiR9MHVYZq2Rme8/Y5LZL/GVQVtNxm8K4rukEA+ZV7EBt8vPs9gn844cqrjmcyn2tzuM25xD+tD6EJsm0sKqmJj7D4TDWVu0aD0o//dadQ8YQik80LZ7jKYqCzWpFkk7t88/xQrZ4Hl30U/ID6pZ15fPNzkJsDnPXmwR1heEdUlFO8D11aBaHzWL+7UScFOKWoW2bjGenummbaOIWOYIgCIIg/G6IV34RoukG6r5dxJ97EUpCEsG9O5BsNtzjJhPcsRnDW4WRmmlqTNVB9aRbcy7bV8xZXZud0geExWJh85HSk84v31/KtJ4n300jElyEuez0VrzwfdPtJy/snYVbUk3d4SQWhYJBembG8ep5XfEWFaNoIUI2N80zU0l21hY4mEn1VtF84ypePnM0L/1Ywqa8KuLsFq7vmcK4LAcs+wrl7ItQVRNLidzxuM+/EmtCIsgyhqoiORyE9u7A3qsfvihsFSpLEnGVpYQ3rCC8YzPeNtl4Bo2kJjn9FN/YuVZ+dZAdBSde6vLJ5mOM7pRmas8mzTD4ZkcB/5rYFV9IozIQxipLxDushDWdvIoaspqZm8TSdZ1+mU7mnteWYO5RjGAAW0YmUrMMZBN7bAmCIAiC8PtxKj/vRpRhGFgys/DO/xgpPoG44ePQwyG8n7+PrUNXDFlBkiRTq0Cc1pNXLyQ4rVgtMqfyPaPFYiHZcfK3mAl2BZeEiR1AandeGNomnqPlGczbVlC/o8jYTs2Y0CnZ9B1OYpU95Kf9jtV4Z72K7q3C0rIt8TfciTe9aWVIpBkWK74P36B1KMgzfQaittKRbaBI1VQ88w8YNs706i+9xo+9TXvKn38YI/jTMRN3zkWo+bmQ1gJMXC4gyzJxeYcof3AGkiwjJyYT2rMdY94HJMz4B3rXPmin+HaGlQEVqyIxsVsmbZPdhHUdmyKz/kg5y/eV4A9rJFnNiydR0Rie3YwdBdW8t+Fo/feT4rYxfUg7WifaweQNlSVJIqEsj4r/uRNr2X93D5Nl3JfegH7GaIJiWZcgCIIgCMcRdwcRYhgGWnkpCZfdSHDrD1TOfhXJ7iBu/HnI7jgkwzD9IchtU+jZwsPmY023uj2/Vwuq/WHiTI0ottgMndNTrbx8kvlp2XG4gtX4TV45ZteDXN23GZO6pVMZVEmOc+CRwkgi+QHUPgRZD+yk4pUn6sfUowcp/8efSXrsP1TFm7u3UTAugcSb7iG4aS1l991YPy57Ekm4Yjq07kiNyb0JJKDsxUdxDhqJLbszhqZi+Hx4F3xGQss2YGY1CuAM1lD18mMkXHwtKBa0ojzk5GbIdgdVs17Bc98TtVtjn8JSXTbuHNWJT37M5bPNtTudSMCwDqncNKQ98XYLZpZ/6aEg6fE2Hlm8p9F4qS/EaysP8sJZ2eYF81+ucIDKx+5FL2uwdbqu433nJZLadybYvI3pMQmCIAiCENtED5AIkf0+rFltqHzreao/eRutKB/16EEqXnuK4K6taL5q7Hbz21dO6tGCjmk/pTkUWeKivlk4LTKWKPaTkBULqmIncJKO/mZQkWhZU8RdQ1txfCH3hM7N6Gn1YehRaqqnhklWgrR1abRPdiKZvQVmDHPoGr5P3mk6EQ6h79luem8JTZLQigupWbG40bheVUHFq08hRaHbsFZVSeJVNyO54zD+m+zQAzUkXDad4N4dWG3m9kuQy4vxXHAl3i8/pnLmc3i//ISqd1+mcvarJFx0DZQUmhpPLEpwWpm94Qi7i37qSWQAS/eWkFvhJ8lu7nFt2Ox8s+PE30thdZDigPnnbrm0CK244IRzgcVfYLWaWCIjCIIgCMLvgqgAiRBd00FTCR/c22TOt2AuqYNHocrmPgjJksRL3+9neIdmnN0tk7CmY1VkFu0qJDPBSccEJ2bnHyRJosqw88XWYr4/UEp6vIPLclrQJl5G0c3tBFATCuFKTqO16uTTqZ2Qy0sw1DBScjPyVCthp4KWFAcVlb/8lwmmseoqNf4T74ihV1eiKIqp/TZcfi+Vn793wjkjFETdvQ359KGmNkKV4hNADSLFxaM0S0eyWtFVDRQFe85ANBNjAVBsdryL56OVFjcaN2r8VM16laTb/mlqPLGoqDrIobITL7j7cnsB5/XIbLzFcoQZhkHlSbabBggiAyYniNWTXyP06irxhkcQBEEQhCZEAiRCFJcDrWFZbkO6juH3EQqZ+xY/zgpDs1P5eNOxJnPXDGqLGja/AUi1YefWz7ZT5q+9kc2rDLApt4IHx3eiT6pi6kOizWajTLfQrSaPqv+8QGj7JgDkjBZ0u/FOyhxtUQOncJOUWGV3Yhs5kZr3Xm0yJXXtY/7uIkE/Rs3JO8Woh/ch9x9u6rEtu1zolQqSrtf2AQnUYO8zEMd5l2IYBpLDAUHzjm0JCP7393U8rbQIIySWd/lCKg6rzOQezcn0OAnrOnaLzJZjVSzcVUhNWCPRxAKHcDjM+A7JrD5Y1mTObpHJcFkwPQGSnIZkdzTqa1PHMWI8PpOXdgmCIAiCEPvEC5IIMXx+lLST7PIiy8ieROwml8JrapjO6fGNlsDIElzZvzV6FBoOyrLMpvxqyvxhFFki0+OoXdcOPLf8IDWYX76cEayg8rWn6pMfAFrBMUofuZsUXwk26dRuzBiLKgwblh79sHXq9tOgJBE3+VL8jjgcFnO3LsbhQnK6Tjptbd3e1OQHALpOaP8uqj+aWZucMQyCP6yi7N8P1Z6PTK5G037hZxSN81Gs8Tis3D6yI6sPlvH0d3t5ftl+nlyyl8pAmFuHtcdlM/f9hSLLdPHl0jOt6bF9R+8k0irzTI0HwO+Ox3PjXU3GrZ27Q3YX0/tsCYIgCIIQ+0QFSIRIioLsScTarhPhA7sbzbnHTQZZRm/SaSKyLHqYqhqVvi0TObtbJiGt9o3iwl1FDG+fbGosAIqisCWvmhlDWjHEHYLSQiSXm9L4NO5ffowaFewmPpdZrVaM8hLCe3c0mTMCNai5h7Alp5oXkPCr2IM+/E/fj/P0wbiGj8MIhZDsdmpWfYuu2LBOutDUeHSHE/eZk/DObboMRrLbsbbJNj0BImHgm/9xk3GtKB+9qpKwz2dqPFq8ByU1He0EvT4kmx0jOc3UeGJRnMPCvxbsorC6cWXO2kNlOK0yg9okg4kFDhZNw/HBi9wzcBwHzujDsiKNFKfCMHcNzea/ChMmQ2KKeQFRu9188LS+JD32H4JrlmGUFWPrPwyjdTZem8PUWARBEARB+H0QCZAIscpQ/tIjJF71Z4I7fsS/bAGy3YF7/HlIdif+pd9gTLvW5KCstEqSWHOojPd/yAXApshcf0Zb05MxULvF60WnpZC4eTnGzKdB0zCA1I7deOmGvxG2SqZWVFt0DcInX5ZkhIKg64jCqdhiryolUJSH98umD/hKYT6MPRskE6tAQiEkpwvn0LHUfL8I/vsWWk5IIuHy6bXJBnOfEwFOuEwAAE0lZHJCpsbmJPG6v1L6yN31n08dz6U3UOP2NBk/1RRWBZokP+os21vCtD5ZOE28gmuKgqXTaWh9h5IaUrnMGUCXFYLOTLTThyHFJ5oXTANe2c4CXxLL3UMwXJBWZediSyIpcsj8SitBEARBEGKeSIBEiBQMoB4+QMkDt2Lv1Q/PhVdjhMN4P5+Neuwots7dcWoqZnaUqFatvLvhIC0Tndw2sgMhTUeRJb7Ymo/bpjA4y40eqjEtHsMwaOYtIvT6E43G9T3bkL6bh/P8qzBz05VwKIyS1AwpLh7DW91k3mjRFpxu8Jv3GQm/zGo5eUJKdroImdwDJOxwIZUUYdT4Sbz+doxgEMliQfd5qZz1Csn3PvHLf8lvTPUkY+vWm9C24/puKApyWnM0k7fldSgS4cP7Sbr5HvzLFhI+tA9LenNcw8ehlhQRp4epkE7dy5MkSVT4T97g0wACYd3UK3hY0whNvh7Lgd2kz3wMreAYyDLxA0YRnHw1WooHTD6ODMXKuxsL+WJbARZZwqrI/HiskpUHSnnp/O4kSqKXTCyzKjIE/FgUGVUTySpBEATBHKfuHWaEaYoVJb05WsExgj+uI/jjukbzlpZtCSsWUM27YSyoCtChWRyf/niML7c33jpQ16Fak3GbFg1YbTZqDuw54Zy07CsYdz6YuM5ddjopLJTgT3dje/7vNMy+aOdeTq5uJ1s0Z4w5oaRm2Lr1IbRtY5M598QL8cmW/1bumENRQ9h6nk75y48RWL+icTxjzkHXzG/MWF3tI37U2ajHjqCXl9YOygoJl0+nusqLLb0FQROboDpKiih+/w2QwNlvCO4x56CVFVP5zksYwQCOPgMgo5Vp8cQawzBIdv/81sRxdpN72wCO8kLCT96OVlcpp+sYqxbh0DW8196FbHIT1LKQzJa8Km4b2QGAQFgjwWlla14VKw+Wc06HONOTe8IvUySJuPIiAl9/StnBvdhO64171ESqPcmiakcQBEGIOJEAiRCfw4Vn6lWUP/evppOShGv4OMpNfOAACGk6/Vsn8d2eovpdVwDO69mcPUXV9GkRb2o8hq4j2RycqNBdcjhBMf8GX9d1/nXMw013PE9q/l6kgJ/q1l35tMTK+ID63zecYglMLLHUeHGPmoheXoZ67FD9uHP4OCRZwmKxmLrjkiUcouL1Z0i88hZCe3cQ2LIBxZOIc/Ao1GOHUY8eQErNNK1BoyzLqMhUvPU88WdPRXa6MXQNSbHgWzyf4AVtsGPub02vKq9PMNasXtp0vrLslE6AADRPcJDssjY6V9cZ2DaZVLcNasyrRrPZbKh7t51wmaC+9jscF1xF2JNgWjwANarO5adn8eX2Qga1S0WWJXYXeQmEwqTEeZAVRSRAYpCnJI+Sv90E/92lJ3xwL/4lX5L88EtUxCdFOTpBEAThj04kQCJE0zQszVviHjcZ38LP699AS3Y7nouvR3Y6TY8pK9FBdVDnqgFtqA6qlHiDtE1xUxPW6NUiAY8cImzmkpNwGHv7DgTtdozjkkH6OZfWJkHC5lVcaJpGpt2gfaKNm9ZWkuBoiVWRKVkfJNMjcV1HF7okccKMjRA1kqahB2pwn3kOksWKoYZrE2u6hlZabPo2uJpiQXI4KX/xEazZnXH06o9R46Pqg9drl8X0G2rq7hSSJFFk89Bs8JlUzWq8VbCclIKalgWaYeqeS7I7HiTppH0+5DiPidHEJl9I4+7RHXjqu/2NeoH0yPQwrnMa3qCKmSlrXdeRq8tPPGkYKOEQJ1+0Exluq0JN2KBZvINXVhxA1Q3ap7q5sE8WVsmIQmcr4Zc4ZYnq916vT37UMWp8BBZ/gfWCqwibWBkrCIIgnHpEAiRCJEkifOQgan4uidfdhhEOIUkyhqHjWzgPS6u2EG9uJ0S3rPP3xXvYX+oj3m7B47Ty+dZ8NN3ggfFdyIjC0RBOTsdy77Norz+OfvQgkt0B516GJWcIuonJjzr6zh+5sk13ZCmB+fur0HSVPplxzOjqJP7AFvRmw0yPSfh5alwi6qF9+BZ81mQu5Z7H8JtY/QEQsNqJu/g6Kp9+gPC+XYT37aqfk5NSMDKzTI1H0zT0MIRGn4ddUzGWzAVVRe54GsZVt/NDlczINAiZuDJHivfgGDCcwOrvmsxZWrZFTm5mXjAxyhdU6XnkB55LqqCgSwf8KCQSotnuVdhDg8kNtiXexKyVqqq4u/QkSO1xLHXpjeSvRt26ASUxBWtyMmaesSVJwhfW+WJbPruLvPXj+0t8PLZoD38b15kaXTG5tkn4JfYaH74T7LQGENq+Cfekiwmfwv1/BEEQhMgTV5kIMQwDJSGR4Ob1BDevbzwpScgO8ytAyoI6+0trt7usDqpUB3964vlqewH9RrVENflhMd+vsctIY9i9/0aprkCy2Sl1JfHl9kIu75WKoZr3TtFqtRIsLSZJ3sEtaZlMa5mMZhik6DVY921A81Yj60btm2shdgT8+FcsOvHUlg0oHbujquY93eu6jtqxO3GX3Yj3gzfqlwxYWrbBM+NBquwu03c4yXLoPLa6nDHDLqHzqMnImkqhLZ53tpYyPceBZJi77l6VZOKnXIbhqya4ZUP9uLV1e5JuuQ/9FN8BBqCLxU/Nm09jraqk5XFzUu5+Mm683/RqNCOjOeH7XmCD38aCQp1km8R5E/5EhyQ7PsVqaq8dSZKoDmr1yQ+bImNVJHwhDc0wWLy7iN7prU2LR/iVZBlLi5aNEsN1LFmtQRJLTAVBEITIEgmQCDEMAyW9OZbmrVDzjjSacw4Zg+RJND0m5WduLOxW2fSbaavVSpVXp8Qb4vxlB9D++9DTLqWEO0Z3pCqsE29irkFVVZy9+lP68B0YoSCujBZIVis1eUep0TSSZvwDi8MOQbMLvYWfY0gg2ewYPi9KRguUpBTCRw9ieKtrl1FFQUCxYBl+Fok5g6G8FKs7joAniSrFaurylzqJag0z+iSx6EApz+6rxh/SGJLl54buqbQOlFBuN7cardrmJKG0CNeZk4i/4Er0ynIkdxwgES7Kw9+pl6kP07FI9nvRqypPOKfu3kqCEaTa5EUeJRYP/9xXwM7CivqxpYfgnjEdOUOWTW1gaRgG1SGdlolOpvbJIhDW8Ic1Ut12thdUseFwOZqkiJucGBOwOYg7+0LKn3mw8YSi4BoxAa/JTasFQRCEU4+4N4gQq9VKYNNa4s6ZRmjfDmrWLEO2O3CNmAASaIV50DLb1JgSLBqnt0pi/ZGm67jP7ZaBeoLmdpEkKQpVgQCzNhxtNH6g1MeTS/bw0IQuoJnXKDYYDGK32zFCtf9NreBY43htdnRJAdNXuoNTknCUF6NXlGJUluBKTMFviEoUANUZh3vyJVgcLsLHDqMV5ePoOwgwsHbsRo2J1R+N4tJ1ql0ecHlITU3FX1JieuVHHV9cAqmH9zA1kMvEUb3BYsFeeBRp63aM04eYHo+u61Q1b0OCw0lw4xpCu7dhadkGx4BhBLPaoYoHIHS7E8nuwAg2XVgiNW+JX7aDbu45+0B5gJ2F3ibjLyw/QLepPYjDvN+aJEmkxVm5OKclT3+3l7D2029raPtULs5piSyKCWJOwABHq3Yk3XQP3m/moB47gq19Z1xjz8FIbyF++4IgCELEiQRIhNidboLbNhL4YTWOwaNImn4PqCGq539EeM8OEq+7DaVNJ1M71CuSzo1ntKVsYZDBbVPJ8Nj5bm8JndPjaZHoBLXpjW0k1WgyH23KZURLN1ObS8R7S1BtTraTyHNbKynxhXE7zIvHgoHk9mBp1Q61dUcq+45ANWSSjmxHWfgJSmo6hmZ+8sMTDhBe9Dkln39Qu3OGLOM+czIJE6dSaYtOhUMsUQJ+7K3aUbRuLYXdBlPVyUq67qPZ2gVYO3ZDETtBEFRVrFntsDnd2L7/Cq2iBNugkcj9hlBmjc4xpGkaZQmpWMdOxjbxQpxOJyUlJVGJJRZVxqdgP/ti+OTNJnPSlKspxUIiJu5uZLGwu7DqhHPVQZWKgErcz+/c+5vSdZ1Ep5V75m1vlPwAWL6/hGEdUrHqYZM35hV+DX98Mu7W7Yg7Z1rtzmpWG5bMllS54kX1x3GsViu6Ububl9giWBAE4bchEiCRIslYWrcnsc9A1PxcKmc+h2S34xoyFkf3HOTEZGw2GzUmbmNYotp48fsD3DGqE+9tOMrKg6WM6NCM3lkJvLchlxv6paOFzKu4COkwINXC2UeXo7w7q358cEYWba95AG9YAxMTIJLFyhGLB8ddz/Dvdfks+7EKMGiX3JcHHz6HsFWhhaJg5lY5sizD/t14P5v906Cu4/v6U6zZnZF7DTzlb4pki5XSQ4d5O2MoX6yrrh2T4H+GXMiA6ryoLDmJNZIkYS0rpPi+6fDfvjo1SxfguXw61pHnEDa5+quhcDhMOBzGGYWdsWKZP6xjGTYRCRn77k3obg9yVRk1w88l1LorisnLXzRNo2XSib8jqyLhtlnAxIQMQGF1EP9Jzsefb8mjX0ZbU+MRfpkkSThyD1Dyjz+jZLTAkpqOmn8UraKM5EdepTIpLdohxgRDtlAQkPliUyH51UcZ1SGVPs3jcBnmN4cXBEH4oxEJkAiRZQnboJGUP/V31Pzc+vGq9/+Do/9QnMPOxG9yaf6hUj/XDWrLX+Zsoea/N437S3yM7ZxGj+YeSkIKSSbGE28xONfjQ/piVqNxvSCX5l/NRJ3+d1P7ksiKgmSBd7eUsuzwT286D5TVcPd3uTw8oZPpD9NOi4J/8Ty48wmK2/Sg1B8myWmhWf4+/B++hLtnP9P7AMScUIDC9PZ8sba6fkg34InNVbzaIw6XopzySSKLxYb38/frkx91qj98g6TeA6mMS4hSZMLJlPtVAlYXjJzKgowhHCoP0DcrgcHtUzlWUUOrRAtm/vQNw6Bzmpskl5Vyf+Pj6PxeLWhmVY8/vCIu8DPJ6JBmEMaCgnlJfeGXOXQN7+za7bi1gmONlprWfP0p1stuIqyd2udrRVHYVKJy/1c/NYrdeLSCNskuHpnQUSRBBEEQ/o9EAiRStDDqsSONkh91AmuXEz/pElSXx7RwZFnGZjE4VOavT37UWby7iAt6ZRFSdVOPCJvVgrRx2Qm3TtQ3rcbjK6fG5TYtHsMwUND5Ynthk7ljlQGCwTCGHAYTN1aUDIOqa//G7J2VzP9oc/34yI7NuGbGE7iMMKY+BcUg3WLD5/AA/kbjpb4QanLLU375iyRJOPxV+PKPNpkzgkEkvxc9oRmyFr0qEKEpm2KQVxXmXwt+egjafKyS9zbm8vTkHgRVFUzcBhcggRqemdydt9Ye4fsDpSQ4LFyc05Iz2iSghs2rZoTaa5rHYcEiS6h608T04LYp6IYutsGNMYoaRs09fMI59cAebKpK+BTfCcarW3jy291Nxg+V+dlW6GNAhvWUT+oLgiD8X5zaV5kI0jSN4PZNJ58vKzK1mkDXdZqdpKGGhERY10l1m3s3LUugSSe5PZUkVJNXLoRCIdBUFPnECQXNgJDVxEXuQBCJTeUG87cXNBr/dk8xK/JrUJ3mJYhilaSptEj1YFMan85ObxFPstOCfIpvW2yxWFADQRw9T286l5mFAYQMcSmINR6nnae+3dtkPBDWeWHZfpJd5p6LoDZJnISf24ZkMevSPrx+UR/Gt3Xh1MxNfkDtNc2pwFUD2jSZy27mpnmCA6voABJzwjYbts7dTjhn7Z6DahHv5SqCOpWBE1cIL91fikV8RoIgCP8n4q43QmpqarBktDjpfDS25zQkg8wEB/H2xhfPs07LYF+xD5dk7pIcb3U1loEjTzin9BsOCcmmxqOqKookMa5LepO5NskuHDYLhs3EpiRAyOJk7ta8E859viWPClXcCCm+KpJWf83TA5NoleREAga3jOfPmX4sO37AHvT/4t/xR6brOlVYkZNTsXfrUz8uJyYTP/VqVN1AkUSflFhTWB1sUq1XZ0dhNdXB6H1neiiAS/ORHmdFjdIuSwBxdgtF1QEeHN+FC3pmMqpjKneNymZMp3SSXVbsyqmd/IxFQUPCPe0aOO4hXnK6sY86C/UUX/4C4LTIJ63rbJnoFNUfgiAI/0fi6SlCdF3HflovJNtP26rWUTJaoKQ1Nz2mJKvB/6w4xPPn9+RYVQBvUCU93o5hGBwq9Zu+DS6A2qINlkumo77/au0OJ4DcpgOuS27Ar5q/djsoWWiV5GJs53SW7C5CMwx6NPdwdvfmhHXD9BsPVTNQtRM/6IQ1A100+ARDQqospcWzf+GpsRcQ7pyFc9tijNlL4NoZnOpLhDRNwxYfj6GqWDKzcA4cjqFrGH4//uULsV9+M3YjjLilji2/dNSe6rtgy7LMxtwqLmpjxb34XfrGx2MkpCAv2IAybiqPb62g9eDWYglMDPKmZJD8yKvUfD0H9eAebN37YhsxAa8nWewCAyTadEZ3asai3cWNxmUJRndIRY3CvZEgCMIfiUiARIjD0NElheS7H0U9dggASVbQwyHsXXsRzD2MpXNPU9+eOQlz1xkt+WjjIT7fVYpuQKLTyr3D2zCsjQdNjUIZMxrS6En4Bp9FYVUAt91KhsdOgHBUboQ0XSes6ZT7Q9w0tB2SJLGnqJqVB0rI6plJIGBu8zG3ojG+azovfn+gydy4rul4rDrh6L2AjQlaXBzW7K4YX89BmfMmCrW9c5W0TJSUNPx2Z+1Wi6ewuLCX4L5d2Lv2xL9iCUawBnuPHBy9TseoKEWPM68fkfDrpMXbcVmVE+5y0j3TQ7xNAfN35Y4ZkiSRrGi4V37N4b5n8sb+ICXFGmf36cDQ/Xv4U5tOaLohEiAxSDMMKhObYb10OskOOxWBAAFNF8mPOmqYP/VrgdOqoNbUkGKDXdVwYd8smtlURLZaEATh/0YkQCLEGg6iyDKq34t37ntopbWZfFunbigJSdiy2hA2dMx8drVYLKzZV8ZnO0vrxypqwtzzzT7euqArHpMb6gEgK/xQWMO/FuxB+281Q5+sBO4c3gZnFLr3uw2V3IoaBrdLYcHOQvxhjWHZqdgUGadufsPRUI2f/m2SWXe4DLfNQqf0ePYXeyn0BhnZsRlq4NRe3gFQY3OS0DyLpOl34/3iQ8J5R3H0PB3X8HHQotUp3wQVIGy1ofuqMWSFuPMvQ9J1jHCY6s9m474xJ9rhCSciwXVntOXf3+1DliQcVhl/SMNpVZjWt2X9+fJUpes6OY4aDncZxK0raxP6AC9V1HCsQzbXVRYitWtLWGyYEbPCmgZOF6pPXMeO59FqmNGsEt+nb6OXFGIfMhabNYEq3RXt0ARBEH73RAIkQnTZgiFB9Zx365MfAKHd27B16YG142nosgwmrncNhnU+2FbcZFwzDHYXeenf0m36Eo9KzcK/Fu5odDO/MbeS9ce8DM+ymx5PM81Ln5aJPP3tXoZkp2K3KCzcVcTANsl47C5sNivBoLmJmUQpyP0D0gkc2ge52xjVLBNHz2xQwhhmd4qNQbquU92sBfGSTPy0a8AwkKwWpPQWlNvEzSJAAJnkK29GPbAH75xZ6NVVOAcOJ+Hym/AnJMMJdtEQoquoOsS3u4t47vyeFFYHKfEGyUpy4bDIPLpoN09M6s6pfHQbhoFs6CwskZocvvP3VTF1aCoZFulULpIRfqckScJxZC/lD91WP6Z++AbBVUuIu+dxvFZze5EJgiD80YgESIToDgeSr5LwgT1N5mrWLMM1bjKa2c2+DE7aMyJaLxOLfGG0Ezx8LdpTwojWrUE3ty/JUWsS87cd5vZRHfCoNci6Rt+stqw8WEZ+UKZTvMX0BIi1xk/gxYex7NhYP6a174Lzrw8RtJm/E0QsUjWNypQMXAnJ2BUZn1H70C/UUhQFvbiA8ucfrv+xVx85gF5dhX3yJQTFQoGYIwETTsvkySV7OFz+0/LEYdmpjOmcFr3AYojm9qAbJU3GDQz0+CRR/SX8Ljm0MN63X2wyrh49hFRwDFq2j0JUgiAIfxziCSFSgkEMXUNyxzWZsqRlQCiELJv78dusEhd0TW0yLkvQKS0uKp3F3VaF/plOXuwfx7tdA7zZW+LWnom0T3YiYX5Wxq9LDExVGObbT6+8H+lxbBNnFG/mgkyoDGm1W+WaSJIkpD3bMBokPwCM/Tsxtqw3/RiKZbqu45UtSClpIvlxHLfDjn/ZwiaZTt+ieVi81VGKSvg5LRMd5FfVNEp+ACzbV0K3zARcNpG08jniGZPddLewMe0SiXfZTU9WC8JvQVHDqHlHTzinV5aZHI0gCMIfj6gAiRDVakMPBok/92Kq3nvtpwlFwTV8PEYwiOYy9+1UOBxmdIdk9pX6Wbi/AgC3TeFvI9qQ4pRQo/CyrKVD5x7bfvTHnq0fG9EmG+dfHyYYNr94OclhZWpqkJpF3+D/fhHoOrZOp5E99WoSk1ugKDphE+OyWq1o65aecE5fuQjrgGEEReM44RfIwRoM/QQ/cF0DQxw/DcmyjCMcAm8VsixHbctJ3TD4fl/pCed+OFpO1/SmyfVTTYpegz/OyVNndeTVdcco9YeZ2CGZUR2SCSgWXIZYACP8eqpipzSg4ysP4JItSHp0OoyH7U7sPXMI/rC6yZyS3iIKEQmCIPyxiARIhBiyjJKQhD/3IIk33Elo52YkuwNbp9MI7NyMp3tfjCisO1FQ+fPgllzSuzk1IZUUtw2XDVN3o2nIXVFI+dvPNhozDu1DXr0IZcxk00uY06UaAru34V+2oH4stHs7vq/nkHZ1Fqo73dSdYHRdR2nR+oRzcvNWiAJv4dcIh8K4h48jsOq7RuOuYeMwHM4oRRV7nGoIect6/HNnUyPJuKZcht61NzUW85ea+cM6qXE2DpT6msx5HFb8qsapngKRyktw7NuP3HkAd4xoD4ZBjS6h+ypotn8DwYGjTE1YC79fPsnBQwv2sbPQiwRc3DeLyV2TsOrmHz9BAxIuuo7Qjs0YNT81iHWOmkgouZnp8QiCIPzRiDrxCJFlGWQZ16BRVH30JuFjRwju2or3i4+IGzEBIxS90lxVC5No1+neNg2brEYt+QGgFxWccDywbCG2sLmfkSRJyLpO4IdVTeP5YRVSKETI5JJqVVVxDBwO1uMewBQF55hzovrdCb8fujue0O7tJF77VywtWiN7EnFPmIIlswWSycu6YpWiKEjrllP18mOo+bmoeUeoev5h5M1rURTzl5v4gxqjO6U12XfKbVNIjbNhiMa1GKqK8urDtHv5blybV2LbtZEWX71Jwv1XoJeXReV7E35/FEVh4Z4ydhZ6gdpt1Gf/kEtBFDenCaSmk/rP50m48hbizr6QlLsfIW7yJQSUaGzXJwiC8MciKkAiJBQKYXirKP/PU8SdOQnJ5UaSZNTCPCrefoGkm+6NdogxQXKeeB8DJS0DXbFgZhsQSZLQA34sGVmEdmxuHE9yM5BlZM38t0HVCSkk/+tFfO/9h9Ce7VjbdSTu0uvxJjWLXvda4XdHD/jxffgGzjNGI7viCGxYiVZWjK3/0GiHFhOcAT9VH89sMu79aCZxPfvjM7kKJNFlZdaGw9w1phNzt+RxtNxP9+YJjOmcxsr9JQxpmww1v/z3/JHJHg/W1u0J79mOc8/2+nEDsHXpTqXoASL8GrLCxmOVTYbL/GFaRmnDFVfeEYr/fjOyy43kisP75SfYe52O59rbqYpCRZogCMIfiUiARJKsYHirMcJhZCSQJHSfF8PvA4v46AGM9BZYWrRGPXa40bjr/CuoMvnZ3jAMqPHjHjeJmpWLMRrcPCdcfWttrsFiA9W8JTBQ2wugMjkd+8334QkHcSSlUOL1ieSH8KsFg0ESBg7H/+3X+L76tH484ZoZhNweEG1Aapsun6AaxggFkaLwW7PJEuM6p/P2+iNcNaAN8Q4L+ZUBXl95gNtHdoQo9SeIKbqO54qbKH/2n+hVFfXDcZMvQXLFIUlSVJaaCr8vhqYyqmMzthyXBMnw2AHzk2hxskT1xzNBVdGrKqGqNq7gxjXEFedD5omXxQqCIAi/jngKjyDJHU/yjH9Q+c5LqHlHAHD0GUDC1X/GsDvEQwfgszlI+uuD+Bd8RmDTWpRm6cSdcxHhZpmmxyJJEnJyMypnvUzirX9Dy89F93mxdeqG79svSbz0RvSgucmPhoJIBK0OHA4neJv2BRCEk9F1HSMljcTrb0M9chDdW4UtuwuW9p0oNyRMLbWKUTV2F65x5+Gb936jcfeEC6hxuMDkfkTxVoOubo1zuzfn30v3UeYP0ybZxS3Ds+mg+LChROHRLLboSIT37iDp5nvRSgox1DBKUiqS04VWXoqenB7tEIXfAcMwaJvs4qzTMliws5A4u4XL+rXCrhy/AM0cSrAG9ciBE87plWUiASIIgvB/JBIgEWTExRHctRX36IlIVhvIMmpxIbq3iqDVDkGx9t6hq1S8+AjIEs7+Q9Eqyih/+gESH3wOUs1Ngui6DoqMXpxP+RP3o6SmI9kdeOe+B4oF45IbUGXF9AchQfgtaGWlVDz7T5SUZkhOF75F84i79Eak4RPEW3JA1XUc4ybjCgXwL5oHkoxr3GSU4eNMb8YMYK8q5819fj7Zkl8/dqjMz71f7OCfYzswxB085RMgPlc8NlWl8t2XcQ0dg2RzULN2OcGtP5D40IvRDk/4nZAkiUOlXvIqA1w/uC3+sMYnm45xWloHEqOw2iTscGHr0pOaFYubzCkpaeYHJAiC8AcjEiARJHm92Dp0peK1J9ErywGwtuuErXM3rOHwqb58GwBLOIT3wG4Awvt21Y8bFWWmJ0AAwooV99hzCW75ASUlFcnhQi3Mwz3mbKTEJNSQSH4Iv1MOJ0gSWmlx/ZCcmiaSHw14rQ6sF/yJxLOmYrPbqbLY8GrRKdXL0218umX/CedeWHWEnudmwym+D5Sq69hHTsSpWKieMwujxo+tW1+S/v4MVW4PiC3ChV9B13V6No/nlZWH2ZRbAUCP5h5SnXJUfmJ+TSd58iUEf1yH7q2qH3dPmEI4RVQ1CYIg/F+JBEgEGYD/uy/rkx8A4QO70YryUdp1AUlswqM5XNi69Sa0bVOjcUtSSlTiCSDhSmtO6r9erF22ZED8pIvBFYcWCgFiVwHh9yngSST+mhlUv/Fv0DVsPU9Hat9FJECOE9Z1wg43qamphEtKohZHcUA/6cKkIm+QCk0hUTm1EyAAPosNZexkPEPGYFdkfIqVCmSR/BD+V5KVMK9c0J09JX48Thut4hWsWvRqrCqT0kj+5/Ooe3eglRZh69IDNSMLryxu2wVBEP6vxJk0ogxCe3c2GQ3u3Ip95NlQI2pAdN0gbsL5VFWUoeYeRrLbiT//CvQobV+oaRp6MIBeVID3iw8x/D7cZ07G1qkrhiUTVHFTLfw+hZGh/3AST+uN1TCoccXjlUVCL1Y57Sff7lKRJKxR6k8QizRNw2tz4khNJRDFpJXw+6XrOglSgH5pCikpiZRE+TjSNI3y+CTknCEkJydHPR5BEIQ/ElGCEEF+Vzz2HjlNxh19BuAX2/MBEFYUQvnHcPQZSMLVt+K56FpqfliN7nRHJR5N05AVhfKXH0M9egittJiq915D9/vRrGLrOeH3LWxAtTsBuU02NSL5EdOynJDpOfEenGM7p5EuTkeC8JuLtYo4XVQyCYIg/OZEAiSCAqqG+/wrUDKz6sfsfQcide0lLmr/pWkayoDh6MEAle++gu+7r4m/4iZ8zrioxKPrOrrfB2q4cZyFeXgDImklCII5EoJeHhzdjmRX40qQjmlxXNYlAckqCjgFQRAEQRD+t0y7g/rxxx+ZOXMmuq4zatQoJk2a1Gg+HA7zwgsvcODAAeLj4/nLX/5CWtrvv9t1hTuBuL8/i1JWjGJ3UBOfSJV489qI1+bAOvUaEs69GIcngdJACCOaCaK0TCSbHSP0U8LD0q5zzL0ZEgThj6vGHU+rZQt4/MyR7K3W8QZVklxWOtnDZOTtwufuFu0QBUEQBEEQfndMqQDRdZ033niDe++9l2eeeYaVK1eSm5vb6M98++23uN1unn/+ec466yxmz55tRmgRZxgGXouNyrQWyO07ibLzkwjrOl6rA9zxUU80VLk8JP3jWawdumJp3pLEvzxATXqLqMYkCMKpJRAO4+7Zl7R/30nfH79kUNkOen/3Nkkf/hslq7WoIhQEQRAEQfj/YEoFyL59+8jIyCA9vXb7rkGDBrF+/Xqysn5aGrJhwwYuuOACAAYMGMCbb76JYRhIkmj0JphLNwyq0rKw3/k/xDkclIVU8bAhCILpytwJJM34O3ruYbTSIiwDzsBIz6LCduLeIIIgCIIgCMLPM6UCpKysjJSUn7Y1TUlJoays7KR/RlEUXC4X1dXVZoQnCE0YhkEAGeI8IvkhCELUlDviqMw+DcdZF1DRMptKkfwQBEEQBEH4//a766K2ePFiFi9eDMCjjz5KampqlCP69SwWS0zFG2vxQOzFFGvxQOzFJOL5ZbEWU6zFA7EXk4jnl8VaTLEWD8ReTCKeXxZrMcVaPBB7MYl4flmsxRRr8UBsxiREhikJkOTkZEpLS+v/ubS0lOTk5BP+mZSUFDRNw+/3Ex8f3+TvGj16NKNHj67/59/T3uipqakxFW+sxQOxF1OsxQOxF5OI55fFWkyxFg/EXkwinl8WazHFWjwQezGJeH5ZrMUUa/FA7MUk4vllsRZTrMUDsRnTyTRv3jzaIfyumbIEpn379uTn51NUVISqqqxatYqcnJxGf6Zv374sXboUgDVr1nDaaaeJ/h+CIAiCIAiCIAiCIPwmTKkAURSFq6++mocffhhd1xkxYgQtW7bkww8/pH379uTk5DBy5EheeOEFbrnlFuLi4vjLX/5iRmiCIAiCIAiCIAiCIJwCTOsB0qdPH/r06dNo7MILL6z/3zabjb/+9a9mhSMIgiAIgiAIgiAIwinElCUwgiAIgiAIgiAIgiAI0SQSIIIgCIIgCIIgCIIg/OGJBIggCIIgCIIgCIIgCH94IgEiCIIgCIIgCIIgCMIfnkiACIIgCIIgCIIgCILwhycSIIIgCIIgCIIgCIIg/OGJBIggCIIgCIIgCIIgCH94IgEiCIIgCIIgCIIgCMIfnkiACIIgCIIgCIIgCILwhycSIIIgCIIgCIIgCIIg/OGJBIggCIIgCIIgCIIgCH94kmEYRrSDEARBEARBEARBEARBiCRRAWKiu+++O9ohNBJr8UDsxRRr8UDsxSTi+WWxFlOsxQOxF5OI55fFWkyxFg/EXkwinl8WazHFWjwQezGJeH5ZrMUUa/FAbMYkRIZIgAiCIAiCIAiCIAiC8IcnEiCCIAiCIAiCIAiCIPzhiQSIiUaPHh3tEBqJtXgg9mKKtXgg9mIS8fyyWIsp1uKB2ItJxPPLYi2mWIsHYi8mEc8vi7WYYi0eiL2YRDy/LNZiirV4IDZjEiJDNEEVBEEQBEEQBEEQBOEPT1SACIIgCIIgCIIgCILwhycSIIIgCIIgCH8AoqhXEARBEH6eSID8hlRVjXYIwv9SIBCIdggxraqqKtoh/C7ouh7tEIT/pdLS0miHIPzOxWKyobCwMNohCP8fYvFYEn7esWPHCIfD0Q4DaHr8iONJEH6eSID8RgoKCvjqq69EEuRnGIbBvHnzoh1GvXXr1jF37txohxGzVqxYwY4dO+r/ORYuqLGWaNB1nZqaGmRZjonPR/h1qqqq+Oqrr/B6vdEOBWh8XMfCcSRupn+Zqqq8/PLLFBUVRTuUen6/n3vuuYcNGzYAsfG91R3bsRBLLCovLwdAkqSYOR/F4ncVazHt27ePefPmsW7dumiHgq7rSJIEwJ49ewDq/zla8Rwv1r4/QRAJkN+IqqoMHz6cioqKmEiCxOIJyO/3s27dOmbNmhXVOOr069ePadOm8d1330U7FOCn7yzaD/ler5dwOMzpp59OTk4Oq1atqr/ARvMY0nUdWa49ZeXl5VFRURG1WOocOnSI9957j4KCAv7nf/6HAwcORDukqB8/x4u1eABcLhcXXXQReXl5bNy4MWpx1P2eZFmmpKSEsrIygsFg1OKpi6nu5rm6urrRP0dTw2Tsrl27ohhJLYvFwrRp03C73RQUFEQ7HKD2uJ46dSpbtmzB6/VG/XtreM6O1fuiaFJVlbVr1/L555+zfPly5s6dSygUimpMDR+mY6W6oWFMsSI7O5vWrVtz6NAhtm3bFtVY6n5jK1as4Pnnn6eoqChqx7phGMiyjKZpLF++nCNHjuDz+ZAkKWoxxdoLBiE2WKIdwO9d3QU+KyuL8vJyPv74YzIzM5k0aVLUYqo7ARUWFrJp0ybi4uI444wzonYBqTvhuN1urr76al5++WVatmzJsGHDTI8lEAhQWVlJeno6fr8fl8vF3LlzKSwsZNq0aabH05Asy+zbt4/Vq1eTmJjI+PHjsVjM/YmGQiHmzp1LZWUlN910E/v372ft2rV4vV7Gjh0b1ZuQuov8K6+8QlVVFdXV1UyZMoVu3bqZ/jkdPnyY6upqunXrxvvvv88dd9zBRRddRLt27UyN43gNHzgOHTpEmzZtohpP3bkI4Mcff8Rut5Oenk5ycnJU4qn7fCwWC6qqsn//fn744QfS0tLIysoyPZ6639PatWuZM2cOnTp1wuFwMGLECDIzM02Pp2GyY+HChaxcuRKPx8OVV15JcnJyVH//x44d480336RVq1Z4PB6ys7NN/91D499YcnIy8+bN49tvv+WRRx7B6XRGJZ633nqLc845h5SUFDp37syhQ4coKCggOzs7agmshp/Tiy++iM/nY+DAgXTr1o2kpKSoxrNr1y6cTietW7c2PY6GLBYLOTk53HXXXbjdbp599tn6GKOh4fl67ty5VFVVkZ6ezuDBg4mLi4tKTHXfm6qqvPTSS5x55pl06NAhqp8TgKZpHDp0iMLCQsrLy4mLi4vq9XbDhg18/PHH3HHHHaSlpUUl2VB3rvF6vTzzzDMAbNmyBb/fz2233YaiKFE5H9UdK1988QU+n4/4+HhGjx6N3W43NQ4htogKkP+DhhdUAI/HQ05ODkVFRSxfvtz0eOoSDZIksWXLFp588klcLhcff/wx7733nunx1JEkCUmSWL16NfPmzSM9PZ05c+awZcsW02OprKzkjTfeYOnSpTzwwAMcOnSI+++/n7Vr1/Ltt9+aHk9Da9as4dVXX6Vv376sWLGC1157zdTyasMwsNlsjBw5EsMw+Oqrr2jfvj2DBw/mwIEDrF692rRYTuall17Cbrdz5513ous677//Ptu3bzf9Yr9mzRqWLVvG/v376dOnD82bN6/vJxPNN52yLFNVVcU///lP5syZw7vvvhu1t1MNb3S++uorXnvtNb7//nuefPJJqqurTY1F1/VGN9Ll5eUYhsGZZ57JaaedxkcffWRq+bmmafX/e9u2bXz99dfcd999pKamsmHDBubNmxeVCqe672vp0qVs3ryZm266CafTyaeffkp+fr7p8cBP17UxY8bg9XrZu3cvV155JRaLxfTffcNrft3v/ZxzzqF79+48//zzpsZS97mUlZXx/fff895777FkyRLatm2L2+1m8eLFQPRK4WVZxufz8dFHH5GUlET//v3ZvXs3y5cvx+/3mxpLwwf7WbNmMXPmTJ588km+++4702OBxm+kA4EAPXv2xGq1sn//fqDx+cFMdcfK+++/z4EDBxg1ahSzZ8+urwKNBlmWKSsr48EHHyQ1NZVOnTpFPfnh8/n45z//ScuWLZk8eTKaprF+/XpTK8GOr2pITk5GlmWWLVsGEJVluZIkcejQIR577DH69+/P/fffz5VXXklSUhKvvfZa/Z+Jhg8++ICNGzfSuXNn1qxZw5dffhkzlXtCdIgEyP+nuhshv9/PSy+9xJIlS9i2bRunn346nTp1YseOHaY+4DcsEdQ0jTVr1nDttdfStm1bFEVhxYoVpvffaHiCrq6uZu7cuUyYMIFrrrmGc845h3fffde0E1DdhSA9PZ2srCxefvllzjzzTNq0aUNqairXX389n332makPiwsXLuSFF16o/+d9+/Zx6623ArUP0UVFRSxcuNC0G7S642fXrl3YbDaWL1/O+vXr6devHx06dGDLli2NytAjze/31y9PKCsro6qqirPPPpsLL7yQZ599luzsbAYPHsysWbM4cOCAKTdodf+N8847j4SEBH744Qf69u3LQw89xPfff8/ChQvr30qbdcOYn5/P4cOHgdreFq+88gqjR4/m0ksvZdWqVSxfvtz0ZGPD5Me8efMoKCjgiSee4LrrrqNz5848+eSTpsVSUVHBa6+9RmlpKSUlJdx111288cYbPPPMM4TDYcaPH09ycjIffPCBKfHk5ubWJ1vy8vLweDzccsstbNmyhZUrV3LhhRcSDAb56quvTCtBb3ijvHPnTpYsWUJGRgZpaWlcd911aJrGsmXLKCkpMSUe+On3I0kSfr8fVVW5+eabcTqdzJ49G6DRg1Ckb/Y1TWtUhfbyyy/zyiuvAHDFFVcA8Oabb0Y0hoZqamoAiI+PZ/z48bRs2RKv18ubb77JtGnT2LZtW30vkGgwDIM5c+awaNEipk2bxrBhw+jVqxfl5eWsWrXK1IezuvL7efPmUV5ezmOPPcYNN9zA+vXr2bJli2nLTgzDqE/GFBUVsWfPHjweD7feeitTpkzhP//5D/n5+SiKYurLj4bXqmAwiK7rXHbZZaxZs4auXbsyfPhwU5MOxx8bubm5dOrUiXPOOYfc3Fzmz5/Pli1bTGtif/y1vLq6Gk3TOPvss+nVqxfjx48nLy+PdevWmdI4vu4Yys/PZ926dezatYt27drxpz/9iWPHjrFy5UrAnGTD8Z9Namoqhw4dYt++fQA4HA4mTpxIIBCgrKzMtN993X+nLr5jx45x2WWX0atXL2688UYKCgrqlyyLZTGnJpEA+V+qe3MpyzJ5eXk8+OCDtGzZkpqaGj766CO2bdvG0KFDad26NUuXLuXgwYMRj6nhjdmsWbNYunQpV155JQ6HgxdeeIH77ruP2267jdmzZ7NmzZqIxwON35QtXryYAwcO4PF46NixI4mJiQwfPpy2bdvy2muvmbLmve5CcPToUbKzsxkzZgzr168nFAqh6zqdO3fmvPPO48knnzRtd4iRI0dy8OBBFixYAFC/BOf999/nX//6F7feeitfffUVS5YsMe1C/8knn7Bo0SIGDBhA165dWbx4Mbt27WLIkCFkZGSwcOFCysrKTInF5XIxf/58nnzySZ566in2799Py5Ytyc3NJRAIcNVVV3HOOefg9XrZsGGDKZUXdcd0eXk55513HuXl5SxfvhxZlrn55pv5/PPPWbZsGXfffTcrVqyIeDyhUIjPP/+clStXUlRUhN1uZ9KkSWRnZ/P0008zevRoEhMTWbFiRf3bRTNIklT/fezbt4+DBw/W3xhefvnlJCYmmpYESUxMJBQKMWfOHBYvXsz48eP585//TGJiIk8//TQOh4OzzjqL8vJyPv3004jGomkau3bt4osvvuD+++9n4cKFtGrVioSEBHbu3Mlf//pX+vfvD9QuYdq7d29E44GfklWhUAjDMMjOzmbgwIEcO3aM3bt31/e6OHjwICtWrDAtKdPw+vHCCy+wYMECPB4Pf//731m6dGn972vFihVomhaxm/26h2NFUdA0jXnz5qFpGpdddhmHDx/mpZdewmKxcM0117B7924++eSTiMTRUFFRETfddBO7du3CbrfTo0cPtmzZwtlnn42maXz11Vf06dOHdevW4fP5Ih4PNH0jLUkSEydOxOVy8dFHHwHQt29f2rVrx+7du/nhhx8iGs/xDzVHjx5l//79FBYWYhgGp512Gv3792flypXs3r3blKqLus9l8+bNPPzww/z444/ccccdHDlyhEGDBtG/f3+effZZ5s2bx6xZs0yrSpNlmWPHjnHkyJH6/g2PPfYYZWVl3H333dhsNr799ltTqtIavsyrS3w6HA7Kysp44IEHWLp0KVu3bq2/5pkRT925qLKyEqA+Ofzdd99hGAYdO3YkKSmJtWvXmvKSSJIkNm3axJNPPkllZSUvvfQSy5cvp1u3bgwdOpQVK1aY8jKv4WezcuXK+qVljzzyCN9//z07duzAYrHgdDqprKxElmXTKkDqluLMnTuX0tJSUlJS2Lt3LzU1NTRv3pyuXbuyYsWKmOwvI5hDJED+F/Ly8hqVlO/bt49LL72UIUOG8P3339OmTRs++eQT8vLyGDJkCG3btiU+Pj5i8QSDQcLhcP2N2WeffUZ5eTkjR47EZrPh9/vJyMggJSWF+Ph4srOzTXt4rSs1//TTTzl48CA9e/ZEVVXeffddoPZmslWrVlRXV0f0RqjhTdmOHTuYN28eDoeDa665BrvdzquvvlpfqjtkyBBmzJhBSkpKxOKBn27MLBYLPXr04MMPP2T16tVYLBbC4TCyLON0OlFVlU6dOpGWlobD4YhoLHUqKyv505/+RI8ePZg0aRJ9+vRh3rx5VFVVMWzYMEaNGhXx/g26rtfHNXToUDZt2sRpp51G7969AUhISKCmpoYVK1bwwQcf0KtXLyZMmIDNZjMlru+//55PPvmEqqoqJk2aRF5eHosXL6Z9+/bccMMNHD58mKFDhzJ06NCIxqOqKjabjQsvvJCKigrWr1+Ppml07NiRLVu2MGjQIKZMmUKrVq04evQoBw8eNO1Nh9fr5aOPPuLHH39k+vTpxMXFsWnTpvpE3vXXX09lZSW5ubkRi6nhb3/69OmEQiG2b99OmzZtsFqtXHvttUiSxOuvv06zZs248MILGTNmTERiqYtHURQ6duzIsmXLsFgsXHDBBUDtzdq+ffv4/vvv2bZtG6WlpUybNo2uXbtGLJ46kiSxY8cOHn30UV588UXWrl3L6aefXn+DWFBQQFJSEhdddBE9evTAarVGPKY6ixYtYvXq1Vx66aWsW7eOr776iri4OGbMmMHMmTN5+OGHWbNmTcRuYL1eL/PmzaOkpARd1/nwww/54YcfOOOMM0hNTeXBBx9k69atzJs3j+TkZK655pqI9wFYtWoVcXFxXHzxxXz66ad88803ZGdnc/rpp/Phhx9yzTXXEBcXR0lJCcuWLTNlW9yGD0Jz587ls88+47vvviMpKYkZM2awadMmli9fjiRJ5OTkkJOTQ48ePSIaT90xUVRUhKqqtG7dmsmTJ5OZmcnXX38NwLBhw2jRogUrV66MaGLv888/p6qqqj7R8NFHH3HHHXfQr18//H4/L7/8MsXFxUyZMoWBAwdy+PBhLr/8ctP6bmzYsIHHH3+co0ePYrVaSU5OJjU1lXHjxgEwf/58vv7664i/iGl4HM2cOZM33niDp59+Go/Hw3nnncett97KpZdeyl133UVpaWnEq2MbxvPKK6/w3HPP8fjjj6NpGt26dePYsWP1L7DKysoYOHAgAwYMiFgsUHvPVlFRwYIFC/jLX/5CmzZtMAyDl19+uf6636FDB9avXx/xKtS6z+aJJ55gw4YNrFixghdeeIHMzExuuOEGHnzwQT744ANmzZpFixYtSExMjGg8x//fW1ZWxubNm1EUhc6dO5Ofn8+mTZuA2pfZ0eizJcQOyRC1P79aWVkZK1asoKSkhLPPPpvU1FR8Ph/PPPMMw4cPZ8iQITzwwAOoqsp9992Hw+GoX4cXiRu0999/nz179vDAAw+wb98+3n77bVJTU/nzn/8M1CZoFixYgKIo7Nu3j6lTp9KvX7/fPI7j1a23f+WVVygtLeWiiy6iY8eOlJSU8Mgjj9C3b19atGjB4sWLueqqqyLeOFJV1fplCfPmzaO4uJgRI0bQunVr7r//ftq1a8fGjRs5//zzGTlyZERjqVNUVMQTTzzB8OHDKS4uZtmyZdx///20aNGCd955h8LCQkpKSrj00kvJycmJaCxVVVXs3LmT008/nffee4/8/HzuuOMOoLY/wVtvvUVWVha33HILiqJENJbj++rk5+eTm5tbX8nUsWPH+s75K1euxGKx8Je//AVZlpv8u7+1uuPoyJEjrFu3jlAoxNlnn01eXh4LFiygR48eDBkyBCDin1ND77zzDocPH+bQoUNccskl9QnZDz/8kIceeoiZM2dy2mmnMXHiRNNiqq6uZsmSJVRUVDBmzBhkWea1115j9OjRnH766dhstka/y9/a8RVoXbt2xeVy8eKLL5KTk8OIESOw2WxUV1dz5513csUVV0TsxrVhM9q6SoUNGzbUr0fu1q0bqamp5ObmMmvWLILBIJMnT47oA2JDO3fu5P3332f69OmsWbOGBQsW8Nhjj1FRUcHq1auprKzk0ksvxeVyRTQOwzB47rnn6N69OyNHjqxfstCzZ0/279/P999/z4wZM+pvog8dOkRxcTGnn356ROKprKwkISGBqqoqVFXF5/Nht9uZPXs22dnZDBkyhMTERHJzc7ntttu466676NOnT0RiqbNs2TJeeuklzjrrLC655BJ27NjBDz/8QFFREVOmTGH79u31PYlKSkpYsGABl112WURjauiVV17B6/UyadIk7r//fq6//nqGDx/Opk2beOedd/jTn/5Et27dTItn8eLF9edmWZa55JJL2LhxI+vXr6dz5871jdi9Xm/Ekg25ubnk5ubSr1+/+nNSWVkZubm5zJ49mzvvvJP333+f3NxcHnjgAVMa6TY8P3q9Xh5//HEuvvhiOnfuXD///vvvU1hYSCAQIBwO11fNRUIoFKpvTq3rOh988AFer5frrruO6dOnM3DgQC655BJkWebQoUPMnDmT9u3bc/nll0cknoY0TePzzz+npKSEq666ikcffZTWrVtz9tlns3//fr7++mtUVSU7O9uU31pBQQEZGRlUVFRQUFDAG2+8wYMPPsiKFSt49913efrpp0lNTQUiuwSm7rlmw4YNHDx4kAsuuICHH36YtLQ0/vSnPyHLMnPnzuXTTz/lrrvuqv/dR+p5qOFvuKSkpP4zeOuttwiFQlx33XUsWrSIbdu24ff7CYVCja4nwqlHVID8CnVZxeTkZDRNo6ysjIULF+Lz+bBYLLjdbgYOHEg4HCYzM5MhQ4bgcrnqLzC/9Y+9Lp4LL7wQh8PBRx99RHZ2NhMnTiQUCrF+/XqgdpuucePG0bJlSy699NKIJj+OL3+1WCyMGTOGcDhMQUEBqqqSmprKbbfdhmEYbN++nalTp0Yk+dEwpxcKhXj77bdZsmQJAGPHjiUuLq6+Edu9995L+/btufbaayOa/DjRmtasrCzOOussrrzySqZMmcK///1vgsEgl19+OaNHj+Yvf/lLRJIfx8eydetWVq1axcaNGxk7dizx8fG8/fbbQG3VU/fu3Zk6daopD/V1lUP/+c9/eOGFF+r76lx33XU8/vjjQO3WfG63m9tvv52//vWvpiQ/cnNzefjhh1FVlVatWtGjRw8kSWLRokV07NiRnj17cvDgwfqKrEir+w4//PBDysrKuP/++5kyZQrbtm1j8+bNjBw5kkGDBvHqq6/SunVr05If3377LQcOHCA+Pp6BAwfi8XhYsmQJ8fHxTJkyhTlz5pCbmwsQ0R08Gr6Z2rx5Mw6Hg8TERC644AJWrVrFpk2bUFWV+Ph4Hn744YglPz7++GNeffVVoLaaYebMmaxZs4ZevXoxdOhQNm/ezKFDhwiFQvj9fm6++WbuueeeiL8db0hVVcaOHcuBAwdYt24dN910Ex6Ph1atWtGnTx9atWplSrd8SZI444wzmDt3Lrt370aWZWw2G//zP//D1q1befDBB0lMTGT9+vX1lTyRSn7MmTOHf/zjH/U9GpYuXcrcuXOx2WyMHz+egwcPsmvXLvx+P1lZWdx///2m7ADRvXt3evfuTSgU4tNPP6Vr165MmzaN5s2b8+STT7Jv3z727t2LLMukpaVF/IGs4bFUUFCAx+NhxowZrFmzhuzsbD755BM2bNhA7969GTNmjCnVKHWWLl3K999/z/3334/T6eTbb7/l008/pU+fPnTq1In169fXLwuMRPLD6/Xy4IMP8s033zBgwAAWLFjAjBkzgNp7yX379pGTk0NKSgr9+vWjuLiYnTt3/uZxHO/45PDu3bvr35BDbWWxLMtccMEF3HjjjVx00UU88MADEXtQVFWVOXPm8PrrrwO15+6EhASGDRvGa6+9RseOHbn00kvrXybu2LGDIUOGRCz50bB3hK7rLFq0iA0bNtCxY0esVit33nkn+/btY/ny5fU7+Nx6662mJD+2bdvGXXfdRVFREYmJiRQVFdGrVy9cLhfNmzcnOTmZtWvX1m888FtXgDS8d6x7rpEkiYMHD/Kvf/2L1q1bc+211yLLMkeOHGHSpEkMGDCA999/v8m/91tatWoV9913HzU1NWzdupWPPvqId955B4Azzzyz/mXHiBEjmD59OhdddFH99UQ4dYkEyK9Q91D28MMPc+zYMdLS0urf+jocDsLhMC+++CIzZsygWbNm9WWDkSquqbt4bdq0iczMTJYuXcqyZcvo378/PXv2ZOPGjezatQuA9u3bc9ZZZ9GrV6+IxHJ8TN9++y2vvvoq8+fPJyUlhSlTptTvBa5pGs2bN+eSSy7hxhtvpHv37r95HA2zy+vXr2fOnDl07tyZDRs2sGvXLhwOB6NGjWLr1q18+OGHBINBRowYUb+8IhJOtMbQYrHU90nQNI2JEydis9l47LHHsFqtDBgwIGI31HWx1DWAGjx4MJ06dWLr1q3k5eUxadIk9uzZwxNPPMHChQuZOHEizZs3j0gsDRmGQSgU4oknnsDlcpGTk8OxY8f4z3/+w4ABAxg6dCh33HEH9913X/16UmhaNfJbOP7GoXnz5iQkJPDSSy8B0LFjR1q0aMHatWv58ssvGTZsGJdddlnElirBiW8+dF2v/24mTJhAVlYWn376Kbt27eKKK65gxowZEd3e+UQlp6+99ho+n4/09HR69epFYWEh8+bNo0uXLlxzzTURq/gqKSnh66+/ri9lX7x4MQ6Hg9tuuw273c6ePXtIS0vjoosu4vPPP2fPnj0AEVvS9dJLL7FlyxYeeeQR5s+fz7p16+jZsydLlizhvffeIzs7m5ycHDZs2MB9993H559/TlxcXESXcjX8rSxcuLB+GeX8+fP57rvvuPXWW+nWrRs7duxgzpw5dOjQgXHjxtVvXxgJDR84+vbty4QJE3jttdcoKSmha9eudO/evX4p0NKlS5k1a1bEl+FomobP52Pu3LkUFRUxcuRI0tLSmDdvHu3bt6//3nbs2FFfDh+p46isrKy+90DddSMhIQFJkvj6669xOBxceumlTJgwgYMHD/L2229HvKln3XcmyzK5ubkcOXKEjIwMpk2bxhdffEFZWRkPPfQQQ4cO5bnnnuPIkSNMmDCBUaNGRSyeAwcO1C/RqKu6uueee1i2bBm7du3ijjvuYNmyZaxevZrhw4czYcIE2rdvH5F4Dh48yD//+U/69+/PNddcA8D48eNJTEysb5ybnJxMfn4+n332GQsXLuSWW26JeAURNF2e3LdvX2RZ5ssvvwTAbrezb98+VqxYgdPppG3bthGLxTAMFEXhjDPOqD8PQW2F7Isvvkhqaip/+ctfkCSJDz74gO3btzN+/HhGjx4dkXiO30xAlmX69etH586dOXz4MHl5edjtdqZPn84333zD999/j81mi/iy6brrbLdu3TjrrLP497//ja7rOBwOSktL+eCDD5g9ezbTp09v9LLjt7ovMgyj0WezefPm+mr4Zs2aEQ6Had68OZdeeilQu3ypblfFm266CZvNRn5+fsSuIYMGDaJ9+/bMnDmTDh06MHnyZHJzc3n99dfZtWsXR48e5dixY1gsFux2e8SrzoXfB5EA+ZUKCwvrGx1efvnlnHnmmRQUFLBhwwbuuOMOxo8fz3XXXceUKVOAyJV51Vm8eDHvvPMOvXr1YvTo0XzxxRds2bKFkSNHkp6ezoIFC0zp99HwjcWcOXP47rvv6NGjBz6fj6eeeooOHTqQk5PDnDlzGu34EqnPpu7v3bBhAwsWLGDAgAH1iaEvv/ySsrIyUlNTadmyJR6PJ6I9WurUXYTefvttZs2axQcffECXLl0oKSlh8eLFhEIhVFWlc+fOEd3ffuvWrfWNKYuKinj33XcbVca43W7WrFmDxWLhoYce4vrrr+eJJ56I+MW9Tt2bJ1VVueSSSxgwYABjx47FZrOxadMmLr/8ci6++GJuvfXW+tJl+O0u8nUaPiSuW7eObdu2Icsy1113HT6fr76PTe/evUlISMDj8QCRrWhoeD7Jy8ur/y21bt2aUChEXl4eAJMnT6a6uppt27YRCoUiuoa84U5Yr7zyCgUFBUyePJnOnTvz4osvAtCuXTtSUlI4duwYBw4coEuXLhGLx+Vy0bVr1/oESKtWrSgoKODZZ59l9uzZfPzxxzz44IO0bduWM844I2Kl5tXV1Tz66KPs2rWL7t27s23bNhRF4b777uPw4cP1v/d58+YxePBgpkyZwkUXXVS/7CxS6nYOqKqq4vPPP2fBggV8+eWX9OnTh9TUVNq1a4csy+zbt4+33nqrSTIvEufshjfVddercePG0bdvX15++WXS09MZNmwYmzZt4vHHH2fRokXceeeddOzYMSKx1OnduzcDBw4kOzubWbNmYbfbGTJkCJqm8eWXXzJo0CCaN2+OqqoRrfjas2cPN954I88//zzHjh3D4/Ewfvx4Dh8+THp6Ovn5+SxduhSAs88+mxtvvJEHHngg4v2Q6r6zdevW8fjjj3Po0CGg9lxcV30CtTvUdOnSJeIVRD6fj4KCAmbOnMl9993H0aNHadmyJaqqsnfvXq6//no6d+5M8+bNef3116msrIxofx1VVTl8+HD9y7DXX3+dpUuXctddd7Fp0yYWLlzIkCFD6NGjB3v37mXixIkRf0kFtce4qqq88sorbNu2jeHDhwNw/vnns379ej766CNWrFjBq6++akolY12lQl5eHm63m1WrVrFjxw7OOussZFmmbdu2FBUV8cknn7B161aaNWsW0fvqhsnhF198kfnz56OqKmPGjMEwDDZu3EhFRQUZGRn89a9/jchLPGj8sqOgoIDZs2dTXl4OwNSpU2nevDkvvvgi/fr1Y9CgQfj9fi688EI6deoE/PY70JWXl9d/Nh9//DGffPIJR44c4eWXXyYvL4/evXvX70D17LPPUlxczNSpU+v//QceeIDMzMyIVcMD3HrrrRQUFPDRRx+RmZnJ3XffTVZWFsXFxWzbto0vvvgiattLC7FJ9AA5gYYPQKFQqL586m9/+xtXXXUVvXr1QlVVXnjhBYqLiznvvPPo27fvCf/9SMQEtb0s0tLSGDBgALqus2rVKr744gtuu+02rFYre/fujeiSF6/Xy9NPP01mZibXXnstULsDzaBBg+qzq3PmzKG4uJjrr7+eZ599loEDB9bvcPBba/iAePToUT744AMCgQD3338/QP2ypfXr1+PxeMjIyOD666+PSCzH03Wdl156CU3TmDBhAm+99Rbdu3dn+PDhzJw5k/j4ePbu3cvIkSM599xzIxLDggULePPNNxkzZgynnXYaAwcOZN26dSxdupSxY8fSq1cvKioquO++++jfvz/nnHOOqeWBubm5fPLJJ0yfPp2nnnqKHj16cNZZZwEwe/ZsHA5HfXIRfrpBiNTNkN/v55lnniEjI4NDhw6RnZ3NFVdcQWFhIQ899BDdunVj7969jBkzpv4mN1Ia/vbnz5/PggULSElJoWvXrpx33nm88cYb2O12unbtyp49e6isrOSqq66KaM+Gut9bXl4eL7zwAj179uTCCy8EIBAI8NJLL6GqKsOGDWP+/PlcdtllEXlohZ8eoiVJIhAI8MgjjzBs2DAGDRrEtm3bKCsro2/fviQnJ/Pqq69y3nnn1T+g/dbC4TBPPPEEXbt2ZeDAgSxduhS73U6/fv0oKChgyZIl3HHHHXzzzTcsXLiQoUOHMmnSpIjEciJFRUX885//ZMyYMfj9fg4fPkxOTg4DBw5k9uzZ1NTUUFFRwbhx4yJ2rj6R999/n/379+NyuejXrx9nnHEGzz33HFarlRtvvBFd16mqqiIuLi4iicaDBw/yxRdfcOaZZ9KpUye8Xi/PPPMMZ5xxBuXl5ZSVlXHNNdewZ88eFixYQJcuXSL2FrqhQCDACy+8wPbt2xk+fDgpKSmkp6fj9Xrp1q0bO3fuZOfOnfTu3du0/l5156LCwkKeffZZrr/+etq0aVO/Y8mPP/7Ijh07OHz4MHFxcfz5z3+O2Lno+GT1U089Rc+ePbn33nuB2h5S7777LhMnTiQ3N5e8vDxGjhxJq1atIhJPQ9988w3r1q0jKSkJwzC47rrrcDgcHDlyhAceeICbbrqJnJyciPZCgsafkaZpKIrC7t27effddxk7dixDhgxBkiQOHDjAt99+i67rnHHGGaY0YAb46quvWLRoEVOnTmXr1q0UFxdz1VVXUVpayqpVq6iursZqtXL99ddHtMKyznvvvcfhw4frl2wqisINN9xAQUEBy5YtIyMjgzPPPDNiVWgNv6+KigpcLhePP/44Xbt2Zdy4cbhcLkpKSnjwwQc5/fTTGy0FisSL17rf1cyZMwmHw8yaNYubbrqJL7/8klWrVvHAAw+g6zolJSXs3LkTwzAYO3Zsk/9bfkvFxcU0a9YMqN3eNhwO06ZNG3w+Hw888ADDhw9n4sSJaJqGpmm8//779c1hBaFO5M66v1MNf7CLFi1iz549dO/enaFDh3L22WezceNGkpOTadWqFXFxcbRp06Z+7WSdSCU/gsFg/ZuUUCjE119/zYABA5Blmfbt22MYBs8++ywPPfRQRG+GDh48yMsvv8zIkSMbPfyVlZWxZMmS+gRI9+7d+e6774Da7GykKhvqPp+6/79FixYMGzaMBQsWsHr1agYOHEhycjLTpk2jffv2hMNhBg0aFJFY6tRdiILBYP3NzYUXXkhGRgYPP/wwt912Gy1atOD222+ntLSUsrKyiN5wtGjRgk6dOtG3b1/efPNNqqqqSE9PZ+jQoXz99ddkZGSgaRpZWVnk5OSY0q274fFQt9WdLMuMGTOGH374gYULFzJ27FiKiorq32zUfa6RfAuk6zrvvfcevXr14qyzzuKhhx5i+fLleDweJk+ezD/+8Q+2bNlCv379TCtZhtobkQMHDvDEE08QCAS4/fbbadWqFVdccQXLly9n1apVuFwubrrppojFUlVVhcfjqd82df/+/eTk5HD22WeTn5/P9u3b6dixI7feeitvvfUWa9eu5ZJLLolY8gN++nzqjqHzzjuPefPmkZKSUt9DJxAI8Oqrr1JaWhrRXYysVivTp0+v//107tyZTZs2sXnzZsrLy+vLyVVVpXfv3hFvcHz8DXFJSQm9evXi3HPPJRQKcfDgQT766CPS09O57rrrUFUVv99fX9UUqUrGhr//1atXs3fvXu68806+//579u/fT01NDbfccgv33HMPM2fO5KqrroroOSkcDrNy5UpKS0sZM2YMLVu25KKLLmL58uUMHz6cb775hrlz5zJp0iS8Xm/EEmh19uzZg8vlIisriyuvvJLXX38dn89H//79efXVVykvL+fmm28mJyeHsrKy+rfDkdTwO/P5fFitVrKysti2bRsrVqxg9+7dJCQkMHbsWM4991y2b98e0b5aDePZvXs3ffr04eqrr6a0tJRvvvmGcePGkZmZSXZ2NqtXr2bHjh3MmDGDrKysiMXU0Lhx48jLy2PTpk08//zzQO19W6tWrbjqqqtYunQpOTk5Ea+0aLg8edeuXbRq1YoBAwYwZcoU5s+fT1ZWFq1bt6Zdu3a0a9cu4tXLDb83XdcpLS3luuuuo0uXLnTp0oXVq1fz/vvvc+2119K9e/eINqg9Pp6KigrS0tK4+OKL+eSTTwiHw6Snp/Puu+9yww03UFxcjKIopiQ/1q5dy4YNG5g6dSo33ngjL774IklJSYwYMYK4uDh69epFdXV1oxcAkfje+vXrx5gxY3jkkUe45557cDqd/POf/8Tl+n/t3WlAlOX+8PEvAwwoq6CICIqIgDuiuIsrmpJrpmEuqeVWhlody9zKPKWWK6XlcjQVcznuuKAkAqKgIm6AgICCqIgDwoDDsMzzwv/cBz11Tp3HGwivz5tiAuZqhrmX3/VbakvZZqmpqbi4uDz32ZIr+JGSksKJEyeYMWMGR48e5fz585iYmODo6EivXr346KOP+Pvf/46DgwNeXl4YGhoyYcKEl74O4a9PlMC8QP+BPX78OBcvXqRly5YcOnSIyMhInJ2dsbOzY8WKFXz11Vc8fvyYIUOGYGZmJsu4qYp1tunp6SxatIjAwEAuXbrEsGHDMDMzk+pJ09LSaN26Ne+8847sJ9QX0zs3b97MmTNnGD9+PImJidKIudTUVFQqlayj0/QH2aysLJYtW8aBAweIioqiY8eOdOnShatXrz43l93b21vW4Ic+FRjg7t27bN68mfv371NUVMTjx4+l/+bv709KSgrGxsbY29vLvtvSqlUrtFotGo2GxYsXU1JSwu7du8nLy8PLy4s1a9awevVq/Pz8KmXnR/850/eqadSoEffv35cai3Xq1InQ0FC++eYbatWqxaBBgwD50vBfXNuoUaPw8fHhyy+/lP65b98+zpw5Q926denTp4/swY+K60pPT+f48eMUFRVRWlqKtbU1n3zyCT/99BOpqan079+f6dOnM2XKFNnWo9FouHTpEuHh4YSHh3Pq1CkKCwu5d+8eCxYs4NSpU5w9e5YTJ06g1WqZNGkS77///r8FiF+G8vJytmzZQnFxMQDr168nMDCQ4OBgmjZtiq+vL0ePHiU9PZ2CggIOHz4MwOeffy7rbiuAtbW1dOxu27Ytbm5u5OfnS9ME1q5dy6lTpxg4cKCsN2Mv1rPDs7/ty5cv8/DhQ5RKJQ0bNkSpVHLkyBGSk5MxMjLC0tJS1gwrfSlOQUEBsbGxpKen4+bmhqmpKT179qRFixYkJydjYGDAnDlzaNy48Utfw4vc3NyYOXMmWVlZWFlZsWPHDs6fP09paSmOjo74+voSFxdHTEwMXl5esr1varWaJUuWcODAATZu3MjZs2epW7cuo0aNIi0tDYVCwbx58xgyZAhGRkbUrl2bPn36MGDAAFnWo6c/z2q1WlauXEloaCg2NjY4OTmhUqlo2bIln3zyCdbW1uTl5VG/fn3ZJ6rpzyF79uzhp59+QqVS0a9fP1xcXEhPT+fChQvAs2bwo0ePZtmyZZUW/NCbOHEilpaW0qhU/ZQTHx8fPv74Y0C+LMY/Up7s7e1daeXJ8PxmHjx7Dw0MDKT+I9bW1jg6OpKVlcWmTZsoLS2VLXsoIyODvLw8FAqFdHy0trbGx8eHK1eukJKSwoIFC/Dy8uLmzZtShrOcmXH6v+mVK1dy9uxZEhISCA4OxtjYmDFjxhAVFcX27duZN28eDRs25P3335deQznozwPvvvsuSqWSb775htq1a2Ntbc2MGTNQKpWEhobyj3/8g7y8vN/8f3nZSktLefz4Menp6SQlJbF48WJmzZqFq6srp0+fxtLSkrFjx7JmzRpycnJkWYNQM4gMkP9TMVp57tw5fv31V6ZNm0bTpk2xsLAgNDQUX19fqVZTrVY/NzJMjg+7/qB248YNzp07x/Dhw3n8+DFXr15Fq9XywQcfsHz5clavXk1aWhofffRRpaR2NmvWjIkTJ/Lll19K6Z1du3bFxMREilSnpKSQlZVFQECALGmLubm51KlTB4VCQUJCAps2beLNN9+koKCAnTt3Ym5uTt++fSkqKuL06dPUqVNH9pnf2dnZfP311wwbNoyBAwei0+mkXbxWrVqxZ88exo0bR+PGjYmNjZV1V6Mi/d/n8OHDuX//Pl26dJECD5GRkVK6fu/evWXtifLiztLVq1f5+eef6dWrF71792bcuHFERUVRXFyMp6cnbm5uaLVaaedXjs+Z/mYMkJp2NW3alMaNG5OZmSndlMGzfhYJCQn07NlT1okzFQOfT548wdjYGGdnZ/z9/aUb1ebNm+Pu7o6/vz/Lli3jxx9/lL3u39TUFAcHB1atWkXt2rVZtWoV8Ox1MTIywsXFhdzcXAIDAykoKJC1BEd/Eb1y5UqcnJyoXbs27du3Jzk5mQ0bNhAQEMDDhw/Zt28fY8eOxc/PDzMzM9nW8yIDAwPp771r166EhISg0WgYPHgwzZs3Z/r06bI28qz4Wdm5cyc6nY727dvj7u7OwIEDCQoKYubMmZibm1O7dm1MTEy4ffs2zZo1k30H2MDAAJVKxdatW+ncuTPt27dn//79pKWl0aRJE1q3bs3x48fJycnBzs6u0kaTd+/enfj4eOLi4ggICGDHjh0kNZh5SQAALn5JREFUJydz7949mjZtytixY2Wd9JKWlsaGDRvo27cv/fv3JyIiArVajU6nw8XFheHDh/PTTz8xa9YsRowYIfVz0mfryEGlUqFQKLC2tqawsJC///3veHt7S40WhwwZIn3vrVu3SEpKkr0Up+LfdlhYGOnp6Xz99dcolUqKiopo3749T58+5cKFC/z888/06dOn0kZKv8jAwIBFixZJDfK9vLxk2SyrqGJ5sr7nUlFRERMnTpSyc42Njdm5cydTp04lMTGRzMxMGjZsKOu64Nlx+/bt2wQFBeHm5oaJiQl9+/blwIED7N69m9GjR6NWq2nZsiW9evWSNVhdUFDAl19+ycaNGzE0NJTKg5RKJU+ePMHe3h541oPDx8enUkrM4Fl/PyMjI+bMmUNiYiKXLl3i1KlTDB8+nPHjx0vvlf64KOcEvIrnsQULFjB37lwuXLhAnz59WLVqFQ0aNCAxMZFp06ZVWsm0h4cHNjY2/OMf/+Dp06fAs8BVixYtuHbtGsnJyXTq1AlTU1NpFK4g/BYRAPk/CoWCvLw8TE1NadKkCba2toSFheHs7Ez79u3Jzc3l2LFj1KpV67kdTTkOPiEhIcCzxpRFRUVs374dS0tLOnXqhFarJTIyksTERGxsbFi8eDFPnz7FwMCgUuoj9X4vvdPV1ZUvvviCsrIyLCwsZDmB7d+/n4iICKZPn46bmxuFhYXMnDmT8vJyDhw4QM+ePdm8eTOffvopvXr14ty5c1hZWb30dVS0du1aPDw8mDp1Ktu2baNhw4ZotVqpZGnQoEGUlpZy/PhxVCoVderUkbrDy03/92lhYUFISAgXLlzA0dGRr7/+GpVKRVpaGm3btpX1YuPChQukpaXh7+/PgwcPMDQ0xN3dnXnz5hEcHCydzPRTDuBZU0v9TbTcQcb9+/cTHR2Np6cnO3fu5JtvvsHW1hZTU1N27dpFamoqXl5eDB8+/KWv4ffWde3aNbZv307jxo158uQJs2fPplOnTly4cAETExM8PDzw9fWlbdu2sn72X3ztGzRogImJiTTK2dXVFYVCQWpqKps2bcLT05P69evLth69SZMmsW3bNs6fP893332HqakpHh4eHDp0iLCwMIYOHcoPP/yAVqut1OCHXsWLxx49enDkyBFcXFxka5xXkUKhQKPRsHbtWhwdHalfvz4bN25k2LBhdOzYkYcPH/LFF19QUFDAiBEj0Gg05OfnS+uWk77XUIcOHejatSv5+fm0aNGCvXv38sYbbxAfH4+xsXGlns/03nvvPebNm4ejoyPTpk0jOzsbCwsLFAoFrq6usj53aWkp6enpUv18eHg4paWlxMXFMWrUKLp27YpKpZIyUOVu4K1Wq4mIiJAaZep7sAwZMoRLly6RlJSEWq1m2rRphIWFcerUKcaPH0+rVq1kXZc+E0WpVFJcXIyjoyNnzpwhNzeX8PBwKYDk4uJCZmYm3bp1k3U9/41SqWTJkiV8+umnBAYGyhr4rG7lyS/KyMhgw4YNTJ06lZs3bxIVFYWnpyevv/46a9euJTMzk/T0dD755BPZN/NatGjBm2++yVdffcX8+fMxNDSUznUtWrTgyJEjrF69mtu3b7No0SJZbqZ/67qmtLRUmuLk4eGBWq1m586dWFhY4OPjg5OT03/8+ZdNP05XoVDw2WefMXfuXLRaLf7+/qSmpvLmm29iYWEh21qysrK4f/8+jRs3lt6DAQMGEBUVxZMnTzh27BjDhw/Hzs5O6o8CVFnQU/jreKWboL6407Vjxw5u3LjBN998Q1JSEuHh4Tg6Okonkv3799OxY0fZ0yj1J/eEhASaN2/OjRs3WLt2LdOmTcPLy4v8/HxptOywYcMqZUTpb9HpdMyfPx8fHx8GDBhQKQdjeNaF+tSpU7i6ujJ27FgcHBzIz89nzZo1DB48GE9PTxYuXMijR49YtWqVrBfST58+Zfny5djZ2TFhwgRq165NdHQ0v/zyC+7u7piamuLq6kqjRo2wtLSkqKgIIyMj2WvIf8/333/PgwcPWLJkSaU954kTJzh79izvv/8+d+/e5fDhw1hZWWFlZUWvXr1o0aIF2dnZBAUFcevWLQYMGFBpjSHLy8s5cuQIaWlpTJs2DVNTU3755Reio6NZtWoVqampXLx4EYVCwZtvvinrWq5fv07Tpk2pXbs22dnZfPfdd1Lz0H379nHlyhVWrFjBwYMHycrKYvDgwTg5Ocm6Y6//3Tk5OWi1WmxsbDA1NeXkyZNcvXqVSZMmUbduXdLT04mJicHe3h4fHx9Z1lLR7du3cXZ2pqCggAULFtC5c2fefvttAIKDg1Gr1YwePbrSjkn/if411Gg0lXZTX15eTmpqKikpKfTr14/Vq1dTWFiIra0tPXr0oG3btjx69EjKgFqxYgWDBw+me/fusq4rJCSEjh078uuvvxIVFcWSJUuoVasWT5484ezZs9KUnKlTp1ZahtyLtFots2fPZvLkyZXS46eiEydOEB0dja2tLWVlZYwbN47w8HBOnjzJypUrqVWrFgcOHKB3796y7rgmJyfTpEkTjIyMSE9PJy0tjd69e7N06VIKCgpo3bo1jo6OHD16lNGjR0s9fuTMRtHTaDRS35oePXqwZcsWLC0t6dChA6ampuzcuZNp06ZJTRKrC/11nZySk5OZP38+u3fvBp6VJ7u4uNCuXTuWLFlCv379GDhwICdPnuTKlSvMmjULpVIpe382vaSkJFJSUnB3d2fDhg28/fbbeHp6UlJSgk6nk4JslRn83LBhA4aGhrz33nv/1puoQYMGNGzY8KUHrfRjZfXl6ikpKRgZGeHs7Mz9+/c5duwY7dq1k44/+g0ZPz+/Krve1782CQkJLF++nC+++EIKUsl5nr179y7//Oc/KSoqYuTIkbi7u6NSqfjuu+9o164dxcXFPHjwQMocDAgIkDVTT6g5XukAiF7FLtzffvst5ubmTJs2jZiYGGJjY3F3d6d3796yr6PiQSQ7O5tZs2YREBBAp06diIiI4PDhwwQEBEg1kvn5+bLU1/8ZL14sVkbTvJSUFCIiIrC2tiYtLY0pU6agVCrZsGEDo0ePRqfTERISgoODg+yd+s+dO8fVq1eZMWMG8CzVtHbt2uzbt4/jx4/TrVs3DAwMyM3Npbi4mKFDh1Zad/XfkpqayunTp3nrrbcwNzeX/eZw27ZthIWFMW7cOPr06SN1vzcyMiIxMZGzZ8/i7+8vdfC+evUqGRkZst28/lZvg927d3P9+nVGjhwpjSJctWoVOTk5LF269KU+/+/Jysri0KFD1K9fnxEjRvDkyRO2bdvGhx9+KH2mli9fjqenJz169CAyMhJfX99KWVtcXBxbt26la9euXLhwgcWLF1O7dm12797No0ePcHFxoaCggIEDB8rWYPTF48q8efPw8PBg/PjxpKens3btWvr168egQYNYuXIltra2Und8uTMaqoOKn5UHDx5w9OhRxo8fj7GxMdu3b8fKyoqhQ4eybNkyioqK8Pf3x8PDg4yMDPbs2UOPHj1kSfF+8TMcFBQkZREsX74cMzOz55r2lpSUyLpD/kepVKrnduwr829oy5Ytz2VWAqxYsYIuXbrIHqCCZ+eI48eP4+bmhq+vL6dPnyY5OZmePXvSvHlzCgoKpEDH6tWr6dSpE126dJF9XXoajYa4uDguXbqEj4/Pczu9p0+f5vz58wQEBFRKMKY6enH6zNSpUzExMSElJYXvv/8eFxcXqTxZX+Yhh4qf/TNnztCqVSvKyspYvHgxZmZmfP7559jY2JCTkyOVVchZNvl7dDodCxYsoEuXLvj5+fHgwQNWrFgh64Q3lUolnSv37dtHbGws9vb2lJeX8+677xIeHk5ycjL169cnOzubWrVqkZubS+fOnStlg+H36N/TkJAQrl+/zqxZsyplXLJWq+XXX3/lzJkzdOnShW7dupGcnMyZM2eYMWMGoaGhlJaW4uPjU2UBIuGv55VsglqxBvPs2bMcOXJEatQ5Y8YM7t69y9GjR+nYsSONGjWiqKgInU6HXLEifbqbQqFArVZTWFiInZ0dc+bMISgoiLS0NHr06EH37t1ZuXIlRUVFODg4VHnwA/6V3rlhwwbp/+NlS0tLIzAwkFu3bgFgb29PZmYm1tbWNGnShF27dqFUKjE1NWXv3r3Mnz8fJyenShlTaGFhwcOHD1GpVBw/fpygoCACAgLIz8/H1NSU0tJSJk6cyJw5c5gxY0aVBj/gWfnCw4cPZd8ZLysrY+nSpahUKgYPHiyNIS4tLcXOzg4bGxtat25NgwYNyMzMBMDMzAxbW1sSExMpKSmRreRFX15y6tQpYmNjGT16NO7u7qSkpJCRkQHA7NmzUSqV3L9/X7bPfUV2dnZ06dKFgoICzp49S+3atblz5w7h4eHSzVeLFi1QKpXUqlWr0oIfqamp7N69m7/97W+0adOGhw8fsmjRIoyMjBg5ciT16tXj2rVrDBgwQNbpKvrXQKVSATBnzhwSEhI4ffo0zs7OjBkzhm3btrFkyRLs7e2ZMGGC7NOCqpOKUxWUSqU0otjAwIDHjx9LpXh16tTBzc1NmkajHwcuV327QqGQelUANG7cmOzsbODZe5iVlcWuXbuk/14dgh8ANjY2BAYGSq9lZdI3zjxx4gTwbHJPbm6urJ8v+FdwuHHjxrRs2ZKMjAyuXLlCnz59aNy4MdHR0cTHx2NpaUl8fDyffvoplpaWsgY/kpKSpOuKI0eOkJiYiKmpKS1atKB169acPXtW6mf1/fffExMTw+zZs1/Z4Ac8K092dHQkKSmJDz/8EBMTk+fKk8eOHSsdJ+WkL8NbsmQJCQkJmJmZUadOHfr164ezszMKhYK0tDSWLVtGeXl5lQQ/4Nm5ZeHChRw7dox9+/axYsUKunXrJlvwIyYmhunTp1NUVMT58+dJSUnh73//O46OjkRHR3P06FH69OmDn58f5eXluLq68t5776FUKmVv4P3f6M8zdevWrdRjtVKp5LXXXmPcuHEALFq0iKysLAwNDTE1NWXkyJG89dZbIvgh/CmvdAbIxYsXadSoET/88AMDBgygQ4cOKJVKoqKi2LRpE9OmTcPb21vWC6C0tDTCw8OZMGECcXFx7N27FyMjI8aOHUuzZs0IDg4mPDycefPmYWVlxc6dO+nbt6/sJ68/S870zqSkJBYsWCD1PHBycqKkpEQaUXjs2DFcXFwYNGgQ2dnZFBUVVVoKnFqt5vDhw0RGRkojykxMTCgrK+PWrVvcuHGDLl26MGbMGNmbC/5RFTOe5FJUVERYWBiDBg2ioKCA4OBgateuTUxMDG3atGHUqFHAswyRBg0aSHXvQUFBaDQaJk2aJNvaQkJCCAsL44033mDLli2MGDGCdu3asWfPHmkMcGV8vjIyMrCwsHgulf2HH35ApVIxZswYjIyM+PLLL3nrrbcwNTXl4MGDvPXWW7KOTg0PDwfAxMRE6navUqlIT09n9+7dfPbZZ6xbtw6FQsHnn38u2zr0Kgbqjh8/Tn5+Pr6+vtjY2JCYmMj69esZN24cHTp04NSpUwCVFhyqbo4cOcLDhw959913+fnnn7GxseH1118nNjaW3bt3Y2RkRIMGDfjggw8A+dKW9cc5nU5HSUkJ33//PU5OTowcORKtVsuiRYvw8/Oje/fuPHjwgKVLl7JgwYIqKwusjvSZlX379uXGjRt4eXlJjUflkJ6eTnh4OB07dsTDw4PS0lJCQ0O5d+8ePXr0wMnJiSNHjlBWVib11Lh9+7bUH0QOd+7cYe3atfj7+9OhQweOHj3KP//5T9asWYOlpSXZ2dkcPHgQjUbD+PHjycvLE6nv/6eqypNfvMY5ffo0SUlJUoYsPMtuDg8P5+bNm5SVldG/f/9KyWz6b3Jzc5k+fTqzZs2ic+fOsj7Xpk2buHPnjrSZsH37dnJzc/H392fevHkMGjRI6jeWk5PDxo0bqVevXqX1jftPysvLCQ4OpmHDhpVeIqgXExPD2bNnuXTpEgsWLJC975BQM71yARD9ATo/P5/58+fz5ZdfkpqaSnBwMCNGjKBly5Zcu3aN8PBwWrVqJZ3g5bp5jY+P58KFCxgaGnL//n3Gjx/PxYsXSUpKYujQobi5ubFlyxZu3brFN998Uy1uoKtCZGSkVBJw+PBhGjVqxNOnT3nnnXe4c+cOO3fupH///rKOuP1P9HPQ9SncsbGxJCYmSjf6VR25r2qpqanExMRgbGxMXFwcTZs2xdnZmeDgYCZPnizrRCWVSoWVlZXU5Gzr1q2MGTOGixcvcvz4caZMmYKzszNpaWn88ssv+Pn5VUoDrfj4eFauXMmmTZuAZ8Gf+Ph42rdvz8OHDxk5ciQ5OTlcu3aNzMxM+vXrJ9u69JMDrK2tpawBfWqwkZERQUFB1K1bl/79+3Py5Em2bNnCJ598IlswpuLxNjs7G3Nzc27fvk1sbCwNGjSgW7dumJmZsXv3boKDg/nqq68qZQJWdaUfC3zu3DkmTpwIwC+//MKnn35Ko0aNyMjI4MGDB3h7e0vfL8cNUcXfW1BQgIWFBZmZmezYsYMGDRrQrFkzzM3NuXHjBm+88QYmJiY8ffqUWrVqvfS1/NXpb8g+/vhjWYOe8K9NhkaNGuHt7U3dunXx9PQkIiKCoqIievfujbGxMQcOHMDGxoZhw4bJnkFoaGjImTNnuHz5MkOGDMHNzY1t27Zx/fp1vv32WwAOHDhASkoKvr6+Uvmi8ExllSfrVfz90dHRPHr0CDMzM3JycnjzzTelHkj6a6TS0lKKi4urpEH175G7BK/ia7RkyRLMzMyYM2cOq1evZsSIETRq1Ii1a9dy584dFi5ciJWVFffu3ePOnTtVdm37W6pDb638/Hyys7Nlb04t1FyvRABE35cB/nUAKi0tJSgoiE6dOuHu7k5wcDAJCQkolUpSUlKYM2eOrLsJFQ8gcXFxnDt3joKCAj799FPg2Wz7R48eMXLkSOrXr8/BgwcrrTFkdfXTTz9Rq1Ythg8fLo0o/OCDD2jcuDGpqak4OztXi0BDXl4ea9asoXnz5lIA5FVV8YR/7do1EhISMDAwIC8vT2pcpz+B/VZ/jv8farWadevWUVxcTOPGjfH29qZ58+YsX74cc3NzioqKmDx5MnXr1uXatWt4eHjw+PFj2cclV6SfyqNvevjhhx+i0Wg4efIkjx49YsiQIdjZ2cmataMfv9mnTx8GDBggPb5gwQLq1q1LQEAAe/bsQavVYmdnx7Vr1xg8eDDu7u6yrKeiCxcucODAAUaPHo2XlxeRkZEkJyfTuHFj+vTpQ1hYGOfPn2fSpEmVMnmmOqj4mVKr1YSHh+Pi4kLDhg1ZsWIFrq6uNGvWjO3bt9OxY0cpg0ivMi5eg4ODiYuLw9nZGXd3d9q0aUNycjK7du3C0NAQjUbD0qVLq8XxujqrzJ4okZGRUrnbTz/9hLu7O1lZWTg4OGBkZMSIESPIzs7G0tKyUkpMMjIyOHDgAJmZmWg0GhYsWEC9evX45ptv0Ol0eHt7c/r0ad59911xE/Q7qqKXzaVLlzhx4gQTJkwgKyuLU6dO8fHHH0vHoD179tC2bdtKOX9URxWP3x9++CFt2rTBzs4OtVpNaWkparWaESNGYG9vX22yhgWhJqrxAZDU1FRCQkIYNmwYOp1OGsHVoEEDjh8/zo0bN/jb3/4GPGuuef/+fZo0aSJNepHjAKS/ANXvcpSXl3Pp0iVCQkLo06ePFOn94YcfMDAw4N133602tdFVSafTMW/ePPr370/v3r2lEYXVZfcwPz+f+Ph4du/eTb9+/fDz86vqJVU7586dIz4+Hm9vb2nHTo4bMv1N/cCBA2nUqBGxsbGUlZUxevRo9u3bx6FDh9i+fTvwLBNj586dTJ48WRoTWJl+q+lhRkYGoaGhODo6yt7L5sXJAfqdOo1GQ0BAABMmTKBp06ZER0cTFxfH66+/Llvqq/6YCM+Oxxs3bmT27NnPlSRFRUVx6dIl7t27h6WlJbNmzapWu4hyerHZaXl5OfHx8cTExNCnTx9MTU25d+8e3bp14/vvv6e0tJSPP/64Ul+fo0ePkpiYyDvvvMOOHTsoLi7mo48+wsjIiNzcXE6cOEF2djYBAQGVtibhj1m/fj22traMGjWKe/fusXPnTh4/fkx6ejofffSRbL1iKtLpdOTm5vLtt98yZMgQOnbsyLp166RJHSYmJuzbt4+8vDy6d+9eLXqhVWdyT5+peEzKzMwkKCiI4uJiFixYADy7jn369CkNGzYkPT0dpVLJnDlzZFvPX4H+NVOpVHz22We0bNmSdu3aERkZyfvvv4+lpWW1yLIQhJqsxgdAbt++zYULF1AoFLzxxhscPnwYtVotjVTasWMHI0eO/Lf0ablThLOysti2bRseHh7Uq1eP7t27c/r0aVJSUujevTutWrVCrVZz9+7dKm+cWZ1U5YjC/6a8vJykpCR0Oh3Nmzev6uVUKxUDiTdu3JC9ZvPFm/obN25w5swZZs6cCTy7KMvOzsbJyYmkpCT8/f2rLIX6xXptvezs7ErrixASEkJ0dLR00arfeT527BhZWVlS7bGcO9J3796VxiNnZmby8OFDQkJCGD58OAkJCVy9ehVra2sCAgIoLCzkxo0bstdqV1cnTpzgxIkTzJs3Dzs7Oyng5+TkhEKhYMaMGZSXl1NYWIiFhYWsa3lxk+DYsWN06NCB8PBwkpKSCAgIwMzMjMLCQszMzKrNpBfh3+mPRV27dsXPzw+NRoNGoyEmJkbq0ySHF6+3NBoNgYGB+Pv707BhQ2ldDRo0YOrUqRgbG4vd8WpA/76Vl5dTVlaGsbExMTExhISE0KtXL6m3R0xMDPn5+eh0ule2R9OL9K+dvry9ssbKCoLwTI38hOmnvJSXl9O0aVN69+5NTk4O4eHhjBw5krFjx2JpacnmzZu5du2aNFmg4nSYl33wyc3NlX5vQkIC3333Hb1798bc3JydO3cSFxdH3759cXBw4NdffyUzMxNzc3MR/HjBi1NnqlP8TqFQ4OHhIYIfv0HfFBGQgh9yvnfNmjVj8uTJLFmyBHh2437z5k0CAwM5fvw4M2bMYPDgwbRt25aPPvqoSuvHDQwMWLRoEYcPHyY2NlZ6vDKbQvbv35969eqxceNGACkLo6Sk5LkmrXLcuOqnPKSkpHDkyBEWLlzIr7/+Svv27TEyMuLEiRPY2NgwZcoUHj9+THx8PObm5q9U8KPiuSksLIyIiAi++OIL7OzsKCoqokmTJgQEBGBlZSU1h1MoFFhYWDz3s3KsycDAgKKiIunxoqIiZs2aRX5+PvPmzcPMzIyoqCiuXr1KeXm5CH5UY/pj0bFjx7h06RKmpqZYW1tXWvAjIyOD3Nxcaarb/fv3efr0KQYGBrz22mtcvnyZ5ORkaa1C1am4mbd48WI2b97ML7/8goeHB126dOHmzZvcvHkTgI4dO9KvXz8R/KhAHzhyd3fH39+fPXv2UF5ejk6nE8EPQagENe5TptPpWLRoEVeuXJEOIsnJySQkJHDjxg1CQkKkKSsTJkygX79+HDhwgLKyMtkOOvv37+fLL78kKSkJgMLCQmbOnImdnR2nT5+mZ8+ebN68maysLHr16kWzZs1kH3n3V1aVIwqF/92L75Xc713//v2pW7cuc+fOZd++fbz33nu4uLhw48YNPv/8c5RKJR06dKgW0yeqQ2Bv6tSp3Llzh+DgYBQKBTk5OVy+fFnWnij6KUoajQY3NzfOnj2LoaGh1O/oo48+YtasWfTs2RONRoNWq30lR1zqL5aLi4tRKpX06NGDmJgYDh8+zNKlSzl48CDW1taMGjWKJUuWPNc0U47zWlpaGtu2bQPg5s2bLF26lLVr13L79m369OlDx44dpZr/4OBg9u7di4ODg7iw/wvQH4t+/PFH2Ubb6+lvoktLS1myZAmbN29m3bp1pKam0qtXL0JDQwkNDeXKlSucP3+et99+W2wKVbGKm3lZWVls3LgRf39/fHx8OHToEAUFBXh6etKwYUNCQ0O5f/9+Fa+4+qo4VlapVIqsJkGoRDWyBObRo0fMnz+fNWvWcPr0aS5evMj48eMpKCggOjoaT09PacSjVqtl27ZtjBs37rlGcS/T3r17OXXqFK6urowdOxYHBwfy8/NZs2YNgwcPxtPTk4ULF/Lo0SNWrVol2zoE4VWj0+lYvHgxzZs356233pIuMK5fv07r1q2renn/Ru567T/y/Prxm1evXsXb21u28ZtPnjzBysqK/Px8SkpKuHPnDsbGxpw7dw4PDw9at26Nra0tOp2OgwcPEhkZycSJE1+ZkXdZWVncvXuXzp07U15ezvLlyxk0aBBGRkbExMSgUqnw8fFBrVaTlJTEmDFjMDc3l35erjTqs2fPUlhYSExMDE2aNCEnJ4dBgwZx+fJltFot7du3p0GDBqxfvx4bGxvy8vKYPn06devWfelrEeQj57FIpVKhUCiwtrZGpVIRFRVFcXExb7zxBuHh4fzzn//kiy++4OHDh8TFxXH79m26dOlC7969ZVmP8Mfs37+fiIgIpk+fjpubG/fv3+f69evY2tqyf/9+XnvtNXr06AE8K+GMjY3Fx8dHGkIg/LvqMFZWEF5FNbIFe7169aTmfe3bt2fRokUoFAqePHlCTk4OUVFR2Nra4urqSmxsLNeuXZMa/70sFS8+27Vrh1qtxtraml9++YUpU6ZgamqKlZUVDRo04MGDB7i6uuLj4yOCH4LwEhkYGPD5558ze/ZsmjZtKo0BrY7BD6BKgx/65//qq6+YPn06n3zyCe3bt5fleV68kD5w4AD37t3jnXfewcjIiJCQEMzNzalTpw5JSUm0bt2anj17vlKZcQ8fPmTbtm1YW1vj4eGBoaEhLi4umJub4+LiIp0rzp8/T1paGhqN5rkAiBzBjx9++AG1Wo2vry/9+vUjMjISc3NzmjdvTtOmTTl48CDXr1+nXr16LFq0iPLycgwMDMSu5l+QXMcitVpNREQEvXr1Av41NWTIkCEA+Pj4kJOTw4oVK1i4cCHu7u7PTfITqk5ZWRmFhYUcPHiQt99+GwMDAyIiIigvL2fSpEk0bdqU7OxsDh8+zDvvvMNrr71W1Uuu9hQKBX5+fiI7ThAqWY39xLVo0YIpU6ZQUlIiHVisrKxo3bo13t7eODk5AWBra8vChQufq3P//5WWlkZgYCC3bt0CwN7enszMTKytrWnSpAm7du2Salz37t3L/PnzcXJykn3agyC8ivQp3Rs3bpQ9pbsmqFOnDtu3b5ct+AHPX0hnZ2fTu3dv6tWrx/79+2natCnt27fn0qVLzJ07l8OHD+Pq6vrKBD9OnTrF1atXadeuHW+88Qb/+Mc/yMvLw9bWVhoba2pqSlFRkTTRKCAgQNYMi7KyMgIDAykvL+dvf/sb7dq1o2vXrvTs2ZO0tDSuXbuGUqmkf//+aLVaQkNDycvLQ6FQiOCHILlx4wZKpZKhQ4eSm5tLeHg4/fv3p1u3bqSkpPDkyRMARowYga2tLVu3bgWoNpPeXkUVewi1a9eOLl260KxZM/bu3Uu9evVo3bo1NjY2GBsbk5GRwbp166hVq5YYcf0niOCHIFS+GlkCU9H69esxNjaWphhUhqSkJBYsWICHhwe+vr44OTlRUlJCeHg4vXr14tixY7i4uDBo0CCys7MpKirC2dm50tYnCK+iqi4vedVVzIpLSUkhIiICKysr0tPTmT59Orm5uZw8eRIbGxuGDh3Ko0ePyMjIeOXSgkNCQjhy5Aiff/459vb2BAUFER0djVarZcSIERgbG+Po6EhZWRlqtZq2bdtiZGQk++SAH374AX9/f+rUqSONK3769CnR0dFER0czbtw4HBwcuHPnDkVFRaIZtPCcrKwsDh48iL29PSNGjOD06dMkJyfTvXt3WrRowdq1a2nYsCF+fn6YmZlJfZBEAK3qpKWlceTIEQYMGIC7uztqtZpVq1bRvXt3VCoVarWaCRMmsGfPHnJyclCpVHTs2FHWprmCIAgvQ40PO06bNo1bt25x6NChSntONzc3Zs6cSVZWFlZWVuzYsYPz589TWlqKo6MjAwYMICYmhqioKOzs7ETwQxAqgQh+VJ3fy4qrU6cOzs7O7Ny5EwcHB7p160ZGRgbBwcHUq1fvlQp+6Hda9TvigYGBaDQa/P39adu2LUVFRZiYmJCQkMDBgwdJSUmRJuXIHfzIz88nKSmJvLw84F83pbVq1aJNmzZYWVnx888/U1hYSOPGjUXwQ/g3dnZ2dO3alfz8fKKioujTpw/Ozs5cvHiRe/fuMWnSJOLj4zlz5gylpaWidKoaKCkp4dy5cwQFBREZGcnjx4/x9/cnLS2Ndu3aUVBQwNGjRxk1ahQzZsxg5syZIvghCMJfQo0PgBgYGLB06VJZJxn8lu7du+Pt7U1cXBwBAQEUFhZy69Yt7t27R9OmTRk7diwdO3as1DUJgiBUhf90Ie3p6YlWq+XgwYO4ubnRtWtX2rZtW9VLrnQKhYKSkhIA3nrrLRo0aMC6deswMDDgzTffpGXLljx+/Jjp06fz8ccf4+fn99zPysnS0pLOnTsTERHB06dPUSgUFBcXA88aDdvb2+Pm5kZZWZms6xD+WjIyMqSgmZGREZ6enhQVFXHmzBni4+Pp27cvFhYWREREUFZWxoQJE7C3txflE9XEH9nMu3z5MpGRkcCzMnNBEIS/ghofAIFnO79VEWx47733iI+P5+LFi0ybNo25c+dib2+PQqHA1dVVnOQFQXgl/LcLaV9fX+Li4oiJicHLywtHR8eqXnKlSE9PJywsDHhWOrl582aCgoJISUnh/fffR6vVsnXrViwsLPD39+fy5ctkZ2dLgYaK9fly8/b2prS0lNOnTwNgYmICIGV+DBs27JUcUSz8voKCAj7++GPp66CgILKysmjRogXnzp3jwYMH+Pr6UlRURFhYGM7Ozs+NcBaq3n/bzHv77bfp3LlzVS9TEAThT6nxPUCqmn6s5OTJk1+pdG5BEIQX/fTTT9SqVYvhw4ezY8cOkpOT+eCDD2jcuDGpqak4Ozu/MoHhsrIyjhw5gkajoWvXrnz99deMHTuW5ORktFotLVu2xMvLi4ULF9K9e3eGDh1KcXGxFHioCleuXOHMmTNotVq8vLw4e/YsTZo0qdQeW8JfS0hICBcuXMDW1paysjI+/PBDNBoNJ0+e5NGjR4wYMYLi4mLMzMxEAK2a0ul0zJs3j/79+9O7d2+ys7OxsLAQzWkFQfjLEgGQSqBSqfj0008JDAzE2NhY1LUKgvBKEhfSz4uPj2f9+vX4+vpSVlbG8OHD0Wg0xMfHc+nSJd59912SkpI4ceIEH374YbWYFvD06VNOnDiBmZkZSqVSGmcqCL9ny5YtXLlyhXXr1kmPZWRkEBoaipOTE3379q3C1Ql/hNjMEwShJhEBkEoiJlAIgiC82hfS5eXlaLVaTE1Npcd27NjBnTt3UKvVBAQEYG9vT15eHqtXr2bKlCk4ODhU4YoF4f+fTqdj/vz5+Pj4MGDAAOnx7Oxs7OzsqnBlwp8hNvMEQagpqn476RUhgh+CIAjPjoVLlixhw4YNaLVaXpUYvE6nY8OGDezevZvz589Ljzs4OGBlZUXnzp05evQoRUVFlJSUoNPpnuvx8aq8TkLNY2BgwKJFizh8+DCxsbHS4yL48ddiY2NDYGAgSqVSBD8EQfhLExkggiAIQqV7FbPiCgsLiY2NZdeuXbz22mt06dIFMzMzPvvsMwYOHEheXh6JiYmo1WqGDx9Ot27dqnrJgvDSiAwCQRAEoToQARBBEARBqERpaWmcPHmSp0+f4unpSXl5OQ8fPmTMmDE8fvwYIyMjaaSkTqcTN4pCjfEqBj4FQRCE6kUEQARBEAShkhUUFHD//n3Wr1+PoaEhZWVlrFy5Ugp2iMCHIAiCIAjCyycCIIIgCIJQyfQBjsePH3P58mVSU1OZNm1aVS9LEARBEAShRhMBEEEQBEGoAvogSMVsD5H5IQiCIAiCIB8RABEEQRCEakAEPwRBEARBEOQlxuAKgiAIQjUggh+CIAiCIAjyEgEQQRAEQRAEQRAEQRBqPBEAEQRBEARBEARBEAShxhMBEEEQBEEQBEEQBEEQajwRABEEQRAEQRAEQRAEocYTARBBEARBEARBEARBEGo8EQARBEEQBEEQBEEQBKHGEwEQQRAEQRAEQRAEQRBqPKOqXoAgCIIgCC9PTk4OW7duJSEhAZ1OR7du3Zg4cSIHDhwgNDQUrVaLp6cnkyZNonbt2mRnZ/PBBx8wffp09uzZg0ajwd/fHxcXFzZs2EBOTg49evRg8uTJAISFhREaGoqzszPh4eHUqVOHyZMn07p1awDOnDnD4cOHefz4MZaWlgwdOhRfX18Abt68ybp16/Dz8+PQoUMoFAr8/f3p3bs3KSkpLFu2jB9//BGF4tn+THR0NPv27WPFihVV82IKgiAIglCjiAwQQRAEQaghysvLWbZsGXXr1uX7779nw4YNdOvWjbCwMMLCwli0aBGBgYFoNBo2b9783M8mJyezZs0aZs2axbZt29i/fz8LFixg5cqVnD9/nvj4+Oe+t379+mzevJlRo0bx7bffolarAbCysmLu3Lls27aNGTNmsG3bNlJTU6WfzcvLo6ioiA0bNjBt2jQ2b96MWq3G1dUVc3Nzrl69Kn1veHg4Pj4+Mr9qgiAIgiC8KkQARBAEQRBqiJSUFFQqFePGjcPU1BSlUomHhweRkZG8/vrr1K9fH1NTU8aMGUNUVBRlZWXSz44cORKlUknbtm0xMTGhe/fuWFlZYWNjg4eHB2lpadL3WllZ4efnh5GREV27dsXBwYHY2FgAvLy8sLe3x8DAgBYtWtCmTRsSExOlnzU0NGTkyJEYGRnh5eWFqakpWVlZAPTs2ZOIiAgA1Go1V69epXv37pXx0gmCIAiC8AoQJTCCIAiCUEPk5ORQr149DA0Nn3s8NzeXevXqSV/XrVuXsrIynjx5Ij1mZWUl/btSqfy3rzUajfS1jY0NBgYG0tf16tVDpVIBcOXKFfbt20dWVhY6nY7i4mIaNWokfa+FhcVz6zMxMZF+t4+PD7Nnz0aj0RAVFUXz5s2pU6fO//x6CIIgCIIgVCQyQARBEAShhqhbty45OTnPZXYA1KlTh0ePHklf5+TkYGho+FyQ489QqVTodLrnfp+NjQ0lJSV89913DB48mI0bN7J161batWv3h3+vjY0Nbm5uxMTEEBERQY8ePf6n9QmCIAiCIPwWEQARBEEQhBrC1dWVOnXqsHPnTjQaDVqtlsTERLp160ZwcDDZ2dloNBp27dpFly5d/i1T5I968uQJx48fp7S0lPPnz3Pv3j3atWtHaWkpJSUlWFpaYmhoyJUrV7h27dqf+t0+Pj4cOnSIu3fv0qlTp/9pfYIgCIIgCL9FlMAIgiAIQg2hUCiYO3cuW7ZsYcaMGRgYGNCtWzfeeecdcnNzWbRoEVqtlrZt2zJp0qT/+XmaNWvG/fv3mTx5MtbW1syZMwcLCwsAJk6cyKpVqygpKaF9+/Z06NDhT/3ujh07smnTJry9vTExMfmf1ygIgiAIgvAiA13FHFZBEARBEIT/QD8Gd8mSJbI9x8yZM3nvvfdo06aNbM8hCIIgCMKrR5TACIIgCIJQbVy4cAGAVq1aVfFKBEEQBEGoaUQJjCAIgiAI1cLixYvJzMzkgw8+QKEQezSCIAiCILxcogRGEARBEARBEARBEIQaT2yvCIIgCIIgCIIgCIJQ44kAiCAIgiAIgiAIgiAINZ4IgAiCIAiCIAiCIAiCUOOJAIggCIIgCIIgCIIgCDWeCIAIgiAIgiAIgiAIglDjiQCIIAiCIAiCIAiCIAg13v8DKOaVpPQ7JZcAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "ax=sns.relplot(x='company',y='Price',data=car,hue='fuel_type',size='year',height=7,aspect=2)\n", + "ax.set_xticklabels(rotation=40,ha='right')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Extracting Training Data" + ] + }, + { + "cell_type": "code", + "execution_count": 30, + "metadata": {}, + "outputs": [], + "source": [ + "X=car[['name','company','year','kms_driven','fuel_type']]\n", + "y=car['Price']" + ] + }, + { + "cell_type": "code", + "execution_count": 31, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
namecompanyyearkms_drivenfuel_type
0Hyundai Santro XingHyundai200745000Petrol
1Mahindra Jeep CL550Mahindra200640Diesel
2Hyundai Grand i10Hyundai201428000Petrol
3Ford EcoSport TitaniumFord201436000Diesel
4Ford FigoFord201241000Diesel
..................
811Maruti Suzuki RitzMaruti201150000Petrol
812Tata Indica V2Tata200930000Diesel
813Toyota Corolla AltisToyota2009132000Petrol
814Tata Zest XMTata201827000Diesel
815Mahindra Quanto C8Mahindra201340000Diesel
\n", + "

815 rows × 5 columns

\n", + "
" + ], + "text/plain": [ + " name company year kms_driven fuel_type\n", + "0 Hyundai Santro Xing Hyundai 2007 45000 Petrol\n", + "1 Mahindra Jeep CL550 Mahindra 2006 40 Diesel\n", + "2 Hyundai Grand i10 Hyundai 2014 28000 Petrol\n", + "3 Ford EcoSport Titanium Ford 2014 36000 Diesel\n", + "4 Ford Figo Ford 2012 41000 Diesel\n", + ".. ... ... ... ... ...\n", + "811 Maruti Suzuki Ritz Maruti 2011 50000 Petrol\n", + "812 Tata Indica V2 Tata 2009 30000 Diesel\n", + "813 Toyota Corolla Altis Toyota 2009 132000 Petrol\n", + "814 Tata Zest XM Tata 2018 27000 Diesel\n", + "815 Mahindra Quanto C8 Mahindra 2013 40000 Diesel\n", + "\n", + "[815 rows x 5 columns]" + ] + }, + "execution_count": 31, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "X" + ] + }, + { + "cell_type": "code", + "execution_count": 32, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "(815,)" + ] + }, + "execution_count": 32, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "y.shape" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Applying Train Test Split" + ] + }, + { + "cell_type": "code", + "execution_count": 33, + "metadata": {}, + "outputs": [], + "source": [ + "from sklearn.model_selection import train_test_split\n", + "X_train,X_test,y_train,y_test=train_test_split(X,y,test_size=0.2)" + ] + }, + { + "cell_type": "code", + "execution_count": 34, + "metadata": {}, + "outputs": [], + "source": [ + "from sklearn.linear_model import LinearRegression" + ] + }, + { + "cell_type": "code", + "execution_count": 35, + "metadata": {}, + "outputs": [], + "source": [ + "from sklearn.preprocessing import OneHotEncoder\n", + "from sklearn.compose import make_column_transformer\n", + "from sklearn.pipeline import make_pipeline\n", + "from sklearn.metrics import r2_score" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Creating an OneHotEncoder object to contain all the possible categories" + ] + }, + { + "cell_type": "code", + "execution_count": 36, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "OneHotEncoder()" + ] + }, + "execution_count": 36, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "ohe=OneHotEncoder()\n", + "ohe.fit(X[['name','company','fuel_type']])" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Creating a column transformer to transform categorical columns" + ] + }, + { + "cell_type": "code", + "execution_count": 37, + "metadata": {}, + "outputs": [], + "source": [ + "column_trans=make_column_transformer((OneHotEncoder(categories=ohe.categories_),['name','company','fuel_type']),\n", + " remainder='passthrough')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Linear Regression Model" + ] + }, + { + "cell_type": "code", + "execution_count": 38, + "metadata": {}, + "outputs": [], + "source": [ + "lr=LinearRegression()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Making a pipeline" + ] + }, + { + "cell_type": "code", + "execution_count": 39, + "metadata": {}, + "outputs": [], + "source": [ + "pipe=make_pipeline(column_trans,lr)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Fitting the model" + ] + }, + { + "cell_type": "code", + "execution_count": 40, + "metadata": { + "scrolled": true + }, + "outputs": [ + { + "data": { + "text/plain": [ + "Pipeline(steps=[('columntransformer',\n", + " ColumnTransformer(remainder='passthrough',\n", + " transformers=[('onehotencoder',\n", + " OneHotEncoder(categories=[array(['Audi A3 Cabriolet', 'Audi A4 1.8', 'Audi A4 2.0', 'Audi A6 2.0',\n", + " 'Audi A8', 'Audi Q3 2.0', 'Audi Q5 2.0', 'Audi Q7', 'BMW 3 Series',\n", + " 'BMW 5 Series', 'BMW 7 Series', 'BMW X1', 'BMW X1 sDrive20d',\n", + " 'BMW X1 xDrive20d', 'Chevrolet Beat', 'Chevrolet Beat...\n", + " array(['Audi', 'BMW', 'Chevrolet', 'Datsun', 'Fiat', 'Force', 'Ford',\n", + " 'Hindustan', 'Honda', 'Hyundai', 'Jaguar', 'Jeep', 'Land',\n", + " 'Mahindra', 'Maruti', 'Mercedes', 'Mini', 'Mitsubishi', 'Nissan',\n", + " 'Renault', 'Skoda', 'Tata', 'Toyota', 'Volkswagen', 'Volvo'],\n", + " dtype=object),\n", + " array(['Diesel', 'LPG', 'Petrol'], dtype=object)]),\n", + " ['name', 'company',\n", + " 'fuel_type'])])),\n", + " ('linearregression', LinearRegression())])" + ] + }, + "execution_count": 40, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "pipe.fit(X_train,y_train)" + ] + }, + { + "cell_type": "code", + "execution_count": 41, + "metadata": {}, + "outputs": [], + "source": [ + "y_pred=pipe.predict(X_test)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Checking R2 Score" + ] + }, + { + "cell_type": "code", + "execution_count": 42, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "0.6655226435284546" + ] + }, + "execution_count": 42, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "r2_score(y_test,y_pred)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Finding the model with a random state of TrainTestSplit where the model was found to give almost 0.92 as r2_score" + ] + }, + { + "cell_type": "code", + "execution_count": 44, + "metadata": {}, + "outputs": [], + "source": [ + "# scores=[]\n", + "# for i in range(1000):\n", + "# X_train,X_test,y_train,y_test=train_test_split(X,y,test_size=0.1,random_state=i)\n", + "# lr=LinearRegression()\n", + "# pipe=make_pipeline(column_trans,lr)\n", + "# pipe.fit(X_train,y_train)\n", + "# y_pred=pipe.predict(X_test)\n", + "# scores.append(r2_score(y_test,y_pred))" + ] + }, + { + "cell_type": "code", + "execution_count": 45, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "48" + ] + }, + "execution_count": 45, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "np.argmax(scores)" + ] + }, + { + "cell_type": "code", + "execution_count": 46, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "0.8807751763571077" + ] + }, + "execution_count": 46, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "scores[np.argmax(scores)]" + ] + }, + { + "cell_type": "code", + "execution_count": 48, + "metadata": {}, + "outputs": [], + "source": [ + "# pipe.predict(pd.DataFrame(columns=X_test.columns,data=np.array(['Maruti Suzuki Swift','Maruti',2019,100,'Petrol']).reshape(1,5)))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### The best model is found at a certain random state " + ] + }, + { + "cell_type": "code", + "execution_count": 49, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "0.8807751763571077" + ] + }, + "execution_count": 49, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "X_train,X_test,y_train,y_test=train_test_split(X,y,test_size=0.1,random_state=np.argmax(scores))\n", + "lr=LinearRegression()\n", + "pipe=make_pipeline(column_trans,lr)\n", + "pipe.fit(X_train,y_train)\n", + "y_pred=pipe.predict(X_test)\n", + "r2_score(y_test,y_pred)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "import pickle" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# pickle.dump(pipe,open('LinearRegressionModel.pkl','wb'))" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# pipe.predict(pd.DataFrame(columns=['name','company','year','kms_driven','fuel_type'],data=np.array(['Maruti Suzuki Swift','Maruti',2019,100,'Petrol']).reshape(1,5)))" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# pipe.steps[0][1].transformers[0][1].categories[0]" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# using polynomial regression" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "from sklearn.preprocessing import PolynomialFeatures\n", + "poly = PolynomialFeatures()" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.7.9" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/.ipynb_checkpoints/Quikr-Car-Price-Predictor-checkpoint.ipynb b/.ipynb_checkpoints/Quikr-Car-Price-Predictor-checkpoint.ipynb new file mode 100644 index 0000000..3921b08 --- /dev/null +++ b/.ipynb_checkpoints/Quikr-Car-Price-Predictor-checkpoint.ipynb @@ -0,0 +1,1829 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 1, + "id": "28dc9f47", + "metadata": {}, + "outputs": [], + "source": [ + "import numpy as np\n", + "import pandas as pd\n", + "import matplotlib.pyplot as plt\n", + "import seaborn as sns\n", + "from sklearn.model_selection import train_test_split\n", + "from sklearn.linear_model import LinearRegression\n", + "from sklearn.metrics import r2_score\n", + "from sklearn.preprocessing import OneHotEncoder\n", + "from sklearn.compose import make_column_transformer\n", + "from sklearn.pipeline import make_pipeline\n", + "import pickle" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "id": "fe39eacb", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "(892, 6)\n" + ] + }, + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
namecompanyyearPricekms_drivenfuel_type
0Hyundai Santro Xing XO eRLX Euro IIIHyundai200780,00045,000 kmsPetrol
1Mahindra Jeep CL550 MDIMahindra20064,25,00040 kmsDiesel
2Maruti Suzuki Alto 800 VxiMaruti2018Ask For Price22,000 kmsPetrol
3Hyundai Grand i10 Magna 1.2 Kappa VTVTHyundai20143,25,00028,000 kmsPetrol
4Ford EcoSport Titanium 1.5L TDCiFord20145,75,00036,000 kmsDiesel
\n", + "
" + ], + "text/plain": [ + " name company year Price \\\n", + "0 Hyundai Santro Xing XO eRLX Euro III Hyundai 2007 80,000 \n", + "1 Mahindra Jeep CL550 MDI Mahindra 2006 4,25,000 \n", + "2 Maruti Suzuki Alto 800 Vxi Maruti 2018 Ask For Price \n", + "3 Hyundai Grand i10 Magna 1.2 Kappa VTVT Hyundai 2014 3,25,000 \n", + "4 Ford EcoSport Titanium 1.5L TDCi Ford 2014 5,75,000 \n", + "\n", + " kms_driven fuel_type \n", + "0 45,000 kms Petrol \n", + "1 40 kms Diesel \n", + "2 22,000 kms Petrol \n", + "3 28,000 kms Petrol \n", + "4 36,000 kms Diesel " + ] + }, + "execution_count": 2, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "car = pd.read_csv('quikr_car.csv')\n", + "print(car.shape)\n", + "car.head()" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "id": "00d95862", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "RangeIndex: 892 entries, 0 to 891\n", + "Data columns (total 6 columns):\n", + " # Column Non-Null Count Dtype \n", + "--- ------ -------------- ----- \n", + " 0 name 892 non-null object\n", + " 1 company 892 non-null object\n", + " 2 year 892 non-null object\n", + " 3 Price 892 non-null object\n", + " 4 kms_driven 840 non-null object\n", + " 5 fuel_type 837 non-null object\n", + "dtypes: object(6)\n", + "memory usage: 41.9+ KB\n" + ] + } + ], + "source": [ + "car.info()" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "id": "08c44a8e", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array(['2007', '2006', '2018', '2014', '2015', '2012', '2013', '2016',\n", + " '2010', '2017', '2008', '2011', '2019', '2009', '2005', '2000',\n", + " '...', '150k', 'TOUR', '2003', 'r 15', '2004', 'Zest', '/-Rs',\n", + " 'sale', '1995', 'ara)', '2002', 'SELL', '2001', 'tion', 'odel',\n", + " '2 bs', 'arry', 'Eon', 'o...', 'ture', 'emi', 'car', 'able', 'no.',\n", + " 'd...', 'SALE', 'digo', 'sell', 'd Ex', 'n...', 'e...', 'D...',\n", + " ', Ac', 'go .', 'k...', 'o c4', 'zire', 'cent', 'Sumo', 'cab',\n", + " 't xe', 'EV2', 'r...', 'zest'], dtype=object)" + ] + }, + "execution_count": 4, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "car['year'].unique()" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "id": "536d0a84", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array(['80,000', '4,25,000', 'Ask For Price', '3,25,000', '5,75,000',\n", + " '1,75,000', '1,90,000', '8,30,000', '2,50,000', '1,82,000',\n", + " '3,15,000', '4,15,000', '3,20,000', '10,00,000', '5,00,000',\n", + " '3,50,000', '1,60,000', '3,10,000', '75,000', '1,00,000',\n", + " '2,90,000', '95,000', '1,80,000', '3,85,000', '1,05,000',\n", + " '6,50,000', '6,89,999', '4,48,000', '5,49,000', '5,01,000',\n", + " '4,89,999', '2,80,000', '3,49,999', '2,84,999', '3,45,000',\n", + " '4,99,999', '2,35,000', '2,49,999', '14,75,000', '3,95,000',\n", + " '2,20,000', '1,70,000', '85,000', '2,00,000', '5,70,000',\n", + " '1,10,000', '4,48,999', '18,91,111', '1,59,500', '3,44,999',\n", + " '4,49,999', '8,65,000', '6,99,000', '3,75,000', '2,24,999',\n", + " '12,00,000', '1,95,000', '3,51,000', '2,40,000', '90,000',\n", + " '1,55,000', '6,00,000', '1,89,500', '2,10,000', '3,90,000',\n", + " '1,35,000', '16,00,000', '7,01,000', '2,65,000', '5,25,000',\n", + " '3,72,000', '6,35,000', '5,50,000', '4,85,000', '3,29,500',\n", + " '2,51,111', '5,69,999', '69,999', '2,99,999', '3,99,999',\n", + " '4,50,000', '2,70,000', '1,58,400', '1,79,000', '1,25,000',\n", + " '2,99,000', '1,50,000', '2,75,000', '2,85,000', '3,40,000',\n", + " '70,000', '2,89,999', '8,49,999', '7,49,999', '2,74,999',\n", + " '9,84,999', '5,99,999', '2,44,999', '4,74,999', '2,45,000',\n", + " '1,69,500', '3,70,000', '1,68,000', '1,45,000', '98,500',\n", + " '2,09,000', '1,85,000', '9,00,000', '6,99,999', '1,99,999',\n", + " '5,44,999', '1,99,000', '5,40,000', '49,000', '7,00,000', '55,000',\n", + " '8,95,000', '3,55,000', '5,65,000', '3,65,000', '40,000',\n", + " '4,00,000', '3,30,000', '5,80,000', '3,79,000', '2,19,000',\n", + " '5,19,000', '7,30,000', '20,00,000', '21,00,000', '14,00,000',\n", + " '3,11,000', '8,55,000', '5,35,000', '1,78,000', '3,00,000',\n", + " '2,55,000', '5,49,999', '3,80,000', '57,000', '4,10,000',\n", + " '2,25,000', '1,20,000', '59,000', '5,99,000', '6,75,000', '72,500',\n", + " '6,10,000', '2,30,000', '5,20,000', '5,24,999', '4,24,999',\n", + " '6,44,999', '5,84,999', '7,99,999', '4,44,999', '6,49,999',\n", + " '9,44,999', '5,74,999', '3,74,999', '1,30,000', '4,01,000',\n", + " '13,50,000', '1,74,999', '2,39,999', '99,999', '3,24,999',\n", + " '10,74,999', '11,30,000', '1,49,000', '7,70,000', '30,000',\n", + " '3,35,000', '3,99,000', '65,000', '1,69,999', '1,65,000',\n", + " '5,60,000', '9,50,000', '7,15,000', '45,000', '9,40,000',\n", + " '1,55,555', '15,00,000', '4,95,000', '8,00,000', '12,99,000',\n", + " '5,30,000', '14,99,000', '32,000', '4,05,000', '7,60,000',\n", + " '7,50,000', '4,19,000', '1,40,000', '15,40,000', '1,23,000',\n", + " '4,98,000', '4,80,000', '4,88,000', '15,25,000', '5,48,900',\n", + " '7,25,000', '99,000', '52,000', '28,00,000', '4,99,000',\n", + " '3,81,000', '2,78,000', '6,90,000', '2,60,000', '90,001',\n", + " '1,15,000', '15,99,000', '1,59,000', '51,999', '2,15,000',\n", + " '35,000', '11,50,000', '2,69,000', '60,000', '4,30,000',\n", + " '85,00,003', '4,01,919', '4,90,000', '4,24,000', '2,05,000',\n", + " '5,49,900', '3,71,500', '4,35,000', '1,89,700', '3,89,700',\n", + " '3,60,000', '2,95,000', '1,14,990', '10,65,000', '4,70,000',\n", + " '48,000', '1,88,000', '4,65,000', '1,79,999', '21,90,000',\n", + " '23,90,000', '10,75,000', '4,75,000', '10,25,000', '6,15,000',\n", + " '19,00,000', '14,90,000', '15,10,000', '18,50,000', '7,90,000',\n", + " '17,25,000', '12,25,000', '68,000', '9,70,000', '31,00,000',\n", + " '8,99,000', '88,000', '53,000', '5,68,500', '71,000', '5,90,000',\n", + " '7,95,000', '42,000', '1,89,000', '1,62,000', '35,999',\n", + " '29,00,000', '39,999', '50,500', '5,10,000', '8,60,000',\n", + " '5,00,001'], dtype=object)" + ] + }, + "execution_count": 5, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "car['Price'].unique()" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "id": "8bf9b37d", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array(['45,000 kms', '40 kms', '22,000 kms', '28,000 kms', '36,000 kms',\n", + " '59,000 kms', '41,000 kms', '25,000 kms', '24,530 kms',\n", + " '60,000 kms', '30,000 kms', '32,000 kms', '48,660 kms',\n", + " '4,000 kms', '16,934 kms', '43,000 kms', '35,550 kms',\n", + " '39,522 kms', '39,000 kms', '55,000 kms', '72,000 kms',\n", + " '15,975 kms', '70,000 kms', '23,452 kms', '35,522 kms',\n", + " '48,508 kms', '15,487 kms', '82,000 kms', '20,000 kms',\n", + " '68,000 kms', '38,000 kms', '27,000 kms', '33,000 kms',\n", + " '46,000 kms', '16,000 kms', '47,000 kms', '35,000 kms',\n", + " '30,874 kms', '15,000 kms', '29,685 kms', '1,30,000 kms',\n", + " '19,000 kms', nan, '54,000 kms', '13,000 kms', '38,200 kms',\n", + " '50,000 kms', '13,500 kms', '3,600 kms', '45,863 kms',\n", + " '60,500 kms', '12,500 kms', '18,000 kms', '13,349 kms',\n", + " '29,000 kms', '44,000 kms', '42,000 kms', '14,000 kms',\n", + " '49,000 kms', '36,200 kms', '51,000 kms', '1,04,000 kms',\n", + " '33,333 kms', '33,600 kms', '5,600 kms', '7,500 kms', '26,000 kms',\n", + " '24,330 kms', '65,480 kms', '28,028 kms', '2,00,000 kms',\n", + " '99,000 kms', '2,800 kms', '21,000 kms', '11,000 kms',\n", + " '66,000 kms', '3,000 kms', '7,000 kms', '38,500 kms', '37,200 kms',\n", + " '43,200 kms', '24,800 kms', '45,872 kms', '40,000 kms',\n", + " '11,400 kms', '97,200 kms', '52,000 kms', '31,000 kms',\n", + " '1,75,430 kms', '37,000 kms', '65,000 kms', '3,350 kms',\n", + " '75,000 kms', '62,000 kms', '73,000 kms', '2,200 kms',\n", + " '54,870 kms', '34,580 kms', '97,000 kms', '60 kms', '80,200 kms',\n", + " '3,200 kms', '0,000 kms', '5,000 kms', '588 kms', '71,200 kms',\n", + " '1,75,400 kms', '9,300 kms', '56,758 kms', '10,000 kms',\n", + " '56,450 kms', '56,000 kms', '32,700 kms', '9,000 kms', '73 kms',\n", + " '1,60,000 kms', '84,000 kms', '58,559 kms', '57,000 kms',\n", + " '1,70,000 kms', '80,000 kms', '6,821 kms', '23,000 kms',\n", + " '34,000 kms', '1,800 kms', '4,00,000 kms', '48,000 kms',\n", + " '90,000 kms', '12,000 kms', '69,900 kms', '1,66,000 kms',\n", + " '122 kms', '0 kms', '24,000 kms', '36,469 kms', '7,800 kms',\n", + " '24,695 kms', '15,141 kms', '59,910 kms', '1,00,000 kms',\n", + " '4,500 kms', '1,29,000 kms', '300 kms', '1,31,000 kms',\n", + " '1,11,111 kms', '59,466 kms', '25,500 kms', '44,005 kms',\n", + " '2,110 kms', '43,222 kms', '1,00,200 kms', '65 kms',\n", + " '1,40,000 kms', '1,03,553 kms', '58,000 kms', '1,20,000 kms',\n", + " '49,800 kms', '100 kms', '81,876 kms', '6,020 kms', '55,700 kms',\n", + " '18,500 kms', '1,80,000 kms', '53,000 kms', '35,500 kms',\n", + " '22,134 kms', '1,000 kms', '8,500 kms', '87,000 kms', '6,000 kms',\n", + " '15,574 kms', '8,000 kms', '55,800 kms', '56,400 kms',\n", + " '72,160 kms', '11,500 kms', '1,33,000 kms', '2,000 kms',\n", + " '88,000 kms', '65,422 kms', '1,17,000 kms', '1,50,000 kms',\n", + " '10,750 kms', '6,800 kms', '5 kms', '9,800 kms', '57,923 kms',\n", + " '30,201 kms', '6,200 kms', '37,518 kms', '24,652 kms', '383 kms',\n", + " '95,000 kms', '3,528 kms', '52,500 kms', '47,900 kms',\n", + " '52,800 kms', '1,95,000 kms', '48,008 kms', '48,247 kms',\n", + " '9,400 kms', '64,000 kms', '2,137 kms', '10,544 kms', '49,500 kms',\n", + " '1,47,000 kms', '90,001 kms', '48,006 kms', '74,000 kms',\n", + " '85,000 kms', '29,500 kms', '39,700 kms', '67,000 kms',\n", + " '19,336 kms', '60,105 kms', '45,933 kms', '1,02,563 kms',\n", + " '28,600 kms', '41,800 kms', '1,16,000 kms', '42,590 kms',\n", + " '7,400 kms', '54,500 kms', '76,000 kms', '00 kms', '11,523 kms',\n", + " '38,600 kms', '95,500 kms', '37,458 kms', '85,960 kms',\n", + " '12,516 kms', '30,600 kms', '2,550 kms', '62,500 kms',\n", + " '69,000 kms', '28,400 kms', '68,485 kms', '3,500 kms',\n", + " '85,455 kms', '63,000 kms', '1,600 kms', '77,000 kms',\n", + " '26,500 kms', '2,875 kms', '13,900 kms', '1,500 kms', '2,450 kms',\n", + " '1,625 kms', '33,400 kms', '60,123 kms', '38,900 kms',\n", + " '1,37,495 kms', '91,200 kms', '1,46,000 kms', '1,00,800 kms',\n", + " '2,100 kms', '2,500 kms', '1,32,000 kms', 'Petrol'], dtype=object)" + ] + }, + "execution_count": 6, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "car['kms_driven'].unique()" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "id": "6b1e60ef", + "metadata": { + "scrolled": true + }, + "outputs": [ + { + "data": { + "text/plain": [ + "array(['Petrol', 'Diesel', nan, 'LPG'], dtype=object)" + ] + }, + "execution_count": 7, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "car['fuel_type'].unique()" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "id": "31a78278", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array(['Hyundai Santro Xing XO eRLX Euro III', 'Mahindra Jeep CL550 MDI',\n", + " 'Maruti Suzuki Alto 800 Vxi',\n", + " 'Hyundai Grand i10 Magna 1.2 Kappa VTVT',\n", + " 'Ford EcoSport Titanium 1.5L TDCi', 'Ford Figo', 'Hyundai Eon',\n", + " 'Ford EcoSport Ambiente 1.5L TDCi',\n", + " 'Maruti Suzuki Alto K10 VXi AMT', 'Skoda Fabia Classic 1.2 MPI',\n", + " 'Maruti Suzuki Stingray VXi', 'Hyundai Elite i20 Magna 1.2',\n", + " 'Mahindra Scorpio SLE BS IV', 'Audi A8', 'Audi Q7',\n", + " 'Mahindra Scorpio S10', 'Maruti Suzuki Alto 800',\n", + " 'Hyundai i20 Sportz 1.2', 'Maruti Suzuki Alto 800 Lx',\n", + " 'Maruti Suzuki Vitara Brezza ZDi', 'Maruti Suzuki Alto LX',\n", + " 'Mahindra Bolero DI', 'Maruti Suzuki Swift Dzire ZDi',\n", + " 'Mahindra Scorpio S10 4WD', 'Maruti Suzuki Swift Vdi BSIII',\n", + " 'Maruti Suzuki Wagon R VXi BS III',\n", + " 'Maruti Suzuki Wagon R VXi Minor',\n", + " 'Toyota Innova 2.0 G 8 STR BS IV', 'Renault Lodgy 85 PS RXL',\n", + " 'Skoda Yeti Ambition 2.0 TDI CR 4x2',\n", + " 'Maruti Suzuki Baleno Delta 1.2',\n", + " 'Renault Duster 110 PS RxZ Diesel Plus',\n", + " 'Renault Duster 85 PS RxE Diesel', 'Honda City 1.5 S MT',\n", + " 'Maruti Suzuki Dzire', 'Honda Amaze', 'Honda Amaze 1.5 SX i DTEC',\n", + " 'Honda City', 'Datsun Redi GO S', 'Maruti Suzuki SX4 ZXI MT',\n", + " 'Mitsubishi Pajero Sport Limited Edition',\n", + " 'Maruti Suzuki Swift VXi 1.2 ABS BS IV', 'Honda City ZX CVT',\n", + " 'Maruti Suzuki Wagon R LX BS IV', 'Tata Indigo eCS LS CR4 BS IV',\n", + " 'Volkswagen Polo Highline Exquisite P',\n", + " 'I want to sell my car Tata Zest', 'Chevrolet Spark LS 1.0',\n", + " 'Renault Duster 110PS Diesel RxZ', 'Mini Cooper S 1.6',\n", + " 'Skoda Fabia 1.2L Diesel Ambiente', 'Renault Duster',\n", + " 'Mahindra Scorpio S4', 'Mahindra Scorpio VLX 2WD BS IV',\n", + " 'Mahindra Quanto C8', 'Ford EcoSport', 'Honda Brio',\n", + " 'Volkswagen Vento Highline Plus 1.5 Diesel AT',\n", + " 'Hyundai i20 Magna', 'Toyota Corolla Altis Diesel D4DG',\n", + " 'Hyundai Verna Transform SX VTVT',\n", + " 'Toyota Corolla Altis Petrol Ltd', 'Honda City 1.5 EXi New',\n", + " 'Skoda Fabia 1.2L Diesel Elegance', 'BMW 3 Series 320i',\n", + " 'Maruti Suzuki A Star Lxi', 'Toyota Etios GD',\n", + " 'Ford Figo Diesel EXI Option',\n", + " 'Maruti Suzuki Swift Dzire VXi 1.2 BS IV',\n", + " 'Chevrolet Beat LT Diesel', 'BMW 7 Series 740Li Sedan',\n", + " 'Mahindra XUV500 W8 AWD 2013', 'Hyundai i10 Magna 1.2',\n", + " 'Hyundai Verna Fluidic New', 'Maruti Suzuki Swift VXi 1.2 BS IV',\n", + " 'Maruti Suzuki Ertiga ZXI Plus', 'Maruti Suzuki Ertiga Vxi',\n", + " 'Maruti Suzuki Ertiga VDi', 'Maruti Suzuki Alto LXi BS III',\n", + " 'Hyundai Grand i10 Asta 1.1 CRDi', 'Honda Amaze 1.2 S i VTEC',\n", + " 'Hyundai i20 Asta 1.4 CRDI 6 Speed', 'Ford Figo Diesel EXI',\n", + " 'Maruti Suzuki Eeco 5 STR WITH AC HTR', 'Maruti Suzuki Ertiga ZXi',\n", + " 'Maruti Suzuki Esteem LXi BS III', 'Maruti Suzuki Ritz VXI',\n", + " 'Maruti Suzuki Ritz LDi', 'Maruti Suzuki Dzire VDI',\n", + " 'Toyota Etios Liva G', 'Hyundai i20 Sportz 1.4 CRDI',\n", + " 'Chevrolet Spark', 'Nissan Micra XV', 'Maruti Suzuki Swift',\n", + " 'Honda Amaze 1.5 S i DTEC', 'Chevrolet Beat', 'Toyota Corolla',\n", + " 'Honda City 1.5 V MT', 'Ford EcoSport Trend 1.5L TDCi',\n", + " 'Hyundai i20 Asta 1.2', 'Tata Indica V2 eLS',\n", + " 'Maruti Suzuki Alto 800 Lxi', 'Hindustan Motors Ambassador',\n", + " 'Toyota Corolla Altis 1.8 GL', 'Toyota Corolla Altis 1.8 J',\n", + " 'Toyota Innova 2.5 GX BS IV 7 STR',\n", + " 'Volkswagen Jetta Highline TDI AT',\n", + " 'Volkswagen Polo Comfortline 1.2L P', 'Volkswagen Polo',\n", + " 'Mahindra Scorpio', 'Nissan Sunny', 'Hyundai Elite i20',\n", + " 'Renault Kwid', 'Mahindra Scorpio VLX Airbag',\n", + " 'Chevrolet Spark LT 1.0', 'Datsun Redi GO T O',\n", + " 'Maruti Suzuki Swift RS VDI', 'Fiat Punto Emotion 1.2',\n", + " 'Hyundai i10 Sportz 1.2', 'Chevrolet Beat LT Opt Diesel',\n", + " 'Chevrolet Beat LS Diesel', 'Tata Indigo CS',\n", + " 'Maruti Suzuki Swift VDi', 'Hyundai Eon Era Plus',\n", + " 'Mahindra XUV500', 'Ford Fiesta', 'Maruti Suzuki Wagon R',\n", + " 'Hyundai i20', 'Tata Indigo eCS LX TDI BS III',\n", + " 'Hyundai Fluidic Verna 1.6 CRDi SX',\n", + " 'Commercial , DZire LDI, 2016, for sale', 'Fiat Petra ELX 1.2 PS',\n", + " 'Hyundai Santro Xing XS', 'Maruti Suzuki Ciaz VXi Plus',\n", + " 'Maruti Suzuki Zen VX', 'Hyundai Creta 1.6 SX Plus Petrol',\n", + " 'Tata indigo ecs LX, 201', 'Mahindra Scorpio SLX',\n", + " 'Toyota Innova 2.5 G BS III 8 STR',\n", + " 'Maruti Suzuki Wagon R LXI BS IV', 'Tata Nano Cx BSIV',\n", + " 'Maruti Suzuki Alto Std BS IV', 'Maruti Suzuki Wagon R LXi BS III',\n", + " 'Maruti Suzuki Swift VXI BSIII',\n", + " 'Tata Sumo Victa EX 10 by 7 Str BSIII', 'MARUTI SUZUKI DESI',\n", + " 'Volkswagen Passat Diesel Comfortline AT',\n", + " 'Renault Scala RxL Diesel Travelogue',\n", + " 'Hyundai Grand i10 Sportz O 1.2 Kappa VTVT',\n", + " 'Hyundai i20 Active 1.2 SX', 'Mahindra Xylo E4',\n", + " 'Mahindra Jeep MM 550 XDB', 'Mahindra Bolero SLE BS IV',\n", + " 'Force Motors Force One LX ABS 7 STR', 'Maruti Suzuki SX4',\n", + " 'Toyota Etios', 'Honda City ZX VTEC',\n", + " 'Maruti Suzuki Wagon R LX BS III', 'Honda City VX O MT Diesel',\n", + " 'Mahindra Thar CRDe 4x4 AC',\n", + " 'Audi A4 1.8 TFSI Multitronic Premium Plus',\n", + " 'Mercedes Benz GLA Class 200 CDI Sport',\n", + " 'Land Rover Freelander 2 SE', 'Renault Kwid RXT',\n", + " 'Tata Aria Pleasure 4X2', 'Mercedes Benz B Class B180 Sports',\n", + " 'Datsun GO T O', 'Honda Jazz VX MT',\n", + " 'Hyundai i20 Active 1.4L SX O', 'Mini Cooper S',\n", + " 'Maruti Suzuki Ciaz ZXI Plus', 'Chevrolet Tavera Neo',\n", + " 'Hyundai Eon Sportz', 'Tata Sumo Gold Select Variant',\n", + " 'Maruti Suzuki Wagon R 1.0', 'Maruti Suzuki Esteem VXi BS III',\n", + " 'Chevrolet Enjoy 1.4 LS 8 STR', 'Maruti Suzuki Wagon R 1.0 VXi',\n", + " 'Nissan Terrano XL D Plus', 'Renault Duster 85 PS RxL Diesel',\n", + " 'Maruti Suzuki Dzire ZXI', 'Renault Kwid RXT Opt',\n", + " 'Maruti Suzuki Maruti 800 Std', 'Renault Kwid 1.0 RXT AMT',\n", + " 'Renault Scala RxL Diesel',\n", + " 'Hyundai Grand i10 Asta 1.2 Kappa VTVT O',\n", + " 'Chevrolet Beat LS Petrol', 'Hyundai Accent GLX', 'Yama',\n", + " 'Maruti Suzuki Swift LDi', 'Mahindra TUV300 T4 Plus',\n", + " 'Tata Indica V2 Xeta e GLE', 'Tata Indigo CS LS DiCOR',\n", + " 'Mahindra Scorpio VLX Special Edition BS III',\n", + " 'Tata Indica eV2 LS', 'Honda Accord',\n", + " 'Ford EcoSport Titanium 1.5 TDCi', 'Maruti Suzuki Ertiga',\n", + " 'Mahindra Scorpio 2.6 CRDe', 'Honda Mobilio',\n", + " 'Toyota Corolla Altis', 'Skoda Laura', 'Hyundai Verna Fluidic',\n", + " 'Maruti Suzuki Vitara Brezza', 'Tata Manza Aura Quadrajet',\n", + " 'Chevrolet Sail UVA Petrol LT ABS',\n", + " 'Hyundai Verna Fluidic 1.6 VTVT SX',\n", + " 'Audi A4 2.0 TDI 177bhp Premium', 'Hyundai Elantra SX',\n", + " 'Mahindra Scorpio VLX 4WD Airbag', 'Mahindra KUV100 K8 D 6 STR',\n", + " 'Hyundai Grand i10', 'Hyundai i10', 'Hyundai i20 Active',\n", + " 'Datsun Redi GO', 'Toyota Etios Liva', 'Hyundai Accent',\n", + " 'Hyundai Verna', 'Toyota Fortuner', 'Hyundai i10 Sportz',\n", + " 'Mahindra Bolero Power Plus SLE', 'selling car Ta',\n", + " 'Honda City 1.5 V MT Exclusive', 'Chevrolet Spark LT 1.0 Airbag',\n", + " 'Tata Indigo eCS VX CR4 BS IV', 'Tata Zest 90',\n", + " 'Skoda Rapid Elegance 1.6 TDI CR MT', 'Tata Vista Quadrajet VX',\n", + " 'Maruti Suzuki Alto K10 VXi AT', 'Maruti Suzuki Zen LXi BS III',\n", + " 'Maruti Suzuki Swift Dzire Tour LDi', 'Honda City ZX EXi',\n", + " 'Chevrolet Beat Diesel', 'Maruti Suzuki Swift Dzire car',\n", + " 'Hyundai Verna 1.4 VTVT', 'Toyota Innova 2.5 E MS 7 STR BS IV',\n", + " 'Maruti Suzuki Maruti 800 Std – Befo',\n", + " 'Hyundai Elite i20 Asta 1.4 CRDI',\n", + " 'Maruti Suzuki Swift Dzire Tour (Gat',\n", + " 'Maruti Suzuki Versa DX2 8 SEATER BSIII',\n", + " 'Tata Indigo LX TDI BS III',\n", + " 'Volkswagen Vento Konekt Diesel Highline',\n", + " 'Mercedes Benz C Class 200 CDI Classic', 'URJE',\n", + " 'Hyundai Santro Xing GLS', 'Maruti Suzuki Omni Limited Edition',\n", + " 'Hyundai Sonata Transform 2.4 GDi MT',\n", + " 'Hyundai Elite i20 Sportz 1.2', 'Honda Jazz S MT',\n", + " 'Hyundai Grand i10 Sportz 1.2 Kappa VTVT',\n", + " 'Maruti Suzuki Zen LXi BSII',\n", + " 'Mahindra Scorpio W Turbo 2.6DX 9 Seater',\n", + " 'Swift Dzire Tour 27 Dec 2016 Regis', 'Maruti Suzuki Alto K10 VXi',\n", + " 'Hyundai Grand i10 Asta 1.2 Kappa VTVT', 'Mahindra XUV500 W8',\n", + " 'Hyundai i20 Magna O 1.2', 'Renault Duster 85 PS RxL Explore LE',\n", + " 'Honda Brio V MT', 'Mahindra TUV300 T8',\n", + " 'Nissan X Trail Select Variant', 'Ford Ikon 1.3 CLXi NXt Finesse',\n", + " 'Toyota Fortuner 3.0 4x4 MT', 'Tata Manza ELAN Quadrajet',\n", + " 'Tata zest x', 'Mahindra xyl',\n", + " 'Mercedes Benz A Class A 180 Sport Petrol', 'Tata Indigo LS',\n", + " 'Hyundai i20 Magna 1.2', 'Used Commercial Maruti Omn',\n", + " 'Honda Amaze 1.5 E i DTEC', 'Hyundai Verna 1.6 EX VTVT',\n", + " 'BMW 5 Series 520d Sedan', 'Skoda Superb 1.8 TFSI AT',\n", + " 'Audi Q3 2.0 TDI quattro Premium', 'Mahindra Bolero DI BSII',\n", + " 'Maruti Suzuki Zen Estilo LXI Green CNG',\n", + " 'Ford Figo Duratorq Diesel Titanium 1.4',\n", + " 'Maruti Suzuki Wagon R VXI BS IV', 'Mahindra Logan Diesel 1.5 DLS',\n", + " 'Tata Nano GenX XMA', 'Honda City SV', 'Ford Figo Petrol LXI',\n", + " 'Hyundai i10 Magna 1.2 Kappa2', 'Toyota Corolla H2',\n", + " 'Maruti Suzuki Swift Dzire Tour VXi', 'Tata Indigo CS eLS BS IV',\n", + " 'Hyundai Xcent Base 1.1 CRDi', 'Hyundai Accent Executive Edition',\n", + " 'Tata Zest XE 75 PS Diesel', 'Maruti Suzuki Dzire LDI',\n", + " 'Tata Sumo Gold LX BS IV', 'Toyota Corolla Altis GL Petrol',\n", + " 'Maruti Suzuki Eeco 7 STR', 'Toyota Fortuner 3.0 4x2 MT',\n", + " 'Mahindra XUV500 W6', 'Tata Tigor Revotron XZ',\n", + " 'Maruti Suzuki 800', 'Honda Mobilio S i DTEC',\n", + " 'Hyundai Verna 1.6 CRDI E', 'Maruti Suzuki Omni Select Variant',\n", + " 'Tata Indica', 'Hyundai Santro Xing', 'Maruti Suzuki Zen Estilo',\n", + " 'Honda Brio VX AT', 'Maruti Suzuki Wagon R Select Variant',\n", + " 'Tata Nano Lx BSIV', 'Jaguar XE XE Portfolio',\n", + " 'Hyundai Xcent S 1.2', 'Hyundai Eon Magna Plus',\n", + " 'Maruti Suzuki Ritz GENUS VXI',\n", + " 'Hyundai Grand i10 Magna AT 1.2 Kappa VTVT',\n", + " 'Hyundai Eon D Lite Plus', 'Honda Amaze 1.2 VX i VTEC',\n", + " 'Maruti Suzuki Estilo VXi ABS BS IV',\n", + " 'Maruti Suzuki Vitara Brezza LDi O', 'Toyota Innova 2.0 V',\n", + " 'Hyundai Creta 1.6 SX Plus Petrol AT', 'Mahindra Scorpio Vlx BSIV',\n", + " 'Mitsubishi Lancer 1.8 LXi', 'Maruti Suzuki Maruti 800 AC',\n", + " 'Maruti Suzuki Alto 800 LXI CNG O', 'Ford Fiesta SXi 1.6 ABS',\n", + " 'Maruti Suzuki Ritz VDi', 'Maruti Suzuki Estilo LX BS IV',\n", + " 'Audi A6 2.0 TDI Premium', 'Maruti Suzuki Alto',\n", + " 'Maruti Suzuki Baleno Sigma 1.2', 'Hyundai Verna 1.6 SX VTVT AT',\n", + " 'Maruti Suzuki Swift GLAM', 'Hyundai Getz Prime 1.3 GVS',\n", + " 'Hyundai Santro', 'Hyundai Getz Prime 1.3 GLX',\n", + " 'Chevrolet Beat PS Diesel', 'Ford EcoSport Trend 1.5 Ti VCT',\n", + " 'Tata Indica V2 DLG', 'BMW X1 xDrive20d xLine',\n", + " 'Honda City 1.5 V AT', 'Tata Nano', 'Chevrolet Cruze LTZ AT',\n", + " 'Hyun', 'Maruti Suzuki Swift Dzire VDi', 'Mahindra XUV500 W10',\n", + " 'Maruti Suzuki Alto K10 LXi CNG', 'Hyundai Accent GLE',\n", + " 'Force Motors One SUV', 'Datsun Go Plus T O',\n", + " 'Chevrolet Spark 1.0 LT', 'Toyota Etios Liva GD',\n", + " 'Renault Duster 85PS Diesel RxL Optional with Nav',\n", + " 'Chevrolet Enjoy', 'BMW 5 Series 530i', 'Chevrolet Cruze LTZ',\n", + " 'Jeep Wrangler Unlimited 4x4 Diesel',\n", + " 'Hyundai Verna VGT CRDi SX ABS', 'Maruti Suzuki Omni',\n", + " 'Maruti Suzuki Celerio VDi', 'Tata Zest Quadrajet 1.3',\n", + " 'Tata Indigo CS eLX BS IV', 'Hyundai i10 Era',\n", + " 'Tata Indigo eCS LX CR4 BS IV', 'Tata Indigo Marina LS',\n", + " 'Commercial Chevrolet Sail Hatchback ca', 'Hyundai Xcent SX 1.2',\n", + " 'Tata Nano LX Special Edition', 'Commercial Car Ta',\n", + " 'Renault Duster 110 PS RxZ Diesel',\n", + " 'Maruti Suzuki Wagon R AX BSIV', 'Maruti Suzuki Alto K10 New',\n", + " 'tata Indica', 'Mahindra Xylo E8', 'Tata Manza Aqua Quadrajet',\n", + " 'Used bt new conditions ta', 'Renault Kwid 1.0', 'Sale tata',\n", + " 'Tata Venture EX 8 STR', 'Maruti Suzuki Swift Dzire Tour LXi',\n", + " 'Maruti Suzuki Alto LX BSII', 'Skoda Octavia Classic 1.9 TDI MT',\n", + " 'Maruti Suzuki Omni LPG BS IV', 'Tata Sumo Gold EX BS IV',\n", + " 'Tata indigo 2017 top model..', 'Hyundai Verna 1.6 CRDI SX',\n", + " 'Mahindra Scorpio SLX 2.6 Turbo 8 Str', 'Ford Ikon 1.6 Nxt',\n", + " 'Tata indigo', 'Toyota Innova 2.5 V 7 STR', 'Nissan Sunny XL',\n", + " 'Maruti Suzuki Swift VDi BS IV',\n", + " 'very good condition tata bolts are av', 'Toyota Innova 2.0 G4',\n", + " 'Sale Hyundai xcent commerc', 'Maruti Suzuki Swift VDi ABS',\n", + " 'Hyundai Elite i20 Asta 1.2', 'Volkswagen Polo Trendline 1.5L D',\n", + " 'Toyota Etios Liva Diesel', 'Maruti Suzuki Ciaz ZXi Plus RS',\n", + " 'Hyundai Elantra 1.8 S', 'Ford EcoSport Trend 1.5L Ti VCT',\n", + " 'Jaguar XF 2.2 Diesel Luxury',\n", + " 'Audi Q5 2.0 TDI quattro Premium Plus', 'BMW 3 Series 320d Sedan',\n", + " 'Maruti Suzuki Swift ZXi 1.2 BS IV', 'BMW X1 sDrive20d',\n", + " 'Maruti Suzuki S Cross Sigma 1.3', 'Maruti Suzuki Ertiga LDi',\n", + " 'Volkswagen Vento Comfortline Petrol', 'Mahindra KUV100',\n", + " 'Maruti Suzuki Swift Dzire Tour VDi', 'Mahindra Scorpio 2.6 SLX',\n", + " 'Maruti Suzuki Omni 8 STR BS III',\n", + " 'Volkswagen Jetta Comfortline 1.9 TDI AT', 'Volvo S80 Summum D4',\n", + " 'Toyota Corolla Altis VL AT Petrol',\n", + " 'Mitsubishi Pajero Sport 2.5 AT', 'Chevrolet Beat LT Petrol',\n", + " 'BMW X1', 'Mercedes Benz C Class C 220 CDI Avantgarde',\n", + " 'Volkswagen Vento Comfortline Diesel', 'Tata Indigo CS GLS',\n", + " 'Ford Figo Petrol Titanium', 'Honda City ZX GXi',\n", + " 'Maruti Suzuki Wagon R Duo Lxi', 'Maruti Suzuki Zen LX BSII',\n", + " 'Renault Duster RxL Petrol', 'Maruti Suzuki Baleno Zeta 1.2',\n", + " 'Honda WR V S MT Petrol', 'Renault Duster 110 PS RxL Diesel',\n", + " 'Mahindra Scorpio LX BS III',\n", + " 'Maruti Suzuki SX4 Celebration Diesel',\n", + " 'Audi A3 Cabriolet 40 TFSI',\n", + " 'I want to sell my commercial car due t',\n", + " 'Hyundai Santro AE GLS Audio',\n", + " 'i want sale my car.no emi....uber atta', 'Tata ZEST 6 month old',\n", + " 'Mahindra Xylo D2 BS IV', 'Hyundai Getz GLE',\n", + " 'Hyundai Creta 1.6 SX', 'Hyundai Santro Xing XL AT eRLX Euro III',\n", + " 'Hyundai Santro Xing XL eRLX Euro III',\n", + " 'Tata Indica V2 DLS BS III', 'Honda City 1.5 E MT',\n", + " 'Nissan Micra XL', 'Honda City 1.5 S Inspire',\n", + " 'Tata Indica eV2 eXeta eGLX', 'Maruti Suzuki Omni E 8 STR BS IV',\n", + " 'MARUTI SUZUKI ERTIGA F', 'Hyundai Verna 1.6 CRDI SX Plus AT',\n", + " 'Chevrolet Tavera LS B3 10 Seats BSII', 'Tata Tiago Revotron XM',\n", + " 'Tata Tiago Revotorq XZ', 'Tata Nexon', 'Tata',\n", + " 'Hindustan Motors Ambassador Classic Mark 4 – Befo',\n", + " 'Ford Fusion 1.4 TDCi Diesel',\n", + " 'Fiat Linea Emotion 1.4 L T Jet Petrol',\n", + " 'Ford Ikon 1.3 Flair Josh 100', 'Tata Indica V2 LS',\n", + " 'Mahindra Xylo D2', 'Hyundai Eon Magna',\n", + " 'Tata Sumo Grande MKII GX', 'Volkswagen Polo Highline1.2L P',\n", + " 'Tata Tiago Revotron XZ', 'Tata Indigo eCS',\n", + " '2012 Tata Sumo Gold f', 'Mahindra Xylo E8 BS IV',\n", + " 'Well mentained Tata Sumo',\n", + " 'all paper updated tata indica v2 and u',\n", + " 'Maruti Ertiga showroom condition with',\n", + " '7 SEATER MAHINDRA BOLERO IN VERY GOOD', '9 SEATER MAHINDRA BOL',\n", + " 'scratch less Tata I', 'Maruti Suzuki swift dzire for sale in',\n", + " 'Commercial Chevrolet beat for sale in',\n", + " 'urgent sell my Mahindra qu', 'Tata Sumo Gold FX BSIII',\n", + " 'sell my car Maruti Suzuki Swif',\n", + " 'Maruti Suzuki Swift Dzire good car fo', 'Hyunda',\n", + " 'Commercial Maruti Suzuki Alto Lxi 800', 'urgent sale Ta',\n", + " 'Maruti Suzuki Alto vxi t', 'tata', 'TATA INDI', 'Hyundai Creta',\n", + " 'Tata Bolt XM Petrol', 'Hyundai Venue', 'Maruti Suzuki Ritz',\n", + " 'Renault Lodgy', 'Hyundai i20 Asta',\n", + " 'Maruti Suzuki Swift Select Variant', 'Tata Indica V2 DLX BS III',\n", + " 'Mahindra Scorpio VLX 2.2 mHawk Airbag BSIV',\n", + " 'Toyota Innova 2.5 E 8 STR', 'Mahindra KUV100 K8 6 STR',\n", + " 'Datsun Go Plus', 'Ford Endeavor 4x4 Thunder Plus',\n", + " 'Tata Indica V2', 'Hyundai Santro Xing GL',\n", + " 'Toyota Innova 2.5 Z Diesel 7 Seater',\n", + " 'Any type car avaiabel hare...comercica', 'Maruti Suzuki Alto AX',\n", + " 'Mahindra Logan', 'Maruti Suzuki 800 Std BS III',\n", + " 'Chevrolet Sail 1.2 LS',\n", + " 'Volkswagen Vento Highline Plus 1.5 Diesel', 'Tata Manza',\n", + " 'Toyota Innova 2.0 G1 Petrol 8seater', 'Toyota Etios G',\n", + " 'Toyota Qualis', 'Mahindra Quanto C4', 'Maruti Suzuki Swift Dzire',\n", + " 'Hyundai i20 Select Variant', 'Honda City VX Petrol',\n", + " 'Hyundai Getz', 'Mercedes Benz C Class 200 K MT', 'Skoda Fabia',\n", + " 'Maruti Suzuki Alto 800 Select Variant',\n", + " 'Maruti Suzuki Ritz VXI ABS', 'tata zest 2017 f',\n", + " 'Tata Indica V2 DLE BS III', 'Ta', 'Tata Zest XM Diesel',\n", + " 'Honda Amaze 1.2 E i VTEC', 'Chevrolet Sail 1.2 LT ABS'],\n", + " dtype=object)" + ] + }, + "execution_count": 8, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "car['name'].unique()" + ] + }, + { + "cell_type": "markdown", + "id": "281d8fdf", + "metadata": {}, + "source": [ + "# Quality\n", + "- year has many non-year values\n", + "- year object to integer\n", + "- price has Ask for Price\n", + "- price object to integer\n", + "- kms driven has kmn extra part\n", + "- kmn driven object to integer\n", + "- kms driven has nan values\n", + "- fuel type has some nan values\n", + "- keep first 3 words of name" + ] + }, + { + "cell_type": "markdown", + "id": "38ffa263", + "metadata": {}, + "source": [ + "# Cleaning" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "id": "68e7ca19", + "metadata": {}, + "outputs": [], + "source": [ + "backup = car.copy()" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "id": "3058c6db", + "metadata": {}, + "outputs": [], + "source": [ + "car = car[car['year'].str.isnumeric()]" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "id": "29ca1f81", + "metadata": {}, + "outputs": [], + "source": [ + "car['year'] = car['year'].astype(int)" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "id": "7bcb2fc3", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "Int64Index: 842 entries, 0 to 891\n", + "Data columns (total 6 columns):\n", + " # Column Non-Null Count Dtype \n", + "--- ------ -------------- ----- \n", + " 0 name 842 non-null object\n", + " 1 company 842 non-null object\n", + " 2 year 842 non-null int32 \n", + " 3 Price 842 non-null object\n", + " 4 kms_driven 840 non-null object\n", + " 5 fuel_type 837 non-null object\n", + "dtypes: int32(1), object(5)\n", + "memory usage: 42.8+ KB\n" + ] + } + ], + "source": [ + "car.info()" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "id": "f2c38d7f", + "metadata": {}, + "outputs": [], + "source": [ + "car = car[car['Price'] != 'Ask For Price']" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "id": "3f2942f2", + "metadata": {}, + "outputs": [], + "source": [ + "car['Price'] = car['Price'].str.replace(',','').astype(int)" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "id": "fef0524a", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "Int64Index: 819 entries, 0 to 891\n", + "Data columns (total 6 columns):\n", + " # Column Non-Null Count Dtype \n", + "--- ------ -------------- ----- \n", + " 0 name 819 non-null object\n", + " 1 company 819 non-null object\n", + " 2 year 819 non-null int32 \n", + " 3 Price 819 non-null int32 \n", + " 4 kms_driven 819 non-null object\n", + " 5 fuel_type 816 non-null object\n", + "dtypes: int32(2), object(4)\n", + "memory usage: 38.4+ KB\n" + ] + } + ], + "source": [ + "car.info()" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "id": "66236fb9", + "metadata": {}, + "outputs": [], + "source": [ + "car['kms_driven'] = car['kms_driven'].str.replace(' kms','').str.replace(',','')" + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "id": "fd31c8cb", + "metadata": {}, + "outputs": [], + "source": [ + "car = car[car['kms_driven'] != 'Petrol']" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "id": "fd74b021", + "metadata": {}, + "outputs": [], + "source": [ + "car['kms_driven'] = car['kms_driven'].astype(int)" + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "id": "2cda9273", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "Int64Index: 817 entries, 0 to 889\n", + "Data columns (total 6 columns):\n", + " # Column Non-Null Count Dtype \n", + "--- ------ -------------- ----- \n", + " 0 name 817 non-null object\n", + " 1 company 817 non-null object\n", + " 2 year 817 non-null int32 \n", + " 3 Price 817 non-null int32 \n", + " 4 kms_driven 817 non-null int32 \n", + " 5 fuel_type 816 non-null object\n", + "dtypes: int32(3), object(3)\n", + "memory usage: 35.1+ KB\n" + ] + } + ], + "source": [ + "car.info()" + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "id": "6ff9ab7b", + "metadata": {}, + "outputs": [], + "source": [ + "car.dropna(inplace=True)" + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "id": "6afc1ee5", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "Int64Index: 816 entries, 0 to 889\n", + "Data columns (total 6 columns):\n", + " # Column Non-Null Count Dtype \n", + "--- ------ -------------- ----- \n", + " 0 name 816 non-null object\n", + " 1 company 816 non-null object\n", + " 2 year 816 non-null int32 \n", + " 3 Price 816 non-null int32 \n", + " 4 kms_driven 816 non-null int32 \n", + " 5 fuel_type 816 non-null object\n", + "dtypes: int32(3), object(3)\n", + "memory usage: 35.1+ KB\n" + ] + } + ], + "source": [ + "car.info()" + ] + }, + { + "cell_type": "code", + "execution_count": 22, + "id": "f7321418", + "metadata": {}, + "outputs": [], + "source": [ + "car['name'] = car['name'].str.split().str.slice(0,3).str.join(' ')" + ] + }, + { + "cell_type": "code", + "execution_count": 23, + "id": "ce740488", + "metadata": {}, + "outputs": [], + "source": [ + "car = car.reset_index(drop=True)" + ] + }, + { + "cell_type": "code", + "execution_count": 24, + "id": "9341d5ed", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
namecompanyyearPricekms_drivenfuel_type
0Hyundai Santro XingHyundai20078000045000Petrol
1Mahindra Jeep CL550Mahindra200642500040Diesel
2Hyundai Grand i10Hyundai201432500028000Petrol
3Ford EcoSport TitaniumFord201457500036000Diesel
4Ford FigoFord201217500041000Diesel
.....................
811Maruti Suzuki RitzMaruti201127000050000Petrol
812Tata Indica V2Tata200911000030000Diesel
813Toyota Corolla AltisToyota2009300000132000Petrol
814Tata Zest XMTata201826000027000Diesel
815Mahindra Quanto C8Mahindra201339000040000Diesel
\n", + "

816 rows × 6 columns

\n", + "
" + ], + "text/plain": [ + " name company year Price kms_driven fuel_type\n", + "0 Hyundai Santro Xing Hyundai 2007 80000 45000 Petrol\n", + "1 Mahindra Jeep CL550 Mahindra 2006 425000 40 Diesel\n", + "2 Hyundai Grand i10 Hyundai 2014 325000 28000 Petrol\n", + "3 Ford EcoSport Titanium Ford 2014 575000 36000 Diesel\n", + "4 Ford Figo Ford 2012 175000 41000 Diesel\n", + ".. ... ... ... ... ... ...\n", + "811 Maruti Suzuki Ritz Maruti 2011 270000 50000 Petrol\n", + "812 Tata Indica V2 Tata 2009 110000 30000 Diesel\n", + "813 Toyota Corolla Altis Toyota 2009 300000 132000 Petrol\n", + "814 Tata Zest XM Tata 2018 260000 27000 Diesel\n", + "815 Mahindra Quanto C8 Mahindra 2013 390000 40000 Diesel\n", + "\n", + "[816 rows x 6 columns]" + ] + }, + "execution_count": 24, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "car" + ] + }, + { + "cell_type": "code", + "execution_count": 25, + "id": "46b239e7", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
yearPricekms_driven
count816.0000008.160000e+02816.000000
mean2012.4448534.117176e+0546275.531863
std4.0029924.751844e+0534297.428044
min1995.0000003.000000e+040.000000
25%2010.0000001.750000e+0527000.000000
50%2013.0000002.999990e+0541000.000000
75%2015.0000004.912500e+0556818.500000
max2019.0000008.500003e+06400000.000000
\n", + "
" + ], + "text/plain": [ + " year Price kms_driven\n", + "count 816.000000 8.160000e+02 816.000000\n", + "mean 2012.444853 4.117176e+05 46275.531863\n", + "std 4.002992 4.751844e+05 34297.428044\n", + "min 1995.000000 3.000000e+04 0.000000\n", + "25% 2010.000000 1.750000e+05 27000.000000\n", + "50% 2013.000000 2.999990e+05 41000.000000\n", + "75% 2015.000000 4.912500e+05 56818.500000\n", + "max 2019.000000 8.500003e+06 400000.000000" + ] + }, + "execution_count": 25, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "car.describe()" + ] + }, + { + "cell_type": "code", + "execution_count": 26, + "id": "928e6a87", + "metadata": {}, + "outputs": [], + "source": [ + "car = car[car['Price']<6e6].reset_index(drop = True)" + ] + }, + { + "cell_type": "code", + "execution_count": 27, + "id": "6aab88e2", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
namecompanyyearPricekms_drivenfuel_type
0Hyundai Santro XingHyundai20078000045000Petrol
1Mahindra Jeep CL550Mahindra200642500040Diesel
2Hyundai Grand i10Hyundai201432500028000Petrol
3Ford EcoSport TitaniumFord201457500036000Diesel
4Ford FigoFord201217500041000Diesel
.....................
810Maruti Suzuki RitzMaruti201127000050000Petrol
811Tata Indica V2Tata200911000030000Diesel
812Toyota Corolla AltisToyota2009300000132000Petrol
813Tata Zest XMTata201826000027000Diesel
814Mahindra Quanto C8Mahindra201339000040000Diesel
\n", + "

815 rows × 6 columns

\n", + "
" + ], + "text/plain": [ + " name company year Price kms_driven fuel_type\n", + "0 Hyundai Santro Xing Hyundai 2007 80000 45000 Petrol\n", + "1 Mahindra Jeep CL550 Mahindra 2006 425000 40 Diesel\n", + "2 Hyundai Grand i10 Hyundai 2014 325000 28000 Petrol\n", + "3 Ford EcoSport Titanium Ford 2014 575000 36000 Diesel\n", + "4 Ford Figo Ford 2012 175000 41000 Diesel\n", + ".. ... ... ... ... ... ...\n", + "810 Maruti Suzuki Ritz Maruti 2011 270000 50000 Petrol\n", + "811 Tata Indica V2 Tata 2009 110000 30000 Diesel\n", + "812 Toyota Corolla Altis Toyota 2009 300000 132000 Petrol\n", + "813 Tata Zest XM Tata 2018 260000 27000 Diesel\n", + "814 Mahindra Quanto C8 Mahindra 2013 390000 40000 Diesel\n", + "\n", + "[815 rows x 6 columns]" + ] + }, + "execution_count": 27, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "car" + ] + }, + { + "cell_type": "code", + "execution_count": 28, + "id": "12240c5b", + "metadata": {}, + "outputs": [], + "source": [ + "car.to_csv('cleaned_car.csv')" + ] + }, + { + "cell_type": "markdown", + "id": "360ebe84", + "metadata": {}, + "source": [ + "# Model" + ] + }, + { + "cell_type": "code", + "execution_count": 29, + "id": "db83323f", + "metadata": {}, + "outputs": [], + "source": [ + "x = car.drop(columns = 'Price')\n", + "y = car['Price']" + ] + }, + { + "cell_type": "code", + "execution_count": 30, + "id": "8b93ba4c", + "metadata": {}, + "outputs": [], + "source": [ + "\n", + "x_train,x_test,y_train,y_test = train_test_split(x,y,test_size=0.2)" + ] + }, + { + "cell_type": "code", + "execution_count": 31, + "id": "7fea309a", + "metadata": { + "scrolled": true + }, + "outputs": [ + { + "data": { + "text/plain": [ + "OneHotEncoder()" + ] + }, + "execution_count": 31, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "ohe = OneHotEncoder()\n", + "ohe.fit(x[['name','company','fuel_type']])" + ] + }, + { + "cell_type": "code", + "execution_count": 32, + "id": "1e7f6dd7", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "[array(['Audi A3 Cabriolet', 'Audi A4 1.8', 'Audi A4 2.0', 'Audi A6 2.0',\n", + " 'Audi A8', 'Audi Q3 2.0', 'Audi Q5 2.0', 'Audi Q7', 'BMW 3 Series',\n", + " 'BMW 5 Series', 'BMW 7 Series', 'BMW X1', 'BMW X1 sDrive20d',\n", + " 'BMW X1 xDrive20d', 'Chevrolet Beat', 'Chevrolet Beat Diesel',\n", + " 'Chevrolet Beat LS', 'Chevrolet Beat LT', 'Chevrolet Beat PS',\n", + " 'Chevrolet Cruze LTZ', 'Chevrolet Enjoy', 'Chevrolet Enjoy 1.4',\n", + " 'Chevrolet Sail 1.2', 'Chevrolet Sail UVA', 'Chevrolet Spark',\n", + " 'Chevrolet Spark 1.0', 'Chevrolet Spark LS', 'Chevrolet Spark LT',\n", + " 'Chevrolet Tavera LS', 'Chevrolet Tavera Neo', 'Datsun GO T',\n", + " 'Datsun Go Plus', 'Datsun Redi GO', 'Fiat Linea Emotion',\n", + " 'Fiat Petra ELX', 'Fiat Punto Emotion', 'Force Motors Force',\n", + " 'Force Motors One', 'Ford EcoSport', 'Ford EcoSport Ambiente',\n", + " 'Ford EcoSport Titanium', 'Ford EcoSport Trend',\n", + " 'Ford Endeavor 4x4', 'Ford Fiesta', 'Ford Fiesta SXi', 'Ford Figo',\n", + " 'Ford Figo Diesel', 'Ford Figo Duratorq', 'Ford Figo Petrol',\n", + " 'Ford Fusion 1.4', 'Ford Ikon 1.3', 'Ford Ikon 1.6',\n", + " 'Hindustan Motors Ambassador', 'Honda Accord', 'Honda Amaze',\n", + " 'Honda Amaze 1.2', 'Honda Amaze 1.5', 'Honda Brio', 'Honda Brio V',\n", + " 'Honda Brio VX', 'Honda City', 'Honda City 1.5', 'Honda City SV',\n", + " 'Honda City VX', 'Honda City ZX', 'Honda Jazz S', 'Honda Jazz VX',\n", + " 'Honda Mobilio', 'Honda Mobilio S', 'Honda WR V', 'Hyundai Accent',\n", + " 'Hyundai Accent Executive', 'Hyundai Accent GLE',\n", + " 'Hyundai Accent GLX', 'Hyundai Creta', 'Hyundai Creta 1.6',\n", + " 'Hyundai Elantra 1.8', 'Hyundai Elantra SX', 'Hyundai Elite i20',\n", + " 'Hyundai Eon', 'Hyundai Eon D', 'Hyundai Eon Era',\n", + " 'Hyundai Eon Magna', 'Hyundai Eon Sportz', 'Hyundai Fluidic Verna',\n", + " 'Hyundai Getz', 'Hyundai Getz GLE', 'Hyundai Getz Prime',\n", + " 'Hyundai Grand i10', 'Hyundai Santro', 'Hyundai Santro AE',\n", + " 'Hyundai Santro Xing', 'Hyundai Sonata Transform', 'Hyundai Verna',\n", + " 'Hyundai Verna 1.4', 'Hyundai Verna 1.6', 'Hyundai Verna Fluidic',\n", + " 'Hyundai Verna Transform', 'Hyundai Verna VGT',\n", + " 'Hyundai Xcent Base', 'Hyundai Xcent SX', 'Hyundai i10',\n", + " 'Hyundai i10 Era', 'Hyundai i10 Magna', 'Hyundai i10 Sportz',\n", + " 'Hyundai i20', 'Hyundai i20 Active', 'Hyundai i20 Asta',\n", + " 'Hyundai i20 Magna', 'Hyundai i20 Select', 'Hyundai i20 Sportz',\n", + " 'Jaguar XE XE', 'Jaguar XF 2.2', 'Jeep Wrangler Unlimited',\n", + " 'Land Rover Freelander', 'Mahindra Bolero DI',\n", + " 'Mahindra Bolero Power', 'Mahindra Bolero SLE',\n", + " 'Mahindra Jeep CL550', 'Mahindra Jeep MM', 'Mahindra KUV100',\n", + " 'Mahindra KUV100 K8', 'Mahindra Logan', 'Mahindra Logan Diesel',\n", + " 'Mahindra Quanto C4', 'Mahindra Quanto C8', 'Mahindra Scorpio',\n", + " 'Mahindra Scorpio 2.6', 'Mahindra Scorpio LX',\n", + " 'Mahindra Scorpio S10', 'Mahindra Scorpio S4',\n", + " 'Mahindra Scorpio SLE', 'Mahindra Scorpio SLX',\n", + " 'Mahindra Scorpio VLX', 'Mahindra Scorpio Vlx',\n", + " 'Mahindra Scorpio W', 'Mahindra TUV300 T4', 'Mahindra TUV300 T8',\n", + " 'Mahindra Thar CRDe', 'Mahindra XUV500', 'Mahindra XUV500 W10',\n", + " 'Mahindra XUV500 W6', 'Mahindra XUV500 W8', 'Mahindra Xylo D2',\n", + " 'Mahindra Xylo E4', 'Mahindra Xylo E8', 'Maruti Suzuki 800',\n", + " 'Maruti Suzuki A', 'Maruti Suzuki Alto', 'Maruti Suzuki Baleno',\n", + " 'Maruti Suzuki Celerio', 'Maruti Suzuki Ciaz',\n", + " 'Maruti Suzuki Dzire', 'Maruti Suzuki Eeco',\n", + " 'Maruti Suzuki Ertiga', 'Maruti Suzuki Esteem',\n", + " 'Maruti Suzuki Estilo', 'Maruti Suzuki Maruti',\n", + " 'Maruti Suzuki Omni', 'Maruti Suzuki Ritz', 'Maruti Suzuki S',\n", + " 'Maruti Suzuki SX4', 'Maruti Suzuki Stingray',\n", + " 'Maruti Suzuki Swift', 'Maruti Suzuki Versa',\n", + " 'Maruti Suzuki Vitara', 'Maruti Suzuki Wagon', 'Maruti Suzuki Zen',\n", + " 'Mercedes Benz A', 'Mercedes Benz B', 'Mercedes Benz C',\n", + " 'Mercedes Benz GLA', 'Mini Cooper S', 'Mitsubishi Lancer 1.8',\n", + " 'Mitsubishi Pajero Sport', 'Nissan Micra XL', 'Nissan Micra XV',\n", + " 'Nissan Sunny', 'Nissan Sunny XL', 'Nissan Terrano XL',\n", + " 'Nissan X Trail', 'Renault Duster', 'Renault Duster 110',\n", + " 'Renault Duster 110PS', 'Renault Duster 85', 'Renault Duster 85PS',\n", + " 'Renault Duster RxL', 'Renault Kwid', 'Renault Kwid 1.0',\n", + " 'Renault Kwid RXT', 'Renault Lodgy 85', 'Renault Scala RxL',\n", + " 'Skoda Fabia', 'Skoda Fabia 1.2L', 'Skoda Fabia Classic',\n", + " 'Skoda Laura', 'Skoda Octavia Classic', 'Skoda Rapid Elegance',\n", + " 'Skoda Superb 1.8', 'Skoda Yeti Ambition', 'Tata Aria Pleasure',\n", + " 'Tata Bolt XM', 'Tata Indica', 'Tata Indica V2', 'Tata Indica eV2',\n", + " 'Tata Indigo CS', 'Tata Indigo LS', 'Tata Indigo LX',\n", + " 'Tata Indigo Marina', 'Tata Indigo eCS', 'Tata Manza',\n", + " 'Tata Manza Aqua', 'Tata Manza Aura', 'Tata Manza ELAN',\n", + " 'Tata Nano', 'Tata Nano Cx', 'Tata Nano GenX', 'Tata Nano LX',\n", + " 'Tata Nano Lx', 'Tata Sumo Gold', 'Tata Sumo Grande',\n", + " 'Tata Sumo Victa', 'Tata Tiago Revotorq', 'Tata Tiago Revotron',\n", + " 'Tata Tigor Revotron', 'Tata Venture EX', 'Tata Vista Quadrajet',\n", + " 'Tata Zest Quadrajet', 'Tata Zest XE', 'Tata Zest XM',\n", + " 'Toyota Corolla', 'Toyota Corolla Altis', 'Toyota Corolla H2',\n", + " 'Toyota Etios', 'Toyota Etios G', 'Toyota Etios GD',\n", + " 'Toyota Etios Liva', 'Toyota Fortuner', 'Toyota Fortuner 3.0',\n", + " 'Toyota Innova 2.0', 'Toyota Innova 2.5', 'Toyota Qualis',\n", + " 'Volkswagen Jetta Comfortline', 'Volkswagen Jetta Highline',\n", + " 'Volkswagen Passat Diesel', 'Volkswagen Polo',\n", + " 'Volkswagen Polo Comfortline', 'Volkswagen Polo Highline',\n", + " 'Volkswagen Polo Highline1.2L', 'Volkswagen Polo Trendline',\n", + " 'Volkswagen Vento Comfortline', 'Volkswagen Vento Highline',\n", + " 'Volkswagen Vento Konekt', 'Volvo S80 Summum'], dtype=object),\n", + " array(['Audi', 'BMW', 'Chevrolet', 'Datsun', 'Fiat', 'Force', 'Ford',\n", + " 'Hindustan', 'Honda', 'Hyundai', 'Jaguar', 'Jeep', 'Land',\n", + " 'Mahindra', 'Maruti', 'Mercedes', 'Mini', 'Mitsubishi', 'Nissan',\n", + " 'Renault', 'Skoda', 'Tata', 'Toyota', 'Volkswagen', 'Volvo'],\n", + " dtype=object),\n", + " array(['Diesel', 'LPG', 'Petrol'], dtype=object)]" + ] + }, + "execution_count": 32, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "ohe.categories_" + ] + }, + { + "cell_type": "code", + "execution_count": 33, + "id": "29cfad01", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "\"\\nmake_column_transformer((OneHotEncoder(),['name','company','fuel_type']),\\n (OrdinalEncoder(),['seller_type','owner']),\\n (LabelEncoder(),['','']),\\n remainder='passthrough')\\n \\n\"" + ] + }, + "execution_count": 33, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# this is a comment\n", + "\"\"\"\n", + "make_column_transformer((OneHotEncoder(),['name','company','fuel_type']),\n", + " (OrdinalEncoder(),['seller_type','owner']),\n", + " (LabelEncoder(),['','']),\n", + " remainder='passthrough')\n", + " \n", + "\"\"\"" + ] + }, + { + "cell_type": "code", + "execution_count": 34, + "id": "b86a18c2", + "metadata": {}, + "outputs": [], + "source": [ + "column_trans = make_column_transformer((OneHotEncoder(categories=ohe.categories_),['name','company','fuel_type']),\n", + " remainder='passthrough')" + ] + }, + { + "cell_type": "code", + "execution_count": 35, + "id": "9f4f5ebb", + "metadata": {}, + "outputs": [], + "source": [ + "lr = LinearRegression()" + ] + }, + { + "cell_type": "code", + "execution_count": 36, + "id": "16af36e1", + "metadata": {}, + "outputs": [], + "source": [ + "pipe = make_pipeline(column_trans,lr)" + ] + }, + { + "cell_type": "code", + "execution_count": 37, + "id": "78dbfb3d", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "Pipeline(steps=[('columntransformer',\n", + " ColumnTransformer(remainder='passthrough',\n", + " transformers=[('onehotencoder',\n", + " OneHotEncoder(categories=[array(['Audi A3 Cabriolet', 'Audi A4 1.8', 'Audi A4 2.0', 'Audi A6 2.0',\n", + " 'Audi A8', 'Audi Q3 2.0', 'Audi Q5 2.0', 'Audi Q7', 'BMW 3 Series',\n", + " 'BMW 5 Series', 'BMW 7 Series', 'BMW X1', 'BMW X1 sDrive20d',\n", + " 'BMW X1 xDrive20d', 'Chevrolet Beat', 'Chevrolet Beat...\n", + " array(['Audi', 'BMW', 'Chevrolet', 'Datsun', 'Fiat', 'Force', 'Ford',\n", + " 'Hindustan', 'Honda', 'Hyundai', 'Jaguar', 'Jeep', 'Land',\n", + " 'Mahindra', 'Maruti', 'Mercedes', 'Mini', 'Mitsubishi', 'Nissan',\n", + " 'Renault', 'Skoda', 'Tata', 'Toyota', 'Volkswagen', 'Volvo'],\n", + " dtype=object),\n", + " array(['Diesel', 'LPG', 'Petrol'], dtype=object)]),\n", + " ['name', 'company',\n", + " 'fuel_type'])])),\n", + " ('linearregression', LinearRegression())])" + ] + }, + "execution_count": 37, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "pipe.fit(x_train,y_train)" + ] + }, + { + "cell_type": "code", + "execution_count": 38, + "id": "81bca84a", + "metadata": {}, + "outputs": [], + "source": [ + "y_pred = pipe.predict(x_test)" + ] + }, + { + "cell_type": "code", + "execution_count": 39, + "id": "eb5efa15", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "0.40850876022444604" + ] + }, + "execution_count": 39, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "r2_score(y_pred,y_test)" + ] + }, + { + "cell_type": "code", + "execution_count": 40, + "id": "f67048dd", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "0.8897767222258609\n" + ] + } + ], + "source": [ + "best_random_state = []\n", + "for i in range(1):\n", + " x_train,x_test,y_train,y_test = train_test_split(x,y,test_size=0.2,random_state=661)\n", + " lr = LinearRegression()\n", + " pipe = make_pipeline(column_trans,lr)\n", + " pipe.fit(x_train,y_train)\n", + " y_pred = pipe.predict(x_test)\n", + "# best_random_state.append(r2_score(y_test,y_pred))\n", + " print(r2_score(y_test,y_pred))\n", + "# print(f\"~~~~~~~~~~~~~~~ iteration - {i+1} ~~~~~~~~~~~~~~~~~~~~~~~~\")" + ] + }, + { + "cell_type": "code", + "execution_count": 41, + "id": "9085f2b8", + "metadata": {}, + "outputs": [ + { + "ename": "ValueError", + "evalue": "attempt to get argmax of an empty sequence", + "output_type": "error", + "traceback": [ + "\u001b[1;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[1;31mValueError\u001b[0m Traceback (most recent call last)", + "\u001b[1;32mC:\\Users\\RIJUDA~1\\AppData\\Local\\Temp/ipykernel_14744/4122977660.py\u001b[0m in \u001b[0;36m\u001b[1;34m\u001b[0m\n\u001b[1;32m----> 1\u001b[1;33m \u001b[0mnp\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0margmax\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mbest_random_state\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m", + "\u001b[1;32m<__array_function__ internals>\u001b[0m in \u001b[0;36margmax\u001b[1;34m(*args, **kwargs)\u001b[0m\n", + "\u001b[1;32mc:\\users\\riju dasgupta\\appdata\\local\\programs\\python\\python37\\lib\\site-packages\\numpy\\core\\fromnumeric.py\u001b[0m in \u001b[0;36margmax\u001b[1;34m(a, axis, out)\u001b[0m\n\u001b[0;32m 1186\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 1187\u001b[0m \"\"\"\n\u001b[1;32m-> 1188\u001b[1;33m \u001b[1;32mreturn\u001b[0m \u001b[0m_wrapfunc\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0ma\u001b[0m\u001b[1;33m,\u001b[0m \u001b[1;34m'argmax'\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0maxis\u001b[0m\u001b[1;33m=\u001b[0m\u001b[0maxis\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mout\u001b[0m\u001b[1;33m=\u001b[0m\u001b[0mout\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 1189\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 1190\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n", + "\u001b[1;32mc:\\users\\riju dasgupta\\appdata\\local\\programs\\python\\python37\\lib\\site-packages\\numpy\\core\\fromnumeric.py\u001b[0m in \u001b[0;36m_wrapfunc\u001b[1;34m(obj, method, *args, **kwds)\u001b[0m\n\u001b[0;32m 53\u001b[0m \u001b[0mbound\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mgetattr\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mobj\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mmethod\u001b[0m\u001b[1;33m,\u001b[0m \u001b[1;32mNone\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 54\u001b[0m \u001b[1;32mif\u001b[0m \u001b[0mbound\u001b[0m \u001b[1;32mis\u001b[0m \u001b[1;32mNone\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m---> 55\u001b[1;33m \u001b[1;32mreturn\u001b[0m \u001b[0m_wrapit\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mobj\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mmethod\u001b[0m\u001b[1;33m,\u001b[0m \u001b[1;33m*\u001b[0m\u001b[0margs\u001b[0m\u001b[1;33m,\u001b[0m \u001b[1;33m**\u001b[0m\u001b[0mkwds\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 56\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 57\u001b[0m \u001b[1;32mtry\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n", + "\u001b[1;32mc:\\users\\riju dasgupta\\appdata\\local\\programs\\python\\python37\\lib\\site-packages\\numpy\\core\\fromnumeric.py\u001b[0m in \u001b[0;36m_wrapit\u001b[1;34m(obj, method, *args, **kwds)\u001b[0m\n\u001b[0;32m 42\u001b[0m \u001b[1;32mexcept\u001b[0m \u001b[0mAttributeError\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 43\u001b[0m \u001b[0mwrap\u001b[0m \u001b[1;33m=\u001b[0m \u001b[1;32mNone\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m---> 44\u001b[1;33m \u001b[0mresult\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mgetattr\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0masarray\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mobj\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mmethod\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;33m*\u001b[0m\u001b[0margs\u001b[0m\u001b[1;33m,\u001b[0m \u001b[1;33m**\u001b[0m\u001b[0mkwds\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 45\u001b[0m \u001b[1;32mif\u001b[0m \u001b[0mwrap\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 46\u001b[0m \u001b[1;32mif\u001b[0m \u001b[1;32mnot\u001b[0m \u001b[0misinstance\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mresult\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mmu\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mndarray\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n", + "\u001b[1;31mValueError\u001b[0m: attempt to get argmax of an empty sequence" + ] + } + ], + "source": [ + "# np.argmax(best_random_state)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "b99754ea", + "metadata": {}, + "outputs": [], + "source": [ + "x_train,x_test,y_train,y_test = train_test_split(x,y,test_size=0.2,random_state=661)\n", + "lr = LinearRegression()\n", + "pipe = make_pipeline(column_trans,lr)\n", + "pipe.fit(x_train,y_train)\n", + "y_pred = pipe.predict(x_test)\n", + "print(r2_score(y_test,y_pred))" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "64bc0c1b", + "metadata": {}, + "outputs": [], + "source": [ + "pickle.dump(pipe,open('CarPricePredictorModel.pkl','wb'))" + ] + }, + { + "cell_type": "code", + "execution_count": 49, + "id": "3e0d09f2", + "metadata": {}, + "outputs": [], + "source": [ + "car_name = list(car['name'].unique())" + ] + }, + { + "cell_type": "code", + "execution_count": 51, + "id": "1244ad44", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "list" + ] + }, + "execution_count": 51, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "car_name.insert()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "25da1f96", + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.7.9" + } + }, + "nbformat": 4, + "nbformat_minor": 5 +} diff --git a/CarPricePredictorModel.pkl b/CarPricePredictorModel.pkl new file mode 100644 index 0000000..0fe802c Binary files /dev/null and b/CarPricePredictorModel.pkl differ diff --git a/Quikr-Car-Price-Predictor.ipynb b/Quikr-Car-Price-Predictor.ipynb new file mode 100644 index 0000000..f4f926a --- /dev/null +++ b/Quikr-Car-Price-Predictor.ipynb @@ -0,0 +1,2252 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 1, + "id": "28dc9f47", + "metadata": {}, + "outputs": [], + "source": [ + "import numpy as np\n", + "import pandas as pd\n", + "import matplotlib.pyplot as plt\n", + "import seaborn as sns\n", + "from sklearn.model_selection import train_test_split\n", + "from sklearn.linear_model import LinearRegression\n", + "from sklearn.metrics import r2_score\n", + "from sklearn.preprocessing import OneHotEncoder\n", + "from sklearn.compose import make_column_transformer\n", + "from sklearn.pipeline import make_pipeline\n", + "import pickle" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "id": "fe39eacb", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "(892, 6)\n" + ] + }, + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
namecompanyyearPricekms_drivenfuel_type
0Hyundai Santro Xing XO eRLX Euro IIIHyundai200780,00045,000 kmsPetrol
1Mahindra Jeep CL550 MDIMahindra20064,25,00040 kmsDiesel
2Maruti Suzuki Alto 800 VxiMaruti2018Ask For Price22,000 kmsPetrol
3Hyundai Grand i10 Magna 1.2 Kappa VTVTHyundai20143,25,00028,000 kmsPetrol
4Ford EcoSport Titanium 1.5L TDCiFord20145,75,00036,000 kmsDiesel
\n", + "
" + ], + "text/plain": [ + " name company year Price \\\n", + "0 Hyundai Santro Xing XO eRLX Euro III Hyundai 2007 80,000 \n", + "1 Mahindra Jeep CL550 MDI Mahindra 2006 4,25,000 \n", + "2 Maruti Suzuki Alto 800 Vxi Maruti 2018 Ask For Price \n", + "3 Hyundai Grand i10 Magna 1.2 Kappa VTVT Hyundai 2014 3,25,000 \n", + "4 Ford EcoSport Titanium 1.5L TDCi Ford 2014 5,75,000 \n", + "\n", + " kms_driven fuel_type \n", + "0 45,000 kms Petrol \n", + "1 40 kms Diesel \n", + "2 22,000 kms Petrol \n", + "3 28,000 kms Petrol \n", + "4 36,000 kms Diesel " + ] + }, + "execution_count": 2, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "car = pd.read_csv('quikr_car.csv')\n", + "print(car.shape)\n", + "car.head()" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "id": "00d95862", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "RangeIndex: 892 entries, 0 to 891\n", + "Data columns (total 6 columns):\n", + " # Column Non-Null Count Dtype \n", + "--- ------ -------------- ----- \n", + " 0 name 892 non-null object\n", + " 1 company 892 non-null object\n", + " 2 year 892 non-null object\n", + " 3 Price 892 non-null object\n", + " 4 kms_driven 840 non-null object\n", + " 5 fuel_type 837 non-null object\n", + "dtypes: object(6)\n", + "memory usage: 41.9+ KB\n" + ] + } + ], + "source": [ + "car.info()" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "id": "08c44a8e", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array(['2007', '2006', '2018', '2014', '2015', '2012', '2013', '2016',\n", + " '2010', '2017', '2008', '2011', '2019', '2009', '2005', '2000',\n", + " '...', '150k', 'TOUR', '2003', 'r 15', '2004', 'Zest', '/-Rs',\n", + " 'sale', '1995', 'ara)', '2002', 'SELL', '2001', 'tion', 'odel',\n", + " '2 bs', 'arry', 'Eon', 'o...', 'ture', 'emi', 'car', 'able', 'no.',\n", + " 'd...', 'SALE', 'digo', 'sell', 'd Ex', 'n...', 'e...', 'D...',\n", + " ', Ac', 'go .', 'k...', 'o c4', 'zire', 'cent', 'Sumo', 'cab',\n", + " 't xe', 'EV2', 'r...', 'zest'], dtype=object)" + ] + }, + "execution_count": 4, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "car['year'].unique()" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "id": "536d0a84", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array(['80,000', '4,25,000', 'Ask For Price', '3,25,000', '5,75,000',\n", + " '1,75,000', '1,90,000', '8,30,000', '2,50,000', '1,82,000',\n", + " '3,15,000', '4,15,000', '3,20,000', '10,00,000', '5,00,000',\n", + " '3,50,000', '1,60,000', '3,10,000', '75,000', '1,00,000',\n", + " '2,90,000', '95,000', '1,80,000', '3,85,000', '1,05,000',\n", + " '6,50,000', '6,89,999', '4,48,000', '5,49,000', '5,01,000',\n", + " '4,89,999', '2,80,000', '3,49,999', '2,84,999', '3,45,000',\n", + " '4,99,999', '2,35,000', '2,49,999', '14,75,000', '3,95,000',\n", + " '2,20,000', '1,70,000', '85,000', '2,00,000', '5,70,000',\n", + " '1,10,000', '4,48,999', '18,91,111', '1,59,500', '3,44,999',\n", + " '4,49,999', '8,65,000', '6,99,000', '3,75,000', '2,24,999',\n", + " '12,00,000', '1,95,000', '3,51,000', '2,40,000', '90,000',\n", + " '1,55,000', '6,00,000', '1,89,500', '2,10,000', '3,90,000',\n", + " '1,35,000', '16,00,000', '7,01,000', '2,65,000', '5,25,000',\n", + " '3,72,000', '6,35,000', '5,50,000', '4,85,000', '3,29,500',\n", + " '2,51,111', '5,69,999', '69,999', '2,99,999', '3,99,999',\n", + " '4,50,000', '2,70,000', '1,58,400', '1,79,000', '1,25,000',\n", + " '2,99,000', '1,50,000', '2,75,000', '2,85,000', '3,40,000',\n", + " '70,000', '2,89,999', '8,49,999', '7,49,999', '2,74,999',\n", + " '9,84,999', '5,99,999', '2,44,999', '4,74,999', '2,45,000',\n", + " '1,69,500', '3,70,000', '1,68,000', '1,45,000', '98,500',\n", + " '2,09,000', '1,85,000', '9,00,000', '6,99,999', '1,99,999',\n", + " '5,44,999', '1,99,000', '5,40,000', '49,000', '7,00,000', '55,000',\n", + " '8,95,000', '3,55,000', '5,65,000', '3,65,000', '40,000',\n", + " '4,00,000', '3,30,000', '5,80,000', '3,79,000', '2,19,000',\n", + " '5,19,000', '7,30,000', '20,00,000', '21,00,000', '14,00,000',\n", + " '3,11,000', '8,55,000', '5,35,000', '1,78,000', '3,00,000',\n", + " '2,55,000', '5,49,999', '3,80,000', '57,000', '4,10,000',\n", + " '2,25,000', '1,20,000', '59,000', '5,99,000', '6,75,000', '72,500',\n", + " '6,10,000', '2,30,000', '5,20,000', '5,24,999', '4,24,999',\n", + " '6,44,999', '5,84,999', '7,99,999', '4,44,999', '6,49,999',\n", + " '9,44,999', '5,74,999', '3,74,999', '1,30,000', '4,01,000',\n", + " '13,50,000', '1,74,999', '2,39,999', '99,999', '3,24,999',\n", + " '10,74,999', '11,30,000', '1,49,000', '7,70,000', '30,000',\n", + " '3,35,000', '3,99,000', '65,000', '1,69,999', '1,65,000',\n", + " '5,60,000', '9,50,000', '7,15,000', '45,000', '9,40,000',\n", + " '1,55,555', '15,00,000', '4,95,000', '8,00,000', '12,99,000',\n", + " '5,30,000', '14,99,000', '32,000', '4,05,000', '7,60,000',\n", + " '7,50,000', '4,19,000', '1,40,000', '15,40,000', '1,23,000',\n", + " '4,98,000', '4,80,000', '4,88,000', '15,25,000', '5,48,900',\n", + " '7,25,000', '99,000', '52,000', '28,00,000', '4,99,000',\n", + " '3,81,000', '2,78,000', '6,90,000', '2,60,000', '90,001',\n", + " '1,15,000', '15,99,000', '1,59,000', '51,999', '2,15,000',\n", + " '35,000', '11,50,000', '2,69,000', '60,000', '4,30,000',\n", + " '85,00,003', '4,01,919', '4,90,000', '4,24,000', '2,05,000',\n", + " '5,49,900', '3,71,500', '4,35,000', '1,89,700', '3,89,700',\n", + " '3,60,000', '2,95,000', '1,14,990', '10,65,000', '4,70,000',\n", + " '48,000', '1,88,000', '4,65,000', '1,79,999', '21,90,000',\n", + " '23,90,000', '10,75,000', '4,75,000', '10,25,000', '6,15,000',\n", + " '19,00,000', '14,90,000', '15,10,000', '18,50,000', '7,90,000',\n", + " '17,25,000', '12,25,000', '68,000', '9,70,000', '31,00,000',\n", + " '8,99,000', '88,000', '53,000', '5,68,500', '71,000', '5,90,000',\n", + " '7,95,000', '42,000', '1,89,000', '1,62,000', '35,999',\n", + " '29,00,000', '39,999', '50,500', '5,10,000', '8,60,000',\n", + " '5,00,001'], dtype=object)" + ] + }, + "execution_count": 5, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "car['Price'].unique()" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "id": "8bf9b37d", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array(['45,000 kms', '40 kms', '22,000 kms', '28,000 kms', '36,000 kms',\n", + " '59,000 kms', '41,000 kms', '25,000 kms', '24,530 kms',\n", + " '60,000 kms', '30,000 kms', '32,000 kms', '48,660 kms',\n", + " '4,000 kms', '16,934 kms', '43,000 kms', '35,550 kms',\n", + " '39,522 kms', '39,000 kms', '55,000 kms', '72,000 kms',\n", + " '15,975 kms', '70,000 kms', '23,452 kms', '35,522 kms',\n", + " '48,508 kms', '15,487 kms', '82,000 kms', '20,000 kms',\n", + " '68,000 kms', '38,000 kms', '27,000 kms', '33,000 kms',\n", + " '46,000 kms', '16,000 kms', '47,000 kms', '35,000 kms',\n", + " '30,874 kms', '15,000 kms', '29,685 kms', '1,30,000 kms',\n", + " '19,000 kms', nan, '54,000 kms', '13,000 kms', '38,200 kms',\n", + " '50,000 kms', '13,500 kms', '3,600 kms', '45,863 kms',\n", + " '60,500 kms', '12,500 kms', '18,000 kms', '13,349 kms',\n", + " '29,000 kms', '44,000 kms', '42,000 kms', '14,000 kms',\n", + " '49,000 kms', '36,200 kms', '51,000 kms', '1,04,000 kms',\n", + " '33,333 kms', '33,600 kms', '5,600 kms', '7,500 kms', '26,000 kms',\n", + " '24,330 kms', '65,480 kms', '28,028 kms', '2,00,000 kms',\n", + " '99,000 kms', '2,800 kms', '21,000 kms', '11,000 kms',\n", + " '66,000 kms', '3,000 kms', '7,000 kms', '38,500 kms', '37,200 kms',\n", + " '43,200 kms', '24,800 kms', '45,872 kms', '40,000 kms',\n", + " '11,400 kms', '97,200 kms', '52,000 kms', '31,000 kms',\n", + " '1,75,430 kms', '37,000 kms', '65,000 kms', '3,350 kms',\n", + " '75,000 kms', '62,000 kms', '73,000 kms', '2,200 kms',\n", + " '54,870 kms', '34,580 kms', '97,000 kms', '60 kms', '80,200 kms',\n", + " '3,200 kms', '0,000 kms', '5,000 kms', '588 kms', '71,200 kms',\n", + " '1,75,400 kms', '9,300 kms', '56,758 kms', '10,000 kms',\n", + " '56,450 kms', '56,000 kms', '32,700 kms', '9,000 kms', '73 kms',\n", + " '1,60,000 kms', '84,000 kms', '58,559 kms', '57,000 kms',\n", + " '1,70,000 kms', '80,000 kms', '6,821 kms', '23,000 kms',\n", + " '34,000 kms', '1,800 kms', '4,00,000 kms', '48,000 kms',\n", + " '90,000 kms', '12,000 kms', '69,900 kms', '1,66,000 kms',\n", + " '122 kms', '0 kms', '24,000 kms', '36,469 kms', '7,800 kms',\n", + " '24,695 kms', '15,141 kms', '59,910 kms', '1,00,000 kms',\n", + " '4,500 kms', '1,29,000 kms', '300 kms', '1,31,000 kms',\n", + " '1,11,111 kms', '59,466 kms', '25,500 kms', '44,005 kms',\n", + " '2,110 kms', '43,222 kms', '1,00,200 kms', '65 kms',\n", + " '1,40,000 kms', '1,03,553 kms', '58,000 kms', '1,20,000 kms',\n", + " '49,800 kms', '100 kms', '81,876 kms', '6,020 kms', '55,700 kms',\n", + " '18,500 kms', '1,80,000 kms', '53,000 kms', '35,500 kms',\n", + " '22,134 kms', '1,000 kms', '8,500 kms', '87,000 kms', '6,000 kms',\n", + " '15,574 kms', '8,000 kms', '55,800 kms', '56,400 kms',\n", + " '72,160 kms', '11,500 kms', '1,33,000 kms', '2,000 kms',\n", + " '88,000 kms', '65,422 kms', '1,17,000 kms', '1,50,000 kms',\n", + " '10,750 kms', '6,800 kms', '5 kms', '9,800 kms', '57,923 kms',\n", + " '30,201 kms', '6,200 kms', '37,518 kms', '24,652 kms', '383 kms',\n", + " '95,000 kms', '3,528 kms', '52,500 kms', '47,900 kms',\n", + " '52,800 kms', '1,95,000 kms', '48,008 kms', '48,247 kms',\n", + " '9,400 kms', '64,000 kms', '2,137 kms', '10,544 kms', '49,500 kms',\n", + " '1,47,000 kms', '90,001 kms', '48,006 kms', '74,000 kms',\n", + " '85,000 kms', '29,500 kms', '39,700 kms', '67,000 kms',\n", + " '19,336 kms', '60,105 kms', '45,933 kms', '1,02,563 kms',\n", + " '28,600 kms', '41,800 kms', '1,16,000 kms', '42,590 kms',\n", + " '7,400 kms', '54,500 kms', '76,000 kms', '00 kms', '11,523 kms',\n", + " '38,600 kms', '95,500 kms', '37,458 kms', '85,960 kms',\n", + " '12,516 kms', '30,600 kms', '2,550 kms', '62,500 kms',\n", + " '69,000 kms', '28,400 kms', '68,485 kms', '3,500 kms',\n", + " '85,455 kms', '63,000 kms', '1,600 kms', '77,000 kms',\n", + " '26,500 kms', '2,875 kms', '13,900 kms', '1,500 kms', '2,450 kms',\n", + " '1,625 kms', '33,400 kms', '60,123 kms', '38,900 kms',\n", + " '1,37,495 kms', '91,200 kms', '1,46,000 kms', '1,00,800 kms',\n", + " '2,100 kms', '2,500 kms', '1,32,000 kms', 'Petrol'], dtype=object)" + ] + }, + "execution_count": 6, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "car['kms_driven'].unique()" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "id": "6b1e60ef", + "metadata": { + "scrolled": true + }, + "outputs": [ + { + "data": { + "text/plain": [ + "array(['Petrol', 'Diesel', nan, 'LPG'], dtype=object)" + ] + }, + "execution_count": 7, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "car['fuel_type'].unique()" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "id": "31a78278", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array(['Hyundai Santro Xing XO eRLX Euro III', 'Mahindra Jeep CL550 MDI',\n", + " 'Maruti Suzuki Alto 800 Vxi',\n", + " 'Hyundai Grand i10 Magna 1.2 Kappa VTVT',\n", + " 'Ford EcoSport Titanium 1.5L TDCi', 'Ford Figo', 'Hyundai Eon',\n", + " 'Ford EcoSport Ambiente 1.5L TDCi',\n", + " 'Maruti Suzuki Alto K10 VXi AMT', 'Skoda Fabia Classic 1.2 MPI',\n", + " 'Maruti Suzuki Stingray VXi', 'Hyundai Elite i20 Magna 1.2',\n", + " 'Mahindra Scorpio SLE BS IV', 'Audi A8', 'Audi Q7',\n", + " 'Mahindra Scorpio S10', 'Maruti Suzuki Alto 800',\n", + " 'Hyundai i20 Sportz 1.2', 'Maruti Suzuki Alto 800 Lx',\n", + " 'Maruti Suzuki Vitara Brezza ZDi', 'Maruti Suzuki Alto LX',\n", + " 'Mahindra Bolero DI', 'Maruti Suzuki Swift Dzire ZDi',\n", + " 'Mahindra Scorpio S10 4WD', 'Maruti Suzuki Swift Vdi BSIII',\n", + " 'Maruti Suzuki Wagon R VXi BS III',\n", + " 'Maruti Suzuki Wagon R VXi Minor',\n", + " 'Toyota Innova 2.0 G 8 STR BS IV', 'Renault Lodgy 85 PS RXL',\n", + " 'Skoda Yeti Ambition 2.0 TDI CR 4x2',\n", + " 'Maruti Suzuki Baleno Delta 1.2',\n", + " 'Renault Duster 110 PS RxZ Diesel Plus',\n", + " 'Renault Duster 85 PS RxE Diesel', 'Honda City 1.5 S MT',\n", + " 'Maruti Suzuki Dzire', 'Honda Amaze', 'Honda Amaze 1.5 SX i DTEC',\n", + " 'Honda City', 'Datsun Redi GO S', 'Maruti Suzuki SX4 ZXI MT',\n", + " 'Mitsubishi Pajero Sport Limited Edition',\n", + " 'Maruti Suzuki Swift VXi 1.2 ABS BS IV', 'Honda City ZX CVT',\n", + " 'Maruti Suzuki Wagon R LX BS IV', 'Tata Indigo eCS LS CR4 BS IV',\n", + " 'Volkswagen Polo Highline Exquisite P',\n", + " 'I want to sell my car Tata Zest', 'Chevrolet Spark LS 1.0',\n", + " 'Renault Duster 110PS Diesel RxZ', 'Mini Cooper S 1.6',\n", + " 'Skoda Fabia 1.2L Diesel Ambiente', 'Renault Duster',\n", + " 'Mahindra Scorpio S4', 'Mahindra Scorpio VLX 2WD BS IV',\n", + " 'Mahindra Quanto C8', 'Ford EcoSport', 'Honda Brio',\n", + " 'Volkswagen Vento Highline Plus 1.5 Diesel AT',\n", + " 'Hyundai i20 Magna', 'Toyota Corolla Altis Diesel D4DG',\n", + " 'Hyundai Verna Transform SX VTVT',\n", + " 'Toyota Corolla Altis Petrol Ltd', 'Honda City 1.5 EXi New',\n", + " 'Skoda Fabia 1.2L Diesel Elegance', 'BMW 3 Series 320i',\n", + " 'Maruti Suzuki A Star Lxi', 'Toyota Etios GD',\n", + " 'Ford Figo Diesel EXI Option',\n", + " 'Maruti Suzuki Swift Dzire VXi 1.2 BS IV',\n", + " 'Chevrolet Beat LT Diesel', 'BMW 7 Series 740Li Sedan',\n", + " 'Mahindra XUV500 W8 AWD 2013', 'Hyundai i10 Magna 1.2',\n", + " 'Hyundai Verna Fluidic New', 'Maruti Suzuki Swift VXi 1.2 BS IV',\n", + " 'Maruti Suzuki Ertiga ZXI Plus', 'Maruti Suzuki Ertiga Vxi',\n", + " 'Maruti Suzuki Ertiga VDi', 'Maruti Suzuki Alto LXi BS III',\n", + " 'Hyundai Grand i10 Asta 1.1 CRDi', 'Honda Amaze 1.2 S i VTEC',\n", + " 'Hyundai i20 Asta 1.4 CRDI 6 Speed', 'Ford Figo Diesel EXI',\n", + " 'Maruti Suzuki Eeco 5 STR WITH AC HTR', 'Maruti Suzuki Ertiga ZXi',\n", + " 'Maruti Suzuki Esteem LXi BS III', 'Maruti Suzuki Ritz VXI',\n", + " 'Maruti Suzuki Ritz LDi', 'Maruti Suzuki Dzire VDI',\n", + " 'Toyota Etios Liva G', 'Hyundai i20 Sportz 1.4 CRDI',\n", + " 'Chevrolet Spark', 'Nissan Micra XV', 'Maruti Suzuki Swift',\n", + " 'Honda Amaze 1.5 S i DTEC', 'Chevrolet Beat', 'Toyota Corolla',\n", + " 'Honda City 1.5 V MT', 'Ford EcoSport Trend 1.5L TDCi',\n", + " 'Hyundai i20 Asta 1.2', 'Tata Indica V2 eLS',\n", + " 'Maruti Suzuki Alto 800 Lxi', 'Hindustan Motors Ambassador',\n", + " 'Toyota Corolla Altis 1.8 GL', 'Toyota Corolla Altis 1.8 J',\n", + " 'Toyota Innova 2.5 GX BS IV 7 STR',\n", + " 'Volkswagen Jetta Highline TDI AT',\n", + " 'Volkswagen Polo Comfortline 1.2L P', 'Volkswagen Polo',\n", + " 'Mahindra Scorpio', 'Nissan Sunny', 'Hyundai Elite i20',\n", + " 'Renault Kwid', 'Mahindra Scorpio VLX Airbag',\n", + " 'Chevrolet Spark LT 1.0', 'Datsun Redi GO T O',\n", + " 'Maruti Suzuki Swift RS VDI', 'Fiat Punto Emotion 1.2',\n", + " 'Hyundai i10 Sportz 1.2', 'Chevrolet Beat LT Opt Diesel',\n", + " 'Chevrolet Beat LS Diesel', 'Tata Indigo CS',\n", + " 'Maruti Suzuki Swift VDi', 'Hyundai Eon Era Plus',\n", + " 'Mahindra XUV500', 'Ford Fiesta', 'Maruti Suzuki Wagon R',\n", + " 'Hyundai i20', 'Tata Indigo eCS LX TDI BS III',\n", + " 'Hyundai Fluidic Verna 1.6 CRDi SX',\n", + " 'Commercial , DZire LDI, 2016, for sale', 'Fiat Petra ELX 1.2 PS',\n", + " 'Hyundai Santro Xing XS', 'Maruti Suzuki Ciaz VXi Plus',\n", + " 'Maruti Suzuki Zen VX', 'Hyundai Creta 1.6 SX Plus Petrol',\n", + " 'Tata indigo ecs LX, 201', 'Mahindra Scorpio SLX',\n", + " 'Toyota Innova 2.5 G BS III 8 STR',\n", + " 'Maruti Suzuki Wagon R LXI BS IV', 'Tata Nano Cx BSIV',\n", + " 'Maruti Suzuki Alto Std BS IV', 'Maruti Suzuki Wagon R LXi BS III',\n", + " 'Maruti Suzuki Swift VXI BSIII',\n", + " 'Tata Sumo Victa EX 10 by 7 Str BSIII', 'MARUTI SUZUKI DESI',\n", + " 'Volkswagen Passat Diesel Comfortline AT',\n", + " 'Renault Scala RxL Diesel Travelogue',\n", + " 'Hyundai Grand i10 Sportz O 1.2 Kappa VTVT',\n", + " 'Hyundai i20 Active 1.2 SX', 'Mahindra Xylo E4',\n", + " 'Mahindra Jeep MM 550 XDB', 'Mahindra Bolero SLE BS IV',\n", + " 'Force Motors Force One LX ABS 7 STR', 'Maruti Suzuki SX4',\n", + " 'Toyota Etios', 'Honda City ZX VTEC',\n", + " 'Maruti Suzuki Wagon R LX BS III', 'Honda City VX O MT Diesel',\n", + " 'Mahindra Thar CRDe 4x4 AC',\n", + " 'Audi A4 1.8 TFSI Multitronic Premium Plus',\n", + " 'Mercedes Benz GLA Class 200 CDI Sport',\n", + " 'Land Rover Freelander 2 SE', 'Renault Kwid RXT',\n", + " 'Tata Aria Pleasure 4X2', 'Mercedes Benz B Class B180 Sports',\n", + " 'Datsun GO T O', 'Honda Jazz VX MT',\n", + " 'Hyundai i20 Active 1.4L SX O', 'Mini Cooper S',\n", + " 'Maruti Suzuki Ciaz ZXI Plus', 'Chevrolet Tavera Neo',\n", + " 'Hyundai Eon Sportz', 'Tata Sumo Gold Select Variant',\n", + " 'Maruti Suzuki Wagon R 1.0', 'Maruti Suzuki Esteem VXi BS III',\n", + " 'Chevrolet Enjoy 1.4 LS 8 STR', 'Maruti Suzuki Wagon R 1.0 VXi',\n", + " 'Nissan Terrano XL D Plus', 'Renault Duster 85 PS RxL Diesel',\n", + " 'Maruti Suzuki Dzire ZXI', 'Renault Kwid RXT Opt',\n", + " 'Maruti Suzuki Maruti 800 Std', 'Renault Kwid 1.0 RXT AMT',\n", + " 'Renault Scala RxL Diesel',\n", + " 'Hyundai Grand i10 Asta 1.2 Kappa VTVT O',\n", + " 'Chevrolet Beat LS Petrol', 'Hyundai Accent GLX', 'Yama',\n", + " 'Maruti Suzuki Swift LDi', 'Mahindra TUV300 T4 Plus',\n", + " 'Tata Indica V2 Xeta e GLE', 'Tata Indigo CS LS DiCOR',\n", + " 'Mahindra Scorpio VLX Special Edition BS III',\n", + " 'Tata Indica eV2 LS', 'Honda Accord',\n", + " 'Ford EcoSport Titanium 1.5 TDCi', 'Maruti Suzuki Ertiga',\n", + " 'Mahindra Scorpio 2.6 CRDe', 'Honda Mobilio',\n", + " 'Toyota Corolla Altis', 'Skoda Laura', 'Hyundai Verna Fluidic',\n", + " 'Maruti Suzuki Vitara Brezza', 'Tata Manza Aura Quadrajet',\n", + " 'Chevrolet Sail UVA Petrol LT ABS',\n", + " 'Hyundai Verna Fluidic 1.6 VTVT SX',\n", + " 'Audi A4 2.0 TDI 177bhp Premium', 'Hyundai Elantra SX',\n", + " 'Mahindra Scorpio VLX 4WD Airbag', 'Mahindra KUV100 K8 D 6 STR',\n", + " 'Hyundai Grand i10', 'Hyundai i10', 'Hyundai i20 Active',\n", + " 'Datsun Redi GO', 'Toyota Etios Liva', 'Hyundai Accent',\n", + " 'Hyundai Verna', 'Toyota Fortuner', 'Hyundai i10 Sportz',\n", + " 'Mahindra Bolero Power Plus SLE', 'selling car Ta',\n", + " 'Honda City 1.5 V MT Exclusive', 'Chevrolet Spark LT 1.0 Airbag',\n", + " 'Tata Indigo eCS VX CR4 BS IV', 'Tata Zest 90',\n", + " 'Skoda Rapid Elegance 1.6 TDI CR MT', 'Tata Vista Quadrajet VX',\n", + " 'Maruti Suzuki Alto K10 VXi AT', 'Maruti Suzuki Zen LXi BS III',\n", + " 'Maruti Suzuki Swift Dzire Tour LDi', 'Honda City ZX EXi',\n", + " 'Chevrolet Beat Diesel', 'Maruti Suzuki Swift Dzire car',\n", + " 'Hyundai Verna 1.4 VTVT', 'Toyota Innova 2.5 E MS 7 STR BS IV',\n", + " 'Maruti Suzuki Maruti 800 Std – Befo',\n", + " 'Hyundai Elite i20 Asta 1.4 CRDI',\n", + " 'Maruti Suzuki Swift Dzire Tour (Gat',\n", + " 'Maruti Suzuki Versa DX2 8 SEATER BSIII',\n", + " 'Tata Indigo LX TDI BS III',\n", + " 'Volkswagen Vento Konekt Diesel Highline',\n", + " 'Mercedes Benz C Class 200 CDI Classic', 'URJE',\n", + " 'Hyundai Santro Xing GLS', 'Maruti Suzuki Omni Limited Edition',\n", + " 'Hyundai Sonata Transform 2.4 GDi MT',\n", + " 'Hyundai Elite i20 Sportz 1.2', 'Honda Jazz S MT',\n", + " 'Hyundai Grand i10 Sportz 1.2 Kappa VTVT',\n", + " 'Maruti Suzuki Zen LXi BSII',\n", + " 'Mahindra Scorpio W Turbo 2.6DX 9 Seater',\n", + " 'Swift Dzire Tour 27 Dec 2016 Regis', 'Maruti Suzuki Alto K10 VXi',\n", + " 'Hyundai Grand i10 Asta 1.2 Kappa VTVT', 'Mahindra XUV500 W8',\n", + " 'Hyundai i20 Magna O 1.2', 'Renault Duster 85 PS RxL Explore LE',\n", + " 'Honda Brio V MT', 'Mahindra TUV300 T8',\n", + " 'Nissan X Trail Select Variant', 'Ford Ikon 1.3 CLXi NXt Finesse',\n", + " 'Toyota Fortuner 3.0 4x4 MT', 'Tata Manza ELAN Quadrajet',\n", + " 'Tata zest x', 'Mahindra xyl',\n", + " 'Mercedes Benz A Class A 180 Sport Petrol', 'Tata Indigo LS',\n", + " 'Hyundai i20 Magna 1.2', 'Used Commercial Maruti Omn',\n", + " 'Honda Amaze 1.5 E i DTEC', 'Hyundai Verna 1.6 EX VTVT',\n", + " 'BMW 5 Series 520d Sedan', 'Skoda Superb 1.8 TFSI AT',\n", + " 'Audi Q3 2.0 TDI quattro Premium', 'Mahindra Bolero DI BSII',\n", + " 'Maruti Suzuki Zen Estilo LXI Green CNG',\n", + " 'Ford Figo Duratorq Diesel Titanium 1.4',\n", + " 'Maruti Suzuki Wagon R VXI BS IV', 'Mahindra Logan Diesel 1.5 DLS',\n", + " 'Tata Nano GenX XMA', 'Honda City SV', 'Ford Figo Petrol LXI',\n", + " 'Hyundai i10 Magna 1.2 Kappa2', 'Toyota Corolla H2',\n", + " 'Maruti Suzuki Swift Dzire Tour VXi', 'Tata Indigo CS eLS BS IV',\n", + " 'Hyundai Xcent Base 1.1 CRDi', 'Hyundai Accent Executive Edition',\n", + " 'Tata Zest XE 75 PS Diesel', 'Maruti Suzuki Dzire LDI',\n", + " 'Tata Sumo Gold LX BS IV', 'Toyota Corolla Altis GL Petrol',\n", + " 'Maruti Suzuki Eeco 7 STR', 'Toyota Fortuner 3.0 4x2 MT',\n", + " 'Mahindra XUV500 W6', 'Tata Tigor Revotron XZ',\n", + " 'Maruti Suzuki 800', 'Honda Mobilio S i DTEC',\n", + " 'Hyundai Verna 1.6 CRDI E', 'Maruti Suzuki Omni Select Variant',\n", + " 'Tata Indica', 'Hyundai Santro Xing', 'Maruti Suzuki Zen Estilo',\n", + " 'Honda Brio VX AT', 'Maruti Suzuki Wagon R Select Variant',\n", + " 'Tata Nano Lx BSIV', 'Jaguar XE XE Portfolio',\n", + " 'Hyundai Xcent S 1.2', 'Hyundai Eon Magna Plus',\n", + " 'Maruti Suzuki Ritz GENUS VXI',\n", + " 'Hyundai Grand i10 Magna AT 1.2 Kappa VTVT',\n", + " 'Hyundai Eon D Lite Plus', 'Honda Amaze 1.2 VX i VTEC',\n", + " 'Maruti Suzuki Estilo VXi ABS BS IV',\n", + " 'Maruti Suzuki Vitara Brezza LDi O', 'Toyota Innova 2.0 V',\n", + " 'Hyundai Creta 1.6 SX Plus Petrol AT', 'Mahindra Scorpio Vlx BSIV',\n", + " 'Mitsubishi Lancer 1.8 LXi', 'Maruti Suzuki Maruti 800 AC',\n", + " 'Maruti Suzuki Alto 800 LXI CNG O', 'Ford Fiesta SXi 1.6 ABS',\n", + " 'Maruti Suzuki Ritz VDi', 'Maruti Suzuki Estilo LX BS IV',\n", + " 'Audi A6 2.0 TDI Premium', 'Maruti Suzuki Alto',\n", + " 'Maruti Suzuki Baleno Sigma 1.2', 'Hyundai Verna 1.6 SX VTVT AT',\n", + " 'Maruti Suzuki Swift GLAM', 'Hyundai Getz Prime 1.3 GVS',\n", + " 'Hyundai Santro', 'Hyundai Getz Prime 1.3 GLX',\n", + " 'Chevrolet Beat PS Diesel', 'Ford EcoSport Trend 1.5 Ti VCT',\n", + " 'Tata Indica V2 DLG', 'BMW X1 xDrive20d xLine',\n", + " 'Honda City 1.5 V AT', 'Tata Nano', 'Chevrolet Cruze LTZ AT',\n", + " 'Hyun', 'Maruti Suzuki Swift Dzire VDi', 'Mahindra XUV500 W10',\n", + " 'Maruti Suzuki Alto K10 LXi CNG', 'Hyundai Accent GLE',\n", + " 'Force Motors One SUV', 'Datsun Go Plus T O',\n", + " 'Chevrolet Spark 1.0 LT', 'Toyota Etios Liva GD',\n", + " 'Renault Duster 85PS Diesel RxL Optional with Nav',\n", + " 'Chevrolet Enjoy', 'BMW 5 Series 530i', 'Chevrolet Cruze LTZ',\n", + " 'Jeep Wrangler Unlimited 4x4 Diesel',\n", + " 'Hyundai Verna VGT CRDi SX ABS', 'Maruti Suzuki Omni',\n", + " 'Maruti Suzuki Celerio VDi', 'Tata Zest Quadrajet 1.3',\n", + " 'Tata Indigo CS eLX BS IV', 'Hyundai i10 Era',\n", + " 'Tata Indigo eCS LX CR4 BS IV', 'Tata Indigo Marina LS',\n", + " 'Commercial Chevrolet Sail Hatchback ca', 'Hyundai Xcent SX 1.2',\n", + " 'Tata Nano LX Special Edition', 'Commercial Car Ta',\n", + " 'Renault Duster 110 PS RxZ Diesel',\n", + " 'Maruti Suzuki Wagon R AX BSIV', 'Maruti Suzuki Alto K10 New',\n", + " 'tata Indica', 'Mahindra Xylo E8', 'Tata Manza Aqua Quadrajet',\n", + " 'Used bt new conditions ta', 'Renault Kwid 1.0', 'Sale tata',\n", + " 'Tata Venture EX 8 STR', 'Maruti Suzuki Swift Dzire Tour LXi',\n", + " 'Maruti Suzuki Alto LX BSII', 'Skoda Octavia Classic 1.9 TDI MT',\n", + " 'Maruti Suzuki Omni LPG BS IV', 'Tata Sumo Gold EX BS IV',\n", + " 'Tata indigo 2017 top model..', 'Hyundai Verna 1.6 CRDI SX',\n", + " 'Mahindra Scorpio SLX 2.6 Turbo 8 Str', 'Ford Ikon 1.6 Nxt',\n", + " 'Tata indigo', 'Toyota Innova 2.5 V 7 STR', 'Nissan Sunny XL',\n", + " 'Maruti Suzuki Swift VDi BS IV',\n", + " 'very good condition tata bolts are av', 'Toyota Innova 2.0 G4',\n", + " 'Sale Hyundai xcent commerc', 'Maruti Suzuki Swift VDi ABS',\n", + " 'Hyundai Elite i20 Asta 1.2', 'Volkswagen Polo Trendline 1.5L D',\n", + " 'Toyota Etios Liva Diesel', 'Maruti Suzuki Ciaz ZXi Plus RS',\n", + " 'Hyundai Elantra 1.8 S', 'Ford EcoSport Trend 1.5L Ti VCT',\n", + " 'Jaguar XF 2.2 Diesel Luxury',\n", + " 'Audi Q5 2.0 TDI quattro Premium Plus', 'BMW 3 Series 320d Sedan',\n", + " 'Maruti Suzuki Swift ZXi 1.2 BS IV', 'BMW X1 sDrive20d',\n", + " 'Maruti Suzuki S Cross Sigma 1.3', 'Maruti Suzuki Ertiga LDi',\n", + " 'Volkswagen Vento Comfortline Petrol', 'Mahindra KUV100',\n", + " 'Maruti Suzuki Swift Dzire Tour VDi', 'Mahindra Scorpio 2.6 SLX',\n", + " 'Maruti Suzuki Omni 8 STR BS III',\n", + " 'Volkswagen Jetta Comfortline 1.9 TDI AT', 'Volvo S80 Summum D4',\n", + " 'Toyota Corolla Altis VL AT Petrol',\n", + " 'Mitsubishi Pajero Sport 2.5 AT', 'Chevrolet Beat LT Petrol',\n", + " 'BMW X1', 'Mercedes Benz C Class C 220 CDI Avantgarde',\n", + " 'Volkswagen Vento Comfortline Diesel', 'Tata Indigo CS GLS',\n", + " 'Ford Figo Petrol Titanium', 'Honda City ZX GXi',\n", + " 'Maruti Suzuki Wagon R Duo Lxi', 'Maruti Suzuki Zen LX BSII',\n", + " 'Renault Duster RxL Petrol', 'Maruti Suzuki Baleno Zeta 1.2',\n", + " 'Honda WR V S MT Petrol', 'Renault Duster 110 PS RxL Diesel',\n", + " 'Mahindra Scorpio LX BS III',\n", + " 'Maruti Suzuki SX4 Celebration Diesel',\n", + " 'Audi A3 Cabriolet 40 TFSI',\n", + " 'I want to sell my commercial car due t',\n", + " 'Hyundai Santro AE GLS Audio',\n", + " 'i want sale my car.no emi....uber atta', 'Tata ZEST 6 month old',\n", + " 'Mahindra Xylo D2 BS IV', 'Hyundai Getz GLE',\n", + " 'Hyundai Creta 1.6 SX', 'Hyundai Santro Xing XL AT eRLX Euro III',\n", + " 'Hyundai Santro Xing XL eRLX Euro III',\n", + " 'Tata Indica V2 DLS BS III', 'Honda City 1.5 E MT',\n", + " 'Nissan Micra XL', 'Honda City 1.5 S Inspire',\n", + " 'Tata Indica eV2 eXeta eGLX', 'Maruti Suzuki Omni E 8 STR BS IV',\n", + " 'MARUTI SUZUKI ERTIGA F', 'Hyundai Verna 1.6 CRDI SX Plus AT',\n", + " 'Chevrolet Tavera LS B3 10 Seats BSII', 'Tata Tiago Revotron XM',\n", + " 'Tata Tiago Revotorq XZ', 'Tata Nexon', 'Tata',\n", + " 'Hindustan Motors Ambassador Classic Mark 4 – Befo',\n", + " 'Ford Fusion 1.4 TDCi Diesel',\n", + " 'Fiat Linea Emotion 1.4 L T Jet Petrol',\n", + " 'Ford Ikon 1.3 Flair Josh 100', 'Tata Indica V2 LS',\n", + " 'Mahindra Xylo D2', 'Hyundai Eon Magna',\n", + " 'Tata Sumo Grande MKII GX', 'Volkswagen Polo Highline1.2L P',\n", + " 'Tata Tiago Revotron XZ', 'Tata Indigo eCS',\n", + " '2012 Tata Sumo Gold f', 'Mahindra Xylo E8 BS IV',\n", + " 'Well mentained Tata Sumo',\n", + " 'all paper updated tata indica v2 and u',\n", + " 'Maruti Ertiga showroom condition with',\n", + " '7 SEATER MAHINDRA BOLERO IN VERY GOOD', '9 SEATER MAHINDRA BOL',\n", + " 'scratch less Tata I', 'Maruti Suzuki swift dzire for sale in',\n", + " 'Commercial Chevrolet beat for sale in',\n", + " 'urgent sell my Mahindra qu', 'Tata Sumo Gold FX BSIII',\n", + " 'sell my car Maruti Suzuki Swif',\n", + " 'Maruti Suzuki Swift Dzire good car fo', 'Hyunda',\n", + " 'Commercial Maruti Suzuki Alto Lxi 800', 'urgent sale Ta',\n", + " 'Maruti Suzuki Alto vxi t', 'tata', 'TATA INDI', 'Hyundai Creta',\n", + " 'Tata Bolt XM Petrol', 'Hyundai Venue', 'Maruti Suzuki Ritz',\n", + " 'Renault Lodgy', 'Hyundai i20 Asta',\n", + " 'Maruti Suzuki Swift Select Variant', 'Tata Indica V2 DLX BS III',\n", + " 'Mahindra Scorpio VLX 2.2 mHawk Airbag BSIV',\n", + " 'Toyota Innova 2.5 E 8 STR', 'Mahindra KUV100 K8 6 STR',\n", + " 'Datsun Go Plus', 'Ford Endeavor 4x4 Thunder Plus',\n", + " 'Tata Indica V2', 'Hyundai Santro Xing GL',\n", + " 'Toyota Innova 2.5 Z Diesel 7 Seater',\n", + " 'Any type car avaiabel hare...comercica', 'Maruti Suzuki Alto AX',\n", + " 'Mahindra Logan', 'Maruti Suzuki 800 Std BS III',\n", + " 'Chevrolet Sail 1.2 LS',\n", + " 'Volkswagen Vento Highline Plus 1.5 Diesel', 'Tata Manza',\n", + " 'Toyota Innova 2.0 G1 Petrol 8seater', 'Toyota Etios G',\n", + " 'Toyota Qualis', 'Mahindra Quanto C4', 'Maruti Suzuki Swift Dzire',\n", + " 'Hyundai i20 Select Variant', 'Honda City VX Petrol',\n", + " 'Hyundai Getz', 'Mercedes Benz C Class 200 K MT', 'Skoda Fabia',\n", + " 'Maruti Suzuki Alto 800 Select Variant',\n", + " 'Maruti Suzuki Ritz VXI ABS', 'tata zest 2017 f',\n", + " 'Tata Indica V2 DLE BS III', 'Ta', 'Tata Zest XM Diesel',\n", + " 'Honda Amaze 1.2 E i VTEC', 'Chevrolet Sail 1.2 LT ABS'],\n", + " dtype=object)" + ] + }, + "execution_count": 8, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "car['name'].unique()" + ] + }, + { + "cell_type": "markdown", + "id": "281d8fdf", + "metadata": {}, + "source": [ + "# Quality\n", + "- year has many non-year values\n", + "- year object to integer\n", + "- price has Ask for Price\n", + "- price object to integer\n", + "- kms driven has kmn extra part\n", + "- kmn driven object to integer\n", + "- kms driven has nan values\n", + "- fuel type has some nan values\n", + "- keep first 3 words of name" + ] + }, + { + "cell_type": "markdown", + "id": "38ffa263", + "metadata": {}, + "source": [ + "# Cleaning" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "id": "68e7ca19", + "metadata": {}, + "outputs": [], + "source": [ + "backup = car.copy()" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "id": "3058c6db", + "metadata": {}, + "outputs": [], + "source": [ + "car = car[car['year'].str.isnumeric()]" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "id": "29ca1f81", + "metadata": {}, + "outputs": [], + "source": [ + "car['year'] = car['year'].astype(int)" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "id": "7bcb2fc3", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "Int64Index: 842 entries, 0 to 891\n", + "Data columns (total 6 columns):\n", + " # Column Non-Null Count Dtype \n", + "--- ------ -------------- ----- \n", + " 0 name 842 non-null object\n", + " 1 company 842 non-null object\n", + " 2 year 842 non-null int32 \n", + " 3 Price 842 non-null object\n", + " 4 kms_driven 840 non-null object\n", + " 5 fuel_type 837 non-null object\n", + "dtypes: int32(1), object(5)\n", + "memory usage: 42.8+ KB\n" + ] + } + ], + "source": [ + "car.info()" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "id": "f2c38d7f", + "metadata": {}, + "outputs": [], + "source": [ + "car = car[car['Price'] != 'Ask For Price']" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "id": "3f2942f2", + "metadata": {}, + "outputs": [], + "source": [ + "car['Price'] = car['Price'].str.replace(',','').astype(int)" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "id": "fef0524a", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "Int64Index: 819 entries, 0 to 891\n", + "Data columns (total 6 columns):\n", + " # Column Non-Null Count Dtype \n", + "--- ------ -------------- ----- \n", + " 0 name 819 non-null object\n", + " 1 company 819 non-null object\n", + " 2 year 819 non-null int32 \n", + " 3 Price 819 non-null int32 \n", + " 4 kms_driven 819 non-null object\n", + " 5 fuel_type 816 non-null object\n", + "dtypes: int32(2), object(4)\n", + "memory usage: 38.4+ KB\n" + ] + } + ], + "source": [ + "car.info()" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "id": "66236fb9", + "metadata": {}, + "outputs": [], + "source": [ + "car['kms_driven'] = car['kms_driven'].str.replace(' kms','').str.replace(',','')" + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "id": "fd31c8cb", + "metadata": {}, + "outputs": [], + "source": [ + "car = car[car['kms_driven'] != 'Petrol']" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "id": "fd74b021", + "metadata": {}, + "outputs": [], + "source": [ + "car['kms_driven'] = car['kms_driven'].astype(int)" + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "id": "2cda9273", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "Int64Index: 817 entries, 0 to 889\n", + "Data columns (total 6 columns):\n", + " # Column Non-Null Count Dtype \n", + "--- ------ -------------- ----- \n", + " 0 name 817 non-null object\n", + " 1 company 817 non-null object\n", + " 2 year 817 non-null int32 \n", + " 3 Price 817 non-null int32 \n", + " 4 kms_driven 817 non-null int32 \n", + " 5 fuel_type 816 non-null object\n", + "dtypes: int32(3), object(3)\n", + "memory usage: 35.1+ KB\n" + ] + } + ], + "source": [ + "car.info()" + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "id": "6ff9ab7b", + "metadata": {}, + "outputs": [], + "source": [ + "car.dropna(inplace=True)" + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "id": "6afc1ee5", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "Int64Index: 816 entries, 0 to 889\n", + "Data columns (total 6 columns):\n", + " # Column Non-Null Count Dtype \n", + "--- ------ -------------- ----- \n", + " 0 name 816 non-null object\n", + " 1 company 816 non-null object\n", + " 2 year 816 non-null int32 \n", + " 3 Price 816 non-null int32 \n", + " 4 kms_driven 816 non-null int32 \n", + " 5 fuel_type 816 non-null object\n", + "dtypes: int32(3), object(3)\n", + "memory usage: 35.1+ KB\n" + ] + } + ], + "source": [ + "car.info()" + ] + }, + { + "cell_type": "code", + "execution_count": 22, + "id": "f7321418", + "metadata": {}, + "outputs": [], + "source": [ + "car['name'] = car['name'].str.split().str.slice(0,3).str.join(' ')" + ] + }, + { + "cell_type": "code", + "execution_count": 23, + "id": "ce740488", + "metadata": {}, + "outputs": [], + "source": [ + "car = car.reset_index(drop=True)" + ] + }, + { + "cell_type": "code", + "execution_count": 24, + "id": "9341d5ed", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
namecompanyyearPricekms_drivenfuel_type
0Hyundai Santro XingHyundai20078000045000Petrol
1Mahindra Jeep CL550Mahindra200642500040Diesel
2Hyundai Grand i10Hyundai201432500028000Petrol
3Ford EcoSport TitaniumFord201457500036000Diesel
4Ford FigoFord201217500041000Diesel
.....................
811Maruti Suzuki RitzMaruti201127000050000Petrol
812Tata Indica V2Tata200911000030000Diesel
813Toyota Corolla AltisToyota2009300000132000Petrol
814Tata Zest XMTata201826000027000Diesel
815Mahindra Quanto C8Mahindra201339000040000Diesel
\n", + "

816 rows × 6 columns

\n", + "
" + ], + "text/plain": [ + " name company year Price kms_driven fuel_type\n", + "0 Hyundai Santro Xing Hyundai 2007 80000 45000 Petrol\n", + "1 Mahindra Jeep CL550 Mahindra 2006 425000 40 Diesel\n", + "2 Hyundai Grand i10 Hyundai 2014 325000 28000 Petrol\n", + "3 Ford EcoSport Titanium Ford 2014 575000 36000 Diesel\n", + "4 Ford Figo Ford 2012 175000 41000 Diesel\n", + ".. ... ... ... ... ... ...\n", + "811 Maruti Suzuki Ritz Maruti 2011 270000 50000 Petrol\n", + "812 Tata Indica V2 Tata 2009 110000 30000 Diesel\n", + "813 Toyota Corolla Altis Toyota 2009 300000 132000 Petrol\n", + "814 Tata Zest XM Tata 2018 260000 27000 Diesel\n", + "815 Mahindra Quanto C8 Mahindra 2013 390000 40000 Diesel\n", + "\n", + "[816 rows x 6 columns]" + ] + }, + "execution_count": 24, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "car" + ] + }, + { + "cell_type": "code", + "execution_count": 25, + "id": "46b239e7", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
yearPricekms_driven
count816.0000008.160000e+02816.000000
mean2012.4448534.117176e+0546275.531863
std4.0029924.751844e+0534297.428044
min1995.0000003.000000e+040.000000
25%2010.0000001.750000e+0527000.000000
50%2013.0000002.999990e+0541000.000000
75%2015.0000004.912500e+0556818.500000
max2019.0000008.500003e+06400000.000000
\n", + "
" + ], + "text/plain": [ + " year Price kms_driven\n", + "count 816.000000 8.160000e+02 816.000000\n", + "mean 2012.444853 4.117176e+05 46275.531863\n", + "std 4.002992 4.751844e+05 34297.428044\n", + "min 1995.000000 3.000000e+04 0.000000\n", + "25% 2010.000000 1.750000e+05 27000.000000\n", + "50% 2013.000000 2.999990e+05 41000.000000\n", + "75% 2015.000000 4.912500e+05 56818.500000\n", + "max 2019.000000 8.500003e+06 400000.000000" + ] + }, + "execution_count": 25, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "car.describe()" + ] + }, + { + "cell_type": "code", + "execution_count": 26, + "id": "928e6a87", + "metadata": {}, + "outputs": [], + "source": [ + "car = car[car['Price']<6e6].reset_index(drop = True)" + ] + }, + { + "cell_type": "code", + "execution_count": 27, + "id": "6aab88e2", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
namecompanyyearPricekms_drivenfuel_type
0Hyundai Santro XingHyundai20078000045000Petrol
1Mahindra Jeep CL550Mahindra200642500040Diesel
2Hyundai Grand i10Hyundai201432500028000Petrol
3Ford EcoSport TitaniumFord201457500036000Diesel
4Ford FigoFord201217500041000Diesel
.....................
810Maruti Suzuki RitzMaruti201127000050000Petrol
811Tata Indica V2Tata200911000030000Diesel
812Toyota Corolla AltisToyota2009300000132000Petrol
813Tata Zest XMTata201826000027000Diesel
814Mahindra Quanto C8Mahindra201339000040000Diesel
\n", + "

815 rows × 6 columns

\n", + "
" + ], + "text/plain": [ + " name company year Price kms_driven fuel_type\n", + "0 Hyundai Santro Xing Hyundai 2007 80000 45000 Petrol\n", + "1 Mahindra Jeep CL550 Mahindra 2006 425000 40 Diesel\n", + "2 Hyundai Grand i10 Hyundai 2014 325000 28000 Petrol\n", + "3 Ford EcoSport Titanium Ford 2014 575000 36000 Diesel\n", + "4 Ford Figo Ford 2012 175000 41000 Diesel\n", + ".. ... ... ... ... ... ...\n", + "810 Maruti Suzuki Ritz Maruti 2011 270000 50000 Petrol\n", + "811 Tata Indica V2 Tata 2009 110000 30000 Diesel\n", + "812 Toyota Corolla Altis Toyota 2009 300000 132000 Petrol\n", + "813 Tata Zest XM Tata 2018 260000 27000 Diesel\n", + "814 Mahindra Quanto C8 Mahindra 2013 390000 40000 Diesel\n", + "\n", + "[815 rows x 6 columns]" + ] + }, + "execution_count": 27, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "car" + ] + }, + { + "cell_type": "code", + "execution_count": 28, + "id": "12240c5b", + "metadata": {}, + "outputs": [], + "source": [ + "car.to_csv('cleaned_car.csv')" + ] + }, + { + "cell_type": "markdown", + "id": "360ebe84", + "metadata": {}, + "source": [ + "# Model" + ] + }, + { + "cell_type": "code", + "execution_count": 29, + "id": "db83323f", + "metadata": {}, + "outputs": [], + "source": [ + "x = car.drop(columns = 'Price')\n", + "y = car['Price']" + ] + }, + { + "cell_type": "code", + "execution_count": 30, + "id": "8b93ba4c", + "metadata": {}, + "outputs": [], + "source": [ + "\n", + "x_train,x_test,y_train,y_test = train_test_split(x,y,test_size=0.2)" + ] + }, + { + "cell_type": "code", + "execution_count": 31, + "id": "7fea309a", + "metadata": { + "scrolled": true + }, + "outputs": [ + { + "data": { + "text/plain": [ + "OneHotEncoder()" + ] + }, + "execution_count": 31, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "ohe = OneHotEncoder()\n", + "ohe.fit(x[['name','company','fuel_type']])" + ] + }, + { + "cell_type": "code", + "execution_count": 32, + "id": "1e7f6dd7", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "[array(['Audi A3 Cabriolet', 'Audi A4 1.8', 'Audi A4 2.0', 'Audi A6 2.0',\n", + " 'Audi A8', 'Audi Q3 2.0', 'Audi Q5 2.0', 'Audi Q7', 'BMW 3 Series',\n", + " 'BMW 5 Series', 'BMW 7 Series', 'BMW X1', 'BMW X1 sDrive20d',\n", + " 'BMW X1 xDrive20d', 'Chevrolet Beat', 'Chevrolet Beat Diesel',\n", + " 'Chevrolet Beat LS', 'Chevrolet Beat LT', 'Chevrolet Beat PS',\n", + " 'Chevrolet Cruze LTZ', 'Chevrolet Enjoy', 'Chevrolet Enjoy 1.4',\n", + " 'Chevrolet Sail 1.2', 'Chevrolet Sail UVA', 'Chevrolet Spark',\n", + " 'Chevrolet Spark 1.0', 'Chevrolet Spark LS', 'Chevrolet Spark LT',\n", + " 'Chevrolet Tavera LS', 'Chevrolet Tavera Neo', 'Datsun GO T',\n", + " 'Datsun Go Plus', 'Datsun Redi GO', 'Fiat Linea Emotion',\n", + " 'Fiat Petra ELX', 'Fiat Punto Emotion', 'Force Motors Force',\n", + " 'Force Motors One', 'Ford EcoSport', 'Ford EcoSport Ambiente',\n", + " 'Ford EcoSport Titanium', 'Ford EcoSport Trend',\n", + " 'Ford Endeavor 4x4', 'Ford Fiesta', 'Ford Fiesta SXi', 'Ford Figo',\n", + " 'Ford Figo Diesel', 'Ford Figo Duratorq', 'Ford Figo Petrol',\n", + " 'Ford Fusion 1.4', 'Ford Ikon 1.3', 'Ford Ikon 1.6',\n", + " 'Hindustan Motors Ambassador', 'Honda Accord', 'Honda Amaze',\n", + " 'Honda Amaze 1.2', 'Honda Amaze 1.5', 'Honda Brio', 'Honda Brio V',\n", + " 'Honda Brio VX', 'Honda City', 'Honda City 1.5', 'Honda City SV',\n", + " 'Honda City VX', 'Honda City ZX', 'Honda Jazz S', 'Honda Jazz VX',\n", + " 'Honda Mobilio', 'Honda Mobilio S', 'Honda WR V', 'Hyundai Accent',\n", + " 'Hyundai Accent Executive', 'Hyundai Accent GLE',\n", + " 'Hyundai Accent GLX', 'Hyundai Creta', 'Hyundai Creta 1.6',\n", + " 'Hyundai Elantra 1.8', 'Hyundai Elantra SX', 'Hyundai Elite i20',\n", + " 'Hyundai Eon', 'Hyundai Eon D', 'Hyundai Eon Era',\n", + " 'Hyundai Eon Magna', 'Hyundai Eon Sportz', 'Hyundai Fluidic Verna',\n", + " 'Hyundai Getz', 'Hyundai Getz GLE', 'Hyundai Getz Prime',\n", + " 'Hyundai Grand i10', 'Hyundai Santro', 'Hyundai Santro AE',\n", + " 'Hyundai Santro Xing', 'Hyundai Sonata Transform', 'Hyundai Verna',\n", + " 'Hyundai Verna 1.4', 'Hyundai Verna 1.6', 'Hyundai Verna Fluidic',\n", + " 'Hyundai Verna Transform', 'Hyundai Verna VGT',\n", + " 'Hyundai Xcent Base', 'Hyundai Xcent SX', 'Hyundai i10',\n", + " 'Hyundai i10 Era', 'Hyundai i10 Magna', 'Hyundai i10 Sportz',\n", + " 'Hyundai i20', 'Hyundai i20 Active', 'Hyundai i20 Asta',\n", + " 'Hyundai i20 Magna', 'Hyundai i20 Select', 'Hyundai i20 Sportz',\n", + " 'Jaguar XE XE', 'Jaguar XF 2.2', 'Jeep Wrangler Unlimited',\n", + " 'Land Rover Freelander', 'Mahindra Bolero DI',\n", + " 'Mahindra Bolero Power', 'Mahindra Bolero SLE',\n", + " 'Mahindra Jeep CL550', 'Mahindra Jeep MM', 'Mahindra KUV100',\n", + " 'Mahindra KUV100 K8', 'Mahindra Logan', 'Mahindra Logan Diesel',\n", + " 'Mahindra Quanto C4', 'Mahindra Quanto C8', 'Mahindra Scorpio',\n", + " 'Mahindra Scorpio 2.6', 'Mahindra Scorpio LX',\n", + " 'Mahindra Scorpio S10', 'Mahindra Scorpio S4',\n", + " 'Mahindra Scorpio SLE', 'Mahindra Scorpio SLX',\n", + " 'Mahindra Scorpio VLX', 'Mahindra Scorpio Vlx',\n", + " 'Mahindra Scorpio W', 'Mahindra TUV300 T4', 'Mahindra TUV300 T8',\n", + " 'Mahindra Thar CRDe', 'Mahindra XUV500', 'Mahindra XUV500 W10',\n", + " 'Mahindra XUV500 W6', 'Mahindra XUV500 W8', 'Mahindra Xylo D2',\n", + " 'Mahindra Xylo E4', 'Mahindra Xylo E8', 'Maruti Suzuki 800',\n", + " 'Maruti Suzuki A', 'Maruti Suzuki Alto', 'Maruti Suzuki Baleno',\n", + " 'Maruti Suzuki Celerio', 'Maruti Suzuki Ciaz',\n", + " 'Maruti Suzuki Dzire', 'Maruti Suzuki Eeco',\n", + " 'Maruti Suzuki Ertiga', 'Maruti Suzuki Esteem',\n", + " 'Maruti Suzuki Estilo', 'Maruti Suzuki Maruti',\n", + " 'Maruti Suzuki Omni', 'Maruti Suzuki Ritz', 'Maruti Suzuki S',\n", + " 'Maruti Suzuki SX4', 'Maruti Suzuki Stingray',\n", + " 'Maruti Suzuki Swift', 'Maruti Suzuki Versa',\n", + " 'Maruti Suzuki Vitara', 'Maruti Suzuki Wagon', 'Maruti Suzuki Zen',\n", + " 'Mercedes Benz A', 'Mercedes Benz B', 'Mercedes Benz C',\n", + " 'Mercedes Benz GLA', 'Mini Cooper S', 'Mitsubishi Lancer 1.8',\n", + " 'Mitsubishi Pajero Sport', 'Nissan Micra XL', 'Nissan Micra XV',\n", + " 'Nissan Sunny', 'Nissan Sunny XL', 'Nissan Terrano XL',\n", + " 'Nissan X Trail', 'Renault Duster', 'Renault Duster 110',\n", + " 'Renault Duster 110PS', 'Renault Duster 85', 'Renault Duster 85PS',\n", + " 'Renault Duster RxL', 'Renault Kwid', 'Renault Kwid 1.0',\n", + " 'Renault Kwid RXT', 'Renault Lodgy 85', 'Renault Scala RxL',\n", + " 'Skoda Fabia', 'Skoda Fabia 1.2L', 'Skoda Fabia Classic',\n", + " 'Skoda Laura', 'Skoda Octavia Classic', 'Skoda Rapid Elegance',\n", + " 'Skoda Superb 1.8', 'Skoda Yeti Ambition', 'Tata Aria Pleasure',\n", + " 'Tata Bolt XM', 'Tata Indica', 'Tata Indica V2', 'Tata Indica eV2',\n", + " 'Tata Indigo CS', 'Tata Indigo LS', 'Tata Indigo LX',\n", + " 'Tata Indigo Marina', 'Tata Indigo eCS', 'Tata Manza',\n", + " 'Tata Manza Aqua', 'Tata Manza Aura', 'Tata Manza ELAN',\n", + " 'Tata Nano', 'Tata Nano Cx', 'Tata Nano GenX', 'Tata Nano LX',\n", + " 'Tata Nano Lx', 'Tata Sumo Gold', 'Tata Sumo Grande',\n", + " 'Tata Sumo Victa', 'Tata Tiago Revotorq', 'Tata Tiago Revotron',\n", + " 'Tata Tigor Revotron', 'Tata Venture EX', 'Tata Vista Quadrajet',\n", + " 'Tata Zest Quadrajet', 'Tata Zest XE', 'Tata Zest XM',\n", + " 'Toyota Corolla', 'Toyota Corolla Altis', 'Toyota Corolla H2',\n", + " 'Toyota Etios', 'Toyota Etios G', 'Toyota Etios GD',\n", + " 'Toyota Etios Liva', 'Toyota Fortuner', 'Toyota Fortuner 3.0',\n", + " 'Toyota Innova 2.0', 'Toyota Innova 2.5', 'Toyota Qualis',\n", + " 'Volkswagen Jetta Comfortline', 'Volkswagen Jetta Highline',\n", + " 'Volkswagen Passat Diesel', 'Volkswagen Polo',\n", + " 'Volkswagen Polo Comfortline', 'Volkswagen Polo Highline',\n", + " 'Volkswagen Polo Highline1.2L', 'Volkswagen Polo Trendline',\n", + " 'Volkswagen Vento Comfortline', 'Volkswagen Vento Highline',\n", + " 'Volkswagen Vento Konekt', 'Volvo S80 Summum'], dtype=object),\n", + " array(['Audi', 'BMW', 'Chevrolet', 'Datsun', 'Fiat', 'Force', 'Ford',\n", + " 'Hindustan', 'Honda', 'Hyundai', 'Jaguar', 'Jeep', 'Land',\n", + " 'Mahindra', 'Maruti', 'Mercedes', 'Mini', 'Mitsubishi', 'Nissan',\n", + " 'Renault', 'Skoda', 'Tata', 'Toyota', 'Volkswagen', 'Volvo'],\n", + " dtype=object),\n", + " array(['Diesel', 'LPG', 'Petrol'], dtype=object)]" + ] + }, + "execution_count": 32, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "ohe.categories_" + ] + }, + { + "cell_type": "code", + "execution_count": 33, + "id": "29cfad01", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "\"\\nmake_column_transformer((OneHotEncoder(),['name','company','fuel_type']),\\n (OrdinalEncoder(),['seller_type','owner']),\\n (LabelEncoder(),['','']),\\n remainder='passthrough')\\n \\n\"" + ] + }, + "execution_count": 33, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# this is a comment\n", + "\"\"\"\n", + "make_column_transformer((OneHotEncoder(),['name','company','fuel_type']),\n", + " (OrdinalEncoder(),['seller_type','owner']),\n", + " (LabelEncoder(),['','']),\n", + " remainder='passthrough')\n", + " \n", + "\"\"\"" + ] + }, + { + "cell_type": "code", + "execution_count": 34, + "id": "b86a18c2", + "metadata": {}, + "outputs": [], + "source": [ + "column_trans = make_column_transformer((OneHotEncoder(categories=ohe.categories_),['name','company','fuel_type']),\n", + " remainder='passthrough')" + ] + }, + { + "cell_type": "code", + "execution_count": 35, + "id": "9f4f5ebb", + "metadata": {}, + "outputs": [], + "source": [ + "lr = LinearRegression()" + ] + }, + { + "cell_type": "code", + "execution_count": 36, + "id": "16af36e1", + "metadata": {}, + "outputs": [], + "source": [ + "pipe = make_pipeline(column_trans,lr)" + ] + }, + { + "cell_type": "code", + "execution_count": 37, + "id": "78dbfb3d", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "Pipeline(steps=[('columntransformer',\n", + " ColumnTransformer(remainder='passthrough',\n", + " transformers=[('onehotencoder',\n", + " OneHotEncoder(categories=[array(['Audi A3 Cabriolet', 'Audi A4 1.8', 'Audi A4 2.0', 'Audi A6 2.0',\n", + " 'Audi A8', 'Audi Q3 2.0', 'Audi Q5 2.0', 'Audi Q7', 'BMW 3 Series',\n", + " 'BMW 5 Series', 'BMW 7 Series', 'BMW X1', 'BMW X1 sDrive20d',\n", + " 'BMW X1 xDrive20d', 'Chevrolet Beat', 'Chevrolet Beat...\n", + " array(['Audi', 'BMW', 'Chevrolet', 'Datsun', 'Fiat', 'Force', 'Ford',\n", + " 'Hindustan', 'Honda', 'Hyundai', 'Jaguar', 'Jeep', 'Land',\n", + " 'Mahindra', 'Maruti', 'Mercedes', 'Mini', 'Mitsubishi', 'Nissan',\n", + " 'Renault', 'Skoda', 'Tata', 'Toyota', 'Volkswagen', 'Volvo'],\n", + " dtype=object),\n", + " array(['Diesel', 'LPG', 'Petrol'], dtype=object)]),\n", + " ['name', 'company',\n", + " 'fuel_type'])])),\n", + " ('linearregression', LinearRegression())])" + ] + }, + "execution_count": 37, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "pipe.fit(x_train,y_train)" + ] + }, + { + "cell_type": "code", + "execution_count": 38, + "id": "81bca84a", + "metadata": {}, + "outputs": [], + "source": [ + "y_pred = pipe.predict(x_test)" + ] + }, + { + "cell_type": "code", + "execution_count": 39, + "id": "eb5efa15", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "0.6528783168939027" + ] + }, + "execution_count": 39, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "r2_score(y_pred,y_test)" + ] + }, + { + "cell_type": "code", + "execution_count": 40, + "id": "f67048dd", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "0.8897767222258609\n" + ] + } + ], + "source": [ + "best_random_state = []\n", + "for i in range(1):\n", + " x_train,x_test,y_train,y_test = train_test_split(x,y,test_size=0.2,random_state=661)\n", + " lr = LinearRegression()\n", + " pipe = make_pipeline(column_trans,lr)\n", + " pipe.fit(x_train,y_train)\n", + " y_pred = pipe.predict(x_test)\n", + "# best_random_state.append(r2_score(y_test,y_pred))\n", + " print(r2_score(y_test,y_pred))\n", + "# print(f\"~~~~~~~~~~~~~~~ iteration - {i+1} ~~~~~~~~~~~~~~~~~~~~~~~~\")" + ] + }, + { + "cell_type": "code", + "execution_count": 41, + "id": "9085f2b8", + "metadata": {}, + "outputs": [], + "source": [ + "# np.argmax(best_random_state)" + ] + }, + { + "cell_type": "code", + "execution_count": 42, + "id": "b99754ea", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "0.8897767222258609\n" + ] + } + ], + "source": [ + "x_train,x_test,y_train,y_test = train_test_split(x,y,test_size=0.2,random_state=661)\n", + "lr = LinearRegression()\n", + "pipe = make_pipeline(column_trans,lr)\n", + "pipe.fit(x_train,y_train)\n", + "y_pred = pipe.predict(x_test)\n", + "print(r2_score(y_test,y_pred))" + ] + }, + { + "cell_type": "code", + "execution_count": 43, + "id": "64bc0c1b", + "metadata": {}, + "outputs": [], + "source": [ + "pickle.dump(pipe,open('CarPricePredictorModel.pkl','wb'))" + ] + }, + { + "cell_type": "code", + "execution_count": 44, + "id": "3e0d09f2", + "metadata": {}, + "outputs": [], + "source": [ + "car_name = list(car['name'].unique())" + ] + }, + { + "cell_type": "code", + "execution_count": 45, + "id": "c014c7c1", + "metadata": {}, + "outputs": [], + "source": [ + "car_name.insert(0,'Select A Company')" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "72f18f92", + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": 46, + "id": "ff58961a", + "metadata": {}, + "outputs": [], + "source": [ + "df = pd.read_csv('Cleaned_Car_data.csv')" + ] + }, + { + "cell_type": "code", + "execution_count": 47, + "id": "249d2ab8", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
Unnamed: 0namecompanyyearPricekms_drivenfuel_type
00Hyundai Santro XingHyundai20078000045000Petrol
11Mahindra Jeep CL550Mahindra200642500040Diesel
22Hyundai Grand i10Hyundai201432500028000Petrol
33Ford EcoSport TitaniumFord201457500036000Diesel
44Ford FigoFord201217500041000Diesel
\n", + "
" + ], + "text/plain": [ + " Unnamed: 0 name company year Price kms_driven \\\n", + "0 0 Hyundai Santro Xing Hyundai 2007 80000 45000 \n", + "1 1 Mahindra Jeep CL550 Mahindra 2006 425000 40 \n", + "2 2 Hyundai Grand i10 Hyundai 2014 325000 28000 \n", + "3 3 Ford EcoSport Titanium Ford 2014 575000 36000 \n", + "4 4 Ford Figo Ford 2012 175000 41000 \n", + "\n", + " fuel_type \n", + "0 Petrol \n", + "1 Diesel \n", + "2 Petrol \n", + "3 Diesel \n", + "4 Diesel " + ] + }, + "execution_count": 47, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df.head()" + ] + }, + { + "cell_type": "code", + "execution_count": 48, + "id": "4992de4a", + "metadata": {}, + "outputs": [], + "source": [ + "car_name = sorted(df['name'].unique())\n", + "# car_name.insert(0,'Select a Company')\n", + "\n", + "# car_name = list(car_name)\n", + "\n", + "# car_name.insert(0,'Select a Car')" + ] + }, + { + "cell_type": "code", + "execution_count": 69, + "id": "daf7cefc", + "metadata": {}, + "outputs": [], + "source": [ + "brand = []\n", + "s = \" \"\n", + "for i in car_name:\n", + " s = \" \".join(i.split()[1:])\n", + " brand.append(s)\n", + " \n", + " " + ] + }, + { + "cell_type": "code", + "execution_count": 74, + "id": "39a2aecc", + "metadata": {}, + "outputs": [], + "source": [ + "if df['company'] in df['name'][0]:\n", + " print(df['name'])" + ] + }, + { + "cell_type": "code", + "execution_count": 55, + "id": "09749617", + "metadata": {}, + "outputs": [], + "source": [ + "s = \" \".join(car_name[0].split()[1:])" + ] + }, + { + "cell_type": "code", + "execution_count": 56, + "id": "6b007dd5", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "'A3 Cabriolet'" + ] + }, + "execution_count": 56, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "s" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "4b1425c6", + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "609b84ff", + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": 58, + "id": "d1e04120", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "['Audi',\n", + " 'BMW',\n", + " 'Chevrolet',\n", + " 'Datsun',\n", + " 'Fiat',\n", + " 'Force',\n", + " 'Ford',\n", + " 'Hindustan',\n", + " 'Honda',\n", + " 'Hyundai',\n", + " 'Jaguar',\n", + " 'Jeep',\n", + " 'Land',\n", + " 'Mahindra',\n", + " 'Maruti',\n", + " 'Mercedes',\n", + " 'Mini',\n", + " 'Mitsubishi',\n", + " 'Nissan',\n", + " 'Renault',\n", + " 'Skoda',\n", + " 'Tata',\n", + " 'Toyota',\n", + " 'Volkswagen',\n", + " 'Volvo']" + ] + }, + "execution_count": 58, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "sorted(df['company'].unique())" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "4a541e7a", + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": 59, + "id": "a9494819", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
namecompanyyearPricekms_drivenfuel_type
0Hyundai Santro XingHyundai20078000045000Petrol
1Mahindra Jeep CL550Mahindra200642500040Diesel
2Hyundai Grand i10Hyundai201432500028000Petrol
3Ford EcoSport TitaniumFord201457500036000Diesel
4Ford FigoFord201217500041000Diesel
.....................
810Maruti Suzuki RitzMaruti201127000050000Petrol
811Tata Indica V2Tata200911000030000Diesel
812Toyota Corolla AltisToyota2009300000132000Petrol
813Tata Zest XMTata201826000027000Diesel
814Mahindra Quanto C8Mahindra201339000040000Diesel
\n", + "

815 rows × 6 columns

\n", + "
" + ], + "text/plain": [ + " name company year Price kms_driven fuel_type\n", + "0 Hyundai Santro Xing Hyundai 2007 80000 45000 Petrol\n", + "1 Mahindra Jeep CL550 Mahindra 2006 425000 40 Diesel\n", + "2 Hyundai Grand i10 Hyundai 2014 325000 28000 Petrol\n", + "3 Ford EcoSport Titanium Ford 2014 575000 36000 Diesel\n", + "4 Ford Figo Ford 2012 175000 41000 Diesel\n", + ".. ... ... ... ... ... ...\n", + "810 Maruti Suzuki Ritz Maruti 2011 270000 50000 Petrol\n", + "811 Tata Indica V2 Tata 2009 110000 30000 Diesel\n", + "812 Toyota Corolla Altis Toyota 2009 300000 132000 Petrol\n", + "813 Tata Zest XM Tata 2018 260000 27000 Diesel\n", + "814 Mahindra Quanto C8 Mahindra 2013 390000 40000 Diesel\n", + "\n", + "[815 rows x 6 columns]" + ] + }, + "execution_count": 59, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "car" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "a2679e97", + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.7.9" + } + }, + "nbformat": 4, + "nbformat_minor": 5 +} diff --git a/app.py b/app.py new file mode 100644 index 0000000..8a8a721 --- /dev/null +++ b/app.py @@ -0,0 +1,45 @@ +# using streamlit we don't have to write html,css and js +import streamlit as st +import numpy as np +import pandas as pd +import pickle + +model = pickle.load(open('LinearRegressionModel.pkl','rb')) + + +df = pd.read_csv('cleaned_car.csv') + +company_name = sorted(df['company'].unique()) + + +brand_name = [] + +for i in df['name']: + s = " ".join(i.split()[:]) + brand_name.append(s) + +brand_name = sorted(brand_name) + + +st.title('Welcome to Car Price Predictor') + + +company_name.insert(0,'Select a Company') +company = st.selectbox('Company',company_name) + + +brand_name.insert(0,'Select a brand') +name = st.selectbox('Brand',brand_name) + +year = st.number_input('Year of Pourchase') + + +fuel_type = st.selectbox('Fuel Type',('Petrol','Diesel','LPG')) + +kms_driven = st.number_input('KMs Driven') + +if st.button('Predict Price'): + prediction=model.predict(pd.DataFrame(columns=['name', 'company', 'year', 'kms_driven', 'fuel_type'],data=np.array([name,company,year,kms_driven,fuel_type]).reshape(1, 5))) + st.title('Prediction: ₹'+str(np.round(prediction[0]))) + + diff --git a/cleaned_car.csv b/cleaned_car.csv new file mode 100644 index 0000000..9c7299c --- /dev/null +++ b/cleaned_car.csv @@ -0,0 +1,816 @@ +,name,company,year,Price,kms_driven,fuel_type +0,Hyundai Santro Xing,Hyundai,2007,80000,45000,Petrol +1,Mahindra Jeep CL550,Mahindra,2006,425000,40,Diesel +2,Hyundai Grand i10,Hyundai,2014,325000,28000,Petrol +3,Ford EcoSport Titanium,Ford,2014,575000,36000,Diesel +4,Ford Figo,Ford,2012,175000,41000,Diesel +5,Hyundai Eon,Hyundai,2013,190000,25000,Petrol +6,Ford EcoSport Ambiente,Ford,2016,830000,24530,Diesel +7,Maruti Suzuki Alto,Maruti,2015,250000,60000,Petrol +8,Skoda Fabia Classic,Skoda,2010,182000,60000,Petrol +9,Maruti Suzuki Stingray,Maruti,2015,315000,30000,Petrol +10,Hyundai Elite i20,Hyundai,2014,415000,32000,Petrol +11,Mahindra Scorpio SLE,Mahindra,2015,320000,48660,Diesel +12,Hyundai Santro Xing,Hyundai,2007,80000,45000,Petrol +13,Mahindra Jeep CL550,Mahindra,2006,425000,40,Diesel +14,Audi A8,Audi,2017,1000000,4000,Petrol +15,Audi Q7,Audi,2014,500000,16934,Diesel +16,Mahindra Scorpio S10,Mahindra,2016,350000,43000,Diesel +17,Maruti Suzuki Alto,Maruti,2014,160000,35550,Petrol +18,Mahindra Scorpio S10,Mahindra,2016,350000,43000,Diesel +19,Mahindra Scorpio S10,Mahindra,2016,310000,39522,Diesel +20,Maruti Suzuki Alto,Maruti,2015,75000,39000,Petrol +21,Hyundai i20 Sportz,Hyundai,2012,100000,55000,Petrol +22,Hyundai i20 Sportz,Hyundai,2012,100000,55000,Petrol +23,Hyundai i20 Sportz,Hyundai,2012,100000,55000,Petrol +24,Maruti Suzuki Alto,Maruti,2017,190000,72000,Petrol +25,Maruti Suzuki Vitara,Maruti,2016,290000,15975,Diesel +26,Maruti Suzuki Alto,Maruti,2008,95000,70000,Petrol +27,Mahindra Bolero DI,Mahindra,2017,180000,23452,Diesel +28,Maruti Suzuki Swift,Maruti,2014,385000,35522,Diesel +29,Mahindra Scorpio S10,Mahindra,2015,250000,48508,Diesel +30,Maruti Suzuki Swift,Maruti,2017,180000,15487,Petrol +31,Maruti Suzuki Wagon,Maruti,2013,105000,39000,Petrol +32,Maruti Suzuki Wagon,Maruti,2013,105000,39000,Petrol +33,Toyota Innova 2.0,Toyota,2012,650000,82000,Diesel +34,Renault Lodgy 85,Renault,2018,689999,20000,Diesel +35,Skoda Yeti Ambition,Skoda,2012,448000,68000,Diesel +36,Maruti Suzuki Baleno,Maruti,2017,549000,32000,Diesel +37,Renault Duster 110,Renault,2012,501000,38000,Diesel +38,Renault Duster 85,Renault,2013,489999,27000,Diesel +39,Honda City 1.5,Honda,2011,280000,33000,Petrol +40,Maruti Suzuki Alto,Maruti,2015,250000,60000,Petrol +41,Maruti Suzuki Dzire,Maruti,2013,349999,46000,Diesel +42,Honda Amaze,Honda,2013,284999,46000,Diesel +43,Honda Amaze 1.5,Honda,2015,345000,36000,Diesel +44,Honda City,Honda,2015,499999,55000,Petrol +45,Datsun Redi GO,Datsun,2017,235000,16000,Petrol +46,Maruti Suzuki SX4,Maruti,2010,249999,36000,Petrol +47,Mitsubishi Pajero Sport,Mitsubishi,2015,1475000,47000,Diesel +48,Mahindra Bolero DI,Mahindra,2017,180000,23452,Diesel +49,Maruti Suzuki Swift,Maruti,2014,385000,35522,Diesel +50,Mahindra Scorpio S10,Mahindra,2015,250000,48508,Diesel +51,Maruti Suzuki Swift,Maruti,2017,180000,15487,Petrol +52,Maruti Suzuki Wagon,Maruti,2013,105000,39000,Petrol +53,Maruti Suzuki Wagon,Maruti,2013,105000,39000,Petrol +54,Mahindra Scorpio S10,Mahindra,2015,395000,35000,Diesel +55,Maruti Suzuki Swift,Maruti,2017,220000,30874,Petrol +56,Honda City ZX,Honda,2017,170000,15000,Diesel +57,Maruti Suzuki Wagon,Maruti,2013,85000,29685,Petrol +58,Ford Figo,Ford,2012,175000,41000,Diesel +59,Hyundai Eon,Hyundai,2013,190000,25000,Petrol +60,Tata Indigo eCS,Tata,2017,200000,130000,Diesel +61,Ford EcoSport Ambiente,Ford,2016,830000,24530,Diesel +62,Tata Indigo eCS,Tata,2017,200000,130000,Diesel +63,Mahindra Scorpio SLE,Mahindra,2012,570000,19000,Diesel +64,Volkswagen Polo Highline,Volkswagen,2014,315000,60000,Petrol +65,Skoda Fabia Classic,Skoda,2010,182000,60000,Petrol +66,Maruti Suzuki Stingray,Maruti,2015,315000,30000,Petrol +67,Chevrolet Spark LS,Chevrolet,2010,110000,41000,Petrol +68,Renault Duster 110PS,Renault,2012,501000,35000,Diesel +69,Honda City,Honda,2015,448999,54000,Petrol +70,Mini Cooper S,Mini,2013,1891111,13000,Petrol +71,Datsun Redi GO,Datsun,2017,235000,16000,Petrol +72,Skoda Fabia 1.2L,Skoda,2011,159500,38200,Diesel +73,Honda Amaze,Honda,2015,344999,22000,Petrol +74,Honda Amaze,Honda,2015,344999,22000,Petrol +75,Renault Duster,Renault,2014,449999,50000,Diesel +76,Mini Cooper S,Mini,2013,1891111,13500,Petrol +77,Mahindra Scorpio S4,Mahindra,2015,865000,30000,Diesel +78,Mahindra Scorpio VLX,Mahindra,2014,699000,50000,Diesel +79,Mahindra Quanto C8,Mahindra,2013,375000,20000,Diesel +80,Ford EcoSport,Ford,2017,489999,39000,Petrol +81,Honda Brio,Honda,2012,224999,30000,Petrol +82,Volkswagen Vento Highline,Volkswagen,2019,1200000,3600,Diesel +83,Hyundai i20 Magna,Hyundai,2009,195000,32000,Petrol +84,Toyota Corolla Altis,Toyota,2010,351000,38000,Diesel +85,Hyundai Verna Transform,Hyundai,2008,160000,45000,Petrol +86,Toyota Corolla Altis,Toyota,2009,240000,35000,Petrol +87,Honda City 1.5,Honda,2005,90000,50000,Petrol +88,Hyundai Elite i20,Hyundai,2014,415000,32000,Petrol +89,Skoda Fabia 1.2L,Skoda,2011,155000,45863,Diesel +90,BMW 3 Series,BMW,2011,600000,60500,Petrol +91,Maruti Suzuki A,Maruti,2011,189500,12500,Petrol +92,Toyota Etios GD,Toyota,2013,350000,60000,Diesel +93,Ford Figo Diesel,Ford,2012,210000,35000,Diesel +94,Maruti Suzuki Swift,Maruti,2014,390000,35000,Petrol +95,Chevrolet Beat LT,Chevrolet,2012,135000,45000,Diesel +96,BMW 7 Series,BMW,2009,1600000,35000,Petrol +97,Mahindra XUV500 W8,Mahindra,2013,701000,38000,Diesel +98,Hyundai i10 Magna,Hyundai,2014,265000,18000,Petrol +99,Hyundai Verna Fluidic,Hyundai,2015,525000,35000,Diesel +100,Maruti Suzuki Swift,Maruti,2013,372000,13349,Petrol +101,Maruti Suzuki Ertiga,Maruti,2016,635000,29000,Petrol +102,Ford EcoSport Titanium,Ford,2014,550000,44000,Diesel +103,Maruti Suzuki Ertiga,Maruti,2016,575000,29000,Petrol +104,Maruti Suzuki Ertiga,Maruti,2013,485000,42000,Diesel +105,Maruti Suzuki Alto,Maruti,2012,155000,14000,Petrol +106,Hyundai Grand i10,Hyundai,2014,345000,49000,Diesel +107,Honda Amaze 1.2,Honda,2014,325000,42000,Petrol +108,Hyundai i20 Asta,Hyundai,2012,329500,36200,Diesel +109,Ford Figo Diesel,Ford,2014,195000,50000,Diesel +110,Maruti Suzuki Eeco,Maruti,2015,251111,55000,Petrol +111,Maruti Suzuki Ertiga,Maruti,2014,569999,45000,Petrol +112,Maruti Suzuki Esteem,Maruti,2007,69999,51000,Petrol +113,Maruti Suzuki Ritz,Maruti,2014,299999,19000,Petrol +114,Maruti Suzuki Dzire,Maruti,2009,220000,46000,Petrol +115,Maruti Suzuki Ritz,Maruti,2013,399999,33000,Diesel +116,Maruti Suzuki Swift,Maruti,2013,372000,13349,Petrol +117,Maruti Suzuki Dzire,Maruti,2015,450000,104000,Diesel +118,Toyota Etios Liva,Toyota,2014,270000,55000,Petrol +119,Hyundai i20 Sportz,Hyundai,2011,350000,33333,Diesel +120,Chevrolet Spark,Chevrolet,2012,158400,33600,Petrol +121,Maruti Suzuki Alto,Maruti,2017,350000,5600,Petrol +122,Nissan Micra XV,Nissan,2011,179000,41000,Petrol +123,Maruti Suzuki Swift,Maruti,2007,125000,70000,Petrol +124,Maruti Suzuki Alto,Maruti,2018,200000,7500,Petrol +125,Honda Amaze 1.5,Honda,2013,299000,45000,Diesel +126,Maruti Suzuki Alto,Maruti,2015,220000,38000,Petrol +127,Chevrolet Beat,Chevrolet,2015,150000,30000,Petrol +128,Honda City 1.5,Honda,2010,285000,35000,Petrol +129,Ford EcoSport Trend,Ford,2016,830000,24330,Diesel +130,Hyundai i20 Asta,Hyundai,2009,210000,65480,Petrol +131,Maruti Suzuki Swift,Maruti,2013,340000,41000,Petrol +132,Tata Indica V2,Tata,2006,90000,20000,Petrol +133,Hindustan Motors Ambassador,Hindustan,2000,70000,200000,Diesel +134,Toyota Corolla Altis,Toyota,2010,289999,70000,Petrol +135,Toyota Corolla Altis,Toyota,2012,349999,59000,Petrol +136,Toyota Innova 2.5,Toyota,2012,849999,99000,Diesel +137,Volkswagen Jetta Highline,Volkswagen,2014,749999,46000,Diesel +138,Volkswagen Polo Comfortline,Volkswagen,2015,399999,2800,Petrol +139,Volkswagen Polo,Volkswagen,2014,274999,32000,Petrol +140,Mahindra Scorpio,Mahindra,2015,984999,22000,Diesel +141,Renault Duster,Renault,2014,449999,50000,Diesel +142,Honda Amaze,Honda,2015,344999,22000,Petrol +143,Nissan Sunny,Nissan,2012,224999,45000,Petrol +144,Hyundai Elite i20,Hyundai,2018,599999,21000,Petrol +145,Renault Kwid,Renault,2016,244999,11000,Petrol +146,Renault Duster,Renault,2013,399999,41000,Diesel +147,Ford EcoSport,Ford,2017,489999,39000,Petrol +148,Renault Duster,Renault,2014,474999,50000,Diesel +149,Mahindra Scorpio VLX,Mahindra,2011,499999,66000,Diesel +150,Maruti Suzuki Alto,Maruti,2018,310000,3000,Petrol +151,Chevrolet Spark LT,Chevrolet,2010,85000,45000,Petrol +152,Datsun Redi GO,Datsun,2016,245000,7000,Petrol +153,Maruti Suzuki Swift,Maruti,2010,189500,38500,Diesel +154,Fiat Punto Emotion,Fiat,2012,169500,37200,Diesel +155,Maruti Suzuki Swift,Maruti,2010,159500,43200,Diesel +156,Toyota Etios GD,Toyota,2013,275000,24800,Petrol +157,Hyundai i20 Sportz,Hyundai,2014,370000,60000,Diesel +158,Hyundai i10 Sportz,Hyundai,2010,168000,45872,Petrol +159,Chevrolet Beat LT,Chevrolet,2011,150000,40000,Diesel +160,Chevrolet Beat LS,Chevrolet,2011,145000,45000,Diesel +161,Chevrolet Beat LT,Chevrolet,2012,98500,38000,Diesel +162,Mahindra Scorpio VLX,Mahindra,2014,699000,50000,Diesel +163,Tata Indigo CS,Tata,2011,85000,11400,Diesel +164,Toyota Corolla Altis,Toyota,2015,575000,42000,Petrol +165,Honda City 1.5,Honda,2014,549000,39000,Petrol +166,Maruti Suzuki Swift,Maruti,2011,209000,47000,Diesel +167,Hyundai Eon Era,Hyundai,2013,185000,27000,Petrol +168,Mahindra Scorpio S10,Mahindra,2015,900000,97200,Diesel +169,Mahindra XUV500,Mahindra,2014,699999,52000,Diesel +170,Honda Brio,Honda,2012,224999,30000,Petrol +171,Ford Fiesta,Ford,2011,274999,55000,Diesel +172,Honda Amaze,Honda,2013,284999,46000,Diesel +173,Honda City,Honda,2015,599999,30000,Diesel +174,Maruti Suzuki Wagon,Maruti,2012,199999,44000,Petrol +175,Honda City,Honda,2014,544999,45000,Diesel +176,Hyundai i20,Hyundai,2009,199000,31000,Petrol +177,Tata Indigo eCS,Tata,2016,320000,175430,Diesel +178,Hyundai Fluidic Verna,Hyundai,2015,540000,38000,Diesel +179,Mahindra Quanto C8,Mahindra,2013,340000,37000,Diesel +180,Fiat Petra ELX,Fiat,2008,75000,65000,Petrol +181,Skoda Fabia 1.2L,Skoda,2011,159500,38200,Diesel +182,Mini Cooper S,Mini,2013,1891111,13000,Petrol +183,Hyundai Santro Xing,Hyundai,2005,49000,7500,Petrol +184,Maruti Suzuki Ciaz,Maruti,2016,700000,3350,Petrol +185,Maruti Suzuki Zen,Maruti,2000,55000,60000,Petrol +186,Honda City,Honda,2015,448999,54000,Petrol +187,Hyundai Creta 1.6,Hyundai,2017,895000,32000,Petrol +188,Mahindra Scorpio SLX,Mahindra,2007,355000,75000,Diesel +189,Mahindra Scorpio SLE,Mahindra,2012,565000,62000,Diesel +190,Toyota Innova 2.5,Toyota,2006,365000,73000,Diesel +191,Maruti Suzuki Alto,Maruti,2011,145000,41000,Petrol +192,Maruti Suzuki Wagon,Maruti,2011,210000,35000,Petrol +193,Tata Nano Cx,Tata,2013,40000,2200,Petrol +194,Maruti Suzuki Alto,Maruti,2013,125000,39000,Petrol +195,Maruti Suzuki Wagon,Maruti,2009,135000,45000,Petrol +196,Maruti Suzuki Swift,Maruti,2006,135000,45000,Petrol +197,Tata Sumo Victa,Tata,2012,285000,65000,Diesel +198,Maruti Suzuki Wagon,Maruti,2010,145000,54870,Petrol +199,Maruti Suzuki Alto,Maruti,2010,135000,34580,Petrol +200,Volkswagen Passat Diesel,Volkswagen,2009,450000,97000,Diesel +201,Renault Scala RxL,Renault,2015,375000,25000,Diesel +202,Mahindra Quanto C8,Mahindra,2013,375000,20000,Diesel +203,Hyundai Grand i10,Hyundai,2014,365000,20000,Petrol +204,Hyundai i20 Active,Hyundai,2015,500000,18000,Petrol +205,Mahindra Xylo E4,Mahindra,2012,400000,35000,Diesel +206,Mahindra Jeep MM,Mahindra,2019,390000,60,Diesel +207,Renault Duster 110PS,Renault,2012,501000,35000,Diesel +208,Mahindra Bolero SLE,Mahindra,2013,330000,80200,Diesel +209,Force Motors Force,Force,2015,580000,3200,Diesel +210,Maruti Suzuki SX4,Maruti,2012,265000,46000,Diesel +211,Mahindra Jeep CL550,Mahindra,2019,379000,0,Diesel +212,Maruti Suzuki Alto,Maruti,2015,219000,5000,Petrol +213,Mahindra Jeep CL550,Mahindra,2018,385000,588,Diesel +214,Toyota Etios,Toyota,2011,275000,36000,Diesel +215,Volkswagen Polo,Volkswagen,2015,330000,38000,Diesel +216,Honda City ZX,Honda,2008,110000,45000,Petrol +217,Maruti Suzuki Wagon,Maruti,2006,80000,71200,Petrol +218,Honda City VX,Honda,2016,519000,52000,Diesel +219,Mahindra Thar CRDe,Mahindra,2016,730000,29000,Diesel +220,Mitsubishi Pajero Sport,Mitsubishi,2015,1475000,47000,Diesel +221,Audi A4 1.8,Audi,2009,699000,47000,Petrol +222,Mercedes Benz GLA,Mercedes,2015,2000000,20000,Diesel +223,Land Rover Freelander,Land,2015,2100000,30000,Diesel +224,Renault Kwid RXT,Renault,2017,340000,5000,Petrol +225,Tata Aria Pleasure,Tata,2014,390000,35000,Diesel +226,Mercedes Benz B,Mercedes,2014,1400000,31000,Petrol +227,Datsun GO T,Datsun,2016,245000,7000,Petrol +228,Tata Indigo eCS,Tata,2016,320000,175430,Diesel +229,Tata Indigo eCS,Tata,2016,320000,175400,Diesel +230,Honda Jazz VX,Honda,2016,450000,41000,Petrol +231,Honda Amaze 1.2,Honda,2014,311000,33000,Petrol +232,Honda Amaze,Honda,2013,284999,46000,Diesel +233,Honda City,Honda,2012,399999,45000,Petrol +234,Honda City,Honda,2015,599999,39000,Diesel +235,Honda Amaze,Honda,2015,344999,22000,Petrol +236,Audi A4 1.8,Audi,2009,699000,47000,Petrol +237,Force Motors Force,Force,2015,580000,3200,Diesel +238,Mahindra Scorpio S4,Mahindra,2015,855000,30000,Diesel +239,Hyundai i20 Active,Hyundai,2015,535000,37000,Diesel +240,Mini Cooper S,Mini,2013,1891111,13000,Petrol +241,Maruti Suzuki Ciaz,Maruti,2017,699000,14000,Petrol +242,Chevrolet Tavera Neo,Chevrolet,2013,375000,55000,Diesel +243,Honda Amaze,Honda,2013,284999,46000,Diesel +244,Hyundai Eon Sportz,Hyundai,2012,178000,30000,Petrol +245,Tata Sumo Gold,Tata,2013,300000,50000,Diesel +246,Maruti Suzuki Wagon,Maruti,2003,90000,45000,Petrol +247,Maruti Suzuki Esteem,Maruti,2006,95000,45000,Petrol +248,Maruti Suzuki Eeco,Maruti,2015,255000,9300,Petrol +249,Chevrolet Enjoy 1.4,Chevrolet,2013,245000,55000,Diesel +250,Hyundai i20 Asta,Hyundai,2012,329500,36200,Diesel +251,Ford Figo Diesel,Ford,2014,195000,50000,Diesel +252,Maruti Suzuki Eeco,Maruti,2015,251111,55000,Petrol +253,Maruti Suzuki Ertiga,Maruti,2014,569999,45000,Petrol +254,Maruti Suzuki Esteem,Maruti,2007,69999,51000,Petrol +255,Maruti Suzuki Ritz,Maruti,2014,299999,19000,Petrol +256,Maruti Suzuki Dzire,Maruti,2009,220000,46000,Petrol +257,Maruti Suzuki Ritz,Maruti,2013,399999,33000,Diesel +258,Maruti Suzuki SX4,Maruti,2010,249999,36000,Petrol +259,Maruti Suzuki Wagon,Maruti,2015,289999,22000,Petrol +260,Mini Cooper S,Mini,2013,1891111,13500,Petrol +261,Nissan Terrano XL,Nissan,2015,499999,60000,Diesel +262,Renault Duster 85,Renault,2013,489999,27000,Diesel +263,Renault Duster 85,Renault,2014,489999,59000,Diesel +264,Renault Duster 85,Renault,2015,549999,19000,Diesel +265,Maruti Suzuki Dzire,Maruti,2013,380000,30000,Petrol +266,Renault Kwid RXT,Renault,2018,325000,15000,Petrol +267,Maruti Suzuki Maruti,Maruti,2003,57000,56758,Petrol +268,Renault Kwid 1.0,Renault,2018,349999,10000,Petrol +269,Renault Lodgy 85,Renault,2018,689999,20000,Diesel +270,Renault Scala RxL,Renault,2014,349999,49000,Diesel +271,Hyundai Grand i10,Hyundai,2014,410000,41000,Petrol +272,Maruti Suzuki Swift,Maruti,2011,225000,45000,Petrol +273,Chevrolet Beat LS,Chevrolet,2010,120000,43000,Petrol +274,Tata Indigo eCS,Tata,2016,320000,175430,Diesel +275,Hyundai Santro Xing,Hyundai,2000,59000,56450,Petrol +276,Hyundai Fluidic Verna,Hyundai,2015,540000,38000,Diesel +277,Chevrolet Beat LS,Chevrolet,2010,80000,56000,Petrol +278,Mahindra Quanto C8,Mahindra,2013,340000,37000,Diesel +279,Fiat Petra ELX,Fiat,2008,75000,65000,Petrol +280,Chevrolet Beat LS,Chevrolet,2015,220000,32700,Petrol +281,Skoda Fabia 1.2L,Skoda,2011,159500,38200,Diesel +282,Ford EcoSport Titanium,Ford,2016,599000,30000,Diesel +283,Hyundai Accent GLX,Hyundai,2006,80000,56000,Petrol +284,Mahindra TUV300 T4,Mahindra,2016,675000,9000,Diesel +285,Mini Cooper S,Mini,2013,1891111,13000,Petrol +286,Mini Cooper S,Mini,2013,1891111,13000,Petrol +287,Tata Indica V2,Tata,2008,150000,11000,Petrol +288,Mini Cooper S,Mini,2013,1891111,13000,Petrol +289,Tata Indigo CS,Tata,2009,72500,46000,Diesel +290,Maruti Suzuki Swift,Maruti,2019,610000,73,Petrol +291,Mahindra Scorpio VLX,Mahindra,2004,230000,160000,Diesel +292,Honda Accord,Honda,2009,175000,58559,Petrol +293,Mahindra Scorpio S4,Mahindra,2015,855000,30000,Diesel +294,Chevrolet Tavera Neo,Chevrolet,2013,375000,55000,Diesel +295,Ford EcoSport Titanium,Ford,2014,520000,57000,Diesel +296,Maruti Suzuki Ertiga,Maruti,2015,524999,50000,Diesel +297,Honda Amaze,Honda,2014,299999,37000,Petrol +298,Maruti Suzuki Dzire,Maruti,2012,299999,40000,Petrol +299,Honda City,Honda,2011,284999,55000,Petrol +300,Mahindra Scorpio 2.6,Mahindra,2007,220000,170000,Diesel +301,Maruti Suzuki Dzire,Maruti,2014,424999,55000,Diesel +302,Honda City,Honda,2015,644999,39000,Petrol +303,Honda Mobilio,Honda,2014,399999,44000,Petrol +304,Toyota Corolla Altis,Toyota,2009,199999,65000,Petrol +305,Honda City,Honda,2014,584999,39000,Petrol +306,Skoda Laura,Skoda,2012,349999,44000,Diesel +307,Renault Duster,Renault,2015,449999,49000,Diesel +308,Maruti Suzuki Ertiga,Maruti,2018,799999,9000,Diesel +309,Maruti Suzuki Dzire,Maruti,2015,444999,45000,Diesel +310,Mahindra XUV500,Mahindra,2014,649999,47000,Diesel +311,Hyundai Verna Fluidic,Hyundai,2012,444999,40000,Diesel +312,Maruti Suzuki Vitara,Maruti,2016,689999,29000,Diesel +313,Maruti Suzuki Wagon,Maruti,2016,344999,15000,Petrol +314,Mahindra Scorpio,Mahindra,2015,944999,45000,Diesel +315,Honda Amaze,Honda,2014,274999,35000,Petrol +316,Mahindra XUV500,Mahindra,2013,689999,80000,Diesel +317,Mahindra Scorpio,Mahindra,2013,574999,68000,Diesel +318,Skoda Laura,Skoda,2013,374999,50000,Diesel +319,Volkswagen Polo,Volkswagen,2010,199999,60000,Diesel +320,Hyundai Elite i20,Hyundai,2016,549999,9000,Petrol +321,Tata Manza Aura,Tata,2012,130000,72000,Diesel +322,Chevrolet Sail UVA,Chevrolet,2013,210000,60000,Petrol +323,Renault Duster 110,Renault,2012,501000,38000,Diesel +324,Hyundai Verna Fluidic,Hyundai,2013,401000,45000,Diesel +325,Audi A4 2.0,Audi,2012,1350000,40000,Diesel +326,Hyundai Elantra SX,Hyundai,2013,600000,20000,Petrol +327,Mahindra Scorpio VLX,Mahindra,2013,610000,35000,Diesel +328,Mahindra KUV100 K8,Mahindra,2016,400000,20000,Diesel +329,Renault Scala RxL,Renault,2015,375000,25000,Diesel +330,Mahindra Quanto C8,Mahindra,2013,375000,20000,Diesel +331,Hyundai Grand i10,Hyundai,2014,365000,20000,Petrol +332,Hyundai i20 Active,Hyundai,2015,500000,18000,Petrol +333,Mahindra Xylo E4,Mahindra,2012,400000,35000,Diesel +334,Hyundai Grand i10,Hyundai,2017,524999,6821,Petrol +335,Hyundai i20,Hyundai,2014,449999,23000,Petrol +336,Hyundai Eon,Hyundai,2014,174999,14000,Petrol +337,Hyundai i10,Hyundai,2012,244999,38000,Petrol +338,Hyundai i20 Active,Hyundai,2015,574999,35000,Diesel +339,Datsun Redi GO,Datsun,2017,244999,22000,Petrol +340,Toyota Etios Liva,Toyota,2011,239999,41000,Petrol +341,Hyundai Accent,Hyundai,2010,99999,45000,Petrol +342,Hyundai Verna,Hyundai,2014,489999,44000,Diesel +343,Maruti Suzuki Swift,Maruti,2013,324999,45000,Diesel +344,Toyota Fortuner,Toyota,2011,1074999,52000,Diesel +345,Hyundai i10 Sportz,Hyundai,2012,230000,34000,Petrol +346,Mahindra Bolero Power,Mahindra,2018,699000,1800,Diesel +347,Mahindra XUV500,Mahindra,2015,1000000,15000,Diesel +348,Honda City 1.5,Honda,2010,240000,400000,Petrol +349,Chevrolet Spark LT,Chevrolet,2009,110000,44000,Petrol +350,Mahindra Jeep MM,Mahindra,2019,390000,60,Diesel +351,Renault Duster 110PS,Renault,2012,501000,35000,Diesel +352,Mahindra XUV500,Mahindra,2016,1130000,72000,Diesel +353,Tata Indigo eCS,Tata,2014,250000,40000,Diesel +354,Mahindra Bolero SLE,Mahindra,2013,330000,80200,Diesel +355,Force Motors Force,Force,2015,580000,3200,Diesel +356,Skoda Rapid Elegance,Skoda,2013,340000,48000,Diesel +357,Tata Vista Quadrajet,Tata,2011,120000,90000,Diesel +358,Maruti Suzuki Alto,Maruti,2015,265000,12000,Petrol +359,Maruti Suzuki SX4,Maruti,2012,265000,46000,Diesel +360,Maruti Suzuki Zen,Maruti,2003,85000,69900,Petrol +361,Mahindra Jeep CL550,Mahindra,2019,379000,0,Diesel +362,Hyundai i10 Magna,Hyundai,2011,175000,45000,Petrol +363,Maruti Suzuki Alto,Maruti,2015,219000,5000,Petrol +364,Maruti Suzuki Swift,Maruti,2016,350000,166000,Diesel +365,Honda City ZX,Honda,2008,149000,42000,Petrol +366,Mahindra Jeep CL550,Mahindra,2018,385000,588,Diesel +367,Mahindra Jeep MM,Mahindra,2006,425000,122,Diesel +368,Chevrolet Beat Diesel,Chevrolet,2017,150000,62000,Diesel +369,Honda City 1.5,Honda,2010,225000,70000,Petrol +370,Hyundai Verna 1.4,Hyundai,2014,375000,36000,Petrol +371,Toyota Innova 2.5,Toyota,2012,770000,0,Diesel +372,Maruti Suzuki Maruti,Maruti,1995,30000,55000,Petrol +373,Toyota Etios,Toyota,2011,275000,36000,Diesel +374,Volkswagen Polo,Volkswagen,2015,330000,38000,Diesel +375,Maruti Suzuki Swift,Maruti,2014,335000,55000,Diesel +376,Hyundai Elite i20,Hyundai,2015,450000,20000,Diesel +377,Maruti Suzuki Swift,Maruti,2012,225000,40000,Petrol +378,Maruti Suzuki Versa,Maruti,2004,80000,50000,Petrol +379,Tata Indigo LX,Tata,2016,130000,104000,Diesel +380,Volkswagen Vento Konekt,Volkswagen,2011,245000,65000,Diesel +381,Mercedes Benz C,Mercedes,2002,399000,41000,Petrol +382,Maruti Suzuki Ertiga,Maruti,2013,450000,90000,Diesel +383,Honda City,Honda,2000,65000,80000,Petrol +384,Hyundai Santro Xing,Hyundai,2006,75000,46000,Petrol +385,Maruti Suzuki Omni,Maruti,2001,70000,70000,Petrol +386,Hyundai Sonata Transform,Hyundai,2017,190000,36469,Diesel +387,Hyundai Elite i20,Hyundai,2018,600000,7800,Petrol +388,Volkswagen Vento Konekt,Volkswagen,2011,245000,65000,Diesel +389,Maruti Suzuki Alto,Maruti,2017,240000,60000,Petrol +390,Maruti Suzuki Alto,Maruti,2011,155000,32000,Petrol +391,Honda Jazz S,Honda,2009,169999,24695,Petrol +392,Hyundai Grand i10,Hyundai,2017,450000,15141,Petrol +393,Maruti Suzuki Zen,Maruti,2001,40000,40000,Petrol +394,Mahindra Scorpio W,Mahindra,2012,165000,65000,Diesel +395,Maruti Suzuki Alto,Maruti,2014,270000,22000,Petrol +396,Hyundai Grand i10,Hyundai,2016,280000,59910,Diesel +397,Mahindra XUV500 W8,Mahindra,2012,560000,100000,Diesel +398,Hyundai Creta 1.6,Hyundai,2016,950000,25000,Petrol +399,Hyundai i20 Magna,Hyundai,2013,310000,35000,Petrol +400,Renault Duster 85,Renault,2015,715000,65000,Diesel +401,Hyundai Grand i10,Hyundai,2014,340000,35000,Petrol +402,Honda Brio V,Honda,2012,235000,33000,Petrol +403,Mahindra TUV300 T4,Mahindra,2017,610000,68000,Diesel +404,Chevrolet Spark LS,Chevrolet,2010,95000,23000,Petrol +405,Mahindra TUV300 T8,Mahindra,2018,1000000,4500,Diesel +406,Maruti Suzuki Swift,Maruti,2015,220000,129000,Diesel +407,Nissan X Trail,Nissan,2019,1200000,300,Diesel +408,Maruti Suzuki Alto,Maruti,2015,230000,5000,Petrol +409,Ford Ikon 1.3,Ford,2001,45000,65000,Petrol +410,Toyota Fortuner 3.0,Toyota,2010,940000,131000,Diesel +411,Tata Manza ELAN,Tata,2010,155555,111111,Petrol +412,Mercedes Benz A,Mercedes,2013,1500000,14000,Petrol +413,Chevrolet Beat LS,Chevrolet,2016,210000,22000,Diesel +414,Ford EcoSport Trend,Ford,2013,495000,38000,Diesel +415,Tata Indigo LS,Tata,2016,125000,70000,Diesel +416,Hyundai i20 Magna,Hyundai,2010,195000,36000,Petrol +417,Volkswagen Vento Highline,Volkswagen,2015,550000,34000,Diesel +418,Renault Kwid RXT,Renault,2015,270000,43000,Petrol +419,Ford EcoSport Titanium,Ford,2014,500000,40000,Diesel +420,Honda Amaze 1.5,Honda,2016,240000,160000,Diesel +421,Hyundai Verna 1.6,Hyundai,2017,800000,12000,Petrol +422,BMW 5 Series,BMW,2011,1299000,49000,Diesel +423,Skoda Superb 1.8,Skoda,2011,530000,68000,Petrol +424,Audi Q3 2.0,Audi,2013,1499000,37000,Diesel +425,Mahindra Bolero DI,Mahindra,2012,220000,59466,Diesel +426,Mahindra Scorpio S10,Mahindra,2015,900000,97200,Diesel +427,Ford Figo Duratorq,Ford,2012,250000,99000,Diesel +428,Maruti Suzuki Wagon,Maruti,2018,395000,25500,Petrol +429,Mahindra Logan Diesel,Mahindra,2009,130000,66000,Petrol +430,Tata Nano GenX,Tata,2010,32000,44005,Petrol +431,Mahindra TUV300 T4,Mahindra,2016,540000,35000,Diesel +432,Mahindra TUV300 T4,Mahindra,2016,540000,35000,Diesel +433,Hyundai Elite i20,Hyundai,2015,405000,28000,Petrol +434,Hyundai Elite i20,Hyundai,2015,400000,30000,Petrol +435,Honda City SV,Honda,2017,760000,4000,Petrol +436,Maruti Suzuki Baleno,Maruti,2016,500000,28000,Petrol +437,Ford Figo Petrol,Ford,2011,175000,75000,Petrol +438,Mahindra Scorpio S10,Mahindra,2015,900000,97200,Diesel +439,Honda City,Honda,2017,750000,3000,Petrol +440,Hyundai Elite i20,Hyundai,2015,419000,20000,Petrol +441,Maruti Suzuki Versa,Maruti,2004,90000,50000,Petrol +442,Hyundai Eon Era,Hyundai,2018,140000,2110,Petrol +443,Mitsubishi Pajero Sport,Mitsubishi,2015,1540000,43222,Petrol +444,Hyundai i10 Magna,Hyundai,2008,275000,100200,Petrol +445,Toyota Corolla H2,Toyota,2003,150000,100000,Petrol +446,Maruti Suzuki Swift,Maruti,2011,230000,65,Petrol +447,Tata Indigo CS,Tata,2015,123000,100000,Diesel +448,Mahindra Scorpio S10,Mahindra,2015,900000,97200,Diesel +449,Mahindra Scorpio S10,Mahindra,2015,900000,97200,Diesel +450,Hyundai Xcent Base,Hyundai,2016,300000,140000,Diesel +451,Honda City,Honda,2015,499999,55000,Petrol +452,Hyundai Accent Executive,Hyundai,2009,165000,48000,Petrol +453,Maruti Suzuki Baleno,Maruti,2016,498000,22000,Petrol +454,Tata Zest XE,Tata,2018,480000,103553,Diesel +455,Maruti Suzuki Dzire,Maruti,2017,488000,80000,Diesel +456,Tata Sumo Gold,Tata,2014,250000,99000,Diesel +457,Toyota Corolla Altis,Toyota,2010,220000,58000,Petrol +458,Maruti Suzuki Eeco,Maruti,2013,290000,70000,LPG +459,Toyota Fortuner 3.0,Toyota,2015,1525000,120000,Diesel +460,Mahindra XUV500 W6,Mahindra,2013,548900,49800,Diesel +461,Tata Tigor Revotron,Tata,2019,650000,100,Diesel +462,Maruti Suzuki 800,Maruti,2001,55000,81876,Petrol +463,Maruti Suzuki Ertiga,Maruti,2015,550000,75000,Petrol +464,Maruti Suzuki Versa,Maruti,2004,90000,50000,Petrol +465,Honda Mobilio S,Honda,2014,399000,44000,Diesel +466,Maruti Suzuki Ertiga,Maruti,2016,730000,55000,Diesel +467,Maruti Suzuki Vitara,Maruti,2017,725000,36000,Diesel +468,Hyundai Verna 1.6,Hyundai,2016,195000,56000,Diesel +469,Maruti Suzuki Swift,Maruti,2007,130000,62000,Petrol +470,Toyota Fortuner 3.0,Toyota,2015,1525000,120000,Diesel +471,Maruti Suzuki Omni,Maruti,2014,190000,6020,Petrol +472,Honda Amaze,Honda,2013,250000,55700,Diesel +473,Tata Indica,Tata,2005,80000,42000,Petrol +474,Hyundai Santro Xing,Hyundai,2003,120000,50000,Petrol +475,Maruti Suzuki Zen,Maruti,2010,149000,35000,Petrol +476,Maruti Suzuki Wagon,Maruti,2014,250000,18500,Petrol +477,Maruti Suzuki Wagon,Maruti,2007,120000,7000,Petrol +478,Honda Brio VX,Honda,2017,450000,11000,Petrol +479,Maruti Suzuki Zen,Maruti,2003,99999,53000,Petrol +480,Maruti Suzuki Zen,Maruti,2008,135000,23000,Petrol +481,Maruti Suzuki Wagon,Maruti,2016,225000,35500,Diesel +482,Maruti Suzuki Alto,Maruti,2010,99000,22134,Petrol +483,Renault Kwid RXT,Renault,2019,370000,1000,Petrol +484,Tata Nano Lx,Tata,2010,52000,9000,Petrol +485,Jaguar XE XE,Jaguar,2016,2800000,8500,Petrol +486,Hyundai Eon Magna,Hyundai,2014,190000,35000,Petrol +487,Honda City 1.5,Honda,2014,499000,22000,Petrol +488,Hindustan Motors Ambassador,Hindustan,2002,90000,25000,Diesel +489,Maruti Suzuki Ritz,Maruti,2010,149000,40000,Petrol +490,Hyundai Grand i10,Hyundai,2017,400000,20000,Petrol +491,Hyundai Eon D,Hyundai,2016,120000,87000,Petrol +492,Maruti Suzuki Swift,Maruti,2015,250000,55000,Petrol +493,Maruti Suzuki Wagon,Maruti,2017,375000,23000,Petrol +494,Honda Amaze 1.2,Honda,2014,381000,6000,Petrol +495,Maruti Suzuki Estilo,Maruti,2013,180000,65000,Petrol +496,Maruti Suzuki Vitara,Maruti,2016,580000,25000,Diesel +497,Maruti Suzuki Eeco,Maruti,2015,278000,39000,Petrol +498,Hyundai Creta 1.6,Hyundai,2016,1000000,8000,Petrol +499,Mahindra Scorpio Vlx,Mahindra,2013,690000,75000,Diesel +500,Maruti Suzuki Ertiga,Maruti,2012,480000,51000,Diesel +501,Mitsubishi Lancer 1.8,Mitsubishi,2006,85000,50000,Petrol +502,Maruti Suzuki Maruti,Maruti,2001,40000,75000,Petrol +503,Maruti Suzuki Alto,Maruti,2015,90000,55800,Petrol +504,Hyundai Grand i10,Hyundai,2015,340000,53000,Petrol +505,Hyundai Eon D,Hyundai,2018,260000,25000,Petrol +506,Ford Fiesta SXi,Ford,2009,250000,56400,Petrol +507,Maruti Suzuki Ritz,Maruti,2010,180000,72160,Diesel +508,Hyundai Verna Fluidic,Hyundai,2012,350000,10000,Diesel +509,Maruti Suzuki Wagon,Maruti,2006,90001,48000,Petrol +510,Maruti Suzuki Estilo,Maruti,2007,115000,36000,Petrol +511,Audi A6 2.0,Audi,2012,1599000,11500,Diesel +512,Maruti Suzuki Wagon,Maruti,2003,130000,133000,Petrol +513,Maruti Suzuki Wagon,Maruti,2009,159000,27000,Petrol +514,Maruti Suzuki Wagon,Maruti,2009,160000,35000,Petrol +515,Maruti Suzuki Alto,Maruti,2010,110000,55000,Petrol +516,Maruti Suzuki Baleno,Maruti,2016,425000,40000,Petrol +517,Hyundai Verna 1.6,Hyundai,2019,900000,2000,Petrol +518,Maruti Suzuki Swift,Maruti,2009,150000,45000,Petrol +519,Hyundai Getz Prime,Hyundai,2009,110000,20000,Petrol +520,Hyundai Santro,Hyundai,2000,51999,88000,Petrol +521,Hyundai Getz Prime,Hyundai,2009,115000,20000,Petrol +522,Chevrolet Beat PS,Chevrolet,2012,215000,65422,Diesel +523,Ford EcoSport Trend,Ford,2017,580000,10000,Petrol +524,Maruti Suzuki Dzire,Maruti,2013,380000,35000,Petrol +525,Hyundai Fluidic Verna,Hyundai,2013,350000,117000,Diesel +526,Tata Indica V2,Tata,2005,35000,150000,Diesel +527,BMW X1 xDrive20d,BMW,2011,1150000,72000,Diesel +528,Hyundai i20 Asta,Hyundai,2010,300000,10750,Petrol +529,Honda City 1.5,Honda,2009,269000,55000,Petrol +530,Tata Nano,Tata,2013,60000,6800,Petrol +531,Chevrolet Cruze LTZ,Chevrolet,2014,400000,41000,Diesel +532,Hyundai Verna Fluidic,Hyundai,2015,430000,73000,Diesel +533,Maruti Suzuki Swift,Maruti,2011,140000,65000,Diesel +534,Mahindra XUV500 W10,Mahindra,2018,1299000,40000,Diesel +535,Maruti Suzuki Alto,Maruti,2014,199000,37000,Petrol +536,Hyundai Accent GLE,Hyundai,2006,90000,55000,Petrol +537,Force Motors One,Force,2013,550000,140000,Diesel +538,Maruti Suzuki Alto,Maruti,2019,265000,9800,Petrol +539,Chevrolet Spark 1.0,Chevrolet,2011,100000,27000,Petrol +540,Hyundai i10,Hyundai,2009,215000,27000,Petrol +541,Toyota Etios Liva,Toyota,2012,380000,20000,Diesel +542,Renault Duster 85PS,Renault,2013,401919,57923,Diesel +543,Chevrolet Enjoy,Chevrolet,2014,490000,30201,Diesel +544,Maruti Suzuki Alto,Maruti,2017,280000,6200,Petrol +545,BMW 5 Series,BMW,2009,650000,37518,Petrol +546,Toyota Etios Liva,Toyota,2014,160000,24652,Petrol +547,Mahindra Jeep MM,Mahindra,2004,424000,383,Diesel +548,Chevrolet Beat LS,Chevrolet,2016,225000,95000,Diesel +549,Chevrolet Cruze LTZ,Chevrolet,2011,350000,35000,Diesel +550,Jeep Wrangler Unlimited,Jeep,2015,950000,3528,Diesel +551,Maruti Suzuki Ertiga,Maruti,2013,485000,52500,Diesel +552,Hyundai Verna VGT,Hyundai,2010,205000,47900,Diesel +553,Maruti Suzuki Omni,Maruti,2012,160000,14000,Petrol +554,Maruti Suzuki Celerio,Maruti,2018,310000,37000,Petrol +555,Tata Zest Quadrajet,Tata,2017,180000,90000,Diesel +556,Mahindra XUV500 W6,Mahindra,2013,549900,52800,Diesel +557,Tata Indigo CS,Tata,2016,150000,104000,Diesel +558,Hyundai i10 Era,Hyundai,2011,175000,30000,Petrol +559,Tata Indigo eCS,Tata,2014,95000,195000,Diesel +560,Tata Indigo LX,Tata,2016,230000,104000,Diesel +561,Tata Indigo eCS,Tata,2016,230000,104000,Diesel +562,Tata Indigo Marina,Tata,2004,180000,70000,Diesel +563,Hyundai Xcent SX,Hyundai,2015,400000,43000,Diesel +564,Hyundai Eon Magna,Hyundai,2013,185000,23000,Petrol +565,Renault Duster 85,Renault,2015,385000,51000,Diesel +566,Maruti Suzuki Alto,Maruti,2009,90000,62000,Petrol +567,Tata Nano LX,Tata,2010,32000,48008,Petrol +568,Renault Duster 110,Renault,2013,435000,39000,Diesel +569,Maruti Suzuki Wagon,Maruti,2010,225000,40000,Petrol +570,Maruti Suzuki Swift,Maruti,2006,189700,48247,Petrol +571,Maruti Suzuki Ertiga,Maruti,2012,389700,39000,Diesel +572,Maruti Suzuki Swift,Maruti,2014,365000,23000,Petrol +573,Maruti Suzuki Alto,Maruti,2017,360000,9400,Petrol +574,Hyundai i20 Magna,Hyundai,2010,210000,50000,Petrol +575,Hyundai i10 Magna,Hyundai,2009,170000,75000,Petrol +576,Tata Zest XE,Tata,2017,380000,70000,Diesel +577,Mahindra Xylo E8,Mahindra,2009,295000,64000,Diesel +578,Toyota Corolla Altis,Toyota,2010,185000,55000,Petrol +579,Tata Manza Aqua,Tata,2014,160000,200000,Diesel +580,Renault Kwid 1.0,Renault,2018,290000,2137,Petrol +581,Tata Venture EX,Tata,2013,100000,30000,Diesel +582,Maruti Suzuki Swift,Maruti,2014,315000,44000,Petrol +583,Skoda Octavia Classic,Skoda,2006,114990,65000,Diesel +584,Maruti Suzuki Omni,Maruti,2012,120000,160000,LPG +585,Chevrolet Beat Diesel,Chevrolet,2011,125000,56000,Diesel +586,Tata Sumo Gold,Tata,2012,210000,75000,Diesel +587,Hyundai Verna 1.6,Hyundai,2018,855000,42000,Diesel +588,Tata Sumo Gold,Tata,2012,210000,75000,Diesel +589,Mahindra Scorpio 2.6,Mahindra,2007,260000,56000,Diesel +590,Maruti Suzuki Zen,Maruti,2002,95000,10544,Petrol +591,Maruti Suzuki Swift,Maruti,2011,255000,64000,Petrol +592,Mahindra Scorpio SLX,Mahindra,2008,300000,70000,Diesel +593,Hyundai Grand i10,Hyundai,2014,340000,25000,Petrol +594,Hyundai Elite i20,Hyundai,2017,550000,15000,Petrol +595,Ford Ikon 1.6,Ford,2003,60000,50000,Petrol +596,Toyota Innova 2.5,Toyota,2011,750000,147000,Diesel +597,Nissan Sunny XL,Nissan,2011,230000,52000,Petrol +598,Chevrolet Beat LT,Chevrolet,2012,130000,90001,Diesel +599,Maruti Suzuki Alto,Maruti,2017,270000,21000,Petrol +600,Maruti Suzuki Swift,Maruti,2012,280000,48006,Diesel +601,Maruti Suzuki Swift,Maruti,2012,280000,48006,Diesel +602,Maruti Suzuki Swift,Maruti,2012,280000,48006,Diesel +603,Toyota Innova 2.0,Toyota,2012,600000,80000,Diesel +604,Maruti Suzuki Swift,Maruti,2010,190000,74000,Diesel +605,Hyundai Elite i20,Hyundai,2015,500000,22000,Petrol +606,Mahindra XUV500 W10,Mahindra,2016,1065000,41000,Diesel +607,Volkswagen Polo Trendline,Volkswagen,2015,350000,25000,Diesel +608,Toyota Etios Liva,Toyota,2012,350000,85000,Diesel +609,Mahindra TUV300 T4,Mahindra,2016,540000,29500,Diesel +610,Hyundai Elite i20,Hyundai,2015,470000,30000,Petrol +611,Hyundai Santro Xing,Hyundai,2014,179000,57000,Petrol +612,Maruti Suzuki Zen,Maruti,2003,48000,60000,Petrol +613,Maruti Suzuki Ciaz,Maruti,2016,650000,50000,Petrol +614,Hyundai Eon Era,Hyundai,2013,190000,39700,Petrol +615,Hyundai Elantra 1.8,Hyundai,2012,500000,65000,Petrol +616,Maruti Suzuki Swift,Maruti,2010,270000,67000,Diesel +617,Maruti Suzuki Zen,Maruti,2008,125000,46000,Petrol +618,Hyundai Eon Era,Hyundai,2012,188000,38000,Petrol +619,Hyundai Grand i10,Hyundai,2016,380000,27000,Petrol +620,Hyundai Verna Fluidic,Hyundai,2011,365000,43000,Diesel +621,Ford EcoSport Trend,Ford,2014,465000,47000,Petrol +622,Hyundai i20 Magna,Hyundai,2011,240000,42000,Petrol +623,Chevrolet Beat Diesel,Chevrolet,2016,179999,19336,Diesel +624,Tata Indica eV2,Tata,2015,140000,60105,Diesel +625,Jaguar XF 2.2,Jaguar,2013,2190000,29000,Diesel +626,Audi Q5 2.0,Audi,2014,2390000,34000,Diesel +627,BMW 3 Series,BMW,2011,1075000,35000,Diesel +628,Maruti Suzuki Swift,Maruti,2015,475000,22000,Petrol +629,BMW X1 sDrive20d,BMW,2012,1025000,41000,Diesel +630,Maruti Suzuki S,Maruti,2016,615000,21000,Diesel +631,Maruti Suzuki Ertiga,Maruti,2013,475000,48000,Diesel +632,Maruti Suzuki Alto,Maruti,2016,270000,38000,Petrol +633,Honda City SV,Honda,2014,475000,34000,Diesel +634,Volkswagen Vento Comfortline,Volkswagen,2011,240000,45933,Petrol +635,Honda City 1.5,Honda,2005,120000,68000,Petrol +636,Audi A4 2.0,Audi,2016,1900000,44000,Diesel +637,Mahindra KUV100,Mahindra,2017,360000,35000,Diesel +638,Tata Zest XE,Tata,2018,450000,102563,Diesel +639,Mahindra XUV500 W8,Mahindra,2015,900000,28600,Diesel +640,Maruti Suzuki Swift,Maruti,2017,650000,41800,Diesel +641,Tata Sumo Gold,Tata,2014,275000,116000,Diesel +642,Maruti Suzuki Swift,Maruti,2009,210000,59000,Petrol +643,Mahindra Scorpio 2.6,Mahindra,2004,175000,58000,Diesel +644,Maruti Suzuki Omni,Maruti,2009,85000,45000,Petrol +645,Mitsubishi Pajero Sport,Mitsubishi,2015,1490000,42590,Diesel +646,Renault Duster,Renault,2014,800000,7400,Diesel +647,Volkswagen Jetta Comfortline,Volkswagen,2009,450000,54500,Diesel +648,Maruti Suzuki Ertiga,Maruti,2012,1000000,200000,Diesel +649,Audi A4 2.0,Audi,2013,1510000,27000,Diesel +650,Volvo S80 Summum,Volvo,2015,1850000,42000,Diesel +651,Toyota Corolla Altis,Toyota,2014,790000,29000,Petrol +652,Mitsubishi Pajero Sport,Mitsubishi,2015,1725000,37000,Diesel +653,Chevrolet Beat LT,Chevrolet,2012,135000,36000,Petrol +654,BMW X1,BMW,2011,1000000,34000,Diesel +655,Datsun Redi GO,Datsun,2018,299999,7000,Petrol +656,Mercedes Benz C,Mercedes,2009,1225000,76000,Diesel +657,Mahindra Scorpio SLX,Mahindra,2004,175000,60000,Diesel +658,Volkswagen Vento Comfortline,Volkswagen,2011,200000,95000,Diesel +659,Tata Indigo CS,Tata,2017,270000,50000,Diesel +660,Ford Figo Petrol,Ford,2019,525000,0,Petrol +661,Honda City ZX,Honda,2006,180000,50000,Petrol +662,Maruti Suzuki Wagon,Maruti,2008,140000,68000,Petrol +663,Ford EcoSport Trend,Ford,2014,400000,16000,Petrol +664,Maruti Suzuki Swift,Maruti,2016,499000,51000,Diesel +665,Maruti Suzuki Omni,Maruti,2009,85000,56000,Petrol +666,Maruti Suzuki Zen,Maruti,2004,70000,100000,Petrol +667,Renault Duster RxL,Renault,2015,550000,36000,Petrol +668,Maruti Suzuki Swift,Maruti,2014,370000,11523,Petrol +669,Maruti Suzuki Baleno,Maruti,2018,690000,1000,Petrol +670,Honda WR V,Honda,2009,250000,60000,Petrol +671,Tata Indigo CS,Tata,2016,110000,85000,Diesel +672,Renault Duster 110,Renault,2013,490000,38600,Diesel +673,Mahindra Scorpio LX,Mahindra,2009,320000,95500,Diesel +674,Maruti Suzuki Zen,Maruti,2004,68000,56000,Petrol +675,Maruti Suzuki Wagon,Maruti,2014,130000,37458,Petrol +676,Maruti Suzuki SX4,Maruti,2016,970000,85960,Diesel +677,Audi A3 Cabriolet,Audi,2015,3100000,12516,Petrol +678,Hyundai Eon D,Hyundai,2018,280000,35000,Petrol +679,Maruti Suzuki Zen,Maruti,2009,125000,0,Petrol +680,Mahindra Scorpio SLX,Mahindra,2008,285000,80000,Diesel +681,Hyundai Santro AE,Hyundai,2011,165000,45000,Petrol +682,Maruti Suzuki Swift,Maruti,2009,250000,51000,Diesel +683,Mahindra Scorpio S4,Mahindra,2015,865000,30000,Diesel +684,Mahindra Xylo D2,Mahindra,2011,390000,48000,Diesel +685,Hyundai Santro,Hyundai,2003,60000,51000,Petrol +686,Chevrolet Beat LT,Chevrolet,2015,215000,90000,Diesel +687,Maruti Suzuki Swift,Maruti,2015,475000,43000,Diesel +688,Mahindra XUV500 W8,Mahindra,2015,899000,53000,Diesel +689,Toyota Fortuner 3.0,Toyota,2013,1499000,97000,Diesel +690,Maruti Suzuki Alto,Maruti,2013,240000,20000,Petrol +691,Hyundai Getz GLE,Hyundai,2007,99000,55000,Petrol +692,Maruti Suzuki Swift,Maruti,2014,260000,120000,Diesel +693,Hyundai Creta 1.6,Hyundai,2019,1200000,0,Petrol +694,Hyundai Santro Xing,Hyundai,2007,115000,46000,Petrol +695,Hyundai Santro Xing,Hyundai,2009,88000,43200,Petrol +696,Mahindra Xylo D2,Mahindra,2011,390000,56000,Diesel +697,Hyundai Santro Xing,Hyundai,2007,135000,42000,Petrol +698,Tata Indica V2,Tata,2009,90000,30600,Diesel +699,Hyundai i10 Sportz,Hyundai,2011,220000,38000,Petrol +700,Hyundai Grand i10,Hyundai,2017,424999,2550,Petrol +701,Hyundai Santro Xing,Hyundai,2007,135000,47000,Petrol +702,Honda City 1.5,Honda,2005,95000,41000,Petrol +703,Nissan Micra XL,Nissan,2017,430000,62500,Diesel +704,Honda City 1.5,Honda,2005,115000,68000,Petrol +705,Maruti Suzuki Alto,Maruti,2015,215000,50000,Petrol +706,Maruti Suzuki Wagon,Maruti,2004,53000,69000,Petrol +707,Maruti Suzuki Ertiga,Maruti,2012,500000,48000,Diesel +708,Tata Indica eV2,Tata,2012,85000,55000,Diesel +709,Maruti Suzuki Omni,Maruti,2013,165000,25000,Petrol +710,Hyundai Eon Era,Hyundai,2014,200000,28400,Petrol +711,Hyundai Eon,Hyundai,2014,200000,28000,Petrol +712,Maruti Suzuki Swift,Maruti,2015,425000,42000,Diesel +713,Hyundai Verna 1.6,Hyundai,2012,600000,29000,Diesel +714,Chevrolet Tavera LS,Chevrolet,2005,130000,68485,Diesel +715,Tata Tiago Revotron,Tata,2018,430000,3500,Petrol +716,Tata Tiago Revotorq,Tata,2019,568500,0,Petrol +717,Maruti Suzuki Zen,Maruti,2006,71000,32000,Petrol +718,Mahindra KUV100 K8,Mahindra,2018,560000,8000,Diesel +719,Ford EcoSport Titanium,Ford,2014,590000,34000,Diesel +720,Hindustan Motors Ambassador,Hindustan,1995,750000,37000,Petrol +721,Ford Fusion 1.4,Ford,2007,125000,85455,Diesel +722,Hyundai Santro Xing,Hyundai,2007,135000,46000,Petrol +723,Hyundai Santro,Hyundai,2002,60000,47000,Petrol +724,Fiat Linea Emotion,Fiat,2009,120000,64000,Petrol +725,Ford Ikon 1.3,Ford,2008,95000,46000,Petrol +726,Maruti Suzuki Omni,Maruti,2017,240000,8000,Petrol +727,Tata Indica V2,Tata,2012,115000,64000,Diesel +728,Mahindra Scorpio S4,Mahindra,2015,795000,63000,Diesel +729,Hyundai Santro Xing,Hyundai,2007,55000,65000,Petrol +730,Mahindra Xylo D2,Mahindra,2009,300000,62000,Diesel +731,Hyundai Grand i10,Hyundai,2014,320000,41000,Petrol +732,Maruti Suzuki Alto,Maruti,2015,265000,14000,Petrol +733,Toyota Corolla,Toyota,2006,160000,40000,Petrol +734,Hyundai Eon Magna,Hyundai,2017,300000,1600,Petrol +735,Tata Sumo Grande,Tata,2010,130000,90000,Diesel +736,Maruti Suzuki Swift,Maruti,2011,250000,58000,Diesel +737,Volkswagen Polo Highline1.2L,Volkswagen,2013,380000,27000,Petrol +738,Maruti Suzuki Alto,Maruti,2003,42000,60000,Petrol +739,Tata Tiago Revotron,Tata,2017,400000,31000,Petrol +740,Maruti Suzuki Swift,Maruti,2009,120000,90000,Diesel +741,Maruti Suzuki Swift,Maruti,2009,120000,90000,Diesel +742,Tata Indigo eCS,Tata,2016,130000,150000,Diesel +743,Chevrolet Beat LS,Chevrolet,2014,189000,31000,Diesel +744,Mahindra Xylo E8,Mahindra,2011,365000,43000,Diesel +745,Hyundai Eon D,Hyundai,2013,170000,20000,Petrol +746,Tata Sumo Gold,Tata,2013,215000,100000,Petrol +747,Tata Nano,Tata,2013,60000,7000,Petrol +748,Hyundai Elite i20,Hyundai,2017,599999,31000,Petrol +749,Hyundai i10 Magna,Hyundai,2009,400000,33000,Petrol +750,Hyundai Creta,Hyundai,2016,900000,60000,Diesel +751,Volkswagen Polo,Volkswagen,2013,299999,48000,Diesel +752,Maruti Suzuki Dzire,Maruti,2014,374999,33000,Petrol +753,Tata Bolt XM,Tata,2015,600000,15000,Petrol +754,Maruti Suzuki Alto,Maruti,2005,70000,47000,Petrol +755,Maruti Suzuki Alto,Maruti,2005,100000,40000,Petrol +756,Maruti Suzuki Ritz,Maruti,2010,150000,38000,Diesel +757,Maruti Suzuki Alto,Maruti,2017,225000,12500,Petrol +758,Maruti Suzuki Dzire,Maruti,2009,210000,42000,Petrol +759,Hyundai i20 Asta,Hyundai,2014,425000,31000,Petrol +760,Maruti Suzuki Swift,Maruti,2008,162000,60000,Diesel +761,Tata Indica V2,Tata,2005,60000,80000,Diesel +762,Mahindra Scorpio VLX,Mahindra,2014,650000,77000,Diesel +763,Toyota Innova 2.5,Toyota,2012,750000,75000,Diesel +764,Mahindra Xylo E8,Mahindra,2010,375000,40000,Diesel +765,Hyundai i20 Magna,Hyundai,2011,230000,47000,Petrol +766,Maruti Suzuki Omni,Maruti,2000,35999,60000,Petrol +767,Mahindra KUV100,Mahindra,2016,380000,26500,Petrol +768,Mahindra KUV100 K8,Mahindra,2019,560000,2875,Petrol +769,Datsun Go Plus,Datsun,2016,285000,13900,Petrol +770,Ford Endeavor 4x4,Ford,2019,2900000,9000,Diesel +771,Tata Indica V2,Tata,2005,39999,80000,Diesel +772,Hyundai Santro Xing,Hyundai,2006,85000,60000,Petrol +773,Maruti Suzuki Wagon,Maruti,2016,395000,20000,Petrol +774,Maruti Suzuki Swift,Maruti,2008,175000,58000,Diesel +775,Maruti Suzuki Alto,Maruti,2019,400000,1500,Petrol +776,Toyota Innova 2.5,Toyota,2011,750000,75000,Diesel +777,Maruti Suzuki Alto,Maruti,2016,250000,2450,Petrol +778,Maruti Suzuki Alto,Maruti,2019,425000,1625,Petrol +779,Volkswagen Polo Highline1.2L,Volkswagen,2017,525000,45000,Petrol +780,Mahindra Logan,Mahindra,2009,130000,65000,Diesel +781,Maruti Suzuki 800,Maruti,2000,30000,33400,Petrol +782,Mahindra Scorpio,Mahindra,2011,475000,60123,Diesel +783,Chevrolet Sail 1.2,Chevrolet,2013,300000,28000,Petrol +784,Hyundai Santro AE,Hyundai,2003,60000,70000,Petrol +785,Maruti Suzuki Wagon,Maruti,2006,100000,7000,Petrol +786,Hyundai Eon,Hyundai,2018,260000,25000,Petrol +787,Tata Manza,Tata,2015,100000,100000,Diesel +788,Toyota Etios G,Toyota,2013,265000,42000,Petrol +789,Hyundai Getz Prime,Hyundai,2009,115000,20000,Petrol +790,Toyota Qualis,Toyota,2003,180000,100000,Diesel +791,Hyundai Santro Xing,Hyundai,2004,45000,137495,Petrol +792,Tata Indica eV2,Tata,2016,50500,91200,Diesel +793,Honda City 1.5,Honda,2009,270000,55000,Petrol +794,Tata Zest XE,Tata,2017,290000,120000,Diesel +795,Mahindra Quanto C4,Mahindra,2013,325000,63000,Diesel +796,Tata Indigo eCS,Tata,2016,160000,104000,Diesel +797,Maruti Suzuki Swift,Maruti,2016,350000,146000,Diesel +798,Hyundai Elite i20,Hyundai,2011,290000,40000,Petrol +799,Hyundai i20 Select,Hyundai,2011,290000,40000,Petrol +800,Chevrolet Tavera Neo,Chevrolet,2007,465000,100800,Diesel +801,Maruti Suzuki Dzire,Maruti,2016,325000,150000,Diesel +802,Hyundai Elite i20,Hyundai,2018,510000,2100,Petrol +803,Honda City VX,Honda,2016,860000,95000,Petrol +804,Maruti Suzuki Dzire,Maruti,2016,450000,2500,Diesel +805,Hyundai Getz,Hyundai,2006,125000,80000,Petrol +806,Mercedes Benz C,Mercedes,2006,500001,15000,Petrol +807,Maruti Suzuki Alto,Maruti,2005,95000,65000,Petrol +808,Maruti Suzuki Swift,Maruti,2009,250000,51000,Diesel +809,Skoda Fabia,Skoda,2009,110000,45000,Petrol +810,Maruti Suzuki Ritz,Maruti,2011,270000,50000,Petrol +811,Tata Indica V2,Tata,2009,110000,30000,Diesel +812,Toyota Corolla Altis,Toyota,2009,300000,132000,Petrol +813,Tata Zest XM,Tata,2018,260000,27000,Diesel +814,Mahindra Quanto C8,Mahindra,2013,390000,40000,Diesel