-
Notifications
You must be signed in to change notification settings - Fork 0
/
060_PermutationSequence60.java
78 lines (73 loc) · 1.94 KB
/
060_PermutationSequence60.java
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
/**
* The set [1,2,3,...,n] contains a total of n! unique permutations.
*
* By listing and labeling all of the permutations in order, we get the
* following sequence for n = 3:
*
* "123"
* "132"
* "213"
* "231"
* "312"
* "321"
*
* Given n and k, return the kth permutation sequence.
*
* Note:
* Given n will be between 1 and 9 inclusive.
* Given k will be between 1 and n! inclusive.
*
* Example 1:
* Input: n = 3, k = 3
* Output: "213"
*
* Example 2:
* Input: n = 4, k = 9
* Output: "2314"
*/
public class PermutationSequence60 {
public String getPermutation(int n, int k) {
StringBuilder sb = new StringBuilder();
int[] count = new int[1];
boolean[] used = new boolean[n];
helper(sb, n, k, count, used);
return sb.toString();
}
private boolean helper(StringBuilder sb, int n, int k, int[] count, boolean[] used) {
if (sb.length() == n) {
count[0]++;
return count[0] == k;
}
for (int i=0; i<n; i++) {
if (used[i]) continue;
sb.append((char) (i + '1'));
used[i] = true;
if (helper(sb, n, k, count, used)) return true;
sb.deleteCharAt(sb.length() - 1);
used[i] = false;
}
return count[0] == k;
}
public String getPermutation2(int n, int k) {
int[] factors = new int[n];
List<Integer> list = new ArrayList<>();
for (int i=0; i<n; i++) {
if (i == 0) {
factors[0] = 1;
} else {
factors[i] = factors[i-1] * i;
}
list.add(i+1);
}
StringBuilder sb = new StringBuilder();
k--;
for (int i=n; i>0; i--) {
int idx = k / factors[i - 1];
k = k % factors[i - 1];
int val = list.get(idx);
list.remove(idx);
sb.append(val);
}
return sb.toString();
}
}