-
Notifications
You must be signed in to change notification settings - Fork 22
/
cv20squares.py
executable file
·169 lines (138 loc) · 5.25 KB
/
cv20squares.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
#!/usr/bin/python
"""
Find Squares in image by finding countours and filtering
"""
#Results slightly different from C version on same images, but is
#otherwise ok
import math
import cv2.cv as cv
def angle(pt1, pt2, pt0):
"calculate angle contained by 3 points(x, y)"
dx1 = pt1[0] - pt0[0]
dy1 = pt1[1] - pt0[1]
dx2 = pt2[0] - pt0[0]
dy2 = pt2[1] - pt0[1]
nom = dx1*dx2 + dy1*dy2
denom = math.sqrt( (dx1*dx1 + dy1*dy1) * (dx2*dx2 + dy2*dy2) + 1e-10 )
ang = nom / denom
return ang
def is_square(contour):
"""
Squareness checker
Square contours should:
-have 4 vertices after approximation,
-have relatively large area (to filter out noisy contours)
-be convex.
-have angles between sides close to 90deg (cos(ang) ~0 )
Note: absolute value of an area is used because area may be
positive or negative - in accordance with the contour orientation
"""
area = math.fabs( cv.ContourArea(contour) )
isconvex = cv.CheckContourConvexity(contour)
s = 0
if len(contour) == 4 and area > 1000 and isconvex:
for i in range(1, 4):
# find minimum angle between joint edges (maximum of cosine)
pt1 = contour[i]
pt2 = contour[i-1]
pt0 = contour[i-2]
t = math.fabs(angle(pt0, pt1, pt2))
if s <= t:s = t
# if cosines of all angles are small (all angles are ~90 degree)
# then its a square
if s < 0.3:return True
return False
def find_squares_from_binary( gray ):
"""
use contour search to find squares in binary image
returns list of numpy arrays containing 4 points
"""
squares = []
storage = cv.CreateMemStorage(0)
contours = cv.FindContours(gray, storage, cv.CV_RETR_TREE, cv.CV_CHAIN_APPROX_SIMPLE, (0,0))
storage = cv.CreateMemStorage(0)
while contours:
#approximate contour with accuracy proportional to the contour perimeter
arclength = cv.ArcLength(contours)
polygon = cv.ApproxPoly( contours, storage, cv.CV_POLY_APPROX_DP, arclength * 0.02, 0)
if is_square(polygon):
squares.append(polygon[0:4])
contours = contours.h_next()
return squares
def find_squares4(color_img):
"""
Finds multiple squares in image
Steps:
-Use Canny edge to highlight contours, and dilation to connect
the edge segments.
-Threshold the result to binary edge tokens
-Use cv.FindContours: returns a cv.CvSequence of cv.CvContours
-Filter each candidate: use Approx poly, keep only contours with 4 vertices,
enough area, and ~90deg angles.
Return all squares contours in one flat list of arrays, 4 x,y points each.
"""
#select even sizes only
width, height = (color_img.width & -2, color_img.height & -2 )
timg = cv.CloneImage( color_img ) # make a copy of input image
gray = cv.CreateImage( (width,height), 8, 1 )
# select the maximum ROI in the image
cv.SetImageROI( timg, (0, 0, width, height) )
# down-scale and upscale the image to filter out the noise
pyr = cv.CreateImage( (width/2, height/2), 8, 3 )
cv.PyrDown( timg, pyr, 7 )
cv.PyrUp( pyr, timg, 7 )
tgray = cv.CreateImage( (width,height), 8, 1 )
squares = []
# Find squares in every color plane of the image
# Two methods, we use both:
# 1. Canny to catch squares with gradient shading. Use upper threshold
# from slider, set the lower to 0 (which forces edges merging). Then
# dilate canny output to remove potential holes between edge segments.
# 2. Binary thresholding at multiple levels
N = 11
for c in [0, 1, 2]:
#extract the c-th color plane
cv.SetImageCOI( timg, c+1 );
cv.Copy( timg, tgray, None );
cv.Canny( tgray, gray, 0, 50, 5 )
cv.Dilate( gray, gray)
squares = squares + find_squares_from_binary( gray )
# Look for more squares at several threshold levels
for l in range(1, N):
cv.Threshold( tgray, gray, (l+1)*255/N, 255, cv.CV_THRESH_BINARY )
squares = squares + find_squares_from_binary( gray )
return squares
RED = (0,0,255)
GREEN = (0,255,0)
def draw_squares( color_img, squares ):
"""
Squares is py list containing 4-pt numpy arrays. Step through the list
and draw a polygon for each 4-group
"""
color, othercolor = RED, GREEN
for square in squares:
cv.PolyLine(color_img, [square], True, color, 3, cv.CV_AA, 0)
color, othercolor = othercolor, color
cv.ShowImage(WNDNAME, color_img)
WNDNAME = "Squares Demo"
def main():
"""Open test color images, create display window, start the search"""
cv.NamedWindow(WNDNAME, 1)
for name in [ "../c/pic%d.png" % i for i in [1, 2, 3, 4, 5, 6] ]:
img0 = cv.LoadImage(name, 1)
try:
img0
except ValueError:
print "Couldn't load %s\n" % name
continue
# slider deleted from C version, same here and use fixed Canny param=50
img = cv.CloneImage(img0)
cv.ShowImage(WNDNAME, img)
# force the image processing
draw_squares( img, find_squares4( img ) )
# wait for key.
if cv.WaitKey(-1) % 0x100 == 27:
break
if __name__ == "__main__":
main()
cv.DestroyAllWindows()