diff --git a/seacrowd/sea_datasets/vihealthqa/__init__.py b/seacrowd/sea_datasets/vihealthqa/__init__.py new file mode 100644 index 000000000..e69de29bb diff --git a/seacrowd/sea_datasets/vihealthqa/vihealthqa.py b/seacrowd/sea_datasets/vihealthqa/vihealthqa.py new file mode 100644 index 000000000..baa3188e5 --- /dev/null +++ b/seacrowd/sea_datasets/vihealthqa/vihealthqa.py @@ -0,0 +1,157 @@ +# coding=utf-8 +from pathlib import Path +from typing import Dict, List, Tuple + +import datasets +import pandas as pd + +from seacrowd.utils import schemas +from seacrowd.utils.configs import SEACrowdConfig +from seacrowd.utils.constants import Licenses, Tasks + +_CITATION = """\ +@InProceedings{nguyen2022viheathqa, + author="Nguyen, Nhung Thi-Hong + and Ha, Phuong Phan-Dieu + and Nguyen, Luan Thanh + and Van Nguyen, Kiet + and Nguyen, Ngan Luu-Thuy", + title="SPBERTQA: A Two-Stage Question Answering System Based on Sentence Transformers for Medical Texts", + booktitle="Knowledge Science, Engineering and Management", + year="2022", + publisher="Springer International Publishing", + address="Cham", + pages="371--382", + isbn="978-3-031-10986-7" +} +""" +_DATASETNAME = "vihealthqa" +_DESCRIPTION = """\ +Vietnamese Visual Question Answering (ViVQA) consist of 10328 images and 15000 question-answer +pairs in Vietnamese for evaluating Vietnamese VQA models. This dataset is built based on 10328 randomly +selected images from MS COCO dataset. The question-answer pairs were based on the COCO-QA dataset that +was automatically translated from English to Vietnamese. +""" +_HOMEPAGE = "https://huggingface.co/datasets/tarudesu/ViHealthQA" +_LANGUAGES = ["vie"] +_LICENSE = Licenses.UNKNOWN.value +_PAPER_URL = "https://link.springer.com/chapter/10.1007/978-3-031-10986-7_30" +_LOCAL = False +_URLS = { + "vihealthqa": { + "train": "https://huggingface.co/datasets/tarudesu/ViHealthQA/raw/main/train.csv", + "val": "https://huggingface.co/datasets/tarudesu/ViHealthQA/raw/main/val.csv", + "test": "https://huggingface.co/datasets/tarudesu/ViHealthQA/raw/main/test.csv", + } +} +_SUPPORTED_TASKS = [Tasks.QUESTION_ANSWERING] +_SOURCE_VERSION = "1.0.0" +_SEACROWD_VERSION = "1.0.0" + + +class ViHealthQADataset(datasets.GeneratorBasedBuilder): + ''' +This is a SeaCrowed dataloader for dataset Vietnamese Visual Question Answering (ViVQA), which consists of 10328 images and 15000 question-answer +pairs in Vietnamese for evaluating Vietnamese VQA models. + ''' + SOURCE_VERSION = datasets.Version(_SOURCE_VERSION) + SEACROWD_VERSION = datasets.Version(_SEACROWD_VERSION) + + BUILDER_CONFIGS = [ + SEACrowdConfig( + name=f"{_DATASETNAME}_source", + version=SOURCE_VERSION, + description=f"{_DATASETNAME} source schema", + schema="source", + subset_id=f"{_DATASETNAME}", + ), + SEACrowdConfig( + name=f"{_DATASETNAME}_seacrowd_qa", + version=SEACROWD_VERSION, + description=f"{_DATASETNAME} SEACrowd schema", + schema="seacrowd_qa", + subset_id=f"{_DATASETNAME}", + ), + ] + + DEFAULT_CONFIG_NAME = f"{_DATASETNAME}_source" + + def _info(self) -> datasets.DatasetInfo: + + if self.config.schema == "source": + features = datasets.Features( + { + "id": datasets.Value("string"), + "question": datasets.Value("string"), + "answer": datasets.Value("string"), + "link": datasets.Value("string") + } + ) + elif self.config.schema == "seacrowd_qa": + features = schemas.qa_features + features["meta"] = {"link": datasets.Value("string")} + else: + raise ValueError(f"No schema matched for {self.config.schema}") + + return datasets.DatasetInfo( + description=_DESCRIPTION, + features=features, + homepage=_HOMEPAGE, + license=_LICENSE, + citation=_CITATION, + ) + + def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]: + """Returns SplitGenerators.""" + urls = _URLS["vihealthqa"] + data_dir = dl_manager.download_and_extract(urls) + return [ + datasets.SplitGenerator( + name=datasets.Split.TRAIN, + gen_kwargs={ + "filepath": data_dir["train"], + "split": "train", + }, + ), + datasets.SplitGenerator( + name=datasets.Split.VALIDATION, + gen_kwargs={ + "filepath": data_dir["val"], + "split": "val", + }, + ), + datasets.SplitGenerator( + name=datasets.Split.TEST, + gen_kwargs={ + "filepath": data_dir["test"], + "split": "test", + }, + ), + ] + + def _generate_examples(self, filepath: Path, split: str) -> Tuple[int, Dict]: + """Yields examples as (key, example) tuples.""" + + raw_examples = pd.read_csv(filepath) + + for eid, exam in raw_examples.iterrows(): + assert len(exam) == 4 + exam_id, exam_quest, exam_answer, exam_link = exam + + if self.config.schema == "source": + yield eid, {"id": str(exam_id), "question": exam_quest, "answer": exam_answer, "link": exam_link} + + elif self.config.schema == "seacrowd_qa": + yield eid, { + "id": str(eid), + "question_id": exam_id, + "document_id": str(eid), + "question": exam_quest, + "type": None, + "choices": [], + "context": exam_link, + "answer": [exam_answer], + "meta": { + "link": exam_link, + }, + }