-
Notifications
You must be signed in to change notification settings - Fork 0
/
01_PyTorch_simple_fullynet.py
100 lines (75 loc) · 2.83 KB
/
01_PyTorch_simple_fullynet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
"""
Working code of a simple Fully Connected (FC) network training on MNIST dataset.
The code is intended to show how to create a FC network as well
as how to initialize loss, optimizer, etc. in a simple way to get
training to work with function that checks accuracy as well.
"""
# Imports
import torch
import torch.nn as nn
import torch.optim as optim
import torch.nn.functional as F # relu, tanh etc
from torch.utils.data import DataLoader
import torchvision.datasets as datasets
import torchvision.transforms as transforms
# Create Fully Connected Network
class NN(nn.Module):
def __init__(self, input_size, num_classes): # MNIST 28X28
super(NN, self).__init__()
self.fc1 = nn.Linear(input_size, 50)
self.fc2 = nn.Linear(50, num_classes)
def forward(self, x):
x = F.relu(self.fc1(x))
x = self.fc2(x)
return x
# Set device
device = torch.device('cuda' if torch.cuda.is_available() else "cpu")
# Hyperparameters
input_size = 784
num_classes = 10
learning_rate = 0.001
batch_size = 64
num_epohs = 1
# Load data
train_dataset = datasets.MNIST(root='dataset/', train=True, transform=transforms.ToTensor(), download=True)
train_loader = DataLoader(dataset=train_dataset, batch_size=batch_size, shuffle=True)
test_dataset = datasets.MNIST(root='dataset/', train=False, transform=transforms.ToTensor(), download=True)
test_loader = DataLoader(dataset=test_dataset, batch_size=batch_size, shuffle=True)
# Initialize network
model = NN(input_size=input_size, num_classes=num_classes).to(device)
# Loss and optimizer
criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(model.parameters(), lr=learning_rate)
# Train network
for epoch in range(num_epohs):
for batch_idx, (data, targets) in enumerate(train_loader):
data = data.to(device=device)
targets = targets.to(device=device)
# Get to correct shape
data = data.reshape(data.shape[0], -1)
# forward
scores = model(data)
loss = criterion(scores, targets)
# backward
optimizer.zero_grad()
loss.backward()
# gradient descent or adam step
optimizer.step()
# Check accuracy on training & test to see how good is our model
def check_accuracy(loader, model):
num_correct = 0
num_samples = 0
model.eval()
with torch.no_grad():
for x, y in loader:
x = x.to(device=device)
y = y.to(device=device)
x = x.reshape(x.shape[0], -1)
scores = model(x)
_, predictions = scores.max(1)
num_correct += (predictions == y).sum()
num_samples += predictions.size(0)
print(f'Got {num_correct} / {num_samples} with accuracy {float(num_correct) / float(num_samples) * 100:.2f}')
model.train()
check_accuracy(train_loader, model)
check_accuracy(test_loader, model)