Skip to content

Latest commit

 

History

History
357 lines (264 loc) · 29.7 KB

README.md

File metadata and controls

357 lines (264 loc) · 29.7 KB


data-science-ipython-notebooks

Index


deep-learning

IPython Notebook(s) demonstrating deep learning functionality.


tensor-flow-tutorials

Notebook Description
tsf-basics Learn basic operations in TensorFlow, a library for various kinds of perceptual and language understanding tasks from Google.
tsf-linear Implement linear regression in TensorFlow.
tsf-logistic Implement logistic regression in TensorFlow.
tsf-nn Implement nearest neighboars in TensorFlow.
tsf-alex Implement AlexNet in TensorFlow.
tsf-cnn Implement convolutional neural networks in TensorFlow.
tsf-mlp Implement multilayer perceptrons in TensorFlow.
tsf-rnn Implement recurrent neural networks in TensorFlow.
tsf-gpu Learn about basic multi-GPU computation in TensorFlow.
tsf-gviz Learn about graph visualization in TensorFlow.
tsf-lviz Learn about loss visualization in TensorFlow.

tensor-flow-exercises

Notebook Description
tsf-not-mnist Learn simple data curation by creating a pickle with formatted datasets for training, development and testing in TensorFlow.
tsf-fully-connected Progressively train deeper and more accurate models using logistic regression and neural networks in TensorFlow.
tsf-regularization Explore regularization techniques by training fully connected networks to classify notMNIST characters in TensorFlow.
tsf-convolutions Create convolutional neural networks in TensorFlow.
tsf-word2vec Train a skip-gram model over Text8 data in TensorFlow.
tsf-lstm Train a LSTM character model over Text8 data in TensorFlow.

theano-tutorials

Notebook Description
theano-intro Intro to Theano, which allows you to define, optimize, and evaluate mathematical expressions involving multi-dimensional arrays efficiently. It can use GPUs and perform efficient symbolic differentiation.
theano-scan Learn scans, a mechanism to perform loops in a Theano graph.
theano-logistic Implement logistic regression in Theano.
theano-rnn Implement recurrent neural networks in Theano.
theano-mlp Implement multilayer perceptrons in Theano.

deep-learning-misc

Notebook Description
deep-dream Caffe-based computer vision program which uses a convolutional neural network to find and enhance patterns in images.

scikit-learn

IPython Notebook(s) demonstrating scikit-learn functionality.

Notebook Description
intro Intro notebook to scikit-learn. Scikit-learn adds Python support for large, multi-dimensional arrays and matrices, along with a large library of high-level mathematical functions to operate on these arrays.
knn Implement k-nearest neighbors in scikit-learn.
linear-reg Implement linear regression in scikit-learn.
svm Implement support vector machine classifiers with and without kernels in scikit-learn.
random-forest Implement random forest classifiers and regressors in scikit-learn.
k-means Implement k-means clustering in scikit-learn.
pca Implement principal component analysis in scikit-learn.
gmm Implement Gaussian mixture models in scikit-learn.
validation Implement validation and model selection in scikit-learn.

statistical-inference-scipy

IPython Notebook(s) demonstrating statistical inference with SciPy functionality.

Notebook Description
scipy SciPy is a collection of mathematical algorithms and convenience functions built on the Numpy extension of Python. It adds significant power to the interactive Python session by providing the user with high-level commands and classes for manipulating and visualizing data.
effect-size Explore statistics that quantify effect size by analyzing the difference in height between men and women. Uses data from the Behavioral Risk Factor Surveillance System (BRFSS) to estimate the mean and standard deviation of height for adult women and men in the United States.
sampling Explore random sampling by analyzing the average weight of men and women in the United States using BRFSS data.
hypothesis Explore hypothesis testing by analyzing the difference of first-born babies compared with others.

pandas

IPython Notebook(s) demonstrating pandas functionality.

Notebook Description
pandas Software library written for data manipulation and analysis in Python. Offers data structures and operations for manipulating numerical tables and time series.

matplotlib

IPython Notebook(s) demonstrating matplotlib functionality.

Notebook Description
matplotlib Python 2D plotting library which produces publication quality figures in a variety of hardcopy formats and interactive environments across platforms.
matplotlib-applied Matplotlib visualizations appied to Kaggle competitions for exploratory data analysis. Examples of bar plots, histograms, subplot2grid, normalized plots, scatter plots, subplots, and kernel density estimation plots.

numpy

IPython Notebook(s) demonstrating NumPy functionality.

Notebook Description
numpy Adds Python support for large, multi-dimensional arrays and matrices, along with a large library of high-level mathematical functions to operate on these arrays.

python-data

IPython Notebook(s) demonstrating Python functionality geared towards data analysis.

Notebook Description
data structures Learn Python basics with tuples, lists, dicts, sets.
data structure utilities Learn Python operations such as slice, range, xrange, bisect, sort, sorted, reversed, enumerate, zip, list comprehensions.
functions Learn about more advanced Python features: Functions as objects, lambda functions, closures, *args, **kwargs currying, generators, generator expressions, itertools.
datetime Learn how to work with Python dates and times: datetime, strftime, strptime, timedelta.
logging Learn about Python logging with RotatingFileHandler and TimedRotatingFileHandler.
pdb Learn how to debug in Python with the interactive source code debugger.
unit tests Learn how to test in Python with Nose unit tests.

kaggle-and-business-analyses

IPython Notebook(s) used in kaggle competitions and business analyses.

Notebook Description
titanic Predicts survival on the Titanic. Demonstrates data cleaning, exploratory data analysis, and machine learning.
churn-analysis Predicts customer churn. Exercises logistic regression, gradient boosting classifers, support vector machines, random forests, and k-nearest-neighbors. Discussion of confusion matrices, ROC plots, feature importances, prediction probabilities, and calibration/descrimination.

spark

IPython Notebook(s) demonstrating spark and HDFS functionality.

Notebook Description
spark In-memory cluster computing framework, up to 100 times faster for certain applications and is well suited for machine learning algorithms.
hdfs Reliably stores very large files across machines in a large cluster.

mapreduce-python

IPython Notebook(s) demonstrating Hadoop MapReduce with mrjob functionality.

Notebook Description
mapreduce-python Runs MapReduce jobs in Python, executing jobs locally or on Hadoop clusters. Demonstrates Hadoop Streaming in Python code with unit test and mrjob config file to analyze Amazon S3 bucket logs on Elastic MapReduce. Disco is another python-based alternative.

aws

IPython Notebook(s) demonstrating Amazon Web Services (AWS) and AWS tools functionality.

Also check out:

  • SAWS: A Supercharged AWS command line interface (CLI).
  • Awesome AWS: A curated list of libraries, open source repos, guides, blogs, and other resources.
Notebook Description
boto Official AWS SDK for Python.
s3cmd Interacts with S3 through the command line.
s3distcp Combines smaller files and aggregates them together by taking in a pattern and target file. S3DistCp can also be used to transfer large volumes of data from S3 to your Hadoop cluster.
s3-parallel-put Uploads multiple files to S3 in parallel.
redshift Acts as a fast data warehouse built on top of technology from massive parallel processing (MPP).
kinesis Streams data in real time with the ability to process thousands of data streams per second.
lambda Runs code in response to events, automatically managing compute resources.

commands

IPython Notebook(s) demonstrating various command lines for Linux, Git, etc.

Notebook Description
linux Unix-like and mostly POSIX-compliant computer operating system. Disk usage, splitting files, grep, sed, curl, viewing running processes, terminal syntax highlighting, and Vim.
anaconda Distribution of the Python programming language for large-scale data processing, predictive analytics, and scientific computing, that aims to simplify package management and deployment.
ipython notebook Web-based interactive computational environment where you can combine code execution, text, mathematics, plots and rich media into a single document.
git Distributed revision control system with an emphasis on speed, data integrity, and support for distributed, non-linear workflows.
ruby Used to interact with the AWS command line and for Jekyll, a blog framework that can be hosted on GitHub Pages.
jekyll Simple, blog-aware, static site generator for personal, project, or organization sites. Renders Markdown or Textile and Liquid templates, and produces a complete, static website ready to be served by Apache HTTP Server, Nginx or another web server. Pelican is a python-based alternative.
django High-level Python Web framework that encourages rapid development and clean, pragmatic design. It can be useful to share reports/analyses and for blogging. Lighter-weight alternatives include Pyramid, Flask, Tornado, and Bottle.

misc

IPython Notebook(s) demonstrating miscellaneous functionality.

Notebook Description
regex Regular expression cheat sheet useful in data wrangling.

notebook-installation

anaconda

Anaconda is a free distribution of the Python programming language for large-scale data processing, predictive analytics, and scientific computing that aims to simplify package management and deployment.

Follow instructions to install Anaconda or the more lightweight miniconda.

pip-requirements

If you prefer to use a more lightweight installation procedure than Anaconda, first clone the repo then run the following pip command on the provided requirements.txt file:

$ pip install -r requirements.txt

dev-setup

For detailed instructions, scripts, and tools to set up your development environment for data analysis, check out the dev-setup repo.

running-notebooks

To view interactive content or to modify elements within the IPython notebooks, you must first clone or download the repository then run the ipython notebook. More information on IPython Notebooks can be found here.

$ git clone https://github.com/donnemartin/data-science-ipython-notebooks.git
$ cd data-science-ipython-notebooks
$ ipython notebook

Notebooks tested with Python 2.7.x.

credits

contributing

Contributions are welcome! For bug reports or requests please submit an issue.

contact-info

Feel free to contact me to discuss any issues, questions, or comments.

license

This repository contains a variety of content; some developed by Donne Martin, and some from third-parties. The third-party content is distributed under the license provided by those parties.

The content developed by Donne Martin is distributed under the following license:

Copyright 2015 Donne Martin

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

   http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.