-
Notifications
You must be signed in to change notification settings - Fork 129
/
pmoe_sac.py
454 lines (372 loc) · 18.7 KB
/
pmoe_sac.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
'''
Probabilistic Mixture-of-Experts
paper: https://arxiv.org/abs/2104.09122
Core features:
It replaces the diagonal Gaussian distribution with (differentiable) Gaussian mixture model for policy function approximation, which is more expressive.
This version is based on off-policy SAC algorithm.
'''
import argparse
import random
import gym
import matplotlib.pyplot as plt
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from IPython.display import clear_output
from torch.distributions import Normal, Categorical
from reacher import Reacher
GPU = True
device_idx = 0
if GPU:
device = torch.device("cuda:" + str(device_idx) if torch.cuda.is_available() else "cpu")
else:
device = torch.device("cpu")
print(device)
parser = argparse.ArgumentParser(description='Train or test neural net motor controller.')
parser.add_argument('--train', dest='train', action='store_true', default=False)
parser.add_argument('--test', dest='test', action='store_true', default=False)
args = parser.parse_args()
class ReplayBuffer:
def __init__(self, capacity):
self.capacity = capacity
self.buffer = []
self.position = 0
def push(self, state, action, reward, next_state, done):
if len(self.buffer) < self.capacity:
self.buffer.append(None)
self.buffer[self.position] = (state, action, reward, next_state, done)
self.position = int((self.position + 1) % self.capacity) # as a ring buffer
def sample(self, batch_size):
batch = random.sample(self.buffer, batch_size)
state, action, reward, next_state, done = map(np.stack, zip(*batch)) # stack for each element
'''
the * serves as unpack: sum(a,b) <=> batch=(a,b), sum(*batch) ;
zip: a=[1,2], b=[2,3], zip(a,b) => [(1, 2), (2, 3)] ;
the map serves as mapping the function on each list element: map(square, [2,3]) => [4,9] ;
np.stack((1,2)) => array([1, 2])
'''
return state, action, reward, next_state, done
def __len__(self):
return len(self.buffer)
class NormalizedActions(gym.ActionWrapper):
def action(self, action):
return self._action(action)
def _action(self, action):
low = self.action_space.low
high = self.action_space.high
action = low + (action + 1.0) * 0.5 * (high - low)
action = np.clip(action, low, high)
return action
def _reverse_action(self, action):
low = self.action_space.low
high = self.action_space.high
action = 2 * (action - low) / (high - low) - 1
action = np.clip(action, low, high)
return action
class SoftQNetwork(nn.Module):
def __init__(self, num_inputs, num_actions, hidden_size, init_w=3e-3):
super(SoftQNetwork, self).__init__()
self.linear1 = nn.Linear(num_inputs + num_actions, hidden_size)
self.linear2 = nn.Linear(hidden_size, hidden_size)
self.linear3 = nn.Linear(hidden_size, hidden_size)
self.linear4 = nn.Linear(hidden_size, 1)
self.linear4.weight.data.uniform_(-init_w, init_w)
self.linear4.bias.data.uniform_(-init_w, init_w)
def forward(self, state, action, repeat=False):
if repeat:
state = state.unsqueeze(1).repeat(1, action.shape[1], 1)
x = torch.cat([state, action], -1) # the dim 0 is number of samples
x = x.reshape(-1, x.shape[-1])
x = F.relu(self.linear1(x))
x = F.relu(self.linear2(x))
x = F.relu(self.linear3(x))
x = self.linear4(x)
if repeat:
return x.reshape(-1, action.shape[1])
else:
return x
class PolicyNetwork(nn.Module):
def __init__(self, num_inputs, num_actions, hidden_size, K, action_range=1., init_w=3e-3, log_std_min=-20,
log_std_max=2):
super(PolicyNetwork, self).__init__()
self.K = K
self.log_std_min = log_std_min
self.log_std_max = log_std_max
self.linear1 = nn.Linear(num_inputs, hidden_size)
self.linear2 = nn.Linear(hidden_size, hidden_size)
self.linear3 = nn.Linear(hidden_size, hidden_size)
self.linear4 = nn.Linear(hidden_size, hidden_size)
self.mean_linear = nn.Linear(hidden_size, num_actions * K)
self.mean_linear.weight.data.uniform_(-init_w, init_w)
self.mean_linear.bias.data.uniform_(-init_w, init_w)
self.log_std_linear = nn.Linear(hidden_size, num_actions * K)
self.log_std_linear.weight.data.uniform_(-init_w, init_w)
self.log_std_linear.bias.data.uniform_(-init_w, init_w)
self.mixing_coefficient_linear = nn.Sequential(nn.Linear(num_inputs, K), nn.Softmax(-1))
self.action_range = action_range
self.num_actions = num_actions
def forward(self, state):
mixing_coefficient = self.mixing_coefficient_linear(state)
x = F.relu(self.linear1(state))
x = F.relu(self.linear2(x))
x = F.relu(self.linear3(x))
x = F.relu(self.linear4(x))
mean = (self.mean_linear(x))
# mean = F.leaky_relu(self.mean_linear(x))
log_std = self.log_std_linear(x)
log_std = torch.clamp(log_std, self.log_std_min, self.log_std_max)
return mixing_coefficient, mean.reshape(mean.shape[0], self.K, -1), log_std.reshape(log_std.shape[0], self.K,
-1)
def evaluate(self, state, epsilon=1e-6):
'''
generate sampled action with state as input wrt the policy network;
'''
mixing_coefficient, mean, log_std = self.forward(state)
std = log_std.exp() # no clip in evaluation, clip affects gradients flow
normal = Normal(0, 1)
z = normal.sample(mean.shape)
action_0 = torch.tanh(mean + std * z.to(device)) # TanhNormal distribution as actions; reparameterization trick
action = self.action_range * action_0
# The log-likelihood here is for the TanhNorm distribution instead of only Gaussian distribution. \
# The TanhNorm forces the Gaussian with infinite action range to be finite. \
# For the three terms in this log-likelihood estimation: \
# (1). the first term is the log probability of action as in common \
# stochastic Gaussian action policy (without Tanh); \
# (2). the second term is the caused by the Tanh(), \
# as shown in appendix C. Enforcing Action Bounds of https://arxiv.org/pdf/1801.01290.pdf, \
# the epsilon is for preventing the negative cases in log; \
# (3). the third term is caused by the action range I used in this code is not (-1, 1) but with \
# an arbitrary action range, which is slightly different from original paper.
log_prob = Normal(mean, std).log_prob(mean + std * z.to(device)) - torch.log(1. - action_0.pow(2) + epsilon) - np.log(self.action_range)
# both dims of normal.log_prob and -log(1-a**2) are (N,dim_of_action);
# the Normal.log_prob outputs the same dim of input features instead of 1 dim probability,
# needs sum up across the features dim to get 1 dim prob; or else use Multivariate Normal.
log_prob = log_prob.sum(dim=-1, keepdim=True)
return mixing_coefficient, action, log_prob, z, mean, log_std
def get_action(self, state, deterministic):
state = torch.FloatTensor(state).unsqueeze(0).to(device)
mixing_coefficient, mean, log_std = self.forward(state)
std = log_std.exp()
normal = Normal(0, 1)
z = normal.sample(mean.shape).to(device)
action = self.action_range * torch.tanh(mean + std * z)
action = self.action_range * torch.tanh(mean).detach().cpu().numpy()[0] if deterministic else action.detach().cpu().numpy()[0]
index = Categorical(mixing_coefficient).sample()
action = action[index]
return action
def sample_action(self, ):
a = torch.FloatTensor(self.num_actions).uniform_(-1, 1)
return self.action_range * a.numpy()
class PMOE_Trainer():
def __init__(self, replay_buffer, hidden_dim, K, action_range):
self.replay_buffer = replay_buffer
self.soft_q_net1 = SoftQNetwork(state_dim, action_dim, hidden_dim).to(device)
self.soft_q_net2 = SoftQNetwork(state_dim, action_dim, hidden_dim).to(device)
self.target_soft_q_net1 = SoftQNetwork(state_dim, action_dim, hidden_dim).to(device)
self.target_soft_q_net2 = SoftQNetwork(state_dim, action_dim, hidden_dim).to(device)
self.policy_net = PolicyNetwork(state_dim, action_dim, hidden_dim, K, action_range).to(device)
self.log_alpha = torch.zeros(1, dtype=torch.float32, requires_grad=True, device=device)
print('Soft Q Network (1,2): ', self.soft_q_net1)
print('Policy Network: ', self.policy_net)
for target_param, param in zip(self.target_soft_q_net1.parameters(), self.soft_q_net1.parameters()):
target_param.data.copy_(param.data)
for target_param, param in zip(self.target_soft_q_net2.parameters(), self.soft_q_net2.parameters()):
target_param.data.copy_(param.data)
self.soft_q_criterion1 = nn.MSELoss()
self.soft_q_criterion2 = nn.MSELoss()
soft_q_lr = 3e-4
policy_lr = 3e-4
alpha_lr = 3e-4
self.soft_q_optimizer1 = optim.Adam(self.soft_q_net1.parameters(), lr=soft_q_lr)
self.soft_q_optimizer2 = optim.Adam(self.soft_q_net2.parameters(), lr=soft_q_lr)
self.policy_optimizer = optim.Adam(self.policy_net.parameters(), lr=policy_lr)
self.alpha_optimizer = optim.Adam([self.log_alpha], lr=alpha_lr)
def update(self, batch_size, reward_scale=10., auto_entropy=True, target_entropy=-2, gamma=0.99, soft_tau=1e-2):
state, action, reward, next_state, done = self.replay_buffer.sample(batch_size)
state = torch.FloatTensor(state).to(device)
next_state = torch.FloatTensor(next_state).to(device)
action = torch.FloatTensor(action).to(device)
reward = torch.FloatTensor(reward).unsqueeze(1).to(
device) # reward is single value, unsqueeze() to add one dim to be [reward] at the sample dim;
done = torch.FloatTensor(np.float32(done)).unsqueeze(1).to(device)
# Updating alpha wrt entropy
# alpha = 0.0 # trade-off between exploration (max entropy) and exploitation (max Q)
if auto_entropy is True:
self.alpha = self.log_alpha.exp().detach()
else:
self.alpha = 1.
predicted_q_value1 = self.soft_q_net1(state, action)
predicted_q_value2 = self.soft_q_net2(state, action)
new_mixing_coefficient, new_action, log_prob, z, mean, log_std = self.policy_net.evaluate(state)
new_next_mixing_coefficient, new_next_action, next_log_prob, _, _, _ = self.policy_net.evaluate(next_state)
new_next_index = Categorical(new_next_mixing_coefficient).sample().unsqueeze(-1)
new_next_action = torch.gather(new_next_action, 1,
new_next_index.unsqueeze(-1).repeat(1, 1, new_next_action.shape[-1])).squeeze(1)
next_log_prob = torch.gather(next_log_prob.squeeze(-1), 1, new_next_index)
reward = reward_scale * (reward - reward.mean(dim=0)) / (reward.std(dim=0) + 1e-6)
# normalize with batch mean and std; plus a small number to prevent numerical problem
# Training Q Function
target_q_min = torch.min(self.target_soft_q_net1(next_state, new_next_action),
self.target_soft_q_net2(next_state, new_next_action)) - self.alpha * next_log_prob
target_q_value = reward + (1 - done) * gamma * target_q_min # if done==1, only reward
q_value_loss1 = self.soft_q_criterion1(predicted_q_value1,
target_q_value.detach()) # detach: no gradients for the variable
q_value_loss2 = self.soft_q_criterion2(predicted_q_value2, target_q_value.detach())
self.soft_q_optimizer1.zero_grad()
q_value_loss1.backward()
self.soft_q_optimizer1.step()
self.soft_q_optimizer2.zero_grad()
q_value_loss2.backward()
self.soft_q_optimizer2.step()
# Training Policy Function
predicted_new_q_value = torch.min(self.soft_q_net1(state, new_action, True),
self.soft_q_net2(state, new_action, True))
predicted_new_q_value, best_index = predicted_new_q_value.max(1)
mixing_coefficient_loss = F.mse_loss(new_mixing_coefficient, F.one_hot(best_index, self.policy_net.K).float())
policy_loss = (self.alpha * torch.gather(log_prob.squeeze(-1), 1, best_index.unsqueeze(-1)).squeeze(
1) - predicted_new_q_value).mean() + mixing_coefficient_loss
self.policy_optimizer.zero_grad()
policy_loss.backward()
self.policy_optimizer.step()
# Updating alpha wrt entropy
# alpha = 0.0 # trade-off between exploration (max entropy) and exploitation (max Q)
if auto_entropy is True:
alpha_loss = -(self.log_alpha * (torch.gather(log_prob.squeeze(-1), 1, best_index.unsqueeze(-1)).squeeze(
1) + target_entropy).detach()).mean()
# print('alpha loss: ',alpha_loss)
self.alpha_optimizer.zero_grad()
alpha_loss.backward()
self.alpha_optimizer.step()
self.alpha = self.log_alpha.exp()
else:
self.alpha = 1.
alpha_loss = 0
# Soft update the target value net
for target_param, param in zip(self.target_soft_q_net1.parameters(), self.soft_q_net1.parameters()):
target_param.data.copy_( # copy data value into target parameters
target_param.data * (1.0 - soft_tau) + param.data * soft_tau
)
for target_param, param in zip(self.target_soft_q_net2.parameters(), self.soft_q_net2.parameters()):
target_param.data.copy_( # copy data value into target parameters
target_param.data * (1.0 - soft_tau) + param.data * soft_tau
)
return predicted_new_q_value.mean()
def save_model(self, path):
torch.save(self.soft_q_net1.state_dict(), path + '_q1')
torch.save(self.soft_q_net2.state_dict(), path + '_q2')
torch.save(self.policy_net.state_dict(), path + '_policy')
def load_model(self, path):
self.soft_q_net1.load_state_dict(torch.load(path + '_q1'))
self.soft_q_net2.load_state_dict(torch.load(path + '_q2'))
self.policy_net.load_state_dict(torch.load(path + '_policy'))
self.soft_q_net1.eval()
self.soft_q_net2.eval()
self.policy_net.eval()
def plot(steps, rewards):
clear_output(True)
plt.figure(figsize=(20, 5))
plt.plot(steps, rewards)
plt.savefig('img/pmoe.png')
# plt.show()
replay_buffer_size = 1e6
replay_buffer = ReplayBuffer(replay_buffer_size)
# choose env
ENV = ['Reacher', 'Pendulum-v0', 'HalfCheetah-v2'][2]
if ENV == 'Reacher':
NUM_JOINTS = 2
LINK_LENGTH = [200, 140]
INI_JOING_ANGLES = [0.1, 0.1]
SCREEN_SIZE = 1000
SPARSE_REWARD = False
SCREEN_SHOT = False
action_range = 10.0
env = Reacher(screen_size=SCREEN_SIZE, num_joints=NUM_JOINTS, link_lengths=LINK_LENGTH, \
ini_joint_angles=INI_JOING_ANGLES, target_pos=[369, 430], render=True, change_goal=False)
action_dim = env.num_actions
state_dim = env.num_observations
else:
env = NormalizedActions(gym.make(ENV))
action_dim = env.action_space.shape[0]
state_dim = env.observation_space.shape[0]
action_range = 1.
# hyper-parameters for RL training
max_episodes = 100000
if ENV == 'Reacher':
max_steps = 20
elif ENV == 'Pendulum-v0':
max_steps = 150 # Pendulum needs 150 steps per episode to learn well
elif ENV == 'HalfCheetah-v2':
max_steps = 1000
else:
raise NotImplementedError
frame_idx = 0
batch_size = 300
explore_steps = 0 # for random action sampling in the beginning of training
update_itr = 1
AUTO_ENTROPY = True
DETERMINISTIC = False
hidden_dim = 512
K = 2
rewards = []
steps = []
model_path = './model/pmoe'
pmoe_trainer = PMOE_Trainer(replay_buffer, hidden_dim=hidden_dim, K=K, action_range=action_range)
if __name__ == '__main__':
if args.train:
all_steps = 0
# training loop
for eps in range(max_episodes):
if ENV == 'Reacher':
state = env.reset(SCREEN_SHOT)
else:
state = env.reset()
episode_reward = 0
for step in range(max_steps):
if frame_idx > explore_steps:
action = pmoe_trainer.policy_net.get_action(state, deterministic=DETERMINISTIC)
else:
action = pmoe_trainer.policy_net.sample_action()
if ENV == 'Reacher':
next_state, reward, done, _ = env.step(action, SPARSE_REWARD, SCREEN_SHOT)
else:
next_state, reward, done, _ = env.step(action)
# env.render()
replay_buffer.push(state, action, reward, next_state, done)
state = next_state
episode_reward += reward
frame_idx += 1
if len(replay_buffer) > batch_size:
for i in range(update_itr):
_ = pmoe_trainer.update(batch_size, reward_scale=10., auto_entropy=AUTO_ENTROPY,
target_entropy=-1. * action_dim)
if done:
break
if eps % 20 == 0 and eps > 0: # plot and model saving interval
plot(steps, rewards)
np.save('rewards', rewards)
pmoe_trainer.save_model(model_path)
print('Episode: ', eps, '| Episode Reward: ', episode_reward, '| Episode Length: ', step )
rewards.append(episode_reward)
all_steps += step
steps.append(all_steps) # record total frames
pmoe_trainer.save_model(model_path)
if args.test:
pmoe_trainer.load_model(model_path)
for eps in range(10):
if ENV == 'Reacher':
state = env.reset(SCREEN_SHOT)
else:
state = env.reset()
episode_reward = 0
for step in range(max_steps):
action = pmoe_trainer.policy_net.get_action(state, deterministic=DETERMINISTIC)
if ENV == 'Reacher':
next_state, reward, done, _ = env.step(action, SPARSE_REWARD, SCREEN_SHOT)
else:
next_state, reward, done, _ = env.step(action)
# env.render()
episode_reward += reward
state = next_state
print('Episode: ', eps, '| Episode Reward: ', episode_reward)