forked from xuchang116/smCounter
-
Notifications
You must be signed in to change notification settings - Fork 0
/
mt_depths_lod.R
49 lines (40 loc) · 1.86 KB
/
mt_depths_lod.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
# compute theoretical LOD for each locus
# Chang Xu, 12May2016, modified on 13Jun2016
# average prediction index for each barcode. set to 3.5, which is the PI for a 8-read pair barcode with 7 read pairs being the true allele.
pi.per.barcode <- 3.5
# get input params
args <- commandArgs(TRUE)
args.meanMtDepth <- as.numeric(args[1])
args.fileIn <- args[2]
args.fileOut <- args[3]
# read in the MT depths
dat <- read.delim(args.fileIn, sep='|', header=F)
colnames(dat) <- c('chrom', 'locL', 'locR', 'MTs')
# compute the cutoff and the number of variant barcodes needed to call, based on 20 FP/Mb
cutoff.20 <- 14.0 + 0.012 * args.meanMtDepth
barcode.needed.20 <- ceiling(cutoff.20 / pi.per.barcode)
print(paste("cutoff.20:", cutoff.20, "barcode.needed.20:", barcode.needed.20))
# function to find LOD = the smallest allele fraction such that P(# of variant barcodes >= barcode.needed.20) >= 0.95
# requires at least 5 barcodes on the locus. otherwise findp is one point and uniroot will give error
findLOD <- function(barcode.depth){
if(!is.na(barcode.depth) & is.numeric(barcode.depth) & barcode.depth >= 5) {
findp <- function(p) {pbinom(barcode.needed.20-1, barcode.depth, p) - .05}
lod.out <- try(uniroot(findp, interval=c(0,1))$root, silent=T)
if('try-error' %in% class(lod.out)) {
lod.out <- 1.0
}
}
else{
lod.out <- 1.0
}
return(round(lod.out,4))
}
# compute LOD for each target locus
dat$lod <- sapply(dat$MTs, findLOD)
# drop MTs column
dat$MTs <- NULL
# output bedgraph file
write.table(dat, args.fileOut, sep='\t', row.names=F, col.names=F, quote=F)
# output quantiles of the LOD
lod.quantiles <- quantile(dat$lod,probs=c(0.01,0.05,0.10,0.50,0.90,0.95,0.99))
write.table(lod.quantiles, paste(args.fileOut,".quantiles.txt",sep=""), sep='|', row.names=T, col.names=F, quote=F)