-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdemo.py
54 lines (43 loc) · 1.64 KB
/
demo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
import torch
from torch.autograd import Variable
import utils
import dataset
from PIL import Image
import os
import models.crnn as crnn
def image_file_name(file_dir):
L=[]
for root, dirs, files in os.walk(file_dir):
for file in files:
if os.path.splitext(file)[1] == '.jpg' or os.path.splitext(file)[1] == '.png':
L.append(file)
return L
model_path = 'backup/netCRNN_24_40.pth'
img_path_root = 'data/data_chetou_QR/crnn_test_img_gt'
alphabet = '0123456789abcdefghijklmnopqrstuvwxyz'
model = crnn.CRNN(32, 1, 37, 256)
if torch.cuda.is_available():
model = torch.nn.DataParallel(model).cuda()
print('loading pretrained model from %s' % model_path)
model.load_state_dict(torch.load(model_path))
converter = utils.strLabelConverter(alphabet)
transformer = dataset.resizeNormalize((100, 32))
imageNames=image_file_name(img_path_root)
for imageName in imageNames:
image = Image.open(os.path.join(img_path_root,imageName)).convert('L')
image = transformer(image)
if torch.cuda.is_available():
image = image.cuda()
image = image.view(1, *image.size())
image = Variable(image)
model.eval()
preds = model(image)
_, preds = preds.max(2)
preds = preds.transpose(1, 0).contiguous().view(-1)
preds_size = Variable(torch.IntTensor([preds.size(0)]))
raw_pred = converter.decode(preds.data, preds_size.data, raw=True)
sim_pred = converter.decode(preds.data, preds_size.data, raw=False)
print('%-20s => %-20s' % (raw_pred, sim_pred))
txtName=os.path.join(img_path_root,imageName.replace('jpg','txt'))
with open(txtName,'w') as f:
f.write(sim_pred)