forked from zhoubolei/TRN-pytorch
-
Notifications
You must be signed in to change notification settings - Fork 1
/
test_models.py
216 lines (171 loc) · 7.41 KB
/
test_models.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
import argparse
import time
import numpy as np
import torch.nn.parallel
import torch.optim
from sklearn.metrics import confusion_matrix
from dataset import TSNDataSet
from models import TSN
from transforms import *
from ops import ConsensusModule
import datasets_video
import pdb
from torch.nn import functional as F
# options
parser = argparse.ArgumentParser(
description="TRN testing on the full validation set")
parser.add_argument('dataset', type=str, choices=['something','jester','moments','charades'])
parser.add_argument('modality', type=str, choices=['RGB', 'Flow', 'RGBDiff'])
parser.add_argument('weights', type=str)
parser.add_argument('--arch', type=str, default="resnet101")
parser.add_argument('--save_scores', type=str, default=None)
parser.add_argument('--test_segments', type=int, default=25)
parser.add_argument('--max_num', type=int, default=-1)
parser.add_argument('--test_crops', type=int, default=10)
parser.add_argument('--input_size', type=int, default=224)
parser.add_argument('--crop_fusion_type', type=str, default='TRN',
choices=['avg', 'TRN','TRNmultiscale'])
parser.add_argument('-j', '--workers', default=4, type=int, metavar='N',
help='number of data loading workers (default: 4)')
parser.add_argument('--gpus', nargs='+', type=int, default=None)
parser.add_argument('--img_feature_dim',type=int, default=256)
parser.add_argument('--num_set_segments',type=int, default=1,help='TODO: select multiply set of n-frames from a video')
parser.add_argument('--softmax', type=int, default=0)
args = parser.parse_args()
class AverageMeter(object):
"""Computes and stores the average and current value"""
def __init__(self):
self.reset()
def reset(self):
self.val = 0
self.avg = 0
self.sum = 0
self.count = 0
def update(self, val, n=1):
self.val = val
self.sum += val * n
self.count += n
self.avg = self.sum / self.count
def accuracy(output, target, topk=(1,)):
"""Computes the precision@k for the specified values of k"""
maxk = max(topk)
batch_size = target.size(0)
_, pred = output.topk(maxk, 1, True, True)
pred = pred.t()
correct = pred.eq(target.view(1, -1).expand_as(pred))
res = []
for k in topk:
correct_k = correct[:k].view(-1).float().sum(0)
res.append(correct_k.mul_(100.0 / batch_size))
return res
categories, args.train_list, args.val_list, args.root_path, prefix = datasets_video.return_dataset(args.dataset, args.modality)
num_class = len(categories)
net = TSN(num_class, args.test_segments if args.crop_fusion_type in ['TRN','TRNmultiscale'] else 1, args.modality,
base_model=args.arch,
consensus_type=args.crop_fusion_type,
img_feature_dim=args.img_feature_dim,
)
checkpoint = torch.load(args.weights)
print("model epoch {} best prec@1: {}".format(checkpoint['epoch'], checkpoint['best_prec1']))
base_dict = {'.'.join(k.split('.')[1:]): v for k,v in list(checkpoint['state_dict'].items())}
net.load_state_dict(base_dict)
if args.test_crops == 1:
cropping = torchvision.transforms.Compose([
GroupScale(net.scale_size),
GroupCenterCrop(net.input_size),
])
elif args.test_crops == 10:
cropping = torchvision.transforms.Compose([
GroupOverSample(net.input_size, net.scale_size)
])
else:
raise ValueError("Only 1 and 10 crops are supported while we got {}".format(args.test_crops))
data_loader = torch.utils.data.DataLoader(
TSNDataSet(args.root_path, args.val_list, num_segments=args.test_segments,
new_length=1 if args.modality == "RGB" else 5,
modality=args.modality,
image_tmpl=prefix,
test_mode=True,
transform=torchvision.transforms.Compose([
cropping,
Stack(roll=(args.arch in ['BNInception','InceptionV3'])),
ToTorchFormatTensor(div=(args.arch not in ['BNInception','InceptionV3'])),
GroupNormalize(net.input_mean, net.input_std),
])),
batch_size=1, shuffle=False,
num_workers=args.workers * 2, pin_memory=True)
if args.gpus is not None:
devices = [args.gpus[i] for i in range(args.workers)]
else:
devices = list(range(args.workers))
#net = torch.nn.DataParallel(net.cuda(devices[0]), device_ids=devices)
net = torch.nn.DataParallel(net.cuda())
net.eval()
data_gen = enumerate(data_loader)
total_num = len(data_loader.dataset)
output = []
def eval_video(video_data):
i, data, label = video_data
num_crop = args.test_crops
if args.modality == 'RGB':
length = 3
elif args.modality == 'Flow':
length = 10
elif args.modality == 'RGBDiff':
length = 18
else:
raise ValueError("Unknown modality "+args.modality)
input_var = torch.autograd.Variable(data.view(-1, length, data.size(2), data.size(3)),
volatile=True)
rst = net(input_var)
if args.softmax==1:
# take the softmax to normalize the output to probability
rst = F.softmax(rst)
rst = rst.data.cpu().numpy().copy()
if args.crop_fusion_type in ['TRN','TRNmultiscale']:
rst = rst.reshape(-1, 1, num_class)
else:
rst = rst.reshape((num_crop, args.test_segments, num_class)).mean(axis=0).reshape((args.test_segments, 1, num_class))
return i, rst, label[0]
proc_start_time = time.time()
max_num = args.max_num if args.max_num > 0 else len(data_loader.dataset)
top1 = AverageMeter()
top5 = AverageMeter()
for i, (data, label) in data_gen:
if i >= max_num:
break
rst = eval_video((i, data, label))
output.append(rst[1:])
cnt_time = time.time() - proc_start_time
prec1, prec5 = accuracy(torch.from_numpy(np.mean(rst[1], axis=0)), label, topk=(1, 5))
top1.update(prec1[0], 1)
top5.update(prec5[0], 1)
print('video {} done, total {}/{}, average {:.3f} sec/video, moving Prec@1 {:.3f} Prec@5 {:.3f}'.format(i, i+1,
total_num,
float(cnt_time) / (i+1), top1.avg, top5.avg))
video_pred = [np.argmax(np.mean(x[0], axis=0)) for x in output]
video_labels = [x[1] for x in output]
cf = confusion_matrix(video_labels, video_pred).astype(float)
cls_cnt = cf.sum(axis=1)
cls_hit = np.diag(cf)
cls_acc = cls_hit / cls_cnt
print('-----Evaluation is finished------')
print('Class Accuracy {:.02f}%'.format(np.mean(cls_acc) * 100))
print('Overall Prec@1 {:.02f}% Prec@5 {:.02f}%'.format(top1.avg, top5.avg))
if args.save_scores is not None:
# reorder before saving
name_list = [x.strip().split()[0] for x in open(args.val_list)]
order_dict = {e:i for i, e in enumerate(sorted(name_list))}
reorder_output = [None] * len(output)
reorder_label = [None] * len(output)
reorder_pred = [None] * len(output)
output_csv = []
for i in range(len(output)):
idx = order_dict[name_list[i]]
reorder_output[idx] = output[i]
reorder_label[idx] = video_labels[i]
reorder_pred[idx] = video_pred[i]
output_csv.append('%s;%s'%(name_list[i], categories[video_pred[i]]))
np.savez(args.save_scores, scores=reorder_output, labels=reorder_label, predictions=reorder_pred, cf=cf)
with open(args.save_scores.replace('npz','csv'),'w') as f:
f.write('\n'.join(output_csv))