This repository has been archived by the owner on Nov 20, 2023. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 240
/
config.py
167 lines (142 loc) · 4.65 KB
/
config.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
#!/usr/bin/env python
# -*- coding:UTF-8 -*-
"""VoxelNet config system.
"""
import os
import os.path as osp
import numpy as np
from time import strftime, localtime
from easydict import EasyDict as edict
import math
__C = edict()
# Consumers can get config by:
# import config as cfg
cfg = __C
# for dataset dir
__C.DATA_DIR = '/media/hdc/KITTI/for_voxelnet/cropped_dataset'
__C.CALIB_DIR = '/media/hdc/KITTI/calib/data_object_calib/training/calib'
# for gpu allocation
__C.GPU_AVAILABLE = '0,1'
__C.GPU_USE_COUNT = len(__C.GPU_AVAILABLE.split(','))
__C.GPU_MEMORY_FRACTION = 1
# selected object
__C.DETECT_OBJ = 'Car' # Pedestrian/Cyclist
if __C.DETECT_OBJ == 'Car':
__C.Y_MIN = -40
__C.Y_MAX = 40
__C.X_MIN = 0
__C.X_MAX = 70.4
__C.VOXEL_X_SIZE = 0.2
__C.VOXEL_Y_SIZE = 0.2
__C.VOXEL_POINT_COUNT = 35
__C.INPUT_WIDTH = int((__C.X_MAX - __C.X_MIN) / __C.VOXEL_X_SIZE)
__C.INPUT_HEIGHT = int((__C.Y_MAX - __C.Y_MIN) / __C.VOXEL_Y_SIZE)
__C.FEATURE_RATIO = 2
__C.FEATURE_WIDTH = int(__C.INPUT_WIDTH / __C.FEATURE_RATIO)
__C.FEATURE_HEIGHT = int(__C.INPUT_HEIGHT / __C.FEATURE_RATIO)
else:
__C.Y_MIN = -20
__C.Y_MAX = 20
__C.X_MIN = 0
__C.X_MAX = 48
__C.VOXEL_X_SIZE = 0.2
__C.VOXEL_Y_SIZE = 0.2
__C.VOXEL_POINT_COUNT = 45
__C.INPUT_WIDTH = int((__C.X_MAX - __C.X_MIN) / __C.VOXEL_X_SIZE)
__C.INPUT_HEIGHT = int((__C.Y_MAX - __C.Y_MIN) / __C.VOXEL_Y_SIZE)
__C.FEATURE_RATIO = 2
__C.FEATURE_WIDTH = int(__C.INPUT_WIDTH / __C.FEATURE_RATIO)
__C.FEATURE_HEIGHT = int(__C.INPUT_HEIGHT / __C.FEATURE_RATIO)
# set the log image scale factor
__C.BV_LOG_FACTOR = 4
# for data set type
__C.DATA_SETS_TYPE = 'kitti'
# Root directory of project
__C.CHECKPOINT_DIR = osp.join('checkpoint')
__C.LOG_DIR = osp.join('log')
# for data preprocess
# sensors
__C.VELODYNE_ANGULAR_RESOLUTION = 0.08 / 180 * math.pi
__C.VELODYNE_VERTICAL_RESOLUTION = 0.4 / 180 * math.pi
__C.VELODYNE_HEIGHT = 1.73
# rgb
if __C.DATA_SETS_TYPE == 'kitti':
__C.IMAGE_WIDTH = 1242
__C.IMAGE_HEIGHT = 375
__C.IMAGE_CHANNEL = 3
# top
if __C.DATA_SETS_TYPE == 'kitti':
__C.TOP_Y_MIN = -30
__C.TOP_Y_MAX = +30
__C.TOP_X_MIN = 0
__C.TOP_X_MAX = 80
__C.TOP_Z_MIN = -4.2
__C.TOP_Z_MAX = 0.8
__C.TOP_X_DIVISION = 0.1
__C.TOP_Y_DIVISION = 0.1
__C.TOP_Z_DIVISION = 0.2
__C.TOP_WIDTH = (__C.TOP_X_MAX - __C.TOP_X_MIN) // __C.TOP_X_DIVISION
__C.TOP_HEIGHT = (__C.TOP_Y_MAX - __C.TOP_Y_MIN) // __C.TOP_Y_DIVISION
__C.TOP_CHANNEL = (__C.TOP_Z_MAX - __C.TOP_Z_MIN) // __C.TOP_Z_DIVISION
# for 2d proposal to 3d proposal
__C.PROPOSAL3D_Z_MIN = -2.3 # -2.52
__C.PROPOSAL3D_Z_MAX = 1.5 # -1.02
# for RPN basenet choose
__C.USE_VGG_AS_RPN = 0
__C.USE_RESNET_AS_RPN = 0
__C.USE_RESNEXT_AS_RPN = 0
# for camera and lidar coordination convert
if __C.DATA_SETS_TYPE == 'kitti':
# cal mean from train set
__C.MATRIX_P2 = ([[719.787081, 0., 608.463003, 44.9538775],
[0., 719.787081, 174.545111, 0.1066855],
[0., 0., 1., 3.0106472e-03],
[0., 0., 0., 0]])
# cal mean from train set
__C.MATRIX_T_VELO_2_CAM = ([
[7.49916597e-03, -9.99971248e-01, -8.65110297e-04, -6.71807577e-03],
[1.18652889e-02, 9.54520517e-04, -9.99910318e-01, -7.33152811e-02],
[9.99882833e-01, 7.49141178e-03, 1.18719929e-02, -2.78557062e-01],
[0, 0, 0, 1]
])
# cal mean from train set
__C.MATRIX_R_RECT_0 = ([
[0.99992475, 0.00975976, -0.00734152, 0],
[-0.0097913, 0.99994262, -0.00430371, 0],
[0.00729911, 0.0043753, 0.99996319, 0],
[0, 0, 0, 1]
])
# Faster-RCNN/SSD Hyper params
if __C.DETECT_OBJ == 'Car':
# car anchor
__C.ANCHOR_L = 3.9
__C.ANCHOR_W = 1.6
__C.ANCHOR_H = 1.56
__C.ANCHOR_Z = -1.0 - cfg.ANCHOR_H/2
__C.RPN_POS_IOU = 0.6
__C.RPN_NEG_IOU = 0.45
elif __C.DETECT_OBJ == 'Pedestrian':
# pedestrian anchor
__C.ANCHOR_L = 0.8
__C.ANCHOR_W = 0.6
__C.ANCHOR_H = 1.73
__C.ANCHOR_Z = -0.6 - cfg.ANCHOR_H/2
__C.RPN_POS_IOU = 0.5
__C.RPN_NEG_IOU = 0.35
if __C.DETECT_OBJ == 'Cyclist':
# cyclist anchor
__C.ANCHOR_L = 1.76
__C.ANCHOR_W = 0.6
__C.ANCHOR_H = 1.73
__C.ANCHOR_Z = -0.6 - cfg.ANCHOR_H/2
__C.RPN_POS_IOU = 0.5
__C.RPN_NEG_IOU = 0.35
# for rpn nms
__C.RPN_NMS_POST_TOPK = 20
__C.RPN_NMS_THRESH = 0.1
__C.RPN_SCORE_THRESH = 0.96
# utils
__C.CORNER2CENTER_AVG = True # average version or max version
if __name__ == '__main__':
print('__C.ROOT_DIR = ' + __C.ROOT_DIR)
print('__C.DATA_SETS_DIR = ' + __C.DATA_SETS_DIR)