-
Notifications
You must be signed in to change notification settings - Fork 448
/
eleuther_eval.py
567 lines (479 loc) · 20 KB
/
eleuther_eval.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.
import sys
import time
from typing import Dict, List, Tuple, Union
import PIL
import torch
from lm_eval.evaluator import evaluate
from lm_eval.models.hf_vlms import HFMultimodalLM
from lm_eval.models.huggingface import HFLM
from lm_eval.tasks import get_task_dict, TaskManager
from lm_eval.utils import make_table
from omegaconf import DictConfig
from torchtune import config, training, utils
from torchtune.data import (
format_content_with_images,
left_pad_sequence,
Message,
padded_collate_tiled_images_and_mask,
)
from torchtune.generation import generate, sample
from torchtune.modules import TransformerDecoder
from torchtune.modules.common_utils import local_kv_cache
from torchtune.modules.model_fusion import DeepFusionModel
from torchtune.modules.tokenizers import ModelTokenizer
from torchtune.modules.transforms import Transform
from torchtune.recipe_interfaces import EvalRecipeInterface
from torchtune.training import FullModelTorchTuneCheckpointer
class _VLMEvalWrapper(HFMultimodalLM):
"""An EvalWrapper for EleutherAI's eval harness based on gpt-fast's
EvalWrapper: https://github.com/pytorch-labs/gpt-fast/blob/main/eval.py.
Note:
This is ONLY for vision-language models.
Args:
model (DeepFusionModel): The VLM to evaluate.
transform (Transform): The transform (tokenizer) to use for preprocessing.
device (torch.device): The device to use.
max_seq_length (int): The maximum sequence length.
batch_size (int): The batch size.
dtype (torch.dtype): dtype for the model caches during generation.
enable_kv_cache (bool): Whether to enable KV cache for generation.
image_tag (str): The string to use for the image token. Default is "<image>", which
is the default used by the MMMU dataset.
max_images_per_sample (int): The maximum number of images per sample. Defaults to
the max number of images in MMMU.
"""
def __init__(
self,
model: DeepFusionModel,
transform: Transform,
*,
device: torch.device,
max_seq_length: int = 4096,
batch_size: int = 8,
dtype: torch.dtype = torch.bfloat16,
enable_kv_cache: bool = True,
# TODO (@joecummings): Update these defaults once more multimodal
# tasks are added to the eval harness
image_tag: str = "<image>",
max_images_per_sample: int = 7,
):
self._model = model
self._transform = transform
self._device = device
self._max_seq_length = max_seq_length
self._batch_size = batch_size
self._dtype = dtype
# Defaulting KV cache to True for multimodal
self._enable_kv_cache = True
self._image_tag = image_tag
self._max_images_per_sample = max_images_per_sample
@property
def model(self):
# Not actually changing the dtype here, just adding it as a
# property on the model
self._model.dtype = self._dtype
return self._model
@property
def model_transform(self):
return self._transform
@property
def device(self):
return self._device
@property
def cache_hook(self):
# Dummy class to appease the Harness
class DummyCacheHook:
def __init__(self):
self.add_partial = lambda x, y, z: True
return DummyCacheHook()
@property
def rank(self):
# Hardcoded for now b/c we only support single GPU eval
return 0
@property
def world_size(self):
# Hardcoded for now b/c we only support single GPU eval
return 1
@property
def batch_size(self):
return self._batch_size
@property
def eos_token_id(self):
return self._transform.tokenizer.eos_id
@property
def eot_token_id(self):
return self._transform.tokenizer.eot_id
@property
def max_length(self):
return self._max_seq_length
@property
def truncation(self):
return True
def tok_encode(self, string, **kwargs) -> List[int]:
# This is only used to get a number of tokens for use in sorting samples in dataset
# These values will not actually be used for eval
return self._transform.tokenizer.encode(string, add_bos=False, add_eos=False)
def tok_decode(self, tokens, skip_special_tokens=True) -> str:
if isinstance(tokens, int):
tokens = [tokens]
return self._transform.tokenizer.decode(
tokens, skip_special_tokens=skip_special_tokens
)
def tok_batch_multimodal_encode(
self,
all_texts: List[str],
all_images: List[List[PIL.Image.Image]],
left_truncate_len: int = None,
*args,
**kwargs,
):
# Eleuther already parses out the text and images, so we just need to get
# it into a Message format for our tokenizer
all_encoded_messages = []
for text, images in zip(all_texts, all_images):
# Ensure images are all RGB
proper_images = []
for image in images:
if image.mode != "RGB":
image = image.convert("RGB")
proper_images.append(image)
# Construct the messages
messages = []
content = format_content_with_images(
text, image_tag=self._image_tag, images=proper_images
)
messages.append(Message(role="user", content=content))
messages.append(Message(role="assistant", content=""))
# Transform the messages
tok_batch = self.model_transform({"messages": messages}, inference=True)
all_encoded_messages.append(tok_batch)
# Pad the encoded messages
tok_batch = padded_collate_tiled_images_and_mask(
all_encoded_messages,
pad_direction="left",
pad_max_images=self._max_images_per_sample,
pad_max_tiles=self._transform.max_num_tiles,
)
utils.batch_to_device(tok_batch, self.device)
# Convert the batch to the format expected by the HF
tok_batch["input_ids"] = tok_batch.pop("tokens")
# the harness will use left_truncate_len to indicate that the current batch
# needs to be truncated to self.max_seq_len - self.max_gen_toks
if left_truncate_len is not None:
tok_batch["input_ids"] = tok_batch["input_ids"][:, -left_truncate_len:]
return tok_batch
@torch.inference_mode()
def _model_multimodal_generate(
self,
batch: Dict[str, torch.Tensor],
max_length: int,
stop: List[str],
**generation_kwargs,
):
# 1. Validate inputs
prompt = batch.pop("input_ids")
bsz, seq_len = prompt.shape
temperature = generation_kwargs.get("temperature", 0.0)
do_sample = generation_kwargs.get("do_sample", False)
if do_sample or temperature != 0.0:
raise RuntimeError(
"Any decoding strategy other than greedy is not supported."
)
if bsz > 1:
raise ValueError(
f"Got a batch size of '{bsz}'. Batch size > 1 is not yet supported for "
"multimodal generation."
)
encoder_max_seq_len = (
self.model_transform.image_seq_len * self._max_images_per_sample
)
# Setup masks for bsz 1
with self.device:
causal_mask = torch.tril(
torch.ones(
size=(self.max_length, self.max_length),
dtype=torch.bool,
)
)
input_pos = torch.arange(self.max_length)
batch["input_pos"] = input_pos[None, :seq_len]
batch["mask"] = causal_mask[None, :seq_len]
# 2. Setup KV cache
with local_kv_cache(
self.model,
batch_size=self.batch_size,
device=self.device,
dtype=self._dtype,
encoder_max_seq_len=encoder_max_seq_len,
decoder_max_seq_len=self.max_length,
):
# 3. Prefill step
generated_tokens = []
logits = self.model(prompt, **batch)[:, -1]
token = sample(logits, temperature=0.0, top_k=None)
generated_tokens.append(token.item())
cache_mask = batch["encoder_mask"][:, -1:]
# 4. Continue generating
for _ in range(max_length):
if token.item() in self.model_transform.stop_tokens:
break
logits = self.model(
token,
mask=causal_mask[None, seq_len, None, :],
encoder_input=None,
encoder_mask=cache_mask,
input_pos=input_pos[None, seq_len],
)[:, -1]
token = sample(logits, temperature=0.0, top_k=None)
generated_tokens.append(token.item())
seq_len += 1
# 5. Return generated tokens
return torch.tensor(generated_tokens, dtype=torch.int32).unsqueeze(0)
class _LLMEvalWrapper(HFLM):
"""An EvalWrapper for EleutherAI's eval harness based on gpt-fast's
EvalWrapper: https://github.com/pytorch-labs/gpt-fast/blob/main/eval.py.
Note:
This is for text-only decoder models.
Args:
model (TransformerDecoder): The model to evaluate.
tokenizer (ModelTokenizer): Tokenizer associated with the model being evaluated.
This should be the same tokenizer used when fine-tuning the model.
device (torch.device): The device to use.
max_seq_length (int): The maximum sequence length to use.
batch_size (int): The batch size per GPU to use.
dtype (torch.dtype): dtype for the model caches during generation.
enable_kv_cache (bool): Whether to enable KV cache for generation.
"""
def __init__(
self,
model: TransformerDecoder,
tokenizer: ModelTokenizer,
*,
device: torch.device,
max_seq_length: int = 4096,
batch_size: int = 8,
dtype: torch.dtype = torch.float32,
enable_kv_cache: bool = True,
):
# TODO (@joecummings): Remove this init function so we don't load in extraneous stuff
super().__init__(pretrained="gpt2", device=str(device))
self._model = model
self._tokenizer = tokenizer
self._max_seq_length = max_seq_length
self._batch_size = batch_size
self._dtype = dtype
self._enable_kv_cache = enable_kv_cache
@property
def model(self):
return self._model
@property
def eot_token_id(self):
return self._tokenizer.eos_id
@property
def max_length(self):
return self._max_seq_length
@property
def max_gen_toks(self):
return 256
@property
def batch_size(self):
return self._batch_size
@property
def device(self):
return self._device
@property
def enable_kv_cache(self):
return self._enable_kv_cache
def tok_encode(self, text: str, **kwargs) -> List[int]:
# Note on add_bos flag: setting to False as this gives better results, for example
# +1% on truthfulqa_mc2 with a LoRA finetune. lit-gpt also sets this to False,
# see https://github.com/Lightning-AI/lit-gpt/blob/main/eval/lm_eval_harness.py#L66,
# though notably fast-gpt does the opposite
# https://github.com/pytorch-labs/gpt-fast/blob/main/eval.py#L123.
return self._tokenizer.encode(text=text, add_bos=False, add_eos=False)
def tok_batch_encode(
self, text: List[str], left_truncate_len: int = None, **kwargs
) -> Tuple[torch.Tensor, torch.Tensor]:
tokenized_text = [self.tok_encode(x) for x in text]
# pad left
x = left_pad_sequence(
[torch.tensor(x) for x in tokenized_text],
batch_first=True,
padding_value=self._tokenizer.pad_id,
)
# the harness will use left_truncate_len to indicate that the current batch
# needs to be truncated to self.max_seq_len - self.max_gen_toks
if left_truncate_len is not None:
x = x[:, -left_truncate_len:]
return x, torch.ones_like(x) # return 'mask' b/c it's expected by the harness
def tok_decode(self, tokens: Union[List[int], int], **kwargs) -> str:
if isinstance(tokens, int):
tokens = [tokens]
return self._tokenizer.decode(tokens)
def _model_call(self, inps: torch.Tensor, **kwargs) -> torch.Tensor:
return self._model(inps)
@torch.inference_mode()
def _model_generate(
self, context: torch.Tensor, **generation_kwargs
) -> torch.Tensor:
bsz, seq_len = context.shape
temperature = generation_kwargs.get("temperature", 0.0)
do_sample = generation_kwargs.get("do_sample", False)
if do_sample or temperature != 0.0:
raise RuntimeError(
"Any decoding strategy other than greedy is not supported."
)
# if we've recieved fewer than self._batch_size samples in the current
# batch we need to pad the batch out. here we're padding the end of the
# current batch to the correct length. this is because when we use static
# KV-caches, the model will expect a fixed batch size for all samples.
maybe_padded_context = torch.nn.functional.pad(
context,
(0, 0, 0, self._batch_size - bsz),
value=self._tokenizer.eos_id, # pad with one of the tokenizer's stop tokens so generation can stop early
)
with local_kv_cache(
self.model,
batch_size=self.batch_size,
device=self.device,
dtype=self._dtype,
decoder_max_seq_len=self.max_length,
):
toks, _ = generate(
self.model,
maybe_padded_context,
max_generated_tokens=self.max_gen_toks,
temperature=temperature,
top_k=None,
stop_tokens=self._tokenizer.stop_tokens,
)
return toks[:bsz]
class EleutherEvalRecipe(EvalRecipeInterface):
"""
This recipe runs evaluation on a trained model using EleutherAI's eval harness.
This assumes the user has the EleutherAI eval harness installed. See
https://github.com/EleutherAI/lm-evaluation-harness for more details.
Features:
- Single GPU evaluation. Multi-GPU evaluation is currently not supported.
- Quantization (for text-only models) is supported.
- Any task from the EleutherAI eval harness
We recommend launching evaluation using the tune CLI::
tune run eleuther_eval --config eleuther_evaluation \
tasks=["truthfulqa_mc2","hellaswag"] \
limit=50 \
"""
def __init__(self, cfg: DictConfig) -> None:
# Double check we have the right Eval Harness version
from importlib.metadata import version
if version("lm-eval") != "0.4.5":
raise RuntimeError(
"This recipe requires EleutherAI Eval Harness v0.4.5. "
"Please install with `pip install lm-eval==0.4.5`"
)
# General variable initialization
self.device = utils.get_device(device=cfg.device)
self.dtype = training.get_dtype(dtype=cfg.dtype, device=self.device)
self.logger = utils.get_logger(cfg.get("log_level", "info"))
training.set_seed(seed=cfg.seed)
# Eval specific variables
self.limit = cfg.limit
self.tasks = list(cfg.tasks)
self.batch_size = cfg.batch_size
self.enable_kv_cache = cfg.get("enable_kv_cache", True)
self.include_path = cfg.get("include_path", None)
def setup(self, cfg: DictConfig) -> None:
# Initialize quantizer and quantization mode
quantizer = config.instantiate(cfg.quantizer)
quantization_mode = training.get_quantizer_mode(quantizer)
# Load checkpoint
checkpointer = config.instantiate(cfg.checkpointer)
# Initialize model
with training.set_default_dtype(self.dtype), self.device:
model = config.instantiate(cfg.model)
# Quantize model if requested
if quantization_mode is not None:
if not isinstance(checkpointer, FullModelTorchTuneCheckpointer):
raise ValueError(
"Quantization is only supported for models quantized and saved with the "
"FullModelTorchTuneCheckpointer - please ensure you have quantized your "
"model and are using the quantized weights!"
)
if "qat" in quantization_mode:
raise ValueError(
"You have specified a quantizer with 'QAT' - "
"QAT quantizers should only be used during quantization aware training "
"and when quantizing models. Please use the corresponding post-training "
"quantizer e.g. Int8DynActInt4WeightQuantizer for Int8DynActInt4WeightQATQuantizer."
)
model = quantizer.quantize(model)
model = model.to(device=self.device, dtype=self.dtype)
ckpt_dict = checkpointer.load_checkpoint(weights_only=False)[
training.MODEL_KEY
]
for k, v in ckpt_dict.items():
ckpt_dict[k] = v.to(self.device)
model.load_state_dict(ckpt_dict, assign=True)
else:
ckpt_dict = checkpointer.load_checkpoint()[training.MODEL_KEY]
model.load_state_dict(ckpt_dict)
# Load model weights into initialized model
self.logger.info(f"Model is initialized with precision {self.dtype}.")
# Put model in eval mode.
# Note: This will not disable the dropout applied in SDPA,
# see https://github.com/pytorch/pytorch/issues/124464
model.eval()
# Initialize tokenizer/transform
model_transform = config.instantiate(cfg.tokenizer)
# Finally, we setup the actual EvalWrapper class
if isinstance(model, DeepFusionModel):
eleuther_model_wrapper = _VLMEvalWrapper
if not self.enable_kv_cache:
self.logger.debug(
"Received enable_kv_cache=False, but KV cache is required for running "
"multimodal generation in a timely manner. Setting enable_kv_cache=True."
)
elif isinstance(model, TransformerDecoder):
eleuther_model_wrapper = _LLMEvalWrapper
self.eleuther_model_wrapper = eleuther_model_wrapper(
model,
model_transform,
device=self.device,
max_seq_length=cfg.max_seq_length,
batch_size=self.batch_size,
dtype=self.dtype,
enable_kv_cache=self.enable_kv_cache,
)
def evaluate(self) -> None:
# Initialize tasks for the harness
task_manager = TaskManager(include_path=self.include_path)
task_dict = get_task_dict(self.tasks, task_manager)
# Run evaluation
t0 = time.time()
self.logger.info(f"Running evaluation on the following tasks: {self.tasks}")
output = evaluate(
self.eleuther_model_wrapper,
task_dict,
limit=self.limit,
)
t1 = time.time() - t0
# Log metrics
self.logger.info(f"Eval completed in {t1:.02f} seconds.")
self.logger.info(
f"Max memory allocated: {torch.cuda.max_memory_allocated() / 1e9:.02f} GB"
)
formatted_output = make_table(output)
self.logger.info(f"\n\n{formatted_output}\n")
@config.parse
def recipe_main(cfg: DictConfig) -> None:
"""Entry point for the recipe."""
config.log_config(recipe_name="EleutherEvalRecipe", cfg=cfg)
recipe = EleutherEvalRecipe(cfg=cfg)
recipe.setup(cfg=cfg)
recipe.evaluate()
if __name__ == "__main__":
sys.exit(recipe_main())