From e74d63af0346274dd3bfc69ca152f734e93b753d Mon Sep 17 00:00:00 2001 From: Daniel Vega-Myhre Date: Fri, 20 Dec 2024 11:05:59 -0800 Subject: [PATCH] float8nocompile: add benchmark script --- .../float8nocompile/benchmark/benchmark.py | 177 ++++++++++++++++++ 1 file changed, 177 insertions(+) create mode 100644 torchao/prototype/float8nocompile/benchmark/benchmark.py diff --git a/torchao/prototype/float8nocompile/benchmark/benchmark.py b/torchao/prototype/float8nocompile/benchmark/benchmark.py new file mode 100644 index 000000000..72ecd030c --- /dev/null +++ b/torchao/prototype/float8nocompile/benchmark/benchmark.py @@ -0,0 +1,177 @@ +# this benchmarking script is a modified version of the original script from: https://github.com/drisspg/transformer_nuggets/blob/main/transformer_nuggets/utils/benchmark.py + +import itertools +from dataclasses import dataclass +from typing import Callable, List + +import torch +from tabulate import tabulate +from torch import nn +from torch._inductor.utils import do_bench_using_profiling +from torch.nn import functional as F + +from torchao.float8.float8_linear_utils import convert_to_float8_training +from torchao.prototype.float8nocompile.float8nocompile_linear_utils import ( + convert_to_float8_nocompile_training, +) +from tqdm import tqdm + +device = torch.device("cuda") + +# Needed since changing args to function causes recompiles +torch._dynamo.config.cache_size_limit = 1000 + + +@dataclass(frozen=True) +class ExperimentConfig: + high_precision_dtype: torch.dtype + layer_sizes: list[int] + input_shape: tuple[int] + + +@dataclass(frozen=True) +class ExperimentResult: + float8nocompile_time: float + eager_time: float + compiled_time: float + + +@dataclass(frozen=True) +class Experiment: + config: ExperimentConfig + result: ExperimentResult + + +class TestModel(nn.Module): + def __init__(self, layer_sizes=[32, 64, 32]): + super().__init__() + self.layers = nn.Sequential( + *[ + nn.Linear(layer_sizes[i], layer_sizes[i + 1], bias=False) + for i in range(len(layer_sizes) - 1) + ] + ) + + def forward(self, x: torch.Tensor) -> torch.Tensor: + return self.layers(x) + + +def get_configs() -> List[ExperimentConfig]: + layer_sizes = [[4096, 4096]] + input_shapes = [(2**4, 4096), (2**8, 4096), (2**12, 4096), (2**16, 4096)] + high_precision_dtypes = [torch.float32, torch.bfloat16] + configs = [] + for layer_size, input_shape, high_precision_dtype in itertools.product( + layer_sizes, input_shapes, high_precision_dtypes + ): + configs.append( + ExperimentConfig( + layer_sizes=layer_size, + input_shape=input_shape, + high_precision_dtype=high_precision_dtype, + ) + ) + return configs + + +def forward_backward(model, input_tensor): + output = model(input_tensor) + loss = F.mse_loss(output, torch.zeros_like(output)) + loss.backward() + + +def run_experiment(config: ExperimentConfig) -> ExperimentResult: + # eager float8 baseline + eager_float8_model = convert_to_float8_training( + TestModel(config.layer_sizes).to(device) + ) + + # compiled float8 baseline + compiled_float8_model = torch.compile(eager_float8_model, fullgraph=True) + + # float8nocompile triton implementation + float8nocompile_model = convert_to_float8_nocompile_training( + TestModel(config.layer_sizes).to(device) + ) + + # define test inputs + input_tensor = torch.randn( + *config.input_shape, + requires_grad=True, + dtype=config.high_precision_dtype, + device=device, + ) + input_eager = input_tensor.clone().detach().requires_grad_(True) + input_compiled = input_tensor.clone().detach().requires_grad_(True) + input_triton = input_tensor.clone().detach().requires_grad_(True) + + # benchmark forward + backward for each model + eager_time = benchmark_cuda_function_in_microseconds( + forward_backward, + eager_float8_model, + input_eager, + ) + + compiled_time = benchmark_cuda_function_in_microseconds( + forward_backward, + compiled_float8_model, + input_compiled, + ) + + float8nocompile_time = benchmark_cuda_function_in_microseconds( + forward_backward, + float8nocompile_model, + input_triton, + ) + + return ExperimentResult( + eager_time=eager_time, + compiled_time=compiled_time, + float8nocompile_time=float8nocompile_time, + ) + + +def print_results(experiments: List[Experiment]): + headers = [ + "input_size", + "high_precision_dtype", + "eager_time", + "compiled_time", + "float8nocompile", + ] + rows = [] + for experiment in experiments: + input_size = experiment.config.input_shape[0] * experiment.config.input_shape[1] + rows.append( + [ + f"{input_size:.2e}", + experiment.config.high_precision_dtype, + experiment.result.eager_time, + experiment.result.compiled_time, + experiment.result.float8nocompile_time, + ] + ) + print(tabulate(rows, headers=headers)) + + +def benchmark_cuda_function_in_microseconds(func: Callable, *args, **kwargs) -> float: + """Thin wrapper around do_bench_using_profiling""" + no_args = lambda: func(*args, **kwargs) + time = do_bench_using_profiling(no_args) + return time * 1e3 + + +def main(): + torch.random.manual_seed(123) + configs = get_configs() + results = [] + for config in tqdm(configs): + result = run_experiment(config) + results.append(Experiment(config=config, result=result)) + + # Use Tabulate to print results + print_results(results) + + +if __name__ == "__main__": + main()