diff --git a/_images/notebooks_01_singlegroup_indices_28_1.png b/_images/notebooks_01_singlegroup_indices_28_1.png new file mode 100644 index 00000000..80790169 Binary files /dev/null and b/_images/notebooks_01_singlegroup_indices_28_1.png differ diff --git a/_images/notebooks_01_singlegroup_indices_29_1.png b/_images/notebooks_01_singlegroup_indices_29_1.png new file mode 100644 index 00000000..b603a20a Binary files /dev/null and b/_images/notebooks_01_singlegroup_indices_29_1.png differ diff --git a/_images/notebooks_01_singlegroup_indices_7_1.png b/_images/notebooks_01_singlegroup_indices_7_1.png new file mode 100644 index 00000000..b603a20a Binary files /dev/null and b/_images/notebooks_01_singlegroup_indices_7_1.png differ diff --git a/_images/notebooks_03_local_indices_10_0.png b/_images/notebooks_03_local_indices_10_0.png new file mode 100644 index 00000000..ebc81362 Binary files /dev/null and b/_images/notebooks_03_local_indices_10_0.png differ diff --git a/_images/notebooks_03_local_indices_14_0.png b/_images/notebooks_03_local_indices_14_0.png new file mode 100644 index 00000000..ebb96e7e Binary files /dev/null and b/_images/notebooks_03_local_indices_14_0.png differ diff --git a/_images/notebooks_03_local_indices_17_1.png b/_images/notebooks_03_local_indices_17_1.png new file mode 100644 index 00000000..ed01f1eb Binary files /dev/null and b/_images/notebooks_03_local_indices_17_1.png differ diff --git a/_images/notebooks_03_local_indices_20_1.png b/_images/notebooks_03_local_indices_20_1.png new file mode 100644 index 00000000..2354c9cb Binary files /dev/null and b/_images/notebooks_03_local_indices_20_1.png differ diff --git a/_images/notebooks_03_local_indices_23_1.png b/_images/notebooks_03_local_indices_23_1.png new file mode 100644 index 00000000..2586c303 Binary files /dev/null and b/_images/notebooks_03_local_indices_23_1.png differ diff --git a/_images/notebooks_03_local_indices_26_1.png b/_images/notebooks_03_local_indices_26_1.png new file mode 100644 index 00000000..bcadf7ff Binary files /dev/null and b/_images/notebooks_03_local_indices_26_1.png differ diff --git a/_images/notebooks_03_local_indices_30_1.png b/_images/notebooks_03_local_indices_30_1.png new file mode 100644 index 00000000..f1ddfea9 Binary files /dev/null and b/_images/notebooks_03_local_indices_30_1.png differ diff --git a/_images/notebooks_04_multiscalar_example_14_1.png b/_images/notebooks_04_multiscalar_example_14_1.png new file mode 100644 index 00000000..2da3d264 Binary files /dev/null and b/_images/notebooks_04_multiscalar_example_14_1.png differ diff --git a/_images/notebooks_04_multiscalar_example_18_1.png b/_images/notebooks_04_multiscalar_example_18_1.png new file mode 100644 index 00000000..5e38b602 Binary files /dev/null and b/_images/notebooks_04_multiscalar_example_18_1.png differ diff --git a/_images/notebooks_04_multiscalar_example_25_1.png b/_images/notebooks_04_multiscalar_example_25_1.png new file mode 100644 index 00000000..11dc9006 Binary files /dev/null and b/_images/notebooks_04_multiscalar_example_25_1.png differ diff --git a/_images/notebooks_04_multiscalar_example_31_1.png b/_images/notebooks_04_multiscalar_example_31_1.png new file mode 100644 index 00000000..4f9ff873 Binary files /dev/null and b/_images/notebooks_04_multiscalar_example_31_1.png differ diff --git a/_images/notebooks_05_inference_example_17_1.png b/_images/notebooks_05_inference_example_17_1.png new file mode 100644 index 00000000..80089529 Binary files /dev/null and b/_images/notebooks_05_inference_example_17_1.png differ diff --git a/_images/notebooks_05_inference_example_24_1.png b/_images/notebooks_05_inference_example_24_1.png new file mode 100644 index 00000000..1d9d248f Binary files /dev/null and b/_images/notebooks_05_inference_example_24_1.png differ diff --git a/_images/notebooks_05_inference_example_31_1.png b/_images/notebooks_05_inference_example_31_1.png new file mode 100644 index 00000000..c4454ce0 Binary files /dev/null and b/_images/notebooks_05_inference_example_31_1.png differ diff --git a/_images/notebooks_05_inference_example_35_3.png b/_images/notebooks_05_inference_example_35_3.png new file mode 100644 index 00000000..f4b7f6e6 Binary files /dev/null and b/_images/notebooks_05_inference_example_35_3.png differ diff --git a/_images/notebooks_05_inference_example_39_0.png b/_images/notebooks_05_inference_example_39_0.png new file mode 100644 index 00000000..be4c46ed Binary files /dev/null and b/_images/notebooks_05_inference_example_39_0.png differ diff --git a/_images/notebooks_05_inference_example_56_1.png b/_images/notebooks_05_inference_example_56_1.png new file mode 100644 index 00000000..fad9a1d0 Binary files /dev/null and b/_images/notebooks_05_inference_example_56_1.png differ diff --git a/_images/notebooks_05_inference_example_58_1.png b/_images/notebooks_05_inference_example_58_1.png new file mode 100644 index 00000000..2953c27d Binary files /dev/null and b/_images/notebooks_05_inference_example_58_1.png differ diff --git a/_images/notebooks_05_inference_example_65_0.png b/_images/notebooks_05_inference_example_65_0.png new file mode 100644 index 00000000..8c231504 Binary files /dev/null and b/_images/notebooks_05_inference_example_65_0.png differ diff --git a/_images/notebooks_05_inference_example_71_1.png b/_images/notebooks_05_inference_example_71_1.png new file mode 100644 index 00000000..3a339e9b Binary files /dev/null and b/_images/notebooks_05_inference_example_71_1.png differ diff --git a/_images/notebooks_05_inference_example_75_1.png b/_images/notebooks_05_inference_example_75_1.png new file mode 100644 index 00000000..65b4b71b Binary files /dev/null and b/_images/notebooks_05_inference_example_75_1.png differ diff --git a/_images/notebooks_05_inference_example_9_1.png b/_images/notebooks_05_inference_example_9_1.png new file mode 100644 index 00000000..a3d136cb Binary files /dev/null and b/_images/notebooks_05_inference_example_9_1.png differ diff --git a/_images/notebooks_06_decomposition_example_18_1.png b/_images/notebooks_06_decomposition_example_18_1.png new file mode 100644 index 00000000..70eb4d22 Binary files /dev/null and b/_images/notebooks_06_decomposition_example_18_1.png differ diff --git a/_images/notebooks_06_decomposition_example_20_1.png b/_images/notebooks_06_decomposition_example_20_1.png new file mode 100644 index 00000000..a86dc23f Binary files /dev/null and b/_images/notebooks_06_decomposition_example_20_1.png differ diff --git a/_images/notebooks_06_decomposition_example_30_0.png b/_images/notebooks_06_decomposition_example_30_0.png new file mode 100644 index 00000000..aa576ea9 Binary files /dev/null and b/_images/notebooks_06_decomposition_example_30_0.png differ diff --git a/_images/notebooks_06_decomposition_example_32_0.png b/_images/notebooks_06_decomposition_example_32_0.png new file mode 100644 index 00000000..4daf54b0 Binary files /dev/null and b/_images/notebooks_06_decomposition_example_32_0.png differ diff --git a/_images/notebooks_06_decomposition_example_36_0.png b/_images/notebooks_06_decomposition_example_36_0.png new file mode 100644 index 00000000..464b0ce1 Binary files /dev/null and b/_images/notebooks_06_decomposition_example_36_0.png differ diff --git a/_images/notebooks_06_decomposition_example_38_0.png b/_images/notebooks_06_decomposition_example_38_0.png new file mode 100644 index 00000000..a565f918 Binary files /dev/null and b/_images/notebooks_06_decomposition_example_38_0.png differ diff --git a/_images/notebooks_06_decomposition_example_42_0.png b/_images/notebooks_06_decomposition_example_42_0.png new file mode 100644 index 00000000..03f99b9d Binary files /dev/null and b/_images/notebooks_06_decomposition_example_42_0.png differ diff --git a/_images/notebooks_06_decomposition_example_44_0.png b/_images/notebooks_06_decomposition_example_44_0.png new file mode 100644 index 00000000..8dc432a0 Binary files /dev/null and b/_images/notebooks_06_decomposition_example_44_0.png differ diff --git a/_modules/index.html b/_modules/index.html new file mode 100644 index 00000000..684834a9 --- /dev/null +++ b/_modules/index.html @@ -0,0 +1,182 @@ + + + + + + + Overview: module code — segregation v2.5.2.dev2+g8090618 Manual + + + + + + + + + + + + + + + + + + + + + + + + +
+
+
+ +

All modules for which code is available

+ + +
+ +
+
+ + + \ No newline at end of file diff --git a/_modules/segregation/batch/batch_compute.html b/_modules/segregation/batch/batch_compute.html new file mode 100644 index 00000000..cd40f8b2 --- /dev/null +++ b/_modules/segregation/batch/batch_compute.html @@ -0,0 +1,366 @@ + + + + + + + segregation.batch.batch_compute — segregation v2.5.2.dev2+g8090618 Manual + + + + + + + + + + + + + + + + + + + + + + + + +
+
+
+ +

Source code for segregation.batch.batch_compute

+"""Batch compute wrappers for calculating all relevant statistics at once."""
+
+import inspect
+import warnings
+
+import pandas as pd
+from tqdm.auto import tqdm
+
+from .. import multigroup, singlegroup
+from .._base import SpatialImplicitIndex
+from ..dynamics import compute_multiscalar_profile
+
+singlegroup_classes = {}
+for name, obj in inspect.getmembers(singlegroup):
+    if inspect.isclass(obj):
+        singlegroup_classes[name] = obj
+
+multigroup_classes = {}
+for name, obj in inspect.getmembers(multigroup):
+    if inspect.isclass(obj):
+        multigroup_classes[name] = obj
+
+implicit_single_indices = {}
+for name, obj in inspect.getmembers(singlegroup):
+    if inspect.isclass(obj):
+        if str(SpatialImplicitIndex) in [str(i) for i in obj.__bases__]:
+            implicit_single_indices[name] = obj
+
+implicit_multi_indices = {}
+for name, obj in inspect.getmembers(multigroup):
+    if inspect.isclass(obj):
+        if str(SpatialImplicitIndex) in [str(i) for i in obj.__bases__]:
+            implicit_multi_indices[name] = obj
+
+
+
+[docs] +def batch_compute_singlegroup( + gdf, group_pop_var, total_pop_var, progress_bar=True, **kwargs +): + """Batch compute single-group indices. + + Parameters + ---------- + gdf : DataFrame or GeoDataFrame + DataFrame holding demographic data for study region + group_pop_var : str + The name of variable in data that contains the population size of the group of interest + total_pop_var : str + Variable in data that contains the total population count of the unit + progress_bar: bool + Whether to show a progress bar during calculation + **kwargs : dict + additional keyword arguments passed to each index (e.g. for setting a random + seed in indices like ModifiedGini or ModifiedDissm) + + Returns + ------- + pandas.DataFrame + dataframe with statistic name as dataframe index and statistic value as dataframe values + """ + with warnings.catch_warnings(): + warnings.simplefilter("ignore") + fitted = {} + if progress_bar: + pbar = tqdm(total=len(singlegroup_classes.keys())) + + for each in sorted(singlegroup_classes.keys()): + pbar.set_description(each) + fitted[each] = singlegroup_classes[each]( + gdf, group_pop_var, total_pop_var, **kwargs + ).statistic + pbar.update(1) + else: + for each in sorted(singlegroup_classes.keys()): + fitted[each] = singlegroup_classes[each]( + gdf, group_pop_var, total_pop_var, **kwargs + ).statistic + fitted = pd.DataFrame.from_dict(fitted, orient="index").round(4) + fitted.columns = ["Statistic"] + fitted.index.name = "Name" + return fitted
+ + + +
+[docs] +def batch_compute_multigroup(gdf, groups, **kwargs): + """Batch compute multi-group indices. + + Parameters + ---------- + gdf : DataFrame or GeoDataFrame + DataFrame holding demographic data for study region + groups : list + The variables names in data of the groups of interest of the analysis. + **kwargs : dict + additional keyword arguments passed to each index (e.g. for setting a random + seed in indices like ModifiedGini or ModifiedDissm) + + Returns + ------- + pandas.DataFrame + dataframe with statistic name as dataframe index and statistic value as dataframe values + """ + with warnings.catch_warnings(): + warnings.simplefilter("ignore") + fitted = {} + for each in sorted(multigroup_classes.keys()): + fitted[each] = multigroup_classes[each](gdf, groups, **kwargs).statistic + fitted = pd.DataFrame.from_dict(fitted, orient="index").round(4) + fitted.columns = ["Statistic"] + fitted.index.name = "Name" + return fitted
+ + + +
+[docs] +def batch_multiscalar_singlegroup( + gdf, distances, group_pop_var, total_pop_var, progress_bar=True, **kwargs +): + """Batch compute multiscalar profiles for single-group indices. + + Parameters + ---------- + gdf : DataFrame or GeoDataFrame + DataFrame holding demographic data for study region + distances : list + list of floats representing bandwidth distances that define a local + environment. + group_pop_var : str + The name of variable in data that contains the population size of the group + of interest + total_pop_var : str + Variable in data that contains the total population count of the unit + progress_bar: bool + Whether to show a progress bar during calculation + **kwargs : dict + additional keyword arguments passed to each index (e.g. for setting a random + seed in indices like ModifiedGini or ModifiedDissm) + + Returns + ------- + pandas.DataFrame + pandas Dataframe with distance as dataframe index and each segregation + statistic as dataframe columns + """ + with warnings.catch_warnings(): + warnings.simplefilter("ignore") + profs = [] + if progress_bar: + pbar = tqdm(total=len(implicit_single_indices.keys())) + for idx in sorted(implicit_single_indices.keys()): + pbar.set_description(idx) + prof = compute_multiscalar_profile( + gdf=gdf, + segregation_index=implicit_single_indices[idx], + distances=distances, + group_pop_var=group_pop_var, + total_pop_var=total_pop_var, + **kwargs + ) + profs.append(prof) + pbar.update(1) + else: + for idx in sorted(implicit_single_indices.keys()): + prof = compute_multiscalar_profile( + gdf=gdf, + segregation_index=implicit_single_indices[idx], + distances=distances, + group_pop_var=group_pop_var, + total_pop_var=total_pop_var, + **kwargs + ) + profs.append(prof) + df = pd.concat(profs, axis=1) + return df
+ + + +
+[docs] +def batch_multiscalar_multigroup(gdf, distances, groups, progress_bar=True, **kwargs): + """Batch compute multiscalar profiles for multi-group indices. + + Parameters + ---------- + gdf : DataFrame or GeoDataFrame + DataFrame holding demographic data for study region + distances : list + list of floats representing bandwidth distances that define a local + environment. + groups : list + The variables names in data of the groups of interest of the analysis. + progress_bar: bool + Whether to show a progress bar during calculation + **kwargs : dict + additional keyword arguments passed to each index (e.g. for setting a random + seed in indices like ModifiedGini or ModifiedDissm) + + Returns + ------- + pandas.DataFrame + pandas Dataframe with distance as dataframe index and each segregation + statistic as dataframe columns + """ + with warnings.catch_warnings(): + warnings.simplefilter("ignore") + profs = [] + if progress_bar: + pbar = tqdm(total=len(implicit_multi_indices.keys())) + for idx in sorted(implicit_multi_indices.keys()): + pbar.set_description(idx) + prof = compute_multiscalar_profile( + gdf=gdf, + segregation_index=implicit_multi_indices[idx], + distances=distances, + groups=groups, + **kwargs + ) + profs.append(prof) + pbar.update(1) + + else: + for idx in sorted(implicit_multi_indices.keys()): + prof = compute_multiscalar_profile( + gdf=gdf, + segregation_index=implicit_multi_indices[idx], + distances=distances, + groups=groups, + **kwargs + ) + profs.append(prof) + df = pd.concat(profs, axis=1) + return df
+ +
+ +
+ +
+
+ + + \ No newline at end of file diff --git a/_modules/segregation/decomposition/decompose_segregation.html b/_modules/segregation/decomposition/decompose_segregation.html new file mode 100644 index 00000000..1c73ef6b --- /dev/null +++ b/_modules/segregation/decomposition/decompose_segregation.html @@ -0,0 +1,441 @@ + + + + + + + segregation.decomposition.decompose_segregation — segregation v2.5.2.dev2+g8090618 Manual + + + + + + + + + + + + + + + + + + + + + + + + +
+
+
+ +

Source code for segregation.decomposition.decompose_segregation

+"""
+Decomposition Segregation based Metrics
+"""
+
+__author__ = "Renan X. Cortes <renanc@ucr.edu>, Elijah Knaap <elijah.knaap@ucr.edu>, and Sergio J. Rey <sergio.rey@ucr.edu>"
+
+
+import warnings
+import seaborn as sns
+import matplotlib.pyplot as plt
+import pandas as pd
+from segregation.inference.comparative import _generate_counterfactual
+
+# Including old and new api in __all__ so users can use both
+
+__all__ = ["DecomposeSegregation"]
+
+# The Deprecation calls of the classes are located in the end of this script #
+
+
+def _decompose_segregation(index1, index2, counterfactual_approach="composition"):
+    """Decompose segregation differences into spatial and attribute components.
+
+    Given two segregation indices of the same type, use Shapley decomposition
+    to measure whether the differences between index measures arise from
+    differences in spatial structure or population structure
+
+    Parameters
+    ----------
+    index1 : segregation.SegIndex class
+        First SegIndex class to compare.
+    index2 : segregation.SegIndex class
+        Second SegIndex class to compare.
+    counterfactual_approach : str, one of
+                              ["composition", "share", "dual_composition"]
+        The technique used to generate the counterfactual population
+        distributions.
+
+    Returns
+    -------
+    tuple
+        (shapley spatial component,
+         shapley attribute component,
+         core data of index1,
+         core data of index2,
+         data with counterfactual variables for index1,
+         data with counterfactual variables for index2)
+
+    """
+    df1 = index1.data.copy()
+    df2 = index2.data.copy()
+
+    assert (
+        index1._function == index2._function
+    ), "Segregation indices must be of the same type"
+
+    counterfac_df1, counterfac_df2 = _generate_counterfactual(
+        df1,
+        df2,
+        index1.group_pop_var,
+        index1.total_pop_var,
+        index2.group_pop_var,
+        index2.total_pop_var,
+        counterfactual_approach=counterfactual_approach,
+    )
+
+    seg_func = index1._function
+
+    # index for spatial 1, attribute 1
+    G_S1_A1 = index1.statistic
+
+    # index for spatial 2, attribute 2
+    G_S2_A2 = index2.statistic
+
+    # index for spatial 1 attribute 2 (counterfactual population for structure 1)
+    G_S1_A2 = seg_func(
+        counterfac_df1, "counterfactual_group_pop", "counterfactual_total_pop"
+    )[0]
+
+    # index for spatial 2 attribute 1 (counterfactual population for structure 2)
+    G_S2_A1 = seg_func(
+        counterfac_df2, "counterfactual_group_pop", "counterfactual_total_pop"
+    )[0]
+
+    # take the average difference in spatial structure, holding attributes constant
+    C_S = 1 / 2 * (G_S1_A1 - G_S2_A1 + G_S1_A2 - G_S2_A2)
+
+    # take the average difference in attributes, holding spatial structure constant
+    C_A = 1 / 2 * (G_S1_A1 - G_S1_A2 + G_S2_A1 - G_S2_A2)
+
+    results = {"s1_a1": G_S1_A1, "s1_a2": G_S1_A2, "s2_a1": G_S2_A1, "s2_a2": G_S2_A2}
+
+    return (
+        C_S,
+        C_A,
+        df1,
+        df2,
+        counterfac_df1,
+        counterfac_df2,
+        counterfactual_approach,
+        results,
+    )
+
+
+
+[docs] +class DecomposeSegregation: + """Decompose segregation differences into spatial and attribute components. + + Given two segregation indices of the same type, use Shapley decomposition + to measure whether the differences between index measures arise from + differences in spatial structure or population structure + + Parameters + ---------- + index1 : segregation.SegIndex class + First SegIndex class to compare. + index2 : segregation.SegIndex class + Second SegIndex class to compare. + counterfactual_approach : str, one of {"composition", "share", "dual_composition"} + The technique used to generate the counterfactual population + distributions. + + Attributes + ---------- + c_s : float + Shapley's Spatial Component of the decomposition + c_a : float + Shapley's Attribute Component of the decomposition + indices : dict + Dictionary of index values for all four combinations of spatial/attribute data + + + """ + +
+[docs] + def __init__(self, index1, index2, counterfactual_approach="composition"): + """Initialize class.""" + aux = _decompose_segregation(index1, index2, counterfactual_approach) + + self.c_s = aux[0] + self.c_a = aux[1] + self._df1 = aux[2] + self._df2 = aux[3] + self._counterfac_df1 = aux[4] + self._counterfac_df2 = aux[5] + self._counterfactual_approach = aux[6] + self.indices = aux[7]
+ + +
+[docs] + def plot( + self, + plot_type="cdfs", + figsize=None, + city_a=None, + city_b=None, + cmap="OrRd", + scheme="equalinterval", + k=10, + suptitle_size=16, + title_size=12, + savefig=None, + dpi=300, + ): + """Plot maps or CDFs of urban contexts used in calculating the Decomposition class. + + Parameters + ---------- + plot_type : str, {'cdfs, 'maps'} + which type of plot to generate. Options include `cdfs` and `maps` by default "cdfs" + figsize : tuple, optional + figsize parameter passed to matplotlib.pyplot + city_a : str, optional + Name of the first "city" to be used in plotting. If None, defaults to 'City A' + city_b : str, optional + Name of the second "city" to be used in plotting. If None, defaults to 'City B' + cmap : str, optional + matplotlib colormap used to shade the map, by default "OrRd" + scheme : str, optional + pysal.mapclassify classification scheme used to shade the map, by default "equalinterval" + k : int, optional + number of classes in pysal.mapclassify classification scheme, by default 10 + suptitle_size : int, optional + size parameter passed to `matplotlib.Figure.suptitle`, by default 16 + title_size : int, optional + size parameter passed to `matplotlib.Axes.set_title`, by default 12 + savefig : str, optional + Location to save the figure if desired. If None, fig will not be saved + dpi : int, optional + dpi parameter passed to matplotlib.pyplot, by default 300 + + Returns + ------- + None + Generates a new matplotlib.Figure instance and optionally saves to disk + """ + if not city_a: + city_a = "City A" + if not city_b: + city_b = "City B" + + if plot_type == "cdfs": + if not figsize: + figsize = (10, 10) + fig, ax = plt.subplots(figsize=figsize) + plt.suptitle( + f"Decomposing differences between\n{city_a} and {city_b}", + size=suptitle_size, + ) + plt.title( + f"Spatial Component = {round(self.c_s, 3)}, Attribute Component: {round(self.c_a, 3)}", + size=title_size, + ) + + temp_a = self._counterfac_df1.copy() + temp_a["Location"] = city_a + temp_b = self._counterfac_df2.copy() + temp_b["Location"] = city_b + df = pd.concat([temp_a, temp_b]).reset_index() + + if self._counterfactual_approach == "composition": + sns.ecdfplot(data=df, x="group_composition", hue="Location", ax=ax) + return ax + + elif self._counterfactual_approach == "share": + f = sns.ecdfplot(data=df, x="share", hue="Location", ax=ax) + return f + + elif self._counterfactual_approach == "dual_composition": + df["compl"] = 1 - df.group_composition + f = sns.ecdfplot(data=df, x="group_composition", hue="Location", ax=ax) + f2 = sns.ecdfplot(data=df, x="compl", hue="Location", ax=ax) + if savefig: + plt.savefig(savefig, dpi=dpi) + + if plot_type == "maps": + if not figsize: + figsize = (20, 20) + fig, axs = plt.subplots(2, 2, figsize=figsize) + plt.suptitle( + f"Decomposing differences between\n{city_a} and {city_b}", + size=suptitle_size, + ) + plt.title( + f"Spatial Component = {round(self.c_s, 3)}, Attribute Component: {round(self.c_a, 3)}" + ) + + # Original First Context (Upper Left) + self._counterfac_df1.plot( + column="group_composition", + cmap=cmap, + legend=True, + scheme=scheme, + k=k, + ax=axs[0, 0], + ) + axs[0, 0].set_title( + f"{city_a}\nOriginal Composition", fontdict={"fontsize": title_size} + ) + axs[0, 0].axis("off") + + # Counterfactual First Context (Bottom Left) + self._counterfac_df1.plot( + column="counterfactual_composition", + cmap=cmap, + scheme=scheme, + k=k, + legend=True, + ax=axs[1, 0], + ) + axs[1, 0].set_title( + f"{city_a}\nCounterfactual Composition", + fontdict={"fontsize": title_size}, + ) + axs[1, 0].axis("off") + + # Counterfactual Second Context (Upper Right) + self._counterfac_df2.plot( + column="counterfactual_composition", + cmap=cmap, + scheme=scheme, + k=k, + legend=True, + ax=axs[0, 1], + ) + axs[0, 1].set_title( + f"{city_b}\nCounterfactual Composition", + fontdict={"fontsize": title_size}, + ) + axs[0, 1].axis("off") + + # Original Second Context (Bottom Right) + self._counterfac_df2.plot( + column="group_composition", + cmap=cmap, + scheme=scheme, + k=k, + legend=True, + ax=axs[1, 1], + ) + axs[1, 1].set_title( + f"{city_b}\nOriginal Composition", fontdict={"fontsize": title_size} + ) + axs[1, 1].axis("off") + if savefig: + plt.savefig(savefig, dpi=dpi) + return axs
+
+ +
+ +
+ +
+
+ + + \ No newline at end of file diff --git a/_modules/segregation/dynamics/divergence_profile.html b/_modules/segregation/dynamics/divergence_profile.html new file mode 100644 index 00000000..60c63b12 --- /dev/null +++ b/_modules/segregation/dynamics/divergence_profile.html @@ -0,0 +1,240 @@ + + + + + + + segregation.dynamics.divergence_profile — segregation v2.5.2.dev2+g8090618 Manual + + + + + + + + + + + + + + + + + + + + + + + + +
+
+
+ +

Source code for segregation.dynamics.divergence_profile

+import numpy as np
+import pandas as pd
+
+from scipy.spatial.distance import pdist, squareform
+from scipy.special import rel_entr as relative_entropy
+
+from ..network import compute_travel_cost_matrix
+from warnings import warn
+
+
+
+[docs] +def compute_divergence_profiles( + gdf, groups, metric="euclidean", network=None, distance_matrix=None +): + """ + A segregation metric using Kullback-Leiber (KL) divergence to quantify the + difference in the population characteristics between (1) an area and (2) the total population. + + Parameters + ---------- + data : pandas.DataFrame or geopandas.GeoDataFrame, required + dataframe or geodataframe if spatial index holding data for location of interest + groups : list, required + list of columns on dataframe holding population totals for each group + metric : str (optional; 'euclidean' by default) + Distance metric for calculating pairwise distances, + Accepts any inputs to `scipy.spatial.distance.pdist`. + Ignored if passing a network or distance matrix + network: pandana.Network object (optional, None by default) + A pandana Network object used to compute distance between observations + distance_matrix: numpy.array (optional; None by default) + numpy array of distances between observations in the dataset + + Returns + ---------- + aux : geopandas.GeoDataFrame + geodataframe of the KL divergence measure, between the aggregated population and the + total population, will converge to zero for the final row of each + observation to represent that the total population is covered. + population_covered : the population count within the aggregated population. + Returns a concatenated object of Pandas dataframes. Each dataframe contains a + set of divergence levels between an area and the total population. These areas + become consecutively larger, starting from a single location and aggregating + outward from this location, until the area represents the total population. + Thus, together the divergence levels within a dataframe represent a profile + of divergence from an area. The concatenated object is the collection of these + divergence profiles for every areas within the total population. + + """ + # Store the observation index to return with the results + indices = gdf.index.copy() + centroids = gdf.geometry.centroid + df = gdf[groups].values + + coordinates = np.column_stack((centroids.x, centroids.y)) + + # If given a pandana network, use shortest network distance, otherwise use scikit + if network: + if metric != "network": + warn( + f"metric set to {metric} but a pandana.Network object was passed. Using network distances instead" + "If you wish to use a scipy distance matrix, do not include a `network` argument`" + ) + dist_matrix = compute_travel_cost_matrix(gdf, gdf, network).values + elif distance_matrix: + if metric != "precomputed": + warn( + f"metric set to {metric} but a distance_matrix argument was passed. Using precomputed distances instead" + ) + dist_matrix = distance_matrix + else: + dist_matrix = squareform(pdist(coordinates, metric=metric)) + + # Preparing list for results + results = [] + + # Loop to calculate KL divergence + for (i, distances) in enumerate(dist_matrix): + + # Creating the q and r objects + sorted_indices = np.argsort(distances) + cumul_pop_by_group = np.cumsum(df[sorted_indices], axis=0) + obs_cumul_pop = np.sum(cumul_pop_by_group, axis=1)[:, np.newaxis] + q_cumul_proportions = cumul_pop_by_group / obs_cumul_pop + total_pop_by_group = np.sum(df, axis=0, keepdims=True) + total_pop = np.sum(df) + r_total_proportions = total_pop_by_group / total_pop + + # Input q and r objects into relative entropy (KL divergence) function + kl_divergence = relative_entropy(q_cumul_proportions, r_total_proportions).sum( + axis=1 + ) + + # Creating an output dataframe + output = pd.DataFrame().from_dict( + dict( + observation=indices[i], + distance=distances[sorted_indices], + divergence=kl_divergence, + population_covered=obs_cumul_pop.sum(axis=1), + ) + ) + + # Append (bring together) all outputs into results list + results.append(output) + + aux = pd.concat(results) + + return aux
+ +
+ +
+ +
+
+ + + \ No newline at end of file diff --git a/_modules/segregation/dynamics/segregation_profile.html b/_modules/segregation/dynamics/segregation_profile.html new file mode 100644 index 00000000..46f85a7f --- /dev/null +++ b/_modules/segregation/dynamics/segregation_profile.html @@ -0,0 +1,270 @@ + + + + + + + segregation.dynamics.segregation_profile — segregation v2.5.2.dev2+g8090618 Manual + + + + + + + + + + + + + + + + + + + + + + + + +
+
+
+ +

Source code for segregation.dynamics.segregation_profile

+"""Compute multiscalar segregation profiles."""
+
+import warnings
+
+import numpy as np
+import pandas as pd
+from libpysal.weights import Kernel
+from pyproj.crs import CRS
+
+
+
+[docs] +def compute_multiscalar_profile( + gdf, + segregation_index=None, + groups=None, + group_pop_var=None, + total_pop_var=None, + distances=None, + network=None, + decay="linear", + function="triangular", + precompute=True, + **kwargs +): + """Compute multiscalar segregation profile. + + This function calculates several Spatial Information Theory indices with + increasing distance parameters. + + Parameters + ---------- + gdf : geopandas.GeoDataFrame + geodataframe with rows as observations and columns as population + variables. Note that if using a network distance, the coordinate + system for this gdf should be 4326. If using euclidian distance, + this must be projected into planar coordinates like state plane or UTM. + segregation_index : SpatialImplicit SegregationIndex Class + a class from the library such as MultiInformationTheory, or MinMax + groups : list + list of population groups for calculating multigroup indices + group_pop_var : str + name of population group on gdf for calculating single group indices + total_pop_var : str + bame of total population on gdf for calculating single group indices + distances : list + list of floats representing bandwidth distances that define a local + environment. + network : pandana.Network (optional) + A pandana.Network likely created with + `segregation.network.get_osm_network`. + decay : str (optional) + decay type to be used in pandana accessibility calculation + options are {'linear', 'exp', 'flat'}. The default is 'linear'. + function: 'str' (optional) + which weighting function should be passed to libpysal.weights.Kernel + must be one of: 'triangular','uniform','quadratic','quartic','gaussian' + precompute: bool + Whether the pandana.Network instance should precompute the range + queries. This is True by default + **kwargs : dict + additional keyword arguments passed to each index (e.g. for setting a random + seed in indices like ModifiedGini or ModifiedDissm) + + + Returns + ------- + pandas.Series + Series with distances as index and index statistics as values + + Notes + ----- + Based on Sean F. Reardon, Stephen A. Matthews, David O’Sullivan, Barrett A. Lee, Glenn Firebaugh, Chad R. Farrell, & Kendra Bischoff. (2008). The Geographic Scale of Metropolitan Racial Segregation. Demography, 45(3), 489–514. https://doi.org/10.1353/dem.0.0019. + + Reference: :cite:`reardon2008`. + + """ + if not segregation_index: + raise ValueError("You must pass a segregation SpatialImplicit Index Class") + gdf = gdf.copy() + indices = {} + + if groups: + gdf[groups] = gdf[groups].astype(float) + indices[0] = segregation_index(gdf, groups=groups, **kwargs).statistic + elif group_pop_var: + indices[0] = segregation_index( + gdf, group_pop_var=group_pop_var, total_pop_var=total_pop_var, **kwargs + ).statistic + + with warnings.catch_warnings(): + warnings.simplefilter("ignore") + if network: + if not gdf.crs.equals(CRS(4326)): + gdf = gdf.to_crs(epsg=4326) + if precompute: + maxdist = max(distances) + network.precompute(maxdist) + for distance in distances: + distance = np.float(distance) + if group_pop_var: + idx = segregation_index( + gdf, + group_pop_var=group_pop_var, + total_pop_var=total_pop_var, + network=network, + decay=decay, + distance=distance, + precompute=False, + **kwargs + ) + elif groups: + idx = segregation_index( + gdf, + groups=groups, + network=network, + decay=decay, + distance=distance, + precompute=False, + **kwargs + ) + + indices[distance] = idx.statistic + else: + for distance in distances: + w = Kernel.from_dataframe(gdf, bandwidth=distance, function=function) + if group_pop_var: + idx = segregation_index( + gdf, + group_pop_var=group_pop_var, + total_pop_var=total_pop_var, + w=w, + **kwargs + ) + else: + idx = segregation_index(gdf, groups, w=w, **kwargs) + indices[distance] = idx.statistic + series = pd.Series(indices, name=str(type(idx)).split(".")[-1][:-2]) + series.index.name = "distance" + return series
+ +
+ +
+ +
+
+ + + \ No newline at end of file diff --git a/_modules/segregation/inference/comparative.html b/_modules/segregation/inference/comparative.html new file mode 100644 index 00000000..499aacda --- /dev/null +++ b/_modules/segregation/inference/comparative.html @@ -0,0 +1,587 @@ + + + + + + + segregation.inference.comparative — segregation v2.5.2.dev2+g8090618 Manual + + + + + + + + + + + + + + + + + + + + + + + + +
+
+
+ +

Source code for segregation.inference.comparative

+"""Tools for simulating comparative datasets across spatial contexts."""
+
+import numpy as np
+import pandas as pd
+
+from .._base import MultiGroupIndex, SingleGroupIndex
+from .randomization import simulate_person_permutation
+
+
+def _prepare_comparative_data(df1, df2, group_pop_var1, group_pop_var2, total_pop_var1, total_pop_var2):
+    df1 = df1.copy()
+    df2 = df2.copy()
+    if hasattr(df1, "geometry"):
+        df1 = df1[[group_pop_var1, total_pop_var1, df1.geometry.name]]
+    else:
+        df1 = df1[[group_pop_var1, total_pop_var1]]
+
+    if hasattr(df2, "geometry"):
+        df2 = df2[[group_pop_var2, total_pop_var2, df2.geometry.name]]
+    else:
+        df2 = df2[[group_pop_var2, total_pop_var2]]
+
+    return df1, df2
+
+
+
+def _generate_counterfactual(
+    data1,
+    data2,
+    group_pop_var1,
+    total_pop_var1,
+    group_pop_var2,
+    total_pop_var2,
+    counterfactual_approach="composition",
+):
+    """Generate a counterfactual variables.
+
+    Given two contexts, generate counterfactual distributions for a variable of
+    interest by simulating the variable of one context into the spatial
+    structure of the other.
+
+    Parameters
+    ----------
+    data1 : pd.DataFrame or gpd.DataFrame
+        Pandas or Geopandas dataframe holding data for context 1
+
+    data2 : pd.DataFrame or gpd.DataFrame
+        Pandas or Geopandas dataframe holding data for context 2
+
+    group_pop_var : str
+        The name of variable in both data that contains the population size of the group of interest
+
+    total_pop_var : str
+        The name of variable in both data that contains the total population of the unit
+
+    approach : str, ["composition", "share", "dual_composition"]
+        Which approach to use for generating the counterfactual.
+        Options include "composition", "share", or "dual_composition"
+
+    Returns
+    -------
+    two DataFrames
+        df1 and df2  with appended columns 'counterfactual_group_pop', 'counterfactual_total_pop', 'group_composition' and 'counterfactual_composition'
+
+    """
+    df1, df2 = DUAL_SIMULATORS[counterfactual_approach](
+        data1, data2, group_pop_var1, total_pop_var1, group_pop_var2, total_pop_var2,
+    )
+    df1["group_composition"] = (df1[group_pop_var1] / df1[total_pop_var1]).fillna(0)
+    df2["group_composition"] = (df2[group_pop_var2] / df2[total_pop_var2]).fillna(0)
+
+    df1["counterfactual_composition"] = (
+        df1["counterfactual_group_pop"] / df1["counterfactual_total_pop"]
+    ).fillna(0)
+    df2["counterfactual_composition"] = (
+        df2["counterfactual_group_pop"] / df2["counterfactual_total_pop"]
+    ).fillna(0)
+
+    df1 = df1.drop(columns=[group_pop_var1, total_pop_var1], axis=1)
+    df2 = df2.drop(columns=[group_pop_var2, total_pop_var2], axis=1)
+
+    return df1, df2
+
+
+
+[docs] +def sim_composition( + df1, df2, group_pop_var1, total_pop_var1, group_pop_var2, total_pop_var2, +): + """Simulate the spatial distribution of a population group in a region using the CDF of a comparison region. + + For each spatial unit i in region 1, take the unit's percentile in the distribution, and swap the group composition + with the value of the corresponding percentile in region 2. The composition is the minority population of unit i + divided by total population of tract i. This approach will shift the relative composition of each spatial + unit without changing its total population. + + Parameters + ---------- + df1 : pandas.DataFrame or geopandas.GeoDataFrame + dataframe for first dataset with columns holding group and total population counts + df2 : pandas.DataFrame or geopandas.GeoDataFrame + dataframe for second dataset with columns holding group and total population counts + group_pop_var1 : str + column holding population counts for group of interest on input df1 + total_pop_var1 : str + column holding total population counts on input df1 + group_pop_var2 : str + column holding population counts for group of interest on input df2 + total_pop_var2 : str + column holding total population counts on input df2 + + Returns + ------- + two pandas.DataFrame + dataframes with simulated population columns appended + """ + df1, df2 = _prepare_comparative_data(df1, df2, group_pop_var1, group_pop_var2, total_pop_var1, total_pop_var2) + + df1["group_composition"] = (df1[group_pop_var1] / df1[total_pop_var1]).fillna(0) + df2["group_composition"] = (df2[group_pop_var2] / df2[total_pop_var2]).fillna(0) + + df1["counterfactual_group_pop"] = ( + df1["group_composition"].rank(pct=True).apply(df2["group_composition"].quantile) + * df1[total_pop_var1] + ) + df2["counterfactual_group_pop"] = ( + df2["group_composition"].rank(pct=True).apply(df1["group_composition"].quantile) + * df2[total_pop_var2] + ) + + df1["counterfactual_total_pop"] = df1[total_pop_var1] + df2["counterfactual_total_pop"] = df2[total_pop_var2] + + return df1, df2
+ + + +
+[docs] +def sim_dual_composition( + df1, df2, group_pop_var1, total_pop_var1, group_pop_var2, total_pop_var2, +): + """Apply the 'composition' for both minority and complementary groups. + + Parameters + ---------- + df1 : pandas.DataFrame or geopandas.GeoDataFrame + dataframe for first dataset with columns holding group and total population counts + df2 : pandas.DataFrame or geopandas.GeoDataFrame + dataframe for second dataset with columns holding group and total population counts + group_pop_var1 : str + column holding population counts for group of interest on input df1 + total_pop_var1 : str + column holding total population counts on input df1 + group_pop_var2 : str + column holding population counts for group of interest on input df2 + total_pop_var2 : str + column holding total population counts on input df2 + + Returns + ------- + two pandas.DataFrame + dataframes with simulated population columns appended + + """ + df1, df2 = _prepare_comparative_data(df1, df2, group_pop_var1, group_pop_var2, total_pop_var1, total_pop_var2) + + df1["group_composition"] = (df1[group_pop_var1] / df1[total_pop_var1]).fillna(0) + df2["group_composition"] = (df2[group_pop_var2] / df2[total_pop_var2]).fillna(0) + + df1["compl_pop_var"] = df1[total_pop_var1] - df1[group_pop_var1] + df2["compl_pop_var"] = df2[total_pop_var2] - df2[group_pop_var2] + + df1["compl_composition"] = (df1["compl_pop_var"] / df1[total_pop_var1]).fillna(0) + df2["compl_composition"] = (df2["compl_pop_var"] / df2[total_pop_var2]).fillna(0) + + df1["counterfactual_group_pop"] = ( + df1["group_composition"].rank(pct=True).apply(df2["group_composition"].quantile) + * df1[total_pop_var1] + ) + df2["counterfactual_group_pop"] = ( + df2["group_composition"].rank(pct=True).apply(df1["group_composition"].quantile) + * df2[total_pop_var2] + ) + + df1["counterfactual_compl_pop"] = ( + df1["compl_composition"].rank(pct=True).apply(df2["compl_composition"].quantile) + * df1[total_pop_var1] + ) + df2["counterfactual_compl_pop"] = ( + df2["compl_composition"].rank(pct=True).apply(df1["compl_composition"].quantile) + * df2[total_pop_var2] + ) + + df1["counterfactual_total_pop"] = ( + df1["counterfactual_group_pop"] + df1["counterfactual_compl_pop"] + ) + df2["counterfactual_total_pop"] = ( + df2["counterfactual_group_pop"] + df2["counterfactual_compl_pop"] + ) + + return df1, df2
+ + + +
+[docs] +def sim_share( + df1, df2, group_pop_var1, total_pop_var1, group_pop_var2, total_pop_var2, +): + """Simulate the spatial population distribution of a region using the CDF of a comparison region. + + For each spatial unit i in region 1, take the unit's percentile in the distribution, and swap the group share + with the value of the corresponding percentile in region 2. The share is the minority population of unit i + divided by total population of minority population. This approach will shift the total population of + each unit without changing the regional proportion of each group + + Parameters + ---------- + df1 : pandas.DataFrame or geopandas.GeoDataFrame + dataframe for first dataset with columns holding group and total population counts + df2 : pandas.DataFrame or geopandas.GeoDataFrame + dataframe for second dataset with columns holding group and total population counts + group_pop_var1 : str + column holding population counts for group of interest on input df1 + total_pop_var1 : str + column holding total population counts on input df1 + group_pop_var2 : str + column holding population counts for group of interest on input df2 + total_pop_var2 : str + column holding total population counts on input df2 + + Returns + ------- + two pandas.DataFrame + dataframes with simulated population columns appended + + """ + df1, df2 = _prepare_comparative_data(df1, df2, group_pop_var1, group_pop_var2, total_pop_var1, total_pop_var2) + + df1["compl_pop_var"] = df1[total_pop_var1] - df1[group_pop_var1] + df2["compl_pop_var"] = df2[total_pop_var2] - df2[group_pop_var2] + + df1["share"] = (df1[group_pop_var1] / df1[group_pop_var1].sum()).fillna(0) + df2["share"] = (df2[group_pop_var2] / df2[group_pop_var2].sum()).fillna(0) + + df1["compl_share"] = (df1["compl_pop_var"] / df1["compl_pop_var"].sum()).fillna(0) + df2["compl_share"] = (df2["compl_pop_var"] / df2["compl_pop_var"].sum()).fillna(0) + + # Rescale due to possibility of the summation of the counterfactual share values being grater or lower than 1 + # CT stands for Correction Term + CT1_2_group = df1["share"].rank(pct=True).apply(df2["share"].quantile).sum() + CT2_1_group = df2["share"].rank(pct=True).apply(df1["share"].quantile).sum() + + df1["counterfactual_group_pop"] = ( + df1["share"].rank(pct=True).apply(df2["share"].quantile) + / CT1_2_group + * df1[group_pop_var1].sum() + ) + df2["counterfactual_group_pop"] = ( + df2["share"].rank(pct=True).apply(df1["share"].quantile) + / CT2_1_group + * df2[group_pop_var2].sum() + ) + + # Rescale due to possibility of the summation of the counterfactual share values being grater or lower than 1 + # CT stands for Correction Term + CT1_2_compl = ( + df1["compl_share"].rank(pct=True).apply(df2["compl_share"].quantile).sum() + ) + CT2_1_compl = ( + df2["compl_share"].rank(pct=True).apply(df1["compl_share"].quantile).sum() + ) + + df1["counterfactual_compl_pop"] = ( + df1["compl_share"].rank(pct=True).apply(df2["compl_share"].quantile) + / CT1_2_compl + * df1["compl_pop_var"].sum() + ) + df2["counterfactual_compl_pop"] = ( + df2["compl_share"].rank(pct=True).apply(df1["compl_share"].quantile) + / CT2_1_compl + * df2["compl_pop_var"].sum() + ) + + df1["counterfactual_total_pop"] = ( + df1["counterfactual_group_pop"] + df1["counterfactual_compl_pop"] + ) + df2["counterfactual_total_pop"] = ( + df2["counterfactual_group_pop"] + df2["counterfactual_compl_pop"] + ) + return df1.fillna(0), df2.fillna(0)
+ + + +def _prepare_random_label(seg_class_1, seg_class_2): + if hasattr(seg_class_1, "_original_data"): + data_1 = seg_class_1._original_data.copy() + else: + data_1 = seg_class_1.data.copy() + if hasattr(seg_class_2, "_original_data"): + data_2 = seg_class_2._original_data.copy() + else: + data_2 = seg_class_2.data.copy() + + data_1["grouping_variable"] = "Group_1" + data_2["grouping_variable"] = "Group_2" + + if isinstance(seg_class_1, SingleGroupIndex): + + # This step is just to make sure the each frequency column is integer for the approaches and from the same type in order to be able to stack them + data_1.loc[:, (seg_class_1.group_pop_var, seg_class_1.total_pop_var)] = ( + data_1.loc[:, (seg_class_1.group_pop_var, seg_class_1.total_pop_var)] + .round(0) + .astype(int) + ) + + # random permutation needs the columns to have the same names + data_1 = data_1[ + [seg_class_1.group_pop_var, seg_class_1.total_pop_var, "grouping_variable",] + ] + data_1.columns = ["group", "total", "grouping_variable"] + + data_2.loc[:, (seg_class_2.group_pop_var, seg_class_2.total_pop_var)] = ( + data_2.loc[:, (seg_class_2.group_pop_var, seg_class_2.total_pop_var)] + .round(0) + .astype(int) + ) + data_2 = data_2[ + [seg_class_2.group_pop_var, seg_class_2.total_pop_var, "grouping_variable",] + ] + data_2.columns = ["group", "total", "grouping_variable"] + + stacked_data = pd.concat([data_1, data_2], axis=0) + + elif isinstance(seg_class_1, MultiGroupIndex): + + groups_list = seg_class_1.groups + + for i in range(len(groups_list)): + data_1[groups_list[i]] = round(data_1[groups_list[i]]).astype(int) + data_2[groups_list[i]] = round(data_2[groups_list[i]]).astype(int) + + if seg_class_1.groups != seg_class_2.groups: + raise ValueError("MultiGroup groups should be the same") + + stacked_data = pd.concat([data_1, data_2], ignore_index=True) + return stacked_data + + +def _estimate_random_label_difference(data): + # note: if estimating a spatial implicit index, then "space" has already been accounted for... + # when the index is computed, the underlying data are transformed to represent the *accessible* population + # so when calculating the simulated difference, we need to pop spatial implicit parameters + + stacked_data = data[0] + function = data[1] + index_args_1 = data[2] + index_args_2 = data[3] + idx_type = data[4] + groups = data[5] + approach = data[6] + for args in [index_args_1, index_args_2]: + if 'network' in args: + args.pop('network') + elif 'distance' in args: + args.pop('distance') + + if approach == 'person_permutation': + grouping = stacked_data['grouping_variable'].copy().values + if groups: + stacked_data = simulate_person_permutation(stacked_data, groups=groups) + else: + stacked_data = simulate_person_permutation(stacked_data, group='group', total='total') + stacked_data['grouping_variable'] = grouping + + else: + stacked_data["grouping_variable"] = np.random.permutation( + stacked_data["grouping_variable"].values + ) + + stacked_data_1 = stacked_data[stacked_data["grouping_variable"] == "Group_1"] + stacked_data_2 = stacked_data[stacked_data["grouping_variable"] == "Group_2"] + if idx_type == "singlegroup": + simulations_1 = function(stacked_data_1, "group", "total", **index_args_1)[0] + simulations_2 = function(stacked_data_2, "group", "total", **index_args_2)[0] + elif idx_type == "multigroup": + simulations_1 = function(stacked_data_1, groups, **index_args_1)[0] + simulations_2 = function(stacked_data_2, groups, **index_args_2)[0] + + est = simulations_1 - simulations_2 + + return est + + +def _estimate_counterfac_difference(data): + data_1 = data[0] + data_2 = data[1] + counterfac_df1 = data[10] + counterfac_df2 = data[11] + + group_1 = data[2] + total_1 = data[3] + group_2 = data[4] + total_2 = data[5] + index_args_1 = data[6] + index_args_2 = data[7] + approach = data[8] + function = data[9] + + if approach in ["counterfactual_share", "counterfactual_dual_composition"]: + data_1[total_1] = counterfac_df1["counterfactual_total_pop"] + data_2[total_2] = counterfac_df2["counterfactual_total_pop"] + + data_1["fair_coin"] = np.random.uniform(size=len(data_1)) + data_1["test_group_pop_var"] = np.where( + data_1["fair_coin"] > 0.5, + data_1[group_1], + counterfac_df1["counterfactual_group_pop"], + ) + + # Dropping to avoid confusion in the internal function + data_1_test = data_1.drop([group_1], axis=1) + + simulations_1 = function( + data_1_test, "test_group_pop_var", total_1, **index_args_1, + )[0] + + # Dropping to avoid confusion in the next iteration + data_1 = data_1.drop(["fair_coin", "test_group_pop_var"], axis=1) + + data_2["fair_coin"] = np.random.uniform(size=len(data_2)) + data_2["test_group_pop_var"] = np.where( + data_2["fair_coin"] > 0.5, + data_2[group_2], + counterfac_df2["counterfactual_group_pop"], + ) + + # Dropping to avoid confusion in the internal function + data_2_test = data_2.drop([group_2], axis=1) + + simulations_2 = function( + data_2_test, "test_group_pop_var", total_2, **index_args_2, + )[0] + + # Dropping to avoid confusion in the next iteration + data_2 = data_2.drop(["fair_coin", "test_group_pop_var"], axis=1) + + est = simulations_1 - simulations_2 + + return est + + +DUAL_SIMULATORS = { + "composition": sim_composition, + "dual_composition": sim_dual_composition, + "share": sim_share, +} +
+ +
+ +
+
+ + + \ No newline at end of file diff --git a/_modules/segregation/inference/inference_wrappers.html b/_modules/segregation/inference/inference_wrappers.html new file mode 100644 index 00000000..65061bc1 --- /dev/null +++ b/_modules/segregation/inference/inference_wrappers.html @@ -0,0 +1,787 @@ + + + + + + + segregation.inference.inference_wrappers — segregation v2.5.2.dev2+g8090618 Manual + + + + + + + + + + + + + + + + + + + + + + + + +
+
+
+ +

Source code for segregation.inference.inference_wrappers

+"""Inference wrapper classes for segregation measures."""
+
+__author__ = "Renan X. Cortes <renanc@ucr.edu> Sergio J. Rey <sergio.rey@ucr.edu> and Elijah Knaap <elijah.knaap@ucr.edu>"
+
+import multiprocessing
+import warnings
+
+import numpy as np
+import pandas as pd
+from joblib import Parallel, delayed
+from scipy import stats
+from tqdm.auto import tqdm
+
+from .._base import MultiGroupIndex
+from .comparative import (DUAL_SIMULATORS, _estimate_counterfac_difference,
+                          _estimate_random_label_difference,
+                          _generate_counterfactual, _prepare_random_label)
+from .randomization import SIMULATORS, simulate_null
+
+
+def _infer_segregation(
+    seg_class,
+    iterations_under_null=500,
+    null_approach="systematic",
+    two_tailed=True,
+    index_kwargs=None,
+    n_jobs=-1,
+    backend="loky",
+    null_value=0,
+):
+    """Compare segregation statistic against a simulated null distribution.
+
+    Parameters
+    ----------
+    seg_class : segregation.singlegroup or segregation.multigroup object
+        fitted segregation index class
+    iterations_under_null : int
+        number of iterations under null hyphothesis
+    null_approach : str
+        Which counterfactual approach to use when generating null hypothesis distribution. See Notes.
+
+        * ``systematic``:
+        assumes that every group has the same probability with restricted conditional probabilities
+        p_0_j = p_1_j = p_j = n_j/n (multinomial distribution).
+
+        * ``bootstrap``:
+        generates bootstrap replications of the units with replacement of the same size of the
+        original data. This procedure creates a confidence interval for the index statistic to test 
+        whether the null value lies within.
+
+        * ``evenness``:
+        assumes that each spatial unit has the same global probability of drawing elements from the
+        minority group of the fixed total unit population (binomial distribution). 
+
+        * ``person_permutation``:
+        randomly allocates individuals into units keeping the total population of each
+        equal to the original.
+
+        * ``geographic_permutation``:
+        randomly allocates the units over space keeping the original values.
+
+        * ``systematic_permutation``:
+        assumes absence of systematic segregation and randomly allocates the units over
+        space.
+
+        * ``even_permutation``:
+        Assumes the same global probability of drawning elements from the minority group in
+        each spatial unit and randomly allocates the units over space.
+
+    two_tailed : boolean
+        If True, p_value is two-tailed. Otherwise, it is right one-tailed. The one-tailed p_value attribute
+        might not be appropriate for some measures, as the two-tailed. Therefore, it is better to rely on the
+        est_sim attribute.
+    n_jobs: int, optional
+        number of cores to use for estimation. If -1 all available cpus will be used
+    backend: str, optional
+        which backend to use with joblib. Options include "loky", "multiprocessing", or "threading"
+    index_kwargs : dict, optional
+        additional keyword arguments passed to the index class
+
+    Attributes
+    ----------
+    p_value : float
+        Pseudo One or Two-Tailed p-value estimated from the simulations
+    est_sim : numpy array
+       Estimates of the segregation measure under the null hypothesis
+    statistic : float
+        The value of the segregation index being tested
+
+    """
+    if null_approach not in SIMULATORS.keys():
+        raise ValueError(f"null_approach must one of {list(SIMULATORS.keys())}")
+
+    if type(two_tailed) is not bool:
+        raise TypeError("two_tailed is not a boolean object")
+
+    point_estimation = seg_class.statistic
+
+    # if using the bootstrap test, we're testing the null estimate against the index's distribution
+    # in all other cases, we test the index value against a null distribution
+    if null_approach == "bootstrap":
+        point_estimation = null_value
+
+    aux = str(type(seg_class))
+    _class_name = aux[
+        1 + aux.rfind(".") : -2
+    ]  # 'rfind' finds the last occurence of a pattern in a string
+
+    Estimates_Stars = simulate_null(
+        iterations=iterations_under_null,
+        sim_func=SIMULATORS[null_approach],
+        seg_class=seg_class,
+        index_kwargs=index_kwargs,
+        n_jobs=n_jobs,
+        backend=backend,
+    ).values
+
+    # Check and, if the case, remove iterations_under_null that resulted in nan or infinite values
+    if any((np.isinf(Estimates_Stars) | np.isnan(Estimates_Stars))):
+        warnings.warn(
+            "Some estimates resulted in NaN or infinite values for estimations under null hypothesis. "
+            "These values will be removed for the final results."
+        )
+        Estimates_Stars = Estimates_Stars[
+            ~(np.isinf(Estimates_Stars) | np.isnan(Estimates_Stars))
+        ]
+
+    if not two_tailed:
+        p_value = sum(Estimates_Stars > point_estimation) / iterations_under_null
+    else:
+        aux1 = (point_estimation < Estimates_Stars).sum()
+        aux2 = (point_estimation > Estimates_Stars).sum()
+        p_value = 2 * np.array([aux1, aux2]).min() / len(Estimates_Stars)
+
+    return p_value, Estimates_Stars, point_estimation, _class_name
+
+
+
+[docs] +class SingleValueTest: + """Statistical inference for a single segregation measure. + + Parameters + ---------- + seg_class : segregation.singlegroup or segregation.multigroup object + fitted segregation index class + iterations_under_null : int + number of iterations under null hyphothesis + null_approach : str + Which counterfactual approach to use when generating null hypothesis distribution. One of the following:. + + * ``bootstrap``: + Generate bootstrap replications of the units with replacement of the same size of the + original data to create a distribution of the segregation index. Then the `null_value` argument + is tested against this distribution. The null_value may be 0, or may be estimated empirically using + the `simulate_null` function. + + * ``systematic``: + assumes that every group has the same probability with restricted conditional probabilities + p_0_j = p_1_j = p_j = n_j/n (multinomial distribution). + + * ``evenness``: + Generate a distribution of segregation indices under the assumption of evenness, which + assumes that each spatial unit has the same global probability of drawing elements from the + minority group of the fixed total unit population (binomial distribution). Then test the observed + segregation index against this distribution + + * ``person_permutation``: + Generate a distribution of segregation indices under the assumption of individual-level randomization, + which randomly allocates individuals into units keeping the total population of each + equal to the original.Then test the observed segregation index against this distribution + + * ``geographic_permutation``: + Generate a distribution of segregation indices under the assumption of geographit unit-level randomization, + which randomly allocates the units over space keeping the original values. Then test the observed segregation + index against this distribution + + * ``systematic_permutation``: + Generate a distribution of segregation indices under the assumption of systemic randomization, + then randomly allocate units over space. Then test the observed segregation index against this distribution + + * ``even_permutation``: + Generate a distribution of segregation indices under the assumption of evenness, then randomly allocating + the units over space. Then test the observed segregation index against this distribution + + two_tailed : boolean + If True, p_value is two-tailed. Otherwise, it is right one-tailed. The one-tailed p_value attribute + might not be appropriate for some measures, as the two-tailed. Therefore, it is better to rely on the + est_sim attribute. + n_jobs: int, optional + number of cores to use for estimation. If -1 all available cpus will be used + backend: str, optional + which backend to use with joblib. Options include "loky", "multiprocessing", or "threading" + index_kwargs : dict, optional + additional keyword arguments passed to the index class + + Attributes + ---------- + p_value : float + Pseudo One or Two-Tailed p-value estimated from the simulations + est_sim : numpy array + Estimates of the segregation measure under the null hypothesis + statistic : float + The value of the segregation index being tested + + Notes + ----- + 1) The different approaches for the null hypothesis affect directly the results of the inference depending on the + combination of the index type of seg_class and the null_approach chosen. Therefore, the user needs to be aware of + how these approaches are affecting the data generation process of the simulations in order to draw meaningful + conclusions. For example, the Modified Dissimilarity (ModifiedDissim) and Modified Gini (ModifiedGiniSeg) indexes, + rely exactly on the distance between evenness through sampling which, therefore, the "evenness" value for null + approach would not be the most appropriate for these indexes. + + Examples + -------- + Several examples can be found here https://github.com/pysal/segregation/blob/master/notebooks/inference_wrappers_example.ipynb. + """ + +
+[docs] + def __init__( + self, + seg_class, + iterations_under_null=500, + null_approach="systematic", + two_tailed=True, + n_jobs=-1, + **kwargs, + ): + + aux = _infer_segregation( + seg_class, + iterations_under_null, + null_approach, + two_tailed, + n_jobs=n_jobs, + **kwargs, + ) + + self.p_value = aux[0] + self.est_sim = aux[1] + self.statistic = aux[2] + self._class_name = aux[3]
+ + +
+[docs] + def plot(self, color="darkblue", kde=True, ax=None, **kwargs): + """Plot the distribution of simulated values and the observed index being tested. + + Parameters + ---------- + color : str, optional + color of histogram, by default 'darkblue' + kde : bool, optional + Whether to plot the kernel density estimate along with the histogram, by default True + ax : matplotlib.axes, optional + axes object to plot onto, by default None + kwargs : seaborn.histplot argument, optional + additional keyword arguments passed to seaborn's histplot function + + Returns + ------- + matplotlib.axes + pyplot axes object + """ + try: + import matplotlib.pyplot as plt + import seaborn as sns + except ImportError: + warnings.warn("This method relies on importing `matplotlib` and `seaborn`") + + f = sns.histplot(self.est_sim, color=color, kde=kde, ax=ax, **kwargs) + plt.axvline(self.statistic, color="red") + plt.title("{} (Value = {})".format(self._class_name, round(self.statistic, 3))) + return f
+
+ + + +def _compare_segregation( + seg_class_1, + seg_class_2, + iterations, + null_approach, + index_kwargs_1, + index_kwargs_2, + n_jobs, + backend, +): + """Perform inference comparison for a two segregation measures. + + Parameters + ---------- + seg_class_1 : segregation.singlegroup or segregation.multigroup class + a fitted segregation class to be compared to seg_class_2 + seg_class_2 : segregation.singlegroup or segregation.multigroup class + a fitted segregation class to be compared to seg_class_1 + iterations_under_null : int + number of iterations to simulate observations in a null distribution + null_approach : str + Which type of null hypothesis the inference will iterate. One of the following: + + * ``random_label``: + Randomly assign each spatial unit to a region then recalculate segregation indices and take the difference + + * ``bootstrap``: + Use bootstrap resampling to generate distributions of the segregation index for each index in the comparison, + then use a two sample t-test to compare differences in the mean of each distribution + + * ``composition``: + Generate counterfactual estimates for each region using the sim_composition approach. + On each iteration, generate a synthetic dataset for each region where each unit has a 50% chance + of belonging to the original data or the counterfactual data. Recalculate segregation indices on + the synthetic datasets. + + * ``share``: + Generate counterfactual estimates for each region using the sim_share approach. + On each iteration, generate a synthetic dataset for each region where each unit has a 50% chance + of belonging to the original data or the counterfactual data. Recalculate segregation indices on + the synthetic datasets. + + * ``dual_composition``: + Generate counterfactual estimates for each region using the sim_dual_composition + approach. On each iteration, generate a synthetic dataset for each region where each unit has a 50% + chance of belonging to the original data or the counterfactual data. Recalculate segregation + indices on the synthetic datasets. + + * ``person_permutation``: + Use the simulate_person_permutation approach to randomly reallocate the combined + population across both regions then recalculate segregation indices + + n_jobs: int, optional + number of cores to use for estimation. If -1 all available cpus will be used + backend: str, optional + which backend to use with joblib. Options include "loky", "multiprocessing", or "threading" + index_kwargs_1 : dict, optional + extra parameters to pass to segregation index 1. + index_kwargs_2 : dict, optional + extra parameters to pass to segregation index 2. + + Attributes + ---------- + p_value : float + Two-Tailed p-value + est_sim : numpy array + Estimates of the segregation measure differences under the null hypothesis + est_point_diff : float + Observed difference between the segregation measures + + Notes + ----- + This function performs inference to compare two segregation measures. This can be either two measures of the same locations in two different points in time or it can be two different locations at the same point in time. + The null hypothesis is H0: Segregation_1 is not different than Segregation_2. + + Based on Rey, Sergio J., and Myrna L. SastrΓ©-GutiΓ©rrez. "Interregional inequality dynamics in Mexico." Spatial Economic Analysis 5.3 (2010): 277-298. + + """ + if not index_kwargs_1: + index_kwargs_1 = {} + if not index_kwargs_2: + index_kwargs_2 = {} + if n_jobs == -1: + n_jobs = multiprocessing.cpu_count() + if null_approach not in [ + "random_label", + "composition", + "share", + "dual_composition", + "person_permutation", + "bootstrap", + ]: + raise ValueError( + f"null_approach must one of {list(DUAL_SIMULATORS.keys())+['random_label', 'person_permutation', 'bootstrap']}" + ) + + if type(seg_class_1) != type(seg_class_2): + raise TypeError("seg_class_1 and seg_class_2 must be the same type/class.") + + point_estimation = seg_class_1.statistic - seg_class_2.statistic + + aux = str(type(seg_class_1)) + _class_name = aux[ + 1 + aux.rfind(".") : -2 + ] # 'rfind' finds the last occurence of a pattern in a string + + data_1 = seg_class_1.data.copy() + data_2 = seg_class_2.data.copy() + + if null_approach == "bootstrap": + boot1 = SingleValueTest( + seg_class_1, + iterations_under_null=iterations, + null_approach="bootstrap", + n_jobs=n_jobs, + backend=backend, + **index_kwargs_1, + ).est_sim + boot2 = SingleValueTest( + seg_class_2, + iterations_under_null=iterations, + null_approach="bootstrap", + n_jobs=n_jobs, + backend=backend, + **index_kwargs_2, + ).est_sim + # test statistic follows from <http://dx.doi.org/10.1016/j.jeconom.2008.11.004>, page 34 + tt = (boot1.mean() - boot2.mean()) / np.sqrt( + (np.std(boot1) ** 2 + np.std(boot2) ** 2) + ) + # p-value from <https://docs.scipy.org/doc/scipy/reference/tutorial/stats.html> + p_value = stats.t.sf(np.abs(tt), iterations - 1) * 2 + estimates = (boot1, boot2) + return p_value, estimates, point_estimation, _class_name + + if null_approach in ["random_label", "person_permutation"]: + if isinstance(seg_class_1, MultiGroupIndex): + groups = seg_class_1.groups + else: + groups = None + + stacked = _prepare_random_label(seg_class_1, seg_class_2) + + estimates = Parallel(n_jobs=n_jobs, backend=backend)( + delayed(_estimate_random_label_difference)( + ( + stacked, + seg_class_1._function, + index_kwargs_1, + index_kwargs_2, + seg_class_1.index_type, + groups, + null_approach, + ) + ) + for i in tqdm(range(iterations)) + ) + + if null_approach in [ + "composition", + "share", + "dual_composition", + ]: + + if isinstance(seg_class_1, MultiGroupIndex): + raise ValueError("Not implemented for MultiGroup indexes.") + + counterfac_df1, counterfac_df2 = _generate_counterfactual( + data_1, + data_2, + seg_class_1.group_pop_var, + seg_class_1.total_pop_var, + seg_class_2.group_pop_var, + seg_class_2.total_pop_var, + null_approach, + ) + + if null_approach in ["share", "dual_composition"]: + data_1[seg_class_1.total_pop_var] = counterfac_df1[ + "counterfactual_total_pop" + ] + data_2[seg_class_2.total_pop_var] = counterfac_df2[ + "counterfactual_total_pop" + ] + + estimates = Parallel(n_jobs=n_jobs, backend=backend)( + delayed(_estimate_counterfac_difference)( + ( + data_1, + data_2, + seg_class_1.group_pop_var, + seg_class_1.total_pop_var, + seg_class_2.group_pop_var, + seg_class_2.total_pop_var, + index_kwargs_1, + index_kwargs_2, + null_approach, + seg_class_1._function, + counterfac_df1, + counterfac_df2, + ) + ) + for i in tqdm(range(iterations)) + ) + estimates = pd.Series(estimates).dropna() + if len(estimates) < iterations: + warnings.warn("Some observations were removed for NA values") + + # Two-Tailed p-value + # Obs.: the null distribution can be located far from zero. Therefore, this is the the appropriate way to calculate the two tailed p-value. + aux1 = (point_estimation < estimates).sum() + aux2 = (point_estimation > estimates).sum() + p_value = 2 * np.array([aux1, aux2]).min() / len(estimates) + + return p_value, estimates, point_estimation, _class_name + + +
+[docs] +class TwoValueTest: + """Perform comparative inference for two segregation measures. + + Parameters + ---------- + seg_class_1 : segregation.singlegroup or segregation.multigroup class + a fitted segregation class to be compared to seg_class_2 + seg_class_2 : segregation.singlegroup or segregation.multigroup class + a fitted segregation class to be compared to seg_class_1 + iterations_under_null : int + number of iterations to simulate observations in a null distribution + null_approach : str + Which type of null hypothesis the inference will iterate. One of the following: + + * ``random_label``: + Randomly assign each spatial unit to a region then recalculate segregation indices and take their + difference. Repeat this process `iterations` times to generate a reference distribution. Then test + the observed difference aginst this distribution. + + * ``bootstrap``: + Use bootstrap resampling to generate distributions of each segregation index in the + comparison, then use a two sample t-test to compare differences between the distribution means. + + * ``composition``: + Generate counterfactual estimates for each region using the sim_composition approach. + On each iteration, generate a synthetic dataset for each region where each unit has a 50% chance + of belonging to the original data or the counterfactual data. Recalculate segregation indices on + the synthetic datasets. + + * ``share``: + Generate counterfactual estimates for each region using the sim_share approach. + On each iteration, generate a synthetic dataset for each region where each unit has a 50% chance + of belonging to the original data or the counterfactual data. Recalculate segregation indices on + the synthetic datasets. Then follow the random labeling method on these synthetic data + + * ``dual_composition``: + Generate counterfactual estimates for each region using the sim_dual_composition + approach. On each iteration, generate a synthetic dataset for each region where each unit has a 50% + chance of belonging to the original data or the counterfactual data. Then follow the random labeling + method on these synthetic data + + * ``person_permutation``: + Use the simulate_person_permutation approach to randomly reallocate the combined + population across both regions then recalculate segregation indices + + n_jobs: int, optional + number of cores to use for estimation. If -1 all available cpus will be used + backend: str, optional + which backend to use with joblib. Options include "loky", "multiprocessing", or "threading" + index_kwargs_1 : dict, optional + extra parameters to pass to segregation index 1. + index_kwargs_2 : dict, optional + extra parameters to pass to segregation index 2. + + Attributes + ---------- + p_value : float + Two-Tailed p-value + est_sim : numpy array + Estimates of the segregation measure differences under the null hypothesis + est_point_diff : float + Observed difference between the segregation measures + + Notes + ----- + This function performs inference to compare two segregation measures. This can be either + two measures of the same locations in two different points in time or it can be two + different locations at the same point in time. The null hypothesis is H0: Segregation_1 + is not different than Segregation_2. + Based on Rey, Sergio J., and Myrna L. SastrΓ©-GutiΓ©rrez. "Interregional inequality dynamics in Mexico." Spatial Economic Analysis 5.3 (2010): 277-298. + + Examples + -------- + Several examples can be found here https://github.com/pysal/segregation/blob/master/notebooks/inference_wrappers_example.ipynb. + """ + +
+[docs] + def __init__( + self, + seg_class_1, + seg_class_2, + iterations_under_null=500, + null_approach="random_label", + n_jobs=-1, + backend="loky", + index_kwargs_1=None, + index_kwargs_2=None, + **kwargs, + ): + + aux = _compare_segregation( + seg_class_1, + seg_class_2, + iterations=iterations_under_null, + null_approach=null_approach, + n_jobs=n_jobs, + backend=backend, + index_kwargs_1=index_kwargs_1, + index_kwargs_2=index_kwargs_2, + ) + + self.p_value = aux[0] + self.est_sim = aux[1] + self.est_point_diff = aux[2] + self._class_name = aux[3] + self._null_approach = null_approach
+ + +
+[docs] + def plot(self, color="darkblue", color2="darkred", kde=True, ax=None, **kwargs): + """Plot the distribution of simulated values and the index value being tested. + + Parameters + ---------- + color : str, optional + histogram color, by default 'darkblue' + color2: str, optional, by default "darkred" + Color for second histogram. Only relevant for bootstrap test + kde : bool, optional + Whether to plot the kernel density estimate along with the histogram, + by default True + ax : matplotlib.axes, optional + axes object to plot onto, by default None + kwargs : seaborn.histplot argument, optional + additional keyword arguments passed to seaborn's histplot function + + Returns + ------- + matplotlib.axes + pyplot axes object + """ + try: + import matplotlib.pyplot as plt + import seaborn as sns + except ImportError: + warnings.warn("This method relies on importing `matplotlib` and `seaborn`") + + if self._null_approach == "bootstrap": + ax = sns.histplot(self.est_sim[0], color=color, kde=kde, ax=ax, **kwargs) + ax = sns.histplot(self.est_sim[1], color=color2, kde=kde, ax=ax, **kwargs) + plt.title( + "{} (Diff. value = {})".format( + self._class_name, round(self.est_point_diff, 3) + ) + ) + else: + ax = sns.histplot(self.est_sim, color=color, kde=kde, ax=ax, **kwargs) + plt.axvline(self.est_point_diff, color="red") + plt.title( + "{} (Diff. value = {})".format( + self._class_name, round(self.est_point_diff, 3) + ) + ) + return ax
+
+ +
+ +
+ +
+
+ + + \ No newline at end of file diff --git a/_modules/segregation/inference/randomization.html b/_modules/segregation/inference/randomization.html new file mode 100644 index 00000000..6325b3d4 --- /dev/null +++ b/_modules/segregation/inference/randomization.html @@ -0,0 +1,538 @@ + + + + + + + segregation.inference.randomization — segregation v2.5.2.dev2+g8090618 Manual + + + + + + + + + + + + + + + + + + + + + + + + +
+
+
+ +

Source code for segregation.inference.randomization

+"""Tools for simulating spatial population distributions."""
+
+import itertools
+import multiprocessing
+from warnings import warn
+
+import geopandas as gpd
+import numpy as np
+import pandas as pd
+from joblib import Parallel, delayed
+from tqdm.auto import tqdm
+
+
+def _generate_estimate(input):
+    if hasattr(input[0], "_original_data"):
+        df = input[0]._original_data.copy()
+    else:
+        df = input[0].data.copy()
+    if input[0].index_type == "singlegroup":
+        df = input[1](df, group=input[0].group_pop_var, total=input[0].total_pop_var,)
+        estimate = (
+            input[0]
+            .__class__(df, input[0].group_pop_var, input[0].total_pop_var, **input[2])
+            .statistic
+        )
+    else:
+        df = input[1](df, groups=input[0].groups)
+        estimate = input[0].__class__(df, input[0].groups, **input[2]).statistic
+    return estimate
+
+
+
+[docs] +def simulate_null( + iterations=500, + sim_func=None, + seg_class=None, + n_jobs=-1, + backend="loky", + index_kwargs=None, +): + """Simulate a series of index values in parallel to serve as a null distribution. + + Parameters + ---------- + iterations : int, required + Number of iterations to simulate (size of the distribution), by default 1000 + sim_func : function, required + population randomization function from segregation.inference to serve as + the null hypothesis. + seg_func : Class from segregation.singlegroup or segregation.singlegroup, required + fitted segregation class from which to generate a reference distribution + n_jobs : int, optional + number of cpus to initialize for parallelization. If -1, use all available, + by default -1 + backend : str, optional + backend passed to joblib.Parallel, by default "loky" + index_kwargs : dict, optional + additional keyword arguments used to fit the index, such as distance or network + if estimating a spatial index; by default None + + Returns + ------- + list + pandas.Series of segregation indices for simulated data + """ + if not index_kwargs: + index_kwargs = {} + if n_jobs == -1: + n_jobs = multiprocessing.cpu_count() + estimates = Parallel(n_jobs=n_jobs, backend=backend)( + delayed(_generate_estimate)((seg_class, sim_func, index_kwargs)) + for i in tqdm(range(iterations)) + ) + return pd.Series(estimates)
+ + + +
+[docs] +def simulate_person_permutation(df, group=None, total=None, groups=None): + """Simulate the permutation of individuals across spatial units. + + Parameters + ---------- + df : geopandas.GeoDataFrame + geodataframe with population data to be randomized + group : str, optional + name of column on geodataframe that holds the group total + (for use with single group indices) + total : str, optional + name of column on geodataframe that holds the total population for + each unit (for use with single group indices) + groups : list, optional + list of columns on input dataframe that hold total population counts + for each group of interest + + Returns + ------- + geopandas.GeoDataFrame + geodataframe with randomly reallocated population + + Notes + ------- + Simulates the random permutation of the existing population's location. Given a pool + of the total population in the region, randomly allocate each person to a + geographic unit, subject to the total capacity of each unit. Results are + guaranteed to respect regional and local totals for geographic units as well + as regional totals and relative shares for groups + """ + df = df.copy() + # ensure we have a coilumn named "index" + df = df.reset_index(drop=True) + df = df.reset_index() + if isinstance(df, gpd.GeoDataFrame): + geoms = df[[df.geometry.name]] + else: + geoms = df.assign(idx=df.index.values)[["idx"]] + if not total: + total = "total" + df["total"] = df[groups].sum(axis=1).astype(int) + df = df[df[total] > 0] + if group: + df[total] = df[total].astype(int) + df["other"] = df[total] - df[group] + groups = [group, "other"] + + # create a list of group membership for each person + members = [[group for i in range(df[group].sum().astype(int))] for group in groups] + pop_groups = list(itertools.chain.from_iterable(members)) + + # create a list of 1s representing the population in each unit + df["people"] = df[total].apply(lambda x: [1 for i in range(x)]) + + # explode the dataframe to have n_rows = total_population + df = df["people"].explode().reset_index()["index"].to_frame() + df["groups"] = pop_groups + + # randomize people's group id + df["groups"] = df["groups"].sample(frac=1).values + + # reaggregate by unit index + df = df.groupby("index")["groups"].value_counts().unstack() + df[total] = df[groups].sum(axis=1) + df = df.join(geoms, how="right").fillna(0) + if "idx" in df.columns: + df = df.drop(columns=["idx"]) + return df + + return gpd.GeoDataFrame(df, geometry=geoms.geometry.name)
+ + + +
+[docs] +def simulate_evenness(df, group=None, total=None, groups=None): + """Simulate even redistribution of population groups across spatial units. + + Parameters + ---------- + df : geopandas.GeoDataFrame + geodataframe with population data to be randomized + group : str, optional + name of column on geodataframe that holds the group total + (for use with single group indices) + total : str, optional + name of column on geodataframe that holds the total population for + each unit (for use with single group indices) + groups : list, optional + list of columns on input dataframe that hold total population counts + for each group of interest + + Returns + ------- + geopandas.GeoDataFrame + geodataframe with evenly distributed population groups + + Notes + ------- + Simulates the random allocation of groups, given the total population of + each geographic unit (randomizes group totals for each location). Given the total + population of each location, take draws from a multinomial distribution to assign + group categories for each person, where the probability of each group is equal to + its regional share. Results are guaranteed to match local population + totals, but will include variation in the regional totals for each group + """ + df = df.copy() + if df.geometry.name: + geoms = df[df.geometry.name].values + crs = df.crs + if group: + df[[group, total]] = df[[group, total]].astype(int) + p_null = df[group].sum() / df[total].sum() + + output = pd.DataFrame() + output[group] = np.random.binomial(n=df[total].values, p=p_null) + output[total] = df[total].tolist() + if groups: + df = df[groups] + global_prob_vector = df.sum(axis=0) / df.sum().sum() + t = df[groups].sum(axis=1).astype(int) + + simul = list( + map(lambda i: list(np.random.multinomial(i, global_prob_vector)), t) + ) + output = pd.DataFrame(simul, columns=groups) + if geoms: + return gpd.GeoDataFrame(output, geometry=geoms, crs=crs) + + return output
+ + + +
+[docs] +def simulate_systematic_randomization(df, group=None, total=None, groups=None): + """Simulate systematic redistribution of population groups across spatial units. + + Parameters + ---------- + df : geopandas.GeoDataFrame + geodataframe with population data to be randomized + group : str, optional + name of column on geodataframe that holds the group total + (for use with singlegroup indices). + total : str, optional + name of column on geodataframe that holds the total population for + each unit. For singlegroup indices, this parameter is required. For + multigroup indices, this is optional if groups are not exhaustive. + groups : list, optional + list of columns on input dataframe that hold total population counts + for each group of interest. Note that if not passing a `total` argument, + groups are assumed to be exhaustive. If total is not set and groups are not + exhaustive, the function will estimate incorrect probabilities of choosing + each geographic unit. + + Returns + ------- + geopandas.GeoDataFrame + geodataframe with systematically randomized population groups + + Notes + ------- + Simulates the random allocation of each group across geographic units, given the total population + of each group (randomizes location totals for each group). Given the total population of + each group in the region, take draws from a multinomial distribution where the probability of + choosing each geographic unit is equal to the total regional share currently residing in the unit. + Results are guaranteed to respect regional group totals, but will include variation in the total + population of each geographic unit. + + For more, see Allen, R., Burgess, S., Davidson, R., & Windmeijer, F. (2015). More reliable inference for the dissimilarity index of segregation. The Econometrics Journal, 18(1), 40–66. https://doi.org/10.1111/ectj.12039 + + Reference: :cite:`allen2015more` + """ + if groups: + if not total: + warn( + "No `total` argument passed. Assuming population groups are exhaustive" + ) + total = "total" + df[total] = df[groups].sum(axis=1) + if group: + assert ( + total + ), "If simulating a single group, you must also supply a total population column" + df["other_group_pop"] = df[total] - df[group] + groups = [group, "other_group_pop"] + + p_j = df[total] / df[total].sum() + data_aux = {} + for group in groups: + n = df[group].sum() + sim = np.random.multinomial(n, p_j) + data_aux[group] = sim.tolist() + df_aux = pd.DataFrame.from_dict(data_aux) + df_aux[total] = df_aux[groups].sum(axis=1) + if isinstance(df, gpd.GeoDataFrame): + df_aux = df[[df.geometry.name]].reset_index().join(df_aux) + + return df_aux
+ + + +
+[docs] +def simulate_bootstrap_resample(df, **kwargs): + """Generate bootstrap replications of the units with replacement of the same size of the original data. + + Parameters + ---------- + df : geopandas.GeoDataFrame or pandas.DataFrame + (geo)dataframe with population counts to be randomized + + Returns + ------- + DataFrame + DataFrame with bootstrap resampled observations + + Notes + ------- + Simulate a synthetic dataset by drawing from rows of the input data with replacement + until reaching the same number of observations in the original dataframe. Note that if + input is a geodataframe, then the output will not be planar-enforced, as more than one of + the same unit may appear in the sample. + """ + df = df.copy() + df = df.reset_index(drop=True) + sample_index = np.random.choice(df.index, size=len(df), replace=True) + df_aux = df.iloc[sample_index] + return df_aux
+ + + +
+[docs] +def simulate_geo_permutation(df, **kwargs): + """Simulate a synthetic dataset by random permutation of geographic units. + + Parameters + ---------- + df : geopandas.GeoDataFrame + geodataframe with population counts to be randomized + + Returns + ------- + DataFrame + Simulate a synthetic dataset by randomly allocating the units over space + keeping their original values. + """ + df = df.copy() + df = df.reset_index(drop=True) + data = df.assign( + geometry=df[df.geometry.name][ + list(np.random.choice(df.shape[0], df.shape[0], replace=False)) + ].reset_index()[df.geometry.name] + ) + return data
+ + + +
+[docs] +def simulate_systematic_geo_permutation(df, group=None, total=None, groups=None): + """Simulate systematic redistribution followed by random permutation of geographic units. + + Parameters + ---------- + df : geopandas.GeoDataFrame + geodataframe with population data to be randomized + group : str, optional + name of column on geodataframe that holds the group total + (for use with single group indices) + total : str, optional + name of column on geodataframe that holds the total population for + each unit (for use with single group indices) + groups : list, optional + list of columns on input dataframe that hold total population counts + for each group of interest + + Returns + ------- + geopandas.GeoDataFrame + geodataframe with systematically randomized population groups + """ + df = simulate_systematic_randomization(df, group=group, total=total, groups=groups) + df = simulate_geo_permutation(df) + return df
+ + + +
+[docs] +def simulate_evenness_geo_permutation(df, group=None, total=None, groups=None): + """Simulate evenness followed by random permutation of geographic units. + + Parameters + ---------- + df : geopandas.GeoDataFrame + geodataframe with population data to be randomized + group : str, optional + name of column on geodataframe that holds the group total + (for use with single group indices) + total : str, optional + name of column on geodataframe that holds the total population for + each unit (for use with single group indices) + groups : list, optional + list of columns on input dataframe that hold total population counts + for each group of interest + + Returns + ------- + geopandas.GeoDataFrame + geodataframe with evenly distributed population groups + """ + df = simulate_evenness(df=df, group=group, total=total, groups=groups) + df = simulate_geo_permutation(df) + return df
+ + + +SIMULATORS = { + "systematic": simulate_systematic_randomization, + "bootstrap": simulate_bootstrap_resample, + "evenness": simulate_evenness, + "person_permutation": simulate_person_permutation, + "geographic_permutation": simulate_geo_permutation, + "systematic_permutation": simulate_systematic_geo_permutation, + "even_permutation": simulate_evenness_geo_permutation, +} +
+ +
+ +
+
+ + + \ No newline at end of file diff --git a/_modules/segregation/local/local_distortion.html b/_modules/segregation/local/local_distortion.html new file mode 100644 index 00000000..475a4f7e --- /dev/null +++ b/_modules/segregation/local/local_distortion.html @@ -0,0 +1,263 @@ + + + + + + + segregation.local.local_distortion — segregation v2.5.2.dev2+g8090618 Manual + + + + + + + + + + + + + + + + + + + + + + + + +
+
+
+ +

Source code for segregation.local.local_distortion

+import geopandas as gpd
+
+from .._base import MultiGroupIndex, SpatialExplicitIndex
+from ..dynamics import compute_divergence_profiles
+
+
+def _local_distortion(
+    gdf, groups, metric="euclidean", network=None, distance_matrix=None, normalize=False
+):
+    """
+    A segregation metric, using Kullback-Leiber (KL) divergence to quantify the
+    difference in the population characteristics between (1) an area and (2) the total population.
+
+    This function utilises the methodology proposed in
+    Olteanu et al. (2019): 'Segregation through the multiscalar lens'. Which can be
+    found here: https://doi.org/10.1073/pnas.1900192116
+
+    Parameters
+    ----------
+    data : pandas.DataFrame or geopandas.GeoDataFrame, required
+        dataframe or geodataframe if spatial index holding data for location of interest
+    groups : list, required
+        list of columns on dataframe holding population totals for each group
+    metric : str (optional; 'euclidean' by default)
+        Distance metric for calculating pairwise distances,
+        Accepts any inputs to `scipy.spatial.distance.pdist`.
+        Ignored if passing a network or distance matrix
+    network: pandana.Network object (optional, None by default)
+        A pandana Network object used to compute distance between observations
+    distance_matrix: numpy.array (optional; None by default)
+        numpy array of distances between observations in the dataset
+    normalize: bool
+        NOT YET IMPLEMENTED
+
+
+    Returns
+    ----------
+    aux : geopandas.GeoDataFrame
+        geodataframe of distortion coefficient values
+
+    """
+    # Store the observation index to return with the results
+    geoms = gdf[gdf.geometry.name]
+    centroids = gdf.geometry.centroid
+
+    aux = compute_divergence_profiles(
+        gdf=gdf,
+        groups=groups,
+        network=network,
+        metric=metric,
+        distance_matrix=distance_matrix,
+    )
+    # divergence --> distortion by summing at each location
+    aux = gpd.GeoDataFrame(
+        aux.groupby("observation").sum()[["divergence"]], geometry=geoms
+    ).rename(columns={"divergence": "distortion"})
+    if normalize:
+        raise Exception("Not yet implemented")
+        # Need to write a routine to determine the scaling factor... From the paper:
+
+        # the maximum distortion coefficient in a theoretical extreme case of segregation.
+        # Theoretically, the maximal-segregation distortion coefficient is achieved when sorting
+        # the k groups into k ghettos, ordered by sizes, and then computing the coefficient for
+        # the most isolated person in the smallest group
+
+    return aux
+
+
+
+[docs] +class LocalDistortion(MultiGroupIndex, SpatialExplicitIndex): + """Multigroup Local Distortion Coefficients. + + Parameters + ---------- + data : pandas.DataFrame or geopandas.GeoDataFrame, required + dataframe or geodataframe if spatial index holding data for location of interest + groups : list, required + list of columns on dataframe holding population totals for each group + metric : str (optional; 'euclidean' by default) + Distance metric for calculating pairwise distances, + Accepts any inputs to `scipy.spatial.distance.pdist`. + Ignored if passing a network or distance matrix + network: pandana.Network object (optional; None by default) + A pandana Network object used to compute distance between observations + distance_matrix: + numpy array of distances between observations in the dataset + normalization: + NOT YET IMPLEMENTED + + Attributes + ---------- + statistics : pandas.Series + KL Divergence coefficients + core_data : a pandas DataFrame + DataFrame that contains the columns used to perform the estimate. + + Notes + ----- + Olteanu et al. (2019): 'Segregation through the multiscalar lens'. https://doi.org/10.1073/pnas.1900192116 + + """ + +
+[docs] + def __init__( + self, + data, + groups=None, + metric="euclidean", + network=None, + distance_matrix=None, + normalize=False, + **kwargs + ): + """Init.""" + + MultiGroupIndex.__init__(self, data, groups) + SpatialExplicitIndex.__init__(self) + + aux = _local_distortion( + self.data, + self.groups, + network=network, + metric=metric, + normalize=normalize, + distance_matrix=distance_matrix, + ) + + self.statistics = aux["distortion"] + self.data = aux + self._function = _local_distortion
+
+ +
+ +
+ +
+
+ + + \ No newline at end of file diff --git a/_modules/segregation/local/local_multi_diversity.html b/_modules/segregation/local/local_multi_diversity.html new file mode 100644 index 00000000..f5aece2b --- /dev/null +++ b/_modules/segregation/local/local_multi_diversity.html @@ -0,0 +1,238 @@ + + + + + + + segregation.local.local_multi_diversity — segregation v2.5.2.dev2+g8090618 Manual + + + + + + + + + + + + + + + + + + + + + + + + +
+
+
+ +

Source code for segregation.local.local_multi_diversity

+"""Multigroup dissimilarity index"""
+
+__author__ = "Renan X. Cortes <renanc@ucr.edu>, Sergio J. Rey <sergio.rey@ucr.edu> and Elijah Knaap <elijah.knaap@ucr.edu>"
+
+import numpy as np
+
+from .._base import MultiGroupIndex, SpatialImplicitIndex
+
+np.seterr(divide="ignore", invalid="ignore")
+
+
+def _multi_local_diversity(data, groups):
+    """
+    Calculation of Local Diversity index for each group and unit
+
+    Parameters
+    ----------
+
+    data   : a pandas DataFrame of n rows
+    groups : list of strings of length k.
+             The variables names in data of the groups of interest of the analysis.
+
+    Returns
+    -------
+
+    statistics : np.array(n,k)
+                 Local Diversity values for each group and unit
+
+    core_data  : a pandas DataFrame
+                 A pandas DataFrame that contains the columns used to perform the estimate.
+
+    Notes
+    -----
+    Based on Theil, Henry. Statistical decomposition analysis; with applications in the social and administrative sciences. No. 04; HA33, T4.. 1972.
+
+    Reference: :cite:`theil1972statistical`.
+
+    """
+
+    core_data = data[groups]
+
+    df = np.array(core_data)
+
+    ti = df.sum(axis=1)
+    pik = df / ti[:, None]
+
+    multi_LD = -np.nansum(pik * np.log(pik), axis=1)
+
+    return multi_LD, core_data, groups
+
+
+
+[docs] +class MultiLocalDiversity(MultiGroupIndex, SpatialImplicitIndex): + """Multigroup Local Diversity Index. + + Parameters + ---------- + data : pandas.DataFrame or geopandas.GeoDataFrame, required + dataframe or geodataframe if spatial index holding data for location of interest + groups : list, required + list of columns on dataframe holding population totals for each group + w : libpysal.weights.KernelW, optional + lipysal spatial kernel weights object used to define an egohood + network : pandana.Network + pandana Network object representing the study area + distance : int + Maximum distance (in units of geodataframe CRS) to consider the extent of the egohood + decay : str + type of decay function to apply. Options include + precompute : bool + Whether to precompute the pandana Network object + + Attributes + ---------- + statistic : float + Multigroup Dissimilarity Index value + core_data : a pandas DataFrame + DataFrame that contains the columns used to perform the estimate. + """ + +
+[docs] + def __init__( + self, + data, + groups, + w=None, + network=None, + distance=None, + decay=None, + precompute=None, + function="triangular", + ): + """Init.""" + + MultiGroupIndex.__init__(self, data, groups) + if any([w, network, distance]): + SpatialImplicitIndex.__init__( + self, w, network, distance, decay, function, precompute + ) + aux = _multi_local_diversity(self.data, self.groups) + + self.statistics = aux[0] + self.data = aux[1] + self.groups = aux[2] + self._function = _multi_local_diversity
+
+ +
+ +
+ +
+
+ + + \ No newline at end of file diff --git a/_modules/segregation/local/local_multi_entropy.html b/_modules/segregation/local/local_multi_entropy.html new file mode 100644 index 00000000..8d1e471c --- /dev/null +++ b/_modules/segregation/local/local_multi_entropy.html @@ -0,0 +1,245 @@ + + + + + + + segregation.local.local_multi_entropy — segregation v2.5.2.dev2+g8090618 Manual + + + + + + + + + + + + + + + + + + + + + + + + +
+
+
+ +

Source code for segregation.local.local_multi_entropy

+"""Multigroup dissimilarity index"""
+
+__author__ = "Renan X. Cortes <renanc@ucr.edu>, Sergio J. Rey <sergio.rey@ucr.edu> and Elijah Knaap <elijah.knaap@ucr.edu>"
+
+import numpy as np
+
+from .._base import MultiGroupIndex, SpatialImplicitIndex
+
+np.seterr(divide="ignore", invalid="ignore")
+
+
+def _multi_local_entropy(data, groups):
+    """
+    Calculation of Local Entropy index for each unit
+
+    Parameters
+    ----------
+
+    data   : a pandas DataFrame of n rows
+    
+    groups : list of strings.
+             The variables names in data of the groups of interest of the analysis.
+
+    Returns
+    -------
+
+    statistics : np.array(n)
+                 Local Entropy values for each unit
+                
+    core_data  : a pandas DataFrame
+                 A pandas DataFrame that contains the columns used to perform the estimate.
+
+    Notes
+    -----
+    Based on Eq. 6 of pg. 139 (individual unit case) of Reardon, Sean F., and David O’Sullivan. "Measures of spatial segregation." Sociological methodology 34.1 (2004): 121-162.
+    
+    Reference: :cite:`reardon2004measures`.
+
+    """
+
+    core_data = data[groups]
+
+    df = np.array(core_data)
+
+    K = df.shape[1]
+
+    ti = df.sum(axis=1)
+    pik = df / ti[:, None]
+
+    multi_LE = -np.nansum((pik * np.log(pik)) / np.log(K), axis=1)
+
+    return multi_LE, core_data, groups
+
+
+
+[docs] +class MultiLocalEntropy(MultiGroupIndex, SpatialImplicitIndex): + """Multigroup Local Entropy Index. + + Parameters + ---------- + data : pandas.DataFrame or geopandas.GeoDataFrame, required + dataframe or geodataframe if spatial index holding data for location of interest + groups : list, required + list of columns on dataframe holding population totals for each group + w : libpysal.weights.KernelW, optional + lipysal spatial kernel weights object used to define an egohood + network : pandana.Network + pandana Network object representing the study area + distance : int + Maximum distance (in units of geodataframe CRS) to consider the extent of the egohood + decay : str + type of decay function to apply. Options include + precompute : bool + Whether to precompute the pandana Network object + + Attributes + ---------- + statistic : float + Multigroup Dissimilarity Index value + core_data : a pandas DataFrame + DataFrame that contains the columns used to perform the estimate. + + Notes + ----- + Based on Eq. 6 of pg. 139 (individual unit case) of Reardon, Sean F., and David O’Sullivan. "Measures of spatial segregation." Sociological methodology 34.1 (2004): 121-162. + + Reference: :cite:`reardon2004measures`. + """ + +
+[docs] + def __init__( + self, + data, + groups, + w=None, + network=None, + distance=None, + decay=None, + precompute=None, + function='triangular' + ): + """Init.""" + + MultiGroupIndex.__init__(self, data, groups) + if any([w, network, distance]): + SpatialImplicitIndex.__init__(self, w, network, distance, decay, function, precompute) + aux = _multi_local_entropy(self.data, self.groups) + + self.statistics = aux[0] + self.data = aux[1] + self.groups = aux[2] + self._function = _multi_local_entropy
+
+ +
+ +
+ +
+
+ + + \ No newline at end of file diff --git a/_modules/segregation/local/local_multi_location_quotient.html b/_modules/segregation/local/local_multi_location_quotient.html new file mode 100644 index 00000000..f3513e5d --- /dev/null +++ b/_modules/segregation/local/local_multi_location_quotient.html @@ -0,0 +1,247 @@ + + + + + + + segregation.local.local_multi_location_quotient — segregation v2.5.2.dev2+g8090618 Manual + + + + + + + + + + + + + + + + + + + + + + + + +
+
+
+ +

Source code for segregation.local.local_multi_location_quotient

+"""Multigroup dissimilarity index"""
+
+__author__ = "Renan X. Cortes <renanc@ucr.edu>, Sergio J. Rey <sergio.rey@ucr.edu> and Elijah Knaap <elijah.knaap@ucr.edu>"
+
+import numpy as np
+
+from .._base import MultiGroupIndex, SpatialImplicitIndex
+
+np.seterr(divide="ignore", invalid="ignore")
+
+
+def _multi_location_quotient(data, groups):
+    """
+    Calculation of Location Quotient index for each group and unit
+
+    Parameters
+    ----------
+
+    data   : a pandas DataFrame of n rows
+    
+    groups : list of strings of length k.
+             The variables names in data of the groups of interest of the analysis.
+
+    Returns
+    -------
+
+    statistics : np.array(n,k)
+                 Location Quotient values for each group and unit.
+                 Column k has the Location Quotient of position k in groups.
+                
+    core_data  : a pandas DataFrame
+                 A pandas DataFrame that contains the columns used to perform the estimate.
+
+    Notes
+    -----
+    Based on Isard, Walter. Methods of regional analysis. Vol. 4. Рипол Классик, 1967.
+    
+    Reference: :cite:`isard1967methods`.
+
+    """
+    
+    core_data = data[groups]
+    
+    df = np.array(core_data)
+    
+    n = df.shape[0]
+    K = df.shape[1]
+    
+    T = df.sum()
+    
+    ti = df.sum(axis = 1)
+    Xk = df.sum(axis = 0)
+    
+    multi_LQ = (df / np.repeat(ti, K, axis = 0).reshape(n,K)) / (Xk / T)
+    
+    return multi_LQ, core_data, groups
+
+        
+
+[docs] +class MultiLocationQuotient(MultiGroupIndex, SpatialImplicitIndex): + """Multigroup Local Diversity Index. + + Parameters + ---------- + data : pandas.DataFrame or geopandas.GeoDataFrame, required + dataframe or geodataframe if spatial index holding data for location of interest + groups : list, required + list of columns on dataframe holding population totals for each group + w : libpysal.weights.KernelW, optional + lipysal spatial kernel weights object used to define an egohood + network : pandana.Network + pandana Network object representing the study area + distance : int + Maximum distance (in units of geodataframe CRS) to consider the extent of the egohood + decay : str + type of decay function to apply. Options include + precompute : bool + Whether to precompute the pandana Network object + + Attributes + ---------- + statistic : float + Multigroup Dissimilarity Index value + core_data : a pandas DataFrame + DataFrame that contains the columns used to perform the estimate. + + Notes + ----- + Reference: :cite:`isard1967methods`. + """ + +
+[docs] + def __init__( + self, + data, + groups, + w=None, + network=None, + distance=None, + decay=None, + precompute=None, + function='triangular' + ): + """Init.""" + + MultiGroupIndex.__init__(self, data, groups) + if any([w, network, distance]): + SpatialImplicitIndex.__init__(self, w, network, distance, decay, function, precompute) + aux = _multi_location_quotient(self.data, self.groups) + + self.statistics = aux[0] + self.data = aux[1] + self.groups = aux[2] + self._function = _multi_location_quotient
+
+ +
+ +
+ +
+
+ + + \ No newline at end of file diff --git a/_modules/segregation/local/local_multi_simpson_concentration.html b/_modules/segregation/local/local_multi_simpson_concentration.html new file mode 100644 index 00000000..0d527db5 --- /dev/null +++ b/_modules/segregation/local/local_multi_simpson_concentration.html @@ -0,0 +1,249 @@ + + + + + + + segregation.local.local_multi_simpson_concentration — segregation v2.5.2.dev2+g8090618 Manual + + + + + + + + + + + + + + + + + + + + + + + + +
+
+
+ +

Source code for segregation.local.local_multi_simpson_concentration

+"""Multigroup dissimilarity index"""
+
+__author__ = "Renan X. Cortes <renanc@ucr.edu>, Sergio J. Rey <sergio.rey@ucr.edu> and Elijah Knaap <elijah.knaap@ucr.edu>"
+
+import numpy as np
+
+from .._base import MultiGroupIndex, SpatialImplicitIndex
+
+np.seterr(divide="ignore", invalid="ignore")
+
+
+def _multi_local_simpson_concentration(data, groups):
+    """
+    Calculation of Local Simpson concentration index for each unit
+
+    Parameters
+    ----------
+
+    data   : a pandas DataFrame of n rows
+    
+    groups : list of strings.
+             The variables names in data of the groups of interest of the analysis.
+
+    Returns
+    -------
+
+    statistics : np.array(n)
+                 Local Simpson concentration values for each unit
+                
+    core_data  : a pandas DataFrame
+                 A pandas DataFrame that contains the columns used to perform the estimate.
+
+    Notes
+    -----
+    Based on the local version of Equation 1 of page 37 of Reardon, Sean F., and Glenn Firebaugh. "Measures of multigroup segregation." Sociological methodology 32.1 (2002): 33-67.
+    
+    Simpson's concentration index can be simply interpreted as the probability that two individuals chosen at random and independently from the population will be found to belong to the same group.
+
+    Higher values means lesser segregation.
+    
+    Simpson's Concentration + Simpson's Interaction = 1
+    
+    Reference: :cite:`reardon2002measures`.
+
+    """
+
+    core_data = data[groups]
+
+    df = np.array(core_data)
+
+    ti = df.sum(axis=1)
+    pik = df / ti[:, None]
+
+    local_SC = np.nansum(pik * pik, axis=1)
+
+    return local_SC, core_data, groups
+
+
+
+[docs] +class MultiLocalSimpsonConcentration(MultiGroupIndex, SpatialImplicitIndex): + """Multigroup Local Simpson's Concentration Index. + + Parameters + ---------- + data : pandas.DataFrame or geopandas.GeoDataFrame, required + dataframe or geodataframe if spatial index holding data for location of interest + groups : list, required + list of columns on dataframe holding population totals for each group + w : libpysal.weights.KernelW, optional + lipysal spatial kernel weights object used to define an egohood + network : pandana.Network + pandana Network object representing the study area + distance : int + Maximum distance (in units of geodataframe CRS) to consider the extent of the egohood + decay : str + type of decay function to apply. Options include + precompute : bool + Whether to precompute the pandana Network object + + Attributes + ---------- + statistic : float + Multigroup Dissimilarity Index value + core_data : a pandas DataFrame + DataFrame that contains the columns used to perform the estimate. + + Notes + ----- + Based on Eq. 6 of pg. 139 (individual unit case) of Reardon, Sean F., and David O’Sullivan. "Measures of spatial segregation." Sociological methodology 34.1 (2004): 121-162. + + Reference: :cite:`reardon2004measures`. + """ + +
+[docs] + def __init__( + self, + data, + groups, + w=None, + network=None, + distance=None, + decay=None, + precompute=None, + function='triangular' + ): + """Init.""" + + MultiGroupIndex.__init__(self, data, groups) + if any([w, network, distance]): + SpatialImplicitIndex.__init__(self, w, network, distance, decay, function, precompute) + aux = _multi_local_simpson_concentration(self.data, self.groups) + + self.statistics = aux[0] + self.data = aux[1] + self.groups = aux[2] + self._function = _multi_local_simpson_concentration
+
+ +
+ +
+ +
+
+ + + \ No newline at end of file diff --git a/_modules/segregation/local/local_multi_simpsons_interaction.html b/_modules/segregation/local/local_multi_simpsons_interaction.html new file mode 100644 index 00000000..df430d8a --- /dev/null +++ b/_modules/segregation/local/local_multi_simpsons_interaction.html @@ -0,0 +1,243 @@ + + + + + + + segregation.local.local_multi_simpsons_interaction — segregation v2.5.2.dev2+g8090618 Manual + + + + + + + + + + + + + + + + + + + + + + + + +
+
+
+ +

Source code for segregation.local.local_multi_simpsons_interaction

+"""Multigroup Local Simpson Interaction index"""
+
+__author__ = "Renan X. Cortes <renanc@ucr.edu>, Sergio J. Rey <sergio.rey@ucr.edu> and Elijah Knaap <elijah.knaap@ucr.edu>"
+
+import numpy as np
+
+from .._base import MultiGroupIndex, SpatialImplicitIndex
+
+np.seterr(divide="ignore", invalid="ignore")
+
+
+def _multi_local_simpson_interaction(data, groups):
+    """
+    Calculation of Local Simpson Interaction index for each unit
+
+    Parameters
+    ----------
+
+    data   : a pandas DataFrame of n rows
+    
+    groups : list of strings.
+             The variables names in data of the groups of interest of the analysis.
+
+    Returns
+    -------
+
+    statistics : np.array(n)
+                 Local Simpson Interaction values for each unit
+                
+    core_data  : a pandas DataFrame
+                 A pandas DataFrame that contains the columns used to perform the estimate.
+
+    Notes
+    -----
+    Based on the local version of Equation 1 of page 37 of Reardon, Sean F., and Glenn Firebaugh. "Measures of multigroup segregation." Sociological methodology 32.1 (2002): 33-67.
+    
+    Simpson's interaction index can be simply interpreted as the probability that two individuals chosen at random and independently from the population will be found to not belong to the same group.
+
+    Higher values means lesser segregation.
+    
+    Simpson's Concentration + Simpson's Interaction = 1
+    
+    Reference: :cite:`reardon2002measures`.
+
+    """
+
+    core_data = data[groups]
+
+    df = np.array(core_data)
+
+    ti = df.sum(axis=1)
+    pik = df / ti[:, None]
+
+    local_SI = np.nansum(pik * (1 - pik), axis=1)
+
+    return local_SI, core_data, groups
+
+
+
+[docs] +class MultiLocalSimpsonInteraction(MultiGroupIndex, SpatialImplicitIndex): + """Multigroup Local Simpson Interaction Index. + + Parameters + ---------- + data : pandas.DataFrame or geopandas.GeoDataFrame, required + dataframe or geodataframe if spatial index holding data for location of interest + groups : list, required + list of columns on dataframe holding population totals for each group + w : libpysal.weights.KernelW, optional + lipysal spatial kernel weights object used to define an egohood + network : pandana.Network + pandana Network object representing the study area + distance : int + Maximum distance (in units of geodataframe CRS) to consider the extent of the egohood + decay : str + type of decay function to apply. Options include + precompute : bool + Whether to precompute the pandana Network object + + Attributes + ---------- + statistic : float + Multigroup Dissimilarity Index value + core_data : a pandas DataFrame + DataFrame that contains the columns used to perform the estimate. + """ + +
+[docs] + def __init__( + self, + data, + groups, + w=None, + network=None, + distance=None, + decay=None, + precompute=None, + function='triangular' + ): + """Init.""" + + MultiGroupIndex.__init__(self, data, groups) + if any([w, network, distance]): + SpatialImplicitIndex.__init__(self, w, network, distance, decay, function, precompute) + aux = _multi_local_simpson_interaction(self.data, self.groups) + + self.statistics = aux[0] + self.data = aux[1] + self.groups = aux[2] + self._function = _multi_local_simpson_interaction
+
+ +
+ +
+ +
+
+ + + \ No newline at end of file diff --git a/_modules/segregation/local/local_relative_centralization.html b/_modules/segregation/local/local_relative_centralization.html new file mode 100644 index 00000000..7505b4c9 --- /dev/null +++ b/_modules/segregation/local/local_relative_centralization.html @@ -0,0 +1,274 @@ + + + + + + + segregation.local.local_relative_centralization — segregation v2.5.2.dev2+g8090618 Manual + + + + + + + + + + + + + + + + + + + + + + + + +
+
+
+ +

Source code for segregation.local.local_relative_centralization

+"""Multigroup Relative Centralization index"""
+
+__author__ = "Renan X. Cortes <renanc@ucr.edu>, Sergio J. Rey <sergio.rey@ucr.edu> and Elijah Knaap <elijah.knaap@ucr.edu>"
+
+import libpysal as lps
+import numpy as np
+from segregation.singlegroup import RelativeCentralization
+
+from .._base import MultiGroupIndex, SpatialExplicitIndex
+
+np.seterr(divide="ignore", invalid="ignore")
+
+
+def _local_relative_centralization(data, group_pop_var, total_pop_var, W=None, k=5):
+    """
+    Calculation of Local Relative Centralization index for each unit
+
+    Parameters
+    ----------
+
+    data          : a geopandas DataFrame with a geometry column.
+    
+    group_pop_var : string
+                    The name of variable in data that contains the population size of the group of interest
+                    
+    total_pop_var : string
+                    The name of variable in data that contains the total population of the unit
+    
+    k_neigh       : integer greater than 0. Default is 5.
+                    Number of assumed neighbors for local context (it uses k-nearest algorithm method)
+                    
+    Returns
+    -------
+
+    statistics : np.array(n)
+                 Local Relative Centralization values for each unit
+                
+    core_data  : a pandas DataFrame
+                 A pandas DataFrame that contains the columns used to perform the estimate.
+
+    Notes
+    -----
+    Based on Folch, David C., and Sergio J. Rey. "The centralization index: A measure of local spatial segregation." Papers in Regional Science 95.3 (2016): 555-576.
+    
+    Reference: :cite:`folch2016centralization`.
+    """
+
+    data = data.copy()
+    if not W:
+        W = lps.weights.KNN.from_dataframe(data, k=5)
+
+    core_data = data[[group_pop_var, total_pop_var, data.geometry.name]]
+
+    c_lons = data.centroid.map(lambda p: p.x)
+    c_lats = data.centroid.map(lambda p: p.y)
+
+    points = list(zip(c_lons, c_lats))
+    kd = lps.cg.kdtree.KDTree(np.array(points))
+
+    local_RCEs = np.empty(len(data))
+
+    for i in range(len(data)):
+
+        x = list(W.neighbors.values())[i]
+        x.append(
+            list(W.neighbors.keys())[i]
+        )  # Append in the end the current unit i inside the local context
+
+        local_data = data.iloc[x, :].copy()
+
+        # The center is given by the last position (i.e. the current unit i)
+        local_RCE = RelativeCentralization(
+            local_data, group_pop_var, total_pop_var, center=len(local_data) - 1
+        )
+
+        local_RCEs[i] = local_RCE.statistic
+
+    return local_RCEs, core_data
+
+
+
+[docs] +class LocalRelativeCentralization(MultiGroupIndex, SpatialExplicitIndex): + """Multigroup Local Simpson's Concentration Index. + + Parameters + ---------- + data : pandas.DataFrame or geopandas.GeoDataFrame, required + dataframe or geodataframe if spatial index holding data for location of interest + groups : list, required + list of columns on dataframe holding population totals for each group + w : libpysal.W, optional + lipysal spatial weights object used to define a local neighborhood. If none is passed, + a KNN ojbect with k=5 will be used + network : pandana.Network + pandana Network object representing the study area + distance : int + Maximum distance (in units of geodataframe CRS) to consider the extent of the egohood + decay : str + type of decay function to apply. Options include + precompute : bool + Whether to precompute the pandana Network object + + Attributes + ---------- + statistic : float + Multigroup Dissimilarity Index value + core_data : a pandas DataFrame + DataFrame that contains the columns used to perform the estimate. + + Notes + ----- + Based on Folch, David C., and Sergio J. Rey. "The centralization index: A measure of local spatial segregation." Papers in Regional Science 95.3 (2016): 555-576. + + Reference: :cite:`folch2016centralization`. + """ + +
+[docs] + def __init__( + self, + data, + group_pop_var=None, + total_pop_var=None, + w=None, + network=None, + distance=None, + decay=None, + precompute=None, + groups=None, + ): + """Init.""" + + MultiGroupIndex.__init__(self, data, groups) + if any([w, network, distance]): + SpatialExplicitIndex.__init__(self) + aux = _local_relative_centralization( + self.data, group_pop_var=group_pop_var, total_pop_var=total_pop_var, W=w + ) + + self.statistics = aux[0] + self.data = aux[1] + self._function = _local_relative_centralization
+
+ +
+ +
+ +
+
+ + + \ No newline at end of file diff --git a/_modules/segregation/multigroup/multi_dissim.html b/_modules/segregation/multigroup/multi_dissim.html new file mode 100644 index 00000000..9b11aa30 --- /dev/null +++ b/_modules/segregation/multigroup/multi_dissim.html @@ -0,0 +1,247 @@ + + + + + + + segregation.multigroup.multi_dissim — segregation v2.5.2.dev2+g8090618 Manual + + + + + + + + + + + + + + + + + + + + + + + + +
+
+
+ +

Source code for segregation.multigroup.multi_dissim

+"""Multigroup dissimilarity index"""
+
+__author__ = "Renan X. Cortes <renanc@ucr.edu>, Sergio J. Rey <sergio.rey@ucr.edu> and Elijah Knaap <elijah.knaap@ucr.edu>"
+
+import numpy as np
+from geopandas import GeoDataFrame
+
+from .._base import MultiGroupIndex, SpatialImplicitIndex
+
+np.seterr(divide="ignore", invalid="ignore")
+
+
+def _multi_dissim(data, groups):
+    """Calculation of Multigroup Dissimilarity index.
+
+    Parameters
+    ----------
+    data : pandas.DataFrame
+        DataFrame holding counts of population groups
+    groups : list of strings.
+        The variables names in data of the groups of interest of the analysis.
+
+    Returns
+    -------
+    statistic : float
+        Multigroup Dissimilarity Index
+    core_data : pandas.DataFrame
+        DataFrame that contains the columns used to perform the estimate.
+
+    Notes
+    -----
+    Based on Sakoda, James M. "A generalized index of dissimilarity." Demography 18.2 (1981): 245-250.
+
+    Reference: :cite:`sakoda1981generalized`.
+
+    """
+    core_data = data[groups]
+    df = np.array(core_data)
+
+    n = df.shape[0]
+    K = df.shape[1]
+
+    T = df.sum()
+
+    ti = df.sum(axis=1)
+    pik = df / ti[:, None]
+    pik = np.nan_to_num(pik)  # Replace NaN from zerodivision when unit has no population
+    Pk = df.sum(axis=0) / df.sum()
+
+    Is = (Pk * (1 - Pk)).sum()
+
+    multi_D = (
+        1
+        / (2 * T * Is)
+        * np.multiply(abs(pik - Pk), np.repeat(ti, K, axis=0).reshape(n, K)).sum()
+    )
+    if isinstance(data, GeoDataFrame):
+        core_data = data[[data.geometry.name]].join(core_data)
+    return multi_D, core_data, groups
+
+
+
+[docs] +class MultiDissim(MultiGroupIndex, SpatialImplicitIndex): + """Dissimilarity Index. + + Parameters + ---------- + data : pandas.DataFrame or geopandas.GeoDataFrame, required + dataframe or geodataframe if spatial index holding data for location of interest + groups : list, required + list of columns on dataframe holding population totals for each group + w : libpysal.weights.KernelW, optional + lipysal spatial kernel weights object used to define an egohood + network : pandana.Network + pandana Network object representing the study area + distance : int + Maximum distance (in units of geodataframe CRS) to consider the extent of the egohood + decay : str + type of decay function to apply. Options include + precompute : bool + Whether to precompute the pandana Network object + + Attributes + ---------- + statistic : float + Multigroup Dissimilarity Index value + core_data : a pandas DataFrame + DataFrame that contains the columns used to perform the estimate. + """ + +
+[docs] + def __init__( + self, + data, + groups, + w=None, + network=None, + distance=None, + decay=None, + precompute=None, + function='triangular', + **kwargs + ): + """Init.""" + + MultiGroupIndex.__init__(self, data, groups) + if any([w, network, distance]): + SpatialImplicitIndex.__init__(self, w, network, distance, decay, function, precompute) + aux = _multi_dissim(self.data, self.groups) + + self.statistic = aux[0] + self.data = aux[1] + self.groups = aux[2] + self._function = _multi_dissim
+
+ +
+ +
+ +
+
+ + + \ No newline at end of file diff --git a/_modules/segregation/multigroup/multi_divergence.html b/_modules/segregation/multigroup/multi_divergence.html new file mode 100644 index 00000000..1429e06f --- /dev/null +++ b/_modules/segregation/multigroup/multi_divergence.html @@ -0,0 +1,245 @@ + + + + + + + segregation.multigroup.multi_divergence — segregation v2.5.2.dev2+g8090618 Manual + + + + + + + + + + + + + + + + + + + + + + + + +
+
+
+ +

Source code for segregation.multigroup.multi_divergence

+"""Multigroup Divergence index"""
+
+__author__ = "Renan X. Cortes <renanc@ucr.edu>, Sergio J. Rey <sergio.rey@ucr.edu> and Elijah Knaap <elijah.knaap@ucr.edu>"
+
+import numpy as np
+from geopandas import GeoDataFrame
+
+from .._base import MultiGroupIndex, SpatialImplicitIndex
+
+np.seterr(divide="ignore", invalid="ignore")
+
+
+def _multi_divergence(data, groups):
+    """
+    Calculation of Multigroup Divergence index
+
+    Parameters
+    ----------
+
+    data   : a pandas DataFrame
+    
+    groups : list of strings.
+             The variables names in data of the groups of interest of the analysis.
+
+    Returns
+    -------
+
+    statistic : float
+                Multigroup Divergence Index
+                
+    core_data : a pandas DataFrame
+                A pandas DataFrame that contains the columns used to perform the estimate.
+
+    Notes
+    -----
+    Based on Roberto, Elizabeth. "The Divergence Index: A Decomposable Measure of Segregation and Inequality." arXiv preprint arXiv:1508.01167 (2015).
+    
+    Reference: :cite:`roberto2015divergence`.
+
+    """
+
+    core_data = data[groups]
+    df = np.array(core_data)
+
+    T = df.sum()
+
+    ti = df.sum(axis=1)
+    pik = df / ti[:, None]
+    pik = np.nan_to_num(pik)  # Replace NaN from zerodivision when unit has no population
+    Pk = df.sum(axis=0) / df.sum()
+
+    Di = np.nansum(pik * np.log(pik / Pk), axis=1)
+
+    Divergence_Index = ((ti / T) * Di).sum()
+    if isinstance(data, GeoDataFrame):
+        core_data = data[[data.geometry.name]].join(core_data)
+    return Divergence_Index, core_data, groups
+
+
+
+[docs] +class MultiDivergence(MultiGroupIndex, SpatialImplicitIndex): + """Multi Divergence Index. + + Parameters + ---------- + data : pandas.DataFrame or geopandas.GeoDataFrame, required + dataframe or geodataframe if spatial index holding data for location of interest + groups : list, required + list of columns on dataframe holding population totals for each group + w : libpysal.weights.KernelW, optional + lipysal spatial kernel weights object used to define an egohood + network : pandana.Network + pandana Network object representing the study area + distance : int + Maximum distance (in units of geodataframe CRS) to consider the extent of the egohood + decay : str + type of decay function to apply. Options include + precompute : bool + Whether to precompute the pandana Network object + + Attributes + ---------- + statistic : float + Multigroup Dissimilarity Index value + core_data : a pandas DataFrame + DataFrame that contains the columns used to perform the estimate. + """ + +
+[docs] + def __init__( + self, + data, + groups, + w=None, + network=None, + distance=None, + decay=None, + precompute=None, + function='triangular', + **kwargs + ): + """Init.""" + + MultiGroupIndex.__init__(self, data, groups) + if any([w, network, distance]): + SpatialImplicitIndex.__init__(self, w, network, distance, decay, function, precompute) + aux = _multi_divergence(self.data, self.groups) + + self.statistic = aux[0] + self.data = aux[1] + self.groups = aux[2] + self._function = _multi_divergence
+
+ +
+ +
+ +
+
+ + + \ No newline at end of file diff --git a/_modules/segregation/multigroup/multi_diversity.html b/_modules/segregation/multigroup/multi_diversity.html new file mode 100644 index 00000000..4db99c20 --- /dev/null +++ b/_modules/segregation/multigroup/multi_diversity.html @@ -0,0 +1,257 @@ + + + + + + + segregation.multigroup.multi_diversity — segregation v2.5.2.dev2+g8090618 Manual + + + + + + + + + + + + + + + + + + + + + + + + +
+
+
+ +

Source code for segregation.multigroup.multi_diversity

+"""Multigroup Diversity index"""
+
+__author__ = "Renan X. Cortes <renanc@ucr.edu>, Sergio J. Rey <sergio.rey@ucr.edu> and Elijah Knaap <elijah.knaap@ucr.edu>"
+
+import numpy as np
+from geopandas import GeoDataFrame
+
+from .._base import MultiGroupIndex, SpatialImplicitIndex
+
+np.seterr(divide="ignore", invalid="ignore")
+
+
+def _multi_diversity(data, groups, normalized=False):
+    """Calculate of Multigroup Diveristy Index
+
+    Parameters
+    ----------
+    data   : a pandas DataFrame
+    groups : list of strings.
+             The variables names in data of the groups of interest of the analysis.
+
+    Returns
+    -------
+
+    statistic  : float
+                 Multigroup Diversity Index
+    core_data  : a pandas DataFrame
+                 A pandas DataFrame that contains the columns used to perform the estimate.
+    normalized : bool. Default is False.
+                 Wheter the resulting index will be divided by its maximum (natural log of the number of groups)
+
+    Notes
+    -----
+    Based on Reardon, Sean F., and Glenn Firebaugh. "Measures of multigroup segregation." Sociological methodology 32.1 (2002): 33-67 and Theil, Henry. "Statistical decomposition analysis; with applications in the social and administrative sciences". No. 04; HA33, T4.. 1972.
+
+    This is also know as Theil's Entropy Index (Equation 2 of page 37 of Reardon, Sean F., and Glenn Firebaugh. "Measures of multigroup segregation." Sociological methodology 32.1 (2002): 33-67)
+
+    High diversity means less segregation.
+
+    Reference: :cite:`reardon2002measures`.
+
+    """
+
+    core_data = data[groups]
+    df = np.array(core_data)
+
+    Pk = df.sum(axis=0) / df.sum()
+
+    E = -(Pk * np.log(Pk)).sum()
+
+    if normalized:
+        K = df.shape[1]
+        E = E / np.log(K)
+    if isinstance(data, GeoDataFrame):
+        core_data = data[[data.geometry.name]].join(core_data)
+    return E, core_data, groups
+
+
+
+[docs] +class MultiDiversity(MultiGroupIndex, SpatialImplicitIndex): + """Multigroup Diversity Index. + + Parameters + ---------- + data : pandas.DataFrame or geopandas.GeoDataFrame, required + dataframe or geodataframe if spatial index holding data for location of interest + groups : list, required + list of columns on dataframe holding population totals for each group + w : libpysal.weights.KernelW, optional + lipysal spatial kernel weights object used to define an egohood + network : pandana.Network + pandana Network object representing the study area + distance : int + Maximum distance (in units of geodataframe CRS) to consider the extent of the egohood + decay : str + type of decay function to apply. Options include + precompute : bool + Whether to precompute the pandana Network object + normalized : bool. Default is False. + Whether the resulting index will be divided by its maximum (natural log of the number of groups) + + Attributes + ---------- + statistic : float + Multigroup Dissimilarity Index value + core_data : a pandas DataFrame + DataFrame that contains the columns used to perform the estimate. + + Notes + ----- + Based on Reardon, Sean F., and Glenn Firebaugh. "Measures of multigroup segregation." Sociological methodology 32.1 (2002): 33-67 and Theil, Henry. "Statistical decomposition analysis; with applications in the social and administrative sciences". No. 04; HA33, T4.. 1972. + + This is also know as Theil's Entropy Index (Equation 2 of page 37 of Reardon, Sean F., and Glenn Firebaugh. "Measures of multigroup segregation." Sociological methodology 32.1 (2002): 33-67) + + High diversity means less segregation. + + Reference: :cite:`reardon2002measures`. + """ + +
+[docs] + def __init__( + self, + data, + groups, + w=None, + normalized=False, + network=None, + distance=None, + decay=None, + precompute=None, + function='triangular', + **kwargs + ): + """Init.""" + MultiGroupIndex.__init__(self, data, groups) + self.normalized = normalized + if any([w, network, distance]): + SpatialImplicitIndex.__init__(self, w, network, distance, decay, function, precompute) + aux = _multi_diversity(self.data, self.groups, normalized=self.normalized) + + self.statistic = aux[0] + self.data = aux[1] + self.groups = aux[2] + self._function = _multi_diversity
+
+ +
+ +
+ +
+
+ + + \ No newline at end of file diff --git a/_modules/segregation/multigroup/multi_gini.html b/_modules/segregation/multigroup/multi_gini.html new file mode 100644 index 00000000..2c3d1b54 --- /dev/null +++ b/_modules/segregation/multigroup/multi_gini.html @@ -0,0 +1,248 @@ + + + + + + + segregation.multigroup.multi_gini — segregation v2.5.2.dev2+g8090618 Manual + + + + + + + + + + + + + + + + + + + + + + + + +
+
+
+ +

Source code for segregation.multigroup.multi_gini

+"""Multigroup Gini index"""
+
+__author__ = "Renan X. Cortes <renanc@ucr.edu>, Sergio J. Rey <sergio.rey@ucr.edu> and Elijah Knaap <elijah.knaap@ucr.edu>"
+
+import numpy as np
+from sklearn.metrics.pairwise import manhattan_distances
+from geopandas import GeoDataFrame
+
+from .._base import MultiGroupIndex, SpatialImplicitIndex
+
+np.seterr(divide="ignore", invalid="ignore")
+
+
+def _multi_gini_seg(data, groups):
+    """Calculate Multigroup Gini Segregation index.
+
+    Parameters
+    ----------
+    data   : a pandas DataFrame
+        dataframe holding group data
+    groups : list of strings.
+        The variables names in data of the groups of interest of the analysis.
+
+    Returns
+    -------
+    statistic : float
+        Multigroup Gini Segregation Index
+    core_data : a pandas DataFrame
+        A pandas DataFrame that contains the columns used to perform the estimate.
+
+    Notes
+    -----
+    Based on Reardon, Sean F., and Glenn Firebaugh. "Measures of multigroup segregation." Sociological methodology 32.1 (2002): 33-67.
+
+    Reference: :cite:`reardon2002measures`.
+
+    """
+    core_data = data[groups]
+    df = np.array(core_data)
+
+    K = df.shape[1]
+
+    T = df.sum()
+
+    ti = df.sum(axis=1)
+    pik = df / ti[:, None]
+    pik = np.nan_to_num(pik)  # Replace NaN from zerodivision when unit has no population
+    Pk = df.sum(axis=0) / df.sum()
+    Is = (Pk * (1 - Pk)).sum()
+
+    elements_sum = np.empty(K)
+    for k in range(K):
+        aux = np.multiply(
+            np.outer(ti, ti), manhattan_distances(pik[:, k].reshape(-1, 1))
+        ).sum()
+        elements_sum[k] = aux
+
+    multi_Gini_Seg = elements_sum.sum() / (2 * (T ** 2) * Is)
+    if isinstance(data, GeoDataFrame):
+        core_data = data[[data.geometry.name]].join(core_data)
+    return multi_Gini_Seg, core_data, groups
+
+
+
+[docs] +class MultiGini(MultiGroupIndex, SpatialImplicitIndex): + """Multigroup Gini Index. + + Parameters + ---------- + data : pandas.DataFrame or geopandas.GeoDataFrame, required + dataframe or geodataframe if spatial index holding data for location of interest + groups : list, required + list of columns on dataframe holding population totals for each group + w : libpysal.weights.KernelW, optional + lipysal spatial kernel weights object used to define an egohood + network : pandana.Network + pandana Network object representing the study area + distance : int + Maximum distance (in units of geodataframe CRS) to consider the extent of the egohood + decay : str + type of decay function to apply. Options include + precompute : bool + Whether to precompute the pandana Network object + + Attributes + ---------- + statistic : float + Multigroup Dissimilarity Index value + core_data : a pandas DataFrame + DataFrame that contains the columns used to perform the estimate. + """ + +
+[docs] + def __init__( + self, + data, + groups, + w=None, + network=None, + distance=None, + decay='linear', + function='triangular', + precompute=False, + **kwargs + ): + """Init.""" + MultiGroupIndex.__init__(self, data, groups) + if any([w, network, distance]): + SpatialImplicitIndex.__init__(self, w, network, distance, decay, function, precompute) + aux = _multi_gini_seg(self.data, self.groups) + + self.statistic = aux[0] + self.data = aux[1] + self.groups = aux[2] + self._function = _multi_gini_seg
+
+ +
+ +
+ +
+
+ + + \ No newline at end of file diff --git a/_modules/segregation/multigroup/multi_global_distortion.html b/_modules/segregation/multigroup/multi_global_distortion.html new file mode 100644 index 00000000..1b527330 --- /dev/null +++ b/_modules/segregation/multigroup/multi_global_distortion.html @@ -0,0 +1,277 @@ + + + + + + + segregation.multigroup.multi_global_distortion — segregation v2.5.2.dev2+g8090618 Manual + + + + + + + + + + + + + + + + + + + + + + + + +
+
+
+ +

Source code for segregation.multigroup.multi_global_distortion

+import geopandas as gpd
+
+from .._base import MultiGroupIndex, SpatialExplicitIndex
+from ..dynamics import compute_divergence_profiles
+
+
+def _global_distortion(
+    gdf, groups, network=None, metric="euclidean", distance_matrix=None, normalize=False
+):
+    """
+    A segregation metric, using Kullback-Leiber (KL) divergence to quantify the
+    difference in the population characteristics between (1) an area and (2) the total population.
+
+    This function utilises the methodology proposed in
+    Olteanu et al. (2019): 'Segregation through the multiscalar lens'. Which can be
+    found here: https://doi.org/10.1073/pnas.1900192116
+
+    Arguments
+    ----------
+    gdf : geopandas.GeoDataFrame
+        geodataframe with group population counts (not percentages) to be included in the analysis.
+    groups : list
+        list of columns on gdf that contain population counts of interest
+    metric : str (optional; 'euclidean' by default)
+        Distance metric for calculating pairwise distances,
+        Accepts any inputs to `scipy.spatial.distance.pdist`.
+        Ignored if passing a network or distance matrix
+    network: pandana.Network object (optional)
+        A pandana Network object used to compute distance between observations
+    distance_matrix: numpy.array
+        numpy array of distances between observations in the dataset
+    normalization:
+        NOT YET IMPLEMENTED
+
+
+    Returns
+    ----------
+    gdf: geopands.GeoDataFrame
+        a geodataframe of input data used to compute the statistic
+    statistic : float
+        the global distortion index
+
+    """
+    # Store the observation index to return with the results
+    geoms = gdf[gdf.geometry.name]
+    df = gdf[groups].values
+
+    total_pop = df.sum().sum()
+
+    aux = compute_divergence_profiles(
+        gdf=gdf,
+        groups=groups,
+        network=network,
+        metric=metric,
+        distance_matrix=distance_matrix,
+    )
+
+    #  this yeilds distortion coefficients
+    aux = aux.groupby("observation").sum()[["divergence"]]
+
+    if normalize:
+        raise Exception("Not yet implemented")
+        # Need to write a routine to determine the scaling factor... From the paper:
+
+        # the maximum distortion coefficient in a theoretical extreme case of segregation.
+        # Theoretically, the maximal-segregation distortion coefficient is achieved when sorting
+        # the k groups into k ghettos, ordered by sizes, and then computing the coefficient for
+        # the most isolated person in the smallest group
+
+    # the global multiplies the population at each location by the distortion coefficient they experience
+    aux["coefs"] = aux["divergence"] * df.sum(axis=1)
+    stat = (1 / total_pop) * aux["coefs"].sum()
+
+    out = gpd.GeoDataFrame(gdf, columns=groups, geometry=geoms, crs=geoms.crs)
+    out["weighted_distortion"] = aux["coefs"]
+
+    return stat, out
+
+
+
+[docs] +class GlobalDistortion(MultiGroupIndex, SpatialExplicitIndex): + """Multigroup Global Distortion Index. + + Parameters + ---------- + data : pandas.DataFrame or geopandas.GeoDataFrame, required + dataframe or geodataframe if spatial index holding data for location of interest + groups : list, required + list of columns on dataframe holding population totals for each group + metric : str (optional; 'euclidean' by default) + Distance metric for calculating pairwise distances, + Accepts any inputs to `scipy.spatial.distance.pdist`. + Ignored if passing a network or distance matrix + network: pandana.Network object (optional, None by default) + A pandana Network object used to compute distance between observations + distance_matrix: numpy.array (optional; None by default) + numpy array of distances between observations in the dataset + normalization: bool + NOT YET IMPLEMENTED + + Attributes + ---------- + statistics : pandas.Series + KL Divergence coefficients + core_data : a pandas DataFrame + DataFrame that contains the columns used to perform the estimate. + + Notes + ----- + Based on BΓ©zenac, C., Clark, W. A. V., Olteanu, M., & Randon‐Furling, J. (2022). Measuring and Visualizing Patterns + of Ethnic Concentration: The Role of Distortion Coefficients. Geographical Analysis, 54(1), 173–196. + https://doi.org/10.1111/gean.12271 + + Reference: :cite:`debezenac2021`. + """ + +
+[docs] + def __init__( + self, + data, + groups=None, + metric="euclidean", + network=None, + distance_matrix=None, + normalize=False, + **kwargs + ): + """Init.""" + + MultiGroupIndex.__init__(self, data, groups) + SpatialExplicitIndex.__init__(self) + + aux = _global_distortion( + self.data, + self.groups, + network=network, + metric=metric, + normalize=normalize, + distance_matrix=distance_matrix, + ) + + self.statistic = aux[0] + self.data = aux[1] + self._function = _global_distortion
+
+ +
+ +
+ +
+
+ + + \ No newline at end of file diff --git a/_modules/segregation/multigroup/multi_info_theory.html b/_modules/segregation/multigroup/multi_info_theory.html new file mode 100644 index 00000000..50fe0b25 --- /dev/null +++ b/_modules/segregation/multigroup/multi_info_theory.html @@ -0,0 +1,250 @@ + + + + + + + segregation.multigroup.multi_info_theory — segregation v2.5.2.dev2+g8090618 Manual + + + + + + + + + + + + + + + + + + + + + + + + +
+
+
+ +

Source code for segregation.multigroup.multi_info_theory

+"""Multigroup Information index"""
+
+__author__ = "Renan X. Cortes <renanc@ucr.edu>, Sergio J. Rey <sergio.rey@ucr.edu> and Elijah Knaap <elijah.knaap@ucr.edu>"
+
+import numpy as np
+from geopandas import GeoDataFrame
+
+from .._base import MultiGroupIndex, SpatialImplicitIndex
+
+np.seterr(divide="ignore", invalid="ignore")
+
+
+def _multi_information_theory(data, groups):
+    """Calculate Multigroup Information Theory index.
+
+    Parameters
+    ----------
+
+    data   : a pandas DataFrame
+
+    groups : list of strings.
+             The variables names in data of the groups of interest of the analysis.
+
+    Returns
+    -------
+
+    statistic : float
+                Multigroup Information Theory Index
+
+    core_data : a pandas DataFrame
+                A pandas DataFrame that contains the columns used to perform the estimate.
+
+    Notes
+    -----
+    Based on Reardon, Sean F., and Glenn Firebaugh. "Measures of multigroup segregation." Sociological methodology 32.1 (2002): 33-67.
+
+    Reference: :cite:`reardon2002measures`.
+
+    """
+    data = data.copy()
+    core_data = data[groups]
+    df = np.array(core_data)
+
+    T = df.sum()
+
+    ti = df.sum(axis=1)
+    pik = df / ti[:, None]
+    Pk = df.sum(axis=0) / df.sum()
+
+    # The natural logarithm is used, but this could be used with any base following Footnote 3 of pg. 37
+    # of Reardon, Sean F., and Glenn Firebaugh. "Measures of multigroup segregation." Sociological methodology 32.1 (2002): 33-67.
+    E = (Pk * np.log(1 / Pk)).sum()
+
+    MIT = np.nansum(ti[:, None] * pik * np.log(pik / Pk)) / (T * E)
+    if isinstance(data, GeoDataFrame):
+        core_data = data[[data.geometry.name]].join(core_data)
+    return MIT, core_data, groups
+
+
+
+[docs] +class MultiInfoTheory(MultiGroupIndex, SpatialImplicitIndex): + """Multigroup Information Theory Index. + + Parameters + ---------- + data : pandas.DataFrame or geopandas.GeoDataFrame, required + dataframe or geodataframe if spatial index holding data for location of interest + groups : list, required + list of columns on dataframe holding population totals for each group + w : libpysal.weights.KernelW, optional + lipysal spatial kernel weights object used to define an egohood + network : pandana.Network + pandana Network object representing the study area + distance : int + Maximum distance (in units of geodataframe CRS) to consider the extent of the egohood + decay : str + type of decay function to apply. Options include + precompute : bool + Whether to precompute the pandana Network object + + Attributes + ---------- + statistic : float + Multigroup Dissimilarity Index value + core_data : a pandas DataFrame + DataFrame that contains the columns used to perform the estimate. + + Notes + ----- + Based on Reardon, Sean F., and Glenn Firebaugh. "Measures of multigroup segregation." Sociological methodology 32.1 (2002): 33-67. + + Reference: :cite:`reardon2002measures`. + """ + +
+[docs] + def __init__( + self, + data, + groups, + w=None, + network=None, + distance=None, + decay='linear', + function='triangular', + precompute=False, + **kwargs + ): + """Init.""" + MultiGroupIndex.__init__(self, data, groups) + if any([w, network, distance]): + SpatialImplicitIndex.__init__(self, w, network, distance, decay, function, precompute) + aux = _multi_information_theory(self.data, self.groups) + + self.statistic = aux[0] + self.data = aux[1] + self.groups = aux[2] + self._function = _multi_information_theory
+
+ +
+ +
+ +
+
+ + + \ No newline at end of file diff --git a/_modules/segregation/multigroup/multi_norm_exposure.html b/_modules/segregation/multigroup/multi_norm_exposure.html new file mode 100644 index 00000000..a81cdcda --- /dev/null +++ b/_modules/segregation/multigroup/multi_norm_exposure.html @@ -0,0 +1,248 @@ + + + + + + + segregation.multigroup.multi_norm_exposure — segregation v2.5.2.dev2+g8090618 Manual + + + + + + + + + + + + + + + + + + + + + + + + +
+
+
+ +

Source code for segregation.multigroup.multi_norm_exposure

+"""Multigroup Normalized Exposure index"""
+
+__author__ = "Renan X. Cortes <renanc@ucr.edu>, Sergio J. Rey <sergio.rey@ucr.edu> and Elijah Knaap <elijah.knaap@ucr.edu>"
+
+import numpy as np
+from geopandas import GeoDataFrame
+
+from .._base import MultiGroupIndex, SpatialImplicitIndex
+
+np.seterr(divide="ignore", invalid="ignore")
+
+
+def _multi_normalized_exposure(data, groups):
+    """
+    Calculation of Multigroup Normalized Exposure index
+
+    Parameters
+    ----------
+
+    data   : a pandas DataFrame
+
+    groups : list of strings.
+             The variables names in data of the groups of interest of the analysis.
+
+    Returns
+    -------
+
+    statistic : float
+                Multigroup Normalized Exposure Index
+
+    core_data : a pandas DataFrame
+                A pandas DataFrame that contains the columns used to perform the estimate.
+
+    Notes
+    -----
+    Based on Reardon, Sean F., and Glenn Firebaugh. "Measures of multigroup segregation." Sociological methodology 32.1 (2002): 33-67.
+
+    Reference: :cite:`reardon2002measures`.
+
+    """
+
+    core_data = data[groups]
+    df = np.array(core_data)
+
+    T = df.sum()
+
+    ti = df.sum(axis=1)
+    pik = df / ti[:, None]
+    pik = np.nan_to_num(pik)  # Replace NaN from zerodivision when unit has no population
+    Pk = df.sum(axis=0) / df.sum()
+
+    MNE = ((ti[:, None] * (pik - Pk) ** 2) / (1 - Pk)).sum() / T
+    if isinstance(data, GeoDataFrame):
+        core_data = data[[data.geometry.name]].join(core_data)
+    return MNE, core_data, groups
+
+
+
+[docs] +class MultiNormExposure(MultiGroupIndex, SpatialImplicitIndex): + """Multigroup INormalized Exposure Index. + + Parameters + ---------- + data : pandas.DataFrame or geopandas.GeoDataFrame, required + dataframe or geodataframe if spatial index holding data for location of interest + groups : list, required + list of columns on dataframe holding population totals for each group + w : libpysal.weights.KernelW, optional + lipysal spatial kernel weights object used to define an egohood + network : pandana.Network + pandana Network object representing the study area + distance : int + Maximum distance (in units of geodataframe CRS) to consider the extent of the egohood + decay : str + type of decay function to apply. Options include + precompute : bool + Whether to precompute the pandana Network object + + Attributes + ---------- + statistic : float + Multigroup Dissimilarity Index value + core_data : a pandas DataFrame + DataFrame that contains the columns used to perform the estimate. + + Notes + ----- + Based on Reardon, Sean F., and Glenn Firebaugh. "Measures of multigroup segregation." Sociological methodology 32.1 (2002): 33-67. + + Reference: :cite:`reardon2002measures`. + """ + +
+[docs] + def __init__( + self, + data, + groups, + w=None, + network=None, + distance=None, + decay=None, + precompute=None, + function='triangular', + **kwargs + ): + """Init.""" + MultiGroupIndex.__init__(self, data, groups) + if any([w, network, distance]): + SpatialImplicitIndex.__init__(self, w, network, distance, decay, function, precompute) + aux = _multi_normalized_exposure(self.data, self.groups) + + self.statistic = aux[0] + self.data = aux[1] + self.groups = aux[2] + self._function = _multi_normalized_exposure
+
+ +
+ +
+ +
+
+ + + \ No newline at end of file diff --git a/_modules/segregation/multigroup/multi_relative_diversity.html b/_modules/segregation/multigroup/multi_relative_diversity.html new file mode 100644 index 00000000..ae2ba9eb --- /dev/null +++ b/_modules/segregation/multigroup/multi_relative_diversity.html @@ -0,0 +1,251 @@ + + + + + + + segregation.multigroup.multi_relative_diversity — segregation v2.5.2.dev2+g8090618 Manual + + + + + + + + + + + + + + + + + + + + + + + + +
+
+
+ +

Source code for segregation.multigroup.multi_relative_diversity

+"""Multigroup Relative Diversity index"""
+
+__author__ = "Renan X. Cortes <renanc@ucr.edu>, Sergio J. Rey <sergio.rey@ucr.edu> and Elijah Knaap <elijah.knaap@ucr.edu>"
+
+import numpy as np
+from geopandas import GeoDataFrame
+
+from .._base import MultiGroupIndex, SpatialImplicitIndex
+
+np.seterr(divide="ignore", invalid="ignore")
+
+
+def _multi_relative_diversity(data, groups):
+    """
+    Calculation of Multigroup Relative Diversity index
+
+    Parameters
+    ----------
+
+    data   : a pandas DataFrame
+
+    groups : list of strings.
+             The variables names in data of the groups of interest of the analysis.
+
+    Returns
+    -------
+
+    statistic : float
+                Multigroup Relative Diversity Index
+
+    core_data : a pandas DataFrame
+                A pandas DataFrame that contains the columns used to perform the estimate.
+
+    Notes
+    -----
+    Based on Reardon, Sean F. "Measures of racial diversity and segregation in multigroup and hierarchically structured populations." annual meeting of the Eastern Sociological Society, Philadelphia, PA. 1998.
+
+    High diversity means less segregation.
+
+    Reference: :cite:`reardon1998measures`.
+
+    """
+
+    core_data = data[groups]
+    df = np.array(core_data)
+
+    T = df.sum()
+
+    ti = df.sum(axis=1)
+    pik = df / ti[:, None]
+    pik = np.nan_to_num(pik)  # Replace NaN from zerodivision when unit has no population
+    Pk = df.sum(axis=0) / df.sum()
+    Is = (Pk * (1 - Pk)).sum()
+
+    MRD = (ti[:, None] * (pik - Pk) ** 2).sum() / (T * Is)
+    if isinstance(data, GeoDataFrame):
+        core_data = data[[data.geometry.name]].join(core_data)
+    return MRD, core_data, groups
+
+
+
+[docs] +class MultiRelativeDiversity(MultiGroupIndex, SpatialImplicitIndex): + """Multigroup Relative Diversity Index. + + Parameters + ---------- + data : pandas.DataFrame or geopandas.GeoDataFrame, required + dataframe or geodataframe if spatial index holding data for location of interest + groups : list, required + list of columns on dataframe holding population totals for each group + w : libpysal.weights.KernelW, optional + lipysal spatial kernel weights object used to define an egohood + network : pandana.Network + pandana Network object representing the study area + distance : int + Maximum distance (in units of geodataframe CRS) to consider the extent of the egohood + decay : str + type of decay function to apply. Options include + precompute : bool + Whether to precompute the pandana Network object + + Attributes + ---------- + statistic : float + Multigroup Dissimilarity Index value + core_data : a pandas DataFrame + DataFrame that contains the columns used to perform the estimate. + + Notes + ----- + Based on Reardon, Sean F., and Glenn Firebaugh. "Measures of multigroup segregation." Sociological methodology 32.1 (2002): 33-67. + + Reference: :cite:`reardon2002measures`. + """ + +
+[docs] + def __init__( + self, + data, + groups, + w=None, + network=None, + distance=None, + decay=None, + precompute=None, + function='triangular', + **kwargs + ): + """Init.""" + MultiGroupIndex.__init__(self, data, groups) + if any([w, network, distance]): + SpatialImplicitIndex.__init__(self, w, network, distance, decay, function, precompute) + aux = _multi_relative_diversity(self.data, self.groups) + + self.statistic = aux[0] + self.data = aux[1] + self.groups = aux[2] + self._function = _multi_relative_diversity
+
+ +
+ +
+ +
+
+ + + \ No newline at end of file diff --git a/_modules/segregation/multigroup/multi_squared_coef_var.html b/_modules/segregation/multigroup/multi_squared_coef_var.html new file mode 100644 index 00000000..36c41891 --- /dev/null +++ b/_modules/segregation/multigroup/multi_squared_coef_var.html @@ -0,0 +1,250 @@ + + + + + + + segregation.multigroup.multi_squared_coef_var — segregation v2.5.2.dev2+g8090618 Manual + + + + + + + + + + + + + + + + + + + + + + + + +
+
+
+ +

Source code for segregation.multigroup.multi_squared_coef_var

+"""Multigroup Squared Coeficient of Variation index."""
+
+__author__ = "Renan X. Cortes <renanc@ucr.edu>, Sergio J. Rey <sergio.rey@ucr.edu> and Elijah Knaap <elijah.knaap@ucr.edu>"
+
+import numpy as np
+from geopandas import GeoDataFrame
+
+from .._base import MultiGroupIndex, SpatialImplicitIndex
+
+np.seterr(divide="ignore", invalid="ignore")
+
+
+def _multi_squared_coefficient_of_variation(data, groups):
+    """
+    Calculation of Multigroup Squared Coefficient of Variation index
+
+    Parameters
+    ----------
+
+    data   : a pandas DataFrame
+
+    groups : list of strings.
+             The variables names in data of the groups of interest of the analysis.
+
+    Returns
+    -------
+
+    statistic : float
+                Multigroup Squared Coefficient of Variation Index
+
+    core_data : a pandas DataFrame
+                A pandas DataFrame that contains the columns used to perform the estimate.
+
+    Notes
+    -----
+    Based on Reardon, Sean F., and Glenn Firebaugh. "Measures of multigroup segregation." Sociological methodology 32.1 (2002): 33-67.
+
+    Reference: :cite:`reardon2002measures`.
+
+    """
+
+    core_data = data[groups]
+    df = np.array(core_data)
+
+    K = df.shape[1]
+
+    T = df.sum()
+
+    ti = df.sum(axis=1)
+    pik = df / ti[:, None]
+    pik = np.nan_to_num(pik)  # Replace NaN from zerodivision when unit has no population
+    Pk = df.sum(axis=0) / df.sum()
+
+    C = ((ti[:, None] * (pik - Pk) ** 2) / (T * (K - 1) * Pk)).sum()
+    if isinstance(data, GeoDataFrame):
+        core_data = data[[data.geometry.name]].join(core_data)
+    return C, core_data, groups
+
+
+
+[docs] +class MultiSquaredCoefVar(MultiGroupIndex, SpatialImplicitIndex): + """Multigroup Squared Coefficient of Variation Index. + + Parameters + ---------- + data : pandas.DataFrame or geopandas.GeoDataFrame, required + dataframe or geodataframe if spatial index holding data for location of interest + groups : list, required + list of columns on dataframe holding population totals for each group + w : libpysal.weights.KernelW, optional + lipysal spatial kernel weights object used to define an egohood + network : pandana.Network + pandana Network object representing the study area + distance : int + Maximum distance (in units of geodataframe CRS) to consider the extent of the egohood + decay : str + type of decay function to apply. Options include + precompute : bool + Whether to precompute the pandana Network object + + Attributes + ---------- + statistic : float + Multigroup Dissimilarity Index value + core_data : a pandas DataFrame + DataFrame that contains the columns used to perform the estimate. + + Notes + ----- + Based on Reardon, Sean F., and Glenn Firebaugh. "Measures of multigroup segregation." Sociological methodology 32.1 (2002): 33-67. + + Reference: :cite:`reardon2002measures`. + """ + +
+[docs] + def __init__( + self, + data, + groups, + w=None, + network=None, + distance=None, + decay=None, + precompute=None, + function='triangular', + **kwargs + ): + """Init.""" + MultiGroupIndex.__init__(self, data, groups) + if any([w, network, distance]): + SpatialImplicitIndex.__init__(self, w, network, distance, decay, function, precompute) + aux = _multi_squared_coefficient_of_variation(self.data, self.groups) + + self.statistic = aux[0] + self.data = aux[1] + self.groups = aux[2] + self._function = _multi_squared_coefficient_of_variation
+
+ +
+ +
+ +
+
+ + + \ No newline at end of file diff --git a/_modules/segregation/multigroup/simpsons_concentration.html b/_modules/segregation/multigroup/simpsons_concentration.html new file mode 100644 index 00000000..ce6c887b --- /dev/null +++ b/_modules/segregation/multigroup/simpsons_concentration.html @@ -0,0 +1,249 @@ + + + + + + + segregation.multigroup.simpsons_concentration — segregation v2.5.2.dev2+g8090618 Manual + + + + + + + + + + + + + + + + + + + + + + + + +
+
+
+ +

Source code for segregation.multigroup.simpsons_concentration

+"""Multigroup Simpson's Concentration index"""
+
+__author__ = "Renan X. Cortes <renanc@ucr.edu>, Sergio J. Rey <sergio.rey@ucr.edu> and Elijah Knaap <elijah.knaap@ucr.edu>"
+
+import numpy as np
+from geopandas import GeoDataFrame
+
+from .._base import MultiGroupIndex, SpatialImplicitIndex
+
+np.seterr(divide="ignore", invalid="ignore")
+
+
+def _simpsons_concentration(data, groups):
+    """
+    Calculation of Simpson's Concentration index
+
+    Parameters
+    ----------
+
+    data   : a pandas DataFrame
+
+    groups : list of strings.
+             The variables names in data of the groups of interest of the analysis.
+
+    Returns
+    -------
+
+    statistic  : float
+                 Simpson's Concentration Index
+
+    core_data  : a pandas DataFrame
+                 A pandas DataFrame that contains the columns used to perform the estimate.
+
+    Notes
+    -----
+    Based on Simpson, Edward H. "Measurement of diversity." nature 163.4148 (1949): 688.
+
+    Simpson's concentration index (Lambda) can be simply interpreted as the probability that two individuals chosen at random and independently from the population will be found to belong to the same group.
+
+    Higher values means higher segregation.
+
+    Simpson's Concentration + Simpson's Interaction = 1
+
+    Reference: :cite:`simpson1949measurement`.
+
+    """
+
+    core_data = data[groups]
+    df = np.array(core_data)
+
+    Pk = df.sum(axis=0) / df.sum()
+
+    Lambda = (Pk * Pk).sum()
+    if isinstance(data, GeoDataFrame):
+        core_data = data[[data.geometry.name]].join(core_data)
+    return Lambda, core_data, groups
+
+
+
+[docs] +class SimpsonsConcentration(MultiGroupIndex, SpatialImplicitIndex): + """Simpsons Concentration Index. + + Parameters + ---------- + data : pandas.DataFrame or geopandas.GeoDataFrame, required + dataframe or geodataframe if spatial index holding data for location of interest + groups : list, required + list of columns on dataframe holding population totals for each group + w : libpysal.weights.KernelW, optional + lipysal spatial kernel weights object used to define an egohood + network : pandana.Network + pandana Network object representing the study area + distance : int + Maximum distance (in units of geodataframe CRS) to consider the extent of the egohood + decay : str + type of decay function to apply. Options include + precompute : bool + Whether to precompute the pandana Network object + + Attributes + ---------- + statistic : float + Multigroup Dissimilarity Index value + core_data : a pandas DataFrame + DataFrame that contains the columns used to perform the estimate. + + Notes + ----- + Based on Reardon, Sean F., and Glenn Firebaugh. "Measures of multigroup segregation." Sociological methodology 32.1 (2002): 33-67. + + Reference: :cite:`reardon2002measures`. + """ + +
+[docs] + def __init__( + self, + data, + groups, + w=None, + network=None, + distance=None, + decay=None, + precompute=None, + function='triangular', + **kwargs + ): + """Init.""" + MultiGroupIndex.__init__(self, data, groups) + if any([w, network, distance]): + SpatialImplicitIndex.__init__(self, w, network, distance, decay, function, precompute) + aux = _simpsons_concentration(self.data, self.groups) + + self.statistic = aux[0] + self.data = aux[1] + self.groups = aux[2] + self._function = _simpsons_concentration
+
+ +
+ +
+ +
+
+ + + \ No newline at end of file diff --git a/_modules/segregation/multigroup/simpsons_interaction.html b/_modules/segregation/multigroup/simpsons_interaction.html new file mode 100644 index 00000000..aa4887bf --- /dev/null +++ b/_modules/segregation/multigroup/simpsons_interaction.html @@ -0,0 +1,256 @@ + + + + + + + segregation.multigroup.simpsons_interaction — segregation v2.5.2.dev2+g8090618 Manual + + + + + + + + + + + + + + + + + + + + + + + + +
+
+
+ +

Source code for segregation.multigroup.simpsons_interaction

+"""Multigroup Simpson's Concentration index"""
+
+__author__ = "Renan X. Cortes <renanc@ucr.edu>, Sergio J. Rey <sergio.rey@ucr.edu> and Elijah Knaap <elijah.knaap@ucr.edu>"
+
+import numpy as np
+from geopandas import GeoDataFrame
+from .._base import MultiGroupIndex, SpatialImplicitIndex
+
+np.seterr(divide="ignore", invalid="ignore")
+
+
+def _simpsons_interaction(data, groups):
+    """
+    Calculation of Simpson's Interaction index
+
+    Parameters
+    ----------
+
+    data   : a pandas DataFrame
+    
+    groups : list of strings.
+             The variables names in data of the groups of interest of the analysis.
+
+    Returns
+    -------
+
+    statistic  : float
+                 Simpson's Interaction Index
+                
+    core_data  : a pandas DataFrame
+                 A pandas DataFrame that contains the columns used to perform the estimate.
+
+    Notes
+    -----
+    Based on Equation 1 of page 37 of Reardon, Sean F., and Glenn Firebaugh. "Measures of multigroup segregation." Sociological methodology 32.1 (2002): 33-67.
+    
+    Simpson's interaction index (I) can be simply interpreted as the probability that two individuals chosen at random and independently from the population will be found to not belong to the same group.
+
+    Higher values means lesser segregation.
+    
+    Simpson's Concentration + Simpson's Interaction = 1
+    
+    Reference: :cite:`reardon2002measures`.
+
+    """
+
+    core_data = data[groups]
+    df = np.array(core_data)
+
+    Pk = df.sum(axis=0) / df.sum()
+
+    I = (Pk * (1 - Pk)).sum()
+    if isinstance(data, GeoDataFrame):
+        core_data = data[[data.geometry.name]].join(core_data)
+    return I, core_data, groups
+
+
+
+[docs] +class SimpsonsInteraction(MultiGroupIndex, SpatialImplicitIndex): + """Simpsons Concentration Index. + + Parameters + ---------- + data : pandas.DataFrame or geopandas.GeoDataFrame, required + dataframe or geodataframe if spatial index holding data for location of interest + groups : list, required + list of columns on dataframe holding population totals for each group + w : libpysal.weights.KernelW, optional + lipysal spatial kernel weights object used to define an egohood + network : pandana.Network + pandana Network object representing the study area + distance : int + Maximum distance (in units of geodataframe CRS) to consider the extent of the egohood + decay : str + type of decay function to apply. Options include + precompute : bool + Whether to precompute the pandana Network object + + Attributes + ---------- + statistic : float + Multigroup Dissimilarity Index value + core_data : a pandas DataFrame + DataFrame that contains the columns used to perform the estimate. + + Notes + ----- + Based on Equation 1 of page 37 of Reardon, Sean F., and Glenn Firebaugh. "Measures of multigroup segregation." Sociological methodology 32.1 (2002): 33-67. + + Simpson's interaction index (I) can be simply interpreted as the probability that two individuals chosen at random and independently from the population will be found to not belong to the same group. + + Higher values means lesser segregation. + + Simpson's Concentration + Simpson's Interaction = 1 + + Reference: :cite:`reardon2002measures`. + """ + +
+[docs] + def __init__( + self, + data, + groups, + w=None, + network=None, + distance=None, + decay=None, + precompute=None, + function="triangular", + **kwargs + ): + """Init.""" + MultiGroupIndex.__init__(self, data, groups) + if any([w, network, distance]): + SpatialImplicitIndex.__init__( + self, w, network, distance, decay, function, precompute + ) + aux = _simpsons_interaction(self.data, self.groups) + + self.statistic = aux[0] + self.data = aux[1] + self.groups = aux[2] + self._function = _simpsons_interaction
+
+ +
+ +
+ +
+
+ + + \ No newline at end of file diff --git a/_modules/segregation/network/network.html b/_modules/segregation/network/network.html new file mode 100644 index 00000000..99903253 --- /dev/null +++ b/_modules/segregation/network/network.html @@ -0,0 +1,318 @@ + + + + + + + segregation.network.network — segregation v2.5.2.dev2+g8090618 Manual + + + + + + + + + + + + + + + + + + + + + + + + +
+
+
+ +

Source code for segregation.network.network

+"""Calculate street network-based segregation measures."""
+
+__author__ = "Elijah Knaap <elijah.knaap@ucr.edu> Renan X. Cortes <renanc@ucr.edu> and Sergio J. Rey <sergio.rey@ucr.edu>"
+
+import geopandas as gpd
+import pandas as pd
+from tqdm.auto import tqdm
+
+
+def _reproject_osm_nodes(nodes_df, input_crs, output_crs):
+    #  take original x,y coordinates and convert into geopandas.Series, then reproject
+    nodes = gpd.points_from_xy(x=nodes_df.x, y=nodes_df.y, crs=input_crs).to_crs(
+        output_crs
+    )
+    #  convert to dataframe and recreate the x and y cols
+    nodes = gpd.GeoDataFrame(index=nodes_df.index, geometry=nodes)
+    nodes["x"] = nodes.centroid.x
+    nodes["y"] = nodes.centroid.y
+    return nodes
+
+
+def calc_access(
+    geodataframe,
+    network,
+    distance=2000,
+    decay="linear",
+    variables=None,
+    precompute=True,
+    return_node_data=False,
+):
+    """Calculate access to population groups.
+
+    Parameters
+    ----------
+    geodataframe : geopandas.GeoDataFrame
+        geodataframe with demographic data
+    network : pandana.Network
+        pandana.Network instance. This is likely created with `get_osm_network`
+        or via helper functions from OSMnet or UrbanAccess.
+    distance : int
+        maximum distance to consider `accessible` (the default is 2000).
+    decay : str
+        decay type pandana should use "linear", "exp", or "flat"
+        (which means no decay). The default is "linear".
+    variables : list
+        list of variable names present on gdf that should be calculated
+    precompute: bool (default True)
+        whether pandana should precompute the distance matrix. It can only be
+        precomputed once, so If you plan to pass the same network to this
+        function several times, you should set precompute=False for later runs
+    return_node_data : bool, default is False
+        Whether to return nodel-level accessibility data or to trim output to
+        the same geometries as the input. Default is the latter.
+
+    Returns
+    -------
+    pandas.DataFrame
+        DataFrame with two columns, `total_population` and `group_population`
+        which represent the total number of each group that can be reached
+        within the supplied `distance` parameter. The DataFrame is indexed
+        on node_ids
+
+    """
+    if not decay:
+        raise Exception("You must pass a decay function such as `linear`")
+    if precompute:
+        network.precompute(distance)
+
+    geodataframe["node_ids"] = network.get_node_ids(
+        geodataframe.centroid.x, geodataframe.centroid.y
+    )
+    access = []
+    for variable in variables:
+        network.set(
+            geodataframe.node_ids, variable=geodataframe[variable], name=variable
+        )
+
+        access_pop = network.aggregate(distance, type="sum", decay=decay, name=variable)
+
+        access.append(access_pop)
+    access = pd.DataFrame(dict(zip(variables, access)))
+    if return_node_data:
+        return access.round(0)
+    access = geodataframe[["node_ids", geodataframe.geometry.name]].merge(
+        access, right_index=True, left_on="node_ids", how="left"
+    )
+
+    return access.dropna()
+
+
+
+[docs] +def compute_travel_cost_matrix(origins, destinations, network, reindex_name=None): + """Compute a shortest path matrix from a pandana network + + Parameters + ---------- + origins : geopandas.GeoDataFrame + the set of origin geometries. If polygon input, the function will use their centroids + destinations : geopandas.GeoDataFrame + the set of destination geometries. If polygon input, the function will use their centroids + network : pandana.Network + Initialized pandana Network object holding a travel network for a study region + reindex_name : str, optional + Name of column on the origin/destinatation dataframe that holds unique index values + If none (default), the index of the pandana Network node will be used + + Returns + ------- + pandas.DataFrame + an origin-destination cost matrix. Rows are origin indices, columns are destination indices, + and values are shortest network path cost between the two + """ + origins = origins.copy() + destinations = destinations.copy() + + # Note: these are not necessarily "OSM" ids, they're just the identifiers for each node. + # with an integrated ped/transit network, these could be bus stops... + origins["osm_ids"] = network.get_node_ids(origins.centroid.x, origins.centroid.y) + + destinations["osm_ids"] = network.get_node_ids( + destinations.centroid.x, destinations.centroid.y + ) + + ods = {} + + with tqdm(total=len(origins["osm_ids"])) as pbar: + for origin in origins["osm_ids"]: + ods[f"{origin}"] = network.shortest_path_lengths( + [origin] * len(origins), destinations["osm_ids"] + ) + pbar.update(1) + + if reindex_name: + df = pd.DataFrame(ods, index=origins[reindex_name]) + df.columns = df.index + else: + df = pd.DataFrame(ods, index=origins) + + return df
+ + + +
+[docs] +def project_network(network, output_crs=None, input_crs=4326): + """Reproject a pandana.Network object into another coordinate system + + Parameters + ---------- + network : pandana.Network + an instantiated pandana Network object + input_crs : int, optional + the coordinate system used in the Network.node_df dataframe. Typically + these data are collected in Lon/Lat, so the default 4326 + output_crs : int, str, or pyproj.crs.CRS, required + EPSG code or pyproj.crs.CRS object of the output coordinate system + + Returns + ------- + pandana.Network + an initialized pandana.Network with 'x' and y' values represented + by coordinates in the specified CRS + """ + try: + import pandana as pdna + except ImportError: + raise ImportError( + "You need pandana to work with segregation's network module\n" + "You can install them with `pip install urbanaccess pandana` " + "or `conda install -c udst pandana urbanaccess`" + ) + + assert output_crs, "You must provide an output CRS" + + # take original x,y coordinates and convert into geopandas.Series, then reproject + nodes = _reproject_osm_nodes(network.nodes_df, input_crs, output_crs) + + # reinstantiate the network (needs to rebuild the tree) + net = pdna.Network( + node_x=nodes["x"], + node_y=nodes["y"], + edge_from=network.edges_df["from"], + edge_to=network.edges_df["to"], + edge_weights=network.edges_df[network.impedance_names], + twoway=network._twoway, + ) + return net
+ +
+ +
+ +
+
+ + + \ No newline at end of file diff --git a/_modules/segregation/singlegroup/absolute_centralization.html b/_modules/segregation/singlegroup/absolute_centralization.html new file mode 100644 index 00000000..5849a96e --- /dev/null +++ b/_modules/segregation/singlegroup/absolute_centralization.html @@ -0,0 +1,353 @@ + + + + + + + segregation.singlegroup.absolute_centralization — segregation v2.5.2.dev2+g8090618 Manual + + + + + + + + + + + + + + + + + + + + + + + + +
+
+
+ +

Source code for segregation.singlegroup.absolute_centralization

+"""Absolute Centralization Index."""
+
+__author__ = "Renan X. Cortes <renanc@ucr.edu>, Sergio J. Rey <sergio.rey@ucr.edu> and Elijah Knaap <elijah.knaap@ucr.edu>"
+
+import numpy as np
+from scipy.ndimage import shift
+
+from .._base import SingleGroupIndex, SpatialExplicitIndex
+
+
+def _absolute_centralization(
+    data, group_pop_var, total_pop_var, center="mean", metric="euclidean"
+):
+    """Calculation of Absolute Centralization index.
+
+    Parameters
+    ----------
+    data : a geopandas DataFrame with a geometry column.
+    group_pop_var : string
+        The name of variable in data that contains the population size of the group of interest
+    total_pop_var : string
+        The name of variable in data that contains the total population of the unit
+    center : string, two-dimension values (tuple, list, array) or integer.
+        This defines what is considered to be the center of the spatial context under study.
+        If string, this can be set to:
+
+            "mean": the center longitude/latitude is the mean of longitudes/latitudes of all units.
+            "median": the center longitude/latitude is the median of longitudes/latitudes of all units.
+            "population_weighted_mean": the center longitude/latitude is the mean of longitudes/latitudes of all units weighted by the total population.
+            "largest_population": the center longitude/latitude is the centroid of the unit with largest total population. If there is a tie in the maximum population, the mean of all coordinates will be taken.
+
+        If tuple, list or array, this argument should be the coordinates of the desired center assuming longitude as first value and latitude second value. Therefore, in the form (longitude, latitude), if tuple, or [longitude, latitude] if list or numpy array.
+
+        If integer, the center will be the centroid of the polygon from data corresponding to the integer interpreted as index.
+        For example, if `center = 0` the centroid of the first row of data is used as center, if `center = 1` the second row will be used, and so on.
+    metric : string. Can be 'euclidean' or 'haversine'. Default is 'euclidean'.
+        The metric used for the distance between spatial units.
+        If the projection of the CRS of the geopandas DataFrame field is in degrees, this should be set to 'haversine'.
+
+    Returns
+    ----------
+    statistic     : float
+        Absolute Centralization Index
+    core_data     : a geopandas DataFrame
+        A geopandas DataFrame that contains the columns used to perform the estimate.
+    center_values : list
+        The center, in the form [longitude, latitude], values used for the calculation of the centralization distances.
+
+    Notes
+    -----
+    Based on Massey, Douglas S., and Nancy A. Denton. "The dimensions of residential segregation." Social forces 67.2 (1988): 281-315.
+
+    A discussion of defining the center in this function can be found in https://github.com/pysal/segregation/issues/18.
+
+    Reference: :cite:`massey1988dimensions`.
+    """
+
+    if metric not in ["euclidean", "haversine"]:
+        raise ValueError("metric must one of 'euclidean', 'haversine'")
+
+    x = np.array(data[group_pop_var])
+    t = np.array(data[total_pop_var])
+
+    if any(t < x):
+        raise ValueError(
+            "Group of interest population must equal or lower than the total population of the units."
+        )
+
+    area = np.array(data.area)
+
+    c_lons = np.array(data.centroid.x)
+    c_lats = np.array(data.centroid.y)
+
+    if isinstance(center, str):
+        if center not in [
+            "mean",
+            "median",
+            "population_weighted_mean",
+            "largest_population",
+        ]:
+            raise ValueError(
+                "The center string must one of 'mean', 'median', 'population_weighted_mean', 'largest_population'"
+            )
+
+        if center == "mean":
+            center_lon = c_lons.mean()
+            center_lat = c_lats.mean()
+
+        if center == "median":
+            center_lon = np.median(c_lons)
+            center_lat = np.median(c_lats)
+
+        if center == "population_weighted_mean":
+            center_lon = np.average(c_lons, weights=t)
+            center_lat = np.average(c_lats, weights=t)
+
+        if center == "largest_population":
+            center_lon = c_lons[np.where(t == t.max())].mean()
+            center_lat = c_lats[np.where(t == t.max())].mean()
+
+    if (
+        isinstance(center, tuple)
+        or isinstance(center, list)
+        or isinstance(center, np.ndarray)
+    ):
+        if np.array(center).shape != (2,):
+            raise ValueError("The center tuple/list/array must have length 2.")
+
+        center_lon = center[0]
+        center_lat = center[1]
+
+    if isinstance(center, int):
+        if (center > len(data) - 1) or (center < 0):
+            raise ValueError("The center index must by in the range of data.")
+
+        center_lon = data.iloc[[center]].centroid.x.values[0]
+        center_lat = data.iloc[[center]].centroid.y.values[0]
+
+    X = x.sum()
+    A = area.sum()
+
+    dlon = c_lons - center_lon
+    dlat = c_lats - center_lat
+
+    if metric == "euclidean":
+        center_dist = np.sqrt((dlon) ** 2 + (dlat) ** 2)
+
+    if metric == "haversine":
+        center_dist = 2 * np.arcsin(
+            np.sqrt(
+                np.sin(dlat / 2) ** 2
+                + np.cos(center_lat) * np.cos(c_lats) * np.sin(dlon / 2) ** 2
+            )
+        )
+
+    if np.isnan(center_dist).sum() > 0:
+        raise ValueError(
+            "It not possible to determine the center distance for, at least, one unit. This is probably due to the magnitude of the number of the centroids. We recommend to reproject the geopandas DataFrame."
+        )
+
+    asc_ind = center_dist.argsort()
+
+    Xi = np.cumsum(x[asc_ind]) / X
+    Ai = np.cumsum(area[asc_ind]) / A
+
+    ACE = np.nansum(shift(Xi, 1, cval=np.nan) * Ai) - np.nansum(
+        Xi * shift(Ai, 1, cval=np.nan)
+    )
+
+    core_data = data[[group_pop_var, total_pop_var, data.geometry.name]]
+
+    center_values = [center_lon, center_lat]
+
+    return ACE, core_data, center_values
+
+
+
+[docs] +class AbsoluteCentralization(SingleGroupIndex, SpatialExplicitIndex): + """Absolute Centralization Index. + + Parameters + ---------- + data : pandas.DataFrame or geopandas.GeoDataFrame, required + dataframe or geodataframe if spatial index holding data for location of interest + group_pop_var : str, required + name of column on dataframe holding population totals for focal group + total_pop_var : str, required + name of column on dataframe holding total overall population + center : string, two-dimension values (tuple, list, array) or integer. + This defines what is considered to be the center of the spatial context under study. + If string, this can be set to: + + "mean": the center longitude/latitude is the mean of longitudes/latitudes of all units. + "median": the center longitude/latitude is the median of longitudes/latitudes of all units. + "population_weighted_mean": the center longitude/latitude is the mean of longitudes/latitudes of all units weighted by the total population. + "largest_population": the center longitude/latitude is the centroid of the unit with largest total population. If there is a tie in the maximum population, the mean of all coordinates will be taken. + metric : str + The metric used for the distance between spatial units. + If the projection of the CRS of the geopandas DataFrame field is in degrees, this should be set to 'haversine'. + + + Attributes + ---------- + statistic : float + AbsoluteCentralization Index + core_data : a pandas DataFrame + A pandas DataFrame that contains the columns used to perform the estimate. + + Notes + ----- + Based on Massey, Douglas S., and Nancy A. Denton. "The dimensions of residential segregation." Social forces 67.2 (1988): 281-315. + + A discussion of defining the center in this function can be found in https://github.com/pysal/segregation/issues/18. + + Reference: :cite:`massey1988dimensions`. + """ + +
+[docs] + def __init__( + self, + data, + group_pop_var, + total_pop_var, + center="mean", + metric="euclidean", + **kwargs, + ): + """Init.""" + SingleGroupIndex.__init__(self, data, group_pop_var, total_pop_var) + SpatialExplicitIndex.__init__(self,) + self.center = center + self.metric = metric + aux = _absolute_centralization( + self.data, self.group_pop_var, self.total_pop_var, self.center, self.metric, + ) + + self.statistic = aux[0] + self.core_data = aux[1] + self.center_values = aux[2] + self._function = _absolute_centralization
+
+ +
+ +
+ +
+
+ + + \ No newline at end of file diff --git a/_modules/segregation/singlegroup/absolute_clustering.html b/_modules/segregation/singlegroup/absolute_clustering.html new file mode 100644 index 00000000..b4aabd44 --- /dev/null +++ b/_modules/segregation/singlegroup/absolute_clustering.html @@ -0,0 +1,257 @@ + + + + + + + segregation.singlegroup.absolute_clustering — segregation v2.5.2.dev2+g8090618 Manual + + + + + + + + + + + + + + + + + + + + + + + + +
+
+
+ +

Source code for segregation.singlegroup.absolute_clustering

+"""Absolute Clustering Index."""
+
+__author__ = "Renan X. Cortes <renanc@ucr.edu>, Sergio J. Rey <sergio.rey@ucr.edu> and Elijah Knaap <elijah.knaap@ucr.edu>"
+
+import numpy as np
+import pandas as pd
+from ..util import generate_distance_matrix
+from .._base import SingleGroupIndex, SpatialExplicitIndex
+
+
+def _absolute_clustering(data, group_pop_var, total_pop_var, alpha=0.6, beta=0.5):
+    """Calculation of Absolute Clustering index
+
+    Parameters
+    ----------
+    data : geopandas.GeoDataFrame
+        a GeoDataFrame with a geometry column
+    group_pop_var : string
+        The name of variable in data that contains the population size of the
+        group of interest
+    total_pop_var : string
+        The name of variable in data that contains the total population of the
+        unit
+    alpha : float
+        A parameter that estimates the extent of the proximity within the same
+        unit. Default value is 0.6
+    beta : float
+        A parameter that estimates the extent of the proximity within the same
+        unit. Default value is 0.5
+
+    Returns
+    ----------
+    statistic : float
+        Absolute Clustering Index
+    core_data : a geopandas DataFrame
+        A geopandas DataFrame that contains the columns used to perform the estimate.
+
+    Notes
+    -----
+    Based on Massey, Douglas S., and Nancy A. Denton. "The dimensions of residential segregation." Social forces 67.2 (1988): 281-315.
+
+    The pairwise distance between unit i and itself is (alpha * area_of_unit_i) ^ beta.
+
+    Reference: :cite:`massey1988dimensions`.
+
+    """
+    if alpha < 0:
+        raise ValueError("alpha must be greater than zero.")
+
+    if beta < 0:
+        raise ValueError("beta must be greater than zero.")
+
+    X = data[group_pop_var].values.sum()
+
+    x = data[group_pop_var].values
+    t = data[total_pop_var].values
+    n = len(data)
+
+    dist = generate_distance_matrix(data)
+    np.fill_diagonal(dist, val=np.exp(-((alpha * data.area.values) ** (beta))))
+
+    c = 1 - dist.copy()  # proximity matrix
+    ACL = ((((x / X) * (c * x).sum(axis=1)).sum()) - ((X / n ** 2) * c.sum())) / (
+        (((x / X) * (c * t).sum(axis=1)).sum()) - ((X / n ** 2) * c.sum())
+    )
+
+    core_data = data[[group_pop_var, total_pop_var, data.geometry.name]]
+
+    return ACL, core_data
+
+
+
+[docs] +class AbsoluteClustering(SingleGroupIndex, SpatialExplicitIndex): + """Absolute Clustering Index. + + Parameters + ---------- + data : pandas.DataFrame or geopandas.GeoDataFrame, required + dataframe or geodataframe if spatial index holding data for location of + interest + group_pop_var : str, required + name of column on dataframe holding population totals for focal group + total_pop_var : str, required + name of column on dataframe holding total overall population + alpha : float + A parameter that estimates the extent of the proximity within the same unit. + Default value is 0.6 + beta : float + A parameter that estimates the extent of the proximity within the same unit. + Default value is 0.5 + + + Attributes + ---------- + statistic : float + AbsolutecClustering Index + core_data : a pandas DataFrame + A pandas DataFrame that contains the columns used to perform the estimate. + + Notes + ----- + Based on Massey, Douglas S., and Nancy A. Denton. "The dimensions of residential segregation." Social forces 67.2 (1988): 281-315. + + The pairwise distance between unit i and itself is (alpha * area_of_unit_i) ^ beta. + + Reference: :cite:`massey1988dimensions`. + """ + +
+[docs] + def __init__( + self, data, group_pop_var, total_pop_var, alpha=0.6, beta=0.5, **kwargs, + ): + """Init.""" + SingleGroupIndex.__init__(self, data, group_pop_var, total_pop_var) + SpatialExplicitIndex.__init__(self,) + self.alpha = alpha + self.beta = beta + aux = _absolute_clustering( + self.data, self.group_pop_var, self.total_pop_var, self.alpha, self.beta, + ) + + self.statistic = aux[0] + self.core_data = aux[1] + self._function = _absolute_clustering
+
+ +
+ +
+ +
+
+ + + \ No newline at end of file diff --git a/_modules/segregation/singlegroup/absolute_concentration.html b/_modules/segregation/singlegroup/absolute_concentration.html new file mode 100644 index 00000000..b1bd00e4 --- /dev/null +++ b/_modules/segregation/singlegroup/absolute_concentration.html @@ -0,0 +1,256 @@ + + + + + + + segregation.singlegroup.absolute_concentration — segregation v2.5.2.dev2+g8090618 Manual + + + + + + + + + + + + + + + + + + + + + + + + +
+
+
+ +

Source code for segregation.singlegroup.absolute_concentration

+"""Absolute Concentration Index."""
+
+__author__ = "Renan X. Cortes <renanc@ucr.edu>, Sergio J. Rey <sergio.rey@ucr.edu> and Elijah Knaap <elijah.knaap@ucr.edu>"
+
+import numpy as np
+import pandas as pd
+
+from .._base import SingleGroupIndex, SpatialExplicitIndex
+
+
+def _absolute_concentration(data, group_pop_var, total_pop_var):
+    """Calculation of Absolute Concentration index.
+
+    Parameters
+    ----------
+    data          : a geopandas DataFrame with a geometry column.
+
+    group_pop_var : string
+                    The name of variable in data that contains the population size of the group of interest
+
+    total_pop_var : string
+                    The name of variable in data that contains the total population of the unit
+
+    Returns
+    ----------
+    statistic : float
+                Absolute Concentration Index
+
+    core_data : a geopandas DataFrame
+                A geopandas DataFrame that contains the columns used to perform the estimate.
+
+    Notes
+    -----
+    Based on Massey, Douglas S., and Nancy A. Denton. "The dimensions of residential segregation." Social forces 67.2 (1988): 281-315.
+
+    Reference: :cite:`massey1988dimensions`.
+
+    """
+    x = np.array(data[group_pop_var])
+    t = np.array(data[total_pop_var])
+
+    if any(t < x):
+        raise ValueError(
+            "Group of interest population must equal or lower than the total population of the units."
+        )
+
+    area = np.array(data.area)
+
+    X = x.sum()
+    T = t.sum()
+
+    # Create the indexes according to the area ordering
+    des_ind = (-area).argsort()
+    asc_ind = area.argsort()
+
+    # A discussion about the extraction of n1 and n2 can be found in https://github.com/pysal/segregation/issues/43
+    n1 = np.where(((np.cumsum(t[asc_ind]) / T) < X / T) == False)[0][0] + 1
+    n2_aux = np.where(((np.cumsum(t[des_ind]) / T) < X / T) == False)[0][0] + 1
+    n2 = len(data) - n2_aux
+
+    n = data.shape[0]
+    T1 = t[asc_ind][0:n1].sum()
+    T2 = t[asc_ind][n2:n].sum()
+
+    ACO = 1 - (
+        (
+            ((x[asc_ind] * area[asc_ind] / X).sum())
+            - ((t[asc_ind] * area[asc_ind] / T1)[0:n1].sum())
+        )
+        / (
+            ((t[asc_ind] * area[asc_ind] / T2)[n2:n].sum())
+            - ((t[asc_ind] * area[asc_ind] / T1)[0:n1].sum())
+        )
+    )
+
+    core_data = data[[group_pop_var, total_pop_var, data.geometry.name]]
+
+    return ACO, core_data
+
+
+
+[docs] +class AbsoluteConcentration(SingleGroupIndex, SpatialExplicitIndex): + """Absolute Concentration Index. + + Parameters + ---------- + data : pandas.DataFrame or geopandas.GeoDataFrame, required + dataframe or geodataframe if spatial index holding data for location of interest + group_pop_var : str, required + name of column on dataframe holding population totals for focal group + total_pop_var : str, required + name of column on dataframe holding total overall population + + Attributes + ---------- + statistic : float + AbsoluteConcentration Index + core_data : a pandas DataFrame + A pandas DataFrame that contains the columns used to perform the estimate. + + Notes + ----- + Based on Massey, Douglas S., and Nancy A. Denton. "The dimensions of residential segregation." Social forces 67.2 (1988): 281-315. + + The pairwise distance between unit i and itself is (alpha * area_of_unit_i) ^ beta. + + Reference: :cite:`massey1988dimensions`. + """ + +
+[docs] + def __init__( + self, data, group_pop_var, total_pop_var, **kwargs, + ): + """Init.""" + SingleGroupIndex.__init__(self, data, group_pop_var, total_pop_var) + SpatialExplicitIndex.__init__(self,) + aux = _absolute_concentration( + self.data, self.group_pop_var, self.total_pop_var, + ) + + self.statistic = aux[0] + self.core_data = aux[1] + self._function = _absolute_concentration
+
+ +
+ +
+ +
+
+ + + \ No newline at end of file diff --git a/_modules/segregation/singlegroup/atkinson.html b/_modules/segregation/singlegroup/atkinson.html new file mode 100644 index 00000000..f0e6e739 --- /dev/null +++ b/_modules/segregation/singlegroup/atkinson.html @@ -0,0 +1,260 @@ + + + + + + + segregation.singlegroup.atkinson — segregation v2.5.2.dev2+g8090618 Manual + + + + + + + + + + + + + + + + + + + + + + + + +
+
+
+ +

Source code for segregation.singlegroup.atkinson

+"""
+Atkinson Segregation Index
+"""
+
+__author__ = "Renan X. Cortes <renanc@ucr.edu>, Sergio J. Rey <sergio.rey@ucr.edu> and Elijah Knaap <elijah.knaap@ucr.edu>"
+
+import geopandas as gpd
+import numpy as np
+import pandas as pd
+
+from .._base import SingleGroupIndex, SpatialImplicitIndex
+
+
+def _atkinson(data, group_pop_var, total_pop_var, b=0.5):
+    """Calculation of Atkinson index.
+
+    Parameters
+    ----------
+    data : pandas.DataFrame or geopandas.GeoDataFrame
+        Dataframe or geodataframe if spatial index holding data for location of interest
+    group_pop_var : string
+        Variable containing the population count of the group of interest
+    total_pop_var : string
+        Variable in data that contains the total population count of the unit
+
+    Returns
+    ----------
+    statistic : float
+        MinMax index statistic value
+    core_data : pandas.DataFrame
+        A pandas DataFrame that contains the columns used to perform the estimate.
+
+    Notes
+    -----
+    Based on Massey, Douglas S., and Nancy A. Denton. "The dimensions of residential segregation." Social forces 67.2 (1988): 281-315.
+
+    Reference: :cite:`massey1988dimensions`.
+    """
+    if not isinstance(b, float):
+        raise ValueError("The parameter b must be a float.")
+
+    if (b < 0) or (b > 1):
+        raise ValueError("The parameter b must be between 0 and 1.")
+
+    x = np.array(data[group_pop_var])
+    t = np.array(data[total_pop_var])
+
+    if any(t < x):
+        raise ValueError(
+            "Group of interest population must equal or lower than the total population of the units."
+        )
+
+    T = t.sum()
+    P = x.sum() / T
+
+    # If a unit has zero population, the group of interest frequency is zero
+    pi = np.where(t == 0, 0, x / t)
+
+    A = 1 - (P / (1 - P)) * abs(
+        (((1 - pi) ** (1 - b) * pi ** b * t) / (P * T)).sum()
+    ) ** (1 / (1 - b))
+
+    return A, data
+
+
+
+[docs] +class Atkinson(SingleGroupIndex, SpatialImplicitIndex): + """Atkinson Index. + + Parameters + ---------- + data : pandas.DataFrame or geopandas.GeoDataFrame, required + dataframe or geodataframe if spatial index holding data for location of interest + group_pop_var : str, required + name of column on dataframe holding population totals for focal group + total_pop_var : str, required + name of column on dataframe holding total overall population + w : libpysal.weights.KernelW, optional + lipysal spatial kernel weights object used to define an egohood + network : pandana.Network + pandana Network object representing the study area + distance : int + Maximum distance (in units of geodataframe CRS) to consider the extent of the egohood + decay : str + type of decay function to apply. Options include + precompute : bool + Whether to precompute the pandana Network object + + Attributes + ---------- + statistic : float + Atkinson Index + core_data : a pandas DataFrame + A pandas DataFrame that contains the columns used to perform the estimate. + + Notes + ----- + Based on Massey, Douglas S., and Nancy A. Denton. "The dimensions of residential segregation." Social forces 67.2 (1988): 281-315. + + Reference: :cite:`massey1988dimensions`. + """ + +
+[docs] + def __init__( + self, + data, + group_pop_var, + total_pop_var, + w=None, + network=None, + distance=None, + decay=None, + precompute=None, + function="triangular", + **kwargs + ): + """Init.""" + SingleGroupIndex.__init__(self, data, group_pop_var, total_pop_var) + if any([w, network, distance]): + SpatialImplicitIndex.__init__( + self, w, network, distance, decay, function, precompute + ) + aux = _atkinson(self.data, self.group_pop_var, self.total_pop_var) + + self.statistic = aux[0] + self.data = aux[1] + self._function = _atkinson
+
+ +
+ +
+ +
+
+ + + \ No newline at end of file diff --git a/_modules/segregation/singlegroup/bias_corrected_dissim.html b/_modules/segregation/singlegroup/bias_corrected_dissim.html new file mode 100644 index 00000000..d46b4569 --- /dev/null +++ b/_modules/segregation/singlegroup/bias_corrected_dissim.html @@ -0,0 +1,287 @@ + + + + + + + segregation.singlegroup.bias_corrected_dissim — segregation v2.5.2.dev2+g8090618 Manual + + + + + + + + + + + + + + + + + + + + + + + + +
+
+
+ +

Source code for segregation.singlegroup.bias_corrected_dissim

+"""Bias Corrected Dissimilarity index."""
+
+__author__ = "Renan X. Cortes <renanc@ucr.edu>, Sergio J. Rey <sergio.rey@ucr.edu> and Elijah Knaap <elijah.knaap@ucr.edu>"
+
+import geopandas as gpd
+import numpy as np
+import pandas as pd
+
+from .._base import SingleGroupIndex, SpatialImplicitIndex
+from .dissim import _dissim
+
+
+def _bias_corrected_dissim(data, group_pop_var, total_pop_var, B=500):
+    """
+    Calculation of Bias Corrected Dissimilarity index
+
+    Parameters
+    ----------
+
+    data : pandas.DataFrame or geopandas.GeoDataFrame
+        DataFrame holding necessary data
+    group_pop_var : string
+        The name of variable in data that contains the population size of the group of interest
+    total_pop_var : string
+        The name of variable in data that contains the total population of the unit
+    B : int
+       The number of iterations to calculate Dissimilarity simulating randomness with multinomial distributions. Default value is 500.
+
+    Returns
+    ----------
+    statistic : float
+        Dissimilarity with Bias-Correction (bias correction from Allen, Rebecca et al. (2015))
+    core_data : a pandas DataFrame
+        A pandas DataFrame that contains the columns used to perform the estimate.
+
+    Notes
+    -----
+    Based on Allen, Rebecca, et al. "More reliable inference for the dissimilarity index of segregation." The econometrics journal 18.1 (2015): 40-66.
+
+    Reference: :cite:`allen2015more`.
+    """
+    assert type(B) is int, "B must be an integer"
+
+    assert B > 1, "B must be greater than 1."
+
+    D = _dissim(data, group_pop_var, total_pop_var)[0]
+
+    x = np.array(data[group_pop_var])
+    t = np.array(data[total_pop_var])
+
+    other_group_pop = t - x
+
+    # Group 0: minority group
+    p0_i = x / x.sum()
+    n0 = x.sum()
+    sim0 = np.random.multinomial(n0, p0_i, size=B)
+
+    # Group 1: complement group
+    p1_i = other_group_pop / other_group_pop.sum()
+    n1 = other_group_pop.sum()
+    sim1 = np.random.multinomial(n1, p1_i, size=B)
+
+    Dbcs = np.empty(B)
+    for i in np.array(range(B)):
+        data_aux = {
+            "simul_group": sim0[i].tolist(),
+            "simul_tot": (sim0[i] + sim1[i]).tolist(),
+        }
+        df_aux = pd.DataFrame.from_dict(data_aux)
+        Dbcs[i] = _dissim(df_aux, "simul_group", "simul_tot")[0]
+
+    Db = Dbcs.mean()
+
+    Dbc = 2 * D - Db
+    Dbc  # It expected to be lower than D, because D is upwarded biased
+
+    if isinstance(data, gpd.GeoDataFrame):
+        core_data = data[[group_pop_var, total_pop_var, data.geometry.name]]
+
+    else:
+        core_data = data[[group_pop_var, total_pop_var]]
+
+    return Dbc, core_data
+
+
+
+[docs] +class BiasCorrectedDissim(SingleGroupIndex, SpatialImplicitIndex): + """Bias Corrected Dissimilarity Index. + + Parameters + ---------- + data : pandas.DataFrame or geopandas.GeoDataFrame, required + dataframe or geodataframe if spatial index holding data for location of interest + group_pop_var : str, required + name of column on dataframe holding population totals for focal group + total_pop_var : str, required + name of column on dataframe holding total overall population + B : int + The number of iterations to calculate Dissimilarity simulating randomness with multinomial distributions. Default value is 500. + w : libpysal.weights.KernelW, optional + lipysal spatial kernel weights object used to define an egohood + network : pandana.Network + pandana Network object representing the study area + distance : int + Maximum distance (in units of geodataframe CRS) to consider the extent of the egohood + decay : str + type of decay function to apply. Options include + precompute : bool + Whether to precompute the pandana Network object + + Attributes + ---------- + statistic : float + BiasCorrectedDissim Index + core_data : a pandas DataFrame + A pandas DataFrame that contains the columns used to perform the estimate. + + Notes + ----- + Based on Carrington, William J., and Kenneth R. Troske. "On measuring segregation in samples with small units." Journal of Business & Economic Statistics 15.4 (1997): 402-409. + + Reference: :cite:`carrington1997measuring`. + """ + +
+[docs] + def __init__( + self, + data, + group_pop_var, + total_pop_var, + B=500, + w=None, + network=None, + distance=None, + decay=None, + precompute=None, + function="triangular", + **kwargs + ): + """Init.""" + + SingleGroupIndex.__init__(self, data, group_pop_var, total_pop_var) + if any([w, network, distance]): + SpatialImplicitIndex.__init__( + self, w, network, distance, decay, function, precompute + ) + self.B = B + aux = _bias_corrected_dissim( + self.data, self.group_pop_var, self.total_pop_var, self.B + ) + + self.statistic = aux[0] + self.data = aux[1] + self._function = _bias_corrected_dissim
+
+ +
+ +
+ +
+
+ + + \ No newline at end of file diff --git a/_modules/segregation/singlegroup/boundary_spatial_dissim.html b/_modules/segregation/singlegroup/boundary_spatial_dissim.html new file mode 100644 index 00000000..d8894571 --- /dev/null +++ b/_modules/segregation/singlegroup/boundary_spatial_dissim.html @@ -0,0 +1,252 @@ + + + + + + + segregation.singlegroup.boundary_spatial_dissim — segregation v2.5.2.dev2+g8090618 Manual + + + + + + + + + + + + + + + + + + + + + + + + +
+
+
+ +

Source code for segregation.singlegroup.boundary_spatial_dissim

+"""Boundary Spatial Dissimilarity Index."""
+
+__author__ = "Renan X. Cortes <renanc@ucr.edu>, Sergio J. Rey <sergio.rey@ucr.edu> and Elijah Knaap <elijah.knaap@ucr.edu>"
+
+import numpy as np
+from sklearn.metrics.pairwise import manhattan_distances
+
+from .._base import (SingleGroupIndex, SpatialExplicitIndex,
+                     _return_length_weighted_w)
+from .dissim import _dissim
+
+
+def _boundary_spatial_dissim(data, group_pop_var, total_pop_var, standardize=False):
+    """Calculation of Boundary Spatial Dissimilarity index.
+
+    Parameters
+    ----------
+    data : a geopandas DataFrame with a geometry column.
+    group_pop_var : string
+        The name of variable in data that contains the population size of the group of interest
+    total_pop_var : string
+        The name of variable in data that contains the total population of the unit
+    standardize : boolean
+        A condition for row standardisation of the weights matrices. If True, the values of cij in the formulas gets row standardized.
+        For the sake of comparison, the seg R package of Hong, Seong-Yun, David O'Sullivan, and Yukio Sadahiro. "Implementing spatial segregation measures in R." PloS one 9.11 (2014): e113767.
+        works by default without row standardization. That is, directly with border length.
+
+    Returns
+    ----------
+    statistic : float
+                Boundary Spatial Dissimilarity Index
+    core_data : a geopandas DataFrame
+                A geopandas DataFrame that contains the columns used to perform the estimate.
+
+    Notes
+    -----
+    The formula is based on Hong, Seong-Yun, David O'Sullivan, and Yukio Sadahiro. "Implementing spatial segregation measures in R." PloS one 9.11 (2014): e113767.
+
+    Original paper by Wong, David WS. "Spatial indices of segregation." Urban studies 30.3 (1993): 559-572.
+
+    References: :cite:`hong2014implementing` and :cite:`wong1993spatial`.
+
+    """
+    if type(standardize) is not bool:
+        raise TypeError("std is not a boolean object")
+
+    D = _dissim(data, group_pop_var, total_pop_var)[0]
+
+    # If a unit has zero population, the group of interest frequency is zero
+    data = data.assign(
+        pi=np.where(
+            data[total_pop_var] == 0, 0, data[group_pop_var] / data[total_pop_var]
+        )
+    )
+
+    if not standardize:
+        cij = _return_length_weighted_w(data).sparse.todense()
+    else:
+        cij = _return_length_weighted_w(data).sparse.todense()
+        cij = cij / cij.sum(axis=1).reshape((cij.shape[0], 1))
+
+    # manhattan_distances used to compute absolute distances
+    num = np.multiply(manhattan_distances(data[["pi"]]), cij).sum()
+    den = cij.sum()
+    BSD = D - num / den
+
+    core_data = data[[group_pop_var, total_pop_var, data.geometry.name]]
+
+    return BSD, core_data
+
+
+
+[docs] +class BoundarySpatialDissim(SingleGroupIndex, SpatialExplicitIndex): + """Boundary-Area Dissimilarity Index. + + Parameters + ---------- + data : pandas.DataFrame or geopandas.GeoDataFrame, required + dataframe or geodataframe if spatial index holding data for location of interest + group_pop_var : str, required + name of column on dataframe holding population totals for focal group + total_pop_var : str, required + name of column on dataframe holding total overall population + standardize : boolean + A condition for row standardisation of the weights matrices. If True, the values of cij in the formulas gets row standardized. + For the sake of comparison, the seg R package of Hong, Seong-Yun, David O'Sullivan, and Yukio Sadahiro. "Implementing spatial segregation measures in R." PloS one 9.11 (2014): e113767. + works by default with row standardization. + + Attributes + ---------- + statistic : float + Boundary Area Index + core_data : a pandas DataFrame + A pandas DataFrame that contains the columns used to perform the estimate. + + Notes + ----- + The formula is based on Hong, Seong-Yun, David O'Sullivan, and Yukio Sadahiro. "Implementing spatial segregation measures in R." PloS one 9.11 (2014): e113767. + + Original paper by Wong, David WS. "Spatial indices of segregation." Urban studies 30.3 (1993): 559-572. + + References: :cite:`hong2014implementing` and :cite:`wong1993spatial`. + """ + +
+[docs] + def __init__( + self, data, group_pop_var, total_pop_var, w=None, standardize=True, **kwargs + ): + """Init.""" + SingleGroupIndex.__init__(self, data, group_pop_var, total_pop_var) + SpatialExplicitIndex.__init__(self,) + self.standardize = standardize + aux = _boundary_spatial_dissim( + self.data, self.group_pop_var, self.total_pop_var, self.standardize + ) + + self.statistic = aux[0] + self.core_data = aux[1] + self._function = _boundary_spatial_dissim
+
+ +
+ +
+ +
+
+ + + \ No newline at end of file diff --git a/_modules/segregation/singlegroup/conprof.html b/_modules/segregation/singlegroup/conprof.html new file mode 100644 index 00000000..9a2d8912 --- /dev/null +++ b/_modules/segregation/singlegroup/conprof.html @@ -0,0 +1,278 @@ + + + + + + + segregation.singlegroup.conprof — segregation v2.5.2.dev2+g8090618 Manual + + + + + + + + + + + + + + + + + + + + + + + + +
+
+
+ +

Source code for segregation.singlegroup.conprof

+"""ConProf Segregation Index."""
+
+__author__ = "Renan X. Cortes <renanc@ucr.edu>, Sergio J. Rey <sergio.rey@ucr.edu> and Elijah Knaap <elijah.knaap@ucr.edu>"
+
+import geopandas as gpd
+import numpy as np
+import pandas as pd
+
+from .._base import SingleGroupIndex, SpatialImplicitIndex
+
+
+def _conprof(data, group_pop_var, total_pop_var, m=1000):
+    """Calculation of Concentration Profile.
+
+    Parameters
+    ----------
+    data : pandas.DataFrame or geopandas.GeoDataFrame
+        Dataframe or geodataframe if spatial index holding data for location of interest
+    group_pop_var : string
+        Variable containing the population count of the group of interest
+    total_pop_var : string
+        Variable in data that contains the total population count of the unit
+
+    Returns
+    ----------
+    statistic : float
+        MinMax index statistic value
+    core_data : pandas.DataFrame
+        A pandas DataFrame that contains the columns used to perform the estimate.
+
+    Notes
+    -----
+    Based on Hong, Seong-Yun, and Yukio Sadahiro. "Measuring geographic segregation: a graph-based approach." Journal of Geographical Systems 16.2 (2014): 211-231.
+
+    Reference: :cite:`hong2014measuring`.
+
+    """
+    if type(m) is not int:
+        raise TypeError("m must be a string.")
+
+    if m < 2:
+        raise ValueError("m must be greater than 1.")
+
+    x = np.array(data[group_pop_var])
+    t = np.array(data[total_pop_var])
+
+    if any(t < x):
+        raise ValueError(
+            "Group of interest population must equal or lower than the total population of the units."
+        )
+
+    def calculate_vt(th):
+        g_t_i = np.where(x / t >= th, 1, 0)
+        v_t = (g_t_i * x).sum() / x.sum()
+        return v_t
+
+    grid = np.linspace(0, 1, m)
+    curve = np.array(list(map(calculate_vt, grid)))
+
+    threshold = x.sum() / t.sum()
+    R = (
+        threshold
+        - ((curve[grid < threshold]).sum() / m - (curve[grid >= threshold]).sum() / m)
+    ) / (1 - threshold)
+
+    return R, grid, curve, data
+
+
+
+[docs] +class ConProf(SingleGroupIndex, SpatialImplicitIndex): + """ConProf Index. + + Parameters + ---------- + data : pandas.DataFrame or geopandas.GeoDataFrame, required + dataframe or geodataframe if spatial index holding data for location of interest + group_pop_var : str, required + name of column on dataframe holding population totals for focal group + total_pop_var : str, required + name of column on dataframe holding total overall population + w : libpysal.weights.KernelW, optional + lipysal spatial kernel weights object used to define an egohood + network : pandana.Network + pandana Network object representing the study area + distance : int + Maximum distance (in units of geodataframe CRS) to consider the extent of the egohood + decay : str + type of decay function to apply. Options include + precompute : bool + Whether to precompute the pandana Network object + + Attributes + ---------- + statistic : float + ConProf Index + core_data : a pandas DataFrame + A pandas DataFrame that contains the columns used to perform the estimate. + + Notes + ----- + Based on Hong, Seong-Yun, and Yukio Sadahiro. "Measuring geographic segregation: a graph-based approach." Journal of Geographical Systems 16.2 (2014): 211-231. + + Reference: :cite:`hong2014measuring`. + """ + +
+[docs] + def __init__( + self, + data, + group_pop_var, + total_pop_var, + w=None, + network=None, + distance=None, + decay=None, + function="triangular", + precompute=None, + **kwargs + ): + """Init.""" + + SingleGroupIndex.__init__(self, data, group_pop_var, total_pop_var) + if any([w, network, distance]): + SpatialImplicitIndex.__init__( + self, w, network, distance, decay, function, precompute + ) + aux = _conprof(self.data, self.group_pop_var, self.total_pop_var) + + self.statistic = aux[0] + self.grid = aux[1] + self.curve = aux[2] + self.core_data = aux[3] + self._function = _conprof
+ + +
+[docs] + def plot(self): + """Plot the Concentration Profile.""" + try: + import matplotlib.pyplot as plt + except ImportError: + raise ImportError("plotting requires `matplotlib`") + graph = plt.scatter(self.grid, self.curve, s=0.1) + return graph
+
+ +
+ +
+ +
+
+ + + \ No newline at end of file diff --git a/_modules/segregation/singlegroup/correlationr.html b/_modules/segregation/singlegroup/correlationr.html new file mode 100644 index 00000000..85730635 --- /dev/null +++ b/_modules/segregation/singlegroup/correlationr.html @@ -0,0 +1,253 @@ + + + + + + + segregation.singlegroup.correlationr — segregation v2.5.2.dev2+g8090618 Manual + + + + + + + + + + + + + + + + + + + + + + + + +
+
+
+ +

Source code for segregation.singlegroup.correlationr

+"""CorrelationR Segregation Index."""
+
+__author__ = "Renan X. Cortes <renanc@ucr.edu>, Sergio J. Rey <sergio.rey@ucr.edu> and Elijah Knaap <elijah.knaap@ucr.edu>"
+
+import geopandas as gpd
+import numpy as np
+import pandas as pd
+
+from .._base import SingleGroupIndex, SpatialImplicitIndex
+
+
+def _correlationr(data, group_pop_var, total_pop_var):
+    """Calculation of Correlation Ratio index.
+
+    Parameters
+    ----------
+    data : pandas.DataFrame or geopandas.GeoDataFrame
+        Dataframe or geodataframe if spatial index holding data for location of interest
+    group_pop_var : string
+        Variable containing the population count of the group of interest
+    total_pop_var : string
+        Variable in data that contains the total population count of the unit
+
+    Returns
+    ----------
+    statistic : float
+        MinMax index statistic value
+    core_data : pandas.DataFrame
+        A pandas DataFrame that contains the columns used to perform the estimate.
+
+    Notes
+    -----
+    Based on Massey, Douglas S., and Nancy A. Denton. "The dimensions of residential segregation." Social forces 67.2 (1988): 281-315.
+
+    Reference: :cite:`massey1988dimensions`.
+
+    """
+    x = np.array(data[group_pop_var])
+    t = np.array(data[total_pop_var])
+
+    X = x.sum()
+    T = t.sum()
+    P = X / T
+
+    xPx = np.nansum((x / X) * (x / t))
+
+    V = (xPx - P) / (1 - P)
+
+    if not isinstance(data, gpd.GeoDataFrame):
+        core_data = data[[group_pop_var, total_pop_var]]
+
+    else:
+        core_data = data[[group_pop_var, total_pop_var, data.geometry.name]]
+
+    return V, core_data
+
+
+
+[docs] +class CorrelationR(SingleGroupIndex, SpatialImplicitIndex): + """CorrelationR Index. + + Parameters + ---------- + data : pandas.DataFrame or geopandas.GeoDataFrame, required + dataframe or geodataframe if spatial index holding data for location of interest + group_pop_var : str, required + name of column on dataframe holding population totals for focal group + total_pop_var : str, required + name of column on dataframe holding total overall population + w : libpysal.weights.KernelW, optional + lipysal spatial kernel weights object used to define an egohood + network : pandana.Network + pandana Network object representing the study area + distance : int + Maximum distance (in units of geodataframe CRS) to consider the extent of the egohood + decay : str + type of decay function to apply. Options include + precompute : bool + Whether to precompute the pandana Network object + + Attributes + ---------- + statistic : float + CorrelationR Index + core_data : a pandas DataFrame + A pandas DataFrame that contains the columns used to perform the estimate. + + Notes + ----- + Based on Massey, Douglas S., and Nancy A. Denton. "The dimensions of residential segregation." Social forces 67.2 (1988): 281-315. + + Reference: :cite:`massey1988dimensions`. + """ + +
+[docs] + def __init__( + self, + data, + group_pop_var, + total_pop_var, + w=None, + network=None, + distance=None, + decay=None, + function="triangular", + precompute=None, + **kwargs + ): + """Init.""" + + SingleGroupIndex.__init__(self, data, group_pop_var, total_pop_var) + if any([w, network, distance]): + SpatialImplicitIndex.__init__( + self, w, network, distance, decay, function, precompute + ) + aux = _correlationr(self.data, self.group_pop_var, self.total_pop_var) + + self.statistic = aux[0] + self.data = aux[1] + self._function = _correlationr
+
+ +
+ +
+ +
+
+ + + \ No newline at end of file diff --git a/_modules/segregation/singlegroup/delta.html b/_modules/segregation/singlegroup/delta.html new file mode 100644 index 00000000..fa5aa760 --- /dev/null +++ b/_modules/segregation/singlegroup/delta.html @@ -0,0 +1,227 @@ + + + + + + + segregation.singlegroup.delta — segregation v2.5.2.dev2+g8090618 Manual + + + + + + + + + + + + + + + + + + + + + + + + +
+
+
+ +

Source code for segregation.singlegroup.delta

+"""Delta Index."""
+
+__author__ = "Renan X. Cortes <renanc@ucr.edu>, Sergio J. Rey <sergio.rey@ucr.edu> and Elijah Knaap <elijah.knaap@ucr.edu>"
+
+import numpy as np
+
+from .._base import SingleGroupIndex, SpatialExplicitIndex
+
+
+def _delta(data, group_pop_var, total_pop_var):
+    """Calculate Delta index.
+
+    Parameters
+    ----------
+    data          : a geopandas DataFrame with a geometry column.
+    group_pop_var : string
+                    The name of variable in data that contains the population size of the group of interest
+    total_pop_var : string
+                    The name of variable in data that contains the total population of the unit
+
+    Returns
+    ----------
+    statistic : float
+                Delta Index
+    core_data : a geopandas DataFrame
+                A geopandas DataFrame that contains the columns used to perform the estimate.
+
+    Notes
+    -----
+    Based on Massey, Douglas S., and Nancy A. Denton. "The dimensions of residential segregation." Social forces 67.2 (1988): 281-315.
+
+    Reference: :cite:`massey1988dimensions`.
+
+    """
+    x = np.array(data[group_pop_var])
+    t = np.array(data[total_pop_var])
+
+    if any(t < x):
+        raise ValueError(
+            "Group of interest population must equal or lower than the total population of the units."
+        )
+
+    area = np.array(data.area)
+
+    X = x.sum()
+    A = area.sum()
+
+    DEL = 1 / 2 * abs(x / X - area / A).sum()
+
+    core_data = data[[group_pop_var, total_pop_var, data.geometry.name]]
+
+    return DEL, core_data
+
+
+
+[docs] +class Delta(SingleGroupIndex, SpatialExplicitIndex): + """Delta Index. + + Parameters + ---------- + data : pandas.DataFrame or geopandas.GeoDataFrame, required + dataframe or geodataframe if spatial index holding data for location of interest + group_pop_var : str, required + name of column on dataframe holding population totals for focal group + total_pop_var : str, required + name of column on dataframe holding total overall population + + Attributes + ---------- + statistic : float + Delta Index + core_data : a pandas DataFrame + A pandas DataFrame that contains the columns used to perform the estimate. + + + Notes + ----- + Based on Massey, Douglas S., and Nancy A. Denton. "The dimensions of residential segregation." Social forces 67.2 (1988): 281-315. + + Reference: :cite:`massey1988dimensions`. + """ + +
+[docs] + def __init__( + self, data, group_pop_var, total_pop_var, **kwargs, + ): + """Init.""" + SingleGroupIndex.__init__(self, data, group_pop_var, total_pop_var) + SpatialExplicitIndex.__init__(self,) + aux = _delta(self.data, self.group_pop_var, self.total_pop_var,) + + self.statistic = aux[0] + self.core_data = aux[1] + self._function = _delta
+
+ +
+ +
+ +
+
+ + + \ No newline at end of file diff --git a/_modules/segregation/singlegroup/density_corrected_dissim.html b/_modules/segregation/singlegroup/density_corrected_dissim.html new file mode 100644 index 00000000..963d6f90 --- /dev/null +++ b/_modules/segregation/singlegroup/density_corrected_dissim.html @@ -0,0 +1,285 @@ + + + + + + + segregation.singlegroup.density_corrected_dissim — segregation v2.5.2.dev2+g8090618 Manual + + + + + + + + + + + + + + + + + + + + + + + + +
+
+
+ +

Source code for segregation.singlegroup.density_corrected_dissim

+"""Density-Corrected Dissim Segregation Index."""
+
+__author__ = "Renan X. Cortes <renanc@ucr.edu>, Sergio J. Rey <sergio.rey@ucr.edu> and Elijah Knaap <elijah.knaap@ucr.edu>"
+
+import geopandas as gpd
+import numpy as np
+import pandas as pd
+from scipy.optimize import minimize
+from scipy.stats import norm
+
+from .._base import SingleGroupIndex, SpatialImplicitIndex
+
+
+# Constructing function that returns $n(\hat{\theta}_j)$
+def _return_optimal_theta(theta_j):
+    def fold_norm(x):
+
+        y = (-1) * (norm.pdf(x - theta_j) + norm.pdf(x + theta_j))
+        return y
+
+    initial_guesses = np.array(0)
+    res = minimize(
+        fold_norm, initial_guesses, method="nelder-mead", options={"xatol": 1e-5}
+    )
+    return res.final_simplex[0][1][0]
+
+
+def _density_corrected_dissim(
+    data,
+    group_pop_var,
+    total_pop_var,
+):
+    """Calculate Density Corrected Dissimilarity index.
+
+    Parameters
+    ----------
+    data :  pandas.DataFrame
+        DataFrame storing necessary data
+    group_pop_var : string
+        The name of variable in data that contains the population size of the group of interest
+    total_pop_var : string
+        The name of variable in data that contains the total population of the unit
+    xtol : float
+        The degree of tolerance in the optimization process of returning optimal theta_j
+
+    Returns
+    ----------
+    statistic : float
+        Dissimilarity with Density-Correction (density correction from Allen, Rebecca et al. (2015))
+    core_data : pandas.DataFrame
+        A pandas DataFrame that contains the columns used to perform the estimate.
+
+    Notes
+    -----
+    Based on Allen, Rebecca, et al. "More reliable inference for the dissimilarity index of segregation." The econometrics journal 18.1 (2015): 40-66.
+
+    Reference: :cite:`allen2015more`.
+    """
+    g = np.array(data[group_pop_var])
+    t = np.array(data[total_pop_var])
+
+    other_group_pop = t - g
+
+    # Group 0: minority group
+    p0_i = g / g.sum()
+    n0 = g.sum()
+
+    # Group 1: complement group
+    p1_i = other_group_pop / other_group_pop.sum()
+    n1 = other_group_pop.sum()
+
+    sigma_hat_j = np.sqrt(((p1_i * (1 - p1_i)) / n1) + ((p0_i * (1 - p0_i)) / n0))
+    theta_hat_j = abs(p1_i - p0_i) / sigma_hat_j
+
+    optimal_thetas = pd.Series(data=theta_hat_j).apply(_return_optimal_theta)
+
+    Ddc = np.multiply(sigma_hat_j, optimal_thetas).sum() / 2
+
+    if not isinstance(data, gpd.GeoDataFrame):
+        core_data = data[[group_pop_var, total_pop_var]]
+
+    else:
+        core_data = data[[group_pop_var, total_pop_var, data.geometry.name]]
+
+    return Ddc, core_data
+
+
+
+[docs] +class DensityCorrectedDissim(SingleGroupIndex, SpatialImplicitIndex): + """Density Corrected Dissimilarity Index. + + Parameters + ---------- + data : pandas.DataFrame or geopandas.GeoDataFrame, required + dataframe or geodataframe if spatial index holding data for location of interest + group_pop_var : str, required + name of column on dataframe holding population totals for focal group + total_pop_var : str, required + name of column on dataframe holding total overall population + w : libpysal.weights.KernelW, optional + lipysal spatial kernel weights object used to define an egohood + network : pandana.Network + pandana Network object representing the study area + distance : int + Maximum distance (in units of geodataframe CRS) to consider the extent of the egohood + decay : str + type of decay function to apply. Options include + precompute : bool + Whether to precompute the pandana Network object + + Attributes + ---------- + statistic : float + Segregation Index + core_data : a pandas DataFrame + A pandas DataFrame that contains the columns used to perform the estimate. + + Notes + ----- + Based on Allen, Rebecca, et al. "More reliable inference for the dissimilarity index of segregation." The econometrics journal 18.1 (2015): 40-66. + + Reference: :cite:`allen2015more`. + """ + +
+[docs] + def __init__( + self, + data, + group_pop_var, + total_pop_var, + w=None, + network=None, + distance=None, + decay="linear", + precompute=None, + function="triangular", + **kwargs + ): + """Init.""" + + SingleGroupIndex.__init__(self, data, group_pop_var, total_pop_var) + if any([w, network, distance]): + SpatialImplicitIndex.__init__( + self, w, network, distance, decay, function, precompute + ) + aux = _density_corrected_dissim( + self.data, self.group_pop_var, self.total_pop_var + ) + + self.statistic = aux[0] + self.data = aux[1] + self._function = _density_corrected_dissim
+
+ +
+ +
+ +
+
+ + + \ No newline at end of file diff --git a/_modules/segregation/singlegroup/dissim.html b/_modules/segregation/singlegroup/dissim.html new file mode 100644 index 00000000..57d1b99c --- /dev/null +++ b/_modules/segregation/singlegroup/dissim.html @@ -0,0 +1,258 @@ + + + + + + + segregation.singlegroup.dissim — segregation v2.5.2.dev2+g8090618 Manual + + + + + + + + + + + + + + + + + + + + + + + + +
+
+
+ +

Source code for segregation.singlegroup.dissim

+"""Dissimilarity Segregation Index."""
+
+__author__ = "Renan X. Cortes <renanc@ucr.edu>, Sergio J. Rey <sergio.rey@ucr.edu> and Elijah Knaap <elijah.knaap@ucr.edu>"
+
+import geopandas as gpd
+import numpy as np
+import pandas as pd
+
+from .._base import SingleGroupIndex, SpatialImplicitIndex
+
+
+def _dissim(data, group_pop_var, total_pop_var):
+    """Calculate Dissimilarity index.
+
+    Parameters
+    ----------
+    data : pandas.DataFrame or geopandas.GeoDataFrame
+        Dataframe or geodataframe if spatial index holding data for location of interest
+    group_pop_var : string
+        Variable containing the population count of the group of interest
+    total_pop_var : string
+        Variable in data that contains the total population count of the unit
+
+    Returns
+    ----------
+    statistic : float
+        D index statistic value
+    core_data : pandas.DataFrame
+        A pandas DataFrame that contains the columns used to perform the estimate.
+
+    Notes
+    -----
+    Based on Massey, Douglas S., and Nancy A. Denton. "The dimensions of residential segregation." Social forces 67.2 (1988): 281-315.
+
+    Reference: :cite:`massey1988dimensions`.
+
+    """
+    x = np.array(data[group_pop_var])
+    t = np.array(data[total_pop_var])
+
+    if any(t < x):
+        raise ValueError(
+            "Group of interest population must equal or lower than the total population of the units."
+        )
+
+    T = t.sum()
+    P = x.sum() / T
+
+    # If a unit has zero population, the group of interest frequency is zero
+    pi = np.where(t == 0, 0, x / t)
+
+    D = (((t * abs(pi - P))) / (2 * T * P * (1 - P))).sum()
+
+    if not isinstance(data, gpd.GeoDataFrame):
+        core_data = data[[group_pop_var, total_pop_var]]
+
+    else:
+        core_data = data[[group_pop_var, total_pop_var, data.geometry.name]]
+
+    return D, core_data
+
+
+
+[docs] +class Dissim(SingleGroupIndex, SpatialImplicitIndex): + """Dissimilarity Index. + + Parameters + ---------- + data : pandas.DataFrame or geopandas.GeoDataFrame, required + dataframe or geodataframe if spatial index holding data for location of interest + group_pop_var : str, required + name of column on dataframe holding population totals for focal group + total_pop_var : str, required + name of column on dataframe holding total overall population + w : libpysal.weights.KernelW, optional + lipysal spatial kernel weights object used to define an egohood + network : pandana.Network + pandana Network object representing the study area + distance : int + Maximum distance (in units of geodataframe CRS) to consider the extent of the egohood + decay : str + type of decay function to apply. Options include + precompute : bool + Whether to precompute the pandana Network object + + Attributes + ---------- + statistic : float + Dissim Index + core_data : a pandas DataFrame + A pandas DataFrame that contains the columns used to perform the estimate. + + Notes + ----- + Based on Massey, Douglas S., and Nancy A. Denton. "The dimensions of residential segregation." Social forces 67.2 (1988): 281-315. + + Reference: :cite:`massey1988dimensions`. + """ + +
+[docs] + def __init__( + self, + data, + group_pop_var, + total_pop_var, + w=None, + network=None, + distance=None, + decay=None, + function="triangular", + precompute=None, + **kwargs + ): + """Init.""" + + SingleGroupIndex.__init__(self, data, group_pop_var, total_pop_var) + if any([w, network, distance]): + SpatialImplicitIndex.__init__( + self, w, network, distance, decay, function, precompute + ) + aux = _dissim(self.data, self.group_pop_var, self.total_pop_var) + + self.statistic = aux[0] + self.data = aux[1] + self._function = _dissim
+
+ +
+ +
+ +
+
+ + + \ No newline at end of file diff --git a/_modules/segregation/singlegroup/dx_interaction.html b/_modules/segregation/singlegroup/dx_interaction.html new file mode 100644 index 00000000..6beab885 --- /dev/null +++ b/_modules/segregation/singlegroup/dx_interaction.html @@ -0,0 +1,263 @@ + + + + + + + segregation.singlegroup.dx_interaction — segregation v2.5.2.dev2+g8090618 Manual + + + + + + + + + + + + + + + + + + + + + + + + +
+
+
+ +

Source code for segregation.singlegroup.dx_interaction

+"""Distance-Decay Interaction Index."""
+
+__author__ = "Renan X. Cortes <renanc@ucr.edu>, Sergio J. Rey <sergio.rey@ucr.edu> and Elijah Knaap <elijah.knaap@ucr.edu>"
+
+import numpy as np
+import pandas as pd
+from ..util import generate_distance_matrix
+
+from .._base import SingleGroupIndex, SpatialExplicitIndex
+
+
+def _distance_decay_interaction(
+    data, group_pop_var, total_pop_var, alpha=0.6, beta=0.5
+):
+    """Calculate of Distance Decay Exposure index.
+
+    Parameters
+    ----------
+    data          : a geopandas DataFrame with a geometry column.
+    group_pop_var : string
+                    The name of variable in data that contains the population size of the group of interest
+    total_pop_var : string
+                    The name of variable in data that contains the total population of the unit
+    alpha         : float
+                    A parameter that estimates the extent of the proximity within the same unit. Default value is 0.6
+    beta          : float
+                    A parameter that estimates the extent of the proximity within the same unit. Default value is 0.5
+
+    Returns
+    ----------
+    statistic : float
+                Distance Decay Exposure Index
+
+    core_data : a geopandas DataFrame
+                A geopandas DataFrame that contains the columns used to perform the estimate.
+
+    Notes
+    -----
+    It may be interpreted as the probability that the next person a group member meets anywhere in space is from the other group.
+
+    Based on Morgan, Barrie S. "A distance-decay based interaction index to measure residential segregation." Area (1983): 211-217.
+
+    The pairwise distance between unit i and itself is (alpha * area_of_unit_i) ^ beta.
+
+    Reference: :cite:`morgan1983distance`.
+
+    """
+    if alpha < 0:
+        raise ValueError("alpha must be greater than zero.")
+
+    if beta < 0:
+        raise ValueError("beta must be greater than zero.")
+
+    x = np.array(data[group_pop_var])
+    t = np.array(data[total_pop_var])
+
+    if any(t < x):
+        raise ValueError(
+            "Group of interest population must equal or lower than the total population of the units."
+        )
+
+    y = t - x
+    X = x.sum()
+
+    dist = generate_distance_matrix(data)
+
+    np.fill_diagonal(dist, val=np.exp(-((alpha * data.area.values) ** (beta))))
+
+    c = 1 - dist.copy()  # proximity matrix
+
+    Pij = np.multiply(c, t) / np.sum(np.multiply(c, t), axis=1)
+
+    DDxPy = (x / X * np.nansum(np.multiply(Pij, y / t), axis=1)).sum()
+
+    core_data = data[[group_pop_var, total_pop_var, data.geometry.name]]
+
+    return DDxPy, core_data
+
+
+
+[docs] +class DistanceDecayInteraction(SingleGroupIndex, SpatialExplicitIndex): + """Distance-Decay Interaction Index. + + Parameters + ---------- + data : pandas.DataFrame or geopandas.GeoDataFrame, required + dataframe or geodataframe if spatial index holding data for location of interest + group_pop_var : str, required + name of column on dataframe holding population totals for focal group + total_pop_var : str, required + name of column on dataframe holding total overall population + alpha : float + A parameter that estimates the extent of the proximity within the same unit. Default value is 0.6 + beta : float + A parameter that estimates the extent of the proximity within the same unit. Default value is 0.5 + + Attributes + ---------- + statistic : float + Distance Decay Interaction Index + core_data : a pandas DataFrame + A pandas DataFrame that contains the columns used to perform the estimate. + + Notes + ----- + It may be interpreted as the probability that the next person a group member meets anywhere in space is from the same group. + + Based on Morgan, Barrie S. "A distance-decay based interaction index to measure residential segregation." Area (1983): 211-217. + + The pairwise distance between unit i and itself is (alpha * area_of_unit_i) ^ beta. + + Reference: :cite:`morgan1983distance`. + """ + +
+[docs] + def __init__( + self, data, group_pop_var, total_pop_var, alpha=0.6, beta=0.5, **kwargs, + ): + """Init.""" + SingleGroupIndex.__init__(self, data, group_pop_var, total_pop_var) + SpatialExplicitIndex.__init__(self,) + self.alpha = alpha + self.beta = beta + aux = _distance_decay_interaction( + self.data, self.group_pop_var, self.total_pop_var, self.alpha, self.beta, + ) + + self.statistic = aux[0] + self.core_data = aux[1] + self._function = _distance_decay_interaction
+
+ +
+ +
+ +
+
+ + + \ No newline at end of file diff --git a/_modules/segregation/singlegroup/dx_isolation.html b/_modules/segregation/singlegroup/dx_isolation.html new file mode 100644 index 00000000..8434f640 --- /dev/null +++ b/_modules/segregation/singlegroup/dx_isolation.html @@ -0,0 +1,261 @@ + + + + + + + segregation.singlegroup.dx_isolation — segregation v2.5.2.dev2+g8090618 Manual + + + + + + + + + + + + + + + + + + + + + + + + +
+
+
+ +

Source code for segregation.singlegroup.dx_isolation

+"""Distance Decay Isolation Index."""
+
+__author__ = "Renan X. Cortes <renanc@ucr.edu>, Sergio J. Rey <sergio.rey@ucr.edu> and Elijah Knaap <elijah.knaap@ucr.edu>"
+
+import numpy as np
+import pandas as pd
+from ..util import generate_distance_matrix
+
+from .._base import SingleGroupIndex, SpatialExplicitIndex
+
+
+def _distance_decay_isolation(data, group_pop_var, total_pop_var, alpha=0.6, beta=0.5):
+    """Calculate of Distance Decay Isolation index.
+
+    Parameters
+    ----------
+    data          : a geopandas DataFrame with a geometry column.
+    group_pop_var : string
+                    The name of variable in data that contains the population size of the group of interest
+    total_pop_var : string
+                    The name of variable in data that contains the total population of the unit
+    alpha         : float
+                    A parameter that estimates the extent of the proximity within the same unit. Default value is 0.6
+    beta          : float
+                    A parameter that estimates the extent of the proximity within the same unit. Default value is 0.5
+
+    Returns
+    ----------
+    statistic : float
+                Distance Decay Isolation Index
+    core_data : a geopandas DataFrame
+                A geopandas DataFrame that contains the columns used to perform the estimate.
+
+    Notes
+    -----
+    It may be interpreted as the probability that the next person a group member meets anywhere in space is from the same group.
+
+    Based on Morgan, Barrie S. "A distance-decay based interaction index to measure residential segregation." Area (1983): 211-217.
+
+    The pairwise distance between unit i and itself is (alpha * area_of_unit_i) ^ beta.
+
+    Reference: :cite:`morgan1983distance`.
+
+    """
+    if alpha < 0:
+        raise ValueError("alpha must be greater than zero.")
+
+    if beta < 0:
+        raise ValueError("beta must be greater than zero.")
+
+    x = np.array(data[group_pop_var])
+    t = np.array(data[total_pop_var])
+
+    if any(t < x):
+        raise ValueError(
+            "Group of interest population must equal or lower than the total population of the units."
+        )
+
+    X = x.sum()
+
+    dist = generate_distance_matrix(data)
+
+    np.fill_diagonal(dist, val=np.exp(-((alpha * data.area.values) ** (beta))))
+
+    c = 1 - dist.copy()  # proximity matrix
+
+    Pij = np.multiply(c, t) / np.sum(np.multiply(c, t), axis=1)
+
+    DDxPx = (
+        np.array(x / X) * np.nansum(np.multiply(Pij, np.array(x / t)), axis=1)
+    ).sum()
+
+    core_data = data[[group_pop_var, total_pop_var, data.geometry.name]]
+
+    return DDxPx, core_data
+
+
+
+[docs] +class DistanceDecayIsolation(SingleGroupIndex, SpatialExplicitIndex): + """Distance-Decay Isolation Index. + + Parameters + ---------- + data : pandas.DataFrame or geopandas.GeoDataFrame, required + dataframe or geodataframe if spatial index holding data for location of interest + group_pop_var : str, required + name of column on dataframe holding population totals for focal group + total_pop_var : str, required + name of column on dataframe holding total overall population + alpha : float + A parameter that estimates the extent of the proximity within the same unit. Default value is 0.6 + beta : float + A parameter that estimates the extent of the proximity within the same unit. Default value is 0.5 + + Attributes + ---------- + statistic : float + Distance Decay Isolation Index + core_data : a pandas DataFrame + A pandas DataFrame that contains the columns used to perform the estimate. + + Notes + ----- + It may be interpreted as the probability that the next person a group member meets anywhere in space is from the same group. + + Based on Morgan, Barrie S. "A distance-decay based interaction index to measure residential segregation." Area (1983): 211-217. + + The pairwise distance between unit i and itself is (alpha * area_of_unit_i) ^ beta. + + Reference: :cite:`morgan1983distance`. + """ + +
+[docs] + def __init__( + self, data, group_pop_var, total_pop_var, alpha=0.6, beta=0.5, **kwargs, + ): + """Init.""" + SingleGroupIndex.__init__(self, data, group_pop_var, total_pop_var) + SpatialExplicitIndex.__init__(self,) + self.alpha = alpha + self.beta = beta + aux = _distance_decay_isolation( + self.data, self.group_pop_var, self.total_pop_var, self.alpha, self.beta, + ) + + self.statistic = aux[0] + self.core_data = aux[1] + self._function = _distance_decay_isolation
+
+ +
+ +
+ +
+
+ + + \ No newline at end of file diff --git a/_modules/segregation/singlegroup/entropy.html b/_modules/segregation/singlegroup/entropy.html new file mode 100644 index 00000000..b52ed94b --- /dev/null +++ b/_modules/segregation/singlegroup/entropy.html @@ -0,0 +1,264 @@ + + + + + + + segregation.singlegroup.entropy — segregation v2.5.2.dev2+g8090618 Manual + + + + + + + + + + + + + + + + + + + + + + + + +
+
+
+ +

Source code for segregation.singlegroup.entropy

+"""Entropy Segregation Index."""
+
+__author__ = "Renan X. Cortes <renanc@ucr.edu>, Sergio J. Rey <sergio.rey@ucr.edu> and Elijah Knaap <elijah.knaap@ucr.edu>"
+
+import geopandas as gpd
+import numpy as np
+
+np.seterr(divide="ignore", invalid="ignore")
+
+from .._base import SingleGroupIndex, SpatialImplicitIndex
+
+
+def _entropy(data, group_pop_var, total_pop_var):
+    """Calculate Entropy index.
+
+    Parameters
+    ----------
+    data : pandas.DataFrame or geopandas.GeoDataFrame
+        Dataframe or geodataframe if spatial index holding data for location of interest
+    group_pop_var : string
+        Variable containing the population count of the group of interest
+    total_pop_var : string
+        Variable in data that contains the total population count of the unit
+
+    Returns
+    ----------
+    statistic : float
+        Entropy index statistic value
+    core_data : pandas.DataFrame
+        A pandas DataFrame that contains the columns used to perform the estimate.
+
+    Notes
+    -----
+    Based on Massey, Douglas S., and Nancy A. Denton. "The dimensions of residential segregation." Social forces 67.2 (1988): 281-315.
+
+    Reference: :cite:`massey1988dimensions`.
+
+    """
+    x = np.array(data[group_pop_var])
+    t = np.array(data[total_pop_var])
+
+    if any(t < x):
+        raise ValueError(
+            "Group of interest population must equal or lower than the total population of the units."
+        )
+
+    T = t.sum()
+    P = x.sum() / T
+
+    # If a unit has zero population, the group of interest frequency is zero
+    pi = np.where(t == 0, 0, x / t)
+
+    E = P * np.log(1 / P) + (1 - P) * np.log(1 / (1 - P))
+    Ei = pi * np.log(1 / pi) + (1 - pi) * np.log(1 / (1 - pi))
+    Ei = np.nan_to_num(Ei)  # replace nan with 0
+    H = np.nansum(
+        t * (E - Ei) / (E * T)
+    )  # If some pi is zero, numpy will treat as zero
+
+    if not isinstance(data, gpd.GeoDataFrame):
+        core_data = data[[group_pop_var, total_pop_var]]
+
+    else:
+        core_data = data[[group_pop_var, total_pop_var, data.geometry.name]]
+
+    return H, core_data
+
+
+
+[docs] +class Entropy(SingleGroupIndex, SpatialImplicitIndex): + """Entropy Index. + + Parameters + ---------- + data : pandas.DataFrame or geopandas.GeoDataFrame, required + dataframe or geodataframe if spatial index holding data for location of interest + group_pop_var : str, required + name of column on dataframe holding population totals for focal group + total_pop_var : str, required + name of column on dataframe holding total overall population + w : libpysal.weights.KernelW, optional + lipysal spatial kernel weights object used to define an egohood + network : pandana.Network + pandana Network object representing the study area + distance : int + Maximum distance (in units of geodataframe CRS) to consider the extent of the egohood + decay : str + type of decay function to apply. Options include + precompute : bool + Whether to precompute the pandana Network object + + Attributes + ---------- + statistic : float + Entropy Index + core_data : a pandas DataFrame + A pandas DataFrame that contains the columns used to perform the estimate. + + Notes + ----- + Based on Massey, Douglas S., and Nancy A. Denton. "The dimensions of residential segregation." Social forces 67.2 (1988): 281-315. + + Reference: :cite:`massey1988dimensions`. + """ + +
+[docs] + def __init__( + self, + data, + group_pop_var, + total_pop_var, + w=None, + network=None, + distance=None, + decay=None, + function="triangular", + precompute=None, + **kwargs + ): + """Init.""" + + SingleGroupIndex.__init__(self, data, group_pop_var, total_pop_var) + if any([w, network, distance]): + SpatialImplicitIndex.__init__( + self, w, network, distance, decay, function, precompute + ) + aux = _entropy(self.data, self.group_pop_var, self.total_pop_var) + + self.statistic = aux[0] + self.data = aux[1] + self._function = _entropy
+
+ +
+ +
+ +
+
+ + + \ No newline at end of file diff --git a/_modules/segregation/singlegroup/gini.html b/_modules/segregation/singlegroup/gini.html new file mode 100644 index 00000000..f146c005 --- /dev/null +++ b/_modules/segregation/singlegroup/gini.html @@ -0,0 +1,304 @@ + + + + + + + segregation.singlegroup.gini — segregation v2.5.2.dev2+g8090618 Manual + + + + + + + + + + + + + + + + + + + + + + + + +
+
+
+ +

Source code for segregation.singlegroup.gini

+"""Gini Segregation Index."""
+
+__author__ = "Renan X. Cortes <renanc@ucr.edu>, Sergio J. Rey <sergio.rey@ucr.edu> and Elijah Knaap <elijah.knaap@ucr.edu>"
+
+import geopandas as gpd
+import numpy as np
+
+from .._base import SingleGroupIndex, SpatialImplicitIndex
+
+
+
+try:
+    from numba import njit, jit, prange, boolean
+except (ImportError, ModuleNotFoundError):
+
+    def jit(*dec_args, **dec_kwargs):
+        """
+        decorator mimicking numba.jit
+        """
+
+        def intercepted_function(f, *f_args, **f_kwargs):
+            return f
+
+        return intercepted_function
+
+    njit = jit
+
+    prange = range
+    boolean = bool
+
+@njit(parallel=True, fastmath=True,)
+def _gini_vecp(pi: np.ndarray, ti: np.ndarray):
+    """Memory efficient calculation of Gini
+
+    Parameters
+    ----------
+    pi : np.ndarray
+        area minority population counts
+    ti : np.ndarray
+        area total population counts
+
+    Returns
+    ----------
+    
+    implicit: float
+             Gini coefficient
+    """
+
+
+    n = ti.shape[0]
+    num = np.zeros(1)
+    T = ti.sum()
+    P = pi.sum() / T
+    pi = np.where(ti == 0, 0, pi / ti)
+    T = ti.sum()
+    for i in prange(n-1):
+        num += (ti[i] * ti[i+1:] * np.abs(pi[i] - pi[i+1:])).sum()
+    num *= 2
+    den = (2 * T * T * P * (1-P))
+    return (num / den)[0]
+
+    
+
+def _gini_seg(data, group_pop_var, total_pop_var):
+    """Calculate Gini segregation index.
+
+    Parameters
+    ----------
+    data : pandas.DataFrame or geopandas.GeoDataFrame
+        Dataframe or geodataframe if spatial index holding data for location of interest
+    group_pop_var : string
+        Variable containing the population count of the group of interest
+    total_pop_var : string
+        Variable in data that contains the total population count of the unit
+
+    Returns
+    ----------
+    statistic : float
+        MinMax index statistic value
+    core_data : pandas.DataFrame
+        A pandas DataFrame that contains the columns used to perform the estimate.
+
+    Notes
+    -----
+    Based on Massey, Douglas S., and Nancy A. Denton. "The dimensions of residential segregation." Social forces 67.2 (1988): 281-315.
+
+    Reference: :cite:`massey1988dimensions`.
+    """
+
+    # If a unit has zero population, the group of interest frequency is zero
+    data = data.assign(
+        ti=data[total_pop_var],
+        pi=np.where(
+            data[total_pop_var] == 0, 0, data[group_pop_var] / data[total_pop_var]
+        ),
+    )
+
+    pi = data[group_pop_var].values
+    ti = data[total_pop_var].values
+    G = _gini_vecp(pi, ti)
+
+    if not isinstance(data, gpd.GeoDataFrame):
+        data = data[[group_pop_var, total_pop_var]]
+
+    else:
+        data = data[[group_pop_var, total_pop_var, data.geometry.name]]
+
+    return G, data
+
+
+[docs] +class Gini(SingleGroupIndex, SpatialImplicitIndex): + """Gini Index. + + Parameters + ---------- + data : pandas.DataFrame or geopandas.GeoDataFrame, required + dataframe or geodataframe if spatial index holding data for location of interest + group_pop_var : str, required + name of column on dataframe holding population totals for focal group + total_pop_var : str, required + name of column on dataframe holding total overall population + w : libpysal.weights.KernelW, optional + lipysal spatial kernel weights object used to define an egohood + network : pandana.Network + pandana Network object representing the study area + distance : int + Maximum distance (in units of geodataframe CRS) to consider the extent of the egohood + decay : str + type of decay function to apply. Options include + precompute : bool + Whether to precompute the pandana Network object + + Attributes + ---------- + statistic : float + Gini Index + core_data : a pandas DataFrame + A pandas DataFrame that contains the columns used to perform the estimate. + + Notes + ----- + Based on Massey, Douglas S., and Nancy A. Denton. "The dimensions of residential segregation." Social forces 67.2 (1988): 281-315. + + Reference: :cite:`massey1988dimensions`. + """ + +
+[docs] + def __init__( + self, + data, + group_pop_var, + total_pop_var, + w=None, + network=None, + distance=None, + decay=None, + function="triangular", + precompute=None, + **kwargs + ): + """Init.""" + SingleGroupIndex.__init__(self, data, group_pop_var, total_pop_var) + if any([w, network, distance]): + SpatialImplicitIndex.__init__( + self, w, network, distance, decay, function, precompute + ) + aux = _gini_seg(self.data, self.group_pop_var, self.total_pop_var) + + self.statistic = aux[0] + self.data = aux[1] + self._function = _gini_seg
+
+ +
+ +
+ +
+
+ + + \ No newline at end of file diff --git a/_modules/segregation/singlegroup/interaction.html b/_modules/segregation/singlegroup/interaction.html new file mode 100644 index 00000000..a94c519e --- /dev/null +++ b/_modules/segregation/singlegroup/interaction.html @@ -0,0 +1,255 @@ + + + + + + + segregation.singlegroup.interaction — segregation v2.5.2.dev2+g8090618 Manual + + + + + + + + + + + + + + + + + + + + + + + + +
+
+
+ +

Source code for segregation.singlegroup.interaction

+"""Interaction Segregation Index."""
+
+__author__ = "Renan X. Cortes <renanc@ucr.edu>, Sergio J. Rey <sergio.rey@ucr.edu> and Elijah Knaap <elijah.knaap@ucr.edu>"
+
+import geopandas as gpd
+import numpy as np
+
+from .._base import SingleGroupIndex, SpatialImplicitIndex
+
+
+def _interaction(data, group_pop_var, total_pop_var):
+    """Calculate Interaction index.
+
+    Parameters
+    ----------
+    data : pandas.DataFrame or geopandas.GeoDataFrame
+        Dataframe or geodataframe if spatial index holding data for location of interest
+    group_pop_var : string
+        Variable containing the population count of the group of interest
+    total_pop_var : string
+        Variable in data that contains the total population count of the unit
+
+    Returns
+    ----------
+    statistic : float
+        MinMax index statistic value
+    core_data : pandas.DataFrame
+        A pandas DataFrame that contains the columns used to perform the estimate.
+
+    Notes
+    -----
+    Based on Massey, Douglas S., and Nancy A. Denton. "The dimensions of residential segregation." Social forces 67.2 (1988): 281-315.
+
+    Reference: :cite:`massey1988dimensions`.
+
+
+    """
+    x = np.array(data[group_pop_var])
+    t = np.array(data[total_pop_var])
+
+    if any(t < x):
+        raise ValueError(
+            "Group of interest population must equal or lower than the total population of the units."
+        )
+
+    yi = t - x
+
+    X = x.sum()
+    xPy = np.nansum((x / X) * (yi / t))
+
+    if not isinstance(data, gpd.GeoDataFrame):
+        core_data = data[[group_pop_var, total_pop_var]]
+
+    else:
+        core_data = data[[group_pop_var, total_pop_var, data.geometry.name]]
+
+    return xPy, core_data
+
+
+
+[docs] +class Interaction(SingleGroupIndex, SpatialImplicitIndex): + """Interaction Index. + + Parameters + ---------- + data : pandas.DataFrame or geopandas.GeoDataFrame, required + dataframe or geodataframe if spatial index holding data for location of interest + group_pop_var : str, required + name of column on dataframe holding population totals for focal group + total_pop_var : str, required + name of column on dataframe holding total overall population + w : libpysal.weights.KernelW, optional + lipysal spatial kernel weights object used to define an egohood + network : pandana.Network + pandana Network object representing the study area + distance : int + Maximum distance (in units of geodataframe CRS) to consider the extent of the egohood + decay : str + type of decay function to apply. Options include + precompute : bool + Whether to precompute the pandana Network object + + Attributes + ---------- + statistic : float + Interaction Index + core_data : a pandas DataFrame + A pandas DataFrame that contains the columns used to perform the estimate. + + Notes + ----- + Based on Massey, Douglas S., and Nancy A. Denton. "The dimensions of residential segregation." Social forces 67.2 (1988): 281-315. + + Reference: :cite:`massey1988dimensions`. + """ + +
+[docs] + def __init__( + self, + data, + group_pop_var, + total_pop_var, + w=None, + network=None, + distance=None, + decay=None, + precompute=None, + function="triangular", + **kwargs + ): + """Init.""" + + SingleGroupIndex.__init__(self, data, group_pop_var, total_pop_var) + if any([w, network, distance]): + SpatialImplicitIndex.__init__( + self, w, network, distance, decay, function, precompute + ) + aux = _interaction(self.data, self.group_pop_var, self.total_pop_var) + + self.statistic = aux[0] + self.data = aux[1] + self._function = _interaction
+
+ +
+ +
+ +
+
+ + + \ No newline at end of file diff --git a/_modules/segregation/singlegroup/isolation.html b/_modules/segregation/singlegroup/isolation.html new file mode 100644 index 00000000..e3dc0a59 --- /dev/null +++ b/_modules/segregation/singlegroup/isolation.html @@ -0,0 +1,251 @@ + + + + + + + segregation.singlegroup.isolation — segregation v2.5.2.dev2+g8090618 Manual + + + + + + + + + + + + + + + + + + + + + + + + +
+
+
+ +

Source code for segregation.singlegroup.isolation

+"""Isolation Segregation Index."""
+
+__author__ = "Renan X. Cortes <renanc@ucr.edu>, Sergio J. Rey <sergio.rey@ucr.edu> and Elijah Knaap <elijah.knaap@ucr.edu>"
+
+import geopandas as gpd
+import numpy as np
+
+from .._base import SingleGroupIndex, SpatialImplicitIndex
+
+
+def _isolation(data, group_pop_var, total_pop_var):
+    """Calculate Isolation index.
+
+    Parameters
+    ----------
+    data : pandas.DataFrame or geopandas.GeoDataFrame
+        Dataframe or geodataframe if spatial index holding data for location of interest
+    group_pop_var : string
+        Variable containing the population count of the group of interest
+    total_pop_var : string
+        Variable in data that contains the total population count of the unit
+
+    Returns
+    ----------
+    statistic : float
+        Isolation index statistic value
+    core_data : pandas.DataFrame
+        A pandas DataFrame that contains the columns used to perform the estimate.
+
+    Notes
+    -----
+    Based on Massey, Douglas S., and Nancy A. Denton. "The dimensions of residential segregation." Social forces 67.2 (1988): 281-315.
+
+    Reference: :cite:`massey1988dimensions`.
+    """
+    x = np.array(data[group_pop_var])
+    t = np.array(data[total_pop_var])
+
+    if any(t < x):
+        raise ValueError(
+            "Group of interest population must equal or lower than the total population of the units."
+        )
+
+    X = x.sum()
+    xPx = np.nansum((x / X) * (x / t))
+
+    if not isinstance(data, gpd.GeoDataFrame):
+        core_data = data[[group_pop_var, total_pop_var]]
+
+    else:
+        core_data = data[[group_pop_var, total_pop_var, data.geometry.name]]
+
+    return xPx, core_data
+
+
+
+[docs] +class Isolation(SingleGroupIndex, SpatialImplicitIndex): + """Isolation Index. + + Parameters + ---------- + data : pandas.DataFrame or geopandas.GeoDataFrame, required + dataframe or geodataframe if spatial index holding data for location of interest + group_pop_var : str, required + name of column on dataframe holding population totals for focal group + total_pop_var : str, required + name of column on dataframe holding total overall population + w : libpysal.weights.KernelW, optional + lipysal spatial kernel weights object used to define an egohood + network : pandana.Network + pandana Network object representing the study area + distance : int + Maximum distance (in units of geodataframe CRS) to consider the extent of the egohood + decay : str + type of decay function to apply. Options include + precompute : bool + Whether to precompute the pandana Network object + + Attributes + ---------- + statistic : float + Isolation Index + core_data : a pandas DataFrame + A pandas DataFrame that contains the columns used to perform the estimate. + + Notes + ----- + Based on Massey, Douglas S., and Nancy A. Denton. "The dimensions of residential segregation." Social forces 67.2 (1988): 281-315. + + Reference: :cite:`massey1988dimensions`. + """ + +
+[docs] + def __init__( + self, + data, + group_pop_var, + total_pop_var, + w=None, + network=None, + distance=None, + decay=None, + function="triangular", + precompute=None, + **kwargs + ): + """Init.""" + + SingleGroupIndex.__init__(self, data, group_pop_var, total_pop_var) + if any([w, network, distance]): + SpatialImplicitIndex.__init__( + self, w, network, distance, decay, function, precompute + ) + aux = _isolation(self.data, self.group_pop_var, self.total_pop_var) + + self.statistic = aux[0] + self.data = aux[1] + self._function = _isolation
+
+ +
+ +
+ +
+
+ + + \ No newline at end of file diff --git a/_modules/segregation/singlegroup/minmax.html b/_modules/segregation/singlegroup/minmax.html new file mode 100644 index 00000000..fc305133 --- /dev/null +++ b/_modules/segregation/singlegroup/minmax.html @@ -0,0 +1,259 @@ + + + + + + + segregation.singlegroup.minmax — segregation v2.5.2.dev2+g8090618 Manual + + + + + + + + + + + + + + + + + + + + + + + + +
+
+
+ +

Source code for segregation.singlegroup.minmax

+"""MinMax Segregation Index."""
+
+__author__ = "Renan X. Cortes <renanc@ucr.edu>, Sergio J. Rey <sergio.rey@ucr.edu> and Elijah Knaap <elijah.knaap@ucr.edu>"
+
+import geopandas as gpd
+import numpy as np
+
+from .._base import SingleGroupIndex, SpatialImplicitIndex
+
+
+def _min_max(data, group_pop_var, total_pop_var):
+    """MinMax Segregation index.
+
+    Parameters
+    ----------
+    data : pandas.DataFrame or geopandas.GeoDataFrame
+        Dataframe or geodataframe if spatial index holding data for location of interest
+    group_pop_var : string
+        Variable containing the population count of the group of interest
+    total_pop_var : string
+        Variable in data that contains the total population count of the unit
+
+    Returns
+    ----------
+    statistic : float
+        MinMax index statistic value
+    core_data : pandas.DataFrame
+        A pandas DataFrame that contains the columns used to perform the estimate.
+
+    Notes
+    -----
+    Based on O'Sullivan & Wong (2007). A Surface‐Based Approach to Measuring Spatial Segregation.
+    Geographical Analysis 39 (2). https://doi.org/10.1111/j.1538-4632.2007.00699.x
+
+    Reference: :cite:`osullivanwong2007surface`.
+
+    We'd like to thank @AnttiHaerkoenen for this contribution!
+
+    """
+    data["group_1_pop_var_norm"] = data[group_pop_var] / data[group_pop_var].sum()
+    data["group_2_pop_var_norm"] = (
+        data["group_2_pop_var"] / data["group_2_pop_var"].sum()
+    )
+
+    density_1 = data["group_1_pop_var_norm"].values
+    density_2 = data["group_2_pop_var_norm"].values
+    densities = np.vstack([density_1, density_2])
+    v_union = densities.max(axis=0).sum()
+    v_intersect = densities.min(axis=0).sum()
+
+    MM = 1 - v_intersect / v_union
+
+    if not isinstance(data, gpd.GeoDataFrame):
+        data = data[[group_pop_var, total_pop_var]]
+
+    else:
+        data = data[[group_pop_var, total_pop_var, data.geometry.name]]
+
+    return MM, data
+
+
+
+[docs] +class MinMax(SingleGroupIndex, SpatialImplicitIndex): + """Min-Max Index. + + Parameters + ---------- + data : pandas.DataFrame or geopandas.GeoDataFrame, required + dataframe or geodataframe if spatial index holding data for location of interest + group_pop_var : str, required + name of column on dataframe holding population totals for focal group + total_pop_var : str, required + name of column on dataframe holding total overall population + w : libpysal.weights.KernelW, optional + lipysal spatial kernel weights object used to define an egohood + network : pandana.Network + pandana Network object representing the study area + distance : int + Maximum distance (in units of geodataframe CRS) to consider the extent of the egohood + decay : str + type of decay function to apply. Options include + precompute : bool + Whether to precompute the pandana Network object + + Attributes + ---------- + statistic : float + MinMax Index + core_data : a pandas DataFrame + A pandas DataFrame that contains the columns used to perform the estimate. + + Notes + ----- + Based on O'Sullivan & Wong (2007). A Surface‐Based Approach to Measuring Spatial Segregation. + Geographical Analysis 39 (2). https://doi.org/10.1111/j.1538-4632.2007.00699.x + + Reference: :cite:`osullivanwong2007surface`. + + We'd like to thank @AnttiHaerkoenen for this contribution! + """ + +
+[docs] + def __init__( + self, + data, + group_pop_var, + total_pop_var, + w=None, + network=None, + distance=None, + decay=None, + function="triangular", + precompute=None, + **kwargs + ): + """Init.""" + SingleGroupIndex.__init__(self, data, group_pop_var, total_pop_var) + if any([w, network, distance]): + SpatialImplicitIndex.__init__( + self, w, network, distance, decay, function, precompute + ) + aux = _min_max(self.data, self.group_pop_var, self.total_pop_var) + + self.statistic = aux[0] + self.data = aux[1] + self._function = _min_max
+
+ +
+ +
+ +
+
+ + + \ No newline at end of file diff --git a/_modules/segregation/singlegroup/modified_dissim.html b/_modules/segregation/singlegroup/modified_dissim.html new file mode 100644 index 00000000..7a26b0fe --- /dev/null +++ b/_modules/segregation/singlegroup/modified_dissim.html @@ -0,0 +1,326 @@ + + + + + + + segregation.singlegroup.modified_dissim — segregation v2.5.2.dev2+g8090618 Manual + + + + + + + + + + + + + + + + + + + + + + + + +
+
+
+ +

Source code for segregation.singlegroup.modified_dissim

+"""Modified Dissimilarity Segregation Index."""
+
+__author__ = "Renan X. Cortes <renanc@ucr.edu>, Sergio J. Rey <sergio.rey@ucr.edu> and Elijah Knaap <elijah.knaap@ucr.edu>"
+
+import geopandas as gpd
+import numpy as np
+import pandas as pd
+from .._base import SingleGroupIndex, SpatialImplicitIndex
+from .dissim import _dissim
+from joblib import Parallel, delayed
+import multiprocessing
+
+
+def _modified_dissim(
+    data,
+    group_pop_var,
+    total_pop_var,
+    iterations=500,
+    n_jobs=-1,
+    backend="threading",
+    seed=None,
+):
+    """Calculate Modified Dissimilarity index.
+
+    Parameters
+    ----------
+    data : pandas.DataFrame or geopandas.GeoDataFrame
+        Dataframe or geodataframe if spatial index holding data for location of interest
+    group_pop_var : string
+        Variable containing the population count of the group of interest
+    total_pop_var : string
+        Variable in data that contains the total population count of the unit
+    iterations : int
+        The number of iterations the evaluate average classic dissimilarity under eveness.
+        Default value is 500.
+    n_jobs : int
+        [Optional. Default=-1] Number of processes to run in parallel. If -1,
+        this is set to the number of CPUs available
+    backend : str {'loky', 'threading'}
+        backend to pass into joblib's Parallel constructor. Default is "threading"
+    seed : int
+        random seed passed to np.random inside the parallelization constructor to return
+        consistent results
+
+    Returns
+    ----------
+    statistic : float
+        Modified Dissimilarity Index (Dissimilarity from Carrington and Troske (1997))
+    data : pandas.DataFrame
+        pandas DataFrame that contains the columns used to perform the estimate.
+
+    Notes
+    -----
+    Based on Carrington, William J., and Kenneth R. Troske. "On measuring segregation in samples with small units." Journal of Business & Economic Statistics 15.4 (1997): 402-409.
+
+    Reference: :cite:`carrington1997measuring`.
+
+    """
+    if not seed:
+        seed = np.random.randint(
+            0, 10e6
+        )  # is there a better practice for this? I think joblib will fail if None passed
+    if n_jobs == -1:
+        n_jobs = multiprocessing.cpu_count()
+    if type(iterations) is not int:
+        raise TypeError("iterations must be an integer")
+
+    if iterations < 2:
+        raise TypeError("iterations must be greater than 1.")
+
+    D = _dissim(data, group_pop_var, total_pop_var)[0]
+
+    x = data[group_pop_var].copy().astype(int).values
+    t = data[total_pop_var].copy().astype(int).values
+
+    p_null = x.sum() / t.sum()
+
+    def _gen_estimate(i):
+        data = i[0].copy()
+        p = i[1]
+        np.random.seed(i[2])
+        # generate synthetic population by drawing from a binomial distribution in each unit
+        # with n_draws == the total population and P(group_pop)= the total regional proportion
+        freq_sim = np.random.binomial(
+            n=data[total_pop_var].astype(int).values,
+            p=p,
+        )
+        # overwrite the group population with synthetic data and recompute the index
+        data[group_pop_var] = freq_sim
+        aux = _dissim(data, group_pop_var, total_pop_var)[0]
+        return aux
+
+    Ds = np.array(
+        Parallel(n_jobs=n_jobs, backend=backend)(
+            delayed(_gen_estimate)(
+                (
+                    data.copy(),
+                    p_null,
+                    seed,
+                )
+            )
+            for i in range(iterations)
+        )
+    )
+    D_star = Ds.mean()
+
+    if D >= D_star:
+        Dct = (D - D_star) / (1 - D_star)
+    else:
+        Dct = (D - D_star) / D_star
+
+    if not isinstance(data, gpd.GeoDataFrame):
+        core_data = data[[group_pop_var, total_pop_var]]
+
+    else:
+        core_data = data[[group_pop_var, total_pop_var, data.geometry.name]]
+
+    return Dct, core_data
+
+
+
+[docs] +class ModifiedDissim(SingleGroupIndex, SpatialImplicitIndex): + """Modified Dissimilarity Index. + + Parameters + ---------- + data : pandas.DataFrame or geopandas.GeoDataFrame, required + dataframe or geodataframe if spatial index holding data for location of interest + group_pop_var : str, required + name of column on dataframe holding population totals for focal group + total_pop_var : str, required + name of column on dataframe holding total overall population + w : libpysal.weights.KernelW, optional + lipysal spatial kernel weights object used to define an egohood + network : pandana.Network + pandana Network object representing the study area + distance : int + Maximum distance (in units of geodataframe CRS) to consider the extent of the egohood + decay : str + type of decay function to apply. Options include + precompute : bool + Whether to precompute the pandana Network object + + Attributes + ---------- + statistic : float + Modified Dissim Index + core_data : a pandas DataFrame + A pandas DataFrame that contains the columns used to perform the estimate. + + Notes + ----- + Based on Massey, Douglas S., and Nancy A. Denton. "The dimensions of residential segregation." Social forces 67.2 (1988): 281-315. + + Reference: :cite:`massey1988dimensions`. + """ + +
+[docs] + def __init__( + self, + data, + group_pop_var, + total_pop_var, + iterations=500, + w=None, + network=None, + distance=None, + decay="linear", + function="triangular", + precompute=None, + n_jobs=-1, + backend="threading", + **kwargs + ): + """Init.""" + + SingleGroupIndex.__init__(self, data, group_pop_var, total_pop_var) + if any([w, network, distance]): + SpatialImplicitIndex.__init__( + self, w, network, distance, decay, function, precompute + ) + aux = _modified_dissim( + self.data, + self.group_pop_var, + self.total_pop_var, + iterations, + backend=backend, + n_jobs=n_jobs, + ) + + self.statistic = aux[0] + self.data = aux[1] + self._function = _modified_dissim
+
+ +
+ +
+ +
+
+ + + \ No newline at end of file diff --git a/_modules/segregation/singlegroup/modified_gini.html b/_modules/segregation/singlegroup/modified_gini.html new file mode 100644 index 00000000..54fdc2f0 --- /dev/null +++ b/_modules/segregation/singlegroup/modified_gini.html @@ -0,0 +1,333 @@ + + + + + + + segregation.singlegroup.modified_gini — segregation v2.5.2.dev2+g8090618 Manual + + + + + + + + + + + + + + + + + + + + + + + + +
+
+
+ +

Source code for segregation.singlegroup.modified_gini

+"""Modified Gini Segregation Index."""
+
+__author__ = "Renan X. Cortes <renanc@ucr.edu>, Sergio J. Rey <sergio.rey@ucr.edu> and Elijah Knaap <elijah.knaap@ucr.edu>"
+
+import geopandas as gpd
+import numpy as np
+import pandas as pd
+from .._base import SingleGroupIndex, SpatialImplicitIndex
+from .gini import _gini_seg
+from tqdm.auto import tqdm
+from joblib import Parallel, delayed
+import multiprocessing
+from warnings import warn
+
+
+def _modified_gini(
+    data,
+    group_pop_var,
+    total_pop_var,
+    iterations=500,
+    backend="threading",
+    n_jobs=-1,
+    seed=None,
+):
+    """Calculate Modified Gini index.
+
+    Parameters
+    ----------
+    data : pandas.DataFrame or geopandas.GeoDataFrame
+        Dataframe or geodataframe if spatial index holding data for location of interest
+    group_pop_var : string
+        Variable containing the population count of the group of interest
+    total_pop_var : string
+        Variable in data that contains the total population count of the unit
+    iterations : int
+        The number of iterations the evaluate average classic dissimilarity under eveness.
+        Default value is 500.
+    n_jobs : int
+        [Optional. Default=-1] Number of processes to run in parallel. If -1,
+        this is set to the number of CPUs available
+    backend : str {'loky', 'threading'}
+        backend to pass into joblib's Parallel constructor.
+    seed : int
+        random seed passed to np.random inside the parallelization constructor to return
+        consistent results
+
+
+    Returns
+    ----------
+    statistic : float
+        Modified Gini Index (Gini from Carrington and Troske (1997))
+    data : pandas.DataFrame
+        pandas DataFrame that contains the columns used to perform the estimate.
+
+    Notes
+    -----
+    Based on Carrington, William J., and Kenneth R. Troske. "On measuring segregation in samples with small units." Journal of Business & Economic Statistics 15.4 (1997): 402-409.
+
+    Reference: :cite:`carrington1997measuring`.
+    """
+    if not seed:
+        seed = np.random.randint(
+            0, 10e6
+        )  # is there a better practice for this? I think joblib will fail if None passed
+    if n_jobs == -1:
+        n_jobs = multiprocessing.cpu_count()
+
+    D = _gini_seg(data, group_pop_var, total_pop_var)[0]
+
+    x = data[group_pop_var].values
+    t = data[total_pop_var].values.astype(int)
+
+    p_null = x.sum() / t.sum()
+
+    # Ds = np.empty(iterations)
+
+    def _gen_estimate(i):
+        n_retries = 5
+        try:
+            while n_retries > 0:
+                data = i[0]
+                n = i[1]
+                p = i[2]
+                np.random.seed(i[3])
+                freq_sim = np.random.binomial(
+                    n=n,
+                    p=p,
+                    size=(1, data.shape[0]),
+                ).tolist()[0]
+                data[group_pop_var] = freq_sim
+                aux = _gini_seg(data, group_pop_var, total_pop_var)[0]
+                return aux
+
+        except ValueError:
+            warn("Simulator generated invalid data. Redrawing")
+            n_retries -= 1
+
+    Ds = pd.Series(
+        Parallel(n_jobs=n_jobs, backend=backend)(
+            delayed(_gen_estimate)(
+                (
+                    data,
+                    np.array([t.tolist()]),
+                    np.array([[p_null] * data.shape[0]]),
+                    seed,
+                )
+            )
+            for i in range(iterations)
+        )
+    )
+
+    D_star = Ds.mean()
+
+    if D >= D_star:
+        Dct = (D - D_star) / (1 - D_star)
+    else:
+        Dct = (D - D_star) / D_star
+
+    if not isinstance(data, gpd.GeoDataFrame):
+        core_data = data[[group_pop_var, total_pop_var]]
+
+    else:
+        core_data = data[[group_pop_var, total_pop_var, data.geometry.name]]
+
+    return Dct, core_data
+
+
+
+[docs] +class ModifiedGini(SingleGroupIndex, SpatialImplicitIndex): + """Modified Gini Index. + + Parameters + ---------- + data : pandas.DataFrame or geopandas.GeoDataFrame, required + dataframe or geodataframe if spatial index holding data for location of interest + group_pop_var : str, required + name of column on dataframe holding population totals for focal group + total_pop_var : str, required + name of column on dataframe holding total overall population + w : libpysal.weights.KernelW, optional + lipysal spatial kernel weights object used to define an egohood + network : pandana.Network + pandana Network object representing the study area + distance : int + Maximum distance (in units of geodataframe CRS) to consider the extent of the egohood + decay : str + type of decay function to apply. Options include + precompute : bool + Whether to precompute the pandana Network object + + Attributes + ---------- + statistic : float + Modified Gini Index + core_data : a pandas DataFrame + A pandas DataFrame that contains the columns used to perform the estimate. + + Notes + ----- + Based on Massey, Douglas S., and Nancy A. Denton. "The dimensions of residential segregation." Social forces 67.2 (1988): 281-315. + + Reference: :cite:`massey1988dimensions`. + """ + +
+[docs] + def __init__( + self, + data, + group_pop_var, + total_pop_var, + iterations=500, + w=None, + network=None, + distance=None, + decay="linear", + function="triangular", + precompute=None, + backend="threading", + n_jobs=-1, + **kwargs + ): + """Init.""" + + SingleGroupIndex.__init__(self, data, group_pop_var, total_pop_var) + if any([w, network, distance]): + SpatialImplicitIndex.__init__( + self, w, network, distance, decay, function, precompute + ) + aux = _modified_gini( + self.data, + self.group_pop_var, + self.total_pop_var, + iterations, + backend=backend, + n_jobs=n_jobs, + ) + + self.statistic = aux[0] + self.data = aux[1] + self._function = _modified_gini
+
+ +
+ +
+ +
+
+ + + \ No newline at end of file diff --git a/_modules/segregation/singlegroup/par_dissim.html b/_modules/segregation/singlegroup/par_dissim.html new file mode 100644 index 00000000..bb1850c4 --- /dev/null +++ b/_modules/segregation/singlegroup/par_dissim.html @@ -0,0 +1,269 @@ + + + + + + + segregation.singlegroup.par_dissim — segregation v2.5.2.dev2+g8090618 Manual + + + + + + + + + + + + + + + + + + + + + + + + +
+
+
+ +

Source code for segregation.singlegroup.par_dissim

+"""Perimeter-Area Ratio Dissimilarity Index."""
+
+__author__ = "Renan X. Cortes <renanc@ucr.edu>, Sergio J. Rey <sergio.rey@ucr.edu> and Elijah Knaap <elijah.knaap@ucr.edu>"
+
+import numpy as np
+from sklearn.metrics.pairwise import manhattan_distances
+
+from .._base import SingleGroupIndex, SpatialExplicitIndex, _return_length_weighted_w
+from .dissim import _dissim
+
+
+def _perimeter_area_ratio_spatial_dissim(
+    data, group_pop_var, total_pop_var, standardize=True
+):
+    """Calculation of Perimeter/Area Ratio Spatial Dissimilarity index.
+
+    Parameters
+    ----------
+    data          : a geopandas DataFrame with a geometry column.
+    group_pop_var : string
+                    The name of variable in data that contains the population size of the group of interest
+    total_pop_var : string
+                    The name of variable in data that contains the total population of the unit
+    standardize   : boolean
+                    A condition for standardisation of the weights matrices.
+                    If True, the values of cij in the formulas gets standardized and the overall sum is 1.
+
+    Returns
+    ----------
+    statistic : float
+                Perimeter/Area Ratio Spatial Dissimilarity Index
+    core_data : a geopandas DataFrame
+                A geopandas DataFrame that contains the columns used to perform the estimate.
+
+    Notes
+    -----
+    Originally based on Wong, David WS. "Spatial indices of segregation." Urban studies 30.3 (1993): 559-572.
+
+    However, Tivadar, Mihai. "OasisR: An R Package to Bring Some Order to the World of Segregation Measurement." Journal of Statistical Software 89.1 (2019): 1-39.
+    points out that in Wong’s original there is an issue with the formula which is an extra division by 2 in the spatial interaction component.
+    This function follows the formula present in the first Appendix of Tivadar, Mihai. "OasisR: An R Package to Bring Some Order to the World of Segregation Measurement." Journal of Statistical Software 89.1 (2019): 1-39.
+
+    References: :cite:`wong1993spatial` and :cite:`tivadar2019oasisr`.
+
+    """
+    if type(standardize) is not bool:
+        raise TypeError("std is not a boolean object")
+
+    D = _dissim(data, group_pop_var, total_pop_var)[0]
+
+    # If a unit has zero population, the group of interest frequency is zero
+    data = data.assign(
+        pi=np.where(
+            data[total_pop_var] == 0, 0, data[group_pop_var] / data[total_pop_var]
+        )
+    )
+
+    if not standardize:
+        cij = _return_length_weighted_w(data).sparse.toarray()
+    else:
+        cij = _return_length_weighted_w(data).sparse.toarray()
+        cij = cij / cij.sum()
+
+    peri = data.length
+    ai = data.area
+
+    aux_sum = np.add(
+        np.array(list((peri / ai))),
+        np.array(list((peri / ai))).reshape((len(list((peri / ai))), 1)),
+    )
+
+    max_pa = max(peri / ai)
+
+    num = np.multiply(
+        np.multiply(manhattan_distances(data[["pi"]]), cij), aux_sum
+    ).sum()
+    den = 2 * max_pa
+
+    PARD = D - (num / den)
+    PARD
+
+    core_data = data[[group_pop_var, total_pop_var, data.geometry.name]]
+
+    return PARD, core_data
+
+
+
+[docs] +class PARDissim(SingleGroupIndex, SpatialExplicitIndex): + """Perimeter-Area Ratio Dissimilarity Index. + + Parameters + ---------- + data : pandas.DataFrame or geopandas.GeoDataFrame, required + dataframe or geodataframe if spatial index holding data for location of interest + group_pop_var : str, required + name of column on dataframe holding population totals for focal group + total_pop_var : str, required + name of column on dataframe holding total overall population + standardize : boolean + A condition for row standardisation of the weights matrices. If True, the values of cij in the formulas gets row standardized. + For the sake of comparison, the seg R package of Hong, Seong-Yun, David O'Sullivan, and Yukio Sadahiro. "Implementing spatial segregation measures in R." PloS one 9.11 (2014): e113767. + works by default with row standardization. + + Attributes + ---------- + statistic : float + PARDissim Index + core_data : a pandas DataFrame + A pandas DataFrame that contains the columns used to perform the estimate. + + Notes + ----- + Originally based on Wong, David WS. "Spatial indices of segregation." Urban studies 30.3 (1993): 559-572. + + However, Tivadar, Mihai. "OasisR: An R Package to Bring Some Order to the World of Segregation Measurement." Journal of Statistical Software 89.1 (2019): 1-39. + points out that in Wong’s original there is an issue with the formula which is an extra division by 2 in the spatial interaction component. + This function follows the formula present in the first Appendix of Tivadar, Mihai. "OasisR: An R Package to Bring Some Order to the World of Segregation Measurement." Journal of Statistical Software 89.1 (2019): 1-39. + + References: :cite:`wong1993spatial` and :cite:`tivadar2019oasisr`. + """ + +
+[docs] + def __init__( + self, data, group_pop_var, total_pop_var, w=None, standardize=True, **kwargs + ): + """Init.""" + SingleGroupIndex.__init__(self, data, group_pop_var, total_pop_var) + SpatialExplicitIndex.__init__(self,) + self.standardize = standardize + aux = _perimeter_area_ratio_spatial_dissim( + self.data, self.group_pop_var, self.total_pop_var, self.standardize + ) + + self.statistic = aux[0] + self.core_data = aux[1] + self._function = _perimeter_area_ratio_spatial_dissim
+
+ +
+ +
+ +
+
+ + + \ No newline at end of file diff --git a/_modules/segregation/singlegroup/relative_centralization.html b/_modules/segregation/singlegroup/relative_centralization.html new file mode 100644 index 00000000..20c35c0a --- /dev/null +++ b/_modules/segregation/singlegroup/relative_centralization.html @@ -0,0 +1,355 @@ + + + + + + + segregation.singlegroup.relative_centralization — segregation v2.5.2.dev2+g8090618 Manual + + + + + + + + + + + + + + + + + + + + + + + + +
+
+
+ +

Source code for segregation.singlegroup.relative_centralization

+"""Relative Centralization Index."""
+
+__author__ = "Renan X. Cortes <renanc@ucr.edu>, Sergio J. Rey <sergio.rey@ucr.edu> and Elijah Knaap <elijah.knaap@ucr.edu>"
+
+import numpy as np
+from scipy.ndimage import shift
+
+from .._base import SingleGroupIndex, SpatialExplicitIndex
+
+
+def _relative_centralization(
+    data, group_pop_var, total_pop_var, center="mean", metric="euclidean"
+):
+    """Calculate Relative Centralization index.
+
+    Parameters
+    ----------
+    data          : a geopandas DataFrame with a geometry column.
+    group_pop_var : string
+                    The name of variable in data that contains the population size of the group of interest
+    total_pop_var : string
+                    The name of variable in data that contains the total population of the unit
+    center        : string, two-dimension values (tuple, list, array) or integer.
+                    This defines what is considered to be the center of the spatial context under study.
+
+                    If string, this can be set to:
+
+                        "mean": the center longitude/latitude is the mean of longitudes/latitudes of all units.
+                        "median": the center longitude/latitude is the median of longitudes/latitudes of all units.
+                        "population_weighted_mean": the center longitude/latitude is the mean of longitudes/latitudes of all units weighted by the total population.
+                        "largest_population": the center longitude/latitude is the centroid of the unit with largest total population. If there is a tie in the maximum population, the mean of all coordinates will be taken.
+
+                    If tuple, list or array, this argument should be the coordinates of the desired center assuming longitude as first value and latitude second value. Therefore, in the form (longitude, latitude), if tuple, or [longitude, latitude] if list or numpy array.
+
+                    If integer, the center will be the centroid of the polygon from data corresponding to the integer interpreted as index.
+                    For example, if `center = 0` the centroid of the first row of data is used as center, if `center = 1` the second row will be used, and so on.
+    metric        : string. Can be 'euclidean' or 'haversine'. Default is 'euclidean'.
+                    The metric used for the distance between spatial units.
+                    If the projection of the CRS of the geopandas DataFrame field is in degrees, this should be set to 'haversine'.
+
+    Returns
+    ----------
+    statistic     : float
+                    Relative Centralization Index
+
+    core_data     : a geopandas DataFrame
+                    A geopandas DataFrame that contains the columns used to perform the estimate.
+
+    center_values : list
+                    The center, in the form [longitude, latitude], values used for the calculation of the centralization distances.
+
+    Notes
+    -----
+    Based on Massey, Douglas S., and Nancy A. Denton. "The dimensions of residential segregation." Social forces 67.2 (1988): 281-315.
+
+    A discussion of defining the center in this function can be found in https://github.com/pysal/segregation/issues/18.
+
+    """
+
+    if metric not in ["euclidean", "haversine"]:
+        raise ValueError("metric must one of 'euclidean', 'haversine'")
+
+    x = np.array(data[group_pop_var])
+    t = np.array(data[total_pop_var])
+
+    if any(t < x):
+        raise ValueError(
+            "Group of interest population must equal or lower than the total population of the units."
+        )
+
+    y = t - x
+
+    c_lons = np.array(data.centroid.x)
+    c_lats = np.array(data.centroid.y)
+
+    if isinstance(center, str):
+        if center not in [
+            "mean",
+            "median",
+            "population_weighted_mean",
+            "largest_population",
+        ]:
+            raise ValueError(
+                "The center string must one of 'mean', 'median', 'population_weighted_mean', 'largest_population'"
+            )
+
+        if center == "mean":
+            center_lon = c_lons.mean()
+            center_lat = c_lats.mean()
+
+        if center == "median":
+            center_lon = np.median(c_lons)
+            center_lat = np.median(c_lats)
+
+        if center == "population_weighted_mean":
+            center_lon = np.average(c_lons, weights=t)
+            center_lat = np.average(c_lats, weights=t)
+
+        if center == "largest_population":
+            center_lon = c_lons[np.where(t == t.max())].mean()
+            center_lat = c_lats[np.where(t == t.max())].mean()
+
+    if (
+        isinstance(center, tuple)
+        or isinstance(center, list)
+        or isinstance(center, np.ndarray)
+    ):
+        if np.array(center).shape != (2,):
+            raise ValueError("The center tuple/list/array must have length 2.")
+
+        center_lon = center[0]
+        center_lat = center[1]
+
+    if isinstance(center, int):
+        if (center > len(data) - 1) or (center < 0):
+            raise ValueError("The center index must by in the range of data.")
+
+        center_lon = data.iloc[[center]].centroid.x.values[0]
+        center_lat = data.iloc[[center]].centroid.y.values[0]
+
+    X = x.sum()
+    Y = y.sum()
+
+    dlon = c_lons - center_lon
+    dlat = c_lats - center_lat
+
+    if metric == "euclidean":
+        center_dist = np.sqrt((dlon) ** 2 + (dlat) ** 2)
+
+    if metric == "haversine":
+        center_dist = 2 * np.arcsin(
+            np.sqrt(
+                np.sin(dlat / 2) ** 2
+                + np.cos(center_lat) * np.cos(c_lats) * np.sin(dlon / 2) ** 2
+            )
+        )
+
+    if np.isnan(center_dist).sum() > 0:
+        raise ValueError(
+            "It not possible to determine the center distance for, at least, one unit. This is probably due to the magnitude of the number of the centroids. We recommend to reproject the geopandas DataFrame."
+        )
+
+    asc_ind = center_dist.argsort()
+
+    Xi = np.cumsum(x[asc_ind]) / X
+    Yi = np.cumsum(y[asc_ind]) / Y
+
+    RCE = np.nansum(shift(Xi, 1, cval=np.nan) * Yi) - np.nansum(
+        Xi * shift(Yi, 1, cval=np.nan)
+    )
+
+    core_data = data[[group_pop_var, total_pop_var, data.geometry.name]]
+
+    center_values = [center_lon, center_lat]
+
+    return RCE, core_data, center_values
+
+
+
+[docs] +class RelativeCentralization(SingleGroupIndex, SpatialExplicitIndex): + """Relative Centralization Index. + + Parameters + ---------- + data : pandas.DataFrame or geopandas.GeoDataFrame, required + dataframe or geodataframe if spatial index holding data for location of interest + group_pop_var : str, required + name of column on dataframe holding population totals for focal group + total_pop_var : str, required + name of column on dataframe holding total overall population + center : string, two-dimension values (tuple, list, array) or integer. + This defines what is considered to be the center of the spatial context under study. + If string, this can be set to: + + "mean": the center longitude/latitude is the mean of longitudes/latitudes of all units. + "median": the center longitude/latitude is the median of longitudes/latitudes of all units. + "population_weighted_mean": the center longitude/latitude is the mean of longitudes/latitudes of all units weighted by the total population. + "largest_population": the center longitude/latitude is the centroid of the unit with largest total population. If there is a tie in the maximum population, the mean of all coordinates will be taken. + metric : str + The metric used for the distance between spatial units. + If the projection of the CRS of the geopandas DataFrame field is in degrees, this should be set to 'haversine'. + + + Attributes + ---------- + statistic : float + RelativeCentralization Index + core_data : a pandas DataFrame + A pandas DataFrame that contains the columns used to perform the estimate. + + Notes + ----- + Based on Massey, Douglas S., and Nancy A. Denton. "The dimensions of residential segregation." Social forces 67.2 (1988): 281-315. + + A discussion of defining the center in this function can be found in https://github.com/pysal/segregation/issues/18. + + Reference: :cite:`massey1988dimensions`. + """ + +
+[docs] + def __init__( + self, + data, + group_pop_var, + total_pop_var, + center="mean", + metric="euclidean", + **kwargs, + ): + """Init.""" + SingleGroupIndex.__init__(self, data, group_pop_var, total_pop_var) + SpatialExplicitIndex.__init__(self,) + self.center = center + self.metric = metric + aux = _relative_centralization( + self.data, self.group_pop_var, self.total_pop_var, self.center, self.metric, + ) + + self.statistic = aux[0] + self.core_data = aux[1] + self.center_values = aux[2] + self._function = _relative_centralization
+
+ +
+ +
+ +
+
+ + + \ No newline at end of file diff --git a/_modules/segregation/singlegroup/relative_clustering.html b/_modules/segregation/singlegroup/relative_clustering.html new file mode 100644 index 00000000..5f685fc0 --- /dev/null +++ b/_modules/segregation/singlegroup/relative_clustering.html @@ -0,0 +1,255 @@ + + + + + + + segregation.singlegroup.relative_clustering — segregation v2.5.2.dev2+g8090618 Manual + + + + + + + + + + + + + + + + + + + + + + + + +
+
+
+ +

Source code for segregation.singlegroup.relative_clustering

+"""Relative Clustering Index."""
+
+__author__ = "Renan X. Cortes <renanc@ucr.edu>, Sergio J. Rey <sergio.rey@ucr.edu> and Elijah Knaap <elijah.knaap@ucr.edu>"
+
+import numpy as np
+import pandas as pd
+from ..util import generate_distance_matrix
+from .._base import SingleGroupIndex, SpatialExplicitIndex
+
+
+def _relative_clustering(data, group_pop_var, total_pop_var, alpha=0.6, beta=0.5):
+    """Calculate Relative Clustering index.
+
+    Parameters
+    ----------
+    data          : a geopandas DataFrame with a geometry column.
+    group_pop_var : string
+                    The name of variable in data that contains the population size of the group of interest
+    total_pop_var : string
+                    The name of variable in data that contains the total population of the unit
+    alpha         : float
+                    A parameter that estimates the extent of the proximity within the same unit. Default value is 0.6
+    beta          : float
+                    A parameter that estimates the extent of the proximity within the same unit. Default value is 0.5
+
+    Returns
+    ----------
+    statistic : float
+                Relative Clustering Index
+    core_data : a geopandas DataFrame
+                A geopandas DataFrame that contains the columns used to perform the estimate.
+
+    Notes
+    -----
+    Based on Massey, Douglas S., and Nancy A. Denton. "The dimensions of residential segregation." Social forces 67.2 (1988): 281-315.
+
+    The pairwise distance between unit i and itself is (alpha * area_of_unit_i) ^ beta.
+
+    Reference: :cite:`massey1988dimensions`.
+
+    """
+    if alpha < 0:
+        raise ValueError("alpha must be greater than zero.")
+
+    if beta < 0:
+        raise ValueError("beta must be greater than zero.")
+
+    data = data.assign(
+        xi=data[group_pop_var], yi=data[total_pop_var] - data[group_pop_var]
+    )
+
+    X = data.xi.sum()
+    Y = data.yi.sum()
+
+    dist = generate_distance_matrix(data)
+
+    np.fill_diagonal(dist, val=np.exp(-((alpha * data.area.values) ** (beta))))
+
+    c = 1 - dist.copy()  # proximity matrix
+    Pxx = (data.xi.values * data.xi.values * c).sum() / (X ** 2)
+    Pyy = (data.yi.values * data.yi.values * c).sum() / (Y ** 2)
+    RCL = (Pxx / Pyy) - 1
+
+    if np.isnan(RCL):
+        raise ValueError(
+            "It not possible to determine the distance between, at least, one pair of units. This is probably due to the magnitude of the number of the centroids. We recommend to reproject the geopandas DataFrame."
+        )
+
+    core_data = data[[group_pop_var, total_pop_var, data.geometry.name]]
+
+    return RCL, core_data
+
+
+
+[docs] +class RelativeClustering(SingleGroupIndex, SpatialExplicitIndex): + """Relative Clustering Index. + + Parameters + ---------- + data : pandas.DataFrame or geopandas.GeoDataFrame, required + dataframe or geodataframe if spatial index holding data for location of interest + group_pop_var : str, required + name of column on dataframe holding population totals for focal group + total_pop_var : str, required + name of column on dataframe holding total overall population + alpha : float + A parameter that estimates the extent of the proximity within the same unit. Default value is 0.6 + beta : float + A parameter that estimates the extent of the proximity within the same unit. Default value is 0.5 + + Attributes + ---------- + statistic : float + Relative Clustering Index + core_data : a pandas DataFrame + A pandas DataFrame that contains the columns used to perform the estimate. + + Notes + ----- + Based on Massey, Douglas S., and Nancy A. Denton. "The dimensions of residential segregation." Social forces 67.2 (1988): 281-315. + + The pairwise distance between unit i and itself is (alpha * area_of_unit_i) ^ beta. + + Reference: :cite:`massey1988dimensions`. + """ + +
+[docs] + def __init__( + self, data, group_pop_var, total_pop_var, alpha=0.6, beta=0.5, **kwargs, + ): + """Init.""" + SingleGroupIndex.__init__(self, data, group_pop_var, total_pop_var) + SpatialExplicitIndex.__init__(self,) + self.alpha = alpha + self.beta = beta + aux = _relative_clustering( + self.data, self.group_pop_var, self.total_pop_var, self.alpha, self.beta, + ) + + self.statistic = aux[0] + self.core_data = aux[1] + self._function = _relative_clustering
+
+ +
+ +
+ +
+
+ + + \ No newline at end of file diff --git a/_modules/segregation/singlegroup/relative_concentration.html b/_modules/segregation/singlegroup/relative_concentration.html new file mode 100644 index 00000000..c70efd36 --- /dev/null +++ b/_modules/segregation/singlegroup/relative_concentration.html @@ -0,0 +1,259 @@ + + + + + + + segregation.singlegroup.relative_concentration — segregation v2.5.2.dev2+g8090618 Manual + + + + + + + + + + + + + + + + + + + + + + + + +
+
+
+ +

Source code for segregation.singlegroup.relative_concentration

+"""Relative Concentration Index."""
+
+__author__ = "Renan X. Cortes <renanc@ucr.edu>, Sergio J. Rey <sergio.rey@ucr.edu> and Elijah Knaap <elijah.knaap@ucr.edu>"
+
+import numpy as np
+
+from .._base import SingleGroupIndex, SpatialExplicitIndex
+
+
+def _relative_concentration(data, group_pop_var, total_pop_var):
+    """Calculate Relative Concentration index.
+
+    Parameters
+    ----------
+    data          : a geopandas DataFrame with a geometry column.
+    group_pop_var : string
+                    The name of variable in data that contains the population size of the group of interest
+    total_pop_var : string
+                    The name of variable in data that contains the total population of the unit
+
+    Returns
+    ----------
+    statistic : float
+                Relative Concentration Index
+    core_data : a geopandas DataFrame
+                A geopandas DataFrame that contains the columns used to perform the estimate.
+
+
+    Notes
+    -----
+    Based on Massey, Douglas S., and Nancy A. Denton. "The dimensions of residential segregation." Social forces 67.2 (1988): 281-315.
+
+    Reference: :cite:`massey1988dimensions`.
+
+    """
+    x = np.array(data[group_pop_var])
+    t = np.array(data[total_pop_var])
+
+    if any(t < x):
+        raise ValueError(
+            "Group of interest population must equal or lower than the total population of the units."
+        )
+
+    area = np.array(data.area)
+
+    y = t - x
+
+    X = x.sum()
+    Y = y.sum()
+    T = t.sum()
+
+    # Create the indexes according to the area ordering
+    des_ind = (-area).argsort()
+    asc_ind = area.argsort()
+
+    # A discussion about the extraction of n1 and n2 can be found in https://github.com/pysal/segregation/issues/43
+    n1 = np.where(((np.cumsum(t[asc_ind]) / T) < X / T) == False)[0][0] + 1
+    n2_aux = np.where(((np.cumsum(t[des_ind]) / T) < X / T) == False)[0][0] + 1
+    n2 = len(data) - n2_aux
+
+    n = data.shape[0]
+    T1 = t[asc_ind][0:n1].sum()
+    T2 = t[asc_ind][n2:n].sum()
+
+    RCO = (
+        (
+            ((x[asc_ind] * area[asc_ind] / X).sum())
+            / ((y[asc_ind] * area[asc_ind] / Y).sum())
+        )
+        - 1
+    ) / (
+        (
+            ((t[asc_ind] * area[asc_ind])[0:n1].sum() / T1)
+            / ((t[asc_ind] * area[asc_ind])[n2:n].sum() / T2)
+        )
+        - 1
+    )
+
+    core_data = data[[group_pop_var, total_pop_var, data.geometry.name]]
+
+    return RCO, core_data
+
+
+
+[docs] +class RelativeConcentration(SingleGroupIndex, SpatialExplicitIndex): + """Relative Concentration Index. + + Parameters + ---------- + data : pandas.DataFrame or geopandas.GeoDataFrame, required + dataframe or geodataframe if spatial index holding data for location of interest + group_pop_var : str, required + name of column on dataframe holding population totals for focal group + total_pop_var : str, required + name of column on dataframe holding total overall population + + Attributes + ---------- + statistic : float + Relative Conrentration Index + core_data : a pandas DataFrame + A pandas DataFrame that contains the columns used to perform the estimate. + + Notes + ----- + Based on Massey, Douglas S., and Nancy A. Denton. "The dimensions of residential segregation." Social forces 67.2 (1988): 281-315. + + The pairwise distance between unit i and itself is (alpha * area_of_unit_i) ^ beta. + + Reference: :cite:`massey1988dimensions`. + """ + +
+[docs] + def __init__( + self, data, group_pop_var, total_pop_var, **kwargs, + ): + """Init.""" + SingleGroupIndex.__init__(self, data, group_pop_var, total_pop_var) + SpatialExplicitIndex.__init__(self,) + aux = _relative_concentration( + self.data, self.group_pop_var, self.total_pop_var, + ) + + self.statistic = aux[0] + self.core_data = aux[1] + self._function = _relative_concentration
+
+ +
+ +
+ +
+
+ + + \ No newline at end of file diff --git a/_modules/segregation/singlegroup/spatial_dissim.html b/_modules/segregation/singlegroup/spatial_dissim.html new file mode 100644 index 00000000..2da4b2ac --- /dev/null +++ b/_modules/segregation/singlegroup/spatial_dissim.html @@ -0,0 +1,265 @@ + + + + + + + segregation.singlegroup.spatial_dissim — segregation v2.5.2.dev2+g8090618 Manual + + + + + + + + + + + + + + + + + + + + + + + + +
+
+
+ +

Source code for segregation.singlegroup.spatial_dissim

+"""Spatial Dissimilarity Index."""
+
+__author__ = "Renan X. Cortes <renanc@ucr.edu>, Sergio J. Rey <sergio.rey@ucr.edu> and Elijah Knaap <elijah.knaap@ucr.edu>"
+
+import libpysal
+import numpy as np
+from libpysal.weights import Queen
+
+from .._base import SingleGroupIndex, SpatialExplicitIndex
+from .dissim import _dissim
+
+
+def _spatial_dissim(data, group_pop_var, total_pop_var, w=None, standardize=False):
+    """Calculate of Spatial Dissimilarity index.
+
+    Parameters
+    ----------
+    data : a geopandas DataFrame with a geometry column.
+    group_pop_var : string
+        The name of variable in data that contains the population size of the group of interest
+    total_pop_var : string
+        The name of variable in data that contains the total population of the unit
+    w : W
+        A PySAL weights object. If not provided, Queen contiguity matrix is used.
+    standardize  : boolean
+        A condition for row standardisation of the weights matrices. If True, the values of cij in the formulas gets row standardized.
+        For the sake of comparison, the seg R package of Hong, Seong-Yun, David O'Sullivan, and Yukio Sadahiro. "Implementing spatial segregation measures in R." PloS one 9.11 (2014): e113767.
+        works by default with row standardization.
+
+    Returns
+    ----------
+    statistic : float
+        Spatial Dissimilarity Index
+    core_data : a geopandas DataFrame
+        A geopandas DataFrame that contains the columns used to perform the estimate.
+
+    Notes
+    -----
+    Based on Morrill, R. L. (1991) "On the Measure of Geographic Segregation". Geography Research Forum.
+
+    Reference: :cite:`morrill1991measure`.
+
+    """
+    if type(standardize) is not bool:
+        raise TypeError("std is not a boolean object")
+
+    if w is None:
+        w_object = Queen.from_dataframe(data)
+    else:
+        w_object = w
+
+    if not issubclass(type(w_object), libpysal.weights.W):
+        raise TypeError("w is not a PySAL weights object")
+
+    D = _dissim(data, group_pop_var, total_pop_var)[0]
+
+    x = np.array(data[group_pop_var])
+    t = np.array(data[total_pop_var])
+
+    # If a unit has zero population, the group of interest frequency is zero
+    pi = np.where(t == 0, 0, x / t)
+
+    if not standardize:
+        cij = w_object.sparse.toarray()
+    else:
+        cij = w_object.sparse.toarray()
+        cij = cij / cij.sum(axis=1).reshape((cij.shape[0], 1))
+
+    # Inspired in (second solution): https://stackoverflow.com/questions/22720864/efficiently-calculating-a-euclidean-distance-matrix-using-numpy
+    # Distance Matrix
+    abs_dist = abs(pi[..., np.newaxis] - pi)
+
+    # manhattan_distances used to compute absolute distances
+    num = np.multiply(abs_dist, cij).sum()
+    den = cij.sum()
+    SD = D - num / den
+    SD
+
+    core_data = data[[group_pop_var, total_pop_var, data.geometry.name]]
+
+    return SD, core_data
+
+
+
+[docs] +class SpatialDissim(SingleGroupIndex, SpatialExplicitIndex): + """Spatial Dissimilarity Index. + + Parameters + ---------- + data : pandas.DataFrame or geopandas.GeoDataFrame, required + dataframe or geodataframe if spatial index holding data for location of interest + group_pop_var : str, required + name of column on dataframe holding population totals for focal group + total_pop_var : str, required + name of column on dataframe holding total overall population + w: libpysal.weights.W + pysal spatial weights object measuring connectivity between geographic units. If nNne, a Queen object will be created + standardize : boolean + A condition for row standardisation of the weights matrices. If True, the values of cij in the formulas gets row standardized. + For the sake of comparison, the seg R package of Hong, Seong-Yun, David O'Sullivan, and Yukio Sadahiro. "Implementing spatial segregation measures in R." PloS one 9.11 (2014): e113767. + works by default with row standardization. + + Attributes + ---------- + statistic : float + SpatialDissim Index + core_data : a pandas DataFrame + A pandas DataFrame that contains the columns used to perform the estimate. + + Notes + ----- + Based on Morrill, R. L. (1991) "On the Measure of Geographic Segregation". Geography Research Forum. + + Reference: :cite:`morrill1991measure`. + """ + +
+[docs] + def __init__( + self, data, group_pop_var, total_pop_var, w=None, standardize=False, **kwargs + ): + """Init.""" + SingleGroupIndex.__init__(self, data, group_pop_var, total_pop_var) + SpatialExplicitIndex.__init__(self,) + self.w = w + self.standardize = standardize + aux = _spatial_dissim( + self.data, self.group_pop_var, self.total_pop_var, self.w, self.standardize + ) + + self.statistic = aux[0] + self.core_data = aux[1] + self._function = _spatial_dissim
+
+ +
+ +
+ +
+
+ + + \ No newline at end of file diff --git a/_modules/segregation/singlegroup/spatial_prox_profile.html b/_modules/segregation/singlegroup/spatial_prox_profile.html new file mode 100644 index 00000000..a224d3a6 --- /dev/null +++ b/_modules/segregation/singlegroup/spatial_prox_profile.html @@ -0,0 +1,281 @@ + + + + + + + segregation.singlegroup.spatial_prox_profile — segregation v2.5.2.dev2+g8090618 Manual + + + + + + + + + + + + + + + + + + + + + + + + +
+
+
+ +

Source code for segregation.singlegroup.spatial_prox_profile

+"""Spatial Proximity Profile Segregation Index."""
+
+__author__ = "Renan X. Cortes <renanc@ucr.edu>, Sergio J. Rey <sergio.rey@ucr.edu> and Elijah Knaap <elijah.knaap@ucr.edu>"
+
+import numpy as np
+from libpysal.weights import Queen
+from scipy.sparse.csgraph import floyd_warshall
+from numba import njit
+from .._base import SingleGroupIndex, SpatialExplicitIndex
+
+
+def _spatial_prox_profile(data, group_pop_var, total_pop_var, w, m):
+    """Calculate Spatial Proximity Profile.
+
+    Parameters
+    ----------
+    data : geopandas.GeoDataFrame (required)
+        GeoDataFrame with valid geometry column and columns for group population and total population
+    group_pop_var : string
+        The name of variable in data that contains the population size of the group of interest
+    total_pop_var : string
+        The name of variable in data that contains the total population of the unit
+    w: libpysal.weights.W
+        pysal spatial weights object measuring connectivity between geographic units. If nNne, a Queen object will be created
+    m : int
+        a numeric value indicating the number of thresholds to be used. Default value is 1000.
+        A large value of m creates a smoother-looking graph and a more precise spatial proximity profile value but slows down the calculation speed.
+
+    Returns
+    ----------
+    statistic : float
+        Spatial Proximity Index
+    core_data : geopandas.GeoDataFrame
+        A GeoDataFrame that contains the columns used to perform the estimate.
+
+    Notes
+    -----
+    Based on Hong, Seong-Yun, and Yukio Sadahiro. "Measuring geographic segregation: a graph-based approach." Journal of Geographical Systems 16.2 (2014): 211-231.
+
+    Reference: :cite:`hong2014measuring`.
+
+    """
+    # Create the shortest distance path between two pair of units using Shimbel matrix.
+    # This step was well discussed in https://github.com/pysal/segregation/issues/5.
+    if not w:
+        w = Queen.from_dataframe(data)
+    delta = floyd_warshall(csgraph=w.sparse, directed=False)
+    group_vals = data[group_pop_var].to_numpy()
+    total_vals = data[total_pop_var].to_numpy()
+    
+    grid = np.linspace(0, 1, m)
+
+    @njit(fastmath=True, error_model="numpy")
+    def calc(grid):
+        def calculate_etat(t):
+            g_t_i = np.where(np.divide(group_vals, total_vals) >= t, True, False)
+            k = g_t_i.sum()
+
+            # i and j only varies in the units subset within the threshold in eta_t of Hong (2014).
+            sub_delta_ij = delta[g_t_i, :][:, g_t_i]
+
+            den = sub_delta_ij.sum()
+            eta_t = (k ** 2 - k) / den
+            return eta_t
+
+        results = np.empty(len(grid))
+        for i, est in enumerate(grid):
+            aux = calculate_etat(est)
+            results[i] = aux
+        return results
+
+    aux = calc(grid)
+    aux[aux == np.inf] = 0
+    aux[aux == -np.inf] = 0
+    curve = np.nan_to_num(aux, 0)
+
+    threshold = data[group_pop_var].sum() / data[total_pop_var].sum()
+    SPP = (
+        threshold
+        - ((curve[grid < threshold]).sum() / m - (curve[grid >= threshold]).sum() / m)
+    ) / (1 - threshold)
+
+    core_data = data[[group_pop_var, total_pop_var, data.geometry.name]]
+
+    return SPP, grid, curve, core_data
+
+
+
+[docs] +class SpatialProxProf(SingleGroupIndex, SpatialExplicitIndex): + """Spatial Proximity Profile Index. + + Parameters + ---------- + data : pandas.DataFrame or geopandas.GeoDataFrame, required + dataframe or geodataframe if spatial index holding data for location of interest + group_pop_var : str, required + name of column on dataframe holding population totals for focal group + total_pop_var : str, required + name of column on dataframe holding total overall population + w: libpysal.weights.W + pysal spatial weights object measuring connectivity between geographic units. If nNne, a Queen object will be created + m : int + a numeric value indicating the number of thresholds to be used. Default value is 1000. + A large value of m creates a smoother-looking graph and a more precise spatial proximity + profile value but slows down the calculation speed. + + Attributes + ---------- + statistic : float + Spatial Prox Profile Index + core_data : a pandas DataFrame + A pandas DataFrame that contains the columns used to perform the estimate. + + Notes + ----- + Based on Hong, Seong-Yun, and Yukio Sadahiro. "Measuring geographic segregation: a graph-based approach." Journal of Geographical Systems 16.2 (2014): 211-231. + + Reference: :cite:`hong2014measuring`. + """ + +
+[docs] + def __init__(self, data, group_pop_var, total_pop_var, w=None, m=1000, **kwargs): + """Init.""" + SingleGroupIndex.__init__(self, data, group_pop_var, total_pop_var) + SpatialExplicitIndex.__init__(self,) + self.m = m + self.w = w + aux = _spatial_prox_profile( + self.data, self.group_pop_var, self.total_pop_var, self.w, self.m + ) + + self.statistic = aux[0] + self.grid = aux[1] + self.curve = aux[2] + self.core_data = aux[3] + self._function = _spatial_prox_profile
+ + +
+[docs] + def plot(self): + """Plot the Spatial Proximity Profile.""" + try: + import matplotlib.pyplot as plt + except ImportError: + raise ImportError("This method relies on importing `matplotlib`") + graph = plt.scatter(self.grid, self.curve, s=0.1) + return graph
+
+ +
+ +
+ +
+
+ + + \ No newline at end of file diff --git a/_modules/segregation/singlegroup/spatial_proximity.html b/_modules/segregation/singlegroup/spatial_proximity.html new file mode 100644 index 00000000..34e9deea --- /dev/null +++ b/_modules/segregation/singlegroup/spatial_proximity.html @@ -0,0 +1,263 @@ + + + + + + + segregation.singlegroup.spatial_proximity — segregation v2.5.2.dev2+g8090618 Manual + + + + + + + + + + + + + + + + + + + + + + + + +
+
+
+ +

Source code for segregation.singlegroup.spatial_proximity

+"""Spatial Proximity Index."""
+
+__author__ = "Renan X. Cortes <renanc@ucr.edu>, Sergio J. Rey <sergio.rey@ucr.edu> and Elijah Knaap <elijah.knaap@ucr.edu>"
+
+import numpy as np
+from ..util import generate_distance_matrix
+
+from .._base import SingleGroupIndex, SpatialExplicitIndex
+
+
+def _spatial_proximity(data, group_pop_var, total_pop_var, alpha=0.6, beta=0.5):
+    """Calculate Spatial Proximity index.
+
+    Parameters
+    ----------
+    data          : a geopandas DataFrame with a geometry column.
+    group_pop_var : string
+                    The name of variable in data that contains the population size of the group of interest
+    total_pop_var : string
+                    The name of variable in data that contains the total population of the unit
+    alpha         : float
+                    A parameter that estimates the extent of the proximity within the same unit. Default value is 0.6
+    beta          : float
+                    A parameter that estimates the extent of the proximity within the same unit. Default value is 0.5
+    metric        : string. Can be 'euclidean' or 'haversine'. Default is 'euclidean'.
+                    The metric used for the distance between spatial units.
+                    If the projection of the CRS of the geopandas DataFrame field is in degrees, this should be set to 'haversine'.
+
+    Returns
+    ----------
+    statistic : float
+                Spatial Proximity Index
+    core_data : a geopandas DataFrame
+                A geopandas DataFrame that contains the columns used to perform the estimate.
+
+   Notes
+    -----
+    Based on Massey, Douglas S., and Nancy A. Denton. "The dimensions of residential segregation." Social forces 67.2 (1988): 281-315.
+
+    The pairwise distance between unit i and itself is (alpha * area_of_unit_i) ^ beta.
+
+    Reference: :cite:`massey1988dimensions`.
+
+    """
+    if alpha < 0:
+        raise ValueError("alpha must be greater than zero.")
+
+    if beta < 0:
+        raise ValueError("beta must be greater than zero.")
+
+    T = data[total_pop_var].sum()
+
+    data = data.assign(
+        xi=data[group_pop_var],
+        yi=data[total_pop_var] - data[group_pop_var],
+        ti=data[total_pop_var],
+    )
+
+    X = data.xi.sum()
+    Y = data.yi.sum()
+
+    dist = generate_distance_matrix(data)
+
+    np.fill_diagonal(dist, val=np.exp(-((alpha * data.area.values) ** (beta))))
+
+    c = 1 - dist.copy()  # proximity matrix
+
+    Pxx = ((np.array(data.xi) * c).T * np.array(data.xi)).sum() / X ** 2
+    Pyy = ((np.array(data.yi) * c).T * np.array(data.yi)).sum() / Y ** 2
+    Ptt = ((np.array(data.ti) * c).T * np.array(data.ti)).sum() / T ** 2
+    SP = (X * Pxx + Y * Pyy) / (T * Ptt)
+
+    core_data = data[[group_pop_var, total_pop_var, data.geometry.name]]
+
+    return SP, core_data
+
+
+
+[docs] +class SpatialProximity(SingleGroupIndex, SpatialExplicitIndex): + """Spatial Proximity Index. + + Parameters + ---------- + data : pandas.DataFrame or geopandas.GeoDataFrame, required + dataframe or geodataframe if spatial index holding data for location of interest + group_pop_var : str, required + name of column on dataframe holding population totals for focal group + total_pop_var : str, required + name of column on dataframe holding total overall population + alpha : float + A parameter that estimates the extent of the proximity within the same unit. Default value is 0.6 + beta : float + A parameter that estimates the extent of the proximity within the same unit. Default value is 0.5 + metric : string. Can be 'euclidean' or 'haversine'. Default is 'euclidean'. + The metric used for the distance between spatial units. + If the projection of the CRS of the geopandas DataFrame field is in degrees, this should be set to 'haversine'. + + + Attributes + ---------- + statistic : float + Spatial Proximity Index + core_data : a pandas DataFrame + A pandas DataFrame that contains the columns used to perform the estimate. + + Notes + ----- + Based on Massey, Douglas S., and Nancy A. Denton. "The dimensions of residential segregation." Social forces 67.2 (1988): 281-315. + + The pairwise distance between unit i and itself is (alpha * area_of_unit_i) ^ beta. + + Reference: :cite:`massey1988dimensions`. + """ + +
+[docs] + def __init__( + self, data, group_pop_var, total_pop_var, alpha=0.6, beta=0.5, **kwargs, + ): + """Init.""" + SingleGroupIndex.__init__(self, data, group_pop_var, total_pop_var) + SpatialExplicitIndex.__init__(self,) + self.alpha = alpha + self.beta = beta + aux = _spatial_proximity( + self.data, self.group_pop_var, self.total_pop_var, self.alpha, self.beta, + ) + + self.statistic = aux[0] + self.core_data = aux[1] + self._function = _spatial_proximity
+
+ +
+ +
+ +
+
+ + + \ No newline at end of file diff --git a/_sources/api.rst.txt b/_sources/api.rst.txt new file mode 100644 index 00000000..4dc67f6a --- /dev/null +++ b/_sources/api.rst.txt @@ -0,0 +1,148 @@ +.. _api_ref: + +.. currentmodule:: segregation + +API reference +============= + +Single Group Indices +--------------------- + +.. currentmodule:: segregation + +.. autosummary:: + :toctree: generated/ + + singlegroup.AbsoluteCentralization + singlegroup.AbsoluteClustering + singlegroup.AbsoluteConcentration + singlegroup.Atkinson + singlegroup.BiasCorrectedDissim + singlegroup.BoundarySpatialDissim + singlegroup.ConProf + singlegroup.CorrelationR + singlegroup.Delta + singlegroup.DensityCorrectedDissim + singlegroup.Dissim + singlegroup.DistanceDecayInteraction + singlegroup.DistanceDecayIsolation + singlegroup.Entropy + singlegroup.Gini + singlegroup.Interaction + singlegroup.Isolation + singlegroup.MinMax + singlegroup.ModifiedDissim + singlegroup.ModifiedGini + singlegroup.PARDissim + singlegroup.RelativeCentralization + singlegroup.RelativeClustering + singlegroup.RelativeConcentration + singlegroup.SpatialDissim + singlegroup.SpatialProximity + singlegroup.SpatialProxProf + +Multigroup Indices +--------------------- + +.. currentmodule:: segregation + +.. autosummary:: + :toctree: generated/ + + multigroup.GlobalDistortion + multigroup.MultiDissim + multigroup.MultiDivergence + multigroup.MultiDiversity + multigroup.MultiGini + multigroup.MultiInfoTheory + multigroup.MultiNormExposure + multigroup.MultiRelativeDiversity + multigroup.MultiSquaredCoefVar + multigroup.SimpsonsConcentration + multigroup.SimpsonsInteraction + +Local Indices +--------------------- + +.. currentmodule:: segregation + +.. autosummary:: + :toctree: generated/ + + local.LocalDistortion + local.LocalRelativeCentralization + local.MultiLocalDiversity + local.MultiLocalEntropy + local.MultiLocationQuotient + local.MultiLocalSimpsonInteraction + local.MultiLocalSimpsonConcentration + +Dynamics +--------------------- + +.. currentmodule:: segregation + +.. autosummary:: + :toctree: generated/ + + dynamics.compute_multiscalar_profile + dynamics.compute_divergence_profiles + +Batch Computation +--------------------- + +.. currentmodule:: segregation + +.. autosummary:: + :toctree: generated/ + + batch.batch_compute_singlegroup + batch.batch_compute_multigroup + batch.batch_multiscalar_singlegroup + batch.batch_multiscalar_multigroup + +Inference +--------------------- + +.. currentmodule:: segregation + +.. autosummary:: + :toctree: generated/ + + inference.SingleValueTest + inference.TwoValueTest + + inference.simulate_bootstrap_resample + inference.sim_composition + inference.sim_dual_composition + inference.simulate_evenness + inference.simulate_evenness_geo_permutation + inference.simulate_geo_permutation + inference.simulate_null + inference.simulate_person_permutation + inference.sim_share + inference.simulate_systematic_randomization + inference.simulate_systematic_geo_permutation + + +Decomposition +--------------------- + +.. currentmodule:: segregation + +.. autosummary:: + :toctree: generated/ + + decomposition.DecomposeSegregation + + +Network +--------------------- + +.. currentmodule:: segregation + +.. autosummary:: + :toctree: generated/ + + network.compute_travel_cost_matrix + network.project_network diff --git a/_sources/generated/segregation.batch.batch_compute_multigroup.rst.txt b/_sources/generated/segregation.batch.batch_compute_multigroup.rst.txt new file mode 100644 index 00000000..7ffd5666 --- /dev/null +++ b/_sources/generated/segregation.batch.batch_compute_multigroup.rst.txt @@ -0,0 +1,6 @@ +ο»Ώsegregation.batch.batch\_compute\_multigroup +============================================ + +.. currentmodule:: segregation.batch + +.. autofunction:: batch_compute_multigroup \ No newline at end of file diff --git a/_sources/generated/segregation.batch.batch_compute_singlegroup.rst.txt b/_sources/generated/segregation.batch.batch_compute_singlegroup.rst.txt new file mode 100644 index 00000000..af58b207 --- /dev/null +++ b/_sources/generated/segregation.batch.batch_compute_singlegroup.rst.txt @@ -0,0 +1,6 @@ +ο»Ώsegregation.batch.batch\_compute\_singlegroup +============================================= + +.. currentmodule:: segregation.batch + +.. autofunction:: batch_compute_singlegroup \ No newline at end of file diff --git a/_sources/generated/segregation.batch.batch_multiscalar_multigroup.rst.txt b/_sources/generated/segregation.batch.batch_multiscalar_multigroup.rst.txt new file mode 100644 index 00000000..626cf094 --- /dev/null +++ b/_sources/generated/segregation.batch.batch_multiscalar_multigroup.rst.txt @@ -0,0 +1,6 @@ +ο»Ώsegregation.batch.batch\_multiscalar\_multigroup +================================================ + +.. currentmodule:: segregation.batch + +.. autofunction:: batch_multiscalar_multigroup \ No newline at end of file diff --git a/_sources/generated/segregation.batch.batch_multiscalar_singlegroup.rst.txt b/_sources/generated/segregation.batch.batch_multiscalar_singlegroup.rst.txt new file mode 100644 index 00000000..3e583dba --- /dev/null +++ b/_sources/generated/segregation.batch.batch_multiscalar_singlegroup.rst.txt @@ -0,0 +1,6 @@ +ο»Ώsegregation.batch.batch\_multiscalar\_singlegroup +================================================= + +.. currentmodule:: segregation.batch + +.. autofunction:: batch_multiscalar_singlegroup \ No newline at end of file diff --git a/_sources/generated/segregation.decomposition.DecomposeSegregation.rst.txt b/_sources/generated/segregation.decomposition.DecomposeSegregation.rst.txt new file mode 100644 index 00000000..e87f753a --- /dev/null +++ b/_sources/generated/segregation.decomposition.DecomposeSegregation.rst.txt @@ -0,0 +1,23 @@ +ο»Ώsegregation.decomposition.DecomposeSegregation +============================================== + +.. currentmodule:: segregation.decomposition + +.. autoclass:: DecomposeSegregation + + + .. automethod:: __init__ + + + .. rubric:: Methods + + .. autosummary:: + + ~DecomposeSegregation.__init__ + ~DecomposeSegregation.plot + + + + + + \ No newline at end of file diff --git a/_sources/generated/segregation.dynamics.compute_divergence_profiles.rst.txt b/_sources/generated/segregation.dynamics.compute_divergence_profiles.rst.txt new file mode 100644 index 00000000..5a87b1c8 --- /dev/null +++ b/_sources/generated/segregation.dynamics.compute_divergence_profiles.rst.txt @@ -0,0 +1,6 @@ +ο»Ώsegregation.dynamics.compute\_divergence\_profiles +================================================== + +.. currentmodule:: segregation.dynamics + +.. autofunction:: compute_divergence_profiles \ No newline at end of file diff --git a/_sources/generated/segregation.dynamics.compute_multiscalar_profile.rst.txt b/_sources/generated/segregation.dynamics.compute_multiscalar_profile.rst.txt new file mode 100644 index 00000000..c53d552f --- /dev/null +++ b/_sources/generated/segregation.dynamics.compute_multiscalar_profile.rst.txt @@ -0,0 +1,6 @@ +ο»Ώsegregation.dynamics.compute\_multiscalar\_profile +================================================== + +.. currentmodule:: segregation.dynamics + +.. autofunction:: compute_multiscalar_profile \ No newline at end of file diff --git a/_sources/generated/segregation.inference.SingleValueTest.rst.txt b/_sources/generated/segregation.inference.SingleValueTest.rst.txt new file mode 100644 index 00000000..421372c2 --- /dev/null +++ b/_sources/generated/segregation.inference.SingleValueTest.rst.txt @@ -0,0 +1,23 @@ +ο»Ώsegregation.inference.SingleValueTest +===================================== + +.. currentmodule:: segregation.inference + +.. autoclass:: SingleValueTest + + + .. automethod:: __init__ + + + .. rubric:: Methods + + .. autosummary:: + + ~SingleValueTest.__init__ + ~SingleValueTest.plot + + + + + + \ No newline at end of file diff --git a/_sources/generated/segregation.inference.TwoValueTest.rst.txt b/_sources/generated/segregation.inference.TwoValueTest.rst.txt new file mode 100644 index 00000000..cfc06cd1 --- /dev/null +++ b/_sources/generated/segregation.inference.TwoValueTest.rst.txt @@ -0,0 +1,23 @@ +ο»Ώsegregation.inference.TwoValueTest +================================== + +.. currentmodule:: segregation.inference + +.. autoclass:: TwoValueTest + + + .. automethod:: __init__ + + + .. rubric:: Methods + + .. autosummary:: + + ~TwoValueTest.__init__ + ~TwoValueTest.plot + + + + + + \ No newline at end of file diff --git a/_sources/generated/segregation.inference.sim_composition.rst.txt b/_sources/generated/segregation.inference.sim_composition.rst.txt new file mode 100644 index 00000000..4b9e9d17 --- /dev/null +++ b/_sources/generated/segregation.inference.sim_composition.rst.txt @@ -0,0 +1,6 @@ +ο»Ώsegregation.inference.sim\_composition +====================================== + +.. currentmodule:: segregation.inference + +.. autofunction:: sim_composition \ No newline at end of file diff --git a/_sources/generated/segregation.inference.sim_dual_composition.rst.txt b/_sources/generated/segregation.inference.sim_dual_composition.rst.txt new file mode 100644 index 00000000..f19c46d1 --- /dev/null +++ b/_sources/generated/segregation.inference.sim_dual_composition.rst.txt @@ -0,0 +1,6 @@ +ο»Ώsegregation.inference.sim\_dual\_composition +============================================ + +.. currentmodule:: segregation.inference + +.. autofunction:: sim_dual_composition \ No newline at end of file diff --git a/_sources/generated/segregation.inference.sim_share.rst.txt b/_sources/generated/segregation.inference.sim_share.rst.txt new file mode 100644 index 00000000..5564defd --- /dev/null +++ b/_sources/generated/segregation.inference.sim_share.rst.txt @@ -0,0 +1,6 @@ +ο»Ώsegregation.inference.sim\_share +================================ + +.. currentmodule:: segregation.inference + +.. autofunction:: sim_share \ No newline at end of file diff --git a/_sources/generated/segregation.inference.simulate_bootstrap_resample.rst.txt b/_sources/generated/segregation.inference.simulate_bootstrap_resample.rst.txt new file mode 100644 index 00000000..d015973e --- /dev/null +++ b/_sources/generated/segregation.inference.simulate_bootstrap_resample.rst.txt @@ -0,0 +1,6 @@ +ο»Ώsegregation.inference.simulate\_bootstrap\_resample +=================================================== + +.. currentmodule:: segregation.inference + +.. autofunction:: simulate_bootstrap_resample \ No newline at end of file diff --git a/_sources/generated/segregation.inference.simulate_evenness.rst.txt b/_sources/generated/segregation.inference.simulate_evenness.rst.txt new file mode 100644 index 00000000..7743d65c --- /dev/null +++ b/_sources/generated/segregation.inference.simulate_evenness.rst.txt @@ -0,0 +1,6 @@ +ο»Ώsegregation.inference.simulate\_evenness +======================================== + +.. currentmodule:: segregation.inference + +.. autofunction:: simulate_evenness \ No newline at end of file diff --git a/_sources/generated/segregation.inference.simulate_evenness_geo_permutation.rst.txt b/_sources/generated/segregation.inference.simulate_evenness_geo_permutation.rst.txt new file mode 100644 index 00000000..0815cf9c --- /dev/null +++ b/_sources/generated/segregation.inference.simulate_evenness_geo_permutation.rst.txt @@ -0,0 +1,6 @@ +ο»Ώsegregation.inference.simulate\_evenness\_geo\_permutation +========================================================== + +.. currentmodule:: segregation.inference + +.. autofunction:: simulate_evenness_geo_permutation \ No newline at end of file diff --git a/_sources/generated/segregation.inference.simulate_geo_permutation.rst.txt b/_sources/generated/segregation.inference.simulate_geo_permutation.rst.txt new file mode 100644 index 00000000..74662481 --- /dev/null +++ b/_sources/generated/segregation.inference.simulate_geo_permutation.rst.txt @@ -0,0 +1,6 @@ +ο»Ώsegregation.inference.simulate\_geo\_permutation +================================================ + +.. currentmodule:: segregation.inference + +.. autofunction:: simulate_geo_permutation \ No newline at end of file diff --git a/_sources/generated/segregation.inference.simulate_null.rst.txt b/_sources/generated/segregation.inference.simulate_null.rst.txt new file mode 100644 index 00000000..4d430dad --- /dev/null +++ b/_sources/generated/segregation.inference.simulate_null.rst.txt @@ -0,0 +1,6 @@ +ο»Ώsegregation.inference.simulate\_null +==================================== + +.. currentmodule:: segregation.inference + +.. autofunction:: simulate_null \ No newline at end of file diff --git a/_sources/generated/segregation.inference.simulate_person_permutation.rst.txt b/_sources/generated/segregation.inference.simulate_person_permutation.rst.txt new file mode 100644 index 00000000..6f18c6ed --- /dev/null +++ b/_sources/generated/segregation.inference.simulate_person_permutation.rst.txt @@ -0,0 +1,6 @@ +ο»Ώsegregation.inference.simulate\_person\_permutation +=================================================== + +.. currentmodule:: segregation.inference + +.. autofunction:: simulate_person_permutation \ No newline at end of file diff --git a/_sources/generated/segregation.inference.simulate_systematic_geo_permutation.rst.txt b/_sources/generated/segregation.inference.simulate_systematic_geo_permutation.rst.txt new file mode 100644 index 00000000..958e2a4d --- /dev/null +++ b/_sources/generated/segregation.inference.simulate_systematic_geo_permutation.rst.txt @@ -0,0 +1,6 @@ +ο»Ώsegregation.inference.simulate\_systematic\_geo\_permutation +============================================================ + +.. currentmodule:: segregation.inference + +.. autofunction:: simulate_systematic_geo_permutation \ No newline at end of file diff --git a/_sources/generated/segregation.inference.simulate_systematic_randomization.rst.txt b/_sources/generated/segregation.inference.simulate_systematic_randomization.rst.txt new file mode 100644 index 00000000..8269d27d --- /dev/null +++ b/_sources/generated/segregation.inference.simulate_systematic_randomization.rst.txt @@ -0,0 +1,6 @@ +ο»Ώsegregation.inference.simulate\_systematic\_randomization +========================================================= + +.. currentmodule:: segregation.inference + +.. autofunction:: simulate_systematic_randomization \ No newline at end of file diff --git a/_sources/generated/segregation.local.LocalDistortion.rst.txt b/_sources/generated/segregation.local.LocalDistortion.rst.txt new file mode 100644 index 00000000..f2a295c4 --- /dev/null +++ b/_sources/generated/segregation.local.LocalDistortion.rst.txt @@ -0,0 +1,22 @@ +ο»Ώsegregation.local.LocalDistortion +================================= + +.. currentmodule:: segregation.local + +.. autoclass:: LocalDistortion + + + .. automethod:: __init__ + + + .. rubric:: Methods + + .. autosummary:: + + ~LocalDistortion.__init__ + + + + + + \ No newline at end of file diff --git a/_sources/generated/segregation.local.LocalRelativeCentralization.rst.txt b/_sources/generated/segregation.local.LocalRelativeCentralization.rst.txt new file mode 100644 index 00000000..2b1c6f58 --- /dev/null +++ b/_sources/generated/segregation.local.LocalRelativeCentralization.rst.txt @@ -0,0 +1,22 @@ +ο»Ώsegregation.local.LocalRelativeCentralization +============================================= + +.. currentmodule:: segregation.local + +.. autoclass:: LocalRelativeCentralization + + + .. automethod:: __init__ + + + .. rubric:: Methods + + .. autosummary:: + + ~LocalRelativeCentralization.__init__ + + + + + + \ No newline at end of file diff --git a/_sources/generated/segregation.local.MultiLocalDiversity.rst.txt b/_sources/generated/segregation.local.MultiLocalDiversity.rst.txt new file mode 100644 index 00000000..759d3967 --- /dev/null +++ b/_sources/generated/segregation.local.MultiLocalDiversity.rst.txt @@ -0,0 +1,22 @@ +ο»Ώsegregation.local.MultiLocalDiversity +===================================== + +.. currentmodule:: segregation.local + +.. autoclass:: MultiLocalDiversity + + + .. automethod:: __init__ + + + .. rubric:: Methods + + .. autosummary:: + + ~MultiLocalDiversity.__init__ + + + + + + \ No newline at end of file diff --git a/_sources/generated/segregation.local.MultiLocalEntropy.rst.txt b/_sources/generated/segregation.local.MultiLocalEntropy.rst.txt new file mode 100644 index 00000000..336e7567 --- /dev/null +++ b/_sources/generated/segregation.local.MultiLocalEntropy.rst.txt @@ -0,0 +1,22 @@ +ο»Ώsegregation.local.MultiLocalEntropy +=================================== + +.. currentmodule:: segregation.local + +.. autoclass:: MultiLocalEntropy + + + .. automethod:: __init__ + + + .. rubric:: Methods + + .. autosummary:: + + ~MultiLocalEntropy.__init__ + + + + + + \ No newline at end of file diff --git a/_sources/generated/segregation.local.MultiLocalSimpsonConcentration.rst.txt b/_sources/generated/segregation.local.MultiLocalSimpsonConcentration.rst.txt new file mode 100644 index 00000000..ac682acc --- /dev/null +++ b/_sources/generated/segregation.local.MultiLocalSimpsonConcentration.rst.txt @@ -0,0 +1,22 @@ +ο»Ώsegregation.local.MultiLocalSimpsonConcentration +================================================ + +.. currentmodule:: segregation.local + +.. autoclass:: MultiLocalSimpsonConcentration + + + .. automethod:: __init__ + + + .. rubric:: Methods + + .. autosummary:: + + ~MultiLocalSimpsonConcentration.__init__ + + + + + + \ No newline at end of file diff --git a/_sources/generated/segregation.local.MultiLocalSimpsonInteraction.rst.txt b/_sources/generated/segregation.local.MultiLocalSimpsonInteraction.rst.txt new file mode 100644 index 00000000..ae86e631 --- /dev/null +++ b/_sources/generated/segregation.local.MultiLocalSimpsonInteraction.rst.txt @@ -0,0 +1,22 @@ +ο»Ώsegregation.local.MultiLocalSimpsonInteraction +============================================== + +.. currentmodule:: segregation.local + +.. autoclass:: MultiLocalSimpsonInteraction + + + .. automethod:: __init__ + + + .. rubric:: Methods + + .. autosummary:: + + ~MultiLocalSimpsonInteraction.__init__ + + + + + + \ No newline at end of file diff --git a/_sources/generated/segregation.local.MultiLocationQuotient.rst.txt b/_sources/generated/segregation.local.MultiLocationQuotient.rst.txt new file mode 100644 index 00000000..496f4093 --- /dev/null +++ b/_sources/generated/segregation.local.MultiLocationQuotient.rst.txt @@ -0,0 +1,22 @@ +ο»Ώsegregation.local.MultiLocationQuotient +======================================= + +.. currentmodule:: segregation.local + +.. autoclass:: MultiLocationQuotient + + + .. automethod:: __init__ + + + .. rubric:: Methods + + .. autosummary:: + + ~MultiLocationQuotient.__init__ + + + + + + \ No newline at end of file diff --git a/_sources/generated/segregation.multigroup.GlobalDistortion.rst.txt b/_sources/generated/segregation.multigroup.GlobalDistortion.rst.txt new file mode 100644 index 00000000..5ab8ac91 --- /dev/null +++ b/_sources/generated/segregation.multigroup.GlobalDistortion.rst.txt @@ -0,0 +1,22 @@ +ο»Ώsegregation.multigroup.GlobalDistortion +======================================= + +.. currentmodule:: segregation.multigroup + +.. autoclass:: GlobalDistortion + + + .. automethod:: __init__ + + + .. rubric:: Methods + + .. autosummary:: + + ~GlobalDistortion.__init__ + + + + + + \ No newline at end of file diff --git a/_sources/generated/segregation.multigroup.MultiDissim.rst.txt b/_sources/generated/segregation.multigroup.MultiDissim.rst.txt new file mode 100644 index 00000000..416bb350 --- /dev/null +++ b/_sources/generated/segregation.multigroup.MultiDissim.rst.txt @@ -0,0 +1,22 @@ +ο»Ώsegregation.multigroup.MultiDissim +================================== + +.. currentmodule:: segregation.multigroup + +.. autoclass:: MultiDissim + + + .. automethod:: __init__ + + + .. rubric:: Methods + + .. autosummary:: + + ~MultiDissim.__init__ + + + + + + \ No newline at end of file diff --git a/_sources/generated/segregation.multigroup.MultiDivergence.rst.txt b/_sources/generated/segregation.multigroup.MultiDivergence.rst.txt new file mode 100644 index 00000000..a736dc20 --- /dev/null +++ b/_sources/generated/segregation.multigroup.MultiDivergence.rst.txt @@ -0,0 +1,22 @@ +ο»Ώsegregation.multigroup.MultiDivergence +====================================== + +.. currentmodule:: segregation.multigroup + +.. autoclass:: MultiDivergence + + + .. automethod:: __init__ + + + .. rubric:: Methods + + .. autosummary:: + + ~MultiDivergence.__init__ + + + + + + \ No newline at end of file diff --git a/_sources/generated/segregation.multigroup.MultiDiversity.rst.txt b/_sources/generated/segregation.multigroup.MultiDiversity.rst.txt new file mode 100644 index 00000000..e1d84c03 --- /dev/null +++ b/_sources/generated/segregation.multigroup.MultiDiversity.rst.txt @@ -0,0 +1,22 @@ +ο»Ώsegregation.multigroup.MultiDiversity +===================================== + +.. currentmodule:: segregation.multigroup + +.. autoclass:: MultiDiversity + + + .. automethod:: __init__ + + + .. rubric:: Methods + + .. autosummary:: + + ~MultiDiversity.__init__ + + + + + + \ No newline at end of file diff --git a/_sources/generated/segregation.multigroup.MultiGini.rst.txt b/_sources/generated/segregation.multigroup.MultiGini.rst.txt new file mode 100644 index 00000000..7fdc15b7 --- /dev/null +++ b/_sources/generated/segregation.multigroup.MultiGini.rst.txt @@ -0,0 +1,22 @@ +ο»Ώsegregation.multigroup.MultiGini +================================ + +.. currentmodule:: segregation.multigroup + +.. autoclass:: MultiGini + + + .. automethod:: __init__ + + + .. rubric:: Methods + + .. autosummary:: + + ~MultiGini.__init__ + + + + + + \ No newline at end of file diff --git a/_sources/generated/segregation.multigroup.MultiInfoTheory.rst.txt b/_sources/generated/segregation.multigroup.MultiInfoTheory.rst.txt new file mode 100644 index 00000000..d2d74148 --- /dev/null +++ b/_sources/generated/segregation.multigroup.MultiInfoTheory.rst.txt @@ -0,0 +1,22 @@ +ο»Ώsegregation.multigroup.MultiInfoTheory +====================================== + +.. currentmodule:: segregation.multigroup + +.. autoclass:: MultiInfoTheory + + + .. automethod:: __init__ + + + .. rubric:: Methods + + .. autosummary:: + + ~MultiInfoTheory.__init__ + + + + + + \ No newline at end of file diff --git a/_sources/generated/segregation.multigroup.MultiNormExposure.rst.txt b/_sources/generated/segregation.multigroup.MultiNormExposure.rst.txt new file mode 100644 index 00000000..616321fa --- /dev/null +++ b/_sources/generated/segregation.multigroup.MultiNormExposure.rst.txt @@ -0,0 +1,22 @@ +ο»Ώsegregation.multigroup.MultiNormExposure +======================================== + +.. currentmodule:: segregation.multigroup + +.. autoclass:: MultiNormExposure + + + .. automethod:: __init__ + + + .. rubric:: Methods + + .. autosummary:: + + ~MultiNormExposure.__init__ + + + + + + \ No newline at end of file diff --git a/_sources/generated/segregation.multigroup.MultiRelativeDiversity.rst.txt b/_sources/generated/segregation.multigroup.MultiRelativeDiversity.rst.txt new file mode 100644 index 00000000..9180fa49 --- /dev/null +++ b/_sources/generated/segregation.multigroup.MultiRelativeDiversity.rst.txt @@ -0,0 +1,22 @@ +ο»Ώsegregation.multigroup.MultiRelativeDiversity +============================================= + +.. currentmodule:: segregation.multigroup + +.. autoclass:: MultiRelativeDiversity + + + .. automethod:: __init__ + + + .. rubric:: Methods + + .. autosummary:: + + ~MultiRelativeDiversity.__init__ + + + + + + \ No newline at end of file diff --git a/_sources/generated/segregation.multigroup.MultiSquaredCoefVar.rst.txt b/_sources/generated/segregation.multigroup.MultiSquaredCoefVar.rst.txt new file mode 100644 index 00000000..1b30d02c --- /dev/null +++ b/_sources/generated/segregation.multigroup.MultiSquaredCoefVar.rst.txt @@ -0,0 +1,22 @@ +ο»Ώsegregation.multigroup.MultiSquaredCoefVar +========================================== + +.. currentmodule:: segregation.multigroup + +.. autoclass:: MultiSquaredCoefVar + + + .. automethod:: __init__ + + + .. rubric:: Methods + + .. autosummary:: + + ~MultiSquaredCoefVar.__init__ + + + + + + \ No newline at end of file diff --git a/_sources/generated/segregation.multigroup.SimpsonsConcentration.rst.txt b/_sources/generated/segregation.multigroup.SimpsonsConcentration.rst.txt new file mode 100644 index 00000000..3b4e07d1 --- /dev/null +++ b/_sources/generated/segregation.multigroup.SimpsonsConcentration.rst.txt @@ -0,0 +1,22 @@ +ο»Ώsegregation.multigroup.SimpsonsConcentration +============================================ + +.. currentmodule:: segregation.multigroup + +.. autoclass:: SimpsonsConcentration + + + .. automethod:: __init__ + + + .. rubric:: Methods + + .. autosummary:: + + ~SimpsonsConcentration.__init__ + + + + + + \ No newline at end of file diff --git a/_sources/generated/segregation.multigroup.SimpsonsInteraction.rst.txt b/_sources/generated/segregation.multigroup.SimpsonsInteraction.rst.txt new file mode 100644 index 00000000..502fd33c --- /dev/null +++ b/_sources/generated/segregation.multigroup.SimpsonsInteraction.rst.txt @@ -0,0 +1,22 @@ +ο»Ώsegregation.multigroup.SimpsonsInteraction +========================================== + +.. currentmodule:: segregation.multigroup + +.. autoclass:: SimpsonsInteraction + + + .. automethod:: __init__ + + + .. rubric:: Methods + + .. autosummary:: + + ~SimpsonsInteraction.__init__ + + + + + + \ No newline at end of file diff --git a/_sources/generated/segregation.network.compute_travel_cost_matrix.rst.txt b/_sources/generated/segregation.network.compute_travel_cost_matrix.rst.txt new file mode 100644 index 00000000..87fbd5c4 --- /dev/null +++ b/_sources/generated/segregation.network.compute_travel_cost_matrix.rst.txt @@ -0,0 +1,6 @@ +ο»Ώsegregation.network.compute\_travel\_cost\_matrix +================================================= + +.. currentmodule:: segregation.network + +.. autofunction:: compute_travel_cost_matrix \ No newline at end of file diff --git a/_sources/generated/segregation.network.project_network.rst.txt b/_sources/generated/segregation.network.project_network.rst.txt new file mode 100644 index 00000000..3301d88e --- /dev/null +++ b/_sources/generated/segregation.network.project_network.rst.txt @@ -0,0 +1,6 @@ +ο»Ώsegregation.network.project\_network +==================================== + +.. currentmodule:: segregation.network + +.. autofunction:: project_network \ No newline at end of file diff --git a/_sources/generated/segregation.singlegroup.AbsoluteCentralization.rst.txt b/_sources/generated/segregation.singlegroup.AbsoluteCentralization.rst.txt new file mode 100644 index 00000000..ee8f4de5 --- /dev/null +++ b/_sources/generated/segregation.singlegroup.AbsoluteCentralization.rst.txt @@ -0,0 +1,22 @@ +ο»Ώsegregation.singlegroup.AbsoluteCentralization +============================================== + +.. currentmodule:: segregation.singlegroup + +.. autoclass:: AbsoluteCentralization + + + .. automethod:: __init__ + + + .. rubric:: Methods + + .. autosummary:: + + ~AbsoluteCentralization.__init__ + + + + + + \ No newline at end of file diff --git a/_sources/generated/segregation.singlegroup.AbsoluteClustering.rst.txt b/_sources/generated/segregation.singlegroup.AbsoluteClustering.rst.txt new file mode 100644 index 00000000..c6938363 --- /dev/null +++ b/_sources/generated/segregation.singlegroup.AbsoluteClustering.rst.txt @@ -0,0 +1,22 @@ +ο»Ώsegregation.singlegroup.AbsoluteClustering +========================================== + +.. currentmodule:: segregation.singlegroup + +.. autoclass:: AbsoluteClustering + + + .. automethod:: __init__ + + + .. rubric:: Methods + + .. autosummary:: + + ~AbsoluteClustering.__init__ + + + + + + \ No newline at end of file diff --git a/_sources/generated/segregation.singlegroup.AbsoluteConcentration.rst.txt b/_sources/generated/segregation.singlegroup.AbsoluteConcentration.rst.txt new file mode 100644 index 00000000..b902b495 --- /dev/null +++ b/_sources/generated/segregation.singlegroup.AbsoluteConcentration.rst.txt @@ -0,0 +1,22 @@ +ο»Ώsegregation.singlegroup.AbsoluteConcentration +============================================= + +.. currentmodule:: segregation.singlegroup + +.. autoclass:: AbsoluteConcentration + + + .. automethod:: __init__ + + + .. rubric:: Methods + + .. autosummary:: + + ~AbsoluteConcentration.__init__ + + + + + + \ No newline at end of file diff --git a/_sources/generated/segregation.singlegroup.Atkinson.rst.txt b/_sources/generated/segregation.singlegroup.Atkinson.rst.txt new file mode 100644 index 00000000..363ca4bc --- /dev/null +++ b/_sources/generated/segregation.singlegroup.Atkinson.rst.txt @@ -0,0 +1,22 @@ +ο»Ώsegregation.singlegroup.Atkinson +================================ + +.. currentmodule:: segregation.singlegroup + +.. autoclass:: Atkinson + + + .. automethod:: __init__ + + + .. rubric:: Methods + + .. autosummary:: + + ~Atkinson.__init__ + + + + + + \ No newline at end of file diff --git a/_sources/generated/segregation.singlegroup.BiasCorrectedDissim.rst.txt b/_sources/generated/segregation.singlegroup.BiasCorrectedDissim.rst.txt new file mode 100644 index 00000000..b86224c2 --- /dev/null +++ b/_sources/generated/segregation.singlegroup.BiasCorrectedDissim.rst.txt @@ -0,0 +1,22 @@ +ο»Ώsegregation.singlegroup.BiasCorrectedDissim +=========================================== + +.. currentmodule:: segregation.singlegroup + +.. autoclass:: BiasCorrectedDissim + + + .. automethod:: __init__ + + + .. rubric:: Methods + + .. autosummary:: + + ~BiasCorrectedDissim.__init__ + + + + + + \ No newline at end of file diff --git a/_sources/generated/segregation.singlegroup.BoundarySpatialDissim.rst.txt b/_sources/generated/segregation.singlegroup.BoundarySpatialDissim.rst.txt new file mode 100644 index 00000000..fef3e57c --- /dev/null +++ b/_sources/generated/segregation.singlegroup.BoundarySpatialDissim.rst.txt @@ -0,0 +1,22 @@ +ο»Ώsegregation.singlegroup.BoundarySpatialDissim +============================================= + +.. currentmodule:: segregation.singlegroup + +.. autoclass:: BoundarySpatialDissim + + + .. automethod:: __init__ + + + .. rubric:: Methods + + .. autosummary:: + + ~BoundarySpatialDissim.__init__ + + + + + + \ No newline at end of file diff --git a/_sources/generated/segregation.singlegroup.ConProf.rst.txt b/_sources/generated/segregation.singlegroup.ConProf.rst.txt new file mode 100644 index 00000000..fe70dbed --- /dev/null +++ b/_sources/generated/segregation.singlegroup.ConProf.rst.txt @@ -0,0 +1,23 @@ +ο»Ώsegregation.singlegroup.ConProf +=============================== + +.. currentmodule:: segregation.singlegroup + +.. autoclass:: ConProf + + + .. automethod:: __init__ + + + .. rubric:: Methods + + .. autosummary:: + + ~ConProf.__init__ + ~ConProf.plot + + + + + + \ No newline at end of file diff --git a/_sources/generated/segregation.singlegroup.CorrelationR.rst.txt b/_sources/generated/segregation.singlegroup.CorrelationR.rst.txt new file mode 100644 index 00000000..3f1fc3bf --- /dev/null +++ b/_sources/generated/segregation.singlegroup.CorrelationR.rst.txt @@ -0,0 +1,22 @@ +ο»Ώsegregation.singlegroup.CorrelationR +==================================== + +.. currentmodule:: segregation.singlegroup + +.. autoclass:: CorrelationR + + + .. automethod:: __init__ + + + .. rubric:: Methods + + .. autosummary:: + + ~CorrelationR.__init__ + + + + + + \ No newline at end of file diff --git a/_sources/generated/segregation.singlegroup.Delta.rst.txt b/_sources/generated/segregation.singlegroup.Delta.rst.txt new file mode 100644 index 00000000..9ecf10fc --- /dev/null +++ b/_sources/generated/segregation.singlegroup.Delta.rst.txt @@ -0,0 +1,22 @@ +ο»Ώsegregation.singlegroup.Delta +============================= + +.. currentmodule:: segregation.singlegroup + +.. autoclass:: Delta + + + .. automethod:: __init__ + + + .. rubric:: Methods + + .. autosummary:: + + ~Delta.__init__ + + + + + + \ No newline at end of file diff --git a/_sources/generated/segregation.singlegroup.DensityCorrectedDissim.rst.txt b/_sources/generated/segregation.singlegroup.DensityCorrectedDissim.rst.txt new file mode 100644 index 00000000..fc4b7616 --- /dev/null +++ b/_sources/generated/segregation.singlegroup.DensityCorrectedDissim.rst.txt @@ -0,0 +1,22 @@ +ο»Ώsegregation.singlegroup.DensityCorrectedDissim +============================================== + +.. currentmodule:: segregation.singlegroup + +.. autoclass:: DensityCorrectedDissim + + + .. automethod:: __init__ + + + .. rubric:: Methods + + .. autosummary:: + + ~DensityCorrectedDissim.__init__ + + + + + + \ No newline at end of file diff --git a/_sources/generated/segregation.singlegroup.Dissim.rst.txt b/_sources/generated/segregation.singlegroup.Dissim.rst.txt new file mode 100644 index 00000000..d127cc3f --- /dev/null +++ b/_sources/generated/segregation.singlegroup.Dissim.rst.txt @@ -0,0 +1,22 @@ +ο»Ώsegregation.singlegroup.Dissim +============================== + +.. currentmodule:: segregation.singlegroup + +.. autoclass:: Dissim + + + .. automethod:: __init__ + + + .. rubric:: Methods + + .. autosummary:: + + ~Dissim.__init__ + + + + + + \ No newline at end of file diff --git a/_sources/generated/segregation.singlegroup.DistanceDecayInteraction.rst.txt b/_sources/generated/segregation.singlegroup.DistanceDecayInteraction.rst.txt new file mode 100644 index 00000000..1d57996e --- /dev/null +++ b/_sources/generated/segregation.singlegroup.DistanceDecayInteraction.rst.txt @@ -0,0 +1,22 @@ +ο»Ώsegregation.singlegroup.DistanceDecayInteraction +================================================ + +.. currentmodule:: segregation.singlegroup + +.. autoclass:: DistanceDecayInteraction + + + .. automethod:: __init__ + + + .. rubric:: Methods + + .. autosummary:: + + ~DistanceDecayInteraction.__init__ + + + + + + \ No newline at end of file diff --git a/_sources/generated/segregation.singlegroup.DistanceDecayIsolation.rst.txt b/_sources/generated/segregation.singlegroup.DistanceDecayIsolation.rst.txt new file mode 100644 index 00000000..c35bba5b --- /dev/null +++ b/_sources/generated/segregation.singlegroup.DistanceDecayIsolation.rst.txt @@ -0,0 +1,22 @@ +ο»Ώsegregation.singlegroup.DistanceDecayIsolation +============================================== + +.. currentmodule:: segregation.singlegroup + +.. autoclass:: DistanceDecayIsolation + + + .. automethod:: __init__ + + + .. rubric:: Methods + + .. autosummary:: + + ~DistanceDecayIsolation.__init__ + + + + + + \ No newline at end of file diff --git a/_sources/generated/segregation.singlegroup.Entropy.rst.txt b/_sources/generated/segregation.singlegroup.Entropy.rst.txt new file mode 100644 index 00000000..67af008a --- /dev/null +++ b/_sources/generated/segregation.singlegroup.Entropy.rst.txt @@ -0,0 +1,22 @@ +ο»Ώsegregation.singlegroup.Entropy +=============================== + +.. currentmodule:: segregation.singlegroup + +.. autoclass:: Entropy + + + .. automethod:: __init__ + + + .. rubric:: Methods + + .. autosummary:: + + ~Entropy.__init__ + + + + + + \ No newline at end of file diff --git a/_sources/generated/segregation.singlegroup.Gini.rst.txt b/_sources/generated/segregation.singlegroup.Gini.rst.txt new file mode 100644 index 00000000..7ebaf408 --- /dev/null +++ b/_sources/generated/segregation.singlegroup.Gini.rst.txt @@ -0,0 +1,22 @@ +ο»Ώsegregation.singlegroup.Gini +============================ + +.. currentmodule:: segregation.singlegroup + +.. autoclass:: Gini + + + .. automethod:: __init__ + + + .. rubric:: Methods + + .. autosummary:: + + ~Gini.__init__ + + + + + + \ No newline at end of file diff --git a/_sources/generated/segregation.singlegroup.Interaction.rst.txt b/_sources/generated/segregation.singlegroup.Interaction.rst.txt new file mode 100644 index 00000000..280c5389 --- /dev/null +++ b/_sources/generated/segregation.singlegroup.Interaction.rst.txt @@ -0,0 +1,22 @@ +ο»Ώsegregation.singlegroup.Interaction +=================================== + +.. currentmodule:: segregation.singlegroup + +.. autoclass:: Interaction + + + .. automethod:: __init__ + + + .. rubric:: Methods + + .. autosummary:: + + ~Interaction.__init__ + + + + + + \ No newline at end of file diff --git a/_sources/generated/segregation.singlegroup.Isolation.rst.txt b/_sources/generated/segregation.singlegroup.Isolation.rst.txt new file mode 100644 index 00000000..d9750906 --- /dev/null +++ b/_sources/generated/segregation.singlegroup.Isolation.rst.txt @@ -0,0 +1,22 @@ +ο»Ώsegregation.singlegroup.Isolation +================================= + +.. currentmodule:: segregation.singlegroup + +.. autoclass:: Isolation + + + .. automethod:: __init__ + + + .. rubric:: Methods + + .. autosummary:: + + ~Isolation.__init__ + + + + + + \ No newline at end of file diff --git a/_sources/generated/segregation.singlegroup.MinMax.rst.txt b/_sources/generated/segregation.singlegroup.MinMax.rst.txt new file mode 100644 index 00000000..99739114 --- /dev/null +++ b/_sources/generated/segregation.singlegroup.MinMax.rst.txt @@ -0,0 +1,22 @@ +ο»Ώsegregation.singlegroup.MinMax +============================== + +.. currentmodule:: segregation.singlegroup + +.. autoclass:: MinMax + + + .. automethod:: __init__ + + + .. rubric:: Methods + + .. autosummary:: + + ~MinMax.__init__ + + + + + + \ No newline at end of file diff --git a/_sources/generated/segregation.singlegroup.ModifiedDissim.rst.txt b/_sources/generated/segregation.singlegroup.ModifiedDissim.rst.txt new file mode 100644 index 00000000..1903fba3 --- /dev/null +++ b/_sources/generated/segregation.singlegroup.ModifiedDissim.rst.txt @@ -0,0 +1,22 @@ +ο»Ώsegregation.singlegroup.ModifiedDissim +====================================== + +.. currentmodule:: segregation.singlegroup + +.. autoclass:: ModifiedDissim + + + .. automethod:: __init__ + + + .. rubric:: Methods + + .. autosummary:: + + ~ModifiedDissim.__init__ + + + + + + \ No newline at end of file diff --git a/_sources/generated/segregation.singlegroup.ModifiedGini.rst.txt b/_sources/generated/segregation.singlegroup.ModifiedGini.rst.txt new file mode 100644 index 00000000..5d4de52e --- /dev/null +++ b/_sources/generated/segregation.singlegroup.ModifiedGini.rst.txt @@ -0,0 +1,22 @@ +ο»Ώsegregation.singlegroup.ModifiedGini +==================================== + +.. currentmodule:: segregation.singlegroup + +.. autoclass:: ModifiedGini + + + .. automethod:: __init__ + + + .. rubric:: Methods + + .. autosummary:: + + ~ModifiedGini.__init__ + + + + + + \ No newline at end of file diff --git a/_sources/generated/segregation.singlegroup.PARDissim.rst.txt b/_sources/generated/segregation.singlegroup.PARDissim.rst.txt new file mode 100644 index 00000000..f75b957f --- /dev/null +++ b/_sources/generated/segregation.singlegroup.PARDissim.rst.txt @@ -0,0 +1,22 @@ +ο»Ώsegregation.singlegroup.PARDissim +================================= + +.. currentmodule:: segregation.singlegroup + +.. autoclass:: PARDissim + + + .. automethod:: __init__ + + + .. rubric:: Methods + + .. autosummary:: + + ~PARDissim.__init__ + + + + + + \ No newline at end of file diff --git a/_sources/generated/segregation.singlegroup.RelativeCentralization.rst.txt b/_sources/generated/segregation.singlegroup.RelativeCentralization.rst.txt new file mode 100644 index 00000000..39b6420f --- /dev/null +++ b/_sources/generated/segregation.singlegroup.RelativeCentralization.rst.txt @@ -0,0 +1,22 @@ +ο»Ώsegregation.singlegroup.RelativeCentralization +============================================== + +.. currentmodule:: segregation.singlegroup + +.. autoclass:: RelativeCentralization + + + .. automethod:: __init__ + + + .. rubric:: Methods + + .. autosummary:: + + ~RelativeCentralization.__init__ + + + + + + \ No newline at end of file diff --git a/_sources/generated/segregation.singlegroup.RelativeClustering.rst.txt b/_sources/generated/segregation.singlegroup.RelativeClustering.rst.txt new file mode 100644 index 00000000..8b678bd1 --- /dev/null +++ b/_sources/generated/segregation.singlegroup.RelativeClustering.rst.txt @@ -0,0 +1,22 @@ +ο»Ώsegregation.singlegroup.RelativeClustering +========================================== + +.. currentmodule:: segregation.singlegroup + +.. autoclass:: RelativeClustering + + + .. automethod:: __init__ + + + .. rubric:: Methods + + .. autosummary:: + + ~RelativeClustering.__init__ + + + + + + \ No newline at end of file diff --git a/_sources/generated/segregation.singlegroup.RelativeConcentration.rst.txt b/_sources/generated/segregation.singlegroup.RelativeConcentration.rst.txt new file mode 100644 index 00000000..bea1836a --- /dev/null +++ b/_sources/generated/segregation.singlegroup.RelativeConcentration.rst.txt @@ -0,0 +1,22 @@ +ο»Ώsegregation.singlegroup.RelativeConcentration +============================================= + +.. currentmodule:: segregation.singlegroup + +.. autoclass:: RelativeConcentration + + + .. automethod:: __init__ + + + .. rubric:: Methods + + .. autosummary:: + + ~RelativeConcentration.__init__ + + + + + + \ No newline at end of file diff --git a/_sources/generated/segregation.singlegroup.SpatialDissim.rst.txt b/_sources/generated/segregation.singlegroup.SpatialDissim.rst.txt new file mode 100644 index 00000000..c218595a --- /dev/null +++ b/_sources/generated/segregation.singlegroup.SpatialDissim.rst.txt @@ -0,0 +1,22 @@ +ο»Ώsegregation.singlegroup.SpatialDissim +===================================== + +.. currentmodule:: segregation.singlegroup + +.. autoclass:: SpatialDissim + + + .. automethod:: __init__ + + + .. rubric:: Methods + + .. autosummary:: + + ~SpatialDissim.__init__ + + + + + + \ No newline at end of file diff --git a/_sources/generated/segregation.singlegroup.SpatialProxProf.rst.txt b/_sources/generated/segregation.singlegroup.SpatialProxProf.rst.txt new file mode 100644 index 00000000..f79402db --- /dev/null +++ b/_sources/generated/segregation.singlegroup.SpatialProxProf.rst.txt @@ -0,0 +1,23 @@ +ο»Ώsegregation.singlegroup.SpatialProxProf +======================================= + +.. currentmodule:: segregation.singlegroup + +.. autoclass:: SpatialProxProf + + + .. automethod:: __init__ + + + .. rubric:: Methods + + .. autosummary:: + + ~SpatialProxProf.__init__ + ~SpatialProxProf.plot + + + + + + \ No newline at end of file diff --git a/_sources/generated/segregation.singlegroup.SpatialProximity.rst.txt b/_sources/generated/segregation.singlegroup.SpatialProximity.rst.txt new file mode 100644 index 00000000..69f246f9 --- /dev/null +++ b/_sources/generated/segregation.singlegroup.SpatialProximity.rst.txt @@ -0,0 +1,22 @@ +ο»Ώsegregation.singlegroup.SpatialProximity +======================================== + +.. currentmodule:: segregation.singlegroup + +.. autoclass:: SpatialProximity + + + .. automethod:: __init__ + + + .. rubric:: Methods + + .. autosummary:: + + ~SpatialProximity.__init__ + + + + + + \ No newline at end of file diff --git a/_sources/index.rst.txt b/_sources/index.rst.txt index 68ae8673..9a743a54 100644 --- a/_sources/index.rst.txt +++ b/_sources/index.rst.txt @@ -1,20 +1,79 @@ -.. No Errors Test Project documentation master file, created by - sphinx-quickstart on Fri Aug 30 17:07:56 2019. - You can adapt this file completely to your liking, but it should at least - contain the root `toctree` directive. +Welcome to segregation's documentation! +======================================= -Welcome to No Errors Test Project's documentation! -================================================== +Open Source Segregation Analytics in PySAL! -.. toctree:: - :maxdepth: 2 - :caption: Hello World! +The PySAL `segregation` package provides a suite of tools for measuring segregation over time and space. + + +.. raw:: html +
+
+ + + + + + +
+
+
+
-Indices and tables -================== -* :ref:`genindex` -* :ref:`modindex` -* :ref:`search` +.. toctree:: + :hidden: + :maxdepth: 3 + :caption: Contents: + + Installation + API + References diff --git a/_sources/installation.rst.txt b/_sources/installation.rst.txt new file mode 100644 index 00000000..17c90498 --- /dev/null +++ b/_sources/installation.rst.txt @@ -0,0 +1,25 @@ +.. Installation + +Installation +=============== + +Note: segregation supports python 3.5 and 3.6 only. Please make sure that you are operating in a python 3 environment. + +i) `pip` directly running in the prompt:: + + pip install segregation + +ii) Using the `conda-forge` channel as described in https://github.com/conda-forge/segregation-feedstock:: + + conda config --add channels conda-forge + conda install segregation + +iii) Another recommended method for installing segregation is with anaconda (https://www.anaconda.com/download/). Clone this repository or download it manually then `cd` into the directory and run the following commands (this will install the development version):: + + conda env create -f environment.yml + source activate segregation + python setup.py develop + +iv) `pip` directly from this repository running in the prompt (if you experience an issue trying to install this way, take a look at this discussion: https://github.com/pysal/segregation/issues/15):: + + pip install git+https://github.com/pysal/segregation diff --git a/_sources/notebooks/01_singlegroup_indices.ipynb.txt b/_sources/notebooks/01_singlegroup_indices.ipynb.txt new file mode 100644 index 00000000..ded21c0f --- /dev/null +++ b/_sources/notebooks/01_singlegroup_indices.ipynb.txt @@ -0,0 +1,1101 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "id": "wrapped-little", + "metadata": {}, + "source": [ + "# Single-group Segregation Indices" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "id": "cloudy-printing", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Author: eli knaap\n", + "\n", + "Last updated: 2021-05-11\n", + "\n", + "Python implementation: CPython\n", + "Python version : 3.9.2\n", + "IPython version : 7.23.1\n", + "\n", + "segregation: 2.0.0\n", + "geopandas : 0.9.0\n", + "libpysal : 4.3.0\n", + "pandana : 0.6.1\n", + "\n" + ] + } + ], + "source": [ + "%load_ext watermark\n", + "%watermark -a 'eli knaap' -v -d -u -p segregation,geopandas,libpysal,pandana" + ] + }, + { + "cell_type": "markdown", + "id": "sixth-civilization", + "metadata": {}, + "source": [ + "Single-group indices are calculated using the `singlegroup` module" + ] + }, + { + "cell_type": "markdown", + "id": "disciplinary-colon", + "metadata": {}, + "source": [ + "### Data Prep" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "id": "identical-authentication", + "metadata": {}, + "outputs": [], + "source": [ + "import geopandas as gpd\n", + "import matplotlib.pyplot as plt\n", + "from libpysal.examples import load_example" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "id": "actual-valley", + "metadata": {}, + "outputs": [], + "source": [ + "# read in sacramento data from libpysal and reproject into an appropriate CRS\n", + "sacramento = gpd.read_file(load_example(\"Sacramento1\").get_path(\"sacramentot2.shp\"))\n", + "sacramento = sacramento.to_crs(sacramento.estimate_utm_crs())" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "id": "grand-manitoba", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
FIPSMSATOT_POPPOP_16POP_65WHITEBLACKASIANHISPMULTI_RA...EMP_FEMOCC_MANOCC_OFF1OCC_INFOHH_INCPOV_POPPOV_TOTHSG_VALPOLYIDgeometry
006061022001Sacramento550110775184961298233631...1187117663.0425294154614702259001POLYGON ((740409.853 4338451.728, 740199.864 4...
106061020106Sacramento2072396109160302839141...52238229.0195195820521602493002POLYGON ((753400.378 4347151.080, 753395.816 4...
206061020107Sacramento3633911126162490191841...69886197.003299236046681759003POLYGON ((758318.262 4352123.456, 758319.774 4...
306061020105Sacramento16832811541564055604...5195256.065455616831163023004POLYGON ((750839.595 4342678.807, 750805.840 4...
406061020200Sacramento5794127883051851713251229...1260155506.0595081557713421673005POLYGON ((670062.020 4311030.409, 670133.819 4...
\n", + "

5 rows Γ— 31 columns

\n", + "
" + ], + "text/plain": [ + " FIPS MSA TOT_POP POP_16 POP_65 WHITE BLACK ASIAN \\\n", + "0 06061022001 Sacramento 5501 1077 518 4961 29 82 \n", + "1 06061020106 Sacramento 2072 396 109 1603 0 28 \n", + "2 06061020107 Sacramento 3633 911 126 1624 9 0 \n", + "3 06061020105 Sacramento 1683 281 154 1564 0 55 \n", + "4 06061020200 Sacramento 5794 1278 830 5185 17 13 \n", + "\n", + " HISP MULTI_RA ... EMP_FEM OCC_MAN OCC_OFF1 OCC_INFO HH_INC POV_POP \\\n", + "0 336 31 ... 1187 117 663.0 42 52941 5461 \n", + "1 391 41 ... 522 38 229.0 19 51958 2052 \n", + "2 1918 41 ... 698 86 197.0 0 32992 3604 \n", + "3 60 4 ... 519 5 256.0 6 54556 1683 \n", + "4 251 229 ... 1260 155 506.0 59 50815 5771 \n", + "\n", + " POV_TOT HSG_VAL POLYID geometry \n", + "0 470 225900 1 POLYGON ((740409.853 4338451.728, 740199.864 4... \n", + "1 160 249300 2 POLYGON ((753400.378 4347151.080, 753395.816 4... \n", + "2 668 175900 3 POLYGON ((758318.262 4352123.456, 758319.774 4... \n", + "3 116 302300 4 POLYGON ((750839.595 4342678.807, 750805.840 4... \n", + "4 342 167300 5 POLYGON ((670062.020 4311030.409, 670133.819 4... \n", + "\n", + "[5 rows x 31 columns]" + ] + }, + "execution_count": 4, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "sacramento.head()" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "id": "assumed-hearing", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 5, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAuEAAAIFCAYAAAB8lSMGAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Z1A+gAAAACXBIWXMAABYlAAAWJQFJUiTwAAEAAElEQVR4nOzdd5ykWVXw8d9TuatzzjmnmZ2Z3Z3ZmdkEL4IiBoyICiiggCJJVPIr6AsSFDCQkaAiURBYdGHDpJ3d2Ymdc845V77vH9XT06G6u6q6QnfP+X4+s71d9YRbneo89zn3HE0phRBCCCGEECJydNEegBBCCCGEEHcbCcKFEEIIIYSIMAnChRBCCCGEiDAJwoUQQgghhIgwCcKFEEIIIYSIMAnChRBCCCGEiDAJwoUQQgghhIgwCcKFEEIIIYSIMAnChRBCCCGEiDAJwoUQQgghhIgwCcKFEEIIIYSIMAnChRBCCCGEiDAJwoUQQgghhIgwCcKFEEIIIYSIMAnCA6Bp2q9rmvZpTdPOa5o2r2ma0jTt62E4T72maV/VNG1A0zS7pmnjmqY9rWna74f6XEIIIYQQIvIM0R7AAfMe4CiwCAwCVaE+gaZprwa+ACwDPwR6gSSgDvgF4KuhPqcQQgghhIgsCcID81a8wXcn8DDwZCgPrmnaKbwBeCPwEqXU6KbnjaE8nxBCCCGEiA5JRwmAUupJpVSHUkr5u4+maa/QNO1JTdNmNE2zaZrWomnaezRNM/vY/O8APfC7mwPw1fM79zB8IYQQQgixT8hMeBhpmvZF4A/wzp5/F5gFTgEfBF6oadqLlFKu1W3zgAeB54EmTdMeBU4ACrgBPKmU8kT6NQghhBBCiNCTIDxMVnO7/wD4HvBKpdTKuuc+ALwfeBPwydWH71v92AE8ATyy6ZANmqa9XCnVGb5RCyGEEEKISJB0lPD5M8AF/MH6AHzVB4Ep4JXrHstY/fibQDXwciARKAO+BtQDP9I0zRTOQQshhBBCiPCTmfAw0DTNireKyiTwFk3TfG1mxxts36Zf9/G1Sqkfrn4+r2naq1a3vRf4NeA/wjFuIYQQQggRGRKEh0cyoAHpeNNO/DGz+tEO/Hj9E0oppWna9/EG4fcjQbgQQgghxIEm6SjhMbf68bpSStvp37p92lY/LmyzAPN2kB4TtlELIYQQQoiIkCA8DJRSi0ATUKtpWoqfu93Cm76Spmlapo/n61Y/9u59hEIIIYQQIpokCA+fTwAm4EuapiVtflLTtGRN047f/ny1VOFnVz/9O03TdOu2rQdejXeh57fDOGYhhBBCCBEBWgB9Z+56mqb9CvArq59mAS8GuoHzq49NKqXesW77fwLeCEwD/wP0AylAMfAQ8GWl1B+v294K/AxvLfHrwFN488p/DW8aytuVUp8Iy4sTQgghhBARI0F4ANbV995On1KqaNM+vwj8Md4FlUl4A/J+4H+BryulWjdtbwXeCfw23mDdBlwBPq6UeiwUr0MIIYQQQkSXBOFCCCGEEEJEmOSECyGEEEIIEWEShAshhBBCCBFhEoQLIYQQQggRYRKECyGEEEIIEWHStn4Xmqb1AAlIkxwhhBBCCLFRETCvlCoOdEcJwneXEBMTk1JdXe1v50shhBBCCHEXaGlpYWVlJah9JQjfXW91dXXK1atXoz0OIYQQQgixj5w4cYJr1671BrOv5IQLIYQQQggRYWEJwjVN+z1N09Tqv9cGsN9HNE37maZpA5qmrWiaNq1p2nVN096vaVrqDvtpmqa9StO0p1b3WdE0rUfTtG9qmlYRmlclhBBCCCFEaIQ8HUXTtHzg08AiEBfg7m8FrgGPA+NALHAK+ADwek3TTimlBjadzwJ8C/hFoA34d2AByAEeBCqA9iBfjhBCCCGEECEX0iBc0zQN+DIwBXwXeEeAh0hQStl8HPdvgHcBfwW8cdPTH8cbgP8/4D1KKc+mfY0BjkEIIYQQQoiwCnU6ypuBFwCvAZYC3dlXAL7qm6sfy9c/qGlaKfDHwBXg3ZsD8NVjOgMdhxBCCCGEEOEUsplwTdOqgQ8Dn1RKndM07QWhOjbwstWPtzY9/gq8FxJfARI0TXsZkI93Jv4JpVRnCMcghBBCCCFESIQkCNc0zQB8DejHmzay1+O9A28+eSJwL3AWbwD+4U2b3rf6MRHoAtYv3lSapv0L8GallNuPc25Xg7AqgKELIYQQQgixq1DNhL8POAacVUoFV7F8o3cAmes+/wnwaqXUxKbtMlY//jXw09X9eoH7gc/izR+fwLuwUwghhBBCiH1hzznhmqbdj3f2++NKqWf2PiRQSmUppTQgC3g5UAJc1zTt+KZN9asfR4BfVUo1KqUWlVJPAL8OeIC3aZpm8uOcJ3z9A1pD8ZqEEEIIIYS4bU9B+Lo0lHbgvSEZ0TpKqTGl1PeAn8ObavLVTZvMrH78yeYZeKXUTaAHiAeqQz02IYQQQgghgrXXmfA4vHW4qwHbugY9Cnj/6jafX33sH4I9iVKqD2gGajVNS1v3VNvqx9ltdr0dpMcEe24hhBBCCCFCba854Xbgi9s8dxxvnvgFvMHyXlNVclY/rl9k+TPgT4G6zRtrmmbmTknD3j2eWwghhBBCiJDZUxC+mgLisy29pmkfwBuEf0Up9YV1jxuBUsCplOpa93gVMKuUGt10HB3wQbyLMC8ppWbWPf0Y0A28WNO0FymlHl/33HvxVk15evMxhRBCCCGEiKaQt633Qy7QAvQBResefwnwUU3TzuEtNziFt0LKw3gXZo4Cr1t/IKWUQ9O0VwH/Czymadr3Vo97H/AQ3soorw/nixFCCCGEECJQ0QjCt/NT4HPAGeAokIS362Y73sWfn1JKTW/eSSl1QdO0e/HmoD+6ut/Y6rE+qJQajMTghRBCCCGE8FfYgnCl1AfwUZ9bKdULaD4ebwTeFOS5moHfCmZfIYQQQgghIm3PdcKFEEIIIYQQgdlP6ShCCCGEECIKPB4PDpsTp92JNT4GvUGPUorexgGmx2ZRHoXT7sRhc2JfceBYceCwOXHYnaRmJ/Oi33so2i/hwJEgXAghhBBiH1DKG+jalh0ojwf7igO3083i7DK2ZRsuhwuPR2FfdrCyaMPtdOFyurEt2ZmfXgDAvuxgcXYJAJfDhd3mwLHixGHbGDjbVxw4bwfUq8H3bTq9jpTsJFAwObRlOd4WRx+ukSA8CBKECyGEEELgDYI9HoVer8PtctPfMsTi3BIOmxOXw4XT7sLpcOFyuFAeDx6PQqfXMTsxj06nQ2/QsTS3zMqiDduSHduSzRv8rgt2PW4PiWnxzE3MMzE0vfbYgy8/yXOPXfcr6A03j9vD5KD/47At28M4msNLgnAhhBBCRJVnddbXseLAaXfhcrpwO904HS5WFm3YV7wzv8qjiIkzMze5wPzUIk67E6fDhWPFsRbkemd7HWszwLePa19x4LB7n3c53biddwJqAKW8M8dKKUqPFtHXPIDL6d5l5KHz4y/8LGLnCjUJwoMjQbgQQgghNlBKMTsxj23JjtPmDXR1Og2j2YBOr2NqZIbZ8Xnsy/YN6QyaTiOzIJ2JwSlmxmaZm1jwBsM2bzrE+vQHh82BbcnO4uwStqX9FcR13eyN9hAOlP32/TsoJAgXQggh7jIDbcN84vWf9QbBc0skpSVgtpoYbB8huyST/tYhFqYXoz1McUBIEB4cCcKFEEKIQ2ppbhmj2YDeoEen91Ylbn2uk0++4fN0N/SvbTfWO7H2/9Ojs5EepjjgJAgPjgThQgghxCHjsDkYaBvh3S/7MCVHCrjxRCOl9xSRkBrPlZ/ciPbwxAFktpooO1oEgNvlxmg20HixDaXAvmzH4/Gg00n7mUBIEC6EEEIcEkOdo/zs387zvU8/xvL8CkoppkdmAGi70hXl0YmDSilFXlkWjRdaNjyeX5WLTq+jv3UYp92FOcYUpREeTBKECyGEEAfczPgcT3/zGb76f7+1ViNaiFCwxsdQWJNL86W2Lc8Nd45gijGRlJGAyylBeKAkCBdCCCEOsB/8y//y2T//2oZmK0LsldFsQNPpKD1awK2nm7c8X3WyjOX5FRJS4rEmxuC0u6IwyoNNgnAhhBDigPrepx/jC3/17xKAi5CrPFFCw/kWnwE4wEDLMEvzy2ufO2yOSA3t0JAgXAghhDhAlFKc/+6zNF1q44efeRynQ2YgReg1Xmqn/uEaGrYJwpcXlsmryGawfQQAdwQbGx0WEoQLIYQQB4DT4eLHn/8pP/zcT+lrHoz2cMRdYKB1eNvnlNpYmtDllIvBQEkQLoQQQuxzSim+/N5v8O1P/DDaQxF3kbhEK7Njsz6fK6zNIzE1AaPFyEjXmOSEB0GCcCGEEGKf+4c//jyPfemJaA9D3CUMRj2V95bS29i/7TZ9Td67MZpOI6s4Q2bCgyBBuBBCCLFPLc0v89X/+y0JwEVEmK0myo8VM9A6tKUm+HYS0xMY7RnHJWsTAiZBuBBCCLEPTQ1P86FXfJImH/WZhQiFvIpskjMSUApMFgNNF9toOOd7IeZ20vNSmR2bk3SUIEgQLoQQQuxDX3z3NyQAFyGRmJHA3Pj8hseSMhKYHZtloGWQrOIMludXNiy09NftBj2SjhI4XbQHIIQQQoiNbp1v4dL3r0R7GOKAS85MJKsoDYNOo+5sJRUnSoiJswCQlpPMwvQi4J3Nnp9aCPj4CanxTAxOAUg6ShBkJlwIIYTYRwbahnnPyz4c1KykEOul56XQ9lwnAJND04A37zsjP4WOq91r2zWcb6H2TCWd13qwr/jXdKfmdAUTA1OM9U4AsDS3vMseYjMJwoUQQoh9YLB9mHf+3IeYHZ/DJY1PwqLq/jJcDhdmqxmP28NI9xizE/O773gAZRSkrgXg69mXHWuB83pNF9uoO1NF48XWHY9berQQg8lA86X2DY8vzkoQHigJwoUQQoh94L8/8/jabKXYu4LqXOISY9F0GprmnaltudyxZbu6M5U0XmpD0zSfx0nMSGR5bulALTzU6XVk5KUy1jMe0H5Nl9rILslkpHts220ssRafaxUkHSVwEoQLIYQQUTTcNcpPv36eH/zL/0Z7KIdGUW0+fU0DeDxq120bL7aRUZBGRkEqLc924nF7yCpOJyUrGeVR9LcMeo/XMoTDz1SNaMnITyU9L5XhrlEazvtXYnA9pRQpWUmMdI9RWJOHwWTAtmRnuHMEnV6H2+VBZ/C9nNDt9ux1+HcdCcKFEEKIKFmaW+YtD72f2fG5aA/lwMspycSaaGWoYwSdXvMrAL9tvH+S8f5JkjMTscRamBycZqTrzixy+/PdpOWl4IgxsjC9FI7hh0RCSpzf9b19MZoN6PQ6Kk6U0L4uZzyvIofhrlHSclNYmlum/sFqpkamGe68M2PuluooAZMgXAghhIiCW+ea+cTrPysB+B4U1uSRkBLHyqKNgbZhhjpH0el1dN3oC+p4M2NzgO/vx+TgNGXHilmaW8GzT2d9BzuG97R/xb2lPmfQB9u9x50cml5LmbLEmqk7W0XjBW8OucyEB05KFAohhBARtjCzyAd/+x8Y7to+91bsLibWwq1zLXRc61mrJhPOALnzeg/JmYkUVOdSdX8ZSvk/2x5umUXprCzY9nSM7lt9GM1Gv7a1LdlpvNBK5X2lgOSEB0OCcCGEECKCpkZm+IsX/w1zh7QqRyRtl58cTpOD0/Q1DdJyuYP8ylziU+IiPgZfUjITg983OwlLrJmye4px2p0B7Ts3uUBcohWHLbD9hAThQgghRMQ89c1LvPXh99N5vSfaQzkUdDrfFU0iZaB1CL1BT155dlTHAWAw6oPar+JECbPj89iW7EEt5hztGSe9IA2DSTKcAyVfMSGEECICrj/RwN++8lPRHsahoek0+pqHoj0MZkZnWZhaoPSeIrpu9EZtHC6nm6ziTDIK0rCvODBZjDSca95xH0usecMCzGD1NPRTdqx4z8e520gQLoQQQoRR25UuLv3gCt/+xA+jPZRDpe50JbfOBV8JJJRcTjfGCM0EG0wGSuoLMMWY0DSNlUUbg+3DtDzrbcwz1j8JQHp+Kmm5KTvWnk/PS2WgbW+LOW9bnpdmPYGSIFwIIYQIg/H+Sf7rn37Cf//L//rdCvwwyixKJzEtnrnJBZ+dGv1xewFkXGIsWcXp6A36fROA37YwE/7Shen5KRiMBr9mrycGpqi6v3THINxo8W8Rpj+W97go9G4kQbgQQggRYm1Xuvj46z5Db9NAtIcScdUny3E5XVisZsb6JhntHme0exxLrJn6s1VMj81hMOkZaB3eUMlE02B9sZGSI4WYYowYjHpGusdZnF3Gtmyn83pv5F+UH8I9E5xZlM7izBJLc/6fx2DaOci2xsfsdVhrVhZWQnasu4UE4UIIIUQIPfbFJ/j0n34Rl9Md7aFEjFKKyvtKGWgZpvmZdp/b2JbsG2avYxOt5FVk43Z5sFhNdN7sIy0nGZPFiFIqqvnVgaq8r5S257vQtPAtFE3PSw34ToLb5cZoNuC0by0fWHa8mLG+4O5M+LIsQXjAJAgXQgghQuTxr53ji+/+j7siAFdKUX+2CoCJwWnanusKaP+luWXarmzcZ7B9JGTjiySTxRTWABwI6vgtlzsorstnrHd8ywz69MgM0yOzIRodLM9LEB4oCcKFEEKIPXK7PXzsD/6ZJ79xMaB26QfB7WBb0zQ8SjE/uYDeoMe2ZKPhfGu0hxdV+VW5JKXF09u8f9OOehoHMJgM1J6tZnFmEWtCDB1Xu5mfXAjpeWQmPHAShAshhBBBGu+f5Mn/vMgPP/s4Y32T0R5OWKTlpd71wfZ29EYdjZfaInKuveScuxyuDWlC1SfL6GsawBVAfvlubIs2lFJhvyNwmEgQLoQQQgTh+pON/MXPfSjawwgbpRRHHqym8WJkgsyDyGQyUnK0EI/bQ09Df1gDUC2EjYk6rvWgEdo7Nh6Pwr7iwGI1h/S4h1lYgnBN034P+Orqp69TSn3Bz/0+AtwLVABpwArQB/wX8I9KqSk/jvFF4A9WPy1XSnUGNnohhBBiZ+MDk/zLW78S7WFskZGfSkZ+Gi6nm9mJOWITY4mJt6DcnrUZW5PF6HOhHkB8ShzpuSlYYs1oOt2+KwO436wvFZiWm0J2SQatz3WGZU2A2+XBYDKQnpdCYlo8TrsTk9mE3qBjemyOoc5Rvy8CPG4PKVlJTAyE9u7NysKKBOEBCHkQrmlaPvBpYBGIC3D3twLXgMeBcSAWOAV8AHi9pmmnlFLbJl5pmvYyvAF4MOcWQggh/DIzOrfvyg/Gp8RhibPQcMF36kj9Q9UAtD/fRXF9AXGJVgY7Rsgrz0YB81MLDHWM0jXZF8FRHx6TQ9NMDk2TW57NcNdoyI6raVBzqoKWy+24XW6GO0YY7ti6gLX2TBVNz7T7FYh7PIrkMAThywsrJGcmhfSYh1lIg3DN+53/MjAFfBd4R4CHSFBKban2rmna3wDvAv4KeOM2504HPg/8J5AFPBzguYUQQgi/2Ffs0R7CFrllWbRc7tj2+YZ1s9rdN+8E2qGskCFgfjo0Cx7zK3IwmvWMdI/ReGH3OxJNF1s58nANDRd8pw/FJVkprMlDp9Ph8XiwL4f+Z3hFGvYEJNQz4W8GXgA8svoxIL4C8FXfxBuEl++w++dWP74J+E6g5xZCCCH81du4f2bBq0+WoWk6Wi77rs8tIis9N4Xl+ZUNjYgCZbIYmZ+aY3Z8PqD9Gs61kFaQxuTgNLGJVopqvUE3QMfVLhrPhze9SCqkBCZkQbimadXAh4FPKqXOaZoWcBC+g5etfry1zblfDfwK8KtKqSlZmSuEECJcbMt2/uXtX919wwhIy0uh/WoPLofvHG8Red23+qk/W7Wnqill9xTRdDHwijRKKTLz07At2rDGW8IedG8mXTMDE5IgXNM0A/A1oB/vjPVej/cOvDndiXgXap7FG4B/2Me2hcAnga8rpf5rD+e8us1TVcEeUwghxOEy3j/J5/7i67hd4WvGk1uWhUd5GO4c2zG/V6fXYTAYJADfhxoutFLzQAW9TQOU3VNE48VWlJ/FSHR6HdMjM0Gfe7B9iLzy7KjcGbEt7b80rf1MF6LjvA84BrxaKRWKy6B3AO8H3oI3AP8J8HNKqQ39VTVN0wFfwbsQ880hOK8QQgixrcGOEc5/59mwHT81O5mVBRvDHWPUn60mJs7ic7vcsiyq7i9jpHssbGMRe9NxrYeE1HhunWuh5lSF3/vVPlAe9PfVZDGSX5UbtdSkFQnCA7LnIFzTtPvxzn5/XCn1zN6HBEqpLKWUhneB5cuBEuC6pmnHN236VrwLMF+nlAr+stF7zhO+/gHSoUAIIQQAn3n7V1H+TmkGqP5sFdMjM0ytzoI2nG+hqDaf5MzEtW2UUpSfKGFl0UaT1O/e15x2J6M94wCM9k349XNT+0AFt55uDvqclfeXbViAG2m2RVmYGYg9paOsS0NpB94bkhGto5QaA76nadq11XN8FahbPXc58DfAl5VSPw71uYUQQojbluaW6W8dwu0OXRpKUV0+cYmxsJpx0nqla0vL++Zn2klIjafiRAkDrcNYE2Nov9IVsjGIyJgcnCYuJZal2e07VMYlx9LXvLcFv9vVf4+UFQnCA7LXnPA4vI11AGzb5K59XtO0z+NdsPmWYE6ilOrTNK0ZuEfTtDSl1CRQC5iB12ia9pptdu1YHdOv7iVfXAghxN1jaX4Zg9FA57UefvYfF2i80MpIz3jIS7qZzEYa/Fg4Nz+1wPyUt+ydVJ84mDIK0pgY3LnfYHFtHg3nW9DpdcFXVgnTXRp/yc9nYPYahNuBL27z3HG8eeIXgDZgr6kqOasfb09D9O5w7pfiTWX5FjC/uq0QQgixo9bnOvm71/wTK4s2pob3lOW4hVKK8uMlGE0GnA4XbTKjfdeYHZ8jqzid0Z4NS9swxZjQ63WkZievpaFoOqg4UYLJYmJxbgmn3YVOp7Ewu8Ts2NyO54luCA62JZkJD8SegvDVRZiv9fWcpmkfwBuEf2V923pN04xAKeBUSnWte7wKmFVKjW46jg74IJABXLqd+62UurHDuZ/CG4S/S9rWCyGE8Mf3/+kn/NNb/jUsx45NtJJbliWB913KYXOSnpu6JQivPFHMUMcI81N36oF7PIr2q90+j1N3torGbTqiArid0U1HkZzwwIS8bb0fcoEWoA8oWvf4S4CPapp2DujC23UzE+/CyxJgFHhdREcqhBDirtHXMhTyY+aWZWEwGlicXZIA/C43Mz6PUmqt7GR+ZQ5tVzqxLzv8PsZQxwj5VbkYjHrikmNBsSGlKcrZKKzITHhAohGEb+eneLtengGOAknAEt4FmV8DPqWUmo7a6IQQQhxK89OLdFzrZnp0NuTHTspIoHGbNuLi7jLQOkR6QSqTg9OkZifjcbkDCsABZsbmmFmXkpJTlrX2/zqdFvWFkVInPDBhC8KVUh8APuDj8V7W1oJveLwRb8v5UJz7kVAcRwghxOHVfrWbf/jjz9F5ozfkxy6szUOnaVvSD8TdLa8si9SsJLpu9DJpd+75ePZlO/UPVq/lYndc69nzMfci2hcBB81+mgkXQgghIkIpxWD7cMgDcKUUZceK6W3ox+UMX1dNcTC5nG5an+0I2fGmhmeYGp7ZNVc8UmQmPDAShAshhLiruJwu/vaVn+LazxpCelylFBUnSml/XnK/hW9uV3guzOwrgaW1hIvMhAdGgnAhhBB3jZbLHXz6zV+i83pob9vHJcdSVJPvV91vcffqutlHfEocC9OLIT1uTKwlpMcLlpQoDMye29YLIYQQB8U/v+1fQx6AA+SWZ0kALnZlX3ZQVJsf8uPul6okko4SGJkJF0IIcejdOtfMhe89R/fNvpAfOzkrkdmx+d03FAJwu4LshulDbnk2iWnxND/THrJj7sWKdMwMiAThQgghDr1/edtX6brZG5Zj55Rm0Xg++ovixP6Xkp1E183Q3YlJyUraV3dgXE43DpsDk8UU7aEcCJKOIoQQ4lCbGZsNWwCeVZyB07b3UnPi7pCWkxJwbfAdaVsqPkfd0rzMhvtLgnAhhBCH1sz4HK+peWvIj5uclQh4m15IJ0zhr/ar3VSfKg/Z8QbbhkjLSQnZ8UJheX452kM4MCQIF0IIcShNDU/z7l/8MMshnplLTIvH4/JQfbKc4a6xkB5bHH7tV3uof6gmJMeaGZsjLX+/BeEyE+4vCcKFEEIcOj/50hN84nWfoach9AsxPR4POr0uLJ02xeHndnloON8aUCBuNBsxmo3Ep8ShN+g3PKc8KtRD3JNlWZzpN1mYKYQQ4lDputnLx1/7LwDUP1xD44W2kB5fbzDgtLtw7JMGKeLwKzlayHDnCAvTixTV5bM4u0RWUQZzkwv7LuhdWdgf5RIPAgnChRBCHCrX13XCbL7YRkFVDgDxKXE0Xdp7Kbf0vBTan+/e83HE3c3l8H9B70DL0Fqw3ds4AMDk4HRYxrVX0jXTfxKECyGEODQ++46v8u1P/Pfa526XG5RiZcmGNT7Gr2OU1BdgTbSyOLOEJdaMwain8WIbmk7DGheD0WwM1/DFXSI9P5WRbv/XE3jU/ko52YnUCvefBOFCCCEOBafDyWNf/NmWx/uaBwFISE3wuZ9aF+DUPlBJ06Wt6Su1pyuYHp0FoOliaNNbxN0jITWe/IosOq73BJTOlJyRyMgBmWHeb+kx+5kE4UIIIQ6shZlF+poHySrO4CdffIKlOd/l0cxWE71NAz6fO/JgNcsLK0wOzfgMwIGQpLEIUViTQ8O5wJvrpGQnBzRzHk2SE+4/CcKFEEIcWG6Xm/f98kdYmF7ccbvCmnw6rvdueEzTaaTlJDM5PMNw52gYRymEVzCVTIrq8ult6A/DaMJDZsL9JyUKhRBCHFhJ6YlUndy9+YnRsjWPu/K+Usb7pyQAFxHjcXsC2j4m3sLk0DRLB6gBjizM9J8E4UIIIQ60opq8Xbdx+GgtH58UG47hCOFTbIKVzus9Ae1TdqyYxZmlMI0oPFYWZSbcX5KOIoQQ4kCbnZzffSOliEuOJTU7mYSUWJx254GaXRQHn0d5KD9RSvetXr/zpj3ug1MV5TZJR/GfBOFCCCEONH/ybDuudlP/YDVoGreebgZAp9eh0+sCThEQIhgrCzaaLrWTmpNM2T3F9DT2+zHLffCCcJuko/hN0lGEEEIcaE67f01P2q50bqhhnJAaJwG4iLip4RkaLrSh0+up3mU9w+y4H3d59pllqY7iN5kJF0IIcaANto/4tZ3D5tyQk+t2edB0WlAVK4TYq/mpRVJzU3bcxrYUnYDWZDFispgwmA0YTd5/BpMBnV6HwahHZ9Cj0+nQ6TV0mg50oGkaGhqJ6b7r8YutJAgXQghxYLndbqZHZoLad2F6kcyidNJyU6UOuIgKj9O94/M5pVlMDQf28117phKdXgfK24hKrX70uD24XW7vP6cbl9OFy+H96LS7cDqcOG1OXE43DpvT52Jmf6TtcmEh7pAgXAghxIE01DnCdz7xQ2bG5oI+xljvBPHJcSEclRD+m5taoPx4CR3Xun0+r+m0gI85MTDFeP/kXocWNFmY6T8JwoUQQhxI4/2TnP/us9EehhBBmx2fZ3Z8nqziTFJzktHrdSzMLLI0v0x6bmpAx6q4rxSAqaHpcAzVb7ZFG0opNC3wC4i7jQThQgghDqTaM1UcfaSGp7/5zJ6OY4oxhWhEQgRntHeC0d6JDY+N909TeW+JX/sbjHrar3SFY2gB83gUtmU7MbGWaA9l35PqKEIIIQ4cj8fDHx19+54DcID2K52UHyva+6CECLHRnjG/tnM53cQmWsM8Gv+tSEqKXyQIF0IIceC0XO4gozA9JMdyOd3ExMmsndh/PMr/yj1G8/5JbpDW9f7ZP98xIYQQwg9ul5t3/cLfsDwfutm2QIIdISIltzQbT7GH9ud3TzXRG/QRGJF/JAj3j8yECyGEOFAe+9ITIa/tPdI1Sl5ldkiPKcRetV7pov1qDwXVeT6fr3+wmrikWDRNC7iUYTitSMMev0gQLoQQ4sBwOpx89QPfpORIYUiPOzU8gzXOgt4gb4ti/9kuXUopxeLsEmqf3cmRMoX+kXQUIYQQB8Zg2zAzo7OsLKyQlJHI7HjwNcI3a3++i/yqXAba/OvAKUSktD3fTdX95Wt537eb8EwMTEV5ZL7Jwkz/SBAuhBDiQGh7voufff0cALYlO6k5KSENwgFcDldIjydEqCilGOwYYWZ0NtpD2dWypKP4RYJwIYTYhyaHp7n2+C3ue8k9JGcmRXs4UWdfsTPWN8H3PvXjtcdSspMY6gjtrPXC9CIoBdJoRESYwWTAaDZgMOrRG/QYDAaMFoP3caMeTadhWzoYwa3MhPtHgnAhhNhHnA4n3//Hn/Cld/8HTruTV77713j1B3872sOKuj+seSvWhBjKjxfTca3H++BqGmxsUiw5pZmYzEYcdicdV323APfH4uwSpceK6brRF4JRC7G99LwUZkZncDndALjsDlx2h89tK+8ro69p4MBUHZGccP9IEC6EEPvI4189x2ff8dW1z7/z9z9kpGeMP/x/ryQjPy2KI4uepfllxvrudBOsuLeE9ue76bjWTUJqPLYl21rgrdNp5FVkM9ge/Ay52SIdNEWYrLvLYluyrQXg2zFbTZQfL6HxQmskRhcytgNysRBtEoQLIUSUuV1uvvye/8ASa+G5x65teM62bOeJf7/AtZ828I3Bz+6rWsDh5na5+enXz3HjycYNjxvN3iDZtmTHtmTf8JzHoxhsH6HkSCHdtwKbzdbpdRTV5rM4t7y3gYuIqn+wipnRWSxxZkxmI3qjAQ1v7XePW+Fxu3G7PLhcbjxuD44VB06bC5fThd6ox+Vw4bS7cNgc3jUBO6UiKUVcUizxqXGYrSb0Bj16vR6dXkOn16HpNDTtzj9QoMC+4qDjWjcetyIuyUpCSvyGC0tfyo4VMzc5f+ACcJCZcH9JEC6EEFHk8Xj49J98kR997vEdt5sdn6OnsZ+ye4ojNLKd/duHvkNaXgovfvWjYTtHx7VuPvYH/7zl8YHWoV33DaaFd+V9ZbQ82xnwfiJ6Ku4tofN6d0jrUpvMBoxmozc/22TEaDKgN+ixLduZm5hncXaRxdnFoI+/OLPE4szSjttY42PovN4T9Dmi7aCkzUSbBOFCCBEFDpuD8995lq/99bf8Xlz4d6/6R07+wnGOPlpH9ckyYhNjwzzKrQbahvivTz/GD/75f4iJs9ByuYNHX3GGow/Xhvxc292qN1tNsEtltrnJhYDPtyyBw4FiNBuYHp4OeWMYh82Jw+YM6TEDtbywQlpOCpPD01EdR7AkCPdPWIJwTdN+D7id1Pg6pdQX/NzvI8C9QAWQBqwAfcB/Af+olJratH058HLgxUA5kAnMAJeBf1BKPbnnFyOEECHgsDtxO13ExMVw/juX+eQbPhdwoNjT0E9PQz/f+Mh/AVD/UDW/+Y5f5uRLj6/e+g6vicEpXlv3NjxuD+B9o/3R5x5nvH+CurNV6PWhTZWZHPQdaU8MTFFUl09v48D2+w5NkZyZyMyYfyUM6x+qoeH8wbvtfzcrriug/fnDe+ciuzTzwAbhko7in5AH4Zqm5QOfBhaBuAB3fytwDXgcGAdigVPAB4DXa5p2Sim1/q/uB4HfApqBHwPTQCXwS8AvaZr2Z0qpTwX/aoQQYm+UUjz2xSf47Nu/QsnRQhLTE7j4vedCcuyGcy00nGuh/EQJxx6t48zLTxKXFEt6fioxsb477AVreWGFJ//jwloAvt6Vn9zg2R9d4/Qv3Rey8ymlePpbz2z7fGzCzukmy/MrpOWmsLJo25I37sto7875uWIfOuRVJJufaSejII3x/sloDyVgUqLQPyENwjXvVMyX8d4o/C7wjgAPkaCU2nIPQ9O0vwHeBfwV8MZ1T/0E+IhS6vqm7R/GG8h/VNO0bymlpP2ZECIqPvuOr/Kdv/8hQNgWWHVc7abjajff/NgPAPidd72cV3/wt3HanXTd7KOoNo+YuJigj/8vb/1XnvrPi0zv0CTkK+//T469sD5kwf9X3v+fXPjus9s+788C1f6WITIK0sguySQuOZb5yQWWF1a2dBksri+gp2FAaoMfMLpD/v1yu9yYreZoDyMo06Oz2FfsmGMO5vgjRRfi470ZeAHwGmDnVQc++ArAV31z9WP5pu3/dXMAvvr408BTgAk4Heg4hBAiFHoa+/nuP/wo4uf997/9Lh94+Uf5wMs/ypsfeBevrXsbCzP+LyQb6RnD7XYz2jvOm0+/i+9+8kc7BuAA3Tf7+Oir/5Hp0RmUUnt8BdDb2L/j8273zqXdbhvvn6SnoZ+Gcy30NQ+SUZC+ZZvYpFgJwA8Ya3xMQD/TB9VA6xCl9xRFexgBmxiY4u2PvJ/JoV0Wb9zlQhaEa5pWDXwY+KRS6lyojrvqZasfbwWwz+1VFX71INY07aqvf0BVIAMVQgjw5iR/4S+/HpKANBiXvn+FKz+5AXgD0S+/+z98btd1s3dDMDMxOMUbT/wFv1fyJl5b+1ZaLnf4fc7z33mWV+T/Mb+a8mquPn4z6LG3X+3aNT9br9eTmpMc8LFHukfX/j+/KpfSe4qZHpnBHLM/aoObLCZyK3PWPtfpNI48UhfFEe1PqbnJIe+Wul95PFtTwA6CtitdvOn+v6L1Of//htxtQpKOommaAfga0I83bWSvx3sH3nzyRLwLNc/iDcA/7Of+hcALgWUg1BcEQgixo+tPNPDel30Y+4rv7nfR8KPP/5SX/tGLKD1atPbYNz/6fT7/F1/HYNRz9tdO8af/+Ie8+6V/y+LsEouzAd/MBMDj9rA0t8y5b1/GmmBloHUYTYP//do53vGFPyazcOtMNHhzwL/+19/m0g+u0H2rz2fu+Xq3zjWTmBZPYW0efU2Dfo9vemSWqlPltF7uICkjkYbzrVhizdiX7VGfDc8pzyIpIxmDSY/RZCAhNYGVheV99XO0X1jjg0+vOmh6bvVTd7bqQNYLnx6Z4W0Pv5+3f+ENvPCVD0Z7OPuOFopZGk3T/hp4N3BWKfXM6mMfAN5PANVR1h1vFG+lk9t+ArxaKTXmx75m4GfAGeCdSqmPBnJuH8e7evz48eNXr17dy2GEEHeJvuYBPvP2r/D8/wQ/Exwu5SdKqLy3lIbzLeRV5tB9s4+R7jt/VnU6DY8nNDP3NacraX5m4wxYSlYS7//O26k5VbH22L++9xtc+Z8bjPaMMz8VeFnBYBauJabFk1GQTueNXqJ0o2KDuCQr2eW59LUM4XK4qH2gHOVRNK/WLK+6vxSDQU/X9W5WluzUPVjNeN84o93jUR55dBjNBgxGXchLE+5neoOenLIsv2rk71e/9c5f5jV/84qQV1GKthMnTnDt2rVrSqkTge6755lwTdPuxzv7/fHbAfheKaWyVo+diTen+8PAdU3TflEpdW27/TRN0+OdkT8D/CfwsVCMRwghdmNfsfO9T/6Y7/z9D5mdmI/2cHzquNpNTKyFvuZB+pq3zh6HKgAHfM4qT4/O8pFX/RO1pyspO1bE9MgMP/zM/7K0hw6VmYXpAQfhlfeVceV/bkY0AE/JSSa3LBtNr2OgeYCZsTnMVhMp2SlYE6x03bzT3bPpmY4NC09bn+sCQNM0UvPSaLzYjiXWTEFNHv0+vo+HncFkQHeXpfC7XW6M5oPd2uU//+779DUP8pdff/Ou1Y3uFnv6jq5LQ2kH3huSEa2zOvP9PU3Trq2e46uAz+S41QD868Bv4F3I+bsqWsmYQoi7hsPm4KdfP89jX/wZrc/u/9zH+enAZ5uDsTzvu0TZcOcow52jPP7VpwFvy/GGc81Bn2esN7DZ4LLjxfS1DkV8BjwpM5mmy96Z7doHyknPT2O4d5KxgWm81XU3cru2LjxVSjE1PAOAbclOYnoicPcF4SsLNmoeKKf5Ulu0hxJR3Tf7qD5VQcvl9mgPJWiXf3iVPzv9bv76+39BTmlWtIcTdXu9rIrD21gHwLZNs4jPa5r2ebwLNt8SzEmUUn2apjUD92ialqaU2jDtsXox8O94A/B/B35fKeXf0nkhhAiC2+3hxpONNF9q46sf+ObuO+wTfc2DxMRbwn4rf3pk1q/tRnuCr8+dU5rJcNeuWYprkjIS6Lzet/uGIZRTnkVSehLd6xoLNT0Tmos1p8MV0hSig6LqZBnzk/vzblO4dV7vof6havqaBtfStzIK08ksSGN8YJKxA1Dv3uV086k/+RK/9c5f5tijoe+0e5DsNQi3A1/c5rnjwDHgAtAG7DVV5fZy8Q3BtaZpJrwz37+Md6b8NUqpg7mUWAhxYIz3TfDuX/wItacr0DQtalVQAqU8irJ7imk43xK2c5TeU0TXzZ1LDN42MThFUX0BvQ3+bb9eWm6q30F4QXUeJouJ2YnIlbU78mgdjRfbGe0LT9fD9qs91D1cy60nG7c8ZzQbKajJx2V3+Ew9Oqj2eufkoHPanTSca0Gn11FYk4fb5WawfYTxvgkyCtPQdBpqH16UxcRZKD1WzMLMMv2twwz3THLjqWbe+Pev4mV/9H8i0vF3P9pTEK6UWgFe6+u51YWZx4CvrF+YqWmaESgFnEqprnWPVwGzSqnRTcfR4e2MmQFcUkrNrHvOjLcp0C/gvRh4vQTgQohI0BsNeDyKhgttlBwrYXpo0u8W6dE21Bne0m6BNgYa758iOSsZnV5HQkocccmxuwZaJouRvubt29bfFpcUi93mpL9lKKLVTwpr8mi8GP60gfarPdQ/XMv08PRayT6DyUjlyQqaL3eQU5wW9jFE0uz4wfgdCzeP27Pl4mq8b5LyEyV0XO2O0qi2Kj5SiDUxls4bfTQ907nhOY/bwz+++cv0NPTzxr9/FUbTwc55D0Y0XnEu0AL0AUXrHn8J3g6X54AuvF03M4GHgRJgFHjdpmN9Bm8APgkMAe/zcTX1lFLqqZC+AiHEXc9kMa79f/etfuKSrFSdrKD12f2dr5mUkUhuebbf6SLBCPSuwPL8yloO+e2c57JjJcxPzW+76LLi3tJdS7YlZSSSX5VDw/m2iJcfNIeoc+huHDYnTc90EJ8cS83pSpSC+elFmlfru6fkpDDYNhyRsYRbfEosU8PhuatwWIz2jJNbnh31GupVpyqYm1ykt3n3n70fff5n9LcO8d5v/BlJ6YkRGN3+sZ8uO34KfA5vZZOjQBLerpvteBd/fkoptfm3r3j1Yxrwvh2O/VQoByqEEHrDxl5ni7PLtF3toe6hWjqudOzb2s45pVk0nAtfKgp4K8XsVeeNXnLKssirzNkSRJafKNk1ALfGx2CymLwBeBSsLPpemBouCzNLtD7fs+Xxjuu9pOWmHorOhUW1eWH/2T3oFqYXWZhepP6h6qh8rbKKM4hLSaDNx8/iThrOt/K2h9/Hn3/5T6g+Wb77DodE2IJwpdQHgA/4eLwX2DIloZRqBN4U4DkeCWpwQgixR4Ztbp02XWonszANvY6oz0b5otOHf0Z4ZTE0iz6HO0cxmAxUP1BB1/UeHDYnBqN+15QEU4wJj4LxgcgFnuYY04YLL73RuMPWkZOUkchk38GvJ153torGMK5jOGxmRmcjfs76h2tpebaLsYGZ3TfepOq+UlYWl3n7I+/nz7/8Jh797TNhGOH+E7K29UIIcTcxmbcPssb6JlledBCXHBfBEflH04X/z/5438SGOtd74XK4aLncSWaRt39b9akKJnYJrsuPFWNb2vtsvL9yK7LBYKD0WAklqx1JR/sCq10eTk67M9pD2LPx/vEDs/h5P0jOSor4OR12l8/SmrvRNFicXWSoY5TyEyV85QPf5At/9W+4d+maexhIEC6EEEHQ6XXodugYMjsxT2ZxJjHxkckN9peKwBub0+4ivzJn9w0DOqaDmHgLPY07V1ExGPVMDM0Ql2jd9m5FqBktZpx2Fz1Ng3gU1D1Ui2OfpCPpNNCF6IIoGswxJsqPFTG+jy5q9ruq+8ui0rNArw8upKw9XcFg+wgup5uWZzsZ7hrjmx/7b97zsg+zOLsU4lHuLxKECyFEEDRNQ2/cOcjrvtVPUV1RZAbkh/ITJTRe3DmXOlTiU2JDerzkrCQqTpSwOLPzm7LL6WZyYAKX00l2SUZIx+BLUkYC/a13ctb7W4fXFkXuByM9EyRlJaM3HqxAXNOguD6fsmNFdFzbP9U+9ruKe0tpfa4Tp90V8XPrggzCtyYoe119/BZvPvMeBg7JwmJfJAgXQogg+VNSq/VKF7VnqyMwmp3lVWQz2B65N7ORrtHdNwqA0+ZksH2EhNSdU3xySrMoOVpM+YlSBlqGQjoGXxZmlkjJTgr7efZidnyelJw0ElLjoz0Uv1U/UMFg2zBNEbpoPDSimLKzUwEivUFHUkYCueWZW57rvN5HcqbvqiiD7SO8+cx7eP7xm6Ea5r4iQbgQQgTJYPJvdrG7YYC03JQwj2ZnMfExYe+Sud7k0PS2b6yBMlmMuJxupoZnyCzceXY7MS2ezhu9NJxv3TYqqHuwmvqHaik5WkRqzt6+L26nm5wIzLjv1dTIDHlVedQ9WB2y70s4mWMthyKXPdKiWZVpfYlovUFHbIKF8uNF1JwswWTUMTM8xezI1kWbtiU7mYXp2x7X41F85NX/xGNffurQrQvYTyUKhRDiQPE359i2ZCenJJOp4ZmovImYrSZmo9BIKKc0E9uynYy8VBLSvLOwtkUbSws2FqYXcDndu14YpGQlYY0307uaC951s5f6B6sZ65vwWUPc5cfCsMW5lQ0pJPWP1NJ8sRW3c+O+mqZR/0gtTruLiYEJJn0sCE3NScGxcjCCxdYr3v54qTnJlB1PZax3nIXpyHUQ9Vf1AxVbvhfCP0Odo6RkJTEdheoot8UmWcnI8Y7BsWyjvfFOUy3HNhdWrc91bdtoqPR4Kc1Xe/nk275Oy7Ve/uRjr9xxYfxBIkG4EEIEKZAOb90N/dQ/XMOtp5rCOCLf7MsOEisTmBiMbK1oj8eNwaCjv2XQ58WHNT6G+ger6Lze6y1rqBRxKXGkZCVhX7aTnp/KQOsQg+13WkR43B6Gu0a3dCdNy00hqziDxbnd63PHxJo3fN50qYPMwkwSkq30twyysmhDp9OoOVO91vXSaDZgTYonqyid+GQroz3jzI7PklmcuRbcHhRTwzNMDc9Qd6bCZ8v7aFtasGOy7Y+FrQeNy+EipywrKkG4waCj4lghA21DdN/qAyC3PHvTNnqcTh/56prG5PAMZqsJ+/LG7/3MyJ3f///9+gXG+ib5yA/eEfoXEAUShAshRJAMuyzM3Kz5chf5VbkMtIY/V3mzYEqH7dVQ++iOM63LCys0nGsmPiWOrKI03E43E4NTLE4vADDW67u+dVJG4lpnzdv0RoPfbeLty1vLF471TzK2WnglvSiTmFgzzc/eabPttLtw4qJ3Xavw4rp8hrsPbg3uicFpqh6oxON00f6890JCZ9CTUZDKaBRfV3xS7JZmWMJ/u5XwDIeaByrobxlkcmhjT8Xl+eUNnydnJbHcPYGP7ubMjM5Rf7aShtV68DqdRvXZGmZnNh5jpOfg/s5tJkG4EEIEKdASeG6Xm/i0BCDyQbglQm3U15ufWiAuOXbXiia3u/ztJi0vlcS0+A0LTGvPVKHT67w54H7yuHe+INkc4G+nZ91t9oNorG+SsdXSf9WnqzCaDaws2um62Ud+bQFxCTE47U6UUnRdD6wDYqBi4i0UHylmeWGFsf5JcB2MFJ/9JjbRGpWyqHqjfksADlsveIc6Rqi8v5z2a70+j9N8uYPK+0qZn1okLS8FzWRgpGdiwzbzM0tc+O+rnH3ZiZCNP1okCBdCiCAZzYH/CY1kE5n1gi4f5qfYBCtLm2a9APIrc2m57N8M9XbikmIpri9gpHuMrhu9a4+XHC2k6WLbzmUZfHC7D+7irszCNNJzk1lZWGGwbZCs4kyWl5xMDG4NgALR9vzGXNyhjjvVbTRNIy0/1WdOfKgU1RXQeqWLopo8FsZnsK9E5/fkIEvLS0Wn0+iNwMVhydFCum/23Xlgm1+p4a4xcsuzN3QPVmr7XgVul8fb8l4pRnomqHu0fss2tiU7H/3jL6LX63ngF+4J9iXsC3K/RwghghRoOgrAkh85y+EQYJwasJJ7Cskpy9p63j2+y2QVZ4AGDedbmByaRqfTKD5SSM3pSmbG5oN6YTs1WdrPLLFmNI+bW0820PF8JysLNnpu9ZGYag3reZVS5JRlY44xceTROmrOVIb0+EceqWNpwRt0xyVZJQAPQsW9pSzPL/tcrBz6c5Uw2D5C1cnytce0HX6n4pJjOfKie9Zq1VsTYsks2qWikKZx5AX1ND/ne72FfdnBR17/eb7zj//DWP/Uga2aIjPhQggRpGC6Is5PLYRhJPuBxnDnKBUnStD0OlAKnUGHyWIK+oipOckszy+zOLNEfEoc2aVZjA9M0tMQ2ExfZlE6BqOB+al5FqaXtm0Osh+ZYkwU1eRiMBoY7x1luHNkyzbtz3Vy5NF6Gi+Fr0lQ48V2UrOTabzYTlJGAgmp8diW7DgCXECpM+ipPVPF1NAUqTkpaDodjZfu3CmZG/cvFUjckZSRsJbTHwkri3YcKw5an+2g+lQ5LZc7UAoS0hPJr8yh4/lOHDZvOlF+VQ7W5HhuXe6m7pF6bIs22hq96WSZRenEZybjcTjpbejH43JTUJtPYkYiHg80Prvza7It2fn8e7/F59/7LT76w3dSf6Yi7K891CQIF0KIIAWTe2lbspOUnsDsxHwYRrS9helF6s5UoVDodDrv7PK5lqCPZ7aacKw4MJgMVJ2soOOq9w2z3UeJsdzyrA3pDdupf7AapRTNz7TjcXtIzUmh/fkudHod+ZW5QXWiXF/2zBRj4viLjjA1GvlyjcFISI1Dc7tovbT79+nWkw0k5aQxPxW+koNTqzWeZ8e9P7vV95fSdGH3sSWmJ7AwtQCaRk55Dk3PeL+Po/13UmgMRj1V95Vw68mGMIz8cHM53FgTYliej8xdtpi4O3/3+poHscSaUR7FwvQizc+0k1mYhtGkx2QxMdw9TlJWKgCT4wtMDs/icniro0zYnExMeNeLJOakkluaQfNz3Qz2Bp721HKlS4JwIYS4m6x/MwpETmVuxIPwvnVVPYA9NWyJibdgjvHOcBdU5dFwrnnH7S1WM5qm7XjLOD0/da0qQlZxBk67k5h4C4W1+TjtroACcJ1eR/nxYgxGPd23+tced6w4aL/SSdGRIjILUhnrj3wVCV90Oo3UnOQNed155Vm4HQ6G2v1PLzDoITYxJmIpT2739rm96+lNJqwpCSRnJDDUObbleU3TqDxRLAF4kBZnl6h+oJyWZ8J3J2S99akny/MrlB0rRm/QkV+Zw2D7CGN9k5itJlwON26Xm4mBCfQGHWN926eNzE0tMreHC8j/+uxP+Y0/e4nPqiv7mQThQggRJKMpuIYRLZc7qX+4joano1ejeX5qwTvz7FF4lIfO6727ptcYjHoyCtJQwEiXN5jquLZ15nuzrpt9HHmohls7BOup2clrpdVGe8a559E6bjzZFFDOd1JGInHJVuISY2l9rtPnNouzyzSujqPkaDG9EWhtvx1rvAWX001RbR5tz7QSk5SARykqjhUx2j3CeN/E7gdZZ3JgkvyqPPQGQ0TSnlxONzqDHs825S8NJiOgWF5YwWFzbpmprX2gHA1wOpxR/V04DDbX1g4nbdMqzM7VyjkGo57K+8tofbZzw3gmBqawpiezvBi+XP/p0TkmBqfJyE8N2znCQYJwIYQIkr9t631pvNjGkUfquPVUdIIPt8uzNvMMkJAav2MQXliTh8PuZLhr60ymPxovtlJ+ooTl+WV0ej1mixGDyYDeqEen02Fb3tg5c2560e8AvOr+MuYm5xnpHmd23P9Uk9iEyJVy0zQNo9mAw+akoCoHa5yZrmvduFwu2p5pRSlFbLwR+5KdW0/eCvo8A62DFNYVkJqdSE/j4O477EH3rX5MVgsWi2HL111n0JNekM74wNRafvBmQ11j2JbslB7JJ786l4EoXhAddN03+6g+VbHnSkT+mB6d83lny+V0031jaylLj9uDNd4S1iAc4PH/uMQr3/mysJ4j1CQIF0KIIJ166XHOf/e5oPdvuBDdQHy9wpo8FueW6FmXvgHehVUxsRafud6B8Lg9LM0uMdY3uaVxkN6g33Ib2RTAXQajxchIEM1lGs63UFhXyED71sWOoVb7QDnzE7PEpSbQcqnFZ1v2iRBVtuhr9H4P8+uK/MrF3wuHzUl2cQYFNXk0XWwlLimW5Kwk4lPjadploejt3PLe5iHcNtuO24rdefxMD9qr8f5JsoozmJ2Yx7a48fvmsLvwtfJ5p+opofLENy9LEC6EEAeR0+HCseLA6XBhW7Kj0+twu9y4HC5cDhdOp2v1/904HS7cLje39rCw8bb9Eog3nG/BEmtea34D3pkto9kYsrENd41Rc7qS5kttGx4vrMlntHcM17p21m6Xj9bW69xe7Fl+vHhPC0yV24XeoPPWws5NYbQ3sBQQf+j0Oka7hiNSPm69pek56k6X47C7mB2fZzxMdb77bs9ga3pWVlwstI0C/gX/mqaRV5pByzNtu28sdtR2pZP6B6s33OEKl5nRWYzmrRfK2UUZjGz6HYpLsrKwS8OuUHjFO14a9nOEmgThQggBPPOD5/nQ73wqKuduuNDGkYfruBXlvFjbkh2P20PTupJxdSGuCR0Ta8FoNuK0O9H0OurO1gCwfKt3w3ad13soPlK4Vo6w/qFq7MsOzDFGQKPjWjeZRel0XNtbJ8f+liGqT5VjNBtDnkdtjbeAplFSlxeVRYfTwzNMr3b/zCnPDskxd1tge7vyhT+s8RYKq7NpikDQeLfobwlvCtJtFfeVbrn4LTtWzJCPdLXcihw6msN7RwY4cIsyQYJwcci43R70eh0OuxOnzYnb7cHj9qDQUB4PHqVwO924XB5cTu/K7dsfb3fRi4k1YY4xodPpvC2bAeVRuF1uPB6Fx+PxLma7/c/tweNRKI9CKY/3OEqhFHg8nrVtvAvg7jynlILVbe68qXnf4G4fE0Cv16HTa2iahk6nw2DUE58cy5EHytCHuQvi3cR7GzV6Gi5GPxA3W01bWrEPdY5Se6aKnoa+kJRA67zRQ9mJUvQGPUvzKzRebCOjII26B2toPO9dMJmSnURCWgJGk5Gq+0pR+C6naFsKzaz17Pg8sYlW9EE0X/LFEmsmMz+Z3lt9mCwmOq/6XiQaScMdIxx59MiGmtxJ6QnEJllRbg9zU4sszW3teLpeTJyFtOwEEtMTsS07GO4eD+hnwmAyUFCVQ0ysGbfTScfzXRKAh1hmUQZzk+FflDs1NL1h1r3kaNFajv9mkSqd+IX3fYtHf+OktwTrASFB+AEx1jdBf5u3wD2rAdvtQC4tJxmj2cjs+DwrSzYcNic6nUZMXAzWhBhySjNJSInD41kNPJ2rt9NXP3pcblwubyDqcXtwrwao4C2dZYoxYY2zYIk1r3vexcqijfmpRZYXVpifWmBxdpnlhZW1lfDrGzkopdA0DZfTvRrAenA73dhXHDjtTpx27+19+4oDt8uDpnmvaj1ujzeQ9nhWx6Pz7uvyBtdr/zzK+zqc7i2zNJmlWUws+F69f5D92h89ymvf/cvRHoYIoYaLbdQ9WEP7lY5tF7OFU0F1Hh3Xejc8NjM2x8zYHOl5qRTW5oPy5nDPTc4z0Br4QjrHioP+lmGWF+68MY/3T5KQErv2eV5FDs3PdKz9HQqn6lPl9LQMMzowHbKZtKKaHJpX62fbV+wQnSapW7Q+00p6XhppOckszy3Sc6uP6dWJU71RT80DVUyNzjHWtzFtxmg2UH6sGI/btfa6wPs3OjUnhYySLIa7xtZqlGcWppGUnoDRZAC8Exhz43MMd43SeSX8CwfvZiZLcBWbAjXcNUbSaplTTad588N9BOAA8alxaMPzKE94u1o6HS4WZ5dJSIkL63lCSYLwA8C2bOfv3/AFrj8R/AyZTqetzazedQ7py/7+l84BkJAcS3F1Dvc+Un0gb8ftFybz/vhz2PRMB9nFGSiPm5Gu7W/hxsRbWFkI7WK2halFzFaTz3JnE4NTTAzeySnWNI36h2p2rRG+nt6gJ7cyj66bfVueM1lMFFTnkpiWgPKoiATg9Q/V0HTZO0sdqt8dTdPQG4KvmhNODpuDsa5hxrqGtzzndrppPNcEQPm9ZegMBjpv9JFbnonb7qDx6a3pNEopJoemmBzy/lwU1RUwOzHPSPsgIxJrR0UkFkACFNXm43Lc+R3dLudbb9AzMjgX9gAc4AW/eepABeAgQfiB8IW/+vc9BeDA3RuAw9os+mHjcrr5zmefXPu8vD6fjLwUEpKtvPnDvxXFkR1M2j66hTnSM47JYqT2bPW2HQnL7ikO+QKs0d5xKu4tpeNa7455v+ANwBrOt1J9qpK2Kx1+VWaoOVNF48U70ZnBqCenLIvJwWkcNgcrCzYS0xNpCaIzZqCMZiODnaHPU1VK0fRMpzef/dbWi42DoON574WJ0Wykv6HX7/16G/t330iEVaTqhcenxK39/VEeRV5FNr2bUtkA0nJTWIzAXb2ff9VD/P67fiXs5wm1/fOuI3xSSnHxB89HexgHmsvhJDEllrhEK9Z4C5YYEwajHt26GQODcX/OXAVicX4Fl9OFa5vGGWJnkZpB8pfD5qT5cic1Z6sxW01rjxfW5FHzQAX2XRrrBKv9+a6AFmO2PNtB3Zlqv7adGpld+/+KE8W4HA76GnrJLc/AbDUTlxxL543ekMyCxyXfSW+5fUFTd7aK+gerOfJQDfnVecxNhq/Fu85o2n2jfc5pj3xKlNib7pu9ZBalh/08atPk1nDHMNb4mA2PFdcX4ND0rGyTphJKP/2PS/znJ35Mx43esJ8rlGQmfJ976pvPML3ujUsEbmZ4BlYrBGyn6iUnaLx2sGdxxoemuf+FNfz6H79g7TG3y71vb43vN/v1QqzlcieZBanklmdhX7IxMThFX/MgKdlJPsv9hcLEYGCl9G6db6HubDVNF1u3nUGvPVNF87NdAORVZNPX2IdanT1vX+1uWfdgNSsNAwF1ydxOTnk2TruL+CQrSws2Wp7r2vMxA9HTOED5vaV0PB/Z84q7m8vpxmQxoTfocLvCeBd40++ofdlB5X3lzIzNYTQbsCbEsLTsZm5yOnxjWMfpcPGtT/2Ehkvt/MPj74rIOUNBgvB9rLd5kL97zT9Hexh3hcOQrON2efj+l87x/S+dIy07ifgkKxPDs3zj+gclEPdDpBY0+aLpNO/dGb23XrXBoEdn1KE3GjCaDOgMembG5tHpFGOrNXinR2ZZnF0O/5utnxovtlFypIjp4SlmJ+a3PD824H0zLqzJZbB1CJdj6yxr4/kWyo+X0HG9d+8DUore5qGorpMwxZijdm5x9xpoHQp/vXAfF9u3nm5a+39LrBmnIXIdaW/T7bM7mruRIHyfmp9a4Ot/8927Opc7kg7Wr+3ufuUPH2ZscJrktPi1xitiZ74aT0RCQXUuA+2juFwKVlOJ7Pgul3jkwaq1/0/KSCSvIpvGC60hGYfeqCevMpeElDjmgyxx1r2aA51TnkNckpW+xn4cNqd3AefFdirvLaG3oddnAH5bx7Vu6s5W03hxbzP8JotpHyxUlr/fIjoazrdQdbKM1mfDUx5zt7THnLJs+np3vgMdDi9/089F/Jx7IUH4PvXYl57k/HeejfYwxAFVd38Jv/b6R6M9DOGHQFpNr59hzizJDMkCxuzSLBIzkuhtGmC0b5KB9lF0eh0V95bSHmQqxfC6BY+JaQl4FJx4UT3XHr+JZ4c379hEK8X1BT6rpwRqZnR2rTRqtGiaXACL6Om60Uf1qQpaLrevrXkJVZWSne6+WRNiWInwcgKDUc+ffPx3OftLJyJ74j2SIHyfOvnS4/z4i0+EpYWyONwqjhZQcbQg2sM4cCJRQssXj9v/87pXA/ajP3eMxme7SSrKJqcghbHuETRN522/rtOh0+vQ6TR0Bj16vQ5N89bY13SaN+VF523+pAFDXeO0X+3eNCYPE0PTxCfHsTCzt8WLc5MLzJ1vAaWof7DK5y1yU4yJyvvK6LjWs6F6yl4MdYxQcV8ZnTejt9ZjbnwuaucWwml3egNwTUN5FAajnszSDIY6RvZ87J0mD0qPl9B8PTKdOwESU+N4/7/9CTUnyyJ2zlCRIHyfKqrJ40tNn+DPHnzfntsyi7tL3f0l++A2vPCX2711ZrioJg/3akMro9nAzNg8i7NLWOO8OZYTI97gbnZigdmJnVNH6k6V0vBk4CVO5yYXqH2gIqA64DvSNDpv9GGKMeHYVNklPjmW1uc6cYawa2nZ8WL6WrfWw44Ua0IMA62RC0SE2M7txdIup5uElDgCb7G1la+/W2vPRaDG/0t+/0Fe9IrTLM6tUFCZTXYEKsKEg9wr28f0eh2//75fj/YwxAFy9HQ5v/2nL4r2MA6kaJUoXD8DrzfoqT9TSX/LIP1NAwy1D9Pb0M/c+Cx4PMSnJ5BcnMNY/9T2B9x8/D1M8Hfe7KXm9NZyhTllmRx5uJb6B6vJKs7w+3gejwdzzNbSfVPDM1TdVxr8QH2dy01Ig/pA5ZVnRe3cQmyn61YfCal7b2jjdvgOtDVNA33453d/7U9eTO2pck6++MiBDcBBZsL3vXt/7ghl9xTRecBqXx40h2H51J/+v9/kJa84hW4fNZ05SKK1qt7jdlN5bwmaBmN9k9zaZubZ7XIz2DXO/LTvznTb2UuajX3ZQeuVLkqPFRMTZ0Gn12FfcdBxrYfRvims8RbyK3IY7Rn3+3jKoyisyaeveWNjj84bPej0uoBy5LdjjY9hfND/C5Vw2G9154UAcKw4yCvPRtM05oJcgA0w2DFCYU0efc137vbklGVhToqn7ebWpj2hZjQdjopfEoTvczqdjnd++Q386Zn3YV8Of8H7u9XiwsH/2p5+yREJwPcgWkHTzNg8U8Ozu3aozK3IYWQo8GoD7hAEtT0+OuHllGayNLtEy+XAcrgdNiemmK2VaFYWbFTcW7YlPz0YWcUZ9LbuPe91L1QIvu5ChEP3rT5yyrL2FIRnFqSxOHtnQuDII3W03BrCM7ESiiHuKDU7icyCtLCfJxLkHfsAKKzOo/6s/x3sROD2a6OWQHzns09EewgHWrTa1rtd7l0DcIDUvNSgjj/YOUZ8CG4/r5dTmsn8xDwzo7NB7a/pdJQfLyGnNIu4pDudLY3m0MwL9TYNkJgW2tccMFmXIfax4c5RKu7dWwrY1GoTvOrTlTRe6w/JXSx/OO2uQ7PuSYLwA+KR33jg0PzQ7Ud228Fvz/z9L5+j4Vnpzhes/d7kYTnI1s9L8yvoYmKofbA6JH9DKo4XM9E3wfxU8LNo7c93s7RgIzYpltScFMxWE1nFGSwv2vY8PoDEtPiAqs4IcTfytT7DXx6lUfdQDZWna2hrHIlofLI4txyxc4WbBOEHxIt+7yHe+aU3kJieEO2hHEqRuoIPJ6fdxXt/7zN86i//k742/27FK6UY6ZvkY2/5Ov0do7vvcIjt5xze2EQri3PB3+adn1pkbHCW2jNV1J2tovpkeVAztSaLkcG2YeybqpsEY7hzlI5rPfS1DFF+bxkTg9P03ApNOcG8ihwWZgLLnQ+1/tZh4pJjd99QiGjZw588h83B9IyNzqbodqU96CQIP0Be8IozvPHjvx/tYRxK9ihWUQglu83JY//+DF/52I+ZnVpkenxr+/D1vv6Jn/AHD36In333eW5e2nvjl4NMt48bq5QcK2Z8YG8LDZcXVmi61E7jxXZanuui7kzgKW7lx4s35IGGylD7SMg6u5qtJiZHo1+f27ZkJ6ciD/0hSHUTh5PLGfz73uzYLKPNvVQdLwrdgPxQUJXD2/7x1RE9ZzjJwswD5syv3MfvveflfO1D3432UMQ+Ntg1xht/7iOUHyng/hfUkF+eyZFTdxoZ9HeM8p3PPcn02J1g5asfe4yF2WVe/vpHsezhNuVBFaogMBzs9r3X3TVbTdhmNZTb20XSFmB6S2ZBGp3rFk3GJllJSk/AaDKwOLvEZBCLRm+bGZuj/FgxHdf33hOhsCafzlvhr87gj84bfVSdrKT5QohqrQsRQtMjs+SUZTLcORbU/h63B4PB2/jLn3Ute1H3QDl/8fnXkZ6bEtbzRFpYgnBN034P+Orqp69TSn3Bz/0+AtwLVABpwArQB/wX8I9KKZ9TQZqmnQbeA5wCLEAn8CXg00qp8FeNjyCXw8VP/+1CtIdx4JljzWQWZxGfnoDebKK1IRTtC/aPgU5vybjnftbEcz9rovxIPn/z9Tfwibf/O6MDUwz3TOKwb8yDX5xb5msff4ynvn+NUy+q4+d+6yR5Jf7XgD7o9ms6islqpnePTWcMJj0G1FraVd2ZCp+dK7djNBvQ6TVWVnO2kzIT0Os0htq94yqozqX+wSpcDhctz3YGOcbQvB1ZYi0hOU6otF7pJrs0k5Gu4AIdIcJlbLUjd3ZJJm6nK6i7bTcfv8GRFx2j6bm9VzXaSUFlzqELwCEM6SiapuUDnwaC6XX8ViAWeBz4JPBvgAv4AHBr9dibz/fLwDngIeB7wD8BJuDvgW8EMYZ9zRJrJvMAF6bfL5IrChkcX6alaZTGa/24ItDhK5oW51b42Fu+zuXHG+ltHdkSgK830DnGt/7lZ3zl734UwRFG335dmJlVnIHLsbd0qcy8lLVyZPVnK+m8HtgbptPuYmXRTm55NrEJVmJizWuVEQD6W4ZoONdM181eYhOsQY3REKLKKB7P/vtdTi/IjPYQhNjWSPcYGYW7xxVJmYlUnSzb0qBruGWAhJTwrn+4eb41JGtR9puQBuGaNzv/y8AU8JkgDpGglDqllPoDpdRfKqX+VCl1H/C3QA7wV5vOlwB8HnADjyil/lAp9efAPcAzwK9rmvbbwb+i/UfTNH71T18S7WEcaGUnKxjfw63zg2ikb5Lnngjslnhf+wjPP+X/bOlBt1/TUfSGvY2r8kg+g82DG1rFrywGXmlldmIeg8VIel7ytrO6jhUHxXV5fh9Tp9Mou6eI6lPlNJwLzc+aLUQVVkKp9UoXmUV3z10lcfBsdydQb9CRX5lD/YPVzI3P0/psJ6M948SnxFH/YDUAk4OTZBWGr263wajnN9/y85gsW/sLHHShftd5M/AC4DVAwKt3lFLb/fX85urH8k2P/zqQDnxDKfX8puO8Z/XTNwQ6jv3u5M8f422feZ2sSA7SWOcwFuvdl/McqIHOcW5evHsWa+oN+3MB3V46XppijDjtThLT4tceG+n2r7vlZppOw2zS09u0c7518+V26h6sJj5l5zrd8SlxZJVk0N86RMvl0P2cjXSPhz0/NVAup5vMYpkNF/tX1/Veak9vXKxdd7YKc4yZgbZhGs63bPi9WphepOF8y1ogbgpTB0tN0/izT/4+L/7ds4cy5glZEK5pWjXwYeCTSqlzoTruqpetfry16fEXrH78iY99zgHLwGlN08whHk9UaZrGi1/9CL/8xp+L9lAOpIWpRWLj91fe6H504uEq/vDdvxTtYUSMNSEm2kPwybOHIFynaXg8ng2d8YLpoKmUoup4Ee3P716HPiU7iaZL7RRU5267TXJWEinZSQx3juEIcY3+pbllckv3X8C73y4MhFjPWz2pjZoHKkjKSKTqZDmNF1pZXti5NGrzM+2YLEbcYarLX1ybx4tecSYsx94PQpKEp2maAfga0A+8KwTHewcQByTiXah5Fm8A/uFNm96+bNvSN1kp5dI0rQeoBUqAHe91app2dZunqvwfeWS94eO/z6O/dZrHvvQkP/nXp6I9nAPlMF5Rh9pQzwTLizascXfHBYsxRAsDQy3Y9udp2Ukoh5Oeho0z125X4DnTdacraHi6ya9ts0uzmRpdwONWHHm4hv7mQWYn7pTKrLyvFNuSnb6mwYDH4Q+DycDywv5LSUFicHEA2FccWGLNtD7r390pt8tNQXXuht/xUNE0jTd+5BUhP+5+Eqp3nfcBx4CzSqngO0rc8Q5g/VTGT4BXK6UmNm2XuPpxu6Kwtx9PCsGY9qWq+8soOVrI7OQ8z/7o+razLTq9Do/bw0te8wgv+O0z/N0f/POeSooddPu1EsZ+UnlPQVAB20Gl22Pu9X6TlGyl49rWkn+BLvKse6CcW34G4EnpCTRe9M6JtF7xzpoX1+XjUYr5yQUS0xPobx1iJYxBssvhIjUzgcTUOBbnl5kang3buQLhdh2OXgTi4Cqqyyc+JY7mS224XVsv7uvOVtF4oTWgY8anxBGTnED/zdCXBf3FP3yEutMVIT/ufrLndx1N0+7HO/v9caXUM3sfEiilspRSGpAFvBzvTPZ1TdOOBzq824f045wnfP0DAvuJjAKT2cj//fbb+fzNv6P2gY0/sOl5qbzj83/E1zs+xSeefD9v/MSrOPpwDX/+hTdgNBspPVrIa/76Nzn+wrq1ffZrlYhQuhte4179witPE59093T8Mxj350y4J8g0hu1K/gVSCajy3mK/A3DAZ95zT+MA2SVZABTX54c1AL+t41o3Pbd6mRubJbt4Y9UHU4yRmpMl5JdnhX0ctyWkxjHWG1wuvhB7YTAZqH+omuSsJHobvYGyrwC8/sHqgAPwguo8zClJtIUhAH/45ffzxr/7nZAfd7/Z07vOujSUduC9IRnROkqpMeB7mqZdWz3HV4G6dZvcnulO3LzvqoRN2x1q+RU5fPyJ93Hx+8/z2T//GjNjc7zr639KzSnvetbUnOS1be95tJbvTXxh7Rb8y//sFxjqGMHlcJOcmcira96Gc4cydgedTne4Zj3D4Qf/ep66k6V3zddqr1VIwibAnPCYWDMlNbl0XPWdv+3v97O4Np+OK4HV/LbbfM/2tl/tpqi+gI5rPRx5uIZbT0emeY1jxYHL7kBv1ONyuNA0jcKqbBrPNVP/UE1ExgAQlxTLYHNfxM4nxG3lx0s2VB5av9C7+lS5NzVTg/Zt/l5sp+6hGjqaR8NW3vdlr330rkgb3eu7ThzexjrVgE3TNHX7H/D+1W0+v/rYPwR7EqVUH9AM1Gqatr4OTtvqxy33K1YvEIrx1hkPbxX5fUTTNM7+yn18qekTfPb6R9YCcF/W58CazEaK6wooP15MWm4Kxx6tjcRwo8YYppXch8nFx27xgy+fj/YwIkan0+3LOySBzITHxJrJyEqg8XwL9mXfNXVLjhTsepyckgxGOocDeoM1W02MdG/fkCY+JY6l2WUWpoNpIRE8x7KD9Kx4svOTqXugFMO6UpR55ZnExIV/3X5cUnC104XYi7jkWNo2XUgvzS1TUJ1HbKKVjqvdND/TTvOl9m3/XvhSXF9I843BsPbXaLvafVcsZt5rEG4HvrjNv+ur21xY/XyvqSo5qx/Xf9efWP3oq3D2Q4AVuKSUCrwo7gFnNBnILQ3+dusLDvFqZJCZcH/915eejvYQIkq/D1NS/C1RqJQiLT2O3l0WPC7PL+/4fEpmIovTC7tWRdgsJi5mS6UTo9lAXnkWphgTQx2jq9tFbqFvak4yS/NLDHeOMtw1yq2nmmi66L3l3nCumf7GPox6sFi3BuLFdXkU7VDhJRCeIBfXCrEXxXUFW372ehr66W8ZZGluOaggOjE9gSWHCvss9ff+5aeHsjnPZnt6x1ldhPlaX89pmvYBvIs1v7K+bb2maUagFHAqpbrWPV4FzCqlRjcdRwd8EMjAG1CvX034beAjwG9rmvbp27XCNU2zAB9a3eZf9vIa71b3//w90R5CWN0Nt7lCYWZ8YfeNDhGDUb/v0rA8bjc19xbj8XjQ6XVomsbEyCzjA9MbtssuTKV/l/b21ngLvc3bB+nWxBgMRo3JgcAz+OwrW+c6sooymB2fJSUzgfT8NPLKM+m60RvwsYM1PTqLxbpzg4/Z8TmK6gqYm1lmbvLOLH1svJnG8y3kVOYx3LW3fO7+1mHikqwszu58ASREqNSdraL1ucDSyfyRV1NA643Q54Bv9vvv/hWfF8eHTTSmfXLxlgvsA4rWPf4S4KOapp0DuvB23cwEHsa7MHMUeN36Ayml5jVNex3eYPwpTdO+AUwDv4S3fOG3gf8M54s5rGITrDzymw/w1DdDstZ239FkItwvqVnbLbc4nPZrXnjTpgVTmYVp6A26DQusEjOTiEtPQqfT6HquA5ePi4nskky6bmytmALeWeu0zIS1xVuBSstLZbBjY7A60DZMRkEa08Mz23bZDKfUrGTmp3cvndbb2E9+ZQ4eTywL094+c43PdFF+ogSD0cCQ2tvMn8PmpPxUGQ1PNwZ9DCHgTqWznRTW5AW8yNIfqbkptN0KT2nR9X7zz17Cz/3O4b4bf9t+uvf6U+BzwBngKN6ygkt4F2R+DfiUUmp6805Kqf/SNO1h4N3ArwEWoBN42+o+hz+pKEze+pnX0Xix9VCWMpSZcP/sxxzpcIpWOkpqTjJ6gw6dXs/M2OyG/EyPjzKRY32THH20liW7mxiriZWFFZSmo6uxHwCr1cyijyDcuqlJVd0D5SilaH62k6LqHNqCnDlLykjEEus773m8f5LC6pygg/uAKcWRh6pRSjE1MoPDz1vaA23D1J6pomV6icoTRej1Gs2X2vC4PdScqab1ed8XL/7SDngKnNlqovSeIvpbhlicCbghttij/Moc4pJiaX2uk7S8VDIL09F03lQnnU6HptMxMzrDwvRi2NI40ouzmG0YCsux16s4Xhz2c+wXYXvHUUp9APiAj8d7uVM6cP3jjcCbgjzXReAXgtlXbM9iNfOCV5zlmx/772gPJeQkCPfPUM8EthUHlhhTtIcSEQZjdBbsLkwvrAWLBdW5jPZNrX3u2WbS6+aTTRRU56KcVnra72TxmSxGTHpgxlsXeH3wa1vypoxY4y1kF6Zx6+km6h+qpub+UhrO79jPbEdZJZm07RCkavrIBaDJWUncOhdc9ZW5iTlqT5XScql1Q77sUPsQdQ+UMjU6x0jPZFDH9hygOuExcRZ0Bj0rCytUnCih9blOyo4V03ypHaPZQGpOMoszS3dFzm40pWQlkVuRzXj/JANtd1LNJgenmByc2na/9R1yQ6XuoRpaboY3AI9LtPKWT7+KBw55Oux6+2kmXOxDp156/FAG4cJ/vmrKHla6CAaL6xkMem6HM/0tQ9Q9WEXjBW/Tm82pUwaTYa3hTn/LEAaTgazyXEYHvTcKHTYn6TkJZJdV0/xcN6XHiui63gvAwswCmQVpKLeLjmveolGWWAtXHrvOXuzWAGhmOHJ30zIL05gZDe58g+0jDLaPbHl8bmKeW081ERNvQe0xNWW/iYm3UFCdj9FkoPFCC5ZYM4W1BUwOT2M0m9AbDWQUpNF00VuMzONRTA3PUHFfKe1XAitrJ3zLKcskJTMZhXeBtcvhxOV0M9Y7saG8YLTEJlrp694+6N+rwqocXvfB3+TEC2sP1e+WPyQIFzsqPVKATqfhCbBW8X532F5POM1PLxIbf3e0ro90TnjtA2Uszi0z0LJxhqm3oZ/6s5V03+rfsjhp83uUy+HC4Hah6TSUR5GYGktqXho3z3tzQj2ajtL6fEwWPUaTgbYrnWsNc2rPVLGyuPfmOdb4mG2fS85KZHpoSyZh2CzNh6Jps28rCzZKjpXS2xz4jODSwv4r0lVytJDhrnHaVoPpuJR4FmeW1hb01T9YRcOmuwq3L7imhqapuLeU9uclEA+UpkHN6cq1i/6+pkGGOyO/ZsJf+dV5dLSEZ3xnf+kE7/zcazGZd15AfVhJEC52ZIm18MJXPsjjXzsX7aGIKHnq+9fQdBp195dSVpfL1XNt3LzYzh994OXoozRzHC56feTSUSruLaH7Vr/PIHhxdpmG8y0YzUYyClIZ7p4AvGkkccmxTA3P4l6XK97fOsQ9L6jD4YGOq93cXJ15LqzKZn5ogon+CR/nL6Xlcgc1pyv39Dryq3Jpu9a77fMpmUkRDcITU+IIZ/Z5f1Mf9zx6BLfLzfTY3Frpxd30tQwRnxIX8TrpAPUP1bCyYMO+4sBoMRKXEMPCzCJGs2ktRQlYy/U2xZgorsvfEoCvNzU8g8vppv7BalwOF3qjHk3T9pTWdNgYTAaK6wswmgwszS2DBgmp8UwNz6zdWTgIwjU7/eLfO8ub//73D937SCAkCBe7+u13/tIhDMJlJtxfX/3Yj30+fvolR7jnzJY+WQeaFsGFqGaLEafdSe0DFUyNzDDauzVQdtqdjPWMk5qbjMftYXZygeUlOwajnvyyHPRGPSaLEYPBwOLMIjEJ1rVc5tr7S2i71Ix9aesMbGFNPr3NQ3u+I6RpGna7e8fFj5Eu+Rjum1wuhwuHzUHzZe9scXZxBk67k0k/Um6isTgzvyqXhvP+V8pIykggPtlK23Mdu247NzFPw8Sd6jPJWUnBDDFg5hgTTocroPrr5hhT2HPYy44XY7KY6GscwJoYQ2JqPB1XD36vwM5r3SRkpzE/E7oSm7/x5pfwBx/4tbsu/WQzCcLFrvLKs3ndh3+Hz//lv0d7KGIf+dL/+2/e/vHfobAyO9pDCRlDhKqj3PNINZoGqdlJNF5oofZMlc8gHFZzcEdmNzym0+sY65/c0Byn7nQFDU83U3emkubrfdjml9cC8PqHanDaHMxPLxITb2G8/87Cz728B1aeLN9xQSZAQlp88CcIwk4L1kLFuS4HfqRnnPqz3rsJK4u2bdNhkjMTmRneflGn3qCj5EgRtmU7TruThalFluaXSctNYXIPdxKS0hMZaNua5+5LXkU2S3NLDOxSb347M6Oz1D9UjW3JjtFsxOP24LQ5WFmyM9zp3x2DneSWZ5FdmsXs2Bxmq2nb2eSkjETyK3NYnFtCp9Mx3j/J0uwSmYXpZBSmoaExNzlP3w418wNRfqIE+7Kdzmve34XEtHhmx+eZGAj/z2IkOO1O8orTaJ7pD8nxXvO+l/Nbb5VaGiBBuPDTy/7oRfzHR75/aEpTqbtnrWHYdNwa4MJjNw9VEG40R+ZPYue17g1pCTstCPU127e5MyXA7WKsjRfbKL2nEHOMN8cytyKbxgttKKVIykjAseJaq4W9fr9gGHfJ40xMj6fzWmRnAjOL0hn3kX4TSgsTc9Q+UE7TM97Z4oYL3mAwNtFKen4KEwNbg+bUzHim+rfPq3W7PJhijIwPTDI3MU/lfWVoOo2B1iHMVhP2ZQdJGYmkZCXRfasP8M5yj/dPUHFvKS6Hi+5bfVvajwdSpXdxeoHZid3rqu9ku4WE9Q9WB52qYk2IofZMJT0N/Tz/kxsAVN5XyrEX1OHxKG4+1QR472RVnyqnt3HA57nG+iYY67vzs1F7upK+pgEW54Kb4c0oSEOn122Z7Q5HdZJoc4Wg66umafzpJ36XX3j1wyEY0eEgQbjwiznGxPu+8Rbe+eK/ifZQQkTSUULh/hfURnsIIRWpEoWB1F/3FXD74l5XUq/rRh86ncaRR4/gcTkZ6hjDEmchLil2S/WP0Z5xNE0LKFgDqD1bTetzOy/Kyy/PjliOsMGop/pU+Y55zKEy3DmCybL1AmRpbpmS+vwNQbjJYiS/PJPOq7svYGx+pp2i2nzmJuZpu3KnZntueTYp2cl03eih+1YfFfeWMtQ56g0olVoLfGtOV9LyTBtKeXP+dXo9zZd3Tyu5Lb8qj9mJ8Hz9ehr6scSaN+SgbycxLZ65yYUNd2nmJxeYHLzzdW1bV5ml6v4yPG4PUyMzNF9q93tMTZfayC3Ppqi+AJfTjU6nMd43yeTwNPUP1TDaM8bEwBRpuSnEp8Qx0T/J4twyllgzJUcLGWgdjkqOfzToUXuqDGQw6nnnZ1/LQ796X4hHdrBJEC78dvThGqpPltHybOhb4YqD6duffYK/+qdXBbyfbcnO1z76QzxuDy991YPklWWFYXSBi1TOrs6wMdjf6X1tdnyOtIJ0pkZ3biXv2VRQ3ONRuN1uWi93Yok1k1uW5bNl/OTQNFX3lQbU4rqwNn8tJ3o7SRkJtFz2PyDyR25lDmaLke6bfRsej0u0YrYaIxKA39bb2M+RR+tpvHQnyLXGWxjrm0TTIDkzienRWQxGPTHxVgqPluC2O9BQ26ZB1J2t8jmTPNQxwlDHnYsnt8tNdnEGndc3pgI1X2ojOTMRs9WMKcYccNfEUPe203Qa9Q/W0HyplcXZJdLyUimuK2B5YYW5qQVyS7PQGXTMTczTv1ohqLi+gJg4C7kVORiMemyLNuJS4rj+s4Ztz7OX9uybv7YAmYXpaz9L6XmpTI/OMjk0jdFsXFtcG0iwfxg0nmumsDYfXUwM/R2BVUqxxJp539feyPFHD9ekTShIEC4CUnu68lAE4TIPHhrn/vs6L3nFAxw7G9gCzenxOX76zcvMTy3ygy88Sf3pCsqPFnD6F+6h+t6SMI12d5GqE643BDbjnpGbvGMQnpabgjUhhtKjhXStBqgZ+al0PN9FcmYiphijzwAcvMGyP4sK14tNjtvxeYNRT1xiDDMjgdfr1jSNtII00gszsMZbmBmeRnk8xKXE03SpA6UUuZU5DK02L0nKSCAu0cpge3B5zHvReK6JnMp8hru8QUl6XioJqXHMTswzPTpL5b0lTA7P0HipnZpTZcyOLDPSPQ54Z7eTsxJxOVy0rv5N9Tfdb7vvJUBOWTZ9TYOM9gYWgGcUpNF4sY2UrGSmg6yzvlnlfaU0XGil4kQJKIXOqGdubI7hLm9++OzY3LptyzBZjLhdbjpv9OBYieyC3vXWp6xMrFtj4LQ7I77QeD/paxogLjmWtKxUJneZFLgtISWOD37rz6i8i7pgBkKCcBGQV77rV3niGxeZ3rRQ7KCxWIxk5qegad43fY3VwFyB8v5nNVdW4fF4b8Fpmvex5UV70DmEh9F3P/dEwEF4ckYChZXZNFzq8OZ0Xmjj5oU2vvPPP+Xtn34VL/yNk2Ea7c4iVSrL3/OYYkzExFkwxWysFV5QlUN8ciw6vY6Z0TmMZgM3nvLO3BXU5JKYGs/S7BLxSRZGe8Z9LuyruLeE6eFppoZnApoBzSxKp+3K9nne9Wer6GnoC2pxnynGRM7RUga7xvGMLzJ3pWtdTvyd2cr4pNi1/8+vzNnzDHhcopWE9ETikmNpv+L/JIPH7cGgU1QcL6L9Wi99m+q9tz3v/TrVnCpHOR1rqUC1ZypZnl+h8XwrKdlJJGUkkpabgiXWvOUcgfJ4VFB/n9Jyk/G43XiCaM4VnxJLcV0hljgLCzNLmCxG7MsOOlZn6ts35Uyn5qaSWZSOfdlObIIV27Idhbeyjd5oICY+lvzqFKxxloje3RC7W5xZoqA6368gPCEljr/93tsoO1IQgZEdTBKEi4BY42M4+fPHeOxLT0Z7KHvS/Pi1oPeNTY6l7mSVd3WnpsPlVnS1jOB0uIhLtKLTacwfkgWs/hjoGt91m+nxOaZGZimtz0en0/Htf3qchktbc1WVUvzD275O2ZGCqCz41EWoWY8/M+5HX3KCxWUnPTd7uXW1j+oHyjHodXg8iu5b/fRvE+TefvzEC2qZHZshITWB1OwU9EY9Op2O+ekFsovSufFk465j0DQNvVGP3qDH7fZgjY8hMSOJ8cHZbffpuNoVdAOg6kfqaXq+FwDbsoO0/FTGfVSNMVpMAN40mmf9z3neTnJ2MgNtI2SXZKI36HbsEpuam0JuRR7gbUW/ML0AyrNjXn3z5Q4qjuavfb6+qsf0yCzJmYl0Xu/BFGPa0+vILExnYcb/HOXskgxiE6yM9k3Qeb2X4vqCDbnou9EbdNScrqTtShe3zjVTcrQQnU5HyzNtWONjqDlZRqOPtI3p0VmmR2d3PHZcUiyTA+FdYCuCszn1zZf03BT+9rtvJb/i8CzcDwcJwkXAqk+WH/ggfC+WZpa49ZOrGx4zmAwYDHrmxyeoeuGxuyoIf+VbXrLrNk6bi8+851vYVxz8zX++mYUdvj4uh4sv/vV3+et/e1Moh+mXQNNEgqXT6zCYjRjNBoruKUWXEEflC+5hedGOOcaETqfReK2fvNKMtX0MZhMNq1UgdlN7fylXfuz7QjOzcGsAnl6QjjE2Bqfd2y7baXfisHn/34N3hrLubCUNT7ewsENjnszCdEa7gytFV3K8hOard3K9y+pyafjpLZ/bdt3qp/7hWpYXVjCaDTjtTqpPV+HxgDnGSPeN7oAqOcWneNNrRrrHKDlSgNlqpudW74ZFhEazgdqz1bRf7/cZWO7GsEMlmZnVtIyd6q3vJD4ljryKnIBTBZVSOO1OlmYWMZj0TAxMEJcQs+tMemyCleL6AsYHJjfksK/P1V9eWNm27OZOEtMTKKjMYXlxhaH2w1dl5DDYLSUnrzyLv/3OW8nIT43QiA4uCcJFwI6/sC7aQ9h3XA4X3G7nPHH3vHH87ttewot+436fz73rNz/F/f+njl95/QvILEjlYz94O9eeauHfP/4jrvxs52Dyyk8babnSTfV9kc0Pj1Q6iiEjDRYVTqCjYxLwXT96anSO2MQYluZWaHy2i/pHancNxOtOlXFrh20S0+MZ6x3DaDFSfaYa27ID+4pj11rS3qStnaXlJgcdhMdnJKEG1t3i3qEkmm3JvlYeMCkjgbzqAuwrLnpXFzzmlmfhdrqxLdn9SrWZn7oze9x9y1sLOas4g/TcFNC85+u62cfNJ5spOVLAYPcETrtru8P5NDEUmjxrXwpr8mkLon38aM+Et1KPpqPqZCWN55t3/HppOo2aByoYbBum8eLOOedGs5GkzMSA1xt47yh46DwETW4Oq55bfdQ9XEtP2xjLixur3ZQdLeBD334rSRHuD3BQSRAuApael0pSRgKz43urJ3sYmazmXatYHCY//OoF7jlTQfWJIpTaGMTaluz89JuXSUiJZaRvipbnu7HbnSi3h9G+7ZuW3PaDLz4Z8SA8Us16/C1RuLJkp+6+YhpWq1w0PttF3cO1ND7tO8g2W01039i5eY45xkT9I3UM9UxsqOwRCoHmE+fX5pNSkEHD/1zD5d4Y/LU+419b79nx+S1/i4Y6RklIjSe3Kp+uq507BpbVpyp8ziCP9owz2rM11arrZh9ZxRmk5aXS/Kz/ge/44DTZpZmMdAVWWcK/Y08FfFFw2+2uqQ3nW6g9XUXTxY3VWRLT4imsycduczDWO+53u/XqU+Vr9dMDMTs+R35F9uodjuBekwgvj9vDrScaMJqN5JVloYwmhnomqT9TwQf+/U+JTYiJ9hAPjMj30BWHQvXJ8mgPYV/KLMmM9hAianZykXf82qf4tZq/5G/f8K+4181e/vk/v4bpmRU++rb/4Ouf/F+uXuyk8fk+5mb9yxfuagxNN7tARKxOuI8Z96p78imu8pE/ual+YdNz3hnxzZIyEqk6Xszi7M6pBJb4GJqe7QroIjoxLZ5hP2a43QE29IhPTaDt5gBpNcW03ehHb9BRfaKIhORYnH7WR9/O/NQC3Q0DFB8r3bkZUhB97kd7xtEFWM5S0zRSspIDPtduKVJFdfkb6mcHyhJrJjUnmeTMRCyxZhJSvak5iWnx1D1Yhd6o59a5Ztqe6/TrZ0an11HzQEVA9ck3a7jQSnJ2StD7i8hw2p3eZkejUzzw80f50LfeIgF4gCQIF0GRXC/fEtISoz2EqLAtO7j0k1v8atU7+de/+xEA2YVpHFtt573eyrJ/QXh8kjWkY/SHPorNeswGjYW5rS3PNy+CUkrhWm3Mo5QiNTeZujOVLC+s7Fi67rZggtv4hBgmfXSB3CyQuLToSBGDg7O4nG6mx+bQNI2MNCtNTzRgn5oNeIzbGewY3fEOh8kS3GJIx8ruTWc20+kD//mqOV1B1ckKCmvyNlwkFtUVUHe2ir6WYZ9dVf1Rd6aChJRYHDY7S3NLXP3fG8xPLWIwGZibXKDxfOuulbDMVhN1Z6vJKcsiLjnWe2fhua4dF7f6Y2JgivqHaqg9W01yVtKejiXC69j/qedd//rHmPe4sPhuJOkoIig5pXfXjK+/9EG+oR8WSalx/MYfv4Bv/tNPmZ1aYH526+K4pQX/gpfs4vRQD28LpRSLs0s4VpzYVxx+dfPzR/Xpig2Bn1IKpUB5vF3ncLsoK03F4/HgcXtwuzxM9E9i9Cgykk14XB5cLjcet4eBG93ExRhwO1047C5cDhftz3Zw/NFqdDodzz/RzNTwLHUPlHPrie0bmqyNxY/c7s3G+ndPHyqqzaPFj9nP1LxUcipymZpeZnnhzvqJpLS4tdrfKwvBVVfxxeVwUXVvCc0+cpg1TWOwY+dc+O1MBVEDvfVqD8lZSczsUhlkve6bfXg8sLJowxJrpqA2k+W5FXobB3bu8rSL3PIsRrrHmPKRs+1y7J4GUnFfKZpOx3DXGE3PtK91U9zLDPhmjaupLxn5aSE7pgitX/mTn+cN//DqgO8MCS8JwkVQimryd9/oLrRyl+cw/tlHfguL1cRXPvZj3C439ccLSDRr6Ax6ciuysdlcjA7PYDDpcTncOx7r2EPVYR+v2+Xm1zJfH/LjapoWVAUNfxXV5jLWPcpg3wyapmEw6hloHvBr3951tayVUiSkxN1pwa55F2B63B7sdgd4wOlwoflRksyfGeWSE6WMTy7T0jC05bnk9ASmOsPTcGdieA6z1Yx9eeNFVmxSLPYgL7zmJhfIr8hmoN3/IN7t8pBbnhNQEL40t0z1qQoWphdwONx03/QuHA02ANfpdd6OnukJNAbZ4MhoNjLeP8Xc5J2LqGDbmd+mN+iJS7JijjFjW7YzP+U9tinGREZBKkkZ8bTtoTOmCL3fe99v8Hvv/409f+/vZhKEi6BU3FtCak6yz1mUu9nU2OFZrKppUHO7tvHtbkbanU/X3E6p1aCgPBu9QU92QSoWs35D+bLbdYFNFiO73akurMzmkZfft/cXsYtwlSQM55tSVlE6I22D5FXkoGmzgLde9uzkAuaEWJx2J4W1+XS2jeG0u1AodJqG0WxEr9cRb1J4nC7cq6UI58d3X0gcmxQL7Bysmsy7v53EpSfR3z/r8zmLNXx3kaaGZ6g4XozyeOi40rGWB744s0jpsRK/0ng2c6w4GGgZoPJkOW3P77wYdr2mZ7uoPVtN04Wt7enBm9ufUZBGX9MA9tWShV03enDYnORX5wU8zs3K7imk81r3rtVNtpNbno3T4WJiD3not6XnpZJVlE73zV4WZ5eYHfO+Xk2nUXumCpfTTevldmnYsw+94e9fzcv/7KXRHsaBJ0G4CIo1PoZX/OWv8M9v+degFjYdRtZEK7OT/jfK2O90eh2N530HCts5/99XOXK6HJNyMdjse5bNYXMSkxSLbXn7msh/8N5fjUi5wNuzyLdzrEN2XD+rnwQqIz+V5ak5FmeW0FbTXRJT4xloH9kwK5mctcDyppQOx+pdmthUS0A1tAEMuzQxqry3hJbLO8/8x6XE4dgmzcEcY2KoqT+gMQWq/VoviWnx3sR1z53v915+zjxuD13Xe0hIjdtQ5nAnmqbR1z6KJdaMy+nGbDVTcqQQDY2hzlGmR2eZnVigoDoXk9lATHwMs+PzxCVZ0RsNzCTPUVxfsOECNxBmqzmov9mmGBOV95XRdbMv6GZM63kvgD3c8lHpR3lUwH97RGTo9Dr+/Mtv4v/87kPRHsqhIEG4CNrLXv9/6G0c4Ief+2m0h7IvpBdnMjB8eILwQFqZ3/afH/sh39brmB7beXZ1pwWQ+RVZ3Pd/IleLXm8IQxAe0qN5ZRdnsDw9x+z4HJX3l9N6tRejyUBSRsKWduk7MZgC/7O/XaOZ5MxEkjMTfXatrDpdhSXRisftYXnFRW/rCJ0NvivelNXm0vAz3415Qik20crM0MYGMmupOEFyrDjILrbicrlZ9rGwFiA2yUpmbhIDbcMkZyaRUZCGwWSg8UIr9hUnDee3zkr37/A9nRoKfha64VwL+VW5DLT6/zOTmBZPXEr8Wo52KJQcKcBpd1Jcb2VyaJr8ylxsy7YNDX/E/mKyGHnvN9/OqV88Ee2hHBoShIs9eenrXkjTM+30NIR3FusgiE+Jh0MVhAe+z/rZ2B3tMBN33wtrUUrhdrlxOrxpEx63B7fbg8flwe1yszC9yMzEPLZFGy6n29vl0eHE7XTjdnk/d7vcoLwzeGarCUuMGbPVhNlqxrL6MSE1HqPFuHbbP2RCnI6SkBIHLif5VXnkVeUxO7mIpmlUHC+m2UeN650WSZmt5oDOnVWcwaSPoC+jII2l6QW6rvsOCM2JsTSutqDficVqYjRMueCbTQxOUX2mhrZnWtZmgz3B/KBv0tc8iNFspO6BChqf2XhBopQiOz+F9tXmM9vVHw/EWN8kpUcL6QomYF392YxLimXRx8LpzQqqc5ken2c4xPXN9XqN9lt3xt/8TBuWWDP1D1XTfqUr9L+TYleWWDNHH6n1/s2MMbGyaOPi954DwJoQw4f++6+ofzD8a3XuJhKEiz0pqS/gU+f/L2995P/SGURe5WGiM+1tRi2cdHoNt8sTWK5yCIKT7VjjY1japgJG01NNvORvvxu2c9+mN+rRTCZQioySLJIzE9DpdNhXHBiMBgxGPXqDbrWDn8LjcuO0u3DYHNiX7Kws2ViaW/ZZ8i+UIXhOaSY5xemMdA7T1TTIypI3ODn2cBX2FSe1J0vXvq8aCgWYrBZ0vVN43Fu/h45lG0U1uVhiLcxPLTLcfSe4KjtWhN6gp+3KnSY0JrPBZ7UM25Jt1/bm/iiticwsOIDT7qLt+W6KjpZiijFiMhvR1N5K6d05tpNbTzdRdX+5twX88CwOm5OcknSaLgSXf70dt8tN180+ckozyShIQ2/QM9w9ykjX7sG9wajHvVoVaDfWhBhi4q0stQfXBXU7RrPB5wWEbclOw7kWCmvzmZucZ3aXO2pi7+ofrCYpM5Gmi23MTczjtDv5o4/9PvmVufQ09nPxe8+RlJHI//vJuym7pzjawz10JAgXe2aymPjtd/4SH/qdT0V7KFG1Yts/lVEq6nIxGTTQNKaHp1mcXWbeHVhoqNPrCE14spU13rLtc0t+BAeh4Ha6ySlNZbR3gsnhmYDba3vpMMVbMVmM3oscnUbZI0fQlSZQcCYP3YoLzeFGrThxzaxgm1hgZWCWpdG5He8G3JaQGkd2URoKGOq7M77yewq5/vitHVOGCqrzmFnxbGkrbTSbaHvOO1tbdk8RBqOejII04pNi6bzeDZqG2WrCvpqzP7FN6oPD5tywXbAm+/c2KxyM2+3tK04Ub8gPD4XW1a9tVnEGCckxIQ/AAQprcklIjWNpdpkbq2UpLXEW8iuzGWgbwWDU4/EoPG4POaUZxCbGYjIbGGwfZmFmidmRGeKSY3dcG2BNiCG/Mpe257tCvtDYZDGyvMPveV/TAJqmUXO6guYwVhm627341Y/yji+9EYDlhRWe/dE1zDEmMgvTmZuc58pj1zn50uO88R9eQ05pVpRHezhJEC5C4sGXn6T2dCVNl0KXM3jQzOyjRZmOhWXaGjeWrKs4WU570/C2b6hKKbLykolPiGGwdxKlIFyXFTt1Vgx00eBeJKbGMdo7sfuGO7idDgNgMBtoaRwmrzqRy7OrQbMGWAGrAXKSMZZ7uybqdRpuj+KMKx7bnA2TUY9Rr0OnA51SKIcTq9kANgfOpWWyitKwLdmZGZ/H43DumrPf3zJI9QOVtHdsqmqy7tvfeaMXs9XE0KZSdWl5qYz1eWuDxyZafdbtti3ZqT5Zum2Q5NylBCV4F2RG8vu9WVxiDM//5EZYjr04uwTKQ92ZypDlUusNOipOlDDYPkxf08bfb9uijanhaUwWAxarmcXZJbKK0hjvn8Tl2DiTvTy/QuV9pRvueKxXWJuPwain/VpPWCr9lNQXcOvpnSueKKUY7hyjqDaf3ib/ym8K/9U/WM1bP/9Ha59b42N49LfPrH3u8Sge+a3T/Oaf/3I0hnfXkCBchMyplx67a4NwS5yF6QDagIeTUoqhzq23j9uf7SC3LBNrvJWZeRtT43fyt1PS49BsdkZbBxnF+2afkpVE6FqmbKTXb//Gbg+iE2GwjEEsUtxJwZEiekaW0HykgQCg3Qm+3asz4bYVJ/19U1s21WlQW5qOc3qRlnPeChJJGYnkV+dhjDFijrWQW5aF0WwkPjkW+4oTNFBub9qR3ebA5XRRc7yAvo4xlhftKLU1X3zzTLZOpzHaO7EWfO1U9WO7AO3Ey+7n5mXfAd565XW5NDzRgNFsQCkov6cAj9vDzPgC4wNbvyahlJqdhNuPpjTBKq7Lp+FcM6M945QdK8ZgNNC6TdC7k5g4C+XHihhoG2J+anHHKjTL896FoY7VfOqdcs9Hun3neB95uIaGC/vj7/js+Bzp0p055Aqqc/nzf30T+h06uFqsZiwF4W+YdreTIFyEzC+/8cU8/a3Ld2VueEZxJoNje8+PDYXktDhmen2/wQ51eh9PzU6ioCSNyfF5WLahdzgYX5eO4XZ5QlIHeDvbVSNRSu1YujDUgmnhvhNrSjyMLIFHERdjorwonRWXCxN6bnYMowEmg56V3YI/pajMSaTlYhuVR/I58nP30HKuiYScVAY7Rqmoy8Fhc9Kzerej+v4yWq50bzlMzZkquq/3sDy/gqZpmGNMGM16cssyMcWYmBmdIasoE6PZgMej0HQ6NGBlxYnH7UEpxczo7FpQt2WYPm5o1D9a79eiurzSDJYnZ0lKjmFq2Puz1nT+zuxo7ZkqWq/1oUJYAjU+JZbcknT0Bj3Tw9NMDYc+0E/LTSGnJJPmZ+6koXRe99YRrzldid6gZ3FumZ6bfdsu4DUY9cQmWknLTcFg1HMrxHWyC2vyGOvbeAeo7HgxeoOBW+dbw1rnXimFLYASh53XekhMiye/KpfGMKT23I1e+roXkV0sXa/3AwnCRciYY0w8/Bun7sog3JocB/sgCK+7J89nubPNpkZmmRqZJbskg5GRZZZCsMDOXzq9jqlR3wuuympyaL8UuTfa2Qnf48jIT8VkNqDTaWg6HbrVut+3P9e01Vlg7c5ssKbTcLm8AaMBMCQYuDJwpwxcVWk6FqVnqGsa1sWoSz7K2h2pyKDxaW+d5JbrfRiMeipOVtCy2hRG2zSbvbnCR1JGAlll2bRc7eH2TQfvBY4d5fYwtK5V++y6OziZRRlMjGy9o2OymolLisWaEIM13kJcSjxLCzYWF2xUnKyg/Vnv7GzlyQo6GgfxuD0kZiQyN7Ux1SQ1K4mE9AQseg+eFTtN57ef1W262Er58RKGeqawLQd+d0QpRUZeCpZYM3qDntiEGIY7hje2r9c0YhNjQ/Lzn1uWRWJaPC2X25kcnPS5TfO6O4X1D9XQ3dDP0swSphgTmUXpmCxGNE3DZDbS+mw7cxNz1J2t2vPYNtPpdWvdQ7NLM0nOTKJltcpOuLsfVt5bymi3/ws9lVLMTS4wd6GV6lMVtD7bHs4143eFe14QuRKwYmcShIuQcdid/PdnHo/2MKJCuUO7uCtQ+UVpJCZZ6LoRWMmyke7IL4orrMqht2PrTL3JbGBhNHyz776M902gMxq3NC/JyEnaNWfVlyMvPgbAxPPDWF648TZ665h35rE6LYXF/juv07FpQW91afpaAA4QE2umqj6Xa0/caWqypRnQ6vD1Rj01pyvpbh6i7VovAAajDte6oH9zAL+ebps0IafdxczYHDNjc9SdqeTGhTvBc0JKLDVnqzHGmGl89k66RX5JBnNT3ouGuORYUgsz6GsfY2p+kurKtA2z3tvpuNZNXkU2y8tmZif8T/dKzU5COR2Mde/SUl4pMovS91SbuqguH6PZQMfzXQxtLZe+rdtdIC2xZmxLdgZafNdQd9pDe7cGYH5qgbLjJej0etqe72K01/dFQ6hpGpgtRv9LmW7Scrmd6lPldFzr8VmxR/jnxpONlBwpjPYwBBKEixAymY0kpMWHPZdzP5qPYimtuIQY7HMLNDT0Rm0MgYhNjt3ymFKK4tI0mkPYDMQfbqeb7OIsxvo3BiE9LUNrwVFAVqfo5vvm0H9pjod+p4Zzjo23/ROSLbCurH5abiILq7m82Znx6G12qo/m4XF7q1skJJpZWVymqCILt9uN0WQkNj2R7KNluN0enA4X+qR4qk6VMzW+sCEQBohNsG54HTtNIup26B6ZXZrIA7+UyoUfjpJRoGdyyI3HDfPTS8xPb11c2dcyhE6vkZASjyUlgb72OxdemmX76jibDbaPkJKdTHZxGiM9OweLBqOevPIsVuYWGfGzoU1cgtXvsaxXfrwYp91Jb8Pemsvs9jPm607JXmUUptP6nPfnJByVTwqr85ganWFmdJaUrGSyitIZ6R0npzhjz6k1LZc7MJqN1D9YzVDHCNOjs6EZ+F3ky+/+Dx769VOk5Uq+fbRJEC5Cqv5sFZ3Xe6M9jIgb6x1Hl56GZ4eqH+GQkh6Hwe1izMfCvv1qatMFi1KK2nvyaXhqa/vqSEhKi98ShC/N26i9vyTg1uCezBgK7ssBQFMKnV7HfXk5qHUlSZIcJu4tygGloWkQ49aoyI1Dc7rRd0zS1zGGbXoOl91FbkkG3c93EJ8av6ELaV1yLGOrOfsxsSbirEaubHMBo22a3d6pqopuh4Vav/MePdUPfo5feJP38+bzv8zfv2H72cj5qcX/z959x0d6VQcf/915pheNeu+9bvV67fW6gm3AGAymh94CJDEQSCAm9BAICS2QhJdOQsibAryEUGPc69pb1XvvbdQ19b5/jLpG0kiaUVnf7+fjz3pmnnJnVqs5z33OPYdTL72GhppeBrpXB8TbbZAz1j+OeXKWyusLGRuawhFrw2DUoRmMeOY9aHodnpk5Gp9tpe3i9hY/+vzhzajmlGdgj7Wh0zSGu4dpPr/9RZYxCQ4yi9PQaTqEThDwB6h/unnT3xvTrshWXXImxdBZF363zM1IKYlJsJOclYjRbERv0DHYOUzTc8HUFr1BwzU4zkjPCEaLkeqeyPye8rq9VD9WT1xqLJVnSyOWK262mfB5fBHvoHvQzM+6uf8lf823Ln9pv4fyvKeCcCWijt5czs++/pv9HsaeC/j8pKbHrgs2Im0xgLI7zGTmJjLeO8Jg1+EJwJMz4xlYccEgpaTyWBZX9ikAh2DjkFD6OkbQ9Fqw82aYZpwGHp9dMfM9B7hWb3OdI5XahtVpEhpws8nKxYtdS4+dCXamR1x4Zt1oqbGrthcLQX1heTpDrX2M9I6RXZaJ3qAxNTaF3xdcVOnz+nF7AuRVZS93td0k/u1t6qPi5kqEEEyPz2C0GpH+AM0XOnAmrZ7tLr/xV9z1zpfzy+9sPFM7OTzBdIiZ3NmZ7S++nZ9xr/s5yTtWQEy8jSuP1FJwNHvLso2hNDzdHFwbsUFqVuHxPOZn5ums66XyhhKqH93ez6oQUHljGX0tA4z2jVP31OpUDL1RT/HJfOZm5umsXZ+SMjE8RWxSDFPj0/h9u7/InxieJP9oLt1N/TtO6RACio7nMT/rZrBzmJYL6xcFw+oF2Bst7t2N8QEX4wMuSk8XodMJOmt7mJkMP78/pyJz4eJBY3xoAkesjfbqLuJSYzFZjFgdFsw2EyBoONeMwaTfdV38gyKzJH2/h6CggnAlwk68oGpnt/GvAs44a9SD8JyCJCZ6R8HroeGpg1FGbDtScpIYXiiNaDTpyctP3NcAHMDn9ZFRkk5cUgxIkAvz1jod5BQlLwUPQohgh01Wx7HBu/nBoDjAxjPJi0LFidd6NeZGlme6C4/lMTMwSmdtMIVDr199XJ1eR2l56lIFjpgEBz0dY5itRuam1ge9yemxKwa88dgC/gCzk3O0rwgGcysyF8a99r15yavcPJWh+Xwb9szkdYF4T8coJrsZ9zaqZIRiNBvoagxe0Fjslh0dI+APkJAWty4I12k6Sq4poP6Z5UTvteUdw1F6unjTOyo+j4+Gc8GZ44JjuUyNri7PKKXENTyJECLYSXJ4EtfQ7tLf2i53UHxNAR11PXjd2w/Ec8oyaHy2ZVdjiKSGhb+jxMwE8o/m4HV7GO13YY2xEBPvWNrO7/ODEGiaDr8vQN2a36GLy0XHQ6S4mKxGkrMSiUmMYbR/jIF9WE8TSff88Yv3ewgKKghXIsxoNjxvg3CDfvtf0NshpcThMNG5w0VNB8HkQmMWKSUZaTGrqkXsF9fgBAP9k/SuafldciSTukdrlh5reg1s9k2PVRxnhuz1zxt1Oq61pqCb8+P06THHxKM3arTNTZHr11H/q/PB7o0LnOlx1P3+0tLjxbTduOQYMgpTweOl7qnlxZHehRnN+VkPxVUZTE/N09exHMhpK4J4vdVC7nXly1VdFi4iBuvamXHNoBlWB9t2ZzBnem7KtOp510A23//IHEaLAc9c6MWDfq+PnPwkai92rXo+4A+QdySP5ie3l+6zViAgcc96sDmt1DzRyJGbK7jyyPYv6uam11+4VJwpXldpKBDY3kx01Y1lVD8W/ntsvdSB0WwgOSth3doaKSWdtd2UXlu46yAcoOm5VipuKKXu6fBWk8YmxZBZnIZn3kPjuYMTgK800jPKSIRSXtZyz3robuyDxj70Rj25lVl01BzOJkIZRWkcual8v4ehoIJwJcL8Pv/zdtW6b0UZNbvTEvI2/E5VHsuk+XwbNQekicZOxCY66GweQAhBfkkaLc8cjPcy1DmMzmxeVyFlbWqD3+ffcp7bEIBrhAOP3Yhe6NAQ6BD4uudovBQMRKuKUmmqCebkVpSmMd8anMldrIddebaEc08Gb+9bYqzoNIHZZuH4S05y5bcXGR9s5OhLT+EozSMvNx6QGEwGBvuCbezrH6ul9LpiUjLjGOwJ1n5fufguIKGndf0snnXhInJlfnJ2afrSz1xM8tTC56DxzM9exv/7qmTaNUnFjWXUPdex6lhxyTFk5CbQ3zKAqzV01Q9LUvwWn+bmjtxSSc1TwWCw4kwxNY/WUv14A5U3llGzjcAXgikhK5WeKghZ6tM9vz4VofB4LgCaQY/RZEBv1OOZ96LTiW0F4Is8814SMhIY7hkNedek4VwLlWdLmXbN7DoI1MKcOEjOTgAplyq6PN/5PD4G2ocoO12EwWRgcmzqUAXkd7379v0egrJABeFKROkNet7xudfzz5/5L8w2M5peR0/TFmXCrhJ1j9ZgcZjRG/VMt41icZhxpsRiSU6gvTH8urhrmcwG+loGtt3EpuhIFnqDfjn9YCEQ0yEJ+PzBGteLzy9823c0DTG7yxSBjSRnJzJREwzIrNaD86vH5/GRWhAfYuZx9XaaXkMIsWHescVuoeW5bmI7HfSHqAADUJyThLZQSzwh3kZfwwDC46f85gqEx0PR8VxqLwW/zLOO5OISRgwGjTkddJxrx2wzMTsxiwzAzNQ8NdXBdvMJKTGrztN0rhkpwZScEEw3WJk1ssH4s08UYzLquPj75dl/m8OCLdZKXkUW1Q+5ufF1Vr7/4Vfx7G+WA+u1xTUqrsml7okGxjqXq6Fkny6jp9u1aru6yz1UvPA4tQ9cDDmezVTdUknDQs10gNonmyg9XUTDM800nW8nJSdpXTOazazsHJiUlUBnfeiFiyaLcen/bTFW0gtTaV6TDx2JGdL6p5vILE7DmRiDTtMxOTrF2MA4mcUZTIxMLi1ErLqpbNuLhxdZHRaGtmjIlVmUhj3OSmdt91I3TiVofsa9KlWp4FguPU19Bz5n/BvnvkDJNQX7PQxlwcH5JlSuGi95x23c/qab6G7sIyU7kb946Rdo3EG75sNobmo5gJ1xzTLjmoXGPnKO5GB2WJBGMyODE7hGNq94IASYLAY0TSM9zUHT+fZNtw9ldnKWnub1wX/R0WwanwpdTSCjKi9qQbjPu+IOiYxuQ5DtigtRWtPr9ZOQEY8QAtfwJDkniujYpKqEz+fDF1goexhnBYMeApL+hfShhFgrI11j5OQlYjLqsQeg1zWLzhegfmKOE2cK6KzuWQry+2YkqRkWfDPzDPa4AEgtTKPtfOu6QHrlAjidpiPgD6DTdJjNBrxu3+oydBt89DPT83R3rZ4h1wx6kJKaJxqpeQIu/f711D+1+mdxcqF+t5SS4qPZtFxoW3dXIcYcesbVHSINZDMxCQ4mR6cY6Z9YV8Gip2WQlLxkBtuHSN5mED43E/yZ1/Q6zFYTwxuUWdUJHVml6TgTYxjoGF4XgAN01HRTcaaEuqcad9VUpqepf90ExtqW9dWP1mN1WMgsSUfT66gPM7UEgh0yN2tPL3SC2CTHjmbzn49aL3Xs6qJoL9z51ltVAH7AqCBciQqDUU9+VTA59i9++Me8+8Sf44lwi/DDpPPKci3hylsq8YxOkH80B48vQFNN36ptC8vTmBuboqd5AJ1O0NS3s0YazqTgLJoQAsnyjKXNuckCtih2opseX66u4d3jUo5bMRjXJ5p0LNy9sDstlN9USe250BUgFnnnvRhjzYwOTJDqsNDjCy4+xShw2EzEaga6JoO5vIXpcTRe7qasKpOGC53YnRY6u8dJz02iuTo4y1xYmkpvcz9zM250miAtOwFN+olPi0MvJEmJVvR6Db2mw2IzkmTLRtM09H43fl8AnQ6EwYBm0KNpOqrOFANgtRkpP5qBQCCX/sIFJpOeOHsGvc29xKcn4Z7zrCv95g1xfeb3B6i8Ng/XoGupc+Za9U804CzOYcK1OugebOkLuf1GdCYzpWcyQ16UzkzMkV+ZxWD70LY7bPY2BcdRdl3xpuXuJJLuhj662XzctU82UnQyn+bzm//MRMLs1BxNzwUnOcquK14XqG9kanx9bfdFeRWZTE/MqAB8m9qvdJGcnchQ1940P9qu299y834PQVlDBeFK1KXlJ1N2uojLO+hAeLXJO5JD7UIzlcWc09JTBXilwGo1MNQxTPOKW5xrZxS3Y9o1R3eIzpQmy/50SnONTCGlRAhBV9sweqP+wKwf8IXI9V16zePbMgBfZHWYmRidxu/1ARpetxeHMOIenKZLTqNpApFtZbolGM363D50eh2JWfH4fYGlALygLI32+mCgF58ax1hLH701y6XX6h+6jMVqYqA/mPNtc1qZ14ILJ+PsekZXNKopOllA84XloLX82vyQgWbJqQIazzVjdVgYH55dmmm2OMxkFqUiBPS1Di3NtCdnJxKbFEPT+TZ6t0g58/v8JCfb1wXhjiQnUyPhdcIsPJlPW00fk6MbL0zuawvOfrdc7KD42kKawlxAmJafitVp3bLe9Gi/K6zjAcxMzO55QObzhD/RoTes/vpPzIwnLTeJ2ck5elv6V93VU8Iz7ZrBYAq9aDOrNIOp8WmyitOD6z9E8GfEM++ltzn6KZtCCFJzk6N+HmV7ohKECyHeBPzzwsN3SSm/E8Y+CcArgLuAKiAD8ADVwPeB70sp102fCSFMwDuBtwD5gBnoBv4X+JKUcnftzJSIuP2NNz7vg3ChE3hClJxuiFKqjt6oYbGbEAKE0IGUSCHQ9DpiEhxIgm3KhdAh/X6EENgcZhLTnMFyfDrB9MQcsxH6MvbMe4lNjWNibJr5WQ/l1xUfmIVek5u0RI9LcdLfHjq1QegEpaeLGO0dY6hrhJmFvFnpC6AttKMvLstAAAG/H5Fl44HeHhKSrBw/kU39M+2Un8qj5lIXOQXBL8jcvAT62oaXakK7xmewOS2rOicaTIZV6T0+rw8WgnDd2nKGa1rcr72u02k6yq8vpn2h86PH7cVPMP89vSAFv9e7NKMbnxZLXkUxXo+XrvrebbUfN7L+7kd8djJ99VvnT6cVpDLQNb7ldik5CYx0B1NqTBbTFlsvS85J5PIjW8/69jX3k16YSl/L1ms8+loGSM3b26DHH+IOU9l1RcG0GClpOt+2tPDWaDYAwYY6pdcW0nyhjeFtpPAooY0PTjAxMkXl2VI8bu9STf/Fko6uNc3KFjt/RpuUkk+98m/5p/NfjPq5lPBFPAgXQmQBXwemgc3rea32auCfgH7gIYKNnVOAVwLfAV4shHi1XLEqSgihB34P3AA0AP8GuIFTwJ8AbxZCnJFSHoxv+ucp95yHX373wf0exr6ruLE87BnVSPBOzzEzvL6UmS8rjulpL4np8YyOTAF+hHsOn8eHNdbBUPtyXnDVLRXUPrv9fPSNpOUkMDEWzIdvaxla3URmHw10DIWskFJyInfL2c+Gy92k5SRSdkMpDReDgexo3zhJGfEk5yUv/Z0nlSXTtJADPTo9y2xmIuX+YAAOwQCqrCSJ9nPNzNtW1jYOkJ6fTPPF5fkEvVHP3IqmJGabmemFC7y1refXPl67sLT0VAE1jy3/ivR5fJRcV4jRYgQpqV1RRnKs38XYwudx/I5jXH6imapbi6l+qHrTzwig/skGEsvzGBlaXg8RMBg32WNZfHo8gz1b/9vxzC2nobRXd5FTkUVn7cZBfkZxGsnZSTz32yvhNfoRgthkZ1hBOEBSZgID7XtXT7rtcieZJen0NAbvomSVZtB8vm3prkbVTWVomrbwcy6xOiwkZ8UfmIvhq0XAHwi/i+falc1R9LqP3LNn51LCE9EgXARX/3wfGAV+Cnx4G7s3AS8DfrlyxlsIcT9wDriXYED+kxX7vIJgAP574I41+30a+MTCGN6+k/ejRIbf5191e/z5quGpRtJyk3EmxqA3GXDPexkdcDE2sPuav6GIbfxyX6oZvWbWNNJfD9qKgHB+zkvf0DQlpwr3vfGHz+Mj9+UnGBmdxmDQsFmDs6g+sx5HWiJaWfA2v2T5M1n8/wSrgfrf19DfuZx2IAOSke5RJoYn0ZwOzDFmZIqNjGkvUhoQQqD5NGqrlwNEOe+m7ql6pJTYRPDfjWfei/QH0PLjVo1Xb9BWpfKYrSamp4KPDSY9tlgrVrsZvVHDbDeRWZwGBNvFm6xm0gtSMBj1xKXGMtK7ehGi3mSg9XLn0gVJbmU2HTWrL5QKTuRz6fFg7nHNM62U31RB09ONm6YX+Tw+UuJMq4LwtsZBkgvSGGrdfCZwLowuiFU3FK+qET4/M49rZIrKm8oZbB9aahNvj7XiiHfgGpqkp6mf3hApW5vR9FsVqlzmce/9OpjY5BgCPn+wVKLbu2oB6+KiwbjUWDKL07HYjAfiIvj5rPrROiwOc9TTf9ILUrj5NWeieg5l+yI9E34fcBtwy8KfYZNShpwqlVIOCCG+CXxu4bgrg/D8hT9/GSJV5ecEg/Ck7YxDiTyrw8J7v/RmPv2ar+z3UPaVz+Ojr6mPvqbVi7pKThfTdCUKNWZFsH4yBFMSPG4ffa2Dy90XV0TYG80CRnqdZm/rIJpBw78QGPg8flpbh6k4W0ptuDNHUWLSdExNBr8Ix0Y3XrS2VmJZ2oaveee9WNKMxBxLo7l7OUiPc1oZeLprqTY4rP47mJ2co/LGUgIyOENujzFTUJiA3x8g4PNjTYhFs9nweX143T5McTYCnc0E/AG6hoPnmVqYgI1LiaO3Y/nc9jg7fS3BoLezrpvk7MRVQUBSZsJSNRYIVnvRGzR8Xj8peckk56XQeHF1ll/9c+3kVOYw0jHA9NjGn91Ac//SRQgEq7qkHs1bFYRnlabjTIhhfs5Ny0Iu+0D7IHEpTsYHQ1+wFp/IY2ZyhvLri5GBAH5fgKbn2pgYmmRiaHWq0Ujv1mktkdJR04U1xrKn5f1qFtaaFBzNoWuDUouL7d6V/Vd8TcHSwtpoyD+aQ0dNN+/4/B9E7RzKzkUsCBdClAFfAL4mpXxUCLGtIHwLi9MJa6dZFqc9XiyE+NqaQPylC38+EM4JhBDnN3ipNLwhKpu55o4jFBzNofWyStFfS26zC1+44lNi6WroZWTNXQhviNnKjWYwIz0TPj44QdUNxdSsSHGREupr+jhyS8W+trA37vSSY4sPKfuOQsb9XvJjUpGAXgic4wHm840k5iUun1VKim89gs8XYLpvmJoVqUsV1+Su+qLOPWFkYMXMu96oX9VkZ9Xw1twRWbvdUNfIqtJqzqSYVUF4d1M/OWUZSKOB7qYBhgZDl9fsbOgnOTMes9W8YdfC4Z5R0q8pYaBvOTBevPYov76YiZHJVdVHKs+W4p7zYLaasMfbmZmYR8oAyODP8dzUHBMjkzQ+0xReOkkEeObCrwPtnvVEvLOiPc5GXEosJouBybEZrHYzwz2jzEws3y2wOa10NWxcTlM5OOam5kjKSsDv8y+lekWCxW7m4//5IY7fVsns5BwxCY6td1L2XESC8IXc7H8hmMd9fySOuebYb154+Js1L/+SYNrLK4FqIcQDBBdzngTOEsxN/0Ykx6PsjNFs5G9/95d84OZP0tWwvbJkV7toBQ9+nxeH04w9Jg2hEySkJTDaP4Znzk1WUQoCsOTEL1QsiUMnBLYkJ5rVjAxIpITObd6qD0f1E02UnCqg6fLybXAhBDWXujlySyVXHq7ZZO/o8U1uNvsdrGawsr65w2EmLy2GuQ1mZxfVDY3iWqy9LiWnYhKpubI6QNIJyMuIo7m2D52mwz+6erZW6FbndesNa/K+dRtfCazNSgq1eK/puVaqbiyj5vH6kAsaO+t7yT6ydVWdoZ4xYhLsZJVl0l0fulNmQqx5KQjX63Xo/V4SM+Kpe2p9ab21ebV6o56Co7n0tg6uKnm5Z6Sks257AbWm18gpz2RidGrdorzt0ukEWSXp6+qBr1xbUXZdEZ11PcEmTcqB172Qv+9MdCzdcdqO1NwkHPF2mi+0Y4+1kV6Yis1p5R1//QZKThUCqAD8AIvUTPgngOPAWSllpO+7fQGoBH4lpfztyheklFII8aqF838cKF/x8u+BH0spw/qJllKeDPX8wgz5iZ0MXFnN5rTy5997Hx972d9sq6rCVS9K63KmxqZpW1Gf3Oa00XZl8/zP7KN6etujX1Ktu6GP5Iw4hlakBgQD8S5Kri2kMURpOaETVC6k1yzy+fwQAKGJhYouLFUjWCSlDP7nl/j9fnxeP37fQjqM24fP50cGJA6nnrx3pCIk6NwL7UQXro+qioLBoG8omJs9eCmTyVE9fQ/W4+pzbfpeV15j3WiPhcEJjqbYl7uVAiaTnvpLwaB1oxntleJT47A67Uvvz2jSE59gIxCQBPx+An6J3x/A7/OjmVYvflx87yu5Zz1UP1ZPemHqhvcDRjqGSM2KZ6B78/Udk6PTeOZNZJZl0BMiHWJ6yEVioo0kp56mpxq52BL+wl+fx0fjsy2UX19C3TYa00SKJcYSVn76Sv2tg8xOzVF1U9mugvDC43nojfqQDXnaq4P1qe1xtm017FEOjomRKapuLAurNntuZRbXvug4xdcUcPaVp9H0Gl6PF71Bv621QMr+23UQLoS4luDs95eklE/tfkirjn0f8CGClU/eFOJ1M8FSiC8G/ohgHvgswcWafw88ulBR5eeRHJeyc0Un8vi7Bz7Op1/zFawxFqwOC5ce2r8UhAMhSnfRTQ4blbdULXSllxjNRo7cWgmAzy9BSnQ6XbBhiwzGg12tOytRVnwkE4NRz+Jyxd6OkU27gs5OzZGUGbdUN3yREIKe3gkS0uIY7V89G6xpuqg1D9HpNazNI1zQ+ZE6wLD69VStCSEkpAcfT5+/B7dXEtgilWhlk6RjVjt1//VcyO1KTuYxt9DuWkpJ0dHsYKMlBEJIzCY9lWdLg5+VEEy7Zmi4sHyBlZabRF9T6PSDuJTYVY83m2nraxnA7Qn9nmYn57A5rdidVqYnNg9E52fcTJn0JGUnMdy1/DOVXZGFKcbGWG0H1c+5Nj3GZrobe0lIj2O0b+/yuwG0NXckwjE7FZyXar3YgSPextQmOfMbyS7LpK91YNPc8qGukQPbJEYJT/Vj9eQfyVla0Gs0G8gpz+KGl5+i+rF6fvXtBzj14uN84r8+hKatXiBsMBpCHVI54HYVhK9IQ2kiOBMdMUKIPwK+BtQBL5BShpp++SjB0obvl1L+nxXP/3phhvzSwjFUEH6AZJdm8O1LXwwGgFJy4fc1fPHt/4hraONazcr2NV6OwmLPEKx2E/OTMzSsyHt1xNvXBdhrddb3UXxNPs1rFqXOz3pIK05dF4T7fX7i02Ijmje5KODzY7ebSJvU0Rcb4uJB6FlemgJCg7rOYQxFiRw5lcf88BRdTy/ncEvAmRWHMzeBS9Pz5FgsDP869MVmbFIM82syB1aWI6w8XcCzv7646vXys6uXqoxusshu7ZoDX6hi9UBsspPk3BRaLq++W2K2mbDYzfi8fiZGJsmtyKJ5iyAcYHJshoTUWIrPlOGe8zA1PkN3+yi0j1JxLJPxwY3HvJWpsWkqz2bueRButpuYdm18cbmZ2ak5Ks+Whl+6boXhnhFMVtOeLvBU9sfKu5cAzsQYbn7NGW5+zRnyj+ZSdl3RugBcObx2OxNuBxbvD89v8IX7bSHEtwku2PxAOAcVQnwA+ApQQzAA36jQ6uLiy4fWviClvCyEGANyhBAJUsrQK4WUfaFbmFESQnDyhVW85kN3862P/GvUz6vpdeQfyV5qRiMDksbn2tBpOjS9ht6goRm0pQoiruHJqN/eO+y3D9NyEhjtWv1PdGpsmoyKHPo7N/9nN+uaDRmstzcNUHVLBdULCzUT0uKIzU6ivXGA/GtLGG7uZWp8Z8HQRoROR8qwOWQQLqRuVdqQThe8feH1+jk/7KI8JwmebkMCBW86RdPUNO0z84Afh17D8EQn07MebDEWcsrSmRydJjYphoA/wMzUPJ1tm9yBCPHjIcTqGVmDyYBn4ec5xMarHvrWpKOYbCaKTxbQ3tDP9OQ8pdcVYTQbmJ/zMDYwwWi/C/f4ctDdWtODxW5lbmbrkmqjA66QFwjj44czmEzLT9lw0Wk4erboLLqWPc6GTqcjpyKT2icat95BuaoYTAbKr19OwXvJO1+wj6NRomG3Qbgb+O4Gr50gmCf+ONAIhJWqIoT4CME88EvA7VLKze6vLa4gWleGcKGTZszCw/CXsyv74oV/cCP/94s/Z3I0soEVBMv0jfaOMTk6hXvOQ1OIDpWBQICA14d3TWxQcUMJtU81RzVQ3quqDpEQl+RgfHgKk8VIXLKDhCQ7/c39IWenHXYjW4UcPS0D6xZpLmqq7+fIrZXIgKS9dYiOpkGEEHS2DFF+LC+sBjHhkAJiq1Jpa+rnyF35ZGXFAgIpQQYTQtCEHj/LjWDWZiXMeX2kVmViK0zg3MDqX1llgx7cTiupReng81H3TDDfvac1eOGSWZhMXnEKsBhvC1qfXs4d7u8YJbcqm44V9ZzXxODMTMySlpdCX+sAyVnxJKXFMjE2Q0/L4PpeIFJijbFScLIAjzdAR30fOpMJR0IMgz1jDG5Rwi8QkORXZlD7zM7LqvV1jq5qKrMT3Q295B/JDr3OQUqyyjLojtAicE0f7Cq626Y2NqcF19DWeeGl1xYiJbRcbENv1C9VrlGeX1709tt462det9/DUKJoV0H4wiLMd4Z6TQjxKYJB+A9Xtq0XQhiAAsArpWxds8/Hgc8A5wk239mqw8tjBBdt3i+EeEJK6V7x2qcIvr9npZRqFeAB50x0cOzWCh79r2cietzy04XU7CKPuPaJRqpuKqPmifWVGyIl5OzlASOlpOraPBqeaiQx2Yln3ktfbSebhTgNzzRTdF0JrTWbl0qbGZ8JORvu8/ipvRQ6pcY1vr3FcaGkvKyMiXsyafZN0ezzcvpHLnzuGYbm1/9dF9vszPqXc3ndc2tm7vvGKT2WwfnB1TPa2XExmL1eWmsHoXeSsuPZ644tpaB9RelOzaBRcmMFSwVPhEAIqMhIWdrGoF9/UZiYEU9snIWax+oZWKhFX3QyfyFXPygu2UFGTgL+7ATqnlteEFnz9PaaJdU+2UTh8Txatljou5m49IRdBeETI1NYHJZ1z5usRnLLM2i52EF2WcaGtbLDpel1pOUlR6Sr5NTYDFU3ldFyoZ256Y3vJOiN+qW0Fb9PzSE9X91wz6n9HoISZRFvWx+GDKAe6ARyF58UQryFYADuJxhc3xdi9rFDSvmDFY8/B9wNvABoEEL8BpgjuDDz2oX/f3803oQSWXVPN9FRG7qk2U6VXltA/dO7D579vujU8V4ko7UyM4LKjudw5aFg6cDtLP6a6BtFb9Q2zEOGzWfDNzI6tPPras1uJPGvb+Yx/RjML1/nG/+gkLFHWoItwdYQ0gQBG8FVmwLXiA+zXrd04RAbb6d5bAz/wl2NDKeDNGGm4UovTvPygqmZEF3x1uZsSylpqt7830LlidXBvNAJRGIsDT+pISkrgaScZLzzbpqfC+apJ6THEZPooKexH1f3MJmVW5cb3IrZGl7L+bX0Ro2YeAeYzGh6LWS1lnBNj88spZUBWBxmMvJTaFy42zU5MkFsSgyuwZ2vN8mtzKL1YvgVXDYzOTpF9aP1wQuYTY65uJhTeX6LT43d7yEoUbYfQfhG8hb+1IAPbLDNI8APFh9IKXuFECeAjwB3AW8DdED/wnZ/I6Xc3zZ8SliyStIxGjWKjufSfLFjV8fSGzTKri2k+rH6Q5HqcdBnwouOZDE1srPSakNdIxy5pZKa5zo23W6j2fCNuOe9OOLtTI1tL30p8fZCet6QRf3c+ptsPr2g98kxUj64fr//uXiUdlcwkDMFdBQ90Ilh4eLM5jDjTTAz5/GRHGsnR2el4UoPEwt/rboVuSvOGDOIYP75Ym3v7fztC52g4kwh7a1DZJSm09vQh9AJSu84zpXLPZy453r6azpovNRFfKpzab/RvnFG+8ZxJjqIz0qiKwr13zej6TUKjmSjGTTaanoYH55ifHiKzPIsOq907Pi4064ZkjITMJgN9LUOkZaXRMul5eDWNTRJ/tFcXAMT6wumh2moawSj2YBnPnIt6C0OMwA6TUdydiID7ctrKlY2TlKev+JSnORWrr9zplxdohaESyk/RTAlZO3zHYRYarTR9mGcZxj48MJ/yiHliLPz2j97OV982z9QeUNx2OkfUkpSchKxxVgxmg0YTHoG2oa4EoFbx4sCu5ipC8dBDsIz8pJoeqphVxczDU83Ep+exNgm1W96WgYouaaApm2kN8SlxoYdhAtNkPux22jKlBjmoNwfhy4AOikwBATOaQumGR/jLi+xujhcgdV50UZtOZCudDuY9QWDJk2vw359Jn1+D0cK0+nsH6O+YfUstm5kDDkSXMx35XejVN1xjJorfSz+VPmM65vjVJ4MzlSv/NilgCmPn+qLXegNGnO9QyCCAXh9bTCtwyuhf6FF/djABEduqaD+qSZMFgO5R/Poah6MXAC+RUwblxxDen4Kfn+AzsZ+mkPc6YhLS9hVEA7BLpxmu5nKM8XUPLF+zqXtcgeFJ/Jp2eHF/fT4DDHxtl0H4UlZCcSnxtF6uQOzzcyRm8oZ6BhioH2IrNIMHHE2hE6oAFwBgovbvW4vRvPO7jgph8NBmglXnqeklDzx82f50V/9BM+8l8ZnW6m6IbgivObJptWBiJRkFKbiTHSg6XV01fUw2L5R8ZzI6GroRafpwmqishMHOQh3xlro3uXdBM+8l4RE66ZBOMDk6CSaXhd2+o/NaQtru6TCVNyvPcIzQxOcMKXR8kQ3lYXp1D0VnDHNrEznOU8/R9ITAXDMxTJuHCd2vAz/YDIjfTpE8vJnkN4uaQGQkqNnC/Hq9bTOzHCluQ+bxbguNhXamlWUaz5O6Q9gXpHbrDdoIXO0j91aTldDMJAN+APkHs3FlhhDde1yXvX8+Oo0ndrnOtDbLHiB+vMdW35Wu2W0GEjNTsKZ5KD+2Tbqnm3bdPvu9pEddQlca356PmQAvqi/dYDE9HhG+rZaZrRe1dnSXV/UL85uD3ePInRiVcnJ5KwEbE5LyI6hyvOXz+tnbnpeBeFXORWEK/uu7skmPvPqLy899sx5uLIwG1RxQwljAxM44mzoDRqDncP0NvXRu4ffV7OTc+QdyYl4zvqig5YTbrIYKapIo+V8GzWPReaOQuO5FoqvK6WlZuPPsL99mKqzJdSc2zxwW2SwbP3lVPmik7QOzeGYX536oYs1Ev/yHGZ9PrA44IqLwMKrsiMGT++tPNQ0BrgASIoPdso8Nu+k7eHg+CpP5nLhgXryqjJwO4JBpD8QWPdL1Z6eSKpcruurN61uqhEISOZnlxff6Q2hawBPrsgTDgQk+oQYqmv7kUBcgp3E9FgCY651+22Wj78bAig4ko3JamK038X0xCyzU/N0twzS3RLebPvE6DSlN1ZQ8+CVqIxx0czELDnlWTsKwnd6gaDTCUpOF9L0bOuq2e21F91D3aMMdasKuspqOp3AGrN+4bFydVFBuLLvcquysNjNS9UCKs+W0tvcz/jgxFJt3O1V1408R6w1asc+aGnrWTlxXHk48l1Mx3qGMJj0eN2+DbepP9dKQmosowNb56Bv1qwyNtlJSkEaOoMe97yXnPEAGMG7sNOUJUBdXzBtIzF79Yz64HkntZMrFmzqNfp8M+T7bBh/0o87ICkoSV2qLrIyqAr4ApQsLMRc/Hudn/EwuKLVe2Ja3KrzecMM8nSe1Z/b0MAEFdcX0to2xOi0mxSbiYAWH9axdiu9IAXX2Cw9YQbbm5G6vfkamg+jrnkoo/3bD9wheKE045qN+sJu5epz7LZK3v3FN6kumM8DKghX9p0txkpMooO56Xne+fk3cM8fv4hPv/rLPPubS/s9tCU+n5/KM8ULTdkBZHjBc4ht5EL16UVCJyg7lrVq447mIeZmdlearPKaXMb7x5AyeI6l8wcCwcBx4Skpg6dezPvuqI1Op82RnrEtF2n6PD5i422M9Lu2XKQ5tkFN+fxjuYwOTdN8qZO8I9kgJR0Xe3CcSaB1eGzdLz2fXJjFXvj4fUPTYF5+PTHORlnAwfzP2xkbnyUpLYaB7lECC8H3yp8Dvz9AR/3qS8bC8rRVj9fe+Qg3zUm/otRgTIINn8XElYVuo9m5iQz2u3BHcPHgWkInKLuuiJkpN91NAxFb9Dw9MYfBbMAbxbFD8Od6Jx1XZ8LoDroRZ1IM7LJEovL8c+yWSopO5O/3MJQ9oIJw5UB46btfSF5VNqfuPIYQgo/88I95a8n7mXbNbL3zHqh7cm/zNWMyktltjymf10v3LuowR0PDM03EpSYwPrxxicGWS52UX1+0ZQ7zQM84scnOVc1PLA4LI4NTTLuCgZPRYoKpOTxuH8c0B495xsg5mYjOspzyUdc/jN1sWAqN57vHue7sYpc6gZASuv04j2SQVpmBEBKP20dABtAJHRa7iesIXkJJKTGfNgNiKTq3Cj/lpclL57MKP2U5MUvVYIROQKZzYXOJpumoOb+6dXVCqpP+0eC/BaHpSCtKpa62j6ycBIwGjdaW4LqIpCQH8xt1ztwFi8NMTkU29VtUudmJ3rYhKm6q4vLvLkT82CsF/AGQcsPa4aECdHucjemxnZXDrDxbumkZQkUJRacTnL7rxH4PQ9kjKghXDoTX/tnLVz2Oibdz7wfv4oef/I99GtH+WtsRcUfHiGKXz53yzHlITnFsGoQDdDf0YXNamJnYuF6yEIKM4rRVQXjRqUJqnlpe1KiPscJQ8BijVwaxVlkwGwwY0XEqKyMYOetgyjSL9C7UmrZZqTu3vpKHEFBQnkZ9x+qFwHlp8fQ2Lj9nGZhclYJQnGmnYcWiu7JTBdStqF9vMBsIWJdTYgxGPWaraSlPPDUngVl0TCw0KKo4lUdf3wRVx7Jpqu/D7fYhkFRVZdH94KWIB+BVN5XRdKmLxgsdET3uSpFovhSOsf5x/F4fZpuJ+Rn3qtfSC1LWBeFpeck07zAI97i9zIWoC68oK2l6jevuPskN91zL/PQ8J24/QkZh2tY7KlcFFYQrB9atrz3Df335f3Z1O/iw0h3AADpS6p9uovSGMpoub5z2MjU+Q/npQuovdm64DUBf3+TSbLjNaaV1RZObtIJkfIsz0kIwNjTFMZHKc41DhJqfLEwJ5mpbshOgdXjd65VHs7nQ1EOqw8rA9IpFkmvSMjRtdYWXtRdDa7f3e/2rKqp4PT6O3ljC3IwHo0nP1Ng0Q8PBfwMZ+UnU1vQRF2+jobYXr9dPSmoMNoNGzXPtVJ0uoeYXz276mW2bJKI1skPpbRsmozSD3obop25MjExRebZ0XRnUtcF5Sk4iA+07z3k3W9aXnlSUlQxGPZ/++Uc4deex/R6Ksk8iMN+mKNGRXpDKjzv/EUdceKXoriq63QfhB3EmfFHjkw1k5CVuuk3dMy3kl6Vvus2ka5bY7BRMViMFJwsxmg1UnC0lNiOBwcFppMdPSX4CRyrSSE1zEuiboioliWtikyjXOSgTdq5NSCbRbqF/YoYA0OdaP/teWZDE3NgU11gszD7SxLV2GzZjMKXFv2aFqKZfXd1k7d/D2lzqtTnhWUUpXHqskdpnWvDOe2m51El+sg2L1Yhf0/D7A8zPe9E0wZGqTFz9LjoW0lHmfJFf5bubjpbbkZi7d7N/dU82kpi+vIg1OTuR1sudFB7PXXouIS38OvShHIZGYcr+SclJ4mtPfk4F4M9zaiZcOdAsNjN3vvUW/usrv9zvoeypq3kmHIIBSozTzFbznpOjUxjNejzzG1dU6W4bJqcqD7fbS3xmInUrcslHBieWUl9SsxOwFCbT9Nyas3aNYTLpya5KJvHtt3Dxyuoyika9jt6HG5hdkVpQ91A9zng7pS8ow6fTYV1sbCfAEjuPf0UlE4tJkFuWsbQQ1uawkFuRGdxcCIQAS6KTseFphvpcOOIddC8E1Yuz5i0XO6i6pZxLncEmQrZ4Kxk58Vx8qHHVWH0RrmWv02uMhFGpJhJ62kcQQuxJ8BoISGKTY5ZKFqbkJDLUObSqMdfai6ntSC9MpfbJxq03VJ633vPlt6jFl4oKwpWD79qXnHjeBeGRmcU+2IF88/k2hN64aZWZ4Z4xKs8UU/vc5gvcOptDNGwSYlXu+UDXKIai1JD7u90+JpvHmQzxkWXE2+m7sj51ZnJsmozRWRrbV9d4jvd4mVyR42zOdtB2eXn8hcfzaL+ynGZz5JYKah6pRQhB5U3l6LQVlWzMJipuq6L2wWoGWwfRmSyUnMmjun0AR2D9DPVum96sVX66kNpn92Zx4cTIFIWnCmk+17wn5xvuGaH02kJ0mo6J4eCFRt1TTeQdyUGnE2iGnX89zk7ORa25l3L45VZkqcWXCqCCcOUQOHJTGbkVWVErnXcQafqrP1PMM+dBZ9+64c5g18iOjq83aqydP7dvkuYzMTFHenosOk3H+PgMJpOevJwkHAaNXkJf0tQ/VEfGDSUMj0wvXTgZdQKzJbioUggdQrf67zKwIn0lNS+ZhnPBhaRSSqofqSWjOA2TxYh7zgNSMjMeTInQ4qwkFKZwsblv4Tjrr148EQzCjWYjPW3rc+OjyeR07Nm5JoYnmRhe38V18QKp5FThjo/tGprAEW9jauxgVHdSDpaSU4WqBrgCqJxw5RDQ6XQkZSXs9zD21lIN72CgJXQCvUHDaDZgthqw2k3YnVZi4qw4E+w4E+zEJTmIT4lB0+tIzojb5OBBBrOBtOI00orTSC9Kx+LY2+5sOl14qQfDPWNY7eYtt9Ob9BQcz+XI9UU4Yi3EJzvXbSNXLJgsS7RS7p/nmnQnWYl2kJK+PhczU25ysxMJeCUNDf08e6Wb4zeXhB6rlHi6h3HFaYzH6hiP1eEfdzHXN8Jc3wizvUOrarTD6uY+wz2jZBSunp3vbeonvyyYHz00PI0t0UHFm8/Q5jDR1T/O0ZI0MqRG+2Ot64YzM+OOWP/VklMFTGxQiz1a2ur69vzncCM6bXdfj+mqwoWygRe9/db9HoJyQKiZcOVQePWH7ubCA9V7tkhsv4209sNCUx0JVN1YRvVj9VvuB8FUlgHXJEPNm6ejJOcm09+/nK5RebqYKw9c3s2wt0Uz6PGHmXaTmhVPW/36mufORAcZxen4AtDRPEhr0zAVVelM942RWGWjrDSJnr4ppiaD+dwyxkDZ6Ry66voZe7oes8NGa3MwnaSgKBVnfgoTXj99/S68Cz9rx1JttD5STUVlNs3Nw3g9frLzErDZjExNuZla0xFR2yJ4C/iXf4b9Xj+O+PULjxe7aGaWpdBkDpASY0LT6ygtTmW6bZyxvtB52jNT82SUZ9JX1xPy9e0Y7B3f9TG2yzPvpezaYqp/v3c/hxvxundeEUYIodJRlJA0vbZqfYny/KaCcOVQOHZLBcdureD8/17Z76Hsid1cbCzO2IZKV1h1jjWpC3Nz0S1Dt1ZGUSpdHeEFelbH8kx4am4SidlJTE3O09k8yMTl1QGn0An8Pj+dNd14Z4K52YXXFGCJj2FeF+BCex9FiRYmZ30Un8nBOTlPe0M/VqeV2ieCqSF6g8bRdDOz49NUP3SehIx4pNdLnFHiI0DbU8ELopyKLALSQE6ba+lzXxuEr5wJTytMZW1iS29TP8VnyjA77eD34fd46e0ep/juIzw8PY6cFsTaLSSnO6lu6qPEZN30szJlpSAaenddL3y/1gbPzh+MC22fd+PFwFvRDBq9zf1bb6g8L2SVZnDiBVVoeo23fOa1WA/I3R5l/6kgXDk0jt9W+bwJwveCwbQ6J7GreQC9yYBvFzOA2+FIcEAYQbjQCQwGPZU3lTPYN8FAv4uB4c3qhwejR5/XT0ZxGj2NfTQ/24Ij3o73XAul2YlkVmQwcyyXzpZBBrvHMJoNOB1GSstS6OwcIz7WTM0Dl5aOmFGYRvXjDeiNejKLltMMnGnxuLpcjI8v5/6mZcSsG09qfgpJuclMu2ZpvxBMI7HGWCi9rhifxUbdpW7ARUZOAmabHvcNOTw9N4NBr+H1BTDqNBr7xkFK7GY9CU4LvkCAiSk3a7W1DlH50lPU/ve5LT/bzWw1ox8tnQ39pBakMtA6sC/nX+Tz7DwI93v9eA/2umglimKTYrj19WcxmAyYLEZe/eG7sdhV4K2sp4Jw5dAY7d/72+NXM4N5dRDudfvIq8ym9fz6XONIM9vM9He7NnzdajeRXZwGgQCddT20XWhlQrd1XrjZasQ9FQyIYxJsTI8v5zSX3H6SuclZmp9qwD0+RVJ+KkmF6SQVZTDeO8KVxxuYn3aj03SkFZUQc3MlHTUdTI/N0N8erL7i8/gwWZYXk/qlJCXVgTEzhvlpNxKJDEhyC5fb1I/1jzHUP8FQ/wRCCNIKUrDH2kgozGRodJauS8sLjhPKUnh4chyTz8eJogw8bh81XYNMzM5zwjWHq2eUsUAPIx3DHLnzONUhgnCAmrp+Ku44Rt3vLm35mW1Ep+28RN9upRRl7msQbo+zoRl2/v6llOgNerzunQfyyuF13d3X8L6vvm2/h6EcAioIVw6Na198nJ/9/a/3exhXDZ1u/UynLX5vqlMUHM+j/tLqajdJGbGkZMQzMzFLR0039SvqLCdmxDPh2jqgiUt00NfQhZSS5Iw4mp4Nppccefn1XLoczCk35WaRnJ9ITIyJy5f6cLu9FJWl4USjKCWGicFxOmt7GewcRqcTVL3gCMjgzH1HdddSQA7Bz3C0uZPZqTkyy7Jpq9k8F9seZyP9WCFDo3M891wXldfkQvNyV8ZZASXZyUyMz3K5toei3GAwP+P2kKTXMdi2fO6J3hEc9hhi7Ub0mo7RyXnSYi2I6Rnc0/M0dbvIPZFHx4WdlRjczwo9bfX92OPtTO+iWc5upOWn0Hy+bcf7a3otZE55RlEagx1DfOWxz/KZV30JBLiGJneVf64cLAXHcnnVh+7e72Eoh4QKwpVD4/htlSRmxDPSO7bfQ7lqTU/uzYKhxVnGnOI0HLEWRrpH6W8dZKg1dJvwtRVGNtLfNUrFySL8rglqHqsDIOtFVcyXJOKYdDPVP4V73ktjXT+ZqQ7k5DTFZenEJ9kZ6Bym5mIXqZlxDHYGS/MFApJAQFL3VLB2tSMljqyiVArSkujqceEXgtG+4B0ai211uUWT1Ujh8TyscXbGpn1MjM8yNjzFpUu9S1nhHU2DmCwG3HNebA4Ltlgr51uCzYQEMridlOS43HSfXx1Md9YEL2JWFtlbuVwz9eajOEyQnBnPUM/2/83sVzoKwNz0PBXXlnL5N8/t6Xmrbiyjt7l/VwE4LKx3qF9uCpWUmcD8rJtvV3+J9uouik7k86ffeS/Zpek8/rNzCCH4xT/9lu7G9YuPIbhGwe8LqC6ce8xkMVJ+poTqR+u2rMEfnxbHqz90N6+47yW7avSkPL+oIFw5NHQ6HadedIxff/fB/R7KVUVv0Cg7VYjf76e1uger08rsxOzWO+6CyWzEYTPQcaUjrO0DvvArTRiMOhovLgdRhiOZPDk5CiVmCm9MJ8mrw9Q3S8Pvg4srW2p6sLrmmPVJ8o7lEJsfw2T/INM9weDa51n+8p0am6bumRbK70pgfGSapNL1zX+ySzNwpjjpqO+j7tl28o7lMqs3EpcWizPFSU/HCAnJMXim5zDZTGTk5TI/56GzYxQx6eVYSgICGDjfg949xknXFI1PNoX9/hfF2Qz45+fxz7mX645vw25L9O1Ww8VOUvJTGWzbm7SUqhvLqHmiYdcLWgFiEhx8+ZHPMDk6xX/83X/ztcf/aum14pMFAFxzx1EAXvn+uwC46dXX85vvPcg/f/Lf+Yt/fT82p5WWix0kpMdRdWMZPc39fOkd/8jrPvIKvvsX/8r8bOhUJGVnrDEW7n7PHcSnxjHaP47ZauJF77iNpMwE6p5q5NOv+hI2p5X3/9O7SMyIp6exj9mpeVxDE+g0HS/9w9tV8K1smwrClUPl2C0Vz88gPAqLvJaqeRg0ap5pWXq+uCqH+seDAarFacWZ7MQWH4Ml1o7ZamS6d5i5qXkmx6bIKEilJsz23PZYGxnF6RgtRtpre5jcRg3q4O361UGhZtCRk5uAXhPohA6dLlgaTgsEyK3KQTPoEYChaRRrmpFZGaBlaIwW4MYJL+mxBuIyEtA5bFxpGAQhaGsawHDMivFVVRQ0zWMhQH91x7rxTHX2o9MJmhoGOPqqm/BNz2KPt5NZ5qW7dZDuhSY3EhgfmiDr+jJ8OsCgkZ0Sg1lKai91ERibxRA7S2dDsJKGb9pN2/nl8+mEYOLc9gNwgL5nm/B5fMxMzFJwIp/2ECUeN6ML8+5DtPh9AVIKs/ckCBdC0HKpPSIBeNVNZbzvq2+j8Fgefr+frNKMsPZLSIvjDfe/kttef5a0/BQATr3o+NLrafkp/N+eb9HXOsDvf/wYFruZyw/VYIu1BReCenwqrWUHDCYDXreX13/0Fbzuo68IuU359SV845nP44i3Y7aagOBibUXZLRWEK4fKkZvL93sI+2MHsUH+kWysMdZg/C4EBpsZH7rgsQRY7GbsKfHoNEHAG0Cvk3jnPNjibBx90Un0Jj1DLg99XWMMD83D0DwllenUP73cVnyjQNpiN5NWkILNacPvl4wPTjDQMUzThY6dvHtG+sYhIdiwKT7BRlqKnY7L7bQ8ETp9Za2Tr76GxyzB2XQ7Ojoeqmd+xk13Qy9VLzpBcqqT5KxYJmM1nhpzAZCek0DNA60Ii528F+dhEwF6LrTgGnDRXdNF1UtPU1PTR01tMEisNBro7xwh//pizKlxuGY8DA1PMer2IUamGJ2dpyArEVfvOG63j9y8JPr7XIyOTBGf5GBseGrduAO7SD9Y2Q1St4MZOrFfNQpXmN6jesrlZ4qpfSK8i8nN3PaGs/zFj96/9FjTNLLDDMIh+JkvBuAbSS9I5etP/TUAD//7E5x5+SmklAidjvcc+/CGKS3KspgEBzkVmbzh/nspOJpDb3M/aQXr72qtlJT5PGsYp+wJFYQrh0pCWhzHX1DFxd9X7/dQ9tj2gzFbjJUrjy43+Dly17XUXexaepxXkkZ7TRcWm4nZ8WnKj2VS/Ugd6cXpDE36qDxTTF/XmlnINcMIrKhnnpqfTHJWEtMTs3TW99FeG7lgwOfxIaSkqCSZ9mebGKnfXtWJwUeb0d+Rh0/AsRmJ/mgOtQspHiPTHoaGZxifnKHzrngyjU56hiZ42D/CjccyaL3US3trcGZbOOPIO16MTScZrO8kJT2Jqel5skrS8Bk1DMcKaJ7wwMTqi4OR4SmOn8jh8lOtmC1GHAToeLYNzaAx7/VTeV0BY8NT62q7+31+dJpu141fdjKrvd8z4cCedOwUQjC6w3Umml5bqumfkpOEa3hyiz0i65bX3rDq8Ye++z4+/rIvMLVPC1oPg6O3VPDJn3wYR5x96bm4lNj9G5DyvKba1iuHztHn42x4BNZjjY/OrHq8dpHXYqDX19SHM8GODAQorUzHGbfcHGZocJLKO08CYHdaKT9TQuWN5aTkpTLYNU71E0201/REvFugTifIyomn43zzjsq+uQYnOKKZ0UsYeqiB2icaiE12UHJNPqlOA5mpdtLjrXj8fgIWgaYTIATj6avLOEoJ7a3D1DSPMKRZiE2LZc6kp65lkNq6PmZnN867vnShA4fTQlFhMqN9LiBYT1oAvvlgGsHkxNyq95zgd0fks9xJQB3uYthomhidRm+M7lxR5dlSBjqGt73ftS85zge++e6lx19+9DN8+md/HsmhbVvFmRK+dfnvOPPyU/s6joMoIT2Ol73vTj77i4+uCsAVZT+pmXDl0Kk4U7zfQ9hzkaiJoDdunpKwMthLy4qn9ulgnnj59UVMjM8ihMBhM2A16Tj10msYH54Co5HaxxsiMLrN5R7JYaJvGM8uunpaO1ycSHfQ3u8CgoG5a3CCyjPFdD5WH0y/uPZ6Osdc3FCVzey8F52AipNZ4AkgWE7REEBn1xgN1T2Un86jpqZ3w/MukgjSM+IYHpnCmZ9MTk4ijec7MFuN2GKtFJakMj+/fIERCEgGV9TKTilKZ7B5Z3cXdhJQH4QgHKD0hnJqHopOk670wlRqntj+z2/5mRLe++W3MtQ1snSnQgixlC+8nxIzEvjUT/+M5353mWf+5zw//4ff7PeQ9kRMgoPM4jRS85KpebyB0b5xXvKuF3L7m2+m+GS+WjSpHEgqCFcOnYozJVhjLMxOzm298VWip7GP+LRYxhYCyFDiUmMxWY0IIdAJgbYwgxiX4iQ5J5npWTcp6U6kDAaRNpuB1Mw49AY9dpsBs82EI97O1Ng0wrccDJo0QXlBHMNtA1j9Xs4/uLxQ0Lim4U+0WGxG2qp316wp4PGjbxtd97x3ofqJlDI41S0Es/h4diIY8L4oPo7WX6xvYJSQHENqvJWx5kES4qyMjm9dUWZu1sPAwix4UooTt9uHe97LhSdbl465UvHNlfjmPRjjHMy4/TsOwnUHIL97x/TR+5pyz7p3tBjz3g/cRWZxOpnF6fyg8e/pqO0mLsUZhRHujBCCU3ce45o7jlJ0Mp9//auf0N8W3vqJw+jE7Uf42I8/QExCsM+Be85Nf9sQuRVZ+zwyRdmcCsKVQ0dv0JNdmkHDuZatN75KuIYnqbqxbNMgPD41jtbLy+3c7XF2cquysDqs1D+z/rNaG84NNEDpqQLqn25iemwSKSWVRzK4+ItzS3mvSTlJq/ZZm8McLZEoj+zMTGTo8vr6z71tA+SeLMKZFk+eKR0vEtusgVyzEw1Bf5aezLI0dDodOr0OnSbQNC1Ywk+A0OmwOsyMPrt1U5z4OAsD3QKPT9LfN058soOxweU8Yp9vdS3iuraFXOW+aewxZo7cewP+6Tl8ZhMmTceVnz4R3pvfQRAuolGSZwf6OkaJSXAwObp+4epuORNjluq8b8TqsBCbHEPfihr2/3Df9zj7ytPodDrS8lO2XEy5X4QQ3PnWW3nBH9zIr7/7IC0X2vjtDx5e+vd8WNmcVo7cXM51d53kmjuPkpy9+veSyWJSAbhyKKggXDmUrrnz6PMqCAfoadp8FlS/ps1243PbbzjS3dRP4Yl8dDF2KuIdXHlw9QLYtRUzZCCyud8b2W2ljvKbK7n4aCs5BYkceUEs7ZfamZ2aJefO0/R0jkK8jdorvaRkO6mbmuJIUTqTLRPkZsTTOjRCcmUqTY91bHh8i8WA3qDD59388/AOjRGobqL4ZAH2FCt1dUOrXvdvUg99enKemtpgKUOdTlBSmkrZC4/Sca6ZucnNZ+G3+/HpjXqG+3d35yFSJsemqThVEpXGPcnZiYwNuHANTWy4zY33XscHv/WH/OKffkd3Yy///Y+/JSU36UBUjwmX3qDn7vfcAcC1LznBp+/9u0PV+MeZ6OD+f/sgiRnxxKfGYnGY0TSVXqIcfioIVw6ls/dcy48++5P9HkZElV9XxB1vuYVp1wwD7UNYYyw0PttKWn4KRrOBy4/UkZyVSONz61MjAAym3f9znpmYxRpnp/DaYmxGweSgC02v0VHTRcmpAl7zpy8h9kdP8Ph/nweISF3lcOx05s5sN1N8tpzay73BoGN2npraYGv58puPUrdQ9SQ2JZaexn5i/cHAajFAWXx/XfMzSCmJsZkwG/UYNB1CB5pOQwjw+gI4Upw0Nw+FGMWK96FpeOY8NDxeD9RjNBsoPFGAFuugu38Gf5iLMAMBSX1dMCAnPRVjtg6TxUiy3k/rU7svtVd8TQH1z+2s3X00DHRHp0vuGz/+KkZ6x/jUK/825OvORAfXvuQ4ml7jnj95MTOTs8zPunnjx191qILwlW6451pufNV1PPqfT+33ULZUcCyXG195HTe+6rptlXpUlMNCBeHKoZSSmxSR0m0HRXZZBp//9cew2M1bbtt0vo1ffef3/O+/PLqqOYfQ7b7YUXJ2IsXXlfDuT9+LEII3f+JVAIz2jxOX4kSn03Htnce4/54vceGh2r1LR9nBecpvqaSze4KaS8Ggu6A4mdZnlmucayvy2WcXqpMExubAvJz+EuOwwIiLgfEpTseaab/UzWKfwoKqbFrrl0s+plxfuOWYvGvehmfeS8OTwYWBml4j/3geppx4ukdmmZ4JfxGqzxfANzVPO5DxwpOkmAWDDT30tmy/0U3VjWXUPBP6Qm+/jA5MkFOVQ2d159Ybb6L8+mKsMRbaq7t462dfT8mpQhIzx9f9LtH0GiaLkU/99M+oPFu29Lwtxsqffe+PdjWGg+A1H34Z+UdymByZYmzQxYX/vRKVdJ+d0mk6XvyOF/CWT79GlQ9UrmoqCFcOpYnhSUwWI3PTe9PMY7tKry3kvV9+C92Nffz0q7+krbpr3TZJWQm88r6XcPolx0nNS0ZvCO+fY/HJfIpP5vPK97+Ef/zgD6h+tB6vxxd2oHry9iru/sPbGeoe5R8/+EMA0gtTKDqWx4vfeRsnbqtct09CWtyqxx/65jt47/WfYHKP6hHv5Na5MBqZm1lu7W1cU2NG5/WSawv+/1xTF5pBx0j7CJQ5CSyk2ay8yJDZTrjUDVIiNB16ix5jjBlNrwOdQBoEiTFm9DqBEKDXCTRNhw6JTgQzrB2mjS+U/D4/zc8GU6x0OkFOVQ6OzCT6xt2MT4bfory/ZxxjopWB4VkcGUnBHHbz5hd39jgbOeVZ+DzeAxeAL4pNTwwZhMcmOzHbTAy0h74LEZ8Wx1//6n68bi8lpwqRUiKlXEpnSEiL4+733EHNEw20Xurgg//nDzl772li4h1RfT/7qeRUISWnli8afV4ff3Tqo7Rd2d1FzkZyK7O47q6TdNb3UP90Mz6PD/ech/iFxeQnXniEhPR4nIkOUnKSqLyxDKNpbxZ9K8p+UkG4ciilF6Ry7wfu4kd/dfBSUkxWE+/469dTdrqIstNF3PHmmxkfdDHcM4YjzsbMxCw6TUdOeeauymZll2bwhV9/DL/Pz0jvGM/97jIGk566p1vIKcvAGmMhMT0O1/Akz/0uWOLtzZ94FW/8y1cC0F7TTWJGPO/43Ou47fU3bOv2ekJqLH/3m49S/UQTf/9H393xewjbDm79915pIyk9mbGxafzzvuBCyhWHazzXsuoiLuev7qBP8xErAmA2kDVgxz/uJtFhISAlzdJDYrKDqeFpAr4Ac5lW2jPil/a3J5gY+7fHNh1TWl7Spq8vCgQk7Zc74HIHECzRGJOVHHZAvvheZ6eD2250EROfFktaQSrttb3UP9eOIco1uXdjoGccIcS69/Lduq8QE+/gR5/9L374yX+n6sYy8o/kcPHBamISHLzy/XdRcDR3aftQP+d//PV3MD/r5nv3/5g733br866cnd6g558ufJHf/+gxGs4189R/P8dwz/pKQttVdCKPV9x3F7e+/oalSQYpJUIIPG6vCrSV572D+xtXUbYwekAWji3Kr8rmLZ9+DUduKsfmtK56LS4lNmq3VTW9RkpOEne964Xc9a4Xhtym9qkm/vWvf8bpu44vPZdXmcWP27+x4/Nml6TjiLXx93tyd377M+GuARfZJzJJftERJl1zGAxW8vKT0AGOGA+6ogkwCzBJZG8cLq+R5olgjnh8koXB4UnivTZGxXIpzJLrcpj4f8HFqrq13UPDuE7w7KDREEDHlU5YmKXMrcohJjuZwSkvI2Ohy3Rqaxbphvr0jGYjjgQndeeWF/B63Duvwx5towMTFJ4qovncconMEy+sWvq39vr7X0FOeSanX3pyR8Gd2WrifV99W8TGe9jodDpuf/PN3P7mm3nfV99G/TPN/Ozvf8XjP31my7Q/k8WIey7YqMpsNXHjq67j7CtPc/3d16y76Fl8rAJwRVFBuHKIvey9d/Lofz3NzMTW9ZmjKb0ghbd+5rVU3lBK4oqZ0YOk4vpi/voXH9nvYexYuPPgQieIzUzAluzEdDSFnkQD8VLi9fl5uqlnKb3kurc4aE5bXniYI51MPDsHluBjL8Ggw+/3r/otOepYDm51iwXXF4SzOiESC1k7qjthIS0jvSiNxMJ0xtySvsHppQBn5az/4nltMRbmZj0EfH4SM+KxOG10NfXvejx7yRwbTBGx2M2862/eyN3vvXPpNU3TuPHe6/ZraFcVTa9ReUMplTeU0nyhjYZzLZSdLqK7sY/41FjGB124hiY5cfsRLHYzjng7c9PzmG0m/F4/9ljbfr8FRTkUVBCuHFoFR3O45TVn+OW3H9i3MRSdyOdvfvux5+2XzkEpEJF2NIf4EwV09boYds0yDOTE2egYHyYu3kyKzcZ4wLW8Q+rMqv11mqSzZwxLicZcwI8nEKzG4l8TNLcMjlFWmsJIwyAiAKyYcA4nCA9EuKRjX3M/fc3BQDo+LZa04kyE3YpcM/cdkJL8o7m4RqcxmQ10Ng0wOrw3+fyR1NU8yH8OfofYpIPTGOdqV3Qin6IT+QAUHs/bcLuD0C1UUQ4bFYQrh9of//3baLvSSf1C1YvFjo9rGYx6Sk4VcOrFx/n+X/7fiJz7mjuP8q7P/8HzNgCHg9GsJz4/mcHUeNpbBzlSnMa4K3hnxLLyx2DFxYLZrtGt61yVo6HTS/wBSbEtnstTw4zOzVJyexYy1U2yHgJCIhf+c3gszA9m0m8Q5OnM+GWAgJQY/VvfXk/JTmSse/Myhjs11u9aauZUeeuRVa/5vX5mp+bpaTncXRP1Rj32WPt+D0NRFCUiVBCuHGqaXuPdX3wjFx+swTU0wZs/+Wr6Wgexxljoqu/FNTxJbHIMp+48hsliXNpvt4F4ZnEan/vFRw9treBI2av3v1md8OSzZfR1jAAwOjWHyazHPe+jq3EIc4kevVljYnKWvJxE2jtHqHiRjS65OvdZ6IMRudMXDKRHZ+d4cnaOU7lJPDe7uulRrNHC+Iwe35oLEJ19dQWZUDRtj35e1vy9NF9eX53nMDJbjeuaUimKohxWKghXDr2KMyVUnClZehyTEMwb3ai5w+s/cg8JaXF86Z3f3HHXuJO3H33eB+B7yefZOAhvHVme8u7td1FVlkH9xS5mZ9ycsKXy3OAACV4TY1MzXHssC11x5/rcEX3wCdfgLMQsP/3ss0OcOJ3Dxenl0m0uzxyVebnMdftJDpjRAgLfkAfHpJ5mNrdXPzNX64/mzETohaiKoiiHkQrCleelO958M85EB5997VfwzIdfEcJkMfKuv3kjL3vvHVEcnbLWRjPherORqTW14msb+4iPs+Ean6E/MIfHHyArLY6xiVnOdfdxjTa7PgjXgk90948Tm2DG5V0sAyi4/Ow4padSaZhebnwjzB4mHnGxstl5dsrWecp7FRxfpTE487Ph10tXFEU56KIShAsh3gT888LDd0kpvxPGPgnAK4C7gCogA/AA1cD3ge9LKUOuahLB6aU3A28DjhCscTAAPAv8pZSyKdR+yvPb6Zec4OZXX8///sujYW1vspr4wy++kZf+4e1RHpmylt8fOgi3J9mZEcs54wVFyVgdZkCS7k2kUU5BILBqAaWQAh169EJDW/hPF9CTmGJC03RUZBsw2aZwmgOc703H4zNi6tM4kRls9xNsuyM48sok0PlBE6CTmNwGkrgFBBh0OuSkF0Qw9VwCAQna/MFsLnVY+Lx+vB7fga5nriiKEq6I/yYTQmQBXwemge2soHk18E9AP/AQ0AWkAK8EvgO8WAjxarkmf0AIYQb+E3gp0Aj8GJgC0oEbgWJABeFKSG+4/5U88p9PbTkb/uZPvprX/8Ur0LTdt4a/muw0nWe7Ar7QVUVc3WMcva0KvRe66/sxD84wOutmzutjeDqYupCb4mB2aC4YqQtB34yNPnewpvHJ+Bzqp5rppBV7RTGN3VMcs1r4+OlgA6Jfx7yOP//vYK53cr+dyVgv455gIH3b0VhqPcu/WhJMTsaHgusODHoN+7Ab99zqn6uq/IQIfiobu1pnwmF9+UVFUZTDKqK/zRZmpL8PjALf3ObuTcDLgEwp5R9IKf9CSvl2oBToBu4lGJCv9SWCAfjngXIp5R8v7PsWKWU+8Nsdvh3leSCjMJW/+sVHccRtXOHkyE1l3PvBu1QAvo/8mzQL6f/tZVoudjHpmqWtto/xp7vIsQf/Ps0mPU6bmfbuUTKSYoHVlVZWBqsLXcx5qmv57/mFeU+yWEZlaHKa9HkbJhF8va5jfmFWPMgnlhvxeH1+sstT1w82StFxzLqSfXtzcbTXhBDMTqq8cEVRrg6RjiruA24jmBYys8W2q0gpH5RS/mJtyomUcoDlgP6Wla8JIQqA9xBMO/lYqHQVKeXBbQGnHAjHbqnge3Vf4Y0fv5f4tOUKF/ZYG1/834/ztw98AovNvI8jPLgi0XwmHH7vxgszJwZcFBUkLj3OKUnl8vAoRyszwaTR0h2snJLqDN6Ys4jlKjkr62nrdMEIuWt8hr6ZYD1kA13cXbkcXLcNjXHEmAwSBibmKbQuL/71i9W/fqQ1RMnCKCSFV73gKFisZB4rpPSGMo7ecQK9zbr1joeQlHLTSjmKoiiHScTSUYQQZcAXgK9JKR8VQtwWqWMDi4H02p7Pryd4IfFDIEYIcTeQRXAm/kEpZUsEx6BcxZyJMbz5E6/mnj96EQ/93yfoaujjJe+4jYJjufs9tAMtNsXJC15/A7//tyeieh65RZObxgcvk3ayhKT8RJ4ZHiU/0Ylu1kteohMBTLq9DA5OQkBiC1iW9guwHNAtBuEATw9czysL2pmcSeR0Nlwci6GnbxK9Xkfb0Bhn87J4fKwbz4SVNEc8GjqMPgP6ZAdCiGAVFK+fwuIUhBDodDqETmDVSSpurlzeRgiEbmE+fSFA14wafm/w/S5dIshgACqlRAhB9QMXgeAM+PSUm5nJOWZWzBBXXl+048/6oPN61n4NKIqiHE4RCcKFEHrgXwjmcd8fiWOuOfabFx7+Zs3Lpxb+dAKtwMqESymE+CfgPinlllMnQojzG7xUuo3hKodcTIKDl//Ri/Z7GIeGpukw26PfKc/v33jGXW/Uk1eShsMM7ec7OX4ym8Fz7QwMTy1tU3ZzCR6TRkysE/u8garERAIywJx/hgxLAt6AH5k9QEVWAD8BHptP5V8/+MeMu+bJzk+g6fQwp7OzuTLTz4RvjmE5zbV52ZxrGWDx16gm/eRe7Fs1toLiFFqalquqVGXF0nCpe9P3WnAkm9bqjbcxmoMz7PnH85EG06FrPb9bXrcKwhVFuTpEaib8E8Bx4KyUMtIJe18AKoFfSSnX5ncnL/z5GeAB4MNAB3At8H+A9wHDwKciPCZFURbodNHPlV/b7j0+1UlqVjwBn5+ehl7qn6gH4OgdJ2h6sJGSo1nEJjjw+3w4E2KofbwVKSV2p4XkG/JpNfeFOs0SoR9k3GUGBF1toyRca+HpidUNb56b6OZIZgZXeoYQAYlBaJgtBjRNh9vtQ9N0OBxm4pLsaDqB0OnQW42hT7jy3FukrPg8PpzJTub9gsH20AF4wB/AYNJflQGrx60yDBVFuTrsOggXQlxLcPb7S1LKp3Y/pFXHvg/4ENAAvCnEJouFx/qBV6y4AHhQCPEq4ALwp0KIv5ZSejY7l5Ty5AZjOA+c2Mn4FeX5IJoLVqWUWO1mElOdOBMdxMbbGOwYZLitn5G29QHo5d9doPBEPv7RMWyahjQIApNTlBXHIxGMudxMPzcOdy7vY9BpZFkTcRos+PEz7plkyjtL9l/q8RNAAC9OmUCva0BKLyZ9IZenXARkAL+s5vqiJB54b/Am3MoChD6fH79ZY9DtWVqPmZCydcEo3RZdNQMBiT0tiYHOkQ23qTvXitFkoOJ0AbXPtG55zsPEvY26/oqiKAfZroLwFWkoTcDHIzKi5WP/EfA1oA54gZRyLMRm4wt//mbtDLyU8rIQoh0oAMqAy5Ecn6IoQTstGSelxB5nIzbBjjXGjNFkQIjgTO/8jJuZiRkmhieZGZugfWwCo8VIT+2m19IAtFxo2/A1vUGjPD+YxXY8LpcJ3zR9c8N0z/XRveYe3ox/OaRunbOTYw4G/T7vJDqymA0EXx+lh7JbM6l/aP1NQI/bR05WPF3dwV9f4SxjFWHcWdgsAF8+t5eaJ5vIKUvHPedlsDvUr9DVcsvSMdlMNJ7vWF1G5gDxqZxwRVGuErudCbcTrMMNML/BbdRvCyG+TXDB5gfCOagQ4gPAV4AaggH40AabNgJ3AK4NXl8M0i0bvK4oyi6FG4QXHc9Gr9eYn5lnemya8aEJpgbHmBrcOjgE8MxtHYBvxef1424f5fjvEvBnTtNdNbjlPlLChWE3BdlWfHIWv/RQ4UjkGVfP0jbZd7jxjWeCTiBEMJA2SHDNe4iNty0F4QQkVbdV4Z1zoxk0ZsdnmBmbYrjfRcAfIDbRgaaLbAWVzvo+9EY9ldcVUHuubcOKNgnpsfglNF7qIqc8g4mhCVwr8uoPCt8mlXIURVEOk90G4W7guxu8doJgnvjjBIPlsFJVhBAfIZgHfgm4XUq52ZTP74E/IZgzvvY4JmCxREBHOOdWFGX7NP3WQXjF6XyqH63bg9FsbWLAxcDfNlPxmopgb94NSAlpU0k4Hk5hsGOKrj/MJS79WcymRry+BvTCiW9hzfeIpZHmUSvzK1IlygtSaesbI2NF5dSA20fNhc6lxympMQw09WKyGpESxruGSM9dLrcYKT6Pj+onmqi8vojac8E7BbFJDgBcw1MkpMbi9QXobglelHQ29mN3Wik+kUvThY6Ij2c3VIlCRVGuFrsKwhdSQN4Z6jUhxKcIBuE/XNm2XghhIJgi4pVStq7Z5+MEF1meB+7YIAVlpV8DbcCdQojbpZT/u+K1jxOsmvLIQq1xRVGiQDNs/muk+ETugQnAAQY7hzFajAw82Qd/aF1Vuzt1Mpn4wQS0eY3pxgCtNcNAMDC9Uh/P002VZDhOc00GZNtmmZgfQ+rnCWg+qo7H8exTyzftfAsNhnr7XSQnORgensK/JsXDuzCr655dnuXfamHmbtQ81Uzx8Vwmxmcwmw0Mdo9ScTofnUFP9dOrc8enJ2ZpujJLblUWo73jTI1NR21c26FmwhVFuVpEvG19GDKAeqATyF18UgjxFoIBuB94DLgvxJdRh5TyB4sPpJSehf1+B/xaCPGzheOeAm4iWBnl3dF6I4qigMGobfiaI95Gb2PPhq/vBymDnVLbq7tIGUplMCWYcpE2mczg13X0eUPffIuZ08AOvVMz9DbAjVo6zY8vB9XZGQEKjqdj1vT0to7i9y8Hi6mpToaHpwisSQUZHZnGGmNZ1QUy2i3nmy52YDQZlqqM1DzZTMHxvA2376jvIyk9DpPVwEjP+Ibb7ZXAJt1TFUVRDpP9CMI3svgtoAEf2GCbR4AfrHxCSvm4EOIa4JPArUAswamrbwGflVIerAhAUa4ymhY6CJdSkpoZR+OzB69nlj022NY+oc3CYMoUMgCm3yTg2yAAB9BNBIKrYACrpmdArG4K3Nk7RmZOPLUDg1hMBhITzRQlZSKlZAbIvTYDa0BH/pFsAn6J3+8n4Jfophy4Z9xIGSAQkLTWb14+MRJWlvmLTY5hsGfzm47DfePExNnIq8igvbY32sPblGrWoyjK1SJqQbiU8lOEqM8tpewgxGTPRtuHea464LU72VdRlN0RGywkrLiugJoDlIay0mK7eq3dD9dD/kgOrXWbVxzxTng4VpbKzIibnrEJLKlGrOkxDPZNAsFfavE2C52MM+f2UtOxPguu0OHAVb+6tGKM8DExPBmZN7YNGYUpGKxmdDpBexiB/+T4DNOTc1TeUEzNE017MMLQ/D41E64oytUh+l02FEW5qoXKYU7KiKP5uYM3A77WXFMwFcXW7txy24A7wEjnJD1jEwA0D4yi6VffBWhtH8awyUJVv1wfQOqNe39DMr0wheHBKTob+8MKwBcF/AFqnmml9Nr8KI5uc2omXFGUq8VBSkdRFOUQ0gzr01GsNgODs7svKRgtYuFm3FD9MPhimWrfugGM0agRM+AnIy+ZGb8XTQiMa0qDz855KC1No6Y99Fpwf4jqgPoQn1+0VN1YyszUPN0tg7ta4Dg75abyhmB12r2eFfd5VRCuKMrVQQXhiqLsytqOmZXXFXDlkdp9Gs3WzDYT3Y3BvObJ4SnKfn2W2oatCygZLAbGBscZu7icC37iSBbeVCeGaQ96dOgExM5JyhwO9AiEBB0CnQjedrToNOrXHFdEsePoWj6vf1sz3xvpag5+XmabadfH2i6vWwXhiqJcHVQQrijKruhWpF+kZMdT//T+5QtvJTUvGbPNREdN99JznrHwgjqh15EQbyM9M475GQ/NrUNcuBI8TkHDKCN9LgCGNR2OlFiGx2fXHSMhdX3ay17OhE9Nru/quRtGo575rTeLKJUTrijK1UIF4Yqi7MpiXrTQCfSawOveOrVjL+QfzSHgDxDwS/QGDfecm97m9TPelrCayYPfJBicmKe/NTiTfKQ4jYam4CLLlV1DpT9AdkEyNc91rDtGqPJ6ug2qy0RayTX5dDRFtmVCuN1SI0k161EU5WqhgnBFUXZlMQivOF3AlYdr9nk0y/R6jabLnVtu558IrwnNlM9LYEWznSu9gySmO5ieczO/pgnPeL8r5DFC5WFHM5BNzklEBgLEJcfSXNOLlOFdcITLE+YFlz3Wis/rJykjjr72Yfy7yEdXzXoURblaqOooiqLsik4nSM1NpO7Jhv0eyipCF96vt4n2AY4eycJhNiK8AYQ3gFXTcfRIFtqKVJtJz/qAc2RihvkQ1Tp6WwbIyEsKdgaSEqETGM0GDCY9doeZ2HgrCYl2EpMd6LTotOcpO13IyOAUI0PTNNf0RDwAB5ibdm+5TWySg4AQuD1++rvH0Bn0VJwp2vE5TRbDjvdVFEU5SNRMuKIou6LpNXQE8B2w0nGNz7ZQdDKf5vNtm243UNfDoCMOvz+w1MBgft5H9flOjEaNxBQng4MT5Ax6SJuBuMx4hoankf4APl+AgD+ANTuVxLw0HCaNgNtLX9cYickOBtuH8Hn9SJ8fj9vLtNeHZ2p1rrizPCOi79toMVJ8TT6NlzqjEnivJKVEb9TweULPTuv0OjKL06h5phVYnsVuvNhJTmUmI30ubDEWkjPiQELL5U7mZzYP7HVhXlwpiqIcdCoIVxRlVwSSnsbod3nciYnhSTS9tmkeccDrIyM1ht5e17rXPB4/MTEWRkcmaXqmHQCLyUhg1sPY+Axzc8HZ8dQUJ4O946RlxjFQF2zS63F71wXBnvn1s+mRmAmvur4QqdcjAK/XT+25zS88IsloMqwLwktO5iGFoLdtaCkAX8nn9dPZEMynn5mcY2ihY2dsooOCo9mM9o0z2DWKDKy/iJiZiuziUkVRlP2ignBFUa5aQ10jVN1YRvVjawsDrpaU7cBcHBfs/imAxT9FsJlOSY6N5h8EA8X68x0A5J/MpaVlCFiucGK2GJeOOT0xR0lVFo0XV+el6/Q6AisqfISbNrMRoRM0PFZD3pFcOron8G4wKx0thrXNhkQw9aY6RPC9FdfIFK6RYAOl2GQnmfnJ1J1rWfV5zUS4wouiKMp+UUG4oihXtabnWknMiGekd2zDbaZ98zwToqTgorzE2HXPDQ4ut5pfDMKH+l0YTPqlWtYhm/PoNTwrg/AQHUe3IynNSX/tOPVPNpBVlsksZibGZrbeMUIMptVfI4VHs3cUgK+1GJDbYqzklaUvNQWaP8BNoBRFUbZDBeGKouyKyWrceqN95J7zkJ0au2kQ7ukchXTLhq/7AgFy7y5DaCI4S67Xobea8MgAEhCaIPNYPMHQWiKlRAIuJOV4cLvmQEoCAYlmNuGZ8xAISPxeHzqxs7xtKSVCCExieea7u76HuJRYMrJT6e3a+P1Gktlmxplox2IzY7abwyz4GL6ZyTlqnmklMSsBs9WIyXKwf94URVHCpYJwRVF2ZbFE4UHWfL6NrNIMuht6Q74+dqEL0ks23L97bJLutU9OhHfuU1kxdD6wXLrRmZbA5NhyWcS4lNjwDrRGXkkqvXWddNS4Vj0/PuhiZnKWotOlNNdHti54KD3twwBMuKKbJjKyUPbxujuPRPU8iqIoe0UtM1cUZVd0uuiU2Is0Z6Jjw9emukdxWs1ROe+zwk1mRebSY21Nh0yxg9/CBpMem93E/HTofpWeOQ/1D1+hvCot6hVS9tpw7/h+D0FRFCUiVBCuKMquHIaZcIDe5v4NXxNAmm3jdJRdEQLPmZylh+vb1G//IiavOIUrD17ZcrsrD1ymtDhxVb3zw04161EU5Wpx9fxmVhRlX4hDMhM+Prh5/kiMZ31L+UipCbgpvDGY7rK2zvVO1mWuD+Q3Vvt4PcXFids/yQHlU23rFUW5SqiccEVRdiWabdcjyWQx4p7buLKGGJoGU/TO31oaj/WSZX1d8B1ki3imt5d/3dvQCxy+TpOZuYk4HCaEACElMhAg1n743oeiKEooKghXFGVXtEMShMemOBnsGN7w9ZnGATiSFLXzDwa8nHz1CeQz65Z4boveqNF4rnlb+3jmPGA6PMGrlJKKqnSuPFi97rVDcuNFURRlS4fj21NRlAPrsMyEJ2dvnpIxcqEDLcoR3nnhJqZqZ23qLTYTqVlx5OUnbHvfQIjOkwfVZgE4gNe9vuuooijKYXQ4vj0VRTmwDkMQXnZdMXVPNm26jW/OS7rTHvWxPGL1kH9tPgCxSTGMbpGrbrWbKK1KZ6ZviN7qdhqe3vx9hOL3+XY01r0mpaTiSMaGATioIFxRlKvHwf/2VBTlQNtt2/VoKz9TTP3TTfjDWNCXqEU/ZUMKQU1JDGU3lSD0Gn3tG6fISClJjDdT+1jdrkoNykMyE15xJIMrv9+86ovPczguKBRFUbZysL89FUU58A56TrheH/7SF9OkO4ojWTYl/TQdSWBuiwuDiuNZtF/p3PX5/L7oVX6JlPIj6VsG4KBKFCqKcvU42N+eiqIceAe9ROHEyGTY2/r2sBFMn2sK+5tOINZWS1nBO79xNZft8Pv8B7ppT/mRDK48sHUADioIVxTl6qGCcEVRdkXspND1Huqs6yEhPS6sbV2Xd1e5ZLtqh0bJfs/ZkFUKpZTBqiYRclA7mxaVp3Hlgcthb+9XQbiiKFcJFYQrirIrBzwGByAhPT6s7cabB7GbjVEezWrnxkbJf/cNS4+LqjIoKk0mKc5I2+WOiJ3nIHY2zSlIouWphm3t4/OqnHBFUa4Oqk64oii7chiqo4TbYVIA6XYrTRFKAwnXM9PjnLyznJihKa48tHFlkN3QNIHvgBQWSUyNId5hpP7Jhm2nyaiFmYqiXC1UEK4oyq4c9OooRSfz6W8bDHt75z7EeFKClmyh9idPR+0cmn5v/p5i4qzEOC04HCb6eydwjc0sveZwWsjMcFL3eD0DO2w/r3LCFUW5WqggXFGUXTGYDu6vkaySdFoutG9rtlU3PL3nHd7tQsfAvzxN6bVF1D7ZGJVzRLuKTV5RMv7pWdoudzC28JzRYqT8TCkIgfT5aTrXRHXz7vLu1Uy4oihXi4P77akoyqFgtpn3ewghWRxm3POebac7zDYPQvn2u1LuRolPR6drhrEBV9TOEa2ccJ0mKClJpvrh2nWveeY8YZUd3A6vCsIVRblKHOz7yIqiHHgHsU640WwgozCNoc6Rbe87/FwHur1cbSolgafaAehvG6T4VEFUTqOPUhBeXJQUMgCPloA/QCBw8OueK4qibEXNhCuKsisHpU643WkluyILTa/DPeum5WLHjo7jm3GT6rTT55qK7AA30Vfft/T/gSjlPEfjYqm4Ip2ahyI70x0On8eHcY+r2CiKokSaCsIVRdmV/a4/XXg8F51OR1t1F3Ur8qlzK7MY7hljxjWzyd6hJekN9G29WURkagbmVyxSbLnUQWJ6PCN9Y5vstX3aJk2BdiKvKJmWp7dXXjBSvG4VhCuKcvipIFxRlN3Zx0LhuRVZtFd34w9RaaOjppvk7ERsMRaGuraXlmKZ2ZsShRYEWXUjNK95Pr0wNeJB+G6bKqWkO0lMtDM1MsFA6yDNT9RFaGTbp2qFK4pyNVBBuKIou7JfdcKTsxIY7R8PGYAvGuoaIb0wFaPZgGc+/CLZvq5xSIpuiRS70FH4SAfNtT3rXutt6Y/qubfDbDWSnRFD3RMN9O73YBaoxZmKolwNDt6KKkVRDpX9SEexO60EApKpsektt+1rGaDwRP62ju+qjn77+uP9c/SECMABRvvGKTyeG9HziR38ts/MTcTid1P3xP6knWxElSlUFOVqoIJwRVF2ZbdpDuGquqmM3Mos9EY9WaUZjPSGn66x3UWJ440D2EzRmwkvEgbqf3Z+020MpsjmPG/nM5BSUn4kne4LzQx3j0Z0HJHgdasgXFGUw08F4Yqi7MqeVUeRwTzv+LRY6p9Zm0W9Ofese1vbCyDDYdvWPtuROjC75TbNF9qwO60RO6cuzM6mDqeF/JxYrjxwZdNUn/2kZsIVRbkaqCBcUZRd2Yuc8MySdIa6g4srd1L7u72me9sXC9FqX18iDDT87Lktt/N5fORWZUfsvOHcsMgvTiEw7qL5udaInTca1MJMRVGuBioIVxRlVzRNi3pKiiPOzmDH8I7397q9xKU4t7WPbnjrfPOdiJ0PhN3Fc256PmLn3WwmXOgE5ZVpND1ey8TI3tVH3ym1MFNRlKtBVIJwIcSbhBBy4b93hrlPghDinUKInwkhWoQQc0KICSHE40KIdwgR3rIiIcR3V5y7cHfvRFGUcGj66F7Pz0xsnb6xlZTcpG1tP9e286B/Iw50uH4XfnfJ9iud2OMikxazUZ3w+EQ76QlmrjxYHZHz7AWVjqIoytUg4iUKhRBZwNeBacC+jV1fDfwT0A88BHQBKcArge8ALxZCvFpuMoUkhLgbePsOzq0oyi5c86JjqwJlvUFPbHIMc9PzzC/M5uo0HQiBEAKv24t71s38jBvNoGF1WLDYzeiNejS9ht6goRk09Ho9U+PTPPnzZ3c9Rr1hewstR853QEncrs+7UqlPR2e/K+ztAwFJbnkmNU80br3xFrQQ6TjF5Wl0XGhhaHJu18ffS74odRVVFEXZSxENwkXwnvT3gVHgp8CHt7F7E/Ay4JdSysCKY94PnAPuJRiQ/2SDcycB3wb+HUgFbt7BW1AUZQc++/OPRuW4/+8bv+Yf7vteRI5V/WgdVTeWUf1YfVjbeybmyIh10Buh9vVCSjxPtBHwB7beeIW5me0tKt3s/IsMRj2FhQlUP3x4Zr9Xcs/uTTMlRVGUaIr0PeT7gNuAtwHb6hUtpXxQSvmLlQH4wvMDwDcXHt6yySG+tfDnH23nvIqiHFwzrt2noazUUbu9+t9J+siVKTzt1tNbF7ou+Gbar3QSk7D7G3syEPzVmpoRS6xJUv1w+GkxB4kQYtvVbhRFUQ6iiAXhQogy4AvA16SUj0bquAsWW92FTAQUQrwVuAd4j5Ty4BW1VRRlR37/48ciejz33PZmUM3TkQv2PBe6drRfICDJKc/a9fmlgLKqDIbqO+lvHdz18aIhLT+Fb13+W/6l9evc88cvwmw1rXr9zrfewvfqv8Itrz2zTyNUFEWJnIikowgh9MC/EMzjvj8Sx1xz7DcvPPxNiNdzgK8BP5JS/r9dnGejzhmlOz2moig7V/1YPX0tAxE9pmfOg07ThZ0S4u+fgLjIZO1ZS9PgcueO9t1OY6JQjBYj1hgbz/z83K6OE00J6XF87n8+SlZJOgB/9LW3YYu18a9/FcxANNtM3PcP78BojmwTI0VRlP0SqZzwTwDHgbNSykiv8PkCUAn8Skr525UvLFRM+SHBhZj3Rfi8iqLsk/lZNx9/2Rei0iwmLT+F3ub+sLadrO2Ds5Gp1T0dZ9p6ow30tw2SfySHtivBIF5v1GMwGTCYjRiMejSTAaPZiN6ooRn06M1GTBZTsDi4gOHROeZ94ZVF3Gs6neCl77mDt37mNTjiVqfd3PWuF/DTr/6Suel5rr/7GhWAK4pyVdl1EC6EuJbg7PeXpJRP7X5Iq459H/AhoAF4U4hNPkhwAeZdUsrx3ZxLSnlygzGcB07s5tiKomyPwRjxwk3LxzbpMVmMYaWmjNb2Yrktn7kIlMQb08ILggtO5OGZ9xPwB5YuQuYmZ9EZDVgLsvHMB8fiZTlPDzfg9hHM2HMTaklOcopjl+8gMopO5tNR3UXekWxOvPAIt73+BvIqQ1/oJGUm8MOmr9H0XBvHX1C5xyNVFEWJrl19061IQ2kCPh6RES0f+48IppnUAS+QUo6teb0I+BzwfSnlryJ5bkVR9pem18gsTqPx2ch3buyo6Q6/SkpAkhFjp2XEtevzxvoF4SwzNRgMtNf0Lj0WQuD3eJkYmaL45kramrffMXTxOPspPi2O+77xDm645xQetxejKbxFr3EpsZy+S82DKIpy9dntwkw7UAyUAfMrmuRI4JML23x74bmvhntQIcQHgG8ANcCtCxVS1qoATMDbVp534dyL5QmbF567ZydvTlGU/eGec9NRs71KJts7fvgLNJ0yMsGr6bnw3k8gsDpfXUqJIz6YpuFzRaeLZzRpeo1X/elL+WHT17jhnlMAYQfgiqIoV7Pd3vN1A9/d4LUTBPPEHwcagbBSVYQQHyGYB34JuF1KudG0T8cm576LYK3w/wQmF7ZVFOWQMFlM3P7mm/mf//O/UTl+03OtVJ4tpebxhi23NYxGoEyilBCiWU4oofLgs0ozqHuykbbLHSRVFTA+uq0KsMEhbHuP3VlMNbn+7pPEJByMVBhFUZSDZFdB+MIizJBt6YUQnyIYhP9QSvmdFc8bgALAK6VsXbPPx4HPAOeBO9amoKw596VNzv0wwSD8fillS/jvSFGUg+Ldf/smfvmtB9ikSe6u1DzegKbX4fdtXillrmUICp07P5GU3DgaoP5ceKk1MrD+/Q73jiGEQEpJWqpjR0H4XtH0Gh/78fu58d7T+z0URVGUAy16q582lgHUA51A7uKTQoi3EAzA/cBjwH0hchg7pJQ/2JNRKoqyr9xznqgF4IuMFiNzU/ObbjPwaCPWihuYdXs33W4jZyeh/j+fCXt7f4jyiaN94+Qfy6X1YjtTgztbgx7lj3LJn3z97SoAVxRFCcN+BOEbyVv4UwM+sME2jwA/2IvBKIqyv37z3Qejfo7E9Hi6G/s23cbv9lHicHDRvbta3eEK+EOXZbQ5rQB01nRhL8xidnqbrdujHIRreo37vvEOXvKuF0T3RIqiKFeJqAXhUspPAZ8K8XwHsG6Ke6Ptd3juWyJxHEVR9k97zc46TG6HxWEJaztD6zA4tW0fP0foafvp9iq3blQbfaBjGAh20MzOjqehbnuNjKIRg1sdFt7x+deTfySHlJwkkjITonAWRVGUq1PE2tYriqJE0s2v2YPW5GEWPun+xWVMhu3NWeQIPfr/uoRnfntpLH5v6Bz1kd4x0gpSABjvHNx2qk40Unvu//H7edl776TyhlIVgCuKomyTCsIVRTmQjt5SEfVz9DT0oelD/xrUacvPe6fmKYmN2daxs3ummRia3PaYZGDjhaJJWYkA9Db3U1qRur3jRjgIf9Hbb+X0S45H9JiKoijPJwcpJ1xRFGWJLcZKUlYCw92jUTtHZkk6bZc7Vj137wfu4vX3vxJrjIXuhj7+80v/zblfXcTcMYbeocPv93M8YMQ67cFv1Gi0Csbk6hQSvYThS507GlPAv3GwPDEyRUZRKppBD3NuhA7k5sVdlmw3Bs8oSiOrOI3+9iEmhidxDS9fUOQfzeFPvv727R1QURRFWUUF4YqiHFgJaXFRC8KNFiOtl9pXlSi89iXHedcX34SmD+Z/5x/J4SM//BN6W/p59OfP8rl3vgCfx0vbk81MjEzy2E+eJq2pn7LCZECgsxgIxJiQPRM0de1s3H6fb8PXuhp6iYm3MzkabNpT9cIj1FX3L71ushi56aXHyCxM4fFfXqK9vg+fN3SO+Wbu+4d38tI/fOFSl02f18evv/Mg//3N33Hti4/z2j9/OUazcdvHVRRFUZapIFxRlANpcmwqql0zPXMeHPE2psaWa27Hp8QuBeArZRSm8foPvWzpcerLg50fj7+givtf/Dkaf1cdsXFtljaSmBFPWl4y1Y8Fmwx1XWrHZLPzkjee5cyLj5CWnUhCarCm+Wve90La6nr55id/SvXTLSCCFUySshLwe/3Mz8wzNR587zfee3ph5judhPQ4Tt5+ZNV59QY9d7/3Du5+7x0Re5+KoijPdyoIVxTlQJoYnmR+1h3VcyRnJ60Kwmue2LqD5kqpucnkHcnZsszhdkyOTJGUnUTA58e/kB/u9/rxeXyM9owQl7zcfXJiZIr3ffxe7tkgOM4vz+Bv/uOP+dev/Ia4RDuf+t67iEuJDZ5nbJr/+vL/UHQ8T9X1VhRF2QcqCFcU5UDai1bn1hjr0v9reo23fvb12z6G37tx+shOBAKSwY6hDV/vrOlC02v4fX4yClN58Vtv2fR4Qgje+KcvXvd8TLydt//V63Y7XEVRFGWHVHUURVEOJO8OO1Rux2IArek13v23b+LmV1+/7WO8/a//YFUllWhzz3ooOJpNQnocf/qtd2OyqNxsRVGUw0jNhCuKciD1tmyvGc12lV1XRN1TTQDEp8XyyvfftaPjZJdm8OHvvo9v/dk/r6ogEkl5VdnkVmZhspiYGpvi9fffS/HJ/KWFk4qiKMrho4JwRVEOpOnxma032iGjxcjc1PzS48qzpbs63u1vvplTLz7GP33wBzz1388xN7187NyKLHxeH66hSaZd4b0no9nA0VsquOGeazHbzNz6+hvQ6dSNS0VRlKuJCsIVRTmQUvOSo3LcmAQHSVkJtF7qWHruvn94166PG5vk5C9+9H7mZ91c/H01f/Pmr3P0lgr+9NvvaT/0BgAAF6BJREFUISbBwfysm9onGvHMewCoeaye1LwUTr34GADf/siPmJuaI6csk3v/9G7VgVJRFOUqp4JwRVEOJL9v+/Wtw5FTnkn1Y/XYY22Uni7EHmfHYjdH7Phmq4nr776Gb13+O8x2MzHxwQWmFpuZa+44urTdmZedWrXfJ/7jQxEbg6IoinLwqSBcUZQDyWCMzq+nhnMtvPBNN/OaP3sZeZXZUTkHBMsfKoqiKMpGVJKhoigHUnphalSO63V7edn77oxqAK4oiqIoW1FBuKIoB9KVR+qiduyGZ5qjdmxFURRFCYcKwhVFOXB8Xh/f+9i/Re34D//Hk1E7tqIoiqKEQwXhiqIcOA/86DFaLrZH7fi2GEvUjq0oiqIo4VBBuKIoB86vv/v7qB7/Y//2gageX1EURVG2ooJwRVEOlNmpOeqebIza8W953Q3YnLaoHV9RFEVRwqFKFCqKcqB43d6IH7P8TAmf//XHmB6fJj4tLuLHVxRFUZTtUkG4oigHyrlfX4zo8UwWI3/2vfdhdViwOlQuuKIoinIwqHQURVEOjIZzzfzzJ/89osf8+H9+iMzi9IgeU1EURVF2S82EK4qyLybHpvj2n/+I6sfqySpNZ8Y1S/Vj9RE/T+O5Fk6/5ETEj6soiqIou6GCcEVR9twj//EkX3vvt5ganwGgt7k/auf6ry//gtff/woMRkPUzqEoiqIo26XSURRF2TN+v5/HfvI0X3zrN5YC8Gibm56n9onoVVtRFEVRlJ1QM+GKokSVe87NU//9HE3PtfLIfz7FUNfInp7/pldfz7FbK/f0nIqiKIqyFRWEK4oSVX/39n/k4X/fvzbxj//kafw+P5pe27cxKIqiKMpaKh1FUZSo6azvZqRnjMobSyk4lovRvPd52YGA5PGfPrPn51UURVGUzaiZcEVRomJiZJLPvOpLdNX3Lj1ntBgpOpm/sEhSEggEaHimJarjiE2KISEjPqrnUBRFUZTtUkG4oihR8a0//5dVATiAZ85D8/m2Vc+Vni6i8dkWZEBGZRyf+tmfU3GmJCrHVhRFUZSdUukoiqJE3IXfV/O7Hzwc1rYNzzRTeDyPohN5WBzmpefj02Ipv74Yq8NC1Y1lCJ3Y9jgsdjOlpwu3vZ+iKIqiRJuaCVcUJaKaL7Tx16//yvb2WZgdF0LgTHQQCEjG+l2M9bsAqH6snuTsRJCSoe7RsI/7kX/+EzRNLchUFEVRDh4VhCuKEjEXH6zmo3f+FQF/YEf7SymZGJla97ym19BpOsYHXWEfK70ghVMvPr6jcSiKoihKtKl0FEVRImaoa2THAfhmSk4VMtA+hHvWE/Y+/W1DzM/MR3wsiqIoihIJaiZcUZSI6W7o3XqjbUrLT2FiZJLM4jR6msJrb3/vB+4iuyyTmHhHxMejKIqiKJGggnBFUSKms74nosezx9qYHJsmPsXJ/Ix7y+2tMRbOvvI0L33vnWQWpUV0LIqiKIoSSSoIVxQlIqSU9DYPRPSYORWZ1D7RyIxrBmfixrPaZdcVccdbbqXihhLyKrMjOgZFURRFiQYVhCuKEhEtF9sjno7SfKGd5KwEhrpHQy7YXHTXu2/nzrfeGtFzK4qiKEo0RWVhphDiTUIIufDfO8PcJ0EI8U4hxM+EEC1CiDkhxIQQ4nEhxDuEEOvGKoQoEkJ8RAjxoBCiWwjhEUIMCiF+LoRQ38iKsocuPVQb8WN65jxhdbv88ed+EvFzK4qiKEo0RTwIF0JkAV8Hpre566uBbwOngWeArwI/ASqB7wD/IYRY263js8AXgBTgV8CXgCeAu4AHhRD37exdKIqyXZ213VE5bv3TzVTcELrjZf7RHP7295/kB01fj8q5FUVRFCVaIpqOshAkfx8YBX4KfHgbuzcBLwN+KaVcqnEmhLgfOAfcC7ySYGC+6DfA30gpL64Zx83A/wJ/K4T4TylleCUVFEXZsbYrHVE7du0TjZReV0TD083Ep8YyNT7Na/7s5bzx469Cb1BZdYqiKMrhE+mZ8PuA24C3ATPb2VFK+aCU8hcrA/CF5weAby48vGXNaz9YG4AvPP8I8DBgBM5sZxyKomxfT1MfzRfao3qOxmdasMZYcA1N8Nn//ihv/czrVACuKIqiHFoRC8KFEGUEU0O+JqV8NFLHXeBd+NMX5X0URdmB//3nR6J+Dikls5NzvOPzf8DJ249G/XyKoiiKEk0RmUYSQuiBfwG6gPsjccw1x37zwsPfhLlPDvACYBYI64JACHF+g5dKw9lfUZ6v5mbm+cU3f7cn58opz+TeP33pnpxLURRFUaIpUvdyPwEcB85KKecidMxFXyC4OPNXUsrfbrWxEMIE/CtgAv5cSjke4fEoirLCT778P0yNbXcd9s4UnypA07Q9OZeiKIqiRNOug3AhxLUEZ7+/JKV8avdDWnXs+4APAQ3Am8LYXiM4I38D8O/A34V7LinlyQ2OeR44Ee5xFOX5pOVS+56WBxzsGN6zcymKoihKNO0qJ3xFGkoT8PGIjGj52H8EfA2oA26VUo5tsb0G/IhgqcP/AN4opZSRHJOiKMt8Xh+fffWX8Hr2btnFlUfq+OaHfsj4oGvPzqkoiqIo0bDbhZl2oBgoA+ZXNOiRwCcXtvn2wnNfDfegQogPAN8AaggG4Jv2wl64GPg34HXAj4E3SCnVgkxFiaL26i76Wgf3/Lw/+cr/8Ibs9/D5N36N/ra9P7+iKIqiRMJu01HcwHc3eO0EwTzxx4FGIKxUFSHERwjmgV8CbpdSjmyxvZHgzPfLgX8G3ra2zKGiKJE31r9/yy18Xj8P/vhxHv/pM3zrypfIKEzbt7EoiqIoyk7sKghfWIQZsi29EOJTBIPwH0opv7PieQNQAHillK1r9vk48BngPHBHGCkoJoJNgV5C8GLg3SoAV5S9MTs1v99DwDPv5eLva1QQriiKohw6+9HpIgOoBzqB3MUnhRBvIRiA+4HHgPvWd6mnQ0r5gxWPv0kwAB8BeoFPhNjnYSnlwxEbvaIoQDAnPFJuuOcU1730GvKO5BATb8fiMGO2mRnqGqHhmWbqnmqi6XwrHdVdSznosclOKs+WcuO9pyM2DkVRFEXZKwep3Vzewp8a8IENtnkE+EGIfRIJlkncyMO7GJeiKCH4fVvfdDJbTVTdVEZmcToP/OjRkKUMDUY9H/nnP8Fit6x7Lbs0g+zSDO54yy0ATI5O8dOv/pIz95yi+GTBrt+DoiiKouyXqAXhUspPAZ8K8XwHsG66eqPttzjHLTsYmqIoEeCZ82z6+ls/8zpe/Wcvw2gyAPCWz7yW//f1X/MfX/w5s1PL7QSqbi4PGYCHEpPg4K2ffd3OB60oiqIoB0TE2tYrivL80lHbveFrb/7ka/iDv7x3KQAHsMVY+YOP3cs3zn2erJJ0AHQ6wd3vuSPqY1UURVGUg+YgpaMoinJAdNb38J2P/IhbXnsDt73hLGvXWrRXd/L7Hz264f43v/bMhq9llWTw3bqvMtAxhKbXSM5KjNi4FUVRFOWwUEG4oihLAoEAv/w//8u3/uxfmJ918/T/nOfBf3uMF77xZnweH62XO2g410z9U00EAqF7YcUkOJZmujcihCAtLyUab0FRFEVRDgUVhCuKAkD9M818809/QN1TTaueP/eri5z71cWwjzM1Ns3U2DQxCY5ID1FRFEVRrhoqJ1xRDqmxgXE66zbOyw7XSO8on3/j17jv+vvXBeA7IaWk5vGGXR9HURRFUa5maiZcUQ6Zoe4RfveDh/nPL/03c1PzvOPzf8Br//zl2z6OlJLf/uBhvvmnP2BmYjaiY5wYmYzo8RRFURTlaqOCcEU5JAY6hvjrN3yV+qebVz3/nY/+iNjkGO58661hH2ukb4yvvfdbPP2L85EeJgDT4zNROa6iKIqiXC1UEK4oh8TD//7kugB80Zff9U18Hh8vesdtaJq24TGklPz2+w/xzQ/9MOKz3ysZzIatN1IURVGU5zGVE64oh8TrPnIPv5j+EZ//zV/iTFy96DHgD/DV93yLtxT+Cf/6uZ8w3DO6bv+R3lE+9tLP86V3/lNUA3AhBEdvLo/a8RVFURTlaiCkDF1mTAkSQpw/ceLEifPno3PbXlF2orelnz+77dMhg20IBsJVN5Vx4gVHSMtPpqu+l//3jV9HNfhe9J4vvYV7P/jSqJ9HURRFUfbbyZMnuXDhwgUp5cnt7qvSURTlEMooTONtn3s9X3zLN0K+LqXkyiN1XHmkbs/GpOk1Pvy99/HCN960Z+dUFEVRlMNKpaMoyiF12xvOkluRtd/DWHLfP75LBeCKoiiKEiYVhCvKIaVpGje96vr9HgYAt7/lZl78jtv2exiKoiiKcmioIFxRDrGMotT9HgIlpwq47x/ehRBiv4eiKIqiKIeGCsIV5RCrPFu6r+e/549fzJcf/Sxmq2lfx6EoiqIoh41amKkoh1hydhIVN5RQ+0Tjnp3TbDVx9t7TvOK+l1B8smDPzqsoiqIoVxMVhCvKIfeHf/cWPnjjx/H7/FE/121vOMs7v/BGkjITon4uRVEURbmaqXQURTnkyk4Xcfd77ojqOQxGPX/5fz/IX/zo/SoAVxRFUZQIUDPhinIVeMNf3sulh2voqOne1XHMVhPHbqvEEW/HYjdjMBkwmAycetExjtykumAqiqIoSqSoIFxRrgJxyU6++vhf8U8f+AG//cFDOzrGyTuO8oFvvpvU3OQIj05RFEVRlLVUEK4oVwlbjJUPf+99nLnnFJ9/w9eYn3WHtV9eVTZvuP+V3PyaM6rMoKIoiqLsERWEK8pV5szLTvHP/7+9e42Vq6oCOP5fvC9IeWmDD7SVl0V8tQpYwqsKUQTBRAgfUESN8EGixkQjIUbUxEdQMQEDifiOikAikZeYFqgRRG0NAimg0gpopQgUKW2ByvLD2ZcOk3PnUeDM3Hv+v2TnkH32vnPYs2Z1zcw5Z+69kBW33MOOsybY/6B9eHrj01x5wXX8ecntPLXxKbbdflv2nDubI09eyEHHzrf4liSpYZGZoz6GsRYRy+bPnz9/2bJloz4USZIkjZEFCxawfPny5Zm5YNi53h1FkiRJaphFuCRJktQwi3BJkiSpYRbhkiRJUsMswiVJkqSGWYRLkiRJDbMIlyRJkhpmES5JkiQ1zCJckiRJaphFuCRJktQwi3BJkiSpYRbhkiRJUsMswiVJkqSGWYRLkiRJDbMIlyRJkhpmES5JkiQ1zCJckiRJaphFuCRJktSwyMxRH8NYi4iHJyYmdp83b96oD0WSJEljZMWKFWzYsOGRzNxj2LkW4X1ExEpgFrCqwYd9Xdne1eBjavwZF6pjXKiOcaE6xsULbw7w38ycO+xEi/AxFBHLADJzwaiPRePDuFAd40J1jAvVMS7Gi+eES5IkSQ2zCJckSZIaZhEuSZIkNcwiXJIkSWqYRbgkSZLUMO+OIkmSJDXMT8IlSZKkhlmES5IkSQ2zCJckSZIaZhEuSZIkNcwiXJIkSWqYRbgkSZLUMItwSZIkqWEW4UVErIqInKL9u2vsnB5jMyJ+3uNxTouIP0TEuoh4LCJujIjjeoyfiIhzI+LuiNgYEWsi4hcRMa/HnFdFxPci4l8R8WT5fzs/InbrMWdhRFwTEY9ExPqI+EtEfDIitu63dm0QEYdFxBURsbqs6eqIuD4ijq0ZO/RaGhfT0yBxYb5oh4j4UJ/nOSPifzXzzBcz2LBxYb5oF3+sp4iIVcCuwPk1u9dl5nkdY+cAK4HbgF/WjL8jMy+veYzzgE8DDwCXA9sBpwC7A2dl5gVd47cHFgOHAn8ClgB7AScBTwGLMvPWrjl7AzcDs4ErgbuAg4CjgLuBQzPz4a45JwBXABuBS4FHgOOB/YHLM/Okmv/H1oiIc4AvAf8BrgJWAy8F3gLckJmf6Rg79FoaF9PToHFhvmiHiHgzcOIUuw8DFgFXZ+ZxHXPMFzPcsHFhvmiZzLRVb0RWAasGHDsHSOAHQ/z9hWXO34Dduv7Ww1QBOqdrzufKnMuArTr6Tyj9d3b2l32/LvvO6ur/Zum/qKt/FrAGeBJ4a0f/DlQvtgROGfXzM8K4OKmswW+AnWv2b/t81tK4mJ5tyLgwX7S8AbeUtXnv81lL42JmtSniwnzRojbyAxiXxotfhP+ozDm9Zt8Xy75zO/oC+Efpn1szZ2nZd1RH32tL38qaF8/OwDrgCWCnjv4Plzk/rHmMRWXfTaN+fkYUE1sB95Y1e9kA44deS+Ni+rUtiAvzRYsbcGBZlweArZ/PWhoXM6f1iAvzRYua54Q/1/YRcWpEnB0Rn4iIo/qcs/SKiDijjD8jIt7YY+yisr2uZt+1XWMA9gZeDdyTmSsHnDP539dn5jOdgzPzceB3wI7AIQMe11JgPbCwfHXVNguBucA1wKMR8Z6I+GyJjbfXjN+StTQupp9h42KS+aKdzijbSzKz85xw80W7TRUXk8wXLbDNqA9gzOwJ/Lirb2VEnJ6ZN9WMP7q0Z0XEjcBpmXlfR99OwCupzi1fXfN3/lq2+3X07V+290xxrFs655gyZ3G/OZm5KSJWAq+nehe8Yoq/O1O9rWwfBJYDb+jcGRFLgfdn5kOla6i1NC6mrWHjYpL5omUiYgI4FXgG+G7XbvNFS/WJi0nmixbwk/DNvg+8g6oQ34nqH9aLqb4aujYi3tQxdj3VBVkLgN1KOwK4ATgSWFxeGJN2KdvHpnjsyf5dp8mctphdtmcCE8A7qb52O5Dq3LjDqc6nmzTsWo7zc2xcTG3YuDBftNfJVGtxbWbe37XPfNFeveLCfNEiFuFFZp6bmUsy88HMXJ+Zd2TmmVQXHEwAX+gYuyYzP5+ZyzNzbWlLqd4F3grsA3x0Sw5jiLExxnNmislTkYLqk83FmbkuM+8E3kd1Lt8RfU5B6LSlazmOz7FxMWBcmC9a7WNle/EWzDVfzFxTxoX5ol0swvu7qGwP7zcwMzex+aulzvGT7/Z2oV7du8V+c2aNcE5bPFq292bmbZ07MnMD1aeeUN2iCYZfS+Nieho2LmqZL2a2iDiA6vqBB6iuH+hmvmihAeKilvliZrII729N2e7Uc9Rmk+eBPjs+M58A/gm8JCJeXjNn37LtPG/q7rLdj3ov+pyI2IbqArRNVHeDaJvJtVk7xf7JYmyia/xAa2lcTFvDxkUv5ouZq9+Fd+aLduoXF72YL2YYi/D+Jk81GDRIJq8M7h6/pGzfVTPn3V1jAP4O3AfsFxFzB5xzQ9keExHPeW4jYmeqm/JvAH4/4HEdTnW1882Z+WTN/pluKVWC2DcitqvZf2DZrirbLVlL42L6GTYuejFfzEARsQPwAaoL7y6ZYpj5omUGjItezBczzajvkTgOjerq3N1r+l9DdcVvAmd39B8MbFczfhHVTfETWNi1b5xvpv8Q3kx/qtj4SVmDL3f1H02VSNcCu27pWhoX07MNGRfmi5Y1qkIrgV/1GGO+aFkbMC7MFy1qIz+AcWhUF11upLo35neAr1H97OuGEiRXd74ogBtLYF0GfKu0xWVsAudM8TjfKPvvL3MupPrJ6wQ+XjN+e6p7bybwR+CrwE+Bp6luin9wzZy9qW6dllQ/efsVqnejSfXV0B41c06k+mRvHdU5Z1+n+jnayRdojPo5GmFszGbzG7GlwHllTTaV5+Gk57uWxsX0a8PEhfmifQ34bVmP4/uMM1+0qA0SF+aLdrWRH8A4NKrb//ysBMbaEoQPUf0k9Qe7gwT4CHAV1dfN66je5d0HXAoc1uexTisB/wTwOHATcFyP8RPAuVT/4D/Z8eI8oMecvahuubgaeIrql7G+Tc2n/R1zDqX8+AjVm4/bgU/R8UtebW3A7lTv9FeW9XwYuBI45IVaS+Ni+rVB48J80a4GzGNzMdR3PcwX7WiDxoX5ol0tygJJkiRJaogXZkqSJEkNswiXJEmSGmYRLkmSJDXMIlySJElqmEW4JEmS1DCLcEmSJKlhFuGSJElSwyzCJUmSpIZZhEuSJEkNswiXJEmSGmYRLkmSJDXMIlySJElqmEW4JEmS1DCLcEmSJKlhFuGSJElSwyzCJUmSpIZZhEuSJEkN+z8oK1OmOuwTnwAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "image/png": { + "height": 258, + "width": 368 + }, + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "sacramento.plot('BLACK')" + ] + }, + { + "cell_type": "markdown", + "id": "historical-authentication", + "metadata": {}, + "source": [ + "## Aspatial Segregation Indices" + ] + }, + { + "cell_type": "markdown", + "id": "excellent-scanner", + "metadata": {}, + "source": [ + "To compute an aspatial segregation index, pass a dataframe, a group population variable, and total population variable to the index's class" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "id": "continent-situation", + "metadata": {}, + "outputs": [], + "source": [ + "from segregation.singlegroup import Dissim" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "id": "norwegian-academy", + "metadata": {}, + "outputs": [], + "source": [ + "dissim = Dissim(sacramento, group_pop_var='BLACK', \n", + " total_pop_var='TOT_POP')" + ] + }, + { + "cell_type": "markdown", + "id": "statistical-playlist", + "metadata": {}, + "source": [ + "The `statistic` attribute holds the value of the segregation index, and the `data` attribute holds the data used to calculate the index" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "id": "manual-roberts", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "0.4883394024705785" + ] + }, + "execution_count": 8, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "dissim.statistic" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "id": "peaceful-policy", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
BLACKTOT_POPgeometry
0295501POLYGON ((740409.853 4338451.728, 740199.864 4...
102072POLYGON ((753400.378 4347151.080, 753395.816 4...
293633POLYGON ((758318.262 4352123.456, 758319.774 4...
301683POLYGON ((750839.595 4342678.807, 750805.840 4...
4175794POLYGON ((670062.020 4311030.409, 670133.819 4...
\n", + "
" + ], + "text/plain": [ + " BLACK TOT_POP geometry\n", + "0 29 5501 POLYGON ((740409.853 4338451.728, 740199.864 4...\n", + "1 0 2072 POLYGON ((753400.378 4347151.080, 753395.816 4...\n", + "2 9 3633 POLYGON ((758318.262 4352123.456, 758319.774 4...\n", + "3 0 1683 POLYGON ((750839.595 4342678.807, 750805.840 4...\n", + "4 17 5794 POLYGON ((670062.020 4311030.409, 670133.819 4..." + ] + }, + "execution_count": 9, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "dissim.data.head()" + ] + }, + { + "cell_type": "markdown", + "id": "fewer-southeast", + "metadata": {}, + "source": [ + "## Spatial Segregation Indices" + ] + }, + { + "cell_type": "markdown", + "id": "confidential-corpus", + "metadata": {}, + "source": [ + "For calculating spatial segregation indices, the package implements two classes of indices: spatially-explicit and spatially-implicit. \n", + "\n", + "Spatially-explicit indices are those for which space was a formal consideration in the index's original formulation, whereas spatially-implicit indices are developed using the logic of [Reardon and O'Sulivan](http://doi.wiley.com/10.1111/j.0081-1750.2004.00150.x). \n", + "\n", + "For the latter,(otherwise called *generalized* spatial segregation indices) the package can incorporate spatial relationships represented by either a [`libpysal.W`](https://pysal.org/libpysal/api.html) weights object or a [`pandana.Network`](http://udst.github.io/pandana/network.html) network object, which means generalized spatial segregation indices can be computed according to many different spatial relationships which could include contiguity, distance, or network connectivity. This flexibility is particularly useful for specifying appropriate \"neighborhood\" definitions for different types of input data (which could be, e.g. housing units, census tracts, or counties)" + ] + }, + { + "cell_type": "markdown", + "id": "exterior-louisiana", + "metadata": {}, + "source": [ + "For spatially-explicit indices, they can be called like any other, though some may have additional arguments:" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "id": "congressional-likelihood", + "metadata": {}, + "outputs": [], + "source": [ + "from segregation.singlegroup import AbsoluteCentralization, Gini" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "id": "cloudy-disabled", + "metadata": {}, + "outputs": [], + "source": [ + "cent = AbsoluteCentralization(sacramento, group_pop_var='BLACK', \n", + " total_pop_var='TOT_POP')" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "id": "decreased-possession", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "0.8491771822066525" + ] + }, + "execution_count": 12, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "cent.statistic" + ] + }, + { + "cell_type": "markdown", + "id": "usual-garden", + "metadata": {}, + "source": [ + "### Euclidian distance based measures" + ] + }, + { + "cell_type": "markdown", + "id": "appreciated-honolulu", + "metadata": {}, + "source": [ + "For generalized spatial indices, a `distance` parameter can be passed to the index of choice. Under the hood, the input data will be passed through a kernel function with the distance parameter as the kernel bandwidth.\n", + "\n", + "(note in this case because the CRS of the sacramento dataframe is UTM, the units are in meters)" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "id": "attempted-question", + "metadata": {}, + "outputs": [], + "source": [ + "# aspatial gini index\n", + "aspatial_gini = Gini(sacramento, group_pop_var='BLACK', \n", + " total_pop_var='TOT_POP')" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "id": "handled-paint", + "metadata": {}, + "outputs": [], + "source": [ + "# generalized spatial gini index\n", + "gen_spatialgini = Gini(sacramento, group_pop_var='BLACK', \n", + " total_pop_var='TOT_POP', distance=2000)" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "id": "incoming-decision", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "0.5368102768280784" + ] + }, + "execution_count": 15, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "gen_spatialgini.statistic" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "id": "seven-manufacturer", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "0.6361755332635235" + ] + }, + "execution_count": 16, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "aspatial_gini.statistic" + ] + }, + { + "cell_type": "markdown", + "id": "varied-desert", + "metadata": {}, + "source": [ + "Examining the `data` attribute of the fitted index shows how the input data are transformed" + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "id": "foreign-ozone", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 17, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAuEAAAIFCAYAAAB8lSMGAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Z1A+gAAAACXBIWXMAABYlAAAWJQFJUiTwAAEAAElEQVR4nOzdd3icaXXw/+89VRqNeu+9S961vd71uuyyEAg/yksCKaRSAimQkFCTQIB9A0kghFATykIICwk9lBdCWVh2ba/Xu15X9d57G/Xpz++PkWWVkTQzmtFI8vlcl6+xZp5yjy1pznM/5z5HaZqGEEIIIYQQYu/ooj0AIYQQQggh7jQShAshhBBCCLHHJAgXQgghhBBij0kQLoQQQgghxB6TIFwIIYQQQog9JkG4EEIIIYQQe0yCcCGEEEIIIfaYBOFCCCGEEELsMQnChRBCCCGE2GMShAshhBBCCLHHJAgXQgghhBBij0kQLoQQQgghxB6TIFwIIYQQQog9JkG4EEIIIYQQe0yC8CAopX5DKfUppdR5pdScUkpTSn01AuepV0o9qpQaUEo5lFLjSqknlVJ/GO5zCSGEEEKIvWeI9gAOmL8D7gIWgEGgKtwnUEq9FvgCsAT8EOgFkoA64CXAo+E+pxBCCCGE2FsShAfnrfiC707gQeCX4Ty4UuokvgC8EXixpmmjG143hvN8QgghhBAiOiQdJQiapv1S07QOTdO0QPdRSv2OUuqXSqkZpZRdKdWilPo7pZTZz+b/DOiB398YgK+c37WL4QshhBBCiH1CZsIjSCn1ReD1+GbP/wewASeBDwAvUEq9UNM098q2ecBZ4DmgSSn1EHAc0IDrwC81TfPu9XsQQgghhBDhJ0F4hKzkdr8e+C7we5qmLa957WHg/cCbgU+sPH1i5bEDeBx43oZDNiilXqlpWmfkRi2EEEIIIfaCpKNEzl8CbuD1awPwFR8ApoDfW/NcxsrjbwHVwCuBRKAM+ApQD/xIKWWK5KCFEEIIIUTkyUx4BCilLPiqqEwCf6WU8reZA1+wfYt+zeMbNE374crXc0qp16xsew/wKuBrkRi3EEIIIYTYGxKER0YyoIB0fGkngZhZeXQA/7v2BU3TNKXU9/EF4fciQbgQQgghxIEm6SiRMbvyeE3TNLXdnzX7tK08zm+xAPNWkB4bsVELIYQQQog9IUF4BGiatgA0AbVKqZQAd7uJL30lTSmV6ef1upXH3t2PUAghhBBCRJME4ZHzr4AJ+A+lVNLGF5VSyUqpY7e+XilV+LmVL/9ZKaVbs2098Fp8Cz2/HcExCyGEEEKIPaCC6Dtzx1NK/RrwaytfZgG/CnQD51eem9Q07R1rtv834E3ANPBToB9IAYqBB4AvaZr2p2u2twC/wFdL/BrwBL688lfhS0N5u6Zp/xqRNyeEEEIIIfaMBOFBWFPfeyt9mqYVbdjnZcCf4ltQmYQvIO8HfgZ8VdO01g3bW4B3Aa/GF6zbgcvARzVN+3E43ocQQgghhIguCcKFEEIIIYTYY5ITLoQQQgghxB6TIFwIIYQQQog9JkG4EEIIIYQQe0yCcCGEEEIIIfaYtK3fgVKqB0hAmuQIIYQQQoj1ioA5TdOKg91RgvCdJcTGxqZUV1cH2vlSCCGEEELcAVpaWlheXg5pXwnCd9ZbXV2dcuXKlWiPQwghhBBC7CPHjx/n6tWrvaHsKznhQgghhBBC7LGIBOFKqT9QSmkrf94QxH4fVkr9Qik1oJRaVkpNK6WuKaXer5RK3WY/pZR6jVLqiZV9lpVSPUqpbyqlKsLzroQQQgghhAiPsKejKKXygU8BC4A1yN3fClwFHgPGgTjgJPAw8MdKqZOapg1sOF8M8C3gZUAb8N/APJADnAUqgPYQ344QQgghhBBhF9YgXCmlgC8BU8D/AO8I8hAJmqbZ/Rz3H4B3A38LvGnDyx/FF4D/E/B3mqZ5N+xrDHIMQgghhBBCRFS401HeAjwfeB2wGOzO/gLwFd9ceSxf+6RSqhT4U+Ay8J6NAfjKMV3BjkMIIYQQQohICttMuFKqGvgQ8AlN084ppZ4frmMDL195vLnh+d/BdyHxZSBBKfVyIB/fTPzjmqZ1hnEMQgghhBBChEVYgnCllAH4CtCPL21kt8d7B7588kTgHuAMvgD8Qxs2PbHymAh0AWsXb2pKqc8Ab9E0zRPAObeqQVgVxNCFEEIIIYTYUbhmwt8HHAXOaJoWWsXy9d4BZK75+ifAazVNm9iwXcbK498DP1/Zrxe4F/gcvvzxCXwLO4UQQgghhNgXdp0TrpS6F9/s90c1TXt690MCTdOyNE1TQBbwSqAEuKaUOrZhU/3K4wjw65qmNWqatqBp2uPAbwBe4G1KKVMA5zzu7w/QGo73JIQQQgghxC27CsLXpKG0A+8Ny4jW0DRtTNO07wIvwpdq8uiGTWZWHn+ycQZe07QbQA8QD1SHe2xCCCGEEEKEarcz4VZ8dbirAfuaBj0a8P6VbR5Zee7joZ5E07Q+oBmoVUqlrXmpbeXRtsWut4L02FDPLYQQQgghRLjtNifcAXxxi9eO4csTv4AvWN5tqkrOyuPaRZa/AP4CqNu4sVLKzO2Shr27PLcQQgghhBBhs6sgfCUFxG9beqXUw/iC8C9rmvaFNc8bgVLApWla15rnqwCbpmmjG46jAz6AbxHmRU3TZta8/GOgG/hVpdQLNU17bM1r78VXNeXJjccUQgghhBAimsLetj4AuUAL0AcUrXn+xcBHlFLn8JUbnMJXIeVBfAszR4E3rj2QpmlOpdRrgJ8BP1ZKfXfluCeAB/BVRvnjSL4ZIYQQQgghghWNIHwrPwc+D5wG7gKS8HXdbMe3+POTmqZNb9xJ07QLSql78OWgP7Sy39jKsT6gadrgXgxeCCGEEEKIQEUsCNc07WH81OfWNK0XUH6ebwTeHOK5moHfDmVfIYQQQggh9tqu64QLIYQQQgghgrOf0lGEEEIIIUQUeL1enHYXLocLS3wseoMeTdPobRxgetSG1+vF5XDjsrtwLDtxLDtxOZw47S5Ss5N54R8+GO23cOBIEC6EEEIIsQ9omobL4cK+5ETzenEsO/G4PCzYFrEvOnA53WheDceSg+UFO26XB4/Lg33JztzUAgD2JQeLtiUAXE43zpWA2elw4Vx24rT7Amff330B9a3g+xadXkdqdjKapjE5tGk53iZ3Pa9GgvAQSBAuhBBCCIEvCPZ6NfR6HR63h/6WIRZsizjtLtxON06H79HtdOP1amheDZ1eh21iFp1eh96g9wXMC3aWFx3YFx3rgl2Xw4nH4yUxNYHZyTkmBqdw2V14PF4eeNV9PPO/1wIKeiPN6/EyMTgV8PaOJWcER3N4SRAuhBBCiKjyrsz6OpeduBxu3C43bpcHt9PN8oJ9ZebXgeb1EmONYW5ynrnpeV96hMO1uu/amd3VGWC783b6xMrrvhlkN66VgBpA08DtdKNpGqV3F9HXNIDb5dlh5OHzo0d+sWfnCjf7oj3aQziQJAgXQgghxDqapmGbmPPN5NqduJ1udDodRrMBnV7H1PAMtvE57EsrM70OF067E51OR0ZBGpND00yP2pidmFsNfp12F06Hc12QbF90rKZa7Cdd13ujPYQDZb/9/x0UEoQLIYQQd5iBtmE++sbPYl90sGhbJDE9AbPFzGDbMNmlmfS3DDE/vRDtYYoDQoLw0EgQLoQQQhxSi7NLGM0G9AY9Or2vKnHrs518/E8/T/fN/tXtRnsnVv8+PWrb62GKA06C8NBIEC6EEEIcMk67k4G2Yd790g9ReqSQa483UHa0mPgUK5d/cj3awxMHkNliovxoMQAetxuDyUjjhVY0zVeRxev1otNJ+5lgSBAuhBBCHBJDnaP8/Kvn+O4nf8zS3DKapjE9MgP4ZsCFCImmkV+RTeOFlnVP51flonQ6+luGcDncmGNNURrgwSRBuBBCCHHAzYzP8uQ3L/Ll93+LBdtitIcjDhFLfCxFtXk0P9226bXhzhFMsSaSMhNwuyQID5YE4UIIIcQB9oPP/JTPvv0r65qtCLFbRrMBnU5H2d2F3DzXvOn1qvvKWJpbJiElHktCLC6HOwqjPNgkCBdCCCEOqO9+6sc88tf/JQG4CLvKE6U0nm/xG4ADDLQMszi3tPq10y4Ne4IlGfRCCCHEAaJpGue+fYnPvO3LPPKur0oALiKi8UIb9Q/UbPn60vwSeRXZq1979rCx0WEhM+FCCCHEAeByuvnRIz/nh599jL7mwWgPR9wB+luGtnxN09aXJnS7JB0lWBKECyGEEPucpml86e++zrc++v+iPRRxB7EmW5idmPX7WmFtHompCRhjjIx0jUlOeAgkCBdCCCH2uY/9yef58Rcfj/YwxB3CYNRTeaKUvqaBLbfpa/LdjVE6RVZxhsyEh0CCcCGEEGKfWpxb4tGHvyUBuNgTZouJ8mMlDLYN0fRUa0D7JKYnMNozjtspQXiwJAgXQggh9qHJ4Wk++OqP0/TU5vrMQoRDfmU2SRmJgIbJbKTpYhuN5/1XQ9lKel4qtrFZSUcJgQThQgghxD70H+/+mgTgIiySMhKwjc+tfy4zAdv4LAOtQ2QVZ7A0t7xuoWWgbjXokXSU4EmJQiGEEGKfuXmumae+dznawxAHXHJmItkl6RgMOurPVlF5Tymx8TEApOemMD+94Pt7XipzU/NBHz8hNZ6JwSkASUcJgcyECyGEEPvIQNsw73nZh0KalRRirYz8VNoudwIwOTQN+PK+MwtT6bjSvbpdw/kWak9X0nm1B8dyYE13ak5VMDEwxVjvBACLs0s77CE2kiBcCCGE2AcG24d55698ANv4LG5pfBIRVfeV4XZ6iIkz43F7GOkawzYxt/OOB1BGYdpqAL6WY8m5Gjiv1fRUG3Wnq2jcYUFm6V2FGEwGmi+2r3t+wSZBeLAkCBdCCCH2gR985mers5Vi9wprcolLsqLTKZTyBYmtz2wOSmtPVdJ0cevc+6SMRBZnFw/UwkOdXkdmfirjveNB7dd0sY3skkxGuse23CYmLsbvv5ekowRPgnAhhBAiioa7RnnsK+f4wb//LNpDOTSK6vLpbx7E69V23LbpYhsZBWlk5KfSfKkDr8dLVnE6qdkpaJpGf8sgxfUF9DUNBpyqES0Z+amkF6Qy0jVGw/mWoPfXNI2UrCRGuscorMnDYDJgX3Qw3DmCTq/D4/aiM/hfTujxeHc7/DuOBOFCCCFElCzOLvGXZ96Hbdx/V0IRuJyyTOLiLQx2jqDX6wIKwG8Z759kvH+S5MxEYuJimByaZrTndspG+3PdpOWlYFpyMD+9GInhh0ViWjxNFwKr7+2P0WxAp9dRcbyE9jU543kVOQx3jZKWm8Li7BL1Z6uZGplmuPP2jLlHqqMETYJwIYQQIgpuPNnMv77xsxKA70JhbR4JKfHYF+0MtA0z3DmGTq+j60ZfSMebGZsF/P9/TA5OU3a0iMXZZbz7dNZ3sGN4V/tX3FPqdwZ9sN133Mmh6dWUqZg4M3VnqmhcCfplJjx4EoQLIYQQe2x+ZoEP/vbHDu2iwL1iscZuChojGSB3XuslLS+FuEQLsdYYvznm0ZJVlM5oz9a53IHovtmH0WzE5XDtuK190UHjhVYqT5TSdrlLcsJDIHXChRBCiD00NTLDX7/ogxKAh8FW+cmRNDk4TV/TIK3PdJJflUNCqnXPx+BPclZSyPumZCcRE2em7O7igALwtWYn57EmWnDag9tPSBAuhBBC7JknvnGRvzr7Pjqu9kR7KIeCTqeiev6B1mH0RgN5FdlRHQeAwagPab+K4yXYxuewLzpCWsw52jNOekEaBpMkVwRL/sWEEEKIPXD1Fw38w+9+ItrDODSUTtHXPBTtYTAzamN+ap6yo8V0XovexZXH5SGrOIP0/DQcy05MMUYadwiqY+LM6xZghqqnoZ+yo8W7Ps6dRoJwIYQQIoLaLnfy1Pef49sf/X/RHsqhUnemioZzwc/cRoLb5cFgCm0mOlgGk4GS+gLMFhOgfItS20dovtQBwGjvJADp+amk5aZsW3s+PS+VgbbdLea8ZWlOmvUES4JwIYQQIgLG+yf53qd/wg/+/af7vr50JGUVpZOYlsDs5Byjfjo1BiMuwUJWSQYGg37fBOC3LMxEvnRhen4qBqM+oNnriYEpqu4t2zYIN8YYwza2pXl72I51p5AgXAghhAiztsud/MsbPktv40C0h7Lnak6W43Z7iLGYGeubZLR3gtHeCWLizNQ/UM3MqA2DyUB/y9C6SiZKgbamtHfpXYWYYkwYTHpGesZZsC3hsDvput67928qAIuzkZ0JzipKZ35mMajzGM3bh3mW+NjdDmvV8vxy2I51p5AgXAghhAij//3CL/jUn38Rt8sT7aHsqcp7ShloG15Ni9jIvuhYN3sdl2ghrzwbj8cXsHfe6CMtJxlTjBHNq4Vc6zsaKu8ppe25roieIy0/Neg7CR6XB6PZgMuxuXxg2bFixvp2d2dirSUJwoMmQbgQQggRJo89+iRffPfX7pgAvO5MFSiYHJwKOghdnF3atM9g+0g4h7dnTLHhS+vYilLBV4JpvtRBcX0B473jLG7I2Z4emWF6xBam0cHSnAThwZIgXAghhNglj8fLR1737/zyaxeCapd+UNSdqULpFJpXY25qHr1Bj33Rvtot8U6VX5VDYloCPfs47ainoR+DyUDN6SoWZxaJTYil82o3c5PzYT2PzIQHT4JwIYQQIkTj/ZM8/vWn+OFnHwvrrf39JC035Y4PtreiN+j37N9maRc5526nm+aL7atfV99XTn/LAO4w5rHbF+xomhbSjP2dSoJwIYQQIgTXHm/kXS/8QLSHEVFHHqim8am2aA9j3zKZjZTeXYTX46WnoT+i51JhbEzUcbUbXZjbNXq9Go5lJzEWc3gPfIhFJAhXSv0B8OjKl2/UNO0LAe73YeAeoAJIA5aBPuB7wKc1TZsK4BhfBF6/8mW5pmmdwY1eCCGE2N74wCT//tb/jPYwNsnITyWjMB2Py4NtYpa4RAux1li8Xi9NK8H0Vgv1ABJSraTlphITZ0an03Fzn5UB3G/WlgpMy00hqziD1mc6IrImwOP2YjAZyMhPISE1HrfTjSnGhM6gY3p0luGOEV+JmQB4PV6SM5OZGJgM6xiX55clCA9C2INwpVQ+8ClgAbAGuftbgavAY8A4EAecBB4G/lgpdVLTtC0Tr5RSL8cXgIdybiGEECIgM6O2fVd+MCHVSmxC7JbpEfUPVIMG7Ve6KDlSSFyShcG2YfIrc9CAual5hjpG6b55cKqS7CeTQ9NMDk2TU5bFcOdo2I6rFNTcX0HrMx143B6GO0f9Hr/2dJXvQiuAQNzr1UjOTAp7EL40v0xyZlJYj3mYhTUIV75EoC8BU8D/AO8I8hAJmqZtqvaulPoH4N3A3wJv2uLc6cAjwDeALODBIM8thBBCBMS+tP+a7+SWZ9OyRXlAYF15wLWB9szYbETHdaeZmwrPgsf8qhxMZgMj3WM0PbVz3nnTU60ceaCGm+f9b2tNslBYm49uZYGtY8kRlnGutSwNe4IS7pnwtwDPB5638hgUfwH4im/iC8LLt9n98yuPbwa+E+y5hRBCiED1Nu2fWfDqk+XodDpaLrXvvLGIuIz8VJbmltc1IgqWKcbI/NQctvG5oPZrON9CWl4qk4PTxCVaKKrzBd0AnVe7aboQ2fQiqZASnLAF4UqpauBDwCc0TTunlAo6CN/Gy1ceb25x7tcCvwb8uqZpU7IyVwghRKTYlxx85q1fjvYwAEjLS6Hjag9up/8cb7H3um/2U3emaldVU8qPFQc0+72RpmlkFqZhX7ATlxgb8aB7I+maGZywBOFKKQPwFaAf34z1bo/3Dnw53Yn4FmqewReAf8jPtoXAJ4Cvapr2vV2c88oWL1WFekwhhBCHy3j/JJ9751fwuCPXjCe3PBvN62W4a2zb7XR6HUaTUQLwfajxQis1J8vpaRyg7Fgxjedb0AIsH6/T65gemQn53EPtw+RV5tAahTsj9sXwp7gcZuEqUPM+4CjwWk3TwnEZ9A7g/cBf4QvAfwK8SNO0dUVYlVI64Mv4FmK+JQznFUIIIbY02D7M+e88E7Hjp+YkY1+wM9w1Rv3ZKmKtMX63yy3Povq+cka6tw/URfR0XOslMT2ehnMt1JyqDHi/2lMVIf+/mmKM5FflRiUAB1iWIDwouw7ClVL34pv9/qimaU/vfkigaVqWpmkK3wLLVwIlwDWl1LENm74V3wLMN2qaFvplo++cx/39AaRDgRBCCAA+8/ZH0QKd0gxS/QPVzIzamFqZBW0430pxfQHJmYnrtqu4pwT7ooOmi1K/ez9zOVyM9vjmDgNt5FR7qoKGc80hn7Py3rJ1C3D3mn1BFmYGY1fpKGvSUNqB94ZlRGtomjYGfFcpdXXlHI8CdSvnLgf+AfiSpmn/G+5zCyGEELcszi7R3zoU1jSU4voCrEkWX0k5Ddoud21qed/8dDsJqfFUnihloHUYS2Is7c91b3FEsV9NDk4TlxTHom1xy22syXH0twzu6jxb1X/fK8sShAdltznhVnyNdQDsWyyIfEQp9Qi+BZt/FcpJNE3rU0o1A3crpdI0TZsEagEz8Dql1Ou22LVjZUy/vpt8cSGEEHeOxbklDEYDHVe7efy/L9BwoZXR7nHsYS7pZoox0rBFObm15qbmV8veSfWJgymjII3x/u1rchfX5dF4oRWdXhd6ZZUI3aUJlHx/Bme3QbgD+OIWrx3Dlyd+AWgDdpuqkrPyeGsaonebc78UXyrLt4C5lW2FEEKIbbU+28mHX/NplhfsTA3vKsvRr/KjxRhjjLgcbtoud4X9+GJ/so3PklWcvpqecos51oROryM1N3k1jUTpoOJ4CaYYEwuzi7gcbnQ6xbxtEdsONd2jG4KDfVFmwoOxqyB8ZRHmG/y9ppR6GF8Q/uW1beuVUkagFHBpmta15vkqwKZp2uiG4+iADwAZwMVbud+apl3f5txP4AvC3y1t64UQQgTie//2E/7tLV+KyLGtiRZyy7Npe04C7zuR0+4iIz9tUxBeeU8JQ50jzK9p8OP1arRf8Z9ytFPpQ48ruukokhMenLC3rQ9ALtAC9AFFa55/MfARpdQ5oAtf181MfAsvS4BR4I17OlIhhBB3jP7m3eXj+pNbno3RZGDBtigB+B1uZnz9LHZ+VQ5tz3XiCKL76lDHCPlVuRiMeqzJcaD5GvTcEuVsFJZlJjwo0QjCt/JzfF0vTwN3AUnAIr4FmV8BPqlp2nTURieEEOJQmpteoONKN9MjtrAfOzkjgcanpIqJgIHWYdLyUpgcnCY1JxnN4w0qAAeYGZtlZk1KSk5Z1urfdToV9YWRUic8OBELwjVNexh42M/zvcCmFZyapjXiazkfjnM/LxzHEUIIcXi1X+nmY3/yOTqv9Yb92EV1+SilGO0NrDSduDPkV2STlpNM1/VepoZcuz6eY8lB/dnq1Vzsjqs9uz7mbkT7IuCg2U8z4UIIIcSe0DSNwbbhiATgZUeL6W3sx+2KXFdNcTC5XR5an+kI2/GmhmeYGp7ZMVd8r8hMeHAkCBdCCHFHcbvc/MPvfIKrv2gI+7Er7imlXXK/xRbCWWd+LcdycGktkSIz4cGRIFwIIcQdo/lSO5/+i/8I+217a3IcxXX5AdX9Fneurht9xKdYmZ9eCOtxY+Niwnq8UEmJwuDsum29EEIIcVB85q1fjkjebF55tgTgYkeOJSdFtflhP+5+qUoi6SjBkZlwIYQQh96NJ5u58N1n6breG/Zjp2QlYZuYC/txxeHkcYfYDdOP3PJsEtPiaX66PWzH3I1l6ZgZFAnChRBCHHqfeduXIxKAg69M3H5YFCf2v5TsJLpuhO9OTEpW0ro64dHmdnlw2p2YYkzRHsqBIOkoQgghDrWZMVvEAvCskgxcjt2XmhN3hrSclKBrg29Lbar4HHWLczIbHigJwoUQQhxaM+OzvLbqr8J+3JSsJAB0StF2WaqhiMC0X+mm+mR52I432DZEWk5K2I4XDktzS9EewoEhQbgQQohDaWp4mve89J9YCvPMXGJaPF6vl+qT5Qx3jYX12OLwa7/SQ/0DNWE51szYLGn5+y0Il5nwQEkQLoQQ4tD5yX88zr++8bN03+wL+7G9Xi86vY6uG+E/tjj8PG4vDedbgwrEjWYjRrOR+BQreoN+3WuaVwv3EHdlSRZnBkwWZgohhDhUum708tE3fAaA+gdqwl46UG804HK4ce6TBini8Cu5q5DhzhHmpxcoqstnwbZIVlEGs5Pz+y7oXZ7fH+USDwIJwoUQQhwq19Z0wmy+2EZBdS4KiE+10nihbdfHT89NiUitcXFncTsDX9A70DK0Gmz3Ng4AMDk4HZFx7ZZ0zQycBOFCCCEOjc+941G+/a//b/Vrj9uDQmN50Y4lITagY5QcKSQuycLCzCIxcWb0Bj2NF1pROoXFGivl18SupeenMtId+HoCr7a/Uk62I7XCAydBuBBCiEPB5XTx4y/+YtPzfc2DAMSnxO94jNpTlTRd3DxbXnOqgplRG4Df14UIREJqPPkVWXRc6wkqnSk5I5GRAzLDvN/SY/YzCcKFEEIcWPMzC/Q1D5JVnMFPvvg4i7P+y6OZLabV2/gbHXmgmqX5ZSaHZrYMsJsv7o+OhOJgK6zJoeFc8M11UrKTg5o5jybJCQ+cBOFCCCEOLI/bw/te8WHmpxe23a6wJp/2K+vzuJVOkZabwuTwDMOdo5EcphBAaJVMiury6W3oj8BoIkNmwgMnJQqFEEIcWEnpiVTdt3PzE6PZuOm5qhNlTAxMSQAu9ozX4w1q+9j4GCaHplk8QA1wZGFm4CQIF0IIcaAV1eTtuI2//Nv4ZEskhiOEX3EJFjqvBVdVp+xoMQszixEaUWQsL8hMeKAkHUUIIcSBZpuc23kjBdbkONJyk4lPtuJ2uFiU2+ZiD3k1L+XHS+m+2Rtw3rTXc3Cqotwi6SiBkyBcCCHEgRZInm3HlW7qzlajlKLhXDMAOr0OnV4XdIqAEKFYnrfTdLGd1Jxkyu4upqexP4BZ7oMXhNslHSVgko4ihBDiQHM5Amt60n65k+W527N0CalWCcDFnpsanqHhQhs6vZ7qHdYz2MYDuMuzzyxJdZSAyUy4EEKIA22wfSSg7Zx2F53Xb+fketxelE6FVLFCiN2am1ogNTdl223si9EJaE0xRkwxJgxmA0aT74/BZECn12Ew6tEZ9Oh0OnR6hU7pQAdKKRSKxPSEqIz5IJIgXAghxIHl8XiYHpkJad/56QUyi9JJy02lSeqAiyjwujzbvp5TmsXUcHDf37WnK9HpdaCBpmloK49ejxeP2+P74/LgdrlxO32PLocbl9OFy+7C7fLgtLtw2gO7w7RR2g4XFuI2CcKFEEIcSEOdI3znX3/IzNhsyMcY650gPtkaxlEJEbjZqXnKj5XQcbXb7+tKp4I+5sTAFOP9k7sdWshkYWbgJAgXQghxII33T3L+f56J9jCECJltfA7b+BxZxZmk5iSj1+uYn1lgcW6J9NzUoI5VcaIUgKmh6UgMNWD2BTuapqFU8BcQdxoJwoUQQhxItaeruOt5NTz5zad3dRxTrClMIxIiNKO9E4z2Tqx7brx/msp7SgLa32DU0365KxJDC5rXq2FfchAbFxPtoex7Uh1FCCHEgeP1evmTu96+6wAcfFVTyo8W7X5QQoTZaM9YQNu5XR7iEvdP86llSUkJiAThQgghDpyWSx1kFKaH5Vhul4dYq8zaif3HqwVeucdo3j/JDdK6PjD7539MCCGECIDH7eHdL/kHlubCN9sWTLAjxF7JLc3GW+yl/bmdU030Bv0ejCgwEoQHRmbChRBCHCg//o/Hw17be6RrlLzK7LAeU4jdar3cRfuVHgqq8/y+Xn+2GmtSHEqpoEsZRtKyNOwJiAThQgghDgyX08WjD3+TkiOFYT3u1PAMFmsMeoN8LIr9Z6t0KU3TWLAtou2zOzlSpjAwko4ihBDiwBhsG2Zm1Mby/DJJGYnYxkOvEb5R+3Nd5FflMtAWWAdOIfZK23PdVN1bvpr3fasJz8TAVJRH5p8szAyMBOFCCCEOhLbnuvjFV88BYF90kJqTEtYgHMDtdIf1eEKEi6ZpDHaMMDNqi/ZQdrQk6SgBkSBcCCH2ocnhaa4+dpMTL76b5MykaA8n6hzLDsb6JvjuJ/939bmU7CSGOsI7az0/vQCaBtJoROwxg8mA0WzAYNSjN+gxGAwYYwy+5416lE5hXzwYwa3MhAdGgnAhhNhHXE4X3//0T/iP93wNl8PF773nVbz2A6+O9rCi7o9q3oolIZbyY8V0XO3xPbmSBhuXFEdOaSYmsxGnw0XHFf8twAOxYFuk9GgxXdf7wjBqIbaWnpfCzOgMbpcHALfDidvh9Ltt5Yky+poGDkzVEckJD4wE4UIIsY889ug5PveOR1e//s7HfshIzxh/9E+/R0Z+WhRHFj2Lc0uM9d3uJlhxTwntz3XTcbWbhNR47Iv21cBbp1PkVWQz2B76DLk5RjpoighZc5fFvmhfDcC3YraYKD9WQuOF1r0YXdjYD8jFQrRJEC6EEFHmcXv40t99jZi4GJ798dV1r9mXHDz+3xe4+vMGvj74uX1VCzjSPG4PP//qOa7/snHd80azL0i2LzqwLzrWveb1agy2j1BypJDum8HNZuv0Oopq81mYXdrdwMWeqj9bxcyojRirGZPZiN5oQOGr/e71aHg9HjxuL263B6/Hi3PZicvuxu1yozfqcTvduBxunHanb03AdqlImoY1KY74VCtmiwm9QY9er0enV+j0OpROodTtP6CBBo5lJx1Xu/F6NKxJFhJS4tddWPpTdrSY2cm5AxeAg8yEB0qCcCGEiCKv18un/vyL/Ojzj227nW18lp7GfsruLt6jkW3vvz74HdLyUvjV1z4UsXN0XO3mX17/75ueH2gd2nHfUFp4V54oo+WZzqD3E9FTcU8Jnde6w1qX2mQ2YDQbffnZJiNGkwG9QY99ycHsxBwLtgUWbAshH39hZpGFmcVtt7HEx9J5rSfkc0TbQUmbiTYJwoUQIgqcdifnv/MMX/n7bwW8uPCfX/Np7nvJMe56qI7q+8qIS4yL8Cg3G2gb4nuf+jE/+PefEmuNoeVSBw/9zmnuerA27Ofa6la92WKCHSqzzU7OB32+JQkcDhSj2cD08HTYG8M47S6cdldYjxmspfll0nJSmByejuo4QiVBeGAiEoQrpf4AuJXU+EZN074Q4H4fBu4BKoA0YBnoA74HfFrTtKkN25cDrwR+FSgHMoEZ4BLwcU3TfrnrNyOEEGHgdLjwuNzEWmM5/51LfOLPPh90oNjT0E9PQz9f//D3AKh/oJrfescruO+lx1ZufUfWxOAUb6h7G16PF/B90P7o848x3j9B3Zkq9PrwpspMDvqPtCcGpiiqy6e3cWDrfYemSM5MZGYssBKG9Q/U0HD+4N32v5MV1xXQ/tzhvXORXZp5YINwSUcJTNiDcKVUPvApYAGwBrn7W4GrwGPAOBAHnAQeBv5YKXVS07S1v3U/APw20Az8LzANVAL/B/g/Sqm/1DTtk6G/GyGE2B1N0/jxFx/nc2//MiV3FZKYnsBT3302LMduONdCw7kWyo+XcPShOk6/8j6sSXGk56cSG+e/w16oluaX+eXXLqwG4Gtd/sl1nvnRVU79nxNhO5+maTz5rae3fD0uYft0k6W5ZdJyU1hesG/KG/dntHf7/FyxDx3yKpLNT7eTUZDGeP9ktIcSNClRGJiwBuHKNxXzJXw3Cv8HeEeQh0jQNG3TPQyl1D8A7wb+FnjTmpd+AnxY07RrG7Z/EF8g/xGl1Lc0TZP2Z0KIqPjcOx7lOx/7IUDEFlh1XOmm40o33/yXHwDwu+9+Ja/9wKtxOVx03eijqDaPWGtsyMf/zFv/kye+8RTT2zQJ+fL7v8HRF9SHLfj/8vu/wYX/eWbL1wNZoNrfMkRGQRrZJZlYk+OYm5xnaX55U5fB4voCehoGpDb4AaM75P9fHrcHs8Uc7WGEZHrUhmPZgTn2YI5/r+jCfLy3AM8HXgdsv+rAD38B+IpvrjyWb9j+PzcG4CvPPwk8AZiAU8GOQwghwqGnsZ//+fiP9vy8//2P/8PDr/wID7/yI7zl/nfzhrq3MT8T+EKykZ4xPB4Po73jvOXUu/mfT/xo2wAcoPtGHx957aeZHp1B07RdvgPobezf9nWPZ/vSbreM90/S09BPw7kW+poHyShI37RNXFKcBOAHjCU+Nqjv6YNqoHWI0ruLoj2MoE0MTPH2572fyaEdFm/c4cIWhCulqoEPAZ/QNO1cuI674uUrjzeD2OfWqoqAehArpa74+wNUBTNQIYQAX07yF/7mq2EJSENx8fuXufyT64AvEP3Se77md7uuG73rgpmJwSnedPyv+YOSN/OG2rfScqkj4HOe/84z/E7+n/LrKa/lymM3Qh57+5WuHfOz9Xo9qTnJQR97pHt09e/5VbmU3l3M9MgM5tj9URvcFGMktyJ79WulUxyJwKLXgy41Nzns3VL3K693cwrYQdB2uYs33/u3tD4b+O+QO01Y0lGUUgbgK0A/vrSR3R7vHfjyyRPxLdQ8gy8A/1CA+xcCLwCWgHBfEAghxLauPd7Ae1/+IRzL/rvfRcOPHvk5L/2TF1J6V9Hqc9/8yPd55K+/isGo58yrTvIXn/4j3vPSf2TBtsiCLeibmQB4PV4WZ5c49+1LWBIsDLQOoxT87CvneMcX/pTMws0z0eDLAf/q33+biz+4TPfNPr+552vdPNdMYlo8hbV59DUNBjy+6REbVSfLab3UQVJGIg3nW4mJM+NYckR9NjynLIvE9ESMJj1Gk4GE1HiW5pexL+2c036nscSHnl510PTc7KfuTNWBrBc+PTLD2x58P2//wp/xgt87G+3h7DsqHLM0Sqm/B94DnNE07emV5x4G3k8Q1VHWHG8UX6WTW34CvFbTtLEA9jUDvwBOA+/SNO0jwZzbz/GuHDt27NiVK1d2cxghxB2ir3mAz779yzz309BngiOl/HgJlfeU0nC+hbzKHLpv9DHSffvXqk6n8HrDM3Nfc6qS5qfXz4ClZCXx/u+8nZqTFavP/ed7v87ln15ntGecuangywqGsnAtMS2ejIJ0Oq/3EqUbFetYEy1kl2XR2zyE2+mm7nQFXo9G88pdiOr7ytAb9XRf72V5wUHdmSrG+ycY7RmP8sijw2g2YDDqwl6acD/TG/TklGUFVCN/v/rtd72C1/3D74S9ilK0HT9+nKtXr17VNO14sPvueiZcKXUvvtnvj94KwHdL07SslWNn4svp/hBwTSn1Mk3Trm61n1JKj29G/jTwDeBfwjEeIYTYiWPZwXc/8b9852M/xDYxF+3h+NVxpZvYuBj6mgfpa948exyuABzwO6s8PWrjw6/5N2pPVVJ2tIjpkRl++NmfsbiLDpWZhelBB+GVJ8q4/NMbexqAp2Qnk1OWiU6nY6B1iJmxWcwWEynZycRaY+m8fru7Z+NT7esWnt5qIKSUIjU3mYYLvtn7gupc+lsOblAWKoPJgO4OS+H3uD0YzQe7tcs3/vn79DUP8jdffcuO1Y3uFLv6H12ThtIOvDcsI1pjZeb7u0qpqyvneBSo22IseuCrwG/iW8j5+1q0kjGFEHcMp93Jz796nh9/8Re0PrP/cx/npoOfbQ7F0pz/EmXDnaMMd47y2KNPAr6W4w3nmkM+z1hvcLPBZceK6Wsd2vMZ8MSMRJou+r4/ak9VkJaXynD3OKO9/i8gPO7NC081TWNyaAYA+6KDxPREuAOD8OV5OzX3l9N8sS3aQ9lT3Tf6qD5ZQcul9mgPJWSXfniFvzz1Hv7++39NTmlWtIcTdbu9rLLia6wDYN+iWcQjSqlH8C3Y/KtQTqJpWp9Sqhm4WymVpmnaut9aKxcD/40vAP9v4A81TQts6bwQQoTA4/Fy/fEGmp9u59GHv7nzDvtEX/MgsfExEb+VPz1iC2i70Z7Q63PnlGYy3LVjluKqpIwEOq/17bxhGOWUZZGUnkjXzdvnbboYniDK5XChdAotnHcwDoCq+8qYm9yfd5sirfNaD/UPVNPXNLiavpVRmE5mQRrjA5OMHYB6926Xh0/++Rf57Xe9gqMP+Z1XvWPsNgh3AF/c4rVjwFHgAtAG7DZVJWflcV1wrZQy4Zv5fgW+mfLXaZp2MJcSCyEOjPG+Cd7zsg9Re6oSpVTUqqAES/NqlN1dTMP5loido/TuIrpubF9i8JaJwSmK6gvobQhs+7XSclMDDsILqvMwxZiwTexdWbsjD9bQcKGNkV1caGyn7blu6s5W0/Dk5jsJRrOB/Ko83C43/X5Sjw6q3d45OehcDhcN51rQ6XUU1uThcXsYbB9hvG+CjMK0fXtRFmuNofTuYuZnFulvHWK4e5zrv2ziTR97LS//0xfuScff/WhXQbimacvAG/y9trIw8yjw5bULM5VSRqAUcGma1rXm+SrApmna6Ibj6PB1xswALmqaNrPmNTO+pkAvwXcx8McSgAsh9oLeqMfr1Wi40ErJ3cVMD08F3CI92oY6I1vaLdjGQOP9UyRnJaPT60hIsWJNjtsx0DLFGOlr3rpt/S3WpDgcdpcvd3oPP+gLavJouBD5dIn2lUB8ZtS2WrLPYDJQeaKcpqfbyS3L3OEIB4tt/GD8jEWa1+PdtK5jvG+S8uMldFzpjtKoNis+UoglwULn9V6anl5/B8jr8fLpt/wHPQ39vOnjr8VoOtg576GIxjvOBVqAPqBozfMvxtfh8hzQha/rZibwIFACjAJv3HCsz+ILwCeBIeB9fq6mntA07YmwvgMhxB3PFHO7rnT3zT6sSRaq7ivf93nhSRmJ5JZnB5wuEopg7woszS2v5pBPDfvmWcqOljA3NbflosuKe0p3LNmWlJFIflUODefb9rz8YMwedTp02l00XWwnPjmO6vsrQIPZyfnVgCclK4nBtuE9GUukxafEMTU8He1h7GujPePklmdHvYZ61clyZifm6Q2gfOiPHvk5/a1DvPcbf0VSeuIejG7/2E+XHT8HPo+vssldQBK+rpvt+BZ/flLTtI0/fcUrj2nA+7Y59hPhHKgQQugN63udLdiWVtMDOp7r2lc1wtfKKc2i4VzkUlHAVylmtzqv95JTlkVeZc6mILL8eMmOAbglPhZTjMkXgEfB8oL/hamRMj+zSOuzXZueb7/aQ1puCpNDBz94LarNi/j37kE3P73A/PQC9Q9UR+XfKqs4A2tKPG2Xg5uNbzjfwtsefB/v/NKfU31f+c47HBIRC8I1TXsYeNjP873ApikJTdMagTcHeY7nhTQ4IYTYJcMWt06bLraTWZiGXq+L+myUPzp95GeElxfCs+hzuHMUg8lA9f0VdF3rwWl3YTDqd0xJMMWa8GowPrB3LbPNsaZ1F146w/6Y40rOSGRyMLgSjvtR3ZkqGiO4juGwmRm17fk56x+soeVSJ2P9wf/cVZ4oxb5g5+3Pez/v/NKbeejVpyMwwv0nbG3rhRDiTmIyG7d8baxvkqV5O9Zk6x6OKDBKF/lf++N9E+vqXO+G2+mm5VInmUW+3ObqkxVM7BBclx8txr64d10mc8uz0JSi5K4iiu8qBGB0H1WpcDnc0R7Cro33jx+Yxc/7QXJW0p6f02l3+S2tuROlYGFmkcH2EcqOlvCf7/sGj/zNf+HZoWvuYSBBuBBChECn16HbpmOIbWKOzKIMYuNj9nBUO9P24IPN5XCTX5mz84ZBHdNJbHwMPY3bV1ExGPVMDM1gTbRsebci3AxmEy6Hm57GAbwejboz1Tj3STqSUgrdAe5QaI41UX60iPG+gz+bv1eq7i2LytqUUDth1t5fyWD7CG6Xh5ZnOhjuGuObH/kB73npP7FgWwzzKPcXCcKFECIESin0xu2DvO6bfRTVFe7RiHZWfryExqe2z6UOl/iUuLAeLzkriYrjJSzMbP+h7HZ5mByYwO1ykV2SEdYx+JOUnrCua2V/y9CmKhDRNNIzTmJGQtjuTOwVpaC4Pp+yo0V0XN0/1T72u4p7Sml9tjMqdz9CTnXbYtH0lcdu8hf3v4eBQ7Kw2B8JwoUQIkSBlNRqfbaT2tNVezCa7eVVZDPYvncfZiNdoztvFASX3cVg+wgJqdun+OSUZlFyVzHlx0sZ2INukvMzi6RmJ0X8PLthG58jOTuZhNT4aA8lYNUnKxhsG6Zpjy4aD40opuxsV+tbb9CRlJFAbnn2ptc6r/eQnOm/Kspg+wh/cf97eO5nN8I2zv1EgnAhhAhRoOkO3Q39pOWmRHg024uNj414l8y1Joemt/xgDZYpxojb5WFqeIbMwu1ntxPT4um83kvD+dYtZ9hqz1RRd7aa4rsKSc1J3tXYPG4POaX7vxb31PAMuRU51J6uCtv/SySZLWZcDle0h3HgRLMqk1qTnqc36IhLsFB+rJia+8owmQzMjMxgG53ZtJ990UFmUfqWx/V6vXzoDz/N/37x8UO3LmB/LN8WQogDKNAg3L7oIKckk6nhmah8iJgtJmxRaCSUU5qJfclBRl4qCWm+WVj7gp3FeTvz0/O4XZ4dLwxSspKwxJvpXckF77rRS/3Zasb6JvzWEHcHsDBswba0LoWk/oEami+2bVpUppSi/oFqXA43E4NTTA5uXhCampOMY/lgBIutz3YCkJabTNnREsb6xpmf3rsOooGqOlmO23XwF5NGw1DnKClZSUxHoToKK7/a4pIsZOSmMD1qw7nsoP3y7aZazi0urFqf7aTinhLan9ucelR6tITmZ7v4xFv+k9bnuvnzj79m24XxB4kE4UIIESKjKfA82+6GfuofqOHmk00RHJF/jiUniZUJTPgJIiPJ6/VgMOjobxn0e/FhiY+l/mwVndd6fWUNNQ1ripWUrCQcSw7S81MZaB1isP12jWuvx8tw1+im7qRpuSlkFWewMLtzfW6Ldf1i2can2sgsTCMhxcpA6xDLC3aUTlFzqnK166XRbCA2wUJWUTrxyVbGesexTcySUZixGtweFJNDM0wOzVB/pioq3487WZxdxmyW8CQUbqebnLKsqAThBqOOimPFDLQN0X2zD2BT+onBoMfl3HyhrJRicngas8WEY2n9bP7Mmtnznz56jtHeCf75x38bgXew9+S7XAghQhRs9Y3mSx3kV+Uw0Lr3C41CKR22W0Pto9vOtC7NL9Nwrpn4FCtZRWl4XB4mBqdYmJ4HYKx33O9+SRmJq501b9EbDTQ+FdiCSLufZkJjfZOMrVTgSC9IIyYuhuanb1eYcDncuBzudR0Ai+vzGekeC+ic+9H4wBSV95bj9XhWW53r9HoyClIZ7fH/b78X4lOsGAySLRuqnUp4RkLN/RX0twxtagq1NLe07uvkrCSWusb85o/PjM76LgxXmgzpdIrq01XMTq3/HTISxe/NcJMgXAghQhRsEO5xe4hPTQD2PgiPidv7UolzU/NYk+N2rGhyq8vfTtLyUklMi1+3wLT2dBU6vc6XAx4gr3v7Mo2TQ5vzVv3paRjYeaN9bKxvgrE+Xz3zqpMVmMwGlhccdF7vJb8qF2tSHC6HC03T6LreG9GxxMbHUFxXyOL8MmO9Eyht7y8aD4O4REtUyqLqjXq/XVkdS+sveIc6Rqg8UUb71R6/x2m+1E7liVLmphZIz08BvYHh7vVB99z0Ahe+f5kzrzgRvjcQJRKECyFEiIym4PMS97KJzFo6fWRnFuMSLCxumPUCyK/MpeXS7kr2WZPiKK4vYKR7bF0wWHJXIU1PtW25AHMrXu/BbQKSWZhORn4KS/PLDLUPkVmUwdK8g4nB3bWlb7u8vuX9YMft6jZKKdLyUv3mxIdLUW0+Lc92UlSbx8LUbFQXGB5UaXmp6HSK3sbIXxyW3FVI942+209ssdRluGuM3PLsdd2Dta02BjxuL+1XutE0jdHeceoeqNm0jX3RwT+/4XPoDXruf+mxkN/DfiD3e4QQIkQGY/C1lxdnNweqeyHIODVoJXcXklOWtfm8u/yUySrOAAUN51uYHJpGp1MUHymk5lQlM2NzIb0xXaT/MSIkJs6MTnm5+UQjnVe6WJ6309vQT1J6ZDuzappGTmkm5lgTRx6speZURViPf+TBWhbnfAt045PjJAAPQcU9pSzNLfldrBz+c5Uw2D5C1X3lq8+pbRqXWZMtHHmoHv3K70tLvIXMou2rHCmlqH9eHU2X/K+3cCw5+dDrPsO3P/FjxvonD2zVFJkJF0KIEIXSFXFuaj4CI9kPFMOdo1QcL0HpdaBp6Aw6TDGmkI+YmpPM0twSCzOLxKdYyS7NYnxgMug0kMzCNAwmA3NT88xPL8IBisFNsSaKa/MwGA2M948z3Lm5/nr75S7qH6yj8am2iI2j4UIbqTnJNFxoJSkjgYTUeOyLdpz24CrD6PR6ak9XMDU0TUpOCkqnaLhwO5XINm4L88gPv6SMBNqf69p5wzBZXnDgXHbS+kwH1SfLabnUgeaF+NQECqpy6LjStfp9kV+VgyXRyo0L7dSdrcWxaKf1Wh8oyCxKx5qagOb20Ns0gNftoaAmj8S0RLyaRuPF7e+g2RcdPPLur/HIu7/Gv/z03dSfiX4/hmBJEC6EECGKjY8Neh/7ooOk9ARsE3MRGNHW5qcXqDtdhYaGTqfzzS6vLIAKhdliwrnsxGAyUHVfBR1XfEFA+5XNJcZyy7MY6ti5eU/92Wo0TaP56Xa8Hi+pOSm0P9eFTq8jvzKX5kvBt+IuP1a8OjZTrIljv1LH5PDel2sMRUKqFR1eWi/tHFw3PNlIYmYyc1ORKzl4azGsbdz3vVt9XxnNF3ceW2J6vG9cSpFTlrW6gHak9/asrcGop+reMhqebIzAyA83t9ODJSGWpbmdKwOFQ+ya6kJ9zYPExJnxejXmpxdouthOZmE6phg9RrOJ4a4xkjJ8tfinRm1MDM3gdvrKT44vzzK+8rOYmJFEblkmzZc6GegMfuFl8zOdEoQLIcSdJNYa2gKonIqcPQ/C+5oH1329m4YtsfExmGN9M9wFVXk0nGvedvsYixml1La3jNPzU2k477soyCrOwOVwERsfQ2FtPi6HO6gAXKfXUX6sGINRT/fN3tXnnctO2i93UVRfSGZBGmN7cOs+EDqdIjUneV1ed15FNl63m6EgupwaTTriEi17lvLk2WGB6y06vQFLYhzJGYkM+ZnJV0pRdaJEAvAQLdgWqb6/nJang79IDcXa1JOluWXKjhZjMOrIr8xhsH2Esb4JzBYTbqcHj9vD+MAkeoOO0d6t00ZmJ+eZnQz9LuH3/v1n/NbbXrpt1879SIJwIYQIkTHEWsYtlzqof7CGhie3D14jaW5q3jfz7NXwal46r/XumF5jMOrJKEhDA0a6fKX5Oq5unvneqOtGH0ceqOHmNsF6anbyamm10Z5x7n6ojuu/bAo851vTSMpMxJochzXBQuuz/gOSBdsijed94yi+q4jepsi3tt+KJT4Wt8tNUW0+7c+2E5MQh9erUXm8mNGeMcZXKpcEanJgivyqXAxG/a4CmkC53R50ej1ej/9KJgaTATSNpfllnHbXppnautMVgMLtdO14ISe2t7G2diSpDQsrO6/5Kp0YjHqq7iul5VLnuvFMDExhSYlnKYIde6dHbUwMTpGRnxaxc0SCBOFCCBGiYEsUrtV4oY0jD9ZGrVmKx+1dnXkGSEiN3zYIL6zJw+lwMdwVWl3sxqdaKT9ewtLcEjq9HnOMEYPJgN6oR6fTYV9a/wE9O70QcABedW8ZsxOzjHSPYRuzBTwma0Lw6UShUkphNBtw2l0UVOdiiTfTfa0Ht8tD+7PtaJqGNSEGx5KDm0+EPiM80DpEYW0+KdlJES+h2H2jD1OMkdg4K7bx9Sk+Or2etLxUxvun8GyRNz7YMYp90UHpXYXkV+Uy0Bq9C6KDrvtGH9UnK3ZdiSgQ06Ozfu9suV0eum/0btre6/FiiY+NaBAO8LOvXuD3//bXInqOcJMgXAghQnTypcc5/51nQt6/4UJrVAPxtQpr8liYXaTnZv+65/OrcoiNi/Gb6x0Mr8fLom2Rsb7JTY2D9Ab9pnjbFGj5R03DaDaE1DSn4XwLhbUF9LeN7LzxLtWdrmB2chZrcjytT7f5bZ40MRCe9Ji+Jl/wnV+dv67UYCQ47S6ySzIoqM6l6ak2rMkWkjOTiE+x7tg86VZueW/TIF6XVETZLa9nb0pvjvdPklWcgW1iDvvC+sDaaXf73We76inh8vjXn5IgXAghDiKX041z2YnL6ca+aEen1+Fxe3E73bidblwrj26X7+8et4ebYUgn2S+BeMP5FmLizCvNb3wfmG6nB6PZEJb3Cb6awTWnKjct5iusyWO0dxy363a6gsft/8P8ltzyTIbaRyk/VryrVAbN60Fv0KGUIj0vhZGe4FJAAqHT6xjtHt2T8nFrLdoWqD9TiWPZhW18lvEIdVLsa749g7204GRuOvA8dqUU+eWZezKDe9i1Xe6k/mz1ujtckTIzasNo3nyhnF2csam5jjXJ4qtKFGG/865XRPwc4SZBuBBCAE//4Dk++Dsfj8q590sgbl904HV7aHrqdj51XZgrDsTGxWA0G3A53Ci9jroz1YDG0s31+cKd13ooPlLoS6nQNOofqMax5PAtCFWKjitdZBalBZSTvp3+liGqT1ZgNBuZmwrvYllLfCwoKKkviMqiw+mRGaZHfBVN/NVwD8VOC2xvVb4IhCU+lqKaHJqeCrzbqdhef8vgzhuFQcWJ0k3VlUqPFvutgpRbkUPHzcg3ENLtwWx7uEkQLg4Vj8eLXq/D6XDhsrvweLx4PR40Ta0uQPO4PLhdHtxuDx6Xd+XRg2flVl5snBmzxYROp1tt2ax5NTxuL15Nw+vx+o7l9eL1rDx6NTSv73mPxwuaryuY1+N7bXUfTfO9pmm+DzKN1X0BUCvj9PjOBaDX6dDpFUqnQ6dTGIx64lOsHDldgT7CXRDvJE5HcPWOw20/BOJmi4mexvXpKEMdI9SeqqSnsT8sJdA6r3dTdqwUvUHP4twSjRdayShIo+5sNY0rM3gp2UkkpCZgNBmpOlGKpml+Z7vti+GZtbaNzxKXaEFnCM9HYkycmazCVHob+jHFGOm6tnc1nLcy3DnKkefV0XDh9l2IpPQErEkWvF6Nual5FmzbV1WJtcaQnptEQloijiUHQ11jQX1PGEwGXz58nBmP203HlW4JwMMssyhjTxblTg1Nr5t1L7mrkKGVHP+Nlvx00o2ER979dR767ft9JVgPCAnCD4ixvgn6VxatrM5CrARzaTkpGM1GbBOzLC/4miconcISH4slPpacsiwSUqx4vV7cLl/A6XK68azeVvficfkevR4vHrcvSAXflaUp1oQlPpaYOLMvqF15fWnezvz0PItzy8xPzTM/s8jygp2luSWcdhf2RQcO+0qen6aBUnhcntWg0+3y4Fx24rS7cDlceNxeHHYnHrcHpRRK+XLcfIG07z3r9AqvR8Pj9vgC1Vt/vNrquDbO0mSVZjExFdkFIdHwqje/kDc8/KpoD0OEUcOFVurOVNP+XGfQTVDCoaA6j44Nud8zY7PMjM2SnpdKYU0e4Mvhnp2cY6A18LSDW5zLLvpbhliavx28jfdPkpByu+tjXkUOzRfbVn8PRVL1yQq6m4YY6ZsKW3mz4ro8mleCS8eyE/amfPOOWi+1kZ6fSlpuMkuzi/Q29DMz4ktR0Rv01N5fyeSwjbENVVmMZgMVx0rwej0r78s3q6mUr7RiRlEmQ52jqzXKMwvTScpIwGgyoPBNTMxOzDLcNUbXFf8dEEV4mGICXEuxS8NdYyStlDlVSjEzNuc3AAeIT4lH9U+jeSPb1dLlcrMws0hCanxEzxNOEoQfAPYlB//6J5/n2i8aQj6GTqfwRvgHYN86oO1sd/L9zz8OQEKKleKaXO55Qe2Bq5G6n5j85DdGQ9PT7WSXZKB5vatlAP2JjY9hOczVBuan5jFbTH7LnU0MTjExeDunWCkVdP6p3qAntzKXruu9m14zxZooqM4lMS1h9SI90uofqKHxoi/1Jlw/O0op9Hp9WI4Vbk67i/GeUcZ7NqcMeNye1dKN5feUonR6Oq/1kluehdftpvH85js0mqYxOTTN5JCvvnlhXT6z43OMdg0z2hX8BZrYvb1YAAlQVJuP23n7Z3R+xn/Ot96gZ6RvMuIBOMALXn3qQAXgIEH4gfDIX//XrgJw4M4NwDm8793t8vCdf3ts9evyuwrIyE8lIcXKWz76e1Ec2cG0Vx9egRjpHscUY6T2dNWWt+vL7i4O+wKs0d4JKu4poeNKz7Z5v+ALwBrOt1B9spy2y10BVWaoOV1J45p0CINRT05ZFpOD0ziXnSzP20lMT9iTpiNGszEilUO0lXbbRfUF9Db077zDPtSx0gLdaDYy0Bz4e+hrjHzer9jeXtULj0+xrv7+0TSN/Ipsevz8/6flprCwxQx5OL3k9Q/xh3/3yoifJ9wOTuLMHUrTNJ76/uVoD+NAcztcJKZasSZZsMTHEGMxYTDp1y3iMJj258xVMBZml3257nswg3gY7acgHHyzls2XOqg5XYXZYlp9vrAmj5r7K3xpDhHQ/lx3UIsxWy51UHc6sO2nhm2rf684XoLb5aavsZ/ciizMFhPW5Dg6V2pn75Y1OW7176YYIzWnq6k9U03d2WqOPFBDXnUetonI5c7qDfvjzspuuKK8TkIEr/tGL5lF6RE/z+o6phXDXSO+hchrFNcX4PRoLC9EPgh/7Kvn+fq//JCOlcZBB4XMhO9zT3zj4urqdhEa37/f9v+GdS86SuOzB+uHd6PxwSnufVE9v/HnL1x9zuP2oDcc/AuMvWAw7s9/p5ZLHWQWpJFbnoVjycHE4BR9zYOkZCf5LfcXDmvTTgJx81wzdaeraLrYumX2V+3pqtXW83kV2fQ19aOtzJ63P+vLE647UxW2FJucsmycDjfxyXEszS3T8sze5iJ3N/RTfrxkU469EJHkdnkwxZjQG3wlViNmQ/qWY8lJ/QNlzIzNYjQbiUuIZWHBsSeLRMFXYvZbH/sRDRda+cQT79+Tc4aDBOH7WG/TAB9+zaejPYw7wmFIG/e4vXz/84/z/c8/TlpOMvHJFiaGZvh6y0ckEA+AKca080YRopTy3Z3R++pVGwx6dEY9eoMeo8mAzqhnemwOvR7Gen2L5qZHbCzYliL/YRugxqdaKbmrkOnhGWwTm0v9ja3UyC6syWWwbdhvKbvGC62UHyvZddlBH43epsGorpMwxUbve0rcuQZahyJfL9zPh+baCkYxcWac3r1PttAdsIphEoTvU3NT83z1g985tPnM+81hW8/4a3/yfMb6p0hOTzhwv5SixWiOzq/Dgupc+ltHcDm9wK1g2n8awF0PVK/+PSkjkbyKbBovhKfEm96gJ68yh/iU+JDrZXff6AN8NamtSXH0NQ3gtDupf6CWhgutVN5TSm9j37a1pDuudlN3upLGp3Y3w280m6K/UFl+fYsoaTjfQtV9ZbRG6A6Q20/H17VyyrLobR/fdptIeOVfvHjPz7kbEoTvU//7xcc59+1L0R6GOKDqTpbxqje9cOcNRdR53YFHajNrZpgzizNW0zt2I7s0i4S0RHqbBhjpnaS/bRSdXkf5PWV0PBfaB/hw5+0Fj4lp8Xi9Xo6/sJ6rjzXg9Wz94R2XaKG4vsBv9ZRg2cZsaJoW3UA82hcB4o7Wdb2P6pMVtFxqX13zEq4qJdvdfbMkxLK0HHjTpnAwGPX8xSdey9lfO7Gn590tCcL3qZMvPcb/fuEXjPbs/ZWkONgqjhZScbQo2sM4cPaihJY/Xm/gqSTeldmnu15wFw1Pd5CUm05ucRpjPWMopdAZdOh0OnR6X2MnnUHva8mO7zat0ulQOoVOp1uJDxVDnWOMbshb9nq8TAxNY022sjCzsKv3Nzs5z+zKbfGtbpGbYk1Uniij40pX2Gb2hzpGKD9RRue1vrAcLxRzk+HtwClEMFwOly8AX2kCZzDqySzNYKhjZNfH3q4aUundxTRd3rs1Volp8bz/G39F7cnyPTtnuEgQvk8V1ebzpZaP85ZTfxem/Ehxp6g7WR792/AiYB4/H2ZFtXl4Pb5a2UazEdv4LPMzi8SuVB8YH/ItNLZNzPnNv16r7v4KGkLowjk7MU/tqQoaz4Wvg2fntR5MsSacGyq7xCfH0fpMOy5H+GbPyo4V09c8FLbjBcuSEMtAa/TOL8Qtt8qNul0eElKshOO70rPNHa29WKPy4tc+yIt+/ywLs0sUVOaQXZwR8XNGgiSL7mN6vY7XPPyb0R6GOEDuOlPJq9/6/0V7GAdStEoUat7bH2Z6g576M5UMtA7S3zLIcOcIfU39zE7MovASnxZPUl7G6iLHAM8Q8tg6r/dSc6py0/M5ZVkcebCWurM1ZAXx4ef1ejH7Waw4NTxD1b3hncXyeLSwBvXByivPjtq5hdhK180+ElKtO2+4A4/TfxCulII9aBv/G3/5Emrvr+C+F999YANwkJnwfe+eX72LsruL6AxDjqTY2mGojvIXH/09Xvz7p9HtwS/Aw0inovPv5vV4qTxRik4HY30TW1Y08Li9DHaOMTcdXHrIbhZ3O5actDzbTcnREmKtMeh0OhzLTjqu9jDSO4UlPpaCyqyA0+YcS040r0ZhTR59zYPrXuu83oNOrwuo6c9OLPGxjPdP7/o4u6HbZ3XnhQBwLjvJK89GKbWr8oGDHSObfo5zSrMwx1tovRL5VBSj6XCEr4fjXRxiOp2Ov/7yn/Pn978Hx1LkC97fqRbmwtv+OxpOveRuCcB3IVoz4TNjs0wO23a8Eswtz2Y4hMDSs0MVg0D0NGzuhJdTmsnS7AItl9qDOpbT7vJbum953k7FPaW0r3Rr3I2s4gx6mqPbNj2YXH8h9lL3zT5yyrJ2FYRnFqSxYLvdqr7+wVparvTiHZ4NxxC3lZqdTGZhWsTPsxfkE/sAKKzJo/5s4B3sRPD2a6OWYHzn3x/beSOxpWgF4R63N6BbMal5qSEdf7BjlPiU3d9+XiunNJP5yVlmRm0h7a90ivJjxeSUZmJNut3ZMlxlInubBkhKjw/LsUIl6zLEfjbcOUrFPaW7OsbUsG9tSvX9lTQ+0xWWu1iBcDldh+bnS4LwA+J5v3Xq0HzT7UeRagG+l77/+cdpuLj7knV3qv1+F2ExxE6Si3PL6MxGas9UheV3SMXxYib7x5mbCn0Wrf1yF4tzy8QlxZGak4zZYiKrOIOl+eVdjw981RL2QwMjIfYzf+szAuXVoO5sNZUnK2m91ren8cmCbWnPzhVp+/tTR6x60R8+yLv+880kpidEeyiH0mFoiuRyuHnvqz/JJ9/+X/S1BnYrXtM0Rnon+Jc3f4n+9t2XrTrIojUTHoi4RAuLs6F/8MxNLTA2OEXt6QrqzlRRfV9ZSMcxxRgZahsKy0XrcOcoHVe66WsepPx4CRMDk/Tc7N/1cQFyK3KYn1ncecMI6msZWjfLL8S+s4tfeU67i6mJBTpu9MsE4S5IEH6AvOB3z/Cmj7022sM4lBx2/x0KDxrHsosfP3qeL//T97FNzjM9tn1+3lf/+Ye8/sR7+cU3n+HG+d11KDzo9vNCuuK7ihjrn9rVMZbm7DQ91U7jhVZanumk7vTmqic7qThevC4PNFyG2kfC1tnVbDExNWwLy7F2w77oILs8B73h4Ke6icPJ7Qq9epBtzMZYxxBV95SEcUQ7K6jO5W2fecOenjOSJAg/YM78+r38wft+I9rDEPvcYMcYb3rgA3zibV/lR/95jptPrV88198+wsf+8lHar/auPvfoh37Af3/0R9iXDn5qTijCFQRGgiMMpfbMscbV2X6lVNALvTML0+i8cnvRZFxSHLnl2RTV5pOWm7Krsc2MzVJUm7+rY9xSWJPPaF8wJRwjp/NaLxVhLr0oRLhMj9jIKcsMeX+vx4vBqN+TmfC605V8tf3jPPLcP/HC3zsT8fPtlYhUR1FK/QHw6MqXb9Q07QsB7vdh4B6gAkgDloE+4HvApzVN8zsVpJQ6BfwdcBKIATqB/wA+pWna7ksD7CNup5uff/VctIdx4JnjzGQWZRKfloDBbKT1Wnhug+8XAx2+tuHP/qyBZ3/WQPndhfzDt97Cv/7Flxntn2K4exznhtn/BdsSX/nQ/+OJ/7nMyV+9ixf93inySkP/BX3QqH2aE26KNdO7y6YzBpMBg06tLpyqO1NJw/nAO1MazQb0esXygi8vPSkzEb1et9p5r6A6l/rSGtxOd9DVUtaOMRxi4mLCcpxwaX22i+ySTEa6x6I9FCHWGeudACC7JBOPy834QPB3224+fpP6h+pputQZ7uGtU1CVQ/ouL/b3o7B/6iil8oFPAaH0On4rEAc8BnwC+C/ADTwM3Fw59sbzvQI4BzwAfBf4N8AEfAz4eghj2Ndi4sxkFR3cwvT7RUpxLkNDc7TeGKTx2R7crkN1rbbJgm2Jf3nTf3LpJzfpbR7aFICvNdA+yrc+9VO+/A/f38MRRt9+TUfJKk7H7dzdTHhmfupqObL6s1V0XusNan+Xw83SvIPc8mziEizEWmNWKyMA9LcM0XCuma4bvcQlWEIaY7iC8P1YGjAtPz3aQxBiSyPdY2QU7vw9mpSZSNV9ZZsadI10DIelAdB2bjzZfCgKKGwU1iBc+e5JfAmYAj4bwiESNE07qWna6zVN+xtN0/5C07QTwD8COcDfbjhfAvAI4AGep2naH2ma9k7gbuBp4DeUUq8O/R3tP0opfv0t0hFxN8rvrWB8MLqNPPbaSO8Ezz7WENQ+fa3DPPeL8LUs3+/2azrKbnOKK+8uZLBlcF2r+Fsz2sGwTcyhN5tIz09lpMv/rK5z2UlxfUHAx9TpFGV3F1F9fzkN5/w3KQqWPYT3Fmmtz3aSGUCQI0S0bLUwXW/QkV+ZQ/3ZambH52h9ppPRnnHiU6zUn60GYHJwiqyiyH1/G4x6fvttL8MUY4zYOaIl3J86bwGeD7wOCHr1jqZpW/32/ObK48bkut8A0oGva5r23Ibj/N3Kl38W7Dj2u/tecoy3ff5PZEVyiEY7R4iJM0d7GPveQMcoNy4EnrJw0OkN+zMI13ZRuccUa8TldK+rqhRqWoTSKWJiDPQ2bW7cs1bzpXbqHqjZsTZ5fIqVrJIM+luHaHk6fKU1R7rH0PZZC1y3y0NG0Z2T2iUOnq5rvdSeWr9Yu+5MFeZYMwNtwzScb1n3czU/vUDD+ZbVQNwUoQ6WSin+6tOv51df8+ChjHnC9qmjlKoGPgR8QtO0cCctv3zl8eaG55+/8vgTP/ucA5aAU0qpQxVxKaV48ese4hVv/tVoD+VAmp+eJy5+f+WN7kfHH6rhj97/qmgPY89YQkyjiLTdpFfodL428LMTc6vPhVI/W9M0qu4pDqibZUp2Ek1PtVFQk7flNslZSaRkJzHcObZtalQoFmeXyN3FYrNI2W8XBkKstTS/TNPFNmruryApI5Gq+8ppvNC6Y+3+5qfbMcUY8USoUU9xXT4v/P2zETn2fhCWSxellAH4CtAPvDsMx3sHYAUS8S3UPIMvAP/Qhk1vXbZtWgmkaZpbKdUD1AIlwLb3OpVSV7Z4ad+2qnzTx17LQ68+zY+/+Dg/+dIvoz2cA+UwXlGH21DPOEsLdizWO+OCxRihmZzd0jyhBW9pOcloLjc9DesXHYfSxr7+TAUNTzYHtG12SRZTI7N4PRpHHqylv3kA25qLgMoTZdgX7fQ1DQY9jkAYTAaWQmxsJMSdzrHsJCbOTOszgd2d8rg9FFTnYpsIf7t6pRRv+ugfhP24+0m4PnXeBxwFzmiaFo6WZ+8A1k5l/AR4raZpExu2S1x53Op//9bzSWEY075UfV85pXcXMTs5x6UfXt1ytkWn982I/X+vfz7P/93TfPg1/8bk0J2VF73Wfm7Msl9UHi3Cc8gXrK6l26fpKKFKSrXScaV70/NuZ3D/p3WnygMOwJPSE2h8yldvvvVZX7WE4rp8vJrG3OQ8iekJ9LcOshzBINntdJOWlUhiqpWFuWWmhmZ23mkPeN27LzMpxG4U1eUTn2Kl+WKb3ztidWeqaAwyBTE+xUpsYhx9V3rDNMrbXvbHL6A+hH4GB8muP3WUUvfim/3+qKZpT+9+SKBpWpamaQrIAl6Jbyb7mlLqWLDDu3XIAM553N8fYN8nxZrMRv7v/7yTLzR8dFNOV3p+Ku/44p/xX92f5mNP/l/e9PHXcteDtbzzS2/CaDZSelcRr/vgqzn2K/Wr++zXKhHhdCe8x916yWvOEp9853T8Mxj350y4N8Q0BqPJ/4LOYBp0VJ0ooeFcYAE4QGbx5spNPY0DZJdkAVBcXxDRAPyWjqvd9Db0MTduI3vDmEyxJmrvLyO/Mjvi47glIdW6Wg5OiL1kMBmof6Ca5Kwkeht96zn8BeD1Z6uDDsALqvMwxcfRGoEA/Hm/cZI3H/JZcNjlTPiaNJR24L1hGdEamqaNAd9VSl1dOcejQN2aTW7NdCdu3HdFwobtDrX8yhz+9YmHeep7l/nsOx5lZtTGe/7rL6m5vwKA1JzbNTaPPlTH96a/tHoL/lV/9VKG2kdwOd2kZCXxmsq/xOU4HF0k/dHt05rQ+8kPHnmCuvvL75h/q/26MJMgg/DYODMldfl0XPGfvx1oFZiS+nw6nguu9q9j2f/vjPYr3RTVF9BxtZsjD9ZwM8CZ9d1yLjvxuJzojXrcTjdKKQqrc2g830L9AzVsv8Q0fKxJcQy1RSb9RojtlB8rWVd5aO1C7+qT5b7UTAXtW/y+2Erd2Rrab/RHrLzvy//kBXdE2uhuP3Ws+BrrVAN2pZR26w/w/pVtHll57uOhnkTTtD6gGahVSqWteelWn+2KjfusXCAU46szvvme7CGllOLMr9/Ll1o+zudv/MtqAO7P2hxYk9lIcX0BFcdLSMtN4ejz67bc7zAIV03iw+ypH13jB4/cOWsNdDrdvrxDEsxMeGycmYycJBrPt+DYovNpyZHCHY+TU5rBSOdIUB+wZotp28or8SnxLNqWmJ8OpYVE6JzLTjJyk8gpSqPudAVG48rHnqaRV55F7B6sebiT7iiJ/cOaHEfb5fUX0ouzSxRU5xGXaKHjSjfNT7fTfLF9y98X/hTXF9B0uTui/TVaL3ffEYuZdxuEO4AvbvHn2so2F1a+3m2qSs7K49r/9cdXHl/sZ/sHAAtwUdO04PozHwJGk4HcsqyQ93/B7x6etrD+6PX7L9jaj773+cd33ugQ0e/DlBQtwOoomqaRlplI7w4LHpfml7Z9PSUricWZhR2rImwUa43dVOnEaDaSV56NKda02l0zdg8rE6XmJLM4t8xw5yjDXaM0PNlE00rOesP5FgZaBjCZdH5LlpbU51NUmxuWcUSqcoQQ2ymuK1jtkntLT0M//S2DLM4uhRREJ6YnsLDoivgs9Xf/7aeHsjnPRrv6xFlZhPkGf68ppR7Gt1jzy2vb1iuljEAp4NI0rWvN81WATdO00Q3H0QEfADLwBdRrV9l8G/gw8Gql1Kdu1QpXSsUAH1zZ5jO7eY93qntfcjTaQ4goWZgZmJnxuZ03OkQMRv2+S8PyejVqTpbh9WjoDTqUUkwMTTPWN7luu+zCdPpbt29vb4mPpbdx6yA9LjEWo1ExNRh8Bp9jefNcR1ZROrZxGymZCaTnp5FXnkXX9Z6gjx2q6VHbjj0BbOOzFNUVYJtcWO0qChCXEEvjhRZyy3IY2qI5UaD6W4awJllYsG1/ASREuNSdqVpdHB1OeVV5tDwX+Z/h17z3VcRYDlV1ab+iMe2Ti69cYB9QtOb5FwMfUUqdA7rwdd3MBB7EtzBzFHjj2gNpmjanlHojvmD8CaXU14Fp4P/gK1/4beAbkXwzh1VcgoWHXn2KX379YrSHEhF3Qq5ZOKRmJUV7CHtqt90pI0KD5g3NbDIL09AbdOsWWCVlJWHNSEKvV3Q+24Hbz8VEdmkmXdd7/Z7GaDaQlp24ungrWGl5qQy2r5tDYaBtmIyCNKaHZ7bsshlJqVnJzM3snP7S29hPfmUOXq+2mi7T8FQ7FcdK0Bv1DHZqu/qd4bS7KD9VQeO5O6cDrYiMW5XOtlNYkxf0IstApOak0Hq1N+zH3ei33vZSXvQHh7c2+Fr76d7rz4HPA6eBu/CVFVzEtyDzK8AnNU3bVFNP07TvKaUeBN4DvAqIATqBt63sc/iTiiLkrZ/7ExrOtx7KUoYShAdmP+ZIR5LeGJ0gPDU7GZ1Rj16vY2bMti4/0+unrvdY3yR3PVjDwpITi8XM0twSXqWjq7EPAIvFzIKfINyyIRWk/nQFmqbR9HQHxbW5tIU4c5aUkUhMnP80k/H+SQqrc0IO7kNx5IEaNE1jamQG53Bgt7QH2oapOVVJy7MLVJ0oQW/Q0XyxDa/HS82pKlqeDW7h2kYH/XeO2WKi9O4i+luGWJgJuiG22KX8yhysSXG0PttJWl4qmYXpKB14PV50Oh1Kp2NmdIb56YWIpXGkF2Ywc70vIsdeq+J4ScTPsV9ELAjXNO1h4GE/z/dyu3Tg2ucbgTeHeK6ngJeEsq/YWozFzAt+9wzf+MgPoj2UsJN0lMAMdY9jX3ISYzFFeyh7whClIHxuegHnygdnQXUuY/2Tq19vtTDzxpPNFFTnsuj20tM6svq8KcaIyahgBorqC+hd06zHvuRLGbHEx5JTnMbNJ5uoO1tNzckyGs9v289sW1klGbRd3nr9uwqwIks4JGcmcjOIsoprzU3OUXeqnJan29blyw51DFN3uoKpYRsjPeMhHdvrOTg192OtMegMepbnl6k4Xkzrs12UHS2m+WI7RrOB1JxkFmYW74ic3WhKyUoityKb8f5JBtqGV5+fHJxicnBqy/3WplWFS93Zapqf6w37cdeyJll467//Efe/NNhq1AfXfpoJF/vQyZcdP5RB+M6V48UtngMUPOxWoOX7ws1g0HMrnOlvGaL+bNVq05uNM6gGkwG30726rcFkIKs4k9F+34ey0+4iPS2JnLJsmp/tovRYMV1XfTmc89OLZBamgddDx1Vf0BxrjeHyj6+xG7fGs5WZ4b1rmJNZlMHMWGhVaQfbRxhsH9n0/OzEHA1PNhEbH4OmhZaasl8v+2PjYyiozsNoMtB4oZWYODOFNXlMDs9gNBnQGwxkFKStLmj1ejWmhmeoOFFK++Xd3R0QPjllmaRkJqPhW2DtdrpwuzyM9U6sKy8YLXGJFno7IpdOVlidyxv/8Xe454X1B/6OUbAkCBfbKrmrEJ1O4fUerqg11AYod6K5qQXi4mOjPYw9sdc54TUnK1iYXWSgZf2Cyp6GfurOVNFzs39lcdLtvOaNn1Fupxuj0lA6hebVSEy1kpaXxo3zvpxQTekovSsfc4wJg8lA+3Odqw1zak9Xsbyw++Y5FuvW3x/JWUlMD209axdui7ORW/y4PG+n+O7ibRe3bmVhLvJNioJVcqSQ4a7R1TQka3IcCzOLqwv66h+o3hQE3rrgmhqapuKeUtqfk0A8WEpBzanK1Yv+vqZBhjv3fs1EoPKrcmm/GZk692d+7QR//R9/islsjMjx9zsJwsW2YuNi+JXff4CfPfpktIcSXhKEB+yJ71xG6RR195dTVp/PlSeauXGulT/5x99GH6WZ40jZy4Y9FfeU0n2zz28QvGBbouFcC0azkYyCVIb7fEGsJT4Ga1IcUyM2PGtyxftbh7nroVpcLi8dV7q5MWoDoLAqh7mRSSb6Jzedo+KeUloudVBzandtofOrcmi7unW1hJQ9DsITU+Mj2oRnoHmAu59Xh8fjYXp0drX04k76mgeJT7HueZ108HVDXJ5fxmF3YTQbsCZamJ9ZxBhjxL54u6rNrVxvU6yJ4vqCbWdhp4ZncLs81J+txu10ozfqUUrRsIu0psPGYDJQXF+A0WTwXRwqSEiNZ2p4ZvXOwkEQqdnpF7/mQd7yqdcdus+RYEgQLnb06r9+xeELwkXAHv2Q/3SkUy87yt1nq/Z4NJGl9rA7qDnGiMvhovZ0BVPDM4z2bG5r7nK4GO0eJzUzEa9XwzYxx5JtCYPJQH5FNnqDHlOMEYNJz+L0PLGJcau5zLX3ldL2dAuOxc2lAwtr8ultHtr1HS6lFA67ezV/3R+XfW9LPkb6Lpfb6cbpcK5WrMkuzsDlcDEZQMrNXn5/3ZJflRNUYJyUkUB8sjWgRbqzE3M0TNwuY5q8R9WUzLEmXE73jlVCNu4T6Rz2smPFmGJM9DUOYEmMJTE1no4rB79XYOe1HhLSEpmbDt+C3N9860v5ow/81h2XfrKRBOFiR3kVOfzxP/8+n3/XV6M9FLGP/Mfff5e3f+o1FFbl7LzxAWHYo3SUux+qQSlFWm4yTRdaqT1d5TcIh5Uc3BHbuud0eh1jvRPrmuPUnami4VwLdacqaH6uB/v80moAXv9ADS67k7npBWLjYxjvn1oNnHfzGVh5X9m2CzIBEtLiQz9BCCYHNs/6h9vaHPiRnnHqz/guRpcX7CzO+W9ylJyZiG1s60Bdb9BRcqQI+5IDl8PF/NQCi3NLpOWm7KpCVVJ6IgOtwztvCORVZLM4u7RuEWAwZkZt1D9QjX3RgdFsxOvx4rI7WV50MNw5uvMBdpBbnkV2aRa2sVnMFtOWs8lJGYnkV+awMLuITqdjvH+SRdsimYXpZBSmoVDMTs7R1xyeFIvy4yU4lhx0rtwRSkyLxzY+x8TA3t0BiiSXw0V+WSZNz4bnguL1//c3+e13vDwsxzroJAgXAXn5n76Ir/3Td5k/JKWppHLl7nVc7+PCD68dqiDcuEd5iZ1Xe9alJWxXCnLTbJ9SmzpTAmiab7vGi+2U3lWIOcb36z23IpvGC21omkZSRgLOZTfza2a0dvOjYDRt/++VmJ5A59W9zRnOLM5gPMLBz/zUHHWnKmi82A5Aw0pNZmuShYz8VL/nT81OYnpo6wsEj9uLKdbI+MAksxNzVJ4oQ+kUA61DmC0mHEtOkjISSclKovumr0xcflUu4/0TVNxTitvppvtm36b248H8rluYWcQ2sbsGXVulsNSfrQ45VcWSEEvt6Up6Gvp57ifXAag8UcrR59fh9WrceMJXf13pFNUny+ltHPB7rrG+Ccb6bl/s1p6qpK9pgIUQ1xFkFKSh0+s2zXZHojpJtLndu+/6qpTiLZ98LS95/UNhGNHhIEG4CIg51sT7vvU23vkrH4j2UMJDYvCwuPeFddEeQljtVYnCTUH3NtPR/gJufzxrSup13ehDp1McecERvE4XQx1jxFh9+eQbq3+M9oyjlAr6wrQ2gI58+eVZe5YjbDDqqT5ZsSfVJIY7RzHGbL4AWbAtUVxfsC4IN8UYya/MDuhipPnpdopq85mdmKPt8u1/29zybFKyk+m63kP3zT4q7illqHPUF1Bq2up7rjlVScvTbWiaL+dfp9fR/HR7wO8rvyp310H4Vnoa+omJM6/LQd9KYlo8s5Pz634s5ibnmRy8fUegbU1llqp7y/B6vEyNzNB8MfD323SxjdzybIrqC3C7POh0ivG+SSaHp6l/oIbRnjEmBqZIy00hPsXKRP8kC7NLxMSZKbmrkIHW4ajk+EeDXkfIlYHA9/P5ri/+KQ++6r4wj+xgkyBcBOyuB2upvq+clmc6dt54v7uz09DC5tuffoy/feQNQe9nX3TwlX/8Hl6vl5e8/nnkl2dHYHTB26v68bog0l5s47OkFaQzPbp92b2N+d1er4bH5aH1UicxcWZyy7L8dsucHJqm6kRpUC2uC2vzN3Xx3CgpI5GWS4EHRIHIrcjBHGOi+2bvuuetiRbMceY9XRTY1zhA/YN1q6UkwVd/faxvAqVWqsKM2DAYDVjiYymqL8LjdKEUW6ZB3Eop2mioY2TdAlCP20N2cQad19YviG2+2EZyZiJmixlTrJHG88F1TQz3HUKlFPVna2h+upUF2yJpeakU1xWwNL/M7NQ8uaVZ6Aw6Zifm6F+pEFRcX0CsNYbcihwMRj32BTvWFCvXftGw5Xl20559478tQGZhOg0rtebT81KZHrUxOTSN0WxcXVwbTLB/GDSeb6GwNh+dyUhfa2CLkW+JiTPzvq/9JcdfcLgmbcJBgnARlNrTlYciCJdslPA4973nePEfnOHoA8Et0JwetfHzrz3F7NQC3//szzlypoqyuws5/X+OU32iNEKj3dle1QkPthRiRl7KtkF4Wm4yFquZ0voCulaa82Tkp9DxXBfJmYmYYo1btqtPykgIaFHhWnFJcdu+bjDqsSbGMDMSfC6zUoq0/DTSC9OxWGOYGZlB82pYU6w0PtWOpmnkVuQw1D68Mv7ElRn+0PKYd6PxQjM5ZTkMd/nKy6Xnp5CQ4ssHnh6xUXmilMnhGRoutFF7fzm2MTsj3b5mP7nl2SRnJeJ2uml9xhdEBtqJcqv/S4Ccsmz6GvsZDbKpUEZhGo0XWn3VbFaq6+xW5YlSbp5voeIeXwdEvUHH7Pgcw12+/HDbmnrulSfKMMUY8bg9dF7vwbm8twt611qbsjKxpimOy+HC5acT7Z2ir2kAa3IcaTlJTA7bAtonIdXKB7/7DirvoC6YwZAgXATl9//uVTz+taeYHtm75huREBNrJLMgFaXUyp+VWSBtJVNF01Yewev1rtkGlhbsLNgiV4v4oPmff3ss6CA8OTORgupcGi604fVqXD/XwvVzLXznUz/l7Z/9I37l1aciNNrt7VWprEDPY4o1EWuNwbQh9aGgKof4ZAs6vZ6ZsVmMJj3Xf+nLiy2oziUxLZ7FuWXiE2IY7Rn3u7Cv4p4SpoenmRqeCWoGNLMofV0qwEb1Z6roaegLeDHgWqZYE9m1xQx2jOIZmmV2qMtvBYz4ZOvq3/OrcnadgmJNtJCQFo812RpU3WvN48VgVFQcL6b9Sg99zevrvd/6d6o5WY7m8aymAtWermRpbpnG862kZCeRlJFIWm4KMXHmXb0PAK/XE1KOc1puCl6PF28Iub/xKXEU1xUSYzUzN72IKcaIY8lJ+8pCxfbn1udMp+SkkFWUjn3RSVyiBfuiHa9Xw+vV0BkMxMRZyK9MITY+ZledXEX4LcwsUlCdF1AQnpBq5Z9+8C7K7i6K+LgOKgnCRVAs8bHc95Kj/PiLj0d7KLvS9PiNkPe1JsVRd6LClx+nU7jdXrqahnA53FiTLOh0KqylnPa7gQCqHkyPzTI1PEPpXQXodDq+/cmf0HBhc2UDTdP4xF/8J+V3F1JYlRuJ4W4rmDSRXZ1nQxDuLwnmrhfezcKCg96bfTQ80031yTIMBj1er5fuG330t/hv/nLrtv7xX6nHNm4jITWB1OwU9EY9Op2Ouel5sovSuf7Lxh3HqZRCb9SjN+jwuL1YEmJJTE9kfGDrGe6OK10hNwCqPltL4zO+gM2+5CQtP5Xx3s1VY24toK26t3R1Fnk3krOTGGgdJruU1fe6ldScFHIrfIuRvW4Pc9PzKLRt8+qbL3VQeaxw9eu1VT2mR2wkZybSea0HU6xpV+8jszB93aLbnWSXZBKXEMto3wSdV3soPlIYUGnCW/QGHTWnKmm73MXNc80rzd10tF5qxxIfS83J8nXpOrdMj9iY3lDxZyNrchyTg5GvdCOCF0hp0/S8FP7xB++ioPLwLNyPBAnCRdBqTlYc+CB8NxZsi9x4bH2bb4PJgN6gZ7bXRvXzjtxRQfjvvfNlO27jtLv4zN/8N44lJ//4vbczt81iJpfTzRfe+y0+8K2/CuMoA7NXzXp0eh0GsxGj2UBhfRHKEkvV2ToWF+zExJrQ6RSNz3aTV561uo/BZKThyaaAjl97f/mWregzCzcH4OkFaRhjzLicbtxONy6HC6fd1zrbC3jdUHemmoYnm5mf2boxT2ZROqNdoZWiKzlaTNOzt49dfiSfm4/7zwPuvNFH/QO1LM4vYzQbcDlcVN9ficejEWMx0X29hwVb4D+D8Sm+mfWRrjFKjhRitpjpaehbt4jQaDZQe7qatis9fi8gd6LfppLMzEpaxnb11rcTn2IlryIn6Bx8TdNwOd0s2hYxmAxMDExiTbTsOJMel2BZWYA6ue4uRPeNvtW/L80vr0vrCFRiegIFVTksL9gZ7tj7FCOxs51ScvIqsvmnH7yTjPy0PRrRwSVBuAjasV+pj/YQ9h230w232jmPRaa6wH70+3/9cl746vv9vvbuX/so9/7qEX7tz15IVmEaH/3J33LlF03814d/wHOPbb3ICuDyz27S/GwnNfeWRWLYW9qrtvWGhAS02GWcQEfT1oucpkZmiEu0sDi7ROPTHdQ/WLtjIF53qoKbTzZv+XpiejxjvWMYzUaqT1ViX3LiWHbumD4SyJLVtJyUkIPw+LQktO7bM+zaNrNt9kXHannApIwEcivzsC856W3yLXjMK8/C4/ZgX3QElGozt6ak3K3yf1nFGaTnpfrOt+Sg63ovN37ZSPGRQgY7x3A53H6PtZWJwdBrfe+ksCZvXTWVQI32jK9U6lFU3VdO4/mWbdfLKJ2i5v4KBtuGaXxq+0WfRrORpIzEoN/3rTsKnVcPfpObw6rnZh91Z2vobh5iaX79Xa+yu4v4h++9g6T0hCiN7mCRIFwELT0vlaSMRGzj21druBOZLOZNjVUOsx/+xxPcfbaS6hMlaNr6XOflRTs//9pFElKsjPRO0PxsF067C6/Xy4ifFIONfvC5X+x5EL5XJQoDrcKyvOCg7v6y1SoXjU93UPdADY3n/AfZZouJ7hu92x7THGui/sFahrrGaHwqvBUevB7PzhutkV+TT0peGg0/v45rQwpI66XAZptt43PYxtdf+A52jJKYFk9ORS7d17q3DcSrT5bTcmnzYvPRnnG/ixu7b/SSVZxBWl4qTU8HHviOD0yRXZrJyMoiznAaH5gK+qLgllupBQ3nWqg9XUXThuA6MS2ewpp8HHYnY73jAbdbr76vnJtBVmcBXzWg/MrslTscob0nEVlej5ebTzRiNBvJL8vCq3QMdY1z5GwVD3/zrcQlxEZ7iAfG3vfQFYdC9cnyaA9hX8osyoz2EPaUbWKed7zsX3hV8Vv5xz/6PJ41i+je9YU/ZnpqgY/8+Zf56r/8L1fPtdH4bDez04EtGuu62R+pYW9pr4Jwfwszq48XUVyzOQ9ebZiDbrrUSf2DtZu2S8pMpOpE6Y6LhmOsMTQ93bEpcN1OYlr8agWQ7WyXS+1PfGo8rVf7SC3Pp+1qry/H+EQJCSnWXbe7n52cp/tmP0V3FaO2WQgbSH7rRr4Z5OA+PpVSJGcmBX2une7OFNXlMzkYenOimDgzqTnJJGcmEhNnJiHVl5qTmBZP3dkq9EY9N8810/ZsZ0DfMzq9jpr7K2gKoj75Rg3nW0nKTA55f7E3XA6Xr9nR5Cz3v/QYH/zuOyQAD5IE4SIkkuvl31636N4v7EsOLv7oOr9e+Bb+8x++B0B2YTpHH6zxs21gi/bik7cvgxcJesPe3BxU+s0z4Saznnk/AbRnQ3UQTdNW26ZrmkZqbgp1Z6pZmrPTdb1v0/4bhRLcxidZAgr0dH7e11YK6wsZ6JnC7fIwPTqLUoqMzAQan2jEMRO+joOD7SMYt7m4MsWEthjSubxz05mNdPrgL/Jq7q+g6r4yCmvy1l0kFtXlU3e6ir7mQb8VZAJRd6aKhNR4nA4Xi3PLXPnZDeamFjCYDMxOztN4vnXHBZRmi4m6M1XklGVhTY6j+r5ymi91Bn1BttHEwBR1Z2uoOVVFclbSro4lIuvYr9Tznq++GfMuFxbfiSQdRYQkp/TOmvENlD7ED/TDIiktnt/8i1/lm5/4CbbJeb8LMBfnAgvCc0oywj28TTRNY8G2iHPZlxdtXwo+sPKn+v4KDCaDr96lBhoamqahebWV1AiN8posX0k4j4bH7WGyfxITGpmZVrxuD263F6/Hw2BjH1arCY/Lg9Phwu1y0365k2O/Uo9Op3jusUamhm2+XPAndq54EkqN/LH+natUFNXm0xLA7GdqXirZZTlMTSysyydNSo9frf29vLAc/CC34Ha6qb63hOaLm9MolCLk+uKhpJ21Xu4iOSuJmSDqcHff7MPr8bK8YCcmzkxBTR5Ls0v0Ng4Eff61csuzGekeY8pPjfhbF3nbqbinFKXU7bQmTQOlaNqhiVMwGi/40lkyCmTSZ7/6tT////izj7826DtDwkeCcBGSorr8aA9hX7JHscHEfvCX//r7xFhMfPmffoDH7aH+VDmJqXHoDDpySzKxLzoYHZjCYDLs+EF/9/M2z6KHm8ft4VUZwXf83IlSisYQKmgEqqguj/HecQY6fS3nDUY9A63+uzBu1LumW6OmaSSkWjGZVy4elS8w9Xo0HHYneH3VMxQ7R+6m2K2rf9xScqyEsZF5Wq5tTjVKzkhgqie0RZ07mRiawWwx4VhaX30kLikORwBt1P2ZnZyjoDKb/rbAuwd63F5yyrKDCsIXZ5eoPlnB/PQ8Tod7XQWSUOj0Ol9Hz4xEGp8KrvPhLUazkbG+SWbXLGglxHbmt+gNeqxJFswWX2v7uSnfsU2xJjIL0kjOSAhp8amInD9432/yB+//zZBb2QsJwkWIKu8pJTUn2e8syp1saofW4geJUlBz75rulWrta8o3y7vhd29BZQ56g57swjRi4sw0rGntfKvjoynGiNu1/QK+wupcHvrNk7t9CzuKVDWUSH4oZRWlM9o1Rm559up5qu4rwzY5jznegsvhprA2j46GQVxON5oGOqUwxhjQ63UkxBnwejx4XB5cDhdzEzvn+fo6ZG4frJpMO3+cWFMT6evyn9YSY9l9o5qtTA7NUHG8GDSN9uc6VyuvLMwsUnp30bYdKLfiXHYy0DpI1b3ltF4OvJJH09Md1J6poumC/0WLSRmJZBSk0tc0iGOlZGHX9R6cdhf5YaidX3a0mM6r3TtWN9lKbnkWToeHiYHQ89BvSc9LJas4ne6bfSzaFpmd8P2OUEpRd7oKt8tD6zPtNJzfutqPiI4/+9hreeVfvjTawzjwJAgXIbHEx/K7f/vr/NtffimkhU2HkSXRgm0ifLms0abT62j0UzViO+d/cIUjp8oxxRgY3KJUndPuIsZixL64dU3k1//f39iT7pW3ZpF3uigI+rgBVj8JVkZ+KstzSyzYFlcbCyWmxTPQPrJuVjI5K3FT6TDnSm1fqzk+4Pbotxh2qJ9eeU/pjjWqrclWnFtUuzDHmhgKcCY/VO1XekhMj0fpdGje2//fu7kQ83q8dF3vISHVytzU1rXv11JK0dcyTEycGbfLg9lipqS+wJfa0TnC9IgN2/gsBdV5mGIMxFpjsU3MYU20oDfqmUmOo7i+IOQuoWaLOaTf2aZYE5Unyui81htyM6a19AY9Smk0+Kn0o2kajRekU+Z+pNPreOeX3syv/P4D0R7KoSBBuAjZy//0RfQ0DvDDzz0W7aHsCxmFGQz026I9jLAJppX5Ld/4+I/59qd/yvTY9ncE9EYD4D8IL6jM5t4XHQn63KHSGyIQhIf1aD7ZJRkszy1hm5ij8kQZLc92YTQZSMpMpK9laOcDrDAEMGO9aR+z/1ST5MxEkjMTaX1mcwBeeX8VMfGxaB4vi0suepuH6Ljhv+JN2ZF8GrZozBNO1sQ4bCPr61abYnZOo9mOc9lJdnEGHreHxVn/uexxSRay8lMYaBsiOTOJjIJ0DCYDjRdacCw5aPDTmr2/ZeuLkqmh0GuON5xrJr8ql4HWwL9nEtPiiUuOpyGEkoNbKTlSgNvlpjjRwuTQNPmVudiX7LtOtxGRY4ox8t5vvp2TLzse7aEcGhKEi1152R//Cs0X2+hu2PtycvuNNSUeDlUQHvw+s1MB3gnYZibunhceQdN8ixVdTjcelwevx4vH48Xr9uBxe5mfXmBmYhb7ggO3y417JbXC4/LgcXtwuzy+qiKahinGhNliIsZixmwx+/4ea8YcZyYhxYoxxrh62z9swjwTnpBiRQF5lbnkVeQyMzGHUoqKe0po9tO2fbtFUmZLcIuHs4ozmPQT9GUUpLE4PU/XNf8BYUx87GoL+u3EWEyMhdjgJ1jjA5NU3V9F2zNtqykp4biT19c8iNFspP50BQ0baq9rmkZOYRrtV7qAreuPB2Osb5LSuwrpCjVg1TSsSXEBdRUtqM5lanSW4c7w/h8ZDDo6rtwef/PTbcTEmal/oJr2y13h/5kUO4qJM3PX82oxxZowx5pYXrDz1HefBcCSEMsH/9/fUn+2OsqjPFwkCBe7UnKkkE9e/CB/dfZ9dIaQV3mY6Iz798dJp1d43N7gcpVDicIDZEmwsDjnf9aw+UIzLzb/bsTOfYveoAe9ATSN9MJMkjMT0ekVjiUnBpMeg9GXQ63TqZWLAi9ul9tXSWXJwfKCncXZJb8tnMMZgueUZZFTks5ozzhdN/tZXvDlZh99fg1Ou5u6UxW+c675vzXFmtDpx/yWrnMuOymqzScmzszc5DzD3bfrf5cdLUZv1NH2bNftY5mNfhfR2hcdO7Y3D0Rp/d7MggO4HG7aLndRVF+EOdaEKcYY0KLTwI7t4uaTTVTdW47BZGB8eBrnsovc0owt879D5XF76LrRR05pJhkF6eiNeoa7RgNqBGQw6vGsVAXaiSUhllirhUVbaAs4t2I0G+i6ufkCwr7ooOFcC4W1+cxOzmHb4Y6a2L36s9UkZSbS9FQbsxNzuBwu/uRf/pD8ylx6Gvt56rvPkpSRyD/95D2U3V0c7eEeOvs3ahAHhinGxKv/5tf44Ks/Hu2hRNV+qoxScawQk8kICqbHZlmwLTIXYJOcW3R6HV7v7mr9bsWSGAtb3G1fDCA4CAeP20NOcSYjPRNMDk37ne0NhDE2BlOMEY/Hd5FT+oqT6PItFJwuQG93g8MNyy7c00vYJxZY7pthYdQW0EVOQqqV7OJ0QDHYebvLaMXxYq7/smXblKGCqhymp5dY3JAbbjQbaXvWN3tedncRBqOejIJ04pPj6LzWA0qtqyQyMeR/AZ7T7vRbcSRYk/07d08Nt1vt7SvvKQEtvN/jrc/61lFkFWeQmGIJewAOvjb1CanxLM4ucf2XvrKUMdYY8itzGGgbxmDU4/VqeD1eckoziUuKw2Q2Mtg+zPzMIrZRG9bkuG3XBlgSYsmryPVVJAnzQmNzjImlua3P3dc0gFKKmlMVNF8Mb1dXcduvvvYh3vEfbwJgaX6ZZ350FXOsiczCdGYn57j842vc99JjvOnjryOnNCvKoz2cJAgXYfHAq05Sd7qSxgBbGh9GMwFUmdgrTruLtis9656rOFpM+7XeLWfDNU0jqzCV+KQ4BjvH0DRwuyLTNtq7TSOPYBcN7kZCWjwjPbsLAt0uz2pOuSHGRFP7GEWlJTwzuVI5SAfEAXEmyEsmPi0RAL1O4fFqHI+Nxz5nx2jUYTTo0SvQ4cXrdGOJNaJcLlx2F1mlmTgW7MyMzeL1eHfM2e9vHab6vjJab26dW9x5vRezxcRQx/qZzrS8FMZ6ff8ucYkWluc3L8SzLzqovq/Mb/1tAKdj5zx7c6wpoBnZSLEmxfLcT65H5Ni+96VRd6Zqtd71bukNOiruKWWwfYS+5vX/r/YFO1MjM5hifalXC7ZFsoozGB+Ywr1hhnxpbpnKE6W0Xe7Cn8LafPQGPe1XusMegAMUHynwuyBzLU3TGO4co6g2n96m3dVEF5vVn63mrY/8yerXlvhYHnr16dWvvV6N5/32KX7rna+IxvDuGBKEi7A5+bLjd2wQHmONYXpsfwThmqYx1Ln5tnT7tR5ySzOxxMcwMz7H1MjtW70pmQkonWK0b5LRvkn0Bh0pmYkBd7cMln6bahuOEDoRhiqQsnrBKDheQueyhtrqGkMpdDqF16vhWclFdthd9PduboajFNTV5OBacNK6MhuYmB5P/pFijNYYzElWcksyMJoNWJPicC7aQYHm0UD50k7cbg9195XQ0zzM0oLdV65wQ774xplsnU4x2jO+erG2XdWPrS7ojr/0BNcv7DyDWX4kn4YnGjGaDWgaVBwrwuP2MjM2y3gYSuBtJzU3GU+YF+SuVVxXQMP5FkZ7Jig7WozBqKP1Wf9B73ZirTGUHythoG2IuakFWrapWLS0kuLlXMmn3i73fKTbf+pK/QM1YV2AuRu28VnS81OjPYxDp6A6l3f+55vRb9PBNcZiJqYgfQ9HdWeSIFyEzSve/GKe+MbFOzI3PLMog8HB/RGEJ2cmMLNFLuXQyoxYalYSBRVZTI7YQGnoDTrGB2+nY3jcXiaGIlcDfqtGPZqmYV/au7QelzO857JkJkPvNJpXwxproqQsnWWvmxiPnputwyjAZDRg95NHvo6mUVWWQfOzXVQeyaPuoTraLraSkJrAYOcY5Ufycdpd9DT7KlxU3VNC6zObg7Oak+V0Xe9laW4ZpRTmWBNGs4HcskxMsSZmRmfIKsrEaDbg9WoonQ4FLC858Xq9aF6NmdGZ1aBu8zA3z8bXP1gXUOfRvLJMlmfmSU6zMjXs+95rWlOWruZUJa3P9awuoAyH+BQreWUZ6I16podnVs8bTmm5KeSUZtH89O0Jic5rvrtSNacq0Rt0LNgW6bm59WJ2g1FPXKKFtNwUDCYjN3eYNQ5WYU0eY33r7wCVHS1GZ9D7Sh9GsvmKpuFYDPzivvNqD4lp8eRX5YbtjsKd7qVvfCHZxdL1ej+QIFyEjTnWxPN++9QdGYRbkqywD4LwupNlNATQOnxq1MbUqI3s4nRGeia2LK0WCTq9jsktgp+y+nw6nt27HFDbhP+LlcyCVN+iPZ1vYaZSvllfpVMrHQd9QYpSaqXLpEIphWtlkZ9eryDDwLMjt8vAVVenE+vWMz01sa7vzYJtc65+fX0ujRd9QXXLtX4MRj1lR4tpfc4XzOk2VF/ZGAwnpsWTVZxB8+Vu9Ctj8l3gONC83nXpJ7bx29+3mUUZTIxs/j42xcViTYrDkhCLJT7GV1ljbpn5uWUq7i2nfSUPuvK+ctpv9uP1aCSmJzA7uX4WPTU7iYS0eGLNerwO57qge6Pmi22UHythsGscewhdLTVNIyM/ldg4MzqjHmtiLMMdo5vSZ+ISLSyGYYFpbnkWiWkJtFxq33J9wdpz15+tpruhn0XbIqYYI5lFGSvfcwqT2UTrM+3MTs5Td6Zq12PbSKfX4Vi5UMouzSQpI+n2DHuEux9WnChlrGfnBaS3aJrG7OQ8sxdaqT5ZQesz7ZFcM35HuPv5ddEeglghQbgIG6fDxQ8+87NoDyMqND9VKPZSfnkmiWnxdAVZKnK3+dChKKzMpsdPaTVTjJGFyb2thjDeO4lOp99Upi4jLyWk2cf6l8UDMNYwTsxp67rXWiZ8/9ZH85JYbLudauHY0MCmqjprNQAHiI0zU1WTzbVf3h7PxmZAt4JwvUFP9ckyuhsHabvaC4DBqMO9ZiJbbVO+UKf3H4C5HG5mxmaZGZul9nQF1568HTwnpFipOVONwWyi8enb484vy1wNwuOT40gtSKOvdYTp6SWq63O2DcBv6bjaTV5FNosL5nUXCztJzUkCj4fx3p2Dvcyi9F3Vpi6qy8doNtJxpZuhjsDL+N2qDR4T52vTvlXdbn/Vd3ZrbmqesqMlKL2O9stdjHTvze8BpcAca1zf7j4ILZfaqT5ZTsfVni3vpomdXf9lIyVHCqM9DIEE4SKMTGYjCanxjPdvzm897Ga3mFHdC9akWBzLznUt4vezuPjYTc9pmkZJVdaWi/wixeP2kFWawVjf+u/Z7saB1eAoKCvB8NzAPLqvz/PAK0s551gfmFmyLLAmCE/PSWJh5U5Edk4SOg1qjhfi9Wh4PRoJibEszy5QVJ2Nx+PFaDJgSbaSVZmHx+PF5XSjt8RSeW8pUyOzND69vm54XKJl3fvYbhJRt02X0tTiVHJfVEzvjzuJzbOyPLwIXo256QXmpjfnjfc1D6HT60hItRKbGEdf6+3Zd2UKvFb5YPsIKdnJZBdnMLJDfW2DUU9eZTb2uSVGAqy6Yk2MC3gsa5UfK8bldNPbuLtFgzt9j0XiLlV6QTqtt+rLh3nm2xRjpLAmj6mRGWZGbaRkJ5NVnM5I9zi5pZkhd/q8peVSh68m+9lqhjpGmB61hWfgd5AvvedrPPAbJ0nLlXz7aJMgXIRV/dmq1fzHO8l47zi6xES/dZkjKSUzAYPJwNgBuvDZeKte0zTqThTvWC0hUpLSEzYF4YtzduruL/PbyXA73tQYSu7J9X2hgc6j4760HNSayuHJy0buqs1b/ToWHRV5Ceg8HtTgPH390zin5nA73eQWpdPbNEBcrJ7p0dsXerXxFsZWcvhjrWasKVYu/8D/WDfNmm+TY63bZqFWxp9V8ZPCEXh+CgCnu6vp+bvLW24/NzXPvS87Tuu1fkb71y+yDLZBzvTIDDFxS9SfrmB6dJb4lDiMJgM6ox7XsgudQY9r2U7b5S56rgf3+8ftDmxxZmFNHtbkOHR6HRMDU3RcDf73XEJqPHkV2b6UJp3C6/HScqlj298bC7atF8aGIjE9gb6mrSvmBEXTiE+1klmQjinGiN6oZ7x/go6VxkQGo57ZcRtTQ1OYYk00nA9PDr7L4aLhfAvJWUlhrT4TE2fG7XSHvYPufmNfcvDul/wjn7/x0WgP5Y4nQbgIq7ufV8t3P/njaA9jz3ncHrJykzcFG+F2K+3AmmAhrzyTmfHZAxWAZ+SlrKvYoGka9feWcPPJpqiNyWj2/2twqGscvUGPJ8AgDWDZqufi9IaUhA1f3peQRXPr8Lrn9ApOl+RyvdV3N8MIJKbEsTS7iNPuIiFh/czxrcnL8qOFTIzOMz0xT8FdxRgMOubHZvC4fSUM3S4PDpdG8ZGCNQsBtw6Ah9qHqT1bi9LpWJhZxBRrQtO8dFztxZG4Pph/pnSKo79TwdDXtr4DMzsx57ehz9JC8FV37IuOTd8nRUeKSEixcvPJZsruLtyxbKM/rc90kF2SuWW1kLKjxfz/7N13eKRndfD/7z29aEa99163e73uxgbbGGOa6QmYHgKJQwIJxISEwEsgxQm8IYEfJUBCyJsQSEKHYIN73Sqteu+9SyNNu39/jFa9jKQZlfX5XNdeuzPzlHsk7eg893Puc+Zm5umo7abqprJtz+QqBVU3l9Pb3M9I7xi1T69MxTBZTJScKsAzM7ducDwxNEVcspupsWkCm5T2DNfE0CQFx/LorO/dcUqHUlB8soB5zzwDHUM0n1+/M+ryYHajxb27MdY/zlj/OGVnijEYFB2Xu5mZDD+/P7cyC4vNgslsZGxwAleck7bqTuLT4rDaLThcdmxOK6Cof64Js9W067r4B0VWacZ+D0EgQbiIsJMvO7qz2/hXgdjEmKgH4bml6Yut4evPbt0S/KBJzUpgcCEIt9jMFJSl7WsADqELqMzSdOKTY0HphRhVYTSAoSId70ITJqUIddgMvbyMYjGwVRvPJC9aJ048kZXGzMTS/5miYznMDE/S1RiK4E2rurGazEbKryum7lwol9kVa6ereQCbw4Jnnbz6lIy4ZcPdOP0gGAgyO+WhrWYpGMxbmLU3ruoD6tdBYk5lwCZBeNPZVmJSE9YE4t2tQ1idVuZ3+TlhsVnobAhd0Nhi1qY5hSMYCJKYHr8mCDcYDZSeLlxREnB1ecdwlJ0p2TRw93v91C80Tyo8nsfUyNSK8oxaa8aHJlFKhTpJDk0yPri79LfWi+2UXFNIW00XvvntB+K5FVk0vtC89YZ75EploKSsRAqO5eKb9zLSN47Dbced4FrcLuAPgFIYjQYC/uCKCjawdL08tk6Ki9VhISU7CXeSm5G+UfpbN0+NOuhe8zt37/cQBBKEiwiz2MzYnLYXZRBuMm//F/R2aK1xJTjpaOjdeuMDamKhoZHWmqychD3PAV/P+MAEfV2ja2qrl57Ipe7JpeDJYDKCxbrpsUrj7JC9NhC3GA0cS09HBzQxZgul5emYjQZ6usfIi3NTc66LsqJQRzoNuFJiF2uDw1I97vjUWLLKstBmM3XPLl2E+f2hQGpu1kvpyTymJ2bpaVkKEozLcr2NNiu5p0oW01QUoQovgw1dzEzMYDStHH9MXChn2jQLxC09n+qJofs7/VicVrwb/H8P+PzkFqdy+YWVqRvBQJD8qjyant3d918Hg8zPenHGOqh5oj5U43oHaU2e6bV515U3lK5JR9puB9kjN5dvK6Wp5UI7FpuZlOzENXXStdZ0XO6i7NqiXQfhAI0vtFB5QymXn9647vhycclusssy8Hq8oS6aB9Bw9wjD3dGZCJmf9dLV0AsNvZgsJvKqsne9HmC/ZBanc/SWiv0ehkCCcBFhAX/gRbtq3b/sdmtMrGPd2/A7VXV9EU0X2ldUnzhs4pJcdC6kYRRUZtH8wsF4L4OdQxiMpjV5yqtTG4L+AIYt1hOagnDK6GQ2yYHZYMCwULpwdnKeiwvVL47lpnG5LTTnVlWUzmxfKADUC1PkR04X8OxTLShCjVqMRoXVYeX43aeoebqRmrPtHL2xFGe8k/zSUOButpjoax5Aa03D2TZKrykgLSdx8c7M8rzwYFDTvU4zJ8dCA6Xl+ck55ZmLDbg8oUafGAJwQ3sOoz8ZYXxqjoqbKqj9+fkVx4pPcZNZkEJfSx9jHetXDLEvm6HciaO3VlL9ZOhCperG0Gxz9eP1VN1UTk0YlVeWM1nMKx6XXVu4bvA8v05KRdGJPACMZhMWqxmTxYR3zofBoLa9pgBC3W4TMxMZ6h5ZtxRf/XPNVN1UxvT4zK6DQIMpjDs3QEpuEgq9b+s2Dhq/109/2yDlZ4oxW81Mjk4dqoD8nvfdsd9DEAskCBcRZTKbeM9n38q3Pvkf2GNsGExGug/xzO121D5+GbvLjslsYqq7H7vLTmxKLI7EONrqdv41sNot9LYOMrfNXMTio9mLaQzLMxCUUgR9fhYmQFEoNBqFor1pgJkd5OuGIyU7kfG+UAMghzP86hjR5vf6SStOYaBz9czjyu0MJiNKqQ3zju0uG81PtxLXGkvL6ZR1tynNTl4MiJPinXQMjWGe05SdyMbs8VNclUXNhVDudnZ5BsNzGoPZiMeoaH+hHYfNstD5MsjM1Bw1L7QDkJjqXnGepnNtaB3Kd/fN+8OqgJF7rBCrzcT5h2sWn3O6bDjjHORXZmO84MV6xsiZX6TR/OxSKUyD3bbiOJVnCqh9op7RrqXqJLmniuluX/n1rT3bQeVtR7j8q+otx7bakVsqqVvWfbLmyUbKzhRT/2wTDS+0kpKbzGBH+GX3lndwTc5OpKNu/XKBVvvSz63T7SCjKI2mcyvTwiIxQ1r3TCNZJenEJrkxGA1Mjkwx2j9GVkkmE8OTiwsRj9xSvuNqIw6XnaEtupJmlabjinPSUdu12I1ThMzNzFO3rEFW4fE8uht7D3zO+Bef+xyl1xTu9zDEAgnCRcS94j0v5Y6330pXfQ+pucl87O7P0PD89ts1H0aeqaVfVDPjM8yMzwC95B7JxR5jR5vNDPeNMz60eZ1cpcDqsGI0GcjIT6bxfPv2xzLpoXudusXFR7NpeGb9NICMqryoBeEH+Q5JXLJ7TRDu9wVIzEhAGRTjQ5PkHs2nbZOqEn5vAL8OEvD5ybLZCMZY0VrTNxJKwUmKddA7OkVRagJWsxGbw8Jg/yjWGbgw3c/1xZm0XexdDP47R+ZIz4gjMDvPQM84AGm5SbRe7ga9Kj972QI4g9FAMBDEYDRgc1jwzftXXoRtMP7pKQ9d9Su/BkaLCbQOzYY/Cdffe5rGppUB6uRMKOjQWlNyIpfms21r7iq4Y9a/6NpO50QIVReZHJliuHdsTQWL7qZ+0vJT6G8bJCVne0G4Z2EcRpMBm9O2YXBqMBjILssgNslNf/vQmgAcoL2mi8obSql9umFXTWW6G/vobuxb8VzdMyvz76sfq8PhspNVmoHRZNi0pf1qhSfyN21PrwyK+GT3jmbzX4xaLrTv6qJoL9z1jtskAD9gJAgXUWG2mBabATz47Qd477GP4J3bu3bkB01H9VIzkCN3HMc756WgMhvvvI/G8ysbhRQdy8YzPUd38wAGg9pRAA6hronKYMCgQnnGSoFG4Yh17OKd7Nzy9BzfASsBZlmnQsqVlvAxsQ7Kbyzn8jOb58H65n1YXA5GesdJrh7kcokb68KdCJfDSozTxlDfKAYNhXnJ1LT1czw3g9rLvbidVjq6x0grTqblXGgWtbg0jd7mATyz8xiMivSsBAxGRUKKC6MRklNdmC0mjEaFw2ElOdaK0agwEyQY0KiFyV2j0YDRoDhyQwkATreNqmvzWbGgFLDazCQkOOhp7CYhI4l5j4+aJ1ZerAV71wangXkfVdcXMt4/QeOz6weBtU/W485LZ3JsZYrWQEv4zW0ADGYzZdeV0vDC2uB3ZmKWgiM59LcNMrfN4L5nIdgtv65k03J3Gk1XfS9dbH5n6/JTDRSfKqBpDxZPz055aHwhNMlRfl3JmkB9I1NjMxu+ln8km5mJGQnAt6ntUicpOUkHtlfGHfffut9DEKtIEC6iLr0glfLrSrj46/2tgnEQ5B/P5/JzoV/MV9rLl53KxzcfwOGyMdgzQtOFpaB8u/WUl5san6VrnZlwq31/OqWNL+uS19XUj8liOjCz45tViPD7fFsG4Fc4XXbG56cI+AKgNV6fD5vVzNTcPJN985gMCmOahZmB0NciMBfAaFBkOJ0EfEFanguleRSVpdPaNAAo4tPjGWvsoWdiKWiaG57E5rQytNBF0um2Mz0WqiedkOBgpHdscdviYzkrgsGK64upXWdtQcmpAuqfrsfhsjM2NLs402yPsZFVnAYK+lr7MaSnEwxqUhIcxHpnaPzf59mq6nTAHyA1PXZNEO5KdjM1El73xKKTBbRc6tq022LvQoWT5vPtlJwupDHMO3DpBak43I4t600v/7puZWZids8DMr83/IkOk3llPnhSVgLp+Sl4pjz0NPfhmYrOHbGr2fT4DGbr+os2s8symRqbJrskI1SrX4V+RrxzPnqa+jY4YuQopUjLWz9NTuyfqAThSqm3Af+88PC9WuuvhbFPIvBa4B7gCJAJeIFq4BvAN7TWa5amK6WswHuA+4ECwAZ0Af8LPKS13nk/YhExd7ztlhd9EG4wKHysXQhVfzY6zY1MZhN2pw2lFhbmaUCFqri4klyAwmAApQxoHUShcLpsJKXHhfZRiplJDzMR+mXsnfMRm+RiYngKz4yXijPF1ByQmbbJdcr6XRGfGkdf2/qpDcqgKDtTzEjPKIOdw0uz/d4AloV/VuamhHLJA0GMyRZ+2d9OksPByYJMLl/q5kR+OtXV3eTnhLrX5Rcm09M5QmBhgeTYxCxOt52ZZTm5Zot5RTrGinQU08oqPYY1zXpWvgeD0UD5mSLaLoZ+Dr3zPgKE8t8zClPxz3sXZ1oT0+PJy3LhV4qOx6oZ30ZzKvM6awATMpPo3aBd+3LphWn0tW8dzKbmJDHcFdrOat+8ks1yKTnJXAyjVGZvcz8ZRWn0Nm89g9/bHEqP2UuBdb4f5dcVh9JitKbxbOviwluLLZQidKXcZdO5Vqq7DuYM7mEyNjDBxPAUVTeV4Z33LTbqulJRZnxg5WfNlc6f0aa15pOv+2u+dPavon4uEb6IB+FKqWzg74FpIGYbu74B+BLQB/wK6ARSgdcBXwPuVkq9QS9bFaWUMgEPAzcC9cC/AfPAaeB3gbcrpW7QWsuS7n007/Hyk6/+cr+Hse8qXlJF7dm9uyb0e314JtfecvbP+5mZDZCYEc/I0BQQxGQy4vf6cQxPMbSsmc6RWyuoeSFyFwkZhamLM5mtdX3kH8mhrbpzi72ib6B9/QoppafyGdmiLXb92XbS85Ipv7508YJqrG2IQqVIOJnD8wtpLem5cTRPhoL54dlZvPFxHC9Ip/pSaB45EAhSWZVJ++VuPMtyvoP+IBkFyTRdWPo6mSxGPMty920OC3MLZfYMhpXR7upW9KsXlpaczKP610uLMf1ePyVnCrHaLehgkMvLSiWO9I0x0ncWgBN3HOXiY/Ucva2KS7+qYSt1TzWQVJTF8MDk0nszhPcrKCE9jv6OrUvPLW8I03qpk9yKbDpqN14kmVmSRkp2Mi/8/ELYjX7iUmLDCsIBkrMSVzSnirbWix1klWYsLobPLsuk6Wzr4kXakVvKMRqNBIIapTUOl53U3ESpehJhwUAw/C6eYSyajpQ3f/Q1e3YuEZ6IBuEqVMz2G8AI8H3gI9vYvRF4FfDj5TPeSqkHgeeA+wgF5N9bts9rCQXgDwN3rtrvz4E/XRjDu3byfkRkBPwBhrdxG/dqVf9EHen5KcSmxGGyWZif9zPSP8HowMazsLuxnc/2K9uubnEeacZlTWfmZr30dI1Rerpo3+sO+71+iu6+huGhKcxmI46YUJc87GbiExKw5XlDJQQX7iYAi/9OcFmpeaSavval2XId0Iw0DTDZM4bxpcXY7Wa0y0ja7FIlEYNXcblm2SzwfIC659pDrcAdFgL+AN55P8FAEKMpccV4jWYjfu/S7Pfyqh1mqxFnnB1HjB2z2YQtxk5WSToAQa2xOiykFyRjtpiJT3YxtKqusslipuX80uLK/Kps2lbdWi88mc+FR0N3MaqfaqLi5goan23cNL3I7/WTkhKzIghvre0hJT+Vwbb1u1Ve4Znc+m7MkZtKufToUjA5NzPH2NAkVTeXM9A+iDIYCAYCxMQ6cSXGMD44SXdDLz2N28tLN5rC7wfgnd/7dTBxKW6C/kCoVOK8b8VdkiuLBuPT4sgqycDhsh6Ii+AXs+rHarG7bFFP/8koTOXWN94Q1XOI7Yv0TPgDwO3ASxb+DpvW+pENnu9XSn0Z+MzCcZcH4QULf/94nVSV/yEUhCdvZxwi8hwuO7/9t/fz569/aL+Hsq/8Xj89Db30rCrZWHZDGY2XI1/GUaGouLYQtMZgUHjn/fS2DGBcJ9DeTRWH7ehpG8RkNuH3hYI1vzdAc20vlTeWcfnJMGeOosRsNjI1EZpNHh2eDnu/xGNZG77mm/Vis5iIL3DT0Ld0qz8xxsHgCwOh3NAFy2fhZyY9VJ3IJugPEPAHcNkMFBYkhB4HgjjcdpTPh9/rx+f1YyYIM7MEA0G6qkNjn17IF49LdtG9rHFPTJyTnoUUkHYgJSdpRRCQnJ24YtbZ7wtgMhvx+wKk5iWTkpdCw6oFh3XPtZBbkcNw5yDToxt/7fqb+9BaLzYf8vsCpB3NWxGEZ5dlEJvoZs4zT/O50J2F/vYB4lNjGdvggrXkVD6zk7NU3lBCMKgJ+gM0vtDC5NAENUMr9xnuHt1wfGHZxv+V9ppOHG77npb3q1moeFJ4LJfODUotXmn3LvZfyTWFi+le0VBwLJf2mi7e/dnfiNo5xM5FLAhXSpUDnwO+oLV+TCm1rSB8C1emE1ZPs1xJ4rtbKfWFVYH4Kxf+DisPQil1doOXysIbotjM6buOUXgsj5aL7fs9lAMnuI282u2IS4qhq76X4Z6VQYd/YXZueSi+VwskxwYnqbquaDFQgNAFQO25Do7cWkH1o/t3W9wSXt+SbTuWnsxU7xzX6gTQGqPJiHnOwFysj7TYmGVBnaa4IgO/P8DMwCg1y9JAKq/JW7G4Mrcii/5lM+8miynsn6PVecODncMrSqu5k1wrgvCuhl5yK7LQRgNdDX0M9o6ve9yOuh5SshOxOa0Mb1Dib6h7hMxjhfR3L90Zu5IGUnF9CRPDkyuqj1TdVMa8x4vNYSUmwcnMuCe0vQaf14dneo6JoQkan2sKO51kt7ZT5Wl+1hvxzoox8U7iU+Ow2s1Mjs7giLEx1D3CzLLqQ85YB51h5NqL/eeZ8pCcnUjAH2C0bzxix7XH2PjEdz/MidurmJ304E7cXXMsER0RCcIXcrP/hVAe94OROOaqY7994eHPVr38Y0JpL68DqpVSvyS0mPMUcBOh3PQvRnI8YmcsNgt/8/Cf8ns3f2LD2RkRWQGvjxiXBWdpGsqgSMpKZGRgEp8vQE5JKgA5zsTQzKQh1NnRGR+DwWENLd7TQTrW6ay4WzXPNFNyTQGNy8rMKaWoea6NI7dWUh3GArlo8E1v3OH0Sni3/MIlJtZOXnY8M0ObpxO11A8wsWwmtKIsg5ralfVEDAoKU+NoqukO1fmeWFkBRK3KLVpd2WL14suVx175WsC3NlhvfKGFIzeHOk2ut6Cxo7abnKrsDc9xxWDXCO7EGLLLs+iqW79mSmKSczEIN5mNmAiSlJlA7dNrS+utzqs1WUwUHsujp7mP6U1K7EXTZjnm6zGajORWZDExMrVmUd52GQyK7NKMNfXAl6+tKL+umI7a7k0r/oiDo2vhzmhskmvxjtN2pOUl40qIoelcGzFxTjKK0nDGOnj3X7yV0tNFABKAH2CRmgn/U+AEcJPWOtL33T4HVAE/0Vr/fPkLWmutlHr9wvk/AVQse/lh4Dta67B+orXWp9Z7fmGG/OROBi5WcsY6+KNvfJCPv/Kzm5YZE5ExNTpF66WlfM+YBNea3N7Vsiqz6WkNv8nJTnW3Dq4p3xYKxFspvbaIhufW5ogrg6LyhtKVM/i+ABqNQRkWLiRWBqwaIKgJao0OaoKBID6vn4A/9LHg9/rx+wIEDQrT6SwSXpeJ0gqTV68ooz2eOg9A/EToIzOux4J/KkDXz6oZ79k8vWH5DO3pglSCYx5OpcYvdizVgNVion6hdGU4M9qJ6XE43A7QGq3BYjORkBRDMBgk6A8SDIT++P0BjKsC9ivvfbn5WS/Vj9eRUZS2YWrScOcwaTlJ9G9Rcm9yZBrvnI+ssky615mNnRqaICnFRXKyk8ZnGzj/s/Bzsv1ePw3PN1Nxfcm6QXu07SR3t69lgNkpD0duKd9VEF50Ih+TxbRuQ5626lB96ph457Ya9oiDY2J4iiM3l4dVmz2vKptrX36CkmsKuel1ZzCajPi8Pkxm05oLdnGw7ToIV0pdS2j2+yGt9dO7H9KKYz8AfJhQ5ZO3rfO6jVApxLuBDxLKA58ltFjz/wKPLVRU+Z9IjkvsXMmpAh565JN88g0P4XTZcbjtnH9k68oKV7No3Ua3up1U3VYVakuvNWaHlSO3lAPg9wdDwavBwJX1hgbY8cx3cVUmFrMxlFuiFD2do4yPbJwbPDs1R3JmwprnlVJ0tw2TmB7PSN/KxbxGoyFq3egMZhN6xsvTc6NLzSiXfVuUxxuKmBcmiW8z5GAMBgisrZq6QqhJUuiAlZkJ1Pxi/Vn+0mPZeBY6T6I1xcdzQlVOFBjQ2Gym0AWIUigDTI17qF9WAzs9P5ne+vVnnuNT41Y8Xi8Iv6K3uZ+5ufVnUGcnPThjHcTEOZge3/iuAYRaek9NmNdcaOVUZGF1ORhr6KK6ZueNbLoaekPVffZ4wbfREP6izCtmF7rotpxvx5XgZGp0+zP4OeVZ9Lb0b5pbPtg5fGCbxIjwVD9eR8HR3MUFvRabmdyKbG589WmqH6/jJ1/9JafvPsGf/ueHMRpXXlybLeb9GLLYpV0F4cvSUBoJzURHjFLqg8AXgFrgpVrr9aabPkaotOHvaa3/v2XP/3RhhvzCwjEkCD9Acsoz+dqlv8FgMKC15tzD1fzl/f/A+GB0qoS8WDVc2qqFSmQ4nFbmxqapr1madXclxKC1YdNZmY763jVpKQCeGS9pFZlrgvCAP0BCelxE8yavCPr8JEzOkWVy0RVYe5fGZDDgXxZwKwNc7h7GfCyTozcUMTcwSdfjSzOzGojPSiA+N4m6SQ+ZiTH0Pte+7rnjkmKY86zMM26qWVqoW3VNHs///NKK18uvXdl6emSTr0kwuPJCwbdB/n9cSizJuck0r+rganNasbvs+L1+JoanyKvKpml864oak6PTJKbHUXJdKfMeL1NjM3S1DAFDVJ7O33CRZTimRqepuqlsz4NwW4xtRefX7Zid8lB1U1n4peuWGeoexuqw7ukCT7E/Wi+t/P8Xm+Tm1jfewK1vvIGCY3mUX1e8JgAXh9duZ8JjgJKFf89t8Av3q0qprxJasPmhcA6qlPoQ8HdADaEAfKNCq1cWX/5q9Qta64tKqVEgVymVqLXeusis2DOGhRklpRSnXnaUN37kVXzlj/4l6uc1mgwUHssNBYcGhQ5qGp5vwWA0YDQZMZmNGM1GTKbQh9z40GTUb+8d9tuHaTkJjLStTCmYGp0m61g+fZ2bp2rMTs+v+3xbbc+KhZqJ6fHEZSTQWttLwalChtoGmNqkCsdO6Bgb6cpCF2uDcKNaHYSHvmc+f4CzE9NUFqXA441ooPxN19M6PEX/1Bz9viBOmxndOsKcx4vTZSU3P5nJkSnikt0EA0FmJj10NG3vDoRh1Yys2WrGu/DzvNrqn6/VOadWh5WSUwW01fYwPe6h/LpizFYzc3NeRvsmGOkbY37ZXY2WS51hp2WM9I2ve4Ewto3qMwdJekHqmoXO29HduL2mLDHxTgwGA7mVWVx+smHH5xWHk9lqpuL6ksXHr3jPS/dxNCIadhuEzwNf3+C1k4TyxJ8AGoCwUlWUUh8llAd+AbhDa73Z/bUrK4jWlCFc6KTpXnjoXf26OFjueNvN/L+//G8mw2xhvR1VN5Yy3DPG5MgU8x4vDc+vvQ0e9IdyaX2rKh9U3ljK5acaohoo71VVh0iIT3IxNjyF1W4mPslFYqKT3sbedWenY+xb3x7tbhmg9JpCGtYp0dVwsYujL6lEBzWt9X201fWhlKKjoZ+Ka/JXNJjZDa0gviKdhukZip1ObspIWngl1GVUoTg/NMD88gnlVT8Os/4A6Sdyic1K4sKq7poFJjNzcQ5SS9Nhdp7ahaonV8oGZhWkkF+csuywitZltZv7usbIO5JD+7LnVtdzn5mYJb0gld7mflKyE0nOSmBieIrupv619eI1ONx2Ck8U4vX6aavtQVksxCS6GegaYWCLEn7BoKawKoeaXeRk97YNrWgqsxNd9T0UHM1dM3N4RXZZBl31kSn9aTQZqLihdNfpUM5Ye1h3/MquLUJraD7fisliiloaljjYXv6u23nHp96838MQUbSrIHxhEeZ71ntNKfVJQkH4t5a3rVdKmYFCwKe1blm1zyeATwFnCTXf2WrK4XFCizYfVEo9qbVePq32SULv73mttawCPOBik9ycuL2SR7/7TESPW3FdCdWP77z+9OUnGzhyS/mObiGH6zAE4Vprqk7mUv9UPYmpcXjnvPRcamOzOjf1zzRScmM5LbWbB0Iz0+vPqPq9AWqeW79b53gELtbSXlHBzJ25tHim6PT5KRmz4vHPcX5q7TnjbYnMTC9doAW8K1M82vrHqDidx6XqlTOdGelxWMxmGtuGYXCKisqMNcfWWtN2fumcRpOR0mO5KwJtpaDilsqFB2Bap2FMUmYicYkx1DxRT39raGa9+FQBZuvSxVB8SiyZBckEdRKXn136+F1eDjEcNU81UHQij+YLO+8AG5cWv6sgfGJ4CrvLvuZ5q8NCXmU2zefbySnP3HU1JqPJQHpBWkQC4anRGY7cUk7zubYVHU9XM1lMi585Ab/MIb1Y3fia0/s9BBFlEW9bH4ZMoA7oAPKuPKmUup9QAB4gFFw/sM7sY7vW+pvLHn8GuBd4KVCvlPoZ4CG0MPPahX//XjTehIis2mcaaauJbA5z+Zki6p7ZfQWFoD86dbwXHfwYnLJjOVx6pBqAwY7wq6eMdw1hsqzs7rjaZrPhGxnpn9x6ow0YnRbS/uR2nvKNw+RSTnF8qZupnimIX7uPRZlwGCyL5f48E16sFiMGpdAaEmIddDcMLlY2SUuNJTHeSW1dL7bYmMXjTM+sDaj0qpxtrTUNWwS3VafzVzxWBoVKTaT+e0+QnJ1IUk4S/jnfYm3xxIx43Ikuuhv7mOgbIat863KDW7E515YyDIfJYsKdEAMmE0aTcdOFoluZHptBLUvDsbtsZBam0bCwaHVyZIq41NhdVSXJq8qh5UL7jvdfbnJkiurH6ig6kU/z+fUvMGFpMad4cUtIi9vvIYgo2/5S7+i58lvFCHwI+LN1/rxj+Q5a6x5CaS8PAXPAO4HfAdKAbwInI12xRURHdmkGFquJ4pP5W2+8BZPZyJGbyqh7pnlFF8KdinaMvDoIO2iKqzKZGtzZArjBzmFKKzO33G6j2fCNzHu8uBJjtt5wldTbi/F9+tZQAL5KEBhqX79yhRqyMN+j8HSDv8dA19AkHh1kJhjAYDPClI85j4+kFBdV5ZkMDkxQWxea5TUYFIpQqkmcwwIGhTIaMC6sP9jOz5cyKKpur6RteJbMiqzF58pefg2XLnZz4jXXYXHaaTjbzviyKhwjvWO0VXficNnIqsimc5u5yeuOZRvbGk0GSk7lU36mCKPJyNjgJHXPtpBVvnG30XBMj8+QlJFARmGo7n16QSrNywLm8cHJXQcyg51DWGyRrTxhd9kAMBgNpOWnrHjtyC3ltF7c+R0GcXWIT40lrypnv4choixqM+Fa608SSglZ/Xw763x+b7R9GOcZAj6y8EccUq74GN70R6/mr97xDxy5qYzqMNM/tNak5iXjdDuw2MyYrWb6Wwe5FMEcymBg5zN1YR0/AhcK0ZKRl0jDE3W7Spmpf6qehNxURgc3TiHpbhlYt1LKZuJT45japAzicsqkKPjYy2hKVWgT5MfEopTCYFAYjArXrBWzV+H1BEi1uhmYXznTbjIuzVeU2RLoC4SWqhiNBnIcMQxPT1F6Jof2gTFGalemPxjm/LBQ9q/6XGeoKc6zLVz5qfIbVlU6UIqqheonGrhSuFsrxVQAqi92YzIb8bT3gVKU3X0NdZdDAb8vCH0LnTRH+sY5emsFdc80YbWbyTuaR0dDL50Nuw/AwxGfGktGQSqBQJCOuh6azq8NLONS4+mo3l3AOdQ9gi3GRtWNZdQ8ufZzo/ViB0Un82k+t/HM82amx2ZwJ7q21SlzPcnZiSSkxdNysR2b08bRWyrobx+kv22Q7LJMXPFOlEFJ/rcAQovbffM+LDbLfg9FRNF+pKMIsYLWmif/+3m+/X++h3fOR/3zLRy5qQyAmifrVzQP0VqTVZxObJILg8lIZ203A23RbS7TWdcT6mIYpfbyBzknPM5to2uX4/PO+UiIs28ahANMTXgwmo0EwuwY54x1hLVdUnkGU+87wiNTE5yITedZbyfXpmXx3FCocdExdxqXLvdxPCMNgBTlYkBPUqYzcM+4mB7xM21fGlPCjIU+AK25riQbApqWqUkGW/pw2tf+wtysmyWADmpsibGLj01mIzXPrb0YOX57BZ0XQilbwUCQvBP5OJNiqb68lFftGV158VDzbAsmqwVvEGqfCz/dZ6csdjNpecnEJrqpe66F2mfXNl1arqt5YFvf843MTc+tG4Bf0dcyQFJGAsO9269scuTmCi49Vrub4XHklnKqH6tjqGsEZVA8/9Pzi6+lZCfijLXvS/MhcXD5fQE803MShF/lJAgX++7yUw38+esfWnzs9XgXZ7IrbyxltH8MV3yope9AxxDdjX3bLvW1G7OTHvKP5tC+RbfJHTtgM+FWu5misjSan29ZLBG4Ww3PNlF6YznNmyzS7Gsf4sh1xWEvpA3nl1PFfddRqyHWF/qou3I9YTWYqIxLZdbnI047gFGCC4khrikHlb2F1LcPA6GUjqzSUKJ4hS2RuudCP3snizJ59lwbxfkpzC/U3g4Eg2tu8zntJtKSl1JnTKuC8mBQMze7lCu+uiX9FZNTS+vOg0GNKTmB6ss9aCAu2UViTjzB/rVpQ/4N6oLvnqLwWC5Wu4WRvnGmJ2aZnfTQ1dBPF+F1wZwYnqLshjIuP7p+E6NImZmYJbcia0dB+HbbiF9hMChKzxTR+HzLitnt1WUkB7tGGOySCrpiJYNB4XCvXXgsri4ShIt9l38kB3uMbbFawJGby+hu7GNsYGKxNm4fG5WK3xuuOGfUjh08YDPhWZmxXIpCF9ORjkHMVhO++Y2Dwrpz7WF3QgxscvESlxpLWkk2RouF+clZEidMYAX/wiJAb8DP5ZHQz1TqwsLJK9+GYKeJ+u6liwWLyUi/Z5ocq4v52hmCWlOalUzN5VDayfLvXzAQpCj3SsXU0POecc+Ksn9JaW6W8/nCC5IN8ysXdQ4MTFL2sjIau0fon50nKcEBW8y6R0pGQSrjI1N0N4bfcn5je7M0aW5m/Zr0Wxnp21ld8GBQMzM+SyDaC7vFVef47VW876/eJl0wXwQkCBf7zul2EJvkwjM9x3s+91Ze+7t388n7HuL5n13Y76EtCvgDVN1YtuwZvdjuXa18dq2FVu4bPVYGRXmcczEtRQHtrcN4ZndXmqzyRA5jvSMLp1MoFTq1DgbXpPjA0gxdtGb8h7tHOHr7ES6f37jbot/rJz49vCB8dHD9CimFJwsYGZml6VIn+QqIsdJS24/7Giutg2OQtHJ7nwoFSVeCad/syqA4OdZJqtPNcPUow1NzpMXHMNA7vrj98nSiQCBIW/vK9KiKRNeKx6uvuYL+8C7CTNalj2t3cgxzqQ7ON4YuFnKzEhjsHMXr2V3e8maUQVFxppjpSQ9dDX0RS6OampjFbDOvqdEfae2Xu3bUcXVmhx0yAWKT3bDLEonixef4S6ooPlmw38MQe0CCcHEg3PNbd1BwJIfTLz+OUoqP/cvvcn/xA0yPr1+tYq9d3mYd5d2KzUvd9TECXl/EmpVESv3TDcRnpTA2vHF+ePOlTiquL6b26aZNj9XfOUJcSuyK5id2t53hkVmmx0OBk9lhBaXwegOcVIn82tdHiTcZs38p5aN6sh+3zYpeuISaHfNwszUZpUFpYALU2BzxBgclqTFohxGvI0AwqDEYFDanFac7VO1CBzX2mHmuXPFoFK65eWzlqVy5ZHMagpQXJSxejCmDgtz4xaDWaDRQ80L7iveamBZL30iobJ0yGkg+kkFNcz85mQnYULTUD6CA5KQY5jfonLkbdpeN3IqsqOSV9zQPUHljBZcevhjxYy93ZU3HRrXD1wvQY+KdTI/t7DOo6qayTcsQCrEeg0Fx5p6T+z0MsUckCBcHwpv/6NUrHrsTYnj9H9zDN//0P/ZpRPtLqQjcoo9il8+d8nq8JCc5Ng3CIbRgzxnnYGZ841lIpRSZJekrgvCS60qpeXZpUaMhKQYWgqih+jGc5SbsRjPWeRPXx2SH7maYYCpljiutvmICRpoeXrswUinIP5FF/eWVM905+Uk0j4wvPo7t8RBYtoi3IsFG/TNLFxRlJ3OpW7YIz2wzEzAv1dw2W0zYHNbFPPG0vCRmlZGJha9F+XUF9HSNc6w8k+bqHubn/BjQHCtIofORixEPwI/cXE7juTYaXoheQDm+R23sR/vGCfgC2JzWNekpGYVpa4Lw9ILUxVrr2+Wd9+GZ2l7pTfHiYzQZue7eU9z4mmuZm57j5B1HySxK3+9hiT0iQbg4sG57841896Ef7ep28GG1VUWNw6zu6UbKb6mgsXrj2/RT47NUnC5YbPG+kd6O0cXZcGesk5bLS8dML0hm3mRcnHEeGZnmhM7k2ZYB1qvZUZySCEBc0Mh69w8qT+dxrqmX1DgHAxNLzVRWB71Go2FFEL76Ymh1FkfAF4BlqZ8+r59jt1cxO+/H7LIxEdQMng+lCGUWJlPT0Ed8vJPGC934fAHSEmNwzfmofbSBqlNFXPrp2Y2/YDuh9a7L822lp2WAzJIMehqjf+dmYniKqpvK1nTBDfhXBuepecn0t+18LYrNvrNmRuLFw2wx8ef/81FO33V8v4ci9slBatYjxAoZhWn8W9eXcMVHb1Hk1WydjrMHRv3jdWTmJW26Te3zrRQc3bxZxeTYDHGZiVgdForOFGOxmqk8U0hsvIP+1kHMg9OcMFo4ExtDVpyTYL+XU45EbvUkcG2/g9O9dm7zJZJmsdM3MYXWmsG2tQvxKsrTmZ2e5WR8DNPPtHIqyYXDEkppCawqXWlc1VJerbqgWh20ry59mVWeyflL3Vy+3IsvqGlqGiD3RDZ2lw2vzUQgEGRu3ofRqDiel8RUbS8d9aGKLZ75yNe0X/3+oiUpJ2XrjSKk9qkGkjISFh+n5CTRcrGDohNLzcIS0+OZGt35DP1BLj0q9l9qbjJfeOozEoC/yMlMuDjQ7E4bd73zNv7zb3+030PZU1fzTDiEAhRXzNYlBqcmPVhs5k1nYruaBsiryGF+PkBCintF/v7wwCRjQ6HUl7TcRGLjXdT8ctXC0PYRrFYTqTenkZ4eR3XTyrxns9lI1/PNzC5LLah9tAF3gpPCO8vxGQ3kxS29l7gYH755P4pQFridILml6YsT4k63jbyKUBdRpRQosCfGMjowyWDPGO7MRLpGQvXAdSAUyDU2DXDsVC4XLobG7oy3kZXipvq/V+ZRR7oSh8FoZDiMRbKR0NUygFJqT4LXYFATlxq7WLIwNS+Zwc7hFRdERtP6pSLDkVGUxuWnGnY9TnH1ev/f3i+LL4UE4eLgO/OKEy+6IHz17OmOjnHA4/imF1pQdvua9IzlhnrGqLquiJotaoe316+tG6+UWgzAAfo7RrDkJa/ZDsA772f+hVE61plJzkx109W5Ni1hcnSGZI+Xc1MTK57PHtJMLktXccWaab+wlE9tOJZD27K25EdvP0LN000opai8oRgDS4Gg326i8lQul8920Nc3jsFooOT6XC529hNjXvuF8+2y6c1qFdcVcfmZzRvuRMrE0BRFpwpoeiH6TYUg1Gmz7EwRBqORiaFQpZ3apxvJP5qDwWDAaN75r8fZSU/UmnuJwy+vMlsWXwpAgnBxCBy9tYK8quzoNcs5gAzGqz9TzOvxYrRt3YxiYIeNTIwWI6tD0phNZjcnxmfJyIzHaFSMDc9gtZnILUrFZTfTCWua8AC0/KCa7DdUMTAxs/i6zQ7euVCStzIAxrXNea5IzU+h/lw7ELo7UPNkI5lFaVhtZubnfCitmZ0MBfRGp5n4rBTOtoXypgPrXL34ItiYx2Iz0908ELHjhcPq2rvUs4mhycXge7m2S6G7DaWni3Z87PHBCVwJTqZGD0Z1J3GwlJ4ukhrgApCccHEIGAwGkrMS93sYe0othHSLtcMNoU6KFqsJm92Mw2klJtaGO95BbIITd4KT+KQYElLdGE0GUjLitjyH2WYmozg99KckA7trb7uzGQzhpR4M9YzhWCgBuBmT1UTRiXyO3lSKK95JQlr8mm20fyksLzmaReE12VTdVEBGXiIa6O0ZY8rrJ7ssFZ/ZQH1zP89f6uTkraXrj1VrLM/14psP4F34o8c9+IYm8Q1N4h2YxGBduUBveU74cPcIGQUrc6F7mvspLAo91zcxiyPWTtWdxbT6Z+gYGONkXioF/fP0/mf1muHMTEeuGkfp6SImtqhiE2kt1V3YYw5Gl8DdXghnSIULsYGXv+u2/R6COCBkJlwcCm/8yL2c+2U1AX/kF54dREON3ehgcHHW9Ogt5Vxa1vp6M0op+obGGNgipSU1L4W+3qWZwKozJVz8ZXRrNS9nNJsIhpkzk5aXQuultU1+YpNcZJZmEAhq2uv7aKnvo/JkLtOD4ySnukjJS6azc4yphfSQYKyVsuvz6Krtp296BpvNTO1CBYycqjRSlZmpmTn6+8YX25Ufy42n9ck6qo5k0tgwhM/nJ6cgiRinlcnJOSZX/UwaVwVvetVbXJ6mEPAFcMc51rwv38Ixc/LiqbN6SLObMRoMlJek4jnXz1jH+nnaM5NzZJZl0lO/+wYxg53Duz7GdnnnfJRfU0jNryPfsXW7fPM7rwijlJJ0FLEuo8m4Yn2JeHGTIFwcCsdvq+L4bZWc/d9L+z2UPbH6YmM7S9WuzNgGt6gX7V/VLt0TxW6L68ksTqerZ2LrDQFn7FKgmpafQnJOElMTHjoa+pg817FyY6UI+AO0X+5GN4TSKQqP52JzO5m1GLjQ1k9BWRJ9IxMUFaYTk+CgrXUQl9lE9QuhQN9kMnAs3sbsxAyXf3yexLRYtM9HogP8XkX7c6HFnzkVWWhtIGc6lOaiNRhMK7/uyrAUlKcXpq6pUdjT0EPJdSVY3Q6U1vgDQboHJim6q5hfzvSjZxTxdhupabFcau7jyBYLBu1pSRgae7f8/m9pnxYHe2b29udwI6v/f2yH0Wykp2ntOgXx4pRdlsnJlx7BaDJy/6fehGOP7zqKg0uCcHFonHhp1YsmCF8tGuGQxboyJ7GzsQ+T1Yx/FzOA2+FKckEYQbgyKMwWE0durWCge4yB3jEG+tdvWQ9LXyu/109OaSbdzQM0n28nJtnNhEmRnxxLZqIbp9NCc88IfcOTWB0mYuOdlB7PprNpgCSnhcvLZmPTcxKpfvQyJouJrJKMxedjU+MY655gfFnur8u9+hesIq0gleS8FKYnPLQ+F6qa4XA7KLuhFJ/DQe3FbmCMzPwkrAkOps/YaJgfxWI04g0EsWKisX8AtMZpN5OQ6CQQCDIx7mG11oZ+Ku86SfUu64WvntHfK+11PaQVpNLfurf56Kv5d5FfH/AF8B3whdEieuKS3dz2lpswW81Y7Rbe8JF7D0yalThYJAgXh8bqbnYvJtEo2ma2rSwR6Jv3k1+VQ/PZ6FensMXY6O/bOAB3xFjJKUxF+/10XO6i5fkmJsOIamxOK3PTocDUneRabF8PkPvqk0wbDTS3DDCj/aQkuUlLiCEt0cXo+AwXL3Ux5/FhMCuOFCQTZzlG17lWpoan6GsOLYb0e/1YbUsfm4EgpGXEkmM1MTc1hwb05DQFifbF79lY+yCDg9MMDk6jlCK9MI2YhBjcR3MZ6Zui62L34vHiK1L4hXcIa8DEtZmZ+Ob8nB8ZYGx+jmt7p5noGmE0EGSofYijLzu2bhAOcPlCN1UvPUbNLlrBG407L9G3W6kF6fsahMfEOzGad/7+tdaYzCZ885FbKCsOj+vuvYYPfP6d+z0McQhIEC4OjWvvPsH3v/CT/R7GvojGpNp6ZRCdCa4onGmtopMF1K3qmJmcEUdKWiyz4zO0VXdS27tUFSUpM4HJga0rTcQnu+htCB03oySTxvPtAJS85Tqe6QjlflutJlISXcS5bTxf38Wc109ZXireTCeF8W6mhmfpbBpksGccQ1wsldeXoiZncaWM0X6hjb62wcUunAazkbHOETzTc2TkJdFyafMKPs5EJyk3ldHj9XO5bZjjJenQsBRszhCgIi2ZyUEPFy93U7JQUnHW68VgMjDQsrTtRN8oLpeV2Fg7ZpOBkdFZUlOcqPl55mfmaGoeIv9EHm0LX4PtMpj2b91+6+VuYuJjmB7bm3b2q+2mXT2E8n7XyynPLE5noH2Qv3v803zq9Q+BgvHByV3ln4uDpfB4Hq//8L37PQxxSEgQLg6NEy+tIikzgeGetR0Nr3Z71Xtveo8WDBkW8ppzi1OJcdkY7hyir76bgfrudbdfnle9mb72YSpPFhKc91L7Qqg2d86tZfiT3cT5fIxPeJj3+rnc1EdeajxqJkBlbjLuZAc9Q+Oca+ohMzmWqZ5xIJRXr/1Bas+G8s7dRdlk5ydhtlvobB0iqBSjA6EZ/dW3m612C4WVmdhS3AxYzYxNzTE0NsNg18jiRVVL7yhWp4X5GS9OlxVXjJ0XFi4iFBoVBLSmoM9D1/Mrg8KOy6GAf3zZc8uXa2ZcW47LZSYlO4HBru3/n1nd+XMvzU7NUXldEZd+eWFPz3vk5nJ6mvp2FYADZBan0Vm3dJGZnJXI3Ow8X61+iLbqTopPFvAHX/ttcsoyeOK/nkMpxQ+/9HO6GnrXPZ7JbCTgD0oXzj1mtVuouKGU6sdqFxdqbyQhPZ43fPheXvvAK3bV6Em8uEgQLg4Ng8HAtXef4Cdfe3i/h3JVMVlMlF9fQiCgabncjSPWwezE7NY77oLVZibGrGgLM/UluI2qOGabiboL7UvnKkjm3EK1kPzsJNwuGwQ11TWhgL+pdRBtmGba7qe4IJWMBAcdrSPM9IW+Bv5lZf+mxmepPd9J+el8xoamSE6PW3FurTXZxWnEJThoq+ni8lMN5NxQzFhBEu7sWGIyXXT2j5McH0NgfA6zzUx+YQq+YQ8d7cMwOsc1rlhAM/hYK9ZeHzf4PTQ/sf3ui3GxNgI+H8F5H1aHhflZ77b23+9a9fUvtJKan8pA296kpRy5uZyaJ+tXlJDcKXeii7999FNMjkzxH3/zA77wxP9ZfK3kVCEA19x5DIDX/d49ANzyhuv52T89wj//2b/zx//6ezhjHTSfbycxI54jN5fT3dTHQ+/+R9780dfy9T/+V+Zm53c9TrHE4bZz7/vvJCEtnpG+MWwOKy9/9+0kZyVS+3QDf/76h3DGOvi9L72XpMwEuht6mZ2aY3xwAoPRwCt/6w4JvsW2SRAuDpVjL6mUIDxSFmINo8lIzfNLHR2Lj+VT99hlAOxuB7EpscQkurDHOrE6LXgGJ5idnmNqdJr0ghSqH60N63QxcU6yStKx2C2013QyORJ+DWqfd+3teqPZSG5RMiajAYPBgMGgUApMCnJL0hZmchXmrlHsZoUnoGnrDqW4nMpKpdDtJjY5hkCMgSdG+kFBQ+8QQ0Ux2F+dQP6zSTjMRgaXBfRXTI3OYDAoGi91UXVTGQGfH6fLRmZuAl21XSxPSplsHybreA5zNiPKoCh0pWC0GLg4O0nAP48yWhi9GNojODpL2xONi/sqpZio3VmOfs+FFvxePzMTsxScyKft8vbKFhrCvPsQLQF/kJT8tD0JwpVSNF9oi0gAfuSWcj7w+XdSdDyfQCBAdllmWPslpsfz1gdfx+1vuYn0glQATr/8xOLr6QWp/L/ur9Db0s/D33kce4yNi7+qwRnnDC0E9folrWUHzFYzvnkfb/nYa3nzx1677jYV15fyxWc/iyshBpsjVPc/U+rAiwiQIFwcKsdeUrHfQ9gfO4gNCo/n4oyNCT1QYHZY8QevJEJobG4HMdkpGAwGghrMJgP+eR/2GCvHX3ENRpORodFZejtGGO6dht5pyo5mU/fcUhvzydH1c3btMTbSC9NwxjoIBIKM9Y/T3z5Ew9m2dbffynDPGMSE3ktCsov0zFjaL7bT/HR4M8RVr7uW5wOhRXJOq5mWuj7m5nx0dY5QemMemW4XacluPLHzPDXdBybILszk0s86UFYL+bdXEmNQ9FR3MjkwSXfLIFXXF1HzXCs1C2kvlVXp9LUPU3i6CEdSLOOTcwz1TzIx58P8bDdt2VYKcpMYmpxh3uenICORnuEJBidnSUp3M943yers/92kHyzvBrmTRZYqzBru0TQd5TsyV1TcUMLlJ7d/t2G12996E3/87d9bfGw0GskJMwiH0Nf8SgC+kYzCNP7+6b8A4Nf//iQ3vPo0WmuUwcD7j39kw5QWscSd6CK3Mou3Pngfhcdy6WnqI70wbdN9XmwN48TekCBcHCqJ6fGcfOkRzj28tlvg1W37wZgz1kn1E/WLj4+8/CS1F5ZqaudXZNLWPIjdacUz6aHyZA6Xn2kmLS+Z/u4xqq4rordjZct4vWocy9NE0vJTSMlJYnp8lo66HtpqNl+kuB1+rx+D1hRXZNB2rpnhpvVzxzfS92QDxjOFBDRUWizonBiqG/sB6J2foW96mtHZWXx3jJHvTaVtfJKfpXZz17F0Wi720doealyjYuzkV2YTYzQw2NhHalYC0xMessvS0SYTtoIsWhcuWJYb7p/g2msqeLxrELvVTGLQTFfNICaTgXn/PGlFqYz3TbJ6IjbgC2AwGnbd+MVg3H5AbdinOuHLTYxEf2GmUoqRHa4zMZqMizX9U3OTGR/auHRmNLzkTTeuePzhr3+AT7zqc0xtcHEsQndT/+x7H8EVH7P4XHxq3P4NSLyoSdt6cegcfbHOhu/S2NDKX8yLAfVCrBUMhB73tw8RmxiDDgYpO55NbIJzcZ/Bvgkqbz8KgDPOQfmNZVTdVE5qXgoDnSNUP9FAW01XxLsFGgyK7IJk2i+07qjs2/jABBVOG0alGDjbTv0PXiBlYpqKlBiyE1zkp8STnRCLNxjA6Z7HpBQoxWDFyvehNbS2D3OpZZAeoxF3WQbzykj95T5qL3bhmdk4T7fux3XEOm1UZKYwvPC98PuDKGB+4ZN4ctn+BoMiwaoj8rXcSX73etVz9trE8BQmS3TniqpuKqO/fWjb+137ihN86MvvW3z8t499ij//rz+K5NC2rfKGUr5y8W+44dWn93UcB1FiRjyv+sBdfPqHH1sRgAuxn2QmXBw6VTeU7vcQ9txOshJW77JhMKOvnGMp2MvIS+Lyc6EKERXXFjIxOoNSCpfbht1u4tRdxxntH0cHNZefblzvqBGVfzSHiYFRvJ7tLS5cztI7xtGcFFoGmlHAeN84433j5BXF0dk3ilLACeicHeHO0gLmvPMYdIDcM1kE5xSo0KypIvTvrtYhapsGOHoyh7rnwkiz0Zoyr42JS0Ok+43kZSfQ8GwbNoeFuCwoKk5lbtn7Cwb1inzotKJ0+pt31oVxJ6klByEdBaDs+lJqHr0clWNnFKVR82T91huuUnFDKb/9t+9gsHN48U6FUmoxX3g/JWUm8snv/yEv/OIiz/7oLP/zDz/b7yHtCXeii6ySdNLyU6h5op6R3jFe8d6Xccfbb6XkVIEsmhQHkgTh4tCpvLEUh9vO7OT6jUquRt2NvSSkx23asCghLQ6rwxIKFBe6TALEpbpJyUlmenaO1IzYUIlrwGm3kJbuxmQx4nWYsVqMxLjtTE96VmQmWy0Gqo5mMtg5jMOgeeFnSw1gLLaVXTejxea00Xqpc1fHCPoCGAbXWQzaF3pOa0IXJAoMphmG/KHgzJ19kos/HFyzW1JiDEmueHr9fuLSYhnv37r7p2d6nv7ecQBSkl3Mz/uZn/Nx4ZHQuRJTVtZpL72xAr/Xh9nlZHbWC3sahO/oVJFniF7wND87v6PFmPd96B6ySjLIKsngmw3/l/bLXcSnxkZhhDujlOL0Xce55s5jFJ8q4F//z/fo2+cOpNF08o6jfPw7H8KdGPr/M++Zp691kLzK7H0emRCbkyBcHDoms4mc8kzqn23eeuOrxPjgJEdvKd80CI9Pj6P14lLOtys+hrzKLOwxVuqeaVqzfe+qZop956HsuhKaJj3MTHnQWnPkVC4XH64m4A/NkienuVfsE4xANYnw7P48sRmJDHWNr3l+8IVOCl5TTmyMnSlzCl4VRHsNxJtSURiYqpog+3IiRm3AaDJgNCgMRgPKoFCEAp6YrHjGf3BpyzEk2830mxRev6a3b4KEFPdinXEAv29l6kltbf/Cv0aIibVz7JXX4p+dJ2AyY7UYuPij58J67zua1T4gUXhP6yCuxBimopAfHpvkZqR3bNNtHC47cSluepc1SvqHB/6Jm153BoPBQHpB6paLKfeLUoq73nEbL/2Nm/np1x+h+VwrP//mrxfz2A8rZ6yDo7dWcN09p7jmrmOk5CSveN1qt0oALg4FCcLFoXT6ruMvqiAc2LLqgdm88r9zwwvbL23XVddNXkEqBgMcOZlL9eOrb9Wvqt6xR0G42mXP0IpbKjn360byyjOourWC9kudeKY9ZNxaSVfXKLGeIOf6esjIiOeSHuRaYxqXpoLk25Oo7Z3kJScdtP5w4xJ/dps51FBli4Yevv4ReKGWsmuKcCbGUXt55exkILDx/tMTHmrOhxa7GgyK0iNZlL/kCO1nm/FMbXFXaJtfPpPFxNABaYo1OTJN1XVFXIxC456UnCRG+8cZH9z4LsbN913H73/lt/jhl35BV0MPP/jHn5Oal3xg0nXCYTKbuPf9dwJw7StO8uf3/c2havwTm+TiwX/7fZIyE0hIi8Pusu2o4o8QB40E4eJQuum11/Ivn/rP/R5GRFVcX8Jd97+EqfFp+tuGcLjtNDzfTHpBKhabhYu/vkxKdtKGwbXJuvv/zjMTszhinRSdKSHGaWFyeBKjyUh7bTclp/J54x/cQ2xiDE/89/MA6GBkF2BuZKczd7YYGyU3lnP53EKlFqtlIZBVlN9UQXVbqOpJisFKMxA/bwfLUmnA4MIMfJNrEiOaWJcdi82M2WLEoMGkDKDA7wuQcMxO6wsd64xiSVApvB4v9Y+HaqtbbGaKTxZijHPT2T+9uDh2K8Ggpm6htjjuOKyJiVjtFpJjjLQ8v/aux3bDxZJTBdQ9t7P65NHQ1zEcleP+5idez3DPKJ983V+v+3pskotrX3ECo8nIa373bmYmZ5mbnec3P/H6QxWEL3fja67l5tdfx2PffXq/h7KlwuN53Py667j59ddtq9SjEIeFBOHiUErNS45I6baDIqc8k8/97OPYY2xbbtt4tpWffPWX/OKfH1vRnCMSJeVScpMpub6c9/3561BK8bY/fjUAI/3jxKe4Q11L7zzKH9/7V5x7pGbP0lF2cp6KW6vo6Bil5mwol7zwaA4tjUszz4ZlC1W9o6GZZD0ehJSl5Be30QFM0TM7yU2n02lqGYKADzxQlZJES/3S8VLCaN6xeqLcO+ej/qnQ3QajyUjBiXxsZSl09UwwPRV+R0S/L4Df52FmErKuryI13kJ/Yy89zQvpLNv40Thyczk1T0V/se12jPSNk1uVQ0fN7tYFVFxfgsNtp626k3d8+i2Uni4iKWtszWeJ0WTEarfwye//IVU3lS8+73Q7+MN/+uCuxnAQvPEjr6LgaC6Tw1OMDoxz7n8vbat5VrQZjAbufvdLuf/P3yjlA8VVTYJwcShNDE1itVvwLGspfpCUnSniA3/3Drrqe/ne53+07qLC5OxE7vvQPZx5xQnS8lMwmcP771hyqoCSU+/jdR+6h3/4vW9S/VgtPq8/7NSQU3cc5d7338lg5zD/+PvfBEJVIopP5HH3e17Gydur1uyTmBa34vFHvvI+3n/mQSb3oI4z7KxpjTKb8UwvBbJm58oLHBNQnBRayOXtHsecbWKgbxJSILB4vqXz6gwjtISeMRoUJosRm9OMMigMBoU2aZISHRgNCqUUJpMBozFUTcVgCOXnuhwbf48D/gBNz4dSrAwGRe6RXFypCfQOTDM+Fn7Tmr7OEcx+N309E8SkxGEwGDGYN19AGxPvJLciC/+8/8AF4FfEpcWvG4THpcRic1rpb1u7eBYgIT2ev/jJg/jmfZSeLkJrjdZ6MZ0hMT2ee99/JzVP1tNyoZ3f//9+i5vuO4M7wbXu8a4GpaeLKD1dtPjY7/PzwdMfo/XS5ndydiqvKpvr7jlFR103dc804ff6mfd4FxeTn3zZURIzEohNcpGam0zVzeVYrHuz6FuI/SRBuDiUMgrTuO/37+Hbn/7efg9lDZvDynv+4q2Unymm/Ewxd95/K2MD4wx1j+KKdzIzMYvBaCC3ImtXZbNyyjL5y59/nIA/wHDPKC/84iJmq5naZ5rILc/E4baTlJHA+NAkL/witArz7X/2Bn7zT+4DoK2mi6TMBN79F2/l9rfcuK3b64npcTz0i49T/WQDX/jtr+34PYRrJ7f+e2raSM5MYnR0ioDHv+JOgVKKxuouPDNLJQErX3uSHjwUeSw4RpykTmTgGTeQPu8mGNQ0MYEr08nEtAdfUONJM9K1WFIF4uOCDD1bu+mY0vNTwhp7MKhpu9gOtAOQdzQXd1oCvQMzYQXkBlOoLvjswmz6RhcxCWlxpBem0lbTTd2zLZgjkNIULX0dIyil1ryXr9f+He4EF9/+9H/yrT/7d47cXE7B0VzOP1KNO9HF637vHgqP5S1uv97P0u/8/buZm53nnx78Dne987YXXTk7k9nEl879FQ9/+3Hqn2vi6R+8wFD3yNY7bqH4ZD6vfeAebnvLjYuTDFprlFJ4530SaIsXvYP7iSvEFjarFLIfCo7mcP+fv4ljt1bgjHWseC0+NS5qt1WNJiOpucnc896Xcc97X7buNpefauBf/+L7nHnFycXn8quy+U77P+74vDllmbjiY/YkCN9JcZTx/nGyz2QT81vlTEx78AdjSD4ZixGFC5hJ8BJrVgTN4AjYmDMaaO4MLUaMt9npnZgi2elgeG4p6C3Jy2D0Uujx6sWi4SRG+by+rTdaR/ulDliYpcw7kkNsRhIDIx6G1yu5CGuCyPVicIvNjCvRRe0zSwucvXM7G99eGOkbp/BUIc0vLI335MuOLP5fe8uDryW3Ioszrzy1o+DO5rDygc+/M2LjPWwMBgN3vP1W7nj7rXzg8++k7tkm/uv//oQnvv/slml/VruF+YUa9zaHlZtffx03ve4M1997zZqLniuPJQAXQoJwcYi96gN38uh3n2ZmIvxb9dGQUZjKOz/9ZqpuKiMpM2Ffx7KRyhtK+Ysf/fF+D2PnwpwIV0aFOzcJR2Y81mMpdGZYcWnNfCDIr3t7CC5Eo0evS+GZwFK1mWvi8pgcXUpd8S0sOPWvWng6ZlzaZvWEajCMMYa78HIz7dWdUB1Ky8goTicpL5WxaR+93eOLAc7qDpk6qHHG2vFMewkGAiRlJWB32ems37zizkFjd4e6t9pjbLz3L3+Te3/7rsXXjEYjN9933X4N7apiNBmpurGMqhvLaDrXSv1zzZSfKaaroZeEtDjGBsYZH5zk5B1HscfYcCXE4Jmew+a0EvAFiIlzbn0SIYQE4eLwKjyWx0vedAM//sov920MxacK+Ktf/MmL95fOASkQkX48n/hri7hsnKNlOrTIsjQnjrbRfqrcNtIcTob05OL2c3YfrEpnbx4dxWY2MucL4F0oFRhYlWffODpCUVos/f2TqFXxdDgz4cEIV5PpbeqjtynUwCchLY704gyUzYrWq2bpg5qCI7mMD09htVvoqO9lpG/r5kIHTUd9L98d+BpxyQenMc7VrvhkAcUnCwAoOpG/4XYHoVuoEIeNBOHiUPvdv38XrZc6FpvRuBJimBpdu1jQbDFRem0R1959nH/6+P+LyLlP33Wc9/7lb7x4A3D2rk74ZgszEwpSGchMoq15kLJrshhZCMIt3mWzwctiUpvVSL1nZX1uZQgtxixITqC2d4jRmVlOZ2cStAUJAhqN1qGShQkWG7ZyC2PKS0FmAn4dJIjGMr9y9nk9qbnJjPXuPtd2PaP944z2jwNQeUvlitcC/gCzUx66m/rX2fPwMFlML+r/b0KIq4sE4eJQM5qM/NZfv41zD1czPjjJ/Z98A70tAzjcdjpqu5kYmiQuJZbTLz+O1W5Z3G+3gXhWSTqf+fHHDm2t4EjZq/cf2CQnNeXWSno7QoHtVO80dosJj89Pa+cwtiQjVqOJMc8sRemJNPeNUFSVwHOBlVUgrrwNuy2Upzoy62Gks4dTxRk8N9i1Ytt4m40J5gismvs22rZORTKZtg7UI2H196XpfPuenDfabE5r2FWEhBDioJNPM3HoVd5QSuUNpYuP3Ymh0mIbNXd4y8deS2J6An/z7i/tuGvcNXcee9EH4Hsp4PVv+FrLyMziv3t6xzl6NItnRwaY8Xg5HpfB2e4+3E4bwzOzXFecyVjsFKxaz6gXckuGPCvXF7zQ1MM1xZm8MLjULXNsbo5jGalMaQ+JdgcGA8wG54nzmlk5v77WXv3IXK0/mvu9/kMIISJpb6ZlhDhg7rz/Vj79P3+Exba9FfpWu4Xf/eK7+OAXXrxVFPaDf4N28Ca7halVteLranpIctoB6PfN4AsEyU2IBwXPDPYwFVjbBEcvlF9pGx8j1r6U26pQ1LQMUJG4srRg0K/pmB/m3HgnL4x2Ujs+QH8gjJrpexQdX61B+NxM+A2MhBDioIvKTLhS6m3APy88fK/WessaZkqpROC1wD3AESAT8ALVwDeAb2it170nrUJTkm8H3gkcBexAP/A88Cda64PZfULsqzP3nOTWN97A//7zo2Ftb3NYed9fv417339HlEcmVgv4109HiUl2M6OWSvDll6diTbChTYpsBc3+cQiuXD9qUGA1KMxGA3ajJtYUIMM+y9GUIFYTlLgVPq8HlzVAuzeZgMGI1ewnzpmKQQUxKDAYNK9OiANDAIMChcbkMTL6kZeilcKKwjjgRysFCjSKoAbjzMw67yIars4o3O8L4PP6MVvkJq4Q4vCL+CeZUiob+HtCtQditrHrG4AvAX3Ar4BOIBV4HfA14G6l1Bv0qvwBpZQN+C7wSqAB+A6hm80ZwM1ACSBBuFjXb3z8dTz6H09tWR/57Z98A2998HUYjXLzaLmdpvNs10Z1isc7hzl2x3GwW2hvH8E0pxkan2HW72NoOpS6kJkVw8zgXKjWuIIjGV1k+IYAuD0hhZvs3wRgrKCSCV83ybbj2P2hC7MG/+v4Rm/oPSbGx2JQs8wEZggASa4imqbrF2uY21QST3kzADAbDaQM+PHOrvy5OpYTH7kvyovU6vKLQghxWEX002xhRvobwAjw5W3u3gi8CsjSWv+G1vqPtdbvAsqALuA+QgH5ag8RCsA/C1RorX9nYd/7tdYFwM93+HbEi0BmURqf+dHHcMVvXHHh6K0VvP4PXikB+D4KBNZPRwHo/dk5Ghr6mZz00NI0wNjFIQqcbgDsVhNxdhst/SPkuN0LeyxdOFgMS8dVCx+H0/6lzO4yy9nF7Ue8E1gNCZgIpTD1eAZXNOzRaing9gWCZB1LXTtYQ3RmqN1J7lXP7M3F0V5TSjEreeFCiKtEpKOKB4DbCaWFbOu+q9b6Ea31D1ennGit+1kK6F+y/DWlVCHwfkJpJx9fL11Fa31wW8CJA+H4bVV8o/7zvO1PX09C+tJMZUyck7/+5Sf4m4f/FLvTto8jPLj2qkThRukoAJM9o5SnuBYf5xckc254gKNVmfhdBhr7hwHIsIW2sbD0vbQuC5wNKvRx6PH3gSEUQOtgB2fcSzni3Z4B0ux5aA3jvklyHDmLr2m1coz++LWtz3UUYvAjL6lCm8xkVuZSdn0pR196DJP96qzZrLXetFKOEEIcJhFLR1FKlQOfA76gtX5MKXV7pI4NXPlNubpEwlsIXUh8C3Arpe4FsgnNxD+itW5GiDDEJrl5+5+9gdf8zst55P89SWddD694z0spOp6330M70OJSY3npW2/i4e88EdXz6C0Cr+b/fobMe64lOSeOp4b6KUxLRAU0BYnxKAUTc/P0DU1CEEzBpSw5m8Gz+G+1bE4iYCjCGBxg2p9Mpd3CVNBE7fQsFqUY8HRzxF1CzVQjYCLJkoxBGTCarJTEJ2BQCoNS6CAUlaSilMJgUCilcOoAlbdUopQKLZ5UBpRaKCm4EKAbTcZlC1H1Yr671qF/KwU1v6oGQjPgUxNzzEx6mJn00Lew15Ebl6oFXW188zKvIoS4OkQkCFdKmYB/IZTH/WAkjrnq2G9fePizVS+fXvg7FmgBEpe9ppVSXwIe0FpvfC976TxnN3ipbBvDFYecO9HFaz748v0exqFhNBqwx0R/1nWzdBSTxUR+eQYxcx6aL89x8kQaPR2jdNYspS0cq8jAGwwQ5zZj8c1QFZdMkACXPT4u6dfj1wG0hgA5BHWQmJk8vlt9MyNzc1QmxPL+I//IdXE3Ywy+QECHjptnu4MfDS3VG1cBA72XV6aFlKck0lq/lN5yPNFJ/bmVNcpXK6jKpuXSxttY7KF0mPxjeWijad3W83uVq78ffPMbl6sUQojDJFIz4X8KnABu0lp7ttp4mz4HVAE/0Vqvzu++UjfsU8AvgY8A7cC1wP8HfAAYAj4Z4TEJIRbsxUI5HVgZVCakxZKWm0wwEKC7oZe6pxoAOPKqa6l7rJ3SI1kkOuz4AgESrTZqH2tDa4hx2TCfdNJra9/8fMZORubyAMXl0Qnm/CnYeIzllwIxPMzN8S/j8bEJCCoMmLFbzRiNBua9fowGhTPBRnyiE6PBgMFowGze+muljJvnrPjn/cQmu5mbDzLQuTYABwgGg5itpqsyYPXKTLgQ4iqx6yBcKXUtodnvh7TWT+9+SCuO/QDwYaAeeNs6m1xJuuwDXrvsAuARpdTrgXPAHyil/kJr7d3sXFrrUxuM4SxwcifjF+LFIJpBuNYah8tOYkYcsX43cUkxDLQNMtQ5xHDn0Jrtq3/wHIXXFGGoDxJvNoHRCGqCI/FWgkYDI94go+fnYFmVSRW0YA4UMu9JYXTGSteEjzHPHLk2O/6gRikoNR2lIuYsCh9DlPPVoQBBAviDvRxzpvDv/zc3dDBzAAgQSjvXeGNMDHjnF5dvJmUnbfmet/p6BoOamOR4+trXvv8rap9pxmIzU3V9MTVPN215zsNk3rPpR7kQQhwauwrCl6WhNAKfiMiIlo79QeALQC3wUq316DqbjS38/bPVM/Ba64tKqTagECgHLkZyfEKIkJ0G4VprYuKdxCW5cbhtWGxmlFIEvH7mZueYGZ9lYniS2fEp2sensNgtdNd1bXnclhc2XgpiMhtJy7weAP/47TQPK1pGJ/HrIKGqqksNdya9S8HeT7sTqSoJzTonM4lNHWXEH2ocM6q7OX68iAsX1s7Qev1+cnLi6eoMfVSFkyRiCKPTzmYB+OK553xUP9lAXkUWc7PzDHSObLlPXmUWNqeN+udbloqvHzAbNW4SQojDZrcz4TGE6nADzG3QxvurSqmvElqw+aFwDqqU+hDwd0ANoQB8cINNG4A7gfENXr8SpNvDOa8QYvvCDcKLT+ZhthiZm55jemyGscEJpodDf8LhjcAMqN8XwFMzRML3Smg3z9OQOrf1Tlrz/xpsfKTEiWIGxTyvTYjha4NL3RvLTk3hG8sNLcJcWGhpNBkY88yRkBoDC0G4CsKRO0/gm53DaDYxOzbNzPAEQ71jBANB4pLdEb+z0F7bjcliouqGYi4/07xhRZvEzHgCQag/105uZTYTg+OMD05GdCyR4PdefSk2QogXp90G4fPA1zd47SShPPEnCAXLYaWqKKU+SigP/AJwh9Z6eJPNHwZ+l1DO+OrjWIHihYft4ZxbCLF9RuPaUnyrVV1fTPXjtXswmq1N9I7S8BdDlLzmGNy5SelJrSkIuCg7CyNto/z3kTdwTdbTZBkbyDdcwKpymV+oijpqqqOt14lnWQ52eVEaLf0jeJPiFp8Lzvupudi9+Dg11c1A2yBWhwVtMDLeN0ZGfnLE37Pf66f6iQaqbijh8jOhOwXxKaFFpGODkySmx+Pza7qa+gHoqO8lJs5ByTUFNL7QGvHx7MZm5SqFEOIw2VUQvpAC8p71XlNKfZJQEP6t5W3rlVJmQikiPq11y6p9PkFokeVZ4M4NUlCW+ynQCtyllLpDa/2/y177BKGqKY8u1BoXQkSBybx5EF56Tf6BCcABBjqGsNgtDL/QBXcUhWr+LSjyx5A3YcPsBd0yQ/vFLq6EoE81JfCdYDYp1iqudVkpCphpGfOgTXNoo4/jFfE8fX4pTcQfDAWLXcPj5Ka4GBqcwr8qxcPnDwXt87NLs/wb3FGMiJqnGik5mc/E6DQ2u4WBzmEqryvCYDZR/fTKNJ7p8VkaL3SSfzSX4e4RpkanNzjq3vL7ZCZcCHF1iHjb+jBkAnVAB5B35Uml1P2EAvAA8DjwwDq/jNq11t+88kBr7V3Y7xfAT5VS/7Vw3NPALYQqo7wvWm9ECBEqEbgRV0IMPY3rV/DYL1qHOqW2VXdSMGuh1RnK5S72xWD9Ri/dG+QcmwbtUAiD8xP8aB6yu47zzA+mFl/PS/NzIjEFs91My/go/mVlFZOzYhkanGJ1JsjI8AwOt53ZyeX1yqOr8VwbFpsZ71zofdc81UjhyYINt2+r7SE5Mx6bw8JQ91bzItEnzXqEEFeL/QjCN5K/8LcR+NAG2zwKfHP5E1rrJ5RS1wB/BtwGxAEDwFeAT2utuxFCRI3RtP5MuNaa9NxEGp4/eD2zYuKcAOQOQasT0Jr8p/x0brLoL9C3FB6btA1P3AhgWXyuvW+EgoR4uhr7sdvMxNvdXBufChr0pJ+KvBRcSmEvSCQYCBLwBwkGgqhEC97pOYJaEwwEaa7ujNbbXnQlAAeIS3FvuWhzqGcMd4KT/Kps2mq2XhwbTZITLoS4WkQtCNdaf5J16nNrrdtZZ7Jno+3DPFct8Kad7CuE2B2DYf2528rri7n8RN0ejyY8eqFOiaN3DvKMnJqLp7OmbdN9Zgf8JFJGQ7+FjqkJKhISSckNMtixMBuuFLEJDrp6xvDM+air71tzjPw4J0M1K+cFXBaYGNr7BZCZxemY7VYMRkXb5Z4tt58cnWF6wkPVzWXUPF6/ByNcn1RHEUJcLaLfZUMIcXVbJwZPzkqg+VzL2hcOGF/bOADpfVt/FPrmNGfbFR1ToWoutaMjGCwr7wI09gxj3uDOAEBgncIkZqs5/AFHSEZRGkP9E3TU94YVgF8RDASpebqZ8jPFW28cJTITLoS4WkgQLoTYFZN57Q01p8u6YrHhQaMWrhxGGgYwBjTejpkt9zHZzVgHLRx1pFNoS6TEnoTFvjLgnpnzUlSYssERIBBcm89sNO3dx/CRWyooOJ7PUN/ErrppzkzNUXVzOVU3l0VwdOGRmXAhxNXiIOWECyEOodV1ratuLKb60YNTDWU1m9NKV0No9ndyeIp7zrlprN06D9vktjA8Pclww+zic9fnZpE+HsA25sWoFQbApTUlSbEYVajxjmLhbw12k4HVVdGj2XF0Nb8vQFtt+DPfG+lsDKXa2JzWXR9ru3zStl4IcZWQIFwIsSvLZ3JTc5Kof+bgtklPy0/B5rTSvmxxYXB8fpM9lminiVS7k0J7HFPaR/XYIE93dIMTrv3FMCO94wAMGw240hOYHJtdc4zEVPea5zZa2BoN0xNrx7QbFquZMNodRZTUCRdCXC0kCBdC7MqVIFIZFGaL4cDMVBYcyyUYCBIMaExmI/OeeXqa1rYMsJnCKwqolWKmY5YLOpS6cqIilfMjA8DK2WwdCJJTkEzN2Y41xwiu063SuEWd9UgpPV1E+zqLRXfDYIx2QcW1/H5JRxFCXB0kCBdC7MqVmfCq64u59OjlfR7NEpPJSOPFtYHwav7p8GaHp7Sf4LJmOw21A+S4nUzPzTPHytnZsd7162mvl89sMEQvHSU1L5lgIEh8ahxNl7rQev2W9TvlnQsvrzwmzknA7ycpM5G+1sFdNdwJSE64EOIqIQszhRC7opSB9Pxkap9u2O+hrKDCDG7HO4c4ciqPGKc1VL4koLFZTBy5Jn9Fqs1EcG3gODw5w5zXz+oSMT3NA2TmJ4U6A2mNMigsNhNmi5EYt524JBeJKS6S0uNQG5R43K3y64oZ6ptkeGAqKgE4gGd662SUuBQ3QaWYmw/S1zmCspiovHHnCzottr2vJiOEENEgM+FCiF0xmY0YDAevdFzD880Unyqg6Wzrptv1N3QzrGwE/MHFUHre46Pm2VYsVhNJGXEM9I6TO24gzWMjPjOO/vFZgsEg/oWGO66SLBKLs3CZDWhvgN7uMZJSYxloHcTvC6B94J2Daa+f+eHxFed3V2ZE9H1b7BZKrimk4XxHVALv5bTWmCymDb/3BpOR7NJMqp8OrRO4cieg4VwbeUdyGOodx+mykZqdiNaalgtteKY3z9Hfy4WsQggRTRKECyF2RSnobjhYremvmBiaxGgyEtgkjzjgD5CZEUdv59oUEu+8H1esg+HBKRrOhRZz2m0WAl4foxMzzC6kY5hcDga7x0jPjGewNvS18M751gTByztVXhGJoPLojSVooxGFwusLcPnZvavRbrGtDcJLTxeiUfS0DCwG4Mv5fQHa60Jfp5mJWQa7Q1/7uGQXBcfyGekdZaBjCL1ODv3MpCcK70IIIfaeBOFCiKvWYOcwR24up/rxzTt3puTG4SpICl1RhGoKohSAwmQ1UZETx6VfNQJQdz5UzjD/ZA4NncMAmBcWV9qXpUpMT81ReiSbhvMr89INJiPBZRcFSu0uCFcGRf3T9eQfyaWtdWRX9b93wmwxw/IaKUphsZmpfrp528caH5pifCjUgTQuNY6swlRqn2la8fWanYxshRchhNgvEoQLIa5qjS+0kJSZwHDP+oslAWZ9Pi70jm34ek5m/Jrn+kamFv99pULMwMAEZqtpMRAOrBNgm8xGvMuD8F3mhKdkxtPX0E3d0w1kl2cy47UyMbJ186FIMVtX/hopOp63owB8tSsBudPtIL8yk5rH6wGYO8BNoIQQYjskCBdC7IrVYdnvIWxq3uMlJy1u0yB8rncUzBu/D78/SOl1+SiDCgXNBoXJbsEbCAIaA1CS4kRrQGu01mgNXq2p9KczN+kBrQkGNQajAa/Hiw5q/P4AO43BtdYopbAsK7HYVddDfGocmflJ9LQN7+zA22SLsRGb7MLutGF32Yl0FvrMpIeap5tJyknG5rBgtR/snzchhAiXBOFCiF3Zy2YzO9V0tpXssky66tfvFjlU0wknijbcv3dggp1mvR+Jj6HpV0ulG92JLiZHpxcfx6esbeATjvyKTHobuum43LXi+bGBcWYmZym5ppjG6t13x9xKd8sQABNjHmDjuwm7Nbxwp+L6u49F7RxCCLGXZJm5EGJXDFEqsRdpsUmuDV+b7B3FHWOLynmrx2bIKs9cfLy6OY9S2//6ma0mYlw25jYoEej1eKl7/DKVJ3OiXiFlrw32RC/QF0KIvSRBuBBiVw7DTDhAT9PG3SIVkBrniM6JlcJQnrX40LS6Q+YOgvD88gwu/bpmy+0uPXKJsqr0FfXODzu/V5r1CCGuDlfPJ7MQYl9Eq9lMpI0NTGz6ujPi2cxLGsdnKbm+BFhbknAnXz2zJfxMwton6ymtTN/BWQ4maVsvhLhaSE64EGJXDkvzFKvdwrxn48oawbHpDV+LhN6EGBwuW0Ta1Htnt+5UuVxP48Gs476V7MJkXG5b6EJPa3RQEx9r3e9hCSFEREgQLoTYFeMhCcLjUmMZaB/a8PXJtgFISYja+Yc9PqruOMZcTeeujmOymGh4bnslAL0eL3B42r1rrak6mcOlX1Wvee2Q/LgJIcSW5ONMCLErh2UmPCUnadPXB6s7or7ItGZ8lvjSnbWpt8dYSctNpKAsbdv7BtfpPHlQbRaAA/jm13YdFUKIw+hw/PYUQhxYhyEIL7+uhNqnGjfdxj/nI22TCiqR8sLMPIWnCwGIS3Ez0rd5tQ+Hy0b5yVxmh8bpreui/pnN38d6Av697aK5U1prqk5tHIADe94RVAghouXg//YUQhxoKgI5ztFUcUMJdc80EghjQV+CLfopGxpFe3wMFTeXoZSit3Vw4221JjklhstP1O2q1KA+JDPhVadyufTIxgE4gN8rQbgQ4upwsH97CiEOvIOeE24yhb/0xTS3Ny3RZ3wBetPimfNtfmFQdW0BbdW7yyEHCPiDuz5GtFWezOHSI5e23M7vkyBcCHF1ONi/PYUQB95BL1E4MTwZ9rbewfHoDWSV/uEpUu49tenXzxehi4KAP3Cgm/aEG4AD+Le4cBFCiMNCgnAhxK7spOPjXuqo7SYxIz6sbUdqu6M8mpUaOkcofdst61Yo11rjjeDM/EHtbFpyNDPsABwgIEG4EOIqIUG4EGJXDngMDkBiRnilB0fbBnA6LFEezUoXOkeo+M2bFx+XHM+h5EgWKSkxtF7siNh5jKs7dR4AuSWpND+7vYWmko4ihLhaSJ1wIcSuHIbqKGtaxW9AAWkJTlpm9yY3/IoLvWOU316FY3o2rHb0O2E0GvBzMGaRk9JjSUywU/dUw7bTZGRhphDiaiFBuBBiVw56dZTiUwX0tQ6EvX3MPkztaw3mJCeXf/ZC1M5hNBqB6NfYdic6ccc5cMfa6e0cZXx4qROpK85Bdm48tU/WM7DD9vOSEy6EuFpIEC6E2BWz9eB+jGSXZtB8rm17s63j0W1fvx6n2UDX/zxH2bXFXH6qISrnMJqie7GUX5ZG0DNH68V2rlQ+t9gtVF5fBoAOBml8rpHq9t5dnUdmwoUQV4uD+9tTCHEo2Jy2/R7CuuwuG/Nz3m2nO0y1D0FibJRGtb58m5nG8RlG+8ejdg5TlIJwg9FAWVU61Y9eXvOa1+Pd1qLLcPgkCBdCXCUO9n1kIcSBdxDrhFtsZjKL0hnsGN72vgOX2va2kojWeKrbAehrHaBkoZtmpIWbF79dpZVp6wbg0RIMBAkGD37dcyGE2IrMhAshduWg1AmPiXWQU5mN0WRgfnae5vPtOzqOb9ZLSmIM/UNTkR3gJnobllI0glHKeQ7lhEdW6bEsah6NzkLSzfi9fiy2va1iI4QQkSZBuBBiV/a7/nTRiTwMBgOt1Z3ULsunzqvKZqh7lJnxmW0fM9FuoT+Sg9xEmtPK6LJFis0X2knKSGC4dzSi5zEYI/t9yi9Lo/m57ZUXjBTfvE+CcCHEoSdBuBBid/axUHheZTZt1V0E1qm00V7TRUpOEk63ncHO7aWlWLzRryICYDMqkvtHWB1uZxSlRTwI3+0di9SseJJSXEyPTtLfMkDzM/URGtn2SYUUIcTVQIJwIcSu7Fed8JTsREb6xtYNwK8Y7BwmoygNi82Mdy78wNrbPwZEt7mN02wgtbGbhnW6dPY090X13Nthd1jIyUug9ql6dlfXJHJkcaYQ4mpw8FZUCSEOlf1IR4mJdRAMaqZGty4n2NvcT9HJgm0df6S+Z6dDC1upz0f3OgE4wEjvGEUn8iJ6vp3MhGcXJmM3Bqh9av9mvdcjZQqFEFcDCcKFELui9igd5cgt5eRVZWOymMguy2S4J/x0je1WcBlp6cdhj17OcV6MlZofn910G7M1suc3bqOpktaaypM5dF1sZahrJKLjiATf/N6kCwkhRDRJEC6E2JU9q46iQ3neCelx1D3btK1d52fnt7X9lfb10ZIw49lym6ZzrcTEOiJ2znAXZrriHBQWJXHpkUubpvrsJ5kJF0JcDSQIF0Lsyl7khGeVZjDYFVpcuZPa3201Xdu+WHBF6eKiwGXl8haz4BAKNPOO5ETsvIYw7lgUlqejp6doOtsSsfNGgyzMFEJcDSQIF0LsitFojHpKiis+hoH2oR3v75v3EZ+6zS6YOyhtGA6X1mF38fRMz0XsvGqTmXBlUFSeyKbx6TomhveuPvpOycJMIcTVICpBuFLqbUopvfDnPWHuk6iUeo9S6r+UUs1KKY9SakIp9YRS6t1KqbDGqpT6+rJzF+3unQghwmGMUkv0K2YmZnd9jNS85G1tP92186B/I06TgcEnasPevu1SBzHxkUmLMW3QrCchxUVmegyXflUdkfPsBUlHEUJcDSJeolAplQ38PTANxGxj1zcAXwL6gF8BnUAq8Drga8DdSqk36E2mkJRS9wLv2sG5hRC7cM3Lj68IlE1mE3EpbjzTc8wtzOYajAZQCqUUvnkf87PzzM3MYzQbcbjs2GNsmCwmjCYjJrMRo9mIyWRiamyap/7n+V2P0WQ2b2v7weoOuPnIrs+7XL7dRHP/eNjbB4OavIosap5s2HrjLawXg5cezaL9QgtDk1vnqB8kko4ihLgaRDQIV6F70t8ARoDvAx/Zxu6NwKuAH2utg8uO+SDwHHAfoYD8exucOxn4KvDvQBpw6w7eghBiBz79Px+LynH/+4s/5R8e+KeIHKv6sVqO3FxO9eN1YW0/P+khPdlFX4Ta1ys0sxfbCQaCW2+8jGdme4tKw2G2miguS6V6H1rOR8J2F9oKIcRBFOl7yA8AtwPvBLaVUKm1fkRr/cPlAfjC8/3AlxcevmSTQ3xl4e8Pbue8QoiDa2Z892koy7Vf7trW9gkRLFN4NMZKd936dcE303apA3fi7m/s6WDoJmJadjzxMSaqH72862PuB6WUBOFCiKtCxIJwpVQ58DngC1rrxyJ13AVXisKumwiolHoH8Brg/Vrrg1fUVgixIw9/5/GIHm/e493W9ub57W2/mZna7V0AXBEManIrsnc/AAUVJ3MYauqmr6V/98eLgvSCVL5y6SH+pfUfeM3v3I3NYV3x+l3vuI1/qv8CL3nTjfs0QiGEiJyIpKMopUzAvxDK434wEsdcdey3Lzz82Tqv5wJfAL6ttf7vXZxno5phZTs9phBi56ofr6O3ObLBotfjxWA0hJ0S4h+eJFQ1fPfchWlQ3bGjfbfTmGg9FrsFh8vOsz/YfW59tCRmxPOZH/8x2aWZAHzw/74LZ5yDf/0/oQxEm9PKA//4Hiy26DVREkKIvRSpnPA/BU4AN2mtI73C53NAFfATrfXPl7+wUDHlW4QWYj4Q4fMKIfbJ3Ow8n3jV56LSLCa9IJWepr6wth1r7IXCzIic17OL4LGvdYCCo7m0XgoF8SaLCbPVjNlqxmQxYbKasFgtGC1GTGYTJqsZi31hFlnB0MA0c/MHczGjwaB45fvv5B2ffjOu+JVpN/e87w6+//kf45me4/pXXSMBuBDiqrLrIFwpdS2h2e+HtNZP735IK479APBhoB542zqb/D6hBZj3aK3HdnMurfWpDcZwFji5m2MLIbbHbIl44aalY1tNWO2WsFJThhp6sVXkMReBNukTgfBqgxeeyGfe4ycYDBJYqAIyN+3BYDZjz0jBO+dDA17AGwTmNMz5WMraW19qxjbrpEdJ8akC2qs7yT+ay8mXHeX2t95EftX6TYmSsxL5VtPf0/hCCydeGtlKNUIIsd929ZtuWRpKI/CJiIxo6dgfJJRmUgu8VGs9uur1YuAzwDe01j+J5LmFEPvLaDKSVZJOw/OR79zYXtMVfpUUrUlPjKGtd1fX+AC4jYpwen2aLCZaq5cWcCqlCPr9TAxPUXxDGa114c3iHzQJ6fE88A/v4cbXXIt33ofFGl7JyPjUOM7cs+4ciRBCHGq7XZgZA5QA5cDcsiY5GvizhW2+uvDc58M9qFLqQ8AXgRrgtoUKKatVAlbgncvPu3DuK+UJmxaee81O3pwQYn/Me+Zpr9nZQsbwjh/+gsuYCDUi0k09YW0XXDVjrrXGlRBK0whM7yLbL8pdTTdiNBl5/R/cy7ea/p4bX3MtQNgBuBBCXM12e893Hvj6Bq+dJJQn/gTQAISVqqKU+iihPPALwB1a640mj9o3Ofc9hGqFfxeYXNhWCHFIWO1W7nj7rfzo//vfqBy/8YUWqm4qo+aJ+i23NU5FoEyi1qgwg+DgOnnw2aWZ1D7dQOulDpKKsxjbSWv58LJhIubkHUe5/S03cf291+BOdO3tyYUQ4hDYVRC+sAhz3bb0SqlPEgrCv6W1/tqy581AIeDTWres2ucTwKeAs8Cdq1NQVp37wibn/jWhIPxBrXVz+O9ICHFQvO+v38aPv/JLNmmSuys1T9RjNBkI+DevlDLdMQTuXdTp1pqTZkXNC+Gl1gT12vEMdo+glEJrTUZ2/I6C8L2KwY0mIx//tw9x833X7dEZhRDicIre6qeNZQJ1QAeQd+VJpdT9hALwAPA48MA6M0ftWutv7skohRD7at7jjVoAfoXFbsEzNbfpNj3PNmK/9wyeuZ0tzjxpM1Lz/WfC3j64zkXBSO8YBcfzaDnfxtTw5I7GEe2v5RW/+8V3SwAuhBBh2I8gfCP5C38bgQ9tsM2jwDf3YjBCiP31s68/EvVzJGUk0NXQu+k2Aa+fkhQ3NZ170wdsoxrmDrcdgI6aTpyZKcxOb37xsNeMJiMP/MN7eMV7X7bfQxFCiEMhakG41vqTwCfXeb6ddbpfbLT9Ds/9kkgcRwixf9pqOqN+DrvLHt6GfTsLwDOdFhp/8Oy29tmoNnp/2xCw0EGzKJm6C9FbuBouh8vOuz/7GxQcyyU1N5nkrMT9HpIQQhwaEWtbL4QQkXTrG2+I/knCLBjS/r+XsG6zdnmm04L315fwbjONZaMgfLhnlPTCVADGuke2nV4SDEY+HeXBf/sQr/rAXVTdWCYBuBBCbJME4UKIA+nYSyqjfo7u+l6MG5QgNBiXnvfOzFGYtr1mNylTM0wMbj9/W28SLCdnJQHQ09RH+fH1G9xseNwI54S//F23c+YV0sdMCCF26iDlhAshxCKn20FydiJDXdHLxc4qzaD1YvuK5+770D285cHX4XDb6arv5bsP/YDnfnIe49A4RqOBYCBAhcuG1esjaDLS5g8ysaolvFHBwA7TaTbKCQcYH54kszgNo9mI9vlQBlinmMq6thuEZxank12aQV/rABNDk4wPLV1QFBzL5Xe/+O5tHU8IIcRKEoQLIQ6sxPT4qAXhFruFlgttK0oUXvuKE7z3r96G0WQEoOBoLh/91u/S09zHY//9PH/+7tsJeP00P9PExPAkj3/vGdyNfeTlpYACg9UMDiv+oQkadjjujdJRALrqenAnxjA5EipReOS2I1w+17H4utVh4ZZXX0N2cRqP/+AsbZe78fuuHC/8Zj0P/ON7eeVv3bFY29zv8/PTrz3MD770c669+yRv+uirsdgs239zQgghFkkQLoQ4kCZHp6LaNdPr8eJKcDI1OrP4XEJq3GIAvlxmUTpv+cirFh+nvPo0ACdeeoQH7/4MdY9UR2xcm6WjJGUlkJ6fTPXjoSZDndXtWO1WXnH/Ldz4yhOk5yaTmB4HwBsfeDmtNV186cF/p/qpRhShCibJ2YkEfAHmZuaYGgu995tffx2ZRaGZ78SMeE7dcWzFeU1mE/f+9l3c+9t3Rex9CiHEi50E4UKIA2liaJK52fmoniMlJ3lFEF7z5NYdNJdLy0sh/2julmUOt2NiZIqU7CSCgQCBhRb2AX8Av9fPSM8I8anupW2Hp/jA51/Paz64fnBcUJXNX/3Ph/n2X/2Q+GQXn/zXDxKfGgeELnL+86EfUnyyQOp6CyHEPpAgXAhxIO1Fq3OH27H4b6PJyDs+/ZZtHyPg80dySOigZqBjaMPXO2o6MZqMBPwBMovTuPtdt216PKUUb/voq9Y8705w8a7PvHXX4xVCCLEzUh1FCHEg+eZ31qFyO64E0EaTkff99du49Q3Xb/sY7/qL31hRSSXa5me9FB7LJTEjnj/4ym9htUtuthBCHEYyEy6EOJB6mvujevzy64qpfboRgIT0OF73e/fs6Dg5ZZl85Osf4Ct/+M8rKohEUv6RHPKqsrHarUyNTvGWB++j5FTB4sJJIYQQh48E4UKIA2l6bGbrjXbIYrfgmVpq+151U9mujnfH22/l9N3H+dLvf5Onf/ACnmUt5fMqs/H7/IwPTjI9Ht57stjMHHtJJTe+5lpsThu3veVGDAa5cSmEEFcTCcKFEAdSWn5KVI7rTnSRnJ1Iy4X2xece+If37vq4ccmx/PG3f4+52XnOP1zNX7797zn2kkr+4Kvvx53oYm52nstPNuCd8wJQ83gdafmpnL77OABf/ei38Ux5yC3P4r4/uFc6UAohxFVOgnAhxIG0Wb3s3cityKL68Tpi4pyUnSkiJj4Ge4wtYse3Oaxcf+81fOXi32CLseFOCC0wtTttXHPnUum/G151esV+f/ofH47YGIQQQhx8EoQLIQ4ksyU6H0/1zzXzsrfdyhv/8FXkV22v9ft2pOQkR+3YQgghDj9JMhRCHEgZRWlROa5v3serPnBXVANwIYQQYisShAshDqRLj9ZG7dj1zzZF7dhCCCFEOCQIF0IcOH6fn3/6+L9F7fi//o+nonZsIYQQIhwShAshDpxffvtxms+3Re34Trc9ascWQgghwiFBuBDiwPnp1x+O6vE//m8fiurxhRBCiK1IEC6EOFBmpzzUPtUQteO/5M034ox1Ru34QgghRDikRKEQ4kDxzfsifsyKG0r57E8/zvTYNAnp8RE/vhBCCLFdEoQLIQ6U5356PqLHs9ot/OE/fQCHy47DJbngfZpjeAAAFjFJREFUQgghDgZJRxFCHBj1zzXxz3/27xE95ie++2GySjIiekwhhBBit2QmXAixLyZHp/jqH32b6sfryC7LYGZ8lurH6yJ+nobnmjnzipMRP64QQgixGxKECyH23KP/8RRf+O2vMDU2A0BPU1/UzvWff/tD3vLgazFbzFE7hxBCCLFdko4ihNgzgUCAx7/3DH/1ji8uBuDR5pme4/KT0au2IoQQQuyEzIQLIaJq3jPP0z94gcYXWnj0u08z2Dm8p+e/5Q3Xc/y2qj09pxBCCLEVCcKFEFH1N+/6R3797/vXJv6J7z1DwB/AaDLu2xiEEEKI1SQdRQgRNR11XQx3j1J1cxmFx/Ow2PY+LzsY1Dzx/Wf3/LxCCCHEZmQmXAgRFRPDk3zq9Q/RWdez+JzFbqH4VMHCIklNMBik/tnmqI4jLtlNYmZCVM8hhBBCbJcE4UKIqPjKH/3LigAcwOvx0nS2dcVzZWeKaXi+GR3UURnHJ//rj6i8oTQqxxZCCCF2StJRhBARd+7han7xzV+HtW39s00Uncin+GQ+dpdt8fmE9Dgqri/B4bJz5OZylEFtexz2GBtlZ4q2vZ8QQggRbTITLoSIqKZzrfzFW/5ue/sszI4rpYhNchEMakb7xhntGweg+vE6UnKSQGsGu0bCPu5H//l3MRplQaYQQoiDR4JwIUTEnH+kmo/d9X8IBoI72l9rzcTw1JrnjSYjBqOBsYHxsI+VUZjK6btP7GgcQgghRLRJOooQImIGO4d3HIBvpvR0Ef1tg8zPesPep691kLmZuYiPRQghhIgEmQkXQkRMV33P1httU3pBKhPDk2SVpNPdGF57+/s+dA855Vm4E1wRH48QQggRCRKECyEipqOuO6LHi4lzMjk6TUJqLHMz81tu73Dbuel1Z3jlb99FVnF6RMcihBBCRJIE4UKIiNBa09PUH9Fj5lZmcfnJBmbGZ4hN2nhWu/y6Yu68/zYqbywlvyonomMQQgghokGCcCFERDSfb4t4OkrTuTZSshMZ7BpZd8HmFfe87w7uesdtET23EEIIEU1RWZiplHqbUkov/HlPmPskKqXeo5T6L6VUs1LKo5SaUEo9oZR6t1JqzViVUsVKqY8qpR5RSnUppbxKqQGl1P8opeQ3shB76MKvLkf8mF6PN6xul9/5zPcifm4hhBAimiIehCulsoG/B6a3uesbgK8CZ4Bngc8D3wOqgK8B/6GUWt2t49PA54BU4CfAQ8CTwD3AI0qpB3b2LoQQ29VxuSsqx617ponKG9fveFlwLJe/fvjP+Gbj30fl3EIIIUS0RDQdZSFI/gYwAnwf+Mg2dm8EXgX8WGu9WONMKfUg8BxwH/A6QoH5FT8D/lJrfX7VOG4F/hf4a6XUd7XW4ZVUEELsWOul9qgd+/KTDZRdV0z9M00kpMUxNTbNG//w1fzmJ16PySxZdUIIIQ6fSM+EPwDcDrwTmNnOjlrrR7TWP1wegC883w98eeHhS1a99s3VAfjC848CvwYswA3bGYcQYvu6G3tpOtcW1XM0PNuMw21nfHCCT//gY7zjU2+WAFwIIcShFbEgXClVTig15Ata68ciddwFvoW//VHeRwixA//7z49G/Rxaa2YnPbz7s7/BqTuORf18QgghRDRFZBpJKWUC/gXoBB6MxDFXHfvtCw9/FuY+ucBLgVkgrAsCpdTZDV4qC2d/IV6sPDNz/PDLv9iTc+VWZHHfH7xyT84lhBBCRFOk7uX+KXACuElr7YnQMa/4HKHFmT/RWv98q42VUlbgXwEr8Eda67EIj0cIscz3/vZHTI1udx32zpScLsRoNO7JuYQQQoho2nUQrpS6ltDs90Na66d3P6QVx34A+DBQD7wtjO2NhGbkbwT+HfibcM+ltT61wTHPAifDPY4QLybNF9r2tDzgQPvQnp1LCCGEiKZd5YQvS0NpBD4RkREtHfuDwBeAWuA2rfXoFtsbgW8TKnX4H8Bvaq11JMckhFji9/n59Bsewufdu2UXlx6t5csf/hZjA+N7dk4hhBAiGna7MDMGKAHKgbllDXo08GcL23x14bnPh3tQpdSHgC8CNYQC8E17YS9cDPwb8GbgO8BbtdayIFOIKGqr7qS3ZWDPz/u9v/sRb815P5/9zS/Q17r35xdCCCEiYbfpKPPA1zd47SShPPEngAYgrFQVpdRHCeWBXwDu0FoPb7G9hdDM96uBfwbeubrMoRAi8kb79m+5hd8X4JHvPMET33+Wr1x6iMyi9H0bixBCCLETuwrCFxZhrtuWXin1SUJB+Le01l9b9rwZKAR8WuuWVft8AvgUcBa4M4wUFCuhpkCvIHQx8D4JwIXYG7NTc/s9BLxzPs4/XCNBuBBCiENnPzpdZAJ1QAeQd+VJpdT9hALwAPA48MDaLvW0a62/uezxlwkF4MNAD/Cn6+zza631ryM2eiEEEMoJj5QbX3Oa6155DflHc3EnxGB32bA5bQx2DlP/bBO1TzfSeLaF9urOxRz0uJRYqm4q4+b7zkRsHEIIIcReOUjt5vIX/jYCH9pgm0eBb66zTxKhMokb+fUuxiWEWEfAv/VNJ5vDypFbyskqyeCX335s3VKGZouJj/7z72KPsa95Lacsk5yyTO68/yUATI5M8f3P/5gbXnOaklOFu34PQgghxH6JWhCutf4k8Ml1nm8H1kxXb7T9Fud4yQ6GJoSIAK/Hu+nr7/jUm3nDH74Ki9UMwP2fehP//fc/5T/+6n+YnVpqJ3Dk1op1A/D1uBNdvOPTb975oIUQQogDImJt64UQLy7tl7s2fO3tf/ZGfuNP7lsMwAGcbge/8fH7+OJznyW7NAMAg0Fx7/vvjPpYhRBCiIPmIKWjCCEOiI66br720W/zkjfdyO1vvYnVay3aqjt4+NuPbbj/rW+6YcPXsksz+Xrt5+lvH8RoMpKSnRSxcQshhBCHhQThQohFwWCQH/9//8tX/vBfmJud55kfneWRf3ucl/3mrfi9floutlP/XBN1TzcSDK7fC8ud6Fqc6d6IUor0/NRovAUhhBDiUJAgXAgBQN2zTXz5D75J7dONK55/7ifnee4n58M+ztToNFOj07gTXZEeohBCCHHVkJxwIQ6p0f4xOmo3zssO13DPCJ/9zS/wwPUPrgnAd0JrTc0T9bs+jhBCCHE1k5lwIQ6Zwa5hfvHNX/Pdh36AZ2qOd3/2N3jTH71628fRWvPzb/6aL//BN5mZmI3oGCeGJyN6PCGEEOJqI0G4EIdEf/sgf/HWz1P3TNOK57/2sW8Tl+LmrnfcFvaxhntH+cJvf4Vnfng20sMEYHpsJirHFUIIIa4WEoQLcUj8+t+fWhOAX/G37/0yfq+fl7/7doxG44bH0Frz82/8ii9/+FsRn/1ezmwzb72REEII8SImOeFCHBJv/uhr+OH0t/nsz/6E2KSVix6DgSCff/9XuL/od/nXz3yPoe6RNfsP94zw8Vd+lofe86WoBuBKKY7dWhG14wshhBBXA6X1+mXGRIhS6uzJkydPnj0bndv2QuxET3Mff3j7n68bbEMoED5ySzknX3qU9IIUOut6+O8v/jSqwfcV73/ofu77/VdG/TxCCCHEfjt16hTnzp07p7U+td19JR1FiEMosyidd37mLfzV/V9c93WtNZcereXSo7V7NiajychH/ukDvOw3b9mzcwohhBCHlaSjCHFI3f7Wm8irzN7vYSx64B/fKwG4EEIIESYJwoU4pIxGI7e8/vr9HgYAd9x/K3e/+/b9HoYQQghxaEgQLsQhllmctt9DoPR0IQ/8w3tRSu33UIQQQohDQ4JwIQ6xqpvK9vX8r/mdu/nbxz6NzWHd13EIIYQQh40szBTiEEvJSabyxlIuP9mwZ+e0OazcdN8ZXvvAKyg5Vbhn5xVCCCGuJhKEC3HI/dbf3M/v3/wJAv5A1M91+1tv4j2f+02SsxKjfi4hhBDiaibpKEIccuVnirn3/XdG9Rxmi4k/+X+/zx9/+/ckABdCCCEiQGbChbgKvPVP7uPCr2tor+na1XFsDivHb6/ClRCDPcaG2WrGbDVz+uXHOXqLdMEUQgghIkWCcCGuAvEpsXz+if/Dlz70TX7+zV/t6Bin7jzGh778PtLyUiI8OiGEEEKsJkG4EFcJp9vBR/7pA9zwmtN89q1fYG52Pqz98o/k8NYHX8etb7xBygwKIYQQe0SCcCGuMje86jT/3PoP1D3diMNtp/TaInxzPv7niz/j/CPVeOe8mK1m0vJTeMkbb+DaV5yU4FsIIYTYY0prvd9jONCUUmdPnjx58uzZs/s9FCGEEEIIcYCcOnWKc+fOndNan9ruvlIdRQghhBBCiD0mQbgQQgghhBB7TIJwIYQQQggh9pgE4UIIIYQQQuwxCcKFEEIIIYTYYxKECyGEEEIIscckCBdCCCGEEGKPSRAuhBBCCCHEHpMgXAghhBBCiD0mQbgQQgghhBB7TIJwIYQQQggh9pgE4UIIIYQQQuwxCcKFEEIIIYTYYxKECyGEEEIIscckCBdCCCGEEGKPSRAuhBBCCCHEHpMgXAghhBBCiD0mQbgQQgghhBB7TGmt93sMB5pSasRutyeUl5fv91CEEEIIIcQBUldXh8fjGdVaJ253XwnCt6CUagPcQPsenrZs4e/6PTynOPjk50KsR34uxHrk50KsR34uIi8PmNRa5293RwnCDyCl1FkArfWp/R6LODjk50KsR34uxHrk50KsR34uDhbJCRdCCCGEEGKPSRAuhBBCCCHEHpMgXAghhBBCiD0mQbgQQgghhBB7TIJwIYQQQggh9phURxFCCCGEEGKPyUy4EEII8f+3d+excpVlHMe/P8CWay20VRs3tLVSAtYtLuBtWmwV4lIEE2v4A62osfwhUWOikRBj1cQlVTFRA4m4EhQpiUSgiul2jShqSFCIFpV7LdVKa6GE2w0rj3+873APkzPbrZy5M+f3Sd6c5l1mpu8889z3zJzFzKxiXoSbmZmZmVXMi3AzMzMzs4p5EW5mZmZmVjEvws3MzMzMKuZFuJmZmZlZxbwINzMzMzOrmBfhmaQJSdGi/Kup76I2fUPSj9o8zzpJv5U0KekRSdslrWnTf0TSBkk7JR2RtFfSjyWd2WbMCyR9W9I/JR3N/7erJM1vM2ZU0m2SHpJ0SNIfJH1E0omd5q4OJK2QdJOkPXlO90i6XdJbS/r2PJeOi8HUTVw4X9SDpPd2eJ9D0n9LxjlfDLFe48L5ol58s55M0gQwD7iqpHkyIjYW+i4CxoG7gZ+U9L8nIjaVPMdG4GPAbmATMAu4GFgAXB4RX2/qPxvYAiwHfg9sBU4D1gKPAasj4s6mMUuAO4CFwM3An4HXAauAncDyiNjfNOZC4CbgCHAD8BBwAXAGsCki1pb8H2tD0pXAZ4F/A7cAe4BnAa8CtkXExwt9e55Lx8Vg6jYunC/qQdIrgYtaNK8AVgO3RsSawhjniyHXa1w4X9RMRLikHZEJYKLLvouAAL7bw+OP5jF/BeY3PdZ+UoAuahrzyTzmRuCEQv2Fuf7eYn1u+3luu7yp/iu5/uqm+lOAvcBR4DWF+pNJH7YALu73+9PHuFib5+AXwNyS9qcdz1w6Lgaz9BgXzhc1L8Cv89y8/Xjm0nExXKVFXDhf1Kj0/QXMlMJTvwj/fh5zaUnbZ3LbhkKdgL/n+sUlY8Zy26pC3Ytz3XjJh2cuMAkcBOYU6t+Xx3yv5DlW57Yd/X5/+hQTJwD35zl7dhf9e55Lx8XglWnEhfNFjQuwLM/LbuDE45lLx8XwlDZx4XxRo+Jjwp9stqRLJF0h6cOSVnU4Zul5ktbn/uslvbxN39V5+7OSts1NfQCWAC8E7ouI8S7HNP59e0Q8XuwcEY8CvwKeDpzT5esaAw4Bo/mnq7oZBRYDtwEPS3qbpE/k2Hh9Sf/pzKXjYvD0GhcNzhf1tD5vr42I4jHhzhf11iouGpwvauCkfr+AGeY5wA+a6sYlXRoRO0r6n5fLEyRtB9ZFxK5C3Rzg+aRjy/eUPM5f8nZpoe6MvL2vxWud7pjz85gtncZExDFJ48BLSXvBf2rxuMPqtXn7IHAX8LJio6Qx4J0RsS9X9TSXjouB1WtcNDhf1IykEeAS4HHgW03Nzhc11SEuGpwvasDfhE/5DvBG0kJ8DukP6zWkn4Y2S3pFoe8h0glZrwbm53IusA14A7AlfzAaTs3bR1o8d6N+3oCMqYuFeXsZMAK8ifSz2zLSsXErScfTNfQ6lzP5PXZctNZrXDhf1Ne7SHOxOSIeaGpzvqivdnHhfFEjXoRnEbEhIrZGxIMRcSgi7omIy0gnHIwAny703RsRn4qIuyLiQC5jpL3AO4GXAB+Yzsvooa9m8Jhh0TgUSaRvNrdExGRE3Au8g3Qs37kdDkEomu5czsT32HHRZVw4X9TaB/P2mmmMdb4YXi3jwvmiXrwI7+zqvF3ZqWNEHGPqp6Vi/8be3qmUK9tb7DTmlD6OqYuH8/b+iLi72BARh0nfekK6RBP0PpeOi8HUa1yUcr4YbpLOIp0/sJt0/kAz54sa6iIuSjlfDCcvwjvbm7dz2vaa0jgO9In+EXEQ+AfwDEnPLRlzet4Wj5vambdLKfeUj5F0EukEtGOkq0HUTWNuDrRobyzGRpr6dzWXjouB1WtctON8Mbw6nXjnfFFPneKiHeeLIeNFeGeNQw26DZLGmcHN/bfm7ZtLxrylqQ/A34BdwFJJi7scsy1vz5f0pPdW0lzSRfkPA7/p8nWtJJ3tfEdEHC1pH3ZjpARxuqRZJe3L8nYib6czl46LwdNrXLTjfDGEJJ0MvJt04t21Lbo5X9RMl3HRjvPFsOn3NRJnQiGdnbugpP5FpDN+A7iiUH82MKuk/2rSRfEDGG1qm8kX09+HL6bfKjauy3Pwuab680iJ9AAwb7pz6bgYzNJjXDhf1KyQFloB/LRNH+eLmpUu48L5okal7y9gJhTSSZdHSNfG/CbwRdJtXw/nILm1+KEAtufAuhH4ai5bct8ArmzxPF/O7Q/kMd8g3fI6gA+V9J9NuvZmAL8DvgBcD/yHdFH8s0vGLCFdOi1It7z9PGlvNEg/DT2zZMxFpG/2JknHnH2JdDvaxgdU/X6P+hgbC5naERsDNuY5OZbfh7XHO5eOi8ErvcSF80X9CvDLPB8XdOjnfFGj0k1cOF/Uq/T9BcyEQrr8zw9zYBzIQbiPdEvq9zQHCfB+4BbSz82TpL28XcANwIoOz7UuB/xB4FFgB7CmTf8RYAPpD/7RwofzrDZjTiNdcnEP8Bjpzlhfo+Tb/sKY5eSbj5B2Pv4IfJTCnbzqWoAFpD398Tyf+4GbgXP+X3PpuBi80m1cOF/UqwBnMrUY6jgfzhf1KN3GhfNFvYryBJmZmZmZWUV8YqaZmZmZWcW8CDczMzMzq5gX4WZmZmZmFfMi3MzMzMysYl6Em5mZmZlVzItwMzMzM7OKeRFuZmZmZlYxL8LNzMzMzCrmRbiZmZmZWcW8CDczMzMzq5gX4WZmZmZmFfMi3MzMzMysYl6Em5mZmZlVzItwMzMzM7OKeRFuZmZmZlYxL8LNzMzMzCrmRbiZmZmZWcX+B8gxqbzZYDiEAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "image/png": { + "height": 258, + "width": 368 + }, + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "# kernelized data\n", + "gen_spatialgini.data.plot('BLACK')" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "id": "vietnamese-appraisal", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 18, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAuEAAAIFCAYAAAB8lSMGAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Z1A+gAAAACXBIWXMAABYlAAAWJQFJUiTwAAEAAElEQVR4nOzdd5ykWVXw8d9TuatzzjmnmZ2Z3Z3ZmdkEL4IiBoyICiiggCJJVPIr6AsSFDCQkaAiURBYdGHDpJ3d2Ymdc845V77vH9XT06G6u6q6QnfP+X4+s71d9YRbneo89zn3HE0phRBCCCGEECJydNEegBBCCCGEEHcbCcKFEEIIIYSIMAnChRBCCCGEiDAJwoUQQgghhIgwCcKFEEIIIYSIMAnChRBCCCGEiDAJwoUQQgghhIgwCcKFEEIIIYSIMAnChRBCCCGEiDAJwoUQQgghhIgwCcKFEEIIIYSIMAnChRBCCCGEiDAJwoUQQgghhIgwCcKFEEIIIYSIMAnCA6Bp2q9rmvZpTdPOa5o2r2ma0jTt62E4T72maV/VNG1A0zS7pmnjmqY9rWna74f6XEIIIYQQIvIM0R7AAfMe4CiwCAwCVaE+gaZprwa+ACwDPwR6gSSgDvgF4KuhPqcQQgghhIgsCcID81a8wXcn8DDwZCgPrmnaKbwBeCPwEqXU6KbnjaE8nxBCCCGEiA5JRwmAUupJpVSHUkr5u4+maa/QNO1JTdNmNE2zaZrWomnaezRNM/vY/O8APfC7mwPw1fM79zB8IYQQQgixT8hMeBhpmvZF4A/wzp5/F5gFTgEfBF6oadqLlFKu1W3zgAeB54EmTdMeBU4ACrgBPKmU8kT6NQghhBBCiNCTIDxMVnO7/wD4HvBKpdTKuuc+ALwfeBPwydWH71v92AE8ATyy6ZANmqa9XCnVGb5RCyGEEEKISJB0lPD5M8AF/MH6AHzVB4Ep4JXrHstY/fibQDXwciARKAO+BtQDP9I0zRTOQQshhBBCiPCTmfAw0DTNireKyiTwFk3TfG1mxxts36Zf9/G1Sqkfrn4+r2naq1a3vRf4NeA/wjFuIYQQQggRGRKEh0cyoAHpeNNO/DGz+tEO/Hj9E0oppWna9/EG4fcjQbgQQgghxIEm6SjhMbf68bpSStvp37p92lY/LmyzAPN2kB4TtlELIYQQQoiIkCA8DJRSi0ATUKtpWoqfu93Cm76Spmlapo/n61Y/9u59hEIIIYQQIpokCA+fTwAm4EuapiVtflLTtGRN047f/ny1VOFnVz/9O03TdOu2rQdejXeh57fDOGYhhBBCCBEBWgB9Z+56mqb9CvArq59mAS8GuoHzq49NKqXesW77fwLeCEwD/wP0AylAMfAQ8GWl1B+v294K/AxvLfHrwFN488p/DW8aytuVUp8Iy4sTQgghhBARI0F4ANbV995On1KqaNM+vwj8Md4FlUl4A/J+4H+BryulWjdtbwXeCfw23mDdBlwBPq6UeiwUr0MIIYQQQkSXBOFCCCGEEEJEmOSECyGEEEIIEWEShAshhBBCCBFhEoQLIYQQQggRYRKECyGEEEIIEWHStn4Xmqb1AAlIkxwhhBBCCLFRETCvlCoOdEcJwneXEBMTk1JdXe1v50shhBBCCHEXaGlpYWVlJah9JQjfXW91dXXK1atXoz0OIYQQQgixj5w4cYJr1671BrOv5IQLIYQQQggRYWEJwjVN+z1N09Tqv9cGsN9HNE37maZpA5qmrWiaNq1p2nVN096vaVrqDvtpmqa9StO0p1b3WdE0rUfTtG9qmlYRmlclhBBCCCFEaIQ8HUXTtHzg08AiEBfg7m8FrgGPA+NALHAK+ADwek3TTimlBjadzwJ8C/hFoA34d2AByAEeBCqA9iBfjhBCCCGEECEX0iBc0zQN+DIwBXwXeEeAh0hQStl8HPdvgHcBfwW8cdPTH8cbgP8/4D1KKc+mfY0BjkEIIYQQQoiwCnU6ypuBFwCvAZYC3dlXAL7qm6sfy9c/qGlaKfDHwBXg3ZsD8NVjOgMdhxBCCCGEEOEUsplwTdOqgQ8Dn1RKndM07QWhOjbwstWPtzY9/gq8FxJfARI0TXsZkI93Jv4JpVRnCMcghBBCCCFESIQkCNc0zQB8DejHmzay1+O9A28+eSJwL3AWbwD+4U2b3rf6MRHoAtYv3lSapv0L8GallNuPc25Xg7AqgKELIYQQQgixq1DNhL8POAacVUoFV7F8o3cAmes+/wnwaqXUxKbtMlY//jXw09X9eoH7gc/izR+fwLuwUwghhBBCiH1hzznhmqbdj3f2++NKqWf2PiRQSmUppTQgC3g5UAJc1zTt+KZN9asfR4BfVUo1KqUWlVJPAL8OeIC3aZpm8uOcJ3z9A1pD8ZqEEEIIIYS4bU9B+Lo0lHbgvSEZ0TpKqTGl1PeAn8ObavLVTZvMrH78yeYZeKXUTaAHiAeqQz02IYQQQgghgrXXmfA4vHW4qwHbugY9Cnj/6jafX33sH4I9iVKqD2gGajVNS1v3VNvqx9ltdr0dpMcEe24hhBBCCCFCba854Xbgi9s8dxxvnvgFvMHyXlNVclY/rl9k+TPgT4G6zRtrmmbmTknD3j2eWwghhBBCiJDZUxC+mgLisy29pmkfwBuEf0Up9YV1jxuBUsCplOpa93gVMKuUGt10HB3wQbyLMC8ppWbWPf0Y0A28WNO0FymlHl/33HvxVk15evMxhRBCCCGEiKaQt633Qy7QAvQBResefwnwUU3TzuEtNziFt0LKw3gXZo4Cr1t/IKWUQ9O0VwH/Czymadr3Vo97H/AQ3soorw/nixFCCCGEECJQ0QjCt/NT4HPAGeAokIS362Y73sWfn1JKTW/eSSl1QdO0e/HmoD+6ut/Y6rE+qJQajMTghRBCCCGE8FfYgnCl1AfwUZ9bKdULaD4ebwTeFOS5moHfCmZfIYQQQgghIm3PdcKFEEIIIYQQgdlP6ShCCCGEECIKPB4PDpsTp92JNT4GvUGPUorexgGmx2ZRHoXT7sRhc2JfceBYceCwOXHYnaRmJ/Oi33so2i/hwJEgXAghhBBiH1DKG+jalh0ojwf7igO3083i7DK2ZRsuhwuPR2FfdrCyaMPtdOFyurEt2ZmfXgDAvuxgcXYJAJfDhd3mwLHixGHbGDjbVxw4bwfUq8H3bTq9jpTsJFAwObRlOd4WRx+ukSA8CBKECyGEEELgDYI9HoVer8PtctPfMsTi3BIOmxOXw4XT7sLpcOFyuFAeDx6PQqfXMTsxj06nQ2/QsTS3zMqiDduSHduSzRv8rgt2PW4PiWnxzE3MMzE0vfbYgy8/yXOPXfcr6A03j9vD5KD/47At28M4msNLgnAhhBBCRJVnddbXseLAaXfhcrpwO904HS5WFm3YV7wzv8qjiIkzMze5wPzUIk67E6fDhWPFsRbkemd7HWszwLePa19x4LB7n3c53biddwJqAKW8M8dKKUqPFtHXPIDL6d5l5KHz4y/8LGLnCjUJwoMjQbgQQgghNlBKMTsxj23JjtPmDXR1Og2j2YBOr2NqZIbZ8Xnsy/YN6QyaTiOzIJ2JwSlmxmaZm1jwBsM2bzrE+vQHh82BbcnO4uwStqX9FcR13eyN9hAOlP32/TsoJAgXQggh7jIDbcN84vWf9QbBc0skpSVgtpoYbB8huyST/tYhFqYXoz1McUBIEB4cCcKFEEKIQ2ppbhmj2YDeoEen91Ylbn2uk0++4fN0N/SvbTfWO7H2/9Ojs5EepjjgJAgPjgThQgghxCHjsDkYaBvh3S/7MCVHCrjxRCOl9xSRkBrPlZ/ciPbwxAFktpooO1oEgNvlxmg20HixDaXAvmzH4/Gg00n7mUBIEC6EEEIcEkOdo/zs387zvU8/xvL8CkoppkdmAGi70hXl0YmDSilFXlkWjRdaNjyeX5WLTq+jv3UYp92FOcYUpREeTBKECyGEEAfczPgcT3/zGb76f7+1ViNaiFCwxsdQWJNL86W2Lc8Nd45gijGRlJGAyylBeKAkCBdCCCEOsB/8y//y2T//2oZmK0LsldFsQNPpKD1awK2nm7c8X3WyjOX5FRJS4rEmxuC0u6IwyoNNgnAhhBDigPrepx/jC3/17xKAi5CrPFFCw/kWnwE4wEDLMEvzy2ufO2yOSA3t0JAgXAghhDhAlFKc/+6zNF1q44efeRynQ2YgReg1Xmqn/uEaGrYJwpcXlsmryGawfQQAdwQbGx0WEoQLIYQQB4DT4eLHn/8pP/zcT+lrHoz2cMRdYKB1eNvnlNpYmtDllIvBQEkQLoQQQuxzSim+/N5v8O1P/DDaQxF3kbhEK7Njsz6fK6zNIzE1AaPFyEjXmOSEB0GCcCGEEGKf+4c//jyPfemJaA9D3CUMRj2V95bS29i/7TZ9Td67MZpOI6s4Q2bCgyBBuBBCCLFPLc0v89X/+y0JwEVEmK0myo8VM9A6tKUm+HYS0xMY7RnHJWsTAiZBuBBCCLEPTQ1P86FXfJImH/WZhQiFvIpskjMSUApMFgNNF9toOOd7IeZ20vNSmR2bk3SUIEgQLoQQQuxDX3z3NyQAFyGRmJHA3Pj8hseSMhKYHZtloGWQrOIMludXNiy09NftBj2SjhI4XbQHIIQQQoiNbp1v4dL3r0R7GOKAS85MJKsoDYNOo+5sJRUnSoiJswCQlpPMwvQi4J3Nnp9aCPj4CanxTAxOAUg6ShBkJlwIIYTYRwbahnnPyz4c1KykEOul56XQ9lwnAJND04A37zsjP4WOq91r2zWcb6H2TCWd13qwr/jXdKfmdAUTA1OM9U4AsDS3vMseYjMJwoUQQoh9YLB9mHf+3IeYHZ/DJY1PwqLq/jJcDhdmqxmP28NI9xizE/O773gAZRSkrgXg69mXHWuB83pNF9uoO1NF48XWHY9berQQg8lA86X2DY8vzkoQHigJwoUQQoh94L8/8/jabKXYu4LqXOISY9F0GprmnaltudyxZbu6M5U0XmpD0zSfx0nMSGR5bulALTzU6XVk5KUy1jMe0H5Nl9rILslkpHts220ssRafaxUkHSVwEoQLIYQQUTTcNcpPv36eH/zL/0Z7KIdGUW0+fU0DeDxq120bL7aRUZBGRkEqLc924nF7yCpOJyUrGeVR9LcMeo/XMoTDz1SNaMnITyU9L5XhrlEazvtXYnA9pRQpWUmMdI9RWJOHwWTAtmRnuHMEnV6H2+VBZ/C9nNDt9ux1+HcdCcKFEEKIKFmaW+YtD72f2fG5aA/lwMspycSaaGWoYwSdXvMrAL9tvH+S8f5JkjMTscRamBycZqTrzixy+/PdpOWl4IgxsjC9FI7hh0RCSpzf9b19MZoN6PQ6Kk6U0L4uZzyvIofhrlHSclNYmlum/sFqpkamGe68M2PuluooAZMgXAghhIiCW+ea+cTrPysB+B4U1uSRkBLHyqKNgbZhhjpH0el1dN3oC+p4M2NzgO/vx+TgNGXHilmaW8GzT2d9BzuG97R/xb2lPmfQB9u9x50cml5LmbLEmqk7W0XjBW8OucyEB05KFAohhBARtjCzyAd/+x8Y7to+91bsLibWwq1zLXRc61mrJhPOALnzeg/JmYkUVOdSdX8ZSvk/2x5umUXprCzY9nSM7lt9GM1Gv7a1LdlpvNBK5X2lgOSEB0OCcCGEECKCpkZm+IsX/w1zh7QqRyRtl58cTpOD0/Q1DdJyuYP8ylziU+IiPgZfUjITg983OwlLrJmye4px2p0B7Ts3uUBcohWHLbD9hAThQgghRMQ89c1LvPXh99N5vSfaQzkUdDrfFU0iZaB1CL1BT155dlTHAWAw6oPar+JECbPj89iW7EEt5hztGSe9IA2DSTKcAyVfMSGEECICrj/RwN++8lPRHsahoek0+pqHoj0MZkZnWZhaoPSeIrpu9EZtHC6nm6ziTDIK0rCvODBZjDSca95xH0usecMCzGD1NPRTdqx4z8e520gQLoQQQoRR25UuLv3gCt/+xA+jPZRDpe50JbfOBV8JJJRcTjfGCM0EG0wGSuoLMMWY0DSNlUUbg+3DtDzrbcwz1j8JQHp+Kmm5KTvWnk/PS2WgbW+LOW9bnpdmPYGSIFwIIYQIg/H+Sf7rn37Cf//L//rdCvwwyixKJzEtnrnJBZ+dGv1xewFkXGIsWcXp6A36fROA37YwE/7Shen5KRiMBr9mrycGpqi6v3THINxo8W8Rpj+W97go9G4kQbgQQggRYm1Xuvj46z5Db9NAtIcScdUny3E5XVisZsb6JhntHme0exxLrJn6s1VMj81hMOkZaB3eUMlE02B9sZGSI4WYYowYjHpGusdZnF3Gtmyn83pv5F+UH8I9E5xZlM7izBJLc/6fx2DaOci2xsfsdVhrVhZWQnasu4UE4UIIIUQIPfbFJ/j0n34Rl9Md7aFEjFKKyvtKGWgZpvmZdp/b2JbsG2avYxOt5FVk43Z5sFhNdN7sIy0nGZPFiFIqqvnVgaq8r5S257vQtPAtFE3PSw34ToLb5cZoNuC0by0fWHa8mLG+4O5M+LIsQXjAJAgXQgghQuTxr53ji+/+j7siAFdKUX+2CoCJwWnanusKaP+luWXarmzcZ7B9JGTjiySTxRTWABwI6vgtlzsorstnrHd8ywz69MgM0yOzIRodLM9LEB4oCcKFEEKIPXK7PXzsD/6ZJ79xMaB26QfB7WBb0zQ8SjE/uYDeoMe2ZKPhfGu0hxdV+VW5JKXF09u8f9OOehoHMJgM1J6tZnFmEWtCDB1Xu5mfXAjpeWQmPHAShAshhBBBGu+f5Mn/vMgPP/s4Y32T0R5OWKTlpd71wfZ29EYdjZfaInKuveScuxyuDWlC1SfL6GsawBVAfvlubIs2lFJhvyNwmEgQLoQQQgTh+pON/MXPfSjawwgbpRRHHqym8WJkgsyDyGQyUnK0EI/bQ09Df1gDUC2EjYk6rvWgEdo7Nh6Pwr7iwGI1h/S4h1lYgnBN034P+Orqp69TSn3Bz/0+AtwLVABpwArQB/wX8I9KqSk/jvFF4A9WPy1XSnUGNnohhBBiZ+MDk/zLW78S7WFskZGfSkZ+Gi6nm9mJOWITY4mJt6DcnrUZW5PF6HOhHkB8ShzpuSlYYs1oOt2+KwO436wvFZiWm0J2SQatz3WGZU2A2+XBYDKQnpdCYlo8TrsTk9mE3qBjemyOoc5Rvy8CPG4PKVlJTAyE9u7NysKKBOEBCHkQrmlaPvBpYBGIC3D3twLXgMeBcSAWOAV8AHi9pmmnlFLbJl5pmvYyvAF4MOcWQggh/DIzOrfvyg/Gp8RhibPQcMF36kj9Q9UAtD/fRXF9AXGJVgY7Rsgrz0YB81MLDHWM0jXZF8FRHx6TQ9NMDk2TW57NcNdoyI6raVBzqoKWy+24XW6GO0YY7ti6gLX2TBVNz7T7FYh7PIrkMAThywsrJGcmhfSYh1lIg3DN+53/MjAFfBd4R4CHSFBKban2rmna3wDvAv4KeOM2504HPg/8J5AFPBzguYUQQgi/2Ffs0R7CFrllWbRc7tj2+YZ1s9rdN+8E2qGskCFgfjo0Cx7zK3IwmvWMdI/ReGH3OxJNF1s58nANDRd8pw/FJVkprMlDp9Ph8XiwL4f+Z3hFGvYEJNQz4W8GXgA8svoxIL4C8FXfxBuEl++w++dWP74J+E6g5xZCCCH81du4f2bBq0+WoWk6Wi77rs8tIis9N4Xl+ZUNjYgCZbIYmZ+aY3Z8PqD9Gs61kFaQxuTgNLGJVopqvUE3QMfVLhrPhze9SCqkBCZkQbimadXAh4FPKqXOaZoWcBC+g5etfry1zblfDfwK8KtKqSlZmSuEECJcbMt2/uXtX919wwhIy0uh/WoPLofvHG8Red23+qk/W7Wnqill9xTRdDHwijRKKTLz07At2rDGW8IedG8mXTMDE5IgXNM0A/A1oB/vjPVej/cOvDndiXgXap7FG4B/2Me2hcAnga8rpf5rD+e8us1TVcEeUwghxOEy3j/J5/7i67hd4WvGk1uWhUd5GO4c2zG/V6fXYTAYJADfhxoutFLzQAW9TQOU3VNE48VWlJ/FSHR6HdMjM0Gfe7B9iLzy7KjcGbEt7b80rf1MF6LjvA84BrxaKRWKy6B3AO8H3oI3AP8J8HNKqQ39VTVN0wFfwbsQ880hOK8QQgixrcGOEc5/59mwHT81O5mVBRvDHWPUn60mJs7ic7vcsiyq7i9jpHssbGMRe9NxrYeE1HhunWuh5lSF3/vVPlAe9PfVZDGSX5UbtdSkFQnCA7LnIFzTtPvxzn5/XCn1zN6HBEqpLKWUhneB5cuBEuC6pmnHN236VrwLMF+nlAr+stF7zhO+/gHSoUAIIQQAn3n7V1H+TmkGqP5sFdMjM0ytzoI2nG+hqDaf5MzEtW2UUpSfKGFl0UaT1O/e15x2J6M94wCM9k349XNT+0AFt55uDvqclfeXbViAG2m2RVmYGYg9paOsS0NpB94bkhGto5QaA76nadq11XN8FahbPXc58DfAl5VSPw71uYUQQojbluaW6W8dwu0OXRpKUV0+cYmxsJpx0nqla0vL++Zn2klIjafiRAkDrcNYE2Nov9IVsjGIyJgcnCYuJZal2e07VMYlx9LXvLcFv9vVf4+UFQnCA7LXnPA4vI11AGzb5K59XtO0z+NdsPmWYE6ilOrTNK0ZuEfTtDSl1CRQC5iB12ia9pptdu1YHdOv7iVfXAghxN1jaX4Zg9FA57UefvYfF2i80MpIz3jIS7qZzEYa/Fg4Nz+1wPyUt+ydVJ84mDIK0pgY3LnfYHFtHg3nW9DpdcFXVgnTXRp/yc9nYPYahNuBL27z3HG8eeIXgDZgr6kqOasfb09D9O5w7pfiTWX5FjC/uq0QQgixo9bnOvm71/wTK4s2pob3lOW4hVKK8uMlGE0GnA4XbTKjfdeYHZ8jqzid0Z4NS9swxZjQ63WkZievpaFoOqg4UYLJYmJxbgmn3YVOp7Ewu8Ts2NyO54luCA62JZkJD8SegvDVRZiv9fWcpmkfwBuEf2V923pN04xAKeBUSnWte7wKmFVKjW46jg74IJABXLqd+62UurHDuZ/CG4S/S9rWCyGE8Mf3/+kn/NNb/jUsx45NtJJbliWB913KYXOSnpu6JQivPFHMUMcI81N36oF7PIr2q90+j1N3torGbTqiArid0U1HkZzwwIS8bb0fcoEWoA8oWvf4S4CPapp2DujC23UzE+/CyxJgFHhdREcqhBDirtHXMhTyY+aWZWEwGlicXZIA/C43Mz6PUmqt7GR+ZQ5tVzqxLzv8PsZQxwj5VbkYjHrikmNBsSGlKcrZKKzITHhAohGEb+eneLtengGOAknAEt4FmV8DPqWUmo7a6IQQQhxK89OLdFzrZnp0NuTHTspIoHGbNuLi7jLQOkR6QSqTg9OkZifjcbkDCsABZsbmmFmXkpJTlrX2/zqdFvWFkVInPDBhC8KVUh8APuDj8V7W1oJveLwRb8v5UJz7kVAcRwghxOHVfrWbf/jjz9F5ozfkxy6szUOnaVvSD8TdLa8si9SsJLpu9DJpd+75ePZlO/UPVq/lYndc69nzMfci2hcBB81+mgkXQgghIkIpxWD7cMgDcKUUZceK6W3ox+UMX1dNcTC5nG5an+0I2fGmhmeYGp7ZNVc8UmQmPDAShAshhLiruJwu/vaVn+LazxpCelylFBUnSml/XnK/hW9uV3guzOwrgaW1hIvMhAdGgnAhhBB3jZbLHXz6zV+i83pob9vHJcdSVJPvV91vcffqutlHfEocC9OLIT1uTKwlpMcLlpQoDMye29YLIYQQB8U/v+1fQx6AA+SWZ0kALnZlX3ZQVJsf8uPul6okko4SGJkJF0IIcejdOtfMhe89R/fNvpAfOzkrkdmx+d03FAJwu4LshulDbnk2iWnxND/THrJj7sWKdMwMiAThQgghDr1/edtX6brZG5Zj55Rm0Xg++ovixP6Xkp1E183Q3YlJyUraV3dgXE43DpsDk8UU7aEcCJKOIoQQ4lCbGZsNWwCeVZyB07b3UnPi7pCWkxJwbfAdaVsqPkfd0rzMhvtLgnAhhBCH1sz4HK+peWvIj5uclQh4m15IJ0zhr/ar3VSfKg/Z8QbbhkjLSQnZ8UJheX452kM4MCQIF0IIcShNDU/z7l/8MMshnplLTIvH4/JQfbKc4a6xkB5bHH7tV3uof6gmJMeaGZsjLX+/BeEyE+4vCcKFEEIcOj/50hN84nWfoach9AsxPR4POr0uLJ02xeHndnloON8aUCBuNBsxmo3Ep8ShN+g3PKc8KtRD3JNlWZzpN1mYKYQQ4lDputnLx1/7LwDUP1xD44W2kB5fbzDgtLtw7JMGKeLwKzlayHDnCAvTixTV5bM4u0RWUQZzkwv7LuhdWdgf5RIPAgnChRBCHCrX13XCbL7YRkFVDgDxKXE0Xdp7Kbf0vBTan+/e83HE3c3l8H9B70DL0Fqw3ds4AMDk4HRYxrVX0jXTfxKECyGEODQ++46v8u1P/Pfa526XG5RiZcmGNT7Gr2OU1BdgTbSyOLOEJdaMwain8WIbmk7DGheD0WwM1/DFXSI9P5WRbv/XE3jU/ko52YnUCvefBOFCCCEOBafDyWNf/NmWx/uaBwFISE3wuZ9aF+DUPlBJ06Wt6Su1pyuYHp0FoOliaNNbxN0jITWe/IosOq73BJTOlJyRyMgBmWHeb+kx+5kE4UIIIQ6shZlF+poHySrO4CdffIKlOd/l0cxWE71NAz6fO/JgNcsLK0wOzfgMwIGQpLEIUViTQ8O5wJvrpGQnBzRzHk2SE+4/CcKFEEIcWG6Xm/f98kdYmF7ccbvCmnw6rvdueEzTaaTlJDM5PMNw52gYRymEVzCVTIrq8ult6A/DaMJDZsL9JyUKhRBCHFhJ6YlUndy9+YnRsjWPu/K+Usb7pyQAFxHjcXsC2j4m3sLk0DRLB6gBjizM9J8E4UIIIQ60opq8Xbdx+GgtH58UG47hCOFTbIKVzus9Ae1TdqyYxZmlMI0oPFYWZSbcX5KOIoQQ4kCbnZzffSOliEuOJTU7mYSUWJx254GaXRQHn0d5KD9RSvetXr/zpj3ug1MV5TZJR/GfBOFCCCEONH/ybDuudlP/YDVoGreebgZAp9eh0+sCThEQIhgrCzaaLrWTmpNM2T3F9DT2+zHLffCCcJuko/hN0lGEEEIcaE67f01P2q50bqhhnJAaJwG4iLip4RkaLrSh0+up3mU9w+y4H3d59pllqY7iN5kJF0IIcaANto/4tZ3D5tyQk+t2edB0WlAVK4TYq/mpRVJzU3bcxrYUnYDWZDFispgwmA0YTd5/BpMBnV6HwahHZ9Cj0+nQ6TV0mg50oGkaGhqJ6b7r8YutJAgXQghxYLndbqZHZoLad2F6kcyidNJyU6UOuIgKj9O94/M5pVlMDQf28117phKdXgfK24hKrX70uD24XW7vP6cbl9OFy+H96LS7cDqcOG1OXE43DpvT52Jmf6TtcmEh7pAgXAghxIE01DnCdz7xQ2bG5oI+xljvBPHJcSEclRD+m5taoPx4CR3Xun0+r+m0gI85MTDFeP/kXocWNFmY6T8JwoUQQhxI4/2TnP/us9EehhBBmx2fZ3Z8nqziTFJzktHrdSzMLLI0v0x6bmpAx6q4rxSAqaHpcAzVb7ZFG0opNC3wC4i7jQThQgghDqTaM1UcfaSGp7/5zJ6OY4oxhWhEQgRntHeC0d6JDY+N909TeW+JX/sbjHrar3SFY2gB83gUtmU7MbGWaA9l35PqKEIIIQ4cj8fDHx19+54DcID2K52UHyva+6CECLHRnjG/tnM53cQmWsM8Gv+tSEqKXyQIF0IIceC0XO4gozA9JMdyOd3ExMmsndh/PMr/yj1G8/5JbpDW9f7ZP98xIYQQwg9ul5t3/cLfsDwfutm2QIIdISIltzQbT7GH9ud3TzXRG/QRGJF/JAj3j8yECyGEOFAe+9ITIa/tPdI1Sl5ldkiPKcRetV7pov1qDwXVeT6fr3+wmrikWDRNC7iUYTitSMMev0gQLoQQ4sBwOpx89QPfpORIYUiPOzU8gzXOgt4gb4ti/9kuXUopxeLsEmqf3cmRMoX+kXQUIYQQB8Zg2zAzo7OsLKyQlJHI7HjwNcI3a3++i/yqXAba/OvAKUSktD3fTdX95Wt537eb8EwMTEV5ZL7Jwkz/SBAuhBDiQGh7voufff0cALYlO6k5KSENwgFcDldIjydEqCilGOwYYWZ0NtpD2dWypKP4RYJwIYTYhyaHp7n2+C3ue8k9JGcmRXs4UWdfsTPWN8H3PvXjtcdSspMY6gjtrPXC9CIoBdJoRESYwWTAaDZgMOrRG/QYDAaMFoP3caMeTadhWzoYwa3MhPtHgnAhhNhHnA4n3//Hn/Cld/8HTruTV77713j1B3872sOKuj+seSvWhBjKjxfTca3H++BqGmxsUiw5pZmYzEYcdicdV323APfH4uwSpceK6brRF4JRC7G99LwUZkZncDndALjsDlx2h89tK+8ro69p4MBUHZGccP9IEC6EEPvI4189x2ff8dW1z7/z9z9kpGeMP/x/ryQjPy2KI4uepfllxvrudBOsuLeE9ue76bjWTUJqPLYl21rgrdNp5FVkM9ge/Ay52SIdNEWYrLvLYluyrQXg2zFbTZQfL6HxQmskRhcytgNysRBtEoQLIUSUuV1uvvye/8ASa+G5x65teM62bOeJf7/AtZ828I3Bz+6rWsDh5na5+enXz3HjycYNjxvN3iDZtmTHtmTf8JzHoxhsH6HkSCHdtwKbzdbpdRTV5rM4t7y3gYuIqn+wipnRWSxxZkxmI3qjAQ1v7XePW+Fxu3G7PLhcbjxuD44VB06bC5fThd6ox+Vw4bS7cNgc3jUBO6UiKUVcUizxqXGYrSb0Bj16vR6dXkOn16HpNDTtzj9QoMC+4qDjWjcetyIuyUpCSvyGC0tfyo4VMzc5f+ACcJCZcH9JEC6EEFHk8Xj49J98kR997vEdt5sdn6OnsZ+ye4ojNLKd/duHvkNaXgovfvWjYTtHx7VuPvYH/7zl8YHWoV33DaaFd+V9ZbQ82xnwfiJ6Ku4tofN6d0jrUpvMBoxmozc/22TEaDKgN+ixLduZm5hncXaRxdnFoI+/OLPE4szSjttY42PovN4T9Dmi7aCkzUSbBOFCCBEFDpuD8995lq/99bf8Xlz4d6/6R07+wnGOPlpH9ckyYhNjwzzKrQbahvivTz/GD/75f4iJs9ByuYNHX3GGow/Xhvxc292qN1tNsEtltrnJhYDPtyyBw4FiNBuYHp4OeWMYh82Jw+YM6TEDtbywQlpOCpPD01EdR7AkCPdPWIJwTdN+D7id1Pg6pdQX/NzvI8C9QAWQBqwAfcB/Af+olJratH058HLgxUA5kAnMAJeBf1BKPbnnFyOEECHgsDtxO13ExMVw/juX+eQbPhdwoNjT0E9PQz/f+Mh/AVD/UDW/+Y5f5uRLj6/e+g6vicEpXlv3NjxuD+B9o/3R5x5nvH+CurNV6PWhTZWZHPQdaU8MTFFUl09v48D2+w5NkZyZyMyYfyUM6x+qoeH8wbvtfzcrriug/fnDe+ciuzTzwAbhko7in5AH4Zqm5QOfBhaBuAB3fytwDXgcGAdigVPAB4DXa5p2Sim1/q/uB4HfApqBHwPTQCXwS8AvaZr2Z0qpTwX/aoQQYm+UUjz2xSf47Nu/QsnRQhLTE7j4vedCcuyGcy00nGuh/EQJxx6t48zLTxKXFEt6fioxsb477AVreWGFJ//jwloAvt6Vn9zg2R9d4/Qv3Rey8ymlePpbz2z7fGzCzukmy/MrpOWmsLJo25I37sto7875uWIfOuRVJJufaSejII3x/sloDyVgUqLQPyENwjXvVMyX8d4o/C7wjgAPkaCU2nIPQ9O0vwHeBfwV8MZ1T/0E+IhS6vqm7R/GG8h/VNO0bymlpP2ZECIqPvuOr/Kdv/8hQNgWWHVc7abjajff/NgPAPidd72cV3/wt3HanXTd7KOoNo+YuJigj/8vb/1XnvrPi0zv0CTkK+//T469sD5kwf9X3v+fXPjus9s+788C1f6WITIK0sguySQuOZb5yQWWF1a2dBksri+gp2FAaoMfMLpD/v1yu9yYreZoDyMo06Oz2FfsmGMO5vgjRRfi470ZeAHwGmDnVQc++ArAV31z9WP5pu3/dXMAvvr408BTgAk4Heg4hBAiFHoa+/nuP/wo4uf997/9Lh94+Uf5wMs/ypsfeBevrXsbCzP+LyQb6RnD7XYz2jvOm0+/i+9+8kc7BuAA3Tf7+Oir/5Hp0RmUUnt8BdDb2L/j8273zqXdbhvvn6SnoZ+Gcy30NQ+SUZC+ZZvYpFgJwA8Ya3xMQD/TB9VA6xCl9xRFexgBmxiY4u2PvJ/JoV0Wb9zlQhaEa5pWDXwY+KRS6lyojrvqZasfbwWwz+1VFX71INY07aqvf0BVIAMVQgjw5iR/4S+/HpKANBiXvn+FKz+5AXgD0S+/+z98btd1s3dDMDMxOMUbT/wFv1fyJl5b+1ZaLnf4fc7z33mWV+T/Mb+a8mquPn4z6LG3X+3aNT9br9eTmpMc8LFHukfX/j+/KpfSe4qZHpnBHLM/aoObLCZyK3PWPtfpNI48UhfFEe1PqbnJIe+Wul95PFtTwA6CtitdvOn+v6L1Of//htxtQpKOommaAfga0I83bWSvx3sH3nzyRLwLNc/iDcA/7Of+hcALgWUg1BcEQgixo+tPNPDel30Y+4rv7nfR8KPP/5SX/tGLKD1atPbYNz/6fT7/F1/HYNRz9tdO8af/+Ie8+6V/y+LsEouzAd/MBMDj9rA0t8y5b1/GmmBloHUYTYP//do53vGFPyazcOtMNHhzwL/+19/m0g+u0H2rz2fu+Xq3zjWTmBZPYW0efU2Dfo9vemSWqlPltF7uICkjkYbzrVhizdiX7VGfDc8pzyIpIxmDSY/RZCAhNYGVheV99XO0X1jjg0+vOmh6bvVTd7bqQNYLnx6Z4W0Pv5+3f+ENvPCVD0Z7OPuOFopZGk3T/hp4N3BWKfXM6mMfAN5PANVR1h1vFG+lk9t+ArxaKTXmx75m4GfAGeCdSqmPBnJuH8e7evz48eNXr17dy2GEEHeJvuYBPvP2r/D8/wQ/Exwu5SdKqLy3lIbzLeRV5tB9s4+R7jt/VnU6DY8nNDP3NacraX5m4wxYSlYS7//O26k5VbH22L++9xtc+Z8bjPaMMz8VeFnBYBauJabFk1GQTueNXqJ0o2KDuCQr2eW59LUM4XK4qH2gHOVRNK/WLK+6vxSDQU/X9W5WluzUPVjNeN84o93jUR55dBjNBgxGXchLE+5neoOenLIsv2rk71e/9c5f5jV/84qQV1GKthMnTnDt2rVrSqkTge6755lwTdPuxzv7/fHbAfheKaWyVo+diTen+8PAdU3TflEpdW27/TRN0+OdkT8D/CfwsVCMRwghdmNfsfO9T/6Y7/z9D5mdmI/2cHzquNpNTKyFvuZB+pq3zh6HKgAHfM4qT4/O8pFX/RO1pyspO1bE9MgMP/zM/7K0hw6VmYXpAQfhlfeVceV/bkY0AE/JSSa3LBtNr2OgeYCZsTnMVhMp2SlYE6x03bzT3bPpmY4NC09bn+sCQNM0UvPSaLzYjiXWTEFNHv0+vo+HncFkQHeXpfC7XW6M5oPd2uU//+779DUP8pdff/Ou1Y3uFnv6jq5LQ2kH3huSEa2zOvP9PU3Trq2e46uAz+S41QD868Bv4F3I+bsqWsmYQoi7hsPm4KdfP89jX/wZrc/u/9zH+enAZ5uDsTzvu0TZcOcow52jPP7VpwFvy/GGc81Bn2esN7DZ4LLjxfS1DkV8BjwpM5mmy96Z7doHyknPT2O4d5KxgWm81XU3cru2LjxVSjE1PAOAbclOYnoicPcF4SsLNmoeKKf5Ulu0hxJR3Tf7qD5VQcvl9mgPJWiXf3iVPzv9bv76+39BTmlWtIcTdXu9rIrD21gHwLZNs4jPa5r2ebwLNt8SzEmUUn2apjUD92ialqaU2jDtsXox8O94A/B/B35fKeXf0nkhhAiC2+3hxpONNF9q46sf+ObuO+wTfc2DxMRbwn4rf3pk1q/tRnuCr8+dU5rJcNeuWYprkjIS6Lzet/uGIZRTnkVSehLd6xoLNT0Tmos1p8MV0hSig6LqZBnzk/vzblO4dV7vof6havqaBtfStzIK08ksSGN8YJKxA1Dv3uV086k/+RK/9c5f5tijoe+0e5DsNQi3A1/c5rnjwDHgAtAG7DVV5fZy8Q3BtaZpJrwz37+Md6b8NUqpg7mUWAhxYIz3TfDuX/wItacr0DQtalVQAqU8irJ7imk43xK2c5TeU0TXzZ1LDN42MThFUX0BvQ3+bb9eWm6q30F4QXUeJouJ2YnIlbU78mgdjRfbGe0LT9fD9qs91D1cy60nG7c8ZzQbKajJx2V3+Ew9Oqj2eufkoHPanTSca0Gn11FYk4fb5WawfYTxvgkyCtPQdBpqH16UxcRZKD1WzMLMMv2twwz3THLjqWbe+Pev4mV/9H8i0vF3P9pTEK6UWgFe6+u51YWZx4CvrF+YqWmaESgFnEqprnWPVwGzSqnRTcfR4e2MmQFcUkrNrHvOjLcp0C/gvRh4vQTgQohI0BsNeDyKhgttlBwrYXpo0u8W6dE21Bne0m6BNgYa758iOSsZnV5HQkocccmxuwZaJouRvubt29bfFpcUi93mpL9lKKLVTwpr8mi8GP60gfarPdQ/XMv08PRayT6DyUjlyQqaL3eQU5wW9jFE0uz4wfgdCzeP27Pl4mq8b5LyEyV0XO2O0qi2Kj5SiDUxls4bfTQ907nhOY/bwz+++cv0NPTzxr9/FUbTwc55D0Y0XnEu0AL0AUXrHn8J3g6X54AuvF03M4GHgRJgFHjdpmN9Bm8APgkMAe/zcTX1lFLqqZC+AiHEXc9kMa79f/etfuKSrFSdrKD12f2dr5mUkUhuebbf6SLBCPSuwPL8yloO+e2c57JjJcxPzW+76LLi3tJdS7YlZSSSX5VDw/m2iJcfNIeoc+huHDYnTc90EJ8cS83pSpSC+elFmlfru6fkpDDYNhyRsYRbfEosU8PhuatwWIz2jJNbnh31GupVpyqYm1ykt3n3n70fff5n9LcO8d5v/BlJ6YkRGN3+sZ8uO34KfA5vZZOjQBLerpvteBd/fkoptfm3r3j1Yxrwvh2O/VQoByqEEHrDxl5ni7PLtF3toe6hWjqudOzb2s45pVk0nAtfKgp4K8XsVeeNXnLKssirzNkSRJafKNk1ALfGx2CymLwBeBSsLPpemBouCzNLtD7fs+Xxjuu9pOWmHorOhUW1eWH/2T3oFqYXWZhepP6h6qh8rbKKM4hLSaDNx8/iThrOt/K2h9/Hn3/5T6g+Wb77DodE2IJwpdQHgA/4eLwX2DIloZRqBN4U4DkeCWpwQgixR4Ztbp02XWonszANvY6oz0b5otOHf0Z4ZTE0iz6HO0cxmAxUP1BB1/UeHDYnBqN+15QEU4wJj4LxgcgFnuYY04YLL73RuMPWkZOUkchk38GvJ153torGMK5jOGxmRmcjfs76h2tpebaLsYGZ3TfepOq+UlYWl3n7I+/nz7/8Jh797TNhGOH+E7K29UIIcTcxmbcPssb6JlledBCXHBfBEflH04X/z/5438SGOtd74XK4aLncSWaRt39b9akKJnYJrsuPFWNb2vtsvL9yK7LBYKD0WAklqx1JR/sCq10eTk67M9pD2LPx/vEDs/h5P0jOSor4OR12l8/SmrvRNFicXWSoY5TyEyV85QPf5At/9W+4d+maexhIEC6EEEHQ6XXodugYMjsxT2ZxJjHxkckN9peKwBub0+4ivzJn9w0DOqaDmHgLPY07V1ExGPVMDM0Ql2jd9m5FqBktZpx2Fz1Ng3gU1D1Ui2OfpCPpNNCF6IIoGswxJsqPFTG+jy5q9ruq+8ui0rNArw8upKw9XcFg+wgup5uWZzsZ7hrjmx/7b97zsg+zOLsU4lHuLxKECyFEEDRNQ2/cOcjrvtVPUV1RZAbkh/ITJTRe3DmXOlTiU2JDerzkrCQqTpSwOLPzm7LL6WZyYAKX00l2SUZIx+BLUkYC/a13ctb7W4fXFkXuByM9EyRlJaM3HqxAXNOguD6fsmNFdFzbP9U+9ruKe0tpfa4Tp90V8XPrggzCtyYoe119/BZvPvMeBg7JwmJfJAgXQogg+VNSq/VKF7VnqyMwmp3lVWQz2B65N7ORrtHdNwqA0+ZksH2EhNSdU3xySrMoOVpM+YlSBlqGQjoGXxZmlkjJTgr7efZidnyelJw0ElLjoz0Uv1U/UMFg2zBNEbpoPDSimLKzUwEivUFHUkYCueWZW57rvN5HcqbvqiiD7SO8+cx7eP7xm6Ea5r4iQbgQQgTJYPJvdrG7YYC03JQwj2ZnMfExYe+Sud7k0PS2b6yBMlmMuJxupoZnyCzceXY7MS2ezhu9NJxv3TYqqHuwmvqHaik5WkRqzt6+L26nm5wIzLjv1dTIDHlVedQ9WB2y70s4mWMthyKXPdKiWZVpfYlovUFHbIKF8uNF1JwswWTUMTM8xezI1kWbtiU7mYXp2x7X41F85NX/xGNffurQrQvYTyUKhRDiQPE359i2ZCenJJOp4ZmovImYrSZmo9BIKKc0E9uynYy8VBLSvLOwtkUbSws2FqYXcDndu14YpGQlYY0307uaC951s5f6B6sZ65vwWUPc5cfCsMW5lQ0pJPWP1NJ8sRW3c+O+mqZR/0gtTruLiYEJJn0sCE3NScGxcjCCxdYr3v54qTnJlB1PZax3nIXpyHUQ9Vf1AxVbvhfCP0Odo6RkJTEdheoot8UmWcnI8Y7BsWyjvfFOUy3HNhdWrc91bdtoqPR4Kc1Xe/nk275Oy7Ve/uRjr9xxYfxBIkG4EEIEKZAOb90N/dQ/XMOtp5rCOCLf7MsOEisTmBiMbK1oj8eNwaCjv2XQ58WHNT6G+ger6Lze6y1rqBRxKXGkZCVhX7aTnp/KQOsQg+13WkR43B6Gu0a3dCdNy00hqziDxbnd63PHxJo3fN50qYPMwkwSkq30twyysmhDp9OoOVO91vXSaDZgTYonqyid+GQroz3jzI7PklmcuRbcHhRTwzNMDc9Qd6bCZ8v7aFtasGOy7Y+FrQeNy+EipywrKkG4waCj4lghA21DdN/qAyC3PHvTNnqcTh/56prG5PAMZqsJ+/LG7/3MyJ3f///9+gXG+ib5yA/eEfoXEAUShAshRJAMuyzM3Kz5chf5VbkMtIY/V3mzYEqH7dVQ++iOM63LCys0nGsmPiWOrKI03E43E4NTLE4vADDW67u+dVJG4lpnzdv0RoPfbeLty1vLF471TzK2WnglvSiTmFgzzc/eabPttLtw4qJ3Xavw4rp8hrsPbg3uicFpqh6oxON00f6890JCZ9CTUZDKaBRfV3xS7JZmWMJ/u5XwDIeaByrobxlkcmhjT8Xl+eUNnydnJbHcPYGP7ubMjM5Rf7aShtV68DqdRvXZGmZnNh5jpOfg/s5tJkG4EEIEKdASeG6Xm/i0BCDyQbglQm3U15ufWiAuOXbXiia3u/ztJi0vlcS0+A0LTGvPVKHT67w54H7yuHe+INkc4G+nZ91t9oNorG+SsdXSf9WnqzCaDaws2um62Ud+bQFxCTE47U6UUnRdD6wDYqBi4i0UHylmeWGFsf5JcB2MFJ/9JjbRGpWyqHqjfksADlsveIc6Rqi8v5z2a70+j9N8uYPK+0qZn1okLS8FzWRgpGdiwzbzM0tc+O+rnH3ZiZCNP1okCBdCiCAZzYH/CY1kE5n1gi4f5qfYBCtLm2a9APIrc2m57N8M9XbikmIpri9gpHuMrhu9a4+XHC2k6WLbzmUZfHC7D+7irszCNNJzk1lZWGGwbZCs4kyWl5xMDG4NgALR9vzGXNyhjjvVbTRNIy0/1WdOfKgU1RXQeqWLopo8FsZnsK9E5/fkIEvLS0Wn0+iNwMVhydFCum/23Xlgm1+p4a4xcsuzN3QPVmr7XgVul8fb8l4pRnomqHu0fss2tiU7H/3jL6LX63ngF+4J9iXsC3K/RwghghRoOgrAkh85y+EQYJwasJJ7Cskpy9p63j2+y2QVZ4AGDedbmByaRqfTKD5SSM3pSmbG5oN6YTs1WdrPLLFmNI+bW0820PF8JysLNnpu9ZGYag3reZVS5JRlY44xceTROmrOVIb0+EceqWNpwRt0xyVZJQAPQsW9pSzPL/tcrBz6c5Uw2D5C1cnytce0HX6n4pJjOfKie9Zq1VsTYsks2qWikKZx5AX1ND/ne72FfdnBR17/eb7zj//DWP/Uga2aIjPhQggRpGC6Is5PLYRhJPuBxnDnKBUnStD0OlAKnUGHyWIK+oipOckszy+zOLNEfEoc2aVZjA9M0tMQ2ExfZlE6BqOB+al5FqaXtm0Osh+ZYkwU1eRiMBoY7x1luHNkyzbtz3Vy5NF6Gi+Fr0lQ48V2UrOTabzYTlJGAgmp8diW7DgCXECpM+ipPVPF1NAUqTkpaDodjZfu3CmZG/cvFUjckZSRsJbTHwkri3YcKw5an+2g+lQ5LZc7UAoS0hPJr8yh4/lOHDZvOlF+VQ7W5HhuXe6m7pF6bIs22hq96WSZRenEZybjcTjpbejH43JTUJtPYkYiHg80Prvza7It2fn8e7/F59/7LT76w3dSf6Yi7K891CQIF0KIIAWTe2lbspOUnsDsxHwYRrS9helF6s5UoVDodDrv7PK5lqCPZ7aacKw4MJgMVJ2soOOq9w2z3UeJsdzyrA3pDdupf7AapRTNz7TjcXtIzUmh/fkudHod+ZW5QXWiXF/2zBRj4viLjjA1GvlyjcFISI1Dc7tovbT79+nWkw0k5aQxPxW+koNTqzWeZ8e9P7vV95fSdGH3sSWmJ7AwtQCaRk55Dk3PeL+Po/13UmgMRj1V95Vw68mGMIz8cHM53FgTYliej8xdtpi4O3/3+poHscSaUR7FwvQizc+0k1mYhtGkx2QxMdw9TlJWKgCT4wtMDs/icniro0zYnExMeNeLJOakkluaQfNz3Qz2Bp721HKlS4JwIYS4m6x/MwpETmVuxIPwvnVVPYA9NWyJibdgjvHOcBdU5dFwrnnH7S1WM5qm7XjLOD0/da0qQlZxBk67k5h4C4W1+TjtroACcJ1eR/nxYgxGPd23+tced6w4aL/SSdGRIjILUhnrj3wVCV90Oo3UnOQNed155Vm4HQ6G2v1PLzDoITYxJmIpT2739rm96+lNJqwpCSRnJDDUObbleU3TqDxRLAF4kBZnl6h+oJyWZ8J3J2S99akny/MrlB0rRm/QkV+Zw2D7CGN9k5itJlwON26Xm4mBCfQGHWN926eNzE0tMreHC8j/+uxP+Y0/e4nPqiv7mQThQggRJKMpuIYRLZc7qX+4joano1ejeX5qwTvz7FF4lIfO6727ptcYjHoyCtJQwEiXN5jquLZ15nuzrpt9HHmohls7BOup2clrpdVGe8a559E6bjzZFFDOd1JGInHJVuISY2l9rtPnNouzyzSujqPkaDG9EWhtvx1rvAWX001RbR5tz7QSk5SARykqjhUx2j3CeN/E7gdZZ3JgkvyqPPQGQ0TSnlxONzqDHs825S8NJiOgWF5YwWFzbpmprX2gHA1wOpxR/V04DDbX1g4nbdMqzM7VyjkGo57K+8tofbZzw3gmBqawpiezvBi+XP/p0TkmBqfJyE8N2znCQYJwIYQIkr9t631pvNjGkUfquPVUdIIPt8uzNvMMkJAav2MQXliTh8PuZLhr60ymPxovtlJ+ooTl+WV0ej1mixGDyYDeqEen02Fb3tg5c2560e8AvOr+MuYm5xnpHmd23P9Uk9iEyJVy0zQNo9mAw+akoCoHa5yZrmvduFwu2p5pRSlFbLwR+5KdW0/eCvo8A62DFNYVkJqdSE/j4O477EH3rX5MVgsWi2HL111n0JNekM74wNRafvBmQ11j2JbslB7JJ786l4EoXhAddN03+6g+VbHnSkT+mB6d83lny+V0031jaylLj9uDNd4S1iAc4PH/uMQr3/mysJ4j1CQIF0KIIJ166XHOf/e5oPdvuBDdQHy9wpo8FueW6FmXvgHehVUxsRafud6B8Lg9LM0uMdY3uaVxkN6g33Ib2RTAXQajxchIEM1lGs63UFhXyED71sWOoVb7QDnzE7PEpSbQcqnFZ1v2iRBVtuhr9H4P8+uK/MrF3wuHzUl2cQYFNXk0XWwlLimW5Kwk4lPjadploejt3PLe5iHcNtuO24rdefxMD9qr8f5JsoozmJ2Yx7a48fvmsLvwtfJ5p+opofLENy9LEC6EEAeR0+HCseLA6XBhW7Kj0+twu9y4HC5cDhdOp2v1/904HS7cLje39rCw8bb9Eog3nG/BEmtea34D3pkto9kYsrENd41Rc7qS5kttGx4vrMlntHcM17p21m6Xj9bW69xe7Fl+vHhPC0yV24XeoPPWws5NYbQ3sBQQf+j0Oka7hiNSPm69pek56k6X47C7mB2fZzxMdb77bs9ga3pWVlwstI0C/gX/mqaRV5pByzNtu28sdtR2pZP6B6s33OEKl5nRWYzmrRfK2UUZjGz6HYpLsrKwS8OuUHjFO14a9nOEmgThQggBPPOD5/nQ73wqKuduuNDGkYfruBXlvFjbkh2P20PTupJxdSGuCR0Ta8FoNuK0O9H0OurO1gCwfKt3w3ad13soPlK4Vo6w/qFq7MsOzDFGQKPjWjeZRel0XNtbJ8f+liGqT5VjNBtDnkdtjbeAplFSlxeVRYfTwzNMr3b/zCnPDskxd1tge7vyhT+s8RYKq7NpikDQeLfobwlvCtJtFfeVbrn4LTtWzJCPdLXcihw6msN7RwY4cIsyQYJwcci43R70eh0OuxOnzYnb7cHj9qDQUB4PHqVwO924XB5cTu/K7dsfb3fRi4k1YY4xodPpvC2bAeVRuF1uPB6Fx+PxLma7/c/tweNRKI9CKY/3OEqhFHg8nrVtvAvg7jynlILVbe68qXnf4G4fE0Cv16HTa2iahk6nw2DUE58cy5EHytCHuQvi3cR7GzV6Gi5GPxA3W01bWrEPdY5Se6aKnoa+kJRA67zRQ9mJUvQGPUvzKzRebCOjII26B2toPO9dMJmSnURCWgJGk5Gq+0pR+C6naFsKzaz17Pg8sYlW9EE0X/LFEmsmMz+Z3lt9mCwmOq/6XiQaScMdIxx59MiGmtxJ6QnEJllRbg9zU4sszW3teLpeTJyFtOwEEtMTsS07GO4eD+hnwmAyUFCVQ0ysGbfTScfzXRKAh1hmUQZzk+FflDs1NL1h1r3kaNFajv9mkSqd+IX3fYtHf+OktwTrASFB+AEx1jdBf5u3wD2rAdvtQC4tJxmj2cjs+DwrSzYcNic6nUZMXAzWhBhySjNJSInD41kNPJ2rt9NXP3pcblwubyDqcXtwrwao4C2dZYoxYY2zYIk1r3vexcqijfmpRZYXVpifWmBxdpnlhZW1lfDrGzkopdA0DZfTvRrAenA73dhXHDjtTpx27+19+4oDt8uDpnmvaj1ujzeQ9nhWx6Pz7uvyBtdr/zzK+zqc7i2zNJmlWUws+F69f5D92h89ymvf/cvRHoYIoYaLbdQ9WEP7lY5tF7OFU0F1Hh3Xejc8NjM2x8zYHOl5qRTW5oPy5nDPTc4z0Br4QjrHioP+lmGWF+68MY/3T5KQErv2eV5FDs3PdKz9HQqn6lPl9LQMMzowHbKZtKKaHJpX62fbV+wQnSapW7Q+00p6XhppOckszy3Sc6uP6dWJU71RT80DVUyNzjHWtzFtxmg2UH6sGI/btfa6wPs3OjUnhYySLIa7xtZqlGcWppGUnoDRZAC8Exhz43MMd43SeSX8CwfvZiZLcBWbAjXcNUbSaplTTad588N9BOAA8alxaMPzKE94u1o6HS4WZ5dJSIkL63lCSYLwA8C2bOfv3/AFrj8R/AyZTqetzazedQ7py/7+l84BkJAcS3F1Dvc+Un0gb8ftFybz/vhz2PRMB9nFGSiPm5Gu7W/hxsRbWFkI7WK2halFzFaTz3JnE4NTTAzeySnWNI36h2p2rRG+nt6gJ7cyj66bfVueM1lMFFTnkpiWgPKoiATg9Q/V0HTZO0sdqt8dTdPQG4KvmhNODpuDsa5hxrqGtzzndrppPNcEQPm9ZegMBjpv9JFbnonb7qDx6a3pNEopJoemmBzy/lwU1RUwOzHPSPsgIxJrR0UkFkACFNXm43Lc+R3dLudbb9AzMjgX9gAc4AW/eepABeAgQfiB8IW/+vc9BeDA3RuAw9os+mHjcrr5zmefXPu8vD6fjLwUEpKtvPnDvxXFkR1M2j66hTnSM47JYqT2bPW2HQnL7ikO+QKs0d5xKu4tpeNa7455v+ANwBrOt1J9qpK2Kx1+VWaoOVNF48U70ZnBqCenLIvJwWkcNgcrCzYS0xNpCaIzZqCMZiODnaHPU1VK0fRMpzef/dbWi42DoON574WJ0Wykv6HX7/16G/t330iEVaTqhcenxK39/VEeRV5FNr2bUtkA0nJTWIzAXb2ff9VD/P67fiXs5wm1/fOuI3xSSnHxB89HexgHmsvhJDEllrhEK9Z4C5YYEwajHt26GQODcX/OXAVicX4Fl9OFa5vGGWJnkZpB8pfD5qT5cic1Z6sxW01rjxfW5FHzQAX2XRrrBKv9+a6AFmO2PNtB3Zlqv7adGpld+/+KE8W4HA76GnrJLc/AbDUTlxxL543ekMyCxyXfSW+5fUFTd7aK+gerOfJQDfnVecxNhq/Fu85o2n2jfc5pj3xKlNib7pu9ZBalh/08atPk1nDHMNb4mA2PFdcX4ND0rGyTphJKP/2PS/znJ35Mx43esJ8rlGQmfJ976pvPML3ujUsEbmZ4BlYrBGyn6iUnaLx2sGdxxoemuf+FNfz6H79g7TG3y71vb43vN/v1QqzlcieZBanklmdhX7IxMThFX/MgKdlJPsv9hcLEYGCl9G6db6HubDVNF1u3nUGvPVNF87NdAORVZNPX2IdanT1vX+1uWfdgNSsNAwF1ydxOTnk2TruL+CQrSws2Wp7r2vMxA9HTOED5vaV0PB/Z84q7m8vpxmQxoTfocLvCeBd40++ofdlB5X3lzIzNYTQbsCbEsLTsZm5yOnxjWMfpcPGtT/2Ehkvt/MPj74rIOUNBgvB9rLd5kL97zT9Hexh3hcOQrON2efj+l87x/S+dIy07ifgkKxPDs3zj+gclEPdDpBY0+aLpNO/dGb23XrXBoEdn1KE3GjCaDOgMembG5tHpFGOrNXinR2ZZnF0O/5utnxovtlFypIjp4SlmJ+a3PD824H0zLqzJZbB1CJdj6yxr4/kWyo+X0HG9d+8DUore5qGorpMwxZijdm5x9xpoHQp/vXAfF9u3nm5a+39LrBmnIXIdaW/T7bM7mruRIHyfmp9a4Ot/8927Opc7kg7Wr+3ufuUPH2ZscJrktPi1xitiZ74aT0RCQXUuA+2juFwKVlOJ7Pgul3jkwaq1/0/KSCSvIpvGC60hGYfeqCevMpeElDjmgyxx1r2aA51TnkNckpW+xn4cNqd3AefFdirvLaG3oddnAH5bx7Vu6s5W03hxbzP8JotpHyxUlr/fIjoazrdQdbKM1mfDUx5zt7THnLJs+np3vgMdDi9/089F/Jx7IUH4PvXYl57k/HeejfYwxAFVd38Jv/b6R6M9DOGHQFpNr59hzizJDMkCxuzSLBIzkuhtGmC0b5KB9lF0eh0V95bSHmQqxfC6BY+JaQl4FJx4UT3XHr+JZ4c379hEK8X1BT6rpwRqZnR2rTRqtGiaXACL6Om60Uf1qQpaLrevrXkJVZWSne6+WRNiWInwcgKDUc+ffPx3OftLJyJ74j2SIHyfOvnS4/z4i0+EpYWyONwqjhZQcbQg2sM4cCJRQssXj9v/87pXA/ajP3eMxme7SSrKJqcghbHuETRN522/rtOh0+vQ6TR0Bj16vQ5N89bY13SaN+VF523+pAFDXeO0X+3eNCYPE0PTxCfHsTCzt8WLc5MLzJ1vAaWof7DK5y1yU4yJyvvK6LjWs6F6yl4MdYxQcV8ZnTejt9ZjbnwuaucWwml3egNwTUN5FAajnszSDIY6RvZ87J0mD0qPl9B8PTKdOwESU+N4/7/9CTUnyyJ2zlCRIHyfKqrJ40tNn+DPHnzfntsyi7tL3f0l++A2vPCX2711ZrioJg/3akMro9nAzNg8i7NLWOO8OZYTI97gbnZigdmJnVNH6k6V0vBk4CVO5yYXqH2gIqA64DvSNDpv9GGKMeHYVNklPjmW1uc6cYawa2nZ8WL6WrfWw44Ua0IMA62RC0SE2M7txdIup5uElDgCb7G1la+/W2vPRaDG/0t+/0Fe9IrTLM6tUFCZTXYEKsKEg9wr28f0eh2//75fj/YwxAFy9HQ5v/2nL4r2MA6kaJUoXD8DrzfoqT9TSX/LIP1NAwy1D9Pb0M/c+Cx4PMSnJ5BcnMNY/9T2B9x8/D1M8Hfe7KXm9NZyhTllmRx5uJb6B6vJKs7w+3gejwdzzNbSfVPDM1TdVxr8QH2dy01Ig/pA5ZVnRe3cQmyn61YfCal7b2jjdvgOtDVNA33453d/7U9eTO2pck6++MiBDcBBZsL3vXt/7ghl9xTRecBqXx40h2H51J/+v9/kJa84hW4fNZ05SKK1qt7jdlN5bwmaBmN9k9zaZubZ7XIz2DXO/LTvznTb2UuajX3ZQeuVLkqPFRMTZ0Gn12FfcdBxrYfRvims8RbyK3IY7Rn3+3jKoyisyaeveWNjj84bPej0uoBy5LdjjY9hfND/C5Vw2G9154UAcKw4yCvPRtM05oJcgA0w2DFCYU0efc137vbklGVhToqn7ebWpj2hZjQdjopfEoTvczqdjnd++Q386Zn3YV8Of8H7u9XiwsH/2p5+yREJwPcgWkHTzNg8U8Ozu3aozK3IYWQo8GoD7hAEtT0+OuHllGayNLtEy+XAcrgdNiemmK2VaFYWbFTcW7YlPz0YWcUZ9LbuPe91L1QIvu5ChEP3rT5yyrL2FIRnFqSxOHtnQuDII3W03BrCM7ESiiHuKDU7icyCtLCfJxLkHfsAKKzOo/6s/x3sROD2a6OWQHzns09EewgHWrTa1rtd7l0DcIDUvNSgjj/YOUZ8CG4/r5dTmsn8xDwzo7NB7a/pdJQfLyGnNIu4pDudLY3m0MwL9TYNkJgW2tccMFmXIfax4c5RKu7dWwrY1GoTvOrTlTRe6w/JXSx/OO2uQ7PuSYLwA+KR33jg0PzQ7Ud228Fvz/z9L5+j4Vnpzhes/d7kYTnI1s9L8yvoYmKofbA6JH9DKo4XM9E3wfxU8LNo7c93s7RgIzYpltScFMxWE1nFGSwv2vY8PoDEtPiAqs4IcTfytT7DXx6lUfdQDZWna2hrHIlofLI4txyxc4WbBOEHxIt+7yHe+aU3kJieEO2hHEqRuoIPJ6fdxXt/7zN86i//k742/27FK6UY6ZvkY2/5Ov0do7vvcIjt5xze2EQri3PB3+adn1pkbHCW2jNV1J2tovpkeVAztSaLkcG2YeybqpsEY7hzlI5rPfS1DFF+bxkTg9P03ApNOcG8ihwWZgLLnQ+1/tZh4pJjd99QiGjZw588h83B9IyNzqbodqU96CQIP0Be8IozvPHjvx/tYRxK9ihWUQglu83JY//+DF/52I+ZnVpkenxr+/D1vv6Jn/AHD36In333eW5e2nvjl4NMt48bq5QcK2Z8YG8LDZcXVmi61E7jxXZanuui7kzgKW7lx4s35IGGylD7SMg6u5qtJiZHo1+f27ZkJ6ciD/0hSHUTh5PLGfz73uzYLKPNvVQdLwrdgPxQUJXD2/7x1RE9ZzjJwswD5syv3MfvveflfO1D3432UMQ+Ntg1xht/7iOUHyng/hfUkF+eyZFTdxoZ9HeM8p3PPcn02J1g5asfe4yF2WVe/vpHsezhNuVBFaogMBzs9r3X3TVbTdhmNZTb20XSFmB6S2ZBGp3rFk3GJllJSk/AaDKwOLvEZBCLRm+bGZuj/FgxHdf33hOhsCafzlvhr87gj84bfVSdrKT5QohqrQsRQtMjs+SUZTLcORbU/h63B4PB2/jLn3Ute1H3QDl/8fnXkZ6bEtbzRFpYgnBN034P+Orqp69TSn3Bz/0+AtwLVABpwArQB/wX8I9KKZ9TQZqmnQbeA5wCLEAn8CXg00qp8FeNjyCXw8VP/+1CtIdx4JljzWQWZxGfnoDebKK1IRTtC/aPgU5vybjnftbEcz9rovxIPn/z9Tfwibf/O6MDUwz3TOKwb8yDX5xb5msff4ynvn+NUy+q4+d+6yR5Jf7XgD7o9ms6islqpnePTWcMJj0G1FraVd2ZCp+dK7djNBvQ6TVWVnO2kzIT0Os0htq94yqozqX+wSpcDhctz3YGOcbQvB1ZYi0hOU6otF7pJrs0k5Gu4AIdIcJlbLUjd3ZJJm6nK6i7bTcfv8GRFx2j6bm9VzXaSUFlzqELwCEM6SiapuUDnwaC6XX8ViAWeBz4JPBvgAv4AHBr9dibz/fLwDngIeB7wD8BJuDvgW8EMYZ9zRJrJvMAF6bfL5IrChkcX6alaZTGa/24ItDhK5oW51b42Fu+zuXHG+ltHdkSgK830DnGt/7lZ3zl734UwRFG335dmJlVnIHLsbd0qcy8lLVyZPVnK+m8HtgbptPuYmXRTm55NrEJVmJizWuVEQD6W4ZoONdM181eYhOsQY3REKLKKB7P/vtdTi/IjPYQhNjWSPcYGYW7xxVJmYlUnSzb0qBruGWAhJTwrn+4eb41JGtR9puQBuGaNzv/y8AU8JkgDpGglDqllPoDpdRfKqX+VCl1H/C3QA7wV5vOlwB8HnADjyil/lAp9efAPcAzwK9rmvbbwb+i/UfTNH71T18S7WEcaGUnKxjfw63zg2ikb5Lnngjslnhf+wjPP+X/bOlBt1/TUfSGvY2r8kg+g82DG1rFrywGXmlldmIeg8VIel7ytrO6jhUHxXV5fh9Tp9Mou6eI6lPlNJwLzc+aLUQVVkKp9UoXmUV3z10lcfBsdydQb9CRX5lD/YPVzI3P0/psJ6M948SnxFH/YDUAk4OTZBWGr263wajnN9/y85gsW/sLHHShftd5M/AC4DVAwKt3lFLb/fX85urH8k2P/zqQDnxDKfX8puO8Z/XTNwQ6jv3u5M8f422feZ2sSA7SWOcwFuvdl/McqIHOcW5evHsWa+oN+3MB3V46XppijDjtThLT4tceG+n2r7vlZppOw2zS09u0c7518+V26h6sJj5l5zrd8SlxZJVk0N86RMvl0P2cjXSPhz0/NVAup5vMYpkNF/tX1/Veak9vXKxdd7YKc4yZgbZhGs63bPi9WphepOF8y1ogbgpTB0tN0/izT/4+L/7ds4cy5glZEK5pWjXwYeCTSqlzoTruqpetfry16fEXrH78iY99zgHLwGlN08whHk9UaZrGi1/9CL/8xp+L9lAOpIWpRWLj91fe6H504uEq/vDdvxTtYUSMNSEm2kPwybOHIFynaXg8ng2d8YLpoKmUoup4Ee3P716HPiU7iaZL7RRU5267TXJWEinZSQx3juEIcY3+pbllckv3X8C73y4MhFjPWz2pjZoHKkjKSKTqZDmNF1pZXti5NGrzM+2YLEbcYarLX1ybx4tecSYsx94PQpKEp2maAfga0A+8KwTHewcQByTiXah5Fm8A/uFNm96+bNvSN1kp5dI0rQeoBUqAHe91app2dZunqvwfeWS94eO/z6O/dZrHvvQkP/nXp6I9nAPlMF5Rh9pQzwTLizascXfHBYsxRAsDQy3Y9udp2Ukoh5Oeho0z125X4DnTdacraHi6ya9ts0uzmRpdwONWHHm4hv7mQWYn7pTKrLyvFNuSnb6mwYDH4Q+DycDywv5LSUFicHEA2FccWGLNtD7r390pt8tNQXXuht/xUNE0jTd+5BUhP+5+Eqp3nfcBx4CzSqngO0rc8Q5g/VTGT4BXK6UmNm2XuPpxu6Kwtx9PCsGY9qWq+8soOVrI7OQ8z/7o+razLTq9Do/bw0te8wgv+O0z/N0f/POeSooddPu1EsZ+UnlPQVAB20Gl22Pu9X6TlGyl49rWkn+BLvKse6CcW34G4EnpCTRe9M6JtF7xzpoX1+XjUYr5yQUS0xPobx1iJYxBssvhIjUzgcTUOBbnl5kang3buQLhdh2OXgTi4Cqqyyc+JY7mS224XVsv7uvOVtF4oTWgY8anxBGTnED/zdCXBf3FP3yEutMVIT/ufrLndx1N0+7HO/v9caXUM3sfEiilspRSGpAFvBzvTPZ1TdOOBzq824f045wnfP0DAvuJjAKT2cj//fbb+fzNv6P2gY0/sOl5qbzj83/E1zs+xSeefD9v/MSrOPpwDX/+hTdgNBspPVrIa/76Nzn+wrq1ffZrlYhQuhte4179witPE59093T8Mxj350y4J8g0hu1K/gVSCajy3mK/A3DAZ95zT+MA2SVZABTX54c1AL+t41o3Pbd6mRubJbt4Y9UHU4yRmpMl5JdnhX0ctyWkxjHWG1wuvhB7YTAZqH+omuSsJHobvYGyrwC8/sHqgAPwguo8zClJtIUhAH/45ffzxr/7nZAfd7/Z07vOujSUduC9IRnROkqpMeB7mqZdWz3HV4G6dZvcnulO3LzvqoRN2x1q+RU5fPyJ93Hx+8/z2T//GjNjc7zr639KzSnvetbUnOS1be95tJbvTXxh7Rb8y//sFxjqGMHlcJOcmcira96Gc4cydgedTne4Zj3D4Qf/ep66k6V3zddqr1VIwibAnPCYWDMlNbl0XPWdv+3v97O4Np+OK4HV/LbbfM/2tl/tpqi+gI5rPRx5uIZbT0emeY1jxYHL7kBv1ONyuNA0jcKqbBrPNVP/UE1ExgAQlxTLYHNfxM4nxG3lx0s2VB5av9C7+lS5NzVTg/Zt/l5sp+6hGjqaR8NW3vdlr330rkgb3eu7ThzexjrVgE3TNHX7H/D+1W0+v/rYPwR7EqVUH9AM1Gqatr4OTtvqxy33K1YvEIrx1hkPbxX5fUTTNM7+yn18qekTfPb6R9YCcF/W58CazEaK6wooP15MWm4Kxx6tjcRwo8YYppXch8nFx27xgy+fj/YwIkan0+3LOySBzITHxJrJyEqg8XwL9mXfNXVLjhTsepyckgxGOocDeoM1W02MdG/fkCY+JY6l2WUWpoNpIRE8x7KD9Kx4svOTqXugFMO6UpR55ZnExIV/3X5cUnC104XYi7jkWNo2XUgvzS1TUJ1HbKKVjqvdND/TTvOl9m3/XvhSXF9I843BsPbXaLvafVcsZt5rEG4HvrjNv+ur21xY/XyvqSo5qx/Xf9efWP3oq3D2Q4AVuKSUCrwo7gFnNBnILQ3+dusLDvFqZJCZcH/915eejvYQIkq/D1NS/C1RqJQiLT2O3l0WPC7PL+/4fEpmIovTC7tWRdgsJi5mS6UTo9lAXnkWphgTQx2jq9tFbqFvak4yS/NLDHeOMtw1yq2nmmi66L3l3nCumf7GPox6sFi3BuLFdXkU7VDhJRCeIBfXCrEXxXUFW372ehr66W8ZZGluOaggOjE9gSWHCvss9ff+5aeHsjnPZnt6x1ldhPlaX89pmvYBvIs1v7K+bb2maUagFHAqpbrWPV4FzCqlRjcdRwd8EMjAG1CvX034beAjwG9rmvbp27XCNU2zAB9a3eZf9vIa71b3//w90R5CWN0Nt7lCYWZ8YfeNDhGDUb/v0rA8bjc19xbj8XjQ6XVomsbEyCzjA9MbtssuTKV/l/b21ngLvc3bB+nWxBgMRo3JgcAz+OwrW+c6sooymB2fJSUzgfT8NPLKM+m60RvwsYM1PTqLxbpzg4/Z8TmK6gqYm1lmbvLOLH1svJnG8y3kVOYx3LW3fO7+1mHikqwszu58ASREqNSdraL1ucDSyfyRV1NA643Q54Bv9vvv/hWfF8eHTTSmfXLxlgvsA4rWPf4S4KOapp0DuvB23cwEHsa7MHMUeN36Ayml5jVNex3eYPwpTdO+AUwDv4S3fOG3gf8M54s5rGITrDzymw/w1DdDstZ239FkItwvqVnbLbc4nPZrXnjTpgVTmYVp6A26DQusEjOTiEtPQqfT6HquA5ePi4nskky6bmytmALeWeu0zIS1xVuBSstLZbBjY7A60DZMRkEa08Mz23bZDKfUrGTmp3cvndbb2E9+ZQ4eTywL094+c43PdFF+ogSD0cCQ2tvMn8PmpPxUGQ1PNwZ9DCHgTqWznRTW5AW8yNIfqbkptN0KT2nR9X7zz17Cz/3O4b4bf9t+uvf6U+BzwBngKN6ygkt4F2R+DfiUUmp6805Kqf/SNO1h4N3ArwEWoBN42+o+hz+pKEze+pnX0Xix9VCWMpSZcP/sxxzpcIpWOkpqTjJ6gw6dXs/M2OyG/EyPjzKRY32THH20liW7mxiriZWFFZSmo6uxHwCr1cyijyDcuqlJVd0D5SilaH62k6LqHNqCnDlLykjEEus773m8f5LC6pygg/uAKcWRh6pRSjE1MoPDz1vaA23D1J6pomV6icoTRej1Gs2X2vC4PdScqab1ed8XL/7SDngKnNlqovSeIvpbhlicCbghttij/Moc4pJiaX2uk7S8VDIL09F03lQnnU6HptMxMzrDwvRi2NI40ouzmG0YCsux16s4Xhz2c+wXYXvHUUp9APiAj8d7uVM6cP3jjcCbgjzXReAXgtlXbM9iNfOCV5zlmx/772gPJeQkCPfPUM8EthUHlhhTtIcSEQZjdBbsLkwvrAWLBdW5jPZNrX3u2WbS6+aTTRRU56KcVnra72TxmSxGTHpgxlsXeH3wa1vypoxY4y1kF6Zx6+km6h+qpub+UhrO79jPbEdZJZm07RCkavrIBaDJWUncOhdc9ZW5iTlqT5XScql1Q77sUPsQdQ+UMjU6x0jPZFDH9hygOuExcRZ0Bj0rCytUnCih9blOyo4V03ypHaPZQGpOMoszS3dFzm40pWQlkVuRzXj/JANtd1LNJgenmByc2na/9R1yQ6XuoRpaboY3AI9LtPKWT7+KBw55Oux6+2kmXOxDp156/FAG4cJ/vmrKHla6CAaL6xkMem6HM/0tQ9Q9WEXjBW/Tm82pUwaTYa3hTn/LEAaTgazyXEYHvTcKHTYn6TkJZJdV0/xcN6XHiui63gvAwswCmQVpKLeLjmveolGWWAtXHrvOXuzWAGhmOHJ30zIL05gZDe58g+0jDLaPbHl8bmKeW081ERNvQe0xNWW/iYm3UFCdj9FkoPFCC5ZYM4W1BUwOT2M0m9AbDWQUpNF00VuMzONRTA3PUHFfKe1XAitrJ3zLKcskJTMZhXeBtcvhxOV0M9Y7saG8YLTEJlrp694+6N+rwqocXvfB3+TEC2sP1e+WPyQIFzsqPVKATqfhCbBW8X532F5POM1PLxIbf3e0ro90TnjtA2Uszi0z0LJxhqm3oZ/6s5V03+rfsjhp83uUy+HC4Hah6TSUR5GYGktqXho3z3tzQj2ajtL6fEwWPUaTgbYrnWsNc2rPVLGyuPfmOdb4mG2fS85KZHpoSyZh2CzNh6Jps28rCzZKjpXS2xz4jODSwv4r0lVytJDhrnHaVoPpuJR4FmeW1hb01T9YRcOmuwq3L7imhqapuLeU9uclEA+UpkHN6cq1i/6+pkGGOyO/ZsJf+dV5dLSEZ3xnf+kE7/zcazGZd15AfVhJEC52ZIm18MJXPsjjXzsX7aGIKHnq+9fQdBp195dSVpfL1XNt3LzYzh994OXoozRzHC56feTSUSruLaH7Vr/PIHhxdpmG8y0YzUYyClIZ7p4AvGkkccmxTA3P4l6XK97fOsQ9L6jD4YGOq93cXJ15LqzKZn5ogon+CR/nL6Xlcgc1pyv39Dryq3Jpu9a77fMpmUkRDcITU+IIZ/Z5f1Mf9zx6BLfLzfTY3Frpxd30tQwRnxIX8TrpAPUP1bCyYMO+4sBoMRKXEMPCzCJGs2ktRQlYy/U2xZgorsvfEoCvNzU8g8vppv7BalwOF3qjHk3T9pTWdNgYTAaK6wswmgwszS2DBgmp8UwNz6zdWTgIwjU7/eLfO8ub//73D937SCAkCBe7+u13/tIhDMJlJtxfX/3Yj30+fvolR7jnzJY+WQeaFsGFqGaLEafdSe0DFUyNzDDauzVQdtqdjPWMk5qbjMftYXZygeUlOwajnvyyHPRGPSaLEYPBwOLMIjEJ1rVc5tr7S2i71Ix9aesMbGFNPr3NQ3u+I6RpGna7e8fFj5Eu+Rjum1wuhwuHzUHzZe9scXZxBk67k0k/Um6isTgzvyqXhvP+V8pIykggPtlK23Mdu247NzFPw8Sd6jPJWUnBDDFg5hgTTocroPrr5hhT2HPYy44XY7KY6GscwJoYQ2JqPB1XD36vwM5r3SRkpzE/E7oSm7/x5pfwBx/4tbsu/WQzCcLFrvLKs3ndh3+Hz//lv0d7KGIf+dL/+2/e/vHfobAyO9pDCRlDhKqj3PNINZoGqdlJNF5oofZMlc8gHFZzcEdmNzym0+sY65/c0Byn7nQFDU83U3emkubrfdjml9cC8PqHanDaHMxPLxITb2G8/87Cz728B1aeLN9xQSZAQlp88CcIwk4L1kLFuS4HfqRnnPqz3rsJK4u2bdNhkjMTmRneflGn3qCj5EgRtmU7TruThalFluaXSctNYXIPdxKS0hMZaNua5+5LXkU2S3NLDOxSb347M6Oz1D9UjW3JjtFsxOP24LQ5WFmyM9zp3x2DneSWZ5FdmsXs2Bxmq2nb2eSkjETyK3NYnFtCp9Mx3j/J0uwSmYXpZBSmoaExNzlP3w418wNRfqIE+7Kdzmve34XEtHhmx+eZGAj/z2IkOO1O8orTaJ7pD8nxXvO+l/Nbb5VaGiBBuPDTy/7oRfzHR75/aEpTqbtnrWHYdNwa4MJjNw9VEG40R+ZPYue17g1pCTstCPU127e5MyXA7WKsjRfbKL2nEHOMN8cytyKbxgttKKVIykjAseJaq4W9fr9gGHfJ40xMj6fzWmRnAjOL0hn3kX4TSgsTc9Q+UE7TM97Z4oYL3mAwNtFKen4KEwNbg+bUzHim+rfPq3W7PJhijIwPTDI3MU/lfWVoOo2B1iHMVhP2ZQdJGYmkZCXRfasP8M5yj/dPUHFvKS6Hi+5bfVvajwdSpXdxeoHZid3rqu9ku4WE9Q9WB52qYk2IofZMJT0N/Tz/kxsAVN5XyrEX1OHxKG4+1QR472RVnyqnt3HA57nG+iYY67vzs1F7upK+pgEW54Kb4c0oSEOn122Z7Q5HdZJoc4Wg66umafzpJ36XX3j1wyEY0eEgQbjwiznGxPu+8Rbe+eK/ifZQQkTSUULh/hfURnsIIRWpEoWB1F/3FXD74l5XUq/rRh86ncaRR4/gcTkZ6hjDEmchLil2S/WP0Z5xNE0LKFgDqD1bTetzOy/Kyy/PjliOsMGop/pU+Y55zKEy3DmCybL1AmRpbpmS+vwNQbjJYiS/PJPOq7svYGx+pp2i2nzmJuZpu3KnZntueTYp2cl03eih+1YfFfeWMtQ56g0olVoLfGtOV9LyTBtKeXP+dXo9zZd3Tyu5Lb8qj9mJ8Hz9ehr6scSaN+SgbycxLZ65yYUNd2nmJxeYHLzzdW1bV5ml6v4yPG4PUyMzNF9q93tMTZfayC3Ppqi+AJfTjU6nMd43yeTwNPUP1TDaM8bEwBRpuSnEp8Qx0T/J4twyllgzJUcLGWgdjkqOfzToUXuqDGQw6nnnZ1/LQ796X4hHdrBJEC78dvThGqpPltHybOhb4YqD6duffYK/+qdXBbyfbcnO1z76QzxuDy991YPklWWFYXSBi1TOrs6wMdjf6X1tdnyOtIJ0pkZ3biXv2VRQ3ONRuN1uWi93Yok1k1uW5bNl/OTQNFX3lQbU4rqwNn8tJ3o7SRkJtFz2PyDyR25lDmaLke6bfRsej0u0YrYaIxKA39bb2M+RR+tpvHQnyLXGWxjrm0TTIDkzienRWQxGPTHxVgqPluC2O9BQ26ZB1J2t8jmTPNQxwlDHnYsnt8tNdnEGndc3pgI1X2ojOTMRs9WMKcYccNfEUPe203Qa9Q/W0HyplcXZJdLyUimuK2B5YYW5qQVyS7PQGXTMTczTv1ohqLi+gJg4C7kVORiMemyLNuJS4rj+s4Ztz7OX9uybv7YAmYXpaz9L6XmpTI/OMjk0jdFsXFtcG0iwfxg0nmumsDYfXUwM/R2BVUqxxJp539feyPFHD9ekTShIEC4CUnu68lAE4TIPHhrn/vs6L3nFAxw7G9gCzenxOX76zcvMTy3ygy88Sf3pCsqPFnD6F+6h+t6SMI12d5GqE643BDbjnpGbvGMQnpabgjUhhtKjhXStBqgZ+al0PN9FcmYiphijzwAcvMGyP4sK14tNjtvxeYNRT1xiDDMjgdfr1jSNtII00gszsMZbmBmeRnk8xKXE03SpA6UUuZU5DK02L0nKSCAu0cpge3B5zHvReK6JnMp8hru8QUl6XioJqXHMTswzPTpL5b0lTA7P0HipnZpTZcyOLDPSPQ54Z7eTsxJxOVy0rv5N9Tfdb7vvJUBOWTZ9TYOM9gYWgGcUpNF4sY2UrGSmg6yzvlnlfaU0XGil4kQJKIXOqGdubI7hLm9++OzY3LptyzBZjLhdbjpv9OBYieyC3vXWp6xMrFtj4LQ7I77QeD/paxogLjmWtKxUJneZFLgtISWOD37rz6i8i7pgBkKCcBGQV77rV3niGxeZ3rRQ7KCxWIxk5qegad43fY3VwFyB8v5nNVdW4fF4b8Fpmvex5UV70DmEh9F3P/dEwEF4ckYChZXZNFzq8OZ0Xmjj5oU2vvPPP+Xtn34VL/yNk2Ea7c4iVSrL3/OYYkzExFkwxWysFV5QlUN8ciw6vY6Z0TmMZgM3nvLO3BXU5JKYGs/S7BLxSRZGe8Z9LuyruLeE6eFppoZnApoBzSxKp+3K9nne9Wer6GnoC2pxnynGRM7RUga7xvGMLzJ3pWtdTvyd2cr4pNi1/8+vzNnzDHhcopWE9ETikmNpv+L/JIPH7cGgU1QcL6L9Wi99m+q9tz3v/TrVnCpHOR1rqUC1ZypZnl+h8XwrKdlJJGUkkpabgiXWvOUcgfJ4VFB/n9Jyk/G43XiCaM4VnxJLcV0hljgLCzNLmCxG7MsOOlZn6ts35Uyn5qaSWZSOfdlObIIV27Idhbeyjd5oICY+lvzqFKxxloje3RC7W5xZoqA6368gPCEljr/93tsoO1IQgZEdTBKEi4BY42M4+fPHeOxLT0Z7KHvS/Pi1oPeNTY6l7mSVd3WnpsPlVnS1jOB0uIhLtKLTacwfkgWs/hjoGt91m+nxOaZGZimtz0en0/Htf3qchktbc1WVUvzD275O2ZGCqCz41EWoWY8/M+5HX3KCxWUnPTd7uXW1j+oHyjHodXg8iu5b/fRvE+TefvzEC2qZHZshITWB1OwU9EY9Op2O+ekFsovSufFk465j0DQNvVGP3qDH7fZgjY8hMSOJ8cHZbffpuNoVdAOg6kfqaXq+FwDbsoO0/FTGfVSNMVpMAN40mmf9z3neTnJ2MgNtI2SXZKI36HbsEpuam0JuRR7gbUW/ML0AyrNjXn3z5Q4qjuavfb6+qsf0yCzJmYl0Xu/BFGPa0+vILExnYcb/HOXskgxiE6yM9k3Qeb2X4vqCDbnou9EbdNScrqTtShe3zjVTcrQQnU5HyzNtWONjqDlZRqOPtI3p0VmmR2d3PHZcUiyTA+FdYCuCszn1zZf03BT+9rtvJb/i8CzcDwcJwkXAqk+WH/ggfC+WZpa49ZOrGx4zmAwYDHrmxyeoeuGxuyoIf+VbXrLrNk6bi8+851vYVxz8zX++mYUdvj4uh4sv/vV3+et/e1Moh+mXQNNEgqXT6zCYjRjNBoruKUWXEEflC+5hedGOOcaETqfReK2fvNKMtX0MZhMNq1UgdlN7fylXfuz7QjOzcGsAnl6QjjE2Bqfd2y7baXfisHn/34N3hrLubCUNT7ewsENjnszCdEa7gytFV3K8hOard3K9y+pyafjpLZ/bdt3qp/7hWpYXVjCaDTjtTqpPV+HxgDnGSPeN7oAqOcWneNNrRrrHKDlSgNlqpudW74ZFhEazgdqz1bRf7/cZWO7GsEMlmZnVtIyd6q3vJD4ljryKnIBTBZVSOO1OlmYWMZj0TAxMEJcQs+tMemyCleL6AsYHJjfksK/P1V9eWNm27OZOEtMTKKjMYXlxhaH2w1dl5DDYLSUnrzyLv/3OW8nIT43QiA4uCcJFwI6/sC7aQ9h3XA4X3G7nPHH3vHH87ttewot+436fz73rNz/F/f+njl95/QvILEjlYz94O9eeauHfP/4jrvxs52Dyyk8babnSTfV9kc0Pj1Q6iiEjDRYVTqCjYxLwXT96anSO2MQYluZWaHy2i/pHancNxOtOlXFrh20S0+MZ6x3DaDFSfaYa27ID+4pj11rS3qStnaXlJgcdhMdnJKEG1t3i3qEkmm3JvlYeMCkjgbzqAuwrLnpXFzzmlmfhdrqxLdn9SrWZn7oze9x9y1sLOas4g/TcFNC85+u62cfNJ5spOVLAYPcETrtru8P5NDEUmjxrXwpr8mkLon38aM+Et1KPpqPqZCWN55t3/HppOo2aByoYbBum8eLOOedGs5GkzMSA1xt47yh46DwETW4Oq55bfdQ9XEtP2xjLixur3ZQdLeBD334rSRHuD3BQSRAuApael0pSRgKz43urJ3sYmazmXatYHCY//OoF7jlTQfWJIpTaGMTaluz89JuXSUiJZaRvipbnu7HbnSi3h9G+7ZuW3PaDLz4Z8SA8Us16/C1RuLJkp+6+YhpWq1w0PttF3cO1ND7tO8g2W01039i5eY45xkT9I3UM9UxsqOwRCoHmE+fX5pNSkEHD/1zD5d4Y/LU+419b79nx+S1/i4Y6RklIjSe3Kp+uq507BpbVpyp8ziCP9owz2rM11arrZh9ZxRmk5aXS/Kz/ge/44DTZpZmMdAVWWcK/Y08FfFFw2+2uqQ3nW6g9XUXTxY3VWRLT4imsycduczDWO+53u/XqU+Vr9dMDMTs+R35F9uodjuBekwgvj9vDrScaMJqN5JVloYwmhnomqT9TwQf+/U+JTYiJ9hAPjMj30BWHQvXJ8mgPYV/KLMmM9hAianZykXf82qf4tZq/5G/f8K+4181e/vk/v4bpmRU++rb/4Ouf/F+uXuyk8fk+5mb9yxfuagxNN7tARKxOuI8Z96p78imu8pE/ual+YdNz3hnxzZIyEqk6Xszi7M6pBJb4GJqe7QroIjoxLZ5hP2a43QE29IhPTaDt5gBpNcW03ehHb9BRfaKIhORYnH7WR9/O/NQC3Q0DFB8r3bkZUhB97kd7xtEFWM5S0zRSspIDPtduKVJFdfkb6mcHyhJrJjUnmeTMRCyxZhJSvak5iWnx1D1Yhd6o59a5Ztqe6/TrZ0an11HzQEVA9ck3a7jQSnJ2StD7i8hw2p3eZkejUzzw80f50LfeIgF4gCQIF0GRXC/fEtISoz2EqLAtO7j0k1v8atU7+de/+xEA2YVpHFtt573eyrJ/QXh8kjWkY/SHPorNeswGjYW5rS3PNy+CUkrhWm3Mo5QiNTeZujOVLC+s7Fi67rZggtv4hBgmfXSB3CyQuLToSBGDg7O4nG6mx+bQNI2MNCtNTzRgn5oNeIzbGewY3fEOh8kS3GJIx8ruTWc20+kD//mqOV1B1ckKCmvyNlwkFtUVUHe2ir6WYZ9dVf1Rd6aChJRYHDY7S3NLXP3fG8xPLWIwGZibXKDxfOuulbDMVhN1Z6vJKcsiLjnWe2fhua4dF7f6Y2JgivqHaqg9W01yVtKejiXC69j/qedd//rHmPe4sPhuJOkoIig5pXfXjK+/9EG+oR8WSalx/MYfv4Bv/tNPmZ1aYH526+K4pQX/gpfs4vRQD28LpRSLs0s4VpzYVxx+dfPzR/Xpig2Bn1IKpUB5vF3ncLsoK03F4/HgcXtwuzxM9E9i9Cgykk14XB5cLjcet4eBG93ExRhwO1047C5cDhftz3Zw/NFqdDodzz/RzNTwLHUPlHPrie0bmqyNxY/c7s3G+ndPHyqqzaPFj9nP1LxUcipymZpeZnnhzvqJpLS4tdrfKwvBVVfxxeVwUXVvCc0+cpg1TWOwY+dc+O1MBVEDvfVqD8lZSczsUhlkve6bfXg8sLJowxJrpqA2k+W5FXobB3bu8rSL3PIsRrrHmPKRs+1y7J4GUnFfKZpOx3DXGE3PtK91U9zLDPhmjaupLxn5aSE7pgitX/mTn+cN//DqgO8MCS8JwkVQimryd9/oLrRyl+cw/tlHfguL1cRXPvZj3C439ccLSDRr6Ax6ciuysdlcjA7PYDDpcTncOx7r2EPVYR+v2+Xm1zJfH/LjapoWVAUNfxXV5jLWPcpg3wyapmEw6hloHvBr3951tayVUiSkxN1pwa55F2B63B7sdgd4wOlwoflRksyfGeWSE6WMTy7T0jC05bnk9ASmOsPTcGdieA6z1Yx9eeNFVmxSLPYgL7zmJhfIr8hmoN3/IN7t8pBbnhNQEL40t0z1qQoWphdwONx03/QuHA02ANfpdd6OnukJNAbZ4MhoNjLeP8Xc5J2LqGDbmd+mN+iJS7JijjFjW7YzP+U9tinGREZBKkkZ8bTtoTOmCL3fe99v8Hvv/409f+/vZhKEi6BU3FtCak6yz1mUu9nU2OFZrKppUHO7tvHtbkbanU/X3E6p1aCgPBu9QU92QSoWs35D+bLbdYFNFiO73akurMzmkZfft/cXsYtwlSQM55tSVlE6I22D5FXkoGmzgLde9uzkAuaEWJx2J4W1+XS2jeG0u1AodJqG0WxEr9cRb1J4nC7cq6UI58d3X0gcmxQL7Bysmsy7v53EpSfR3z/r8zmLNXx3kaaGZ6g4XozyeOi40rGWB744s0jpsRK/0ng2c6w4GGgZoPJkOW3P77wYdr2mZ7uoPVtN04Wt7enBm9ufUZBGX9MA9tWShV03enDYnORX5wU8zs3K7imk81r3rtVNtpNbno3T4WJiD3not6XnpZJVlE73zV4WZ5eYHfO+Xk2nUXumCpfTTevldmnYsw+94e9fzcv/7KXRHsaBJ0G4CIo1PoZX/OWv8M9v+degFjYdRtZEK7OT/jfK2O90eh2N530HCts5/99XOXK6HJNyMdjse5bNYXMSkxSLbXn7msh/8N5fjUi5wNuzyLdzrEN2XD+rnwQqIz+V5ak5FmeW0FbTXRJT4xloH9kwK5mctcDyppQOx+pdmthUS0A1tAEMuzQxqry3hJbLO8/8x6XE4dgmzcEcY2KoqT+gMQWq/VoviWnx3sR1z53v915+zjxuD13Xe0hIjdtQ5nAnmqbR1z6KJdaMy+nGbDVTcqQQDY2hzlGmR2eZnVigoDoXk9lATHwMs+PzxCVZ0RsNzCTPUVxfsOECNxBmqzmov9mmGBOV95XRdbMv6GZM63kvgD3c8lHpR3lUwH97RGTo9Dr+/Mtv4v/87kPRHsqhIEG4CNrLXv9/6G0c4Ief+2m0h7IvpBdnMjB8eILwQFqZ3/afH/sh39brmB7beXZ1pwWQ+RVZ3Pd/IleLXm8IQxAe0qN5ZRdnsDw9x+z4HJX3l9N6tRejyUBSRsKWduk7MZgC/7O/XaOZ5MxEkjMTfXatrDpdhSXRisftYXnFRW/rCJ0NvivelNXm0vAz3415Qik20crM0MYGMmupOEFyrDjILrbicrlZ9rGwFiA2yUpmbhIDbcMkZyaRUZCGwWSg8UIr9hUnDee3zkr37/A9nRoKfha64VwL+VW5DLT6/zOTmBZPXEr8Wo52KJQcKcBpd1Jcb2VyaJr8ylxsy7YNDX/E/mKyGHnvN9/OqV88Ee2hHBoShIs9eenrXkjTM+30NIR3FusgiE+Jh0MVhAe+z/rZ2B3tMBN33wtrUUrhdrlxOrxpEx63B7fbg8flwe1yszC9yMzEPLZFGy6n29vl0eHE7XTjdnk/d7vcoLwzeGarCUuMGbPVhNlqxrL6MSE1HqPFuHbbP2RCnI6SkBIHLif5VXnkVeUxO7mIpmlUHC+m2UeN650WSZmt5oDOnVWcwaSPoC+jII2l6QW6rvsOCM2JsTSutqDficVqYjRMueCbTQxOUX2mhrZnWtZmgz3B/KBv0tc8iNFspO6BChqf2XhBopQiOz+F9tXmM9vVHw/EWN8kpUcL6QomYF392YxLimXRx8LpzQqqc5ken2c4xPXN9XqN9lt3xt/8TBuWWDP1D1XTfqUr9L+TYleWWDNHH6n1/s2MMbGyaOPi954DwJoQw4f++6+ofzD8a3XuJhKEiz0pqS/gU+f/L2995P/SGURe5WGiM+1tRi2cdHoNt8sTWK5yCIKT7VjjY1japgJG01NNvORvvxu2c9+mN+rRTCZQioySLJIzE9DpdNhXHBiMBgxGPXqDbrWDn8LjcuO0u3DYHNiX7Kws2ViaW/ZZ8i+UIXhOaSY5xemMdA7T1TTIypI3ODn2cBX2FSe1J0vXvq8aCgWYrBZ0vVN43Fu/h45lG0U1uVhiLcxPLTLcfSe4KjtWhN6gp+3KnSY0JrPBZ7UM25Jt1/bm/iiticwsOIDT7qLt+W6KjpZiijFiMhvR1N5K6d05tpNbTzdRdX+5twX88CwOm5OcknSaLgSXf70dt8tN180+ckozyShIQ2/QM9w9ykjX7sG9wajHvVoVaDfWhBhi4q0stQfXBXU7RrPB5wWEbclOw7kWCmvzmZucZ3aXO2pi7+ofrCYpM5Gmi23MTczjtDv5o4/9PvmVufQ09nPxe8+RlJHI//vJuym7pzjawz10JAgXe2aymPjtd/4SH/qdT0V7KFG1Yts/lVEq6nIxGTTQNKaHp1mcXWbeHVhoqNPrCE14spU13rLtc0t+BAeh4Ha6ySlNZbR3gsnhmYDba3vpMMVbMVmM3oscnUbZI0fQlSZQcCYP3YoLzeFGrThxzaxgm1hgZWCWpdG5He8G3JaQGkd2URoKGOq7M77yewq5/vitHVOGCqrzmFnxbGkrbTSbaHvOO1tbdk8RBqOejII04pNi6bzeDZqG2WrCvpqzP7FN6oPD5tywXbAm+/c2KxyM2+3tK04Ub8gPD4XW1a9tVnEGCckxIQ/AAQprcklIjWNpdpkbq2UpLXEW8iuzGWgbwWDU4/EoPG4POaUZxCbGYjIbGGwfZmFmidmRGeKSY3dcG2BNiCG/Mpe257tCvtDYZDGyvMPveV/TAJqmUXO6guYwVhm627341Y/yji+9EYDlhRWe/dE1zDEmMgvTmZuc58pj1zn50uO88R9eQ05pVpRHezhJEC5C4sGXn6T2dCVNl0KXM3jQzOyjRZmOhWXaGjeWrKs4WU570/C2b6hKKbLykolPiGGwdxKlIFyXFTt1Vgx00eBeJKbGMdo7sfuGO7idDgNgMBtoaRwmrzqRy7OrQbMGWAGrAXKSMZZ7uybqdRpuj+KMKx7bnA2TUY9Rr0OnA51SKIcTq9kANgfOpWWyitKwLdmZGZ/H43DumrPf3zJI9QOVtHdsqmqy7tvfeaMXs9XE0KZSdWl5qYz1eWuDxyZafdbtti3ZqT5Zum2Q5NylBCV4F2RG8vu9WVxiDM//5EZYjr04uwTKQ92ZypDlUusNOipOlDDYPkxf08bfb9uijanhaUwWAxarmcXZJbKK0hjvn8Tl2DiTvTy/QuV9pRvueKxXWJuPwain/VpPWCr9lNQXcOvpnSueKKUY7hyjqDaf3ib/ym8K/9U/WM1bP/9Ha59b42N49LfPrH3u8Sge+a3T/Oaf/3I0hnfXkCBchMyplx67a4NwS5yF6QDagIeTUoqhzq23j9uf7SC3LBNrvJWZeRtT43fyt1PS49BsdkZbBxnF+2afkpVE6FqmbKTXb//Gbg+iE2GwjEEsUtxJwZEiekaW0HykgQCg3Qm+3asz4bYVJ/19U1s21WlQW5qOc3qRlnPeChJJGYnkV+dhjDFijrWQW5aF0WwkPjkW+4oTNFBub9qR3ebA5XRRc7yAvo4xlhftKLU1X3zzTLZOpzHaO7EWfO1U9WO7AO3Ey+7n5mXfAd565XW5NDzRgNFsQCkov6cAj9vDzPgC4wNbvyahlJqdhNuPpjTBKq7Lp+FcM6M945QdK8ZgNNC6TdC7k5g4C+XHihhoG2J+anHHKjTL896FoY7VfOqdcs9Hun3neB95uIaGC/vj7/js+Bzp0p055Aqqc/nzf30T+h06uFqsZiwF4W+YdreTIFyEzC+/8cU8/a3Ld2VueEZxJoNje8+PDYXktDhmen2/wQ51eh9PzU6ioCSNyfF5WLahdzgYX5eO4XZ5QlIHeDvbVSNRSu1YujDUgmnhvhNrSjyMLIFHERdjorwonRWXCxN6bnYMowEmg56V3YI/pajMSaTlYhuVR/I58nP30HKuiYScVAY7Rqmoy8Fhc9Kzerej+v4yWq50bzlMzZkquq/3sDy/gqZpmGNMGM16cssyMcWYmBmdIasoE6PZgMej0HQ6NGBlxYnH7UEpxczo7FpQt2WYPm5o1D9a79eiurzSDJYnZ0lKjmFq2Puz1nT+zuxo7ZkqWq/1oUJYAjU+JZbcknT0Bj3Tw9NMDYc+0E/LTSGnJJPmZ+6koXRe99YRrzldid6gZ3FumZ6bfdsu4DUY9cQmWknLTcFg1HMrxHWyC2vyGOvbeAeo7HgxeoOBW+dbw1rnXimFLYASh53XekhMiye/KpfGMKT23I1e+roXkV0sXa/3AwnCRciYY0w8/Bun7sog3JocB/sgCK+7J89nubPNpkZmmRqZJbskg5GRZZZCsMDOXzq9jqlR3wuuympyaL8UuTfa2Qnf48jIT8VkNqDTaWg6HbrVut+3P9e01Vlg7c5ssKbTcLm8AaMBMCQYuDJwpwxcVWk6FqVnqGsa1sWoSz7K2h2pyKDxaW+d5JbrfRiMeipOVtCy2hRG2zSbvbnCR1JGAlll2bRc7eH2TQfvBY4d5fYwtK5V++y6OziZRRlMjGy9o2OymolLisWaEIM13kJcSjxLCzYWF2xUnKyg/Vnv7GzlyQo6GgfxuD0kZiQyN7Ux1SQ1K4mE9AQseg+eFTtN57ef1W262Er58RKGeqawLQd+d0QpRUZeCpZYM3qDntiEGIY7hje2r9c0YhNjQ/Lzn1uWRWJaPC2X25kcnPS5TfO6O4X1D9XQ3dDP0swSphgTmUXpmCxGNE3DZDbS+mw7cxNz1J2t2vPYNtPpdWvdQ7NLM0nOTKJltcpOuLsfVt5bymi3/ws9lVLMTS4wd6GV6lMVtD7bHs4143eFe14QuRKwYmcShIuQcdid/PdnHo/2MKJCuUO7uCtQ+UVpJCZZ6LoRWMmyke7IL4orrMqht2PrTL3JbGBhNHyz776M902gMxq3NC/JyEnaNWfVlyMvPgbAxPPDWF648TZ665h35rE6LYXF/juv07FpQW91afpaAA4QE2umqj6Xa0/caWqypRnQ6vD1Rj01pyvpbh6i7VovAAajDte6oH9zAL+ebps0IafdxczYHDNjc9SdqeTGhTvBc0JKLDVnqzHGmGl89k66RX5JBnNT3ouGuORYUgsz6GsfY2p+kurKtA2z3tvpuNZNXkU2y8tmZif8T/dKzU5COR2Mde/SUl4pMovS91SbuqguH6PZQMfzXQxtLZe+rdtdIC2xZmxLdgZafNdQd9pDe7cGYH5qgbLjJej0etqe72K01/dFQ6hpGpgtRv9LmW7Scrmd6lPldFzr8VmxR/jnxpONlBwpjPYwBBKEixAymY0kpMWHPZdzP5qPYimtuIQY7HMLNDT0Rm0MgYhNjt3ymFKK4tI0mkPYDMQfbqeb7OIsxvo3BiE9LUNrwVFAVqfo5vvm0H9pjod+p4Zzjo23/ROSLbCurH5abiILq7m82Znx6G12qo/m4XF7q1skJJpZWVymqCILt9uN0WQkNj2R7KNluN0enA4X+qR4qk6VMzW+sCEQBohNsG54HTtNIup26B6ZXZrIA7+UyoUfjpJRoGdyyI3HDfPTS8xPb11c2dcyhE6vkZASjyUlgb72OxdemmX76jibDbaPkJKdTHZxGiM9OweLBqOevPIsVuYWGfGzoU1cgtXvsaxXfrwYp91Jb8Pemsvs9jPm607JXmUUptP6nPfnJByVTwqr85ganWFmdJaUrGSyitIZ6R0npzhjz6k1LZc7MJqN1D9YzVDHCNOjs6EZ+F3ky+/+Dx769VOk5Uq+fbRJEC5Cqv5sFZ3Xe6M9jIgb6x1Hl56GZ4eqH+GQkh6Hwe1izMfCvv1qatMFi1KK2nvyaXhqa/vqSEhKi98ShC/N26i9vyTg1uCezBgK7ssBQFMKnV7HfXk5qHUlSZIcJu4tygGloWkQ49aoyI1Dc7rRd0zS1zGGbXoOl91FbkkG3c93EJ8av6ELaV1yLGOrOfsxsSbirEaubHMBo22a3d6pqopuh4Vav/MePdUPfo5feJP38+bzv8zfv2H72cj5qcX/z959x0d6VQcf/915pheNeu+9bvV67fW6gm3AGAymh94CJDEQSCAm9BAICS2QhJdOQsibAryEUGPc69pb1XvvbdQ19b5/jLpG0kiaUVnf7+fjz3pmnnJnVqs5z33OPYdTL72GhppeBrpXB8TbbZAz1j+OeXKWyusLGRuawhFrw2DUoRmMeOY9aHodnpk5Gp9tpe3i9hY/+vzhzajmlGdgj7Wh0zSGu4dpPr/9RZYxCQ4yi9PQaTqEThDwB6h/unnT3xvTrshWXXImxdBZF363zM1IKYlJsJOclYjRbERv0DHYOUzTc8HUFr1BwzU4zkjPCEaLkeqeyPye8rq9VD9WT1xqLJVnSyOWK262mfB5fBHvoHvQzM+6uf8lf823Ln9pv4fyvKeCcCWijt5czs++/pv9HsaeC/j8pKbHrgs2Im0xgLI7zGTmJjLeO8Jg1+EJwJMz4xlYccEgpaTyWBZX9ikAh2DjkFD6OkbQ9Fqw82aYZpwGHp9dMfM9B7hWb3OdI5XahtVpEhpws8nKxYtdS4+dCXamR1x4Zt1oqbGrthcLQX1heTpDrX2M9I6RXZaJ3qAxNTaF3xdcVOnz+nF7AuRVZS93td0k/u1t6qPi5kqEEEyPz2C0GpH+AM0XOnAmrZ7tLr/xV9z1zpfzy+9sPFM7OTzBdIiZ3NmZ7S++nZ9xr/s5yTtWQEy8jSuP1FJwNHvLso2hNDzdHFwbsUFqVuHxPOZn5ums66XyhhKqH93ez6oQUHljGX0tA4z2jVP31OpUDL1RT/HJfOZm5umsXZ+SMjE8RWxSDFPj0/h9u7/InxieJP9oLt1N/TtO6RACio7nMT/rZrBzmJYL6xcFw+oF2Bst7t2N8QEX4wMuSk8XodMJOmt7mJkMP78/pyJz4eJBY3xoAkesjfbqLuJSYzFZjFgdFsw2EyBoONeMwaTfdV38gyKzJH2/h6CggnAlwk68oGpnt/GvAs44a9SD8JyCJCZ6R8HroeGpg1FGbDtScpIYXiiNaDTpyctP3NcAHMDn9ZFRkk5cUgxIkAvz1jod5BQlLwUPQohgh01Wx7HBu/nBoDjAxjPJi0LFidd6NeZGlme6C4/lMTMwSmdtMIVDr199XJ1eR2l56lIFjpgEBz0dY5itRuam1ge9yemxKwa88dgC/gCzk3O0rwgGcysyF8a99r15yavcPJWh+Xwb9szkdYF4T8coJrsZ9zaqZIRiNBvoagxe0Fjslh0dI+APkJAWty4I12k6Sq4poP6Z5UTvteUdw1F6unjTOyo+j4+Gc8GZ44JjuUyNri7PKKXENTyJECLYSXJ4EtfQ7tLf2i53UHxNAR11PXjd2w/Ec8oyaHy2ZVdjiKSGhb+jxMwE8o/m4HV7GO13YY2xEBPvWNrO7/ODEGiaDr8vQN2a36GLy0XHQ6S4mKxGkrMSiUmMYbR/jIF9WE8TSff88Yv3ewgKKghXIsxoNjxvg3CDfvtf0NshpcThMNG5w0VNB8HkQmMWKSUZaTGrqkXsF9fgBAP9k/SuafldciSTukdrlh5reg1s9k2PVRxnhuz1zxt1Oq61pqCb8+P06THHxKM3arTNTZHr11H/q/PB7o0LnOlx1P3+0tLjxbTduOQYMgpTweOl7qnlxZHehRnN+VkPxVUZTE/N09exHMhpK4J4vdVC7nXly1VdFi4iBuvamXHNoBlWB9t2ZzBnem7KtOp510A23//IHEaLAc9c6MWDfq+PnPwkai92rXo+4A+QdySP5ie3l+6zViAgcc96sDmt1DzRyJGbK7jyyPYv6uam11+4VJwpXldpKBDY3kx01Y1lVD8W/ntsvdSB0WwgOSth3doaKSWdtd2UXlu46yAcoOm5VipuKKXu6fBWk8YmxZBZnIZn3kPjuYMTgK800jPKSIRSXtZyz3robuyDxj70Rj25lVl01BzOJkIZRWkcual8v4ehoIJwJcL8Pv/zdtW6b0UZNbvTEvI2/E5VHsuk+XwbNQekicZOxCY66GweQAhBfkkaLc8cjPcy1DmMzmxeVyFlbWqD3+ffcp7bEIBrhAOP3Yhe6NAQ6BD4uudovBQMRKuKUmmqCebkVpSmMd8anMldrIddebaEc08Gb+9bYqzoNIHZZuH4S05y5bcXGR9s5OhLT+EozSMvNx6QGEwGBvuCbezrH6ul9LpiUjLjGOwJ1n5fufguIKGndf0snnXhInJlfnJ2afrSz1xM8tTC56DxzM9exv/7qmTaNUnFjWXUPdex6lhxyTFk5CbQ3zKAqzV01Q9LUvwWn+bmjtxSSc1TwWCw4kwxNY/WUv14A5U3llGzjcAXgikhK5WeKghZ6tM9vz4VofB4LgCaQY/RZEBv1OOZ96LTiW0F4Is8814SMhIY7hkNedek4VwLlWdLmXbN7DoI1MKcOEjOTgAplyq6PN/5PD4G2ocoO12EwWRgcmzqUAXkd7379v0egrJABeFKROkNet7xudfzz5/5L8w2M5peR0/TFmXCrhJ1j9ZgcZjRG/VMt41icZhxpsRiSU6gvTH8urhrmcwG+loGtt3EpuhIFnqDfjn9YCEQ0yEJ+PzBGteLzy9823c0DTG7yxSBjSRnJzJREwzIrNaD86vH5/GRWhAfYuZx9XaaXkMIsWHescVuoeW5bmI7HfSHqAADUJyThLZQSzwh3kZfwwDC46f85gqEx0PR8VxqLwW/zLOO5OISRgwGjTkddJxrx2wzMTsxiwzAzNQ8NdXBdvMJKTGrztN0rhkpwZScEEw3WJk1ssH4s08UYzLquPj75dl/m8OCLdZKXkUW1Q+5ufF1Vr7/4Vfx7G+WA+u1xTUqrsml7okGxjqXq6Fkny6jp9u1aru6yz1UvPA4tQ9cDDmezVTdUknDQs10gNonmyg9XUTDM800nW8nJSdpXTOazazsHJiUlUBnfeiFiyaLcen/bTFW0gtTaV6TDx2JGdL6p5vILE7DmRiDTtMxOTrF2MA4mcUZTIxMLi1ErLqpbNuLhxdZHRaGtmjIlVmUhj3OSmdt91I3TiVofsa9KlWp4FguPU19Bz5n/BvnvkDJNQX7PQxlwcH5JlSuGi95x23c/qab6G7sIyU7kb946Rdo3EG75sNobmo5gJ1xzTLjmoXGPnKO5GB2WJBGMyODE7hGNq94IASYLAY0TSM9zUHT+fZNtw9ldnKWnub1wX/R0WwanwpdTSCjKi9qQbjPu+IOiYxuQ5DtigtRWtPr9ZOQEY8QAtfwJDkniujYpKqEz+fDF1goexhnBYMeApL+hfShhFgrI11j5OQlYjLqsQeg1zWLzhegfmKOE2cK6KzuWQry+2YkqRkWfDPzDPa4AEgtTKPtfOu6QHrlAjidpiPgD6DTdJjNBrxu3+oydBt89DPT83R3rZ4h1wx6kJKaJxqpeQIu/f711D+1+mdxcqF+t5SS4qPZtFxoW3dXIcYcesbVHSINZDMxCQ4mR6cY6Z9YV8Gip2WQlLxkBtuHSN5mED43E/yZ1/Q6zFYTwxuUWdUJHVml6TgTYxjoGF4XgAN01HRTcaaEuqcad9VUpqepf90ExtqW9dWP1mN1WMgsSUfT66gPM7UEgh0yN2tPL3SC2CTHjmbzn49aL3Xs6qJoL9z51ltVAH7AqCBciQqDUU9+VTA59i9++Me8+8Sf44lwi/DDpPPKci3hylsq8YxOkH80B48vQFNN36ptC8vTmBuboqd5AJ1O0NS3s0YazqTgLJoQAsnyjKXNuckCtih2opseX66u4d3jUo5bMRjXJ5p0LNy9sDstlN9USe250BUgFnnnvRhjzYwOTJDqsNDjCy4+xShw2EzEaga6JoO5vIXpcTRe7qasKpOGC53YnRY6u8dJz02iuTo4y1xYmkpvcz9zM250miAtOwFN+olPi0MvJEmJVvR6Db2mw2IzkmTLRtM09H43fl8AnQ6EwYBm0KNpOqrOFANgtRkpP5qBQCCX/sIFJpOeOHsGvc29xKcn4Z7zrCv95g1xfeb3B6i8Ng/XoGupc+Za9U804CzOYcK1OugebOkLuf1GdCYzpWcyQ16UzkzMkV+ZxWD70LY7bPY2BcdRdl3xpuXuJJLuhj662XzctU82UnQyn+bzm//MRMLs1BxNzwUnOcquK14XqG9kanx9bfdFeRWZTE/MqAB8m9qvdJGcnchQ1940P9qu299y834PQVlDBeFK1KXlJ1N2uojLO+hAeLXJO5JD7UIzlcWc09JTBXilwGo1MNQxTPOKW5xrZxS3Y9o1R3eIzpQmy/50SnONTCGlRAhBV9sweqP+wKwf8IXI9V16zePbMgBfZHWYmRidxu/1ARpetxeHMOIenKZLTqNpApFtZbolGM363D50eh2JWfH4fYGlALygLI32+mCgF58ax1hLH701y6XX6h+6jMVqYqA/mPNtc1qZ14ILJ+PsekZXNKopOllA84XloLX82vyQgWbJqQIazzVjdVgYH55dmmm2OMxkFqUiBPS1Di3NtCdnJxKbFEPT+TZ6t0g58/v8JCfb1wXhjiQnUyPhdcIsPJlPW00fk6MbL0zuawvOfrdc7KD42kKawlxAmJafitVp3bLe9Gi/K6zjAcxMzO55QObzhD/RoTes/vpPzIwnLTeJ2ck5elv6V93VU8Iz7ZrBYAq9aDOrNIOp8WmyitOD6z9E8GfEM++ltzn6KZtCCFJzk6N+HmV7ohKECyHeBPzzwsN3SSm/E8Y+CcArgLuAKiAD8ADVwPeB70sp102fCSFMwDuBtwD5gBnoBv4X+JKUcnftzJSIuP2NNz7vg3ChE3hClJxuiFKqjt6oYbGbEAKE0IGUSCHQ9DpiEhxIgm3KhdAh/X6EENgcZhLTnMFyfDrB9MQcsxH6MvbMe4lNjWNibJr5WQ/l1xUfmIVek5u0RI9LcdLfHjq1QegEpaeLGO0dY6hrhJmFvFnpC6AttKMvLstAAAG/H5Fl44HeHhKSrBw/kU39M+2Un8qj5lIXOQXBL8jcvAT62oaXakK7xmewOS2rOicaTIZV6T0+rw8WgnDd2nKGa1rcr72u02k6yq8vpn2h86PH7cVPMP89vSAFv9e7NKMbnxZLXkUxXo+XrvrebbUfN7L+7kd8djJ99VvnT6cVpDLQNb7ldik5CYx0B1NqTBbTFlsvS85J5PIjW8/69jX3k16YSl/L1ms8+loGSM3b26DHH+IOU9l1RcG0GClpOt+2tPDWaDYAwYY6pdcW0nyhjeFtpPAooY0PTjAxMkXl2VI8bu9STf/Fko6uNc3KFjt/RpuUkk+98m/5p/NfjPq5lPBFPAgXQmQBXwemgc3rea32auCfgH7gIYKNnVOAVwLfAV4shHi1XLEqSgihB34P3AA0AP8GuIFTwJ8AbxZCnJFSHoxv+ucp95yHX373wf0exr6ruLE87BnVSPBOzzEzvL6UmS8rjulpL4np8YyOTAF+hHsOn8eHNdbBUPtyXnDVLRXUPrv9fPSNpOUkMDEWzIdvaxla3URmHw10DIWskFJyInfL2c+Gy92k5SRSdkMpDReDgexo3zhJGfEk5yUv/Z0nlSXTtJADPTo9y2xmIuX+YAAOwQCqrCSJ9nPNzNtW1jYOkJ6fTPPF5fkEvVHP3IqmJGabmemFC7y1refXPl67sLT0VAE1jy3/ivR5fJRcV4jRYgQpqV1RRnKs38XYwudx/I5jXH6imapbi6l+qHrTzwig/skGEsvzGBlaXg8RMBg32WNZfHo8gz1b/9vxzC2nobRXd5FTkUVn7cZBfkZxGsnZSTz32yvhNfoRgthkZ1hBOEBSZgID7XtXT7rtcieZJen0NAbvomSVZtB8vm3prkbVTWVomrbwcy6xOiwkZ8UfmIvhq0XAHwi/i+falc1R9LqP3LNn51LCE9EgXARX/3wfGAV+Cnx4G7s3AS8DfrlyxlsIcT9wDriXYED+kxX7vIJgAP574I41+30a+MTCGN6+k/ejRIbf5191e/z5quGpRtJyk3EmxqA3GXDPexkdcDE2sPuav6GIbfxyX6oZvWbWNNJfD9qKgHB+zkvf0DQlpwr3vfGHz+Mj9+UnGBmdxmDQsFmDs6g+sx5HWiJaWfA2v2T5M1n8/wSrgfrf19DfuZx2IAOSke5RJoYn0ZwOzDFmZIqNjGkvUhoQQqD5NGqrlwNEOe+m7ql6pJTYRPDfjWfei/QH0PLjVo1Xb9BWpfKYrSamp4KPDSY9tlgrVrsZvVHDbDeRWZwGBNvFm6xm0gtSMBj1xKXGMtK7ehGi3mSg9XLn0gVJbmU2HTWrL5QKTuRz6fFg7nHNM62U31RB09ONm6YX+Tw+UuJMq4LwtsZBkgvSGGrdfCZwLowuiFU3FK+qET4/M49rZIrKm8oZbB9aahNvj7XiiHfgGpqkp6mf3hApW5vR9FsVqlzmce/9OpjY5BgCPn+wVKLbu2oB6+KiwbjUWDKL07HYjAfiIvj5rPrROiwOc9TTf9ILUrj5NWeieg5l+yI9E34fcBtwy8KfYZNShpwqlVIOCCG+CXxu4bgrg/D8hT9/GSJV5ecEg/Ck7YxDiTyrw8J7v/RmPv2ar+z3UPaVz+Ojr6mPvqbVi7pKThfTdCUKNWZFsH4yBFMSPG4ffa2Dy90XV0TYG80CRnqdZm/rIJpBw78QGPg8flpbh6k4W0ptuDNHUWLSdExNBr8Ix0Y3XrS2VmJZ2oaveee9WNKMxBxLo7l7OUiPc1oZeLprqTY4rP47mJ2co/LGUgIyOENujzFTUJiA3x8g4PNjTYhFs9nweX143T5McTYCnc0E/AG6hoPnmVqYgI1LiaO3Y/nc9jg7fS3BoLezrpvk7MRVQUBSZsJSNRYIVnvRGzR8Xj8peckk56XQeHF1ll/9c+3kVOYw0jHA9NjGn91Ac//SRQgEq7qkHs1bFYRnlabjTIhhfs5Ny0Iu+0D7IHEpTsYHQ1+wFp/IY2ZyhvLri5GBAH5fgKbn2pgYmmRiaHWq0Ujv1mktkdJR04U1xrKn5f1qFtaaFBzNoWuDUouL7d6V/Vd8TcHSwtpoyD+aQ0dNN+/4/B9E7RzKzkUsCBdClAFfAL4mpXxUCLGtIHwLi9MJa6dZFqc9XiyE+NqaQPylC38+EM4JhBDnN3ipNLwhKpu55o4jFBzNofWyStFfS26zC1+44lNi6WroZWTNXQhviNnKjWYwIz0TPj44QdUNxdSsSHGREupr+jhyS8W+trA37vSSY4sPKfuOQsb9XvJjUpGAXgic4wHm840k5iUun1VKim89gs8XYLpvmJoVqUsV1+Su+qLOPWFkYMXMu96oX9VkZ9Xw1twRWbvdUNfIqtJqzqSYVUF4d1M/OWUZSKOB7qYBhgZDl9fsbOgnOTMes9W8YdfC4Z5R0q8pYaBvOTBevPYov76YiZHJVdVHKs+W4p7zYLaasMfbmZmYR8oAyODP8dzUHBMjkzQ+0xReOkkEeObCrwPtnvVEvLOiPc5GXEosJouBybEZrHYzwz2jzEws3y2wOa10NWxcTlM5OOam5kjKSsDv8y+lekWCxW7m4//5IY7fVsns5BwxCY6td1L2XESC8IXc7H8hmMd9fySOuebYb154+Js1L/+SYNrLK4FqIcQDBBdzngTOEsxN/0Ykx6PsjNFs5G9/95d84OZP0tWwvbJkV7toBQ9+nxeH04w9Jg2hEySkJTDaP4Znzk1WUQoCsOTEL1QsiUMnBLYkJ5rVjAxIpITObd6qD0f1E02UnCqg6fLybXAhBDWXujlySyVXHq7ZZO/o8U1uNvsdrGawsr65w2EmLy2GuQ1mZxfVDY3iWqy9LiWnYhKpubI6QNIJyMuIo7m2D52mwz+6erZW6FbndesNa/K+dRtfCazNSgq1eK/puVaqbiyj5vH6kAsaO+t7yT6ydVWdoZ4xYhLsZJVl0l0fulNmQqx5KQjX63Xo/V4SM+Kpe2p9ab21ebV6o56Co7n0tg6uKnm5Z6Sks257AbWm18gpz2RidGrdorzt0ukEWSXp6+qBr1xbUXZdEZ11PcEmTcqB172Qv+9MdCzdcdqO1NwkHPF2mi+0Y4+1kV6Yis1p5R1//QZKThUCqAD8AIvUTPgngOPAWSllpO+7fQGoBH4lpfztyheklFII8aqF838cKF/x8u+BH0spw/qJllKeDPX8wgz5iZ0MXFnN5rTy5997Hx972d9sq6rCVS9K63KmxqZpW1Gf3Oa00XZl8/zP7KN6etujX1Ktu6GP5Iw4hlakBgQD8S5Kri2kMURpOaETVC6k1yzy+fwQAKGJhYouLFUjWCSlDP7nl/j9fnxeP37fQjqM24fP50cGJA6nnrx3pCIk6NwL7UQXro+qioLBoG8omJs9eCmTyVE9fQ/W4+pzbfpeV15j3WiPhcEJjqbYl7uVAiaTnvpLwaB1oxntleJT47A67Uvvz2jSE59gIxCQBPx+An6J3x/A7/OjmVYvflx87yu5Zz1UP1ZPemHqhvcDRjqGSM2KZ6B78/Udk6PTeOZNZJZl0BMiHWJ6yEVioo0kp56mpxq52BL+wl+fx0fjsy2UX19C3TYa00SKJcYSVn76Sv2tg8xOzVF1U9mugvDC43nojfqQDXnaq4P1qe1xtm017FEOjomRKapuLAurNntuZRbXvug4xdcUcPaVp9H0Gl6PF71Bv621QMr+23UQLoS4luDs95eklE/tfkirjn0f8CGClU/eFOJ1M8FSiC8G/ohgHvgswcWafw88ulBR5eeRHJeyc0Un8vi7Bz7Op1/zFawxFqwOC5ce2r8UhAMhSnfRTQ4blbdULXSllxjNRo7cWgmAzy9BSnQ6XbBhiwzGg12tOytRVnwkE4NRz+Jyxd6OkU27gs5OzZGUGbdUN3yREIKe3gkS0uIY7V89G6xpuqg1D9HpNazNI1zQ+ZE6wLD69VStCSEkpAcfT5+/B7dXEtgilWhlk6RjVjt1//VcyO1KTuYxt9DuWkpJ0dHsYKMlBEJIzCY9lWdLg5+VEEy7Zmi4sHyBlZabRF9T6PSDuJTYVY83m2nraxnA7Qn9nmYn57A5rdidVqYnNg9E52fcTJn0JGUnMdy1/DOVXZGFKcbGWG0H1c+5Nj3GZrobe0lIj2O0b+/yuwG0NXckwjE7FZyXar3YgSPextQmOfMbyS7LpK91YNPc8qGukQPbJEYJT/Vj9eQfyVla0Gs0G8gpz+KGl5+i+rF6fvXtBzj14uN84r8+hKatXiBsMBpCHVI54HYVhK9IQ2kiOBMdMUKIPwK+BtQBL5BShpp++SjB0obvl1L+nxXP/3phhvzSwjFUEH6AZJdm8O1LXwwGgFJy4fc1fPHt/4hraONazcr2NV6OwmLPEKx2E/OTMzSsyHt1xNvXBdhrddb3UXxNPs1rFqXOz3pIK05dF4T7fX7i02Ijmje5KODzY7ebSJvU0Rcb4uJB6FlemgJCg7rOYQxFiRw5lcf88BRdTy/ncEvAmRWHMzeBS9Pz5FgsDP869MVmbFIM82syB1aWI6w8XcCzv7646vXys6uXqoxusshu7ZoDX6hi9UBsspPk3BRaLq++W2K2mbDYzfi8fiZGJsmtyKJ5iyAcYHJshoTUWIrPlOGe8zA1PkN3+yi0j1JxLJPxwY3HvJWpsWkqz2bueRButpuYdm18cbmZ2ak5Ks+Whl+6boXhnhFMVtOeLvBU9sfKu5cAzsQYbn7NGW5+zRnyj+ZSdl3RugBcObx2OxNuBxbvD89v8IX7bSHEtwku2PxAOAcVQnwA+ApQQzAA36jQ6uLiy4fWviClvCyEGANyhBAJUsrQK4WUfaFbmFESQnDyhVW85kN3862P/GvUz6vpdeQfyV5qRiMDksbn2tBpOjS9ht6goRm0pQoiruHJqN/eO+y3D9NyEhjtWv1PdGpsmoyKHPo7N/9nN+uaDRmstzcNUHVLBdULCzUT0uKIzU6ivXGA/GtLGG7uZWp8Z8HQRoROR8qwOWQQLqRuVdqQThe8feH1+jk/7KI8JwmebkMCBW86RdPUNO0z84Afh17D8EQn07MebDEWcsrSmRydJjYphoA/wMzUPJ1tm9yBCPHjIcTqGVmDyYBn4ec5xMarHvrWpKOYbCaKTxbQ3tDP9OQ8pdcVYTQbmJ/zMDYwwWi/C/f4ctDdWtODxW5lbmbrkmqjA66QFwjj44czmEzLT9lw0Wk4erboLLqWPc6GTqcjpyKT2icat95BuaoYTAbKr19OwXvJO1+wj6NRomG3Qbgb+O4Gr50gmCf+ONAIhJWqIoT4CME88EvA7VLKze6vLa4gWleGcKGTZszCw/CXsyv74oV/cCP/94s/Z3I0soEVBMv0jfaOMTk6hXvOQ1OIDpWBQICA14d3TWxQcUMJtU81RzVQ3quqDpEQl+RgfHgKk8VIXLKDhCQ7/c39IWenHXYjW4UcPS0D6xZpLmqq7+fIrZXIgKS9dYiOpkGEEHS2DFF+LC+sBjHhkAJiq1Jpa+rnyF35ZGXFAgIpQQYTQtCEHj/LjWDWZiXMeX2kVmViK0zg3MDqX1llgx7cTiupReng81H3TDDfvac1eOGSWZhMXnEKsBhvC1qfXs4d7u8YJbcqm44V9ZzXxODMTMySlpdCX+sAyVnxJKXFMjE2Q0/L4PpeIFJijbFScLIAjzdAR30fOpMJR0IMgz1jDG5Rwi8QkORXZlD7zM7LqvV1jq5qKrMT3Q295B/JDr3OQUqyyjLojtAicE0f7Cq626Y2NqcF19DWeeGl1xYiJbRcbENv1C9VrlGeX1709tt462det9/DUKJoV0H4wiLMd4Z6TQjxKYJB+A9Xtq0XQhiAAsArpWxds8/Hgc8A5wk239mqw8tjBBdt3i+EeEJK6V7x2qcIvr9npZRqFeAB50x0cOzWCh79r2cietzy04XU7CKPuPaJRqpuKqPmifWVGyIl5OzlASOlpOraPBqeaiQx2Yln3ktfbSebhTgNzzRTdF0JrTWbl0qbGZ8JORvu8/ipvRQ6pcY1vr3FcaGkvKyMiXsyafZN0ezzcvpHLnzuGYbm1/9dF9vszPqXc3ndc2tm7vvGKT2WwfnB1TPa2XExmL1eWmsHoXeSsuPZ644tpaB9RelOzaBRcmMFSwVPhEAIqMhIWdrGoF9/UZiYEU9snIWax+oZWKhFX3QyfyFXPygu2UFGTgL+7ATqnlteEFnz9PaaJdU+2UTh8Txatljou5m49IRdBeETI1NYHJZ1z5usRnLLM2i52EF2WcaGtbLDpel1pOUlR6Sr5NTYDFU3ldFyoZ256Y3vJOiN+qW0Fb9PzSE9X91wz6n9HoISZRFvWx+GDKAe6ARyF58UQryFYADuJxhc3xdi9rFDSvmDFY8/B9wNvABoEEL8BpgjuDDz2oX/f3803oQSWXVPN9FRG7qk2U6VXltA/dO7D579vujU8V4ko7UyM4LKjudw5aFg6cDtLP6a6BtFb9Q2zEOGzWfDNzI6tPPras1uJPGvb+Yx/RjML1/nG/+gkLFHWoItwdYQ0gQBG8FVmwLXiA+zXrd04RAbb6d5bAz/wl2NDKeDNGGm4UovTvPygqmZEF3x1uZsSylpqt7830LlidXBvNAJRGIsDT+pISkrgaScZLzzbpqfC+apJ6THEZPooKexH1f3MJmVW5cb3IrZGl7L+bX0Ro2YeAeYzGh6LWS1lnBNj88spZUBWBxmMvJTaFy42zU5MkFsSgyuwZ2vN8mtzKL1YvgVXDYzOTpF9aP1wQuYTY65uJhTeX6LT43d7yEoUbYfQfhG8hb+1IAPbLDNI8APFh9IKXuFECeAjwB3AW8DdED/wnZ/I6Xc3zZ8SliyStIxGjWKjufSfLFjV8fSGzTKri2k+rH6Q5HqcdBnwouOZDE1srPSakNdIxy5pZKa5zo23W6j2fCNuOe9OOLtTI1tL30p8fZCet6QRf3c+ptsPr2g98kxUj64fr//uXiUdlcwkDMFdBQ90Ilh4eLM5jDjTTAz5/GRHGsnR2el4UoPEwt/rboVuSvOGDOIYP75Ym3v7fztC52g4kwh7a1DZJSm09vQh9AJSu84zpXLPZy453r6azpovNRFfKpzab/RvnFG+8ZxJjqIz0qiKwr13zej6TUKjmSjGTTaanoYH55ifHiKzPIsOq907Pi4064ZkjITMJgN9LUOkZaXRMul5eDWNTRJ/tFcXAMT6wumh2moawSj2YBnPnIt6C0OMwA6TUdydiID7ctrKlY2TlKev+JSnORWrr9zplxdohaESyk/RTAlZO3zHYRYarTR9mGcZxj48MJ/yiHliLPz2j97OV982z9QeUNx2OkfUkpSchKxxVgxmg0YTHoG2oa4EoFbx4sCu5ipC8dBDsIz8pJoeqphVxczDU83Ep+exNgm1W96WgYouaaApm2kN8SlxoYdhAtNkPux22jKlBjmoNwfhy4AOikwBATOaQumGR/jLi+xujhcgdV50UZtOZCudDuY9QWDJk2vw359Jn1+D0cK0+nsH6O+YfUstm5kDDkSXMx35XejVN1xjJorfSz+VPmM65vjVJ4MzlSv/NilgCmPn+qLXegNGnO9QyCCAXh9bTCtwyuhf6FF/djABEduqaD+qSZMFgO5R/Poah6MXAC+RUwblxxDen4Kfn+AzsZ+mkPc6YhLS9hVEA7BLpxmu5nKM8XUPLF+zqXtcgeFJ/Jp2eHF/fT4DDHxtl0H4UlZCcSnxtF6uQOzzcyRm8oZ6BhioH2IrNIMHHE2hE6oAFwBgovbvW4vRvPO7jgph8NBmglXnqeklDzx82f50V/9BM+8l8ZnW6m6IbgivObJptWBiJRkFKbiTHSg6XV01fUw2L5R8ZzI6GroRafpwmqishMHOQh3xlro3uXdBM+8l4RE66ZBOMDk6CSaXhd2+o/NaQtru6TCVNyvPcIzQxOcMKXR8kQ3lYXp1D0VnDHNrEznOU8/R9ITAXDMxTJuHCd2vAz/YDIjfTpE8vJnkN4uaQGQkqNnC/Hq9bTOzHCluQ+bxbguNhXamlWUaz5O6Q9gXpHbrDdoIXO0j91aTldDMJAN+APkHs3FlhhDde1yXvX8+Oo0ndrnOtDbLHiB+vMdW35Wu2W0GEjNTsKZ5KD+2Tbqnm3bdPvu9pEddQlca356PmQAvqi/dYDE9HhG+rZaZrRe1dnSXV/UL85uD3ePInRiVcnJ5KwEbE5LyI6hyvOXz+tnbnpeBeFXORWEK/uu7skmPvPqLy899sx5uLIwG1RxQwljAxM44mzoDRqDncP0NvXRu4ffV7OTc+QdyYl4zvqig5YTbrIYKapIo+V8GzWPReaOQuO5FoqvK6WlZuPPsL99mKqzJdSc2zxwW2SwbP3lVPmik7QOzeGYX536oYs1Ev/yHGZ9PrA44IqLwMKrsiMGT++tPNQ0BrgASIoPdso8Nu+k7eHg+CpP5nLhgXryqjJwO4JBpD8QWPdL1Z6eSKpcruurN61uqhEISOZnlxff6Q2hawBPrsgTDgQk+oQYqmv7kUBcgp3E9FgCY651+22Wj78bAig4ko3JamK038X0xCyzU/N0twzS3RLebPvE6DSlN1ZQ8+CVqIxx0czELDnlWTsKwnd6gaDTCUpOF9L0bOuq2e21F91D3aMMdasKuspqOp3AGrN+4bFydVFBuLLvcquysNjNS9UCKs+W0tvcz/jgxFJt3O1V1408R6w1asc+aGnrWTlxXHk48l1Mx3qGMJj0eN2+DbepP9dKQmosowNb56Bv1qwyNtlJSkEaOoMe97yXnPEAGMG7sNOUJUBdXzBtIzF79Yz64HkntZMrFmzqNfp8M+T7bBh/0o87ICkoSV2qLrIyqAr4ApQsLMRc/Hudn/EwuKLVe2Ja3KrzecMM8nSe1Z/b0MAEFdcX0to2xOi0mxSbiYAWH9axdiu9IAXX2Cw9YQbbm5G6vfkamg+jrnkoo/3bD9wheKE045qN+sJu5epz7LZK3v3FN6kumM8DKghX9p0txkpMooO56Xne+fk3cM8fv4hPv/rLPPubS/s9tCU+n5/KM8ULTdkBZHjBc4ht5EL16UVCJyg7lrVq447mIeZmdlearPKaXMb7x5AyeI6l8wcCwcBx4Skpg6dezPvuqI1Op82RnrEtF2n6PD5i422M9Lu2XKQ5tkFN+fxjuYwOTdN8qZO8I9kgJR0Xe3CcSaB1eGzdLz2fXJjFXvj4fUPTYF5+PTHORlnAwfzP2xkbnyUpLYaB7lECC8H3yp8Dvz9AR/3qS8bC8rRVj9fe+Qg3zUm/otRgTIINn8XElYVuo9m5iQz2u3BHcPHgWkInKLuuiJkpN91NAxFb9Dw9MYfBbMAbxbFD8Od6Jx1XZ8LoDroRZ1IM7LJEovL8c+yWSopO5O/3MJQ9oIJw5UB46btfSF5VNqfuPIYQgo/88I95a8n7mXbNbL3zHqh7cm/zNWMyktltjymf10v3LuowR0PDM03EpSYwPrxxicGWS52UX1+0ZQ7zQM84scnOVc1PLA4LI4NTTLuCgZPRYoKpOTxuH8c0B495xsg5mYjOspzyUdc/jN1sWAqN57vHue7sYpc6gZASuv04j2SQVpmBEBKP20dABtAJHRa7iesIXkJJKTGfNgNiKTq3Cj/lpclL57MKP2U5MUvVYIROQKZzYXOJpumoOb+6dXVCqpP+0eC/BaHpSCtKpa62j6ycBIwGjdaW4LqIpCQH8xt1ztwFi8NMTkU29VtUudmJ3rYhKm6q4vLvLkT82CsF/AGQcsPa4aECdHucjemxnZXDrDxbumkZQkUJRacTnL7rxH4PQ9kjKghXDoTX/tnLVz2Oibdz7wfv4oef/I99GtH+WtsRcUfHiGKXz53yzHlITnFsGoQDdDf0YXNamJnYuF6yEIKM4rRVQXjRqUJqnlpe1KiPscJQ8BijVwaxVlkwGwwY0XEqKyMYOetgyjSL9C7UmrZZqTu3vpKHEFBQnkZ9x+qFwHlp8fQ2Lj9nGZhclYJQnGmnYcWiu7JTBdStqF9vMBsIWJdTYgxGPWaraSlPPDUngVl0TCw0KKo4lUdf3wRVx7Jpqu/D7fYhkFRVZdH94KWIB+BVN5XRdKmLxgsdET3uSpFovhSOsf5x/F4fZpuJ+Rn3qtfSC1LWBeFpeck07zAI97i9zIWoC68oK2l6jevuPskN91zL/PQ8J24/QkZh2tY7KlcFFYQrB9atrz3Df335f3Z1O/iw0h3AADpS6p9uovSGMpoub5z2MjU+Q/npQuovdm64DUBf3+TSbLjNaaV1RZObtIJkfIsz0kIwNjTFMZHKc41DhJqfLEwJ5mpbshOgdXjd65VHs7nQ1EOqw8rA9IpFkmvSMjRtdYWXtRdDa7f3e/2rKqp4PT6O3ljC3IwHo0nP1Ng0Q8PBfwMZ+UnU1vQRF2+jobYXr9dPSmoMNoNGzXPtVJ0uoeYXz276mW2bJKI1skPpbRsmozSD3obop25MjExRebZ0XRnUtcF5Sk4iA+07z3k3W9aXnlSUlQxGPZ/++Uc4deex/R6Ksk8iMN+mKNGRXpDKjzv/EUdceKXoriq63QfhB3EmfFHjkw1k5CVuuk3dMy3kl6Vvus2ka5bY7BRMViMFJwsxmg1UnC0lNiOBwcFppMdPSX4CRyrSSE1zEuiboioliWtikyjXOSgTdq5NSCbRbqF/YoYA0OdaP/teWZDE3NgU11gszD7SxLV2GzZjMKXFv2aFqKZfXd1k7d/D2lzqtTnhWUUpXHqskdpnWvDOe2m51El+sg2L1Yhf0/D7A8zPe9E0wZGqTFz9LjoW0lHmfJFf5bubjpbbkZi7d7N/dU82kpi+vIg1OTuR1sudFB7PXXouIS38OvShHIZGYcr+SclJ4mtPfk4F4M9zaiZcOdAsNjN3vvUW/usrv9zvoeypq3kmHIIBSozTzFbznpOjUxjNejzzG1dU6W4bJqcqD7fbS3xmInUrcslHBieWUl9SsxOwFCbT9Nyas3aNYTLpya5KJvHtt3Dxyuoyika9jt6HG5hdkVpQ91A9zng7pS8ow6fTYV1sbCfAEjuPf0UlE4tJkFuWsbQQ1uawkFuRGdxcCIQAS6KTseFphvpcOOIddC8E1Yuz5i0XO6i6pZxLncEmQrZ4Kxk58Vx8qHHVWH0RrmWv02uMhFGpJhJ62kcQQuxJ8BoISGKTY5ZKFqbkJDLUObSqMdfai6ntSC9MpfbJxq03VJ633vPlt6jFl4oKwpWD79qXnHjeBeGRmcU+2IF88/k2hN64aZWZ4Z4xKs8UU/vc5gvcOptDNGwSYlXu+UDXKIai1JD7u90+JpvHmQzxkWXE2+m7sj51ZnJsmozRWRrbV9d4jvd4mVyR42zOdtB2eXn8hcfzaL+ynGZz5JYKah6pRQhB5U3l6LQVlWzMJipuq6L2wWoGWwfRmSyUnMmjun0AR2D9DPVum96sVX66kNpn92Zx4cTIFIWnCmk+17wn5xvuGaH02kJ0mo6J4eCFRt1TTeQdyUGnE2iGnX89zk7ORa25l3L45VZkqcWXCqCCcOUQOHJTGbkVWVErnXcQafqrP1PMM+dBZ9+64c5g18iOjq83aqydP7dvkuYzMTFHenosOk3H+PgMJpOevJwkHAaNXkJf0tQ/VEfGDSUMj0wvXTgZdQKzJbioUggdQrf67zKwIn0lNS+ZhnPBhaRSSqofqSWjOA2TxYh7zgNSMjMeTInQ4qwkFKZwsblv4Tjrr148EQzCjWYjPW3rc+OjyeR07Nm5JoYnmRhe38V18QKp5FThjo/tGprAEW9jauxgVHdSDpaSU4WqBrgCqJxw5RDQ6XQkZSXs9zD21lIN72CgJXQCvUHDaDZgthqw2k3YnVZi4qw4E+w4E+zEJTmIT4lB0+tIzojb5OBBBrOBtOI00orTSC9Kx+LY2+5sOl14qQfDPWNY7eYtt9Ob9BQcz+XI9UU4Yi3EJzvXbSNXLJgsS7RS7p/nmnQnWYl2kJK+PhczU25ysxMJeCUNDf08e6Wb4zeXhB6rlHi6h3HFaYzH6hiP1eEfdzHXN8Jc3wizvUOrarTD6uY+wz2jZBSunp3vbeonvyyYHz00PI0t0UHFm8/Q5jDR1T/O0ZI0MqRG+2Ot64YzM+OOWP/VklMFTGxQiz1a2ur69vzncCM6bXdfj+mqwoWygRe9/db9HoJyQKiZcOVQePWH7ubCA9V7tkhsv4209sNCUx0JVN1YRvVj9VvuB8FUlgHXJEPNm6ejJOcm09+/nK5RebqYKw9c3s2wt0Uz6PGHmXaTmhVPW/36mufORAcZxen4AtDRPEhr0zAVVelM942RWGWjrDSJnr4ppiaD+dwyxkDZ6Ry66voZe7oes8NGa3MwnaSgKBVnfgoTXj99/S68Cz9rx1JttD5STUVlNs3Nw3g9frLzErDZjExNuZla0xFR2yJ4C/iXf4b9Xj+O+PULjxe7aGaWpdBkDpASY0LT6ygtTmW6bZyxvtB52jNT82SUZ9JX1xPy9e0Y7B3f9TG2yzPvpezaYqp/v3c/hxvxundeEUYIodJRlJA0vbZqfYny/KaCcOVQOHZLBcdureD8/17Z76Hsid1cbCzO2IZKV1h1jjWpC3Nz0S1Dt1ZGUSpdHeEFelbH8kx4am4SidlJTE3O09k8yMTl1QGn0An8Pj+dNd14Z4K52YXXFGCJj2FeF+BCex9FiRYmZ30Un8nBOTlPe0M/VqeV2ieCqSF6g8bRdDOz49NUP3SehIx4pNdLnFHiI0DbU8ELopyKLALSQE6ba+lzXxuEr5wJTytMZW1iS29TP8VnyjA77eD34fd46e0ep/juIzw8PY6cFsTaLSSnO6lu6qPEZN30szJlpSAaenddL3y/1gbPzh+MC22fd+PFwFvRDBq9zf1bb6g8L2SVZnDiBVVoeo23fOa1WA/I3R5l/6kgXDk0jt9W+bwJwveCwbQ6J7GreQC9yYBvFzOA2+FIcEAYQbjQCQwGPZU3lTPYN8FAv4uB4c3qhwejR5/XT0ZxGj2NfTQ/24Ij3o73XAul2YlkVmQwcyyXzpZBBrvHMJoNOB1GSstS6OwcIz7WTM0Dl5aOmFGYRvXjDeiNejKLltMMnGnxuLpcjI8v5/6mZcSsG09qfgpJuclMu2ZpvxBMI7HGWCi9rhifxUbdpW7ARUZOAmabHvcNOTw9N4NBr+H1BTDqNBr7xkFK7GY9CU4LvkCAiSk3a7W1DlH50lPU/ve5LT/bzWw1ox8tnQ39pBakMtA6sC/nX+Tz7DwI93v9eA/2umglimKTYrj19WcxmAyYLEZe/eG7sdhV4K2sp4Jw5dAY7d/72+NXM4N5dRDudfvIq8ym9fz6XONIM9vM9He7NnzdajeRXZwGgQCddT20XWhlQrd1XrjZasQ9FQyIYxJsTI8v5zSX3H6SuclZmp9qwD0+RVJ+KkmF6SQVZTDeO8KVxxuYn3aj03SkFZUQc3MlHTUdTI/N0N8erL7i8/gwWZYXk/qlJCXVgTEzhvlpNxKJDEhyC5fb1I/1jzHUP8FQ/wRCCNIKUrDH2kgozGRodJauS8sLjhPKUnh4chyTz8eJogw8bh81XYNMzM5zwjWHq2eUsUAPIx3DHLnzONUhgnCAmrp+Ku44Rt3vLm35mW1Ep+28RN9upRRl7msQbo+zoRl2/v6llOgNerzunQfyyuF13d3X8L6vvm2/h6EcAioIVw6Na198nJ/9/a/3exhXDZ1u/UynLX5vqlMUHM+j/tLqajdJGbGkZMQzMzFLR0039SvqLCdmxDPh2jqgiUt00NfQhZSS5Iw4mp4Nppccefn1XLoczCk35WaRnJ9ITIyJy5f6cLu9FJWl4USjKCWGicFxOmt7GewcRqcTVL3gCMjgzH1HdddSQA7Bz3C0uZPZqTkyy7Jpq9k8F9seZyP9WCFDo3M891wXldfkQvNyV8ZZASXZyUyMz3K5toei3GAwP+P2kKTXMdi2fO6J3hEc9hhi7Ub0mo7RyXnSYi2I6Rnc0/M0dbvIPZFHx4WdlRjczwo9bfX92OPtTO+iWc5upOWn0Hy+bcf7a3otZE55RlEagx1DfOWxz/KZV30JBLiGJneVf64cLAXHcnnVh+7e72Eoh4QKwpVD4/htlSRmxDPSO7bfQ7lqTU/uzYKhxVnGnOI0HLEWRrpH6W8dZKg1dJvwtRVGNtLfNUrFySL8rglqHqsDIOtFVcyXJOKYdDPVP4V73ktjXT+ZqQ7k5DTFZenEJ9kZ6Bym5mIXqZlxDHYGS/MFApJAQFL3VLB2tSMljqyiVArSkujqceEXgtG+4B0ai211uUWT1Ujh8TyscXbGpn1MjM8yNjzFpUu9S1nhHU2DmCwG3HNebA4Ltlgr51uCzYQEMridlOS43HSfXx1Md9YEL2JWFtlbuVwz9eajOEyQnBnPUM/2/83sVzoKwNz0PBXXlnL5N8/t6Xmrbiyjt7l/VwE4LKx3qF9uCpWUmcD8rJtvV3+J9uouik7k86ffeS/Zpek8/rNzCCH4xT/9lu7G9YuPIbhGwe8LqC6ce8xkMVJ+poTqR+u2rMEfnxbHqz90N6+47yW7avSkPL+oIFw5NHQ6HadedIxff/fB/R7KVUVv0Cg7VYjf76e1uger08rsxOzWO+6CyWzEYTPQcaUjrO0DvvArTRiMOhovLgdRhiOZPDk5CiVmCm9MJ8mrw9Q3S8Pvg4srW2p6sLrmmPVJ8o7lEJsfw2T/INM9weDa51n+8p0am6bumRbK70pgfGSapNL1zX+ySzNwpjjpqO+j7tl28o7lMqs3EpcWizPFSU/HCAnJMXim5zDZTGTk5TI/56GzYxQx6eVYSgICGDjfg949xknXFI1PNoX9/hfF2Qz45+fxz7mX645vw25L9O1Ww8VOUvJTGWzbm7SUqhvLqHmiYdcLWgFiEhx8+ZHPMDk6xX/83X/ztcf/aum14pMFAFxzx1EAXvn+uwC46dXX85vvPcg/f/Lf+Yt/fT82p5WWix0kpMdRdWMZPc39fOkd/8jrPvIKvvsX/8r8bOhUJGVnrDEW7n7PHcSnxjHaP47ZauJF77iNpMwE6p5q5NOv+hI2p5X3/9O7SMyIp6exj9mpeVxDE+g0HS/9w9tV8K1smwrClUPl2C0Vz88gPAqLvJaqeRg0ap5pWXq+uCqH+seDAarFacWZ7MQWH4Ml1o7ZamS6d5i5qXkmx6bIKEilJsz23PZYGxnF6RgtRtpre5jcRg3q4O361UGhZtCRk5uAXhPohA6dLlgaTgsEyK3KQTPoEYChaRRrmpFZGaBlaIwW4MYJL+mxBuIyEtA5bFxpGAQhaGsawHDMivFVVRQ0zWMhQH91x7rxTHX2o9MJmhoGOPqqm/BNz2KPt5NZ5qW7dZDuhSY3EhgfmiDr+jJ8OsCgkZ0Sg1lKai91ERibxRA7S2dDsJKGb9pN2/nl8+mEYOLc9gNwgL5nm/B5fMxMzFJwIp/2ECUeN6ML8+5DtPh9AVIKs/ckCBdC0HKpPSIBeNVNZbzvq2+j8Fgefr+frNKMsPZLSIvjDfe/kttef5a0/BQATr3o+NLrafkp/N+eb9HXOsDvf/wYFruZyw/VYIu1BReCenwqrWUHDCYDXreX13/0Fbzuo68IuU359SV845nP44i3Y7aagOBibUXZLRWEK4fKkZvL93sI+2MHsUH+kWysMdZg/C4EBpsZH7rgsQRY7GbsKfHoNEHAG0Cvk3jnPNjibBx90Un0Jj1DLg99XWMMD83D0DwllenUP73cVnyjQNpiN5NWkILNacPvl4wPTjDQMUzThY6dvHtG+sYhIdiwKT7BRlqKnY7L7bQ8ETp9Za2Tr76GxyzB2XQ7Ojoeqmd+xk13Qy9VLzpBcqqT5KxYJmM1nhpzAZCek0DNA60Ii528F+dhEwF6LrTgGnDRXdNF1UtPU1PTR01tMEisNBro7xwh//pizKlxuGY8DA1PMer2IUamGJ2dpyArEVfvOG63j9y8JPr7XIyOTBGf5GBseGrduAO7SD9Y2Q1St4MZOrFfNQpXmN6jesrlZ4qpfSK8i8nN3PaGs/zFj96/9FjTNLLDDMIh+JkvBuAbSS9I5etP/TUAD//7E5x5+SmklAidjvcc+/CGKS3KspgEBzkVmbzh/nspOJpDb3M/aQXr72qtlJT5PGsYp+wJFYQrh0pCWhzHX1DFxd9X7/dQ9tj2gzFbjJUrjy43+Dly17XUXexaepxXkkZ7TRcWm4nZ8WnKj2VS/Ugd6cXpDE36qDxTTF/XmlnINcMIrKhnnpqfTHJWEtMTs3TW99FeG7lgwOfxIaSkqCSZ9mebGKnfXtWJwUeb0d+Rh0/AsRmJ/mgOtQspHiPTHoaGZxifnKHzrngyjU56hiZ42D/CjccyaL3US3trcGZbOOPIO16MTScZrO8kJT2Jqel5skrS8Bk1DMcKaJ7wwMTqi4OR4SmOn8jh8lOtmC1GHAToeLYNzaAx7/VTeV0BY8NT62q7+31+dJpu141fdjKrvd8z4cCedOwUQjC6w3Umml5bqumfkpOEa3hyiz0i65bX3rDq8Ye++z4+/rIvMLVPC1oPg6O3VPDJn3wYR5x96bm4lNj9G5DyvKba1iuHztHn42x4BNZjjY/OrHq8dpHXYqDX19SHM8GODAQorUzHGbfcHGZocJLKO08CYHdaKT9TQuWN5aTkpTLYNU71E0201/REvFugTifIyomn43zzjsq+uQYnOKKZ0UsYeqiB2icaiE12UHJNPqlOA5mpdtLjrXj8fgIWgaYTIATj6avLOEoJ7a3D1DSPMKRZiE2LZc6kp65lkNq6PmZnN867vnShA4fTQlFhMqN9LiBYT1oAvvlgGsHkxNyq95zgd0fks9xJQB3uYthomhidRm+M7lxR5dlSBjqGt73ftS85zge++e6lx19+9DN8+md/HsmhbVvFmRK+dfnvOPPyU/s6joMoIT2Ol73vTj77i4+uCsAVZT+pmXDl0Kk4U7zfQ9hzkaiJoDdunpKwMthLy4qn9ulgnnj59UVMjM8ihMBhM2A16Tj10msYH54Co5HaxxsiMLrN5R7JYaJvGM8uunpaO1ycSHfQ3u8CgoG5a3CCyjPFdD5WH0y/uPZ6Osdc3FCVzey8F52AipNZ4AkgWE7REEBn1xgN1T2Un86jpqZ3w/MukgjSM+IYHpnCmZ9MTk4ijec7MFuN2GKtFJakMj+/fIERCEgGV9TKTilKZ7B5Z3cXdhJQH4QgHKD0hnJqHopOk670wlRqntj+z2/5mRLe++W3MtQ1snSnQgixlC+8nxIzEvjUT/+M5353mWf+5zw//4ff7PeQ9kRMgoPM4jRS85KpebyB0b5xXvKuF3L7m2+m+GS+WjSpHEgqCFcOnYozJVhjLMxOzm298VWip7GP+LRYxhYCyFDiUmMxWY0IIdAJgbYwgxiX4iQ5J5npWTcp6U6kDAaRNpuB1Mw49AY9dpsBs82EI97O1Ng0wrccDJo0QXlBHMNtA1j9Xs4/uLxQ0Lim4U+0WGxG2qp316wp4PGjbxtd97x3ofqJlDI41S0Es/h4diIY8L4oPo7WX6xvYJSQHENqvJWx5kES4qyMjm9dUWZu1sPAwix4UooTt9uHe97LhSdbl465UvHNlfjmPRjjHMy4/TsOwnUHIL97x/TR+5pyz7p3tBjz3g/cRWZxOpnF6fyg8e/pqO0mLsUZhRHujBCCU3ce45o7jlJ0Mp9//auf0N8W3vqJw+jE7Uf42I8/QExCsM+Be85Nf9sQuRVZ+zwyRdmcCsKVQ0dv0JNdmkHDuZatN75KuIYnqbqxbNMgPD41jtbLy+3c7XF2cquysDqs1D+z/rNaG84NNEDpqQLqn25iemwSKSWVRzK4+ItzS3mvSTlJq/ZZm8McLZEoj+zMTGTo8vr6z71tA+SeLMKZFk+eKR0vEtusgVyzEw1Bf5aezLI0dDodOr0OnSbQNC1Ywk+A0OmwOsyMPrt1U5z4OAsD3QKPT9LfN058soOxweU8Yp9vdS3iuraFXOW+aewxZo7cewP+6Tl8ZhMmTceVnz4R3pvfQRAuolGSZwf6OkaJSXAwObp+4epuORNjluq8b8TqsBCbHEPfihr2/3Df9zj7ytPodDrS8lO2XEy5X4QQ3PnWW3nBH9zIr7/7IC0X2vjtDx5e+vd8WNmcVo7cXM51d53kmjuPkpy9+veSyWJSAbhyKKggXDmUrrnz6PMqCAfoadp8FlS/ps1243PbbzjS3dRP4Yl8dDF2KuIdXHlw9QLYtRUzZCCyud8b2W2ljvKbK7n4aCs5BYkceUEs7ZfamZ2aJefO0/R0jkK8jdorvaRkO6mbmuJIUTqTLRPkZsTTOjRCcmUqTY91bHh8i8WA3qDD59388/AOjRGobqL4ZAH2FCt1dUOrXvdvUg99enKemtpgKUOdTlBSmkrZC4/Sca6ZucnNZ+G3+/HpjXqG+3d35yFSJsemqThVEpXGPcnZiYwNuHANTWy4zY33XscHv/WH/OKffkd3Yy///Y+/JSU36UBUjwmX3qDn7vfcAcC1LznBp+/9u0PV+MeZ6OD+f/sgiRnxxKfGYnGY0TSVXqIcfioIVw6ls/dcy48++5P9HkZElV9XxB1vuYVp1wwD7UNYYyw0PttKWn4KRrOBy4/UkZyVSONz61MjAAym3f9znpmYxRpnp/DaYmxGweSgC02v0VHTRcmpAl7zpy8h9kdP8Ph/nweISF3lcOx05s5sN1N8tpzay73BoGN2npraYGv58puPUrdQ9SQ2JZaexn5i/cHAajFAWXx/XfMzSCmJsZkwG/UYNB1CB5pOQwjw+gI4Upw0Nw+FGMWK96FpeOY8NDxeD9RjNBsoPFGAFuugu38Gf5iLMAMBSX1dMCAnPRVjtg6TxUiy3k/rU7svtVd8TQH1z+2s3X00DHRHp0vuGz/+KkZ6x/jUK/825OvORAfXvuQ4ml7jnj95MTOTs8zPunnjx191qILwlW6451pufNV1PPqfT+33ULZUcCyXG195HTe+6rptlXpUlMNCBeHKoZSSmxSR0m0HRXZZBp//9cew2M1bbtt0vo1ffef3/O+/PLqqOYfQ7b7YUXJ2IsXXlfDuT9+LEII3f+JVAIz2jxOX4kSn03Htnce4/54vceGh2r1LR9nBecpvqaSze4KaS8Ggu6A4mdZnlmucayvy2WcXqpMExubAvJz+EuOwwIiLgfEpTseaab/UzWKfwoKqbFrrl0s+plxfuOWYvGvehmfeS8OTwYWBml4j/3geppx4ukdmmZ4JfxGqzxfANzVPO5DxwpOkmAWDDT30tmy/0U3VjWXUPBP6Qm+/jA5MkFOVQ2d159Ybb6L8+mKsMRbaq7t462dfT8mpQhIzx9f9LtH0GiaLkU/99M+oPFu29Lwtxsqffe+PdjWGg+A1H34Z+UdymByZYmzQxYX/vRKVdJ+d0mk6XvyOF/CWT79GlQ9UrmoqCFcOpYnhSUwWI3PTe9PMY7tKry3kvV9+C92Nffz0q7+krbpr3TZJWQm88r6XcPolx0nNS0ZvCO+fY/HJfIpP5vPK97+Ef/zgD6h+tB6vxxd2oHry9iru/sPbGeoe5R8/+EMA0gtTKDqWx4vfeRsnbqtct09CWtyqxx/65jt47/WfYHKP6hHv5Na5MBqZm1lu7W1cU2NG5/WSawv+/1xTF5pBx0j7CJQ5CSyk2ay8yJDZTrjUDVIiNB16ix5jjBlNrwOdQBoEiTFm9DqBEKDXCTRNhw6JTgQzrB2mjS+U/D4/zc8GU6x0OkFOVQ6OzCT6xt2MT4bfory/ZxxjopWB4VkcGUnBHHbz5hd39jgbOeVZ+DzeAxeAL4pNTwwZhMcmOzHbTAy0h74LEZ8Wx1//6n68bi8lpwqRUiKlXEpnSEiL4+733EHNEw20Xurgg//nDzl772li4h1RfT/7qeRUISWnli8afV4ff3Tqo7Rd2d1FzkZyK7O47q6TdNb3UP90Mz6PD/ech/iFxeQnXniEhPR4nIkOUnKSqLyxDKNpbxZ9K8p+UkG4ciilF6Ry7wfu4kd/dfBSUkxWE+/469dTdrqIstNF3PHmmxkfdDHcM4YjzsbMxCw6TUdOeeauymZll2bwhV9/DL/Pz0jvGM/97jIGk566p1vIKcvAGmMhMT0O1/Akz/0uWOLtzZ94FW/8y1cC0F7TTWJGPO/43Ou47fU3bOv2ekJqLH/3m49S/UQTf/9H393xewjbDm79915pIyk9mbGxafzzvuBCyhWHazzXsuoiLuev7qBP8xErAmA2kDVgxz/uJtFhISAlzdJDYrKDqeFpAr4Ac5lW2jPil/a3J5gY+7fHNh1TWl7Spq8vCgQk7Zc74HIHECzRGJOVHHZAvvheZ6eD2250EROfFktaQSrttb3UP9eOIco1uXdjoGccIcS69/Lduq8QE+/gR5/9L374yX+n6sYy8o/kcPHBamISHLzy/XdRcDR3aftQP+d//PV3MD/r5nv3/5g733br866cnd6g558ufJHf/+gxGs4189R/P8dwz/pKQttVdCKPV9x3F7e+/oalSQYpJUIIPG6vCrSV572D+xtXUbYwekAWji3Kr8rmLZ9+DUduKsfmtK56LS4lNmq3VTW9RkpOEne964Xc9a4Xhtym9qkm/vWvf8bpu44vPZdXmcWP27+x4/Nml6TjiLXx93tyd377M+GuARfZJzJJftERJl1zGAxW8vKT0AGOGA+6ogkwCzBJZG8cLq+R5olgjnh8koXB4UnivTZGxXIpzJLrcpj4f8HFqrq13UPDuE7w7KDREEDHlU5YmKXMrcohJjuZwSkvI2Ohy3Rqaxbphvr0jGYjjgQndeeWF/B63Duvwx5towMTFJ4qovncconMEy+sWvq39vr7X0FOeSanX3pyR8Gd2WrifV99W8TGe9jodDpuf/PN3P7mm3nfV99G/TPN/Ozvf8XjP31my7Q/k8WIey7YqMpsNXHjq67j7CtPc/3d16y76Fl8rAJwRVFBuHKIvey9d/Lofz3NzMTW9ZmjKb0ghbd+5rVU3lBK4oqZ0YOk4vpi/voXH9nvYexYuPPgQieIzUzAluzEdDSFnkQD8VLi9fl5uqlnKb3kurc4aE5bXniYI51MPDsHluBjL8Ggw+/3r/otOepYDm51iwXXF4SzOiESC1k7qjthIS0jvSiNxMJ0xtySvsHppQBn5az/4nltMRbmZj0EfH4SM+KxOG10NfXvejx7yRwbTBGx2M2862/eyN3vvXPpNU3TuPHe6/ZraFcVTa9ReUMplTeU0nyhjYZzLZSdLqK7sY/41FjGB124hiY5cfsRLHYzjng7c9PzmG0m/F4/9ljbfr8FRTkUVBCuHFoFR3O45TVn+OW3H9i3MRSdyOdvfvux5+2XzkEpEJF2NIf4EwV09boYds0yDOTE2egYHyYu3kyKzcZ4wLW8Q+rMqv11mqSzZwxLicZcwI8nEKzG4l8TNLcMjlFWmsJIwyAiAKyYcA4nCA9EuKRjX3M/fc3BQDo+LZa04kyE3YpcM/cdkJL8o7m4RqcxmQ10Ng0wOrw3+fyR1NU8yH8OfofYpIPTGOdqV3Qin6IT+QAUHs/bcLuD0C1UUQ4bFYQrh9of//3baLvSSf1C1YvFjo9rGYx6Sk4VcOrFx/n+X/7fiJz7mjuP8q7P/8HzNgCHg9GsJz4/mcHUeNpbBzlSnMa4K3hnxLLyx2DFxYLZrtGt61yVo6HTS/wBSbEtnstTw4zOzVJyexYy1U2yHgJCIhf+c3gszA9m0m8Q5OnM+GWAgJQY/VvfXk/JTmSse/Myhjs11u9aauZUeeuRVa/5vX5mp+bpaTncXRP1Rj32WPt+D0NRFCUiVBCuHGqaXuPdX3wjFx+swTU0wZs/+Wr6Wgexxljoqu/FNTxJbHIMp+48hsliXNpvt4F4ZnEan/vFRw9treBI2av3v1md8OSzZfR1jAAwOjWHyazHPe+jq3EIc4kevVljYnKWvJxE2jtHqHiRjS65OvdZ6IMRudMXDKRHZ+d4cnaOU7lJPDe7uulRrNHC+Iwe35oLEJ19dQWZUDRtj35e1vy9NF9eX53nMDJbjeuaUimKohxWKghXDr2KMyVUnClZehyTEMwb3ai5w+s/cg8JaXF86Z3f3HHXuJO3H33eB+B7yefZOAhvHVme8u7td1FVlkH9xS5mZ9ycsKXy3OAACV4TY1MzXHssC11x5/rcEX3wCdfgLMQsP/3ss0OcOJ3Dxenl0m0uzxyVebnMdftJDpjRAgLfkAfHpJ5mNrdXPzNX64/mzETohaiKoiiHkQrCleelO958M85EB5997VfwzIdfEcJkMfKuv3kjL3vvHVEcnbLWRjPherORqTW14msb+4iPs+Ean6E/MIfHHyArLY6xiVnOdfdxjTa7PgjXgk90948Tm2DG5V0sAyi4/Ow4padSaZhebnwjzB4mHnGxstl5dsrWecp7FRxfpTE487Ph10tXFEU56KIShAsh3gT888LDd0kpvxPGPgnAK4C7gCogA/AA1cD3ge9LKUOuahLB6aU3A28DjhCscTAAPAv8pZSyKdR+yvPb6Zec4OZXX8///sujYW1vspr4wy++kZf+4e1RHpmylt8fOgi3J9mZEcs54wVFyVgdZkCS7k2kUU5BILBqAaWQAh169EJDW/hPF9CTmGJC03RUZBsw2aZwmgOc703H4zNi6tM4kRls9xNsuyM48sok0PlBE6CTmNwGkrgFBBh0OuSkF0Qw9VwCAQna/MFsLnVY+Lx+vB7fga5nriiKEq6I/yYTQmQBXwemge2soHk18E9AP/AQ0AWkAK8EvgO8WAjxarkmf0AIYQb+E3gp0Aj8GJgC0oEbgWJABeFKSG+4/5U88p9PbTkb/uZPvprX/8Ur0LTdt4a/muw0nWe7Ar7QVUVc3WMcva0KvRe66/sxD84wOutmzutjeDqYupCb4mB2aC4YqQtB34yNPnewpvHJ+Bzqp5rppBV7RTGN3VMcs1r4+OlgA6Jfx7yOP//vYK53cr+dyVgv455gIH3b0VhqPcu/WhJMTsaHgusODHoN+7Ab99zqn6uq/IQIfiobu1pnwmF9+UVFUZTDKqK/zRZmpL8PjALf3ObuTcDLgEwp5R9IKf9CSvl2oBToBu4lGJCv9SWCAfjngXIp5R8v7PsWKWU+8Nsdvh3leSCjMJW/+sVHccRtXOHkyE1l3PvBu1QAvo/8mzQL6f/tZVoudjHpmqWtto/xp7vIsQf/Ps0mPU6bmfbuUTKSYoHVlVZWBqsLXcx5qmv57/mFeU+yWEZlaHKa9HkbJhF8va5jfmFWPMgnlhvxeH1+sstT1w82StFxzLqSfXtzcbTXhBDMTqq8cEVRrg6RjiruA24jmBYys8W2q0gpH5RS/mJtyomUcoDlgP6Wla8JIQqA9xBMO/lYqHQVKeXBbQGnHAjHbqnge3Vf4Y0fv5f4tOUKF/ZYG1/834/ztw98AovNvI8jPLgi0XwmHH7vxgszJwZcFBUkLj3OKUnl8vAoRyszwaTR0h2snJLqDN6Ys4jlKjkr62nrdMEIuWt8hr6ZYD1kA13cXbkcXLcNjXHEmAwSBibmKbQuL/71i9W/fqQ1RMnCKCSFV73gKFisZB4rpPSGMo7ecQK9zbr1joeQlHLTSjmKoiiHScTSUYQQZcAXgK9JKR8VQtwWqWMDi4H02p7Pryd4IfFDIEYIcTeQRXAm/kEpZUsEx6BcxZyJMbz5E6/mnj96EQ/93yfoaujjJe+4jYJjufs9tAMtNsXJC15/A7//tyeieh65RZObxgcvk3ayhKT8RJ4ZHiU/0Ylu1kteohMBTLq9DA5OQkBiC1iW9guwHNAtBuEATw9czysL2pmcSeR0Nlwci6GnbxK9Xkfb0Bhn87J4fKwbz4SVNEc8GjqMPgP6ZAdCiGAVFK+fwuIUhBDodDqETmDVSSpurlzeRgiEbmE+fSFA14wafm/w/S5dIshgACqlRAhB9QMXgeAM+PSUm5nJOWZWzBBXXl+048/6oPN61n4NKIqiHE4RCcKFEHrgXwjmcd8fiWOuOfabFx7+Zs3Lpxb+dAKtwMqESymE+CfgPinlllMnQojzG7xUuo3hKodcTIKDl//Ri/Z7GIeGpukw26PfKc/v33jGXW/Uk1eShsMM7ec7OX4ym8Fz7QwMTy1tU3ZzCR6TRkysE/u8garERAIywJx/hgxLAt6AH5k9QEVWAD8BHptP5V8/+MeMu+bJzk+g6fQwp7OzuTLTz4RvjmE5zbV52ZxrGWDx16gm/eRe7Fs1toLiFFqalquqVGXF0nCpe9P3WnAkm9bqjbcxmoMz7PnH85EG06FrPb9bXrcKwhVFuTpEaib8E8Bx4KyUMtIJe18AKoFfSSnX5ncnL/z5GeAB4MNAB3At8H+A9wHDwKciPCZFURbodNHPlV/b7j0+1UlqVjwBn5+ehl7qn6gH4OgdJ2h6sJGSo1nEJjjw+3w4E2KofbwVKSV2p4XkG/JpNfeFOs0SoR9k3GUGBF1toyRca+HpidUNb56b6OZIZgZXeoYQAYlBaJgtBjRNh9vtQ9N0OBxm4pLsaDqB0OnQW42hT7jy3FukrPg8PpzJTub9gsH20AF4wB/AYNJflQGrx60yDBVFuTrsOggXQlxLcPb7S1LKp3Y/pFXHvg/4ENAAvCnEJouFx/qBV6y4AHhQCPEq4ALwp0KIv5ZSejY7l5Ty5AZjOA+c2Mn4FeX5IJoLVqWUWO1mElOdOBMdxMbbGOwYZLitn5G29QHo5d9doPBEPv7RMWyahjQIApNTlBXHIxGMudxMPzcOdy7vY9BpZFkTcRos+PEz7plkyjtL9l/q8RNAAC9OmUCva0BKLyZ9IZenXARkAL+s5vqiJB54b/Am3MoChD6fH79ZY9DtWVqPmZCydcEo3RZdNQMBiT0tiYHOkQ23qTvXitFkoOJ0AbXPtG55zsPEvY26/oqiKAfZroLwFWkoTcDHIzKi5WP/EfA1oA54gZRyLMRm4wt//mbtDLyU8rIQoh0oAMqAy5Ecn6IoQTstGSelxB5nIzbBjjXGjNFkQIjgTO/8jJuZiRkmhieZGZugfWwCo8VIT+2m19IAtFxo2/A1vUGjPD+YxXY8LpcJ3zR9c8N0z/XRveYe3ox/OaRunbOTYw4G/T7vJDqymA0EXx+lh7JbM6l/aP1NQI/bR05WPF3dwV9f4SxjFWHcWdgsAF8+t5eaJ5vIKUvHPedlsDvUr9DVcsvSMdlMNJ7vWF1G5gDxqZxwRVGuErudCbcTrMMNML/BbdRvCyG+TXDB5gfCOagQ4gPAV4AaggH40AabNgJ3AK4NXl8M0i0bvK4oyi6FG4QXHc9Gr9eYn5lnemya8aEJpgbHmBrcOjgE8MxtHYBvxef1424f5fjvEvBnTtNdNbjlPlLChWE3BdlWfHIWv/RQ4UjkGVfP0jbZd7jxjWeCTiBEMJA2SHDNe4iNty0F4QQkVbdV4Z1zoxk0ZsdnmBmbYrjfRcAfIDbRgaaLbAWVzvo+9EY9ldcVUHuubcOKNgnpsfglNF7qIqc8g4mhCVwr8uoPCt8mlXIURVEOk90G4W7guxu8doJgnvjjBIPlsFJVhBAfIZgHfgm4XUq52ZTP74E/IZgzvvY4JmCxREBHOOdWFGX7NP3WQXjF6XyqH63bg9FsbWLAxcDfNlPxmopgb94NSAlpU0k4Hk5hsGOKrj/MJS79WcymRry+BvTCiW9hzfeIpZHmUSvzK1IlygtSaesbI2NF5dSA20fNhc6lxympMQw09WKyGpESxruGSM9dLrcYKT6Pj+onmqi8vojac8E7BbFJDgBcw1MkpMbi9QXobglelHQ29mN3Wik+kUvThY6Ij2c3VIlCRVGuFrsKwhdSQN4Z6jUhxKcIBuE/XNm2XghhIJgi4pVStq7Z5+MEF1meB+7YIAVlpV8DbcCdQojbpZT/u+K1jxOsmvLIQq1xRVGiQDNs/muk+ETugQnAAQY7hzFajAw82Qd/aF1Vuzt1Mpn4wQS0eY3pxgCtNcNAMDC9Uh/P002VZDhOc00GZNtmmZgfQ+rnCWg+qo7H8exTyzftfAsNhnr7XSQnORgensK/JsXDuzCr655dnuXfamHmbtQ81Uzx8Vwmxmcwmw0Mdo9ScTofnUFP9dOrc8enJ2ZpujJLblUWo73jTI1NR21c26FmwhVFuVpEvG19GDKAeqATyF18UgjxFoIBuB94DLgvxJdRh5TyB4sPpJSehf1+B/xaCPGzheOeAm4iWBnl3dF6I4qigMGobfiaI95Gb2PPhq/vBymDnVLbq7tIGUplMCWYcpE2mczg13X0eUPffIuZ08AOvVMz9DbAjVo6zY8vB9XZGQEKjqdj1vT0to7i9y8Hi6mpToaHpwisSQUZHZnGGmNZ1QUy2i3nmy52YDQZlqqM1DzZTMHxvA2376jvIyk9DpPVwEjP+Ibb7ZXAJt1TFUVRDpP9CMI3svgtoAEf2GCbR4AfrHxCSvm4EOIa4JPArUAswamrbwGflVIerAhAUa4ymhY6CJdSkpoZR+OzB69nlj022NY+oc3CYMoUMgCm3yTg2yAAB9BNBIKrYACrpmdArG4K3Nk7RmZOPLUDg1hMBhITzRQlZSKlZAbIvTYDa0BH/pFsAn6J3+8n4Jfophy4Z9xIGSAQkLTWb14+MRJWlvmLTY5hsGfzm47DfePExNnIq8igvbY32sPblGrWoyjK1SJqQbiU8lOEqM8tpewgxGTPRtuHea464LU72VdRlN0RGywkrLiugJoDlIay0mK7eq3dD9dD/kgOrXWbVxzxTng4VpbKzIibnrEJLKlGrOkxDPZNAsFfavE2C52MM+f2UtOxPguu0OHAVb+6tGKM8DExPBmZN7YNGYUpGKxmdDpBexiB/+T4DNOTc1TeUEzNE017MMLQ/D41E64oytUh+l02FEW5qoXKYU7KiKP5uYM3A77WXFMwFcXW7txy24A7wEjnJD1jEwA0D4yi6VffBWhtH8awyUJVv1wfQOqNe39DMr0wheHBKTob+8MKwBcF/AFqnmml9Nr8KI5uc2omXFGUq8VBSkdRFOUQ0gzr01GsNgODs7svKRgtYuFm3FD9MPhimWrfugGM0agRM+AnIy+ZGb8XTQiMa0qDz855KC1No6Y99Fpwf4jqgPoQn1+0VN1YyszUPN0tg7ta4Dg75abyhmB12r2eFfd5VRCuKMrVQQXhiqLsytqOmZXXFXDlkdp9Gs3WzDYT3Y3BvObJ4SnKfn2W2oatCygZLAbGBscZu7icC37iSBbeVCeGaQ96dOgExM5JyhwO9AiEBB0CnQjedrToNOrXHFdEsePoWj6vf1sz3xvpag5+XmabadfH2i6vWwXhiqJcHVQQrijKruhWpF+kZMdT//T+5QtvJTUvGbPNREdN99JznrHwgjqh15EQbyM9M475GQ/NrUNcuBI8TkHDKCN9LgCGNR2OlFiGx2fXHSMhdX3ay17OhE9Nru/quRtGo575rTeLKJUTrijK1UIF4Yqi7MpiXrTQCfSawOveOrVjL+QfzSHgDxDwS/QGDfecm97m9TPelrCayYPfJBicmKe/NTiTfKQ4jYam4CLLlV1DpT9AdkEyNc91rDtGqPJ6ug2qy0RayTX5dDRFtmVCuN1SI0k161EU5WqhgnBFUXZlMQivOF3AlYdr9nk0y/R6jabLnVtu558IrwnNlM9LYEWznSu9gySmO5ieczO/pgnPeL8r5DFC5WFHM5BNzklEBgLEJcfSXNOLlOFdcITLE+YFlz3Wis/rJykjjr72Yfy7yEdXzXoURblaqOooiqLsik4nSM1NpO7Jhv0eyipCF96vt4n2AY4eycJhNiK8AYQ3gFXTcfRIFtqKVJtJz/qAc2RihvkQ1Tp6WwbIyEsKdgaSEqETGM0GDCY9doeZ2HgrCYl2EpMd6LTotOcpO13IyOAUI0PTNNf0RDwAB5ibdm+5TWySg4AQuD1++rvH0Bn0VJwp2vE5TRbDjvdVFEU5SNRMuKIou6LpNXQE8B2w0nGNz7ZQdDKf5vNtm243UNfDoCMOvz+w1MBgft5H9flOjEaNxBQng4MT5Ax6SJuBuMx4hoankf4APl+AgD+ANTuVxLw0HCaNgNtLX9cYickOBtuH8Hn9SJ8fj9vLtNeHZ2p1rrizPCOi79toMVJ8TT6NlzqjEnivJKVEb9TweULPTuv0OjKL06h5phVYnsVuvNhJTmUmI30ubDEWkjPiQELL5U7mZzYP7HVhXlwpiqIcdCoIVxRlVwSSnsbod3nciYnhSTS9tmkeccDrIyM1ht5e17rXPB4/MTEWRkcmaXqmHQCLyUhg1sPY+Axzc8HZ8dQUJ4O946RlxjFQF2zS63F71wXBnvn1s+mRmAmvur4QqdcjAK/XT+25zS88IsloMqwLwktO5iGFoLdtaCkAX8nn9dPZEMynn5mcY2ihY2dsooOCo9mM9o0z2DWKDKy/iJiZiuziUkVRlP2ignBFUa5aQ10jVN1YRvVjawsDrpaU7cBcHBfs/imAxT9FsJlOSY6N5h8EA8X68x0A5J/MpaVlCFiucGK2GJeOOT0xR0lVFo0XV+el6/Q6AisqfISbNrMRoRM0PFZD3pFcOron8G4wKx0thrXNhkQw9aY6RPC9FdfIFK6RYAOl2GQnmfnJ1J1rWfV5zUS4wouiKMp+UUG4oihXtabnWknMiGekd2zDbaZ98zwToqTgorzE2HXPDQ4ut5pfDMKH+l0YTPqlWtYhm/PoNTwrg/AQHUe3IynNSX/tOPVPNpBVlsksZibGZrbeMUIMptVfI4VHs3cUgK+1GJDbYqzklaUvNQWaP8BNoBRFUbZDBeGKouyKyWrceqN95J7zkJ0au2kQ7ukchXTLhq/7AgFy7y5DaCI4S67Xobea8MgAEhCaIPNYPMHQWiKlRAIuJOV4cLvmQEoCAYlmNuGZ8xAISPxeHzqxs7xtKSVCCExieea7u76HuJRYMrJT6e3a+P1Gktlmxplox2IzY7abwyz4GL6ZyTlqnmklMSsBs9WIyXKwf94URVHCpYJwRVF2ZbFE4UHWfL6NrNIMuht6Q74+dqEL0ks23L97bJLutU9OhHfuU1kxdD6wXLrRmZbA5NhyWcS4lNjwDrRGXkkqvXWddNS4Vj0/PuhiZnKWotOlNNdHti54KD3twwBMuKKbJjKyUPbxujuPRPU8iqIoe0UtM1cUZVd0uuiU2Is0Z6Jjw9emukdxWs1ROe+zwk1mRebSY21Nh0yxg9/CBpMem93E/HTofpWeOQ/1D1+hvCot6hVS9tpw7/h+D0FRFCUiVBCuKMquHIaZcIDe5v4NXxNAmm3jdJRdEQLPmZylh+vb1G//IiavOIUrD17ZcrsrD1ymtDhxVb3zw04161EU5Wpx9fxmVhRlX4hDMhM+Prh5/kiMZ31L+UipCbgpvDGY7rK2zvVO1mWuD+Q3Vvt4PcXFids/yQHlU23rFUW5SqiccEVRdiWabdcjyWQx4p7buLKGGJoGU/TO31oaj/WSZX1d8B1ki3imt5d/3dvQCxy+TpOZuYk4HCaEACElMhAg1n743oeiKEooKghXFGVXtEMShMemOBnsGN7w9ZnGATiSFLXzDwa8nHz1CeQz65Z4boveqNF4rnlb+3jmPGA6PMGrlJKKqnSuPFi97rVDcuNFURRlS4fj21NRlAPrsMyEJ2dvnpIxcqEDLcoR3nnhJqZqZ23qLTYTqVlx5OUnbHvfQIjOkwfVZgE4gNe9vuuooijKYXQ4vj0VRTmwDkMQXnZdMXVPNm26jW/OS7rTHvWxPGL1kH9tPgCxSTGMbpGrbrWbKK1KZ6ZviN7qdhqe3vx9hOL3+XY01r0mpaTiSMaGATioIFxRlKvHwf/2VBTlQNtt2/VoKz9TTP3TTfjDWNCXqEU/ZUMKQU1JDGU3lSD0Gn3tG6fISClJjDdT+1jdrkoNykMyE15xJIMrv9+86ovPczguKBRFUbZysL89FUU58A56TrheH/7SF9OkO4ojWTYl/TQdSWBuiwuDiuNZtF/p3PX5/L7oVX6JlPIj6VsG4KBKFCqKcvU42N+eiqIceAe9ROHEyGTY2/r2sBFMn2sK+5tOINZWS1nBO79xNZft8Pv8B7ppT/mRDK48sHUADioIVxTl6qGCcEVRdkXspND1Huqs6yEhPS6sbV2Xd1e5ZLtqh0bJfs/ZkFUKpZTBqiYRclA7mxaVp3Hlgcthb+9XQbiiKFcJFYQrirIrBzwGByAhPT6s7cabB7GbjVEezWrnxkbJf/cNS4+LqjIoKk0mKc5I2+WOiJ3nIHY2zSlIouWphm3t4/OqnHBFUa4Oqk64oii7chiqo4TbYVIA6XYrTRFKAwnXM9PjnLyznJihKa48tHFlkN3QNIHvgBQWSUyNId5hpP7Jhm2nyaiFmYqiXC1UEK4oyq4c9OooRSfz6W8bDHt75z7EeFKClmyh9idPR+0cmn5v/p5i4qzEOC04HCb6eydwjc0sveZwWsjMcFL3eD0DO2w/r3LCFUW5WqggXFGUXTGYDu6vkaySdFoutG9rtlU3PL3nHd7tQsfAvzxN6bVF1D7ZGJVzRLuKTV5RMv7pWdoudzC28JzRYqT8TCkIgfT5aTrXRHXz7vLu1Uy4oihXi4P77akoyqFgtpn3ewghWRxm3POebac7zDYPQvn2u1LuRolPR6drhrEBV9TOEa2ccJ0mKClJpvrh2nWveeY8YZUd3A6vCsIVRblKHOz7yIqiHHgHsU640WwgozCNoc6Rbe87/FwHur1cbSolgafaAehvG6T4VEFUTqOPUhBeXJQUMgCPloA/QCBw8OueK4qibEXNhCuKsisHpU643WkluyILTa/DPeum5WLHjo7jm3GT6rTT55qK7AA30Vfft/T/gSjlPEfjYqm4Ip2ahyI70x0On8eHcY+r2CiKokSaCsIVRdmV/a4/XXg8F51OR1t1F3Ur8qlzK7MY7hljxjWzyd6hJekN9G29WURkagbmVyxSbLnUQWJ6PCN9Y5vstX3aJk2BdiKvKJmWp7dXXjBSvG4VhCuKcvipIFxRlN3Zx0LhuRVZtFd34w9RaaOjppvk7ERsMRaGuraXlmKZ2ZsShRYEWXUjNK95Pr0wNeJB+G6bKqWkO0lMtDM1MsFA6yDNT9RFaGTbp2qFK4pyNVBBuKIou7JfdcKTsxIY7R8PGYAvGuoaIb0wFaPZgGc+/CLZvq5xSIpuiRS70FH4SAfNtT3rXutt6Y/qubfDbDWSnRFD3RMN9O73YBaoxZmKolwNDt6KKkVRDpX9SEexO60EApKpsektt+1rGaDwRP62ju+qjn77+uP9c/SECMABRvvGKTyeG9HziR38ts/MTcTid1P3xP6knWxElSlUFOVqoIJwRVF2ZbdpDuGquqmM3Mos9EY9WaUZjPSGn66x3UWJ440D2EzRmwkvEgbqf3Z+020MpsjmPG/nM5BSUn4kne4LzQx3j0Z0HJHgdasgXFGUw08F4Yqi7MqeVUeRwTzv+LRY6p9Zm0W9Ofese1vbCyDDYdvWPtuROjC75TbNF9qwO60RO6cuzM6mDqeF/JxYrjxwZdNUn/2kZsIVRbkaqCBcUZRd2Yuc8MySdIa6g4srd1L7u72me9sXC9FqX18iDDT87Lktt/N5fORWZUfsvOHcsMgvTiEw7qL5udaInTca1MJMRVGuBioIVxRlVzRNi3pKiiPOzmDH8I7397q9xKU4t7WPbnjrfPOdiJ0PhN3Fc256PmLn3WwmXOgE5ZVpND1ey8TI3tVH3ym1MFNRlKtBVIJwIcSbhBBy4b93hrlPghDinUKInwkhWoQQc0KICSHE40KIdwgR3rIiIcR3V5y7cHfvRFGUcGj66F7Pz0xsnb6xlZTcpG1tP9e286B/Iw50uH4XfnfJ9iud2OMikxazUZ3w+EQ76QlmrjxYHZHz7AWVjqIoytUg4iUKhRBZwNeBacC+jV1fDfwT0A88BHQBKcArge8ALxZCvFpuMoUkhLgbePsOzq0oyi5c86JjqwJlvUFPbHIMc9PzzC/M5uo0HQiBEAKv24t71s38jBvNoGF1WLDYzeiNejS9ht6goRk09Ho9U+PTPPnzZ3c9Rr1hewstR853QEncrs+7UqlPR2e/K+ztAwFJbnkmNU80br3xFrQQ6TjF5Wl0XGhhaHJu18ffS74odRVVFEXZSxENwkXwnvT3gVHgp8CHt7F7E/Ay4JdSysCKY94PnAPuJRiQ/2SDcycB3wb+HUgFbt7BW1AUZQc++/OPRuW4/+8bv+Yf7vteRI5V/WgdVTeWUf1YfVjbeybmyIh10Buh9vVCSjxPtBHwB7beeIW5me0tKt3s/IsMRj2FhQlUP3x4Zr9Xcs/uTTMlRVGUaIr0PeT7gNuAtwHb6hUtpXxQSvmLlQH4wvMDwDcXHt6yySG+tfDnH23nvIqiHFwzrt2noazUUbu9+t9J+siVKTzt1tNbF7ou+Gbar3QSk7D7G3syEPzVmpoRS6xJUv1w+GkxB4kQYtvVbhRFUQ6iiAXhQogy4AvA16SUj0bquAsWW92FTAQUQrwVuAd4j5Ty4BW1VRRlR37/48ciejz33PZmUM3TkQv2PBe6drRfICDJKc/a9fmlgLKqDIbqO+lvHdz18aIhLT+Fb13+W/6l9evc88cvwmw1rXr9zrfewvfqv8Itrz2zTyNUFEWJnIikowgh9MC/EMzjvj8Sx1xz7DcvPPxNiNdzgK8BP5JS/r9dnGejzhmlOz2moig7V/1YPX0tAxE9pmfOg07ThZ0S4u+fgLjIZO1ZS9PgcueO9t1OY6JQjBYj1hgbz/z83K6OE00J6XF87n8+SlZJOgB/9LW3YYu18a9/FcxANNtM3PcP78BojmwTI0VRlP0SqZzwTwDHgbNSykiv8PkCUAn8Skr525UvLFRM+SHBhZj3Rfi8iqLsk/lZNx9/2Rei0iwmLT+F3ub+sLadrO2Ds5Gp1T0dZ9p6ow30tw2SfySHtivBIF5v1GMwGTCYjRiMejSTAaPZiN6ooRn06M1GTBZTsDi4gOHROeZ94ZVF3Gs6neCl77mDt37mNTjiVqfd3PWuF/DTr/6Suel5rr/7GhWAK4pyVdl1EC6EuJbg7PeXpJRP7X5Iq459H/AhoAF4U4hNPkhwAeZdUsrx3ZxLSnlygzGcB07s5tiKomyPwRjxwk3LxzbpMVmMYaWmjNb2Yrktn7kIlMQb08ILggtO5OGZ9xPwB5YuQuYmZ9EZDVgLsvHMB8fiZTlPDzfg9hHM2HMTaklOcopjl+8gMopO5tNR3UXekWxOvPAIt73+BvIqQ1/oJGUm8MOmr9H0XBvHX1C5xyNVFEWJrl19061IQ2kCPh6RES0f+48IppnUAS+QUo6teb0I+BzwfSnlryJ5bkVR9pem18gsTqPx2ch3buyo6Q6/SkpAkhFjp2XEtevzxvoF4SwzNRgMtNf0Lj0WQuD3eJkYmaL45kramrffMXTxOPspPi2O+77xDm645xQetxejKbxFr3EpsZy+S82DKIpy9dntwkw7UAyUAfMrmuRI4JML23x74bmvhntQIcQHgG8ANcCtCxVS1qoATMDbVp534dyL5QmbF567ZydvTlGU/eGec9NRs71KJts7fvgLNJ0yMsGr6bnw3k8gsDpfXUqJIz6YpuFzRaeLZzRpeo1X/elL+WHT17jhnlMAYQfgiqIoV7Pd3vN1A9/d4LUTBPPEHwcagbBSVYQQHyGYB34JuF1KudG0T8cm576LYK3w/wQmF7ZVFOWQMFlM3P7mm/mf//O/UTl+03OtVJ4tpebxhi23NYxGoEyilBCiWU4oofLgs0ozqHuykbbLHSRVFTA+uq0KsMEhbHuP3VlMNbn+7pPEJByMVBhFUZSDZFdB+MIizJBt6YUQnyIYhP9QSvmdFc8bgALAK6VsXbPPx4HPAOeBO9amoKw596VNzv0wwSD8fillS/jvSFGUg+Ldf/smfvmtB9ikSe6u1DzegKbX4fdtXillrmUICp07P5GU3DgaoP5ceKk1MrD+/Q73jiGEQEpJWqpjR0H4XtH0Gh/78fu58d7T+z0URVGUAy16q582lgHUA51A7uKTQoi3EAzA/cBjwH0hchg7pJQ/2JNRKoqyr9xznqgF4IuMFiNzU/ObbjPwaCPWihuYdXs33W4jZyeh/j+fCXt7f4jyiaN94+Qfy6X1YjtTgztbgx7lj3LJn3z97SoAVxRFCcN+BOEbyVv4UwM+sME2jwA/2IvBKIqyv37z3Qejfo7E9Hi6G/s23cbv9lHicHDRvbta3eEK+EOXZbQ5rQB01nRhL8xidnqbrdujHIRreo37vvEOXvKuF0T3RIqiKFeJqAXhUspPAZ8K8XwHsG6Ke6Ptd3juWyJxHEVR9k97zc46TG6HxWEJaztD6zA4tW0fP0foafvp9iq3blQbfaBjGAh20MzOjqehbnuNjKIRg1sdFt7x+deTfySHlJwkkjITonAWRVGUq1PE2tYriqJE0s2v2YPW5GEWPun+xWVMhu3NWeQIPfr/uoRnfntpLH5v6Bz1kd4x0gpSABjvHNx2qk40Unvu//H7edl776TyhlIVgCuKomyTCsIVRTmQjt5SEfVz9DT0oelD/xrUacvPe6fmKYmN2daxs3ummRia3PaYZGDjhaJJWYkA9Db3U1qRur3jRjgIf9Hbb+X0S45H9JiKoijPJwcpJ1xRFGWJLcZKUlYCw92jUTtHZkk6bZc7Vj137wfu4vX3vxJrjIXuhj7+80v/zblfXcTcMYbeocPv93M8YMQ67cFv1Gi0Csbk6hQSvYThS507GlPAv3GwPDEyRUZRKppBD3NuhA7k5sVdlmw3Bs8oSiOrOI3+9iEmhidxDS9fUOQfzeFPvv727R1QURRFWUUF4YqiHFgJaXFRC8KNFiOtl9pXlSi89iXHedcX34SmD+Z/5x/J4SM//BN6W/p59OfP8rl3vgCfx0vbk81MjEzy2E+eJq2pn7LCZECgsxgIxJiQPRM0de1s3H6fb8PXuhp6iYm3MzkabNpT9cIj1FX3L71ushi56aXHyCxM4fFfXqK9vg+fN3SO+Wbu+4d38tI/fOFSl02f18evv/Mg//3N33Hti4/z2j9/OUazcdvHVRRFUZapIFxRlANpcmwqql0zPXMeHPE2psaWa27Hp8QuBeArZRSm8foPvWzpcerLg50fj7+givtf/Dkaf1cdsXFtljaSmBFPWl4y1Y8Fmwx1XWrHZLPzkjee5cyLj5CWnUhCarCm+Wve90La6nr55id/SvXTLSCCFUySshLwe/3Mz8wzNR587zfee3ph5judhPQ4Tt5+ZNV59QY9d7/3Du5+7x0Re5+KoijPdyoIVxTlQJoYnmR+1h3VcyRnJ60Kwmue2LqD5kqpucnkHcnZsszhdkyOTJGUnUTA58e/kB/u9/rxeXyM9owQl7zcfXJiZIr3ffxe7tkgOM4vz+Bv/uOP+dev/Ia4RDuf+t67iEuJDZ5nbJr/+vL/UHQ8T9X1VhRF2QcqCFcU5UDai1bn1hjr0v9reo23fvb12z6G37tx+shOBAKSwY6hDV/vrOlC02v4fX4yClN58Vtv2fR4Qgje+KcvXvd8TLydt//V63Y7XEVRFGWHVHUURVEOJO8OO1Rux2IArek13v23b+LmV1+/7WO8/a//YFUllWhzz3ooOJpNQnocf/qtd2OyqNxsRVGUw0jNhCuKciD1tmyvGc12lV1XRN1TTQDEp8XyyvfftaPjZJdm8OHvvo9v/dk/r6ogEkl5VdnkVmZhspiYGpvi9fffS/HJ/KWFk4qiKMrho4JwRVEOpOnxma032iGjxcjc1PzS48qzpbs63u1vvplTLz7GP33wBzz1388xN7187NyKLHxeH66hSaZd4b0no9nA0VsquOGeazHbzNz6+hvQ6dSNS0VRlKuJCsIVRTmQUvOSo3LcmAQHSVkJtF7qWHruvn94166PG5vk5C9+9H7mZ91c/H01f/Pmr3P0lgr+9NvvaT/0BgAAF6BJREFUISbBwfysm9onGvHMewCoeaye1LwUTr34GADf/siPmJuaI6csk3v/9G7VgVJRFOUqp4JwRVEOJL9v+/Wtw5FTnkn1Y/XYY22Uni7EHmfHYjdH7Phmq4nr776Gb13+O8x2MzHxwQWmFpuZa+44urTdmZedWrXfJ/7jQxEbg6IoinLwqSBcUZQDyWCMzq+nhnMtvPBNN/OaP3sZeZXZUTkHBMsfKoqiKMpGVJKhoigHUnphalSO63V7edn77oxqAK4oiqIoW1FBuKIoB9KVR+qiduyGZ5qjdmxFURRFCYcKwhVFOXB8Xh/f+9i/Re34D//Hk1E7tqIoiqKEQwXhiqIcOA/86DFaLrZH7fi2GEvUjq0oiqIo4VBBuKIoB86vv/v7qB7/Y//2gageX1EURVG2ooJwRVEOlNmpOeqebIza8W953Q3YnLaoHV9RFEVRwqFKFCqKcqB43d6IH7P8TAmf//XHmB6fJj4tLuLHVxRFUZTtUkG4oigHyrlfX4zo8UwWI3/2vfdhdViwOlQuuKIoinIwqHQURVEOjIZzzfzzJ/89osf8+H9+iMzi9IgeU1EURVF2S82EK4qyLybHpvj2n/+I6sfqySpNZ8Y1S/Vj9RE/T+O5Fk6/5ETEj6soiqIou6GCcEVR9twj//EkX3vvt5ganwGgt7k/auf6ry//gtff/woMRkPUzqEoiqIo26XSURRF2TN+v5/HfvI0X3zrN5YC8Gibm56n9onoVVtRFEVRlJ1QM+GKokSVe87NU//9HE3PtfLIfz7FUNfInp7/pldfz7FbK/f0nIqiKIqyFRWEK4oSVX/39n/k4X/fvzbxj//kafw+P5pe27cxKIqiKMpaKh1FUZSo6azvZqRnjMobSyk4lovRvPd52YGA5PGfPrPn51UURVGUzaiZcEVRomJiZJLPvOpLdNX3Lj1ntBgpOpm/sEhSEggEaHimJarjiE2KISEjPqrnUBRFUZTtUkG4oihR8a0//5dVATiAZ85D8/m2Vc+Vni6i8dkWZEBGZRyf+tmfU3GmJCrHVhRFUZSdUukoiqJE3IXfV/O7Hzwc1rYNzzRTeDyPohN5WBzmpefj02Ipv74Yq8NC1Y1lCJ3Y9jgsdjOlpwu3vZ+iKIqiRJuaCVcUJaKaL7Tx16//yvb2WZgdF0LgTHQQCEjG+l2M9bsAqH6snuTsRJCSoe7RsI/7kX/+EzRNLchUFEVRDh4VhCuKEjEXH6zmo3f+FQF/YEf7SymZGJla97ym19BpOsYHXWEfK70ghVMvPr6jcSiKoihKtKl0FEVRImaoa2THAfhmSk4VMtA+hHvWE/Y+/W1DzM/MR3wsiqIoihIJaiZcUZSI6W7o3XqjbUrLT2FiZJLM4jR6msJrb3/vB+4iuyyTmHhHxMejKIqiKJGggnBFUSKms74nosezx9qYHJsmPsXJ/Ix7y+2tMRbOvvI0L33vnWQWpUV0LIqiKIoSSSoIVxQlIqSU9DYPRPSYORWZ1D7RyIxrBmfixrPaZdcVccdbbqXihhLyKrMjOgZFURRFiQYVhCuKEhEtF9sjno7SfKGd5KwEhrpHQy7YXHTXu2/nzrfeGtFzK4qiKEo0RWVhphDiTUIIufDfO8PcJ0EI8U4hxM+EEC1CiDkhxIQQ4nEhxDuEEOvGKoQoEkJ8RAjxoBCiWwjhEUIMCiF+LoRQ38iKsocuPVQb8WN65jxhdbv88ed+EvFzK4qiKEo0RTwIF0JkAV8Hpre566uBbwOngWeArwI/ASqB7wD/IYRY263js8AXgBTgV8CXgCeAu4AHhRD37exdKIqyXZ213VE5bv3TzVTcELrjZf7RHP7295/kB01fj8q5FUVRFCVaIpqOshAkfx8YBX4KfHgbuzcBLwN+KaVcqnEmhLgfOAfcC7ySYGC+6DfA30gpL64Zx83A/wJ/K4T4TylleCUVFEXZsbYrHVE7du0TjZReV0TD083Ep8YyNT7Na/7s5bzx469Cb1BZdYqiKMrhE+mZ8PuA24C3ATPb2VFK+aCU8hcrA/CF5weAby48vGXNaz9YG4AvPP8I8DBgBM5sZxyKomxfT1MfzRfao3qOxmdasMZYcA1N8Nn//ihv/czrVACuKIqiHFoRC8KFEGUEU0O+JqV8NFLHXeBd+NMX5X0URdmB//3nR6J+Dikls5NzvOPzf8DJ249G/XyKoiiKEk0RmUYSQuiBfwG6gPsjccw1x37zwsPfhLlPDvACYBYI64JACHF+g5dKw9lfUZ6v5mbm+cU3f7cn58opz+TeP33pnpxLURRFUaIpUvdyPwEcB85KKecidMxFXyC4OPNXUsrfbrWxEMIE/CtgAv5cSjke4fEoirLCT778P0yNbXcd9s4UnypA07Q9OZeiKIqiRNOug3AhxLUEZ7+/JKV8avdDWnXs+4APAQ3Am8LYXiM4I38D8O/A34V7LinlyQ2OeR44Ee5xFOX5pOVS+56WBxzsGN6zcymKoihKNO0qJ3xFGkoT8PGIjGj52H8EfA2oA26VUo5tsb0G/IhgqcP/AN4opZSRHJOiKMt8Xh+fffWX8Hr2btnFlUfq+OaHfsj4oGvPzqkoiqIo0bDbhZl2oBgoA+ZXNOiRwCcXtvn2wnNfDfegQogPAN8AaggG4Jv2wl64GPg34HXAj4E3SCnVgkxFiaL26i76Wgf3/Lw/+cr/8Ibs9/D5N36N/ra9P7+iKIqiRMJu01HcwHc3eO0EwTzxx4FGIKxUFSHERwjmgV8CbpdSjmyxvZHgzPfLgX8G3ra2zKGiKJE31r9/yy18Xj8P/vhxHv/pM3zrypfIKEzbt7EoiqIoyk7sKghfWIQZsi29EOJTBIPwH0opv7PieQNQAHillK1r9vk48BngPHBHGCkoJoJNgV5C8GLg3SoAV5S9MTs1v99DwDPv5eLva1QQriiKohw6+9HpIgOoBzqB3MUnhRBvIRiA+4HHgPvWd6mnQ0r5gxWPv0kwAB8BeoFPhNjnYSnlwxEbvaIoQDAnPFJuuOcU1730GvKO5BATb8fiMGO2mRnqGqHhmWbqnmqi6XwrHdVdSznosclOKs+WcuO9pyM2DkVRFEXZKwep3Vzewp8a8IENtnkE+EGIfRIJlkncyMO7GJeiKCH4fVvfdDJbTVTdVEZmcToP/OjRkKUMDUY9H/nnP8Fit6x7Lbs0g+zSDO54yy0ATI5O8dOv/pIz95yi+GTBrt+DoiiKouyXqAXhUspPAZ8K8XwHsG66eqPttzjHLTsYmqIoEeCZ82z6+ls/8zpe/Wcvw2gyAPCWz7yW//f1X/MfX/w5s1PL7QSqbi4PGYCHEpPg4K2ffd3OB60oiqIoB0TE2tYrivL80lHbveFrb/7ka/iDv7x3KQAHsMVY+YOP3cs3zn2erJJ0AHQ6wd3vuSPqY1UURVGUg+YgpaMoinJAdNb38J2P/IhbXnsDt73hLGvXWrRXd/L7Hz264f43v/bMhq9llWTw3bqvMtAxhKbXSM5KjNi4FUVRFOWwUEG4oihLAoEAv/w//8u3/uxfmJ918/T/nOfBf3uMF77xZnweH62XO2g410z9U00EAqF7YcUkOJZmujcihCAtLyUab0FRFEVRDgUVhCuKAkD9M818809/QN1TTaueP/eri5z71cWwjzM1Ns3U2DQxCY5ID1FRFEVRrhoqJ1xRDqmxgXE66zbOyw7XSO8on3/j17jv+vvXBeA7IaWk5vGGXR9HURRFUa5maiZcUQ6Zoe4RfveDh/nPL/03c1PzvOPzf8Br//zl2z6OlJLf/uBhvvmnP2BmYjaiY5wYmYzo8RRFURTlaqOCcEU5JAY6hvjrN3yV+qebVz3/nY/+iNjkGO58661hH2ukb4yvvfdbPP2L85EeJgDT4zNROa6iKIqiXC1UEK4oh8TD//7kugB80Zff9U18Hh8vesdtaJq24TGklPz2+w/xzQ/9MOKz3ysZzIatN1IURVGU5zGVE64oh8TrPnIPv5j+EZ//zV/iTFy96DHgD/DV93yLtxT+Cf/6uZ8w3DO6bv+R3lE+9tLP86V3/lNUA3AhBEdvLo/a8RVFURTlaiCkDF1mTAkSQpw/ceLEifPno3PbXlF2orelnz+77dMhg20IBsJVN5Vx4gVHSMtPpqu+l//3jV9HNfhe9J4vvYV7P/jSqJ9HURRFUfbbyZMnuXDhwgUp5cnt7qvSURTlEMooTONtn3s9X3zLN0K+LqXkyiN1XHmkbs/GpOk1Pvy99/HCN960Z+dUFEVRlMNKpaMoyiF12xvOkluRtd/DWHLfP75LBeCKoiiKEiYVhCvKIaVpGje96vr9HgYAt7/lZl78jtv2exiKoiiKcmioIFxRDrGMotT9HgIlpwq47x/ehRBiv4eiKIqiKIeGCsIV5RCrPFu6r+e/549fzJcf/Sxmq2lfx6EoiqIoh41amKkoh1hydhIVN5RQ+0Tjnp3TbDVx9t7TvOK+l1B8smDPzqsoiqIoVxMVhCvKIfeHf/cWPnjjx/H7/FE/121vOMs7v/BGkjITon4uRVEURbmaqXQURTnkyk4Xcfd77ojqOQxGPX/5fz/IX/zo/SoAVxRFUZQIUDPhinIVeMNf3sulh2voqOne1XHMVhPHbqvEEW/HYjdjMBkwmAycetExjtykumAqiqIoSqSoIFxRrgJxyU6++vhf8U8f+AG//cFDOzrGyTuO8oFvvpvU3OQIj05RFEVRlLVUEK4oVwlbjJUPf+99nLnnFJ9/w9eYn3WHtV9eVTZvuP+V3PyaM6rMoKIoiqLsERWEK8pV5szLTvHP/7+9e42Vq6oCOP5fvC9IeWmDD7SVl0V8tQpYwqsKUQTBRAgfUESN8EGixkQjIUbUxEdQMQEDifiOikAikZeYFqgRRG0NAimg0gpopQgUKW2ByvLD2ZcOk3PnUeDM3Hv+v2TnkH32vnPYs2Z1zcw5Z+69kBW33MOOsybY/6B9eHrj01x5wXX8ecntPLXxKbbdflv2nDubI09eyEHHzrf4liSpYZGZoz6GsRYRy+bPnz9/2bJloz4USZIkjZEFCxawfPny5Zm5YNi53h1FkiRJaphFuCRJktQwi3BJkiSpYRbhkiRJUsMswiVJkqSGWYRLkiRJDbMIlyRJkhpmES5JkiQ1zCJckiRJaphFuCRJktQwi3BJkiSpYRbhkiRJUsMswiVJkqSGWYRLkiRJDbMIlyRJkhpmES5JkiQ1zCJckiRJaphFuCRJktSwyMxRH8NYi4iHJyYmdp83b96oD0WSJEljZMWKFWzYsOGRzNxj2LkW4X1ExEpgFrCqwYd9Xdne1eBjavwZF6pjXKiOcaE6xsULbw7w38ycO+xEi/AxFBHLADJzwaiPRePDuFAd40J1jAvVMS7Gi+eES5IkSQ2zCJckSZIaZhEuSZIkNcwiXJIkSWqYRbgkSZLUMO+OIkmSJDXMT8IlSZKkhlmES5IkSQ2zCJckSZIaZhEuSZIkNcwiXJIkSWqYRbgkSZLUMItwSZIkqWEW4UVErIqInKL9u2vsnB5jMyJ+3uNxTouIP0TEuoh4LCJujIjjeoyfiIhzI+LuiNgYEWsi4hcRMa/HnFdFxPci4l8R8WT5fzs/InbrMWdhRFwTEY9ExPqI+EtEfDIitu63dm0QEYdFxBURsbqs6eqIuD4ijq0ZO/RaGhfT0yBxYb5oh4j4UJ/nOSPifzXzzBcz2LBxYb5oF3+sp4iIVcCuwPk1u9dl5nkdY+cAK4HbgF/WjL8jMy+veYzzgE8DDwCXA9sBpwC7A2dl5gVd47cHFgOHAn8ClgB7AScBTwGLMvPWrjl7AzcDs4ErgbuAg4CjgLuBQzPz4a45JwBXABuBS4FHgOOB/YHLM/Okmv/H1oiIc4AvAf8BrgJWAy8F3gLckJmf6Rg79FoaF9PToHFhvmiHiHgzcOIUuw8DFgFXZ+ZxHXPMFzPcsHFhvmiZzLRVb0RWAasGHDsHSOAHQ/z9hWXO34Dduv7Ww1QBOqdrzufKnMuArTr6Tyj9d3b2l32/LvvO6ur/Zum/qKt/FrAGeBJ4a0f/DlQvtgROGfXzM8K4OKmswW+AnWv2b/t81tK4mJ5tyLgwX7S8AbeUtXnv81lL42JmtSniwnzRojbyAxiXxotfhP+ozDm9Zt8Xy75zO/oC+Efpn1szZ2nZd1RH32tL38qaF8/OwDrgCWCnjv4Plzk/rHmMRWXfTaN+fkYUE1sB95Y1e9kA44deS+Ni+rUtiAvzRYsbcGBZlweArZ/PWhoXM6f1iAvzRYua54Q/1/YRcWpEnB0Rn4iIo/qcs/SKiDijjD8jIt7YY+yisr2uZt+1XWMA9gZeDdyTmSsHnDP539dn5jOdgzPzceB3wI7AIQMe11JgPbCwfHXVNguBucA1wKMR8Z6I+GyJjbfXjN+StTQupp9h42KS+aKdzijbSzKz85xw80W7TRUXk8wXLbDNqA9gzOwJ/Lirb2VEnJ6ZN9WMP7q0Z0XEjcBpmXlfR99OwCupzi1fXfN3/lq2+3X07V+290xxrFs655gyZ3G/OZm5KSJWAq+nehe8Yoq/O1O9rWwfBJYDb+jcGRFLgfdn5kOla6i1NC6mrWHjYpL5omUiYgI4FXgG+G7XbvNFS/WJi0nmixbwk/DNvg+8g6oQ34nqH9aLqb4aujYi3tQxdj3VBVkLgN1KOwK4ATgSWFxeGJN2KdvHpnjsyf5dp8mctphdtmcCE8A7qb52O5Dq3LjDqc6nmzTsWo7zc2xcTG3YuDBftNfJVGtxbWbe37XPfNFeveLCfNEiFuFFZp6bmUsy88HMXJ+Zd2TmmVQXHEwAX+gYuyYzP5+ZyzNzbWlLqd4F3grsA3x0Sw5jiLExxnNmislTkYLqk83FmbkuM+8E3kd1Lt8RfU5B6LSlazmOz7FxMWBcmC9a7WNle/EWzDVfzFxTxoX5ol0swvu7qGwP7zcwMzex+aulzvGT7/Z2oV7du8V+c2aNcE5bPFq292bmbZ07MnMD1aeeUN2iCYZfS+Nieho2LmqZL2a2iDiA6vqBB6iuH+hmvmihAeKilvliZrII729N2e7Uc9Rmk+eBPjs+M58A/gm8JCJeXjNn37LtPG/q7rLdj3ov+pyI2IbqArRNVHeDaJvJtVk7xf7JYmyia/xAa2lcTFvDxkUv5ouZq9+Fd+aLduoXF72YL2YYi/D+Jk81GDRIJq8M7h6/pGzfVTPn3V1jAP4O3AfsFxFzB5xzQ9keExHPeW4jYmeqm/JvAH4/4HEdTnW1882Z+WTN/pluKVWC2DcitqvZf2DZrirbLVlL42L6GTYuejFfzEARsQPwAaoL7y6ZYpj5omUGjItezBczzajvkTgOjerq3N1r+l9DdcVvAmd39B8MbFczfhHVTfETWNi1b5xvpv8Q3kx/qtj4SVmDL3f1H02VSNcCu27pWhoX07MNGRfmi5Y1qkIrgV/1GGO+aFkbMC7MFy1qIz+AcWhUF11upLo35neAr1H97OuGEiRXd74ogBtLYF0GfKu0xWVsAudM8TjfKPvvL3MupPrJ6wQ+XjN+e6p7bybwR+CrwE+Bp6luin9wzZy9qW6dllQ/efsVqnejSfXV0B41c06k+mRvHdU5Z1+n+jnayRdojPo5GmFszGbzG7GlwHllTTaV5+Gk57uWxsX0a8PEhfmifQ34bVmP4/uMM1+0qA0SF+aLdrWRH8A4NKrb//ysBMbaEoQPUf0k9Qe7gwT4CHAV1dfN66je5d0HXAoc1uexTisB/wTwOHATcFyP8RPAuVT/4D/Z8eI8oMecvahuubgaeIrql7G+Tc2n/R1zDqX8+AjVm4/bgU/R8UtebW3A7lTv9FeW9XwYuBI45IVaS+Ni+rVB48J80a4GzGNzMdR3PcwX7WiDxoX5ol0tygJJkiRJaogXZkqSJEkNswiXJEmSGmYRLkmSJDXMIlySJElqmEW4JEmS1DCLcEmSJKlhFuGSJElSwyzCJUmSpIZZhEuSJEkNswiXJEmSGmYRLkmSJDXMIlySJElqmEW4JEmS1DCLcEmSJKlhFuGSJElSwyzCJUmSpIZZhEuSJEkN+z8oK1OmOuwTnwAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "image/png": { + "height": 258, + "width": 368 + }, + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "# original data\n", + "sacramento.plot('BLACK')" + ] + }, + { + "cell_type": "markdown", + "id": "peripheral-client", + "metadata": {}, + "source": [ + "### Network distance based measures" + ] + }, + { + "cell_type": "markdown", + "id": "complex-prisoner", + "metadata": {}, + "source": [ + "Instead of a euclidian distance-based kernel, each generalized spatial segregation index can be calculated using accssibility analysis on a transportation network instead. Since people can't fly, using a travel network to measure spatial distances is more conceptually pure to the spirit of segregation indices " + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "id": "rural-clearance", + "metadata": {}, + "outputs": [], + "source": [ + "import pandana as pdna" + ] + }, + { + "cell_type": "markdown", + "id": "secret-dress", + "metadata": {}, + "source": [ + "A network can be created using the [urbanaccess](https://github.com/UDST/urbanaccess) package, or the built-in `get_osm_network` function from the `segregation.util` module. Alternatively, metropolitan-scale networks from OpenStreetMap are also available in the [CGS quilt bucket](https://open.quiltdata.com/b/spatial-ucr/tree/osm/) (named by CBSA FIPS code)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "existing-kidney", + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": 20, + "id": "proprietary-thumb", + "metadata": {}, + "outputs": [], + "source": [ + "net = pdna.Network.from_hdf5('../40900.h5')" + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "id": "determined-fleece", + "metadata": {}, + "outputs": [], + "source": [ + "network_spatialgini = Gini(sacramento, group_pop_var='BLACK', \n", + " total_pop_var='TOT_POP', distance=2000, \n", + " network=net, decay='linear')" + ] + }, + { + "cell_type": "markdown", + "id": "regular-latter", + "metadata": {}, + "source": [ + "Comparing spatial gini indices based on straight-line distance versus network distance:" + ] + }, + { + "cell_type": "code", + "execution_count": 22, + "id": "french-extent", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "0.5848616778202473" + ] + }, + "execution_count": 22, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "network_spatialgini.statistic" + ] + }, + { + "cell_type": "code", + "execution_count": 23, + "id": "american-narrow", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "0.5368102768280784" + ] + }, + "execution_count": 23, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "gen_spatialgini.statistic" + ] + }, + { + "cell_type": "markdown", + "id": "sufficient-benefit", + "metadata": {}, + "source": [ + "The segregation statistic using network distance to construct neighborhoods is higher than using the one using unrestricted euclidian distance" + ] + }, + { + "cell_type": "markdown", + "id": "approved-midwest", + "metadata": {}, + "source": [ + "## Batch-Computing Single-Group Measures" + ] + }, + { + "cell_type": "markdown", + "id": "backed-congo", + "metadata": {}, + "source": [ + "To compute all single group indices in one go, the package provides a wrapper function in the `batch` module" + ] + }, + { + "cell_type": "code", + "execution_count": 24, + "id": "frozen-yield", + "metadata": {}, + "outputs": [], + "source": [ + "from segregation.batch import batch_compute_singlegroup" + ] + }, + { + "cell_type": "code", + "execution_count": 25, + "id": "quantitative-atlanta", + "metadata": {}, + "outputs": [], + "source": [ + "all_singlegroup = batch_compute_singlegroup(sacramento, group_pop_var='BLACK', total_pop_var='TOT_POP')" + ] + }, + { + "cell_type": "code", + "execution_count": 26, + "id": "48cdfcc4-2b44-4bc5-bbd2-91c0e5e4d15e", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
Statistic
Name
AbsoluteCentralization0.849177
AbsoluteClustering0.117545
AbsoluteConcentration0.981443
Atkinson0.365947
BiasCorrectedDissim0.487694
BoundarySpatialDissim0.450074
ConProf0.112752
CorrelationR0.101027
Delta0.907277
DensityCorrectedDissim0.335178
Dissim0.488339
DistanceDecayInteraction0.841137
DistanceDecayIsolation0.160247
Entropy0.112068
Gini0.636176
Interaction0.837925
Isolation0.162075
MinMax0.656220
ModifiedDissim0.476238
ModifiedGini0.623809
PARDissim0.481833
RelativeCentralization0.076906
RelativeClustering1.626559
RelativeConcentration0.778755
SpatialDissim0.446272
SpatialProxProf0.115984
SpatialProximity1.106990
\n", + "
" + ], + "text/plain": [ + " Statistic\n", + "Name \n", + "AbsoluteCentralization 0.849177\n", + "AbsoluteClustering 0.117545\n", + "AbsoluteConcentration 0.981443\n", + "Atkinson 0.365947\n", + "BiasCorrectedDissim 0.487694\n", + "BoundarySpatialDissim 0.450074\n", + "ConProf 0.112752\n", + "CorrelationR 0.101027\n", + "Delta 0.907277\n", + "DensityCorrectedDissim 0.335178\n", + "Dissim 0.488339\n", + "DistanceDecayInteraction 0.841137\n", + "DistanceDecayIsolation 0.160247\n", + "Entropy 0.112068\n", + "Gini 0.636176\n", + "Interaction 0.837925\n", + "Isolation 0.162075\n", + "MinMax 0.656220\n", + "ModifiedDissim 0.476238\n", + "ModifiedGini 0.623809\n", + "PARDissim 0.481833\n", + "RelativeCentralization 0.076906\n", + "RelativeClustering 1.626559\n", + "RelativeConcentration 0.778755\n", + "SpatialDissim 0.446272\n", + "SpatialProxProf 0.115984\n", + "SpatialProximity 1.106990" + ] + }, + "execution_count": 26, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "all_singlegroup" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "e3da8849-9180-4fe7-ba83-6594dab7bce5", + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python [conda env:segregation]", + "language": "python", + "name": "conda-env-segregation-py" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.9.2" + }, + "widgets": { + "application/vnd.jupyter.widget-state+json": { + "state": {}, + "version_major": 2, + "version_minor": 0 + } + } + }, + "nbformat": 4, + "nbformat_minor": 5 +} diff --git a/_sources/notebooks/02_multigroup_indices.ipynb.txt b/_sources/notebooks/02_multigroup_indices.ipynb.txt new file mode 100644 index 00000000..579041c1 --- /dev/null +++ b/_sources/notebooks/02_multigroup_indices.ipynb.txt @@ -0,0 +1,414 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "id": "nominated-breakdown", + "metadata": {}, + "source": [ + "# Multi-group Segregation Indices" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "id": "ef04f168-d859-4c12-a3e0-aff7df0b0b2a", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Author: eli knaap\n", + "\n", + "Last updated: 2021-05-09\n", + "\n", + "Python implementation: CPython\n", + "Python version : 3.9.2\n", + "IPython version : 7.23.1\n", + "\n", + "segregation: 2.0.0\n", + "geopandas : 0.9.0\n", + "libpysal : 4.3.0\n", + "pandana : 0.6.1\n", + "\n" + ] + } + ], + "source": [ + "%load_ext watermark\n", + "%watermark -a 'eli knaap' -v -d -u -p segregation,geopandas,libpysal,pandana" + ] + }, + { + "cell_type": "markdown", + "id": "b580cc30-29dc-4561-9513-a141ba39514b", + "metadata": {}, + "source": [ + "Classes for computing multigroup segregation indices are in the `multigroup` module" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "id": "bf5fb7d9-8843-4eaa-818d-b25acf9e2345", + "metadata": {}, + "outputs": [], + "source": [ + "import geopandas as gpd\n", + "import matplotlib.pyplot as plt\n", + "\n", + "from libpysal.examples import load_example\n", + "from segregation.multigroup import MultiDissim, MultiInfoTheory" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "id": "9f20f5a1-8d25-4976-89ba-ed66905f5650", + "metadata": {}, + "outputs": [], + "source": [ + "sacramento = gpd.read_file(load_example(\"Sacramento1\").get_path(\"sacramentot2.shp\"))\n", + "sacramento = sacramento.to_crs(sacramento.estimate_utm_crs())" + ] + }, + { + "cell_type": "markdown", + "id": "fe313580-070e-48d1-9ad7-4925fdadc22c", + "metadata": {}, + "source": [ + "## Aspatial Segregation Indices" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "id": "441a1c53-a267-4f24-919a-19aa8a6770c5", + "metadata": {}, + "outputs": [], + "source": [ + "multi_dissim = MultiDissim(sacramento, groups=['WHITE', 'BLACK', 'HISP'])" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "id": "ee2a6015-9703-490f-8a98-e0e340e76b72", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "0.42469982288295693" + ] + }, + "execution_count": 5, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "multi_dissim.statistic" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "id": "19252c53-8411-4850-88c5-347b4d0347df", + "metadata": {}, + "outputs": [], + "source": [ + "multi_info = MultiInfoTheory(sacramento, groups=['WHITE', 'BLACK', 'HISP'])" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "id": "9e960e74-2b96-49ee-b0d0-55f27757169e", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "0.1800803002655424" + ] + }, + "execution_count": 7, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "multi_info.statistic" + ] + }, + { + "cell_type": "markdown", + "id": "f2f95a02-ae16-4210-9919-33a4646824ce", + "metadata": {}, + "source": [ + "## Spatial Segregation Indices" + ] + }, + { + "cell_type": "markdown", + "id": "ba6ecd48-d155-4169-962c-1778bcdf8f89", + "metadata": {}, + "source": [ + "As with single group measures, generalized spatial versions of multigroup indices can be created by passing a distance parameter or a `W`/`Network` object." + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "id": "980b6183-b060-4a57-bcbf-ff7a2224911f", + "metadata": {}, + "outputs": [], + "source": [ + "spatial_multi_dissim = MultiDissim(sacramento, groups=['WHITE', 'BLACK', 'HISP'], distance=2000)" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "id": "1998948e-0a9e-447a-8be6-d2f63724ff2b", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "0.3776841098505291" + ] + }, + "execution_count": 9, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "spatial_multi_dissim.statistic" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "id": "088ca7ac-361b-441e-ae3a-2c37827017a3", + "metadata": {}, + "outputs": [], + "source": [ + "from pandana import Network" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "id": "781fb45f-be69-4c19-8463-3305ae74894a", + "metadata": {}, + "outputs": [], + "source": [ + "net = Network.from_hdf5(\"../40900.h5\")" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "id": "97b73a0c-c329-417a-8011-33ce2f44332a", + "metadata": {}, + "outputs": [], + "source": [ + "net_multi_dissim = MultiDissim(sacramento, groups=['WHITE', 'BLACK', 'HISP'], distance=2000, network=net, decay='linear')" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "id": "60add795-76ed-4a4a-8ee6-4be5060c3a30", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "0.3997196467720179" + ] + }, + "execution_count": 13, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "net_multi_dissim.statistic" + ] + }, + { + "cell_type": "markdown", + "id": "9835fd10-7fe3-429f-962c-a8329a621454", + "metadata": {}, + "source": [ + "## Batch-Computing Multi-Group Measures" + ] + }, + { + "cell_type": "markdown", + "id": "5359e559-509e-46b2-8d1d-c727688a8393", + "metadata": {}, + "source": [ + "To compute all single group indices in one go, the package provides a wrapper function in the `batch` module similar to single-group indices" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "id": "58e47a6b-6f34-473a-9312-bc537713a556", + "metadata": {}, + "outputs": [], + "source": [ + "from segregation.batch import batch_compute_multigroup" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "id": "f41712ce-8923-4df8-8f46-13b21adf99c9", + "metadata": {}, + "outputs": [], + "source": [ + "all_multigroup = batch_compute_multigroup(sacramento, groups=['WHITE', 'BLACK', 'HISP'],)" + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "id": "39ad47fa-51b1-4b52-bb9e-ff0b8227f3b7", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
Statistic
MultiDissim0.424700
MultiDivergence0.131709
MultiDiversity0.731390
MultiGini0.556467
MultiInfoTheory0.180080
MultiNormExposure0.191362
MultiRelativeDiversity0.168574
MultiSquaredCoefVar0.145315
SimpsonsConcentration0.587698
SimpsonsInteraction0.412302
\n", + "
" + ], + "text/plain": [ + " Statistic\n", + "MultiDissim 0.424700\n", + "MultiDivergence 0.131709\n", + "MultiDiversity 0.731390\n", + "MultiGini 0.556467\n", + "MultiInfoTheory 0.180080\n", + "MultiNormExposure 0.191362\n", + "MultiRelativeDiversity 0.168574\n", + "MultiSquaredCoefVar 0.145315\n", + "SimpsonsConcentration 0.587698\n", + "SimpsonsInteraction 0.412302" + ] + }, + "execution_count": 17, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "all_multigroup" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "0b023ec4-34ea-4646-9572-fa78062ade9c", + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python [conda env:segregation]", + "language": "python", + "name": "conda-env-segregation-py" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.9.2" + }, + "widgets": { + "application/vnd.jupyter.widget-state+json": { + "state": {}, + "version_major": 2, + "version_minor": 0 + } + } + }, + "nbformat": 4, + "nbformat_minor": 5 +} diff --git a/_sources/notebooks/03_local_indices.ipynb.txt b/_sources/notebooks/03_local_indices.ipynb.txt new file mode 100644 index 00000000..72e78e40 --- /dev/null +++ b/_sources/notebooks/03_local_indices.ipynb.txt @@ -0,0 +1,659 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Local Measures of segregation" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Table of Contents\n", + "* [Local Measures of segregation](#Local-Measures-of-segregation)\n", + "\t* [Location Quotient (LQ)](#Location-Quotient-%28LQ%29)\n", + "\t* [Local Diversity](#Local-Diversity)\n", + "\t* [Local Entropy](#Local-Entropy)\n", + "\t* [Local Simpson Interaction](#Local-Simpson-Interaction)\n", + "\t* [Local Simpson Concentration](#Local-Simpson-Concentration)\n", + "\t* [Local Centralization](#Local-Centralization)\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "This is an example notebook of functionalities for local measures of the *segregation* module. Firstly, we need to import the packages and functions we need:" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "import libpysal\n", + "import segregation\n", + "import geopandas as gpd\n", + "import matplotlib.pyplot as plt\n", + "\n", + "from segregation.local import MultiLocationQuotient, MultiLocalDiversity, MultiLocalEntropy, MultiLocalSimpsonInteraction, MultiLocalSimpsonConcentration, LocalRelativeCentralization" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Then it's time to load some data to estimate segregation. We use the data of 2000 Census Tract Data for the metropolitan area of Sacramento, CA, USA. \n", + "\n", + "We use a geopandas dataframe available in PySAL examples repository.\n", + "\n", + "For more information about the data: https://github.com/pysal/libpysal/tree/master/libpysal/examples/sacramento2" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "Index(['FIPS', 'MSA', 'TOT_POP', 'POP_16', 'POP_65', 'WHITE', 'BLACK', 'ASIAN',\n", + " 'HISP', 'MULTI_RA', 'MALES', 'FEMALES', 'MALE1664', 'FEM1664', 'EMPL16',\n", + " 'EMP_AWAY', 'EMP_HOME', 'EMP_29', 'EMP_30', 'EMP16_2', 'EMP_MALE',\n", + " 'EMP_FEM', 'OCC_MAN', 'OCC_OFF1', 'OCC_INFO', 'HH_INC', 'POV_POP',\n", + " 'POV_TOT', 'HSG_VAL', 'POLYID', 'geometry'],\n", + " dtype='object')" + ] + }, + "execution_count": 2, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "input_df = gpd.read_file(libpysal.examples.get_path(\"sacramentot2.shp\"))\n", + "input_df = input_df.to_crs(input_df.estimate_utm_crs())\n", + "input_df.columns" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "**Important: all classes that start with \"Multi_\" expects a specific type of input of multigroups since the index will be calculated using many groups.\n", + "On the other hand, other classes expects a single group for calculation of the metrics.**" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The groups of interest are White, Black, Asian and Hispanic population. Therefore, we create an auxiliary list with only the necessary columns for fitting the index." + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [], + "source": [ + "groups_list = ['WHITE', 'BLACK', 'ASIAN','HISP']" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We also can plot the spatial distribution of the composition of each of these groups over the tracts of Sacramento:" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAB14AAAR+CAYAAABwCpfIAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/d3fzzAAAACXBIWXMAABYlAAAWJQFJUiTwAAEAAElEQVR4nOzdd5xcV3n/8c8zs7NFWmlXXZYtW5ab5IKLLFu2JWF6CS0B0kkgIQ0SSCHJLyQk1HQIoSUkFJOEBAgQQ0JvRrJkuajYsi1ZvVhdu9peptzz++Pe2b07mtmdXna/79drNDO3nHtm5s5q7nnOeY455xARERERERERERERERERkeJFal0BEREREREREREREREREZFGp8CriIiIiIiIiIiIiIiIiEiJFHgVERERERERERERERERESmRAq8iIiIiIiIiIiIiIiIiIiVS4FVEREREREREREREREREpEQKvIqIiIiIiIiIiIiIiIiIlEiBVxERERERERERERERERGREinwKiIiIiIiIiIiIiIiIiJSIgVeRURERERERERERERERERKpMCriIiIiIiIiIiIiIiIiEiJFHgVERERERERERERERERESmRAq8iIiIiIiIiIiIiIiIiIiVS4FVEREREREREREREREREpEQKvIrIjGBmR8zMBbc3VqD8B0Llv7vc5cs4M7vZzP7JzHabWa+ZeaH3/sO1rp+IiIiIiIg0BrUVTB9qKxARkXqhwKs0LDO7xMzeaGb/YWaPm9kJMxsxswEzO25mW8zsw2b2GjNrqXV9RaR0ZvbbwHbgN4EbgbmAlVDeK0IXYs7MXpLnftHgQi6870/kuW/EzLpD+/13lm3eHS670NcVlBGu27sn2S7nsczsvoxyynW7b5K6llyeiIiIiMxcaisQmXnK3VYQKndFntekw2Z22sweNLMPmdnaAo5R8vV/AcfqMLOhjLq/uYzlrzSz3zKzL5sfAD9lZnEz6zOzo2b2QzP7GzN7sZlFpyirqPfFzGaZ2bcyXuMDZjan9FcoIpKfplpXQKRQZnYF8GfAG8l+DrcAs4HLgLuBtwM9ZvY54C+dc2erVFVpQGZ2BLgiePom59x9tauNhJnZc4B/ZLzTUBx4HLgApH+E7ymw2E1ACkj/4H8e8J089rsN/0Iu7HnAN/LY92ZgXuj5j/LYR0REREREJqG2AqkktRXUrwq1FRSqNbgtAe4Bfs/MvgH8unPuZIWPXYifA9oylv0q8KlSCjWzG4B3A68le8A7BswBLsdvO/kj4IyZ/TPwQedcfynHD9WjA/g/YH1o8f8Br3fOjZTjGCIi+VDgVRqKmf00cB8X/0gYBY4A5/B/VC0FluP/6AHoxL+o+lUzu9k5d6gK1RWR8noz4xdSJ4A7Sr2Acc71mdlO4PZg0b157pptu2L3refA626mDkRfit+jOO1RoDuPcnM5CByYump5lyciIiIi05zaCkRmtLK3FUziyeAYYQa0A1cDi0PLfwLYbGb3OOdOV6g+hfrVLMvWmdn1zrmniynQzN4OfJDxDu1pg8Ax/L+/Mfyg9PLgMcHzvwDeYmZXOucGizl+qB6L8dsvbgkt/jzwRudcspSyRUQKpcCrNAwz+2Pgr5jYc+p/gY8Bm51zwxnbt+IHOH4aeAP++d7OxaPUZAZwzq2ocPn3VrJ8AeCO0ONPl/FC6keMB17XmFm7c25gin3uDT3uAhYAt5hZh3Out4B9zzjnKt3ztmjOuQ/iX0DlZP48SJ8NLfoj59wDJRz2P5xz7y5hfxERERGZQdRWIKVQW8G0UKm2gmw+ONloZzO7E/hIqE4rgX/AH2laU2Z2E+NtH3HgQeD5wfNfAd5RRJkfB94SWuQB/w58BnjIOZfI2H4O8CLg54Gfwv+7vYjxYGxRzOxy4PvANaHFHwd+xzlX0fTNIiLZaI5XaQhm9iomXkj1AC9yzr3KOffdzAspAOfciHPu2865XwFWAfdXq74iUhELQo+Pl7Hc8IjTJiampLlIMA9JepsLjAcdo8CGKfaNZGxTz6NdRURERETqmtoKRITKtRUUzDn3MH4wM5zF6XVmNr9GVQoLj3b9X+DDoedvMLOCgp9m9jYmBl2PA2ucc290zm3KDLoCOOf6nXNfdc69DrgV2FzIMXPUYxWwhYlB1/c7535bQVcRqRUFXqXumdky4N8Yv5AaADY4576fbxnOuYPOuZ/E77110X/8ItIQwhcB5UwT82BGec+bYvvw/K6bgAcK2Ffzu4qIiIiIlIHaCkQkUKm2gqIEKXM/EVrUxPhI05ows2bgF0OLPgd8C0jPbb0YeEUB5d0C/H1o0QngLufcrnzLcM49jh+k/iDjc/EWxMzW4AdvL0sXC/y+c+5dxZQnIlIuCrxKI/gDoCP0/Hedc08WU5Bz7oPOuacm28bMomb202b2H2a2z8x6zWzYzI6a2bfN7O1m1pnP8czsPjNzwe2+0PK7zOxTZrbXzPrNbMjMnjCz95rZvCzlRMzsZ83s/8zslJnFzey8mT1gZm8ORtEVW5eNwbp0XXrM7HEz+4CZXZHP68w4TouZ/YqZfcXMDpnZgJkNmtlhM/ufoL6tU5c0ocwXm9mng/fogpklg8/kjJk9amafM7PfMLMlk5RxJPT635ix7t70OiD8mj8b2mfCLUv5D4TWvzvP1zXXzH7bzL4ZnF9DZtZnZvvN7D+DzzxzjoyCXp+ZvczMvmhmB4L37IKZ7TSzvzazpfmUXaxyfJcy3vOpPpv7iqmnc64f2B5adO8Uu4TX/xg/cOsVsS8o8CoiIiIiUiy1FaitQG0FU5eltoIi2wpKlDml0MIa1CHs1YyPDD4LfCuY9/TzoW1+pYDy3sV4wNvhz6OaOfftlJxzSefcO/KYsukiZvZc4IeMv7cp4Fedc/9QaFkiImXnnNNNt7q9AZ1AP/5/4g7YB1gFj7cW2B06Xq7beeBNeZR3X2if+4Bm4KNTlH0MWBkq4zJg2xT7PAC0F1iXVuBfpyh3APj1At6/lwJH8nj/jgE/kUd5S4LXNlV56dvZScoK1+uNGevuLeAYzv/TeVH54Xq+O4/X9gbgXB7Hegq4M4/yJrw+/B/UX5+i7H7g5fX8XSrwc7mvhPr+daicBDBnkm2/Edr21mDZ9uB5CuiYZN+vhfZ9dpLt3j3Z+Zbnawq/NznPyVKPFZxv4WPdW6m66qabbrrppptuuummm3MO1FYAait4II/y0je1FaitoNj6rsgo64157veqjP1eNcm2757sHCrT+/7t0DE+FFr+nNDyJHBJHmVdi9/2kd7vexWqc873BX907nBo/Qjwk5Woh2666aZbMbcmROrbi4D20PNPOudcJQ5kZi/En9tldmjxIPA0/n/gVwOXBMsXAJ8xs8ucc+8r4DD/CvxS8Pg88Az+SLmb8C8cAZYDPzSzG4BZ+KlMrwzWHQGOAm3ALfgXZwDPxZ9n8vUF1OXT+JPZg/+j+mkgDlyHn2IE/Pfik2bW7Jz72GSFmdkbgM/AhL8rPfi9/FxQbrp33XLga2b2a865z+YorwX4AXBDaHEC/z07Fzyfhz+HQ/ozK3YUfzfwneDxc/EvNAGexE+XUlZm9k7gAxmLz+I3FsSA64E5wfLr8c+Hn3LOfYf8zAK+i58SF+A0cBD/c7iB8VS37cD/mNkaV2TP8GzK/F0Kv+apPpvdJVT7R8AfB4/T87x+K3Mjmzi/aw/wePD4x/jvdwTYiD9fSua+mt9VRERERKQ81FagtgK1FaitIK2SbQXFujvj+RM1qAMAZrYc/29m2n3pB865J8xsF/7fjSjwy/gd0yfzaiZ+p/65HPXMl5n9Av5rSP9NGcAPuuadZl5EpOJqHfnVTbfJbsDHmdhD7DkVOs4yoCt0nGHg94FZoW0MeBkX99J8xSTl3hfa7nxwf5zgR0pouxjw5xnl/hHwzeDxFuC2jLIXMHH0nMOfzyafupwNvc63A62h7SLAa4CToe2TwJpJyr4ZGA1t343/Yy0W2qYJ/+LtfGi7OMGIwSxlvj1juz8iyyjE4HO5Gb8n3BOT1DH8ub2x1O2y7PdAaL93T7LdyzI+s+P4PSHD50Mr8Nv4FyDp7S4Ay/Osd7p37C7guRnbRYHfCT7TsvdOpELfpVI+mzzrPTs4z9Ll/22O7daGtvl6aPlrQss/lGPfWzNe769MUp93h7ct8jWFjzXZOVnSsdCIV91000033XTTTTfdqnxDbQVqK1BbgdoKSvxs8qz3ioy6TFk+fmeC3tA+m6fY/t3hY5Sz/kH57wqVvzPL+t8Nrd+XR3nhLGAe0FnuOud6X4C3BMdML+8ij5Hfuummm27VvmmOV6l3a0OPh/BTqVTC3wPzg8ce8FPOuQ8554bSGzjft/BHrIV7z33SzGJMbQH+Rcw9zrmvOefSc0LinEs4594L/Edo+/fh/+D8MfB859yOcGHOuS7gp4HDocVvyqMeAIvwf6C83jn3j865kVC5nnPufuB5+D/gwf8BPlkv1n9ivEftIPBC59znnHOJULlJ59x/Ai/A7zUL/kXkv+Qo85Whx3/nnPtb58/FOUHwuTzunHs3fmCrbplZExN7Ap7GvwD+esb5MOL8XsOvwU/fAn4v5w/leaiFwKPAeufcj8MrnHMp59xH8X/Apr2gmDl6cqjGd6nsnHODwGOhRffm2DS8PPzebsL/TuW7L2jEq4iIiIhIsdRWoLYCUFsBqK2gLphZu5ndbGZ/BjwMzA1W9eIHC2tVL2Pi9/++LJt9Hn/UOMA1ZrYhyzZh4b+/+5xzPUVXsABm9qf4nW4sWHQKvwPBw9U4vohIIRR4lXq3OPT4pHMulXPLIpnZJcDrQos+GfzQy8o5dxx4W2jRMvyLmnz8oXPu2CTr/yn0uBn/h/SbnHOjOeoyip8GKG19tu1y+Dfn3P/lWumcewa/Z23aOjO7LXM7M7sduCu06L2ZF34Z5T7OxB/yt5vZPVk2XR56vDlXeRlll/38KLOfBC4PPX+7c+5Iro2dc98DPhHe38wuz7V9iAe8wTk3MMk2H8FP5QP+j9Zsn0FBqvxdqoRwIPQ2M5uTZZt7Q4/HLlSdc934KY0Abjazzin2PeacO5xlm6zMzBV6y7fsOvQXRbzezlpXWkRERESqSm0FaisAtRWM7a+2gqr5bI7r7378kcTvAzrw3+tv4I/GrEWq47TnMZ6SPAn8Z+YGzrlzTJxq6VdzFRZMobQgtOh4GeqYr/eHHh/C70BQtlTYIiLlpMCr1Lv5occ9FTrGK/F7U6ZN2VPQOfdV/P/k034yj+P0Af81xTaPMd5rEfy0LlMFZ7aFHl9tZs05t5zoo3ls8xn8uRLSXptlm58KPR5i4gVhLp/MKDfb+zccelzXvVMLEH6dx4D/zmOfDzI+kjKKn2poKj8ILoZzcs714V8UpN2QY9NCVOu7VCkPhB5HmTgfa+b8rn3Azoz904HY9Dyv4X0z53f9YYl1FRERERGZydRWoLYCUFuB2grq1zfwRzHvq3E9wkHUbwZB1mw+F3r8uhwd0cEfYR2OJ/QUX7WSPEV1g74iIgVpmnoTkZpqDT3O2pOzDMI9MPc45w7kud/X8edByCwjl+3hdDrZOOfiZtaNn94H4KE8yj0Vemz4Pety/ZBKO+uc2z5Vwc65ITN7AHhFsOjOLJuFX/uPs6X4yVLuoJl9Hz89TmYZaY/iz8cC/gi48/g9byt1HlRD+HV+wzk35ahE59xRM3scuCVUxmSpnMCf5ycfz4Yed+a5z2Sq9V2qlC34cwSlGyTuxZ87Ke02xtMFPZil1/Qm/Pl20vt+PbTuZmBe6PkDBdbtOwVuD/CSIvapBweBfM+dtEn/toqIiIjItKO2gqmpraBxqK0gu3ppKwh7kolpkNNi+KmcrwNa8IPNrwS2mdnPTTaCuVKCzFDhDhD3TbL5/+HPl7oAmA38DPCpLNu1Zjyv5vfuELAyePxK4Etm9tNT/f0UEakFBV6l3l1gPIVQR4WOcXXo8eMF7PdE6PEyM2tzzg3n3NqfoyMfQ6HH+ewzlPF8Vh77FJKKYzfjF1PXZllfyvv3mixlpP0j8Ev4QbAW/Pld/t7MvoMf4NoG7GyAlEHA2GjJFaFFhb5XtwSPs71XmfI91wZDj/M5b6ZSre9SRQSNB48wPqr1eRmb3Bt6/ECWIsJz5Ey2LxQ4v6tz7qWFbA9+euJC96kT/xHMwyQiIiIikovaCgrbHtRWUJfUVjCpumgryPBB59x9uVaaWSvws8Df4P+NWgdsNrM7nHOncu1XIT/PeKC0C38UblZB547/Yrwz+a+SPfB6IeN5pf7+ZnMvfltMOvj6GuC/g+BrvIr1EBGZklINS73rDj2en3Or0oRHoU3V+zMsc9t5WbcaV8yPgGL2sak3oauA8sLbZnuN5Xj/Lio3mKfhZ5mYZmgu8Hr81EePAt1m9hUze7WZ5fO6aynzNZbtvcqimB6H5Xj/qvVdqqQHQo9vNbO5oef3hh6Hg6wAOOfOAnuDp88xs/DrCO97aIr5m0REREREZHJqKyic2grqk9oKcquntoK8OOdGgsDsvYynxb4M+HgNqhNOM/yfeQQn7ws9Xmdm12duEAS+R0KLKvX39yLB3L/Pxc+SlfZq4MsFpFIXEakKBV6l3oX/M11mZgtyblm8ltDjQi5eMn+wZqbbqGfFvs6WLOvL8f7Fgl6eEzjn/ge/5+zfASezlDEXP23K/cCObD8K60jme1fse1XP59l0+C6FR6KOzfOaMb9rP5Ar/dZF87xmmd+1oNGuIiIiIiJyEbUVVIbaCqpPbQW5Nex3yTm3B/hsaNFrzGxFtY5vZjfjT5eU9iYzOz/ZjYunOPqVHMWH//7eWM3ODc65Z/GDr+F01a8EvqLgq4jUEwVepd5ljipbV4Fj9IQe55o8Ppu5Gc97sm1Up4p9nb1Z1veUodz+XGmAnHOnnHN/5Jy7FLgB+A3gP7j44uoW4MdmdnkBdaimnoznxb5XmeXUk57Q40b9Lm1l4sXdvcF9eH7XLZOkrdqUZd/M+V0VeBURERERKY3aCipDbQXV15PxXG0F4xr5uwQT2weMoHN2lfxqxvN2/Plbp7qFvcHMYlnKDv/9nQtUtWODc+4EfvB1X2jxK4Cvmlm2TiAiIlWnwKvUux9mPP/5ChzjbOjxVQXsF942TmP9ALyygG1Xhh6fybK+HO/f2ZxbhTjnnnbO/Ytz7g34qVruZuIcFQuBPyugDlXjnBtk4hw7FX2vaqThv0vOuRHg4dCi9Fyt94aWPTBJEdnmeb03Y5vJ9hcRERERkampraAy1FZQZWormFQjf5dgYkp0gGXVOGgQfPyFMhS1mPF5nMOq8fd3Us65k/htLs+EFv8ECr6KSJ1Q4FXqmnNuO/BYaNHrzOyyMh8mnDL09hy9ubK5O/R4p3POK2OdKm1VxtyVk7kz9DhbetXwsruzrM8lvO1jObfKwfkeAl7FxF6ELym0rAzhz7Hc6VIKfq/MrAm4I7So4PeqiqbLdyk8IvUWM+tgivld04Kel+m0O88xs/kZ++4LthERERERkSKpraBi1FaQm9oKijcTv0tw8fynw1m3Kr/XZBz7Suec5XsDvhnaN1u64f8Fwu0abzaz9vK/jMmFgq97Q4tfDvyPgq8iUmsKvEoj+OvQ42bgs8XOH2Bm87PM/RIOonTg/zifqpxFwMtylNEIYsDrptrIzG4CbgwtyvY6w8tWm9maPMq9GT/96mTl5iX44X1/aNHSYssKDIYet5VYVqbw63yhmeVT159gYrqXej7Xpst36YHQ4yh+4DQ9v+sgU1/Qpl+DBftqflcRERERkfJTW0H5qa0gN7UVFG8mfpfAT4cbdrhKxw2nGX7YOXekwP2/EHr8MjO7JLzSORcH/iG0aDHw4QKPMcbMrig2UOqcO4UffN0TWvwy4H4za5g5gUVk+lHgVRrBV4H/Cz1/IfDPZhYtpBAzWwvsAJZnrPohEyeG/0Ae/zn/Nf6FHYADPlVIXerEn5vZ7Cm2+dvQ4wHgS1m2+SLQF3r+92aW829LcCH8wYxy/zPHdvkK96zLTOVSqFOhx9eUWFamTzPeSzYG/M1kGwc/PP8qtOgo8N0y16mcpst36SFgJPT895k4v2tyiv3DvarfjuZ3FZEKMLPPm9n2Ktw+X+vXKiIikoPaCipDbQXZqa2geDPuu2Rmq4E3hhaNcHGK3koc93LgBaFFXyyimK8x3iYSBX45yzYfw/+7mfarZvauQg9kZi8Nyim6M4Nz7jR+8PXp0OKXouCrzFBqK6gPTbWugMhUnHPOzN6An5okPYfIrwPXmtnvO+d2Tra/ma0A/hz4JfwfDNnKfy/wuWDRdcB/m9nPOecGMsoy4E+YmGrj8865/YW/spq7Aviymf20c64/vCK4GPo7/B8qaR/OfD8AnHMDZvZB4D3BonvxL3bf6pxLZJTbBHyEiT8CP+yc681SvyeCcv87mPMkKzNbCbwltKjUwNZ24EXB458xsw86554tsUwAnHNHzOxzwJuCRb9kZgeB9znnXHjb4EL388Dq0OL3OedS5ahLJUyX75JzbtTMHmJ8jtaNodUP5FFEuCfuxox1+ewvIpKPVU1w26IKHuAcMFVPExERkVpRW0HFqK0gO7UVFGkmfZeCQN/P4HdOCAcTP5Tte1IBb2J8oJUje6eISTnn+szsW8BPBot+hYkZBtLtJq/F/16k0xq/1/xR6//POXdgsmOYP2r+vfhpkUvmnDtjZs/DD27fECx+CfA1M3u1c24k994i047aCuqAAq/SEJxzPWZ2L36vq1uDxfcC281sG37Pvj3433uAJfg9EF+GP+fFpKO7nXP/ZmavZDylziuAp8zsX/HTio4C1+L38rortOsR4HeKf2U1833gFvyLpafM7JP4rzMBrMJPS3JbaPsngfdPUt5f4r/X64LnvwasN7NPAbvxf+zdALyZiemIHsX/oZXNjcBngY+b2feAh/E/43Qv1WX4Qa03MN6LNc7EXp/F+E/gj/HTxF4CHDSzHfjn1th8Is651xRZ/u/ip5tJNwy8B/gJM7sPeAa/d+tt+A0GK0L73e+c+3SRx6yaafRdeoDxwGvYlOmNgovmY8DlGaueds6dKUPdprtfNLN1U282wYBzbsqUaCLTzSL8/ywq5V+YOLRDRESk3qitoOzUVpCb2gpKMI2+S39gZj+bZXkMP/XzKiAzbe53yH0+X8TMCg0SPu6cuzMIWr8xtPxB59yJHPtM5YuMB16vMbMNzrnN4Q2Cto/n4s/5uiJY/Frg1Wa2CfgecAA4j//+LMH/vr8ceE6R9crJOXc2FHxN/z15MfD1IPharTl2RWpObQW1p8CrNAzn3HEzWw98CP/HfhP+D967mPijLJfBYN9ncqz/Rfwf/a8Pnl8OvG+S8vYCL3HO9eRx7HpzAj91zf346ZQmu1DaD7zYOTeaawPnXDJID/J1xkf4rWZimqBMW4BXZvZ0zWIW8OrgNpkR4Becc7un2G5SzrndZvYXjP8obmb8IrFkQc/B5wLfZrwX3h3BLZevAj9frjpUwXT4Lv2I8Z7ZaUP4DQD5+DH+hX5mmTK1q4JbIbL1hBeZETRviIiIzHRqKygrtRXkoLaCspgO36UbmdhJYDJx4O+B9072Pcmi0PlO09u/gIlB+S9cvGne/hf/b2M67fivApszN3LOPWl+uvZ/wg+6Gv7f4OcHt6mcx++g0TfVhvlwzp0zs+cDPwBuCha/CPhfM3ulgq8yk6itoLb0/ktDcc4NOed+Ez8tyT8Bx6baBdgJvAO40jn357n+kw1+BP0M8LNMnJQ9UxfwF8Aa59xUx69bzrnv4/+Av+iHU2AU+ARwezBZ/VTl9eL/yHsLk38uz+L3VrzXOXdhku3eCnwT6J9kG/Avor4A3OSc++pU9cyHc+59wAbgM8BT+D8AvUl3Kqz8Z4G1wJ8y3vM6m33ALwCvK/BHek1Nk+/Sw0Dm34qteVz8p2UbGftASTUSEREREZGs1FZQPmoryE1tBaWZ5t+lFH6H4P3AV/DP5cucc39axc/oVzPq8+ViC3LODTFxDu3XmdmcHNued869Hn+0/L8DZ6coPgU8CPwmsNI59w/OuXJ+j87hB32fCC1+AX7wtei5ZEVECmEZUwWINBwzuxa/t9lC/LQeSeACfjqSx4rtGReUewewGL8n4zn8idofLucPgmoJ0tP8cvD0c865N4bWXQXciZ+SJwUcBb7vnCu6x1kwr8Mt+O8f+O/fLufcrgLLiQLX46ecuQw/VVAK/zN+Bv8zrsY8GRURzJGzFr9H6yL88/cs8Khzbm8t61Yu0+27JCJSD8xs+yVw229V8Bj/BJyCHc65NRU8jIiISEWorSA/aiuoT2oraLzvkviClMc34XeEWQjMw++wcQE/9fD2yeZnFpHSqK2gPijVsDQ859w+/N5+DVFuPXLOHQQOlrnMx4HHy1BOCn/ul5LSAtWr4GLi4eA2Lc2k75KIiIiIiNQHtRWUTm0FtaO2AmlUzh/l9QQTR5yKiMwoCryKiIiIiDQgo7LzhlgFyxYRERERERGR8lNbQe1pjlcRERERERERERERERERkRJpxKuIiIiISINSL0oRERERERERCVNbQW3p/RcRERERERERERERERERKZFGvIqIiIiINCjNrSIiIiIiIiIiYWorqC0FXkVmCOfcG4E31rgaIiIiIiIiIlIn1FYgIiIiUl4KvIqIiIiINCCjsvOGqIesiIiIiIiISGNRW0HtaY5XEREREREREREREREREZESacSriIiIiEiDUk9TEREREREREQlTW0FtlT3wamaHgbnAkXKXLSIiIiJSQSuAPufclbWuiIjIdKO2AhERERFpUCtQW4EUoBIjXue2tbXNX7169fwKlC0iIiIiUhF79uxheHi41tUoiOYNEZEGorYCEREREWk4aiuQQlUi8Hpk9erV87dv316BokVEREREKmPNmjXs2LHjSK3rISIyTamtQEREREQajtoKpFCa41VEREREpAEZle3FqjlhRERERERERBqL2gpqTyOORURERERERERERERERERKpBGvIiIiIiINSj1NRURERERERCRMbQW1pRGvIiIiIiIiIiIiIiIiIiIl0ohXEREREZEGpV6UIiIiIiIiIhKmtoLa0vsvIiIiIiIiIiIiIiIiIlIijXgVEREREWlARmV7UWpOGBEREREREZHGoraC2tOIVxERERGRBmUVvImIiIiIiIhI42mEtgIzu8zMPmNmJ81s1MyOmNmHzWxeAWX8jZn9wMyOm9mwmXWb2U4z+wszW5Bl+xVm5ia5faEcr00jXkVERERERERERERERESk4szsKmArsBj4GrAXuAN4O/BSM7vHOdeVR1G/B+wAvgecBWYD64B3A79uZuucc8ez7Pc4cH+W5U8W9kqyU+BVRERERKRBKX2NiIiIiIiIiIQ1QFvBJ/CDrm9zzn00vdDMPoQfTP0A8Jt5lDPXOTeSudDMPgC8E/gT4C1Z9tvlnHt3EfXOSwO8/yIiIiIiIiIiIiIiIiLSyMxsJfBi4Ajw8YzVfwEMAm8ws9lTlZUt6Br4UnB/TZHVLIlGvIqIiIiINCjNxSoiIiIiIiIiYXXeVvD84P67zjkvvMI5129mW/ADs+uAHxR5jFcG90/kWL/MzH4DWAB0AQ8553JtWzAFXkVERERERERERERERESk0q4L7vflWL8fP/B6LXkGXs3sHUA70AHcDqzHD7r+dY5dXhTcwmU8APyyc+5YPsecjAKvIiIiIiINyKjsvCF13kNWRERERERERDJUqa1glZltz7beObdmiiI6gvveHOvTyzsLqNY7gCWh598G3uicO5ex3RDwPuB+4FCw7DnAu4HnAT8ws1ucc4MFHPsimuNVRERERERERERERERERGot3Q/c5buDc26pc86ApcBPASuBnWZ2W8Z2Z51zf+6c2+Gc6wlum/BH2D4MXA28udQXoBGvIiIiIiINSr0oRURERERERCSsCm0Fe/MY2ZpLekRrR471czO2y5tz7gzwP2a2Az+V8b8BN+axX9LMPgXcCWwE/rHQY4eprUZEREREREREREREREREKu2Z4P7aHOuvCe5zzQE7JefcUeBp4AYzW5jnbum0xLOLPW6aRryKiIiIiDQozcMqIiIiIiIiImF13lbwo+D+xWYWcc556RVmNge4BxgGtpV4nGXBfSrP7dcF94cm3SoPGvEqIiIiIiIVY2aXmdlnzOykmY2a2REz+7CZzSugDDOzXzGzbWbWb2ZDZrbTzN5mZtFK1l9EREREREREysM5dxD4LrACeGvG6vfgjzj9N+fcIICZxcxslZldFd4wWLY0s3wzi5jZB4DFwFbn3IXQujvNrDnLPs8Hfi94+h9Fv7iARryKiIiINBjnHN7oKMnhYVIjI6SGh0kND9M0ezazLr0Ua2qid+9euh57jNTICDjnbzMy4u+T3m9khDkrV3LjH/9xrV+SFMGobC/KcvSQDS6MtuJf8HwN2AvcAbwdeKmZ3eOc68qjqM8BbwDOAl8EBoEX4s+7stHMXu+cc2WosoiIiIiISGMauyRy/i393EJXjy4JXjK8U7CdC5XhIBKDprZq1FrKrBHaCoC34LcVfMTMXgDswZ9f9Xn4KYb/NLTtpcH6o/jB2rSXAn9nZpuAg0AXsAR4LrASOA38WsZx/wY//fADwLPBsucAzw8ev8s5t7XUF6fAq4iIiEiRnHPEe3rwRkdJjYzgUilSo6Mkh4b85SMjeIkELpUiMTBAcmgILx7HSyRIDQ0x2tWF8zxSo6MkentJjY76ZaSDqeH7jMc5mdHc2Un8woXc24Qs2bhRgVeppE/gB13f5pz7aHqhmX0IvzfpB4DfnKwAM3sNftD1MHCHc+58sDwGfAl4LfDLwH3lr76IiIiIiEiBxgKZLohnhgKiY1lVMwKd4cfhAGp4/UVlZjyekuW5XXpbkcpwzh00s9uB9+IHUF8OnAI+ArzHOdedRzHfB/4FPzXxzUAnfiftfcC/Ax/JUs6/Az8JrAVeBsSAM/htCx9zzm0u7ZX5FHgVERGRhjfS1cXA4cOkhoZIjY76gdDR0bEgp/M8nOcRiUYZOX8e53k0tbUR7+0lOTBAcnDQD4wODo4FNr1gdKhFo7QsWMDQiRMMnzjhr4/HufLnf56zmzfTf+BArV/+RM7lHXQFSA4NVbAyUmn1PG+Ima0EXgwcAT6esfovgF8H3mBmf5BOIZTDTwX3H0wHXQGccwkzexfwGuB3UOBVRERERETCXMoPdGYGLycEQ9OLPcCC2GQ4AJr5OFhv5m+fPkZatAVSccCj/hSSJEgJhRpZPbcVpDnnjgNvymO7I2TpCeCce5KLUxVPVdangU8Xsk8xFHgVERGRvDnncMkkqXgcl0z6IzeHh0kMDPj3/f1YJELTrFmMnD3LaHf3eCB0eHg8NW4oPW768VgK3NB2LpHAC26p0VFwDotExoKq7StXgufRf/Bg1d+Lg5/9bNWPWQnJwcniXSIlSafq+a5zbkKrg3Ou38y24Adm1wE/mKSc9Jwth7KsSy+7zcw6nXM9JdRXRERERESKMWHWj8yRnOmgZTqo6U0c9TlhxGbmaM5JRn5mC56mn1tTcIwKBj9zxSVTk2SoaiSayUWkaAq8ioiINKh0ilovkSDS1ESkpYVINMrgs88ycuaMH7wcGhoLdDrPY9ayZaTicYZPnGD49Gnivb3jgdDM9LbDw2MpcxN9fSSHhkgND+NSqVq/9DH9+/fXugoNT4HXxlbnyZ+uC+735Vi/Hz/wei2TB17To1yvzLJuZejxKmBbIRUUEREREZl2JszzGbpicCmyz+cJRKLjAVHncVHQM2sQNHMkaR1xyam3kSnU4ecqeavztoJpT4FXERGROhLv7WX7H/4hycFB4hcuYLEY8268kTObN9O+YgXJwUG6d+xg6ORJvHi81tWVaUCBV5nCKjPbnm2Fc27NFPt2BPe9Odanl3dOUc7/AT8H/L6ZfSE9R4uZNQHvCW03b4pyREREREQak5eE5BBjQU8zsCh4Cf/eef42dZneVhqTAq8ixVLgVUREpE4kh4bY9lu/xZH/+q8Jy5/9+tcBOLu5LPO7i0ygwGvjMio7b0sVesimDzHVFf0XgF8EXgY8bWZfB4aAFwJX4Y+cvQaon+H4IiIiIiLl4jxI9PtB1qxyLRcpgVINN6xp0FbQ8BR4FRERqbKep5/moTe/mcte+UrObNrEshe9CC+Z5Mm/+iviPT21rp5MR2bMu/IKIk1NLLrmSk49uZfeo8cBSI2M4KVSRKLRGldS6tTePEa25pIe0dqRY/3cjO2ycs55ZvYq4O3AG4JbAtgK/DLwMfzA69ki6ykiIiIiUnupUUgO+2l/vRREW/yUucnhWtdMpjOL4M+/G4ygDs+jKyJFUeBVRESkCrxEgqc//GHOb9vGiW9+k9TICOceegiAk9/+do1rJ9NZ27xOblqziuTJ40ACDj/NNYtmM3jTi9nzje+Bc6SGh4m0t9e6qlKESvZiLYNngvtrc6y/JrjPNQfsGOdcEvhgcBtjZm3ALcAw8FRRtRQRERERqRXnIDHgz7/qBdMJpbMFe5peSCrIovhjF9Pz/abGl7lwAFYaUZ23FUx7CryKiIhUkPM8DnzmM+x617sYPn261tWRGaaprZUbX3gPyad2TVjuDQ3Sdugp7vjJF/PIV7+Dl1BqKqmIHwX3LzaziHNubMIpM5sD3IMfMN1WwjHeALQCn3PO6UQWERERkcbgHCQHg9GsCnBJtQUjXF3mbC3Ov0WagzmDRaQYCryKiIhUQKK/n6c++EEOfOpTDJ04UevqyAx12/PuuCjoCrDg1S8hNr+TkWdPsfonX4Y3Olr9yklZ1PPcKs65g2b2XeDFwFuBj4ZWvweYDXzSOTcIYGYx/DlbE865g+GyzGyuc64vY9la4K+BAeC9FXshIiIiIiLl4qUgNayAq9RW1qBrsBz8jgGmMZONrJ7bCmYCBV5FRETKLDUywq4//3P2fPjDta6KzEArn7+BzgWdRPGyBl0BmpcsZN6q2bjblrGUCAmyXHCJlMdb8Odi/YiZvQDYA9wJPA8/xfCfhra9NFh/FFiRUc73zGwYeBLoB24AXg6MAj/lnDtUwdcgIiIiIlI650GiXymEpTYizeOPswVdgbE0w+l5X0WkKOq2ICIiUmYP//ZvK+gqNXNq524iOFI5gq4AfY8+DoAlBokk+mmd01ql2kk5Gf6P+UrdynGZHYxcvR24Dz/g+gf4o1o/AtzlnOvKs6gvA3OAXwR+H7gJ+BRwg3PuO2WoqoiIiIhI5TgH8V4FXaV2XJA6OGfQFcbne/Wm2E7qWSO0FUx3GvEqIiJSBl07dvDE+97Hqe99j+TgYK2rIzPY8IUeHvvyN1j73NtInc0+r3Di1FlcbDaWCM5VXVBJBTnnjgNvymO7I+S4hnPO/R3wd+WtmYiIiIhIBTkHXsKfy9VL1Lo2MtM5LzSaNdc27uLnpjCbSKEUeBURESlB7969bHnjGzn/8MO1rorIOOdg0VLIEXgl1jQedAV/niFpSLoEFhERERGpQ6m4n1ZYnVylrgRztzqv1hWRClNbQW0p1bCIiEiRBp99lh//9E8r6Cp1Z84lS+FcjqArMPfOWzn5zT3Ekx3+AgVeRUREREREysNLQLxPQVepPxadPOhqBkT97YCx1MMiUhCNeBURESnC0MmTfOvuuxk6frzWVREZ0zynnete+FxazhzNmWYY4PyXvwFAzw82s/ojv4+pt2vDUi9KEREREZE64iVgtAcFrKS+RCDSNHVngPR6nb4NT20FtaXAq4iISIFOfOc7bP/DP1TQVepG+9IlXHXPWmLHD+A9s4t8w6hz71qLJQY04rVBGZW9mFJqIhERERGRPDkHqRF/PldFraReWDB61aUKG4FtUXDJytVLKkptBbWnwKuIiEgBjn3ta2z6mZ/BGx2tdVVkBuu48068piac5xFrjrGi6zC2Z2feAde0Wddf7T/wdEElIiIiIiJSFOcgNQyJgVrXRGa6SHPoifnB06JSXgehNecUZRMpggKvIiIieUqNjLDp9a/HSyRqXRWZAVovvZThEycuusZpX7WKkzt24CUSdKxcyY2LZ2FecamCWxbNA5KTz/EidU3XwCIiIiIiNeZSCrpK9Vgk+zV8JDYeZC15xKpGbTc6tRXUllI9i4iI5ME5x47/9/8UdJWq6Ny4ka5z55i9di2dGzYw+7rrcEC0rY3BeHzsPLx89dVEe7uLOkbb9dcya1mL/0SphkVERERERArnnIKuUj2RZsD8+0izH2D1V/jnYnkOEgraKgArUgyNeBUREcnDE+99L3v+8R9rXQ2ZAdpvvJHjmzYBcObRR8eWz1mxgpRz9B86NLZs9ze+y1UvuJdLuo4RjeeZ/tpg2W+9gY7VC7HEoL8sqdTZjUq9KEVEREREaijRB1681rWQmSDSPD6iNZw+OBILgq6hIKlLgTUVOOrVBfukJi6ThqS2gtpS4FVERGQSj/3hH3LyO9+h9+mna12VGWX+LbcwdPIksy+7jMTAAH379tW6SlWTamnJurz/yJGsyw/+4AES6+/myu6jU5a95A2vpWPNVTR5PZAOugIkhouoqYiIiIiIyAw12lvC/JlSNIv6aXYtGrz3MygwmGuKoJzLk3kGX4OAK+7ibcs2ilZkZlHgVUREJIfB48fZ94lPkBwaqnVVpi2LRGhZuJDmzk6iLS00d3Tg4nG6H3kEgN6zZ8GM1jlzmHXVVXTv2jV5edEoLtW4F76xefM4u2NHwfsde3Arl7xwPa0nD0+63dxbg6BrJq+UuV+kVozK9mLVnDAiIiIiIlmk4uApa1DlBVc8ZsFjl2XEZ/qKKEfwcbpIB0YLldeIVwuCt9neQwVeG5HaCmpPgVcREZEMzjkGjx/nsd/7PQVdK2zJ3Xdz/sEHSZ49m3sj50j299P/xBMsWbeO+OAgF3bvHlvdef31NHd0EI3FGDhwAGtvb7gRstE5c5hz662c3rmz6B6lx3qGuXaq48SAbNMUqxeriIiIiIjI5FwQ+NOcrpU3lvLWmyL2F6y02Pj24TLAD9w6LwguNtq1bwQimel/CzTlqNdGe09E6p8CryIiIhl2/+VfsuvP/qzW1Zi2Zl16KUMnTjD3mms4/+CDee/nPI+ubdsAWHjrrcTmzMGlUpzfsmXCdtHZs1l8992c3bq1rPWulM6NGzm+aRM9wbyuxTr12HYue/nz2b/nMH1HjhCbM4f5V1/FnAXzSCaSNMWasM0HWLxiLvOXxDAb76PonKceiw1Kn5uIiIiISJUk+iClka6VE4xqvWie0TykA4sWu3jZWFzRwCKNkx46PadrqfUdSzmcTs0cvA8TriYdMy518zSntoLaUuBVREQk5MBnP8vu97+/1tWYdppmz6bjuuuIzZpF98MPs2TdOoaOHSu6vJ6dO3OuSw0OcuHhh5l3ww1ceOqpoo9RLaODg1NvNIW5K1cyeu4c27/5w7Flib4+zuzYyZnQdge+569f+cqXcMtr1rDo0mA+2VxzwoiIiIiIiMx0zkFyUEHXijB/vlbMD/wVE3QNm2pkpwuO2QgBxnJcp6fnwp3wvrjc77HFgm3d+LYiUjAFXkVERAJbf+3XOPCpT9W6GtPO0vXrOf/gg/SG5i5Nj1ytFJdKMXr6NEvXryeVSNC1cydePF7RYxbDAT0HDpRcTqEpsQ/973c49chOfuaTv0VLa0SB1wZmkQr2Y/V0kS0iIiIiQrwHvGxztkhJ0kHWcBAwrzlJS+GC0Z4R/3HFj1esoH6lKrQIl5w4KliXhA1LbQW1Vck5dkVERBrGs//3fxy8775aV0PKKN7VxfkHH+TCww/TceWVLFq7ttZVukjbZZcR7+0tuZxUPE7L/PkF7TN85iw7v7Hff+LV68WmiIiIiIhIjTgHySEFXacb5/kBxvQIW4vWukYXK1udiuhk7bzx+XEVeRUpika8iojIjOYlkxz83Od46M1vrnVVpi+r/cwS/c88A8DSjRs5XeJcquXUcskl8OyzRe07b9Uq2hYtwszoeeYZBo4eLbiM3Z/7MstueBsLZg8wp6haSK1ZRb9fusgWERERkRkqnV44WVh2ISlE7dsKxkZ2WlN9jX41K/5yLJ26GYp/Tc5DY/Yam9oKakuBVxERmbHivb384OUv59zWrbWuyrTmjdbPPDjnN21iybp1dD39NMm+vlpXB2trG3scbW8nEouRuHBhyv2a586lb/9+evfuLen4XjzOd97xYVa+7nW8aP3rSypLRERERERkWvCSEO8tba5RyUMdTXnjUsH8pnU4ujkd48orjhYp03mrOV5FSqHAq4iIzEjO83jkbW9T0LXCYh0d9D7xRK2rMUHXtm0s3LCB05s316wOkTlzaL7mGkba2ujcuJG+7m5OP/UUOMeiSAS8yS9AW+bPZ7BMgWMvmSReB0FoKZwBkQrO22JqZxIRERGRmcZ5kBhQ0LXiosGoyjrikrUPvjqC0a4pf9S1lwjqFYVI89QZxSxS3vfVKfDaiNRWUHsKvIqIyIySisd55Hd+h9M/+AH9Bw/WujrTWtPcucy94oq6C7wCVU9/3Lp2LcOxGMP9/QxduEDfiROwY0fWbdvuuIOhbdsm7cw6a8kSBo8cKVv9Ev39ZStLRERERESk4TgP4v3BfK51FhCcduogxXBOVQw0OucHVJ0XBEtTuYOmNesIoMCrSDEUeBURkRnjife9j4Of+9yMD7iaGS7otTjvppto6ezEzBjp7ubCk08WXe6cK6/ESyaZtWwZTS0t9Dz+eH0GXYHkyEh1DmRGdMMGni5gXtlj27Zx+WWXMTzJ3K/lnqtDgdcGZRWet8XQdbaIiIiITG/OQaIfUnEUcA2xpvF5Rl2K0t6bqL+/NfnXGF6yxPIqqFqjcNPXWanh/PdJDUO0rbodyTXitTGpraDmFHgVEZFpb+TcOXb9+Z9z4DOfwYvHa12dmol1drLgOc+he9s25q5eTWpkhP7du0mH3CLNzSxdvx4vlcKiUfqPHmXo+PGx/VsWLiTZ309qdJRIczPtV1zBrEsuASDR1UXvU08BMBrap16lBgercpzI+vXsLyDoCtDa2cnQs89O2gc42txcWsUyKNWwiIiIiIjMOF7KD7p6M7edwGd+UNQlg3svSHUbXh8jyIPrbzch6pIRhZkQtPUYC7K6ZAMEa6pVQVf4eReJ5RF0LXf96/4DE6lLCryKiMi0NnLuHN99wQvo2b271lWpqfm33EKqp4fzQRCw5/HHL9rGi8c5/+CD4wvM6Fy5ktToKK1LltC3Zw9NkQizli0j3tND8vx5zu/fX62XUDYdN9xAVxAkrrSes2cL3sdLJum47Tb6cqQivnTjRs499lipVZtAgdfGZRWct0VEREREZNryEhDvrb95RqttLNCa9J+n7ydwFy+36MT5SP1ZJYNtU40Zr7Om6s3vWkywf6pzNR08LyeNeG1YaiuoLQVeRURk2ho8fpwf//RPz9ig69KNGwEYefZZ+nbtKrwA5xg4dAiA4RMnxhYPD/upcFJDQyXXsRaa5syp2rGGuroK3ic+MMDBnTu5Zv16erZsmXCh0zJ/PqcKHEGbj8TAQNnLFBERERERqUszPehqsSDlb6r4uUPT792EuFyDv5/VSp9a7DFcCpJD0DQrmB82HFiLlD/o6h+0AmWKTH8KvIqIyLR0+L/+i+1//McTUuVOR01z5rDo1lvHfgqPnDxJpLmZ1NDQ2OhW8c1dtYrYggX0Hz5ctWNGmor8qeUc+x98kPZLLuGSa67B6+vDpVLY4CCJ7u7yVhJIjYzgJZPF11dqxCo7b4smbhERERGR6SYx6Aevpv3vXBufU9XB2Ot1rkFS/laRBdfBXpVGu5YqOeTXOdLM2BxFFqlQRwKdKI1JbQW1ptY1ERGZNrxEgqNf+QpHv/xljt9/Py5VZM/NBjL/pps4pwBrXlJmdG/ZUrXjxZYtY+DkyZLKGDh1iv2nTo09X/WiF0EwCrncEv39tMybV5GyRUREREREasZ5kBqF1EjjBNdKlU47q9jI1C6as7bCLFJ6GS4JqdAI16b20svMehydQCLFUOBVRESmheHTp/nWXXcxcORIratSFdHWVhbefDNdW7fWuioNo23+fFIrVuClUlUZCe288vc2PXPgAM1lL9UXV+C14ZhVdt4WUydWEREREWl0XhJGLzBzfthaMP9qJdLOTlMT5kZt0PPEi0OkEqGeBn0/Zji1FdSeAq8iItLwvFSKJ97//roOui647Taa2togmQQzrLmZVDzO8OnTedc7EovRungxLfPnE2tpoevhhytb6WnmfGi06/zrr6eps5NzDz9csZHRFhnvxRqJRpl/7bXMXrAAIhFGenro2r+fZDBfbr6c5+EYzyZUTon+/gqUKiIiIiIiUiPOQWKAuo4QWBMTrvDSAY2CR2FGgmiIFT9v60wVDlKn0w5XM3AdbfWDps7zOwp48eodOx8XzScrIlNR4FVERBre0IkT7Pvnf651NXLqvPFGenfsyLou2trK3GuvpW3RIhLd3bQsWkRiaIjzjz1G5403Eps1i2hrK6nBQS5s3078xAniJ05U+RVMP31PPw3Ako0bOV2BVM0OiFx3HYvnzmV0YID+Eyfo3rOH8Oys0ZYWVmzcyJECjt9z9CjXbthA7+bNZa9zXIHXhlTZeVtERERERBqYl6i/IFaYxS4O8I3FWiOAFwQCg+63zgNS48HBdJTWpYL7Og4wN4p00HrCKNgyizRBpD34vNJz73qhdTF/eXIo/zIrNuIVqFj3b6kktRXUlgKvIiLS8KKtrXU7n+ucq69mcM+enOtTIyMM7dvH0L59/oJg286rrmLgySerUcUZrdARp1NpW7uWRGsrXSdOcPRHP5p029ToKMc2beKKDRs4Olkg1YzOyy9n1rx5RJubK9bTVCNeRUREREREqiRb0HWCIBCXuY1FNaK1GlyZpw6KNI+XO+XnFwRjoy3+3MSTsabxOWMrFh9VQF+kUAq8iohIwxs5fbrWVbhIpLmZztWraWppYfjAgYL3Hzh4sAK1kkxudJRILIaXSJRcVttdd7HnoYcK3u/ZrVtZcM01dO3fP7Zs/lVXkYzHmbN4MdFTpxg9epTU0aOkgEr111bgtTFVct4WEREREZGGVu7gWVlYECgrMphVl69pGrJo+d7rSHNxwXJrAhKMBeHHlnlBIDdSnYGoGvDakNRWUFsKvIqISENzzvHI299e62pcZNFtt9G1bVutqyFT6H3iCRbfcw+nQ/O/FiUS4dmjR4va1aVSzLnkErr27+eSm28mduYMowcPEgOSx49TrZlllGq4MSl9kIiIiIhIFs6D5GCta3Exiyh42ghc0k/565XaSbuUOXcdNLX6KYcjLX4wuCaXfxrx2ojUVlBbkVpXQEREpBS9Tz9Nd475U2tl4dq1Cro2kPNbtrBk/fqSymi95Rb6T54sev+hs2e59PbbiRw+zGiNRnAnB+uwUUJERERERKQYXrL+UvJGYgq6NhIv6Qc7SxGJlba/RSDa6t/XKo6muYNFCqYRryIi0rD69u3jm3fcQXJoqKLHaV+xgua2NpoXLeL0pk2TbhuJxRgMpYyVxnDhkUdYeMcduMFBmubO5ezDD+O8/C6IraWF011dJR3//N69XLVmDX19fSWVU4qEAq8Nx8yIVDB9kN9DVhfZIiIiItJgUnGI91T+OBZqWp90vlYA8wN50lic8z9n5yASKXAEbKT04L/zxudwrRldEzYatRXUXq2/tSIiIkXb/dd/XdGgayQWY/HddxNxjr49e+jeto1Ft95K0+zZWbdfumEDkUSCRE9PxeokleHF4/Q88gi9Tz1F10MPMf+WW/LazwG2di09RaYZBmibP58rVq6kd/v2ossoh8TAQE2PLyIiIiIiUjLnqpBi2MCC0asuFQTHJhnZONk6qXMuCJ56QeC8gGBWpMQxbxYp7HgVowCbSKE04lVERBrWwMGDFS1/wS230L1169hzLx7nws6ddNx0Ey4Sof/IEeZdfz2Jvj5is2dzfvPmitZHqqeppSWv7do2bGBviZ/7gquuYujRR2t+OaVUw41J87aIiIiIiGTwKpxiONKUMXrV+SNeLRYE6dzEFLVTjoaVhhFpym/Ua6S5DKmuI0AdnDtKNdyQ1FZQWwq8iohIwxjt7ibe28vZTZu4sHs3XY89VtbyF9x6K4P79xPr6KDtkku4kGMEYu/u3WOPux96qKx1kMbRtHAhh3ftKrmc3pMnaS29OiXTiFcREREREWlILuUPyvNGg6BrmedRHQuomj8KMVfK4HCAtd7ml5XqsWiZPv96CXjWSz1EGocCryIiUre8VIqT3/42FonQ/fjjPP7ud+ONjlbseNFYjOTAAMmBAYZPnKjYcaT+WWzqVFCta9ey6PRpMKP76FGGSpzntdYS/f21roIUwSo4b4uIiIiISF1yDry4f++SkKzcFEQ+Dz/45Py0wjJz5TP6M9I0vt20CMAr8NqI1FZQWwq8iohIXerdu5ed73wnx/7nfyp2jKa5c1l4yy0MHT5ManiY7kceqdixpLEMHT5MJBbDS0xMIdS8dCnRtjYis2Zx7FvfGlsei0a5as0aorNnk/L8C3HnHINdXZzZu3fSYzXnmDO42jTiVURERERE6l4q7s/hmk+616JZkFI2CJop2CpTsah/nkRiF4+ItigT52pNB/CnCmjWSeBMqYZFCqbAq4iI1J1TP/whD/3arzFw6FDFjtGxejVuYIDzmzZV7BjSuIaOH6f92mvp27dvwvKmq67iZJYAvUulOJcjNfWSVasmDb7OW7SI3ozj1IICrw3IKjxvS51c54uIiIiIAJAcgUQ/FR2BZ01+UCxXOmGZ2dIppzPPQYuE1mfbp5hjKeApRVJbQc0p8CoiInWn7ZJL8OLxipS9dONGBvbvZ/jQoYqmLZbGN3vp0gmB17l33smRLVsKL6e1lctuvZWmlhZi0ShEo+wPBfwtGi1LfUulVMMiIiIiIlLXLELFgq4W8wOu0yI1rFSURSfO5xtpLu68sSYuOp/D5WSJ79aEAsAiBVPgVURE6kZyaIjunTvp2r6dkTNnKnIMF48zcupURcqW6WXo2LGxx7NXreJc6Hkhzu/aNeH5/BtumPDcDQ8XVW65JQYHa10FKYLmbRERERGRac95fmrhiqYX9oKbyFRC12AWK2FEa2ZK4oxQTd0EPOulHlKIRmgrMLPLgPcCLwUWAKeA+4H3OOcu5FnG3wC3A9cCC4Fh4GhQzsecc1059rsb+DNgHdAKHAA+A3zUudJ74CjwKiIiNTd06hSP/u7vcuzLX8Z5lbnQWbpxI97QEBdypIMVyTR45AjzX/IS+s+f53gZz5vk8DBXrV/PyOAgs9rauLB1a11kaVGqYRERERERqSte0k8tXMmAq8X8+8wgmEguLgmRFsAr8/y/bjzVtVFHcwsr8CrlZ2ZXAVuBxcDXgL3AHcDbgZea2T25gqYZfg/YAXwPOAvMxg+mvhv4dTNb55w7nnHsVwNfAUaALwLdwCuBfwDuAV5f6utT4FVERGrP8zj21a9WJOgaaWpiyd13c05zuUoRug4d4sL+/WUts+/QITh0iOUveAFnf/CDugi6AiQ14rXhGFbReVusbs5OEREREZmR0iNdK8KCIJcCrlKESpw3Y4PsovWV8rpuRt5KvhqkreAT+EHXtznnPjpWttmH8IOpHwB+M49y5jrnRi6qo9kHgHcCfwK8JbR8LvCvQAq41zn3WLD8XcAPgdeZ2c86575Q7AsDiJSys4iISKl2vPOd/OAVr8Aly/+jtfP662lftkxBVynarAULKlZ2qq+vYmUXQ6mGpVLM7DIz+4yZnTSzUTM7YmYfNrN5BZbzE2b2XTN71syGzeyQmf23md1VqbqLiIiISA04B/F+SFTomsmaAFPQVYpnlQyr1MtI1zQFXqW8zGwl8GLgCPDxjNV/AQwCbzCz2VOVlS3oGvhScH9NxvLXAYuAL6SDrqFy/ix4+ltTHXcqGvEqIiI1MXTyJLv/8i859G//RqK/v+zlmxkRYKDIeTlFAFpSletlGmlrq1jZxUiNjOClUkSi0VpXRfJlFZ63pQxFlyt9UDBvyx8BXfhztZwHrgZeDbzWzH7JOfcfpddYRERERGrKS0JyEFKjFTqABSlcFUySUlTyOixSXyNe9V1pPPXfVvD84P67zk3Mqe2c6zezLfiB2XXAD4o8xiuD+ydyHPvbWfbZBAwBd5tZi3Ou6P+IFHgVEZGaeOwP/oAjXygpa0NOTbNn0xSJ0Pf00xUpX2aO/kcfpWPlSnoPHSp72fWYxDU5NETznDm1roZMLyWnDzKzpcA7gDPAc5xzZ0PrnoefDui9gAKvIiIiIo3MOYj3VXAkagQ/iKRAkpTIS1R41Gsd0ddFyu+64H5fjvX78QOv15Jn4NXM3gG0Ax3A7cB6/KDrX+d7bOdc0swOAzcAK4E9+Rw7GwVeRUSkqoZOnaJ//35Ofe97FTvG/JtuYujIEZIVGEkrM4tB2efFaOnsZN6113LuoYfKWm45JPr7FXhtMJWct6VUeaQP+nX89EF/4JybLNf1FfitZA+Hg64AzrkfmVk/fqogEREREWlUXtIf5VfJ9L8WVXphqWNWp+eoIq+NqAptBavMbHu2Fc65NVPs2xHc9+ZYn17eWUB93gEsCT3/NvBG59y5Khz7IjOkW4aIiNSLB17zGr7z3Ocy2jVlZsmixDo7ufDII4ycPl2R8mVmab70UvpPnChrmYuf8xwuPPIILpEoa7nlEFdnBSmvSdMHAVuAWfjpgyazH4gDd5jZwvAKM9sIzAG+X5Yai4iIiEj1OQejFyCeqx28HOoxoCUNyyowns0idXqOOv87KlI96ahx3ieec26pc86ApcBP4Y9Y3Wlmt1X62NloxKuIiFTN0KlTdO/cWdFjtM6bx3BPT0WPITNH5MorSZU58OoqOG9sqRJ9fbWughQoUsl5W0pXlvRBzrluM/tj4EPA02Z2P/5cr1cBrwK+B/xGmeosIiIiItXmJaj4qDqLBHO7ipSBWflPWcU2pYyq0FawN4+Rrbmke9l05Fg/N2O7vDnnzgD/Y2Y78Nsi/g24sRrHDlPgVUREqiIxOMjOP/kTvAqO8lu6cSODBw9WrHyZeaIjI2Uv06vjnqLx3kr2MJcGVRfpg5xzHzazI8BngF8LrToA3JeZglhEREREGoSXguRQZY8RifnHEalnlQjmlo1jfCCgSMmeCe6vzbH+muA+VyfuKTnnjprZ08AtZrbQOXc+dOzbg2NPaOswsybgSiAJHCr22KBUwyIiUgVeKsXuD3yAg5/7XEXKX7JhA21Ll5Ls7WW4zKMTZWYbfOwxVm7YUNYyT27dSudNN5W1zHKJa8RrQ0nPQVyxW3VeAuTRvGBmfwR8GbgPf6TrbGAN/sXQ583sbytURxERERGpFOcgOQBevDLlWwywYKRr3Ua0pBF5ifKnG67LNMOBOu5ALhdrgLaCHwX3LzazCTFKM5sD3AMMA9tKPM6y4D7c8+aHwf1Ls2y/EX86pK3OudFSDqzAq4iIVJSXSrH9j/6IJ//qrypSftuSJXRv2ULH1VfT8/jjFTmGzGwDmzdzxXXXEWtvL1uZTWUsq5w0x6tksdc5tybbLY99y5LCx8zuBf4G+Lpz7vedc4ecc0POuR3ATwIngD8ws5V51ElERERE6oHn+XO6pkpq287NgjldI01KMSyV4cUpf3ilXsM1CrxK+TjnDgLfBVYAb81Y/R78jtb/5pwbBDCzmJmtMrOrwhsGy5Zmlm9mETP7ALAYP4h6IbT6y8B54GfN7PbQPq3A+4On/1TK6wOlGhYRkQo6u2ULm37u54h1dNA8bx7xCxem3qlAw2fOsPj22zn/4INlL1skbfiZZ7hs40YOb9qU9z5L167FolEisRjnd+9m7hVX0LVnD148TrJOR5YmBwZqXQUphBlWyXlbrOSyy5U+6BXB/Y8yVzjnhszsEfwA7K2UmA5IRERERKogNQqJQX/e1UpxKSAKXh2PIpTG55IQaS5stKpFGUv+45JBJ4H0gLw67SSgEa+Npf7bCgDeAmwFPmJmLwD2AHcCz8NvI/jT0LaXBuuP4gdr014K/J2ZbQIOAl3AEuC5wErgNBOnKsI512dmv4YfgH3AzL4AdAOvAq4Lln+x1BenwKuIiFTMgc99jsHjx+H4cZZs3MjZAoJW+eq47jp69+wpe7kimUZHC+uJHY1GOb/Nz4oSmzuXvscfZ9ENN9C8YAEDh+ozNqQRr1JmE9IHOTc+1KDA9EEtwf2iHOvTyyuUo05EREREyio5Ajg/2BSJ+Wlby82aQsEskUoqMFjqHBMyn7rUeNriuk03rMCrlJdz7mAw4vS9+AHUlwOngI8A73HOdedRzPeBf8FvW7gZ6AQG8QO3/w58JFs5zrn7zey5+MHd1wKtwAHg94N9Sj7hFXgVEZGK6NqxgxPf+tbY87MPPsjc666jZfFi8DzObdlSluOM9vSQGhwsS1kikxktMChpsdjY40QwwrXnqafKWqdySyjw2nCsPD1NKyK4kPou8GL89EEfDa1Opw/6ZDh9EP78rYkg9VDaZuC3gV83s08658Ym8zazl+FfZI3g95YVERERkXrlnB9kDQeXnAeYH4CFMs73qkCRVEmhqawtcvE+dRtwTdP3qdHUc1tBmnPuOPCmPLY7AhdPLeuce5KLUxXne+wt+MHeilDgVUREym7k3Dn+b83E6f+c55GKxzn/8MMsuvPOvMqZc+WVtC9fzuCRI4yePUvbpZfSdumlnNq0ibYlS0glEsxevJjeM2cq8TJEAP/yYs7dd3N421SD8iZqhB+5mRR4lQooR/qgL+P3ZH0hsMfM/gc/ZdBq/DTEBvw/51xXRV+JiIiIiJTGJSGR5ZojEoxOzTf1sEWByPiIVosABi7h3xM8F6m0SKyIkdUNGMRUqmGRgijwKiIiZbf3Yx/Lunzg8GHAn5c1l6ZZs0gND7PwzjsZ2LuXc8E+AAMHDzJw6BALb7mFoaNHiSQS9O7eXd7Ki4TMvv12us6d49zWwgfSlSEzSdUlNMdrw6nktFjlUI70Qc45z8xejt+T9Wfx53OdhT8PyzfxUwF9t0IvQURERETKJTmSfXl69N+k87Ea4ILUxEkmpHcdC8DGgpGDXkPGtqSBRGL+eVtUOutGPDkbsc4zW723FUx3CryKiEhZHP3qV5lz9dW4VIp9//IvObdrWbiQvn37svY97Vi1itETJ5i7ejUXco0udI6eXbvKUmeRqXSdP0/f0aMF72fRKMMnTky9YZ3RHK9SCaWmDwrWJYAPBzcRERERaQTO+amDLTr+OBeL5g5iWZMf5LLI5MHZuk/XKtNG0fMHW+GpietBA3YsF6klBV5FRKQsjnzpSxz54hen3G7utddy/vz5i5bPWraMtsWLGdy7l76nn65EFUUK1r5kCX1HjhS0j0UiXHrnnUWNkq01pRpuMFbhlNbKziYiIiIipUoOlxCkAv9HaTDaVcEfqRfZ5mnNb0cac/RoI9Z5BlNbQc0p8CoiImVx2StekVfg1SUv7oHaPH8+8ZMnOX/yZCWqJlIUB3QfOFDwfpeuX8+5TZvKX6EqUKrhxmKARSp3xaNrKREREREpiRlEmiE1PPW22YKzFg3SuWokq9STIketTjaqu+4p8NpI1FZQe8r0LCIiZbFk/fq8thvNMtq186abyl0dkZK13347I11dBe0Ta29v6FTYGvEqIiIiIiJlFclz3E+uwKtIvcn3nJ64UwMHXdFoc5ECacSriIiUxYUnn8xru1mXXcbQyZO0LlrErOXLiTQ14SUSFa6dSOHMjDmXX07/sWN57zNr8WJGDh2qYK0qS3O8Np5IJdMHiYiIiIiUKt9gU6R5fD5YizCeYlikHhWYMtiswQeNNnTlZyS1FdSWAq8iIlIWsblz89ruzKZNLNm4Eed5nH3wwbHl86+/nn7N7Sp1ZODRR2kFFq5fT9fx4/QdPVrrKlWcRryKiIiIiEh55dn471JgsSBAFQ7WNuqcmDJtecHggUgsSDk8A85PjXgVKYhSDYuISFmkhvOYsyXQ+8wz/sVUSLa5X0VqzYDBBx+k5ehRVt55J+2XXTbp9m0LFlSnYhWiOV4bjBkWqdwt8++0iIiIiEjhChwVWMr+ItXkJYIOA1Gm7mDQ6NdW+h42FLUV1JxGvIqISFkMHDmS97YjZ84wmjF3ZlIj7aSOGTDw8MMsuv12Bp59Nud2sba26lWqVJEITW1tRFpaiLa0EGluJtrcTCqRIBqL1bp2IiIiIiIyHTivgG0beA5Mmbm8RDD6dbLzt0ECl2MjW238XjE2kYIp8CoiImUxfOpUQdtnjnBtXbGCprlzGXjmmXJWS6SsXDw+6fqRvj4chV+XOKC5o4PY3LlYJELT7NngHJHmZqypCWtqIhKNQiTi9yxM34KLIucczvNwqRSe5+Elk7hkklQyiZdI4CUSpEZHScXjJEdGSI2M4FIpGBz0byGJgQGi8+YV+AqkVkw9TUVERESknhUSeM0m0gwuWXo5IjVV5HWbC1oYLBQIDRfnMp4DFzdKuAl34w9c8NBlLM947FCq4QaktoLaUuBVRERK5qVSPPvNb5ZUxrmHHgJg9sKFxM+fL0e1RMpvipTY53btormIYhesW8fJbdugt7e4epVRvL+fVgVeRURERESkVM4bnw+z6DKSaMidNLxiOw5YxB9Jmxn3LPR5ydTxQaQQCryKiEhJep5+mm9v2MBod3dZyvOmGFEoUkuDTz/NFddeS2rhQroPHmS0p4fU6CgATW1tLL31Vs5t3VpwuRaNlruqRdM8r43DwJ9fpYLli4iIiIgUJRWHhKYUkhnCS4A1BZmpPCZGPi0IoDZ48NI5ze3ZINRWUHsKvIqISEk6Vq/mlve9j4ff+tZaV0Wk4gwY3rcP9u2jHWiPRmm74QYiCxaQ2L8fDh4sqLy5a9bgxeN011GK7bjmWxYRERERkVJFYhBthdRIrWsiUh0umRFvDQKxXoGjth3jAc66CtYWM7GSyMykwKuIiJSk/9Ahjn/962UpK9raStPcuST7+spSnkjFpVIMP/XU2NO5d98NZ87kvXv/0aMM11lqbQVeG4vmbRERERGRuuRSpacZHmPBTfNMSgMJB2LNCjt9XaoSNSqRvn+NRG0FtRWpdQVERKSx7XrXuzj5ne+UpazUyAiuSX2CpIEVeP42d3RUqCLFSyjwKiIiIiIipUoMlDF45EFEbQUyU9RpgNPVab1E6pD+xxIRkaLt/ad/It7TU9Yyk8PDZS1PpKoK7FEYqcOOBnHN8do4rLLztiiLlIiIiIgUzDlIDaMfkyJFMqvTIGc91kmyUltBzdVfa5+IiDSMo1/6EqcfeKCsZTa1tVHg7BcidcPr6WH5xo3Eh4c58+ijWbeJtrXRMn8+TbNnM5pMVrmGU9OIVxERERERKUlyBAVpRDJY1L/PNRI8PLdrParLYLBIfVLgVUREivL0Bz9I34EDZS934MgRFq5dS2+OoJVIPRt4/HEA2q66Kmcv1dmrV3N2x45qVy1vmuO1kViF522p44t+EREREalPySEqEnR1KYjEyjhvrEgVpc9bmyIcU5dzu6Yp8No41FZQa5rjVURECuY8j4Of/jQR54hVYI7K848+SueaNWUvV6Rahg8eZOkdd2RdF43FqlybwijwKiIiIiIiRXEepEbGR/aVvfwUmJqzpYG5JDlDMvUey9KIV5G8acSriIgUbLSri949ewDouPVWunfuLPsxzm3fzpK776Z769ayly1SDfE9e5i1fDmzVqwA5/A8D5dK0XvkSK2rNqmE5nhtKBZRw5OIiIiI1In0aD2Xwo8iVShQY9E6HxkoMhkHRIIsWYA5/77uz2kFXhuJ2gpqS4FXEREpSPeuXRz7ylfGnsfa2yt2rMqmxRCprFRfHwvuuov93/lOratSEI14FRERERGRgqXiE9MA55h6RWTGcymINIMXD57Xtjp50/dZJG8KvIqIhCS6uuh5eBvzNj6XpgoGFBuVc47kwABPvv/9Y8sSFy5U7oDRCqUnEikzB1g0SqS1lWhbG5GWFiItLXWfKSgbjXhtHGZgkcqdZer7IiIiIhJwKfCCOUb1I+lizvnvT2oktDACeBU6oD4DaTTm39KnrqvUd6OSFHhtFGorqD0FXkVEAC+Z5PjHP8qh978Xb2SEa//271n+W2+tdbXqipdM8r/XX09zZydzrrmG/v37/eWjo2PbtF9xBQDR1lbiPT0MnzlT0jGHz50raX+RcrHmZpKXXUZqdBSXSuE8Dy+RIBWP48XjeIkEpFIwOOjfgKUbN3Lg+9+vcc0LpxGvIiIiIiIB5yA5NB5QjM2BaHNt61RvXApGe4N5XXOlFw6nvCxDwMkiigFJfbAI/vmdeUJOcoJadOLo8IahL51IvhR4FREBnvndt3Hyc58de370H/+B1NAQy9/y20Tb2mpYs/oxdOLEWLDVolHm33473Y89xsjZsyy85RZcKkXP7t1j28++4grm3H03Z0uYo3XgyJF0n0CRmjIz+g4dymvbWUuX0rx0Kcc2bapwrSpDgdcGo66mIiIiIpUT7wOXHH+eHPJHqkVb9DsszUsBLvQ+BSNdXSoIxrqJo/ssAs6AUuazbMTRgjI9GXmfjxbxvwsNGXRFqYYbjf6PqikFXkVkxkr293Pmv79Ex913c+HBiQGS0RMnOPjuP+fUf/w7d257lEhLS41qWXvOOfr27ePZ++8fX5ZKEYnFAEj09nJh166L9hs8ehRrKv6/mUhzM62LFhE/dqzoMqR+zL7+eliwgEgkgnkeLpnEDQ+TGhzEGx7GGx4mNTxMamioYoF2B0RiMSxIAxxpbibS3IzFYlhT0/h9NEqqpYWRvj4MiM2aRTQWgwcfnPIYS+65hzO7d9OT5TvRKBIKvIqIiIjITOY8f77SSNPEoCv4wcTkoD83Y/Pc2tSvXjgXpGCOT1yeDi4RrL9oP88PyJYUw1FAYdqwpiBAFIyWHgvuBcFM56jeSMvgvJoQsMoYDpAtmJXtPL+o6EYd5RqmwKtIvhR4FZEZKTUywq7XvobehyYfjTl0YD+9jz7CvPUbqlSz/AwfPcrA3r0seslLKn6sw5//PFvf8IaLlp/fto3mBQuId3Xl3Hfg4EHaV6xg4MiRgo87//rrGcxzhKHUt+jcuQyZ0b15c17bR5qbiba0EGtvJ9rSQjQWI5VIEG1uJtLU5N9iMSLRKBaJjN2bGWYGzpHyPJIjI8T7+xnp7ibe309qZAQSCf9WgXlMl6xfz/E8grP1TiNeG4lVdN4WNWiJiIjIjOM8iPdOPf+ilwgCiJHJt6s2Lwk4fy7aSksOQ2r44uX5BKHy2WYyXnLqbaT+WZCid7Lvm2XmQbPx+3Rma4Pc1y6Z6a/Tz12eQd2MbYqKPdo0CLqiEa8NRW0FtabAq4jMOBce3MyBP/8z+h59JK/tT3zmUzTNmcPsVavrYuTr8LFj7PjJVzPw1FPc8E//zCU//wtEW1srdrzR8+dzrpss6Jo269JLCw68tq9YQc+uXfpvfJqIXHMN57dvz3t7L5g3tdFGXnre9Eh3lahAUFpEREREpK4554/cTKcSzkdyOEg5HK2PlI5e0k+NjPPnoo3EKlyvXO9TrnleM0UpON3wtBg1KOPyPVfC3Pi9y1gkFaY3WiRfCryKyIzgnOP0F7/A8Y9/lP5dOwva98x/f4kz//0lonPnMu+eDcy+7jpW/PGf0NTeXqHaZuecY/cbf4nTX/0qLu6n8nnqt36TvX/4DtZtfpD262+oyHHjFy7kqhAd119P79NPT7p/pMALPYtGaZ03j9EiRslK/Zm1ahUnCgi6NjI3nKW3dwPSiNcGYmCRCo6yqIP2QxEREZGKcg5SI/4t34BrWno/zA9yRpog2lr9IKxzF89Fm+gHItDSUblRuTlHv+U736UVGMex0kfKSv2IxGbO52mR6fFaNeK1caitoObqLB+GiEh5pIaHOfoPH+ToRz7MyLPHefo3fo2nf+1XCg66Tiizr4/z3/oGRz/8IbbeuJo9b/ttBvftwxsdLWPNcxs5epRTX/jCWNB1rF4DA5z60pcqdty+Z57Jua553rwp9x88cgSLRvM+3sK1a+ndWfznJPUlUsHR2PXm/M6dLL755lpXo2TJ4WG8pFJ3iYiIiMg05DxIDEFq1B8hmugrbJRr9kLHR8uOXhgvr1pBCi9x8Vy0/gp/rtpKSM/vmovlM9anwPfHoiV+TiI14lL1l5a8KAq8iuRLI15FZNoZOnSI3b/4cwzsfgLMOPCnf1L2YyS6znPys5/m5Gc/TWzBQha+5KW4VJLVH//nsqcjHj1zhjP3/w/PfubTObc5+Z+f54rfeRvNCxaU9djHvvIVjk4S1O0/cGDKMlLDwyxet47EwADdjz9OtKWFuddeS8+TT+KyXIhGCwjSSv2z5uZaV6GqUn19NLe3E2/wdL2JwUFaOjpqXQ3Jg9VDWjsRERGRRuAlID6AH5Cs1EGcn4I4OewHWixI9xubXf5DeSnwRv0gcs5t4uBayj8KNzU8xQi+PAI0zvkBWucxPkp2kvTD02HEoITMsOuY6dBxQCNeG4raCmprOnS1EBEZkxoeZtdrXuEHXaEqPwoSXec59Z//wekvfoGn3vwmUkNDnP/2t3jyTb/Emf/5StHlOue4sHULm1ddy563/Q79u3bl3Hbk6FGe+KU3ZA1kFive28uDv/ALk76Hc665ZspyRru6OL9lC4MHDrB43TqaZ8+mb/duFqxde9G2s6+4gu5HHy2p3lJn6mBe5GrqP3yYpbfdVutqlGzXxz5W1r8nUkERq9xNREREZLpwqWD+0yoGPpwXBEZHIDHoX1snRyDeX9o8pc75wdZ4jx/gnSyY4yX8Ebjl5CX9404qn9+SXjBS1/lBKcAPumbZ16IKvEpjc6k8R4LXM8//GyaNQW0FNdXo33YRkQnO/e/XGD58uGbHP3v//3DhwQdJDQ3iDQ1x5itfpmXpJXTedXde+yf7+jjy4X9g8atexcnPf56jH/nHvI/d9f3v8dhLX8IVb/1tYvPnM2/9+mJfBgDR1tYpUwQXMl9AcnCQrm3bxp43ZQTkZl9xBXgesTlziHd1FVZZqUttV1/N8a1ba12Nqrvw1FNEmpoaOl3v1j/7M7r37OFF//qvNLW11bo6IiIiIiKlSVZniqCcUiNB2t8gSBqPQ0tnKOA4BS/lj16NxPygp1dACuH0/LXRFn8UbqTU5uB8Gt0L6cSZkbbYohmpkzVuaNqxphzpsae5guc1rkOJfv/72jSr+vNZizQQ/c8lItOCF49z7BMf45l3/EGtq0Li/Dm8oaBHqXM88/u/i0tN7JnpPI9z3/wmB973Xvqf8lPuOs9j7x+9g4MfeD8P3XlHQUHXtO4HfsTO17+WR1/8Qgb27Blb7iWTjOQZzPQSCXr37OFHP/ETpIYm7xk7cPgwizduLLieAOe3bqV5/nwAorNmMXr0KO3Ll9N+7bVFlVcpDli4YQNzVq0aWzb3hhtYcHd+wfSZLDpr1kXn/kww2tXFZdPg/Nj7+c/zpec+l4GTJ2tdFcnFDItEKnbThbSIiIg0vLE5XacaoVkNGSNTE1mut9OjWZOhVL7OQXLAH7ka7y0s6Dp26LgfMIn3TsxqVchctM75I2gT/flsXPzovvAIXouMB+jyDVJXi3PBvJ2h38wWQc3teZip1xnTYtQrwd+iPqUermdqK6i5afBNFxGBIx/6ew5/4H21rkZWA0/u5uS/fY5lb3wTia4uYgsW0PvoI+z4yVcDcPD97+Pyt7yV1ksv48RnP1uWY7pUiqP/+Z8MeR6J3l6Gz53jxHe+w/O+8AWWv/SlF23vJZPEu7s58a1v8chv/iapkfxShwwdP87Q8eMsWLuWrsceK+hHl0ulmH/jjZzetIlFt99O16ZNdNfR6EgHzL32WpoXLiTe20uss5MF99yDRaOkhodxnkektRUvz/dqJrLOzlpXoWbOPvQQ86+7ju5nnql1VUpy5tFH+c+1a3nV/fezNEt6cBERERGRupYYLC5QWQ1e3A9kWhN+oDISBF0H/fXJIX9UmUv56X3LJTniBzPN/OO7FDR3XjwSduz63hsPBucrPW9rUSMbvVBq4aBxv5TUzOXmgtTIFgStzYL3KuJ/TtY0vlzkIsG5Us2055XgxWH0AjR3QKTOOkWI1AEFXkWk4R3+u7/h2U/+c62rMakD73onZ7/xf5z93/+l5ZJLcBkpSI994uNlP+bh73+P09senrDsOy97GRs/8xmufdObxpYd+vd/56E3vamkkYldjz7K3NWr6QuNss3H0KlTLFy7lq4HHyz62JXggHm33kr3zp2wbx+tS5Yw58orGTpxgsEjRwCYd8stzL/9duI9PYycOUPbZZcRbWmhO5ROeSZrWb6cY5s21boaNeMlEqR6eoi2tJAarXFasxINnjzJlzZu5MWf/jSrfv7na10dCTHAKtigo6YiERERaVjO+QHMegrYZRPv9wOeXgI/GJPRmbnc87MCpIYuni91tNsPvkabQ8ceLn2kcFHpZC0YGRitv8/POcD5c/eCH2S1aBAYDz47i/iBKIe/zHnBSFiNDgSCwPTMy4w1zvnnh9fggVfwP8d08DUaq3VtJERtBbWnwKuINKzuTT/m2D/+A13f/U6tqzKlZG8v8dOnABg9darix3POcWHf/qzrtvzWb7H3X/6FuVdfTcuCBfTs3FlyOtgFa9fS9eijBe8398orOf3d79bkP+yO5zyHWGcnLpVi9NQpBg4domXhQlqWLMFaWujesWNs25EzZxg5c2bC/hd27Rp7HGlpYWTnTgAW3X03XXU0crdWvIEBmmbPJjk4WOuq1MzwmTNcunHjtAhAp0ZG+NYv/ALnd+/mng98oKD5nUVEREREqio1Oj6qs+65iSNLq3A4yHH9H+/1g8DpEbheGYJjRY14DdIU12ykcihI6lwQYbDglpoYNHRJSGW8vmzBYocf1FZqVhSAZjzlcEP8jZqKg3gPxNqhqa3WlRGpGwq8ikjD6X3sUU5+9jOc+cp/k2qgoM7gM3uxWAyXqHyPzcisWYx2d2ddlxod5ey2bZwNRma2X3EFjtJ6K0VaWgreZ+GddzJw4EBNgq4O6D98mGS/PzfNgjvuYN68efQfOkTPU08VXJ4XGtFoUaVYAUhcuMCiO+/k1MMPT73xNNa1cydzli+n//jxWlelLB7967+m66mneNnnP0/znDm1ro4AFlFfUxEREREAUnE/6FqvqYVzcVUc+WY2SdwrmMOVoM2iHHNRFhNorOVIV2fgQhmLIi1BvLUcWYwMBR0JzXM6DUZ8lmwanROJAb+zRmy20mzXCbUV1JaGK4hIwxjY8zSnvvhf7Pujd3Dy3+5rqKArgBsZoX316qocq2n58ry3HTh6lLk33VTS8foKnMeyZdEiuh5+mMFDh0o6bqEc/kjXRRs3jgVdAboeeYSu7duJX7hQ8jFGzp4l0jaze/lFWlqYe889DJw+Xeuq1Fyiv59IPM5l99xDU2vr2PK5l1/O5Rs3smDVqhrWrnDR5hhLls0i8YNP4frP17o6IiIiIiLjI1zreT7XSXlUL3FjAcdxyRJjQsEI0YJ2SQddqxyMSs/RmtlS7o2WKegaHGPGj3g1iMSYNsHGknh+yuHMDg4WhUhzkJ66gbggBXe8p7qdSUTqlEa8ikjDOPDO/8fI8WMkhyowx0mVNFVphFhywaKCto92dBR9rI4bbqC3gFGic1evJjZrFhfOnSv6mMWIzprF7JUrufDEExU9Tt8zzzDvttvoDaUqDuu85Ra8VIq+3bsrWo9aanrOczi6ZUutq1E3hs+cYfjMGZpnz2bRLbeQGhmhZ+9eTh87RsuCBTR3dBDv7a11NSe1/I7ncNcvvZwl8z0sPgi9B/G+8bdEnvtm7JJra129mcuASvZiVQdZERERaQQjXX6wwpoa9/eLRauUdrTAgFckWvx8nIW+JovWKGBjgDc+b2ulePHJ0w1bZHwO2enKSjifpqP0+W7R0Ofv+d8bi9R/ANO5oO6AS4ynJx9JQMu8IMguNaG2gppT4FVEGoY1RRnav49oezsdd95JbwOmMO17ZBstS5cyWuGRgKcLDC6effhh5lx3HRaJEG1tJRKN4vr6GNi3b8p9Y3kGk+euWkW8q8svs8Q5ZYsx7/bbOVuluTYv7NjB4g0bSPb10fP442PLW5cuZeT8eSw2fX98OuBcMN+tTJQcHKQrNDcwwGhXF0vWr+f4gw/WplKTaO2Yw92//nquuW05LaPngX4IDyAYHcL73sewO15PZNWGWlVTRERERMQPalkSIq2N2SBcjaCrAyjwOF4iNPIueGPH5j2d6nh5Bo0s6gdsXI3SC+OqFwxMxf30xWQGWCPBuunbVuCfR3UeSKyZLOeg8+o3UO3wO2WQBBe/uK+AS/kdYlo6Idp68f4iM4ACryLSMCKtfvrW1MAAfY8+Qse6dfQ/+STewECNa5a/2dffwPDJUxU/TseKFZwrIG2ul0jQm5EuuLmzk4UbNtD94IM5e2TOu/VWzgdzxU4m1tFB6+LFDOzdm3edyi01MlLV453dvBlramLRPfdwYdcu5t12G907d5IcGCDS0kLLkiWMnjlT1TpVQ9uKFfQcOVLrajSUrp076Vi5kt4qp97OpfPyZbz8T9/EgtnDWHIURidJKew83MNfxLtwAu54HZGoflpWl2EVTUHViK2WIiIiMvOkA4IepIYgGkz90kjzDFpTFYKvQTrdgoJf2YKSESA6eTl5v570Z1TDgFy1RxV6o/gpd5uD4FpkfLStSwKRxjp386bAa3HqaR5YC41uner77WD0AjS1Q6x9mp7T9UxtBbXWYMnCRWQms6aJDfp9jzxMc2cns1dfX6MaFWbuurvpe/wJElVIsdvSPrvkMuI9PZzcvJn5GzZA5OL/Lprnz2fo+PEpy2ldsoSmpibOV2m0aS7RlpaqH9Mlk5zdsoXE4CBnN28mGXQS8EZHmX3llVWvT1UsXVrrGjSc5OAgo8eOcfmG2o4ajTRFeem7f4s3/NXPsbClxw+65sntexD3jX/EDZQ+T7KIiIiISEEyG/RTwzUcPVmEqgRd8d+nsjTEe8H7G8neSdsi+b0ei/hBXa/Gn1VN5tIM5sN0iYkpjl0w7+d0pDhNEZz/va31SGjngu9rovDva3IIEgOa31hmHAVeRaRhRJqbL1o2evIEQ/ufoXP9hsrmri+L6v3IiEbL90P95KZNtF57LbF58yYs71i9mtHzk4yEAzquvx7DT6daS62XXMJgHkHiakrF41Nv1GDmbtzIqTxGQMvFvGSS05s3037JJTU5/g2vej6/+R/v5NoVESxRxOjwRZfDuUN4X3o37szh8ldQcrKIVewmIiIi0rC8JCSH/cdq8K8MlwjNSxlensfvyHR64ZqL5DFyr9qm4fkaidX/fKX1rJbphi2C31GgyDYsa4LUKMR76zNt8jSmtoLaUuBVRBpGznkxPY/erQ/Seedd1a1QgVwV5zWNlPlYPXv3Ejdj3vr1ALRfdRXntmyZcr+WhQtrkk534caNLNy4kfl33AFA+8qVDNZZ+ttYe3utq1BWLcuWcawO5yltJLH2doa7u2ty7Dtfv4GmkeKPbZddjq25A1txLe7YFlzX1PNDi4iIiIiUR65GYOePtpJx5U73mR7Zmh41alEgj/YIlznHaRU4h58qNcLEJvE6C3TmE7huJNakgFupajIqO+BSlJYiOtjXeRDv8+cyFpkBNBGXiDSMyBSpYnsffoiOdevordMRd1bNuQ9PnCx7kaPd3biEn1KkubNzyu0X3nkn5zdvLns9ptJ5yy2c3bwZnCPW0UH7VVdlTZVcc9Oo13WkvZ3YVVfhTpb/vJsxzJh3yy08W6PgdSpV/PloV90M8SBoO9eAPtzh7+OGzmGX3VXheUVmOKOyvU2nWZuPiIiITFNTBRNTwxCdpd82FePGY5f5jGq0aG3SC1t0PK2vNQXnjUZhVlYwX+30af6ojZq+fyX84Yw0j3/X068hNQqxOdA0S/O+VpLaCmpOLWEi0jCypRrO1PfIw8xdu7YKtSnMrOuuI9k/ULXjJY4fZfZll5W93JHjx5l38810b98+5bYXnniChRs2MP+uKo9EjoynOkr09tJ38KAfiK0zI+fOjY3IbWQOiK1ezfE6fI8bRay9nflr1tQs6AqQSpbQ4NCeIxvBmcdx+7+BK2CuWJmezOwyM/uMmZ00s1EzO2JmHzazeVPvDWb2RjNzU9zUjV5ERGTGyqMFOFWnI18tSlWjKl4lAo3OHxVnTeT1Wpznp56t9ryV4Xl/XdIPCNV6ftmsPKZNVCMS0WjXkph/q8Yc0GVnub9fiX5I9E2rAQkimTTiVUQahsWmDrwCDO3bR/PSpcRPn65wjfI3cq6rqvUxMxZcdRWDzz5b1nJbVqygNc8UuS0LFtC3bx9ty5aVtQ5TSfT3V/V4xerbu5eWBQuYd9ttXNixo9bVKcrs9esZ6u7m9KOP1roqDa1tyRJOP/ZYTeuQTKSK/1U4EIfWHOv6juP2fgWufjnW2lnkASQ3q3DaqdIbfMzsKmArsBj4GrAXuAN4O/BSM7vHOTfVROC7gPfkWLcBeD7wrZIrKyIiItNbatQfgVVPo6yqHZQygKbyB3Ismn8QxSwI1EbLW4fJONc4c4x6iWBEbpSGHZEbieEH5Bu0/vXCInXQOaDYv5cOrHlih4ew5LA/v3LLvNqmUp626r+tYLrTWS0iDSPSnF9vyFR/H82LFtXNxdTcdXeT7Our+nGbei6UvczmpibOfPe7LN6wYeptOztJDQwwuH9/zm0c0LJkSRlrCG1Ll5a1vEoa7eqia+dOiFbxgrNMIm1txJqb6X766VpXpeENnz1b6yqQSmRv8HHOMRqfQ/+5VnoOO4YH51y8zcEnoHmSgYsjPbg9X8b1HitXdaWxfAI/6Po259xrnHP/zzn3fOAfgOuAD0xVgHNul3Pu3dluwKxgs3+p1AsQERGRepfntb9LUVc5T61G42Eq0RhvBuQZTPVS/scwWUDJufJ+VGYQmXz6qrriksGtjs7XvJkfcFXQdXqY7M9rpBmibf4tkmWwjItP/vfGS8BIVx0El0XKTyNeRaRhWCz/NDSDTz1J5z330FPD1J3gXyckenrwhqqf1ih5rLxBjiVr19ITjMrr3b2b6OzZpAYHc24faWoiNTB5euUFd93F+YceYuG6dURiMeIXLtD35JM5t7dYDItG8UZGcm4zcPDgFK+kzjiHc46OG28kNmcOXQ89VOsa5aV95UoSNTivp6NEfz9NbW0kh4drV4f4eI/3+KjRfTzO6ECSlrPP4l0YH4xo6++hbfbF+7vD+7HLlmTtse8lPZ7494dIDj/AnBvWsuptb8PqpGNMozMqO29LqSWb2UrgxcAR4OMZq/8C+HXgDWb2B8653P+h5C7/RmAdcAL4Rmm1FRERkYZVyG/L1Ig/t2A9qFUK1nIH8yLNodeST9l5zq3qkmCxYHs3ednp1zSdrjPS76nFglHCDRKEnU6fQa3VRfA69HmmR2JbJKibC52nuQKsk5wPLvhbMNLtz/saq5O/zdNAvbcVzAQKvIpIw8g31XBa3/bHaLtyJcOHD1WoRlOLtLTgvNr8OHaDA6x48YsZPHuW1jlzGDlxgmR/P+3XXQdmeJ6HRSKceuQRUqOTz8G4fONGujZtGnue6Okh1tFBx223cWHXLlyWeWJcHhcFkSb/v6Hz27YBYE1NLNq4kfMPPnjR3DMdN9/M4LPPkhoaYsFdd5EaGWHw8GHiPT1j/+G3XX45kQIC9PXCeR49Tz6JRSIsvOcevJERLuQxj26tdNx8M/HeXi7UUTrvRrfsjjs49uMf1+z4ydEEXsrRdyHC3s9+l/i58yx9/kZivRMzwLpUjgu/nrNw6Urg4tH9FoFnPvcVEr29wOe5sHs3d37840RbGqjHuRTr+cH9d52b2GrgnOs3sy34gdl1wA+KKP83gvtPO6fJo0RERCRPqRGItM7clmOXCoKlXhBAyQxaOvz5GeNTlzUh6EoQjAnmpcwZXM2jjSQdaByrg0G02R8tmxnYswh4o0AkCNQG9ZiwWSR3ytN65yUAC40orIdgXA4WCT6jiAKwZeH8YGc9zPE64fyLkPeQdJf09802qtXw/x4T3Hud0DxX545MCwq8ikjDiDQXFnh1o6NYUxSLxXCJ2vzAdqOjNe2hFhsdZXDXLsLDiEbPnZuwTceyZcy6+mrOP/UULpWi/bLLaJs3b+yHTvL8+QlB17TWpUvpP3hwQtC1ed485lx1Ff379tHz+ONTXscOHjky4blLJjm7aRMd119Py4IFxC9cYODgQeauXk3vnj2kghGB50KjQudcfTVtS5eS6O8n1tHB2Sx1bRTO8zi3ZQuL16+HSOSi4HO9aJo1i1QyyXDG5yfF6378ccwsrw4LlXB8015O7NpJanB8lHrXjieYdc0CIqHzMNraDGTvqOGefgS7eS0kJs6z7Dxov2I5F57oBeDApz9N87x53P53f1f+FzLTWGV7sQZ/xFeZWdaeIM65NVOUcF1wvy/H+v34gddrKTDwamZtwC/iX/l/qpB9RUREZLop8PeQ84JARnRmNvBbOjDqMoKmGdtFgiCmFwR9rCnj/crYf6z8SJblQaAmPUpuSpmj51wwR28sKJ/xeWJT6esTLwjApusRGz9uw8836vzXFmnxA9L1et46FHQtN7PaZki36PicvWOyVGiytox054HM/ZybuDzeA5EoxNpLqLAA1WorKL0Ys8uA9wIvBRYAp4D7gfc456acQ8/MFgA/CfwEcBNwKRAHdgOfBT6b2QnczFYAhycp9ovOuZ8t9LVkUuBVRBpGpKWwwCvA8MEDdNxd25TDTe21+8HgLnRPuc3IyZOMnDw5dlkz3NPDVAlPIy0txObNI/HMMxOWd950E+eDwGde/wfnCCz2huYNtUiE7h07chbRf+AA/QcO0NTeTtPsLDlQG9D5Rx4h0tbG/DVrGD52jMEjR3DAgnXrSHR307dvX007Z1skwvDx4zVPjzudpEZGaF24kOGMjhHVcNsLn09yy2Yym0ZGT57E3bwSBkK/dSc78ZyH6+rB5o7P6/T0/U9z+GsPcOHJpyZs2tzZWXK9pSF0BPe9Odanl3cWUfZPB/t9wzl3vIj9RUREZLooJsjjxWufcrje08em26rHUoh6+QWAcr2mciQoyRw1N9lIwLFtCxidV+/SI4AtPWIZ//2ORIN5cb3aBT2dC+rj5TfXr+Snlh0GIrHs3zGXorDIm/PLSn8nnQs6UMTJ0uOjuLpKwzGzq4CtwGLga8Be4A7g7cBLzewe51zXJEUAvB74J/yA7Y+AY8AS4KfwO2i/zMxe77KPcngcP8ibKfcceAVQ4FVEGoY1FZdCdnDPnjLXpDDWVLs/tYlnj5f9Ym7Otdcy2ttL986dY8sW3X03AH27dxdUVio+deqibGmMs0kODJCcYk7ZamhZsIDRrql+F0zOi8fx4nHObtpE2yWXMPc5z6Fp9mzOByN9569ZQ2z2bJxzJPv76dm1qww1n5wDOm+7jcGjR7mwezctq1aRfOSRih93Jmju6GDWlVdytgqfYzapSf4+eLFZRBkPvPZv2srsn1pLxHJ8L48/A6vvgNZmSCS5bFmUXfv2X7TZk3/5l1zx2tfSsWpVyfWf6aowX+7ePEa2Fiucz65Qvx7cf7JMdREREZGZxkuMj+qsiRp2p61EMMeagoCMN3EZLnua0aqpl5GuWUb8FSzY3xsNgpvB6NL0qN9I83jg1U0xL265OPCD8p5/X9Pv1HQToX7O36lM8ffMiwepyYMAvZfK/ndotBuaWieZM1byVYW2glJ9Aj/o+jbn3EfTC83sQ8DvAR8AfnOKMvYBr8LvkD12QpnZO4FHgNfiB2G/kmXfXc65d5fyAiajwKuINIxIa2tR+yUvdGPRKC5Vo+nfIpX/sRBbuJB4VxeWEUDxBgaYd+ONXCgwIJrN7BUraFu+nAuPP06ib3wex5ZFi+jZtYvU0FDhhdbqMymzjptugjlzGDh3jrP799PS2cmy1avpDqVELtbwqVMMnzo1YVl3aP7XlsWL0zPwVNTs5cu5sGMH0VmzSHR2cl5B17KYvWwZXnNzVYOul999N8e2bs1r2/7+UeaHFyQTjAzOYlZ77k4Obs/4uXH6yDBelg4WyaEhvvu853Hv/fez6M478626NJ70iNaOHOvnZmyXFzO7HrgbeBb4ZnFVExERkemjyKuhhk49W6r0XKxlCMxZxC8rc2ScRfKbJzZrmSXXqj5EmoP3x42nVXWp8szZ6VIXjyIOv9/VCoBaxA+sWzQItEtZpOfLrdpobfM/w3zPTYtmnH/exFGt2aTPT+dyj4p2KRg6DW2LFMSfxsxsJf60Q0eAj2es/gv8jtZvMLM/cM4NkoNz7oc5lp82s3/GD97eS/bAa0Wp64CINAyLFf8fbmzRwjLWpP40dXbScdfdNGVJ39m2YP7FOxRo3po1DBw/ztnNm8eCrvNvuYV5N91ES2dncUFX/JS1ja5l0SK6zp7l2NatdO/3R/aN9vRw9tAh2pYtq/jxR8+eZcGdd9K6dCkLN2xgQTD6uJwWbthA07x5gP96+0+eLPsxZqJFt9/O4MAAvVWaKzcai3Hlhg10bd3KlRs3hpZnztU07vyPN3Om80r6Oy4B/Eu+0USSCz1Tt4QcPZjgkb/7TM71w6dP88NXvIKD//7v9O3LNQWoTM78zj2VupXe4pXOR39tjvXXBPeFngC/Edx/2rly5KwTERGRxqbAa06TBcPKkQ7WmoI5c7PM6VrK+zsdMgOPvb/BizHzT9VIlYKTY/NqpudcLXP7i3N+menP3qLTJ2Bea9YUzK1cxaBrpImLRiw7cmfQ85LBqNX0tul5lPM4CSwKqZHc670EDJ2F5HCNR8s3srpvK3h+cP/dzDlYnXP9wBZgFrCuhGOkT55cvQmWmdlvmNk7g/vnlHCsi6gbiog0DK/I4B5AU0cn8dNnylib+jJ68iRDx45DJErnPetJ9fdDNEqkqQk3q7R5azpvvpnuXbtwqRQtCxfSfuWVDB07VnB6WwfMWr4ci8WInztHsr8fV/9pL7Jqnj+f9muuwWIxTu3Zk3VezsEzZ5h355009fVVPAVy986dxDo6OLt5M7OWLyc6axZeIoFLFP4DNTprFvPWrGHw8GFmX3EFRKN0PfIIqRH/R3HbFVfA0aPlfgkzTsuCBZzcvp3s00xUxqxFizi7eTMA57ZuZeHq1Zzfs4emaIT25UtpWXk1XY8/SfKCn1o40tLConVrefyr/0vLwoXcsu46nu31OPHOTzB7+aW88Pdfyvc/9G3ufdtLaZ/lYRGjp9foOjVM1+FzHPn2j6es0+j582z5pV8C4NV799Jx3XWVewOkFn4U3L/YzCIZqX/mAPcAw8C2fAs0s1bgDfjDND5dxrqKiIhIwyo2wBeMQmzQ69K8OAcE8zFalLIGcqxpfHScRUKBF0fBn4mZX8dGD4ZbxH9f0lM+ZT23HERbJw88lctY0CqYY9OFgsAFs9BUVgbm/JTHY6un0Vy6tWTR4keKl3LMdADdeYynOE6Nj051qVAaa/zHyWH/vIo0++ealxgf5e0lJ54TFh0/f/I5910Shs/6dWm/VKmHp59040+uTtj78UfEXgv8oNDCzawJ+KXg6bdzbPai4Bbe7wHgl51zxwo9ZiYFXkWkYUTb5xS9byzLSNBqSfX1Mj80ugygf/duEhcu5NhjaulgjZnR/pybcWb0Bulnu348MdjhzIh1dpLo6Zmy3LZly5h19dUMHTzI8IkTAMQ6Ovw0zWbMveYauopMn7twwwbOBEGf2Jw5LLr3XpKDg4xkCVrWs3lr1nB8927OPfzwlNs++/DDrLznHrq2bKlonbx4nNHgfRw6fhyABWvXcuHRR/Pa35qbcfE4TXPnEp09eyw4N/jssxO2m3XFFZx4/PEy1nwGc47YnDnEQ2m7K224u5uW9OGTSZpG/YvkZCqFN9DP8BM7mbt4Md5VK+l/5hkW3Lia4T1P4iWTDJ04wTMHFtD1+BMA9O07wFd/82MAfP23P8acK1ew/Llr2fPvXy06rfu5hx5S4LVQBhapYENhiUU75w6a2XfxL5jeCnw0tPo9wGzgk+nUQWYWA64CEs65gzmKfT0wD/g/59zx0mooIiIi00MJDfK1DrpmjkYtRwrasbKDEZcu+Oeisgt47RbBH90YLiMUZHMuy6jXPEViQblu/DiNOMot0oL/GoL3ddJzy00MXFdM6DNKv6eRFvIKjE8I0lqwf47AqsX8gF2tv0/TQi2C127i40gUvPToVc8PBFvUf+7AD8gGn3X6vBq7H51QFJHY1CNcJ+X5ZUdbpt5UxlWnrWCVmW3Ptto5t2aKEtLTEeWadii9vLPQqgX+GrgR+KZz7jsZ64aA9wH3A4eCZc8B3g08D/iBmd0yWYrjfKirgIg0jGj77KL3Tfb0YC21+U96aM/T9G3bOuHWvGhxSWXOvXMdNruduXfdzcD+/WNB12zMORbddGNe5bauXMnxTZvoPn2aBelgsXPMueoqOlevLjjo2jRnDrNWrmT+3XdzNhR8TPT30/3UU/5vsCLn7q00a7q4b9L8u+7i3LPPksoyZ2UuRx97jI7nlDVbRV7i3d15bddx4414qRRzb7yRtuXLL5pPNq3zlls4dfQoo70FTcUoOYx2d7PohhuqeszM87b/0CGu3LCBVKyFpiV+KuHkubN4xw7SufwSRp7ZA8kky267BYALT+/JWXb/4SM8fd9/lzSX9t6PfnTqjeQiZlaxW5m8BTgLfMTM7jezvzKzHwK/h9+79U9D214K7GHyHq2/Htz/S7kqKCIiIg2ulN8tXip3Ks1KS8/1Gb6VKj3fqjVlnwN0YgXyn5PTAS4IrKT3Cc/TWHDQ1fy6jgVdJxyo8Ua3RTOCrvmwaHnSPRcsz/M9PN+nm2Su0UiLn3pUQdfycF4NzouMz9algpTDoZSyLuWPYnXJ8fTi6e/ppPO6Jkof3R3vL23/GaoB2gomrX5wX/B/0Gb2NuAPgL342bImcM6ddc79uXNuh3OuJ7htwu8w/jBwNfDm4qvu04hXEWkYkebiA6dD+/fRfvOtDOx+ApesdI/CqbUsXULz4kVgRrK/n/480/Y65+i4+x56t28nNTREdzAycSoDDz7IonXrOLdt8myO/UHQzaVSHN+0iSte9CLOb9qEi8cLvhhtXbaMyNy59O3dS9+hQxetHz13bmyU5qJ16+iaom5VZcZoRwdLr7mG7m3baFm8mPbrruPoI4+QGh2dev+Q1OgoZ599lkU33EDfU09VqMIXi3V2EiQAmlSktRWXStHz5JMXreu89Vai7e3gHEeKHOkskygiFXQpnOexYM0aukIdNc5u3sxZYNa8eaxcdzuxp3ZCMkni9HgAvvOSxZwAvArXt3vnTuI9PTTXMEOBlF8w6vV24L3AS4GXA6eAjwDvcc7l10sEMLPVwHrgWeCbFaiuiIiINKRSAq+jftrXdOrMWpsQCPUKS707IV1onu0eLjlxv5zS610QgA32KSZoPZbyONsoXADP/0ijzX75dTX6NeLPhZkOals0eF5EymojmMuT4kcLF8XIK5aRfjnZ3v9Ic7BNKPWwlE9e38kycl7wtyf09yZ9/PScr16ci86bSHN1UmZX4xhSjL15jGzNJT2qoyPH+rkZ2+XFzN4K/CPwNPCCQtobnHNJM/sUcCewMSinaAq8ikjDiDQ3l7T/wOM7mbPmdvq3b8d5tZ03pG/b1rHHc++8a8rtnRkd6+6i/6mn8g62hpkZqX3P0LJwIaPnz48tj86aRVN7O9G2NppmzaIrNHenRaN0b9mCyzPQGJ09m3lr1jDS3c3wqVMMnDwJJ0/mta9X42B4tK2NjltvZWhoiNG+PiLRKMP799M9Zw6dGzZw+oknxtLvFmOku5vT8ThLVq2if+/eMtY8t+7t25m7ahWpoSGGj108NcGc1atxnsdQkFI6K+eInzuHzZ/PvKuvpuuZZypY45nn3GOPsWzdOk5WsdNBZHb2zAFDFy7w5Le+x5obVuL1T0x/XLVLaOc49cMfcsVP/VS1jtjwDLBI5UYDlOuzD1ICvymP7Y5Mdljn3J4yVktERESmi1IDpqkRiLbVx3yv4UBkZiAkF4uOj0Ar6pi5gnBBillgPPAKF6ccnor5wUm84FiFBJObgFoGXi2YszJzcQyIjQfGSzlvIk3gOao2v603Oj7fa9Z6R4LRjZNl+nJBZ4WIfp1XQt4dIsrIIjnOQVf7qXtdClJxvzOG5KUB2grSDYzX5lh/TXCfaw7Yi5jZ7wL/ADyJH3Q9W0S90vPhFZ92M6DAq4g0jJbLltPUOY9kT/Fzo/Zvf4y5a++g99FH/B+2dcAbHaV1+eWMHL84ONa8bBmtV6woOuAalurpoXPN7ZxyDpdMEu/vxw0NwdBQ1u1nL1+ON1lQLoNFo5zevLmoHq9d27ez4LbbuLBjR8H7Fmv+Pfdg0SgDe/Yw0trK4a1bL9qm98gReo8cKcvxEgMDPLt3L5fffTe9WY5VCX1797Jw3Tpa5s+nJzSqetaKFTTNmUPXI49Mun94n7nr1tFVoXrOZFZCat5inH36aZasX8/ZBx/Muj7S2npR4DXqVa+OO9/5TgVeRURERKQw6RFZpUgN+8HXupNrdGIkCJRMlU44Hx4QZcKo1gn3mVWywgIxVmigNixV/QBUtDV4X4NRgFkjDOH5T8vAmiBikCosw1bRvEQw1yuMBcKdG/+spnq/06NgUwn//ap5ZG4aSn+/q2XSYG+uvwVVTAke74G20qZtk7ryo+D+xWYWcW486m9mc4B7gGEgr5EKZvbH+PO67gJe5Jw7P/keOa0L7i9O3VigBkuYLyIzWcuyZURaS5+nte/RR+i4487a92QNDOzaQfLMSeZv3Ihzjtg119C07FJa7ryT2Oob6N68mUSe83VOZWT7Y8y98kpGe3svGvW7OGMe0oEjR5h72215lTtn1SpaL7+8+LlxnGP0wgWsOZSupsLOHTzIoU2b6O7vp+/48YofL+3kjh3Mv/tumtrbq3K889u20b1rF51r1jDnhhuYd8cdDBw5MmXQNazj5ps5Xk+poKeR89u3c8natVU73tD585zdvz/3Blm+w6lI9eaXWbRu3dQbyTgzLFK5W738PykiIiIyqXznKZ1Karh2871m45L484amU/Om52+NBsHPYH1ZJJk0yDuhXqn8Ay7l+GyqOsrNglF/6fe5WocNgtnl6ESQL2/Uv2Hj570XLyzYFwnmtpXyq/Zcr86b5O9fji9CNf9eRkpvD55R6rytwDl3EPgusAJ4a8bq9+CPOP0359yg/3IsZmarzOyqi1+qvQs/6Lodf6TrpEFXM7vTzC76j8XMng/8XvD0Pwp7RRfTiFcRqYnj//wJeh95GG9oEG80DhHDJVN48VFcPI4Xj+MSCVwi4T9OJvBG4yS6iu2wMlHfIw/TsW4dvdu21c2FVe9DWxi6fAVnntrjLzhylMueu7Hsx5nT2ko410K0pYUrbr+d81mCj6PDw6E5O6Bt+XJaFi1i4MABIrEYbStW0NTWxsDx4wyG0hQXY+DwYRbdcw/nt2xh/m23Ee/uZvDw4ZLKzGXB+vUcCkb8JUeqO1dEcmSEw1u3EolGaZ43j2U33khXiaOZ89EdmtezEO1XX83ZLKmKpTyc59H71FO0LljASFd1xhQvvuYazp45M2FZU0sLt77kXpK7Lj5PTj1zoCr1smiUW//yL6tyLBERERGpU6M9wYi78HW6Cz1Pzw2afkx5U7SmR77WUwc0lw6Kpudv9coXbB5jF49kdRbEYr0sqXajE9/3dIDIpfxyLOqX6VKUHJhzKX9UZWoEmlohOVp6mblEaxhINPDnkG0OnnjVmd920pTCk4jECPINl7M2MqYG72220ezhv7WZqjX3qkWhee7U20mjeQuwFfiImb0A2IM/v+rz8FMM/2lo20uD9Ufxg7UAmNkvA+/F/w9yM/A2u/j/7yPOuftCz/8GuMHMHgCeDZY9B3h+8PhdzrmSUxUq8CoiNdGz5f+z999hkiTrfR76RmaWbe/He+93Z8fP9O7B2WMIGoGEaC4hUA8tKOI+IHh4qSuKkEBSAiSaS10CAkGKBMEriBIdRBIAAZyDY3bHz6yZ2fGz413PTHtXPjPj/pFZtquqy1d1d7zP01NTlZERkVmZWZnxi+/3nWfsN/5DU/swe+Uy3cdPMH2pMbavi+HZvJW5W3eyPrOs2uf40ELzbBwe5tnZs3Rt2kR3ezvhe/fwrVqVVa59/Xq8XV0kAgHMcJjugweZfvCAuRcvMNrasMJhwhWKeYUYu3CBwOrVzNy/j7dALspKMDo66Dp0iIRpYng8jD16VLO6K8W2LKJTU0y+eoXu92PVQADuPXGCqStXapLDuH3rVjxr1/Lqs89IhEJV16cojJSS+MxM49qzLPwDA0THnNQVQtc5/NXTxPOIrlDfvCC5/Tr/4z/O17/3vYa0t2xopUFBhUKhUCgUimoxI1XY0taIVhNfhdGYfSLdqFrp2vtipfN4ZgkvOc8HmpGOkkyWrblFqu2IosVEoEoQmisguhPOpd387z3Vvk7N8ttq3soF1gV1Ge4x2QL7arlTrq13rZHg5GbOdz4nc0A3oIPSgtgU+Hvr39ZyosXPTynlIyHEezjC6TeBHwZeA78A/C0pZSn2j5vdVx346QJlPgb+Rcb7XwP+MHAE+H2AB3gL/Bvgf5VS1iQ6RgmvLYqUEmzLmcWViCU/TBew3dl/tu3833LLWqaznpVA2hbCnbEmpe38INp2Onm6EO76bt6C5HLces2EU8ZKgBlPWw509zgJrcFdx3TrTdZlpd8DGF7nT2hO/5LrJetLWRm4MxilxLmoZ7xPzaIrUibzQp9ZH7g/VBntJWfyCeHeFLqvugF9GxEH/iCigdaKKxGZqNENX5XMXLlE1/HjzF67how1KJdGAaz+gQWfvT5/nuDatfRt2Uz4/HnyzNopm/kvvsC/dx9r1qwh9vQp88kFExP0bt/OpGtDOrBvH69+53foP3aM8KtXTHzxRaoOs05C3MDx44SfP6djwwZm7txZfIUS8e3axeMGRJVWwvTjx6x57z1Cn34KQOfu3ej9/ZjxOAiBbhjYExPM3r1btJ7eU6d4cuEC7atXE+jtpa2vD2GazHz+eVFRV2ga/lWrCKxfDz4fc6OjzI+OMvPoEbSAQL0SaF+7lsjDxkSVAjy9dInNZ86khNcjP/wh8S8KT6Jo6++jNl4Di/P2o4+IvHlDIGciiEKhUCgUCpfMqL8Fzj25EYLJz5JRgTnPzQvKkg6uyStuZNaTUXfy4+hEdrvSzuhn5nN78jldz7BRtNNVklk+s485eSdz3+dGQabK5W5Lnn2Quy9FckCZ9LiBvx/RsX7huorlSWbO11YcvJamO55VyzyQ0hnjQ4DMGLNJWp4md4OmOeU0DwtzzNZLhNHd6M8a1695SV1zBLRW9KZ0xOZk3lfNs9B61k4s/v0nc7DqPrKimEsRYpPX6aS1tEzuJ9ma58Wyo8H72E5knNfJ3+JCx1cyJ3DtA0byYoZA9qjjbpkhpXwB/OkSyj0lzwkhpfybwN8ss81fAX6lnHUqYdkLr1JK5O/+EjKeb9BZIjr6QDOQ4RlH4DTjgASPH+HxQVs39KwGRFrgtC1XbLTSQqdtZwuOVjLPgnDEPI8fvH7Q9LTYaZkQDyOjIYhHIDrv/CVizvsaXLjqcbsjtu+FcG3yTbYkM6+haw1sPtrsnixrhKeROTqKM3v1CoEtW7FNk+jTp03rR3RuPu/n4VevCL96RdeuXWiGQSIUwtvZSSAcIlaBMObfsoXQkydY8wvbi7mfta9Zg3DF1fErV8puo1yM9nb63nmH0XPnEEBkZKRmdfcePcqTMvKZNoO3N26wfniYubdveVFAYB06eJCgz8fkJ59kTSrpO3OGiadPeeFGH8+/fs3869eMuet1bdhA76ZNyHAYc24O79AQsWiU0Pg4kfFxYrOzMDLi/Cmagqerq/GNug8rhs9H4vYXBYv5du3h7nfONqpX9J84gW9g4SQURWGEph48FQqFoiKk7URPFCJlm5kpHuL+hmrOs31qALy4IJlXCEwN8CfzZImcejInKtvp962cSy+0zO8nEyGktwvhU3aHKwYr4gpzenMH+wsJH8lrQ+p6lRRCKhVik5GtBSZoIAA945LWiMhkd79bkdpX3Uxb4VKRpIXT1AcZCD0tlOXaEifXy4xMFRm/Zbrf+b9tZthDu21k/eZltKsePVYOQisuzgsDZAMDWIygEl3LRI0VNJdlLbxKKZEf/f+QDz8pXKbY+rXvkmKJIK/938gvP3Z+ZFbvRuwYBo8z01FFwtYGYbTW5Sfy+BFaIEjX8RPMXL5UsJze3kZwzSrmvqx9JGCbsJnw+bALRN7O3LuX9d7T2cnQoXeIXr9WchtGTw/Rmdm8oiuAr6ODns5OtECAyQZG4PW9+y5jZ8/W5R5+8upVNpw6xfMLF+pQe22w4nGeni0ubr11I4471qxhYNs2ZDRKKBzm8SLrzTx/zkxmjtb796vur6K2SLOxVmqbTp5kwp2MoHu9UKT9qOFvVLfQPB62/qk/haar31mFQqFQ1BkpITpZne1irV00FUuDiRvIpAVtcBCCq1PCeS3ciRQ031ozFzsOaE5u0aJopCK3a43Qi4ucmUKrtN2+iDL7I8AuJKJIp85U1GMjn19k2nWv1lgx0PxpMbIVSUaXFlzuTtoRmiOkJifoiIzJPAWvTe5yLWcSUdF1FI2lwd9DUsQvhYZeB4QjvCoUS4jWUj5qzYs7yFs/aHYvlh9CW7zMciA04bw+GEM+cIWN9n7E1/9fzevTMqJROQPLwY6Emb16ma4TJ5i9fh0ZWTijsvfgXrwd7XURXs17d9lw/ChPPy7NEjcxO8ur69dZd/o0kfPnS1onuHcv42fT9XcePIjR6czYnjx3jr516wg9esTYgwc1yROaD2EYYNup+r3d3YTqHGkcunEDb0cH8bm5urbTCOZGRphT0anLitnHj9G9Xqx4YyzYpWWl7Kdjc3OIr5xGXl84Sc27YSMvHz1tSJ8A9v/Mz7DjL/yFhrW3LBB1/j1V4y0KhWK5YoZql+tOkUEdhadWIhl5N/vU+QMn71zvnmb1SFF3bDDDxa2HhVa/qHRpgfCALDXfp3seCqMMESXn3E3mPUU6kZTJNF0NFVu0tM1uvZAJmh7RXDNa0S5ZUR2N/k3NTONnO9eB3EhqcCaD1PvczMTfB0agce0tB9RYQdNZ1sKrfFm7/ICKDDQfdK5x3+TkXkm+JsIQyx9RtyQZ2ono2wjBnmb3ZPnQgsJrktkrl/Fv2gRoRJ48Binp2rubzYc3I0NzPLv/um5tJz69Sv877zB+rbQoVmnbvLp8hVWbNxN/8qR4WSkJPXmaet91+DCTn3+eOm8HhocJPXlCwuermejq6+sjuH490zduIG2bzh07iI2OYgSDBDdswIrFiI2OEs6MyKwD5twc64aHF40OVSiaQWJujrXDwzxv0PGZe/P9+W/8DkdPvkPi5YvUZ94Nm3j0+BXzI/W73uXyxc/+LC9/8zfZ/uf+HDt+4ica1q5CoVAoViD1ip5a6fi6ybJEXpCDFTAjNcxH2QIEh5yBaV93s3uiaARWxBUkjQzrVt21BK+zICkTlD25oWTRVWb3X/O6Yq8bfax5nXZrqilr6Vyj4OxHMwKa4VreJiNd6xyNKi33O23hqFfFyqWY+FlvhGBB/nNwJnSYERoqCkfHITEH3k4V+apYMixb4VVOvFTRrnVC3vt00TJi93vLS3h9e9/JZtG7HpmIguGD8BQEuxErJQK4xmheT7O7UJTo06fowQC7/uKfwiMs9PAMcnocgPXDhzHagoxf+azm7QohaO9sZ7yMdex4nOlYnL7D7xG59rmTRzoPXWeGGXeFnY69e5n58susm6ixs2fx9vWhDQ1VswlZmKEQsTdvCK5eTXD9embv3iUxM0NierqmeVxLYfLCBTRdx7aW0UCPYtnw9vx5BvbvZ+zmzbq3JfOcA+Oan/6D7yKFRtyWTJuS+ZHFf+9rzcSnnxJ580YJryVTb1tDNY1VoVAsQ8woWNFm92JZIvzdi5aRodfugO0yIfwWAoMgNKS0SEboiQama1h+tPj9h50ALPC0sSACVBh1FGBFWuQtGemuA44/ep59K2W2vXPSajQlLEMqj2xNI3olmPF0vuzkdcE2gcamYsFOOIKvQtGKSMuNqG+A0Jl7egsBIicXsh2nKe4WVgzic0p4LRk1VtBslu2viv3tX4ZYqNndWLkspxmsSd7eR751cyNqBtgm4sNvQedgc/u1RNF8zX0QDaxehdHRju4xQNMQmobmMRAeD7rXg+a+ht+8pXvrBuRI2lpYG3lE19aNdRFeAWQFeYTDL18SfvmSNcPD2I8eYr7OjlKTQjDtRtF27NvHzL17efNKxicmYGKCtcPDvKpB9J0VjdK+ZQvjFy8SefWq6vqqQVoWmt+vhFdFSyJtm8TEBN6uLuIzM3VtK1+O7cfnL/E4433/jh117UMxAqtXN61thUKhUCxzpITYVLN7sbKxGyyoNILIqPMHJK1Z5epTKudrxTR5v4nk87jIenH+k9E3K75QrJMmoFO/JNAViJ7J8bmCtsNa2npdGI64k+/YzaqnFuexdMfWEjRcaM3XF4WilSl70kWl7ZDndMhpt5EWw7mI8sdLFYpmseyEVykl8uK/hanGWeMp8rCML4TivT/mRLsioKO/2d1Zsmg+X1Pb3/VHv4Z486xICQk4Dx/CjpEy9fAHsXpXM3XpRs36IgE9ECR44CDYkngVNswjrljas28fbR4P5usREmNjdJ0+w/jHH9Nz7BhTN2/mFV0zmbl8GX9/P9HxcmJvC9R1+3bVdSgUK4HwyAj9hw/z+tq1uuVYBhB68d9ob1cX4WfFro/1Zf9/+982re0liaYGdRUKhaIkpA2xGdQAe5NplmVivREa9Ox0onF0vxJdq6HZ+07o5I/myhftmXlfnYxIraGIKKVbbw32SbJfwnDrtcnapkx74aL11EpUFirXtkJRKklL7Lr/fi52rWmy66O3s7ntLzXUWEFTWXbCKxMvkJ//p2b3QrGcz+uOQcSGd5vdiyWPzJcnoJHtI0o+TOXEm9T/w8EhHv/af8Sam6u6D8Lno+3Qu0xdukxiLkTko48BMLq7aV+7lvkqIkSnbt0iOZff09FBWyxG7ze+wfjv/d6igk7bli2I/n5Gr16tuP1Mug8eZKxFcqtqHg9ElbWconUZ/+wz1h49yui9e8RnZ9EMA3uRiRJlU2wwRQh6t21j+rP6RPQXQ/P5OPWrv8qGH/mRhretUCgUihWAFXPyMyoU9UDa4O1C+Pua3ZNlQJMnR+SN+CqAtB3RPbminaiRSIpr/5tIv4d0kEM1bWQKw1K4gbw+5/PF6s2yLa4WCbqvudFzCsVSomHiaxGalapBaOAfAN3bnPYVigpYfsJr1xCs3QWv7jW7J4rlSN8m6F7b7F4sD+oYzVVzLOfBJOzv48Gv/TukadJ1/ASxV68wXWEEXUPouvOn6QiPB6lrCOHYGAvdsTRG1xGaAKFhWzYTrtiaiTk9zcCBDcyPjORPZF8mibk5nl++DMC6M2eYOncub7n2nTuxg0HGrl2Dx4/zlqmEqZs38XR3k5ierlmdlRBYt46Zly+b2geFohSSkx78rujau38/b2qY+7XYVaVv//6miK7B9ev54Nd/nf4jRxre9lJGCBBVuCSUUr9CoVAsGzSvKxqotBPNZZlGHAeHECpH5DKhghsgaUNi1lnXCLoCaUotzfP/zCjWjM+cygA7v7giLedaVrP8irbbrivoFIrWTeZ3rfX1s1VuNpexa59imZHM95pE6A0UYrXmRKlrXgj0O9coRcmosYLms+zuCoXHh/5H/jr2p7+JvPTvmt0dxXKjb5OyDKoVLRDxuoC+1RCacQVSA+amARDBDpgPMzsVxXajJacvXFi0ja6Tpxn/6KOK+jd/4wYbTp/meQGRtFJef/IJbe3tWPPzCxd2djL+ySc1bQ+gZ/9+xmq8HZUQ3LQJlPCqWEIkI10nb95k1Xvv8ebTT2tTcZHfMTPSmEggoevs/a//awZPnyby+jWrPviAjq1bG9K2QqFQKFYomg6BQYhNq8hXRe1R9ofLm1R+xaRImimkAlZS+JBghhavzwhWPiZix2snvmY+FxQTVWXSlrjGtMo8jCyhXKFYQiSF2Jrlfy3mjlWjJkrpg7cLdA/YlnO91NTkCMXSY9kJr0nE/q8ib3wXQtPN7srKZDner3StQmw71exeLB8WyTHYUDxe5n39fPnL/yrrY70tSHDNKjoP9THzOMTcvc8b2683r+navJmZJ0+yPha6Rv/efWi6Tmx2lulHj0quUpom3v5+InmEV/PVKzydnSRmZ6vuehJfXx+jZ8+2hPt4otZ2rQpFA/EYtbtlK2Y3HhgcJPbgQc3aKkTXnj28+/M/X/d2VgJqQphCoVCUgRDgbYdIlOX50LoUWIa/W74eCAw0uxeKuuC4VeW1wxUGYDuia9lRYOX4GechKbLknk5S5oiI5bRRpKzQ6hDtqoOpJsEoFFUjDJC1ikQtch1oVACNEQBfV2PaWuaosYLmsnyFV18Qsf9D5GUV9aqoEqEhdn8Ntp9x7GIVNaGedgelICXYqzYRmU/w9up1pm99d0EZKxRm7sFjZFs3M9euV9JKVX2MPH6Mz+NhywfvY9k2VsLE8HpJPHpI/PYtbKBr1y6mhSj5Bsg2TeJeL13vvsvM59lCcnRkhIHTpxk5f76qfmcSXLuWxMREzeqrBivRxDwYCkWVvL18mTXHjjFy5UrVdU08esTg8DCjGbmXNa+XVcePM1lCNH8tEK00+UahUCgUKwvNA7pfRb02ASkzIwWXAcKAzk2OzbAa3Kwhzd6XwhVVcQTVQjae0gTbLGzPW5QqzwNp4vTTQ5ZFsUykBdKKbDmTom3ORE1pucuWq1X7MrouKVYe0qxdKgVpuUJu5nVNOJM9zDzOeQqFoiDLWkUSh38Y+fAqjD9vdldWHqGxZvegdrT3I3Z9pdm9WH6I5gqvT75zkbn7i0d1CZ+Pudu3K2ukBlYfMpFgLsOmN3OebceZMzw9f6HsWWezjx/Tdfp0/oWxPDN5q8DT3l7T+qqh2WK/QlEt41eusGF4mOcZgmkltPX3Y4XSFmg9e/fC/DyTVdZbDn2HDzesreWNcPKG17F+hUKhWJb4uiAco3Z5EhWlYS+vCDdfF6JtVbN7oag1dqJEAUOrYZRZJcjCkbaa1xVQyr2Xs1wBJ88iIWqrT9rKkUqhqB0yj2BaAUIn+95IcwTXmlkZl4Dua1xbyxo1VtBslvUotNB0tK/+mWZ3Y2Xi8Te7B7VjbhQ5pfJC1ppmi2CliK4AbXv2YofDFbWRmJyqaL1SaD9zhscffZzKAVkuthB0HTqE8GTPgp3+5BPaN2yoRRcBkC0081tF2CmWA1O3bmEEAlXV4evsZOKzzwDo2LKF+JMnRJ49q0X3SsY/ONjQ9hQKhUKhyEJoKidnU2idZ4OaEJtGWs0U3hR1odSosWomk9dTxEjmf634WVy44ksO1Qo6C5pppefzZXZtUqxManUYp6zMNUjMNlZ0TbarUCwDlv+RrOlOMmZFY0lEm92DmiJvfxtpL1dLlSaxRKIPheGteN3w/Xv0vz+Mp6+vdv3xegmcOMmTjz6uqp5X585h6jqd+/fj37cPPRgEQA8GCb95U4uuAhAdHa1ZXdViRpfXdUmxMolNTjJ48GBVddimidHWxqqTJ9Hm57EqnFxSDeFXrxre5rJE4Ayq1e2v2RuoUCgUdaSFJgiuHJaZnae0YP5Fs3uhaBbV2HpaURz7zlqeEyItulZDysbYSFsuQ+3FkFa6Bjcqd6VCUU+kXaPzVAAaxOdqUFcFqPH32qDGCprO0lA+qkD0b0D7ff/P5RWBuRRo9GyYejP6APnpv0GGJsteVUqJHHtUh04tbeprd1A77Hh11rszly5i6IKBDz90BNgqHy78773H8xrlYB397DNGPv+ciVu38O3aRc+pU1gdHdjx2s3a9nV11ayuagl0qqgGhQLA5/HgiceZvniRWJMmR8gKo/UVCoVCoagZRkBFvTYauTSeAcsi9Bo5+7SiyFcpbWRspg6dWuoskeOkWrHODLv5YwtY+5aL5qFm9unSTP8lBdhaj/O1UrR4K4nACkUzseKQmHMiXZfbZCmFosEse+EVQGw+hPZjPw+dA83uyspA05dnroaXXyC//Xexb3+7pOJSSuSXHyM//mXkuX+KjIUWX2klsQQiXgPbdzB3/XrV9ehtbcxevoAIzRJcNUD/B+9XVI93cJAXFy9V3Z98jH3+OdNv3hB++7ZmderBIKEnT2pWX7WE7twhUMPoY4WiWUi7ukGPZ59+SveJEzXqTWV07d7d1PaXE0ITdftTKBSKZY+nHfxqnKBxLLMJ2knmX8Lbq8hwaRPapG0hZ5/B2DWYuodU0XZLj1rkUgRXLLVcrVnLjjAttz/1Or+SAmxN0aqLGK41tqmiXhWKJHp1qY2qRqvwOqhYgBoraC6tr3zUCNHRhzj4NXXyNgKtlfI01IG5UeSTq8hHlxxxNY8FgpQ22CbyxXWYfO58+Pwz9UCVwVLIt+np669JVFbs1SsMN9rSnJoi8ugBmrd8C3R96zakVb+Hk+CaNTWtr/+994hNTNS0zmqIjY/T29vbUlG4CkUlVHsdMCMRHp49S9+ZMzXqUWl07drF3r/21/jhK1c48DM/09C2FQqFQqEoiO4BI9jsXiiWA2YYOfsMGZ10xgryPP9LaQMSQiNgRpyIx9hU4/uqqI5aje3YmVGfVQin9c6JWKkgXJAWm4QhTUAq8VWhSEZ/a5WnXasIzQveLmhbA562xratUNSJFaVCigMfIl/ehSfXmt2V5Y2xzHPqjtxGjtwG3Quv7zj5bD/4r8C2YfYNJKLIa/8eQtmCk7z52/D0U3jvjyN61jap862DWAIRr9GXL6uvRBN0vXeU2U+vuu819N4B7BcjZVXTceIkjzMshvt27aJrcDBl9/P4XPX2w3MPHoCuQ43E3dCzZzWpp5bMP3jAmqNHeXL1arO7olBUzPQXX7BheJj5t2+ZvH+/4npipolvYIDY2FgNe1eYb5w9i39ARRXVHDXZVKFQKKrH2+kIIMvRuamlWOaixrz7/Kh5nfECIwg9O5C2CWbUyes5/XBh9ODkHaS3C7q3IwyVJqvl720kIGthkyucYyQV+Skqs/PNzesqdNJxNrJG0ao1PnetRG3rqwV2AnRfs3uhUFSJcCLppVW5PbhwczzbDbIDFxoEVynL73qgdmlTWVHCK0+uK9G1HviCiA07wdCdG7roLCQize5V/bHiMPrA+X90HnnxV2HmdfF15kaRP/hFZKALsftDxKYj9e9nq9Liwqtn1SoiNbDJFQiiLxwBUgsE6Tj0DmM/+KisOrRAgEgkfU51bt6EZ2yU2S/TgsvqwQE0r5d4bx9jN25U1NfImzd0bt3K3KPa5CSOjY/XpJ5aM/XZZ/h7e4lOlp+zWaFoBWzT5M3ZswCsOnyYN599VlE9zy5dYvvwcEOEV6Fp6IEmWxYpFAqFQlGIREiJrnVA2rYjNlpxsGLO/1cCdtz5s2JIKwZjXyw+gB2fgdFPkbofurchfN0N6Wpr0uIjxZoBVg2uF0Jki66a4eZ8LaszZImiQnfFlkzBRXfLSCoWUGtqCywq70e9sRNuTtsWPwYVioLI9PkqtOpyM2veBomv6nxTLE9aW/moNZsPQVt3s3ux7BDrtkP4Dcy+grm3K0N0zUFe/rXFRddMIjOODfEKRtTbCqdKvH3VR2X51q6l+9Qp4m7e1EpEVwA7EsG8fo2NZ84QHBqiIx7HnMq2o0qMjxMbGaGtigeEnkOHCNUiytelffPmmtVVS6RlsWbfvmZ3Q6GoCd62xW14ejdtYvfwMHvOnGHL8eN0rU27Ljy+coXg+vX17CLgDLx++U/+Sd3bWZEIUb8/hUKhWCkoq+H6YIacsYLYpPP/Vsrp2AhsEyZulzdwbUUh2jrpWhR5qMU9kpZjcV6R6Apgu+tpgF5AZHHtrauxC66p1bCkZYUWadfftlmhaBglHMtCd65Hmsc9z7XsZY1AWitnYlajUWMFTWVF/ZoITUcc/gPN7sbyw7OiDqP8TL0of53pEeybv+3meFmBtHqO1yp/RITHgwCmL15IfRYffVtVneaTx/R1tBN7XVjkn795g/WnTpVcp6ezk/5jx+g7coSp69exY7Gq+piJXoIg1Cymrlyhc926ZndDoageO/9viL+zk83Hj7NneJi216+ZPXuWmXPniF2+TPurV+w5fhyhaVixGP619be/P/g3/yZ7/spfqXs7K446PkcJQcuOiSkUCkXN0XQlvtaD2HSze9BkJJjh8leLTiHnazchVlFjqg3WFLojtNZ0IkIJ0azSxIl+LRXXbhS9RnbFmVW38HiQHVe5XhXLg4LjmlpabE1GyEoLsJ3nP82TXr/m+Z3z4O8HQ7lj1Rw1VtB0Vpxiph38GuKD/7LZ3VhexJUlU0UkIghvkJV6pdI8LZ4LuEpB3NPTi3/9Bjw9vanPIo8e4untqag+4ffj6ekh8vjx4oXjcXoPHy6hUkHbhg2MX7nC5Cef1PxI1LzeGtdYO+xYjL4tW5rdDYWiat5cuMCG06fxdnamPtt45AiDpkn88mVmzp7NO6Fi5vJldp8+DYAw6vswtfMnf5ID//1/vyRyeysUCoViBePtAqN1Jw4uSVa0XW4V2PEVnmuy1cdIqhTlNMMVMzK2sxqrc6G5dZXar1Luyd2+SROoQ6S61sKZ71TUq2K5IK20iJpE87iXC6vw5I/M9ep9Lvh6waPuvRTLkxb+pasfYu/7MPoEeedss7uyLJCJeMvfFrckg9sROz9odi+ahpEhErQiskAUWakIn5foi+ckJrNtoiqyWNY0OvbsZeazT0sqLoMBJj8+S3DtWsKvXuUt4+3upm3DBqZv3Kjb+RsdHa1TzbVBzWFVLAuk5M3587Rv3EjEMNi8YwczV66UNEs7dP06QghkohJbsxIRgj3f+hZCWdHUD03tW4VCoagJQoC3wxEarNq5wKxoWjmqrZUJrkIEqk99s2RZCfeN0qI2T6TCEUhKnjjuWhMLvXg0XLJsvVgJ37FC0QokRVRpOed9yZH27vWpri6NAjztdaxfocYKmsuKnMIjNB3tq38W7U/8D4h9X2l2d5YBSr6oiJkRZHS+2b1oGqLVI16tymd1dhw6hDU9Rez1yIJl5W63lJLuY8dKFl219g7mR8cAaN+yhaHhYfRAtmVH/9GjtG/ezPSNG2X1pVy8PZVF9zaK2Nxcs7ugUNSMto4ONq5ezczlyyVbY5mzs+zYvZtogQkateDgz/4sHSq6XKFQKBRLBaE50Rf+/hUecahoKvGZlZuSCGj9iNcqMNrcCLIajaPpvtKFESnAdsc5hA5oC58bUraidT7+Wt3Kt9X7p1CUjVaevbm0XcG2ji6X/j41CUOxrFmREa9JxMAGOPMnkfOT8PSLElYQaH/gryBnx5Bn/2WdZ30sIWx1Q1IRfZtYyaJ1ywuvFf74C5+P+OgoViiUd7nmLW+7e4eHmTxbenS+951DjH7slB89dw6A/mPHmLp1CysUwtvdTejFC6JF8sTWisnPPmPgzBniU1PMPXhQ0/yx1SIMAzMeb3Y3FIpF8bS1sXrfPnSPhyfnz+cts/7YMaJXrlDuVAL/6tWIYJDwnTvVdzQPve++y26V17WuCOr7rKoegxUKxYpECNC9ILohNulEhy2+kjOAaEbAzP8csDJRvyQV4e10hJ8Vu/tafcMr7J8wKCxoVjA2pPvLE1KETI9j2u6zsOZ1I+EEjjDTqFRi0hWNZbovLYPW+oegQpEkOVmi0LkrjArPaw3MaMXdWhQjAEawfvUr1FhBC7CihVcAYXjR/+C3kFNvsL/3T+H1w+zlBz5ErN0Fq7bC9FvEut0IwJ6bQH7+29C9CrH9KPLlnQXrrhxWrnhYDWLzcYS/o9ndaBpCb+3LT6VWwzIWQw/4Cy4vJ5diz+nTZYmuALFQeMFn41euMHj6NKPnz9N3+DBvvve9suqsFDuR4K0r/nZs30746dNsS1NNo/fwYcxQiNk6CT+F8PX3M3r3bkPbVCjKYWDnTrq7upi9cYPI1avo+/fnLbfp5ElCly6VXX/XoUNMP3/O9KelRdOXXf+uXXz4u7+blXtWoVAoFIolhaZDYMCxHY5NLxQ4PB2uQKs7YobuTUeHWDHn/0YAEvNq0raiPNrXITRl09y6VDgGJi2gRhPQyxVdpSSv6GvHHfEVm8YOo7v7UOBcJ81IznJ3AoxtlredtUCde4pWJ2njXyxPK1QuugoN4nPUbbxf94N/QEW7KpY9ra18NBDRswrtR38GHn6CfeFfwdwEYvsxxPCPpXMytvemy5/8Y4iDX4O2Hic/WvhDGHsOiSj0rsX+zX8As2NN2poGY9sr1LS6OuTL6zC4bcXmvdM8LX75qcBaRgsG6XznHWYuXSxSqrTvu+voUSYLRLcVwrdrF68KiCij588TWL2ayRs3GDhzhjFXEG0Ucw8eMHjqFOMXLqQ+69qzh/FPPqFz166G9gWgbetW5Js3DW9XoSiF/p070Z4+ZdqNEheGwfzbt6nlG44dw+fzMTM+Tvz27bKvV33Dw4ycO4eso4XW9p/4CfwDKzg3WcMQdX5gXZn3KAqFQpGF7oPAIJhhiM8C0hFdvXkm0QrhWBVjpwdGdb8bNSucAf3IChknADWoWimRMWhf1+xeNI/leNwIzYnuqoWIWK7ommzfLiDA2Kazz4UEdKDBQqe0nG2yMqLrdB+pqFhz4eTyuiJ0VICJomXJm6c143hN2YXLyiPY47OVrVcq3s7leZ1vOdRYQbNpceWjsQghYPtRtE0HHevhTQfTomu+splCbLALNqajUcSWw8jrv1v3PrcEVkIJr5Xw7DPoWQ9bjje7J02h5a2GyxQkvEOr0Dx6UdHVt2YNc0+eLFpX+779zF6/XnYftP7+oss7tm9n9OxZ5n0+PF1dJGZmyqq/WqLj43Ts3Yu3qws7GsVobwfA39/PvOZeRCqMNC4bXc1iVbQuPf39TN+/n3ovDIPBHTsYGhwEXWfu00+JuHmoSzE/zKTvzBlelRlJXwlmKISUcsVOLlIoFArFMkMI8LQ5kVlWzBEJipUl415TM5y/JLrPqWNFoO4DKmL2KdLTjvB1N7snilqgeZ1rQC0i05LWwDXFdut1J4w0RXMUoAec66dtOkKxtFSuVYWiFFI25qJ6u/DEfC16VBx1XitWCEp4zYPw+GD70erq2HFsBQmvZs3cUlYa8u53YfPRggL/cqYcy92mUMaNgHdoFUIXxEZGipbzb9zM3ONnRcsEtm4l8uxpRflQF3v8iroRc1LKuka65aN73z6iY2OpPmQyev48ejCIt7MTIxAglEec9nR1EZ+ZqdnQjbrNU7QqRjDI/I0bWZ/Z0ShzNYhSD27axOi1a1XXUwrXf+ZnGBoeZujMmYa0t2Jx03HVtX6FQqFQpBGaI75Wgx5YOcKrmoBVOXMvYMUKr61+3JTRP83nWtcu8gQqFi+C5imhUAEWsztPjQ804UlZZIjSEue6kRKXbWeyikjmm8zXv1J2nkKxHBD5o11rkZtZaPWPdE0SHQN9nbL1rjdqrKDprDy1p1EMbobOFWKxp9LVVE5sHmKhZveiKQijtdV627YxOjsRhoGntwffqtVogfyDLG07thMvwbY29Px50eXeoSHMuTnM2drd7AyePo23u5uh4WGQklU/9EO0rV9f0zZKQXi9eUXXJFY4TOTNG/T2dnyDg1nLAmvXkohE6Nyzp2b9saamalaXQlErPG1tbD5wAHNurvaVaxoJIDHfgBmswJpvfEOJrgqFQqFQ5MMoEi2rUCRJrMxxgiWBkKRGnIWWthXPh+6lJFGwkA1wEq0OE9c1ryN6al7nvTBad3xP2u6kl5yRfs3n7GMjWMO2lIiraFHqFrQj3JyuDcLToURXxYpACa91QgiB2LCv2d1oDIvNnFMUQYBnZT54t7rVsBCgJ6J4PRpaJAQzE7StGcorvhod7fQND9O2a3fB+ozOLsKPHhdcrnd2ogeDxIuIk4uS5/lg9MIFeg4cYPTsWea+/JK33/8+E5cvV95GhcQnJ0sqN33zJmgans7O1GeRV6/w9/Uxe/8+nbsL7+NymLl5k441a2pSl0JRKzZs3850nc7P3mPHmHv6tC5159K5YwfH//E/bkhbCvees05/CoVCoagDQksLHQpFIeohtC0VWv4eRAfD50yi0L2gexwr8jxI20RKu7iWV0y4TS2vw/CtHXeFHJtU1Jxo4fE9aS2cuGLHHKFUWtQs/MqOK/FV0YJodbAZz6RBx7zuB19XY9pSqLGCJqOE1zoiTv1x6FkBA/tKeK0cjx+ht7YAWS+0Vrcathbe0MRHRug9fozAxg30HHdz82oaiSePCH16BY9W+EbFv3lL1nvh8dB7wqlDeL0ENmwg/LiwMLsYwudj6uHDhQuk5O3Zs3h7eiquu/JOCYLr1tG2cSO+MtqPvHmD3tWFt6/P+UDTaNu4EaTEjMUwMkTZaujburUm9bQKQlM3Pq2GZhhsOXOG7adOsenkSXo2b07dpPZu3UrH6tWpshtPnHByO9cBYRjMVTOpo0y2/Zk/Q/umTQ1rT6FQKBSKJYevG+XRpiiKtjLHCZYs0gIjiBQ6UjhjHVIC8WnHvtOOF153QRSbyPj+kxG1VYgiksJWpHai8nqrxvXBLEfkTEW+ZtSRjJyr1gY+3UgdIwsVigyEkf7LuifQFparWzi6aKzDgrdj8ckmCsUyocWVj6WN8AYQx34E+bv/qNldqS+2hTqUKiQRQcZCCF/+2ZHLmWbneO06/B5C18C2QUpi09NEHj1KLZd2/puauSuX6Dp5mvCdm/SfOEbk0QNiLxwLYb27sLioBdPWN75Vq+hcv5rIvVtIoOvgQaavXq1qe6Kr1xApItx6e3qIN9hed/DUKUbPnwcg9Kx4bttcwi9eEOjro+/YMcauXmXMjQKcf/yYoeFhxs6fd767KrDMGuTBaBG2njyB/vQpD0fHsJfRdi1VerdupW/NGiIPHmTlZjWAQb8f3e8n8egROjCwZw96Xx8zdYxE7zl5kpGzZ+tWfybd+/bRn5yYomgMarapQqFQLD00w4mQSzQmBUDzUL9RFWNFkVKu0KiSJm+zHsi+v7KiOQEH+YVCiXQE08QcUvOCHU0vLCY0ZFYnDNe+WJAWYKt47pWL5X+UTplGH2fC4/ZLUraonBRqjYDzvSS/G2k50XRWtPC6KxFh4HzP9YyWVJSOns5jXPDcdI9poePkda3jGI9t0jCPcd2nJhU1mhV5D9E6KLWszoj1e5Ga7oqTyxRlwVEd0VlQwmvD0QIB5i5fTL339PXjXbUqnas198dJCPehRTJz4Rx6ezt2PI4dDqeKhG/fdOo69A4R00a/eT31oGyGnBlknfv2oYdniXx5HyklPadOM3X+HNVSSChOkmhwTlegagHQNE0mb95ccI15e/Ysns5Oeg4cYNwVdiuhkRGAldK5di2eQIAJN5pZ83jYcfQoM7OzdHV1oft8xOMx9OfPMcNhdpw6iWFZjE9M8ubu3Sb3fnkT6OkhkjOZYfXBg/gjEea//JLpjIkcmdjRKHY0PRgwd+dOXfvZsWtXQ0TXwTNnWPf7fz97vvUttBa3klcoFAqFoiXQ/StAeFVUTFMjEVc4SVEkie4DM8piAqFAOhqJt2thBJkVAy2ItGJgJxCe9vSyZFtaMh+sdHQQ3dcAsaxZg/LVCD3SuX7mdd9zlwkBZqSKJuwlIFhoZAnXEif6Nzl+kozaTdowu5HYdRXxFIURye/GKn2uQb3Pf6GB1YD7ECPgTGjxtC+B80qhqB1KeK0zwt8Oq7bByP1md6V+qITY1WGtzJseoTfnuNHb2vD29S/4rU9MjNN+5GhKeNU0ncxbHOH1ImOx1Htrfp7E1BQiEERGHPFV8/vxrNnAi6ufYScSbPjKB5hXLyEMAzueYOCDYaK3b5CIOzZD7UdP8Ob3vlebDSty8+IbGCA6NtbwRypzvrobuMTMTOFls7OMX7kCup7XFroUOgYHma7C3rnebDp+HPnwIfFXr9g+PIwtJZ5EgpkLFwDQDh8m8sV17FCI5LCM6UZXdp8+g9AEr2/XV9RbqWwbHmbm7FkGN25EeL1ohoHe18fc558znzEZoxWQGdH29cBob+fYL/0Sm/7YH0P3r8yc5c1GPbsqFArFEkXz4AycL+fUPWqSdlVIe4VaMjbr5kbLbzErbed8TdkFF++fwEZ62yE6mfWpNGMQHXWq1H0IzePWlRQS3edaKV0BrQEBHEJvzu6uOoCj2PoSZJUbJZKiZgsipeOakJycITzud2inP9M8zv9TDwoyLVQLw/3/cv7taSLCcMVtzf1e3Oj1VhS8E3UeuxA6+PvSkyEUDUft9uaihNcGIIY2I5ez8KrO4uqILfTSl9JGLPOcEs2KeO18513mLl8kMfJywbL5T67SdfAg+AOYoWzRUDjzV7OIvx6h89hx5j65gtY/SGT1el5fuoydcG52LaD35ElCN7/Aq9lErn2aWrft8BEmPv44HUlbBf7duxkvIrC1b9xIfGysqjbKRgj0Ogs+diLB0JkzjF28WJH4ajd6nxSgbXAQw+cjNjdHdHoagPVHjhDLsJ6dz4lY7B8+w+yFC4gCx070/DnaurudNzU4xlY6aw8fxjM7izk7ix2LMeN+H+EyLbSbwUy+3M81wtfXx1d/53foP3Kkbm0oFAqFQrFsEQJ0jxMJp1Dkw04smOi+IuyHm7V5RsARR/IJnkKAEcwQR4tXJaSF9HVDbBrQwY5BYi5dQNppsVVo2W1quivS1GBHCL244COaNPmj7s+o7v61IlS0H1sh4lVKUuKdlOnNyBRdAWQi+3jUPI59bKH+S9M9LurT7RVHSsh2o49T55vd4vu4zmKwMCA45ByvCsUKRR39DUC88/uQtz6ChMozoFiIvPdd5P3vQ7AbsWo3ROeQD87CjvcR2880u3v1owkRr4EtWwnd/KJomdDtWwC07d2P2LQZoWl4enswggGsSIzo69fER9+CbSNNk/kvvqD3G9/k1rd/QOyeYy2q+/1sOHkcef1TkvJt9FFa/AjsP8jkxUvOmyofNozVqxl7U9wytxm2n96eHiY//XTxglXy9tw5th15BzscRl+1huk3b5koMcpz/vFjNMNoWk7U7o0b6ZydJTHqzHoOAu379qH19mK9fk3eXmkaA6dOMXv+/KKPj9b8PLu2bCb69Cmevj6kZfHW52cuaaetWMC24WGIRBA+H1LTEJZF6NYt4p99Rnzx1VuS9g0bmLp1q+b1Bteu5cPvfIfuPXtqXreiDASg1XFQaJmP6yoUCkXT8XQo4VVRmOmHSJlwjhOfa18beo3s2Ynw9za7d8sL3b+4CJEUR0XmUGrGzdKCKEIBRhtE3pJSYIQOwdUI3Zsh4masI3QnsrYmE/GFI/i2HHoBm+AaI20c4VK4+9WiZJFZWjnfc4MRuiOoZtnSGs62FEtlpxlu3xe5iU/aDyNJH8MtrRI2n2Su3Mz9VTRPa6sj3UkfdTgXNS8EBpVDZrNRYwVNRwmvDUC0dSN2HEPe/rjZXakPzZ4FttSZciMvJ58jX95IfSyfXIFtp5ftbFbRhB/gxMwMMhwm9M4RogmT/lvXCpa1Y1ECkQnnTWjMub3SNIK2TaDbB4DW0QVA/O0oaw/s4/H3PwJg04E9WNcd0TF3RrJv63Zmbt5CVmiPm4vcsJHYpUtFyzTD1jk+OUnf4cNMfPZZ/Rvr6iF65w48fYoH2PLhD/H4u99fdDXd58vKtVm0ibVrmXv7tqYi7ar165nJyVE7X0QgMzo66Nqxg9kLpeW1laZJ9OlTABKTjs1V14FNDRFeNV1n7YEDvLl/n0SJ1rv+ri4CfX0Ee3t5e+sWZonfTSV42trYePgwIpEgIQQzb97Q19ubimRdTvjb2xcvVCYd27fztd/7Pdo3bqx53YrliRBiHfC3gW8CfcBr4D8Af0tKOVVk1Xx1nQF+GjgJ9AKTwE3g/yul/O3a9VqhUCgagO51BijtpTrFS1FX4tPOayIE4Yx7+PAbWNbCa1O8b50Xzeu8Fj0n5cIcrrkIDSFBegLg7Up/l23rEVoy96bMGU/TanctkJLWtZK1AJ26908INzo0niGae0oUyso5BpMCZg3JJ4ZJs0gzWgUimsx5bSSVRFprC/Mv14uU6C5drVUuYYG1CEZbdiR+LdB9jui6zF0cFYpSUMJrgxDD/wVy/AW8bd18ghWzTIXBpjM/jrz8a/DujyJ8bc3uTc3RvN6GtmeeOM2biSnmLJj93g8I9PXRX2yFfLMIhQCfDxIJhG0j52cBiEVs7JERdn3zQ+797nex3zoPxVJK/Hv2Y7S3g2UhPAYzX9zAdoUoLRiE+GzF26R3dfE2w462EHHXvrbR1NtqOInIEbHl2Cirjr6HbngYufoJsoBY2rl/P5OffFK07n3vv0/o4gV485oNx49z88JF/F1d9G5Yz8jN6qIIzfHxksv616zBFwwwf+3zqtpsn5lmz/vvA6CZJqahY9k2iVicp1evVlU3gOHzsf3997EnJ5m7f591hw7x5OLFvGWDfX2s2buX6P372PE4iakpmJkh/vgxQ319BPfvByDh8fC0QB3lEujtZc2+fcTu3csSWQ1gpoXz/VbD/L17Na2v59AhPvzd3yUwNFTTehVV0OK3YUKIrcBFYBD4j8A94Cjwl4FvCiFOSSknSqzrZ4D/ARgHfgtHwO0H3gE+AJTwqlAolh7+XgiP0roiiaLliE4ipx9B1+Zln6KoIRjtrqBju9GClU5czhDgpA0Ix3LY2+6IEdGJbNEV10oWnFcZz6mrCkSJIq60m3MvKURj9L5cIVKQFtXsBAU3vpRAAZHMwysz8nq6+TyruZ6XK5oLvTZCu9DJuz9qmQ82y5a3mGAtMmyyk+WS1r2uAJv8vGZCbEabuSLrsg0GrvHJrwcg0K9E11aixccKljtKeG0QwvAi9r6PXI7CqzqL68dE6+cPrBTN11jhdWYuxKsM61szFoMiXZDmwps3YVmOgJrzue4PABC9epndZ04gdJ3wjeu0HXyHqSuOmOXp60f4fKnIQwAZi6G3tWGFFpktWwDv9h2wiFiWjDpt9FnatmED03WwN83Hixs3GXjnPSw3h27k4QPAmUe79fQJHn50bsE6mtfL2xKEtofXr7P9+AnmL15g/vJldr3/PsbsDNg2r3UNadms2b+fYGcnjy5fQlo26995h+j8PP1r1mDevkViyxaeXs0WeHWfj9jr1yVvY8e2rcyeLy3StRjRZ8+gQF7SbadO8fDChYrr3nD4MB1tbYx+5zupz4IzM+z+2ocg4f73v49t2wgh2HD8OPazZwUjTOMTE8Qn0jrM1kOHGBsbY/bVq4r7t+bQIeSjR8wuw6jWYviHhpir0eSLwdOn+aHf+i28XV01qU+xYvhHOKLrT0kpfzH5oRDiHwB/Bfg54C8uVokQ4o/iiK7fBf6IlHIuZ3njffUVCoWiFgjNyS1pVvZMoFihxGdYvmMxTdiuLPGmUpUldz3nvQDQPci2NWlHrKQwmhR6pZm92QuiYeuA5qU5+V31Gopli7VlOH+266aUmRtV82a/T62jlbb/pZ3ellTe1Bz71qSYmRTyhJ69Xj6RNjfn76LbqOGMflRJ0Tb16tpI5pTNEjT19D7O/DwpYqc+yz2vcnKnpkTvKljQ5gqhlpcYow38fSo4S6HIQAmvDUTseR9e3kV+uXiE2tJCXVTrRkf/sox2BRBGY8dHRY6vvRkOIz2BglbOdqx0m1O9LR3ZGbl9EzSNrpOniE470ax6sA1PXy+h+/ez1pOWRdc7h5msIJrPv/8Ar+/eXbRcfGam4Wdo1969JGZniU+V5R5ZMdGJScbu3KVP1xdYOIc+/8ydTZu+M2/bsoXpuTmiE4sHWEVnZohm3NXHzp8jmSVnz549iJ4eQhcuYAGbjhzh1a3b+J8/w5ieJvrYyfnrffyE/m3bGH/4kJ4NGxjYuJH4gwfEyrD8nblzF2EYUMd8tL7Z2QX7qhBt/f0IIQhNTODr7MSMRBCaxtj5bJF75vZtuH0bgI27dgGQmJoivIg9di6z16/TtXo1Q8ePY83Oog0MMD81xeidO2w4dgxd13n2ySdYsRjrjhwhEQ4z/ugRSEmwp4ehbduYvXwZO77ybPzCz5/Ts29f1Xle1/7wD/P+v/23GA2KZFeUTiunJBBCbAG+DjwFfiln8c8CfwH4cSHEX5VSFlQchBPO83eAMPAnc0VXACllnpEzhUKhWCJ4Ox0RJp8IoFDkw9vR0vcAVbGstisd1SewXWEu0+5Wy04bmcLGGbKtRATWSsjtKpoT7ZoUHhvWXuqfheQTGjUPThRyKfs954vLzNmbjJpOteHWmSqT/P4z+yaccuWKfzJ5XNUzl2M5Ecr5IlkFkLtdGflrhe6sIyuw9JWmKz4nt1+ko3STeVlTVtOuAEzG9yIq2OfLhdT1qMp7D08H+HqW2bV7ebBs7xOWCEp4bSBCCNj/VeSjz8BSD1SKEph4hhx9gBjcXtHq8vkN7C8vItbsQmw/gfD4atzBKtAaaz2R+2MjbdvpQwGRKf72LR17tmFPjC5ed64NjW1jJixmP/sMLRgksH0bc9ev513Xnivfaljr7OTNw4eYi0TK9h89ykQN7GNz6dqxA09bG+PXFubIHTxzhtFzCyNM6010chL9zGnMz7MjS4NHj8N3v4+3sxOhacSmpxGaxqrt27HWr2c+FMLn9TJy82beervWrsXOs50A4Tt3st63RaPs2L2L0OfZdsCJqUk6ZqYZ2LoFoWlEnzwpS3QFMNrawExgzVZuTZ0P/969aJ1dhC9dJHT7Frs2bsBYs5bR8XEis7Os2rYNn6YxPTPDyJ072IkE/u5utmzehCUExu7dzmNVLEbCtgnbhZ/GqrW8jb5+TTQnSnh1Xx+RTz/FjsXoDwTQOjqIXrkCwEBHB1YkghwZYXpkpKq2lzJWJEL0/n3WnDzJ6PXrmCXm3M1ky3/xX3Dyn/9zNI8KKFSUzQ+5r9+RMnuUTUo5J4S4gCPMHge+V6Sek8Bm4N8BU0KI3w/sA6LAVSllebM5FAqFotUQAjxtEJtudk8US4XwGLJ9PcLwV7Z+fBbMiHPcGW0re8A8VydaTGAqSzjMU7mUbh2u6FMw6rSS3KGiBNEVV2CssQAqM4TIfIeTMBoX6ZqFBN0PVs7k+pQInLuf3e8GKJqLtJhgl7udye95wfhTsm7XPtc2Kf87rxMpMdTOEDe1bBET3G1Kbq/IsJlNHgRy8XOm2uMib/1i4fcjM/qZsi9eyTb/Egwf4K8816u3y/lbyb8hCkUBlPDaaIa2LL+L0TLbnFZDXv8N+PCnF4p7paz7+FN4dh357Dry2m8h1u6FvrWIrccQweZaRYomC68AGAYkCk+CMDv60BYRXn373sHjCxJ58gRzdgaAwJ69TJ49i2/1GkQwUFB0BTD6i2aazd/mgQOYZ4uLmx1btzL/5EnZdScRuk5wcICeLVvA62P22TN0r5fg4CBT586RkJKB995jLMO+eXB4mNEm2rg+P3ee7V95n9DVtKtAwjTZeuo4oevXEMLA90Mf8OLiJeYfPqT3/ffpH31L4skoCEHnqiFWb99OIp7g+bVrmLEYg5s3YZYYnRkqIN6Csz9j0RiJ2VnMufJuaL19fURGRug/eYLZGoraUkrihofJS5dYc/oMcn4OEES/vE9wcpIgkBh9SwLnZmHXzl2YfX34IhHi8QSTX3xRs75USqYdsRWJYEUiqffl7ufljEwkmLx4kYGjR3ld5mSMPd/6Fof/3t9r+DVbUQb1vw/bJYT4LN8CKeXhRdbd6b5+WWD5AxzhdQfFhdcj7utb4HNgf+ZCIcRZ4D+XUo4t0h+FQqFoXbTGpmJRLHVsmHkMfXsqWz0+60RZmyFHEDMCoHudyCWVn28RpLOfFhMq9IBrKWylxwGT9rapyLtmWP26AmiFY5MymZ/WtkHTnbEW6QpZlvs8ZgTyt9ksZGYe1szPMvKIah43L65whFpkhiabFMkzc4oWE81z2y8WUemKmSU4Ty1EOOtqntru31Tkqbvfkvsh0xI7yx44mR82KbK2gnhcrA+t0L9WosRrWi6+XvB21KdLitqgNJumooTXBiN0A/H+jyO/9yvN7krtkNKdLSecEzoryTmkftBS/3c/Fxmzn+wm3oC1OvNj8PoOrN2/eNkcxI5TyEfuIHt0HvnoCjwCeeM7aN/8aUTfuhp3toy+GY29/Gj5Hio0HSggvOYpr3V1Y6xah/B4kNEI0jKZcaPr/B2d+N85Q3RyGulvI7h7D7E3rzFHFuakNHp6CGzZxvyjR4z/4KOytkP4fIx/+aDgct3vp/fgQWbu3iVRYXTkwIED6C9fYI6O4tu8hdc/+AHgGMPEMqIWPYH0w1Tbpk01E13XDQ+DbfOygpymrx88ZPV7Rwl96hz38U+ukDSXlaZJ9MolhjqCeE+fxp6dZd6NoNx4+DCdPh/zbo7TttVr6BocZG5ikkC+hsokuGULE3cWt4bOR9fevYTv3MGqUEiUUqIdPYbZ0U5b3HmQtG2b8OvXTLvRvK9yvruuPXsI9vdjxmJ4fT5sJPFoDMPQiXd0kJifx7tlC23r1hG+f5/Y27cV9U3RWKauXmXw6FFGSxRf9/61v8a7f+fvKHsaRTUkZ3nNFFie/Lx7kXoG3de/CDwBPgSuABuB/w/wDeDfAh9U2E+FQqFoPprhRB4uu1yv7vjAAstPmee/MmMdubCcIpvYJDIRQngqSE/k7YCoO4lRms6AewJHkA2udo7HptHse89SjrmcPgrdFag0x7ZTGM6rlXA+E4YjVAJQRPgUmlOX7VqlltVtAbJYahXN+V6rEV0t080vLMHTjijo5pdxDtdSdF1g4VvqesK1VBVpS/cse1WZFl01H+kxTYmTi5QcobGGkxNKTPeTF80gZTVccfvJc9093pLCeup9IueUMNJ9zhzXzVoXUoKyepZcIrhj+6WmPFCiq0KxKEp4bQJi50nkR//78rEbnnqDrDKVo9jxLujJH2UNYrMQm88swUp+4JKTzxGLCK/StiEeRvjbnffReezv/K/5C0fnsb/3j9H+8M8gPBVaE1VJo4XXvDd7+sIo4oGvfgXDoyMf34WxJ4hdu7EsgQgGSUxMMZtjI5vEmpsl9Jljcxs8/RU0XRDs73HsjDUNgUDGY2gdnYxeusJkmTkuk/iOHmXs48ICZ8+BA4y7YnAlGG1teKeniM04Y+GRx48KPggIN1+mp6sLT3t7xW3mEnv1itCjR/QdOMDEjRtFywrDYN3xY+geg8j0DNOPn/Do4mU279lJ5GF+gdoOh4lcPIfWN5j6TLv2OZlXnPV9vYS+uE7Pxo2Unu23MEZPT1nl9WAQT1cX0devGTt/nsDatQusjUtBO/QOr2ZnmbxyheDAAGt27mT02VPmX79mw/HjeONx4i9eLFhv5s6dgipJJu3r1mVFmSpaH63Ea+87P/dz7Pvrf12Jrq2OEAtymNe6fuBeCZGtFbfgvi52k5f8wRY4ka3JkPvbQog/jBNR+74Q4oSyHVYoFEsaz/ISXoXuha7NFa8vpYSEe5duRh3RJTHX3Mi5ViM+5xw3xZCuiJIUraxYWnTNxU5AZNQRX9V9YJqkja6UYCVTd2hOlLBwc0pKi4U5PHGWWa79r3SjB8nISSnIiL5M5qasoH+LDZtphlt3pZGudlp0BedYKSTQy2Q7VYiKCyslKzfuYrePUmYLpNLGuaUsZucrHatm3Zd+n5mLFNzvqZbXoHK/j8wgFjd6upLI6aQgnpkjNRmtqhmuAJdnP0mztHkxKnJ+CVLid+bvX/x3R9F8GjNWoCiCEl6bgNAN6N8Abx81uystg/wyR8wSAgY3OvcTs1OIjdthdmHk4IpA6Ij1hxYvFwth/9bfA18b2gd/2vmsmLg/N4688R3E4T9Uk26WS6OF1yzxQAj2v3+KgYEeNAFIG4mGwCb6xSfo+w+C6ew7o6uH6e9/VFIbUggCh95j8ju/W7BMBC+Jycmsz9pOnSIRTyBtG9uysBMJ7EQCmUhgWxbSsujcs4exa9cYLyK6ghPxWg0b3n2X2YsXUu89mzbDm/zRjNOffsrQsWN4g0HmMnJorj12jIRtE3rzhlAeUa8YQgjiyf0zOcna4WEik5NM3rq1oOz6r3yAePQl5rVPsXAeofoAvFpB0TWznbZt24gVyP0ZctuLPntWVv9z8a1ejezo5O2Fi2Wt17ZlCyIaQe/pxjM0hObzIzvaCZeQJ1VKib5tG7P9AzzLEPjDY2M8HEu7cD49f55tp0/nFV4XI7huHW0bNhB6+BCzxnlnFfVlUctgITj+y7/Mjp/4icZ0SLHcSc7hKJTfoDOnXCGSU/weZ4iuAEgpI0KIbwN/FjgKKOFVoVAsXTLtGhXOM1wyosZ9lf5uJxowKV5FRsEsP4f9skDzgL938XJ2HMJvHDEpMODmkSyCFXUmAHhqN7l2yZASCZOCoSveSdsR5DItwXVvtghVFOHsf7tQRKoGmsg/kJ3KQZkvqhA3krNSq9rScCZBhLPb1TwU3Hg77kaOusKlEG5RyxUuZQWD9plRtAInorKQra0GdqRw/4qS8Z3nXZwUXau0iRaacy0rGqWcb72M3LRCSwv/JW9rngje3G2Vye9pkWtFof6paNelyaLfl3B+Q3KtxBUKRV6U8NokxPo9SCW8FkZKePs0/T6xQh+khIY482cR3WvzLrav/SdE/wbE+v2IQAfaj/4svHmAvPEdGNq2aPXy1veQe76CCDTeHkJoyRvExgwqbB7sYes3z4BtI+dmsEYeEs/V3FxBwpqdQZMSIQTml7fpOnYsZSlcDP/+d5i+UNgeV29rJ/HiDQDG4CC+HTuQQjDz9BmhRQS+4ObNREeL55sFiM+UEqeYH6HrzF7KFghjEwVmQgPSsphz90v7rl2sHR5GAPHXr5l/8ADh8dD/7ruMF4gSzsfQ8ePMumJh5OVLIi9fovn9rDlzBjPsXAe8bW0kxscJP3xE19YdJMYvVhaVVyS/by1o27mTWCzO/N3yLYZnb93CNziIb+06PL29zJw/V9I8WG3zZkaDbby9eRMePCxatmP9emSGEFsqRns7HVu2MHftmsqjugSxZmbwDw7mvZ5oHg+nfu3X2PzH/3gTeqaomNYez7jvvu4osHy7+1ooB2xuPdMFlieFWTUKoFAoljbCFWesWniuLE+E0By3LFwxaMWKrl7o2+tEFeciJcQmnJx9us/5a18PZgRiJT4vxiYd6+tmCCeNbtNKuGJaMg1WiWMUdrz03JrJ3K6FSApozpt0H6zY4v0R+uJlIB0VWxFy4XVJFomelXY636vmxRl+lmDF3b6K8sWbTCEwtc9FOpI7s6/Sbu1raSpqtgLxVpo4OWfdiGLbLPGcSR4n1uKHSzI3cdloLMhrrFg66N4i1xwNgoMZ0eCKJYE6DZuKEl6bhFi7C/npbza7G0sDTYdo5WLSkkbaMD8B/VsWLpI28tZ3kYEutMGtEJnBfngFZt7C/CR8WUKEnRlD3v0Y8e4fqEPnF0d4PMh4mbP7KsRjm8QeF4+CTOZciT17Sud7RzC/vI2Mx+DJXfo+eJ+Jjz4uXP+6DcxcLh5k49+2HW1ilsDhw4x+fg3z7Lmyt2Mx4jnRtKWw6f33efrxxxiBAMSiKTE8uH0H4/fvL7K2w/y9e5ATjSkTCWL377NueJhELMbbRcRroWlY4+MLPrejUabP5d9XkRcvGBw+g5idJvZgsXH7bKLPniAMA2lWMIuzBPT+fuar+I5jo6PEXHFsYHiY2fN56vJ40HbswO7qYjae4MUnn5Q2mUEIBjs7idy+XXa/zPl57ESCxNycuodbgszevInm9bL6+HHweHhz8SLSsjCCQd7/v/9v1n7jG83uoqJcWntQ4wfu69eFEJqU6en0QogO4BQQAS4vUs9ZHF+47UIIr5QLQgP2ua9Pq++yQqFQNBnd27piQatRKCJtJSDNwkKetJxcrXYCAkNgxZGJeUcotE1EKVFsttnEqNcG39tIu/S8hnbctWg1XXEx7ggRxfaptshycMa9JCDyCJyLUsr+EjgiX+n7VkrpHC+6mxs1EyNY+uRnOw7k3rq526l5ccS6UjqUTwiUxfetHnDaL9ca2E7a79YJKau8ftnpCOJi4r/QSNkyl7MP7ApFYWxSOWAVSw9puxbCmnNeJSc2CR0Cg879iWJpoc7FpqIM15vFwIZm92Dp0DO4oh+o5Oe/jn31/8T+9N8ip9MhmkJoiNM/Dp3d2D/4JexL/we8/BQx8wRhzUB7CZZDgHxxs15dXxTN42lYW7LAlD5jw6b8K3iybyjMO9fo+8oHBesX3Yvvb6kbRNraGfn4bNmRglYsVlI5/+Dg4oVyCF2+xOYP3mf1hvVg2wiPBzQNz0B/1RHJVijE5NmzxJ8+pf/QoaJlV504QejBIuJ4HkbPniNG7izXxTEnJ+jYu7fs9UolXkML3tkvs0VlKSXatu28XLWamzdvcfv8BV5cvVry97X5zJmKRNckY5cuEdi1i7Zti0fWK1oPOx5n6vJlps6dY/Xx43i7u/nw935Pia6KmiOlfAR8B9gE/GTO4r8FtAH/u5QyBCCE8AghdgkhtubUMw78axzL4v8+c5kQ4mvAN3Dsigt7/SsUCsVSQWvcM9KSZzHL3OWMtGHiNnL6AXLqS6SVIWxpBtLbgwxPICfvIKfuw9R9mHkMc89Lb2OlRhMnEQViVbTMZ09XQCxUNlmmFOxYOhdsOZQ0XiYrEBIlxGeRVsLN7QrpvLQ1GE6WtrPvCtovZ1BqVO8C7Moi9Ow4dZ0AUMsxznxjAEnbemm7kwTKEF0rzRmbJLnvlGP+EsZ2znFPh3NtCw4p0VWhqAAV8dokRKAT2rohNN3srrQ8oqMXEuVH8S0rXt4AQI4/Qa4/iBjajujfgrb5XexXn8NoHktRo9QfxebdDTU0z2uezdR7erk3EWZnVw/WzFRO+YUrWE8WRlS2HTkGQjBxrrDFcGp9n5/o2/z5UovRNzzMm7PFc7sCIATRPBGjxdj4/jCh8+eZcyNKvYODMDCAQBCP1G6mfeztWxZ73LGilben+31UYoSjt7VV1F736TNEHj0k9vr1gmXegUG8WzYzfrHyNINaMIjvzBlMQNo2M7OzWKtX09bRDggmXr1i6ssyInxdW29PWxsbd+4kdPZs1Y+Rs/fuMXj6NL5wGGyb2Js3VdaoaAbhx4/5+kcf0XvwYLO7oqgAQX0nsdao6r8EXAR+QQjxVeAucAz4Co7F8N/IKLvWXf4MR6zN5Fvuen9DCDEMXAU2An8YsIA/L6Wcrk2XFQqFooko4bV0So1SXLZICLvPl2YY6euBQD/C0wa+bph+kFfUkghES6siLRCho3mcaEwzj/VwbvQn5Be2dL/zWtJxWmFu51KiaZP1F7MGzkHKDFvgpOiqeZ0/UeM81NIEWwOtTuNDFU8mr3A7UzlYC9i1Ao6RS6WInN8JiWMj7H630io/wjdZL7I0IXwxpOkcK9Ku0uJa0VSE7oiu9To3FXVliYwVLGvUmdNMAp1KeC0FfwBW+vNUkvAkfHkWVu9BxuadHLB9m5HVCK9tPbXtYxkIo3aDCsIwEIaO5vEgPAaabqD7vAifF93jxdvThWf3bme5oaMZHrSuLg54/QRCswhdc/LOajpCc/KxiqEfAiEQmobQBAiB6b+B0dmGKXxYoRDzn14lcOBdsBa/sY3PhcrfLk3j7fnFRV2AoTNnGC1FoHVZe+IEoZy6/Tt28ubjwpbK1aB5vQhdRxbYV3qg8tR884+fVJTYz56vLCpVAnOjY/QcPownEMScmkRvbycRjTL1xRfIKkVI/fRpbn7721XV0bN1K11r1iAfPEDv6ECsXo0cGSH8+ec1u0EadY+f9q1b6T5xgulLlYvNisYT3LiR97/7XTpU5LKijkgpHwkh3gP+NvBN4IeB18AvAH9LSlnS7Dop5agQ4hjwMzhi63FgDvhPwP8kpVzMrlihUCiWCG7evpYWxlqEWggEy4XEvBMtGRxCWjEnSsnXCZE8E3OFVpowUzSKs47UbTQ3I4eqyHgvkqKfyPjMjWrNivLKWF8LLvxMxgEdNM0Rm5K2xCVRqcBXooCneSgritFOOMdUJroPQSFBsQZIWR+VoOI6K9zOpI1w6phyLZ6T0afVonmqr0doTp/shHMcCS1tn10rktfnVP0r18lwSSIM8HbU13JboQCEEOtIjxX04YwV/AecsYKpIqsm1+/DGR/4/cB+nMncceAm8KvAr2amPMpZ9yTO+MJxwA88BP458ItSVjSDJQslvDYRMbgZOV6GzctKRagHzkzEvm9AxwDyO38PElFsvR0z6kTBGb4ImnBvwEoUNUXvuvp1NofJH3yfyR98HzsSxopEsELzi69UIgd+7Pchp8YKF4iMQAc4Kn4CiMLMHMFC5Sfyf7z2aycxY1Ee/pP/EwDPwCAzn1wtqY+JSm5YNK3kHKRWeHErKKHrbDxzGuvVKyJ5+m1WEXW6GJEXL1gzPMyrAuKwVUE0cJLY6Cid27eQGHlVXp++vE/nu+8y+/nnZa0XvnMbb38/ibk5Jq5+Uta6ixE8fJib3/teVXVsO3KE8CefEH/0CIDEmzdQgY1zqcw/eoSvuxujo6NsG21Fc+jcs4fhb3+b4LrG/QYo6oAAtNafxiqlfAH86RLKPS3WqivSfsv9UygUiuWJEM6A/YqP5iwBU+XCzaJ7uyOojl53BsuNAPh6AAmxGdJCUok/8I20lkyE3GO+2tyXeRCLpKVJiViS1D6Sdvm6mxZwdq0Vcd97SrfDrsg2u5wJGouXS0W5WtEC1586js3ZcTAKjc4sksd1MSodO7ciTo7Ycrc7KepLq/bHci1EV8j+fqVZ33k+0kJlOlxiaB7XZljFNC5plsBYgZti6CIwCPxH4B5wFPjLwDeFEKeklAVG6FP8UeCXcQTbHwDPgSHgjwD/DPh9Qog/KmW2/YEQ4j8Dfh2I4qQ1mgT+IPC/AKfceqtCCa/NpLOv2T1YGsRrJ84teXztsO00WCYkokjLInL3NebD+85yfxB99Vr0vh68q+3Fb200HbHlSL17nWL68kWe/8N/UJ/KtfrfyBnbdqO9vc+z37uT+sy7bSemN+jkq9V10HWE0LJ/3CwLaduEfV4GjxxJRdHqHg9ikRsZCTwrMYp17vHjRcusP3mSeddWOB/x6emS2qqUuevX6dy8mdknTxYs865aVZU4aPf0o4dCWDPTZa0n56YxOjsxy8jJmpicxL9uHdEvvyS4YQPh59VPovEcP440DB4/elQwKngxvB0d9G7bRvizz6ruTxKh6/QcOoQRCCB0HeHeq0TGx5m5c4fOXbsIDAwQe/UKu8RJAorm0nvkCGd+53fw9an7EIVCoVAoWhJhoGyfiuOIREp4TeHtRPh7kYkQTj5P4QinyagzX2eGPWkJKovQHeG2UVgRMCONa6/WJPOIWhnbIEU61yYyHdGZ2v3JCE/pRgVmCMQiI/p2ARnfX6k2xqXYDFtxSBSZRFuGVXFFWDHHOjlfE0KvXEAFR9StJGdxJdssbRyhsYaia/LcrSoASzgTMmrtFCCMnH0k0tGzIhn1m3H8K1obzQuedvVdKRrFP8IRXX9KSvmLyQ+FEP8A+CvAzwF/cZE6vgT+EPCfMiNbhRD/LU56oh/FEWF/PWNZJ/BPcVIWfSCl/NT9/L8Dvg/850KIPyGl/FfVbJwSXpuI2P8h8tq3IVa+/eiKwfBCtDIr0KXA/J05sN2cB7Y7u9KWzkNk0p7Edv8Ara+f9m86N342AeJjccyH19IVRsNYTx5gPQHtxDG8i/xOil3DiO5V9dvAHDRPHWfM1ll41TdswYiOIgLtJFxxUu/tZ+yjj5GxWKpc14mTTF+8kLcOY/d+Qp/UNjoySfe+fczcurVoOb3IfvKtXs3M06c17NVCzNlZ/B0drD1xgrfXr2NG0g+mssobu4mrV2nbvBlvu4mcL33CRuzFCzrfOczkpYUuld7BQfzr16P7fKAbTF+94nzfhpESR7093fj6+ph//JjEzEzF/R+bmWH87t2K1xe6zoZ33iFcht100foMg8GTJ4m9fMl8HiFXAkMnThB5+pSpe/dq0qai/gx+9auc+vf/Hk9HR7O7oqgR6plYoVAoliHedogsYRGqESxn20rNC76OPPpo7gcZ75P5RBGOCOjtyBampZVOj5MqWwRfz+KRojVlCd/QaF5n/CbzWVsYrvVwJgLMGHnxdJAl1JUSgViqo1apNsPFom6TwnI9kZYjCiYtelM3ucVE6DLqrkR8tWPOenmvNyL7O5Am6Shkt3zS0rdax8rqHS+dftRMdHXzzNqu9XRuHl1JennSxVA9tLQ+ug+MNvVdLSNa+asUQmwBvg48BX4pZ/HPAn8B+HEhxF+VUhYUz6SU3y/w+RshxD/GEW8/IEN4Bf5zYAD435Oiq7tOVAjxM8D3gP8KUMLrUkX42xCn/jjy+7+Kyt9SgN4hqks639pYL59DovQbH3tiFPPKbyMTFqHfLBy1CCAtWfwMN7yIQz9cctu1QHhql9N1YeX1E171tRvxyFmElSDiG3TEcU1DdvYin77I6UfhXzXNqOySq/v9WEUsgPsOH2Z+kWjXQH8/vTu2Y42NFixjrF+P/bI8q95KiL56hdC0LNEVwKpBtGToyRM6vvIB0auL5xr1DA5hdHeTGB9n7tpntO/ZAwg0j4HwerFjMUL37zM7mt5nHfv2YfT0EHnyhOjLlxgdHVivXpGYmqL3+HHeXrhYcd/7e3uZKJIDtxjrjh3DNzdXM9EVQJomMpEgOjpK+4EDzN+4kbVcAFMqp+uSYt2P/ijH/uW/dCYSKBQKhUKhaF00D3jaHPtVRX4qsmZdIgjhRP+Vg20hQ28cYUX3VBcNLAxXCFQsiuZOLhciR5zLN8ZXZAS8krTOpZTXPI5oV2ScQkrbnfRfZGxK8yAaMW4pTZDJnLuZ1EA9kJYz6aCUcyMZxWmbTiS27suYiJC0o86xEk7m85WWWyb5pUpXhKzCxUAYlVsMJ6OFZS1dFNxAESHJG92bPB9aWPRR5KD7nUkGrazUKZYbP+S+fic3B6uUck4IcQFHmD2OI4RWQvLCl3sBTbb9u3nWOQuEgZNCCJ+UsswbsjRKeG0y2t73sV/eQX65MNJKAaK9G2Ljze5GSzH/q7+cioAtxmK/lWLzYUSgsQ9TQq/fjFmp1aduY8NWDHsGYcahe4jH/9u/AcC37x2mzp8vqy5RYR81rzev8Orr6yOwahUTn32W9352y6mTyHgcDIPQzZvErlwp2Ianr4+xPBGf9ULzLox+rtReN5c3P/iI1V/5gNjNL7Aj+We0th98h+mbt7CfvwSg6/BhhK4zfbV4vt65nKjizHym0WfPqup34uJF+vfsYez27bLW2zI8TOTsWWodE9F75gyvr19H83qZvnEDf38/vbt3E//yS+JV5ONVNIctf/7P8+4v/zJaHa/DiiahHo4VCoVieeLpdKw/Va7X/NTaLnPJY0PkTW2q8nY24f6inu1VomqWQKboKnQw3YkSwlNA5Cq2jZVsf5FtEro7OT2/vauMz6Unry9m8az7GiO6pqjnsSAXF1/1ACkhUfe6wiWLC58LlssC/68AO5H+PsuhHtbC4EZ5Wzjfle28Cr02+WcVjccINtZaXtE4WnusYKf7+mWB5Q9whNcdVCC8CiEM4E+5b3MF1oJtSylNIcQTYC+wBajYmlAJry2AePeHkeFZeHln8cIrDZ8PKp5XsEwpQXSFhU4fC6ppX40cee7MbjQTjuhluzMdLcuZMRuNYM9OIednkaYJlumUSySQlgm2lS4rJcLjRXj9CJ8PvD73/36E14dl+NHNOP6hQaJvC0ddVkwdIl5F/xBGQDAzESA6Gsa8/wBsie/ge0wWypNaZMd7uzrQg0GscOn2Nl3HjjFdQDDVDIOZ27cLPpZYs7OE7pR2XfFt2w6jYyX3q1pCjx7R3d9PKBbDjsexYjFEDe2iX//gI/RgkN4NG0i8yM6/avQPMHvnLnbG9zBTg5yosdevGXr/fcavXsWqwBpOSEn3y5fM9/cTGS9twsn2EycInT1bl0fT6MwMiUxheXyckXPn6D1wgI4tW5hT0a4tg+bxsP0v/2X0QCD1d/fnf57YmHNO7/pv/hv2//zPL5pTWqFQKBQKRQshhCOAxWbUYHY+LCW81gupGemIW+lG7Dlv0s+70hkHSEf3ZZbNtB5NvmquQOlarwot/X/NcIS9ZJBgzamD8CoMN2clbuooV2jVvEWErmJjORVseMG8p8m6imyzlVikPxlonuJ11Ro7BtJI5zUVtf7+kuJrbGG9+WyZa2HzKy0nirfiSP3M87AM6jVxJxWclnltMNMiNbWZVK+oBa79fKZ9d6blttEGRgn28wpFfnYJIfIOqEopDy+ybpf7WihnW/Lz7gr6BfA/A/uA35ZSfrvBbQNKeG0JxMBGtD/0V7F//efgbXG70JVH6+dtkVIAGkJUcGNRx7ykMmEVPcPn//X/gfV2pG7t5xLvWkfo4jn6u3TEqq0YQ2uQsQgyHk+Js3i8SMNACg1pSyzTxorFMCNRrHCExHwIc26O+MwM0pZoho4Vjbl5I2r7hKZv3IrW3YtthZm6fo3woycAeLbvIpGwaD92ws3D6/xJ2wYJli0LPi8aVoLeVb0Y/TvRevp49e3vppb5Bgbof/cgselZxq84UZfC42GkSM5Pb3c30WKRhyXuE9+aNYxebnzUfXx8nM716wHwr10L/tre7FnhMFOv3tB94F1AYt69Rfu+A0RGXmdFqtaSmfPn8AWD+D94HxEIYsdiTH30AzeHc2G0jg40rxd9wwYi164VLZtk9eHDxBexmK4Ub18fkznWwkkmb9wAIVh35gzzn3yCXcQGW1EfjPZ21v7Ij+Dt6+Pt7/0es3fu8Orf/3v2/0//E+v/6B8F4Mmv/AqxsTEO/N2/y66/9tea3GNFPVF6ukKhUCxjdB8E+iEyurxzmlZCNVa6jUJoOcJliSw2i7qOSClh/hUNFdo87WmxMmkzmxK7MsXafLk+k0Iv7n6z0+sloz1rrdtpXqd+LSPKFUBzxQ29QORYURHMtWxNTijPmmyhOW3ZNmlBq1gkY/GNleUcX7q/wdGuLtJ0nqGFhrNfau3aI137YM3ZXVbY/d4qFDhLatJyJxzoOHlf7RIn1SSPeZ2SBU2h1090FQYF91HyvK3GGllRJcKJ1Ib0BAs77tjHa+6EkaTw6mlvTP5mRdNY4mMFJcwiKrCiED8F/FXgHvDjjWw7EyW8tghCNxAHv478zj9udldai3iZie8bQDzSjjURQrQHSNx/iD0/S3D4CB5PBUJOjaxV8yFjCShwvy+lxJqaqFvb+dA8aZFZRsIknj5cdB2Bc5FKXag0oEuHrt50vZ0dbPqxrxC3umBtv/tcK5G2xI4nkJEI1uws9twMxKKO2J0UTAv1tW8QvbeP+HyUx//s/0p9rg+uZurOl5jT00X73XHoHSIP7kEi50ZXE5jT0+76DwiuW4vwevF2ddHW00nok8sE9x9MtxcIkJidLdiO0dlZtB+l4t+6FV68rEld5RJ54eTINTo68LW317x+c26OcTcyc9WHHzL5g7w512uCsXcf0Y4OQtPTTHz0cerzDWfOkDh3Dr2jA2t+HqHrSNMkcPgwBALMzc0xcfs29twc2uwswYEBwmPFo4/XnzgBt28XPT6qQVtMBJeSl+fOEVyzBu/kpBJfG8y+n/s5dvzUTwFgJxKMfvQRmsdD90Hn+vH4n/0zfENDnP75n2fNH/yDzeyqQqFQKBSKahGaYwOYmG92T1oGKe3yc6A2An9/epTTTjgihBkr3+qz7iOlxSxqK7AzrZrM7c2Ta7TC7kgzhhy/DcFBZ7t0L0LojvigeUAzkJrXTYmU3G5R3CVGM9L9zRJdvWSJwPkQmhPFHi/0DCcz7FsBdPe/bq5RkSFIC1F8v9Tqe8wXAdoopBtRrdVLGJLp/akHqWuUpnCPG2lnR9Cmcr/mzA5I5phN5lIFSv4ehF5nK/YSZjKkol9V5GvD8bSnhVfDjcZP2qFL6fx2CsPJI78gl7JCUTb3SohsLUQyqrSrwPLOnHIlIYT4SeAfAneAr0opJxvVdi7qDGshtJ0nsG5+D14/aHZXWgPdA9H6iArVEH88gvX0UdZn5mQUY6C4262UElu2IS0N3QgBNlh1nAGmF+mM5oV4Yx9UNbM+7XUfexcRnkLTvFgv76c+FzjzAQG07kHs6Ax4HDFJ37wTOTOBCLSD4XEfvARSCqRloXV0EJmaZfbFKL4NG0lMT2PPz6ENrcG8fX9hJ3KYu36NnjPDzF25WLSc34oip2dgeoyQmx40UxA3Z2cRQhSckVrMmtcIBErOw2klmj8T0Tc4yPj3Ks2VXhpWLEZw126EEITu1sbaXUqJ0HWMI0d5ducOsTyi/PPz5/H19BCbnsbX04MZDhNcvZrXeeyN7USCvq1bCwqvnvZ21r3zDvFLlxz77zrh27gRXr1atFx4ZITOkyeJXruGXYG9sqJ8tv/0T6dEV3Bshld97WtZZQY++IDNf/bPKmvhlYAAtDp+z+oQUigUitbA0+FEqKioV4dW3Q8y4djvZuLtgOhik54FeILOgEJ8DkcEbBI1jywsgXp9n7EZSMxBVIeEI5IueLI2fI6Qn8TXh4zPOFa0usfJ16p7ELrXETP0IPi63PvsZESzXbrIJG1HGCk6kSLpoWUX0bcWE1WLiGMSShdTmxd9nULz1D96MhlVnWmdXbO6jcLHRjIK1ilI+uY733fvRkUX/O5E/XK65jRT0i6Slop8bTRGW1p0BUdwzXwvpXM+KWvhlUHrjxUkB9h3FFi+3X0tlAN2AUKInwb+F+AWjuhaKNfhfeA9t+2swVk3N+xmwASqshlUwmuLITYeRCrh1aF3Fc4x3jpICdbL5ws+j396FbNvAK2nD8+GQbyB7OhX02wnfP46MuR+7vGiDQzV10KoSC5YKRp/6ou5qbrUG9y4ChIjxW2bc5dJiZyeQE4vfACWCGaMPuZHxpj79FMAhK7T+d4RbMNL18a1GN3d6P2DyHAIGezATiTcCNsYQtNJTE2SmJwgsGs34bt3UuLHAlOk2EIx2hgYwnFCAE9vL3Iy38Sc4gQHBxlcs5r5mzcXLdu2ezeTX3yRet+xfTvezk7iMzPMP31aV3EvifB40H2+ultqWWNjhO/dQ/P56D55ivj4GOEvS/79zkJftw5702ZeXr+OnUhgXiwisktJbMo5/mPu9znnRvrmY+Jh/mjwQF8f/bEYsUL5hWuIZpR+jXhz8SJrDh9mvgZ5chXFWfXNb7L3Z3920XId27Y1oDcKhUKhUCgahhBO1JelJroBC8XNVkD35xdX7Bj4ex1BxIq5wmoGvh5XmHCjJX2djlhRb/GklZD1sUSVsWn3f8WE7BwhS1rud5T9PUlwImYHDoKMp4Qnx3HLAjuBSEalJl22UtbIeZSqBUJtuSPYlY14S9t2xOhSMALZNsOa19km22qcmCa0xaN7a0Fqe0SGWFhpo7prYezWWVbUZ9EwZgqKrkJzo+zLaKpiyjj2pEldciwrFqL7FrcNTka+KhStwQ/c168LITSZMQtKCNEBnAIiQEm58YQQ/2+cvK7Xga9JKceLFP8+8GPAN4H/K2fZMBAEzkopq4oiU8JriyEOfR358CqMLxT3VhqivQvijbXDXQyJB8z8DwX2xBj2xBjmo/vI0yfxdoRIRDpIvBjDev0wLboCJOLYI4WFl5pQRIiUNP6HVlhxjIEhzLHSojBLxeOXkMC5gfD48Gzd6aQ7CYWxnjkCltBLu9RJKZiYFoTvXcC3Zz+dR44y+8lV2t55j9BnV/G/cwRzegpzegqeOjlftaF1hB8/WlBX55EjjF/9HDtuYXR2YrS1IQ0P7QcPofn9JEbf4l29BqTEDIUQQmBZJrS1off1ofl86IYBRYRXO49wC7Bx/26sSGnWr6G5efoOHGD22jWMtjbM58+Ju/X6PB4CBw8ylSHM1grh89F37BhIiW2ajlWqz1dwm6qhbetW2oaGmHXFUTsWY/LcOYTHQ+/pM9jxONFXL4ktEuEphcBoa8O3fgOP3rwh8vHHRctXQsemTczkRM36e3pYtW8fPHpEfKL+10Th9RIvMwfu5PPndB49ihgfJ1KnvLMKOPj3/z7e7u5md0PRUiTzndWxfoVCoVC0Bt5OiMZaN9qzkdQrd2E16B4KigspEVWArxti0xAYcMrn5qqVtiPsrSSshLv/akzUnfwt3CRGtseZoO4RIN39rmmlOczqfsSgmxbItpGpFEa2I65LP44tbKJ4fcmIM3AEkGSkJSJtYyztjFyv7vmezGGbDIatQMeSEjAjpU14FroT7esJuH3IaFTXAZ8zkaAeAqzQXOtfm3RUcZ1IilCp66pMi4XJXKYlR8Emfdes+lynhZZHxE1GuTbqmigq+z5U5Gv9MdqWfEJPRa1p7bECKeUjIcR3gK8DPwn8YsbivwW0Af9EShkCEEJ4gK1AQkqZNRAvhPjvgL+NE7369QL2wpn8O+DvAH9CCPGLUspP3Xr8wP/olvnlarYPlPDacgiPD7HzJFIJr+DzQQs9b0SnAsRv3l68oJREz10gvno9wpjGevG07n3LhxbwFlxmmQWSv9YZz9CqvMJrykpXNxC65tz8agI0HWEYzqsAKTSE5uY5EQKjrxfCzsOU1t6BtnoA3jhOBRqg7d6HOTGBTOSI0AWE2DnRTei6M+Em+vlVEILOE6eZu3wh2dEF6whPdl16Vxftu/cQunsHK+TYGSUmJkhMTGDt3EbkZlrEjD57mrVu4sB7PPuN3876LLhuHUYwiNHWhu73oxkGgfY2gtJCB/q+/lUefidt0bv9Gx8S+eQybRm5Yhf02e/Hv24d3oEBQg8fMe0KkvEcq1iZSBC5fZuBkycZKxbRWSqahh4I0LFzJ3YsxvjZs1mLu955h+lr16pvx6X70CEMYO76dWYfLRTHZSLBRIZ42nPiBDNXr6SXC4FvcJD4xAT+NWuQlo05P8/87dvIGuXXzSWwejVvnz4FnKjTtUeOwN27xBsQ5QrO42THzp1M3r1b1nrRsTGiY2MY7e0MvvMO8zX8HhUOgbVr6dhRyIFFoVAoFArFskfTnahKM9zsnjSfVhNeAwOu+LaYIOGKOoF+57Vp29FqEWgSKXTEopGBIvv/Qixc5uZElWY8LWpbGkyMghlNl+3fDIYNsrSBYzF4MC0cJWYdIcnbns41XNIuFW65DAEqS/Cz83ye8T43ClropPeD8yptN4eoHQHNk0pPJKV0BG477kTF5XO2kq6VreEHI+iMvWT2L7uwU4+tO8d+TdCcOkVmFLJNVWpzIYSRFs7zIrO/p7wWv8k+6aQi1uuaDzfnWE3mcm3kqSwMyt/GDDE7+V5RWzQDJboqlih/CbgI/IIQ4qvAXeAY8BUci+G/kVF2rbv8GbAp+aEQ4r/EEV0t4BzwU3nSbj2VUv6L5Bsp5awQ4s/jCLAfCSH+FTAJ/CFgp/v5v65245Tw2mJI20aO3Gt2N1qDFvktNq02kBC7eL6s9ezXdY5oXQTDZ+adaSmFh+idyuxVq8UoIFbZQ5sI3y1B1M7DwDt/GL8HNC2GPZuTF/P1AwzA6t6ctStEnvy3kcAQU7/97azPAu8eY+ZShuCY70E6eTEXgq5jx4k8fMDs1cvoHR0Litpm+ZZY4Zcvs973HTiAdvcLYq6VtDAMtn74FZ6dv8T2E+8R+cRxYAjd/ILg5k2Enzx1VtQ0uk+cZO7OHeLj43iHVjGZI3zmQ5omsxcvsmp4mDcllM+lY88ehKYx//AhdjSKFQox/fnnecsaefZZ2QhB79GjMDND+Pp156MSV526dAn/+vV4uruxo1HMUIjoyAhAej+6rN2zh0eXLlXf3xwmv/gCf3c3Q/v2IZ48IV6HNhbD6O7GipYWMZ2LOT/P2MOHDB45wtwnn9S4Zyub2Pg4ZjiMt6ur2V1RtBjqGVuhUChWCLbVeoLjSsfr3peVawGdG+XaaKSd9yFJojkRkc2gUI7UVORjmXgyJpvHIxmiK4CEcdelZ03OxMY8fRBDhxdG63nasidBFBu/ktIRRqyoU1CrUXRvsq9J22PhcUThJEJDejqcm8VEOC3cWgmyhEzpCsJ21KnT1+EKtiVMJNB00IKVTQjRA654nPv95rbr2qPWImJSGG5UebljM67AKtz9JpNCa67972J5WKvBjTxO2Qo3wXK9Ktvn5L7RKC3MXFEy0iZtb65QpGn1Q8KNen0PRzj9JvDDwGvgF4C/VULkKjj5WMGZBfPTBcp8DPyLnLb/gxDifRxx90cBP/AQ+BbwC1JWb7eghNcWQ2gazBazoF5BFLD0bSRS6oQv382bC7SVEZ3daObkgiuslJLwuI491Zzt0T357Y+9HUEqnbct3RmqYuIp2poNSFtHvnmS3a4v21pZWtk3wYlgP9P3n+LZfcCxGhIaMthBJBzGt//d1O201tlB75lhkjfa0raZG3lD+8GD2JEIs1fTtvPW3BxC15FW+oZyMTGr2DVdGAYDhw7RGfQhX6b7L00T6/NP2LR+iMgX17PW6dy2lfCTpwiPh/b9B5jIEE7tRHnn19TZswydOsXopUvOLNoSaNuyhfjEBLG3pdlLJ2ZnFy9UAOHx0HfsGImXLwlfubL4CgWIvnhBtEj+1SR+Tx2ssIDVR44wf+UKifPlTfQoh+TxnETz+fD29REdGaF3eJjXFQjsmSTm5hj57DMGjx5FzM4SvqcmE9UCOxbji299iyO/8ivN7opCoVAoFIpm0FA7yRZHa4GhLN1POhpvCWEE8g7EOo+iLbg9FQo9jjyWFMDmYGgzzE5DZCq7oCmzR0Zz8x/27naE0qQVshAgfI5Dl56cECnBiiNTNr7un9GO0D0g49nifN7n/hJEzoJLHLewBdcHaUN8hoVCoO2InlYYZ0+Z2cK0nVg8V2QuRhuYodLL6z53vKpUgbJK9UB4HOG2KrHSLtFxuE45aSXuNtSh7oJkRKlq3hqIve73nRTA6xohvIKQtjOxw2iOu6FCUQ1SyhfAny6h3FPy/BhIKf8m8DcrbPsCjthbF1rgblWRi1izEznxcvGCyxw5P+O4WDQJ2/YSvvFmyYmuAMbGTQgxk/WZlJJopJfE3eZFoQkzvwWN+fAOvk2biT19knd5MWzNh/QACIjOQ3sf0uPPEp2l0CDQ7nYCrJkplK2MLgABAABJREFUJ4ewlJhSY+rRa7ztbbz52LEU1js6CJs6Hl1gjY+m6uk6dozE3Rvp7QkG8e/Yx8T3v59/ez2eLOHVDBefPVxMeH3nr/w59v2pU5gxZ7umP3vE/b/+99J158n9Gblzi873DmOGo0znRB9Gnz0r2pd8TF+4QP+hQ0Smp5l/+hShaQTWrsWMRJwo2u5uOnbtAsPAnJ1l9s4dZD4LowKYFQivvsFBOnftIvrgAfMVipXC6yWwfTvm9DR2JIJZJK9uap065Jnp3LSJuXPnnLxDNUQC/qEhjI4OPF1dzI6MYCcSdG7ditA0Zh48IBqP0374cNWia6pN2+bt1asADB47Bm/fEnUtlBWV8+RXf5Wew4fZ9pf+UrO7omglWn0aq0KhUChqgxDOwHeu3ehKpFYRg5ViBEH31iYCr9FoXnKVGymlI4SUG7lbSwpZvpphV+Su4PlL94MVd4MSI9DeA/H5jAIincvUfZtaD8Dfi/B1gm0C7netecDjR6Ryf7rdB4hmBFFoPjDaC+zT3KmwqRoq4tb/8et88vf/IT3bt2HFYrz7k3+GzV89kVEiz76VVvo7z72mWFHwtJfZC+msY4ZJ5YRNRrNK200n5XUEYihi8Vuk/rJJRleaVZ6ryajcUvtQh3vzpK1wXdDcdF66Oykgw8ZbWqSibGsZYZv8PoRB6Tl0FUUxw853qBdOO6dYgaixgqaihNcWRKzdhbz5vcULLnem3sBAb1Oatm0voWuvsN8sTQHc6PJm3VtLKYnF+4l9VnkkYC0Q8/kFLSEEgTWrKxJeNdMm/vRNxidvFpSxtYFsMW3C/b/hIdG7HhF/nk7toutYPauYv3yV3t3bs+rJjJT1795HYnwMb1uAoa9+gK0ZJMLZEa22LZm5fY9I0i54EREygM2Wr7zPyBc3sWJRBnbtYuQzx5Z39cl9CBnD495D9Z/cwNQf+hqjv/F7Beuz5ufQNZ25mzcXLtT1hZ+VwKxr39u7YweJmRniL17QMzyMlJKZ8+cxNI23FQqgoceP6dy7l9nbhW2ntUCA7iNHmH/8mI7BQUKff87c6GjB8oXwrV+Pd/Nm4qEQs3fuEHLbFIZB34kT6EIQun4dO1wgFrvQ51Uw+/QpG0+eZKYG+XQl0HvsGNIwiE5NYc7PM/PwYVaZ6Ph40fe1YvTKFbw9PQwcOcLcZ5/VRFhu270bu6sLw+t1HmulxJqeRloWdji8fEVeKZm+cWPxcgqFQqFQKJYnuk8Jr9DciFcj6EQ/LkXRFcjNlSmTNrjNshhOdaSQqCMrt5l9/RLii0RhGiI7UjPh/t9od3LxxmcdW2FwxCejPb+sJjLcvQIDJMUsiQFCd/Klpgs7L1actN0vxfU6obsOrQk36jYthD37vR8w8+gxM48c++TJ+w/4E9/5N3SsHSxcn+3me817PalwoF7ajmgttHTkr9DcSM2EI7qWLbgm63YFwMUEupSQh1s2uV45aO73mRTXM45NYWR83kCSQnmtrjtaUpyT7i61yc43nNV4/bZXmtTcfjiZ+zirneQGLXOL42bYTysUioIo4bUVWb/XtQlZ4RfMeAx8HRCba0xz4XbQIPFsDPPprZawOq4IjxfDTouMUkI00tN00RVAmAkCh48hYzEid24gMgQY88EtPEOrSLxdKJwWr7Ty2TvGxu2EHz3HfP0Kvbcfvb0dY/MORr7tTHwQRvYlUtoWIhgksGsv8584+7N9w1qi927iO/Ae4xcvLGjDt2VHWnjVivfVmBwl+vgZqzs68KzfQvT+HXb/0Afc/f5HC+x9hbTY9q0/zNvf+l7WflxQZ4E2oy9e4BsaKtkGOJfQl+k8wRIYv3CBrh07iI+NFV6pFAoIwhLoO3WKmXv3GHOjMrs2b85bdjE6hod5e/Ys5LEUlqbJuJtX1dvXR8977xH+/HOs+fmscuFbt9g7PIyQkqmZGV7VSAx7fvky648eZdaNFq0E/5o1mB4Pr6uwXK418akpXn3yCd6eHnp37cIeGSHy7Fn245AQeHp7SUxO0rZ3L4mxMWJv39J+8CDRRIJEKIQZidCxfj2jt28XtO7uO3CA9jNnsN+8IfzgQUO2r5Fs/JN/stldULQSInucrx71KxQKhaKF0H2QaMzzcUuTawdbb/x9btSeBnZs6Q5ua15ExgxtJ7itBURXcKx6jaBzb5NrmWuFM4SiMqj0JknoiO4tbvSm5Qikhhc8XYhi4w+aDwJ9ruWva/0pTfB05J98WoKOmIUVTW+THXdETjuByHmGDo2M8P3/+n/kP/uXv1BkG4VjSxrP40pmhpGyt/i2FkNmRQHU7nwpJsAnRckFkZTltpGsp8AYS6p9zbUUztNGUiRN/r9m0ZzJSQhV7M+sfrUKyX0tMrav2D7TSQmoQictFCeF/iLbltr+pTpxZhFUtKsiEzVW0HSU8NqCCH+bk3/i9cPFCy93fG0NEV6lhMilzyBa+yi2RuPZuh3hZkyVGITegPnw0yb3Ko2MRojc/AKto5PUk4ZtI9dvY/7SVZDJy5Jk8MBOzNE3ZN10WbZ7g+vcnMVnw/gLtSUl+NvAY6ANDIFtYU84UX3GzgOY92+gB/oBsMPzBPYe5Nm//63U+lkPMIaB1tUDk2Mp0RUAPXnjVuDGXEv/ygnDQ3D/wfT2uLPuzOlpYi9fYEecB15rbg5rzjnupbu+HV94Y/jiN68T2LOP6K3Col/03i28AwN5BdHgli0VC6+ZCHAeJIUg/OABQ2fO8PbcuYrqmr1xA29/P/Gc6Mv+4WFGa2CD23HqlCO6lkB8YoK3Z88SXL+ewPr1RO7eTS2zYzFCbj0eYN3Bg7z84ouq+ydtm5fXrrH+zBlmytiHyTOkc88eRGcn05cvFy3fLOJTU7xxhe3gmjUEh4bQ/X5iU1NM378PExP4BweZvXULgMCqVby9cycrJ3F0kQjniaQILgTBtWvp2bqV2bNnl8U94cAHHzAwPNzsbigUCoVCoWgWmofy1ZrlhxAC2SjbZc3riK2w9He7kX5ylskIs2baC2chne9Tmk6qIPcjAPxdWffyUpJt61sI7yLjSb4gIJx8p7YF0jmeRN9e5zvXdLAsR8gxOgsKkam0rr6u7DyrZeT6lNLKU1YCOiJzMnWWqOluZmfHgvpO/e2/4VwviuWFLpQ+R1rZ4mFVZFyv7ITTp6qiXvM1UaNI0LLqcfO9imQUb+a+lDn11PKaLdx8tRUEighPYbG4Jcjcb1qG3bEkS5xNRa3mEVkX27as76WIeL4U0X2Nn5SkUCiKooTXVmVu8RyDK4P6HqJS6pjxAOZ4eFmIrgBGXztIZ1ui4faWEl0BjM5OAOy57Hye0jSxcj9LxJGRRb4Xmf/hR/SvRUZjyMlR9H6JZjj1iEP7iIXA/NK133WFTc/6TWhm9oO7BLS2dny79jB39x7R12/o372DaE8XoS+dSDrhrh+PJTC27MAb9BPOEEK1nKjZcB6RtPPYcWIvF0ZfGj09vLx1BwDdyL6Bmro7wZd/95/R897hvNsPIHw++o4cJoGHF7/xnxYur9BuOAtNw3QFY0+/I2JPnzvHquFh3lQolNqx7Fm3nYcOMZpHhJSR8gYJ2vbv5+2FhVHJixF+8QKxZUtR96fAy5f4u7uJTk+XXX8udiKBaZV+8y8Mg54TJ3hz4QJjd+8WfoBuMcIjI4RHRhZ8nimsRt6UGQGfiZSEX70i/OoV64aHCV27hhUOO4MnSxQluiryovK2KBQKxQoiqfAoMPwQr6PwqnmcnJWa7kQaLgs0snISFRPlmoGmg1Uk2jBFiedBoefdVdshoIMVA13AjCvitq+G9lVpoT359Kd5nEhzvSe7F8l+JkKu6KHlEYlwImF1A8xYYUHOjkN8ZmFffb1Anig2YTjrCIGVcx588A/+Z/p3b3WqLvgda+ANgpCOnXIudrx6S28JCHdfJMVCO+Hm1K0+/YxTbwGxtFxxt1LxVlqLR6HWND9qhn1zSQhX7LZIicVLgkJ9ldllatFGtVHErUKzc58rWhM1VtBUlPDaqgxsggL5MFcScn4G0bnauXkVbkJ7acNc9VF6APFQgOjHlUXmtSRCoDMNgJSC+J27xcs3Ad2T/+En309Bdh6UhfjWr6V951qEsYXE6KQTdSklWBbWm+cpu27h96duz+xwCDvhR3b2I2bGEEJDH1pDfOQlWmc3CMGmP/QNhK5hCZ2oGWP608+w5ufp2bUV/c1jOrp76Xz/KCTi2B1BIoCdMJm7cYPeUydpO3Kc0CeXF25YAUFMuoW86zcRfp0WnYydu5n/7vfp3bUTf1cQgNh0nNt/9z8w+jvfBSD87AW5zhHtu3bSsXEdiQd3sR/eJrB2Q952Z7/4grZduwjdu1d0PxdCAt2nTjHuiqLjFy7Qe+gQc9evM3XuHD2HDjHl5oQth0zh1Ts0ROjFi7z7TuYIaFpXF+LgQSKhEB6/n6mnT4mMjbHp2DHEzAzjRXLHLkbo8WMGh4cJXb6MzDPA4xkaYvvGjcRmZnj18CGhCvLOZpIr2OfDt2oV5uwswb17eV1hhPFK4aU7CSCwahVdW7cipqdTeX2XAkLT2PqTP8n2v/yXm90VhUKhUCgUTUXUNs/fUsbT7rxKHBtYKw626djD1gJftxMNarWYOFkpSetVIZznz5YUk0vzRBRCLKofRZ+PMPovvkfXmcN0Ht3hfuoKtolZV+CVCydymxGkJ+iOVSfteGfB1+M4aplh53MExKbBG3CrNp1ymoeUwK0Hkh0mlf8Uu+xjVNr2wmhbYQAJpDCYe+GkNtr09Q/54V/73/C1O5HNMt94ih4AwwfSdGRfT2d+4TU2jdR8i47JFO50UiB0r1WpXJ628/+kRWxZ5EaOlpP7V2S0mYxylKSjHqu4ppaSf1Uz3MOvQdfupDirLRNRsZ7IjAjalEi+ZBRqnKh9f2V27AqFoq4o4bVF0YZ/DNnVj3z6BWLvV5Cf/AbEl0dEZlm8+DL/z936nQi/AeHKxWkpdeK3v1y8YB7avvkVNE+Wopb+7+AqhJDOzMEcZv/pv66ovZLxB9Bcexxbb0NGQvVtrwK0gg942fvLv24d9iLRrr1njqBPPkb2b8F+ej9vGWPrLgTOw7L0+ElMRYhbFqGbd+g8fpLYw0egCezZGYSus+OP/0Gsu9fRtu1h5vIVpGnSvnULM1/ccOxODbCnJ2HaOfa0LifKMzmLaPLCRYzubgwpEUKkImLzbWOSuU+vEty+k5lr17I+1+Mxdv/wh/TMjzL5r7+D/QeO88Vf/8eEHjxKlYm8eklbVzA127tt6xa802+ITacjBROvnjNw7DBjVz7Lqt+cm6O9Y6EtUan0DA+n8q06myeZf/ECo7MTc3YWa3QUoesLBNLFSNrKSiHwDg4yc/Nm3nJaIJD6v7FlC+OWxVyeKFtLCOZu3Kjaanb07FmEriN8Pto3byYwOAi2TSIaZfyzz+COE508uHUrifXrGXGth22zvIertrVrCeccC/kIbN3K1N27jH3ySfkbs0KJvHlD5M0bdL+foQMHmK9Rbt56s+ZHfoR3f6FIjibFykZNYlUoFIqVgxCOIGiGncgx3QeJ+Wb3qikIw59lnQs4wpgVg8h4dTbEmrdyYTIwVHhZwfx7EuZfVtZeqWietHgnDCBPbs+mU5rYIUuIZpz8D7/N7McfE9i5CRLT+Qv5+1OTtfF1gTAhPg+hN8ie7QhpO8cT0jkeohMQmwJvd0au5eQzqbtvMyNMjUDOJlk5CfdKuImLTTn1LLAQlY7IayX45j/9h3z+S/+M4f/xb+QEN+XsT0+7szxL/LNdO+2c88WOO9cZb4XjBZmia7IvqUjNGuY8LdyB9PKkHXA+0bNWVrOZdQud9Hfr5riVGcuyoqLLROilXduEAViV2zqvSNxAn+TEiqUivup+8ASb3QtFq6LGCpqKEl5bFNHZjzjzY8jT/w+E0JADG7D/499XP5pJXtx3fgJ1DwxtgM4e7JlphIijicIzUm3bh5Xwggbxh6+xxyuLnNU8NmIuvwWmWNPr3Kw3g0gYiY7AQlSS86ERzE/l/zwaofvESYSA+dt36Fk/SOL5k6JV2fEEBECYUTz7DiETCbAl5gNHABN9g4jpl4jBjUgEltGLPfEAutYio1FmPv4B/mNniHz8PQCsqUnk5ATarncYP3s2FWXp6+8DHDvk3KtmUlgVGeemp6sLOR5JFkgXLmQBa1lYmo4dj+MdGiIxOkrn7p30dOokXnyJDUQ+vcLc2GyW6Aog43F8G/cSe3CfzkMHCHg1EqGJBU30bFjF2JUFH2eJl6XSefQo87dvE365cHAgPjFB14EDmDduEBsZoefdd5n8/POy6m/fto35Bw/oP3OmaF5X2daGMTxMPJHg+bVrWNH8gyPPzp5lw/BwKidrNUjLQloWs/fuMVsgUjj0yPmO+jUNbBvve+/x8tPSLb/7t2wpnt9V0+g9eZI3V69i19NebRljRaOEE4mi9tGtxLu/+IvN7oJCoVAoFIpWQfc6f1I6ooHQ81uUrkCEEGD4ke1rccSyBJhRN3I1Wnw8xQg6QpYQzl+lNrzSonA8Zn4rSNmIO1JpZrTfouNKdgEBzE44OX3BEbFi04tWpfkdUT587wnRw7vxr+11zpm4Ox7h7Yb5EQgOOcKjv90RGnVXdJ96gOzbjbDcyeBm2BUiuzNEV0jbN+f5zpMfJc9VoODTR0GNR7oiWlK4dIVSaYJtI4COoV7e/7n/jtzvVUjbyZcrbfC0uWMTOWUA6euFSJ7xLd1XqFMFuiqdyE7bIp2HM3O55S433ePRyBuwUJiMvi8WYSo0nO9GFhdWS4lWLZfF2suiTIFv0THhTGthRWXIJeQs4UblKxSKlkQJry2OcEUbsX4vYvdp5J3qhYNlhZWAkUckJlcTuXwNPF68e/ej9wbxBtLipy114pMe4rfvIOeqfyiVvk60YHv+hXZzZ0XZWhDdnkOTMfRVa7HevGpqf3LRzARG/yDmeI4V68vHTuYS3cPAsXeI376+aF2J2RB0AdMj6D0bsZ5/Cb4gorsP0daOrpswHQOvD7tvK+adL7AD7YS+cIRA/8HDWC+fpR+CNA3f4ZPM3r5D2/Zt2BKM7j5s3aDv5DGM7h7MNh1vm98VXAV6Zxf9X/86lu4hZgJupCtbNoLXhxWOMHDmFFJKPJ2d2F2dTl5ZmcxLIxxnkLZ22t95l/joGOv+wDexH9wk8SJbpPaFJtD9PqxoenZy164d9OzYgt2uY75+RqHhgcTt67RvXM/8s+xcsvlsc4shgZl79/ANDRF6/DhvmZkbNwgODJAYG8NoayurfgBvby9d775bVHQFCEciPDt/vqQ6396+TbsQhcXvemA7D0X+RHmDNtZsHqsnl+CmTWi9vYyUuN2Kwkzfvcu64WFmayDI15PBr3yFwJo1ze6GokURsNB6rsb1KxQKhaJFSV7/jWA6AlYBJH8bBRg+pKZBLAZ6RzqSNZ4hnGleJ9rRiuJEiFFdoJPmybN+C0z3s01k8lnVNmnJiC47kX83JScWaK5Vbwmikt7VBcDc2bP0/f5T0BVzosV1v/MXdZ+1hQ5dayE+DUY7RMacj3u2ki1SaunjxAg4AqLud3O7AujgNRxrVyGc8laCVLSs8AOuoJ9lCWqk+1Egak0kxVMhwExk5KDNQLrib+Z9odDB2wnSRmBTUHAvZCecFZ1bCsLNO6sVfu7OFNdFucege14viKYtQMnCWRPPA1GOXTLFhVdh1C6Cd6UjzaUhvupelcNTURA1VtB8lPC6hBC7TinhNQ8SjdgDV1xMxIlfd+xUE7v24lndi/l2msT9G1Cm3WkxNDME0wWiZdu31aydSpAifRPvWd96wiuAZ9XqhcKrizTjJB6XZgFthcOA83BiI6G9BwAjNgVzafFKG+jD39dF4s4XyLZeZPQ2/v3vEr3+Kd7dB8G1gg0cPEzkk/P4AW1giMk7D4mRjjDV9xzgxUefsPr0UeRLR3TsOHUG7eUDjDUbmLtyOat/vi3bCd1L59kNbt9B9PHDBdshvF6MgVVEnjym//0z2HfTEaLG6nXoA6sAMEeeo/n9WNEYgdWrWHt0P/F7t4h/drGk/dWxeeMC4VV4y8sD0X36NOPnz2MWEQcB2nbuZHpsjLmrV/H19RGbWBiFmxdNIxEKEcoTTZuL+bb0iPXYxARd776LePoUc7Kx+bO1YHm2LyInv6vR3U3H/v1EJiaYe/GCxNOnNezdyubl2bOsHR5m/uJFJ6Ldxb9pE57BQTBN5mZm8HZ14WtvR5gmMpFgrpH2zkJghkIVTWJQrAAEoNXxkUc9TSkUCkXrI4Qjvqqo1wVIKSHm7hdpOZGvAIEBN9JNc0Sx5Oe1wE4UFkf0ZtpBpkU5IQRS99d2u2tCMtKswNiNtEq2kNbb0lFgdsJycgJbMTAjgHtMCAP59Bl4PIhVHY6YCoi+3e6+yYgkMwKO7S+Avx9huNGg0nR0O93j/Akjdf8krZhzXnrJI4640Zgku1Io52mGkCbJFl01j5s7VOYIRHoqb2kpt3IC6R4POQ5S0qKsYWNNc4TVolGZ0hUbrfR2lSUMlJqPtZwo0jpEvdaLXK1a6Nn2xY2caL7cKSi+6hlO0jJjgoKszka6UqQs8xxSrBjUWEHTUcLrUmLNTvC3QbT18nY2k7ixBntioY2nee82Zn4n0KqRGOBLRrxmzigUIA3AB16vI6DYNsQTTsTj5k3ORU9oIAT2jJMHs6Z9s9KzFb3BCFGfH2IV5qepE0ZX4TwhnjXrib96XnB574fDGF3tjP/2D/D2dgPOg5cG2NEZZ7bm5r2ABDOB6O5Bi78FaeE9dYbRf/ef8GzaSvSum9tROA/kbSffJ3wpPbHBmhjD6O3DnEwLhkJ3962WZ+anvfDmynl4yiyz8AGybd9+7ESCuZu3nCIZ0ZHePQeJ3LuD/cSxXBY+H+u/cpLwXJhAZMoR1Q0jJRwvRvtA98JuF7DnzUfHO+8wcelSSWXDDx2B2Y7FCO7aVbLw2n/6NPMvX5KYnl60bOTBA7p37mT6fv78vrmMfv4564eHMRsc4Th9+TL927cz/uBB6jPNMFj17rsAWFLyNkPISwm1QtB76hTjN2/yupj1sKIqXp09S/vGjXRv3AixGNLnY/TatYIC97rh4Yb2b/T73+fxr/wKO37qpxrarkKhUCgUiiWE4VfCaz6sKHkHwespOArHGWkBEndQPmf8ANeVxwim3wOYMah5+qAMq9lWHajXjMKT5jWtqKYx/QPnWbX7KycwJ6fTC3QP6LojfLclc/DayDdjcOcHgEAO/BFE+C10bc6JKBWOUB/JGLdJzCMNX/a3nBLEMnOLJhXYCsUwYaQjWVONJLfJ79oNJ9LLNNdK2k6AdPtR6vfs7YJIztiAHS/dblhopUfdp4R1GygQbZu3jTLEUWmSK24vWr4Z4mvB9rR0RLDMibxOngSaN1vAVtQeaZLO2etev5OTLVJlkt9PMhq7gf2zYs5xUDB/uEKhaCZKeF1CyFvfV6JrDrbRRuzGzcY3HJqFmZH8y6IxCE0ijn8NxDwk/PDgNkhJoDd7dqa1fjuh79dWeDWnI3i6nf9rdoS2Y4cIXfocEq2TC1L35L/0+PYdIv7iWdEHk/Zta/EnXtPxE38ETcZh3rECYuoF2sAAdAxiP77tfNbdj76qDeLOjWhgjQ/hMbCmp9JipeHBv/8dzInx7IYsC/+mbcxnCq+u4CozhFdB4YcpoWdvp53zANl+8B1mPv8cmfG5OTePf/tOvENDSFsSCodTy2QsRvzm5xiAZ/9B5Ovn+HfsIPZmFHMyp/95MO/fpGv3DmbupiOK5+7cQXi9JVkO6x0dWX0tROeBA4Rv3Eg9FopIZNGoVy0YpP/99xk7fx5zbq5guVyCfX1Ml1hW83gwnxTPG1wXpKR3cDAtvArBmpMnnTzCLmvPnMEwDIjFsIVA8/loP3hQWQo3iPlnz5h/9qykso2eQ9y2eTNb/tyfa3CriqWDqPPAaYsOyioUCoUim/j84mVWGFLaObk4G4TmIe8do5SQmE+XseOODSyuFaA3e3Ky1H0QLdE1qGQyIiylifS0QaLVxpjyTHKW0ok4NYtPGp759u8xd+Ecc9/4fYQ+T7tIvfwf/he869ay9lt/Hv8qR1SVYQs+/X6yAXhwF/YfcJ/53f2k+8Dfs7AhK0qWAAYZQmdGuTyTs1PkpsHJdaMuJAIKjzuRn5zDTKajgTWP08ekMFfKvaJmLGwzEQJP4UnzFZHM8ZpEiLSNcjGEXv5EhLJSDZVoX1wPcvd78r3MeA/p/SSFG+msBNeGUPJ+boKlvGakJ1woFAtQYwXNRgmvS4nZxYWVlYZIzNN+cCOW1oZt6tjhKNbUFPbYW7DqeNNU0oUre1aiEALZgDwq5sgr6O5MvffIcdpPHiJ09TYy0hoPVf6O/z97/x0lSXLe58JPpClf3dXejzc7s7M7sztrsRa78B4gQBEEQVAkJeJS+mgE6lI85BUJXBnqE2UuzaX0yZAipUMreoIgCLve2/E73vS0t+UrM+P7I7JsV3dX++7peM6p6amsyMjIrKyqiPjF+3tN9v799wASaQWRRkClA8FCsE8Jqki/31ItbAojiywIzNlqC2WBhFwS6fidcdNCRBO4V4YpXXMjTaCtlUxFhKSXy5F58zWMXfsZnSggnQJeNot0XVr7DlQfo2jRICpXZfp1ex5SSoxgEDMWQwSCGPE4wf5+EALpulhNzdDdjRkMEejsQITCc4TMpv5uxPh1CuM3wbIJ9PaRH6w+V7OlFUYHkbkshcsXsNs6MBN7yV28wII4Dp1H7qgSXt1kktZHHmGigYhKrwFxNrJzJ4UrV6p+fpPnzhHs7iZw6BA5P8Jbeh6BlhZC/f3kZ2aYOX2am3/zN4vWX4tlNf4z5hUKBAYGyF+7tnjhVcadnqa5vx/Dtgm2t1eJrgDj/vWP9PaS2LMHa8cORl56ad3bqVmcG089RUtT04K5eFeTAz/901hLtKvWaDQajUazzdgKFpnrjoBQB0qQctQ1cvMNW9WuC6V5+nVa2ucVSna6AMIrIK0oOJtjngBApkZg4oy6JFbQt+41VESX9Hyr4CIlv08A+r74Mc48/V2m/+avq+r00mmy595h/C+/Qd8/+JD6uFw4C21d5f2lA3aUqvfCjqj7xQhBuN2fk6gTfTrvyRQ/lxX7lKKaawVm6W8rRs3VE+89VB5iFzyjvs4jzLJlsJf3RbvF56EEEhlqg0xFOh83i/TyCKOBaLpGbmFRI7qCH1FY71wqIz7dZX7H1YjjC+ItsfxqI8qP2nMtPi9a2gqThe2cNRvGeovhZoRN616g0Wi08LqVEA98CvnOizC72qsety5CCERhBgN/AjwIdIPs7iDrdFI48eaaHXt2NkxqJA1IDNti8oU3kFKy+3vfRdCC2kHA3P/TUF99qcipcVxzJ6Y7WdpmeRPE7ruN5OsXkDNTq3/QJeIMD0FMWTULkqXLUGdta33Ckbkd9lLlWRAC0bsXBt+peinptlWJrqoBfhSrBGd2hpYHHvQtjDxErAnrtjuRnod0XUQsTus9d5OfnkHGO5H5POmr4ww/cw439zYyn0fOZGB0CoD21naylSKflDA5hgcUBtX2lvvuZfKlss1sKBGneDvjFIgfOMC4L7wakQjRI3fijQzijo+W9nHHRxGhEJFjd5N+o7yytx7y5lwb59lTp6rLAJGDB7Gam8lcuIDjR6rmrl/HjET83Lr1sSMRjLY2PMfBjETIJpPMnD5NZmgIhoaqymYnJ5m5eHHB9i7KEm2bsg3aMq82sydOUDRpig0MzBulmx4cJD04TzS9ZlPQcfw42VdfXdO1fWYkghEIEOrsZMdnP7uGR9LcEqxl3haNRqPRbA2CCUgPL1psOyFKk9HCt2EMgBVReV+dFDjzj2lWfnCzLCRJuczJ+DX4fXcyyEC8OrBSFpBWxBc0N0F+SNMuR7bW5hxdBMMOLfh6YWQU6Uk4exambpZfEAbi2KPlVI21FHVLO1YWOcywSnPkI52ssv10s2WBNtiqBNt61FpJewaYfrRt6X6pFQIrI2Q9MILlOqRQ7aldWCAdkIa6rovdh2adyLnctLJarmpDOYds6T5dVNstRrb609ClaNSi9XXtzu76347C2BhBs0qgX8B6WYutmx9hrsNCKP/DZlhVC2k0mrrouYINRX9CtxDCtBFH3o18/o83uimbHoFEmA3LeEtm/PQE02+dIfX2XJtj6crqT1ZVZ7GmN7pGHcns5Qki/QaiovNqetPE7tpF6sQg3vjq2hsvmUwGIv2Qnlre/oY5r/AqhEDsOaoGMv0H1UYJTsHCGBqj4yMfpHLFaSbjkUveBeEwsQMHmHmxnMM0dt+DTDzzbOm5/cS7yZ+pFimtlo6G8pGCiq6tvSvd8VGEbSP93K6WLapui8K5k7Q98W4KqQyF86cpnK6/mEBmszjvnCJ234MkX5o/D6s7MU7b3UcZf61cj5tUlldGNEr8+HFmzp8v5U21Ewma7r4bZ2wMu7ubyJ13kp+aUhZMQpSieQupFPnJScbOnl3YUmmVKRSWZjc0fvIkzWvREMPAsCya7r+fXCqFFQwiJydJnqlONN36yCNcXuccs5rVRfpi/1oZCe398R9n9w/9ENE9e3BmZwm2zzNZo9FoNBqNRlNEmEoIWsvcpbcIZSeqNTuCH2HbgNi67pFKfr7IGoVRSAdphZRwuNHizopsMxeeYPHSWYRjwcAu2LGr/EKsFSJBpOtUL+x1cggrCBgqj3Jl7lczVHOtZB2heCl3Wp221wqBtfeUl1N2yNJVAux8i9PxVLS3EQAWuC+LwmilcFR5TGH6z4uiaGU+Y+HbIFedQPncSiKrN+/prj5LvZfX8t4X1Z+7qty9xSIbkGNWs7WwwmrBhYC1t5HVaDQrRQuvWwxx/COQSyNf++pGN2Xzs4Y/QNNXx8kUTIzbjoEAOx6l//hOQGDFYnimAWcuqJUlrgeovCBuwLeL9FQHy7k6VLf+leJeu0yu/Tih8ETVdtNLEjvSRfKkwBvb2BXRMtyMWKrw2r0XTLN6dWo9bpyDfHnSwWseoHD6LKKOIJjJxZl58XnCh4+Qeedc1Wui5h6qOzZYIOJyTo7XOsJrfugm7Q+/i4mXXsZNpTEK2TlDocKZt/DC8cXzsEpJ/sRrxB98iNnnn523WGLPQJXwKgIBEg8/zOSbbzJSIwoWpqYYL+bHuXqVYEcHdmsrwa4uxl97rSTabgQSmKiNYF5sH89DAoGuLvLDw6s25dL80ENce/pppiosm3ccP176f2z/frzmZm68tnBEsmbzM/baa1jRKEYgQDiZLC2aWArCMBCmiVe5rxDs/bEf49i/+3eYIbVaP9jWtlrN1tzKzBueodFoNJptRTABuXrij2ZdEWZ1FFKlPa0ZrCgYpminKqWcK5oV1igit5BEBhKIGpFJSFfllXVybJzdquonqwjcpZy/oJCy8fIL98tlLguzNQ5Q7XvAmYA6w1oR6/HznMYWF8SWOv8kRM0EQz1rYVeJmbKg7iOvjmjq5mns/ZLVQm29JgEymIBsdZozKUyEdOpcg0pRuFiDL8ZuuIAolrGIoEJEXk1luChYV113Uf06bIJrplkxJVtoc97P2bKxImrBhxZbNUtBzxVsKFp43WIIIeCB70EOnoOh8xvdnG1L+uYQE8+VowoTRw4SPOh/mSXn7/ZmrqfAXR/P//zrr2I+fB+2N1q13fAyRI/0knwxOW/OVy/eCpatvqAFCNeB2Um1zbCU+GmYSNOqsNcxkKKcs0RSHGNKf4GjRHoeuC5WRyte326sgT5wCmoAVLGaU/TtQ0TjeBfPABKZycDMFCIURdw8U7fNVVSIoW6ohfy0C5071Ut+B1oAmaxg4o//fM4+JWr7M4ZB6NDtSISKqDZMZKSJzsceVflfK37QRJ39vWwW7Lk/erMvvUCksxO79xjexOic1wECba14mQze7OJ5JXNvvkL8gQeZfaF+5KuZVnVEDh7EaGtj6s03SX/zm4vWC5AbHSU3Okry7FnaHn10jlC7ntjNzeQmJxcvWIGbyWAdP87I22/Tf+wYqTfeWFEbIjt3Ety5kyt1rsO1116j6557CEYipCYmGHvllRUdS7N5cFIpSKXofNe7mHnuuYb2saJR4rfdRsejj3LgS1/CjseZePllAi0txA8dwgwGVSS5RqPRaDQazXIQAgLNkC2sf545TQWyWvARRn3BDACvLFhl1zGlVH4aGWiuL75aoYVFTyNAtb2sq85P+KJbaSBsVIyHRVloLOU4rTwwFdbM4OVjyLFpsIyyTaIA1/F4469fIxAJ0XlbDwBN/R3EOuLMvnmCm7/63xY+71rLxUQ/BMPqAeU5ASEQ4S6VE3deaucP/KhzUSPeleYZKv6WJksWqq+42SkLc+TqFVDvSaO5i92cH607j8hn+nbNwRb1fYJUomtDVNgkr4XwtCSWka9VuqvbbmGodtS9ftJ/X4V/vE1g861ZPaTL0u5B4TtX2OXPoOfnPy5+/rXgqtFsObTwugURpoXxif8T76u/BlffLndcN9oSZhsRTDTRcv99SM9DGCahjgQ0tStR0g76+TNq3w8J108s+5iyuR2cghoUpGcR2fqiaSWZl9/CvHcfhldd1nRnidx7B6mnXqi7X3pslvyltRP2O37sB7F390BWiYyi1vw10Y4QYB49CoB3bRj39J8g7EBjB/AHVJ4ZIHVpEnfkVN1i4xOuEkPrULQTNaJRjGAQI6COPfFStXgWu/seZl+sfx0TDz1UXafjIO1A3SjLwsgIZiQyrxmRc/0K4T0HSZ14G9zFBz65t+aPfLWb4jQ98jCjTz+zaD0LHuPmTeyWFgpLFD9XCxFo8H6oYeTVVwHImuaK7GIju3czNTNDdh7xWUrJkBZbb2luvPgi3Q89RPLZZ0v3UXjPHlqPHydz9SpTr7+Ol8+z+0d+hKO/8isEEomq/buefHLd26y5xRCs7SBcj+81Go1ma2GYKqdkZlxHT20YsnpMJ4sjjoWi6FYoulgRNf9gWCpX66LCkcpzK83wnG6Esh2Oqjy48+wrau1ijdq8lJI5OTpr9cf5ahcm0rHIf+1rc1+LNvPKv/vdqm2f/J+/TDSYJ/niGwtXDMhCxXUJtyIi8XkEy6JgskBHqPI8hChHNFZu9yyQ80SgG3b961P3WF6F+FoHr6DsR716wmwd3Gx98VVKMAyI7youpW+svs3IcoNWS8LxCm1/SwLuAvO0eoHMLU4d626KQqpXfv+tcM2iDR9zefNdGk0JPVew4WjhdYsi7CDGR34KbpyFtj5IT+M990dKiNWsOV3hFGKg0iYoTfrti2t2PCkls6fOIvN+R9owCd95F4HpwYV3zGXJTRqE6yS1tOUYgaN3k39zrvWpsNb2q2H0P/8OsXt+eY7tbrkBNb1kQ4BlI9MZaNmBmLw6355IKwDpFFJK0skI7siV+oeINSFvlu2WC/kCrlDWn0II4vc9wMg3vgWUc6A6e/fOqcdYQPwTdSwdjFAIWUfsNaNR2g7tg5sX5q2vcPEssXvvI/lCYxF2KvL1IbxcVrXTMHBHh3HOnybcsa+hOhYi+c47tD74IKPPz59Tdk1ZwOa5EUZefZWe/n7y168va/9gXx/ZS5dW1AbN1ka6LjeffZZofz/CNBGGwciVKzz4R39E+913M/naa7z4+c+z94tfnCO6ajQajUaj0awJwhdfvYISd9w8FGYXid7TrBrJa+t7PDOECMRLT6UdVUPpzCKphbyCEmzrqVNeXlnSuvWEvFW2YZ1zbAejpbXuS6JOsIHnqm19/+BjDMWjTH1jfkem4ECv+o9pI9r658+JXGvnWbKC9s870IKgwjpWMo8wutCsdO1rC11T4VsKL4CXX2Lka7bC+roYnVtAuFnfWnmFoqB0t3bO0hWLolqR0ODf/5Xzgh4EEur7xc2Bk9X2wRrNLYwWXrcwwrRgx+3qSTSB8bEv4f3Z/xeu14/u06wetbk/1xq3YxfyckVeU88l89br2Ht3IJyFVzUWTp0g8PAdmO5ci9pwUxqnrRNvfKS0zezdQUt/J7l9O5j65ncWzyu6TKSbB0M21sEQQlkSj1xDCgNME6N/F2LqhqqrpV8NGrIZZDYJ3gxZo4/CORXZ6ARjZIwYQZHHyiWZMRIUxlOkL1+uOISBl1PXcr4oSFknR+zC7Z67yQgEcWuE1/ixYyTiBoYvupptHVid3RiRCHieinA1lLUxQmB1dOKMjsytvA65t+pHXMbd1cnNmp+YWLzQGhHcvx/GxhYvuBADA7BM4dXZwHPXbC5SNfdQwV+s0XL33Xzg5MmNaJJm2yDm2uatdv0ajUaj2XoIoyyqWCH1/8yIjrC6FQm2UBlVJ0CNmRuhkERa0blRr0L4Ubs1IqsZUmKaYE1zCYtotP4Ldcbjnusi3BwmOfo++wB9n32Q8//i98ldUguwu374+4jdvge7JYRhuOCmEb23lyN6A80qP3J2UkWMxncqkbNSMKxdGF630fU2LkWgnqesMPx8v75tccl6VFY8/INL1y/TYP+trrCObx29hKZvSpZhNVyF3NrCsWYTUccNEaF+l6vyfms0q42eK9hotPB6CyGEwDj6Xry1Fl579yJC0bJbTnZGWesWshCKq1V2Qvgdvor9pFS5PK+dXdv2VRzvVkDGEjgzM4hIFJmusPvxXLy2Hszhy4tU4JEf9wgn5r4kcIgc2UnqxSQylyF0z70Eg5MIMUWkH4Kf+QBD/+svVvN0AIg+eB8mSbCjyjbHc31r5qKdT83ApnLgKD1wPIqrxmTrDuTVc1X15yP9ZJ9/GSJNpMOtXPmLb1CYrBbJOt71QHWjagcn0sNKJHCmpsrbnDoTFQtZfNe7Bf3jhPv7aL/3GMGWZtwrFwju2o3MpHBHbiLTs7hXZplvWiS4a3/Dwut8mBNDNB8+zPSplX1f5MfGMCwLz1nfAYnd3c3oxZVHmU+eP888w/o5WE1NNB09ihSCXCrFDd+yWKOp5L1/8Rd0P/LIRjdDo9FoNBqNpowQKrqxMLuWB1ERtlVjN39OoCgYVZatTOoJSjTSUblLw4qCEHOmXgQe0o5BYZHFtrKYm3XuwFXVEfFFP9T94+WVzbBEWWPOFzG6EgwbYeeQwr+fPBVZOp/0Kd2K8bg/NjeCNgA7fv4fE98TBgogC+CC6L1Tia5WFKLd/n0pIdrpV+KV89HOi4eUooEF+UuYlC5ZMfufi1I0bc5vj6dEwMXmuczQyhdYuJn5o6GXxEbNyZmrJJgupf2iHPVcfK80mloCzTW/hRqN5lZGC6+3GruPQVs/jC8vgmsxxP5jMHEFcvNEeuUW7tgLIWDnYeSVdYjKNbbWj5mUEq97NyAQbh4Xk8LwMIW3579W6VMnifW0IfILrzYtnD5B4KE7Mb25Ua+WN0n83p1II4DpVb+vkUgKq6cX5+YilsYNYDQ3k/joBwke2EOgtxOcG4i+B6u1+eJ/MuNQqGhrnfGKTKWQnQfh+rk5r2WujeO07yBz4k3MveE5oitAoKMdO3TMr0wi4gmC3d2lgVv6nXM0HT3K7FtvlhYSCGuufVBhVOWpTdx3L4GARf7GdYL7DjD19qm63fSudz9C1CrgDV6B4YsYbhfgUjj9Zp3S9RHJSQK795K/NL8tcSO079uxcuF1fJzIwACZsTHczNyBd8dDDyFMk5F58qAuh9gjj3Dz9ddLUYUroXnnTrxMBm+RuoRtM5VOM/H00ys+pubWpfOBB9jxkY+suyuCZpujB+8ajUajaQQ76gtxaySGmMFynstKSoLSYmJQUWjT4mtdwl3q2khX5QRE+CLoPNc1EF9ceAUozCKtWN0gSeEVkH5ElpCF6sXK80VLLgOZSePduIocH4GWdsw9u0lOuHhjFa5fhgGWjWnbuIXyPSLrCJE7f+bzZEcyRLs8qu53Kwh2EOxWcNPMa5s8ZwEBVNmF5mch0FRz7Dr1FBdpWxFVn/QXmjvpeldBicxutizaLSfiUrqsjh30KtQh3Ypcp/UOYaljrGYkvrBXUfRsdEznR9dqsVWzEGZQ5eHWaNYTPVewoehP/C2G9DyIta2J8Cr2HVOi60qQEuqlvlgDxIatrls6UkoKTT1kGszdWcSbmaaw/yCBiUXebynJj7uEW+q/bFCYd4Ab6OpasfDa8f/5IvF3HVKDNVCWubNBcPJglXOkFru1siY/ikymqEWmZyGbROTLYp8baCJfiJIZPE3+msoD6105X7dN3uwM2RNvlZ4HDx3BTE1XlXFOvEa4+BslIGhBbUsyFy/Q9z0fZ/qb38ABjHCY1MsvEAgECTVFSRy/m9zIKLF9e/HGhskODhEyZ0vCjDu2SO6dem2fGCO07/CKhddwZgK7qYnCzFxBfilkrl0jMDBA5lp1PqPOhx5i/NlnEaZJy7FjTL7xxoqOAxC77z6urqL4OfzKK8R37aL18GGSL700b7nIjh1MX1jZ9dbc+jQfPKhFV41Go9FoNJuTYtTpWtgNm+FVEB18a0/WQ3jdSv01AdEehHSV0xg2ZYvZBfaSHjLUAdnRhauX3oJWumI+u1YBKrJw+feT9Fzc117Afekb4I/rRc8ejF07sXr6yY9VuDx5HuRzWKFglfAa72qBGq8oM2wR7aq5RuEWCMWU7aLrC59OGuzI3Ia5uer5EUvMje6tXXRsN809PyeLDMQwqsRFqYRzYVCKbDWDlCLAKz9Hy/lMeYVV+TxKLw/CXPnYZl7RtRiVKli5LXCxztUUXVF1CdO/jRa4zxeNkNZomCcPtEajuZXRwuutxtU3EIa76r/5Yt8xmFyh6FrEtFennsXYIpPfUkpo6yHz6mvL2j/z2svYdx1DTC4s4BVOnyDwyNG6uV4XwmppXla7AKy+Pvq+/CWsiKesfYp4OYi0IfNJhNU6Zz/p5KFQXJ0qkLk8sme//6qy2TG8HEyoHK+eHSPnNZF7821wHYQVK9VltLTVbZuoXfWzmGWPEARamgn39ZC5UV55u+9znyYYFEwD3R98D/bIZZLhLiafeZbkc0ogNIHM6xNYbW007+9DTK9CflVveQNcaVjIvl14hs30xau0Hrmd4eeeX3Fz4rt3k7t5E89xEIZB+/33M/7ss+qYrkvm0iXC/f1klplPtURw9XNgzF6+jHRdQraNLMyzAKG7G7TwqlmE1jvv3OgmaLYbgrXN27I1ulIajUajaQQ3u3D02XJZFdG1yDqpF1vp9y3UqkTX5WCYvhi1iJi9QNTrgqzgfvKmp3D+9o+Qg9VjLHnzImQyWP0D5N+eO0fywBc+odyo/P5PtH8HNIfL8z/5DCSHKQl5oQSEmyAzCpkssrm7LCYa881NzUl6u/DJSHyh1ir1y6SUMH1FiaxtB8BzlKAbaCpHhhsGZdHRAGcV5glKDVrGXhLVJomymA7EV6c5tfdJ1fOKHLUrZg2+P0pRuwsV2kpfKJoNQwuvmvVGzxVsOFp4vcUQu44jr72J2H8M+c6brLjj0dSO6OhePdEV9EqwGtyuPaRemz/SblGkJDMxQxi56GrE+XK9LoTdFF5Ws1o+9720fOShcpRrJUYAHAeyExCZK7wyeRWSQ6WnzjuXkDculZ6b+w7D2A1kKI7bNEDyqWfAKR/HjTTjdu9W+0abaLr7OJZtqAFTMf9wHdvg+bCamui4/24Kp9+i/fgxrvnC697v/x4CIxeQwMCnPoy4ovIXRwMekzV1RG47RGtHCGN6kRXHjbKEHMZSmNC7i0wBpt58G+fkd0uvxR98aFWaM/7UU7Teey+Tp0/TdvfdjNdYCxemp2nes2fFwmvh6tUV7T8fbbt2kbx2jWBHB9FDh0iePEl+fByAxL33csUXkTWahei4996NboJGo9FoNBpNfayIEn7M4OrYxBbtWLW95toR6WYlEygCiQy3Q/rmwgUXiXqd/wBLtzCUUuKdegPnO38Ghbn3oejbqYJCe7rr7r+vW0Cm7EMV6ohXiHgCmSso0TDYBLEOSA0q0bWI3VQWUs2wP3FcO49SKyYvdF2EsnROD0F8FxDwRderMHMFjACyeRdC5lVxz5kr5AoT8jOLHGcpND4brlLK+kKomwW3og3SWx2xSLpl2+S69sne8myV143iNTHmfudt6nZrNhXaZlij2XboT/0thhACdhxDPve7iN0HkZfONL5zWx+iqcVfFSlUp2t2FKZurG4jJ69CKA7Z2dWtdwvitfaQeum5JYlo9ShcvkDwgXdhDl9euNzpEwQevnNJUa9mZGlfE0ZTnN5/9hMEd3RApji48POMeB4EguAOQaAFUsPQuq9OJeVjSlcgb5bFNnPv7YjJq3jdB/GuvgPBdJXoCjD06imSZ8r3ftOR2/GuVQt25rseJtC/g2InWoSjmPtvByHKAraAYEuCWGqIwmllS5y6qSKL93z2kwRHL5brmxwumeMY06N0feC9zJy/jBkJk2iPKsE1vYq2WYvcM9K2cXv3kZlOMvP2CdxT9QXL/JVLalWrt3Jrn8mXXyZ+6BDjzzxT9/Xp11+n9fhxJl59ddnHMMLLWwhQS2znTuIDAxiGQXpsDGnbhO++m/HTpxl96il2PPooMc8jOTnJ9VWwSNZsDyZOnKD7kUc2uhma7cYWcfjQaDQazQYjhBJdnTSYITXeb5RSzkvhPzwlyshVsAetZLXrm5ct8NsZaluV9EkCD2nHobDI/EshibSiS+xWLO06erks8tzreMODGLsOgB1ABG1/gbSBSDQj8sMQsLB7uupXUpGqyDh0V1l0lRLpSkiOQ3O/mmvw5gpiAlm+z5ykvyChxjbYCAKBig0m2HWiPz0PZi+X22BYSnSduQYzl/0DCuX4VbywTqpsSyx80XbV7b8XmSuQxQXprr8IY57ybg6MOlbMy2pS0bZ3HpFSOqya5fBKEcVIZChdm2KOXumLxOA/16KrpkGkq/NtatYfPVewoWjh9RZC5lLI09+Cd/w8oTPDiL13gHSR01MwXpOns6Ub0dqpvvgLaUiOwkx6fRrb0QvXzq7tMTb5d4sMx3CluWLRtUj61EliPe1VOU/nHlSSu5kl3LF4dGwRewnOrrFjR+n4/HsxxCRMFWD0BkTbIDlWLrTjoD9eV/edxO/ACgluQQ167FCpuDvmlGx1rf2HMGNBHNmDd/HkvO0QVvVXm/Tk3NuhkKcwWBYjQ83NTL344py6Bj71Udxr46XnzT3tBN/7OKGJ8r5GWyfOjepIzuDoJTqaAdIwvQafq4r7RkoJoTAiGEHGW3DMAJOnzpF96xuLVpMbHKTrgftXxW4YYPb06QVfT549S2THDtLLjFxNrfDzYtg20d5ewokEYxUCcfLUqaoynutyVUe5apaIl1uF6BGNRqPRaDSa1cZzleBaFFulq8RXADfPHLHDsMuRblJSElrXHLk2dshbDTOoHqt1HQKxxYXXNb7m3uw4nPgmopDGbOtGnjoDvQcQBT8a1TChmPZFSqyeDgDsvXuIvfcR7N4EhsiT+/aL4J+Kdfz+8gGCCYSTRwZCkBpifmoje+vNi/iLC0pPhZozq8V1qq6bLKTBycN02a2LcNvcuZfC0tI/rQQpfStfUVw0AXiZxj7PbhZphVee57XUmDX+XK9K/Yb/nTefoOrfP9v9O0qzdFZp7lej0WwdtPB6KzF0Dk59s3rblBKDRKgJ2X8APA8RiUJ2CjIzMHVt/dsJiFBo2zoOy2gTeREm+/brq1qvNzONs+8gdn5hK1fn/FmczvuxGWmoXttsQEgwTVrf9z5CyWt442mMdqo78gOHIDepBvCGWz3O8Qpq1WeVXYtaBeblTZzXlCBodPdj5lTUqAhVrH6t03lp728llu2heCC7M870nNOtHTzMM5jIVq8EL5w/Q8u+nZDxEIkWzNYuiCcQM7PI2en6dawB0nPx+naTycH0WydwpgcX32kezPwSVruvEDeZJHHs2LKF18Ls8iPlO44fR2azTJ88SfbK/PbpXqHAdS26apZBuLu+JZpGs3YIPz/YGtav0Wg0mq2Pm50b4VoUDsyAP3YrRsF5bKiwYNjgblNRw4ooAbGYA3SVENJDhjogu0jam8IMMpBANBx1uHgbpechxy/D0AmItcBkujwfYAegZx9kpyEYh/REcS+MSJjmH/oc4T0xNVcgk0qXN0wkYN7zcDkY046r+QZ/3wXx8uV7HOrnea3t/sxXpVc9VyJy48himq5AXD2CTUjZ+ML31UBNkfjRpQtFtDaCmwdrCavxV8QGWg4Ly78vFrv3teiqWSY62lWz7ui5go1GC6+3Ep17qp+37VArWydvQHam/HHIjdfuuf5sY5vh9EQSZ3AJFtBLqfv1l2m6+y7ExEIrPCH79hmsOzsRDXRoDcPFaErgzUzVfd3u24ERCCDzagDjXriM1b5LRa8i1PdwMaeK54CI+B3potVOuqZjLWB2COkYFF54E3IZiDVhx80Kq97yl3tuKkUy5R+naJcbNNTq0yJOvTyzjf1AjJ+5QGe0eqBk7j6Id+08cmoSJ5nEDTVhdvbirJPw6kaaGTp7k6mXXl6V+tKnT2EEAnj5/KrUtxjLjQq0u7uZGFy+wDx19iwdd9+97P01mvmI9Pby5B//MZ333794YY1Go9FoNJr1plZcMgJqAWyViCBXL8WkZhkICMSV6LoWGCYIG+Qi6W/cLNKwGxMKvYXbKl0HmbwOju/KFW1S81PF8b9tQtqfn8onK3ZUf8IHO/3cpz5mCDk6jLH/CPbxo+XI7ULFvpUTweEmRDRRXamULH6j1+ZgnadYsBVyU+Vmuw607IPsuGqbdCE9ApF2tcBhHZDCUoKwt0ppjtzcOgqvK0CYK4vKL+Wf3QRWx5pbC2GBHdU5XjWabYj+1N9CiHAz0jDBcxF3fghuexz5xl+pju1mwwoi9h9b/v4SZU1b2QOWssq7POhKAn3vqdot+a0XkMkkK8Xt3E32xvWSSU1xUCKlVO2o7KxJ/x9PggBndGFRdEVISWZsirBYeEWlnJ0ml9xLKDo5b5lKwgf2k3plrsgXuvM4hXOncAt5suEQoVaBd+MyXm4fRrAAzV3KaqfyfTLs6pWhbqGcPgNUh7n7CPk/+T3kxAgYJsFdAzBZEclb+bY7LoUb1dGT9t6DNSdcb2DV2DJWO9GMcMqLFVoeehD3lJ+j1A5g7jpA5vlnCR29p+7+q4WUklzrDiYuDTL79PPIVV4F3rRvL1OnFrYJXi2m33qLQGsr+YmJxQtXYMViKzquk06TvrYxUf6aW5umffvoevDBjW6GZruyBfK2CCH6ga8AHwDagJvAnwFfllI21BkRQlwGds7z8rCUUoecazQazXwUbYNBRQeaQchPr544s9qYoZoNC/3WNaIW1+xvBCHQVL0ttUrzJpGepTfXLy/WUPQRSGS4HdI3Fy7oZv3r30hbZN0IRSklspCCpD+Gj/jXOjOuRLzUGATC5YXToERcw/bvyeKC6ni18IqN/aGPYfT2VQtllWJ1Vb9IzM3fSs37viIq0v8ULWozvtWWYYMVUk5zhfSaCq9SSvWZ9gpLy93cUOXu+kbsLvszsNL2CZ2vVbM2GKYWXTUbxxaYK7iV0Z/8W429DyK69sPAHQhhwF0fQ46ch6nlR4mtCTNrKD76VGSwKG8LBFZlEa/nODjX57cq3UgKVy4SeuBdiOHLC5bLv/ka1iPHsdzFxa/QQAepV6q32QO7yJ9+qzRYEpYFMgdC4FyZIHCgCYIBiDZDriLHa/Frp5heZGYEkcyqQYrnW/44DvaOAWRbC6KlRdkBtbX71lcSkSxg7lUDFyvlEq7M7YIkUzCQ++6gKM3nLAv7juYqATYnArh7jviCPeTsuaKelUiQaLLAv0TNTzyJe+EkmCbmnsOkT76N9/yzVeezFnjCZNJIMPqnX12zY4TW0fXEy+WIdHcT7Ohg9uzcXM9WUxNuMon0qgddZlsbnD+/rGMatk3X8eOMvfTSsvbXaBZi4MMf3ugmaDSbFiHEXuA5oBP4c+AMcB/wk8AHhBAPSSkbtWOZBv5jne0rX1Wn0Wg0tzLCUGKaGSwLQIEmyE6w6cJc18HGc+4S3FUczAmx9KjVdXoLBB7SjtVEiNYhP4MMxBq7KoZd7TYFanF1smLhdHEc7jnQuRsGzyD2HIBIAjL+3JD0oKkHpq+Xr0cgDpHOUutBaeY4BaQQYBbzcVqAoe7zQDNYUVVe2BBurroChNqqJ6KFqYSRyrN1sr4taHFGoc6VMGxI3vBPT4IdUdGthq3anRlVKZVUiUUu4vKRUqj2O3Vy0K7OEfyo19rFEGuFtwF5noV6v7WFsGYtMNYn2l2j0Ww+tPB6i2Hc++mq58K04M4PIZ/6rxvUok3GNlnpkTp9mlh3ApFf2NI1e/Ym0b0hhFh4IBBOzL1uZnMz7mA5ejDU1YbIqNWz7pm3kXsfQTgZCEYh3qsGA9KrsCPy6xy+jjw1VwwTgNhxGCHHqsc5AmU5fE3ZNUuzjewb1dG4mcQA0y+Xt9ntHWSHh6vKRI7fx9h3vlt63nz8eNVKzmBPDz0H+xETar/onXcSyk/iHjhMfiZF8vlnADDiMZqfeJzZb3xj1VeBSgSzsV5Gn3uJwsQbq1p3LdlLF0kcPrRuUa/pK1cIdnVhxeM4NXlbmw8fxsvlmHy9Og+yDC7f4iiQSDD2wgvL3l+jqaTlyBH2/L2/R35mhu6HH2bgQx/a6CZptiuCtc3bsjo/a/8vSnT9CSnlr5WqFuLfAz8N/Evgiw3WNSWl/KVVaZVGo9FsJ4Sysa3eZqicoiVxSLMtCDQtLryixu1SGA2McavnEqSUyHTNQvtUxWJvNw0IFQVqtEJzH2CouYLSsfw6nQwk54nQjXbDbJ1FuWYE8v74MtY291zD7dXCeMmGuyJ6VTrVnwsrQhVGQImunp+qx25Sxww0g5eF4vmbQYjvQoRa6p/DCpASMG0lErtrrNw7GaQZXMeoV3d+8VVY/vZVPGctumpWE2GVc6cbAfU51Wg2gq0xV3BLo4XX7UDXPrXKL7M++Sc3NavVUdzkAq43PYmz7wD2xMK2qt7IIPmd9xG0RxcsF7CyNL37cWa+/R0A7J17yJ8+UVHAxjQqohOdAs6YxN4fBpFWTkHzOcZMzBPk0jYAYhbpCYRR06muuP713gpR88Mi6+Weqdlx+tVX6fvAk5DPEunupHVPLxNfVRGmIhQm3tWMnBjBMaJkTrwFQNNjD9K8N44ozJDt7MAZHZtzmBUhPWavXKewREve5RLv7Vk34RUgNzxM2yOPMPL001XbnVSKYCJRtS169CiDLy8/p21+aopwczP5af09qFkZj/zX/8qBH/7h9Zt40Gi2MEKIPcD7gMvAb9S8/IvAPwQ+L4T4kpRSz/xrNBrNemMGtPAKbLqo3zVESBcZaofsImNXJwWBBItaDrs5P2ewL0K6+eroS2Equ90i+ST0H4aJS6WI0TlIP4o0OVz/9Wg3zN6sL85V9tGlR3Veo+UhCyk/dZQAK4zw8qXzlUYAchPKvUs6SuiVEsJtylp55hIynFCOdKuNm2d97l0/nValZfmaH9Kta2MNzBVKS2Lsco+l87pqVolA09yc6hqNZtuihddtgLBD8L6fRD73uzB6aaObs7Gs1kqPLTDfnn71RaL3vQtr9PKC5XKvv4b1wGFMb3bBcm17LfKDh8iePY0Zj+NFY8TuvZtwTxPBhIF52x3InIdMZ8m/9ALuibew9j+KCHeCZaNyZgC5KSjMghBIT8DI3PbJcDPEA7gpQfqp1wjcfohQn1kWYOcMpmqoEURkYfFcHbs++QF29BpAELFjN7kTb9D2gfcz/rW/peN9TyBvqNW0zvg4ZqKZrk+/Fyt1vTSIjBy5jZlvP7PocZaCEILE3gFm3z6xeOFVIHP2NMI0Vz1/7EKMP/00sT17SF68WNoWbG6uzv9qmgxdvIibqc3P0zheoUB0927yb7yxgtZqtjN2UxOP/tZvsftTn9ropmg0FYg1Xgy24rqf8P9+XcrqH2wp5awQ4lmUMPsA8M0G6gsKIX4A2AGkgLeAp6TUYQoajUazLAwLgi2Qm6axnJ6axdn8Iq4wTGSwVQmGC1FIIq3Iwl0NIUoRitJzkOlhFekZbkdYEaSwEU27wckjs0m48RrgUMhLrr45xsT5m3iOix0Ncdt79xNpsiCfhkAACnUWBYRaVY7Y1j0I21ZzCqNnKV/3yrmCRt6Lop1wzTlV4jow66eaat6tXo/2IZPX1b6en2/WzalzNwKQ8qNevYKyXraW795UDyF80ddZ/hh5SbhZMKLrc6widbt3te+XWIVo1WKdm/+zq9msGBCIadFVs8nY9HMFtzxaeN0miGgrHHoSObrNLYdX6QtHbJEvl/SJN4n3tSOcwvyFHIfs9TSRHrlgBJcQkq6HBxhrbSPz2st0f9/7CAXSQBJyINxZhMhBzCD8vgfJv3kZEUqAMwtVuqeAWD8yMw4zboX1sEJKSerCLO633yptyz33HPmWNiKP3oMdTFYJ6A1FvNYbcNVsG7i9Byb9FbXF/a+do+OTn0BcLUeBNr/rOMHgNCJ1vWp/EVz9vA0SwfhbZ1a93vlwJiZov+c4oy+ubx7UcHd3SXgN9/cz/swzIARmKISbzSJdl2AiQWF24cUBC9Hz8MOMPvPMFvnkajYj7/mTP6HvySc3uhkazVbjoP/33Dyvv4MSXg/QmPDaDfxuzbZLQoi/L6X8br0dNBqNRrMIhgVWWEe+rhZbRbuxgrBwZiI/2rCOMDm3IGAqkdErIJr3IIyK6MhCRs3/hiOw/zGu//Ef8J2f+Y84qep77vRvR7jv536U/YlB6jZOWIh4O0T9vK1eQbWs+zByZgTSozUTBMt8MyoiO1XkbU2+WiHUJYkNwNQ7pbYQaIP0IMiacesarA+TUoCz2Bu4irg5X4RfzxG1f1/hX79ShPMqRw/PF1mr0TRKsGl9I8I1Gs2WQAuv24nOPcpKyM1vdEs2DGGuTgdNbhH1RqZTeG1HMYcvL1jOvXyeQs/9BBhZsJxpuHTeHsA9/G4so8I+yAqogQaoCNRCisC7HwW3nq2rhNwEIh9Annt17qtWHPfqybnbJ8fJvnIC+8F9mM0S7roTAMMN0J2sztty6vQso8JfUep5GHmJbYX95nngeQTTaYItCWK3387U2ycQFYMWqzkGhw+TO3UKRpX9kYjFCR3aB1NXEHJuh8qwV7+TlW3pJ/2dr656vQsRCq3uStxGyA0PE2hrozAxQbiri/z16yAlbffcA4aBm80ytkKLYIFei6VZPs0HDtDz6KMb3QyNpj5rPwF2mxBi7g82IKU8vsi+/swo832JF7cnGmjHbwFPAyeBWWAP8I9RdsV/I4R4UEr5ZgP1aDQajaYWbTm87RDSQ9qxxfO9FmaRgQRi0YhoF8wgIrG3xla3RgiVDif/8Ok5oiuAk07z/C/+OtEd/4LeI3Xa1dRbnneoOnRG5XadmAFZ0eWIzUI8SlU0oxWuaZNBSdjzm4iwlM2yMCA7UXbZEgbMjCPDTYhgEGHaqlYRgHwW8qMg6gh4a2Fla9qw0AL7tcBz1j9fpRAV+nnxffPUewQV13YFKx4aiozWaObBsLXoqtm86BRZG8oaZtjVbDZEIAIDd250MzYWc5XWGmyhfpl0G2ts7tQ7DZUTQmAZdTr4tYOJ/CID95AL+4/N2eyJ+YU/98YNXDcCuaSqP59SCwnSs1UPzymQHx9Xj8lJcsPDpeeFyUnajh1j5tVXcWZmmHr+eQKxKJO5sm2OyIwqgRbwJscIHD1GqDcKw+chl0bakbnXxVrdjpYnTIZeeGNV62yE1NtvYsVi63vMCxeQqRSBWIzp118vbR9/5hnGn3qK2ZMnmTx7dkXHkLqzoVkBh378xzFsbRuk0awBxS/nRTsrUsovSym/JaUcllKmpZQnpJRfBP49EAZ+aQ3bqdFoNLc2wiwLGZoVsoXGHWaDi269xhbvCyEaymXa+/hD874mPY+n/+l/YPJ6HeF1IbveoAHRlvI8QT6lhEKvoNrvR+P6R1ng4SGkg0AipIsItUKsr3iGMHQKTNNvqwMiDFODKto2n6wv4q2y8Cox1s9iuBInU99NbC2RDqXPVGVUqnTUQ6yCRbCeK9CsBDO00S3QaDSbFN2z3maInoPIy69sdDM2jNWKeN1KY6lGO5FyegJPdGHI7NKPEW+Zuy2Xgkh5YCTzHuQ8iJm+PY2H6OuA9vcjp6cQ7Z1geVgIrMk8zsn6eU1Tz7xC7F3HEQU10HCyksl01F8JKUFKLLN6kDZncJCvtuTJDw1x4ff/jHs++yjkMn578xiJFiJH9iFGLoAwEH37EaEAzAzOaZewVncdS6apl9zNN1a1zkbwcjk67r2fm995an2Pm83iZevfe24mQ1NvLzODc697o6SHh5e9r0bTfvfdG90EjaY+gtXLXz9f/XCmgcjW+SiGnTTP83pTTbnl8J+ALwE6LF2j0WiWixB+BN32tNtc3eyOW2mVdoNtdXNIYS7TZnbuPrEdvVXPux55F9GeLi7+4Z8CkB0Z5Ws/9K859pOfJ9gU5vqzJ7n5zEtEe3t48r/8ApH2uQuFhRDIrh3Q0lkW6KLt0Fx9rJJVcD2kVGJtZb3ShVBrOZ8rAoSBdAowfsm3NzYh3gOGgPxknXpXOeLVMBsWw1cV6Sx8/dbuwAu85NGYHbZGs0YYOtpVs0lZn7kCzQJo4XW70Tqw0S3YUEKH9+Ed2K0GDALcnEfyxBUkEiFBIv2FjrL0fyFAeqqjZ9g2bi6HNzGx6LESTzyOHSp/xCZfeRtnZAPEnyV0il0RW1h4FQb07kU0JcDLkr8yBbk8phHFkDU5Yr0CGE3g5fBGM3jf+mvMo/dDYQbZvQsZiyJCHiIoEZ1xIAMeZEaSvPx73+Hg3XuIODNzmuCNjuJNTGCMnlfPZYTpp5+uKmMfPDq36aaJdJWF0MTpM3O+/HIj4xCKQiGHyEwTPnwEYXh4Z16H5lbMfYfg8lswz+UxA6v3iyNNi6FnXly1+paKkVrEbmq98TziPT0rEl6n33mHYDCIl1vHPDiaW4JAIkHnAw9sdDM0mvnZ3Kv0i3YFB+Z5fb//d74csI1QzJMQXbCURqPRaBbGsIENiKLbLIS7qJpFFFAt+Ih5/l8sJwGjMRVXUpH3U/g5Qzfi97xB4VW6i7ZPFrUvr6CiMUOdKs9rnVRXsdY40c52UiNjvO8vf5/eh+8CJ8dDv/IzjLx2jpP/6Xe5/rVv8dIv/WrVfn3veZLwgYdh+hy46Tn1CluoMX96XG2Id4CsceuS3vy2oEL4tts1CxCKwophQSELV874lsKz5CccRCyKHZ5WjsV1rpN0MoiGsioszoZFuxbxCmCsf3qi+fE/dyuyGl4DK2jN9kCY2mZYs7nZ3HMFtzxaeN1miOZu5OH3wKlvbHRTNgQzN0jlT6IR6yD10nNrciwrFICh86XnkUMHmNkA4XUp37FeDqh10wxGEL17IByG3CS4Ocj451HIUnj7DfJCMDPqEDl2hOjtXVhxgQjGITUO8V5mT57DMpoJOUmMzDRcepNcuoncqbPY+w5gDXQj+pooTGW49P/7a+Id7Zz85ut033cn8ViAmekso6fOI12XOx65jUDSRdKOlBLXW7yTE+rqgvHx0vP81BTRnQPkKoS8QEszzIwjmloQ/bsxxs9Bxx7Ezv2YA+3gmAt25c3UMFZ3J87QwnlyG8ELRihUtHe9SZ06SWz3LpKXLm9YG2qJRObaOy+F7gcfZOy55/SCLM2SCHV0sO/zn6eQShFMJDa6ORrNVuTb/t/3CSEMKcszW0KIOPAQapb/hRUc40H/78UV1KHRaDQaI6AeGxFJtwkQRs30mLDAq1x1K+f5fyVeY/pP0f62iB1boM41RLqLlylhQE2eVwlKcXXzfo7gynPw1GtmAOI7wS1AbgzcPPbICPfdf5BU4jHa97biFXIYziym6dFz7z667/0KbuZLJAdnuPH065z4td9hx8c/yj1f+QWEFYDWQyo3bSEJ4XZ/0YCEkdch3AaBOACiToqgOVG+VTlEqVCQKza6RfHWgJyA0ddgx+2kr6QY/x9/TOdPfQESC4xXkzeQ0a6GbJgXZaNFHieNNAPLjH5eI4SxxHu53v5afNUsEWGo30yNRqOZBy28bkPEvgeR21R4XVdq+qGB2Mb4/otc49GL7tQsdADNHYjOfrANyIyBnIH03OjTYs5cado4N68wc+MaM38NZksbgYceIjSQIDKQY+S3fw+7o4PE6CyBvXuwExb5a0PIqQnyr7xA6u0Yp37/66VqQzt3EUpPkx+f4a2vvowzM1tu4yNHSF4aJvWiEsyNlta55+xbKQjDYPf7n2T4uZdwKletGgYDH3qCZpEC6WHt2IOVHsfq6ca2JhEzN1S5phhmwoRCGow6dspVF69A25N3M/z7fwfuCjr9gPA2vtOf2Ltn0wivRiDAdANR5gvhFQpadNU0RHzPHh7+z/8ZOxYjtns3ka6ujW6SRrMAAmGs5bfbyuqWUl4QQnwdeB/wj4Bfq3j5y6go1f8spUwBCCFsYC9QkFJeKLVCiNuBm1LKqh8DIcRO4Nf9p/9zRY3VaDSa7Y4QYIUgvz2F1w1FynW37JMA+dnFilXs4ClXsKLI5WTBXTzyUhRzcJoWRLqRCMLH76Jw8zqBoRvYzlXklZt4N65C9x5o60RYeUxRoLkvTPM//BxH/sk/ndMWgs1gR0s5PiWAYSmxteCPp+v1kYqCoZRKxJTV0a1SSiXopm4ihQlWBLITULDh9W+XBL7p504x/Vdf85uziGheSCFnrkHTjlUQLDfaylouHDW87oiVia4azVIQFhQXdAhLRxNqNjmbe65gO6CF1+1IMKosUrztmb9l/ajuEIuZ0XVvgdGUQMwsHjkpAdE1gOMacPAORG4aCuNQWGRHv5NhOHkC+w6SP3caADeVZOh3/wAvmaT7c9/DwP/5D8k++xpydJDcq+NkwnGmLw4S3n8AO2AwO1Vt/xrq7yd39QrJl16g9+67ufqdZwAI9/cRcWbI0wx2oLSCVoTCSCkR/pe+Ydvs+9D7MMaGKJx+G8Nvp7BMBt7/HgZu60VcP196hwIH92N3d2PmRkAa0NILk4OQz+EikK6NlAVcuhACArJ+5LIxc5OOz3yQ0d//q0Wv+YK4G//ZzJ0/V2XPvJGEBwa4curUiuqwQhuz8EGz+RGmyXv//M8JdXQgDIOmvXsJtiyy0EKj0SyFHweeA35VCPEkcBq4H3g3ymL45yvK9vmvXwF2VWz/DPDPhBDfBi4BsyiB9sNACPgq8CtrehYajUazHdg0YsqtTo14Jh01ib+eiEbtWYWKyDVsyI2raN2l4BX8Bduy9DzYG6fjH34/UpowOwHnn4PkBMyMwN7jiP1HQQhkbhYRaq+p0Ld19vIq2qxSdPPyQLx8HwsTFalbfTqqmoJ/3c1S1Kt0szB7BfLFRecGuB5cPAtj15CmDYFmRGYCYQqijz2Kl85gtvZCc5s619lr9a/DzGV1HSNtS7t+mxE3B8bKHKlWDWFq4VWzhgiw42WBtfh9odFoNA2ghdftiPT0D0WJtVstKGqtSlIzBPfsIXdx/ZzwIocPI4Yv131N2gFE1wCeJylcvYQ8q4St+PFORK3dcL39g624V18BwG3qJv9WOSdp91d+lp6QzdR3XqHpQDdBYxKxrx/ZnQA7RCbp4b1+muTzzwIw09RH/J77wHVInX+H9NkzpbpSb76BGY3gptJEurtwjQBD79wgN5LEm54Cbsxt3Mh3q572PXw/mdk03bfvIRYPwOUzVa/boWnMXAE6d0MhA5E4TALpWbLXc+TfeBWjpQ1vchwRa8I+0lJ3parEwExeJfHh9zD118uPKhebYFFEYXSUjvvuZeT5lbg/rg5WXx/i8uUVicDuIiv347t3kx0dpZDcZPltNWtO09697Pjwhze6GRrN8lkN27o1xI96vQf4CvAB4EPATeBXgS/XRrHOw7eBg8BdKGvhKDAFPAP8LvC7UtZ6B2o0Go1m6eiv0nWh9ifLza/rhL6Kdq3jaFVEmL7YqhbsCyRSuo2LroGm8v/NcPGISM9FXn0BDAMiLUAWLAdx22HwPPAMiPcg3RxCCGUrjFSvCcOvpqINnlO+Zp4DgQQk9iKcNPPey16hug7DRroOZMfBSddcFxNe+huk50FzP4xeg2gXZCawwhbxj38aYSjxVng5sKILfIIEcvwkWHcjArHGrmNdNsFn1M0irfDmshteS7QV8fbFsMBsYIJUo9msbPK5glsdLbxuQ0QgguzYA0NnN7op247w7p3rJ7waBsZo9WpLGU8gWjpxUykKVy7A6BtVr4toDMNutCMvkK6DZwWYPXO5NHjs/IWfIdBqAC4dH7oLhIEUBzC5TOHFZyA5g1doIr6jC7N/F7mcy7Xf+d+l/SP794Mwie8/SH7oJtlLF0kcvI3JEydovX0/NwbHmHj2OcxYjGA4gsyk522hGYkS3b+XpoF2jKlhvItvkbNsgu2tkEmVzyQYhfZOGL2sNkT8gWJqGhFOAOBNqshhmZyhYB3yV8T6i2gFFCYzFM6/g9XdS6xvnNzRo2TefLPBa1mDuzk69WY66a/+3ZjBnRkOEztyhPNPPbXyuoLBOduEZbHrU5/i2l/9FR974QX+/N57ifT2YgSDTL799oqPqdn8dD/2GPf/ig6S02jWGinlNeDvN1DuMnU8i6SU3wW+O2cHjUaj0awuhk29XJ6atUYuIQJ1NTCgkKreZIaUra4Q4BUQyGqhdUmTt35ZYVISXaVE3ngZZq6q16Yuq/yvbXshEIXkkBpguwFISmSoFcLtGNIpO0IZAdU+YfpCmAfSREoH6eQRLfsQeOo8nFRto6qQnqciXrOTfnolB8zqMaMwwAvElSB8vXrxthkUyLyLEZJlu2InDZFuZdltWCoyVJgIK6hesyLI0beg536EscWjy92cOs+NRNhzrKJXsXL1HkpPLULIz1Tfd5pbHyNQthXWaDSaZaCF122K2HMfUguv6+pGLqXECs8Vf9YKq6NbDVA6+pCRGO74KM61q3BtHusbAKfxTqvIjWP19ZOeuYk7eg6A5k99lNC+fkBCblpdYOkhQmGsfd1Y+z6DlxXw1HMkp8dwLpxB7LitStiz29qZeu45UmeUbXFoxw72//BH6dj9SaQZ4qnv/UUA3GQSo7UPt0J4jd92gLZjt2NGoxTOncSbngQ5gzFyRa2qBXAKiJ4dyIuq/vA9xxGhQEl0lXZU2Q1jkJ0OkXvt2Tnnnn7mxTnbSpdw8BqypxcrHMLq34Fz/WrD17SEdFV7NzjXa+b8O/Q8+jA3v/v0uh87un8/g8PDDL388qrUJwsF7HicwuwsVjRK+z33YNg2T/7BH5CbnCTY0sJHnnmGYGsrU6dPM/ryy6QHB3njX/yLeeuM7dpF6upVNWjXbDi7P/MZ8tPT3Ph6OV+0HYvVjWJOHD7Mnf/0n7Lvc5/DsPUKVs0WRlA/f9lq1q/RaDSa7YUVUiLRtmf9Fp9KKcFzEcY6R6ZYUSW44iGkq0Ss1Tjt/BRYYSVk+pGCzuvPIAfPYXTEECFHRUu6eTXudQsQ7wQzCoU0eBlIDyGCzdX1CsO3E/YFYWHhjZ2G8dPQ1I/ov98vOPckpMQXdrPI5A11voBELTQWAiUmBlsgN6neE8eDiRHVPoDWbpXyKNxE6IHHgFztURCmqWyMi/tIDwr+/z0/ajg9gox2IbZyJJKTRprBjYl6FZZ/r66S6Co9/Mkr9VeYYJjq81FcFBFo9u+/gtrm5v17cb426ijZTYUZVFHxjdhSC0t9fxm2dovUbG30XMGGo4XX7UrvIcodi23MOkTyyfYBPGnhjo/hnTmt8pusQw5PIxqlIAt45xsX2OUShFeAfMEi/epLpeeBfbshO6aeCAsCCWUnlJrGsAAkIjVLyBon9OAOZPxeZgpxIk+9SPrCZQDcTLbqGNmrV0m9c4nOnbsQXoGOJ97F6LeeK7XXam6i4133E2kOI69fhGvnsHbvIX6oC0J71fWeGgYhyIXvJHftJmY4TPCRd2HJLExcR5rHIRpBuhJ5/i1EtyB1OY9789UlXQ8ACnk8qwm8LIGQhRsKI7OZJVUhhMAIBPCy2cULrzHu1SuY4dCc92Utie7bx/DYGPmZBeyvlsiev/f3uP3b3+bln/s5gi0t3PV//V+l14r5PGMDAwB03HMPHffcg/Q8Dv7wD/PV97yH1jvv5MFf/VWSV64wefIkLbffTucDD3Dlz/6M177yFe7+5/+c7/zgD+JmlvZea5aOGQxy58/+LIlDh8hNTOCk0/S++920Hz8OwNv//t/z0s/+LHu/7/t412/8BtLzmHnnHdxslvTQEF6hwN7Pfnb7WGNpNBqNRqPRLAUzoIXXdUJiKPHISSshJ9y6fgcPJFR0qFxiztZGsSJVwpO8cQn3rRdxAaLNmHsOYPR3YxQjU6ULuZSKhBUGMtKBvHENsTOGYfkLJWuFNukgTAspPZgZRLoFRIUtqAQ15+PmwFXjWZlNwegFZLBJCTH5WTAsZOtesPyIb8+EzATkk4ijDyrhNBoFbxpCnYjIIfBqRdcGcLNl8Tg9hox0LH1MspkyKzhppBVZ33FVUXRdzRl/OwxGEAqzSqCrinz2j1OMUDYD/nM/v3B+xt8npO536aqyhg1ORn2uzeCiEdia1UIo0bRS+DYC6j2RUr0Pbq4c4V+0soOyAF98jzUajWaFaOF1myICEWRLH0xe3+imbCzr0T80AxTeLlvOhvbtJ3tWRVuKcBgz0YoRi2NEogjLItqbwPBykE2qnKfTgtTrrzd0KBEMEdi9F7O5GbJp3KsXltZW10F6ElGzIqaQMnCSrnLycTyk6yIdj/zoLKE770ZYym83/fxbBDruw4wHfNueMdLnxrj2S/8PsQcfIP7AUaJRB9VllQg3SeK2bu7+lz9O8ruvkUp7DD49N8Lx0n//Y3Z88P/GLExz6Ivvp/X4YYLtzbiXhhE3LyNnBpEVGp07PYM8fBy7txUjGkZa4FwaRzz3LCGRh5vvYCRug0mVH1aO3EBODJX2l5kk7s3lfzaSb15BZlLgONi9A+QvnltyHcLaHF/P+ZFhuh54gMFvr5/Do+jpIXP+/KrUFe3tZf8P/AB3/uRPAnD0536u4QhHYRjEd+/mE6++ihkMYoXDxAYG6H744VKZ3Z/+NLs//Wmmzp6l7a67CDQ1cfO73wXPI9TZSWZ4GG+R/LKaxjCDQbxCgX2f/zzHv/zlecvd8U/+Cbs/85mSkA7Qce+969FEjWZj0IsINBqNRrOaCAu9SBvWZbJAehU5RR2k9EpRkKXU5SpUU7XICvviTmWEXoNRdZKSnbHw8o3vV1VBHeymisgwoY5Rma7Gv4zW4x/HPfMK5LOQmsZ9+2WMvf8A0XUUPAeZGYNBf95EejA9Aa88C498DK+rBxFsATs616I33gPj58DJIK89By37lNgVbfMXEFS0W0oIRUmOGUy88AKZ6yPkJ2bY+9M/SLhpBlHUdXNpJcgCWFmwpBJdAUyDhnPd1rmGommnEl69Asj2rd2Pc3Mqh++6noMflboaCEMJcKZvmWxHKdlkL7qvUN+VwYRqjxCACVTMNVhh9XDzqqxv411u/3b/jl0Dite8HkKoKGYr7NugQ+k7S6O5VdnKvzG3AJtjZl+zMXTt08LrMlcLeh19FMxwaWVfIBoi3plQVSIRhoHZ3o7R3kQhK/B69iItC+E4BFpbCO/opZB1cMbGcK5cwJseLw17hDVAZQcs3L+XVD3d1bYJ9O/AbG3DsExkahZ36DoMX8UdXtZpAeDmbKywg/QgOyJJv36W/Lkzi+/ok2xtovmDd5aeT/zN83iZNDPf+hbJF1+k78HDWAM7sfcMYPV3ATMEui2CO/vgxefZf7QH3n8/yaTD4HdeIHXlGtJxOfXrf8kdX3wcozBLz7EEAGPPXUa6Dta+2zCCQbyZKbzxEZidJP3CKyQ++zhe1iX30jnca5cQbV3gFJBT43jSLnepa2+DFfZ/5ex06f9KlF46m0V4BTDN9euINt97L5dXyV4Y4NOvvkqku7v0PNzRseQ6gonEomUSBw/ysWeVLfXlP/1TOh94gGBbG0IIXv75n+ftf/tvl3xcDQSam2k9epSj/+yf0Xr0KKlr17Cbmhbdr1J01Wg0Go1Go9EsAeHnNly2uLTNEXb1RL50a+wtpZ9L1wInr0SfUCv4lrfSc9R7UEhWvwdGAN9GqrqeenankvJkq/RzmXordN2qPAdhQrANzEDJsncObrUTkBEOYH/o8xT+7L8UK8E8cIfKJWuYEOlC5tMQ6SI/OoWZnMEA5NN/ifjI55Qwi0CG2hChsggrTAu6jyGvPw+pEWRqBEIJRDBUOg5u3o8+zCKQRPbt5eVP/wR9P/A93P7LP44hHJXL0fUF0WgX5GbnuxDLv4ZQ/X7dEhPi6ygermq0q4BAovo9EMuYu2lEtDMD5ShKJ1sdUVuY1d+1y0ao70Az6P9mOTXfkfV2KQrkGo1Gs/Zsnpl9zbojdh1HnvnORjdjg1leJ9G1I4x+/Zul553vfhjhKIvdYrfN2ptAjF0i67aTfPE57B27KVy9RPSuuwiaM4iOPWSv1ESkCrHg4mKzs5vgjl0It4Bz4xJMjeBNjSx5reqCSImXN5j46hsUrlxc8u6ZZ54m/vhhjLBFfiyNM5MG0wTXJbz/AMLJ4156B+v2I4j+3cibJ0C6RO7txRnag3vlIgxdJQYcuGcHfPghUmmPm8+8wuSQoKULPNciP2Ng79qLc+0i3pV35lwDOTNF6tUhuHQGnALGnsO4506AEIhwDOfSRcyE3++ya6xEcqtoA2Mur1O3mfJOytwybJSWSziMswoWy2YohFcokBkbqxJe14Ndn/xk1fO7f/EXGfzGNxhvMHJdo9j1qU/x2O/8DnY0WtoW7e3dwBZpNJsRUc5hvlb1azQajWb7YYa0GLBcQUkY1Za4UioRtaqMLyB5BchNQbRbTQO4OfV8qddfyrIA5DkL555cJqVpCisCgRbfpriBfIkVmPuPUPBrsh75KMIKlS178ynV9uQQ089dJH/5Bj1Hgip49umvIR59rzqv7BgyWxRhWxGhVggnoHkHTF+FUAKa+pTQmp+l3vto2i7veuZ/E4zmgDyE2hBOCikMsCIIyy7vZQZUZGcR1wE7OKfOZSHl0sXXzWQ1DH709XoKWavVN92g62iFap5H/ah3nQ92SRStgis/P9oiWKOpQc8VbDQ6nn4bI1oHIBjb6GZsMMsdTFU/bd7dv/iRCmrglDp5AiwbYZkEdu3GqIneygV6kUX7nGAIEY0Rvf9dRA7dhlVI4V44iXP5nMozsgZ4Lkx8/e1lia4AMpclc0rZ9o5/7VXSr76I2dZB6OhxjNYOCqEEnmHiFRy14rTrCADCFITvv2NuhcPXiM7eYN/RHjhziZlTaSb/8FukvvYNnAunIT+/KJh/5QVEawdGzw4luoJaRZyeRaZmkc1daluwLOwQjJArRJZ17vUQyxRehbV5hFd3FXOtLkSor49rb7yxrH1jAwN89JvlxRDHf/7n+f7z50kcPLhKrVs+djTKR556qiqvrGZh7vjSl3ji93+/SnTVaDQajUaj0awTegJ79ViKgGr4Y0BhqAjXqnocpFcoWxCDEuGkfwwnrR5rILqW2xeAoC+6LgNhgHn/ewGw7n0CcMsRa1YYIm1gBhHBILMvvshM0p8rmR6DmUxNbRKy48ipd5Cjb6gxfe9RRFMHgrwvZs0/3xNsCSgB3BddobgO3lXXsfhe2BVzZnYUwou77zTMsuasN5vwujTxfdkIc26O30YxbCVwFrFjc6NdNwrDhGCzyjGraQwrOld01Wg0mk2Ijnjd7rTtgMFTG92KjWOZqwVrf95dx2UxmUwW/AFQvgBtvRg33yEaAu/uY0x/56lSe8xYCKIHyExkKExNE5xJ4Zx7e1ntXCoi3kzm7DCFC++sqJ7Mq28RvK2Tyb/+GgDO8E2c4ZvkEy1Mjo8D0OzE2XXXfpBZaL8NMlPYuyVmz4BaNSkAy1L2QZaFl0ziDl3FM2tyxixCcPcODKOA2NGKNG28mRmQHp4VVYuCZ4arg4xNi/ypivMPhiC3/AhMsczVRcLePF/PuWtXCff2kBm8uWbHMMNhkqEQuRs3lrxvoLmZ+//1vybS3Y0wDKTnYYZCNO3atfoNXSZ2LMbxr3yFvve/n6t/8Rec/s3fpDA7n33VrU9s1y4K09PkJicJd3fT/cgjHPo//g+iAwNEenq04KrRNIpgbScd9HyGRqPRbFP8vHdSR2GtnEV+TIVZUcLPG+mk1VMzXGHZ60cWCgspHX/MLBFurSC5NkhhQbhzfmvhBrGOPYScmUSEikKTBOkiAmHE/vcBEJUnGfud32Pkr76D+/GHsQwHXn+Tpnc/jCjawRZzyQoDCmnIT4HV2XA7BBIZblfX0Y4jhQn5aTXPYEcg1AzpMSWMlRofqTr/FWcblXIZFWwy4dXNI81gKQ3X2lD8LlrOMQwl6lfNH4nq93WjEQYEYuDaKurbXbkD2Jam8rdHGOXFGcIADC24ajSNoucKNpzNM7Ov2RBE72HkdhZe3RzR++4m9dJrS9yxurMbttwldX8dxyh9+AwTwrcfInrbbgyRZfBrb5J751ypbPT+B9fNuEWEo6RfeH7F9TjXrzL90iVkpnoQ6E5NEujfQf76VaRbHsSLjsMIU0nX4btvUHj+79QLFcGsZnsPdu9xAGR7G9nXG8sDasgMxshldZxQFG9yFjy3HO5vBZBmxVdhJgmBAJgmwd27CcRMZl9agfDdSM6Peu3eRDlevVyO1ruOc2MNhVc3k8EKLm+V56O/+Zvs/+xnAfjoN7/Jta99jY577lnN5q0a3Q89RPdDD7Hrk5/khX/yTxh5fuWft62CGQ7z2G//Njs+9jGsUIj89DTnfuu32PWpTxHbsWOjm6fRaDQajUajKSKEim7c1gKA9KPsViA0Slm20m0AIQTSCqu8j6DGknZcRXchoZACp8K22Fo9p6bFG2etWHQFELE49sMfnvuCdCnO4hZFPC+V5Pk/eZ2hl18B4AfPfoNguLiDp6ZlpAvBRHncbcfmWjvP1xY3oyyJAWFHkbkp9UJ+WjUl3lEdeezmkDLsN9NS+24ip6oNQTrLs0xeEssVXYFAvCLvZ0wJm8vJ5boemMFyvlIns37RxJsCod4rYfmBFq7KuWyGtNCq0dziCCH6ga8AHwDagJvAnwFfllJONljHp4HHgGPAUSAO/C8p5Q/MU34XcGmBKv9ASvl9jZ3B/GyemX3NxtC2vSe7RSFL4r7bFhVeB37i+8qWPdIjkw0y9LffYtePfi89x3t8z/Rd1XULoOkAUSGI7v80AOmhPGN/8BfkhkexLDC6erE7Q4RsA1JXcGSwSnSF9V1AYra049y4uuJ6Avv3kx8cqfua3d2DMz5C5PbbIOZbNFd0fAOPvI/CC9+YE9Eqx27CxLCKgg3HEJEYMr34gKqQcinJedkU5p5DuOdPlAs4eXAr7J+kR3wgCgjI3QQjTuDgQfJXrhAY2EGgI0Hq7TPI2Qbtd43lvYNiEwmvAIa7TFufBrGamrh5anmLQF7/5V9mz/d8D2YgQN/jj9P3+OOr27g1oPOBB/jos89y4fd+j1O/8RtMnTxJfnp6o5u1+ghB//vfT//738/Oj3+c+O7dpZcCzc0c+amf2ri2aTS3CnoyQqPRaDRrgWFvb+FVen4u1oXEj2JkcL2X/DyuVqycILXKagmwgVBr+Vh4yua5gC+4hn1bX1cNj5drtboKCMMEb+UR0HJ2ChFvmecgJtLNY9guHd/zYRBw47mzpZdP/Pc/5fg/+uTc/QpJ1HshVA7NRoVAK1wSXimkINIF6eHy614BrIp68jO+hbH/RgYTSDvsi3mWEooMY20DjITYdGle1WdkDTPZCXP50fdORgl6UBY2Nztm0F/4klPfwbeyAGsE/IjWQHXQgjDV51Oj0ayMTT5XIITYCzwHdAJ/DpwB7gN+EviAEOIhKeV4A1X9AkpwTQLXgdsabMKbKJG3lhN1ti2ZzTWzr1l/mrvBCoLT+CrMWw0zO0xg107yl6/MX8jNIPLp0tOIleXB3/xJkB4iv7D4V/kVF+7ppO3TH8G0bczMNHY4D5Nla1VZR2Zdz061dFaeN9aIx0nc3oUE3MceYuq7zwIQf/Ae2j/4MHZPF3bH58EKIoLN6riygMyl/UXFM0R+4Afg/Gsq4aznKmHUq+5smnv2kPy7by/aHjeZwW0bwAgGYeoG3uRYnROvt6e/MTNLkFmCfRHwRvFILGnAKZYR8SqFIDcyuuT91pLZl1+i/fjdjL261OjwxjACgZJN8ELc9XM/R9cDD/D8z/wMTipFanCQyTNnKCSTmK2ta9K2tUIIwb7v/372ff/3k5uc5Nuf+xzX/+ZvNrpZyyaQSLD/C1/AikaJ79xJdMcOeh5/HCsU2uimaTQajUaj0WiWiqGnixoSe2rLeHmUNWqB0piyON6sGXeWRv9SgpBIDCW2BJrBtGtyqW7uydNGkJ6DYBxyOWRgQIm5gExNIGcG1YJ2b5ZAc4jWvSrS9NE7PsBjn7sPL9CEOX0Tmc4iIkF13YuPygvrZiDYCn7e1gWJdEN8F+QmYfZ6tei68JmoP7kp9SjSvBvE2opkci0FzuVSSCKNxBrbDTdAMY+rm/En0qQSxbcixUUEVkgJr/nZrS3AlvJW+4tVDLMc3arRaLYz/y9KdP0JKeWvFTcKIf498NPAvwS+2EA9P40SXM+jIl8XFwwUb0gpf2kpDV4Kuie9zRFWANl7CK6+sdFNWVuauyGbhFxS/cAXRTw/d0Di0XsYWUh4NUNAWXjFcxcVXOthZEaI7uwkd/oqdk8MpqujJo14C8HbjpA7syoLK5aMl1pZzkmzvY32D9yHmB3GC3bREsnR8oOfJO8YxO4/iGXNgjsGMgROBukWlMWw9MoDVDeD0TuA9/Z3FjyWHWusgyZzOeTgTVwAw0R0tiMGDiJHr0O2OBhrRN1WZYzhd4j1BKF9L56hVtN6OYfMa/MIksvoSE4HOnGm3lryfmtNuCm2ZnX3feYzHP3wh/nqRz6yYLkdH/gAvY8+yq6PfpSJEyf4wzvv5P5/9a8IbTHRtZZgSwtP/uEf8seHD5O6dm2jm7M0hKBp714e+53foevBBze6NRrNNkP4rhtrWL9Go9FotieGtXKr3a1AKZqu3phQKrGg6H5V7/W6v5XLiM7zCuXoWSuAqG2PYarIMG/li6WXxQrz/UrXgdkr6loGm6EwizRDYNjIay8pATPcBvE4iLJYZgkXMuOYkTikJpDvnEUcObjCkyk2ykMYBoTbkOE2hOci06MwfX5513n6koraDbeXI/gME8F84t/SVtlLKZftqLW2SDXHZq7RFLMRVPMqTnrhcsVrbgbVfVZIgh1dmzatJ8JUEfD5qY1uyfIQpm8jvEktnjWaW5bNPVcghNgDvA+4DPxGzcu/CPxD4PNCiC9JKRdcTSWlLAmtG74IqAItvGoQfUeQt6rwagUQ7/0pREsvALKQU53BmWEwbYi2wtQggRsXaMo3kfr23+IOD86pRmKtztSjYVEYmiX0o7+EaG6FaydBCOTgOYi3Yh9+nP4PjzL+X3+dqT/+X/7B1zHkdZnWQUYiQeLJhwiIKZgdRkqJc8OP2By9RgAwxYB67uZBBIG8sn0x6+REkXnEkYchn/ZdfDwIRFCeSwqBxGhrxRufWLBtzvQMfmAteC5y6KJfgUB07YRgGGnYS3t/pQejV0trTQ3LJvrg/RTGJslfOF99HZf4hZ9uGWDoT7+6pH3Wi/TJExjBIF5udSPk7USCvV/8Iok77yTc2UlmpL5N9bt/+7fpeuABQP2Qth45wheGhoh0da1qezYKOxbjwA/9EG/923+Lm90atm5td93Fh775TYIt89iFaTQajUaj0Wi2LmagbMV6qyEMPzeoLwZIP4+kLOaAFEp8kw54FjhZ6guqxjzbl4ZEKLvbph0IhD9uRkXAGkGEGUQGmiEzsrgAtYmQnqtE1fQw4FsqC/+auRl1fsWo0cw4xJrUdW/phsmhivG0//fS28i7HkCYRYtn6dti+2PUYvlG7IbdHBAr126YiFg3MtYN0kNmJiDVaBRs8YTd6shZK4SMdoMwEdSIuUud6jEC6pptRtwsmGuwUFsYKuoTFrjvhcrtW3QbK+aoDrZU29duZQxzkUUgmxAj4L8vm0cE0Wg0m4on/L9fl7J6dZeUclYI8SxKmH0A+OYataFXCPFjqNyy48DzUspVi4TSwqsGUgsLV5sHAR27ITUJ6UVyK0cS0LEbsef+kugKIGw/n0OivI3WAazWAVrveJyWH/kJUt/5OpP/6d/hjpfFH88TjRu6CAP6boebp6EmL6bXcZjAez6A0dqpNuw6qnbZeWepjNXRReuP/COSz3wbZ2iuCLymeMtbzdz+kYcwZm+Wqwn14I28XnouuvoQ4ajf4RJQ8MAGWUgigk2UBlGVInO8Ga5eKD+3+yFbbRMcOHiA7HMvLNg2mU5Bc508HlIihyuinDv6IRxHzowhppdo8+sUMEbOEQyEefPpc/Q/+RCRFrWy0sstbm3jWUEMJ0c+0cO1v/z60o69jripFO13HWPkhReXtb+wbTqfeAInleLgz/4swbY2Rr75Tfb9xE9gNzUB0PvYY1z4oz9S5Q2DjuPH2fHhDxPu6OC2L3yhuj4hbhnRtcjxr3yFY7/wCxSSSXJjY9z45jd5/ctfJjO8xAH/GmHYNuGuLrofe4wdH/0oez7zGbVKXKPRbBx6MkOj0Wg0a8UKoxzXFcPyF8Au0mZhqrJWpDoCqyTaVCwMNgOAsrzFblLCT2GWKsVMiCUIaELV6dZZyCpMiO1AFNtUFJvMUEWRADLUDslrLF21WynLPN7MxerzjQ9Q/R4Z0LxD/de0VWRcYQrRtRNZKbwW5wqcPKSSEKxoTzDhvy8VmKHFc+LO87oAEAYi0o6MtEPbIRUJO3FO2RIvBScL05ch3A7th5Rw5voCrLF4BGBRP5ZGYHML7l4eKeUKIo1E2d7cipRtpM1Q+R6ojcA37HJkvhmoqc6fe7qVCMTLFsrSUwsUNts9IQz/fQn6780t9h5oNFuNzf0ZLNpXnJvn9XdQwusB1k54fa//KCGE+A7wBSnl1ZVWroVXDfQdhrPfhVwDOTA2kp3HMB76grJXuXESefV1mBlRnVXpW5sEo4j9D0H/kWXl1hSmRezJDxG+/2GSX/1T8hfPUbhyAWE0NsgQd3wAdhxDNHXifePXYfSiEoB33wutA5iJ3oY6onZnNz3/4j9w4yd/ZMnnsDKW94XsZEvDUWDu+MXetxsmKkRkT8DAHvAkUnqlvBvKOieo2tEUhK69fsfNUJ3M+DH1oyEMQBA0ThDsbQdD+CtUKf2oCOG/Z0LgvvL8oucgR6+X/9/ShWhqRU4vUYT1XLI3hzj/P/93aVPPB99H8zzFpZQ4iR5GLg7RtLufke++gHQ2dw6SYDRSd3vnk0/S+8lPMvQ3f8PQX/913TL7fuInOPorv1K1ra3GmvbhX/91Dv/Yj/HUF7/Ijg9/mIf/439clXZvJcxAALO1lVBrK80HDpA4dIiXfuZnGHv11TU5XtuxY9zzL/8lHffdx+C3vsXYq68iDIPs2BjxPXswbJv+97+fpr17MYJBDFNbBGk0Go1Go9FsC8xgfZFws2FFlKWolKq9bk4JE0KUBTthgBVWosByJiKFUMcwQ+Cm1RjWrcjjuhiBJl+MMP2ISKmur2+3KxrMqSusEDLSCen6LkGbDjtWfQ8ZVvWEgRXE6L2j9NRzXZicgUgTtPcjQs1I6wBEmiF6t5obmJ2ExIGSuCZdB1yBEqRQfy1LRddWJtgtilbF5/kUov7wtoSaZzAQsS6IdSGlRGbGYez00kTY4v1oBtUDypa49YpL3+ZaFja/6FpEevXtZIsinJubXwy3ouXFBvNhx5XwWkiqz/xi5W9FioKyMHxh01D3xlotkjFs9b0pTBWFXxK+ZdkZwLCro401Gs124jYhRN3JSinl8UX2LU6XT8/zenF7YhntWow08H8Dfwb41pjcCfwS8G7gm0KIY4tZHC+GFl41iJZ+ZCCyeYVXw4Tew4i7PgH4Xt39RxD9R9bskGasiebvLUfXeckJxOBJ5MR1RKIXrICyKS5kkeeeVgJr3xHEkfeV9hGHnoCBO+HAw8sSgSN33cu+b71G6qt/xOz/+LXFd9hAJv70a7T/wCew25uRE8NQk/7WaApBpuJ7dGYYEXsXIFUUqxGE5KCyT8pWDF6aWmH2uloQa4Qw4h1V9VqJZhh6HRYJ1HVDEcguYaAyOYycVBGGZRF2HKZGFu5HOnPzwHjz2De7gTA3r82Q/O7fATD79tuNt28DSb35OlY0ipOq/r7Y++M/Tt+nPsXeL36R7z7xBIWpKe76zd8kPzbGxIsvEj90iL5PfGLR+iOdnUSefJIP/tVfEW5vX6Oz2Fr0Pv44H3vxRSZPnGDizTc581/+C6MvvYSXX5nNUM/jj3PXP//n9Dz2WClqdc/3fi97vvd7V6PZGo1mPRCsba4vPXei0Wg02xvDxs/9stEtmQdfyLJ89UwIJcaspSBjmGDE1f+LEbZuVi0EL0Z4FfPGFpJKqLCi5TaCWlSMUILGMhCBZqTdBJnRzW89Gu5SLlT5NAQthJRKVMSf26nJISwKWeRl5fInbKA5igikIBarCJSdRnqF0hhGGAZy/J3q47buBLnItTFDwJ4lnY4QAhFphx2PlEXY8TOQXcRJbgm5kmUxsrNoK7zJF2eXcNJIOzY32MAKq8+GGVR5SoXpR7W65c+NEahbZRWGCZggmnS+0CJm0BfoXRUB6+ZWJy+3ESi/b0W2o9Ct0Wxltv5cQfEIq94JlVKOAP+8ZvNTQoj3Ac8A9wM/Cvw/KzmOFl41igZXV647h55AHP3IhltZGrFWOPBI/e+UgTvhxok511D0HV7xcYVlIZciGG4Urkvm+jj2/p0IM4Xd34HdbSk732Az4sCDCKPi+7KYdLWUn8QfQdXms63s2NVbwdeANQ8AK4nQqxBhSXRAczukZpBjN+qIsBLDtvAK5YGRdOe227MCjIy7JE+fWX67Nggvk6Hjnvu5+d2nStt2/fAP0/U+tehAmCaP/t3fgRAYtrLp6v3Yx5Z8nJaDBxcvtI0wTJO2o0dpO3qU/T/4g0yfO8fZ//bfOPEf/gNeoUCos5PsyAixnTtJ37yJl88T7e/HikaJDgyQuXmTQEsLhZkZ9n72s+z46EdJHD68qZLOazQajUaj0Wg2G5u4r2jHqm1INwLDAAww5sltaYbUmNewq7dbi4RZNoDqx29WQbyMMAzk2CQwBdkJ5M2rMHUDhEHWbuOvf/5/4GQyFJIpYr1dfPwrn1KCTym38DznmJ1VUbDqKPWOvHjjVhglWBJhIw8jJWoR+cQ7kB5a9rEkhm+zu0XE1kq8uQvRMcNlkVQYEGjx/y8AG5YzVbNZ5y83CiFUdLdhqc9OUYAtRZr73xXCqLgP/ajZ0ja/TDEi+1bJjavRaNaaMw1Ets5HMUJrPqPIpppya46U0hFC/FeU8PooWnjVrAbink8hv/kbG90MHwG3vwdx+EmEvflXVKkI3DsWL7hcNmn+xPCdt2N3tGHGItgHd2HavkBshWHiCsUBkrAshHCqx0vFXB0l4bV4jjWDqsKMWh3spFYmvK7WYHxqFDnlWw/HWqC1G3Jp5Og1hN8+IxLGmy7nl5GuixeK4Vk2VnKSQnM3w+eukzx9enXatAEY2TThgQGie/aw/6d+it6Pf7xKwDMCDaxW1ayI5gMHuO/f/BsOffGLmKEQ4a4u0jdvYkUiZEdHcdJp2o4d2+hmajSa9UBPjGg0Go1mrSja6xaSi5ddLzaD4NooQqyKyLqVkJ4L2RlwcshCBvnKU3DjLOLBxyHUCqOXiwUZevsiwy++VNpXCKnsTGN9MHPD3+r3c2oXaSdvIMNN/jh04+8FIUCEW6DvPjWrkZtBTl2GmcuqwDzCqxRmOXLaDNTYuW5B3DzY4XJUa+2ig63wud3qGLZ6mKFSmi5lA23495ZofC5No9FsbTb3XMFZ/++BeV7f7/+dLwfsWlHMORhdaUVaeNUoOvaqyM1rb210SxDHP4U4+MhGN2PzsJkWsQZs2j7xAazmMGLwDDAFzhSIfn8gIX27nopGd9Sz7plndW7tYAog1gVTF+cRXhv9CluDzn1yEpn0bZEtG9p3QiCEFXkRp0J49VyXyVyAiadfwYxGyY9sDUvhhUidOskHRicxg8GNbsq2J757d+n/0b4+AIItLRvVHI1Go9FoNBrNrYYZAie7OSLwAs1KnNJsOqTrIFM3VAqr0bPlF/KzqLG/9HOulhk8eaPquZv3IybriXO18wFOVuXYtQIrGO6vzWSLAAg2IbruRHbdCZ6DzE7N0wRJKXdSKcp3C+PlIdi30a3QQPV8WSnqWMsAGo1m0/Bt/+/7hBCGlOUfeiFEHHgIyAAvrHO7HvD/XlywVAPob1wNoOxfePAHkBP/BlLjamO8A2ZH5xY2bUj0Ig48grz8CtxcJbvUUBPitsdh/7tWp75bhXpi5Joda2H7m7ZPfRA7NwhjQHMnTI+oF5JpaK6/ikY0tQM1ljMCPxeNL8BKF6L9kJtChIOUBkBSIg0TMfAoCIF0c/71KL7ewOA/0gbJS4uXWwlOATmkjmFFqvP0OKk0Xi6Pm0rhpjZpHuUlEmhrX9/7UqPRaDTzINY2b8smiCDRaDQazQYjBASbqnNYFnNQzi1ctrsspFYvcq8YPadF102JlBI5fQEyI+q9MuyS7awY2IscvTF3H09y/m+fqdrmZHzhMTNT3piZRsoE3tvnAQmuA64LnoeMjlG4egM8F+k6Kheq4yA9j9AnWjDbFnFQC3es5LQbQoD6TEQ6IDdZ/aL050JWaHm8qdC5VzUajWaTsLnnCqSUF4QQXwfeB/wj4NcqXv4yKuL0P0spUwBCCBvYCxSklBdWcmwhxP3A61JWJ4MXQjwB/LT/9H+u5BighVdNBcIKwH3fC9NDyFwScft7Vd6MQASmbkI+pULU23YiQn4Ok/4jyqJ44trKj3/7k4iDj624nluOdbRikYU6OTl8jOYm7MJIeUOkGaZHAQmDF5BNBxAIcLOQ6IfpGxBOMEd0BZAChFSDZydVFlCtkBqsVSBArWxGzB24N2CPIo31tas2AtVfq9Ovvraux18PpOdhhja/DbhGo9FoNBqNRqNZBYQJdrwsEFlh37pSgOegFsYKJbgVx6/CgvzU6ohKdkyLrhvNQutu3Vx5HC9daNsFo++o5zH/fSsIsPLQ3AvTgwxezZK8dr2qGiflpy/KzUAwBvkkZCaVQGkI5MVT1ccVV5D5IHJ6qk6bFr/vRKBp0TKrR50L6N4CEa5z0Iv2NBqNRtMwPw48B/yqEOJJ4DQqv+q7URbDP19Rts9//Qqwq7ISIcQngE/4T7v9vw8KIX7b//+YlPJnKnb5N8DtQojvAMXOyJ3AE/7//y8p5XPLPy2FFl41VYieg9BzsNxVirWpv5317GJROVjf+xPIp38LBk/VLdMQdghadyx/f82qIAu5eV+LP3APeBUrT8evQN9BuHEG8hnIB4BhNSjOTqr3s73+faMG43KuVbAQEGqH7Fj1dieNNIKQT6uBXD6lLIuym8DuqobtYL/rzKxbXnONRqPRLIRgbRdo6bkzjUaj0RSxahZeFiPb5hNEDROCLZCbWmHkq6HzEW4K5hcyZXa8ekN+Epp6YWYQ8jOw+zDyxEuIO46AzEPnXs79jz+ZU4+TzSI9TzmyhRJKeAWEEBhdAbzcXuSNiiAXKbF37MQZDWPt3oUIBDDiQYTwoGl75dbdNNxK0bsajUazldkCcwV+1Os9wFeADwAfAm4Cvwp8WUo5sdD+FRwDvlCzbY//ACXWVgqvvwt8ErgX+CBgA8PAHwK/LqV8esknUwctvGpWjDBteOSHka/+bzj//NIrSPQgHv0RRKx99RunWRIyn5/3NSMaAjlTvXF2REVBSw8C0rehikN2CrJjiMBtLLg0trZTLoQaVAeaIV8W92R2AmbHq7ap8g2sUF3nSePtILzKQgGvUMCw7Y1uikaj0WiM+lb/Go1Go9FsOMKAYEKJb9787krzYlgQSKyrC5RmGbh1FnAHfKHesGDoKmRTYMXBHYfsGKmxybn7SInrgmVA7TyCEGDsaMHNdMHEcHl7cpTQHT0ImQbSkPVfMAfm1DH3eOsnEvpLz7cBWnjVaDSaTcMWmCuQUl4D/n4D5S4zzyy/lPKXgF9awjH/G/DfGi2/XLTwqlkVhGnB8e9BXnsLckvIYxltQTzx44hQfO0ap2kcd/4IUjNkqZTWRXYeQoSjSNOCyXHAF20bGrz4Qw7PAcMXKoWBzEyp/T0JVgyBB8JQg5R4EApNavAuAATkXdh9p6ox78DMVPVoRkpw13eQbgS3hxjpJpMYLS0b3QyNRqPRaDQajUazmRGGsinONRq0UNxPi66bC99Ouh5OtrqYEYWCA9EelY81488RFRaPfJaeyhlLcpJM0iFfkDgOtHU2gRAYBw7iXQioeQLDQAqB4zRh+OmLpD8fYMzmMAL+hHM4CsVxemm+QKro2qVcghWzDeRXHfGq0Wg0Gg2ghVfNKiJMCw49iXzjLxYvHEkgHv1RFe2qbYMWRq5fx1wA0jDAm9tZnn3pJC3370T07gEvB9EEZEcQroCY386mbqoGY8IAyy6fQ6TT324hSjbDBki1+lmOXYGrL6vNgRiyoxvwxeBAs+9mVW6bDNqQVWqwCMeRJ0/PPal1trDeNlGgegJEo9FoNgf6+1ij0Wg0mx3DBDNYPzJyTllLCbXC1L9xWwQR60c6GQjEwc1DckbZDPsio3jgIUhmqRQdDwx00Xf3YaTjYDYnyN64gXQcLvz2C/R1qHJ/8dJ1Lrz6FgjBP/pXP0RrKI8AzJZenGvXkK4/j+BA/vyZqjYFnwhA8oZ60r0PWuqM04PrmeMVtoXwqtFoNJrNg+5HbSibP95Ys7W47THYfe/CZYSBOP5JRGu/Fl03I2b99Ri58xcoRHth9gakxmDkPMzMQsjPAyxdwID0KMSKAqtQllLSAekqe3lAVA42RPlrSHQfLm/PJ2FqCqT/I5GfBita06qKH5DCLCQ66rR8fQc2ZmB7CK9eroFJE41Go9FoNBqNRqMBsGNgLDZWEn45S08WbjYWWhAeiEOoFbITUEhC0ICOfoh1qdcLKcCF8cslxytvdobC8BDO+JiaNkglkbksuOWF1kceOFo69stvVkRMTw5i7dlffj56GSKxmvZW/H/8ev1pgXVc5A5UzX3cysj1vq4ajUaj0WxCtsevvmbdEIaJeOD7EQ9+Dpq75xbovwPxgS8hBo6uf+O2LOvbaRXm/GL49J9/HcxAeUMkAflJiHdDcx+kR9T2QET9rYycnW/gXGFFI0xL1VUkNQbpfGlAJGuNgERN3pcd+5nDGnX6pYSZfAvD72RJi3aklMxkEzjZ+e2abyW8THqjm6DRaDQahPp9XavHeidK12g0Gs2tizAg0KwW09YToMwQBFsaEGc1G8P842ohBCLaU73RboLZIbBbIW9CakLVYSuB1AiFyvtXzEF4FemPetvKC6/f+tp3KzVZGLmIeUClHRKei9m7c/72FrLgBeuc0hrZ4koJngtuQTWj+Hw7RLtKD6EXTWg0Gs0mQM8VbDTaaliz6gghYPe9iN33Iq+9hTzzbZgagh1HEfd+Rke5LpHgsftJ/tFv+x31dWCB98cZHiE3bRGM5SHRD0YeQnG1gtXLo9ZyeJCbAgSykEFYvggrKuutHHCoPK6lQU/fUTgzVH556gZYeyDgQmZYraYtDZBqvuRj4bmNlp6/4lKAaarzKz0MlVsW8LIuUgikNPwW+n9lUfAVBOVUKXdMmjYm//bvAMieOYXZ0oo7+Tp07p73+t1KeIXtITBrNBqNRqPRaDSaVUIIsCNghcHNqtyg0lFirB3Z6NZtPawIOKmNbgUAwgoho72QGlSi69A5iHTD4Dl/LsO32U3PggnBrrbyvoGKxd0Vi7dDM6MYponnumSnprgyHWBPS7683/A5jH23450/icjNVDeoVuNM5yBes600V7AQElEbsyJKL1UfsCg4SgmOv1DZzVbMd2yHSeptIC5rNBqNRtMAWnjVrCli4E7EwJ0b3YwtTeDAEbAsyK+T8LpAxCvA5P/+Kl0/9n0qOlVmwbQhNw1GAJBqlbL0INIOmVlIDKiBhmn7ZaA84FCDL+m5KheMV0BEmuDQu5FD7yDadoClVqZKXJi9ivR8oRYPgk2I/vsrImJB7BuCXEq1wXNx3TBuxvXLFOqflGVz4+uvLXppej75bgLONAWzmann3656zZ1U1kcLRQzfSni57EY3QaPRaDSCtbWt2w7zgxqNRqNZf4RQ4qtVZ+GspnGs0OJlVo3FBTUR60V6BZgZVUJ6SwvE7gBpqD5FzoPJEQjEie3rQz75OMKysBLNNO/sw7AMrFgUGffnACT8vS/9A0Q+R8yUhOMdFEQeM+zgmQlkoQDTGejchRi5jLlzl4q49DxwJdKzfSFXwuBV6Eyoro301KPJhNzkwidVnOdYDDvmzzkIcDM1l26eheO3KFJKHfWq0Wg0G42eK9hwtPCq0WwBhGGu27pBYRhzjmXEYkSOHiGyqx0jOw4TQ8hpB9GzD9JTqpCXBxGA8QmYuAbRVuiLICoHg948wqcwIT9VfKIE2M4d6qnMFbciY72QHCzvF2ypqlMAsucAvPNcuYz0Frcb9hq1GDLIGO2M/NnX5y0hzO3xy+NltfCq0Wg0Go1Go9FoNBvHOo495XyHM9RiaWEgpAeth5CFJDR3QXbctySUYEchaEHEBitGrHsaN+U7XU1fL1c3DJUjzY4jd+Fev6ia4Obwghk8YYCs2CcQxGzvQUzcKG9zByBZkRc2PQ0d7eAmy9tW3VVMqhy387I95goWuFk0Go1Go9k2aOFVo9kKGOvYaTVMCAaJHj1CaEc3VtBFJEeVADrrD2SmhqB9B3L0BuBCOIGwLJgeVHZRoHK43DRhz7vqH0dKJbgWV9/Y8bI1jxnyBVXfjsj/vxAg7RjkU2qb5ykbYEl530AIwh2lXCqGbCACtcEBVy4jmPz2UwuWiYRt+j/8fq7/zd8tQdDdeniZzOKFNBqNRrP26HktjUaj0Wg0a05xMbMAM1iRSsgf8/pRncIwofM4cuKUskI2A2qf/CygFlXjJDH6dsx/JNPEaO9GROK40oC+PYDAFYJ8cyc4BdUaw8TN5MCTyDEX3Baa3/8gZtg/ZleH30RPzRc0tUDIKvedrEYigZawBL6wiO2zaYE050bE3mpIjzWNstJoNBpNY+i5gg1FC68azVZgDfLiGk1N2J0dmK3NmPE4ZiSIETRBglUYg0IW8oOQn6eCsasVlY0gAyHVuXYLasVrvBWyKSQCUVzxWBycSbf8wP8dqOiYSysMToVo6Wb9HLJ+2UAMOfWOeq12bCODqm2uHwkbbW/sgtgBKMx3sorJbz2FzC9cpvDOKQxgz/seYuzKCDOnzzZ2fMBqSeBMTjVcfiPxFrlWGo1Go9FoNBqNRqPZgggThKXmIUqLpYX/KI7T519kLEwb0XEUKMqWNUlR3QJm4WW1RUqMtk5EcxueJ3EnxyncuArjU3XrDt5xnNzbrwJgJFrJXL0BbnkhdeDwXuLHutSTSHGOwf8rPMiPlysLNGB1LStyty7EYqIrIFwlPEszrOY35FIibv1F6VuCrdJOjUaj0WjWDi28ajRbgHr2vwuWj4Sxu7qw2luxmuOY0RBGwEQIF+FlEbkkOEXhrABMgIN6LAfPgWyFpU4+oyyIE93gOEjPQ1iCeXOszqmvZgASSEB2pLIA8w88JPTugWtK8BSysahTIxRYVExcTHStxLlykYRl0fKJD3H1r76OdBa/uO3H7gArwOiLL+HOzDZ8rI3Ay2nhVaPRaDYFOoeWRqPRaDTblOX0AQwwLPUoiap+DlYpmV80W+i1xVpYs59pYw7ch5FoRQzsI/X0N4GLDdXnzpRzsnpTE0TuOk76lZdK26a+/jzxY5+ov3Mho8TWYsTpYimJSm1v5Do3fm2El1fOXVYYnAaiX6VUTTBscPObv+/X0HXVaDQazZqz2X8vbnG08KrRbAUaiXg1TRIffpKAMQu5ogjqi6p55o9cXUumhnCf+TMYuoz1vT/Z0C7SKUB2BhlpQUi/0dJFrVL1ys+DnZCZAKQ/BvTACkF6GJoSVfWZPb2ISJMqY5hIMwiFPDKdhEAIYQcQr19n1XEc5Nk32f3u+xi9MsrsuXfqFjPjcTqOHSHz1hsAtAz0kJMDzJ46tfptWiVkoUERXaPRaDQajUaj0Wg0q0/D86kCAs3MLw566x+kaFi0/fJvIPMFX3hdnMDePVjdnXgT43iz0wCIXHWkafbE2zgjH8EKCiUASk9ZDbd3gDMO4eay8CoMyE2qVEfSU0J0IK5eK+mtaxNpKpDg5huIfjUAF9ycephBquZGNBqNRqPRbEq08KrRbAWMxfNjtH3P+zBn10A8XCnDV2BiEJmcRsSa5y0mCzmYGUIOvgmFNOx+FzT5FkHShVALZCtsgUwLZgerKwk0qVWsZsXAyHVhagQ5VREx27UbOVheUSsBI2CxFKOfpeBcv0J7Xx+ZmzGc2SThvj46jt/Jjb/7Nm4mS8ddd5I5+VapfGHoJqZt0/WeJxh74SXcZHKB2jeGRiJ4NRqNRrMO6FWsGo1Go9FsUxrsAwQTpRysmwUBmLGoCo60LFhgfBk6coimJx8m1GWBdMgf3E3u2jCp0+fIX79C6NDtZE+fLJXPXbyO1VazUDjkqj5ToSLCVLoq4rQy6tRQxyg31FS5atcI4eWRRqAsBhsBtfDeyfjCcaG6PW5OCcZW1I9+XbOmrQAd8arRaDSbAj1XsKFo4VWj2QIIa+GPauyxhzan6AoQbYLxG8jBy4gDR0ubpefC+GVkdkblY50ZBCdb3i+XgtyE+r8RQJohtVIVoX44TAvsaHUuFUflTMHNQtduGL4EdeRUYVpzhgLCslfldOfDHbpB/6EBvO5dWCY4Z95ix/1HyNhNZN54dU55WSiQff1lWga6Sec80hcbs15aL6SjI141Go1Go9FoNBqNZlMTaN50omsJYSJwiT75QVJ/+5elzWZ7G+0/9BnMaAhhGZhmWomkvgBpBA0CM1cJ9IXgyEPkjGbslhak5yEdh9TZQSIPdCgXZYBAhXCanoBoHLxCfUtcYVTrhutgm6vEV1uJvIBw82r+Q0oozMzdQXpQmAVjk0a/aqthjUaj0Wi08KrRbAkWEAWtjg4iicLGWAk3gDBN5QR8/TxUCq9DZ2Do7fl3zCWBhPq/l1crO2evVVvw2M2QzkEoBjJbvdqztV0Jr16dQYg596vPsNdWeAXwZmdg9q1SKl13+CahPU1k6rXRpzAyTKipGfvOO5l+6615y603nrYa1mg0mk2AWONVrHqFrEaj0Wg0m5dFfqeN4Po0Y9mo9scee0+V8Nr901/AZBbwF1nX6HhGa2t5efXkMHYoi3uhnKancA3cj/9jrLgFWHDzUkV/SYLVBPnx+va+otZtbH1ERCG9KoFceAWkWCTllJdTeV8NewGrYo1Go9FsT/RcwUajhVeNZgsgzPk73IknjsPMjXVszdKQhbT6O3K5vC0zA0MnFt4xN+sXlmBYCDxkoEnlYCliuZCeVKtWDQsiLSAigIRsCnbeBlJizeTUQMR1wXPJZfPcfOYdcD1/VWwB3I1ZJdqIY687M43IZWl/9BHGnnp67RvVADK/SZV+jUaj0Wg0Go1Go9kOLDihKnyL3E0WDVmFEjXtHbtKWxLf9ylfdJ0fEVWCshQCwk2QS2HEm0t5XwFSL7xN86O71ZOONpW7Vfh5X3NJIACFAtKbUYJn8RFoQQSaqtq3EUgplbC6GF5BtdsMVVsSbyg64lWj0Wg0Gi28ajRbgXkGVE3vfzfGJhZdAX9QA0yNIgt5hB1Ajr7Dop3x3CyYYfAcZaMjLAi3VwuvOJDohakbqlxydG49Epip2R5pwUum5pZdL6IxnHgHAOk3Xm9oF5nLUTj5Bj3vfYLhp5/Dy2YX32kN8QqbZVCn0Wg02x290lSj0Wg0Gk0NgWY2t+hKaUrAjMdKm+LHdoKbXHg/UyA79uBOTuNdu4FItBE5cgfJ558pFUl+67s0vft2hJtWuVAz43PrEQK86nkJIWXF9Mv697EkhsrriqGcvxrayQUnBXbMz/u6wX1DbTWs0Wg0mwQ9V7CR1HpoaDSaTcncL0p75w5C9nSdspsVCZNjauXm5NXFi3suMj2uRFcA6SDqibXR+OLHrUEYG/fDI8IRcoRIvfUmqbfeRDYS8lpB+rWX6Xz0oTVqXePIgo541Wg0Go1Go9FoNJpNh+m7QG0RhGlgtHdh79yBWEx0RbkBu6PDeMNqEbqcGkeImvOVkB/KLFxRXYFwA6NcEeBmVJold5G216OQ3CT20lvn3tNoNBqNZq3QwqtGsxWwaoLTTYPE/QfA3QJ5NoNlYVRODkPeH0gshmnD5deRuQLSlUhPImWdFbtGDqz5BxdCiDk5XTdiAai5/whu/35SWcheuriiutyhQbre+wRd732S8K6dq9TCpeFpq2GNRqPZeMQ6PDQajUaj0Wxian+sDTADG9KSJVPR9Mj9DxG5647G9jMtoh96APuOIxgdHRh9fVAnPdPM3z61cD315hc2IFpTClNJlW5m5blaZUHlfBU2yI3qyGnhVaPRaDYcPVew4WirYY1mC1Cb4zXxwScRs0Mb1JolYoVK/5UTg5C/3uB+YcjOwpVXytuaeyHeDE4SDJPi2hHZ3Afj19TAoqiqyvKvgBQmgorI0g1QXl0Pkq+9uip15W9chxvqOob2HSJz+cqq1LsUNtrqWKPRaDQajUaj0Wg0NWwFi+E6NL3ncazM6cbylBoWFFKEbm+H29sB8Iw20ufO4o6NYYRDELBxp6bxRAtGwAFhqlBZYYDh/zVD4EzVVL4B184rgLtK42s3C0Xt1oqsXMhdDtpqWKPRaDQaLbxqNFsCoxycHty7l4Csk8t0kyGlRLTsgMuny9umhxHBSGMVmLayJbabAYlwZmF6UD0SA5AbKZfNW3gvvzJvVURiVU/n2BCtA25ujSJEl2hVvFos1SJZo9FoNGvERufx0mg0Go1Gs4EIShGGVpQtI7oKq0pktdvjyKtLGWMKSPRALg2ZKQxvnO4vPAbN/TBdsdi7pQMRmschy7CQU1PV2zZCNKwXebuZ6138wBt0XI1Go9FUoecKNhRtNazRbAFE0SrXtmm6eyd4G7BqcQFkMI5s3oFsGlB/mwdARJGXTlZ39ocajHYF8ASkgMtn4PJZpNFSccCaAYRdgETn/HXV/NCs9++OaGohP3RzTer2nI25F6SzBWyuNRqNRqPRaDQajeZWpji2FaaymN10GEpkrXwg5ka2Bpsbr9IOQEcvyCQEPGjpn7/szTPMO/VZRx+U6ywaSkzw9KJmjUaj0WhuNbTwqtFsBXyr4ZYPPYFIbsJoV8+Cyyfgykn19/JJmKxjhZxNgR1trM58DqYqxMqrp5CFMNKLIbPVYqMQArFj7/x1zcn3sn6DKRFrJjWTJT94Y03qN6y5uWwW3mF1vva9gh4cajQazaZAiLV7rFoTRb8Q4r8LIQaFEDkhxGUhxH8UQrQsvve8dX5eCCH9x4+uWmM1Go1Go9lS+L/XdhObM9JQKpG18lGvncHY3G3z4eYgP1txiBR071WPQKi6rJNV+U7na9ucTet3DSUGOCk2RZSylKt37tpqWKPRaDYHW2Cu4FZGWw1rNFsBwyB4YD92YZPmdQ01KKYCGGGIRKHglDv3lg1uEpxMqZgs5Gp2lDB8Qf23Zz/UjMtEwkZW2ixVvbhEcXKFGDv2kB6bxrBsnNkZCiPDa3es4Dy2SRXYra203Xk7CHAnxjE7unALLqPffWr5B/Y2weBQo9FoNJseIcRe4DmgE/hz4AxwH/CTwAeEEA9JKceXWOcA8GtAkjk9Ao1Go9Fothmb2WJYGA3lGRWmjQwlIBABozh+l2p4PzNUHSHr1bgvSRcy/gL1YMecuuXkICLRNvegdQXCtRUNpbBUHlYhwMuxpu9bI9demMpRTBiALOfBrb3GGo1Go9FoloQWXjWaLYAIBGg60A/JsY1uSn2y40p8zaYWLzs5DbN1oj9DUejcBc4MuDlkysGz2pEIZNZRYyKpcscaUwXsYBxsCV4aCEG6QL79AJkrw0hPgieRnot0PbKDSQqTKaTrgiexW9dOiDV3H2DmwhWcsfWJTBbW4l/jzUduJ/P2G+UN168B0PbQQ1jhEELAzIWLpC9dbnh1aqBj7oBWo9Fo/v/s3XecbGld4P/Pt6o63b5x7uTE5MAwpBlgmCEjI6AiIrqsLghiZgXT6k9dFTCsrqsroLIKCphWjKjowkjGIc8AQ5hhYGByvHNz345V398fp/p2dd8OVV1VXVW3P+/X67yq6pznPM9zqru66zzfJ6gH+r+36R9SBF1fnZlvmt8ZEb8L/CTw68CPNJtZRATwNuBh4B+An+lobSVJGiRRqU8x3KejDFsZ/bjjVDh8FyyNFY7vgMoW2F/cxzK2C7bsrg/2LTWMwClBBpw+BPvuhcmDsPMM2LKVHNlNVI7ttBxbTmJhvmbqUyF3XmYWP6fZQ2zcz6qJ74hRgrkjS/aVoTK28Lo2Vw/ONvmds7SxHd8lSSvo/7aC45qBV2kAbL/iUuKOT/a6GiuK2Uk47VzyG19cM21OTi7/9X9qAu78EpxzKUxOM/PZm8h9DxGnncvk57+wKOnQJZcxNFHvGXrSeXB78d5Up3dy6D+uPzbr0Z1Mfu2rR1+PXXoZnboViN0nU9u3hyhXiPMuZe9HP9qhnJtTWmHq4PK2bex89OVUxsaYueULy6aZu+Um5vsNDwE7TtzOyDnnMT1T5dBXv0btyJFlzwOYPXCgzZpLko53EXEecC1wO/AHSw7/CvBDwEsj4qczs4neWwC8GngW8Iz6oyRJm9fQeFMjSnunVgQzl67pupyR7cVcFkvlFMxOQXkEarNEpX4PPLILpvc1pAOGtpFTE7BzRzFT1sx+qB4iSgG1mbXrUB7pyPuZmfXRpFWgHhSePdh2vh2RAeV6c/DsMm94VpffXxkDogjErtaYn306+lqSpA1k4FUaAJGTayfqsdx3J+w6Dfbdt3q6/Q8RW1cJe5YqZCZ5uLgpyQfuZOzxjyOzxNRnbyj2zdVvXmBRD9qx4QPElnHyyOK229LwkjVdah26MT3rAo7MwszDdxAEec/GBl0BKC8feD3h/Ecwc8sXaGkl1lqN6a9/DYBdZ5/G0NnnML3vAAe/fDPVicXv6ZyBV0nqA0FToxnayr8t84HR6zIXt8Jl5qGIuJ4iMHsV8P41axNxKfCbwBsy8yMRYeBVkrTJ9elI10Y5BystC9QghrevnmJoDGhYw3XmEAzvKPKe2b96FQ7fR2w9bblS16zXugzvAGr1KZB79DOKOLbopJjiuDbVen7zS0OVhhdGWVdnjw3C9nVHAEnaLPq+reC4t3yLvaT+0qlAYRdFANu2rZ3w4QdIxsnZCjlTJqeDnEzyyBx5eIb8/Gfg9vthfo3XWpW8+6tQaviDPrf8eiOlSMYf99hj67Zkqpvs0PqkszHEgY99jPLZ5xEjwx3Js1WxzIjX3Vc/mai0N6Z37qEHmbzhU9S+/hV2X3Yxu574hEXHq4f6pLeuJG120cWtcElE3LDc1kTtLq4/3rrC8fnpKC5a8zIjKsCfA3cCv9BE2ZIkHf8GIO4KFKM/15BD4zATMJ0wVYPJKhyZhSMzMDFVTB3cOH4k52DmAIvfhMaG4Ib9MwfqwcI1a9FEmrVFqUKUKjC+XLB3gyx3KeWhpn4Wq6rNFCNiZyegVDl2emZHvEpSf+h+W4FW4YhXaRAMHbsWST+KQ/eTZz8S7vzyKqkSqlU4uMoaqFt2rlpOVhsC0dOLp8AZP2OMQyNbYG4aKEGpRGl8C0MnnUSUK5SGhxjetYvannvXvJ5V6zA0zMTXvwHA4c9/ntFHPIKhrduZu7+9fDuhEjWmvvH1juU3fVvRLn7K1U9kYu9BqpNHqE5Ndyx/SdJxa0f9caVpEub372wir18GHgc8JXMApgKRJGkjLDeqsR/lXMPUu8uLoS3k9GGoLd/RGoBll9pZqQW44Y3JJKcOESNbGmbNinrQsP46SvU6thk4jApQO1qzHD8DjjzQ3HTLnbR0MG9mMWq1kyNS59eHrWypl1FrbV1fSZKOUwZepQEQUR6IeykAjjwIo+PFmq0rGd6yeh6zU4w84Uqg+NIe1MhajZFrn0DUqsWX+Vq1mNbmoXuLXpuZkDVGOMTB2igHPrsQ/L3wJRczunvs6OvyKBxq5xrPPI+5GGHqwx8+umvqjjuY27GDrRddyvStN7eTe0tibpYTn/oUSkMVolwmalUmb/psV8qa+srNlIEysOX0U7tShiSpBcHqa2x1In+4JTOv6GoJazQZR8QTKUa5/k5mfrxLdZEkSd20RkAzIsgtu+Hw/SsnmjpIzgdH57fag0UwsVaDvLNYg7RWhXygXm4CCXvug8u+jaChHuXRxfUqDa0e+F1LZUuRZ0MZQZJbToGpvVDdwL5jSX2Ubz0CW6s2t87teswHYOfLlST11sa0FWgVBl6lQdDNP5QdFtUZ8tRz4PYvrZxorR6Qs1PE3tsX59tCHc659lF8/oYbF3aUFp+dc+31NH345tuYfejYEbtzBw5w4KYvsPNJT2Lq883MwNi+bgVZ11IanF9JSVLvzI9o3bHC8e1L0h2jYYrhW4Ff6lzVJEnSxso1R72yVuB15nCxrUdtljxwL7GjsRPx0vVJ24kalqA8TGPQdaGUJEd3wexwfXrkDTC3zvepbUZeJUlyjVdpECw7nU4fm11ltCuQR7p7A7Bt6zQnPutpDXuW3ExV1xd4zUyq515G9ciRldPMzbHv+usZecyV5AAFzFs1e9cdva6CJAmKzlnd2tr3lfrjSmu4Xlh/XGkNWICt9fMvBaYiIuc34Ffqad5S3/d77VZYkiR10+rfL2JsZ3eLv/MT5GpNoev++hMwslI/s4ash8Zh7OT1FjIYujWqVpLUmv5uKzjuOeJVGgRR7nUNWhJH9pLjO2Fi//IJ9j8IQ92twyOueQQPf6RCzs0dEwDN2fVNHRRj4zz0/g82lXb/9f/Btsc/nuodXyenp9ZVXj/LWW+mJElrmv+neW1ElDIX5vKLiG3ANcAk8IlV8pgG/mSFY4+nWPf1PyiCvE5DLEnaZAas8XOtdU5Hd3a/Cg99lTjp/BUOrjPT8mhTJwdAqUJuOQ2O3LfOwvqdI14lSRqwYXTSJjWIPUlGx1c+Nn0EtqzeG7RdY6MznP4dz6u/6syIV7btbCn5oRtvZOiiS9dXVp9rd7pmSVKnRBe39mTmbcB1wDnAq5Ycfh0wDvxZZk4ARMRQRFwSEec35DGZmT+w3Ab8cz3ZO+r73tl2pSVJUu+MbV87Tbvu/0LDsq4damtpsbN8RBz/I18lST3Wv20Fm4EjXqVBEAPYR2JujVGlW3bCke6ubXLW5VvZ87Ezjtmfa9VtBbVtu1o+58hXvzbQf2gTKF9wCbWhEZIgM6lVa0xvP6nXVZMkDYYfAz4GvDEing3cDDwJeCbFFMO/2JD2jPrxOyiCtZIkaROJ8jA5sh2mD3a1nLzj43Du1cs0Ha9ztGZ5qPVzS12eBqzrAoa3F0HnKNUHDET9vZAkaXMb5HiAtHkM2IjXzFw7qLoBNxmVco1LXvYsJu5asiZrtbqu/A7feW/L59SmJtdVVj/IoWGO7DqNfR/4j2OObbvssh7USJJ0jD7/jpCZt0XElcDrgecCzwfuA94IvC4z9/ayfpIkDbRgwGZ2baLCW3Z3PfDK4QfIfXfDiRd2aNzOQP0Q2hdDMLaLWBg6TPEeJI6EkqQ+0edtBce7ARxGJ21CgzbiddspMDu9epq1jneqKltn2HbeMlP4lJufCihLJWrnPoqpu+5sufys1dZO1IdyaJgjO05l32duWPZ4bcY1XiVJzcnMuzLzFZl5WmYOZ+YjMvM1S4OumXl7ZkZmntNkvq+tp39rVyouSVLfG7BG1Wam5B07ofv1ALj70zC5v81MAkZ2dqAyAySGYHRp0LXRJgtCS5K0jAGL5kibVGlwPqo5ugP271s73eH93a9M3fjIXrY86UlHX1fOvxTWCIhmJrXzLuPhw/DA1x/kwfd/gNpk66NXB3It1MoQkyeczr4bb1wxSRp4laT+ENG9TZIkqWPKkGvfH8dY60v8rFd+5T1krTFQ2GTby8hOGNkFIzu6Ua3+FZVipCurtKcYd5Wk/mBbQU8NTjRH2tQG4w9ajp8ID++BQw+vnXj/gxu69sf2E6cYvvhSKhdfzsGPfwxy9buB6ZPP48H3fZDZBx9cM0i7qjXK6TuVCkdOPJO9n/7Mqsmq0xszYlmSJEmSNOCiAjS55M/Y9q5WZbEaeet7SaKo49zhtU8ZmR+RO2D3+u2KCoydsMpI13mb7H2RJGkZBl6lQTAgUw3H0BaYaXJUaCZs293dCjUIkhMu3sbMPXesGQzN8y5j/yc/2ZFyB2rEa7nM5MmPYO+nPr1mUqcalqQ+EV3cJEmSNtrwVihtXCdtpg+St/47OX1g7bQju2C10Z7HqyjD2O4mgq5g4FWS+oRtBT01GNEcabMbkCH8WWsxyDi8pTsVWUFUpzj9+VdS2jq+arp9X7qlc4VmkgMw6jUjmDrtPB7+RHMB55yd7XKNJEmSJEmbTUTABk43DMDkXvK+L6xx7x5syqBilGHsRCKbHLEsSZIMvEoDYUACrxy4F7a0sMZJbvx1xcQezvr+b181zeipp3W2zKEN7K27DpnJ3LmPZM/HPt70OTUDr5LUe91cs8W1WyRJUqc0sbbrIls2bnaso/bfSe75xioJkk05zKfVoOsAdDyXpOOebQU9Z+BVGgiD8ccsAth1cvMnTE10rS6rqRy+l7N+9HsW79yyFc44l+q5l3Hwc5/taHlR6e/AK498HA986MMtneKIV0mSJElS85pvgoyNHvE674EvkAfuW1KZClS21KcZ3mRBxbGTHekqSdI6GHiVBsEg9SKpDDedNA881MWKrG54+l5OfemLihdnX8ieux7m/o9+kofe/8GO99CMcp/+qR0fp3bxY7jnve9r+dSsVsnaJlzbRpL6jgu3SJK0eQ3Q/+tW2jVGW5hJq8Py7s+QE3uLF8PbizVny8NsqqBraagIuq5rPdtN9D5JUl+zraCX+jQaIGmRQQq8tvIl+8ghGN3WvaqsYXx4P1uf8xzu/9D1zB040L2C+mzEaw4Nk5c+hvvv2ce9//7+dedTm5npYK0kSZIkSQLGehd4JWvknZ8iSyMQm6zZNCowdjKM7Fhn0FWSJAFUel0BSU0YgMBrJrD1NLjjy62dOL4Lpg51pU5rGhvnhKeeB3/U3WKiXO5uAXWZSfnCRzJXHmbm8ASzExNsP3k3ta98gYiAcpm48DL23PRlpt67/oDrvNrsLOXR0Q7UXJK0bgPwHUGSJG1yUYYWpqyNygg5vBVmDnexUqvYcSYMbaG7ozc3cmRowMiOYiTrfDB5dgJm59/fEoyeABEdCLg64lWS+oJtBT1l4FUaBJX+D27FrrPJb3yx9RPLzU9N3Glx7qUMT9zHic98Mns++PHulVPp/p/a0rkX8fCd9zHxgY8u2n8A2H7ZZZSGhpi8916mr/tAx8p0xKskSZIk9dAgNKpGBXKu9fO27O5Z4DXOvqoegByA93ctI7ugVCFIII8GwLMyCkPjRZqsLRxvl3FXSZIMvEoDYQMCd+3I8ZPgzq+s7+S52c5WpmkBc8VN3Lnf99yuBl7p4ojXzCQveSx3rzJl8MEvfak7Zc/26mcnSTpqEBpcJUnS5hTl9QVdAbacAPvv6Gx9mjG8beEefr1B436x5RQiqywXDQ1oaRRy84y8SlJfsK2gpzbZYgXSoOrfj2puOxn27YHq+oJweXhfh2vUnDj/0TBdTHE8UjnEtkdf0r2yyt0LnJcufWxb67S2wxGvkiRJktRL/dyoWmorsBejuzpYlxbKPf+ZC+9qztGtQGLXf3JjJ9WDrpIkaaP1bzRH0oJ+6qESAWdeRFz0eOKix1A6+SSYmVp/fvsfgtLGrIG6yNBQw4vk3O9/YdeK6tZUw6XTz+Kej1zflbybYeBVkvpAdHGTJElqRZSLUaJRbr8dY2xHZ+rUqqHGpZ6yuJ6u6dIXruEd9amDe8ERr5LUF2wr6CkDr9Ig6IfA6/AYcfHjibPPIWoH4fC9cPgBmHyY0mMeC9tPWF++tSps293Rqjalsvg93XbqEFS6FADucGA5MymdfhYP3nE/tak2gt5tqk1P96xsSZIkSVI/iIXgZFaLUaJZLbZo4154ZGt7569XZXTJjm4GErvQLDu8DcrDnc+3FWnwVZK0ufX3wpGS6nodeA3inIvh0L3LH57cR+n8R1C7byvcf2fr2Y9sBR5sq4YtOecymFhcXswd4eyXfQd3/unfdb68DgTOS6efTXXHLg7f9xAHv/xl8q7PdqBi7am5xqsk9V4/dM6SJEmbV8TK66BmFaIEWVtHtiVyywkw8VCbFWzBhdce+9UqqxQB0i4EE6MD2Q5thcpY/edQq7ceGfiUpE3PtoKecsSrNAhKvf1DGRc9Dg7fv3qimQlKp58MY1tbL2AD7wnikisIDi5743fqMx69cRVp1vg4U2ddyJ2fuJF73vt+Dtx0Ezm3wk3tBnOqYUmSJEnaxKK8dlA1a+sfubpl42bHisu/i9L2U1c42IfNp6Vh2HIKURklSOJo0LUfGPiVJK0tIs6MiD+NiHsjYjoibo+I34uIphd6j4gXR8SbIuKjEXEwIjIi/qKJ866OiH+LiL0RcSQiboqIn4jozHQbffjNQdKxevdRjQseW0wr3Izpg8TF6wheTh1p/Zz1OOksmHl4xcPD5UOMnXNm58tdZ+A8HnEBew7Osef6j3e4Qp1h4FWSeq2bi7a4eIskSVpFVOqjQZuwzmmHY6zpdtf2nPkEYnhs5eNZpTvBxHV+1xreASM7iGbff0nSJtP/bQURcT5wA/AK4FPA/wa+DrwG+HhENNv76r8D/xV4LHBPk2V/O/AR4GnAPwJ/AAzX6/DXTV/EKgy8SoNgI9s9TzufuOAyGN9RBCqPPNDS6bGOdVLzwMZMHRQn7izWlF2xIjXO+YHv7Hy5Ld5gJpCXPpa7P/Zppu5p6v9FT7jGqyRJkiRtElFZCJ5GeeXphVfOoPUyx3a2fk6rhrcSp1y6RqJcWMe2o1ptlg0YO5koDxH9PKrUNV4lSWv7Q+Bk4NWZ+cLM/P8y81kUwc+LgV9vMp+fBC4CtgM/ulbiiNgOvAWoAs/IzFdm5n+jCNx+HHhxRLyk1YtZysCrNBA2LvIao1vgyMPEKacS27fScq/OaH3tFo4cgtF1TFHcihNOg8n9aybbdeEJHS86yi38qd25kyMnnc09730fWe3v3quOeJWkHguKdVu6tvX6AiVJ0uo2+J/1/MjVdazZui6jO7pfximX9e4rTyuzY1XGYMtJBBv03rfFwKsk9VSftxVExHnAtcDtFKNNG/0KMAG8NCLG18orMz+YmV/NbLrXz4uBk4C/zszPNOQzRTF6FpoI4K7FwKs0CEodmVp8bREwNFQ8nzoAk/taz+PIQ7Ble+vnjXdxCqFSmTj1lOaSzh7k5Oc+vcPlN/entnTBpTx4zz723XBjZ8vvEgOvktQHunkzJUmSdFS9PXO90+6uY1rcqIzAcBc7aY/tJE6+uLm0LY/wbUaT37dGToChcWKjAt6SpMHX320Fz6o/Xpe5+J9bZh4Crge2AFd1orAVyn7PMsc+AhwBro6IkXYKMfAqDYCIjfmotrSe62pOOKn1c8pt/S1b3ZZtcGTltV2XOu1bruls+Wv9Q6pUqF74aO78wEeZebj5evZazs72ugqSJEmStHltVD+pKK8rcLrYOkdBbml2ibd12PGI1t7CdaxTu3p+a7T1RBnGTiFKpQGbiMQRr5KkVc33erp1heNfrT9etJFlZ+Yc8A2gApzXTiHdWKBAUqdt5IjXTmRz0qnk3be1dtJc94J48YiLYOK+ptNvPbnDfxpXuZkqnXQq+yarHHr/Bzpb5gZwxKsk9QFHpkqSpEGxngDu2Amw/47O16VUIU59ZIsndTqguMr3uKFxqIwT9PcSRJKkPtX9toJLIuKG5Q5k5hVrnDu/lsCBFY7P79+5jnqtZUPKdsSrNAg2IvAaATMHO5NVK+uU1OXESn/r2jQ8CnMTLZ0SsxOc9M1P61wdKssHcuPiy7n31js49OWbO1fWBqo54lWSJEmSemiDOmC1Pdp1/WJsZ3cy3n46lIdaO6fT70N5ePn9oydCZWxA1nNdRtPL7EmStKz5Lzi9+IfSkbId8SoNglMvpPTCX4Baw5fucgVGt8HcNMxMFvuiVO/NEsUNwdwszM1AdRaGRmBoFCrDRSC3VC7Sl8rk9CG45b2w787O1HfuAHH+ZeRtX2r+nP0PwvgY1Dp7IxPnXArTe1o+7/RvfQoPvfcjHanD0nuOHBpm7qwLeODfP9iR/HvFEa+SJEmS1EPlESgtbdqL4l5/1fVAs+FGtXG9tmh4CKjNwdyRzgUcMynGgLQQUOxS4DXOuHJ9YeuOTLvckNei1xUY2030MNAtSVKTbmliZOtK5kdg7Vjh+PYl6TppQ8o28CoNgBgehRMf0b0C7v8i2amgK8DcNDEKufNE2N9k0LM6B9tOhAMPdK4eQ6MQU+s6tZPTDWd14aapdMbZPPzAfiY+1Jmgbi/N7Gk9oC1JkiRJ6pAorby0zVrrhzajNtPhUZ41Wh6lO7K1CC7X5jpXjW2nwejWdZ7cwcE3jT+j4e1QHjk+gq6rBv0lSeIr9ceV1nC9sP640hqw7ZZ9Zb3sRVMlR0QFOBeYA77eTiFONSyJPHBvdzLesq219CPjHS0+Lrwcpg+v79zZCU751md1rC6ZCZc+hrtv/BITX2/r73bXlbds4fQXv5jxCy9cMc0JV1/NCVddtYG1kiQtK6J7myRJ2rwyOxvsXMi4pdQRpWKd1w6K856x/kmauxEYHTuJKA8TPZlRsRUlKI+yanNyaWRjlsuSJK2uv9sK5qeBvDZicU+xiNgGXANMAp/oRGFLfKD++Nxljj0N2AJ8LDOn2ynEwKu0yWUm7L+nO5kPrbBeyYo63Mjb5j+CM7/9qR2pRkaJ6TMv5O73vp/adFt/s7uuNDrKU97/fp70t3/Ls268kSe/+92Ut2xZlObq97yHp19/PSc985k9qqUkSZIkqev6ZfRlhwOvbY8GXjpF8Pozgi2nDEDAleI9Gz0RRnbB2EkwvMwMjaMnwegJUGpx7VxJ0qaSmbcB1wHnAK9acvh1wDjwZ5k5ARARQxFxSUSc34Hi/w7YA7wkIq6c3xkRo8Cv1V++ud1CnGpY2uTyqx+AyX1dyTtGxlq7fZia7GwFjhxp6/TR8WkqJ+xkbu/+deex+0mPZ/zCM/nGu9/TVl02wsjJJ3PFO95xdCRrZetWTv2Wb+GM7/5u7nz72wHYcu65nHzttT2spSRpQbdHpjrqVZKkTSkTZtc3e1RzglZGvsbYzs6GJqf2w/ju9Z+fNYr6r/+7UmYVqBE5CEHXchFwnR/JGiWobCnW/63NFvtKy603LEnqjYFoK/gx4GPAGyPi2cDNwJOAZ1JMMfyLDWnPqB+/gyJYu1CTiBcCL6y/PLX++OSIeHv9+Z7M/Jn59Jl5MCJ+kCIA+6GI+GtgL/AC4OL6/ne2e3H+R5Q2sZw8AF/r3lqjsX1bSzdHefDhjjbx5t4HiF2jzaXNhJzv9VqillDKEhf++Eu5710foDw2RnlkmNLwMOWRCqXKEDFUoTxcoVSuUBoqUyqXqAxXKJVg/kayvOdOjoz1+TQ7pRLn/eiPcumv/RrDO3cec/jiX/gFHrzuOqbuvZfzfuzHCKeflCRJkqTjV222WN+1W6IM2cI0xmM7O1p8HrqfaDbwejQwGguvS0nmfPA4F2KwR9PmkvOzIVhL8bw6BUPb+ryfW8DQOFS2Lt+AP7QNpvcBWQRiJUlqUmbeVh9x+nqKaX+fD9wHvBF4XWbubTKrxwLft2TfefUNimDtzzQezMx3RcTTKYK73wmMAl8Dfgp4Y2b7vaIMvEqb2chWKA9DtUs3VFMPEhc9lrz1c82lP7wPTtgNMx0a+XpoH5xwesPNz8qm76ox+7lPL+yoDDGyq8K2sW2MPOZ0mJmfIrgGzNQ3oFrfVnkLo4/upGJoiLO+53s4+IUvMHLqqZz27d/Oyc95DuPnnrviOVsvvJBvvv12ZvfvZ+SkkzawtpKkVQXd7cXaP/++JEnSRurYVLoryDmK1c9qzaUf3d7Z8o883ELiWBwkjnIxBXOUYKrZNuFBEMX6rbXZYuRqeaTYVvtdKI/A2ClAtj99sySpcwakrSAz7wJe0US621cqNTNfC7x2HWVfTxHs7QoDr9ImFqUyObodJvZ0p4BMYttwa1MCbd0Ne+/uTPmnPgJytrm0pSV/u6tVoAKThxi++BJmvvD59dejTxqut19+OY/9P/+H3Vdf3fK5paEhg66SJEmStBlsRBAtovnZhiujUBmDuQ510t75iLaziKyRla0w180pmTdIabhYs3U9UwVH0DeNHpIk9Qm7I0mbWE5PwEQrPT3XYfoA7Dix+fSVkY4VHSecQLN3crH0xjJr5MjW4vm+e6C8/n4qvZ6at7J9O49+wxt41uc+t66gqySpn0UXN0mStCm1Mg3wustocrQr9XvqsRM6VnTsOnv9J2dtYVatynCbNenx+q5RguGdMLrb9Vkl6bhjW0EvGXiVNrPhLXDGY7pbRialCy+EkbHm0lebv/laWwv/CMrH/jnM7fX1uCcPUznnvGOON12LHvw/Ko2McNZ/+S88+V//lec/+CDnv/rVRMk/+ZIkSZKkNUSl2LoqW5vSuNk1WddUai3eecwN/UK9I2tQGmqjLr1ovI5iPdaR3TB6cjGSWJIkdZTdmaRNLCLgkc8j7/lcdwuafJi49HHk5z62ZtKcONCRW4+46PFw+L4WTji21Lm772ZoNIhMSuOjHajVxhg7+2yuue46tl18ca+rIknqth7PqiBJko5DETC0BWYOdrecrC6smbpWlcZ2dWB8aBCXfTuxdKmhdgyNw/T+dZ6cbGjwtTQEI7u6v4avJKn3bCvoKYc/SZvexkxt0/Roy4fvLUbitlPWJVfAzEOtnbTMjVce3Acn1Nd+efieda9zs5H/5yrbt3P1v/6rQVdJkiRJ0vFj68ltZxGXv5gY3dZ+XXKOowHTjVgPtxOibNBVkqQNMiDfDiR1zT03bUw5lSb/3GQNdp7aXlm1dQSTV+jxWqvVb0qmJiif9Yh1VWejAq/Du3fzlPe9j+2PetTGFChJ6rEoGvu6tbl2iyRJm1d1eoMKau77RgxvgfE2g69NjKxt2nwAM2v9H8yMMoyc0P/1lCR1iG0FveZUw9Imlw99dWMKqs00n3a6jRu8Lduhdqjl02KF6Gj1vrsojSQRQXnnDqp3tl6lbv4r2vHYx3LGi19MZccOTn/Rixg7/fQuliZJkiRJ2hRqs72uwTFi1znkxIPrO/mE82Fk63pKXX531o4ezaHxdU7L3MWphkvDUB4pGsjLo4MzMleSpOOAgVdpk4sTz9+Y4GsMN50077+d2DYOcy0EawFGtxLnnAtH9rZYOVYclpqHDsCp58H+++Dhu2BoBGZbDQx3ZzrnXVddxVM/+EHKo4Oz/qwkqdPsaSpJkrqgNLSBo16btPNMuPtTrZ+3/Qzi3Gs6+60p54BS8VUs+qx5tTwKwztd30+SNjX/B/SS3Z2kze6USzamnCP3E5c8rrm01Vk44YyWi4gLHrm+oCusONUwQFbqvWKnJhi+5NLW69WFwGtpZITH/8mfGHSVJEmSJHVeqfnO022ZD2A2IUa2wZYTWy4iLnhWd5qfS8XUvUENKusYTduVPtolGN5h0FWSpB7qsy5Zkjbc2E4oD0O1xdGl6ypry7H7TruA0sVPgtFx8oHbyZs+ANU5mJ1bnK5SgVIFZqaWzzsC5ibWX7dV7kmqex5auA3cczsxvo2caH46427c7jz2zW9m+yMf2YWcJUkDxUY1SZLUDaUNXA804tggZGmo2Ihi2uP68kWx6xzyyJ6FdJXRYtrfldo0hrduzPel8jDMrZ2s60Z2Oa2wJMm2gh4z8CptchFBbjsF9t/V3YLGTyU/9dHF+04+h/L3vo6Yvym4HPLJLyJvvp7aJ99FXPY0YmwbjJRh79dgaAzmpsl9ByETqlU4vL+4jjMvgKl9667eSmu8AtQeuo98zGNhcgKqc1ROOoHZm248No/xbWR1DqYm110PgDO/53s471WvYuSUU5i47Tam7rmHW3/rtzj8la8QlQoX/fzPc/bLX95WGZIkSZIkraxEfQXT7hYTlfqo18aih2F4W8OOenB1bhJ2nHm0XnHKI4uG5QiozpK3Xw9RLmbROnw/VEaJc5/WvckWq7MU708SZLHW6+wyHcKjXF8Tts33sjIOlTEgivesVoXZw0Ct2De8vQgAS5KknjLwKm1ymQkzbYwUbbacmTmW3mSUv+kVC0HXuhjfQVz5fOKK5x5zLOemyY/8PjE2n08Ztu2G8hBU1x90LQpe4waomuQDdxbP995P7DiBPLCXymVXUtu3h+FnvoChK59OzsxQvfXzzPzH/6P6lc8X9W6i+KEdO4ihIc7+vu/jUb/920cDwVvPPx8ogrH3/+u/svuaaxg95ZT1XqUk6XjjiAZJktQ1XQ66rlTG0Pix+6IEQ+PEznOJXectPlabg9xPnPe0Y3Lt6nifoOgUXptdqON8sHpoa1GvkV3F85yDuSNFh/FaKzOORbENbV3yvlSgTBGIrU5DecTvhZKkBf5P6CkDr9JmN7Fn/euitiCGKsfcTtW+8XnKZ1y0fPpl/jlEZQSu/B7y+j9afKA62379KkH5gkuIUmlhKoZSiSiXifExyju3MDc/KLhWo3L2mcSTn8PIc/8zMTS0kM/wKKXHP5XKo69i7vOfYPJt/5MolTn9RS/ixGc8g9rMDFmr8dXf+i1m9u7l0te/nke84hWMnHIKpcrKf5LLIyOc8aIXtX2dkiRJkiStqaXgYDuWCY3WZotA4rLJl0lfqhSBydnDq+W6PgHE0AoZRjGStR54jayRQ1uLYOjwjsUza8UQDO8ojk8fgKk9xbWUx+pTKmcRxJ07zMLo1RGgtPw1H823VB8FK0mS+oWBV2mziw1at6W2zPS71XUsgJLd6XFbGZ2k8sjtKxytknmIueERmJkGILbvZPTbXrZiflEZYuiKp1I+52IYHuFJ23YsOn7uj/wIM3v2MH7uuZ26BEnSplMfAdHV/DuQS8SZwOuB5wK7gfuAdwGvy8ympqyIiN8CrgQuAk4EJoE76vn8fmY+3JHKSpKkuo1aG24jRtW2IWurvBV57LHyKDGyc8XsIsrk/CjYUvnYNpmhLfWEG7jGriTpODMYbQXHM8cbS5vd0Aq9SDtt6sCisuKCKyk95btaz2doDIaXmXaoyyKgdEY9SDo8yvDzX9HUeaXdJ1NaEnQFGNq2zaCrJOm4FxHnAzcArwA+Bfxv4OvAa4CPR8TuJrP6SWAc+HfgDcBfAnPAa4GbIuKsztZckqRNbrVRlp2UtcWvy6PFGq+t6lWgMnOh7KgQI8fe/y8VEUR5mFiuzrFMMFaSJA0UR7xKm93s1MaUM34qzN4KQJz3WErP/WGi3PqfoNiyC85/KnnzezpdwzWVzzgJKqNUnvw8SiecvOHlS5K0SNDdRtHOZP2HwMnAqzPzTUezjvhdimDqrwM/0kQ+2zPzmC8tEfHrwC8APw/8WEdqLEmSujbb1DGiXKx/CsXUupUt6/t+UxoqgrbVDWrjmBdRlEsNhne4pp4kqfcGo63guGbgVdrsDu/pfhnlIWo3fmLh9e4zibGt68/vEU8i5qbJOz4FMxPt1285EXDa5cT202BolJzcT+WMxzC05YTulCdJ0rr0b+NeRJwHXAvcDvzBksO/AvwQ8NKI+OnMXPUf+nJB17q/oQi8XthebSVJ0iJZ7X4ZUVoIugJEpb2G4kp9mt5uB1/Lo/VRqQHU6q/79zuZJGkz8v9SLxl4lTa7pdP6dKOI0k6YmylebNlB6aIntZVfRMAFT4fTLye/+iHYc9viAOzu86BcgcmDcOj+hhNLC9dbqkBtyRqzW08iTntUcX6pTOw4feHUtmosSdKm9Kz643WZi79wZOahiLieIjB7FfD+dZbxbfXHm9Z5viRJWtZGjHhtuNOOcjFqta3sSsXaqeURmJuE2szi46WRekA5WwssR6XIs1QBSsXarJIkSSsw8Cptdlt2di/vKJOxnfzc9Qu7znk0cfoFncl+ywnEY15ETk/Akb3kp94BZ11BXPxNRHmIzIQjDwNRjOwd20He83ni3CfDyDY4/BD5xX8hTroAhkbh7CcQ9lKVJA2S7q+/dklE3LDcgcy8Yo1zL64/3rrC8a9SBF4vosnAa0T8DLAV2AFcCTyFIuj6m82cL0mSmtTVdUaj3jG6IfhZHulcQLM0BMNDUKsWZcwehMp4fWRqFNMoz5edNY4GYsujRd1qszB3pKjT0amEJUkaIBu1VruWZeBV2uxqXZw+aOwE8tNF0DXOeXQxivS8x3S8mBgZh5FxeNqPw/AWolz0ko0IGD+xSDS+u9i3/dSFE7edTDz5lR2vjyRJAorgKMCBFY7P79/ZQp4/A5zS8Po9wMsz86HWqiZJklbVzTVeG9d1nR/lWupCE2WpDJQhdhWB3vlG6IhiFOtKysPFJkmStA4GXqXNrpu9WI88ROmq58D46cTjvrkIhHZRjO1YO5EkSceN6HIv1gC4pYmRrW0VQAtzGWbmqQARcQpwNcVI189GxLdm5o2dr6IkSZtUN79j5FwRcC2PFFu3OTWwJGlT2ZC2Aq3COTWlza4+ErRrTjyD0uOf2/WgqyRJ6jvzI1pX6hm1fUm6pmXmA5n5jxRTFe8G/qz16kmSpBV1daphoDS8MUFXSZKkDeaIV2mzO3hfd/M/cG9385ckaVPr645NX6k/XrTC8QvrjyutAbumzLwjIr4MPDYiTszMPevNS5IkNajNdTf/7HL+kiRtan3dVnDcc8SrtIllJnnrB7pbyN47yKmD3S1DkiT1ow/WH6+NiEX3HRGxDbgGmAQ+0WY5p9cfu7hwvSRJm0gmzE12t4zqTHfXkZUkSeoRA6/SZnbfF2Hv7V0uJGFyf5fLkCRpk4pS97Y2ZeZtwHXAOcCrlhx+HTAO/FlmTgBExFBEXBIR5y+6xGLfqcdcekQpIn4dOBn4WGbua7vSkiSpHnStdbmQpIVl3iVJUiv6uK1gM3CqYWkTyzs+3f1CLngGsevs7pcjSZL60Y8BHwPeGBHPBm4GngQ8k2KK4V9sSHtG/fgdFMHaec8FfjsiPgLcBjwMnAI8HTgPuB/4wa5ehSRJm0UmVKe6X87QVhtvJUnSccnAq7RJ5eQB2HdH18uJUy7pehmSJG1a0d/rtmTmbRFxJfB6igDq84H7gDcCr8vMvU1k8z7gjymmJn4MsBOYoAjc/jnwxibzkSRJa6nNsiEjUUtD3S9DkqTNqs/bCo53Bl6lzWq2S+u1RAnOf1rxt310B7HjtO6UI0mSBkJm3gW8ool0twPH3B1m5hc5dqpiSZLUFd0KugZUxiBrRdDV0a6SJOk4ZeBV2qwmHu5OvuddQ+miZ3Ynb0mS1CBYJk7Z4fwlSdKmktXu5Ds0DuWR7uQtSZIa2FbQa3YvkzahzCTv7ML6ridfRJx3TefzlSRJkiRJ3ZUJ1enO51segdJw5/OVJEnqQ454lY5zmQkH7wMCxk+AA/eSX/swPPyNjpcVZ11BDI11PF9JkrSMoLvT9NmJVZKk41cm5BwQEGWozcDcZDEVcKeVx1xrTpKkjWJbQc8ZeJWOYzl5gLzlOrjvixtT3tf/A06+mPCGSpIkSZKk/lSbg9mJeuB1A1QnobR1Y8qSJEnqMQOv0nEq991FfvIdUJvduEL33QWHHoDtp25cmZIkbWJ2dpIkSS2pTsPs4Y0vs7Klu6NvJEnSUbYV9JaBV+k4k3MzcN8XyFs/sLFBV4DyEMxMbGyZkiRJkiRpdVkrAqBzR3pQeBRTG9sGLEmSNgEDr9JxIOdm4PZPkPvvhr13wNxUbyqy/XTYfV5vypYkaVOyBVOSJK0ga0X7QM5tfMfsRuVhKJV7V74kSZuObQW9ZOBVOg7kF/8F7r2p19WAfXfA1AEY29nrmkiSJEmStHllwsxByGqva1KfangcnPZQkiRtAgZepQFXfeh+Dr37Q1R276C0dZSh7VAe6mFP1nu/AOc/tXflS5K0aUSX10qzcVSSpIFVmylGvEYJkvrzXtZnthj5KkmSusy2gl4z8CoNsNrhgxz4Xz9P9e5v0BhqLZ92JpVTTqE2M0Nl1w5GzhijPDTT/QpVRmHryd0vR5IkSZIkLa82BzOHgFoRdD2qXA/EZvFYq25Q22mpyw3AkiRJ/cPAqzTAJt75Fqp3f+OY/dX77qZ6390AzAKTQ0Nse/4zGd463dX6xGNfTJx8YVfLkCRJjexpKkmSGmTCbD3oesyx6sLUwwnF94gyS6KznTeyHcI1XiVJ2ji2FfSS3c2kATX7lZuY+uC7m0w8y6F3f4CphyrUqov7W2S1xJE7auz7ty8y+UCZrK3zhitKsPuc9Z0rSZIkSZLaV50qpvVtStYDsaVjY69JsZ+sH2+jrcCgqyRJ2kQc8SoNoOqD93Hwja9r7canOsfEde9nAijtPonSzl0wN8fcfffATDES9sj7PsD0aWcyftUjGdrS2ujYuPwFRHmopXMkSVKbwl6skiSprjpbH+3aioScD9SWWAi2NoyOpQZRWUjfiqGtLdZHkiS1zbaCnjLwKg2Y6c99kkNvei05NbnuPGoPP0Tt4YeWPVa9725qs5e2luGW3XDyxeuujyRJkiRJasPcEZg93F4eWWPZKYoBcq4h+NqkUqX1cyRJkgac336kATP7xc+0FXRdTfmU09j2jMsoladpaR74qQPF9EGSJGkDRZf//9pDVpKkgVGd6V7eUanPuNXiaNesOeJGkqQNZ1tBrxl4lQZMbaLVaYNayHtykoga0cqN0c6zYGiMGBrtWr0kSZIkSdIqcoWRqp3JvL610FbgaFdJkrRJ+Q1IGjBzX/lCV/Ld+vznQCk4cN2N7Lj2ckrlJm7aokRc8Z+IkW1dqZMkSVqLPU0lSdr0MoupgLshhupfN1oJ7AYM7+hOfSRJUhNsK+glA6/SAMlMagf2dTzfoQsvYXjnNBFB9fLL1vizHLDtFOKcq+CUi2BoS8frI0mSmhB0d/o+79MkSRoQXRrtWhoqRtLWEkrltUfVRhkq40VaSZLUG7YV9JyBV2mAzH3ty+TUkY7nW5uaYv4v5pYzYcWbtqEx4mmvcoSrJEmSJEn9opvru0LReLta0DXKxQhX13OVJEmimyvsSuqw6U9+qCv5Vu+6nakHmvhzMDsF++7uSh0kSdI6RKl7myRJGgzV6e7kW5tt7jtBVotNkiT1B9sKesp3SRogs7fd3LW8Jz91I7XqGtMBnXxh18qXJEmSJEktyiwCpF3Lv1aUsZrSMLBGGkmSpE3CqYalAVK9v3ujTfPQAQ597Btsu/pcSuUlPVW3nUJc/gJi55ldK1+SJLUq6O7iKk4XKElS/0u6GvTMKkSlCMAunUq4NOSarpIk9R3bCnrNwKs0IObuvZM8uL+7Zdz5DQ4NDTP+uEdQnUqiXGLo8isoXfQsouyfC0mSJEmS+ko3R7vOyzmIIYoAbxQB2PIolEdc11WSJGkJIynSgJj+2Ps2pJy5277Cgdu+AsD49/wo5Uuv3ZByJUnSOtjYKUnS5jY3tTHlZEOAd2hHEXSVJEn9ybaCnnKNV2kAZHWOqY++d0PLHLn6mxh73os3tExJkiRJktSkrEFtemPLrIwbdJUkSW2LiDMj4k8j4t6ImI6I2yPi9yJiV7fyiYhzIiJX2f66E9fmiFdpAEx/8sPU9jywcQWWy4x/z48QrtMiSVKfsx+lJEmb1tyRDS6wBJUtG1ymJElqXX+3FUTE+cDHgJOBfwJuAZ4IvAZ4bkRck5kPdzGfzwPvWmb/F1u/mmMZeJX6XM7OcOQf3r6hZZa27aS868QNLVOSJEmSJDUpqzA3ubFllspOXShJkjrhDymCpa/OzDfN74yI3wV+Evh14Ee6mM/nMvO16679Gvo77C2Jib95K9X77trQMmsH9pFTG3wDJ0mSWhfRvU2SJPWnTJg5BOQGl1stypYkSf2tj9sKIuI84FrgduAPlhz+FWACeGlEjG9EPt1g4FXqY9Of+yST//Y3G19w1jjwhl+h+tD9G1+2JEmSJEla2dwk1GY2vtysweyh4lGSJGl9nlV/vC5z8ZeKzDwEXA9sAa7qYj6nR8QPR8Qv1B8f3epFrMaphqU+Nv2xf+9Z2bM3fYq9P/EShi5/AuMv+j6GLnpUz+oiSZKW0+2RqY56lSSpL1Wnelt2dQrKI1AZh5JNi5Ik9ZcNaSu4JCJuWO5oZl6xRgYX1x9vXeH4VylGsl4EvL9L+Tynvh0VER8Cvi8z71ylzKY44lXqY7W9e3pdBWa/8Gn2v+6/MvF3b+t1VSRJkiRJUlZ7XQOoTsP0XpjrYRBYkiQNoh31xwMrHJ/fv7ML+RwBfhW4AthV354OfBB4BvD+TkxNbLc0qY/VJg71ugpHHXn3/2XLd76ccM03SZL6iP0oJUnafPpondW5I1AZ7XUtJEnSIl1vK7iliZGt6zUfgGj3C88x+WTmg8AvL0n3kYi4FvgP4EnADwBvaKdgA69SP5ub62h25dPOonLeJZRPO4vS+FZibJwYHqH68IPMfe3LzN76RWr7lh9lO3z5lQZdJUmSJEnqpexC0DUqxZTBUa5PTVgqmiprVajNFttKbZ/l4c7XR5IkHc/mR6LuWOH49iXpup0PmTkXEW+lCLw+DQOv0nFs8ZrQq4qt28nDB1c8Xjn/Una+7g/XDJ7WDuxl9rZbOPKP7yDGtzP61G+mcu5FlE87q+m6SJKkDRB0d90W+1tJknQcCFYdMFIeheHtKxyrP2YW7RO1WZibKIK05dF6wLa8/LmSJKk3+r+t4Cv1x4tWOH5h/XGltVs7nc+8h+qPTjUsHc9yZnrV4+VTz2Ts+d/N8KOuoHTy6cx+6QYm/v7tzN36xWPSDl9xTVMjVks7TmDk8Vcz/NgnEd5ASZIkSZLUR5oY8VoagvIYlIeAUrEe69zE8mvDlkfWzi+iGA1bKhfpnQ1LkiSt3wfrj9dGRClzYfRZRGwDrgEmgU9sUD7zrqo/fr3J9CtyUSipT2WtRk5OrHi8cuGj2PnaP2Ds2S+gfMoZRATDj7qSnb/8Jrb/9G8Qo1sWpR+54iktlW/QVZKkQRBd3CRJUv9ZI/BaHoHhncW6q/NTB1dGYeQEGNp6bPpSi1MFG3SVJGkA9G9bQWbeBlwHnAO8asnh11GMOP2zzJwAiIihiLgkIs5vJ596Xk+KiGO+/ETEs4CfrL/8i/Vd2QJHvEo9MnfvHZRPPoOoLP8xnL35c+SRlQOvW7/3RyltO3b68ohg5PFXU37dHzD1wX9l7u7bGXnCU6mceU6nqi5JkiRJkjotsxiVenSt1WVUV58Zi6Fty58bAZUtxfTA1ali6uDKmIFUSZLUCz8GfAx4Y0Q8G7iZYn3VZ1JMDfyLDWnPqB+/gyLIut58AH4LuCwiPgTcXd/3aOBZ9ee/lJkfa/PaDLxKGy3nZpn46z9m8v/9LeUzz2Hbj/wCQ+cuTENeO3yQmS98mom/fPOKecTYOJXzLl61nMqZ57L1pf+1Y/WWJEn9JrrcWGpDrCRJGyZrMHMIatPFVMFD2xevn5rVIug6u3IHbaICscbkduXhYpMkScep/m8ryMzbIuJK4PXAc4HnA/cBbwRel5l7u5TPnwPfATwBeB4wBDwA/A3w+5n50XavDQy8Shtq9rZbOPSW/0n1rmKa8Ordt7P/l36YoYsfTYyOMXfvndQevHfNfEq7TybKfnwlSZIkSRpomVCbKYKu1Jcmq83C9MML0wDX5haOrcYlgyRJ0oDIzLuAVzSR7nZWifY2m0897Z8Af9JkFdfNyI20Aap7H2Lib97K9Effe+zBTGZv+Xxr+d1zB7WD+ylt39mZCkqSpAHlqFRJkgZWbQ5mDxeB12WPr7B/JdXZIpDr9MGSJG1yfhfoJQOv0hI5PcXkv7+LoUsezdAFj2wvr7k5jvzLX3Hkn/8SZtZYh6WljGvM3fk1hh91ZefylCRJkiRJy8sazE1CeQRKbTanZa2YMrg62Zm6HVWrb458lSRJ6hUDrxKQmVTvuYOZG69n8n3/RO3hByFKbPvB/8bo05+3rjzn7ryNg2/+Dap33tbh2hZy4nBX8pUkSQPEES2SJHVPJuRcsbbq3CSQMHcEhnesf53U6gzMHiyCr92Q6SAXSZI2O9sKesrAqza9rM5x8Pd+mZkbP7bkQI1Db/1tSieewvBlj28+v/lRru/6c5ib7XBtF9SOGHiVJEn9LyLOBF4PPBfYDdwHvAt4XWbua+L83cB3AN8CXA6cAcwAXwDeBrwts1ut15KkTStrML2/CLwuPgAzB2BkV2sjX7s2ynVpOdnd/CVJkrQqA6/a9KoP3MvsV76w/MFajQP/6+fZ9kM/y8iTnkmUSqvmNfuNWzn0x7/VtVGujWJ0rOtlSJKkfrf6d5Nei4jzgY8BJwP/BNwCPBF4DfDciLgmMx9eI5vvAt5MEbD9IHAncArwIuCtwPMi4rsybWmWJHVQbRayusLBLIKyw9uhNLT2qJLqNMwe6t4o10aOcJEkSX3eVnC8M/CqTa9y+tmc+Mf/Qu3gfib++o+Y+vD/W5xgZppDv/+rTLzzrYw981sZeeq1lE84aVGSnJvlyD/9BUf+6S+gutKNWScrPcTQRZd3vxxJktTHosuNqx3J+w8pgq6vzsw3Hc054neBnwR+HfiRNfK4FXgB8K+NI1sj4heATwHfSRGE/ftOVFiSJKBYy3X0xPpI1YNFIHaRGszsh6hAZaxIH0saObMGs4ehOrVBlS5BuL6rJEmb20C0FRzXDLxKdaXtO9n6gz9LadeJxTTBS9Qeuo+Jv3kLE3/7VoYufSzDl19J+fRHUDt8gMn/93dU7/7GxlQ0Smx75U9T3n3yxpQnSZK0DhFxHnAtcDvwB0sO/wrwQ8BLI+KnM3NipXwy8wMr7L8/Iv4PRfD2GRh4lSR1WkQRyBzeWQRfq9PHpsm5YjTr7CEoDRdrv0a5GC07d2RjRrkWlS1G4DriVZIkqacMvEoNIoIt3/lypj/zHysHUjOZ/fJnmf3yZze2cgBDw2x/9WsZefzVG1+2JEnqQ33duPqs+uN1S9dgzcxDEXE9RWD2KuD96yxjfvjR0gX4JEnqnAgY2gbVGWCVme1rM8W24UowsqOY9liSJKm/2wqOe070LC0RpTLj3/0Dva7GsSLY8VO/ZtBVkiQNiovrj7eucPyr9ceL1pN5RFSAl9Vfvmc9eUiS1LQoQWVLr2uxjICRnQZdJUmS+oQjXqVlDD/+akq7TqS2b0+vq3LUlu94GcOPfmKvqyFJkvpJ96cTvCQibljuQGZesca5O+qPB1Y4Pr9/5zrqBfCbwKOAf8vM964zD0mSmlcZg7kVZ8fvjaFtULJ5T5IkNXDpgZ5yxKu0jIigfOqZva7GUUOPuoIt3/GytRNKkiQNjvk7wVXmbFzhxIhXAz8N3AK8tJOVkiRpRVGir6buK49BZbTXtZAkSVIDu8RJK6g84gJmb/5cr6vB6NOfx9bvew1RKve6KpIkqe90vfH3liZGtq5kfkTrjhWOb1+SrikR8SrgDcCXgWdn5t71VU+SpHUoDfVoHdclKuN9OvWxJEnqvT7qKLYJGXiVVjBy1TOZfM/f9az88hnnMP6SH3JNV0mSNKi+Un9caQ3XC+uPK60Be4yI+AngfwNfpAi6Prju2kmStB7lkd4GXktDMLTVNV0lSZL6lIFXaQWVCx5J5bxLmPv6LRta7tCjrmD8u15J5fxLCedilyRJKwm6u25L+1l/sP54bUSUMrN2NOuIbcA1wCTwiaaqE/FzFOu6fg54TmbuabuGkiS1qjwCsxNAbc2kHS+3Mu56rpIkaXX931Zw3HONV2kFEcH2V/13GNqYXqQxvo3tP/Gr7Pj//hdDFzzSoKskSRpomXkbcB1wDvCqJYdfB4wDf5aZEwARMRQRl0TE+Uvziohfogi63kAx0tWgqySpN6IEw9s2sLwyDO+C4R0GXSVJkgaA39ikVZRPPZPRZ3wLU//+rq6WUzrhJHb83G9TOfOcrpYjSZKOJ0F3u5p2JO8fAz4GvDEing3cDDwJeCbFFMO/2JD2jPrxOyiCtUUtIr4PeD1QBT4KvHqZDmq3Z+bbO1FhSZLWVB6pr/U6291yogIjO4tgryRJUlMGoq3guGbgVVrD1u/9MfLIYaavf1/beY0+41sYvuIaStt2EKNjxNAwDA1TGt9GjI51oLaSJEn9IzNvi4grKQKnzwWeD9wHvBF4XWbubSKbc+uPZeAnVkjzYeDtbVVWkqRWDO+AmQOdCb5WthSB3ChxtDEzAih1d6pASZIkdZyBV2kNMTTMth/9RYYf+2QO//mbyIP7W86jfMoZbH3lzzB82eM6X0FJkrR5DUBjbGbeBbyiiXS3s0zX2cx8LfDaTtdLkqS2RAmGd8LcJMwdXmceFRje7hTCkiSpswagreB45jc7qQkRwejVz2bogkdy8Pdfz9xtN0OUKJ91LjG2hbmvfRmq1WPOK59yBmPf+hJGn3ItMTzSg5pLkiRJkqSuiIChLVAegpmDkPV2gag3t+XcCudVivNKIzaMSpIkHWcMvEotKJ98Grte/2ZqE4eIcpkY3QLA3H13MfOpj1Ddcz8xPExs3UHl7PMZftxVRKnc41pLkqTjl2u+SZLUc6UhGDkBSCAWgqm1WahOQ9bq+0tF2tKQAVdJktRFthX0koFXaR1K49sWva6cdhaVb//eHtVGkiRJkiT1VATHzJg/H2SVJEnSpmHgVZIkSRpUjpaRJEmSJEmNbCvoKccbS5IkSZIkSZIkSVKbHPEqSZIkDaRlpjTseP6SJEmSJGlw2FbQa454lSRJkiRJkiRJkqQ2OeJVkiRJGlj2NJUkSZIkSY1sK+glR7xKkiRJkiRJkiRJUpsc8SpJkiQNqAh7sUqSJEmSpAW2FfSWI14lSZIkSZIkSZIkqU2OeJUkSZIGlr1YJUmSJElSI9sKeskRr5IkSZIkSZIkSZLUJke8SpIkSYPKdVskSZIkSVIj2wp6ysCrJEmSNJCC7k4f5I2aJEmSJEmDxbaCXnOqYUmSJEmSJEmSJElqkyNeJUmSpEEUQHSxH6WdWCVJkiRJGiy2FfScI14lSZIkSZIkSZIkqU2OeJUkSZIGll1NJUmSJElSI9sKeskRr5IkSZIkSZIkSZLUJke8SpIkSYMq7MUqSZIkSZIa2FbQU454lSRJkiRJkiRJkqQ2dWPE6zk333wzV1xxRReyliRJkrrj5ptvBjinx9VoQdDddVvsISupo2wrkCRJ0sCxrWC5/LWabgReD05OTnLjjTfe3oW8JUmSpG45BzjY60pI0nHKtgJJkiQNonOwrUAt6HjgNTPP7XSekiRJkpbhui2SBoRtBZIkSdIGsa2gp1zjVZIkSZIkSZIkSZLa1I2phiVJkiRtCHuxSpIkSZKkRrYV9JIjXiVJkiRJkiRJkiSpTY54lSRJkgaV67ZIkiRJkqRGthX0lCNeJUmSJEmSJEmSJKlNjniVJEmSBpa9WCVJkiRJUiPbCnrJEa+SJEmSJEmSJEmS1CZHvEqSJEkDKSC62Y/SHrKSJEmSJA0W2wp6zRGvkiRJkiRJkiRJkjZERJwZEX8aEfdGxHRE3B4RvxcRu7qdT0RcHRH/FhF7I+JIRNwUET8REeX2r8wRr5IkSdIAs6epJEmSJElq1N9tBRFxPvAx4GTgn4BbgCcCrwGeGxHXZObD3cgnIr4d+HtgCngnsBf4NuB/A9cA39Xu9TniVZIkSZIkSZIkSdJG+EOKYOmrM/OFmfn/ZeazKIKfFwO/3o18ImI78BagCjwjM1+Zmf8NeCzwceDFEfGSdi/OwKskSZI0iAKI6OLW6wuUJEmSJEkt6fO2gog4D7gWuB34gyWHfwWYAF4aEeNdyOfFwEnAX2fmZ+Z3ZuYU8N/rL3+0hctZloFXSZIkSZIkSZIkSd32rPrjdZlZazyQmYeA64EtwFVdyGf+nPcsk99HgCPA1RExstZFrMY1XiVJkqQBdPMtX+WKq5/d1fwlSZIkSdLg2KC2gksi4obljmfmFWtkcXH98dYVjn+VYiTrRcD7O5zPiudk5lxEfAO4DDgPuHmVsldl4FWSJEkaPLdMTk5y42dv6no53S5AkiRJkiR1xEa1FZzTxrk76o8HVjg+v39nF/LpVNmrMvAqSZIkDZjM/N5e10GSJEmSJPWP46StYH4V2exBPh0p2zVeJUmSJEmSJEmSJHXb/KjSHSsc374kXSfz6VTZqzLwKkmSJEmSJEmSJKnbvlJ/vGiF4xfWH1dau7WdfFY8JyIqwLnAHPD1NcpelYFXSZIkSZIkSZIkSd32wfrjtRGxKEYZEduAa4BJ4BNdyOcD9cfnLpPf04AtwMcyc3qti1iNgVdJkiRJkiRJkiRJXZWZtwHXAecAr1py+HXAOPBnmTkBEBFDEXFJRJzfTj51fwfsAV4SEVfO74yIUeDX6i/fvO6Lm88vs931aSVJkiRJkiRJkiRpdfUg6seAk4F/Am4GngQ8k2Jq4Ksz8+F62nOAbwB3ZOY5682n4ZwXUgRgp4C/BvYCLwAuru//7mwzcGrgVZIkSZIkSZIkSdKGiIizgNdTTPu7G7gPeBfwuszc25DuHFYIvLaSz5JzrgF+EXgyMAp8DfhT4I2ZWW372gy8SpIkSZIkSZIkSVJ7XONVkiRJkiRJkiRJktpk4FWSJEmSJEmSJEmS2mTgVZIkSZIkSZIkSZLaZOBVkiRJkiRJkiRJktpk4FWSJEmSJEmSJEmS2mTgVZIkSZIkSZIkSZLaZOBVkiRJkiRJkiRJktpk4FWSJEmSJEmSJEmS2mTgVZIkSZIkSZIkSZLaZOBVkiRJkiRJkiRJktpk4FWSJEmSJEmSJEmS2mTgVZIkSZIkSZIkSZLaZOBVkiRJkiRJkiRJktpk4FWSJEmSJEmSJEmS2mTgVZIkSZIkSZIkSZLaZOBVkiRJkiRJkiRJktpk4FWSJEmSJEmSJEmS2mTgVZIkSZIkSZIkSZLaZOBVkiRJkiRJkiRJktpk4FWSJEmSJEmSJEmS2mTgVZIkSZIkSZIkSZLaZOBVkiRJkiRJkiRJktpk4FWSJEmSJEmSJEmS2mTgVZIkSZIkSZIkSZLaZOBVkiRJkiRJkiRJktpk4FWSJEmSJEmSJEmS2mTgVZIkSZIkSZIkSZLaZOBVkiRJkiRJkiRJktpk4FWSJEmSJEmSJEmS2mTgVZIkSZIkSZIkSZLaZOBVkiRJkiRJkiRJktpk4FWSJEmSJEmSJEmS2mTgVZIkSZIkSZIkSZLaZOBVkiRJkiRJkiRJktpk4FWSJEmSJEmSJEmS2mTgVZIkSZIkSZIkSZLaZOBVkiRJkiRJkiRJktpk4FWSJEmSJEmSJEmS2mTgVZIkSZIkSZIkSZLaZOBVkiRJkiRJkiRJktpk4FWSJEmSJEmSJEmS2mTgVZIkSZIkSZIkSZLaZOBVkiRJkiRJkiRJktpk4FWSJEmSJEmSJEmS2mTgVZIkSZIkSZIkSZLaZOBVkiRJkiRJkiRJktpk4FWSJEmSJEmSJEmS2mTgVZIkSZIkSZIkSZLaZOBVkiRJkiRJkiRJktpk4FWSJEmSJEmSJEmS2mTgVZIkSZIkSZIkSZLaZOBVkiRJkiRJkiRJktpk4FWSJEmSJEmSJEmS2mTgVZIkSZIkSZIkSZLaZOBVkiRJkiRJkiRJktpk4FWSJEmSJEmSJEmS2mTgVZIkSZIkSZIkSZLaZOBVkiRJkiRJkiRJktpk4FWSJEmSJEmSJEmS2mTgVZIkSZIkSZIkSZLaZOBVkiRJkiRJkiRJktpk4FWSJEmSJEmSJEmS2mTgVZIkSZIkSZIkSZLaZOBVkiRJkiRJkiRJktpk4FWSJEmSJEmSJEmS2mTgVZIkSZIkSZIkSZLaZOBVkiRJkiRJkiRJktpk4FXSphQRt0dE1reXdyH/DzXk/9pO568FEfGYiHhzRHwhIg5ERK3hvf+9XtdPkiRJknR8s43h+GEbgySpXQZeddyIiNMi4uUR8RcR8fmIuCcipiLicETcFRHXR8TvRcQLI2Kk1/WV1L6I+K/ADcCPAI8CtgPR5TJ/o+GmKyPizoho6/9pROyIiB+OiHdGxFciYm9EzEXERETcGxEfj4g/i4ifiIirIqK8Rn5vb6jf7eusU0euMyJeuySfjIhfa+H80SXnvrzVOkiSJEmtso1B2ny61cYQEee0e1/b7H3+esuKiJMj4qci4h8j4raI2F9vlzhU/5v30Yh4a0T8aD04ver7sqSzwHLbXEQ8HBFfjog/j4iXRsRoa++KJPWnSq8rILUrIh4B/Hfg5Sz/Oz0CjANnAlcDrwH2R8Q7gN/IzAc3qKoaQPUvs4+ov3xFZr69d7VRo4h4NPAGFjoRzQCfB/YBWd93c4fLLAMvW7L7LOA5wHvXmd9PA78CbFkmyZb6dhpwFfDS+v79EfHczPxkq2W2UK+OXecyfjIi/iAz7+tAXpIkSVLH2MagbrKNoX/1oo2hH0TEGPA64CeAoWWSbK1vZwJPAV5Z3/9ARDwxM+9cZ9Fl4IT6dinwX4DfiYhXZebfrjNPSeoLBl410CLiu4G3A2NLDk0DtwMPUXw5OpUiaDDfc2onxc3RKyPiMZn59Q2orqTO+gEWbojuAZ6Ymfd2ucznAmcss//7aTEgGRFDwN8AL1xyaAa4FdhD0bN2N3AhRQPPvJ3ArlbKa1HHrnMFWyiCzT/SgbwkSZKkjrCNQdrUetHG0FMRsY3iHv/JSw4doWiX2AsMAycCF7A4lnAKy3cgX84+4FNL9g1RdDK/hIVRxScBfxMRP56Zv99k3pLUdwy8amBFxM8B/4PFU378C/D7wEczc3JJ+lHgGcB3U4waq1D02Nq+EfVVf8nMc7qc/zO6mb8AeGLD8z/ZoBui7294/v+A59WfvzAidmfmwy3k9XoWB12/CvwS8M/L/P0aAh4HvAD4LuCiFuvdqk5e50peGRG/m5m3diAvSZIkqS22MagdtjEcF3rRxtBrf8zioOsNwC8D12XmXGPC+sjYJ1C0Y3wXxQjYZt2Umc9d7kBEnAa8Fvihht1viIiPZOZNLZQhSX3DNV41kCLiBSy+IdoPPCczX5CZ1y29IQLIzKnMfE9mfj9Fb6p3bVR9JXXF7obnd3W7sIg4Cfi2hl0/C9xYfz4MfG8LeZ1CMcXwvJuAJ2TmO1f4+zWbmZ/KzP9O8ffrOUBXetF38jqXcQCYn3qtAvxGG3lJkiRJHWEbgyQ2uI2h1yLiccBLGnZdB1ydmf+2NOgKkJmTmfmRzPwp4BzgOylGxLYlM+/LzB+m+Bs8r0Qx5bskDSQDrxo4EXE68Gcs3BAdBp6ame9rNo/MvC0zvwP4GWC287WUtAEa1x455qagC17WUOaNmflF4B0Nx1957Ckr+jYW1/+/ZeaBZk7Mwvu6OFK0k9e51BTwqw2vvzMintRGfpIkSVJbbGOQVLfRbQy99p1LXv94Zs40c2JmVjPzHzq8pvXrWOioDfDNEeFsnZIGkoFXDaKfBnY0vP6JemCgZZn5O5n5pdXSREQ5Ir47Iv4iIm6NiAMRMRkRd0TEeyLiNRGxs5nyIuLtEZH17e0N+58cEW+NiFsi4lBEHImImyLi9RFxzDqOEVGKiJdExLsj4r6ImImIPRHxoYj4gYhY87O9Sl2eVj82X5f9EfH5iPj1iHhEM9e5pJyRiPj+iPj7iPh6RByOiImI+EZE/GO9vqNr57Qoz2sj4k/q79G+iJir/0weiIhPR8Q7IuKH66MKV8rj9obrf/mSY8+YPwY0XvPbGs5ZtC2T/4cajr+2yevaHhH/NSL+rf77dSQiDkbEVyPir+o/83KTeS17fRHxvIh4Z0R8rf6e7YuIz0bEb0bEqc3kvV6d+Cwtec/X+tm8vcOX8IqG5/N5/xULDSuPjogrmszrkiWvr2+jXp3Wyetczh8BtzW8/q028pIkSZLaZRuDbQy2Maydl20MnW9j6LXGdok9vV4GKDOngX9v2LWdYmStJA2ezHRzG5gN2AkcArK+3QpEF8t7AvCFhvJW2vYAr2giv7c3nPN2imk737RG3ncC5zXkcSbwiTXO+RCwtcW6jAJvWSPfw8APtfD+PRe4vYn3707gW5rI75T6ta2V3/z24Cp5Ndbr5UuOPaOFMrL4U3pM/o31fG0T1/ZS4KEmyvoS8KQm8lt0fRRT5vzzGnkfAp7fz5+lFn8ub+9g/a9qyHcGOLHh2D82HPvDJvP74yV1XfXzuo76vr0h79t7dZ31817bcN799X0vWXL9K/7eUfxtakz78mbLdnNzc3Nzc3Nzc1ttwzYGsI3hQ03kN7/ZxmAbw3rre86SvF6+jjze3nD+7e2WRTG18NH3qQs/o8bf2Q81ec7/WFL3q7rx++Pm5ubW7c3h+ho0zwG2Nrz+o8zMbhQUEd9EsUbLeMPuCeDLFNNlXgCcVt+/G/jTiDgzMxun0VzLWyim9YTiy+BXgBpwOcUNIMBZwAci4jJgC/AR4Nz6sduBO4Ax4LEUN1kATwfeRrHYfbP+BPie+vNDFNc5A1wMnFzfPw78UUQMZ+bvr5ZZRLwU+FNY9HdmP3AzxZeni1lYP+Ms4J8i4gcz820r5DcCvB+4rGH3LMV79lD99S7gQhZ+Zusd1b8XeG/9+dMpbhgBvgjcs848VxQRvwD8+pLdD1Lc9A8BjwS21fc/kuL34UWZ+V6as4XiC/Xj66/vpxhxmBTv53yP563AP0bEFbnOHt7L6fBnqfGa1/rZfKG9mi/y/Q3P352Zexpevx14Yf35f46In8rMqTXy27Pk9bXAP7RVw87o9HWu5J0U07DNj5z9HxHxnsysrTM/SZIkaT1sY7CNwTYG2xjmbWQbQz9ovN/fHRGPz8wbe1abwtCS101NfSxJfafXkV83t1Y24A9Y3PPp0V0q53Tg4YZyJoGfArY0pAngeRzb2/JbV8n37Q3p9tQf7wK+HSg1pBsCfnlJvj8L/Fv9+fXA45fkvRv4pyXnPLXJujzYcJ2vAUYb0pUogi33NqSfA65YJe/HANMN6fcC3wcMNaSpUNyE7WlINwM8boU8X7Mk3c8C25ZJF/XyXwvctEodG39uL2833TLnfajhvNeuku55S35mdwEvWPL7MAr8V4obifl0+4Czmqz3fC/XzwFPX5KuDPx4/Wc6n/7f+/2z1M7PZh3XsAU42FDWty85PtTwGUrge5vI89uWXOs9wBM6WOe3N+R9e6+us37eaxvOub9h/7OXvAcvW+F8R7y6ubm5ubm5ubl1ZcM2BtsYbGOwjaHNn02T9T5nSV1azp/Oj3j98SXpvgRc2MFrbvyd/VCT5/zrkjqd0cmfg5ubm9tGba7xqkHzhIbnRyi+FHTD/wJOqD+vAS/KzN/NzCPzCbLw/4CnsrgX3B9FxNIeWsvZTXEzck1m/lM2jPTKzNnMfD3wFw3pf5Xii+OHgWflkl5omfkw8N3ANxp2N67VuJqTKL7QfFdmviEbRrFlZi0z3wU8k+KLOBRfpFfrjfpmFnrGTgDflJnvyMz5NSLJzLnM/CuK4Muh+u4hiilYl/NtDc9/OzP/Z2YeWpqo/nP5fGa+FnjcKnXsuYioAP+nYdf9FDey/7zk92Eqi96/LwSq9d07gd9tsqgTgU8DT8nMDzceyMxqZr6J4iZy3rPXs9bOCjbis9Rt381Cb+CHKBonjqr/Xv9Vw67GUaMreS/FTd2804FPRsT762vwPKbZtXY6qBvXuaLMfD+L1295fb3XuSRJkrRRbGOwjQFsYwDbGDajv2LhswLF6OebI+KfIuKVEXFJRMRGVSYiTgOe1bDrrszs+IhwSdoIBl41aE5ueH5vZlZXTLlO9X/0L27Y9Uf1L2zLysy7gFc37Dqd4uakGf8tM+9c5fibG54PU3whfkUWC84vV5dpiul85j2lyXoA/Flmvnulg5n5FYoesvOuiojHL00XEVcCT27Y9fqlN3BL8v08i7+QXxkR1yyT9KyG5x9dKb8leXf896PDvgM4u+H1azLz9pUSZ+a/A3/YeH5EnL1S+gY14KWZeXiVNG+kmJIHit6hy/0MWrLBn6Vuagww/lXjzX2DdzQ8f2ZEnLtMmqMyc4ZiCrDGz3JQ3GS8iaLn8KGI+EREvCEiXhwRO9ZV++Z1/Dqb8HMUDTIAjwBe1WZ+kiRJUitsY7CNAWxjOHq+bQwb5m0Rka1sFKO8O6beueIHWbgnh6ITxAuAt1JM430gIj4cEb8VEd8aEWOdrMO8iBilaG8Ybdj9N90oS5I2goFXDZoTGp7v71IZ38biNQXW7PGXmf8AfL1h13c0Uc5B4P+ukeYzLPQ+hGJ6lm+slLjuEw3PL4iI4RVTLvamJtL8KdD4xfo7l0nzoobnR1h8Y7eSP1qS73Lv32TD877uZdqCxuu8E/jbJs75HRa+FM9/IV7L++s3tSvKzIMUwb55l62QtBUb9Vnqmoi4kKKX7Lx3LJcuMz8L3DR/Gk30BM/Mj1LcfK7Uq34MeBLFjeLfAvdHxF9ExEXN1b553bzO1dTze2fDrl/YgACzJEmSNM82BtsYwDYG2xg2qcx8J/Bcit+X5WwDnkYxFfe/ULRL/GFEnN5u2RFRiYgz6+s3f4Zize15DwO/2W4ZktQrBl41aBp7Pi3bI7MDGntS3pyZX2vyvH9eIY+V3LDCiLKj6qPi9jbs+ngT+d7X8DyAZoIYD2bmDWslqk/d8qGGXU9aJlnjtX94ual6lsl3AnjfCnnM+3TD81+JiB88DqYlbbzOf83MXDFlXWbeAXx+hTxWcn2T9bm74fnOJs9ZzUZ9lrrplQ3Pb6oHClfSGKx8eUSs+T+2/rl7NEWv3X9hoUfwckaB7wW+FBGvWSvvFnX1Otfwi8D838LdFKNgJUmSpI1gG8PabGMYHLYxLK+f2hjmfZFiCaJWtnu7UZHMvA64kGIWrNJkMJQAAQAASURBVA9QrM+7ku3AjwK3RkQro4efvswI3lmKNYj/jMWB+QMU6/HuaeU6JKmfGHjVoNnX8Lxbo6IuaHj++RVTHeumhuenNzH9xv1N5nuk4Xkz5xxZ8npLE+d8scm6AHyh4flyI+868f5dsMzxNwAz9ecjFOu0PBgRf1NfE/PKHqyJuW71up7TsKuT79VSzf6uTTQ8b+b3Zi0b9VnqivrP6GUNu5YdBdrgL1m4QTmLxb01V1Rf4+jvM/MFFDejTwV+Gvhz4NZlTqkAvxcRP95M/mvZqOtcSWZ+naJH+rzX1KeQkiRJkrrNNobW0oNtDH3JNoZV9UUbwxK/k5nPbWUD/r1blcnMmcx8W2Y+m6Jd4puAnwf+GrhjmVPGgb+OiG/vYDXmgL8HLs/MT6yVWJL6mYFXDZrGnpknrJiqPbsanj/UwnlL0+5aNtWCmTWOd+qcaCLNwy3k15h2uWvsxPt3TL6Z+UXgJSyeLmg78F0UUxh9GtgbEX8fEd8eEc1cdy8tvcaOvVfLWE/P7U68fxv1WeqW5wPzAcA5ioDjijLzAeA9Dbu+f6W0q+QxnZn/kZm/m5kvy8yLKdY+/SUWNwoB/HZEnNlqGcvY8OtcxuuB+Z7rW1i8JpMkSZLULbYxtM42hv5kG8PK+qWNYSBk5kRmvj8zfzMz/3NmngNcCvw2i6foDuCPI2K8iWz3cewI3ndTTI/+v4GXAmdn5ovra/NK0kAz8KpBc1vD89MjYncXymicWqaVm5ClXzxHl03Vn9Z7nctNw9OJ929ouZ6lmfmPFD1gf5vlp1jZTrH+y7uAGyPikS2Uv9GWvnfrfa/6+fds0D9LjQHFEsUUv3tW24BnN5zzwk78jcrMOzPz14DLgcZ1dEZYPEXwevX8OjPzIYq1hY7WKSIubidPSZIkqQm2MXSHbQwbzzaGlQ3yZ6kvZOYtmfmzwJXAgw2HTqZYOmktNy0zivfbMvN7MvOnMvMvMvO+tbORpMFg4FWD5sNLXl/VhTL2Nzzf1sJ521fJp9+t9zoPLHN8fwfyPZSZ1eUSZeZ9mfmzmXkGxRoQPwz8BcfeJD0W+HBEnN1CHTbS/iWv1/teLc2nn+xveD5Qn6WIOAX41oZdJYr1R9faGqcsGqZYk7UjMvMe4EeW7H5qO3n22XX+DvBA/XkF+I0O5ClJkiStxjaG7rCNYePtX/LaNoYFg/xZ6iuZ+WXg55bsbqtdQpKORwZeNWg+sOT193ShjMaeW+e3cF5j2hkG64vcuS2kPa/h+QPLHO/E+/fgiqkaZOaXM/OPM/OlwJnA1cC/NiQ5EfjvLdRhw2TmBIvXyunqe9Ujg/xZehlF8K9dnRiR2ujDLJ4K6/Q28+ub68zMw8CvNux6UUQ8qd18JUmSpFXYxtAdtjFsMNsYVjXIn6V+9K9LXrfbLiFJxx0DrxoomXkD8JmGXS/u0BqHjW5oeH5lRAw1ed7VDc8/m5m1Dtap2y6JiKU9AFfSGAi5YZnjjfuuXub4ShrTfmbFVCvIwseBFwAfaTj0za3mtUTjz7HTa7q0/F5FRAV4YsOult+rDTTIn6VXNDx/e2ZGsxuLfz6PjogrOlWpzEwWB17n2syy367zj4GvNbz+nx3IU5IkSVqWbQxdYxvDymxjWL/N+FnqRweXvG63XUKSjjsGXjWIfrPh+TDwtohY15fViDhhmTVcGqca2kHxJXutfE4CnrdCHoNgiCbWZIiIy4FHNexa7job913aTDAmIh4DPGaNfJtS/wL9roZdp643r7qJhudjK6Zan8br/KaIaKau30Ix1etyefSbgfwsRcTVwKUNu97ZyvmZ+WkWrxXVsVGvEXECxRoq85Zbh6jZvPruOjNzlsU9yJ9G8TsvSZIkdYttDJ1nG8PKbGNYv834WepHlyx5ve52CUk6Xhl41SD6B+DdDa+/Cfg/EVFuJZOIeAJwI3DWkkMfYHEw4dcjYnSN7H6T4gYNIIG3tlKXPvHLETG+RprG0WeHgb9ZJs07Wdz77X9FxIp/a+o3tL+zJN+/WiFds7Y2PN/bwnnLua/h+YVt5rXUn7DQ23UI+K3VEkfECPA/GnbdAVzX4Tp10qB+lr6/4fnDwPvWkUfjZ+M/L73uiHh6RLQy/da8V7P4f/d66jav69e5Tn/D4l7WrvUqLSMi/jIibtiA7S97fa2SJHWZbQzdYRvD8mxjWL/N+lnqioh4XkScvHbKY/zkktfttEtI6jDbCvpDJ9Z1kzZUZmZEvJRiipH5tUB+CLgoIn4qMz+72vkRcQ7wyxRrGx5zI1XP//XAO+q7Lgb+NiL+c30Nwsa8Avh5Fgcw/jIzv9r6lfXcI4C/i4jvzsxDjQfqNzW/DTy3YffvLX0/oFinMSJ+B3hdfdczKG5aX1UfzdaYbwV4I/DsJfkeWKZ+N9Xz/dv62iXLiojzgB9r2PXBldI26QbgOfXn/ykificz724zTwAy8/aIeAcL072+LCJuA361PqXsUfUb1r9k8QjFX83Maifq0g2D+Fmqv8//qWHX32fmeqbN+WuK6wHYCXwnxc9v3nOAn4uIvwL+FPjI0p/5knqVKW5ufqlh96EleTZtA6+zZfXfm58D3l/fdVE7+UnHsUsq8PiTuljAQzhvmCTp+GcbQ9fYxrA82xjWaRN/lrrle4G/j4g/Bd5Wn3p9RfUg968B39ew+y6OXfNVUm/ZVtAHDLxqIGXm/oh4BvBPwOPqu58B3BARn6DooXczxd8BgFMoehI+j2LtilVHe2fmn0XEt7EwNc63Al+KiLdQjMSapggGfB/w5IZTbwd+fP1X1jPvAx5LcdPzpYj4I4rrnKWYQuSVwOMb0n+R4svWSn6D4r2+qv76B4GnRMRbgS9Q9DK8DPgBFk8r9Gng9Svk+SjgbcAfRMS/A5+k+BnP9zY9nWJa0pey0Bt1hsW9N9fjr4Cfo1h75TTgtoi4keJ36+i6IJn5wnXm/xPA01m4wX8d8C0R8XbgKxS9VB9PceN/TsN578rMP1lnmRtmAD9L/4nFvZlbmn53XmbeFBE3s3AT+/0cG5CsUDTOvAy4KyI+DHwKuJPi97pM8bfr8RQBzfOXnP+TmXkf67OR17mefD8QEdcB17abl3Q8O4nin0O3/DGLh2RIknS8so2h42xjWJltDG3YhJ+lbhsDXgW8KiK+SrGe8acppg/eRzFa+HSKv3MvpvidnTcL/FBmTm5ojSWtybaC3jPwqoGVmXdFxFOA36X40l6h+OL6ZBZ/uVrJRP3cr6xw/L9QfHn/rvrrs4FfXSW/W4Bvzsz9TZTdb+6hmILmXRTTIq12w/NV4NrMnF4pQWbORcRzgX+muFGBIjDzOyudA1wPfNvSHqvL2AJ8e31bzRTwvZn5hTXSrSozvxARv8LCzdowCzd7bcvMgxHxdOA9FDeKUHyhfeIqp/0D8D2dqsMGGKTPUmNv2AeAD7WR1zuB19afPzMizs3Mb9RfL+1FfBbF+/Rfmsj3MPCazPzTNuq2UdfZjp+j6Am+rvW1pM3CdUMkSeoM2xg6yjaGFdjG0BGb6bPUTUvbJS6sb69s4tw9wMsz8z0dr5WkjrCtoLd8/zXQMvNIZv4IxfQib6YYKbbqKcBngZ8Bzs3MX16pZ1b9S/9/Al5C0etxJQ8DvwJckZlrld+3MvN9FF/EP7pCkmngD4ErmxllV5/K59kUU/Ks9r7cTdHr8BmZuW+VdK8C/o1ietXVTFFMf3p5Zv7DWvVsRmb+KvBUiilhv0Sxvkxt1ZNay/9u4AnAL7LQg3o5t1JMBfPi1W5K+82gfJYi4mLgmoZdf5uZ7fycG0eRBgvTPUHR6/hpwP+iWAeqmemc7qFoyLmknaDrBl/numXm54D/24m8JEmSpGbYxtA5tjGszDaG9my2z1IX/SDFqPQ/oPg9XHH5owZfo+g0cGFmOsWwJK0gVllSThpIEXERxZQxJwK7KaYc30cxrchn1tvDrZ7vE4GTKXokPgR8Gfhkm0GLnqhPMzO/LsM7MvPlDcfOB55EMZ1IFbgDeF9mHmyjvMdQTDV0cn3XQ8Dn6sGVVvIpA4+kmDrmTIopf6oUP+OvUPyMj1kXZlDU17p5AkXP1JMofn8fBD6dmbf0sm6dcrx9ljqhvr7OI4ELKN6XrRQ/+0MUs3d8AbhttXVgJW0uEXHDafD4H+1iGW8G7oMbM/OKLhYjSVJfs42hObYx9CfbGAbvs9QrEbGTYiT5BRR/78Ypptc+RNHZ4QsGsKX+Z1tBf3CqYR13MvNWil57A5FvP8rM24DbOpzn54HPdyCfKkUQqq3pffpV/abgk/XtuLSZPkvNyswJinVUPt3rukiSJElaYBtD+2xj6B3bGNSseieSj9c3SVIbDLxKkiRJAyjo7rohLrAsSZIkSdJgsa2g91zjVZIkSZIkSZIkSZLa5IhXSZIkaUDZi1KSJEmSJDWyraC3fP8lSZIkSZIkSZIkqU2OeJUkSZIGlGurSJIkSZKkRrYV9JaBV2mTysyXAy/vcTUkSZIkSdKAs41BkiSpYOBVkiRJGkBBd9cNsYesJEmSJEmDxbaC3nONV0mSJEmSJEmSJElqkyNeJUmSpAFlT1NJkiRJktTItoLe6njgNSK+AWwHbu903pIkSVIXnQMczMxze10RSTre2FYgSZKkAXUOthWoBd0Y8bp9bGzshEsvvfSELuQtSZIkdcXNN9/M5ORkr6vREtcNkTRAbCuQJEnSwLGtQK3qRuD19ksvvfSEG264oQtZS5IkSd1xxRVXcOONN97e63pI0nHKtgJJkiQNHNsK1CrXeJUkSZIGUNDdXqyuCSNJkiRJ0mCxraD3HHEsSZIkSZIkSZIkSW1yxKskSZI0oOxpKkmSJEmSGtlW0FuOeJUkSZIkSZIkSZKkNjniVZIkSRpQ9qKUJEmSJEmNbCvoLd9/SZIkSZIkSZIkSWqTI14lSZKkARR0txela8JIkiRJkjRYbCvoPUe8SpIkSZIkSZIkSVKbHPEqSZIkDSh7mkqSJEmSpEa2FfSWgVdJkiRpQDl9jSRJkiRJamRbQW/5/kuSJEmSJEmSJElSmxzxKkmSJA0opw+SJEmSJEmNbCvoLUe8SpIkSeqaiDgzIv40Iu6NiOmIuD0ifi8idrWR50sjIuvbD6yS7uqI+LeI2BsRRyLipoj4iYgor7dsSZIkSZKklTjiVZIkSRpAQXd7UXaih2xEnA98DDgZ+CfgFuCJwGuA50bENZn5cIt5ngW8CTgMbF0l3bcDfw9MAe8E9gLfBvxv4Brgu1q9HkmSJEmS+tkgtBUc7xzxKkmSJKlb/pAi6PrqzHxhZv5/mfksiuDnxcCvt5JZRATwNuBh4P+skm478BagCjwjM1+Zmf8NeCzwceDFEfGSdVyPJEmSJEnSigy8SpIkSQOq1MWtXRFxHnAtcDvwB0sO/wowAbw0IsZbyPbVwLOAV9TPX8mLgZOAv87Mz8zvzMwp4L/XX/5oC+VKkiRJkjQQ+rmtYDPwfZIkSZLUDc+qP16XmbXGA5l5CLge2AJc1UxmEXEp8JvAGzLzI02W/Z5ljn0EOAJcHREjzZQtSZIkSZLUDAOvkiRJ0oCKLm4dcHH98dYVjn+1/njRWhlFRAX4c+BO4BfaKTsz54BvABXgvCbykiRJkiRpYPR5W8Fxr9LrCkiSJEnqW5dExA3LHcjMK9Y4d0f98cAKx+f372yiHr8MPA54SmZONpG+k2VLkiRJkiQ1xcCrJEnSIMoE6tvR5yWIEkRAbRaqs/X9LE7XeG5UYHhbTy5B7Qm6O33NBvRknS8iV00U8USKUa6/k5kf38iyJUmSJGlQZNZvb7IG1Ip7/6xBqVzc+wNUJ2FuiqO3QllP15iehMo4Mbpr4y9CbTsO2goGnoFXSZKk9VoU/IRjAqFHj9NwI9OYrrbKsWUCpkvzXEmUFvJeS2nYwKtWc0sTI1tXMj+qdMcKx7cvSXeMhimGbwV+aSPLliRJkqT1yKMBzNqS+/ka1KosbjeoLQQ7j6aZm89pIf38OfNpG89rDJ6uKOptBdXmLmI0AQOv0noYeJUkSYPv6I3JkoDlooAoQCzcZEQsuWlZZjTofF7zNydZXcivsgWq05DzN0R9pNmga5G4a9VQ93WzF2sHfKX+uNIarhfWH1daAxZga8P5UxHL9q19S0S8BXhDZv5EQ9lX1s9dNFVyPZh7LjAHfH2VsiVJkiQNsKzNFrNBrXrvD1CfNSrqq1hmtR7MrB47enQ+0Bn1GaeqMwvtEQAju2DmQJFfX8nmg67QYruC+k2ftxUc9wy8SpKk1iwKbMKiXpqLApy1xfuWG7W55j6WPC+yPpqmVKkf7kHwc25i48vshqM/T6njPlh/vDYiSpkLd+4RsQ24BpgEPrFKHtPAn6xw7PEU677+B0WgtXEa4g8A3ws8F/i/S857GrAF+EhmTjd3KZIkSZJWk0vv74/O7FQPYFIq7udrc/WA5pLpbZcbvbni82U6TBe1KF5XxorAZy+Cn1N7Nr7MbjDwKq2bgVdJkgbZ0qBZRDENTS6ZuqZIDFFuuKmp0lRgtPHmpx9GRzZWodaHo00HTh/8TLVu/by2SmbeFhHXAdcCrwLe1HD4dcA48EeZOQEQEUPA+cBsZt5Wz2MS+IHl8o+I11IEXt+RmW9dcvjvgN8CXhIRb8rMz9TPGQV+rZ7mzW1fpCRJktRnclFn6SAiin212aLT8jHT4FIsQZNzxT12bXblUZ6NQdBaFag27O+je8u5I72uweAz8DrQ+rmtYDMw8CpJUj/JWjElzdGbmyhGddZmiqApCdXZhcCq1C5HvKq7fgz4GPDGiHg2cDPwJOCZFFMM/2JD2jPqx+8Azmmn0Mw8GBE/SBGA/VBE/DWwF3gBcHF9/zvbKUOSJEnaKFmdhskHFwKepTKUhmB2AiqjRbB0bnLxlLfz5/amyhp0Bl6ldTPwKklSv8iE6f3H9sxsYQkOqXXehg+qoLvrtnSih2x91OuVwOsppv19PnAf8EbgdZm5twPFrFT2uyLi6RTB3e8ERoGvAT8FvDHTXgeSJEnqf1mbg0N3rrzczfGyDI76jIHXQTUIbQXHOwOvkiRttNosTO0r1hypTkN5pNg/cwi/2Kp76l+7S5V6L+j537X6lNLhV2d1R2beBbyiiXS308I9XGa+FnjtGmmupwj2SpIkSX0tZw7B1ENQHi3aCoZ3QHUKJvdgW4G6IbMGtYRaDeamYWQLUaq3HTjiVVo3A6+SJG2ETJg9XEwZPDcFJMzMFMeqUz2tmjaBKNenp6b4HSSKNXxq9d/B+to/Gjzd7MUqSZIkqbsyazBxX3FvNnOQ4t7sYHFw5kAvq6bjXM7NwT2fg9mGWdeGt5KnPJIYGTXwOuBsK+gtA6+SJHVTZjF18MzBhcCXtJEWBVjnZbGvNFSMwJYkSZIkbZjMhMkHYPIh2wq04bJWgz1fXxx0BZg5DHd9ijzpEmLn6b2pnHQcMPAqSVI3ZK0Y4To74U2UeicqywRdqU9vXYKcKwKzmQ54HVD+2CRJkqTBkdUZmNoDUw/bVqCeyFrCnZ+pz8a22AOfe4iZw9PsPO8IY4/bxvDuHlRQHWFbQW8ZeJUkqdMyixGus4d7XRNtRqUhjn7FXi7oChD1SWeinjZzI2omSZIkSZtW1qowcY9TCKsn8shBmJ0qRrUuE3QFeOiz3+C2P/5Ltj/yUoZ2v5unfeQ/NriW0vHBwKskSZ02vR/mJnpdC21Wtbn6FMIrBF0BqrNQHqJYPygh7As5iILurtvib4UkSZLUGZkJB79uW4F6Z3gLHLwfDt+/YpITLjub24CDX76ZqBg6GlS2FfSenx5JkjqhOgMzh6A6RRHMknqlvn5rlIopr5dNUqP4qpwL50iSJEmSOiYzi5mwjtwP1cmV78+kDRCVCnny+TDx4Iq/i1vP2EZ5bIzq5CQ5N0dmEnbUllpm4FWSpHbUZmFq3+qjC6VeiArkar+XBluPB94CS5IkSf0nZw/D4bvrnbOl/hClMjm2C448vOzx2Yk5qpOTR1/XZmYoj4xsVPXUQbYV9FY3RxxLknR8q1Vhaq9BV/WhgKyufLg8XPz+Rrm+wyCsJEmSJHVCzk3CoTsMuqrv5NwsTK28xvDU3gme/JZfZvc1VwFF4FVS6xzxKknSetSqMPng6sEtqRdKw8U6r6v9bs43ANRmoDK+MfVSV9iLUpIkSeofOXcEDtxmW4H6SlarMLEX9ny1aC9YwRlXnQ7Artd/F+953o0GXgeYbQW9ZeBVkqRWzU3BzAFvpNRHAkpDxdTXrYzALg0BNQe8DqiguzdTTk0kSZIkNSczYXofHLnPtgL1jazOwaGHYe9tqwZcl3rg8w9Qm5khDbwOJNsKes/AqyRJrZibhKnl18KQNkoSkDUWIqZBrGfK69L8V0Ejr5IkSZK0blN7YOKeXtdCm93wToh6yG1mAr7xkXVlc/Br9wNQnZ7uUMWkzcXAqyRJzco06KoNMx9cjYhj988eBrIYsVoeJdYdOC0BtXarqh6yp6kkSZLUWzk3adBVG2d+tqulhrYTOQcJSYm87UPrLmLy/qLtK2eXKUcDwbaC3jLwKklSMzKL6YWlDZBQBFcro+T817WsAQG1KY6OUC2PFvtjHV+po7yQjyNeJUmSJKllmTU4cn+vq6HNYuSEIug6tK2Y0npuslhuKBaHeXLP15YPzjZh720Huf+6DwO4xqu0TgZeJUlqxuyh+ihDqbuKEa2HihdzkwsHSkPFY+PN0+whqIyT2WLstTJG0f+xHnBNA6+DqpvrtkiSJElaw+G77KStjTG8Y2GJofnH8jA5NF7MltWwtnDpxPOojZ8It/9H09lXZ6t8/d9u5Wtv+VvmDhftX3OHDnWs+tpYthX0loFXSZJWM30AqlPr7imodSoNQ20OykPFiM7N9P7X5lbYv8J7MDcBlS009bW6PAql8pL1YcERr5IkSZLUvDx4e9FWUJ3qdVU2l8oWqM4U97a16c3VVrCCWOE9KI1tp3bu0+EbH171/KzVuOODd3Dnuz7Cvs/cuOjYzN69HauntJkYeJUkaSW1uYW1NNVFJSiV6o9liFIxZU5puDgcZShVoFZd6NV5nMoEqpNrpjvG3BFyaNvaa70eDboeU3LrZarngu72YnVNGEmSJOlYOTsBM/t7XY3jXCy0BUS5uJclijaB8hBQLY6VR4pA7HHeVkBly6IRrc2K0a3k6E6Y2r9ymlKJr//Fv3HolluPOVabnm65TPWebQW954hjSZKWyiyCfDMHMCDVZZVxqAwXN0ylEpBF0PUYWRwfGl8IyM4rDRW9XStbim1+St4Bkln/TaseWX8m9vSVJEmSpK7JTLI6BRP39Loqx7/h7UWANQKoz4K1XHA16wHY4Z3HthVUxou1UId3FvnFAI5Bi0qxrmuU13c6SZx5xappMpPJ+x5Y/li19WCvJEe8SpJ0rNlDMHOw17U4fkV54eaIFr/EZ7UIwJbHObqw6dFAbX0kZ6neG3ZuMKZ8SgLmOrBuSnWKLG0ncq64KY0SxFDxfiVFl8TaLEf73TUuCmv/goFlT1NJkiRpgxy+E6b39boWx6+oQM4VwdKWRrBmMe1wqQyVnQu7a9PFjE9ZX86nMlq8nmujw/NGGjmhWNO13dG8lVE49XJi15n1GbBKUKsVbSkJzM1yyc//JPf83T8fM9VwbdYO3oPKtoLecsSrJEmNZidgpgNBMB2rPFKMWC0PLT9ytRVZBWorjI6tG5SRr50YqVoagvIIUZ1cyC9rxY3m3GQxffHcZPG7PXOguHFLo62SJEmStJbMJI/cb9C1G6K0MCq1MlI8ttMzuDa9sC2V1aID8qC0FaxjauFjsigNA1Vi5+kNyw7ViqhQuQyVMjE6ygU//BKe/u9/xdM//G52XfWEhio44lVaD0e8SpI0b2ofzE30uhbHn6HxhRuGpY/dVKoUWyZU+3P0a2Z2aC2abC2QOjcJMQNDW+sjXw3CDqoodbEfa83fC0mSJIkDX7OtoBuGd9Q7Bc8tjErNLq8pmjWojEHOj37t059rVNa1puuxklbu93c9+gKu+Ye38e6zHgPVKjk314E6qBdsK+gtR7xKkgTFtLT9+oVb61S/wQhgaEuxDmy/iVJDr9M2ZK31NV+yunBzK0mSJElaJDPJyYdsKzje1Gbr98K1IvhbGet1jY5V6VD7Ra1Gq5POVsYqPOZ3fr04fao/O7FL/c4Rr5KkzS2zWN/DKYO6px+mtM1aca9R2TI467mspTQM5eHi/c1qsbZrq2aPwPD2zgR/1RMR3Vy5pQ8+u5IkSVIPZNbgyAMw+UCvq3L86uq9TJNqM0AU0x3P9tGyU6WhdS9LlDG08N5Wp1jPfd05L/sOHvzgR6ls37quOqj3bCvoLQOvkqTNK2swuadDU71qRRF99J2sVkx9PHuEPqpUXdTfqyaCoFECkqi2Ow1TFmu+Dm2F4W1t5iVJkiRJgy+r03Dw69D2/ZZWVeuX9UOzGAE7vBNm9ve6MnWNQbPi/r+ZNowsVTqy1FJE8sS3/w4xurvtvKTNyMCrJGlzyoTp/QZduy42Zj3XVmS1mEqopyNfo1h/FmBkZ33K4SoB5PSBJk4vtzhZ0Boc8TqQAih1cd2W6LOPriRJktRtWZuDw3cbdO228lj/LX1Tmy5mhJo52Ls6xFDRKboyBjFOEXStTxc8vbeJDDq3smSAbQUDyraC3jPwKknaXDKLHoxz0/33Jf+4E8Xaqv0WeO2F0lB9DdYEavWbl9pC8LTxPRo9AabWuKFqY9qhZXkzJUmSJGkTy9ocTNwNsxOdvdfSsUqVYuvHNpnaBt8bj55UX8+1aB2IY0a1ztcnYWTX2stkdXp6WdsKpHUx8CpJ2jxmDhZTzPbjl/teKQ1DqQyUitG/7dxgRgXIepCxPhVOvwZdN/LmoTwKOdt0mZFVsjS8+mjsTs+S7M3UYIour9sS9N+M3JIkSVIHZdZg4t5iCRYDrgsq4/VZmqKYLaqd2cLKo0XbQHmsaCuozfRvu0xu1O9ACbae0TCTVYduvGwrENhW0AcMvEqSjn9ZhZlDMHu41zXpsSimq6G2MPoya8Uj1SIAWxounhNQnVkcOI3S4i/dpUo9PfW1SRuDrH3+5Xyjbh7mg64tSGLtm9pSqfgxdUyf/7wkSZIkqcOyOgMT9xRB180sKjC8tWgDKA0X9/Y5t3BfWh6CSsNsVnNHFt//L52RqTFoO59XVOodkjfsqtantkEB4a1nLjO6dS3NTCPc4c7vBl6ldTHwKkk6vmUVJvfYc7U0XL/xqX9pXnEk6vz+LG6uGCleLgqsNqwxcjS/zle5a6IEtakNKmydNymVcZibWP7YUP2GuJO8mRpY0cV1WyRJkqTjVc5NwsFvtDeS83gwtBXIhTVta8usbZs1yIb95ZH6VMFZdOquTS9eXidrg/m+lkdgbnKDCltPI0pCaWTZn1FmFvWvdrj+thUMLNsKesvAqyTp+FWrwtTDmzfoWtnS8KLG+oKAywVWG9YYGUgb+OUzW3+PgiTLFSjtOLbndZSJ6jI3wu1aRz0lSZIkaRAVQdfbBzM42LaA4R0cXRpoXcsD5UI7y9Epg7N/pw9u1kbdF0dlna0SCUNboFo5tqN2ebjzQVfA2bGk9THwKkk6Ps0eKYJW/brGaMfMTx8MRSA0GtZa8AvyYv8/e38eN8te1ffin/Wtqh6ecU9n7zNxOOcAB5RZUEAcAirikMSJqDEkGjEaNRgS7y+5GhUw5GpiNCAxRvEmV7yJeuNPjddEcUAGwTiAIjIcOHAGOPOenrG7q+q77h/rW93V/fRQ3V3VVdXPer9evXs/3dVV366pv2t91uD6zkarynZdHHL/cPMsJPq4J0ZgYYYsu2hljYisF1Rs3xZt3KIoiqIoiqKsGXz0KHD8yPr7CkyQCsZOqlWRy0YtIJi3zpgGAJYWVSthSRvLa0hbI+v8BEUGEGjGa02ph6+AiG4F8HoALwdwHsBDAH4NwOuY+WrGddwL4IkT3n6EmW9ceqALoMKroiiKsj4wS4RfdLzC8jAl4zcxLLCy6iSTsOFqs5/Jw7LiNyWf9wIAAKNVYK9iC8AraN2KoiiKoiiKoijlwBwD3etA90qB9lTF8DdVYM1Kbx8rDVwPdnJYiXXtpCD+AhsVk/GqwqtSEET0JADvAXARwK8D+AiAzwHwPQBeTkQvZubLGVd3HcC/G/N6aTd8FV4VRVGU9cDGwPFj9S9tMw/B5vpH6eaJ1xgYDTXdb4UGLLJ1YrFSF4iK7dtCmvCqKIqiKIqi1ByOjoHrHzs9AhL54itQ0TU7jR0g3AfI1LdVlQmKWe9puW7WjJr4Cn4KIrq+mpl/crBu+nEArwHwBgDfkXFd15j5tUuPKEdM2QNQFEVRlKVhlklylUVXryklgYNNefgbUhqG5oyBIk/K4KjoOj8cSySoF0hfFL+14gG4Y2ca8x/3VaB9XhVFURRFURRFWSOYLXD4YLXFo2ALCLaBxhn32AX8rUE2Y1ZMQ7Jcg41T2rt2CWxXArWNL8fA3yx2e2k9jBl9iYZI3qyUbc7gSo1HWQeI6E4ALwNwL4B/P/L2DwE4BPBKIir4YiyOCnr9FEVRFGVOOK52uSDTGISDpcVSAuD5UtHGBLIMQ5aJu+41T6IuiYY/q6LrciSGt78BREfFbMMEcAfUbc8CNm3wkywzj1HMVgzzIs73KjsjlIkU27dFURRFURRFUWpMeChB2lUl2AHYZViOBpJ7LYA7EnSdYHvSVikRBhNxtm9TjtqcytwkmcJF2d0A4LXF/k78BDyaZUsAub6zGSEwONiUcz53tC1RHam4r+Cl7vltzMPOKGbeJ6I/hAizLwTwexnW1ySivwPgNoho+wEA72Quz3mqwquiKIqyBlR4MmF8wMwoMGF8iDjnJtVEIgj2e4xYLfdZFHmLjaYhQjk4Wwa2DQEKxhhaJ1acin4tyJBW4VVRFEVRFEVRlHWiysJDsDXdDkwqNg0F6pKUxU3K4Wpma3HEOe/b1nkXnE0gxDN8PCwCsGli2oLyjvMTAMVV1tK2REr+PNU93z3h/Y9BhNe7kE14vRHAW0de+yQRfQszv2OxIS6HCq+KoihK/amqYGQabmK9SIBVRb/TumG8xQ7POLymGMfzno8cQaJH09nQRqwoMkB4tKIy2nrO1ZEi+7YoiqIoiqIoSq2pYr9OMq7tkFmgkhVX8zutI8EG0M1JfN245KRRVxErK7YngdrO5BsIrY7u1dX4Cqrqc1OmsgJfwdOI6M/GvcHMz5vx2V33fH3C+8nrZzKM4z8BeBeAvwKwD+BOAN8N4B8A+J9E9CJm/osM68kVFV4VRVGUesMM9K6VPYqT9HuwakngSsOxHKs8yvEs0/fEeICNJYo0PC6nX7EaU7Wk4uWDFEVRFEVRFKUU2EbA0SNlD+MkwZaIpyqgVpu4K/12e5N0oYwslYXK/bZVDFqd0HpiGOorqCM19xUkg5/paGPm14289EEA30FEBwD+KYDXAvjqXEeXARVeFUVRlHrDUf4lYJbFa2kP1jrBMeC3pVfOopgGlsoYZSsGWXhQnlGzjHCsKIqiKIqiKIpSJaJjIO6UPYphGrtaHrhO2J60gYqOFl9H8+ySzbEsGAboPLbUWpZCfQXKeD6SIbN1EklEw+6E93dGlluEn4YIr1+wxDoWRoVXRVEUpb7YEDh6FIU3QCUf8BuymSwTbheRqNQJFsHcuL4l82bALnvIORZjptRIUo1irRtEBFNg+SDSe5miKIqiKIpSQ7i3D+zdU/yG/E3A+GLHhfvTlzWj/VqVWkBGjjMZqVA1T8U103A+hsVtKrYhEJUdQKC+grpRA1/BR93zXRPef4p7ntQDNguPuufNJdaxMKaMjSqKoihKLvQOULgo4LcAr+EEMStlaSfFK/ptWV6FinpCcAJoLP1as+K1lhRMCYjD5aJo80CjWBVFURRFURRFqTnMFjguuMQweUCwIzak7Yk92DgzefnGGRFolfrBMQAr1dZsVwT0TBDQvgBaRnQlT0TXsgV7LTWs5M/b3fPLiGhIoySibQAvBnAM4I+W2MaL3PMnlljHwqjwqiiKotSXonuieK1kQ4PXOAaCDVdallyWZOAEWRWu1oasRrHXXL7HCpnyDSlAjamaQkSFPRRFURRFURSlflDxGYLBFsBhyoayIso1zoiNSD4QbEtwdmNX3lPWA38j23IbN4KWbUHFXBFfgfq66kiVfQXMfA+AtwG4HcB3jbz9OkiW6s8z86H7LgERPY2InjTyHZ9OROfGfPcnAniz+/MXlh7wAmiojaIoilIf2Moj7onomrfw6jVFBANJueBJk2SOAWMA47IiydOerqcRMvmIlZUxYqoyDkVRFEVRFEVRlOywDcWu6u0BcXf54NhRGrvO5iex/ycJqbYrdqJnBmOognCm5EgG0cnfRC7leSsTDKtB2kohfCeA9wB4ExF9EYAPA3gBgJdASgx/f2rZW9z790HE2oRXAPjnRPR2AJ8EsA/gSQC+AkALwP8A8GOFfosJqPCqKIqiVBdmMZoAEVl7y/RUz4DxnTHFqkGddrKIoV4bfQPERlj4pKmKLaUZr7WECuzboiiKoiiKoihVhNkC4aGIm3EXOHq4wK25XoZJsHXeoq5SL7IkADR3B2a+jSokoC6I+gpqSdV9Bcx8DxE9H8DrAbwcwJcDeAjAmwC8jpmvZFjN2wE8FcBzIaWFNwFcA/BuAG8F8FbmcrIdVHhVFEVRqokNJVo1Oi5wIySlfwAMGVKKMgkyAIwznFLGh/El8hlIibbssrRnGeYVmQyrMaUUBBHdioExdR5iTP0axJi6mnEdPwrg+QDuAnAB0u/lPreeNzPz5ZHlb4dEvE7il5j5G+b5HoqiKIqiKEr5cHgIHD4IRIfFbcQEkrXILsC26DZHSn2Y1JbI35DqbI0d0ND5QlJ6ehS2qE0mqfoKlIJg5gcAfEuG5e7FGOcZM78DwDvyH9nyqPCqKIqiVI+4C3SuFhtJagJ51GWiq6wYK+fHqIHtb0wvQT0KEQB/+rlcFSOmMiWPlcwQiu3FmsOqXQ+W9wC4CODXAXwEwOcA+B4ALyeiF4+KphN4DYD3AfgdAI9CIllfCOC1AP4BEb3QGW2j/AVEnB3lg/N9E0VRFEVRFKVsuHsVOPhUsUHT/hZArH1ZlfHYcHzbocaOe23Urp7Up5UgQd1T7PCiexVnpSo+CyU7NfAVrDsqvCqKoigVxKCwWr/+hvtPjaILlXIYFV691mIGvvEBJsjM18hrcdqAqsqMVa8HpRB+CiK6vpqZfzJ5kYh+HCKmvgHAd2RYzw4zn/A8ENEbAHwfgP8d0iNmlD9n5tcuMG5FURRFURSlapBfnAjUOCP2HkfaekiZAks2dLg/eKl9A2huXwEDxpPntE8gHbSd+A/KRoVXRZmbily9iqIoioJBT1fbLS6CdbRErKJkwQSLGz39czkpZz1ixVfFiKnKOJS5IEOFPZYeG9GdAF4G4F4A/37k7R8CcAjglUS0OWtd40RXxy+756csOExFURRFURSl4jBbcG/flRcuShXN0iZGUTBoMwQAjV0sHExtexLsbXsnsmIZkP6wlUB9BXWkyr6C04BmvCqKoijlY2Ogdx2Ijorbhr8hoqv2cVUyY4Fgy5XgHVcyaAlMU9ZpIyA6yG+9y6ClhpX8eal7fhvzsLLPzPtE9IcQYfaFAH5vwW38dff8gQnv30xE3w7pLXsZwHuZedKyiqIoiqIoSoXgqAMcfgoIi7KZCGjuiqmnpYWVrNgusHEjALhM17xsaQbIB7MrT1yVc1J9BYoyNyq8KoqiKNWgaNEVVssFKQuQiK55rtKtz3KBDoRF0CjWukGgQvu2kERuP42I/mzc+8z8vBmreKp7vnvC+x+DCK93IaPwSkTfC2ALwC6A5wP4PIjo+iMTPvIl7pFexx8A+HvMfH+WbSqKoiiKoiglwVGxomtjV6puKcq8cJx/06Ck1RGzy+6uCFodq3asyFegTEGFV0VRFKVcutdH+l3miAnkoYKSsjAGhZ0/VStjpVGsSv7suufrE95PXj8zxzq/F8Cl1N+/BeCbmfmxkeWOAPwwgF8D8An32rMAvBbASwD8HhE9h5kr5NFQFEVRFEVRACktjMMHpTJWEQRb8lyVjEKlfpBXXEW1RICtDOpTU5R5UeFVURRFKQcbA+E+EBbYo8ULNDJPWZICxUgvACqlvbKIrwVGRSo5Qyi2v4qs+iMZMluX28IcFxoz3wgARHQJwOdCMl3fT0RfyczvSy33KIAfHPn4O4noZQDeDeAFAF4F4I2LD19RFEVRFEXJG446wPGjQPdKMRsg4zakbYiUiuI1TvR8LRUN0q4fq/EVKFMwZQ9AURRFOaX0rrmSQUVM4Ajw2yq6KsvDEQqbLlXSeKnimJQak6Qo7E54f2dkucww8yPM/KuQUsXnAfx8xs9FAN7i/vyCeberKIqiKIqiFAczA/v3FSe6ei15qOiqLEtvH1yU+lQ1X4H61hRlbjTjVVEURVktNhYxKyqwpI/XLG7dyumDUIAeaYDe1bxXujxsBxHgSi0osm9LDnzUPd814f2nuOdJPWBnwsz3EdGHADyHiC4w8+MZPpaUJd5cdLuKoiiKoihKvnDcBeIeEB8XtxGvWcEyrko9scjbUcAwYo+H13Jd79Ko8FpLKu4rWHtUeFUURVFWS+dywSVTjCt5UbEIQaWmUP5GBjPQKyiCe1nUoFLy5e3u+WVEZJgHJxgRbQN4MYBjAH+05HZuds9ZUxde6J4/MXUpRVEURVEUZSUwW+Dax1zFoYLw29Uq36rUG6+df74rx0C4l/dac8CCmVXIU5Q50JQGRVEUZXXYuHhDR7P1lDyhAmLUqlY2KI0Kr7XDGCrssSzMfA+AtwG4HcB3jbz9OkjG6c8z8yEAEFFARE8joielF3Sv3Ti6fiIyRPQGABcBvIeZr6beewERNcZ85qUAXuP+/IWFv5yiKIqiKIqSH9FRsaIrUIxtp5xeiqi0VukS2BX2YyhjqbKv4DSgvziKoijKamAL9OZu4zcf/ob7j4pHSl4UYFwYL/915oZeO0rufCeA9wB4ExF9EYAPA3gBgJdASgx/f2rZW9z790HE2oSXA/g3RPROAPcAuAzgEoAvBHAngIcBfNvIdn8UwNOJ6A8AfMq99iwAL3X//wFmfs/yX09RFEVRFEVZBo57wNGjxW6keQawBQu7yimjAF+B1wTiTv7rzQNtS6Qoc6HCq6IoilI8zEBvX6JYi8BvSy8YoopHCCq1gyOAgpyjrxnw2sX2LloUzXitFYRi+7bksWZmvoeIng/g9RAB9csBPATgTQBex8xZ6m7/LoCfgZQmfjaAMwAOIcLtWwG8acx63grgqwF8NoAvAxAAeATALwN4MzO/a7lvpiiKoiiKoiwLswUOHyyuvGpjFwgPpfqW+gqUPOldBzfOgPL0FXAMkFfNc5VjqJRUH+rgK1h39GpRFEVRioUZ6O0B4X4x6ycPImS1qjk5VeoPhwA85JoNavzs3ShXiQqvSgEw8wMAviXDcvdijA3HzB/EyVLFs9b1cwB+bp7PKIqiKIqiKKuDbQwc3Cf+giLwN6XVUbAF2G4x21BON71r4GALQD5CFAFgEwBxBZ0F6itQlLlQ4VVRFEUpjjh0kasEaStewESNY4BUdFWKJl4g8zUpw8PukboGqlrmqsr9Z5WTEIGK7K9SYISsoiiKoiiKcnrh7lXg8CHAC4rbSHQIBNsquirFEh4AjTNz+Qo43W+YY4AMKPFpxb18x5cX6iuoF+orKB0VXhVFUZTiiDuDqDi/VUypYROo6KpUE9sTIwwYlAvy2oDfzLl0cY5oFKuiKIqiKIqiKEXTuSw2URQB/kYxvoJgq7p2l7JmzClKRseDgAAyAFvJnCXPpb3mPsAcUF+BosyDCq+KoihKMdhIhKcEjkUkJV8io/IyrNhCysAqStHMaf2YVPR2P3r1uJq9XfuoMVU3iuzboiiKoiiKoih5wswSnBp3Bi/GXRGf/A35OwleXX5j+axHUWYxbwCz1xgIr8ln8zrvi0KDtGuH+grKRYVXRVEUJX/YAt2rJ183/nxCKfkyIQUggpAr3RoduahAAF4TKhYphUP+ApnVNTT01TmhKIqiKIqiKEpRREfA/idHXmTANOU9v51tPf4GYBouo5WdvcbS6sgEkjloPMCqr0ApmGAXhNPgK9BrSVHmQYVXRVEUJX+iCRl9yUTNhrPX4bVcz4D05M79P9hMTfp08qcUCHmuResC5azraJjUccynHDKzl1EURVEURVGUStB5fPzrSfbfJF8CgH4N1sau+BTSvVu5J+83zrjKW5TN76AoixJsSx/NhXwFNWyXpb6C2qG+gnJR4VVRFEXJh7grIhUARJ0pC04xgEwgWbFEblI3IQqwjpNUpZ4wsLC4H3VnL1M11JhSFEVRFEVRFCUnmBnoXQf8FmBjoLc3eWGvNbklUbADsctouKXR8NZSYmwNMwqVmsGgBSpGMUj8Z3VDfQWKMhcqvCqKoij5EHezTR4nhVyRcT0xrZY7VaoD0WI2u7XDEdi1QY2pWkEF923RljCKoiiKoijKshw/OtzTdRKTfAUmkPc0g1WpEuTNnRTAIPlMLUXMOo75FKO+gtJR4VVRFEXJB9PIJryOnZga18tVJ3JKxVjUIAqnRHJXGQ16qBUEgExxFo/aUoqiKIqiKMoyEBE42M4mvMZjMlm9tkxKaxnUqqwtC4iufSZldVedWorFpxf1FZSPVnpWFEVR8sEE2ZazYyanXjPfsShKHpCHhdJde/u5D2VlqDGlKIqiKIqiKEqeBJvZlhtXQtg08h2LouRBsDm38MTkAaH6ChTltKAZr4qiKEo+cJRtOa8BRJGIWiaQUq4wALRvq1I1yD3mEV9NvXsQqzFVO0yR5YMURVEURVEUZVmyZLsCQLAFhAeAaQLGd74CrcijVBOGAc1Vta3mdpv6CmqH+grKRYVXRVEUJScy/qBzDPhtV9KU3bN12YU6kVMqRBJMQP7gPF17TsN3VBRFURRFURRlZZCXbbnoSEoLGy9VjpVchSwVYJUK0dsDQODGDsA8pwBbU1R4VZS5UOFVURRFWT3MANU8M1A5PQwJsBZrbfRrj9d6QVRo3xZohKyiKIqiKIqyLPMINoQRm8QFa+u0VKkcDPSuy//6Auw0e7rutrYKr7VCfQWlo8KroiiKkg9ziah8cnk1ppSqw65E9lRxsm7GiCunTMY9E2AtYEzZA1MURVEURVEUZR2wYfZl4y6GHQNJuWF1FigVprcHNHan+8Vql3iQ9hN4AAVlD0hRaoUKr4qiKEo+LFt2xJhTVM5VqS0zg1SXESxJsmoBKa+VZIbTqDiaLDvqkEg/j4Mn/P/kMJT6QBppqiiKoiiKolSZeYRXACfsFq8B2BjqK1AqzazqUbSMDOM58ZNSQdKJryDlM0j7CfqvASeDGYYGfuL/4y1MtTvrhvoKykWFV0VRFGV5mIG4t9w6rCvn2heWFKWOLOgMaJ5b/LMABsZSHuWL6l4CSVEURVEURVGUKsAcA+HhcisJD0R0MurGVqrMLDt6QTu7dTGHHrIZg7Azr0NRlFnoL5aiKIqyHDYCutegkzDldBBDok1pfL9X8hZcb4WuHy37XRsIKLRvi54GiqIoiqIoyqJwbw84uH/56lgAdGaqVJ5wH+xvAKbhygpz/6xlpLNPawyz9vasCeorKB8VXhVFUZTlIA8INpaPYlWU2hCP6KSelAHmKJW5nZHmOde2qELCa5VEYEVRFEVRFEVR6kmwBTTPAp3LZY9EUVZDdATgyP1BToj1gN4BYObokUoe0Dzv/tAS24pSR1R4VRRFUZaDLRDP27NlGgQVfpR6EbuIViwgoHLFRFdUbzzKVLRvi6IoiqIoilJJ4i4QHs1eLgtEABNAaqsodYGBKJWgQGbyomNYvrxwETA017E+qK+gXOa74hVFURRllOgQsEv2d02j8wKl1sxrHFXxhFdnhqIoiqIoiqIoS3LwABAf57MuGwJG3dhKnZnDzk4Cu6uGBmkrSmY041VRFEVZnOg4/4mX9pdUFEXJBhXbt0XvxYqiKIqiKMq8MDNw/NjcGX4ZVpzv+hSlwlQzt1SvwdqgvoLSUeFVURRFWZy4K5GneUIk5Yu1JIZSR8gAwSZgYyDuTFpIeraQt9KhZUYdGoqiKIqiKIqiLEPncYCjfNdJpLqPUm+8tmSzTqwaRwD5gKmoZKO+AkXJTEWvYkVRFKXy9PYBm7MhBTjR1QdQ0dIqijINcoYSeZOF1+ZZDEoSV7Vvi1IPqOC+LRoAoyiKoiiKoszJ0cPFlEqNjoBgK//gb0VZBYl/wGtNXqZ1AVRpe7zKY1OGUV9B2WhxfEVRFGV+mIHwQDJei5h3cVTdbEBFyQLRdIOqymgUq6IoiqIoiqIoC8AcA50rxdlC4ZH6CpR6E3dcskEdUV+BomSlrle5oiiKUiZsB1GmRChk8mUjgAIABWTVKsoq8BpScrixiUE0YEHXS65UfXxKGjIaR6koiqIoiqJUhOgYgB2IS3mXG4aVzFd/s4B1K8qKIAJMW9oUyQvuueK2uAZp1wr1FZSLCq+KoijKfMQ9Z0wlFDjxIq78vFNRJkIEBG33B488V5k6jFFRFEVRFEVRlCrBvT0gPBy8UIjwqihrgA2BxnaqWGtdbPC6jFNRykeFV0VRlDRspXyu1wRII4PGwhboXR/8bSPAFPVzoj0DlLrizl3yUM0+rlPQKNbaQASQKe4+WWhLGEVRFEVRlBrBcRfo7UkPRp0kjScOgc7jg7+NV6AppMdAqRHMAMj5GckZcmUPagHUV1Ab1FdQPiq8KoqiAIOepb3rABhonAEa22WPqlowA92r8n8TDEoNT5p4uXnlctusmWClrDdkUgGe6fN+3DXAqQjvus1I1ZhSFEVRFEVRFABgGwHXPwHs3ysvXHwe0Dpf6piqBtsQ2L9P7J+0ryBtV1AwMItshOVtDrVZlIpAPgDrTslUpStm93fqXOVYnhvnUD8/AaDXnaJkR4VXRVEUQATFKFUSJ9wHwECwrWE8CWwHk0TjSyZf3HH9Xt3rtjdYnnzpcbnMxCzZnh4DpQpkDgQguT44Ri2NKY1irRd6f1QURVEURSmOx94HdK8N/r56N3j7NmDzZs18TYh7YvtwLMGqpiG+gTgEvDYAlspiiZlhGmImxd3Ft2mjWppayhpCkHM9C6YBNHZBta2wp76CWqG/UaWiwquiKKcXtkB0JGWFRyf8HEv2a3QItG883T9WzIMSzGmMD8QAYIcF1/7nInnfC5bYuJE+r8oa4J28jvpC5kgU6MqgMc/sxkmpMbn3s/QnIn/gdKgtes0piqIoiqIopxeOu8Dx40BjF+jtD78Z7gNX/go4fhS44bnlDLAiMLP4AsKD9KuA3wR6PecTGGND2R7gt5fbuPFqbnMpfUxj2AZnQDJIk6xRO/AdFOmb65cDJogvCqm/3f/7y9rUmDPS2AVMs94BGxqkrSiZUeFVUZTTCbMYUnZGhKWNZBmvtZpxZYTjEIi7oMZW8RuLuy4D+MQgXOnVKVmAHAFYMOvV+INMWqX+ELIJl0MfGO17MmqgZDFYXODApHLAQ8/j/8xMIrrWHjWm6gMV2rdF0wgURVEURTltcNwDHvljIDqevuDxY+C4B/IaqxlYRjg8BMCgYAW+gs7jQPfKyddtBrsv6mA42HUO/A3AWp2qrgVGSlNn9RVwuk9qkjWaFkxTYigly4+uA+iLuRyf9BdMcBMsRfMCyHg5rrAs1FdQH9RXUDYqvCqKcvqIu0D3+mzRNSE8BGCkV0kFItM4DqW/TNwBb94KNIsuUzJNWM1SenWBiRkZVzqo/P2t5EC/1+k8uCxYndevHo1iVRRFURRFUU4ZzCxZrNc/Plt0Tdi/D7x5C+C3K5HFxuEhcPVDAFvwmbuAxplixzUx6DSLf4JdSeI5yw37Gy4IfL6PKRWEWSqczeUr4MF5VyezdW3O1zrtdEUpFxVeFUU5HTCL8RTujy+LO43oSB4wUpbY+EBjJxVdtxqYGTj8lIjGyWTn8FPA0YPgnSeB/IKycqeJMEnvllmfn9fYIwOd0K0LZgHRta6syzm7Lt/jFEAAmQJ/i9bGQaAoiqIoijIeZgscPADsP+Ds/jnY+6Q8vCa4eVb8BNtPXLkIyxwDVz8i7ZISrn5YxnX+WSCzTPufaRueEIjNUbbgW+PPKbzWtS+mMhavBcRzXnN1Jc6hvHYV0CDt+qC+gtJR4VVRlPWEedBnxN8Y9GtdCgvEx9K3NDqU9QbbAI3pXVkENgS6106+zla+X2HC65TSqV4G4dWG82ULm3Up16oAkON+WubmHAPwMDVLvC4sEjChKIqiKIqiKBWH4x6wfz/Q2BJ7/upHgM7l5VYad4Gjh+Wxfx946wnA1i2ACQquTuXo7Q2Lrv1x9YDuVaB9MfdNMrOsf/y7IjKNa1k0tNicdpO/AXA432cUpQqE+2DTLFYIWwmnxbmjKMujwquiKOuHjaTXiHUT8t61/LfBVoTd8ECyM702AAaa53IXK9hGYkh1xvROSeheBbcK6BkRd+UxeXAZVpJMzFz/FmZIpKpVYedUcNqOsSuRXPvvvQ7f4XRQhbJ2iqIoiqIodYC714HH/wKIl+gvOou4K+WKr38c8Nvg5jkRYM/elfumOO4Cx48Dx49MWkJ60TbP5+8r6F6Zka2aYd9yDPibIuByiH6Lp4nrVdFnrThVZgwD0SE42Kq3/aYZr7Wi1ufaGqDCq6Io6wVb4Pix1ZY2ZTucTds8K8ZWdCRRnv7GYqtNyiPvfRIzM+hsCBzcD96+Pb8fVrYi+E4jS/Qu24Fh6zVkrGzdfhmdtGlvV6XuWFdWq+ZZ23FXSj/ptVh9jB4jRVEURVGUWXDUAR7909Q8fQUCQnQMRJ+WrREBu08Gjh4Cji8D208ANc8stFpmFuHz2kdnL9y7DhzcD+zcsdC2xm4/6kiw+1QyzFFtKA/yxT8QdaWiFgUnM1u9tltW575KTYmdj5DqLMew8xU0yx6IkgX1FZRKna90RVGUk0SdcvtJRkciMrLLeouOgLaXeVLCHIsR1tiRkkAzjZkU4QGwfy+4dR4gDxRsLvYd+mT5gZ7HWOXh7NkkW7ZvOBkXdKwTg/XhNPV3TcExap8xGh0NItDVuaEoiqIoiqLUnYNPlRscufdJKUUcHcvfx4+Bb/pcUMaWQRx1gO5lCfQ+eGC+8shHD0klrfYNkn27rK8gawB2VjgCopTd6DWAKCW8ko/a21fKMF5z/p7K60B0CDR2yx7FcoQHci/12uorUJQpqPCqKMp6wAxEB7MzNFcylhEDo3sVaF8ampBw0oM2Ogaau4BpyBuHD0vk6sRSQTNIyh8D4DNPAXmtZIMAOKOBxDKJSnrkzsLfXKx/btxxJZoTXKYgCEDFxDry3XFNjq2BjLPmWY1KQbCL0q7YeTwvcRewMdDYznbvUFYPUbF9gtSQVhRFURSl5rCNgL17gf17yx7KQHQFxFa4djdw4VlDizBbEVVtCLTOg7ymBGjv3SPZq/v3LbbtzmPyIA988bMHvWf7AdGz55TS17UrWbuzIAL8LfHTzIvtoV8K2muKj8L4zldRIRuLWaoE2Qh934BxQfdTyzArp1ZEjztguwkyNZdkomPxFQRbajNWFfUVlE7Nr3JFURRHuFcN0XUcNpReDv6mGDVkZJKSGH7HjwCt8yK+dqf0cZ2X3gHghZC+qlYMpOaZ8dm3iTAb94BwP/s2EiMt2Mou1I7DOJGqcuVZjTzYAiCAPHlmHjzrZGMyZE4GIpwWOATgYWaZ8KrDEdC9LuJr3Y1DRVEURVEU5fRx5UOSaVpFjh4Gd58ANM4AHIsYc/yYiKyAVLTavgOIj0V0zQOOxe/AGPgmbARs3iSZpulFk36OHMv256nIZXvyHOyIv2YebCSCZnwsfhLbE79KVeCUIIxEFDayP23o7GD1FUyE+fT6CQCgdw3cPDcIfqgrtif3hca285UpipJGPWiKotSf3t5yot8q6F6XcXYuO5FxpETvPGWCMmNPZqJ2r0pZEz+VaRp15hNbx8HxwCCaB4Jkk1atVwuzy3JNIleN9EZgm4oI9lNRt1YmmoQKisdlQdWKRi4Fi/UoiWXFoAq2tJdLxSAgv77eE9avKIqiKIpSR5gZuPrhgmztHHn8AxKIHe6BvaZkkaXZ/2T+2+wdnrTVDh4ANm8B0qWPO5ddcPgS/XBtZ/6AXDISOB5syXOlfAVwgrUrk2ua4heIu+gH3XoteSBO+X7Myb61pxWvKaL6acVVmONgu1BbbiVwnArUDsoejZJCfQXlo8Kroij1Je6KmBl3yh5JBuzAVllVpOaouJvQuy5GAvliwNgcxDHyALvIxNmJc6VMNl1EKgNiINmBEUWjoqEF7IihyNGw/Zn8TQEqVyq5FJYwzteGRMBfEzE+PBBHkK+9XBRFURRFUZTqwocPAwf3A91rZQ9lNnF3YJPHKyhPSwFoUoDs4UOS9eo1RSiNjrC0Xee1gHjOjFe2QLAt5XrLsDtMA/1Sx9ZVEYPnyjHHwwHntnuyrPCQj8qtB5BWSyq+ovZVofIgPgb8Ddduq+6w+GaDTRdwoCgKoMKroih1JO65/qg5GAGrhIGhSXehEGjadmwIwE34E/FxGYNmkTIxSeZcGYYUM0RodYIY+SIec7y8SLaqQ1wH+lnDpxiOsVYnRXws30l7uVQGMnocFEVRFEVRAICPLwOHD2brQVoloqPVpQ/504QRK6JhIhx6jeU1sngBodHfFL9PKdNcb5DNmowFWML/lPpMP/D7lBOHkh1ZpfLRZRDugRtn65/1mhAeukDtDfUVVAT1FZRLzYuJK4pyqrCR/JB3r7oSuvWasRJhddFf6VLCs2ALmCX7McwbmUsu23TVcwBmSNngAEPnD0cuyjiHc4rt5Gzj0wT5p7tvSx/X94c8DJ9fSc/gek3FmBncuw6+djc4qkO1AUVRFEVRFGXd4c418MFDwJW/qp/oCkhg+aoy3+bwSVDcc1meC0Jm/pKyXkuyQmnFNjWzZLqakeMQHebof1JfAUDir1qXqlDLYEPp92qjQT9lAMwxOO6CR6uuVRzb7eLw7b+FK2/+V7CHS7YzU5Q1QDNeFUWpD9FRPhmJZbKqXhbBZvHbSCAz3zExgTzKEF3zymqdup3YGc0TtkHeION2XdFM1xF4sD8SxwXHTpiuRwQi2wjo7UufpyQyuXsNfPZpoOZuuYM7zRCk/3SR689jNUS3Ang9gJcDOA/gIQC/BuB1zHw14zp+FMDzAdwF4AKAYwD3ufW8mZnHNnAjos8F8C8AvBBAC8DHAfyfAH6Suc4TCkVRFEVR+jz2PlfStsYZdF4TiFZgQ3mN+doNmTYQHy62LQoAzBGs6bmWJisP4PUAssOZrkUQHUsG7Whp4gTThJQ37o1/v+4wA8Y4IVsBIMe6exkgz/V4jgbH3zTBjd3KZ8T2PvkJHP7ub+PwHW8DHx4AALof+DNc+KGfQHDrE0se3SmmJr6CdUaFV0VR6gVbF6FpZdJaO3hFotScpU1t6LLv3C8nkRMHM6wjq1GUCK7gcn6gV1nKhiOJlB0VWNkZkes+QVHRdTIndJ7q9oFltkB4LL2xwjF9mWwIXP4gePdJoM0bVz4+pR4Q0ZMAvAfARQC/DuAjAD4HwPcAeDkRvXiSaDrCawC8D8DvAHgUwCZETH0tgH9ARC9k5gdGtv03AfwKxOP3SwCuAPjrAH4CwIsBvGLZ76coiqIoSgUgAnrXRLz0Nusp7HSuAH6z2G2YADSP6ArInN9LKmqR7Ou4k81+ySog+huuclSEUoxlMqvprwuIuOtvuEDc1LEgX3xcXsHnQJkYf31F5WXh+KTwb7vOf7RkhboCsIeHOHz3O3D4O/8D4T0fPfF+9Kl78chr/i4u/PMfQet5LyphhIpSPiq8KopSI5IJOMv/gy0pPVyrksMrKivaF07nIG04Jf1oTSARd5Mi7MiTskizB+T6qLr/l8GqS/okBm0itJvAGVbs9q9ZffmklbBG/UxXBUeQe0M19hvbWMTWzpUMIjoD1z8Ojg7B23fAmHqVTq4/BFqm/FuG9efAT0FE11cz80/210z04xAx9Q0AviPDenaY+UTKBBG9AcD3AfjfAXxn6vUdAD8LKT/w15j5T93rPwDg9wF8HRF9AzP/4qJfTFEURVGUipAIE3FXHs1zQO96vfoMNrZdoHCBNoENwWRAc2SUEiwwUvKUyZeyvNOqeXktoDcmePPEBjxXRWuK36FoVho4zBIYQJ6IrDaUfZkECyTB4jU6dTNDPgAVXucivF6pPrDRI4/g+i//3zh+9++De9ODFfhgH4/94D/CmVe9Bltf9bcr8x1OD7XwFaw16h1TFKW+sJVIQdMoeySZYGagd3U1k/pcREZX4qafuTkKZcs6JgP4rWJLXGShbCNu1IheV4GqgtGY9SCJZC1PfJX+rfvA9U8Ax4/Od686fAi473fBYcHluZRaQUR3AngZgHsB/PuRt38IwCGAVxLRzPr440RXxy+756eMvP51AG4A8IuJ6Jpaz79wf/7DWdtVFEVRFKUOjNh63SvSR9LUJHtw45LLBFyBLZCDI544Bg1lwo5gAmlTMgvTFBuo7CzIMmzYJMPRhsMZ2hytZ9Yr84oF7jXBhkDncXBc7jViu11c/6X/godf/a04+v3/OVN0HXzQYv//+U/o/fIbwb05yo4ryhqgGa+KotQcFmHQBPUsJ1QYORpstueyNseUCJ5VXqisfq6jMGFiz9WyWHUG7irQ3q7LUWLmK8dd4PCRhe+jHMbA3qfAd/8qcMeXgjYu5DxCZRJUdlDLdF7qnt/GPJxawcz7RPSHEGH2hQB+b8Ft/HX3/IEJ2/6tMZ95J4AjAJ9LRE1mXlFtOUVRFEVRCmFckG14IIJaY3d824xTS35zR7Ih2N90JVJTNoy1mGnTJOWFy676Y/x69wauA8yuB7MG6S6GlVLq7YulbP34T/8EV9/yZsSPPLjQ54M7nozo/e+Effg+NL/5+2F21VewKiruK1h71jTdRlGUtWRqxiJL6eFKs8IfPJuzyMgRBhl5kCjZ0f4T4zB+OaIr+QC8wXiNyd6LdlUUWvKjDEhF11wo6TztXF0ueOWR+4DL14CIwB/9XfCDH8xtaErpPI2I/mzcI8Nnn+qe757w/sfc811ZB0NE30tEryWinyCidwH4YYjo+iNZt83MEYBPQoJQ78y6bUVRFEVRKsok24pjyX5t7Kx2PFUmZ7uY4q5UIfNdARPTnF6CuP9Bg5XbPswuOLwJUOBeNNn61a6UNQvS9poqui6LCWYvUxDX3vqzC4uuTITDu+/B5QdDdK4e4fEfex2OP/C+nEeoKNVEM14VRVkf2Eo5oSzlb0thhZPn6Eh6xORKOoI1g2FSVnkc8gZ9UZjWUOCsKOSp8Los5Jdn9C9xnfDBIfDox+WPo2vy2qc/BL7+IOhpX1xwX5FTDhUcxbr8qnfd8/UJ7yevn5ljnd8L4FLq798C8M3M/NgKtq0oiqIoShWZNd/sXBX7OEvw8LoTd/IXcdgC1tmCcYZCIsGWLLfqdkBeaxBsahoQ0bWKIuc6ZampLbg8BATlBY9QY3Hfnv+kp+PwT94LAOje/REAwPW3/x4ufu8PYverviGX8SkTqL6vYO3Ru5+iKDUiy12dJvcZKREGBmLgKog74CJu8eyyXuMMvRmSHhR21VGsI39wPDACqwSnMojrjpYYXp4yRVcAi04JmRm4/y/Hv3nPu8F/8l/AofZyqTkfYebnjXvksO7khz2zx4uZb2RmAnAjgK+BZKy+n4g+q+htK4qiKIpSVWbNZVlKD3utlYxmLppnV2sH9PaKmfzYruzfLP1ao44EatOKs/jSorDtySNLdu6q4Xj1+6YImEVcr+I+rgvkAc3zIFOe78g0F7tvUnsTh3/+pyffiEI8+iM/gEd/7HXgSMt8K+uLCq+KoqwfZKonaPUOSoiuLcKcouxljMmIYbPyEr818aFzLPuyaufqPJCvma55QBUob7VgtDkRAbc9Y/ICj94N/sOfBR9eXnBgynRcVn9Rj+XDWJOs0t0J7++MLJcZZn6EmX8V0iP2PICfX9W2FUVRFEWpGFkqrLB1c+4KpemQD3CYLbA5LzjKPeOVwNKzNauIQgYID1d7KJjLt7myEnec+FrTQpXMklFs/GxCvDIZr1Wq6AosnvHKx4fYeM7zJ75//b/9Aj79j78V8fVrC45MmU7lfQVrjwqviqLUiKw3dZaSwxWBmcvpL1qI0MsA97JFCntNWc5MMRaY89dJa1XWlCUbt5LljWaQjLkuxmuVqcLxnya8Ns4AmzcBm7cC7RtOvr+5CZy7bfLnDx4Dv/tnwI9/YulhKrXjo+55Ug/Xp7jnST1gZ8LM9wH4EICnE9GFLNsmIh/AHQAiAHpiKoqiKErdyRpEGB0DQd4teZagfb6c7RYhhkUdID7I1nKIyPX9nDIOZuTqtiaqlJ9oJrYntnYVbMW58QBYFV3zoAL+FmpOuKZ9H9sveykufMcrcemfvAqbn/fCE4vE934U/qWbJq77+E/fiwe+9WvR/eTH8hquolSGmobOKIpyKpknmIYt4G8O+neUBDM7Y6IM4fU4X8OCUtGKHEEOyBQjgGa8D7gIyGgQycmMqfsqMTqmGdZZM3IrRxIxVpPxk1dTI7CKJPuxzIjBlFPDNIDWWXGG2MgZ/BaAdb2QhiEi8C1PBq59evz1ZzzgmV8G2I6UeAu2ivsapwxCsX1bcljz293zy4jIMA+ikIhoG8CLARwD+KMlt3Oze06fgL8P4JsAvBzAfx1Z/gsAbAB4JzNnaESmKIqiKEqlmSf4tntFAgujg8KGkwky5QlTUSc3XwEzy3w/3HcvxIMSsxMhAHb6MuSJLeK3ZHmOpotQ7P5Zdd/YIrEhAAJMU565JmVZvWC1rbbWGRuDmaXSVEmkhdfms56N9vOei8ZtN8Pv3A+KOxBz7hiN227GqAeWohCN256I6JGHxq67ceeTcOHb/yEovAoOD0DqK8iNGvgK1p46pQUpinLqmfe2zhUozZJBfCwKjsHkpUovu7GQl3r4s8UzdvvRdjH4Ls64GiPCLISNBgLPxDGlS1m48Z9YjOpraHHsBG2vBuWHDfr9c5V8KPtelTirGmeArZtFdDVj+s5OuLwo8IEnPHv8mzYG7V4Ebe4CvetA95qK9qcEZr4HwNsA3A7gu0befh2ATQA/z8yHAEBEARE9jYielF7QvXbj6PqJyBDRGwBcBPAeZr6aevu/AXgcwDcQ0fNTn2kB+Jfuz/+wzPdTFEVRFKUqzOnejI8hWXklUqbNF+6DyQOTAYPBcRcc9+T/ZAaPGXN2TgTWXqpzQ9x1voJguTk/GQBWKnlFh+IvMI3x6zTNQRlp0wAoOOkroGB6hm1lYSk9HHfke5ZtN87CuOBdFV7zgcPS/S7UaAGtNnZe8XW48F1/B5sv+AwEO74TXVPLeePvafb+j6P9rM8av+4gwMaznorghh3g4FPgzuWZ9x1FqQsVv1sriqIsidcqNZKVqOSOozbEiRHwiLFBxgmrrk+nSUTahNiJrjj5uXi0t2eqfA/PiGBNlhk35kQwTvrwmNT4ABftmvzhuR3NLmq45hN8jgbic2VFZGcEk06Ic4NjyEld0jEPNoHt26Q/kzPseNz1Oc0IOnseePwccHhl5A3jzmf3Z3Qo53ZjUutNJTNUbBRrTqfjdwJ4D4A3EdEXAfgwgBcAeAmkxPD3p5a9xb1/H0SsTXg5gH9DRO8EcA+AywAuAfhCAHcCeBjAt6U3ysx7RPRtEAH2D4joFwFcAfA3ADzVvf5LuXxDRVEURVHKZd52M3EXaJ4Bevvl2Vyltpxh2Qfx8fDLo3a/1wSb9qCqDZnB/JBdG6JojK/A+PJ6et+awAmnMTJVBBs9phyLCOu1na8gFtvfaw0qnXEERCm/gWm5gO3Y+QxG/Rd1guV7+pvOZ1JVXwHEp6SugvyIDku1nXe/8atw5ms/DwQ7uIZ2zoFHkljt4fHJDydcfQRmcwv2cNg/Gz70EBgkfggAOH5M/GFN9RUsTT18BSCiWwG8HmLznwfwEIBfA/C6kcDqedb5SgA/7/78NmZ+Sw5DnRsVXhVFWXMs4G+VW0aozEjWqAP4M3qssAXSlRYzl+p15YHS+K3Uj+8Sv8IcD0f12SkGEsduUk/l9NItAutKOZM/EOSYXQYiDwzHMmGLtSvlVColiq5sQaNOFwDEMXg06GEKZAj8hGcAH3nn4MVn/3XQ2ZvHnCZ63pwWmPkel3GaGFNfDjGm3gQxpkaV+nH8LoCfgZQmfjaAMwAOIcLtWwG8adx6mPnXiOgLIeLu1wJoAfg4gH/iPqMuIUVRFEVZBxaxSbrXgNY5oLeX+3Cy4apInQhmXhUZbOe4K495GRdE7DXzKa08ZLfQ9PZSSUbeOrXJiY5l35pkfzpfgddydluJ2ZHJPs5oPyoZsWFp5YZ5/wGY3qMn3xjJdgUAG05OguCDPbQ/85k4/JP39l+75Y1vRusptw9E14R5A2mU2uIqXb0HUsHq1wF8BMDnAPgeAC8nohcz8+U51/kEAD8J4ABAqbWrVXhVFKVGLDrJKHmCXaYwFXfAfjNfiYM8EWfTRpPXXExgztX4qYohlVd5aXbZu0YmnoYGBgz5qfNqRSV/k5LTHAMIXYkjLTWcDzSIxC5r+xPf8gGks81j9DOexy2+0QLf/nxg/3Fg8yzQ8MavPjwA/A0JJlCWosx+P1lh5gcAfEuG5e7FmDOGmT+Ik6WKs277DyFir6IoiqIoa8uCjvq47GpJJQoMRZTd9TfEVxD3BvaqvyWzu7hXQOxlRru7Mi1yJttR2bHytaNDySKmQCpRJQK0v4H+ju63MyoYhhPLYlcS2a+Oe6bukA80z5Zo803aLgPtXeB4UGZ86xm3YO83Jq8puuevsPG8F8AeH8Pb3ED3z9+H9l1PPLng0SPgYBOkAuzS1MBX8FMQ0fXVzPyTyYtE9OMAXgPgDQC+I+vKSL7wf4JUyPr/A/jeXEc7J3oGK4pSHxb+wSh7xreCHzoKxr/OcX4Zt2RkO0kv1mS/Jj1kCac3iY08MS7IQz9zMTdByZVbHi21bEP3iFcTvUvGGW08MKqUHCBIKd4V7c/kXMl6zow7j9sXpn6Ezp0DPfEu0IUbQK0zE24LDHQeq2mfJUVRFEVRFKVSLOqgLzszbxVO8Uk9QaPD/HwFXtNVGuu61jk0eN12JWh73q+6LhmqXtsFnAYArCu5PKMqWVZsKBnA6ezDpCfutEzgvPEaLjDfBaHnkdmsyHnSPLsyAZKZwZkr4AG49JShPyncw8YLnj9xcWKG/cSHgIc+ifjjf4WNF7xwwkAiYP8+sPoK1hoiuhPAywDcC+Dfj7z9Q5AKV68kos05VvtqAC+FBH2v8CY4HhVeFUU5HZRZ7ncVGB9onR9vcOZRfpd8iQaOO4P1BRvSF9JrnV7BFYCUOE6yTl1fWwJgLVbzM5uUIHZZk0UUsyAfg4NsUH4ww5rQvy+tqER20mc17gw5eZgtJlZcjbtAsDPo3ZysJ9ievb2NS6Bppc7ZAt3L4hwo2+lVWwgwprjH6b65K4qiKIpSFxYWXk+BY99riSjKY+Z1prH8+v1N5ys4dlNHEtsh2JL/LyouVz9TazYmcMLo8UCQ5miwn4om7rhqWb6IeHkc7zTMruSxs+VMAPUV5ESwDTR2Vyq6Ij4GeteGxFdmnuwrCAzwmV8KnLtd/vaa4GADjac9feb2LvzgD6PxxJsmLxB3gYMHwOEh2JZdmaCuVN5X8FL3/DbmYcc1M+8D+EMAGwAmKPQj35boMwD8CIA3MvM7Zy2/CrS+m6Io9WGZiMdSy3iugLgj/VUbuwBoUNonD2OF/EFfFzJiuPXhOX9rU+Vxaw0NRDOOpbTPiUUYgLeavrNJT1gbYUgYXeT4J71krR1kMqcnusZbTbmitYfcPWmVDgUaREPHndS1bAGOwNQEmEHufGZ22c0cynEnXwIuOAZoB9jvAttPAA4eEvEUEKdOc9sFZGQou80W6F6V/7cvaelhRVEURVEUZX4WtfU5BqiBlQVCloENpS+oCSTzkp3tmIevwN9M9RxtAF7gKjLF8x0TRsr2jPIZW1mQJ/uCaLBvRrE9EacTG6pIkuACtmKj8RK+ArhKXxwNMqnTmbU1PmyVwmsBXnvFZWKtnK8AEO6BE9E3PADCQ3DzDGCj/mnDZOS6bW6Abn8++PAK6DO/BOeeDdi9I1x9y8/g/KtfjYe+6x/C7ksf7fYXvAStZ38WGnfegeDSuQxDCoGDBwAy4N0ngdY9oaaePI2I/mzcG8z8vBmffap7vnvC+x+DZMTeBeD3pq2IiHwAbwVwP4Dvm7HdlaHeLUVR6sMykw7jlWdLke8EUUD6cUImp3kJwf4W4LdAfTGMAS91e++XG84gdpJxfTyjlGCY2u/LZLcm603WmYypbiJe/3u44zd1f8Qj37tIkuPrjts8PViZXfQtAJhBxCrbkdPGvacGVU6sekeO3ANs0quX5FjHxwD5YNMQhwk5odbfALEFBxuD+wwzeOsWEFtg8xIYrhQ1mdS3mjPAIu6q8DovBJAp8DzSa11RFEVRlDqwjEPea8o8uAxs5HpyAv1KSvGSYlxaWPM3ZV4PyNy/d314WdMF/IxZkF5TxNvwCEPOFXI9h0wwHLA7z3i95kCEJB+gZv38BIAcy+gIsC7YddpcOj5251632DGlA8GTIFx/U0pAz/xs6lwi34n4yedGPu81JwvNynyUUmY7ddzY9v0AML4c1+gYaOyAG1syvt6+2P5EACzo6S+TZwDeThsX/sn3AABu/o8/DduNET1+BY1bblhsaGwluSRdhUuZTfV9BYmj/PqE95PXz2RY1w8CeC6Az2Pmkn7QT6LeLUVRasQSd/USI6MkeywZu5ShZeMD8RLCa+uCE1QNwDYluk7A+BmNIG8w8feag+hI8qVvx0KHgDDoD5qQlOatWcV78mXSN48xwVFJGddZIw2Sfq3GtWSZMM7kO6ghlRPszqcSM/E5dkKnGRxfjoDIRTAnAjy5LOqR+wwN/d8uXuItITqU8uWKoiiKoiiKMg/LBO8ZD4i4HDunc+Xka41tLFUhymuL7e+3gd7e9GVtD/B2MwrPnhPWXBWs6EjGmVS64XlFV+MyZf3hrEmOADb1szv9DSDqzDduG60wUDtF1qpcyXE2TReUPcF29TdcEG/NjllVsV24NPAVbnRkW9Ex2ARSMjwJEOjtDe4Bzm/I1oKMwTT/k2l6i4uuCd2rKrxWk49kyGxdlEwlE4nocyBZrv+Wmd9b0FgWQoVXRVFqxBKTDrYyYQgP8hvOMhgXLZqUh50nwrZ1HuAY1BcvMxB3nZA6wxhKry/uitHGVkoGzb37E8F1UpkhhmSEuuzXyvV4NCnB2I2RFyh7RC6bcOXiq8k23iTTddzYyEO/dPEi313JwIoNqtFI9LgrenviMEnukWnj3/WGLXyUNnTXSs0CMkpmtSWoFEVRFEVRKsgy88fuNaB5TrJBqzCv6mfAQubkWTMi2X02PJQ/ehmF0OPHgdbZ2f1u40RUZBEYGzvS2xUWc1sKSZCnjXAicxJIjSXJpK1QL15y7YSScSVB6tHRAuePBSgAsGLxNSkTmwkeZMqm8ZwIRrTgd1emYnsjbb5WwGgQQG8P5DfA5z8T6F4Hrn/ipE8x6gCNDRROuIKy3GtIxX0FSUbr7oT3d0aWO0GqxPDdAH4gv6HlgwqviqLUh2V/L9hKWd6ofPFVIsLEOGQy2YTX1nnpv7ioeBeHA0NpeDSD8kB2dN0WmKc0BfmyfrbAPMJwFUiipPtlXdx3MIEzCJfI9iSsXnxNMm1FVR2zgHNO2GnRrlI2pp8Ruc69j8og6Y2zqnOCCIAH4KQThghgdse6zOMcdzWSdQ4Iye9JcetXFEVRFEWpPMsG7nWviL09Woq3DI4eGfx/4xLGCpNDGBHBouMFA82dkHpiTukCqckA8IbFT68hpT8TP8JMzCAAlONBKd4sYzN+ycKrAfzWwGZjCyTVfvwN2e/LZHty0v5lhb6C6FBEvUlthJLWM+ME1yFcKy0T1LM0dJXpXQe3GtJndQUQEdhrSvWr0fe8ANw6O0X+WgEcgeMuyGuWOIh6UQNfwUfd810T3n+Ke57UAxYAtlKf70wQmn+WiH4WwBuZ+R/PO8hlUOFVUZQaYeAUrCXWUbHMVwASxemPz/g0DVd6kxYXXPtYAAH6fT/7AiOP36WLlGdedLKd9KFdpVBrXG9LGw0yc09gnWCaw/aSMr6TjnURJNtjxrCY5gzkWcer/37sInFVeK09DMm4H9PTh4jA/V6/aRJBdgX09lR4VRRFURRFUeYj2MLSvoLOZaB1bnZ53lXCfLJiTYJJ9VwN95fbTnQEtG9wgdg8bAP3hcaUUTyvTUvecDnhucbWEVt07lLGS+BvDErrsh0fKJ/YU3n4CjiSY530iF0FcUd6vSIeHEvmwbGdmQGd2ideczk3nTKeVWe9es3J5/ukE912Aawg4xUAjh8Dtm5dzbaUVfB29/wyIjLMgxroRLQN4MUAjgH80ZR1dAH83IT3PgvS9/XdEJF35WWIVXhVFKU+UB7CKypXdpgIYH9TJrnhnivvG4v4YBogDpHbLJZDF704xmgZLSvCMUCNjNt2PViWEU5zOLRzYS1A6ezWFUBO6F2l+Nrv0+mykZMxzPOdyXORuJr/ljsrz3oFwOOPI/OkC3CFpX9NsLptrQNEoHmqEiywfkVRFEVRlMrjb+aznk6FMl8B4PhRed64JIKcvyVCR/OsZJx2Lue4rceA9gXxFYxOAU1jWIiLjsVfkcWGMY0lbV8r64hXJbyalPi5in4ryaZIjqnXypBpmhOJGO63++1l5t520t9VyZ9wH2xWnPXqtyYczwm+AtModExDeBqgPRcV9xUw8z1E9DYALwPwXQB+MvX26wBsAviPzHwom6MAwJMAhMx8j1vHMYBXjR8evRYivP5fzPyWpQa7ICq8KopSDtFxavKd/gFPZ1+OZmROKpm6AJUTX+UHi5vnhjNbx2afLcnYqrONMWWGMcgG7f+gpvq2Ai4rlgbRoEuNyw6ieY3v1lmQIEo++pm/q9YVhgRqAsyK+tsmovq85xMZF/GsAkxhJH2EV7fBk68kouvY63iFURGNSe09FEVRFEVRlNMAX/2IZDnaGP3+of1WNjZlJ6b/dpmaeVDFzNfudWD7Cc5X0AbA0rIod0bX6QGeL4Lg2GXTvoukolQofgIieY6Pl7fr4w7gbQDxkave00Nh9slE4WkVxO68dyWejb8aETZa8Pt6LfmsugqKgS3QuwZunF1Jr05mHnsusI2B/QdOfoC81VWrIl96USvrxncCeA+ANxHRFwH4MIAXAHgJpMTw96eWvcW9fx+A21c7zMVQ4VVRlHLIUrqkaComvsL4oFUIcMSSyWp7kF4rxgmsoyJv0s8lmeB5AOJhYSbvLL2kL2nu2X80nPFZhd6zycR5YpbhIuscyVpeal2ur+ukvi9KzjBWt6MZ6V6uzCznYRUilbtXJdJeyY4GRSiKoiiKsk4cPVq+jd65Ui3xtXXuZOshs0BroFnYyGWXdkXg5EiEQOMPV82iVJUaZifAuexJMsUEFsdHqUpBedrQnpRYTaiCkEgMafeTo9vea+dn75mmnH/RkdoihUMrEV0Bl/HKLtjFXWNsLXDtE2Knn/iAl6oiVzAcSVb+xqXVbG9dqPj16bJenw/g9QBeDuDLATwE4E0AXsfMV8oc37Ko8Fpl2GX38aQsP5683KzPnNjOyHv9z7ubbTo6baiR9ehnxm2HMggMU14f+1aWG/uEZZKXh+496V4VgZTKqPjNqf5UpAFElcRX8gCMGChxV143fn5CtQ3FUEoETuuub8aw6OkFLkrVZZ9iBWJl35Ca1HN1QYy3eMZn4djh0sPkuSxTdw8mZMsoTtaRiOVkAHBGo5cGUclsZdtJFLneCounf7xXuD0vkPtLwjQjnFaY8Wq76Pd8VhRFURRlLBzH4G4H3HWZUDzwA7B183sbg3s9II5hu8dAHIOjEOh2ZRkQYMgta+V9ZpAxbj3udRsN/s8s6wilBQX3urINa8Fscfz4dXAsc08OQyCKwHEEjiJwFMpzGMq6jIG3sQlqt0FkYJPvEsf97zDYrgXH7jtZC1h2r0n/Rbbcn79yHMv7ybJ9f4nbP8zDlX6I3DbtwC4yHsgzYkMQgTwPptXCzpd+JS5883es4hCfboqqejQvSdnh7rXy/UPB1vgA261bRfzq5OSb7l4BGjtiL8SpXqNknAjojo3XcD1C22JTpPu3FnX8/A3xZeRqlrgKVGlbqEr2b9wd7vvqtQa2Y3JOxr3ZwddJOWATDPsbsgix5IvtCBfAbiOAe+IeKvu6OA2suBUPNbbB4SEQd+T38voE0RUQH6VlydFYBb09cPviyoRoZTUw8wMAviXDcvdijjs0M78WwGsXHVcerL/wyiwREemSpWnId/3uXAmTxGBJHNfGS9UrZwyLlKN/Y7yImQiP6f6USdnUdJmUpGk7UsZBFWmcwcr6IRbJpN0bO4evv8IG5qeSCv1QspVeKXEnv2zBRccx9vVYzstkwpVMstlFQc5NIq5OCMRgdgJssp0V7RMaiaLNc71VyHCdho3k+PYF1tS54JxEUn4ZJ4+H8eX9JGu5//vk1jEk5CbHFKllEnE1HglMqdA1uvasusHxACkndDR5Aa/phNAVnQ+mgZX2lF0DCu3boiiKssbY/eu4+sYfTr2Stu8B/6YnADZGfO2KiJy9LgCCabdB7U14N9wI79LN8pmwJ2Jh6MTFOAKiUETAWEpHcvIcRUAicAYNUKsN095wzn8nVIYheH8P9nAf9ugQdu8a+HAf3DmGPToAohJtlilcvffhgXi5hhx/8C+w8dzPwcazP6vsoaw3VXKqdy6LEJlF3CqUk7YCAQBHYK8hAmxiUxABh48sFrjd2HG+yTH2c2I7JvYBZtgReUHOL1vEtvwcs0CLIu4NRGfbPfk+s+t9aYcDa0Hy/Ww4yEzlaPg89pquylUspw956Adv933U7ndMKYcyA5JtND2oY/u2YjLvJxFsqeg6J+orKJf1Fl6Z5QaRjrxSlCxEh4M+CqbhRFh3s9Kb/JpiJWoTsyb0Iz1OV0lalGQ3FjNvadkkg3KSyOMCTkBSgnhVFCW6ArJ/KMCJbOIqkRa4x91j0uWRyZWA7oun8eTPAZBgnhEht7/e/j/KaYI55YiZcfxNAFqlKOy39XdWURRFKRwOQ1z98R9C933vnbjMGPe2MotT8Bt+7zd/HRq33wHyfJz5qr+Fs1/3t0FBAzBGHcK5UbEgvN6e8wttTvUv8nEPaPoSVJE3UcdlHZ4kEWAHAwF44wbpCztPZS9/Y0owOEuvV7hkEbtCf4gJihNHo2PxA5XdBmsq8ezqRNb5LxMhFS6zP/ncpHtT+nuPM/n0nlYBVhugzeHBoKfzrKpczd0V/u6RBIYoSo1Yb+E17gBhRfoxKPUjETPi49RkxQOaZ0obkrIigi0gPMTYCU6SJV+E8MqRK9mTddLPIlZ6zeyGghkxKshPlaQNRXS14USjrhhW0HO1L2oWu5nVwMXvL2W1JNHjK+3xmqrQMcmJZILVDivYlvuvkh1CMc691PoVRVHWkaO3/dpU0VVZDPI8yexdYzgK0f343QCAh3/0tXj4x34YsBbbX/Ry3PYTP1Py6JTCsD2g15O+r93r4wWp/QPA7ADNAuZmBw+Ad5+UOSCSOAY3tsW/kLUMsd8eJCAAkkVJBoAVgRKQv+0Kq+GQP5LFmTdJmXJeD5Gx0gKyshBxD+y1Vydw9n0TkGCLzRuBw4dPLte6sNoyyJs3gYLN1W1vHVBfQemst/AaVbxcRG1h9CMQKfXSiWUqWip5EUyQEqiUtYetCBHxcSqbMCnXaos9teOenG/zZH/GXddvJYOTIy3YmZEej17Lia4tgPL6kiMZwmSk/FhSxoYh4y68vyU7EanCWa/KKYYlK3tl5+dghkxEUm443WcYkOvFa6422zXcH/QxUqNKURRFKZDuB/607CGsJRvPfI70co1d+yRrwUmZZQBEBr0HPwV7OEcWXsU581V/C972DrZe+HllD2V9qLIA1pEeqBz1AA5lLn3tAPyB9wCdA9CXfHVx277+CfCZJ4MyBuESGOy3s/kXyAyLrsGmzM0BAMb5R7oSoJ3X8TG+rDsRC72WjME0BlmbcQ+F+xZtb9ADVVGqhu261j+rknDSvgID3roFOHps2Je4cRHYvgW0Sh/54YPg7jWgdQ6kwdpKTVhf4TXupSYJSq70rs9epnlmBULKCrGhaM1eO9X3MgZgqm0UVJnK7zfrJvxm0OMkKbtjAsAW1PuUaMF944Qb25v8eZPKjCX/ZGZt3IGc6HleuzyIiE2iY5M+16sWQRNjs/LnnnIq4RCAh9X0UB++xokI7LUBE6EfLEEms1MnV2wPCGMVXjNDBUc/6/1SUZT1o/uBP0Xnj99V9jDWksbVT81cxp6/gN4aCa/XfvWXcParvwHembOwYQ/kB4geeRjBjTeVPbQaU/GA996exA7fdz8YBNz7l0AooiXf80ngtieCGkX0PeTJpYAnQByDNy7JmHtTKgI2zw2ER39jxJ9qgWhfhNE8YQDcGwityfbLyNosqu2RouRB7yq4cb7Y7MU+I74C44HPPFnKlpMnmfH+BqiM3rPREdAhrZKVGfUVlM36Cq/Hj849IVGUqdgQ6I1Mxhq7K4w6UnIl6ZE6lNk58qNBhH6GN6eOvQ3luBcmHC7w45WIw17TGQ1jxNO+MeFNMWasTGby7LNoPMmk03uyosxgVQFLJ69tgk1VdVhlfeExaHUJRVEUpSA47OHKv/ynq+1PqAxhj47KHkK+WIurv/JfcPVX/gvgeaAgAPd6+Mz3fQLkleCYXgdKngtyNxokEjADTIPKV2yBWLK5sXMGePC+vugKAPjYnwKXbgQaGwWNLvFRzPEJjoBgA+xvAMeXh30bgAifiejptYFoQmBEkhEb7OQjjnLkgsMr0FF7nRJHlPWDJfiBg50VlBwe4yto7QKt3dR4SqxyafR3VakP66cYMQPdqxqtpBSHvyk/ekmpVGVByo6MYYmuzDJXGBLX6WRJzqWH4kSOZAKxzKQ/KR1sAlknO8HTa4lxZIJsPWSj4/zEV3VsKUpGbCqoo8B75MxVF5TRn5Vgu7xt1xFT9u+poihKPeBuB9d++l+Du53ZCyuF4W1vI3r80bKHkTvUbuPWf/VGHH3g/Wjc+gQVXZehbOH1nW8DDq5mW/j2Zw3+39oCbn0q0GzkOBpXEWvjxkEw84JTPyKAN85LpazedbH5bQQ0tkVU9Tcls3UW0bGrkLPkHJT8aoiuilIHkjLcfrvY7cy6/462LFs1rXPlbbuOqK+gVNZPeLVhtlK4irIoxne9KJRaM0+gaLrcJnlA1MlHE0n6KvZL6rgBkRFjaJkIsqHgE/dlTWO4b8skyJPM2bx+n41foWAYnXQoFYcjJ74m950isk9nrC/JUi+DxtnijUlFURTlVNL543fh+Pd/s+xhnHp4TTPLuNvF5os+Hztf/GVlD0VZlnkyqvYv9/9Lz/9i0HYLubQOMQ2gfcNAmEye4w7Yay2seRIgGa/BhmTBwjjxdRfoZRCbvVa2nrFZ4EgybCvRW3U970vKmhHuSXlzryntgpgLyICdtj4a+C1XDXnA5s2gvEueK0qBrJ96ZHwRDMqMvlDWF/I1y/VUkkwsyPU6YTEQwINs1RNzE0o9j1uGAMRS1vfE5lwUa9JPOI/x9zNhp5TyIR/wGvlrPBxjkZJI+WMgRrCKr0rFGc02TXpN53XuTrsUKeeM/qyQAZrn5R6kZEbaZxeXFaItsRVFWScan/EseDfegvjhT5c9FGUNOfPVXw9vU/vO5UPJduM8wqsVkZVe8JWgG26UOa1puJK+scsec1mryXP/NTP8WrIMCPCC8UHTtis+z9zsghhkDJhjl/F6OH45vw3AEzslz6Bqrkh1LBNo9q1SD8LrQAgRYMHgYBvk51jafJoB6DXH+zCLxmsCm7eA1FcwF+orKJ/1E17JAJs3S7nh7rWyR6OsG8bXO8vaMOY4kpfqQ0oYRKoaADFcUxd5KUtUptdaPHrTdgF/I38BxHYxUQQtQnQF3H6tQMYrGZRuxCvKInA8kgW7JFOv8xVeI8GWOKbYyv3HBKvbtqIoinLq8C5cwsWf/hVc+/EfxPE731b2cE4va5rxuvnczy57CEpejDqqiYCzNwLXHwcaLSCOgJ6z84Mm0AXoxtsAWNcDtgM0Nqdvw98E4lEBI+1vmDLvD/fAjbOgHDJrk2w5IgLTtLm4KaYVifFySRBempLLWyvK/Lh7RbjvsuDzOoer4PM2UlLYa8p9J9gGaeVJpYas71nb2AF6+9WJnlLqD3la/nCdMU3IxCU9WfFcIxSW/qhZeqPmiQ1lDKOWSFKiWP5IicUZ6WfPjRB38y0xLBvTMsOKUicm3R9y344vJc2Upcm/vJSiKMr6QkTYesW3oPNH7wD3NLupDNax9+nmiz4fO1/6lWUPY40oeW6TrnLW2gI97wtAF8+6Mtk80Ee7Ebh9AWZjA6B5bfIlx2h7YBOARoImpSBX4tPgE+9nG9iYz7DNsSKXw2tKv9gqUISorCirwoYuE35NCDZB7Qtlj2ItUF9Buayv8EqeNIjXrFclD/y2lJbVG9Z6YQIMhNakv+qYYxx3yylfbkMAru9JMiwGwN1BJq0JXCXjec5NGt+XpQixhcz8wnBREGvCq1JfTvR+XRKvdbJ8mWlIkMkq0N9TRVEUpSSC2+5E64VfqFmvJcDMYLs+wfHezi4uvvr/h7Ov+DuFlvNTVkzQAO54Juj8JeDieVBTXKfULxfslttogLZ2Fpw/LzkXjg4B8sDB9mBMzECUSkAJtufL5GQLNM5IKdHRsrvxsawvz6DqKrXxWtNMfOWU0LsObp0H5XFNJeV8h8qOuxLqqyozrL4CZU1YX+EVkAlDeLQ6J6IyoCpCSx6QJyVflTUkQ99R5vG9VVYGjylB5PDaUop43kkJRwBN6I3AcbUMIEVRBuQmvtLwOsgfZPavCi0rnBMEMkUapmr0Koqynux+2/ei8/4/Au/vlT2U08X2GfQ+8OGyR5Ebmy/4PJz7+r9b9jDWj5Kd7vSc54HaGXoJ+pvl+hs5BnrXxr/XODO3X06EZQueWP435+OyRkEYilIuDHQeBzfPL1+Sl3k4A9w0JRBjkl+yCNYpe7dU1FdQNusdkkcEaGp6SazRxcdx/n02lRqR6rMy90cLNCS8thNJF73WaLzwkXtmb4XuBRrEqqwDnPSbXmolAycRec6wWrHjQ/soKYqiKCVidnax+/dfU/YwTh9Hh7OXqREH730noiuXyx7GGlKy8JpFdAWA1tkltlKgcdo8CwIvXmLS+FIdZ5RwP9/M0EoFfFfIb6EoixIduJLoS8DRwC9ompLtvurkKlrvPEHl9KBeL6Ug1kzhiI609MhpZRnR3YbOYMl5Eu9vLB8MYLvoi69DAizlfK5XKPtdbSllLeAcDBF3MZigvN+2VfSRPQ0QJACnsEfZX1BRFKU4qN0uewinj43NskeQK/ZgH4/97E+WPQylLJbJzA0PAX8rX9cZeSK6LimSEEj8GME20EiJy6aRczZyhXxs61S1Tzm9xF0sf10RAONaE5XQcg3Qnst5ob6C0ll/4dVrAu2L0LNBWQobAuHBYo5i5nz7YKwNNbkml52Axx2ACGwaUrFjWZEjEV3zMHhsT85NG4oA4zWln3GexhRX6ThXaSyKUiLJfciGKC04okJ+FkVRFOV00n7RS7Dz978H8DWzYlWQqVKGWz5c+YWfw6Nv/jFE16/O/VmOIhz9xfsKGFXNqUt/v2V9BeG+BFR6G67Q1pIT5GBnadE1gcAQCdb1fQ22889QrVJlOU/boCgKACkBzpHr51qWr0CdBcp6sP7CKwAEm8DWLZqqriyH7QHda9I3OAvMQHQM9PbkoRF09YOtlNVYdjXMQOeyGFZRB4wFDRbygLggEd+GAEz+2mSVstpspGKPogAAeHz5sFWybO8ZpQ8ZKuyhKIqy7mz9zb+NC//654CG9hNbCUHGEq4147H/+EZ89Aueg2u/+auZlrdHR3j0P/wE7nnFl+L+V3/r8sG5yurZuJRPgL3xXQnfWOx9s2Amvt8WkTRHBqWK2fkhclw/+QBXKEHBxir2KAoA+E0g2Cp3DN56zhXKQH0F5XI6hFdAsrkaO2WP4pSw5hcfx0DUkYekMI5Zxr0WdwclEuKuTuTqRl6iIdtBdChHQLhg3wWvWZ/oX8AFu1TpnGfpK1mlISlKGST3EW/FTmbyAH8TaF3QOZmiKIpSGRpPeho2XvLlZQ/jdLDOPd6tRfeeu/HYf3wj9t/9dnAcj7X5OI7BcYTLb/05dD9+N+Irj+Pwve8qYcBVpgY2b17z6Lg3+L8NASzogzDFBVUSADRyFmKqFoRpe4DXVp+dUnOWv3cSuTLD3orbMXgtoHUe2LkDpL4CZU2o2C9dwTR2pOxnlDFjUVmQGkySl8H25JH8n3ngQOYYALuyxCPRgNGRiK/BVvUmmWVQh9Mkh34GzK4fY1rEDbZA8xpUXkuiTJ1gwmBXmkcMAzI5RITZHkA59m2pUrZrAsdOEK7g2BQlKxy5+wpjuchz179lVSWE2jfkX6JMqcfvqaIoSsXZ+eZ/hN7dH0T0yY+VPZS1hs0aC68AHv+5nwKsRXDTLfBvuITmnU/GLT/8bxEfHSJ84D70HvwUHvyh/w3x1StDn7vv278Jmy/6fNzyw/8WwaWbShp9laj65Mbk0/uQAQQtIHSZn2QWq5TWODOU7coUoB9tTATKpfVVnsfEiG+2asTH0toph6pnilIODHSvgINtgALQgr+5RAT2Gqu7FsgDtp+YyrJXckN3aamcLvUnOlLRtRBIxETy5IJmxqlJKetPYNmVE54h5nAM9K7LhNpvl1/qUZlMnr15owP3HwIa2/OLrok4QrY/NPSuDp1vbAK3/t3Ff1c5Rq6/ylWNFuUIgDaCV2pOUk1hNLBjXrwgH8dRJvSiUxRFUarJ4W/+Pyq6FsH2Wdid84i7PUTXr6P3Vx8pe0TFYsVeCx/6tDw+/QDCRx/GJ/7230D0yENTP3r43nfh7pe9EM07noybvv9fYvOzX7SKEVeTqk8ZW+eQi8+LPCkzDDgf0SYQz+mzTPwAbjxMPhAdDo1PfAUAyF+4HDHZXn5evkUF5lWQVKpTAUipKxwDvWsACNw6D1ow8Jm8Bthrr0Z8XedqGMqp5nSd2f6GZloUQbDpJiXWTZ4qKrYUSW9/Psc32xU6upXFWP48ZpDcc6wTSBrbCxoYLAaY8SXTNbx28nyzoWSsRoeL9wgyqcjYPKjy5EmzzpW1IYtTgKVvkY1cifzht1Z2rUaHq9nOaYOouIeiKMopYeOLvhIw6ivIm2jzHK6/6504+OM/QuejH4bd3yt7SCslPtjD/d/9LTNF1z6uXPHe7/yPYgdWeSo+B8mj/6BpAH4qEN/fXGyubEOgdw0MAyYPiI5xwqa3oTyWmPOzybFFCUeorDua49WXWFWUQuBs7j121fT6voLUh4KNwkY3hA3VV1AU6isolYr+0hUESTaYkjMqYAwyj+bBxkB4VN2swMJZ75s0M4vR07s+eHFJsZ2jY4mInZaJGx1hPvGUpD+NvyHXcq4/nhU+xjYEuMLjU5TMTLjeGc6IioHegRgy0ZHcQ8I9KV2eRHPTCn7Hg23Az7k3lCLJ+0XaUnqbVBTllOCduyDiq5IrRx/5cNlDKBXudtH58Afn/tzBe96By299SwEjqgtVn4AsOT7ypbdrku0KAFgmy5LF1xB3MbWFSHQo4mzWtZIBmyYYRuyHPKlyUowNT2U+ibKGTEoQYpakEBvKtR0dyiPck4dLHiEyEiRSNBs3SfCJki/qKyid0yW8AkBzV5o1K/lhFxAdFcjEuuwxKBNZdqJNRgTNtKARdxc2ppiRMqZmYEMxZLKI+n5bxkrIP2Kp6hFQmtWgrAMcnXRcMDuBdf9EqbE+8XHKECv4WvU3RHit+j1BURRFOdXsfuc/x8aXfW3Zw1grNp72GWUPoZaEDz8I79wp9ltVfs64pLOAfMkkS2egRkv0PCVf1pWpChuBMwgpDOOSBfaKKTXqVTiBg6PhbGRFqSu9a+C4O1wVj60TWPcnt2OMDgfV+oqujtW+CGruan9XZS2p8C9dgQTbIl6EB7OXVWZjLeCdPg1/aUwgzuhTS8V/VPMYXtwdkw096L+SFWYWIyqrweM1ANsFqIHJEa8EBO3B/wuhon1b+mgYq7ImJOW62EowVNZ7RdSRdgFFXwsquhaL0X2rKIqSB2QMdr7p2xF9+j70PvCnZQ9nLTDqJ1iIs1/3TTjzFV9d9jDK4zRUVYuORtoQLTgfJyN+JdubY9vHYDIThQ4mT/wP86xzXqpuip/aynTKesHS79XbAPtbINsVX2EW4q4kahTaj5mA5tkC16+or6BcTucsmAho3wBs3gwEWvZOKQkbFfwDVnEqf+9ffIAMTwI7ppUEzrouZgCcvd8BGfTHbowI/KM2g2nIBKpwTudPjKKUQtI7fK6IdPeZIitXBNunw3mmKIqirAVmexfnX/smnP9XP43mcz6n7OEop5Sj9/8JbFig6FV5qm5HLiHK+Zuu8syoL2iRdRLgb2cXSMlzPgoGvCbYNIYz4eB6uXK8dJuk2WOpuENIK/sp6wQBiI+yi64AYHvguFtsAMbmTZrpqqw1VZ/NFIvXlLLD8zROb18EmueKG1Mt0UiwhTj1juj1/HFlxnBZjmUhGun9MoPmOVCSZRt3xKjzvNRlSq6Xaz7DmwpHIvxWtX+LRrEqdYB50K914jJw/Z/nNIrIcyW3CwoCMoEGuBVMUiW+sEfZX1BRFKUEyPPQfPpzceYf/Qv4d9yV7TObW7jwr9+Cza/8WwWPTjkNtJ/5XCA8xcLPujriyQfCCW1AFrFNG7vzCSlea1COODqSh9fsi69MntgURYuugPgqvNZq+kfOC3nrew4q6wV5EswxrT9qsA1iO/ATZoTJL/ZeEGxKkLZSGOorKJ/TrvxIdtjmjdLY/vjxk5OWYFtq+3stiQxLssQ4Anp7rjfDphM4VjA5UdYHr1V8rXxlCRYV5RjTf36ylxpmMkD36nybH9fbJe66e1jkzrv5VrkUyeTOeNIjZvhNuYcyY/VliUn2kxpUSlVhdmWDuwB4slHCvFjrBNNA/zooAvIluE1/5xRFUZSa4l24hIv/7q3o/uWf4dqb34D44U8P3iTC1iu+BY3PeBa8C5fA3Q4aT/lMBHc9A9GDD6D7vvfCv+MpaH/Bl+LwN34J9spj5X2RUtFAx0W44VXfDbOhbYkqy6KntY2nfJhlXp/VPm2cET/kPIwTXqKjQalinr8t0sKwHYzfa4+v2pP4MOYUjJbG+MVm+SnKsngbzscWyrU0yaYPdkALnMtsGpODRPLA3wA2b9VsV2XtUeE1wWsAmzdJplrnity0/A3nNEzKdqZ2V/Mc0NhxTezJOUd7AKw4M48eWf3koDTUmFoI23PZgPpDsy4wQ+4JdpoIklF0xQKiq78JmlTeOO5Iz9e4C1Bz9ecdWznf0+MjT+6T5K3+NkI+gNNyj1ZqB/N0Q4cTx4wBwqP5159Euxd5Gwg2q5vtvlZQwfdznaMoiqI0n/k8XHzzL+Lwf/4K9v/rz4KPDrH1im/Gzjd9+4lliQjnvu9fw16/Cu/CJQBA+0UvQfjJuwEy8G64hMf/2bcB0fItSeqAmrqLsfc7v4nzr3xV2cMoj8oH7i1ivBogaM9XzWoSi4iu/sbkZJG4CwZJTUTTAuyc616W+FiEpDhl1/htIDp2ouyK7Xa1YZQq42+COAasJC8wmeH7gb/V1ynmFV0ZEL/dIoHd89A6p6LrSlBfQdmo8JqGSEri+RuDqK9JJygRQMHgb+MPC7PBhmTEnga0XOdixF0Rf/xW2SMpiarfoOcbH4PEYJjW19UEIkDO+OFjGKB3ba7tAxAxZVrmqDESJBJ1Ab8k8ZUMxKJLMoPjkSzdFY1phcG8ijI3J6Lh3Qkb9eT/85QUGyW5TxR9/fOcUfuKoiiKUmEoaGDrb3wj2l/4cnT//I/R/vwvmbpsIroCgH/TrfBvurX/d/OZz0P3/X9U6HiVevPwv3k9Wp/5TGw+7wVlD6Uc1m3+6DUkUWOa6OpvZJvjBzvzi64AptrZLvGEbE8y3VYtvMogxF9igpH+qmWcC+ooUCrMuCp3SalhIknGWPQUNoELAC8Y1RGUU0LVw8jKgYwIsMtE2Z2qnmZ6w1yY6Eh/cNYABkk05jTRFRBjZqboSkC4h4Wuq1n3rKJKimbCDEqgcCiZruz2lw0hBlUiyirKKYZ5jDPFlRO2veVEV/Lz6z89i3BPS3StgvSts4jHmvk9FUVRlsXbPYuNL/xSkFl8zjpNtF077KrbiawJzHjsP/xE2aMokapPQOaw1U1TRNdZc/As/kd/a4n59awxu/epBP+U1xYbx4biI7M98a8ALgvWDNqkjCXv80V9dEpFMY0TVe6IYxBH8pjlk5wCr0p0BYDDT4OtVqArHPUVlI56uIvCNFwpS0WZBuP0TuqqfYdmZpew5Z5B0zXyJSY4/W2CpNx5ngKpv+F6VW/KqeY1y8l2JWB6H1fX53XssFy2X54lp1YlPinKPCR9XYv6XTD+6m69pin3G0UBQES3EtH/SUQPElGXiO4lon9HRGczfv48Eb2KiH6ViD5ORMdEdJ2I3k1E30p08geCiG4nIp7y+MX8v6miKMpsWi96ifRmU5QpdD7yV2UPoTwqX2oY6E+qyUz3/ZHJYHvSQGichNfOP5Daaw2emcFec/VlfQEANGMfWRFjvTHV4kwTAMv+yY06nH/KqYO8wuxrhpl9D8qT5lmQUc1EWX/0LC8KIulJkEf/hspzWoXDvKi2AFkYlf/aDITXh18yDbDXPqlZkg80z0j56EmTlaQcyATBkxmAzZA1Ow2ik5djdCSRscYDTJ7GyJxkvU1wjEEp4vSHk3IqHqYLuHNup4yIXkUZBzMQh8tltE7DayKXaycL5Mk9UVkJVe+PQ0RPAvAeABcB/DqAjwD4HADfA+DlRPRiZr48YzWvAPAfADwE4O0A7gdwCcDXAHgLgC8jolcwjw2R+gsAvzbm9Q/O/20URVGWx2xsovG0Z6D3ob8oeyiFQ+orWBhvZ7fsIZRItec2ANwQk/418aBl2ShsXflcK8uNw2sBPCWT1TTGlxddlrgrwmW0oiy3iWS0UeJjGW/aXrLuO8Qd5NZPKO5oyxSlYhDgtZbKaJ2K8RcsYb4AfhtonV/NtpTK+wrWHRVei6R1Tm5cRd0Yq4LaUktQdKNrZXHGnNi2J5MEeDIxcRN+AgC2YK89WXj1WkM/eMwMeFImhJml9G68jOAyJUo0OpCs15X3dHWC6dybdb1g+/5zFiGHbb69WY0n+31dUOOweiTnsI3HZLbQ0JMsV5Do2t/Qin6w/c3hvvfKaeenIKLrq5n5J5MXiejHAbwGwBsAfMeMddwN4G8A+E3mwY8dEX0fgD8G8LUQEfZXxnz2z5n5tct8AUVRlLw5849fi8de83fBh+sdqK2ugsXxL1wsewjlUfWMV8ZJGzc+ljlwYtNzJMsdPSwfaE4p8mF8KUechjwXuO2L8LqM3UreBF8Dl2sPkw/xY8whKCdCa9puMh5gWQTsPMQjtrKuQm2zFaO+ggpigGATcg1EriS5ux6Taz4xe4JtUEFtfCTbdUzQSFE0z2m2q3JqqPhspuaQOSUZH2pOLQ6f4pKn5U76ODwE738KvH8/eO9+8AlDZ8L4etfBsLK8aUEyMaPpnwEkyjXZNozcH6JDEV1hl5/otC6AphosJexv4wOIXV/XOQ265LogJ1Yln+fYrTeH+85a3bpclrD2jK4GDBFbo2PpzRq75/BA+qZER1IRI9wHoq4sGx4UNx6/jdVlu/qA11jNthSBqLjH0kOjOwG8DMC9AP79yNs/BOAQwCuJaHPaepj595n5N9Kiq3v9YQA/7f78a0sPWFEUZUX4l27G5le8ouxhFA5ZnZsuSu/+ezG+kMMpoGyBaPNmYPu2wcOMlveccFzijtj5nSsyv+9eGyxLWcuLe0D3AOjuAyDJpF1KHCVM9QXknUWbleR7cTh/sgqHg3UAA19K3Mmx5PA6XXuenI9KNfBaQLDTz2Al2wOxFTHS2wC8NohcX+NgBwh2ChNdhVmlvnPEa6uvYNVU2FdwGlDhtWhy7TOgrCWnVngtmbgHdB4Xo6h7Bbj2cXC6n8k0I7d3DYj2wLaHoQl5YjA0z4qxNgYm3xkX3UHUYS6CyyzDoAzDIQ9xdIyBYEMAlENGXQ2uPR4xlKXhsLyWvEdO/GeXGTzLuFaWp38cxrwedZygejTBkTEScGN7xUaYmsD1jS0Y05DM+vZF7e2qpHmpe37bGNF0H8AfAtgA8MIltpF46yad6DcT0bcT0fe552ctsS1FUZTcaD3/c8seQvFoW4+FiS4/BsSnVSwp2ZZJym4mj42LGbNwrdj6GxdcBmtq6pNUxmpfPOkr6IsqPnD8uMvaZKCxk3pvURjT7fKS3MLL2CdsJdhznA0VH7tA0I3F1w8sWY1sVXgj5yUB8F0msQEokGXC/UHbpsSXoBTMmH3sbwL+pnhrbA80xh9FsP0S/f3lChRd2TTkmimaYAtoXwK2bwOpr0A5RWhud9EYL79yF5VFf7SXQ43RVcIcS3+V0Yl+In54OxM+OVKmk61krHobqUAfEuHBb4Jgwe2LwPGjbnmAvcAZB249XktE3KIpq1TT0hHa0z7PqcjYRe9BFb53JSKqdQZ7enKaTLxNIM6YoVK1yXsNyBs1EJfrBrvM4uhAjFpyQrfxnUOlYvd04xccyU5AY1cizjXqsRRWsNufRkR/Nu4NZn7ejM8+1T3fPeH9j0EyYu8C8HvzDoyIfAB/1/35WxMW+xL3SH/uDwD8PWa+f95tKoqi5EVw1zNgds7A7l0reyiFwTo3WArb68LzT6PbrqTzhoLx2Vi2K5lnie1+4rwe8RXYEGifAw4+nVqEpEqV8cBgoHlOAsAZ4ltgAxw/PFi+sbsa8c8EQFxCe7RlA0OnZQFz5IKUl8BrVLdtHLPY+709+bu54youhUDkXvM3ge7l1IdSra1aZ52vRn0FhRC4gAly9+7EX2B71fNAFa1VkA9sXAKCLe01WhK628tFM15XgabRK9MYJ06d1pJCq6BzDbjyV8Dhp0++t/cJ8PVPgnv7Is7Owoli7EQyamwDjc3BZMoEQHMX8FsS7R0dom+QmWZ+pUX9zellhk1j9b+2PK7xTQFQsETWeAUMjSRzkmlYryPPTYLdGOOuPNLCqo0m72LbGxiKej9ZjuQYRR0gPJLgiejQvRfJfu5nrVZwXxdaVoqA1nnpTaMzemU8u+75+oT3k9fPLLj+HwHwDAD/g5l/e+S9IwA/DOB5AM66xxcCeDukLPHvzSpxrCiKUiREhOBJTyt7GAWj84NliK9cPvEaZ7FT605Z88qtm4DG5ngxwm9I2eHWeWRypcYdYPMm+X/jDLD1BMCT9kMEiK+ALdC9KjZGErANAO0b8hNE/BmZn2UFaRfd49GGgL+xeLnuzKWhC4QZcq6ZYTPTNIDedfSzmbvX5e8kA9jfdO9PoHN10FNYfQXL42+5xybgbbhsVoA4kkdSTrjscY7AZIqtjGUCyXBtbKvoqpxaTmPo3Opp7AK9fVTSIauUT3QsDzIi0rOVv/2268u3rqz+h5fjHnD40PSFem7SGmwDgdv/lJRwcVmW6cjHcB8Izsix4mg41rX7+GA5m4pWNY38RFfTEGF3qvhYxiSHluxFkxF2ZYfZSoUBJsnuyzKx6/eRLXESaGMMCcAmkHNt2gTYuOjbmeN2mZkcSwQ12GVo6m/RWDi1v8igf17Zbr1LwpNBIUEGZIDWhaH+1UoJEABT4D1MVv2RDJmty21hgUkyEb0awD8F8BEArxx9n5kfBfCDIy+/k4heBuDdAF4A4FUA3jjvthVFUfJi+xtfhe77/6jsYSgV5aF/+X2I966j/cznYvP5L0Tn7g/jyi/+X7jlDf8O21/w0tkrqC0l2Gfti7MzTOOO2JxBe+AT6Ld6YQnGTAdEswXaNwPt3dSEh6TdUdovkfYNtC+Ij8FrLf+dTHMgsE2kBNvQa64km5fDQ+Dg01JOtbkDeM3sAtAqWrVMgwIg2h+2Q/0twJgpbWqcT3Ga6JoQd+U72p4TwQ3gNzWYdiKuul0fl2hgQ9Aq/F5FwFbuX0VUx/KawNYTpG+tUh6r8RUoU9ArYBUYX7JB8hJalPUi+ZFmDPfviLsy2daJT34kvTB37pDr8trHJi/LMRAeTl+fCSAGVgcc+yAXwYq4O3kyTAEQ5thDoXkGNLMETgnnEAGAvxrxlTwRx5IeSF4zf6GMXdnePK9HBk4IYlOPJbnI6Cj7OPqT6LTIvALjOimVnFUEB9ywUmMr8t7XF1mdYA8Sw3Mt2wIUcLzJc6KrTiOVmSSen90J7++MLJcJIvouiGD6IQBfxMxXsn6WmSMiegtEeP0CqPCqKEqJNJ76TARPfSbCj/5l2UMpCLVll+HgD98BADj+yz/Hlf/yn/qvX/3VX1xv4bUMHwjHrizmjWIjpDNQTyzrMlWTP13W4EDUS+y2rvRpZQbIdW68ds9km6N5Nl+/YeL/qBpxV/Z1wWMjInBjW/rmhvsAAN65HWSyZLNmtWHl2Paf88L2Tvo0oinnhvHF7Mt6/nA88BUkIjO1sRpfAZyvYA6/Bnnu4QPxJOE5J8iT7FXA+WcYMEGhvVbLgACw385fq/DawNatGa8zRVlvtNTwqmiddz331hC1pYqBY/kBrHOm1TRWXfnWxrIvzz7VRV1lyBY8AWHotplkv3IEdB4DRx0xutLRm8GOPPwtwNt079nU+paAvGx9R8qa8KzMYB45VjbGoCTPFMOh359zCuS5azAeiEwM5PLzOc+1TWZgnCy1zdS+SR6UYV9lXn8S+RmLcTutdBWzlPQOjyTIIdyXe154IIELcSiPRCTNg0RsjY6lXHB87La5v6aiK/Lv2UQ+0LpBRdcqQQU+luej7vmuCe8/xT1P6gF7AiL6xwDeDOCDAF7CzA9P/8RYHnPPWmpYUZTSOfcvfgxm92zZwygEjSEuhv3f+y089KOvhQ3XSwgYsGJX5dnPALZuATYuSgufOcvMkuvhyEhEWB4IZ7YLdB4XfwQoZXMQsHmjCL3tG06WF162BLBpDgf2T6IsG2hVtsRoxm9vH2ytPKbZmFnG1zsCDh8GDh4ctu2XNV1HfUqz8Jr5BBHHIQBPHkzyTL57LSdMW4Q5L0C/B+rY5QLxo3ltwN8AmQBEBgQromjiZ/NmlNKeB/JlnaYhpYFtDyQ56hmSHepKzkK7vwlsP0FF1ypRbV/B2qPC66ogAzS2Zy9XS/RqK4y1/XEHVn3eEFh6K2QVu8ZOwhnjS3a6W2n3CtDbGxhJ/qbr5+DEo+h4pIwHY6nbcLA1ey+a5uLrXwpaXXketsO9tDkSA9d2Zwh/GUqq2HhQStWGGJSdRuocMRDjJP13IpTy+DEkJW2zQj5yKRfLsev/mnrE7nnpPjZGjkVvTwRNtq6EkR08gIGQmoifHJ8UodmK4Rh3RBi1YT4GbCLyFlFOp6rkafSYhjiF1JBSsvN29/wyouGbIRFtA3gxgGMAmepsEtE/A/ATAP4cIrpOSUeZygvd8ycW/LyiKEpueDtn0P78Lyl7GIWg7QMLghmHf/QuUFn9OYtm1d/LC0AcZ/cVjIHI+aKHog2S9THQvSzBpUnP1c1LYuvYTqp8bOqCWdZeySIceq1y7CKvuTrBt30B2Lxl8HfnMrD3SXlMKsNM/pRyvimCTcloBoCjR+WGd3xFbOB+hSUM27HJ31FPlh2H8ecL0mbk43uJjiSTu3tVyhV3r0pZ7O5VLC++BiKiwoJIxEx4rUFv1D4E+NsABQPhc2RfEMcpYdSKWLqsvOFvAcbvb/P0kKNfNtiWTNd1/V1SlAXQdIVVEmwDUUcczYqShbTIoyzJ6IRixmSKLTJPLtPGVXJ9N3b62ZIMciLXmKhFf2N6yZhJ+FtOKJvxPbzGakPNkxKzsFhZvxjCQNQbxfZOZraSSZX5nZXxiuGvkQ6GSK7P5DUTuGzbWD6UfM7Gg32SvMYx5to/NpLlCy2/a7Nvg9P/cTuJcNJAjbsA3HlvGu60iOc38JMeNKYhnzXBlHGOtowk+UwW43kdsZE4N5YV7r0m0Dynv0kVJHOvqhJg5nuI6G0AXgbguwD8ZOrt10EyTv8jMx8CABEFAJ4EIGTme9LrIqIfAPB6AH8G4GWzygsT0QsAvJ+ZeyOvvxTAa9yfv7Dod1MURcmTnW9+NXof/guE93x09sJ1osK/UXVn4zmfDfLX1KW38vNm1C6b5SuYw45L91AM94HmFhBsDYQ1E4ifcNQ+iruQTg0LzOH9jQzCJpWT7eq1smXi5gQRgf0J1Qe7VwH/xuHXvFb2BAjiVAA4D/r2xh0pGw2S4HwA2LxZ/j789PA6OteA5hlnwpLYWuGcdusqrhe2c2h0NOJvYcAzImimxkqI+5caJ/1TbQzi+RJQyPbA/oazU90KbSjHIdhxvoBDGYu/IX/HHfnb+IDXXrsywplhV9ltWeG+cQbYuFRpu/S0osekXNZ0llZRiESMGY1kU5RJcCTlPpLeofN+vHtdIiuDbaB1XiOPUszsdGl7gJ81AnTMD5lpgmwooivbKaLPAvcCMoDXmB2JV1iPYCPrtWN6chi/nExtgmT3jpbkMU5wSmlwYtC4stGc9G2dYNAyAZjwfUYFRLYY30eHXf8ST4yzpOz1PBAV87NhfADGlcJyY0zO59Fs3aRfa188jtA/F5Lggmksa8xwLJm06XVRUiLZCcBEqX078yo/JbAYll5rToM5hdcW54FO2pXF+E4A7wHwJiL6IgAfhvRXfQmkxPD3p5a9xb1/H4DbkxeJ6O9BRNcYwLsAvHqMEXkvM//n1N8/CuDpRPQHAD7lXnsWgKQp3g8w83uW+2qKoij5QEGAza/8elx74+vLHkq+aMprYVz7f38FF771O9G49baFPh/+8e8g/thfwH/m58J7xgsqVhqy4nNO20N2W2Pku9gYSPoqkhM8JpWVteH8lWZMI1uZWq9ZTFKI13AZmGNsP69VithLZMCbNwOHDw6/0ToPILlN8UCgMAFATZcROy2gnIDjx8a/leoBDEDE9XGB+NGRvOe3xBY3AeYX25O6nznfbxtO+O/tSwas15JxAhhUb+MR35CR//ttV2o7CTiffk0vW8qXODrx9dnf7Auq7G0AYCklDohQy1ZGdVpFV0j2MJMPBK3Fe722zgOtCyrwKcoYVHhdNV5ZZT+V2hIdAmZ3MYd39/KgVMjhg+DmrjjQW+dAZjExd70wmDqpJTNbeE36N9vuQPAJtgGOweTJJDoRi8ZuYwEDt3FWSqpMg/yl+koPetNYwATu9HPCVlL2dbQETtaes0XBsTsWqYlzYn8kUZPUHBgF5Mub7PrtwEiZJyC1TIZzIL39adhokFU6FzT4bsv2eD2xaheB7TUH+yHJrsXIUJMMX7aDCNKyGRKwR3vBqqNviLjjjrOd7/fE3xSjWw2p6lLxQ+OyXp8PEU5fDuDLATwE4E0AXjcrc9Vxh3v2APzjCcu8A8B/Tv39VgBfDeCzAXwZgADAIwB+GcCbmfldc30RRVGUgmk87ZllDyF/Kv4bVWe408HD/+b1uO2Nb1no8+Ef/r/gh+9D/IF3g87fCO8pz4G5+U74z/0CUKM1ewVrxZwnKsdA65yUrZ20CLPYm7G0v+mLEv4mEO6JiBUdTxdJFxHhTADEM+xSrynbXgbyXRCv8w+Qkb+TgHPyh21Xrz3dL1I0fksSYXp78jcZgAz46DF5zfjgrVsBPpZjZZqSneq1gNYZF5DtMjiT0yWew/fRnTLd9QIX9D+ptdUUyJf9GmwuLpyNX7H4RpglI5ct+m2FxgWRB9uD872x6eLdvVJb1FDKPzPqP1umrPi6QbCA7YGDrfnPofYlUOtsMQNT8kHnYaWiwuuqIZo5QVOUIZKejIuI9q0bBpF2HA3Ou6OHwWfuAvnt/MY5NxW4+8/KIhyN0KZAJrTGc5NslixijsDBGXk9OnbiBklk4DihLIlkjDtidM036BnjJhlj2iCYE7Yx0Lsm556/CTJmsL2h7aY3YPITXYcE0XlhV/LXjWXUkLVdyL5pAOmevUkPnORzfZExJ/GOvPERrlnolzBeYiymMVx6hyHZt8k+7u9rlvP4REBAomCTK6nUdPck1zc1b0FYKYa466KPM15bKroqOcHMDwD4lgzL3Ysxv17M/FoAr51zmz8H4Ofm+YyiKEqZ+Dffhs2//g04/I1fLHso+cEAPM8JT3BBjm5e6XogJtlmYBbByLhgSGv7yyjj2f/930b3Ex9D886nzP3Z4EVfht6v/jQAgC8/jOjybwEAwnf/d7S//V+Cts7kOdT5qHqpYYiwmh4lw2CQAehe3L9fnv0NcPs84DVBHosI2bs+XsDymi7TcBERzpsu5JKz86JjLGxbJgIqhwCCgZg6muWaFl69Vn6iq2nK+TFnEDARyTEgA3Svyb7fu3ewgI3kb9MAbz8BdPyYLBP35Lv19qRUNIz05yXKT1R02ZcL4TWAiBf/PAC0L7nKZa43bZLB2vfvuHUTgGBj4O9KWj4l/iIiwNsBOJSzywSAjTQTsiaQ7YFHExmmsXEJ1FTRVVGmocJrGQTb0qB8XbJxbA/oLVmaoeGaoferY4x2oD/l9Hv0TYZZRBRyAhLbCLj+sQkLR8D1e8DnPgO0SMZlLRk32RvzWvsGZ7A4Y8TbkAmj1wSMB0p6H/jN4WRAWDfp9MG9Q2fMxBguxeqOI0eLi3Ct80OReyfwmlimByP3oxjdNuIO2GtNnyzPrhwz5yBcCV8TzBaIkkhicgOxSZ9Sb8pnWfZ/OiN4nGicRO7mwiI7yGVk254TbseUdp65imCQpdovhZwY8U7gHnevnSnMpWs3a7ToWhJsu8hlNZQrDRHIFHiM9PgriqKslM2Xf81aCa/04Cdw9omXFv48EyG+eLvE+l29AtNsoXPPx2AP88zsqjdHf/5nM4VXjkIgjkBNCbyOP31PX3Q9seyjn0Lnv/44Wq96XYmCSQXnH+wCfOMu+OrHAbbg3dtFfGOWIPdwQune6AjYPwLIA194pvhsWudxojwsJW17FhXhZpTyNcFy5YXJd+tPxjyjeljymYUCqsfAPOjVaRoQf8u0xdnZ0E4UTxJhwsPJQeO2J4J50ruVo5ESxRboHYgIm1ciA3nzBTKTC2Dh2AX+t5woPCfti4DfArGVam1JYAxbwDfOLzRmXKPi/qTDYAJU8lpWJpP1nr95M6ixU+xYlOVRX0HpqPBaBkSD0qSKkJT7SOO58jY2AoItnGrnfpZsV46Aqx8FewGwfTtmite2Cxw9AmzenNMgK07q94CTyOnW2dQbTj2MDiXLK9l3/oYzOPlEw/nRnxhmlkn80UOTx7FxESeOS+uGwcT+xJpTAlfcmS66AmMyFeck7qJflhcAGjuTDW4busk0hiMsyf208AJZmpw6bzl2hprF2Os/KW3MC95LE0Fy7DiSTNBl7ztOPJ23LG9/H9Kg/PE8ZY+TrGpO95MdySLmyO3fRTKVXeZ17yiHfaRUjsau+91VFEVRFGWVeDfdAtrcBh8u4ERfQ4gZ/iOfBOCcV+F1NG+9AD7/TFAcAYd7ODqK0f3Ex0sdZ1l4Z89h6/NfMnM5++gD6P7c62Ge+DQ0X/Hd4OvTK7DZj38A8V++B/6zXpzXUOcjt+DXjKRMVmYr1a1MA/02MeSJINe9IhmfiRgVHp7s5TkJ8kHnnwbERxPfB41pCeJvnhxo2mYGS2Uu25ttcy5lt7HYpenyutPWZ3uAaclnosReN4DfdNntSf/UOeiLuC4r07ScP+CkjcwwwN4n5xM0+2MPxVc0qexqInIuW67Za0u2qw3nEzC8livpTK5yF0smcFYfc2MHaJ4V35I7hpSugAVIYIHXBKIF9p9p9Kt2qS5TN2YdMAK2bgGpr0BRMqHCa1n4LaCnwutUqtA/sAoEO4MyqCPw4UNAsAFq7IJMAD73mTIJPHo4m9P8+BFw+2I/S3alrHgGxuGxlPMBy8R2WllcjgclVnrXwc2zoCwCYm8POH508vvkod9fkRrSK4Nksjyzx0TWSNElhFcRjkedPDOM3nRpXrgeL7CDsU7NPB2D8QfrZAuwy6Yf6knsojCTrNhFg1iKFgyT724XMFY4gkTluqjTrMYYeYPeuzP3Oy23D7p70MoENcS6Xr404dg1z4oDQKkP6tBQFEVZG8jz0XzGZ6Hzv95R9lCqS9gDPXwfAICNQff+h0seUDn4N1zEE//DLyC44WRGMccxev/z5+E/9wvg3fIkeDffifb/9lOIP/o+hO/89Uzr7/32/w3v6S8EeWVUyFrx5KZ7BRz3ALAEIk/zFaRF4e518btk6ItI5582vYRn2idDwSAwO4tA6WX0FWQtIToO0xjTxmeaTyVylb4gQiE1kAST9ysxIZgvCNhL2f5xRzItyXf9UZNyuEmZ3BjYvBE4+FT29aeHD1PsWdg447Kl4/l9Y9GRayXkrs2s2a6NXaC5K76nGecLkwfEC2RHky+JI1piuJ4YH4hHMvETyABbt4LUV1Av9DIsFRVey8JvORFIycZpzqga/92ZGTh+GOg2wGe2ZNLbuewiHbtA5/HZq2YLHD8GbN6U85grCIfZy+rEHTGg4mMAFuheBjfPTf29YrbTRVcAaGzL5NiVM6ZUNGFu0Px1fznugYYybh1mzGuTVzLhdSuGI3h2tGm/BO4YJhp1tj+xn7uEEUcoPJp6EdF18GEnoMJFXE9YV1LCJ8mIzXw+EWaVZ5r80QmTcaX62B4AcmXJabiEdfO8zE+UeqFODUVRlLWi8YznqvCaETpzAxAtJqzUHXt4iHjv2tj3eO8yonf/d/Bjn4Z55T+Dffg+RO9/B+LHHgZffhB4/NMz18+PP4j4Q/8L/jM/N+eRZ2DVc5u4l128ig4lULF7VfwGNpSywb1rkz+zfdts0dMEYsd5LfHn5J6IYBbI/nStl+JjnPAxeO3sYxy3XBKQ7m84oXSWKEzjM0w5Git8EwAYD7x7J3D0aCZxfOaY88TMKTqPkt5fjZ3xVQTJk9Yxfkv6C2f0FTAICPcWG587x1R0rSdke5LpnATzRy5Dnzxg6wkg9RXUD70WS0WF17IwGUrHKsI84s86Eh6IIUAkk3AXCUlE4K0nAlFHxFMA8Br9H0I+zNhHtHftdAivk8TISX1QRgW57hWX+TphPeMmuifW6QMbN0k/2LlL8GYUyObUXZkZ6F0DN844gyqFaeQwYWY3YTezs19NsFgUrg0X6x3DNlsf2UXJU1C30cnjSr6LcnXn0zzfY+ESww62EjEbHS8XOa2UBA/ue15L/m6dz1bWXlEURVGUQgnufGrZQ6gN3D695Q7t0SHu+wffhDNf+43gsIdLr/5n8M9fAACYsxfhf/E34rFf/iXQ//rbiI+OcfjRu2GPjgHP4PYvfW6mbcQf/pOShNcVlxqehN8eL/Y1tgYlhjkWf8zGDUD32tjVUHNnts1Entjyiwh+mexAu0Av0UDG47dTJYZdAG4eznyOU9mbM4RI0wSi+Xs7E0vmK1+bsxx59xrQ3J2e1bswlLMPYoxvqXkWCLZSwf7zbI+X+97hPthrS3/JxdeilATB9u9XHGzJPWDrtvHJGoqiTEWF17Iw3vwlOE8rQyVGTynJJN2GMuH0AsAEoNY5yZwel1VnvBokCq8ya27MlI98KfHSeTybAdK7LsunYNN0mcMZMowb2050nRPysmfrzju1Tc6dJEKXPBHUgJwPjQV41tjKyKBc0BRI95cZt04yJ0sxzTsurzXFoGVM7H07c9VmOdG1jxUjPHRjWKR/jlI+tge0bxrpM63UBUKxQazqLFEURVk9we1PLnsItcHOtC/WG45CXP2lnwcAdD/+UWx/4Rdj+4tejtaT7kLjr30NDv+Pf4Po0ZFSzLEFmm2gO7s/JduyHAoVOK7BtrQGOvz0yYDaE5OvpGfpCBs3SbZhlkBV8gAsYKNNCiQ/uYH5xTcvAKJwkPWWJEWQ79qX5ITtue8xrcTzEutfNCA63QZpHlrnRbgdt7+9lpxby9jj5Ms2kgAFMkDznNseAaCFgv0ZxpVwntCHeB7iYyDYBoMBazXprrYQsP1EkPrla4n6CspHhdcyUeE1G6aMniIVha1MYLxgMHk0wXjhNWuvzzX5AWVOTyqTtE92vVohk1G/hWQiCpDLHrZAkPQooMETedJfl1KvQ8qukAmk/Arc8bAhMk1qacFbblbR1d+cL9vVRkDv6vCLwRaoP4HPvq5szBLal9jgosbUwmIhy3VnAmfwuHOObT4ZoH7blQ1eZiWuR2y/X2yqN25uWCBoy/ptNEeAgFIJyAM2blTRVVEURVEqBLU3QI0muLdMEN/pID7KQSBYE44/8H70PvUAdr/iqxE+/ii8rW1sfNZnY++3fuPkws2NTMKr2b1QwEgzkHPGa99XwCSteSwwsD0Z6HaByAXVMsSH0N0DjjpAeCx/Jy1gEh9D2HSvu0fnENz2YK934N3yRLG5uleA5u2YbdQtaAebIHuGrAmAeA7b198YCK4J5LntFZEFOgNewjDO6hsb3eSifV7JSPnfJFg77oq9RZ74jpYKgiZg45Jk8o7NZmXMOt8YcPuEpXKb35bzIzzIt5pVUr7ba4EpcGNWaoNpgjZuVJ+8oiyBCq9l4jW0RGMmDGqQurk6/A2ZJHWvwTV/HEwk0xOZrMbKKhujx2FKpJw9IZyL40czXk+p7do4WznmNM1zYK81nCG6/4lsnw3a821rXjIcc2ZXNiY6mrC/ipxUudK+k6JGl5qIWycyznmvsJGUV12kTDEl4nvO9/E8yh8nZaT661lWxJ2FdYEM2vu1NphARFejU8FaQwCMhrEqiqKsE+T58O+4C+FH/7LsoVSe8LHHyh5Cpbjldf8atnOMT3zVS0F+gI2nPRk3fM2XAVGMx/7n7wOhE96CbO0lzM13FDjaYfjwIRGBOB4fWL7oei0Df/Xe3NY3jfBqE3ThIrwLV+SF5hkQZbGNeDlhMQuZMjfJZeiGJ0VXINfjcoK4Mzl7l3GyLdI82AgL2anHj7tyw3Pa+9ERYFqDClVeINvmaPn0s+a55QXMqAPY1H7O2t94UeLO4kkISjl4LfEVVKXsu7IY6isoHb3zlYk6OzOiTvwBrvwogL6ASEhl7bkSp2kxdhbNs7mPciI2XG7CPJUV3PH9TRcJmOrnygy0zsn1TAaIehJFi1TWKFtZLg7BlIqsZTtBKKTBM+X8zTgaiMbjKLoGjHXZl+OCKcgsJzj2+5bOec+wsfve83yOnfGQ9MrJIXrTa2Io8npR5u3dk2mdJjWk5D9OeE6OZ7RAPyKlHEzDia4avaooiqIoVcS/eKMKrzNgP0Dvk/eXPYzKsPG8F2D7r30JOh/9ELjTQXBpGze/7Jkwh48D8HHuNV+D2NtC93oPOJpdpYa2zsB7yrOLH3jC4UPA0cOzl5uXFTmGY+8iwg/9L2y+6umDF5tnXNUhZ2smrWQSm5v7/wim4ZbPOG4y2QRV8rKJh15rvOCaUHRrmX6p3FFbmGXfLNL/1n2ezjwJfO2eMeue/jnGAn1Kw0PAi+XYBFv5+FhaF+R4J5mqC8CJr9DmabcnLZJchS2Q+L5sV76/1+pX2WPLIK05XH38DaB9UUVXRckBVf7KpLEj5Us0m3MKa549NfOHjIeehpenlNCUWp5jAHG20pGtG0B+wVmYaYqcYxU9f/PabtKcyqokDwjaoMYga5jjnvSB6b+QWke4v1ApVm5dmD1BNRlLhU7rxbKSKERnRZI/xnBb8iBy5PqwRJjrvsERQI0JnyE5zokBPHq9Ac7IMPNv98SmFsjYPbGO0XvCshggOp5sqAdbYpznuk2lULwWsHFJDak1Qv0XiqIo68fW130zjt/1O2UPo9LQmRsAvq/sYRRC8wm34ImvfJn7a7SljjwTD1eQijcuAQBMu43mE27BE77p5TCHD/Xfp+4BfBzAD4BwcxuzwkaDL/5boI3tZb9KdgqamxKRCE7L2llTsK1LOP7134Z5wp2DF5u7oFEheesJLkh77EDn7yeatW2UCTJmbU7ZR6bpqoUVOPG0ofg1jD8sABMteX5I1S8682TwtY/N99HuVfDGjaB08H2CaQJ+E/2g+36AO4lvgAxAweDYLrPrTABaomocg1wQ/pjvsQhkAE/8YP1+sqmsbSYfCFqAjQcZumq0VJ9gC2jdoMdqjdBDWS4qvJYJeUDrLNC5XPZIqktWMamuLFLeNEoyRidlSybMmpgSsHnTfNtfmpoqr14LaOyI0ZbeTmPrZJmXBfuHTGeW6Np0PUMmL8fsRPlppZUb2yuKQLRL6ZNT4VjuG1lKSPcF01gMUa/pdOGkD7DbZ+leq+TK6SZlg/rXGcvnF47CxfJ9a5jzF0BtOIhUHffdwoN8t6cUi78BtG9Q0VVRFEVRKk5w+5Ox+Te+EYf//b+WPZTKws0VtsxZMabZgDl8ZK7P+L1D7L/t19CwV3HH1zwbOH5o4rLUmF5qmM5dgv85L5u6TO4UaYcWKLxy6xKOfuNtADOC5z9HXjQ+aKw/Zpq9t8D3z2I/zspiBcTGzSTOrsBXYHvjbZU87BfbA7ZuBQ4+NXtZf8NVNOuIz9bfcCJrylcQHgC91D5r7EIClw+c8BqIGMuxZKyWFKzM5EkCwDK+ihMrTYus3gm/GBHJ91bRpz40doHmOVXqFCVHVHgtm8aO/JAvkAV3KvAyRvCdJuIZk+asNM+BskZI1oGiJgdeeyC6kgG61+X1xu743hrTxpH7GA0QbE5cN0dHzsA07h4zxTAjD7PF+hxJMkiLgF2krJ1SdtikMlyNnxLMZ/RCPXHMUwsva8zHHcBvz7+e3LNck/UGgDFAw/Wk8ZyDJjwsvsyUkj/BlitRpYbU2qHHVFEUZS3Z+ZZXo/uXf4rok3NmaJ0SrF3jyliLBGRGXWx86m3TKxxlxH/Bl4K8VbsLC5zP9Ksi5YttOtE1tvCf8VwETzwDAKDmueH2RH2m1RBe5PtPWR/5LnB/gq8x3eYmPgbiKfak1wTiOfucLkVx5wIZH7x1C3DwICYa/u2LoMR/4jeBYBuAFTt4GqPZpOkMZttbbs5+/Bi4fdFll2ZDvh0B3QKSfYItIO66bF4rGa6mAdielhOuI81zIrzqsVs/9JiWigqvVaC5K878PKOP1oUl+hcoM/Bb4OjYGXU2ZdwlJUJctl/sMt6SZYaWTy0LDDIIyTv57G+k2mhyMSJk3lDQ78nBNh6IW41t0KTiTNMMOob0d5lUXmgcwTYmGlTB1nSbxEbZ7yvBzmonyBzjZK/XHK91dqV9kl66acZFy+bRozXp27PMvTzqujLhGfcFeQVGzo6WMnL/b2wBcSSRvEp1aOxASmO7KOze9cG539iVft466VYURVGU2kDGYOfvfTf23vITiD51b9nDqRzR4RoHry9aCScH0RUAvDueAj6+KnPJ/iOxq9xz1AXCI0kksBbMsVsuBqyrDsQ8GJMXiABqAhF1TdB/jVs7bt3kyqnmjCmgKtXmRRz9j3eg9fV/C7AMsyXV2mjjxlTJ2VGmzMWNn61qUxqvJeLXic0Yl706ZV/GPWRue7Zql1x8nCptnDcMMj5w5k7w3gMns3yDHSe6pgj3l99sbx9oXxiIlfPCEdC7Bm7sZJKlGZBjnFfixihJkHtyr+JIfAReS/riaqB2dSDPJWyk+vB2rwzeb11wvgRFUfJGhdcq4DWBjRuBwwcz9l04TdShx2u/BmmpozjBLONi736Z0K6K3TtTgheJYZEYbukJQF84wGDZoaxC4MQ5UYSY4LVdf5FASvMk0YqmATCD+/13R4SpaX1Z4o7sc68h6x8yJIzr0cKp+wABXmvK15sWMTsH5JdUetSmtlvE9t3+MU0Ru+OeHD9KSgUXsclYjmNSkhjxeGP4BO44Gh/zia75OFfGjmfSutlKJmyw7UoNV/0evY7QoPxV3JH7TnQs4mqSBR8eyLFqntXo1TVHD62iKMr60nruC9H4P34Gj37318Nev1r2cCpF+Mh8pXjLwGy2YXshEM4nQvAyLUgyQM0ppYY9H/Sp3wU/UFxP1BPf7qan9sVK9poyn417YmsbT+yepEqRMRiygZnF1rMWQJwSn8WPQES5C6+2dSM48uDfcRe8C22Q52zZrVtcm6JNnLDTiaaX82UGTMsFrtNwpio1xIdgw4EPgXwRvcdNBGfaunP4ESaJu0Vju84/YuSY531J2Ai0fauzqS34+j2S6Wp7uQUwDMPA8WNyHjcvAJ7Lws7ik0sSUvyN7N4f8gBbUHKP15rsK4g7AAjst4FYs19LgTyppAYSXybH4itoX3TttXggvLYvSkKHsrboJVguKrxWBSLJfD1+rOyRVIwKOvTTPTyTCW2hAsiCTBPSmAuKHpxC1AWCdjKAEYFy8Z6fHEfgD/82cO6Jsh4vEMPK+IDnno0YaETUN2KnTgBNIBMS8iRrLIE8ieQLZwRIbNwMHD2Ek1+KBj0zw0OgeUYyYI2RSXfn8eFIsyRjs2hRP9gsb0Lcv4YS4T33DUhGKEME2KHs7pwhb2AUpe8H/obrqzMSRGCa8r0XEYLJd+V+S7xHEsn52tsrdxynkeZZmTMAcj5Hx3I8PNcXvbcv52I7JcQqiqIoilJLzM4uNr7kb+Lgv/3nsodSGdjzET78QNnDOMEtr/p6NHbaiHsx2lsxKDzGJ//bn6B7X4aekikoKNZVN239dP5CcUGqk+CUHRh38xP6mueA5g7wGZ8HinvgKBK7OwqB7hHQOQCOrgFHe5n9Ody+IPPszV20vvTS4I32BbGpZ4ldwc74srNEMjaG8wPQoPULXLCl1xr4cYw3XSBMfBdLU6LXvu8zmt6TeGE47h932r0TOCowmGPjkvgFQIPj4jVEIOtegQSiJxWnCGhsy/EnGuwHtmDmmb4bJg/oXkXmjOZ5mdk2isX/4TVXfy9RJIM18QGwdb4Cl+jBVgK0vSbQPA/4rXLHqihrjgqvVSLYEgd2GdFklaSq2a48YVI+SyBzmZ1JFlzRTNt1ZFY/AYqOUsJrjhxeBo6vAp1d4OjR8cucuxUI98DJObV1qxNog1Q55OThDBzLgEcuUtCVSvKCbGVkbQi0bwSOH5q+XG/v5HGIe4PexrOMPxsOhJYRmGdk3w5RRrbrKFR8xj8BQBItm/P5n0xixxm3HIuR3L9HJPeCpFTXaAb3jECOonq6nthGFkOdJZuydx3VvF+vIY2dgegKyD0r2Bhexmv2y6Qraw4BMAUeZz2FFEVRKsH2N3wrjn7n1zXr1UFnLgB8f9nDOMHW2QjUexTwALhEtnNf+AI89PMzhFfPw/aznw7TbuL6H/4JTGO8jZcX0zJqzdnzhW57LFFBdmBrF4iPQV4L4AjUAMQN6gNbbQDnAXvLsE3eukHs0kQDYwvEMTjsAb1j8FEI2+vCu/FmgA9daeUI1NzN5isI98R+mmb7snUVlKzzRfTfGF5mGl4TiCbYcxRktyerIJyRN6Fnbo6YAGifB3oH+fpkyQM2b3I+uDE2PlugcRZ9XwEB/epTHA2b2BwD1MQku5uT6nFF9HQdIqOBEHfB/oZmvq6StOgKyHmX/ptdeywtLXw6UF9B6ajwWjX8tgqvCaZYY2MxJoiuHEHK5ToB68QyiciSmrQWnSU77QZYRlnZ3p5MZHOG9x+fvVB/kpcqDxwdo28Nj7J1K+B7QJSa3DfPy+c4Hoi0o2WG2fWutbETQ7aH+4GMTjbHGTGey8oEAPIWmqCydVFsWc4v0xw6H6SXre1/x5VMkJPyUKvYTrJvTTAQ1Bch6V3c73M0a1/zyPOU7U5clxNtixZd58bKb1dUUP8YZYDXkkz5mctV8fdTURRFUZRFoaCB5rM/G8fvfFvZQ6kE3KpeRY/2U58M6p20L3fPHmP7+/4eLHu4/N6P4OofvGfo/Uuv+Aqcva0hFaIA3Pi5Xydz66PixJOpNl6roOzCaXQPgQKmr5TYuVNt2tHMUwxXByMAPkC+D27vwJxrw8Qd13IFrsJWExweg6Jjsee9hth0jc2URsbu/5Hrr2oAmmaLjrOPU2NdNKOV/AwZiw6vPSwmmwaGRMGVsIqkAQLC65Jx7AWSbdo7yCakj6NxZjhQdurOZgz5CrIkUIw5nyXL9cqMbeXFHP7E6GhQeUwplmBbHtNIV8lSFKVwVHitGo1dIDzSXq+A6+dQNaZl4dpU2VQXQUjuEuP45OeKLk08dW5XQlgKx2AYUN4TrkNXnptcduq526QcT/cQ2HvYLTTGmJq0f7afONzP1faA5jlQIq6nytEALqpwnBBmNmTC3TgzKKPLsUziOS3CkRNnXbnZZJvOSJxaSmZMpDKzK+uSdT8Hm0BvHxzuuezedPlaAm/eBDIF/FQwD8p2E0vASVEBAUkJ4LRxmBxjcn11+/2Gp5G877n/FnENJ0EaaSg1/lVllc65HRPIuR7p71ehtM5jqNy9opzoi17A+hVFUZRKsP13vwvdv/gTzXrFSBJgRWjdcmnie+bwMRgAl553Ef7Ol+Cx//47uO27X4nGVgN+99G+6AoA1DsCesUGNLKdPNenoAQ/zOEVoHEu//X27RISYco0nA3NoH6v1NFMxPFzH4YLvA73AX9TBI6kvUf3KqjhSgjbHpC4BzgaP09rnHWBx85OJZJ1xV35OzocZKT1ExIIgAuQhjdxnFNhV2XKy2BPkAfEkevx6kojp+088iD+kSKCgl1ZVILrg1pQr1JAREEOnR8Eci5EhyLABhvol2a1GYRm8pwPaAuF2O100i/DMLKfVlWBalLm7jQ4BnsNwMb5+wOVAa0LWvFKGUF9BWWjwmvVSMoAdNVxLb0sKsQ8GaocYmyvx1UybWJYtX3rmFbyaCxRCBy5pvBBCzh7IxCmHBE3PAnYHxMpbHwgHnNctm8bRLcmEaztG0D9YzjmR+VEtKiREp82AqUzbAHwqLGSkPRVCHZAtgdgEMHNSSlkOPGWCMxWjq8NgQggv+k2w2IUhfsSJT0Rcus00sck1TNkGAYOHwJvXAR5OUQ+J8eXPADxyT7DmcvbZiSJ5rVTBMu0oUj+yPU6UhqYyH2HGGLsFsBoGfDkvrPSLNdFsvFdpK7fAmIPiCdkkyuLQ15FA5IURVEURVkF/g03ovm8z8Xx7/9m2UMpnbhToSphhnDHa74ZDdoDwhlz4KiH83cEOPN9fx/GdkGzWtMUBB9PHqd34w0Arq9uMIDYo37bVaWaRmITY1CBCOmsVho8N7b7di6TD/QuDwuxGxddT9VopuuYmQHPB7rX5IW461p7bKb6gs7IUAUk6NdrupZBvnwmKSfLsevL6RjdF2c/Q0Qrf3OwNa+Z+s6OuCfji46H7Wtm2WfREeDtYmqgNgWSFRd3BqLn6NfjWMRjr5lP1T52NrcXDHwaaUwjX1+B15Lv1rsyYTyRCM+A7AuvCYSHqQVI/Eo2EoHWJHZ8ODErdWlM0BcuOfHprCzLFQDI9Rme0zfBkZS9JgOmQMXXIvBaKroqSgVR4bVqMGup4cqRlA+ec5JXluCaMDpR7UNSNqUMOB5fFqV3sHiZ0vaOyxIPATuyju5lKVk0WkpjXMbY5k0nRdF+r43+SKePxRlBZEPkFflDoxm2JhgYfLIEmM6JINPbl+hMQAytpMRRQuMMwBbEVibqx49gNgwcPQJuXQD89gKlh50Bks7WnHgt5TRRNAH6ZYUZ2SegHKVEbmCoNHGyrv5Qx2Wm5kCybxIjeWUlnFIs2wPaC2Sfa+nhfOlnZatBpQyjNraiKMrpIL56GfFDD5Q9jGpQhb6TAM6//CUAgGaUxa4a4B0+PHuhoiCD6L5PjH3L3HwrjHdYTlVQ08TJVkAGtDXGTs9C37bDIBN18OZAMG2OZtqOsfn9TaAz0uLIawEHn54xiCSIl4BgR2z16AjwN8YsOyM4fqRqFwEDWz8xs8kbtvHJl+xL60oDJ76C8MAJNam1+S6zlWMRFLPYcmzlM157scBb40TouDv4EqPB2f1lg4EQugxeG4gO5uyD6oKMm2cA49oNOdFeBPRUL96kbVMRYqjtiT8oyZAuowXRMlXK2AKIwSZwFeWU3OAY/dZnipJCT4lyUeG1ahDNHz20rvQnLKUOwj2qYdhlhUFAuDfmDVfetaxSoHFnfCZmsLG4SJOUW3nk48DORWD3vCuzkl5m5DOj2cDNMxJBaVzJHnLrNb4EoaYMEho1kqKOTN7JH5k8jploLzH3ZsD1JR2doDLQuTw+W5SCgTHWOOsE4eS9Oa+tzuNA8ww42J5DfHVlmLM6RpYNVkgE12XWk3Ws08pVL0NSUnjlRpT7QhTkI/YaX66r8Hiy8azMCQOdK0D7QtkDURRFURSlBMzWNnr3fLTsYVQC05pW3Wc1tO96Mm74zB0nBq0q4ywHdm8E7h6TaRsEaLzoOSdt6VUxth2SFZFmIf8FD4SI6BjYuCQB6NHh8GLGH+kgMzwO9jZFXGydd1m2BqAmYI+B3TsH2/JaQHN7+PPdPcm8jcPhwHiOccIdu4Tvq5/9OPrdOAK610+Wh+VYgmVtCCnr6w9n2M7lqWcRXf05fTqm4aqMZbx2llIPjASlh/sn99E82G5G12CB94PetWLXP0q/kp+Vym7Lln3mCIgt2GsBsKnqcspS2BDo7Y30FlYUpWxUeK0ii5RuWEfiEPBzKG+6DPOUF64S40r2MktEYXdCKZVVEB5NKIFLi5eoaW6JcEsEHO9LpGbDR19ABUSUTJfK7TkDKHmveUYm4v1JuAE8Z6ClrTCvjfRMmxmA1xTBteiIPa8tBlNS0igOh4/luO3HxxKdaxrDoqt8YP4xdK8BNgI3zoCMcaWhLcDkxFhKGYx2AYF/kQAHGgjSS12rXmr7ZTlOTIHnUar0FgMisrrM72S/jfbBXRa2cg+nNtA7LCcid90I9+VelfR8UhRAw1gVRVFOCRQ00Ljr6eh98H1lD6V0PK/c377NZ3wGbv2KZwOdMcHOFSeOx7gBPQ+tr/xy0KSyq6sgmmArHHwaaJ9fyNZjE4hNYiC+hsZ2SmAcnEOcbiNjewM7ybWiocbmQDj1mkCzBRyNHPtgczjrk3x5LRwj9I3z18ycz01+nx/4KPij7wW2zkkfzdufBjpzpv/txu67qCvj4+ik3b5IRnl05DJfu+jb1eQP2v6QJwIvIK+Fc1Zhm7ctVbJ98iQpIZpUEW4WRnxYNnQB0ln2TQFVikxjie8wDUK/z3C/nLMZJCUkfYfJy7HXrgViEenZ39Der3nRvSIBFWMz6pVTi/oKSkWF1yrit6aUiT1F2B6AEoVXonqKrsD4KD6vKdlSZdLbF6NpBCICB1sLCa906UnA+ZumL+RvuujTERgyHjLDE/lkYk3eiAY3+IPJiGFFRiJMwVLC5/9j77/jZEnT+k70+4RLW77q1PGnvZnu6e4x9JiGMQzT0zDDsMCMAAmEECsQ0r1IrPZeXaGVQYC0XGmlBRaQuyvpysEC0sAuIGaAgcGNn+kx7c05p48/p7xJFxHP/vFGpKvMrKyqrMqsU+/388lPVUaGeSMyMvN9nt9j6uuo+dfx+s8QjcMO9oSa7R03KTucLHWc7aNKNTai6yDFtNo61NZRL9foM5udS8o5xyZjcreBIxolk/0enzvVJLM1TLKdkzLGO55LSD2j2RgXzX1VfUj77fQax8CJO2cu7xZJAhDSaG/i1nG3H2e/vu80NsERcW1w5YedDPi5huGrmhjDyXnezsFLke0Bb7FYLBbLUSV4+I1WeAWkOryWFsXHHubUkw8ih1B0BYgut5XHFSH7zR9AwiH7Cirrpk1QO2n/150KdWAyTrfzMWhkSs+mpP87PuSOJbZ0YkOJC5mpbfanJjMwLJn13WwiADqmJ2rdcE2C/OvB4tsYtGEJdTM0+ocKkoxLr70MqzfMA9DVG/CWp5BMpwuaEJVMkOwg7aZUeE772GqYiK2x6V8bTO6+tVpU6sNWdpKSyRXziHeZ3ermzD2nasRGjRPhuKlHby+fbbr+IIlrjb60g8ArNnyeqm0CfNxa1nk/Ew3CTRAPTfrl7ry11VY0rYTWvK/UD6LxbSzyapLANOxxWCyWFPtxHEU6ZgQeRdJJ6QFlnzVPjDTcJ2Fl/1GA8lLTgiTTddiiK4CGaCpOits6qRInyVw8IMFE1UzK0x6q4mIm6vmmCadDW90hc1sIjYl2XDWTXzdrjIl2cnNNT7aZREZlk40rrhEgoxIEEyZqrQ0B1CtsL2TFlY6TftEYdYLdl51uL0UUlZPrucdJbLfPnWoilIaN0rWyy5+wNEN2S9nm9FjpcqcpC1S3ruMk74vCwMqRazQA8VUw2bOjFDiSvH/BBCAm8rtTBmzaX9bJJN/DkflsudnGfhCMiNwslkujl3MaSBGWhldWfT/xC8MegWWUaC40sE/7t1gsFsvokH3T21n/xX897GEMn+WDtW1Pff93UFtaY/KBYzibt6Cyh3Klw6QwQ/ziM43nQUD2/d84fNEVYGMRph4yc/y0/2qCrl9DMmPs3DfUx0Sm0y6Vhj2OQpzYfbm5ZJdd2gqJa4S5VCQOS0YAzM50FhyD8ca+tvM/VdfBLSdCpmlRpv4EIrp1Mri5gj7/BeSRt/TeZ7e+snEV9pK12XKuiXgp3t58BRqDF0DYyU5WIySGm40kBDfYXcubzEyynw49azVuLPcnjA1aXd66Xm0N/LFG0PhAfJpJDywns7dWPqldPUrtgDQ0Qq+4iY9qawasqjbsfKcpk7qepZuUQ3b83j4yN2d6IUeh+ezcblhfgaWZQ+IrEJHTwD8AngJmgKvAR4AfU9UOjvaO+/gp4M3AfcAspmn8hWQ//5uq7qSx98Cwwusokk7WdhsJdjshckACaFp+5Xb54U0EF9MYdLjlhdupriTRn15z/qgxYtqjR8uLHYQTbfwRgK2iZAvimBXbsxj9QlKKI5eomLH5v+V4bfeDuBBttIli2/zStNsr7WU/6tGFtaZzixrRoqk43eFzUM8U7hX9W1tHg6nOUX3+GFQG8NujTe8J0d4EdK0lgmrb+Tr+YIwD6dQnt+tgkmxap3FuzbT0zPUZrPjqdxYmtyXpOzRSomszSd9sPwfkaf1wpNcvDbjJNP0ft+2j1yGSdb1scozYBDTcDrSI0BaLxWKxWI4a/r2vQwpj6MYRr5BVK+PNHSO8eWPfD5U5d5qx4hoUgY39P95+EnuNKlAyPUvm3W8dbnnhZuKayeDUKhTmk4VJRqebQyvLNOwAQbygg1nQbr/38DirJuVUSYI+o0YAfnYKSrfAP14P1NbMXPekVHHA9aBWaa0+thOPt8jWdiKKES3jKnV7qNmWTcfjdQjUvvex7e3ytI1JO2kg7CCCWEUS+yw2JX/9iT0Ef3cS1DSpBLaLjOh2MtP9V2hKzyGYMu958znFzW2hBLKzex8bYBIYHFPRbTe9at282X6URNdmNKpff3X8JIFAGhm3aXBD3Vfm1UsW14m28YPUy4ELKh6Ij9wuLZH8sUY5b4vlkCAidwN/AhwDfg14Dngc+GvAUyLyRJ+i6Y8Anwc+BtwACsBbgb8P/ICIvFVVXxv8GfTGfiJHlb6FgducgxBd630Ob5Nr3hyZ5/idszCHSmJ8bClzqlsizpS4t4Ck0FX49PJJlGPNBDKk/TD8AkRxYyKcbu54XY4lTVFjaT9R2SqKiWvE47BiDIpOe3LcpBxx80JB3ULnSElxm7I6289TzKS0x8RKVSEsA57pS9NOJyNrNzgOxE3CWFwzkYeDyjYUd0Ci6y57mGrcJL52WyfphTKw7LAdfvdJev926eEzkiQibMflnf7fDcl9GYybUueHPbjGzW5fhsxy9LD3hMVisRwZtLRhRdcEf/7Evgqvwcl5Jh5/jIkHT8Pm1X07zkESXb9W/z/zridGR3RNEQ+obLUj3ezWZXEfoma3OZJfhNKSKUXs5k1wOEDumLEZSzfTHQCgOEbY8yZa9+P4pqJPXEWjmvEFOM2VvZK/4phz0LjtPJoqvInT2X4OxqF8a+tyJzD+MqHVFgd46OuQrJfY5F1EJXGMn8TxOx93EKVyVRrH98eNz6O2soeSwx0q4nUTIXfqiwgmO2e5bkdUNtm2XT9Lasbn5gczZ9d4h+KaY9r+RFXjwzos5nBcAzrcu82+jj35cLV+DHXz9USIQZQ6Hhq2eqalE6N/T/88RnT9YVX92XShiPxTjJj6k8Bf7mM/46q6pRa7iPwk8KPA3wL+ykBGvAOs8DqquJnB9cI7zEQ1U04EqNfoH2RZz90KMSNKS5lh1a4C4FDpWl6m0wxwmx8Icc0E0s0nGXTJfhQj1KWT/GYBPw7N54uxRrlgcc3EPzUuUkHSNRl3ojGgxuBK13My1CMO0+HENdTLgDsD5Q4BOdsFErQbN8FEcsu7ifhHcpm0EanXYZ8ahcaQXLtkDI7MJHria7ZOIjVOSvLsITo0N4+kgSJpyWUSg3LXJXOb+5BK//tQGhG1Iua9TjOZ99qzWeNtslAdEzGt0NKrZ9f0s4PkhpBuQQOWFoIx6tc1LI9upG83/LGtUfAWi8VisViOFBJk8U6dI7x8YdhDGTqZ6Ql46PWgijc+Qbi6SrS+RvXi+YHs/9R3fiOZ6MZtI7qSHSN68SUA5Ng8Uhsx0RW2Coh7wR9DCifRyiqsX0nsZjWB0GtJn1vVVjdEVDE2g5tL7G1B3SyUbkBuLglsrhiTIpgwVaVSu7y6CYvPgV+s96ukeLwu3RJuGPHR8XeYrZgM0Mu12nxeHiE2nrHNZbNs7izOG99NQ7DqcD29nLEfw03z8ItdDltL/GW7tDPTjOJUzIwrjcp+tTVzjXe877ZWUE4Pv2m7n8TJQHa66fXI2PgaU+/luluiksl8rXZJepCkhRHaEMv3Qj8JKmkAvxvYaorbkWbNOj4qPujWUsejjWP8BO3V9SyWEUdE7gKeBM4DP9f28t8DfgD4HhH5G6ra84ezk+ia8H9ghNd79zba3WGF11ElOw2VZJISjEFLWZUjRLS5tXQEmKg2Z6+lPbWHCLjNlrVSW+Rg03vjpL0rmmvMmtflIJzmqTAkPvT+XhoOUX+Rh6p9ZO6JB+WbSc+ULrPXlgjOpASrnzdlSFMjQ5sya92cKd3rmx4ykvSjbenzmfaFBVNSqHlIcc0ItDshrpmSOxtXtixXt2hej2uo4yNxtVWI1JDmyE+NQ7j2udb9VJahugGZVqNKUDQY273wmjuGtIuiqeAqsOcAiXqwRZf91AMxwJSgqW3NKDY7Msv3GulVv9Yk2chNx9ew4ShIDatUkN7xcfsUm1PB1YquOyB1XGTMd8ZeDOyDxMtDblAlqiy3HSMfxGqxWCyWQSGex+Rf+7ts/Lf/QvjaeTKPvpn1X/l3wx7WUJBLL1FvwFBexAPUVXJf9042nvkq4UKHLME+yZw7TUZWdrXt4nnQWi3RVxSNEztNHF790nk0jtGoyb7RmOzcFI89eXLX4+2LJlvQPXvH/h5rl2it3Cj41Au/uL29VDhu1hGBjWud18nMmWB/MH6A8jJSOAauj6a2XeqLC0tQxoiwxTOIJmKWkwHihs3Xsw3Qaps40sckLixBfn6LzacaQm0T1i8jD74JLYzj3P9Ia6Bwe7arn/RBpUmIq60b/1q77R7XkhK+u8gCBeMXaxaYNTZB2lGVXbf5arf/6bGfZj+QP2ESOjpm9jq7K9vbTlQ2CQGIEZjTam71ctFJUoSXp6X90U59BU7QqObWCzdjjrHbFlBHkTTLVlxUvMMjvgbjrUEFFkszo+0r+Prk70dVWx2/qromIn+MEWbfCvzuLo/xzcnfL+1y+z1hhddRxfGNkzUVHtwANq8Pe1SjQ31iJEnPu7Rk6naTt7SzdJOAthuicvfIOi/bdXKj/ti+lq4w8puDmTSPqBgTlTqXuI0qaLo8joyBs+0kUevbmsjNJGM0nVCLawwJN2c+S15QN4QERcU1BkF1tZERGa6b3h7S9Pu0XZnZdlp6ubQ3ee2wOqDhhlk37cPi5s05pcJQFNFJkBNAvRyEm2hYhZXzHY+hG1eQzH0dXtjFfRJMJj0zO5xXmpmb/r+bfq9pZO12fV01ubaqyXpd3qSoNPi+mBp1vyfSyNkUcXcW5CHO9o6EXWcTW+q42cMjvGZnhj0Ci8VisVgsI0Jw/8ME9z+MRiHierjTc6z8y38y7GGNBCKCXH6R4kSAzN6FHjtFGMbo2iKl8xeI17tXFSs8/CDZ0/OI4zLz6AnY3F1GaOmrzxCvbRVtY8fh6see7rjN2H33wn4Lr7WGgKabm8CA2s4MktIqjI11fi07Y2yqqIz0Y58nWYHiF9Cxc1BZB+JGVmIwCSuvwdS5hv0ZV81+4xoirrGzK0klq9oa1NaQ8TtbbQjXTzIKO9nGnQbW7itI6eYziBsBt+ICsTm15ZfR+jiqyP2Pba3OFFWMyEds2id1s8sdr7MoudPWX6oNwS/qINhGZchMmnZY4YapvrUTf0ScZOESGV9JryqBXt4IzWkJ516V1/ymamh7Ismq7nTuKfUxJ8HzwfjOfAXbXi8x531Y7NxRRKOklPchEF7FgczUsEdhOdo8ICKf6/SCqr5pm23vT/6+0OX1FzHC6330KbyKyP8IFIEJ4M3A12JE1/+5n+0HjRVeR51UpEsnDb2i544k6aRGwE1EtzREsn1CkgoVgxAr3GyScduBHkLRgfQLcLNJlrCOprBQF9TaJv3VlaS3ipjJZ6/Jaju1dTPBT40RN9soH5yWnfWLZv/NEyhxkgjOpvclOweoCVAUGiKqeEYQdjOtBki6b6QxL9Oamby7GRBpMqcU6SYAStC4R1PDqv0axVW0re+EhlV08xasX230punEynl0/A7EazOwd9NP2vEgN7s127VpnKZM826z9IW++rpq3H+52Khq7rth9DfYca/qXuvL3ko+WZqIk96vI1iSvRk3u8M+PpajhLC/c4vRDpC1WCyWo40klXfy3/QhNn//t6i98NUhj2h0EIBaGbn8MnMffJKM3kAzr6caFVj6zHMsf+JP6+tmTp/kxIefJOssQ5iIT7sUXQEy9z6AVmutxa/SRL0uwuuBUG4IS9FLz8M9bx89m2LjZkfhVRJRTN0s4ueh1keGYuoHIAZcWLkEuWljp7o52EhbNGH8baVbkD/e8EP4RUTjpgRLFxk7l4h/vnl/ncBs7/gQ+DB1bzI2xxw7DNGwAqwjxbnG2Nxscu1T2y5ZnpmiUc2q6a/jQ+ygIkZA3+yQwRuWUcdpnRe6OZMYEFV6Z67W1jvbyju9P8Q1Wb1Oprto1VwBzXGTAPN+UWMXOdnts1TTIO5+THFnAP1sd0yaDLJDX0Gv3rVOFhxn9HyAh5GohHp5ZNQzhr3icHxclkPBIfAVpI3Tuzmz0+WTO9jn/wjMNz3/b8BfUNWbXdbfV6wn7zBhhdfuuE1lh1MxqLlGjYZbo//2gIh0KWkK2uOrR/UAmrW7QaM8c3PG5CjheD2yIHUH0YbNvUC18Z63T8LFabwWTDSyXasrpqxOes9k5xrlRNLIyPbjhRvGwEqvq5+UAnb8reN2/UbpIkiiPzv0ZAVjDEVlY/Q1iaEaR2a5KvgFxPEBRaMQXXoF1i9td5EahKVGz+SUbgEE3cjOmPLL25aBdprE40Yp5L5Q7fPzupMIxKT8t8rBKwkiuxBfW3bQyOZuLottGQzBxNagBcc3jzRqGyAtWU188D3YNW7LpLdYLBaLxWIxiAj5d38TK1Z43YI7O0PGXYEQpLJOhnWOv3GGqce/j9KVJcbOTeNuXof4xp67pKTULrxMvNyh16M7DHGniTiC4hisr0G1inoTo9fnNawa0a5XcG0/oiskQdmJD8BxjNhZWU9s/GWzXFyoVUHNeyO5KfN6ZhKqa2iT3SW5OVNmGIz90GYPSGYacpNoZbnRUzNyYPECTN8NubZeqhrTctO5+c42RhoATmzG2yy6ZqbMQ2tQWjR+CkgCNwMjIvfjQ9QInA49V8Wl0S+2DxzXFF7rWbUqNGJRuJ6IwU7/wlHa7qef0sA7yqStmus4jBZvqd+k7/WldYiO3xDy4w7B+5bdE5ZQNwdxtTX5oe5rTtpdidtUJU+7JyjsC2nfYCu+WobGc31ktu6W1v6NfaCqxwFEZB54OybT9Qsi8gFV/fzgh9gbK7weJtxs8mV+CModHCTBOB2tpP38sVOBjn08JSkN3RBaVGMz+VFFokoizCbfGeIi7g6Fr+2oiwRgJuejeM/0EBC2K02bGhNRlS0KWtqDs967Vc3515IM4Oyc6deCbM1y8ydaezho1OHadZrM9JrgtI9Pty5KM3NTIbdJoNOwDCuvNAUTuGjhOOoV4eaXk/4o2wyh+VilW0h2onXhTsQcfwc9ireU2u3z8+gE9N3zJTWm+913XB18yeG+jptkMbd/T0mT86XF2HKolwoXz4qt+46aUmPExljdEvHc9L45Dj2/v/aDqAzVNchMbL+u5eghgLOPhra14S0Wi+VQkH3717PyL/7xsIcxcky9921bA1U1JlO7TmaOzpmDe8QdnzSlcCXxDSQGm7ou43edAxFKYUwUK5lchlzgUThzijgzmdhm5sdXahvIgIOo3ek5onUTLFx79mWCe0awRKV4tPQgbcbJ9A4sL5wCFDautFaMqdRg+SYEBRg/ZoKhoxpk8rD6GiBw8mFjtwXjZu5tBgMIUjjZGqjZqTpX/a1usiVSW7tTEG67gNbJ/vWLZtvEPyI4jbXG70Tqc0AfHTuBiGd8BFGpNbO0HzpVVdqJmOMEJtt1+xWN6AqJfd6hv2w3vHz/iQW19aSfbp/7jisQjB18NaTamrkG0vz+i7FJ05ZFzf4x8TBieFpSuDKayRa3BWqSWpwM2uwj2BIgkb4/jskwP0jtvrZmyoi39I62WBJG31eQ/rB2c3aNt63XN6p6HfivIvJ5TCnj/z/w8I5HuEes8HqYqK2NoIA2ZMTjwCPSIJkUdX4vJDOJyUismsleHMHSi+ZFv9C6cvEUFI4Pdmxek7CkkYnWLC8xlOvUjW4iklfoXTrFbAzlha1RppUlIzoHE42oTvESwyct4xKCesl26fUQM0nRGi1fiSKgab/cdpp/XXZ/XVW8Rs+YdFlYhnIJbpw3EaBTuaYXI1i/bP7PTsLqZWMcxJX+DKvlV9CxU0jLPRLTd0aql0H6+Q5Kyzm3GGp9HMPNJOexg2u60/67o0K7YFwvka5t61jB9WBI7uuhlJnaBvHM59xi6YjszCm2m/1bLBaLZeRZ/5V/N+whjBy5Rx7G3Ul1oAHhSUTcIeNPI4fT4wDKJ4N5zn/6M3zLD303d9Zu4hw/Se2Z1hZn3sOP4ZauDHRs7tws0cVXAIie/QrRySdx8zto8XMQxF3szcw00qu1DiS2cQ0m74fmKk0zJ2Hy/XDzPFxNMsOLs7CR7k9hcwVmzrb0wsX1kez0Vj9cVIWg2MhshSQ4n1bhNUrtve18Ch3wx40/oHme57iQmTI+Jy/T4jsRjUGrZrf+hOll6xX6yw4Fk0nsBrQY1ztqS9SveJptFa4dB6J4m3h2L+npukH/xr+a69Xtfup0jNoBVzUCc285zVmvklROS8VUpxE8rmFSmc0dzbZitytxpc/bewj+ejdrSopbLB0ZeV/B88nf+7q8fm/yt1sP2G1R1Qsi8gzwmIjMquqt3e5rN1jh9TBhS0ZsRUMIy0lZSK8panCUBOoeE8N9EYzavvjiqhHpKqsjI+JoZTWJLNVGSU8RM9FXTQwY7ZzNqQrZiQ5Gl5qJZzk0RhBihG6NgTSrWJIs0TYDItxMSvzW6uVBSHvktrxH0vaXhoHVIpglWXGxNl5P1lGNk91HEG9sLQuyeA2+9Nvmf8eD8TeB236juLB61RhC5SVznv5YHyWaFV27jEzd3XRGiuZmodRHufs43D5DVlzMj3vzYZNMZFzqmZwAOOYc09LCUZ/9WlsPuIv1h6HUNpc5drbeg/XnaU9h28d1tOkWlLEPBOO2zLDFYrFYLJaehFcuDHsII0fpmeeIy3cQnDqBPz2GmxEk3EBKy/t74L6cnGl1rORpR3Fo8M5ScVvti+rvfhT/a9+JN6UMx0baim4ug5Yx9njQKOMZLRrbvh5w3MFZsPA8MnXXFltLHBccF508aYTXTAEmp4y9lZ6266BRraUKlqiaoO78iaRlT1LWM/VVNGfmpmZmcyBn2nYofaMVcy5pRrSmc3zF2Ma+eS31Q7TfS46D+FmIyxAm1Z/abxPxjOgKRqh0s8aO365KlIbgtAXCx1XTN7RX6eDG4LZfxc1Cpc2PU1tLqvu1BcCKl/iHktZLaZbsTtiJDaWhETzDgywTmx47on79HL8tozputBJz/ESo9ftIWLAMhahysLZ7ZtKWGbYcZj6e/H1SRBzVRpSTiIwBTwAl4JN7PM7J5O+BO1mt8HqYyEybKDTrjG8lrnUWpYMJ9s8xLqbMjdOUbVd/X4ZrsAiKtotwcQ0yY1DdGA0BX6OmbNVdRNjmepTcTA2KYGJrCSA3B1F7/9fGPxon5YWJEzEwRpwkq1ox2cuS9KeVVDAMEzG3nGybGq2RMYiaS9U4ftLHpPlcZls/06UmgyIO4eYCzE8lkykx57Bxq3WiXdswE7zcjMkG7sX6FXTyrrZewx2y/LwxE0VbXW0cq1ZCg6Lp8doNx29kGae9TTWkfk1aiA/eYNiSiXtQx03OvZMB3UI87K8Qy3bIQYiuyT3iuI3S6RZLN/azfJDFYrFYDgWT/8+/w/Xv/2aIrK+gThhSeeElKi+81LJYclnmvvVdyNrgywynFL71A/jHZ9EwQnwPb85kJC1/998C2Fp5tuNP+eCNAlm70ejzmlD7oz9A3/Q4/qn8aPiaKhvgJEJfu+28HdvZlm5SEWv2ZNLPM0Vg4nRr6yFaX0Y1CexOn2OyMNMn4kAcI/k5yM+aoGsng/BwEnydCraJveeP0drSJGgInFHF7NcJWs+p+caJa+DnTABzOkhxt/Z0jcqJiNlHhmQnX1GnezNtgxaWaHKI9d63uOb4aXB8GnQf12j4UJrQGoR79F3t9CPkZnd+zw2C5vcs6NHeaRR8eZbeOJmmz+S+HQSIbbarpT9G2Fegqi+LyEeBJ4G/Cvxs08s/BhSAf6GqGwAi4gN3AzVVfTldUUQeAJZVtWViJyIO8OPAMeBPVHVpP8+nE1Z4PUyImNIpLRNEy1BwEvGtU4Zee+Blz8nePiks2Zmt2Y9xmJSa2Rx6dJwIqJfv0Buh7z3Q89p5eSO61rNXxRg7tQ6ipHiIlzeDau+PURdS0+fu1om44/dvoHbq7VJZBT/fEONKbRGg118C936YmYHNG92PFYewcQOKx3tnr4YlUz4paO4BkRp8LhTmwc3UxVUNxkxUalhKekfkaPSqTcspSZMhGVEvxXQgAuIODxJX2/ogDxjHp/4l0Kk3607uF8tost/3tT9mxFbHB+LRLH9ssVgsFotlpHCnZsg98R5Kn/josIcy8mipjOLsWzH98T/73+HNZpB4ExPgqhB3tns9z4U0RnUL+zDCsErmda+j8ulPtS7+3KfR0usJ7j02dF8BpWUo7FJM2K4tjgicfhAcBe9YY3l+BhzfvA3NvTbdHOIXk1Y6kQl4rr/WXjI3s6Wsr7gZiKNdvpOa+J2ahdc2O7K2asoKx9XeGaEamqxqN9/InuxEWgms+YZMr6m4xp+kYVLWOEaT5/UszGAiCVaH1iphiV0cN53Drqpd7ZSdBsvuY3CtOE0BtZIk1bRl1wYTByDaWQ4CVW1LdhgQwWRTGyLHZrtabgf+CvAnwM+IyHuAZ4G3AO/GlBj+203rnkpevwDc0bT8KeAfi8gngJeBBWAeeCdwF3AN+Ev7ehZdsMLrYSOYNJOWg274fijZR+94mtXn5gBFiaGaTHTTaDWNMf0YAmTqPiNMOYHJkgVM9uL+CECCosUzsP5a2yuhiYoM5YAmuj0IijsXXvPzSU9P7W2HlhdajBJ1MokYufWekMl7zTg6RYBuOc5uyto202EiH1eBpsjZjeWt61x5HrL3s31VBIX1q1A8CZvXu07CtLyANAmvgqDFs+C4ieCqTa8pZMbNIz2ntKR3lJSAGlaGZj2bdhfb1SOTBzRRdfykhFNbKeUUccx3Rt0QtRxe4iQSWWC7PlM7xS9CdrqpPJEVXS19YEtRWywWiwWY/H/8bbRSpvypTwx7KEca/8y8yTDRKQB0fQO9cBE05sxf/DAAU5FS+9DbKY4XyPmnwQuQFu+cItEuSqv2gSydx3/9G6h9+Qsty6Nnvky1fC/B688OV3yNquBN7zDzUGDsFG0XcSuOC5ttfXOn7obqcue9jp0xvoLA23pN2u3IHduVW3oqbV0lKhv7oLZuXu/0voRr/fVi1aRkrVfsLdJuKWOrpt9sXEPaji+pLS6mR6mKZ0oya9z1mh4YaaWy3eB4O+xvuw3BeNLWqmmf9TZpGLE7ve5WSDvcRJto0lJLNR6s+JqZMpqAvUcsO2HEfQVJ1uubgX+AEVC/CbgK/AzwY6q62Mdufgf4l5jSxI8Ck8AGRrj998DP9LmfgWOF18OGiCk5HFb67LNg2T+aRDSNuzrgW34Sc8f3J+qp03HFQbOzUG7rG62RyVrcIhI1rSJe25ezGgMo7UeS9iYh/auNiWPz+aUZnvUE1UTUEw8CB6pVE1HaHplaS5almoMXmD4sQQHZ4X2vTtYYWPn5ZElM+q5IMNlbuNvyVklSEihtUC5mUu5lkpWlca4iW43FThmvAJUlI8oH47DR5bfg1hLMjtNXSfr1K1A4AaUbnSdlG9dh/IyZ3HsZ0Dg51X4UVG2cR3uU74Ej7DwqNbkH40o9cGJvOOb+0mjrtdbI3B+kJZet6Hp7oU2OkH4Q85lzs5CZaGTZJwE6je8Vi8VisVgslp0jmSwTP/j/pvbqi0Q3rg57OKPNfs65wo1WG2ktRL9s2pMFyaLp9LW06N34LE7m4HpLurWbxKfOEl2+2LI8euVFauPj+GcKdLWTiseM/ZP2Ka1sQnnFlPF1PNMn0/Eaz0WS9ZNtnCQg1XFbg9LFPDYvXsddrJIZSwKF0wzU1MbOJ9leaSC5JvZpZhrJ9SjTClvf98J8MoYOGbaZ8W3E33bh1TMVourLk7m/47Wtr3XXQV+maBokLk5nwVTjndkk4Xrv9VPfjNsQA9sF126IRnUf05b2VweNm/Tk3QlxaHpmpue7V/HVzZiHhlvvPcdPSlUn96/WrC1425C01HKzO6h25jTuicyEuSeiavI96WN9BZbbGVV9Dfi+PtY7Twevqqp+BVOqeOSwwuthRAQKx01G23Y9Giz7gwitH58wyYJNjIi0x6U2ZdR1E936RKsbZjIfVcDLIl6w/UZ+wUyot2RyhubHvNxF5Isq+ztJHjuHuDn0tc92fr1UNZOMlDvejOSnABeqOxBexUWCse4Ru2mvlt47IZ3kSL2MbBP18j9pqd1kuSYCdgs9jhVXTUnfapcs4NUbRiSd8PoT7zaSzNfSjbYhmDGqlze35nblmLalX4txH2iOEt0J6f2gEXuawKZBCN0m0yIDuL6WkUYcE3XaHNHtBI0o6fRe84smaKq9bLCXx2LZE8L+GuHWvrdYLJZDhTszx+xP/Wtu/e0fIrpyEVzX9n3txL6aLx64Y42nzhqMTYGXQTJ58DxTBSetwiMCng+lPYjlp+6FzTUYn4GrL0N1Gz9RVMOfnSK6EUCt1VYOv/g5nLn34Wa72KWTM602TqEAzO1wwJF5NL8Pyf9X/svHCTJw9q2zWzfLFOFE2/LMLGzehOkdVhMLihCXYb1DNTlxjS+l1zyo/v45jaD0LX6HuLsvwp/ssL8uxNVEpOtCuGkCxPv14dTWkzZUG51f98eRuLa3zGfH3/22A2E3foqmrGJ/zATI75b0/eoW6C89XrPcHkRV1Muaz1KCigdOgGitkZGdmTJlppuTX4SmoA2LZZdYX8HQsZ/iw4o4kD9uIvDcpN9EedEKsQdF3BqxJuIYMXyfUFX01d9pEngEnbwb5/gjPbcTQPPzsHZh64txdatgUN9wn7891y6gE/d0f91xWxM7NclSdQMzKek1ARa3YQhmZ7t/JsRtNW5UTV+WdHLujyF9ZVP2uFYdezM6dM7SdNCbVzosb2LxNVNyONunAbR+xYivGiWTODFG1uYNU648s01E8LbExqDYda/eIZNGIe4WcekrA9lymxOb79KW5xPGUIoqJvghGLe9Wi0Wi8VisRwI7vQsc//ff0315efw77yP2vNfYe0//ytqrzw/7KEdCfQTv7VlmZMFKBvbtJP5sJe2jrOncR59vPH8oTeiK+voH//X3tttLhG8/lGqn//Mlpeqv/NRst/2AaRjudhu9uxguPMHvpGX/5dfAjoIr92CWkVg4UV05h4k6GHfpf4U8SDIdxcq24MjVYG44T8IxhNbsikYvtNcX3rM/7fogj1EQnG3z74MN3YmvoYbRnxNByM0AvAHEBwqcQ3dznczysQ19hRk7vhWWD3yxBBuos1BCFEJiqeNf666Zvxy/tjIl4O1WCy7wwqvhxkR8NMJkWeE2M1rVnw9CA64xIMuPN+WVaew/DI69yDi9hFJ6OW7iGORyc5qjmT0cmaZXzAlaffLqOpphLRNOjTGlDsuAZKU3qBR3tkvmjETG4MkKkNuvvFZcIKkt23VLMtOmetZa4rw3JKd2GmCvYuIyU7n1m4wSoA+86ewnAivmQLkJpIywEnZ5bS0cbUKWZ++rfP1zmKu3nwGOf3Wvs+kK3vM5N4T4u2gdEsXmrPSd7ytzWa1pLTfC2k57gwUTtuyQJZ9REwfuf3cv8VisVgOHc7YBNnH3gKA+/jXkXnscW780IeJbl0f8sgsg8Z583uAZoEnRiYn+rJcncotyGSh0l4hS6n+6RfIfM29LYKf+lOEz7yKe+4sTn5/7EAncCldXwTu2vpiN/srLMP6Vdi4gYoDdzyBuD6qCtV1qKyaRy0pHTw2D5Wk+ld2BnKzpqJcWEJmHkSj0GSkpRxIJaMu19PLG5E0TuxeJzA2huPScZ62ExG/W8ZrXO287x0zRDHJ8ffYni02fqfK8u42t74CS0p7r2GNjV/QL0Iw1nkbi2UgWF/BsLHC6+2EiIm8K+2z8OpmmkSz5ggwpePEqvlzGEcHKAwPsQTqANFa2fRMcfy2H2yFjRswfqrn9gJobq5z1itqSuxUVoyAlZmCuIYQgeOiY6dh7WKH7fZIZgrRGnF2Cl1fRBwjfnXtf9si7qUlnJOvr2DciMrN91VmOnnumPNzXERj0yvWMxni294ZGqPI4PWS5LbUMIK1VaiU4OoLUJyFyZOwuWzKDXcrOQxQfBicvYRFA2uXUNUB9Bwe1mdMTB+UvaI1kD7KdtcP6yffaWq+z6ygZmnHLza+n8DeIxaLxWKxWIaOBBnyT30ba//hF/btGOr5MHuSOMnuqS6vEC7cQjJZovU1MidP440VEnMu7WuoaGzsiUCqcOugetMefj8BAKfuS5yqbb4PrcG5h+DCV3tvX90kePgRqp/79JaX4iuXCBfuxps2lZOidY/q7/06YGTe4Nu+C/dYYct2e+XmJ55j+TOfR//imxHXhTgJwga2dfKmPUbT1TcX4eaXW9eZOAPlWxCMIxN3NNpETdxRX0X6aWmj2w+nZ7B5Lxw/6esqxtcRjBuxJq6ROBMg6pJN6eW26U3bB5VlNDON7PlzMqTPmZvbW5nk3ZAKaZr08N1rgLjlNkSgeBZJSwhbP4HFcttjhdfbDS/fQaAb5P4LZpLXdRLRIaqrfa7l5pLMxf3mcBlTqgprl81EzS+gmzdNxmnpVvdtbjwNhWN7y3qNq0nmtJuIUM0HiAYzcQdMqeC0L4kxQK7/x09Q+vSfNlbxfcT1OPlD30ZQbB5Hh/fS8SA/3zkCMTVwqitGdPU7lMoRt62EjgPSdF9H5eR+b7qnOybBmte1soquvgblJRg7jYydgrb3RVVhfQMuPQtLl83C3KSJIl4432HnXbjxGhw/AewtiEHXryNjey2RrclnukzHC1Q3GAf4mRe/qa/uXvfl7SDrVWjpRWQnypZ2kp4t9t6wHCiHoDSViJwG/gHwFDADXAU+AvyYqm5bg05EZoBvBd4PvB44BVSBLwP/Bvg3qp1TC0Tk7cD/BLwVyAIvAf878LOq1itmsViODoVv/g7Wf/nfoO3ZjQNAxaEcTLL5h3/cdZ3w+rWe+3AKRSYffQi5eXnQw+vAIZurOS7ytg+iK7egVkFO3onkc0kgamffj/Pw48QXnmW7ClZO6UbnrFeg9kd/QDh7zAjkCzdbXqv+xkfIfd+f2+0ZtaBhDMvrsLaG3LxBtLYGZ+6GuMmGFDepHsX2b9+tF9DCPCy0Cc+OCaKVqftNtqd4dLw+jtc0n0+CBGgSUatrDd+YGVwX0zRZmJlpVOhCobzQeVV/DIiMPy8uJ+OVnSUvuNlk+72UuVVzDfboVzTlhqcb2cXtZKbNOGsd+uzulmAyyXQdhD+wQ1BDJ5wAXK9xPxwuV6TloAjGEG8Pra4slt1wCHwFtzNWeL0dGcAEqSMtE8s9YD/0W1BV9PrTsPzKzjYMy+jCC8ixh3qu1jvrFczMcOt7KyKom92baKZqIv82b0KUGBheDs08iH/yFC17rtXQWg0N22aq2Q7lN+LQ9CBp9pk6gSkHU9toGCfVZdTLbc3sbM++9vKNyLP6Om2labTDvashurGA3vi8eS4OLL2ILr8Ck3ebCbg4ENVg4xqoNERXgNLy1n1uR2kF1qehuP2qPVl8AYrHB+B3SEqltPuvvXwScaxbS1rvFvH2WDKojbhq9ik+vfvq2O8tSx+Ia0VXi6UNEbkb+BPgGPBrwHPA48BfA54SkSdUtYMHsoUPA7+AEWw/DlwE5oFvA/418I0i8mHV1kgtEfkW4FcxkUq/BCwC3wz8M+CJZL8Wi8VyJBDHwZk5RnRlsBWNFKiOn2Dzs5/a037ijXVq6rGDWjRHAz+D897vAmrIxNnG8u2q/2gVefwp9NO/2Xu9Wqlr1iuA3rrRebtKyVQO0t3beKoxXLwOX/4kVI1nYGpiHnFdwqrgN5vnaTarn2u1OzsFadc2YeFZWuy73DQU5hDiRond2obZXztRyfgaUgJ3axB7u48kmNx6frVNyM6ZpGQN65qxZmZMqeC4ZvwSXq7RXqi5r+5u/HpxFfzx7mJnv4QbqPh7r5DV7Rwy00aYxQEnMxgbP5gYsK+gYvxLUbVL664EZxtfgsUCSfCFxWI5Sljh9XYjTHpgDppBia6WzlTWdi66piy+gI6fQbLj26/btddrD9w9TA7SqNS111qXhyWIagRnOpdJlpnjMFts3Mq5CQjS7NSkv0ptsyHkOT5kJs1+w81Wkazb5KbdgNimV6nWS8ZIS8kdjaqNmvlRHl79Mjz4ZqgtwdILrTtxA7i53PM4fROHtETd9o0DM/dDdhzJzyXXYQBGghu0Gp+p6Joijrkf9pxctA/fbxpCnJSv7mZYdurNa7G04+yynJjFsluE/e3bMphd/zxGdP1hVf3Z+q5F/inwI8BPAn95m328AHwQ+I3mzFYR+VHg08C3Y0TYX216bRz4V0AEvEtVP5ss/zvA7wEfEpHvVNVf3PMZWiwWyyHg5r/9F4TqDHQ2rSJUJ06y/pm9ia4pbtBHJaeBcHgC5eT172BnjTubtp2bRcdmYa17FS3onfXaC41335pHyyF8/rNwrdUP4q5dp3j3Wcq3NvCPd9p5PrHLUhs8hswsreWIq5iffyA7CcV5k1VZW0W9YmPMTrf7bacnJUkf2IZtraqm92zpBpo/BsQQllB/AtEwseelnjih4kJtbYfHHdDwU1SMCCxixh5k2KuvQAD1xxtZreJCMIEkgqwQo14eqjW2y87e/mD78LmOq4mvo5fw6lp/qWV73MywR2A5ahwOX8FtjU3hud3wcmbi5g2o14Z4VnTdZ3TpVfTCx/eyB/TG0+g2wqEA5OZ2vnvZZXyGmzeC8ub1ra8F4yAO/qkTHTf1pnMQr0BkHhLkTJRhVE2yXBXCdWMo5U+YCUy4Sd0o8AqmX21mGrLT4PgobstjO6G1GVNZKJlsN03mNaqZ/jBxBaIxePVLZgzXLm3diT8Gl67A4pW+j9t7UDtZ2YHpe5E7vwG595twpu/Cyc8aAXlQYqLGSenmxFjbIrDqYCaa+yV+1svDSmKAN80gxLOiq6U/2rPmLZYjjojcBTwJnAd+ru3lvwdsAN8jIj0nrqr6e6r6f7aXE1bVa8A/T56+q22zDwFzwC+momuyTRlTehjgh/o+GYvFYjnkzP75v8TGlZvEp+4ZzA5nTrARZQcmulq2Iu/5LuT4/O53oBHy1qe2Xy/Jet3x7is79xOpKnplAT72a1tEV1Wl5oyBCBuvdun3e/VVuPScad9z6VlYuAC3XoVb52HhIoiajFU3BxN3QibXWso2M2GCtjOTpuWSkzG2YPNjJ4hv9lNdrtu7RnStwOY12LiCxmHDX9EhEFkd34iuw+iAoJhr5eXNtQvXzVji6sBsYEGNbwYgmKyLrvXXNTTvx16J9+n6peN1fAjaqrH549ZfaukP15YZtliOGtZDeLshiehRWTbiU1pCpR8cf6vgoOHgJxEa2uyxBC2voNe/yJ4zDjdvwtoVGO+cQdrCTrNed1xiVYzoGpahcNw8J41IFfCyCBF4eYJTnfuLaqSNZE437V2TvOZkoHQdyZ8wE2Bx2XL9vJyZvKfbaLQ1etQrtook4oG3VRjUVOStlyU2nw+Na1Bu6nNzo6mM89JVmH4MAgEcuH4VFl/qeK67Zjvh2PFh/lEkNwuu15Sl27ZdXGv0jtnzmCLwst0/2xoZYzTaQ/mfASXoIm7j+y6umfMX1xhrGpl7I73GGtnysZb+iKMekfMWyz4x2t9PX5/8/WgH0XRNRP4YI8y+FfjdXR4jnSS0T1jTY/+3Dtt8AtgE3i4iGVUdYF06i8ViGU2cbI7xb3iKm//8pxl76xMEC93a0LSiqnDsFBrk0RjiMKRy/TqVT312R8Gs/bD29NNMzg0oiLwHAx72viBv+AYk47DnjENf0TteD+e/3HM9p3xzx1mvur4B2f7FBA1j5MpNWFmABx4zZmM5OZ4IpWvrLPzSfwV1WPnyCxx/28mtO3F9qCWVlsbmIEzsfFWYuwPiDfCmYPmSCcZum5pLc8WncMP4R6ptPUbdTOtNIj7kZtjSX1aB6krDvxJVE/9B1YiuKVGpMV8L19Bg0uxfBGrrxt8wSHS7uaHTKG8clrr7DePKwMSitN+rdGs/FId79xUMKv3K8RsJCBqZ/QZJaWiNTCstST6bqS/BYtmOuGoDtS0Hj/1+Gir2E387obGZtNWSSZOGjczXuLq1t4LjJdF8ycQz7ZlxEDgZM/k8wmhYRVdfY1C9IPTG01A4hrjdnf6m1+sxWDvf/4538h3tj8HGIpSvgV9Agix4ebTc1F/Eb5SgdcfyuNMzENeYfvIdZKfzOLVlJKo1hNfZB+qbalSDzVvG6KlP2DtcP5HtL6s4reuIdu4/0l4eVyPTi6bUJLqKZ867mZe/uM0A9krbCTpJpG3hGOTnkNx0d7G1ZTcRyN5LCDX210dAxV5KDg/CSyJua/ZtWk477auTlpVOSx3ZiYqlbw6BF89iOVjuT/6+0OX1FzHC633sQngVEQ/488nTdoG167FVNRSRV4GHgLuAZ3d6bIvFYjlM1K5f5cbP/zOWft1UZF/77KcoPvoG4igiF21AuSG8qCoyd5LILxDXapQuXKD2J537fw6aaHkJvfccsty7NO5tz9Rx5PgptsYU7Q7ndW8iPv9VepZyrW4SPPIo1R1kMOvyEsx2rmK1dRBZ5Jk/hMoGzJwFt4Tk59Fnkp9px2XpNz9j/g18Fv7wM/AD7yJcj9l8YYHSl5+nduUyx7/nPXipyyM/DquJ8Dp+2oi4URnCpWSAHcaR2ns9Tyxu8w3EJoN1y76CFrtWnaRK1mZTtm4wsbVPanMf132h6fxUAceUw3V9839Y6q+scW0ddbMDqybZnuna8hqKurlE3NxNkoYMpq2RuBDHQAd/pSSB9eI0ElSsr8DSL4ch4sdisQwUK7zeTkQVI7w2k04GHK+RGSgeEJvJzDBKmcAusihvH7RWQW99FVbOD3bHYRldeB459nDP1QRFc3OtwmFP+pkcCBROIOVFNDcN5cWmbEFFCsfN5F5cNI4SUcu8PvmNT1LMLSHlJVhfqm8DQG4WCfJAjMYxLL1k7unsFL37myYT4vrTDuv2Oz9un/RHJaisJz1fkx624kNxGtYXO+9jP9AYpu5Bpu4CN2jpO5us0P++4trBRt7VS0Pvhj1MVp0g6eO6zXoyCKPNciQ5wr9tlmEh4OznfScAD4jI5zq9qqpv2mYHE8nflS6vp8sndzw0w/8MPAz8pqr+9gEf22KxWA4Ni//Hf2Txl/9jY0EYsv45I3LF9z1Afv4MOB6V1U0qr10gfOkzQxopxPlJ3KMqvJ64B+cNX4sp5jDIymM15PGn0E//Zs+1nJULuGfOEb3WXzZ0fOM63LOd8OqYrMmNKzB9HK6+XLf3NQwhP2d60AZjxGvGnyWOS/nSNdaeX2f5F/8rutmUkZma5xMnYDVp41OYh1tJ2eLJ5vZKHWzH8nLD1lMg01Gd3eac0t23vkcSbqBrr5knXg78AnhFE8xw0AKdmzN/o5I53zhqCl7fAWmFrANANDL9YHctTO+hql5d9N3ucxfb6n2W3eH08mFaLPvBgfgKLD2wwuvtRHsvCsfHlL4IWycGI9F/4OhG+uilPzaloPeDxRfQ8bNIdrz3el4BWAS2F5eEpOdIt+jEYAIpzJt7rLyIeL55d+OaMTCgERCgEeLmWu7HsXPjcPFi0wEd8GIIisjcg6ChETlXXu187zou5Dr1vWmP8uz+ck/ahBRVNSJl+WZSBkdg8l449RA8/4d97nSPTBxH3vBBxE+/wvf4eUpLNo98tOYeBdG4Bq6DbW9uGTxi+v3stie2xXJ0SX94dvxDJiI/DPwN4Dngew7y2BaLxXLYKLz5LS3Px971DWx+6QtEiwuUX3iOcre6BEOgtrLWM8T2tsXP4LzhrTQq6A8WmZtFx2dhtYeorYo/P9W38BpdvgA81n0FN59kViY/ucdOGeE1qhpvZKUCC4noKB8iAACh4ElEQVRQGTd8BOKZO2D1//q9FtHVnZrB9SMoTENcAhQy47DSVNa32RHsZ8Fz2lwDMdIinHUS0fq0i91sa0BxHCJj56CyYnwXcYyWF8A7eYC2tmuq4A2qwlxYhuAAW6nsNpDVMwH7uyaqJKWOR8FfarmtcLOQm0dsj1eL5chhPYS3E83RM37RPKqrRngdOaRRBrnLy1sX7NAvpjFbBRYdSECGLr7SVCZYmlx3HUq7tot+7f1DBoxe/yKc/bqeEZWCosWTsP5afzsNxqG8sHV58YwpbRzXGsJ/uGlKAZcWEhGi7fzFbRVQx2dbXx+bhtUqnHtLQ3Rdv9YjQ1Ja+rmaRe2GQadyxF1212NFVTXnVU6NVQeKpxDHhZnT+++5vf8dyOnXgesOPq7oIEXXtE/Kjq/YXseoNiPRsj/UewZbLENg/7+/n+sjs7UbaVbpRJfXx9vW6wsR+avATwPPAO9R1U4lJ/bl2BaLxXIYCU6frf9/+h/9r0y+/1t59S99Fxuf+pMhjqo7tfm7ttrRHYJpFZCm5R2tiw4Lr/3R84lZYMrOOr7H8ddltq64C+Q9fxbJtu0r7ee53cB0f0RXs+8IectT6Mf+Q+/1Vq7iP/pGak9/fvt9Ltw0bWvaW6WrmqDEjUQQzSa+H92AIAcr12G+LVM2DnHGisRr6ziJ8MrYBNy4Ul/FnZ1l7UKNsUcUCcumZUy1aoTclObLLDRacaUE49sH8/Y7tWrp95oECVcTv4l4qJsxwnMc7W/WkaqxRcIyRH2UEN7RvmtbWtvuK7vNJhVnb5moIqZMtcUyaNwM4lnR1TIkRj7B5vbGCq+3G17eRGm5WfPhCibMJHQkslyb2G48+6VgtWcF7xINS52FyFGgdAvWrsL4yd7riWPuj2of/sZOk4RgEnE7CKuAFOfR0gKs30AzE0imaXvHg7hhmMnxc1D8VmOIOEnpXi8AJwdBAJVVCIrmIWIm0162UT5YY7RdTGsX3eMY/PYsYLdRfgcapbibd4O0RopG1UR0FSicgqCA1I+9jz9mjoc88d1Irkewwl6JknLDB/Wj7GaTKOBOzoUuomx7X94dHzPfxelhsewRdzC/LRbLbcjzyd/7urx+b/K371wrEfnrwD8DvoIRXW/0OPabk2O3lEpOesPeianj+Eq/x7ZYLJbDijs9w+QHv52pD36I4tvfAcDZf/ILPP/+dxCvjlb8ycYXO1a331fciUmOv+5rB7IvyQSgHUq6jkB9BfEVPfc6uPBMz/Xc6i3CyRl0eXufR7xRxcm3LfSLDdG1GY3grkfguU9BWVu7B8URk+9+gsVf/20kESmdmSnG7/96xHHMMkcQJ4YNULeAxgEQgkxBso4U5xuuACdAMmPNA0C9sTZxtoMg6mbMObScaJu47PjGV0FaFctHKmumvZJfNP6iMBV99/HN18RHUlnap/3Hxg9yQPaOaIRmpk3CQie/obidhfP2AP8dHdQ1SQPtAQQWyyDw99GPZ7FYRhorvN5uZCZbn0tS/nC/JmGWkURvPA2FY4kw2hkBNDPVn/DawRiRwnxrj5DmzOqoZMTR2oaZZATjGOtHt0QhytxZZLbzBFkBiUpGiG15QaGWjNsvbhXvvJzpKZvieKBtBau8fKuo6jaJuWDE3KjSdI5iSiZnZyAzZTJ9AQ1rcPMKPPu7Hc9hT4gDX/PtyOR8hx6uA0bDDpnC+0mcXO+QLYaomzHvcbtxuxdxW5xkcyu6WgaAuEkgT1J6fEBBPRbLjhH2N4Ni71+ZH0/+PikijmpjEiAiY8ATQAn4ZF/DEfmbmL6uXwTeq6q9mgD+HvDngKeA/9z22juAPPAJVetls1gstz9uociZ//lnWpZ5M7PMfd9f5vpP/9SQRjVCdGpNs+t9MdImh/PQW4gvPEfPsqxhheC+u6h8ug/h9eJrOA+cbixQ3Zpl2pyRmnUAQTdXiDwHLZ4mDhXHE/yseR9S4XXszDiFqE3AjYCXrqDH7iV+5atbxuN941MNwbMwAZXWylni5VvH4+UarZFS3GOttmh7iVA3A7XNVqFv9QKamwNiKCUxYY4P+Xmk3Z8xCFSMvy9c2/+eo7U11Jk5sPhliWtoMA6VDgVNgokki3iA2eHidfA9WCy7xM0aP6VGptKj1x6ZYrEcEKPvK7jtscLrUcDN7L3sxm3DbsqbdtrNiH+7hCV04Xnk2EM9VxMUzZ+Czcu996ex6aNaum6eZ6ZbRFdVReJy6/qzD0JcMSWPwx79RbpkMarjw+Z1s+9e17ujkdy2fj/Gb1QmxjMRlk5g3uL0HBWoLiMaorn5+nh08Qb69O9AZQMKRaQ2oD4q9XHHyPjc/ouu9eMddDaoJiJ5WxlpjVtEcCAxhjpEjvd9qHjknSCWQ4JXSH5X7c1ksWyHqr4sIh8FngT+KvCzTS//GFAA/oWqbgCIiA/cDdRU9eXmfYnI3wH+ASZ79cku5YWb+RXgp4DvFJGfVdXPJvvJAj+RrPMLezk/i8ViOexMPPlN3PiF/xWtHm3RQeNtSs/ubG8D3Nd+UEW+5n3oZ36r51qydBHvgYcJn/tKz/Vqn/gY7v1/GZHkHmouMQwojikLnBKV2PTOcOtn/1WPgxtHcT4om/CsdubvIX75q+D5ELYJcC1z9D7ei07+hPZpflhO7FNBoxpEG/V2R6oCKxdMILpfNtnOqpCZgPIirF9BJ+/s7dPYFZqIvwfh51MO2pg24uskVJfbhhKboNdm4dUf25twul3paYulXwqnEZvharFYEqzwehQQB7KzJut1kFFhR5pD4HBffB51M8jMPb3Xcz1TgjXq1kMVRAR1fZO5Wl1F8nPGsHAzZpJa20Srm2bCqxhDJNxAxUNFTBlbTfrruoEREtNywB3EtBjH9FKNI1h8GR07CUG+Yay0XP5+DNvt19FaCW58waw5/YApbewXk6zXqN7vQ0TQWg194bPwalPfm9wUDFp4BfTWReTYuYHvtyNpCaGD7vcqXmu0sNNWwlo16Xe0RyfGIfjYWkYcv2i+9yyWkUH2+Tt7IPv+K8CfAD8jIu8BngXeArwbU2L4bzeteyp5/QJwR30UIt+LEV0j4A+BH+7gwDyvqv82faKqqyLylzAC7O+LyC8Ci8AHgfuT5b80iBO0WCyWw0rmznu455d/i1e//zsJb3Wr3H4EOEIZrwAyN40+8k740h/0XM8LKoSZLFR69L6MI8q/+svkPvwhI35V18AJiNciwhdfovrSBapRBu/YDO5UkdyDM2TvPYnkckx86zeRvfMkOA5xucbif/gvhFevkZ+b5tg7H0dKy1uPN3WK6PJ5nCc+gPvQY8TnXyH62C82CZBNFz/1QbSc/G7eHDUtncBUiSovoMVTxr9WXjE+Dcc3Nq0TmBZKm0nQelwzrY9ct/vud4Ngqov1U8FsEESlg8/cU92aRCKOyShMs5qdYO+t1TTE1L22Aqxll4gHhRMmo95iGRkOha/gtsYKr0cFxzMOY1tyeDAckkwnXXgOpu5AnG1KDuePwdr5nvsSAc2Mg19E4yoiHtRWG6+VbhmDI5kIq+9C5frWbEYEHT+LhJum7E5bMICqws2nYfMWdaFt6SXwC+jUnSAOos3GVF9XosOitmUrrzb+j5Ix1dZNdlvpUmOzjVX0k78OpXYDZz/uCQeZOyDRFTDlf4dwbzseRImx1NKzpSlDXZy9RaK6Wdvf1bI3/DHby9Vi2QVJ1uubMcLpU8A3AVeBnwF+rI/MVTD9WMF4xf56l3X+APi3bcf+iIi8EyPufjuQBV4C/gfgZ1QH6Wm3WCyWw0n23vuZ+Z7v5/o/+0fDHsrwiI/ez4Fz5k7ibYRXSqtkHn2Uyqc/1Xu9Wzeo/OZvk3n/B6CySPk3P45eNTa0+DnWP5mUBPYDsq9/hGM/8N9x5h/+YJIYECcP4eT/6ztY++JVVv/4S5z42rdC9WrrcYIszjd+N05dIItx7rgD+e9/lOgPfgN94Qu0Cq/s3UxXoHSz8Tz1raxfTqqCJQELURW8IlQWOgiB+3F/ydYSyftJuIm6+QM1p4UYdTONCmr+mMmEba6OpRGtzYJ3gZtrbUNlseyUsbOIc5CtuywWy2HACq9HCTfDwErtHlZkUOd+SMSbuArr12H8VM/VTMnh47B5bZv1aNSHb5qYqmrDuNDYiK2dSsiaFUz/k+nX4XTKwI5qsHlz6/LaBixfgCCH0jTOYBLJz7Su64+ZQIP6IWNYv9T6nEVjqGSmk8zWpsxbcRoljqO0ZI0Lft6MY4voyv4Ieg9/w8HrhBp37Om7vwimB3DcMGTB3EOqZnm0x2z9Az8ny22FOCaK3WIZRQ5BQImqvgZ8Xx/rnafDJEtV/z7w93d57D/GiL0Wi8Vi6cLYE+860sKrRnvMmDuMaA3ueBjO9y4lLEvnce+6l+iVF3uuF194mdK//Dlkcga9db1xGC/XWKlWpfz5zxJvvLezL0BDxh49RuH41yEvfGbr6697O52yEkVi3Me/FubzsLbccHttrqLa5pOYvBdpHpP4Tb6DRKn18qYqGJhSt83ZtHHYEOqSqli4OcA1fgynU+nf/fDB7TEweVckVcsOEjdnSj2jxlcQh6Y9VGba+ArqFdT2UHLZlhq27AWvYEVXy+hyCHwFtzPWE32USEtyWI4UWl3rb8Wd3BsdjaS2ie52k9el50x53y377mH0VteSiXep8YirRvRtfoiJjkwfoEmJn+Th+I3S26XrsHEZxpsyS2tN10xD8CfMj1V1FdEIilMdzr/36e4Yx0dO3jfgnfZBVBlCbEYMrr/1HtSIugG15/JBtse1ZQ+4WTthtVgsFovFctuSffAhsg8+POxhDA0Nj6DwCsj0ib7W82bG+9thGLaIrkAjcLuJysVbPXaiOCfHYf7MlldkbLr7Zrki5Cagug6VdfM3Clt9B2EpaXsUNT3i1v/9AqJRw5eQmYLcsWQADqy+1vBZ1DZMIHd5zZQirq53Lls98AIbzsGVGG6mtsFBFwuRuGZaXvnjLb4iiWumz66bYU+iK9ggbcveyHTwD1osFgs24/Xo4WaOeAmNI5jx2+ckUlDUCTr2XO1n6y1EbftxM6ZvamnBPNcYvfU0TNwDXg6triQlfAQyE1DpYkhs3ITJc41+r463NRMtqpq+Kt1oH1tUbvRliWv181HFCK2pUaM+ungDKgfwGXr0G41ROAyGpi/1ON+WEsS7IA5tmVjL7ulRrt1iGSpCR4fmQPdvsVgsltseEWHsiXdRfrZ39uNtSxw3Kh4dJeL+7CvZ7KcrQJdDyNZMsNq1W+ROG9FXVSFy0UiQIEyqTpWRB++FU3eh1TIyMwNSBb+CxjHSYe4jIujJB6Ew2QgUz04g+TtbV9wiHGrP10UjNBgzAdtmibFLHR+qZePfEBeKJ0wwcdKOqXWf+xEEPARfQVwBGTvww0qv66cRR9LPZxkRxPqZLKOL9RUMHetJPGq4tvyB+WYwEzONarD8ajJF00ZZ03SyXZ90m7/iZtHaRl+9NKIbNVhoGCjOPccR/+Ang7KTxHa/CJXuRpUpKRxDdRPKSzB+BgkKEHYQa+MInIyZnBdPG+PIzRkB1gnQ6jqUb6HLL7RuF0wgJ9+I3vwyrF/dut9wE1FtGDReni3lhtxsi/Aq0iZhdvhxEE36h8ShEWbLSxDH4DogHrqygn7ut7teG8I9lsJtxssic2cZmvEQh6MnNDk+RHsQXjUE9W3WomUXCMiIfR4slmbs95rFYrFYBkDuodcPewhDZfGKB6pobPwC2bvOMfb2Nzd+Z1PnpUjTb6+Y5VFobJVM1tiP25lxmbbMzR42+H7Sd4nl6iYyNYMuLXTfl+vjHDsL4hEv3ST39keIKzHhK9e3rBuXyo2g58UIvvxHRIWzaGkd5867cOeLSFCBAkjBgzgJhM5Nm3Y0cUjHksNBBiVs9F3NjUFcbh9p73ONw61zq7SnqHgmYDt31vhESpeNDyU/DeGaKYnbaV4W1zBt5geBA9UO4u5BkVYQGxFEY9PzdS8VsnpVXbNYeuFmbJlhy2hjfQVDxXoSjxpO0r+iD+HwtqTerzNBMQJfn+xIBltZJX7xS/WncmwWmemRhblfuDv4mHs5aL9EqmYiWlkzPUuaM2L1hCm/C3DsMYhDdO0SVJZNr5T1GzB+EgqnTaZ1edG8B1EFmbwHvAfNNpU1WHrRlPWZvAtQZPZhdPwclBaQwjHwC+aQVz9jsngzk2YM4gFtE+W2KFXVmJYoSI2T7O/GySpiPhduzlSqWXwRxk5DMG3OudZ2YdpZuowWx5BO5ZN3SnFqeNmukBhTI/bzIHv87LiZwYzDcsSQ5N5J+j1ZLBaLxWKx3KaMP/l+xt79JGsf/+iwhzIUrv/Sr7U8n/qWb2H8fV/b59Ze8lDQPipIadxaiczLQ7jZff39YgeVnNzjJwnbhFfNjeHMnESrVfTyBaJXnm+8Vl3HdWuMvekshXf/LSoXbrH0K/8X4eWrZO84BbFA7jhyKk+8cJP42RegViG6cRnng99i7OGgaKbg1WXIzyKFGVOtSgLwskmwd9rr1GTKUpiFoGCczZkxoO39iLW16Zq09UqNK6ibbZ35J6KeigMTZ4xQ7hYgN2cqdW1XmWnzBhoUkEGUtBWHoWZ31tbRYGq0fPlOYIIfdr29v7ftLUcTx08SQSwWi6UzI+ZZtxwIXv7oCq/t7OtksXXnemsRZub284Cdyc30v24SqaUamwzOyjJs3qJrzwzVJOLXafRWHT8Ncg4Na6ACq5eRM283WaSVRcjOQFgBNzAlY8SB7BTMPpjsMzSRoiiSGYOgmEzqzRjUy5tjhomR6ATgtolykg5PTd+V0gItxokq6hWhVjbnkGb65ubM+VbX69dDww1j9G1XniGqgZtHa+W9i6aDzJ7dLaOmM3XqK7wTVMEZpROyjCzigJc4a8S1PX8sI44g+/rdZr83LRaL5aggIkx/6LuOrPDazoH2snSzwxFeX3m671WdYt6UY56aR8Zm0LVV9NpFosWlLlskcwjXw2GD3Lkcub/xYdTJQ+4k1BZNSeFjZ3Df8+04T6wS31wg+sJncKQE5QqUV2DmTqR41uwrXDeVraJVYNII2HFT9jGC5Cehlrg6vRxU24RXJwnIVkzQtbbZmXEM0TpaumGCvIMiVNfAH4PN69T9CnFk+rrC9hlF4SaUl03G7mFHo5GaHirOLttlWSy7wM0av6ECXgbZa4KAxbKvWF/BsLHC61HEOpEPhjbxLL70Ks59swfbN8bNmmjPbTAC5SZaXoKVCzsoXZMqnHGjrDBAHCESweRxmH+dmZSsvFLPdsXLmbLX4pls2vayMG4Gok0IN1oiyBQH1i9DZrw1yHNLm5YIrayanrFh2QiryXrqeGa/65cb6zs+4ML6NbOvYAxqaxDXkOwsuL7pK/PWD0MUoZ/5L50vx+IlmL8H1i53fr1f2nvQDoO4YkTtkQhldSDeYyax/d6z9MIfa9zrVmy1WCwWi8VyRPFPnBr2EEaHfdVd2wOb96MH6Hb4nVsGteO4cO4BZHwOvvwC8dUrcPVKH/tP5tZLV2H8HpONCkiQRQoBcJzVP/wSPPs5xp94GKGKOzeG89RTRqTEg81lyE2CNpULToO+y7cgO0v9jXKzTVnE6bxe2OoYdsw5hWXjcxCvEXDpBMZPUF1pHMv10ahijofTepzsVFJNK2v6PKqa7NxOrF9G3RwS5Pq4dj04yICAboQl49MZBRzPvI97YgSuqWU0ERfyJxr+ATczmMx1i8VyJLDCq8WyT2h71uLGClRdyBycUSXzj3WdFGgcQXUVLS2aHihp2d1+S6xkZxpChV+oi66qyoV/8v+jeuMGs9/09Ux8/VN4AcTiGGPE8SE7h8QRSHotHPAnTLRpWG4IuADhJurmk0OpyULVGhAjGnXODm0Xjl0/yeAUI2qWbra+vnndZKwGk1DZAJKotVoJxs4ijosiOFOKKt2FV8eB6y+hJ+5FVi71dx07MRIZr/HwyxjVGYD4q7rNbhyG4/CwDJ30u8liOaxY499isVgsgyLapmTqUUL30TZoF8/CMi2tcQ6A+JnPdn8xV0TufBCmpkA3TUCyE6FLN7tv04R7/8MIiU17+gGI0oprAtUIXbkF+UmWf+O3qbz4PMVH/6Gx9/0CoCZQGiAQCPLgjBvhNiybAOmU2lojyFrE+BrctJdqci0zE62Di0qN9rAKBDnAN4JpuNAQXQHERTeumnshmDCvuYHZhwBBxlTYqiQtlTJT3S+KAssvoTMPIO4eekKOQlx0uIF6+eG2Rxoo21zUtB+x5ejh5hB/+2QWi2Vksb6CoWKF16OIOCaSz5bj2F86zEHj5TLu/EE5+AWK861DiqpQWUZLC0Z8bDcmHb9RZnc7HJekPo+JEk2yVq/8m//C9X//7wFY+u3fxsn9GGMf/BbkvpPc8cS9BPkAyc1BbQ11k8zXqCmC1S+CnzMlbKobSeali8Y1tLJpesaWbhgB1i8ivcQyFbOvODLGW1RBcND2+9/xwSnCahK5m06sws2kX4tbNypEgEfeh7ge5MagtI6GVZwzD0F+DMIa8a/9FHrHI8j159kV0YhM6qOqiSAdZtaruIMpjd7tHNJ7ITNh+vMIgGzfp8dyeyAe+LYvi8VisVgsFgtA7qFH8I4dJ7xxbdhDGT7xQYpKSfubZlFxPxEfzn+lddnsCeTMPVDIQrhmxhQ1REilfz+GBAGIQmEKnLKJb1UFb6Jhcy/C6b/yPsLwQ8bWLi9DeREK86bth180laeickMozaaletWU/40q4I+ZoPI4QpxEFPVyfZZudkw548qiqcTlZtrPxPgKxDU+iGY0Nss1agQsVFeM+Op4Tes4xh9RWTbjX34ZnbzH+BN2w6honWmFrCGhYN6vVKTf+95aEdfsP46gcBzWX0sE2GhrxTbL7YlfhOwQ2sVZLJbbBiu8HlX8PFSs8HrglMqwA4NlTwRjIA5a24TyElq6aSb7vdhJVO/mDWM45Kbqwmnt5Qvk1m8y964nuPlHn4IwJC5tcvkrz/Hlf/pzuEHA6777w7znH/+oMbzCDaAteszLmExWgKCAyhh68xU4/6cm2nVq0ohocS0pM9QYszpBIhR6JvJUq0htHU37vQAQQ/4YrCcZqblZU/6ocqV+TDwfYg859UTHTDj3vrd0v4Seya51Xv8+FIXrL/R/TVPicDRarGqIuV+HYd05SR/fQUWat0V5iZdEKY81DOJg3NxbGpv7S7WpXFW3fdos2ZHB8QE1TpPtEMf0dHIzI1JO22LZJcL+9q+2Hw+LxWI5ckx965/h5r/4mWEPY+gcaI9XVSOGHhRRYm2euQ85cRqC1Dav9ld+eBvCL3+e4OTbYP50o/Ru9pgRrXLTUFoEQKIK/sw8rJvAanJzUI3AiSBehMLJVpFLnEZQruOBX0QXL8P1Z2HqDJx8nXkt3hpEq3FsfARuANV1JNmv4oCqMQmiirEJq6vm/Rcn8StEiXCcZNOKa6pdbd5qPwiUF7pfmKhs7MzVC+jEnYhziDORqqtodm4oWa+aCuwDEV1Jgq6TjHNxk8zpDOTmQWNTAa14ztxztQ2zXm29d6BEU3KCZQTwx02wQNRUXa9blQE3C5lp8IsH2yrOYhk01lcwdKzwelSpl1856uz/t4Rz38M4Z04jbmiEpINS1NwAvfaZPiM9E3ZaTskvtGSrxteu4d14ldlxmP22dxBNzLN8/hrP/P5nAIiqVU686eGkPwrGUFq/BbmJhtEhTku2oWgMfsZk65aqMD0PpMagGkPJyxkDpmwMOILxesSqpsYSoJkpM0GPQ8gdMxPhyjJMnIBoxkykw1UICsiZJ3Y1yRKAE/eACPLGb0F/9+eguteeI0MkLg+h16uTCJ4DFDW9jImcDjfNuTT1Dq6X3nDcxnPHM8a1m4HaqjHAvIL5jGhoDCnHM9myaY+bQWTmWvrDzZn3K/3OcrxEeMW8H+GmuW/T7HWNEpsqxkRGWMHVYrFYLBaLpRNj73yPFV7hYHppOpkkIHkd9ICyXQElRt7+tUkVqHXoSx/a4fU4c19rv9M4gvWr5v/cuLHZVRs2fFyD0josnDdz+7HjIOtoNtOwy6M2UTgqJ4GzESxfQufvR1y3Ps9XVVNNqrLUOE52FsqLqF8w29XWwfHQ3DwiDpoKb5VVUyUsf9ycu6rJevWLpuRxuLSz6wHmWOKZ7VcvohPnduFzGJWUV0zJYTd3oOJUXXQd2HUQI7IFE7BxGYIJJBhretlN/iQB+clr6o9BNGUyYTOTpm1VXDMPNzD2amXRvOfBBJSuD2i8lp6I28g6TwMw/CLiBub7oHTdtCYLJhKfYJR8r6h57xwPScuXWywWyx6xwutRJRUW+skMsuwJKRaRcKFhzPjzSekezHvg5Uw5XC9jyue+/IIxOEprpt/q3Q8gXqXr/lsP5kJ+xmRtolt7nW5Lqgq3TWIzk41sQHHN/SOSCFaNPqD+m99E7Qt/SnztKpQ3ccuvcvydb+N7/873snazwssf/SR3vqeRLaqVdbj4eTjxCMzeY/bVqcTr2DwU5mDjJixeh8njRnBxAmNEtZ9nVDUGleMY48kfM2LMyquNqMP8CWPgAhBCvNnQ+TTck/HgvP07QZIrOX8fvPbFXezlYHv8dEXjIQhUOrieSuIYkTWdPHu5HWyb3O/BBOYNFUz/36ZodDeTlCAKG5+Nev8XmxG7L7iZ3uWBvZz5bkiFdLB9LSy3NzaIwGKxWCwDJP/Qozi5PHHpEAePDoKDynitpMJjNQmQN/aw0mR7pxWcxDH2bFRLepp6fbeQMqcjiRC5vOPWUyKdr4f7uodxpiYR34fARzwPXBcCH5wZ6v4Cx2tUrKptmsfc/Yg7DU6AllbgxoXkWoRQK8Nrn4MTD6C+b1rDRNWt0578eFJauASXvozO3GGydn2MUNpuV9Y2IJv0YlWMyJqZSHwKioTraK3cyKbcvE6LXR4lgbe7QWNwPbN9VIbxs4d7HhdumuDkA/VbxIM7nuNDMIlkJgHQ3LFGMO82iAh4OXT8LhDXPG+vlpadgewMWls3n21xksQIJ3H3WF/B4Ej8Z5lppF6SvG0NETQ3D5mZRp/lNKDeYrldOcy/MbcB9tvlKONkrPC6WwrzpkQOah61Kqwt0JzKWq5eI+QYmU2X3N13mkmYAHhGOAgypqRtbQ2IINo0NtalZ1uNvPVNmHTZihiDIVNMsvOiJLMzNL1FdktQNP1SEBg7gwTFtnKrasarNDJXExwg921/ho2f/+nG7t7yRkSrjM96vOHPvRPGp835R1XYuGX2d/VpGD9pjLQYc2+6flJyCZMNe9fb0S//OpSWzQPAv99sn50xEYhxzRgwGhlx280Yg7W8ZEr++AVQv4Oh1D5x39tEvuV3zWvvE3MIUT24H2tx6xnKAyF3fO8CXD/bOJ4JUABTvsbxqJc3Djdb+xhbdoYkASr1DNc+7kWn03emxWKxWCwWi2U7xPfJv+lx1v/o94c9lKGi8S5FkWAysWWT53EEWmtdx80kVYVck1EZVUFAwwqENVPStrbaard6+a12iZfvKKAad0IS1BxWTNZdZYU92bnNPoFslsw734l7egoJO2XqxrBxdevi4jysNZaL59fL70puDB3Lw/QJdHkJ/AApA1efh5P3wOY100opN2fsLsdN4mQd9ORDcPGzsHbFPDJjMDlhrm921tiyUcXYZXEFNAOlBcjNIF7OiK5eNslYDE07orXUJh2wqNhSkWw3+x6B4OxmDjBQWwfW0xVzb4zdYYIZ6ot23hZM+hDtxC/WA8G1smySGswrJst2UOd05HBMQHYwYTKMo9K21R2NQH6AZd0tFsuRxgqvRxkvZ3/gd0t2EtGGgaOxwvWXWlbZePYVNj/9KWbOHidXW4TsqaS0TA6WX4PZuzv3hGgrtdsiwvoFyJtMTmrriSE16PKmDjgZZOouYwT17HG5FXcqB5PTsLyIc/YcTjEP1eRaZSZMD5CobKICg6wp5aMR+uLvwIPfhBAbYyhOsnwTEVbyk+jpN8Clz5ter7N3Qm4KCdcT0botIjuuok4WVl811yl/wgjFionKTK99mtXYTFRFVQdTMud2mNRpvPUa7duxkmCGge0vwmSpHiBum9ju5ZOesR2yuS3dcXzwx1oN+YO6Dy2WQ4OYOcF+7t9isVgsR47JD3zrkRde2a3w6gatQZfiJaJnE/64EUwzU00ZlDFEESy9ZDIh4/7t8Ho/0igyImJpgcELdGZ/ztk7yH3Dm5Memzssj1xrstmn7zZiVP1aJZWDKrdgaQPWVtG5wJgCC1dhcsqsu3ndPOoi7IQJap88C8sXITcBkychCExmb5pR3Ex1FcbvQGqrEJVM2eHKSlLZq80f4wSt4vYgbbpdvUUjJrweWC8tBpghKkPLNk2za1M0d8yUK7b9YHdGZgqyc60+O8eWCLZYWrG+gmFja+8dZdwAewvslrZJWqmD+Nku2qUCqhrR0RhyW98DefM3gGci7VRc1MnA1F3GkAgyxripruyfiOO4yNTde8jQi8k9+U0AZN/7btNDQbxGFJqTRhEKRGXkzBuSzWro0sUOu0sidGsbyPEHkPvegZy6G8k4SG2b61BbMWJ1ZtL0Z0kOS1w1Ea9p+VmnKbLR8ZHZRwbXp8S7DeJbDswokd2XbRIXsnON58G4Edv7LBW0r4iY8dje2v3jZreKrhaLxWKxWCyWA2Hsa9897CEMHY0GZG+39yWF1jmuKnX/Qr1qiyQ2atN6UQX18kZkBRQHjUO0VoH167D4Iqy8AqWkqtQ+IMfmyX3D1+w4OLtOdc20RgJkbN5kAmdnITeXzP8LgIDroeefgVrSJqayDk5bqxGNjQC79AIsPg/5PJx5GCYmQDdMS6Je12HzWtIPcrIhjGuclDlOerFCw2cAjYDaQbEbU2fkdNeDEQzV8Xd/33l5088zJX8Cxs61ZLsOC3EDGDtnbF9Lf2TntoquFovFMoLcBoqAZU+4vhGgLDujPaivU1nL9p4wdYFQoTADi6+ap9N3gduUPVutolN3ICfPIr6PVqpQXR7g4Hvg+FA4vvsJbYJ311mYmMQdF3Otwg3zqG1AcIcpw+qkWYE1mLozMRbPE0+eakyA266zxFU0Pw0rS32NQ0RQslDZBE16Poqa9ybIG0Or/X0SB8mM159qHCF7KVt6W2S8hqZE837Pa+Mau+uJKkbYb3mfZLR6dYhjHAluYJwvR770cNobOvmQO16j7036sFgs2yPsb4CC9WdYLBbLkcSdmsY/eZralUvDHsrw2G3Gazud5rUtJqi0vuDlYDXpdTpxrlHZKfUnBBOolzXPy0uw9tpgxrkNKgVyH/h6iFb3tiM3Y0oOpxWutGauh5tBxo+bZV4Z/eIfoc8+jT70GCI1WLiFjGfbrmfqNwihfBOKJ3dwQhGKA6UVUMeUGk7fGDcw/1aXW21MN5MIus3H38N9sqs+wiOmvIZl1A/2dTqq4u64J3Ed8SAz3RpMLoK0V6kaIuJ4aP4E1IomEP2g/H+jiiSt1FDzv18wVQIc0491FARzi+VQYH0FQ2eEvNKWoeBmrfA6cQesnN/ZNknv0TqrNzqv041MEdbNNhpV0c0aenWB+Ool/Pd8A85ErrHu1DG0U3+U/cDNIgMQhMSNyb77XVuzUcONZBLVFhUpjoliZR0pL2Oa3W4dmzEwgfxJ2LzS32AqG7B62fzvZY1tJCTllzBis9cQWk2Z4di8f7V1dPUCMvdIf8fqxG7Fv/Z77EiwyxPOTCXR0Zjox6jUmsU8Sji+ebiBCUQ4auWH/WLSzyop7xRVzHPbk9VisVgsFotlZBARxt75Hhb/878b9lCGRuXCRarXlwjmp3a/kzQIueMLWxERNDsN64n9GsemTY54QAx+DolrEBubXb1cx/3sB+IFUO5QtnenRBVk5m622PxhBWMPNtnBlU3C5y4QX3oFgMz734t0GsP4cQhysLQAuQI4ffq4SosmuxUgO711TMFEa6uTOPVjiOkDiyYZxkeYuLr/fotUhNsNxVOImzWZ4vkTRtgchapYbUhaJSsYN5/r8sLuxebDiLjm/fFyiDhoXDMlwTOTiG03ZLFYDilWeD3qjOCE4yARFGYeQLcRXq/9i48Rr69DHKNxTP5rHmf6w1/PxtOvsPyLv9qxZrpGMcGZM6z/7p+y/nEBVca/8T0U33S2HnGiNZfwTz+Lvvai2ejYSYQhCuHZqT1nuwLElQhneoKOk2ONjbC5sQxLq6CgWqvP1fXac8jxe7duF5WTLMGkRn0nAbcT2TFIg3LDMkycMdGw9cHW2so/KXrpDxpP3QxaWTXCXlhCN64h4+eQfjNZb5tJYsz+liaX3RsWtTVTPkjEiOveISjp6/jGkI8r5r68nQXYVGxuF1jFMRH9Fotlb9gyWxaLxWLZB/IPP8oAZLZDS/XCqyz93meZ/673dl1HccxcHm0EXnubiOOgcZQIlR1+p6MkCLja1LIoGEfiKvhJSd3crMkGLSUZloWTRnRtG8Ghw88ZmyBus38E8AvE68uUL1wjiqZRwKtG9SsYXl7En+mwz9VrSQlmMaWMZyeRfvraZcYawmt5EYqnW/vWxlWgqcRxrem10s26UEZ1FbIzxvYv3aT/92UX758IdYF6VNB4fysW7aXMcHnRfHaahM1RR4Jx1C+aHsXVldtbgPWLxpfjjyFNSQvi+OYzZbFY9ob1FQwVK7wedRyfkZu0HTDiemhutmekYnjjBnFTedu1j/02m5/7LNSqRIsLfR9r8zNfAs8hc3IWN/QI/+RTpgxuYzC7OoeBMYAJnYYRfObjOOIQ33MfTjH5mpEMRKDXX4Jrz4OXQZ//qnntzEPo5gZMzCDrq2i5ihTHE+M1NWLbSvjk52Hj8vYD8n2YvQOiGFav7XzCHlXQG5+j/jkZO7czo2I3mXyOl/w4jtDnMqqYCfGwx+SPmWzRyrIZi8ZNJYoPmcgtYqoOuFlzHrX1wfYMOnAk6R0u5rtMHPMbYyd6FovFYrFYLIeO/BvePOwhDJ2FX/4V5r793ThBD9dZuNn6fOMq6gYmO3Inc3svjzoBlG+Z9j/hRj2zFegypz7AefYgfBXBGPgeWl2FYKwuJGu5DGuLlF69yqWf+Gky9z1I9fmvADDxnm9Alxyyd92J++x55K7jOKVlc33DGkQhRLWWimPyrvfDRB82e7kKURYCH6INqK1uvc4dr3tyrGoa4S0mQ7G5j2g/7KrUcNqyZYSoLKGZmeGbfbl587e80MiSDfeeWDAMRByThZ2dRqOq8X0dZgFWPCOypj4CJ0iyW4d901gsFsv+YYXXo46I6VNxu/cbFDfp6dBlgjr7ALz2R103dycnW4RXalWi6zsv/1v+0heIN9bJ/4X3ET39bKvoCkjGRHq1RFIeJLUyeLvPgtZqiH7hT2HhEjp1Bn73N4hP3YPMHYfpMaR80wgzcQjVGuSKUFqHMITlaxAExnC6/gLkH+19sJ0ImuVEHM/nTJnn7Bhs3jIGGvRZ1je5d9YuoGsXjVjvF8FxETeL5Oc6b+bu3ECVt36HycYeNTTav0hWJ4BsrvFedcNLhEo3ZxwZpetbS0AdRsQx91NlhT31CRoaDgTFI19FwWI5eKRj1Y2B7t9isVgsR5LMHXeTufs+Ki+/MOyh7B+uS+bsHVSvXUFLJfOb2tTbNV5dZf3plxn/mvs7b68RWwLZNdqd2FO+ZfoYxmFS2anNHnQ8cDKN3qgHjezRPs1OQGHKXJvcHFLbMFWlHA8ufAY2F8jkJyEKqV25hKqa0subm9QuvkrmxHH01lXCmRmCyjY247XrMHG6j0EpLCU9cl0fxrOmVLHstHxucm1KN4xdmpls2KdxCJVuueM7vKaqdGzLNHSSgPn9mjf6RfNorlzWZT1xPDSYMD61zas7F8NHEHEDtHAK1l4d9lB2hxNA4RTijmg7KIvltsX6CoaNFV4tSZ/X21V4FVOeIv2B19gsi0MjOosLcQ1xsujc62H5FdN3sQ13YoKB5KH5ATN/5r24b/gO3K/5PuKXvgDiEF98FhmfxX3zk6BVWH4J1l8bxBF3yO6MKa2FcOk19IXPQnnDlPnZXDf7u/wievlF5G1vM9/JURWKs7B+E2ZPw2vPNb6rMznQNVMqqPoASGzeM41M6ZHsZOuBnaCPqL8mw0TjhrDniMmaFTcR5nd0xqaEUMlM/FVcNCwj2SkkKLaNcYeC4OvfhxQnd7bNQRFVTaDGwKMSxZScdTyQpeRz2oHMlHE2gBmD45s+ILvtoztqiJMEwhyiqFxxTbmm/SwtZbFYLBaLxWIZCuPvfpKbt6nw6p84xV3/4b8SnDiFqhItL+EWx9j80hcIzpzFKYxR+tLn0bAE+eOmQlZbqxsRMdmt0QDEUCeA2gZy51Pm+eZ1EAfduIrkjsHYGeO3Wb/Ymmk56gRFGD9pSviGJRDXlFQmNuKYuLBpbHSntow3PUW4uIQ3f5zo5vX6KUpgAjzDV1/Ced3r0FoEUYTGMZGToXT+olnPcWDpeabvO7V9Np3T9HpUg6ULsISxL8dPmEDxeKfiaNQaTOxmjfgXlk1Gbcu6O9s14kF1eYcbHRDhhhFHB414SDCBot2FV3Egd7xeqlZEUH8MxvMt5WsPM+IGpvxwbX37lUcFrwiFEyZ712KxWI4gt8cvkGVvHKbego5vxttNmEkRJyldkW+IrulyMNGMKW6A5KaRU29DT74Fll5Cr3yqJUrVGR/bwRgdco9/LaXPfRJqraLg5Hd8J8HbvxPJTphDP/C4+Xt/cxmnHDp5jxH1DloQ3+66dtvsi5+GK00G+ew5uNj0fPIY4KKaipA+AkhxzNgaSYkd8XzqCvf6AkhTRnDeAb+td2dmoi5+dh9ct3PSpOdOQnba9NOJqzsv4aIRrLyErvnI8TebbMy6kdeHMRwUoLoB596AnLhnZ8c+UHTvoqvjm/fby5nPY1Rt/A9GWG0WHh0/uZ7OVkNOxBiftxN+Pul72lRGOSwxWuWkEtHbDcz3rC0PZLEMF/sZtFgsFss+Ubt2ZdhD6AvJZsne+wDVSxeJlnp3pg3O3EHukceY+74fIjhxymwvgjc1DUDhTY/X1y2+7evq/+v43SaDbu18q43p+P0Lr+Ka3q2b17e+lp1FZh9uZIWNnTGbFE811vFyaOE0VJ8D4oPVXXdVFhcoTkNtpen5iZbyzBpismERcFzG3vFWlj7yW3jHTiTCqzlJJ83aqZaJNqrErz7T2MeJe6g885WWw8bf/g7csW2q8XS7fnEIy6/BMsYOHTueZMJW2HHGaVSGUhky0zB1n7F/0/ulH1EwTSQVDypL2609PKIy6hf3cEs6Dd9ddtr4WOIwqW4lJq+8PfDezdV9fhK0+uzkNvQVSOEUqklyQhwasbvcvWXaUBDP+DT8cfDytpSwxTJs7GdwqNxev0KW3eFmkqipUXLsd8DNJhMwNZPXsJTM0pMvEdVEnCmYdXfx5SLiwPR9MH4WFp5DSwtQXibe2Nx+Y2Die36QwjvfR3DHPVz9kb9A5cufJ/PgIxTe+81k7n+Y4L7X9TXxEC+Hzj0G1z+z43MYClPHWoXXtgmujM/AFz5df67zd8JU0ZQmzk4jboCcuBOyBcgmxtH6KuFa1USxhjHl6iqvPncNVSUOIzSMuOudDzN5sq0XbGoEa9wwDrUPwbC82BBiMxOm/4zWdha9nE6Cw0bWtHhe70/WqYeQB9+BLl1FZk6PZonhZrpdy7RPR1zt3svIzW4VT9tL02amIC4Yo9LLmedHDRFMn1QnyQL2zD21X0Ey4hqD1fHMexenkfzJd2oqtKb/24mbxWKxWCwWy5Fg4hu/meXf+jWIRjtYe+77/yrzf/V/IK5WWP61X2H193+H6qWLOPm86R+qin/yFLPf+wMUHn/7rsQAcVwonkazs7B5DcJNtLYB4cr2GyPIzMNQOI54OeLz/83YTfnjSH4esjNbKyd125NfQMfOwtqFHZ/DUHAzLTa10Jb9dvMyrDbEo+IDd7B55gzB3AzuAw8ixTG8s3cR4eIeO4c6QoyD/8hjiOuA56JBnulj35yYKqa0ouP4UHESHwENWx0avgK3D9tbY1i9Ammy6tg85MdNOWLCXlu2ERszygvMA8DLbMmibhxXE1F/09hqleUdHGtIdPMV+MWG37GbfyU3Yyop9aJwymy/eQ1ys8gR9BWIOA0/gZdFHa9jNv7A8PKmiqDjm+qAUcW8xxonvoomXwKOFVotFoulCSu8WkxUmbj790M9CNyMiXQD8yPv5ZKssP1BvCzMP1aP1pv+kccp/envU33hGYK77kVyBbxjJ4hLG6x95D9T+eoXyb3tXUx971+t72Piw99L7W3vYvxDf96Uu9npGLLT6Nn3mrLDGzvvJ3uQyF13oZUytctXkMoqbns0bPvc6+ZrVL+yZvq5Au7rx/DO5sCrwlIj+ldvCtVPfRKAeOY0f/T3/nnLbiZ++m8xmZnffoDFiZ3d35WVpNcmDRE2rm3fT6eTMNat1HBuHHniu5GkvJHMnGLkgx/ATLQ7lRt2s2a5ZqG6AqgxsNJoTHFbs8+74bjgpGWHbUkawGToOxONqN+oMpjva/GSEs9+4/10M+ZhsVgOB0Jrmbz92L/FYrFYjiyFNz6Ok8sTr68NeygdkVyOyfd9M7N/4QcBcIIM0x/+c0x/+M/t3zG9LIzfAYDGMRKuw8ZVtLaBBBPGnvFyEFXQ5ReNWDFxNzJxZ2Mf0w+YkrtJVuuOx5CbQ7MzcPWTgzil/WXxIszcASotAcp1Vlqzf32vwtSJAqxfgiLEvrB2/mUkk8W5cbG+XvDU2/BYN9rnzD0E7QL4yrXOx2smKOz8fNaumwc0ibA12K451Y6qizmmClRaVnYQpawPgnAd9YpbxbfMlPEFBGOwdsnYt5npRtC2E/RVpljcANzAiI3WZgUwZZj9MXOPhCXji9lpBbdO+EXIzICbabyfmcm979disRwc1lcwdKzwahltvELSP3C4n+bg5BmCb/+ejq8V3vk+Nv/wd5BM68Qv//Z37/m4Ig4aj7AgniCOAydOU/rUc5Q+/1lmfuDP4j/6sNERs+Nw7CS8/gHARJm+9jf/N6be8nqCtExwJu3B2yo8eqdnqH4qOQZbDZU47td42cP90yzCBuOQGTcCWLjZ8b5U1VZDo5Pw6ueQt/3Zuuh6uFDAoUUkdjKNzFWR1iAJ2J1R1J4Je9RJSyUlka11AbZejlxovDdxY5kkmbMaU3/f6iWC3aF/t1osFovFYrFYRhfxA+jb5jpYTv7df8T0n/nuXQU5DwrHcYyNGIx3tjiLp2HtYsM+SpBEuN0LIg4aHgJBLqpAGIIo1DbRpYuwcdPYKNlpiGLIThn7xsvgvPI8Mj6OrpoU06icnGObr6C6DN5k+qxDAHM/ds4uWy3VaRZhi3OQnwQnBDoIX30fS8w1G4R4dtBEFVNitvn9yEw2+QrcpIR2WkUpu3UffSD7mIRxGBFxGskp2WnTl7qy3OgpnPoDHL9RnUzcJHPWTwLlk3UCk3gg1h9jsVgse8YKrxZDZgLKC8MeRQO/AP7Yoch4E8eh8M4n9/EAoyeMqCq6so6ub6KlErK+gLz6ZTTO450+iS+LEKWT7RDC5Zbt49ImtbJQz3/cLAOFLcaIVBdwZmeJb91COvSUicMDEF6bqa6aB5h7NDNZNyDrh2gvryMOFGdMNO3iRTj1MPLgOw6p6JqgNZDAnJuX29rncwTv2dsOJxFh3Wxy7yWGUlr2J13HYrHc/hyCuZLFYrFYDidOPs/8j/wtrv7k/zTsoRg8j5M/+uNMfuBbcYtj268/ZEScenbsPh1g//a9awTGT5k+j65vqkbVVk1QvZuH5SRrVSPYXIeVpupeuUmobBDceSeVp58GwM0nIlvUavtXnn2O3FvPIKJd+s/2MT/abd/aTqzfNA+A/DQUpsFTiEutNlrL8ZNxqgKJMFZb79665zAQ14yN6nimRK3XJq7aeeu+I4kIq9GUCd4WN8ks9pJSwW6jl7TFYrm9sd+5Q8V6ZS0GJzCTo3r21BAJxvsqM3JkGKQxsEc0jFj7nU8T37hBvtoo8+PceT8S1UCV4PSp1jFPHgdae+Q62QyVazcoJFWCNY7Sf9oOqPhvfAOVj36sYxnfuDbEXkO1DfMAM4HNTJkeG6qtMq/jIG/8oOlfC6Pfw7Uf4hpkj8EQo8stCc0Z1ZL8bydWFovFYrFYLJYBMfUtH2LpV/4T5eefGfZQuOOf/3vG3v6OYQ9jhBgh29LLI8cfNtV1KovJQkVTwVR1q53Sbs8n/gB3rFExKa0mpW3+gHhliVr8egJ3qbPPpC9Rep+u3+aieYARHotzkOvgfhWFqApRIrTq+v6M5yCJyjB1/7BHYQHEbRK9U6HVZgtbLBbLgWGFV4tBxGTvlW42BC5xO/esBBOJ5xVMudWBlUBxTBaht4s+G5YB0dvwWP1vf8LGb/w6AJknHsUtLyWbpYKP6XPTQjYD1TbhtZCn8srLxCfux4lD4quXCIO7cKcd0CLEUdIbVCGu8Lnfe5U4fon7776bOAzRahWNY/L9nFJ20kTZ7mc0cByazw4g0/cATWKY64EX3B6Ca4o4tpa/xWKxjASyv31b7Je9xWKxHHnc4hjnfu7f8sL734FWTKC2f/ostUsXt6zr5AtkH3yY2e/5fq7/9E9RefXlgYwhc+fdzP6FH7Si61Dpbc/KyUeMbyiKW31J2UlYX8c4C5r2oQqLV1t3krRZcirL9UVOdYPpb/kAwWwGkUeAOKmGpTA+g5x5OBnbyUbmqCqUQ9PvsheFWVi/2nudvRKWYfk1WAtg6njraxqboGYd/fZSfSMdWi1ZLBaLZQhYX8GwscKrpYE4pp6/hmYC6BcbpSvjsJGN6AaNyZSXhfKt+gR5TwRFm+k6bOLuGaRxqcrGx/5b/fnmslLMmH6m8bULSN4nM5Vn48XzRF/zAG5twWR5Vpe37MsZK8K1G4TBDEH5OqwsEH1pAedr3oasX2pZ1wWmHzrHq7/0m1v2o7U+7rtMEcKl7dcbFG3RtuLepoaHzaq0WCwWi8VisViOBMHJU5z+8X9C9epliEJm/8IPUrt2Fac4RuXF5wgXF3DHxsm/6XHcgrHps/e/jle+90OEN67t+fgnfvTHGXvinXvej2Uv9BBei8ebAvJjE9SftLKSNATZy0K0Bvk52LwJThFKF1r3k2Z+ri/gzMwSL9xCb14hunkF5z1PICuvta6/fgM9lkecDn4Mp49SqgdZwalTqeG0jdHthPUTWCwWi8UCWOHV0k63/gvdxCNxIDtnSslElT0cWEwWrWW4dMtwBspfPQ/VRnZz5atfwn/i7WTLl6C8gZ56iMzNl9mIhJs/9x8Ze/Ld5L/uIUS3Rpmm/XiqpZigKUCm9pk/xX/r27cYVHd+0+Pc+NTT3PHh9+EVckzce5LcdA7NjAEbezrlgTNCpaH3jU5Go8VisVgOHmF/KzrYIFaLxWKxJEx+4FtbnmfuuAsAf3au4/qZc3dyzy//Fq/+999F5cXndn1cb2aOzF337Hp7y4DoYefKxGmgyUYMNyAYg+oaRCXIzkJl2azjAZPn4NqVrTuKGoHV/rkzVBZu1Z9vfOJTFL7uTchqU4aqxrARo0UPQtdUzNosQWUTxoqjNY3pEeR+W9HDp2SxWCyWA8T6CoaODUWy7B0RyEyD11fh1w7be5CbAzez/bqW/aVHiZtodWs05uZXn0XVfNNKZQ0RyN51BoC1j36ccKlzjxIna97r8qXLW16rffpTMH6iZVneW+Xd/+qvc9e7z3D28VkmpqoEukJmPLtl+63ndNBC6BEQXuFoCMwWi8VyGHCc/XtYLBaLxbIH/Llj3PVvf5nCW792V9vnHn0j93/sTwlOnBrwyCw7p0fwrdMhUF+SPA9xTGanhqbCGkC8CWGnllUKjtnOzbflidRCNj/zDBSmW5dffgWe/So8/3l48Qtw+Tm4ddGUPN6Wg/QaK3oUApit8GqxWCyjg/UVDBWb8WoZDCJmEh2W6Tkh37KdA7kZ2wdiVOhhCESLyy3P5fRdqBuwWsuTHffIrVxHHMEN+vjy9cz7Xbt0gfjeN5mWoZ4PE+M4gU+0GeJOn4Fq2fRIBdA86jq0GEflGpD0BPYDJPAT3bO5d8wB/xgcBWMKMNfYhjdZLBaLxWKxWCyW7nhT05z+8f+F59/7lh1tl3v4Ue76d7+KE/RRMtay//Syc8Wpm+AmPlegtgniGyE1qhifUT9laB0HYpCNW1As4BSKSDYLjot4LtVqjmDqhBF7Hdfsd3wKwqZjCMjYFDBhlrme8UGIULdhBQgjOMhqv0fBhD4y/hCLxWKxWHpjhVfL4BABvwC1tT7WdUyWrOPvb9q7ZWAUvu7NlD/7afIPPYRUN6lsxiz97u+a908VyeaYfdcTII0sV40BJwfEoIp+6auwucbsQ/PM3vce0JiQacKvfgkFgrc9jjuTlJx2s4S/8wewZMoLyewJnFpbr9Y7H4XF8+b/yeNQ7GDITZ6Gg6xibTNBLRaLxXKQ2HmUxWKxWEac4NRpJj/47Sz/+q9uu27u9W/g9E/8EzJ334fYjIoRorudqxsLkB2HqGyC8TVu7V/q5sFtNco1BOLAZEj6OcSNTDneux8h/PQfw/INit/ybiSIAIEqUE72WTwObrUxpsw43DrfGKYCXtJLFmD8JMRbWyDhT29dZrFYLBbL7YL1FQwVO4u1DBa/CG5u+/WCCXAD+wUwknR+T/z5SSaeeh9ceA69epFg9TLzb3mIyXe+EwAtl4hqMbUXnsG/w/TgEQeorZto16gCKzehVjYGVRIJ6U4U68cIn3m5ccCojPcN74GMKSest67CVGsJ4pZoyuVrqNOh9PBBR1weFeH1qJynxWKxWCwWi8Vi2TMnf/THyb/x8Z7rOLk8J//OT5K99wEruo4avey/hRdMP9fN61BdMT4AccAfM69Hm0ZpLd0EJ8lgrmzCxiJsrgAKtRJEiZiaHCteS1shKUweaxxv/SbIWGNMlUXw2nwBzW6NjYXR6Ag0CmPYb1RR6yuwWCwWi8UKr5YBIwKZSQgmO5cPdjOQnQWvD3HWMhx6iOGZxx+GTPLeqSIT06x88lPkH30D01//LuLzzwPgjo2bVcKm/h7N90PcWC5NGdLxK88Rl5sm6dE63vu/hdRqUnebPsLS4b7az0n/9P3I3EMwfs48n3lgSyTv7Ys1piwWi2X4SFJWb58et309PIvFYrEcFO74BHf+77/I/F/7m3jHjm95ffo7vod7fvW3yT/86BBGd0g5SJNsO7t6Y7F5ZchMmGpo2WkIxqG2YV4KjK+g3lII2nrFNY6jt241FleWWn0Vy5fAn2lsMz7ffWxRBfzxrcv3KxHA9ZC7HkfueSvM3AEIcufj4ByBeZVGiE2wsFgslhHA+gqGjRVeLYNHBPw85OchM2XKCSNGbM1Mm0xXS//kj3GwX2bdj+XkM2Te+R6z1ok7WXj6BZxTZwhqa8QXXqz3bImuXgTHIVpqKi/ULLw2Z6FuLiHTs/Wn8fWNtqOu437g28xrl15uNdDajb+NDmWu02NpEjmrgIrp/aouqAd4xgDMTpmew7k5c/8W5qF4EsZOwdiZ5F5OmLoH0SqEm4jrIDP3IXHlCGVxW+HVYrFYLBaLxWKx9I8TZDj2gz/MA7/3GU78zb9H5t4HkCDD/F///3Dy7/4jMnfcNewhHipk7PQBHm0b+2/zpgnAB8jOQGXF2NWV5dayw3HN/M0VGsua7exm4fXK+YbrIKrCRFsFrIXzECTiq9bahttml+t27s+0F2wWgoIpnZybNI/CDIzNm+NPnoKpMzB9FmbuhLm74di9rXs6+wbQEkQbyPgYcvcbgRLiHIVub9ZPYLFYLBYL2B6vlv3GyzWyW1WPkCg1OCQ3iyZ9VA/oiD1fDd74AKtPP0/18nVKi8t86kaN1z7/eSaPzRFFEfe+4WHeenwMb3yGyiuvId45k/laW0fDGWM41QTER2OFWPFPnMA/ew5xYoQQ3IKJBnVzJmIyAOcd7yP+xG8TT5yGwIE44tpnL/Dc//ExNIrRMASBd/7Tv0SQcyCOjegqG3DxsnnezQhwPOQt7932ymhmAkq3IDtljKamzN26AXlUsOWDLBaLZfgI9aCnfdu/xWKxWCwDRhyH2e/9AWa/9wdQVZsht1sKWzOH94/tW/jEC5dg7j4cKuBmkcwY6iWB9yJGDK2ugpOFsXE4dS/iuJArQjwFjoPg4T7+dcYfIILIONSqUC0TbqxS+co1co+eoXppA90so/oFggfO4E2vwszphp2aL0DmRPJcTdpJ5GEmN7FZnptE7ns7PcVCNwflm9ueu4pr+tXO3QVO1Hq54mqy0ra7uS2wn2mLxWIZAayvYOhY4dVycNiJ1x5w6MfQGQgiWw0CcUz2sl9ANGLmr/wQl/7i9xG+7lFu/cpvEkcxi1evM31ingdPTLP2xS/hnTyDViqU//CPtz1k9g1vYmJ20zxZ8tGTRcQRYLm+jjMl6Bvein7hk/Vl8XqW9RdeatnX9S9f48yjE40FcdQqkHai3z6w4sD4WcR1Ia5021l/+zr0HJXztFgsFovFYrFYLPuFFWj2wgFeuy7mX1QK2Xh1laWPfYryiy9SfOvbOfU/fi8yfgZq6w03kOMbu9vLmEpT1UsQrUAE1BZb9umAWQ5Qy8CVpKVRboro5RdYf/WlJLDaEL78IoVv+wZcWWka77TpNduMVzQZuPV1tI9L2Kfd67hw6lHErXUPyu7ka7kd0bhz6zGLxWKxWI4QVni1WA4DwgFP0JNevV7eGBCp4ZD8dQKHU//8X+L9w5/gw+96lHhylthx8G5cQV81RlF45TVQpdt0W1WRmWNIcZLqZo2N6riZnwsEN0L8Md+cs+shuSwouGcKxME7uPaHz7J26SaVjTXm3vGOlksTVR00P9+IdHWCPmypuL+ozOwkQtRbqK2uohqDl7vNnQhHwWK0WCyWQ8Dt/FNjsVgsFoulOwdqbxobOK7GbF5cY/P5K2w8/SzlF59vqYa0+jsfxSnmOfZnvwl3bBwJsoAkImiyXrgJ+enuhxKBsTnIT4ATwMn7wBEEIfuOr0VLZcRzURFEBHEc4oUSTmYKmZpOeqkKZGbNX0mO6yZlhJuPs61d26fde+IBI7r2Iq4ZATqu3eaJCTF09QRZLBaL5cC4nX9qDgFWeLVYDgX7UBrA8cEfAz9nDBA3QFwfxEuExeQRdxYZ3WKGk//wxwFQkshNpS4SRytrXP/xH8MJpomXF6EwhkzPE4tLuLxM9eJ59Npz9f01dX3hWAh+IVniuOhdd5t+qpgrkTl7jC/8xC90HNe5R86i115GUgNp/Fh/16OPUtiiEdtmHleWzcMfQ/PHTOmkfkmv32HA6q4Wi8VisVgsFovFMjz2oYSgqhKXImqrNcLVMuHyJuHSOtUbi3iFHAv/9f+EMOy5j+WPfITlj3wEAKc4hlscQ1G0UsGdmCT/6OuZ/95vaXg5chMwPgtB1vRqra4an0SaEZtt7Du4Yx4uPWueZMegvAYo1JbgwhXwHwVns/PAJk5Dbbnx3PEgLYXc9YL0fjlFgj7aQ5UXzN/MdPLe7cSoPvBo/N1j2xJZLBaLxWKFV4vlULBTMU5cCMbALySiaiYRVRPTRnv0O9XeRlTn4SUleqS+AG+qyImf+ikWfuInkJPnWPnd3wHO97W/xd//JGMfeMhM2OMI4ixItf769B05E+Eabi0hrLUakUzhaVKuaLsyw/UN+1lpB+Wea2uwso4WTpgSzdtFtKqa903EjHnkBVhrTFksFstIcFtnTFgsFovFYhkkcSWitlqltliitrRJuLhGuLBM7eYCtRs3qV2/jpZLgzve+hrx+lr9ebS0SPX8K2i1xsn33YNOn0GiRYjXEhF1G3JNbszyGsycg4ULjWWLt2A233nbaBO8HITp+fVj0/bpA+i3fRFAZdGIvtnZ/rJf0z61bhaiyuj7CnZyLSwWi8Wyf1hfwVCxwqvFcijoM5J1+kHEy4J2Ehu1y/L9w/EdJr//u3HHg0R43R53rEj23Dni4nGctatm4eWX0dPzSGL0SFjiHf/y7xMv3DLPxVQTWr2+SWbtJtFKFW882aEInL0P3AzGsHIgU4A4hJVbkCtAbmyfGo4rbFwBv4Dmj3fPflXM8aNyMmbPGGIjbbBY4dVisVgsFovFYrFYhkafNmxcibj5a19k5eN/SLS8tM+D6o+Nz36Gyn3H4NWvkHnsZH8b+QXTIzbIQzXJaq22icSLl+HcO8FJ7VVNgpwdCNchM9EQXqMaWl03LZY0SsoAC7hu0nIphri0P37rOITNa6bFkwR0FXjFhbhqyjPX1s01EP/AfTs7w/oKLBaLxWKxwqvFchjoY6Yvc48B8chNwP3ZMaitk7n/PirPv9B9vbk5xt7wKEG0Busr1CpZ3MI5nGgNKS0gzn0QN4zE/LEs4YVLLfsYz08Rr1YIL7xK8PCsyTKNQygvtx5s9vVQW4X8bLIgBMdhRxmtO6G2ARtX0OJpRATVCMJy0gfWMe9vVGmsr6Ep3+TlzfhtgJLFYrFYumGjWC0Wi8ViOaJsPwfQMObCP/5Vyl/96gGMp3/CmzeJX30BXBd95ATi9DiXzLjpCVtbNbbyA2+E9VW48Rqs3YCJ47ByrbF+aROkLXvWDxK7u9q0MG60CkqpYuz3FDcDs6d2f6LbUVlOxNek+pUkbto46RcblVp9BbUNs05mcoSzX63warFYLCOB9RUMFSu8WiyHgm2+KCfuZN9Ew73i5aC2zsRT7+VGs/Dqecw++R7cwEdEYfkGrDQJqeUS4Qumd4tMHcO9sYZ3chaSssaiwPgUrDbEWN00BpKurRC79+LGyxB1Kp3c4XqK7K99EJZg9TyaPwZhBcq3wMuh+ZMIXcTycDMxwHxG7v21fVssFovF0icichr4B8BTwAxwFfgI8GOq2lfqjYh8CHgn8BjwKDAG/EdV/e4u698BvNpjl7+kqt/Z3xlYLBaLxTKC9JHxeutjL4yc6FpnYg5uXUJLLlJosnfdACZSsVOhugLVxcbrjkK8ArPjcOoMeEU4eYex/cMwqR7V1BO1Xv0KI3S6gRE2O9m0rge1pucHEdheWTZjzEybrNbaGgTj4Jsg9i1omPgTColQa30FFovFYrGMGlZ4tVgOA70MKi+PBBOM3GQ7xc0AkH/9/S2Lj73/fTjXXu66mUYNA0eXbhAu38SLzkDUsIKc4+eInRxSGCNeugqVRiRotAFujs7Ca9TJeDqAKKC4BuuXG8/Dkona9Qvdt9EIYgUnA90EWovFYrEcUWSfo1j3vm8RuRv4E+AY8GvAc8DjwF8DnhKRJ1R1oY9d/U8YwXUduAQ80OcQnsaIvO18pc/tLRaLxWIZTbYRXkuXN7j1n375gAazc0L18IBoYQOnkGu8MHECKj2mBl6m8X9lxUxXCgXATx5A5k7Tykc82LgJkvpL1JQbLt3q3NrHL0B5pfH8oETEqAKbVxvPq6t1X0pXwg3T99XNMlq+Aiu8WiwWy/AZfV/B7Y4VXi2Ww0APg0qm7x+58sItJKVyvIlsfVH+wQdwbpzvuZluriOAqjZ6shZnYaVhjDjhMtGty+hNBT+Df3weOXkcUCivUisLOFX8TCnpzxKZR3YZOXXSrIeaP3FtOCUYgvHt3z+NjdHYtX/vMLDGlMVisVj64ucxousPq+rPpgtF5J8CPwL8JPCX+9jPj2AE15cwma8f7/P4X1TVv7+TAVssFovFchgQcbpaZXEt4urP/arJAB1RygsrFAFdWISzSYbr+CmobFMMw23yj/h5qKzD2GSjPC8Yu7maCKhB1qxHkgUbR6ZUr5tDshOJuKqgMermIdckAg/T7o37eO+isjnXYNz0gh0FbMarxWKxWCxWeLVYDjWT946QENcFSf/UcCYmiFdWGH/gbrjSPdsVQNdX0Zmz1Daq1F54BimOw82IXNC069o6zum7iV97CWoVuHFxq1kkDoy1GSxRDWnOEJamgR4E4sH4HeZ/7dcQVpMh6+bMNkOv02+NKYvFYhkNhv170B0RuQt4EjgP/Fzby38P+AHge0Tkb6jqBj1Q1brQKkP/DbRYLBaLZVRoKqnbxM1f/xKVV3vb3MOmemsJZiG+eR1IhFeH7ZM3NYaJk6bkcHUVCjPg5RtCK5hMWC9nbOi4CpUOomRGQFuD3MVP+xoNCTdjzkVcU3K4H+IalBchO5Nk+Q57nmR9BRaLxTIaDPv34GizfUMIi8UyAnT4osxMIH7+4IeyB4pvfdz8s3i194qA1qrUbt6i9sIz5vn6KuHy6pb1ZLxHmV7oXD4oHmJZ5kR0FQ3NY6fbRyXTs2bYWFvKYrFYLNvz9cnfj6q2/iCr6hrwx0AeeOs+juGkiPygiPxo8veRfTyWxWKxWCxDZ+PFJRZ/5SPDHkbf6PItE4/s5/sUGxW0bERXgNrGVrtfBPzxbXYzYkatmzG2frjZv+haR03fVze7/ar7TScfjMVisVgsR4wR8N5bLJZt6RCxKBN37yBbcjTIPfw6Ks8+D+XNbdeVTJaxGY/SzCNULl5EHAfpUHLZKd8gyuSh0mOfjmvKCaXEQ8gSzp9IyhuB7PV9i2rgBqTlkIajgo6YkWqxWCxHEWF/g1j3vu+0wfsLXV5/EZMRex/wu3s+WmfemzzqiMjvA9+rqhf36ZgWi8VisRwM4rRUwYpKIVd+7heHOKD+yczNQNLmPS4L7tQExD0LYBgcF7ITxi6ubZrs0E7maVTqvR+NAbdt4RCyg3JzRgQOS/2VF+5FVGn0ho2rWF+BxWKxHFFG31dw22OFV4vlUND2bTb94OERXcNy/d/M2ZNM3XcS1pa33UyK41BdIOeWyN1pslp11icOJpHKkhFhHRdxXJxz9xBfvQCui7guuJ7533HBdU0JomaxdRgRmF4OGVRZaA0bvXq83JDKTVtjymKxWI4ID4jI5zq9oKpv2mbbieTvSpfX0+WTuxjXdmwCPw58BHglWfYI8PeBdwO/KyKPbVfi2GKxWCyWkUakxTS7/sufJrx+bXjj2QH52TG4aYRXJQda6W9Dp6kMr5/0IvI8iHzQKuAYQTquQTBpMkgRs0ySv5Bkh45A6yaNobY+mH3V1hrXJjM1HL+RzXi1WCwWS5+IyGngHwBPATPAVYwN/2Oquk3TdxCRGeBbgfcDr8f0LqgCXwb+DfBv2qtvHRRWeLVYDgPNGa+ZaSTNdhxlNBE7N6/XF7le3JfoCuDk8lBeQObPonEENy8jty4AAnc+CGuXIYohquHN+cjkye5D2Wzr5zKMUsNtBvGh53Y6F4vFYjnMDL2P155IBz/wXxVVvQH83bbFnxCRJ4E/At4C/PfATw/62BaLxWKxHByNqlBrzyyw8lu/PcSx9InrcOJDH0Runm8si6qg/booHeNvCMaNuBqVoWwEXHLzUFlsrOrnGkJk+2xDY/AyuzyJAbLXLNeuWKPdYrFYjjQj7isQkbuBPwGOAb8GPAc8Dvw14CkReUI1KY3RnQ8Dv4ARbD8OXATmgW8D/jXwjSLyYdWD7y9ghVeL5TBQL7HrIBPnhpTh2ANVCCuAJqWOkojNtqhNd7L/nrSSz+GcvA+Wrhiv7D2vJ37py+YYUZthcvMinLkbyl0SaqStfNBBlxp299GYG5otZY04i8ViOSI810dmazfSH+aJLq+Pt62376hqKCL/GiO8vgMrvFosFovlMJP4CsKNGld//j8NeTBbKbzuASYfex2qisaK47n44RqsvtayXnz5Cpy8p8+9Cjg+bN4w/+ePQW21/lILlbWGj6Kdjj7YA3ZSewUjHu8Hw+phazNeLRaLxdIfP48RXX9YVX82XSgi/xT4EeAngb+8zT5eAD4I/EZzZquI/CjwaeDbMSLsrw526NuztWGixWIZQZLJ/8yDoye6ApQXYfMqbF6DjSvmb4dSORJ4yNRsX7sUT2DpSmPB4nmce1+Pc9+jyPjU1g38YvedOW3C60EaAk4AxdODKzPczk7twmEZXxaLxWLZH0T277F3nk/+3tfl9XuTv916wO4XN5O/hQM+rsVisVgsgyX5vb7+n/6YaOHWkAezlbkH5vGXLhAsXyTzf7d371GSXmd973/PW7e+3+ei0Wg00mgulmzJSLIlWw7GMhbCWWAbG8dZxDiEkGBMDOTASc4CYsvAOpDkBGJjOD7BPg6YxDhwgAUYLGPJ2Fg2vsn3GWk0mos0mhnNpaevVV2X9zl/vNUz3T1d3XV769L1/axVq7rr3e/eu3qk7tr72fvZs88odemENHvt5pXSsRo+ChSzUr68i1UuZS9IqZHocc14tyT1TVSoaL15gRaOl5ODUXuxzRXU8FnOvYlzBcw5AEBH6OC5AjO7WdIDkk5Iev+ay++StCDprWa24Zjd3R9x979Ym07Y3c9K+r/L335Pwx2uAztegW5gJvVNRmeWdqJEn6TZqooGO66XRsaUGC7vfjVXGJqKJ05IC1frsGDNh3V36cLx6Osd+66p158/JetPat0P+cGaNSZxpxrOTKwY3Hl8QVdJVUVefcUfRS9GO4AtaPC8FwZTAIBNPVp+fsDMgjUrUIcl3ScpK+kLLe7XveXnpzcsBQBAxzPNfvO8Zh95dPOi7TA4JmWrOL80uygF/VJm6OoxPebRWDZ7QauCpOGao4R8xRFHQ+scQVRp6NqOnZmZiahdC6L3EVuaYamquQJLRj8/s3K/klf7Vi+mCgAAm7u//PzwOkHTOTP7nKLA7L2SPlVnG8spJdpw4DmBV6A7WEI2srvBQFmMUgNSLllV/zIH9kiPP3pNUsHkzkGV+m9S4amjUm5RwcSYlBmTgqQ0OBIFnYOElEhEr42Pyc+fkS6fk8a2y3beKE1cL5u6KRoomEUBxiCQFbJR8NUkyaLAa+50DD8ISX1TUmZE1kn/VkFCKi5e/X45VXNyQNEKW+nKSttqVy2tTd8MAGiPDj63xd2PmdnDigZM75D0vhWXH1K04/QD7r4gSWaWkrRPUsHdjzXStpndI+lxd8+vef1+RWmLJOkjjbQBAEC7FeeLOvu7nZdieNn5x49q257BqoKcXkrIVp7Puiw1IKUGrwZXU0NSanj5LkUD/eVdOEkpGJA8H6XwDTJSblFKj2lVRNA9+r5v8urr7tFcQ1wyE9Fu3XV32sahiiSHFkhL02tuS5Z/XmVhoba5giBVdQ8BADHq4LkCSQfLz5VSXhxVNI9wQHUEXs0sKelHy9/+Tc29awICr0AXsOE9Uinb7m5UZiYN7pTmn9286OjIugsgg/yCgvwxlSa3Kzx9QomJdJSueGRKNrkmPXFiQH7hsGw0Le19hXT5GSn3vDRwq2x48trKUykpXLryrVtSytX4HitJ9pcHTyYN3SALKpwf02qu8qDRy/1bx8pg7LIgHQVVvbTxAtlOeI8AgG7wU5Iek/ReM3u1pMOKzld9laJB1i+uKHt9+fpJSXtXVmJmr5f0+vK3O8vPLzOzD5e/vuDuP7/ilt+QdJuZfVrS8geU23V1Ze0vu/tj9b8tAADa79xHHlFpep1gZYdY+NZ3NP7iNyl58fimZX0uKxtb50IpGz2ClBSWZCpnlEqPyRfPri6bGpVmTkZf922TZsrJLaZuknLntZYnUqvnpdOVjqWvQyIjlZYkmdQ/JeWryxLWNKYKu09NSqSjQHPu2rTPCotSbm3aapPSI+XdsMVN5go6aBE6ACBOh8zsK+tdcPe7Nrl3+Q/uTIXry6+P1dEvSfp1SS+U9HF3/0SddTSEwCvQDawLjmMOktEOyvWCeSvY0OCGmWeCvv5o/WepHBmdOytPpqXMoKxvvV2WK2o78Xn5jv3rjAFiWuEzcF0UcF6almSyTsqp4+Gm/xbrWk4pZIkoCCtJ4TpBWAKvANAByjs8Yq2/MeVdr3dLeo+kByW9VtIZSe+V9JC7Vztb/GJJb1vz2s3lhxQFa1cGXv9A0hskvUTS90tKSTon6WOSftvdP1vzmwEAoMPknmz1Mem1O/fxT+n6V75Iyi1sWK507nkFY9srF0j0ScGKY3wK87KBHXIPpWw5qLryo8vKMev8xfVnQK1idLIhbhnJAynRF80TtDroWokrWuBe865bl/LlOfDkgJToj74uLV27oyrWo5YAANXp/LmCKhuo+Y+0mb1T0v8m6YiktzazU7Ug8Ap0hQ4K6FViJg1sk2ZPblyuL6ngB99UHgT5NY8+l2R3SmfL9XgoXTohbT8oaZ3A68ofTXFJys1LfUNr+rbRTQ3oG48GUZmJa9PztJMlyufhNFCHl67ulA1SV89+uVqgkR4CAHqIuz8j6ceqKHdCFUZw7v5uSe+uoc0PSvpgteUBAOhGXuz83YWFS9PKalj92iTwevyYUvuvuzpX4MuP5e+npcyKHalejIKBV9IOr+Erxqy5WWlit5S/vKaM4pk7LixGweDh3fIg0aZsj+s0mshEi61LS9deq1Zx8eoi7/RYdLTRyjNhQwKvANAjjlSxs7WS5R2tlVJNjKwpVxUze4ek/yrpO5JeXcNC76brgm10ALpix6sU9bN/28ZFEgkpEUileam0IJUWy6mDctGH/3CpioHPigFUfvXgzZ/9qtxDuXv5Uf5aXh63+eoBWL0sEQ1aJEmhlBmXrEPOMglL0TksTauvEAVhXeX/Fq05P0MAQOMsxgcAAOhoQf9Au7tQlXN/+lfS1O4Ny/jpU1J+TlqakZZmo68L8+VAX3b93ZUbSazZaxJaOauTSQrK58Em5BbIlZBbsinDXLeEtHQ5+mbuWSm/KPcO+GDl5V2rjQRd18pfjtIVWzJ6KBCLtAGgQ3T2XMET5ecDFa7vLz9XndrDzH5W0m9L+pakV7n72Y3viBc7XoGu0AEf0quVGox2f4YbrLxNDVwdiKwnLEq7X6ArH9jdo1hfIRetdvV5afe+aAemh9JYebDpoaQZafHc6hWXQUoqrgjQBhk1pH+b1L9tTWrhUEoPScVca8/j9TAKAi//N+KhFDbrANs1wvzVjESJvnjaAABUz1TbBGQ99QMAgM6V7J5pvfNfOqJtNw9vuIjXbUCmDdLy5uflNiopvLobNrcYLT72UMqdlZL90VxB7pLUt2KuYOmS7IZ7V2Vy8umnrmZ6kqKzWOvk7tE4uZBdvRA6e14q5eSD22StTMPrvnruIyw0d4H2SlcygJk0sCOeNgAA1ev8uYJHy88PmFngfvV8ADMblnSfpKykL1TVHbN/p+hc169Jeo27rz2svOW65xMagO5gJvVNSYsbLCpZPju0krAgLV2suws+95xscMWA6Zo/NA2eTzq0u8J5ri4lM9F5t4W5xtqoVimmIOumWMUKAAAAAO1kiXWO4+lQC0ee0NRLf0h2vvLxRL4URhsnKyksRI96hEV5dka28miitdnFGtnyaglppsJ7y89JxSX56A0yb1F66AbmVOrXpAxjAIAtzd2PmdnDkh6Q9A5J71tx+SFJg5I+4O4LkmRmKUn7JBXc/djKuszslyW9R9JXJD3QzvTCKxF4BbpCl205SbZ5N+TCc9LwrtW7XldpYCAwdmDz+4OElBnbeFdvtytV+tkCAFqqPYeGAQCAThB0ybFEZQtnL2tog1ixz8xJkzF+tnn+W9KNr4jOh5V07Qls9c0VuFs5E9UGwrw0/bR87CaZtvA5qK3MAAYAqKzz5wp+StJjkt5rZq+WdFjSPZJepSjF8C+uKHt9+fpJSXuXXzSztykKupYkfVbSO+3a933C3T8cyzvYAIFXoBt0/O/JdSQylc8OacEKT7/8tGxk+QyZNT/AeldgBilZqoYzdDIT5ZQ7rPgEAAAAADSXrT3HtMNNf+HLGrpvf8XrpTNnlZi8LsYeuHzunGxoMvp2vR2v9cy/BGlptvJO3pXt6/LT8uE90TGznT8pXjt2vAIAqlDe9Xq3osDpg5JeK+mMpPdKeqjKnas3lZ8Tkn62Qpm/k/Thhjpbh+5aGgegO5htmE7Y5NG5K3HKXVL0O3cd9Q4EkoM13hBGO1+3JAZTANAZLMYHAADoaF2247U0OyulMpWvP/1U/J249KSu5DNeG/j0Oo8lqjWAOndKFecrul29P0MAQJN1/lyBuz/j7j/m7te5e9rdb3T3n1kbdHX3E+5u7r53zevvLr++0eN7mtbhGnTXJzSgZ3Xh5Odmu1pTw/F34eK3ywOqtT+/OoOG/VObl9li3F1uSXmQWvFIyrfiylwAAAAA6CLWZYFXJQKpuMGxNQvzUqKGLFN18ucPa/3J4zqDhqVC7ffk5+trq2NYlOWrf5vUv13q3yEN7JRStS5YBwBg6+munCQAuoP75meAtuIc2FJePn9GNnLDmgt1Bl7TQ3Xc1L07Q90VraAuLVx7Mai8ShkA0EIshAEAoHclumvXZGbndZtmoPIwGf/S8+wFeXbHOjte6xy/L5yt/R7v4nNeg1SU3au0JJXWLLpPtGCuBwCwOeYK2qrLlsYBvarLflG6bz6ICFo0QFw4I1+aXedCjT/T0Vua0p1u4e5SYFIpV6lES/sDAAAAAFjNWjWubpLRO1+0aRlfWGpBTySd/7auTfdb2zjXJblS9QVRu/Us1CAlpceioOu6SDUMAAA7XoFu0E1x19ClxeerKRh7V664dETafocUlgcGyQGpkN38vtF9UnpEknfVP0GjoqBrQipt9DPq0kEiAGw1rGIFAKB3JbpnP8XwnXdoILkgbXIqUenCJQV7WpSudvqENLpLys9E36dHNhkHl+OllpIWz5eDj/WOjbtwTL1yp2sl3RpQBoCthrmCtuqeT2hAT+uSX5ShSwvPbjpQkRSdgWKt+xXk578lBX1SclDKXtz8hqnbZelhGUHXSgVb0yEAAAAAwLqshWPqRkzc/0pN7uqTcoublg1PnWpBj5a5tHAxmicY3CUVN+6fu0v5rDT3TDk7VA+Niy25edBVUk/9TAAAqKA7PqEB6A5hXgo3Wb5aZmbl3aQt4iX5xSPy7PTmZUdubmlQuFNUHXSNSsfeHwBAFSzGBwAA6Gxdcsbr0O5t154FWkH4zIkoyNcqxVwUTC1lo3mKCtw92um6vDu2Ud5FKXktIfWNVxF0VXe9LwDYypgraKveiywAiE9Q4+Ao2R9PPyop5aTsxc1DhpnRnvsbUlvQVex4BQAAAIA2s6A7Rq75Gs9t9aDFcwVLs1K+EI2LK7GENHe6iY12yZjaElLfZHVBV0ld874AAIgRgVegK3THYEoWSEG6+vKJGso2S35GKi5tPKDqsRWa7i4lktUHXaO7YusPAKBKZvE/AABA5+qSTE0XP/P5mj5XeD7GzlSycFbyDRaTe6m5i8e7YjGzSX1T5bTKVeqK9wUAWxxzBW3XHZ/QAHQHMyk9VFv5dlg4e+1gIEhJ/duksf0x9KvD/xgl0pueZXMtBlMAAAAA0FZdMvFZOH9BGt1WdXmfnY+xNxuYOSnX6gXiroTcMpLVM27eQDcs+B7YUeMCbYm5AgAApBYemgCgJwSp6suGbRxozD0jH71JplAauE4a3CmLbYBg6sTBh7uina7F+ga17r7hGTgAgFbg9zAAAL3KuuSMV0nyVH/Vn1pKZ88qMb4j1v5UdPmEfHyvFC5JiT5p9pmYgqSdN0dwRZCW+ibqCzSz4xUAOgRzBe3EjlcATVb9h2xTKRrItMvsSXnfNtngjhiDruq4VcjuLg+SkgpScaGRmprVJQAAAABAzTprrLmx6sePpaefjrEfm/BQmjkt97Q0czK+namduOPVktLAziilct27e5knAACAHa9AN+iwwN263KXCgpQ9X9t96WEpW8N5Ic2U7Jf1T7Wgodb8+0VntZZ3HHsoySVLyMLi6uulpQYDrldabEIdAICGdMNnBAAAEI+g8z8HJIaGtPuHXiM7f6r6m2YvR4u0azlbtIkWn5nWpS99VbvfeEd8jbQ08GpSZkIKklenJ4pZKT9bvhxEZ7mGhcbTKbPjFQA6A3MFbUXgFegKXfCLMizWHnSVpGT7drzajjtlXpA8E/OPOP5/P7ekpPy6AVVPZKI+eKlJAdflir0r/tMEAAAAgK0oGBhsdxc2tfN13yc7f6Lm+9zTMrUn8HryQ5/Q/De/rZ0P3qbkYExTp60KvGYmo3F7WJBKhdXXBnZE66nDfBOD3B24kxcAgBYj1TDQDazD/1cNXVp4rr57gzau/1hOc+zFeNuJcYXRlbTBpYVoILWe0lI0iIr7fQIAWs8svgcAAOhols60uwsbmvze71Hq0om67vWFfHM7U6XiYlFzX/2awoUFnfvUE/E1FHvg1aK0wV6oPFdQzEqlbLRIu1nY8QoAnYG5grbq8GgOgI4XhtLimfoHDe0612Tb7bLllZilXPdmzU2km7uLtSbd+kMDAAAAgO5nQedO64294uUaHqg/eBpeuNTE3lTvub/6ljwf9fvcx/5SYb6JQclVPDoOKC4DOxpPG1wX5gkAACDVMIDauEvyKEVNmJdK+cqrJ6sRFqMdva0OwCYH1nZE8a1FiWclkFvQxqCrWMkKAJ2AxaYAAPSuDgq8WjKlobvvVrK/X8otKDk4IC9M1/1RpXT6WSVvONDUPlYjf376yteFCxd06StnNPWy3TG1FtMHucx4m4KuYp4AADoFcwVtReAVQHXco5S1S5evDbSmhqIUNXUEYM0kTw1L+Znm9LPadlNrAq+lnJTojyddQpPrdPcoRXOYV3tXk3J2CwAAAAC0TQek+0vt2KmhFxxS6Znj8lNHtXzATVGS33a7BtMLsrD2Y2/Ckyeklx1q6SJtd9fiE8dWvXb+rx/T1MveHE+DZmr6mD492vw6axLt5LUO+G8TAIB26ZylcQA20OYPrO5SYV7Knl8/uFpclILUOrtIq7Q2CBq3iUPXDlA9VHw/58brdUvIg6TcLDqjpbTY/jNbWcgKAO3HuS0AAPSsdge3rL9fgzfsUvHJb8mz12ZjWvr2NzR3MVSYrmPMH5bkicEm9LI67q6zf3tM2WOrA6+zX/yScuezMTXahDrSI1L/Dql/e/S1vH1HOl3BZAEAtB1zBW1F4BXAxlbudN1ImI9SBlsdG+kT6bq6VpedL1EwfP36oVBvIGVyTNyjoKtKi1Fa4VJOnTOI6ZR+AAAAAEAPSiTa13YQaOzuu1V67tSGxQqnjmthpr7Ro9d/RGxt7bjrxP/7eZ36rx9c9/qFTz/Rmo7UIpGJgq2SVMqW5wo6BOmGAQA9jsAr0A3auZAkLEU7XatRykmZ0drbsBb9KhrcJcuMVL5eWuqoAYJbQlIpCrp2pM75WQFAb7IWPAAAQMdq1Vh6HeOvfKWKxw5XVTb/5GGVRnbV3IbPzNd8Tz2mv3FBz/9/f1Hx+vmPPyIvxbCLtN5dQ30TUcaxTgq2rtLuHbcA0OuYK2g3Aq9AV2jhL7PQpdx0eaulS4tnW9Bma1Lm2tRt7fmzUONgyt3lQaoz0glvpO3piwAAAACgd7Uy1fDoK/6Rxv/RK2TpjIbvfZmKT3yzpvtDr30KsnTu+ZrvqVVxsaTj/+lDG5bJnzmjmcOXYu/L5kwa2BnNoXip3Z2prIMWtAMA0A4EXgGsUYrOc81dlHKXVPOuxno+/HspSpMTp/7tsmpWXcay67X6wbDLpCCQiq1Z2dsYBlMA0FameM9tYRErAACdLWjdH+sglVLx2BGN3X2ngpkLNd9fytW+qLh0/NjmhRo0++RFFS9f3rTc+U9+Jfa+bCg5IPVPScVOzYi1EnMFANBWzBW0HYFXAFe5R6mFJamYre8DfWFeCmo759XMpPQGKYAbZQnZ9turK9vGHaYeJKNzZjs2XdAajKUAoP3iHEwBAICOZonaxt51t5NMSaWCJKl44qjCmema68gdfbL2hi9PS4m+2u+rUmG+oJO/87Gqyk4/8ncqzhea24FqP2/1b5OCVLRQvBuw4xUA2o+5grYi8Ap0hRb9QisVpGwTUvnUMzBKxjeYUmpIVlOUsLU7XqPUwkmpuNDZ6YKuwWAKAAAAANomkWhJM+P3vVzFp6o7z7WScGZaYSJV833u6Yba3cjis/PKP3e6un4UCpr+2pnmdmCzIbUlotTCpaUqCncSjiUCAPQ2Aq9AV2jVSpImfZCvJ21wjbtka2HbXlTbDc1ON7zBSiBXEF0vLjSvvZbppoEfAGxRrGIFAKBnWbI1O149bM4C4XBwe+1tLzZ5l2lZWAh19i8/X9M9lz7zeCx9WVdqRMqMdUlq4TXY8QoA7cdcQVsReAW6QSt+n7lL+ZkWNLRB+3FIZKRkf419KampP/Rg/VXIHqSkcCl6dCMGUwAAAADQNpasfQdprRLjEyqefKopdYV1jLPDi7WnNa5G7uKSFr5V2y7emc//g4pNDQRX+Hn0b48mtsN4gs7xY64AANDbWrM0DkBjkv3S0A1rXrQooOdh9Fj5uiTJy4GxMHq24OrjSrnyYdjFJenyk807L6SwEJ3Zmp+t/p6wEPXNm5ySZvI2WV1pbkI1b23K6sGUu6KUUMX5JtXfLgymAAAAAKBdxt7wT9R/x52SJCvvQLFMn5ITUypeviTP5aLXkonyLpVAXigozGXluay8WFAwMKRgYFBBf7+USMiSKVkyKUsmVXzmhKY/8J9VPPV0U/qbffJpJfZdp8TCxarvKT37jJLX729K+ys9/8lvqnDhQk33eKGg6a+e0bZX7GlSL9aMqYOU1DchFbNNqr9NWKQNAOhxBF6BLmCWqH3XZg0895y01MRVpF6UikUpSEthvqpbzCRPD0tLTdx1G6Rk/ZOq63yR0lJ0Vm2T0ye4BZJK3ZkuaK2uOo8WAAAAALaW5Ni4kne+dN1rqZ3XNVz/7Ec+0LSgqyQVz53RzPycxvdNXAkUbyY8cVy691BTx5+5izmd/4tP1HXvxb/7avMCr+5X12mnx6LF6N0edJWksNjuHgAA0FakGgYgFebiqTeoMe1RcrCpzdvOl9S521VNTzfs7lFq4VKu6mB0+5iUGt743y/RFz0AAO3FuS0AACAG7q78sSPNr3dhvuJxPOsKS/JgoKl9OPXfP61wsb7F0LNf+KIK801OAdy/Q1G2sg4PWFpCyoxLtsE+nvRodOQTAKC9mCtoK3a8Aj3O3aWlGlIC18JqXNuRaPL5NEGDv+K8FA0sGuTuUV+6IrWwScM3ypIDci9FaaMXTmtVCqShG6TkUNUrlAEAAAAAXaaQV+HYE7FU7cmMrFD9zk4v1D69sJHi7ELd93qhoAufO67rvu9A4x1JpKTMqFTqgl2uQUqauFWWyMjDgpSbluZOrChg0uQLZTFmawMAoFuw4xXodbPH4/uQX2vQspkjKUmeu9RYBaVcw2eTuIdRWuFSF6QWtoQ0uFuWjFYTmyVk6ZHovN5lQYqgKwB0jBhXsFr5LHgAANBzPAx18f96d3z1J2vLnuRzzR1Pj9xxsKH7z//lp6MF1g3wQko+l43mHTpdIiONHZCVd7JakJINbF+dtSw9QtAVADoGcwXtxo5XoId5MRcFXuNSS/ogqflnhs6fkQZ31HevSzKLAqfLf0xcknl586eveW35+1DRmbIWvVZckBJdMPhIj0n9O2Tr/Zv1TUmF+ejfJzNO0BUAAAAAtrDc41/U4qf/Jrb6w9SgEtnp6ss/f16J0YmmtT+4f2dtNwSmoL9fiUxKQaZPls9p4cSCBm8cl7w89ne7OlfgksLyPIF79HUhL5XKcx7FgnTuadkdr5Y01rT31XwmDV4nDe6SrbdQfmi3NHM0mgfp39b67gEA0KEIvAK9LJGOdjk2O+C5LD8bne+Rn6mufFiUgnTzzkBdmoniotWUDTJSuHT1e1OUz6hUkopLWpVqt9ulR6TSUnQuS2pYSg1eWbm6Hktk5KP7JS/Jaj23FwAQH1O856uwzgYAgJ6U2rU71vrnvvp1jd5xQImFi1WVL504rtT+5gVeMxPVnxl716/8uBLzZ6++MLpTue8cVfD00/LLYWMLkxvcNdtUlpAyY9Gi6+RglAI5PSpLpCvfkhmVT32XpJC5AgDoJMwVtB2BV6CHmQXyRCZKhRsLL+8ArbY/Jk8PS7nqBl+bGm58sGgeylOD0eCj2wUZaWCnLDW4edk1zIKmp4IGAAAAAHSexPad0YRtTIFBX5hXbi7UYJVDTL/wfJTutrS0eeEqzJ+ofs7B184ul+c4wjMnFe68U4nChfo70imB19SwNLK3rlTBUdasGrOdAQCwxRF4BXqYl/IxBl3LSrnadrHWeNbLRmzspuoX4KxX0IJoUOXFpvWpPYIo7U9mgjTBALDl8HsdAAA019Lhb8YeFMw/+4wG9o7KwuoycLkyMjUn8Hr2f32yhtJrPmstLVz5snT2khKTDXSk3YHXICUN72GuAAC2JH6vtxPbl4BeFqSkgRrPNqmZR8FUq3IFZKKJ6WlqGcSsVzSIUuqYhw2e09qmwVRqRBq8QRo7IOubZCAFAAAAANhU5sCtSt96R6xthNMXtVgarXq07NnmLIj2UqggU/monWvK+7WB18SuGyRJ4ZkTChO1Z5RaUXn999bLEtHC7PFD0tQdzBUAABADAq9ADzMzafxA/A0VF6OzQqrRrHHH9jvLKW8asDJNcqN1tZIlpZF9sqHdsvRwlCYYALA1mcX3aFoXbbeZfcjMnjOzJTM7YWa/ZWbjNdTxJjN7n5l91sxmzczN7CNV3PdyM/u4mV0ys0Uz+4aZ/axZtSvCAADoPZbOaPxf/dvY28l943GVRnZVVTa8NNNwex6GOvWxx7XwrW9Vf886r6WmRq72y6s/L/baylsceE0OSJO3y0ZukqVHmCsAgK2sC+YKtjL+wgI9r8N+WYaFKztN67bzJQr6q57Ljaz3Y/BSdI6MJIXdkm44kIb2yBLVr+AFACAuZrZP0lck/ZikL0r6TUlPS/oZSZ83s2oT9P2SpJ+W9GJJp6ts+3WSPiPpuyX9qaT3S0qX+/DRqt8EAAC9qEUTq+7VTU0WD3+n4baOf+gxnf3DP67tpvVioxdPySamJEnh+erPi7227nDzMs0SpKWxg7JmZhkDAADrIvAK9LqFsy1qqLqVnGaS+qcabKqOwUvF7kW/Jk2hlGje+bOxsEAa3iNr4jm5AIBOZtHv/rgezVmc9TuStkt6p7u/3t3/vbvfryj4eVDSr1VZz89JOiBpRNLbNytsZiOS/pukkqTvcfcfd/dfUBS4/bykN5nZW2p9MwAA9IqFv/2rlrQTVjl897PPyRPDDbUVpGsPOlbqX3LX7uj62ZPyOhePe6sCr4mMNPECgq4A0DO6Yq5gSyPwCvS63IXWtFPLjtFkAzteU8Oyvhp3u27EV/Q7SDav3mYJMlLflNS/I0ovnGwgzREAAE1kZjdLekDSCUW7TVd6l6QFSW81s00PR3P3R939qHvVOfneJGmbpI+6+5dX1JNTtHtWqiKACwBAr8p+8bMtaae0mKu6bHi5+rJrLZxe0Lk/+Yvab6zw0SMRFK5cD4Ox+joVxphqODUsDe6Whm+UJm4jKxYAAC1E4BXodX0TrWmnlqBlWIjOKa1VckC2615Z0w6KVbR71sqrQsOi6lvRE9NgKtEnjdwk698u65uUBaxeBYDeYzE+GnZ/+flhX7Olw93nJH1O0oCke5vRWIW2/2ada5+RtCjp5WbGLCQAAOvo+657WtJOYrD6jE3Fb3yzrjZy53N68t0flEqlmu+tuCl1+rTU1y9JKp05p+rXhlVTeYMyE9L4IdnQLtnADlknLiIHAMSso+cKtjwCr0Cv69/Wmnbys1JmrKqiJkkDtacbtuvuiVICN1t5kGIKpdSmm3JaxKTBXTLj1zgAoGMdLD8/WeH60fLzgVa27e5FScclJSXdHEPbAAB0vYGXv6ol7cw/9phKA9Ud+R6eOi4lh2pu4+h//JjyZ87UfJ+kygHVsKTkjdHHiPDcMwrTdcytVJtnuRZBShq5UdaiM3oBAMC1WPIE9LpEX5SbvRVni1ji2tfSI9LAjmhwkJ+V5k9LcinZv6ZgIAWJaDdsJUFSqjfwutGYZOXPJiy07ue1kYGdsk4/cxYAEL/4J9UOmdlX1rvg7ndtcu9o+XmmwvXl18fq6Ndm2tk2AABdL7V3X2sacleY6NPa2YLEwTsV7HuhLN2n0vHvqPT1v5ckhTN5BSvWQ4f5UDJXkFpnvkFScbGk7NNPN9C9yjtZE/1JLR9OVDx5WsGuTG37gOKYVxjdRzYsAEAr5gqwAQKvQI8zM3lqKAp6xik1IuUurnltSNp576qVmD56i7TwnDRzTBrbLyX7ZIPXSeZRwDMM5Re/HWXvDYtSvjxvOn6gsd2uG6UF8mI02ApLklxKpKXS0rXlLCjX02Bq4dSIlBmPAslhPnqfuYvR15LUNymlxxprAwCA9lv+ABDjAWcd2TYAAB0vsf062eCQfGE+1nYG7325UnOnV7d9+33q+2e/cOX71Mtfq/C1b1Ph03+i4pEnlX7wB+VhSSff/zFd+ptPKDE8rMzO7brxxx+Qhy5LmTLjGYX5UGcfPiJfWmf8XiXf6BzWy88p84IXRHMFXpKGtknzz11bLjMoFXLlOYUGDOyI5gMsiOYkijlp4YzkRUmBNLxHlh5prA0AANAwAq9Aj4sCisXNCzZqvVU2k7ddk/7Gkhlp9KZyapw1aXQ9lBZOyyZfcPWl6K7mnuu6LpNK2ejLUk5K9EsKpeRgtAu2b1xKj0Z9LC5ISzNScbGG+oNoCjg9JvXvuPpzSURHz3l6VCrMRefYsnoVALAs/pTzR6rY2VrJ8q7S0QrXR9aUa6Z2tg0AQPcr5OXZbOzNJJPXjuUzb3z7Na8F49uUecNPykslWSLa3Xrzb7xCN/+GtHj0CX3zwfv1jX/5hSvlLRNliPKlXGMd3GCqwQo5eX8oXXwmemFpQT7SJ/NQ2v0iafGy7Nb7ZTe+WMrOyJ87Iv/Oo9LsuerbX84cNrRbNrDj6uvJASkjef9UtJA+PcpZrgCAqzierq34iwz0uuJijQHCJspeqHju67pnl1og9W+XFs9efUlSczareJTueN3EQCZpTYrjICGlxqT+qdV9tUBKj8pTw1GgdKF8jkxqKArSyqNdsUsXoyBt31QUbA1SG57BYuV6AQDoIk+Unyud4bq//FzpDNhG27673PaqVMlmlpR0k6SipPpzDwIAsIVlv/S5xndoVqHkiWsmJ0tPfE3JF79i3fLLQdeVBvYf1M3/8Tf11Dt/8sprDQdcy7IXZ9V343W6MvvgksvkLuWms7KLRQ0vF16Yke26WXboHtnB7149xh+ckO1/ufzG75I/8Vn51/4ymj/omyzPFYTRz3vxbNTW8B4pMyoF6Y3nCoJUVAcAAOgYBF6BXteqfO/rpeb1+AdxVdvo7FipnELYdCXIa4FsYHvF4suBUk/0R2XXrDz1zITkRVl5RysAALUzbXxIeTPqb8ij5ecHzCxwv3qQmZkNS7pPUlbSF9a7uUGPSPoRSQ9K+p9rrn23pAFJn3H3+nMPAgCwla0T4IxDcWZOmTVNebFz/jwf/70/1vENro/cdlAHX7P36guTNyo49MqK5S3dL73we2U3vEjqH5VlBlZd9/KuVkukG+g1AKC3dfxcwZbHfmOg11mL1l+UcqtTHPRvi85wrZUFbUmVYGZSsr/8XSAN7qruvkR63XQ/FiQIugIAtjR3PybpYUl7Jb1jzeWHJA1K+n13X5AkM0uZ2SEz29eE5v9Y0gVJbzGzu5dfNLM+Sb9a/vZ3m9AOAABbUjA41JJ2CmfPrPo++Y9+UMm77q+5nswNe2TJ1u8vmf32E/LB8eib0e0KXvoDm95jFsjGrrsm6CqV5xAIugIA0NXY8Qr0Om/B+a6SlBqRli5FX/dNSpMvXD+d8GaCVJRyd2m6uf2rRiJzJRUQQVMAQNuZ4s1c0Zyqf0rSY5Lea2avlnRY0j2SXqUoxfAvrih7ffn6SUXB2qtdMXu9pNeXv91Zfn6ZmX24/PUFd//55fLuPmtmP6EoAPtpM/uopEuSflDSwfLrf9SMNwgAwFYULsy3pJ2+W26RsqclScl7HlD6wR/ZMLVuJSMvvVfbfvgtev5/fqTZXdzUXLZfo/tuUnDP69YNpgIA0FLdMVewpRF4BXpdYSH+NiyQ8pevfp8ebmwFZ2o4Oh+1MBc9xyU5IAXpqP9elKWGyufAAgDQKTo7gY27HyvvOH2PorS/r5V0RtJ7JT3k7peqrOrFkt625rWbyw8pCtb+/MqL7v5nZvZKRcHdN0rqk/SUpH8r6b3u3oxD4gEA2JKKJ+M/Bj25e48yi89emRwObjwkS9W/yPnGd/2qgv4BPf8//kBhLtusbq5imYy2/9O3qu+GGxT0D6pw/pyG//lPKDE5FUt7AADUp7PnCrY6Aq9Ar2vFnGNqWMpdjL4O0lJ/5bNRq2ImZcak1KC0dDlKY7wyAJvoi569tPnZravqTUZ1JvqiNtjVCgBAw9z9GUk/VkW5E6qwdtbd3y3p3XW0/TlFwV4AAFADL8WfHWvgpt2y2Wi3q23frcRNtzZUX3J4RDf9yq9r6nU/pNO//Vua+ezfrQrATr7+jco/+4zyF85r6cSKk1uDQAqjOQVLpeSF1fMIA7e9SNvf/E81+MLblZyc1MD+gw31EwAAbG0EXoFed+Xc0jiYlF4RdJWk/ilZ33hzqg9S0VmxYTnAmj0XBXkzY+Vdqn418BoWpSApFeal9Ihkieha7mL0M7AgujfONAwAADQbf7cAAEAMkjt3x1a3DQxp5M7blSwHXSUpederFEzu3OCu6g3f/VId+vD/UPapo8oeO6on/sU/043/4Vd03U+8XRYE8mJRi08+IYUlFS5dVGl+XtmnjmrHj/yokuMTuvzI3+qZ//x/aur1P6TkxJS2v/mfNqVfAAC0DHMFbUXgFeh1cabqTQ1KueVzXSckWXS+a7MFiegxeH0UQF0+O9ZMWk5pfOV54up9ibQ0eF3z+wMAAAAAQBfzYg3Zo2rUf9ttSs6dlixQ4tCdUhgqsedA89u5Zb/6b9mvF//dF9S3b/+Vs2MtmdTgrbdVvG/8ex/Q+Pc+0PT+AACA3kDgFeh1FmO+98K8NLAj2oE6fOOVQU5sAn6lAQB6icW8ipUVsgAA9CpLxje+XvzSPyj1j39Ag698QMk7XhFbO8v6b2l+UBcAgM7FXEG7EaUAel1yIN76U4Oykb3xtgEAAAAAAJomef2NsdafOHhnS4KuAAAArRbjVjcAXaEwF2/9+ZjrBwCgp1mMDwAA0KsKTz8Ra/35o0dirR8AgN7GXEE7EXgFepi7SzNPx9vI0rS8tBRvGwAAAAAAoCnCpZxm/ucHY21j8bOflIdhrG0AAAC0A6mGgV6WfV5amo6/nWJWSmTibwcAgF4T51ntAACgJ81+7MMqnXsu1jbCuVmFM9NKjE/G2g4AAD2JuYK24qcP9LL5Z+NvY2SvLDMWfzsAAAAAAKAhXipq4eN/Ens7k7/wHoKuAABgS2LHK9CjvJiTli7H31D/tvjbAACgVxnnqwAAgOZZ+vqXVbp0IdY2LNOnvjvvjbUNAAB6GnMFbUXgFehVYSGmik0avjE6ZzvRJ0uPxNQOAAAAAABoptLs5VjqtYEhjfzw2xQuzKnvjruVGB2PpR0AAIB2I/AK9KriYjz1Du+Rje2Lp24AALCClR9x1g8AAHpJ8dmTsdQ7/lO/oKHX/GAsdQMAgJWYK2g3zngFepC7S/PPNb/ivklp5Mbm1wsAAAAAAGLl+SUt/O1fNr3ewe//IQ3e/4+bXi8AAEAnYscr0AM8PyfJpFS/lJ+TZo9LS5ea39DQ9bIg1fx6AQDAtUySxbiOkkWsAABsWR6Gyj/5bQXDI0puu07ZrzymmY98QMUzzza9rZE3/3NZItH0egEAwDqYK2g7Aq/AFualJenyU9Li2dY0OHdK3jcl4/BuAAAAAAA6UuHU07r027+upa9/qSXtzf2v/66Jn/mllrQFAADQbqQaBrYoX5qRzny+dUFXSVq6LBUWWtceAAA9zsxiewAAgK1n4dOf0Jl/9aaWBV0laeGRjytcmGtZewAA9DrmCtqLHa/AFuNhSco+L80ck7zU2sYtkEpLkoZa2y4AAAAAAKgonJvV/MN/rpnf/13JvaVtW6ZPpYsXFAwOt7RdAACAdiDwCmwBHpak+Wel/Iy0NC2FxfZ0JD0i9U20p20AAHoSq00BAMD6SpcuaO4v/5fyRw9r6WtflOeX2tKPgVe8Wqk9N7WlbQAAehNzBe1EqmFgK5g+Is08JWXPty/oKkWphkvtGcgBAAAAAICIh6HOv/vnNPuH/49yX/xs24KukrTw6F/Lw7Bt7QMAgM5jZrvN7ENm9pyZLZnZCTP7LTMbr6GON5nZ+8zss2Y2a2ZuZh+Js9/VYMcr0OW8tCSFBalvUvJQKi62N/i5eFYa2du+9gEA6BkWpfmPs34AANCVfPqUJt70ShUv363Cc89r4bEvq3ju+fb0ZXFB2S9+VgP3vrIt7QMA0Fs6f67AzPZJekzSdkl/LumIpJdK+hlJD5rZfe5+sYqqfknSHZLmJT0r6VDDnWsCAq9AF/OwKF38jlRcWH0hPSoFy/97m1SYa00w1hJScjD+dgAAAAAAwLo8Oy0d+4SSiQUlJ6W+yUkNv+hBhYlhhTmXJU2F83Oa/uO/UulCNXOajUlMTCk5uT32dgAAQNf4HUVB13e6+/uWXzSz/yLp5yT9mqSfrKKen1MUcH1K0islPdr8rtaOVMNAN5s9cW3QVZJKOakwX37MSQqk1Ej8/Zl8oWxgW/ztAACAMovxAQAAuo27y5/6pFRYO1fgCkqzSqbmlLBZ9W137fw3P6TMbS+IvU87fvPDSu+Pvx0AALCsc+cKzOxmSQ9IOiHp/Wsuv0vSgqS3mtmmO7zc/VF3P+ru3nDHmojAK9ClPD8bpfWtSiiFeSkzsWIn7LIgSlOcGpb6JhrrVKbq9OsAAAAAAKDZnv+2NPtsVUWtlNPUm1+h0dd9v4Kh1XObwdSEdv77t+v697xdo69/bd3dSV53g5I7r6/7fgAAsOXcX35+2N1XHQLv7nOSPidpQNK9re5Ys5BqGOhCXsxJl47Uele0O9YSUmpAChLRa6WlaGesFAVn06PRWbGFudqqH3+BLEjU2CcAANAQY2cqAACI+NwZ+dOP1HSPlXIavmNKw3e8UZ4ckoeBZK4gnJd8XipKw7dPavDFP62LH31YS0eerKn+yf/9V2oqDwAAmiD+uYJDZvaV9S64+12b3Huw/FzpQ8VRRTtiD0j6VH3day8Cr0CX8dy0NH1E8lL9lYRLUljhWiknJfprqy/ZL/VP1d8fAAAAAABQNz/7jSjo6pUG+5vWICvOVUwgGIQzsnS6phozt9+t9C2kGAYAAKuMlp9nKlxffn0s/q7Eg8Ar0G2WphsLum4kkZFKeSl/ubb7SkuSkbkcAIDWspj//rKbFgCAbuEXjzYQdN1YyUZ18Q//Svmnjtd236XzNQdrAQBAo1oyV3Ckip2tDTUgqaPOba0FgVeg24TF+Or2UAoLtd2THpGCpOyas2MBAAAAAEBLFJdiq9oCV/7EMzXdk3nRnUrtuTmmHgEAgC62vKN1tML1kTXlug6REqDb5GfjqTc5ILlHz8Ws5FUGeKdulyUy8fQJAABsgl2pAAD0Og9L0vzZGGo2Xf70U+p70QHt+uV/refe9f4qbjEFQyPa8Z8/GEN/AABAdTp6ruCJ8vOBCtf3l59rO1i+gxB4BbqIu9e+I7UayYEohbEk9U1KxYVNyg9KwzdE57oGpA0CAKAtTJLFOJjq6HEaAAC4orAYT7W5Ac1/5jHN/8OXte3tP7px4URSqZtu0di/eKfSN1eaRwUAALHr/LmCR8vPD5hZ4H71rAQzG5Z0n6SspC803FKbEHgFuklhPp7zXX1FuvTcxcrlgqS04x5Zsq/5fQAAAAAAALW7fDKWai2ViL5Yyuv8b/1exXKpmw9ox3/6PQVDw7H0AwAAbB3ufszMHpb0gKR3SHrfissPSRqU9AF3X5AkM0tJ2iep4O7HWt3fehB4BbpJ9nw89Zay0U7XjYKuUnS+bGFOIvAKAEBnsKDdPQAAAG3mF+LJxJdMzGr4++7X3Cce2bBc8expFc89p/TQwVj6AQAAatT5cwU/JekxSe81s1dLOizpHkmvUpRi+BdXlL2+fP2kpL0rKzGz10t6ffnbneXnl5nZh8tfX3D3n2967zdB4BXoJoX5+Oou5aIdreEGZ7v2TUhXd/4DAAAAAIA2cveYzneNjNz3As098vdSIb9+gURSfXfeK89lY+sDAADYWsq7Xu+W9B5JD0p6raQzkt4r6SF3v1RlVS+W9LY1r91cfkhRsJbAK4ANFGMcyIRFKTUk5eclXxN8TQ5KE4dkmbH42gcAADUyxXsQK4e8AgDQ8Yq56BETK85q57/7CZ399Q9IxdVzBZk7XqKJn/4/lNpzU2ztAwCAWnXHXIG7PyPpx6ood6JSo+7+bknvbkqHmojAK9AlvJiVwkK8jRSzUno4GrQlM9HZr+kRaXSfLEjE2zYAAAAAAKjN7OnYm0gGs9r58z+h6b/4tPpv3a/ChctKHbxHw697iyzo+FSGAAAALUXgFegWi8+3pp3iYvk5Kw3vlQ3vbk27AACgdsauVAAAepmfP9ySdpLpeW17492SJHvBj8om9rWkXQAAUAfmCtqKZWlAF3B3KduiwOuyvilp6PrWtgkAAAAAAKrihax06enWNnrDvQRdAQAANsCOV6Ab5C5IpaXWtjl6k4yVMQAAdDjWUQIA0Kv8zOOSl1rXYGpQtvulrWsPAADUibmCduKnD3Q491CaO9XaRoO0LJFpbZsAAAAAAKAqnl+QnvtqaxsdmJQF7OEAAADYCJ+WgE43dzI6b7WVwrw8LMmCRGvbBQAAtSE7BQAAPcfd5U99UirlW9vw0kxr2wMAAPVhrqCt2PEKdDDPTUvzp9vT+PQReavTGwMAAAAAgI2deVyabvHZrpKUm1F47FPyYq71bQMAAHQJdrwCnSz7fPvaXpqWzn1JnhmXhvfI0sPt6wsAAFiHxbyKlRWyAAB0In/+O+1r/OzX5ee+JZ86ILvhXln/ePv6AgAA1sFcQbux4xXoZK1OG7SepWnpwtflrT5nFgAAAAAAXCs/3972vSSdPyx//L/Lzx9pb18AAAA6DIFXoJOFxXb34Kr5Z+Xu7e4FAABYJYjxAQAAOlKnpPr1UH76y+3uBQAAuAZzBe1EqmGgo4XNrS7RJ6WHpES/FCQlS0hBQiouSYVZKT8nhYX1702PyjiUGwAA1MjMdkt6j6QHJU1KOiPpzyQ95O7TcdRjZnslHd+guj9y97dU/SYAAOgQ7i55k+cKBialoZ2yvlEpkY4eQVKevSTNnZHmzkqlpfXvHb2huX0BAADocgRegU5WywZTS0TpfipJDUlTd2wYPHV3KcxHAdj5ZyRLSgPbo3uTAzV0BgAAxM4U77ktTajazPZJekzSdkl/LumIpJdK+hlJD5rZfe5+McZ6vq4oOLvWt2p/NwAAdIIaM1El0hsfY7TtVgUHHlz30vJHAXeXcpeluTPyU49JQztkUweloe1SZrS2/gAAgHh1wVzBVkfgFehom6xiTfRJQ7ukzFi0i3VpWpp7RirMXVu2b2LTHatmJiUyUn9G3jfJDlcAANCo31EULH2nu79v+UUz+y+Sfk7Sr0n6yRjr+Zq7v7vu3gMA0GmqOZJoaKds5+3S2I1SelA6f0T+zBei4OkaNrlv0+rMTOofjx7bDsmMNIMAAACV8EkJ6FDR7tMNBlTLO1gHd8mSAzIzWd+ENHW7NH5IWjsQ6pusqX2CrgAAdAOL8dFgz8xulvSApBOS3r/m8rskLUh6q5kNtqIeAAC2hGKFlL/LJvfLXvRm2Y4XyjLDMgtk22+V3fnPZTe9anXZIBkFZ2tA0BUAgG7QuXMFvYAdr0CbeDErJfoqBzjzMxunDh69WZZIXfNytBJ1Sp7slxbOSsVFqX9SlmIuEgAAtNT95eeH3VcfRufuc2b2OUUB1XslfSqmenaZ2b9WdCbsRUmfd/dv1PVuAACImbtL2Wmpf7zyXMGlYxvWYfu+VxZcO91nFki7vksamJSfPywtzcmue7EskW5G1wEAAFBG4BVoMfdQmjspzZ+WkgPy8YOrgqIeFqWly9Ls8cqVWEJKDW/YjqUGpbHNUwYBAIBuZfGe29L4StaD5ecnK1w/qihgekAbB14bqec15ccVZvZpSW9z91MbtAkAQEt5cUl+7G+lC09Eu1BveUCWuTru9/yidOkp+cm/r1zJ0A5Zqn/Ddmxsj2xsT7O6DQAAOk7HzxVseQRegRby/Lx0+ahUXIheKC5K5x+Xp0elICEVslIpu3lFiQypgAEAQCscMrOvrHfB3e/a5N7R8vNMhevLr4/FUM+ipF+R9GeSni6/drukd0t6laRPmdmL3X1hk7YBAIidTx+XP/W3Un4ueuHySflXPiRfDpAuXpCW5javqG8stj4CAACgOgRegRbwUj7a5bp4bv0C+UrziBUUF+WlwrqphgEAQC/p6oVYy533Ztfj7s9L+g9ryn3GzB6Q9PeS7pH0LyX91wbbBgCgbr54SX7i76TpdTJeeWn91zcy+6zcnYXaAAD0PD4LtBOBV2AN91J0Nmp6VJYearAuj1IKz5+SVh9J1rjigpQYa26dAAAAqx2pYmdrJcsry0YrXB9ZUy7ueuTuRTP7PUWB1+8WgVcAQJW8kJXOfVOaOiBrcGepl/Lyk5+TznxNja8/WiG/ED0yjc1lAAAAoH4EXoEyL2al3EVp4YxUWopeGzsgG9heX32FhSitcGG+md28KizGUy8AAOgenb2j5Yny84EK1/eXnyud3drsepadLz8PVlkeANCj3F1aOC+/eFQ6+3WpmJOe/aJ06xtkI9fXV+flU/KnHpaWZpvc27JSThKBVwAAelpnzxVseQRe0fPcXZo+EgVd17p8VJ7IyDKVNlhUqG/+dJRauJkrV9ci8AoAADrbo+XnB8wscL+a/sPMhiXdJykr6QstqmfZveXnpzcsBQDoaV7Iyr/zp9L82dUXSnn54T+Tbv8RWf9Y9fWV8vKTf1/e5RqjYj7e+gEAALChoN0dANqulJWWLle46NKlb8uzF6KA6ia8sCBd+Lo0d0KxBl0lyRLx1g8AALpAEOOjMe5+TNLDkvZKeseayw8p2nH6++6+IElmljKzQ2a2r5F6ynXdY2bptX0ys/sl/Vz524/U984AAD1h7oy0eGH9a8Ul+bf+SD77XFVV+eWT8sd/P/6gqyQlUvG3AQAAOlznzhX0Ana8oudZckC+814pLEizx6Xs+dUFPIx2xCb65IM7pf7tssTqebxol+uz0twpxR5wjXotZUY2LwYAALYwizl9UFPq/ilJj0l6r5m9WtJhReervkpRauBfXFH2+vL1k4qCrPXWI0m/Iek2M/u0pGfLr90u6f7y17/s7o81+N4AAFuYTdws3ftvpNyM/KlPSLOnVxfIL8i/+VH50A7ZztulyQOyZGZVES/m5Sc/G6UpboXUgNQ/0Zq2AABAh+qKuYItjcArIMnMpERaPnZASmSiIOpapZw0e0KaPSHPjEmZMSk5EAVs55+TigvX3hOX0X2yRGbzcgAAAG3k7sfM7G5J75H0oKTXSjoj6b2SHnL3SzHV8weS3iDpJZK+X1JK0jlJH5P02+7+2UbfGwBg6zMzqX9Muu2N8if/Wrp49NpC8+fkT31SevoR+fjNstE9Ut+IlLssP/1laWmuNZ0NkrIDr5UFZMcCAABoJwKvwApmJh++UcpdkoqLlQsuXd4gPXGcTBo/KOufakPbAACg83T+SlN3f0bSj1VR7oQ2eEPV1lMu+0FJH6yyiwAAbMiCpHTLa+SXT0mlpfULhSXp4lH5esHZuCX7Zbe+QTa8s/VtAwCADtT5cwVbGQmZgTXMTBq+sd3dWN/ECwi6AgAAAADQYpbsk11/d7u7ca0gKXvRmwm6AgAAdAgCr8B6+iakIL15uVYaukHWx1ktAABgBbP4HgAAYLXr7mh3D65ht7xGNjDZ7m4AAIBOwlxBWxF4BdZhZlKyv93duCo9Kg3vaXcvAAAAAADoWZbsk1ID7e7GVTtvl217Qbt7AQAAgBUIvAKVpAbb3YNI/zZp4tYoGAwAALCKxfgAAADXGNzW7h5Edt8ju/n+dvcCAAB0JOYK2inZ7g4AHatvSlp4rn3tJ/qlkRs50xUAAAAAgA5hk/vll0+2rwNDO2U3fY9sZFf7+gAAAICKCLwClaSHo12vhYUWt1tOK5weYZcrAACozBTv+Sp8DAEA4FpTB6RTj0mFxRa3e1C2+x7ZIIuzAQDABpgraDtSDQMVmJk0fkgt+01iCWn8oDT5QllmlKArAAAAAAAdxpJ9sv3f17oGM6OyF75ZwcF/TNAVAACgC7DjFdiAJfvlAzukxbPxNhSkpcnbZJ1yriwAAOgCcZ+vwiIwAADWY+M3yUd2S7PPxtvQ4DbZrW+QpYfibQcAAGwhzBW0G4FXYDOjN0thUcpdaLyu/u1S34QUpKQgISmQLJCCpCzgf0cAAAAAALqBHfoB+eE/k+bONFhRIO26SzZ8nZQakIJk+ZGQ0oPMFQAAAHQZPr0BmzAL5OMHpey4NHs8CsLWKpGRRm+R9Y03v4MAAKB3cTQBAABtYal+6UX/RDr9Zfmpz0teqr2SoR2yWx6QDW5rfgcBAEDvYq6grQi8AlUwM2lghzw9Ik0fkQoL0YXkQHQ2a2Fu/RsTGWnoeql/hyxItK7DAAAAAAAgVmaBtPul0sj18if/WlqajXawDkxJcmnh/Po3Dm6XXf8SaWp/VAcAAAC2DAKvQA0s2S9t+y55qSCZXUn544XFKBVxMRcFYoOklBqU+iajoC0AAEAsmKwFAKDdbOR66a4fjxZpJzKyREqS5LOn5dPHpfxCdMRQelAavk4a3cNcAQAAiBFzBe1E4BWow/Ig6sr3qQEptadNvQEAAAAAAO1kZlJ6aPVrI9dHQVkAAAD0DAKvAAAAQLditwwAAAAAAFiJuYK2Yr8xAAAAAAAAAAAAADSIHa8AAABAV7LyI876AQAAAABA92CuoN3Y8QoAAAAAAAAAAAAADWLHKwAAANC1WGkKAAAAAABWYq6gndjxCgAAAAAAAAAAAAANYscrAAAA0KXMWMUKAAAAAACuYq6gvdjxCgAAAAAAAAAAAAANYscrAAAA0LVYxQoAAAAAAFZirqCd2PEKAAAAAAAAAAAAAA1ixysAAADQrTi3BQAAAAAArMRcQVux4xUAAAAAAAAAAAAAGsSOVwAAAKArmeI9t4UVsgAAAAAAdBfmCtqNwCsAAADQjUySxZjAhrEUAAAAAADdhbmCtiPVMAAAAAAAAAAAAAA0iB2vAAAAQNdiqSkAAAAAAFiJuYJ2YscrAAAAAAAAAAAAADSIHa8AAABAtzJWsQIAAAAAgBWYK2grdrwCAAAAAAAAAAAAQIPi2PG69/Dhw7rrrrtiqBoAAACIx+HDhyVpb5u7UQNTvOe2sEIWQFMxVwAAAICuw1zBevVjI3EEXmez2ay++tWvnoihbgAAACAueyXNtrsTALBFMVcAAACAbrRXzBWgBk0PvLr7Tc2uEwAAAMA6OLcFQJdgrgAAAABoEeYK2oozXgEAAAAAAAAAAACgQXGkGgYAAADQEqxiBQAAAAAAKzFX0E7seAUAAAAAAAAAAACABrHjFQAAAOhWnNsCAAAAAABWYq6grdjxCgAAAAAAAAAAAAANYscrAAAA0LVYxQoAAAAAAFZirqCd2PEKAAAAAAAAAAAAAA1ixysAAADQlUyyONdRskIWAAAAAIDuwlxBu7HjFQAAAEBszGy3mX3IzJ4zsyUzO2Fmv2Vm43HXY2YvN7OPm9klM1s0s2+Y2c+aWaLxdwYAAAAAAOrRzrmCuLHjFQAAAOhanb3S1Mz2SXpM0nZJfy7piKSXSvoZSQ+a2X3ufjGOeszsdZL+RFJO0h9JuiTpByT9pqT7JP1wM94jAAAAAACdhbmCWuppNna8AgAAAIjL7ygaAL3T3V/v7v/e3e9XFPw8KOnX4qjHzEYk/TdJJUnf4+4/7u6/IOnFkj4v6U1m9pbG3x4AAAAAAKhRW+YKWoXAKwAAANCNTJJZjI8Gu2d2s6QHJJ2Q9P41l98laUHSW81sMIZ63iRpm6SPuvuXl19095ykXyp/+/Ya3g4AAAAAAJ2PuYKa6okDgVcAAAAAcbi//Pywu4crL7j7nKTPSRqQdG8M9Szf8zfr1PcZSYuSXm5mmc3eBAAAAAAAaJp2zhW0BGe8AgAAAF3o8JGjuuvlr461fkmHzOwr611397s2qeJg+fnJCtePKlqdekDSp5pcT8V73L1oZscl3SbpZkmHN2gbAAAAAICuwVxBzfU0HYFXAAAAoPscyWaz+urj34i7nb0N3Dtafp6pcH359bEY6mlW2wAAAAAAdAvmCmqvp+kIvAIAAABdxt1/pN19aILlk2G8DfU0q20AAAAAADoCcwWx1FMzzngFAAAAEIfl1aWjFa6PrCnXzHqa1TYAAAAAAGieds4VtASBVwAAAABxeKL8fKDC9f3l50rnsTRST8V7zCwp6SZJRUlPb9I2AAAAAABonnbOFbQEgVcAAAAAcXi0/PyAma0ad5jZsKT7JGUlfSGGeh4pPz+4Tn3fLWlA0mPuvrTZmwAAAAAAAE3TzrmCliDwCgAAAKDp3P2YpIcl7ZX0jjWXH5I0KOn33X1BkswsZWaHzGxfI/WU/bGkC5LeYmZ3L79oZn2SfrX87e/W/eYAAAAAAEDN2jxX0BLm3vJzZQEAAAD0gPLA6DFJ2yX9uaTDku6R9CpF6X5e7u4Xy2X3Sjou6aS77623nhX3vF5RADYn6aOSLkn6QUkHy6+/2RkMAQAAAADQUu2cK2gFAq8AAAAAYmNmN0h6j6K0v5OSzkj6M0kPufulFeX2qsJgqpZ61txzn6RflPQySX2SnpL0IUnvdfdSM94fAAAAAACoTTvnCuJG4BUAAAAAAAAAAAAAGsQZrwAAAAAAAAAAAADQIAKvAAAAAAAAAAAAANAgAq8AAAAAAAAAAAAA0CACrwAAAAAAAAAAAADQIAKvAAAAAAAAAAAAANAgAq8AAAAAAAAAAAAA0CACrwAAAAAAAAAAAADQIAKvAAAAAAAAAAAAANAgAq8AAAAAAAAAAAAA0CACrwAAAAAAAAAAAADQIAKvAAAAAAAAAAAAANAgAq8AAAAAAAAAAAAA0CACrwAAAAAAAAAAAADQIAKvAAAAAAAAAAAAANAgAq8AAAAAAAAAAAAA0CACrwAAAAAAAAAAAADQIAKvAAAAAAAAAAAAANCg/x+PCoFb9BwxKwAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "image/png": { + "height": 575, + "width": 943 + }, + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "for i in range(len(groups_list)):\n", + " input_df['comp_' + groups_list[i]] = input_df[groups_list[i]] / input_df['TOT_POP']\n", + "\n", + "fig, axes = plt.subplots(ncols = 2, nrows = 2, figsize = (17, 10))\n", + "\n", + "\n", + "input_df.plot(column = 'comp_' + groups_list[0],\n", + " cmap = 'OrRd',\n", + " legend = True, ax = axes[0,0])\n", + "axes[0,0].set_title('Composition of ' + groups_list[0], fontsize = 18)\n", + "axes[0,0].set_xticks([])\n", + "axes[0,0].set_yticks([])\n", + "axes[0,0].set_facecolor('white')\n", + "\n", + "\n", + "input_df.plot(column = 'comp_' + groups_list[1],\n", + " cmap = 'OrRd',\n", + " legend = True, ax = axes[0,1])\n", + "axes[0,1].set_title('Composition of ' + groups_list[1], fontsize = 18)\n", + "axes[0,1].set_xticks([])\n", + "axes[0,1].set_yticks([])\n", + "axes[0,1].set_facecolor('white')\n", + "\n", + "\n", + "input_df.plot(column = 'comp_' + groups_list[2],\n", + " cmap = 'OrRd',\n", + " legend = True, ax = axes[1,0])\n", + "axes[1,0].set_title('Composition of ' + groups_list[2], fontsize = 18)\n", + "axes[1,0].set_xticks([])\n", + "axes[1,0].set_yticks([])\n", + "axes[1,0].set_facecolor('white')\n", + "\n", + "input_df.plot(column = 'comp_' + groups_list[3],\n", + " cmap = 'OrRd',\n", + " legend = True, ax = axes[1,1])\n", + "axes[1,1].set_title('Composition of ' + groups_list[3], fontsize = 18)\n", + "axes[1,1].set_xticks([])\n", + "axes[1,1].set_yticks([])\n", + "axes[1,1].set_facecolor('white')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Location Quotient (LQ)" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([[1.36543221, 0.07478049, 0.16245651, 0.38088068],\n", + " [1.18002164, 0. , 0.14836683, 1.18544649],\n", + " [0.68072696, 0.03534425, 0. , 3.31119136],\n", + " ...,\n", + " [0.99613635, 0.10550213, 0.20912883, 1.86164972],\n", + " [0.92802194, 0.24709231, 0.47460486, 1.92804399],\n", + " [1.06821891, 0.07674888, 0.70759745, 1.29220137]])" + ] + }, + "execution_count": 5, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "index = MultiLocationQuotient(input_df, groups_list)\n", + "index.statistics" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Important to note that column k has the Location Quotient (LQ) of position k in groups. Therefore, the LQ of the first unit of `'WHITE'` is `1.36543221` and, for example the LQ of `'BLACK'` of the last spatial unit is `0.07674888`. In addition, in this case we can plot the LQ of every group in the dataset similarly the way we did previously with the composition:" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAB1IAAAR+CAYAAABqNndGAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/d3fzzAAAACXBIWXMAABYlAAAWJQFJUiTwAAEAAElEQVR4nOzdd3wc13X//c+ZRSXAXiVSLKIKqU71Lrmn2ImTOL1YiZ3mOInjtJ/jFCWxE6e423niuMk1dtyrXFXZKUpsYu+9Ex0L7O6c549ZEIslyi6wFfi++ZoXd2fv3LlYLICZe+4919wdERERERERERERERERERHpF5S7ASIiIiIiIiIiIiIiIiIilUaBVBERERERERERERERERGRLAqkioiIiIiIiIiIiIiIiIhkUSBVRERERERERERERERERCSLAqkiIiIiIiIiIiIiIiIiIlkUSBURERERERERERERERERyaJAqoiIiIiIiIiIiIiIiIhIFgVSRURERERERERERERERESyKJAqIiIiIiIiIiIiIiIiIpJFgVQRERERERERERERERERkSwKpIqIiIiIiIiIiIiIiIiIZFEgVUREREREREREREREREQkiwKpIiIiIiIiIiIiIiIiIiJZFEgVEREREREREREREREREcmiQKpIiZjZI2bm6e1gudsj41PGZ8zN7OFyt0cuZWY3m9n/Z2ZbzazVzMKM79n7yt0+EREREREpDfUTSCmon6DyqZ9ARKSyKZA6QZjZo5kXTuVuj0g2M5tiZr9kZo+Z2SYzO25mPWZ21sy2m9k3zexNZraw3G0VGS0zezOwEfgD4AZgCmBjqO/VWTfFr8rxuFj65izz2J/O8djAzM5nHPelQcqM+W9OVtseHabckOdK/z7xImyPDdPWMdcnIiIiUgrqJ5BKp34CmQgK3U+QUe/iHO9Hu83spJmtNLP3mNkdeZyjZH9HzGyqmXVltf2NBaz/SjP7QzP7skUB7RNm1mtmbWZ2yMyeMLN/M7NXmllshLpG9b6Y2SQzezzra3zKzCaP/SsUkbFQIFUkT1l/DJ8qd3uqnZk1mNlfAYeALwKvB24GLgPqgJnAcuA1wIeB/Wb2UTO7rExNLrpBLnYXl7tN5TYe3hMzuwl4P9B3wd0LbAB+AHw/ve3Is9pngFTG85fkeNytRDdnmXI99mZgesbzJ3M8TkRERERkXFI/QWGpn+BS4+GeuNDGw3tSpH6CfDUAc4H7gD8D1pvZt83s8iKfN1+/CjRm7XvDWCs1s+stGiC+F/gv4BeIAtrzgFpgMrCQqM/kr4i+J8fSv/cLFuA0s6npun8iY/e3gZ9w9/ZCnUdERqem3A0QkYnLzK4Avkt0gZKpGzgAnAamAouAGenXYsAbgV80s59zdwVxpFq8kf4BTMeAO939+FgqdPc2M3sBuD296+EcDx2s3GiPreSfwa1ENyLDmc/A30EbgPM51DuUfUQ3YPkYrj4RERERkQlD/QQywRS8n2AY29LnyGRAM3AVMCdj/08Dz5rZfe5+skjtyddgQdO7zew6d98+mgrN7E+Bd9MfyO7TCRwGzhAFU+cCV6Qfk37+D8CbzGyJu3eO5vwZ7ZhD1HdxS8buzwGPuHtyLHWLSGEokCpSIu7+GPBYmZtRMczsWuDHREGMPtuAfwS+6+5dGWUD4F6ikXE/n949Ffiemf2qu3+1NK2ufO4+5vQvUjR3Zjz+eAFvjp6kP5B6m5k1u3vHCMc8nPH4HNGI7lvMbKq7t+Zx7Cl3L/bo2FFz93cT3RQNycweAT6Zseuv3P2pMZz2s+7+6BiOFxEREZEJQv0EA6mfoDjUT1DRitVPMJh3p3/nDMrM7gI+kNGmK4H3Es0ELSszu5H+fo9eYCXw0vTz3wH+YhR1fhh4U8auEPgM8AlgjbsnsspPBl4B/BrR7xwDZtMfXB2VdGryHwFXZ+z+MPDH7q60+yIVQql9RaTkzKwR+DIDb44+ANzq7l/OvDkCcPfQ3Ve6+y8AvwL0XczUAZ9O32yJVLqZGY+PFLDezNHWNcD9wxVOr+XRV+YC/UHEGPDACMcGWWU00ltERERERMZM/QQyQRWrnyBv7r6OKDiZmWHpdWY2Y4hDSilzNuq3gPdlPP9NM8srmGlmf8LAIOoR4DZ3f8Tdn8kOogK4e7u7f9XdXwesAJ7N55xDtGMZsIqBQdR3uPubFUQVqSwKpIpIOfw7A9P0fMTd/3SwC5Vs7v5F4NczdjUBX0gHeEQqWeaFfSFTs6zMqm+ktU4z10d9Bngqj2O1PqqIiIiIiBSD+glkIipWP8GopFPU/lfGrhr6Z4KWhZnVAb+RsetTwONEab4hSkn86jzquwX4z4xdx4B73H1TrnW4+2aioPO7gVEFPM3sNqJg7IK+aoG3uvvfjaY+ESkuXVDImJnZfWb2ATPbYmZnzazHzE6Y2Roz+0czu2qU9U4xs983sy+b2V4zazGzhJmdN7PnzOwjZvYLZlY/TB2BmT1gZv9gZt8xs31m1p6u54yZbTaz/zazl+XQnoNm5kQ58Ps8lLWwfeb2SNbxj2S8djCP9+EnzeyjZrbDzC6YWdzMjprZU2b2/8zsshzreTTj/E9l7L/SzP7FzDal39vu9Nf6OTMbKaiSt3R7fy9j1z7grfnU4e5fIloroM8twGuHON/Dmd+XPNqZ+b18OMdjbjKzd6U/n6fMrNfMTpvZRjP7dzNbMcLxj6bbeCDrpQNDfMaeKlC7a8zsl83s02a2M/056DGzY2b2YzP7y1xHIA52/nT9v2hm3zKzA+nP8FkzW2tmf2tmU4v5noyWmcXM7JfM7LNmttvMWtM/H4fM7Htm9qdmNm2EOjI/e4syXvrkIG1/bDTtdPd2YGPGrodHOCTz9aeJArHhKI4FBVJFREREZBCmfgL1E+TB1E8w3PHqJyjCezJaViX9BGOUvXzPrDK0IdPP0j9z9zTweHrd0Myf99/Jo76/oz+A7UTrkGavHTsid0+6+1/ksDzSJczsIeAJ+t/bFPAGd39vvnWJSIm4u7YJsAGPEv1x8OjbXpA65wDfzKx3iK2XaIROTY71GtEF8/kc6nbg4BD13A6cyLEOJxoFNH+Ydh3Mo66+P8SZxz8yUpuzyl9FFOAY6TwdwF/n+Rl4Kr3vj4H4CPX/DxAr4GfxX7Pq/41R1nMF0YVGXz2rhyj38Gg++1ltfHiEsk1E6VFTDP9ehsCngeZcfk5z2J4aS7vT5V8F7M7hXBeA38n3fSO6KVg9Qt2ngNuL9Z6M8vN1B7A1h/OdBX47x/djpO2xMbT3XRn1JIDJw5T9TkbZFel9G9PPU8DUYY79RsaxR4cpN+D7NsqvKfO9ebRY52Lg7+acfm5G21Zt2rRp06ZNm7ZK2gpxzTZIneonGH57JOv4zGvRQducVV79BMPXo34C9RPk9J6M8vNVbf0Ei7PqeiTH434m67ifGabsgO9FId7nQc7xvYxzvCdj/00Z+5PAZTnUdQ0DfyZ/WKQ2D/m+EM2e7c54PQ78XDHaoU2btsJtNYiMgkULYf+Y6CK+Twp4kejGZj79+d1riW54lpvZz7l7zzD11hKNKPrFrJfagD1AK1FKymuByenXpg1R3bz01qcrXUcL0YXq3HQ9sfTr9wNrzexWdz8zSH1Pp4+5Clia3ncBWD/E+fMezdTHzG4GfkB0E9qnF9gGtBNdDC1K728C3mVmV7v7G/M4x/8julkB6EnX3UaUUiIzN//vEl0E/k3eX8jgfi7jcQvRGih5c/cjZvYD4CfSu+4xs7nufmqM7ctLeqTh94E7s17aQXThPxu4jujG34DfJPpZeKW7X8g6Zm+6rkbgwYz9zxBdZGXbMsa2/yHwQfp/BiD6TO9Kn+9yop8RiH7OPm5ml7n7O3M8xRyilCsL088PE3U01BJd8DZllPu+mV3v7iez6ijpewJgZi8Hvp7RPoBOYDvRBe5VQN8I75nAJ8xsgbv/8yDVfT/j8UNAQ/rxNi79HbF1DM1+Evjr9OO+dVIfzy5kA9dHbQE2px8/TZTyNyB6n781yLFaH1VEREREhqR+AvUTjIH6CdRPoH6CwvcTjNa9Wc/H/P6NlpldAbwiY9djfQ/cfYuZbSKafR4DXk80yHw4P8vADJ3/XYh25srMfp3oa+iLyXQQBVF/VMp2iMgolDuSq600GwUcIUT0x2kVA0cnfQyYm1XuOqK19zLL/ecIdX8oq/xW4KfJGqVK9EfvduA9wOEh6no10Qi6twE3AsEgZaYDf0n0h6vvnF/N4718Ko/37ZGM4w4OU66Z6KKwr2wK+BdgWla5e4guZjLfrzfn2O5z6Xq7gLcAk7LK3srA0YcJYFEBPodzstr7tTHW95as+l43SJmHR/PZz6r34WHKfSGr7DeAJVllFhLdCGaW+/IwdS7OKru4CO3+SaKOgr6y64GXAZZVbinRzUJfuRB4ZY7nP9P3c0J65mNGuQbgHVnlP1qM9yTPz9Tl6Z+PvvN0E3XwTMooY+n372BWm149Qt2Z5R8pcLubiDpR+ur/9yHK3ZFR5psZ+1+bsf89Qxy7IuvrHXLkMZqRWvDPpjZt2rRp06ZNW6G3QlyzZdSlfgL1E4z2s6N+AvUT9JVTP0Fh2539/oxYP1GQvDXjmGdHKP/oaH6W8vga/i6j/hcGef0tGa/vzqG+zAxdIVm/QwvY7kveF+BNWT9f54C7inF+bdq0FX7TGqkyGm9g4Oikd7n7Gz1rhJ+7bwdeCWSOqnmrmd04WKVm9lLgjzJ2fZ/oD8p3PMp9n1l36O7PuftbiW7EBvMEcK27/6u7b3X3MLuAu19w9/8gGq2YSu9+rZldM0SdpfA39I9kBXiTu/+Nu7dkFnL3NUSzwzJHp/27meWydsEMoq/3le7+Pnfvyqr7eeCniEagQjRS6rfy+ioGd0fW8+fGWN+GEeovKjN7JfDLGbs+D7zW3Q9klnP3w0Sjpz+dsfsXzOyni9/KS5lZM9EIUEvv+gZwn7v/2N09s6y77yMaHdzXdgPeY2bGyGYRzWx8ubu/kFVv3N3/Fvh4xu5fNbPGvL+gwvpPop8PiC5wf97d35P5M+KRx4l+/jJHi34kPVq+5Ny9k4E/Tw8PUTRz/9MZj58hupDP9VjQjFQRERER6ad+guJSP0Hu1E8wCuonGFZV9hPkysyazexmM/tbYB3RDH+IAqpvKmO7DPjtjF2PDVLsc0SDOgCuNrMHBimTKfP3we7s36HFYmZvBz5M/8/XCeAhd19XivOLyNgpkCqj8ScZj7cSjQ4alLv3Ei343XdxYVnHZ3p7xuPjwK9mX7gPcY6OIfZ3ZV/sDVPHSuCLGW38uWGKF42ZNQC/l7HrcXf/yFDlPVrQ/LfpD4A0Ar+f4+n+I/11D1X3XuCrGbtGuhjJxZys5wfHWN+hEeovtj/NeHwK+MOhPnPp/X9E9Nnu85biNW1YbyRKJQRwEvhNd08MVTjd9jcTpfMBuB54SQ7naSca8Zgcpsy/ZzxuIpr1WBZmdhnwuoxdH0nfCA3K3Y8w8PfZ5cAvFal5ucgMbN5qZpMHKfNwxuOLgVR3P0+URgjg5nQqquGOPZzdETAcM/N8t1zrrkD/MIqvd1q5Gy0iIiIyRuonKBL1E+RN/QSjo36CQYyDfoJMnxzi3rsd2AT8MzCVKFj8HaJBK+VILdznJcCS9OMk0aCEATxKuZ75/XjDUJWllyuambHrSAHamKt3ZDzeD9zv7tuGKiwilUeBVMlLegTm9Rm73j/CxU/fRcQXM3a9dpB65wEvzdj1Xr90XYhiW5PxOHsdi1J5kIF/1N890gHuvpEoJUqfXG/u/iuHMpkz1q4fslTuZmQ9bxljfdnHZ9dfNGY2iWgkdZ+PunvbcMekb+Yzb3hfamZThipfRI9kPP4fd28f6YB0ma9l7Hp5Duf5QjpAN1y9u4lu0voU4nM2Wq8hWpelz3tGOsDdv0p0EdynLJ0raU9lPI6R1amRtT5qGzBg9C/9P+9966RmHpu9PuoTY2yriIiIiIwT6icoOvUT5Cf7ePUT5OaRjMfqJ+hX7f0Eo/EdorVDd5e5HZlB0e/64OtUQzSTus/rhhhUDtGavpmxkJbRN21MXqS0QVwRKYCakYuIDHBP1vNv5XjcN+hPxzDLzK529z0Zrz+UVf7/RtO4oaQvQl9BtAD5ImAy0doLmWlH5mc8XlDI8+ch8/3tIPfUmd+gf+TfzWY2aYRRugfdPXsB+8EczXg8Lce2DKc+63nPoKVyF896PmmM9eXjDgb+Ds3nZ+Ef048D4C7ghwVs17DSM98y02bls6D9lozHt+dQflWO9R4F5qUfT8ujPYWW+fO3Iz3aOhffpH/UcPbvyFJaRbROal36+cPAdzNev5X+FD0r3T3FQM8QjSjuO/abGa/dTLRWVJ+n8mzb9/MsD/CqURxTCfYRrV+VjyFHeouIiIhUAfUTFJf6CfKjfoI8qZ9gWNXeT5BpGwPTDvepJUq5fC3Rz+Nr0ttaM/tVdz9YshampT+TP5+x67Fhin+baL3RmUQzmH+ZaI3ubA1Zz8f6uyYf+4Er049fA/yfmf3ScLO+RaSyKJAq+boq4/FJdz+d43Fbsp5fBWTeIC3PeHwmvVbEmJnZTOBfiNbtyP6DOZxphTj/KGS+v9sGW69lCJnvbw3RTeCOYcqfHOa1TJ0Zjwtx89GS9XzqGOublvV8xBGTBZT5vXIu/YwPZTtRSpK+379XUcIbJKKbo8wReO8ws+4cj83sRJg9ZKl+5fqcjVbm93RzHsdlfu8vN7NGd8/1PS0Yd+8ys/X0zzrNTqv0cMbjpwapInNk+XDHQp7ro7r7T+RTHqJ0wPkeUyE+6+6PlrsRIiIiIiWkfoLiUj9BfqZlPVc/wcjUTzC0qu4nyPJud39sqBfTacR/Bfg3opTYdwPPmtmd7n6iNE286Nfo//18jmiW7KDcvdfM/pf+geFvYPBAanZGg7H+rsnHw0T9MH3B1NcCX0oHU3tL2A4RGSUFUiVfmTOShkqpMJjsstOznmemWjmVV4uGYGZXEnX2LxzF4dkjIkulWO9vtlKOusqUnb5l5qClcpd9/Nkx1pePzPe4w92zR70Oyt0TZtZKf9tH+l4VWvZ79uCgpUaWywXnaD5nNnKRoinkz1+5bpCeoj+QusLMpmSkkno4o1xm0BQAdz9tZjuBZcBNZjY9I3Va5rH7C9WJJSIiIiLjgvoJikv9BPlRP0H+1E8wtPHQT5CT9Of1MTNbB2wkWl95AfBhBs4OLYXMtL6fzyHY+Bj9gdS7zew6d9+eWcDdu80sTn+AtmRpv939iJk9RNRnszS9+2eBL5vZ6xRMFal8WiNV8pV545DPL/nsi8fsUZ+Zz8d88Z5ez+//6L85cqJUKY8Qpe2ZBTS6u/Vt9KcUKqfRvr/Z71k+o2pLKTsFys1jrC/7+O2DliqO0X6vYOD3q9Tfq6YC1TMe/36Mh5+/zJmiF9dJzVoftZ3opmgwl6yTOsj6qHnNRhURERGRcU/9BMU1Hu5ThqN+goj6CSrTeP/5u4S77wA+mbHrtWa2uFTnN7ObiZYm6vPbZnZ2uI1LlxP6nSGq35fx+AYzK1mQ3t2PEqWsz/yd9xrgK2ZWN/hRIlIpxuMfOCmulozHQy3ePZjsUWktWc8z0ysUIrXCTwG3ZTz/DXd/rbt/yt03u/u5QUYG5vP1FEtLxuN82jMl63nLYIUqwAtEa7r0Ges6EXdlPR8qOJSXdNBpJC0Zj/P97GR+v1qGKlQk2eebkdlRkMe2uMTtLoWWjMfV+vO3moE3bA+n/89cH3XVIOuj9nlmkGOz10dVIFVEREREMrVkPFY/QeG1ZDyu1vuU4aifIKJ+gsrUkvF4PP78DSWzb8AY/Szl0XhD1vNmolnTI22ZftPMagepOzM71xTgukI0OFfpdagfAnZn7H418FUzK1fWAxHJgQKpkq/MtU4WmVmu6aGXZj3PXjMlM9f+onRe/rHIXI/vGXf/fA7HXDHGcxZC5vuS/Z4NZ6T3tyKkgzfPZuxaYWajumhJ38T8Ssaus0RBpGwDRgwOcSGVLZc0OpnvcZ2ZLcjhGMxsDtFF4GD1lEL2eiRXl/j8lawQP3+9lPEGKd3xsy5jV99apw9n7HtqmCoGWyf14awywx0vIiIiIhOP+gmKS/0EOVI/waipn2BoVd9PMErZKbcvL8VJ08HEXy9AVXOIApTZnsh6/msFOFde3P04UX/LrozdP42CqSIVTYFUyVfmSL56BqZaGM69GY9TwKas19dkPK7NKj8aizIer8/xmPtHLgJAmPG40CkgMt/fK81sbo7HZb5fp9LpIirVR7Ke/+ko63kdAy/kPjvELLu2rOe5rIFwYw5lske15vqZzS733CBlwqznhfycbWHgaN9XFrDuYirme9In83t6e4430zDwe/qCu2e3tdQyZ4zeYmZTGWF91D7p0ZF9qW5uMrMZWcfuTpcREREREemjfgL1E4yV+gkGUj9BbtRPUDzZPxOlWt/1tVnnXpLPrGjguxnHDpbe91tAZp/GG82seZByRZURTN2ZsfungK8pmCpSmRRIlXytZ+A6Jr+Z43G/lfF4o7t3ZL2+kWikYJ8/HEXbMuV6YQNAerRjruljOjMeN+ZznhxkBjgM+I2RDkj/gc0ccTlkkKRCfJOBo67eaGb35VNBOjD03oxdPcB/DlH8MNHaN31uyuEUPz9SAXffDxzJ2JXrz8LrMx6fYuB70acz63nBPmfungB+nLHr96rkIq1o70mGzJ+dqcDPjHSAmc0GfnKIOsrlqYzHMaJAaF8HUCeD35Rn6vsaLH2s1kcVqUBm9jkz21iC7XPl/lpFRKTiqZ9A/QRjpX6CfuonyJ36CYrnoaznB0p03sy0vuvc/WCex38h4/FPmtllmS+6ey8Df0/MAd6X5zkuMrNFo/1ZcfcTRMHUHRm7fxL4egEyMMgEpr6C4lAgVfKSvrH534xdv2dmy4Y7xsx+E1iRset/Bqk3CXwoY9frzGzEi5NhHM94PGwefzMLgA/nUXdmeqGlhVyY3N33MTBQ8TYzmzXCYX8FZI5IveT9rSTu7kQ3wH2j8QLgy2Z2bS7Hm9kk4BtA5sXQ3w81S87d24A9Gbt+eYT6r2HoRemzfSzj8avN7CVDlozqfpBodF2fj6bfj2wtDOyIKHRanf/IeHwF8G8Frr8YWijuewJRipd9Gc/fmcPF67uAuvRjZ+BnolzWMPC9eisD10dNjnB85loof4rWRxWpVMuIZvwUexv2Ok9ERET9BID6CcZE/QTqJxilFtRPUHBmthx4JGNXnEtT4hbjvAuBl2Xs+uIoqvkG/Z+JGAMHKfT5EPB8xvM3mNnf5XsiM/uJdD2jDuC7+0miYOr2jN0/gYKpMjbqKygCBVJlNP6N/j9KdcC3zezKwQqa2SsYmKJlDzDUaIX3E40K7PNFM/vV4RpiZrPM7K8GeSnzD/ydZjboyNX0xfZnuXQNwOFkpvWYAfx2Hsfm4p/oHxk5E/hOer2MS5jZbwGPZux61t1/PFjZSuLuTwL/nLFrHvCMmY1083ILUZAnc2Tctxl6lGmfL2c8fmSoGxkzuypd36QR6uvzX8CZjOdfMrPbhqh7RVY7zgEfHKxsOvXQpoxdbyrkBZS7r2LgKL0/NbMPpn8ehmRmNWb2ajN7wswWDVe20Ir9nqTP4UQ/f32uJfqeXpLmxSJ/w8Cb6c+5+57ssqXm7j0MTIOW2Un0VA5VZI6Wze5gyuV4ESmpmiJuIiIiOVM/QT/1E4yC+gkA9RPkRf0EhWVmDWb2eqL7/szg4HsGyRhQDL9Nf6zCgf/Lt4L0IInHM3ZdMgAi3WfyCwxcB/afzOzL6Z/3YZnZjWb2tfR5ckkLPix3P0UUTH0xY/ergG8omCpjo76CQpqYX7VgZvGRSw2w2d3vAnD3XWb2l/Rf3C0FtpjZJ4hSgVwgWpPitcAv0b9GQS/wG+4+6LndvcXMfolopGUj0AB83szeQnRh+SLROhZTgeVEF8mvJMrT/+9Z1X0J+BeiUXQA/2VmryT6I3wUmAzcSfQH9QogAXyagSkkBpX++p8Dbk/v+riZvY3o5q83o+gH3D3vEVvu/pSZvQf48/SuO4HtZvZRYBXQDiwmStPzExmHtjAwNVKl+0eiG+y3pZ/PAb5gZm8HvgJsI7r5mAIsAV4DvJRoRFmf7wC/mMNaEx8G3pyuKwZ8z8w+BnyP6H2bB7yc6P1rAB5j4Oi7Qbn7WTN7A9GINyO6oV1rZp8hWpfhNDCb6Pv0evpTSTnwu+5+epjqPwvcnX78SuCEmW0i+hnou4He5u5/O1I7h/AG4Br61y96M/ArZva/wGqidEIhMA24Crgt/XX0zU4sxtojIyn2e4K7f9rMXkO0tg7Aq4EX0z9/zxGlh7qG6PuZmebrIPDHoz1vETxFdCGebcSUQu5+0MwOAwuzXtqevsCX4f2Gmd09crEBOtz9dSMXE7mUFfHX8WBTIUREZPxSP4H6CSqA+gnUT5Av9RPk7s/N7FcG2V9L9DldRrTOdabvMzCQPKzR/h1Jz+J/JGP/yqFmlOfgi8DPpR9fbWYPuPuzmQXS/R4PEa2Zuji9+xeAnzWzZ4AfAnuJ0svXEs3wv55oHdNcUoHnxd1PpwdzPAHckN79SuCbZvaz7l6qNWplHFFfQYG5u7YJsBGNRvQxbJsGqfOtRBdQuRzfBrwsx7beQZQWJ9e2tQxRz91E6yWMdHyC6GLxkYx9B0do4y1Ef0yHq/eRrGPyqd+Icvbn+h4cB27K4zPwVI7fi4czz1Okz+YjRDdC+XweO4G/BiyP8/wykMyh7seJbtwy9z2cQ909Oba9F/i1HNpbk27LcHVd8n3Ms93NRJ0Po/mdsHiIOnM+f8YxT2Uc82ih35NRfCbriTpTcn0vdgALc6j3YMYxj4y1nSOc64Ehfm5qczz+04Mc/6E8zv9o5rGj/Boyzz3c52JM52Lg7+acP7fDtHU0W0sxPw/axudGNPPFjdqibenP58Zyf63atGnTpq04W/Z11Ci2TYPUqX6C4et9JOuYfOpXP8Hwm/oJhvg+5tlu9RMMfp6q6ycgChCO5vvo6c/uO4H6Ec7x6BjO4aT/jhANWsjc/6YxfN2TgI6Muh4bpuwsokE2uf7dytzOAH8GBCO9L3m0fTawJes8PwIaC/nZ0Da+N9RXUJRNqX1l1Nz9PcBdRKNLhxrpFwc+BVznOaaScfcNRKOg3kl0EzJkUaJc9G8b9EX3tUQ3SauHqWMtcJ+7fzyXtmXUvYloJNI/AM8S/fHsHe6YPOt3d/8zotFHG4Yp2kG0KPoN7r6lUOcvJXd/jGi08qPArhwOOQAsdfd/8/RfhxzP80WikWO7hyhyluiz9NMeLT6fs3TdNwFfJbrhHkySaETqze7++RzqTAI/Dfwa8DWir7vvhr8g3L1vFtxPEt2kpEY45CDw/wH3u/vBQrUjV6V4T9Ln6SG66f0VopufoZwj+h1wm7sfHqZcOawjGoWfabW7D/X5zDbYzNWnxtQiESkCAyviVpZJBSIiUs3UT6B+gkJQP8GQdaqfIIv6CQoiBbQSzaD/CtEs2gXu/vb0110KmTP/UwxMeZ0Xd+8iSsfd53VmNnmIsmfd/ReJBsJ8hmjG+HBSwErgD4Ar3f29PvLs95y5+xmiWfaZv7tfBnzLzEa9FqtMROorKDTL4/pCZEhmNptoLb3LidLhnCe6mHom/QdstPUGRClFbiAalVNLNGp1P9Goh5zSTKYXSr+XKC1MN9FI1vXufmC0bSslM7sCuI8otUwj0YXZHmBVvhfzlc7MlhBdwMwlSi1SS5Re44aMYv/o7o+Osn4jSrd0a7r+C0SfpycL8V6a2RSidFJXEKW7aQWOAE+7e+tY6y8mM5tK9DlbQPTeOFH7DxKldT1UvtaVj5ldQ5Q6aw7RKOQzwHZgXSEvmEVE8mFmG8FuNasdufAoRWMv/Hl3H3RdLxERkeGon6C41E+gfoJSUD/B4NRPMD6lfxfcSLQW7iyitNU9RL8T9hL9jeksXwtFRqa+guJQIFVEKp6ZzSEaCbk8Y/db3f295WmRiIhIefXfHGUvY1Q40QD0iXVzJCIiItVB/QQiIiKXUl9BcSi1r4hUPHc/TZTKYm/G7neb2e+UqUkiIiIiIiIiUibqJxAREZFSUSBVRKqCu58gWifgYHqXAR81s18sW6NERETKzAiKtomIiIhUMvUTiIiIDE59BYVVU+4GiIjkyt2PmNlLgddn7L7azBrdvbtc7RIRERERERGR0lM/gYiIiBSbAqkiUlXc/QDwaLnbISIiUn4GVsTRoG6AF69+ERERkQJQP4GIiEgm9RUU2sSchysiIiIiIiIiIiIiIiIiMgzNSBURERERqVoaFykiIiIiIiIimdRXUEh6N0VEREREREREREREREREsmhGqoiIiIhIVTKsqOMirYh1i4iIiIiIiEjhqa+g0AoeSDWzA8AU4GCh6xYRERERKaLFQJu7Lyl3Q0RExhv1FYiIiIhIlVqM+gomtGLMSJ3S2Ng4Y/ny5TOKULeIiIiISFHs2LGD7u7ucjcjL2ZaqUNEqob6CkRERESk6qivQIoRSD24fPnyGRs3bixC1SIiIiIixXHbbbfx/PPPHyx3O0RExin1FYiIiIhI1VFfgWiNVBERERGRqqVRpiIiIiIiIiKSSX0FhaR3U0REREREREREREREREQki2akioiIiIhUJcMsVtT6RURERERERKSaqK+g0DQjVUREREREREREREREREQki2akioiIiIhUIQOsiOMiDfCi1S4iIiIiIiIihaa+gsLTjFQRERERERERERERERERkSyakSoiIiIiUpUMs2KOi5x4656IiIiIiIiIVDf1FRSaZqSKiIiIiFQpIyjaVpD2mb3OzD5oZs+aWZuZuZl9tgD1/ma6LjezNxairSIiIiIiIiLjQaX3FVQbzUgVEREREZFi+VvgZqADOAosG2uFZnYF8MF0nc1jrU9EREREREREZCgKpIqIiIiIVCMrcroeM/Ax1/JnRAHUvcBDwJNja5IZ8EngHPBV4C/G2kARERERERGRcaM6+gqqigKpIiIiIiJSFO5+MXAaxUDH7E+AlwIPp/8XERERERERESkaBVJFRERERKqUWazcTSgZM1sOvAt4v7s/Y2YKpIqIiIiIiIhkmUh9BaUwMVeGFRERERGRqmFmNcBngMPA35S5OSIiIiIiIiIyQWhGqoiIiIhIFTIMK+K4SMNwWGZmGwd73d1vK9rJL/X3wArgfnfvLuF5RURERERERKpGifoKJhTNSBURERERkYplZncSzUJ9t7uvKXd7RERERERERGTi0IxUEREREZEqZVb0cZE7SzzzdICMlL67gb8rVztEREREREREqkUJ+gomFL2bIiIiIiJSqZqBa4DlQNzMvG8D/iFd5qPpfe8rVyNFREREREREZHzSjFQRERERkapkGLGi1l8BeoCPD/HarUTrpq4EdgFK+ysiIiIiIiIT3IToKygpBVJFRERERKTszKwWWAok3H0fgLt3A28covyjRIHUT7n7x0rVThERERERERGZOBRIFREREaky7k5PTy/x7h7iPb3Eu+PEu3uY1NTIZZfPoaYmxp5dB9n0wg564j24O93dPf3HxKOtJ97LoiXz+ZO3vr7cX5KMUqWve2JmrwVem346L/3/PWb2WPrxWXf/i/Tj+cAO4BCwuDQtFBERERERGR/cHUgByfT/KZwkRj3QCBjOGdxbgBAI8XQ5vP84J0Vg84gFV5fnC5Exq/S+gmqjQKqIiIjIKLk7rS3t9PT20hPvJZUK6e3ppbs7TmtrOz3xXhKJJKlUSGdnF91dcXoTCZKJFN1dcc6fbyUMQ3p7e2lr7aS3N6qjJ95DdzrQGe/uoaenh3i892LwMx7vGbJNZsbUaZNpudCW09dwz30rFEiVYroFyP6AXZneIAqa/gUiIiIiIiLjhHsIJIgCkyGeDlpCArw3HbwMAb9Y7mIZT+D03fMngd50uRAnmQ549gdJ+x73b0MxoDZdXy6MGAqkioACqSIiIjIOnD/XwuFDx+nqitPbm6C3p5eengSJ3gSJZJIwDAlDJxYLOH+uhTB0GhrqaWvroLOzi67OePr/7mjWZryXnvSszVgsxvQZUzlx/DQnj58h3tNLojfBz//Sq1i7ehMH9h0p95c/gLvnHEQF6O6OF7E1UkwGBBRvlGkhVj1x90eBR3MsezCf0+ZTt4iIiIiITDzunTid9M24vDj78mJg09MlDacLCDACnN50QDNJf0A0fbz3BS9jmNXh3o7Tna4PAltK6IeA7pJ+rSNzcg+iQvQ1SzWqhr6CaqNAqoiIiOTM3UkmU/T2JkglUyQSSeLxOJ0d3XTHe+ho7yQIAiZNauDMmfO0XGijpycKbMbjPVF62XiUYra7uy+9bA/x7mgG5sW0s+mUtclEkkQiSTKRpKe3F3cnCAJ6e3rp7U2yaMl8wjDk4P6jJX8v/vcz3yr5OYuhq1OBVBERERERERm9KKVsmLUl04HIJHgCLAYEuHcRBfT6ZlWmU8p61vP0/wODl30BzczzpOgP7URBUmNGOjBa3GCm+6X7Qt9Z1HOWjgKpIn0USBUREalSYRjSkw42xmpqqK+vJRaLcfzYKc6cPk93dw/d3fH0zMpePHTmXjaLRCLBieNnOH3qHG1tHfT0zb5Mr5/ZE++lOx6tuRmlqO2go62TrvQ6nKnUcKliSmv/3sPlbkLV6+qqtFGykjvDLFbU+kVEREREpLpEaWX7tgDou2doT6eMTYInM2Znglkz7j1AVzS70hNcGtRMZaSWTabr6putWVlBN+dcuZtQ9ZxEuZsgo6a+gkJTIFVERKSCtLV28Ojb309XVzctLe3U1tawbPlS1q7exMJFl9HZ2c3Wzbs4eeIMvb26qJWx6+pUIFVERERERKSShd5CKtxMFMzswajDaCb0U5hNA7oI/RwQpy/FrMiYeGUFx0XKSYFUERGRCtHVFecv3/Iuvvql7w/Y/73vPAPA2tUvlKNZMs51dSm1bzWzIq57IiIiIiIi5efeTTL1DM6p/n0DXj916UEiY6ZAajVTX0FhKZAqIiJSYrt27OfP3vwOXvmTD7Bm1Qs8/NK7SCZTvP/dj9Ha0l7u5sk4ZGYsufwKampquPbyK9lycCeHTkTrysbjUbrmWKyYaV9ERERERERkOGF4lJRvw5iG00pgi3BvIeXb6UvBK1JYAdCIUY8FDYThOaAn/ZqyoEnxmNlBYNEQL59y93klbM6IFEgVEREpgUQiyUc+/L88t34rP/7BauLxHjas2wrAEz9cU+bWyXg2Y+o0HpxxD2cOXQDg/JEOrmpeyk33LOfba3+Eu9Pd3UNz86Qyt1TyZkZgRRxlajZwqLuIiIiIiBSUe5JUuB6nndCPEF2AHwEg9MNlbZuMb8ZUYrEArIcoJXScwJoIw2mEfipaD1eqU/X0FbQC7xtkf0dBai8gBVJFRESKKAxDPvfpb/Kuf/5vTp86V+7myATTWN/AT173Ug6uOz5gf7yjh/i6Hn7l1tfyvxu/RjKhGyQREREREZFScQ9JhRvTs017y90cmXDqicUmgbUO3G1xglgc8ytIpc6Wp2kykbS4+6PlbkQuFEgVEREpgo72Tv7rA5/js5/6BieOny53c2SCevWVr7gkiArwky9tZsZkOHqmnV+4/2F6enXjXo0MMIqXktmKVrOIiIiIyMTk3kEqfJGU70CpU6U8YtTEGi8NogLu04EAPI7ZlNI3TQpCfQWFp0CqiIhIgcXjPbzrHR/hIx/+33I3RSagl912H3MaZxOkgkGDqABzp8Nt3T+CxXPwWA2WUCBVRERERESkmNx7SIarCf1QuZsiE1AQzMcswAjBLgxeyGM4p4DJmE3EcJmUWL2Z/QawEOgEtgDPuHvFLQqtQKqIiEiB/b8//w8+96lvlLsZMkG9sPfFQdP5Znpue4rblgAtpzFgekypfauTYRRx3ZMJOc5URERERKTw3J1E6vvpIJVI6YXhBWpi08Bahi5kYXrty3Z0P1jNqqavYB7wmax9B8zst9396UKdpBAUSBURESmAzZt28p53fZynnlxHV2d3uZsjE9j51hY+v/ZrvHr+Kzh/vG3QMmfOJuCWWdCaXvMkqZRSIiIiIiIiheTuuB8nGW7EOQtU3CQrmVC6SKZS1MRqwHyIMj1AjOiz6ri7ZqbKUJaZ2cbBXnD323I4/pPAs8CLRJH7K4E3A78HPG5m97j75kI1dqwUSBURERmDPbsO8sd/8I9s3LCt3E0RucjdmXJF85CB1FjM+oOogCuQWrUCK966JyIiIiIiMjpheJxkuAqnpdxNEcnQA0wjilsNpoaBAf8QirjWphRPpfcVuPs/Zu3aBvyBmXUAfw48Cvxcqds1FAVSRURERun4sVO88bfexvYX95a7KSIDXDZrDm1HOoZ8/fabGvjyhZfzyhvbmHJ0PZ5Ual8REREREZFCCP0sifAJQNmqpLIYU4GuYUrEMJsBDs55FEiVYezMceZpvv6bKJD6YBHqHjUFUkVEREbh5Ikz/NTL3sCxo1rfRCrH5KZmXrXiITp2dg85GxXgmz+IRp8+s8b4wG/Mg5QCqdWpatY9ERERERGZEEI/QyL1HUBZf6SSNBKLzca4ADZ0immz8wA4NeAB0ezU2tI0UQqoqvsKTqf/byrmSfKlQKqIiEienvjRGv7x7R9QEFUqxrxZs3lo2d2c39bOidXncj7ujlub4fxJpfatUgYERRwdrDCqiIiIiEhu3J3Q95AMn0NBVKkck4nFpqUDqGdHLn7RVKJ4VlikdkkxVXlfwT3p//cX9zT5USBVREQkD49/+2l+9/V/Q09Pb7mbIhPYLbctI6gxwjCkIVZPzXNNHF19Ju96rl1sEAdP6PMsIiIiIiIyGu5OyreRCteWuykywcWCBZgZUQC0DuwUkPtg64u8L1SmQKoUnpldD5xw9/NZ+xcBH0o//WzJGzYMBVJFRERyFI/38Ibf/H8kEkqDKsV32eWzOX7sdPomqN9V1yzkhU1bSSSSLFl8Bct6riMeji4QOmdyEuIotW/Vqup0PSIiIiIi44JzQUFUKaEmoPOSvUFwORb0xaWm0Z8hdTTCrP+lulR8X8EvAv/PzJ4EDgDtwFLgp4EG4LvAf471JIWkQKqIiEgO3J1//vsPKYgqJXHnvTeyfv0L3HTrMhoaGjh3tpV9uw8zaVIDXT2dFz+HNy24ntY18UuCrbm45qoGFvduA1BqXxERERERkVFwT5IKnyt3M2SCqIldAVwAriD0EA/bcdqASQSWGVw1wEd1DvcpOBfSzxRIlaJ4ErgWWEGUyrcJaAFWAp8BPuPuo/sAF4kCqSIiIjn4z3/9GP/zX18odzNkArj2uiWsXLkegI0bt17cv3DRfHDn4IGjF/d9Y+X3eNm992Nb60l153aDYzi/80uTuaVmC7REa6SEXZeOZpXqEBR1lKmIiIiIiAwnGT5N6IfK3QyZAIJgPlhfmt5zBNFCmODzgB6wnozSF4DZQO5LALkbMBP3C0A0eNtJKE9RlarkvgJ3fxp4utztyIcCqSIiIsN49O3v58kfrWXXzgPlbsqEsvyGxZw+eYF582fQ1dnDgb3Hy92kkonVDn6bcvjQsUH3/3j1Su674w7qXmgese5fes1k7px3kvpj6wbsDzvb8m+oiIiIiIjIBJVI/RD3FpyWcjdlAjHMZuHeSWCTCb2DwVLcjlfBgEBpBhvqfv4MMIeRUvxGE/9m4d4DnMp6dYhzikwwCqSKiIgM4djRk3zyo1+mqyte7qaMW0EQMH3GZKZMa6KurpbmyQ1093SyYcMGAA6fADOjubmJa69azo5tB4etLxYLSKWqN/XMtGmT2bxpe97Hrdqwgdfe+FO07ugettxtl52j/ujWS/Z7YnRrrEp5GYYRK2r9IiIiIiIyUOgnCf1guZsxzsWAeow6sNr0/wmglWhlmxYCM2AKYRgCHSPUN/pUt5XAmAnWNYojzxEtOTl0v5aZEYZdDP4epkZxTik39RUUngKpIiIiWdydY0dP8bd//R4FUYvs5tuXsHLVWjgxdBl3p729g+c3b+SOO1bQ223s2n7w4rqgVy+7gqbmRmpqYc/evcyYennVzWBtam7k+puuYvPmFxntMhBHYkeYwqxhy9Qn2wd/Iaze4LOIiIiIiEgpuIc4rSRTa8rdlHHOCIJZREsmdqe3wTjQQxDEgPl42IbTf89rNhujBiwGdKeDhcMPPq48k6iJzYSLa5bmKwXMZLhAatQHMdTM0+oNPosUkgKpIiIiWd77H5/kX//p/yt3M8Yld+ey+bM4efwci6+8PAqi5igMQ9at2wjALbfcwJQpU0kmk6xePTBNbUtrG7feeSsvrN9d0LYXy5333sjKlesvros6Whs3beXn73g1z5/exKHDx2hunsRVSxYze8osepO91NXU8Z32Zq5vnM+VXUcvBqIBSCXH+FVIuVTyuiciIiIiIuNJMnyK0PeVuxnjVADUA90ENpf8Aocp4CwWgHF5uq4UcH7gGYIG3JtwP1ugNhdXTeyK9Jqo50YsO7xWomBqB1HAtA6YDOl7yahnIIXTCWTPelUgtVqpr6CwFEgVERHJ8PnPfJP3/vsnyt2McaexqYErr7qM2npj/frnue3Wmzl85Mio69u0aduQr3V1drNm7Vpuuv5mdu8Y/TlKpaNz7Gu6LFmygLNnL/DVDd++uK+9vZMXtrw4oNwP0v+/5sGbef3lcZZ1HQbANSNVRERERERkUO5OKtyoIGpR1BHYDLAAaAcuT/8/WsMFHeOYpXCfxKUBw0pUiDbOIJrZm/m+9A58bmCWDqj6PEJvyzi3AqkioECqiIjIRX/25nfw2ce+Ue5mjDsr7lzKylVrOftcf1Bz7brninrOVCrFoaP7ue2uG0gmQ3ZsPUhvb6Ko5xwNd2f//sNjriffFNTfemYz62ZP5xv3NzI51Q2h1j2pTlbkUaYTb90TEREREZFsidS3cE6VuxnjThDMJQryZc4+Hevsy5EkCILJ4NOAJKGfLvL5RqsRrBBpiFNAHgOn7QwBUwi9L5CqQdfVSX0Fhab5vSIiIsAPHn+WL3z22yMXlLx5mUYwnj/fwjMrV7J67Wpmz2/kpluvKks7hnP5gjm0tY5ltG2kN5Fg2vQpeR1z+swFPpVYCoD3DrUeioiIiIiIyMTk7iTDrQqijjvtUcpcayUI5mHMKHeDLhFYfvf3Q0uQdwjI2jDmAOBo0LUIaEaqiIhMcMlkki987jv82R+9o9xNGbdqgtpyN4Hdu/cB+3jowfvZsHrnwPVBy2jOvJkcOjK6GanXXLuEWbNmgMHe3Qc5cvhE3nV84gebuP3nl3NTb4zpo2qFlJMBRqyo9YuIiIiITETuCVLhJlK+qdxNGccqITRxAQtimF9G6PnfUxeLWd0Yjp5O9N4a0Qzf/GeVmrXhPgWl9q1O6isovEr4bSUiIlIWba0d/Mov/Ckb1m4pd1PGta742NcALZSnn1nJXXfdxsE9Z+hoL0SanLGpr+8PMjc1NVBTW0NrS8eIx02eMpl9ew+ze9eBMZ2/tzfBH3x5Oz+bms8nfn9MVYmIiIiIiIwLobeSTH0fp7XcTRnnyn9PHkmBnSewBYThcSohnW3m2G/3GOCY5dKuKQxMlTzaBiQISGJWeUskiZSDUvuKiMiEFIYhb/vL/1QQtcgmT21i69bt5W7GAOvWbeSa6+aXtQ1NzfUsv3EBsboe7rj7KhZf3czpC7s5dupFgmDky7MZ06eQShUmxU4ymaS9beTgrVSiaN2TYv2bmONMRURERGQic+8mGa5WELXIjOlA5Qy6jpwhsHllbYF7HR5OIZnsJtFbR7y7g3j3AXriF3DPZXZoATOCmROlBpbqo76CQtOMVBERmVB6exO87c//g2ee3sDB/UfL3ZxxrXlyI7Mva+Tk1spbfzMIipfiZDDX33IFHnTT1tbK+QvnOXpsF0fODH4TdP0t89iy8diw6Ydnz5nJoUPHCta+jo6ugtUlIiIiIiJSbdy7SIarCf00lRfgG28mYRU7vStZsjO5O/g0POzFPY57F87ZIcq2k0zMpraud4RaC93XoUCqCCiQKiIiE8i73/UxvvD570zoAKq7EwQB7o67c+11i5k8tQEIaWvtYc+O0a3X6e4sXDSPZJhiztzp1NQZmzdvYevW0dVXbL3xwszmHImZcdMdl/Pk0z/M+Zg1a9Zw9ZJbOXH83DD1FqJ1/drb1VFQrQKv2B4IEREREZGK555KB1APAxN5gKmRuR5mYHOAOjDwsAVn9FmMjGk4CQKbShRBPUelvtfupUk37B4QpuoIw305HhGSTB6gpvbyYQddF54CqdVKfQWFpUCqiIiMe2fPXODf3vERPv+Zb9LbO3EvAqdMa+aa5fNZs3Ydy5ZfQ3c8zgtbnrv4el1dLXfeeRsexojFjONHz3HiWP9oyOkzp9DV0U083kt9fR2XXzGLWXOm4B5y9tw5tm/fBsDesS3bWRLxeGlmyd54+zyefPrHeR0zbdpUjh87O+zNUW1tAdP1AO3tSu0rIiIiIiITi3s7yXANoR8qd1PKrIEgmEm0tuZUIA4ZqY0tqMVYAB4NSA79QrpMnyaiwKgDMcxmYNSlRwB3AZ3pRKBDDxauDIYz0ozPwghTAWGY3yD/IJiZQxC1sH1eXsIZuiKVTIFUEREZ186eucAvvPpNbH9xb7mbUjbuzvU3LeH0uZM8/cxKALZsefGScr29CVauWnvxuZmxePEV9PT2MnfObHbu3APA9DlTaWm5wLGTnby4s/rWjbnuumvYveNISc514lT+6XeTySQ33ryEbVsODvr6ffffzvPPbxtjywbSjNTqZEQrnxSzfhERERGR8Sj0syRSP4QxzLQcDwK7DKwDLqaUPT9IqQRw5uINQmAxYCYQAvVAC9AI1AEpotTIbcVsdpHMBAq3hM5wwvBM3se4dxOGUwmCwQaGGzALhkgNPHoTdzJCNVNfQeEpkCoiIuPWsaMneeNv/c2EDKK6O3fcuwwwDh85xIbnN4yqjgMHotS8x4+dvLi/uzsaedrVVZqUN4U2ZfIUopG2xXfuXP4jbjs6Oln33DM89MDL2Lh+b7RuStr0GVNZtfK5YY4enU6tkSoiIiIiIhNE6OdIpH7ExAyixqLgKYC1M3jgdCQp+t+7rox91dlHcJGXJjzkXkP0fuV7XDs98W7q6pcSBF1Zs1OnAvkHZ0emGakioECqiIiMU1/9v+/zT3//QY4dPVXuphRVU3MDy29cdPH50WNHqauro6ur++LsU4lcu+wq5syax7FDxbi5GFxNzegutdydp575EZddNo9l195AZ0eCMBUS7w65cL7ws4Dj8R6SyeSo2yvlYgRFHGU6MceZioiIiMh4lgw3kQo3Q4lSuJZPE4FNBzydYjcOBERfd+nuiavDDHAj9BMlOp+PXGRISXp7dmE2ndraOQBYEBIEscI07RKakVqd1FdQaOotExGRcSORSPLtrz/BN7/+Yx7/9tOkUvmP8Ks21yxfqIBpjhpik3l+3a6SnW/OvKnsPLBzTHWcOHGSEyf6ZwO/6pU/xcED+a2jkqv29k6mT59alLpFRERERETKxb2X0A+QCnfjnBz5gHEgCKajgGluojS7JZx56U1jr8Iv0Nvbl2nLqKu/kVhRYqkKpIqAAqkiIjJOnDp1lp966Rs4fOh4uZtSEg0NtSxdfhkrV68qd1OqRtPUWuYvnEOYCjl+9ExWGpzCC8OxjDId3O492wteZ5+Oji4FUqtQcUeZioiIiIhUtyiN77eYOAGhBoKgWGlex6cgmEcYngViROu7FpkVuq/ASSXPE4sV495QqX2rlfoKCkuBVBERqXqpVIr3/NsnKjqIev3NS6hvqKOntxszo6G+gUQi5NzpVo4ePp1THbW1NcycPZUpU5sJahOsX7+xyK0eX1avXn/x8fLlVzNz+hy2PL+XVCosyvmCoD9QG4vFuOaaq5gxfRpBLEZrayt79uynuzu/NWTCMKRYKVQ62ktwwygiIiIiIlIi7kmS4ToqOYgarVdq6eBakF6nM0Ho7fSvPzqSGEYjWGOUxZeW4jR23DpDEEAUNJyHewr3IgaiB6zFGlBTs5CamimEqV5SYRup1Ekgz34KL/xA7kgSx7EJmMpVJJMCqSIiUvVOHD/Dpz7+1XI3Y0jXXLeQ9c+tH/S1hoZ6rrpqGdNnNHPm3GnmzJlDbzzF1hf2cc11C2lsqKO2PkZ7RxvPP7+FlkOlWrNjfNuxYw+wh4cevJ/n1hQ+3a+7s2DJNKi7mo6ODo4dO86O7TsGlKmvr+fBB+7lmWdX51zvoUOHefihl/Pc2j0FbjF0dCiQWm3MjcCLN8rUXDfLIiIiIlK93E/hfqzczRhSYJeDnRu40/peayQMIQhmEAX4avCwC+c8gc1Jl60jWvO0lShYXLkB4+pxATMw5hL6qSLUH1BTM5Xa2uuBBFicKGjaQiyAGDXgS0gmYyQSu3OuNRUeI5W6llgsv8HauUkCtUWoV4pFfQWFp0CqiIhUvfr6uopdD3XRknls2bZpyNfj8R627dh88fnOnVGA7MorF/HCZs04LbaeeGHT1Fx/yxXEahMcPnKQH/348eHP3dPDM8+s5P4H7mPlyjVDljMzFi68ghnTZ1BbV1e0caDtmpEqIiIiIiLjiVVuasvA5l4aRB2gOz1Lsn9mpAUBxgyiwKkUU+iFvT8OgssJLJ06eNjvO2AJamqSuC8imTw0XK2YTSWwRrCgeJNSSaBAqkx0CqSKiEjVO316hIvQMqirq+XKq+cT1KZGFeTdv3+4i2UplM7uVmpra0gkxh5Qvem2hTz17PfyPm7N6rVcffVS9uzZd3Hf0qVL6enpYd7cuVw4m+LUyQucO3kh/WoxRsUqtW+1CpRiSURERERkUO65psYtpXrMJoONZomZkJKs4SkEwVTCsKMgdcViV2AjBU+zmVNbW0sy2Qj0zTINMJsG9BKLzaamFswy+5uKMRsVNNO5OqmvoLAUSBURkarm7rz9L99d7mZc4tobLmftug3lboaMYOvWHdx7711sWr8Ps9FfZAZBwO59m0cuOIhUKsVl8+ayZ88+br75ZtovwKmjLUCMljNnR92mfHV0VGIng4zEqNxR9iIiIiIi5eIeJxU+X+5mXCIIJgPt5W6GjOgsgc0nHHNq6EaMCyMXG4wlqK29gkRiN7HYYmrrLCNwWsqsbIXN5CWlob6CwtK7KSIiVW3Xjv1s2byz3M0Y4MYVS1m77rlyN0NytHr1Om6/exkQBeZ9FPlwrrn+co4fH/36tadPn+H222/l9LFeTp9qGXU9Y9HZWazRqyIiIiIiIqXlfhanpdzNGCCw+SiIWkXsHMasMVURC2aOcvZx+vhYQzqIGmbNPi0lBVJFFEgVEZGqtW/PIV718CO0txU3tc2ChXO4Yuk0br/n2hHL1tbWsGP39qK2Rwpv7fp13LTiKhZfM4Ob71hCEOR+iVRXX8vxk7vGdP6dO3dRG0ymvb18s0K7ujQjtdoYUbqeYm1KBCQiIiIi1SgMj5IIHy/6eQKbQxDMJbB5OZRuAitdxiEpBMeCXsxmEwTTCGxBnsdPwqxtTC2woIXaunrGkECrABRIrTbqKyg8BVJFRKRqvf89n6KrK160+mtra1hx5zV0J1rYuXMPa9au4+rr59HY1DBo+dvvvpaWrhO0toztQllKr7c3wZr1a9i+fTdr1mxg+Y2Lcj72mhumc/DQ6Ne0nTFjOtcvu5utmw+Ouo5C6FRqXxERERERqXLuSZK+qchnqY9ml1o30ALWQRDMH7J0ECwgCBSMqk496WBoN9gZoCnH42qoiU0DG8v3fTLQgFl5s0e51kgV0RqpIiJSvQ7uP1rU+pffuJiVq1ZdfN7bm2DTpq3ccMNyGmrncfTIGZZePZ+uzm5q6p2nn11Z1PZI6cRqc0vve8udC3niqe+N6VxXXXU127ecGlMdhdDZpdS+1ccIvJjjIifiOFMRERERqW4B7i3FPYPNyppdmgDOEgSX42EHToLApuHeiwUBcKao7ZHSCWw6oY+cFa0mdhnYuTGerZHKSAVdrpTCMnrqKyg0BVJFRKRqXDjfSltbB2tWvcCOF/ey+YUdBa3/+puW8OLObUydNoXL5s1l3YZ1g5bbtq3/vCfPHixoG6Qy5LJO6vQZzWzYuGrEciM5duwYUDfmesZKM1JFRERERKQauXcATsoP4d4KFHaQaDT7tA2IEQW3hkrRew4L+kIM58ucjlXKxZgOjDWICpWTUlczUkUUSBURkYqVSqX48Q/XEATGi1v38B//8lF6enqLdj4PknR2dtHZ2cXxYyeLdh6pfPV1g6dvzrTsprlMOdEDZhw+dJhz586XoGXF06FAatXpW/ekmPWLiIiIiFQa9yTuJ3DiuLeS8heKeLYYWA/Q1xehTD4T28h9UrHY9PRnBqCN6p/RWSkBXcmV+goKT4FUERGpSHt2HeSdj36Y73zrqaKdo3lyI8tuWMi+/fvojvewYcPzRTuXVJd9B/ZTW1tDIjHwhmHWnCnUN9TS2FjHd777rYv7Y7EYt962guamJlKpEHDcnfPnL7Bz565hz9XU1ETrufKP8NSMVBERERERqXShnySZWo9TzOVRJhEEM4jSqqaojPSqUhEsgEESWBnTcHqiz41lDsyPATOBzDSrDnSlt+EUMzVrPsrfXyFSbgqkiohIxXn2qQ289Y/fycEDx4p2jquuWcC51pM8/YzWNZVLHT1ynBuW38yBvccH7J+zoI5169ZcUj6VSvH8xsFHQS9bdu2wwdTL5i7i+OG9Y2twAXR0KpBajWxCjgUVERERkYkoFe4hGa4BekYsO1qBzQXrQuuayuDaiJbmGTgzNRZrIAq6X8gqn2LwNL81g9YzUPEysuVHM1KrkfoKCkuBVBERqThz582it7c4I95uv2cZu3bvYufeF4uaJliq34zZzRzIiG/esGIhz6z8Xt711DfUs2LFzdTX1xOLxYjFYjyTEcAPYoVo7dh1tHeWuwkiIiIiIiJDMmumWEGdIFgAdAItRalfxosUgc0k9BMX98SCK8DyXRM1CcwiCrTGiGapGgPX362QzgIFUkUUSBURkcrR1RVn6+ZdbH5hB2dOF2e9yZ6ebk6ePF2UumV8OXToMO6OmXHl1XPZs3/TqOrZvGnLgOfXXbd8wPPeeDjaJhZUV5fW+qlGxVz3RERERESkErj34n6K0E9RvPUm44ycalUEMLuY3jeweZi1jrKis1nPZ2eehEqZkeoKpFYl9RUUlgKpIiJSdidPnuVv/+rdfOvrTxCGhQ8quTt33LuMjs52Nj6/ueD1y/h06NARXvqyOzl95iTPbXyyYPXG43Huv/9eOjo6mTJ5NhvX78Ws/Be4WiNVREREREQqSegXSIar8IzZf4UVEASXEUXF8p1RKBPXOWpii4E4WFsB600Bc4BuorBNdprgctEaqSIKpIqISNl5GPKdbz5ZlCBqTU2Mm2+/Umuhyqjs3beLPXsKu37p/v0H2L//AK94xU+x5tkdFRFEBejUjNSqY1hRR5lqTRURERERKa94EYOoNQTBHC6dFSiSi7Nghe7D6svMNiPjcSXQjNRqo76CwgvK3QAREZnY3vHoh/m11/0ZyWTh0/Ncde0CpsyK8cyzqwtet0wMM2fOKlrdne3xotU9Gl2dCqSKiIiIiEj5uSdJpFaRSBUuM1CmwOYSBI1oFqqM3qQi1l1ZfQXFS6ctUj00I1VERMri5IkzvPc/Psn//e936WjvLHj9ZkZvqoMjR44VvG6ZQLy2aFXXNVTWCL54vIdUKkUsFit3UyQPE3EkqIiIiIiMX6GfJxVuJvR9XFyIsqBqweJUyvqTUqW8EayjSJVPorLW69WM1GqkvoLC0oxUEREpi79/2/v4xP98qShB1MamBqy+ix079hS8bplYnt+4gyVXLilK3VaBl2FdXZU28lVERERERCYK95Bk6ilC30sxgqjGVIKghsqb8SfVJuQMeLHmqBV+2auxUSBVRDNSRUSkpE6ePMv+vYd5+ol1RTvHtcuvYO+BOO3txRodKBOFmREUeA3TadOmce0117Jp44GC1lsIHe2dTJ7cVO5mSB4K/fkUERERESmH0FvA2/Eipts1awYuFK1+mUhSUPAZf41AM3CmwPWOVaLcDZBRUF9BYSmQKiIiJfX6X/kLnn/uxaLVP2VaM2vWrSUMK20En1Sjyy6fzbFj+wta54pb7mDD2r0FrbNQOjoKP0NcRERERERkONGaqN+imDNFjRlgZ4tWv0wsxnSwtgLX2kDlBVEBkjiuVLEyoSmQKiIiJXPy5Fm2bt5V1HNMndLEiTMKokphXLFwJgcPbS9onZUc429r0yzuamJAUMSbWd0mi4iIiEgpOGcodrpds9qi1i8Ti1kxluqp1M4CJ5qBq1BStVBfQeFV3uJcIiIyLnV2dvOOf/gQiUTx1la4/Z5raYtrhKkUTm9P4etMJrsKX2mBKJAqIiIiIiKl5N5BMtxU1HMEwQKwyr0PkyrkxQjM1xehzkLpLXcDRMpKgVQRESm6VCrFe//jE3zxc98pSv233X0ts+dO40LLBY4fO1mUc8jEtOmFnTz00EsKWueq1atYtvyKgtZZKO0KpFadoIhbIZjZ68zsg2b2rJm1mZmb2WfzrGOmmb3RzL5mZnvNrNvMWs1spZm9wYozHFxEREREisw9STJci/vRotQfBAuI0qV2oUCQFFLISfDZBa71DFBX4DoLReukVptK7yuoNhP16xYRkRJJpVI8+vb38/7/fKwo9c+aM52Vq1azYNFMtmwp3tqrMnGtXb2N66+7jebmpoLVOam5Mm+OOjo0SlsK7m+BNwO3AMdGWccvAh8F7gLWAe8DvgLcAHwM+D8zm4jZhURERESqVugJkuGThH6gKPWbzQLOEAQzgc6inEMmttBP4uEM8ELdijhR4L8SFS+7nEg1UGJrEREpmjWrN/I7r/9zpkyZzNRpzbS2FH6229nTF1ix4kZWrlpb8LpF+uzdc5h77r2Tp55+Mudj7rzzTmKxGLW19WzZsonFixezfft2ent76WgvQs7gAuhUILXqWOWvTvJnwFFgL/AQkPsPUb/dwM8A33H3iwsHmdnfAOuBXwB+nii4KiIiIiIVLuQAbhsJgibClBEFkArL/Sxm0wEt/yPF45zBmEt+n7OZ9M9vuwA0Ay3p55V6T64ZqdWmCvoKqooCqSIiUjSf/9zXOXr0BHCCBx64mw2rtxf8HEuums+OnbsKXq9ItnhPfjc09XVTeOG5fQBMnnw5e3e2csN1dzF1Wj1HD7cUoYVj196hkdpSWO5+MXA62kmj7v7EEPtPmtl/A+8EHkaBVBEREZGq4OwBesB6CIJ5hOGJgp8jsLn0B6dEiimeZ/keoG+iQQ3R53QmECMKrFYizUiViU2BVBERKYpNL7zID7//zMXnq1atZ9k1y5gxawqpMMkL63bnVZ+7D9oJ397aSVdn95jbKzKStra2vMoHsdTFx+3t0Wd0987irP1TKB3tCqRWEzMjKGJGWzMrxuSAQusbGq07exEREZEK5zhwnMxgUWDthNQSi80Dh1R4pEDnCjUfS0ok30BqI/2B1L7bmHOFa04ROAn9PFUR9RUUntZIFRGRgjtz5jwP3PvzHDt28uK+MAzpjLexfv1GYkFuf36uWDiX2+65hhnz6ghr2pl7xSRuv+daIFobddq0ZibPiBXlaxDp4+7cedf17Mxz5nNg1ffZ7NCMVKkiZlYD/Fb66ffK2RYRERERycVpQp5iwBg4C6mJzcDsHE441IEDGDMJggUEwVSCoIkgmENgl6dfbcKYShFjCCJpRmDzwPId01mNESil9pWJTTNSRUSk4P7nvz876P5DB6PZeOfOtA95bMOkenq6e7np1qt4cec2du7rnwW4f/8hDhw4zE03X8+hg0dIJBIc21ap60fIeHDLimWcPHWYZ1c+lfex7tV35641UqtPCUZFLjOzjYO94O63Ff/0w3oXcAPwXXf/fpnbIiIiIiIjCBkiM5W1gxtheHqYo2uAVBQwtQv0z+gDaAULCOwyojSpSfKfJSiSu4C50efWzozi6NTIRSqOEgBVG82gLCwFUkVEpCC+8fUfsHTpQlKpkE9+4v+GLDdz1nT27zk6aJrepdfMZ/+hPVyx9HJWr1096PHuzuZN2wrWbpHhnDp9mEOHDuV9XCwW48ypoQcMVKp2BVKlSpjZnwB/DuwEfrPMzRERERGRQTghzmGMaUSBzeGWOplKlPb3UoFdBtZFtIbk2SGOD4HzGY9FisXAzjK6XLd1QPX1FSiQKhOdAqkiIlIQX/vK43zly98dsdzVV13Jpg17Ltk/d94Mps1souPFTnbsuPR1kXKYN28eBw/mF0gNgoD77n0pz2/YW6RWFY/WSK0+gw1KKbCdFTDzdAAz+yPg/cB24GXufn6EQ0RERESkLAxnO56xJupQ3IdaGqWZKE+vZphKpXCgmYGzonNRA0wimjVdbZTat9qUoK9gQtEMXxERKYif+KmHcyrnqUv/kE+fPpn9R3bxzDOrCtwqkdFzd3bvzj+o/+CDL6nKICpAZ6dmpFYTI7qYL9ZWibddZvYW4EPANuAl7n5y+CNEREREpFwMw7h85IJAGLYOcvxMgiABnCtwy0TGop78g6gA06jOICpoRmp1mYh9BcWmQKqIiBTEPffmNmHpwvm2S/Zdc92iQjdHZMxW3LqM8+fzm+jW3NzEru3VG9fp6NCMVKlcZvbXwHuBTURB1OEW0RIRERGRCmDMHrmQGz5IYCoIphShRSJjEzB9FJGkJoZOS10NNCNVJjal9hURkYLY/mJuM/fmXDad0yfPM2PWVObNn0UsFhDv7S5y60TyZ2YsXHgFhw8fyfmYOXPmcPp49c7qbG+v3rZPVOMpXY+Z1QJLgYS778t67e+AfwI2Aq9UOl8RERGR6uC5zMAzJwguJwyPYUzDgkbMYhgh7kVvokj+vAEsn3TTDUD1Dlx2BVKrznjqK6gECqSKiEhBTJ7SnFO5lSvX8cADd+Ohs3LVuov7ly+/hh07dhereSJ5e+H5nbg7Dz74Eg4d2s+hQ7mslWpE66VUJ81IlUIzs9cCr00/nZf+/x4zeyz9+Ky7/0X68XxgB3AIWJxRx+uJgqgp4FngTwa5KTzo7o9l7xQRERGRcqvNqVQQnMd9NkHQgFl65p4H6eMVxJHKEXISPCBgDtCeZ0C1Wim1r0xsCqSKiEhBxLtzv3DctWsPV1+9dMC+ZCpV6CaJjJmZsW7NNtyde+95kMNH9nH06LEhy8+aNYvTx8+UsIWF1dmhGanVpgrW6bgFeH3WvivTG0RB079geEvS/8eAtwxR5mngsbxbJyIiIiJFlvu9fiyIDSxvYTWPU5VxLST0aFmfwOeCtYH1DlM+VppmFY0CqdWmCvoKqooCqSIiUhCHDw0dXMp2+vQ5zp9vHbCvvf3S9VBEKoWZsfG5HdyyYtmwgdSmSVOA6gikBkFAQ0MtdfW11NfVUFNXQ11djEQiQW1tbqPGRUbi7o8Cj+ZY9iCDrDaUTx0iIiIiUmnyyHpjreAZl4MeA4YLTomUX8gpAp8HNlxfQHVMHnB3ohBc5hYDakaxLqzI+KFAqoiIFMTJk/kFj5LJgaPZlixexJTJzezevW+II0TKL5EYPqXUhZazuPuo1qKYPHUSzc0NBEFAY2MdALW1MWI1MWIxCAIjCAwzT9/AOO6Oe4h7SCpMEaZSpMIUyWSCZDJJIpEgkeglkUjQ09NDb28v8XiceDxOKpUatE+jo6OD6dOn591+KT0DgiLezOo+WURERETGrju/4pYxBdVSBMwj9HaqeX1JmQhGmjo9uvmB0RrBtfSnyO6b2RoAhrthF+/coqWGBrbE+zcP04/DdLmQKMAbprfkxdcuFa/+SbUTiPoKCk+BVBERGbNUKsUPvvf0mOpYv24zALNmzeDs2fOFaJZIwSWTw48i3bRpE031i/Ou94ZbZrN6zcpRtqqw2tvbFUgVEREREZExc3pxTo+tEjtDQB2hUvxKBXN8hOBSngMK0sKwHmgb4dyloHWKZWJTIFVERMZk5469vPLlv86F8y0Fqa+3V2l7pHLt3HGA65bfyrTpDezdu5fW1lZ6enoAaGxsZMWKFWx5/kTe9cZilTO0s6NDabariU3IsaAiIiIiUumco4SspDApTXXNK5XNOQ3hDMxiRLOne/tnV3st0AyW/722EVTIMsHJUWffkvJQX0FhKZAqIiJjcu2ypfzd3/8Jb33LP5W7KSJFZ2bs23vk4vNYbDo337SQadObOLD/JEcOt+RV3zXXTaG3t4cdO18scEtHr729vdxNEBERERGRqncZxtU4OwtQlwICUvmc8+lUvAAB5tMw6gg5i9FNrjFI91o8rE3XWUkDnZP0pxgWmVgUSBURkTE5cOAI3/3OEwWpq6GhnimTm2hrq6QLRZGhpVIpdu44cPH5vffcxYazuQdFDx46wNmzZ4vRtFFrb9fPXzUp5ronIiIiIiKj14JzqkB1BUTd2MkC1SdSbGEUWE0/M6vL62jnQuGbNGYJFEitHuorKKzRrXIsIiKS9o5/fD8/+mFh1naMx3uorWssSF0i5VBTm9/N0dSpU4vUktHTjFQRERERERmrkHVQqGCQdRHY9MLUJVIWYR5lK3XJK62TKhOXZqSKiMiofex/Pk9r6/CL3ucrHu8paH0ipZTvciG1NZU3mlNrpFYXDTIVERERkUriOM42Cj9/pzJWihQptmgd0oD8gq/F5yR0/1lF9L0qLAVSRURk1L76lcd59pn1Ba2zoaG+oPWJlFJLywXuvW8F3fFeXtg4eIrfhsY6pk1ronFSPR3dR0vcwpFpRqqIiIiIiIye4+wG4gWuV4kVpXq5O8ZsoBesdYgyNUSpc2NAS+kalzPNSJWJS4FUEREZlQ+9/9Ps33ek4PUePnSMO+64jQ0bNha8bpFi27x5GwBLly7BzHC/dNT0gsX1PP/82lI3LWdaI7V6mEGQ7zToPOsXEREREcmHs4miBFzsHAHzCP1k4esWKTLnDO5gzB7yPisMQyozgNpHgdRqob6CwtNQHhERyVsYhnz2018nZvVMmzql4PU/v3Ebt952c8HrFSmVffsOcOvt1w/6Wl2e66iWmmakioiIiIjIaDi9OHuAyRQnseQFoPB9ECKl4pwBbxri1cqe8+auQKpMXJX90ykiIhXp/LkWdu88AMD1N13Jpk3bCn6OzS/s5N5772T16sKmDhYple3bt3H5/JnMmz+J0FOkUilSqSQHDuwrd9OGpTVSq4tGRYqIiIhI5bgAJIFWoJ6Cp/e1JIEl8XAaXtEz90SGFrphNONem97j4JU+GxU0I7W6qK+gsBRIFRGRvGzdvItvfuNHF583NzcX7VyXJkUVqR5tbR3cddcKvvmdL5S7KXnRjFQREREREcmXcxTn5MVn0EDh10kVGQ9awefhfrTcDcmTAqkycSmQKiKS4cK5Np5ft5O7H7yRpubGcjen4rg7HZ2dvPvfPnZxX1tLZ9HOV1OjP1NSHdydmpoaGhrqaWisp76unvr6OlJhb7mblreOjuL9TEvhTcS1SURERERKzekCzgPzsaKkrK1ujhPSDezK2Fs7VPECUF+BVJMgvdWk/4/hVTh1wBVIrSrqKygs/dUREQGSyRSPffhbvO8dn6cn3svf/vsbef0fvrrczaooyWSSFTe9jGnTprJk6XwO7DsGQE9Pf6Bo4cIFADQ01NPa2sapU2fGdM5zZy+M6XiRQqmrq+Xy+XPp6ekllUoRpkISySS9vb0kepMkEgmSyQQdHYmLqXHvvX8F3//hN8vc8vxpRqqIiIiISMRJ4GzB2QlAwEuBy8rbqArjdBHyXaK1SycBXelXwoxSTfQnmowz1pltZjG8+uJQMi41E1hA9Hn39Bb2b9b3QXUgAR7g3kTox8rT3DFRIFUmLgVSRUSAf3jLf/N/n/rhxecfe//XiHf18Po3vZqGxvoytqxyHDt2kr17o3VRY7EYt992B1te2MPZsxdYccstpFIhO17ce7H8gisu4557FrNmzYZRn/PwoeNjbrdIIZgZB/Yfzqns3HmzmTW7gSee/G6RW1UcCqRWDwOCIo4y1QBWERERmehCngDOZjzfiLEM40pMK9ClXQB6gDNAjCho2pnepgMpoC2j/GSigGvrGM5ZfZl/ZLwKwHLM6uSTCcMEzoniNqlokuVugORIfQWFp0CqiExYHe3dfPtLz3DbvdexbuW2Aa+dPHaO/3z0M3zlsz/mW2vfT319MVPSVDZ3Z8/u/Xzzm9+/uC+VSmFBCoC21g62bdl9yXFHj5ygtjY26vPW1dUya9Z0OjrHcnMllWLZ8quYMWMaQRDgoZNIJol399DV1UV3d5x4vIfu7jidnV1YkfKPuDt1dXXU10dbbV0tdbW11NbWEKupoba2hppYDUEsoL6+jra2dgyYNKmRmtoaVq8aeVDA3ffcwvObVnPoSPV+bhVIFREREZGJzOnCOY4xA2jJerUVZx3OEWK8pAytqxxOSPR+ZM6sS9EfSI0z+Bqp7cDMMZy4L0WqjAfGLMxqogmb6STRkMRJEgXuUhlbMfWl341l/G9Y+v90aCrdX5FKP+/r8xohkOoGzCQVnmDgTO1qoxmpMnHpr46ITEg98V5+9xf+iefW7Bi23IG9x9m0YRd33X9DiVqWm2OHT7Nv11EefMWtRT/XFz7/NX7nt99yyf51657jstmLuHBh6KDLgf1HWbT4Cg4dPJL3ea+5djEHDhzM+zipPJMnNwOwauX6nMrX1tZQV1dHc3NTFPCsrSGRSFJbV0ttTQ01NTXU1NYQi8WIBQFBLCAIohsaM8MdwjBFPN5DR0cn58+30NHeQTzeQ29vtBUjVnjXPTfw1DOPF77iEmtv7yh3EyQPE3EkqIiIiEixOHFCfgh0jLCC4XGcOEZDaRqWI+cCkMKYVYJzbcF5cZBXchlU2kIUrMozqORG6DVE69VK9WvErBssfvHGpu/+5tL7nFg6iB6jf61RI4rABhnPg4wabJCanCgQmiCa2ZwECzNeK/ysyzBsyhpwUJ3cFUitJuorKCwFUkVkwlm3chv/+fefYdOGXTmV/8Invk/z5ElcteyKipiZevzIGX7vF9/B7u2HeecH/4if/ZWHqG+oK9r5zp4b+gZluCBqn8svvyzvQOrCRfPZvHnbyAWlKiy9ahEvPL815/K9vQl6exN0dOSYHqdChKlij5Atjb41XkVEREREJgrHcQ7jbAFyux52dgBXApMrIs2vc56QJ4EkAfcB87GidqX3DLG/dpjX+qSI1lRtG6FcthnA6TyPkUoVWAysO/cDrG/t0WoL6I2PvoLqe9+l2pjZbwKfTj/9XXf/WDnbk0mBVBGZENydb37xaT754W/y4qb9eR377S89y7e/9CzNUyZx533Xs/TaBfzRX/8STc2NRWrt4NydP3/je/ne11eT6I1GyL39jz/Mv7zt43zpiX/n6uULi3LelguDjyZ1d65etpA9O4dfNzKw/NL7xmIxpk1tyusYqVzXXrs0ryBqNesdqa+gSii1b3Up5ronIiIiIuOdE+LswtlNrgHU/mO342wHGoDZGDMxrity8HKwdiTTAdT+AGPI08AkAn4Ko75I5x1qndJuoJ6Rg6kN5BVI9VpC78q9vFQ0Yw7YuXI3oySCoIlU2FLuZhSAAqnVpNr6CszsCuCDRH+Mm8vcnEuUf7iUiEgRxLt7+J/3fpWPf+DrnDh6hr/+/Q/wF7/7vryDqJk62rp44vENfPR9X+MlN/w+f/sn/8X+3cfo6SnNhcSxw6f51v89czGI2qezI863v/xs0c67e/fQ71nz5JFnwh49fIKaWO7jdm697QZe2DQxAm8TQUNDcW7aK9HmzTu4dcUd5W7GmHV3d5NMFj6dkYiIiIhIuUWpezcRchCnlZAncJ4n3yDqQHHgCM4mQr5KyNb0OqulmoV2isFnacZxjhbljI4zdBA0BUzNoZY8+1J8GmP7PkklKfWAg/I6T7R2cHVzBVKlSCxafPiTwDngv8vcnEFpRqqIjDuH9p/gzb/xb+zcehAz411vf6zg57hwro0vfvIHfPGTP2D6zCk8/KrbSKVC/uXDby54+t+zp1v4/jfX8H+P/XDIMt/4wlM88qbXMH3mlIKe+2tf/S5f+fK3h3x97959uDvR37vBxeO93HXX7XR0tLN5y4vU19dz9dVXsn37LsLw0vVQTEN8xpWa2ol1qdHVAc3Nk+noqO5ZnZ2dnUydmkvnh5RT5gpAxapfREREZLxwzhDyLNGMSUsHAwstnl47dAvQhDEXqCPgtoKfyenAOYizb4gSYfr1hRiF7aeI1kZtGaZELgGXXmA20AV0EqUEbmSoAK0Tz6uNUukm0N2GhcSCqaTC6lq+6FIacF0tqrCv4E+AlwIPp/+vOOquFpFxJd7dw2+/9lF2bj0IROlni+3CuTa+9vkn+eYXn+Yv3vheurt6ePJ7z/GW3343j39t1ajrdXc2rtnBS2/8fR79s4+wffPQM0OPHT7DW9/wnoJ+va2tbfz26/902DqvueaqYYOoAOfPtbB+7RYO7j/JPXffyZTm6ezafojbbr35krILF17Oxuc2jbXpUkHq6yfOjFSAgwePcucd95e7GWP2oQ/9V0l+f8rYmRVvExERERkvnE5CniAKokZ7iq8TZz/OTkJewAkJ2UfISnwM63xG9Rwk5Bs4mxl+lubJdJnCcc7nUGcugdtO4AxRcGYmXJzlOmmQk07Hhw3cStWxCXa/aReidMZVrZtUOPpMf1Ja1dJXYGbLgXcB73f3Zwpbe+FMrGkiIjLu/eBbazly4FTZzv+9r69m/coX6e6K093Vw3e/spI582Zw2z3Lczq+va2LT3zwG7z81Xfxjf99ik9++Js5n3vljzfx+tf8Pb/1B69m6vRm7rjv+tF+GUCUkjUWG368TSzI/c9IV1c3z63fllF/w4DXr1h4OWHoTJnSzNmz5/NrrFSkpUsXsXbNc+VuRsnt3H6Q2tpaEonqTXvzt3/79+zYsYOPfvQjNDaWdj1oEREREZFCc/ZQztlU0Xqqh4iCh+AcI+DVWI7pPp12nEMY8wnZChzJ49y7CIljLAEaMWbk/wUMkEs/QD5pjXsYuJ5qE9EsVdLx7knpB7E865VKZcwGO1vuZpRcEEDq0sRsVcRJ+VN42ELMVow4sULGvWVmtnGwF9w9pzQMZlYDfAY4DPxNAdtWcJqRKiLjQm9vgsf+61v88198rNxN4fzZVrq7opsAd+fRt36EVGrgxX4Yhjz5vef4wL/8L7u3H8LdCcOQf33bJ/jQu77Ia+9/a15B1D5rnt7KH/7qv/KbP/137N3Zf2OVTCY5d+5CTnUkEgl27tjDz/3sI3R1dQ9bdv+B/dx5z/JRzVzbsG4b02dMA6BxUgMHDx7g8gWzufrqpXnXVWz3338v1y67+uLz669fxn333lPGFlWHSZMaL/nsTwTnz7fwwP2vKHczxuxzn/tfHnropRw/frzcTZGhGARF3CZSti0REREZn5xeQjbh7Cx3U+gLokaS6bVZB3JShOwn5EU8PdPUSRKyDmczId8lnyBqf72HCHmKkB8OWLvVvRf33ALMTgrnLCG5TBhKALPybmekk/4u6ymE3gHUYkweZX3F4Q5hajLudRf3heEUUqnKamclsokakrDWdLrv6hb6JpLhE7hX7+Dxca96+gr+HlgBPOLuw3dCl5lmpIrIuPCR93yVD7zzf8vdjEHt3HaQL3/6x/zSI6/gwrl2ps+czObn9vB7v/gOAD74r1/kN//gp5l3+Uy+9OkfFeScqVTIV7/4PTqTF2hta+fsmXP86IfP8OnPfohXvurhS8onk0nOn2/hB997kj9+898Qj/dcWukgjhw5zpEjx7n9jhVs33wkr4BqKpXihutu4NmVa1ix4nqefXY1a1ZvyPn4Urj6mqXMmTWHjvYupk2dyn333UssFhDv7iUVJmhoaCAe1zotQ5kytbBr9laTDeu2sXzZDezYuW3kwhVsw4bnuOOOe/j617/MHXfcUe7miIiIiIjkxVmfnglaeZzD6RS/s4AERn16TdO16dc3YdxKlO62UJm3koS+izA8j1FP6Cdx2qmN/QSBDZypGq0h60Trvu7D2UruKZH71jmdTZS+Nx9dwHTgAu61gBP6yTzrKB53x30yYdiLWQq8gVQKAmsg5S3EgmbcDZtoqWtzZhMvrW+GIOgmFTZAla/56xwiGX6bmuAVmDWXuzlSHjtznXk6GDO7k2gW6rvdfU3hmlUcCqSKSNX7r//4Ep/9yHfL3Yxh/dvfPcYTj2/gicc3MGfedJLJgbk8PvPf3yn4OR//0fdZu279gH0/+5rf4iMf/U9+6/W/dHHf5z/7FX7vd/9iTDMHn9vwAjddfwt7duc3MvbkqVPceusNrF61btTnLpZbV9zKls07ObD3BHPmzuSKhXM5cfwMhw8dA+DGm5Zx+223cqH1AqdPneaKBYuorQtYt27ipbIdzIIFl7Hy2bXlbkbZJBIJujqMhvoG4j3VfYN0/PhxHnzwpXz84//Dr/3ar5a7OZKh2JNGNSFVREREqpUTpoOolZ1dJWQlUdDwOFEK24GzQwebtTpWqdRW/GKgM5JIfZXa2KsJbF7GuTfjbGds68meIep+zietci14JzAbp3ICqADuAclkz8XgvDGTmE0h9HOE3gtAGNYS2GSwJG5OKtVNTdCEBZ3DVT1hGDPBzpW7GeVjPcSCqaTC6u4nAHAukAi/SU3w0gG/O6T8Kr2vICOl727g78beouJTIFVEqtbaZ7bysfd/jad/UPgbi0Jrb+3i9Mlo3c/TJ3NLsTsW7s6u3bsHfe1P3vx2Pv6xz7N06SJmzJzO5k0vjjn96u2338K2TYfzXh9h8aIr+N4PfjCmc4/WTTddz7Sp00mlUpw4eYL9+w8ya9ZM5syZTWNDE5s37bhY9vSpc5w+NfBCf+uW/tRQ9fV1bNkcPb/33jtZvXpgAHsi6uzsYlJTI12dFZ2Zo6hOnTrLvfe/hCeefLzcTRmzeDzOr//6b7F16zbe+c5/JggmaComEREREal4IQdwdgHVEKzpBvpmc3UV/WzutTitg71CIvU9jBmYzQSSWNBagFmVo5mRmgDmEfqxMZ57dMJwMu4h4ARBL2ZJ3OvBa0mGbQOC0O7nSKYGfs5CP0148W0LgJBE6gK1LFAwlSjd9oQfsGmtGHPSM9KrXZxk+D1idg+x4NpyN0aqRzNwTfpxfIj+5I+a2UeB97v7W0rVsKEokCoiVWfzc7v54id/wHe+spKuzuoZwbVnx2FqamMkE8VfM7JhUi3HLrQM+lpPTw/r1z3P+nVRAHrhwvljPl9jY3PeQdRbb7+e3XsHD/aWwuGDp9jecQCA226/genTp3HowEl27zycd109Pb0XH9fEagvWxmp24UIrt99xMxvWv1DuppTVlk17WLRwCYcOHyh3UwriXe/6d158cTuf+9ynmTxZa/9UgmDC90KIiIiIRJxjOPtx8r+nK69S9mvUD/NaAucU7lEaYQtnE4uN9Xy9IxfJ5rMJPd/ga2G415FMHczYswizgGTqEBAOcdRwwov/OzEFEAFoA58K1lHuhpRVECRIhXWM6mek4oSkfBUeXiBmd2KmgdeVoML7CnqAjw/x2q1E66auBHYBFZH2V4FUEakau7cfZsfWA3z2I99l04Zd5W5O3nriCZbduJidWw8W/VxzFkxmX0tuZQ8fPsb1NyzjxW07Ry48hAN7T+RVfuas6axZtyqvNVULwcy44cblTJs6jTWrNl3cv/G5wq1jeebMBRobG+nunrgzMevr61hx640cO1rZabRKoaOjk0mTZvHgAy9n/YZVxOPR52LRoitZeuW1nDx1lO3bt5a5lbmrr6lheZhizzvewfVveQv1l11W7iaJiIiIyASXCo+B9YBtphSzOguvnSjA2VP8U3nuA3/dz+A+FbPEKE9WB4POfh3upNPKsh6qu4E3EWb1UaTCwq2vG4Y9mHneg9DHlzoCppP352I8si5iwWTCMIZzhr4U2sZ0zCYRegtQPTOY3QNSfpKU/5C6mocwayh3k6SCuXs38MbBXjOzR4kCqZ9y94+Vsl3DUSBVRKrGv7/tUxw/cpbO7mq8MYpMmlSaC4nGGfkFKKdOGf3C8Ndddy0H9pzNufw11y6mth6OnSxtEHXSpElctfQqtm/bW9Tz7Nl9kJtvuY6Nz28c9PVbbr4R94DNWzYXtR3ldP3117Jm9YZyN6NinD59ltOnzzKp6TJuumEx8XgPu3ft59TxTcyYMY1p06bT0lL8lN9j8cCyZfzZ/fdwVcsFwtZWeOEF9rz5zSz+u7+j+ZZbyt28CU1jfUVERGSi645/mSCYQl19A9Ubo5oKJUjz2beOZ67cmzEb7b3KVPJK6+sz8DzbVwjudSSTHTi592uMRujHsXAhsdjgwbEwnIJ7glhs/A7KDqwBrLjvc1WxDoIY4M1AE9AL1gl0EfPJpMLKDqRGkyOm4B4j9NPAEQDiiVPU176awGaUtX0TnfoKCkuBVBGpGrGaGAd2H6OpuYFb71zG8+tHP4OyXJ5ft5PZ86ZzpsjrpD6/dfAg3lA2bNjMNdcsJQiMhoYGglhAe1sHe/bsH/HYaVNnQg43HFdfs4iTZ46yfddWkslkXu0rhNtvu5XVq0qznu7mTTt44IH7aGtrZfPm/tmu8+bN5fz5Dmprx/ef382bXyx3EypSV2c3WzbvGLDv/PkW7rrndp5+5odlatXQpjc18Vc/+UpeMWUKNUcOw6GDA5JZpdrb2fe2tzH/TW9i1mteU7Z2ioiIiMhEF5BKHSXe3Uxd/RXEYiWY2VlwFwCjb1ZaMbjX4nmmzA3D03g4CTCwWsDS64bmEvDMMWWxzyT0NvJfS7UwUinHaS/NucJjwBVYkCSw/oBp6I0kU0cIbE5J2lEeTekgoVzCerkkxa+1Y8zEK3CtZ/caYAph2IZz6Qxyp5V44kvU17yKWLC45O0TKQYFpkWkajQ01AHQ2RFny7q93H7ndUxqrq5UEddev4hUsvhrpC5ZvDiv8olEgt2797Fz5142bdrG8xu3cPrMWe67/85h087ccsuNPL9h5ID2lKnNzJw1jTNnzpYliAoD1zEthTWrXmDXjsPcd9/dNDVN4v7776W7M8XxY6c4eeIMc+eNzxukRYsWlO17XK22btnHVUuvLXczLrpy7hy+87u/zVMve4ifbG2JgqhDSaU49sEPcvQDHyDU973kDDAr4lbuL1BEREQkB5aeJ+LeQU98B4neGkq8ikwBTCnBOXqBxjyPSeC04rSkU/2eJpVKEIbTRjhuNuQSnPR6cKO068RmNcFLmfUsRSo8SDJ5hjBsxr2GVKqZZPIYkMS9Dffx2V1veX/2JAhSDL+ucWm5NxKGU0iF7aTCI/iwKZp76Ul+i0RqI17EASIyuGruK3D3R93dKimtLyiQKiJVJFYz8FfWpnW7mT5lKtcsX1imFuXnjvuuY9eLhzh/tq3o55rcNPabsNaWNlatXM99999JEFz652L69GmcOdk54voes+fMILQunnrmqTG3aSzq6nNfC6ZQkskk69Zsoacb1q7eRGdndIPW09PLlYuvLHl7SmHO3JnlbkLV6ers5uTxLl768E+VtR21sYAP/eov87V77mT+wYN4Huv8nvv2t9nx/95Jz9nKGy0rIiIiIuPdwPvVRGI3PfF2wrCuTO3J1yzgHMWcjQpgZgUKZnUShsfxcFo6tWe2ZnLJWoVPIfQeQk4VoE2jV561HHtIpg6RSJ5Kr8MavY9OBx42laE9xWemgbd5s25iQQ2BXV7WZrgHeDiDVHie0E/AgFxVw0ukXsBZhTPatZZFKoMCqSJSNWrrLk2HeurYOQ7uPMFd991IYJX9K62UI2JrY4W7YVz57DquvuZKpk+fOmD/9dffwPlzw40+g2uXLaE37OBsmYMrl102j2NHi7/eTD56e8ffReT999/B+nUvlLsZVSmZTLJ61QtcfvmCspz/V++9m/W//ivcf/Y03pl/uqWma+fTuWMrm9/w57Tv3FOEFspQAiveJiIiIlIVLHbJrjA8Q7x7H8lE/RDBvkpSwgsvK9wyM6nwOGE4eZAZlDFGDAr7TELvAIqfsWvYZoRNhD58v0apeR5BqmoR2Fyw0qRPHncsiVlL2U7vPo0wDEn5EfIJoPYJbA6hHybk+zgdhW+gDEl9BYVV2VEHEZEMtXWDzygMQ2fjyh3cdufyErcoP6lUCW8QUoVdg3PXzr2Ace99dwCwdOliNq7bMfxBwPSZzZw6WfrRpQ8+cD8PPng/d9xxGwBLlizi8KFjJW/HcJqqLC31SC67fC6rVm0odzOqWlPTJM6fy2HkdhG86YbrsBMnRn38vGvPcsPD+5l3c0DP4/9KcstXCtg6EREREZHhXBpIjSTo7d1BMlE5qTHLrS8NcqFEqX5DwnB6es9MGDbdZ99xIZR4hpq7k0zWE6Ym42EzAKEbUFlr6lqFTxLIlzEDrDz3ueNH+dIih2EHzmjXtjWgnWQqRhiGJFLPkgqPF7J5IiUzvn4zi8i4VjfIjNRML6zdVdHB1Jqawt6wDOfCicKvL3LhQguJ9CzKGdNHXt/ztjuu55lnVxa8HSO55eYbWbP6BVavfJ59e4+y9Mol1MRK997nquIHReehubmJK5csJAzH38jZUjEzbrjpSuI95VkbaCxdGHPvn0dweh20H2UW32bShW/T++U/pPd7f4+nlL6p2KyIm4iIiEg1sCEDqZFEYjepVCUHU0t4c2jFOFcinbbVgByWB/HZeC6pfwvMw6mEfpxkeJBk2IZ7A+6VFUQF0mvGjheNWAFnQU9IHiMMy/iZGENgP7D5OG24nyeZOkYqPEhv6lskU9uqIFNA9VNfQWEpkCoiVWOw1L7ZNq/bwy23X1uC1uRn6bIFdHXmvt7gWJ060sb8+ZcVvN5jx05y083Xs3XT3hHLvrhtLw8+8AD33/tAwdsxnFis7uIFWVtrO4cOnmL1qspLN3vubAt33HFruZsxZu7OtddeycqV68rdlKrV1DSJG29ewtPP/LBsbegd9ZHOlMYtg76SXP3f9Hzu1/HuykqVJSIiIiLjzCCpfQcK6YnvJkxV4pqpMxjL1Xi+zDopfHewA21Ea7125VC+jcDmEdi8ArdjeKmwf7kf9wskkscI/WRJ25CL0LvGyTqpAYHVgZV3qaeq5g2EYV1ZBh70G+n361DqcAZbYiskET5LInwG9/Km9hbJhwKpIlI1cgmkAhzcdZw582YUuTX5abvQwYub9pfsfGbGtUuXFbzeRYsXsOCyRZiNPP5oxoyp7N97jN6e0qbr6ejI5cat/HbvOsChgydZseLmcjdl1O659zaWL7+K557bXO6mVLU5c2exfsOqsrahNxztaFCjteumIV8N9z5J/KM/SXh23yjrl+EYxV33ZKKONBUREZFqk0tHf4qenpN4Rc32qwHOEwUhS8MsidnMAteaxMOZeWRdqgMuFLgNw3MHpzzZf/IV+imSYTseTip3U0YpILDZBDYFTGtijs0knJaytsBGHT7qxRg6m10q3E5v6tu4l27SyUSivoLCUyBVRKpGbW1ugdSOtm5mzZyGVciv9Tvuu572ttJfGPS0jHbU2NAaaifz5I/Xcc99K0YsO2lyDedbT7Jj94vDlpszd3ahmgfA7DnTClpfMZ0/18K2LXsrMvXwSBobG6mvn8SOHXvK3ZSqd/bM+XI3gZ4hej3c4dycG9k+56Wsm/xyjs67+5Iyp1edIJw99OxqP7uX+P+8itTeJwvWXhERERGRPiOl9u3j3kKit5LSSU4fuUgRBFb4mblBAGZnyeVrCr2T0I3QTw1Zxh3cawvWPjOIBfMLVl+xuV8gmWqtyvSn7rWkwl6w9nI3ZRyohBmbQ4WPAmqCBdTVLKWu5ipiwdxLSoR+HKN5yJpDP05P8iuErlnLUvmqr+dWRCasmhwDqQC7tx3mjvuuZ/3qbUVsUW7aWzuJd5d+3Y1TRwt70XrXHXew+YXdAGzftpempkY6h0lXXFtTQ0fH8KMP773nHtav28w9d99NTW2M8xfO8+K2HUPXWVtHLBYQjw89knTf/gMjfCWVxd0JggZuuvFKJjXVs3bthnI3KSdLliyiu6s6Zv9Wuvb2DhobJ9HdXb73M57qv0HraJjK9uYruWDNnNvSQ+uWduAEAHUvmc+CS442TrzQzPxF9ZC69HddwmO8f89ddD76SZbcc4zff9Ov5zSrXXKjUZEiIiIiuQ8iTib3E4tdR6ym3LMTA6BMs/WssFmjYsECsL7BobkEfmIwwuzQZCrE/RyxYA5QQxAkMRv6GPcAcGyYNWBtDGs9loPTRiIZze6MBQ1YUB2zO93rCYJkuZsxTpQu7ffQ+n9ujGkEwVQCayAIWsC66EvnHfiUQX76Q5yhB0S41+EpiCe/TW3NndTWLi904ye06vqNV/kUSBWRqlGXY2rfPtue28fCxfM4fLB8a17U1deWbQRhvDPBT7zyVZw6c5Kpk2dw6uQ52tu7WHr1AgwjFSawIGD9unXEe4YP9L7koYdZu3rrxeetre1MmdrMzbcsZ+uWXYRheMkx7pfuyxaLRX/WN6yP1lisqanhgQfuZfWqdaTCgZdgN998A8ePnaO7O87dd99IT7yHAwcP0dLSv/7iwoULqK9r4kwJUyMVQhiGbH9xL0EQcN9999Ld3cnzz1duutybb76B9rYeTp5UutZCuffuh/nxk98t2/m7k0mSFuPI9Cv5r80h584d477br6P39MABGakhfqy7jrYRv+EhGlp+cMlrMVJ8/PEDtLV1wFc3sX3bHv7jfW+nvr4S16gSERERkaoz4hqpA/X2HqIhdhlmI9+zFk85u2Q7CYIr8LCbWKyRKBASAA04fffyThgeH6GegJrY/Kw1MNuABqKvb6jA38h9JEYtToJUeAyAVFhPTexyzFovGZQZhlNIpg4D9dTE5mA4WNeA76+HzaRSZ0Y8b+UJCf0UYaqGmF+OBU5glTugOQynEIbtxGKFz5A2IVk3xpwh1hotWSOAGmI2lyDWA7RjVjvIgIzBB0u7nyGw+TiDzUA3UslowkYquZ8wfCl1dQ9q4LVUJAVSRaRq5LpGap/engS1QS01tTUkE+UZDdfbkyAsZyqWRD07tx0Fjl7cde7swLVILpu3mEVXzmPbi9tIJVMsuGIB06fPIEiP1mw53zEgiNpnztxZHDhwZEAQddq0yVyxeDa79+xh85aRZwMfPHRwwPNkMsmaVZtYvvw6pk2fzIWWC+zfd5Bly65mz+4jF2f2Pre+P13wNVcvY/ac6XR0tDN16lRWr3xhxPNWqjAMWbdmE3ffewuxIHZJMLlSNDY2EqaMffvLn5J2vNi2bR9BEAw6KKEUfnCyho9smU1XZ3/nwtY9h1lW04gn+9vUWDt0+4786AxXv3wJtAycFZ4ixqL5M9naFnWkfOZTX2Pq9Cn887/8eYG/ignIojRlxaxfREREpNLlmtq3j3snvT091NXXlLHDPkG5LrbMPJqdGfTPJot0YvRfXwY2h9BrCMPzRLM9pxJYPeBghtGTFUTtM4lo7dcM3oR7gNMBjJyxKwgmMfB2uIdk6gCBzSMIGjFSYF14OJlk2Hf/0UUydbC/DptLYJMgSOCexOkc8byVK0kqPEwNS/CgyPcAY+DumDViVvqsbONVEAw9oLkUYsEkYjaFAQMjPHXJry8fZjZ66Gcxq+PSGbYJoJ7od4LT2/tjgmAytbVDLx0kOVJfQcEpkCoiVSPfQCrAoX0nuO2+5awbJBBYKk1NDWU7d8e5kdOAnDx5lpMnz6afxdi78wR9aTyHUl9fx7Rpk9m7++CA/cuuX8JTTz+dc/uGChrt3NE/0zEIYmzdvHfIOvbvO8z+fYdpaprEpKbWIctVk+efe5GmSdO4ZcVyDh85zMGDhwG4++7bOXf+Ant2l3cmaBAEHDt6isbGRrq7S7/+73jUE+9h1qw5nD5d+hn0P//y3+XFNWcv2X/qxHluXno18ZP9N0zDXisnnXOnr2ZmXX8g9SOnX8FX1rfy4s5DA4pOnTp5rM0WEREREUnLf/ZbKnWEVHI5NbXlCvg4UEsuQcXinX8E1kFg0f1fpIOR0xEHDJaO1L0eZ+wzQkM/mRFgDYBL72P6y54idCCcRBSwqX7J8AiENcSCeQRBN2bJ9HqyU9LBy3jZBgdE2dic0DtgmHSukq/yBaXN5sEgs2GdFuyS3oHhfqf0YPTPSnV3SE0mTB3n0q+vfH2oIsNRIFVEqkZtHmukZtq340iBW5KfWE35UpqcPhalvSlkeuGlVy2iva2drZt3Xdx3x1034CTZsmVLXnX19o4c6M11hl5nZxedneVPcTNj5jTOn2sZUx29vQl6exOsXvU88+bN5pabb6FxUgMb1kXv7+233c6kpgY8DGlvb2fT5tIMFLjt1ts4fPg4O7Yf4KqrF7B+ffnSZo8nU6dOZv4V03j+hfVlOX8YDt2pUDOtATICqaueOc01NzZQkxx8faLzz5+m8RWvoqHhPL2Jady4Pcm79l86MOO9//Exfua1r+Caa5eM/QuYwIzirnsyAQeZioiISFUa3RVRMtlCTW1jgduSj3KmPy3G2osziWa4Zs5cm417iA8T8ByM5RLoJddpeuXvJ4iurOsYe1AsSTQ79SBhOAWzSUTBy2gwayxYgFETnS9IEFjxBz67ByRTSdy7MHqorZ1NZbzn44A3ljlT2VB3hI57w4CZx7EAksM0NfTjBDYfSGEWkLJ23C+dJd7T8x1qaq7ETAHVsVBfQeEpkCoiVaOuYXQj2lrOd1BTEyOZKs/FRylGA06fOZmW8x2XBEy7Onq47rqrefHF3WM+x8JFlzN/wVy2bd1De1v/jdHMWdPZ+MJGurryv1BOlTM/SQFdf8PVTGqq48yZs+zZs49p06Zy3fLrL679OhYnT57h5MmBI3c3vbD94uPZs2cUPFg+mAUL5rN50w4aJzXQPKWW9eufK+r5JorLLp+LBR0lC6KaGQ/c/3KeefaHmXuHLN9SHw64WEz2pjg++1YWnlg95DHHfti39skZNs+8kt7eSwO1XV1xfuYn3sBnv/g+br/zpvy+CBERERGRDGaj69507wLKGUgtZjd3nwZgsEGQbfSn1ByrKURBwnMMmJXmUwh9tINvy7hEUgHFgssJggYsSGDEgToSiTihD5YSOT9OG+5tA/alwv5lnQKfQ1CCnn/3JtwPYkymrq4Jq+A1XKuKTyEVtlG6Gal1GNOHWMs0mwOTGdA26yQWzCYVDjXz3Ak9+ny6O+ZTBy/l7XR1fZzGxl8jCKbn8wWIFFUp/mKLiBREbc3orwCnz5pSwJbkpxRZVSZPn8TN9y5lytSmS16bNX32mOu/ZcV1HDt6ijWrXrgYRF1+w0KuuW4+kyYHowqiQmaKoOo1a9Z0jp88yurV69izJ0q529LSyt79e5h32djf+5GcOXOeO++8jXnz5vLAA/dx7713FvwcD9x/L7NmRl/LrFnTOX5s+NTPkpsVt97AuQsH2H9g6NTVhVRXV8dLH341z63fxctf+pqL+2tragdJyxNZu2Y7wX1TqL1uEhDdLiXo5MjUOSOeb82sJbzjG0MHXE+dOsuvvO6P+cLnv8XePQfz+lqkn1nxNhEREZHqMLr7yiiQOt41AbMZ/D0qxHIbc4iCsmcBB48Rho14OI3QB89ik5vqvxg1m0ZNTYpYrIPAejAzzBLU1DRTitnIoZ8m9EZCbySVaiIMC7u8iruTSv3/7L13nCTbWZ//nFPVcXLc2ZnZ3dmccw436SoiJAsEEsYGY8AYsMEW4WebYBMMTgSb7AgmGxuEEAghpCvdvZtzDrNpdnZnJ+fQqarO74/qyT0znXvCeT6f2dnprjr1dqquc77v+32LsR23xZKUxQixPJLlC46qxnZ6yaeIasgqpDGAFHWTYSjmTNp3nH6iYRPH9sa3FTh2DNTCySnCqcC25m5Z5TidjI39Dpb1ON6jWZMOeq0gu+iKVI1Gs2QIhdK/gCgrL6a7sz+L0aRC7r9hul/186LtJdKQ7D+5ldBwFGFITFMSDGTWm2LX7i3cvvUQ27apqiqnYW0Vz1tbuX7jZspjNTbW4/GY9PT0MTw8smS/fCsqyti4aS2mx+DevXv09s6+sOvq7Obo0SaGh0Zzbjl8++YjSkuLOX/2Og2NdQSDQWIxi1gsdbumYDDIgQN7aXn2nLXr1mAaHq5dvUs47H7+GtfU8fTZo2w/hBVHZWU5Fy9/JWnr6mxQW1PH+XPu5/bSxbvs3LmXu3dv4rVMNpTU07i1lhuPHzE44CZLeL0eju3ayWff+SyV1eW8tWof7TWD/NO/PEfD6hp+cUMxP/w0zM9vKaF6uA8pBG2l1TR7S2kesfirdxa2nO7t6ef7vvvH3ZhufI7NW7TVr0aj0Wg0Go0mNZSy0twzhlKygOJPPibEYWAUtzK1FLdX6LjpY6Z9LGuY6J+oilFKouLWvmrBXqpTEbiVwTIe69KtRhUUI2UZQpgYRiThe0vKEKaxFstuIdeP1bLG+1tGkWIVQkjASWstRilv3M41inI8KBxs5/nE/VIGWLiHrmZBVBm205bXQwrKQLjrWkKMxsXQEKgYCglUAP0I4b5flfKCCmDFruLYNfgCNUTC/Th2N9JYjTCKcGLDCI8H144aBKUIZaKcGLa9cDK5Uv2EQr8LBCgu/oy2+tUUHC2kajSaJUNRcfqWOyUJKjXzxWD/CIdP7nRTueJXq833njPYn/4FpopfbAsE2/asxZEWt264Fz3nz96Ytq0QgrKyEgYHhxcct251Des3NNLyrI32V+4Fd2lZMbZtI4Rg3cY6zp07n1bMJ08d4/zZqwCUlBTxxhsnCY3F6O+9k9Z4hWLv/u3cunWL8xcWvrC9ePEyp06d4uL5GzmNKRqN0dPjJgq0vXStkw4c3Mely8nZxXq9XqLRKKWlxZQWV3EhLrZ1tA9M227N2tXcupm6gK6ZjVKK4uIShoYG83bM3t5uBG5lsWVZKKsIIQQxJ8LYkKD5cisNq2pYv2c1j56+ZM/ajTy92UbMtnn1qpNbO1u4fd7tjfz46Uv+zlN33E89haa1q3l75zp+528uY6dpo3754i0tpKaBFEt3oUmj0Wg0Go0mGwjhTXtf5ZgIIxf9QpNB4FZ0TqUr0YZpUs1kL9Qwsy1+fckPpUrj2/eDGBeu4yKhMlBKoEg3eX2KIEsApYqwnNR6qi4GDLkW0wwhRAxXsJ4b0xzFcapwVK4f5+R721GdOBYYsgnDWHh9yK1ElAihcFQAy+pmrgpJKWqRUouo2aEQiR1T3q8iiiErsZ0Q7jkqjFLtCEpRmICNUjbg9t91nB4iIYHjuJ9hx34B8SUBFQUpaxGyGNt6mmZsIRynB8NoTHP/lYteK8guS99TUaPRrBiCxelnH430jeH1ZZptmR7N955z+exdLp+75/4+e5eq6sS9AJJlz9H1eEsV+05s5PGzFm7dmLsHqlKK3Tt3JDXuuqZ6zpy5RHtHJ8dP7p/Yf/2GRtZvrk1ZRC0pKWb9+rUcP36Yi+evT9w+PDzK/XuPAYXfn8LkLY+YCaykDx/ZQ+uLFqLR5KujL1++zK7dW7IZWlL09ycn0O3atR2hfOzZvYe1a9bP6sc6zu49W3n67BEDg0MJ79ekRn//IHt2H8jrMaMzKpRbWl7yvje/HlEkqKp3z0n9nUP03B1gQ2k9LXfbsS2HQzvdc8GD5rmtd1pa2/mff30hbREV4L/95h+mve9KRuTwR6PRaDQajWYpkImQGouNzWldmXt6cQXEqT+ZLtWOC541uHa7883fIvHtFkYpcFQHjrJBVcdvtEGV4ygTxUCKcfqBIgSrmC4ehxAighReFu+y9ey4TGMdphlFpFDq6fF4EVmxV06V5BIHlFNGzBrAskxsa5i5RFRDrsXrXbl2n1lHDLsVonllxjlQ9CFFA0L6cD+r4z15h1EqjFt5PIwQxQATImoiHKcrAxHVJRq9mNH+KxW9VpBddEWqRqNZMni96Z+ynj16xY5967l39xmWla7tT/aori2noroUIQSjIyHu33qW1H4Kxb4Tm7h1/QGhUGSicnAhrp1/xOEj+7h86ca823V0uhc/tm1x5swl3nrfUU6fPks0Fk3ZgnR1fR1lpWU0P3zK85bZPTV7evro6XGraI8ePcjlS7dSGj+XCCEoKjHYvGk7Vy7fpqamkk2b13Hx0iUikdQspiORCM9bn7F9x0bu35tbiMo2pWXFSW3n8/uxbZt7d2dbq+zZu42iogAKxflzF7Id4orHtvJ7GWbbNvsP7+D69XsTt41b/VaVVfH68ddpPz+KbTn0tA1MbLOmrJGLXCYWy+2589bNBwwODFFWXrie1hqNRqPRaDSapUj6/SZtu5VYdCMer5OSCJY7qqb8PwwsXDnoInDtNwdwK9oSJ8jOpgdXfJ1HcFWgGE/UtXBUV1xM7WOi9CwlSnAr4EZRjCa4fxjDAMOoxLIEjkr2seSDAD5vCdFYDKX6EaIUQ1ZhGCMpv3+EsPB4KojFQCX9OmcDD8n13lS4r3fnrHsM2QgIhDAwjFFWrrSSG6Sc7D2bDxRDoMpBTLalErLHFc1EEOVU4ag2ZlZaG2Y9Vmzuwo5sYdvJrZlqNLlksab2aDQazSw8GQipAPduPGP33k0YsvCnvktn73L1/H2unLtHUVESjdiFYO+JjQQrDS6eu5lyv1ghBC8e9VJVVT7t9kDAT3VNJWvWrmbL1vV0tE9mkRmGwZmz5wlHwkmJqEVFQV577Ti7du6gurqGzvZemh8ml3UWswplpeTiD/g4emwvO3evZ83aKprWr6Knp5f2jlccO7GXsdAAp997L2URdZy+vn6ePnuSV9vSm9fvs33bTtauTWx/sm37VrZv20Hnq9n9XcdRStHTM4BtW2zcpC1Xs831a3c4eeLNvB7TH0i8yNQ72Mtnz3yWorLZlf8iT5NipRSnv5acHbXGRQBS5O5HL4doNBqNRqNZGmS2VmBZT7BingJWpk6le8pPMq5cHlzx1cQVNlO1BVXxfWaskygTlB9UEa5AO3XcQDy+ZEVUP66FcQngxRWHZ9oMJ47NMMqTPEau8GHIdXg94z/VCAEeswyPuQGvJ4BpjqYtwksZxuMtR5C/dlS28xzLMlAq8dqY45QSsxwsp2POMRQ2SkUQQqKSep9qUqM3z1WpCvdzPRshwgiZKOEB8jVjVGoE254t6GvmRq8VZJ/CqwkajUaTJKvX1FBWkVyV3VzcvvKYfQe3IsXiOf1FIzHq1yS206mtL2f/ic34yuHiuZv096Vvqzo8OMbGdRsoryyiuNQPwmFkbJjOrk5anrdy/0EzY2OTk5mGxlUpVaCZhsG5s1e5d+8Rfb0DKcV2/dod9u7bntI+mXL0+D6On9xPdXUF5ZUBzpw9y40bt3n67DnNj9zqzJaW57z33tms2NmOjIxw7/5tDh/dmfFYyfKo+Rn19Q3s27t72u3r1q2ltKSMR80tc1r5Aty+9ZBHzc+4fPEOFRUVuQ53ZaLStyFLh1t3rnDs+N457/f6Z1ugi1j6Gf6p8rM/9St5O5ZGo9FoNBqNZnkgZTWZLnHGYs1YscK0A5qfuRKvS5jsr9rLQj0552cEpapxHBPHETiOjaMiOGoURw0l6OO5cDL4dHy49r3DJGsrO44QgwiR37moaazHkPUIUYHPW4XHE0LK8R83uVrKsXgVaubiuxQRvN4gptGU8VjJ4qguHCeIcoITtynl9kK17T6U6mc+sdtx2nFUFzHrKcwhyGoyQCikzGz9M1VsZwhU5Vz3JrxVynytZzhEo+/k6VgaTWL0mU6j0SwZVtVXZqXP6c1Lj9h/eFveqqwW4ta1R7x60c3hkztRStG4qZLq+hK2HV7Fmu3lnD93nYH+7Ni83L3xnHXr1jA4OIztTL8Q2r17upDZ+vwVBw7MLbhMZevWTaxZuzbtDF6lFH39fXi97uubD0ulx08ecfr0e/QPdvOi9WXOjzfOtWs3OXpsL0VFwYU3zgJXLt3mzu0nHDp4iF07d3P0yBHaXvRw7cqdpMfYtXsLFy7oSsFccP3aXY4dPZW343V3d3Lv/tW5N0jwEVaeVLPa0+fQkT15O9ZyQebwR6PRaDQajWYpILMktMVizcSii0lM7QZCQBVKCZQqQSk/SlWjlB9XnMxEQJ1KF25V6+xkaqVm9vHshaR7e1YlHDN5bDzGVLvjXK8V+DCMUUwzhtfjQ4j8tIYSQmAYMaRcTb6uxG3nOTH7JZblw7Iktm1iWS+n2DgvjCHXImUoh1GuZAYRlOfxeCM4Tmrnk1S3zwQpE7utaeZGrxVkF90jVaPRFITf+42/4salZkJjEaKRGFIKLMshGokRi1nEou6PZdnu75hFNGLR35t5ZSDAzYvNHDy2nasX76MSKQcF4NKZOwTWDnPpflzgeg5vvv561o9THJhuD+Lz+Th8cD/PX76YtW0kbCGlnLD2XbOmgerqSp4+acH0mDQ1NeH3e2l72cmj5ucZxfW85SXHTxziwrkb7N2/lYH+EZ63tGU05lwcO76P986cASAcTsZSKHuEw2HOnD2LaZiUlBaze9duzp+7nvPj3pjSFzMVNmxcS8vz5CyaNanjOA7ND15RVVVDb29+ev/s2H6QC+en91f2e/188vCneHJhtn3T7bbbeYnLMAx+8qd+MC/H0mg0Go1Go9EsTsLRL6OcQRRRXDtZAcoBLBQ2YIOyUTju/3FQKkbqlraJicUeAtvweAvbfmYqSg2jlInb/xRgFCFq59kjdYQYF0wnLTyV8qKUHyFm23oKAjP6epbgLjMP4lr5ehF4UQyQahXq7IP1YxobseyneD1NRGOvSK7HZ+p4jAaEGMEVbPOXUAogRAyvB5SqAQxiMTthf9LsonDUq7T2lLIO08zN66ABRAwpTew8vg1lglZoSnlwHA+z+zUbWLH8rBUJUYLXeywvx9Jo5kILqRqNpiBcOXufL33uQkFjuHGhmUPHd3D5/N1FYe7euLGSyw+nVwlaOegdGh61eO2147z33nnWrWukvKSCx82tVNZOzyhtbFxNaWkxfr+fUCjE7t3befLkBW0vuwgGA4RCYa5fS76qMRnOn7tCXV0NzQ+fUlJcmrVxS0qK2LV7CzErisfj5cnTJ1kbO10s26K/f4CXL1vx+32Ew5lPQA4f2cPVK3eS6mm7EOvXr6GuvoqrV68zOjpXPwxNNlBKMTw0kLfjOY5DdXUlPT1uf1zTMPnGfYlFVEg8mcoFtm3zvd/9Y3zuC/8jL8dbLuShgF+j0Wg0Go0mb9jWowRWsvklFnvA4hJTS3ArRqeS/YtAV5AuwxVDi3GcMSCMEH6mCqxQgpqoSRJANW71LLg9W8eAsaymrEs5gFfW44rn2asSFRRhGDUIIXEcG2kUfu7r2gVbGEYxjiVIaBuU2ogYsh7byU6iuhTVGEYpUo7ouUjOyV+bnQmUCfFKbKVMHBsUic7JBq60lPvzpFLDRCJfwu//aM6PtZzQn8/sooXURYpSCmXb2KEITjiMUsC4ZaZSKMtGKQdlOyjLwolZOOEITsxC2TZONIayrPgnxs3eU7aDsm13HCkRQqBsO/7joBz3B0dNjIEQONEYTiQav8+hrMJChUdA4Y5nxVC2Ff+/FR/PAtu1DRWBINLnRxgGTjQuFEwcy578v1Iz/m+7NqHx405YhjqO+3jit0/cN2EpqsBRgEI57m1CCnd720E5NgiBEBIMiZDSfY4MA+H1Eti2m5p/9IMIQ388ckkqvTdzyfXzDzl4dAe3bz4iGsmfJUUiimsFPJx+25lzF6ivr2PLhq3cvPA8K5a3D263sHFHHWvrm+h40UNHPKu1v2+IzZvW8+jxMwB27NjCX3/xSxw+spdXbZ3cuf1oYoyxsdxYtxw5sp+2l52sXbuGhw+yl9m2cVMDp997L2vjZZOnz55z6NABbl5vBmDrtg1UVJUQjUQQQmCaJgP9ows+H0eP7+PMmTOsXl1HRWUF1VVVOLbi5o0H84q0UkpqV1XR2FiHx2vS1dVJV1c3zY/v0/w4qw9VMwf19au4++BZ3o73tdN/xdtvfWxCSP300W/lycXEIipAbXkN93iQl9jOnL5CZ0cPq+qq83I8jUaj0WiWGu682AFiqAkxYcpceOLHmVK1N16t57j7KBXXYMYr/abuJ6eNocbHmjhGvCIQgVJW/P/u9rL1LALbHVPZriijbFAWqBg4lvv/8SpDowikH4QEJ369Gt+X8XFQ8d/OlPvUlL+dyViVSrDd+FqBSvB3/Dkgvk6i7PgainRjEoZ7vzBB+pDVH8Jo/EcZvoKahVBz9OLLN66YugXTE8tL65l5UbOfE6U6UaoEIXwI0Z+VwxjGANFYFPdzMVkJaTseDFmEEONrJiVAB4IaFENMiqiQPavh6ShViWX3Tp4fsoKBx1OFlGPuXwXQrObDMEZQqgnLdueKUqzCMIomN1Bg2d0zKoNnYxrrMc0RDGcNCgPlCBwVxVlQWJUIUYwUpUjhRUgLIWIIYQMjmT04TZL48no02+nCkHVAv9sz1zZQzHV+iSFkEOWM5SU2y7qLUh9x1/M1mgKw7JUipRT3fvIXscfCE39PuRN/XQ3CNIn2DWCHwjiRKCiFEfRjBPx4qyoIrmsAIVAxC2XZOJaFsuL/j8X/HxcplRP/bdkoRyGkQHhMjIAfMxhAmMaEcOlEY1ijY1hDI1gjY8SGhrGGRrDHwlhjY+S1dj8FjN1erI789RPMN9Fnj/Ft2EzZBz9W6FCWNR7P4jn93LzYzNqNdcRsixfP5xYTcs3QyEDC21+96uDVqw62bt2EaZqMjo5SWloK4SAvn6Weqbu2aRXPW9oYHZ0tho6MuNmX9atXEQ65WWWXL92ctV22KSoKsnffLs6fvYYQgvb27FmcHjy0iwsXC1v9vBC3bt3l+MnDdHV2cufurYTb7N27m4C/iGtX7058lwkhOH5iH8+et3DlyhUA2ts7aG+ffB+vXbeGpnU7CIcijIyMUVNTQSgcoqe7m96+PgYHh3jxcogXL/Mn5GmmU1JanP+DxteC/F4/LVdnZrdP0rS7jj+7+qd5CgoOH91LdU12elytBNyl3tzZ0+sEVo1Gs5xRKkTE+lvmqvSRogxQKDUWFyzHRUsvQngQlCDi24zbixK3GlXjwt/Ej4oLmuM/4J5lDQQewOMmOk+IpDaKMKgIiiiKUPz/MfJR+ZEunvY/iD/O5Ykzeh9RehBZeqDQoSxrBMYiab7j9kx17Hq8vmKELFwyuGIuoWI4bvtbHv87hiAAYgwhUnc8cpxSINF6n2BSIC3HPR86KPLRmsSPbUts59HCm6aIaayZEFEXK4YRBTYgZQwpI8wUMKURwHFqsO1hHDX19TDwmOviwqe7j7s/Ew0OHacJxxE4zjAgkLIYIUAIKy6a2/EkgiiL+btneVPIGVnRHJWocVQlymnNWzSmuUWLqCmg1wqyz+JRMnKAUorm//Tf6H7nfKFDWV4UOhMvD3T9+n+k/0//AAyD4iMnKf+Gv4tR7Nqe6krV7GCYi+vLr/VJB/6Al4NHt3P1wv05vxGKAj5WV5fz+EX2+1T47Up8Pi+RSOIL1IcPp5cHlpYWs3PPPh7eSt6epay8iL7h3oQiKkBJaQkVZdUEAl4eNj9MuE0u2L9/F+fOXs9Jpu/VK3c4efIYZ88uXjE1Go1w+vSZebe5edPtU1nfsJpNGzcRjcQYGR3i3dPzV9q2Pn9B6/Mp/W/vZxyuJsvYdn6z7t964+u5ftWtMPV5fdihuRc87ZL89bzxeEy+5Vs/hrHYUsE1Go1Gs+xQyiZifRFHzZ0g7My39rRYVJ5Fx/JfK7Bvfwe2fw0IA7nqG5B1n3YrVoWpF3izxuJ6Hm3nFeFQEK9/HYYx37VxEdPtb7OHECUoNZ8r1MDE/xSjoIJA8YSAlgyOCmLZ7XPdi1uF6iaAQG/S42aKbQts58XCG6aBZb9AyDUYi1hMFSKGac5d5SuEW7lqGALHWYdtuwk5hiGRcv7XX8ox3C4u45+5me/f5X9O10zHkLW41t6w0LnYtgZyHc4UvJjm7jweT6OZzbJWhPqv3KL9z79U6DCWH3nqlVZoYh2uONX/2Vb6P/tHAHjq19D0m39YyLCWDfnquZcK4VCUmxcecejYDu7cejxRkTmVPRvXUBzw50RIfXa/h5OHX+edc19OavuhoREuXj/HGydf4+aF5LLANu5o4PzZaxN/79y9mZKSIAAXzt1kTUMjLc/auNd8K2fijmmaOI4z0cezrLyU1ta5JmzZ4f7dZ5SUFDM8vPTtZ161tfOqLbfPlya/tDx7ic/rIxLNj2hp286E3fPgyCDrX6/m2dnZmaZ166tobs9fQsWP/Ivv4Tu+65vydrxlgchxfpteO9FoNMsUy7kzr4iqSRNpuu17ljU2hFsAcFp+AaflFwAQlW9jbv+VAsa1jBBi0SUrKMaIhO/j8WzF9ETnSAAO4lanh7N+fCF6Qa1Ckew6xBhKGUBF0ra/jj3dMleKWsALxHBUFwITV1jJpYgqYVpVexG2k0vXMBvLGkB6PIW3b84CUoZWypLtCiJ/ic0uNojxz+AIQqxCqUTnnQocO1+uZhK//+OY5sY8HW+ZoNcKss6yFlIHrt4pdAjLEqeoBs+mErc/6Xh/kfF+pvFeK2qoH3ugr9ChZo3gwWMEtu3GrF1V6FCWDVIu3jPujQvNNDbVoqTiRUsHjlLsWN/AcU85oa4xbhQP5OzY9y91sG/vbm7Eqw8XwnEczl48x9Z1e2l7Pv+ERinF85bJ6tU9+7Zy+2bzhE3s8ZP7ed7yCsxI1kTUqqoKGhrruHP7IY7jsGnzenp7BgkG/DQ01hGNRunp7ufli9xaKg8Pj3L85H5OL1C9qdEUguHhEU6eept3vvqFvBxvZiLLH53+Qz6+4dN0PZ9cZFm9oYobw1do63qVl5gA/t2//Q2++IV3+bbv+Eb+4Xd/c96Oq9FoNJqVh5Oj6qYVT+VRcKLxvqjxnqPjPVIBkDDWAvbST24cR6z6JoRZjig/XuhQlhGLd60gFnuIba/G6ytGyvE5cyVuJV8POVWARS+oADBfZepUbJQaxbUjn9+WVSkDR00mVkrRgBD9cctxA0k9ihiCbNobB3GXpYfiQVQQtZ4hRTlCFAE2ttNFri1llRrAcTZgGMvnvKRZRohhpKjDUflqQzZ5/hXCrVq2bYPpfYkriYaaSf5clCkO4fCfEotdwes9iWluzdNxNZrpLFshdfRpK68+q6tRc8GLswtXvjUdb1hWQurYVdcStGLLDuyxUWQgiNXVgVmzCqHTvdLC413cp5+XLV0E/B7+0Ydfw4jYRNuHGOlw7S3eXLeWIr+Hy/eyn30lhKCyaBWQnJAKEI3G6Au1sX3fJh7easOZw4fs0MltnDt7FYCt2zfw9MmLaX2jz5+9TkVlKeXV2WtmPzo6RnfnAPWrV1PfsIrm5mcMDY4wODCc1T6oyXDpwi1Mw8SyC9fbRqOZiwvnbrJ370Fu3rya82PZCXqwj1R0sbFuLRgOUREmIodpO50/EXWc69fu0tnZo4XUFFjEeUkajUazKLGdVmzVUugwliWx9TsW3MZzZxRCy0ewUJ1/CrWfQBgBlB0G6YVIO8LfUOjQljCLu82D47QTDhURCOyIrwf1M9lDuQYYJjdVqQpUqdszOWlCKFUG+IHBhFWXSils28O4CCxFHUIMTGwrhI0QA0Ap2V1GVkRjL+LCaQDbeQbYOKoXVP6sgwEsuxfDyN46iEaTTYQYBpU76/DpTF8rEMJGyjqUshFIEIJYpIP8iajjKGy7hWjU0EJqCui1guyyuJWMDLj3b34ZaxlYOC5ZrOXXhHzs6oUJQVV4vKhYlHW/9nt41zQVNrAlitfnLejx66pLKQn6MU0DQwiEEHhMY+LHa0o8pklH/yAbqyvp6xic2Lfvxks27q3LiZAKIIzUs1jb2tppa2vnjddO0f5smJ7OoeljCsGtW25zzG3bN/D40XMsa3bVaX/fEP198Obrr/O106fTewBTCIcjrGuq59LFW7x61ZXxeJlg2zamRwupmsWJ4zgM9VuUl1cwMJCc/Va6GMbsBKB3rn512t/bt2zPaQzzUVdXU7Bja7KPEOKbgDeAfcBe3AZbf6CU+vtpjNUI/AzwYaAKaAf+HPhppVRuPzgajWZZ4PZG/SsWnW/oSmIZVaO6KFTXZ7G7Puv+KUxQDuaJGwixuAXBxYoo8FKlECWA4YoG49VZQgISgQFIEJJotAuvtxIhp84vu4EyciGkuqRz7hp0zePEKpQaSlCd6sdR7lxdUIcQQ3PY3I6vMVSRHXvfEFJU4Kjuwp+SlQVoIVWzSBEWhizDdsbI/Ydl9veWlNOnWbbVNmubfOGenzWawrDshFSlFE9/8/cZe57/KgrNJMqzfC9AVv3zH8fq7gQEnoa1hQ5nyeL1Ffb08+ldmxm414Z7ETJ+IZLYztac8n72Fvso2lzL+ZfZtQMLBL1s278O5SgcmX4PhHffOwPAzp1bKfHW0N0xxEDvCAdPbOHsmascPLyTe3efJBRRp3LjSjPVNVX0dGc+QXrw4GnGY2g0K4H29i727T/I5atfzVmPYgDDmD8tsaysJOd22/PxQz/63QU79lJDADKHk+ksJbD+BK6AOgK8BLalFYsQG4FzQC3wOeABcAT4Z8CHhRAnlcpz+YJGo1lSKBUjan8VsmpNqUkZswyi+XWmyQsygLHlP6JGbiN8DVpEzYQCP3fSLAHGmF6Zlfja3LJL8EzkKPpwqzaHsxaLUgIQOE5xXNxM/+psos+hqgFh4fZejGLZ7phSNCJEXxK9QsfSjmE6fhyl1241mqQQgxiyHtvJtYi5wPlXFQOxHMcwFxKv91SBjr30WCJrBUuKZSekjj55zovf//NCh6FRhU4nyx3eNespfevDhQ5jyVPwt0gKHbeHWifXZcXOWn7v3DVGhjK3sfD6POw81MTVK3cYiYU5f/Y6AKVlRTTWN/DyVfoXSHfvPgQeAlBSUkwo0sjrbx/gzFdv4DizbT2nsm59PSUVPi5dupL28aeya/dmzp25npWxMsXjMQnnKjlYo8kCN67f5fjRt7l99xKDgwN4PB5isSxPVOY5/Qkh2LRxE7dvNGf3mEng83n5tf/6M3z04+/L+7E1OeUzuALqY9zK1K/Ov/mc/AauiPqDSqlfHb9RCPFL8WP8HPC9mYWq0WiWM7bzDNt5WOgwNAUvPcsRThRRdhRZpa9jMqbAbxGRwtLzVJtdxw4gZHcqSw1zj6s8OE4gLpoIYCAeWwlSGgiRftKlYrICVCk/AoGUG4COBURUgSsUQ3ZsPcOYxjosuyULY2XKMj0vaZYXogdDNmA77biJHpKZVrxZOMjcdymTSKgw1ahCFOH3fxrDqC3I8TUaWIZCaqBxNWX7dzJ4/W6hQ1nZZOPKcRHi37EH38YthQ5jWaAWEPNyfvwUjOKdWDxrfUslf/S1C9iWzcHjW2l/2cfI0BiGaWCYEsMQSMPAkBLTNJCmQEiBlAJpSqR0txFSIgQ42BPi6VSGBkfZtmsLbe2vpvUwTZfh4RHeO+/a9L71+ltcOncn4XYbN6/B9Cmu37iZ8TGncuf2A8rKSxgcyF5mbjrUN6zieeuTgsag0STDlcu3gQDFgRIsy2LP/i1cvf5uFo8w93ll165tBRFRGxrr+N0//CUOHNqV92MvdRb7JZdSakI4XbjCITFCiA3AB4EW4Ndn3P1vgO8Bvk0I8cNKqXw0D9JoNEsQKesRdjkqLkhoCsXyFCzEqm9AmEWFDmOZUOj3SCrXKw4gsCKSSOg04MHj24rp8yBQk49EjVeTKpQSCOlhsvJLzPptOyGUejm+88TRFMMoVY8Qk62HMiOElALXOKSauS17K3Gr0LJ1XBcpFdju81JIhCwl+4KURpMDRA+G9AAChAJVneUq1bnPf45ThG3nX2+Rsp5A4FNIWZn3Yy91FvtawVJj2Qmpht/H/l//GZ7/7p/x7Lf+oNDhrFwKXm6YGwLbd6e9CKiZTsHfIglextKmGsI9wwgpMLwmYz2u8OcvL2IoNEKP1yYSdvuJXDl/b8FDHDq5nbNnr6UV3oM7Lbx58k2+eibdwp3EXLh0npKiWkZHZ2eQBooNLl2+mtXjgSvMnD93I+vjpsradau1kKpZUliWm8Rx904zRw6f5NLlszk/ZiiUn5JtwzD4wc98B8dOHKCzo5tTrx9m/YY1eTm2ZkkyXt7zJaXUtFUupdSwEOIsrtB6DPhKvoPTaDRLAymK8Xv+PlH7b3VlqibryNIDhQ5hGbHYFgsEgjIUI4AH1+Y3Gr/HA1hYsR7cuKPEIreJLdCtx/TvQhjp5X456hVC1SFE5onK09e35psHRIDs56o5jkHhX28wRBBXTNZolgACJj43ogcoJh/v3/wth/vxel/DMGpxnBFMcxtS6kQlTeFZdkLqOA3f+CHa/t8XiPb0L7yxJvssQ7HR27SR8o9/qtBhLBukIRfeKJdMeY8aPhN7Wx2/+rfTrWyDfi911WXsaiql2Rjl0ZWFxdMZB8koxP7OMBvXb+DJs+k9Rg3DYPeO3RiGweDwII+fPE56TMuyKa0tTiikdrePUFpawtBQ9ipHKyvLOZeg6rYQxGLRQoeg0aSNz1uStbGUM7cVWE1NFa1Pu7J2rLnYun0D//pn/lnOj7MSKPC3ab7YGv89V7n0I1whdQtaSNVoNPMghMBjHMJ2nqB7pRaIZdg7VFS8hqjW7X+yR6GvbqbO4/3g+GfYz7qd54QoRWARCnfj2O2pHSFD7dBRFhIvQkyf4yolcUUVgChCpJIkaeNWySaaK3jSinN+yrDspwtvlgeE1N8HmqWLFGU4KltC6jwVqXZ+eqOa5iZ8vtfycqzlTqG/TZcby1ZINYuLaPjkR3j2X/+w0KGsSETByw2ziDSo+tbvpPwT34L0eAsdzbJBpmCtmwuUgLJdjQyZgguPX3Lvb2f3Ax0LR3n6shv/6iJu3079Al9lmFnZ2tKBx2PygTc+hO3EiFpRfB4/bc/6aX3QB8DGLY0I8SRpC+CYFUOZYXbt3cydm4+m3dfZ0cPBY3t470z2qt7qG+oY6F8cVaCWlZ+LPo0mF1y+dJMTx9/g3PnMLX4fPrrLiZN7OXd20sbb6/Vw9OghrlzIj1WPIZffIuoyZpsQIqFdgVLqYJ5iKIv/nstPbvz28tyHotFoljpSVGLIjboqtRAoBc4yEizMMox1n0Gs+iRC6OXKrFHwxHwDQS0oB9tuR6mOGfcrwEapfix7BOX0pXwERWZp10r1YCsPhlg1bUxHdQFuYrQUq1MUUsO4l1w2s6vbBnAvswbSDXk2ahEtSQtt66tZugjRj1AVKDIvJnOcYaSsAjHF5lt5sGKCaCRfRRL6+1SzOFlE31rZZ83f+wTd75xn5NGzQoey4rBeJl8ht9jxNqyh8pu/vdBhLDsKLaT+zcPnND/vXHA7r8/Dw7staR1DOZknFMRiFlfPJS7AOXhiC187907KfVSfPH3K2tfWJbwv2wlmJcXFC2+UJ/Tihmapc+1KM+978yO887W/zmic2ppVjI1NZq9v37GZyJjDxbO3Mg0xafbt3563Yy1nBCAyLWlYYPwlwnioyyiTT6PR5BKv8Toh5znzW1lqso2IOhBaPuszouwosu6bCx3GMqSwVyC21YdSA0lsWYJyXqV5lGxcssSwJ/qoTkVgiAYQfaT+XA4CFXPc50txrPmx7IGsjpcRShT6bafRpI+wkTKE49SiyMxdSoggbj9kF+WUEQ7dQzn5s742jNV5O9ZyRq8VZJ9lvaosTYOt/+r7Ch3GikQWZc+CsNBEX7QQfqyzlbONkIU9/SQjogJs3tVIOLRAg5M5GOzL3YXGgROb+dt3/4ZYLD3l08Fm555NeDzT82luXH3AurVZ7FO4iL5ZZYHfcxpNNrh/7xmBQDCjMcrKKrlx/T4ATevX0N7ay8vWmZn2uaW6pjKvx9NkxAOl1MFEP3mMYbzitGyO+0tnbKfRaDTzIoQfr6Ft4/KN8iyiyUEWUANnUdHehTfUpEiB3auSElFBkn7PPuWkt8awMAJD1CNk/4z+p6ngwb20mjl/7skstBlIWbrwRnljeZ2bNCsQoZAy88pqIQwQQwAop5TQ6OW8iqhuDLofqmZxsuxXlYVpILy58PLXzIczmr0ei4uB3t/7ryhrGVkQLQIKXZGaLKYvffvJJw9fcvz4fioq51r3TR2P12TPkXV8+d0vZTTOu++dRoko23auZ+O2WgIBPwCBgJ+OjuRE5mTo6sruZCsTIpFcTVY1mvzR3z/Igf1HMhojFosSDAY4duwg0THF2Fj+Pxvt7bnvw7pSkDn8WUSMZ7RtmeP+zfHfc/VQ1Wg0mtkIvU6Qb0RsmRkH2KM4L3+r0FEsO8QSEbWUnf66lx17gooF4j1Ns4UPQ9Yh5ECG43Qh8CGoAqqn3J5ZMudMZMEtnCcRIlFfWI1miSGGEXPmnSaHAlBeHLuU0OgtCmH44zjLS1MoJCtkrSBvLPvHXbypiV0/96MYwUChQ1lZ2MvrImTsxmU6/vO/JdbZnvK+SinGbufLR37psFSE1Fg0M6/ba+cfYDpe3njjCJWVZRlPCrfvb+RrZ7+W0RjjXL56lQtXznHrzl3Wbarm8LFdeIpiRKLRhXdOkrKy7InImVJaunhi0WgKScBXgrC9XLv0gJ7uzPuopINlLa/rBE3O+Wr89wfFDJ92IUQJcBIIARfyHZhGo1m6mHIjHuN1VsCyiCaHOO1/iN3yy2lVpionhjOUsA35CmdprBUoMklGVFjRe9ihXnCqUCrzxA5DViDilWSZouhG0Q30uP1iqSXbVugxK3sJ3JniONm1LdZoliqxcDdjI3cJj12GjM5xmaB7FmsWJytixlB18iCH/+A/46+vLXQoKwJhGqhY9oSYxcLIe1+h5Xs+Rc/v/bektldK0f9nf8jLf/F9tP3ED2IPDeQ2wCXGUuhXuX5rPXdvPsl4nKKgn1tnnhHrNWgob+TUicNpjVNdU86ZC+9lHE8irl6/TuurZ3R0ZK9KLBD00/o83Z4x2af5QQtVVdpOVLP0sTNMVjp34SvsP7QpS9Gkx9atGwp6/OWDQorc/eQ7A1kI4RFCbBNCbJz2KJV6AnwJaAL+yYzdfhooAn5XKTWal0A1Gs2ywWPsxW9+CkjfhUaTAvbyXBx12v4H1uU3cLr+IqntlT2K/fy/YN34BuwH/xylllmlbsYsfiFVsgrlZJ6QKM0qkL0IEQMCCGrSGkdQhRC5qeJS9ODa+maWZD6dIIrFU3Vm2QMotfjfdxrNvChQGc7fpMfBNAs5VxdIWVXA4y8nltdawWJg8SsZWcK/qpqGb/4oYkY/QE32kcbyvviItrUy+KW/YOALn0UphbJnW/4q20ZFowyf/jLhh3cBGHrni3qCNAXDWPynn4qa4qxUTbW39VBU6lbFD/aP8qK5G68n9YzT+vVlWDm0mF5dn96kbS4OHthLX+9AVsfMhN7efmqq6igvW0y9WDSa1LGdzM5LY6FRvvTOZzlyfEeWIkqOLVvX8wOf+Q6+/O4f8CP/8nvyemxN4RBCfEII8TtCiN8B/mX85uPjtwkhfmHK5g3AfeArCYb6fqAL+BUhxJ8LIf6dEOId4DO4lr4/nrtHodFoljNS1mDK/H4nrlTEsp4OK1ToKXbrr+H0vYtSFkrNFo6VEwNl4bT/MYSeQawPNXCmAPEuZhb/mlK2epw606oyQ0A61/kCKXNpVe4w3eI3c2x7cS3CK9VHzBJaTNUscSSZfq6EsJCeGNJoyE5ISSJlI17vWxQV/QAez668HlujSZYVpSo2fPIjDFy9Q++Zy4UOZVkjvcv7bTV6/l1Gz7+L8AcYvfge9ugIa/7Db6Icm+jzZzhjI3T9xi8Qa385bb+e3/51hr78V6z6zE/g37i1QNEvHpaCte+rtu6Mx5BCsu/wVu5canH/loLiVV6iPallc+4/uoWvnPmbib93bNtOfe2aiWukL7+XWc9UgMePWjAMI+Nqt3FevEjdCjvXPHnSysFDu7hwUbs/apYu9++84H1vfR3t7a3cf3An7XHC0RGqqivo7cmPve9ffem3qa7RVeHZRJDbpcYsjb0P+AczbtsQ/wF4DvzIQoMopZ4IIQ4BPwN8GPg6oB34FeCnlVJ92QlXo9GsRDzGCWzVjlI9hQ5lebPME4udl//d/Y+3DuGtgsBGzC3/DmWNQPg5KvIK+/G/Bmu6/ap973txSg9jbPl5hK++AJEvNhb3WoFSBsrOxlzXg+nbDAzE//amZRdsiAaEmLyed6tTPbiLBQJHdWQh1mxWo5rYTjZiyi6O04FtN2GaY4UORaNJD+FgSIVSDThqEBhJbxghkEYJjm2QXnJHqscrIhj8R4hF1Dd5ObBE1gqWFMtb8ZpB79krWkTNAWaxj1W7VmMaMQgP4/R14aR3rl5SqHCIsRvu+8ke6OfVz/5/RJ49mnef6IsWXvzQd2NW11L5d7+Tsvd/NB+hLkrEIhdSa1aX86Il84t7IaDj+QAA/oCX7QfWcfrcxZTG8Ae8DIcm14c3NK1nrFdy9cnDids21u3B4zXxl9ncuH0zrVg7O7vZsKGJZ09b09p/JoupGnUqN67fp7Kygr6+wvSG1GgyxbIszp1xe28fOXyCS5fPpTXO6TN/w4fe/mRehFQpJf6AP+fH0Sw+lFI/BfxUktu2MM+cTCn1AviH2YhLo9FopmI5N7WImgNExMYY6EWM9UC4C0IvF95pORDtQEU7INKJinRi3fw0xOZP0lVDl7GufBD8azE2/mtk+bE8BbsYWdxrBVJU4kyIn+kjhBeM8XG8CFGJSln0DIKYbK0lqHT7pIrJamhJCaBwlI1b9ZoO2ZwvmEDunLYywba7MIwiLeholi4ihhA9GMrAdkogTQttwwyj7Hps+0V240tILivqNZrssfi9NbNI1clDeKsrCh3GsqNmRx08uYTVfB2r9THOSHaa2y8lXv27H1tQRJ2K1dPF8LuZVxAuZaRc3KefiurM7V9X11dz+NgeejoHAFwR9WxqIipAOBTl8a0e3jr1FnWrVuGxyxkcmJ6t0Nc7SGd7LwGjPO149+zZzqu27GWGrl2XXyuQZLFtm927tFWIZnlQVLTwuWr9+k28/30f4+23Psapk+9jTeO6ifvePfsFGhpW5TJEABzH4Xf+5//N+XFWHAJkDn8W+TqmRqPRZA3X2lef9LKN2f0S0fpn0HMaRh6AvQIyrqdiDWHd+94FRdRJlFu52pfI4X4lsbg/iyILPZWlsRozsH1yzLREVIAxbKcbpUoRlCHE6DQR1R18DEQIKcrSjjfd3q2JCQOLM8FSMYbjlBQ6DI0mc4SNwLfwZlRgyAYM2YCglqmfTcPrIx/SkVID2Hbya+qaJNFrBVlncSsZWUaaBmu/7RsLHcayw6dWnnA6k8ij+6nv8/QR3b/96yhndt+UlcBi75GaaQKix2NiOF6un2ueuK23I71MsHHanw+yqnQ9XR1zuxc+uNvCGyffSHrM0tJiDh/ex6FDe7l16wGRSHThnZIkGFyckyOAq1fu0tiobbM0ywCV+FxaWlrGyRNv8fb7PsZAL5w7e5Pz525y7cpjersVb7z2UQzDIBwOUVefe7vdf/nj38f3/8C35fw4KxEhVM5+NBqNZqUgRBGm3FnoMJYfPSvcEUxFYax54e1m4PS/h9322zkIaImwzKsBhazA8BeB6J1yaybXXQrHiSFEFMQ8lZ6iG0F5CuP64wJqOYrM2x5NC0UEszpeNrGsDt0rVbMsEMI7xz1+pKjDkA1IYwxED4gepDGIIRWGbIjvbyFkrgvSBH7/N2OaW3J8nJWJXivILotbycgBjd/8dWz+0e8pdBjLijCZV+6tRJyRYYzS8mU/SZgL05N5FmcuUU5mXwrlFSWsXltNWWXxxG2tTzoor0jv8+LzeymvKKG1ZeFeLHZMcvjgkQW3E0Kwdk0jVy7f4uqV24gspxN5fYvXniMSibJhw4aFN9RoFjkXzt/grTe+jtLSyQzzY0dfx2Os4vrVJ5w/ezNhgsTlS7d5842vA8Awc/s99N3/+Fv4/37sexe9E4FGo9FoVjYe401MubfQYSwvqheek2gSEO1G+FYXOoqCkY2Kz8WMlCUIVc7UbmtKDWQwYhCPaUyz+J0LpTwolUwSpRcw4gJqJrElxpDpV8fmGrcqtajQYWg0GSNEP1I2MFX+kaIeQ4KQ/a6AOmsnXFFVrI7/OZcYmx18vo/i8ezO6TE0mmyxIle0Vn/s/dR97O1Ch7FssMK5bzy9HAnuO0zlJ//eiu29UFy6eDMQARyVmZDq8Xpob+1hoHd6FWo6QoKUgi3b1/HwfktS2/sCJrduPKChYe6Ky7LyUnbt2sbdu6lnSCdLV5fuM6XR5BqlFOfPXaeuZjPV1bW88dpHuX3zOaGx8IL73r39BCklVix32YRCCP7JD377iv2uywcyhz8ajUazkhBC4DGOIMXaQoeybFCexetQs5iRq74JWf3hQodRQBa2oywsmV47S5QYYnqf0HTH9OI1y0Ek1/tUEUWpLtS86x1FuELqaJoxLYwU5sIbFZIVWm2lWWYIx+2XKmuAAIZchZC9Sb2/Rby6XRHJYYBePJ5DORxfo9cKssuKfNzSNNj2r76fQ//7F1n9iQ8WOpwlz/wXYJq5iDx7hDXQX+gwCobHs7gvnB07fcvlXXs3M9YXo6t99utrmqll1yoU+w9v59b1h0ltX1QcoLvbtd3ZtGEjb7z+GoFAYNo2hw7vpWndGu7cTm7MdCkvX9zV6sPDmVktazSLiZLSEtat2c3lS7eT/l4eGhph35436GjPXdLDv/ix76VpfWPOxtdoNBqNJpsI4cdnfhyf+U1IsW7hHTQLsCKXnDLGGbqKcrLXcmWpIcTyfd94/LuRPgnEZtyTzrqagddcBSK53sNK+VBqGLARVIOqmjVvcK18JZDbfsYqYzE6t8gkqns1miWDMDCkH8RACvsMYcg6lJPCPini939iWZ/vNcuPFf1uLd7cxKZ/9h1UnjiY3A5SsvsXfozNP/zdsMj7O+YTLaSmh3/7HlArsz8qLH5r33Qtl70+L/0do4yNJq4G83hTs7s9dnI3Vy7eSXr7rXvW8PDhUwAunLvJhbM32b93H0VFrjVNWXkpbS86uHUz9b6+qXLj+h2On9zPjp2b8PlyaweSKqZpEo3qyZFm8VNUFOTIkQOcPHV0zm0OHznA/XtPuH/vUUpj19XVUhIs41VbdnsejbN333a+T/dFzSmC3PY90XXEGo1mJSKEwJCr8ZrvQ4raJPfy4Tc/jSn35zS2JYf+IkkLWXoQ1Ep2/lrkawVpImQVGCESi6apv95esxHEYNLbO44HcCtXHfUKR70CpoqpQRQ9QO4TjoUYwTTWTdiHLi4CqJW9XK5ZMniBGqBqnm1qgV4QY6kNrYqJhNuA3Kxbm+Y2TFP3ps8leq0g+yzukrA8YPh87PmFH2Os9RUPfu7XGJpRodXwTR+hbN9OynZvYexFOxUHdgEQ7ujmxR98jsDaemrfd4L+q7dn7bti0DpqWpR95BOYFfN92S1vDGNxT47S7ZEaDUfxBeYWS02Z/OM+cmIXF87eSun4Y2Oz7XeuXr7L0eP7OX3mDAf27+FrXz2X0pjpEotZnD1zCYBNm5p40dpJLDZpXySlZO/+7YyNhnj44GleYhqnqqqcBw9yZ2us0WTK1q2bKCsr486dh1y9eocdOzcl3O74icNcungz5fH37N1BR1s/N5Osdk+VLVvX8/8+95uUlhYvvLFGo9FoNIsQKYrxez6N7bwian0FNaNPoMc4ihR1CFECKoaUtXhEDY7qx1EtSFGLIbdg2ddRObTIXNysxGW2zJEN34kwAgtvuGxZniKWcoaBijnuTU2s8BjrQfQmf2ylUGq2kKJUO1LUA70oFUCkKrakTQwpY0gJqM1ErZkJoR5MowHHGcDJqH9s6khRghS5tDPVaDKlEncxfiD+M9caZA3QlfLoyikjNHqd2ZXz2cEwNuD3f0q3/9EsOVa8kDpOcG09+3/r5+j+6nme/Or/JtLZQ+37T7Lpn38nIt7T0FczKXpt+P5vo+GbP4qvphIhBA19H2Gk+Rl2KExw/Rpu/8jPEX6V+slqKZKu4LTSGTn9ZYJ7D63YL47FXpGaTqV1IOhnz94tXD83d1VYsq/3vkNbuXT+dkrH37ClgWvXElevXjx/i9V1q7hz5z4nTx3m7JnLKY2dKY8ft3D8xEEunp8Uhrdt38DVKzfYunVjXmMBaNrQyMtXLXk/rkaTDFu2bKK1tZ1I5DngVlB3dk5WjR45cgCf309PTy8P7j9J+Xz12mvHuHTuTk4dJb7ju76J6prKnI2vmWR5LjVqNBrN4sGQ9fg934rl3CVmXwAieIyjeIwjkxvFL/GFEPjMrwMiCBGM778RR/UgEAhKCFt/QjrVZ0sSbdmXFk7PFzAa/mGhwyggy+99I0Qxpn8r0JfxWKbR5PY5TAVVCbQlvMtRfQgMIIJSFQiR5xZUog/T2IhlP5m4yWOuxTCGUc4qIrGBvIYjZRG57A+r0WRGFTD1828wXmnuUhP/bQEpOk8piW15iIQvZRLggni9pxCLvU/yMmH5fZsWFv2unYIQgtr3naDqxEF6z12l6sTBCRE10bb+2klh1VtZTuWxSRuf6teP8vKPP5/zmBcDTmyFTAKzzNBXvoBv83bKP/KJQodSEJabkFpTW4HfCM4rotbWV/L0+ZM57x9n28713L39OOUYyquK5r1/y5YtvHv6PXw+H+VlpQwMDqU0fqb09vSzdVsTZeWlhMNRiovcLOvKqgqkfAmA4+TH7lrKlZnAoFka1NRU8fjx84m/TdNgy5aNrKqtxTAMrl+/h22n99178uRRLp5NLUkjHUZHQyilVmyykEaj0WiWF0IYeIw9mHIztnqJIRI7RYxvC8GJv6UoRYrSKX834qjnCfZcfihp6JrUNHBafhFRvBNZdmThjZcli3utIFWk2YDhCzKfiCqojtvqzo8p1yBl6mKsmretVBhYjRB9oOaqmM0tUpr4jfUo5cWyh5BxkcVRNq4UkL+2WHr+olncWDP+VkA17ufYIGXxdAq25SUSTt3tKlWU0m22NEsTLaQmwPD7qH3fiYzGqH3/qRUjpNpaSE2bvj/+bco+9PE5BfvljGku7slRKpXWNbUVeIWfzlfzT2jqN1TypP3xvNusW1/PyxcdRCOpW2ioBSYXPV0D7naOwslzf94dO7bQ09NLV9fszNnz564QCPopLSkhGCziecvsTNnSsmIGB4b1pEaz7AkGA9y5M912OhyOcO7s1YzHXreukXu3F07myAY/99O/xolTBzlxMsk+9Jq0kUI7g2g0Gk2+ECKAKTZnNIYpNxO1V4aQygqc52YHhdP6G8jdK1NIFcuoklmaazB8fmaLHzNZeJ5ryNVImV4ytFrQonN8fSD/821BDUIMgbAQYhSPBHCrYg1jCEOuAgKEo69wxaKZ+Oe4XaNZbgSBmX2RI2Qino6jnFIi4SsZj5MM4fCfYBg/jJQleTneSkavFWSX5XN1ssgo2b4Rf/2qQoeRF7S1b/rYA33YQwOFDqMgLHYh1XEUxSVBTMOgvLyYmlWV+AO+hNtu2ryO7o6BBcd80ZbYSmecmlUVjI6OMjyUPRuZoyf2UlRicOzkXgDeeusUjWvqGRoaydoxksHr9SQUUccJjYXp7OwmWOSjZoYdaH19LWNjI2zd3pS1eIYG8/v4NZpkKCoKsmfPLoaHs//+lFLikX5GR0ILb5wF3n7/CS2iajQajUaTAENuZOUsxegkyHRRY80Lb7RsWeyfD4Ur3kmEKEHIcuaqojW9tSwsohoo5rfqlaIKQ4Yhi4viUtS78YvVoBSoVagC2I4LDBDzPEfCBjGCz7OOmb0gDdmA31uKz7M1a/E4zkKvl0ZTCPyANzdDKy+h0Tu457bc4/Ec1SKqZkmy2K9OlixCCCqP7i10GPlBC6npIyUyML8d63LF9CzugnihBNEhhbS8jPXbDHaEqKmoTiimFgeKOH58N5u3rJlzvJLSIC3P5hZSS0qL8Ae9dHel349EJbjouXT+Frv37OL06bPce3CXr331HJcuXk/7GOnS3z8zay4xd+88BOFQWlo8cdurV11UV1XzqPkZW7ZuyEo8d+88or5hdVbG0miyxeYtm7h06UZOxj58ZB+tz9tzMvZMNm1exy/96k/m5VgrHZGHH41Go9FkFyG8SFFX6DDyg3aTSR+zdOFtli2LO+laGEHMYA1msAEjUI7hL8ET3JVwWxUddYslrbkfk6CU+axrBaWYhnAFxbSZvVbgqE6gGCH6EHIQRCdCJDdvzybJirdC9uP3rmPqFarttBGzPPG4/VmJx3Y6UEqfuzSLCRn/GcjJ6LbtZXqf1dxhGOvx+d7Iy7FWOnqtIPtoITWHbPj+byfY1FjoMHJOqn0cNZPIYBHSl7jKcbljmov79GMn6NXZ2dbH/v3bWbOmjiMHdwMghaTjQR/3zrbgiXpm7TNO44baad8yHtPk8IE9AHi9JvVramh9lr7I4fV5ePKkZdbtSikunL1JRUV52mOnixCChoY61q5toLw8+YWAzs5uikr8VFaVAW4l3Zq1q1FKEYmMUVKSneSDjRuyI8ouFqS2Tlt0mKaHU68d48TJoxw/cZimprVIKZFSsmFDE3WrJ50rjh0/xK2b93MUh0l/d/6qsP/et38Da9c15O14Go1Go9EsNbzmB4DlPw9UK3KZLTsIT1WhQyggi31eM3sNTNGH6d2BpAKp4q+dMrCHTmMPn0eF5msDNFMA9MbtbAECeMwgiPR7CirlRalEx7fnuD0fSFyb0hKEiCS/mxjC7506jzcxZBCEg8+7NkuxRXFUcOHNNJqMMIFaoAaoYrK3ugCKmV59Wg2M5SYM5SUSys06RCK83uMIoT9fmqXJ4i4JW+KYRQGavutT3PvJXyp0KDlFWfnttbiccEaGsYcGMErLCx1K3il0RereA1vxCA/KUSil6BsaoOXpq4n757KsvnaumWMnd9Fys4OTew7S+rCTjueuDU9JZRG0JD6ev3hSZK2traKpfB3Pr3UAsGPPRq5fyezCpbzOS8uzl3PfX15Gf/9ARsdIlWPHD3D+nNvXsbV1flvjmbS9bKe6uoZDh3dz+fJ1Ll68BsCzZy849dpRLpy7gZNA7E4Fy1o+lj2nTrxGx4tBnnfcJxZLvb+uJrts2NBEfcNqnjx+Pqu3qd8fxOf30RLvBbxj53YqK8u5nKNKVIDjxw5z8dytnI0/le07N3H4yJ68HEvjovueaDQazdJDilJMuRfLuVToUHKLrkhNGxV+gVIKsQKfQ1FgIdXj2YqQJq5gKohFn6PU1KTEOa69zBCGU409fA3TrMWJtTJeaSrkfMLB5LxWUInH9AAGtmPiNStBDKf9WJSS2Pbw3DETQSlv3t9nUtSCSLevoyu8es0tSGOA8Z6RQgxgGuux7GcZxyfmqRBeetTiPmf5rzbWJKIM16J6EOiacd/4OukIrqBagVuhP3O77BGLhMiZSDsDw1iHlNV5OZbGRa8VZBctpOaYisN7EKaJWkYL9jNJZCeqSR6rr2dFCqlGgStSA34ft84+mfi7orqE2lWVdHXGMzJnzCOEECjliq7nz9ymqNhPOFpOeGwyM/TxzRegYPOhOkIM8eLK6MSEZGTMnXjt2LYJq0vy7EE7CsWRUzu5eO52xo9nIVFxeCT/PUFtO7P+KtFYmNt37s2qej/z3kVKS4vZtXs7F87dSHv8zs7OjOLLB42NjQT8fh49fgyA1+vl5LHX6Rvooqq8Fp/PRyg8SkfbEKFQhNdOvA6OpKOnjXv37xU4+uVNRUX5rOSEPXt3EQ5FePy4ZUIonUk4HCEcnsy6fnD/cS7DZOvWjXkRUY+fPMAHP/w6/+QHvw2PZ+7qfI1Go9FoNC6GXLf8hVRN+sR6AZsVuWwnCrtWIIQH6Jn42+OtJxp5ysK9Ti2U10JWHUINPoQplrVOtA1Z1ITsG0REh7HrJt3rFO5c3ZD1GDIEIoRyivCa9SAGMnw0zrQ4ZpOjnosLEk5/VxHF711DImHQNEcxjTU4jp+o9Sj9Q4j82JxmgopXzQoxFv/bh1JBhLBRDiD8uKZVg0xWPzrAMONitCYXCFzxc+b5YryqdD5Be+o+Cki/9VcyKKeMWCz31yGmuR3D2IzHc3BFJgdplg8r8Iosv3hKSyjdtYXBG8t3QVtIOV87B80CqGj6Fi1LGcMozOQoWOSnsrps1pd3f88wO4+vnxBSZ9qkerwm0chkpd/oSJiuwV58QQ+RMfd2X8DL+nW1XLh5nljM4q1Tr3H/bAemYWBZFq8dPcyTqx3Eou7F0f5TW/nS2a9mxVhezDNIVXUF7Z0vMj9IiowMj2a0/9Dg3Jm3Q0MjXL50HcMw0xZsa2trefq0Jc3ocs/J4yd52dJHR+sg73vjbRzl4FiCKxfc75OS/dXcu93M2OjkJO/K+YcAHDq+FSkld+7eKUjsy53XXj/O2TNXWNe0Dq/Xi2kaVFaWc+PGXUJjGSwK5ICSYCnQkbPxi4uD/Kdf/jE+8ckP4fcvf4vCRYdQiFxmmeoMVo1Go8kZUqwCAuSrL1lh0N8jGeFEwFiJy3aFWmgPIEUwwfXPENKoxbHHHaxmxmcwXawcQ5buxu6dvAYXGMiBUWj/PAqQRd+EU+LHXZZ18BjrEdJ1ulJKoQggRA+ZM97JLvFnUVCCEPlPus5ISAWYzw5YRJAys8+NUn6EWFzzunGUEqAq4z1ulVvdi0CpCIoOlAIh6hBiahVjBBhfn6nCrYgsxOu+EqjGTcQoZlJU9QDpVmDnjkgo/WSDZBCiFL//4xjGJkSBE2RWJHqtIOusxCuyvFOyfdMyF1KFFlIzwB4amHWbsm2EYeQ/mDxiFOjx7d23lZtnHtPXMrsK7O75Z+zdtRWzyGBkdLoImChpqvNVHwePbefRuReUrQpStBkuXL1MLOYKpTYxDh3ewcMbz/GMBXlwc9J6d/fxTVw5e9+tdM1wgWHjtgZu35tbMFuzpi7vQqoQgkAwkNNjxGIWJ08d4NKFW2mJqX296VskZZPa2lr8fh/Dw8MTFY7Hjhzl1tVJS6LL56dbPx87sY9L52/P2aP6yvmHlJYVA5PV1Jr0OXBwL8PDYwwPDROJxjh75goAL1pfLbBn4Xn6NDVb7VSorCrn/372NzhwaFfOjqHRaDQazXJFCIEUtTjqeaFDyR36GjQzYv1gFE27SSkbIZb3WkGheqR6vRtA9AK9s+4zTQfMHdj2KAJjwRm8EgMYZW9gD76LVOUYw0MwfDp+r0BGbUxzLTAAlMSPG9/XqcBR/chsPA2qjEkBLQGiEBWpBm5f2By2pBGjeMxNxKz03H8s28ZbYN3HPX36cMW4GELE1zxUBY6anIc6amrSrECKOhC981T+9QLlOYh4pTJeaergVpSOC6aLXKhWPhwndxWvQlQRDP4DpCzP2TE0mnyjhdQ8sOZbP077576EvciqVDSLg94//h36/uT3MGtqKTp8Eru/l/4//2MqvvHvUvF3vqXQ4eWMQlSkrlu/mubr8wuKj+64Yufm3WtYs34VUgjKK0oI+H2Eo1G6Ovro7hxAOQrLsrlz8wmnPrSPL179Ar1n3YsQv9/Hyf3HeXKmh/GLp9ZHkxe32/av49ZlN/NLKZVRwm1NXQVtnXP3RgUwPfmfaJdXlHL9Wu6rIc+eucT793ycyFiMivoinnc/4faD5I7b8uwlHtNDzCpMT9GmdeuwQn4GB4YJYQNBDu3bSVl5kJ7OxHYvUkqOHNuTlFXr2GiInZsO8aK1g/KKEhxbYZkDdHTkrjpxKSOE4NRrxwiHInh9XqQU2LbD/XuPuHF96SZDNaxZxcN7T7M+bn19LX/6+f/Ktu0bsz62JnkEuV1q1MZLGo1Gk1s8xhEi1jIWUjUZYT/+KZQ1iCzZjSg9hBprxmn/Y4wt/x5Z+Wahw8sh+V8rMM31IBYSFfpw88FrcZxxC05vvJWqQjEGRHEFFYXyKKR3P0bb50DF55xGCbLpG5AlxbgiKrhWqy6OU4Gj2oCSjB+TUiXYzvxzv/mcrXKFoCSjvq/JIuUg4EfgR4giHDUMDCW1r1LDuGJvYVCqDMfpZdKCVyCoAuFBqbmsYU2krESIPha+ih9h0hHBi/uZ02vWc2PgVvJa8f8L3Cr0AabagC8toghZjHKyL/hKuZpA4NuQsjjrY2uSR68VZB8tpOYBX1UFte8/RftffLnQoeQG7W+eEZFH8UqzhzBy5p2J2we/+BeUf/zTy9Y/XhZASB0eHCUyZtF43EvYGqPn8tx9/KKhGOEnru3yWPzi1ZAS23Eow70YKKlwKy67evvYvWU3XzvvZpge3HCEJ+fdiymFmjY5adq6mscPX2Lb2SnjXrWmlOcX5xdJZtoU54P+vkH2H9iVFzE1UC55eq+HtpYewOSjr389f3X6Lxfcz+fzMjya3ASusWENnV0dxGLZE103rNvM5QvTBbqH957NsTUUFQfZtGlt0v0uLcvmRas7cR7odx/nph31eRFSTdNk7569PHhwn9GxsaT2KSsrpaqqgorKcu7eeTCtj2i2KSoKcuDgXqyYDULR2dFFZWXVRKXpciIQzP6l3sZN6/izv/yvrF1bn/WxNRqNRqNZSRiyDilW46j2QoeSE5bnTDZ/qMHzADij96Dj/0zc7nT+2bIWUgsh7illARLTaEApsJ15ErBVjNjY3Rk3Siat2iRCFKHoxVPahBo7jOg7BwiM7d+KMI34MdW09R7llOM42XGTUUrh2GEWo32cYgChSkAkN09MFyEEhqzEdl6h1ED8tjqUSmY+nMocKohbkZg9lBNjul20QtEzj1t6ECn9CDFf/82pWEz24xxvN+YjP71TDaCU1Pp/+nDtcT0p7pcOftxEBoX7Gjjx/3fNt9PSQyh8vq2EQ1ezOqxhrCMQ+HsIUbhEBI0mV2ghNU9s+sx3MfL4OcP3cus/XgiWq9BXaGKvXtD+736cVf/0X2CUlhU6nKzj8eb39LPjVC2dAy8YMDu5/e5LqqoqWc3BObd3nAQTDgFev4kddbAdh5F+N2NvrCNC56s+PnTqg/zNmS/R3+Za5ygUjQcqKAkWoSyB1+Ph6b0OwiH3QtUf8GbUEqmkLMjlSzcX3G5gINcXmokJBPJ04WRPr7gd7oxx/MAxPIaXc9fOY9mJxc8dOzdz8dJs26apfPjNj3Hj4hOiPQ5vHv0Qf3vmL6koL2fdmiZu3L6RUdj9fcln/tWtriHg93HrRnNGxwyPSN7/5gdQgGOBMBSOYxGOhLlw6UJGYwP4fT7efOMN+voHeNj8iH379nH23LmE21ZVVbBj53YeNT8lGrUYGBhkeDhES8srqqoq2L1nDQCmKblw/kpW7IkrK8vZuWs7zQ+fzRJNW1oWv01vOjxsfpLV8Xbv2cb/+9xvUruqKqvjatJHrsDeJBqNRrOc8JlfTyj2+yzvXqmabKL6voL95N8i1/9/CFkIa9Zck19HJb//IEIqBCHXEjUt21OBK/JYgBOvaDRRDKPqmpDBOkTHV6eIqALLkkhZ4tYmKGOaXauY1Xc1VUpRdC4Ys2K4QAkPXrItPiZCqenCoEAhRC0AjppbGDNkKQvHV4kr6o0BNbiWrkFcUT39Kj+3R27yFbuCcoS0EWIeC+ek8APja4+Kyd66MSarpzPBxH2eRnEF22Lmfp6KcJ/LftznM8KkyBuMxzoeX18WYgO3QrckPt7i62eaC4SR3U+/YWwhEPg0QsxdtKLJL3qtILtoITVPGD4vqz/+/mUppOo009wRvn+LeVLOljReb36/WPvHurh8dTLTKhKZP9MuUcWobTsJb/f73cnrzbPPeGPv+/AKL49uvGTLoUYuXLsGQGVVGZW+aganiGexqEVRcYDR0fQWTZo21tF5Zf6M1b37t3H5Sv6r7Nasqefe3cxEv2Q5f/9ddh/ay/Mrrk1P6+PxCWOYDx7+Or5w4XOz9vF6PTx+snB8F66f5ujh17l+8RE3Lz/mA29+mPCwQjkKwzCwbZt9u/dTUVbB6fPvYts2hw8cZnh4mLUN63l2v5uatT7OXT47bVy/z0dXR/IX/E0bGrl4dmHRfCFetnbwsjVxBu7rJ1/n9NnTCe9LhsOHDlNUVMSXvvzViduGhof5wAfeB8A775zGti3XnvjIAVpftHP2zOWEY/X29tPbO5kAsHffbrq7u2l7mX61xt59u2h51rYsq07nY1VtNS1DCy2iJMexE/v54z/9NcrKMrca02g0Go1G4yKEH1NuxXJuFDqU7KN7pOYMZ+gqUhS4iWOuEPldqpQyBmKqoJNOFafNbOHTwl0wc3BKvciiT+M4PqSM4DilKF5gOwMIyoAIQkweV2XYP1SphZ9DIeriNrD5RVABJFs5mRkejx/bXo9lu85PjpqcF0nRELdRnhlfMYaRjMgbBipwhbceXOvXEK4gN/5+qsR9D4wncFfhCq/jIqIJs0TTAKk8P0J6U6hEnY+5xhC4Amsmx6jB/TxMnc9XAePWr+NrFBK352gfc/f2HWO6yF2NK/RaCbdOjmrc12iFJTSp7H2HmOZe/P5PrIAe3pqVjBZS88jqj73NwNXbdP3tmUKHolkieBrWYpSWFzqMnJDvvp0zJ5ljYyGUoeasqI6Ek5+4BIomKy8f3nqBlIJDp3bQF3IvlgNBPw1V9bQ+nJ7VZtsOe3bu4Pyl1K00tuxcy90H9xfcrn8g/xOj7Ts2Mzw8wsBAcv1HMqWnr4dbD29QaWyaJXQ/vPYCIcS0asampkYGh3ro7Vu4UndgcJCYmuwVcvN8y8T/j+56HyXlfq5feMQrQhw/dJKbd6/T/9JhaBD6WuM2vQK2btrKw8cPaVrXxIamTTx/2kFXZ/KvTfODZ5imgWVlkpU8P6FRZ9ZzNRc11dUIKejt7aO0tITQWAhDCM6cPT9tu7t3H3D37gMAtm7dBEB//wCXkqiknsqtm/epq6vh2LHDDA2NUF1dQf/AIPfvNXPkyH6kYXD1ynUikRgHD+0lFArx9EkLSikqKivYuHE9ly/dIBotTD/cQvLixSu27djMgwz7pH7gQ6/xO3/wCwSDgSxFpskWOp9No9Folj4e4wSOejVvhZRGMxVRsgeRZ8ExfxRaIF5ISE0lQcDHeO9JxxjAsUYwZANKjc9Fg4CNEDNFoFGUqkmrylA5FTjOQm47HmYLeLnG7fMpxDDkqUpKiBhSehIW9yo1uxpSyjo8psStwlzoKntcEAX3PdE75faZAmpR/Pf43+OCXTHjlrpKlaCUMeW9kRzKiYGce20rcxRuBXGy+HGfcAtXdhjvKzqzynOqO1g57ucuROoWuj1MPo9WPNYIbj/c2vi4vbjnlQpcK+OheGw+3M/gyqhAnYkQYaSsxnEy6/Pq8RzF5/sIYrkm9yxh9FpBdlmuV12LEiEEDZ/8CN3vXkStwMVcTeqE799m7MYVgvsOpbV/z3tXaP+rd6g4vIfVX/cmRr6sVpMg3307Z15UOo6D9MydJN3bOci6+lX0vlo4686Y8VgcRxEWY9y8/oBAwMeOTVt4fDPxRCY6kHq2a0lpgOYnzYyNzZ8td+DQDi5cvJTy+AuxecsGioNF3Lh5Z5bodvLUoYJU/PX297Lv+H6eXZ7+em0/2siT965RXlqGEIL+wQGkIdm8ZStrw1FGhgfx+4q4cft6wnEbG9bw+Hbiar7HD6b3zRGxAId2vsbdG9MFq8H+EeSgwYHNryMNg1etvSmJqADBoB8rZjM8lKldz3Q2b19DSWmAaxebeXivhW0bDrBqdSUdXS8YGBpg6+ZtmNJL32A3d+/dJRqNUlFRztYNe7BFmF3bg0hhEI3YROyRxJbYcR4+zMxitqOjm46O6ROcyspyrl+/SyQSJRDwU1YW5OqV2wAUFxcRDkfoaO+hoz2zicFSJhQKc//hAw4d3cv9208ZG0u9782n/u7X82u/9dN4PNqiR6PRaDSaXCCEgSn3ErX/ttChaJYIqvvzqMbvRvjXpLV/NHwGK/YQj3cfpnffoqoiEnkXUmcuNS8wRxdjTApEqY5toVQMxQgQQOKdUQ07JQrHwEjxZVGqCDuJPqtC1CDE/G1uUkUphXKCgEIa4Vn3S1EFIv9th6QcwzSasOyWabcLUYRSg7jCX7xnqHKIxUCIAKYp4halcyWIVzC36Ddzvu+HhFXGI7gCXzECA0cNMNmzNFlk/Ce74rTjlAMKKQdxhcZi3GrZMdzPyLhLUZjJ52jcdhfcz8h4TAtV+A5kGO0Is22C/Uy+PuPyx/i6gAf39bCYu/J1BSAi+IOrcOymeK/U1N9DXu/78Hrf0G3/NCsCLaTmmZIdmxBSLiuzVn2yzC1d/+2XWfcr/xthpv5x7fzKWbrfvUT3u5d49j/+hMpj+yjZtI5VH3odX3VFDqJNHinz+75JZHskTYkdm/vTWLamZEEhdfexjfhKPbwo7WQoLnJt3t3A+bPXWbW6iqpA9ZwiKkBpTRBSdMDdvGsNZ87Mn2HatL6RJ0/Tr0AzTZPa6lq2bNiG4XN42vIUr8/LqtoaLpy9iVKKAwf2cPXqZGXhyVOH57RqzQdfOf9lPnbyk9y92DpxW8QJ8aFDH+Ph9RcYpsGRUzW8e/lrPH3SyolT+wn3mHS+HEQIweq61ezYvItwNMyV65cIR8JsXr+Fu5cXnogCPLz7fM77DEMyGhtiqG+UkeHULtQrK8vo7Ojh0JHdXMiCve84SimEGePchVucOnmM0eEIUgqePnrBQL9rM3T94uOJ7XdtOUhJhQ8rLBiLDnLj1q2sxZIufX0DE/8PhcKEQpMT9pGRFTwhmkEsFuP8+SscPryPG1eaU/re/ic/+O38zM//UN6TXzTJIcht3xN9hafRaDT5Q8q6zFoialYWTgT76b/H3PHrae0eDZ/DsV9iRW8i5OcxPdswzAY8vsMIsXgSsPOBQsy45lno2iqKN7CPaGj+BGLDsxmhinAII+LXa1I0oOiM29vOtBSeTjrWzY6ThKXvhBVqeiilULZARSLgLUUYCpTEcSwsy3Uj8vo2I+W4ICiRohqyLNymgmGM4jjVOGpcSDNROAgqUPQDXqSow1GuxazX2OxWzk706y3BFebGqxvdMZJnnseu/NjOCJNVnKngR9GLoA63n2h2UEriOINAFEEtChtQCNGHEONfVFMT+ytxnysLtxp0MczFp4r5M59XXdw0gbCQ5jD+wEHCC5zTZuyIz/f1eL2HcxaaJjP0WkH20UJqnpGmyeYf+i4e/vxvFDqUrKGUQng8ICQIAeOLrSr+j1Lx34BSbgWbUgjpZkwpBVj6S2wuYm2tjFw6Q8mJN1Pet/5jb9P5N++54wwM0fnF03QCz3//c+z7lX9NyeamrMaaCoaZ34zXRBYTwhAwh5AqxOw82NKqYurXVuHxmYRGI9iWw/2Lrn1rbVkFB49to3t4AKPUYcv2JkLtDm2vZl8wl1YUUbe5jKctz/nq2bOz7p8Pr8/Do0dzV/b5/F527FrPgwfNDA6mZ9Wzf/d+Rl+ZDPeO4dtQxDvvfnnivqfNk6JiIDBp8bluXWPWRNTXXzuBoxRnzpxfeOMZ3Hx2mT2HD3PvsiumProwWcFoWzYPz3ewPriXpmMVjIyO0dXhis3HDh2nxFfJjbhwWFNTy+pVq+nuzU5vyTVNddxtvpfWvlu3r+fh/RZGhpPp0zIbpRS79jfiLxIo248QAtuxae/o5MaNuwCcfu/ctH22bdtETXU14UiEgD+AoxzC4RCGIZHFNtERyYb1TTQ01tH86AmdHSvTCmepcfnyDY4ePsT1qwvbggP8wGe+g5/+t5/RCVMajUaj0eQBKcox5X4sJ7FTypJFeN21AsTk76nrBBOilQJlT26nFOCAyqTv3fJG9X8NNfYYEdyU8r5e/zHCo//PHcfpIxY5RywC0dC7BMt+EClLsx1uCiz2BD45y1ZZiFKEUY4Qfhy7H2mU4dCBY4EQxQhZAyIaf/vXghiY1hN1kmKkLEaIEEIMpBSVUj6Umm/+GkCKUhSDE8JuqjhjUWIDZ4AYsugAtuxIrP2pyfUeQWXWRFTlVIKQCJGa45AQAtMMYllGvE+qhVIdU7aIxkVUP1LWIaWNK5pGcPuDgluVOf7erCB7FaAB0hVBpagAESL9/qACqHYthR1XeFTYKDXMeBXp9ApngRBVCLwoLITwoJQrAAsUCFCOBfgQIoiQA2m/1zT5RZrDGMYqbDuZNTCBz/dxvN6DOY9Lo1lMaCG1AKz68Bs0/8J/Xzb2vqMv+xglk+pGRcPx9RjSQkZHwfDg9L7CntrbUUqYxzJyuRN+eHdBIVXZNrHhUbzl7oQnNjjMzR/6+YTbxgaGuP0v/yNHfu8XMQvU784wC2vtC2AYYtbl5rFTO/EoSffNV4ze6GHrrkaUIQiW+BnpH+PxjRezxgEYHQzxIN4/c++HtlDilGEHHKQpEFIiBETDFsFyH+dvX+bC5fRsTncfXM97Zy7Oef+OnZu4mIGdb3FRMWqomOEh9/P38lnPnH0zrZj7mSwrK6GoKHvvo/ZX3bQ8e8nu3du5fXt+wcc0Pbx+6HW8po/eoW4eP3/E31z+PCc3fYDWx4ltdkJjEe6daSdQP3nbk1t9TLXfWVezjeY7rTSsrSX1Hh2zKasoWnijKQQCfkrLiujs6OXi+VvUra6m+UFLysfdums1nX2PeffcF6ipqWbH9n08ffaQ9vZ2Thw/STRaQ9vL2SLogwePecDjBCNOp6GxjvDYbNsmzeIl2XPvT/zUD/BDP/rdWkRdAujFCY1Go1k+mMbOZSWk2hVF2Ie+M/0BlIPnZdxtZuwVGAEYugf21IRRycI9LZcvavjmgkKqUjFQMYQMAmBbrRMi6kwcp4vQ8O8QLP2BAl4H5llIVWJGac3sayulFI7lA+VgWU+BZyCKkWatKyYxglL97p4GOFOq4ZQawbZdxx/hqcAV8YpRSkwkfCsVRcpSDGMEIeaykp3nISiF43iZ77MgRAWI3rSriBwLYoPnGK/mU7F+8PoSb+s4SAOgCCFSby2SCKUUih5QEvAjxPzzUKUkjh10czOEgxBhPB5JJOr2JE1MGMfpwO3ZCe5jnepS5uAKq/24NraZo1Sqr4gX9zMSxlEdCFWBNNJJoq/BtcPtRlAKwoMQI0AUpaqwHcX0qlNwi2F6JtNf1NR7mPbRkaIwa42aDBDJtPIx8Ps/icezK+fhaDJHrxVkFy2kFgBpmhRvbmL47qNCh7JIELTFBagJpIfyTbsBQah7mLrtJViPCm8jWRBMk5I3PrDgZrGhEa7+45/AU1bCjn/9AwA40bl7K4RfddH6+59jw/d8S9ZCTQUz3xWpUyZjQgjef+iDrCvZilASx3YFT2Ur7p15yrYD67Cjrl1JTXUpF959kNwxBGw9sZ7zX7wz5zYjVX30D0y3C953bBORWAjbtrFtm5hlYcVixGIWtm1j2Tbbt23m9q3meUVUAL8/sx6Gp/a/xc2Lk5bANesCNHcm/uK9ce0eR44coKioiLa2SavhY0ePYDsxOto7efFyfgvimUgpGeh3J45DAyFef+0EfX193Lk7+zV43+tvMPBQ0nJlcqJZwWYqYE4RdRyBYP36RjrbE2fGNt9zF2zaWjMTUWvrKvGXGpy7mFq1btP6BsKhCGVlJdTUVOLzeykuLuLRw7ntg8dRSrFmfRXB8hhnz31x4vbu7h7e7Z6sLj793ru88cbbCYXUhahvqGPNmjoeP37G4FB6lc+awiAWsOgVQvCL/+Un+Iff/c15ikij0Wg0Gs04gjJgvkX+FYaQxNY0xf+I/3b2IUejICWOz8TT/A6MrtC1FU8VouKNBTdz7C7Ghn4Tw1xDoPjvxy0758a2HmNFr+HxFajaKA1L22yhFNgxheMUgYqhUAjhxXFGcOwnSLmWcQ9u6alDqU4S5BwnwINhrsVRLTMOOP6fAB7DmSVex2J+lBMFHBQObpW2PWG1Cg6mUQdiCJi/kkxkkHCglMIeaAY1eW5S/grm6n1p220I0YhSMUyPQApX2IxGLAwziCEthEzdxtY9no1SHlDFIEYRYqbYB45dSdR6AnTMum9hwrhWvnN9TsZvT88xCoi/7sXYzhiQXCuhcQRlCBnG7fPpBQyUCiR8HhJThps5MGUdQAwx9a0nRC9CFaFUsmNOjw8RjI+pRZylxMxK+9l4CAS+BdPcnJd4NJrFhhZSC0TFoT1aSJ0PRzHQPOUicHCFTiSlQePP/DL+DVsS3v3sf/5fSrZvpPrEAbwVZRz9w19m4MZ9Wv/gc5Tt2bbg8C/++C9p/OaP4K0oW3DbbCOlnLPSMRc0Bbfx6T3rcGzF6GCYgZsj3OPZjJjcK8fhgTHXsloIWq+3svfIBm5eWrjf6Kaj67h25uGc9weLfbzoHwQBVTWlrN1UC8Cz1hZetC7Q87RpDT3dffNuA9A/MLDgNnNhmia3Lk1/Trr65hbZbNvm+hW3YnTL1vW8/tpxQNDV2cuTx614PCb79+/m+vXbScdw5MgBrl5y7WZftXXyqq0Tv9/HqVPHGBtzL+KLi4ro6x3kaUsrm7dupv+sSitbWuX4tLJxSyNj0REePmxJed/7955QXVNBfUMt5RWlSfdGbVxbiePp5cbtry687ZpG+ntT711SVBRk/fpGbty4zXCK/V41hWdgsJ/qmgp6umfbR3k8Jr/1P3+eb/ymDxcgMk26yKzZimk0Go2m0AghMUQDtlp47rFikQKnJF4F5ygYXaHPlbcWc+d/R3irZ92llE1k7M/x+A5jmGsxzAaKK34SK/qASPiroBYW1CJjX8D07kOI/CZAu+RXSI1FBuLisoPjDDO9tyJM2FEDUys+ld2FkOM9NufHMOtR8widUgQn5rSO48OxDUBhWS+AuRPkARRViAWTLwSKUNrVqMoSONGW6ePJuUU2pUaJxdy1EeXUY5hlKGVh2x3Ydhjw4Q+sn9JHNZkgSpgULwfiFZB+oIqJ10UZKEIgRjCNRiz7WaKRFsRxRLyiNldUYjvDzK74XBhFN8opQuBFCA+IviTXQ8pwLYDnT6RwD1ISt/dNlSBCFiNEP9rYaOnh8dZixTqYfQ4E8BMM/n0MY22+w9JkgF4ryC5aSC0Q5ft30vq//7TQYSwJhGlg9aSTRbYMcGyi7W0Edu6bdZdyHF788efxVlVQtnsr0d5+Or54mlDrS8IdXbT/5TsLDm+HwrT92d+w/rs+lYPgF8b0GMSieep5E5W8eDB/5Z3juF8wbU+7OXh0Iy+vvyQWtnh14yVHX9vKxffmFklXra/k5vn5kyMat9byvPkp2/et4fqNW7ScWdg6NVX6+wdS3udDb3yEv3n3rwn4/YjYpLjdtGk1V5vPLbC3S/PDZzDj6YnFLJ4+auP1104QjoS5dOnavGMY0qC/d/bFejgc4eK5xEJi28sOXjtxjFifh7bm1PqKvHrWh2kaWJad0n7JUlZVxJ1z6fVFBejp7p8Qu46f3MeFs7Or8j0eg7Ubqigq9TAW7ufipa8llZwghKC6ci3ND1pTjmt0dIxYzNIi6hLl7p2HeL0e9h3ejdf0cvXSPWzbJhj087t/9Mu8/YGThQ5RkyJ6kUKj0WiWF1I2YNsrVBxMERGxGa8OXHFYw6hoT0JbX+UMEg2fxrG7CZR8F7bVRixyGWX14Di9OGph1x3H6caK3sLj25+L6OdF5FlIdZwxHGe+ak41ZduXCFGJUn0oNYayo0izATXPc2oYa1HM3yNUyhKUimLFDCz7OSnZVc+yJk6ESaqV7kopnNEwRnGAmYWF0r8NO8lqQ9t5hR2dmTgeIRJ+gWHUY5gmhjF/bEp55hCswyiV2OJXyhAesRnL7kapgaRinYx5OKdCquNEcW1102UUxShKgWQ1iERJ9wZuZa0H16J4ILmhlYllT/ZITY0xoELPT5YoQg4SLN6I4xTh2CNEI+56lhDFBAL/AMNYVeAINamiP4vZRQupBaJ4c1OhQ1gyFNWXQ6i90GEUjK5f/feMXb+E8Pqo+Ng349vgWigIKdn2r76P/j//I5796A+6HjR9L/FFQ/iA2KpdhF4tbNnZc/ZqwYRUj8fMm5A61yX+6o1VtD+ZPamR3umnx6cXn3Hs9a1cOJ1YTC2pKYYF1jukCQRCnH7vfBIRTyeaZE/l2toaXrxIzRrm3qU2PvzGRxnqjvDsUTumx8CxFeXVQdTDzLKXxsZCnD97ndraKvbu3cXNm3PbHh87dpBLF5KvXh3nvXMX2LtnB6lmLg/1jrF1z3ru3s6+oA0wPJw9y9snj6f35lVKsW5DDX0jj7l4fX6BOhGvv/4mly+k74pw6eINtm3bQsyK8uRxS9rjaApDNBrj0kX3fXP8+CEeP3zJ//mzX+fosX2FDUyj0Wg0Gg1S1BQ6hCWDDM3fI3FZ44Sw7/1jnNpPgBPFaPrhiepUaVTi838UXvwBUXERrDGMoWaEE0VhEN72ZlKHsGJ3CyKkugJQHpljpVnKahynJ8HtRdj2uHBl4VitGOY6HDWHGJuE4KgUhMPtjPcfTR4JIpl9YkARqVRAKltgDV8EdRh7bDxBOC7KGUVkJgS6VauW9QjHqUL4auavTlVlLGRdnAgh+vAYNUStgZT2s512PGoNZKm/6zSUQGViCzxzOBVNoKNXAKMkLZ5OwVElpGo3PG1/pw2lqpHSQogUKo41iwNhIY1BpAFC7CcaaSEY/AdIWVnoyDTLFCHEfwAOAVuAatwvqufAnwO/ppSaPxMpj2ghtUB4K8rwVlcQ7UmtgmolUlRdBC8W3m45M3LGrS4N3b1ByWvvp+jAEQI791H7vuNEv/YnhG42z9rHCPiSGzxP1rqJMMx8ZprOfpylVUW0cpfKyg0M940tsDW8ujvbfnfH8Q0g4fq52a/B7ANadHelfv4/efIwF87dWHA7IQQ93bMnevPxgdc/xJ3zL7l5rgWAqpoy/NUWCMFgKHvnp66uXtQClhKhcPqTFJ/Pz0KWR4kIBv1pHe/QyR20Pumgq2N25mdVTTkN66u5eDF1gXOcQMDHvqPrcJwYSin6B7oJlBuUllS4ltMvn3HtbvJ9o8dttIuKguzaeYhL55vTskOeSvPDpxw/cZDQWBjHtunoTL3XqqbwPHvWyue/+NvsTsIOXrP4EEIhc9h7SPc10mg0mvwjxWyrVk1iRHio0CEUFmWhOv8fAHboCaLiDWTVBxFFm/EG38Ya/g8Qne7uJbBJug9vwdYK8twjVc2eF0ljNaanmmh4kJniplIz41MoJzSrKtQwNyHw4rCwC5BbhZuqiCowzTUIkYRVKx4S23Umxq1G7QUVwRo+4x7NrEcFVyGUiSOzVwnuOL3EIj58gXnm5lPdlVMk/Xexl3T6VStVjWAwscCtinAcAQtUKM+PHylqp+j/UaASd4lf4QrcSa7lKCbftyqAbTuoDETUiWFVD0o1xGOKIkSenOg0WcUwgwSN70LK0kKHokmDJbRW8BngGvC3QBdu1s8x4KeA7xFCHFNKLQplSAupBcRbUa6F1CTwBIR29I5jdbbT/+d/RPGx17AG+xGGSWDnXkI3r8za1vB5khrTV1u4ibppZu8UZBoSw5B4TAPTNDFNidc08XoMvB6TiiIfW7euwuORGNLdrrjcjyiuxeoVSCkwhEAaAoGgqNhHwxsbEAKkEAihEArMJz2UBw0iJcWMjYa5feEx246sx3YWtt4ZCiUzwZmOlJJLF5ITzI6e2MPp02eTHvv1429w5/zLabc1bq7kK+99JaUYk8Xr8WAaJpad+CI6MN/EaQGetbTgpz7l/SIDKVgmTUPR0fuKXQe2EgwUMdQ/SrDIz1hklDu3H/KyK3XL3KnsOVzPX34hM/v3jRs30FC/htbnfRQXB6iuLaGrY5jbN59mLKKOc/7cVQDWb1jDsfVruXDhalbG1eSHtWsb+Mu//l02bmwqdCgajUaj0Wgm8OAu1eiF54UQodSSSJczauQuKtKJXPUNqEgnmCWI0v2onr+eta0QfpRaWCASRnkOIk2CrPdllbhqkQSkK1oKI/63AcKHpNb9W8S3ESU4ysQwG+P7ivh9AF6kCsQrWWVciDJwLBtplCFEEEUMRQdu/84k4hOpz0uFKE1SRAUpqkAkv/7ojAxjj86Y2wUaUMZwbtbn4om/c85TMzioSOO5BbBthZHGkpVyojhEkaIy3mM4CnhxnFEUiSx4U0FiyCoQqVfnTgYogGIUXmy7EyHKkMKH7fSRnp1vYhzHFWQFlQgZRMoVnviy5KhCijcRIskiHY0mfUpVAo92IcTPAT8G/Cvg+/MeVQK0kFpASrZtZORReo3PVxKGHdJTyClUf9s/xlO/huff93dxRkexqtbSu+okAkX5wF08EfdC2vQlN/ko3rwul+FO49xXb3HunZuEx6KEw1HGRrNnxfTt27cx3D4w/cbxljlh4GoLtTP2sadoXQ7Tu5DMFdnbpzYQs6P89794CAgqV5Vy53JyPYwsmXo2o5QSx07uwn9sbOGelaZp8vbJD9LfHubx1dl9XMbCuet72dbWyYmTRzj9XuK+q73dA2mP3d3dx761W+h9mZq90PMHXezev4XbN5KoKJ7C4/svqawqZ2RklKtXU7cjno9de9fzN3/7VxmNcfzYm9y8/pj2l08A6Ors5+mTbESXmGdPX1BeXkpJSZHunbpE2L59M5/7/G/T0Li60KFoMkSnm2k0Gs3yQgiJFDU4auW2t0maUOaVU8sJY9PPgj2GdeObQZhQtBZVdRxwoO8qQrkrKwJvUlcPhtGQ03inErPuYDsdoGJJibzJI5FmcI77xlcBemYVwY73n5yzODaB3uf1b0QpgWW7Ey/3c5yMa4+DbaWedO0Gl9x1oCK8YBtV5Sjs4QGc8DOUPTtuJXO3Mmfbbdj2Dkxz9kqMUmLBHrPzM4L7XKUmqMbsZxjGWhDJ2yEDSAm248VRI6Aysz+eNbZYDSKzBBLblqgpNslKdWPncDqh6AOl55xLizokryNIrkBHs3hZCmsFiUTUOH+CK6RuzmM486KF1ALiq9O9T5JBDcwWe1YqRlkF5R//FCoawRkdxbEsLndt5sUtd5LtLd5KzboKKqskq9TCF3vCNFn1gVO5DnuCa+fu8z9/+XM5GVvmwSZ47b41hK7f4c8HgozPnNburMPTZmJ6TQzTrYoVQiCM+DRFgWM7KEcR845w7NBhd3FESnweH4YwJ77WJic2CgcFKBSKd88kV2X65GnLgtu8cewtbp17Puf9/YOZZkjOz53bj2hqWkNLy2xXhpraSp48Tr+S01MbpmjEx+hAahPvSK+ipDTI8FDy2ZcDfcOsbqimtbmHxjWrefki84Wu3QcakQbcb76EbadnlVRSUsKmTZu4fTM5cT8ZDMNg956tBAJ+pJTx96uit2eAhw+esGXLeqprKnj1qhPLyp7FkyZ3HDy0h89+7n9RVVVR6FA0Go1Go9EkQIgS0ELq/NgKQpm5wCwnROlhZOXrqNGHoKIoswinqAQVi8+7qrcgzBqEY7jFjwuoakKUYnry1/rBsh5g2fdzMHK6DkSpYRpNGDJGODo5z1XKi6ACMECN97IUqClP/sQitwxgiDWAcNcThMnkizT1xVJMiqcmyfUN9eNWGs7/otvD/dijl+e8X4nc9iSORdswjJoEFaQOgvIMqjltvOYmotZjUns/KGKWhccUSfW5nUAMYcggEMF2MvAknoIUq3HfGwPpD6ICQBCV1d5pJkJUIohXeMffYo4zCIwgRDVSeEFY81ccaxYRa5CcjL+mGk1B+Vj8d/J9zXKMFlILSMMnP8zLP/481nB2M5SWE4bPxO6d3ZdyuXDO+RCOrVBKoRz34spxVPwiW+E47u1OPD2s3FNMk22BlERLV/OMnbx4d/L5iY5EaLvbQRtgnKpnIaPUhm/8IEXr8pdl6vHm7pQjjNwKqau3rcbz4hlmWZDB5+4Eoqy2mNPnrxONTPa+OHRiB9fPPUw4xqZDdTy6nnpiwHh/y/nYtmMjt27fXHAsrzH3u6KmroJnz++mHF8qDA+NUFwc5MSxI1y/eZtQaFLwz/Si+vKVG6xraiRg1RAaSb6/TGdrP9sPbuHStRuz7quqKaehsRavz4NhSK5feUA0EsM0Dex4pXB5WSmVFeU8f97G4GD6djWdvS3cv5/+4oFhGBw8eIRL5xO//1LFNE2OHNvLq7YOrl1LfN1y9NhBnre84MHDR1k5pib3vPnWCf74T36TkpLiQoeiyRJSr0doNBrNssMjD2E7qTmmrDRExCYbAsViRHlrcCo3MdkYcvxxqskf5cT/76qiwrvW7ZAovChfHapyGyr6eHJQZwgVHXJHcipYaI3cF/wIQs5VyZkLcrlonx0xay4M2YhhjAJlU45YiePMSGC2i7CtloRj+Ir3Aak6+yR3PS9EOSIJW19lDcw9hrcJRRIKfAYoNUgk7EXKEjzeSdHNXQ/J5P2hQPTi9awnGkvNpsl22jCcLUhjIEG8ASAQ7zMqge7JWJWFayNdBpgo+nHt0tJDiEEQGSQtKwPH8eJkrc2gFylrEGIUIWavaQsBSjUgxBBCjCes60nLYkewEcGReM9mzXJgKa0VCCF+BPeLrQw4BJzCFVH/fSHjmooWUguIp7SYjf/023j4738LFhBJVirFjZUwtHyF1M7HPViR5O1RBl8N8Pj3/4KIY/L5dyuAuZ8be4GJiPT7aPqOTyZ97GxgepamkFq7eRXBnpeoSJTwpiacm4+RUuCr9xC9NV2wm08LNIz0Lv79Ph+h8NzZn3v3b+Pxk8dz3g9QU13Djs07Geyeu1K5stHL/bbcZpkCtL/qQko5TUQFsKzkxc+5eN7ykrdOrefxuYUnihWrSiitCNDfPcLDay/Zsm0dCvB4DDxeD9FIjCePXnDr+uQi1tYdTZSVF/OipYP2Vz0UlwTpeTXCYP8w+49s5dzFuTN4F2J17Xqam5vTqkY9evQokZCRNREVwLIsYrEoXV3d7Ny1hbt3Zi/mXdQ9UZcUn/iGD/O/fueX8Pl0nxONRqPRaBYzUlZhygNYzrVCh7JokaHs9fJbdEjPZCVpkih7GLvrz7CtF9jFJkTnnh+KBQQNIavx+I6ldPyMyXpf1KkY5KrnsJQNmGYUIcTEfFYpL4maBblVpnOOlMbRF66uFGI1MP/cWFngRKOo2Fw2xAIVqASR+8+c43QjhB8hZlqKZmO9ZwDTaMKyWxbcUogKBAaOGiZqteITNSACgADlxEXlAVzbYFytlmqUkigGgBDgAxEGLAS1qIxcBiqA9Cx9larGsQdQZNPlwEYICyEkUApMTygXgqTEe83iQbADwb4Fvx80mhlsE0IkXBhUSh1McawfAVZN+fuLwHcolZRHfl7QQmqBWf2x99N/5TZdf3um0KEsSgIVgZnfx8uLNCrw/vTnT6OS7Jk5H7Vvn8BbUbbwhlnEyKHYmSshdfX21RR1Lrf6egABAABJREFUv8AJRwmuqeU3/sqdkK4/Uc/Fc6lVb0qZXower0kogb5ZUVlGdW0xl69cSbjfh05+DCtqI03J47ttNF+Z+7unvLKEsxfPpxVfOngSiOpWmna2M/nqmfd436k3ab0xQGQs8YR5y4FG7jy4T0uXawO8Z98WDMPg+tX5K0If3muZ9vfI8ORksq01s+/2W1desm3bNu7eTe199cYbb3HpfHPWbXKOHd/D9Rs3MU2TmzdvUl1dybbtW3jy+CXdXZn0qNEUgn/4nZ/mv/zqz6ad0KFZnAhApmI1lsb4Go1GoykMHuMEtnrBIlo/WlTIcDo9JZcKaXy3qzDRvv9Octal83/De/0nETkVNmeT28X73KwVGHINphmJV99VYNkPUQokJTgqkeXufI8x20JqCUIYCJHYDjfW8xCk321FFHnIfO854V2HI/OZuJDguchSUbGUo5isw7JfMNfzZxobkXIwfsBiUJWucKrmnwOrWULn1JZDmQn5ttONIQNxYTZJlMRRZThO9i3QDaMBQR+urDCMax9dCnSzXJ0CljOC/Uh2FDoMTZZZamsFSqk6ACHEKuAEbiXqdSHE1yulFkVmoRZSFwFrvvXvEO0bZODq7UKHsujw+FSeOlosHZIWURc4o3k3baL7cQfKUdhRC9uyUY5C2QrHtnEsh+hYhJGeYUL9o9gxCzvm4Fg2VtTCidk4tvu3YzsopTB9HjwBL56AB4/fiyfgxRt0f6uSImLDFtVV5fT0DGT/jGtkf+JV3lhBmRqlo2EtXf1hRnosHAWbT67h/LnEn9f5isuLgkH8AR/hUPI9PPcc2sTpS6cT32lEuXt37grE0aEITx60JXWc1ZtKeJzHNZqWZy+pq1nNaHiIaNQiEomkLTQn4p0zXyMQ9LN97QG6W6dnY1TUFHP/cTOhKa/DrRuZW6d1dfTx2qmjXLl6k1Ai5XsBlFKM9hZRXV1NT09y2aavnXybyxce5qTXSP9AP8NTrOd7evo4894Fdu/eQVNTA5cvLZo2BSsej8fD9//Tf0DA78cf8BMI+PlP//E36Ol2F05++Ee+l5/+2R/RPWk0Go1Go1lCCCHwGieJ2qdRKt3egMuY0DIWmNN2LEtyrWCB4aWsxom1oVBxi1LbHXuiEs8GJ4RyBlHOGGp8G2UDVvxvJ/53PCbhRQhv/Ldvym8fmOXuWoTyIkQ0zcc+H9kXhQXVGEYUyzIAgeN0uEcSddjOy4R7KDX3YxP4UQyRigjl9g3tSHCP+zzOd+nvxDpAJTdnVYFK3B6r+cG2nxMO1eDzlwLKfRxZ0wIcpBzBK+uJxnqYWTksRS1SDkzfZQ4xOjUGEWIVSnWR3oOJYjs+DJlkv1YlsW0PiuTWg1JDIBjGbbY8/p4Ox38qcD/zyznRZanhR7AeVwIyAAPFeAGhQHAUycbChadZ6jxIo/J0XpRSncBnhRDXgGbgd4Fd2TxGumghdRFQsnUDe37px7n+fT/J8D3dZ24qhjW26IVURxg4pg8zlvqFZS4XtWP2/GP/9W+cp/f5X+bs+DNRuzZw/muPCOBlc9EaatdWEBmLEg1b+IIePH4PHr+J6TUQpkAJB1s5RK0YkWiMUCTC6FiY0ZEQQ8OjKKUwDEk0YuEoB5FFEQ5g9Y7VlFYXY4wOcPNeH89aBwBo3FNDyBxj76kNbncaR6FQOI4rJlsiOme2ZDRkU+ItoamxkYraEs6fvTFxX0VlGdu3r2dkdGxC1PN4TG48mDvpprysjM6OuRcQkn171a6u4OzFc8ltnEV6ewdoaKwDYHV9DT7/TPuezAiNhWnuucGuQ9tRQOfNGJv21POqp52RntxMBK+cvU8gUML+k9vx+T1EozHOn7mJo+Y/kxUV+/F4TOoayzl78VJSxzp48CCtzxNlOmdOZVUZt2/fS3jf7dv3EEJw6tRxrl+7RzicfGKAJjsUFxfx9R/7AJVV5Xz1K2e5f/8Rn//cl/jpn/1RvvGTXwfA//6dP6Gnu49/+/P/gs/80PcUOGJNLhE661uj0WiWLYZcg198klDsD8inkLEkGEskVi0ulAyAiiFUbmxl02VeHUYJIr3/hVxZ4SYkuBfHaYsfPoCUFSg15grKwuPavAoPAhOEOWWiq1xhV9hx8TaGIkq8DgeIIYRAILN6tSRFI0J4EcKD7TxiXCw2xDqEkBjGloT72QzgzPm0xhCiCPACHtSUilZBCUIUo1QobhsLUDSHiAquuBVgLmFdKUWyme3SuwE7r9WoLo7TTTgURQgfQgTweLN9hBBeTyWoIhQQsx5hGhuQMkwmvUznxgF63cdDNSBRRKa9znPjAxykKAWRrL1vBYrcrBUIUQ1irn6+/bhSQxWgXawKgx9BA65g+gIIoXiB5DUElbgrmNcAgeQkgrUFjleTS5byWoFS6rkQ4h6wTwhRrZRKz988i2ghdZEgPR4aP/VR7v/Ufy50KIsKZ2jxffF2rjpF91gpJYEYzQ+ijA2EeP1ojIru6ymP5WTBoncuovO0m1QKhrry65nsnyIkhUcjtN6f66J/fgJ4CTB5FV1S4uXv7zFgdYBVpetQQk4InLGYTWQsxuhgmNH+UWKhKFJKlFLzJvmWN1RQXlvMsA2//8XJ3jSVjSXcefmQobtzXTS67Nq7mVd3+7Fi0y/ApRAMDYwyNDDKs2ZYVV+FxzQpKSki6A9y9cxDduxbP7G9L+Cle2Bk5vATlJaWzBtHspOj+vUV3HtZmJSFtpfu+6C4OEiwqDrr44+MjHHhkptt9/abr3PpvRtZP8Y4G7bXIoNh+vp7+cI7n524/Y3XXufGxecUlwQYG41gGJJYzGLnvia8PoP+wW7u3ruPZVm09Xqoqamhu3v+DPsTx0/w9HEvQ0PzvxfTxe+bf6aqlOK9986xerXbvkCLqfnl3/z0D/H9/+Q7AIjFYpx+9yIej8nuPdsB+J3/9X+ora3mp3/mR/i6j75dwEg1Go1Go9FkihB+TLkTy7lc6FAWD7YDkWz2+8sOqvYtlCFBKRynG5wxjOFhiHSlNlCubXXnmQy7Yl5+exuKqRWjKoRjh6b8nX4xouw38HzpS8gN28CUqEAxmF6U14cKBlF+HyroRQVMt1BLxav9xNxJ2lLUxG2PHSLRh1Nur0Ma43awiTG8YJjHCI9eSHCvwO2rGQI8gIGg2BWOUSi6QKwCNRDf2otivrmgn6wkX/iqcK1b849SgygFhrGGpKutUyICIoIAvOYOELkRHgEENfF+omEQ3fHbQDmrcVQ77ms+XsFtIKhCCE+8Qnso/p5M7nVQqgrbfkVuBGFXfpsfC1dELYcJ4V+THwSSY3EhFRT7gC5c+acMRQzFU6AGyQEEVYULVaNJjvr479yc0FJEC6mLiFUffI22P/siQ7ceFDqURYHwmti9i29y9LgtyKv70+0xOq16yoREzlN1phSEytcT9ZZT2nsXYUexY7k7D8j5NDR/gFhoHqU1F4zkJovx8N4awu2PMcpq6Lz5POE2gbUNjHb045EADqv2NdH7apBAWQDT58EwJdKQCClQtkNpRYCRmM3zkRirm6oZHhhjdHCMsvVBhs4tLFzdufmI4yf3cfdM4njGGeuNEY2M0T2lEXB/7+TF8cjQGFJKHCfx+8qQc4tdwUCQ3q7k7FT+f/b+O8yRLL3PRN9zIuCB9N6b8lVZtst1VVf39PgZDodGHIqk6CS6JSVxtdLyiivDlXRFibpyS1nqUlrqSuSKTkMzQzPsGXaX7fLeZqX3HmngEXHuH4FMJBJIb6sq3ufJ7gLixIkTQACIc37f9/viydXb0G40JaVFXPpwcxeHIokw9fvKcODk5bONiWCfzYzee7yCO48+JhjMfs0vXr5EQUEe/ePdFBTkMxOJUFpewtUbH2W1TSQSNO/at6iQ6vf7OHH8JHdvd5JMbl6UeGVNCZ3d7cu2GxgY4uzbp3j0oHVNdsY2q+dn/tqPzomoYNn6fvJT5zPavPPuaX74R79iW/m+IWxm3RMbGxsbm52BQztJ0nyMnZVqIWImO60OnwIM1Q/xBfPFvH2okeElQ1yV0MHXBNIBU09S4tn2rBkK4d76g5qbYecLet8UTHTBQBSmu+beg/nvhfC7wEjPY1TxpzBHe8BXBC4/OD3g8oIvAD4fKiBQFWWgy1Q2YwKIoek+LBF0GWQQp/sw8ehSZVISKdFtYVB1+pqwjrsUHhb9vjDEim19TbH9HnGaXoJVe3PzEAKEKMZUYVb0Pq4YDUkJiLGcqeBCBNGED+sbxIl1dWogcq3lxAA/2ddFCuVCKT+G2ZN7+wYhl1xsnE8QKMMS8my2AsGpORHVeuyAeY8VAkE1kr3bMDqb7WCnrxUIIfYBQaXU4ILnJfCPsL5EriqltjbCaxFsIXWHUXz2uC2kpghUF8JM/3YPIwOFYKgtO0v24cV+uqveIb/EQ0PZNOVDVzK2T5Uc4uLdAJFHYcBEdx+msDofNjEr3Vziu1K5PJt23MVIDG7Od159kQ4DS9/MiQXblKmYHAgyORDM2dbb0shwKMb9620AaJrk8Ond4BA05jeSV+SjsMJPdDqOq1gnmUximibxRAIpJRMTk0yMT9J4sIL2xwOI1FRt4QjjsezJT0l5AZ291o1vfqGf4NjiE5fFNJKK0nL2Vh/lxePlxcLmvdXcfZjOpt69q5m8vACTU1N0dXaT2ESxbhaHw4HH7UlZDG0eE2Mh2l704HI5OH72EBOjITpb1/YdU1adR0mNm1v3bpBIJPjW5fuLtlVKMTFhTYQmJoIA9PQsXquk7WVui/fi4mKkKuTm9ZdrGvNq0LWV3x5cu3qDt946zr27TzdxRDYAn/7MBf6Pv/PXl23X3Nyw+YOxsbGxsbGx2TKE0NBkLYb5fPnGbwAyupFCxwbhqQEzO+jWMNsRFacQwoMITyAmMwU0VfI2BoOgUqJX6R6EDEBybQ5O62eTs2FzYUxuymFFf0pQkkuUkJF6pmadTMBEh/W3AOUJoD7zvZiGiRKWI48ydWQ0TNI7jskkUgQQ0odScYT0WNl784p8CgyEpiFEIZnrwgsn97nWAdIvkpWRunrMhCQ5cZeVBCJI114MLX1N63odoGOaU5jm+CJj3FiECKDJtZ3rytFATIGII3EAFZhqirUGrggKUgEJY4BY2o5XmGS/jouJ5A4WF1HzSBpDbH42eUroXTHDWKL+DvzOfs0Q7ErVQl2qjcQS421sdgyfA/4/QoiLQBvWF2c58C7QBAwCP759w8vEFlJ3GDVf+SLD37pKqLVzu4ey7XiKPIveI2wXSU8hRjy3sDTZH2SyP0i3EJx+/1PUDn3AUMUFuoa9jNydJBJM34QlowlG2jbX2ltbym1j4wtMLIsZS1BSlc9o/8YWnffGwoSxBFDd7aD+aA0Sk1AoSf9DS6zSHCu80RMQb6ji+Y0umo7VcuTMLu5//JKW07t4fK2NPecamJoIMTURorfNiqoracyjuzM7c7rlZDM3Hl8n4Uha1r0+D5oLjh7ei8vjZGxoktKqApSC6VAIKQXJZAKv30F+oReHS8OhO5csK5FLiAU41XyBhLGyCObBmS6OHT7OkwfteL0exvrDDHRYWbF+Rxn1B4u4d//RivpaDS6Xk7dOHrHqyiZNrly6g8vlJBbb+GjkxsZaysvLuXPDClKJxRJcu3oXh0Pn1NtHSCYMBvvGGeofX7IfIQQen4vK6iKe9d3kfo6givVS31DL+IJM/MLCAlpajtDbFWRwcPPtzp1OB9Mzq7Nv6uzq4tjx/UyMT9PZufPrVb2q/OI//XkKCvK2exg2OwiBQmxilOmrXFPFxsbG5nXDob2dyjSys1JldGPnlBuCswjIPZ9QiX7rF9XhRCs+hRi7gVnxSRAGZryDDCXPDKFyCLIbyhKuJRtdT3QlmMkh0DbhHnfwhfV/qWNq5cTMs6ikwOlpQ4+nBG3pJnPhKfdro/xFmF/4LIhJRKwcodwYegwZDWMmutCoAaKYKgpGKnvS1LJea6UUUpWBjCDwI4RVExUcCFGGJVKFAF9qhxggUzVgBUrpqTZimUo+2e+iMiEZ7kr1tQwyD+UrxuOuR4gZrOXjeCqrMg9UKbHoKIa58ZmiQgRwuZpRZgKpO4DwJiagFyCEhhDB1METwAgSJ6hyFCaKKaxs0CVHjWXJW4gQkyA2ww7ZR5ZVrnKjlA/DHGZrsvSdLP9a5KIUy5rYdrHaLAQnV2C7bPMm8YqsFXwA/CfgHHAEyxM8BLwA/hvwy0qppRdrtxBbSN1haB43FZ99lzZbSMXpFlsQ37ZyOko/w5N7M7BkHQpAKa5/c4T2pk8iuyVDL7bHntjtXPwLLVpYBWz9uMoqcwups5mIsxa7sza7mibRdA2pC4QQCCnRNAFCICUUFHiIDlnn4ctzUlXpIng3ndG9+9QuxocjxBZkpMpFhFV3SxMPL1rZfk+vtiOE4MS7+3hwsXV2oFn76HrmjUog30vj/ipePO0mHLZuEsfHJxkfn2Rf7V6e309nQPZ1ZE466t728bvf/FrGc1XVFXi9HnxeD263C93hIN9diDMeQJiCyndq+NqlP5hr/6ULX+bZlR72HavPeY4ALreD8upiCkv8tHd2cee69ZpFI5kiZiKRpPPZGOfOnubKteuL9rdSpNTweJzs2tNEPJbk2pV7GdsPHd7Fg/sbl9XYcmQfmnDy+H4bfV3ZkZmJRJIrV27PPT596ij3b6azPYUQFJfmExyfpqyykLiKMDMT4cnzVpR7c76dKspLaW97AoCu65w6eYr29nFupbKjNxulFM276nj2dHXvw+jIGKMjY/h8Xg4f2ceD+7azwkZTVV3B7t1LR5ja2NjY2NjYvL5I4UeTDRjmk+0eyvYTDW73COZQCFTlJzCTvcsn6Kk4Bv2IyvNgjqMSm2tXuugwllhYFWrrw6iEioPIR6mlBPKUeDgnIkoEesqTVaa2yZQblEDMSAhbwevx5EFCT7tRM9ZnJyo1PEe+E6fzLpqIZOqROeb8CoH67JdRZrf1xPTHoBWh5R3ESLyYbZRD2LRqqaY78iAScRQjWHpHcp6oaZIpkqUCJlJ9GgmyMtKFyAd0hHBaFp5CQxhJlDGDMjuQzgI0l0qdlsIIz2Am+9BcjZjhHIH9SoFwobkb0Xy70Nz6PIvZBYHaIobLXUQ87iWZXLqk0cqQgAunoxbd4bAyRDWASGq9yM3GiXDCqg0pkojFBE8RBzFqXU1KYqo8mFeSyRqvE0ikBPE4YIIIs3m23PMSIpSOogDD6GWxAI6NR0OKokVsh5ditvavE/BiBwNtBuW2iGrzSqKUegT8zHaPY6XYQuoOQxkGwXuPt3sYO4KdkgMxU7QXJXRufWt1hedH2jc343Q5PKHckzLl8vD8+SZHuC5CfsCV8/nqlgpePuy1atKv0kn25Jl8nNNhRChEqD8zW2/8viWK5R3cx3wDVyGzbzAChxu4ejHTMnX/uWbuXX4x9ziX8+xcXwKOntlD24se7lx/hi+QbZ+cMJY+OZXjqu/vy7R0ajl0gNFnYJqWMKjpGp8//wU+vPktPtnybTy/YmUDPrvbRW19BT091v5SCo6d3UPrs24mxqYoqWjg6pW7LEcyaXD/RgfvvXOBDy9dXLb9Qvbt34Umddrbe4hF40TCSR7ee5GzrT/gW3X/CxFCcOKtFkLTCZ4/7Jl7biVcv3GPquoy8gsCxKJxQqEIvYPW6znTnTlZaDl4hItXPlz3eBfy8OFTCgoKaGk5TH/PJPfudG/4MZZCCEFevododC1RphAKhWltbeX4iYPcuW3/lm0kY6PjhMNR8vOXsCazeSOxp8w2NjY2bwZKhdhBQfnbi9oZIdeq8AQAZjz3/GbR/eKdmzCalSJJarmtvwR5mLHNLyOS89jCn0NI1dB8u1iT8OJOzwGNoELNzOvbNIjcfUwEJ/kX8tBJz7lVLmenL/4wpsicl0nffpLR+fOdXCtY1hiUkkgzDyP+EkggtYrspstc07nWCmZfr9l1Ckk5ydCtue1mwo8QhxG6IjHViWlY52mYAyBcCDU753OiGwWoSDuYw+h5Z5AexeIWs7Onl8DpdCDFXuKJ1duOOxx7cDjcQDhlcQu5FoWEEKD8qHULqRJBCYgwQqzCAleYSMJAAEsMTGJl584Gos//PCVT7TYjIzUCyolSgVQm8NauFQDIHGtpKyeOJUPkAzvQVeCVJozCtMVUmyzsK2JjsYXUHYbQNKL9diFugGR8W6pzZI7BGeDy0zKmh6eWb7yD8BX7Eb0vsyIilYK+ohamOza3+PxiuBcJ0XU71i4MKGldJeMPXpJXV4bu8zD+NPOG0qNlToYWTo78zRV0D4doOlGL0KzMV2e+TigeofHtGmYnRV6/i+PnrKLsylQopRgJjrH3cD3hSIRbH6ejw0PTETSpYZjpY8XiS9/4qyVCmHVd52jLIQr1cjrN9E2/kTRouzZOS/F5XtzNtFStr6mkp2cQ3aGxt6WOG1fSFr2JxOqiJG9dfca7b1/g8vUrGCu0DW5sqiU4PsPw8MrsaGem1h6Z6HDonDh5hJH+IA9ut6+5n/6+Yfr7lv8OdjvXL/rm4uTJt7h3+xm3b6z9HJZDKZUhLrtcToqK8hkYGOHM24e5ePHKEnsvz/T0DLdu3eHEW0eZmY7Q+qJznSO2AYjF4vztn/vH/Idf+afbPRQbGxsbGxubbcGNqbYng3HH4SrY7hGgPLUY2gSojS9NspkId3PKvnQBSkeaCRTbcz4i5+qPgTDdKLmWeaJCSQ1hGjhDf4R27DiRfjfGUOacORFrQNfvp8ehaRmSpXr7OzC9JsK5J1Xv1IHpqcF0SDT3WaxlahM5M4U+PQzKQKgkmAbRmmakKELFezFUX7pPlR20qpS5tFPvkqkGTiSFqERmoIVSM8Snr4NwgJq3FqGiSPceVOQh4EGPGqj4w/Tm2BQrrqMoTHSniZCHicUeLN8+ha434HAoECus5yW0dWRb6KkM1CmEWGOpHKGwBP2VXIsuNkNINU0d0xwmy953U3FjvfBxdK0SxHqDecJYUkQpVpbqDqvn9soyjeI5gv3bPRAbm9caW0jdgeQfO0Cofesji3YakfHItpbAjntLuDZ2lOnhV2+yWtlchFjgrqIUTDSfpv3y9l1bYiZ3gfm2Oz3UNJfN1R1dVZ9+L1rUh0AQm5hB83nQfO6UpQ8gBKau48r3ph4KImPT+IpTV5dDZzAKTreDuzes6FtfnpvJomEcsQATQ+kbu6On9vD8evr18/hcNJ+q5PJH93KOzeHQMWJp0TEUzX3+s6glolB/7gdO8L+2XGNGq0F8P9zoaeDv/ut0pGZwLPsG9OWDXlqONxOJRnlwJzNKeqBn9df17evPOHH4JMMT/XR2dqNpGlVVFUQjUUbHxsnPz2Pv3makJpmeDvHiWQfJ5MoF2+mZ1U+QS0qL2Lu3ma72Qe58vPooWLBqgtY3VzI9GSIaiROcWMGkZxNS5hsaarlx7RGmubER9kopysqK8Qe85OX56OntIZlM0NTUiKZJWlvbCEWCHDrcuG4RdRbTNLl54w4Ap04dZ3Rkku7u/mX2slmO//b/+x2OHT/ET/zkX9ruodjsFASbWvdkmRU9GxsbG5stRAgNKSoxlV2P3vTkb2uWhfI2Yvj9YKwiq22HoFzFwIJxK4GuCjCT25ONCoCZW8BNRp6j+aphDQKv6atDRKZQSGSkA2f1aSKT81aZhABdoByF6cdaDLwlAKjqRqjwo4cjJFSf5d6rl4G7AkU4Y0oopYYY+sbcY+WpgsQuDJXDijvnvH85a67F54i/9esR/u2//jOamkuJxw1+/MdreO/C7PqAASp7Tq5UFI0aRKQPlch0wVLhfqBqmfFkoukzeORxorGXKHMKcCBlHsqMoAgjRB66XomuexHCTNUQXU1w91rmyD4sQTiIkGt1jNNSfcSxMnRXYqG2CTfQqhDT7Fu+3arRsbJsJVLmI+fq4XqwzmMitb14A0TUWZLA7HpUGZaYatv9rhfFfRT5iFV+dm1eY+y1gg3HFlJ3IAXHDtL/u3+y3cPYdmb6g/i3SUmN+cq5OnSQ0Y5XT0QFyNcyb0KUgsldp3h0aXsF+thg7hsvIQQlpflrE1JNjeGReTezY4NZbQJRnfGxeSLmqPX6aE4dX0s9My9GcXmtehNSkzibDNofdHGgqiWjn/kC154jdYyNBPFqHi6cOYF0CuLJ5LzfEYFBksftj+gdsOq4GstY+zoTAT597jPcfnKLWCzGgd0HuHn/JgCf2B1FiwyQn6pt+8nSR1x7/zv4+rcWz3INTUcpl/k8f9KZtW2tlixPHliZki17jzE9GWK0P8ipc4cxlcmta09waj6uXPt4TX13tvey/8Aunj5ZfALv8bg4fuIIXZ19lJeV8fBeKzevrr6ualVNKdV1JcyEZnj67CUPH1vZurquc+JUC5pw8PRhB5FwbovbaGQZm6M10NnZw/lz57h5/dHyjZdBKcWJk4fQNMX4+AQzoRDPX2S+TqOj40s+3ihu3LhDQWE+x08c5N7dpxsiFO/d14Tf78blclkLGAomJ2cwDINoJEZX12ZMMrcfpRSPHtr1Z21sbGxsbN5UNFmFadhCqnJ7t+/Yvl0YXscrKaICGPqCeYwCnVLMxOrsiTccY2oRS7IoQuWjxOrXZsYeVmAG59WVpCOrTZ5zGiaD6ScmryMBlVeJqClGjD4E/y5rm/SiiltAGtm6Xmp+rQCz6tMkPAmkCYIylB4AfbbMkVXLFSEwjW5mhbmlgqoBpMhDoTDVGAIHQrhRqczED7/VRUdHPx0dVuBqa+sgv/97R6isWLxcizKHIBrKElGtIa5trUDIIB53KdAIREEkMIwaUBLFAFL6EXKtn5spLHFvqeB0F5Zt7BSWMBhlbXVV87AyMeNYFrSzNrSzmZQGW1eXdJZJBMUo1phRm4FAymqkEECMdG3X2fcmQebrvNbXcSUMY9VN3Ui732LmPmdz4Q6zgRhRrHN+HTFQTNlCqo3NJmILqTuQwrcOW3YiK7TPfF0xInG02hKMia2pNTpQfgGNJB0jefTdGcGIb8QNytajux3oPfPqeiIYbzrF420WUQFUNMHxd/YQjyd5cqsT00hPFlpvdlFSWcDoQHB1na6k/mWO4qZKQemBWrqGZhjuHqegLIDX76L8SB5/eu1bAGiOzJmcaSo8Phe7Dtdw75r1GteVl9N+t48Dbzdx82q2wFF2qGROSBVCslTUZWjQpLtviLLAHopr8+h+NMQXzn2ZP7ry+1l7iWSEv/3Zj/jjD89gmotHGMlEboPsgb5RSsuLGBla2wSg42WmUHXz40c0765lfHTtNthCCHR9cZvnM2dP8LK1i2up2q4NDbVrOs7Jc/u5dOk67d1tWduSySTXP7b6LyzK562j+3nyoIPwTObE4fnTLj7z3hcBGJkY4O79O2say0KuXrvGqZOnuHt79eLwLBUVpSDjfPzx2gTtzSA4McmNG7coKMxn397dDA2N093Vn2ExLISgsCififFJ9u9vZmR0gpHhMQ617CEWixAKhYlEotTWVvHkyfNF67i2HD7AmbNHGBkJ0vayK2ebV5mvfO+3b/cQbHYQApCbGGX6BgaZ2tjY2OxopGgAbmz3MLYd061vWRkgBVD2HhgxTAeoRB+YmyUqbDKOSkw5z8lI6egqf/tFVMBMDKBpewAwGMrYZkRakd5iVpfBCGJFwcPZdztKc8GR4xDuBGMG4kXg1RFFZ1H6IsHRQqI8lSSrzlo2vgpEtB1ljCMCpzEWCm+KlOXubH/L3HWJJEayDSECKUF1BE3fhWIITcs8z8GBUf7u3x/jP/+nJTIThABvPcSzXYPM8EuUOppav1glQpFpa6tQjABOlFpJNuci3YokUIJSuYVUQVlKZBxOtS9mbYJZKVa2ZK51jfmZlN7UX671ymmsTEsFhNiQbEthomkJDKMQtTCjfDXdiBI0aW5gdulGMPv6OLEE1WlyC7ez9WnzsF7XBFAyr20cK3t4nMUtxIpT+0+yliz3nY1EULfdg7DZQdhrBRuPLaTuQBx5fgIHdjH1cG02la8TsmBrhFSF4MbHUeIzMawf5FeXmgMViD6rBqrpdNGd10L3le0XUWcxo3Fe3umhMN+LEJagqZSi/HAZd+62IvKsdkrBwepaxvsnUfOEUNM0EUKgUuLhdHLxm3ulwBnwIB2Soqp8TFMRHJwEBLWnmnlxrR3vXitaKzIdo/FkBV+9+LW5/TVdZvw7UOTB5XfMiagAMtVGGbkjSOU8oUjXNPYeqbFqVJLWd6cnwwx0jxINWzdyoekIoWlrgjA7d4klPVkRur/d/jbNRytpvbN4VHrb/X6KSvIZH82O7qtvqFqzkDofpWbfF0lnWzfnz53m8pXra+rr0YNWiosLGRvLnBycO3+Sa1furXusx8/s49KllY1tYnySy5evU1NTSWV1LW3P07WF47EEN6+lxc4TR09w+97tdY/PNE1u37nN2bOnuX7t4fI7pJite7p3byNev5Pr12+teyybQXBiko8/tsZWVVVBWVkpbreLiYkgL160MTwcprS0hAcPrXOvqCjj8eMnJBLpyPmRkaV/Ex4+sOyzhBBUVVXQ3NzIlct3MkTbV5ULF05z/p1T2z0MGxsbGxsbm21CijKsrKvXNaNmhWgCnOUQH1q+7XpxlWMYKcecjTel2Vo8tcxmfQm8SMPANLKDS7cDQQLi/ShzAil8qWcVYOIqPo90JJkVR5RSRAf+jEyxRFkT09lFBkAWOTAWne4qtAIfSjhRnnowooj4kKVvnvkSKv4U9IAlpBphZP7nMV3zhUCRPr4pUWjEqnbDvFqoCCtIWCyabZpeb1BGDJVMZgeK6xKhzxUuQqnsMjSBgDPruZ//hXcQWh/KWNz1y9BCaKkarxmYIVQ0ifBk97t6JJb4paPUMKZZjpRrDb7OnbEoKEWxenezbGZF1JUwWy81H0uQWyyDU2Jlt25A8IVIomkC06zAVDkyiZdBinKk1EAE1z+WTSFO+vX3Yb1uYL12s8Kpg3SN2FxC9nLrW7MJM5KlxfBXD0Ezgu1za7CxeROwhdQdSmzo9fgiXy+m07d8o3WQdAaYLNzPYKSE+MzrYQVZ5ElHVU1UH91RIipAwG/djIcmMyMJjaRJaCrzuWQ8STS09CKBWiRKMtBUydSMyXDvOHVxhRgdRwP2Hq4m7PTw4mPL1mc2erN2Vxn69IJIHQVev4vmI1W8fNnFyMgIB5qqGPB7edlmZZnOWuTGZZzqw4V4NS+td9PXku6Y9zUr4Pn97Ay5o2/vYaA7+zOfX+jjznNL9HPIzLHdCZ/hX/zGNIePLG7b4XQ6OHpsF/hMvvHhtaztulz/T4CUgkjUmhQUFgcAuH3tGRfeOcvFS9nHXA4hBPF4ZmTg4SP7+Pjq/ay20cjqIgj3Hazn6tXVR/D39g6gN+pzYmUuJoZMCguLmJhYvzCdSCRIGitfpdF1nRMn93HlynUePXmYEXiwk+nvH6S/P3sCOF8oHRxc+4RYKUVf3wB9fQNcuPA2D+4/JxKJYbzCbg/nztsiqk02m1r3xMbGxsZmhxHnjRdRZ/HUbKqQqpwlENiFcrogvjPExvViONL3DNJ0oYxsq9vtRGj5KHMC1MLgdgUikflYLSJMzbstEo7c8928UzX4/LcgMoIS75Fot4Q9remTyL0BVHI2YDa1v6MMfbSDuL85s6OEQCYlZuQJaLXoyXwMOYMS4Yz9pasctztAPD6Aac6f96cjpVV0iMRUdsCvXvA+Ii87s1TIYkw1ihAQj2dmev6//9l3sfdAFBI1GOFF5lPCh+bfBwkXTN3M2qzCk+Apzb3vClFKh1QGqaAExSCmOQhUIWVwDT1mr/1Ymai5znG135OrEVHnM4mV5biY5bCJlUkZY/EsyVUgEgiRt4quHOhaGRBM1aV9VQiRneSiyMwiXU+mr5naP4KV1TrBajPedx5l2z0Amx2IvVawsdhC6g7Fv7eJ2PCraS27kYSCJoGmA2AamE4fMhmBZIJE9+I1FFfDUOFbXP1gHHg9RFSEwNFvTfKUlLx8sBFReRuLK6uYSIoc4o/UlraSqa7ycbAiDnW76B4SmIaJaSpMw6T3xQBm0jqW25v+qovNRBFFHvLrigl2jSIQlNcWMj0QxFfkRQjBd5z9JJrUMJ1O2qYHeHD/OaFQhN2V1UzeG6K81E/9/t0k4kk8LivKNGkYPH3UzlunD3LofAOPLncCIOaZHSymb822qGosYXieEFd3oIhHF6+yp2k3xc4oJGDMKOMXLn+eDz7sBKL09WcvHuzaVU1dRSndDwfovzVAWUNRzuM+f9TJ7r31tD5fm/2pQnHizIE5kfPGtYccOrybxw/auHX1KUcOH+B+KjtwxX0qRSyWvjkuKyuhv280pzi4sNZmIN/LngNVzIRmcLncdHX1MDo6xqlTJ5ieCvPwyerGMp/Ojh7Onz/Fg1ttxOPZImdxWR6Hai4wOTnJsxePGRpe32dP15b/eS4vL2Z6OsSuPdVcWoNo/SZx8eJVwMpwbWpqYGoqzLOnr86CmJSSn/ypv8RP/9Uf2e6h2NjY2NjY2GwrDgTrs3Z8XTCLdiMFoEzwlEFkBBKTEN6YezxVfAQz/vz1cX/UCjGF5c4k8KMSO0tEBUC4lm8DqeDWeRmhOejvKud375Xzdkszp3ffxcpmMxFmBBH8Y4jMzs/TpWWEDCNmNJQjAHLasofy7oGp++A4A4ZCHxm3Di005MhNYmWF1r7xEAQ/RneUpSx7Yyi/38pwlRLEFA5HNaZZQiIxWxJoBY45wioxtHDuK2U+ihEEpfT1PgDg/U/t5z/+2ufx+S3BTOjZ2Wmaay/SVY6SlrWpKDmIyiGkmuM3kYHPIJxrWza2XKtcKVtfUIxiZRmGMM1hhMhDiNVmaS5cH8pL9ZuLhetObiCQel5g2ccmsGxeFWsTUWcZY2khVgMqsDJzx1mvYKcWW1PLwHrvdS0Awv69WBxFOiPVj1WHN8yr5VToRLAHwdpKX9nY2KwcW0jdoez+X/8ynqpyxq7epurLn6Hz134bY2YDfPVfMcYe9c0rpZ7+8S85fByfGiY5uLil6XIkHV6ePF3JDUg2n/p8AW5z9v2wLGRmb+OLa6fRjBACM0M5Eyh+9b9WrHm8K8HlcyHCVqakKiwj1rvzareo6cWu48xJRGVVMdHQ0rPW80fziT14gPvgfrrv5L6Bbj5RizNhRQc6fG4icYgmJe1dQVpO76Kzawyfy8HwwBRSl/ylc99Oz8cDVByt5Nq15xhJg4aD1Tx++pJk0sAJTI/MMD1i1ZbxVRdkDP/W9cfk5ftQOBCIuYxVYNFMwQfXX9Kwp5JHDzIn/UZU8vkznyXcqvH//aNifvD8KP/779TR0d4512agf5QCZxGJVBRqQ2MF0Y4QLzrSN37DneMcP7iPO48za7jOTEdo9NUs+RovxelzhzLsdpVS9PYOEsjzMj0VZnI0iq5pJFeZAZhIWOcihaSsrJQnj3MHTrg96Yl2XUM5ocTEIlmwiocPn63b2vXy5Rtomobu0KhvqKG8rBTTgHA0xL27j3n0xHp/GxprqKur5979e6nzWZ0HWHV1JY8fti/brra+nKdPn3Pr1r3Vnsoby+DgMIODw7jdLg4d2sejR9tfD2olfOnbP80//5e/sN3DsNmhyI2IbrexsbGxeSUQQuLUP03SfIRS40hRS9LMFkHeBIySAoySk/OeaQSl0MZOIvu+BfF1OJu4KjATnWvbt/o7Mqa2s7/SAonDWZJbOzMMkp3/eU3HWylCL5yzjZUisDPvHtRi88bM0Zrx5Uf/579dzc0PO9nT4ESOX87ZRlS8i4pba0KitArN8Rg1uRvR2wOHL6DEKET7rTqmkQGc7SaMXUUUnELN3EkNphxkPFUbFEjMv+5m59rW6y5kEE3kkZ4eLj8/TU58hIjsJenNzDpVSiBFJYYxwL/+d+f51f9Uxt/9hwcRcl7WochcT9E9R8BlZgRiKG0GXBUQy3QKUokhzIl+tPK11Vw0TR9KzRcWk5aAjwCSmKZAW3Wh4/lCqo4lTC62pjffAr0QSxjLJXQK0lax62Fk3vjyU+MTWJEY84XMQqzrOchywQA5UfmYZnZd24XoWj4QesWyULebmdSfC0uIfjXW4AW7kRzZ7mHY7FDstYKNxRZSdyjuyjJ2/eyP0vzXfhghJf49Ddz/G/8IFqnD+KYx+qCXURTSWUVBcym+Qo3Q6CR6ZBxHdPFoq6i/ipC3FkmSZ0MlBPtWX1cAwBsbJ9mVO9LVWxRDBRe7sSlnM8sxx2aiqHwnIhmHSAgrompnERvMbX0an4px/MxehBC8eNJNtb+QgZdLRwXGUvMsEZrm8Dt1xBIC01S03rDsjItqC4m1d+PZWwtC4KktY+BRL86SYmKRBLc+auXwpw7w6JuWdc/0aIipkRmqztRw+crjOeGzsCAfgKSZPbGbzThVyfSPU16+j8kJa9KSId4tIqQahol0CRLJJCXl+YwNTdHUVI1jwknfS6sOyO1LIcaT79DRnln7MhFPUr2/hM7Hgxw81IA37mAgR/2NGn85d3iW9bzL48h6bjmOnNhD67Nu+vqys2Enxqc4cKiZZ486GRoco+Xwfu7ee7TivoUQNDbX0fayi7fPvcXVK3cXbev2ODhxdg+xRJT79x4Rjea277l8+Trn3zm9ITVWDcPAMAxePG/nxfPcYmdnhxXg4ZSFmKbJsZNN3Li5ckvh5qZdXL/2YNHtUkpOnj7E9es3s2yQbVZGNBojGgsvade8k/gXtohqY2NjY2Njk0KT5WiyfO4+Rhg+EsaH2z2snYEQlsBa/J2gQJsMIaaGINQGkQGEuZj9JihvI7iKQEhMhwnJtdkGG3KG3PUQJQ7dk3snufl17ZQxDVhORWqHWlgqM7dwYcbHELIMhECZM8RHr7KcAOVMlVd80ZFP3+4vU104BmYMRlOBB8XHUZ0fQ9V5cPtwVoUgNAW6AeERePAh4uSnIZzK3A21QagDCk+hpu/MHUdXPpLEyb3OI2dPLPs5rLnv8lVZFIZbT7X3oNQ0UlaDGsMwreDusvIIf+8fHcsSzRTTIHygwuiew+BykW1Bq5Al72D2/XbWkYW3eLnBZfakQKkChAihVDDHmQQRVKAYRKkxlCpEiNVY8IZJC6gFLFXbUuDBykKdzQJdjAksa96NcAScfZ+XygCd3TYrolpZuivFMA2WvvYdaFoFMLaZS4+vOTEsu99XQUh1ITi83YOwsXljsIXUHY5IZbMVvnWYii98gsE//OY2j2gnITDjScafDjDUeJCb1wx0dyG7T5RR6pmifCgddZhw5dEdOMuz+9OEx2dvUtYmogKIolK8fk/W7YtAYJh3clRuSLfYdPKLYGwQGZ6muKGBsc6dVW/XjCYoqshjfHAq4/nBp5ZoKh0ax4/u4uWN5e1mp8PWBDDS2Yt/b4Dhe304Ax4KKvLwFXjwJMLMROI43E7Kju+i43obziI/T25ZQuuuM010tw4hBCnLHUHje808e9ZNfXMFplTkF/uRTsWxYwfIz/cSyHPg07xINJCC/EIPn/3UPvBI4u4j1oIGgqpyhcOrEYlGOHfyDEopfAEPHt80UsiUSKsAgRDg8Cv2vFXJ2EiQC+eO8eLjbqYSmTfUkx0hnE5HhrXs7oZadldWURjyMPJ0gslFXqv2Gz3UVJbRO5AZmb1aIU6haG3tpLA0j+7OgZxtnjxqo7SkiLHRSXy+1dc5LizM4+jRA0uKqACh8DSXr3y8oj6fPH6emqhuXTTWrP2SMlYXajuzhPtAXX0lgXw3ly5dWdfYbODZs1YuXDjH1St3lm+8jVx49wyVVeXbPQybHYva5LondgSrjY2NzU5lNhhMl4cwzGeYau3z29cOIUCAUehHSg1lPAVvA1KvQoSHEZMP55oqVzmq8BBmshNUSjxN5u52JWiiBJXz93ObVY3kBCgrK9U0R5E42Wm+xcrILWYlpq6QmALp3AVGGGUuNutNEyiw5mI3Pxrh82c8VE3dQJTsQXmrEZ4K1GgPoMDpwHWoHIK3UYGD0H8fEHD4JKSESgCkD5F/DBXrQXmaUS4feKow3fkIWYopC5D6+yjNg9ScIHSITqPHJGpmhKQsQ6BQTCJlNWK2Pqq0MhSlIx8t0MzsGkEGwpXKLtWIR4cxze7s1y4ZBj0zSFSIYhx5FSgxK+7nDiQwvTppgXIejtUGXTtT2ZIBLNvcbNS87E+lnKsSUoVQKOVB4F2kLup8TFZu17uOD/yamf2O8LIaIVWpxTNMBcVomg7CLhO3fsbYOIF98xDUI5ZYgbZ507HXCjYaW0h9haj43Lu2kJoDpem86LY+vMlogqdX+ngKNJ74PNWFIQaCPjruDWImN25imRyfINrRmnNbwQm5xM9YjpviDcb0BdDGrHOtqvUy1rmph1sTpZX5WULqLEY8Se/j3ALdQkKReZGdSuEtywPAPTyCEbRMOUBRnh+hzBWiA4WruoRYRxfNpxp4cPklLWebmOwcQylF9Vt13PhTKzu1uCaPF309MO9t3nuiho/u3OGdA8cZemxFNZ59bzdTdzso3lXGnTuZGZ/1e8t5+Tw9yWnYVcmLl9lZjA6ng6rKMnq7hjhz+ghPLqXr1VTUF1FSUwQo+ttHcblcxOMJykuKOFl/kM47fTztWt4GFqCuoiJLSHU5nSvad5aTZw9y/dp9pqeWvtlv2l3L2OgkD++0UVxUwNh4cEX9SykJhaIM9i9/wzo2kvsaysX4eJCjxw7S2zPMxPjK99sI3B73qtrrCzyO8gsC7Ntfz+joGD09fbxse5XqdexsLl68wjvvnOXmjUckk+kJdF1dFaVlRSSTSYLBCfLy8/D7fRhJk0TC4O6dx1s2RiEEoVAYn2/zMxVsXj0EIDdxcmQHstvY2NjsfIQQaHI/pmELqVkkBWr8qvVvc9qqeapLZOX7iEQc0yFQ8Q5IPN+wQ5rGECpnJpMEmjbsOKsnicCFIg7CRDpqMRMbU09244ghZAHKDObcapozkOhbUU8ef3qtIGE6oLAcFR2DmbG5up04PLQ/a8bpLqO+4jZCL7KWhU9+EaIPQDZb7ZREuKth7CMEYFa9T7xIxxImLXFSuPMxPS6kXoQpUqVqojGYvA6A4ZsnymJll84XGzXND1ouodONlSGXwEz6MkRUKSuQej5KmSgjnQUpRAECB4oJ1Ipu5uLgqYbIgmD2eBzcK18vUKYXy7J2KTvZKFZm9DimOWXFPKzQIUgpJ6Cn378l2xqs3HhoEqvG6RiLWwVvFqu9285cbRTkoWn5WK9rDMTiWfc2q0FhZQ+XQZZon4dV91bD+vy7U/82sUT54JaNEkwUpi2m2uTEXivYeGwh9RUi/+gB9Dw/yamZ5Ru/QYSajjN5qSfr+Y7b/Vhy1PLRiqvG6UYWFVu2rvMj/qQk6YoBEt2VRHMmUIZOPOxCIajZXYiU0rpZlILpiShjAxsriiRd/tnYRvJHX+Dw5JGI7KxI07zA4jfj5fXFDHcvbr3yiXPl5Pk0/vTiEEV5+lzwnsQkORpE6hrVJ3cBYMbi5BVIxOPrkExy/FPv8nt/Pkrl3nKe3rImCQIrS3Hf+3u5/I20Be14/zSFxQEmxtKTAE2zbk6ETL/nswmOysy+4db1zJsZM0ebAy3NKANePLHGkzTSYs7+Uw20Pu6lp8uaKDjdDk4ebyFqRpA9irGOIJomMIyV/TCWeAqznovHVh59efBIM7duPFy+IdDZ3p/qP0H97uoVC6mn3z7CQN8wk5PL1/Job+tl9+5GWls7lm0LcO/uY86fP8W1q/dX1H6juH3zEXv27OHFi3Q9Tl3XOXbMsmBRysyoc+r2WJ8PIQSnzrTw4MFDLuWs/WqzEVy6dI36+hrq6utIxJM4nDp379ynvSP3wtI7F97e0vF99OE1/uuv/RY//TM/sqXHtbGxsbGxsXl10GUTCePPt3sYOw45MYBSC4UFEzOeui/fhGmyEH4QTjKXGAVKSUwzVTdRgZUpoiOkjjI18B8AoaX2k6hoLyKxse5SUnkwUnUzTU0uljS4rQhtcSFV4l1S5rrxwQEATn3qCZNj6eBU4Y6juTrBXQa1pwATVISB7sN0/UkPCEHpX/sinr5vwv73ITFbZkWipBNR9gno/6P0OILPoaiF+aKbUDIlWs5bA5CzS665Rq2x3BsgKEERYdYqWoj0OWmOvSgxgsmwdcnoTqQos8asxizBnJWXMRGFx1ELhFQVDULeyspFmWYhplqJyK2TttqNYFn0ruyDqFQhlti5/PqHYgyhnCBWepGPYNm5brWj2zjgIPNa0LEyVWezxtOB4EJ4USoE6GiyEiEm7AzUTcPEElHzsd4LE+vzPUrmNTi7putItd06FC8R1AGVW3pcG5s3FVtIfYXo/+qf2iLqAlR+IU9vbX3kbWRGEe1bJNJLBYgPO9j7A348oT9mhvfou6xQSlETzsxYrDl4mMsbLKROxhyUpf4tJyc4caySW7dNkqsQzDYb1yLTn72nGhhsH13SfnVXmcT57AE/9dldiPDo3C137OVLqqoC6DV1dN+wJsaBcj/+2BBGKtOsJtKKdJYzOjxNMmHZAkunRs2JOkaHMoU70zSpbSjPEFJlympb6OnJyOw0SZnZY9YWZBYuFDxbju7h2YMOzHn7hmfC7D9YTX1FPiaKB6G01U08muDxVUs0bDnWSKhtgvrd5YyNzjA5uvx3Q9fNPnY31NLamQ48aH3anWUXvBg+vxtjBXWa9x9q5tmjjrn6sUZUUFxcyNjY4rVCPF43b58/zvWr95a0tl1ISUnxioVUh0Onu3vrvy+UUlSW18wJqUIIzp59i8uX0nVTz507jcPhxEgoEAqXy8m+A/W2he8W0dXVS1dX74rabnXUXUNDLT/yo9+7xUe1eWUQbK5dz5sYZmpjY2PzCpIwbm73EHYcIiZQ07e2/Li6Kx9Edo1UpSAWtgJ3pSjHNPpwe08i9QgmblRZZraqnKlADf/Jho5NJiVGKqbZVCPo7kOY0UdL77TluLKfUgrp2IOZWNqJ6eof6tz7Vh93v3yUZ9fTc89/9S/8VFb/FP/LT/RTH/0DACbj53jy29Nz/bd93MCh9/eBu3tOI1GeEoyqPQhDy1w8DfcjOJdhUzu7MpCRGZZMzWtV9hxaIDOkGJW1RlKWbV8rBEKWI6TXKluT0UMcU1nzGaHKMYw2NFmD0uIIsfwcXvk8oBdaFtApzOnnaGU1y+4LVgboShAUo0jXHzZNB1ImlxyjaXqw7IIHWLmVpAlkZv0ujZf5guXWkSQz61HDEuNmxVHd2q4EphlBCgeGcqNrBbaAumWsNDlnO9Zcy4GKbTiuzSuBvVaw4dhC6itEdGC5GgBvIMEJTjToGAVlRHUvoahkcjTMRO8EZmJlN3JrYuUeIYjUjZ4Qqf9sco3Gke7gnJAK4Ox8wqkju7j9VCc2nT2h2w4K4tP82AmFMhWa141wuUAKlCsExW5EJFU/dL4TcuplE8FJkJLEi5eZnZomxuQkZvwloKE5dQJleQxMSpTLurGQUzp5AQcDfcG53aKxJI+vd1DdUka4IEIyaRCLxjEMkyq9NOMQQsxmpM57bq4OpkKhcDod+AMeHC4H/jwPVbVWH6ahCOR5KS8vwe1yUVpajM/rxTTaM3586gtK0B6O09czjubUqKkporc3M0O3sNhPtHuSeDRB34shCsrz8O8uo6916e8II2myv6opQ0gNh6KcePsgH1+9t+S+AIn48jeGNbXl9PeMzImoAG2tPZSVF1Gyt5CRkTGEEBimQUFBPpXVZUxPzdD6vJNvfuPqsv0vRNdXXrclkUhSVV1GX+/Q8o03mOmpELW1NTgcToqLCzJEVICrV6zFr6qqCpqbmymvzOfmzZ1du/NN5eLFqxQWlDA9vTUWy3/1r/8oXq9nS45lY2NjY2Nj82piqu0QAHY2ymkiar6ESBgQD0MiCLEhVGKQnVLXa24UOZcXNn6FUsSDVmJViqTqRXMfQEWfA5u4frIKRGcvjqtXrXUTTwE43KA5wD2OZiQgFFx035/+9AQ/9kEzV76aWUM0Eob2VpM//qCKn/oMxFUt/Td2UVGbQCkHoHAkohiFEk2lsyONwmJMoxfp2E2s4RRggEoApuVslTny1P/nLRYYs/OFWZHQiZBuBDrgBjUXlo1SAkv401M1QLPn3qYZBzGFUlOYhg8lNYTIfN+EysMwLMHZMHuRqgR01wpqkcYQZe+h+r8694yKdWPORJD+5eciAm3ZT5UlomauWSg1gmnkIaRjwYK/C5QLRRRL4FxLUslqaryGsSxbt8PNbVb0TV0XGdbFSUhlHUsZwFQmuuYGYX/n7zwUS9tabzySQxlrbzY2NpuLLaS+QjT++Pcx/MEVYkNbbTWxcxECxMQIcmIEB1aMWgVglkrG607x4uOuZXpY85EZrtzHIHmYSuCSJjeehkApfqh8CMv8RKX+K0iHNOa+1d5IpoemMI/VI/vT5673vuStXbXc6/YTGtv+rObx3kmKnNYNRmJy9eMJ+DVUPHfEohmOIKSfikPVjD/IFFvHmw7w/NkCG+jZN0EoZqYinDhzAE1KlKlwF2jsPVuJaZoYhkF+vo+3958gNmOS35RPPJakS8xwSwwQb+tGaUnC8TjhMWvCVFwRYLAnHSUoFIQHTcJEGE9lvx07foC7d5/MtSny+JlMTRKMuMHRA1VzQqrX56LlSAOhnimCQ+kb5+DQFM4pB3tP1PP89tLX/NjL7KzQtmfZmXh1u0rwBZz0dwWZHLciaQf7x/B4XEQii0/CPF43BUUBkkkDj9fF5HSQF8876B6cggXJoMGJaTo7VpYFuBirjUtIJrbHv+rpk1mb2Ch1tXWLtuvvH6S/365vtZM5fvww9++9WLFN1lrwej04nQ5KS4v5nq98adOOY/N6sJl1T2xsbGxsXg1c+ieJJP5vtr6+3w5GCJRToZwSfH7AD9SAqZBDrajIi+V6WDNKFWU8Nhexql2ajb/XVNEOhG8PSswTC1U/0r0bou1sj4iUifKaEEqteYVXl3Hn8c4AzYtuHxsFU3nouP4Jol3zbGilpOErM2hy4fHmlfTBRPoOzQXVS18TDkc6e9acGcSMjFv1O1USVAJZfh5Zdx5IWouv8+7ZoqFxlDkyr38P0uXFeg/CCCUxlZ/5AqKaJ/IqQkjq57I7lXIhyccwepkfKGCqUUTCh3SUIsQyay+egqynjNF7SP/ZeWMQWCtvOjCZFnKFsUx8ghNFHClKU/VLXSBiWLaosVTf89tvRK3P1daNdLM9Wamza7yCJZfpxTTS1sx2OHmwghq+68OJFfhSAhlpNDY22dhrBRuLLaS+Qking6rv/Cwd//HXt3soOx5pmmibWGv7gVnF4/5pnj/sztpm7s28s7EiHFM3vFkZqZvzhdYVKqBB9sxlSwJoQz0cqyzjkauYYH9wU467UqKhBK6qAmKjaxuH0DXUIla0QkDV2f2oeJyCo/vmno+4/JijSb746cyJVdTtInq2AZffwe5oPQ+upsXXQ+cbuP5xup5m3tt5tD/KjKDMr/MwNZk7M22hzhKPZY95YiCEQ9dJpOyH3YaWYRzSf6+HL33iIMGYSe/Dfvpu5RYe45EEXfd6aHm7mYdXc9d2BJgcmaFl324ePmudey4csjKVPV4nzS3FPG19xM1HlsVTQUE+LYdPMjkepaDUSfOB/UxNRtA0gUIgBBhGklAoTDA4xZPnT3PWgt0s4onlImszefJkcxZMpJTousaxE/uYmZnG7XYzNRml9UVnRrszbx/hw4/s+lWvMgrLnlmpldccWg0/8ZN/ib/0g99NQ2MtM9MhSkqKlt/JxsbGxsbG5o1GCC+a3I1hPt/uoex8pACxeUthyvRgEkStQJARYolFi80QTFQMR0QS92Y+bapBpLsOYn2QVVN2azH9cbTlm+VGLe2gFIkoIonvorw5Ac2lzFpguesMXM4RmGrKWK+RQYUI1KHwgLcGw0iXlJFUg5zv+BVDxReWnEku8T4uWDdamBEsTCQuTDVPSDUzS+CYZheabMRUMyhzEIPcwrMihJGIo+u1IBe/LpWcBj0fkvNWJEzrHJVygspDMQHMBmf7sCxxTYTQkaLWOufZcxMS6zVOMisQQzy1TrIVAf6rdWTbLAe3WYE0H0sA07AyFxeuZZSw+SKczeayuUq34DCCBmavKbHqYAEbG5v1YAuprxh1P/idJKdn6Pn139/uoex8NjHqoicC8YBO09t1gMLv1jjmU1aVC69BuKiWRw8MpNyLaThJ1DsQAuIJ60d1tkTGQP/mRHwOvRii8O23KGjLtA+V48O0BOI8rKki2Lt4vcqtwFG8eiG16FAjUpfEO5eujTL2oI1EKH0T7NrdyNPLL1E56ntGDtRx9+oLdh+ppfPFQMY2mTW5yd5/qXquC2ukxnNY4w4PTHDq7aPcvf+IcDiKOZPdpu92F2ZhgMQydW6VUrz4uJ0j53dx//LLRdvVl1TwkLSQqjkER09Wc/veLb75UaadbDA4yaUbH1gPXkJpaTFFRUVUVlTx9EHvnAi7HSilePF88fNcbB+lFOXlJQwNjW6YEHby9AE+uniRjy6mbYNPnzo39+/mXXV4/To3b93ItbvNK8TdOw/w+bw4nE5iEUViDVnOUko0TcvYVwjBX/mx7+Of/NL/gdttRbcXFxdu2LhtXk+sqgGbd7+zUUsBQoga4B8CnwOKsYpc/R7wD5RSK74hEUJ8EfhZ4MC8fm4D/1IpdW2DhmtjY2PzSuLU3ieukhhq8aBKm1k2b7Fb0zzo0gtUAmAqkbKDBYenPtVKArUgnFb9RxPkjIFV3iblbDXTmtX3RqBC93E4zpJwZJaPMdUo0lUBscHtFVMdBgQqYHoVLj1SZ9T7DnEjR33VecTDGubjSxlCrefEPrTRD9JJgfNQ++pQ4S6E/xiK8YVbMx/mFOcXv86E1DMTyHPVGBVBpCrHZBilTEyVbRtqmH0oFc0eTxYJkskOdL0ZZHCRNgpReAo18mcZz5lmMTAOLCyRE8rMExAewIXAmV3fdctxs3abVTcbJ6pKLAF1gsyLbL5d8mzgrC2ivvoMY0kt66m5K8l2l5AIWhActK18bVbMq7JW8CphC6mvGEIIGn/i+5i8/4ypR3a06dJs3kd6eHSSOzfTYt7epmIOM4GBtaK3GL0xH2Zya9Lqn13t5sTbLTjaHmY8L6aDHCr1cHPSvWjNVG9VEdLlBCkQQmDGE0QGJ5BOB5pDQzg0pMOBdGgIh/U1InQJUiKktGyUZv9SfSrANMEwFSWFCap2B3E0ekjGBbGwQmoC07Balx4Fb1GUnptelIJoyM30qBdnwMPM7bvLnvt8cVOrKGECPyX7Uzeqs9mSQhDN8/LhNx5l7TPv1cp8pAvqj5UjAKkJhCZwFTg4cXafJcgJUjc1CgXIBbG0sWg8VQ8lk7tXX1BcVsrBgwXM9OW+2SovdBMJJwhNLj+pfXa1bcnM1PiIJeDX7ipEy4tw9/5dWj8I52y7kJGRMUZGxnj+vJX3LrzH7Y83Z4K/EvIL/IyML/WJyyYSiXLs+CEeP3pOy5F9PHqwvgzV2tpKaurK+PMPs7NMb966xokTx/H7AoyNjXDz5r11Hctm5xAKhSEEb799hhvX7y+/A+Dzedmzt4lz50/xsz/7V/AHfNy+9YCCwnz27duFy+VESjui1Ob1QwjRDFzF8p76feAZcApLEP2cEOKcUmpZ7z4hxC8BPweMYYmwo8Au4MvAdwshfkgp9d835SRsbGxsXgGE0HHq7xJNjKwoG/KNZhNLNEgtCiI9z5aqANNMCSg5DmtNQz2o4T/etDFlMXkLWXQUc0F2oqkmkK46iLaymE200KtSoqEAIVHGDMqcBBwI4QChp/7vQAlrPiyEDshUhqIAtNS/53oFlNWlAeNFhYTGJ9FlCE3EUQikMImb8N86JQGX4liRFYdVnyeo9Anuv6znV//L0nVeFwbROg7sQi+ehqJTqTfChFTtU9V0AGUuUTZn4fKB9CLce1LXlnV+SaUh41pqrcH6U6njZLs4LTJ2OYpUeZhKB/pzNIijySoMs5/lrb0VyeRLNH0XYjEx1V8NIyCLLiCLDoAegRWLohEgknppCklnrm49AjeI1Qa8hrDGHWRjxNQA4CKnSk8EKwNVYmXnrmw9xuZVIIklouaxcjHVCeQhqEKwF+v7IIglyPqxhNQ3UbaysdlZ2ELqK4h0ODjyy7/Ao5//Z0xcvwdSWvedObLtbDaHfK+LIycaUaZCSkGxz4HXkEhdQ/O6EU4HmOlo0llL3967a4/Kc1eXYMYS6H4PiYlpEovYyc7nwd1JjjeUIMYzb9zkyADHWg7w8dXcN4ajykXfg4XRhpBtPbI2fuSHYU9VOwxetdxgFiRd6bUFCMIUvWc97ur8Eh3/MYjrUMWK+hcpMUJ4PbRP+Rh73Jmz3Wixj1gk9821St3+e30uHE4HTqcDQxpcf/Ago92Rk3u4c/Nxzj5Onz2c8TiZNHAIPWew6NjwJF6vm8hk7qzTkfYRdh+s5uH9PowViPFLZab6/W6aT3j56MoHy/azFH0DPeQX+JgMLn8tbgYOx9p+wu7escRzKdW67Fnr66sZneij9cPc779pmty8eWtNfdu8Gly/fpMzZ97i42v3566jhoYajh0/TG9vP/fvPSEej/PDP/IVfvGf/jwFBXkZ+3/i/XO5urWxWQUKsWwGwvr63wD+PZaI+teVUv9m9kkhxL8E/gbwj4GfWqoDIUQF8LewUiEOK6WG5237BPAtrIxXW0i1sbF5oxHCh9vxPUQT/zNlwZkrs8VmU0kKEN45bRClUpl6EsxUqZ/58w+l0pZVa8V/AJIz4ChChV8ijGVsU1UCbbITs6DUUi7nYaohdPcBzOijnLsaWoIM0UcHa7F/9q4hmfrLEQC8gipHjkQhYU8BF38zDBRkbHMVB/gn138r47mv/W/nKRpt5e5dnUXFyNmxz9usVZXhqXkKyWyhQ2hu4s68xQfJ7FurYX3GJKaawBCjmQ0SHlRiMuf+UlZl9pcrI3VuQDMIUbDoZlMNoml1GEbn4n3Mw0i+RNd3ZWWmKiVAaOh7/heQIdYn7m236LOWAFWDtPgbYH1CagGWELZUVmwugdXm9SGMNQWavw6ch5WBPIElsioERxDsR2SZmnuwsVkfr8RawSuFLaS+omhuFy3/7G8TvPcEX1Md8dEJOn7lNxj/ePlsPZv1k/+0m4IF4suzuX9tfK0HpeD+y2kS0SQwg9QkB041w7OlbZsSkTij/iZKx7Nv0JydT9h39gzPrmVHWer65mZF/dp/Vbz1j71L3BY4Mh4JaaC5HISiEv/ePUSfL55FKNwuktMxlILx4gbG7uWuKeot9GZY7SZNA6dLJ5kwEEKw92wVf3LlGxn71DWVZ/XjdC7+NSpk9uTB5XIQi2aLt16fmyNVVYRHFxfb+x/3cfztJm5eXJld17OrbRw5v4t4LInu0JBSMN4XpOteLwUn85bvYBlaW9s4e+Y0k3e2R0hd72/23TuPqK2to78vV9DA8lRUlfD85cPlG9q8thiGwZUr16murkTXNYSQdHS2899/499w7Phh7t59xI//5b/Fj/3492WJqDY2bwJCiCbgM0An8O8WbP4F4CeAHxRC/E2l1FI/JvVYK2LX54uoAEqpPxdCTAOlGzZwGxsbm1cYIby4Hd+DqUaQogRTDZIwrmOq7bba3ElsnsgTb/uVTes7J+56VFnTvCfqEVEN1f8/l94vOYIj0UzCmZ01mDR70Rx1qER39n5Cn7Mq3gwS+iT+ykDObblK9RimVef0x95/ic+7i4tXFg/+rq5ICRVuF75jUYgski3mqWT+NaIAGYswW/9TFJ7HkGMY814GqRVkdSOUA7XIpSaEI9MWdykRWLlIJJYW3UyzF03WYyyVRTuPZLLNsvmdPYQyMc0hlBpBdxxZUR9LM46gbAdY/K6VIOloiLXgWL6JzWtOEktE9aUeK2AKyecR6Jh0oHiBoCmHiGpjY7MTsYXUVxjpcFB00rrBcRUX0vIv/g73f/YfELxlL+xbbKIP+CZaAeXCdXg3iYtpK2HTMHlyo5uWcidGZOk6q+23eyg5UIkYybZALR28x0BVI5P9wfRzzaVUV8RprKzlyuWBZetyrg2BGYtkBeOmyRRyhTAxYgmCL/uZ1CRSz6dydzHRNus1cTU3oTx+YqE40ckwamKU+P4WOq90AqCXejCrvGiTSYyRMIk9AYYi0P1xT/qIUhCfO1eVs2i7kWPitkSJ1Jzzc2cOIfXQkSZqpnXCD4ZRCvLK8yioyMfhdWIkDYyEiZQCqUuEgKJyP+NDKxPsny1i7+sZyl/R/ssxNr6sG+OmUd9USf9wz/INl6CqumTNQmpwYq01V2xeN/r6Mr9fZ0JW9PaxY4e4dfdPtmNINm8QchPrnmwA76f+/w2lMtNtlFLTQogrWELrGeCbS/TTCsSBU0KIEqXU3GqiEOICVtrA723kwG1sbGxeZYRwoYkaADTRgBS1RBP/DbXmmoGvGzv6t3NViPLzKOZnPRootwtLXlyG6UdQWA9ywZxfgCkUQrhApYVJ4WhEygBCODCSm1WL18BdkLucTS4hNamAaBBXJMiP7HnOj+yV/J8ffJbu7gSg+L7v8nCgZooSbRA9HoRJReDTpRCyynOYJQdRJfsRw48R0TGS+7+ESgyCsVAAnJ3DL3bt5ApGX+odWNhP7nUXZRYQjbYCEctNCT9CeFKJ5gkrm1lYWbGKmPW+r2i5yrL5zYWRDKNtiA64fZ8zIZzr7CFBdjbhanh9vmNs1svCWNEkoCNpBBq3YTw2bxI7fK3glcMWUl8jhBDUfM8XN1lIVRTsr8fpc4IAacRJjg0jXS7MUAitsAi8eanbxVlr23SVzHgUxh92buL45g91u61ENgZXaQHByRiegIvIdHoSYxom7uYGQo+WnsAoUzHirqMsR/VWEYtysCbO7SkXsVCclvO1FHTcQnQY5AHF5/fzu9/c+Po6J0/peMZuoQorQIUhGYdkAkwDISRKCOZ/1wtpQipCSxmmJWim7Hvde3bTe78vo3+5by+Pr3TiKfIhdxfw9dt3CLbPWzQYhDOHjy54MRbUQzUkBfn5BCfTk1LDzI4SVeaCH6X5M9Ycv1ezInx1RTHH9zZS5PMRfDZMaWMp4eIIYz3jBIemCA4t/rpXHWtYsZC6GJHuJAf37ePxs2fLN16CsbFxdN1PMrm0jdJGU1ZeRFv7+ifvbS87V9w2kOfn4MFmhBRMz0xx65Zt22uTze9+9dc4f/70dg/DxmansDf1/8WsJFqxhNQ9LCGkKqXGhRD/L+BfAk+EEL+HVSu1Gfh24M+An9ygMdvY2Ni8dgihoWuHSBjXNvEoOlKUImcFDGFiWWNqWKKEj6XsNk1zBlNtkdXleq10dwAKgfAfQEnFQgtnRRgROALT95fuxJzBkfSTcAZz9D+NdO1CRZ8DEuHejWH2gmFlsGp686aIqboqBedDkIUIhxOVTKIME4FC5VAIk/PfylSKqNNptfsbP6ZxKPp7MJ5u4vt0CyL0ESrQiNH0LgnvJBCFwmas24ohNIMlE0RFMg4OQeaiRfbYcgVnL8ZsaSGlFMp0YCSSKCUxzU6E8qBMA2WOowgu2Y901C7bZjkSyXY0RyNp8XhtqHXuv1YE+Vi3ietlpeMXWBmoBanHUWzbXptsdCSftur32tjYvJLYQuprRvG5E/ia6wi15bBgWTeKipPNRJ88YLEcyGQwuHQXUlJ8tIWxe5sVvZhmi5NG141S4D+8y9LhojHiLjfDgzP0vRhmsboKjx8N0+xzY4SWrt3QfruH0kNViOH+rG16bxsny7zg9SPbrmdsK+h9SmnNQUZ6g2s8qzR5+fCZbzNpbpqisjQBz0zUX/wKhmN+NqAAJFrbcxhLz3ZEjgia6ZAi/8QJBu52ZG3rnRDkH27gxe1uaqoLc2YOlhYV4juWquWiFL4iLyVl+ZgpYbT3+RjHDx7h7uMHsyVuccjsr8yxEUtoPXH0EB7lY6h7grp9pTxqe579Iii48NYBPKNJhluHmbo1gFZVQDQUo/XjlX8mwv3jVDeX0tc2suJ9cnGw/NCGCKm1tR6iU06iC7KjlVKcOLMHIeH2tdZ1HWc+J88e5O7d+4RC66nZYlFXX00i3sPMTO6o51kcDp3g1AAfXtyM71ab14XTp0/wxS9+estdC2zebHL9Rm4w+4QQt3NtUEqdWGbfWfuD3AXC0s8XLDcIpdS/FkJ0Av8F+PF5m14Cv7bQ8tfGxsbGJhNdHiFh3GK94khuJLpWSYZilcXSc1YpdTBLMdX65jgrQrxaNooKHVn1ZYhPgBEDXy3KaaIIY9XZy0HJQdT0g+Xro00/hMLG7KxUwFB9CFcZAKbqy1hkMZKdrM/6NE180sPYvWKmOyR51Ulq3orS5ihnon+K2YBqIQV6SMepO4gn09dwLoeov/HlDvqNJprG/jBzg8+LzB9HFX4SFXmeqg+b/XkQWhkIf/oJ5UCIwNy5mtMPEY7jKDlv31zivBkDDZyuQ0jNBSKGMpzEok+y2ypFIqqRiHeizPHUORejzAlWVefYiIHmIWeN2pV3gjL9CJlt+7w6gkAh6bqjCynHUqw3SnSUSFFm9bch98cOVlZn2odV4su+FbVZHEE9gqLtHobNG8YWrBW8UdhC6muGaZi4yko2QUhVlJ/aTfTxvfV1Y5roya2yE3p1viyUArW3iesXs0XBpZiZCMOBRniS25Jl/gGGnTWUky2kAshoGKK5RaniMu86hVTFX/mZOOd3fQ0ZS02KVTlxjx8xY1j31fPagoHSM6unhiaLWDhBjAVDDI3PkJgnImvFRYRLqhh4Oc1Al5WlOvAwt21rKBil9W7aFnbX0RpCQ5mT+67LYxRRPfc4P1wGZH62Otv6+fJnPsG1P3kOjOP2Onl4pQOny0uBVsjhlj2MjQdpqKtlonea4eEw7pcTc0LLxDxb5ZUyOTRF/fH6dQupWr+XgrwCglOrH8N8enr62NN4mIG+dNSnUoqjpxr46NKHaJrGiaNneLoB2ehHTuzh8uWNi6S/c/sh9fU17NnbyJ3bOSa0KWpqKnj6wp4Y2SzNnj3NtohqY7M6lvBwWNBQiJ8DfhH4ZeDfAoPAPuCfAL8uhDiqlPq5zRqojY2NzauOZQvqW3e2WjYCXatl/WJIEikLMY0tEFI3sUbqRqOkG1H/XZhiCtxewIsl2iyzn5hCln8RNfS1pRua4UWzUoGUWJsLAyHyUGrtDlZmEtp/s44Xv95BImRdP0UHKqg6Jilr9KWE1NQ4TEUimsDtdGUIqbV+snQ6n5yhafSPMsRNvaoWR5kD5R6AiLWDnOkCT17WuFRiABLpuZ/EhQx3ZjaaWbDmlvcWhmvB+UU7cAcugB5hNjtbaFHcviaU4cdIapgqgsNZg5AxlOmcE1Gtc159VqVpDqPJ3ZhiPUIqJOLDOFz6BsxtcsXSCaxYuyEssdJHtv3p6pGUgdjI749hlo8JBHCxks+kzZtO7trPNjY2rw62kPqaMXnxElpskkx/0fViiaix9YqoKYTbs3yjjTjOKzI3Ugp8jRXcuN61pv0fXO3krSPlRLqWrvPYcbuHskO5a6UuRUFg7dG6FdWCn/9bTymIfQSxeRsiQ2iVb2OMTi4QUi2MqUrM0Nm5x+FwMXmHKwDLGlclDYiEmGq3zkUW5hMtr6P1Vg/Gyy4clSVz++aV+nMm9AqZeYEsWes0ddw8n5fK8hIGhtKLBD/0/jv4QxrXgPffOcDk3T7k2w3cvPqCOx+mnQyf9HRSUBxgj08wswEXp5lcmx2V0CXFh4rALekYHuTIgbf46OMP1j2eqroiRoaCJJMGUkoOHKvi8pWrABiGwfOXD6moamCwf30WOy7nhhRryaCrqxfDNHA4dBKJ3LVpSsuLeLqYMaWNTYpDLfu3ewg2bxhCbG7dk9TP1bMVZJ4uxuyq02KFufMWtFtkHOI94JeAryql/rd5m+4IIb4Tyzr4bwoh/qNSqj1HFzY2NjZvPCaPkcKLoYIb2KtA1+rYsIyyrYqFfkUWCxQgi9+1RNQ1YPoc4ChFJJYRl5bISl0KIf0oY21jC/Xlc/cXYezR04znx58MEpssoqJZ4/mV7P1++v3PIEwDIQQCqNwdxu06PPeemtOKeOvAnM2vVlGFs8IDgzdhENSB2lTpIMCRT+56PAuWSpe711IaMhQFXYKW6ttUuG4NIPzfQl14m2Q0SjLRi9t/DMQUQhtH1zTAj5W56SMefrT0cVbMGj9ISkOaeVaVrvhzlH4Yoa/XBtsESkh/RziwznlW/U4ATqzM43WWC9qUj/UkORetMg76amW422wPYsnryMZm49mitYI3CltIfc0ofP89Ji9dpOJkM4O32tc9EfGUF5Ff4Vp/Juo28Kp8nr1HdnPn2tpEVLAiiwejGnlq+S+xEXdtzlqpSxFwru3G+bu+z+BLp34vnYU6D+WuRSUEDPTB7rKs7YkH/Zgd6UlEe+chhp6l66DWvdXAVPsAzgI/3r3NXP1WN8n2zrntzgofJR4JQuEu9nA0bx8aGgKsGqzKRNMW1CtZ4rXz53k4uL+e1utdHD+3n68PXQLgB99/h/DtAcLAF987xOAtK8PVG8w2v27eV0V5GGa612uPY6GWU37nITRB0YEioh6DR0/buXu7c27bkbMNGzKeDz/6kJNvHae7bZL9h2v58KMPM7ZPTk7R2AiLJEWvmP6+zak1Ul9fy0DffUpKCtm1p57nzzqYGLfW9Y+dOMDFSx9uynFtXi/eOnl0u4dgY7PTmPW537PI9t2p/y8XqvJtqf//+cINSqmwEOIG8J3AMcAWUm1sbGxyoIkWTNmJrupImut3sJKiGCmdbGwtwC1TUrfoOGtHAbLu+zD1Gdb+uiSQlZ9Gdf/G0s3MMI5kgIRzdXNVIVzLN1qAUoqer9Xx4N+1Y0QWzpsVFbsDoCYpq89dUOrISJLEVCp7USjKSq8jZsVc4SQysh81NYosrsDZVIfo+VMYTL9+Kv8waNb7r3w1SGGSTkRItVODC890iRMK4BgcheB/w9ny/cQLTVAK1+1ReP4BypVP4mQLRrIXACMRQnMu7KOA6MwdWLSI1mpZxfWiNKQKQDKKGe/EpDO9KZEAfSNEwlGgDBhGUIBi4RpRaG77elAquckL+z6sjPBR0q9xCbalr83KsG19bWxedWwh9TVDCEHBhXfo+ie/RPn+BoaerHRSo/A1VOAt8iN1gUChZiaJ9XQTfbneCLRMok8f48gvJzG5fuuOJdn5cyO8TZXcvNixKlEsFz3Phjj9TjOhR0vX2Wy/3UPpwdVlpfrU6ixhAgHJz/60QW1xD9OT5xFSIkxAKJShoft0XIO/iyhqRLU/hQvZQqpwpidkMa2AkZfp67juVDOh5y8pOb6XkYedOGciJOOZkbMP+/poe5EWXvfsq6XvSWa9nor3yqloKJrLRHUFdGpPl6bEVpG6fgQFPj/Tj6ZpvWWJ3QNB66b/Bz5xjsjt9OsYaktnWs50T/CJCwfpGBjD7XFSlhCEeoIZSbnrZblrRro0io4WE0yEePq0k9C93GL9YNcUUkpMc/2f85u37rB//x4uXrqYc/u9ew84e/I8j+6vzsJ6Pm736ifruaitq6K6pgIpYHx8Ek2Dgy0NPHn6lN6P2njv3fdQSjA2Pszt2zc25Jg2rz+PHz3j/PnT2z0MmzeMHV73ZFb4/IwQQiqV9tgTVrGxc1hFvD5epp/ZL//SRbbPPr9RK5A2NjY2rx1C6EhRh8l9dK2BpNG54n2lKEUKDyBS0btRLNufpeuern6QW1UGaOcvFsjSz2Lq6389TH0KmXcMNXV36YbTj6CwDuRqsgLl8k3mYQSdDH+1gHDbJLUtFThcAq/TWheSEgKFBq62P8OlH6G8Preoq7mdc0Jq3XlfWkRVivjMWyS7u3AePITqvQnJYhaKioZrElTKGjg6gmA/KpqZFYtzF4jKuYdK84C/JXXVpK8dERdoj38bktZ4En6VElHH4dmfpRpJjETPXNR7IvYEqZ1CaElQTmLhJyjz2apex3WjHEjDD8YUZqIXk9yZyEZsCM1TtUEHtWxys0XUWcawMlXXY5G7uutxcfxYgilY1moO0rVeQ1i3nbPfg1thRW7zejAJuLd7EDZvGDt8reCVwxZSXyOSU1MM/9ZvM/b1PwIg1tVJxdG9KCPJTFAR6pkfJaXw1ZThq8xHYmJOjhPva2M5x5eNIlBXyvjDTRZS1ylObjZ6vp+o249SGxO99vjRMLt8bpKhJSazStEvq6lSAyuO1PPEVm7Vc6CljB8+dRvn8xdEC8sZfjaNs7oGOZoWeMsupNZQhURMjiHwo8wYjoQXER2HSCfJvMCcqUsXn8JMWmNoOlFNvnMGZ2MFg7daFx2HrmfeQOfSCKPRON2d6dfeXeji7sPsCcxnP3GW4Eh6AlvlKaX4pIvE/fSHJb+qgJ6uYMZ+U3d6KQYgsgHVPrJR5ryoWqVw+B24/E7cZR7wS551dXPn6vKC5VD/OO+cen9D7H0Bni7jf/vgyV1qa3bR17u2yPV4cn2vpsOhU1lZTiDPzaVLl3K2cTqcGEaSS5cvr+tYNm8esZit4djYzEcp1SaE+AbwGeBngH8zb/M/wArt/xWlVAhACOEAmoGEUmp+dNgl4K8CPyGE+BWl1Fy0lBDi81iCbBS4upnnY2NjY/OqotQMhrqLOffVOpqy5FUkjVGsmJY0UpQghS8l/oSAcOpvs4khyEct7fi+AWyU4LLxKEC4alC+EpZxvl95n8X7UFMPEEtZp5ozOOJeEu6Vi7dKrUJ0fe5m/N8/Qk5PU9q0n677Y+Qf2YW3O+XfqztwTaeuQ0OjrLYPKKNpr8anPx2ioeA5zkg3lz761Jx8v+/T816fwjPojhhmYRzVc32JgehYdrJLIBIZtYSFqEJFn2fleepB35yICuAaDGHEnfD0T9ONKg4ssA5TxMJLjW+DUQpLCHQilQtMEzPWgbmCSghmoh0zWYNct73vLEtdzwaWDbAOiwi7SyMRYr2fFx0rdi/J4lmmbqyxji+y3cZmMTY2ScnGxmbrsYXU14jpu3cZ/s3fyngu2mo5qnmKinEdasA0TdweQXJkkORYB/GNcRldNU735keA7lSvbmdJHpHCEh7d6ILOjXOfm5kIYx5ohCcvl2zX86CPkvNHcbXeW1G/rqkRlq4JAZouuPB+M4n7TxiM76KOFyjTxIrSM8hracQYeIlweZFm6pxTb5A240GGnkBy3sWoWSXTpp27uftNK4+zrKkIvaeV6VgcGuY7BGYL5mUin7AWmdPSC00fw2Re7Auvj8Wul3g4Uxjpuj9AS6WXWNIkUBogv6oAd0mA8ak4oYmtWFywMA2T4oNFhLxJnjztYGoyBFOsyTpXjy1Wum7jCYVClFb51yykzoTW/hofO36QUHiax4+fLtkunojbIqrNmqioWCxZzsZms1CbHGW6IX3/NJbA+ctCiE8CT4HTwCewLH3/zry21antXUDDvOd/B/gA+BTwVAjxVWAQ2I9l+yuAv62UWl8hbhsbG5vXFEO9wFTzA1EVVgYY6FohppmHQENIHSsjLMJCcXWr0GQBSXOThdQdulaAbx+i7DhKTLFRIiqAEtPIii+gBv9w6YbTt5GOk5jaSo+9goxkQyAvRkh+9Ed4qk4Sej49F/SuaSaehnqSQ31oJaUwmaoIYILXP8MP/lQlxzy/DYkws7qm1Kx993zRT0D/qvVk3hEYvWLJ46Ji3sGz32h9JgjGvDmlmiKZ1WyFQns0c04rB26gXqRcq/KrEQUVUFxmne8WLlApZSJVISRCmIkeZg071iLjmJEJZGCr1gvCCMpQa7LKFSDWIsDOUor1nbdcRmyUDc/Et3lDsLNRbbaaV2Kt4JXCFlJfI/yHDmU89u7bi0okibS1kRwfg3FrorQTfvKNsc2vIbBTs9f7Em6Gbqy9JupSPLzaycmjFYQ7F9b0yOT5kxlaAm5EdPmrQYuG8RdWM7OISFjRUIzHrZFMGihT0dnhpq4EiIVABpAYJDst4UrFIgiZunlIzSPkVDeoeSKn0Em2dxPRK/jwzjESoSDeAg8lYoJ4Kttr/hxkIi4Il1i1BmazNKWUGMn0NMFIZEfKihVOZNqG+nChIeZNwspbahl53MvkyDQzk2Ec5UUUN5YSmtic93UhrnIvTxjn7oPFs3JXw8unfTidLuLxjTQfXpxodG2LMmXlRfT0d675uC+ed3Dk2H6sNXobm42jqqqC/+d//CdOnT6+3UOxsdlxpLJS3wL+IfA54AvAAPDLwD9QSi0b0q+UMoUQX8DKav2LWPVQvVjpAH8E/LJS6hubdAo2NjY2rzxSVGKqe3OPBXUpsSIKTCJ3UoLmlkzkd56SqqQLyvdiRcduPKZXB2c5Ij601CjQQ8PEA84VCX+msfRYHdMazhffIjZTC4C3RBB6DsStdQgp4iR6rCxpY3wETaYOq6wL8ljZRzCeXodQ3nKCvTGqT3k5dOEDMBR46mFy3vxOpC9mrVxDq2+aOzcAwwTmZ+YqM/tyECurC2pWH0COPEg/kZhBO3geRj+GZBeYMVRfJ1rzVzDyVtTluhGiEGIDmMbSa0IrxYj3o7N1gddr/fQL8llf8MEEVgLBeqyFbWxyUYzkNGKZBBUbG5udjy2kvkY4iosRDgcqkaDiR36Ysr/w3fT/6n8h0rZ03cztQHq8VJxKRQrOpg0KUndNivSd7Gpuo+bvBwbj1Hzel9HHR1cShKaWsXFZAe7Du+nrSU8ahLSOq0yFItt2dXYbQjDeu3lpwEop+kOS/GUCHsPjMwT3HqGwfWWWMg27i3h0I1tI3X+mkb6HPUzFkrhclRQLwfDzYabq95MXeoq3YQ9GJDOjU2mFQB9z71VYgmdeA1mM6xPF/Nm/KGeydxSpC3Y1OQm3zavrOu/kjKRiqDMzAaXiYGXG41z1RBcKqYs5QQfyfCTmVTd951QtnZesSFndpVN5pJ57l9rYe7YpdwcbhFIK39EyOmbGefrkOUbHxtqC7Gvez4On9za0z8V48PARZYWNBCdWN0nxetcXwReJROnu3hqx2+bNorm5gTNn39ruYdi8gQhAbuKC80YtMyuleoAfXUG7zsUOq5RKAP869WdjY2NjswoEvrl/a+JdpGgkaX4DtRY7my1A1xo29wAlVVDckn6sTIyu/7ohXYu670MtqsPl+s1WVjIdoDalKMwsCWTFJ1Hdv7FkKxXrxOE5S8KxEuvSMEIWocwFbZXC0x9BdvwBoHBU1Fs5kYMP0HyVJPs60b01MH/dJJFA5HkhHgYzVY20qAI13jnXxnQWc+6HNEr2X0Ykp0DPh2QkM8N0/jxfJiHavWDMBSs4rxXeAZnzj+UBlQeD37QeOwvA2wAD19DHpjHyNlFJVRJNlKOSEyijY0NzhJSaRpkCIbcqU2GtQubKxO+l9w+usw8bm2wERbaIarMtvCprBa8StpD6mlH8+c/hP3qE/HPnEFJS9eN/hZkH94m2L18rcSuJdW7PeHRnC8vWw1gBCRMG2tdmTbrZ9L4YovqdJkKPlrYNfn6ti1Nv7UL2LG0FDFBTYPJowXOVzSV03+mcE411XUOZCiGgI9TCEZ7i944hyopJzDtEPN6Eh0dzE5xYZ5LJ6GkwQZkSZYIZlzQ2OakoqiJQIJCxMIUldQghMZEEVR7lb1mLATMODwfebs4YW9QLTb7auceaQ7KnVkfNm1Jo+Ypd71RaIqsQeHw6PMw8x7x8H/5JFxMpIfUTn9rLwI2XSF1Sc7yR1kcD3Lu0+YEKwiGIH8zjD6/e2rRj5FEH3Nu0/ucTi8URrhBNuyppfzmQtT2Q5yU0E8VcUNy2sDgAy1+uOXE4dI4c28uNG7fX1oGNzRJ87guf3O4h2NjY2NjY2NgsgQcpdiPFLqSwgk51+R4J83eYtf3cOWyBS3vWSphzw7pWUqLWXatxczD1KUTgCEzfX7rh5F1E8X6UWL6sipQFGAuEVOekRHb8/txjZaayRBNR8ltqGP/4JdV7dBxFguRsgqyRRFYfxOy4BSoVqF5Ugag+a83ihUADCtUY5tRuTLkLnB6ECAN1ViaqJqDAi/DutvbX8lEVn8gYm1FzDKRAiVTysx5AOj1kLAnPDKSdtBDkuj6EVoo2WwtVKfAfhoGPwJEPBYdQg7dg5tqyr9+6UU4004WZ3CTXJRUnOTOCI69kc/rPIgzkAbHU30JcOZ8XK8wizo0Ly+hkm2qf2bzWCKq2ewg2NjYbhC2kvmbU/LW/mvFYOp1U/vAP0/EL/+f2DGiHITcoXGKn2gbP8uTJKE1eF0Z4aavW1mEXe6SGMLOtb+dTFMqOVC4o9DLZlRaTi/P0udoi7TeH2f92Ea7pcbT8PFwHDiKdoBKg4qYV7JdqO/HMQ+cHnTmPW3x8D87nV7OejwQ+ydC9HgDMxgaeXs20ivYeKebBrbTiVlAaoG8s09rmxLm93LialocPHduFQs1Z+JZVFNLgrGSiy8o8PtBSQfJlD/WHa5hOCu6mBFS/38G5T9Ty4dfbN7zsiRKgnyjmxqNWglc7N7bzBfR0DNOy7wgPny0zqd4gurt7iZXH8PnzCM1kWkw376kiHkvy5GFnxvMO59p/svLz87h27caa97exmc/Bg/v4nq98O1NT07x97hSf/7wtpNpsH5tb98TGxsbG5nVACAe6eGfBc2400YKh7EDDN6rOV8lB1PQDxFLnrKI4wjHi3uVreyoWrCUohaMjU0BM9qbne3qoFYRATU8gywpw729BaAJlmKhUVqGazfScnsbozD2HEzVnMTo+yh6PtxE10QeA1nAWNXM3cyyuFtQ8C1jNkY90ZpaeEUYQM/pk7rF0HcjcrlejP7uEiKUE5IKTEGyFwhZUNAR9l62xuMox938bsUZ/znNYF8qBRhFmvANzk4MhjNhLdLNkvmvyJjMF5JNbSM1PbV9YpmrpNa2lsUVUm42kFEE1EEdQhaB8uwdk8wZjrxVsLLaQ+gbgP3IYR3ExibEtiOzc4WzYjd8Oz1+fHgvB+SZ4vHQNzYnuMULnT+BvXVpg8oz2cebdM3z8kSVeVu8po+te2iLH4ZTIeXUvjXiSvvwLHCn+vxAiNQGZTQReECgYHMxt1+rfVYuj+zqGdKKZmROD+XM5YWZb3MqFtr052ix8Ex/dfck7pw6SCCfIC+RR5ink5rdeAOD26FSJBJNTEaQpaL1rvQ5vny1lv+rC6BygpKyGsZENrkBsKrpHxwiOT29sv4vQWLl/y4RUgKGhES68s5e71zMz1CPhGP68zOviQEsTt25lToJXw+TkFAX5+QQnd2Z0uM2rw3/8lX/Oj/zo9624zrKNjY2NjY2NzU5FigYMdY/1iRA2rxJKTCHLv4Aa+vrS7cJP0N1nSWpLW/yayS6kVo1pWOKla1xAqDPdj+YlORxMP54cpPj8u8Qe3EJ0WPPq2WXeueVeJUApzK7nOY8pak9htN8A3QnJBY5j8xd9cqwDiCwJOddaQebCkRl9hoznIdDAW4oIhxCREWujswxGHoARRZlOmOqwygYVn0MNPEHc/xbs+tLGRfXPoVDJfrYmozyJGTPQPOu1z10NkwjKUrWc0wgUCg/zhVRLqFqPY9wGr+PYvKFIJO/bwqmNzWvMlsUT2Wwfms/H7v/rX+E7eHC7h7LtCLkxl/yrsHx+/3I7rpbdy7Z7er0PVVqxbLv9w7doPGjdEOTluXH7Xbx1oY5vey+f7zsW5Evn2/jCD3n4xFcC5JU6eP5xHCVdyOqjyKYzyKbTyKYziIKU5a5UJGUek8/6so6llxThS/YwUtTCf28/zd38z5PU0sJahn6hckyOFrxByeTyCwOfOXWIhrYQuwfi7Pfl03qpjbcuWK/f++cbmOy1JpCT4yHy8p388JcK2DV6j8TYBGY0xsEDG1/zRAhBc3Hphve7GF3PR9G0rY2vuXjpMrUNZRnPefwaw6PpDGJNk7S+bCUSWfsEJ5FI0tBYv+b9bWzy8gL85m/9Kj/6l7/fFlFtdg7CijLdrL9X4obHxsbGxmbNCJGPQ34HVkbWm8zGZWy8Cj+dpk8gSpZ3VBGTz0AtPz80jQmEyAel0LuvgasMs+FLxI7+EJG3fgDnX3wH1499F87v+Cx4POjJUSLSxdcdB/ln4RZ+ceYQvxw7zKijAAA1rsN0IUxml4ERZfsw+p7jOHoMz2kHztNvLaiLOm/NJ+cywIJ3KMd6AgtsYh0TXhz3voZ+7/cRUwOYtGM2fc6y9JVFkJgCzQWRUZS7CnwnUF3XIT4NUz1oU5twVYgkQt86y1Aj2rtlx5pFMcHC/B9FApHxnBchRtf5wYti2fva2KwVL5JP2yKqzc7CXivYcOyM1DcEZ3k5Zd/7FTr+/i9s91C2lQ2z9n1Fviye3O1jl1dHxZOLtjESBj1mJbVqcMnzkmaSC47nFL57nNYbXXzptI6nz7LsSQCOsS4c4UnyNAdfeKeEmz0taMU+CN7M6EcIDdF0DmOwjRHj86hkT8Z2peDKdBM9N3ypZ2a4/MEMjypO87mTUUoGriPnv5Fm9qRXLhDMVY55sVqw3x7DzSQzAOip/l9ea+fCZw4wcitdb+TE0SJK+rpJPsvMonTpG39RKAGPerduwhIcn+Hs8XNcvpltkbSZlJTm0dNpRZpWVBVz6fIVhBCUBOqJRhMkkwalZXnMzITWfIwzbx/n0qVLGzVkmzeQ3/ztX+X9999ZvqGNjY2NjY2NzSuEEPlo4gCGurXdQ3k9eEVc9FSgDLWc/mRM4Iw1Encvvp5gEUaRj2vCBfFJIse+iOk0gATCFKj4PXCAqNJx/8hZvvEfhvnxP4wSCmWuFfyq180/+o7D/IWnYzijsexcUYcLZ+MQVI8D1yEBGlfwvNtMtD2A6n6KEHJeZmuuN2MF83bNk/63KZCt30jvnZSgmxiOftj1PcgH/906VHwas/DL0P0tSGS6PImEWtlxV4ULM9G1wX0ujpnswTQakVquDN7NIoFVL3Uq9bgIGEdlBH7EsXKE1jOuEmBkHfvbvOlIPot44wOSbGxef2wh9Q3Cd+gg0u3CjC5dN/N1Rmy4ncrOJjIdw3u0gdCjtiXb9T8ZoPT8CTytS9fH0WMhjg5couVAAfpAcO55zaVBLCVyGQmYHODCF/MQ40PZnSgDhi4y4/xeej/sydqcLCqj53b2fsHBKa4+9PJtDZVURh9RedCaFM3kBRgZnnfDohSP3INMFFpCp2mazLhceJxF1mZTYZqKaCxOIC/AngN1vHjSQTKctsQpLZCcPl3B9euD9D4bpBjwFnjYd6CI0MMXJEW2PaxjE75NvcdK6bq8tQsa+a7KLT0eQN9gN4VFAYITM5SU5dHaCUop9h6uQpdOEnGD4OTUsv0shVK2XZnN2tm9p4l33jmz3cOwscmJtOue2NjY2NisEyGq4Y0WUrdSHNoZKDGNCByF6XtLt5u+g+Y4g6EtU0NSTRIrVMSPfwHlSM+9xPxMP5VE0c6vPA0QCkWyugiHo/zv/+MWDX+zhXeeXsnarjXvhXiOci/hNlTgLGPDJ2DQBCw3tvxRFwGRsCLhU6Kq090AjlrSircPCM8OEKUg7gmj3CfRzTwY/hhUyj5Yuoh3+KGyCq2gH5USmE29gcRYHWpiDIea7WseSYONXn7VVBGmyrHesomoaAR8W5256cCqD2Ug0FPvWhgoQwCKZOrxej7DieWb2NgsSrUtotrsWOy1go3FtvZ9g9ADAfLPn9/uYWwr+iZkDe50EissDNv2fGVClRCgzwSzNxiZUarm+NJRq/nGV6m+EMh6PuFZ3CK3uzPMdFETRnACYzKIMRlEhUNEJub9BcMkkgnGx4OMjwcJBqcYGbHqjAbHp5kMznDo0B4e3WljZirMnY+f4fF4iDcXpc+xr5dE0roRHx8Isu9cI7W+GBMPXhKfjiDysseoy439cRIOwc2X7Rva50p48bCPPP/G2xQvRVtbB8PBDpQzyPVbV+eev3z5Kh9e/JB7D2/z4vnSwQDLIeVW1nOxed34yZ/8ERwOx3YPw8bGxsbGxsZmUxAUISjZ7mFsI2/mQqNwly3fCNAiy4iocx0KlGOBoJXjpX3vfFH2kylM0+Snfq2b50ZTdvded449LNzeazjKC+bWCYzJICoeh/g4xMas/8fHLTtCYliZjHEgmXpsPWfEEyg1BkRJymHMyhOYTV9MDUAnfPkxwm05WRnGMAn900QfJzF6n2IGB3MmwYrkBq8V4MOMt25onyshGWtH5czy3UzGsIRUuaBe6nDqsQFivUKoPc+zWTuSvds9BBsbmy3Czkh9wwgcP87EB9/c7mFsG1J784TUlZ7xzMg0alc+Yjo723I5fOXZ0VfGZAjy04+jZg0Ro5EC/bI1eTHj1Nf9Twp/8AvMDLsprA3iVg9Q4hG9yS/y4OPcEYV/etXkk+98EiNkZZBGNSeJfc657Qpwiv6MfUzTtO69U8RjmdmJI0NB/uDyXb6cX0F8xsrYjsUMSso8vHs4j+n7TxCapPxwPV63QbLtRda4HHJjo5idh0sYutS5oX2uhHgswZmTF/jGpa9t6XGj0RjRRbLlI5EotVUNDAys3W5nZHh8zfva2Bw73rLdQ7CxyYkgVZ9kE/u3sbGxsXn9EUIgRBVKjW73ULaJN/T3Lld90FzNYn3gq1pTjSOZo8ZqXWXm633u7QYqy738zlefADAyMsG3/+c8fu67LlDoTPJBu87Fuz1U/XGC3/zZMip8w1l9CgGFR1pJNuxBJKysUFFfTOLAj1pvrwAQSCO+YCU0PRalwDAz542mmiBeX4/7JZAKUhdaFBUqwrwRwux9CA43WvMxpCMCE5klgABEIslGinVS+TBZzm5541HGGCqpIRaK5ZtOfIltUZSSCLGeMb2hn3+bDUDDsp+2sdl52GsFG48tpL5hePfs2e4hbCv790h2NxfNFVyOKBd3+gNzH31FyvFFMS/STmAqhRDg0ATRuMn4eHTZY737fgO+WYsQBTefTjIyOLMJZ7U0YhWTHaO4Cn0JIVVoktKDZeQVgzbVx5PIESJxLz7fGEplzqvMqIEqq0XEeugPfRc3f8PBnneqGR4uIf9gHr7CF/jVNfLE75NXzJybTn+8lt8eGuBgfSPJrmxbnOHBKKPjgtADa4KSLC7h1s3MdtVvF2Ttp2kSw7Burl/myPQcC87gqvOSiCQwxiZ4+2QJMumg40obgVI3zceKGPv4/qLTFbe5/DWxUoRb49rj5xvW32oxQotH+m4HpmlSVlG8LiG17WUXLpebWGzj3iebN4OCgnxOnz6+3cOwsVmUzZwc2djY2Ni8OUhRgvkG/6RoVd9DaqEAECgFSqQCcOcmumJeG9LbTNMSJTUdtZIA25iOMiOpHgXKra9Fo1w/aoVinDmDwIcih23tXBsNPeFFi0xDuBOj8fMgXBAey2pa6nNTXlTK0PgIv/Ob3825U8O4xw3+7V9v4kZrGf/hN/r44w+7+fn/kllr9P1P76fwu34UdfWfI6azBUunsxVhujGHLEFWNH0KQ8QzosuFeQCRYc6XvuiFAIezkng0c8yGN3VNOPIxQnEmvnkMPTGCJ3ibIdmCs8xBReiDVCfZL42YmgY82RvWgCCAGX+5IX2tBTM6gXTkL99wy4gBfiDbKnrlLHFd29gsSQEC33YPwsZmUey1go3FFlLfMNz1dZT9xe9l+H/85nYPZVtwvLiVEQforW3i9kXnou3Xg1eaTNxP39zvPbB7W4RUuYpaERFHgIVmu86Ai9IDJfjcYdRAKyrYCUEwgITcx5ProzyWkl8PfB/HWySnC25RlniOVlBCoqcfvenT3Go9SKQyBBNDJMYmGL04wb3qz/D08VkaW1zU1ozQXPyHjCcq+JWL71Od7+BqzzOOHG/EF3Ew7Y7zfLAHwzQ4bTYwJT0YzbutiFGnC8gURhf+TFSUlZGcTM9oJidnqKmsYXggHW2a7/cw3R8kUBagZFeAyM07BFr2UXMwn92BZ0SX+bo0Otopq6hneHA9N/AWzoCLia7pdfezVl4+6aW5YTdtnVtvF7QYLvf6fq5OnT7C5SvZdXZsbJaitLSY7/+Bv0AoFKagYCctGNjY2NjY2NjYbCyCegR1KLq3eyjbgy9TXBOUYhidm3IolZzATPbOPdacx0DbhoBPY+VzV81wk9QzBSdhONHjTmR4GELP07VEAWWGUI4ZZF4JzuKfwQxNkhz5c4j2Md1ew7flFaAd0zmmjyKmXDB1A5cZ5Z3mXt7923XEf8pD10wt33zk5F/9j36+7dtP8Pf+wafQHB6Md/8m2lAXTLSjas+gvB6EAvGNn0NWlyOKvYCCPD8mmRmmSpkLhFQnEEqfk0xgLZWmRWZt2gQUSviY1g8R/eY9St5u5In6Ar/xW3n89I89gSVikcWLa3Do22EDSk0JPKhtrOmbjLWi+d/aHuF/UXysT0j1Y4upNqsngKBiuwdhY2OzhdhC6htI8Re+8MYKqdlsYmTGghvLPH17bnbV+MqteqemTQKAryqPkuY83Goco7cVBlpz3qprqW8QzaUz2BXk6x2Kr9NIQekh3tXy2eXxsuvZTf7zbzRRWeYjPFlKze5dFJlD9AwkmR6e4cE3Z3hSVsAfPH0v1Ws/lfUliGE/4UoH33z6MdPTaQH6zKFmOsfh0ZUhAPJK/NnjEpaPrxSSL5z/HPcfviCaTN8YSyH51PH9ODvDmIZB2b4ywp0jVFQHyO97TOyFNYkt8E3hD9/AnEwgCpbO5jbjCT5zyOD/GREYxvquKzNpLN9okznQdGzHCKlOp5OpyfVNbBKJrbc+snk1aWyq59/9+1/C7/PR0FhHeXnpdg/JxmZJpB1lamNjY2OzAQgh0ORekuYbKqRuJ0mVUYpmaxCYwTsrLgUkjCRoCmn40WMmItQLkbYVHEUDGUYGHDgDnwHTw6GzzxjthPGOaQoe/jrh5+8x2roLX0sh3sY+XNEHOOMT7HZ0sesHfpCf+MXvSvUWQikHhhmGigNQUZYS9CIopSF0LzJ/GqYfWc11jeQChVOkzlgpiTLzkFowc8DKwN0XQuv+ADQfytMAQ3cIqW+j678EwRgE4HJ7E9/8kwEgjqGWse2d7sV9s5PomYY12SNnnsA23/epKGZMobl3ipLqBLYvCN3mTaMEyQnABAoRdn1dmx2OvVawsdhC6huInhdAOByoxHoLstsshTAypcdI7xDzinNsCYEiH5GBbCudhSgEhbsribu87DlhYo48gi4r63QpZGoSYEbiNB6sof2hVZs0FIrzO78zTHi6kO/50vfzCz8U58FdnamuUZ4NT6EVBrgbjNJ4qAlPMs6US8DTnrl+y2uL6O0a4tHVTk6dOM0371h1fSsrS0l0hRGlCt2to5Ql4rp8TkxTzc1JHA4nXzr/bcx0G/TcmER4rVmprmm8e/4k+1SAkUu9czGHdc3F1FaYiLbbCE0QaKpkqn2AZCTJuKuWuMdL3Cikv74ciaKi63bO1yPe3sF3f66F3/r6GOt5n1Vy+3/oeluDaJqOYWy/AFlbW83zp9nWTavB5XZt0GhsXjc0TeN3/uf/TWlJMVJKmprrKSws2O5h2djY2NjY2NhsA97tHsAbgVKZazEqOYFwbe1rL1QAWH5NSAknBA6CqxRX/31IrK7cimEOgWoEEbP6iwWpLfw9fvCnQZkHMPq+g+DXQySGB4j3DWC834T+yWNIlY+Y6EHVnswcj0oCcUzVhxTVgFXXVyQciOgoZsE+0P2ACboPJZ0ZyzBK6JhJN0ayH8QUDulDCIEyNczgGI7Hf4CYeGg1lh7MSB79Fw8x/TSIcLnQy0pJDPSiqSSnPqURDYOvvhRZfAGViKFeXs/9Qjz5I5xFP0R870IPsFWywrq2m4kR7UVz1273MAAQ5CHExDp72f71F5udigfJ26RrHOcjbCnFxuaNxf70v4Eo0wQpl2/4JqA28YbJzJQho+MzNDRX0Nk2vsgOG8+BAyWEHk/l3KZ5HBQ0V5OUGgOtw4w9HAKGeOeTkaVcadJU76X7ZhwAd3MVHbcGUhsUv/iPuvC5Jvnwzi72O8YIdNxiuOLL5HnLcfg8TLj8TH/9BXcuW2PzH81n/+l6VFLR/WKYtqdpm6Pnd7vxer2Ew2HKiovQcdETDzOixZkaD8NUMGtoI9/KjEg8ffIo02qK/YWVBBI6gzcyI2dL+h8iIiGKDtYhZ8ZwFDqZAiKTcW4lD3Pz4gCFFXEmBsfwF3r57pLcgaSm1BBPHvK5zxznT74xtJJXMSdGYvszUsdHpjh38l0ufvzN7R4K1VVV9PdMYBhrf10S8aUXCRoa6xgdGWNmJrRkO5vXj6bmer7whU9t9zBsbNaG2OS6Jzsl2cDGxsbGxuZ1YoGQaib7kGrPFtYyEzD6cNGtSi9ABA5iuvwYjANxBONoKxVR80+ipHUuDsceEJbDlEoYxP/HnyBkLbJWQ6MdTbRSeXI3ykhiyHLkbifEBzHFICqgkdBG0WIlaJobpMBUw3OHMVUQbfZeJRZFlZ1AvfWXicWfAfGcQ0vQm3btVaDMCsxYCL3nJtpkf1pEBZSWz/N/b6KSk7j3HybU2Y+zsAQGevGKCJ///us4Eu2gBxCxMYT/4OLB6FJHXvl19LwfI1m59qVYtQNEPzPRhZmsR26T61oGYiNSuZe74c0DZmAbLZVttoti277X5tXFXivYcGwh9Q1EDwTwHzzI9J072z2U7WczhdQcNNTnbZmQKqQg9Lwr4zlPaR6+mjLCoQR9zwYYutWTuT3PjTu+fAYrgCkdJBMm0uPkWV8UlXot/94/nKRGfA3i8J2HLoHmJnHyHRqed3H3a5KJVpOJ6iZqAg4q9tYS1TW++tH1uf3rdpcR1yIcOFDLRF+I/vYx9jY18/jZE1pqypl2B7h3+TlevxuPz0kklHuCBODxOmloKKPG6WemK0b//S50p0ZxnofoVLqGhjPPQ+n+EkJPngLgKC4BIDwewV9utZkYtMTZmYkw4ycOYwpJDAcukkhl0BP28vT+ENWNRVzouMveY8d5fneAtaDiO+QGfSZgRedu8edkFo/HzaFDB7h25T5inRZITle25Yqu63zHd36eP/r6B1y6/DXOnf08lVXluJwuHj16uq7j2bwaXLhwln/6S39/u4dhY2NjY2NjY7MjkKIYKyvVrhe4uVlqC/tOIgw36Oup87hyhPLB9DzBEBDuepR/F6ZDYKpRLOEoXWJH4Fv5AaQThELKQnTNOielFInf/DPMZ1cBMJ5Awh3AceRdZP4gZlcbevIpep4fBpNQdgSjZh9KjZNMjJNMgKY1gtQQ0o8QERAhlApAIgIzBpz8MYQ2iduzi/8/e/8dX9dxHvj/n5lzbr/oHSDA3jvFIlGimq1mS7ItW7Kd2HF6j+PEsbPpbbOb7Hc3zib7S7LZtM3GySZx1nZix92WrWoViqQkip0gQRAger39nPn9cUD0cgHciwsQz/v1goB775yZuQAFnJln5plE/PTsfUyDHcuge76Bbvs2ZAYhUItBoUZ/PhnssircUBn9p86Mfq8AIulekk4JfpOC9MgcSuw8qmkfKhQB28YkEyjLRgUdGD4DkT3wjX/APPF9OOGF/vtaHnMFTqwTXVxRwB5YKCpRqisHdU33PQ0A5UACzR24fA0owzuLVX4/rg5NaPYXuhNCiGVEAqmrVPlDD0ogFVjKFB7GQMS/dMs1KhtKMYNdlKyvwVdeTO+NIVoudkDLzClSnUz2N+W65Q0a1r2NzsFqup/z6nziA4Yd61rA3Qc9rwMOOAn80QQ71v4fdvy0Tb95G9/60jqGbmiuvnaV+kNNEwJ1xZVhXnjxDOdHgsANa2v4oYNV7G0ogqIWPvQlP6CIDSWorCidEEjdtLGaXeurCUWCNL/WwlDPEFzto7c7hh5ZqppJOZRvref6yxcBw67bGylSFxg+PXIWUFkFjh3AtX2cK93NC1+ZekbQv319umCz91zLhS7cJkPM1VSsraD7SnaB6fGM46K1xnULO0i6cqGdt9/5CF979t+XvO1NmzbQ2xXj5PHziw6iAqRTKYqKogwODhGJhLnttr3YPptP//3/pLe3j7KyUr759OcoLy/jzFvneeWVE7S13eA//6c/nLHOtesaabnaWvCfk/C8932P0d8/wNe/9u3R56LRyLS7jLfv2MLP//xP8MHveQKfT841ESuXIr+rTFfhIlMhhFj1tNqCa04Uuhuri1GodBqzRDN0yrVw0ajoTtxwHa6VwJh+oGvmKZL53G/0PoeqfJKAvxaUl4Xq8j/EGXylgeqiw5QkX/IyPCUGsXw9qMTLWOtCOMH7yAwMYznHUS1PQ/V6JqSbVjaue2007qVVJXzru7gvfh695Sj2975jpODUxdZWOohKDGMNDaEu/zsq0w+AMcUYlfbueZLtUHkQul7GGE0mvpPhrhgm1QcYok1F+AIuVAY59MGr+NKT0vi6KbR9xsuYnB65j3IZy6DsdENygODpZ4jtPYbxLeQebnmMPZ3kW9jpu1G+pe+PohJUX46CqABJvOnxDBAEilCUoDgMpFH40bwDCAHX8fYFX8VwZeYqiTJ+IYIoJI1iPYZeYPzGlps/88mq0OwAGkbPVBZiJZK5gtyTQOoqVXTooJebtEA7zZaNJXj/xVsacYIh+tsHuHSiFctWOEtwBmYo4ielS7l0poub54bMZb4pZWNFFZz88lhgdsumIWj3Vpjii0L5blwnQ6a3mQCAyTDcUUrxhde4N6oI7G4iubaLl85FaL7uBTuGExNvNltbbnDhehF7UgnobOOuvft59qR3BobjOBQVhzi4t4kSo+h4s5Ub3c2s2VLFttAwgR1RLL/NwNVOlFbYd22itW2YoA8O3tOEGuhn4K1zJO7ZjCqpJ2N8XH7xMhU+i5fczbQ+PTWIOpd0IkOqoh4TdxkcTuMP+UjF53cesVIKn98imSj8IKnnqkMoGCGeWLqUt5s2rWegL8ngYO7afN+Tj/Llr/0Dv/or/5myshJ++Vd+bvS1m+dhNjY2AHDbwb3cdnAvruvyke//AI88/H52797OH3zqd7h65RqnT59jx44tHLn9Nv7181/md//jp/iVX/05fvAHPko8nshZn8X0AoEAv/CJn2Tbts309PQRi8e59547OXDbHgD+8FP/k1/55d/lqafexX//4/+E67pcOH+ZRDLJjfYO0uk07//Ae3ISoBdCCCGEuNVotUYCqUvETpWh0nGIXQJ7CLPu4JK06wKZ2kNAAriR5fry+c1h+AKbRoOoAD1vDtDydBuXKCJQ/i7qdhVTt7aDYPwLXgEnTqYL0q+fA6sM3XQ73WfWUlo7gA7d7EH/xPdhutBBDU4a98J3MfEHUSGbm9O7yvVhpTTEWjDJZgzgXK/GPBdDla2DTBLTew18YXyHd6ACcTClOKk7cduuYfqeY/3DD5BJFhEuHsTX/XWchvsJHDuPSs3vrFgA4ldB+yDZQ+jNl4jtPTj9mUGzWQZnpN6UHm7GV9K4pOMqRQWo/hwGBywUu1Csw+XbaDaiaBr3un+k3ejI45tnw65BsR2Xr6PYgmIzMIRheCQIW4nLmxiuo9iA4cUc9VfMLoBiB94CDG9uRtGAogiDwfAyhksoNqPYj7fowvs9ZRhCEURRX6jOCyGWOQmkrlJ2URGhjRuJX7hQ6K7cukbu63TQz4WXxoKNG7bVc/4NL+VrMOKnuCJCtCREKBrA59NU2hncWJxk7xBuKsNAaSVvvnY9qyb9IZu1W2ooKQ2SGYrTfmVw7ovGcdIODjbWpFVZvdHN9Fp1uFikjU3GtcgYi67hALuPrMP2WYDh2Zdd1t69nlLfZUgPwY0XON37EL/3h0fYf7SEw/uuEm4tA4a9IHZPG4eqX+Y33nkfXz25l0TE5pmLU89q+ctvXOQ9TzWi2lr48a1t7Fu/jvKw4VxHLV2n20i83sr48NVgf5Kth9awtqSNaCiO/8gAp3u3892vtaCSGTraOijdX8vwJe/n0NHcz8CVsbNWEv1xWi8sPF3LF89FiA92kEk5rN9Ry41z7fOuw7ZtkswvAJsPXR393HP4bXz5O/+6ZG3W1TVw9fLJ3NRVX8MHPvg4P/UzPwjAJ3/xZ/D5svvTp7Vm/fomXvzulwkE/IRCIRobG7jzriOjZZ5476M88d5HOXv2Avv27aKouIhnvvMCrmuorq7gxo0uUqmZ00+L7AUCAdLpNN/7ve/l13/jEzOW+9jP/Rjvfd+jo4FxgIOH9i1BD4UoBIPSS5l6UAghxK1OUcnMO3VELinHgYFXvAeZHsgcHJulcxQ4CuUacDLe5+ImII0hDmgwBkN2Y35jbJQbAtfFdW4A81sAaqY5/dMAlB2EQDko2wsSap+XfhcXJxPBYFDAtp9uou3pt8gMp0n2DNH8nSHKf/cOkm+7DStmUFdP4PzrSDpeJ81Qh49zn36NvYNBKja04dTtJlXbD349oQ+ZPRXoFytguBvn//wT+vAxTCyGvcHFxM5gxv87NmBqElwsvYsXzxRzpTdA91CGj3+gnXW9XxpJ6XsCt3MdpvcGAJHhr4Jxbiagwmf1LSyICmDSWFvrINnl1ZE5DPPdlaqWTyDVTV/FpNei/Et4v6hA5ex7UIxiC5oNAGgOMWEH9Kzd0EAFmncB/pHH0Qk7tDQ7gZ0YrmOowvufuw0vOKvwfsfObzODmIkFOCh2otk+bQlvd+khFDvHpSoPjnyAonopOirEEpK5glyTQOoqFt27Z9UHUtUCV/OVb67AKg+MPg77bKq0PbrDVWlFZR3Ul69hyBeg/MBGMkqRzrhUlodoqg0wbGx6O4dpO9NGor13rE9FzoSdsnUb/bw5TR9sv6ZhfSVlVVF8GhK9w3Q3dzJ4rjXLodT0hqONFA9dxlE2zcV38cqlEi4/3cFofpoJpp73+vWSp3jfwd8fffzlFw+SGO7kha91cuKFUm4vT1G9eR9rm+I01vRAm8Nm9+uca/gBXv7GNfZRxtsPbmMo6vLsW2/RcqOTjGv4L6c1v1hpYTrbOUI79MPzZw/hZFya9jXiD/gY6hqk73ovw50DvPpdh31HnieeqOPrF/bTeqaDssZyMqkMg+39ZALjbpCn/O5f3B+Dwe6xnZTa0rOUnJm1wOvywW9lN5jIhYMH93Py+Jmc1ffs85+lprZq9HFV1fzPcSktLZmzzNatm3h6JNj8+c99icNHDlBRUYZSil//td/jD/7bn867XQElJcXs2bODX/jkT7Nnzw6utVynqLhozuvGB1GFEEIIIUT2lNIoajC0FrorK5JWtSjlH31snCQmPbaT0gDaqsXoClCDWPYWqD8EKFTSYOJDGOWDgROYTMfYyNRXC8XBCW0pVYMxU0f/xlgoEwJXYdwkxu3HdReXBtWYsd2lxopC3QM4RSXTBHINkAHnwoQYkVUKu3/pNl771ZGdeQqq77FBDeJEQG06AsnvYG/YQ3t/MYM99UAzJ/8iwT2/GMNu/zNsZWNqjuA07CRVXeoFVcMK9cjjmM/8Ne7Vk7hXT6Jq1kBtLRg/droaHRuA4VaIt4LJsG7nVp789WE++K5iPvUDL+FLt0NkI6R6IdWHtXYtmZ4b495PDiXHFnArs5Dal9fEtXEyeEGs/FPUAJ3kJqFkCM07UOP6PrbrdD59CmZRph5rZJejy0UU6/B+jhYuT+OlCxbz50dRh2IjUIGXia9s1iu8YOo8znsWQohxJJC6ipW97X46/+X/FbobheUu7CbULgvwnWfeGH189LaNcHliUHH/faUkzpwjtn4PJ5+9QWhtJdfO3eDgwQbKW69SvG8Lp8+0TbhGKTU15fK4LyvrS2jaWAGJFB3n2kle7aD9age55GKT8Jfxmea7uPatLmB+9b/41RiP7KsmYnfQlthGz3AUbXXjOi5rt1TjXGum7fVrbD1sUXfbqwx9yYZMhgfL/p62bR/g2pkuus56g5aDVPLwwZ0MFxlePHeOi3t2s7HlBMlQOR3FO6mnlPYzbVw/1TKlH0Pdw3wz9iRXnr6Gk+qk8dBGml+6hFIQLI5w7a0bVKJQGOygf8K16cE43jd+8Tfo2l5YQDTbXZNLIZNcusFaOBwhkUguup5gMEA6naGru3dCIHUpvOvdj0x4/Ku/9nG++Y1nOHHijRmuENN593vewV/99R8RiYwF8uvrawvYIyGWJ72MdiYIIYS4NWi1Cces9kDqwsZAXhB13Bg6Y5GJvzaxjK7AuN34Ehp6X4Ct94JyUf0DOL1PowIbMZnJ4/CZx6bGGG+HlaNxnT5c59qC+z8z442Qo1twGo9giME8l3BX36O8t2Fgyw/tww6U4bheHaozDqkYbstxvtP5/TS3RjlqmlEuvPK/13PkQ62oVAeq/Tns9udGgqqHcep3kl5bht5xDHP6GVR1HfaWtejOGPS/7O0mnSSUOcs3P30fNYOf8Y7HrL4Nht8Cnw8C5ejguOOGAsWQ6Bv7LqRyd5SLctXIdzV7BndZnUtn3BTe2aFLQLk5SiNs4/3glz4ordk46fEhXL4GLDwj2mqk2I5i38hO4JskJa8Qk8lcQW4tny1PYsmFN2/GzmKn1S0tR+dLNJUXT3lu8v1dJuWllDl1qh3Lb2NraNxYQbRk4gq24O5NqJEgmj9sU1Ti49A9G9m5vRK7t5/rr1zi+hvXRuvLtbQK8Nlrx7h2bmErVlPxNK9eewKAzx9/lBPPXSBUFWHjobWEqyNQV47x2aQcCxW/SPgBL+2GzyS5e2/blPq6zt4g/koHewdKOXGmiucj7+LTLzTyta8M0HLiKunEzOlvX3/6CiUN5VRtqaP5pYuAF6OO98eI98UIr/WCMv6isRt/X1GItkgNuTo2W+mF/Zq17aVZ1ZmNoYHFBzaz0dBQx+nXLy7o2jVr6vjCl/529PEnfvEnOPXm19myZX2uurdgkUiYb3zrs/zyr3ys0F1ZMT72cz/G3336TycEUYUQQgghxNLQSrJ75IqT7p35RaUAy9uaCBC6uSPOD3Y9N89nBDCZXtRAHDOy6NoYP8ZVmHQQNzFIJn6WTOotXKeNfAWITLCezGgQdf6UPciGD3rj/w0fbECpHmxdg6WbIFqBWrMRwkX4QprjL7bQtnYvAMPXU/T2H53UmQyq/Xns4/+L0Ff/K/6qTgIP7cS/9QaaF6Dv5LRB1Juqfc+DHYXqo14QFcCkwRmG4TMQ9OYIVOnasYuKG7BqBqapbWGUWcDPaZb3VAjGiS9RS6VMlxEtO7UoDo8+0tyB5lHUMthbpIiieQQ1kl5YzEWjOIhi/6QgqhBC5F/h/2qIggpv2crASy8VuhuFs8BA6uRz7TPT3ABPfiqd9AKfqZRDdEM9vcfPUQw07t/C8083j1xjiAQU1Qcb6Xb99A+lGE47tLx0aUH9nK9IWZhTQ/VcOb241CKvvlLB/oYqvvJFbyVnZ2sfna19RCvCXOn2zhNpe6WeQ7vBSj+H/+5HcK73skl1U7dxBzgGpRSWT2PZFratGOpP0n62A5talFKjA8jZKTZsKsJKxFhfUY0O+BjoTWEyDqq0BAuH+NX2CTFTy2fz5skbo4+DYR+J2MLPKlXWwgKy3rmzy0NbSzdr6hq51jZ152+uhEJBIuFSOtuvzfvakpIifut3Pk5NbSVaa1zXJRgMsHbdmjz0dGGi0Qi/8Zuf5IEH7uULX/gqf/4//5bBwaG5L7xFrV3XyED/IL29fdTWVnPnXUf40R/7PtasqaeurkYCqEJkS4GafFOS4/qFEEKsRgEgCqze+9VcUco384vGgB1iNPDpU2CVYZJeYE8FtmKSZ0fKpjB2McqNYpIDYIZxLQfHWZrjmjSVmHWbMfQtqp7Gd9eQ6EziKxlJd6yGUQyjyyqwfvr7ANj7YpR//Lvv8KXnu3nscD3+4UFOHPdx38MbQFve/YnlB+UDy4bBVlT3S1B/d/YhZJOEmtvBpKBoD1glmK4r4LqokipUxSCm9TzYYwvfVbQc5bw+VgUhFIsIJC7oFm55BVLd9HWMKZ+ykSC3wiiVXGAbYTS7gNS4b7eFYu7jYpaKIojiDlzqgS4M54DVvIssineGcwbv3Nm6kXTIYSA0IR2zEGIWMleQcxJIXeWKjxxe1YFUExvm8MH1vPRK/9yFJ1w48aFvYOrN82y/TxL+sZtx282wZWcFW9cGsQZ7+NcLfVx6ayyQd9uxTfPr2yIEikK8+kz7outpuzTEd648TnJSAHKoO0bDuipamztxRu8LDYEH7oVSb7Xtoa5+Tv/jqSl11jdVsfbuRjBQX7ue15/JLrishgbpP+3tcvQXR+jvy2AyBvB2v1oBH9oe+1WY7B8mEIxiWZrtuyqps+N84blZVhHP1f4CRxSWtXxuDlPJNHsPHM5rIDUeTxDwzzLJMItP/dFv8dT7HwPgC1/6W77+te+w/8DuXHYvZ47eeZijdx7mXe96hE9+4jd58cVXC92lJRMKBfmLv/xDHn3sQYLBIP39A/zvv/lH3v2eR2hqWj5BbyGEEEKI1U4phVaNuOatQnelgBIoiqY5AzR7xoCTvjrdK9OWV0qhQxtwh0bGCNqPKjqAKtqEUQ7O4JuYWPdoeR3ctWQTmcouwVV9i64nUOmw5Qe3MjktsKFvZIeZixrZaBYbTPK/O/t59cQb8DxceG8TxdP9m6zZglF7vK/9e6B/6nzCtOJXYfiK93XRNuj2jmIxvSOTpetLcIPu2E8rMYjBD1gY9mKGMljRV7J+71MsaH57eQXYjNuHSYEK5LOVGGRxFul0NPeiRs7N1BzD0AnLKIg6nmYtsBZDJS6vA/Ocp1zRgmiOARUoLAwxDM0oNqNY2DyREELkmgRSV7nw1i2F7kJBucPDHNs4zEtz3Pv+3CNpiMfBGIzrMFBTxLefh+9/qInb3WsofQl1iJHUPCN3w8NDRNYEqXQu8FP3AAxy8eA6Pv1vHVzrTFAFVKwto1b3EO2/inMKEsWlXHpr4oBiKRd4ROtKcS93z11wDhu2F9PaYcM0q1Xr6ivoae9kzy6Fu+1DoBTKF0HhBV33/VApp/9JTdnSO3C1A9Xahe3TBIpCRIoDDGeRcnZo3A13amCYptu2c+W7Y+ljnWQaZ1yaZOO4HCkZ8H6WzX0ky6LsOVDL+bPdbNxczroqm2df7aGvJ7uVpwsNpC6n1L4AZPJ781pcXMTZM5cXdO0f/Nc/593veQi/38/d9xzh7nuO5Lh3uXfk9tt4+jv/yj/+38/yZ3/6N5w+fY7+/tyliVoulFI88OC9PPDAvTz2+EOsX980+lpJSTEf/dkfKWDvhFj5FPldZboKF5kKIYQYoagsdBcKbBjLqiLjzBZIDaBUkLGImGHsr2c1hj7skj2Tnme0vFMCrD2IchRaF6HUADpQiTsEqugAlK7DqCFvF2g6gHEWP1ZfKGWHMGbx45VUe4ZgzXQpOR0U5ZhMB+FYF088VI5Siq/2ju2K/vN/i/ALj05z6fBZUDYoC4KN3lxCNuPw8JqxQOrgGVTDHZjWF8Z1th8VHgtcmp5mMj2A0mBeRFVtxi3ZhnIuYfRuTNyH9r+CUlkew7SQ1L5KwUjAebkwmSQE8hlJLUGphe2Od3kdi7sBUDShaJrjisJTrEWzBsMFDBeAAZbTzzt3NIpGoAZFI2rc3J0ijGJH4bomxC1A5gpyTwKpq1xw3Tp0OIwbW70Hm1sX32Dd2gM0X5n5e2AGBnAGxgYN0eHT/NkDRZBqxhnIfoXq+vUlfOCd1QSDAZxIJZHB6wxdSIy1o6feEC/k3nqh3Bycuxot8rEn0IUZVnQcqef573ppgg/tjfLwbS61te2s//DnUKEqUhs+DoCK9+HcOI+V9lF8/QUe+9l9XP/SACaTxqQzuGnv8ygDtYdv45tf75yzP4Mxl4rNmwiELGKXWui73jelzLTf45Enk71DlPYOcahIQVs/bvUWHCf7m9gFBVItRXfX8lp9+MbLzdx+4E5ePP5cXur3+32k4g6uO/v39hc+8eMcOrKPX/kPv8dwLE7b9RucO3uRoaEY5eX+Wa9dbpRSfOCDT/CBDz5Bb28fH/m+n+YrX/5mobu1YKWlJXzow08SiYRpalpDY1MD99xzB8HgwlYPCyGEEEKIwtGqGmcJx6LLUx9zB62GJzxyTTteauQuIDV79SNDRQMYU4QxZbjJC+iyY7hFYZZVauUc/FvQ8Qxllz6F6dlG5sBjKL9XqXtxCPeNZrQ/hT/9GRoC+zk46L12254D/ELtftzKehJXOoj17CYSPgduCtw0OAkw4+cxOqDqAGZ47t3U7sZjmP3vQ10/hTr3/6D1xamFphvPjxwRZTrP43SC94N8FWvnHV5Al+zmVdQCYmOKCNMtWC+kdOw1VPAo2spXsC+7ORXF7YDB8CaQBNIs/FzVwlJYKLYCWzEM4/ItVvYO1chI0NQe+boYqJRzToUQK4oEUlc5HQhQfOggfd/+TqG7klfBdWvJ9PWR6etH2TYmM3JjqzW4Lvcd9PPXswRSVTQK4wKpJp3B6Zl/ulf38kW2r23idGsZtZEYsVhiwuvRymI27Sviwon8pVCdTaxvcQH18sogD+52SV6+jtq0jcrWa3zo/gaSwQhH6y8QaT2O6gtDfRqGr0EiDUEfxk1g0tcx6WKIXaF2R5Arfzd78KU0k91q3FTSpfOcl05J2Zry2gg1+0vpvdBGavDm+81iVDgSWB06eY4DEU3RngbcUBgXxXDK8MzT0//MzALiqO7eUvqfbZ7/hXlWGW3MW93ve9/jvOMdD/G+9/zorOXe/uAx7jp2mHe8837efPMctx98lN/87Y9TXl6at74thbKyUv7+H/4n+/bcQ0vL4s4oXmpKKTZsXMdf/dV/5/Y7Dha6O0KsMia/557kYtZUCCHEiqRUCYoyDAs/5mT50yhKMAzjBT3HB00VkMZStThmpvvzJOBj4t9LBy8V6fy4pg2VKfa+LirDOyNwjLJKUVY1xumYd925YNwki4l56KE0gVf/CZKdODWPkOl7Hu1fj/ZXkP6Xz+PeuIpVvxH/JgfLuQSsAxS+VJJUWxuBkkqGb3Rx/fh6Nh98Zo7WstwdadKYUAqzcRts+DVUTKOaT8DJf0Al+rwyWY3nR3YYv/kC2AF03X4IBUErVCCOdl6b9iplJu9UnrsZbXzLcG9iBpNIQCQ/C5u12oDCxjD7sTiKBhRBDBsxXMHwPJqVPz5VRNDci8u/sfJ2piqgDM0xFNFCd0aIVUbmCnJNAqmC4ttvv2UDqToYZPN//xShDRsAcOJxtM9HoqUF7ffjr6khfvkyFW9e5LGGFC989jW6WqauWDPBcE76o/x+rmXqePxvfpxodQmd330DFPScOEeoppy177mfQx0D/MPvf5kv/IU3ODBL+IvJzLEbcCYlZQHuub0Ef8sFkpeHMQY6RuKcA+daAfAFvECjicdImf0E1KtY3b04DdWj9SjHG5lZmbNseNe7MX0JlHFQbhpVVIKOjxs0mhuUV9TR0z37as/BvvjIiRhgMi7dp0eCqlpRvnUN/qIQ2p7fiNA4LgPnxgKndsDHww9upLUzyZunOnHH7VhV80x2EDpQxReeXcQ5K3l08c12AoEgyWRi7sLzUFpawg//yPexZ88Oqqor6OyYPkj+P//X73P4yD7AC97t3LmFi1deoKbm1kg7Fo1G+PD3PcUf/Lc/I5HI7fc4X/bt28WXv/pPlJWVFrorQgghhBAix5RqxJhbNZAaxacfRSlvrG9MCrAxdKEoAnwYOnHpQ5kKMu4FYLrjXYIzPD9fIUzvWYK1/wGUjWOuobBw3Cto3YClNmDK7yEx8Pc4yddz0N7S0HEH3+Uz6KtfATeJ8ZeQjnq7SN3Uedz0ddwb3hjdabuE2ViESvcQWr+X+OWBsTij9qYvO19qZ+PD96HttLcz1GTAVw6J9psFveeySe8b6wJG5iOUg4k4mJ07Yed/QiV8qJYzmIvn5/eGM0nclnGB03AFrLsD5e9GZc5NLDvPQKpFLW76zPz6s0Sc1FWsyKY81BxF49U7cyDVj+aO0dSw3hxME4raCeliVzJFFMUaDNdYOcHURjR3olhmx1YJIcQCSSBVkLpxo9BdyI5SRHbuINXRSbpj9lWYvqpKIjt3Uf7Qg6NBVAArFAIgtH796HPhzZsJb97MB98NT/3aO/nu507w6V//PL1tY2kz0lYw+8WXlqb86GF6v3sck5qYyid8933c8/1PUdxQAUDNXfu8z3fuGy1TUVfKBz75MC995Q06WpZ20GrmkbJ2vEdu0yTfOokz8tjasoPel9tHX69cV0awpBdKikBrkkk/gdCr6O7rXiBVed/d8altimp66H/19GgYObB5J27LmxPa3bJ9LS8+O3sgNTE0fTol4xp6zl4bfVy2qZ5AaZShti6Gr88v/YuTTBM7eYbqSJDPhgY5vGMLEeMHDBn/3IFwK2zjxDKEt5XzpRenX626HMSGExzeewfPvPStBV3v8/m47767GB6O8Quf+Ckqysv55ree4ad/+ocpLi4C4K5jh/nsv3wJAK01+w/s4qGH76Wyqpzv/fATE+pTSt0yQdSbfuM3P8kv/fLHGBoapqurh29981l+9z/+ATduzJ3Gein4fD5qaio5duwO3vnoA7z3fY+htaTjEaKQlF59K0GFEEIslWWUWnZWtne+JoPMHdQsQasqtNo1GkQFUMrbTacYt9CXOrRVB2zHZ+4k454m7byAlzL0ZpkAJutAqo1Wjbjm8pRXrEQJvppPorTXJ1t58xiWXjvWll1DoOgJYqmzYOZIG5xrCzxzKPDC/4bE2JyTs+PdYMYWzqpMNXrXHtAKAiEyZUl8fd+iZGeI+OUB1Mhcwc3m3USKRH+AsPX8WCNlR6B/UnA5UgfpObJYpWY6psnFBJOYzeth8wb0Pe+Cy5dxX/xXuHEpy3c+ItaNc/oFVP0uMg9+AF9fEh3rAxTGF2HOf6/GByqNRR1uau50xYXiZtpxM1vQ9kKDfH4U3jyZVvuAOIYYmi2j/waghLH0thqoRlEDI0HG8byUsbdGEPUmzTEMGW7ueje0YTjB8tkVZgEhFDUo1uGdfboaT1EUYvmQuYLckkCqoPjIETr/32cnnAG6HJXecw/rfuWXMMYw8MKL9H3nOyRarqFsC1yDyWSwS0qoePSdlBy9A7WAyX3Ltjj6vtvY+8B2nv4/L3L1zeu0nm3HdtqyWvPV+EPfQ8V9dxFqWsMbP/NLDJ58k6I9O6h6+H6iWzcR3rQ+qzMzK+tL+eRffj+//t4/nfd7KIS4r2hCoDltT7xhXb/BYqh5LBDkBtdRdPdWjJOApEElkliJIlQalG8zKAg19eMcWIfSCm0pqIigHvuAd7+sNUortn5HUVtqozGokQ9tHO9r4+KlMcjwynfmXunZe6Ft9OvipmoiNaUMtfUw1NqV9ffBzTh09vTxxWdfGn3u7cf2z1jeGENkSzkX0n2sq6zimdfPkMk4M5ZfDsrCNdM+f//9x3jXux7hK1/5Jv/+71+ftsxP//QP8fv/5TcnPDc5Fex/+9Rv8IM/9AE+9jO/zkOP3Mt/+a+/mpN+ryR+v5/ycj/l5WVs2bKRbds38x8++dscP34qL+3t3buT3/qd/8ChQ/t4+lvPcfz4KbTWdHf1sH7DWmyfzYMP3MuGjWsJBAJYlqwoFUIIIYRYDbTaOBL0W94TcZbag6X3YYyDay7hmhZgAC/troPX/yiW3ulN8mcxJp9MKR8+ay+W3ojjnsY1vbime6T+uWh81jEstRalIsTTfw0k0GoDll6HVrXoopLs3qtvLcHiD5Po/9/zfg+FYMq2odrGAqluYFLa3WgJPNE09vpgOZmXrxAo9RPZUI9dofHtqsGqShO+sxRtQaLNJnToGCgLoyxIRHATd400CBiFFXZRdr33hDEju1fdka+9fxOqZyCLeR6DCcVhRy1qx4+iUmFobsF97rPQfiH7b4Tr4PrTJKs1UA6ADpQxYyDVgNZVkOlF2fW4ybPZt1UgJp0Ge+pYUbEepSox5jKG6edXLHUbWm2etX7NvUAfLi+g2Idm9vK3IoWNN5UfQFGGSxjDSfK36KUOzW4giuE6Y+dGp4EwXgC8DggBlgROhRC3NAmkCsKbNmIXFy/bQKry+Sg+fIiGH/POTlRKUXL0DkqO3pG3NiMlYd750/ePPk7c6KD32ZcYPneR8MZ1WKEggZpqnFiMtn/5AoMn36TsriOs+cgHRq9p+J4nSNx9B7XvfXRBQd1dRzfxzy3/he/85Xf4t1NXcvK+8uULX+3kqcd3UlPcQ//VYfpMhrHBtqLYPzxh6J243Er6hxvBtMO1z6P0RnxnPwvBOrjhpbuxgGjjUTJnvOCRKt5PZtfEIF7xGxA/NzW9i2HiUD8QWU9yOD2l3EwGrnYycNUL/I4GVdt7GGzpmjU7kJOaujvWMWba3cx2sZ9LxXHOnzwBwFs0Z92/Qjp78jpFkSIGhyeu3v2xH/9+3vOed/KjP/YRHnzgvfT1DfA//sfv09Xdw0svHWfbts28612PzFl/dXUF1fcf5Z8/++dUVJTNWX41uOeeozz7/Bd5840znDp1mr/6y0/z8ssnSKUWtwr9nnuO8su/+nPcffcdo7tK3/fk47zvycdz0W0hxFJQoPN57onMhQghxKrm7c60Gb8Dc3nxodV6tNoFgFIWltqMlccAi1ZRtHUYANd1QfXjuJcxph+tKkH5UEQwxMk4xzH0Yuu92HrHWK+tI4AfWy8sFaovfCd26Ajx2Ocg3T5n+UJK7Lod+qLQO0wgeBbluJiRexel1Mj5tGPS8Rj9/5YBjhMCgqFdKJ7HCu/CZ57zCnWAk7oD/F3ewN/aQfr4yxPq0XuKUek5do8O1gIPzOv9GH8MtlSgtvzwWFD1hc/D9XOzX5eZbuw2/T2cogSVGcC4Xlph42S/uLuQMvEL6OCWKQsVLLUHpUowbCRjvoCiBK32Av0YM4hSZSga56zfO2MziuZ+oDQfb2HF0azDsAbox9CJ4RJesHNx4wPFWhQ7UZSNe27jouoUQiwxmSvIOQmkCgCUvTz/KVQ/9SR1P/gDqALvgArWVFP33kenfa38nqP0PvtdlM834fmyOw4tul3LtkgNLf+zEh3H0NYfY/e6bsp6XiPdEGB9/By4Bl3dQN37+7GsMJAEUqQa1oMThrg32FDuyCpeM3E9qFWUZDQ06UwdvCtfdr+1rXmegTre+KBqtKGSaF05id4B+i62Tw2qGoPP0qTHpUh2jTslkGoFbdpqDOdPXmOlScRT3HHobr76zBdHn/v+7/8gDzxwLwCWZfGlL/8TSil8I/9PPPbYQ/NuZ8uWDXMXWkUsy2LP3p3s2buTD334Sc6du8jf/PU/8Ef//X+RTqeprq6ko6OLtWvX0NbWQSqVYs2aOsKRMGvW1NPe3kFZaQkDA0O8/wPv4p3vfJDtO6YOcoUQQgghhBijWa67US11J1oV9n7WW4xYhramXwBqqY045pwXYB1nfFB1oZSygeU/V4BPc6PnNsovfYNUe4rk8Q6SFy6hLJvkho382LdfJh5PMjScoKGqjL/c0IsdKcEMeylclTsSgJycWvhGkNHY27T/BLKY4zKzHxM05+WjQdUfRKXDcK0d89KXMZeOTy08zXzGdB1XhFGZYYy78s4mNk4nZLaD7+Z8iBrZzVjsPVJ+bB4HrJH/bysXNBF/MwWw8Hi7VCtGvi/bMHRhuIDh4kiJAN5cXBEwiPdNDwJ+vF2lsZGvHRQbUDShCC35+xBCiOVueUbPxJJr+Omf5OIvfLLQ3fAoRc0H3k/1+5/CikQK3Zs5KaUoP3Z73urX1nI8f9Cwa085VRU+omHY1tBMUdfTGLMLojXE3ngdXO/m2RcYwDaXYPwYxTSCv2E0i425GSifPJAZeA1V0oTp7wJn6iBH+bILsCudm8H1UGs3Q63eOSvhqlKK11aTGorRd+H66PmyoYCPdCw5eo3juoTKAlhBH4m2IcKbyziT6Ob8yZac9KkQTDxEY2MD69c38TMf/VEef/zhCRMYfr+/gL1bHbZs2ch/+s+/yo/86PcRDAaoqamire0G4XCIzs5u4rE4e/ftKnQ3hRB5pgClFnoWVXb1CyGEWL2U8mGpQzjmhUJ3ZYTGUkfRasNIIHF5U8rCVtvz2MIynCvIuKjWFGoggTvo8NZnNL3HL1H+iIOp3kPyjTMAGMfh+LUEL788du6ndhWmPoZetxPn0gmvnA569yPuxBTK5sIpaKhEaRemOwNOZTFXYHJ3D2V8MVhfDOufQjkfQV3vxZz4NubNb3vtTBtINShKMCTAJLBUDSZ9A+P2T1N2ZXCS/di+ehRRtNo/ZRHBSvj/dqVTVKKoxLAdL2DqwwuWBrmZ8lxRVMguCiGWgMwV5J78BRMARHftouSuO+l/9rlCd4WGn/wJqt79rkJ3Y9mYvPCykHx+xXsfKaEsmKb31ZPevRhgV5dBJg0YiFSAO3beaPRgFTA5pY7GqMTUX7qTA6nGxd6wlvRrMwVSsxw45mGVcqyzn1inN8CxAj7KNtfiiwYJP32KgXGB1IzrMtjk57VTFwhHg3SdXN5pmrNx4fR1Tne8QCAgAdNCW79+7DyhhoY6AMrKSgvUGyGEEEIIcavRahOuOYehu9BdwdYPolV9obuxjCyjyYKEQ+DUa5juBKmXXx7rWe/Do+eSGt/E4M0rQxOnJFOZm2P+aYKgk4OesW708F5MUQvTfx+yme7M0/fPimMag9D4EOrRR1HDGtPWDkw+U1WhMmlwvV2Crpk9PfBK4KTaCemfKnQ3BF6K6DHRkc/lheiKEELcEiSQKgBQlsXaX/wkZy78GKl274yNQEMDydbWqWX9fkIbN1L5rsfp/frXGXxl6hmVC2GXl1P93ieofPSdOanvVmGWMJI614LMJ99RTODcKySA0Jo1xK91ADCUKB9J/KEwkyoJbxiCKfXauJl2tAqgTBKXXjJbnsBuuwj1jWAcwAHjoG0HfvgpjFJY/R1gMpiR11WqZnLFU/gb1jD8Sox8rpVxkmm63/J2mIaCE1M8x+JJUukMseEEseEVkHopC2UVRctqzC6EEKuXQeXz3BP5ZS+EEKueUj5s/XbS7meAm7sCi/F2Nk3mR1GBpXfiuK9g6MtRL0qx1G4JohbULJMFxhB8/mvQ+izKCkGgApJe+qnanRa9lwA1cRG0awxfODFxwXU84S1IznTeGB29pzt7SFU+xpWzEWAfTtpgMgbXNfg7Srl+eQuuY3DTH8JJO7hpF9dxebDpNDVzJTiry19msVEqjYkCm6uge1Ig1WTADIKJ5b8fS0TpcKG7IIQQApC5gtyTQKoYpYNBGj/2URJXrpLp76fmez5IuqcXu7iI+OXLOAMDYFlEtm3DLvFWNpXcfoQLn/hF4ufPL7r9mg+8n6r3vHvR9dxqlvLMl0xqunQznuISP8HLp0Z/TYbLwsRbAQM9b7VRsT6MZQwq1kNo23bi587iqytCu29NqUsZC6OSqPBGGD4NTg8uPZhoJarlK1PK60QTTnBwYnpgQPvmDqQ6xZVA15zlcsVnT1w9e+rUxRlKrlyuawgEZTeqEEIIIYQQq4FSESx1DBgGDFrtwDunxY+hd/RrRTVKeQtLlS4l7X5p5JrFsfURtGpYdD1i4QzOjK9ZvQlofdZ74MQJ7NxM8vgpAEqD54Aa4lYjweR1Ahu3kLx4jlNF67jWOvEs0VgsAQRxum/gr6rG7e/AuXEN3X4NFXiU9levTWz4fAfJUBXDXYNT+uS4vinPTeZWb56zTO5MnXB2Uyt/B+pkSqaZhRBC3KLkL5yYoOi22yi67bbRx4G6WsBL/TsdKxJh8x/+Ac2/9TsMvPTSgtvV4TDhLUt5Eyumk47PHEi943ARpnXs9djZc5Tv303P8bM4QzGGS+8gevmb6MpG/J3P49u1n9ChCNA8TW0jwUZ7YmqfdKQLX929qLanJzxv93TjlBehbgRRGQNdMUx3FyR65nxPeV18M42Afev/Wh0auHVWzAohxEqnpjsXTAghhMgxS2+Y9Iw3llPUTlteqWJ8+nEy7pdHgq0LFUZRuojrRU5MPoZnHPvKxMXDqvdb2BuPkrl4FtVznoZDWzn/dIw9+1oJJs7i23eML7yUnFJPIpHENQG0UqjKNdDvZcBSCtamv0Jq+9vpeWtc1jTXULu5kr6gQ+OmIH6foSgQw0oPUhyceW5j7D3l7+y4qZayrcIxJl7oLgghhBghcwW5devP+Iu8034/637j12j9kz+l+4v/Pu/rg+vXs/63foNAXV0eeifmY7YdqZHg1F++6ZarYClwDMH0FRQGq6wGt7MF1foavntvm6YmUEZjAJchJiT4UYp0yRD+5AHoGVudqm68iHp+Dabr2oR1nLokm38zSztgCfinOc/lFpNOZ0inM/h88idECCEKSpHfdD1LlxRDCCHELUipELZ+Bxn3aQxTjw2a83pqsPVDKCXjjsKbZVwd75/ylF086CWU8oXpOhcjOZjGKd+Jdf27WG3P0Dm4c8o1xhjS2kfAZDDOxPsbbdJsCj/H6TUHGbo2lnEqdb2NAxWvQ8dYYNYAenfxnO9IuTPvss09g3djdWtPahuTKnQXhBBCgMwV5IHcjYqc0H4/DT/5E/Q9+xxO/9Sb6Jn4amrY+Pu/h6+sNH+dE1lz0zMPjiLWxCBr1cE6AkWKOl8J/TfAHrqZymfulZ9q5LetcXrBX+8tMbVCOK2DGEeTMTahIo1yB0AHAbA3V2Eqi72zVbQCBYGkj/q761DakEhHGeiJ4v0mV6PDk4wvDMy9czVX/PatH0gFiA0lKCmLFrobQgghhBBCiGVMqQC2vpO0+0/zu44qbP0IatLZmqJAzMxBRzU0Ftg02LjBu3BjQVTTBhzHIjngzRGknDChOZpxlca4kLzRyaAKEbcCpLWPNZESjLLYUJ6hOdAAloXSGhT0VR9FJYYwysKMzAf4B1MkrDIwilBZkkB4EIy62UlPZq7e5JoPuMUDjSZR6B4IIYQQeSGBVJEz2u+n5qknuf6//mLOsr6qKtb/9m8SWrcOtQpSoS6GMUu7YlFphXGntvn8m/C26hKKN1ZjhvoIFYGv/WnQFtXGgaAfX9MGYIj0zYWWygeBOiADBpJbH8FYLkoVY/m8AbGiGoOXsif1QgvDn/0aAINlFZRtv4HltHvlKjZg2Zcn9Mn4wkSHvJ2rkYrNXPpa+ZR+h7dtycn3JVu2tToCqUt4dK8QQohZ5HWVqRBCCJEDSkXRajOuOT93Waqx9TGgGCWDjmXEZabtJ5kdd2MPt0NRIyrVjXMjTebiOcCAgSMPNdDXtxEyY+eWbo3uJdOwHifjUlQaprW9k0zG4b/dWE/leS8w+/VQFy+dew6lFP/44JNUDSSAVorWNXL1/CBuygvuJtnM1eOdE/p0VJfgnPUWVJfetoH6sq9N6beqnpyuOs+0De4tHkhdjVuUhBBimZK5gtySpX0ip6re+wRlDzwweyGtafiJHye8aZMEUZcha4YdlRfPD5Jp2kDqrROkW5rpfekCHdcayVTd7hXIpEDbuK2n8DVt8p7TDqQ7IN0DzhDGSgEZxqezUeN+DYUe3DH6tdPbTf/V/bgqAoDpvgRF2yZ2So3bQdt9nmhDeGrHl/TcEwj4VkcgNZWa+YwcIYQQQgghhBjPUkdmPE91jA9L345SJRJEXWYMM+9IzTSUQtVW6HwB+s/hD71IeGcbVmOjV2CwFZ2Jk3jzJCZUCcDQQIautn56OwdBKWJDCVKJNO64Rd13bTritW0MX1LDo8/Hm1tYt6eam/MKQ2cvEyiZOBdgxs0zDJ5px+BjCmcpU/uCmq4PtxrjYJZ4DkYIIYRYChJIFTmlLIumT3ycpk9+guC6tVNeL7nzKFv/5H9QeuyuAvRuhVriHak3d4pO51+/kUSFxtLf+KqrsbtfwVq7Hd+GrbgtJwCwi710vBPGWnr8oGHsBZehsaejg/g2rRt9mL52lcHeBzEjKXiMKZvYoUkra+r3BKZ22s3PTbxRiti27ZwvX4+zZRPGwNDW7STM6lgcEI8l5y4khBAirxSgtMnfR6HfoBBCiFuGUn5s/RCWOgREpryu1XZ8+l1oVbn0nVuxlnCuYLbgmFKkdxyZUNaUHiRztYV05V0MOreTbr8OxuCUeIung4GxeQfLGvs6M278XmsqRr/+7AvPkhl3YzL81jnW37HOay6ToWpL3ZQ+3eQMx4jZh6f2283P4mBjwIk7ZGLDuBm/9zjhsBrurIxJSjpuIYRYBmSuIPdWx4y/WFJKKcofeDvlD7ydvueep/OfP0PiyhVKjt1F489+FLVKUp/mytZ7t/O1P/wqrrM0q/q0NfNNb1dHiht33UZ1y7OEt20mYl7HrlgDfZdwE0MjqWoymM5zoBTugIsVvFnx+PNHxg/4hoAwEAMg/I476f+j5tFXE2fPYR14LxH7M7gtp7AqguB6525MTlFQFGoDghOew3W8WLRSaNtC+TTaslCWhbY0ytIYIKkssCzQevTDKOV9rRRGafS1Vkh4AcT0li1855tequGLQHFFBQPfukzR/pIsvssrXyYtO1KFEEIIIYQQ2VPKwlK70WYXrnkL15zH0I+l9mPp3YXu3opj+7aTSZ9aotZm373plIewN7wDdfnLmJK7iL/UjNtwjIGXWzHplDeudl2SvUlsoKZsbCzv849NTY7fkRq7PIilLRzXoa+/nwtVUbZ1jC3Ejp16g6ZDu7n6cjNOb8+E/riTpniH+tcSiTw3sdOZzLijlNTINIUam64wIycWKZvRlLXjpiDGXQlWcnQXtZs0ZFKnve9L2kttbcwQSk1dQHDrWdpdvkIIIcRSkUCqyKvSO49SeufRQndjRVt32zosn7UsAqkAn//yMD/x3gP4I/3ooTg6WIbbMwjhKBhQZZswKQfdVE6mO4O17xHQPkywEkuPnGGqLHDHAuoqEUPFuiDZQ6BaU/sTEfqeKSaytxg7GgcGIfMgvPFV3PQmL+DpOKg1RQS/ZzfeeS0umCTrm0NkehPgOJhMhqFgkv6M31sWmgJvuJMZ+fBYfpvnrs+9mveRg2WY6+2oumpOnu2b8NpAt5dqyNarY6FAMpkudBeEEEJgUCqf9wdypooQQojcU0phqR1Y7Ji7sJiRba1fwtbmvt9I7bmdYLqX9GUXXVxMZNMJimqvYVQIY0LEhw8ydAFMtJqtpLj76BZsS1NcGmJdeQRLKyJBP9HqytE7kN/c88ukY2mCKT/h4iJiVjdFmS7SFWvIpBySMUPJ9nX0v9VMw9Y1XlpZxwU7iFvWAK6LcQ09zQZfZD9gvMXWmTSRfeXYbd+Y9T0pXwNp/9yLiP3FuzDGYJwAmdRbE14zxgv+KqxVcGflYoyDUqtjXkQIIZYvmSvINQmkCrECzBXczHdb0ajNvv1FbC8fQLc3k+oup+tcG2UH7iLc+R1vOJAYxAlU09fSxPDZS/hrbSpKfOiq0pFa4mBavS8n/a61dDl0f9N7oHyQaafsyFXAHRfvVJjNRzHnnx+9TtWtx2TaJ9RVcsd6Ov/x7NgTbgbM7N8/47qQRVICY2nczRv46revz1hG69WR3CCZSBW6C0IIIYQQQgixei1hClVjJu/xvCmMz1eLbfkhOAx3/ij+/o/BxgPQ9RJKZ1AMQrSSaOk5oiUXMdF91H8zhnM6iQN0jqttYFLtG2/fSPPxi8QANeCih1rp1Qpz6eJoGTvkJ9pUy3DztdHn3KYmUjfGak53Q+ZADVb3ubHKs1msnvV5nxqT0qQTr85cZLWkvDVpb/G8EEIIMQOlVAXwHuCdwG6gAW8L1OvAXwN/bZbZodsSSBViBVBLGJzTliYQ1OzbV8KGWpeSVAdO63noc6HPW4eajMUIbdrI4IVe+lOb8VeVYflt4m+14cYuAZBqv0H367XUz9COMaCIoghg0FB2xLvZNgY3uBeV7AGlMcZgJYZAKRQWlD0GfTFUKo5xFcrZBBjQ3rW+iB93/SEwBmPA548AXbO+Zzfj4h0ZPfv3OR4p4YXnr81aJpIK8PCdR/jqCy/j5ul81uUgIYFUIYQoPOWde5LP+oUQQgixXC3lH+qbY9sAtl2HZUXQKg1qCEiMfOCd2vPgf4UXPgWhKghUegHE/tPgemNINXSC2h01MMNsgbY1pU2VBEsjGL+P6t1NXtpcBe7anbiptHf0jq1JZQwGzaDPJrOpiofveJNQIAFuK5nGaowB42qUNkQqNCH/zbNUXZQ9lEUiWoesFl2nLdKJ12Yto6wSlCrCSZ+/pW+xDGnU5COXhBBCLK3lP1fwJPCnQBvwLeAqUAM8AfwF8IhS6kkzloO/4CSQKsQKoO1cr1w0FJX4qa4NUl5mU1KkiQQcwlYKB5dQ6xXc4RhcnPmEi/iFsRWgqYEUOhJG2RHcgA8rGMRXVYHT1QZuGHQMCKJMZCS1zhDG6cSMX3s67ghVO1CFGbo88shCxTpQyY7R11XFTjjx1Wl/Z2vnIQbPWLhJr+f+NQ14QdLZ+XwW6fTsgc/nn2shnZw9rc/Vk95u1Qe3HuBSsoNzl67O2fZNJSVR+vuH5i64DKRTckaqEEIIIYQQQhROfnY4Kl2MtkqxdBSlQyjtR2kblIVWfaBSjJybM71iDQ993PvaWMDN3YnGyxY1HKf8K/8fUI8xUNxQRlFtKa7S9HcNcuNyFz1nOqatOn3HRs6+4I2xi6uK6OocwnXG5lh3blPcXvk570Fo4rUZ525019g5qarsHhzmOLfUuOP6P7N0/PU5yzjOFQB0YDMmfQPcyftvZxMAkvMoX0BG5gqEEELM6RzwOPDF8TtPlVK/DLwEvBcvqPovheneVBJIFWIFUGp+yzzCYYua+hCVFTalxZpo0CWkk/gyMXRsAKe/D5MYWTE6wIT8OTbZnH4ykclkcPrHKnGHh0l3dxNoXAPxIK4bAt+ZrOvLqH4sFF4OYAe36jasa18aa09dA2WhzHRh3gyVu+voeKXNe+g4ZBVIDdik07PvspwriDre9bMdRHwWjx07ypee/y4ZZ461rgb2btiKFbR4+fU3GBqKZd1WIaTkjFQhhFgWlFo2CzSFEEIIsaQWsB1EhbGsciyrCGWF0Trgja2VQakMkIQJZ6plGHfezgLac5iwPFsBRZrQw79IUdWb1OxbwytfPAvNvVlVN9QzPPr1QOcgW25bx5mXmkef+/rza7n98emvdQc70dEmVMwLxBp37v2oxmTIJpA6n++R67SADmDZW3BS5+b+KRqFlVEoXwMZ0zbp57MMSSBVCCGWheU8V2CM+eYMz7crpf4M+F3gXiSQKoSYD23PfeNuWYrH3lFCadcZnP5+78nBkY8RLvMPki5GsuUal/54I/1n2tn7Z9mdkWHiFuaahbWmCdLeik2HDrQVQjlxr1CmH6f6KTKtfV6OYGPAcVHhMKkrlykqr+Hm+tV02rBxUxR/WTHGNShLkwpESCcyxPvj+MN+7IDNW8+1T9ufxXDSDleeu8Z9G/dyKd3Bxebp0wJHoiH2rd/G2Ve8Ad3a+gYy9WnOnmvOeZ9yJZOee9AphBBCCCGEECI/VNY7UoOEig6idQLU+AWxiwySLkbExy984wiptPICqVnYsMmmurKHvo4ww73ewuNE/8QFyOdOdHP1vh8lnB7EGAOOwXUMFWuvYTovYyp3jQZSleUQaO2EYDW4KYwdxilbg1EuXkDZj8KPM35SJWeSOO5VdGATJtUOZvrMVIooOh3DpK9iUlexfI24fh+G5ZzJSuYKhBBCLMrNm5VltTJHAqlCrADamnul6Qff6UNd+O6yu2UdONPJcPMNkp2bCFTNvMvS9Ptw31Qkv/QS7kAvxe87gn9zGU7AxdV9mOqjqLZvjF0QHCBz/tTEOoo34vYPYWXOAJWAwqTTDLd2Mdw6dk5qYMtGOt5omXCt7SvNwbud3o2LXaxtquBGpJuh4Th1NZXs37SJb75ynEQyxf4N2zn/2lh/uq73YXda3HPHQV459QbDw4m89W2hnLl22AohhFgSy3mVqRBCCCHySGUTSNVESm4DlY9g4CKoNOFKQ8iA5VM46ZnvZ7bv8vH2YzE2Zr4M6Tjr1/wIVzuquXChl7YLHazbVU/zG9dHy1++FmVt+/EJdWRMMwqDOxgbCz+7aYhdgViz1yXABA+B0z16ndFRCDXl6E1P5TrX0P4G3OQwCoOya1FWCU7yHMq46GQ/Znx/0i2oTBgd3oJjOkAtqzlmAMySLt8XQggxk5U4V6CUsoHvG3n45UL2ZTIJpAqxAlhz7Ei9575y1IUXlqg38xMsDzPUDIMnowTePhZINRmF+4zG7RjGxJOkz1/EDPWPvu72xtFtz3iDnEAdpqgUhjd7WXq1QfscVGk5pq/Hu0Ap3Ji3KtMM91G+cwc9b3aCk2ZyKp7pdvj6fPk5X+amrqu97C5tomx/GXZa0/zCNe5Ysw0afJx5vmVK+Uza4cyzV1hbu4ZYZYzmK9enqbVw0unlN2ATQgghhBBCiNVj7qxPoegRUMt192IUpfo4+v6NPPN3F0afrajUfOQDMYoCw/hUkmjfaxAfO4YnYnqIn2qlAdi2vwoaiigq3oDrGhzH5VS3pkH7sF1vQ4suKvayWClw285h6stQqV5wpo5plfYz4QShJUhT6zqtKF85mjKMSuM4V9D+taiMxjgvTr3AxDDDJ7B8a3B9IYyK572P8zLtEUxCCCFuQduUUq9O94Ix5rYF1vl7wC7g340xX1lwz/JAAqlCrAC2f+b/Vatqg6wben3Zrvnzae8muv+1BJVvH3ve+fcMiW98Z8brMr0GGkceJNsg0YY5PQiZsUGCW/oEw70JfGXF+FJvohyLm2ttSuo1PW+CmSbg5/NPHXBaVn4DqQDDfXGGnx/rf/e1PhrK6nHdmVcIdbf3Ey0JsWPbBk6fuZT3PmZLUvsKIUThKWVQOn+rTFfiClYhhBBi9Zg9kGr51qKtZRZkm8AHwKH31I8LpBp+4fubCXW9ykzZayuqkqNfD17txI5nuHR2Yvar932iiQp1FceuoefUIOpmki/jYqK7UT3PwDRZlpQqwtA27pmlWUBszDAOw9yc0HDddmxTzWx3YiZ9DW0qcYOlGDOwJP3MjswVCCFEoa3EuQKl1EeBjwNngA/nvIFFkkCqECuAtmcK8hkeOZjEvbRcV5gCA15K3YEzXYAfAHMtROJbsy8qcbpH3pMB/GUoJwUVNZgbr4+WCarv0ne9knRrC8ofwFdbD0XrwRhM9xBr9oZxjWbQX4JxHNyM95HWDi8NhUdXrDoZF9ftw0vms7QyvrnLDPXHSSV9HD28l+dfOpn/TmUhnZIdqUIIIYQQQghRKEppRhLSTvOqj2C4HtTMx+sUntfvhm1jg+Inn7S9IOosisMDQBS0JlgWJdU/SLSsiKHesff63IkKHm/8GhZnqWoqRpVuRSkLYxzc/jiu3o8eKkI73eBmwEmBm8ZUKtL1u0GZkf4VaFGZMd6C8rmKZbpQsSQqtBaXjiXo2NzMEuziFUIIsSycWcTO0wmUUj8F/HfgNPA2Y0xPLurNJQmkCrESqOkDfA89XIG5tDxT+t5kBnoBm/j1bpx4I1YoQ+bbXeDOvkrR6emF6G6v3MApsItRa9dOCKRamVaCWw6TOHsBk0qSunp5avtKE7s+aaWua4gNpyeVXLogaqg4SLCpGIA3X53a5+mkEmkuvnCd++48zPOvnSCZTM19UR5lMjI4EkKI5UCp5ZqTQgghhBCF4qX0XWbnok7hjckjFWNj8yNrTkLv7FcF6Kdi1y4G+xJ0N3cSrSlh+/ZaXv7WxdEy3/xaikd/tgE92AqJAUz7wNSQqLUG0s0Tn3MzoOdOmZwvykSw4oOgg5j0hbkvAHAHYfg0dngvGVoLsT58EtmRKoQQy8FKmStQSn0M+BTwBl4QdXmsDJok/7kshRCLNl0ctWlDhJr22VdqLivGkLhahHENqTdOz108nSbd3u8FUQEyA0BiSrlw7RwpbNypfzR0oVaVAoGIH6fMx5nXrnDmtSs4mfn9UTv93GWOHtiXn87NQ0p2pAohhBBCCCFEgU2dLPAFtqLt5R5EHWPZCcrrwzSttbF7z89dnhSDre30NncCMHSjHz1p3G9QXE4fmLUeM81cgZrmuaWiCKOHWjDpa5hklkHUUS5u7DUsVZ+Xvs2L7EgVQgiRJaXUL+IFUU8A9y3XICpIIFWIFcGyJ66I1Bru39yDSRV2V2I2VGnF6NexZh/0BDGxuVMRq2CIjs9oEn2HyKRryKTqcZ2pg8Rg+ll0ODJzPQq0b+Lme12AE2WbDjZSta+OWAhaLizub0L31X7uPXqI+44eorGxNkc9nB9J7SuEEMuD0iZvH0IIIYRY7iZN6+kI/mBpQXoyf2Mpffc8vIZ9+7K7Sts+3nXkTbYdiFBR66d2bQDLmnrf8u/fCM9aj5nmjNTpFmLnm+1UYSfD6IEr4C7y2KZ0HzYNWKaem0crLT3ZkSqEEMvBcp8rUEr9GvB7wKt4O1G7clJxnkhqXyFWAD0pkProI2U4l18sUG/mx4lWA/0AJM7GiT/3UlbX6Ugppq2Frn+OAd77D2yNUNq0E9V/GqwQKB8om8C2tQyd6cC1bK+stjHaxmiNURa06ZtZg4DCZLpxLHjjhUs5qevG1R5uXPVSxa+5rYqWlvac1DsfyeTk1MhCCCGEEEIIIZbWxEBqKHIA1BxZm5aNsaDlfQ8oSr75hQnj9hnZIUxfC0fCX4FN3lOJpju4cLqEro44obCNz6fo7YZ49UHCTrOXrte2UbaFsiywLAhHYPCNSV0qwI7UdC8mmZu5ApNqxqSaAVDRTRiz9IvvjZG5AiGEELNTSn0E+G281TfPAB9VU1NyNhtj/maJuzYjCaQKsQJoPfaLZOOWIkpbXilgctrsGAPWln20vzZ2TknyShduJsuzogNhjAFVv9U7J/XGBZJnL3DjrCKw5SnSF8fOSo2Xu7x6onLGqopKrAl7UJVZ+sFRKpmfHZzOdKtol4CTkVWmQgixHCi13O8IhBBCCJE/Y4FUf2AH2lopQdRqYCxTU3VRD8l0PKsrDTYoRXDbOjJ9Q2TaOglefYGfPQBq/RHib5waLRuo3UKgfoZdnr5yeH3Sc24B7quc4fzUawo1Zpe5AiGEWA6W+VzB+pHPFvCxGcp8G/ibpehMNiS1rxArgPZ5OzJ9fsWxphuYzPJKq6pKKzFbDmG2HIKRz8Ol22h7tRnjjAUte69kf06La0eJFe+l681Out7qwV1/++hrk1PwBLvfJNpQPnNl1sQdvcos7R+SaGWEjrbevNSdKVAgNZOWwZEQQgghhBBCFJJS3lhX6WJ8wZmPvCmcKFCFFzi9+RFifBAVQNXNMp6fxI5qSvbZBJLPEgmdJLRzw1g9kzaz9H3jKujA9BVNE2hU7tKOc7UpwTj9eanbFCqgWbAArhBCiJXCGPObxhg1x8e9he7neLIjVYgVwLK9NQ+PPVSMc/FMgXszVSxQx8Ar5+cslx5KoUprMH035i6bMMSvtIw+7jl+nqIdR7w0x34fmtOjrykF9ZtCnGudvq7JqZGXckdquDREn0nTfS0/gyN7UpB4Llpp3By8/0x6eQXzhRBiVVIG8nmW6fJewSqEEEKIkf0RoejeZZrSNwXMfe6nro14A/ssFj2rZAf0N488MvjTL+E7epvXWjJNbFxZdyCBY3Zh8erUisw0Y9olDKRqU4IaPA8mkZf6FVb2mcyMAVSOzkGSQKoQQhSczBXknARShVgBlNZs3lFEpHmam/9lIFAUzLqsKa7FKqki6UTBNRgDtl+he85hBsfS/maSk34hG8Pgm16wtnj3Fia3WBY7Bapy2oGXsiZtvs9zup7abTV0D8ewfRaDAzG62/ITRAXw+31zlikrLWLXui0oBf2dw5TVFZFWaZ576cSC23ULkfJICCGEEEIIIcQ4Gn9wF0ovxyAqQBgvmDo7FbBRlWuxisvQ/jRgAIPrhshcOg3j0v6aZN/EeF8miWp/HgBd/rYpdQ+dUJTsnabR6QKpeV50bbnVqHgL6AAmczlvQVQAhT1nIFVRgk47oDSYNEqHcW0b18y9+H0mZokzgAkhhBBLQQKpQqwA/oDmYF07TtvyXNlnXT+Dr6iY9ODcZ3v0DtWSevME0DnheV9pKaXbtmJ1vI6JDzHglpNcW4arNMMZC4PCKAvHaIbxUbfmGP5YC3Q1YyqaSIU2EDlUzblOjWsMrgHHBccxuEFFf2k1jmtwXShLRID8pNpt2F3H5Wtd9HYszUDWtub+Nb59y0bOvXB19HH7lW4AjhzZTcgXQCnN5WvXuHK1zRv0ZLEKtaKqZMF9FkIIkTtKLf2530IIIYRYHpRVjC8QIptgZWFk8AaYcwfXAtsq4fxXYdy0ggbUmiYIHCB95jgAVl0Fak0ZRtlo7XpBQK1AK5QboOLBegZODZJuHyCyu4ZIwzBu9f24kehYxcrrkWp8EKNujoEN2BVAV87e/ShjsEw1DJ3EmHTu65/W3HMF2oQxqZOjjw2AjmKFN6KMtyDdoRdjYlnvVtW6aAF9FUIIkWsyV5BbEkgVYgU4uiND/GvXCt2NGZnYIBVbN9H+yuU5y6bi0w+g0n3DdL54ifqD9Tit5zhx3GXgeh/l2xs58crE1ZCbbmuAbq+tkn0P0ffaaeAiw2uiPPd055S6o+tKaL4wVsfm3Wvm8e5mV1pXTP+NQSyfRcP+Bl56ZmlTL1t6+tFMJBpi17ZNhHwBLh1vm7ZM83fbJzyu1VU0bKom4U9wsbmFeDw5Y7sD/XMHzYUQQgghhBBC5E8ovAVUHgJ/OTOEd0bq1HH6ZKpyDWaaE4Os+FWIXyUdWgfpGHbkNe+F8iPQ9cJYQRd00WHs618ntBN4+E5U39chCRnr+3HcS9M06puQnlD7sj+rdVYGFBEMw4CFnY5g4kucYUzpGeLXfiyqwBhM7OTUl90hzNDJ0UsVoFDowCZcn4Xr9sEsk/PGxGd8TQghhFipJJAqxArgG+pkud+KuudOEGnayvDV9lnLDXUMEJ3ldeMPYwzEeryTTfrOt3LgjrU4to+TzzQDkMlMH4ytaT9NqGgN8cGJAUDbN/FXnevkJtVM/e460kFFV1sXKqVoXeIgKoBSetrnt5SvmxIonYvrGlrOeQHndTVrqN1XQX9sgDPnm4nFJqYcGhyITVeFEEKIJaQAlcdzT3JyTBaglFoD/DbwMFABtAGfA37LGDOvFBFKqWPAx4CjQDnQA7wO/KEx5t9z1GUhhBBiZdD5Sw2bO32An7l2zarquln3repoORBgdMvqwGkoP+R93fPy1PrMWEYvfekF2LZ2mkb9wNj8gcn+VNFZBYqOojJJ0h1fAJPJWb3zM81cgbHQ8Q6Mme9CfYObPA9JsOw68NdjVAbXdEy5YZRAqhBCFN5KmStYSSSQKsQKYDLLM6XveApDSbHDXPsUh6/3Ym3eTSaWxBiDcVyM43ifXZfu51y0/zCZhDfIcjMuXacuU3Fgy2gdmfT0qx+tTJoDt9Xw3NNXJz4/adem6+YmtYEK25x89gxb9jbRfrmLdGqaM1byTE8TSD18YBdO3+L+WPbcGKDnhpeeeOfWTThRh+OvvTX6l3JoUAKpQghRcAqUyuPEXA5GR0qpjcDzQDXweeAMcBj4WeBhpdSdxpjuLOv6VeB38HLufQEvIFsJ7AfuBSSQKoQQYpVZCWn70mSzK9UtqyQeO4rJZMAYcB2M64DrgOOAGcaqaQBGgoCZQeh7FUoPjlUy7r7IYEZvZXTPWbQ+iuu2Tmx08q7NHJ3vafnCqICDbvgAyWv/gJfieImZqXMFlqoFncQ4PQuvNtMGGS/rlRXchrFsXDrGXnclkCqEEAW3AuYKVhoJpAqxAlihYKG7kBXn6nkqDxyi6/g0+XjGl8u4xFo7Znw9UFXO5Bw0atwvaCczNlhMdY9tZDEGtlk3eLnIRybhojUoWxMM+6moLMKyNLbfpqQ4TIy+eb23yeygzbWr3kDw3Mmr1K+rJFISoqMlP2evzmS6v1tWwubK+dZpXlmYq2e9Xaq379pLd7qXeDxBMrFcz+ARQgixzPwJXhD1o8aYP775pFLqD4CfA34X+PG5KlFKPYkXRP068IQxZnDS675cdloIIYRYGVbKn79OoBRmGYfr8hBObwckZ1m0a0+fkWnMuHmEzNho2RhQXf2Yqgg4KS+AioWxy9BuGG/ywA92CFjcmF5bFSjlBROVP0Fw7YdItH4eMgWeKzAGk7gI7kDO2jAJLyuXHdyBa7sYk6AgQWMhhBAizySQKsRKYFmF7kHWrGtv4isqIz04895UX/FsyX0hMxxn39FGcF1wvZ2qJnOduiMak8lgnFYcfyVOMkWipQ8IeoMCx8XXeg1rXSNvnBxLVbNB1RAdcgAHSGOFQot6j7Xba7CKfbz87NnR5643dxEtCbNxdwMXX89dEHMuTsJwx6G92JaFrS1MGs6+dCUvbV1+4/ro17UPVeWlDSGEEPNh8pquZ4aDtbKmlNoAPAg0A/+/SS//BvCjwIeVUh83xsx446C8PPa/D8SA75kcRAUwxqQX1VkhhBBiRVpJW0Jm/1OttMKq34Bz+Y0ZyzhdXcTsu8BxMa6BTMbLcJXeC04GkxmA9F5MJgWnu4B1o7tbee0kvl97EqOGRuvT/jpcM+6xqoD49akNZ0XhC2zFF14DatytijVMsPExUu3P4cYvLrDuBfTGNVhWPRiNwmCcIYw7+6L3hXITp7020RAqRBpjIYQQEy3vuYKVSAKpQqwASs+16nIZScQo27qTjldmvkFXavbBnhOLM3z63IK78Gi5y8nx7U1K7eukFpcq+XJbJ72npszhMtQf4+JbCXbdsZE3XliaAdLZl/MTNJ2LlVlB/yaFEEIUyv0jn79qjJmQe9AYM6iUeg4v0Ho78I1Z6jkKrAc+A/Qqpd4J7AISwEvGmBdy3nMhhBBiRVhJgdRhxo43n561pnHWQKrp6yDdN3N2q1klkvDaEBwY/+Tkce0iJoZ1BH+0BJg6V4CK4689TLqnCqf/xYW3MQ9u/NTo10s33e2CWQnppoUQQoj5kZlwIVYApVfOjlQAq2/2FZzpofyer1lxo5W779g8+nhKIHWBZ84aY2i8vYlEbOa0tk7G5eQL59l95ybmiBevaO2XsjrOTgghRL5pN38fi7d15PNMq6NurrraMsPrNx0a+XwDOI53PurvAX8IPK+U+rZSSlIlCCGEWIVW2qBz9v5a9dV5bT39/z6PcsrGPZOrQKqfUPTQ7EVUBl95E77qxxfYxgqR7ip0D4QQQsBynytYcSSQKsRKYK2s/1XdjlYClaUzvh5vz/+N9dt0H7Y9EoCeFEjNpBZ2Zkcg6ue7z7xFfDg5Z9kTz51j8/4m/MGVcmbN/KQXuatXCCHEirFNKfXqdB9ZXFsy8rl/htdvPl86Rz03Z1V/HAgBbweK8HalfgW4G/jnLPojhBBC3GJW1lzBbGekAuiGsllfXzTXYL49PqvT5O/fwiaH7UAT2pfFgnFlsKIBAg3fy8oLgmdJTlsQQghxC1ppd1xCrEre0WAri68oPONrzlBs1kBrLhT1dvPYvd5GmMk7QzPphQUBo5Wzn+062VvHm9myv2lBbS13C/0eCiGEyCEFSpm8fSzB/N7NFuba/nEzNYcC3meM+YYxZsgY8ybwHuAacI9S6o489VMIIYQQOeEw9md9KqshkvceZL7+TXTcS2ShptzsLGxHqraK5lVeBVL4at69oLaWPSNzBUIIUXArf65g2ZEzUoVYCVbYjlQAJzn7KsRAVTnJrr689uH2rku82FA+JZLqLDSQWlcEF+Z3zdUL7Qtqa9lQsG5fDXbYAg1GGVzjUlwbLHTPhBBCLI0zxpjbFnjtzR2nJTO8Xjyp3Ex6Rz5fMsaMPwYdY0xcKfUV4IeAw4CclyqEEGIVWYkzmTOPx1XIRlc04Ha35rUHmU9/E/3DBzCTvn9mgTtSLV85MDS/a4IlrOi9myqALjmEsiOgfKBtUBZK1xa6Z0IIIUTOSSBViBVA6ZUVSDUGUr0Ds5axgoG898OXSvEDWyp5a9I4zcksbHDUfqNv3tck4yt3aGQHLEp3hnjx5Mkpr23efmvutBVCiJVG6YWe5bUkzo58nukM1JsHms90hurkevpmeP1moDWUXbeEEEKIW8XKmiuAADD7UTlWw9q8B1LdSxexvrsdjk0ORC9srkBbWaT1nWwlxsBHKF8VuuZujBoa2cObHvkA1LK+NxVCiFVjmc8VrDgr7Y5LiFVppQVS7aaNOPHZB0duemkCjJU3rrOteGpb2sp+1KK0oun2Jtqvdc+7fdddmQdw236Lkh1B3jg5/Rbc9ALPmRVCCLGqfGvk84Nq0jkFSqki4E4gDrw4Rz3fATLAZqWUf5rXd418bl54V4UQQoiVaKVF44rnLKHXNCxBPyD9+S/AtckB0PlOOgcJFd8HamWO+xfEV4muOYZR0+/ANbPsOBZCCCFWqpUVnRFitdIznyGy3Ojyanq65h58pHrmyuKXO1WXTnD47rEdlBsONGHmGOcYY2i6vYlEuUVbepgXn3mLRCw177YXuvu1kGyfRdnuMG+eujhjmXRaAqlCCFF4BrSbv48FnhM22jtjLgJfBdYBPzXp5d8CIsDfGmOGAZRSPqXUNqXUxkn1dAH/iJci+NfHv6aUegB4CC898JcX1WEhhBBixVlJgdQSxpJIzMxqqMx/V0ak/vh/oRNlo4+VyeaMVptQ8X1Eyu8iUr4P7VvAblRgsfdZBWGXY9Xcg1HDsxRaeXMgQghx61necwUrkaT2FWIl0CtjcKTr19LZkiIz3DNn2XhbJ9rvw00tzc7Uze3H6d27G0Ih3nj+EsbM/gu/an8dLz7z1qLbnaud5cayNeV7I5x6bfYsi6k5zsAVQgghRvwk8DzwR0qptwFvAUeA+/BS+v7KuLINI69fwQu+jvfzI9f9ilLqbuAlYC3wHrzD1n7EGNOXt3chhBBCiEWowAuizh1k0w1Fee/NKMch9Uf/F9/Hn0RZIZzEqTkviZQfA7XQ4OkKZpdh1d43407UMbIjVQghxK1HdqQKsQKslNS+pqiKzHA8y8IQqq/Ob4fG0a7DHZxn8NqNOYObTYcbOfXyzLsx52Ml7UjVlqZqf9GcQVSQ1L5CCLEcKAVKmTx+LL6PI7tSDwJ/gxcI/TiwEfgj4A5jTFZ5840xHSPXfwpoBD4K3A98EThmjPnnxfdWCCGEWGlWxqJrr5/ZjY11ZRAC4fx2ZxzT2UHmj75Ipu/0nGVDJfevziCqVYJV+7YsgqgggVQhhCi8lTBXsNLIjlQhVgK1MgKpKpnNTfUYX3E2aXNyxwwP8+jGGH/dZTM8PHMg8OKl9ty1aQwGUMt8gKs01B4s4fgr2e3CTWckkCqEECI7xpgW4AeyKNfMLDPCxpgevJ2pP5+zzgkhhBAr2vIeZ47Jfk5DaYVV04Rz9Uwe+zORe70Z63MVmKcqUTNlBNMhtJXDIKpaIdmrdBSr7gGMGsyquJHUvkIIIW5BKyM6I8QqN+ON/DLjNJ/FX16cdflC7LRNtrbzkfsjzJbLvbK2NKdt2vbyPuPWYGi6oyrrICpAJi2rTIUQYjlQ2uTtQwghhBDL3cqYK8jmbNTxrDVNeerHzJw3X0U/PUsQ0I0DgRy2uBLutWys+keyDqICYCSQKoQQy4HMFeSWBFKFWAlWyH55hSHSUJl1+UwsyzTAOZY+d54ffnfNhOdCxUFqt9fQdHsTZ05cyWl7tm95B1I3H2vguy++Pq9rMmnZkSqEEEIIIYQQIhtpIJp1aauhZu5CeZD+1tdQr05M3qd0Gb7AjpG0vomC9KtQrPr3YNTAPK+SQKoQQohbj6T2FWIlWCGBVADbn33QMHEjq2PR8kK99Qbvf3Qv//iFNur31HH2wnUunspPfyzbwhs4Li+hYj/1eyt49vnj877WcVxc10WvkPN7hRDi1mRA53OyanWuNBVCCCFWjpUzVwC+rEvq+vI89mN26X/7Mr6iRzFbEgQit2MHFCgXGM5xS8v3Pkv5atFVxzDWfIOoIIFUIYRYDmSuINdkBlyIFaAQKXAXbB6/R9P9Q/jLsk8FnGsll97g7ofX8cqrFxjsz+FZJ5PYvuX187MDFpvurqfT6uK5519bcD3plOxKFUIIIYQQQojCWUmB1Ozphux3r+ackyHzL9/Ebw5iB81IEDUfluEktF2GVfsEqnb/AoOoAHIMkBBCiFuP7EgVYiVYATtSDQpn/QG6j5+f13XBmgpSvQu9QV8cf7GftzVe4f/muR1tLU1qX4Nh/YE6rIgilooTiyWoCJVx8aXrKBTa0mw4UsvZ5ss8+9z8d6FOlk5nCAT9Oei5EEKIBVGgVB4n4Zb/7YcQQgixqimWZThuEgsoYj7npOqojSqtwfTdyFuvZmNt34FVWg3kM4vWUu7c9KHL70L5SsD2xvBm4Bzu4AnvZR3BqrwfEzCYRe+8lR2pQghRcDJXkHMSSBViBdChUKG7MCdryz46Xrk4/+tCgTz0Jjvr9hZjLrzCXQeO8Ozx/ry1Y9n535HatKeatqEbvHjyxKRXmtm8swnbtum40c2z3118APUm2ZEqhBBCCCGEEIWUfbrcwikHOud9lb1mPekCBVJD738MdA/G+FAqX8f0LE0IXJffB5FiIIEhDsS9F0prsEqe9Hqi4hhSOWnPSCBVCCHELUgCqUKsANq/vAdHun4tN05dW9C1bqZAaV8U6J6rOMCHDiZ5NnfxxSlsO387Ug2GTcfqZ03Re/7M1by0nSnUz04IIcQopZf/PhQhhBBC5MvyOkZmqgoWEkQF0A318EZue5MNVV4FoSTezsoKoCtPLeU74Ghj1b9nJEVvYtoSRuUjO5gEUoUQYjmQuYLcWu53XEIIALV8/1e1Gpro7gQ3tbBVmoVK69t0pAGnpwOAopZT7NgYyVtbOo87UjcfbVjUOaeLkV7gz1wIIYQQQgghRC4s59x65UDfgq+2Gqpy1pP5CP/gD42ei2pMH8bk6XusDPn8+Vm1jy/inNPFkAXXQgghbj2yI1WIFUDpZTQ40oqireuxwz5IxnCTcW4MLXyFS/x6J8q2MEu8u9E3PqOwcfnwPX5+6eJizwKZXr52pFZvLOPlkwVYojsiJal9hRCi8LSs+hdCCCFWr2U0V4DC28GpgeTI44WP83VDSW66NU+qKATcXDScBPJ4Vqr2g5vMfbUlRzG+/MxvzE3uTYUQYlmQuYKckkCqECvBMtiRqsNBSrc1kr52CffKGxNOz9i4o5GWlijxrqH5V+y6hNbUErvanrO+ZsNvhicM6dYOncG2ashHPFdbuf35GQw1G8tpT9wgmcjNOSYLkZIdqUIIIYQQQghRQMshkBoEIkA/U9Pg3tyVOv/JXF0dANsPmaUd86oSm7FAKhiTRuXt2+zDC9bmikIX3wbFZUChFj67GGNQ+fumCSGEEEtOAqlCrASFvv9UULKxhuSZk9O+nGlrYU1lOZ1FDfRdnv9KTX9p8ZIGUhsO1uNceWXCc2agl6ce2Mnffzn355/oHOwortlYRlFDiK7eHi6ca+FG840c9GxxMmlJ2SOEEAWlDErl8dyTfNYthBBCiFuAhTe1ONM8QA9QBKSYb8BQWRqrbj1Oy9lF9TD7BiH8Yx8FOz7phV6MiaLU5OdzQOtFb+DU0b2oyHrw2Rg1OPJsobNHuXj/NoQQQhSEzBXknARShVgBlC7kDaih7MBWUm+dmLWU09dDVaWPWFGE1GBiXi2oHO/YnM3GuxuwLr047Wv3NQ7w90vWk+yEiv2UbY9w/JW3oLnQvZkoLal9hRBCCCGEEKKACr3qugQvWDqbQaCUhey8tNY0LVkgNfrrv4mqmmGMayKQj0DqIqhAA7rqKEYNYFheffNSOksgVQghxK2j8PlChRBzK+AZqaUHts8ZRL3J6bpBw96qebeRic0v8LpQZRsrsFpenfH18PU3aaoL5rzdhWa0WbOjiljxsBdEXYbSktpXCCEKT5v8fQghhBBimStkILWKuYOoN/XhpfmdH91QO+9rFiLwridnDqIChgFMXm6NFra/RZceQ1Xvx6iBHPcnV+RcPiGEKDiZK8gpCaQKsSIs3eAosmUdpZsrsctLCK9rIH3uxLyut/T8dykmbsw/HfD8GWpLuyA9S/DPcfjw26I5b3neZ6Qq2Hx3Pa9deJMbbUvxvVmYlOxIFUIIIYQQQohVogoow5tKrAQ653n9/HcoWg3zD77OlyqvxP/2XXOUiuPtqs1x23qegVQdxKp7HxSFGX+O6/IjxwAJIYS4tUhqXyFWALWEO1LtsJ/0uatEqutQVpy0O7+VhDo5/xWR6b5BfKVFpPsG5y68QCVry3BuvD5nuR3qMhAll8FrrbMPpBZVhgk0ap557njO2s8X2ZEqhBCFpQCVx9WghU4WKIQQQoi5LOVfawX04gUU8zd2H0835H6h82T+u98GKouxrVG5/3arQPZFQxvRFfvGnYO6fBkcuY8UQogCkrmC3JMdqUKsAMpaorMltOJmU5mONtJt1+ZdRebKeQLFoXlfF6ypmPc12dK2pr52OLvCna287XBZTttXVnZ/XtYdqKVTdfLGqQs5bT9fZEeqEEIUmAK0m7+P1Tg6EkIIIVaUpfpjrYCb478+FnLeKcx/0bWO2qjS6gW0lWX9tQ34759rN6rH0IMxvpy2r1R2+1usiodQlVsxaiin7eePpPYVQoiCkrmCnJNAqhArwTx2NC5G2f6tJLM8D3U20dr5rxq1w7k/m/SmYGkYp/VS1uUf2p3b9vUcO4otW7PhWC0vnjxBX8/yX116UyYj6XqEEEIIIYQQonCWaiaznOzPQ51JkoWk97XXbFhku7PUvWsf6GyDwi5QnNsOzBVItYqx6p/ChGFlpcuVQKoQQohbi6T2FWIFUPZS/a+amy3/JTUBus/Ns2Unf4OCNbuiMI9Nng2xi3gDxdwMStUsgfDyNcWkiuI8//yJnLS1lCS1rxBCFJpBqfyl68nVfYEQQggh8mWp9kfk6p6gFOie1xW6vg7eyFHz4/n8+N92B5DI/hrj5DR2rfTMO1x1ZDeUb8TQn7sGl4wEUoUQorBkriDXZEeqECvAkqT21Qqn/UpOqlrIL+pUb35S1NhhH1Zfy/wu6u3kvkO5S+9r+6b/+W08Us+VwRYunJtn/5aJTHolrYgVQgghhBBCiFvNUkzrBfDS+ebC/KOQVn1ljtqeVO/WnajI/AJ+hl6Myd1Cd+WvmfZ5q+pRKG8A4jlra0kZCaQKIYS4tciOVCFWgOie3Wz9kz+esGtT+Xz4SktxEgnc4ZHzP7UCbaEUmIyDm0ziJpOYdBodDKJDIXQoiLJslGV5H7ZFpruLzr/8YxKnT+akv+raW9Tu2Ub7qetZXxNr60DZFibH6WIbD9TgNL8w7+se2aP41su56sXEwLIdsGg4WM5zLx7PVQMFIWekCiHEMqBX30pQIYQQQngUG1FMPkPUAoJ4qXSd0ZJjQUwX77xTZ+RrH970oD1SRo98KAx9GF5hYWeiTicGFAHZH2mj15TmqO2Jgo+/E3Rqnle5QAnz3VU7E2WHJz5hV2LV3I/RK3EX6hizotIQCyHELUrmCnJKAqlCrABWOEx4y+ZpX5s5EUz2Br/91ZwFUQHc2BDh+KtEqjcz3JHlTtOMQ3htHcNX2nLWDzvkI9B/fkFJZdbELpCr9L6uM/aHq3ZTGd2ml++++Pqi6y203u6BQndBCCGEEEIIIVYtRQBvx+h0Qouu33ASyOW4L8Z8ZzF0bRB8QUjPIwXvHKxN29F1Fgs6d9RkcpfeV419L3TxYSipXaGpfCfL3c9KCCGEWA4kta8QguSFM7mv1Bj8xcF5XeIrKcppF9YfqcTt7VrQtaa3kwfvKM9NRxQYDJvurOf09Qu0NLfnpt48CYUDPPzuO1m3sX7GMgeObGff4a1L2CshhBBTKEC7+fvI4RlgQgghhFhZDAaTo52XE6WZz02G0hqrfn1OexD6we8BtbBdk156X39uOqIUYGHVvAdKysjdzt98CWKpTcwWpNdqLUqVLF2XhBBCTCVzBTknO1KFWOWMMSTOvZWXum3//H7FKCu3azs07qKOvn5sV5qvzj8r8BTKgvojZTy7AlL5BoJ+/vbf/iP7D29jeCjOS8++wUc/8vvEY2MDur/67G9x99sPFLCXQgghhBBCCCHyyyF3Z6NO5gOyT6tr1a3BuZK7eQtlL2buwQDFwMIWbU/siB9rzRMYtRKyPYUJ2E+gVRHGJHDMZdLO0+NetwjYT6FVaYH6J4QQQuSP7EgVYpXr/vRfkr6Ru3S64/mC1rzKO/Hcrr4cjs2v/ckqOt6gtHhx60327axnQ5nFa6/kYddvjlVUlfInf//L7D+8DYBINMR9Dx/iHe+5a7RM47oajr1tf6G6KIQQYhKlTd4+hBBCCLE6GVwMOVhVPKN5pvetm3wO7OK413sXdb0xwxizuHslJ+HimOSKCKIqSgjY70QrL4uYUkFsvR2lxn4uWq2RIKoQQiwjMleQW7IjVYhVLN3VQc8//W3e6g9H5/eLNdHZk9P2+1qGCGcZSzUGXMuPsWyM8uFaPizLxw8/Xs8XX0oQDNj4fRZ+n4XP0vhsjW0pfJbG1gpLKywFfsAyI6eyuoaBt1rwZyI5fV+5prXme374EX7+1z5EcWl0yus/8QtP8ew3X+NGWw/f+8PvQKlVmL9BCCGEEEIIIVaNGxiu5rH+MDCcdWndkKNjd0Zkzl3Ev2lnVmW9gKke+VAYo1HKAbcYYwYxBkb+45U1gHFHnnMxxgXjYpwExmS8St0kTuoCdvT2nL6v3LOx9QFsvQ+lpk6u+PQRUs5XgAy23r703RNCCCGWiARShVjF7LJyVCiEicfzUr974Tj1B27j+vHWrMqnuvuxo2EyQ7GctB/rGoY6C9y5zz55s+idvPXcWD8tv02tPYi/tJu9jiLTnZ71emfkY7rkRMsp7Ojz2Tz25N2cPX2Fquoy3v7OI9x5/z4a19XOeM26TfU8/eZfMtA3TEWVnHUihBDLhwGVz9Wgq3OlqRBCCCGK8lx/L1563Ox2Y1oNUxf8LoZzrQXILpDquqEJZ8UqSlFqEAMku76xyJ4sp3stP5bagGtuoFUlWjdiqUaUCs94haXXEFTfB7goFVi6rgohhJiDzBXkmgRShVjFlGXjq6gidS1PK01dl6iTXRD1plBdFYPnr+Sk+cotFTCQ3XvTkxKduxkHbEj1DbFh/zbOPd+84H4sl0Dq1p3r+J0//EkO3D7/laI+ny1BVCGEEEIIIYRYFWYOnuVGhvmk91XFPlS0DDO0uJS8N/n27s2+sFKT5otHHqhB7MgBMsPHc9KnQtKqHp91L1rNf8yv1PzSNAshhBArkQRShVjFMv19pFpb8ttGZzvh6k3EOoayKm9FQjlru6IyjdPvZlVWT1qlY1yDXVJEpn+Q+KUWtE/jprOrazJV4FBqtDjMz/3q9/LhH3sUPTliLIQQYuVSQD7PJ1kuK4GEEEIIscS6lqCNYbx0uXOPs5VSWHVryZzPTSDVPrAByDYz18QbIkMCY4zXp3ANmewzFE9hptS+1CL4rTux9MaC9kIIIUSOyVxBzsmMuhCrmFVcQvH9D+e3EddlTWMKO+zPrrzJ3S95M49fcXqaPy7+xnoAUv3DrNlRt+B+qBy+p2z5Az7e9YF7+YvP/AbfvfR3fOQnHpcgqhBCCCGEEEKILFQAVXluIwGUZV3aamzKTbOWlU3sdpSaMq+QRFE88uIgyreIuYKCpEb0Y+ld+K13E7Q/JEFUIYQQIguyI1WIVUwpRdUP/wwD3/hSXtvJtDbTeOAIl5+de/drum8wJ22uv6sB9+KLWZfX06ykuX65j1KtwXUJhxYehFzqRTr1jVX8zed+mw1b1ixxy0IIIZaayucqUyGEEEKsSgoLzQFcvpLnlrqBcqBnzpLWmurFN6c1kU/+EgSy3Y06PZexnSl2ZDvpvraFVbTEi66VqiZgvQOlcpcJTAghxPIkcwW5JduThFjtlujGXenslnwOt7RhFy3uPJaNdzfga84+iAqg1dT+DXcOEN68DoChS62ohf7GXMLBUbQ4zF985jckiCqEEEIIIYQQYgXIbqBtbalcdEvRX/t1dMN8r5q6NNqYLozxgpHaF1hEj5ZurkBRLEFUIYQQYoEkkCrEKjfw9FeXpB3LpLMr6Bqi6xcXBHQXcJTp5DNSb0rbQe/zYIzaLbUL6s9S7UgtKy/ib//1d9iyY+0StSiEEKLgtMnfhxBCCCFWLcOlJWopuxGzLg9grd2+qJZMxlnAVTP1LzLy8iBKlyysP0u1sJ1S/PbjEkQVQojVROYKckpS+wqxysWOf3dJ2lGx3qzLugsa3HiCZWECXafnc+QJAGqGQGrHpU5KDSgFJeUBFpKwR7n5+wOzfc8GHnn3UaLFER56/A5q6iry1pYQQgghhBBCiNXBcH3JWsqWb98+nCtvLagV+7bb0QtaGz19INWQHH3Fju4mPfDsAurO31yBVg1o1YhSASy1CaX8eWtLCCGEuNVJIFWIVS689yDDr8wvDe5CmEg50E42q00Hz1/BCgZwEsl5tREoCbJ+UwKnbWDe/dMzhF5j3UPUba8nceU6QxdasIM2mURmfpUvYIdsNvYd2sqn//0/EQjKgEgIIVYlRX7zyyz1Id9CCCGEWDYUdRguLEFL2d/M2Pua4PPzb8HavofQR94Jan5zDLMxphtDGKUy6EB0obXkrD/jWWozPuttKCU3c0IIsSrJXEHOSWpfIVa56O3HlqQd59xrNBxszKqsSWeIbm6adxvr90Vw2q7M+zoAPdsApqQM8NL7bjywgLTDeUjX4w/4+M9/8lEJogohhBBCCCGEyDnF4o7cyV4HUJRVSasmiNWwad4thH/k/aAXGkSdabbYoBhJ6auGsCMH5191XlL7hvFZd0kQVQghhMgh2ZEqxCpnV9eigiFMIp73tgLTHMdRsmsTtW+7HV9RhIGzl2n53Dcx6cyUAYXlt1C2JhOb4axVDaq/fcF9U7NsG+1pGyA88vXQ2cuESsPE++bx/cpDat/f/tRPsnnb/IPNQgghbi1qlZ5PIoQQQoh8K13CtqZbILwGRTXe1GUHhmYAfPsO4LSO2ykbLQbXgdjwtDWr8krw5W4n6ngGZzTMaoXLyQwr5rfLNNf3cQq/9SBKBXNcrxBCiJVG5gpySwKpQqxySikC6zaQOPNmXtuxN+3h3LPXJjxXvHUdt//Fb6P0zc3x97Hxh95L25ef5eLffI41734b/rJioqaN9PFvoaPFuPEMN4ZqwRjcjCHWNQRKUbuzEufawlMUKzVzILX3Shdr7txKamAYN+2wtrqCM89MTXEULI3gph1Sw4kF9wPg8afu4UM/8k4qqku5ermNG9d7+PNPfYZL51uxbYsf//j7eO+H3raoNoQQQgghhBBCiJmFAR8ww2LmnKnG25U6RrEWzV3jntmMYZ30shQAAQAASURBVD+G09j7EgTTPwIGfA/ug1AfGBviGeKf/hzYNiYRx7l8HhUpIvyh74NZxvtzm3lnp+N246bTYDJAP1ZoL078xNQadAnGHQbmeUzQJLbeh6U3ATbGDGJMH2n3NSAG+PBZd2HpukW1IYQQQoipJJAqxCpnjMHp78t7OymCUxZbbv/ED44LonoC5SWs+553svYDj0x67WO48RgtP/NBKuOvjT1dplD+AOba4s5uUXOsBHVcRd/5617Zlk6i1WUMdQyy/t6dDLb1cuAj97HtsUNkEimuvnCOU//3Ga4+f/Zm5XMqKolg2xZPfM/9/Iff/cHRNDxrN3iDoMeeuoenv/wyt92xncrqsoW/USGEELcWydomhBBCiLxwWGzgLztT21Acnua5MIqD+Bpuw98w8QbImH4y4S8S+pGHxj05Mp+wqCDq7JTKgHFxXS87lrEiGGwUGezgQVynB3/kYezgAYzbj5M8TWr4y7iZ1nm04u0u9enD2NbOcY2XAU1YeiuuaUWrNSglR/8IIYQYIXMFOSWBVCFWuXTrVdJt87mJXxifnjo46nrhBGV7tkxbfnKAFUCHwtT+yv9H68d/YOxJYzDJxe0ABQi4QzTtrUdbcPMoEa0V2oJoyKE81Ev3zSYdl/r15ZS9705u/6lHsAO+0Xp8IT9b33GATW/fw4WvneSLP/dXaK156PE7OHJsN6lUBuMa/vxTn6Gvd4iP/er38t4PvZ3K6lJs25q5fwEfD73r6KLfpxBCCCGEEEIIMbfr5D717HSmjoMN11Gsm7a0mmZmWKkSLG7HMc+OezI3AVQFKFU9rlU1+qGwwB7GTXmLro0Zxorsw2dtxxe+d8I5pcoqQ4fvxA4eIB17muTgPwM2ltqGVpUYXCBJxj0BKHzWMSzVCIRnPe9UqQCW2pCT9yqEEEKI6UkgVYjVzlqiXwN9bUxeCuOmF7C6NQ/njQKUdb3GEV7zFt1OFgdX+7BDO8jEUwBEq4q46+cfn7E+y2+z9Z23UbdvHXbQzw9VFE14/YM/9DC93QM0rqvN5dsQQgixmihg6rqj3NYvhBBCiFUqnzcZ400X8MzfLtL5Urp3mlDvGG3bkBp7bPk34w/eN0t9IXwju1SVLkbp0ITXbb0LMCgVWVzHhRBCrF4yV5BzS3VXJIRYpqzI0tycOx1tWIGxoG31PYfY/ONPzbseHS3CKln61LbaTVO1pRoAOxzg4Cey63txQwXhSUFUgGhRWIKoQgghhBBCCCGWKd/cRXIiNuGRYgeK9QuoJ0ohpjmVSqNU6cjX5QQCd2dxjULbNVOCqN5rYQmiCiGEEMuMBFKFWOWcoaElacfetAcn6e1ArbpzP7t+9ce8lZvz5Kupp/S935fr7mWlrnKY+qM7ufv3f4SihsqC9EEIIYSYQOfxQwghhBCrWHqJ2hlbeKzYjGLPtOl756JVNZqNuexYVpRS+Pxrse0dhMPvR6nAkvdBCCGEmELmCnJKUvsKscqlrl3JexsqEOTiS72jj6Pr1+AviS64vuJ3PokbjzHwpX/B6evJRRen0hbRYw/g37AZK1xEurOdxnsfZk9tQ37aE0IIIeZLATqPOXVWYboeIYQQQngM/UvQShHQMe5xhXfu6AJpdRCMjct5YAFHCWXFQrMFVASFD0Mc278FpYJ5ak8IIYSYJ5kryDkJpAqxyhlnukNBc8tt3INz5RoA/vISau4/vKj6lFKUPfn9RI89QO8//iXxky9PCKiG9h5C+fxkujtIXT4/dqFlwcj7Vf4AJpWcUK+vcR3RO9/uXW/7CGzcuqh+CiGEEEIIIYQQK5NZgjbGpw8uQVGzqNqU8mGpQyizHte8geE64wOqig3AMIY4MDD+SsberwVMnCdRVKDURhTlKIIoVbyofgohhBBiZZFAqhCrnK+mLn+V2z6cxgNcefYqN5eqVB7ZQ+muzTmp3lfbQPXP/jpOfy/p9lbafuNnKHrgXZR/+CfQ/gDGGNJtLSgUqdYr2FW1DH3rS5Q8/gGs8krSLZfp/NP/Qnj/EXS0iOKHn0DpVZqfQAghxIqjAJXHP1urcJGpEEIIIUbl85xOH95u1LEF0Yr1KBaeuWo8rSrR6l6MGcAwgGO+iVaH0GxDKYUxLl4g1WBIAmkM/Wg2A34M13HNSZRahyKIVhty0i8hhBBiKchcQe5JIFWIVc5k8nfuib1mPZde8IKolbfvRVmayqP7ct6OVVKGVVJG4//4R3RxCdrvnUmilMJf3wSAr74RgMAP/Mzodf6mDTT85z/LeX+EEEIIIYQQQoiVzc1j3aVAJ95UbANgUFTmvBWlilEUo3gPEEUpNfK8HunD+MngxrHraEArOdZHCCGEEB4JpAqxyikrf78GMs3n2PLIPVg77qTpqYdGBy35YldW57V+IYQQYtnJ57knQgghhFjF8pmtqRNoRLMORVMe2/EoVZT3NoQQQohlReYKckoCqUKscv6GxrkLLULR2lqq3v9wXtsQQgghhBBCCCFE7iiK83pKqqJhSYKoQgghhBCLJYFUIVa55KXzea0/cfFcXusXQgghVi1FfleZygJWIYQQYtUy484vzY9uYGOe2xBCCCFWIZkryLl85ukQQixzxhi6/u4v8tpG/M2TZLq78tqGEEIIIYQQQgghcsOQwfBGntu4isnrOaxCCCH+/+zdd7ykd13o8c/3mTl7tu8m2VSSkEIqoYYqHZQLKoqKXTRiuXbFevV6FbwXxcZVsFwRpYjYUEQQ6SVAqAkhkErKpmc32V5OmZnne/945mRnZ08/M2fO7Pm883peZ+Ypv99v5szZzPP9/oqk3nBEqrSKHfjkRxn76rX9raQsaey8n/pJ2/pbjyRJq5HrnkiSpB5LrgcO97mWBjAJrO1zPZIkrULGCnrKEanSKrbvfe/qex0nfs8VrLvkMX2vR5IkSZIkLU1Sktza93qCpxMmUSVJ0hBwRKq0SjUe3MHYDdf1vZ6NT31m3+uQJGl1Coh+9osMIPtYviRJWnl2AON9rqNOcHqf65AkabUyVtBrJlKlVao8eLA/BRc1TvyulxMR1LedwtrzL+xPPZIkSZIkqaeSiT6VvIbgUmCS4FSC0T7VI0mS1FsmUqVVavLeu/pS7onf/r1s+75X9KVsSZLUIejvuicuqSJJ0iq0vy+lBk+i4Ny+lC1JkjoYK+g510iVVqHMZO/7393zcjc8+es44du/t+flSpIkSZKk/kqaJLf3vNzgAoJH9rxcSZI0nCLiZRHxhoj4ZETsj4iMiLcPul0zcUSqdJzLTCZuuwUiWHP6mYzfdjO7/umtjF13Tc/r2vLCb6a2cVPPy5UkSTMo7BcpSZIWLimBh4BRYD1wPyVfAQ71vK7gEsKxHJIkLZ+VHyv4TeBxwEHgHuDiwTZndiZSpeNY48EdPPSW/8eBT35kWerb/a/vYMNTnkHEKhzfL0mSJEnSEEj2UPJFYOcy1Xc9wdOWpS5JkjQUXkmVQL0VeA7wscE2Z3YmUqXj1NhNX+We33wlOTmxbHWO3/RVJrffxui5j1q2OiVJWrUi+tvL1I5RkiQdd0ruILlqWetMtpM8gWB0WeuVJGlVGoJYQWY+nDgdhkFZJlKl40w5PsaBKz/CQ3//pmVNogLE6Fqa+/Z6ayRJkiRJ0gqSjJPcRvKVAdQ+AkyA0QJJkjSETKRKx4FyfIw9//FOxm+5gbHrv0x56OBA2rH2/AtZ/7jLB1K3JEmrUrHye25KkqTBSA6T3EKyG9gBlANpR3AmweaB1C1J0qrU/1jBxRFx9XQHMvO4SxCs+BVnJc1tx5//Ebve/tcc+vynB5ZEBRi74TqaDy3PGiuSJGk4RMSZEfG3EXFfRExExPaI+JOIOGEJZb48IrK9/Wgv2ytJ0vEgKSn5BMn1wP0MKolatWU7SQ6sfkmSpKVwRKo05Hbfs5t3X7mGbVtfzJaRw2wbv50NB+4eWHsOfOJDnPiyHxhY/ZIkrSr9XPekByLifOAq4BTg3cBNwFOAnwdeFBHPyMxdCyzzLOANwEFgY29bLEnS8aHM+2iVkwQnEJEQh4mYHFBrmsC9wJkDql+SpFWm/7GCm47HkaczMZEqDbHDew7xNz/0Rh646X6+9vDebZxy7oWcctpaJhvJiZvhgtZ1rD94T9/bU2zYyJqzz+17PZIkaWj8BVUS9ecy8w1TOyPidcArgdcAPzHfwiIigDcDu4B/A365p62VJOk4UOZemq2PA2PVOND2YNDgBIhRoEXEGiIOEtFYhhatb2+SJEnDx0SqNMT+8/feywM33X/M/p137GbnHUeef3HN6Xzz807n1Ie+0Nf2nP7Lv8WGy5/W1zokSVJbRH97mcbS1lSJiPOAFwLbgT/vOvzbwI8DL4+IX8rMQ/Ms9ueA5wPPbf+UJEkdMpNm60pg7Nhj7Hk4qZoJsIZabRMRx57bSwXfQDiJhCRJy2OFxwqG0cqeC0zSjG7//G187h2fmde5zckm7/locvu25zOx7sSjj9XWct3WF/OP9zybr237espY5D8LRY11lz1hcddKkqTj0VSi84OZedTCbJl5APg01fCUefXCiohLgNcCf5qZV/ayoZIkHS/KvJlkxzzPnqTVOkhZbiWzdtSRzBFarc00mwVZbiVzsWucbjKJKkmShpojUqUhtOuuXfzdT7xlQTcyrUaLD31gD/BItp7+GLactI5mo2TnnXtpjD8AwEc/AF8993k8+4IHOWnXdQtq06k/+6sUo6MLukaSJC3Ryl4j9aL2z1tmOP41qhGrFwIfma2giKgDfwfcBfxGrxooSdLxpMwdNMurFnjVBGV5X/vxJoI1QJNkP7APgFZ5kOAkihoLHr1a8HULbI8kSVqylR0rGDomUqUhc+NHb+DvfuItTByaWHQZe+/fz9779097bOcdu5m4aMOCyhs540w2PtmbI0mSjkMXR8TV0x3IzMvnuHZL++e+GY5P7d86j3b8FvAE4JmZ2d/5ByVJGkKt8oZ2EnWxI0cBDsx4dbILOGmB5Z0KnLCE9kiSpONRRLwUeGn76Wntn0+PiLe0Hz+Umb+8zM2akYlUacjccuXNS0qizmbb2Sfw4nNvZt3Oe2EBU503H9oJdf85kSRpOWUE2cdeptn/dU+mKpg14hsRT6EahfrHmTm/dQ0kSVplWnknS0uiziziZIqisYi1VA8T1OY+TZIk9cyQxAoeD/xQ177z2hvAnYCJVEmLM7bvcN/KHj80ycjkgQWtF7324kdT27iZ2vqFjWKVJElD4aZ5jDydydSI0y0zHN/cdd4xOqb0vQX4X4tshyRJx7/sT4frquwmMLnAi04lZvwKIEmSVrPMfBXwqgE3Y95MpEpD5o7P396Xcr/xRRup0eRfr30C337ul1gzOf3Uv0cpapzx6/+H+gkLnd5HkiT1RLGiR3nc3P554QzHL2j/nGkNVYCNHdePx/S9vf46Iv4a+NPM/IWFNlKSpGGX2SJ5sA8lB7XayWSOULagVp9PsjaANdT4+j60R5IkzcvKjhUMHROp0hDJTA48dKDn5Z772NM4c+d/EQGPecyLKPbN0tM0gtFzzmfrS17Gxqd8HcUme5hKkjQYAX2crmdB8/xP72Ptny+MiCIzy4dLjtgEPAMYAz47SxkTwN/McOyJVOumfooqaeu0v5KkVao/y4cXcToRe6sncQLV/5ZnPBs4gYLHM7/lzyVJUn+s+FjB0DGRKg2Ru665k4mDvZ+uZ3ysSbm5Ro0Wj979/hnPKzZt5pw/e6sjUCVJ0pwy87aI+CDwQuCngTd0HH41sAH4q8w8BBARI8D5QCMzb2uXMQb86HTlR8SrqBKpb83MN/XrdUiStNKVeW9fyk1aAERA1PbMcuYJFHwDwUhf2iFJkjRI/UxLS+qxa9/zpb6Ue//XHuK2k54/53nlwQOM3XR9X9ogSZIWKKh6mfZr600n058CdgKvj4h/j4jfi4iPAq+kmtL3f3ac+wjgRuAjPalZkqRVopX9WQIocwdluXnuEznQ3iRJ0sANR6xgqJhIlYbIXdfe2beyP//Fw0ysPWHWczY86el9q1+SJB1/2iNLnwS8BXgq8EtUo05fDzw9M3cNrnWSJA2/zCSzH+ujtssvx8icLWJaEDwCKGc5R5IkaXg5ta80RB66vX83R4d2H+ZDDz2ZF570OdZM7Dvq2JpzzufUn/4V1l10ad/qlyRJi9DXdU96IzPvBn54HudtZwF9WzPzVcCrFtsuSZKODxPMvnbp0iT7KMtTKIqDxDH/lz6NgqcQbOpb/ZIkaRGGIFYwTEykSkNi5607OLjrYF/ruPfmB/nYY57O00/+GvvXnEY9Wlz8zPPY9v2voBhZ09e6JUmSJEnSwpR5f9/ryNxJWZ5GUTQh10BAERcQXECsxvn9JEnSqmIiVRoS17zr6mWpZ/tXdrCdzcBhXvK/vpVTrph77VRJkjQAEWRR62v5kiRpZSvztmWpJ/MBWq3qcb14EUWctSz1SpKkBTJW0HOO75WGQKvZ4ovv/MKy1vmEb7ucZ//Yc5e1TkmSJEmSND+ZY5R557LWWSsup1aYRJUkSauHI1KlIfDl917Lnnt2L1t9Rb3gJb/5rRQ1+1pIkrSiue6JJEmrVqu8HiiXscb11OJxy1ifJElaFGMFPeW7Ka1wzYkmH/zj9y9rnRtP2siW07Ysa52SJEmSJGl+Mg/Tyq8ua50RW4no41SBkiRJK5AjUqUV7n2//14evH3nstZ54MEDTByeYHT96LLWK0mSFiL63Mt09a17IknSMMhMmuWVQGOZ6z1AZhKrcG00SZKGh7GCXnNEqrSC3fjRG/jEX31s2evNMnnbj7+Z3cs4nbAkSZIkSZpbK79CmXcPoOYDNMtPkTk+gLolSZIGwxGp0gp2zbu+OLC6b/rYjbzmqa/mwudczAtf+SLOffK5A2uLJEmaRgBFH6fXW32dTCVJGgpleevg6s6bmGzdQhHnUiueSBFbB9YWSZI0DWMFPeeIVGkF23f/vkE3gVs+cRN/9tI/4f1/9L5BN0WSJEmSpFUvOTzgFpSUeRuN1jtpDTCpK0mStBxMpEor2Ni+sUE34WEf+8uPkpmDboYkSXpYkFH0bVuV3UwlSRoKE4NuQFvSKr8y6EZIkqSjGCvoNaf2lVawVqPZ0/JOPu8Uzn782Zx8/ims27KOtRvXMrJuDXvv3cOd12xn+xfvYN8D04+CvfBZFxGx+v6RlCRJkiRppag6OJc9LTM4iYhtRGwmWAOMADWSfWTupMwdzJS8LeIRPW2LJEnSSmMiVVrBytb8R4Cu37qew3tnnt7n7Cc8kp97zyvnTIYeeHA/d33pLj70J+9n3dYNPPk7n8yZjzmLk88/Zd5tkSRJy6Sf655IkqQVaKEzRY0y2wjWIi5kpPac2WvMBA5S5g5a5dVEnEwR51HENiI2LrA9kiSp74wV9JSJVGkFa4xPznp827kn89z//jwueNZFnPTIk/jaJ2/hA6/7L7Z/4Y5jzn30Cy+b14jSTSdv5tEvvIxLXnApRc3ZvyVJkiRJWjlac54RnEqtuKQ9WnQtZd5Oq/wSyd5jzi3ikXOXFwFsohabKOI8IowVSJKk1cNEqrRClWXJ+MGZe42e86RzecWbf4wNJ254eN+Fz76IC551ITd++Hre/jNvY6Lj+ste9NgF1W8SVZKkFS6iv71MndJfkqQVaPb1UYs4n3rxHCKOfEeoxaMo4jzKvIlmeRVHRrXWFzw1r0lUSZJWOGMFPWciVRqQHbfuYNsjt1Ebmf4ftduuupXx/WMzXv8tv/XSo5KoUyKCS7/hMn7uP17J597xGR645QEe8+LHctqFp/Ws7ZIkSZIkqbcyk2QPwQkzzihV5p2zllEvnnFUEnVKREEtLiXiBFrlrSQH289HetJ2SZKk45WJVGmZNSeb/Ofvvocr//rjnHbRaXzvn/4AZz7mrIePH95ziJuvvJn3/M6/z1jG2k1rOfNxZ814HOC0i07nW1/97b1qtiRJWoGycFSIJEnHg8wJmuWVlLmdiNMZKZ5DxKaO44co806a5ednLCM4mYjRWesp4nSK2uk9a7ckSVp5jBX0lolUaRndde2d/PMv/wP333g/AA/c/AB/8uI/5tynnsfohlF23rqDXXfumrOcrY84gVrdBaMlSZIkSRpmmUmZd9EsPw0cau+7n8nWPxNxBpBk7gEOz1lWZ+JVkiRJvWEiVVoG++7fy/te+16++M4vHHMsM7n9s7ctqLwdtzzAwV0H2XjSxl41UZIkDRvXPZEkaaiVuZtm+Vky753uKJn3LLC8+8nMGacFliRJq4Cxgp4zkSp1mRyb5NNv+STnPfV8HvnEc5ZUVqvR4qN//mE+8oYP0Rhv9KaBQJbJfdffy4XPvqhnZUqSJEmSpOlljtHKGynifIrYssSyJmmWn6fMm4DsTQMBGKMaubqhh2VKkiStbiZSJapRoTu+toPrP/gVrnrrp9h7316iCL7rj76Xp3z3UxdV5n033Ms//Pzfc98N0/UsXbqxfXNP6yNJko5nQfazlymrr5epJEmdMkuSXZTl7bTyJmCSFl9mpPYiiljcOqNleQ+N8kqmpvHttWSCMJEqSdIqZqyg10ykatVrNVu85Uf/lhs+9NWj9meZ/Muv/CMnPOIELnjmhfMvrz0K9UN/+gFak61eN/dhYwfG+1a2JEmSJEmrWeY4jdZ/kTzUdaRJo/VBRmovXdDI1COjUG/sbUOP0bvZsCRJkmQiVWLX9oe44wu3T3usbJX8zQ+9ke9+3ffxuJc8nqIoZi3rnq/czT/94j/0bRRqp9ENo32vQ5IkrXB97WUqSdLqVeZOkn0zHJ2k0XoPI7UXEJw255qkrfJumuUn6dco1KMZ6pMkadUzVtBTfrvSqnfKo07l/1z/exzcdZD3vuY/+MI/fe6o443xBm//qbfyvte+l6d939N50suezJbTtx51TnOyyUfe8CE+/PoPUjbLvre5tqbGuU8+r+/1SJKklSujv9P15BxBYUmSjme14myK+CHgII3ySjLv6zpjjEbrvQQnUSsupojziTi6w3M1CvWzlHnzMrV6PcEJy1SXJElaiYwV9J6JVKlt40kb+e4//l62nLaFD//pB485vvuuXbzvte/lv37/Pzn/6Y/iwudcxKkXnMah3Qe58k2f4IGb7l+WdkYRfOfvfw9bz9i6LPVJkiRJkrQaVSNNNzFSvIhm+XHKPHY2q2QXzfLTwGco4iwiziDYRLKfVvkVlmcUKsAII7XnEzH7TFqSJElaGBOpUoeI4L/90ov56ge+MmNiNDO59aqvcetVX1vm1kF97Qg/+JdX8OgXXrbsdUuSpBXI6XokSeq7iBr14plMtu4BJmc4q6TMOyHvXM6mta1jpPYiitg2gLolSdKKY6ygp+ymJnUpagUv/rVvGnQzjhER/PDf/IhJVEmSJEmSllnEKLXicYNuxjTqjNS+2SSqJElSnzgiVZrGo7/hMjaftoX9D+wbdFMe9g2v/G9c/NxLBt0MSZK0UvR53RNW4bonkiTNphaX0OILg27GUerFsyli66CbIUmSVgpjBT3niFRpGhHByeeePOhmPOyCZ13IN/zCfxt0MyRJkiRJWrUiRoF1g27Gw4q4lFpx/qCbIUmSdFxzRKo0g0c8+hHc9plbB90MnvzdT+XbX/Myipr9HiRJUqfo87onq6+XqSRJc4k4kcx7B90KasUTqMUTBtwOSZK08hgr6DUzM9IMHveSwd6QnHrhabzizT/G97zu+1izbs1A2yJJkiRJkqAW5w20/uBURmrfQr24nAjDepIkSf3miFRpBo+8/BzOevzZ3H3tXcta7wXPupAX/+o3cfYTHkmswvnGJUnS/PV13RNJknSMIs4FrgYOL3O9j6JWPMH1UCVJ0pyMFfSWXdekGUQEP/BnP0h9dHn6G6zbup4r3vQK/vs//BSPfOI5JlElSZIkSVphIkYZKZ6zjDVuZqT2LYzUnmcSVZIkaQAckSrNYtu5J/PU7306n37LJ/taz5bTt/Lj7/hJTrvwtL7WI0mSjiMRUPTx67yduiRJmlZRnEnk6WTe39d6gm2M1P4bEev7Wo8kSTqOGCvoOROp0hy+5bdeytj+w1zzb1cvuaynft/TueyFl7H+hA2MbhxlZHSE2po6609Yz+j60R60VpIkSZIk9dtI8fU0Wh8ieWCJJRXU4nFEnNxOmNYI6lSTyK0jwqn5JEmSBslEqjSH+mid73v9y7nkBY/m3b/1bxzcdXDBZWw7Zxvf+Qffw6OecUEfWihJklangL6ue7L6eplKkjRfEWsZqX0TrfwqrfKLQGvhZXAK9dqzKOLE3jdQkiStUsYKes1EqjQPEcETX3o5j3ziObz9p97KXV+6kyiC0y8+g9GNo9x5zXbKZnnMddvO2cZzf/IFPOllT2Zk7cgAWi5JkiRJkvohoqAej6WIU2m2Pk6yn2pEaZUYTR6c/jpOplY8jiLOIVbh9HiSJEnDxESqtAAnnX0SP//eX2Rs32GKeo3RDdV0vA/etpPr3vdldt+9m5G1I2w4YQOnP/oMLn3BoylqxYBbLUmSjksB2dd1T/pXtCRJx5MiTmWk9l3ABFAnovr/c5k7Kcu7SMaq6XpjHUWcSnCaCVRJktQfxgp6zkSqtAjrtqw/6vnJ55/CC372GwbUGkmSJEmSNEhVYnTtUfuKOIWidspgGiRJkqSeMJEqSZIkDSXXPZEkSZIkSZ2MFfSac45KkiRJkiRJkiRJUhdHpEqSJElDKcjo59f51dfLVJIkSZKk4WasoNcckSpJkiRJkiRJkiRJXRyRKkmSJA2jCCj6+HU+Vl8vU0mSJEmShpqxgp5zRKokSZIkSZIkSZIkdXFEqiRJkjSs+tnLVJIkSZIkDR9jBT3liFRJkiRJkiRJkiRJ6mJaWpIkSRpCSZB97GWarL51TyRJkiRJGmbGCnrPEamSJEmSJEmSJEmS1MURqZIkSdIwioDo49f5WH29TCVJkiRJGmrGCnrORKokSZI0lAL6OF0Pq3C6HkmSJEmShpuxgl5zal9JkiRJkiRJkiRJ6uKIVEmSJGko2ctUkiRJkiR1MlbQa45IlSRJkiRJkiRJkqQujkiVJEmShlAERPTv63ysvk6mkiRJkiQNNWMFveeIVEmSJEmSJEmSJEnq4ohUSZIkaSgFFCP9LV+SJEmSJA0RYwW95ohUSZIkSZIkSZIkSerSjxGp59x4441cfvnlfShakiRJ6o8bb7wR4JwBN2MBoq/rnqzGXqaS+spYgSRJkoaOsYJjy19t+vFu7h8bG+Oaa67Z3oeyJUmSpH45B9g/6EZI0nHKWIEkSZKG0TkYK1jVep5Izcxze12mJEmSpG4B9jKVNCSMFUiSJEnLwVhBr7lGqiRJkiRJkiRJkiR16WdaWpIkSVK/RBBFH7/Ox+rrZSpJkiRJ0lAzVtBzjkiVJEmS1DcRcWZE/G1E3BcRExGxPSL+JCJOmOf1J0XEj0bEuyLi1ogYi4h9EfGpiPiRiPCeRpIkSZIk9YUjUiVJkqQhFX1d92TpIuJ84CrgFODdwE3AU4CfB14UEc/IzF1zFPOdwF8C9wMfA+4CTgW+HXgT8OKI+M7MzP68CkmSJEmShsdKjxUMG99NSZIkSf3yF1RJ1J/LzDdM7YyI1wGvBF4D/MQcZdwCfAvwn5lZdpTxG8Dnge+gSqr+a2+bLkmSJEmSVjunwZIkSZKGUhBR79sGS1v3JCLOA14IbAf+vOvwbwOHgJdHxIbZysnMj2bmezqTqO39DwD/r/30uUtqrCRJkiRJx4WVHSsYRiZSJUmSJPXD89s/PzhNEvQA8GlgPfC0JdTRaP9sLqEMSZIkSZKkaTm1ryRJkjSEgqDo47onUfUyvTgirp7ueGZePkcRF7V/3jLD8a9RjVi9EPjIgttXdYX9wfbT9y/0ekmSJEmSjjfLFCtYVRyRKkmSJKkftrR/7pvh+NT+rYss/7XAZcD7MvMDiyxDkiRJkiQts4g4MyL+NiLui4iJiNgeEX8SEScMum3dHJEqSZIkDaMIImp9LR+4aR4jTxddQ/tnLvjCiJ8Dfgm4CXh5LxslSZIkSdLQWp5YwRKLiPOBq4BTgHdT3ds/Bfh54EUR8YzM3LXkinrEEamSJEmS+mFqxOmWGY5v7jpvXiLip4E/BW4AnpeZuxfXPEmSJEmSNAB/QZVE/bnMfGlm/o/MfD7wf6mWCXrNQFvXxRGpkiRJ0pCKPq570gM3t39eOMPxC9o/Z1pD9RgR8QtUN1ZfBV6QmTsX3TpJkiRJko5DKzlWEBHnAS8EtgN/3nX4t4EfB14eEb+UmYeWuXnTckSqJEmSpH74WPvnCyPiqPuOiNgEPAMYAz47n8Ii4teokqjXUo1ENYkqSZIkSdJweX775wczs+w8kJkHgE8D64GnLXfDZrJy09KSJEmSZnTTjffztCf/dl/LX4rMvC0iPkjV0/SngTd0HH41sAH4q6kephExApwPNDLzts6yIuJ/Ab8DXA280Ol8JUmSJEk61jLFCi6OiKunO56Zl89RxEXtnzPNTvU1qjjChcBHFtPGXjORKkmSJA2fm8bGJrnmmu19r2eJ1/8UcBXw+oh4AXAj8FTgeVQ3Tf+z49xHtI/fCZwztTMifogqidoCPgn8XER017M9M9+yxLZKkiRJkjTMlitWcM4Srt3S/rlvhuNT+7cuoY6eMpEqSZIkDZnM/P5Bt2E+2qNSn0SVCH0R8I3A/cDrgVfPc2Tpue2fNeAXZjjnE8BbltRYSZIkSZKG2LDECuYw1XM6B9qKDiZSJUmSJPVNZt4N/PA8ztvOkRumzv2vAl7V63ZJkiRJkqRlNzXidMsMxzd3nTdwxaAbIEmSJEmSJEmSJOm4d3P754UzHL+g/XOmNVSXXWSumNGxkiRJkiRJkiRJko5DEXE+cCuwHTg/M8uOY5uolgMqgJMz89BAGtnFEamSJEmSJEmSJEmS+iozbwM+CJwD/HTX4VcDG4C3rZQkKjgiVZIkSZIkSZIkSdIyaI9KvQo4BXg3cCPwVOB5VFP6fl1m7hpcC49mIlWSJEmSJEmSJEnSsoiIs4DfAV4EnEQ1pe+/A6/OzN0DbNoxTKRKkiRJkiRJkiRJUhfXSJUkSZIkSZIkSZKkLiZSJUmSJEmSJEmSJKmLiVRJkiRJkiRJkiRJ6mIiVZIkSZIkSZIkSZK6mEiVJEmSJEmSJEmSpC4mUiVJkiRJkiRJkiSpi4lUSZIkSZIkSZIkSepiIlWSJEmSJEmSJEmSuphIlSRJkiRJkiRJkqQuJlIlSZIkSZIkSZIkqYuJVEmSJEmSJEmSJEnqYiJVkiRJkiRJkiRJkrqYSJUkSZIkSZIkSZKkLiZSJUmSJEmSJEmSJKmLiVRJkiRJkiRJkiRJ6mIiVZIkSZIkSZIkSZK6mEiVJEmSJEmSJEmSpC4mUiVJkiRJkiRJkiSpi4lUSZIkSZIkSZIkSepiIlWSJEmSJEmSJEmSuphIlSRJkiRJkiRJkqQuJlIlSZIkSZIkSZIkqYuJVEmSJEmSJEmSJEnqYiJVkiRJkiRJkiRJkrqYSJUkSZIkSZIkSZKkLiZSJUmSJEmSJEmSJKmLiVRJkiRJkiRJkiRJ6mIiVZIkSZIkSZIkSZK6mEiVJEmSJEmSJEmSpC4mUiVJkiRJkiRJkiSpi4lUSZIkSZIkSZIkSepiIlWSJEmSJEmSJEmSuphIlSRJkiRJkiRJkqQuJlIlSZIkSZIkSZIkqYuJVEmSJEmSJEmSJEnqYiJVkiRJkiRJkiRJkrqYSJUkSZIkSZIkSZKkLiZSJUmSJEmSJEmSJKmLiVRJkiRJkiRJkiRJ6mIiVZIkSZIkSZIkSZK6mEiVJEmSJEmSJEmSpC4mUiVJkiRJkiRJkiSpi4lUSZIkSZIkSZIkSepiIlWSJEmSJEmSJEmSuphIlSRJkiRJkiRJkqQuJlIlSZIkSZIkSZIkqYuJVEmSJEmSJEmSJEnqYiJVkiRJkiRJkiRJkrqYSJUkSZIkSZIkSZKkLiZSJUmSJEmSJEmSJKmLiVRJkiRJkiRJkiRJ6mIiVZIkSZIkSZIkSZK6mEiVJEmSJEmSJEmSpC4mUiVJkiRJkiRJkiSpi4lUSZIkSZIkSZIkSepiIlWSJEmSJEmSJEmSuphIlSRJkiRJkiRJkqQuJlIlSZIkSZIkSZIkqYuJVEmSJEmSJEmSJEnqYiJVkiRJkiRJkiRJkrqYSJUkSZIkSZIkSZKkLiZSJUmSJEmSJEmSJKmLiVRJkiRJkiRJkiRJ6mIiVZIkSZIkSZIkSZK6mEiVJEmSJEmSJEmSpC4mUiVJkiRJkiRJkiSpi4lUSZIkSZIkSZIkSepiIlWSJEmSJEmSJEmSuphIlQYkIq6IiGxv2wfdHh2fOj5jGRHPHXR7dKyIeFxE/GVEfCUi9kVE2fE7+5NBt0+SJEnSymZ8QcvB+MLKZ3xBkvrDROoqFRGv6vwCNOj2SN0iYnNEfFdEvCUiro2I+yJiIiIeiogbIuI/IuKnIuLsQbdVWqyI+BngauAngMuAzUD0uc7f7boBvisilvR9ICK2RMR/j4h/ioibI2J3RDQj4lD7b/czEfG2iPiFiHhaRNTmKO8tSw0E9ep1dv//sr39nwVcv7br2isW2gZJkqSVzPiCVjrjC1oN+hVfiIhzlnpPO997/MXWFRGnRMQvRsS7IuK2iNjbjkkciIi7I+KTEfGmiPjJdrJ51vclIj4+TRygc2tGxK72vx9/FxEvj4i1C3tXJA2T+qAbIA27iHgV8Nvtp5/IzOcOrjXDr/3F4+eAXwe2TnPKSe3tEuAlwOsj4s3Ab2Xm/cvVzuUUEecAd3TsOjcztw+mNSvD8fCeRMRjgT/lSKemSeDLwB5gKgB1Y4/rrAE/2LX7LOAbgA8ssrxfovo3cP00p6xvb6cDTwNe3t6/NyJelJmfW2idC2hXz17nNF4ZEX9+vP6bI0mSpMEwvtBbxheOdTzcS/fa8fCeDCK+sBJExDrg1cAvACPTnLKxvZ0JPBP4kfb+HRHxlMy8a5FV14AT29slwA8AfxwRP52Z/7LIMiWtYCZSJa0YEXEW8D6qnnOdxqi+1O4EtgCPpPqyAtWXlx8FvjMivi0zP7ZMzZWW6kc5cpNzL/CUzLyvz3W+CHjENPtfwQITjBExAvwz8NKuQ5PALcBDVL1fTwIuAEY7ztkKnLCQ+haoZ69zBuupAlw/0YOyJEmSJPWY8QWtMoOILwxURGyiur9/etehw1Qxid3AGmAb8CiOzoOcyvSdwaezB/h8174Rqg7jF3Nk1O/JwD9HxM9m5p/Ns2xJQ8KpfaUBycy3ZGa0t3MG3Z5Bi4iLgM9w9E3OV4HvBLZl5qMz83mZ+USqLyfPAv6t49wtwPsj4tuXq83DoOMzFpn58UG3R0d5Ssfjv1mmm5xXdDz+r47HL42IkxZY1u9wdBL1a8D3AFsz8zHtv9fnZuZjgE3AU4HXUN3Q9FsvX+dMfiQiLuxRWZIkSdKiGV84mvGF/jC+sKINIr4waG/k6CTq1cA3AVsy8wmZ+YLMfFZmXkI1zfFzgP8L3LPAeq7LzBd1bS/IzEupOnC/sev8P22PEJZ0HDGRKmng2lNxvJOjR5C9HnhiZr4zMw93np+ZZWZ+KjO/gypx02gfWgO8rX3TJK10nQm9u/tdWUScTDVd1ZRfBa5pP14DfP8CyjqVakrfKdcBT87Mf8rMse7zM7ORmZ/PzN+k6rH5DcDtC3wJ821bz17nNPZR9VyHqjfr7y6hLEmSJEk9ZnxBq9SyxhcGLSKeQPX3OuWDwNdl5vsys9l9fmaOZeaVmfmLwDnAd1CNWF2SzLw/M/878HsduwvgN5datqSVxUSqpJXgDzi6p+hfZebPZ2ZjpgumZOY/cXRiZAPwjxHhv29a6TrX7zjmi34f/GBHnddk5leBt3Yc/5FjL5nRSzi6/b+Smfvmc2FWPpyZ/RqZ2svX2W0c+N8dz78jIp66hPIkSZIk9ZbxBa1Gyx1fGLTv6Hr+s5k5OZ8LM7OVmf+WmTvnPnveXs2RTtcA/y0iXFJROo74RUA9FxHPiIjXR8R1EfFQRExExP0R8ZmIeHVEPGqR5W6OiP8eEe+MiFsjYm9ENCJid0R8MSL+KiK+IyJGZymjiIhnRcRvR8R/RsRtEXGgXc6DEfHliPh/EfGCebRne0Qk1Tp5U54TETnDdkXX9Vd0HNu+gPfhxRHx1xFxY0TsiYjxiLgnIj4eEf8jIk6fZzmv6qj/4x37z4uI342Ia9vv7Vj7tf59RDxvvu1cwOs5Hfjxjl23Ab+4kDLaC7n/fceux3Psuo1T9T238/eygHZ2/i6fO89rHhsRr21/PndExGRE7IyIqyPiD9o96Ga7/lXtNt7RdeiOGT5jH+9Ru+sR8d0R8baIuKn9OZiIiHsj4iMR8SsRceLcJU1ff7v874yI90TEHe3P8EMR8dmI+M2I2NLP92SxIqIWEd8VEW+PiFsiYl/77+POiHh/RPx8RGydo4zOz94jOw69eZq2v6VXbW/74Y7HU2W/gyM9rh8bEZfPs6yLu55/egnt6rVevs7p/BXVv1NTfn8JZUmSJGkWYXzB+MIChPGF2a43vtCH92SxYvjjC4PWGZN4qI8dteclMyeAD3Xs2kw18lXS8SIz3VbhBrwKyKmtR2WeAvxHZ7kzbJPAHwP1eZYbVF98d8+j7AS2z1DOk4D751lGAp8EHjFLu7YvoKwErui6/oq52tx1/qOAT82jnoPAry3wM/Dx9r6fpRpxNVv5bwRqPfws/l5X+T+wyHLOAlod5Vw1w3nPXcxnv6uNz53j3A3Am7vaM91WAm8DNs7n73Qe28eX0u72+f+Nag3LueraA7xioe8b1Zf7q+YoewfwpH69J4v8fD0Z+Mo86nsI+OF5vh9zbW/p4d/Z0zrKnaRaF2jq2Ls6jv3FPMt7Y1dbp/0ML6G9b+koe/ugXuc0n7kH2vu+p+v1f+Ms16/tOveKXr5Xbm5ubm5ubm6D3rq/o/eoTOMLs29XdF1/xUK+P2N8Ya5yjC8YX5jXe7LIz9dQxReoEoIz/vszzzLe0nH99qXWRTWV78PvUy9+L13lf3yhv3eO/ffnab1ul5ub2+A2h5irJyLibOAjVF/Gp7SA66luUB4BXNDeP0J143JJRHxbVr12Zip3hKon4Hd2HdoPfI1qvbrNwEXApvaxrTMUd1p7m3K4XcZeqi+cp7bLqbWPPxP4bEQ8MTMfnKa8T7SveRRwfnvfHuDzM9R/7wz75xQRj6P6knBKx+5J4KvAAaovGo9s798AvDYiLsjMH11AHf+DI3P6T7TL3g+cyZHfHcCPUX2Z+40Fv5DpfVvH471Ua5ksWGbeHREfBF7U3vX0iDg1M3cssX0L0u4x+AHgKV2HbqT6An8ycCnVDXwAL6f6W3hhZu7puubWdlnrgGd37L8SOGYdSqp1KpfS9p8E3sCRvwGoPtM3t+s7g+pvBKq/s7+JiNMz8zXzrOIUqilWz24/v4sqYDACPJbqszt13gci4tGZ+UBXGcv6ngBExNcD/97RPoBDwA1UgYFHAVM9tU8C/jYizszMzilgp3yg4/FzqJJsUP29df8b8ZWltfwor+h4/N7MfKjj+Vs40sP6eyPiFzNzfI7yHup6/kLg35bUwt7o9eucyT8BvwxMjWz9vYh4f2aWiyxPkiRJbcYXjC8sgfEF4wvGF/ofX1gJOu/1T2r/23rNwFpTGel6Pq+phiUNiUFnct0Gs9HDHqNUX4o+zdG9bt4EnNp13qUc3aMngT+ao+w/6zr/K8A30dXblGqa6icBrwPumqGsb6bqCffrwGOAYppzTgB+harX5VSd/7aA9/LjC3jfrmB+vbE2Un25mzq3BfwusLXrvKdTfanrfL9+Zp7t3tUu9zDwC8D6rnOfyNG9CBvAI3vwOTylq73vWmJ5v9BV3sumOee5i/nsd5X73FnO+8euc98NnNt1ztlUN3Sd571zljLP6Tr3nD60+8VUN/xT534eeAEQXeedT/Wlf+q8EnjhPOt/cOrvBHhC13lrgf/Tdf5f9+M9WeBn6oz238dUPWNUgZr1HedE+/3b3tWmb56j7M7zr+hH+9v1rKcKWkzV9a1dx0eo1vKYOv798yjzJV2v9V7gyT1s81s6yt4+qNfZvu5VHdc80LH/BV3vwQ/OcL0jUt3c3Nzc3NyO6w3jC8YXjC8s6LPfVe5zZznP+MLM9RtfOLrszvOv6HG7u9+fBZdP70ek/mzXedcDF/TwNX+8o+yPz/Oa/+xq04yzELi5uQ3f5hqp6oUfAb6u4/lrM/NHs6unXmbeQDVq6cMdu38xIh4zXaER8Xzgpzt2fQB4amb+Z2YetXB6ZpaZ+cXM/EWqG6rpfBS4KDN/LzO/ktOMHMrMPZn5h1S9Dlvt3S+NiAtnKHM5/AZHeqQC/FRm/kZm7u08KTM/AzyLo3uZ/UFEbJtHHSdSvd4XZuafZObhrrKvAb6RqicpQB34wQW9iuk9uev5F5dY3hfmKL+vIuKFwHd37HoH8NLMvKPzvMy8i6oX9Ns6dn9HRHxT/1t5rIjYSNWTM9q73g08IzM/kpnZeW5m3kbVy3eq7QG8LiKCuW0D3gN8fWZ+qavc8cz8TeBvOnZ/b0SsW/AL6q0/ovr7gOqm7tsz83WdfyNZ+S+qv7/OXp9/1e71PmjfxZEe9Q8C7+s8mJkNqs/qlM5RnTP5ANWN2pQzgM+117j5mYh4XETUpr+0b/rxOmeUmR/h6DVQfidmWUNLkiRJ82J8ob+ML8yf8YVFML4wq+MhvrBSvINqBP2US4EbI+LdEfEjEXHxPD9HPRHV+szP79h1d2YueuYASSuPiVT1ws91PP4K8L9mOjEzJ6mC11NfEqLr+k7/s+PxfcD3dn8Bn6GOgzPsP9z9pW2WMj5FNXXjVBu/bZbT+yYi1gI/3rHrvzLzr2Y6PzP3AT9M1fMJqulJ/vs8q/vD9uueqexbOXrqzmfNs9zZnNL1fPsSy7tzjvL77ec7Hu8AfnKmz1x7/09Tfban/EL/mjarH6WaEgjgAeDl7aTTtNpt/xmqaXkAHg08bx71HKDqTdic5Zw/6Hi8AXjCPMrti/YX4Zd17Pqr9g3NtDLzbo7+9+wMquTeoHUmDN8xw+/2rR2PnxcR585WYPvf8h/kSPADqn8rn081fdO1wIGI+GxE/GlEvCwitiyq9fPX89c5D7/GkX9vH8nRwTlJkiQtnPGFPjG+sGDGFxbH+MI0jqP4AsCbIyIXsgE/1MsGZOYuqqnBO/8masC3UM1icCOwLyI+ERG/HxHf3K9Eevvf1rdyZGplgH/uR12SBsdEqpak3ZPy0R27/nSOLzFTXwb+qWPXS6cp9zSO7snzf/PY9R367TMdj7vXo1guz6ZaE2HKH891QWZeTTUFxZT53qT9xTzO+UTH40fPeNb8ndj1fO8Sy+u+vrv8vomI9VQ9oqf8dWbun+2a9k15543r8yNicz/aN4crOh6/MTMPzHTilPY57+rY9fXzqOcfM3P3HOXeQnWzNaUXn7PFeglHr3HxurkuyMx/A27v2DWQIMmUiLiAo4MSb53uvHYP3qn1XoIqYDKrzPwk8AyqKXSmsw54KtXN378AD0TE2/vRA7+fr3M27fI6/3/2G8uQMJYkSTouGV/oO+MLC9N9vfGF+bmi47HxhSOGPr6w0mTmP1GN+L9rhlM2Uf2796tUo5cfiIi/iIgzllp3RNQj4syIeDnV6Pdv6Di8C3jtUuuQtLKYSNVSPb3r+Xvmed27Ox5vawfBOz2n63lPe/JExOaI+I6I+N8R8baIeFdE/FdEvH9q4+ielmf2sv4F6Hx/DwIfm+d1ne/v49pfwmezfZ5TTtzT8XjrPNsym+5pMCemPWv+xruez/W6e+nJVFMSTVnM30JBlXhaNhGxlWpNnykfnuHU6VzX8fhJ8zj/0/Mst9efs8Xq/Pu7sd1rej7+Y4YyBuFHOh5f1z3lUZfO5OMVETHnd4R2YOWxVD1r38Oxf4Od1gLfD1wfET8/y3mL0dfXOYf/SbWuE1SBqV9bYnmSJEmrlfGF/jK+sDDGFxbI+MKsjof4wpSvUk2PvpDtvmlLWqLM/CBwAdXsBB8FZut8sxn4SeCWiFjI6N7nTDPCtgHcTTUtdWeCfh/VerYPLeR1SFr56nOfIs3qUR2PH8jMnfO87rqu548Cvtbx/JKOxw+213xYsog4Cfhdqikp185xeqetvah/ETrf369Ot+7KDDrf3zrVlJM3znL+A7Mc63So43EvbiL2dj1f6kiurV3P5+z52EOdv6vk2M/4TG6g+qI39e/xozh63cV+ewxHd6r5PxExNs9rH9Hx+OQZzzpiUJ+zxer8nX55Add1/u7PiIh1mTnf97Rn2muUdq41NO0ozQ5/D/w+1WfxLKoelR+Yq572v0v/Cvxre43QJ1P1sn881Y179wjUOvAnEVFm5hvmfiWzW67XOZPMvD0i/opqOiqAn4+IN2Tm/YstU5IkaZUyvtBfxhcWZmvXc+MLczO+MLOhji90+ePMfMtCLoiIt9Dj6X2ntKd5fzPVlMMbgKdRxSUeR5V8fmTXJRuAf4yIicx8N73RpOrI8Mr2TAmSjjMmUrVUJ3Q8fnAB13Wfe0LX884pU3YsqEUziIjzqHpcnr2Iy7t7Ni6Xfr2/3ZbaU3OxuqdhOWnas+av+/rl7AHW+R4fzMzZRuY9LDMbEbGPI22f63fVa93v2bMXWc58blIX8zmLRVzTK738+xvEjc43Aqe3HzepEogzyswd7d7y39ze9QoWmGDMzAngU+0NgIg4myq49Isc/Z7+YUS8KzPvYWmW/XVO43eobgo3Ud2cv4r5rx8lSZKkivGF/jK+sDDGFxbO+MLMhj2+MBQy8xDwkfYGQERcTHXf/zNUSxBB9Vl4Y0R8uH3NbPYAn+/a16DqXPEAcA3wETtTS8c3E6laqs4bgMkFXNf9JbC792bn8yV/CW9P3fjPHLnJSarpMd4FXEs11cehzi+nEXEFVY+mQVrs+9v9ni2kd+xy6p7K5HFLLK/7+huWWN5CLPZ3BUf/vpb7d7WhR+Ucj1PFD/vf3ys6HhdUU+rOdU1nD92XRsRJmblrKY1o9/j/PxHxZqqbmYvah0appuR99VLKZwW8zsx8MCL+mCqBCvCKiHhdZt682DIlSZJWIeML/TXs9zdzMb5QMb6wMh3vf38rVmbeBPxqe1Tsx4BT2odOoVqmaK5Zra7LzBf1r4WShoGJVC3V3o7HmxZwXXfvsr1dz/fMcu5ifCNwecfzH8jMd8xxzUJeT7/s7Xi8kPZsnqWcleRLVGuzbGw/X+p6D93rf1y9xPKAh6cOncvejscL/ex0/r72znRSn3TXd2Jm7pnuxFVob8fjofr7i4hTOTLiEqob0YX2yF5Dtabp63vRpsy8NyJ+gqPXYnrWUspcYa/zj6nWWzmV6vvV7wLfscQyJUmSVpO9HY+NL/Te3o7HQ3V/M0/GFyrGF1amvR2Pj8e/vxUvM2+IiF/j6E4tz2LuRKokHZc9fLS8OtcseWREzDc5f/4s5QB0TofwyIhYao+rzp5DV87jJgeqtfMGrfN96X7PZjPX+7siZGYL+GTHridExKWLKat9M/I9HbseAq6a5tSjev5FxMg8ip/PdDid7/GaiDhzHtcQEadw5Eavu5zl0L2uyAXLXP9K1ou/v0kGc6Pzg/Sms9SP9KCMTp+gCm5MOWOJ5a2Y15mZB4H/3bHr2yOiO/giSZKkmRlf6C/jC/NkfGHRjC/MbJjjC8eT/+x6vtSYhKRVwkSqlqqzR94o8MR5Xvd1HY9bVNPfdPpMx+ORrvMXo3Nh8e557WfyzHmeV3Y87vV6C53v73nt0Vfz0fl+7ejBGoT99Fddz39+keW8jKO/AL29fSPVbX/X8xOnOafbY+ZxTnfv1Pl+ZrvP++I055Rdz3v5ObuOoxNbL+xh2f3Uz/dkSufv9EnzvCmGo3+nX8rM7rYuhx/uePyWzIz5bsBTOq59bERcTo9kZnL05625xCJX2ut8I0dPKfYHPShTkiRptTC+YHxhqYwvHM34wvwYX1g9uv9mlxqTkLRKOLWvlurzVOuRTPXofDnzu5H4wY7HV7dH8nS6mqrH37b2858EPrqEds73CwoA7V6L850GpnNR8nUznrU4n+h4HMAPUE0fOaOIGOXonpOfmOncFeI/gJs5sm7ij0bE2zLz0/MtICK2AP+3Y9cE8EcznH4X1Ro2U1+MHwt8aI4qvn2uNmTm7RFxN0d6Gr+cat2cufxQx+MdVO9Ft+6F73v2OcvMRkR8BPjW9q4fj4g/zMwlrx3UZ317Tzp8Avhf7cdbgG8B/nW2CyLiZODFXWUsq4j4OuCSjl3/tJDrM/MLEXEbR3q+/gi9m8bqRI6sRwJw3xLKWnGvs/339JvAP7Z3PRv4pqWUKc0kIv4euHgZqropM79/GeqRJMn4gvGFpTK+cITxhfkzvrB6dN8/LTomIa1Uxgr6wxGpWpL2Dco/dOz68YiY9Q81Il4OPKFj1xunKbcJ/FnHrpdFxLcsoamd/2N89hztK4A/X0DZndMEnR8RPeu5lpm3cfR6gr8eEdtmOr/tV6nW6JtyzPu7krRHqP0kR3oAFsA7I+Kima86IiLWA+8GTu/Y/VuZee8M9e0Hvtax67vnKP9C4BXzaQvwpo7H3xwRz5uj7GcDL+3Y9dft96PbXqqAwpReT4/zhx2PzwJ+v8fl98Ne+vueQBVcua3j+WvmMQ3Ya6nW3ITqhvpNs5zbL52f113AhxdRRudN+vd2v+6IeE5EnLuIcn+Oo797LKZtU/r+Ohfpnzm65/fv9qBMaToXU43U6fe2HDdgkiQZX6gYX1gC4wvGFxZpL8YXhkpEvLg9lfVCvbLr+VJiEtJKZaygD0ykqhd+nyNfONYA742I86Y7MSK+gaOnWvka8PczlPunVL37pvxTRHzvbA2JiG0R8avTHOrsbfqUiPjJGa5fD7wdeO5s9XTpHMF0IkdPNdkLv0P1hQngJOA/Z/qyEBE/CLyqY9cnM/MjPW5Pz2Xmxzh6bcHTgCsjYq6bkMcDVwLP6dj9XmbuLTrlnR2Pr5jphiQiHtUub/0c5U35C+DBjuf/MtN0oRHxhK527ALeMN257SmEru3Y9VM9SvhMlf9pjoygA/j5iHhD++9hRhFRj4hvjoiPRsQjZzu31/r9nrTrSKq/vykXUf1ON3afG5Xf4Oib4r/PzK91n9tPEbGBo2/e/7UdOFqozs/DVuA7uo5/A3BLRLy1nVSdNcATEbWI+GWO9MAFOMDM//7Pahlf54K1Pze/1rHrwqWWKc2u3sdNkqRlZ3zhCOMLi2B8ATC+sCDGF4bS9wPbI+LP5rNMT0SsjYg/4uhR23dz7Jqp0nHEWEEvrc5XrWNExPjcZx3ly5n5VIDMvDkifoUjX9LOB66LiL8FPgLsoVpb4qXAd3FkypNJ4Acyc9q6M3NvRHwXVY/JdVTT+7wjIn6B6gvi9VRz22+hmt7xOVTrL4xx7Lp0/0I1KmhqWpS/iIgXUo0cugfYRLVe3iva5zSAt1FN9Tir9uv/IvCk9q6/iYhfp7qJm+w49fWZueDpgzLz4xHxOuCX2rueAtwQEX8NfJoqGXEO1XQ7L+q4dC9HT3G00r2a6kb519vPTwH+MSL+J9V0J1+luonYDJwLvAR4PlDrKOM/ge+cx5oRfw78TLusGvD+iHgT8H6q9+004Oup3r+1wFuAK+Z6AZn5UET8CFUP1qC6Mf1sRPwd8D5gJ3Ay1e/phzgyJVQCP5aZO2cp/u3A09qPXwjcHxHXUv0NTN0IfzUzf3Ouds7gR6gSPlPrEP0M8D0R8Q/AVVTTApVUyaZHAZe3X8cJ7fP7sYbIXPr9npCZb4uIl1CtkQPwzcD17b+/L1JN83Qh1e+zc7qu7cDPLrbeJfhuoPNGbEHT3U7JzOsi4kaOTJ37Co4NStWp/kZ+ELg7Ij5BNfXaXcBuqr+tU6k+U9/BkSl0p7wyM+9ncZbzdS6m3I9GxAcZnjWBNMSij//8TjeEQZKkuRhfML6wAhhfML6wUMYXhs864KeBn46Ir1F1hPgC1awBe6j+DTiD6t+5l3H0SPMG8OOZObasLZaWkbGCHstMt1W4UfUqzCVs105T5i9SfRGaz/X7gRfMs61PppreZr5t2ztDOU+jWvdgrusbVF/6rujYt32ONj6eas2V2cq9ouuahZQfVGt0zPc9uA947AI+Ax+f5+/iuZ319OmzeQXVDc1CPo+HqEaAxQLq+W6qReXnKvu/qL58de577jzKnphn2yeB75tHe+vttsxW1jG/xwW2eyNVEGEx/yacM0OZ866/45qPd1zzql6/J4v4TI5SBUXm+17cCJw9j3K3d1xzxVLb2S7zUx1lPgAUSyjrtzvKKoFzO469epGfk6QKzrxijrrf0nH+9kG9zvbxV3XWtYByH8/0/0/sye/azY1qxEoGI33b2p/Zqwf9Wt3c3NzcVvaG8YXZNuMLM1/z3M56+vTZvALjC9OVaXyhR+/JIj6TQxNf6Cj7nK42Lbh85rjHX2hdwFsX+dlKqn8TvmkBn5sl/97d3JZzw1hBXzan9lXPZObrgKdS9RKdqcfeONX/7C7NeU4Jk5lfoJpz+zVUNxMzngpcw5Eeh93lfJbqZueqWcr4LPCMzPyb+bSto+xrgUdTBeQ/SfU/5cnZrllg+ZmZr6TqFfeFWU49CPwJcFlmXter+pdTZr6Fqtfxq4Cb53HJHcD5mfn72f6/xTzr+SfgG4FbZjjlIarP0jdl5oJ+l+2yHwv8G9WN83SaVD1LH5eZ75hHmU3gm4DvA95F9bqnbtx7IjMPZubLgBdTfWlszXHJduAvgWdm5vZetWO+luM9adczQXXz+j1UNzEz2UX1b8DlmXnXLOf1RXvdn2d07PqXnLv39Gw6R3kGR08r9mqq9aD+iOrf3bk+KwD3Aq8DLs7Mv11so5b5dS5a+/8L/zDXedLSBEQft4EMBpAkyfgCxhd6wvjCjGUaX+hifGHo/BjVKOY/p5pRYD6/p1upple+IDOd0lfHOWMFvRYL+F4gzVtEnEwVZD+Dalqb3VRfiq7MzMNLKLegmhrkMqopTEaoep/eTtULYsc8y7kE+Dqq6V3GqHqkfj4z71hs25ZTRJxFlUg4jWoqi11UU/18eqFfyle6iDiXqkfuqVRT2YxQTRN6Wcdpr87MVy2y/KCaNumJ7fL3UH2ePtaL9zIiNlNNC3UW1bQ1+6jWYfhEZu5bavn9FBFbqD5nZ1K9N0nV/u3ADZl55+BaNzgRcSHV1DCnUPUmfhC4AfjcEhN6Q6u9ZumlVNMynULV+7hJNfr0fuArwG0LCUZIml1EXA3xxIiRuU9epMwGkNdk5pzrDkmS1C/GF/rL+ILxheVgfGF6xhd6IyK2Uk3L/ihgG7CBqgPKAarlh75iQlqrhbGC/jCRKmnoRMQpVD0aL+nY/YuZ+X8H0yJJkpbXkZuj0b7VUXWYX103R5IkaXUxviBJOp4YK+gPp/aVNHQycyfwAqppOab8cUS8YkBNkiRJkiRJQ8b4giRJmouJVElDKTPvB55PNQ0MVJOz/3VEfOfAGiVJ0jILir5tkiRJq4HxBUnS8cZYQW/VB90ASVqszLw7Ip4P/FDH7gsiYl1mjg2qXZIkSZIkaXgYX5AkSTMxkSppqGXmHcCrBt0OSZKWX0D0sTdoBpD9K1+SJGkFMb4gSTo+GCvotdU5DleSJEmSJEmSJEmSZuGIVEmSJGlo2S9SkiRJkiR1MlbQS76bkiRJkiRJkiRJktTFEamSJEnSUAqir/0io49lS5IkSZKk3jNW0Gs9T6RGxB3AZmB7r8uWJEmS+ugcYH9mnjvohkjS8cZYgSRJkobUORgrWNX6MSJ187p160685JJLTuxD2ZIkSVJf3HjjjYyNjQ26GQsS4UodkoaGsQJJkiQNHWMF6kcidfsll1xy4tVXX92HoiVJkqT+uPzyy7nmmmu2D7odknScMlYgSZKkoWOsQK6RKkmSJA0te5lKkiRJkqROxgp6yXdTkiRJkiRJkiRJkro4IlWSJEkaSkFEra/lS5IkSZKkYWKsoNcckSpJkiRJkiRJkiRJXRyRKkmSJA2hAKKP/SIDyL6VLkmSJEmSes1YQe85IlWSJEmSJEmSJEmSujgiVZIkSRpKQUQ/+0WuvnVPJEmSJEkabsYKes0RqZIkSZIkSZIkSZLUxRGpkiRJ0pDq57onkiRJkiRp+AxDrCAifh94EnAhsA0YA+4E/h34s8zcNc9ytgOPnOHwjsw8baltNZEqSZIkDaPo83Q9EZD9K16SJEmSJPXY8MQKXglcA3wI2AlsAJ4GvAr48Yh4WmbePc+y9gF/Ms3+g0tvpolUSZIkSZIkSZIkSctnc2aOd++MiNcAvwH8OvBT8yxrb2a+qodtO4qJVEmSJGlIRdQG3QRJkiRJkrSCDEOsYLokats/UyVSL1jG5szKRKokSZIkSZIkSZKkQXtJ++d1C7hmNCJ+ADgbONS+9srMbPWiQSZSJUmSpCEUBEH/1j0JwiVSJUmSJEkaIsMWK4iIXwY2AluAJwHPpEqEvnYBxZwG/F3Xvjsi4ocz8xNLbaOJVEmSJEmSJEmSJEnzcXFEXD3dgcy8fIFl/TJwasfz9wNXZOaD87z+zcAngeuBA8B5wM8APw78V0Q8PTO/vMA2HcVEqiRJkjSkIvrXy1SSJEmSJA2fYYoVZOZpABFxKvB1VCNRvxQR35yZ18zj+ld37foq8BMRcRD4JeBVwLctpY0mUiVJkiRJkiRJkiTNx02LGHk6q8zcAbwrIq4BbgHeBly2hCL/H1Ui9dlLbZuJVEmSJGkoBUGtr+VLkiRJkqRhMtyxgsy8MyJuAB4fEdsy86FFFrWz/XPDUts0PON7JUmSJEmSJEmSJB3Pzmj/bC2hjKe3f96+xLY4IlWSJGkYZZZAE2iS2QQawBoiNhBRUJa7aZX38/B3zmyQtIBG+/xqi9jKmpGnDuZFaMmGad0TSZIkSVL/ZCbQgnKiigHkBJSTRG0T1DYDQU7cSjlxN2QTKCEnyfb55ARZTkI2KNZdSn3L8wf8irRYKz1WEBEXA3sz84Gu/QXwv4FTgKsyc097/whwPtDIzNs6zn80cH9m7u4q55HAn7Wfvn2p7TWRKkmStEjVTUqDKpnZAkqgRdK+AaEBWQJJMkmVxJw6r0nm4faxVvv8FpAdSc8mZJNsJz2Pekw5Q6uCYB3J4Xm9hqI4y0SqJEmSJEk9kllCOQ45Wd3HT3VmLsfI1qF20rKKDWR5CMrJdmKzRZZjZGt/u6BJaB1qxwya1XXlZJUgzUY7YTpJdjyeMVYQIxBroTwwz1dRgolU9c+LgD+MiCuB24BdwKnAc4DzgAeAH+s4/xHAjcCdwDkd+78T+B8R8THgDuAAVcL1m4C1wPuAP1pqY02kSpKkoZc5Tpn7OhKQrfZNSetIcpIEioeTl0GdpH0DQqOd9GxUicr2TU6VtCyIWEvmATIPtm+ASur1S2m17iZz16Be9gxy3knUSqNvLVF/BVD0caUOV0iVJEmSNMyyuZdsPtQx4nJqaz58b1/FCmpkczcRNYh6O7k5Rpbj7YToOFk22onR9hYjUKwnGzvI5r52EhNqm59H6+BnoLnYZR37ZOq1z1c50b+2qK+GJFbwYeCNwDOAxwFbgUPALcDfAa/vHmU6g48BFwFPoJrKdwOwF/hUu5y/y2oUxJKYSJUkSQvy8FQxlEDZTjxOPvwTAmKEzENkjlONnmwdNZ3s1FS0RyUtH05eTvXMbLaToO1RnlklRIPi4WRpEVtJciDJzGbz2mWvsx9yITdSkiRJkiRNI7N8eFQl2WyPnKwSkVmOETFSJSmbu6tE5VRib2qEZTlZzdR01EjLqf2TR007W43ObHbEFKYaUY3ajNHzoLmbbD647O9Da+97lr3OfqjiOVJ/ZOZXgZ9ewPnbmSaHm5mfAD7Ru5ZNz0SqJElDrFonswUUVCMngzIPVqMup0ZXPnxjkURsJGm1R1Z2JjqnpqY9NqlZndOeKoYGS1vnfek6u5GVucJ6eA4lE6nDK6oe030sX5IkSdJwebjzc7Yg6kTUyMwqqdg6cFTSknISIoj6KWR5oEpyNvdAOdZeO3Mqidk4KqmZ5Ri0DpI5ViU9ywmqeMLKkOM3D7oJw680kTq8jBX0molUSZJWkMwJJhsfJ7NBMgbUKGIbZXkPEVuABq3yATIPUt2kdM9OUTDz2pnSsRyRKkmSJEkrWzl5L83d74RygmwdJGrrifoplGM3EqNnVgnQ8duqtTWzwdFxgWqiz0F3itaQMZEqPcxEqiRJK0Rmg4nJD9BsXX/U/hYL6UlpElULZSJ1mEUf1z2RJEmSNHjZ2k/j/tdRjn11+hPGrpurBEyiaqEyXSN1mBkr6C0TqZIkLbOy3MX45H9Rr11Aq7yLWnEOkEw2rgLGBtw6HbdiI1BQxGbK3AN5qH2gSWYSsfqmZpEkSZKklaJ16Es09/w7xZqzKSfvpbbp6eTE3TT3vBtcr1J9kK0CGuthYi1xYJQ8ZRexpv1Zc0Sq9DATqZIkLYPMkkbzi5TlfTRbtwINJsu7AWi1bh1s43ScW0MUm8ncC0CZh4E1FMWZlOU97XMawJoBtU+LFkERfexlGnHs7OGSJEmSeibLSZoPvpmysYPy0OchG5R8FoDy4KcH3Dod1w6dQOs/biUPPPTwrth6GvXnXgyn3G8idZgZK+g5E6mSJPVRZtJsfYXJxpVkHhh0c7Tq1CiK0yjzvq79k5T5QEcy1WmeJEmSJGm5ZJY0d72jGm3a2j/o5miVycm1lFcdPCqJCpB7H6Dx7w9Qf/pz4PGTA2qdtPKYSJUkqQ8yJ2k0v0Cj+WUy9w26OVqlotg2TRIV6rUzIdaQ5RhFcRZJCyf2HT4BBLW+li9JkiSpd8rGTlp730tzz/ugtLO1ll+2arT+5S7y0J5jjn0qn8q+5lou/fy9nPmIR7HuggE0UEtmrKD3TKRKktRjmU0mG5+k0fz8oJuiVaiI0yHWADltEhUginXU64cg1wMFSbmsbZQkSZKk1SZbh2js+H9O2auByDsfAQda5K6D0yZRAT734En87btv4aILT2fLl+FfP7jMjZRWKBOpkiT12ETjQzSb1w66GVqlytxNEadQ5v0zntNq7aZeH4UYA6CPK2eor4Lo629vNfYzlSRJknovM5m857cox7466KZolYqTD9C6+TDl9utnPOfxJ1Uzqt18y/3U6/0b0ah+M1bQayZSJUnqgVa5k8nGp2m1tgPjg26OVrUJyvJuIraQHJr2jLI8DLkFYuqzmsvXPEmSJElaBTKT8vB1NB96O+XErVAeHnSTtJqt30/xnLWUd9WhbE57yjkjO1i7bg3jY5M0my0yk4jVlzSTuplIlSRpCcpyF+OT76Ms7xl0U6SjRGwhc/pEKkRHEhWgtRxNUh8UYS9hSZIkaaVpHb6Oxo6/ICfuGHRTpIfF6DjFaedQ3nfrtMf3lxsZHzv48PPJyQajo2uWq3nqIWMFveVMbpIkLVKZBxmf+HeTqFqB1pG5f8aj9frJTE5Cllvbe1wjVZIkSZJ6oRy/ncn7XmsSVStOHjiR8sGZY1gPNjfxNz+6ladefg4AjcnpR65Kq40jUiVJWoQyDzI2/jYy9w26KVKHOkVxBmXuITk441nN5p0AtFr3sW7toyBMpA4n1z2RJEmSVpJy/GtM3PU/oJz5fkxabjmxHm7dQvMLn4PGzMtRvbD+SQAuvXwzz/nKGTQmG8vVRPWUsYJeM5EqSdICNVvbmZz8qElUrSBrKYpTKXMXZd4376tqxckQh3FE6nAKoKB/0/WsvlsjSZIkaXEyk9b+j9F88M0mUbVyHN5Mecs6Wl/6/KwJ1G5XNR7P5OR9TDYckTqMjBX0nolUSZIWoNm6lfGJdwF+mdTgFK2N0BgDSsigXNeizHsXXk5tC3AY10iVJEmSpMVr7f0PGjv+YtDN0CqXJz4LamvISHioSevtf72ocm7euwGAyQlHpEpgIlWSpHnLbDI+8W+YdNKyKEchxiGO7usXrfWUB74ENInaNnLj2RCLu7mJGGk/yqW1VQPidD2SJEnSoJUT202iavmsORUmdxy7f8uTadZ2AlA0TqZ8yzsWXcX9+6ufTUekDiljBb1mIlWSpHnITCYbV2ISVcuhmFxHefgrFKPnQn0zWZRkcRiowdg9TI2IjrXnkXGYxXyJLYot1IrJ9jOn9pUkSZKkhcpygsaDbxt0M7QKJJCnvIBWPkAtLqOYPARjd8HEfWR9G83RxpE+0p/8GoyPLaqer3AZH/3s3QBO7Su1mUiVJGkeGs2raDQ/N+hmaBWI1gbKw18EoJy4BSba++unQibZ2vnwueWhz1OseyzlKBDzH1U6MvIo6rWEqG6sksYq7E94fCj62stUkiRJ0mwaD/xfyoOfHnQztBqc8HW08h4AWnkPrRFgZBNF8SwyxyAPPHxq+byt1M79Plr/8A9Qzi9WMMkI7zjwfN70gZ0cOlSVdejA4Z6/DC0PYwW9ZSJVkqRZTEx+nFbrDsrcOffJ6pla7Uxard3Ua9soc5yyXD3vf0zsnXai3WxOM3UPUI5dR1FeQrl+7q919fq51OvriNjbdWRiwe2UJEmSpNVq8t7XUE7eQ07cPuimrBpJQay7gJzcQax9BEzsgOZDg27WskigNdKadlWemeIlrXMOUnv5y2m9dfYR02XCuyZewL99ueTa62476tjePQdmuEpaXUykSpI0g7LcT6P5RWBx609qPgJYR1FsJGKEIjZQ1NZA7KE+cgLQosYa4FyajQat1j3zKG+I1/ss65STNy38sokbiTVPIeuzT91Tr68nYs90JSy4Tg1eEAS1vpYvSZIk6Witw9fTOnDloJtxXMsYgWIDUd8EtfVQ3wRFk1bzHlhXB3bA2hpRnE8xdgAas3e+TgpimO97119M5t4FX9Y68xCcdgY8cN+M5xQBb7tqgltve+CYYxMTxsOGkbGC3jORKklSl8wk8yCTjY9gErW/1qx5NFF0JvYOtbdOCUxSHwnq9ctoNnfTah25CajVTiNiAxFrKWqTNCb3Dd8I1iwoGqOUYzex2ERwTOwi6+tnP4eZ1jcZ4uSzJEmSJC2DzJJs3Edj5xsH3ZTjWhKw5TGUzbuAsWord03T/7dFlvtorR2ltuGpcPhOmHygXQbE+ouhGIXaWpIDcPB+ojVdx+KVKQHqJ8AJT6DJDpjxfn42DWrf+iJaf/W3M9eTsPPB/dMeK8shTj5LPWQiVZKkLo3mZ5lsfHzQzThuRWwmcz9FcUpXEnUu2R6pGtTrjyYTIgJiDzDe3mBkzTrK5qNoNG/tR/N7rphcT3n46iX3jS0nbyfWPp2y8SBZ7oYYpahtI4oNkC2IGo2JQ9TqBVFrVe/dkauXWLsGxXVPJEmSpOXRuP+PaO3/yKCbcVxKalDbRLT2EhsfS6t51wIunqDVvA3WQLH+KUQGREmreUd1vNU+b8NJROMUGLu55+3vhzzlBe01Ue9dUjnlSWPUnv98uHwDmYcg1lGMbanGDWRSTiQ/c0aL/3zPPXz5Sw8edW2jsZjkrVYCYwW9ZSJVkqQOjeZXmGx8etDNOA7VqdfOoFbbDMU+yLMhJoDDiysu9hIzziTSpKi3qOXptFr3L7K9y6i5b+ll1E8j6wXlxA1H9uXhdg/eI1qT7dPXXEx93QnU6lMJVEekSpIkSdJ0MpPmrr+ntf+jg27KcSeLdcT6C6A+StnaSVG7kLJ8cNF9fcvmzGvWZrmXVn0DRf0korlrkS1ePiXTjxJdiFqcRk7eTj6xCdmOPeQByrUHYO2R817+/fDy7x/hhpufwWt+52tc88Vqlq+yZadrCUykSpL0sPHJ99NsfmnQzTjujK65DIo9VN1A2yNQp12ns5eS+sg6iriQpEGzeRdHuqGuIJmUjZnXKpl/OZNkjsz79ObkTbQam1i39VKiAEekDqvocy/T1bfuiSRJktRt8q5foRz7yqCbcdzJrU+gbN4N3PfwrLWzJUJ7U+khcsNpRHk2tMbJwzeuyLuerJ9E5tITqUkLcv5LVl160R286W/P5slPeJBWK2k2V2AcRfNgrKDXHN8rSRLQbN1Os/nlQTfj+DSw71cTFPVD1OqTjI5eSL12zqAaMrNcC7nIUbmdxZQTRDH7+qjHXJMHaIxNtJ+ZSJUkSZKkTplJc89/mETtm8Hch2ZrB628m1bxIGy9HNaeN5B2zGrdWT0pJnMMqC2s6tH7+K3/fTkAExOTPWmHNOwckSpJWtUyS5qt65mYfO+gm3LcKssmxcK+t/de7Kc2AlFcSqNxw9znL5MiRxZ96xj1R8CakyGTzD1kufBRvo3xr1KMPJlavUFh97qhE0As8KZ4oeVLkiRJq1GWEzR3/TPNXW8fdFOOW9E5t+yAlM07YWQNtfrj4OAK6ly/ZiswtqhLiziFIguSGjl5Kw8P912A7/yOvXz6k2ezaeOimqABM1bQeyZSJUmrVuY4YxPvpCzvHnRTjmtFsXK+bhS1fYwWlzEx8TVgYs7z+65zvZFYC1GH8uCcl2Wsp6yNQWv7EhvQZOLA56mvmaC+6elLLEuSJEmShl85eR+T9/w2OXnXoJtyXCt7MHVtT+QkLe6ltvVp5N7PEytgxqas1SDbT4r1UJbA+JzXFWyD8VuW/AqCw/zpn9RYs8mpfSUwkSpJWqUyk4nJj5hE7bt1ECvk5mhK7GHNmguYnPzqABsxQlGcTKwpqI08F+ojZOwDkvKhq5lriqMoNpL0aoqdFuTcN2RaiVz3RJIkSeqlbO6jseMvTKL22+g5ZOvBQbfiKK3mrdQ2PwH2Xz24RtRPorblcdTWP5KR4jxqI3WIQ5DrObT7Y3NeHrHm4fzr0rXIcnGjYjVoxgp6zUSqJGlVyWwx2fgwzdZ2MncPujnHuVFGR88F9g26IcfIXN4epkXxCKJYSzWlziTJQWA/Oc332tqJX09r9wdnLS/qJwIP9Kx9mStgdK4kSZIkDUg299LY+ZeUh28gmzsH3ZzjWtZPJEfXDGqJ1Nm1lreTcf3UlxAbTidqBRQlxFT9zfY2da8+ztrNz2F8/ydmLS+IHiZSq5ncJJlIlSStIpONq2g0v2ICtUOtdgZFsZmIOq3WLlqt+xddVhQnQrao1U6kKNYTxWFWYhIVlvdmoFZ/FMkD5Dzfiyz2ECOnk43Zfhe97f3nzdHwKqbLxkuSJEmal8wGjR1/RXnwM2TzoUE3Z2CSAigJqhllY/0lMLIJooBDd0BjxyLLhRg9C1pjsO4sqI1SNrdDuULjMo09y1NPsZ6Rc19OjIwxnyl7iZJafR6zUvUyiwqQjkgdVsYKestEqiTpuJd5mMnGp2g0rwVW8/oO6xgZOZeidhByE1C2p909AEC9qFOrXdaeuqVGs7WDzCPJv2ADyTjVe1hQFNuo1bYRURBRQkydO9neVq7lGoE5lURdmDVkY45raqM9/SibSJUkSZK02pSNnTR2vpHywCcH3ZSBytoWYtPFtFr3UtROJ/MAZetBmJp6d+0GauufCq3qPjrH7iBaR2IFWT8JmrsJkqRGrL8ARjZDFGTuq8oaAfLuapDlihVk69CyTFq65rwfhPrhBV2TuX7uc8qFlTl3ecYKJDCRKkk6zmUeZmz8Hylzcb0njxe12lnUR9bx8AjR2DvNWSVR7CHandbW1DcBpwEl5BqIA1QjIddQJUoLVuqI01nlZlqtG5epssXcdCTFukdTjk2/hmusexyt1n1La9YxVXpzNIyCauWTfpYvSZIkHY/K8duYvPd35u7EehxLIDY+jrLYB83bACibd0xz4iFarduOPF+/gSjOBJpEbKRs3g3xCKLYQOYk5H5oDd/o3lr9PGh9bpkqW/g9eESL2sjZtBrTrN+bQT1Oo2zc0oPGdRTriNShZKyg90ykSpKOW2V5gPHJf1+1SdSRkUuApKglcBA4tMASpq4DorNX44ruQjoPtWWrKVnMyNcGbFhPrf51tA58hs65ebLYRFne2bP2PVxuruwRxDq+RMTLgbe1n/5YZr5pkO2RJEnS6lKO38Hkva9ZlUnUjBFi8xOrx7mbsrx34WuV5iTZquIsya72vnFymdcX7bleT4s7k/oJEItYIDbGWLvpTCYPb6Ixfv1Rh4riZMrxPnQYX6bZvKSVzkSqJOm41GjeyGTjY0dNTXt8GmVk5Pz245KiBmS0v5TvH2C7VqJNlK2k2bxnGetcbD+9JEcbFKPPJiaTbDwE2aJs7mtPr9xrDTJbRCxfklm9EBR97GXaj36mEXEW8AaqXhobe16BJEmSNIvGrnfS3PWPUB4YdFP6q74NNpzXfhKUHCKiRpZjlJ2jS0VRP5soC3L/tcs00m4JndOjxZoNG1mz/vk0xvdBNmk1HoJW9iUPXC39pOEzfLGClc5EqiTpuJFZ0mrdQrN1E83WzSy8W+XwGamfRVHrShavvu8z89Js7KPVun/Z6ovYBCx1fZLD5BpgzQYAao1HUI5fs9SmTS8nIOZec0VarIgI4M3ALuDfgF8ebIskSZK0GmQ5TuvAp2jt+xDl4WsH3ZzlseH8o6fjZfkGXA6dfTdAji9bKKW2+QlLLyQOMbKuDtQZybNoHG7RHL9h6eV2cxkgCTCRKkk6TpR5iLHxvyNzz6CbskzqjI5eDLFaXu/S1esnUZbjQLlMI5X7cJs6wuKWXZ2HzHECE6nDpr+9THvu54DnA89t/5QkSZL6qpzYzsSdvwjlQpe6GU5ZOwE2nUPZdNTpfMXmx5EHrodiLdFchrVdo8cp20jqazfR7EOYI02kDq0hixWseCZSJUlDLzNpNK5a0UnUeu0sItZS1EYBKMuSzHFa5V6y3D3PUoKITRTFRur1E02iLlTsYc1oO1GYZ1C2GjSat9G/frnRUXYQsZWgGlmajLc/r60Flpld5fZOuvaJ+igiLgFeC/xpZl4ZESZSJUmS1FeZDRo737Rik6gJxMbHQRRkrQ4URFlCa4ycuI9ozi9WkNSIkZNg5ARyZA3ZvLuv7T7etFq3wfq1QFDULycmD5GHb1qWEaqZkLmRsiyJqBHRIuLwInKtfWptTpBZEmFSTqubiVRJ0tDL3E+jefWgmzGjWu0MaiMl1TSv1VSvRXspyhobaUzWqRVbKGp1MgvK1kGarTup1U4nWEsUaymKWlfi1CTqksR+ijqMxCU0Gn2Y/gao1U6HaABNkoPAAZIj6/BEjBCcTpnzX7M1OUh93RNojvV+el97mg6fyKDI/t3QRgbAxREx7T+wmXn5vMqJqAN/B9wF/EbPGihJkiTNojx8HeWhLwy6GTOKTU+klXdVGdXOZTMDYv2JcAhi4wVkNIgcgYkHyfHbiQ2XVufVN5ExQdm8h2ppo10L76urDknZvBMKqG28DA5+tQ811Ck3PJJWI6okJQeB7oT5KCO10yhq81/HN2oHqW94PM1D1/ayuZWcgFjX+3LVN8sUK1hVTKRKkoZf1Fmpq30UxcnURwpmbl+LkTUjTCVYI6BWQG3kIuAgMNne1A+ZYz0tr1acSdTWA+MkO+c4u0nyAEU8gjLvnePcDQRrqO6o+3Rn7IhU9c9vAU8Anpm9/qOTJEmSZhIjg27BzDY+pkqiziDLveS6AjrXOa3XiS2XUrba95qtue45tWiTu3pWVALFyV8Pa7eRIyUlu+cIYU3QaN3NSJxJURycpeAA1pJZg6ySqf2QOUZgIlWrm4lUSdLQy1yJ0/QU1GqnU6+fwOJGj/bnC7COVquto9ksqHrvLrWsc6DY2+5ROn/JTiK2krn34X3BJpIWwVqah28nW19bcvvmbIeJ1KFU9H/CqZvmO/J0OhHxFKpRqH+cmZ/pXbMkSZKk2eU8p8ZdTllsIEbPIGssYvRokzR5ujzWn01O3t+Tu63iES+jHB1nYXGekkZzB2tGthDRHq6cAawDWmSzxsSeTyzPZ7wch1r/q1FvLUOsYFUxkSpJGmqZyeTkhwfdjGOMjl7anorXKXhXtNjH6OilTEwsdcqegKKxyGuTYCPJXoITli1xekwrnNp3KAUrd62ajil9bwH+14CbI0mSpFUkW/tpPvSOQTfjKEmQm86jbN3vFLwrXKt5G7XNT4b9S5saOke2kaOLjRVMkOV6orafbG5gfPfHYQCdA4wVDKeVHCsYRr6bkqShlrmbVvnAoJtxlHrtkV3rmWpFiz2M1C9cUhG14gxgKSOjJwi20Th4A9l6aEltWTynkFbPbQQuBC4BxiMipzbgt9vn/HV7358MqpGSJEk6/pTjt5OTdw66GUeJzU8iW/cPuhmap1Z5J6w7EitYzIJSxUlPZylZ81Y5TjY3Mb7zPwaSRAVnr5LAEamSpCFWlrs5PP5mYLG9++YnihNZM3IqZQmNxo1znF1QG3H6jGFT1Meo5znU6uuBgomJ65n/bVKNqBVLWqU32UNOAjm4KZ0zTaQOm6C/0/X0oOQJ4G9mOPZEqnVTPwXcDDjtryRJknqidegaJu/+9f5XtOFScmSUaLbg4HWzn1vfRqu8o/9tUg+VlCNNiriYsl5SxAmw73PzvjpHTyPX11lKzKrMB5jYex/QXHQZS2YidegMQaxg6JhIlSQNrcnG5+hvErVgpH4eRb0A9lPUCkaLRzMx8TWmG703MnIxRe1gn9uk/iipjZTAPgDqtbNptubXe7k+cj7JUtapWUNrbDdl454llLF09jJVr2XmGPCj0x2LiFdRJVLfmplvWs52SZIk6fiV5QTNXf/c3zqKjcSGi2ixC5o7IdZTbH0K7P38MQmGBGLrU2k1b2dxYxo1SFnup1UAJbTYQ62+DZpzzyKVxTri9BeQ7RjDYgSbKPfdRDbuW3QZveDUvpKJVEnSECtzV1/Lr9ceSVEf66wRYi+jo4+i2dxPq/Ug9fqZZB6iXt/mdL7HkVp9E815zL5Try81iQqRGykbX15SGT3hiNQhFBTZz5U6VmM/U0mSJA21qFNObO9b8QnEpktptW7v2HmYsnk7xdYnw+F7ydYhYt250NxPjm6ibN7Wt/ZoOSVsOB/2zZ1ILR7xrZTF4pOoADRj4ElUwBGpQ8lYQa+ZSJUkDY3MCTInaJV3UZYPUfZ4bdR67WxqIwUwAjkKsXf6E2Mf9RGoj2wDxoEaYBJ1tQnWk7F/yeVkrIzenY5IlSRJkjSMsrkbsqR18DOUk/dCa29vK9j8ZFo8RMQaIja1R5ceq2zeAWsARoB7qsh7a+n3jBoyGy+jHDm09HJqtaWX0QNZGiuQTKRKklaszGyvIRKU5U4mG1fSz3UhavXNVAnRBsThvtWjla8s5x6OOrLmURDjQNAq91ItBzm8nK5n+AzzuieZ+SrgVX2sQpIkScepLCcpx75KtvaTk/fQfOjv+ldXjJAxBq0DJJD0d2YsrXDNg7MeTiBOejJks/18PxHzmO5qJTNWMHSGOVawUplIlSStSGW5m8nGJ2i2bupjLaOMjJxPUWsCLRxVqilFrQmNGtXn4oiITUSMELGWWn3vw/trxVrgNMoMyCPXtMpDJLtnrStYGb1MndpXkiRJ0krXGruB5s6/pRz7St/qyPpJxMYLKMtdZDag1dvZsDS8cmR0+iTShgvJyYeILU+kxd1QTh0YIYpTqvv+hy9MMg9DzDFqdYUsqevsVZKJVEnSCtRq3cX45PvI7F9isyhOZWTNZmCJa1boOHWYojiJsjx6/dPR0XOJh6fzLY8ciAT2UHTdURUFNFsnUubMydRsNHrT5CXy5mg4xarsCypJkqTVqLn/YzR2/CW0+ngfv+HRlMUhaN7avzo0tMrWAxTFBqI8kgRNIE96LBmHqGZR68yANijLe6cpaYQo1hExc4fmPHxnj1q9RDk26BZoEYwV9JaJVEnSyhPr6NcUviMjF1PUWlTTsDp9r2ZWr5/M5OSRRGp95Hwi9i5sDpOAem0jrbIOjFDEGpKk2drecc7K+Drm1L6SJEmSVrKonQhln+7jtz6VMveSrZ2QK2QooFaenCTWXwAHr314V5z2EsrYu8CCGhScSmZJRK39M0geOnJKMdqLFi9ZlsYKpJURuZMkCchsUpY7KMsd1TQnfVAUdeBAX8rW8SWKIyNFa8VpjNTrEIsYPRp7qdUAqpuPyM1HHc7WSund6dS+w6if655IkiRJK0GW45RjN1KOXQ/Znxl9yjxItlz/VHPL+siRu7CtT6c1uriBAK3ynqOe14ozOzpuBzRXxgxqzl41nIwV9JaJVEnSwJV5iMnJj9Bs3chR06X20MjIpRRFAbEyvohqGBxidO3lRDQI9kL0KuFZUi/OoswJysn9NCe+1KNylyZdI1WSJEnSClJO3EVjx19QHr6WfiwYmdSJrZeTlGTzjp6Xr+NT2dxO7czvpixKMvYAvUnuJ00iTyEZh7EHKSdXytS+JlLVHxHx+8CTgAuBbcAYcCfw78CfZea8e7dExJnA7wAvAk4C7m+X8+rswdpxJlIlSYOXZR+TqMGaNY8miv6tt6rjVxHjED0ewRwHKWrQGh+hMbYykqiAN0dDKIi+9jJ1TRVJkiQNUrb2Uh7uzz1TxihseSyt5m19KV/Hs6RV20OvY1hl+QAAMR7k2HU9LXspHJE6fIYoVvBK4BrgQ8BOYAPwNOBVwI9HxNMy8+452xNxPnAVcArwbuAm4CnAzwMviohnLCQpOx0TqZKkgZqY/ASt8nb6kUSt1U6jPrIZMImqxVrTv6LLlTXFtCNSJUmSJK0EWU7QePBvKQ9c1Z8KNl5GWRwCR6FqkYKNJPv7UnY2H+xLuYtmIlX9szkzj1mENyJeA/wG8OvAT82jnL+gSqL+XGa+oaOc11Ela18D/MRSGlos5WJJkharzINMTH6IRvPqh3vd9Vq9fgJwqC9la3XI7P30UVNqIyf0rezFaZDZn6m11T/Rx/8kSZKk5VZO3Eljxxto7XkP2dzZ8/KzWEdZHF5xHVs1XKLZv/ulYs0j+lb2YjgidTgNQ6xguiRq2z+3f14w5+uMOA94IbAd+POuw79NFRh+eURsWGQzAROpkqQBmZz8CI3mF4F+fCEbZXTtORD96R2o1SN5EHJJ37VmLjubfSl3aRyVKkmSJGkwMltM3vcHtPZ9CGj1voLRsynXbyVLYwVamvLAF4CR/hS+0maLKk2katm9pP1zPnNcP7/984PZNTogMw8AnwbWU00ZvGhO7StJWlZlHiLLPTRb/ZtCp14/s/2o0bc6tJr0uKdpjpC5lvEDn+htuT2QOUHE2kE3QwtQhCNHJUmSNPzKyfvIxk5y4tb+VTJ6CuR90L+Jh7RalGNAbztHB+uJXE95+GM9LXepZh40qJVsmGIFEfHLwEZgC/Ak4JlUSdTXzuPyi9o/b5nh+NeoRqxeCHxksW00kSpJWlbjE++kLO/rYw3rqNUn8M5IvbEOGOtpia1JGD/44Z6W2SvVDdKWQTdDkiRJ0iqS5SQTd/4CtPb1r5K159Mqt/evfK0qse5issdxpxg/TDn2uZ6W2RM5TmYSQ5SY07K4OCKunu5AZl6+wLJ+GTi14/n7gSsycz4LBk8FsWb6H8jU/q0LbNNRnNpXkrRsyjxIWe7oax1RrMckqnqliM0QvZ1SKnMFj5S2p+lQCaAg+rZ5myxJkqTlUI7f0t8kKkC9P0u2aJVaf3rPi8xypd6PlytvumHNathiBZl5WmYGcBrw7cB5wJci4ok9KH6quUsKFjsiVZK0LDIbTE5eSV/WOWkbGbmEotYEDvetDq0umS163emyGNnU2wJ7yCl7JEmSJC2nbDxIc9c/9beSrU+lVe6Ecu5TpfmIZovscWYlRk8lJ77W20J7JHOMYHTQzdDKctMiRp7OKjN3AO+KiGuopup9G3DZHJdN9cKZaXq1zV3nLYojUiVJfZdZMtn4DM3Wl/tS/sjIRURspigCk6jqpeQhKE/uaZlF7QD10Qt7WmavrNwesJpJ0cdNkiRJ6qcsJ2nsfBPloc/3p4ItTyVrWyhzP5QH+lOHVqVy3ycocltvy6zth9oKXWqnNNY2bIY5VpCZdwI3AI+OiLn+0G5u/5wp0HZB++dMa6jOizESSVJfZSaN5idpND/dl/IjNlPUDjEycjZEn6cC0qpU8gBZbqKX3U1rK/TmyBGpkiRJkpZD2Rpn8v7X0jrw8f5UsP4iWq3biE0Xk635LLMnLUy5+8MUE70clppE/aQeltc7xgo0AGe0f841teHH2j9fGBFH5TsjYhPwDGAM+OxSGmMiVZLUN2XupFH+CxS7gHV9qSNzP+QWotjTl/IlgGQv5AkLu6bcRLY2UTY3Qo60k7HVPMGt1t7eN7InJgbdAC1Q9PE/SZIkqR+a+z/O+PYfIVt7yD6Fp/PwLURxIq3mbX0pXwIoD35xwSNTC7ZR5Lb2dSMER2IN2djZ4xb2honU4bPSYwURcXFEnDbN/iIiXgOcAlyVmXva+0fa15zfeX5m3gZ8EDgH+Omu4l4NbADelpmHltJe10iVJPVNmV8DDgIwMnIOjcaNPa+jKE6BONjzcqVjxMIW1GlO7GHy8NXVk2ITlAeoj17EyOhplK2VOa1UpolUSZIkSf3V3Pef0NpD2dpDse4icqz3sYLY+GjKckfPy5W6ZUwu7PxDt5OTd1ZPik1keYBiwxOhtoFypXZoNZGq3nsR8IcRcSVwG7ALOBV4DnAe8ADwYx3nPwK4EbiTKmna6aeAq4DXR8QL2uc9FXge1ZS+/3OpjTWRKknqizJ3U+Y9Dz+PYg9FcSpFbQtF1JmcvKEn9VS94kZ6UpY0u+aCzq6NdEzf216PpzlxM82Jm2e4YvBMpA6XiKCI/t1oRwRk34qXJEnSKpNZUh6+lnLi9of3lZPboVhLsbZa3i4PX9ebysoWFH6ZVf8lYws6P9acfiSR2o4VlIeu6XWzeipLE6nDZEhiBR8G3kg19e7jgK3AIarE598Br8/M3fMpKDNvi4gnAb9DlaD9RuB+4PXAq+dbzmxMpEqSei5znGb57917qY9sBA7Me4rUKE5ipH4qUTSpphxdR9kqaDRuINhIUrJmzZmAa6Oqv4JTgAV+78qFjWBdEexlKkmSJKlPyrEbmLj3N4/emZPEyJmU49dTrL10fgWtuwBGT6IsHyKzQVHbSrTqcOBqqG+D2npypD73ynrSkgTF1udQsndhl+XCOmmvCMYK1GOZ+VWOnYp3tvO3w8xDtjPzbuCHl96y6ZlIlST1XJkzTctTTcHbbO6a5eo60KReP49aPTk6SXqAogajxaMhDlN1fzKJqv4JTiKiCTHbZ3Z6ZTl8ozsdkTp8+rOilCRJktR7zX3vnXZ/Nu4BapTjt04bJU+AWAPZIDY/iVbeC809Dx8vm4eAOsXWJ1M274ZIaN3fh1cgVYrNX0eOsPAkKkDrcM/b02+ukTp8jBX0lolUSVJPlHkXwWaSklbeNMuZo5TlXdMeqRWnUV+zFnIdxP6Zi4i9S2qrNF8RDYhFrEefQXPi3t43qM9MpEqSJEnqlcwWrYOfoRh9JNncR+vAVTOeG2vOhvFbpz+26fGUcRBihLJ1xwwlNCmb7WPDOOJPQ6SgHFlsMnSUcnLlLvczE6f21WpnIlWS1BNl3kqZ2+c+MTdMuztiE7X6ScBeiEYvmyYtwVqqJRoWIKE5kbQa03cYWMnsZTp8oo/rnkiSJElLEzR2/f2R9SBnO7NYf8ySewlEfRtZGyGbe/vRQGkRyvZAglkGAExrhGLsMGV7XdShkgtbB1aDZ6ygtxzhK0nqieDseZ3XmrYX23rWjG4mir09bZO0dAcXfEXZXM/Eoc/1oS3LICcH3QItQFB9me/X5m2XJEmSliKioLbhKfM6Nxs7jt259gJaazky0lRaCWonLCKJCkWjTjl+Qx8a1H/OXjVcjBX0nolUSVJPFHHavM4ry2O/bNbrZ/W6OdKSBSdBLPBmIWuMHfxifxq0DByRKkmSJKmXausvm8dZBdl46Ni9I9t63yBpiYqNj1nwNcEmyoNf6ENrlomxAq1yTu0rSeqJZPe8zhupn8Lk5N5qKt/aSUTUKYqRPrdOWoyivV7vQqawGYVhnKanzV6mw8fpeiRJkrSSlRPb53MWxfpLKQ9fT6w5g6htghhxxhytYOuA+ccKglHymMmrh0eWTu07bIwV9JaJVElSj6yZ32mxm5GRR5FZUtSq0akJRJ4IsfCpUaR+SR4kE4o8FeJwtR3vTKRKkiRJ6qVi/bxOK8dvoFh7PhTrKMevr3ZGHdadDDgaTitHue9KYIRi6zMpa+MsJKE6rOx0rdXORKokqUea8z4zigkij76ZSspVOce+Vr6SHZAQeTIRY7OOUM2sLWPLes+bo+HjOh2SJEla0RZwj5G0iM5RqNkEWr1vk7RkDcq9HwOCYsszKeuTwCyf9bJcrob1h1P7Dh1jBb1lIlWS1BOZBxdw9tg0a0/OPxErDULyIOS2Kpk60zmtYfscj0AxSrCGKOpErKHMFkUMd0JYkiRJ0sqQjQfnf+7knWRnuDpGq+l9naJSK1ZS7vskxZZnU9ZnSaQ2Dy1fk3oh1kKsIYrRaqudOOgWSQNlIlWS1CMLncrk6N54wXoy60QsJCErLbfZe0NHbQlfrWIdRW0jEESxodoVI+2tDlFv/ywIatXPCKBoBxYCIqqR3Q/HGbIdc0iqv7mprQUxfY/YoAmYSB0GARR9jCkZrpIkSdJSZXP3Aq/o6JyaE9SKSyjZS+a+nrZL6qmcY+R0feMiCw4oNlWxgiiI2kaqKbNGiWINxAhRtOMF1CGmYgUFtLdoxwoeDhZMPaym3qKKESRVvKOcIVawdpHt1yAYK+g9E6mSpCXLTMq8Z2llsLNd1noiJuc4WxqUnPVoFAcWVer6rV9P1OZ77VQytF+awGgfy5ckSZK0GmR5mNbYV5dWxqFriWIjuXakR62S+mCORGoWjUUVu+70b4NYyGjWqYRor6fEHrbZt6TeMpEqSVqSzD00yv8CerVewpCvG6HjWrIXyi1EjAIHgEa7ByeQBXDC4srNXEE9+rxBGiaxgj45kiRJ0pTWwc8z8cAfQHl46YWFIWytbOWBz1GsvwzWnUI5FSt4uCP2CFGOztEtewbJChn+1yRJ7z+HiL+r3vL/QpKkJdpKLR5HKz836IZIyyLZRz58B1QQuYVglJJ9ZPnQgspaf8LXA6ywUdiL6ykrSZIkSVOK9U+gvvnrae79j0E3RVoGSXn4KzDVbyDWUqy/GOqbKQ9cA7Vt8y+q2MLaU76+XU6vBi30QhNwZLhWJxOpkqQlOkSZ9/aorBrVlzJHxGlYlCR7Hu5ZWjaKBV0dMQErKokKJlKHSz/XPZEkSZIWKyfvojV2Q0/KihihihdM9KQ8qe9ynPLQtUeej5y1oNl2ozjY8yYtXQMTqcPDWEFvLSzaJ0lSl1Z+gWRp66N2lMZca1BKK1mWC02KrsQ+bXZkkCRJkrQ0Ew/8MTlxa0/KyuaD1MqtPSlLGowFZFHLff1rxpIYK9DqtRKjd5KkIdEqbyaz11+k/GKmYbbQLn8rr4tg0liBrdJM/F1JkiRpJcn/z95/x1mWXYXd92/tc84NFbqquqo6x+menEcjaSShhJAAAQoEY6LBGGNjwwMYjI0fG2w/trEBGz+vbXiMDZhoMLIIRkISCmg00kiaqEk93dMznWN1deV77wl7vX+cW6m7ws2p9vfz6Zmqe889e1fVDWfvtfdaqsSTf4iYXGOXSTd87sFxWqnKkZsaENucrtTMZa/qJm6uoLFcINVxHMepmdWTKJcafFYf1QgR95HvdB/jZwhy92GTOZLo1XWOCjBmG+L1t7RvlXMTFI7jOI7jOI7j1MoSTf0pJNcbe1rjprGdLqaKCW5DdQ6NL6x9jMkj3hDGG6Qzw2BursDZutwnkOM4jlOTMPwiaqZofLxzDmEcaPCgy3FawAQJJshg43GS6DXWSlXdN/J2xMyWv5tvaf8q41aZdgsRME1cdOLWsziO4ziO4zjViiZ+C5KFhp9XC8fw+h8g0dMNP7fjNJsNjwNgMreuu1M7v/M9IMXyd1WkAm4ZN1fQLdxcQeO5GqmO4zhO1VQtUfQlouJFVL3Gn5+roMMNP6/jtIrxE7zglrXv1E6/4nSDI8dxHMdxHMdxqqd2gXjq/yDZvTRj2lkLL2NktOHndZxWseEJxBtb597ODtWomytwtjC3I9VxHMepmmoBa6+mX9s9iFdofBtMILoT5FrDz+04rRD0bUfnZsj23wOSDohEBDFhm3u2GZeup5t09lDbcRzHcRzH2Ups8SRoAS2dAm8EkgaP520B5k9i+m/H6uXGnttxWkU9vNxt+AN3IGLK2/sEKLW7Z5twcwXdxM0VNJYLpDqO4zhVSZJLxPFLyzesl5OkITp9557jrE+MEuRuwwSNT2vVXG5w5DiO4ziO4zhOdZK5L5MUnil/ZxFvG9roQCrQ5EkIx2k6jS/gbXsAk+n0wOmN3FyBs3W5QKrjOM4KqkWS5ByedwCRTLu705GUkDD89NL3SXwd4+fa2CPH6SRCennlAR4m6AMm29ulqrl0Pd1kK9YmcRzHcRzHaTUtXobp52HHO9MdZM5NbDxJfP3DyzeYfPMak8DFU53uoQqSBfHTuUZZnDPoxDqoG3FzBd3EzRU0lgukOo7jUK75GX+ZUvhpICKb+Toywevb3a2OomqJ7R+jKhhvJzZJ0+ikNRLSQKraoHy0ARLE1LdaTSm6PalOhxBgALCkI3Ytf73y3+LtERAh7ATTfamp1a0ydRzHcRzHcRwANJ5Hj/8SevJXAIt50x/B2Fvb3a2OYpNJCld/FpExCMYgmgBAsMuxTn+cNHAkkEyD1pe1R6yLojqdQbxxRBU0BiyoRUnK3ycrbl98znsE29+Jycd0XxY2F0h1ti4XSHUcxwFK4UeJ4qeWvg+jLwAxgf96RNxbZWoBZQoEgmw/SXSEODqJ2gXiUh7FYpNTS0eLjOBndmO8egZIs+nCPbeMymk7AWYrPDaHyAAiE83sUBO5wVG3EMA08e3RvfM6juM4jrPV2S9+B0x+cfn7F34WueVvI/v+mtuZWmajc6idRpmGXBYjuyG8iI2uINkjoBEanlk6XoJ9IONoeLr2RuNpN6vtdAgPjc9VdKQEewhGH8JkuvW9wy267hZurqDx3EeO4zhblmpIHL+I5+0nXhEATO+bphT+JVH0DH35H9zSwVRVBWaxunKQY/H87cQRQIEkufmiUfU6cWTIeIM1tiykAaluqxnhrG0IyCIIoCiWNI1NRHoxnpT/34qVxYbF1Lvp14byZWb5H0DAYkBR8FAMcGXTMwvjILOIXG98t1vGDY4cx3Ecx3GcrUuLV9Crn0aG74fp51bfOfMC+sz/hV78CN4bfqs9HewQqhYbXyApPbPixhKSvwUNL0IyiSY3lznR6Bwmd0cdIz8PTB8wV/MZnM5h/ENLpbWUdGenEoKWQEPURunXJM3NVaqkKaMlQPDL6XdN+n/xkPKOasGgGqZfl/ttNz25wd/2CN7QaJdvFHCLrp2ta+tGBhzH2dJUEwrF/0liN14BaXWCxJ7H9w62qGeVsfEEGp7D63ug+W3pqyT6VzffIdcRGUB1/cGL2mtYO4oxYdXtCmOoGxj1CJ80UHmlgsGysBzgXKwbkgZfVwc7hXQQk/5fVz1+8bvF4GxIesF/YyreygYBlQ7wRXZ28S7UldzgqJt08zDccRzHcRyn02jpGvaxb4KFUxuPAy5/DC1NINmxVnWtIrpwArUhZuDuprcVzn6IaO7Pbro9sVfYbL+dLb3GysWrlTNo/36sTlf5OKcTiQyi8QRqp9Y/ZukrAwTlOqPZNOiJIR3beyDpYul0p3j5nwiLcwfLbLpL2hZQOwcagkYsp+EtrNkPveH/N369kWDH1+Hluj8M48oAdRc3V9BY3f8KdhzHqVKSnKUUforEntn8YCCKn0Ykj5FRRLwm925zNr5G6cI/R8NTZHb8GN7g2xAJNn9gzYrr3qM6v/nDrQ9VB1IHUCa7fKWes2wIqLRWqLK8I3Lz501nVcbprN7Uzg2OHMdxHMdxnK1FVeHSR7HHfh4WTlX2mNd+Dfb/deg72BFpfnX+OPFLPwS2CLf+AjL8lqaOqdWuvfBZTL6CB5eQYD8ana2qTcnditXNMwU5XUAVEUFtpdmcLGgRlA0X3XfiqFxM+98fGsPNFThblwukOo6zJagqcfICYfQlrD1f1WPj+Dni+Dkgh+8dwphRMsFbmxy8vJmqEl75ZZK5R8ur5SC88ssw8Wvk9v5bTLY5u2aV9VLrKp63d820vitZW9p0NepqgpAHWT+A63STbVQeRO1yGvfIkj+3I7WbNLPuieM4juM4Tq9TG6OnfgM99Rswf7K6x574ZfTEL0NuD7L99TD8IHLLD7U8qKpJkeTlH0Gnv8xiktHk2A9Ddg/+vX+ABEPNadiuvbBakynwhpFkasOHizdUXSBV8lgv7sxImVM1kzmKll5udzdaIpm/isnsbHc3GsDNFXQTN1fQWL2yHMJxHGcV1Zgwepww+iLWzlIK/w/F0oerDqKuViROjhFGjzFf+E8USx/F2klUk4b1eyMaXyWZ/dRSEHWJnSeee6yJLa+fMscPdmz6aJtMoFUMdIQx6Or6ks5q7d/F3SrKJKpNmqRoqaRcw9ZxHMdxHMdxeouGk9iXfwG98Kfo3KvYL34n+sL/XXUQdZXiBfTCn6Av/hz2Lx/CnvhltHQlre3YAjrzZXT6i9xUqTGcQKfWKNPTiDZVsfGlde6NMP1HKzjH2ilU1yN9t6N6c81VpzvJFgpLJHNPYeNeGGO7HanO1uV2pDqO03OsvU6h9CGsvQhAiY83vA3VOaL4CaL4CYR+fP9WFEsu8w2INPatVZNpkrnHiWc+tu4xyewn0eH3Id5AQ9u2ehqrr61/gFmo4CwRSeRhvAzGK6RBVZsDU2TtLENbJ/C2NWytv6dqSFqXpTULLJonBjLt7oSzicWqwc08v+M4juM4Tq/Q609hn/xBKJxDxYNmLIouXkSP/Rv02M+nKX/H3gzBCOauf9bwprR0CTvxEeyVD69zQIi9+ufI9q9BvL6Gth3N/Tk2Xr9cklYyHkrmMLm7sPEExFdA+sEfgWjtrFcqRbcbtadsodGGRsSTrxCM39rlJazcjtRu4eYKGs8FUh3H6SmqEQvF32vpKkVlnih+BoCiJuSy30SSnCGKn8P37yDw76jtvKrY0glK5/9JWgdio2PjK5Qu/wLZ3T/XsIsy1ZDYfmbjg+zmgzHVBZL4JEmcwfP2Yu1lVBcIMnch/o2B2P60NmrNvXY6jWC22Fh3DtgJTLS7I3VRTgB3Ie7V2PG6ehzuOI7jOI7TIlq4iH382yAu11ZsemYphYVT6JlTAFgTILf/NHruQ3D108ih70/TAddyZo3Ryc+QHP8HbBZZ1OkvYM/+F7xDP1lTW2tJolOEs3+44TGi3qbjQI0vo/Fl8EYwuTuwpdNpENXfkQZWV54vd5QkueQufnvK1popsMVj2MIhvL5uXrBcRDmDcKDdHXEq4N4uG8sFUh3H6Slx8nJbU73EyQvMF06jWgIi4uQ5jHw/nrevoserLRBP/Sle/yPEs58invrfFbdtF56idOFnCYbfB2YAL19bAHeZx2ZrjKpLaxySJMu7W9VGqOqKwG9fuT0fCKvrqtOhBlGutrsTLac6BXT3RavyDDADvAHZYruKHcdxHMdxnN6jp39rOYjajvZP/DJ6/o9h4VT6/eWPY97xKJLfXdnji+ewk3+JGX4ryblfRa+tn7HqRvbib6HxdczYNyHBdqT/thp+gmUiuc0PSjZeDL762OvYZLm8j/HHsUuBVAF/O6iC+EC3Z/5xAIx/C7b0Uru70XLJzMt4ffe2uxt1UCyPItyHcI9beO1sKS6Q6jhOT1BNiOKnCcPm1P+ori+rB2fF8CP05X5w1U5RVcUWnsYWT+ANvAUJ9gIQTfw68cxfEE3+Tk1t28LTlApPA4bcgf+Eyewvt2eBCJFsBf23wCyxfZzN6h+IFxNk7yUqPVd1X+P4FTLBLaQDIQ8oIYyTrkq8VvX5mkrHgBBkpvz9NiAA6bB+dhyfrbbKNFWiN3alvooyg+FtCPl2d8dZi4Bp5tjVjYsdx3Ecx+lyGs+jJ/8z+uqvtLsrS0FUAOJZ9MWfQ173/606RG2ETn4CDa9hRt+DZHeiSZHk1X+Z7i49/e9ralqv/hnJ1T8Drx//4c8gJp0bUC2SliYJNj+HxtjoHKWpX9v8WN8gAw+gc89U39f4MukcQYJk9pF4C3hmECMZrF2vLmsbqOAFR7D2KmqngTRAKHgk8Yk2d67DydZcrGvD10gWbu/yXamgfAWYAt6EuPBSZ3JzBQ3nnumO4/SEMHqMMGp/EHUt1l4mip8h8B8AuwCmD1s6TunCzwIQTf4O/tD7kWCMeOYvGtUqcfEpxLuEEoIWSPQMGe89eObm3bGqCoRYPUeij1F5Afl5jAfZ/IOUCs9QXdBMsUkGzy+kAVSZoNMCT6oDCFmUEkIGdJS0ykBcvt8gYtvax87W3YODeqheBbYhMtvurtRpAstfYHg7wvZ2d8ZxHMdxHMdxqqLP/gR64Y/b3Y016YU/Rg//AIw8DMkC4g+gE39OcjKtp2pP/yLm0E9D4RQ6/YXGNJrME898ksSfQ6SfJDqBTa6RH/p7eP6u1f1TBRS1s8QLnyWc/d9UuiPUJhcA8IbeiE5/saouanwNyR5BS69AZhTsHIme7pw1uqqY4ACiAljEjGJkCJUMJFNY44MacHMFa1MQjTvmz9lq0eTnMdm3I153R6KUMyhz5YXX/e3ujuM0nQukOo7T9UrhY0Txk+3uxoZK4V9i5x/HTnwE8cdvqscST/9Jw9u0mTnUPrHqtjD5MwLeiW+W0/4m9iSJPgrUcZEv1/G8vSTJuaoeZoxFGEWZ6KjFTKqKMAJMlC/u80CAskBaAxOE0fQYjVCK5R17Hkj7Ukt3lj7gcrs70Ua2nOJbEOn2IeIClo9jeBPCwXZ3xllBaO5C0E56X3Ycx3Ecx6mGqkWf+2n0amcuuF5kn/whdNcb0LnHIbsbksKKexV76ucb3mYYfwEbrc6utHD9/6Fv+CfwgluWj5v930Rzf07lC61vliSvIqYPsQuVP8jk0egS0ncfSXKqs2qmqI+RfrT4CgpIsA+8AWx4DjT920nmFkxwC1ZnQWNEfdQYNLnY3r53CBMcwoZbeMeunSGaeJFgx12rMtd1p8nywuu3lTPMOZ3CzRU0ngukOo7TteLkDFH0BeLkeLu7UoEiVtOPGY1bUzNSvdKat0fJoyT2JYRhRLKoXqt/paSOkCRPV/+wxEfNVHsuHnUICABNA6Eyj2oGIYcg6KrdsQWUwuqHr0o/7JWDrCC6q7y7dquLWUzHtHUV6IUUv6kEy+cQpsr1ULbiZbPjOI7jOI7TDeyFP0Ff++8wWd1OyLYoXoBoFlAoXWh6c5oZxepaJWosC9P/Gc/fi/H3gUYkpRepJ4gK4Hm3oLbKv4NdwAy8kdgeb0sQ1fiHyulKLUl8ASgiZghkALElNDq/dKxG5yBa/XgNXy0vyBbAR4kAD8keQJPm/407XZpOemuzpZPY4m14+c1Tane+Ipa/RHgjhls2P9xxupQLpDqO03WS5CJR/BRR/DwQtrs7FUv8Eh4+9Q5EKmL6SOs0riXG6iXgUppShUEErSuYaW20+UE38LwDiCdtCaKmKYpmWBzxCOOgATCLUsuO0q0cLFxPCIzRG0HE2qlOAnlECpse2w2U51Gmy7tTe2HQ1/2aWvfEcRzHcRyni+jVv0LP/gF6/sPUlXGp1ebO0rJL676969+nBZLoFZLoFQCMd+CmIGG1NLxe9WOk714SW122q0YR2YYWX15KO+vl7kZRtHgcuFJlOlpl+ReYICZ/Y3KyLUnjixhvB5pcaXdX2iq+/iQm+0akJwZ0FuULWK4jPIhg2t0hBzdX0GjuWe04TtewOkUUv0Ax/Aui+Cm6KYgKgLFI7lBLmpJ85e0oswjDdbUXh2erOl6kDz8bYLzWrkRUVdChcsqR5RGhcrW8A3W94HMVbVBAdat/vAowDvRG8LA+EaoJqqOoLl/FquZRHUN1sI19q56qoteeITn+j9Hi+c0f4DiO4ziO4zhNZiefIjn3YewzP46e/xBdFUQFmD4O/nBLmrL5XZsftHhscgaVOmofSh9aeKW6h2RvIeHcUsanllGD8fdjvB2rbrbFF9Bi/TtzAcTGoN1e9qVeeUzmNtTOt7sjbafxFcLLT5EshOXF/ikbWuLpKTTurudKVIAnP/QyH/rHv09hxs0FOb3H7Uh1HKdrqDyF8eYgavEFdQNpfg8UqxtI1EIG70CpPEipeHUk6tyG6qmKjzZmHD/YiUirg6gGGLghJW8zTCOMAtPrdGQYsCAzTe5HO20HWpPCujsUUC0APugQSkL6/JgDskCASJ1LvZtMCyW4fBK9/CiE6d82nvwC3p3/ETP0cJt7t7Vt9WUbjuM4juM4+vj3Qn43xN05xhKA4AAaTzW9Lds/BFUEKb3sYWzx+ZraMt4u4EzFx0vuVtT3Wh4HF9mGKEt1T5vFlo7j5e4mideeEzL+EQQliV9tYi/aSBVjcmjppXb3pGNodJ5o4jyYQUxmH5pMo1Ga/jlZ2Edm14MdX0f1/HMeX/q9WZ768CsUZ9J5vlc+d4q/+Zs/yI4jOzZ5tNNMbq6gsVwg1XGcLiIgs+Ry48TRGGHUDbVRV0uyBTxvBJLq09tUQ7PVjTysXkZ0iPR37CEYhBhkbvPHxpXtDDZmnCA7ChK3PIgKIGxHudSStpRraa1UIpDlgKpqlnSXZq9XmGzu87t7xWukji4BO6DpAf7qqbUwcQUuPYlOr1EDOZokee5vwtF/itn1ba3voOM4juM4juMAiA+TT0JuN/TvgfmX292j6l1+ArblaGYUUTNjJFys6jGJvYzJHSGdkg9ABC2dBVtB0LpwuaI2JH8n1sxj7URbNhMb2YZNTrakLVs6gcnehtrrqF0ugyNmHC29imT2t6Qf7SD+KBpt7XS+67Kz2OLqALNG59DwfiTrtalT6ytMC09/2PKl3zvL+edvnme7cvIK//Eb/z3f+yvfx+3vuKMNPXScxnOBVMdxukj54kEi/Ax4/kMUCt1VJ9XEeWjqGseU2Bxqqvm9WHQx+KWLPcxiGAOurr8CToeJwmcqOH8G440gpgX1YdfV2mIkadDWILoDZRJhO2mwLAI8VHOI1J9KuPP0Ay5NTzXSOqr9iHTG702jGM6+gF7+q81X9WtEcuKfofPHkcP/EGNc3dRWEqCZC5R7e8GH4ziO4zg9w8ul/y9ehOJlGH8TTH0ZpDtSYyrA8G2gZ5s7XRBOIDKI6mzlj9ECNlmdplOCEYSdaOnEug8z/hGY++Lm5zcD4OVQe6ltF59qq/h91N1YiBafBzOAyezHxlcx/n60+BKQoPE1wAdp59xJc4gMobhAajWia18is/MRxOuMkdnkGcPHf2mKZ//sFeLixs/RwnSB//rdv8r7fvb9vO1vvaPjd9b2GjdX0Hhuh6/jOF3jxmLlYqbo67sNz9vbph5Vxy8EyMRnIZlqfmO2Ecs4S1g9D4yvqtewLENYfG3Ts4j0k83fgp9pd52adnzk2XJANSz/fzF9a4JQR62ZDibk292FLhSjOofasXVea62hatGLZ9EnfgU9/2dVpUazF36H+EPfg85VturccRzHcRzHcRpGVu4TsXD1McgfgezutnWpKge+BrWnQJu7+FcAoa/u86i9jrUXkexta8Z9xRtHp5/avD+Z/dhcH4k9VXef6mLq/51Uzc6hxVeQeDoNrJYXfmsyiRccbn1/mk0V7OYZz5zVNL5K6cJfksy293cXFeDjvxjxC+94gif/17FNg6iL1Cqf+X8/xud/5r8RL/TiRgJnK3GBVMdxusgab1myQDabI5u9r/XdqVoL1+skjVu9aPU8qv2ort5pZuMA1XXqgJYZs4Mgd6DNO1FBNYdWUQemNXpwhSk7UCY2P9BZg0W5DG0KROvsHPrMH6Gv/A+IN35dryWeP0ry6mOEv/4O7KVnm9BDZz1GmvfPcRzHcRynK5jMzbfNvAQL12Db61rfn6q17sJLtHFTwdZewOTvRlk9V2BKEaLROo8q9yN/J4lvWV5s3B7i7UTjThvDtnsReoOp4mWOonF1aaWdMi0QTT3WtuZf/Ljwi+84zif+/dMVB1BX2nP7Tl796Jf42Pf+a+Yv3VjqyGkmN1fQWC6Q6jhOF1nnLUsUz58jl3+wtd2pkkoL33Kjxq5WU65jNUZ1tHzLAFH44qaP87xRjGnDwEjHyv+2AyAMAC1M11ORbLs70GB5lKvt7kSX82lbqvJzT8Bc7XWnZ54a59rp11FKbmP69/8j85//ywZ2znEcx3Ecx3E2sF55iWQeJh6HoTe0tj/VamFSGkka25iNTyPZnZjcPQAY/xBafGXTx6kXQKsXO6vieYfw/KNIObOZkcGO2ympLS5L1GwmOIgtdWHd4g4i/ujmBzXJR/71q0yenartwQKvnJnnlW23cC0K+N2f+gNOfGnzzHaO04lcjVTHcbrIxoFIY6bJBLcTRp15gSaatGx8pPMnYODOBp+1uLRONomKbDba87xDmKAdQdThchpdgAxof4fm7u+Oej2V8YBBoLDZgc4GREYRadNq6LVW8VeocPF1FJ5KF1ZMXgG4DI/935RefZmR7/g7iOc1po/Omjrz/c1xHMdxHKeFvE0WqU58CYaOwsLmAb62aGEtVzN/BbY19pyqxXKdUQML5zc9XvofIElONbeA3xpMcBRbTMct4u8BMwy2E9ON9s74SWQQweup2Y/WC/CH729f67naw0e7Hz7CC4+dBOA0AFf54l+e4Ht+/lt5x994c0P656zPzRU0ltuR6jhOF9n8LcsPIoLg1hb0pTomzkHpWsva0+JrNCNFqDIPOkQcbT4ATZLzJJFPXGp1WpqVl+ghML0isNo5lOLSjtnuNwJcaXcnupiPyHj7gqiw/ir+TajC9Cen1rxv5o9/myv/9h9iF+br6JjjOI7jOI7jbEI2mejXCGZfg77Oqz2p429AW7gjUq5/hYYH6tRiozMY/zCEm6dv1eIpPHMYTw40th+biZbnBTS+AOFlbNiBwXVbQrwuqe+7ETWIZLHhiXb3pGuJN0xm53vw8rWN1xshk68tkJrZluflL5+66fYkSvjNf/AH/PZP/xFx1Fu7r53e5gKpjuN0kQou9gWCwGDMUPO7UwWZfA4tHGttm2Hj1x6p5onjyi50RPIk8VmstnaFp7a5xkrlplBmQIfb3ZE67ACGwdVFrVMekTbXCqkxkCoCQ1+9/oKAwlOPcfFnfoDo4tlae+ZsQGhu3RO3gtVxHMdxnK5gKiibkhQhKoF0TokVDbahegaKrUt1KdEUnuxo8FlDvOw9SKGygLCYPnThxXRVZqsoaNJp5X7WpuFJJAkRb1e7u1IbNXj+IYw3jsadt6i9m5jsfky2vTuU/Vxt7YczBW5//aF17//kf3+UX/prv8LcdbfwuhncXEHjuUCq4zhdpMK3LInI5jpnpam/4INtfcpTnWv8ykrVCKun8fyjmx4bZPeTye8lyA5scD5FtfaUomsR+hp6vuYqolxr6fixUVRNefPvVJt70guK7e4AeGsHUhWwo68nOfzNxLd+O8med990TG73l8nduX4mgOjcKS7+4x+g8NwTjeqt4ziO4ziO4yyrdFHg/GkYvLe5fanG7vbUbjULjd8Ba+YuwvyzSGbzuZgkAO3bSaIbpAFWQBo4thcwuc7LXrYejS8gSaG1weYGETMIatF48zTPzsY0bn/93vV2pPo+vPWd/Xz3dwT8ne+JefiR/puOufLsKbbvHV733C89eoJ/8Z5/z/mXXcDd6XyuRqrjOF2k8rUfIjNks/dQKj3fxP5UQBVKV0BbHyjRhVeR7XsaeMIRkuQCAJYpIIANd38KIhun9RXGUC6D7iD9+4YgM+t3QRfPu/5gQum21WwKWFSHEQKQ1qWArocwAMTt7kaPiFANNn29NJVZviTU7Dh25yNobpREJlCdBq4C4PfdnGJKBIa+6iLFEwHEa7wnBD5DP/Y+4sxTRElA4LWvvksvcqsiHcdxHMfZ6sRkKq/BOPEF2P4AzL3QxB5tTk0OjS5BG6pHysIlyN8c9KiJKn48hs5/IT13XEBVNqz7Kniozm64pcmYMTSexGQOg3hYO4naDbL4qA8kG7ar2i3Zq1IaX0EkiwT7ULFoeT6m04k3hk2m2t2NnqDJLKqKtLie8ErBih2ptz/sc88jMXt2KZkvPI/Oz0A5m/feXe/mxqXTSZiwY8cAk+en1jz33jvyfMtPB9iF3yQufB1+/oGm/AxblZsraCwXSHUcp4tUd+HgeSU8M05irzapPxVQA9qm4EgyA8komBjUw+osaIgxo+n9IoCgXNs4MKmKME6SnFpxawnxhxHNYpMLQH0/oy7V1zSI7kCZ4KbrRB0C5oEYdBRIUOYQWQ7mqebpzgQTFphEEUR3kA4Ap9rcpw3ocFrjlWJX/rY703bamiLZBCg+OvYg4e7bURbwTB9amL7hwLX/4n7feba96y3MfGyNxStxjH8HIPOE8aewdoKM/w5E2puiyHEcx3Ecx+kR1ZapWLgA/iDEbUz1GvRT7zi6VjL9Av7QN2JNiFcKoXQJxIPMDvCyqDGAEnsT3DwwX0GFoDSAzn5h+abwDOKPgt+XBorXfHwlwWMftIAtlUskmQFM5jA2evWmcxr/FrR0Ekwf4o2jJGh8GVbMFYi3F+LuWLS8ipbQ8CRIFi97FKszaHJl88e1ifGPQDIL8UR3Ts10GE0msIUIr6+xmdyqEeQ9sn3wzm/1+Oq3/znYIvPn3sDs/OpNEL5Z+3V95YVz3Pr6Q5xYo16qHxhue/A5AIrXnicz9B0EA+9ta+DYcdbjAqmO43SRKifdJSGb283CwjXaNUBhnQuJlildJcksrLopsat3bIoMImYMZRrQcmrcDOVcOmDnSfTUTacWyWHjCVb/bnNkskcRLwIKbHblrNyY8tiiXAJGQLNAiDKLMIRyHUjKj7u8fA4dQsgDEUIGXVwO15UU5TLCTlQ3HrO2lwcEiHRHjZluoHodaN/fPBk9TGngA0AJSIOnVmdQDLLyNW7Xr5E8cNsXWfjKUeKLN7wGxUCUh0y6Ajy2X0GSDBn/rY39IbYiafJzpmPfgxzHcRzHcVYwVQYZildg+8Mw+0z7LsDDadDxtjQtNsQsTEDp2OqQZrg6FWuQ2Y8O7CM2acDE00EkKf++1CLFi2jp5ZvP749io9Orfrfij6O5caydhkqySHm51Qmw7BxaPIaXPYpKBtU5NL6CCW5Biy8BCkmIlndCCiCZI2CyqJ3GEGCTDXa0djotYYsvYPJ3k8RXOvY6XRAw/aisP250qpPMvIzX176U5O//nhN861f/CWILS0nJ+m6ZYvavVh83X1x//+PC6SvkB3MUZldn67t2rgjkSecPlXD69xAzSND/tob+DFuSmytoOBdIdRyni9SQlEDmyOXuo1h8puG9qZjXoJQ5tVg4B5ntGx6iOkuSrAyITVVwYlNOnbM6EBoEhzH+4oVRJZ+q6wWar6+4R9ANd+pNl4PAAb3ysZb+vAZ0FGUBkYXyzuBRlBCYbfMKPQHmUPUQN0BqkBjIkQYyWysqKmHpKzfdrjqNeCOQLK/clg122IuJGX5XwMTvLN828pN/Hf/uQcjcmLK7fStqHcdxHMdxnB5T7Y5UgMknYPwRmH6y8f2phMbgDUB8vS3Ny1olOW6g4VmYPLvuKHvt0byXZi+6IeuV5nZj7dkqerj22W3plaWvBR9NXlz/DOHJ9AszjNUuDqKuYIsnEckgwUFsfBYogkoaULYTqL0xo1ALleu5atLGPvQgG0+2L73vUx8nc/4vbrrZlF4Cdq66Ldqg8lNhaoEjD9/C859/tXyL8lP/cw8H7jjLjfOKYvL19dnpCiIyCnwQ+AbgXmAvEALPAb8B/IZqZSkeReQUcHCduy+r6q66O0yvzDg7jrNF1Jbd3ZjW1ydd3YEaBnUNYounSVOGNo7IMBpPY/Xc0m2efxhj+jB+tUG1Sj4TK93VG7FxzdZWyZB+9tcjIU1dfAnoAx1KB4nlnbjCGGhA+ruJW5IGOA3kjqDMARMIo11Tz7XzBYhsQ9qWznn991YxA+iKQGoUXMd4eSS5cTd5Kjv6HEPvfQulMxGZ3Rly2UeJMzevJo2SL+Ob2zBmpP7ub2FCc+uebMFFpo7jOI7jdKNax9zhXGP7UQUBVNq4uDCcrDrp12Ykfydqp9Ho4tJWKOm/H0RIknNVXlxWMlewQeRm1ammqmm4eSQPuvY4qmJaBC2ixecx/k7EjAOKLaYBZS97Z5qmWRSbTKMtKXWVxcggaqex4TnEH2pbUrheI952gvE3t28hvbdO6Ehj/J3biC8vL5i+f9uLfJIDrPdCv/Dkq9z55iOUCiH5fMCJz85y8I6pm44rTf02XvZexOQa8ANsXV0wV/BtwK+QVtn9NHCGNDr/zcB/A75eRL5NVSudFJ4GfnmN2xv2Qe8CqY7jdJEar/IlpDxMaWRnqmi/+XUANRiFaBK54WeUZBZhGFvRLtONCYMI/dj4PKrL6YJF+vAzPiK17KRrc+rjhhkppxUOgRmgD2FgRe3XeiygrE7PvHqHbg5asjqxr9yuB/S5IGrD5BEJWhZEVVVsMoDx5ip6zoi/DV21PiHG7n4H3rmPrvuYgVsfY+DW9Gu78ztYexQdUYz+F9ngfXimIYsDHcdxHMdxnK2q1gn3qL0750T85o+I/ZG1d73OvQLbD6X1LOskmf0QDGNLJ0kX+srS7Yktp/itcrha4UakjmcyR1HxUXsd4qvgjyGSQ6Nzmz94ExpfXlX2CMCWXlr6WjKHWjLjYvxdaPE44o2iWkLj85s/yNmUBPvJ7HgA8VoTRFULSWjxcyvDb+u1bRl80w6u//GKzFMT53jg4bt45ol1UncrXH4i3SU+hfKBn9i99mHJNQpX/wW50R/H+O1Jf+60xHHgfcCfr9x5KiI/A3wJ+BbSoOqHKjzflKr+XKM7uVIzA9OO4zgNVvtbljFDDexHtZp/0SP+dmT8a1Fv2833hfXv0jSyAxtfJolPLAVRM9m7yeTuIcgeQqRXAqK1yAIRyDVE0pS7ImE5+NmKlCTFNOWv5kDHQEcb34SOISyu8s4hUucqWgcAYTsiikgFNYIaQFWIoxxhdII4zq+4PVlKw3SjJDmL1/8WTO7OlSfCjty3aXv2wAeIRwfX7w/zlKI/IU5exqpL/1Qrkeb9cxzHcRzH6Qqmxn0ipXYvDm3BBVd2H/Tfz42lNYQE4++p+/TSdx82uYQtvUwaRA2g/ygM3IcNvJovKkW6f8pa/B3Y6DQanYBkIv1d2HJQW5qfuUzD04gZR7ydeP5RjHegwQ0onn8UknQ8K94IN6ZpdWrj9T9MZldrg6jh1HnC658mKSzv9NYkYb0NgdmBpxj+sa8h++DR9Ia+HDIScPCh9ecAFv3NX9vD7qPPr3u/jU5TmPh54uKL2HijUl/ORjp5rkBVP6Wqf3Zj+l5VvQT8avnbd9TfUuO4HamO43SRCtO2rEGkj8pqf3YnLZ3FDo/Djvvx4j4oXATxEZOh3nw9ImMk0SkgQaSPIHMLmBhjatmBmiv3p0iavrZbZ+ozCEOAQZlD5Ob00SLFco3TiHqeu5VQrgGZcirgftB0B3YtFzeq3lIKX2GgfP6rpH+vdGdyO+p49p4MyHRLg1WqAXHyGgBxfArPO4wxBUxSQkoFTLCXxJtnKTW1GrxkGzZ/HRP0I9EYZuBOkuEpRO9CnrtCfO934r/0xzD3arrvf/gudOQedGAXSd6yWZprZYFS/BEA8sH3uVS/juM4juM4TvXWKTux+eMWINgGtoeDP9E1WDgNmXEkfxdq5wGTzhdofamFpe+edAekCBLsQrOjqJ1B9RpoFUFq9RCvHwjQ5DpIF+9GNcOYYBwIsNFra/4smlzEZO8op+Nt5qJ0hWgSRLD2DJI5AmrS22tYDC+yDfHGUHsdY9IF3Lb4wvIBtS5ocFYxmUP423e3NJ2vDS1J6RgApZknyWXeiPGAqSJ6rQ/GbwN9HinPC6kZQpNDsPsMfd++l/jcBNt+7HV8MDjD/PRB/vRfDfFt/7rAL743YWEqfcwD37idW9+SZc+dCaN7XlinJ8s0vkRx4l+BGaB/1y+72qlby+KOoGomU7Mi8t3AAWAe+ArwWVWttgbdutw7nOM4XaT2FXueGSRp2FtndTSbR8ybAEmXeSHo3PNga0+hs3jJKwAD98HgfuAqEJP4JRhcTG1kgasI26gk+CX0pzVQdQqlvKpQAxaDaH5wC8avreassGNFqtsAdBQhWmqnWwijKLMg18vfb3TwNURHb0q303gJyys/y383xoE1UjitQTVdUabqkwaHL6W331RKoA9lumvD351FSBcVtO6NSWTl7nRLGF4jm82n6cd1ARuewJhhyO7C6hReksFGryHchTKPGbxtKa20yhzRfe8D5oju+hpEBzDzBZIBS/oOVf37RKIXMLhAarXMls4I4DiO4ziOA/gDtT82uxMKpxrWlaqUQiR3L2lgy4AqWnyuvnMu7h4Tgb67IS7PO4RX0fCGepmlXTBQ2cJryR4AfwQtHF8ReC4PJCWDZrdj7YWa+usFh5ZqfBpvO/i7G5JyuNVM9k5seBwbbd53Gx5Dgn1odLa5ndKFpQkkDU+mdRNzd5PEr1TwWCUNumtaizWeQqM0dbAtzxkskuAAtvRK966V7yCqzV2IvyazYge4nSOaPk92+14I8rBwCT19CUZug5FMWqP3WgzeBZBxVK6w7SceQL00XXX/0Am+49+li/v/0cchLB1g6tIgOw5uHjxdk53DxhfwMkfq/zm3mG6cKxARH/je8rd/UcVDdwG/fcNtr4nI96vqXzWiby6Q6jhO1xBqrx/iBznCyKfZOwPXkgSFm2LAfnEYDWsfGMjObyAxs3hJP4k3RxpEXY9iZDtWL25+XhnC2tOAhzH7sHoesIiMEGT3YLxqgyMe6S7UfHlX46IIZAY0R5qyuRNXnN5cV1cYRykgVayQVaaAESoNajaKUqxsDKNDwHVUh0l/3vX6OQLMtHRVZG8rAePAZAvbXP18Vp0ijkZQ8RAzjNop1E5BYRbjDWOTdHBskhzqF1HWT7+rMkdSx/wVQJw8S+DdXd9JHMdxHMdxnK3H76/9sd7w8srSFpMrX1j1vQKM7wfdOKvLhrKHIJqCvsMw/QQ3jgFWtV+6hNn+Lmx4bNPTqpdDo+MQ5DHeLejCCygxkj2M9QW1m883rGpbBkACjBnDFpdTfGoyiUi2nPr25jF5Z7i5XyZ7FzY6VVUgUe0s4m1Hk1aOCUG1svJPJjiKlk4iwT6wc6i9caF1+bjsndjouAuiNohG59DoASTTul/ojW9/SekY8dx22D6GyY1C8RpcP47OD4GXgUJ5fi96HQSKeje+/pdfH5nsGXYcrK9/0dwn8La7QGoHukNEnlzrDlV9XY3n/HngHuAjqvqxCh/zG8CjwAvALHAL8PeBvw18VETepKrP1tifJS6Q6jhOF6kjRa3Mks/fS6HwLB0RtMvtQ4KxdNVpPI0WK1gNSHopIju+nsRMARFJhYHNJHkNzzuE1UsbHmd1MbibYO1pfP9OxMziZ0YRqTada460fug0rLnrtAhSRDDAGKpX1jimnfoQ+soB4CzCMMr1qoKoACIJqiVgmFamlxYyqC5UEPj0SF8TNw/ehO0srgJQJl0QtdHUomgLf6+KZ3aTrJjkiJPX0s3yA/vx4iMkC08CCZqsSMUVx+Urxua+d1q9jGoRkdzmBztL3KvScRzHcZwtz2Rrf+zkl2HszTD9pbYXiReA3B3ltKuSprktVbpj0Yf8rTB3LA3ETldWV1AufRbZ+SAand/wOA3Pp2ugtZBmrRl6PYm9AhTKpWUqJ2YcSebR5NJNOxsBNF4cr/iIvwONa9jp2ixmELSUBkDjS4g3igQ7saVj1T9/dBb1diC0NpgqFdZnFQyqJTQ8edN9JnsbICBebT+7syG7MInJjLWsPfEV8UZXzQOEs5+H7WDe8Y0E52aQ5z8M4erF1cF1j2hH80s/JaUad7Nucd32qhSRHwX+AXAM+J5KH6eq//yGm54H/o6IzJXP93PAB+vtnwukOo7TRczmh2xAzDT5/P0UCs/Q7lWNcX/CYoDKL+yGTQKpiiA7vg71CliqqDWygk0ugcmxOuWmIa336YMEqF25G1Ew3hxScSoIr5z2NiJNM1uk8vSe7f54NwhjgKarahGQGVR9hN3pTjy5VnMvRULS+unbgJnGdXsDad3UYVQtIgs336+DpK+DtVeVpgSlhJAFBkgXdjmNolwrp2BuzaBZRDAmT7JGPFRMTBJEIHnQ9tWISuw5fO9o29rvNgKYJr59tvud2XEcx3EcpyKmvlqfTHwext+SBlPbTM5+YvmbA+9G2SSQavqR3CF04RTMfqX69jTCzF4jyd1QdkQCMPl0DsEMgT3L4tWhBKMk9nQ5eLb5FaPIAMbbhcbXUTsL8bkKZ2RixBtubyBV8pjMIVTTxeGqpbS2rslhcndiw1fRcKr2QGJyBfVGQbeBbc1cgS2+gMkcxtqrLJciXGb8Q5DMY8PT659ELZCgBOBtB9vaDFy9Lp55HNP3XkymvnnQSokIXmYPceHm+UbbFxEeHCD7/BoPbNHUqibTJNE5vGBfaxrsAS2aKzhWx87T1ecT+XvAfwReBN6lqo2YKPtV0kDq2xpwrjqjEo7jOC3VB9Q3QEqDqQ80pDeNop4Bf3TtOzO7kO3vQHe/jcS7hnJzQKzidigC/aBZ0CBNX6Qh6FxaE9WmNVYXiQxR3VWRKddAvU719REnEdb5HTSJsANhF+mu2UGQSZDriMymaYcBkXmQq4jUkVppsT2Jgflym60yhZADHV51q2o+DZ4zBRs8p9Jg7BTKZaTO156zDm3tog7Pj/G8tfPqiAgia/ydk9YFVsPksZa15TiO4ziO4/QGGbwNpM69Ilcfg6E3NKZDjWIt+NvXvi+7H+l/EKxFZ56BeKrmZmT+JCZzB+R2odlxNBhAAx/1IlRmUT23OlDojVTXgNmGLb6QBkRtdYtzbfgqeK3bmQdpml6TOYL4u8D42Og4Gp9H4/OQpDt9NT6LDY/TkPJRyTXQeUzurvrPVSENX8PzDyLeivkJVcSMlmuhntvwb2XDV7Dha2jpuMso1BQWu9Da4LTfvwMve+ua96m3zrzFQrVzf7VKCGf+qEVtOa0mIj8G/CfSnaTvVN0knWLlFlMf1pH/f5kLpDqO00X6qCu9b1kaTH2o/u40SJIpkIzdggy+MQ1b5o9AZicMvQm2v4k4u4DSmECG2vMYGSTdMZqsuk9kfPWxOoXavgrPPEi6Y7HmnoEktPJjSVkASQdBImulHm48EUnTA7ODRjyXK6FcQZkAHU53oeoIMHtDzdrNjKTncBpOuYZqlRMRdRCJCNbJ5KTrBXVN6wbGRna0rK1eYZr4z3Ecx3EcpysMHqEhuTQ6LJgq5z6JXDqG5O9EJcAO3Y3mdpLs/0a0/yA6/SWIG7OLUS7+ZboLVefKY/Nlxt+/6nstncCYyoKbxjuAJLUvCEeLGG+o9sdXS/LY8Dg2eg2106B19L2qdsHGl5HMLbRqrsAWX4DSWTzvIEZ2Y7y9EF5A48sVn8Nk70CT6urjOpWJ557Bhq0rTWYC8Pv3r3PvOnMF+TrSqlfJCw63rK1e0Q1zBSLy08B/AJ4hDaI2su7bm8r/f7URJ3OpfR3HaQvLy8AESkIa0BPS+nsb/Uuofqfj2sRMkcs/RLHwVEPOVzcR4n6L9L8Lq5OkKWCLGCMNT5WhN9UvMRizB7tGGpkkmUGMWVHDsY90B+cs6d9sG+lHaIF0J2o95hDZierF8v/n2TjtbO2EnSBpyhK5YZDYbGl7k6AGyCEMoFQ+UKnVYiC0+qfTIFBy9VGbRlGdAjIN2flciTi6+W+pCl7JJ7HTN9+X8blx4UVzCBn/rS1ox3Ecx3Ecx+lU9vl/AYULaDQHGgMCGoGNwIYr/l/+WiOIF9L/N8LVxzomzS+kxVbs5AnC+96N6iwwAkwRlIKGhtsEi7EjJCsX0Mo2PDNGskagzNC/quyQmHGQTLlu6ABCH5g+NDwNtr6FyzY8icneiS0dQ4L9aDzRtACnyR7Ghi+Tzne0Zny2xE6hdiqt+StZjDeEDU81u1Fs6XhNj5TMYWz4mqsH0ix2nmjii2R2P9KS+RhVJZp77eY7Qo/c0yduvt3LEY03YEd2BcSMEAy+tyVtOa0jIv8U+BfAk8B7NkrnK2lx5yNApKonV9x+N3DxxseKyEHSXa4Av9OI/rpAquM4bZEGjjap9dFkxkyRyz1EsdgZwVSRkXJ63ZWasfosxsh+rJ4FBjGSw9oJRPpuyDI6UK6NuRjIHgLmSVPBLgZWaqvXur6riGwDpmnsGqcAYTElkqDMt/1aP609W0I1IP1Z6/9bC+NV7jTdyEA5yDtVTkvsNI+yVm2a5rUWA3ko73RXBVNMSEovtawPa1NK0cfIZ76lzf3oLm6Ng+M4juM4vUQvfARmawvsNEyHBVN118PlIOoKmUqzR1VOojlM7iA2Oo3x90A4C2Ya8QfRFeU+xNvN0q5JFUxwGC2mYwkx/RBeaXjpRFt6CfG2p0HZRgXNAcwQJtiDogiSphJuuxJoCWSMNEpZ729TMNmj2NIawbBazhbsQ7xBbOkVkNbtmNySJGjZonaR8qIVyabPP4DYkHv8aZhYo0CqnwNrwGv+c0DtdcLp/0l2+Hua3lYv6eS5AhH5G6RB1AR4FPjRNZ7rp1T1N8tf7wVeAk4Dh1Yc823APxKRTwOvke78OQJ8A5ADPgL8YiP67AKpHUzVAnFayDy9ZcW9SbmumqYTopqgROXVerb8dXmXn0j52MVgiLK8XMiiaLlI+OJ9mu4SXFz5R4xqtHR/kN2DmOVjV5/Xoqu+ByEgfaoJyztabPkn0hXnufEfG9y23n3ccN+Nty23XS67vOJ3IYCHMI7wEOKS2jVZZ1xsGW+KfP4hCoVnac2Oq/WJ9N8UBLPJaUSGMGaERM83pB2rFzGyG5FBVGex5QGZahFhBC3vLPXMTvxMsRycWyANbi5qVmBtFNV5hDz173BdJows7UBNv+8cInOgY+X6sgBD5Z9/8T1Lyr//jVM2CTvLu04Hy/VMA9L35Ak2f72lO2PT9+qoXE+3AFLsqN9V7+pDpEUpo4BMxhKFu4iTdLWpVxSSDVYhizVoa7JLYfVs+h4gDSlh4TiO4zg9ySaWsBASLpR3S5VXQ6qCTRLUKja2RKUIG6fH2tgSRzFRMb1NBMQYbGLRxGKtotYixiy1oYklKf9fraJWiaOYJErSjDqFKG3DpvdfL6XtqipJnBBHFhsnxFFCEluSKCEOY6wqRoTcYI5sPkCMISykP4u1ik1s2n65TWsVa9e4LUnbUqtL/7fJ4rHl21HQdKeNavq1TVZcG4usag/AeKb8TxARjG/I5ALe/MEHed+PvKt1f+ityrZugeGGFoOpU19s+2x0PLYXbshiFOVmSO78VvzJy5jLjzakHbn6KIzdjpEslMcHCkjUj2b7l3aBir+DJDqJlz2CjS4sBVGBunefrsdk70STKVRjGrcINUC8fmy0/LN2Ehu9isndlabgBUzmULrLtzzfK+Kh0UU0WXcTV/q47J3Y6GXwdyGmDzE5sCE2fGWTHgjibUf8URAfTWZQO4smF9N0vm6yoOlMMNrS9nJjt1O6liUJT4IqucefWzuIClCaRiIfDVqz8D5eeJzM0Hch4ubre8RirmYP+LF1jvkr4Dc3Oc+ngduBB0lT+fYDU8DngN8GflvXrWNVnZ4PpKoqhYXfX15Jkd669JWYEQQvDSRomAYg0XQSWrIYsw1jxlkKKGLLAcr0ny59bUHLQckV36cXWx4iWUSypM+NpBwkTVAtlP8VUV1AdSHthxZpXqCiPkHuzSiVXxh12oXIZpRJYAThSLu70uM654NPzBR9fXdTLF7A2jbWgdS108aoTpMk0xizAzCohohkUSJ0VXCzMiLDqE6zVpoaJUZV0yBG+X2zcTscN+IB21G9WG6zcYRxkI0HFu2W1k3dBYTp3/TGmq2qCGPlY1c/R4VdKIXyzlEh3WW4oqauDpYDsxFKlKZYWlxwQwkIyztOp1acc/m/TvOlC47aQ1VISi+ve78JDmL9BaRFzwcju0h3yzqVSJeENe9Ky70LOI7Tyxauz/P7P/57yzcsBtrKxg+PkySWuauzhIWQqBghImT6s+QGcozsHWH7ge2okgYH44QkSkjChCROSMKYJLFpYNFakjj9OonTQKfxBD/jp+frzyGekMRJGvAMYxamFihOFyjMFpifnKc4U6A0X6I4W0wDmR3obIGlYGQvOvnUGe545BZue72r09ZUpoOmKq8+BsP3Q3gB4qm2dcOawhqDZMXqNcKRALP9r5dviTA2i3/6U0jxUtXt6PADkFxmzRG5LQGK8fdBUgAibOlY1W1UzWzD+DuxTcieY3K3ltP4di4bX8Dk7sYm17Dx6qxuCqCCZG8HW0CjMyvu9TG527DJJDY8Xq6mdRW1K5ZsZw4iph9NZgBBzDYgxCazaa1cu4DqFBpNteAnddbktWGBcXnhiDefgSvPrn/cbV+L5gu0atTo5e5zQdQqdPpcgar+HPBzVRx/aq1mVfWvSAOuTddBVyeNp6oUC39CHD3T7q44XUZ5nIQXAUHYh3AnkIHyLU79pKlv5zWQOXK5EeJojDDaaDDgpztHtfoAZmXSxRZrsXa53nY6x5PDmB1YqqnDnUNQdN1aHz6GQVAfk0l3J7bGchC10ZSriC7XRO1EaZrfNEC61ntMGiCdSr/RQYR+lhbbyMSG70oi81Be/JIet7Dia6cztPbdMAwDkuRc+TvDRrvxJTMOUlr3/sYSfO9ONzhyHMdxmi4OY373R36bY59ef2K+3Qnvu5GIlBeX965/9t7/lz1Hd2A8wzu/6418zfe9GT/jY4y0LP1iz5P2LTJc09SzkB2H/jthfv13hsLCbeRyr5QzuDVWMDlPOLLevYrV5d2qiYA9/CaCCy9hpisPdGr/Yay5vrTDffWdMeLtwkQhJErsVx+krZXxx7BhY1LS3siWTpZrrra37NSG7Aw23CA7lSgapTtLJbO/nNnHYu3scpB4nbcmjc+tesfW5MIN53bvaW2nrc3mV5w4iY3KcwXJxn//ZPcYSGHDYxonwO97S4vacpy19fRMVRKfJAo/3+5u9KCt8kE6A0yjvIDlj7D8Ppb/0+5OOc0kCX4mJJd/ENbZIWbMGGIGm9K85SrG21/FI4pYewEjeyt+hOftWrWjXGQcI3uXzmHoQzUiyPVjTLOCqDe+hwQ313tpMGUS1d5YOyRSAJkAmUr/OV1PmUO1hZ+tmrC8SCLGy9+/5mHi7aCVL5vAexOBt3ZfnHWUKzg069+WueRzHGfLefx3P79hENWpjef39BQTAEmUcPali5x+/jy/+Y//N9+77x/yHWM/zi9976+3u2u9oxODN6WrcP15GHrDumsgZydvoxRVM56vnP/yH+KXKk/xqTpFuPsAdudbK3/M4J5V2fwkdyvSdy+SvwM0QhIBL0fsTZBmNmqG1fVExBvFhs1ZcA2kP68trh087kIaX8BGJ7DRSUiqWXDvdCpbukiDspJWRgssLtpPBkM48La1j9v1OpJ8qzJpemS3/xB+7p4Wtdcj3FxBw/XGrPI64nizXO9OLWyi5XQPi3TFiyetvyqELdzB0gq7y2k1Xc22xuncd1xjpunru4Ni8RLWpmltRUYwXiatHbnJqqx6WHsOY3ZhbaUrPBWbnEXMSEVpflWXVzIa2UESn2WxfqbnH8Um18hk9yINe/1mgD6W08YOpinM8REZKNd3LgBzDWpvPRHCKNDG1M2Os64I2EnLnp8rJqdEhCRTQsIxNFluX7wdyMA+8Fr3WR4lnyexr+F79xB4bpDkOI7jNM8rjzVnd9NWd/SBfSRRud7qYs1Sa0mSdBJYRLh6bpLCbO/MFbzzu95I31Ce+95xe7u70jvE2/yYtrDlVL/3oaVLEF9HBK5PvJ3X/jRPND3NG37sdNNaD579HyRv/M5VY/qNRUTbt5O5PoaEG48z1PShpdeWvpe+e9G5Z9JvTB7puxstXSHJ99OouRzxxkAyaJzugjSZI9jwDOLvAtOHYLHRZVaVrWkCjS8h2TvQyH0uOJ1Ho7PYwl14fdkWtbji/ddA8YH95M7nICku3773EUr3H4SgVRnsEkqT/5l4/jMEA1+Pn3+gRe06zmo9G0hNkitE4ePt7kZPKsxtvsu3b/CtSAsnX5vvIoqHYSdKjOCjLAB5l+q3Zh2+WlnmyWaHSJJdWFtAmUdJd00afyck/lKQtbHtCki1F0gJaIQxO7H28rrjGs8cwuq5cjOjJPFlFoOoAEn8CpBH0QY+qxNU54BcOSXyFOnq1RKqlddabgTlMqjXkQucHUf1CjCMSKUTI/U0tjo9kIgg+UNINIqIDyYLwQDqXW9+X25g9SJRPOcCqVUwXfCeJiL/FngYuA0YI50ROw38MfCfVLVzc687jtNzTnzuOC98/Pl2d6MnzT+/dhBp5UfV8M7Rngqkfup3Huerv+dNDG7vJwpj/MBj8sIUo3vXzcPqbMZ0WGrfG019hUR3cPb57wJJmPj8JZKFKQBOPfXX2XvPZ8lkL2x8jhqILeEXA6IqpgtUZ4iOvIvg8gmYfGrNcb4CuuN1UEoDiZK/E517bvkAW0iDqtmDIKaBVUkUja8g/h4w/djwFBCh8fmlfrVMMtnK1hynKtG1R5HMV2NakPVB9YZdpr5iH/wgZvIq6gfo4BDJ9n4Ipprelxt6RlJ6HjAukFqFbpgr6CY9G0gtzP9OedeT0xY9+UI9h2WxppwPxBi+ERhqY5+6WXtXmaZpXg0gy2FDXZmbIP1aDAj5VTtErV5GzA5oRiAVqCXIrDqNJtMY7xBWr7NYB3Mlq4upXbZj40ss1dhcpUBYfJEgcxdesF4d1WokiIyierkcUG0nJf3dtrbGhONURlEtAQEiTV7ZuUYNUvXnwTcoFihgTPsyMIjk29a20zQ/DjwFfAK4Qpri4xHg54C/LSKPqGoHF6dyHKdXxKWYX/++X8Mm7nqwXQrzjRhjdA61yif/x+f55P/4PMYz+BmPqBTz+1f/A57X4YuHO5XJtbX5UrgHSwa1PuChKqgGqAZYG2BtBpv4DOy+yMTze0gWlndqXf7kKUaPHGhKIBVATfXzKFavUNoxRDDwTZhLjyHhDUHD7A60HEQldyc6v85Ck9JpTMnA8AMk9tzax1RBk2uIvw+N6z9X/Z1p1c46x6mBLhBfe5Fgx91Nr8UtEty0iCE8IHBgx/INyXzbpv3F27b5QY7TJD0XSFVVSsWPNWenmFO53igvsCbhEViqMdmcWplbQ3sDqXEMVitLnysytuK7AMMo1k41rjOqgIdnh1ERMLW/gGxyCgBjdoEYrJ0FCnjeYayew8gukvg8awdRl0XhyxjvKGKSmvuySNWt7nScyiyAjqJMNXXntGx6+ZfB6kzbdm8H3hva03AXEsA08aKrgU+BbapavPFGEflXwM8A/xj44cY15ziOc7OoEPKhn/lfhIXeCuR1m77BHFOXW5CBo8WyfRl+5Fe/hxNPnmLHwVEXRK2HybS1+ad+702Urk5VcGTM2BuXFwD6w4OMPjRKNv+5hvVFJQAvQA98NVKaQ6IQatywG/XNwS0P4Oku/CsvwsJ5iKbRkduhdALpuw+de3aTs1iYOwX5AKTOa1BveGn3afv15G4Qp4fY0qvEUzsIRnZsfnAdZJOFLOLthORMU/uwQesEg9/Qpra7TxfNFXSNngukWnuJsPSpdnfD6WHCMMKRdnejB7Q72l75W77qcu1R0e3E8SmQBhRVV4PREWzxOGBJKA8ipA8yYyC176pfXWM1ByQYOUASn2CzHZkiw/iZfYi5ac67JiJjqF5syLnq53akOp1NuQY6BswgkqCqjV91usn5jBlFaceCNI+M/zX43q1taNtpprWCqGV/SBpIdX90x3Ga7vmPP8+X//BL7e6Go+0eBzZHWIy4752388b33d/urvSA9j5HpIogeOHKcrmao9+ZY2jbhxFbf+pqzY6he96ITV5Nb4iOgQFZUMjtAFPrmFZJ5CLJzhFgBGGQYHYOht6KXv/MJo8VJHsAmxuCChelbyiZQrK3oaXj9Z+rTqr1LyB3nGZLZh9HeBPe8Bgi0qS5gg02vUgGScL2vEObAXLbfxQvONCO1h0H6MFAqjGjeN4hkvKuLMdprDFge7s74TRENRcb5YvqpJ9k/ktAgsncivUiIGQxRfDyP4OUUwZLOU2vrJE2mCTERmukzdEFTALW000DHpUpksTpAMyYg1i7du0iY0bxg90Yvwg0JoiamgYypL+rduojrc+6FddNOd1lAlVQ9QCL6ggi0w0cJK1/HiPjbQmiCgNkg2/EM7tb3na36/K6z99U/v9X2toLx3G2hMOvv4XRg6NcO+3KMrdTb4ZR4au/+xHyg+1NSdsz2hxsr6YOoSbpXMHhHzzEwO1fJjFHMd4B5NKTkJTSeq9iwBiQIA1SmAA1PmJ8ED9N11v+GuMhIth8Bi29fHODpfNkCvsI+xszXledJRwE9BqZ/jvR+ZfWPE7yt2IzWRK9AlpoSNsAJLOkY5M2B8/9UTRudykix9lcPPsF4llDmuUvwht4PcH2Bo6hZf1QkecfwBZfaFxbFTLBQXKjP4rxd7W87W7X5XMFHafnAqkiGfoHf5hS8ZOUih9rd3ecHiPsQFwQpkHaPIQWuakLwhDKPGlg1LAcTMwBIRKHLAYDbXhsw9Mr4AVHSaLjS99Xw8Zn8Ly7SLiy+cHVnNeeJ80FdHMNED/YVQ6iNtow0P4dqcIgSLuDuY5TjcWV0ddJF/Jcb8hZN/oU003SfjeOEHgPYWQvyhyeHMCYkRa17bSLiPwkMEBaYP5h4KtIg6g/385+OY6zNQzvGeYfP/ZP+d2//1s8/cdPtbs7To+545Fb2t2FHtJhO1KN0L9/nMLF63h9WWyUkMynwUQvn8UCw3dPARbsAtYeg9F+0pLwa4mR/juwhbWDlkC6/nc9U1/EZN+K9RuQIntprbcSDwzhza99WJIRVBs7NwEg3hAad8BcgeTaPUPlOFWwLGZaS+a+jDf4TZigQXPVsv5CEm1VdjfJkRl8HybYiyZTePnXY7yh1rTtOBvouUDqokzmzYSlx1B1K4qcRhlCuKPdnegh7Q5Ir2zfw/f24XmzqA6yvCJyACVDUkpIChMk8do7OdejWt/PaOOr4A+CzN5wYhBG0lQeRCiza59g7bMiMoDqzYHUKDxLxtuFSCMvjjKoXmjg+Rxni1Jp3NvmBssSRfqqfE+ptQujZPy3Nb2draAFFdjuEJEn17pDVV9X5bl+Eti54vu/AL5PVduRS9pxnC1IRPiaH30Pz//Fc0TFm6+HneYzpt3jwMa7752386YPPtjubvSODSbyW9K8t/wcDYb6Ofo+Zeeu3083yqqg+FjNUiwdhL0HyAwPYag2PW19rwN/7hrRtgHU3BBxVYOXDKIoaiLUVL57VIlBMqA3Lz72QkvsS/11UVeQ4AC2tPEC9VZRO735QY7ToezCFGaoMYuShfVT+4o2s+LmMj/3AJlt729BS73PVWtvrJ79fYrJk8m+pd3dcHqCINyL4esR8u3uTA9p9wBaMLIT3ztI4O/C89LAgYggsvh/i5EitnQBG5+m2tS0UuclhiZXoXQWY8fxdAeGcYzuQKIYLZ1Ia6tGhSoX7FogwJibU2KozmDjoK4+36yvweerh6uN6nQv5SqqjUktb0yM79+4a8JgzH5sE1aar8Vld9iaVHWXpquMdgHfDNwCPC0iD7W3Z47jbCW7bt/NPV93b7u7sSWpKtb2zr6v/uE+/tYvfRv/5EN/l2w+0+7u9I42B1K9nMf4I/s5+m1jvO77nmbnrj9LuyUgRjEmwvfmGOh7gdz4q+UgapXP643qEFZi/kWCKy8SFIcIwmH8aJhMYRuZy6/gXf4s/uVHCeaqq9WqUsSOvR4ye26+r/AKxmtsWk0xnTNXoFp/XVvHaZd45kvYsDHzXX7/GF7untU3Sg7j30JSalVa354NVzldrmd3pAJksu8gCr+Cte1PE7HViFlodxcaaBuG+9rdiR7U3kl0z1OMRKyV4nYlVUjCUzW1oQ1ZqxVjw7VT/niZO0jketW/StVriBxc8z6bzOEFjQymdtLHjAvcON0t3bS3E5GJOs/joXZ5dbrIKIiiXGxZDQ0jO1rTUI8TQBq4M2Ct8wPHath5uiFVvQx8WESeAo4DvwXcs/GjHMdxGueD//Jbefkzx1iY6qVxa+frG9/Gyyd7JwnBvW+/ja/9gbe2uxu9p94gY51uf9eX6MutUZ/0Bjp0BKJa5xsbcNGdzCHXPrvG2Tx07C1Emanq2hFI/GmMN7D23baxi6416aAMgm1+zjlOXbREeOmjBGPvxuurb1GPxjGaLKcNN/4hNLqIxi+1bEbNZA61qKXe1qK5gi2lp0P8Ih75vm9tdze2qEbvamunaZTJdnfCaTAjldUCTUKodifqEm3exIzJ3EliJkCSzQ9e7xxmJzd+DCTJaWxDB0id9NHaSX1xnNqoTqFa3+WbqpDYNOW2yLZybegG1FiqgkjnrEB32kdVTwMvAneLyFi7++M4ztbRv72f9//cB9vdjS2nOL1OAcYu9eynjzE90fySCFtPe6cqKwmiAujYnbU3orWP4zdmsDu+iig7vWE5jw1lRiB7EG5M8Tn7XFpupEHEG2zYuerX09PjzpaQkMy8iGp9gbMknMNGZwAw/gFs6TjYFs8VGFcP1elMvf9JIR43ffg7LdBb9WYsz7auqPaW0R1BLRvWXivDJhcxwREam97Ww2Tvwkp96TetPZ2ey+woB1QXd476iDTy9VtZwLo1mjVYdZxWKgHDdZ0hTavrY0yatkskrrtX1XI17BvHNPFfiyzmj3Nv0o7jtFSmP9vuLmw5uaH+dnehoQozRf73L3683d3oPW1O7VspDWofN+v8c0jffTR0E4I3QLLzrcTBVF2nifrmYeAAMngfOrq841qCsYbWSEVbPwZZl3bSvIXj1MaGZ9CovteoGB+kDxMcxYZn6i5ZVgtNrre8zV7VA3MFHaXnf27P20O+/7sBV6+itXot6HgB5Qso1e8wVBSlNTXnukt3BFLV1lcrw0YnQQRPDoLNpLmC62Cyt6dB1Abk37T2AtZewtrLGLMDz7uFTP7Wxqb21E5K7dtJfXGcetT3IlUExEs/m6Q9KQ0bk/rc6QYicoeI3FRUS0SMiPwrYAfweVV1I2bHcVrqvvfez/v+2QfwArfwulXE9N4U1Ed+9a/4n//qz5m9Xv1u2yROOP7l15rQqy7XLYHUFaUyang0Ovc0eENI/h4gV/dcQTL2EIk/Vdc5FkWZ64T9IXHmOox+FQy+jjjX2MxztoOCJcaMtrsLjtMRNC5APIMWX0DaVjvYra91OlN3XJ3UKQjuZmDwJxAz0u6ubBEeSK8FUkE5heXDWL5S4fGK5RiWT2D5BNpRO/OcSiSRIQlfrfs8koC59AmCq88SXLtEEG6v7TwyiKU5NYWsvYAJshjTyN2oHkrnpLpSplB1i2qcXlDfJIvnLRD4BxrUl9oYcddkjaEYad6/ep9rZV8HnBWRT4rIfxWRfyMivw6cAH4GuAT8YCMachzHqdbbf+id/Oif/Th+gwMEztr8fG/+nj/0Cx/jB478DI/+rycqOr44X+J//fxH+am3/jv+3Xf+t7pTMfaezl90rfu/GqLLdZ9HvCGYfRqJZxEzjORure1E+dtI/Nqzaa3dufTvEGVmieUS1LCxYN1Te9shudaw89VLtQB1lk9xnPar/70z2DaO339/A/pSK0H8nW1sv5d0xVxBV9kynxLG204m82Zcmt9W6O3fsTKF5SSWE+XdpjcHjdOdNoryKpQDX8optwNnlc4fHNnSHI1YCaUyB145jVUyBTPP13SRLpn9jU2lcwNNGr3qazudldq3CPio9uYEjrOV1JmuRyy+P4/nHWxQfyptdxjfe4hc8NfI+I+0tG2nrf4S+K/AKPDNwE8B3wJMAv8cuFtVX2xf9xzH2er23buf13/r69vdjS1BvN6dglKrnD12iQ/9wsd4+i9fJEnsmgHSJLEkseXPf+UznH3pItNXZ/nKZyqryblldMGOVNvfRyMmkTW6tPxNNAFJLTvAhGTopuQfDZRg+u9p6BnFG6GTJuE1Oo8JDrpgqtPl/Lqz14kHwfBOTLbGRR01MsFhgsH307fz5wn63tTSth2nUlsqz2Em+1aS5BRx9EK7u9LbpNefVudQzgI+yjkgxPDu8n3TQITli8DqYtzKkygnMbwZwe3E6YZAahKer/8kCn4yCsmx8g0GO3IXyFRVpzHBUSyXWfy9mSiDNz8PmgBCNFJ/jackvogX7GxYal/VztmNumwGYRzonDRCjlMt1UnQcZAiIrXXGjXikZCjVQse8sG3I9LImtGO0NxP00acW1WfB/5eA07lOI7TNN/4T9/P6adOc+HFBlz/O+vqxdS+K/3xf/gEapWxfSOM7B5i3207+eH//F0U5kpcfm2Cq2cn+ZUf+T1mr61OA/z/fPC/cN87b+eH//N3MbpnuD2d7yAipoNCbDdTL4eGpxtwJg+TO4xGT6ffmv50Z2S1tn8Vibe8G9WwE2PTpf0iHrFcrLun2sj9EpLDhmcaeMLGsOErmNxd2NAtbHC6VUR4+dP42x7G9A1g/No+c0UEL7sLW3qVlqTZNYPkd/xLpKF1xpxumCvoNr0e8Voljl50QdRmkD6y+TsxXh4REAmBduVRb4XFS/oYuFD+uoTlM6SbKzYyheUjwADCvRhuaVIfu0Fnv+XaRLBJY2rbyvRL5S+yMHg/iTdV5RkCMN7SyjKJMngXH4dkOVgfzI2CCbDj95Nkanv9qc6iur/8Gm6ETtqNukyZAM038Od0nFazKJfLH0ejSJULMxZ53hxWd5IkjZgI2oywxS47HcdxnC7yuV//rAuiNkHf+CD9+8cpxZbZ6SInT021u0tNpTadK5g4d52Jc9e5cvoakxen+Zmv+SWunZ/a8LFf+fTL/N17fpa9t+3kb/3Ct3H3W1u7G6izdHbAXXc8CNqAtLRePzr7TPq16Yf+26HwXHXn8EeJM8tZ0gzjMP8SljjtK4Lnj4NabG4QpfpavgA2OY9gkDUyslXN5NJMXR3IhhfSWrUuoON0KztHPPUZmM6Q2fW1mKC257K/bRBbOkJSOt7Y/q1BJNf0NhynETr76qTB/OBORAbb3Y2ek83djp+JMd4sYmZBejmIujbLZ9k8iLrSXDnt71bW2Rem2oBFV2L7CKIRiMvPjcH7iHIzGz9oTRG29DKe7kASH//yM6uCqADE1yC8hLl+Kr3wr4ExuxFpXI1UoVPfbxVhqN2dcJwG2Tw4aROPsGAJFyLi0MPa5cs/3ysiDDSzg2VKnFQ5MeRsTsA08V+Hf1Q7juM0zBu+/Y2YHk472y7Z/Tt48tGTPP+F1zj94kXmp2vYbdfFFmaK/Py3/3+bBlEXqVXOHbvE43/6bHM71uk6PbVvbrjuU0hmD5I9zNJC/f7b0IWvVH+i+Br+5S/ixUMY2Q4LJ6EcRE0pGl9Bkwk8W/s1v/EONiaICpBMg/Q35lyNZqeQzFZexOD0DA3RePOJzST2CBdCwoWQOPRQuzwADLYfoRWhI02ukhS3+OdeM7i5gobr8KuTxhLxyGTf3u5u9BwvaMUEbKebqOExU1ie2cJ1U3v8HVcN/tQZuP6F5dtKl+s6pS2dwb/8MkQb7JRdeBm/kKnirBk87yCZ7D0EuT6koTVYO7cWqXIF1Xy7u+E49Vtn4YSqEIc+YSGmMPsVotJzROGLlBaeojDzNKX5hfJia8WY5i8sCLw34nsPNb2drUhEm/bPcRxnq9i2c4jXf/sb292NnnPq2KXND+phUTHita+cq/pxz37qJf78v3y6CT3qEtLIPLJNUO9Uhr8dwgmYe2b5lDaufRekxnizV2DhPOj6WaFs4TkMoxWfVmQA4x3EJEMw8+Xa+rYmBdPB5T7iK3TyXIbjVCxe+/3AWkNcEkrzCxRnvkRUfI6o+ByluS+xMPUk4UK6GEM8QfydTe9mduTv4OXub3o7W5GbK2isLRVIBcjm3kYu//52d6OnJFHt9dm2thLQ4QOEpurttx8hi2T3gLdt+cbSGYQaa5mqhz81AaWzmx9bmkJ0O1rBztRM7jb8bIDxi42vR9DR9ZKTFu3Cc5zmUq6gdhRdUbgojjwWpl+ktPAkUekFVq9KXzzmBFFx8fbmfhb55l4C702u5onjOI7T0b713/413vw3vqrd3egph+7Y1e4udKWJ81NsG+/U7D4tYDp5HEnNGaAWiT+E5I+mKW4XT1msvWaoBttJ8j7Y2c3btgEeeyvoZB9SKqAzT0LxRM19W4/xKw/otpom1zH+/nZ3w3HqFk19jnj6+qq5waioFKaepDT/BHHppTUepUTFZ4lL5dJiTV70kBn6HoL+t7q5Aqcr9HYkYx1B5hGC4HXt7kbPsLYz6yB2vl0Y7kV6fWfmunp8hZ8KWrqQpq254fbqzwXBbAKFVyo7PD+Ojc9skso8RyZ3N8YrNrH8R6e/N2zNFVRO70l3WGew1qM0v0Bp/mlg8xrAUXiyPKhqQC7zDQT+w25g1ESmif8cx3G2EmMMX/9T7+XoW1xax0bx3PV2Tb7mb7yZt37bw+3uRvv42zY/pp3qDKQCaOE1sCtTXdeWNldNH3boIJpUWrM1wpZObPgziBnBhDFEFxuXzvcmHf7eIM36uR2nhTQknn6U6OpxkkQozkwQLjxFJe83UfFCegq70Lz+SZZg4D3NO7/j5goabEv+3CIe+f5vp3/gRwkyr293d3pAh18AdawptOMDTc3U4W8/dcz5e8kI/rWXILq6xnmr/LlVCRZyMP98ZYd7/Vg/fU0aBjDsQXX1il7PO0AmexTjNbuecTUphtuhucEjx2klG5cozV8ijk5Q8eeyFinOTZAk1dT4rk7gvREjw007v+M4juM0Ut9IPz/0+z/MD3/oR7jtbbe3uzvOFvXyF18lCm/OKLJlmM5edC1ae5BN+u6Fwmmw86vv0Or/3ioBuv1eNK4whbY3VA64RnjmAJ7svymgaryDmFIBwupTUlens7Oz2SaOjxynlRRQ8SnNvkoSn674cTa5QHFmEhtvUFqsTtmRH0Q6vSa246ywpZ+tnr+PXP4DeP5tFT5CyPf/DbK5b6Ln6ztWxa3Uqs0YWzsI3aOvIfUw0ydgvVVbVe5IDYpDMPNE5c3veDtW0wBuEr1CEh3HYxjVxcFoFi/Tj/FbEcSfRGQ3wgid93EjuPcupxuoCkkUkITrpzhLooDSwjPY5EJV5xYZwPjbQAqbH1wDI+MEnssA0kxCc+ue9OgnteM4zoaMZzjyyFG+/Ze+kz13V5ACE8hty/Ojf/rjvPUH3tbk3jlbwa0PHySJtvCizw4PpNbMH4OFl9cOmlYZSFUEHX0DNq48JbBk9qI2zZhli89ji8/jmf1L01JihtGZp9Gw9jTDlbLRaUzmKBJ0YApdMwjSo89Bp6eoGYS++5H8PWvfD5iBNxB7U6itbnGAmFEoXkaatAHByz2An3+kKed2Um6uoPE6vPBA84kE9A/8LZLkMoWFP8Qmq+sPBplH8P3DeP4hbDKBH9wKAahOEZYeRcx2guB+kvgkSdL8i43OtJWDgbUz3IaQb3c32qjTAmuNEm940S2Yil8xQTgCU49W1bp6N/9ek/gUnn8UyyUC/yjGNHsn6iILXAUBYRjVKVYGL1VB2E76O5tpUZ8WZVGmt+QHv9MdbBKQhDPE0RkgJtv34JrHJWFAWHyGaj+LjbcHggCV6c0ProHICLngmxGpsS604ziO47TZ8J5h/sHH/yGvfP4Ef/iTv8+108upM0WEr/m/3sOhhw8zvHeEcKHEgQcOcuChg1x99SrHPv0Se+7ay4MffB2P/ve/YuZScz5vnd70wR9/N7n+LXwNJZ29W7Fm8cz6KXU1AvWppO6OAjr2Vdi4stI/i4/B3vw+ZIsv4OXuIdGzSBwALdoJbeexYdp/k7kVG95YhzWDyezHJlNQcdrixhBvO5o0e0eu49QhfwcaDGLtJWAOr7T2Rg4ZfCOxVv9c9sx+7PxXUN28XFAtvOyd5EZ/3JX/cbrOlg+kLvK8nfQP/D3i6FmKhY+gOo0f3Esu/4GlbebGjCwdn819A5nMWxAzjIjB2mmS5AJoCePtZGHuN1G93q4fp6W0jrQmW5lyBti1ZWukVhNQbI9aapl6BPEwhMfqPq8fj8C1z1XX/MCdJKyd1ieJX0GCnUTxKTCH8IJWBVMXzSCyE9WLS7cIwyhXgeGWvwqEIZDWDsgcp1I2CSjNP8fyRIZBzPJK0CQKUBtjfJ+wdIxqg6hecBvqzSLSnIERQGDuQ6Svaed3lvXqsiTHcZxOcfTNt/IPP/0zfP63PsfHfumjFGeLvOtH383X/dR7bzpWRPj+//63mLs2x/CeYQDue+/9XHjhHGKE4b3b+f+9/z+QhFtkt2EDakluRY//yTN8ww+/s93daJ+O35Faw/PaDCD5ozD7VP3Nj76lqiAqgMndiY1fXfM+G54BP0B9i2SOQHiy/j5WwYYnMNk7saWXlm4zmUPY4ouY7B3YlgdS+9Et8hbtdB/J30PsXQc7m34vPhpNICzuQH0IxYN4mqTqIKqHz06SuSeaOkcXDL4PEReSagU3V9BY7lm7goghyDyIH9xNHL2AH9y1bq5uEYN425e+N2YIY4aWvg8y9xCWqttJ1q20hloODiivAKMIR9vdlTbp7ABytb0TzeNfPw/RBrVM/TGszG56LpMMIRNfpOoBWt9eYGr98zKI5RJReAbj7UZMaxdBqBZBh0hrp5Z37ioIOVTTHamtW5HW2c8/Z2tLwgVWrwb3sDEk0RSIIYnPARZqWA/hBUfBn236K0CJUVW3ytRxHMfpCX7W520/+A4e+uaHOf7ZYzzw/oc2PHYxiAowdmiMsUNjS98fffOtvPyZjRZe9g5xgdSa/I9/8sfc8sAB7nzzkXZ3pT06Pa1qlc9ryeyDcGLDIKr03Y6Gawc6VzU9/AaSZPPjbm5gg+lfO4Pn3UNizyLZvdC8tZbrUrWIGUP8UdTOLd8hXrk8kq1ot25juM0iTueyQeamp6jpvxfrWcAntuXNCzVEfDx2Yheebv5smUbNbsFxmsIFptcgkiHIPFhXOroguL+BPepwLpBaM+VZtMP3ZTZPh7/9SOV/F9Ec/vWzEF3e+MCBWzeN3xk7gDfxLNSQQkOD3Mb328UgbhsGBjqI6gLKJMollIml3anKJcADcqj2r/1wdet+nK1BVYij0zfcGhEWnyVJzpHEZ6j1NSwyjHqt2Y0eJY9h9XxL2trqjGjT/jmO4zirDYwO8NAHH8aY2scyD7xv/SBsr9HEfZbUQlX5w5//aLu70T6dntq3ikCqZA9CeA3s2qk3l05pMps3O3gvCRcqbnu1TcYAthzYaMNLVoKjaHgKjS9hiy+g4Wls8cW0W8UXAA/xd8FapbFUgQanwXbbUZ1OFezC2tXzjqpzxHIZa69i7cV1Hrg5Y3ZjF56ps4OVKV775TRtt9N0bq6gsTo8ktG9jLcfMds3P7AnuNVatSuW/21Fnf32o6pg/fTCXH3E5sCu3We/lIXo6qbnTIKNL8hFc3jXTsDKFZh18jN3ktv2EEHuflCL5x0myBxq+W7UNFC60eAxAhYQfFRXD4RU+9L7dVvDeqPtWGbrOJtQFeJigeZ8LggmO4pIaxY/GTmAZ/a1pC3HcRzH6Sb3fcP9GK+zx0KNszUn2hrh1HNbuEZjh6f2VbUg5cCnGQRvhHS8uwbTB3Z+4xNKgBY3TqerfUdJ/FmgcUE+E9yKaB4T3AY2wvNugXCmYeevlIi38e9Ii2h0HhPsJc1uteKxmcNgFzCZWxvYI7eI2+lAZhjN723OuSWPzh9HWvSZHQy8B+MNt6Qtx2mkrXL13nIigu838oO8k7lAan06e5DQPJ2d7tHEJTIXnyRz4StkLjxJcPGLZK5dWDOYqplt6Njb0P4NXvOmHysbDErUx79+GeLG1v+Iw5dJQoufE7Lb9hLkvDbUR608cKlMpv/X5deFyALQjzLVwGDqJKprrGh1nDZRVaLCNHFUXb2jSnn+IZCNV8I3isgw2eBdLWlrq5MW/HMcx3EaKzeQ4+DrDrW7G63hUvvWrH94C9ea7/BAKiIgCZjyYmGdQfrWnguQSDDmCJiR9c+X20+6sHhtmt1NkjOgdYzj13gt2vg0EuxEC8+hhZfQmcdbXh81VdlCT1s6hnjj5VS/KY1OIdkj2OIJkMaM7214GtRNlzudQwmw/Xux9lJTzu8xhmhr5gpM5k4ygx9oSVtbnZsraDz3ydBEufx7MWa83d1oOlUXSK1dBtmyq906/O1nrfob4WUyxTyYEYx/CABFiDMlouA6ydD6q8Mkt3/1OVUwsqv8tSGYXoDS2Zq7q5IhMWut4rRExWfQdXbTNpOqoppNA5ZaTXqmBVixM1VVkXIaHyVpWJpfYe00wt1K3URVx1FVktAjKkQkYYBN/PLrQtOv7fLrwsaZctreZjDgty5Fmm/uxshwy9pzHMdxnG7zHf/xu8kP9f6iPnd5WrvhnY3LxtN1Oj61781zYFo8gQzch5jdiFmcF/Ax5z6BXPwMXrhBGR5/6IaTZRH2pF/6w9iBMVgq01MDM4SN1yi5oSHWTtR+3nqolwaXvXE0nqr8YdFpxN+9/OaiHiI5IMZ4OxuzCV4XkGB/A07UQdybccdR6UMG3wDbHkHyd4E/igKKB8Fe1AwsHSuDD6E61ZR+iOSxCy815dxryQx+PeINtqw9x2mkrRrBaQmRPNncuyks/F67u9Jcrn5AHUKUEtLomg5dob2BVL1yGS48m9b4VQu3vhMZXBFYWyuQCnD9cQL5KsK+y5jgMJpcQW26i3Kjv6NmhoHp8nF9mAS0+CLkRsjMCVo4XtfPk+x7B6qT67evBmn57vExVGut4TIH9IGOAldRrpRvn0FkN6qXkfX+RluQ2hESncQzgmzRWgWdxCY+SRSSROdRTV/3y4vMM4gEqKYLH4y3B+MNEYfNG7z4mdtQmW7a+VcS2Y5ndrWkLSe1VeuTOI7jdLPRA6N81fe/jU/88sfa3ZWmcgv9anfp1avpgtKtOOapoF5oM9nDX4/mMqRROcGc+jxSWFHKZ53NBFp8FSN7kEtfRAaPwPQL6XwDgL/RwonlOTWRMbwrZ8CbJxrrxw4fRdcKglZICcCz68/b2bnyT9laJnu0XP+0+tinJmkWL5O5A1t8EVt8HgAbvoJk70DDE+vP51TcSO+UAgpK40jhMuHwFnwv6TAKSPYWyO5A9Rqxnk9v9AAvB3K0HPQuAiMYcyeCR2Jr33SxGZPkluYmms1kbsX4bq6gldxcQWO5QGqTef6tpAEjt2vTWc8CbMlAansv4mRhCr386eUbZo6jb/xhJF9eKWpv/LAR0isci0x+luxUP/HOLPjL6XUSvYwBZOztMHQYPfmbSz+lLe8GMzIKxcuonQZVgsIAOvfFun8e3eQ9pj3BtXoXWSTlVL+r+656EciCjoBsXpt2PUqh41NRqGYAD5FC+XvB2jxGpPwUNRjxsToNxKA7sGoRSRBpXK1dZ7V0UtDc9LqycUBUvIC1lzd4dIiuGJjb5AI2qXXBweaM2YE1U0iTn+1GduOZwwTew2mdI8dxHMdxNnTnV9/V84FUcYHUmk1fmcUmFq+FWUU6RpuvJTWbQ8NjS9/bQw9ijj+KJOUx2U3X1eW5AlvAchL23oE3cR6xK4Jx8+egH+z+96OZAbyTv7vcXpTuCjW6H3PuC5AsoP2H0LGH0OhUnT9NsnFQUPJAG0r/xNdrf7CdB28EW3yJG+datXQM8bYjwW5s+HKNDQgaX2z3lNWmhGFA0RUL9r14G9a3mDBCvG2QFJDp58Drw4+OYMICYV8M5fkFp/EUDyRAtLj6jr77US/G6hSsFxjVlX8Xi7XNmycA8Mw+dOHJprYB4OUewsvdS9D/7q25OMjpGS6Q2mTG9ON5B0mS19rdlSbq8BStHW+r7uhtz4enxgmEIYQ3rLgqXUUmr8DeA+n3N42NfNAVdUvsPP7EMZIdB8Es/g0DGH4ddvs4MIPZ+61w/o9QDIrFkz3owjEWt6Z5/lH02uca9JtY/ywi/SDxhsc0Rd2rODca0JXSXaoqNS82FXJAa1beVStN/7qNOLkCLOCbw+nthCT2LAlgZAdKAV1RTyfRcwB47EMZcMHUJlhK11t6DmO2Az6Ih/G2EYfHocJ6wK1igu1N3o3qk/HfiW/uQMRdVracaHMXyrgVrI7jOE1z4KGD9G/vZ36yM69HG8K4CdN6hMWY/MBWDKS2Z45Jg22QHwe5ITgXnoWR22DiWQBEzOqlvjfOFcQT2J13Yl49vzwCFx+756uJBiwwg+x4B+bKZwAPbIgX7UcufDJtD2DsHmzdQVRI5wDW39xhvHE0mmpAO1VQRZM620zWD8RqMglSz65mBX8nJBstjm0jNfjsgamnAYsOP4QgSOk6uvBEurg/fw9c/QSyON8YTWKK5bmC3NuxEqBmpm0/Qq9SDLLt9ST2AsaMkL7+PISAxJ7ruBTLWjjV1POLGSY78v14uYeQNr2vb2lurqDh3IxXC3j+vt4OpLrVJHW6OVikaNN3D7Vfez5E5cxx9MRvrXmfPv8rcOFh2P8m6B+68ZE3PyC6THbuIKVBRbwR/Pzt6OAMkKbv0dwQbH8TNj6DaAldOLn0UOMdxs4/U/471/fhowN3orr+QMJ44y1f9ZVeHwZNbsUi7Mbay5gaJmk6YUdqurMxIH09JIgk5du3ESenlo6L7erPECN7Ua6t+/ab6DnQDL4XbN2UYA2iqmiSJSqeR7UIxEupb6y9tnRcM3eV1sPKfBOf51lywQfwzJ6mteA4juM4vUpE2Hfffl7+zLHND+5a7hq0HjMTc+QHVmevstZiTG9PSIv4DSl1WS175KvR6GUIby67kwxFyPj7ketXwL8xSHfz81xLr6L734Oc/Th27AHio+8hzq1Y5JrZiVcYgclnYNutMPPl5fv2vgstnQFG6v6ZTO42bPzq+gfIBrVbm0WyiDeMRgtNa0LjS5jc3emu1RpeL8YMYNsdSFVFZBAQlAKL80y+7oGpx5cOk+tphrP0NSOY3F3o5BfWfff1Lv0VXv/thMMmnbhxcwU1U0D6HsD6MWiSZp4q7zZtW/3hCon0Q7LBe0O95/d2kh//Rxh/R9PacJxWc4HUFshk305Y+iKdtkulcdyHbj0szwMvIvQB+4ACyosId2G4o829a6bWP290dh5e+/DGB00+kf4buhcGdwGSFkKXLBClaXfixVqkFmaeIRO8A7tjbzkNLYBBSh72+p8ttx2dW/raePvR+RcW76nvZ8ruIh7ZARvUNJC21JjJoNSedrdSykWs5rBJjJFtiMTAXIWBwxlUg7bVFFXNEcWTwHJtWyPjiPRhdb3VoYIx+1C9UsHPGJEkeZQZFtOHe6YPkdanbuoGiztNbTKHmHIdUxuSxGdRbd4gv9lE8yCzjT8v/eSCb8aYsYaf26nc4h6DZp7fcRzHaZ6v/Ymv7+lAqvscqc+v/YM/YH6qwK2vO8hdbznK6Rcu8LH/9ih//1e/m4fec3e7u9c8bUjta/e9DY032gChaHgc7QfpOwRRRDpXMISoQYnQ+AokcyxmHbPmGvbgBwkP7wcWg6gZsq+9jHdyea6AmeUUtLr77ej805A/UPfPJMF+bHxm42Ood0aieuLvRMPmbzaxhefJPf8CZEewY7cRDRk0qCylbV2phxvAsAsz/QLYxfq4HvTfCX4frFigv4rkMP4euP745u+9xfNkrg5AeBWCIZAM4diwC6quQyWDDDyY7sBTQVBUBGuvAle7spqfagHMAGIbn8XMBAfIjf00xhtu+Lmdyrm5gsZzgdQWMGYbQeZ+ovDLmx/cjdwHbZ3SVUrpxeuppVuVEyi39/DO1Db8XJkAjedJ7v0hNNtH8MR/WP/YeB4zs7pugeJjiMt/Kw+CYcAic2eQbJ5kKJ8eODuJnX++/JjVP6mYnejCqzQqpbMdf325ZuhGWr9iWSQEHUVp/io8I30k9gyJTgHgmYOITFXwSI/0infz56JqFig19O3OWgOsHshZvbrBSDbAmHHgaoWB4uV6KbBYn2OEVtTASXckbwPml3bZbv4Yg1oDVhA/bmqAW1VIQkFtAeP3Iwbi0jTJhpMnXSqJGv4WIAyRy3wzRoYbe2LHcRzH2WIOvu4QB193iNNPnmp3V5pC3VxBXZ79ZBpkf+XJ03z0v3526fZP/fbjLpDaaHEJFYPd/y1IEmHO/+n6x9oS3qWnl79XRcRDF6MpkoHsCJpcQMf68Yr7ScobP/Nf+D1kPs1kc+Ncge54BC08v3TOeiiA50Ecb3Jc6xcVa3QW8UbR5NrmB9dDBB2+Fbn0GGb6ZbJAfPe3EA9UsMhUMpVFmFUR24+a+YbOjZrCFNiVcwUJlOeY1uRvR2IPZp6trIFkrhz0B6LFhd17uHF+oinUw9PtJHKl4t+Zmm3pBgd/EC28jDTxeatmGOm/PX1xhtdBY8gOlVPzrjywaV1oEYvJ34HOP9HQs5rMbeTHfhIx/Q09r+N0AhdIbZFc/gMkyUVscm7zg7tM7wb62m0G5XPAGxCymx7dfVob3IsXhASLfcuPoTKLEG+ceFbXWFImgpo+SEKEGKL0wt/G1+D8n+CV3kUyPoYW01WfCjD0CKhAsoBYhZnnYLHovGRZXplaPfW3kXBp0+O8zACLaWBaSoKWXFyqrg7UWZ1F7DZAQKbXvTYXRmCTgKvqdlQvkwZRdwJTqPoI9e/ys1XschT6Eelj5e7Vmtq08xhJU0QpCUJ5kkIsMFV3CmBVQe024vAyNn6NTN/9iLf27lq1hiSCODwFJOVdn+WERDKA8dIUMF6wDeNHDUlPrNZgIyEKX0W1/PeLNn5Mt0uSS3jBcMPOJzKa7kSVgYad06mP2YK1SRzHcXrJ3/zNH+QX3vFvmLvWe7XtXRy1Ob70f77Cb/yjD/Hd/+L9BJkenNYzzS4Rs1r4pp/C5nNYbwFlAuOPbTJbccO1lwioQcQHDYEQipfBZNHwHN65S5idX0M8mF8OopoMuu8NoHmIi+mxC88vn9urL+WuCQ5g480XXGvp7CbHNIGAeNuaH0gFpLh6Z6k3cRE1uwEhyU+v+yYl/hAabjzXkr1YhOvPgkbYA19PNDiLJH2ggvp11L5WhdL5zY9b7Gv2AMxfRqL6FrFnpufR/M70nEmIDbIggjUx1jTgb6VZPHOYJKskREgxQpla+9hgJ+QOkejVNFOULn4+ziKDd6VpaREkmkYLDcrq4I9C/ghWJ0DLQdPFt1d7pTFtdBiVxmbO9LL3kRv9McT04hx2d3JzBY3Vg1dcnUkkIJN5A8VC7wVSneZRLjV1pVV7tTaQmpiYJLmwtORTN9sRqjffLxqlu7tuvN1k0r/SxCfxiveQZAdRZjD5e4jLu0XFy+PNXYBkRVBJYzD5G1YaVmHwLjYLkHr+QcRL0w61kmoe1fqCfpUSKeLJARJbDmDrJHG5bSN78by1JqUMykIFv5UZRHagegnVywh7QEtLq41FAN2G4gOT5e+HUGKEHFYnMTJ0U8BWVZYDeZX8jGY7NCBVsjJDslbaYAVP9oHUnsJIdRtJaYYo/DyLEwBx6RzGGwURjF/CGEFVsXGGqPgaWt5FfPO55kji9O+WxOD5B/Bz2zGm9gUBNg4oLbzE8u7craGRAU8ju8kFH0DaUUvJcRzHcXrUwPYBHvzAQzz63z+7+cGOQ1qS4rm/Oo4xPRqpbvEkfNLvYWXlWGuzOZg17pfyOGXln8SWAAMaI5f+gmDhYezgIczsKdj7DrT0Qnqm7D6YP43oiqBGPAfUfs0t/hBEG9f49IKj2MJzNbdRK/H3Y8ONUw43SumWQwTXD2Fe+0ja9uXPE5R/Ld7R9xGO3jw2FG8EWzqx6RRKOD5GRu+F609hzn4C//DX4V18Ft12C+Fo+hzxwxFQiHNT6ffFYZKgSHA9QmZeITpwH9ZfPS8gsm1FSt/NSQLUGUQFYP5lZH45zbRZ+r8h3v3muoKpfrKHJL+NMJhZCl57cgDhCKhFS+kObyXADNxHzFQazARUV2fUUp1aykaGB962N6KzzyF1lOORvgeIzTXQyn/vvUDINGzG2c8/Qnb7300XlDhOj3LP7hYKMm8kjl8hjr7S7q40WI9evHeEIaSOi+fO1up0szc+T+ObUumsYqtIf2pW/I3mnseb82D4YaLMAOgsEODNzayxqjBB+m6DuQrTr6yg2+4l6vfZLJDq58bLdUNbQ1URtqFapBUpZAFESqgu/jVXXwZavYDRwRt2My4GljYPqInEqC4/V61eWL5Pt6Nkl1IrG9mF6kw5OBgu9cSqlneUzmNtDlUPayep5vdj7QQi0tR0t1YLGNWKdn6qLq4SD0kvJSyqEIUvsPJvkMRnSMp1eYy3O32snUfXrQG7tiQ+g52fxvN3YO08nj+K8XzEC7FRACgmsIBi4wARygsIAPVIwoQofI627MxuM2un8OxhMPXtoPbkINngmxBp7Q4BZ3PuKsxxHKf7feP//X5e+9KrnHuuxxZeuw+pprn9jYfx/DakwG2FFu9IvdlmBQ8rK4goAN7A8mLqmSewY0Mw9C6UclAqGIXSNJLcsPi3dBGxR1EzVUW/y+3m7iCJ1qmjuXRQlqT0amtfogomcxgbnadRpY42bdIrkgwMrTn7ZC6/AKNHVt0mmVvKO2UTNnsDU38OzW9P1yJrjPfq/0nPUThLNn4DGB+uprclt38diOKd/HO8FePl4FyG0v5bwCthkiGM5mD+RJU/Yzq137y/pcUvRoR9lR0t2o8Sko690zkr9fuIM7Orepn4y4FZk32YNEvVLLFunnVtpcSewwzeCuTSBe1WkPAqNjyNGXwDxAVs4QUQH5O7HU1m0PAsSID4w5A/TGzbsDO7A1idQrxRqHN3uN//LrLD34dI68uKORtzl2GN5QKpLSQiZLJvIY5eZCtO5jq1uFrelbqrpkcnM5/HTn4UM/AwZvvXdVh6hda+nd/8ga6kNTLXuYAvXYG+IxVeUNx47gTbvwOrF4EAv6Cw8PJaD0QlrPo3od4g0bZBNgsEesEtGL/x7zWq/Qg+umYq2NHyz91aIiGe2b+0K3WRZ/YjMl0Ohkq5XqdJU/OSxdoEI7Juml7VLKprp3FRJlfFbVUjoJ+bd46WUA1BBwHF2utolSmdZenjurF5aEVGMeRJ9BzKNawdRGSg/HuKQPtRtPz9HCKKqo+1ATaaRUwWMT4I2HCCjVZv26S+54XqNHE0XT7XhXL/+8srVGMoZhDxyymCIV3BHdGqQXrnikhKJ/GCw6hXQKSyiZ+VPHM7Wf9rkXbUq3Icx3GcLcDP+HzV33w7//PHf7fdXWmsXk2u1AE++wdf5gM/9m52Hhqt6fHP/+HnOPv5Yxz9uoc48u4HMF4HTYC3ejJeZdX0xGbZqzS6iEqQZqzazI27s5IFyGVh9hL4I5D4SGntBRTBfEQ4uHkTq/i7sfFrmx5m/INo1PjdqOLvAywaX1h9hyoSHEp3erZYkpvGO/T1mFMfXX373vuBOUiCtNSNSQDFeGPp7zG6hokibLD2XIEXDiEX/nztRq99adW3mckZKF7jpjfF+dfIHr8AffvAmybps0CVaYHFS59n2ti5H93+BrAhMvUMXP8imeJh6NtDlA0BxYsGEI1JAouVSRBBdIBgrkQ8dAATlZBwHlFLOLLxrJe19c0VWHvDjtwMSPZOYj2fTvsN3gJqsUyCB5I9gmoBUNiiQVQA1Vk0N4DHYez8EzXN0gaDHySz7VsaUorJcTqdC6S2mOcdoPfWA/Taz9NZLE9geC9Sww5OO/kX2KlPYac+BZf+G2bbm5D8UbzhdyPBSBN6W40OeN6YAOz6gyRhZHml6DqS3e9Gc6PI1UtIkl5g2+GHiILriAzizVyFwivrt2FqSLs5+giwcQpWY8bw8yPUGkRSVbCCLZYwmZHyp4VByjswFcXIrlX9UB1F9cJ6p2w6kUmM7MWuSMciIiRJXzm4a/DNgTTNrsyA7gLmsFpACEgDb/0IijJdDjgNAJXtntz4uSLEdr4c9Ks2tWwWZQ5P9qENSO+7kmfywBSeHigPJASrk7CUPqf899X09WCkH6tFkvDa5qucW0B15SAzTAPWS7ZWCt+NJfz/2fvvKEmy7D4T/O57ZuYqtI7UojIrs7TWorUWRKNBECCbBEGCYsilHnKGmKWYmeXOzhnODkGx5C4PKJYkZkkQaIBEawV0VYvSuiqzslJU6owMHeHS7N39wzyER7hHuIfOLPvOiRMRZs/Mnpurd+/viqhyCqsHUK/YkpHj2XsI7IcSw2iHImxu35PkWU9ISEjYOg48cGC7p7DxJF8km0a5UOHf/Opv8zf//Z9e0/Gv/H9/wOiJi5z82ot07utn3xPHGTi+l1s//yB+drsDsLc46HrZllXWVtEMDD0Jl7/XeIwqmNuwk21E2YlYqAMkczs68Tyk90NxDCk1tp9dOkeropr4fWhl5RY7xt+PK55c+11WC7YD8frjf8MRxGQQ044rvhmP8QcgGpsfb4IDuFL94PKtoNxXIj1xG0y8FW+wGdQK6ZOXYPwN8DsJb/04oZ5BBYw9Surtb0FmmNKB3ZiwDVv2ULNQptfmW6jANfKjxvuCXqKOXLW/bos2rO1Ei+9i2u+AqVdaO3YFVAKiwKFawvY+hkQFcBUYfwl/SWsqD6DjHly6C5O/RnngIJE/9zjm0ljXXnZ3rdRUwdLCkn1bP58dixaJOI/NPYDOvtDCgULQ9ccJ2j6xaVNLWB+Jr2DjSYTULUbEks58gWLhP2/3VDYQjSP4gPhtJAvbl46r+b3oLZc0P16BSeAisLflI23fl3AT343/CcdwY3G0XHT13+If/keYzOEVjt5stvojt871jLdyVR51NeV/NehBO4+hXg4pjYELKbdXgCuw+248142ZOgvZYQweMvo6hHXENZPD2GG0eAGdfL6lO6GSIkyFK9h2HkH2boznELNGEbXkqIz+ENwMJnMHmmH+erWXXRD3VbMbKKIOVK/UumgoUsIwPJ8VG0bnFu11hO4s4OOZPYiUmVvQC10opioSg0gXaIBQ2aBA+rY13x8jAyjT6DoqGVgzjEhmUe9fBSkzJ5SKjM61KsHgAb2gPoiiCoLEn9Mis91vAAEAAElEQVQqiPMIUkOQ7sdFSrl4AnUTa55bwtYRhWfx7DFUJpsa79l7CezTiYiakJCQkJCwBfQfGuCpP/00f/Avf3+7p7JxKBhrECNx6wUjSDVsEY2DN1WB6m8XOcQIxgjOLYxJqM/zv/caF05cYc+trVewuusXn+L7f/c3AJh8f4TX/0Nse738r7/Lz/67v0q2t2ND59oSZotdlbp0rbvaa86AWzJH6QLpBReAGQfthpPfAcC27YbhO3GdFSQKcdnbkMk3EVdHNEsNEfXdhjOzqKlfGakhtgtXOd1wt5gORLpwxbO1/VhbQIJb0NJpCEcQO4ArxcKpUnvXxLSjVSHVBPs3TES19hAYj6hyssWJQ2XfUXwvDddfgqiA9+Yiv2xlEu+N38RL9RMe+xR25FlwRSiNYivH8a6eg8k3wQSExx7CVjrRQDbGq5XbC7pyP9uGD8vbBaFCVFh9cB0UD7fvC+B3IPlqT1IBdWNoFH8mRCa/4PpJDWP8fYizqAGplMFPxc+9eIQDt2PKo5iyg6CfijeR+HtvECI9j/GGIGyutHKq60/it310k2eVkLCzSITUbcAPHqBY+B1ulvK+UXiZ2cn1lWFI5x5GjF915AsiJZCt6a94I6CMIKsIqaoOolnEi2u/aDhF5b2/Vn9wOE7lzH9PcOu/QWxmo6fbJDtBSK3Te2XwKdTzceXTwBXEHsFle9DsIGEmjdNrQAXa26npyakFQilAZ0Dq+gje5CUkKoLJgrFxeaLyDJrpI0xNQPjKmu6ADn4Y1esN91t/HzZYeylTdUo49jy4uPSsK72P6GBdIUUJ4zugfh3jc+2ozqBMYeiLs0dXHAtCT/VZCIE8IsU4m1gbZe1WCN0ZPDswv8UtLd+rBsc1oNVaSvURghaPsEAAFHB6AaGtmiXb4lnMANb4celiDVHaECkCBeIyzBH1o0Mn598yNdeUpX6NHDfLd9kHhibfq759FN8+nIioNwCb2Ts5ISEhIWFrefQrj99UQur1199nTxqar/G7JChboOuew6AwNZHHT/lcePcqhenEVzDHiZ+eWVVIjcohUTkkaEsDcO3N9+dF1KWMvXeFb/y1X+dn/vVf3r514La3k6jzelXFun2Qj3CvfxeiV9HbDiFmCJyFyydh+s36p5u5CO9eRGwa9+SfBK8Ag4+gyKKA5RC8LkJzEaT1gGIFTLAbraxQDcsOoYXX1+6JsT1o6Ww1c3JpdaAl15JM/NBsDxqtXE2raVTRwtsgHhL0oLpKcKiz+NM51DOo74j8WaL9/aQnO6HS4NjSCPbt/wKZqnIYTuGd/Nqic5ZJXZyEyWchu29jHpffok/OZONSvtEUWj6FZA7A+EstnUIB3ftFwp5+lFmEbJw1HIBSxJYPopMvIMuymyNc5czcnzGLK1wv1ufTA9T4zBJ2PGKCJp4tS6rnz+FnH9uCGSWsl8RXsLEkQuo2IGIxdhgXfXDrsC+lOPvTJVssXnAAABeOk8rdjrHNlde8+TAI+1cfFk5SfvfPIn4f/r5fJQ7fXcHALF8kGvkNvKFf3rCZtsZW92BZ3PRE8WYFuu+uRsdp1fIAnX0N2m4H4nvnuo9QzuWBKdClr8ElX0iqZC7OYs7+l4azCA/cj4RLhKvhz6PZ3uoU48y/WOvQhZ8oICqfXlFEBTB2fcKfm7yGRgvXsJ0PNDSgVUcQBkFNTc9PYQBwKHlaLeGiClq990oxPpeWoE4GnWo/zl1FeX/JnmYX67mG81PmDIb6/VCaJ4NzgtOzLR0l0l19FH6cSYohTp9uLpNQ6MDzehAZY748kJTiIJV5RjDah1tTmZ00uBSV4gnUtdbvNWHnE3gfxrf3bPc0EhISEhISPnD0Hugj05mhMLm27KKbDoWJlxcy7ErAcNqn4/7duEpEcXSafK6NCyfXls11o9Pem+O+T9y26rixU5f56p/+Jwzfe4iP/9+/wsyVlYWt8z8+walvvMSRT9+/UVNtjaV9RTebxaajA38yj5VDEEVxRR8vBeUpGP8RZO5DKtX351g7jH6/uUsEWfThn0HLLy27JAC2kyiYWBb/bdK3AxGoqx4VoRpVt8U9PcUfIgov4lYQUeOLriMAQRWRLLooAFnrZdRWcZWLiH8YER9XrtrrksMEe0EruMpV0NbsSLEdULkGWsaQAX8QF42gbvnr2Svvw3vrt6Cy4MPxIQ5w15XKkoGUJ9C+h2HmrfoDJqu9ZfPn6u9vCoHsXqKuHnBnaCXRQFL7YfoUSAbxOiEM0fQepFi/1+5iFKD3QcJdD+DMBHOlo5VxokWx31Ewg0ntgVXKRNednz8E/gAVMzlf0jrhRqFOssliJCDd85fxMvdsyWwSEnYaiZC6TXjeEcqJkLoCEWF5of+eMR/UjCfB8GGE3rp7w6v/BpM5hul4GPG7CY79e3TmJcJr/w6Tu2fVs0fX/gO270uI17Wx026CDSqC0jTe+Hm8kTdBQ6hMQDk2AOqWqg2nq6mOgoz9BM97nDC1uqCWOTeGufCtxgPsXI8TQVNDSN8jIBaXza5aalNMH6qrz8HYgNqQwOZRVaLZF2uv61kai5KK07jsh9AFDFW3FogFPwP0AM0vvkX60WpZXmUG1RnAw9DPQsijh2oRmMGYfiK31IBpLuJKtdJyhmdrdOBcMe452iKxYJ4FyQEBqteaiggXOvC9zqrwvMp1NYOuqY+ohwstpfzLbEevk4T14aJJMEG1tPVSDCnvk3j22JbPK2HtmCTKOyEhIeGmwXqWw4/ewhvfeH27p7JjCYsVxt6JW2aIFS5f/WCKzt1DHfzqb/55uoc6l+1zYcSz/9tXufXzDzJw+z76b9vLH//W3+PcH7zFS7/+nabKJf/o//hdDn/8Hoy3DdmhWyykps69BaWrsa+gcAUqS4W5RYG6sqj60/g5tOMoMrVymVkF3COfR8MVskX9bpCqbWUHMH4fILjKuWX9HZfhdYNbLfHAoJXWM10XrjGEls8unjGEKwR5R+NoNB63zQkOI7IHRHDls+BmweTA9EPU/JyMHUap+nFKZ6AEYruR1C3M+UCEAMJJnHcdt/9JzKnfqz3JKiLq/KMz2c1dYffcj8souFFadUpo4W3IDCK2DZzA5MtNede092Eqe+5GmQYmVhwrdEHpvRXH1MX2QHpfUtL3RiXoRisppF7QhWTJ9P0NbOrWrZ9XwppJfAUbSyKkbhOed4hyaYXG9AmLsMRlKD+IKEq+7qJI1RFd/fc4vx8/9/9GwzGisW9C5QJaukw4+nt1jlqCKxBd/228oT+54TNvjrksu81HypNoo4jCeapzKb6P6bwXVzwBroi98j2k/0NUso1L19iih7nw7ZVP33UctYrs+jQu5xHXPXFAE5GYza6tTev3003PYNrblumP4u9GPdeU6K11F+IOmEIYAiJ0lZ6nsT1fT5gL53ueLmcaa/ajOt2yYOncGNauJBSvE/Vx6+gbq+RB86iCkT1APUPVYKQHI2nEeAjjdbN365wcVa/B87YaIcY0zuZN2Nm46BJEHtbbh5gUzkxUbXdLyvscnj203VNMaJGk+nJCQkLCzcXhRxIhtVnad/UQvbNyxZ6blcJMiZmJ+uvxmasTvPSvvsvY6St87p/8Wa6fvMg7v/sc4xfGmDx7lYlTq7dmmjhzjfe++ypHPnnfRk99dba6R2rhGkyv9J5bZC/mX4O+W+D6KSiMQGUG+u+HsRcbH37s42h4dsUpaNALxsT9RMuncOXRFh5AE4tBCdBwprVwdjWY1BFc+QQitsZqNqkjuFJzfUq1/N5yi9vNgvUx6dvRaBKtrJJNKWm0UEfYi8YhvyB8L75OmDPYO34ec+EFZKI1UVDzrdz/1nGZNOpWzyBtSOUqWrkaC9VdDyITzy8bol4Ouu9Gc3uI2nurGajNVNzykesvQWUNmf7RGKCJiHqDErnzkB3CSD9EBVzhTYS4v3K6729hq5UjE24cEl/BxpIIqduEsbu2ewo3DNYb+kB/CSs/xnEZsAi3InQDIGLw9v0tVN8hKvyHeFt/CvGOAEcI3x6H0sVVz++mnoVtE1K38BO9UZ+V9D4oLi0NC7UlLRQz8n2C/g9TbiCmBpcusJogp34beuRj1VKq9bLBVjg2ajJz0Ekce9DseVUJJ5/B08eICueYr3GMYvyBDeiLE6JcAbJAN9C4jJRI/wqCaWOUq4j0tKyHxqWH9644p/Xg1lM6adm5xjFLngqhC9/LgMzS6usJ+qvPyxoxk2TaH6VcOEcUrl0sTtguQqIwLpNn/VvAq5D2v4g1e7Z5XgkJCQkJCQm770i+j5sl6G6jfrDhzU9xpsT/9DP/jI/9iUeplEJ+8e98ns7+uM1Lx+5eHv7Ln+fb/+kV3vj0P6RYrHD29BjFQogYeLyvuWuc+d7r2yOkyirlJTf8eg3aDuUOwuyZJRsV6RxAr1ezS8MCeuU1ZPgBGH1h2SkUcAOdEK6cMSomDQKu/E6Lk7eoaxzwvTCRYrUMbAvvF68HV3oPk7oVnRfVPCDcmKzhaAIXTSD+bvAGIWws3Fm7Dy292uIFHJF9Hz3wCN4rrQmpMvYa2ruvTnbyBiC2qWpjzZ8vqvlXAR14isrwYebb/LQQQG2LFi2v3Veg0y/gp48QZgJUkn7WNxxaJNLzIGBz90HxfTJ9/z3GX7kXd0LCB4FESN0mjGlDpH1jvzxvUqzXs91T2HaUs9XfVxEOIgwhDGC7PkqEAssXnGLbmtOVmixtsjkYFsq1bjL1hFSvi/KehwnOTkE4sfopRp+D7O0126zsRcIKcvk/rnq86zlYFe9aQ1wvYemV5ga32HpWZwtARDj1w+rxndjuhwDd4PiFPKsrnet5La6t5JTgrTEfdYA4mrNetnwKNIfTegJ9s3j43mGEOGNWjCIoqvETLFICmWGup0nTqEW1fX0i6hwyjZ86gHNFQOv2pknY+bjwCpn0n8Wawe2eSsIaEFHMJgabyQc4kC0hISFhuxg+ngRdN4tuR9nZHURUifjmv3wGgPNvX+b+T93BQ5+7i73Hhnnwz3yCf/VPfsTYpdpqNerAz6WpzK4eqKvRNvkKtjojtU6At3beQbjrLvyTVyFaYsPbJfPTCC0Vl51F9j2F5DqJwtXbejk/DZVWK7EJEhzChUvF3npDU2g41XwouyrG9uIqV3DFN+NTeMMoithONFqtlHDzaOUiJji4sjdgHfHdEq3R5+R3r01IHXwarr8AUR1bPbMH130QdO2t3tTvgYGPgPVREdT3kN2PIJUSKgaXUpRZaLGNj5DFTF5AZ1sV85fNEC2exAYP44yPkxLI2tpPJWwvajyy/X8H49VvN5ews0l8BRtPIqRuIyJtiZDaBMa2kZSQnGMG5Q2EXSglwCAMonWEVLxcU2cUf2Bjp9gSLap+KxD3eVHQav+S6r+ogipqPDR7APBiUdVY1OvCKzq07VA1CtVU6x4Y8NoguL+6XarbBROlId2LhAKugCufIJhKIbr64lzTqTU8MiEsvNbUSD99N8Y230/Y5SuEE9+v2Wbb7kRSm/VluNrzvfbXgzZTHrkOkZvBrOmyjjAax5ohRAKgBPioKxPpFWB9pYAC7yjGLo8WbilBWHNABqfTCD4iGZzm1z23mvnYKdJtu0DbCCuzVIpJGbobCZEusm1/Gmu383sgISEhISEhYTGpthR+2qdSTBzPq1EoblFQ7g3Auy+c49q5MZ78uQcYvzpFtiPNsUcO86PfemnZ2KA905SQ2jbUvRlTXR0TbOjpYleBAfFRtSg+aIASoM5HpzrQwi3x32pR56H5IdyEoTJ2dxzM6gzqDKoCURbVblCDOhtvv+zT3n6N8eJBBo4GEE3D9WcIhz6z+gTFX5ZV2Axi+5sTUQFjh9BKc6V4AUzqOK74Ru31TA4tn0LDDQjKXYKu5gtooq9vw0PX+HIS6VhT0LXzFB3Yj5EBpFyG4jVI9ePSoNHl9Ymo4qP7Pkdkx1gmlDYdVyIIHZhQcKM/QnK3IEEvOvU6Wt7AalNTz2Nw2NQhXKaXyExs3LkTNh1j95Jt/1MY07bdU0lI2DEkQuo2Yr09uHLrZSw/aJil0X4fcIS7gU4cvwuUUW0D5rJ2pxCpCmk209z5Mrdswizro1ypZsJF1Z/mRb/VCE99fVG5mQYsrRDkrsP0qbnJ1dLAjvHaP4X6uwhnvwOASDv25G82NUft3E9zPSkWIzSbqSnWZ7V7qqrozCxR/hRaWb5IFm8tYm+zzCIMNcyGVF1PL+QCQgdKa5GxTkew7ENprb8qTCOkUS0Qrae3SR2MDGPM+sROdd0o16F6P+KYgiZ6p64VmcHzO6kUM3xwe1rfWBjTT7btVzCma7unkrBOZLP6PCckJCQkbAvWs+y6fTfnXjy73VPZ8UyMJIHpi/lzv/ZHKBXK/NVH/gHWtxw5lOOzH+0jcsp3/mCMMIrXDF423dT5+o9vXZlpd+G3YeINiApQ2cBsRxdw5t8dWWXU2ervxcELrWcivtX/J+g6NM7A9V+PN/Teg3ojTUyysjZbWGzT7W00bMbezWCCfWh4fZmICuDc5r3ftPweJrgFVz5VZ6+HFuttbw4XXUVtgEQttle68iPoOwil1nqFmqmrRO0ZHJPgj1f9UJdjt856Oyf1f7Qqoq4dM3YRis/G/VUBpl7YJGsi9mNp6TTG6yDaTFdTwoZivVvItv8yIs19VyTsXHayr0BEeoGfAT4L3AnsJu5b9jrwr4B/pdp8GU0R2QP8j8CngF7gMvBV4O+r6oaU0EsUqm3EmG2K7rvBkKQExCLSCLcRi2VlVCNQQZlbnAegnYCPeLkmPi4tpvtjmzjfWpRrKG9uzsk3okfHapfI3YV2ZgnHfzq/zSt1ooMPoEE72BTkryPqaksJuxDUIYUJbHkuc1bjksDh4p4R1aWsGNRUjxfb9ILT2NW/X3S2RDj5+yucxNBys9EWiAXLNqiTQSqSQXVizec2ppPIlYizQ5sndFNY41NrOK9GCWtzwCwatS7g1sOz+xEs1kYgaxQj1QPa0A3MOgUBbY+jr1Xjzx0UY01cXljbcFFEWD7H+sozJ2wVxu4mm0uiSxMSEhISEnYq3Xt6EiF1FUzK4+q59QkKNxPHHzvMA5++k7OvX6RcqNCfM3xm92XCi3HQ591PdhH1DjGu7YyOrG7vZfs62Pf48c2e9jx64Xfg4u9u/ImlNfFsrZQPPcKpnxT5pad+fX6bGzyEaBGwiIJr66na23PZlwoaVato+RjvALHbWxCxcbWtRqUTlThz1zUh1Jo2tHx9VQ3PBPvmy/jWJdxIG3M56iZBsqBLKtJpBfF3o6XW+pwuEBLd+XPYV/9/iDYfzC8aodoBXKMlH8n0CWxlN1TGifqHQNZvI+vwZ8F4hDlDa36LBYQc4jJQ/NG657Nw0gBJHQSTjktyi0VVkeJZNBxBUreg6V6cVF/nLZXYStgOPP8OMm1fQba6V3XCB5GfA/5fxILn94H3gUHgS8C/BD4tIj+nunpJAhE5DPyIuA/b7wDvAA8Bfxn4lIg8rqrr/hJLhNRtJAgeo1T8A1qtW//BIuBmzm5S14nO16Cd37rot9ZsEzJgHGBQTYNml5T1LS9k1qVX7y1r+r6ISR9Yz0NokY0r5buMej1QN/L06VvQoVtAUuBmqpfswQ0P4Yb758fZiRLmvX+7fJ0tYEZfR/NvN3e9xf8cfGLVyEVjd1XLAa08UMPGJXDFdqOeQ9YdJrkSZcBHGKiKfYtTf9d3XWUEazqJ3ET1Ok0epxOo7kFkos7eNCJtCD6KoHq1OueFTGGRFMIgTidoVcRdjGc9kHVE+aqAduM2ov8pAIJG7VRK54jC+iV7g/Q9hOVTOLe8DHHCzsR6h8jmfimJLr2JMIk/IiEhIeGm42P/l4/zyu8sL8masED7rh50rLVMsRuFXcMZvvJQoRpmqwtlTXXub0Wcixueuqqv4FBsh6SyHruGM/zC40p4aqFyTjQxARMTdAPlnntYbfX+0F/4DOmu5toFbQRiUpsSzht37jHgNi/gUw/dw/e+NsPg8b6Fjb13YM5/o8YDokc/Q+Q38ONWIly08Kw0cy/EG2jKxWLscFOBtuoa+97E34dW3m9iVmtHwxHE34vY/bjiIr+JCJh1pDNqiOM03Pdz2Bd/oyWvg1x/CfZ8GJ16YfnO9DCkhsD4cUuosZ/E200KwlkwKcT0gqRRd4mGZc+aIGyfqz621nN4mHwenfj2mudQg8lC9jYiv4JKnmXt2PxuvOgQFTsNMhfwkhgtOx0/eJB07g/HgRwJNwU73FdwEvgC8HuLM09F5G8DzwE/Syyq/ucmzvXPiEXUv6Sq/3jRuf534K8C/zfgz613womQuo2IyZLOfIZi4bfZzAywGxnrD93U37XKJK0shJQZVN+ulumcZsUysd4qTnJJ4Q3+yaavvTFsppC6eR9nkjqA7ro7nn4YMJc5ajvvQZeW/FmxNO4aFyNqVoxitN4+/GwfssIYjUBLFVypcTlx03EvsiXfsrPVT7ylr/31fw4qU1gzTOTOrTpWyFb7hs4SuQt4dndVRDbVvqdR9T06Pj8zkW7iAI8ZYBbIYK0ARSx7qIRrjZKFyIE1K0Qdr4T2olpuWDZ5bShROEUUjuIFhwjLp5eNKBdf2cDrJWw2nn87mewvJtGlCQkJCQkJO5zh47t46lc+xB/8f36w3VPZsfid2e2ewqaRCgzRueVr75UwU5M893/+kNSFk/zi4JuwQiXUVGZlu7RjTy93/OEnWrr+ujGbaM97Plpee8Drihy8i29/IwKFu5+oCo1+O3jhsthecSv4Q2QNjTybyK40/hFc8eTKbjXTjXh9aKWRLSlNXWsj0Mp5ROq0n9oAf48Lz2IOfxp57+urzyO3t1px7Cpcexna+yA9EAfwiwUimH4bytcWDuq+P34eZ09CZQKCPsz1dyGchsGniWjtPb0YW84QBWsLujZRD0y9jRbW7qtYhoY4HxCHoRu31C8mSuglFQNuJIL0h0hlPo8kWcMJW4Sqfq/B9isi8s+Jxc8PsYqQKiKHgE8Q1+n/p0t2/13gzwBfEZG/rqqz65lzIqRuM0HqEcLwPcLKq9s9lR2J5/WQiMy1RPoyG3FPTNdHEH/1rNWNZRO/kDdJSJXMEXT4LrAgtFOZ+D4AXteHUalTYl1WMo7WKiQ3uG+SIZW7HbGVuiJqNHYJdSVEPKLiCdAVjEfTDumtXDDVM9435r2uXMWafUTuEo16xlrZhbElIMSSAnZVSyddX2UmS5/zxdbxur6PqYSnscEhWu6jq/043UgBNcYwSJCeJEjfCVImlXkYF3mU8m/i3MSGXy9hc/GDB0hnfjaJLr3JEMCsJfiihfMnJCQkJGwPn/87X+TUs+9y6a2L2z2VHYkzmxiku800UcVuGa5QQP7lP6QYri54rXb+O3/hKay/xWvGTVyjiu9tipDqDt3Hd75RwUXKoScGuGXgfwUEBm+HyddanGTr/gxdIShfbC9EFbTwRt31nHh7qsHDiiudRsPGJYLjbNTVA5U3jHp+kw0Sd8L2PPbQpzBnvtO4zO/uD8Hsa8A0tPnQfjdoEWZWqS42+Urt/+VFed/FCVhHQSC5+A3k4MfRpZmfK2KwpRRu9L9u+Jpe2u+G0jlEUqCXsaYT/F1EXNuQUsYJW0sq81mC9EcSEfUm4wb3FczVMG8miucj1d/fWtpTVVWnReRZYqH1EeC765lUIqTuAFKpp1E3RRSd2e6p7DiMzbJeceLmo9kPwZU/0iR9FM2fjcsBabmashhV/4//1mg2XvxVxsFVUK3EkYiuAlqJx7mwGp2ocV8EmwGbRkxm/m9MBu08jAsKiLFAuOFf0CLexkvu3gDadxeEFi1O49wYoHhtj6C2QZ/qygrlcCKL0mIvzo57QULqPZ+p9tswpv4+ABeOo+WzTV3GdjywxYumKSBDfC/inpsb+TWsXMOYNOoEXSJMClmMLVP7fTy6AZcv4NlDhNE51lZyRymWL5MOekGaM/TV9W5wFuoiJITFPaqliPEg3XYHYXmacjEJANo5WILgURAfEQ/wKZd+n7lguyD1FKn0ZxPDKCEhISEh4QbCGMPn/ocv8NW/81tcO3VzlrBdD4XC1mTIbQdrlSG0CREVWHVNuO/OHqJr51AXQVgBF6HOxbZ/9bcrzKBT13H5KQgraBRCFMbi3dzfLor/BiRII0Eagkz170z1J43Xn4GKQU0Wca0IRc0h3sa7Pv19h/nWD0I+9+cv4vDoSFdLv+79EEz8tN4sUNPYYyG2E60YWnn2TbCPKKqT5ShZtHQNWcH/rJUrqDbbZmxrhTFXehfx96KVi9S2vNoAtEzUXsbd+2m8N59FSrVZk9p1W1VEnXvMDqZfXv91p97CZB/FRWfXVIFKKuPYy68SDh+lufthsJPj6OybGy52KAbnrgJVvyCgbgxKY3j+IZz1cU2Ukk7YGkTa8IP7qr6CALCUCv91bi/p7JcJ0o9u5xQTEmqQ2Kn1x6v/fqOJQ26t/j7ZYP+7xELqURIh9cbHenvItv0KszP/FBcl0aaLiUW3nU0czGlWLKvamE10aq9W2ve9f05U+O827fJLl3bhXX+RMDcnDqUwpgvVOTHLRxYJACIWEUN8XwHR+E6JQySiVnjT2BDc6AjW9K1IehANOomm35gvc2O8fag6KNp4DupqfmvxekNJUGavYyfHIT2I5oZwuqi0irRhGERNiEZz0Z6WYk9nVUitg5MNqZYsthsy2xHRXQDa4jmQRXWj5xAiJsCwD4DIXcSaIeLg9ca9YteDyCi+14XQBxicKxG6M6xu7PiAxUhX0yIq2o0yta75NiYFdXvGgphp/JQg5gFK+VdpKTAgYYPw8fzbEMkShadwboQwPEEq/Un84C4AKuWXUJ0llf4UQerDiYh6EyNJ5Y6EhISEm5Zbnz7GX/ztv8z/+qF/wMzo5qxfb1TGrmzWOnjjyGQslbIjjFr8rt7kr/b0CpWIPB/Mv/1lxqOtW+O3Pz6AjD4f/5PpQzp2o8WJWLT104iXBj8N1gfPixMWxYFEcaaglsDlwc1CNA1U/QNaQUQQf2Ndn3r4PgpBll13BQx3/DusiasU6cFPorkcdH261iEgAAaCbMPnVikiqQGQHBCgi3uEekMYfwANx9BK3PdWbA9ReLq+40HzcVZno9eRNh/EbIKDuPJWJ31oXOLXGwBJIyYLurH+Ho2uU7n9YQw9SOgwr/0GsutpqJyHyiYIx1pBLv8Bxu9Chx5HgzYkHK99nhsd6nWBltG2W2j2w8G4blzxtU3xOEr6MOrqd1l2ldMQprCpW4j0alLeZhsQacPzj4H4hOU3UJ0hrLxDpu0rWG83qkqp8HuAIZP7o/ipe7Z7ygmbyBb4Co6JyIv1dqjq/Ws85/8C3AF8TVW/2cT4zurvyQb757Z3rXE+8yRC6g5BxCOVepJC/v/c7qnsKER2noNetbeq4Uk126eMSDswsYazbWJkn12hx4YqlLY2qlny1yHXXv2vVI1gq53SWtCiYfLvPU/n/YMIu5CMBd/ELUbSDtJlJJcHLw8mWrjQSqKCP4Bk9oAXEI59Z2G76cbpBBQuNTw0SoE9/CW80/8F0SWvX2Pj7N7KODL9DgzfCQgiWUwxhLEfIN33Es09dTZTzQisP9e13rOlmOxt2yiyxA4hxYI0NizXThkl7ltizX6M2bzISKEHY6pZttWyz8aCdUcpVU4Qf+XOZRAr1uzGSApjPYSp2BmgDkgBq4ip2hu/Fpc23tkwVhG1RfGCCp5/P7OTL5KIqVtLKv1JUumnAFANCcN3ESzW7gGgXH4BMVky6T+OH9yxnVNNSEhISEhIWCe5nhwP/+KjfPcff3u7p7JjMIHl+sWJ7Z7GMr7yxT46ggolZ+mbOoebmeHfv3+IixcbVy2qh7Wba5v5XmOjq3soBVsoogIoHQsWb+E6Wri+ZP/S8U0ycCu2V9j182lcaZio6KEVISpCOOWojFcoX52lfC0PkVt05sb33+y5Bef5tO0a4dO3/fuFOQ0/gAsuQLlxFqgUwOt6iFDOL/NHiFhcOA6Mx3YxHnh9iE2DGFzlBCa4dV5Ixbazks0otgPC+mLXao+xlu1zG2sY2/HiH46roW000QSOifhW3PEVzIX/svHXmLvU/k/hOoZwXojT68R+fYNXeRq5/vux7ycqAxFICu28A4IunM+870zMGKo9q/pubNiFu/7dTcnuBlbvZ6wltPgmnr+f0CYVBrcWQzr38/jB7QBo9vOElVOIBBg7gGqJSuklrLefVOYLeP6B7Z1uQsISROQvAX8deAf4ykadtvp73R7nREjdQfjBfZRLPyaaz0b7oOMTZ6ztLOIsyonat5966FxmZMPjFMgRP64pYhF1E4VUXeHckga3SeVAG11y6iz037nh541OOMJLF3C7QS+8UndM9p4OmDhRjcp0yOFHMOlRCLrAS6M2ABugng/WoP4+IhehRhDpRjUPWsJ6g0ThqdXnpJeQfZ/FO/fVFcfZa6cgWvIaL16DoCpiRTOsZOBE5XGs3153nzpFw7G6+5ZPZAXRfYsQMkR6fpOvojjXhhEDsrER7EYGEcmDLDcURCZIB3uIxcaAWExNV8cucVKII87SbWAUqwW6cTrCZn5+GOkAVjK8q0iBTPvDFKafY/NE3YTFBMHj8yIqxIFYvn+8Zoy1+/Bz91Uz+xNudjaz70lCQkJCws7gE3/1U/z0N37MzPUkKxWgbbgbHW/c03F7UHaNvkU0M0OGhSYij9+T4z9ezLOiOGfg9uMdpFOG518aJ/A3dw2n2ngu3QNbXxUsystGFFpahukdgtmf4nUa4HzcozINtAP91UFlAVckDiR1MPRRtHQJpQPn0mjk4yoeUcEjnILpsI+wXGHglsswOwhhHirTaN9eKL21+qQmnsP2PkqkK/j9NA9+BnS8Vj9cHKjtCivGvoo/jDYSUm0PhM0FGDdf/nfzEMmis89t6jU0EHTgIZg6hxQ3JulAAWyG6NBnqeQKwJVlbvzQn4BdD8TtssQSV2ULUDcRj19k8qubwug+tI7PISaFrQS4ka9tWiJo/JikqU5GrnIOz95JqJeTzNQtIp390ryICiCSrgmsVo2w/uGklO8HiC3wFbyzjszTGkTkLwD/CHgL+KiqNunUns847Wywv2PJuDWTCKk7DM8/lgipVaw3tOO+bGMxdHr5dq6C5kDjaEGRJX0WtCMW4+aP9YhX7+t+DzdmpSg1s44u92tExt6EwxsvpIYnq/d0pdK+c/vmxGWNYPZc/MPCyyzOEzTosZ+BTDc6+3p1n8H0fRKiCqLdYLIYaUO1jLhqlqHEmWEgqOaJjEO67sJMrFBOZamICpAZBqoLd9uxynugUW9URzT2LrjVxULx90J60b0rhhCGcU2nlFn5dbRBqAqq0aa/35UiME6kFsMgQglkrc6oHEa6EJkmjhqdaDxUlAWRcU4gXSkys8GcNMBpyPzrY1Np/skwdpogdZhyafWyRAnrw3pHSKU/vvo4O7AFs0lISEhISEjYKryUx5EnjvLyV1/a7qnsCIKuNmBnCam3HGojmlleAnXfxef4W5/bS5Rq40fns/zoufGa/V/4RB/Hpl/DFU6Dg4882Ya0lQgvb95cZQXH6kplfzeLaDyPvwkuCrFV20tWcH0arypWVX0FEiKlswiLdEpLHOvakaYjezvkr8HUOwCo3w6puzDTeZgtQWYQ0j1QKeC6BqsniKoZlQrRDJIfJcp0QE2bliWqqNYJUhV/0fAsK9uUDZD+qt9j9aBcE9yCKy8Ekou/H8Sg0TREo2x6DWoA2pAo3NwrSYBMvArlMUi1Q+dT6OQppNi4EtlKuP77cf23UQkmie3qlXwOYSyiwkK/UW2QSSpZnMwgdWx1oQsufRulssluFYNIqunnwxVfR9IH0E1qrZSwgJ96GD/10IpjRGziK0jYkYjIXwH+n8AbxCLqtRYOP1H9fbTB/iPV3416qDZNIqTuMILUE1TKr+HcJq6abxCs17PdU6hDisZZsrMos9W15CCxYdcHGlUXDYszzEI2VUSFVeq+bv1bX8JphFx8jzaQynvVzFoxEPikbj+C8ULCsZDKe6fjfctKjzQolYshuvvLuOgyQi/G7Cdy5zC9H8fJCIZ2VKchmiaqillG29BweXavZO6gsucY7DmKEAA+tgQM70Oc4EwREwaAYEbPxPN3ZQj6US2BTYOa+HlsJGZqibkeo/ObVNGxM0hUbmpxazuPIpdPoZMvgcnEWbA6Z3AGsP9noS3VxJlaQ9WgrgMRQbVC5M5gvSybkWUptAM5lLnnKcLpJcBgGCZ+084isnK0bRxI4SHkMAbENJGx2TI5lmWpqg904nR6+b5NwbAQQ98cfrodL/Ukpfy7RHXeDwkbQzrz+bhHUEJCFUFXdIZuxPkTEhISEnYGn/3bn+fdZ04mWamA2q3PmlyNwf6gYVGZ6EJceeeJdJr2D93JN38wyq/8bA8dUsCcfQkXLqy9o+kZmN7c53iljFRvG4oVla9cJ31gE05crFY8Eg+1XYh/EHUKjCHl9+N9pskHbLOgXTB1CtoOgbkDnXgLzG64/gp090D5evwz5+qR/vq2fM+TaDAK0oOYNBDgXbuG5PPgZ5GpM7ieY6BK1J4GJ6iRuHqWaUNMBhW/dR1TffyZccJsE/a96cCFE5j0rbjKxbjcbHSF+VRErxvwIGzF190sOayJEyukMo2Gm1e5Svw9mGIJKVd9R9E0OvsypDuh/VGIyuj0KaSysv9Okbg8b+99lHb1sBmBHsb2LPOWCBlMmMKN/gjZCl+ByaBueXLJiodUphBvkEhm0B1YdfBmIZ39uaQiVUINN4qvQET+FnFf1FeAj6tqq87W71d/f0JEjOpCiU6JezE+Tizm/GS9c02E1B2GSAo/uJdSMRFSjc2wk0r7qvah2pz4qXqVOHO8xKYLpo0oNza+jHRv4UQWkMiLK5M2Yl78lapRIKASJ/QhcymjzAmhOguVS/GiWtpTZLosjH8XiAsoew8+Qfn9WZYKp+LXN3Ld7V/GhXEUsc68DAhm+Iu4al9NrSvA1i5UVHLYtruIGGMuC1GropSaDtRVjQAH0VwF3/7qR3H700R6gbindnWuphvBj0VN8RAMRBGmPIlUZnCRh+nsrN4+RScncTMvIakjNELxETqwZOHM19FK1fhZ2kNDy3DuPyG7/xDa1bb8RC0SC5FxOK+LCjg9W7Nf6EbZuB6mQi/xV/t16mWSg8Ppxfn/DLsQWbh+PN+5fqVZVCOUCjCCkc0K9MgwH1msAvRUe6FuXU9jYWl0dDMHlRApkc7tplzsoFJad6BXwhJEOjCmb7unkZCQkJCQkLBNdO/u4fhHbuP5/7i5JS5vBIor9KHcaozAf/PlDrKX38E1blkJgCsWubP4PHd96Qh2+n3Ca9e2JWRpZrbxVXcP5rfS9IgpliC3G2YvrjxObByAbEwcLO0FYCyxr6C6XQxgkJ69UK5mcNtBmDiLFn9QPY+H7n4CogtQaSKDTxX8AzD2YnW+VyA9DLn74dIzc5OrM1+fmgBVvx/Sg1C5Hpt9WkSjOJhXKh5yfeG9barVs+a8DcXH/1sibwzYN389kXsQPMDGfgIFMzOKKYwis5dxwS4iqWZVquBXOiH/PF7qESq2kZ8qAK8P4/fhKudw5feqxy8JOnZTYHKIfwCtnF3h5jWJKkgaa4eheBUq8XOn1R9SAxBNrP86AAgmOIzMXEZGG/jVw0k0rN6jdICmbkFmFrJzVXzwchDOQG4/eGFcIrpyMa5WtwmVvcTrqVbEAvAwUQd69ZtbkIUao+Jj0geIXGuZuhqNodEYYtog6EuyUzcB6x1ORNSEGxIR+b8C/yPwIvCJlcr5iogPHAYqqvre3HZVfU9EvgV8AvgLwD9edNjfJ85Y+Requu7MrkRI3WGouqS07zw7o66vanv1d6vWxMb2YGwVnXizwZ4UMvnuls5lDlMq4eokU3lXzkH+JGspDeMNdlGemMYVZyGqLaUkI8+QyoAED9ee2bPLhFR36DNELCnF1P00Llj4nK27Fq5uVMBm78HZMhGXiQW4+mNbQd14zdyNGURGf4wSVbd7IB9H2nK4aydw+dfj40rvIuk9qBurzs9gup7AyQzKLLbUjlz4ahMTCNELv4lUPoP2NYioXXH+bThXroqBc+WJGn0vbkxkudCPErYsyjq9hGg7cR/TCKig8wJsbWkl1RwimxEkMQ7qAV04nQE2I8J3ZUTSIK1FmS4cHBKk2xFuo9xMj6CEpolLPIUkS7eEpSQmc0JCQsIHg6lrU4yc2VnlbLcL3fgiNmviI0/0ApB+9/mW6uro6XdbrP+ygRjDuXcm6u4aOpiiY+z3t3Y+c6SHlwupxsfeuhdK16jvK6hT/naORbaaFmeguCjBRUO48IP478HbqVWO6zR/bH8Arj1Tuy11BM5+c/EF68yhGiAuFum4D519G2bfhuyRZePV+i129VFUa30FXtSHufC780ON1wXdx4lkEn+mAIXn4x1Tb0B3PwsibxqTOhBnnrppjNeOa8aWc7MoJSR1K1o6sfr4JVh7AClPoOUr1apYU9SzfwXA60fXLaTaWECdeA8Z/UHzh2kZuI723gq2Mw5AD6cgHIdUJp7z3K10eWx0H5G3sZXYAFzlKvjd2DCDG38eKiNb7DUV1AtaLV61gJvBVNKo34vbwAD6hLh/rqpLxNSEZezkV4SI/AliETUCfgj8JVnucz6rqv+6+vdu4G3gHHBgybj/BvgR8Gsi8tHquIeBDxOX9P3VjZhz4o3bYYgYXLQZ5SJvPNRtf1N7VRuXWd1BmbFNoQE6XidSWRXreqH04tbPCZD8dcguz2zUzkNIvvWFN4BJxR9jE8+cp3TLR+g6Oo6Mv7zkwks+iCu1Kz83cB+VziziHUeIo1zV78alOjGlcN5oUeNj0tU+rwKo4kqXMKkjSKqDSBcvBktzgxYe56pC8UrLYIMxA5hSHq0x7kKi61+H8W6IavvtGOkmYgzFIt2Pz5cjBlC/tXK9evVrSOVJdPhQ82KqZomi8abLOasrrONbXhAZRDWPrqOMjtbNXK0zbsXS2etAe3F6ja0NAzfMlS03MgSyTgedhPjpAC94klLhLNEmlmL6YBFSLPxXMtkvb/dEEhISEhISEraBbGeWC69f2O5p7AjS6e0v7XvoYI77K6+i5a1ovbFxBPsPUnh2uQDpB8JHHjwNI9vjh3HasdwUdBXU7EfWYhtpRGznOJh+DnbdD9NjML0k+NrrA95btGHJa6v9HrQyCUOPIuKhXooo3YeZHUVu+2xsGzuHy/ZC72cXmfSKTr2OtN8NlRF0elF/42iWpS16sOtxzwZY14mZOF3rUQgnMNdfwJgMRIsC/aMZPL2LUM6D5BCvG1d6Z9GBPs0TopX3MOk7cMU3mj7K2N0w807V37Y6gr/27G1JY7z9yPgbSOl7azxJBKVLwOrZmKZiiDbB226iAL30zJZloAKoaQccuALSfsd8Bbc1ny+6Dm4GLziEkxJuuyr43WQ4N0K59ENS6ae3eyoJCa1wsPrbAn+lwZjfB/71aieqZqU+QCzMfgr4DHAZ+DXg76+U6doKiZC6A7HeIVx5q2up7DzCcBwv1blt11cNUA3YttK866FeYKYq1twCY8/U2bk1yNRZ6Ltj2fYoHeKl9kCpdceA7cliurOICKWRaabah+jsmCulUs0W9VOQqb6WRNCJq9DdCygatBHuuQVJd+MKb1fHZMCvoIXLNeWcTeoYoV8tQ6KAWmywFycXQetF1BlqIlpXq01fq7vW4Pm3IimLpH3oPIwWJ9Dr31oYsEREBXCl09B+B5Lpwi3JqHamiKG1vG8d+yFSnkSH74FUtX9rRVFjwMb9Q9F2VB2qJZxeoZWep6qlNRgEKQw9OCZRXWtvToNIF6pF4uerGWNuE4RUzVXv2WaItGni/q4BIhXi5yVH/AqYrv7uX7+IOocoYqdIt/Wg0QGKhZO4MPleWy+V8vNYu4cg9ch2TyVhpyBsat+THVIcJCEhISEB8FIe++/dz3s/PrX64Jsc67Y3JfXY0Xa+uPcC0egKGZE7lHzQzdKgTePBH/q5WeTS9lSuAoiKpm5MrTv1AnZfrio+tob6PXG5VQQK56DzdsjPPfaqr0AMmLaFTaU8mI7476Afogq0DUD+1dhKs7sIe3sIJl+rtdqCR9HFWZxeF7Qdhdk64qIuT+lbte/vCmuywvdSjH71VVJDbWj4CD2P5Wnb81r1xJX4MSwlfxnTcxSNJtFKrR9GXeuJBK78DiZzO670PrhpEC++jy4fi3DShjEDiLq4D2m+tepFqmsIWLA9GOmFsZcxlbV9bqpJIdn9aHkcwhmkiXsjmxB0bexedOK5DV+aqwRgsoh4SGo3EWOIpBDTCQgankNMO2La1y2iLly0WM14Frz07UTMJOV+N4BS/utYO4Tn37rdU0nYKexwX4Gq/j3g77Uw/uxKV1XV88CfXN+sViYRUncgnneISvnH2z2NbSeqXAG2R0iNRVSPG1JEBZg6vWyTtUdg5IfbMJkFZOwtOLRcSEUEum6Hq60LqZ1Pl+h8YHFgyQSwq/b0bYOwe3FvQUXJAD7RwNNoUKmWkgEwSOYgzl0A012raemCKGqjDmTmLJLtQaQdcSClGeJOqgqqqDrCtgD1qoaSrGzwS3mKoJyhnI6FLi9ME/qzIIJ4bSjX0TnrMutB7nhcGqgRbhbS3dUMx2VXW9N3ns68Bu++hmQOo+EUVEZwuz+PZnpQO4aRFE5b65kxP10dw2MPykTj66tF6Ma5MUQ6ETOOo/We0kIbxnQTC6eTwGz169gAe0AjIh2hUd2aNRlyq05qFtF+dIPK+Qp9iFigAoQgs9Rm1y+NNt+c6HOxU2Ry+6gUeymX3mYjhGLr7yeV3odzFdAIRYkqo3G2tpaJwrWK6jsdJYpW6R2VkJCQkJCQcNNy+NFbEiEVqEzlt+3atx9v53MDZ4hGt7eVz1o5f7pWCBKBn/n5IsGl7e29G40XqFs0qTQN6Qdh9qetn3Q8D4XFgaI/qHP+EowvGjMW/61BH+w9hLjLUG33hG2jvOs4KnXspjkTRxXJ3YHOvodYgwTHwM+h1lTtzbifqx+mqHgL9qauYpzbiXGkrY3QzyNqEefjvPh9MPPSKKULV+bj0osXujn4Z/vxcysEyRbOoGEPGtUppSuyJovNlU4ABkkdQqNRcFN4bhCJFBl9BrofIQrXJtZr8Qz4y6tw1WDakGA/Wr6ImR7FFF9b27VyhyG7G9UiWjoLjMYFnDL9mGA/lKdh8nWkXhloQCrNZdm2gosuYzO3QGH9n/+KQdruRoxFdRa0gnOjoO/H+3UGdQuJAurGUbfCfV/HTFzxDYztQ/0enI5uSG9ZyyDiIjAeioCAarl6xVl0k/we20+ZKLqaCKkJCZtIIqTuQDzvCPMlSD7QFEHTUG+RugmoxhmKqKsKOTdYOd95LG5kUV8TVaw5vO0iKoBUJvFmLKoVojapWSSFWYfn9UHYamnrZmrB1jEDVBG7D3QajabAdIGkMJljRK4aabe0rA8O1OCXUrj8C3G7k1IHWj6N8W5BrtfeYwFM5tMLZV1Ws46KFzHXXiFt2+Lo18IZvK5HKPbU+6gO0Z6jMHsCWeGzQvIjUKcvrTKNpoeRYusiJIAWFpc/MkThaaw5gMr63jfqorpPqaoi9KHRCI6zABjTs6ZrWLMHGKF+/1EX7xOwkgPaidwVlgqqTkeJomEARBzGbEwEpcgYaB/Kekq8ZzASgGyGsbNGpIyf8fHTD+BcmlL+7bpl7MW0oW4W6+/HReOom8QLDhNkhquGqkM1QGQWZIrFgdte0AGAunbUHaZcPEsU3nyio+/fs91TSNhBCGA2Mco0SUhNSEhI2Fkc/8htfOt//8Z2T2Pbmbk8saXX+6Nf6GMiD3fkRojOv040eWP6avyhIa6+NMncN3yQFr74szMEl57f3okB5cvXyHzoQXAOfb+2FVF05jXsUACuxQzgZfZ8c6h44A9C6RRoHoIewBLueRxnJ+IxLOtyCrYT8QbQqbjVkJl6B4qX0aGn0WIdAXHgNubszNWWc2bsJK48i+f1xiWGK1exXY9RSecRWzuTyvVxLn/9EPu+3FhIFcBoG1Edm9hVLtV7gE3i0Mr7C/+qw5XPYLxOJFq7wCguj/hHcfWEVJU4G7ZwAs3H4qmkBqBFX4ci0P8ErvgWFCeWD3Cz8T5Aeo6B5mD8xWWCqky+SUpuB+eotAc4uxG+xZDI97BuP5TOrfkskr4F9SKcO7tjXM4aXYfoOsa0Y4L9REyiS/2xqoikUQ0xpgun06AlrBmGyiigqMtjvAFc+W20wYOzwVGQdkKZZMUeyzckFj+4a7snkbCDSHwFG08ipO5AxGSxdi9RtPYvx5uF2GG++UKqqqI6Tpy5dYNTCSCcE3U8bNQDY89u65QWY6++ghZOYL0uYsVMAYfb/SnCfY9VR8Uf9MGZ56GmzHWc6Rl/XEfxb39lIVVtDkyA+P1xRmkYZ69K6na49kOk53PVgXkktUhEBQS7SII1YLvxpt7ARYszYGPjTEVX/RJRY5HMMZatWMMpqFyZj5IjmoFC9Tk01ceny6MdJbLQdifMvNr4mtOvINlHUepEbXfc3rJxUQ+JKuA5QFAdx8hunK5NwIrcZazpY2l2pNC3IZ+JVnZB0z1Ui0ARazpwTlEWG20RkVvIoPbYtTFiqijCJKKDuDX1Se3ASBqkXqnpHYCUMbZMpn036C2o+qiCGEWYiT0I8wE0naAZoASy0Lt2te8EMdOIgXSuH9hHFCrF2Z9s6sPaKqw9iPUObfc0EhISEhISEraJvffsI9OZoTB5owb9bgxhoUz3UAfjVzY/K3T37gzD7z/HMFAnDvCGotK9YAt1DwV8+slTyKXl1ay2hWIZY65C+RIcHIq3qYvt/9xxGHsNtCqMioGMT03AtOrC/+rioG3TWEhVBbwOlABJ7wJXRMpjsW3S8xB6+cfQcywWUqNZ3K6PEgYTi85gmWvjoyYDQRdMv4eW3lwYYoIVH7KoWYi1Nh7afVd1YjDv+yheQ0ojSFT1FYSjC8mvVQ+ESS33RAx+vAL+AFQaVzuSiTehI8cy/4TLI/5eNFq/rwDjV8v7VmDqNUz33bhwbXa9K7y33HOviqSP4fKNfSLNoAD9T+KKb642NB5fuRJrzX33wvQFpLSoIlJ5BLn2AwCC0YDSgSdQuwFZqlokSmWx9g7IN9+Pdu71IplbUT+FhufXP5fNwE3jim/E4o8dRGwHIHH56egqYBGTBXc1blNl+9Co9j648srfCa58EgCDj9huCAaI1twiamfhpx7GmK7tnkZCwk1NIqTuUJy7QUvKbjDqHNJMwuFaz68WaK8uyDemnOa2M7UQ/WdlH0zuHBEVAKnW6wknardrCEtLo7hSLCqueL76LxBtO0rU0Y2GV7FeO3ayKp5lj0EkcLV6X3TuNP1INDWnizK/U9JI2z1gQ9T5iN8HEsBc6dDq9dXLEu79FHZ6BJlYFEG7yCYRGxCllov1NnUEJuos3mwHpfZYSFrWPtVlCYsn8YLe+vcFIDLYsS7UlQmHl+/WbM+6I4gUg0ulgUnQuFyR04sYsycuj7wmlrwOtIsoen/1catgpHeNAuMsxrQTrRCxGUbj+JJBpH4p4JaYKwHddOCYYGQQGAXy1RK+NwBSQKSw/DW4WChdT4azKJDH+pDOPUJx9iXiYJlN7BGxyVjvELIB5Y4Sbi42te9JQkJCQsKOojRT+sCLqHP0DnVuqpA6OJDivjvaub17Gt5bffyNwIULC7bKJz4yglzeISJqFbVDCJegtESx1hBKY7XbvPTqJzS5uptd+yNEl8bQ6avYwML1qi9ozxNoSuDiM/H/1YxWkV5k9BrkFtce1rgHa+89uOgCUikh0wNoyiK26s+bE1JtGvEOo5qH8mJxcpHzwQpUlveglK574OryQGDxd1EJqp8FNYaqMvSzB0i3/QT8e9EGQqqaLJLag7E5XB1bW2zHBgipAVqp2t+dd8H4T5DxlzA9D+Iqa3jtiQfUCpKSuR3Nv758bLlFu7/n0aZF1MVo6Qx0HENGGohxWiZ17QLFoYHV046bumAevL7Vx80NlzTSfhwXXohbCG2Au2Ir0OhqVTxdTBT3350fs57Ilkpc1rpwHZu5jchVy2zfwLa25x3e7ikk7EASX8HGkgipOxRrhwmXCk0fQMLKGL7pAzSODBSJM7YWZSetj25U15L1tXNxI38Q/6ECk2vrCbGpRI2yfh1LVMyGIunC/nbsbBGXeYCwu5NYIIl/XHgewvi5lWjRecJJNHcA7b0dMxovuEW6oHQFbDsYxZoDAGjQDymq2ZwVjMvhwnOI6YTUfiCMy/4AiOLcZSS3G0l9HHP128umqw2/vxQFLF21d6TnPtSWEOlGqwerelCKiMJ4kR9JceldQ2bbMedC9ORPoTSF9B2BX/jkskVhaGfwO25Hplo3GOJZg9v7BaJq5mRUOYUNbkFlAucuItKParPZn4tZEEhVU3F/lSbEL1UPXA60COLj3DiqeYLgKGIM1GSUtso01uwlchepVwNHSKOuC5UIkVlE1lsmppkFfBqoVAXitdznDw7WL5DrOg6axjmfcvECUeXsdk+rBQQ/eJgg9cR2TyQhISEhISFhG/HTPv2HBxh57yYJAl4HnW0+h+7eA6q0taeZmS6Sny5x5czGpI1++ek0mXefg7HVx94IeF2dXHhrDBD696TwLr+83VNaRhR2NHBS1rONloUa1+B6biU8/CTmcgF9+zS4KDbIwzLuxNtA/K/iz59dSwVoH4a2QZi5Gl8jcwtc+Qky/BhEaYJxP25z2vsQqjO4yjvxbK5Noj/9HnTtQ70AKiX0kFTPHUL+HaTjAfB60blswiY1G0XQtiFgIZNQ2w+BmcGW2ymPxBmeuePd7P9jIcb9uDqosuQ8INkj4LVB4SRaeBNr78LVuekaXovbH7mJ5ia57ASCF3WgpbgUrgvPYVK7kdJFZPItpG0X6lp7cwl+7TPu70EL79QfvKQMtGZ2EQ0/ikq1vplMoVrCn64gLkRLJ1uaS825iyfQnsdg7Ed1n1K1AUGpB6VCJZgF01pA+PITNqGG2u7Yy5TdhQvPru96NzUOLbxRzXAdRLxeIimgbJTPeQuQNEHqcbzgju2eSULCTU8ipO5Q0pkvUip1E4bvEAQPUyp+n6WlLj8IVEpvU69Pe5C6DT/dCVKnXGmTqBpU11aK041egfL4onX7nLAiqN+OamGJahb/7Q0eW+t0m0M9KFcNR9sD4aXNvd5aKDWIDFyiMkrFQLRytLVhAK59Dxl8Ctegt6plL6ZQXaCbLEQhYdcewv52gu5jOK+AOEXdNCoGK/vR2Veg40FcqgA4RPpQvY5WI3nUTQJxlKl4XXMzBiDiIvgZ/OqWZX1T6hBxDdP1EObUb9Xeg9IEtuMoWrkUC4q2G1ccQd3CY1WdrBp/sZEks+3If/167ZWuv4u58jHc8NKP/BKu7w7sGoVUt+eLhHaxgKdxPxW/I87M1AKrGbgNzhyfTQFnl/fHmGeRQK5ZXDiN1inLoloBndmATL5rWJOqXrcN8ONJigKjseCuoNqBMZ3Mv0ZavaxmcLp6BK2RTmB655bx3YlIEWOLpLM9lAoeYfnUds+oKTzvNjLZL233NBJ2KOYGzrJOSEhISGgN61t+4f/4o/zo3z7LtVNXOfL4Eb77T76z3dPaFkZeXsjem6j+9lW5/4lDnDoxwuTI2h3hu3dnyF14e00tBF/tfZpKZS4IdpGZa5XnCmdxqkRu4bvbqTLQluYrU5ubHWo6u5kLWN17ZGe6AqNpg1evGu5Se6rzCIQXWcnOjA49gTPnwRtAz75Yd4wOfJioUIkbDrXtgfFz2Ft6YyG1cAdqRpHRs+AqyMxV0udALv4+euRzuEo1TTnTH2cJmuokJxb3B11SPWrqBcgeWeGB1Zlj4W3Y+2FCW1uOVUolUlcm8E78B/Z+7AGu9Q2x6xOnIZpYGFSpDSSWtjvR4js1rSF15k2k++Ay35iGI5j07bjyBGvBi/rQ/CI/gyuguf1QvopEs5jQJ2q1+pzYxXVqIcovE4vnCbqhFAecuN4HqXS1o3ph4fi5334WnVpvAoLiKiegYxjEIv4eROdaQJXR0mmYjLN7g+xxolw3kcRBDa2WCDN2GJ14ZfXDsntQNwobUZ75A8JcFqyYDgh6UDagddMWEKQeI5397HZPI2GHkvgKNpaduXpKwNgeMtk/hGqEiMXa3eRnf50d0w18mymX3qJcAkjjp/bh+QOIcSBlRBr3OVVNAVnm+02sMbxU8+fRQv2INc3sbVhiQvXWzS3LKCGYDLhCVcTageQvQHa5dST5K9hcHEEVyST+hZehskqWXVXYlOJ1/Mpx1PdRUSKNjRehCzPxOmQOxQvlYA/MvFlVtsqUu4WgtBuXf6EaljiJ5l9Dej9KlCoy936Lm9o3mkP1+dRofhEsNFFmqIYIb/R9cBU06EPK19HcYcLugfkeDlHlFFK4FdWlr60IyR6C/AnMZBe8VF8Y8t56j/LwrcunX2r9daK9j8PEyzg/Wma7qs5ioi7wQJnByABOW4uYFzpQphDtJdIV+qeooNoFWiGKLtGox3GlchLPO4L11h54sYCr/kzMTbYOUzg3RSy4OowZRGSi+UtoG6y4aBeEfmAcZJ3RrB9UJCLIDN4wQmo6+4e2ewoJCQkJCQkJO4T99x1g/30HiMII61k6hjr57f/hP2/3tHYEIsLIy2foBHr7UnQdHSYSoTRynfcv5MnnG6+djx1tZ3jAxxrhgdwFwstrC2R/940xZifq2B2e8N2pt+oec/jQLr7SvabLNY3OzgAZAAqzCvWr3m4r4Uie1O46OzSEgUfAhVC4ArYE4cq+MXFRXPCqJ4Xe9kn0eh5xBeT6C/Epe+6l/M4rpO68A/Vycfue0hTgoHId0iGSOoqOvBmbfJPvwOQJ3G1fQitvL1zHG0ArZxd6nS6eNjY+drEzwSwuD9yEkuhCKlkXt9ExGdBZbKkb763/APk4cD4ofZ1dH3uyVkQFKF0AvxN1eaTtjmqlp6VEWO0lrGd/aotVllSwZg+RXkeLy8sUa+kc0vMwjD4Ls29B5+GWMl41vA5e7O+S1N5YZG40tu0QrvtWnO8T6UXQ+u1vKqk8Xtf9te2Z1oqWY1dj6d2G0oXm38bkwYgPGhEO3Iu20JpHykVWanGkksK03UkUneZGbmmzrbgprO4ilJ0vpIrkSGU+vd3TSEj4wJAIqTscqfZk8Pyj+MF9VMovbPOMdhpFKqWTqBr8tBdnZGpvHNi1KEsr7oXajeoksP5SP5o7iKZ7Wcg5nA+LQ0uN+0JuSW+7zF6YPRlHRWb2QaFeb8ntQ6JZ1N8VGyeLt4/+BDv6E9SksN0PQmH1iFwVVzVq3sJke3G8j9g2XOduRLLYmRFw+bgvRNs9MPk8mh4i9CYA8EttkD9FbMBEKBYz+AWcVwBNI0RAFlQR+pCohNh9oHMlegTIINm7gRR+IRZfxRWh/R5cbhAVsOVU/BLxwKSOUC9LU3vKuCAL0SjYB4m8EXBLBMjwChiz0EMTMJMGc2oCTl2CsWca36s3v408dBRtr30NSqW1xaEC5fYUpuMjOK1fKtdFFzF2N0gZ8Fs6f0wKtJvIrSCiAs4Vce5sU2cMwwsY273F/SWrmbWuMtdepymUlQzWHEaySRbqBiAyQzr3MMXZn273VFbE2kPVDOeEhHroJvc9SRwwCQkJCTsV68ULzMd/6Ule/M8v8P7LK6+dP2iEhTLXXz3Hpz/VS/vsq9gHO5kdOMiLZy0/fn7BjhkaSvOlJ9K0XXgLNxOLp+E6Wq/uum2YctlVk80EVUVEUKPw/e0rpxtOTBC3BhHee63AfU+lqFv+axupnL8G9YTUyarIlT0M7b0wfaKJk1XAB+efx3ldVN76KXb4MF52EDK7KF8YB1UiSeF3H0evvITsvxPmSsXmDoArLsTNem1w5NNodAWxg3F2ZNAHahCzF+3tgvs/ioxPxLHWxhAVhqnM9iN+N+bw01Bt6EO2B1yEjSwwGG+XNNr7UJ0HInj04JgCTWFGIsy5ry4bZSamcB1aWw4pewukh6B0Di2ucM+m34K29ho/A4BzrQUii8nB5It4wW60wbGuchGDRYgQ0462IKSKVsAbBnsYza+cRRrlOojc2aaWsi6djUu7Nj2TDaCaSesVDZVMC4eVLjWcp6QOoUGKKLpJmjpvI650Eps+Pt/GaqfiBXfP6wYJCctJfAUbTSKk3kD4fiKk1sfDT3UAeSCMG6groH1xj01VlFHYwC9A52u1FMdybLlxVOGcEbWZSHoAna1my+b27jghFUC8XrTSQNB2JZh8pckzLfSGUHWo3w0I3tiCkaCA2BTqxwtV13s3UMavdMPks5C7a77kjRn+As6rlmPVDFH5Ys3VvFIAs28g3l60fDYe13YfEe9j7DAy9fz8NQG0rQ1XWSilIhxAg3rRhgaZvQql05jM7YRm4RhT8PDGSqBKZagImTaghOQN/rMn4FRj8bQWxYxViNprs4E16GjJYNDBjwN5nK5sdIu2ozKK06vEBnuzEd2CaoWoQVZ3La1EiReIKj1Y3yJbncUprYrJS58RP+6DShnIQ4PPnoTWsX6RTNtjFGZ+yuLIXusNYm0vSkiQ7o9LwbuIKJwFrVAu1c8m2BTEolpGpF6ds4SEhISEhIQPOiLCA19+MBFS69DTn6Lz0us4IJqcJD35Co9bywM/dycXpwMOZyfQM2/DKd2w2l/n3r7C1PXlNp/xWq1jurFoGJLrSjM7UaJcVCp9d+Bf3oAsvA1E8yVIDUOpUTnSqDkRFZBwIThVPR/N9RNOjBEVSkCcLak2TWWqHakMEgBmcBiiK9D9MEw+D5X+6skMDN6BXPw6FtCe+6EY9zmds9zC4fvR/TN4195GCnHQaxR9hNLr7+Hf+xDentoWNOJsXEls7v/gCMy+sfyBeNUysDqLdQcw5745v8sNP4AbPI6U8piLC8KipvdBqhMtvgezTbR7iqYRs6uaeLCAMTlcC6azdd2xK26JH6X2WhNI21GYeRsze4koWCL+roDaDpAU5FdvTSRhvqmEXwAXXUYGPwrXnkFW8XNsOLY1X4GYoDYh1R+EzF5Up3FuGqL6we4JreLQ4olYTNVLNa9RQw9gYwGzPILYDjApVEAJccuqyG0uqg6R7f1+SUj4oJAIqTcQ1juMSBbVjShPefOQyt5Xt1eqcn3TgiMUD6Et/kfmsgsFMOCDmBTqKnG5Vxdhivm4nMtUtU+LKqKgqRRkWy0DuzKSGZ5/2JGMYudK/e4kpPFjlmAYwsYlfcXsQ/Bw7n3QxYtOBTcJ4kH7fdVNFcRk0JkX4oi/oY9T6cpgQgvjc1loAqqYrqeJvMlFZyssf78ZOzeJ2usC9U3vpYuZ5WMMPTBzES3GGbiqC6ti/7rBe+k/QSV+3dg3MujBjxL270W+8zW0OAvVaM5mMGfPE+0/XLNNg+Zff677QSqZ5sRLNXPOgxAj3Tht7jhj9sYGQBMiqTKBSA+qzQmLkbuIRIex3tYKqarXUO1Gakr2CNAzN4LFZcYFb1GO+wAi0yCrlLlOWDPGmyXX+RBRJcRFBazfgbGluFQ6PjCDSPy2Nx5ElXbYQvs6Ct+lXH6OVOqJrbtowg2DAGYTo0y3NDI/ISEhIWHN3PW5e/itX/3N7Z7GjuNjD3m4k0ts4Sgi9e4rHGJz3AXt3VlEZP4HjYUi4wkHS7sREYo6S6QRWS9NRlLs7uuOMxpN1acgApOjSH4dqbF16NuVY3YiXsi+9u4g97dt6Ok3BPV3IY2E1HQvFBsHike3fBZQ7KmvVe3c+P5V8j7TZyJsVy/p/XeiCq4Y4nVmid56hlAM/uc/CfomdN4bi6hQNQB82PMxmPjhwoXyF+JKUTX2fdVXsLjJq41XUurq+AqkCXds+104KUEUJwVo1R+hQHT3HyXMVSuuZYHeu7E6gClO4wonkEp5/rXXDJYuQmqFVFoI5LSyH60Glq+ISaPTb8drzPI1SB8Aba6fsckexxXfZaXStnPo1GvQfQCa9ENE7hxe9wMw9mxT4zeMyVeg7zAsblEmKQztiGnDUUCjRUkhfjdUrqESVEv4vg9hkoG6OYRo8XWsvw9sJ+AQVVzpBHFFu5j550cySOpwg3NtDpXSj/CDu/D8o1t63YQbg8RXsPEkQuoNRKX8XCKiLkFMF8ZrsW/DRlxXSw1LkAT9HwHJE05PE+ZfxJv0CZ777Xhn+7dqz3P4D+PueHRjJ9c2vPC3m0T77o37gLitv08NieqrENJ2F1q5wkomrQkNXP0+tvfBuOfH3LFXn8NmBtC+I7jZV+KNXk98rmrZFCpXwB3Ajp+K+6wAKhaTOoYWL0PH3oXzCSC9te+5+ZIZi0tnzH111JtzrZC6WCSN9/birnwLWZRZ62ZnCKc6Kb0IZvI6Pb2LjIqogJz6r/inwA08QHgyj3QfR8uX56NeV+T1b2Hu/nO4roWvu0gmMSYdlyNejcwgsHqEo7HDqBbms6+ViNWzUj2sPRAbAiuWtq1FJNe0kAoGMdtRekJR9ZfYsP3Atdr/1aAaVh0uBiN9SQnfrULy2AAsFli5R81WR3uKdBME9cp8JSRQbWWwiZ9rH0TrKCEhIeEG5Hv/+NvbPYUdx213dcHJrc+49ApFzNTy9ilqhP0zcYbj2cMX+PGLP+JvfvbP0/am0hf18PrrteLh8ceO4L+3sfMfGPQ5Vy2s8s7zeXZ/6VMMjX9jQ6+xXqJKe31HZf/jMLlKOde+IZxexHX/KZw3M69zph6+SnDHHRSfyTD7vVjsC/buJRqpZoCqo3gmRduje2B2IeNVgi7ouQOiJX644lW0+whSWpztWbUR/IU6rVqu2v+uzlptqZCqS8TWzgeIKu/WCKEa+LiBe3C7jqG5dlhsB7tZIs4QpcAL7kNGn4Xc7WjhFE3Z19MnoK2TxRGjGjVfCUmiUlOBCZI6jEwvZOda7SCiwOJqY0tRO4DJHqz6eRqPq7mOljGmCxddWX0wIKYbxrew6tAcLo9f6aASzNn9PsYMoOW4z6pKBhMcRlTiAHsvhZp2yO2r9kFN2Gy08j5UXYorvsZb7Sm8AVjvMNY7suXXTbhBSHwFG04ipN5AOJdkJC1F3STl2UsYrx9j2zDGi7OIJM/m1upu4dOiRj1Z2htzE+bo187NRWeQvnswo29C1HwT+81Er1/FvV6IM3NTOQiyIIJmqmWZ80EcPaluWQRl6N7H7jbIaG20o2gI+UtweRYGelAJoOMW1M0AQ9VBHt7kaE25E1GHK70Fudtx+bFY9NMQiDD+oSUzj40jEbPwzIlWS0lX+2FiwWRBfCQSxGUXDo+IbRgFW6wgM6+jplLzGMsnLdf/RZwtK75P+2cO4MvZ2vtnewhPXYZKHr12AjqGka4umFglEtGF2FdP455eHCVXRgc/glz+2srHQrxwXyUoVaQLtaamhHUsdGaALmAuItwBGYzpAC3jdIwoOrX6HJbRSj8IV81i3oZeQFpGNUX8GkojsqT/LSPVPkpZVDMY6UxE1B2K8fIgWdiiwKYg/WRS1jchISEhISFhRa6dXrq2TDjx1iTFQ/ewezigp82RdbPI5HXCkU32q7TgKpizKV0doU03oSVQJqrNcP3ubxV5/DOf4UDpm7RUw3UTqVwMcIV9oA5Jd4Dng/WQgkJ0W7UqEyxUBVtAfnASns4SmQs1yaLiR0jXNMHdGWa/B15PG92HrkIoQCoek7mMlmdqA4zDWZh6A3fwM7jue2M/gZZBQ0wlV2NWihhUqSnVqsWq+jKfkeqBScdre9OBmlR1u0MlA8FAnAGb249KVJ3fIvwU0YCF8F2Y7alWN6sVFg29sYiKi9sSpQ+gbhrCVQKiwwk8uZVQF0qEa+USEhxCw9XbRS08lsZI6jAyuqRd2fRrmPQ+olQunnP1iROvG/H74rmXzuNmW29zJqw+pznUjUPQu/p92gQkLCB+FlEP8ftw5QVBV7SAlt6stqwaxkSKy3ZD1ETJ5oQtJkLL70OwdbZ7KvOxTW8fl5CQsEAipN5ApNKfolJ+DdWJ7Z7KDkKJomtE0VLD0SPd9jBiJusetV4EQfz9iMnNz8MxG1eX1UpckaeuSKor/rsxkysiXfeiEy8vXCY6j+s9ihk/B5Xt768oehmmq+Vplgfrrs7uHA3FsMokSh90348r1/ZPMaljaGFJFKss/KFuFr/SCZFFNEQzEeLvQlHAIa6MYRjKUxjpB1dBSiUozYIbR226mv2aBwUzdRG76HnA70dmao0Qu+tDRHahVEs4siAMaqXC2NnHGDhwljhJMYum7yW6cL22b8zUZVwhixm+D66+tPK9e+8FeOpQjXgbZc2yIsTScReS2YUbfykuuQPIzBnIHWI+HK8O4vdiTBolQvBRoqqQWmBBRJ2jgnPrK1fV6pLRufx8heatRBmfDzIW2dW4wpLkkTqlyhN2Duo6tkBE9QAPY3L4/j2bfK2EG53NLNeTkJCQkHBj8PP/8Bf5nx78u7hwozp93vhEoXL65DSnTy7e2kE6082XnggJz25ONpcIfP4XIoYHZwgjS+BF7Mq9Cgq/8qtPAVTty0XH1DnPZny7hxfeJ9e1Z768L8CzX8tT+PCnOO5/ByrbEHC6hGhiBlue8xUsiN5N3Y/SDHC84W7JlsG39N5RhutvL9phMbffg7glvpI5o01AtYjJHkcRBEXVQ9v3VGemiKbxyiU4kEX37wMNCbJ78LUd3BSoAS2Bi+9x1D2AyqI+rrYHiQAqEJ6KA7ODXVBeJJjpItE0HMPyABFz/oU0nutDJl+jRkUunkW8Hgj2xSLPCkhpok7gdO1nimIwqX1gMrji6fmeomoqK9vmth3y16DjGBoVIejBmSIaXq1bflfDy2jYqFduk2iL3oLcPsivJbh7fej0S3jTAAbX93DjcdHluKhxsvTfsRh/L46rqw9cD5IBLWO9/Vhva0sJJ9x4JL6CjSURUm8gRDyC1MOUit9cffAHnnB5aZSNxOsDN0bk6ixEdV/Nv1ITXboFGamA7P4QOvEai3tHaHSFqGsXdiqAUnPlTTYLkQK0DcLMWhcYHo2EVAFscCdMjGLpZT5SNQqQK++BtMXbNL73zpWg606ULMHkBbQYC60KYB8nkoXSuoY+tPhu7QX9PogaCfZLFu66XIC0o+8Q9ffEma1AOFI7ZvbVU1wP/ihduy+i778F4ev1L1XJ486/iT3wGHrpRw3mA8xcw4w43MAiwZZyfJe8NszuL0JHH0hszJiBW9Arb6Cz72Pbj+J7B3BSnC9zLOIBEkfMUkZ1CqdT1fNuPtpkaZ85ougKnj+wSbMRjAyBOFCD0zws6TMjMoQxSaZpQmP84GH84AGM6QUtYcwObF6VkJCQkJCQsKPoGOjg7s/dw8tfXSWoMoFiIULt5rnCfuGPXWN3+qfYmdNxMRoHTENsGz5VM9Y3HlCpazfJJtTMc8Ui996X5Znv1drSL31/lsJDH+W+3t+H4vZWsQqvXSPoWuPBq2TVignp+9BhkGnY/fjcVry9PiaYAW6t8SNp+yB074J0D1DG5WNbXAFJHYHiO/NjjX8IZheJswC5fpjLAl72JC99fpf4r7QCQWetkBotiUKfehGv4yGkOAozbwMnqUs4Bq6ApI8s92csvmT+FPh7QBa9Pqo+DDUdmOytOK4T6SyQR9oOIqU8qhXU70E6HoFoFpnr8ys2rvjlSqibQeUqcDkuKhWNN9PqdF1oiwHKzpZbqnfVEiYLnXej4uL7M/nWcj9S98M41ikeJ+wMWuhP3ApB+uMEqQeIy5mlqv64hISErSJ5x91gBKkPo5qnXPrh6oMTNg0bdGPJAfsARcMyjL4BKDJzEhUwroLvupEgIrr3FwAw6WHEmGqZHoGOnk2aYB5zy6/gTv3z2u1ulKi9E4vUZjRuA9I9jLYopJq994Ln0dBAmDv3lR/WGBmSOgIXn6+N4KyiA7+EK76FBAfR4pnanW6JMdNib0SRJcvwen1qS1cIiocppydBIipXp5cNmX7+XdrMDDZcpY+pOqIzz2MOPole/GHDdZs9dx03MLhoi4e95S9AxlaNpkXXkQoyfCvCrdWRKaAddZZy5T20qWYRm4Oqonp9TcfFobblDSuDYmQYZAyRahSzgERti25LB8ZkqXpREm5gxEyR67wfMMxOvkyzfXqWnKX6U/sZ4wcPkc58AZG5kmCJiJqwMsLm9j1JCkUlJCQk3Dj8/P/2C5QLFd78ZoPAy4RFbN433L69VzEMQH8cvDk1PcD5d4ZRJ/zhz/ahQEHa+TNHHqI71UH6qQCT8kkftdXY2vh73Z/YnNKd4TuvcdcTD/DaM7W2+NvP5Sne8TSP7d1eMVWLawi6Nh5y5CHwVy6pKakKnP1OjX4X3HcPZvxbUK+i6/HPoMUTkHoQwiXB6KbWnapiW3pVCXZJiL1bdryW3sO03YubeRXBoZWltq+iM29AcQJZTZV0BcifQtruQPNvNBgUYc0gkS4kDKgrIe0P4fQy0aKyv/G+MaL5SsbXcG2diAwiFYWxZ5Gl4vAWol4PLmq1jHf8jKjfhyy712vFoj0PEMlVkAUfnGf8eSFZsrfhMu1Em53JmLDpuNKbGMkitofIFtYops5F4NRuS2U+QZD+eFLKN6FpEl/BxpMIqTcYIoZU+tOE4VlcdH67p/OBRYyiTCza4mD82bm/alAWaUwHn0JMa2LcmskqZugzuCtLel/qFK6jHzM2vTyicQ5vACRF/LFogDJUrsTbxAfxqr+rPxBH1WGr46siweJSKlrNAnURmsrhBrtxM6m4t6krxQuMavRnKdyNC1MEXryAN1nB61bo6sNWvt/Eg18URZrZi3odsO+J6q6IajNKdPAYkXdhBRGwdofaNHTFAoqKBeOjthNtG4gzNMVWIy/jCEyduFz7xdKo+fz1ZwmCAaK+2wmv1H9fj146Rt/gDCacWP3Rn/kJZv/j6OVn667b5Mwb8OAg1g7jB7vBzBCLQc0IQkWgiBjwvYNUwpVF7c0lBbRaGrhCVDFE7gK+fwix63US5BDpQMzyktliZhAGUTWIhIhsfb+VhE1C4vdKKnMHpcIrTR7kY0wf1jtIKv00QoooOg+SwdoBwEsiShMSEhISEhLWjJ8J+Nl/8HNcevMi4xe2v53LjmYTHdEy/TbMLghR+eIXOPWtOUEnbpkSVH9CRpgBskM9pFbIFNxochdeY9ctt3Lp1ETN9jNv5Ono/hB3+F9vWOHLPzAEnkVsbPO6qTzhtQkk5SFBgAQeJuVD4GP82D6WwIA1iGcQK+AJJhAwsb0tVhGjiIk4c7WbyfGA7twkRgtAJS6mqw6xQro3jaJovmpbqUWdwN5h3P6V7S3B1Fj49sCtmGAanW+l4Zj3ZfQfRIsrBSUseQ3ZNmi7rRp8bcEY8HswXkc8ViQujAUIilOz5BT1hVBXfBPJHgDSkH+rzoBZ6LwTnXx9dTGVCGZeQ9rvQWdfqztCwgpqQTK3QqoLF10Cd3aV88aoTqI6CRa89jth+tWmjtsMJOhneWuhlXHROAx9CBddwptg/WJqsBty+4jM8iSGsKMTzx0BFxF6xWq2bsJNgebRMI/xjuJo8rtY0hjTj+cfI5V+CqVCFF7CmE6M7SP2FWxDj6qEhIQaEo/dDYiIR67tz5Cf/TdE4SkWVl9J3estQzxEe+f+ASmgfj9iUuB1gM3G2Y/zTREN6Prqluj1WQg8mClBVxrJNtHAvP8gTO6HwtLIwRG09y7kWv0SsDJTgcnNi2R2x34GbctR/J336u6fmTVoYSErsuuLx/EPvIzRNDSzlq0uMNRrx/XvRiv1SxmrPznfo6TufhTwYuEYD/w2Kn629lKSw7n6pVolla0tDaPhfE+VZZSvYUZ8oqkK9eJ6yucvMJ55jJ7cN5EmXkvu3HOYg0/CpdrsdVUgCkh59yKpaagJCGgNYx2EGVo1UDaKpVG8zRK5CwC4KB8b7Gt2pLRhjCxkoS6dnwBMbKafJmGb8QIw3hMUpp+Z32a9IUT6cW4MF10GHL5/P6nM5zDzfbWrx5tbt3jGCTcfWv87ZQPPn5CQkJBw49A51Mlf+t2/wj/78j9h5PQ1jGeSvqn10M37fovsHqRzADRC8SHqJDOQxaYCgrYU1re4yMWVHwGM4PkWzqx25sZ03dNNeaJCZjjN5OsThDMrB8hquczhziuMpHJUSrW25as/nGXgyx9nYLR+S6m2W9+GaEmlpNvWOHG35DfwG8//PG3TGT47udxX4HV3s/vQMzXb3OCHCC+dwnZEq2fHLMrMke5BbOUkbomYHF8oAwOlFddYCiABmGqwuVV0WbLDbrR8sf6x6SW9MFew8bV8AUk3thu08A6m8z508vnmMoSmX0Ha7lqemaoGnEDPvTh3FaK1V1Ny2R5k2mxfVuqaAlTLuCj2FdB9F1z73tovn7mFStbVZKHWDogIbbXMccLNSel9vNQRwkXlmo10I95+NLqEcyOAksp8kiD9YUQWfLwCmDXXOE9ImCPxFWw0iZB6gyKSIpv7ZcLwFNYOoW6aYvHrVWE1YfMZRczCElVSwK1f3LSrqTqif/EPYK60q/Ewd38K84UPr3yghJh9X8Sd+LVlu1x0BtvzMIz9dPlxZnM/Gsw7v43c8ysN94tdUuYmAiRA0xnofxgZqTPnubE2A1EBBdyeR9BSg8he287iD30FNDcUX0xAcvcQBpMsfEyG1d6XS+a60gJ9iegKgAnqi7cmw/Rb+4DTDU9XOHma6fs/R0f0O42vuQh35ieYg09AVEBMKs6inbyKu/AmdmQE9qSbOk9jpkkFByiV31596Kawvi/tyF3A6kGQBpnCqyDSlmSZftARxdhpcp2Pzm0A8hj5FEIPUXieQv43CFKPLRNRExISEhISEhI2g47BWEw9//p5dt++h3MvnuWb//DrXHzjwnZPbeewiZGOr/2rDLDYDrxMH0CZTeny0Xakg8Nf/PHChk9lmLr2MO/+0/rBxHNURka457H9PP/95Zlw3/nPJf7Izx/HXK1j50lATSuYDeZvPP1V/v5v/WLdfRo1EBtF0D8YQR4fgL7J+mMAKfqxBemn8HsimJyoP7BtkLjSVvW6YhCCaqsgQTtux0XnILfQhsN6qeXnsY3X/0btEolxhWBp2wnhypWUXOF1TMf9MPXiiuPmmXkTabuzel0PMFB6H6ZfwPR+Yd3tS527iNf7FIz+YJ1n2h5CRvDER6o9YltF030gK78HE25ytIgrvo61g8zVKtToXbLDfwuRgHLpecrFZ/BTD9eIqAkJCTuXREi9gRHx8P1j8T+mi2zuV8jP/guisLEQk7AxbHVNev3OCwsiKoALca9+A/nkk0hqlbdxqozkbkVnTyzbFclVbGoISosWeNmDuO5BpGMXcv4H9ft6rhMBJGi8IBW7pPxxpKBltPgeKh4MHsaEHcjoywBoxx2Q6gItQmUKCufQ/Z9CS+/E+1ND0HYYilegcBHtfwLCAhQWIjBFDOqq93hRb5paWhTuXB3zw6SWCanOO8bV3xSK751GFWxnF17fIJLKoE5jg9EYRAzFvJBtH8YrN9fj1p2pLzqHz/we3h/52dYeTz1kbYbFRmBMJ1E0sa5zRJHDW2O1bdXtycRN2IFIfsmG+H1hvb3k2v/bpI9JwqZiNrHvSUJCQkLCjUm2O8etT8W+gts/cQdHn7qV/+XJ/5mJSxPbO7GdwiZmpG5117DDf6xc21/IFWgfPgF0rnpscOkdUtkBSvlam04Vvv/TfXz06FkoL9g80dBdvPzqAPuPX6PH1M9YXS8pW+LyVAn85fs0qpfdqOjsBNGpCaKzAVgP/5fvh2wRVcVc7Eau5NGR6+j0OUAJbtkDIy/FRw/fiuw+gp57C2bH4JHPQHgBEy5kksZdiBbug9R7juuu9xu/FnTJ+k0bCHYmfRxXeA+ikdgbEQwiqUHw26qdlJS5csQOg0w1qIC1jAhm6pfeNbPjRHViwltFbWt9YzcSTfWAriNyQQvQ9ziM/GBNh0ulkGSbJgCg0ZJgFVcEG+AHDxCkHtyeSSV8YEh8BRtLIqTeRIgIQfAEhU0WUq1/AJnLrDEecVlPjzjEMh2XA1m0XFq8nnThLFElyZptBZ0sotfOQ6odSosWgi6Ety/APQdWOwOy95PoO8uFVCjhOvdhRqcgKkDfY0T6PnAOcmCOfAxz4mt1jlsfbuAunDuH7B6mdHEcT+OyORJ3wl5mhKhbZDBpGP+Ynvjfrnsg/w4UF2WXDj6OK78DkoOOewjbFdVZSLdD1zHgOp62sSKuDM4Ds1AWSev2iVmh3M8KxlRY7GP28m2EU+3MvngaO7Qfb/8A5WtXKY9PUx5v0L8WaHvqtqaF1IZze+fHUPlj4K9XDCwTR+tucckezTQsqdwKLhoBv7vJ0R4ifYBUG7aP8cFsr56wEoYngYH5/xMRNSEhISEhIWG78dM+j37lcb7+//i9TbuGSXl0HBpE0nFmzeRMmfHrMwQpn/x0kcE9XeSq7WkURavFfpyL7SlvJs/UmWubNr9abgbHotJ1fy9ixkB9WCTESeUyvY8eZvTHK/fFiaZnuOvhY3WzUq+cKXH2+Ic5YL4F1nIp+xG+/xt5IORZevj8X/8y+3t+c6MfFF8/8zFeeO08ej8Yz8ZBxVoVC1dbVofl+MfFkbLmRCfu+/+lZoh/231w7QfQvRfufBzXdhl0FPoHgUHgDFYNrFQdWS2xD2yRr6COvCom0/iVpktHLxrpD0JmL0KA5s9A590oxdh21SJwpeH8vNxBmF2fT1Cu/xT2P1S91trRatD1lltDmUNEemndp3FWm9RCDZg0tN8JGuF8xcn6fRUJNxkSkOn924jtiP9N/AQJCTcciZB6k+H5t2HMEM5tTgkJL303KtdQGvWVnF22SqpZOHqClVuJyvVEvQ82qgqvnAXnoKcLPX0GPf0Geqlxr9LoO7+BPfY3kHSdcM3FBCWk/Rg6/c7y60bnibqHQTLgahfczlzEZPdAfv1loFTSaHA7uDY07AOu849e+CQvfW8h0tMLLJ5n+Zufuko/U4smUud86QDd+2lk9HmWGsIu8PDKe2DiJVSGKLe1LzteTDtkjy+cz7ShOs18yY3iaax3J5FMEr+o65tAqnEmmnchwr7+Blx9F44+QvnuPYhZGmWqFC7fy/izZQonzwHv4fcPEBUiSm8035N27K0Q/9gx/MLy57MV9ORp5PbhdZ0DSqRSByiVzjOXhbcY3zsM4lGpbNx7XhjC6SViEXd9GNODqiCymhBsMMZbUso3WfgmLKUX2Fs/Sj0hYZOQJMo0ISEhIaEJnvzTT/PdX/s25cImVBwyAnsHee6n7zccM3q5cclVgEx7mjtuGWLyvS0ohylrLEmzXXjC0T83SP6SEM46uu9yZDrfQyonGgpq+z57hdGfeqvGuwYX3iaVHVyWlQrw7NfyvLPrIwCMXiqw2P751j8P+JW/3dhOboVypZdrY48xNdrP1cttzMz8iMF7y5ip6mtBBKwPNkDFIov7idZZdrvvTWIO7cI9u6QlTiqL8UaQB5+C2dfQoAK6/P1g7CAEbfOVqjQyYNoWHur0m5i2Azg3tuioOvdBw3jr4MeI2npRitiSIJe/W8dv5tCOh4EJNLwK4SnEG0KDMoQN2hXVIWofwJYnkcrahTzRMp7rJZTl/V1bwbkrmMEPIVd/sGyfYpC+p6AyC5PPr+s6C+e00PMYkZ5nIwK9jbOopBBt5P+sEgwRdgTA8oCEhIQ5vPTD2ODQdk8j4QNG4ivYWBIh9SbEmK5NEVK91F2orDdCVBG7iuj3AURV0a9+B/faN1o7cPY6+r2fIp95YtWhsvuT6DsNhDfNxz/LDhLIDa1LSFUFTT9GdO48zL4Zb2wfhH1HGd5fa8CG5YiwHFGW2t6dXv/yfgEajiMz70O4kKWr6SHovxMzdQYKsREvoy/A0IeWZ7lG02h5QTiW9DE0k1oy5j1ksY3mZdEln5qqowRvl5Hv/st4gw3gpd8leC0Dd30CMntRbxqZ7YMzp0lxksJJmLOcKiOtv6fC66NMTh6jL1ifkBo+9w282/5UEyLiaswikkN1omZrKjgOEmdtenY3YbQ+QwxA6Me5s+s+zxyRu4Ard+N5/Ri7Ut+ZHLLGXqoJHxyEjkRETUhISEhISNiRGGPoHO5i5PTGZ336x/byxk/OrOschekiYS69+sAN4cZZr5mM5a6/7bDhD2jvXbRjlQ4rpnKKQ7/0EU7/+sqZedHsLHc/0s1z36v/uhi9VN8GKs0qLhjCrKNSkjrhxLt/ghNfL1KZKQJj9B1M4RnDbNBPO1W/lupCtml7CsIF34XW6aajk5O4H7+CLGq1Y4f34B9qA3sCZmO7VKbOQ2+dnMP8OSgu3DfxHsZMLwkSmLpQm63Y1b5MutP8u7jdXyJKTwLXAUOYcnDgKWzUhYRZ1E1j0odxJg8ui44tBCBr2LpfT8NLaPedyLUftHzsYszEeehaXi2sVZy7ytKwBcWig08QuUuQyuCldkNpA3wFPY8S6rl1n2eOUN/HDD6Emb6G1GmVNX/doJdNaYCccFNhvPUmMSQkJGw3iZB6kxG6d8DKymVI1oCXugs1Ixt0tqRRwDIuTbUuolZxL/wOcs9dyK6OlQcGRaTtGDrToviWWuW8K6CmC1e+HffWi7U7pq9iph5g96H6kX1dB3N0pg9WW30I3mA7dD9U3SuoK2MmLyOl9+LrpPqh/x5c+SQU38SYRf1gUn31J7dUWF0tklYV1CKaRmWhxI0/VsF451FgJvUZrv7gKvs/n8G7/gy89DvzZ1WAdDcj5w4Rl4RdH1pxsIZ+9Or5yEOfRAaGcIeHUJdC7Pp7fXreIJXKFHHkp5AKjlVFVADFekLkOlFdORJ9NWQTPj9UxwlDh2/aG0ZriWTZiAzYhJudru2eQMIHDJHN7XuSVJxKSEhIuHn46j/+LmF6DQbESgikju/j9XWKqHP43tZkitZvwbIz2fulAWz4/TUd233gOdK7jlK8VCdoehH++XcaZqWuREWGSbE2IXWmeITnv/4RRt+szeIrnbnMoeFeroQ+y+tKQSn7OOp0oTRupQMdfJQ5cdyYEiY8BWFss5vBXQS3dCFTP4EpRbt7mM9WDDqAOsG00qqr1IL4IOmFcriqeOMpTPlVouMHsXmHK76L9D6E01Eie6XqGmsj4ipCJ27y5Y2R+Nf6+pYAMocRCSB/Dum4DV23ryCCzgdg8gUA1HagfffiXPV1owWirr2YkTHEre9aagzUEdbXg4suQ/sebEMhVVAvRyKkJqyG8fdu9xQSPmAkvoKNJxFSbzI8c5zIexdP7iYs1m8c3wpierCp3SgbJaJuJTdG+rr++G2i7/27dZzA4b7225g/9RVklRJFsucTjbNSG50+SK9pMe9S9xOduwqzLy7f2b8brLBn/0TdY4faTpAaX3j9mt7PEEULEaDW7UEm30JTvejwU2j+FSi9uTDnrsNo2xAgaG4PxmSRsFa0lbkyO00RYE0vrvg6JnM3kRcbR/54iLn8dQCmcj/DyLfOAsLom2kGB2vPoF1HufjCIKWr6xdRoVoKutmxno/c+2G4+160x+HmheBJnOvHbIA2acwEqeAopfJ7+P6hRSLqHBUCf4hSeX1Cqqtn6G4AnjeIyCyQQqQb1XGoljAX+jBmYlOum3BzITQI3EhISEhISEhI2Ga+8Bc/wl/7Ty8yfM9Bxl9Zv/DZcaCfayXl5AaJqMCNYsJvEcpt/10fmfQza78v0Qy3/HLAG//zykJqNDvLXQ/31O2VuhKFUg+p1YfVoApnz/8RXv1PjrBwddk+Bvrh4kVOjXkcqePeGH9lHDczJ1opQWcGzVf/tx6dd3fC7FU0txvv8FECfhemFuWK9tyLzp23bR/GFkBrc0mV95v3gfi98c/4M5jeh3Hld2MRdaILLnwfE3Rh9/4SWno3jhMvFZYFRBsG0dGfILr+AOfW8aviqUXz78LMG/MvN698F5XM+q8QBlPY/o/CyPeh90GcO1+zX90Y9D4GI99d13WkPL0peRt2tlomudq7lqmXmBfjOx8g9LagHHnCDY/1k7K+CQk3OomQepMhInjmVkru63iZ2wkLb65+UBVjBzFeD3E0nQWJUMZRrm/oHJVr1TKgmyOIzF9Hd37BHr0wQfTtX1+2cG/5PBdfg1feh3sPrDwwKCG5W9EVypIsO7fX2n1UyeC8j+AmZ7CHcmCOgoax8WcE2jrBfwXXGbBLLgL9y84RLjbH2jpQt1DmxdojyMXvEh36IpG5jPEtMlsrklZ6+3Hzt3QMU1HM+Au1F2l/ALw50UMRrw2bPbz8ATlFZ17FubgviVYX5v5EhLn0tflhk2/EJWwBZk6N0X7o02S8k2AzXHt7iJlnR6kb7bpWVkugTWeRj/5h2L8b114iFgWXG9BRdA3rdW1Mo3sZJxUcAGkglsoEnt1LGJ2vv7+ZS2A3xL8i0oG1vYgERNEoIimMaQOm+f+z995hdiTnfe77VXefPDkCM5hBznmB3cXmyOUGZlIUlXOyRFmWbNm6si0HXQc5yL6Wr65lW9GiEpVJURS5kZszck6DweQcTuquun/0weSEwSRg6n2eA0x3V1dV95w5p+v7fUGkB6MrMASFtMfWu9QyNwy9CNXLPQ3LKsPWPbFYLBbLXIjGIxz52D7+8N9/jf33b2L42OU5nWeMoWRTDU5xEiPga+hoG+Dcsbabcu6cC6ePX6d2QXuchtugRmrDd9QRjz5/y+Jy1HmDigcepOtbMzvHR5pPE01U31RU6mB/MaU3kcAq59dw5dzn6L9u2HJ3FiMR8tlwgS0KmvMl/PmfNUFNlA+u5nh6/eQ+VDQ6IqRG6hswbWG5HmOg+EAjavgofvmj5M4cJ1HjQ3K8rSWI9YMpXGO2CxXdDr0TbAWRrRg9Jg1npBhT8yCTLCPaQ7rfgOGz4Wa+pSCilkPTqChoMmdHQnf0wHs45Q+hVQYxceg7Dv7JBbZdzdKbSiHxTaAzmOELMHRiyreZGmqDeGJBZhTQhKp5YJKIOnq8DTfWAJnp6yzPiixMGTFxKlGqDACjB9GJGBKJE9AJ0olXtB+jPLTro2ln5VseLSsB7TfjONuXexqWVYa1FSwsVki9gzAmQz54j3wQRvIZunHjewGDzrWjg/HefsqpCHO0iwOSL4imvUsyV+WuIcifX+RRVvaHhRnOYY4ev2UR9QbBN34fZ/s/ROIzPzxK4zOYkzchpDpzX0iZ0p3kL0YxrS8jJWtQFdcgsQm6To600ZV3h+lWjFBUPEBp9QbIZXnuoQrWeEOotuuY9KiLprrvAQzhw7Tqr0RazxNsuA8tl6f/FZsJD7JTfHEYx8GMqa8qOo1msgeu0uUY3Tu6I5fGDRxU81dG9zk15K6PF9tavt4G3EgxPCqyLhRGj78mE0tAcQWyfgc0bMJsKEOrAaB/5n5MP0bXIc7MXspzRmYez3E1gS6dVE91rhhzq3nLBZEiItE6HCcL5PEYn9LJGAGMjUK1zIOF+Ty3WCwWi8ViWUi6rvfypX/7N7zwpbcAOPbmJbYfbEBrg9PaRa5/NBLOGEPJhmpUWYp8YGi+0sO5D+ZfB/Nm6O8aYtO2SoZaehZ1nJVtKYBEY5KybV0L9mjZ8FQLXa+5M/YXDA5y8MhWXv/m3LOR9bTHqJ+jkBpE7+Lsl8rx+96lZPsmEu1v4mzaT/PRQi1S1+Ub5zYDEPFcXj7WwT9ZDz1OI8eGj3D0XILWpmF++NAZkoU+vdJicoUlvLftEJmBHG5fFVwtZLea6hct7qiQOh16GPJjasYGabR/cVIzRxohGF1HKqcO0gPQ9Ncj+0z59nH5DwWN6X5xcaW3sfYPY0DFwEmBV4GoBCZ9ATPw3uz9DBxDlT2KXiBbgdYzRW7mCIrXoPJdSHDzDuhGPAKn7xb/uD1EpUBn0P6p0b5hxJwjJoWORAjkxrVYEdUyN8xsnzsWi2XFY4XUO4hAXyEfvDlu342UvCpShPhJwsi7YmAYwyCGrqWfKCBuEhb9O2RlLo9Mfxbzdy+ij399YTse7sI8/wby7IMzt3OHUWs/hb7+Z3Pq1swixAEY5ULDR5COl3Hq7sZvhdGQUA1r7oOhC+AkQBeiFQvPm889W0H9xVP4l69gKJS0MOFHk9Stx1R3ggbJlqDe+wbkh6DhM+NmOHk+EYyJjdme7EU558fdCel1TO4CqvVqGGWrihHKCZz1eHXXyDcv7oJ/3Dy0gbuegEOH0SX+uLqtIXOPovT9biJObPaGC4JPxFtDNtc7z/Onrqs7FxynDtcrLgio0/cjYqZITWyxzIWl+juyWG5gFtnLdGU+S1ksFovl5vjab77K3/7mqyPbga858dZlANbvXEN1bSniOvT70HK1m3NHly9VZaS2dNGF1JUqfpTsK2PDZ/pxgncX1D9P+efZ+P2PcfF/XZ+xnTnzAfXbdnPtzNzuf8cVFzbP3MaoBHj7kCsvULL5U3S9O+oUnPM9Bmv2MtjcRaysjMHBcE3rKIdrHRneUZ/hj74sZAaHuOH4agrRxNENG8mdPQqAu34XQ0ePAVDaOPq7NRMdrAG36Sr4N4Q6AxVl6EnpYOcWsWzyvePfSYMXkHOF6NbEWihahxStAzO0tMXkjIH4dgTBpC+FYm8wDLn2m36y8wYyZEsXY5KTMaYHSg9C1yvzOFtNst3cDI63GRP0YIKZ01sbGSRgcN7jWFYv4pTM3shiWVCsrWChsULqHYRSdeO3pRowaNOBYWjkt22YKLgsB8tR+2FloH/vf2M6FicaV7/zF8j+vUjdLF/QFeugvQj8OYhtkoVIGeSmXkzpyp34Ww7iZBVOh8ZJ9eIDJjeEMYIYDX3vh439fkhtgWAwjBoV2BntoLund3Q4xyEenIfyKuSxTeGDbBDFef9oKKLCuM9qHUmhNzw3YVZOKHQWmFMU4zQLG+NNKGCiNYoNqNYrkLkIyiN/aC1Fj2yi+/+8M2UfC01k8xoq//HdBMWdsAAP8Vq3Ycz6JUz5MM9xTLxQu3R+BEEHInGcRaibYlntxFHcz1Spyi0Wi8VisViWm933j1e7Dn90N2ffuUxf5yCXT7ZweXmmNSX9Q4sftWNWoJCq4g6bP/UeBPN3HJ2Jssa3iNVtJdM8Q3Sh1mws7+cahrmIzS1nNDw+/XGT3A497aBD5+zKnQN0vQs6G/6O0xmX3jPXwp8DDSQAQRUWbF95MUlmcHT9V1KVIj7cjle7Bnqug9GoqjqGr4yWAjLijMzcLQ4gtamw/Cwo0zoNeoxNzASTJ67mZio1qVpkaIxtx+9HNj0DPe+Gtg/TAe3XURVH0JHFLW11A6Ec1XsJ0hcXxsQ9fBlKGxaip7mh5peeV5JbmC0b10wE/jUct25WIdViuVmUt4Fo6ffjeEv4d2SxWBYFK6TeQShJEVZWD/Cce/Ccw+T8V9Bm7qlZlg4PN7Zv8m4Z998todGYYHwkolJZRKZ4UL5JzLeOo0+8CTcWGBKmAsWMeYUtCz8X/hfBdF255fFnmBn6q3+G+qHvQWaq+yJZ1IbvRp/773PrtmwbtL0xabfe9nHypTkIrqOj61AoZPg0qm4juvkKRm1FJtbCVQkIRiOh43XjP4ZiNWW05x6k7iP9mKAJNLinemHg2tgLGH/NZnz0oFITK+vMYQkxbX0fd1yb2Ll2pLXgza0i6E3PECSyxHYufjWf8u96gOTjtZDsgYWuXWwiiCzOon0S0g/EuVmHChFv+l/TnMjjei6Qu5VOLJYpKEKoWe5JWFYhAqhFdIJZeWZmi8ViscyHmsaKkZ9/5v/7bh7+tkP8s0/8GkdfPruMs5qeov0bRjfMDBVdYIp1nBTW3oU2U2iCz7dpnOLRTE6ugvt75xMFN5ld/6ScSHKsGCMFs0HBLsAYW0Hhf7nxc34R12PBIJu/P8Lxfz1zmtbclcvsf+gQH7w8u6DU0xwQRNfjZC+P22+MQYrugaaXAQPJ9QBE06/jFt9H+koTqbpE6HRdQOd9EskIw0N5PBXaMuIVcbg6KqSWVyU4WvoR7sl/Cz00gMRT5DMKkx6zrhybRlfyMHBh/KRLxgcgTF1qaW5PQMIYD12JoLIRGHwx3HaLILoOel7FGQIdmbKLhcEoXLMGGWqB9LsL23e+F9GbMGpp0pJqGQztSjcbku1Eb3FklyDfZJ99LQuO8jbgeOuXexqWVYi1FSw8Vki9w3DVThy1DkdtRUSIuA8R5K9hzPKk8J0OQ/eMf3EL8mc+do1SIBTYFkBI7e/DtJ6cveEyYK4fg6NNsK9x5obxACk/gul+ffY+U+XIhHWUrtpDvmR4zMJDuOHl6W6uItd8Bf9igKqswy0ZTSGkSI17JC7eq/DqDiKOIK4gjqBiiqC4Hie2Gbe1FcquQflHCwMbVLwCZcJiLCarkeBGlZTCL1z5OGY0KtcYgZJ7RgVvBJxilLurMG8DKsXYOpkhERgeFb4jndFQRBUHvfEZsrUpjFeIdl3MVD0Rl7pf+SRqTRcsUjpuP9eJF00hS5JyKCAaXUM+P4DWUzl6xAhT7078JLiVtKmKSGTb0onFllWFsGa5p2CxWCwWi8UyLcWVKR79wt089oW72f/odgD+4W99Pz928F8y1LuyskWdemcxHY+nJlUa5/5NC9OXF+9H5S/M3nAZiDpvUHHvA3S9MbNTbqL5BGU1DfS0zV4bsy+9nXJ1efzOogOYppdGt2+sMf0h6h9PcvnP+hiMbMd3yoGw9I/xA47cU803n29GFYTUsirD7sdrUQqUgFLg+tBbcgA35aOjcchm0IlNYRtl8Bq6cAoOjsbzoOzhcVPTZVUw1rleJUDGO0Xr1FpM5egbQowD/RNqpHrV0BXWYjXGoNQmGHwF3BSkdkL7O9B/I532ImZ+MhG8tAOD31qc/nWaSG+abPnSmI+N6cXU3A9dxxF/cjYq45Ygft/kE53E/G+zpFBOGTp/aZ4dWCzT40b3LPcULBbLAmGF1DuMqPfEuG0Rl4hzH1n/r5ZpRncoS1nfYh4E3/gSzrafQ2Iz/4nL2nsxPe/ALEXPdSTDxGyowaZDoEcXuWo4O6KNS+YDSBVj+towpaVQcXeYokUHI6mKbrRN7Y4Rc9onjRlm36mFzGuM0UTDc00xpudEuFG0C8z4Wi+S2IHJjPGudssJYuMjdJW7myA/moZHRTYxthaKkMAMt2FyYSSsky9G9b+BqT6EX7eNfEkO8NFZl/R76+j+3y9MuoZbxlXU/sJzeLt8kMV1htCmG2Mql1BoHMLzkmSzvUwsmOy5azEmhx9cG7df5lirZipEYrieFVEtC0UxQiOQR6gC6pd7QpZVzNKlZbdYLBbL7UqiKMY/+B/fM25faVURn/7iE/zuv7S2goVlZdsKGp5tp+stNWMNVp1Os3uH4pU5ZDm9eqaS8h2j28YAfRNOzIyWFCqKvwuymWxnD/nYGmK7tuGLg6t9XBVOyikIqZsjAyRPTS6L1ArE9+yi6ZuTha9nPn0B0xuuI1X9Huh6bdxxU3ovZEdrAEt8KwycGNdGl30U7Y/aOhx3y7jjEqlHeq8gfm+4I7uN4MIpnPXbkGAYrr8cjuVVoBsfJV82h5JKN4vx8PJl0H80TFe8mPQfg9LDoOZQMmkB0LoNVbEb2l6Z/NdUdhem9xiSH++QbZSZd8yEcsow+Usr/C/XcrugvM24sX0YPYwT3YMT3bXcU7KsYqytYGGxQuoqwFHrQlGI2b0J73wW6NFIzV/QWRIGOzAvvIU8fd/M7dQwav13oS/95ozNDF1Q9yg0h2Khrj2AHiOiYhQyPEbo01kiDz6A9o8i6jI6YPJDbSEw1HjulIs4JdU4l/8CYxQiExuMSdczl1Q8RsMkEW78l4nOXcBJbwM/g0QjiO7El4KQpxVey0nwe/E33Ec+HtYlTZ+uofV/NOP3v088VYIZnMIz8lbwNd4WF2QRFl5ToAO9xG/tNJHIZnK5U+PnYTIoSY7bJ1JBEDQzX4zJTPNeslhuDuEwwhbELrUtFovFYrHc5tz3if38wb/7G/LZpRFIVio6WLg1gjEr+xlR+WfZ8L2Pcek3r8/YLn/2FNsP38Xptyc7PY/ltT/w2fFvDxLNvgeAFB3ENL06ctyoOAyPil4y3ETu/mf5jV/TwOSIQ2AkS1JJZxdTvTOL9mzn0lsXUVEHnZ3wu5NRF/ApzQCTXMSnMjKP/x0G+Ys4VCAo1KCD5DIYJywvZEwp5uS7kB+GIQ9yl8LUxiV3Q+tx1NlXoWLvFPNYAAbPLr6ICmByeNk4+fjS2CUgFFPd8vuh+9Vx+yXIQrQaxgqpJXcTBE3zHsvoQQwymmLbYpkXDrGKn8WN7l7uiVgslkXCCqmrAJEoscjnyea/hjYtyz2dO4MVHpEKoN/6MpJIIg9PUYt2LEUxSG6FoRnq44jgF/fjDu2C3hME6/eDaUN5jUh+EDPQhHSDKXo4jG4dPoYMnoS4Ar8RhhXoQo3Y4j5EOpAgj3ESBHqym6uQwr36OgytQb91CbVlO6y5jIx4QI65/yaYQh+fKKT6TP64G9/GaYvhfPXfhBv3PINe045bfAhfmon2u5C+CoD2NEE6QvcfldL99Q9Hznc3byZ/foGFVCDz3jCxIwve7ZQEfjOOW72kb2+RbkTKMWPq3LpOCYxZMhsDRncyMXL15tBoHcFxMrfQh2V14yLci2KWtOkWy1Iii+xluvIfdywWi8VyC9RvreE/v/Lz/NOP/T/0tPUv93SWjUllVm+JFe50DZQ3vID/2Udo+pOZ7UOV6YtEk2Vkh6Zfh2lf+PJ/2cm3f7EFybZA33VMtJKO7AOcO1rFufPlBBXFVFelKS/u5FDF77Kj8QPiiX08+5zDxrX9KKXJ5Dy+9KcJ2q5rqotLeXRPI37HZKE1sbGOa6da2ftDtWx68jTN7+7grf/QOuqcLWPuvzaTfx0yYYeZHMYoE8RwbyCBc+n5wtZmTMsHyPYn0OocXItAtg8iReB3YCLVQA3makEAzPWhsvei4wsc2CB5SG2F3jcXtt9pUANNEC9dkrFu4LsDOE4SCcISTIbQEV/cWmSwEEUcqcVXbdxK+mSjexEpBrPw9hzL6kBUGbGyv4cT3brcU7FYRrG2ggXHCqmrBCWleM5hsv5fLvdU7gxWekRqgeD1P8e5bzfiTfS6HItGrX8WfWIGIRVAAvw1RajyZ9H6Go4uhYGwvqoIcP0iZLvBiUK8Gl0WgVN9mMEXx/ejXNj2MCZ6Cal5CpjgCWsM7pffQV87PlJ/NXi3DSlZgzq0BUmcnyBkz+5BOlUbM2HB5Lz9zuhGwSPb9L+DlzyEtP3J6LFrDlf+cw/5zqsTrmumezxPlBA7fKNe6OJjSGN0HHGWtk6S65SR90MhVaQU5Iao6hIKqgaRCMbM/z647kaUSrMqv+ktC4LiIVsL1WKxWCwWyx1H4441fOzHH+F3fmn12gqMXkBD4wqPSA0xVO6/QtOfeMy0PvK7ezh0byOvfnPmMjPdTQF/+dtP8twPXUK1vcWX//hztJ0P01K5xcO8924oULlRl/fu+hl+4lNf59/9wN9AdhCGRvv5vz6V5LWeZ/nWcY8nN9fC6fFpfd2ky6F/dgV0L6BBQ/2BN1jzfxp5/9crufpSF0acWVZ8c/j9jH07aMG5+vzodiQZ2ilO/R1qw8cIrn0tPCU7gI49i+r4O8hPKFETLMZ7IjYpJfGiMnQGCR7BLKWtwGQgWgfDoa1KivYT6BZESkfiik0wBMSZd15fwPE2oXOnb3m6ltVLvPKfotzK5Z6GxWJZZKyQuopwVB2jwsRqZYEeYG+DiFQAsv1wvAkOrJ+5nTOMavgC+uqXZm4nGYLYdVS2HPLnRvdrB/JhuluCLAw2QWwzDJ6a3If2Mae+ibn/e/FlcjohGfQwTUcn7Td9Lej3DV5lP/DiyG/SVHUhG4rHNARTvgPtbmBkBaQN0ZN/NtpAB6hsF/SfR1cfJFNXAulRD2ylFJKrJIh0YrKXC/eoCOKb8AZeJN9ZN8W9WXhxvfJHHgN3ab0igyC9KJrwTCgH8BPAMI4q5oZwHI1sQesAYzL4fjcw/1RCSkWXsP6r5c6jCKhZ7klYLFOibN0Ti8VisdwiB5/YsaqF1GAhU/veJo6bKn+RivseoOu1zhnbBac+YOPeA1w8OnO7a8fz/M9/VEdJzefoahoVtVQqAYRrWj/rc/y1ToYfLsLLXpjcSW6I+1J/Qv3hz3Hthcm2gvrnakC/P2m/wxX2PuewIWhnuMVB2AbGYK6X4w9tHNPSoA5tAacKU7AViFuFVutGjiMuUrQRQx3Kj2K6XgNdiMhVEbRfDMltyNAZGAhLz5hEPVo3oC91EIkOTnETF/494eVLIZjC3rKIeGkhl1rSITFFdWF2MJNBIiXAMMb0YqoeRQIf8r0gOTDzF3iNHpq9kcUyDU50rxVRLSsWaytYWG6PsDrLgiASw1Gbl3say8wCPcAubO6fRcV0dczeCKCkak7NBIPkp/BI1bnx7fTMope88Qe47ZN/H2po+t+R6W7FxDfB0PXRV7YH/DGvoAcwGIbDCEvSGElDvqvw6kaxBjrfglw36to3SBx9HfbePzq3geOjY/qdUHI3aIHed5Cgj2htfIoLWuDFUcwj/khiYfucA0HQjDFL/dUwSDRaSjRaj+OOeR9JN8rpw3EDjJl54T4bWt9KWmDLakfYithHJovFYrFYLHcoG/fWs3Ff/XJPY9kI8vOPZpvM7WMrSG3w5tSuvmQKcXAK/JyME1EBlDvZS/diz/rpOzGahqJvUrYpOelQrGZ6j1+v7gJudSm6p5Ogp5OgtwuTzWIGOsa8wnIxRveB7gfdjzEZjBkovAZRqV0YeoE02u2FmvvQ654KBxGP4Oxb4PeGU+2/iKl4BL/VRzefQPe2TmkqkmBh3xNCEnrfXdA+5zRu/5klt4Vp3Yyu2kFQtbOQwjckoBnfacMkS29JRAVATX6vWSxzxUt+dLmnYLFYlggbkbrKcFQjgV69KSvCAvILwO0SkQpzTzkrWYjWQHZyzdJZMZPdEk2ue/yOZDlSVoe5dizcDrK4f/s7qLs+iSlN4Vxvh6sfgjj4VQ3QcXVSnwD+pWa8Pc8gTsFrMFqMo0rGtQkygzCTp2Rmgsibvo6T+SZBJAW5QUBhJAATx8vEoPs1QOE7B+i/VIE/0D75ehc4hVP1Tz4Bam4L1oXFRwcxHHeBa7jMSsD06XgCREoxpnfevWvdCxTP1sximRKhbLmnYLFMiWAWte6J3EbGYIvFYrHMHxHh4OM7uPjhtdkb34FobTBmoZb5t4+twPhzm2vQ1gKUMq9ri092Qm7tjLGttDAHA/nIOnwpIZ49Hv4OhjrZseMNurffTy4tlFf3EUmfQbo6MLkEEpm8VhURUk9ogpq9kA2PO7UpIvcdGdPK4Bt/QvblsWtQhZHMuH4Nvfh1G4ncME+IgvwAOtaI378Off19cCM4G/ej4lkYHJ+OGBZeSHVzCTC52RsuNNnrOP5OAm/+maLmgzHTR4yG0aQecCuO0/Z51zJPJIJya5d7FhbLlFhbwcJjhdRVhiPVyz2FZcVoFz0iphhI55B33sIYHda50Dp8kteFbUPh/zDVj6RKMD2dmN7JQtpELvufp6tjVODbWf9V4sHSL0zFmXueVinZjWmfQUjVCslWQ4+GtsvItm1QlsJkM5OaGj+Pia1FMteRbfcjyYtIpBZSg+A2EHR3Yq6fQL31R+PPq9qE/uRnUF99Ac5+MLnf/u6wVkbPG+GO4vU3MgWNXkfRGkiN8SoUIQzAD3+POtI3KbZMTD8k6iGfxmSbkaadOEEcEm+BW0pfy71c+p9XmVTT9catyS1cxKNKxYgeXr4FeBB047ixZRt/MgbHKccveP7OB607Mab4tvKBsKwUIsDcIvYtluVgMRdHFovFYlk9bD7QsNxTWFZO1R5BF8yC2giN63Pcc6QJxICES0pRuvBz4btXDKIM2nfQvsJLZnHc9tk1nYr7GS25JJiuN5fFIKnnWPUpGBykrLaentbpBS0VcanYWoeKeAxc7+GB3Z0MSjnn+ycvwDIZBxMpRnL9tMjnuPy1VvTmPWT7D7Juu6Y++RaJ9FnK+Uqo3RaSbEldNVJcj8m3IcHkEjhOWSsmn0A3hbVDVc0+JDg2ro3oJ8fn5jNj0zrrsDxSdML1JxxAwCuFzFVk+0PoXh99/UOkrB6vPo4a+Luw3usU601JT7aXzBehGPqWPhr1Bu7QEEHpsg0/CWMGwzJMQffsjafrI+hZwBlZVhPKrbdpfS0rGmsrWFiskLrKUKoSzzlEPnhnuaeyLAT68rhtkSLkpd9ZlLH6eotpemNUdKv55N3UyzJ4+EbnLohJaj1mokasPWSoGunoxzQfg+yYmiT5Oug9CTjkn/wO1LCHOvs6dJzFqAayzc14m57A3fYIZN+Fa6chcx24jr73R8iXPI0z5KLaWuHtP0dKajCH70f5WfSz96EOHIbLlzGbNmJq4oBB/cFfYpwUVB0CBCIp4NKEOY+vcSN5Qs/RG4skMwixGsiMisaGBPQ2QbIKnWlEv/1N1NZ7oWID5PoIhmb2+By6cJlESSlmoHeut3ta3DXlILeYnuYW0LoNrbeg1DJ4uU6D4xTh30J5Z8dZT+gZYZVUy80QRVhPaOiKLPNcLBaLxWKxWBaP+z6xn3ue2cObXz02e+M7kD/9asu47Sc+W8PjpS/O7eSxj4lz8K81uh/SY2qEJjfB0ORIxsXGH5h7SuM161OThNRoaZKyDbX4OZ+Osy20HB3NKhWsbadk+CQPrK/gmV/o5Vzvdv78L2K0NGvWr0kDKWTdHkrXRCntLOPc+9fx0zl6L8Ha72hEK4UqrQTJQOdRnIb1eOsdzGCaIFGMxDdg/EHELQpT9eJh0hdxNlThVO0DBFU1PnMVgEwohytOEhgVOk2uDaJrGRup6gz6gAEVwdvZAJ1fR+KPoRr2QtcZ0DNnr5Gr70HdAXBu3aCtTALMQqaivkn6j0LxXlALV1f4VlFuNfoWhFTlVKCD2YMlLJaxiFODE92x3NOwWCxLiBVSVyGus2fVCqlLygS9pr29kvqaZZjH+rVzbxsrROv6xUh/EdLehrn+Iej81P6xN3LiODFM0EEQ1QR71iFqL6q/BkeS5M+cJfID3wHDSWg7BbUPQroDvyiFoRs/CbKhDKf0YKHTy5BJI9kM1GzDr19XEBVDYVGVVoATQPZMYQ6VMKmUaGG2RuO19KE6XgLjjztsUnugX2G0D8nd6NaLSN1ugubT0P1B2C4ewNBl0DmUO/Oix2RzmOKNmMF+xNzaosJkl7+epw5ArZiSkIrAn//CKCRAZG41gCyrnSSKw4QpolLI5A8Yi2VFoayXqcVisVgWABHhI99736oVUiexqF+v440FEqteBiFVaH+5Y86tS5IaY6BkXSWJ2jIyvUN0nmtlqPvi1Ceo0NyoIg6R3uPs4ji7PgFB8UaCHQdQV0vRw9cp2XCd/V9cz76uVjqvb+H01x1i/R+gh3vRnVeJHNxBdFMWOBNGfHoHcHuuYSrvwndbMP6N6OAIiIfbMAQDZ8N9ye0wMdhwJEWRh/K24DNeQDc6Q7SpHafpRXBTmOJNSNeHUHIPNI2xK/gutLxZ6HOW7DUDTUQu7iK35dbXo2a5n/uCIbxcknxsadP7TovE0fmW2dtZLAuA8jYSLf4CBo3jNSLK2gosKxtrK1hYrJC6CgmNwg7T1yNcRSxicJqfG995+5kBTPUSl1dNlEPVHL7YjUY6e6DpTeToEHR/GO6e9cTwYiQYQrz9mPyVQneD4Hbg7hnCe+w7IReH9349jEbNXEenGiCexJE1GH8QNaFmqURqMbnTmOEPcWPb8QtBtWKK4NQ7UHUf4XsYELcw09HZih8QaWrHufoqDF9DV9UVjjiI3gTdPdDyFyNXoGUzqFKCi+9iUFC2Fek5C9kc1O+AaCmJms2sbziCzgVc/ZW/mvJuDJ+/SPG+/fhn35v1zs2Ezix/JGgQXMdxK1dGKlyTwA9O3FIXIlFupHa2WMYjKB4kzOElQDEyMZ+XxWKxWCwWyyqgap2tC38Ds5jGggn1LY1JL3neHO1uRWdmXx8pV6i6qxSvvoPE8XK6r3bRfbVr1vOMhF65Q+faKb+vEoY7AXBTmmjJK7AHXnn70/CKy0MHvgH5JmqqLlDzvZugZQittpFrSePVOeOjfB0P/H6k9QXcmkfwI6GIJpEGGDqJkaKCjQBEXIyKjDNsGInhqI2Y9CXIX4BkBEQQpwTHWY938q+RG47VKoY4KUj70PJNjIpBogEZugj4SNUGCHyI1qO9YsRkkN43p7wfcv5reMWfI19zq2l+l98orgauQ6xouacBgFLV6PyZW+rDrIB7almZiCohWvojiAqNksptQJS1FVgsqxUrpK5KrJiwFPgTtLBM1wCD7i6KblEQuhmcj3zX9DVSfR+53grXjkPTq5AupLlNz7EWYM1ujNeLAKZ4FyYfpvExBv77fz1MV5vPkx/p497PbcGJDoAuArUevBR6zV0YM4hhEBwwroeUHoFcHzp9EfFHUyKbzBmIbgYJED8CsSTiD4HvIEE/ZIaQieVRWv/XuE0l6zAOiIlCbhDT8vq448GV05Dph6oDBL3DKLcK4Symvw/Z/Q8goYnqKFGVxegIV39lmnviOvR/eJKS/fvJn/lgbvdxCswKEFKNGcLodYizfCmGR+fiMrbG7fz6yDHzV14CyGIdTFYjKYR1yz0Ji2V+jK3Ttkj933IXIhXAp4BngT1AHZADjgG/CfymMbeYysFisVgsC0Lg24/jGyzqN5OesN5LX8KoCDJx/6KhuPo3VUDnlEe9kgi1h1MUV3fjDb4PuQGMX8pAy7Nz6n3DoTqcbBipWnH/Ohg6BYBRHv5QA/7JCO66DH/3Fy5XTnZy5N8pHLMWKSlHUhEY/BaKi0STAiWPYNyHId2JyXQgg8dHxpG+M1AVZtUSiWIiawiSGzGRfsTkgB6oqR8/udzx8CkEIADX3I2J1uA1n0ANvDianQrALYXLL2K0j1Qcge5zSGwNDF0ElUFFAkz/NfS1Hkh3ITW7mMb6gkEh7/0pzv3fRlA8OKf7ODUr4G908CRS/ijGGV7umbAQD6syS4VicaoxQRfWVrD6UJGNuLE9yz0Ni2V+3Aa2gtsNK6SuQkRiKKlDm6uzN77jWVrPs87MXoq8JRJSRcGuCeLAcAZpugzX3ofrr0MwwRvSK4HububyaSheDEMOo2IEMQ+C8F5+6f/cy5/+Zliz9KWvQuwXXuSxb2tkc00fz6w/R8pLYzZswmk9j8Q3Y+JVBPmzgAEHVNleVLIRyWXRg6cw2as4pghf90Brlsiuemh9CbxiTHEc0TMIfRKBZAPk88jQJci0gIpCrBQyvaPtIil00V6Ci4X6ryWhmGz6eyCXgUQEVLZwW3Os/eHHUREXrzJFvnsInc5T+vB6Imt99GCEo5/+31Q9dIChN95nPuj08gupAH6+E08lkGULS1VgislmP7zlnsKI1IkLHwHqgesoPormb8MxUcBEdd5yZ1KF4uDszSwWy63wOeD/BVqAF4CrQA3waeB/Ak+LyOeMMTYcwGKxWJaZzQcaKF9TQneLfRbWi6pXTfjKMzkkuRUGjk/dfKFH99bS9dp4ETW1PkX1XpdUsgnVeyyswzmmuoofa5xz/15EUBmf6JoSEvlXwzENBMX34Z8P13b5D+AfHbrGwCfuQnxBd51F2nK460uhqAqKt0KsCJM5PXq3Kg9hJIeYCKb/HJJpAWoxQQ6di2ES1Zj8aaRoI/Sfnu0moHQpTsslpP2PIN8HsYllkXxMtBrcKsz11wr7thfO74VICfiZ8AWYzvOY+r3gFmHwEJMGPHQOTNsZ1NpduG9/FX3vRzHJ+YmQZiUIqUCkf5Bs2XLWAnJw3EaCzMlb72qqmrMqheM2YPQA0bIfJd35f6PcakzQj9G3WnbIcjvgxO4iWvwdyz0Ni8WygrBC6irFc3aR9a2QurTeE4Z0OhWW3VsCpGwd4gh09yFNZ6HpLeicRZAyeeZ6U8y1d5C1jxCs3YzJhzVIrh7bTXAyyf2HG3nzvSb8QJMZzvHuqVP88//3dSKRCN/3mXv5r/t9tGMwQ0cR9sGY+qMSqcFIHyYKRDeg2EP2xXYGv/Q2Tkkx0T1vhulm8/2gGmCMkGoideDWIl4K0ich2w6D52H42mhOZZ1F6u/GnH8+3K65G/+MxjSHoqeUlCBRByIJvG//x1ASZeJCt+YLtWO2CnmHCRdPTipMM1z7Uw/QqrMMvTWPB/t8QPh7WF6bsjad6GAHjrscnqYpMumLwKUF6c1xPMJ76hOmhS4HFA4PYcggxFA8QZjetR9DB5DBMJPjQwJYCV64lpB6wrxfbWP2TZfGvghhJ8IGZFq/cYtl5SMsrpfpAj0mnQU+DnxlbOSpiPwC8BbwGUJR9csLM5zFYrFYboUnvute/uhX/na5p7G6MECkdMmG8/1qkGEqD5RRsSlHjDPIwKUwUnMan17Bn3P/Z1+7xsbDRVTt7oPOofD8+gdReYWzdiPB9QuAwHAvVfEW9NWTEClCr7mP3MAAMe9VVMdryIaPjF8ROy4MHgv3eWCK9pF9fQ3pV94hsvs6sU+HkZ4m6Jv0DCOZMpzOLBKNw9D7SD4snmokiTH5sH3mOpQehN73MAZMsAkZfBX8ZowBYmvAuOCUQL4c0/rO+EGCLMGV6WvdmsFuMH04r53Hf3g9RObjQL0yhFR638YpepzAvZXo2vmhnAZ09hKBvwAiKmB0P0gUTBZUEcqpRnn1REt+AMwgoopIVP0S4pQTZI5iTJ4g8y5+5q1p+xSnEhNMHfFtWWoc3Pi96HwTeqwdXCKT0qxDWAc1kvoYTuzgMgYVWCy3zm1iK7itsELqKsVR65d7CquG9XeVUL8uTTTbjAycwoiDTOXxttDEosiX/zUMNs39HJ2fvc0YTHEDuiCiAnReLKX//YvUAJ/dVEJsYy1X+tL84fn/CUAul+PuXVFU8zeIiANFO8g0G9gUhWgh4tNLYsiOjsEgqtjBpIfw00P4+3bhmRvilo9RcSS+DZPNQvt7YM5iSrcj+V6I1oIThf7zgGBq7oHhDkzOhTUPILke6HiL6Kan0XUlqAiovm9CRRL5vv8EkQw3LWZKQPFdmxEFdb/4KOe/+yq6bz6LCwduYrG6WPh+E8qpXNx0EJNIkU1fBhYurbCwHsU+DB8AERR7xxyLFf5PFfZUIFRg0Agb0TwPlKI4BAxi6EMoBaowXMVwDGEPhjew6X6WAoWwAygmtPQECDUIlQBoTmD4EKEB4W5CY8MAEGBIE1a82oCsysc+i2XpMcY8P83+VhH5deCXgUewQqrFYrGsCA4/tcsKqSx2RGqIRHaEAw1cAP/y4g9YQOUN+z9xAjLd4WPyHBBzc2vTmntKkc5vjWybwMdcfQsFOGuqoWwTJtCY9oIYmRsi3RZh6L12xNtFdEsjiahHtOYKyilk0spdHz9I5hLKqQA/R/7kaaLPbkSiOZCCo6QfwxlMIc2XoD2ci6m5D9q7McXrwM9C3yXwUrBhO+JmQZWgOYzpbML0voxqvBcIMIHCXH0DFXcIOktgcIKIOgdM71VMqYsZ7MB9LYL/cMWow/ecO1khQirgdl8jqCq5+Wu4BZSzDp27zPjCubdCBK/o43jxe8l0/ype4iHc+N2jhyWsBavc0JnejR8q/H8YL/8U6a5fwUs8gpd8FO13YoIOlFuHimwlP/iX+JmjeIkHyfb97wWar2VGVIpI8mnEKcfoPsDgxg6i3DUYo8n2/Sb+8Gt4yUeJFH8Bo/vRfitgMH4H4pTgxvYv80VYLJaVihVSVylhet8qtOlY7qnc8SSLhei1Qjobwnqi0nc0PBiJIalSJFWESiYh6nDhtW1kujXZ7mF03mfzkR5SudenH2AsbgRVtx5VUoRIL/TehIgKoZAqXph3ZyzVG5GyGhAHcV1wHHAU2jU4ei0SBmGy//Fmzv2tS+cln9xAmtyHl3j0KYd/+aNZrubv5y/eCXjmcGFRYwJ0zxXSf3qVyNMP4T7cCBLDmMFJbi3O3ghe40byVy7S+0EdqV316HyCpNMFvR9gul4df0K2B1NzD+JpjONhKtZCXxx97BXIDwMXUI27oC8UZFVwDpU+P6rb+b0FEXV+bPzlBxCVAdEU3bODvq+/PY9eljNNzijGDKKDehx36Wql6gAMQwvSl0gS19mD595V2LOLud5bQQHFKJ4GHASXsJ5m7Zg264H1GPowlBKGnHcQ/rVHCSOVbbbKhSGskytsQLF/hla7MDSOEcaBEbHcYrnTMIhazM+YRf/8umEFW37PIYvFYrEAsPlgI7FkhMzQyig3ckdjBDoLKWOzbZCsgaA/3JY4qCJEUoTrChckB/lByHWBuJh4Avz2uQ1l4hDUw3AE6byMydxcelLR2Sn2GrYdilFaYfAihZcb4LqGWGIA4odBXMAgXhKUC9rHDLTDQDuRe+/C2ZrEuHsJ2ofJfqsr7DWfI+jP0/vnZyh7ZDuRom6kpgIyF5EJS7no+jMMp0owg31k/kgTuWcNZkhIuALXXp5cj3bwKlTuD++9B3gVqOoy6Hu1kOL1PKa3AvpaEEBffmtc6leTGYbBud3zSQQ5glwjpNsww53gfxS8mxQEZeUIqQydwSl7gsCboxq/EOjclFGE80GcaiLJx4gkHgAgWvI9iFM+t3PFxYlsIVH97xFVjIhCuWvGtYkUfYJI0SfwMx+ivE2IRAhyp8K/bRSYDNYRe6HwgDyR1MeIpJ6esoWIIlryA0RSH0e5YTkvccpQTlnYILpEU7VYlozb3law4rBC6ipGqXXoYJULqfO0qkvjFpy1NQAYYwiGXDKXIoWjBnAYSpUwtK2cgeQgm7ZvRWICJo945ehoOarIJ1J0DfqOhadlwlf7m4mReqMAPX0bScWnEFKVg9SsQ5WVoSIGdDcMnAP97q2VdyxdBz1XQRSy7QhS7kD6NDAhqtKAahufKjgGfPQnH+f3fjYysu/wIxcQf4BGeYsvHkmSX3uQIPIkajiNf96A/oDcV17A2fPtmJILMCAotx7lVaLdAFF5xBWSP3SE3n9+Bb+thd5C5s5k0UXQeaTmLogVQa4b0s0Q9MHgSUzSwehSzHXBtB2H4nUQKYKhNgwlY379Ez/8b+3LQJzRRaZKxGZoOQNGVozqY8xCeXvOZbBScrlTC9ZdIvbDKFU0si3Eb7oPmcMTtVCCw0cBMFwFKrnxJG74AMMsNXos0+ASRgPvAsoIUynPnh99vIhqsVhWIiLiAt9T2Pzacs7FYrFYLKO4nsPOI5t47xsL90x+OxLMU98w5XdhoqWAAQPi55HsDSdRAwjESiFWj1FFmNhHUOlwra2HEjA0gEoZpOcUDH0w2nGyEdT4VKFS/CBmCiHVGA/MWsilMEN56G3HdF0AM//yTmroKnA/ANGE8MAzig3lx3B6zo5vqAmTxlyaLBGphnvQl284GRucVCtkupB8F271JiobL6D37aarqRpxYtBykZ6XLlP9iIe58rfgRJD6vUhNMSSaEJVBeQOkntzLwJ/1kT93mvy507hVxSQ2vgVuCqneB8qBdDsMXYNME8SL0NfOIGt3oUpz0HcKEusg1wv5PlTdFnRfS2GaCyxcDrSM/CjawdxkZKVZQRGpAMqHYInKVyl3IzqzMJ9LokpIVv1LREZtV8qtvvk5OaWztnFj+3Bj+wDIDz2PG7+f8MMhQqb7PxFkj970uBZAYjjRPXiJh3AiGwly51HehplPEUEKIqrFYrHcLFZIXcW4ajt+8N5yT2OZmZ9gpmqqEBPWQxAgr++i781r49qczuzmw9ebaWwIcHuex1nfAH1nCORuMidbiR3aPSqijiCImHGzGvecXFKJU9+A8oag/wQEx2AIFih4L5yBKEy8FLV/B2TO3XR21cqS1yiufpz+9oC1WxWpVBb6VHghZTuBLCZ3HlQ9kbIrDLkO+AHpX/1z4r/4LMbpRPtNaL8JGBVVnXUByWcfZ+ivvo5TliB1sBpZUwIDJ2H4xORSldkOTPwh9LE3wE+jGu6Ftm9hUFBSgfSeCJexArgTxLV0N8aYBamHoKLzXVWsjIhUAGNyLNV8jDFMW5jnpnAAXUjlWjRb4wVFaJiwZy+GVqB3Sedx+1OP4j5knHCaXLbZWCwrFbX4kQnbReTdqQ4YY+6aav8c+bfAbuCrxhibQ9JisVhWEA9/2+FVL6TON7WviZejc6NOlA6N0DO+lqJRO8M0teX3ofMXUIMdoLMwvA/9wcvIjp1IZu6iZ7iGWgvpCkxnJ6btFOjrs553UxgNGOq3RHnmgVeQwRbouckuBq5zQ0x29x+A4hhkLheuoQpyZ1Dtr9OV/QH6O+M0GhAM3UejlG+uhHQn5so7mCuME1W9ynNEd+8ie/wEbnUpyV1lSNF+6D4OHVPUsew5ibP7aeh/CYYNpHZB1/thWSAnjoytbRktgWzv6LY/0fBwC+h52BtkZUUwir+Ekes6z4JEQEkEoxfQiHYTeMnHxm1HS76HdOcvY/RN/jGtcrzkU0SKv4CMCVF3YweWcUYWy8pkCWwFqworpK5iHFUDxFnIOoSrhgmpbzNtlcB4T9BJGlyh/qjKfgjuOozvEMS2oHQ7YkZDSPf8gMOJ3zUEaQ1eBFMUx917EAlaof8MDF5ajCsaxY2iDuyG9NnZ206B6DQPfq/wlV+Bxz7dBtdewRQ1IKXr0Ml6iPiYXBtGFCpznuKPPUD/n52ETIbgzR7UfWN7M2NEVYg+XU+qthGn+3lAz6pLSc9LSPEGEA/T+i1EQNCQKURiV2+FgbMQKR09KVICH/lHC1ZUXqLz/Jg1auVEpOo0SyNgxclmz83rTJFiYpHnSGd/H4CI9wCeuxuRkoWc4LwQPBQfwXAcw8nlns5tgbAN4WAhvbLFYrnTEJEvAj8LnAa+e5mnY7FYLJYJ3PXEjuWewrKzUDVSJTNFuqixa00jI7YCid0Q8OKYyEbItyCmYK/JdkL1Ieh/G0TCaNZsHHq2o9suQ9/iR7VV1ns88+C3kDFRlTeD6WlC1uzCtJzC2RxH+2eg9iBKiiCXhJJKGOxFuZqW965S9vCDlLS9gt81QH7Pfrz0N0Y7C3Kjoqo4JNYWU/RMDOl9HbKEr5nm0vQiUpGC4p3QUqjlGmTDV34AvATkh5HSRkxbb3g8VYcZXkD72XyE1BUWkSp+mqVwulbOGnT2wrzOdSLbcWOHyPb/HgCxkh9CeXXjolGXC+VWE6/6F+T6v4SfnmNJr1WNQ6T483jJpxbMZmexWCxzxQqpqxxH1RDoy8s9jeVD5unNpgkD3m50403Rz8RdQaYwZBanbgPZDz4kC0QPPEDU/crISdlckti+tdTu6seL95Id7kF6XprfPG+WSBmyfj2k37+lbtZvv0hxZSOVzjfCqmcDVzEDV6G/Dl25HSJRtJvCAVxeI3rgPnIX2/HfPU/k8M6RuidiBDECRtBOgOYa/sa1ON1zWzyICHlnH0FPDhM0Il4Ehy5MEOCWJVBOGszZ8XqlE0PWjtbANHkf8eb/UTnviFSzcgQkbXoxpgSRxSxh55DP9jA/x44IUe8RRBWP7BHxUGpu9U2WAsFDOIBhLYZrGM6zuksCxgmvP0+YFLwSxVYgAcQRln9Ra7HcFgjIfJ9l5tg/cPoWI0/Hdyny94D/ApwEHjfG3FyRNovFYrEsOsWVKaobymm/uno/ovVCBf6pKdaDYx2zxSU0MAByDZJVBKfCRBDOjn1I5o3wmD+MNi5S9gimqBR0FnO9H3P2lQWa6Mzki3fz8efOI123FukqsSSycRP4Z8IdfjMakOhG3C2DgEtNfy+nvgrn3htm595duJluepoSVJQ3Ag6IwogHeBjxUPkWnOZ3YPOhuU/ETxP4j0BrHvz7kGQxQhOgkXgxku/BdJ4bl71KEhXo5jGOsW4M/Mz8b8a81vwrS0hl+CqUbIBFrMMnqhSd72I+1y6qjEjqYxg9GkksEsGZUM90OVFOKdHSH8OJ7kPnzpMffoHVXDtVnAqMHgCTQ5xKnOgu3PgRlFOBqBJEzbN8lsWy2lgaW8GqwgqpqxxHbVjVQqoRH9n3CHz44s2eOW4rc2Fyehczw2eVWxYhuBL+HKShy72HK8330nrB4ckvvEJl6V+MNl5/b+hluRQkyiE3Md3wzeNxhfs/WYv449OlSH8z4jyIGVebV4dC5WA7ZhAil2oQ54PJncbXQ6IOCNDrn0Zd/ps5zcXvHiJ/OlzsSLIE47UiJiB3w4k2upFIsmz0wzDTiQkC0AZa2+D9v4KP/9jcL34C8xZhzUr6RvLRvovjLabwFxSMCDdPLPosnrsbgHjsO/H9CyhVO8tZy4NQg1CDoQHNu0DXck9pCXEQ7kGoR/Aw5DCcR2iwNU0tllWCiPx94D8DxwlF1MmF3SwWi8Wy7IgIh57axVd/Y2lEupXI9ctZWns2UFt2kxmhxtkBHBiYKuPO1MYCEUHVbkRfKKyXdQyT2gWqAm2yUCmY/FXQhbS/xRtvbm63gIoU4TV9cMv9mHQf3t0NTMwLbHJNYYSgyY0YfvMDaU61baLzpAcYnn56F+b6jcxZ+cILIhv34BYdgguGWNV9RIPX5jaX1suY3jD7lVRvxzFhVG+hki1SUY7xZOS3ZXKDIAqUi6rbDwToq1NWP5gTomUeiWpXmDNurg3X34MfGVi0IYzum3dG33j5T+N4DRhjiJX+KEHuAuJULuwEFwARwUvcB4n7UNGt5Ab+HOMvcHruFYyoIqJlfw8nshmRCDrowh9+FS/5BKISyz09i8ViAayQuupRsjLFhiVDcvDQE7MKqf/q+Z9iqN9HG4MODHe1x/iej7/HW6c/xh/8VhUiCmF7mKLHGBAhCDIUry3jr58Xvio/jTGGZ5/u5NF1/wvlhnbDwdhWPnhlF63HWoEeKja4eNlbFzLnTfVWyH54y90MZ7ZQVtE/5TGVS+Aj5DsjDLQ/AkaQ9Gja2OFXmkg+Ikx6Uk5fDl/iYpwidKQYlZt6jLF4VYZ8oUSNGepDdt4HzWMMAtkhTGbMYsQE8L9+OFwgGQ3xasz1VqiuhM4eOPMW3P0EEo/O6V6IN8/I0hUUkQqgTWZsEPYi4BEE8/MYyOVfx3V2IOLgOhtxnaUzKMwXoQrFUxguYTgL9LHiFsULRi3CmoKAOiZqmAjCzmWcl8Vy+yMsrpfpQrr0iMjPE9ZF/QB40hjTOfMZFovFYllOthxsBFavkNp8oYcXX7+Xb39mBiFVUkhvNlw3Fl6S6IUkOAOVqNajhGlP4+GXakGhc26U62l9CQcNxKC8DpO/AMVhZhZZsw0yVzFt58PtzQ9g8q0TJrCIkSYTkGBhzIdSVIpEslMsffJQtJVc9wWutFUztKEIADPyNCJc6aujgckliHIXL5A1YJRLZm09VZtAzWE5LeVrRoRU034as/kI0jcmvWq2G1JjoiB7L4a+vxJgWl5DyrchlVsw3ReRNXsRLxIKq3qO67r5BJeKgDih3WKFoPI+i5lQSDk1aP/yvM7NDX6FeNmPh0Jl/B68+D0LO7lFwIvfixs7SH7oefzhl9B+K3dmhKrCid2FE92OG7sb5YyWZVJOBZGijy/j3CyW25/bwVYgIp8FHgb2A/uAIuD/GGO+6yb7uQw0TnO4zRizIAKYFVJXOUoqAY8bnnyrEV00jKrfBtfOTNumsyVNf9do1OkLf5bm/Vd/gHw2oLd9djHvBm+8twbP+V4aSwwqXsWLL60jNzi6GFJT/UUu3doIspMja28WP5/i+O80IAKRI49RFnkegMDdRj67Hf1SwNDb3UjyJOffC9PkVN67gSD7APHqJPGWy7jd24jWXQXjF165Qt2YGw+PQ0j9/XBx9qhUN9VL8mADQS5J9uJlGGqa1MboqVIzF1Y16Xb4618YXazs/HZw5v51Ie485MeIC+4tpAhaBILgCk6wPUyHvCgoRq0L0xPxjqBUHdncN4A8xgyhdTuQI0wXe/sgCMJGYCOGLJpXgfnVG1oZeAjrCR8tkghJQhHVPmpYLKsdEfmnwL8E3gU+YtP5WiwWy8pnxz0blnsKy85ffynNZz4SwXNz0zcaHO8Mqi59AxUth/wZyPXOfbCideDtwLRkUA17kYG3ID1GPJGplMElzGI0n3XtBKSskkjsXWjfgKleA3649sl2bWf4UiWXO6r4b7++k3W7Kjn2bnhfH39qG4OVjaxbX8LpS+2k657F7+hG+wE656NzeYK8H2aUAjgN99Z/hKr412edT7qvlJx5jmiqFy/9DvS+MemWTlmHsSBimu7QhiSeC+1vw9oHxte/nY15ZKESkitKRAWQjteQ2BGMs1g2jLndp2jJ94LR5Ia+itGDYLIEufnVVV1uRCJEUh8lkvoo2u8g3f0fb+sIVXEqcGMHQaIopxJx1+BEtiDzzEpmsVjuGH6RUEAdBK4B22+hrz7gV6fYP3gLfY7DfmKtckRcHLWeQE+VbubOQaQMY4aBLFOJNfLAc5g/mF5ILSmPjhNS81mfjqa5C6g3OPFmJ8MD6/jph17l5WMHyQ2OD8bwkqVQshv6jt903wvCYDu3kmEzl63g6J88TP+5Zoq3b+St3y6nYvdPUtaYoyLSBZc+QGJJTD7A9LQTKdlOri+NzgekrzbjRtbg9Tcz9K0o0U/PnO3PRPScHqeFLLQexQES5R5SuRtTsZ/89fOQvonP0huLlZN/AKf+BLP2XihfD24UKamCrVunHt+7+QXnmn/1MZDemz5vsdFBBrVIYanCOmLRfWSyfzxjO8fZgus04jrb0bqN4cxvEPEeQeT2ElEnIkRRPIjmr5hfndjlJoniPoTq5Z6IxbLKMItb92QBvLlE5HsJRdSAMLTpi1MYJS8bY37rlgezWCwWy4JRt6WGddtraTo9MQryzkE5ijUbq+hs7iE7nEMpQY9xsh3qy/DB2Qc5vPObU3egByZHB/pD4etmaXkFKb0XciD+6climVcOkQTkxogpNyPa3SJC9pbOV5W1RNYOwlAbFB9EBs9Aaju4CTq+miN/7TilazcS+CV0No36W2UGc7Seb6e6Ok7/1U5Kazag2mYWx1qatlO1dXYhFeOTPnGBNCCxzcS2PEa8spsIr6JuZk1WiEA117+FROJI5X5wYuFTVHYY03J0mvHnPsSN9m5mJZUAKmByeBmHXHL2pvPBjR5GIofJDvzRLO0OoJxivMQj+Jk3yfT+BtGSLyzOpJYQ5VYRL/8HDLf/PLdfZKqg3Hpi5T+Ncq2twGJZWla+rQD4GUIB9TxhZOoLt9BXrzHmlxZiUtNhhVQLjtp4BwupLjHv23BUDQDGZAAPbboQXESK0aYTXXcRjgwTnPgLTP9kL6/isoX5U/GiLt/3yAWqfuY3+EzxGppeOY4oofXd86TWlLHj8w8juVbMyX+PufTb4UmL+qE3gXl6NuZzJTQde4yrX+8j39eMMZAfzoAxdB1roesYFN/bjAeYzBBe3Tby1y5TsrGMjvdHFyheMgL9kL94EdO9DYdeCPLg56C0jqC+ZCQdkjYGiZYj2ZmDWoTe0Q2dx7S8H47lusimHRinGDz35oKyjQ/N3wpfgHHi0P+dULcFqa0e9zu7WSG18ieewN3QO2u75cAPruOYNYuwXvdwZDvilpPNJjBMHRkdjTyHo+qAQv0gVUMy/tMoVTxl+9sNwUPYiOEU88vztByUongcIbbcE7FYLCuXGyFNDvD3p2nzEvBbSzEZi8Viscyde57Zc8cKqVXryvh3X/8HVNWXYYyhv2uIZEmcM29fpnZDBYmiOGffuYwZvoSsqcB0fB383vGdiEC0AjILUPI7Wk3QEyfyHV8CMZimb4Zi3JWvIXUPIZs/A9mr+Ff/A6b/zcLw86mxOV/mN5KUVRDZtBbpfwOGMuAlQV8GnYX+D8EpIX8tBQi0XKK05BC93UNUri2h83rfSDCiV8gK1Xy8mc137SPva3QQll4KUikuNg2DgBLh0nnYs2V2ndlxR+t6mkya9LEzoaga3Ut0UwOx6iFieoZo5Knw05jWd0a3E1Wo9fdiBtoxXRfH35vg5hbWnl8LA6/P3nAZkIGLkKxZ+H5VGV78fjBmeiFVEsRKfwDlhHYBEcGNHSJZvWNcutjbGeVW48T2E2Q+4HYRU53YAWKlP4GouZXFslgsqw9jzIhwOmUGiBWGFVItGLNgEc6LjpJajBnAMLOHp5BAqbW4aveIiAogEhr7HRn1hHKkFqe4Fj56H+6T/5Tg2J+S/7t/AYMdI21KbkKnESUceHInx148Qz47vjbGZ75vE5t/+os4lesAWP/4fgAaH9032sitg53/CNP6DUg3L21q37nW8pjAsT9/gq73ro1sl+zaRO+J0UVCoq4S4w2QjZRicFCJOuAyyRKhA0au0YmMio75q0M4+b8bHUQ9iM6O/k4ATNVO5Nq3Zrmmad7f2se03qhHK/i1d6NKUkj+LJK9NvU50xGk4b3/CceLSX/+F4l4DSjlAYKR2dMlq9IEuneYoo8eIP7IUv7Cb5YcRseReaf3FYQawEfJbiCKMS0o2YlIWFTFcRrxg1MjZyhVi+tsRiRBxDswvjcRRO4MEfUGiv0Y9hCmKs5haMVwHFgpqZ4FiBYiT+sRGhFWVj1fi2W1IWolf29AwSv0l5Z5GhaLxWKZB53Nvcs9hTkRiXs07lxL2+Uu+rtmtm+s2VjJlrsa+fRPP0FVfRkQritKKsPUTLvu2zTSdt8j24BtwEcxm/8vzPUvoS/9F9Bj1kPR0rkLqU4cah+B5sklakz1Z/EO/wISK4hBmz8dHtjwzGijWCNO3U/gD34QCpFLiZmfo2e0rh96xtQ13fQwZD8c2cxlt+LWCCDgetztFfH153uoWVdG5/U+RIWG1cJ/5NM5hrLQ+u5o7dri/Vs5+37zuHH7nlxPqXd5xrmJTL2uNdkMmZNnyZwEHJfopo8Tq8zhBe/i+B1TnjMtwx2Y4Q6kZjc8cjfSW4QZDG0EJjqHwqLGA8nj6rXQ8+rNjb2UpC8j/nqMO09bgcRx3HpAiCSew5h+TNCLF38QEQ8A5a5Fj6S3dXAim3Ai21FuLV7s4PjuxEXuEBH1BvHyn8boDMZkMbqHIHOM3MCXWTlO2A7ilOJEduLG78WJ7r4thBGL5U5mpdsKFpioiHwX0AAMAUeBl41ZuHz4Vki14KhG8sG7rBxD/dQ4aisx71mMMQT6PL4+izE9hLUVDYYAIYHn7MFRW5Apa4jMjDge7v7P42z9CP67v4tpO4HuOMPg23M7/zP/6Cnu/eQB1u1Ywy898185/foFthxez4OfP8ymgw1s3L9uTg8SkqhD3fM/0K987qavYTkoXgdd741uqwkLgnh1OcdfbRvZLtkepTqxDq09ZM06TDxKyfZq3JSDatwKIgy3xLjmfYZ8ECMfRBjqS/DWe80YY/ADCHzDcw0pNjtPhWs6AyYwYW0UU6h7qsPwVde8NIs3qsG0niYoOFtL5X5URQWSP4dkr879RgR5jO4nmx1NzWzipTOeknp4F2U/uJ3siTTRg7DS07pq7U+Z3leoQWQdxlzHMHXtDsV2HHV4wonjvVajkafw9H4yua/hOpuJRT+6UFO/bRAcwnqvcYQSDCVo3gN6FmnEEhT7gEoMrUA3oWCaJcz1LQhrCz+7Vji1WCwWi8ViWSU8+OmDvPwn76KDlWKon5rP/syTfOGfPEM+m+f533+Lt792nNbLncSSUXKZPEYbqtaV88mfeow9D26Zl3Ff3CTS8ENI9dPo638Ewxcxg2egbw5OuMpD7vp3SP1zSLKe4I/XQbYL6p9F6p9Fqu5DSqYuFTOpq+QOnHU/R3D13y5pat95E1sH6TFRzc7491Lf0XIy10fLLG1bX8eH9SVUlsXZsr2aWCpK9dZagmiUkm3rMCLkvShbD9fiOKAcwS3WVH2sAsEgEoqu+dwj9GUzo7YCXUjAZcL/jTFINAG8x4wEPtmz58ieBaSKyPq7idVCRL+N499EJLL2Ea8TqjqRqsK+1Obp2xtQ1OD0X8MUrUe63pz7WMuEm3fJT2FldqN34bjryWffRvtT21eiyU8Tid8/Y//xsi8S5K+S6ftNokWfJZJ8dCGmfVshKhZmg3JKcLz1iFNObuDLmKBz9pPngRPZQaToU4hbRZA5ivabAAdjsiinHCSOG92NOOUg0XnZYS0Wy23NdhF5d6oDxpi7lngutcDvTth3SUS+3xjz0kIMYIVUC46qQSReSHu7ElE4qpGI+xBQSNPhbMF1tizaiJIow3vwiyPbP/h0J+/+zXEuvn+Vhl11xFJRKuvLyAxm+dr/eJmzb13irqd387l/Muot+txPPspdT+/m2b/3CErNQ9Stuh/1ySvok/8dri7I3/uisfHuvySX/gzXr8TxOzsxwXhnD9Hjt/sutHJqsA6dDyOLt1TATl5HhmoZuDT6PmxOPc6bL4a1aIu3FvMP//a/jeun8YefoF7NXB8FwK1L3lSdGtN5kaAzjKiVygOoinLEP49krsx84hReweJNvbh1qktY+x8fh2gP0E10qb9e5onvX8Fx6xEZvwBWsh0ljRi2E5i/xZDHkbuBLMZ0IlKC0DBr/0oVoVQRcfV5RBapyMpthlCL4qNAD4ZeDOeBLm49XL0KxR6gFinkzBI2MJqF02KxrHgE1GKWALgN7LMWi8ViWTx2HtlELBlhuH9l2gqiiQgPfOoAn/ypxwHwoh5Pff/9PPX9Mwsyt4LE6nA2/gwAWmuk7ySm6S9h8BKU7QU3gcTXYrKdmOP/AQbOITu+iNr2Y6N97Ptn4KZQG+dXv9Gp+gSq4inyf/fzC3JNi0nmRBuxPfeD8mHgApjxXrnDl8ZHEHt9bVQOJsi+000F4NYXcelEK3gevadGBdmnDwVEOsMo1NJ924lfHl+HNOskyHTNLHI7pRU3dzHGkLt0kdwlQCqJbDhMrAYi+l0cf+YU2Cbwp3BInfpBS0wpbn8rZN8It282Y9YyoXpOQ2ztJIE/kngWx63Fix1hqOf/Rjm1RJPPoP1WdNCBcutwowem6XVM/251+HLKUd66xbqM2wovcT9u7BDav0aQO4s//C20f41btRU4scNEUs+hvPUjjidqFQrXFsttzeqyFfwm8ApwAhgANgI/CfwI8DcicsQY8+EM588JK6RaCqxMryHXOUjEeXDZvZpq1lfyzI8/MuWxez+1n7f+8kO8mDdu/6Fn9tzyuKI8JD+wpNl954Ny8lTvuMLbpw9y4ih83+4MNZtD70ynci1Ve99GHepDdAZ0lh//Tx/nwe0JuNIEQDSSDzOZTkgXtLG8gzcp1FOYIhDfN3P81FYRmCUd9HSYzgsEnaFYK+V7UZXViGmCoTOTHYCNDqNg1ZgD7uQ5quI4a//tkxDtmteclpc8OojijEnZI2wsRCyCiMLhI4WfC4tkabzpURxVNXujVUS46K5AqAA2YejDcB7DGcJFUoTwjyhBmF1AAzHCr/kkYaSzB+QR1iPUA6UjAqrFYrFYLBaLxTIRN+KEmX5WID/xq5/nqe+/f15OywuFUgrKdiNluycdE8Cs/zzmwu8g5fvGn7f1h295bFExJN234m0FpIfQmSgq0otJd5L/MEdwVYHjwZqtaBPHXbMenc+jkkV0nvJJlcUZ7AnXm7lCuSRjxl9pe7KR+oKQOvEYgJEp0ihNbBP4818NGUPu4kVyFwHKiDQeIFrrEVHHcXMXJ7fXeWBCrcgpfnlikrgDnZBtme/Mlo/sNZxgG4F7QxwXIvGPoJywtJaoBMmyXwSJhHYDb+O8hnEi8zvvTkVUtJDmeBOR1NMEuXPkh57HTxdSQUsSzBDiVGOCdkAhKgmSQDkVaN2DSBxMHjfxAG78bpRzk04GFotltXJ6GSJPJ2GM+RcTdh0HfkxEBoGfJSw19KlbHccKqRYAou4jZPJfXu5pjOA5d+E5h8Mv8xWOUop7Pzm799y8mcMCYKkxGnp79zLcW0NmKMnAtTitr15Dr4E19VESl97AFKJQnaADt/v1cednB4fpj9Vwo7plOu2BAwTja7SqayeoqD1CV2t2ygW8P9dV4wKlPDLdlwm6L4ddlmxHVdWDakeGTiA3lN5gvJAqruDVV+KUJMicuErq0d2U/cDW21REDQmCPhy3BCGFkh1hncwx91hW4Hv2TkMoQbgLwxYYSQU8TPi1ngX8guhqsVjuZAQmZQhY6P4tFovFsnqJJaN8zy99nP/v5/54uacCgOMqfvQ/fI6HP3eIRPHKtxWIE0G2/tDiDTBVzZXlxnFwNm9FlRQh0QhqqAl6X4SyrZj4IYIPCwEhfpZMV4TMxdFap261Id9vaNi6npNvhkJqLBaaLXUwfvF/9kQva4sVSuupg++cOQjsUwiw8yV35TK5KwBRvLVPEq1PEnXP4WROhOYIP8dEIVUwiCnFkAYyKNbg9J6H/E3WYV1BuEMZdFkFyiknmvwkjjc+25Go2DLNbPXgRLbgRLYQpJ5GqTJQcUzQiagStH8dUQmUu2a5p2mxWBYZaysA4NcJhdSHFqIzK6RaAFBSj6M2EejZ06QuNhHnYTz34OwNVw0rx8fUDzy++cIX6LpWTOzoh4SRbxmqdjegcz5aw9q6CIxJ5ZvcXAz58f1EY9DSnhkRUgMtoRakfcZFR+uAw3e7fO0vszBFXZ78XCNSF+Hj3fRdJ+gr1AL1qpCazahkBHzCwL8bIztQ/fOPoKoHwOwDNcji1bpcGrRuxeH7UMp+hSw3MvJXBGENUwgjUS0Wi8VisVgsllvnsS/czdd/+zUuHWte7qnwz7/84xx4bMdyT2PlsIBC4C1TXEbkkYNIwkM6XxzdP+gVMjcFaFMy7pSsXwX0ju4IAkBRHB1d+9/w1zV6vD1goHOQ4Z07SV09PulYeJ4zuyXFLI6BOX/9GvnrMAio1D1EGtYQTUGckxPGN7hDA5DrBAT8y4synyVl+Bqpzf91uWdhARxvtLSSuLXhvsim5ZqOxWKxLAc3ipkvSO04awW3AGE6zqj7NOnc72AIa1IKxSM/j8dBSQWusx8/OI02UxeLv3kSeM4BXGff7E1XE0u5OJplIfG3X/9OXvr9LqCHI3tqMa2FOiCR0LNSpKChjnGMjRd3huUcx5BMCVfOtLG1PoLkcnRcGuTU1i9Q6fdgqgQTaIzWmMAgmTxfL+sm6Ovi0O6PEfiaXD6PDgwRrxI4N+OcneoGyHywuK4y+WHMtaMEgDx+ZNyCTWIgrgbJha87ACGOLGaefYvFYrHMEbPIn8f2s95isVhWO4niOL/4hz/Kjx/8V+QyoYdszfoK2i5PzrATT0XZuLeej/3EI/zuv/hrms+1Lcgc6rbU8KmfesyKqJNYyu/pmceKPLkH/GOYbAycJBIUSuvUbIPeyyDji4oYA4MXusePkM8BMXTHaERm0N3HMx/bwBrVgWxKIjoIjQ5Gk6rVbLqnHUwrsj0I0+dqH0xAX2+U9MxlS/HqGvEvHp250S2iB/vJnOwnG08SPzTxYB5y3eD3LuoclhJxUrM3slgsFssSYG0FwJHC/1Pk3L95rJBqGUHEI+I9jtGdGNJ4zr0YM4hIDG06MSYNKBy1FpEEAK7aTCb/x2hz66lHIs5hG4k6FQuUlnZO+FmmUxzTmVJe/XLfyHZHtIoK04oI9J5rxot4lEdzXL6Yx79vH+7VY3jlcVT325P6KipWtLUEmHVrkQuXGWrt42xrH7FHaglOvj+p/d7yav7w9dOT9ud1zazlfZ3ycmQpA0AnatHJ2zeF70yIeLM3slgsFovFYrFYLLc91evK+alf+w46mnrQgeaTP/UYXc29xItjXD3ZQm/HAMmSODuPbCJRFGZH2bC7nn/y9K/S3dI3S++z8yO/8lkOPm5F1Mksoa1A56c9pDZuBb+wXtcZqDgI7a+E215BUI3VINl21Lod6KZT5IsPkD82fq2ss1kgRqa1k7LadfS0DtJ7uYPey+3UP1JC9ux4m0D3VUVDyRARf3K0tOPO/n4Rdwnr604oYwRA72RbyW2PTd1rsVgslkVAQkP0JiBvjLkwZv8uoMUY0z2hfSPw3wqbv7cQc7BCqmUcrloPav3ItkgZAI6sm7K9SJSY9+1k839JYK7cwsgeStXcwvmWBcEfZrpo9xNnHsHPjj78n3+nidIH9+CePkZ+YJiyuzYTfHiCfHQr/+OPMjzy+MM8ePAS9AeT+ioqOCn2qQRlY/YffbGFAw/vIXfq2Lj2n2gs5c0LRXzu7gaSEYftpQ5VZphIuQsL4+S8cASG2yZT/DwxZJd7ChaLxWIpIOq28AS1WCwWy23OI992eNz22s3VAJRVF0/VnLWbqvjVV36ef/rx/4crJ1vmPW5pdRHrttXO+3zLAmGmEAILuDvWMTZFrxn6ECnZA33HIH0J1t4FHR+ilCGaOIa/5yP0nF4HnB0/RC5HGOEirNtYQk/rYOGI8PJrQzx0eAPZMTVVCTTd+fupiLxOWu0g0DHS/XHygwGJeAa4PstFLZ2Qavzp798dRTA4exuLxWKxLAkr3VYgIp8EPlnYvPGwd0REfqvwc6cx5ucKP9cBp4ArwPox3XwO+Mci8gJwCRggFFyfJax99lXgPyzEfK2QarllRFyi3sfJ+c/j6xPzOL+cmPcJlJQu/OQsN0c+zXRCan9fEiakej59qoddjkK0Jt/dh2BoaEjScbmLF7/Zz56DkJiir1jBSfHa9cFxQioIH7zazYFDm8lePD+yt+jKJf7PY8XQdQqyhB+JQFHV7F6mRi/tl4b45vZIbnBLBBgTIOLM3tRisVgsi4ewuOl67my/IIvFYrEsMmU1xfzyV36aX/n+3+TDF8/c9PnbDq/nl7/yRaLxyCLMznJTBDOUqYmYSZmZtBcJZUoVh+4LkO+Hmnug403c3NcJMt8zuR9jUJ6Lzgck1fgIWD8X8OZxl7s3VpNrbR/Z33Y8R9fQekyud1z76L662a9pKZ9zdIDRClGLU5d1pWCC4eWegsVisVjgdrEV7Ae+d8K+jYUXhKLpzzEzLwDbgAOEqXyThN5d3wJ+F/hdYxambqIVUi0LgohLxH0MP3cByMz9PFLEvc8isiA1fy23ygzpeno7o+O2q3atw4l5dCdrKM/1MXT1LAqImtmjFZ2C/nb9Qgf7d5bg6gAVi1BaNoAXEYYihuLtmwkGMxCJIgK58hIkUgVKAQ5GYEinUGWPAAo3CjE3ixn5JBeMAeW4LGkS2iUWbpePHBBf7klYLBaLxWKxWCyWFUxJZYov/tp38oO7/tlNnbf5YAP/5mt/Hy9izVYrAjM509QITmZUSDUKMeuQPh/ULoh4kCk4SavZBXFR4Xo+19JCstglWeQQjSuUuDiuMFhSS1ncRbmCchQIpLakMENpREl4vkC8OoIq24aI4MQ1bjQTRuaogmFZNLl0juktIIuAdkHNIEjfCWgrpFosFotlbhhjfgn4pTm2vcwU8q0x5iXgpYWc13TYJ1LLgiHi4jl3kQ9enb0tKaLex1BSiYh9G87IwjhNzHUwwvQ2k70k73voTY6/tJvGHbXk+ofIxj3efvkCIqFgGYnXcPBADTI8+pkW5JIEakvofWk07715L+meHPurFDt3tGICTdCwmwvvNgNp7n68m3XRr4YzSdTxjT9/iL6WMAq2pDEKrb3j5lRzqJTBo50AJNevpdp/b/IVbd9GbEk9TZdwrGXFhilZLBbLSmBRvUwtFovFYlkAqhvKefQLd/PCl96ate3WQ4188de+k3Xba1FqCWtY3pYs3TOAzCCkBlcCnDVlqL4IDHUATdBbyFYmAsUN4JSAGf19plUJQ8kNmCDATSVwB9swvs+a/bW8/PwAZsDwqU9eoCR3CkQxlN+C39ENQ+A1bCAefIDoUJTUpfcycPnCuDlFqregr4f2AXfbHqKDX598TRWPs5SJaI1xEe5wIdXaCSwWi2XFYG0FC4t9KrUsKJ5zF47aPksrIeI+jKNqrYi6Epnmd1JbeYL7nivi+jvn6TzbwsDRC+ysVNx1XyMAuXSevHG49F4Ta3asAcAxOUxvM6a/FYb7GGzuJxjOYPI+JggVx6L4qPJ4/Pjoe0eGm3nss0eJJMOPqb4rHSTXrx03p7FJdIcuX0cXVU+e+JKn9l0dSqphBo9ki8VisVgsFovFYhnDj/z7z7LzyKYZ28SSEX7sP34bjTvXWhF1hWHM9LGbwdtvotoUXH0Ruk5A9xnQDpRsCxsMXYX8ELS8ApEKAPKDObJtneQ6e0AbgoFBdDpTSIEbruHb/F2FwTXJDRUj4+WvXiKXOjLicy4d76GSReMnJaPvn3zTZQxTlaVZWluB0avA/mVCJ3qLxWKxWO407JOpZUERcYi6HyXiPolI2aTjjtpIzPsCrrN1GWZ3u7LE3iNq+of7e+/7ayLJQjoeYyiqKeHYe81s2VfHwXvW0fzBFQDixWHK13wwZrHijCbYNYE/8nPQ0THyc9N77QyajaOn9J/gIz/YDIXi2FJUMn5CE25NrmTLpDkbvUgP8SK4Rx7Ee/wu1N7DALj3PwjxVVI31NzpnrQWi8Wy8hFAlFm813JfoMVisVjuGFKlCf71X/0k3/3PPkb5mpJJx5/+wQf4L9/6x2w52LgMs7tNWcrsVXpmR9p885gST8aHir3QewYq7oHUDui/CEZDSeg8rbzRpwxxRtfQMmb9fr01Ndpn5/FCmZ+QzJmT+NWPFs7JEd24fsKMRvs3wwPo4n2TJ71YkTpRl+ovrKX2u8tIHlwLSqj+fB3irgITbDCMyCq4TovFYlnhWFvBwrMK3KEsS42I4Dm78Zzd+MFZ8sG7aNOJq7YWBFb7UHUzyNrH4YN/M3NNkgVleiEwlWzlyOfivPRbOap2rePEhT7KG4rIXutgYDiHKMFoQ/v5NkSguz9B3Y3uvMRIP2ZMlGi2tYOS6gb62gcAuNL3MLtKL44cj/V9iyd+5Dm+8etx2k81k4q46FwoxE5cNw71QmzCnE2gwSu0FcFIBCMeiIcRD4MHApFSwHNDIVmpsJCrSLiocxxQgr54BjLp8C7ddQSRdyANTgqcRxog9w7i7JrxHt45WC9Ti8VisVgsFovFMne8qMe3/cOn+OzPPslf/vcX+cbvvs71Cx184R8/zWd/9iOIrEaz3PxRG59En/6zpRnM+DMeDq5dwr3rfqT7Nag9Aj0fwpoH4fpbEGRHG2b7AIiVjK4nxXNHfaTHRDNeP92DrnJQEkC6n/jmbaTPXh45Pnz0OKn9D+C0fQvXbxo/oQnvJT+onrRKFxkp7BraACIOynURzwlfhRqs4griOShXgSMjgqjyFOIKOMLAa1e5Id5Wf7IWL/885KF0I5TsqEGyZwjcw0vuJ7/kzPI+sVgsFovldsUKqZZFxXW2jkSfGmPswmgeSM0RUB4ESySkyswi4KF7/4Jj53+Qtg5Db/8g5xPv8fbFt1lTXosf+Nyz9TD3eHdRvLaMi1e6cRqeJmciZHor6d2YIhCFcVwo3oA2YBAqyiLUbRnE8XOYYY2p2464eUjUYXyfEtPJPd++kTf/IIvZuAbHcdCB5tWhLL/d202gNUGgoaON3zuygaSfgyDABAG5wWJaPrwX4wfTeuyK57H3Zz6Y9daYqjpM03lkbSOqqA3GrAfJhZG1sqQ1bZcPg10gWSwWy/JjxhgBF6d/i8VisVgWGqUUn/zJx/jkTz5m7QS3gGq4f+kGm4Nj99D5ASJHPkJkqBOTKINaD8o2ARHARfJV0N4EyTpSFYNU7l2HchSR0hiUbwkds70Y9z+VwBGDiKG//JPobI7cgKF/qIqT6b3cXfk+581B0hmF/sCwp9GhruclinbvDudpNNHaLE5xpBBJq8G7hM7UhgJrkAft465xWPuDXTBD2mISG5HWD2a99gF3O/ia1N31eOoDxlbCkWxb+L+4SxpEvDwEGOPbMl4Wi8Wy7FhbwUJjv9ksS4ZdHN0CS/kQOoWQapwEpuou/PIGAunhC9s7+b8eS1N9oJivvHyWQAdc62ymvmod2xIHOfVhB9XrK8hli/nmN4cLvQwUXpPZe6SBTc0nABiKemyruI4jOTBXR9rUyfvsfPLbOPl37SP7BjcWce7i1XF9vX73Fh7tG22jfB+Tn1n0m3P6X8dB7b4Lp/jkeBF1LIuVSnilYT1NLRaLxWKxWCwWyy1i7QS3wAxleRacaVL7DlHB2fwRXni/gSvn+tl3tIQf/6HfR9YewaRPgARAGrxakCEo74HEThL93Qw0XwAgGL+kp3jMz0HkIF3vhO28NWmuHovT5NRjgtaRNldOVPK5p/dQ0XVsZJ9q2AN9l8f1K6ntmI7R7Fdof2YRNWw0y/HCeBGHsufWEXP/DqbtcpW813UOHGtutlgsFsudhf1ms1huB5YyHbIojIqgKw+gSxrREYU2HYQulc1gwIsM80t/s55f/8kcX1jzfSQPpBAX+i4P0fJhJwDtl7swjRXTDmOMobS+nERVEYMqQu+6LWhRgOF8/jsod1swxkW5kIhkwQj1a4fxnqzhxQ6PKwM+/SrPIw89BMZgJFyWDEbWIZsqR8YwsShwfeZrDgKMmZT9ZxKqtgrlnpxxLeV2nEWCjeSqk0v7e1tibESqxWKxrAAkrHuymP1bLBaLxWJZoSzlerMQkZoxKS7q+zjdsZ5TZxRXT3djjAHCDE1v/E078eQX+MzH/4pUURSVqA6dtftPgcmFfQ2fxK07NP1YShFfV0msOgnxPM7h2sLzjuHeZBWZIYPrhO0cCXAUtKQP4ZatpXxNF0rp8N6seejG5AGQRBGqrKSwbRAnOufrno2Sh+tCEXUG1LCg4xsw+uLsxofbGZ0FJzF7O4vFYrEsHtZWsOBYIdViuR1YBE9TEy3BlDVCUQ0mWYFJFGOiCfBcfLcXzDDQPm2kfqLoMv/gt29s9WNMDFAgGqOjDPaU82s/PkhxVRH9HQPEyxKUrquAqEtfb5rmCx20nu+A8+GC69UxfftOPTWXrwN5xHHYtCmDGuoCIMJFGur288t/fnTKeR18qJGeK+dRQSj0xdatndv90BHEyc3YRrnHw0XBTHS9hdP1FvH2XeQ2HyGIz/2bxRgPkdk8YlcKS1Wz12KxWCwWi8VisVgsk1gMO4GBIVNJr26kN1dDb6acvuEi2rsTJKKav/vrPgJfAz3T9vHCn3Twwp/cC0C8KEqiOApmF/lsQKosyrZ9Lp//5FcADzBEqstINJQSSWqcXDum+xIEl8MhemCs3Lmp4hN0nCtEqJaVogd6kEJd1Q4g+mgFqeFvTrladbdsh+63RndEjowPf53yhsxt3Zsoehn0LAbrtldRAFX3ECSyTJexa0okUbDR3AbMGuVrsVgsFsvthxVSLZbbgZv0NDVuDFO2EUrqMEVVBZE0hvEUxsmjGQKTmXDWYOHFPNKcZxEZFRhFDVFc0c3P/d4a/uv3FVOzs5SXv3YJrvfPqbcX3urg22sFtMEEAenyXSSHXh45vqP/Eq4j+MHkiebzmuG1O0k1hUKrCeaWiseYCDCzkDqriDqWvhNE3juHXv8xsmvKQM0sqBpjUEEMUUUE0o/ICo/4tKl9LRaLZUUgsvpqk1gsFovFYmFeEakZU0xPsIGu3Fq605X0DBbT3R+ju0vo6vDpbhkim54ohKULr5snPZAlPTC6ju7vGub6ecjnn+Opkjcp2VtJpOV56AV6ZzdFFEUuF2JfId/TS9HubaRPnRo53nMtQap86nPNYDsk65Ch5sKOOdgK9BxFQT3RvjIDHW/ieCWYtYfRZg7RqUbhZD1MYgs6uMBc0w0vG3oWu4rFYrFYlgRrK1hYrJBqsdwOzKFGqkER3PfD+KWCMRMFy/7CiyWtBe1FWvjhv99GefQkL3/twJzOSRVFWddYQbQ2QvZSWCyl/WQ768siiB8+kJuBPn79O5+iq1MjgBhQ2nDZuAyd7aG9vIZUoT9FlrqDLiZRjhiNERenyqBzOQavaaKliliFXpzaPCaHuvRl4p3byG59ED1NdKoxDiqIov2wXouoUiRSgWFuwvNyYFb64s1isVgsFovFYrFY7mSUM6dmWZ3iy2d/mDdeyTLQPTGqcajwWlpOvDHEpnsPIcd97p2+ItA4pLSceLIHt7gOvz+M5sz3D48r0zN0rgnz7Y/imD4EE6YdNgHiBNB3EqnYCwUh1eQ0pqkaUuUQ+BCJ4fslSCSLivRhcsVoP0lUXVj4G5DvQ658A6fiLoKi3PTRpqoEZzALQ6eQ/lM4RdsJEg7o6SOClx3rdG2xWCyWOxArpFostwMy+wIp/8RPE3htSyqUzoXa0rPQf4Gtuw5z9sT0D9RV1Un27a7Ba+1g+Pp1erbswN1eQbS3lVxLC9ndh4hdeW2k/dqgg/bj4xd8qcp6BvtyXD7TzYaicDGl83l0+1Xg6sitKd5WjPS8TdmmMSd7WxfPsXPgDNFTGdL7PgIOSA68rj5yNcWgpCCiXhlpbnQvJjOAE9lKID2IrMQ0ulZItVgslpWA9TK1WCwWi2WVMgc7ga9dfuVrP8qFY11LMKG509M+yPVjfTiuQt/voGZY80plNV59Nar/TcgPs/GxjQx2lNJzvo/01WukNm0gc/nSSPtMn0ui/+1xphGJ58Jnpszg6M4gj+k8B52ju3L9e9C97aPnJYqJ3rMQVzwNXe/icJAgSVjPTmoQk0SbULx1+vogc320/cBpnHQJumofxr8CrLw0usYEq7F0nsVisaw4rK1gYbFCqsVyOzBL7ZNgz2dDEXUFolN1qP4zfPQ5zdkTo/tdV3ji0U3ElYEgYLipg8yJiyPLgOywz+k3w4jU0rrN6MFStqy/B0GD9omJkKhMMdw5uhAaHgjT6Qx1DZHZtpV4y1lMfvKCzOBN8WA/N2/eeTN8hfg7XyZoeAI12I60vUi8pZH8lmfIe01TnBAQ5E4hqhS8MpDBKdosJytR3LVYLBaLxWKxWCyWVYLyZm3y1WsrT0QNERL1VQycb6Yvtp+y7Lujh+IJots3IJIH8tD9IXQdHznsmE6iLZepTYI6shFd5SB7StF5wc8KJmLCaF1dWLPGS4HQXmI6TkKiFMn1Tl3/NBIbt2n8JRAqu97DGapG1+5B9bRA32s4pXswFY2Q+ebk9n4fquVlKNpGEI+AWfqI4hmxEakWi8ViuQOxQqrFcjugItMeMsX15NaVTp8KZpnRyVIUsG93K1A9sv/ZJzbR+/75aSutmGB0UdPb3EPv9R6K13Wic6MLmcpdh+hKDRMrSzF4pQWVHq0R0+XWUM9ZgtzkxVGQLWJSNZk5ePPeMvlunAt/NLo9fAXVdRZqi6Y9xeheyOVQkbUY6Vv8Oc6VudSTsVgsFsuiImIQtXheptaD1WKxWCyWFYwzvZ0A4Erubv7yj+dX23Qp0MmwIE97dgtljAqpse0V0PnCtOe5xaNrd912EVf6KKp7EzwgUTiw52EY7gK3knzTVeTG8tVopHwHtL4OerLg55SUFjJa3RhgiRyIM+2oy2NE095jSKxs5nMGzuD46wiKy0F3L+78bgYrpFosFsuyY20FC48VUi2W24FpPE0NkD/ybWBal3Y+N0EQU7hAefwyN4TUbTuq6T92ccbzsv2hMGwMREsSBPk8kbq1ZC6NpsBV1y/Se1ngYituLML6hjKkIYExQH+a5uIDiBhiQSlGa4wfoPM+fnclNXs2EN7BALQGv220sMoSElRtAtpnbmSG0dkrONHNaOmcue0SYWxEqsVisVgsFovFYrEsG6IcQJiqvk/exPiNv7qfwF+5tTR7hgwRoLszApXhPm/7Duh8acbzlBdmokLAKS7G7+yDjWWQHXOt+V7oDlNiecVlULQdUIAB3QvVW5FkKVKzMYxMNTnQPk4yTbw+ExoiCIBlFAWDOUQSp5twgmF0xWaMP1Wmq2XArLx0wxaLxWKx3CpWSLVYbgemEfj0Xd9NoFauiAoQuOFDtJtvoqTsHvp6DDvXJen+cGbxcLh7kPJdDWQCxeUPrpIoTdAUqaGKUSFV93RTvWsf7ceb8DM5es9em9SPKMhUj79HQa4CGZv+Rkb+WRJMtIzc7s+Fc5mzMJonyJ7C8bYSqD5EljsidLnHt1gsFguwAr4PLBaLxWKxLBsiBdFvPF8+92M0n1+5IipAb3+OaqCnOT0ipDpey6znKQaI7diMF2mD7nNQX4dO3IXKfmO0UeeHkKqDweuhwJqdfC+M2owE48VHKdoE9C+leWA88VpI1YATg/6jczsn14Vq7cXUPID2zy6Lg/g4bESqxWKxrAisrWBhmZTd0mKxrEQmPwjrqh3kqpcgHe2CYTj8QOi7MXRxdvE3yPkMdA1y+YMwrc5w7zB9A5MfyEviMz+kGz15UWmC5VtYGK+Y7J5PE0g7gbRzs4JkkD+Lo2dJ8bMk2IhUi8VisVgsFovFYlleJq9tT6af4m//rHfppzJPBlt6yakSpKQMes/O4Ywcnj4O3efDzf5mRE9YVwtQsnHmbqZK2yvLaCaN1UBEwdDZuYuoNzAB0voSyt26OHO7qbnYiFSLxWKx3HnYiFSL5XZgQmpfgyJ/6ClmTQm7AnDyo3Pfu8/nzNEysgOze8Z68Qj10kH5XetoutyHUgo1hWelvnwWL1VFfjAzTU+CeC4mPyq4LoeDZLDh4/hltWgngzFzSNEzAzroQEmYJllLGmRoljMWHmOskGqxWCwrgcWse2KxWCwWi2WF43jgj67Nhk0F/+uPtwIDyzenOVJWGhkxaQx4O0jW9ED6zKzniRPBrTEE6Q2Y/m5wpjFtDs5cTohghQh+tQ+B+DB0AfK3FkUsw52oxFYwBm2awExnJ1lE9Aq5rxaLxbLKsbaChcUKqRbL7YCM/1MNjvwg+jYQUQG8Qq1TgPVrM+wuChiew7N8oiyB39xK0eBZdhacQotUFNbUoZubUa6DuA4ohzW7auk624JyFY4rOI5Cjflfcp3jhdRlyGygi6oJVPtU5WtuGqO7CHKhGKui2zEsvZC6rLViLBaLxWKxWCwWi8UCaryt4A+Ofh/dLbfmuLtUVLh5+gs/+yVrcPxvzu1ELw69zTg0Q6qwL7YOky5Hct2h/UR5kOuHyn0w2AQS2g5Q7ujP8VKgY0Lny5C9ygxB/8mF6av/BHLjptbugWAZhFSTW/oxLRaLxWJZZKyQarHcDqjRFL66dh/50uwyTmaOGENkII5q+ouRXZ7fw3BHdE6nx1JRwFC1tYbA13Rf7GTg9GUGRKjet4/eY+dG2tas6WJd2Ykp5gDkIaPKx+3Wy6ABanexUgQtl3eRzbNvsVgsKwER62VqsVgsFsuqRUZtBUeHPsYrX1v5IqpS8NQTDfQfOz2yL/AHIT9HB2FRGCNI+V5MtgsZvgZtryCiYO2DcP0VCPywGk0sAb3T3JOgEoomdT6fS7o1/MHF6XeZskjZ7FUWi8WyMrC2goXFCqkWy+1AwcvUqAj5A48w2WtyeRE/QrQnB8ZglIPoANV7AfrHp+WpKj0O1M6pz2TSoW5fCZlLYR+l9+7n4htXwhQ1/vgH87ZT7VTtq8HvaJt6fs74WrImWNovEpNYg3ayi6J5CnqZpFS7OLJYLBaLxWKxWCyWZaVgK+jXtfzvP2yAZclWND0bt5SzY2MKA2gDrjLQ1sHwGBEVoO2yx8Zdc+zUSUBsC+b6ibCm6dqD0P0eGI1gxq+PO4+CE5s6MnPKGqlznMNCkdoAuc7F6Xu5apUuRy0li8VisVgWGSukWiy3ASIuBgju+0H0ChNRAWJXLiI9H87aLur1UrymmP6W/tnbkiVz6crIdv70Ubbeuy1cKMYiDJwa21rIlzYg0wmp7vIJqSZWRWbXkxjTtzj9c3ORrsYYZIpaszc97nLkR7ZYLBbLeMTAYtY9sR6sFovFYrGsbApC6u+/+130dSySIHcLbHV6SB+9NrI9XdLXpmM+R+YopJqhTugt1D81GtN2Dql9INw0sfGN/UGk5h5M25uTO5qqlqdZwmefok0g/eAPz952Pog7d2fuG9e9ALYCK6RaLBbLCsDaChYcK6RaLLcD4qDXHiRftEgpX24RE69EeubWtmpDjFRFMSVFAsYgBgLlcPV0J+meUe9ZT09IX6w16ZOheprYuWNSv82nB6h3ZcqFjzjjxcbFFlKDmnvIr9sNCEZyGDO7cDxfBJl1bWSMhwqigIDuRzmlIC5a3cpCe/V9YVosFovFYrFYLBbLikI5vDfwKd58fuWJqACxqjJyfbNHyWYGDDq5HqekBtQNMc9g8KDlXQjSo42zE5yU/TTm2hsASMN9k/o209UJXY6aP1X3gOkHFYVsO+QX0cYjcyirpCpxsgIo0DnwitARwfhXZj11WmxqX4vFYrHcgVgh1WK5DTBujPyuB4CVuTjKVqeItxeDP7tguGPrAGf/tG1SYtjGkmLYsZ5LR1vJDmYoKwtIHliLikCsZhjlhuVflGfQZIklami7lKbnaj9lDSnWbY9QtOtxEofWgiuIEsRV4CnyQ13gDiMKEIPkBC4uyq1Ar32IXF0jxhTqsCy63ji7x6hjSgj80RDeQIfvIye6HUx4vpY0hsE5R6uKJOcxV4vFYrEsNCI2Q4DFYrFYLKuVgWANv/2Ha4BFimq8RY63C41KMHr2hXE20kii84Vx+wQwxQ1IqhHT9Gq4s7QSKasMj2odrmFFgRK0lGOKHkMyxyHXjo7vIuirwy0vD4NnDOE/xmCMQdW6YHRhnwZ3Ede5VfdA+nQoWC4BgjerOcIxpdD78rh9yitFV+5GjAMIWl8HPTDnaFXxKuY1X4vFYrEsLNZWsLBYIdViuQ3wdz+ONu8s9zSmxbg+wfrHcc7/2axtiyq7ptyv+/qh7yglddtoP9NCrX4f091CZMsWyjf87bi2QfxuMt8YotGB7R/bj3/2LbgCscc+TWTr5PQ8ZjiDzjePbCuqFkxI1UWNyMAVUFGCrZ8llxoCM7Awnd8Cxjg4lIIRgtzUFxtkT0/Y4yBONbgpNAOIzORJOo1Xr8VisVgsFovFYrFYloTfe+05+rtuIXpwkTl/poudH93K4IdnZm07MFhBYgqtToauwtBViJZBfhhHjoYHyu6BqxOE1+JHyZ0qlB2qfxb/6PtAD87ePZjW8YIhgCmNIYwxNJfePddLm514LaRbQTyovRf6ltimI9OVAYqi3IZQVG59ZfLhfC+q5Vsjmw4SerWX7iOIagg6gOmN8yZYfnuIxWKxWCwLjRVSLZbbAB3xITt7u+UkW5IlkdoEgxdmbFdcehFomPZ4LBkBDGYwzBWcu3iJ3vizeOWaZOnfACCMTcEz+gA/8EdfI/bY94GMT9Ej4t3MpcwZafw4svkJ0n0vEfrKzp6yaMExMmVQquR9Aj1RKJ2NAB20QAAiJSi3FqNA0zdJVDVmhb8hLRaLZRUggCxi3ZMFqJJlsVgsFotlEblydhnWoDfJS290cKQ6QW5g5qjZjuYkNfUzNIhXQmwYKNQVGjwFDQ9B3oeW18J9Y6NvgtE1bO56O5EpdcUY46N5F+a56v9v777j5Lrre/+/P+dM2b7a1WrVe3WTi9zkXrCwqSYBwg04kAsXCBADN0BIyO9SEtIg1MAvcBPCBW4KJaEEQpwYA8YV29iWVay6kqy+K2n7zs7M+d4/ZtVWW2Zmz5nZ0byej8c+Vjvne76fz8rW7pzv51uCxLWSfFn9kMylS19ElST5Y7wWl991QAp2F9CPy517evzJXI/1y6WG+Qq8lFx637lvGDPT80gqAKgmjBWEj0IqUBHKcHZHocw0vPgKJTZNXEitr92qDW/1Zdl+yWVlLpt7U+6yuTNK3CPS9Ukd++XIeR7ZjIae3SL/uovOiDX2Vjiuf0DBQV/evNF/X6N/vIf0i2TulfJi/apruVUD3Q+V54yVMb4Xz82Us+NT+i6d61Y2nTt7xvPnSrFWOTt2xnUKqQAAAABQTtn09D+PsvvEkNLrFkmbJ57ou+85X6vnXC1lM7ltdoOsFARSkJELstLxrLyZy+VrpCiZ7pGOPyE1Xn6qj7O2MXSn/xx0HpYuvFDq3Hx2UPNHPVKHM1bgevvlDjwtb/n1Us3GMg04n1s59vylUmJYGjpYfLf9O6X+nbneZ16tIG5ymX2nrwfTv7gPAEChKKQCFcAsWe4U8pKpHVBs3u3yDtw/bhvPl2L+gNyxbeN31DD33NfOfJ5xGZ2cXZk5dvysZv3ff1iN/+Py3DODkySTZSXL+pLzcl+7EPaIjzVIjY2ShmRer+pnXKvBnk0KMkem3vcUuWyfguzh0PrLrVI9KC+2UPLjcsqqIor7AHC+M8kswsO4q3GaKQAAFSRZnyh3Cnm5//49uvvGBerZ8cK4bY7sHJZbd0AanqAQ17ZwjBfPfMNy+lnfi5/9RibrZsqraZCGB3IF1FhMgTXKk5fbBtfiUhCf8tsf58+S68xNMA92PiSbe6m81sMylXql5qhCqnOyYxul4bGPWypK1+MjBdVrlY2npGBArkRnwAIAJsBYQegopAIVYawtWaanodn1qjvaLI2sZhyLNbXIHZ2gk+F+td6yZGQGaVbmMpJ2K3NslRSk5bIDmndTWsoOSdkOaeHIw1KQkbp3yLb3ymU6TnUXD+Yo3vvc6f6T84v/BiVp/h2yhTdK3hnnhNqAaptWK9Xfokxq8vNfwuKClDxrk2SSc5JLK5uZeFVwsYLMvlP1U/OWRxIDAFAIF+l2PaHt4AAAACLhxyplrMD0zEGnpTby3DpOm2zDUvnHnhvnuuROHFE6sV4KArmsy61ePZCVy6zLjQccOSFrbJMyKbnDGxVvdpJc7trhjXKvv1EKTpzu8GfbFPQdOJ3BvNbxjxadhHMmJdco6EtIw0+dfv3gM8oOLpa/sEkWHJigh3B5WScXWyHJk5xkqZ6z8gpV16O5USuLSbOjCQEAKARjBWGjkApUhCLfyZeDn1UwZ728fT8et4nVTvKwN9wjO/LIOS/n+yPabT4krToz4OiZmOk8exqbXXTn2NsL27CS9a3yY1cr1f/4lGLkK8jsKsviUDfFv0MAAAAAwNR4fuWMFezecVyX3rZYPVs6xm0zoNlq1ASF1J5DyvYcKi6BVFa2Nyl35jms3qhhUTeFrZL9BmWfHyf3E3uUHWyWt2q1vKBEE6+PPFj6BUMuI2VD2AEMAIBppnLecQHVrNgpkWWSbqmfuEEs2i1t3PanZN7K0y/YqMKtK77yaJe/X9IED1cWKFZjqm26VefzPgdBpsiHVwBAuLwgug8AADCteX5lPXMeGZ54K+ITPU2Rxg9+cp/MO2PJ5OhCalBcIdUpIWcXT9wo1a1g0zMKdPnE7Sqc9e8vdwoAAImxgpBVVnUGqFJWYf9Us/FBqWb8/VzMRf/G2j25Sad/xI36+wuKLKQmWqT2Vskmf7jy4gOqm3G7pMo4s6ZwU5ipCwAAAACYMq9itvbNefaZIxNeP7I/4o3zgkDadMYZrH581PVixwqWKtjxizziZxRselDB8OVy425xXOE4IxUAcB6qrOoMULUq7J+qmZRoHf+y65Eaoj04wx3YIcusPJ3PWReLfGPfVNi5oOb3qrb5xuJiTXOOQioAlJ9JZi6yj/N4YwUAAM4L3uhn3Wmur3dYsdrxJxvv2xx9ES547EGZW5L7whtViC52RapNsivX6By2Pyjn1hUVa9qbwg5gAICQMFYQOs5IBSpBhW3tK0nKDk542WuZp6DvcKQpBD//L9kdl0nB6EJqcW/sbf4NBd/j+RV+lqhz8q1d5k7+unCSC+RlasqaFgAAAABUu0o6I1WSPE/KDI3/jDzYnZVrnCfrPRBpHu4nz0gvaj9nrMUVuyI1FZ+8zegcTnRL488/n/acxaVZ66RYreTF5MyXTPIaFkx+MwAAFYZCKlARKmyah3PS0NGJ29TXRZ/HYK+0uU9aM+Ps111GTkX8rc5aLGmowJsqeOWm8xXL1MoNP6fRmw4FcR6OAGA6MO883RYOAABMqtLOSJ01u0FyAxO2GU4uUjLqQuq+XfJ2Lx/jjNTiCqnB3qcKvylbuVvguuRMBe2rpOEXckMeZwx7uLo5ZcsLAHAaYwXhqqypa0DVqqx/qn6qTsr2T9jGkqXZ7sXt+JXckTEe1KyQs2Q82aXvkbxiVpdW6C8t540UUXeOc72CC8QAAAAAcB6wCluResGalknb9KZmliATKfjpf0p+29kvuqCgPpzVKPDXS9lCJ1wrNwG9Arlkq4L2lbki6ljXXYXvygUAwBhYkQpUggra2tfLJJXc9dik7cy6SpBNTvD4/fJvvUNKP5N7oeEiaejJSe4y2drflWYvkWxYMqfiVpdW4MOR8xTL1ssN75igDeeeAED5OckrbMCv4P4BAMC0VUlb+665eJaS+/dqsjJbV2et2pIlSUnpZ59UfNVaqetZSZLNXCylD014j1NMzr9Kwf4tUqpbCn5RXPAiz2MtJ5doUdC+etwiqqSiV/UCAMLEWEHYKKQCFaEytuvxU7VKbv1PKd09eePsPslPStlU9IlJyv78p/JvuUaWqJc7+qhskh/4dtNfSrUZSaXJb9pwpli2QS61fZJ2zDIFAAAAgHLyrDLGCq5ZP1+N+3crnZ68yHZwh9Pqi0qQlCQFgdJ7Tyg+Z7G89kXS0KPSBH+nzjkFPQvkjhVZPK1gLt6sYPYF0vC+SRpW7pbFAACMp3KmrgFVrTL+qcb6UvkVUSWZOVnr4ogzOkM2rewjm+SObpNp4hk5dvE7pJqwZlFGOfsnZM4UyzZNXkSV5MQsUwAoN7OR36eRfZT7OwQAABOplDNS5zQ6BXkUUSXp4PYhKV4XcUZnGOhWpqdJSm2UTVJEdf51csfGOf6mUBW0ItXFm+TmXjJ5EVVi0jUATAOMFYSvMqozQJWzClmRGtQWtv+ONU5+PkqoBo4r2O3JuUnynLsivEXAlfGfTnJSPDtDLrUtz/aV89AHAAAAAOcj8ypjWG/AFbIhniloWBhZLmNxnXuVObF24mNLvUYFux4OL2aFPFO7WL3c3EvlUnvyvKEyvi8AAApRGe+4gKpXGf9U07WDUnJW3u2ttvS7i7uunQq6lspN9IQU+mLLab6LunOKB20KUlsLuIkVqQAwHZjnIvsAAADTm3mVMXP3iaeOTrhl7mgD3rwIsxlbdvczymZuHr9B0CvVt4cXMJj+u1c58+XmXy2X6ijgJsYKAGA6YKwgXJVRnQFQGUxyTSvzbx/vjy6XCbiOX8r1XXb2izVt0vzbZZf9nhQP+0wPP+T+whXTPAVDmwq7iVmmAAAAAFBWlbK13vGuQdXPm5l3++7e5gizGV/muceVdTec9ZrzWhQkLpTzr5P6DoUXbJoXHJ0kt+hFckM7Crxxen9fAAAUY5ovkwIgqXKejiS5ZGPeu9maOxBpLhMJnv+FtPZGeYmnZUteKa26UbKTZ3mEPLPG86fpUalxxYKZcoNPF3FvIOcCmTEfBwDKx0lelL9gqnOmKQAAlcLzK+d5zG+sl9SZV9sj+2Oan/9mV6FKb9woXbZOXvYJKXmNsjuekrL55V2QaXxGqqtpl5t9udzQ5sLv5YxUAJgGGCsIW+W84wKqWiX9U83/h7S5E1Jd/rNSwxY896iC9tdKq689o4gaPptuc1acp5ibK3/guNzgM1PoiJmmAAAAAFA2FTTpeuIDSM+2f0sZi3HZYaU371c6douyzz8iZVPRxAmm3/O0izcrWHSnghmNRRVRJUkBhVQAwPlnmo3uAxhbBTwcOan2wIDs4E8Lus1aFsgNdEWT0yRcU6syy1dFvvGuKVaaeTrOybd2WeDLgiE5l5KLNSlrh0euSzHNkVL75LJPhxAvWxH/awLAecskswh/w/AzHgCAac2rgDNS6+rj2nBVs3qe35v3Pb3HsnL1s2X9hyPMbHy7+hfpwR+v1JtX/CS6INnSFRydxaTZ18rF6yUvV8C1nqOy48/mrns10rwbFQQvSKkCj/05J9j0KxADQNVhrCB0FFKBCmCWLHcKk0r0JGUHf1jwfdbQULbNANzL3qiMOhTPXirPj/DNfgm29vXVJhvukss8lzvL5OSFYSkWXyyZL5c5JhdMZQXqKDwgAQAAAEDZ1NQnyp3CpG67cY56nnm+4PvStYuUKFMh9YuPrdPmzcf0mvfOVJMX0cTvICNFPK3bSdKcGxX4vVJmjzR8xrWEyRbfJsnJpQ9J6a0hBWWcAABw/qGQClQCi5c7gwn5qVrFdv5bUfdasjzngjjzlJ2R+3M61adkXU1ksUwR/vdzTjE3V27wWblxStIuvSea0MpW4wQkAJhWzKu+s0kAAEBOPDm9xwquvW6+BooookpS33CbWkPOJx+9atEzTx9Vejij7+25W/cs/btoAmWHJdVG07ckZ77cotvlhraMcyqPkxvaHkFgCqkAMB0wVhCuSjp4Eahi0/efqp+qVXL7L6RgqKj7LarZnZO5/fVy1itJymR2KwginAlq0fUds7kj55yW4ZcjD0gAAAAAUDY2jbf2vfzq+Wo6VPyk3q7OuhCzyd8/7X+50sO5Z91v/SijVBBRsdNlCzk2tvDuF96RK6KWmuOMVADA+YcVqUBFmEYPR06KDdXL7x+QN9glDXXLDR8vPsPsC5IXl4LSvtl2TTN0elpmoMxwRomaiP6eLZoftZ6a5QbK8GB0EoVUACg/L+K94wEAwLQ1nQqpfszTiisWKZHwNdA9IPm+0oPposcKDu6WVq4ONcW8HO0+PRH6WGeffnbspdrQ9u1ogllCZ+23GxI36xq5qZ51WnRwCqkAMC0wVhAqCqlAJbBp8HAUeKrpHJZ1Pi0Nj1pF2rhcbrBTNvr1PJhlZS2L5Lp2hpNnnlxro6Tjp77OpPcpnlwUzV912CtSnZOnZnmpTjkX/kNX/nnwgAQAAAAA5eJNg0LqjNlNmrekVQe2HtSeJztOvb5f0qp1q9R2eLc0XPhz68FtQ9KFSSmbCi/ZSTgnbdt9drx/++VsbbgrqojhjhU4SZp5uYLYcalc4+cuI+ecbDqMYwEAEBIKqUBFKPMbUOdUc+CYrPOxsa/375SSs+XiS2T9HQV3b81tJS2kuutepWxt99mvuV5lM3HF4uEXBy2E/36ea5KnOinTIzf8gqQj5djM9yxO5TnfFgAwwpzMIvxtEGXfAABg6spcrErWxtXcnNSuJzrGvL7tyX3qXzVPS2o75br7Cuo7yJqCpsXyjm8LIdPJOSd958RvqGPH2RPEn3r8kPbfsVLzYxGcJzrFQqqTpBkXyTUukKxfLvWCpM7yFVFPJZaRbHqf3wsA5zXGCkI3fQ9eBHBKGIW4ojmnmk6NX0Q9KXVYMicXayg4hNWW7g128IrfUXrdHI31ZJFNd597Q9nFFc+0yAa2yw08Ize8W9I0WQnK1r4AAAAAUDaeV75hPfOkpRfO0eGdRydst3/bER2onSNXxLjGoDev2PQK4pz0qZ2/rb/+2okxr//77ltLkkchXO08uUU3K0j2yA1vlkvty0ZSZQAAOI5JREFUkabLZOdy7pwFAEAEKKQCFaF8/1QT3UnZ/vvyazy0XzZjbeFBYv2F31MEt+oqZRaPvxA/k9krF0Txd11cn55rVWxoUEFqa8j5hIRCKgCUn+ei+wAAANNaObf2vfDaZep4el9ebXc/e0CxFUsLjtHd11zwPcV4ZHiDfvDDA+Ne/9FP08oGEfxdW3FjBW72egUtzXKpXSEnFBKOAQKA8pvmYwVm9moz+7yZPWhmPWbmzOwbRfa1wMy+YmYHzCxlZh1m9hkzawklWVFIBTBKbKhOtbv2yDIJ+ak6+Xt+VND9xfwoNR0s4q7COEnZO26XNFHxL6tMBO/3rdAftc4p5ubKBrbJZQs/d7Z0eDgCAAAAgLIpYR31wvXLtPqKhYonfK2+eol2PlZYES8bTxQc88iB6Hev6nUz9Of/XD9JHj16on9D+MGtsK19nZdQsPhOBXpByha2VXJJBYwVAAAm9UeS3iXpMuWOVi+KmS2X9KSk35b0uKRPS9ol6d2SHjGzmVPOVBRSgQpRun+q3nAg9WxVze7nlNi3UXIFbg1TzJv5oEuqbS38vkIsWavAm3zr3kz6oJwLeRWOl/9x1OZqFMs0yg08rWmzLc84HCtSAaCsTJJ5LrqPcn+DAABgQlbCFameZ9rzzD4tXjNbx/Z0Fnx/f7bwcY0XtkT/zPlM6hr1HB+YtN2Pnl0ZQfT8C8WuYZmC+evkhjZFkEfIWJEKAGVVIWMF75W0SlKTpN+ZQj9flNQu6V7n3N3OuQ86525TrqC6WtLHp5ypKKQClaHI7V4K5py81GDuz/27pb4dhffRu1kuVtj2O2Yma11YeKw8uVhS2btellfbIOhUEBQ+U3Yi+a5I9TVL3tAxueGdocaPDIVUACgvk+QF0X1QSQUAYFrzY4WtaCw+jqdMKlcce2HTAfV2Fj6BeteWic9SHUtvZ0aufnbB9+XruGvXX/9bfuMXP/vZEfVk20LOYPJJ106Sm3erggZPGn4h5PgRYawAAMqrAsYKnHMPOOe2uymsaDKzZZI2SOqQ9IVRlz8sqV/SPWY28dYTeaCQClSE0vxTTR6L5X8e6kRq5xR8izU0TD3ueFrnKogdz7t5Np0KN/5khXBnigXtUv9zUtAbbuxITe8VswAAAABwPvP80sx6WnXFQnX8au+U+ujt6pfVJAu+L127aEpxJ7Irc4EO7Z985ypJyqSzeujYbSFnMPFYgYs3yC3eoCC7Q3Ihj1NEyLEiFQBQGid/Md/nnAvOvOCc65X0kKQ6SddONRCFVKASFHhuRtFhgnBmDVqy8K3HLRlM3qhI7kWvLqh9Jn0g5O19x//vZ2pQLB2XG9wYYrwSYZYpAJSZk1l0H8WdfA4AAEqlVCtSg0w4z+u2cEHB9/Snw14FmpN2cf3LxmUF3fPAxvZwk7DxV6S6GRcpmL1abmhLuDFLodAjogAAISvJWMEaM3tyrI8SfqOrRz5vG+f69pHPq6YaiEIqUAFsgkJcaJyTdT0bTldFrO83L/8Vo4Vwdc3Kthb29+dcd6jb+3p+3Ziv+5otb+CAXHpfaLFKyfFwBAAAAABl48ejHytoaKnTC5sPhNKX8yffyna0Y11jP09P1QGt0OYtPQXd8/ijR9SbbQ0tBxc0nvuaJLfgDgXJfil9JLRYJcWkawBAaZzcn3+87SVOvj5jqoEKfwcDoOT8xCrVzfyQnLI6uQm5KSbzGuVcSnIj55rKy103T3IZOTcsuWE5ZWSWlFmNZElJnsx8Sb5kvtzgYbnNH5aGDoWTcN9Wuea1su4CCrPBPsmLS0HIW8Dc/Go5K+zhSMpt7+v74cw1MW/Uj1rnKx60KBgKp3BdPjwcAUDZeawaBQCgWt3yhmu18qolkiSz3FhBojauprZG9R7r0/Bg7vnaj3kyM5lnygxnNTw4rNTAsLKZrGoaalRTn1SyLiHP9+THPcXivvyYr4PbDukfP/SvOvB8OGMFz+/u0wXzZit74HDe9xzYJS2f8jqSc/1gzzU63nmwoHsy6ax+cexFumvWN0PJwdzZYwUu0SI39wq5oa2h9F82YY/rAAAKF/1YwVbn3Lqog0zRydVeU/7LoJAKVADzauUnlkfWf3Dkm3JdD4XXYaZbyvTIJdtlqfxmUJrSstbFcp07QkvD1TQqs7xVUl/B92bSBxRPzj/1MDo1p/vw1CxvuEdBZlMI/ZaXy1bSea4AAAAAcH5pbK3XmvVjjxXMnD9jyv1/989/FFoRVZI69x3XE901uiwp5fuofeD5IenCpJQJ74zQQ26pfvhfXUXde/8z7brrReHk4Zyd+ntwbesUJNPS0Hi7E1aQbH7nzgIAMEUnf+E0j3O9aVS7orG1LwC5nijO53RSvGnyZmewpsLPVp0wg1e+Rc4KL6JKI9v7ZsPb3lfOKebmygZ2y2XCexCNhMXl114pi80et4mXWCY/GV1xHwCQB5PkBdF9hDGXCAAAVCTnnPZufCH0fgd7hmTx/Nd1BFlTtmlpqDl88elbNNg/XNS9Tzx+RCeyYZ2VanLyFCx6sQL/qJSJ5sij0PhNspbbpNiMcZtY07VSYl7pcgIAnKt6xgqeH/k83t4VK0c+T3mWEitSgSrnnJM78atoOveSBTW32ni48RNxSUNF355JD8iPTT0n57KKZ1sUpJ6ecl/Ri6um/Y/kJ9fIBQPKDm1Squtzkjv9kJmc9fvyay4PabUuAAAAAGC6yaQy2rtxfyR9W01Sri//o2KGbI7qFd52t739xe/wl0lndd/Bu/TaBf9nynm4ZK005wa51OYp9xW5WKviF/ydLDlfLn1cwYkHlN3z56evW0LxC78mq11WvhwBANXmgZHPG8zMc84FJy+YWaOk6yUNSnp0qoFYkQpUObfjM9Lgnmg69wsrpCo2OHmbAtgL+6Z0fybdITfFHdSDYads904Fqecnb1xuXqOSs94rP7lGkmRenWJ1VylWt/5UE/NnUUQFgGnEPBfZBwAAqE5BEOgr9/5DZP179bUFte/tH2/HvuKsXZ6d0v3/9mDNlMcK+v1b1Nc7Wy61e2odlUJygWKrPitLzpckWbxF/qxfk9VdeKqJNV5JERUAppHzaazAzOJmtsbMztoe0Tm3U9J9kpZIeueo2z4qqV7S15xz/VPNgRWpQBVzgwcU7PhkdAH8wh6OTIdDDW/bn5YuvqXAu3zl5ph4kmJKD3mKxbKSy63e1ckPSXKB5AK5kc9ygVwwLBekTl3PDm6O9HzbcJhiDbcp0fybMr/hnKvxpruVHXxaLuhWrPEOiqgAAAAAcB7b8vNteuxfnoqs/2zLTOlwZ97tjx6Ka86M8OJfMPOgcs/++XDyzFRbE1My7imZjCnbl9amoVdpVcMWBapVYAk5F5dTQs7F5FxMgYvLBX7uw/nKDMWUTeeepbOpQL0bOzTvnvC+p0hYUt6ce+TPfaNsjB3H/PlvV2bnB6UgJX/WK8uQIACgUpnZ3ZLuHvlyzsjn9Wb21ZE/dzrn3jfy5/mStkjao1zR9EzvkPSwpM+Z2e0j7a6RdKtyW/p+KIx8KaQC1Sw5S/LrpeyUJ2WMrftJuZYrZMfzfAALDkvJJinVE0p4d6RDuU3bJ58p4/uLlc3ukZQd+fCldJcymX5lBg/KXHHnpyiv6KXky6+7VkF6n8yfoVjtlfJr1sqLzx33Di8+T7XzvyCX7ZUXay1hrgCAiTnJovwtM71+gwEAgNKYtaQt0v5/9fRRXbl8jrL7D+XV/oXnA11yTXjx22OHJeV3jucnXzFLmd2nd/GqWTRfmzcOaM+TS2T9R3R6nrGTlBr5yFMwjSYp+/Xymm9S0P+cvLrVsuZr5TVdJ0uM//+C13yt4pf+UArSsviM0uUKAJhERYwVXCbpjaNeWzbyIeWKpu/TJJxzO83sSkkfk3SnpJdIOijpc5I+6pw7FkayFFKBKmZeXKqZK/XviCaAy0iZ7vzzMZO1LpI7+Fw48S+4toDGox9gcluqO9cnv/ZCuYGnw8mpjCy+QMmWt8ivuaDwey0uo4gKAAAAAOe9mQtaZGa5XZkiMNgzpM5Yu1qUXyH1xMGUVNsiDR4PJf62geXKHZk2OTd6R6YgN1bQtf2Q5q9fq8TeZ4vOw7npUUi1hssUW/IhWc3iwu/16/Nf3AsAwAjn3EckfSTPth06d/D+zOv7JP12GHmNh0IqUMVcqkvq3xltkKEX5BJtsuH8tu2xhqbQ1r8EV66XVOyDlpOsQXJ9CnRMki9TkeeolHtBj9Uo0fxqxRpfKjOOxgaA84ZJivJ8kukxtgcAAEps5xMdkRVRTzqw57ha4jEpncmjtSlTt0ixkAqp3/x5vfIvpJ79DJ3p6VVuONV0oKv2nP0FCxJM5eYQxGfKX/heeS0c4QMA5xXGCkLHiDpQzRKtsnmvijaGy0q1s+T8mryaW37N8hNM7ReGH8ttd+tcv7zkFM45jXQrhfH48uvWK9n2PtXN/7LiTS+niAoAAAAAmNTSyxZpxdVLI43RfaRXJxaskMtzNLY/OzuUuFlnSibzfzYOvNGF1D7NWp7b7rZz20EFM4rPy5Vja1+/Xl7bqxRb9UXFL/mB/NYNFFEBAJgEo+pAFTMzeRf+SfSB+rfLWq7Ir61/IpSQ7q43K9swtb4C69OpKTaxhikkM6U0Cmb+TNXO/UvVtL1HsbqrZF6ytAkAAErGPBfZBwAAqE7xmrh+42N3Rx5n82N7FVuRX8H22PHGKccLnPTlfb+lLc8dyf+mMYqMs1tO71bV31L8pGtX4hWpVrdG8Yu/rdiSP5DXdKXMY6NCADhfMVYQLgqpQNUrzczDfGeZWrBLSjZNKVbwyncovSIxpT4kybleefElkqSsO5L39zBGT1POJW9Wq5pZvy8vvqB0MQEAAAAA55cSLVIMYvkdsLnjV1N/rv6r7b+tf/7X/M5lPSkYY2enge271TQ3N27RdaTII4BynRd/b6EScxVb+WlZfGbpYgIAcJ6gkApUOXfgX0oUKb+HC1Mgb/4FU4pk6eEp3X9WX97IXsNuUF5icZG9lKiQ6tWrpv0Pp5AnAKDieC66DwAAULUe+eYTJYmT8eJ5tevcO6xs65opxUrGC39/E4xTUZ67tDmX1/ZDCmqLmwzuplCDLUhyoeKrv0gRFQCqCWMFoWIPB6DKuaP3lyZQ+njeTa2x+KcJ1zpPmeVNkgaL7uNMgTsj73irNNxRTFah5DIWiy9UrPYamVcnv+4aebG2yGIBAAAAAKrDs/+5qSRx+oacmvNs2zW0Uu3aWlScnW6tvvfDwwXfF4xzfmh8uC/3B+eUmrNGtbsfL7jvKLf2tYbL5TVdI8Wa5LW+WBab+tbIAABUKwqpQJWzmTfIHf1J9IHirXLKb3cgc89L8VopXVgx1DXPUvZ1b5JT/kXbU/eOU+t0rk/mz5HLHlLgjkqKy5QutPeC88mHl1iumvYPcwYqAFQrU7T7y5RwtzkAADC9XHjTav38G49EHqexJv+2W55MqL2IDaz2uxX6g2+tVjbbU/C9461IHdy1R4n6Ng33D+vgQaelbszjVCfkstG82fJa7pC/7I9lY2xLDACoAowVhI7fqECVs9l3lSbQiV9KrVfm1dSUkjf/4oJDBL/+FgV+4UXUnPGLnZ7fkmvhBuTVFZ6XFMU005iSrW+niAoAAAAACN3lL7mkJHEe+9le+XNn59X2wPMpBTOWFxzjo/95rY4cLLyIKkmBG3u02GWzWnBBuyTp2M7DGl58aeGdR7G1b6xV/uL3U0QFACBErEgFql3tQsmvlbLhbIU7obGKfs2Xyua+TIrPkLqfldv3T5JLy5rPftPvYgkpFpcN9Y/ZtTNPQV3xBcuJZo4GOh0z6w7LvAZZ0FdA7+GvSE20/nd5iUWh9wsAqCxWpeeTAACAaM2/YG5J4jjnFDQ1SQfP3nZ3wY0Xa+7VqxWvTerQk9u1699/KUk6llmjNu081S7laiU5JW1ozP573Qx17Cp2wvXET/N18eFTf96zz7TSPFkB+/W6IOz3cZ5iy/9UFpsRcr8AgErDWEG4KKQCVc7MpMYLpBNPRRuo+XKp8+GzX2u6UN6N/y4z/9RLbvX75V74luz5z8u79PWyupnKXrhMmfr9MquVMsPy//Mnub14h4eko3sl86Rr7pKz4maYjkQe/4o7psRgg5TpllyPlJyjjHac29DqJGUll5pCHpJfd63iDS+W+TMUZA7JZY8p3fMDucwhSZ7iTa9QrP62KcUAAAAAAGA8Mxe0qLapVoM90U66vvLmpXJbzj6PdemdV+r2T73t1NcX/uatuvr3fl3P/O2PtX3TLzXn9W9TkA30uR+26Sc/3qH6phrNafP1rqsfVVZxJSyldnUoZfX6zuGXaTh1pOj8xtvaV5KGOvZozbpFcpmMXDYjm3WZtO3csZVYc7Oy/f1ymUzReUiS1/46ea0bcpPhUwfkhvYoe+jrUua45NXIX/g/5TVeMaUYAADgXBRSgSrnnJPSJyKPYxbX6GKld8lfnlVElSSrmS1b8S7Zsrcr5uV+RMUl1UhyLqW+vr9S+sXrzuxFuR9lw4qUmdzQSPE0tU/WsFBOffKTlyjIdinRcKdidddLbliZ1EZl+h9QNrWlgP5rJPmK1d+kRMsbcwVuSV58niQpVn+TsgNPyEuukRdrDfmbAwBUrCo8mwQAAEQvk8oo1T+1ScL5qEkPnnMYzg0fueecdg3zZur6//V6BZnXyYvlxhF+/+XS70vavfWA7rnhI3rjY4tPtU/WrJIkpYaKL6JKEx/UEwwMybJp9e3cJ0nK9jarJRaXMmk1X7dew52dan/1r6nl5puU7uxSz5NP6si3/0WpvfvyT8BvlGTy579VfvtrT79eu1zSjfLaXqag55fymq6VxRqL+RYBAOcjxgpCRSEVqHb9O6X+XZGHcXLn/Px2Rx+QtV41Znvzzv3xZJZUXd0b1d//hTNeDRRGEdW5tDxvrnK/ZU5maiMFTV9BTa+s92TrrHzXLGu6VYmmX5NZ4oyeahSvu16x2quVGXxcqWP/vyRPfu2V8pMXyikjuUDp3h9IwYDiTb+uWMPNMr9VZuP/SDZLKFZ/3ZS/TwAAAAAAJvPs/ZsVZIs/PidfmUSNRp/m+cJDm7T8rrHHCk4WUc+0dM08/eHn36QPv+XLp15LDaVDye/ogFPr8qVyI2eOOhs5Wsg8Hc0m5PsxNSlXGE11dcuuvVzzb1untrtfcWqCtCQlZrer7SV3qeWmm3T0+z/Qwa98VfLi8lrvktWtllxaLtuv4PD/lcyTv/D35DVdKyXaJzzv1GIz5LfeEcr3CgAAxkYhFah2ExTvQpU6dO5r2bHPMCmHIDg4cYOYKW7JU9v2mtUr2fy6cZubxRWvu15+YrlkNfL8GWddjzdukMv2yIuX5twZAMB5yKRzRh7D7h8AAFQl3z+3YBmF4/2BZo56LTsU8Y5TBfjbH3VMeP3iFa167Rlzq2svuEizXvXKcdv7DfWa/brXqvn69Yq3tirWePYqUtf+WklZWWL2FLIGAFQ1xgpCF+VfJ4BKEG8qTZzBfXJezemvZ2+Qrflgwd2Y1cqsLsTE8g3sZLXLR/5co3j7W/O6zYvNOaeIKknm1VNEBQCc98zs1Wb2eTN70Mx6zMyZ2TfKnRcAAJhYbVPN5I1CcOSF7rO+vviNd2jl3YXvxjRvcZv8MVarRu25HV2Kz8odv1M7r13Lfuvlk95jnqfaxYvPKaJKkiXaKKICADDNUEgFql26pzRxmi+XBSMrUGfdKu/Sz8i8xMT3jMHzWpVI3BJubnkK6mbLq7tMiXnvl5egCAoAmAa8CD/C8UeS3iXpMkn7Q+sVAABEarCnNDtILV/VeurPa15zk658991nbYmbr8uuW6WXvf76MFPLk+no7IWadcMVuvSP36l4QxkmfgMAMNr0HyuoKGztC1Q517ct+iBerXR846kvrekiWXL05j35SySul3NDSqcfk3P9YWQ4BlMsdol8f57MahUExxWvv0J+W1tE8QAAKJBJ8iLcUyecrt8r6QVJOyTdLOmBUHoFAACROrBtjON5QjZnWZvimzedes/RfvlyxWoKn3B90nv+/L+ppi6h737150oNRrM9cCIZ0yvfdLPmLmpTbX1SXYe7defbblfLrBLt9gUAwGQqY6ygolBIBaqdy0QewprWSp0P5b5ItMnm3Dm1/sxUU/MiJRKXa2joPmWzO+XcwKnrvr9MUkzOdSsIDp9xpycpONlKUvasfj2vTbHYJYrFVsgsJt9fOKU8AQCods65U4XTYlaXAACA8sims5M3mqIV8xIKRuZ2z1g2V3PWrZxSfw1NtXrfJ9+gDa+5Vl/95L/p8Qc2n1VQffFrrtXBfZ06dqRHL+w6cup1zzMFgZMkxeK+MqO+91VrF+llb7hBqy9drJa2Ri1dM29KeQIAgMpCIRWocla3KMLOY7Lmy+U6Hzo1UcXab5W1XhVK9543U3V1/01B0KcgOKqBgb9XPH6lamrulFlCzjkFQe7hKAg65XktSqefVCJxg8xmKAgOanDwu4rFVsmsVonEeplV6f4EAICKY5Ki/LVF2RMAgOo1a3Hxu0hNpraxRusubVGwbcep11a+cr2aFs4Kpf+116zQp771HnVsO6g92w7qfb/xOb3nz16n//auDfI8T5lMVru3HFCQDXSiq1f9fUPas+2g7n7TzWqe2aCH73tWX/rjf9WG11yrlrZGvewNN4SSFwAApcBYQfgopALVLkhH13fDarnOR3I/XNtukCwuzbol9DCe1yDPa1BDw3tl1iCzuKTcyhffny1JZ3w+PXPU9+epoeEdoecDAMB5ZI2ZPTnWBefculInAwAASmP0qswwrb5sroLnN8k804KbLpHLBJp16bLQ4yxZNVdLVs3Vt576Uy1eNffU7hixmK+Vl4y/A9UNd16mG+68LPR8AABAZaKQClS7kaJjJHo3yea8WNZ6nWzZ2yLf0s/zWiLtHwCAaSfKc08AAEDV8mN+ZH0//eBubfj1q3T13Zdr2V3h7Fg1kSWr2YoXAFBlGCsIFYVUoNrVhz/r8yyNK+Qtf3u0MQAAQFS2svIUAIDqM2d5ONvsjmf+TWtLUkQFAACYKg4DBKpd76Zo++/eGG3/AABUK1NulmlUH0xgBQCgau3bdCDS/vc8+0Kk/QMAULUYKwgdhVSgijnnFGz/RLQxjj0qN3Q40hgAAAAAACAcw4PD+rdP3xdpjCe+/ysFQRBpDAAAgDCwtS9QxdyhH8h1PRRxlEAa3CvVzI44DgAAVYhzTwAAQMh+9Ln71bn3WKQx+o8PqLezT83tTZHGAQCgKjFWECpWpAJVLNj7tchj2PJ3y1o49wQAAAAAgOkum8nqZ197OPI4b/7CGyiiAgCAisCKVKBKucED0rFHIo/jzb4z8hgAAFQnkyzKeZEmyU2tB7O7Jd098uWckc/rzeyrI3/udM69b0pBAABAaLY+tEPdh3sijZGoS+iiW1ZHGgMAgOo1/ccKKg2FVKBapU9E06/5smXvkGSymvmy5rXRxAEAAJXgMklvHPXaspEPSdojiUIqAADTRF9XfyT91jbW6M7fvV2D3YNac8MKNc5siCQOAABA2CikAlXK9e+KpF9b8jb5qz4YSd8AAOAMpmjPPQmha+fcRyR9ZOo9AQCAUji880gk/f7mn/26rn/d1ZH0DQAAzlABYwWVhjNSgSrknJPb939D79dm3SZv+TtD7xcAAAAAAEQrPZTWQ//8eOj93nTPeq1/zZWh9wsAAFAKrEgFqoDr2ZzbF71uidSzUcGOT8t1/Tz0OLbwHll8Ruj9AgCAcXjMiwQAAIULgkC7f7VXDTPq1LqgVc/9ZIu+95c/1tGOrtBjveTeF8nzec8CAEDJMFYQKgqpwHnMDR1S8PzH5Q78S0niBbv/RtZ+h8yqcH0/AAAAAAAV4MC2Q/rGB76trb/YXpJ4//75+/XGT/1GSWIBAACEjUIqcJ5yJ36l7OOvlbIDpQt6/DGpb6vUeEHpYgIAUK3Mop1lysQoAADOO4//61P60lu/JudcyWI++p0n9JqPvEJ1TbUliwkAQNVirCB0rO8FzjMuO6jghW8q+9RbSltElSSvRm7ocGljAgAAAACACfWfGNB/fPEB/f17/rGkRVRJStQm1H24p6QxAQAAwsKKVOA84LKDcnv+Xu7Er+SOPSylT5QnkebLZG03lyc2AADVyKu+maAAACA/3Yd79MDf/0Idz+zTlge3Kz2ULkse6152qeaunF2W2AAAVCXGCkJFIRU4DwSbPii3/9vlTkM6/qg0dECqnV/uTAAAAAAAqFpBEOhz9/ytdj+1p9yp6NFvP6E3/OWr5UW5zSAAAEBEKKQCFc4NHZAb3ifNulEKhqX+DqmM2+u6A9+VLX9n2eIDAFBVGJAEAABjSG19Qm+4ZqO6LmvW/qNJPfJ4RkcOZ8qSy1BfSs/et1mX3XlxWeIDAFB1GCsIFYVUoIK5dI+yG98m9W05+0LLBVKsRVJWsrjUs0MaOhR9Qn6D1LA8+jgAAAAAAGBM2cMdGvzK+9XYfVSNkpbEpOuv95SetVr9XqviGtahgZn6zg9NnZ3RF1ebZzepZW5z5HEAAACiQCEVqGDBrk+eW0SVpMEOSR2nv/ZqpOa1UvezkebjXfYFee0vijQGAAAYYRbtLFPjTBUAACqNc069X/uwgu6joy4Eih/ZohkjXy6X9IE7W/TVX12vzZtSkeb0hz96j2YtnhlpDAAAMIKxgtCxvheoUK77KbkD/5hf42BIGu6Q2tZL8VGzQL1kblvg5qVS23WSiv1B6MlmXl/kvQAAAAAAYKpSD/+rMtt+mV/j/uN60+UP6eUvq1FD49lDhDNn+vqDtw/qz9/8vF7xshpJrqh82pe2UUQFAAAVjRWpQAVyQweU3XSvCnqQcWmp72nJl1S3XIo1Sy4jpfZLvU/k2qQOSS1rpKyknjFWuk7Au/gvZX5tQfcAAIAp4twTAAAwIr3rGfX9w8cLu6n/uG6M/0A33uEpaF2kdLxJseyg/OMd0uG0JOmG+F5d9TuX6BsPLNLzW4cL6v4tX3xDYfkAAICpY6wgVBRSgQoTHHtQwXO/K2X7iu8kdSD3MZbBDqnuosL6q1sia99QfD4AAAAAAKBoQz//pvr+4U+kbJFnnrpAXleHkuNcTh7aqERicUFdrrl+hRavXVhcPgAAANMEhVSgwriun0+tiDqR5HxpeEg69kRh9w0dkrxENDkBAIAxOTO5CGeZuio89wQAgEqVeuq/ii+iTmJozuX66n3ztGtnYWepHj/Uo3iSoUcAAEqJsYLw8W4GqDSZ3uj6Doak9InC7mm+XBZvksUbI0kJAAAAAABMzA30RNZ3LBjQ3j2Fbem7av1yzVs9J6KMAAAASodCKlBhXHeBq0XzVb9WcoHkxaV+y7Nga/LXfUWWbI8mJwAAMDHPL3cGAACgzFxmWJmOjeF37Pn6/pGXaG1LSh9781794Zcm36bXzFQ3o1Yf/MG94ecDAADyw1hBqCikAhXEOScNd4bfcf0aqeux3J9n3Sj1HZq4fcNqeUvenDsXNdEWfj4AACAPJkW4XY9Ufdv1AABQiYLe45JzoffbOesG/eI7Q3r8cdM7fmv+hG39mKf5F8zTq//Xy7Xwonmh5wIAAPLFWEHYKKQClaTnmWjORw2GJXmSAunog+O3i8+Qf8N/yWrmhp8DAAAAAAAoWHrzQ5H0m7SUpISGU06f+d/jD8guvHi+fv9771Jdc10keQAAAJRTlGVpACELjv4omo4Hd0lt6ydvl+6R645guyAAAFA4U26WaVQf1TfJFACAipR64seR9Nt46FHd8aKaSdsd7ehU595jkeQAAAAKxFhB6CikAhXE9TwbXeep3VK8ecIm1nbTyOpVAAAAAABQbs45ZXZHN+H5tqVblIiPf92Pebro1jUaHkxHlgMAAEA5sbUvUEkGdkXXd/q41LhC6umQMr1nX2tYLf/iv5C1XBVdfAAAULhIzz0BAADTnes7IdffHVn/fucOffAtrfrT/92sTObsa2tuWKl7PvEazV05O7L4AACgCIwVhIpCKlAh3MBuKR3xVjkDO6TmNdJgl1TTLrms1HyV/FUfkPm10cYGAAAAAAAFSe98KvIYDYce1/vfcoO+9+AMXbDKdPR4TPPvuEO3/4+b5DFQCwAAznMUUoEKERz+XmkC9W/NfR44Km/ZB+Qtfmtp4gIAgMKYyXl+pP0DAIDpLfXoD0oSp+XwL/SmVbk/N/5/X1Dy0ltKEhcAABSIsYLQMW0MqADOZeUOfbekMa39pbJFby5pTAAAAAAAkJ+g97iGn/lpSWPWvux3lLz01pLGBAAA5x8zW2BmXzGzA2aWMrMOM/uMmbUU0EeHmblxPg6FlSsrUoEK4I78WBp6oXQBzZe34g9kFuHMFQAAMHVspwcAQNUa/Mk3pMxwyeJ5zbNU95K3lSweAAAo0jQfKzCz5ZIeltQu6XuStkq6WtK7Jd1pZtc757ry7K5b0mfGeL0vhFQlUUgFpj0XpBR0fK60QeMzZck5pY0JAAAAAADyEvR0auj+r5c0pj9vuSyeKGlMAABwXvqickXUe51znz/5opl9StJ7JX1c0tvz7OuEc+4joWd4huldlgagYPdnpYGdpQ063CmXHSxtTAAAUCDLzTKN6kPVd+4JAACVwDmnvq99WG4wtIUWecl27i9pPAAAUIzpPVZgZsskbZDUIekLoy5/WFK/pHvMrH5KgUJEIRWYxoKun8vt/XI5IivYdK9cKrRtxAEAAAAAQAiG7v+6hp95oORxg6P71PcPf6Kgv7vksQEAwHnjtpHP9znngjMvOOd6JT0kqU7StXn2lzSzN5jZH5rZu83sVgv5zEK29gWmMXf4u+WL3fWAsg/fKJt5i7wlvytrWlu2XAAAwBhMkhfheeYsSAUAYFoaeuR75Yv9wD9o6MFvK3nlnap7+e/Ib19ctlwAAMAYSjNWsMbMnhzrsnNu3SQ9rB75vG2c69uVW7G6StL9eWQ0R9Lo8w52m9lvO+d+lsf9k2JFKjCdpQ6XOQGXK6g++WsKdn9+8uYAAAAAACBSwfEj5U0gM6zUo9/X8f/1cqUe/1F5cwEAAJWmeeTzeFtcnHx9Rh59/b2k25UrptZLukTSlyQtkfTvZnZp0VmegRWpwDTmMj3lTuGUYO+XZEveJTOWpwAAMD2YnEU5L5Lf+QAATEduYJpsrZvNaOA/vqLk1S8pdyYAAOCUkowVbM1j5emUAkhykzV0zn101EvPSXq7mfVJ+j1JH5H0qqkmRCEVmM6C4XD7q1koa7pUqlsqizVJfr3k10lD++V6npbrfkpKd415q824hiIqAAAAAABl5JyTsplQ+/Tnr1Rs8UXyZy2S1dbLauplsaQyh3crs+tZZXY9IzfYO+a9iTVXh5oLAAA4752cEdY8zvWmUe2K8TfKFVJvmkIfp1BIBaazs89anpjfIGX7xr/euFb+uu9MWAx1zknDh+V6nlXQ8deyWJNs7q/LGi+S6lYUkDgAACiJKM89AQAA008h4wSSrLZBbnD8sYLk+leq8b//2djXToZ0TsHRvUrveFoD3/9rxRZfpOTVdym26EJ5bQsKygcAAJTA9B4reH7k86pxrq8c+TzeGar5OHkOQv0U+jiFQiownQVDE1+vXSRvwZtkrTdItUvljv1cQcfnpJ5nzmnqtd0+6YpSM5OSc2Sz5shm3ibz+BEBAAAAAMC0MTzJOIGk2NK1qrn5tYpfsF5e8yylHvuhBn74NwqO7DmnbeKy2ybtz8zkty+W375YyWteKvMZKwAAAEV7YOTzBjPznDs9S8zMGiVdL2lQ0qNTiLF+5POuKfRxCu98gGnKuWCSFaaXyl/7ZVli5qmXbObNstab5Dr/U8GW90nZgdPX2u4oKD5FVAAApjmzaGeZsqU/AADTTjDB6lJJSqzboMY3/4Usnjz1Ws11r1Tympdq6Kf/pP5//jPJjRw5lqhR4sLrCopPERUAgGlumo8VOOd2mtl9kjZIeqekz59x+aPKrSL9knOuPxfO4pKWS0o753aeTsMuknTQOXfs7PRssaS/HvnyG1NKdgTvfoAycQMdUs2CcQuW7sTjUmbsM0gkyV/5obOKqCeZmWzWBlntNxUc+Cepf0fu64bxVsoDAAAAAIByc84pe7hD/uwl4+4oNfz0T8bvwEwN93zkrCLqqUt+TLW3v0H+/JVKPfp9BccOqubW35TVhLLjHQAAQCHeIelhSZ8zs9slbZF0jaRbldvS90NntJ0/cn2PpCVnvP4aSR80swck7ZbUq1zB9aWSaiT9SNInw0iWQipQYi5IK9j9abm9X5bq18i/8JOyhjWnr2d65Y49pGDHx8fvxK+XGtdOGMca1shf9ZGQsgYAANOR87xypwAAAEIQDPap7+sf1vAv/13xC69Twxv/RH7rnNPXe7o0/PRPNPAvnxq3j9iii+TVz5gwTmLNNUqsuSastAEAwDQ03ccKRlalXinpY5LulPQSSQclfU7SR0evMh3HA5JWS7pcua186yWdkPQLSV+X9HXnTm7DMTUUUoEScr3PKbv1D6S+LbkX+rcq+8tXyGZcI8Xq5fp3SoO7J+9ogpWsAAAAAACgcgxv/Ln6vvERBccOSZLSmx/W8Q/dqfgFueO9svu3KTh2cNJ+vPaFkeYJAAAQFufcPkm/nUe7DknnbNXhnPuZpJ+Fn9m5qMQAJeBSRxXs/pTcwW9LGj0JIpA78UhhHfZvlxs+Jku0hpUiAACoNNP83BMAADCxzMFd6v/WJ5TeOMYYYGZ47Ncn6m/7k3JBIJvmq1AAAECEGCsIHYVUYBSXHZI78I+yGVfJGi+eWl9BRm7f3ynY8wUpOxBShpIUyPVtkbVeH2KfAAAAAABgLEHfCQ09+C0lr7xT/qyprfx0Q/3q/+5nNfTAP0pBNqQMpeDEEQU9nfJntIfWJwAAQLWjkAqMcAMdcp3/pWD/16Wh/ZL58tb8hbw5dxfXX/82Zbd8QOp9LtxET8p0R9MvAACoECYX5SzTc3fOAQCgqrggUPaF55V68j4N/eyf5Pq7NfijL6vp3r9RfOW6ovoc3vqY+r76IQVdB0LONsf1d0sUUgEAqGKMFYSNQiqqnnNZBZvulTv6H6MuZBVs/aAsOVfWck3+/Z1chdrxWSkYDjnbM2R6o+sbAAAAAIAqFvSfUM9n367M7mfPet0N9avnr9+pGR/6pvz2RXn354b61f+vn9HQT/5v2KmeHWewL9L+AQAAqg2FVGBwj9yxX4x9zWWUffYt8i74hGzWBplNfM6I69uq7NYPRrcK9Ux+XfQxAADA9BbpLFMAAKpXZsfTyuzfNuY1N9Cj7k/8lhrf9mnFV1w+aV/Dmx9W39c+rKBrf9hpnsOStZHHAAAA0xxjBaGikIqqZ3XL5N/4tDR8VMHOv5A7/L2zGwSDCja9S6pdIm/e62Rz7pYl2s5q4oKM3N4vK+j4vOTSJUg6LmsubhshAABwfnAW7XY9zqpvux4AAE5KXHqLZn7+CQWdL6j3//yRMtueOOt6cOKIuv/i9YotuUQ1N71WiStfLK+24ew2Q/0a+M5faein/1SSnK1ppvy5y0oSCwAATE+MFYSPQiogycykZLu8Cz6pIDlHbu+Xzm002KFg559Luz4hm7Fe1nqDVL9CSh9XsO8rUt+WUmUrb9VHZTXzShQPAAAAAIDqY54nv32Rmt/zt+r9uw9o+Mn7zmmT6diovo6N0j/+iRJrb1Z8zbXy2+Yre2SvBv/jKwqOHSxNsolaNb7lE7JYojTxAAAAqgSFVOAMZiZv2f9UtusnUv/2sRu5rNzxX8gdH2c74Ch5CXkXfkberA2ljw0AAKYftusBACByFk+o4Z6P6vjmR+QGe8dulE5p+Mn7xiy2Rs0aWtR0798ovvSSkscGAADTEGMFoZr4wEegCpn58pb+z3KnMSbv4i9SRAUAAAAAoMS8+mbVvvi/lzuNcyVq1fz+/0MRFQAAICKsSAXGYG0vkhLt0vCRcqdyii1+h7yZt5Q7DQAAMF1EfO6JqvDcEwAAJlJzy+s08N3PljuNszT81kcVm7ei3GkAAIDpgrGC0LEiFRiDmcnqlpY7jVNsxnp5S+4tdxoAAAAAAFQtr75Z1jiz3GmcUnPzb6jmmpeVOw0AAIDzGitSgfE0XCCdeKzcWchmv1Leqo/JPP65AgCAM1nE555U3yxTAAAmE1u4WunND5c3CTPV3vVW1b3yXeXNAwAATEOMFYSNFanAOLxZd5U3gdql8i7+gvwL/0oWqy9vLgAAAAAAQMl1Ly5r/NjStWr+wDdU/6p3yyIdJAUAAIDEilRgfM2XSw0XSX2bShrWZlwjb+l7peYrZMZcBwAAML5Izz0BAADnSKzbIPve5+R6ukob96qXqO6lb1Ns/sqSxgUAAJWHsYJwUaUBxmHmyb/oM5LFSxMw1ijvos/Ku+wbshlXUkQFAAAAAGCa8eqb1fimj5cuXtsCNb//a2p66ycpogIAAJQBK1KBCVjdUtnc18gd+IdoAyVmy7/0K7KG1dHGAQAA5w8zKcoz1K36zj0BACAfiUtuUmzVVcps+2WkcfwFq9X87i/LmzEr0jgAAOA8wlhB6CikApPwVnxIQaZb7sgPp9yXzfk1WduLZPEWya+TvKTkJaR4qyzWEEK2AAAAAAAgak1v/4x6vvBOZXY+PbWO/JhqN7xJsaVr5TXOlCVqpHhSFkvImzFLFk+Gki8AAACKQyEVmIT5SXkXfkZu5i0KdvyplD5eeCc1C+St/hN5rTeEnyAAAKhSJkV67kn1zTIFACBfXmOLmt//NQ3e9/ca+P4XpMxwwX3EFl+shjd+TLGFayLIEAAAVCfGCsJGIRXIg5nJ5rxK1nyFss/dK/VtkmRS/YrcytLe5ySXPffGmgXyFr5ZNvfVMr+25HkDAAAAAIBomB9T3V3/Q/GV69T7t7+voGu/5Mfkz18luUDZfVvHvM9fdIHq7nyLEus2yCId6AQAAMBUUUgFCmC1ixW76ntyw12Sl5DFGiVJrn+73JEfyw3tl/ykFG+R1a/JbeMb5X7kAACgepnkIj33JLquAQA4n8RXXKGWP7tPrrtTVtsgS+YmUqd3PKXhZ3+moKdLFk/Ka56l2LK1il+wXlaF54sBAIASYKwgdFR4gCJYYubZX9evlC1dWaZsAAAAAABAOZmZbMass16Lr7hC8RVXlCkjAAAAhIFCKgAAAFCROPcEAAAAAACcibGCsHnlTgAAAAAAAAAAAAAAphtWpAIAAAAVyeQsyrfz1TfLFAAAAACAysZYQdhYkQoAAAAAAAAAAAAAo7AiFQAAAKhEZpIX4dt5q75ZpgAAAAAAVDTGCkLHilQAAAAAAAAAAAAAGIUVqQAAAEClinKWKQAAAAAAqDyMFYSKFakAAAAAAAAAAAAAMAplaQAAAKACOZlchLNMnarv3BMAAAAAACoZYwXhY0UqAAAAAAAAAAAAAIzCilQAAACgEplJFuHbeau+WaYAAAAAAFQ0xgpCx4pUAAAAAAAAAAAAABiFFakAAABARTIpwnNPVIXnngAAAAAAUNkYKwgbhVQAAACgIvFwBAAAAAAAzsRYQdjY2hcAAAAAAAAAAAAARmFFKgAAAFCBzCSz6N7OW/VNMgUAAAAAoKIxVhA+VqQCAAAAAAAAAAAAwCisSAUAAAAqkklePNr+AQAAAABABWGsIGysSAUAAAAAAAAAAACAUaJYkbpky5YtWrduXQRdAwAAANHYsmWLJC0pcxoFsEjPPanGWaYAIsVYAQAAACoOYwXn9l9tovjb7BkcHNRTTz3VEUHfAAAAQFSWSOopdxIAcJ5irAAAAACVaIkYK6hqoRdSnXNLw+4TAAAAwGgmMcsUQIVgrAAAAAAoBcYKwsYZqQAAAAAAAAAAAAAwSpRlaQAAAABRMZN5Eb6dt+qbZQoAAAAAQEVjrCB0rEgFAAAAAAAAAAAAgFFYkQoAAABUKIv03BMAAAAAAFBpGCsIFytSAQAAAAAAAAAAAGAUytIAAABARbKIZ5lW37knAAAAAABUNsYKwsaKVAAAAAAAAAAAAAAYhRWpAAAAQAUymbwIZ5laFc4yBQAAAACgkjFWED5WpAIAAACIjJktMLOvmNkBM0uZWYeZfcbMWsqdGwAAAAAAKL2wxgpKMebAilQAAACgEpnJzI+0/6l3YcslPSypXdL3JG2VdLWkd0u608yud851TTkQAAAAAACoqrGCUo05sCIVAAAAQFS+qNwDzb3Oubudcx90zt0m6dOSVkv6eFmzAwAAAAAApRbWWEFJxhwopAIAAAAVyiwW2cfUc7NlkjZI6pD0hVGXPyypX9I9ZlY/5WAAAAAAAEBSdYwVlHLMgUIqAAAAgCjcNvL5PudccOYF51yvpIck1Um6ttSJAQAAAACAsghrrKBkYw6ckQoAAABUoK1bDuraqz4caf+S1pjZk2Ndd86tm6SL1SOft41zfbtys0dXSbq/mBwBAAAAAMBpVTRWULIxBwqpAAAAQOXZOjg4rKee6og6zpIp3Ns88rl7nOsnX58xhRgAAAAAACCnmsYKSjbmQCEVAAAAqDDOudeXO4cQ2MhnV9YsAAAAAAA4DzBWEEk/nJEKAAAAIBInZ382j3O9aVQ7AAAAAABwfgtrrKBkYw4UUgEAAABE4fmRz6vGub5y5PN455kAAAAAAIDzS1hjBSUbczDn2EkLAAAAQLjMbLmkHZI6JC13zgVnXGuUdFC5iZ2znHP9ZUkSAAAAAACUTFhjBaUcc2BFKgAAAIDQOed2SrpP0hJJ7xx1+aOS6iV9jSIqAAAAAADVodCxAjOLm9makcJp0f1MBStSAQAAAERi5EHnYUntkr4naYukayTdqtz2Otc557rKlyEAAAAAACilQsYKzGyJpN2S9jjnlhTbz5TypZAKAAAAICpmtlDSxyTdKWmmctvrfFfSR51zx8qYGgAAAAAAKIN8xwomKqQW0s+UcqWQCgAAAAAAAAAAAABn44xUAAAAAAAAAAAAABiFQioAAAAAAAAAAAAAjEIhFQAAAAAAAAAAAABGoZAKAAAAAAAAAAAAAKNQSAUAAAAAAAAAAACAUSikAgAAAAAAAAAAAMAoFFIBAAAAAAAAAAAAYBQKqQAAAAAAAAAAAAAwCoVUAAAAAAAAAAAAABiFQioAAAAAAAAAAAAAjEIhFQAAAAAAAAAAAABGoZAKAAAAAAAAAAAAAKNQSAUAAAAAAAAAAACAUSikAgAAAAAAAAAAAMAoFFIBAAAAAAAAAAAAYBQKqQAAAAAAAAAAAAAwCoVUAAAAAAAAAAAAABjl/wHoBk6DYJ4RJAAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "image/png": { + "height": 575, + "width": 937 + }, + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "for i in range(len(groups_list)):\n", + " input_df['LQ_' + groups_list[i]] = index.statistics[:,i]\n", + "\n", + "fig, axes = plt.subplots(ncols = 2, nrows = 2, figsize = (17, 10))\n", + "\n", + "\n", + "input_df.plot(column = 'LQ_' + groups_list[0],\n", + " cmap = 'inferno_r',\n", + " legend = True, ax = axes[0,0])\n", + "axes[0,0].set_title('Location Quotient of ' + groups_list[0], fontsize = 18)\n", + "axes[0,0].set_xticks([])\n", + "axes[0,0].set_yticks([])\n", + "axes[0,0].set_facecolor('white')\n", + "\n", + "\n", + "input_df.plot(column = 'LQ_' + groups_list[1],\n", + " cmap = 'inferno_r',\n", + " legend = True, ax = axes[0,1])\n", + "axes[0,1].set_title('Location Quotient of ' + groups_list[1], fontsize = 18)\n", + "axes[0,1].set_xticks([])\n", + "axes[0,1].set_yticks([])\n", + "axes[0,1].set_facecolor('white')\n", + "\n", + "\n", + "input_df.plot(column = 'LQ_' + groups_list[2],\n", + " cmap = 'inferno_r',\n", + " legend = True, ax = axes[1,0])\n", + "axes[1,0].set_title('Location Quotient of ' + groups_list[2], fontsize = 18)\n", + "axes[1,0].set_xticks([])\n", + "axes[1,0].set_yticks([])\n", + "axes[1,0].set_facecolor('white')\n", + "\n", + "input_df.plot(column = 'LQ_' + groups_list[3],\n", + " cmap = 'inferno_r',\n", + " legend = True, ax = axes[1,1])\n", + "axes[1,1].set_title('Location Quotient of ' + groups_list[3], fontsize = 18)\n", + "axes[1,1].set_xticks([])\n", + "axes[1,1].set_yticks([])\n", + "axes[1,1].set_facecolor('white')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Local Diversity" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([0.34332326, 0.56109229, 0.70563225, 0.29713472, 0.22386084,\n", + " 0.29742517, 0.12322789, 0.11274579, 0.09402405, 0.25129616])" + ] + }, + "execution_count": 7, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "index = MultiLocalDiversity(input_df, groups_list)\n", + "index.statistics[0:10] # Values of first 10 units" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "Text(0.5, 1.0, 'Local Diversity')" + ] + }, + "execution_count": 8, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABXEAAANoCAYAAACGGKlcAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/d3fzzAAAACXBIWXMAABYlAAAWJQFJUiTwAAEAAElEQVR4nOzdd5xcd3X//9e5s12r1apLlmRZcpPcOwYDtgEDAUwgBBJagBRCICGQkF8SviE4kHxDAiS0BL5gMD2UYDoYA+4dV1lW773tStt3p9zz++OOpNXs7O7s7szcmZ33U495jOaWz+dsm509c+75mLsjIiIiIiIiIiIiIpUpiDsAERERERERERERERmdkrgiIiIiIiIiIiIiFUxJXBEREREREREREZEKpiSuiIiIiIiIiIiISAVTEldERERERERERESkgimJKyIiIiIiIiIiIlLBlMQVERERERERERERqWBK4oqIiIiIiIiIiIhUMCVxRURERERERERERCqYkrgiIiIiIiIiIiIiFUxJXBEREREREREREZEKpiSuiIiIiIiIiIiISAVTEldERERERERERESkgimJKyIiIjXLzG4yMx9+izumOJnZGbmfDzN7a9xxSXHl+RrfFHdMIiIiIjI2JXFFREREREREREREKlhd3AGIiIhUEzM7A9ies/lud7+u/NFItcpWPn6wwMOTwBDQCxwGDgCbgQ3AI8AT7p4qQZgiIiIiIlIhlMQVERERqWwN2dtMYDFwEfDiYfv7zew24NvA95XQlVIY5Q2st7n7l8sfjYiIiEjtUTsFERERkerWAvwOURJ3h5m918zqY45JRERERESKSJW4IiIiIpVhN9CZZ3sCaAdmAa2AjTHGacB/AH9iZm9w9yeLHKOIiIiIiMRASVwRERGRyvCP412abmYJYBVwVfb2amBhnkNXAw+a2Zvc/XuFBuDuOxg7SSzTgLvraywiIiJSZdROQURERKRKuHvG3Z9x91vc/c+A04E3A0/nObwJ+JaZvaKsQYqIiIiISNEpiSsiIiJSpdw96e5fB64APp3nkDrg62a2sryRiYiIiIhIMSmJKyIiIlLlssncdwPvyrN7FvBfZQ5JRERERESKSD1xRUREqpCZNRD1RF0KLABmAB3AIeAZd99c4vmXARcD84C5QCPQAxwENgAb3D05xTmWEPV/PYMoEdkMdBMt/rUL+I27D05ljunG3f/bzK4A3paz66Vm9gJ3vyOOuOJiZkuJvk/nZ28OHAb2Aw+5e3cZYjg7G8NSooXpksB+d/9aAefOAS4CzgTaiH7Ok0A/0c/6DmCTux8rRewiIiIiUjmUxBUREakiZvYi4C+AFxAlhEY7bhvwA+Cj7n6gSHOvBN4DvBQ4e5zD+83sbuB7wLfcva+A8ecRLdT1IuBa8i/YNVzSzB4CPgN8z93D8eaoEe8CXk6U3B/uPcCYSVwzOwPYnrP5bfkWXMsmi3+Ts/kT7v7eCcSaL4ZfAC8etmkIOM3dOws8fwHwXuBG4PwxDk2b2cNEVcrfnuj3j5l5zqZ/cvebsvtmEP2c/gkwWiuLvElcM2vKnvdm4MoCQnEz2wjcA/wvcKe7pycbe85xbwVuGWOoW8xsrP0Ad7v7ddnxXgj8Kmf/Te7+T+OMMSYze5IoUX7cIWDZVN9IEhEREakkaqcgIiJSBcxsZTa59UvglYyRwM1aCfwVsMXMPmBmk/6db2bzzOxLwEaixNR4CVyAFuC3gJuJqh7Hm+Ob2eM+D7yO8RO4AA3A84HvAGvNbKyEXc1w9wHyt094Wbays1jzPMrIBdXeaGb1kx0zW339opzNPywkgWtmDWb2IWAb8HeMncCFqJjhGuCbwFNmdtEkQs4Xx7OAdcC/MnoCd7Rzr8ue+ykKS+ACGFHF+tuB2xn5+asY7v5roo9vuD8xs0kXlpjZszk1gQvwRSVwRUREZLpREldERKTCmdnlwIOcWp1YqBnAh4DvZCv8Jjr3RUTVlm9j8lfwzCzgmOdMYXyA1cBD2Uplgf8GcqsxE0RV1MWUW4U5H3jFFMZ7CyNfn45X6Xm87cDtwAeIvucn6gLgfjO7cRLnDo/j+cBdwOmTOPdlwG3AiqnEUAX+O+fxEqKq6cn6s5zHIdGbQSIiIiLTitopiIiIVDAzW02UFMpXebsZ+D6whahX7CKiPrn5KnVfAzSa2SvdPfdS6tHmvozoEu18SbFu4E6i5PIhoJeob+0S4HKipOzcQubJIwM8DjxD1F+3IzufEfUFPRu4mqiKcnjCrxX4lpld6u67Jzn3tODuR8zsKaKvxXDPIao8LZavA/8GDK++fSvR9+VkvCXn8V6i5OyozKwduJ+oGjXXWuBuou+lY9ltC4BnAy/j1DcYWoHvmtk17v7YRAMn+vm7FRj+ZskjRPHvJOoZvRg4D3htzscwF/gKUW/p4dJEP4MPEPW/7club8t+HOcDl5H/Yy+GTuCp7P8biN4sGW539pixbMl5/BXg/xJ9DMf9GZP4nskm71+bs/nn7r5jomOJiIiIVDolcUVERCqUmTUC/8PIhGwn8Jfu/vVRzpsN/AdRMm24VwDvBj5ZwNxzifrZ5iZwe4guE/+ku/ePcX4CuB74Q6L2CONJEiXAvg7c4e5dBcS4PBvL64dtngt8lqlVg04XDzIyiXtZMSdw98Nm9hOiXsbHvczMFrj7oYmMZWbXAOfkbP5KAb1qb2FkEvMB4K/c/eFRzvlkNvn7AaL+uZbd3gj8r5ld5O49o5w7mj8mqnYGWAO8w90fzHegmb07Z9OfES0SONwvgT92913jTZztZfxqRlalTom7/wj40bA5cvsl/2O+fsnjjNlrZl8F/nzY5heZ2VnunpvwHc/bODVpDtHPv4iIiMi0o3YKIiIileuvGdnrsRO4frQELoC7H3X3txFVu+X6t2zf0fH8F3BGzrY9wDXu/q9jJXCzMWTc/Vfu/gYK66F7pbu/xt2/X0gCNzvHzuz4N+XsepmZlaoysZrkLjoGE+zRWqDcdgd1wJsmMc5b82z78lgnmNnbgVflbP5v4LljJHABcPdj7v7XwB/l7DoDeOdY547ieAL3fuB5oyVws3MP5mz67ZzHG4AbC0ngZsfb4e7/CZxLVHlc6XJ7NhvwpxMZwMzynbMT+PkU4hIRERGpWEriioiIVKDs4lB/nmfXW919TSFjuPv/IeqxOVwj8K5x5l7FyEuUB4GXuXvuQlaFxJFbvZfvmIISt6P4EKcmLI2oArjW5auEXTCVhcdG8XPgQM62t01kADNrYWTF9r3uvnmMc+qA9+dsvs3d31VoyxAAd7+FaAG+4d6brYSfqC7g99y9e4Ln5SbXv+buQxOd3CMDEz2v3Nx9A/DrnM1vm2Df7hcx8g2i/1dA5baIiIhIVVISV0REpDK9hqh/5nA/c/cfT3CcPyfqMTvc28dJ5P0NI18j/NNkErjlkE3YfS1n83PjiKXCHMuzzShsobmCuXuakZ//C8zsigkM8xpO7ZEK4y9o9vvA8uGhAH8xgTmH+1D2/OMWEvXNnaj/cPe9kzgv92vSMYkxqs1nch7PZeSbR2PJbR2RAr40pYhEREREKpiSuCIiIpXphjzbcld1H5e7bwV+kbN5LmP3Rs3tJ9tL5feZzK3YvKwEFafV5ugo25tLMFe+hOtbJ3B+7rG9wHfHOed3cx7fNYmeqgBkF8LLfZPi2okOw+STiLlJ21p4E+LHRO0PhntHISea2WnAjTmbb3X3g8UITERERKQSKYkrIiJSma7JedzHyNYIhfpOAeMDYGbnE616P9yPptjuYMLMrNXMXmZmf2dmXzWzn5rZvWb2uJk9mXtjZFVfI1E1ZS0b7XVewa0GCuXu64HcHrRvKKQlQXaBuutzNn/X3XvHOMeA5+VsfqCQWMeQ2/bj0gmev8Xd90xy7tzP3RvN7J3Zj3NacvcM8Lmczc8xs4sKOP1PGLlAc6W/0SQiIiIyJbkvfkRERCRmZjYDOCdn8xPZpMdk5FvgarRK3HyXkN8/yXknzMwuJ2rn8EqmXjHaTrQYW61qH2V7qXqmfgl41rDHs4m+juNV1L6FqM3DcOO1UlgNzMkdx8xyq8gn4vScx/MmeP7jU5j7Fk5d3MyIFv96p5ndQvRGyqj9gavYzcAHgeG9cP+Mka0STjCzBFESd7j17l4NC7qJiIiITJqSuCIiIpVnLiOTWuunMN4GIOTUyszRElT5qldL3gs32/rgP4mSN8W6UmhWkcapVrPzbHOiVgWl8C3gE5yafH8bYyRxs5Wmb8nZvMXd7x1nrqWjbMu3fbLmTvD4fAvJFcTdf2hmPwBelbPrfOBjwMfMbDdwH9GbMg8Aj2X7EVctdz9iZt/m1O+BN5nZ/+fuPaOc9kpgSc42VeGKiIjItKd2CiIiIpUnX/Lt2GQHy67W3p2zObeKcazto/VWLYpsAve7wLso7muTWu+Jmy8hf8DdU6WYzN27gVtzNr842790NM8HVuZsG68KFyaeYJ2MiVaC5/6MTdQbgW+OsX8Z8HrgP4CHgKNmdquZva6QthUVLLcVSivR52I0uX1z+4GvFjUiERERkQqkJK6IiEjlyV2pHqKeuFORe36+OQDa8mwrVeXmcX/LqZeSH7eXaDG3NxG1eVhG1CKgyd1t+I2RPVUFrsqzbVuJ58xd2CsBvHmM49+W8ziksIRcvjc64jalqlh373f3NwIvBu5i/N7FrcCrgW8DW83sT6uxh667Pwo8krM5bzsFMzuTkYs+frPcPbtFRERE4qAkroiISOXJdxnxjCmOmXv+aJcq56smbJ3i3KMyswXA3+dsTgPvBc5w93e5+zfc/SF33+PuXe4+lGeoqfbPnY7y9TeeSt/WQtwJ7MjZ9tZ8B5pZK/C7OZt/WeDiYPn6+r4qN7k/xdsZBcRRdO7+S3e/HlgB/DlRlfq+cU5bQrRI2A/NrKHEIZZCbjXuRWb2nDzHvYORrWZyF0cTERERmZaUxBUREak8+doXtE92MDMLGFlh2znK4R15tpWy6vGVQEvOtr91909MsN/naO0hapKZLQQuyLOrpIvUubsDX8nZvMrMrs5z+GsZ+eZCbiXvaI7k2baiwHOrgrvvdPf/cvfXufsSYDlRVfrnGX3BvhuJFkSrNt9hZE/hU6pxsy0jciu3f+Puj5UyMBEREZFKoSSuiIhI5TnCyEupV09hvHMZ+Ts/XxIM4ECebRdNYe7x5F4afZSRVXmFyO2rWuv+nKiVwXAp4LYyzH0LI79/c5Nv+bYdBX5Y4BwH82wr5fdp7Nx9V7Yq/U/dfRlRC5Hb8xz6R2Z2fpnDm5Jsdf3NOZtfa2bDex+/lpG9kLWgmYiIiNQMJXFFREQqjLv3AxtzNl9iZrlJuUJdmWfbaNVrD+bZds0k5y3EspzHD7t7chLj5GsdUJPMrIWRiz8B/LgcvUPdfSdRW4Xhfs/MTrS8yPY2fW7OMd8cpVVGPmuAwZxtL51QoFXO3e9y95cQVeYOZ0S9cqvN54DMsMe5lbe5fXKPAd8qcUwiIiIiFUNJXBERkcr0QM7jViafpHptAeMD4O7rGVnleKOZzZrk3OOZl/N4tDYPozKzeWhhs+E+x8jPK8AnyhjDLTmPZ3FqYvGtjOxtWmgrBdx9ELgvZ/NiM3thoWNMI+/n1OQnlKYqOV97k8m+sTSCu+8GfpSz+U8tciGQ2yP3y+6erzeyiIiIyLSkJO4EmNnvmtmnzexeM+s2Mzezr5dgngvN7KtmttvMhszskJndbWZ/UOy5RESkYv0iz7Z81ZVjMrMVjEz+HmHsBa5+kPO4FXjnROcuUF/O43zJx/G8C2gqQixVz8zeDbw5z64fu/u9ZQzle0Bu1e9bAczMgNzXNGvcfaKLruVrvXDTBMeoeu7eARzO2VyKN13yLYZY7EUPc1upnAW8iJFVuKAFzURERKTGKIk7Mf9A1GPuEmBvKSYws7cCTwCvAu4FPg78L1G1ystKMaeIiFSk7zNyRfpXmNlEfxd8GqjL2fb/3D01xjkfY2Rl3z9mq+GKbX/O4+eYWe5iV6PK9v78++KGVH3MrNHMPgN8Ms/uTuAvyhlPtkLy2zmbX2hmy4AXAqfn7Mut3C3EFxnZw/m5Zva3kxiraplZEyMXH8xN6hZDDyOrcYvai9rd7wDW5Wz+G6IF3Ya7w91zW86IiIiITGtK4k7Me4FziFb4zlcRMCXZlZtvBtYC57j7G9z9/e7+Tnd/Pvkra0REZBrKJlnzLfD1FTM7r5AxzOxDwMtzNg8C/z3O3FuAb+ZsbgJ+ZmYXFDJ3ThxnjLE7tzq0FfjgBMb9EVHvzJpkZg1m9ibgUaKK5FxJ4A3ZPrXllpuYDYC3MHJBsxQw4Subsonif8mz6/+a2Z9PdLzjzOylZjbmz0gxmdlZZvYBM5s/ySH+lJE/A09NMawR3D1kZIL1JWZW7L8n/ivn8Q3AzJxtqsIVERGRmqMk7gS4+53uvtndc1dcHpWZvd7M7jSzo2Y2aGbrzewfzCzfH5z/TtRb7E3uPmJ18HGqpkREZPr5OPBkzrZ5wF1m9vujnWRm7WZ2M/CBPLv/1t1zK3zzeTewLWfbUuB+M/vb7OJZozKzwMyuz7Yd2jzGod8Dwpxtf2NmHzaz3Ari4eO/nmgRtuOVgN1jxTNdZD+vq83srWb2WWA38DUgX3K9H/hdd8/XmqPk3P0hYH3O5j9i5KJbP3b3I5Oc5r8Y2VYhAD5tZt83s4sLGcTMVmS/r9cAPweeP8l4JqMV+BCwy8y+bmavHr4I3GiyCfz3AR/N2ZWhdAt+5fbSPhe42cyWF3GOrzL2z/MBRrZ8EREREZn2Rv3jSKbOzL4I/CGwB7iVaBXdq4EPE11SeIO7p7PHLgWeR1RJ84yZXQ9cDjjRH/B3ZisgRESk8lxhZk8WYZxvuPuJhIy7J83sDcAjnNp7cj7wP2b2QaJkxhaiS50XAs8CXsnIyjWAnxK1VxiXux8zs9cA9+SM1QZ8BHi/mf0aeAg4BPQS9eE8DbgUuAZYUMA8m7KJ3tweqf8AvNXM/hdYkx1/DlHS6JXAmcOO7Qf+FvhsIR9bBfuQmb0nz/YE0ed9VvY+d0GwfNYCr3f3tcULb1JuIXqT+rgzRjlmUtzds5XI9wG5CdtXAa8ys6eAu4jeTOjI7msnekPkIqLXW0VtCzBJTcAbs7eB7HPKE0RxHyP6GW8EFhF9rC8l/8/YR7KLhJXClxjZm/ttwNvM7DBRG4fcooNH3f2PC53A3XvN7KtELczyuVmFDSIiIlKLlMQtkWxv2z8k6mn4xuGr55rZTUSXir6Lk73rrszebwbuAK7LGfJpM/ud7CWuIiJSWWYwMoE0GXflbnD39dk39n7KyITNKuDvChz7VqLfRwVfTeLuT5rZNcCPgdxKuzaiisrcqsrJeDdwFdHHM9xS4D3jnJsCXkuUyK12y7K3qdhDVJn538ffKI7Z14D/y+ivOQ8QVb5OWjbp9zyiZPBr8hxyMcX5+SynZuDZ2dtEfBv4p+KHE3H335jZLYxsiQHRm0v5WkIcm8RUnyF6nZz7hkUG+PwkxhMRERGpemqnUDp/SbT4wx8OT+BmfZioEuSNw7Yd/8P8dcBq4HeIKm7OIvoD6ELgp2bWUMqgRUSk8rj7o0TJnF9N4vQ+ojcOX+vug5OY+2miBOvXGdn2oFBjLrLk7l1EK9A/NMFx9wEvcvefTTKu6aKPqC3F64CV7v6pCkngkm0PNVaS9qvunruI3mTm6XH33yVas2Cqi8/uYgrVwZPQT1RlOxW9RAv8vb4MVap/RlSEULIrxLKLlv06z66flrDKWERERKSiqRK3BLJ9Ai8GjgDvMct71eMQUbL2uMSw+z92959kH3eb2Vuyx15BVGHyP6WIW0REKpe7bwNuMLMbgL8AXkBUATyabUS9Qv89X5/1Cc59CHizmf1fokU+X8r4FaNdREmY7xJVAY83x14zez7wduCvGPvy9p1EC4F+0t2nmvyqBimiBcp6iBLiB4haaKwnarXxWKUkbUdxC3DjGPuKxt0/Z2ZfImrP8XvAc4Ax+zcTJSOfInqT5GfA3ROpWJ+qbEuRecC1RD9b1xC1JCnkjfv1RP1vPz/Vn/NCufsQ0evbjwO/T9Qq7Hyi9hQzKSzuQjxK9ObOcNXeMkVERERk0qyMr1GnFTO7DriTqH/hm3L2LSG6nHFc7m7Zc15PtBL4ENCS2//WzP6BqIL3E+7+3qnGLyIi1S17ZcaziJKp84kSuh1ESb617r6pxPOvInqDcV725kRJxn3ABmDTVCoszewcogrg4x9bH9Hv1jXZKj2RcWV/Ti4nas0xD5hNdKVUD9Gb7ZuIvldzr5qKVXYB3LOIej+fRpQcbSSq2u0CdgBPTWFBuIpmZglgO6e+WbQNOKucCXYRERGRSqJK3NLoyt4/4e6XFXjO8T9Ie0ZZwOxo9n7c1YpFRGT6c/ckcG+M828gStaWavxNRAk2kUnL/pw8GHccE5Wtdn0me6tFL2Nktf/nlcAVERGRWqaeuCXg7r1EL7rPN7M5BZ62hqgiZJ6ZLcyz/4Ls/Y6pRygiIiIiUrH+IufxIPClOAIRERERqRRK4pbOfxD1BPuSmbXn7jSz2WZ2oko328vu/2Uf/ruZBcOOvRB4K9Hlf/9bwphFRERERGJjZlcCN+Rs/qa7j7lAooiIiMh0p564E2BmrwJelX24CHgJUX+u45ezHnH39w07/r+AdwKdwC+IVjueA6wAng/c4u7vGHZ8C9EiMFcDTwB3EfUCfA1RG4W/dvf/KMkHJyIiIiISIzOrA+4n6od9nAMXu/vT8UQlIiIiUhmUxJ0AM7sJ+OAYh+x09zNyznkF8A6iF6PtRAndXcDtwNezPQWHH98C/H9Eq/2uILp87DfAx93958X4OEREREREKomZnQv8J/BbObv+x93fEENIIiIiIhVFSVwRERERESkrM3vy+H+BJcDcPIf1Ahe5+/ZyxSUiIiJSqeriDkBERERERGrOxQUc824lcEVEREQiWthMREREREQqSRL4S3e/Je5ARERERCqFKnFFRERERCROTtQ6YStwB/A5d98cb0giIiIilUU9cUVEREREREREREQqmCpxx2Fm24E2YEfMoYiIiIiIiIiIyNjOALrdfUXcgUwHZvYNYFXccYxig7u/Me4gykVJ3PG1NTc3z1m9evWcuAMREREREREREZHRrV+/noGBgbjDmE5WAZfFHYQoiVuIHatXr57z2GOPxR2HiIiIiIiIiIiM4fLLL+fxxx/fEXcc00+lpRDTcQdQdkHcAYiIiIiIiIiIiIjI6CotjS4iIiIiIiIiIiIVxLC4QziFxx1ADFSJKyIiIiIiIiIiIlLBlMQVERERERERERERqWBqpyAiIiIiIiIiIiKjMLDKaqeAG7XWVEGVuCIiIiIiIiIiIiIVTElcERERERERERERkQqmdgoiIiIiIiIiIiIyBtWBxq0kXwEze7OZefb2xxM479/M7NdmttvMBsys08yeMLMPmtncMc4zM3uLmd2VPWfAzLab2XfM7JzifFQiIiIiIiIiIiIi5Vf0SlwzWwZ8GugFWid4+nuBx4FfAoeAGcDVwE3A283sanffnTNfE/Bd4BXARuCbQA9wGvA84Bxg0yQ/HBEREREREREREZFYFTWJa2YG3AJ0ALcC75vgEG3uPphn3H8B3g/8PfDOnN0fJ0rg/ivwD+4e5pxbP8EYREREREREREREJMsqrJ2Cxx1ADIr9FXg38ALgbUDfRE/Ol8DN+k72/uzhG83sTOAdwG+A/5ObwM2OmZpoHCIiIiIiIiIiIiKVomiVuGa2GvgI8El3v8fMXlCssYEbs/drcra/nigR/RWgzcxuBJYRVQLf4e5bihiDiIiIiIiIiIiISNkVJYlrZnXA14BdRG0Ppjre+4j66c4CrgCeS5TA/UjOoVdm72cBW4Hhi5+5mX0WeLe7ZwqY87FRdq2aQOgiIiIiIiIiIiLTiIFVVjsF3Ki1pgrFqsT9R+BS4LnuPlCE8d4HLBz2+Dbgre5+OOe4Bdn7DwG/yp63A7gK+H9E/XMPEy2MJiIiIiIiIiIiIlJ1ppxGN7OriKpvP+7uD049JHD3Re5uwCLgd4CVwBNmdlnOoYns/X7g1e6+1t173f0O4HeBEPgrM2soYM7L892ADcX4mEREREREREREREQmY0pJ3GFtFDYBHyhKRMO4+0F3/z7wYqJWCV/NOeRo9v623Apgd38K2A7MBFYXOzYREREREREREZHaEFTYrfZM9aNuBc4hSpIOmpkfvwEfzB7zhey2T0x2EnffCawDzjezecN2bczeHxvl1ONJ3ubJzi0iIiIiIiIiIiISp6n2xB0CvjjKvsuI+uTeR5RsnWqrhdOy98MXKfs18BfABbkHm1kjcHb24Y4pzi0iIiIiIiIiIiISiyklcbMtDP443z4zu4koifsVd7952PZ64Ewg5e5bh21fBRxz9wM54wTAh4kWMXvA3Y8O2/1zYBvwEjO7wd1/OWzfB4BZwN25Y4qIiIiIiIiIiEghDKu4FgYWdwBlN9VK3MlYAqwHdgJnDNv+UuCjZnYPsBXoABYC1xItbHYA+JPhA7l70szeAtwO/NzMvp8d90rg+cBh4O2l/GBERERERERERERESimOJO5ofgV8HrgGuBhoB/qIFk37GvApd+/MPcnd7zOzK4h68F6fPe9gdqwPu/uecgQvIiIiIiIiIiIiUgolS+K6+03ATXm27yBPzbO7rwXeNcm51gG/N5lzRUREREREREREZHRRt1OJk74CIiIiIiIiIiIiIhVMSVwRERERERERERGRClZJPXFFRERERERERESk4qgONG76CoiIiIiIiIiIiIhUMCVxRURERERERERERCqY2imIiIiIiIiIiIjIKAyzRNxB5LC4Ayg7VeKKiIiIiIiIiIiIVDAlcUVEREREREREREQqmNopiIiIiIiIiIiISF4GWIXVgRrgcQdRZkriioiIiIiIiEjVcHfIDEFmEKwOa2jN2R/iB38Dnc/g6UEI02AJyAxAejA6Lx3933O3ZQYhk4SmudTd+KOYPkIRkZGUxBURERERERGRCXF3SPXB0FEI6sBDSPfjyW4Y7IweB4koQZoehMxAlFDNDJ1Mlp5Inh5Ppg4NS7Rmj8/+P9o3LNE6XMMsaF2KtS6Bxln43nuh/8DUPsCZy6d2vohIkSmJKyIiIiIiIlKFPMxkK1Kzt+b5WJCIEqwda/HBDghTUbI1MxQlW5Pd4Bk8k4oSov0HswnTfsikoqpVQggzkOrBB49CmATPQKr/5L6hYyOTqXFJdkFnF975TPHGzAwVbyyRqmeYVVY7haihQm1REldERERERESkAO4eJUUzyej+eHLTs4lNgEQDZAbxru3R4/pWrL4lqlAdOgapXkj14am+KLma7oNUfzaJmk3Gnqg+jSpVPZPCWuZD8wIYOoZ3bYHundH8wwTn/RG0zCfc9G3o3l7eT850k+qLOwIRkVMoiSsiIiIiIiIVL0qgprPJzYETPU1J9+PH+5iG2UrSMHXylh7EwxQW1EFQfyIpSpiETBJrno+d/Vp833344Sfxg4/gvXuiZOvxcU9UuyaJaykd7xj/mHDdF0sfSK1I9+HumNVetZ+IVCYlcUVERERERGRCPExHl7Bnhk5cqu9DR6MkZ30r1jwvugy//yAMHMRT/ade9p/ti+onepwOnZKYPbl94JSeqnhYmg/o7j/PthEQyfIwSvQnGuOORKQiGJXWTqH2KIkrIiIiIiJSxTzMnFzsKTN4YnEoP75o1PFt2aRotFhUNmGa7IqSr0PdkO6Pbqn+aJGpVH+UxMqtbD3+eDpRAlfySfUpiSsiFUNJXBERERERkSLwVD8MHMwmUQfxzNDJy/Eh6pWaaMSCBrBEtLjUkafw3r3ZROsAnh6IEqkn+qIORv+3AIIG7PQX453roG8v3n8wW+l6hLgu8ReZ1lJ90DQn7ihERAAlcUVERERERE6Refpz0LUVwhTefxhS3ZBJYe1nY0uuJdz9K3z/A9jc87E55+Pd2/DDT8LRDaW73D/L99xR0vFFZJh0f9wRiFQGM8wqrJ2CWc29f6kkroiIiIiISFa47z7Ce96Td5/vvQue+cLJx8c24Vu/X57ARKT8Un1xRyAickKFpdFFRERERETiER54iMyv/zjuMESkQnhaSVwRqRyqxBURERERkWnNO9aRefiDJK77DH74KejbAx5i574Jq2uKqm8f/Vd89x3U3LWZIjK6lNopiBxnlog7hJqnJK6IiIiIiExL7g7d20n/+Ebo20tmsCPqXXu8z+VjH8Wa5+Od60EVdyLTmrsxlLiOZP886pp6SPa0M7DlMMGMFlrPclrsJ5jlnKR2CiJSQZTEFRERERGRaSXc9G3CtZ+HloX41ltPbPf9D5x6YM9OvGdnmaMTkXJzT9Cx91UMbtoGHMtuPQhA5mgnR/dA8pLfo23u3ST8wMkTtbCZiFQQJXFFRERERKTqefcO/Mgawo3fwLf9MO5wRKSCDPCSbAJ3dH1PbqK/cQWznvVsZiS+H1XlhsnyBChS4QzDKmxZLcNqrgGSkrgiIiIiIlLVPNVP5p734DtvizsUEakg7jAY3MDRB7sKO35okGP37MCufwUz+AmeSZU4QhGRwimJKyIiIiIiVcc9xHfeTvj4v+MHHgbPxB2SiFSYzkOvY+CZzeMe581t4IbXN2Ldh+h6+BhNz1lIkBkqQ5QiIoVREldERERERKqKd+8g/c2LQQkWERlFOlheUAIX4NiMSxns7KOuvpHBoYUsbdrBgaOvYZnaKYicYFZZ7RRqkZK4IiIiIiJSNTzZS+b+v1MCV0ROMRRczWDvcszAQxjY0Q0cGPc8gDbbS8euk88ph2dfQPeP9zL76ouZVaJ4RUQmSklcERERERGpCn50E+nv3wADB+MORUQqjNkAQ/sGSO7aPeFzg57DQNuJx92b9wBwaGMDs15QrAhFRKZGtdAiIiIiIlLx3J3MvX+lBK6I5NWQeYr5Z/6EtmefPeFzbbCLpkVzR+7IqNe2SMQwEhV1A4v7k1J2qsQVEREREZGK5Mluwoc+SLj9R5DshWRhK8yLSG0yC5nZ9B0GT/9tkrt2FXyeBwnmrpjJ3gMdp2wPU+lihygiMmlK4oqIiIiISEXxrm2ET36CcNO3INkddzgiUkXMoGVFgmThOVzIZOg9Go7YrCSuiFQSJXFFRERERKQieO9eMre/Cd//YNyhiEgVa6jfM/GT8lyZ7WklcUWOM1NH1rjpKyAiIiIiIrHzMEPmgb9TAldEpiyVmT+x45ddhWec2ecvh+BkNjdMKokrIpVDlbgiIiIiIhIrT/WR+eVb8e0/jjsUEalyycQVdD/SP6FzgnQf8wc2YP0Z2i9YQUf/Irq37CFUJa6IVBAlcUVEREREJDbet4/M7X+A77sv7lBEpIplgoX09V1L9yPbIXNsQufWHXjmxP8TnduZ33CQ3oZFuHriigBRt5Ggwi7mz9MBZdpTEldERERERGITPvbvSuCKyKSlgzPoPXo1vWu2QWpzUcYcWngp4bZdqsQVkYqiJK6IiIiIiJRduO8+wgf/AT/wUNyhiEgVSgXn0dt5IX1PboVwY1HH7uuJKg49lSnquCLVyzBLxB1EjtqrxVUSV0REREREyio88BCZ778o7jBEpNI1zYbGmdC9F9rPIGg/jYw3c/iOFpI7dgKbSjLt0NGop26YSpVkfBGRyaishhYiIiIiIjKtZdZ8lsxPXxN3GCJS6VoXEcxuIQj2ErRDwA7oepiupxLZBG5peEML/XsPARCmVYkrIpVDlbgiIiIiIlIWPnSM8IG/g8xQ3KGISFwsAT5OcjSoJ5gzG3pOrbQdzLyY3sf2ljA48MbWk//XwmYiJ5jqQGOnJK6IiIiIiJSFH9uiBK5IrWqeS3DaeZCBcMe9Yx4arLgaOh848dgb5tO143K6H9xDqftgpmedAewHIFQSV0QqiJK4IiIiIiJScuH+B8n86m1xhyEiMbDTLscG12QTs0awZAU0LcOHhvCu3dCz7+Sx88+HzgdPPT95mKAxoOQJ3AXnsO+Z7hOPPa0krohUDiVxRURERESkpLxjLZnb3gD9++MORUTKrbEdy+wCD7MbHPp3Qf8uDLA6YNm5eDAPABtYFx2To23uz2h547Xs+0YnxU7mukNm8fns2wrpnpNJ3MxQsqjziFQtMwKrsHYKZvmeKqa1CvsKiIiIiIjIdOJhhvTtb1ECV6RGBUsvgmTn2Af1bsG6H8K6H4JU96iH1Q3ezdI/gMYz2osWXzhnOYearmbHo90kj54699DhTjwMRzlTRKS8VIkrIiIiIiJF5f2HyNz5Z3jvHug7AAMH4w5JprP6ZkgNnHzcMhf6O+KLR06qa4FjjxV1yKDvaRY8dzm7982B5DgLpI0iM2cFZkayZTH7nzhIZjD/YmmezhAm0ySaGqYSsohIUSiJKyIiIiIiReW7foHv+GncYch0F9TBxb8F6Q3QeBZGgKe2Q6YPa7oaBtJ4fzdsf3D8saQkgqWXQVfxP/82sJMFL1/Noe/vG//gfOf3HmL77gV4ate4x4bJpJK4UvMMMBJxh3GK0nbIrkxK4oqIiIiISNF4JkXmsY/GHYZMF0FdVGk7awmkB2HmQmzWPDwRgB2G5JrouMF1p7RG9MG10V/4MwyWXAJ7nyx/7AI2WLKhmxrup272atJHJz6HBQk8VdiiZZ5ROwURqQxK4oqIiIiISNH49h/BsU1xhyHTweoXQf1uCAeB4+0SDuDhASg4r+Yw+ygsuhF2bYAjW4ctsDWOc18ArUlYtw4GxunpKqewpVdhdUPQ9VTpJkn3MPdFszn43Yn32w6bZhV8rGcm17JBRKTYlMQVEREREZEp8VQ/fuABfMdthM98Ie5wZDpYsGpYArcIhtbAQmD58+FAN+x5/NT9zXOx856D0wXWCKn9kNkKQ8B558H2vdC5vTixTEsG7adjLXOx+hR0F7cP7mgaEw8RNJ5JOJSGhNG4bBZBfQJwkof7yfQOQXrk8vWZ1kXAgYLmUBJXBMAwgriDyFF7DRWUxBURERERkUlzdzK3v1k9cKW4Tl8Bg+uKP+7gdmgHFr0E+kMsUY+nU9DUgQ+tyX/O0G5YPgcWvAg2/Kr4MU0DtvgSbHANDOw5WTRdDqkuZlwyH0+GzF79NDY0rPK3vh1PtNKz90KaFqWoazjKUNcCrC6ktztF595GencPMl4iKEwriSsilUFJXBERERERmTTfd68SuDIlduFv4Y1J2PgMDHbBotWQ3FbaSQc3QADuQAJIjXN8qhPqOmHlNbDt/tLGVoWseSaUrv1tfjNOh5bTmdXeQ9D1MAzlJFtTx7DUMdrm7om+vilozmZAmtpg3u+A189myC7iqW/OoW9vMu806okrIpVCSVwREREREZmUzBOfIHzg7+MOQ6pR+zLsjIvxuiE8uQ0GB2HFLLA5kOmYQM/bMmvrg7bToHtf3JFUlrC7/HO6w+H7pnSBt6WO0sTdXPnmM+ntW8W6/62nf/+pGX21UxCJBJaIO4SapySuiIiIiIhMSHjoMcJ7/go/+HDcoUg1WfkcmJ2A5AHwJJ5+GtLD9her/20ppY/C2WfB+iHo74g7mspgAfRsLv+8QUPxhhrYSluwlUvf/Dzu//e2U/apEldEKkWldSUWEREREZEK53vuUgJXJq6+CYZ2gee/bL1qDO2Ec5fDJZfA5c+HS2+EoIbro9qXx5OAL8HnvHHoXpbf0HrKNk+nRzlaRKS8avg3jYiIiIiITFS4737Ch/8p7jCkGtk0Wkk8la3CTR+N7i+7FrpD2HofZMZrsDu92MxF0LOr/BOnS5M4XnH5o+y641w8E32/Zgar/E0HkaIwrOLqQKfR75QCVdpXQEREREREKlTmqU+T+dHLIFRSQyah61DcEZTO4BZo2AaXvRASxbvMvxpYfX35J51/DQwdLsnQwcBWzn9z84nHqsQVkUqhJK6IiIiIiIzJh7oI138lWsQsMxR3OFKtDjwDNs0vBh1YD5c8G2YujjuS8gl7Szv+jNOjpG2iGRrnweyL4PD9kOkv2ZQLZn2P5Te0Mu+iFoy+ks0jIjIR0/w3qIiIiIiITEW4+9dk7v5L6NoSdyhS7VZeAx7DZfflNrQDzloCBxfAvqfijqb0Ut2lG7thNgwegb7s901mAIaOlG6+YVZe9HMsM4DN+y3gWWWZU6RSGRCQiDuMU9ReMwUlcUVEREREZBTevZPMj18Jnok7FJkGbHYbHsP6V7FIHYY5CWz+y/Gnfhp3NKXTOAv6d5946IlGwtOfh89eBjjB9vsIjk7hDaCWpXDs6anHOQmWzianUz2xzC8ikktJXBERERERGSE88DDh2v+nBK4UR2MbntwWdxRllsEza6F1PvSWpn9rXBxg4So440oydUNgCTJzFpKp6yTK1EcJ0PqV1xI8NoUkbiW03yhlpbGIyARUwDOiiIiIiIhUCu94Bj/yFOHaz+MHHoo7HJkOLMAufD4+GE9FZawSM6F3Z9xRTJrXNUH7Enzucpg5D2+dhc9sIVPfDd4HHO+RnQH2ZbO7J2VmNpGYtRzrmuTnoG7GFKIvklSJe/6KVAXDKm5ZrdprqKAkroiIiIiI4O5kbns9vu0HcYci00nzbFj9XHxwTdyRxKN+XtwRTEq45CIyl19PmDhElKA9riu6+Sgn5o7DAZKXvYyGe76ETWZRxDA18XOKLa12CiJSGZTEFRERERGpYd5/kPDxj+EHf6PK2+mgdQHMWwmpIdj/NITp8sdQ3wyzlsDsJdDSCckaTeACxoxC850VIzzvJaRWLQLfX5zx/BDhOS8nsf7WiZ9sFVBpp0pcEakQSuKKiIiIiNQo95D0966H7lrrVVrFTrsEmmZAcgD2PB5tW3oZLFoAyW0QDgHZ5NviG+Dp+2CohJWEC1Zhi8/E61MQNkZXt6a3QaYX2HFqEWcN8kylXX48OgfCa/+Y9Jwe8IHiDt57aHLnZfqLG8dkpJXEFQEIKq6dQu1REldEREREpMZ4ehA//DiZH70c0kVO1kjpNLTCogZI7oEWYNF1ECYhuRcGO0YeP7gOzlsFwSLYvwvaF0KYgb3PQM+Bic8/7yxYthpzhwS4G6Q3RYt31XiydlRePXW4ftXvk55TikW86gn2/WZyp3ZvLm4ok+Ba2ExEKoSSuCIiIiIiNcR79xCu/yrhIx+KOxQpVKIBLr0WkrsgefDk9sHt45+bOgQcgjkAxyAAljdC0/XQm8AaGiAI8P4+6D4MS0+H5FaoPwczx/uT0JKB/gQ0dUNyTdQeIIYuDVWnYRFseDDuKAoWLlzIiSruIjKbCRPth2sNMP8qOHRf0eOZMLVTEJEKoSSuiIiIiEiN8DBN+NRnCJ/8RNyhSCGCOjj3OmjuhsFNxR17cBvUgYdACDQA84DBZ6L9Q9lkbQAMZu+TxQ1hurNgHt7/cNxhFMxLdKW0eyfJ695F/dN3EnSsG/+EpsVRW45KSOCCFjYTAQzDSMQdximMCuiZXWZK4oqIiIiI1ABP9RE+8mHCjd+IOxQZzeKLINkHmSSsuATC7ZDZrORp1aqyBENQuvLqkAMMXXQFjc8kCA49PfbBM1fC4ftLFsuEqRJXRCqEkrgiIiIiItOcZ5Jk7vpzfNP/xB2KHDdzcdSPeKg3qrhddB7MHYRMGgggtSbuCGUqrAHftSXuKCYktJ5odbNS8T6S519FYsU1JDb+kuDY1lGOC0sYxCRoYTMRqRBK4oqIiIiITGOZtV+I+t8OHI47lNpU3wIXvhBCh8CgfwBmNMPQGqIeBrOyB3ZocbCqZ9B4IRzYA3UNcKh6WikABN5GyGBJ53A/RroZ0pdcTiLzMuq2PABWh89dQbD5dmyws/KSuCm1UxABCChRz5UYmdnvAtcClwAXAzOBb7j7myYwxlzg1cDLgQuBJUTX0DwN3ALc4l6cJzYlcUVEREREpiEf7CR87KOE62+BoWNxh1Oz7Lzr8eSwqto6YIJrPEmVaLwQHvtx3FFMirfOI7Tu0lbiniJDJrGPzKpVgIMPwdwX07h+A0FYYWmKMIlnkliiIe5IRKT4/oEoedsL7AFWTWKM1wKfJVoZ8k5gF7AQ+B3gZuC3zOy17j7lZ9gKe3YUEREREZHJ8jCNb/gq4cb/wY9uhIFDcYdU2xpaoR5V2NYIS4Xly4EWmZ95DXhpq3DzTzx8zhTJ866kfv8xEpV24UC6BxJz445CRIrvvUTJ2y1EFbl3TmKMTcArgZ8Or7g1s/cDjwCvIUrofm+qwSqJKyIiIiIyDXjXNtLfeTYku+IORSwBl7wMMpvwwbVxRyNl4g0OSy+DvU9WXkuAcVhvJ7A47jBw78Rb2uIOY6RULzQqiSu1zCqwncLUF4909xNJW7PJjefud4yy/YCZfQ74F+A6lMQVERERERHPDJG588+UwK0QdvlL8UEtTFZzBp+BdrBFL8MzBokk7NkLByo/ke9DPVRCEhfADm+KO4SR0uqLKyKTksrep4sxmJK4IiIiIiJVzg8+gu+9O+4w4jdzMZx5OZZO4431kNwAdbMgaMGYBUNpfKAHeo7AoQ3Fm7euERpnwqyl2OJlSuDWOB98OvpPCpgHLLwQyyzB1/6CMjadnRBraM273a2ZRMNKQu/GqMOox8NBwswhrETtF3z+2bD7/pKMPWmpvrgjEJH8VpnZY/l2uPvl5Q5mODOrA/4g+/C2YoypJK6IiIiISBULd/2SzE9+O+4w4te6AFbOhfTTUZrs+OJhqai55onUWXN0swUvxddm/6ZaehnMXwJ7NkLHNgjHKZhpWwKnrYJWIOyFVAd4CjiKDx0t8gcmVS/TjdMNl1wIewfg8Oa4IxrBl5xH0Hga0eXJhpPEwz7wXjLprdExw08IDEuciVFPJrmhCBc1n5SaFZJobMOGuos46hSpEldqXPTMkIg7jFMU83mnRD4CXAD8zN1/UYwBlcQVEREREalitvQF0DgbBjviDiU+9S1w7rNgqPAKWA+2wznXQzoJbT2QWhOtJb1wKTQshP6ZsOFX0LoAW3UVTj+EM4ADkDwEbIEY1oGSKpbuglRl9cp1ILzqDaQWpiG9bUJnhpm9ACQazycceqaIQfWRetZbaLjn08Ubc6pSvXFHICL5bYi74jYfM3s38NfABuDNxRpXSVwRERERkWrWtbW2E7gAF105oQQuAOEgNGyDBnI61TkkD0DdAbj8WkgdOHl5vMhUJGbCsXj74zrgi8/Hl16Iz11EptVxjjKVdo2Z9FYSDecSJjcWKcpExZXYebqn0kISkQplZu8CPgmsA17o7p3FGrskSVwzezPw1ezDP3H3mws879+AK4BziLoHDQA7gR8An3H3cV+dmtkXgT/MPjzb3bdMLHoRERERkSrSNBsSTZCp0bLQ+WfD0I7SjF2qcaU2BY3QPBcG4nvTJfOid5FuP94aoGh5BTKZ3QR1y/D07oLPMZtDXXcGO7ob6z2Ade2Eoe7KTJaqEldqnhEQxB1Ejsp7tjCz9wD/CawlSuAeKub4RU/imtky4NNAL1GXqIl4L/A48EvgEDADuBq4CXi7mV3t7qP+VjCzG4kSuJOZW0RERESk6viRp2szgbvi2TA0AKfNhUHVbUgVSB2B8y+CJx+EdPl/ZsPLXzssgVv00XFL4xiWb/E2a8ZoxhkE76e+u43E41+owBTMKNJK4orI2Mzsb4n64D4J3ODuR4o9R1GTuGZmwC1AB3Ar8L4JDtHmPnKJSzP7F+D9wN8D7xxl7vnAF4BvA4uAayc4t4iIiIhIVfGBw4Trbok7jLKzK16OD66NSj4GtZCYVJHBbdglL8Qf/WlZp3UCUisWA8dKN0d4lKD+dDy188S2RGYxiX2bCLbeeiK56y3zsf7DJYujJFJa2Eyk1plZPXAmkHL3rTn7PgB8CHgMeHExWygMV+xK3HcDLwCuy95PSL4EbtZ3iJK4Z49x+uez9+8CvjfRuUVEREREqk245r/wLd+NO4zyWv6sKIErUqV8cC120cvxNeVL5Polr8RLmMA9zoLWE3W4icxiGu79zMhjqi2BC2qnIAIEXmntFKbOzF4FvCr7cFH2/tlm9uXs/4+4+/EC1SXAeqK2r2cMG+MtRAncDHAv8O6oxvUUO9z9y7kbJ6poSVwzW01UNvxJd7/HzCacxB3Djdn7vKsVmNlbiT7pr3b3jjyfLBERERGRacXda68KNVEP82dADXaPkOnFw3Vw+pWw6zdlmS9cdhZRx8LScjIQtBGEM6i//3Mln69sMn1xRyAipXEJ8JacbSuzN4gStuN1GViRvU8A7xnlmLuBL084uhxFSeKaWR3wNWAXUcXsVMd7H1FP21lEC509lyiB+5E8xy4nWvXt6+7+gynM+dgou1ZNdkwRERERkVLww0+SefQj+LYfxB3K+NqXQX0LdO2F5BSr2S66BAa3jnuYSOULYU4Kji6Gnv3Rz8mKS6CvBzbdVdyZzrqWdGPpE7gAYXoHlminfu29WJguy5xlke6POwIRKQF3v4loHa5Cjt1BntXUJjLGVBWrEvcfgUuB57r7QBHGex+wcNjj24C3uvsp112YWQB8hWghs3cXYV4RERERkYoX7rmrOhK4AGddCIPPwKKFmD8XX3vb5MaZuxJS5UlEiZRF+iicuxoOLIaFzTC0BmZeBLNPh6O7ijKF17eQuuRSoCTtGfOq60oTHHqqbPOVg6dViSu1zQCjstop1OI1+FNO4prZVUTVtx939wenHhK4+6Ls2AuB5xBV4D5hZq9w98eHHfpeogXMXu7uU7qWzN0vz7c9W6F72VTGFhEREREpFncnXFsdlynbxS/HB5+JHngabzgKl7wC9m+Dg+sKG2T5lTC3DtLHIFQ1nEwzg1uhHRjKPk5ugJUXw2PFSeKGz3sLXqYEbsA86ndvxQ4+UJb5ykqVuCJSAaaUxB3WRmET8IGiRDSMux8Evm9mj2fn+CpwQXbus4F/AW5x958Ve24RERERkUqU+cUboXtH3GGMyS5/BZ7Zg6dzFiBLHgAOwJIlcNDgxBJIo1h0PsxxSO4rVagilcWTkN4R9X/OpKY0VPqGvyA9q6s4cRWgYe09BAefKNt8ZZXWwmYiEr+p1kK3AucAq4FBM/PjN+CD2WO+kN32iclO4u47gXXA+WY2L7v5fKAReNvwebNzX5s9ZnN226smO7eIiIiISCWx+ZfGHcLYLMD9YHSp+GiSe+HKG7ALX3ZyW1AXJW1bF4AlsMtfAfN6IVWFK9mLTEWmG1Y+Z0pDhKtfXNYErlk7dvjpss1XdqrElZpnBBX2rxYbKky1ncIQ8MVR9l1G1Cf3PmAjMNVWC6dl7zPZ+x1jzP1yYBHwXaA7e6yIiIiISFVzd+g/GHcYkeVXwZyF0NuNNTbjXUegvxOWNECygN61AxujOtwrXwZuEB6JKnUXzAXm4kPTOCEkMp4ZMyd9qgcJ0uddCJTvDRD3Y4TLryWx/ddlm7OsVIkrIhVgSknc7CJmf5xvn5ndRJTE/Yq73zxsez1wJpBy963Dtq8Cjrn7gZxxAuDDwALggeO9b939yTHmvosoift+d98yyQ9PRERERCQW7g7JbrzjaaztDMINXyPc/F2sbgZ+6DdxhxeZ1xQtxNSYbYowC5gzEzI9Extn4JlTH6vvrQh0T37Jl/C5f0hoMVSwB/Xln7NcUkriikj8pryw2SQsAdYDO4Ezhm1/KfBRM7sH2Ap0AAuJWiOsBA4Af1LWSEVEREREysg71kLbyihpe89fRhsTjZCJVj0ap4Ns+cxZDkM7R26faAJXRPLb8fCkTvP2ZaQWFDkWgXQP7o5Z7V2+LXJcMOWOrDJVcSRxR/Mr4PPANcDFRGt09hEtaPY14FPuXp5lNUVEREREyiSz5rOET/4nwWV/Q/jgP0QVX54ZdsDQ6CeXU+t8sDpoaoPly2Bwc9wRiUxfMxdB154Jn5a+9i1YYz2QyG4JMWvC00fw9IGxTp0yr28u6fix8hDCIUg0xR2JiNSwkiVx3f0m4KY823eQp/uwu68F3lWkua8rxjgiIiIiIqXiXVsJn/kS4RMfByC8+y9ijmgUZz4P2tshuR48BQwqgStSamefA4/uZbz6+/CMZ2NHtmK9hwhXPpd0SyeEeQ40CBpXYtYM7uBJ3KMDzQLwJGG6E3zybQOst4Be2NUs1aMkrojEqpIqcUVEREREaoL3HSD9zYshTMcdyuga27ALn48PPg1Du+KORqS2DG6F+hZI9Y16iAcJks++Dng+dR1J0nMbidb1zi8MR0myHs8T10EicT7h4DP5jxtDIlxIsOcbEz6vqqT7gPlxRyESC3Mj8Mpqp2Bee+1NKusrICIiIiIyzWWe+E/SXzu3shO488+F81dHCVwRiceZzx5zd3jZa3G6cHpIzR3Cx0jgFiqT2QWJeRM+L9F5ZOTlttNNWoubiUi8VIkrIiIiIlJGNvcCmHEadG+PO5RTrbwG2jMQtENqFyRL2z9TRMYxY/Qes+HpV5I6ewkwUORJnaB+IWHmyMkt1kiifgUeGOHQTsz7R57V0lbkOCpQSklcEYmXKnFFRERERMooOP0Ggkv+Mu4wRpp5FJL7YXA9ZEa/hFtEymRoLcxakndX6tkvxYuewI1kMjuxxpVY40poWAJ1TWR8D2FmN4n6ZXnPCRvqSxJLRUnreVFqW4BV1K0WqRJXRERERKQMPNWPH3kKkj2E97wn7nBGqpun5K1IRQlh7gro2ntii9c1kH7JewiDjtLOPFr/3CB/sjbRUQOV++mRFcgiIuWkJK6IiIiISIn44ScI196MdzyNdzxTeZVcyy6LkjIGJPeOe7iIlNmcOnzoUqhvIlxwJqkzlxal9+2UBbPwsBfDqUvOI7H2P+OOqOQ83VejtX8iUimUxBURERERKYHMwzcRPvVfkOqJO5T8zr0eGvdmF1hz8DDuiEQkh9PH4POfD6SyW+JN4DopgqbzyWT2YN5C4/YdJLZ+LdaYyqbS3oQTKTNTR9bYKYkrIiIiIlIKVle5CdzVN0BiEyhvK1LRvKGdkwnc+IWZkxX7DR0pEltvizGaMlMSV0RipjS6iIiIiEiR+FAX7o73H8SPbYw7nJFmLoLLboT63XFHIiIFsN7tVOaf7Uaw5ptxB1Fe6okrIjFTJa6IiIiISJH4jp8QrvsyeAbf/0Dc4ZzqvBdDwwFIrok7EhEpkIUpzNpwPxZ3KDkcq2uEzGDcgZRPujfuCERiY0BQYV2hKyua8qjEt/RERERERKqOD3XhyV58/wOVl8BtmgV1OyHdFXckIjJBiVR93CHkFS57TtwhlJcqcUUkZkriioiIiIhMUea+vyH9pWWE9/wleCbucE5lAXbB8yCsoYo5kWmkbuftVOJFtOG8s+IOobxUiSsiMau83wQiIiIiIlUkPPgo4VOfjjuMvOzil+OZtfjg03GHIiKTZP37qEu1k64/Encop7D+Y3GHUFauSlypaUbglVYHWnsNFSrtKyAiIiIiUlXCRz4Udwij8p1rwFS3IVLtgv6OuEM4hTGTxOafxx1GeakSV0RipiSuiIiIiMgEuYeEe+/Gu7biXVvjDie/hefBWeeDJeKORESmyJtmxR0CAEYLCZ9Lw/Yt2EBlVQaXnJK4IhIzvS0vIiIiIjJB4T3vIVz7+bjDGF1DKyyZAYPr445ERIrA6xriDgEwmh79JcGRtXEHEo+UkrhSuwwIKqx9QWVFUx6qxBURERERmQAf7KzsBC7ArCWQPBR3FCJSBOG8K0gnDscdBsbM2k3gAqS6445ARGqckrgiIiIiIhPg+x+IOwQRqSGpxRcAHncY1Gbd2zCpnrgjEJEap3YKIiIiIiIT4AcfiTuE0SUaoGEGtvxsfPDpuKMRkSIwt4rInzq9eF0zlh6IO5R4pLpxd8wq4IshEgOrhCeiGqdKXBERERGRAnhmiPRPf4dw4zfiDmV0l94AZ7YpgSsyjdTtX0Nl1F9lyKx6VdxBxMfTkBmMOwoRqWFK4oqIiIiIFCBc/1V8x8+gd2/coZxq6WXQ1B79P9TLe5HpJuh4jIbOPiqhHHdo6QIyZ7wg7jDio764IhKjSng7T0RERESkooVbbiV8+Ka4wxhpzhkwuwsaL4S6OkhvijsiESmBxN5f0VB3I8m2BmAoxkgG8eNvGtWiVA80L4w7CpFYBBXwRlKt01v1IiIiIiJjyGz7DplfvAEGO+IOZaQVp0eX+M5qhxmtEOpSX5HpKrHzxzRtuJME82ONI5x7Rqzzxyqtxc1EJD6qxBURERERyeHu0P004b7v4wceizucUVl6ZrRmfXINkIg5GhEpNUsdpX7TTwjPfTHuXbHEEPQfi2XeipDqjTsCEalhSuKKiIiIiOTwfd8jXPOX0QOrw1a9CN/wq3iDysPX3QnnHq/Ky8Qai4iUhw0doW4AUk3FGS/wOST6knhTI4nDe/GGZjLtc8kkOklkZuMBhHbySgQ7uqM4E1ejtJK4UpsMq7h2ClZh8ZSDkrgiIiIiIjnC7Z87+cDT4DuheTYMHI0vqDxs9fV4uDbuMESkzDLNCaIy/GIwGu77+Clb6hpnES65msS2X+BA6nnvIzWjj4A2vHFWsSauOp7qqcG0kYhUCiVxRURERERyhelTH6c6sbMvxdfec3JfUDfyuHI67SIlcEVqkAeNhN5ZtPFC68RbF2O9+09ss6EuEtt+Ef0faLj3Y9TXtWDpfryupWhzV510X9wRiEgN08JmIiIiIiLDhDtuhr7NI3f0PoWd9XwAbOU12HlXYhdeV97ghtu3BppWxTe/iMSjYXaRB3Qyp1057lGW7j/lvialtLCZ1C6rsH+1SJW4IiIiIiKA9+8m8+Q7oOvJ0Q+q64C206CpF/r3QOslxQtgwSps8Zl4IoDBIRjsg+0Pgefpdds0K6oEZrB484tIVQgXXF78QU31XQVRT1wRiZGSuCIiIiIigPesHzuBCzC4B5tfB4N7oseHDk1t0romuOR6IA2Dm/DM2mh9sgBoAS6+EGwZPPHj6PjTLoKOHbDiKkhsgsEdU5tfRKqGA+HpryA5y4CwqGMHRzYWdbxpS5W4IhIjJXFFREREpOa5O+G69xd4cLYPbtNSfNtTk5/0nOuhDRhcN/ox6aNQ53DpjVgqjbMOFqyE4BgkJz+1iFQPr28js/zlpFsC3I9RxBXNTrDuPUUfc1pST1ypYYHVZguDSqIkroiIiIhI31YYOjyxc4KFEzv+vBfDjsegvhkWngXNB6OWCeNJHwOOnUzbpI9ObF4RqVoeNJBc9SpCOkqRu80KIDNQqsGnF1XiikiMlMQVERERkZriPRsBw2aeg3sI6e6oCvd4hW2hugtPptp5L8GDDbD6fPAhSG6P2iaIiIzB28+LErglVJdsx8IJPv/VKFclrojESElcEREREakp4f4f4ls/Cc3LIN0DTYuhZ/3EBgka8X1PF3y4twTRGmRDOyc2j4jUNOvZBqygVP1TjBk0PHxLScaeltKqxJXaZEBAZbVTqKxoykNLUIqIiIhITQlW/CnUt8PAbkgdm3gCF6D5bEgPjjNRHSy9DOafDel9kwlVRGqcpboJbEZJxg5op+mB72J9B0oy/rSU6o07AhGpYUriioiIiEhNsfpZMOPMqQ0yTv4WgHOug/YOWJjM9rUVEZmYcM6lhF6KPth1NP7mRwTdu0sw9jSmdgoiEiMlcUVERESk5gQLXjSl8/3g5rEPaGrHWmdOaQ4REZ99TknGre9rJuiYxFUItU4Lm0kNCyrsVotq9eMWERERkRpm866fwsl10D1Oe4SWuRDopbaITJ4HDaRmhCUYuZ76J/6nBOPWgLTaKYhIfPTKUkRERERqTuaZv5v8yZ7Bznj2mIfYnKUQdk9+DhGpeT7nYtz7iz5u4G1Y796ij1sT0r24e9xRiEiNqos7ABERERGRcguWvYGw68lJnu3QatjSS/E9TwBgF94ApICGaBGzoXUQjJ3oFREZi3U+Rf3c3yNsqCPDobjDEQAPITMAdS1xRyJSdobFHULNUxJXRERERGrPVC+J7d8IrfOh7bSotUJyO6RyFh/q3gh19UTJXRGRibEwSd3GrwEQLrqW5IJFuOty/tilepTEFZFYqJ2CiIiIiNQc79819UGSh7Gl50NdE6SO5dl/BOrapz6PiNS84MDdND7zYxo6k9SFC6Y0lqkbwNSoL66IxESVuCIiIiJSe4L64oyT2YktvQzYmGeOZkgdAtPlhyIydZbpJ7H3lyT2QmLh80gtXE7oR8c/MUfQN1iC6GqIkrhSg8yMoMJez5gZ1NibUqrEFREREZHak+wozjipDpiRAstTG9G0QAlcESmJ4OC9NKz5OgHzJnxuYv/aEkRUQ1JK4opIPFSJKyIiIiI1x7vXFW+wgW35t2cGIFG8aUREhjMgyBjhRJ9nAj0xnSKog4Y2qJ8JDS1Q3wr1LVHf24YWqGuO2ubUNUFdI97UouWdRCQWSuKKiIiISO1JHi79HEOHsHnPwfvXAenSzycitWcSlxKHc1eS2FL8UKbGokRqw0xoaM0mUpujRGp9MyQas48bIdGUvW+AuoboPlEfJWMTdVGS+sTNIAiiqyKMqCHw8RthdJtwk+DZxf/wRaqALuWPn5K4IiIiIlJTPDMI6b7yTHbkASwxA2ZdiA+sReVbIlJUHk74lOTsBHWJRiwzVNxYLIBr/g80zIDGGdDQfHJ7Qx2Enk2kWk4yNQM28Y9jbE7p3jzTm3IiEg8lcUVERESkpvjOL0FYxoV9Mn3Q+RC0nwPJfeWbV0SmPfPJrOozBEEDFDuJ6yEsOwMsk90QDrufTonP6fSxiEg1URJXRERERGpCuO8H+IEf44fuiCeAVGc884rItBXsuYv6xdeQbnHcC11wqwHIjHvUJCMq4diVIhV3ACKxMC3WGjslcUVERESkJvj+H+GHfhFfAEETZMpYASwi017Qt5tgy7dIBA2ES24gbFtAGDhYmtCPMbxprtkMEukWErvvw9LJ0gTkQQ20jVESV0TioSSuiIiIiNSE4KJP4DtvIdz87zFFMJnLnkVExmdhksTun5IYts2DJsLTriOcuRAw6rbfhg0egKAdvEgtAV70UZg1PxuEgdVCq4Fa+BhFpBIpiSsiIiIiNcHq22Dxb8Pmj1L2hGrDPEgfi5IcIiJlYOEgiT23nZLYBbBgQfEmaZ8PDSWq6q1YqsSV2mNEzVIqSS2+oqq0r4GIiIiISNF5mCbceQuZB19OLBWxmX5oWl7+eUVEcliyiEnIZK0lcMFViSsiMVElroiIiIhMe+Ha9+F7vxtfAJl+rGs7zDoLH9oeXxwiIv1HijfWUD+0thRvvKqgSlypTVrYLH6qxBURERGRaS9Y+gZIxJxoCAcg0RZvDCIihMUbKlOLVam1+DGLSCVQJa6IiIiITFs+dBg/9GsY3IcWFhMRAYL64o0V1mJCU5W4IhIPJXFFREREZNryvf9LuPGf4w5jmEzcAYhIrQuKmAbI1GJCsxYT1yK6lL8SKIkrIiIiItOWzX1e3CGcylUNLCLx8tY2aH0BEGKZAPbcMYGzDVoWwoxFMGMBzJhTqjArWC0mrkWkEiiJKyIiIiLTUtjxFL73e3GHcaqudVj7hXj/03FHIiI1ytPbTv4/Ma/w6rqL/gjOvxqs1t+MSuM4hhZ5EpHyUjW0iIiIiEw7nu7Hf/07cOQR8Ar6QzvdA0cehIbFcUciIgKZI7DwOQUeO6QELhD1V1drHKktBgRWWbcKenVXNkriioiIiMj0lOqBXXdhA21AIu5oTmGJ+WqtICIVwZsKTIUke0obSFVRX1wRKT8lcUVERERk2vGNN0OqO3rQsw2rPx+sKd6ghut4AKs7HWtcEXckIlLjPLUDlr1wjCMMGmaCVdabYfFSX1wRKT/1xBURERGR6Sfde8pD5xj4YDyxjKZnPcx5VtxRiEitMyMMtxHUtcIN/wqz2gAHC4Ewey+nUhJXao/6QMdPSVwRERERmTb82HrwEOpnnbLdaMfZFVNUY1Blm4hUhBTMvxSaWyEYijuYKqB2CiJSfkriioiIiMi04fvvxB99P3jOojPHtkKLg6mKREQkH29IYHqOLJAqcUWk/JTEFRERkZrimTTeuR1rX4bVV1CPVCkKm3cFnsnTNqF3F8y+ApLbyx/UWMJk3BGIiADg6R1YoGVzCuGkdWG51JxA3/SxUxJXREREakLYfYDUr/+dzNofw1APiYteTePrPht3WFIE7hnCff+Ddz8OG3456h/WZq14WSMrQN8OSATqOSkihWs6HRrngQXZHpUGBjhglvM8F0bPie5AiBNGVyp4BjwFYQo8CfVzsGXX43UD6ntZEFXiikj5KYkrIiIi05q7k3nqVpK3/RP0HjqxPbP+Njw1qGrcacA77ybc9i8A2LJV+KJzYdNtmOf2LMypem1YAaTBGjFacPqjREdya1nijkI6gs17Ft7/TPnmFJHq1rwYeh4DKOiNqfGOsVmXwaobsDr16C6ceuKKSPkpiSsiIiLTWvI77yDz9A9H7kgNkLr9n0lc9Dskll1W/sCkaHzw5IJlPrAh+s/q58C2tdhg58kDUwFWfyFgkEnCngejRdCyDGDWudB6AR7ugrC7LPHjSpyISAysDjv9NbBkBWZqozAxqsSV2qMa/fgpiSsiIiLTWmb7A6PuSz94M+kHbyZx8Wto+K2bsNb5ZYxMimZw/8htQ7thxTWw/scnt+2/b/yxujZC10Zs6fV4uKZ4MY7FKq7Jg4hMdy1nYufciM1oiTuSKqVKXBEpPyVxRUREZFrJ7Hkc79hB4vxXEB5cB72Hxz/nqe8xsPGXNL/3AWzGvDJEKcXgHkL/ZrznqfwHJKbQZ/boJpjhUJaV2pXElRrTuBhalmIObgHmjpOJKuTDAUj3QLobMgNxR1piCQgaopvVQ1Af3TfOheS+bL/aFFgd1M2CRCsWNOLpzvGHHo3VYUtuhGXnahGzKVElroiUn5K4IiIiMm2kHvgCqZ99AAD71b/h3fsKP3mwm/QzP6P+qj8oUXRSLJ7qIrP+PXjPExAOjX5ccjcsuwbbff/EJ+nbC3Muh+SOyQc6lrqZMOsssBZ8sIw9eEUqgDUvxnueOPH2Rd63MQyob4ZECwSNYMOSnVaHWQIsAAzPLu5l7oDj2XuzRHYhLwcyUfsUz0CYBtIQZhf3ygxlF/lKZp9TRnsDKID62VDfHsWVaMrG4Nm5jy8cdnzxsHR0I3MyIXt8IbEwmZ0nFd2yIQKQzvO7K9Mz+ueqUDPPw858CTajeSqjCKBKXKk1ZhCU5Y3twlVYOGWhJK6IiIhMC+l1PyP183888diP7pzwGOGex6EGk7hDd99MuG89Ta/8ADajPe5wxuXdj+NdD41/YKYHmpdOeh7zttLVyLZfiPeXqV2DSMUIYNYleN+6wg73FKS78u8qYNuEf34DIAiA+lMrZK0ewsEoFu+C5MiYqqGe3la8SAncInElcUUkBkriioiISFXzgS7Sj36N1B0fz1ZbTV64/UE82Y811E6PwNTjP2Toh/8cPchkaH7TJ2KNpyCeGf+Y44b6Jj/PUHeU1CkBT4/f5kNkurH2K/Dex+MOowCZqK1DOM3aOYQTeO6UcaidgoiUn5K4IiIiUpW8r4P0U7eSuudTBfW9LWjMozsZ+NgVBEsvJVh0PolzXkBw+pVYkCjK+JUk7NhF8p4vkbzvqye2pR7/AenN91P/7NdTf/4NBKetwhL1MUY5Cp/AH88TSfjm6tkNc+ZAZgr9J/NpvwySm4o7pkjFC/CwN+4galvHDph1cdxRTBNK4krtURft+CmJKyIiIlUlPLiB1L3/RWbtjyA9ej/USevvJNz0a8JNvyZ9z6egZQ42awnB/LOpf/5fECxaXfw5y8jd6f/8H5DZeG/+/T2HSd7+KZK//hwt7/wmdSuuKHOE4/PkocIPbps5+YkGD0Gw4GSfymJomI+HRU4Ki1SDWZdC3yiLEEpZ+OH7YPkFWGL6vTFZfmqnICLlpySuiIiIVCQPQ/zoToK5K05sSz/9A5K3vhdSZbzEtb8T7+8ks/9pMlvvpu6qtxDMPZO6S15TvhiKKLPjsVETuMPZjHZsxuwyRDQJQ4UncX1wK7Qtw7p3T2oq87k4+yd1bl6tS2BwS/HGE6kS0SJjEqt0F+zfAUvPjDuSaUCVuCJSfkriioiISEXxMCR9z6dIPXgz9B2h8Q++AY0zST/xHTKPfj3e4Po6SN/5H2BGZtOvSZz/MhLLnwWAtc6PN7YC+bE8q57nO677EH3//mJmfvhxrHlWiaMqnHuIdz08gRNSsPhimGQSN1p5vkga5uIDm2tzOWWpeU4YdwgC+O4fwMJ3Y/UV2CqnqqgSV2qPXr7ET0lcERERqRje18HQ//454eY7T2wb+uobY4xoFO5k1txKZs2tANjCVdRd9BrAIZMiccUbCdoWxRtjjsz+jaQevZXU4z8s/KQwQ9h1kEQFJXHD7R/De5+Z0Dluh5j03x3JfqzpYiDEB9dM7S+YltMhuXny54tUM9Ml/BUhHIKtD+HnPhdTRmYKUjiOTf63i4jIhJUkiWtmbwaOr5LxJ+5+c4Hn/RtwBXAOMA8YAHYCPwA+4+4dOcefDfwO8BLgbGAhcBR4CPiEu9+JiIiIVIWwcydDN78a7y6sUrSS+MENpH75LycfJ3tpeOkHRx4XhlhQ3mUhkg98g9Sjt5LZtx6S/RM+f/A7f0fjb3+AuuWXliC6icns/Rrh3lsmfJ4FU0ioHzpZ9WtLrsVTT4PVYY1nQ283pAfw9rkwVECLhITqJ6R2mYdqp1AhvONebP/pcNryuEOpYk7UMF3P6yJSPkX/K8LMlgGfBiaz9Oh7gRnAL4FPAt8guk7hJmBNduzhPgx8hCh5+zPg48D9wMuBO8zs3ZOIQURERMrMw5Dk9/6yKhO4+aTv/xzJH/8dnokut0w/8R0Gv/pGBv7lXFJ3fQLPlL6XnqeTpNbfyeD//h8yOx6bVAIXILPjcZJ3FfR+fEl5updw279O7uTOPcUJYu/dWP9M7FgIu+6HzqehewuWbhz/3NmX4/3rihOHSBVyXX5eUfzgQ7grrT4VIffiJOMOQ6QsDAissm61WAdf1LeNLLoe4xagA7gVeN8Eh2hz98E84/4L8H7g74F3Dtt1G/Bv7v5EzvHXEiWCP2pm33X3Iq5GISIiIsUW7niAcOdDcYdRPO6kH/4ymV2PUXfx75C6/V8gjBIYqV99BB84SsNv/VPxpksOQKIey1Z6hsf20/eZ1+Gdk+wDmyP91E8Z+PZMml7xd9iM9qKMOVFW1wozzoG+jRM/uaG1eIH07hy5rf8gjJfHTTSpmZzUrtlXQc/jcUchw/VvhUP7YeFpcUdSxfYR8gsCrsOYGXcwIlIDil37/27gBcB12fsJyZfAzfoOURL37JzjvzzKOHeb2V3ADcBzgO9NNBYREREpn8yaCfRprSK+/2lS+58esT39wOdJXPRqEksumfocYUjfJ16FD/XS8Ow3QF0DyV9/Fu/rnPLYw6Ue/happ35K/QU3QGMrwbzTabz2j4s6x1g8dRSGDk38xIaFsO2B4gc0XO9erO1yfGjtqdvr50DbKjj6KHT8BptzET6wobSxiFSaRKsSuBXKDz0GCxarN+6UdBNyGwHPw6isXvgiMv0ULYlrZquJWht80t3vMbMJJ3HHcGP2fs0Ezjl+naKu2xEREalQ4dFdpH75kRMLhNUMd1I/+luCP/35uD1yw2MHouTp5a8maJ0zYn/yni8RHoiqU4d+9tGShHvCYA+pR7NfKzOCeSuoP/+FpZ0T8IHdpJ95B6SPTvzk5BH8vOthKICdD2CpnuIHmO6Fgf6Rjcpmno0PrIGWuZjNgXTp22hUnLoFmM3BMwcgPHbqvsQcgt4QWhcRZpTcnrbCQdCaZpWp+2k4fCUsUPJxapKE3IFxOcY5WuxMpi19Z8evKElcM6sDvgbsIqqYnep47wNagVlEC509lyiB+5ECz18OvBDoB+4p8JzHRtm1qpDzRUREpHAehqRu/2fSD94MmdrsJxfufYrMmlupu+R3Rz1m8CcfIXnvlyE1yNAPP0xixRXUP+t1NFz1OgCSD32boR/9c5kizuGOHzvZw9iHDkN9GxY0ktn6cayuDVvy+1jd5C4xDY/8Cu9+Ah/Yjh97GMLJ9fSFDAxuwQE79xp866PYwJFJjjWGYxuw0y7GB9ef3BZkM1dhDx6kwGYXf95KZq0Eh/dAfTc+K/t9ULcU0geANAELoesOvG1etD6QTE/1syGcxBswUha+/XvQ/nasoT7uUKqc4zwKHAOuwPTOhYiUQLEqcf8RuBR4rrsPFGG89xEtVnbcbcBb3f3weCeaWSPRgmiNwP/n7nrFICIiUmn6DpN+9Os1m8A9LvnzD5I4/+VYfTMA7n7KZa3JB74BqZPdpjLbHyWz/VHCzj3Unft8hn7272WPebjk/V8lsTQF3U/ih36GnfFO6NuMH/5FtAr9ge+TuOJWLNFU0HjuDpl+wj2fJ9z9+aLH6wMb4YyzYIdjAx3FHTw9AJlhSZAZZ+L9z5x8HA5CskaWabBWglQ7DHbAUAfhvNMIfA7UzYP9D0LLaXj7CujcCnMuwZObwerRBXTT1IyV0DNavYzELt0Fm+/Ez7tBbRWKwNmC051tr1DY7z4RkUJNOYlrZlcRVd9+3N0fnHpI4O6LsmMvJOpp+xHgCTN7hbuP2lDJzBJEFcHXAN8GPjaBOS8fZczHgMsKj15ERETGktnxEJknv4fVt+CD3XGHE6++DpI/fj+0tJN65hHCA5upO+carHkW1DXAYP5L/5O3f4rk7Z8qc7AjBQvq8S0nK4F9x2dOPaB3A5kHriM4868ITntd3jF86CCZdX8OFuB9W6ZQcVug5EFYeQ0886PijjtzOZ7ZHv2/fg5el4ZUbZWXWv0ZWG8vHD21D7QFbeABDPVCZgB6tmI9W6OdM08nqJsDqSShbc0Z7ywsrFOrhWo261IlcKuAH3sU274AVl4SdyjTxKFsn9xrMWrsCgyZ1gK9zxO7KSVxh7VR2AR8oCgRDePuB4Hvm9nj2Tm+ClwwSiwJ4OvAa4kWQnuTu3uxYxIREZHJCw+sZ+hbfwK9415cUzMyj/8PzDmbcO9uANLr74w5osLVLSugVULyEH7gR/iiV2PBqZfrhpkhwnV/gfeuHeXkEglL8BJxsAPalsOMM/C6FAztKf4cFa0OO3oAereP2GMH18HCS6EuT1XagXuzB9UTnPY8SPUT1vcS+HzYfRfgBIuvJfRtqFK3+pgF6A+y6uD7b4NFq7AWVY8WRx8htxPwHIxlcQcjItPEVCtxW4Fzsv8fHOXyiy+Y2ReIFjx7z2QmcfedZrYOuMTM5rn7KY3MssnkbxIlcL8J/IG711bpg4iISAXLbPwVmc13kH70m5AeHP+EGuPduyFRD5nqWvgqaOyEofGP86MPkLnrfKz9SjzdS7Dk9RA0Eu77Fp46WPpAh7HmVbD2x8UfOHkM80sJ0zsgExZ//LJrwOqXYd4QJb09JLT9EI6sDrf65VjHHugfmcAFIHkUdt8x9nSegr3RMSOW+tt/N8GcSwjrD2pVlSrjri9Y9Qhh54Ow+vq4A5lG0oTcg3ERxgVa8ExEpmyqSdwh4Iuj7LuMqE/ufcBGYKqtFk7L3p+SnDWzBqLK298mqtR9m7tPh1fOIiIiVc/DDJl1PyX57XeAfj2PytKDBAtXE+5bP/7BlSS5q/BjPY0fjV4OhhtOXm5v7VfgqUPFjmx0YX3J/oz21jZIToPvc3eCoZlw4L5TNgeLryUkSuJa/VnY0d0QpmHgUfASV8l2PgmLzwbvLe08Ulw9T0OirvTfH1IU3vkgdF+OtbXFHcq04qwBuoCrsaItSyRSXkaeN1ljVozXc2b2u8C1wCXAxcBM4Bvu/qZJjLUU+BDwUmAusB/4AfBPxVqva0rPINlFzP443z4zu4koifsVd7952PZ64Ewg5e5bh21fBRxz9wM54wTAh4EFwAPDP/DsIma3Ai8jSia/XQlcERGR+IUdO0g/9EXST/8QesuYoKtiwYxWqupFTH19VD05VV1PQdNcyJRpLdrDo1SLTsX8y/C2eXiqypLwo0nMhmN5Wlx0roV5iwhYCHvuhnJf+GYBuja/yoRDWNvleO9TcUciBfLNP4CL3oDVK9lYTM5OnJ5sn9yWuMMRkZP+gSh52wvsAVZNZhAzOxN4gCh3+UNgA3AV8JfAS83sGnef8qq6cTwzLwHWAzuBM4ZtfynwUTO7B9gKdAALiTLiK4EDwJ/kjPU5ogTuEWAv8I95Wjrc5e53FfUjEBERkTFl1txK+sEvxB1GdRmsrmR3YslpwO6pD+QprOkMvK8MSdz6eXD4N8Ud0wLCmUMQbizuuDGyxHyil+s5hjoI9nYAz5Q7JAAsmIuHNb4YYrVJtOChWuhUlcE9+Lofwdm/hbU0j3moZzJghgWVVp9Xmdw72PnkL0gEl7Ls4jPiDkdEIu8lSt5uIco/TnZxiv8mSuC+290/fXyjmf1Hdo5/Ad4xtVDjSeKO5lfA54FriLLg7UAf0YJmXwM+5e6dOeesyN7PA/5xjLHvKmagIiIiMlLyjv8k7NhOuOMBSPXHHU7V8Y5N0DQPBkf2HK1EdSsWUpQkLkCqPFW4llhc/FYK8y6BqRdWxMsda1iNDfZBeqD4ie4isc5d+OyFkJlgH2V3yL92h5RKy0qoa4GBLdA/fd7gqBm9G/AnNsHsK2HRJdA++0Si1jMZOHIQP/Aw9K6HxkVwwRuxpsZ4Y65gfZ3GmlvTPPatXRzadIhEwz286l9/n8te+6y4QxOZkOn4q9TdTyRtR1nna1xmthJ4MbAD+K+c3R8E3g682cz+2t37JhdppGRJXHe/Cbgpz/Yd5Gld4e5rgXdNcI7rJhWciIiIFF36oVvw3sMEp19BeGidlu+YIMOpW3ou6S2Pxh1KQRKzewta1KwgvRuhdSUk9xZpwFF0FzHZGjTCkufgjcmcFRuqjAcEmdNg92QLT8qofw9BZoBwzpyCe+Na/bnYvkdg0dWEmWnS7qLS1c+D1H5IVtdCjZIrxI8+DEcfhqAZbz0HwiHo3wXhsDdqhw7gm34BF76CqBOiAIShs+2+BI9/q4P1t28lkzz5iyKTzPC9v/4GBzfu5yV//0qChD5vIlOwyswey7fD3S8vUwwvyN7fntvi1d17zOx+oiTv1cCvpzJRJVXiioiISDULEgCEux7F2pfCzIXQsS3moKqLH3oUa5mF93fFHcqYGq6+FIaK2+PSErOhuRlIgCfBGvD+jdmEUCfYFDsGN5wGW++f2hj1rbDgcjDwxgwebqvuBC4QsAKO3Df+gZViqIMguLiwhGwwEzvwOGT6i7P6iRTEZqzAe5+IOwwppnAAusd4zu9ZCz3XgRZEo2uf8cR3kjz+nW0c23NszGPv+/wdHNy0n9//zFtpahu7dYWIVLRzs/ebRtm/mSiJew5K4oqIiEhFyCZxAfzYHkg0ECy/mnDHQ9Py8qtSsPQgweLLyWzNW1BQMYLZJbhstmvkx2xBE6T2QtNSnL5Tq78myFIzp57Hm3MBYcOO6P9VtQrdKIJ22DfFxHYc9t1D0L4aGmYSBvvB8/RcDdoIhmZCKvv3lJ6Dysb1ua5NhzZB2xVxRxGLdNLZ+MuAx799kC1378C98BUYN9+1ns/+9sd585fezrwVC0oYpcgUGQSV9vwexbOhjBW3o5mVvR+tCuP49vapTqS6fRERESmOhtZTH2eShNsfJlh8Ed4yN56YqoxbgmrINqX3lKlS+PiCSIN7sGAO1nzm5MZpWglbfzn1eBqmV6WUJdqBwpMNFcPTcPRpOPgAwcAMsGHPPe5Y/TkERw5Cx7DWJOl0+eOsUebT4R0OmSg/eDt+eIL9qqtcx/aA2z48wMeueoZv/9lDbL5r+4QSuMcd2XqIz974cbbcs6EEUYpIBTj+4n7KL7qUxBUREZGisER93u3hvqch49hpl5Q3oCri9a2w4GK8/SIyWyu/J25645byT9q/Fbo3Ys3ng0/gJWzQgu3dhvkU+h7MuRCWvwhvKFYT4Mrg+SpYq82xtQQdnVHv2/pVBENzsd13Q/LYqccdeACCebGEWFOal+N96j1cq3zLN/HDB/Fpnsgf7IFf/PMgn37hwzzwhTX0d05pnaJozO4BvvwHn+Whr943qUSwiMTqeHXDrFH2t+UcN2lqpyAiIiLFMVbPhIGjhHuOEpxxNeHeJ7DM9EqGTZXNPZf0tmfiDqNwyRQkZkJm6n+4TohnoOtxbPbVeF9hPTctsxg79qvJzznnQsK2PrDN06OFwnDpzrgjKI5kB7b7rrGP8TTBUCNhHdVQ7F61rGk+3lPiBQqlcoUD+KYvwu7lcNYrsbaZcUdUVO7OmluNX/zfdfQe7in++KHz+A8fZ9MDW3jdx36fptamos8hMllG5f36rKB4Nmbvzxll/9nZ+9F65hZMlbgiIiJSHImGcQ8JdzyMtS6CuSvLEFAVSRX/j8GSS8S4gM2x32CNZ2PNZ415mDWvhm1TSODOu5RwdhNYla9eNpqgiYr6E6jUOh7F6pfHHcX01boK7ynugodSpQZ24pv+d1pVlO5/JuCLr9nH9977cEkSuMcN9gzy5I+e4JMv/w8ObztUsnlEpKjuzN6/2MxOybOa2UzgGmAAeGiqEymJKyIiIsVRN34SF8CP7sI792DLr2Ya/X03NUH+VhQVzVrHP6ZUPBOthj5wCGsa5Q0Bq4M96yefolx6LeHMTgin6R/RifkEx/qoyp64k7XgOXhqR9xRTE/tl8PgFmrq+0nGNrQ/7giKItkPP/1AP597+UPsenRPSeeasXw+AwS4Owc3H+STN/4nWx+KoX2RiORlZvVmtsrMTlmkwd23ArcDZwDvyjntn4AZwFfdfcqXsKmdgoiIiBTHKD1x88qkokXPzngWvuvh0sVULVL9cUcwYR62xl/DmTwM6R6sdRUkmvHeJ04UllrjauzYjyY9tDc0VH8+qm4ZQaaZMDiSbZ3gJ9qeWDAX+tfEG1+ZeWMjpGL/rp1+Es0wuCvuKKTSNCzAxmqzVCWO7g54+CtPl2WudNtMHr93KxdfcyYDG/fQf7Sfb/zNd7j6j67lxW+9piwxiIwlqP4f6RHM7FXAq7IPF2Xvn21mX87+/4i7vy/7/yXAemAnUcJ2uHcCDwCfMrMXZo97FnA9URuF/1OMeJXEFRERkaKwusYJnxPueITg9MvxPY+VIKLq4X3Vt6J32JMgUQnt+sJB6M5ewt28EDLHIGiBbQ9MfszW03E6ihJebNwJ+gbg6CMnL71b8BxC2559MN0a/I7PUumqz8tXpIZFkNoddxRSYWzBc+IOoSjqm8qTtWpZMpfHH4yen5+6fyuz5rUy54y5bD/Qy+Pv/hbbntrDH/3ba6hvUApHpMguAd6Ss21l9gZRwvZ9jMPdt5rZFcCHgJcCLwP2A58C/sndi7IQgdopiIiISHEU0BM3n/DgZmhdWORgqovNXR13CBOW3nE47hBOapgPsy6MEriAJVZgA0cmN9bs8wnn1YNXdxI3qD8PjuZUj/Xu4ngNh6VqMJ0ZTtPexnFqWo41zo07Cqk0rath6aq4oyiK+qbSv+EVNNSxPxmQSZ+cq+tIL9vX7uPowW4AbvviffzDyz5F54EpL24vIsO4+03ubmPczhh27I7cbTlj7Xb3t7n7YndvcPfl7v6XxUrggpK4IiIiUiyTTOIy1IOHjs0be5GqaW2wA+qb445iQjLbdkCiQlYer2vDB7IL/tbNgS13TH6s7u1YYmn0f2uBxJKpx1d2dXDo8ZGb+/cQdHQRHE3BgXvKH1bcGprAp+G1oHGZcQ5kDuG9T8YdiVQQm/d87ILfxhLTI9VQV+IrTtyd/oUL2LN5/P7rGx/Zzt9c9zG2PKH2JRKPoMJutahWP24REREpMkskJn9y72F8sA9viHGxrDi0LMAXPJv0vgOQGog7molxx+3suKOIDO4Fj17WWmYulp5Cj+FMP7b1boIjAcH+ToKjU16Douys/gxIHsu/M9UNQ5OsUq52e+4g6OzF6kdZDE8KFzSA94On4o5EKoid/lo455ppk8AFqG8u7VULZkbzjMLXFOjYd4z3v/QT3Pe92m5DJVKrps+zq4iIiMRrEj1xh/PuAwTzz8Vr6Cpvn3EGmR1PxB3GpKX3JOMOIRIOYq3nY01XwJ4iLdbVsx0GDkLLnOKMV0bm6pk4qlQ31tenitzJCBpg9rOw9sug9RxIHog7Iqk0c5dOi8XMhkvUO1bi1ZwaDnbQNKPwq5mSAyk+9rYv840P/4QwrL3+5iK1TElcERERKY6g8EqS0YS7Hyc4/coiBFMdrGFqie+4pZ5aB4kKqZ7u3YvteAhL1EPdFNo8LHwW4ZmXwqJnQ/u5hHV7ihdjmYTeGSXcJL/OJ7MVuefGHUl1aTkbep/Be9dA/4a4o5FKNDiFqyAqlJlR31za59Oho71ccsWyCZ/33Y/+gn9/8xcZ6B0qQVQipzLArMJucX9SYqAkroiIiBRH3dSTuADh/vUwc3FRxqpkmeZzSG+p8ssh02k8qIyWCpZuh77d0a3tTEhMrsdw2GoQdhI27yNsTwITrDZ2J/Zy8swhmHd5vDFUulQ3lqyQSvIqYUMhAafHHYZUstRg3BGURH1z4a9vFi5p4bnXz+cVL23nVS9u5tXPTfNbLx3/io6ep7ax7JyJL/L60I/X8Pcv/g8O7qzuxThFpDBK4oqIiEhRWKJIVaXJPmieHXserOQGusGr/zLIsL8CLt0P5sK+h04+7nwS5lw0qaGMYd/HNrGvj9WfS9DbRNDbAHWLIDEPiOfz440lXo1nOuhcS5A6jSBYhdWdDlZdiwuWm/V1EtqxuMOQSpaenm+M1DeN/Tw+e17Ac6+fx6te1MiVDetp3/4b2PAk6U3rSe3ZQ1O6t6B5Frcw4XYUicDZsXYf//Gmj5Pa88CEzhWR6lMBr7pFRERkWkgU72WFH1hPsOJqfOdD4x9cjeZfiO+dHqtLe08SRi0ySoBnSnq9m9WfDbsfg3TOAmTpPqhrg3T3BEec/AJ9dvBpSEbVUEFf9utrAbSdi7fNxFO7JxjKHLAZkNo94c+hZw7U5GWGE5Lqho6oGt4Aa11JOLMVvLCES01JzIfBDmip7hYwUmJ9+4EVcUdRdPVNIytxX/6aOs6cv5uED1Kf6WPdr1pJjzZAmClonr4dh7jkmpU8cd/Wgo4//6KAm97yFVKNZ1Cf2oP97FOEz/sUweo/LOh8kYkqcXtoKYAqcUVERKQ4EsVpp3BcuPsJmD1NL9216fMSLLVuK9QthMQiAKzuLCw8G+tpw/bsx3rbsPqzsfQKrO5ccCBoh8RiplRP4I4lzoNt90AqT9Lt6FogAwueDbPOhaDQ5NMU/kKZsTRPnCF0rcf2PxMlnAspMXcnSKwm2LuOYM8jBL2NYAX2HnYnqFtN0Hl0YrEL9G4j6B7C6s8t/GtVA6x+FcG+dTDjNEC9N2V0fvgevH/6tVQ4tRLXef1bQs7379PUs5n6o5s5cmzl2ANM4KqbzPa9tC8orK975xHHMgM09K/HUj0Qpgjv/jMy9/0VHo6aUhaRKqZKXBERESmOIidxo8sy6/CgHgtTxR07boeewmaeiR/dG3ckU+Zd3XB0Nta/AdpWwJF7iTK1Wcc2RLesKEW6L3rQdhY+dxGkJ7B4mAPWgIWnw45fjX1sui9KxHVtHPu4hnaYcx6kB3E/XHgsOcIZ9QRdDRDmuaQ43YftvgebcwlhUz+EPfkHcSews2HvHSe39e0gSLZB0wJI9cCss6CuEbd+PL3zlNOt4UzYfQcySX27sGwVtS+5BDIH442nAtiRDWB1hI2T/9mQWhHCrkdg1fPjDqSozrogwcrFDZyzvJs5bCXo3BbtGOgCYObCkENjDRAW/oZQpm+I1ect5MFDo/yOGGb/Pmew5UKa+p8+Zbuv/S/CYxsIbvgG1ji74LlFpPIpiSsiIiJFYcVO4gLesZ1gxbOmX1uFtmX44TH/5Ksqme4Z1IVdcOTJiZ3YvQXrBtrOxOfOh/SwFhPWhCWWgddDKhm9SRAY9B6Bnl0wdM/4489YBv37xz5m0bMJm48C2YT6VIov03ujRGv/GEnpzicJ6ttgzkV4Qz3uPZA+BKTAjYCVcODekeeluqMbwGCUWDTAFl8LiagFRJhah7kudy8a059KALQsgYEDUY/nzDg/T1LzvOM+SD4bayj+a4K4XLPycTLJh6Ez//7GI/fRctoV9O/L34ol0zQTGD8pe1zXMzs59/LT2fjYeG2XnAz5n/N9z6/xdTdjl/5NwfOKjEfdFOKnVyYiIiJSHMVa2CxHuP1hgtMuxA88Pf7B1SKTwhpn4P3H4o6kKFK7DlCXp5NAwbq3Yt1boXFe1EM30QjJA5DZNrXA6lrGrsKdsZSwad/U5piMVDccvC9KwkKULGw7O/rYu++f2Fj77z7x3+C066FP1ZLFEvSnId0GbUsIU+tgggsOTRfeMhPrcIKhRkL99SiFOHoYFp4WdxRTlnpwJ+mHHyKzf5zfRZkU88+bwc5RkriHB5uYSBLXzJjZ20NdfYJ0amQ/3edeF7Vk+rPfvZfG/mdGH6ihreA5RaQ66NewiIiIFEdd6apuwu6DENRh06XHW98BaDoLpkkSN+zsgBUzo0v9p2LoSHECal0BvdvHr6ScfRbY9uLMedxk+h17GrrWT33ufXdOfQw5qfPJ6L57I0HdDGg/nzCx62QyN9t/mK6d0H4GId1RNfZ04Y41rMQOrokeNiagsPWZpJbVz4ZZc+OOoij8aBeZHYW9gTzWy5NF/duZMbOdvp7CX8MMHDzGJc85k0fv3nLK9vmL6nnHax+gsf9prH/s8Wz2eQXPJyLVYfqsqiEiIiLxSjSUbuzewwRzzyzd+DEoRfuJ+BjetCzuICIzlkPvLmhbBcfyVCjNuxSWvwiWv4iwoQSLfwUl/DmQ+KT74MgjBKlFBINzosXj7GzYeyf0boM9dxDseYygbjVWfxZWvxwSC7MLpFVXBW/AWQQd/QSHO7HdD0CyAxY9D09vGf9kqW0NC7Dz34I1TY+2LtbcVPCxDU2jL16WOnyEy66YeG/aofU7Oe/K5bS0NVHfVMfSsxdw5ukLufmzz4K65nHPz/zoBsK9enNPisOIulpV0q26frsWhypxRUREpChKnpRsmFHa8cuthJXLcXAWYqyLN4jmRRAkgAx0bxi5v6GdcOYAsDl6PJX+t6MJ9PK66NrOxduXYg4M9cNgJ3SPs1hdqRyvzs33BgEOe+448Uflifsl1xNm8nw/VqLEHNg7rCdzw1x88QV4Zhu1+eeyFGzmediql0+rXrjUF/583tj1CG0rLqF7e1fe/fPoILsyZ8Fjhsk0tnkXKxsCGhe0MnDoED2HjR6c/vqLmZG6b5wRnPC+v8Je9DVs7gUFzysilUuVuCIiIlIcdSWuvKmbZhWOVZLsCxYWVmGb3Ntf4khGETTAvCtg5plRcq9njN6Fp10JDJQ6oBKPXwOsHpa9kPD0KwiXrCBs68fDTYS+ibBhD2FbP7SdE3eUhTu8pmqqcS2Yf8rjcPGZ2QSuyOhs9lXY+a+sugSuu+Pr7sf7Rvn9lacf7ajMCDNjVOPu2M45F8yZYIQRT4cMHunGzADnHf/nEDP6x0vgZh1dR+YXv0u44yeTmltEKkt1/PUgIiIila+U7RSA6VYFZlWxSJJTN3OA5OEEhGP/MZvZuRMunw3JErQoGE3zQqhrhSOP5t9/xg14wrGuDqhvJmQjJf8+cjUNnbJFzyb0TWMWrfnspVjvTgiHyhrapCQ7sIbn4qmt2Q11UDcHUgcrZ7E0a4LEfGwo5/MZDsYTj1QHq8NOfw0sWVklv9NOZXt34rt/Avt+jV/yLmzeqb18fShZ+GCDPZx++joOtF/MwOF+BvYPMPwJLNE6g01PT/X3Y5TAXew/mNhp3dsJ7/8rMMNOf1lVfq2kMuht6vjpayAiIiLFUeo/CqbLomZZpbiSv/gMGmbReOZ86ldfDMEYLx0dvHlV+UKrb4PGedCzNf/+uRcRshEPNxPO7CRs2lumhNnolVhSgDmXEtYdHvcwz2yG055bhoCKw47ug2AG1C0m6Ogi2PMUwcGDWH0F9JIOZhAc2EWw5xE49ODJ7a0rwcv4poxUl0Qrdt7bsaVnVmVS0Dc9jj/zhehBZgA23IrnvFmZ9pn/P3v3HR/JdR34/neqOiLnPJic85CcYRaDRCrbCpa0DnoOK8e17Oe09jrb6/V6/WzLaVcrOUpykCXLkm3JlEQqMGcOOTljInIGOlbVeX80ZgYYpAbQ3dUA7vcjCIPqqlunQaDRdercc3GrdqFWdhXGbqCOtgNd7HrwS2z4zoopj6191GLHIYuP/sZFmtdd/34pJRXTx5nNIx/yFp7AvW70It5/vBfv6Z/GO/wHaGeWlbyGYRQVU4lrGIZhGEZO6Hh/fk+QXgYVdwuwfC55y9CBVxFOEWprhLKtpE6fACcFKARCSKQExMJzKrELEVKwEqIN0/uSNtyBV2GD0w0yznL6Lq9aYkGkAZw4NN2O553KuvWAZ/Vjla2DsY68hpgTY+exkhWgXeCMTWxUYP7FiXJCFQltQN1+8EYmvt6GeBaogs6waFlFOzDLTRJj1ZO2dyBVVX6HsXi9rzHlptv4eTj7Omw5cGNTOhGg/7UhJLiG8Jo2SqpHCFzvi30Lp3oPY32llDf/MwjU1L9K7J7b6HpmhM0fKqHK+hwffHMAUg53P/L9/PMnwnzvT4+xqezz/NXnf4hLJ6ffAAyElLXbbHbfEaehYYSW8LdgAcXBM9FjH8/cRC5bi/3B15DgCltvwDBWOJPENQzDMAwjJySygHKSRdDk2Pw7LSfLocdvpBRGjt78erwbxrsJVQczyTd3IpE7QXuTUFKAuKp3Qc8zU7dVbMQr6Qb3+nLFeaiIDdYhrg2hWkiPZLZFatGxN0A0U2mZXmE/p/kSbUbrd2T6rYoDBEFPL6xa2uvHqxQs2QSjMyQhi831n5lJpP8cUrkZ1MOTbtA8/PxYVVjaAJe/jUQaoaQZEn0Q+9bsx9hRPPvqcpkyYPihstHvCJbGnuEGyoXPoZUtSGMTAFZJpgJX0ykS58+TDAap3Hc/wd4np7xUpWsPMfR6D8GG8I3tMn6ehp1rqVpfTrn3L5mNmplRtLv1K9T+0r20BL6CuCm+9/teYDjRysmTjXzjcxaWDR/99fNUpp5EvElZ2yUmcKcYu4h2PYOseSSHgxormhRPB6Abii2eAjBJXMMwDMMwckLC5XkdX4evgR1G3JVRkSvJqwTWbQH1Mq0i7BCInVnwLDmIc/VqpkLOj9gqawm2N8P4FRi+Nn0HLz3jcTrYCfXtMH5paQGUroFIDdgRGOmARPctAd7yrj1UiVffCN7VpZ13LmohVi2MHoZYx83t42eQ8u0gZUjXy4XtCbxchWrwakvBO730CzBRKG9bHkncmcSuZD4Aq/VBPPdkzk9hxUMw+O3MF4nu6b9P0w6IQOvdmf8+hjGbziNQfpffUSxeSSMMH5m+/eyX0YYfQMRCwlPTJZpOM/TSeSKb3kRZ4ChWsp9U3X0MvXIRvOk3DkWVcv3y9O3JHlrlCzDRvSE8/ioNvErDZrjrd7bjESU8/mpOnuac4vO3rjEMo7iYJK5hGIZhGLkRzvOUPCeJte4Qeun5/J6nUIYvAbMnOyXaiMaG8x6G1byWYBWoE4dwA6kz5wmuaYBrz8x77Ew8XYM1x/PKSlkb9L+Q+XegDJruhf4jkJ7h+9FwB16Zk+cEriKlu2DghZkfHz2BlOwxCdxsBCvQ5n3gnsnZkJ51BavpXuha5j0ehy9C2RKOV8WKlYEzDpWb0KCNqAVd38h+jOo9eKUjJoFrzEv7nwX3EGIv02V2rFlmw4ydRc6fgI07sUvdTC/4WxK0ibPncJs2EGk+wOhLJ25sT13tJL13E8GJ9iRB98SCF7sMjp+Yf6cc8V77/5D170GChZhCYxhGLpgkrmEYhmEYOSGBSN7P4V15DatxB9p9PO/n8l2kHPKdxI2UYpWVozdaE5whVFsOnYtPlLtnXkV2340MPLu4AQIl0P/Sza+dMeh7FkrXwrgLwTIIlkBpG9q0DXVPZ91DdSEkuhmkJFP168RmT+BO0NhRaLsL0TAa74PB44iuskXOStshUArDsyQhqnfjlYzkNIGbkcSzL2NV7ZzeJ3kZ0eq1kF5CJa4Eb1YkxzsXXuRc2o5WVIBrbkYYWfCSMDIM1dV+R7I43uy9CfTsZ2DgdiIDr1L3Hfcz/HycdGfXlIRuuquTdFfntGNj8X1URjK/hzJf1bvfBo+j3c8jbQ/5HYmxDAhQbLdsVmE3BZPENQzDMAwjRwrR49VJ4fVdxKrbjPblOhFUXKzyWjQQAjuYuXC0A5BK4HXl7nmHN7WhnbdU3CZHlzyuc+I4wY0bYWwRiyJFWyB+fvr28YtQfy9edAD0FDTY4J3JS4M2iayHkTOZFcuz5sHYiZstRNc8CJeeyHlsxUzr2lD3MlbwDuiblIi3wlC5BS0vA28oPycXD6/cxZLdMDjDFOnVQBZ4I63u9szn5AAAXnUluBdzHJSxovWdgeqDfkexOOvvhM7HZ3984GUAypu/Rck76xh4/TYC5cLQE3NXyjqxMOT/nnbO6LUnwSRxDWPZMElcwzAMwzByww4W5jzpGN5ID1KzHgYuFOacPpDeF6ZXGDQdWPJyXVZDK4G6OrBSaNeLSxxtFk4SZzBIIGQveCop4ZqZk7iAlkbAXXqSeeqgipRsy/QBRcBNwPAbC4/7VrFzqFgrtxrXCkH97eC5MNoBFRtQ53KmLCY6aZHD5vvx7GvAUP4SuNfpOF6JhWXth/7X8nuuPJDu16BxN+p2gjee/XGB9ShpRMqALG/yhOvxwr2ZY6MJ0GHw+hYXuLFqac/jULcZWYbVuFJeilbtg6HD8+5rB/uov/2rjF6ZP9npjHpQs/T4CiY1fcFFwzCKl0niGoZhGIaRG4Fw4c6VGEEtG6lqh6El9l9dTpaUEFRCO/dB7/NQgHYU2nMR3XkvMvTt2Xeywpn2CHYk89kKZyqOZxvT68pdgKEWxKqA+FUYPJy7ca9zhqBmN/S/nvux/VS5Ha1sRrUb9HJmWzgEXLmxi+edgvYDoCnQAt9oEQ8vGsOq2Aojpwp77qVKDSGXn0JCVXjVkayqzCW4Dbn8zYVPKU32YvU3QOJbSMkaqNkMCJ50ZxK6hpElPfNPcMdHECm2idZZsBc2gyhYOf+NDs/xUM3LJJG80GMfRw/8V6Sk0e9QjGVgufxcr2QmiWsYhmEYRk5IIZO4ALFBVGykshWG87ioVTFxk4s6LLh9L5bThfa9CO7sfQBzzTnxCsEDD0OqG1RBnUyla3o080E603/TBeYLq+4AaO5W0pZAJQzkefXvcAANlCJO9lWVRUNsWPMAXH0O3BhIEG2/G3XPZ9pYzHmsgOfnqucxvAqgai/WuLX8qnJTQ0joPjR9dt5dpX/+fWaV6Ml8jl3OfFgRaN24+PGM1SndD7EElC7DxbHa74Z4N8SyayOiOn+iOnHuEmywyfxhWwbUxXvmZ7Hf8hm/IzEMIwvL8HaZYRiGYRjFSKKVhN79Pwt70vE+NO1ARUthz+sTHesisPl27M23ZxY+m0do105CzR4ycgQdOA1OogBRTuK5OB2XYfQMjJzIfI5dhvQQC77AHTiG2OtyFpo6OW7LMJPYOaTpUP7Pkw9tD+B5p9G2PVCxBW2/L5PAXU68AbS0yu8oFkWuvYw1FsWSLZkbIAASnfgcwZLNWNa2zO9TrjTfBWqmVhuL0LOEmwk+koZGuPeHoe2dWe1v2fPfSA23NiOyTBK4E7T7BVR1/h0Nw/CdSeIahmEYhpEzXv8iFrJaqrEecF0oby78uQtMEoNw9Wnk6tMEmlrAuj6pSic+MoK7txF9y17E7YfUKCT8W21e+y6jFdklMr2Se5j1OtJLIokc9JcN1iEle5CRwvysavwkGq4ryLlyR/DIVLerexWvIo66y3MhQXU7oOneTA/f5cSNw9h56Pw2VrwCK92M1dOFxSasgVHofBKufTN35ytpw5McJoSNVUW7Hkf7l2dPZRELiWbZ01fm/xskoeU32Vk2fxAx8+SNLFiiRfWxGi2/VxjDMAzDMJZEXQdS45kEoLpobBDSCRALLDuzUJGbRt1UZuq9c/3f6czXrjPpayezzXNQz8F57Z/9eU6jPUhFE5Q1wli3LzEUXM/rBNbtwm4oJVDVBalOsMvQQA0SexVSiidtfkcJgHvlGoGy2R9XBSJrETs1d7+1gePQWMmCqnitKBLdio4fzixiRjkMvJD98UvlxqB+B3qlH7meaF/zMNr5AuKMFS6OhWi4E/TK/PstB+LgBS5C6zrEakOciWaVwxdh1IebTosxcvrmv7ueyv34gXK8+lZwr+V+bGN18BLoqb+GvT+BLLO2CqoeDJyefz9PGDmxDjg5535la9O5CaxAZOuHsW7/db/DMAwjSyaJaxiGYRirjHfpZRKffI/fYeScjnQhlS1Q1pCpzl0F7AqPQPhZiE9scONI6uZz1/Tieujmmg50oi13ICMvTX9MAqjsQPsuY823aExqEMvbi2dNT75JZB3YVYCHpnszSe1gHRJqg/7nkOqD4IzCaP4XdZtm7Di0P4ReegKizTD6CjQfgMtPFj6W+QQr8CLDkIOi56KimWpivX6ToLoOa8xa4mKBK0CgDG3dDa6pwjWWSNPQ8TTsfMTvSBbm5EvQP/eNPSddT883tpM8N3cCFxHKgl/OYXAFECyfNKvHMIxiZ35bDcMwDGO1KeDCVoWmw9cyC52V1sH48pzauRBWTdmcRalys/bTX9FqvO4rWJVNSKrrxmYNNqDajna+jLQeRFIvzjqEqmamew53QNXUpb8lshGGjnM98ygAZVtg9DQwkZwanH3sghh5BdruhNQApOJA0N94ros0QOXmzEJm/Yehbj94y6z37WJ4fVC+EUZ8ahNR0gYxH6udrTDU3YYXSZgErpE70Ua/I1i45NCcD3tOOd3/sYnUlfkXP5NAAE/KsBnIUXD5p0f/HK1Yh+z5qN+hGMuAabrhP5PENQzDuIWq4jke6nmop5nPyo2FRVQVNPNZPQXVzKLrnnfjMQAExBLUzYzhuR7qTuyDIAJiW4glWLaN2JLpyyWACHYoQCAUwArapk+VkVPqFEd1Zr7o8FWkqm3lJ3JFsAIdcyZxA1tacS6E0J5L/lYcxvqhejdebBirogq8OATW4PWchfGXAdD+c3i1B5GwhYw+P20IaXgEz76AVO6A8Vcz2yIbwSrLLJp2a+no2PzTYwvOGc0892g7dPqcVC7fiFddAW4vyKXMtsZmkGsUR+Y//7S6DnGTMH6pgGcVaHsIT7qwghUwXKDK8GAFhKohVImW16N6GfTyyqu4NvxVuQwXGV17CJr3wqVnYODlKQ+5TiXdj+/NKoELgB0g6d1GifX1PASaP94bf4rs/klzvWEYy4BJ4hqGz9y0ixWwcJNp0vEUbiKFWIKTdHATKdyUg5t2QDMJQbEERDLJwBuJwYlEo+tl9rFtRMDzPNSZ2Mfz8Bw3k5R0J5KTevNYL+2SHIkRiIQyvaEU0rEk6fHEzeMmzhGoqmC4ZzSTxJxIZKrr4aZdvLSD67h4TuZ8nuNmtk/67KXdG8dZtkWoLEKoLEIwGkIswQ4GSI7Gbzwf13FBuZkE9RTPvR6T4nmZeNX1Ms/5+nO8Hps3Eaeb+V4waTtMJG0nbS82dijA5jfv4ZHf/hDRqlK/wzFWAmflVuJep0NXMj1yq9fBYIff4eSF1bYekvNUEY69RqAeaKnDja3BO/VKQWKbiXf1DaxSF2/QBTsM7i0XxYl+9Go/WrMF25760PVVs8UdgoFnkYrd4I7D0NHCBJ8DUnYAvfJNqNkFg52IM+pfMHYJXnU1eN1MbUIcWzUJXAB1r6B1LVi3JnFD1VC3Fw0CpMlkOgOAIm4Y+o5AYpEtW+puw+N05n1NOVDWBhJG7BbECWT6lY9dgnjXvEPNqaQVStsgXIraCdS5MrEo0yB4/i10aKxw4eXVDxdAqqsA0P5mJhfQqkL343tJns8ygQtoIo7rVi2/5ePHLkH/G1C31+9IDMOYh0niGje4qTSD57omVRtOPHD9H5OWi1ZVSuorKWuuASA9niDWP4oTS9xIPjqpNFbAJlgSIVQaJlgaIVxZSiAayuldvkxyMpOc8xwXddxMotOysCzBDgexAvb8A5FJEiZHYqRGYqTHEySGx0kOjZMYHCM1Gr+R1EyOxHASadxkGieeJB1PkR6LZxKAIplk4MSYIoK6mQTmjarN6zE7Lk4ihbrLqwyiev8WLry4CqZaFgk35XDyK68SrS7lkd/6kN/hGCtBYJmt0r5IOtIFwSjWmjvQy9N7sS53dmsduFlOBU8PYAcHsG6/D29gCESQUBhCQRDBvXAahnvzGq9UtIDTkfnCnb0aXCwbtasyCdvryvdAMgbhia9HjuQrzNwLlIPdCle+kZmGOOB/7Np6F3hFWKnsB+cahOsh2QvVuzNVqt554NyMVe4KUFeCZT0M/WdhPIsET7geaneCenjB0anVryJACnU7Mv16w0C4DMu5f2IRsxmy6mJDuA5KWyBUDnYAtWQiSeug3gDoCDCxUJmLmQNrFEZg5aQXYv33LCiBCxBet4Zo6PnldzMsVAGB5ZeANwpLAKvI/pYUWTgFsXJeZY0l63zpDF/+oT9e0DGh8mgmERnPvqorUlNOw+612KEgiuImHby0g3ejWtO5WcWZdm5UbnppJ5OodT3UcW8kQrNhh4MESzPJ5EA0fKPyNFPZmUmwusk0qbHElGS1MTMz1cYfRz7/PLvffxfNe9b6HYqxzEkgPP9OK0U6jnfxZaz2O/C6jiBOwu+IcseSOVspzEQSz2FPvk6bON5aX4Hn3oV75LmchTdFpBwpC8JQFvuGSpF0ZkdFQALo0ADSXJuf2PKpfB/0vIEkp7eH8E2kEfUWlphY0QS8hlqQevCGMh/zcvG801ClSN39yHgM+l6eedfa2/BKxkEnFuPL6q1rEi9wAdZsBilDqEaGLkFJExoKoHoNNAb0TXxkO65h5JEVhfAyvkl8y+Je6mRXBHSdBINUb+8hoFdzGVVBWPt/Aana7HcYhmFkwSRxDQAGTl/lyV/7zIKPS43G59/pFomBUS59u7DTH91kpmo2MeDj1MUVRJfd7eWVwUmm+fT7fp+G7W2EyiJ4jkvTzjXc9RNvo7Su3O/wjOVkFa5C7F16GaluB9uCgQsLPj4R3kE4cZxiuoeVPnKK8L41kMjBokTOCBYvwf57cV97hpyWEdkhrLp6GDiR5QGZb7KW3wPxEdRzoCSE6qmi+v7Pq2Q9XP5W8VWJJLqxBiN4tdVmWv11Or64H3kR1L2ARoD2/VhOJfS8kul9HKpGmw6g7ikyJbaLiSsOGkfpRSsAOkyy1iheXipTDLOsXqiBqxfRs1+E9NTrRDe+sBvewYZ6IvrF5VkaWLvH7wgMw8jS6ruKM6ZJDo/zlR/+U8a7zBt5I0smh+sb9ZTuYzcTNldfOc+Rf36evR+6h6Zda0nHkziJNGvv2UbdpiYfIzWK2nK7wMoRHbwEgRBW+yG8iy8s6NswktxBVThOKLXwBHDejA6ROh4mtLUW0v05GdJKP49150HSb5yA2Ehuxly7H7qezP6AdBwt3YFeegqsILLuXjRwDiGdk3gKxq4u3mv58YtYwZ14pcsw4VKsvD48qw8a68DeBN5opmWF+f4aq4YL4zEoL/M7kIVxUpCY3oM6ULqwYqVUVze6J4qw8CInfwiy5s3Ixvcja97idzDGMrHc2j2vRCaJa3D0775lErjGgpjLkeKSGk/y0l9+Y8q2LY/u4z3/+yM+RWQUv1X8W+yk8DpexGq/Ha/7OJKOZXVYKm7jhGsJUURJXED7u3G6txKoHQZ1cjPo2CsEtzeQfiMF6SW2nyiphv5ZFlOr2pTpzVvaAOpCahztPYKOdaKaSYDK+vvAPrr8fmID5TDa6XcUcxs6hlTej7rF9TO97IkDXp/fURiGP0b7l18S15q5bUJpw9NUPfQoQ984Oe8Qgdpa6g4OYS2bBC4QiEL97cjWDyNiUnOGsVyY31aDnjfMm3djYdT0DS46dihA896bvXIbd67xMRqj6Fnmz7936RUkWgu1G2fdZyD4Lrq8D3A59kFGO4YIOWcLGGH23HOn8AIHcztosofAgQNLHsaqWw/p8ekPlLVAugdGTqGdT0H3s6gzkmn1ESxFhk5D+Ro0WKTJsGAVEt0NtEDFAQjVQdk2KNsJpVvBKUeGsm0f4R8Z6jGzawzDyBm9+nXUXWCzdr/NkcCs2vpVSvZumfPwUGsLdQdHiJKnnvL54sTQV38X7+vfg3fxy2hsejWyYRjFx1TirnKpsQRdL2e5srVhTEh09bP+jvWZL65PE5Qb/3dju6revDiceMh1lcsvny9QpKtHeVMV3/nnH8FNOaTGEiaJa8xNFrZYx0qlQ1fADiFrDuFdehG1S7G9MQBcq4Keow7J7o7MziIE3CHfYp1P+sgpwtsDuavGBST2Ctb2O/BOvLT4QQIz1NAGSiAURkauTP2zMXoBLW+FQBAi1dBsI56PF5XRdkSqUVtg7BjoRDsHCYBTAr1PZcIfOj5xQHEm+ec0fBKpfBj1TvsdiWEYK0GqBzpeh41LvwlYMHMkcUWgfNsYsddn2SEQoGnvU9iam5ZGftDzX0DPfwHEwv7gYaRqq98hGUXMdAjyn0nirnKvfvzLpMZW0ErdRkHEuwaIdw0s6tiq3RtyHI0BMHSpj0889Bsc/KGHOfjDb/Y7HKPYBZbx6tG55qbQiy8SL3+AaycrKW0KUVo2ROcbNsnuSRdlqgyG3gEqVKf/3b94ZzM6hEZvR2Iv5G5MdbFDJ2HjXryLJzJ9AxfAWncHdD19y8YAUr8VemdusSDjE6t6hypAY/52/ohfQdODyPhlNNqM1O4CsdDRK8iNxO3yJ91voPURv8MwDGOF0K7HoLINqWvwO5TsuHP/bYtWP094430kz13ErqwCFLuqnEhbGVYkgK3PFiTMvFMPPf8l5MAv+B2JYRhzMEncVUo9j6f/+z9y/O+/7Xcoxmpj7t7ljZtyeO7/fJWX/uobtN2xkcada6hZ34AdCjDY0UvP8St85//+CJZtptKvdhJY2IrLq0HJ6Ldo37CRjpPb6L06NOM+lx7vxYqEqc5x54LcycO8eDeOHT2GfdtWnE4PvZRli4CyBuh7fuq2aB1SVjtrAneK1AhcDkDTbjR8CdEZWjLknQdVLWh6FIl3wpVMj9sV92csNQg0+x2FYRgriJ79Ryj/USS8DG4ae96cD4ulNL/lafQtQSzr4tQHdRN05C+0QtPk8q0oNozVwiRxV6l4/ygnPvuU32EYq5AEgn6HsOI5yTQdT5+k4+npCzGM9QxT0VztQ1RGUVnBSdxMy24LtQIoAa6n3DwrghJErRCKjSdhVEIoQTwN4UkQxaZ2m0dPqpp078wLfnqpNOlgG8H0lYI9p2yJ5DHROX6KQEMbrr0Lr+NEZiGyuWIpq4GRyzc32BEob4SBI9mfMzGAdnwbab8XDZ9C/JjDZ4WR1FDhz1tQXuYXx8yRNAwjV9wx9NR/wK53IcXehz9cOu8uYnkIyekPxEfyEJB/pHav3yEYRUwAq8ga6a/Gdy4mibsKuak01146jRWwcd257zwaRs45uevXaMxObIvNb97D0KVeek5eA1Xa7thIaW2536EZxWAFJnEvpr+by892o457PZO7CB4QY8PDa+mfJYkLYLlFctEWLAE7CIlhANQrz++b2cQV7FKwd0egZBvuoOKdenX6fuFSJDDpYrekIVOBu5AE7iR66Wlk2wPg+dDCYGwVVCXZJSaBaxhG7o0eg8ubYe0OvyOZk4YW+55IYGAFrfNRtRXZ9AG/ozAMYx4mibvKuCmHf//Bj9H18jJcfMNYETxnma1Yu0yp6/Hwr76fiuZqxvtGGe8boW5TE1bALGhlgFgr88+/pnNzk2hkePoFXd3B9VRWXaMk8SKWN0M1TkEohCuQmna0vwOpXYMOXkQaNyEltahnFaYiwUvC2OvY4TD2nYfwRhRNp9GxIXSoF3vtXvTSNzL7ljYDCRg4trRzjqcguuTIF0yitTB7Pn9lcMZA60HMTVbDMHJLr3wRIlVIY4vfoczOXuQswdK9kP5qbmPxjWDd8Rsr9v2hYawk5rd0lek50mESuIavxDLVPoUyeKGHiuZqSuvKKa0zFbjGTaorbxaGWLmb3pWOpad8bZeV0hr5LPi5DqgVwFp7G97F59DuTEWrdmcqU7X3NAroYDPBzZUIw4WJyUvC2CtYFhAGwhY0hPGGe6FyHVK/Be18AUkuIQtqh2H9Paic9GXKnLp9YEcQd4UvAjvH6uyGYRhLoWc/DXwvNLT40xZnPotp9xBdB6efyXkovog2Yr35U1itD/gdiVHspAgn7hRbPAVgkrirjJr2CYbfVuELrR8qWmto3rvW7zCMYrUSk7iSwx5dt/ytbLuzCidyFxIKYaWvIsOFvRkqjdvR3mN4F5+bcz8d6cQZvJ1g9UsFiuxWHuokkOpSJHUO8XrR2u3otRcXPlT5GqRlEyoDiHc096FmK3kNaboTrn7LvxjyLVQDzL06u2EYxuK56Nm/RfoPoZXrQWxwU+ClIVQOTW3+JncXmsS1QnDlGqTG8hNPIVVuwn7HvyMV6/2OxDCMLJkk7irTcnALu/+fhznyt0/4HYqxWhVXL/QV664fe5RQacTvMIxiZZK4c1LVG/eb1j7cTKTrCSZPNA9sug87fRkZ7bjlODIlCmJnpmdKIFPhaNmZilIrCIFMOwuxrInHru9jIZaNij3xfKwbN728gQtZx+6dfxnvttuxeHnRz38pRBTSR26WagTOQ81WGDiV3QBVG5Dadah1CvQYuczNL5a6/WCXIG7M71Dyo2oLcNXvKAzDWOF08AUYfGHaduF7oNnHwgNrga3Gwmtg5Nn8xFJAsvXDWPf8IRIys/UMYzkxSdxV6O5f+gC3/cQ7+dpHP86157O8qDKMHBFTilsQTbvb/Q7BKGaLXvireFk5bKcweSXtiHRPe9w5+3omqRtuzmzwHHDSsyTHFXAmPiDc7EB6bMb7WTrLvxcqffQ0od2NiE6PvdCEJNSUogNZHtBUAd7R4vpLEWoAVm4rKo1GwbSrNwzDJ3rxS1D/E4hf6zYstNWbN56fOPKpbA3S9hZ08AQk+5Gmu7Hu+xPEXnkL3Rr5ZToj+s8kcVepcEUJ9/7Kh/jcu38L9VbexbxRvMxPW/5Fqkqp3djkdxhGMVuR/S/nri6u27+G8po0w90BnLhDqDxISaUycDFFaiSBWEKyL9NLNlQaIgUESkIweG72QZOLuJCTAlykJkdx47sIRPxP4gKQPA2V62F4/opiiZdn+usWi4rbkEsre/aS6qjfIRiGsZq5YzDQAw3N/px/oZW4qb78xJEPVgD7O76BNB7yOxLDMHLEJHFXsepNLbQc2srV5076HYqxmqzAadzFxA4FePvvfS/BaMjvUIxitgKTuLO1U7BCAdruaqIt9HlsTdB2y/2NtZsyn1UhHWgiYa8jWNqJ1WIj413oSI4rbgr0vXc7TmNvq0HIrgRW1QYUkTy9RofKsovj4lPItvvAK4KZQhKETr/6CxdIaTu4XUW4UolhGKtK/0kfk7gLfP0r2cqyaUFTvt4kcA1jhVl5V3HGgrz5j34YK2B+DIwCWoHTuItFw/ZWvu+ff47Nb97jdyhGkZOFVp0sAzMlH0taatn/5h7WBv8OWxPzHA8ht4uKwDmsC9+GzmPoSE/uA7WjuR9zJuP9pF4bxUnejTLzTR0liOveSeriRlKvB0kdryB5vIp0z57cvlQHapBABEIVZLO6pXYcQ4vhLaodRdIjfkeRX+Eak8A1DMN3OvA8OuLTrABbMjftJIv6tugGuHI+/zHlinl9N3JIAAstqo/V+BNuKnFXuUhVKfW719P92hzTRQ0jlxa6Aqwxr1BZhDf9/Hew94P3YAdXXnLOyIMV+KbeEo9AeQlN+2qIRuNUBo4RST6FpBZWWaoVm+HakTxFSWaBs0LxHNyjz+HVtGO3tqBJRSIWiKKO4F06j45OWmTGTQKgiRhYtaD9OQlD3EEIDkIjaGIX9M7z/U0MgHUHeBdzcv5Fi64FLvkbQ76ZG6uGYRQFRU99FnZ+L1JS2IV5RSx45LfQ0TF49ndm3skKQ3A7nHgcdBk1EbeCfkdgGEaOmSSuwaN//mN87t2/RbxvhVebGEVhbCztdwgrzoY37eTA997vdxjGcrIC2ykErHH23N9LafI/Mu1xU2RT9DmNl8hzUssu7MUpgA5cwhnIIhkZiBDYuRfLfgHJQ3JPhKxrJsQtX9R/v5wa7fU5gAJYTskIwzBWtlQP+vrHYc27kLaNBTutqsLIKCRiM+9QugMun4XhrxYsplyRmp1+h2AYRo6tvKs4Y8GiNeUc+pn3+B2GsUrICqwA9JuTSPkdgrHcrMAkbk3qcUqTry9pDA2U4lzOcy/WYl0JuqSG4L4W7MDzs/YXzgUJlWS1n/Z2oOpzBVFi0N/zF4JnbqwahlFEvBh66V/QtFPY8z7/u3D4j6dvD+2Bo9+E4cuFjSdHZN27/Q7BWGFEiutjNVp5V3HGomx9791se/89fodhrALh0iJNYCxjZ79xlK6jK3zKr5FbKzCJmxO1u8DNb1JL7aq8jr8o0UqCOyqwtECtlep2QknD3PsMnUdkW2HimYXU7/L1/AVhKnENwyg2moKrhVt4W0TAmqF3fMkBOPX1gsWRF7ZZ6NgwVhpzFWfcMNTR7XcIxirgpAp8Z301UOWFTzzudxTGcmKSuDPynPxXfqbPn4XoPAnMQiqrJ7izFksvFOZ8oR4kejFzwSwWsu5+mC1Zai2sn3GuaToPC9sVGx/aexiGYcxHOx9HnQJeM9yaxC3dDce/Vrjz54n2HfY7BMMwcsxcxRk3tBzc6ncIxiqQGJ17hXhjcU79x6uc+uphv8MwlguzwOA0quB25j+RqYkxkoNleA0PoNmshJ1HVutOQludwlXgAuL2IiJI00ao3gwBFyntzfx7yo4W6vfCZvibRC6IYHbtLQzDMArKi8HYWOHOF6wGrEz/W9kOR5fZAmazccx1l5FbVpF9rEar9XkbM7j9J9/FoZ9/r99hGCvcau1dk2/qKf/203/NpRfO+B2KsRyYStzpxEJjhVngU8cGSB0/TFp2oLX7ycMaYvOymrcRaDyBMFD4kwOSehUp64Lk64gXQ6qSUL4GAiXI5odg6wGEAl7Az2Rs1N/zF8LIBXz5ATQMw5iPU5ie3ToyBgMOdDuZ/rfnv1WQ8xaEZ9bNMIyVxt8SEKOoiAi7vvchvJTD4U9+lXQs6XdIxgrkueZiMV/clMNnP/wnbH/nbWx8cDcbH9xJqDR3U2XdtMvLf/NNLjx5nA99+qM5G9fwgUniThepBlvz3hN3Mrf7EpQeQqrfjhVIIBpHxk6Bm0CcWVbJzhG71UN8rjISvBt39sQdhLpGCN8H3muI30WwkVboOuZzEAWQ7EUC96NugdppGIZhZKusojDnKYlAfARivYU5XyFZJt1j5I5AXhe/XYzVWB9mfquNKQLhIAd+7B1setchHvuxP2fwzDW/QzJWmMRIfhMTq53neBz74ksc++JLrL17Kx/81E9mFmxYgvPfPsal589w6rHXGLrUB8B43wildQV6c23knkniTqEKTqoO3ML+zbNq15A+fwzSk26aWmEC7TsJBV5FnPG8nFeatmJp4RaNyZa43ShF0jc92ICwCpK4gAx2oRU2sAKmDhuGsXIk4hDJ/4LIEgig7/oZ5PJF9Nu/n/fzFZKUNPsdgmEYOWau4owZVbTVseGRA36HYaxAbspcJBbKxWdPkRgaR1UZvLi46gJV5d9/7lO88Imv30jgAnS+7nevSmNJTBJ3qsp1eAOFv2mpA5cJtN3SC9ZzcDpOkmJf3ma52y3F2wdVSrb5HQKEm6Cv+JLceTNyGivZALoa61kMwyhKpVuRqqqCnU7KSmD7dnjk1yBSW7Dz5k3dPqy3/AOy56f8jsQwjBwzV3HGrDa+4w6ab988/46GsQCmJ27hhCuiqKd89vv+hL949LfpP9cFgJOcf7q4qpJOpPAcj70fvHva48/+2X8wcm0w5zEbhbHU6uwVp6Tdv3Nb9syby6J5eb201u3H4tXcD5wrsUv+92gNtSLxTn9jKLTeF7HSrVBcsyQNw1itxk+h/T60N2htAStU+PPmgLS/Deu+P8X+0BvY73sea+N7zfs9I+f8XsjMLGxm2ikYc6je0MS7P/NzPP4zf8G5r7zkdzjGCqCaSQ4ahZEcifO/7/0V3FRmevLXf/Nz7Hz37Tz+25/ntv/nAe7/mXfNeFx8cIzPf+TjXHvtAmLJjPmUzjcu8vEHfo1ND+3mzb/2fipaavL5VIx8sGzwTGU8gDvizwJWGozgdXVM2263biAw/K2cn0+q1xCoPTVj/zC16lEaABvUBg2AlcTy3sh5HHOKXYaqbZDwq9rfgtFVlsC9ruc5rLaH8DALZBqG4T89+UlY95+gvg0JBQtzUtcDN1GYc+WQbHgP9iP/6HcYhmEUgEniGnM6/Bdf5fxjL/sdhrECWNEQZW0NDB/v8juUVeV6Ahfg4jMnufhMZorwc3/+GNvfcRv1W1sY6RzkxU8+Tqx/FDsY4MLTJxjvHQFAvdmT7up6nPn661w7fIF7Pvp21tyxieq19dgh86dlWRAL0wMTNFKL23mu4Oe11uzDHRpA+6cmDCVaRjhyEYnnuDdsMEpgo4Xo9D67ajXhnHVg7MjUWJp3QeM2xD2B2psR73xmMbI8E6vCv4JQKwSDp/06u/+6X4bGGsxrg2EYxUA7/gE6gIq90H4vUlmZ1/NJSQR+4A/QJx+D4/+U13PllJvyOwLDMArEXGkbs4oPjPLSH//rnEkcw5hJ+cYWAmUleJZNfCTOWO8Isf4xBkwCt6jEh8YZ7R7i0+/7fca6hxc9znjvCF/71czd/1BZhHd/7AfY+OCuXIVp5Ivpi5tRtQW6jhb+vKkYXv/0is/wpvVI/zdyfjp7/W6EjmnbVapwLwZgbHpPYO08itsJhMsheRp7x91I4PmcxzZNaiD/55iNHUW0SBZX80N6BLFvQ92zfkdiGIZxg468DsdOwN4fR0oL0Nd97U44nv/T5EzNDr8jMFYFxZJiyw0VWzz5Z67gjFlFa8rZ+0Nv8TsMYxkaSygXXu7g4ovn6Dl5jVj/mN8hGTNQ1+Ox//b3S0rg3io1luCFTz6es/GMPDJ90gBQ9an3XUnVlC+tqnpKtpRiDT6bl9O5p18k9doQrnfwxjYlinutDh28NPfByUy7CffUy6jVmpf4pgjmt9JqTukhNLy628PI2IjfIRiGYUynKUjElj6M66LztZNqb4Ot37nkcxWKnvwUOnbZ7zAMwygAk8Q15rTt/ff6HYKxzFTt2sBghw8LERgL9tnv/zPOf+tYzsdNjS2/XmKrksy8oNaqU+DZJtb6g8ia20mfem3q9opqZKwD8fL4++OmcF57CU/WoGrjDmxEexfQOsBNoc6a/MUHUH0b6vg5a0Mz1dmrWf8riL3W7ygMwzByRtWDKxfRFz8PX/tl+Nqvoc/8NZx5A+3uRG9Z9FdE4L63+xTtIiR60Svf9DsKwzAKwLRTMOZU0VbHhrfexvnHXvE7FGOZSKRX35SG5Urd/PS2HLzYy4kvv0LthkYatrfl5RxGDph2ChkFLEi21h+clry9zrnWQaitFkn15z0O55xg1+1Hr7y44GPdo8/Cvr1Y3pH5d85WsArK1oMVQMd9aG1xK/O7gfRfQysFim7apGEYq1pqHKjLend1XRgbhzPfQHsnzXRRD0ZOoCMnMl9LEDZ+AN20J5PABSQQQMvXwqhfC21mqXIT9qP/hNTs9DsSY4UTCvq2OSvFFk8h5OVdqoh8n4joxMd/XsBxvyciT4jIZRGJi8iAiLwmIr8uIrVzHHe3iHxlYv+YiLwhIj8tYsqMcuGuX/wuWu/a5ncYxjIRjvo0NdkoGqmxBP/60b/iSz/5l36HYszFJKoKSrFwLp8DEayG9uk7OCncsn2FiaS6Ga9j4QncGyP0W2hwDbrU/F6wEmpvR0sa0PjJ4kjgAgSjfkfgv7HziL3Z7ygMwzCm0KvfQFPpufdJpTMVtk//JXztl+DZ/w6987Qq0jR69u/g7OtTtzftWWLEeRaqwn7bF00C1zBWkZxfwYnIGuBPgcU0wfx/gVLg68AfA38HOMBvAG9MjH3r+b4DeBK4H/gX4M+BEPBHwD8uIgbjFmVN1bztEx9l7YNF/kfMKApjJ88jtkkOrXaNO9fwgb/5L36HYczFNpNxgML1Bg5FsJvWEdxyAB3um3EXLcBMBnvDXejl55Y0htd3Di4dg/QadLGZXAmi5WvR8WOQLLI+fu6Q3xEUBUnE/Q7BMAxjqmQn+sqfoVcvzPj3R8fj8Oz/Rs9+BkZPLXz8s3+Pdk5a6NNJLiHYPAtVYb/jX5Eqc8PNMFaTnGZaJDP34K+BfuDjixiiQlXvVNUfVNVfVNWfVNU7gP8BtAC/dMv5KoBPAi7wgKr+kKr+PLAPeA54v4h8aPHPyLjODtrc+fPvww4H/Q7FKHJuIo0VMEXwq1lpXTn/6e9+isq2WSdQGEVASlb34k2FJqkYpEdwLp1Ck0tfmGUxrHUH0cvPLH2c+ok2Kf3HILJx4QMEyqHuDoidWXIseRG7gPq5uFqxcEwS1zCMIuTF0Y5/QI/8K5p2ADILlV0+D8/9McSvLm38S0/d/Hds5puuxUB2/gjSeMjvMIzVRMAqso/V2E8h1+VyHwUeAn4AGF/owao622oe/zTx+dbbTO8H6oF/VNWXbxnnVya+/LGFxmHMrGpDE+/9/H+jZnOL36EYRc4ser+6Ne1eS7jcTEcudhKM+B1CcSjQ65XVugO3tweNzz5RacntCeY6f9s+uPZCbsYqnfT7LQv8OQrVoKWN6OjMvYGLgwcV6/wOwn/mRo9hGMVs9Bicfz6TyH36k+jRj0N6YOnjDh1FHSdT6ZsYXvp4eSLm75RhrEo5m0spItuB/wn8sao+KSIP5Wps4F0Tn9+4Zfv1czw2wzFPAjHgbhEJq+qccyFEZLaVu0wz2ElqNrfwns/9EleePUHv0Yu89n//I2+LIxnLl5gs7qp2+aWzxPpHKakt9zsUYy62mVlRCIpgr7uD9JnD82dpvfxkca2m7dB3NLOQy5IpeCM3vhIvgobWgVUCqYuIN8s9fCsEkWYoaYSxHC6Klg+RFug753cUvlM7nZnrZhiGUaR05ALy4lkYP5+7Qb0kvPRZKGmH4eL8WyDbfhBr+w/6HYZhGD7ISRJXRALAp4FLwH/LwXg/B5QBlcDtwL1kErj/85Zdt058Pn3rGKrqiMgFYCewATix1LiMjEAkxLqH9rLuob0EIiFe/MN/ycm4djhI7bY2el6/kJPxDP+YnrirW2osweO/9Tne/cfmzWVRs0zbk0Kw2/eSPp1l1amX+5uiUrsOxi6Cm4u+fkpg23bof/nmlovfuvlw4+2onJrxRp5WbYXYWRjryUEceZYehrJWGFpEP8UVRNwg+e/SbBiGsQgSRqQZ+g7nZ/yh18Ep0uuZUBXWfR/zOwpjlRIx7wz8lqtK3F8D9gP3qmouGmj9HNA46evHgO9X1d5b9rvesGy2eQ7Xt1fNd0JVvW2m7RMVugfmO3612vndb6LnjQt0PPH6kueBPvInP0L7m3bT8Y3X+dYv/Q3JYX96BhpLJ5apxF3N7vihh7nzRx/xOwxjPpapxM278jqcqxez3l1znMSVsgbEHYXkaG4GrGicksCdpvtlaH8T6pxAJnfIClSwrJqWueMgKWi6G+17A8rXIoPH/I6qsML1qJ0wlbiGYeSPKoTWIlYFuEnUybJPulqIvQYG5/h7tBThFohH4NjX8zP+UthhrPv/FLHDfkdiGIZPlnx7SUQOkqm+/QNVXdpyxxNUtUlVBWgC3kumkvY1EVloMvX6FYO5XZAnobIoj/7Zj/Hdj/8O+z7yaFbNUAORINHacg78+Dt45M9+jIa96znw4++g/U27AVj30F4e+N3vn/HYivZ6ylrMYknFTqwivXNtFMTt3/8AJTVlfodhzMfOWUclYxYaG0bKF9BXNJdJ3HA5Eg3DeO4qX6Uii+dy6dtg3+xEpRJBS5qLdxGz2WgaTRyHsgDoVXTNA2iwwu+oCscKou4lv6MwDGOlUUVC65DwTiQVRvrfgN6nMy13snG9AjdfCdyyXXDxIlx+MT/jL5H18KewNn3A7zAMw/DRkq7gJrVROA38ak4imkRVu4F/EZFXJ87xKWDXpF2uV9rOtoRwxS37GXlS3lrLoZ99L2sf3MtTv/n3DJy6MuN+rXdv520f/y/YoZs/euvfvG/afuse2su299/Dyc8/Q6gswoa33U77m3bT/qbdPP/7n+fop74x7RixLdOft0hYphJ31QqWhKhoMYvhLAdimSRu3ukCb2rlpGctEAhh17agvcdzM94Eu6IEbp0TNZPOl2HN7ZA4DFYUvBVQzjl6GJruQC8/MWtNsVZug/Im8BKQdpDePCUZCqF2OzN0KzMMw1i8QCOSdKa3QKjcjSaPzl8MpIpodWZBs5wTKDkAx76ah7Fzw7r3j5D13+F3GMYqZ0q1/LfUK7gyYMvEvxOzLGb0SRH5JJkFz356MSdR1YsichzYJyJ1qto38dApMj1ztwBTFiabSDCvBxwgh53Ojbk0HdjI+77wy5z99xd56Y+/xNi1myuElrXUcO+v/qcpCdy53P/b38dtP/FOSpuqp/TXO/Qz72Hrd97F4LlOhi/2ULW+iYr2egbPdvKtX/qbXD8lYxFMO4XVKx1Lcfgfn2Hfh+7xOxRjPmZhMyCrCSSLogr2mj2kz9y6Juscx+SiElfAbt2BXpttvdZFDtu6FXqfzG5nJ4bGYogF4g6iTh1E9mWSusvZ6CtI8z3Q+czMj5fXwcjE971kY+HiygPPHjWtFAzDyJ1AIzLalek5fqv0GATLQG9ZGDPQgNh1oONosgOJbIHel/IQWzmkGuBE8SZwAWTbD5jFow3DWHISNwn85SyPHSDTJ/dpMsnWpbZaaJn4PPkt5TeA7wHeCvzDLfvfD5QAT6pqLlbzMLJk2RZbvuNO1j9ygJf/9F85/o9P4qUdHvmTH6VqfeP8A0wQEcqap1f0BSIh6na0U7ejfcr2qvVNPPXrn8FNOUt+DsbSWEGzYNJq9rVf/QcqmqvY8KadfodizMVU4uaNtf4gbm/XghK4AFZpKYwt5cyKvf4Qejkn3a2mkHAEUgs4oOc1WHcvJF5DEmfQdC+U74LE0ZzHVkgqMYg2QUkj9L+BTO7YpZPefySX93sRocz0IjMMI2dEqiE9y2KRkfobj0l4PeoOgwSQoQ7wTk9sbwS3b+bjlyLSDp29MPJC7sfOpXA12BG/ozAMowgs6QpuYhGz/zzTYyLyG2SSuH+rqn8xaXsQ2AikVfXcpO3bgCFV7bplHAv4baABeFZVByc9/Hng94APicifqurLE8dEgP8+sc//WcpzNBYvGA1x1y+8n9t/4p0kBscob6vL6/lCZRFa7tzG5SeX9wXiShCMZNnXyliR1FO+/HOf4oe++qumN24xM5W4E3KbqrLWHyR96rVFHRsI9C/p3PaGu9DLs1SJLpEVdmAh66Opizp6o/WAuEOoV5KP0AosANVtMHYKGjZDqBUd64LUCCS7b+wlkSr/QlwquwR1LiyrtegMwyhmARg6MvvDIyeQ6r2Zity+w5mXHrsEvEl3Die9vubUuA0jl/Mzdi7ZURi7DOXt8+9rGHkigEhx3eJdjW9V/Ghp0QqcAJ64Zftbgcsi8oSIfEJEfldE/go4Q2bhtC7gI5MPUNWRiW028C0R+QsR+V/AYeAuMknez+bzyRjzC5ZG8p7AvW6m/rpG4dmmEnfViw2M8cIninBVX+MGMQubTcjN2z9VsNbfuegErt3Yjgy+vujzW2tvz1sCF4DkIhZIcx1Ub77Zl+Ve21m+GzSdSeACJDrRkZfBuwKBEUjdrBLT8dfR1rvR+k1o231oaZtPQS+CFQRZ3pXEhmEUDwlvAnd89h2c0cziZkOHb25zY3mPi7L9cCUP7RnyIXYN9++34p3/F78jMQzDZ8XUl/hx4BNALfBe4OeB9wEDwG8CO1V12godqvpF4E3AkxP7/ySQBn4G+JBOvnowVrxN7zxIsCTsdxirnumJawCc/MqrfodgzMUylbgZuXmbYK+/g/SpxfehDTZULro/r9W6J7OYWD5pFg1SrRDYk/4GX3sWoltvDmEt4xt8pVtg+DCMn5t31xtGj2Sqx0YOQ1lVVj9pWrsXrd2Hhgtz83tGXgqsBv/ObxjGypJcyDSOAinZAmdy33oor6wQEvHxb4NhGEUhb2U4qvobwG/MsL2DGcpeVPUo8BOLPNczwNsXc6yxsgRLwrQ/sJtzX1nGK0IbxgoxcnUAJ5kmEDbJwqK0nBNqRcjtubak463E4tZgtRo2w8CJ7JKsS+Gl53587QMgE/faA7vg/FPgpRGiaMm+TD+/+OH8xphPiWsg9uK/z/GLSOuD6NVvzVqRrCWtkJ74OYgE0WA7MnZpkQEvgRtHqEJZRPW1YRjGdapIZHemyraYWBG4fB5SS2pCX3Cy5yeRlvv8DsNY5YqpCnS1MnMpjRWnYfc6k8T1mVk51bjOCphEYdEyPXEBUALImjsQy0YF8DxwrrcBUCzbw7sy9wJliuCNDS06BimrhrHTC+7sIFUtkOgBJ7Hoc2ct2gyxztkfH7oMDVsgfRrcY7BuDdj1qA6B0wPx/IeYV+4YlG662UphEXT0ZWi9E+0+ijjTK9MkdhVtOAQyDvGLULUJ/EjiAjLciZb7cmrDMFYCCSE0FF8CFyC6E8a+6ncUCxOqwtr83X5HYRhGETBJXGPFWfeW/bzwB1/Aczy/Q1m1TBLXAChvrsayzf3aomUqcQFQxyN9Zo4FV4JhgjXN6PDsCUytascLt+NpEDywnV6k52TWMQQampHE6YWEDSXViO3B+MDCjlsUhfF5Fn4ZPpf52PwAOCdAx8GZ6IG4Ev4kKLmpdh49Co270avPzvhtkZ4X0IqNmS/iZ1GxEPXh/czwcajcC14hfr4Mw1hpJLgJ+p71O4zpJACX5r4xW3SijdgfeBWJmlYKhmGYamhjBapoq+P+3/o+v8NY1UxPXAOgsq3G7xCMuVjmPm7GPJ1K00m0pOnm3jPsruEGRg+fYvz1o4wfOcpoxyi6gEpnq3SB/y2CUayKahi5urDjFkmaNkGiN7udzz0DEs1vQH6ougPGz+ZmrNEj0HY/WrZ2lh0mfsjSg9D6Jt+Wg7Mc8xpuGKuOKgSbkdBGsCoWN0agCfqLdMGw0j0wNseskiJk7flJk8A1ioYlWlQfq5G5gjNWpK3vvZtrL57m9BeXWcP6FcIkcQ3AVMMXObHNWwAAYf6fU+fCMYKb9uE4EUbP9hNpbyXc/y0AtGod6XTplP01lZo52zsLyxuccbtaIdzK+/BG4wT1MOLGwLKxmzaiXa9nPf6SVDZgVwWhP8v9vTTYjeB05DOq/FKFyv0gwYkqYoGhxS9aN6OR15DK22HsYuaU4RooaYbSBoifyyzRCzDyMtLyJrj27dyePyur8+Ior1RBGoAYMO53NIYxhYTWQiIG/ScyX0sAKvdAMAoo6vZDuhcJt4OUTfw8g6Y6MrMvAKQESTqg8/RR90OwBi4sw0V3I7V+R2AYRhExV3DGinXgx9/BmX97AXVNIqnQTBLXAOg9dRXPcU1f3GJlrayeuF6omgS3o56CKup54HkEyiOEx74262JS2UpfPAdt+/Fio8SOHcfbeBfueJz0yWvA8Sn7BpuakWwrV0WQsemtFDTaRCrRjns8k6wNtgfBVez2fejVF5f0XLImQiB6FfoXuujaMv/ZirblPmk7k4nF4hSBkiC4l2Bkeg9c9YbBCiLzLS6Xa5aZsJdbEeRMB6TPwfZHUeuc3wEZBti1SKAZYteg75abg+rA0M2k541396NT26yIhKBqNwSiMH4VYjmatZBTAvFyiC2wdZHfqrZAxQa/ozAMo4iYJK6xYlW211PeWsvIpSwvpI3cMT1xDSAdSzHQ0Uvdpqb5dzYKb6VV4lphEsdPTNucAnTXI0TGv7q0l6Z0Ei48T2VrDdRtY/i1k7MXKrouWtGMjExM2QyHCLXWkjo/fQqnXd+GpKdWBmnlThJXUujYpOSpCPaGO9HLBewxqB64qcUcmPNQCircDLH8LyimkkCa78v8Lo7MsSBr7BzUbUZDTTDeDUMnkVz0552HZ8cg/6dZOTQKxG68BxKvHcRB5drEDpWQHsvsak1qhaI2iPlGGwUkESS8AZLjMPgGsMQbCpqCwQLc+FqK0gNwfBktZmaHsR78S2Tj+xAxN9SM4iAU3zIHxRZPIZhXBGNFW//Ifr9DWJ0WMI3YMAyfrLSLAm/2ZGP86DFSVY9M2652FGZrpzBLkltHB9ALz1N1YPOs50t3XYPSegAi29dQfXsfpTXPYFWVTz9NVdWUr726e4mfHUDHprZYsFr3FDaBC4BAcHrM89KhnEdSWAWawTN2Ch0/PHcC97rEZRh5KVOt27A976EBoInCnGeZEG3NJGZ1ht6U2oIcO4nENiDeOqS/Ho5+Ay53I+56pLsEOfbMzbH6wshQA9IRR46fBsx0aSMHrFKQ0Jy7SHgTMjoEPc/C8Oss+5tu2QjWwLnl0WJP1n8n1ls/j/2+57E2fZdJ4BqGMc0KK8MxjKk2PHKA1//ia36HseqoSeIaEzzHVBcVrZV2YaDO3A970+/VixtHZ7mfLcEw6s4+pnf+JUq3HWD85CytBsb7sOuqiFYdhkQmIVtxmzL0dAiSkxLOE+1nVGzcqgdJHTk8bShr3V68nsP40pgkWAbpkez3D1WC07u8Z2Qke/yOYG7xi6gVRrxkXk8jUo1m3Qx5ZRNdA8efAzeBhKvRLRtBhoAgaBDpHMi0xzj39ZsH1e7OVHSfPDV9wO5bqxbjeYzeWBUkhMRdSA1B+RYIlGZeh1UzC5lKDIhA/2HwVtsNmjZIFnkbhZqdWNt+ANnxn5HAClwc1DCMnDFJXGNFq1xvpnH7QT2TxDUyxntHYFur32EYMxB7mfctBbzybTiBdjxXJnK4x2bdN3b0JNbeRwiOPIlMuoDVWd8Kzf86FohfxCopwYvFpj1mtayjoulZGL1ZUStDhwmvf5DkyctIKIrdvB4rWooma0h723COH54+TutW0h2niWz2IekeLoPYAlfxrt4Mcjk/8RRKqB5iF/2OYm6VW2DwSF5PIfE4GtTlnZBfKm1AOkeh75s3tyUHkdPnoLwN+o/DTK0tmu6Cvpfmvbl0nQyWgReBsmo0bHrlGvMJgF1G5u+UIoE6iI/dTFSOHPUzuOLTdXz+fXwkax7FeuQfkWCJ36EYxrwsMdf5fjNJXGNFC5VFqFrfyNCFbr9DWV3Ma7sxIT5oVt8uWtbyfwvgBFoZeyXLizPXZezV41gVm4hsbCXknMIa70B1lgRVFpXKOtJP5bb9DL56nutduaLrq6jeJ4TS/zYlgXtdeE0Ez9mHe/U07qVj6FgT6tSjI9OrhKR+HU53FzhpXyqn7fXboL9rYQeVVOQnmEJaDr8bYdCSViR2df59F6vneWTtvahb5AntPJIhC/pmSJYnBzMfM2m5D7qeWlijvmsTrVKqtoC572nMRhWJ7oKhU5DqmPRA/nt4L1uhOhg76XcUs5JNH8j0vrXnboNhGIZx3TJ4l2oYiyci7P/Rt/PN//rXfoeyuqzioh1jqp4TV9j40C6uvHyOYDTEmjs2IhMrnqsqZ584wvlvH+POH3mEyjbTE7CgLF8m5+eMU3WA9OjCj/NGhoi9NkQMCG18kJDOXPmirptJ5nlzV9K5F16j8rZDDL9yivpHmii1HoPx9PQdS9uJda0n9erUZK03MHOSVCobcMdiaGL8ekDzPrdcstbtRvq/vfADAwrZFR8Wp4o9MPC831HML9YB4VLinW/FLkkjVgrbPovFAiun5yFeeMXdlxVvDYwB8WEY74FABMSG0lqoLEOtDhAvs+DYwCztUmYSKIHaHdC9wATuFIroWogBTgpCEbAt8BTCLiqrN6G+KkhppsI23XWzAl4VCW8CiUCiD3qemXsMYyp1MzdBtUC9zhdAdvww1r0fQ5b5+zHDMArLJHGNFW/zuw5y5FNP0HfM3KUuFNMS17juhU98nZf+6gk8J/PmuWF7K2vv3kogEuLS86e5+krmAnn4ygAf+Ouf8DPU1UeW90VDKlFH8vTSpkimzp1BSm7Datk6ccEsaCBKKhXFdRTLFoIRxXaG0YHLaGwEwiWQnNo+IZ0OUHbvfkr5xPQ1sUKVEKpl5EgF3uCV7AKLlKNWFB2dvIJ94V5YpWE9VuIwi5pW4S7zXsvOMpo94I6TPnuR1PVF8OwAwS1vIVgbI2C9hMjsi/1lzXHwpxlznmgVnHoR0jP8dx4EroCEqyBUDrE+cLPsVRttgEgV9GWxSN1chs5kPmZSsx2alza8UZwkvBNGzkBy4jU/WJPpRx4og1Q/jN7aQ9nIWnoQWm+DKy/5HckUcuAXse74DWQ1t6sxlh9RpNjaKRRbPAVgkrjGiieWxfbvuo+njv2d36EYxqp0PYEL0HPiKj0npk//vfDUCZKjccLlZjGHgrGWd7LNjlz/l1Lxzl3YpRbJC6PEXuxY0DjpuEXvC2OTtsy2iFcZWBXgKXa0kVBtOXY48zYqdaKX+qZe0nvuI5h+aspRKfcQiTd68IayKxvWQAirqhXnytmpDxTwQs+uAgZX6UJLsXNQsrb4e+JOiNy2hvi3J5K4rkP6xBHSgJRvouy2ASxdYDuMWwUCK6pFkoyUzZzAnSw5lPnIVuVmcEZghpYoOZUYBkzPzGVJQkhoLRAEXDRxOpN4kDAS2gx9L4JOuumSHsh8GLlRWQZZ3kMtBOuu/4W196f8DsMwjGVqeV/BGUaWNr3zILXb1/gdxuphSnGNhVLl9c+aKYIFtRz6fs5BxCPQVEn9R7dTsvFVwk0vE9mS436stoVdej1pIpkpzYAbTxG/0s/YuW7GznVTubkeHRtk9KVBUoEHpwyR7hydlsC1qqqRktJpp1MEq3nH9ARu5qhcPKN5SevWpS2YZfXkLhi/hJdPuaM7NHOZrI4O4CR3LP0Ei7x3oFoO6fWQXgfjm6FvLarTf+YLbiS37SZouB3iVyBRgLUXYp1ATf7PkwtqIboR8XYjXVHQRfb7VEXC65HwZgg0IJGdSGgnEtyOeA2INiLhLcX7vlMViexAYmnofQl6n4XeFxCrHYnsQhJA79NTE7hG7o0dgfptfkcBYmE98AmTwDWMIiQibSLyVyJyTUSSItIhIh8TkeoFjvMOEfmaiFwRkbiInBeRz4nIXbmKdXlfwRlGlkJlEd7z2V/kc+/6TYYvroALTMNYgb75u/9C7+lOHviF76S0rtzvcFY8sYN+h7BgakcJvfNuxB4kpN2UuYOgk17TF/GuZs5pYa6HOz6OVVKCWIKXSKLO9N601vVvZTrJ2HNXiOx9D9HgvyAC6f6haftH1lXC4Dm0eg/uSCLz3ETwqCJ16vAMQVpIqm/hT24R7Moo9C7y4Pp94OY4SeaLIk0IzWSOUJ0Bm0BTC0oZShRbjyKygN7KoWo8XdwPg1wOote+OXXb+H60fezG9GH1GgALsZZYLZwttWH4Qu7Ga7kXup4u4DoAipw7By0HMpX5tkBsHFJxqK7LtHIJKIiLSgLwYVFfFcTdBC6QPgneKFQ0I7SgdGQ/jpQioXWQjkHva5lNAMxQ7TwKEmmGQDk4YxBphGAQTXX4lxyVUKaP7Xg39Dw7/fHh1wsf02pXVg+9Pi5wZoWw3vIZrPXf4V8MhrFEQvFVgebiT7CIbASeBRqALwEngYPATwFvFZF7VLU/i3F+D/gFoB/4ItAHbAK+A3ifiHxYVT+z1HhNEtdYNexQgLUP7eWNv/6636GseMVaEGEUv6P//Dwte9ey/3vu9zuUlS8Q9juChbNBvDem952dIHl5VyN4sblbC3iuTGkbmnj9KOx5D5HKN7CCQbz4zURCaMNG6Mz05pPOp268EdPm+xl7+fDMJ7Bt0AKtFhZfwpzTqnJwlnkSVxXc2Pz7FYlAfRy58wDJ105BcmqbgPSpI6RPQaZFyAh26yFKNh3HYiirsbV5N7iLS3pqm0B/1ZS2BNr5GlL7Fig7g7qNcPgo0rYfGhd1CtRtRPqDUBFFw2ey6DhSDl6OknrN90J3IRO4ExL9cH6G97G31CeIFYRt96JyuTBxAaLtkI5C+iy4k651nU7wNoJdChrPLN6lo7N/74LNyPgwDC9gdk6iE64v6pe4lomnfBtqJ8EbXNTzWSwJ74LB12F4huSt4Z/4bK2SCiBYhvXo57DaHvIvBsMw5vK/ySRwP6qqf3p9o4j8IfD/Ar8D/OhcA4hIE/BzZO6g7lG9WWUiIg8C3wB+C1hyErfYEumGkVfbP3Afkeoyv8NYBUwW11ic2s1N7HrfnX6HsToEFjm91UcyW/b2+uOBRaw+nYMVq7309DESbxxl6NkQ0rADnVT1HIwOTx+g5S7GXj4x+wmcNF757iXHOa/KBhjrWNyxLXeCk+eeoIVQdRBGltBOosDs6FHC9U9R9vD8q4+5V8+T6DuU3cDlG9FFJnABxOqHfe3IzjdP2a7HvgGxzXDqKqTH0c6jExW5E4+rDaOb4Eo9DG1E9WamT71auFgNiU2oVwVnutHzT6OHv44Mrp8/Jqd20c9n+mCSWbSwWHlpuHC8YHfVZbABkg4kXpiawL1u7Ckk5iLxMmQ8jtg7p+8TbEaCW5GBszcSsUsyehIZuYpEdi19rGwoSHBbpj2Ck10PdKOABnNYhb8Q4Rrsdz5mEriGUaREZAPwCNAB/PktD/86MA58n4jM1xNqLZn86guTE7gAqvpNYBSoz0XMphLXWFWq1jfy6J//OP/6ff8f6i79wt2YhcnhGovUsncdwcjySy4uS8uxJ66TnvNhsRfx4pODJEc65jBjXbPrkD71CnbTOkRTWLaD9h2fuk/TXkZfucB8JX2O18T8abrFk6aN2IErkFzU0VCSyEyhXs6q7oCB5/2OYkFEFvYfLH3iGHrvHOvkVe3EqywFd+mLKomMQLBh6kZ10TcmVZImhuDwSdh2CEJJ5Nooeu3xm2MceBhC5zL/7omgnc/cKLicMuyZJ5ED90Gw45YHAoizFgb7oetrS35ON1x7Cur3wkART4uPd4NsZFqZbj5UlENyjip8EXAmtc0Y6kNqDwEWuPFMhXT/CXL+BtJLQc8zSN3dmUtr1wU3CcEAmjzPlBctCSPBTajXB84trShU515cMtCIeFHoX16vH6vKujvhVA5fA7JR2or9ji8jNdsLe17DyCNrrjZk/tkmIq/M9ICq3jbPsdfvsHxNdWplh6qOisgzZJK8dwJPzDHOGSAFHBSROlW90QdNRO4Hysm0WFiyZXgFZxhL03RgI+se2suFr7/mdyiGYdzi8otnSSdSJpFbALIck7jePDffrIXfnJP03K0SsjLPTUG3qwMCAcpu2wyTZjdL3RZGjvTP/7yA5JnzhNorECf3U0KtNdux3JOQXGT1WOtd4J7LbVCFogpVt4MzsuwSuJOJ1Utg4z6cc3NUdANWXTMic7TMSA2DZyN2PSio2wWyuFYe6jXB69+cf8fUyNTE7mRjXmYtL7cVvfjcHCdz0cPPITvuR6MDIEkYbkSGzsHIVxcV/7yCxd+7XbpG0KZy0HGQRRYvaAgZqYZgBEKBzP0mZ+Ii3hI0OJBZuMxZYG/j/hcWF8+CKfRNb80gEoLS9RCtQ91uxGqEvmeQYDVU7gSJg+eAlMPAKxCug1AthMtQbxiRqsxAbhIGXytcyxtjcRKvwrZH4NTjOZmBM6+Kjdjv/ApSsS7/5zIMYym2TnyebTrZGTJJ3C3MkcRV1QER+a/AHwLHReSLZHrjbgTeDXwd+JFcBLwMr+AMY+k2vPU2Lj99DCduVoPNh6K8P2csC0OX+vj27/8rb/7V9+f1PD1nu/m3X/s8g1cG2HjPFu75wTfRsLkpr+csOrJMOyqJDTpzyacsIonrXD1LoLwJZ3TxfVA9b75XPaVsTwtcfurmppqNjF1wIZXd3yFNjJMuOURoJPd93a1gPyQWO/1XIBovrircYCtIBFKXgLmrt6k+uKyTt9eJOES3nSCW2oR7+ezMOwXDRLfP83NuR7Coh6svZBbUq92Dhlw8tx+0JNMmIQuqwJmeWX9Xs6WXDiOh29CO4/MnXtwkemTy78dRaL8T5QKS6x9QsWF8Cf2j80A2vzmTeD97s5KZ/qNIP5nVF5vvQKvSwESPWK1AknUwPgTl1WioB3RkasWpKhJrglgXVAikAkBt5o1eYgyGO5CazRA8yazNyouVpmDsFIydmpgHMfF7kx6cMelL/MqNnuGFboVs5Ej8Vdi0Baw1cCqPa6TUH8B++5eQaMP8+xqGkQsns6i4nc313kgz9Dubsr1qvoFU9WMi0gH8FfCRSQ+dBf7m1jYLi2WSuMaqtPHtt/Pq//kyg2eX+QIsxcqsbGYswZHPP8eB772fmvX5e/P76f/8SXrPZf6O9l3o5YXPPMPOt+7h4Hffzdrb1xMpj+bt3EVj/lWAilSA2TOGi3jtcR2qtrXQ99Isia+shvBQsZFZElbRvTuh68mbG5pvY+xoD5pY2FR4kdxnSq21u2B0kUlMsaD9TeAen3/fQlAB2QodE9/rSB3Uhpk1kVu+E4aKeDr8Aok1TnR3H2PdUUhNrzAP79pOgMdQKol3HcQbGsYbHiCwbj2RxpcyC56Nns18ADTdh2uPIhcc6D4DVesydSjZ8JpgMAfJ8cQgevTx+febRNbcNZFlU4hfzbSO8XL8u6MujFyC2l0weDS3Yy9G5VoYeREAab8XvfT01Me9NFx9FrkKlLZkXipjk17zuia+ZeVr0fZWoAfUQobroOsZaN8KzvU+tVczn4JAHcCp4rqJYxhzSfUBfbDxQTiXxUyBBZLWB7Ee/RwSKv5KfcNYjOV69bAE15/yvBcZIvILwP8A/gT4M6AL2Ab8LvB3IrJPVX9hqQGZJK6xKqnrkR5P+B3GCrYKX96NnEmNJfjar3+WD33qJ/N2jgd/8hH+5Rc/SzpxM7lz7LE3OPbYGwBUtlTTfmAtD3/0rTRtb8lbHL5a1pW4sz22uBtIeuElyrfsYfT0wlZyl3CIig2NiGURi++kpDqF9Jycso9dV4899NLNc7Xcx9hLJ1no62R4x24CQ1/N+curVaKw2CLk9jeBlf8ErnphPKcVdcpI91TiDiWIblCsqjhip0EC4Fkw1gf9k5LliT4IHoL0DAvaVN6RmyRjkbHsq0QO3Uviqekto5zeUeLOo6TPnkfjNxdvS588gjuwmciWCAHrxZt9dj0HiVejnRNJ1GCUzLocQHod2nENKa8DOwDlIYjcTAqKF/FnVo4VhL6n8nePKlgKlZth+AykxymW9zvSsB5GJipsk0eQzQ+Aa4EtgEAygQ51wMgVGJ9j0bDRi8jpAWjYDYMdUBKBtbsh3ZH352AYBeWegqa90JW7G3my8f1YD/0VYs/YJd8wjOJ0vdJ2ttVKK27Zb0Yi8gDwe8C/qOrPTHroVRF5D5l2DT8rIh9X1fOLD9ckcY1VygrYvPvTP8c/ves3TUuFvDCVuMbSXHruFP3nuqjdmJ8WBwfed5BXP/8iZ5+euf3R8LVBjlwb5PjXjvDBj30fe951IC9x+Mpepm8BZK64F/nao4qE5lg2zBLEsghWV+Kl0jjDmURW5Y71JE/cvABMXYPI5kOEyyxk6Bwy1kO4vR56zoIdwqk8RPylU2SV+BEhsmsXAelAUv1Yicdyni+ShvXQt8C+lHYY1t4LdgLSx8h3Eis9ejuxp66isR6gB8Si7J4Q9ujxG/nEOUlkho0WxDpyG2iWJLoj0080EEbjh/NyjmDFG6Tq2/D6rk6ZGeNeOYc7SwcAr+cysR4g2Ex49zYijUfxEmXoiUlTjke7Ua0DxpGuUeg/jfZnXkNl3d3QBKolQAwC/WCHwC3we6zKtUjy5Pz7LZYqJHsyN4yaDs3zepQbXst+vLZ9BAauIanxibYSCnYQgkFw+mDk1clB3vJ1hkSB2n1g10F8BEIlEAigo/3QdRhZey+EAMfOVC6vPYimLyLhKrA3QmoQyjai7mjme+AsffE7w/CNpqAsdwU9su5dWA//7fJcb8AwVrdTE59nm2u0eeLzbD1zr3vnxOdpJf6qGhORF4H3APsBk8Q1jMUob6tj1/c+xOFPPuZ3KCtOaUWYdYc23vhahBu5leuXk5PnJcgtn2c39ShVpftUJ4nhxfeyNIqTesrhf3yGh3/5fTkf2/M8/v03vjBrAncyN+Xy2Z/6NJUt1ay9bX3OY/GVzJG0LGZzxC3ZLtxTXofUtIKAZ0Xou6pYySqgY9quVQe24/Z1IoEgTn8vmkxQtnsHaoVxrk6v8EycOUsiEwylu+5DDz9Hyd43keobwDlyatr+k11fAN2qqKFkQwh7JL9/n+xqGxaah2m/B/QoOOS9JYfrrGH88bPgTlowSD1U67MfxJvh56ViFwz5tLhp2oPeiQrgpr2QvJjzU4g1QumhEVQriT1bizfYvYD4EiRfPQz79xIc+crUx2I9cLocwpVo1y2LQFs2qkE4GUNq2tCGAShrhuHcP7+5SHkD5DWJ60L5eihNQ+9L5LMPrLfmIOn9b8UNZfoQi1VN4MJzaEkLbuNetLQBSY1jXziR/a2U2HluXDtO/FoJQGMFJF6HyTmtxMRjo5MWLUx0ZbbVHkJHTRLXWObS2fX4no9s+iDWg39pErjGiieAtchZb/mSg3ei15Ouj4iIpXqzAb+IlAP3AHFgvulb10vwZ3uTen37ku9um1caY1Vbc/9Ok8TNg8HXzhTsXPUbW0g0VVFWFSWdchnrHyNaWYKTSNN7xvQ8Xs5ifSN5Gffk48d49q+fnH/HCW7a5dMf+Qt+9pu/TLSyJC8x+cJapklc5og7izeWuu4gA4cvEA6VcfmlTq6Xc4brXSoUwo11RJrqsGwBgdTpo6gztadq8kwWLQRUGT9ynNL9b2K0x8EdD5L2AkgohASCSDCABAKIbYEITt8AzlA/JTs2UVX6FPZIbi4uZ2O171rcgl72aEH6X6pnEXu5GtzBaY+lukoJZtsye7QHJre4LtsFo3Mn0/MqdXM2njhB9HrmfhHUs3BTu0mesQlvjYPa2MELiDU+MeQwgbW7SS0kiTshefgNgrsaMonbyQbPzbi/XngGehpgrAsd7oAZOlgURD6uLYNlkB7L/NtNwrWJRa9a7oXup2c/bpG82k2k7/nuieTtzdcBLWsivfcjpCo8MteAHhAlHHwPMnIF+/JS+ntm+Y0LVqORMhh5rVg6SRiGr2TXj2Hd84fIcm1RZRirnKqeE5GvAY8APwH86aSHfxMoBf6vqo4DiEgQ2AikVXXym6KngP8C/LCI/F9VvXr9ARF5G5lkcAJ4dqkxmySusapVrm30OwRjiUbPZXq7Tb7Mj0/kblvaawk115GKp7GDNnbAQlwHFC68UtjqIGPh1t27fdHHpuIpfu/OX6eypZodj+7mrg/fR2lNGQDDnUMLHm+sd5Rv/unXePuvfOeiYyo6y7ViZI4LJdVMVkERKK2GYBhxHXSkN7PDutsZOHwBXHfaSvfJ3kHK7tqEDFzDOX9sWuJ2MSJbt5M4cQxNZbeAWbh9DTXhLyHuHAkVO4jUrwHLQuwA2Hbm35YNtgWWZD4mEiwy0RITFPUiiJsAcWDojYU/ISsEbmFujqX678a9cnja9uDm7UTrX8g+WTdwFNbdBqlLUHE7jJ0G95bZG1YFBNshcST/C/5NXvyu72Wk5U1o/HWQUGZ6bxY8rwZnaCepE514A5k+tDe6Q4hgVa3HqqhCk0ncrkVWHKuipVuQW5O4s+7vwVjX4s6VA9J+D+IOowPP5XJUqGiDeDfU7YJAWWabFcgsFOamoHY/9OemqlstG/euj5BqjjI5eXtdqirNTIv0JWvArtq/xCRuthSS3SaBaxiA3PYrWLf/CrJsF4o1DGPCj5NJrv6JiDwMnAAOAQ+SaaPwy5P2bZ14/CKwbtL2zwOPA28GTojIv5BZ2Gw7mVYLAvyiqi65SmOZXsEZRm6UNlRSt6OdvuOX/A7FyINYZz+xzumvk9X7N8+wt1FMtjy6j13vPbTo40PREN/x37+Lf/21f+bxP/gPXvqH5/mxL/wUVa01WPbiqiWe+atvc+j77qV2bd2i4yomy3fa3/RKXCdRxcAb+xg/ncAN7yA9NILXHwMyydNgw1ZEhNSrk1pQedOnQSe1jOBQLqYIKyW79pI4fnhBR0Waoog3d3YyuH0tDE9aiMUl68pYqbkT7V5CkqtqA1NvmeWHm1pH/MlZFpuxBEv7Fjbg4CiUboWT/5HpYdq+D1KTSkWDa6HjW9B4KLMwVjAIySOLXihvVnY1DN1Sydr9IhJtgrEL0HIXGj8x9xhWGeK1kXjxDUg70x9XxRvswRvMMvk6h/SgRWjJo+SXtNwByVHofxY0nePcokKsHxoO5qXi9jqvej3ejkdxmmvxGGIxMy1dayzncd0QbYPSdtAkmuyDlGlhZawgFW2ZBf8WyLrnD7B2/5c8BGQYxU2KrJ1CLkxU494O/BbwVuDtQCfwJ8Bvquq8Fweq6onI28lU836ITP/bEjKNy74C/Imqfi0X8S7XKzjDyJnGfRtMEneV8dTcMS9mt/0/D/DAf/3OrCobVJVn//pJ6tbXs+GuzQQjwRuP7XnXAXY8uodLr1zgub99ii//9hf5no//IB0vzTwdeD5u2uWJjz3GB/7oexd1fNFZpu0Urv3HdtKD6/EcD3U8NOWSvNaLpmefIp/u6QVravJeE/Fp+3W+fJmW2+4g0PHSkmIs2bl7wQlcACvgTs/flFYh5dWZhegsC5wl3MBfarVQSR2FSOKme9fALInaQNUiepAOn858AKgDCQsie8C9BFY76ChYYeietMhb3T4IXiWXPU8l2A56S58BN55J4AJce36iMvcIUzLzdgUSXAeJYXBSSPo8FQ/XMfLNIUguvWJ8Numr3YQa5+9W75uyVoifRUrXQjxP3wcnlmmf0HBHpvo2VA69L4C39AXbNBDGefinSZePk/keDy16rEAyOv9Oixq4DErbUWcIxs/kv1LdMAqtZcfCkrhiYz34F1hbvjt/MRmGUXCqehn4gSz262CW+SiqmgY+NvGRNyaJa6x6G99+O8f+/lt+h2EUUHw0d6vRGrkllnD/z76LQDg4/87AxZfO82+//s8AfOfvfBd3fvi+KY8HQgHa9q3lbsviMz/ylzzxscd4/UvTV+3O1mtfeImHf/qtK6Ma187ue1xsYmcHSF5beI/PWytvU1evULN9JwMnbrSsQh2Xqy9cpungvYQ6nl5UviLY1k7ixCJaFQAh6/LNL0Swd9yGNf4CuDdjZHxRQ0+MucSefZFUXvrhLqQtrB3sXnoM3S9O+uIchKpAb0kC9h2G1vvAPc6NpTeXkr+SKPTO99qjcO1biBUGO5z5xkDmv79OvdksXKHiwf2MPDEwc0VuDujYGGxqh9HibD8kNS1I33OQ7M3zmRR6Jt3YqVifqdIe61jcaFYI9+CHSbfVoRM9uZcifG2EwLlPL3mcGTlj0PcsUrkHDdXlbCEowyga8Vdhxz0wmobLL869rx3BesvfYa1759z7GYZh5JFJ4hqrXtV60xd3NVGFkUX0RDUKQz3lCz/6Cd71Rz9AaV35vPuP9t5c/OzYY29w+wfvJBAOMnRtkCP//hov/v2zDF4eoLK5itKqEp742GN47uIr69TLVP6+6zfeu+gxioa9PN8CyCLbYcykxBpmpvlRXS+epXbfPZR2P494C8sYBkqji8oxWiWlBOMvgYC9ZT+WfQ1Gvr2IkfKpLOcjuk4LsecqKbv3NCKZ75zOkpMMbt5OwP1yzmMgNTTz9qtPQeUmCFVCpBycI4s+hUS2wsC3stvZS2Y+5htz7DUqHt6FM9ZI4ngn3sDwvMcslEbWIkWaxCV2ef598mHkAlRsuJHbn4+WNuC17EVr16LV9TilLso45CCBa2sd9rm/W/I4c5IgqqMmgWusXOOnwAK27IJgIyQVzn1rau/8YDn2276AtNzvV5SGURSsYp2ds4qYZRSNVS9SXUa0rsLvMIwCCVWVkRg2/dyK2cVnT/F3H/xDrr3eQXxonEsvnCEdn3nq6q637+Pg99xNqCQE6TT/8CN/wT/+2F/xzz/9KU5/9TWilkuFncbr7CZ9uZN1B9YuOb4j/56bRWx8Zy3PSlyxc9cGIt01+0JM/YfPMVJzB7qAiuVgUwvJM/P0NJ2NgNW0juD2Jqz40zB2fv5jCi2du9YC1zmD63G7L+PGd6EqpAbvIvnKzMlSu8yHGw/DZ6H3Feg/DYGmxY0RXged+empKmNHCfIEZQfz8/ucOJv7xHDOxP1bSI2R81Cze85dNBAl9Y5fJv627yK5dwuptjDp0pGJBG4uBAgd/QqSw5YfM9I0MnYNKb8NQs35PZdh+CnZBWOvQ/oN2P6Wm9sjddjv/rpJ4BqGURSWZxmOYeSQWBath7Zy9stL64FoLA/RxmroK8zq6sbiDXb08On3/v6Nr3d+5x288w++f9p+IsIjP/8OEt0DXH7y2Lzj2oGl9/Mb6R4mOZYgXBZZ8lh+kmVbiTv/f8Oy3euJrgkx8NRV3NHZF/xRd+6a2aFjHdj7D1J27ZksIlMC1ZW4PQtfIAXAikYJNJbC4Pw/x4tSuQPtnGeq6Hw099UXYmcSUGNfu4SUtKMjUxO4dus6vIE+ND6GhJfeh3TRYtcgNQytByG1sHYZYlXOXl6cI26yDljggm/ZjDsyApU5H3bJpOkAMrLEn+elRTDrIxoswdv+dpxNO3CtfFWv2oR741hDs/cCzykvCf3PIYEytKQVElfnP8YwlrPxV2DjA9B9Dvsd/45Ub/M7IsMwDMAkcQ0DgKoNi6yuMZYduzRPi38YeXXsiy8RqSihcecaajY20bij7Ubf3LLacg58151ZJXElB2uXW7aFHVoBfz6XaU9cseafRNT4lh7SoxXYpdE5k7iZZqzMuW5T/+HzlDYIMstO0a1bsSxFAgFiJxafgC3bVAVOnqpvq3ajAx3gLjEJGgrktCeu67SQeH2in6mTRkemJrzC+3YTKXkcb10zie5t2IG+vPTkzZozDldfhLrIgvrjqo7k4JVnnnPka32zVAqCpZDOVfXoVNJ+D9p9FJJZVvxaAaTtEPTlp7J5Jt6GR9HG9Te+1lAEr6oCL+whznuwxuPI2CBYNl5VHU5JjMwKhflJ4AaS1QSPfwFrbHE3jJbEGUNCe9DE1YU1szaMZUjKa7Hu/CRS3u53KIZRNMzLvv9WwFWoYSxdqNwk9lYLz7TxWbZe+dTN/qD/6e9+ivY7t9z4euODu7BDAdzUPNVu3tKnnUbKIwRWQhLXWqbPwZr/3WNqqIbUQJRU1+l59y1vr2P04hwVjKqZ/sFuelrOIrJuPV7PZZyxEUJbdy/pBSZqvQbO0ntkzkSHrkJqZP4d51K+DrwzOYkHwE2vZfwpG29g5inxkQO7iIS/BAq2nqW0/qy/CdzrytqAXhaUxU3mf9p/oORC3sbWqgNI71O5H9gOw+ALSLQEGu5Guw5DepZ2R1UbkYpGiF9E+grXK9q960dJtoeY+sOX5kaCNghuFVAVnnhsKEdntggkqxAnRbo0fuP8AaeO0It/nP8WCnMZPYNU3A6jZ6B8Ezryin+xGEa+VOzC2v8nSHgFLGRrGMaKskyv4AwjtyrXmcXNVovE+PyLxRjF7cH/9l7a79yCqjLY0Utlaw3BaIiK5moGL869SrmXXnq5Wt3GhiWPURSKPImrCp5E8CSEJ2FUwqjYuKFSvLpWsAKoFQDLArEn/m2jls2F50JE10Jywx2AoFgokvlQ0EkJOFdCBMpbQUFV8TxFJz4810Ndj9FGj/KLT+FtuJ1w/CoBN4YXH8e9mklq2jX1xE8ushfuBMsdATcP/bpD1TCyxIrAcA00RMAbzElIqhA/XI03cHbWfYIlZ4ojaXurxACUlIPOUeF9C4lsBfLbxke8BAtKLC9A4uwI0eoAeDluCeEmoeZupPdJ6H8SghZUrYGStZB20PEepKwRkTTa/xLSV6DWARO8Le8i2R4lU1VbCGEsSrCTEDjxJayJBeUCZW14LYewrr2INebTYm6TJXszHxP/lnADlG80yVxj5ag+hH3b3yBBs2aKYRjFp7iv4AyjQEw7hdVBFUY6h/wOw1iCtXdt4fbvfxDP9fi3n/5rTn7lVUrrytnwwE5Gu4bmPd5N5iCJu375JXE1OQbpBJqOQzqOphPgJHyN6UTiw1x8LYG6inrejaSp57joRPJ0ZkMTn52Jj/wbOh9g68H7GDt+mTVbI7idUxMpdkML9C4tUSqNm8B5bkljzDxwDhaCU3fJCVxVSA3cgzdi4Vztx+2aPYGbOSC+pPPlTaIXvLtA5q/yBjKtOobmea65kLhGcOtdpE9dyvnQbl8fuumuvFTjaucRCIURL5mpLh2/mPlgIiU9mPneFXr6ptbtIbV3P/lqiXCr0HCIwNFPId70hLE1dgXrtA+tE7KV7EFLzPtoY2WQ+oew9n8Csc0sTcO4lYhiSXFNa5Uii6cQTBLXMIDy1lrK2+oYvZL7RUGM4hGpq2C4Kz99/Yz8i1SV8vbf/zCWbXHt9Q5OfuVVAMb7Rjny+efZdU879tgwWFamzWlpOcdfvkY6cTPR58SWXom96d4t8+9UZGK/s9v3pO2tnLRNvC8/7QNyrW3/GoaPHKV9hw2dF6c8ZlVUkTh1csnnCFZ0wngeGptqDspZl1i17abbib1ahXv59az2l9JKLPe1fBWWLl3Xc7B2H6SyqIoMt8HQ0byHBCCB/L2tT1wYJVpVAk6Oq8VTo9B0N4qC40D6KjKe+0T0Qnlrd+LlbVGyqYRKgm/8WUHOlRfBSmTkLFTtQ0cP+x2NYSyaNL8Ha88fIdbyXDPAMIzVwSRxDYPMCvfGyhdprIGuPExXNgpiz3fdRUVzNQAVLdWZ0izN3H3dsK8Fp+Mi8ZGpSfr2kFCyrp5AbRWuBLjWs7RpsZXNVWx50/YljeELKwfVmDlm2cvjznnDnnWkjr5B6ZpGrP7Xpj0ebF1H+ugbk7YoBAKIZSGhMGIJEgwhtp35mZ3oy+yl02g6jbouqOJ49QSkCxBUQiABwEKtCpQa1CsBvWVRNxWYVIEgkgZx4Xq/TEkjVhCLJVZQ1u8EFj+VPXGmFffykaz3t8oqin/hjJE0RMOg89wYSl6G+juh9/m8hxRtPotdup34i7lvO+B29+KuuQt78Imcj62db0CkEkavQvkaX3L3Xv1WtKoNiQ/hbr6bdIMy54qHOREChOBoodo1zCNQBqE6CJSAHQEreLOSXxVGjkN60gJ05VshUIbGz0GkERJF0OrBMBZJ2r8fa8dvIzL/4qmGYRh+Mklcw5iw+8MP8ez/+Ce/wzDyyIqE59/JyIma1kpCkcD1HCtiCZYIZP6XSWxZkknUiGS22ZkKWmtiu4iABSh4rlLdWnlj/LL6SsoaKxnrGqKivozIUDfJkRmqrFWJXe2Bqz0AtKxvYSlLM735Z95GWV35EkbwSSAEqeKqQl8O058qNzQRuHoGnSWrZFeWUVZyjrL9FpochVQcnExST9YcYOTli5m+rjMU2N5Iq0vmI3V5DckrZbfspcDwxMciBaOUblz84QCEg4vuT6sK6dMLq1SW0mUwjXXwGETuBj0JgWpwh2beTwSCkcLElOgkFOpE7nuY2FMnyHUpc/zlk5TeeTfS++yCjlMF7NCMrQIASI9BIPP3WUrrYSR/i7TNxtv6AKnW65dFhVk0LJAuJ3DxRazOhX0/cy7aBtEGdPQIONdm71JjlyCVd0Pf81C6Fk2cv9nnImlukBvLl2z8aazNP2eKegwjC5L3G5zGfEwS1zAm7PyeBzn+D99m6EK336EYeeI4Pq7mvMq0twQZPdmx6ONnqoFKXlxz49+J4RiWulQ2lrO+NcjomexWf3eX0E6haVsLB95/cNHH+0nsYNG95bKsYotoqvL2BkrHO9FEpg1FaVM5XJu6T+XOBvTyMzMer5dfJdCwFacnyzY9kqe3ZEttp1DSBN75RR8uwo2K+WxFWvqKc1GzW3U+C5F6SJyHNbvBuTrzfgt8/ksV1Ccoue9hYk8tvc3HrcZfvUbZro0wfG7O/TRcjVRtAjsEo50w1IHWbM1UpA8cv7mfAmWtkBjIpJxT42jVXtRzkWAVjJ5AUgVoa+CmKeRlka11BI9/EcuHhPUNNQdRbxTGz8JYz/yNh70YOvIyVG6CZBb7G8YyYG3/Lax1P+R3GIZhGFkzSVzDmGDZFtvefy/P//4/+x2KkSexIVMpUji5v7gbfO0kl148Q/vBzRz97JM0JLtR12N0AaW1bjzBYv/0Pfpf34kdKL62BFmxQ35HMI1lFe9NlbLWWirSPXhjYwCIbVOSnNqnM7p5DVydZ4q8l/1z1FwsQDYTJ4XqIvMt5WuhsQbca/PvOwvPbQQv+0XKQtt3EnD/bdHnK7hEL5S0zp7AhcyMggILho5AuARysJjjFKk0XmADFlOTuBqtQ6qvt5pR6HodvfbK1GMHzqCRaqR+P5roR6J1SDqF9h0HBC1vh0AFOjoAwxdR9ZD6HUgBFhezTj8J7e8g34sl2l4dVjxO8NU/8r/lsxWAsXMLf3GId+QlHMMoKLGxdv8RVuv7/I7EMAxjQUwS1zAm2ftDj1DeVsfXf+r/+h2KkWOqMHx1aaurG/4aO3eFM3/zFa59s5Herz2LugtPAjrjCeDWKevza9nVxraHdy74uKJRhD3e7CJN4pa11lIlQ7gjNxdda7x9Hdblm31lg/VVlNhnUG+eclFvIRWYefxvZGXRu3WyaD007gLr8rwJXPUmpsFbN8d3khtJXWrCudaL198NmuV/60CQSM2rhZrNnjvhKmD22QDqjhY+YZfsoeKhOxn5j0ss9qZaaNtmghUplBDqBnDjLqkTZ4i9fIbSOw4ioSA63odEa6Hv+KxV6VMkBtGuzN9iHboy6QGF0Svo6JUpu2vvcbRxHRLrWNRzyJbVf5bwG6dJ7tkB5GMRSItgrIzgK3+MFMEPuAKMnETbHoWhU1C7HRUXGb4GiT4knt3sFsNYlqwI1v7/i9XwZr8jMYxlx/L9DqRhkriGcYv1j+yn6bZNdL1y1u9QjBwqaaxm+Oro/DsaOZGvWZaDz77K4BLaB9qRxa04fMeH7lrevdKs4vtzb1nFN1++Yl0jpcOXcFM3e3eWrmsmcumpG3kwiYSoaEugfVncFAosIDE7W+PdXJBI9kncut1QPggcz2pdp2T3QZKvnMJuaEaiYTTt4pw/BSy8NVFgzXos77EFH+c7a57/zj7dRJHR5yl75E2MffsSJBeyeJZScsd2pPebkLjRthkLCO7bjgbrIdWDdp+c2HspncazEG6APCdxAazzz2BvuwM3lOskrhDuSxI48bc5HnfxdNO78dzL4J6CylJInchsjwCRKFbj2yCVRK59w99ADSPXAhXYt/0NUnPI70gMwzAWpfiu6gzDZyLC+jfvM0ncFSZUVwkmibvqib24Kevb37Irx5FkT1VRTzOLvc2XLJqNXXx/7i3J77TlhQpWlFCe6iFUXU6wLJpZbGwkRkVTFLnRSUGp2V+LXnk1qzGlCL7vUl4HXjZVdQIbHwLvJAuZUq4xRRMxnEtz90id//QW4ZbY8qvCBRi7Bg17wE5C8tS0hyVfrTKyYMe+TeVdZXiRPYy/MIg3ODLvMZG9EwncmQyeQDiR4yjnU5iF7iQ5QuDMYXTnbjyGcjKmRS2hM89gd72Uk/FyQQEVBW9isUvv1kUvFS95AuxyrFA1hKuQUR979xpGroTqse/4DFLh33s6wzCMpfL/6sIwitD2D9xHzbY2nvsf/8TAmcX3AjSKhxUpvp6gRuG5iSQL/dNXWl1CvG+EWM8Q6inqebgpFy/t4Doe6nmZ7a6HN/GhjovnejjJNLH+Mcb7Roj1jZIcjeM5Lp7j4joeXtrFTTtTPl8fI/NvF2/SgnyBcJBANEQwMvE5GiIQyXwORoMEo+EbjwdLwmzdDOHSMGpvxYqmsOOXimIqL4AtxVOJG6wooWn/BpyXn6Nm+zrClybKvQPApFa41XdtQq88ndWYUrce99KtyZHZeVYUu3kP3rU3clfJHowQ3qhIIov/5oES8I6z4CxqjubVhXfvJOh9KSdjFVyyHy5/M7PgUxSwy8GbfNPQ5yp+Zwxr7FnKDh1i5OtjMEcrGquqGjv+yqyP+8G79BxW+5sgeR6JXc7rueyj/4qM9ZI4dCAHo4UJH3sca+BoDsbKoVAVmu6Yfz93FK+2EuxKLDYgo4tf4NAwci66FmvHb4IVQewIWFGwI2BH0OHX8V774Vv2X4N9xz8gpev9idcwVgABLCmuhYmX8TzJRTNJXMOYQbA0Qttd23nHX/00//b9f8TQuU6/QzKWyHGK6w/Oylecf1K9lEMgaOGks09U1bVV8Zn3/K88RpU9J5nGSaaz7tjY8FbwOq5XzUXB3kGwrpZwQyWBiODEPdIjCayAjYQCWEELKyhYAcW2XSwrjSUJRMexvFEsZwgrPYjo0hdLkiJJ4tbtbKekpgQZv550m7nauWz/RqyxU0htM9hBxLLBDmSqo207M2XesiZ6iQiuVOEdP5J1HJpKkzp/GrtxG1JelfkVcsaga+YEkCpIZTOk46jrIKmxafuEtm3DTnwluwCccQjsBOdi1jED5KrINFhxForjR2Lxhs9C9G7oPQH1uyEogKIaK4pXRBl7gYo3b8WJtyEBxRuH+AvXK4eV4Pr1hCq6YXj+at1C8y49B4DU7oJIBRIIoeJCegBr5FhOz+XsehAYXtIYFlUExlJoIJKboHJI19wHzvSK8Vm5Q3iV5ViyBRk5nb/ADGNWkknQupMWyYxfRK/8I5rowtr4UazGR28+lrjluq1sC/Ydf49EmgsTrmEYRh6ZJK5hzKGkvpLbfvwdPPGzf+F3KMYSxYdjfodQFCLlYcprS4iWhoiUBDn90pX5D1ph1m2t4+zRnqz3LymLMD09tjwk7HKm1KC7LunuHtLd2T//m2ygFqhFwmHs0lKsaAQ7GsIKZxLAdlCxbEUsB8tyEE2jWIhYqAoiDgknjsQ7sIogiVuztY3SiiBdR66wZV85pTtAuqa3SohubKIk9TQ42ffKtIGa27cydjVK6lrvvPvrxLfD7e7AndRONrRuO9o9ffq61X6I1OnXAQis2wXdL0+PwVpgr9Jp06qzOCS29P+OgXWbCbhfXfI4RaFroor76pM3t629HyKNkFh4n+Bck/FTBDkFKSAI1gMPM/7kGUpva4De55aau8w7z0rB/i1IGjSSAtbA8B1w4t+xYn0LHk8rmtGNd0NpKYwOoyVlaHjpcSpprN6T2D3Tfy/9JunEwu+zuqN4ZWGsmrfB8CVkMLeJc8OYUaQVe//HoXw7YkdRZxzt+Au8838KbhztfgxK1iMNj0w9zpp086RyP/btn0JCNYWN3TAMI09MEtcw5lG/ay12KICbKq7+jUb2VGH4ahaLEK0wa3Y2UlcGqBIjREkIRl4/Cf390A8le7fl7dya7Wr0y0CxTRtaiJFYkLo8jKvJJE4yy4WybvF0+UN84d9buP2+DVjVKUpKQ0TDFiEbbFEsFNtzsZ0kVjwOsXF0ZAzJZpWtBShtrqGsKkTfxSHW7G+h7NpXEG96QjJYW0555VkYX/hiR9p3itLSCPaW/cRPX5p7X2/m56fBypv/tkJgWVi160h3Xb2x3RsbwtLpCwoqCyyTterBW1giTEqWXoobbh1fnr1ws7H2QbClKBK4Mwm43yR691vhSnEuKKcllcgD7wAL1E6j7iXgHBrkRuW2WwZy59uwvvHpuceyQ9C8E8YH0C1345V6qNsJTNzUqgIYwB4vwa1cfAumYKyC4Ct/XhTV1zPRUBQWM5lCk5leuSVRrHgTksim17ZhLJ61/oeRqputTSRQimz6KaT9w5C4CsFqsEKZWSvBctRLoT1PwNhpsMJYm34GWfuDSKDEx2dhGCtLrt+PGwtnkriGMY/KtQ28+Y8+wld/4v/4HYqxSNGGSoavLbzCbLmrq7QZOXJz6uOtE2TzeoE5R89FvyUTC7sho47/FaOL1dfn5iWJuxSHz2W+//GYS++x7JIAYpWzcWMNwZBNpDREMGiBgjex6FtDQxRNprBdB5IJxHPxYjG8RBIvnkBTzpQEpwQsqtqqSCahqrWaaumcMYELUL07Ap3zV9LOykkQiRwjVdOGOzB7maPIzG+L0xeOE9xwN+5QH17/NXAdGO2Yso/Xd4XATBW7Ug+czD7Wvs6JRNYCpHPxZt6/hb/yKlKHWAm4VjyLWk2jHsHaFGrfhtd3EcYXXs2aL4rAw2/D04lF8+Z4KVa3A++e70MtCw26iGcjKQ8v4mKlAjAyhNZW43nngTLgyqzjafIy6FZYxOKLgVQtoVc+tuDjCsVrvBNvqeXWXhwa96MXHzMX80beWLv+AGvNh2Z8TELVEKqe/oDnoD1fRyp3Yz/0KhKsym+QhmEYPjBJXMPIwtoH91DeVsfoleK5uDGyF66rglWYxPXG524hMfLGKbYe3Mbply+zmMLZ0qoojeuqKS0LkHaUjmM9JEYz1ZnqFW8Sd6GLRrnJpfd/9UtnR4xtrX5HcZMjITpOZV5HVbO/+FdPGRscJzEyczVs+J4NXH6xY5ajIwTCAUprSimpiBIuDREKWQxaASpLU9RHRwh7owS27ccbG8EbH0HsAE5vZ+ZnRXMwCyMxQsW2CIPPzp48mfV3xkmRPj29xcNkEinDG+iYfmNGFvh7OHgKKhuzvsPjuXWkTp5d2DluISUVWKzQBZOSgzB4CYo90dX3OjLeiR0O4kU3oX3nfAlDEQgEwUkjd7wNWkpQ90LWx7uBjol/THzHJ6p1XRuoBrwsZ+R441heGM/O/nff1loC185iX/xc1sf4orSO6bd0F85LnUDWPQpXn0XSxddD2VjepPa+WRO4cx4XKMHe84d5iMgwDKN4mCSuYWRBLIuazS0mibtMWdEcNLhbZiLlYcYvXpt7J1WcEyfYubkOu6EBUaWvP8WVE3NP+61tq6K10mH8Uhec6+V6qrjNtijZ1YhdWkL8SvFOswyGF1b1t5yTuLHRNHZ1Le5gv9+hANBVuQVvouLVTS+swtm25/rvNnfW0Uk6DHcOM9x5M4m6bW8NLcFrBKN9pEb7SN1yTHT/nTh9fcRGI3gxD02nCNTWEagMYnuDpJ0arJASsIaR1DCqKSQ1jsb7btwo0MktDjpfpezA/Yy9OkuCbAFJ7VtZVfXI8Ax/n7wFVtxF6rJO4KaTm0gcLkHjS0vABtetwfYOL2mMolVzGzhzt9HwXeVuuPpa5t9eGkvOw+aDuFdOQ3yoICFo02aktALdVQ/eKFhlqNsPrj+vWxLdhmdnf+M3cuES9pW5WzkUC+k9hjRtzMltBU2eRKp3Qs9zORjNMCaUbuL/Z++/AyTZ0vJO+HciIn1Vlve+qr03t/ve7uvH+xlgBgQSsEiAJJCA/eT40AppZT6hbxdWCGnlVyyS0Arhh2EYf73r2953ee9dVvowZ//Iqi6XrmxWdZ/fTN6ujDhx4o3MiMjM57znebVj/7jQUSgUigzsZ5u5JwUl4ioUeXLh579A/2u3t/RDW1EY7P07G37TFFf4kdP5/QCOjUzBSEoA8gDHLh3j3rurhYfyhhLCs1HcHoNaT5TIwMy6fqTtEOkfXbd837PPr3lZUg17RMS9G6sDUsX0rAwesJkwPNm+suTfl24IPvaRckTPfcoP+mF0vfjpPXKS6LVUQSJ/eTv2VGpQIjk/s0LsHUH4ArjF6tdWeOsR3gAyEQNNx6htSmUdOw6uch9lr7RgRSRO3MaOWzhREydhovkMbDTESnNYXxDhLULO5hiQyYDYqAiWDIF+GOzshe8cq4jwrQ7E4NubimsJz8kTeAN/jJQgA2cQwkA6UUDgzPsgGQNNA28xWpEXRAIRfgexH35AlB6HyQ+g6TIktmDHsZMIHRlfM3xhJ2DyLXQPUH0YezYGoZ0ZlJOAePUryMBA6gq2FzNl7bkd2V/eSBPIzxPXSJbvGwEXQNacRCY3YLGSC3cR0lMJyVmEfAq/bCm2l8BB9Et/jHAFCx2JQqFQ7FmUiKtQ5EnFkSZe/Ps/wpv/4L8WOhTFBomFYoUOYdcJFHthk7pd4s49Tr5wjNtv9QMCT5GbstAwdbVl6H6DSP8eFSTyJBnf2A9Nax9n4gIkjGJchQ5ikanQskDprPAaLm0sI1BfSjxuousaIm4yfn/1gIDu2rpvqhDw6Ze8JO/fRAIJVwtaazWa5qB1v4cQ4G49QOzhvdUbZUBaJmtfXBmPIuPLViZmdyob1tVxEiN5DRHuSW3iWnwUp9pZfhcRvODxoQUrEIYLa6gLgRej/SIysoAoKk75lgoNYbiQVhJpJlJxpCSx1cFovo29QHlYRzi2h5kPnsEcHcW7VnTeCG4v3uLvIH2ncKY15FB2W4als0U/9CpEv7thW5QdRUqoeRGkk3oLpAML/YCEveqpXXIcmQQmb2ZuM/8Q3V+FLHsGaSXBMZHjjyCDf/SG0HTES1/GCfRtva/tRHiQ7kog+/cGw6zAGLq+vwRcNNhmqyPH7oTyIoTnDISmETPXt7V/xdOFKLugBFyFQqHIgRJxFYoN0PKR00rE3YeERucKHcKuESjz0Xa0Cj0yT3gL/URv3uP06QZmbR8LM1FYgPhknn6Ce5ypsYW827p9LiIT+9vvLxR1UVHoIABLczE+sexpa1sSKSXNF9u4daUPs3v14MCpyx3M3B8lGU1lCm6HiPuxj1eRvL8sMsxc73z8d82Fi7hCfZgT46uFDqFl7tBMIl0ia3Ef4fbhaj+M3XMFecSb0a1AkAAzgTQT2OG5x8tlaBozlH5ExqivoORSEmQSYTmgF4NMgjkH3gakuxpBQ0pkdCwwY8hkGBIhiE+z1gzbafsodiSM4Z5CaOnFnoWel4jfvZuK+cTp5an4G0SvqkH6arF7boOZ/0Cb/egDtPZX0cw3ENkqXe0WwoCqCzD2ZtrVcvo+whDsCV9c3QelZ5FTnTCcRbxdSXwSEZ9cPm/LA1B2AbvzvY3t21+OXt8M0gvxXnBMCI3hFG2sm51GBI6S9Gc+H41kOe7rv4lIbrE4WCHwluHIwR3pWia6kB7Qmj8FY+8jkk/G9wXF7iKCxwsdgkKhyIJA7rnZUE9jgU0l4ioUGyBQXULrx8/Q960bhQ5FkSfC0EksPB2ZuCXVRTT4Y8Ru38vdOA/CPcO4gPJt6W1v4KkoIfYoSb7Gnx1ncoBsPwABAABJREFUmpi42pm74R5masrOS8QVLhdCN0ATIARC1xG6nspEFSK1HBCajtANhK6lprovrhdCgAAhBFJoqeeLprBC05jQKpm/Mvd4f/FEkuDhWq6+lT4D89Y73ZRWF9NxsY3YdBiZ5S0zw+kLnq3k3KVqxP3MBcIsx8Ctu3AiazLNc6V8SpnxdDJajkB0ArvnymLbzFlwwtl48UXN70KEV17vK6whwo8QPFq/HwAdCAhwVxNZeIn5D+ZxwmHkt1Pb+06+TMVz31u1nXQ0opMvsPDG8lTsZETkOelcIorL0ItK0Su96B6BcOawH+YpJK7B6bkCjc+i6TcQTvYCjtuGBFzFoLtBc4GrBLxVEB6A8Xcyb5ech7LjsPBwd+JMh7sUio4jx29C/xtb68uKwOQbaE0XcQavk/bkL6lHBCqQCxPg2GhlDQiPD6bW7HumCOrrthbPNiPDNzE8L2C5Vou0ulOJMdaN3v2f87WN3lM41RcXi5rtrOWRYz5AqzqLHH5t81n6iqcWUffFQoegUCgUex4l4ioUG2Dg9dsknxJBULF/KKsPkggnaTlUTuTm9gi4TypGQx08yu9HrDfoJdSzOS/SvcRIb5TDDbnbBQ4fJH7/Vs52ks3lFJYCddUXWQin7qFTo/PEotmtKuYmFrg6kcqcfvZic8Z2Vjx7P+1HSqmevJtRUjCCAYqMORJj699vmUuy0XRY4wUpgmW4ahuw+9ZkqWYThBe9YDeC0LJkCefCVcZc7zMsXFlfaC12+yGxA5fxVryPEDaOHWTqtRMke1YL7sneLtwdrTDTl2YHEtfB04jkHM7MEJgTMDuBXnMUMbb1QkjO0C1k5UH04CjCzO7hu2ncZSlv2+hIyh4huTIrfxTI01vUXbYT0eXGWwu+NuTohzDz+rZ2LRY+QG9cvCa9dSB0SE6B5oW5OxDtSw0W6EB4hLRTQ+a6ENYBpLHxAYydQ6IlI49tUoxkOcbwjX1lm5AOMdeJLKoBe+dfa8fpQat/BTn6uvLJVWwIOX8LUfVyocNQKBSKPY0ScRWKDXD/d99i5L0CZtMoNoy0bNyBAMlIotCh7AhF5X5qXWE8h8ohvksZafuYqbydFCRthyqZuNW/k+HsCtEFE720HHtufTG6lcTHJ1Ii4w4WcnO5lkVHx5ZU1pUQKPEx1ru+uNhabK8n4zqhZxYzqxuLOGIMYGW4B3jrqqg5XEzi1pVMvWcPTNOWqye6Pbg7jmMP3lov4EJ2j1prAdigF6C2hZxAmcyWGMz0H/ThPfEiwdPjzL5ejDnUl7ad7a1HZ+06ifvoGZzeK+sEf0f62LoxxuJeprqxEjUYtUFEPLun7sYR4K/PaJOwIXY7IdHfDO565PB7IId2bj/hgdX/bgIt5sMu3ksiLkijBFckjjbTh973X/d9RqlEw2l9HpnYve+vjuxBNL8IA28j5P72lVfsHrL33yArX0CI7fqUUCgU280W0gcU24QScRWKDVB/4ZCyUtiHBOvKmOramerahUVy8FAxobsTJGf2t2/rbqB73Ty8NZ5X26OX2pm4ut2iUOGQpdWQQ8S1JqcIHD1G4tHdHYvD51391a/3birztelQDbFIgqnhuYzbjg7PEciwzhNML44aLo1nW6NoToCiuhI0l47QNTRNIDSB1w/+yii6M0/g2YOLtcFkyl9LSsykhnQXQfMzSMcBKZGOg7RssC2kI3HZDxHCxHXwNHK6D7v7/YzHIPXMIq2wZkEvBzt3cbHH2+gbF3GltxFHb2L+ThGRO9nvi/E7j4jfAcjs/xnv6iJQVgyJxRESAZ7Dp7B7M4ji213oa2EcK1mE0XoWEd2mokqaGyqegfG3t6U7OX0/q7XythE8Co4XOfYh0LMLO9w6Im4+Lu63F9Bc7Rgf/PNCh7ElZPkxmLmXqrEndGT7Z3ZVwH0cR7IP2XgCodcgZvsQ83lmriueWuT0G8iB30K0/EShQ1EoFIo9ixJxFYoNUHfhUKFDUGwCX6m/0CHsAJIzLzQRuql+FOWLr7URazh9gaiVtJxsYPL6+inm+5mEEVyaHZwVa2FnM+J8nvSi4+CjcQ6fb8kq4sosGcLRSLpML8knXg2iJ0Jobi/a0K3FpTwuh2V3NBEs+RMWeuvBtFZsmUIHRPtzzD/IfJ0VnWnBIILT92HGNkuILPkLQoDwFSFXFDXLibGxbCXTf4pf/c+fptRr0+gJ4ffVEsWHjsOJ8Acb6msJmYgja04gBt4Fw4Wn4xB239WM7a2e22jNzYjI5rM315EIY3X2oR96AS3y1sa3lxICjSmPWyOw6HO7PQIuAGYYMieSb53gcTBBjmzOY7igbCWbfJsRRjV6f6aM/L2BDHZASRuO1wBcaPEoRMYACYkFnPrTSLMPrezzyPAkFFfjmAX8nmDNIq1ZpB9E2ScQswNKzFVkxen6dUTZs4jgsUKHolAoFHsSJeIqFBug/FAD7qCfZEhNW99PbFDn2PO4PAYnzlUpAXeDxIwsU9kXaTnZQKx3BOk8WZVOQzFXXsXNEkND+A8eJNmzM8XcqmpKOHyyOJXwCghNYNsOUoLXo9N2uAbd0FdbOgiBEFDXUIq72ressC4WTQPw+l00nGhcFHoFUjocrDExH97AqKvFjC2sK8DlqiinrvVtNCeH1UrGKrwS//FTiPkrOIk8K9XnSMcUHi8ynXdoxu42JoB959rLfO0ba6vTp3b4j37wJB3h2xvqb4nk9ALFR08jJ7ux+7NnwwpvUUok3W7tzjGxH9xANr+E8M4hordS7iDCB/7TSDQgiZBRZKwvVcTPdxxEMSJ5G8JDqcdOYCfAUw+JrXv3SuFGeMpTRdbclcj5UdgN8VYYUHkEEaxJZYubcdB05OQ9iM9tvtvY3rFSEDKIiOyg/cQmkI2vwvR9ZP0FxPhtZNUxHOshJFPrbY3lTOZiHyRTxQwd6yH4XGBmn4Gxm8jEIyhpgOAnYeIaIjGZeyPF00dyEvu9L6K/9BbCW1PoaBQKxUoEiIzfiwvE3hkL3jWUiKtQbABN16g7f4D+7+Uu/qPYOzjxZKFD2EYkJ85XE7q9vuq8Ijtdj7ILbY1Ha4n3j2In85/Ovl+YnnLyEnEBHGfn5n1HQrDQmd7SItfQmKfcy0LncNp1a3XPxpMNFC8M4z7YTvhBD+6K1YWlhMdD/fkRDHPRTkDTgfTvu0hTxs0or8RVFiT54Dqe9gASA6l7kLoH3aWD7ubxt0qhLfavk7R8CO+rGNY9dGv96yD0jY042eEkVt1lRHwETfZlrZsGcKsrAKTPRv+3H5Txy6dLKTLnNhQDgDnUjwx6keHcgpG0koti9s74jDoD1wAQJUcQxRU4k30sekIgqg4g5noQTZdxBt8BroOvDL14FwoYFh3ctIgrXWUQOApz3YBATu2G0CgQNWegqAyEBdFuMPsg1Le6VXkJ+M5DMo4cuQp2fGO7iUwBJdsU89Zw7C6cxo+gDX23cDHUvwBoyIAfhIZMDiAazyKTD6HCDdYGbBH2oBetNIdTg3h152DkCiJZOJFZNn0idW9ORiC5kBoYjE+mMvJnbj6+90vNC078adQJCoeTBP1JnEWnUCgUW0eJuArFBql/7rAScfcZyak8s+T2MG6fi/pDVZSIqBJwN4G/pY7pa5mrmjUdr8ccmcCK770fvdvBcE+YQw35tY13d+FracEc2v6ibtoWpk47dn4j/6UNpZQXayT7J0mOLWZ6rdytENS/5MZjLt/HNY8LJ5EpI1eu+tt//BRmz33M+ZQAPDbUiDmZKsym+XyU+nILgmUvHEor4m6UZOcIDhdIPphEr3mFwHEHw+hm4dFJrLFR/Oeb8frfRWMxPldmP9qhvhl+reg8f6ftHTx2bIORCGx/K9psepF9FWYcSg/D3P0N7mNjyPkh5PxqsVO4U67Kcq4XfBUQm4bYLLKsBGHt7OeEHHwDUdUBkb78t9H9iOAZmLgB828sr3CXQnJuewNcQmiItlfAHIZ4J+SyWzfnwUz5QIvaWvC1I0fvLU7xz4OFIXAqQNsbg2eWbx6j/gW0kU3YcmwSafgh2Ias6MBJPgTk40xbAJl8sux9gJRHb+0RECUQnYb4FGJhe32cJUDxAfBVwkI/FLeCFYeZm1D/Co4zCNbivW5pqobHBcxB03kAhF6MNMfQrAoYf+vxLBLFziLKLyNce8gsW6FQKPYQqricQrFBWj96ptAhKDZIdHwWw5uPI+jeIVDq4+xzNRy60MipF5ppMmbRex4R7t5bUz33C1awPOO69rNNJPpHMSM5ptXvY6ILFhy8AB3noON8KrsuIwLh25kfT7kyRbOTW8R1BzwEvQLk6ixPKxxFbzsKQPXLjQSs76yOy5Xl/rBo7WBUVOFrayP54DoyuZxtqLmXt5VOntmlGR0aNj5FbWkLe3yY0HdHmb95ALOvGxmPEnn7AYnEhcdt9Rxf+x7cGee6/+KGYwCIPBpZzDjOI2ZX7ab2sWWsxWt8YRRR2rK83Ne+CzuX4M7/uGXJM2B6kMNvgLlGSfVVbXNsi+geRPtlWPgA4nkI8mtJTsH8B4hiG3HgoxBszr1NfAbXwwlc3UlcXXFcDxcQVtHG971tWFhFCZyaC7mbbhNO20exi02c5APyuc89KUhzBCd5H8eYwCk2kHUvIY1M5SvXbKulTKYlGjJ4CFl2fPX64jacpvM4RRaOPoZT6sHRR3E8szjNz+DIHnCyDFZZU2BNIRO94MRwPDZO66dwmp9FlhzZ9DEr8kM0/XChQ1AoFGkQgCbknno8jQNrKhNXodggwcZKKo83M3V3G4uyKHYUIaCkvozpnq37Ee4WbceqCN2+B8DecQzcv/T2rzcaFQKOXWpn7MOd8X/da8zNQLyzD4Ci9iaM+gOwlFe0KB5KKQnWCkqDXVBdmcZKQDIydZzodALkktywJjdppRApZcqnVgiQUBrfvECR0/9VQMvhKibv9OMrql+1yoknQDMovdBBCf9t/bZGNnFzKfv2Hubc6Prd6stfpaRpIoWOkJkzXh8Hm25PiQ1ORU/Tkz2+JhNYLh+byBGW1wMfOfqQ6DUdrFzHsGa/oQXEoePI4dwzVZxosiBZBDIRXn699GWXZBkilYG6QxYPj/cz9iHC74Mcmc6y9DKMvJG5gb4zVdJE2/Mwv7kCd6uwYzD/PsKjQduryN7vZW8/fXfVU2P2Ec7xT2IXT209ls0gk1ilfgwuoo1vw+uRbVeuIOpTHpBJHAagqhrhqkfIotTnxtj7qcx9oSN9QZBhpEyAOYXwHE49Tw4CSWg6j9ACCOnHcYbBylDI1NzEd0FzFEnq/u8EjFSRNnRIhGH0zadSRNgxio4gaj9X6CgUCoViz6JEXIViExTVlSsRd5/hLw1kcILcm7hkko1OaFakx1dfxejtuTVLJccutj41Ai6A7VnOcAr3ZM7o9vnKIXwDSJ8TFo+2M39/c/c/T0vlhtq7vAaNBypxe1wUlQXwnWlPac6AkzCZuT/0WDQ+fKmd8cX300mTESuK/VQU/XbaH9siXcExtxfvoYNIXSd841rGGDX3iq9SjgNuLySyizKS9Jm/svoolFppUpYFS++GEA6yb4WwlC17Vzdwez98/LSuOLs/+D/9WQ3v5A2isj5ru0yYyUBeXyztsT704p0XTdcircTy+79CaJeTD6DpeXDuI8wdFA7tOHibINKbOcaSc9kFXIDo+sGErSIOfGR7BNxVOBC+gmh/DtnzPnlnmVpRtL6b2McbQStQZqoTxQqCXvxF9K4/2rZuZVEr6AY4Fk7tUWSyF5Jqhs0y8rFvLgAVJcCiNUdidXa4TKyxZLGmkUzvfC6ztJCJR4/3o7V8Gvq/vtN7fWrQ2n82/WeyQqFQKAAl4ioUm2Lq3trq3oq9juHaD18IJZVNZVQ1FBO696DQwTwxyMoqYPWPv4MXWxm7vr3+e3udWFLL60NfOsDG6mvljZbnZSgEnHupnYnbA8R7RokDvmMNPLi+Osu04Wg92swc9QcqHwu4AHKNf65eWkbfh9PIiz9MR8n/tW5/0lluL4qK8ba3ISfvwdC7iPpncAwf0uUDO4GeXCPQrrEQqDjvA8cA3c/M2+nFNpnhnUj292PPZS/04247lHcWa+DZA+h89fHzUCzzGfDZV/0cNf8UpEPgWAuR25mFxrQUVRKedhE0AmhWjszCRAQaDkBod/29tYpWGEm9J3LkGgQbIZQS0OTgh8jSFjRfDGHvYGZkIrNILL2NMHUv+/aaB+LbOyQpGi/tgIC7goU7iMbnkEPv5r/NfA+u7lLMg/lNr98pRHT7Cm9JbxV2hZdUUT83PIFet08jTvI+WtMnEIPfLHQoTwTC31ToEBQKRRaEeHpsf/YqSsRVKDaIY9kk5tXUt/2GTO7tglXHn2/GGRgkOTe0Y/VqnlaGR9d63Uqc+fX2Ck86c7MmeeXB5kiOzGlrkIX0m0p0Q0PoGtKR1DSXU1PpZeTKGoHDWf+lcfj+KAefacGKrL4nrxRlcbkwfWUkx0ZJJrJ4bfpKkVVHcev9yIF3Hi+emCnnxoOUkNRwoYWK4j6k5sLR3DjCjVib2zvXC/F50F1ATfp9beX779os3QxGw662Dnz+ZQEXdzlD0+vl344WN3/rh2O0Rv4U7FSmrrdoIa8J3lI3kA2niUVdhO73gpxCf/kyxXPfyr2tpwHB7om4WvMzMPr+igBshL8SGVqRBTnXjyx+Bqw3t+jfnAUnvWWGFG6w3WDmuDcVNcJcHuJfcROER1IZx7oPUX82lSUuNIiFkckFmOtHND4DsZ0tMgeAK8HKjPK8GL+GXvUl7JIpwAMieyb5TiAi25P1LJs+hu2aAztXpTjFfsSxHiFaP4bAlTrFp24jIirDesME2qH0XKGjUCgUij2NEnEVig2iGTpnfuqTXPnn2ze9TrHzxEYmab7QjpW0kY5EaAKPVwcE0VAct9/NZNc48floQeJzC4fQ3EJB9v0k4woG6Hu4OvOtsrmcud7944+8XUwOhqj05m4n04ilK9nsLMdIbTtv3kmQcODUix1Y/aNYCQszllwsCOaADnJ0krE1uomUYFQEgdUrisv9REZnaDkWpLq8ge4PUxnXS3YKUoLRdoj5Wz2Lz1PKXFR00Dv8MTRDIgTUBKcxp0dxHt7Fe8i9ah8rtbzhK/0MIwBr8RGl7dm61YnLS5m5tknJpQMY5iCR2Uri3SuywTMphBt9cUuqceLpjVe8Tcu7cWSQyOyrTM+v9rn9+3/VzSX3tyG0WliU84OAL8t+60iWdDD/aBTrw9UzU2b6JcUluUM3H93BfegSYnID2ZmbRBTXwPSddQXv5NgNRNNl5OCyaC8HP0QceAlCOSwNNhWIBk6GAcXiszD2du4+ErOgpabjp6X6JKK0BBbuQGkDuMogPgrWvdQpC1ByHjF9B0oFhD9M3892E36E6HgWOdIFsTwsKww/oukium2jT1gQH8NuPI2t7+a9WwN7cwPAUvelhPS5R8iWT6b8Xu2N+Uwr9hcy0bU8RBE0oPwsQq9GTNxBRDdRKPBpwt+KVv8DiLa/ghA7NBVIoVAonhCUiKtQbIJT/9PH6PzqB8x1pwSFiqNNhPon8JQGCI9s39Q7xfaRmFkgMbNaJF0p1yaAgMeg6pl2Bq/2bqpK/Gapaa8g2t2/M527XOjtbaySosRSuarlHMKlo/UYEm2pENWKtmvbCSFwohFiXTsU9zbhqS5H9q7OfCqvLWF6rEAFcwpINJTEVVeCOTuftZ1j5xJxN5ei+PZokMnBydQTKYnO5D+jofJ8B6PDq69fw61R0xBk4uEo/vEZkjPznHzxOLffGsIT8EAEfCdPrbZZWDy0G1deIdSTsmaoPlJOcrIHuSiG2t5WjIW+x9toIoNYlglnWajRx19DAkZZ4+o2MpOIm7t7c3QQo/I4mr8I5gew+tJnUQrdREqwZTWj7z6LXlLMT15O8j/fBNuW/Prf1DgU/RNIp1FFZxG+MmRsfdao1XKJySvdkCGLNto3QvKFY7gXctgC2CbJh49wVwcQuewXtoDW+ixMXAcz/QCdHHoPqo7D5HJxLafvNlp9IyK+zZl0RgDSuZ2XXoSRPARcgMQMGGWQnF23SrS9Aok7sLAorFuh1CMjuzwlMnQHEXRDzWkQekpU1yuQEw9gYVHkKm5ElLcD0ymBeUVist41AQc+vmtCru40IsLXN7WtrHkGxw+i+gAy0bXNkSn2BdYs0ppFVtSh6R7EwtNl4bQRtNafRmv58UKHoVAo8kDb7e8OinUoEVeh2ASG180PfvWXSYbjXPs/vwbAl/6fv8PEzV6++mO/WuDoFJvFTlgs3HxEQ3s1oiTI/OgcussgMhnCjO3MNE5vsYe6MliY3JkyZprPx833xvJuf/RcHdP38ita1XC+bbNh7RrSXJ/5pG3BDmC/o1dW5RRxZRY7hQnvF5n5YCRzgyys9qXO/z0oO1jPnXf7qDtYvWKp5PD55tSACyAXM9wiN+9y5mI72kQn7sOHVwm4AENvjzPi+TJ2NCUC1Z+qpEbeQsaWrz8zLlZ9ORKYkMWFVuaRNeTyrRaCpczQXx5z+GUsijnYi+fgMeRcZjEr9PY02uGfYOHWIPbcKAyPUgz845+8TFt1JyXTV7Lux3+gLq0vrpnMnS08l+igmhwiLqSyljNllG4Two4iMwi4AEgH4ZhIb0nKBgPAiiO10wi2WcS1IuB2g1w+ZulvgYkbG+tHd6957kV0PA8LV/PbPtYPZedgNnPBvh3DSUJkpR1EF8ILlLSBEYRoP0QzxeWg972NHjyIE6zBdicRUgOp4eiT2xqmcDWj3ftq7oaZthc6mCNIxrcxKsW+xJrCKatDW+jb9WKO+4KSs4jGHyp0FAqFQrFvUCKuQrFJhKbhCfq59Itfebys/uIhPv7rf5lv/cK/29VMTsX2EhmYACYeT5GuO9iI7fHimDajd7ZW1M7lNXC5DaILccrrS2hp9BC6t3PZGVI6ZBOg1pFv5SlgI0JcoTDnQ6yt0mUmn94prY4nyxT5RcyoDS3NKUFRaCmRbXaQheIXGX59BGlt7vVzu5ffh0TcouRA7eIZtPhfIZjtXC0Qe8oCDAwv4NjOKpuHY5c7GPxwhRC04rwN3e+h8sxBIjPr7UmkbWNHU/EffLmGwOi7SGf18VhTM+BZ0TUWsEY0W9nn2uvLHVgWAxcxI9s7PdR94ChyYkUm7Fqr0YaTRIYWsN+4vW7bVjFGcDq32OcOaqt8cWVxFbHAIeZvdmbcZon5zkkqOorRrewWMUbTYcTCmzn72xCeYoSnGBkaAU8QOf0w5yZy+hGi6hhyxfsmh28hywwE2ygySweKOmAhFZPUPGAKsDZo41NUD8EaRKACDB0SffkLuADJKUhOQ8lJmF9/jhSExGTqkQsrDDPX0WZWf7KZB19FanPbFo4eimzqE04Csv5lHGNzg12KJxRzFGouw/hbhY5kz6Ef+4cIPQ+vJ4VCoVAASsRVKLad9k+e48gPXObB7+Y5NVKx5wl1prKxAtVBTp8pJTkzj7epnu5H84QmF9AMDcfKJdpLTr/QQvjmPZDgqg9ghoYJ5ZGstiVy+Jtuhf1QnTQ5F8blKcdMLAt1k4OzuAoYUyGJmTq55MTQwALXBpZLoDW/UElRoISu1+KPM143g8+3vOeHH6ZsODpONTBwZ9krsN63IhlVCJzyMkK3U+uLygPMdUPrqQaGry0PfBw/X4M5uHwhuUuLMEdHIBLDCHixImstASQnP1GF3pPfj2lNJsgm4oq108oM/7o2dtwCZEpsFTo4IjXOJzRAgO4B4Ub3GcgiL04yJRxqhr7C2NZZFGolms+NY8XB0Ck624GQURY+HATDh117nsjtOxnjjXf14H32Vbyz38l63AITqenIumMkKWH+Xj9OIreAC2DNhZhzv0yF9SfZ9+E1YJutwLX6YzD0NlrbZSQChvL7LJaT96C4HhYWxTczlnp/tvs2564EFoXlolMwtnFPYFEWSHnexvKbNZEeCZH7KYuHHbSz2C1cI70kG0rzymbPifAgRjf+HU76qnEajiNN5X+qWI/0psyp1n1mPM24q6DkdKGjUCgUeSP34O+/vRbPzqNEXIViB7j0i1/hwe+9o7JxnzBqW4LM3U552yVnH1Kta7QcqUQv8nPz+jQyjZeop8jNkbO1JHoHUgLuImZol340S8mhS4u2B5JV/rbA4wy+x8s3UMRlv5zeZVUBJoaWfSFDkwt0HKxirn97p9/uB+ZmTSo2uI1tCQaGW5D21qq0+9LooGv9dQM1QQDcxX5iupueG8uZ75quUdFYSnRk+nFWrhBQFRlmyexEM3SC1UVEegYJnjlG+MpqL0rD7+bIK3UYU/egqhl0F5ohMHQbhMBVVY6uRZHOc4CGFBpFHoOznw+g6ZLofAk4TipJWdoIaRP1BBgqv4x0JGbCpiQ0RTApkFbqWpJmEmQPvmASz9FTOP3vQf8EcarWvR5lh7qX/UyzcgcuHcWJe3BGUmK059wXmL01jZVFwF0iMhDFE3Qh5PrrXUqIF10gNFTP7IKGPTYOm5gSPn17jPL27dHUNoMcegdc6wX1bIjSFuTCigzKwBEI39rmyBYpvQgj7+Rulw7Hk7tNvrgrnwgRl+gwUAlsw0wLaYEwSLnl54fT8XkcOQJKwFVkQCaHofXjMHIFkcbT+mlENP2wKmSmUCgUG0SJuArFDmD4PJR11DLbtTXRQ7F3qDlS91jAXULaDtHhlCfl8QOVJIoq6Lqe+gHXdqqeEq/DwoNewjcKV+xOOA6jH+ZfVKXhdFP+fe99NwUAgqXeVSIugLe6FJ5CEXdiIETFBmctRsJewr1bsxEB8BnrVX+hr7Yi6OxbSstcn55pOQ6haj8lMxJCKQ/bipoAyZmlbERJ1ckWQrcfYhT5GbvSycohC6ELDpz0Eb3ywap+y5/pgKFUNqQ5vrrOl/AV4fGMPha+zdkzJCdCq8b8ZcezjN1e9qaNHxAUhdIXzpO5Rj60PL+WBZuwhsbAXBSZKg4z+Z17pLc4SRUqdDe3Yw4PIi0Tc2wMWVWOiC+Ls1JCpPhVJnu8RK+MAluzebHDUSx/A65YZlFLbrcdbqACxlb4qWbzwk0XT2h1rM7wOFrNNhc4s8PIQAeMb8GPNpbd13pDCBv8jRDdZv/f3ab0WOpYtgUbdG9GcVsClB1D+qqQgRIghrT6wVlfCFChWIlMPIL6izDyISI5nf925SeRwTqE1CEZhdgEzD3c9x67ovhooUNQKBSKfYcScRWKHUDTNV74ez/MV3/81wodimIbEBp4nGhWZ8TYyBQwxZGGIjSXQbz7Edlqgu8WKU/c/LMcxAZcALMVwNpLFBWvN0+YGJrb/UD2ANFQElddSc7iZitxtkkXMZ3151ZxeYBDl9pZOvM6r/TiWOtPrKYT9XTPzXHnWi81DWWc8rtwoiZHj5VgLyae1pw/TOjmXQA0twtWXbGSg5frST5YX2le2plPZGkmV/vjGus9o9cOZshs11uu7HWRhye10HCccjCXBQDpKgHWZ3YJfwBPfT0ymSQ50I3w+fAePoruBW3hjx+3c4SXceszzHx3e/25pZ49E9ZZmN/A3SkHugu9vAE5tvlCUsJTvPotSoTAfRG2S8QtbkKG+8Dxg715wU+GhhBlZWBuQzZfYgzQoOJZmH5/6/0VioUeqDoNIldWsQaaF5wcAn+G90d6ypHNL+AkHwCjkFSD9YqNIRMPkdWNaPFWxNR6L2sJ0PQJHKYRehlCunDMHkg8Wr4/+YDAYdBLAQdNlCP6v75bh7BtOHd/CYSBVvuZQoeiUCjyQADaHrNT2Cc5RduKEnEVih2i+kx7oUNQbBMtF9pYuHk/r7bJufAOR7Mxcmb+bYV98qnp96wPdLJ/hmMXWhm/2bf7ARUYvbJyQyKu8BRteB/Dzc9QkpzBHQvhnk9lpYbTaCKRuSg9V/sfPz98ueOxt4eVtIkvxLFth7Bf487rvQCMD88iXznG5XIH+06qKFPZkWZCt5btSpzkynxaScdHDmHdTu+BG+6botSvQzq/X9tEymWhVnOtlxzXfpldV+hs1coc12PWaaUCUXsRez6MM7Lam1akEfNcjS3IeIRE93IBNBmLEb93EwDn0Efxlc5DeJCh4XNE+7a/wOJc4gjVZPbRdSYHkOXpbR02hkSr7UCObSG7FcAdXL/M3kixxxyUHYDQGITy+zzJSGQM6j8K5gaKmWXFAatwM0a2BWsB93SMZGW2RjoaJcj4GCJ4FiljyET6815WnkSMvbf8HAFNH8V2LUDywfbGrnj6sOdxXCBaP4lIxCEykpqaUNyKdItUxi4grenMY39ODJwYwnMY4nvru2femLM4Xb+mRFyFQqHYAErEVSh2iKG3d7pilWI38AR9xLv7Ch3GphEImo5UgSNTgm4aEUlKmVrvSEqDGu7W4lQzKQkbQcxIAulIjGIfI1NJxKKi5bL9jNgNOLaDYztImdqHtCWO43ChQyCn858uuFO4oulzogd7ZykpKyI2u09//GwSxxPIu23xsQMkJjYu7nznjUnMhEXLkSZedYdBOgz0rX8fHEdy6LkOJJLYfIyH73Sva1N5toG3Xr+7atnbV7o5eS5AEeCvr8AaG111bjtWSpAVhkbLuTrsyfGM0qo5u4B28CjOQBovWSnB5QEr8bi/9U3WDhJkFv2kkyN9PZOdgtCQ5RewHt1Ovz4yAVSn9iE0Ys2X8EQGMaYzW4bEHnURA7RgDSVVEKg5xMysB3MhhsdIYg5upWhWiulrvZRfbMbIVIDLtqD8FExvUYz0lcNEbi/grAgNGVmfxevMDKMFShHW3Ob7LjkAwXaYuA7x7bFxkaGZ7RtHEzq4KyCL4L4vmLmJKH8ZqaW/Z2nuNgjfTr1uoQ8BDa34DE7iPhgVaKI0JezKOE5pOdpYajvpq8ZpPIlMDmyL5a5CsYRMPEyJtEsfy7J3I1bMAIhEFDH25jZHtnto7X+90CEoFArFvkKJuArFDjB5u4/v/eJvFjoMxTbQeKyauRsPCx3G5nEc5rvzn+5ZUuUnMrIsvMYDOtHplD+p15aExpanqpbUlxGZzTZ1dW8Uq4gNjOLyBDETq399L0yFcTeUUlRnEB6dK0xwBSCa1HJ++LvKgngqy4l09a/Jas0Pw61jJiz6H0zwm1QQKPERmV+f/dt5dVncO3Z5/eyF0gOVvHv10brlsUiCIX8zp4ILuDFJhNdMjZaS0rYqSvwJYvfv4WtpzB6wnqbq2mOWRdl0dgqJ5GopzcmWiZtLxM0ky1Vfxu7MnGUqY/PEmz6NIw0WEgGGXu+n+mQ7zfRn3OZxSKF57EiU2aLzzD9I+WfH3C4qjh0l/mCLGaOOw3joBPXGQEYPbccp3vqdYhu8XUTdOeTIh+tXzA8itVYIeBHJsY13XP8qOEkY/OaWY1yJMLxk9fjZCN5amHwvd7u9jrQw4jrmOhcPDc17FBm6uuoKEzjIWC+a/zhy4QbCZaDPjEJiDrvpYqrLQBNOXQcyuXVfcIViJ3AYQqt/BTHyWqFD2TCi6iOIui8UOgyFQpEvAsQes1PYLzNDt5MdEXGFED8K/Nbi05+SUv6HPLapAL4P+CxwEmgAksBt4D8B/0nK9d/ShRAe4CeBHwfaAS8wCHwL+FUpZe5fMArFNhManiYZ2lhBFcXeZPjBJKXt7fiKPWg42JEIsdEprMj+KGCyYTuFLB+EMqeh5xq0bZyGvAUc06LlUAVdK4pPLTE9PEeiIkBNazVzfevXP4l0jUpuWidwHEkqOVtSU+XD61p6vySVpS6MWAK7uoKELZiMgKGBLUE6MpWNnfr/kvsBzpLtgIRgkUHs6rLoEZmP5YxrtHuKQKmfyFzq3hmoCOAp8vHcqUOpnSyey6n9CebmQa+pJNG7PntXWiaeqS6WrlJdi1Nz2gPSBttG2iZYSaRlgWOhu+szlocRuhusVPzpMnGTydXXhSOzSJK5RNw0nrhOzadwOt/IulnM1c7dN+cWn6XsKyZuD1Jz6SSesQzZuysIVz3H/PXl19FJmkze6KPy/Bnid25sqYhh6F4fVc8fxB1On+VpDXSiVVYgElvI2o/PQ7ACYpvrQzRcRI5nzuSVs33IWBla4yVE6N3snXmrUlm3QoeFPhj53qZiyoWcH0Dkn1SfndgwVD0Pk29vU4cFJM1nnvAehNCHaT/ehDX7eJ1M9mEHA2iJNvT7v4dT8xyOLwLmyI6HrVBsHokjJtHYf1qGdvjvPp7dpVAoFIr82HYRVwjRBPwGEAY2YqT3FeBfA6PA94ABoAb4fuA/AJ8WQnxFrlAkhBAG8B3geeAB8N9ITUK5APx14MeEEJellGpeu2JXaf/kOQ58/iJdX/0gd2PFniY+F2Vsbq0gLwlUV1NSE8QbcCEcC2shQnR4clNZi4VEMwRujw6aQNcFgrX+npmF25w1mvJos1tUVbjpyrAuPB1JTf0/XM/0wyf/x3p0ZJau3tWiat/6ZNctoRsaVfrGvmLMjoeobiwlMhdFMzTcZcV0Xck8pf/Tn2iENAIuLBYrW1HPTiBxJrPYA2QrKKYvdyT0VDspBJrHg3C5CZRA0wkvmiYw3FBabeOuOQhCQ/O4ENqi2i0kuAPYvufS/NBOLbEwoKQWFovAOdEY9rWraNXH0cU4RKfShhimI+3ywfEgHSs8fdNhNZ1l6kp6X9Cpqw8pPXUSu/cBmJu/t0XEQdyZpuonIji+M+iJ1zbdP4AIVCE3I+KWNCOnO8FKM/DqDiCqmhCGGzQdMKDmMqAtv6jSXjx/BFgRmLq2bZYJWQkPQ0kjWNtlB7NX7tZbQ4xfwVVzYfl5YgGrbgO53k4ExxWB9gtgz+2fCp6KpxvNu+8EXFxlEDhQ6CgUCoVi37GtIq5IDaX9J2Aa+H3gb25g80fAF4Cvrcy4FUL8EvAB8AOkBN3fW7HN95EScL8DfGLNdv8r8MuLMfzFzRyPQrFZhBC88Ms/Qv93b2Huk4xNxUYQRCZCRCZWe3y2n21k/n5vgWLKwOK4l7fIxYnngoDAqyeI225iMUF5UQy6rj9uPhd4jlUyiMzwN7kzPqS2d35SuGYnESJzXalEOEHPwykOnmxh4vaTPYFDxhKUVRUzO7mwY/uwLQepyQ1n2OiGhpSS+tPN3H8v87V05rkmmvuvZDkJBZnecNFwElyBVBay7YCU6EE3gRfqACclykkLHBOkxVj3ceKTURzTRCZnkJoBto0TS0AsQfPpXg57V2TKzmU+PlF7DOtR5vNLth1DDq3PnHUm+tAOnUdE02fkRpIVaXc81zNO5MXLFA29s35fZQ2EXG3MfJC9oNncrS6K2lsxwuPYofT+0rlYGDEpK8683uq6gdZUg4it96RNIRD1reDzIwc6wUyuayG9FRsPTDMgNAxIRFlDKkM7MgvBKvTaBpj/EMzrsFK/3txLsAMI0P3bJ+LO3wBXOZj7vMCZOYcY+taKBRoUb2JWiJ1/8UeFotBoCU+hQ9gYwkA7+WuITD7wCoViz7K2oK9i99nuO+fPAR8BXln8N2+klN/NsHxMCPFvgH+y2O9KEXfJQO9raawW/oiUiFu1kTgUiu3CU+yj4bnD9H3nZqFDUewWe3BK2NLkBV/Qha93eRqwb/GRkxWHpHtcq1blzsRdm9dbOKJDE5x7/hhX3xrO2MZK2jy8MczRZ9oZu55d2Nrv1DSU7KiIC6DpGtLZ2BmgGzptzx3g9luZ8qahpqWMZ2J3sl5uuteNJIFYMknQBPjLoOIw0bu31rU3AkfAeT9tXzLRgjk9lyXqDQhEObL6hNAzXjPWo6u42k7A1Ppp/5GIn0zqcecHsxw/cwT3xANksJpE2SHmh8JE700A+Z3n4Z4hPNXl+Ks8WJMbzzKN9AxjXazFSGTxlNXW+xJrJy4i2itADoITBWJw/BhywI9zY7Uw7fS+j1bdAbPps7NTSCiuQhSVI3wBhMsFIgyhB2B1pbK3vQAhmM7Wzx6g4igktnHmgJOE0tMwlcMuolB4a8FdmhpciU+ANMHOMUjuLsNuOAUy0+CAQvGEEN3Ds4iEAdJCO/aPEZWv4Dz6FUTJabSaTxQ6MoVCodiXbJuIK4Q4CvwK8OtSyjeEEBsScXOwlAOxtoTDUrnqTwshfn2NkPu5xX+/vY1xKBQb4sxPfYqJW71EJ/dM6o5iJ9l7Gi44Di+dGEIrrcTOq75ZloMQWZ+uQ+4xUds10EN1YxUTQ5mvR8eW3H2/j+OXDzD2YWYhcb9TXuLd8X1ohoad3Fgp99Lmcnruj+Pyu5COXPTtXZY1SyqKqAvofKuvPLVgcZVc0w7gx76/EXf/bWQyieFYxMYSMLZewIVU8m2mE1r3ZJ+KLTd04edom8NH2km6EGnsEcIzmcVyO2Fy55pB03OfJXzlOvkKt2tJTMzgBAMEm1tIDmw8Wz3mPUFxVhF38SuppqNffBlqLTCHwF5jIWGHEA0R9PLP4HR1IcoqEJVl4BOIkIWYL1vMpjaXs7GdGCRnITaeEoTtwZTp1z5GFFdDbJuFG7E3ilE+RvemhNqqZ7ECERAW4AJZD7gw+jL7GAPI6vNIhnYlVIWioFQcRYb7Fm2s9tIQOmjP/GdE8ATCnfrc1s/+2wJHpFAoNotg7xU221u/NneHbRFxF71p/zMpH9tf2o4+1/T9Y4tP/2zN6q+Rsm34fuC2EOLbpIqhnQdeIOXN+y/z3M/VDKuObDRmhWKJmjPtfPJf/Qzf+vl/S3h0ttDhKJ5ChIDgoQpwJLKiYdnT00qNeYWTRYTCPpASKQzi7jKKjxWlfgBIiVf3YTWUgxDoXjcHS4pTmogjKS7z4LrQ/LjAlRBitbg0tbdsCaxInCPNJrOTBmYiW1l3wd13ejh2+SDjH2bw8dznBHZBq3H73cSSuQuarWRsaJ7JwfTTuXVD42BTkLF7mbOpH7fVBd6ZAexkatq9MLJ/3XFMCesTQQHQ3NmF1Q39WLYS2ddn8+YF7OFHuA5dhNHVfuvh8eyFNB3TIjyzdWsfMxRhNmFSfugwic6HG9o2POvJPqu99AD66YNQGQezb7WFwTps8D1AOwkwnnpIkOW1UFEJ0gXhCDz6FsJeb73wRGA8+V6tVvMxkFEQa6wNhGCV6fVK3BXI6rMgBLahMnAVTwdO8j40nkrN9pAm2sijPSHkiqY/j6h4HrHXBogUCoViH7Ndmbi/DJwFXpBSbuwXW25+BTgB/KmU8hsrV0gppRDiy4v7/3vAsRWrvwP8tpRyY2lACsU2U32qjY/987/MH/7QrxQ6FMWOsxfHAgWB+FsZp3EPiR/igzeWfiAn2EiWnqeoFVfv/YzrC//zYT3RgTEuXzrM669lyQgEQHDvnZ4nNiPXFdu4oCdldo/b0soiWlsqme6eRNN1orPRjVedztL80gttDH2Y23Nad2scPVqEPX13eWGuOLKcrLo71zFsQEzLJeLmYc1gPrqL3vocWqIPwmPYwkd0Ird/51zPGJUV5VjTW/M8dRJJpu4OUnXmJPF76/17MxHqHKHmqBvNWSOq+v14PnIOvWYKrIkc4m0OzLHlt9IDnHsFHj1AzGcpardfie9Ehuniqxc8Au4SmL6a8ofedQRO88dB9me+dqUDVZcg3L8qI9mpPY+jP4Hvt0KRC3vFLKO6F2D0zZ3Zj+5H1KYmvMqJb4I5l1rubUAUH055dQsXouH70aq2c2KuQqFQKGAbRFwhxEVS2be/KqXcViMtIcTPAX8DeAD8aJr1XuC3gE8DP0vKBzdKqtjZvwDeEEJ8RUr5R7n2JaU8nyGGq8C5zR6DQgFQc7qNYz/yMvd++/VCh6LYSfaihgupqup2eqFJyi0EvRdV2jyI3H7I+Rey++Muce+9Xg6famLy3mD+OxDgchtoLg2hCXRNQzM0NE0QjyZJhHNkBgpw+1x4i9wsnVSGW089XDqarqEbAl1P9Sk0cLl1dJGa4rTyHRXSQUgnZTVg20jLwkEwqXkpO+x6PHvaCkNywUYYAiEEUkqkJQGB7hH4GiU3Rj7gTP1FIr3i8Sx1oYFH86ALAyklnqAXM2YC5sYFXBYLjaXhpY8fxJkK0XS4atlCQYJl2cv7WXzdj7YaNE6+lRqTyNFvPus1r46voQxhaKAJdEMDPfWeCkPgKjXQys4DGlKIxXhSOVBLr4CUEiEd0N0wcCNzIHm+ZnbfbWyXF1f7S0Sz+vWu2CaWYDYcoLK5icTABs7ndDiSyWtdVJ4/TeJufr7vTjxBIngW31zKe9g4fRT3mXJSdW3vrTfM2g7McWg4DU+aiKu5d6YAWbQXipog2pX6Nl12GmYyTVTbAYQB7jJk1elFITabvU8CqygBgSo0eRykQFgmjpb7vq5QPOlIj3d7v5IKIyXS1n0OrfUnEZ7q1H6kDYkp0H0IV3A796hQKPYkck9k+a9mr8Wz82xJxF1ho/CIVCbstiGE+Fng14F7wEellOm+rf4i8BXg56WUKw12vr6YoXtjsY+cIq5CsdO8+Ms/gr+yhA9/46tpK6YrngD26tuaZYr2XvM12i20zoe0HWml98FU1nbSgb7uGeoaygkN5yeanDlfzsKjFVYSDimjH0D3u/EdrkXaNtJafJgWjmXhJC3sRBJpLU4gWZksmyFxVi4+cuV3rmTuwBnuvNHPNfldBiZyCx4HDrTT/XZKBOvpXZ8J+7Mf+esMf5B6Hd1bGRQAhLZ++3PP1MPth4g1RdLSTagONpbRMPjBeu0n1z03y/qAP4InsEaoXHpPk2DEOrAn7mXvfynmom2stWrGMR9ehfqXyPfmk5yPMOMyCJYEsee37tU+dfURlWdPkLif3Zt0iUiimpKXLmAckGD3kLJC2GH8/lWC+hPBTk1NTkysfq7vvHf2SpyWV3DEEGzEx1YkcMTioISasa1QACATnTitn0LMDyFm87s/r0cgmn4ErfWnIdCOSPNdUggdvDVbC1ahUCgUG2KrmbhFwKHFv+MZsm7+vRDi35MqePYL+XQqhPgF4P8A7pAScCcyNF0qXva9tSuklDeFEDNAixCiQko5nc++FYqd5PzPfBYh4Mqv//HjZf7qUmJT8xuu4q7Ye+xVkSBZcZ5oMoiUqcxbt8skkXShaRItGqDmRBAhBLpbR9cEunCWRS1t5a/iJSlk8V8zwXb756zFVeyj8nAD8fkouteF4TaQEmYeDWOGN+/xKS2bJk+Yfl3g2NmvvfhCnHhtMULXcmZ0AlmzKe14knBnYbMCg8QQmuBU47G8RFzbzuFKtDgQ0HG2mf6bWzs2TV/9I7GxuZTyuSkSed4f4/MxnOYgeny1QLnqLdH11HntpI5L8xhoXgFF1QjdDbortV53gdARiRwWB1r+ypE0t/+KGR8rBvIXZONT83ja63DFYsjkVrwLUkzf6qPi6CESXY8yN3K58R46wnw4SnNbb8aZATuBtB4gzv4gXP+dXdvnjmNkMHDebmY/gIpnYfr9Hd+VbPo4DjmybxUKRd7IxAOkF7TK84ip1Rn1UvNA4yto/mcQngbk7HvI2auwcJ8liyD9uT9AlF0oQOQKhUKhyMZWRdwE8B8zrDtHyif3LeAhkJfVghDi75Dywb0BfFxKmS1NyrP477rUFiGEB1ia1/GEVrVQ7EfO/dXPUtpRh2PaVJ1sxVtWxFz3KK/93d9irnu00OEptsIe/e352n9zwTq5dUm86X4ctr342EtUHaln/sb6LEePoVN5po2FqQjhoc2N0UWHxjl36Rgf5mGrMNo5yfHnOxi7kkehsxzFqQqN1vWQk5fPYC/kF6edy4pgMQvUSlrUHq7D7TEYvD1EIrKxj17N0JgZWxYj/QEXp6sEocH8hU/dbaS9DsXSXH0hwLZTD0ALFFFz/H3gWsZ0Zq381ew7NTaQrWglyFiQiZTtwkaQFW10/Vl4Q9sAzPeMUn3mMNb9O/k6OGSOwbaZ6RyntLERc3gIKUH3+dCKi9CKisEfJNQ5xMLV1LVj/U+HMbTMXto7gZQPES3PQ//bu7rfHcOMAf5d2JEEbRfuZ756bGOWPfshqlDsYxx3CNH6CjhmyhYBibTnwXyIVvIVtPJPQ/0XU237/i+c+38PEGAUFTJshUKxR9Ge0lmce4ktibiLRcx+Mt06IcQ/ICXi/t9Syv+wYrkL6ABMKWX3mm3+HvAPgavAJzJYKKzkTVJFz35JCPG2lHLlT7B/QOr4rkgpFzZyXArFTtP+idU2yzVn2vnBP/n7jLz/iD/7q/8SK6bGHRQKNHCi6QU8admE7nYRPH1s0yIugHd6FN0Q2FbuLyT33+ul/VANs905poB7dilLbgt4NZsyoySvto6TXdpfEnH77y4XFzr+/AGspIUQ0H2lL6s/rpSS8oYykvEkC4v3PiHg48/VMXM7dyGzJYK1xZxrmkSfSZOVupQtu0YklbmyjJeCybp+A++3baI3HMIeznBc+X4vFhoLla/y7h+Z2ObmslonbvTQcP4Y8bv5WUFkw0kkmR+NoPtrMRciyDkL5sJAGFg9ODl5o5y6AlQakNUNiP7c7fYFxfXA3O7sa+EB+BohthOF1BaJjWBMBbAqlR+CQrHtSBOZ6MuwcvUgjaj7IpodRbT8BMII7HhoCoVCodg4Wy5stgkagPtAP9C6tFAI8eOkBFyblDj7c2l+9PVJKX9zxfN/Anwe+CjwQAjxZ6TSzZ4HLi7+/fM7cRAKxXYjhKDhucOc/PGPcv3ffL3Q4Sg2gbI63l6qD1az8KgvaxuZ3LylAkB8YpZzl45z5c3cAoVjS+YiNrrbwE6mr8JUfbKFq7fnKas6QE21F22gB2shuqUYdwojkp9gkstOQaYZkb/7dtfjv71uHcdaFhqllLScbcbwuogsxJkemWNoYPWY7ec/3srMjVXjvPiDGm1HvdTWW/Q+0ui5GwMErce8PH9hDEGSibcyFOySGQr7mbntBISW68LeWP66PdKXeWWGOFdR1sTdvpMMvLZ+fFroGoGGSrzlxeiGhh1LEJ8JYcdNNJeB5tLRDB3d60ZoGtLlSbODzWFH49jR3Ndj9+9MUnfeC3Jr1+6G2aJf815CVB6E8JXd2Zm1AGVHd1bEBfBVATtQrE2hUGREmqsHpYWnAtHx1woUjUKhUCjyoRAibibaFv/VgV/I0OZ14DeXnkgph4UQ54C/A3wW+AlSQ4qji+3+mZTywc6Eq1DsDCd//GPc/I/fxDH32sT27OhunfqTTbhcAonAkZKlGkUSwcDVPpxVGWMSzdDQXC50l4am6whdQ9MFUkIiFMOKb92vcVdxds/n8clHogeDFB9pZ+FBT8ZW0d5hhKEhrc2/9u7JYQyXhpVHRuPUwCxHL7cz8eFqWwWXz03JkSbuv98LCOYmFui9D3UtVRyoCpGYnN10fNuN1HVGJi2io/lNw7esXPei7CKnpmurRNyOSx3cfqsrY/vnLjcxu0bAbejw8LHLvegTdyEKLY3wyuEypKcEERqBsSRm3UuZg8hkcWFbSDQEWd77nNPGNpY9KDw+ZHxjwr6UEPMfIFl0kA+/FsWMLeCtCOKvKcPwuZGWTWI2RHR0mtjgGLHBsbz61VwGQWPZH3g3sEIm8ehxvL6ruRtvJ0/K9L9gE8Tu7u4+Zz8AowSs+e3pz1uXEoetMFRexC72IXejyJ1CoUih+dErvw+9/LOFjkShUOwzntai2HuJHRNxpZT/gJSlwdrlfaQxvcrUPo/9TAJ/c/GhUOx7fGVFNL98kr5v3yh0KBmQtFxsRxMO5mwoVehJQHRkmoU7DzNuVR7wIKVE2g6OZS+nrTrxtF6UwdpyQjEfkYmtV1DfNXbDO/CJR1J2uBFf0JfWC3ctdjxB7dljjF7JLArmIjE5x7lLx/ngjfwyze6/083xyweYvNWHnbSoOFjH1GyCh+/3sfbjbbR/nsqL9fj2kojb0s7QuymR71jbIWIigaHrWJaNZZk4jsSyLJJJk0QiSXVNFVNTcxn7c3KIuIbLwEqkMpebTjZkFXA7DlXgGxrBAoQuaDvTQEUFnBT/CdaWOI3MIiJ5vq5ZkjCj2hfwGI8wkunPNyGyi/vOzFja7qUEDA/CTqxZnt+Ag4NGKPAMU9FWxrtiREZmKGovxlPlp8hjEOoaYn5mLq++Mu7DtPAeaibelb9txXYw9F2DA7usHUhnGIKNiNAOZ5TuJEUNiPIyiO1ycUR3JUTzGxjIiKcaPGXgr8HyRUFKhChaFG/30ee8QvEEoFf9EEZdWkdEhUKhUOxx9lImrkKhWOSFv/fDDLx2a1X22l6h9bkO5q5vvCiNFctQNSgDsbEZgjXliOog4X0i5Gbz/VQs4ykJUHGojtHrPUjLQRgaNWfaQUpivf0ke3o3VI0yfK+TQG05kbHNC6XGyAAujxszkd4mYTWCu+/0UlQRoLjOT+f9iayz4G9/MMzzHUWY8xsvQLVdJDw6M+VeJlxgGiuKhwW93L2ZXSzv7HyEYbiwrPSvTa5iXHVHatANnUQ4zkD3ZNa2J+q9LPRKjlxuwRwaIfHgEaPAoY/U4klmF5FsivAcObEisOU/NL8HZh+l3S70XielL7RgkOF1yJFw4IRn0EQqm1dKoOosllWMNT6KXIjjPnAAPXQLEV/0bs7wOqY6s4n4DjMSPcPQjRnMhSiwXHjPE/Qze7eXmJnPeZofoekExU0NJAZzF/jbLob+dJyOL1Qj7LXK/A5ih5Ht1RA/hXjwp/lt0/oSsroKrv7JOjF+V9FciNaXIHpr9wVcgEDH1kXcYBtW0TyPR2MESCJbDk2hUGwQ4UYv/1Sho1AoFArFJlEirkKxBwnUlOIOBojP7K2afM0X2jYl4G6W2PgMgYoSEn4PZrSAP6DzRYm4Oak+3YY1Mc78jXsE3Aaucj/ScVjIISRmw0maFFcFiIzNsNnq5snZBU5fOM6Hb+WfpReejhCezkeEELgrS3ddxLUMjZsNHr764A4P7yxnWj537jznaQegvqw2Zz+JRIKSYDELC+njd5G9sNfDD/qoaCjFciTRUGYfVJdLo7Q2QNmCJHxz9X1m3nWa6hwirhmzidxNPxvA19qEq/0sCIFgSZcVqUtWQmQW4voPpYQlKRBLyq0A15yBTuZZBiSiaO1ncKa6SWqHse6tzjRO3LkJhhvP4VfR56+hGWU4s+vFSxGsxbIDjMw20vtB+vNw+kZn2uVbITo2Q9LnoaS4CDvDe7ztSMH84AFK63dRxAXARgZFzruENHxw8vNIeiHZhTj5BbjxP3YlwnSI1jMQ2WX7iZVE+6DqOZi6AnKT1hva3i/4qFA8DQhvO8LTWOgwFArFPkQI0PaYncLT+PNbibgKxR7ETppUHGlk+J3dE0xz0Xi+hdDtLELGDmH4vVhjc7u+X8X2U3u+g4XbDx5baUjTIjm7PVnWCw96qDp1iMlbfZvuwz02iMvjyjMbd4P4/NvfZxYGG4r4F3feZ+jG6Lp1V2/f4ty5w4gek3KjLK/+DCOL72sku42Ix+9GuHSmeqbSrtd0weUX2tAmZ3DCMayZ9efE8HCQ6tK8Qk2L0CB2f3MDBYFjhynK0SYS9SASzTiTGawirCSJuzcRvhLcBw+j+WtwZoeQ0Xm0moM4thtzsBPGr9Nc2Uy/qwLH3L0vyVYsgftwC7H7u3ePn3zNouQHfQgjtmv7BHJWoJQAZz+PNB+uWPYIcfDj0PmtnY0tDaL9YxD5cNf3u4rEeOrhq4KiAzDx1oa7cLzeHQhMoVBsGDWgolAoFPsaZeCoUOwxrFiCN//mv2H4nc1nJm43jedbCd/tzPnjdycwinx5FWzfEzyFI4H5EqgpI9rZs6PnkD05ge5xbXr75GyIc8/lzkzdDOYu/WiydMHX6wR/+xt/yNDwegEXwDRNelwjAATi+Qkrup5ZxA2PZxfh6o/UMppGwBUCLr3YxgtHSonc7mFhbA6Z4SKSdu7zJmuhBXvzNxEnh3VB1Kjld75xhJF40/I2Tee4Pf08D2MvQd2hx8tlLEzi1hUSXZ2Y0zGsuIdkXz/W4GKGrcvDna7mXRVwlxC76Old2lZMnf8+9mwBssHsWaTuSbtKCh2e+aFVAu4STtE8svb0Tke3Hm0j5jI7THIKQnfBu/H7pNT2ywe5QvFkI9z1hQ5BoVAoFFtAZeIqFHsMzWVgTs3QcKCMqGUw25c+e213kDRfaE9l4BZAwIV95jO7n2LdRXSPC391CdEHO1t9PDE1R82ZY4xsociZMT6Mbghsa3vP92hC7vgH7lR1gH81cJsH3+rJ2dZyUlOi9an8hLvDh45SWxNCypQHrm2nti8rKuGgvwgaihBCpPxxF186zdCwS4t5/1sP1vX37POt+BYWmL/by0qDhUwi7sHmLnLZZ2YTcSWbG2ORzScJOSXEfZ+nOvbVdetjRhW/f/2jTPfPcKO8iU+VvIcor+f9b4EZTwVsJao5Xprej3flfVUUl9O7cJrpvkIVwdup+5ek6lgZtR02HnMIHBNmrsMMOBP1ULVDu82EE4XzX4DxUehfziiVCLjwOWRy/fmaapBANlbBbDEisYtWR3KPZc1ZESg9DPF8PXI1ZN1LSPZOcUeF4mlGK32l0CEoFIp9TNakCcWuoERchWKPoRk6r/z7v82ffuEX0eNJSpsrmBuY3vU4impKqKwPMHcrww9ahSIPAnVleDST6IMMItY2E7r9kKLGasJDm7tmEpNznLt0nCtvbm8F+4WQSX7GBRvHFpJ3G738u2//KaZp5rXNknYoZyxKS0qYm5/P2n54aJShofWZvZ849wKTnenF+frTzbyzRsA9+kwzdU6M2ft9aYvXZRq0cVnZBaCUdpz5S+VGx1ckAqvtEhNXOoExhMug8qwXzVmWnGN6Fb9/4xNM9c4A0Hd9nLEf/BwD709gxpePbrovDJ85AiOZ76Wiuo0Pr1YTmS6g0LXNGm5ZRzH1R3V8yS6YuQFpEsPt4Sk4vr37zQeZfISs8CI8n0A8+mZq4ckvIZM5BkCsSTj5Gfjwv+98kIvIqS6EzwC5AzYvm6HsAky+vfxcGFByFMwQRPrXt6+6iO3dYlE0hUKxbWj+I4UOQaFQKBRbQIm4CsUexBXwcfl/+xm++xP/FI/HTfMzrQx82MtOz9cXGlR01FBcGSB0t4u5e7tddGY9iek5KjqqmM5R1V6x99DcBq5kmERo9yqQS9umuMRDeGizuZfgHh/CcGlY5vZN/50ej+yIiBsq9fLv5nu5+vW7ebV/9dIn0CMlNAfLgRmEELQ3t3Lt9s2s22l6+ozd41UHSAyuF4Ar26v54OqyEH70fAsilmD60TheI3ORwsMNo5R7epGOBbaduikhsSccIpQzH63DiS3aNziL74+mgePg9/oyH4DYgFVARSMhq4rwleUiYhUnG9GcZV/SuF7JH9z6BJM9M6s27el2Y82vl6dH5+upY72I6zSdZT5WxoM35zFjhS3emCkLOl+ELqg9VUZlo4Un0ZPKts2h3dnDvUirZvd9cQGcONIfh+NfhNA4Uk8jQKZB2t0QqEZEdunzcb4PilvBnNud/eViqbCZUQxlJ7CKJDAHVGP0j4KTBAT4G8FfhxUowHurUCgyIhPDCNduT4FQKBQKxXahRFyFYo8SXyzuk5ieJzE9T8vFI/R/0Jtjq3yQlDZXUlxVjOES4DhIy8JJmkSHJrAGBpgd2IbdbBOx8VlKz9TsDxFX2SmsovZkE/O3dr8Y3sKjPqpOHmLydt+mtk9Mz3PmueN8uI3ZuDMTYbQ6I6e/ar5IKXnYUcnbC5MUl1fxmU98DkwDgcDr8xCLJle0TT0M3UXfrSli4VFKAgGWJM+G8nqukV3EDQaL0y4PLLhYKz0GKgJ0j0dJxCyaDlRRVuxh6PYgAJ5A9qnhGg4ynln0l4nEsni7xOJzKcAoK0EIDQTIxeVCE7iKdYKe+dQLoemgaQihL16zSxm8AqfmDHf+dB5prn7v/cXmYzuHuFbCH9z5FBPd67O9nZn0GeCdb88gL32E2soZ9Klu8BUxFD1K91dngJm02+w6m7h9aW6NjpfLKfbNoE0/hEQ4bcZtRqSDNdSKq7VwRTylewSqfWDnKTZKE46/hLzy+4jdMGyvOQdmbouUbcUoAk8FsrgVx20BBnpoDhwTuziALDoOwoZVFgkLyNoXELEZrFI3EFp8KBSKvYQTvY9WdKbQYSgUin2J3IN2Cnstnp1HibgKxR4jPhNi/P173P4Xv7tquTk1Tc2xerzFHhxLMnSjP69iPwjwlvjxlfgpqiyCWJiF7mEWdtaedHsx91BhF0XexEcKl8ltT0+ie1zYifzsBdbiHhvEG3ATj2xu+/UIPFVlxEa2PhgRC3j5H0aU7339W4+XvfLCi9x+N5VJ+MylY1x/r3vddhcvnCIWTkmuzopCX5Wu9TnCXq+PFy9/jMiCiaZpzC2sj/tE6yFmOld7dmtuA6OjnpL5GC3H6+h9s3OVla1jOZCl9pzt5FASdR2s9EK4Jhz0aIbXN+EDa7XcnO7uOTcfRJrrfciney3K6gLodoT3F77EeOf6c7u4Jogzm1n473p3hpRbc8fikj0i3j5mIyqupOGZSuoqu2HqKluxOzVv9GI0byxZeluRSbA39hkjk52Is1+Ga7+zQ0Et4qtEuBdI6z2yk5SewPJNAcOPLxTr8TjOcNpTRXOaEeYCVkkSVjldKxSKPYXcru81CoVCoSgESsRVKPYQfX/yDnf+9R8QGVovRESHJ4HJx1lvbReO0PNe+sxcw+em5nAtbheE+4YxQ7PI2CwL+9SWbqFrEN3twk7ahQ4lByoTN1BbRlFdGbohmC+gn3JicnZLRc6SMyGevXCY11/bvotGCxbBFkXcaNshrg1K3rz5e6uWr6w76DipJ0XFPvyBVL7txNgMXXeHH7ex7OVrKRBPtXG5XLz64qe5c7OXaDTOB+8sZ0c2t1Wsi+X7Ol5l+taymCmlxGmt5fr7vUTmY1y41LFum6XYMmFKD055KyBTqt7SgS1luUezWA5kK76YT2FGb4DJB+mF1cjAOAP1X2Qw4uL6d9IPTlQ1l0Hn9nopFxLNJShrK8ZX6sLlExhuic+fxG1Pw9wAxG/ANtTddGbGsKcuYFR35m68h5DOQ8SBj0LXd3ZsH6L8AGQqtLbduEqg9ARSN0A32OibK7UEVmAO9lyGjkKhWInQslgPKRQKhWLPo0RchWIPMfdoIK2Am46Z6w9ofe4IA1cHcEwbf2UxNQcqSIxNEZuYI3K/M1cx932DnTCp6Ghk4v5IoUNRZEBz6VSfbmPh9n3C03sjzTt05yFFDTWEhzenNEVuP+TQ6UM8urk9xyPd3k1vK1wuemqPc/V7qWzbj565zDeuvrG8fsX4gdDg2edPcOXde4QXUlPEfT4PiWj6dD59StDW2kGJv4n337mXts1aT9wfffmLqwRcgKKzbbz32gohTls/qOFYDngyH2dswc3oo8xZfEWVXiSZpr1nEY/ysTqJR0hOZS7wFhuPcO3tBGsHawyfi/LmSioqvZjTQZIz+3QKuRCgQeOFCqpr5tEmbqWylx1SVhIRtpRxmw3zTgjjIzvT904iy0t2dujO3p2MOafxozgMg9j8vU4yrsYxFYr9gLFTZVYVCsWTjgC0PTZY+zR+9VAirkKxhyhqrN5Q+7nrDwgaAj3gxl6YYvb6NqRF7VH8WYQfRWEpaqrEbcVYuJleACwU0rIpKnERHt58kbMaZ5YuXeDkY12Sg4Sjb2o7f3sT83Mmo/3LClqLp2lNq+X4HEdy5d3Vhc5isQT15eXMTYcBsFfYKRADJ1lC71jmLNL5+WVx88UTFyjrcmOxbGtQcqKJt15bk0mZ5iWXUnL4bM1q0VmkfGsBjFzXeRpheLnvHNvmQfurVXR9K32mbby3n6PnTzE8alHWXIGdsAhPhpgfmWXy0SgVIkJZY80+FXElTS2zlJT3I8PXYZfHy+y+hzjRQ2j+whfT3AhSxnf2x4O/jN0YjRWWhTE5iFXfAUR3focKhWL3cVWiBU6hFV8sdCQKhUKh2AKFciBTKBRpaPnsJYSxXuhxFfv56G/9L/hqytdv5EjsAlc13w2Evg9uV09pYbNgbSmJqR1K0dsi4c5+qs+sn9afL7GRSS680LAtsSyEN2gHousETh1n5MEkkdFZXK7la2D89iRVZcsWB5ZcFlTl2sJfi8Tjy5m4K20NZMzGtjLHduRYOyMjqWpVFw6d5GLiIFZyeX9FzRVcubZeABYZ5K3i4fsUDdx7/Aj038Pfexd/7130ZHbzT2FkHnuWWY4hX4XXP/se3rL0GdMyWIrt8hMen2Pg/S6Gb/QxPzwDUnLs2SYSQ2Opomn7jMr2AB/5cpzg6FeR4cL59MpEUcH2vWmcBeROyrgivHN9r9zN2OsQPATySZm/o1AoViK87biP/i6u1n+EMIKFDkehUCgUW0Bl4ioUewhXwIeryEdybvmH27Gf+jxtX3yRoqZq7PiTL9amQxg6CUtQ2lyRytiTIHSBEKm/0Uj9DQhNQzrO4+erhNVFIUek5oKkytmnVqzY2aL0JEifvCmX97W2f8PnpuRIy+KGcp2oO3evryA6b92FA6kq6hKWj1VkOD6ZaiJY7Ue6QgSTq/qB5NReK9C0muTICIbPg7XZwY7uLipqK5ke25qg0ts5w3G3yEtQ9NRVEcfL8ApP37rqAP3dcwBYSZtPnXuZ//z67wNw6/YdDFmOECKj76zLZRBfrJC00hNXCEFLYz137q33JDUMnaJiDydOHMcKxXhFP0Nkavl1cAV9dE7F01s1ZDjXNUPHSaYvTpbzlRHZRNLMW+ebpCu8RSRC688Tp6qeq31e4g/7163zFHtJdPciBIRH9uZgxlo8xQZHX/JT7h1Bm/gARveA33gyS8W7vYodQnS8Ct3f3Zn+ZfoBmW3HXYFVlOTpnJSoUDz5CE8zQtuH91iFQrHnEHvMTuFpRIm4CsUewwwv+z22felFTv61H3j8/Nl/9FO8+fO/vj3zhvcR0rKJPkiJWUtHvhdfgXiWujyayyhYoq49P0+kdzh3wycUczZE9RaKnNmxBCePeHhtbIGtiByR+QT+83VE+7PPVfc21DA9EccMr56WXzzUTUlpKfNzKc9YOZgSYKWUhEJhmssaiITiGUXc9mN13HynGwDHdlg5Gae2tII7rD+BLcvmw/dTBc6+9OqrRK4vC7hCE4RKipm6nf7ckhnuU0LTgfQibq4LW2YTtbLcF0WeF1/EewJpr57SL90e7s+VEQ+tHqzwFHtpOVGHHOjHnk+J2JHRafzFHuxsBdgKiOHWeOZzHorm3oe5vZV1mbw5heflcjTP3h4UWossr4T5w4iphzvQefbM9G0jOYvGGRzWD1IoFIonAE15kikUCsWTghJxFYo9Rvv3vUSoe5gTf+0HKD/aumpd/ctnOPmz38ftf/n7hQlOsWlEFi/Pnd+5yq4K3X2Ev6ac6PjcprYPP+jh3PPHuPb21sRwp6SUbIajUkJMejDDc+vWFR1tZ/6bwywJybPD83zmwqt87YNUFqDtn8dfrOG40xf+mppdzhJ11gietf4KXjx1AU1oaEJg6Aa6pqEJDV3TcesuSlxFVJ0rSiVp2w6JgBtrPs7x5zuw5XL2u7YYX6DMT9tzKSuLlWegvz6M5jjLC1eE4i8XlFxuW7uYpU68xQ7C9iE0+Xjbx47HbgNZ27YiQ2DZC1m4fcgsgywANJyi68/WCLgSxmtOM/PB4HKMZQGaj1ZhPurGur3ae1hoAt3j3pMirmbAC19MYoy8XehQ0mIPdWN1P4f72D4Tce1haK1HFNdC7+v5bSO01OyIbBh+iA5sQ4Q5qLyE5bdAKgFXoXhS0Ss+X+gQFAqFQrFNKBFXodhjnP+7PwZSIrT0HrAdX/kInf/9u8Qn53Y3MMWWkHJHnRNzoERcaVqU1BZvWsQF8Iz0U1xaxMJiJuxmmJpzyOb8WXziIEPX0gs333p3irXvZb1d8/jv4eExACpKKtNu3/mgnyMHDzDQOb6YibtsTdDgVDP1YGHdNs7i/0xMIkQZISVytj/Xyne/dj3LkcArLx+n572+dcvPnDEx59bvC6D0xWrk+PsZ+3Qfr8YZe5R2nVZ/FGsww7qGQ2QzDHAan+H+d5LrlOPQgfOEYm4kAoGkorWScnOW5K31RfyKGqtwewWR3l2uCpYDT0DnyEsBqlwPYaSv0OFkxbz7CNcRsSzS7wecMDjglJcgQgcQ09kz/iUCLnwW+cFXs9+ZS1vZjQpzli8OMv31qFAo9jl6EL3iC2hFZwsdiUKheBIQe9BO4Sn8matEXIVijyGEyJo56Skt4vBf+AQ3/4/f2cWoFFtFOoUTcQuaBbyHCN3rpvL4Aabubi67zQxFOHemkddfG9t0DN33pzhToqctwiWFYH4i8xR3X8BFeGH19OqROxOc6jjKre77FBcHONDRRk1FNfVlLdhJGzPp4PLo6IaGxMFKpL54mZYNLPvjJcz8PVGbTtbz+lv382iZ/rwTemZfWydXGNmsZOTmfF3txkvc/XponYBrVdTw4XvTmHGTlnOtGGaC4tkR7HB0dcy6Rl9rG41OlOLeQfYSpz8dpMp8F0Kh3I33AHJhBmf2GfSKzVmfFBR7Htl+CKa7st/rhUBa04hgE4Qyny+iuBaiuzAgsOQtr1Ao9jXC245e8SW04HPIxBBobkTgNELsg8LACoVCocgbJeIqFPuQilMdhQ5BsUGks0sFahRZceZm0NxGxsJauYjcfsjBkwfpvD2Ru3EaEjELLhyFe3fWrSs+foihq31pt/NVlzJ5M73A+3zDM3i0Mka655i45TCRR/aex+OCFd0NPcrveMrqSrjdM4Jt53E+ZxipzzaokPMyyTLAlcmDF8Ae6cI48AxW14fL+8LFaOBzzL05vE7EkhIemo2Y8ZRgH5uPUrMwgp1cbZMQq6vmm5MWPd++T1NrJT/s1lJWEXsEvy+5bwTcJaweB72i0FFsEnMYDn0SHn0jYxMhHdAbIWhmFnGrTkByd4RsIb1I9tc5olAoVqAV4er4NYT/2HKRX09DgYNSKBQKxU6hhuYUin1I1bnDHPihjxY6DMVGKGSmk8rEfUxiYobaU80Yvs0X+aiVsxjuzX98vv/GIIETh1Ytkwjmx9dPadbcBkWHmwk3NOMt9qbtb+zmJJHJjRVAmhhb9setOFxPeDaapXUKw60T9QnmZlLq7ydf6sDvc29ovwBkycSVGYqyPUbLPPYs7CzCvHS4PdnO10I/ylfnfpTfn/xRrk5+ls7vDuPUtCHXZCrNHrjI4N3ljOvGYgtWCLiOrtPZ3sG/f3+Ens5Uu8G+KSZa27LHv8vc+K4NvmChw9gQ5oO7SMtX6DA2jQxMI6uOZl7vKUVaPVDelL5B2QGEOwTW7girekL9FFAo9i2aF6Pll9ECx/Mu4KlQKBRbQRNyTz2eRtQ3N4Vin3L2b/0wn/uzX0VzqYT6fUG2aeA7jHgazYKyMH/zAVWHa3I3zEBsdIrnnq/fQgSCd96fwde0HEPx8YMsDE0D4C4JUHr2MLK9ne6wl6tXJhifs2g4UcuxVw5w8uNHaH++g5LaEgCScZPnzxxL9Syg/UwlHZdKaH+uiNZnA7Q+G+Dg5TL8xcuCayJu4q4rTm0TSC8Or6XqVB0P76cKu335E0co6hrky0dK+dgL6WcGZDrlM/l9Z9tmeeMs53KWQlGj3vP84X9f4Prr49x8c5x7740TcVJC/vTtXvQDx0FLictWVQPX3h1f3YF3+TWKNtTyB3YRf/Kd++syksesvfW1KjZnYpYdK3QYG8NMYI+3FDqKzSNNaDmVcbVoOg/SRLqmkMZ6sVqUVeyagAtAYm739qVQKLYN4W3Fdeg/opc8X+hQFAqFQrGLKPVHodinaC6DQF0FrV94np7fy68itqKwSJldg9oxVHbGOkJ3uyhuamBhcHJT2yfuPqChrZHh3rnNbR+zuDno5nRdFdGxKebGwwCUnT7Ih++PYA8t+/YKIbCE4MrrnY+XNXRUEUuaND/TzMCHAyTGInRcCnL7wR1ev3oz7T5LSoq5cPkiXVdmsE0HqvzIkQWGu6dyxvvKx9vR4zGOfvIQyeFpYnd6AIiMz1HCHH/pYx281jVLd99M7oPXs4m4OVTcLN5+MoOhrpTwB++0Y5vzq5abXv9jV+CpWz2UnzgCQ93cCVVhJVafF+PzUGLodDa18Gffe5gxzqS1tzICypp8uMbfKHQYG8Z8NI+xj2cDS7sbWO8KLYMNyJIk2IA9DzUnYPjKmlabs3rZFJoHu6QU5OZ9vhUKxe6jBS9jtPxDhL5/Zy0oFAqFYnPsrZQRhUKxYY7+xc8WOgRFvhTK1kCJuGkprt38NHNp2xyosrf00s5NRbk15iJ4/iTh4WmKmqu5dmUsJbCuYe2H9XD3JDPjIbofjOEpcfOe/SGvvfUm01Oz67ZdYn5+gW+/+R1KD5vouuD26DhV59uZHcue9VdeFSByu4u5ewPM3+4jNrPe9mHu3iDnZIwvfPYIHn9KGs0oZ2Z50XIWNsviS+LMjyOKytctH/edY2Z4fv0GcnUcM3f6sNpPMta1XtiPWHCjtp2vf/dBVqE5Ye0dP1yAk8/FIZvNxB7F7r2Pk1j/Xu4bhJF2wEHUHAN7+XoTbn+ajct2MLDVOA2XkUrAVSj2HXr9zygBV6FQ7DoCiRB77PEUVmdVmbgKxT7HX1uB4fdiReOFDkWRA6EJsAvwQaNE3LSEH/Wie1zYCXNT20e6h3ju5eO8+9rQpmOYnYzynT/rp7qpjokJCzORXnDLJA4uzEap+Gg5D76ZfxGkGzfv8MoLz9PQX8Sdt3tytj9+oororbmc7RzTxugcYiE4R7CxiHeHb8Oi7adAIKXEkZJecYy4L82PTynxB5Oc/eyS4CoWLRIclmRsM9SMQ2nqnJYytX5J+a04ijXUDe5iRGkd9kIUe3KIkKxMG69tuIg3tVM00PP4EjFHVxd4070u/EeauPpmNx2Xck/xT5o5Vehdo+ZQEe7R7xQ6jE1jD9eiteeR2b0XcWJw9stw7XdWLZae1aKtU+FCTNQAEgwvzA8grNXF83YSKeKF9WtXKBQbRniaEJ59bDmjUCgUii2hRFyFYp+jGTqtX3ierv9n//5Yf1rQDB3H3v1MPSXhpseOxik/epjJW72b7+PBQ6ob65gY2oqHpWBicC5ri3gGcRdgrj+24T2+9tbb/ODzX4A83CS8miR32bMUIpzk2WPtfO31axnbJGoPMDecPmM4HhaI2GDmHdiHkPMj65cHqrF670E8ZUshwzMI3YX78DlaOt+lrP6TzI4sv0cNZ1v4rT98hMtj8OMtArGYXRsbnSJYUUdoOkbp0QZ6BxeYeTM1Nd6K5M5o3Usi7rFTMzC6tzKDN4J5fxCjTe7bYj3SeQjP/BB0fQDVi4UM/RJW1iC0JpFHjoI9B0iE+ywyGkdszuVlwwgngNytnSkUim3BaPo7iCzWQgqFQqF4slGfAArFE0D7l15S2Zb7AGHoBdmvVKlWGRFbtLhwTIv2js3bMuSLluX6nu2M0tG+8aycr177Jv7juYuaidweB6to6w9TUhLI3CDLa27bOd6PNK+DlCA99Y8F3OXOTJze9yluKOOTr6yeqRCbSbV94YVmtDX2CC2HKvCfbOPqB0PMjC7bMMzlsJ0ASOwREbf5TBB99Gqhw9gSzvggMtJU6DC2hLQeIFtLkP6x1CPZv76RPctSOqxM9kE4TZsdQlibm4WgUCgKhFGGVnS20FEoFIqnmILbJ6x5PI0oEVeheAIoO9pCzbP7rAL5U4imF0bEFSoXNzO5CmnlgVcmczfaIpFI5n0IIaipqN5wn7FYnN+/9Sf4zrpX9+cR+M94MS8ksC+YDGjrPXCzIWImr547isfjxm0YGLqOx+3G4zJwGwa6S+DzG3h8Bm6Pjser4y8y8BcZ6FqOaySNiKs1Pos99CDjJs54Nw3iNrp7ue+Z/mn8Re51enK05QCv35zj9jurbSZ0Q6Okphg9S1E2yP4+7SYHOoYLHcK2YPVlGQzYN2zwHmPsns+liCg/XIVif6G+zykUCsXTjrJTUCieEKzY7vnoKTbHVrM+N7/jwux2PyCdrYu49kzmYmKbQUpncQr58hs3M5FdSHUb7nXLPC43l46c5kRtO8Oxef70/e+RMFffJ0zT4nfe/WNOHDtCa2Ujs7F5rt25Tey95czVb+g6f+PVz+C/n6+pAjTdm+anL7/Md7+3KIauSFA9VzGLM5fewsIfr8necZpz2Zm8h1bZhDOV2YahON7FhZde4L1vp6aON5xr5d73Oh+vt/1+uksPcPW11VmQTSfqSLgd7tzto+v63eyxAfF4EopyNttR2p8tQRt7t7BBbBPmnfu4jrkQ2t7IcN4NZMURxMLmLV42xEInlB5htceDQqHYqxi1f7HQISgUCoWiwCgRV6F4Qqh59hjTN/MvbqTYfdxlQVwBH1LTEGJR1BXaY3HX0FNZlUJL1dlc+lsIAdpiRq1I5dVKsULPWlwmNIF0JJHJEN7SAIbXSImU5uZ+oEtNJ3zgTOpvuVxLCqB45CEiEs688T5BOlv3DI2NTuH1VxCP5vZMTRuDlPhbqzFLAoxOhrEtm49VOMiyUrpujpKIJolHs7+Hhrb+4/yvH/k+QsPzJIbm0INBPlbySaqOBOkN9/LmrfdwVtgk3Ln3gDukz2a9dKyMn/vCd3lw9Dne+v0NHVn6xVkGFZws3r9AWn9UkVxAFFWT650sKVoWsJ3FjNq33hnC/epxHs1YTLy9LOBqhqDp5UZe+8atHL2uZmo8hF3mRjcLNU1d0lbXnZfX8X5ARkPY0xcxqh4VOpRdQ7Kb91UHIaqQ8snI3FYonnS00o8VOgSFQvGUoz2lFgZ7CSXiKhRPCB1ffoWeP3iD+ORcoUNRZGC+ZzTjuoqTbSQfZp4SvlGi2zJLVnLzzYG0ay6+0Iq788527KSgbEcmLkBjezlddybybi/cOr6OWhaETtejcWauDT1eV99aQWhgBgYmqXMZlF1s4HiRwbfeGGViMn3GfdQM8dzlU1y9cg/TtHjx+FlCwyk/12BLJZ2LsUXeiyHw85mKz3HhhXLujnXzxx++RzyL0P8rf74cX/g7nG3owvnSX+CdP1zfxvBA0xGdZByGH6bE4UxarcxSkMXJ5SmboVM53Q1k9/ednPUBKV9bez5KsDJAsDXIb3/tHodOLHuv+qq8TJUvMB6eyx5LujikZKahkaq+XcqkXEP98SBi8r2C7HunsDrjGFWFjmL3EKIIqXkRTjx34+3Yn9SUa7pCsU9wQm+jl3+q0GEoFAqFooAoEVeheELw15Tz3D/5aV776f9/oUNRbIZt8GbdboTjoBkajrU+xzFkeagsQEzbjZXYnozJqko3ufLgXUEfRks1k5Ekj+4Mk3irJ207y7QfO9Y7psX0nX6e/3gpJw/dR37sAN3xcv7krQXGFgVdKSX3uu4zOTnNsWOHqays4M8frqc6HuD9D2I4FUFgtcAcX4jhujvO8YiLM20fw1NfQtwveG3oPt+6dR2As23V/LsvNFJ6/QELh7+IL9jJ+Ybf5OgvvkBXTwcTQy4Mt+TFZ99EDy9nSg68+kP80b/xETAkz12oTWWUpyJdzCqPZXyNpJ1ZxJVSIDOIvEKAVtWCM5m5KNTwwLJQrRW7mUqG6f8wlbIajSQQUlJ+tIzrE4+Yvj/P85fLM/aVjXdG43xByrRZw4qNYz26i/NMA5o7d2G5JwEZv4eoPAMTOy/Gy/qP4JB+oE6hUOwdRPGzaP7jCG97oUNRKBQKRYFRIq5C8QRRde4Q/voKoiPThQ5F8YSgu/S0Iu5I3zwVMm2dqX2Dp7qcmZ5RtsM02GOnz5D11pXiVJUyMhmm6+4IsncuZ1+OLdeVHTUSIUzHQfQ94gDw/zlXglNaySiVfKczyevvpa75e/ceAvAbLZcRk2O0dGj8md7IxZcO0HlvjNmp1FTtU6frMIdS2b9mJIHZmRJ5f/piM//quWlsw4sxPQSj91JtHtxDHDkHVite7yQnK/9vxFJ25JrZ3zVlPcBxqlwmxZPd645Pa24ko1SbYSzD1o9gjQVxxm5k2hLNpzHrOsiD6LMkTR2fz8ath/FoMcajlYz3zlJcXUyo1Mvvfff2qm2H+iZ45uMH+Pbr72OaKUuHzZ4V9+8Oc/ITR2jv2X0LACu5dXuQPYdjY480oLU+HSIuRiWMXdmVXYn4HDwJteMUiicKHa3sIwhXDTI5gvAfRa/6c4gss1gUCoViVxAg9pqdwj7+LbpZlIirUDxBaC6DuhdO0/073y10KIqNssc+DyGVHGxl8CgNjc3DsSqY3r/mm+7yUhjeHv9Jc2Iq9YcAf3stMZ+H3r5pRu+MA+Mb6su2bHCtXmZ5gqueO6F5CM1TRzc/ceYs39f4BUbcbn7z1l2EMBGTKT+NhUAj976dmtrvB9rPNGCU+GkKSqaHWMeB1ihieGLdlwMRCGJ23QDHxuwBV9un8Ze+h2avL+o2OHYIAJlJT8xqp7D6fLNlKbMjn8acFZTKP0u7jdRcSF8l10Zf5M2vzmInU4K2lOAp9SPKGhjvHKf2fAvfvPKIhc7109QPPdvI17/99up+t/Cl8He//ZCfeqWFsoHdzXJ0rD14I9kGzLvDGC1PQXazFkBL6Ai5S4XcbFXQTKHYU2gBXO3/O1rRqUJHolAoFE8VQohG4B8CnwIqgFHgD4H/VUq5oSrWQogXgV8ALgPlwAxwG/jnUso/3WqsSsRVKJ4wgq11hQ5BsQn2ovQiPJ6snrGJiga8+1jEFd7sHqr5ovl96NXVuL0+rl4bIPxB5in9+WCnec0HhgRNadpKoRHpH0dOz1IH/H/9ARZOXKIraTGVcDMxaQHLBsljj8YAycefC6E/FyTqq2CwN8Z4X8o/tzjSmfZcNBrasbquP35u9nYS7bhMwP+1ddnYV7/nAZzNFY1btBVJ2kdYmDhD6MY4zkIn/uOH1l0k0vAias4zPebwrXdOMnx/9bkoBJQdrGesbxr7QCW/993VRcoCJT4i8ylrh8E7EwRLAoTmI4/XV/l1io9VETdt2moD3O8P8WhgPq/DcBzJb18d5y8dKcc7PbPRV2HT2OYTmIkLOOMDyIXTiODWrq09j6sCht/ctd1JXyWQZjRHoVDsOHrdX0H4DiCEB4QBOAhPA8L1FJmAKxQKxR5ACNEBvANUA38EPAAuAj8PfEoI8byUMq+pzkKI/wX4R8AU8CekxOBK4CzwCqBEXIVCsZqRN24UOgTFZtiDnrjSk13knI1q7NchA1dJMVP3Ni9euCrLcdXXEgmZTHSO4FwdxGhpITyX2e81b9KcC8VlLoisbzrVcoDI8Owqf+LeR3Eme6aoe6aDuVACKaH6cC2TnWMg4cy5cqyZfqyZWXT6aQUOnq7C096AZoxiz0nWzk2Skbl1+za7H+JcOIaeuLe8UDOYHLABQWmZQ/3HqhCkfDekBE04uNxRKG9Ne+hCg+FrP0C8qx9WuAxH73dRdK4dI9Lz+CVyqp/hXn8H3/7jKHZy/WCC48CcafPm8AQLC8vZt9XNZRTXedF1nUfvpM6BWDhJWUeQ33ihETk+wWRzG0lpU2cMpL4pzUPjmRN5i7gAC/Mxfm88wA8V+zBi23Be5IGV3Hv3ke3C7HLhOVfoKHaYxABUXYDJXbJT2K2MX4VCsRrNi1Hzo4WOQqFQKDaEYO/ZKWzTHK3/k5SA+3NSyt943LcQvwb8z8A/Af5KzliE+AopAffbwPdLKRfWrHel3XCDKBFXoXjCqDjZzvh7dwsdhuJJwO3Ounqka4paz/70xTXqajFv55/VJxH4WxuRwRLmR0NMDEzCYO+qNpXFW/9crm+p4IVKCRPLol9lYxFlkzfWZcj2llby07/3LaSEjz5zmsslQY46biavpawdZgem6OpcoKS6mM47YxSXB2g6XENzs4m8pyFW+B2YE5M0njBwBnrQyyrRq1twwnNYIz3ota3Yo72kw6IVnWUR1/HWIR1BTbOXY+Lb4DtI+M5DVn7FyiUbpTXwcBwiycMUa8OImmfoHW3k2u+5MAIe7GR6r1RNF/z+d5azbz1+F+3n6vjw/XvYQw4XLh1f1d7r9cDcPE48ScWjhwi3a9Vr3uTZuOA12DfFt8+18Mn4ILvxnfdJzcQFMO/ewX2qDGHsjiBeCLRkOWJ6dwRcAOJzkP02vx69GKQFzpP7PigUO43wHSp0CAqFQqEAhBDtwCeAPuBfrVn994GfBn5UCPE3pJRpUmoe96MB/wyIAj+yVsAFkFJuS0VtJeIqFE8YTZ+4yL1//9VCh6HYINlsCwpFyn8yc1yx+RjyTBNidHD3gtoGjOIAU7f7yDV2KzxufG3NmLqH6e4JJu9PkZoZk557fflnaWaisqoIMb7CR1XA8bYIZv/qwmnjRSX83Ft3CIejAPzx6+/yx4DH4+by2XMc9Tfi81VC5wLzE6nvEAszEe69203zgp+xZDs1Bysp1iLogw/BSuCKDOAAzvwUznzqOLWiIJ6WWrRmN8mREObwCKsE2Yhr1TcJS68GJC9enEMOLkD/NYIHW4hMWdizW3t9Fm53MXn4L3DvGw7T3Uvvwzw1B+sZXyzMtgopcbl0TNOm43QDI1PjvP/OnYz9ezxuhLEsIcvk6u9Z3ulxUtdD5vPmQFOQz52votWex9ENemWA3/ijbmpfPcSZwa6M220XZuLJFXEx41i9rbgO3i90JDuCJtoQ06/t7k7dQWADYqyrFvfR38YJX8Ma+Mdgze1UZArFk4sWwGj4hUJHoVAoFE8SR4QQV9OtkFKez7HtRxb//aaUqyt6SCkXhBBvkxJ5nwO+k6Wfy0Ab8LvArBDis8AJIA58IKV8N/dh5IcScRWKJ4zilhqC7fWEekYKHYriKSBWXEVgn4m43upy5mfSFxszykpwN9YTi9pMPRrFvj6cd7+WvXUBra9nCu/RNtoGUpmvFz5Shdn5wao2McPF334wytT0eo/9RCLJ9957j+8BLz7zcXwnfdR6K4h3RUnMJjl0tIroROqY+q+kBpMNbx0HnmvAmf6v6/qTkRAGozD2Hl4NvMcbkIEOklMJkr39WBPTUA9hp5gb4TNMTR7mz31hBAZ7Hvdhj/Xja3+G8AZEXInALKohGaghrpcwveBj5P4UyfvrxdrySh/jnen7qaoNUtQY4MP3761bJ9fYVjSUlGCWexBpXlcAa2qGv/vlE5SSxJWMQzSKjMYQ5WXMeEsoj89jDQxBz/jjbOKWgwcAuHZrkM9/so3BD9JnNG8XdvLJnh6feO86ekstmnuu0KFsEzrC05ryEend/YKkjseXs41e/efRis5jDv4zNP9RhOZBht5PCbjChdH2/0OGb2JP/JedD1ih2Ofo9T+DXvF9CN1f6FAUCoViE0iEttcSj7Ycz+HFfx9lWN9JSsQ9RHYR98Liv+PANeDkypVCiDeAL0spt1xQRom4CsUThu5x0/alF7n5a/+90KEoNsIe9MTNh6k5m0Chg9ggemD5x5OU4G2qQyuvIDQZZqJnHEb6NtWvYehbji00E2FoaJ42oO5ACe7ea6u+mkgp+deai4raIG1OAz09Q4sZ06upqanh3u1lwVAIwbFjHfjai5FOCWKFoGrFk7j0aIaIJERWiPShYURoGA/gOVQBJR5+4o/+HG++34dlxSku7uTrH5nBs6aXXI4bsbJ2pt3thCIGiYjNVNc4jmmTMlfIXkdg+u4AgfIAkZnlGU5SQvGJVhLDvTxII+Cm2iy/sj/wSiOX7SGszvTWDEuUPUpl8q6yfAhHCDKU1gbCNTe72MQkdu8u1ScOMXFn5wpJOZZMCYLyCc3INeOYdyvxnJ0rdCRbR/OiRQRidPfF2yWktpDzt4/wHUQLPov72O8CqfNKb/g59Jo/D0Y5QuhIbzv27J9hNPwNNP8hkvd+YOeDVyh2GOE/gUwMgT231Z7QSl9Fr/5RNL+yUVAoFIod4EEeGbeZKFn8N1O2ydLy0hz9VC/++1eAXuBjwPtAC/CrwCeB/0GquNmWUCKuQvEEUnvpBDdRIu5+Yj9IuEKA7jawEhbBmiCVrVXE5qJIw0BYaZ1M9ySOZuA/1I7t9jHdN81k5xwwt+V+3S5ty31ASlzUXRqHKqcwR1a/rj2lZfyX3//jx89bWpppbW1ndjrCg/u9CCHQNI3Tx85z9Z1Hq/q8e6eLslAl4/3ztB+p5UBDMSWzMzAxTZ3+IG0sRn0dhG6kDzQ6nXrIz2FZqQzQhYUoH/qO8Xz05ppjSnecEK08Qm+0hb63h4ExAEouHkMcDGCj45mZRsbjiNoqorgJR01KilwYfX3IaKpYmZ0waT5Rzf13UqK1t76cBX8x77zdh123OjO1obaSs00HsJM2voCPiaJJ/tana3A9vJ/ei3eLmJPTlBWXMrsQB0fCSB9l7fXM9qSxf9gWBOgusBK5m+5TzBtXcR08ila0j2ebaF400YCYK5yACyCkH1F6Gi34AtbYf4DkCFrweYzmXwInjkxOIALHUm2FBmjLf7uqlvtx1+I5/kcASOmg1/4lZLwPZ+41llywhacJ4TuMTAymhDEnAkYpSNDKPoJe/jmskX+JDF9Ldap5Ea4qZGJ/zfRQ7H+E7zBGw19HKzqLtGM4s9/AGvrfVjcyyjDqfwYZH0AmR5DxPqQ5AVogJfo6qc8nveqH0Cq/D83TtPsHolAoFIrtYCkXJdfP9aVsHkEq43bpx9BdIcT3kcr0fVkIcWmr1gpKxFUonkBKDjbiqyknNj5T6FAUTxC1xxqYuDdMw4lGJh6N0j+Rylpsu9iK6Nt5v8/tImy66Lu5/dmQLmP7RNwLL5djPlpf4KgyEUfTNBwnlRHX3z9Af3/KQ7ehoYEDHQeJR21uX+lZt+2h9jbGu1P3hJ4HY/Q8SImm7ecrGZyc5Uul9bQmVgtj3oaSJW01I+dbBd97Z/n598a9PF+89qCW/4yWH2LW1URfj8Xsm9PAasuKUNTmyutris51rn6/6toraTUm8FQEMcqDRHUPHGtjZjLC0L0JIHWczx4+wunmdhxdIhBERiL0XU311Xikhl9+xY/1cGc9Vi8eq+Qb7w8j3C6ceAKfOUfIY2Andmjg4wkXcZGS5FXwvCTTZqHvB7S4HzFdWAEXXxNa6/+MXvosAMLbjPnoJ9HKP4MwSlPL3LUb7lYIDaP2LwJgT38Va/BXwFWNq+M3EO6U8CudJDIxhNCLwFX1+H10tf/vmD1/G5kYwtX2TwEwO/8yyORWj1ahWEa40ev/KlrRMwh3DThRZGIUZAKMUoT3wONzUug+9MovgebDGv7nYC+glX0KvfqH0XwdabuXUiIT/eDE0fxHdu+4FAqFYhfQxBM322sp07Ykw/rgmnaZWPJj61kh4AIgpYwJIb4B/CXgIqBEXIVCsRohBNUXjtD/J+/kbqzYG+xBO4W1nqFLjN1dLahFXKWs1eyy4nKhlVcgA0Fst4+k1EkkJbGFJG6vQUVyHDmRQzncBMLvx6hvIBzbGd/Q7bBTALBjMbTOh2nXlcTj/IWPfYzf+uY3160bHh5meHiYn/vEp/nypSCzNbW8PhLij650EUtaHKhrpbN7vcdvyDXNf/m9N/l6Uyu/dPr7aah3qBV3CYQ7EcncnsBfqX6X/1DaxtxcGIA/+t49znzlAp+NX0EIiGtuEnYR83WX6Rv1M/rWGCm7qPSIrl6ClUWEpsJIKfGWe/BW+xFBnaRuU+RxUx11MdDlwewOQ3dqv74DdQytKXAWHo8yeH807X5mRuaxtJ2zNlji09UJPvLlZmR3yrg3OT1LWcsBph6lj2vL6NtzHu5lrO57uE6eRy/vLnQoG0Z42hGj3yt0GIjDfwttUcCFlG2CXvNjaMFL27YPveLzYFQg3FWPBVwAobkRvvb1MWke3Ad+HSlTAr058E+VgKvYdvSaH8Wo+sEVCwKIFZnlabcp/yTC04C0Qugll7O2FUIgvK3bEKlCoVAodoGlH12Z/G4OLv6byTN3bT9zGdYviby5CxLkQIm4CsUTSvUzSsTdV+w9DTdvJsdj60VclwvXgYNIzcBBwzQdEuEk0ZkI0akQVW2NPHo3fZGncEsFzbnSP/NAKylBq60nITzMj4eZ75+EsZ2axg5lRa6s6w+2lfLRU2X4kovV4G0HLAtpmsj/l737jo8sO+v8/zn3VpBKOefOrc7TPd3T3TPTk2c8HmcPxthgbGMwi8FeY2BZ0hoM+yPtkr3ssmuTWdYYWAyLwTZO48kz3T2dc1bOOVXVvef3R6mDWlmqUpWk7/v1qpe67j333KckzejWU899TiyOH43hj8UwgRhtxQcw1hIbiRIfieJFPQJZQYKRMO/sGeT1mrWcbbo+5XneWlGHd6mB/N5+3gG8a28Zw7W1vNqbQ0N2kNGR2ITxV7sSVdRnG67x6pZ2Nn7d5zhlFNTVs6EI1hZEKPBOMF3RY4np5D999x7+w+cHb2375b89x5+t2UhpYQ4nzjbwC4+WMHiyCZi656wTdMmpKiZckAuhAPuCAf7u3BlaW7oY6BiCDnAdh/c9eoiRY+20TLGAV0n+3Z14mTbmpRS/3sDdaVUnlMJEq1n5SVwArzWIW5zuKBbAZqXv3CaA2fwTmJIHoWhi6zhjAgSqfiTpp5wt4TWVm1WQgeofxctal6gItnG87q9gB16BUA1u0VP4Q6ex0RZMuBY7cJibrRtEJnJw8g/hDx4GfwQnZ/fCZsnZmeS4REQkA9z8ZP1pY4xj7e2FJYwxecAhYAR4ZZZ5vkNi2YzNxpiQtZM+hb75R+TaYgNWEldkhSrfvy3dIcg8WD91WdyS+iLyykJgEwW/1r/51dIzEGZ4LIixFmvBjGeTrRvAZkUoM4FEgtlApDibdTsrCYZccrLj2FjidvBAwCdavoO4ZzG+R44Txw0FufzaTFWO02fXeq53UVfuYry5vyF38gtwysvxwjmMjvr0Nfcx1NALDUvXN7Mwe3LyzDHw1KE6dhR4jJy/BqfbGZltorEY3Wcm94G88wb5/3DoXfzQF/9g0pgDmzYTvjzx++4Pj5DX20PbyyPUR0JU7FvLEIajb1zDyYaXTp++Nfa/ff1L/OE7/x3RU630NfTwRgO8wSYK1x5g/Q6ftQWvU+CdnJQcfVfu1/nnB9/Ot1+6XRl5/UY7450eJn1IES7MJX99BdG4pa+lj97WPnovd3OzDQLA5s1FXDyfmGDnxrUcyK+m8/D01avt55oJhl1iY7d/bzKwwB0Ax01O640puavj0s72j6Y7hHkz4R2Y6/+WvvNv+zTOxo+l7fzzZQKFBMq/99ZzJ+8g8abfJ1D7Uxg3MmFsvPF38Tr/bqlDlExlQgSqP4HJ3ogJVWJClfgjV/AHXsPkLiyJKyKy6hkwJsMurhdZsGGtvWyM+RrwNPBx4LN37P5lIAf4n9baIQBjTBDYCMSstZfvmKfTGPM3wAeAXwT+060QjXkTiYXN+oCvLC5iJXFFVqzc2jJyassYauxIdygyJ6n7g1ixziVw7TtT7msIfRenX546MRYujXPh2vCt5zv2VpJ9/SoxYMOhfMbuuOX/5cjDXDiSSJjuv7+K6Impq2xvsrO8XhMIwDRJXGshWFuDX1DG0FCcvuZeRhoHoDF1VbZzYe56Tc++aR1rhzoYbb3MSJK7Q+Rc7qG2pJzGromv+aeeeBJOTq7QjRZXAz3Eo3GajicSxKMb2sjJj8Bdee5f+vbf8Ku7n2W46XZCtfd6N29chzfYTOHag6zfYVlTcJhC7zjGJCpe//OBN3jmeAVDQ5PT1J6B3NpSsiuK6e8aouNiKx0d12Z8jRtGAuREwrz74AGGj7fT2Z74f9ma3XV4ozEGOwfILc0jnJ+NE3Dwox5ZI3FOvX7j1hyOO/2V3cjgGL4TwPGXflE+46SwRNhZHZW4fv9AukOYN9PyOsbGZh+YKsH82cdkMBPIJ7j201Puc6s+htf3AsSS34pHlg+39L2Y3L2YYBFOzq4J+5zsDThTtPEQEZFV78eAl4A/MMY8CZwFDgKPk2ij8At3jK0Z338dWHfXPD85ftwvGGMeAV4D1gLPkrhd6Iettb2LDTaFpSAikm7bf+jt6Q5B5iiVlbgzVSMODk6/7+6YJi4iNDEJVVN8R5P7OSSR5p3CCoUIbN6Ct2UPbaFaLp4d5PIrV2k92cBIV2Ykc+78g/qht2+g4uoFRtt7ph2/GN5YjE89+u4J26qKitjUcIWSvVsm9RHoGJ661cN3nn+Nhw4dmrCts7+PP2p6iUB2aMpjeq9388a/9PCP/2cj//jKD3Gs/6N0OQeppImf/Z7yW+MCrsuTe+7hU296hpG2MZqv9nD5lct0XJxbkqW/sYcfe+RRBg634MUSCf2imiI6LrTSfqGV4e4h2i+00nD4KtdfuUzD0WsU50yMOStncouFWyzEcqdbwyC1UpvEXR2fz/s9XekOYZ5cCBem59SBRMMb2/6N9Jx/CRg3m+Can4VZepvKyhWo+zkCtZ/CLXxkUgJXRERkOuMVtfcBf0YiCftTJKpt/wB4wFo7p4tOa237+PG/C9QBnwSeAL4MPGyt/dtkxLs6rvRFVqmK+3ekOwSZI+v7i70bZIbJp555LFTMjdenX2Bq5sTyxJVJS0ebYLzzp3Xm8PmgtVTvqGaoe4i+lsmLffqxOMHKSkxRKQMj0HG+Fe9IZldY3by76HueWU/k3LmUn29t78Sf6//3tmeguZnY2TcoqV+PzSkiNhxlpLENn8nVpu74z+nMqavU1dXS0HC7DcMbVy4Qf9cjcHLm6ubeGz0cuwHHqCG38gfYuifIj759PXnD2Qxf6iJ6Y5ThGwtvadH66iVqttfSdKYZYwyRnDCDzdMnxgcaJ15jTZcsDYRcnn28kHDDyQXHthhOSpO4M/dmXinsUC/WK8e4y2PhKxPagmn519SdIJCHs/8v8M/9OvS8dnt7dh3OEy9D61cguyZ1588ATt5+ght/H6/5D/H7X0x3OLJUnAiBmk/hlrwt3ZGIiKxohsxrp5CsK2prbQPwkTmMuzbTaa213SQqcn8ySaFNoiSuyAoWqSrBzQrhjS6PN7mrmfVtypK40/2pjQcLsJ4/zd6p3I7QDg9N2JPdcY3c4l0Mdg8z4rsEdm7DWgjHx4ievzJppu5TV8mtKaWl/fZCV8G8bCLrqxiOQ0dvK8MX+oHJvWEzlWfgkQPVlFy9tCTr1EXb+3h2/yP8w+vfISsYZO/w8K3UeuzGVeAqBsi28HB9hHvXOZy4XkggAMEA9DYkkrhDQ8Os21A/IYkL8ELrRR5i7pWqg639HP8K1FQW09zST3xs8W0KjIHcgsRCUCVrS2ifpYq3v7WPnPwshsb7pQ71Dk857rseK6AsTQlcSPGCa6tkYTMAO1aMiWT2hzsAJrwOcy2FCVyAwnsxpQ9iivdj70zi5qzDOEGofkdqz58hnKy1OBv+C173vxJv+K9gx2Y/SJYfE8aEKiBQQmDNz+CE69IdkYiIyJJQEldkBTPGUHZvPa0vn0p3KDKbFK7ANF16OGu4EeNUzbmVg70zRn9i8tcYWL+lmJMvD3P6pdv9cDftrSNnirm8aByTn0tWmU9WdQnlBT5Fph/PDtLYZRhs77urfUPmu9wxwt5YO7F5LMi2WG9fv4d/eP07/OI73orf2zvlGGNgrNcnr+dVDt38qx+HI0Vb+X/jT0+fvMCjjzzKc9957tZx/3T4RR7f/iyxoemTINaCEwpgAi7+SGLcaGs36/du4eLLk5P3CzGGQ/bOtfT7Pv7mGqJjcWJRj6q6YlouteN7PrGox4atFQydayBgbycxRwanXvwqPk3LAWtTnGC9KYUnscZNXVV/hvFai3A2ZHYS12RtwzQfTu3PJHcLztafTfx79K7K9zT0fM4EbvFbcHJ2EW/6A0zWBrz2v0x3SLIoBqfoadyy92JC1eDmYIzexoqIyOqjv34iK1z5we1K4i4DqeyJO11Z6EjOuhnPe3eeacKt6VO0TKjMHePu2sbBvtEJSdxQfjahDXWMOCEikVH2b41Dwyv4rYlkW4BEA6Iz4Rri0aVLhibDvtoQ0eNTV36mSl5z4nxvzs6C3unHDVxpJ6vEBf/29/TuO/qbGjuoq9lIXl4uAL7n07a5Eu/KGL7n4zgGz/OJR+N4UY94LPEVIKcohxpuJ3v7jl+kZGMVXZcXv9jcSDTO8ZcuT9peWJZHR8Pt1grHXkg0eC6tiVB/XxnBUABrLZ0NvZPntJNbDkRzCzkW2sKB7lcXHfNsUprQWyU9cQHGXj6OW1uKE+qffXCa2FgjJpa6+Mya78fs/DWMm+j/bHb8CnbgEvSP/9/YX72VqCZcS3DDf0n8O2cn8as/SyoXEZWFcfIfxuRsxwRKMDk7wR/B7/0WXscXAAis+zWcvP1ggsvuw10RkZXFZlw7hdX4d331XOmLrFJrnt7Pid/7YrrDkFmMdvVRsmMHo6dPJ31uO01P3JO9u4CW6Q+8O1F7ZyXuFJXDxYM3gOwJ23pa+6jMCxPcUEe/DXD+bDvD37rB972jEOfccaZr5uDNq81D+oXzs/DOTU40ppoTCbFrTR20zFyN6I2M4Vaux2u+dGtbyJ348/V9n/a2LtrbbveV/cf48zw0XD/rhwxDPUPcyC/A+hZrLTZmKYo7id8hf3E/SzPN8fHY1BWGnU29dDb1AlBaWzTlmJG4i7Xgh7Mwvkd3ZT1ffn0M1+3hQPmUhyRXCi+AV1MlLmPDEM2HDE7iYmPghsFPTVsjU/WOWwlcABMux3n4KzBwHoavQ1gLfQG4BQ/Buv+M3/8KfveXWY1v+jKRW/UjuOUfnJScdSJbccveh4334mRvSFN0IiIimUdJXJEVLlJdSjAvm9jASLpDkRl4YzE6z1wnB4OZ55tLa+FC1T6Ghz0sNpFf9S2+b/GtZaTbcHB8bH9WLX9/5QCBgINnA9j1624lZI0xt1omGGMYA8q3F4G1GMehO2Zwa+rxraWjy2KDG9hb3E5B2wUAwj3N5JXcw0BXol+ucQ01O2o5efwGsZcm9lsNxUemWGrrjtfkLa832NXbqug9lvrFzO42WhBie3XVnMZ64TLgjiRu4K4k7hRtIM43XONdTzxE5xvTL4B3K5b+ia0L2i+1s+X+DbQduTTNEXMTv9FOViTE6PDEJNiZV6+y4+AGrhy+Pu2xXnzqau5vf+MG36YagOy8MCMnEhW9RRV5k8ZaC511Oxk02dR1niUwMrjQl3JLKpOsljksLLiC2LEsyE13FNNzAusxsfMpm98/84s4xf+KCdy+58E4ASjYkXjILW7h47iFj+MXPkG89XPY4QvA8rrjYyUw4TpMZAduyTtxcndPPy5YjAkWL2FkIiIimU9JXJEVzhhD3roquk8mpz+lpI4/FiPnvh0Mn5hn+wvX4eQr0y8AVlZaRW/JOkLeIKNuIVdPdSwy0tsqn6yhgEQS1xgoLMthoGuIgqoCgtkhLr22sN87N+jgxZZPNa6TpluLLvkFPLZ5NzRdmHXsSFeUqFvA6eBmzgzmcS3msmljosLJ9y05Odm0tHRgrcVxHFzXIRBweaXrLFtzqnADDm4ogBtwMQEHNxDAuA5OwMW4JlF1a8AYh0Qe0TBk3MQvxiJ6Psf7h9m2ey1vvHx10r5A0CUYDhCbZhG1eGz2BM3IwO3bzXvaBviHnF2sqc2hMhIl4Md49aqh4WudPPPm2qQkcFNv1dThAjD2ehfZTzsYJzP/f2Edb3E/kXAZeKMQH5h6/8B57KXPYm72xJVZOfkHCebuwe9/CbxhvN5vYAdS30Zl1XKyMJGdiera0u/GhFQdLiKyXBlneRXarERK4oqsAhUHtyuJu0z0XGklNM9qXOP7ZOdlMTIw9SJOR19o4SipWbm5ud1jfX4FXfnr8IPZNPxLA3nleVgL7VdmShbP9vqWVyJqaDC25Ods3bCFr3/5Cq7r0PzIQzwTvkRW/8S2Cr2RPM7mlnF8wOPq4T6ar5cwPNgCtLDn4GauXW26NbaoKA+cMeKxGPiwd/dOXnv9Vb56uIGS/R9i+OzCKtbuv7+OgbM3FvNSqTBxHrunjFBFEVdu9HLpfDtZOWEuzLJ4mr+AthzNV7povtI1Ydv2vdWs7Twz77mWnsUdapp92AriN18lfvEBglvOpjuUqdnFXWo7O38dKp7CXvlf2Au/BTjg3/X/eqtq0vkyThi38HEA3JK34XX/K/GG3wC7OheCWzyDU/AoBAowJgSBQkz2RjABnNy9GCc8+xQiIiIyKyVxRVaB2qfu4+zn/zndYcgcjHUPULRjHcMXJ1cdziSvKHvaJG4qXT7ZymVyycodIDdnjOyCbAJZQbpudM984Cx9Us0yuyO881I7k2/ET53uDZv40r8lfkc8zyfs5PDlU+Xc/8AmSoauEu5pwhj4nZ4wr3zz9VvH7b93H+eOJaq2uzsmVvZ5vk8sdjsZbe/oWHzFP0clmxcU62ASLjUc16GvsRsau8kDHttVRri6mMaGPq6cn/7DAm8OlbhzceZoM2edAjbtrGdzlUvl4A2ye2ZvMTEdY1NTNXrPMwXQv/C4lqvY2asE6m3mLXrkZGHGgLLHoOPbC5uj5CDGzcZs/nFs5VshkItt+D/Y87+Z2B8qwWz4WJICXr3c4reAP0q88bfSHcqyFKj9adzSd6U7DBERkRVPSVyRVaBwcx05tWUMNSbvNnqZXaSymKLt6xlu7WKosYNof6JX7N09ip1QINHDdrx/px+KzPtcOfnprXJZs72a1jNN7Ht2H6e/NXNFXMXGckreeh/D3/omA6en7hVpnAxLxszCj8fBXYLzYGjZsJV//vrlW/2LS8tyGTjdSHwsznNf7wByySvdR83GAo6/8P8mHB+K3M6ON15rJ5KdxfBIIvkfu2uhsDsXl3vlyGt8745tjFyff5Xa1bOtrFtkS4VQdnDC876mbmjqJgQc2FZEdlUxTS0DXDrbPmFcMhfIs77l4olWLp4AcAlnryUcCRHODhIOu2zbEKG+KX23ZK+5N5/y4W+m7fzp5He3YgfvweQtruI76cJrcLf/KWDxn3sssdjYfORtwYRvr7Rn8sY/SFnzfYkkrpOFs+cPMOGSZEW8qjkl78b0fBU7dDLdoSwPTjYmVINb+l1K4IqIrAYmfS3kprW83jImhZK4IquAE3CpfnQPF//3v6U7lFXBOIYDv/JR1r7tAYxzO2kWHRgmNjhCTlUJgw3tNHz9MMXb11FxcDvx4TH6LjfR/Nwb9Jy7Tumhe+k9fp744PCczhmJBGcflCLr966h8fh1Pv7XH2PrI1vwfZ9Xvvg6bZfayc7PIjYW5xv/89sEQi7P/sI7eOB7D+I4Dv0719H72hvc+JMvTJrTybSKuln4cT+lSVwfw8C6DbzWFOXS1yYuFPbAnjW0H55YuT3QOUh7QRYjwxOrs9vabyc5fd9n08aNnDh1GgAvPjHhGQ6FJjwfLuulxKwhnB/GDY33unUNWLBYCoJh8C2WxPWUtYmKamshNzrM4MXmBb9+x52+NLu/uYf+5h4CwP76AnJqS2jvHuPcyebEzyVFxkZijI3crlweGoxSvHsHRa0XcePRGY5kUQntqRTVZlFf9hoMLX1bj0wRv5FNKMPW8XKLnxyvDjaYogPYeSRxzbofhJL7p96XVYnz2PMQKpyQ5JXFMcbglryLuJK4MzMhght+E5N7X6IHuoiIiCwZJXFFVonCTbXpDmHV2PKhZ1j3jkOTtofyIoTyElW2uXXlbPvIW2/tC0TClOzaQMmuDbe2xYdG6HjlBDe++FW6j85c3ZqdlZ6kZ05hhIHmHn7wf/4AWx/ZAoDjODz4/oMTxj3z75/CDbk4dyS183duIX/nFrpfPsLg2YsTxi+/94UG4zrYJFZ+3jRSXcNXr8Vp+frkKsPSslx6TjVOeZxXNPlP/OVLN6jMr2OwP5HcLSm8XcEXj09sPeAGJv5OvXziVdaPupOSvTdtLC4iOjh18nLvwxun3D5nc8x5DrT1MdDWB8A91dkUbqqiqz/KmeNNePHUVg70tA3wN18DN1jB+q1lPLt3hPilJqI9/ZMHJ7GdQijism/fdejsSdqcy1Hs3BWC29PUUsHNhWAZjI5/mBIoxK34AE7FB26PKdwDN/5ybvPlb8fZ9eszDjF59QuLVWbk5N6LU/oe8Mewo1cAB+K92GgzkJmL5y0lE9mOW/ZenLwD6Q5FRERkVVISV2SVuP7ll9MdQkYK5mXjBIOMdU+RaJmH7LJCCresoWTXRrZ99O1JiS2Qk03VkwepevIgPScvcu53/5LekxenHJsVSF6CyhjDzie3cfWN6wx2Dc04tv7+9Tz9o09Q/+CmGccFs6avFN7wyR/i9E/9Mt7w7RYTLLNKXCBlSdwvnRmmt3Nwyn1TVeHe1DDaDRYCgQDxeJxQMEhNZTW1VbUcO5z4PfLuyLl63sQk7t3JsPbuVp48VMHF11umPJ8bmL4UeWQ0vri7nRaQ9BztH6H1aGLhs52VWRRtqqJv1OfsiWZGh1NXserFPC6dbCWyr5madScZuWcfA9FqxobGa5SNJZC/iMsvw+2ktoFDbx2BFi1cafs6sAP3YPJT31LBZNdj470Q78Op+B7cyo9gArl4nf8M0Tac8vdgAoUTjyl/cobPIhyofDOm+H6wcUzR/tS+AJmWCVUSrP3JSdttvA+/7zm87n/FDp1IQ2RpFKrCyduPk7sPp/DJzOs9LSIiS8IAxmTWB5qr8S+Skrgiq0RWaUG6Q8g4JuDypv/9S+SuqSA+MkbXicuc/Ozf031qbgkR4zqsfdsDbP6+N1G0dW1K39gU7drMwf/1i1z9qy9z5S/+H/GBicnVMItfUbt8XSnlG8p41398hg371nHuhYv812f/26RxBRX5rNtdx7537ObAs/sIhhf3pyR/11bWfPT7uPoHf3xr27J8k5iimHNyw9MmcUcbp19ArvFEjO12L9zMV0aBG1BWVw4kkrhN12/3yTbGEIlkMzyeTJ/qZ9AyehmYumdzMCvICCNT7vN8O+mCw1oLAQcTcHGyQ1jXJHohOw64DjjA+PPR4OJKs8cGRml9I5Hs3pgToGzvGoZxOX2yhaG+1CwIGLcBDJZI/+HEd+yOHLfN2c4ZFvb/5PufzWZ0NMixf+nn/mezcVv0Ad1Nfl8OTv5cR9/8nZrfmxFT+AiBjf8VYwzWj2Gc2x9QuaUzfIAXLMBs+Bh26Cr0nYTRRHsRs/NXMXXfiwnkzCsOWVomUIBb8k5MeA2xKz8F/tIvJDpnJoSTfz9O3n5srAuv+8sQ7wE7/XWCCa/D5O3DydoATvZ4v9tKTKAAgmVqmyAiIpIhlMQVWSUO/tqPYK2l4auvpTuUjFH98D3kra0EIBjJovL+HVTev4Pus9foOn6J3gsNxEfGCBfk4oZDjPUM4MViOIEAkcpiNrz7YXJqypYsXicQYOMPvIt1738Lg1caGLzWTKxvkNZvvcarZxf3qeiup7bz8T/7oQkJ2TurZ41jeNOPPMpbf/xN5JXkLupcU6n5nncw1tJGx789T6xvcVXRK82b1gb4ixsG359cxxeMhKY4AiJrShg83jTlvu7Gfjbdk/i9dQOGovVb8a2PMRAKZOH7id+l3NwITz32zK3jLIlWrhufKGVsNEbc9/B9n1g8Tjzu0ZXfTUdOJ9YmqnpvVvZ6nseoidJt48SicWIxj1g0fmthtrnYu28TdXMePTMvGqf1ZKJac23QpeyhNQxbh9MnmhkemKWX7XzOw9Q/GwCsN/2+qQ9g04OFVFSPkN35ErlejIe++0GyWlbnQmbTiZ5uxa2dvaWCW/NxnMrvB2ux/S8Tv/arEJ/+A5GJx/7orfnvTODOxgQimB2/DIAd68B//hkYbcWUPaEE7jLi5O4htO2LeB1fxGv/azKtxYKTdz9u7adwwrf/jxmo+mGsN4gduQhODtg4NtqMk7MLnAjW68WEapfnh6ciIiKrjJK4IquE4zrkVGkF65vyN9aw9+c+NOW+4m3rKN62bmkDmgc3K0TB9o0UbE/0GV33vW9hV+8wx796ijf+9SQnv3EWx3XY9kg9OQXZOAGXqs3lZOdlM9A5wMXXrnLy62duzVdYWcDH//QHJ1XUbti3lp2Pb6X5Yhs/9NkPsPWhzSl9XRt+/KOs/8RHsJ7P2YP/IaXnWk6ymxp571Ob+NLzzXjGIzbsYcZvHgrkZE19UPH0ifa2a91cG3yD1ta2SftqKzbT25Oo+q2praSxYXIi+OGHczn66uS2Huu3VnD23OUpz5mXn0dv98KTHd29g0lL4t7Jj3m0jSd014ddSnevYRiHMydaGOofW9TccTt9gs94c08Wb7y/gPUVF6HzFbijk0VWy/OLCW9F8puv4vfsxS2e+W4Kp/hNGOMmulsUPkxgw68Qv/CJxM6s9bhVH8GEKvD7X8X2vQTGxeTswsm/Dyd7kf2dARMuw7n3DyHWh8ndMPsBklFMsIRA9Y/iFL8NYu3YaDNe1z9hh2fuXZ8yTjZO8VsIlH0fJlw15RDj5mJy7729IWf77X2BvFRHKCIiK4LFmNSuMTF/mRZP6imJK7KKtL58Kt0hpI0TClB5/w7y1ldR/cgeyvbWY5yVc3tgTmGEB993gAffd+BWheN0VTXWWo5++QRf/Mw/0nm9i0hh9pQ9a40x/MQXfzSlcU86p+sSHRojNry4BNpKU3zlEg88UcpLHY10XOtk0/r15LsFDObGie+M4DuJn3m4D2zDCL0jUQJZhkC2SzDLIZBtcEMGN2zwTZxQeNOUSdw7+d7U1aI3Gm5g7eRqR9edvifuzerehYrHPFLd9cq7I6G7NuRSdqiOUTfAuZNt9PUMz3u+ODNUafpza3+SXxFmfd4r0Nk77/OvVvGrDm7xDAOcnMTt4nduyj+AW/eT2MHjuLWfwIRrEtvz7oWaj6UkTlNyf0rmlaXjZK2BrDWJfxe/AztyATt0gnjbX8y5snsxTPZmTNY6AtWfxARn+qUXERGRlUJJXJFVpHRPPb3nG9IdRlqU79/Gw5/9iXSHsSRmuyXSGMO+t+9m99M7ePX/HqWoOrP6JXuxxff3TYt5tAdYCDc6hud5dHR009HRTWlpId8eGmJ0ZGLCOxgMEDofo2OwE+5qpfvQQ/t57jvf4cEHJyeQqqoq6OkcuPX7402TeL1+rYndO3Zz6dzEKl3Xnf5DkbjnMaEp7DwlWkks3a2+fsyj7VTi/5XVjuGeg9V42dlcPN9BR8vc2n3E7AyXWP7sC6vlloU58EATdPTO6XySEDt7itDuAkxg8gdBTuk7MPkHMcGiSfvcivdDxfuXIkRZgYwxmMgWiGzBKX4r/tBxvJbPYUcu3DHKBe74cCxUA9FmblcROYAPJjxe/X0Pdvhc4t9uBOsNgzeIU/xm3KI3Y7LrMe7UPcpFRERkZVISV2QVWf+uh+h44wJ9F1ZHIjdvfRVbPvhmssuLqDi4ffYDVplAKMCh9x9IdxiTqC/fbdZaeqrzOBYY5auvv0h9ff2tfZvq1/LyS29MOqa0rJDL12e+rff69euTqmlbWtpYU7WF7q5EkjI2QzI9UjC5ytR1ZqjEXWwSN8UJ8plY39JxLrEIVQlQv68CpyCXy5e6ab7RM+1x8ZmSuLO0UyjfnMM9m09BR+tCQl7doqN4HXsIVJ27vc2EcSo/iFv1gxhHl76SWsbNwc1/ECfvIF7H30K0FRPZhlNwCDt8Dn/kPPhjuGXfg9/3In7vtzChStzKH0gsmOZEwI1gTABr42A9jBMGmPIuCBERkaVinNXXviDT6EpWZBUp3rGe9e84xLHf/kK6Q0m50nvreeA3P0akQrcYLjer9Q1qtKiQ1uJyuscsfcNRevtGCeYE+NLzf3OrHcHNFcItlsOvn5xynqraEi5fn/ocN3OhTU0trFmzloaG5gn7IzlZt5K48fj0i28dO3aKnJwSRoZuVzs6M7QniU/TmmGuvPjiksDJ1HWpDWgjH1izq4RQeSHtHcNcOttGPHa7ejluZ4g3nkji5pSEuO+JMZ7/koMf8ymqzWbH/XGyBo5BX2dKX8dKFj/fT3DzHkzWOky4BhPZglOg9gWytIxxCZRPrO42effh5N1367lb/Gbc4jfPMEcATOCO56vz76OIiIgkKIkrssqse+dDXP67bzNwfeVWeNU8fi8P/va/x5nh9m6RTOBlhemqWc/lbo/Gzl4aDp+fNGZD7Xou3UgsGHbzDXx+fi79/QNTzmmZvoLW3lHRWldXPSmJe2df2/gMlbgjw6PsfaCOY69durXNONMnF2aaay4W21M3VXpvdMGNLgC2FgUo3liNzQrT0jqI5/cl7o6eSjwKBh548Aq0NPLEE8XghqCvZcLiZbIw8esXCdT/PWaG6nARERERkeVGSVyRVSZcmMsj//2n+Pr3/wpjPVMngeY9Z3E+sYFh/AzoZeqEAtz709+nBO4yZtN46/xS8h2H56jiwlevALB5Tx0NtE8ad8+6fZOSuNP1n3Vdl7NnJyeCb53zju+tN0V1bCBwe954/PZ/z9ZagkGXYDBAIOQSCLjE/CEqagowxsEYiOSG2LCpCuM4hEIujuNgHIMxhrycXK42jcz07ZhRaVkBtGb2YnfxsTjtZxqBxMVVzn25MF3uOR5NlEX3tiS+DnYtWZyrghfD72nBLalNdyQiIiIiK4MBYzLsfdoqvEFFSVyRVSi3toy9P/v9vPwz/2PC9mBeNsHcCMMtc0soZJcXUX7fVu751Hvpu9TEC5/8PfwZbsFOpWBeNpvf/xTr3/0IOTVlaYlBkmO5JnHNDO0EpnJtzVYufP12JevFYw1U1BTT1jxxVfP4wO2rEztekRodm3phrO271vHq669Me847E7eXL1+Z1F+xuf0qOUUOVVX5nD9/DhM0xGIxRkZHYPSu+BsPs2HDDm7cSJSOHr84/WutrKwgn23TD5jF1rJiaF1eJaqeP3MVaNmmXNCt0Snh1m7DKaxMdxgiIiIiIkmlJK7IKlX7pv1k/87f4ARdhlu6sJ7Pjh95N+veeYjrX34ZNxQkUlVC18nLjHX3M9LRx0h7D5HKYgo21bDpe54gq6Tg1nyRimL2/acP8/pn/iQtr2f7D7+TrR9+S1rOLcm1XHv+uVkhvNGZF6y6ycsK89yLkxvXrltfOSmJe+NCBxtqN3Cl8QoNjYlFCcfGpjmPM3M1vO/dLg3t6Ohk/YaNXLt6445tiQ9wysoKGRwcnDWhXltXdiuJO5M7q3oXwlzuZLml9j3fmb6dArC74usTFqqXJDIOxtUlroiIiIisLLrCFVmlHNfhnV/7HQC8WJzh5k5y11RgjKH++950a1zVoV1znnPDs48QGxrhxO//LX50aVsrVD+8e0nPJ3I3Nxyc89ju6nWMnbo6afupF6+wZ/9mjr1+u6w1Ohpjz4b9XGm8wo2GJg7df4jDr59izdoaqqrKuHTpOl2dPeTmZXPs2IkZz3t38re2pnJCEvdWHKcusn//gxw+/PKM/WhPnTyO6wambM1wp9n2z8ZGl1+2086UwZWU8vva0h2CiIiIyIqTce0UViG9wxAR3GCAvLWVSamA3PL9b+ah3/0kgexwEiKbGxNwCeRkL9n5RKbihOaexD3dOnUlrbWW66daKS7Nn7D94iutlBUn2oQ0NF0j4AZouN7Ca6+cIJKdRVVVGdt2rp2+Qndc/K5k6sjI8LRjjx49y0MPPTrjfN3dPdy793abhA0b11FaWsy2bfXct/9e9uzZxe7dO9i0af2M88zGBJbf5coi89ayCHZs4f2XRUREREQy1fJ7VyQiGa/qoXs49HufJJCTlfJzbfzux3jm7/4zkYqilJ9LlsrybKfgBOd+c0tbS/+0+8aGo2zaXDNhmxtwblXE3mhoYvfeLbf2NTa0MToaxfNnr34fHp6Y3Dp77gLODL18X3rpOI8++tiMc0bHBrlv/72sWVPLtas36Osb4OzZCxx+/Q2OHTvJ8eOnOXbs1KyxzcSElt+NQ56vS6y0iQ4v297aIiIiIiLT0TsMEUmJyvt38PQXfpm8dalZXMY4hto33Uf9B99M/vrqlJxDZD7murCZNYaRobEZx1w42kAk93Y1+8Z9FXT13l5wMBCceK7enoEZ2x7civGu50ODQ2zdumnGY1588QQHDhycdv/Ro0dpaW7ixo1GfN8nFpu86Npie+LiLr/LFc9fnh9GrAjWQmx09nEiIiIiMicGMI7NrEe6vylpsPzeFYnIspG3poK9P/P9KZl74/c8waHf+gT566pSMr/IfJk5Jhqj5eWMDs/c9mBsNMrOfbdbEPSMdUzYPzo61e3is1/GeFMkeotLCmc97syZG2zdunXa/etm+SBlzlWRFgKuS1YkRG5eNoXF+ZRVFi3L4mwvvgyDXkHs2PStQkRERERElqPld3+iiCwrFQ/sILuskJGO3qTM5wQDrHnLQXZ94j1JmU8yTxJaM6eFMXNL4gaGBsnOCU+qxg2EHAI7R+no7qKzs5vTzx2hrq6KdXVrsIE4FZUVtLUmFmzq6OicPPF4otRai+u6BIMBgsEggYBLMBTAdV0KC/NwnDUEAkFc18V1XbLCIfbv30vADeAGXBxjyApH8OLOeO7UYG3ik/e6urWMjY0Qi8duJWattUSjo+zdtxlrLdb6eJ4/Xhlsb1UIhwPtDA4N4fs+8XiceDzG3pon6bo+ythYDC/m4Xk+xMGPW6LEiZKo4HV3leGzvJJy3uyF0ZJCdmwY8krSHYaIiIiISNIoiSsiKWWMYecn3sPrv/THi5onXJTHU3/1acLF+QQjqe+1K+mzbHtZOnPLPruDQzzx4Ha+/G+XyCuNULI1n/bObgYGhskL53L9+olbYxsaWmhoaLn1/N49uxgdGyMej1NVXUpL8+1krjVxMFF838OPQywOjMDB+/fx8ssvJ+ZrhPLyMjo7Bm4dd/nyNRyyiEZvVwevXVtLe9PopMUO166v5krDKfoH+ia9rn379nD48OFpX3dN9Uba2iZWFO/e3M9A3+ytFkx4+V2u+GqnkFYmMPeFBkVERERkNhZjMq1KYZm+b1wEtVMQkZRb/66HqDy0a1FzHPzVf0dubbkSuKuA9ZfnH+O59sQFqGm8yI6H19Iw2sIrL5/kysUmOlp7aLs6wFMPP85TDz3BEw89Ouk43/c5d/YSly5eo25dxcR9nofneZOOaWtrnfD87oXMRkfH2Lptw4Rt1683cs+9k3vlXr/azJ4djxEITE6qzrRAGkA4HJ60raHzyozH3J58+SVEPW95/h6vFCYrN90hiIiIiIgklZK4IpJyxhge+t1/T+2b7lvQ8TVP7KPi/h1Jjkoy1vLL1yXMI24nFmNTbozRkYm9cbs7+jn24hWOvXQZG5v8JzrgZt/6d0tLy4R901Uwu4474fng4NCkMbl5kUnbRmODU8538vhFHn/oXZO2HzlyjLKysimPAQgGJyd+T54+RV7Z5OTu3exyTOIuci03WRyv/Xq6QxARERERSaqUJHGNMR80xtjxx0fneEyJMeajxph/MMZcMsaMGGP6jDEvGGN+yMzQbNAkfNgY821jTPf4sVeNMV80xtQn75WJyEK54RAP/pcfY/dPvo9gbvbsBwBl+7Zw73/8Pg799sdxluHq9LK6zKcSF6DiwlXqt9RMuS8QcGntabr1vKa2jP0PbOP0mVO3tl26dI3aNbercaerhL37vx3fn1yt29E5ucfu8WOnqK4pnXLOw6+e5eknnr1rXp9t27ZNOR6m7xlctGEOCdoMTeI+9lQljzxZSUVtHq473kHYwNr6IoqL3FmOllSy8ZkXDxQRERGReTCJNTIy6bFsi38WIelN5owxdcBngUFgPveyvRf4H0AL8C3gBlABfBfweeAtxpj32rtKjYwxWcDfAm8HzgN/DQwA1cDDQD1wYREvSUSSxDgOWz/8Fta94xBX//EFmr51lK7jl6Ycu+XDz7D7J943qSenrHx2md6Gbud5FeEYw1sq87hwfvK+7fvr+OaLz1FUlE/12mKOHjnBleuXJ42rri2l8UZisbNgcOqK1ubmiRW7/hTtKs6fu0h+bvGkKt2aNaU0N02xiBrw+svneeTQm/jOi/92a9v16w1TjgUIBKdOanYMNQJTJ4tvshn2/4F1W4upL48xcirRv3iL63LPo5s5eTFGbkGIqs6zFEZrYPYiY0mRuS40KCIiIiKyXCT1Ctcksi1/CnQBfzTPwy8A7wRqrbUfsNb+nLX2B4GtQAPwHhIJ3bv9NokE7q8D2621nxg/9sPW2g3AVxf4ckQkRbKK89n2kbfy5J/9PPf8+HsJF+VN2L/vFz6kBO4qFoyE2fH+R9Idxrwt5Ne16EYLDx64fcNIQVEum/eV880XnwNg3aYKjh45Md3hNDY23W6j4E/9J/3uNgvxeHzSNt/3qd+yftKxnd0dk7bd6cLpDvbuOXDr+Y0bDezYsX3KsXe3dbjp2MljhCKzXI7Ms8p5YSyBkEMkN0huQZiCkizyi6bqwW0TCdwLt5Pq1vMYPXOOzbHLVHWfA8CLTq54lqVjY2PpDkFEREREJKmSXYn7SeAJ4LHxr3Nmrf3mNNtbjTF/BPzq+Lx/f3OfMWYj8DHgdeAX7q7SHT8+Np84RGTpGMdh2w++ja0feSt9lxoZbu7Cj8WpeXKfErirWCg3iy3vvp/TX/hOukOZnwX+zj5sxzhXnM8992zm60e+zuXX+wGIZGWR01HNM3srsTljgMGJhxi0PYQDYb7+wre4evUGWzdv4+qVJkaGJ/+5q6wsp6194sJm8Xgcw+SEajgreOvf1loqq0rx4qMcOLSNeMzn+JGLeF5iRdpgMEAg6OK6DtGhCOvXbeLqtURVfX5+ATt27MB1E/sdx8VxHMpLa8jPLwQSrR9u/TduoLa4hOjg7e+fxXJztVkfn8KybLL3bwRrEwlom4jRWov1bz58/Dv+bf3E/nUb8inpvoyNx7Geh4174PvYuIfvedibi8FNUaGcvXkDX3t+4rZ1W0uIhYKTxt4yPo8fVxI3nWxcSVwRERGRZDJmed4xuZIkLYlrjNkG/Abw+9ba7xhj5pXEncXNd6Z3LxPyvSSqif8cyDfGvAOoI1EJ/E1r7dT3aYtIRjHGULi5jsLNdekORTKEWUU9kLM6evnuB3bz9/90mkcOPMo/H/4yJUVF7Ks+yNWTLXeNjgJBAiHLjm1bKCksoSi/hKtXmujs6OOhhw6MJ5MTiU7HdVi/oRZrLZ7n43kevu/jOA6e5+P7Pp4Xx/M8RscGWL+pEMdxuXTpItcbWrneAA/mZnH08Dl27tpGe9MQ9dureeGFV25F1N4NtXXVFBeV0N3TxSuvvD7l69x/Xx7Hj52ect/99wc4c7R52u/RgceraDs2/f6Z1NREGGtpX9CxWH/C07pNhWzOH2D0VNM0B9x5qC5y00qVuCIiIiKywiQliWuMCQB/SaKP7c8nY8675v7Q+NOv3LV7//jXAuAyUHLHPmuM+R/AJ621s5bDGGOOTLNr6zzCFRGRJDAZupBVslgLRbs3M9o/Smx4jJIz57n/3hpeea2Rdx18F40XOqZI4N6288BmTr3q0BvzGI2Msqt+OycvnOHSjYuTWiXMR1FRDl1dXRO2GSfx+empk2fJy8vlhRduTDqusaGZ7Tu2MDR0hLHo1Mmz4DQ9cQFOnTpNOFhKLDb1n2u7iJz+Yr4feLeTuE89WcbY6dOMDs7tUFXippfaKYiIiIjISpOsUqdfBO4FfsBaO5KkOW/6DWAn8C/W2rv725aPf/0V4DCwC8gDniSR1P0x4NNJjkdERFLMWY6VuDO0U7AWsiuKKdq9hbydm7H5hbQcvUrPpRYGm7vx4x776Ke2Kp8zr14jHouz56F6cguyJ8xTUVfMhu3VHHvhAvHxhOfocJSsjmJ2bNpKWdnMC4TNpr5+y6Rt58+fvZUIHRiYPoN55vRF7tv30PStUGbIpQ4ODlG/Y6ZK/IUnYn278A8EbrZa2HJPKV7D9Xkeq0rctFI7BREREZGkMsZm1GM1WnQlrjHmAInq29+21r68+JAmzP1J4KeAc8AHpxhys6ynBXj2jgTyN40x3w0cBX7SGPNr1troTOey1u6bJoYjwN6FxC8iIguzEtophIryiNRVYnHob+yiu6kXmvqnHT/WM8iz60t4uayKwydaOPbCBYKhAKVVhYSyggRDLs1XO2lr6J50bH/3ENljhVTVVNPePvNiZHcrLCxg3bp1ZGdnk5+fQ3V1DQUFBcTjcaLRKJFINju21dHbO4AX9wiGAriuizGJvtYGcByDcRwgzjPPPMPAQB/Z4QKsH8AYg8EQCAZ59JGHuFkYezvXa3Bdh5ysAh47sPZW31trudXXdnAR12iLKcTF99m0s4Tq0RvE++dYgjsuPjhMU+jduAGf0ui3CMQHFhGIzJeNzXjZJyIiIiKy7CwqiXtHG4ULJLni1RjzceD3gTPAk9baye9aoWf861furgC21h43xlwFNgLbgOPJjE9ERFJn+SVxLSYcAtel8J7NDLb00tfYSV/H1XnNMtLcxb2uw6EnqiEUxAYCeMYhiiFmIb4hnyzX4BhLzBpGYj4XmwY4fraNkaExivNmrsTNzy9g06YN5ObmMDIySmNjEy0tbRw7dnLCuNbWngnPy8srOHHyFe62adMmLl2+POW5Hn/sTRx9ZW6t6fMLcnEDLqHu8ikreTc/WsxC62n9RfSm9UdHqYs2zDuBC+CNRml6KdF6or1sPxt2DZHb/+qCY5F5UjsFEREREVlhFluJmwvUj/97dJpbKD9njPkciQXPPjWXSY0xnwJ+FzhFIoE73Yok54Gngd5p9t98F5o9zX4REclA096SnwZOwCGnNJ9wYYRQdhg3OJ5gjnvER8eI9g8z0tlP4/NnKN+9gZbXF7empvV8hq5M7ocb4PYfbZ/ErSi5JHoZHXqwnP99uh8nWHA7bsdh06aNlJeX4/s+zc0tXLt2g6NH5/+Z5rVrjVNur6ysmDaJe/7CaYzJn1NPWi/u09vXz/3bt3PjXNek/b65fevNfPn+7GOmE+3smX3QHIx29HLmm1B58FlqzDdw49NXZM+HH6kAP4ozmpw4VxLrxWYfJCIiIiJzYozFOJnVwmA1tlRYbBJ3DPjjafbtJfHe8gUSydY5tVowxvwMiT64x4A3WWs7Zxj+DeDfk+iZe/c8YWDz+NNrczm3iIhkhqXqiWscyC7JJ7soh1AkTCDkAhY/Gic+NMJozyBjPYPEOrqIdUxOLt6t/fj8Km+TZbihne+/p5K/G0j0cK2oqKC/f4ALFy5z4cLUSdb5aGhoZuvWrZw7d27C9iNHjlJUVERPz+QkYnNzM48+dA/HDs/+PYnFEgm37OKpk/eLuTzzFlGJm2ytr16np2QfG/ZEyet7cdHzxXK3Ex9zCeUPE2h7aaa2zKtPXElcEREREVlZFpXEHW9h8NGp9hljPkMiifvn1trP37E9SKLFQcxae/muYz5NYpGyI8DT07RQuNO/AleANxtj3mSt/bc79n0aKACes9a2zuuFiYhIWiX6qyaDJa+mhJzSPAKhAMaAjcWJD48y1jvIaPcAfncPQ909DCXpjOkydK2VDZsryAqG+ZED7+F/fOeLjIyMJm3+8oqKSUnckZER9u+/j+88/8KUxwwOz/Q57G3RaCLhdrXxGon64rs4hnBxLmM9g/PO6NoMSuICjHX1cfYbUL7vWWrDzxGIznapMzUvfx1DDQNEWxOXODlbHyfHvYgzOHXV9Gpj4+qJKyIiIiIry6IXNluAGuAscB1Yd3OjMebDJBK4HvA88Mkpbqe9Zq39s5tPrLXR8eO+BvyrMeYfxufdDzwCdAD/LlUvREREUsMEFp/Eza8tJjsSoO9yC72t81vsa7naVVzGr+//GIMnennX3if4/Lf+btFzlpaUUV1dS1vb1AnZU6dPEwqFiEYnJ82OHD3MU0++k96ePjzPx/cTj3jcIxaLEY/HKS+ppq29m+6uXq5da2T32gN0NExsN+DHApy8NkAkP4uymiK8uEdv5yBF5XnUrSkk5PsYaxnu7GegtZfsohyyi/MIZoUIFQQSy59mmPYj1+kp3MnGfZDf9515HRsv20/n0Tbwb39GPXTuImOlpRStKcbtOpHscJcfP57uCERERERWFGMW0adMkiIdSdzprB//6gKfmmbMc8Cf3bnBWvuCMeY+4JeAx4FCoA34X8B/ttaqJEVEZJlx3IV2QE2o3ruevnPX6WtZXbdUh8Y8Bpt6AdiSV7fo+R5/5GkunWvjxsUB9h3YSTjkcOrUafw7Gs12d3Vz6NAhXnzppSnn8LwoJ06cmfYcAROhu6v31vOSuuzJSdzxvrrD/aNc77+dkR3sGcY1hrHrE1vn9wz0wY0+ADbsrqZibi93ycV6Bzn3LcPOR/cSGTg6p2OiFY/Q/fpVmKLXcLyzk45uh8K9TxLu+BaGVXyh7XnpjkBEREREJKlSlsS11n4G+MwU26/B5EWmpxs/x3OdAd63kGNFRCTzOIuoxM2rLqLv/A28sdWVwAUwd1TDOi1jC5pj3dr11G/cSVfHIG+8duXW9jcOn6Nz8AQFBQVs374NgNOnzjAwMEBra2siqThFU9bTZ44RDocYG5v69nYnMDFh397Tyt2XCf4Mi6N58ZmTdV48wxOZvuXS6UK2byolEL1d7dya/S7azg6w5h5DYd83Eq1AMPScaJ4ygXt7Pp/ew+fJWv8AucXDuJ3HMIvqKrw8WVXiioiIiMgKk0mVuCIiIsDkxN5cGQciuUH62lZnP8yxttttI4bbB9izYRvHrpyddnz9pq1UVlQTCmbhOC5guHy+mddemnyM7/tUlFfT1t7Myy+/AkAgEGDPvbvJzc2jtKyUK5evMjI6wsjIKJ6XSKK1t7dy/4HHOXr01KQ5jTEMDQ5P2Hb6zAW2lOyhv3vk1jbPTp+IjcdmTuL6GdYTdyqj7b2cHNtOKC+bzevPYfwRGl9twY/GufhNKN75LtYWHsHkVWGvz603xOjV64xehZztj5M78gLGX2X/TXhK4oqIiIgkk3Ey/7p6pVMSV0REMs5Ck7i1922k48iFJEezfIx19hMpKma4J7FM2xNbDkybxH3ysbdw7PUrtDfemPP8a+o20NbefOt5PB7njTeOAfDYY0/RfSvxmkVebnZigTprMQ7suWcPbe2ttLTe7uNaVV1BZ+sgd/bAt9ZSVV9A/yu3k7j+DEnctoYe1lfkMNw7POX+5ZDEBYj1DRLrG+Ra7j3EhmL40dstIrpPNdCXVcuG3eF5zzt05gLehgMUhI5jogPJDDmzKYkrIiIiIitMspb/FhERSRo3HJz3MYVry+g6fjkF0SwfxkDx2pJbz+uc0inHrV+7geOHr+DNs29oYf7U8wEMDU1MEA4PjzA0OMTQ0DCHDx9hqAeGu0OU5W3kwfueYGv9FpqbWsnNi0yaa2CsZ8LzmRKxvm/JryyYfr+X4e0U7tJ7romhhvZJ273RKL6TtaA5R69co2doG352+WLDWzaskrgiIiIissKoEldERDKO4zqJjORMvT/vHB9wCDo+o7P0R10NsrJu/2n3WqeuTq2p3MKptovznttxQtPua2qafh1R3/dZs6GM9rZuomMxTp+4hOu6PPXYM8TjceKeh7GAMTiuQygYZMcD5WDAYAgWuGx8YAOQqNS1N7/axNzraxy2V5YCBmNtovoXi7EWJz4MTfN+qRknqyiC39224OOjzc10j1ZRXJuH07cKPuzwVln7CBEREZEUM2Z53OG2kimJKyIiGclxDX58bhcKtXvX076K2yhMEL29oNlI5yBVxWW0dN/ulfv4I0/zxmvzT+ACDPbfsXCa47Bhw3oKC4uIRsc4ceIk9Zt3ceXK9SmPPX3+KJBz67nnebz+0pk5nffhvQfpOTI67f4Hn8wnp3Xq864U1TuKiZ+/tqg54t1ddAyGKd59iGD7i8kJLFPFV9/ChiIiIiKysqmdgoiIZCYztz9RpVuqaT+6sKTkSuQNDE14fnDT7gnP+3sWntzq673dMuGBBx7g8uWrHDlylJMnT3PfffexcdOaaY9tam5k5z0bF3Re35+5JYKd4+/K8mLZeKiCDTtdNjxUi998KTmzRsfoev06Q0VPYZ35ty1ZLqynJK6IiIhI0hgLToY9VmFlsCpxRUQkI/lzaI0Qygnj9fXPue3CamDv+r7Vl6699e+1a9Zx+WLDguceGRkjJyeXaDTKSy+9PGHfkSNH2bZt28yxuVO3d5jNbElc3yxsIbxMlVWcQ82mILELJxMb2lqSfo6BY+cYq76XwuJWnIG5L263bKgnroiIiIisMCuxdEVERFYAJzB7Yq5iaxUjHX1LEM3yYYITP58tc/Nv/Xvj+i2LmjsW89i1Yx/x+NQJsuLi4hmPf+Xwi+Tn58w4ZiqeP3NC33NWThLXuA41WyLErqa+PUi0uZlY9qaUnycdrNopiIiIiMgKoySuiIhkJCc4c2KucvcaOo6tggWa5snNyZ7wPDh4u0o54E6/MNlchMMhrpwd4KnH3zXNCDPj8bFYjPrtdfM+b9yfuarSX9btFCz5dcWU76qmfFc1G3aFiF06vWRnH+1doYsBqhJXREREJKmM8TPqsRqpnYKIiGQkN+AyXRomqzCHkYb2JY1n2QhnTXg63NhH0A2QX1DIjSsd0xw0NyUlBfR09fHGq1d58xPfw8hYL7F4FMdxCQaC9PS3zTpHa+f8b92PxmLA9En95ZzEzakqpHD0HLQmni91/ejIlWvE8nfhj40lWnE4hoqK5PTfTScbH5t9kIiIiIjIMqIkroiIZCTjTFfVaSldX0rniStLGs9yYDF0NU9sL+FF4zzz4FOcv9FDa2vnoubPzbvdCuHwK+cm7b/v4FZKHq3guedemHaOE6feYHf9ozTcaJ3zeeOeN+MFi2dnrgDOZIFQgGk/rVgKnke8p2fCJmvBLN9vaUI8mu4IRERERESSSklcERHJSMaZurqy+t71dJ5QG4Wp5O3ZyqVXJie3I1mltLctvroyHJ65HcPhV89RXFzAM0++A896t9absxawYEls2FC8nodq9sP4nfzWt1h//Ktnsb7F9yzW8/F9S6Qgm5Ncn/a8dhlnHAdbeykodGCWxduWigmFln8CF9ROQURERCSJDGCczFpMeiVcss6XkrgiIpKRnMDkJG5WcS6D11rSEE2Gcxxy76nn0qtXp9xdEowk5TTmjuzennt2EsmOcOnKFdo7blf4dnf38cqLiWrgYJbL6Mjk29o7qvpY075uzuctWzPzgmneMr6Eq9xdA1cz53faBIPpDiEprJK4IiIiIrLCLN8mciIisqKZwN09UC0ltYVE+4fTEk86WQuh0gJCJfmYcAgcB1yXUGkheXu2MlpcwaVXrnKr9PUuBdGZF4mbq9xIHofuP8j+nQe4erKT06/dwOvL4sGDB6YcnxPJnnL7tZZGandWzPm8vjdzlaq/jNspZJqVksRllsXwRERERESWG1XiiohIRnLciZ8z1t63kc43LqYpmvSJbKihsydOW2Pv+BYDjCfahkagcerq2ztldSVnuazOpgGunp3YyzYei3P5ZBsb16/j8tVrE/Z5M7QIGIwMzvm8XnzmJK63TO//L99ZTaD5JJl0Y9p0bUyWHVXiioiIiCSPAWMy6aqVVdlPQUlcERHJSI57u3o0p6KA3nPT90Rdydo7Ywy2980+cAama5SCglz6+uaeOJ1Kf8/UVdCjI2PQFuaxBx8Bx8f4Dl7c59uvPTftXN86/gIHsw4QHZ09wezHvZn3L8NK3Op9dQQajmKnqZ5OF38sCnnpjmLx1E5BRERERFYaJXFFRCQjmVs9cS0FZbl0d3anNZ508WOLT0YZY9i4tpajJ84tao7ejumTwKMjY7zx8oUJ22ZKUA4MD1H1YCnXX529H2w8NnMS18usPOgkgawg5TsqGekdHX8eINRxBj/DErgA/sgw1rKoxc18Nwubvxan+zxjFU8QGruO6buCdcM43mjygp2Jl5zqcxERERGRTKEkroiIZCTjJLJINfs20nVs9bVRuKl6SwWXXrmy6Hlqi0o4FQpy/4F9tF0fZHhgDH+83UFsLE52bhbrtpRw+sJZOjt7Jh1fUlKI1z1zW4P5ujJwFZesWcfN1k4hkytxs0tyqa6JErtx5HaBaz8k9zuZRL4PgTB4kxekmwsvfx29bcXErrTj5GzBv3EBJzcXN3Iv3uAg+TtqCfW8ghNLcW/rDEyQi4iIiCxfFuNk2vVVpsWTekriiohIRjKOQ05FAX0XbqQ7lLQaOnmBwtpyehsXV4lcGyyjKm8Dp15qmnL/QM8wJ18Zpqi8ki0PbuLc+Yt0dfXe2l9cXEhH9/wSe65x8ezUVbQBN8CY9aiqzifHRikrCeI6hkDAEHQNwYAhFDQk1nFziJNNVhBCAQi4YLC4DjgGsrKieFO/rPQyUL0pROzK4pPwS8kGczALTOLGwhuJtZ8HwB8aSnwdHMQfTFRx975+gdJ923E6D2Mt2MINEO3HGelMTvDj3KrNSZ1PRERERCTdlMQVEZGMZBxDfkmEnlXaRuEm63mUloTpbVzcPFn9UQam6Wl7p572QXraB7E2lwMH1vHaa8cAqMkv58kH1uGPefiexQCVYQ/r+di4j/V9/LiPH/PwYh5+LM6/9lYwPDzGxp01eNkjdHR3kJMdoTyvkqZzPXSdGuQ974lwsOXw5EB8YGz8AYRDY5hp7sR3t+zj8kK+KSljqdm/lvDgdWJXFt7CIm0Cs1dHT8WG8hlpnb3v8kCbC+Z+Yp3d+DeGgSyyNz1CpHAUJz6AdUK4PWcw/sJbItjRgQUfKyIiIiKSiZTEFRGRjFS2uZKr//xKusPICIPnr1G7p57GYwtf3M0092OMmfNCWsYYskK3k3nF4Xwaj94udy2uKZy1OjgYcPB9y8UTiQz0xm1ruHaihQ4abo158Y1WDlbOIaBAAKZdrCqdt1JZ7l4ad/1Da/DOH2a5Lq1lTWjOY/1ANtHiBwh6nfS1hok2z14SPdY4eczIpSuM3PE8XLeP/OJO3N5Lc47lTnZYSVwRERGRpHIytiHYqqEkroiIZKTBG23pDiGjuF0duEEXb5ZFvqYV86hbU86N63P/vhrr3Pp3JJhN9I40W3/HADVbKhi83oFxDX7Um7QYViQcoofb1b9TJZBPX+nHHtiIuTFzLa2bnY0/OHVizqSp/+m6h0sIDPZgI2VYEwAcjDeK334tLfEkjRucdYhXvJ2hoTLi/YNEL1+Ydfx8jTU00tFoCFUfJFyaR2Tg+Xm1eLAjSuKKiIiIyMqiJK6IiGQk4zqzD1pFxjp6WLtvG1cWschZXVXJvJK4sbHbn7ZnMTGxF496nDzZMf7Msn1jISNtvRPGZGdPrOiM5ISnPM+RoULumyUW67gz7Z3l6BQwUFv0KpQG6bg2xkjj5MXglitrZk/i+oFChi+kuImFtUSbmog2wWCohkBhIZE1RQTMEIHOIzO2W7Cjg1hrMXd/siAiIiIiskwpiSsiIhnJerpd525jF64SKcphuGdoQcevLyzGObgP3/fxfQsWrG/xfXvHVx/fs3i+j9/t88jGJ/DiPn5s+kuGYDhAbGhylWR2aOIxgeDUc/yfb7ez/74wdmz6SkvjBmZI1S59Erdqdz4MtAJQVtlHX/G99J1oWfI4UsKZOYnrB3PAxgmUlBDv6lqSkGw0Sqy9nb72dgCy6x8kzz+MiQ5NqgBPHODD2BBk5S5JfCIiIiIrmgFj0tnCbAqr8LN6JXFFRCQjedHl2lE0dbzhUWq2V3NxgUnc4ECUky8vrHpyU3HJtPs2761j5OTkecPhicnAjtYeLBZz1xVX70CMvtqt5F8+Pn0AM12k2aVP+LuhOwIa7afAeYHww4/R/nzD9ActF87Ml4ejuQ/Qfzi9C7aNXLiMX7cLG/coKO/D7Z3c0sFGRzFK4oqIiIjICqF7VUVEJCNlFeelO4SMNHDmCnX3rl3QsU7XwvuExkej0+5rvtqFCUy+pAjeta3pWgebd9ZNOcc/nZ65168JTL/YllnyJK6lbt1di3P5Hlk936D6qUpwlndZgJ3hM35rYbS9fwmjmd5YQyPRlhY6jg8TLX8EixnvTZxg49P/zoqIiIiILDeqxBURkYzkqCfu9JqbCeVmER0cnddhXmc/OXlZDA3M77ibsksiOAEHJ+DiBBxwDW4ogHENTiSCj8E6BmsMPhB2Dfsf2j7e7cBiLTiOw70P1idaOYxv9z1Lh+8TeWAzhX73eCIuMcDgg7Xc6NnMcKQa7HjLh7iPH49j4z45A6XA0tzWD3DveyK4HS9OuS/Q+h3qHt9D8yse3hQtJpYFM3X/YYuDV76X6OHmJQ5odt2vXyFQtJN4by9Za9eQl9cM8el75oqIiIjI/Bgnw9oprEJK4oqISEYygZkWslrdYn2DrNmzjUvzXOTMGMOadWWcPTn/W/5fPntt3sfM11fKi3lv5MyU+0ZGqxi40jrlvlBxQSrDAiCQ5bD9mQh9nQFy4m/MONa0HaNm71raL5Uz2tKX8tiSbXQgTKzkKWycRLI8FscfjRIfGMS7PvXPIBPEexKLy41eu07WfVtUiSsiIiIiK4qSuCIikpFUiTuz0YtXCYQDxMfm1zu4vDiHsymKabH+8l+7eMfHt5PVOjmRa2b4fbDezK0YkiG3Mov8vq+QHwTm0k2g5zrltf30FO5k4GxbqsNLqqFzF9MdwqJZa8BTJa6IiIiIrBx6hywiIplpyiXn5ab40ChVO2rmfVx+RifHDf/rcOmUe5wpeu7eZL3U98TtbxyZ/0EjPRSFXqH0wan7AEvq9L1xgfgy7WYhIiIiknksOH5mPVh97R0y+Z2ciIisYqrEnV3Ym3+WKjS0sH64S+Xrr/bTW33fpO1mhsXCrJ/aJO7Gxws58J4FVnV6MSL936D6qSrQ5xJLx/fxo0u94J2IiIiISOroHbKIiGSkmW6fl4TBiw0EI+F5HeO39qQomuT5ra+GwZ3Y8clxZ0jixlPXTsEJQFXwmwTaX1nUPIHW56h7MhcnK5ikyGQ2Nj6/ViMiIiIiIplM75BFRCQjGUd/ombl+xSvKZnfMaMxKmuLUxNPkpy4MERD6cEJ28wMSVw/mrrep74HLKDieSqm9Si198cIFuUkZT6ZmfWUxBURERFJBmPAGJthj3R/V5ae3iGLiEhGmun2ebktlD3/ys7amqIURJJc//mLUcgpuPV8pos0P4WVuPk12eOZ3CTpvEDVnjFWYw+vpWZjSuKKiIiIyMqhJK6IiGQktVOYG2vnnwwszplfC4Z0aO2M8e2xfbeemxmyuKlsp1Ben4LvVccZcrdUJH9emcDGU1ehLSIiIiKy1AKzDxEREVl6juumO4RlIToy/0RVjpe6pGcy/e7fdHH/x7eT1XoGM0NO3497KVszrKi0HzqSP292aZjB88mfd3Ww5GysIKs0GycAjgvGeBjHx9gYxsbBjxLOHkl3oCIiIiIrhnF0J1m6KYkrIiIZSZW4czPaP/9Elds9kIJIks9i+Jkv5fH7TxbO2E7BxuMpSeKWbs0l3PGVFMycWDBN5i9YnEv5Dh9aX4Xumccab3hpghIRERERWQJ6hywiIhlJPXHnwBgGO+efkI239RHJzUpBQMl3tWmMP2vcM2MlrvV8FtBVYlahSOouk4xRJcN8BYtzqdjUC62n53aAp3YKIiIiIrJyKIkrIiIZyTj6EzWb3Pq1+LH5t0YwxlC3tjQFEaXG//1mLyf7s2celOSkf9GGHNZubk/qnBPpQ4r5uJnAtT0Ncz5GPXFFREREksWC42fWYxUuFKyb+UREJCOpEndmTjBAz8DCe9tWlOSynFqyfvbvL/GZZzfDuYtT7neCLjYaX/D82UVBKnflkFPo4QY88vq+Ae0Ln29WqsSds0BBhIrN/djuuSdwAfCiqQlIRERERCQNlMQVEZGMpErc6TlZYWxNLV2nGxc8R0FguX1/Df/1K038wsNVRBta7thsKN6zmb7j5xY4r6X+6ULK7b9BPApL1C5Y7RTmJlAQoXLbMLbr+vwPVjsFEREREVlBlMQVEZGMZFxV4k4lu7aCnjGX3kUkcAFCQ6NJimjpDI3E+dNzcT5cmUN8YAgnFKRgc92CE7hFG3LYur8dt/3FJEc6B/r1npWbl03lthFs19UFHW/jqsQVERERSQqTgUUIq/B6ermV4YiIyCphZlrJapUyrkt7r0dvQ9ei57JtPUmIaOldvNHHPw0XEa4oJreulP6zlxY819p7LW77G0mMTpLFzc2iamcU23Vl4ZOoJ66IiIiIrCB6hywiIhlJlbiTBfJzGOpMzv3+diRGZW1xUuZaaq+daudrfgWDV5oWPMempwrJ7f9OEqOarwyrZMggbiRM1T0etnPhCXpA7RREREREZEVREldERDKSeuJO5o2MYtzkfV9qqouSNtdS+9Z3LnNu7c4FHVuxM49Kvgrx9LWUyLjb0TKEkx2kai/YjguLnssqiSsiIiKSNMaxGfVYjfQOWUREMpJxVIl7N380SuXW6qTNV5gTStpc6fCFr16mvWbDvI8LZDuq0sxATjhA1X1BbNtCF6m7ixdPzjwiIiIiIhlASVwREclIyaw4XUlywsn71DnXLu9PsH3f8mev9jBUXDav45pe74VgJDVBzZEqce/iGKoOZkPr6eTN6StRLyIiIiIrh94hi4hIZlKOa0rDF2/gBN2kzBXoGUzKPOk00DfC/24IE8vKnvMxedURiA2nMKq58NN8/sxS9WgVtJxI6pxWlbgiIiIiyeP4mfVYhZTEFRGRzGTUTmEqfixO8drSpMzltfUSCgeSMlc6NVzr5O+j1Yzl5M04LpDtULI5h3sebFiiyKZn9CnFLeUPr8VpfDH5E8dViSsiIiIiK8fyf+cmIiIrknK404vkz73qdCbGQt26Mi6fb0nKfOl0+mQTFY9u5JB/ldDI7SrbcH6A3W/xCEYbMANNiV64XWkM9JbVWT1wt6J9awi2fjs1k/uqxBURERGRlUOVuCIikpFMIDktA1aiQDB5f74rymauXl1OvvncZd4o3HjreenWXPY/cZlQ+/OY3msZtpjZ6q7EDVcUUP14JZGB51N2DhuPpmxuERERkVXFWEyGPUjSGhPGmFpjzJ8YY5qNMWPGmGvGmN8zxhQtYs4PGmPs+OOjSQkUVeKKiEiGMqgUd1pJ/NYUhlbWpcCXv3GJmqfrObSunbqsr0FfZibyzCqtxA2V5FKyKw+n5TVoTHGlbEYl7UVEREQk0xhjNgIvAeXAPwLngAPAjwPPGGMOWWvndR+fMaYO+CwwCOQmM15V4oqISGZylMSdSjA/h4HOoaTNlzWamUnOhbLW8tVzg1RUNIKXwa/Nrq4krhsJUfloHWUVF3GaXlqaVgda2ExEREREZvbfSSRwP2mtfbe19mettU8AvwtsAX51PpMZYwzwpyQauP1RsoNdWeU3IiKyYqgn7mR599Rz9XgT8fa25E3a1pu8uTLEe+4ppakb1nMs3aFMzy7DBKNjKLynhmCui+NYgrFGbF8zlO+g55ph+FrnpENM0KX0QC2hwePQfH5p41UlroiIiEjyOCurHZgxZgPwNHAN+MO7dv8S8O+ADxpjfspaO9cqmk8CTwCPjX9NKiVxRUQkIzlB/Ym6U3ZdBZcO38D6yb14soOjlFYU0NnWl9R50+W9T24mduoyF9oLWLs/gENmJkuXUzsFJytE6X2VhEbOYfufh/FL2Fu/iU2HKQo55D/6EL3nBzEhFyfkklOVRWjoNLb9UlritkriioiIiMj0biZZv2btxNvkrLUDxpgXSSR57we+MdtkxphtwG8Av2+t/Y4xRklcERFZHbKKV86CW4tlXJdhN4L1e1Myf21d8YpJ4m50owwDw+19NLtvodb7f+kOaWp2eVQyFOysIS90Adt2fual2KyP2/wdSu78z7Y1zcu3xZXEFREREVnhthpjjky1w1q7b5Zjt4x/vTDN/oskkrj1zJLENcYEgL8EbgA/P8t5F0xJXBERyUhOwE13CBkja0c9V1+7krL5S/KyUjb3UsrNCTJ6vfXW8wsn8qjZnqGtOWxmJxhN0KXyUAVO0wvYsXRHs0BL0XdXREREZBUwgMmwdgpJuMQvGP86XTXLze2Fc5jrF4F7gYestSOLjGtaSuKKiEhGMo7W3oREH9yLKUzgAuQuk6rQ2Xz3Ixvwz92+db/vWhfte56iIvb1NEY1DT9O5q4va6l+MA+aXkx3IIti4xm8sJ2IiIiIJMO5OVTcLtTNPPGMb5aMMQdIVN/+trX25RTFAmTuuwcREVnljJOJ5ZNLK2/XZi6/0Zjy8wR659qnP3OVFUcovjH5e3XxQnUaopkD30t3BNMqf2QtNL+R7jAWT0lcEREREZnezUrbgmn25981bpI72ihcAD6dvNCmpkpcERHJSKs1iWsx5GyqY5AwbS1D+LHUJ/u81h5C4QDRseV7+3luJER8eGDS9o4zbfRt2UNB9NjSBzUTPwYE0x3FJHlbqwi2vZDuMJJCC5uJiIiIJIkBnAxbmHfxbxfPj3+tn2b/5vGv0/XMBci94/hRM3Uft88ZYz5HYsGzT803yDspiSsiIpkpIxuZpoAxROrXMhB16W3tJz4WY+x4OwBr929gsK035YlcY6FuXRmXz7ek9DypVJSXBaOTk7gAN3p2syvn2NIGNBubYRfBQKAgQkHkEnYgc6uE50VJXBERERGZ3rfGvz5tjHGsvX2BbozJAw4BI8ArM8wxBvzxNPv2kuiT+wKJhPGiWy0oiSsiIhlpmk8xVwRrIad+HWPBLFovtjNytHXKcddfv0J5fRUjXX2MpbjlQUVZ3rJO4m6szoMrHVPuu3Gkj+2PZuOmbo2B+fMzK8Ho5mZRuSOK7WhPdyjJE8+s77GIiIiIZA5r7WVjzNeAp4GPA5+9Y/cvAznA/7TWDgEYY4LARiBmrb08PscI8NGp5jfGfIZEEvfPrbWfT0bMSuKKiEhGWsntFLJ2b+fcy3NbrKz9QgsFNUXkVoUYbOlJWUyF4eV9SbAhEGe6FG10YIQ290mq4/+8pDHNKO1VopbI2lLCpTkEwoawfw3bcS3NMSWXFjYTERERSRaLMZm2GHJS4vkx4CXgD4wxTwJngYPA4yTaKPzCHWNrxvdfB9Yl4+TztbzfsYmIyMq1Qitxc3Zs4uwcE7g39TX1EM7LomxbLR1nU7PQWdbI8kx4OcbwkbdsYeTsxRnHXbtSSvWaJQoqQzlZIQq2VZBVEMcduILtPwz9iX2ZdkmeFN7y/J0WERERkaUxXo17H/ArwDPAW4EW4A+AX7bWdqczvrspiSsiIhnJcZ10h5B02RtquXBs6tYJsxkbGKXtUjv5VUWpqchtn3bR1YyVmxPk4w/VzprABWg72cLwhg1E4vNLoKfO0n1I4eZmUXFfIabtKAyeh8EVmrS9mxfDWruiW7OIiIiIyOJYaxuAj8xh3DXmcRFvrf0M8JmFxjUVJXFFRCQjmRWWxA1XlXKjYRgvGl/wHPHRGCYUwrgG6yU3DWcHRiipKKCrbXkkc4OuwycOVTN84cacj2kYeYAtwUxJ4i5NGjVva1VisbKms0tyvoxiLfgeuLrcFREREVk0Z1WUAWS0lfUOWUREJAMFiwto7XcY6R1e9FxdV9qp2LU2CVFNVltbnJJ5U+Gp+9cyfHF+rSWuHY9hl7ACdka3F79NDQMVj6wh338FO7CCFiubr7T3HhYRERERSQ4lcUVEJDMtw1ugnXCYrJpy7J0fUrsuQznFDLT3J+081qbme1Oal5WSeZNt95Zy6tvm3xt4uK2PzuCjKYhoAbyFV2TPJlSaR81DEQItz6U+WZzp4kriioiIiMjKoCSuiIhkJOMsvyRuoH4DFy70427feiuRm71zC63nWpJ6nlS1mshdJp1S37I2gvUWlpy80bo+ydEskJ+a5GLh7lrKam5A6+mUzL/cWG8s3SGIiIiILH8GcPzMeiy/t4uLpiSuiIhkpuWRT5ygvzPRLuHa4Wtk79lOqKSQy0fm3rN1rvwFJjBnE+hffLuHVCsuzGL4YsOCj2880k7UzYC2EV6MpP6SB1yqHqslZ/h5GO5N3rzLXTya7ghERERERJJCSVwREclITtBNdwjzFim43Y7gwktXuNYWJz6W/NvmG9+4Tk55ftLn9Vp6CGT49/1N99Ut6ng/FqfJezJJ0SyOE0rOgltZVYXUHjA4Tc8nZb6VxKawbYWIiIiIyFJSEldERDJSqloGpIq1MDI4seovFQncmycrqCtL+rTGt6xZX570eZNly/oSqhsXXoV70/Vz4SREs3gmsPiEecmBtZQUn8d2XExCRCuQkrgiIiIiSWEcm1GP1Wh5vUMWEZFVwzjL509U9poq7KbNtJ1Pbu/bmfh+ai5cqlJQ4Zssz67PxhtbfC/ZnssdDAbrkxDRIi1i8T4nO0j1Y2Vk9XwbopnfBiNtPC1sJiIiIiIrw/J5hywiIquKs4wqceN5hTSeWHyF6Hz48dT0xS0MZXA7hUUkPe/WMrovaXMt1ELbKeRsLKd65xCm6bUkR7QCKYkrIiIiIivE8nmHLCIiq8py6onrOEu/NGrXtQ7cJPVUvVN4LDMXgtqxuZR4d3/S5mu8kP7fLxOY72WYpeyhtRQGj2J7m1IS00qjnrgiIiIiyWDBZNhjOa6EvUhK4oqISEYybvqTbHM1PLT0ic+R3mEK15Ymf+KO5CVKk6UwP8zbSg3R3sGkzdl7pYOh4MakzbcQbtbck/BuXjY1jxYSavu2qkvnw8vMDyVEREREROZLSVwREclIThIWfVoKoYoSmk42puXcqVg4ze8dorAkN+nzLsae+nKc7DBuViip87aM7U/qfPOVXZkzp3F526qp2twBzcdSG9BKpEpcEREREVkhkn8fpoiISBIEc7Io2baGsf6h2xvv6InquA5ZJflkF+cRzMmi48RVrL19S41xDMZxEl9N4t++5xEfieKNxYiPRomPRPFjcTCGYE4WwUg48TUnjBsKJo53HZygi+M6GNfFCbiJ5wEX37fcuNYPV64s5bfmlpzyQvpudCZ1TmMMdXUl9HYlr+p1sXZU5TB86mLS5228EGDT1qRPO2eB7FnacBioeGQNgZbnsQOp6YG80tm4qpZFREREFs0AToa1L1j6jnZppySuiIhkpHB+hHf9/adTfh7f828leuej4ehVvvQf/oquy+0pimx21167wrqDm2g5ehnrJe+iqrwwkrS5FquqLJfw1QZSUU/Zc7mDoV2byIldSsHss3Pc6X9moZJcyrb70PzcEka0AqmdgoiIiIisEClpp2CM+aAxxo4/PjrHY0qMMR81xvyDMeaSMWbEGNNnjHnBGPNDxpg5xWqM+eM7zr1pca9ERERWOsd15p3AtdbyhR/+XFoTuOOBcO2Vy5TvWpfUafMyaJGAdx2sJT40mrL5m0cPpGzu2ZhpqhkKd9dSVtsAraeXOKKVx45mTkW5iIiIiMhiJD2Ja4ypAz4LzPeq+b3A54CDwKvA7wF/D+wEPg980czyLtsY8w7gBxdwbhERkTkzxrDlTbvSHcYtnUlOJrs9mfFntH59MVnnU9uqovF8+u7DMsabuCHgUPVYDTnDz8Nwb1piWmn8zuvpDkFERERkRTCOzajHapTUJO54kvVPgS7gj+Z5+AXgnUCttfYD1tqfs9b+ILAVaADeA3zXDOcuI5EE/hvgyALCFxERmZOehi7OfuV4usO4xYsmt9mA19pLViS5i4gtxLP1Bfhxb/aBi9B7tZPBYH1KzzG92wnkrOoiavcbnKYX0hRL5jL5ZZjCqnkf59bdg7t2T/IDEhERERFJg2T3xP0k8ATw2PjXObPWfnOa7a3GmD8CfnV83r+fZor/Nf714zOMERERWbRLz51lpGdo9oFLJDoSI2gmrPu2KAaoWVPK5XPNyZlwAdZU5TNy4caSnKth8CDbwheW5Fx3sjbxAys5sJasoVexnSNLHkNGC+cQ+fBnCWx7DIDoN/8nseNfwbsxwwcoxiG4+xlCj3wEd/2+ebdKERERERHJVEmrxDXGbAN+A/h9a+13kjXvuJtLC09ZamSM+QHg3cDHrLVdST63iIjIBNGhsXSHMJG1BCPBpE5ZXpKb1Pnmq6ltgMjGmiU517Ujw/jpWOvVOFQ/Vk5Wz7chqgTuBI5L5Af+kOD2xzEmsfBg+MmPkfuTXyLnx/5q2sNCD32QyA/8IYEN9ymBKyIiIpJMjs2sxyqUlHcsxpgA8JfADeDnkzHnXXN/aPzpV6bYvxb4feCvrLVfWsR5pmvBsHWhc4qIyMrTdr6ZF//o6+kOY5JQThbxkdjsA+eoIJyGpOYdPN8Szc5eknON9gzSHnySythXl+R8AEPuOvqHiynv+MclO+eyYQzZ3/OrBLc9OuXuQP0h3HV78a4dnbxv55Opjk5EREREJC2SVYn7i8C9wA9Ya5NdSvIbJBY3+xdr7YR3V8YYB/hzEguZfTLJ5xUREZmgr7mHP3//ZxnuzoyFv+4UKclP6nzZSe6zuxDnuqNLdq5r1+bfc3UhrIXLfBdf+so+ujqzluScy4lTtYWcn/gHQve/b8ZxwfvePXljOJfAxoOpCUxEREREJM0WXWZjjDlAovr2t621Ly8+pAlzfxL4KeAc8MEphvwE8CjwNmttz2LOZa3dN00MR4C9i5lbRERWhtf+4jsZmcAFCOUnt2rV6R5I6nwL0dQ5xKYlOlfLsRYG1u0gL3Z6wnZrwTdBfJOFZ7LwTRjPZOMTxiNEnGw8QvgEifshPBvEswE8z6W7NxcvbrjzZq/hPo/WM+3jk0eW6NUtA+Ecst76U4Qe/hDGcWcdHnrg/URf+mv85nO3t933bkwg/QvyiYiIiKw4hiQ2ZE2SVdg5a1FJ3DvaKFwAPp2UiG7P/XESbRLOAE9aa7vv2r+ZxGJnf2qt/ZdknltERGQqOcXp7RM7k7ZzLeTXltDfmJzW8F5nP7n52Qz2p69X65nLXTy23sHG/UXNU3dgA8b3ALC+D9ZifQu+j5sbobd9GOt5nGrZTMvVe/HjPvGxOPHRGPGxeCKTO2cxbrfynznhb1fjleddTH45wT1vJfymH8PJK5v7cW6Q3E/9A7Ej/0D82jEC6/cRPPCeFEYqIiIiIpJei63EzQXqx/89Os0CEp8zxnyOxIJnn5rLpMaYTwG/C5wikcBtn2LYDiAMfMQY85Fppro4HtOzi+mXKyIiArDugfrZB6XJSO8w1loiZfkMd/Qvej5jDGvWlXHmxI0kRLcwsbhHqLCAsc6+Rc3jDw8zcOH6lPty11fTf6UTgIHrbYTq6ui83Lao882V9U3mVTSkQlYeWW/+JHZsmPiF57GjQ4QOfT/BrY/glNQueFoTyiL0wPcSeuB7kxisiIiIiEhmWmwSdwz442n27SXRJ/cF4Dwwp1YLxpifIdEH9xjwJmtt5zRDr81w7rcBlcDfAv3jY0VERBalbHNFukOY0WjfCJVbNiYliQtQVpTe2/1LirLBX1wVLoBxpq94td7E+fPyXKa78Ei21VCJ61RsIvKDf4RbsTGx4RktYSAiIiKyHBlnPnenSSosKok7vojZR6faZ4z5DIkk7p9baz9/x/YgsBGIWWsv33XMp4FfAY4AT9/dQuGucx+b4dzfJpHE/Xlr7aW5vyIREZHpDbQtriJ0KQwlsWdvvpu+MlHHGH54bynDV5oXP5mZ/nXYu5LEPWeuUVa/ho4LrYs/7yx8nxVbiWtySwi/5ScIHXyv+tSKiIiIiCTBohc2W4Aa4CxwHVh3c6Mx5sMkErge8DzwySnaM1yz1v7ZkkQpIiJyl5NfOpLuEGbV29RNOC+b6MDie9kGh8eSENHClJfmMHojOW0NZqrEHevsxQk4+Hf03c3NdelIyplntlIrcYP3vZusZ38RJ6co3aGIiIiIiKwY6UjiTmf9+FcX+NQ0Y54D/mwpghEREblb7b51YMw8F7paWrGRGGWbKuk827DoOG1rT5Kimr/WjkGydtQwfD0JFbHO9OWu3miUoo3r6Dp/u+K39+x1wnm5jA2MLv7cM7B25SRxnfINBHa+ieCetxBYszvd4YiIiIhIsq2cS9dlK2U38VlrP2OtNXe2Uhjffm18+7ppxs/0eGyO535sfLxaKYiISNJsfGgrz/zSd6U7jFk1n2ygau+GxeeaR6LUrC1NSkzztXdbJfHegaTMNc3Cq7dECrInPLeeT8WWyqSceybWX+ZXwtn5hJ74d+T85D+S+3NfJ/udP6sEroiIiIhIiqzQTmwiIiKpcfAHHqVsc+oTfIt1/bUrVO5et+h5qqsKFz3HvM9ZnsvTdWGifUNLcr7eY+coXD9x0To3Hk35ef3MLeieVaD+EHm/8E2y3/lzBNbcM2uiXEREREREFkdJXBERkXkwxlC1sy7dYcyJG3QXPUdpZGkXpapfX8wH6oIMX2xM3qQzLGwGgLXkFU+sxu09f4NQblbyYpiCv0wrcd1N9xP54T/GyS1JdygiIiIishQMiQxiJj2W56X0oiiJKyIiMk99LenrFTsvSaiOjPQOJiGQudlZX8ZbnH7GuvuTO/Ecvg0DF67h3JH0tp5PRX3FDEcs3nLsieuUrSPykf+OCYbTHYqIiIiIyKqiJK6IiMg8DHb003DkarrDWDJeY9eS9cU9e6mTcFlh8ieeQzLbG41SWl8zYVvQSW2/A99L6fRJZ0rqiPzIn+HkFKU7FBERERGRVSeQ7gBERESWk5c+90382PLIvo0OjC56DmMMWzeU0XS9MwkRzWxDXWFqJp5jLjYcmXhZNHi9JVHFm6Jcru+nZt5UcKq3kvOjf4GTV5buUEREREQkHVQGmnZK4oqIiMzD+a+fTHcIc9bb2I1xDdZbXBaycGjxyeC5eHZHMaNnryV9XjvHthIjDS0kMraJ8dG+ISq3rqP1bHPSY4LMTuI6lfU4JbXghnDX3EP44Q9jwpF0hyUiIiIismopiSsiIjIPkaJcumhPdxhzkl9VSO+l4UXP411rp7SigM62viRENbXvfVM9o2cvp2byOeawx7r6KFxfS+/V2z/fSF4wNTGRme0UTEElkR/6nwTW3JPuUERERERE5A4qhhYREZmH/d//ULpDmLOcwuRUThpj2LG1KilzTeW9T26m7FKKErjMrxtCXln+hOe9p64QKc5NbkDjfD+1PXfnLZRNzo/+pRK4IiIiIjKRARyTWY/lt0bwoimJKyIiMg9b33wPbmh53MjScPwG1fdtSspcJWOxpMxzt/c+sYmqK1dSMvctdu7J0lhP74Tnftyjsj41fWBthrVTyHrLT+BWJuf3RUREREREkktJXBERkXkIRcJUbKtOdxhzEh+N0XKmKfFJ9SL5V9soKs1LQlQTrc9aimrUub/+oWvNRErvqsY9cYn8ysIkxwRePHMqcd11ewk98pF0hyEiIiIiItNQEldERGSeSjdUpDuEORsbGKVk08ytENxQgJ3v3k/907t5+MffyqbHd5BzV1sBA+zaXpP0+Mzg4nv2zmoelbgAResmVt76cY/SmuQnsDOlnYLJLyfykf+OcZdHhbmIiIiILC0DGCfDHun+pqSBrtZFRETmqXzr8qjEBVh3cCNNr1/CTHOVU7d/I2/99e+j5K7EtBfzeO63/x9Nb1yl+fh1vGicUm/ySlyP7KtlY3kueQHwgfZhj9fOdXCtqXfW2N5yaD0jDTcW8Krmx86rKy7Y4SEwBhMM4AQDmGCQobYeitaV0nOtM3lxpaKdghPAqd6KCWbhNZ6C2Oish0Q+8Ns4BcvngwkRERERkdVISVwREZF5qt5Zl+4Q5mS2BG4gK8jTn3nvpAQugBt0eeJn3w3A5efO8E8/+eeMXG3l3kP1/Minv4vLpxuJDAwQPH2BjjcuEcgKkV1ehHO1hfdWF/ClYDG9/aPkZIcYGB7D83x6+8cmnGN3tscS1OHOO1k6cKWJDr+YeG90fEsMiFF7XxXWdk77/bzFGIwBO0ul7azzzEcoQvaznya4712YUDYA1vfAi2PHhoi++FeMfevzMDpw+5isPLLf92sEtiyfxfpERERERFYrJXFFRETmaaRvKVKPizfWNzRjovC7/tsPUbGtdtZ5Nj66nR/79mfoutJOxfYa3GCAfQ9vvbV/pLOPUH4E61u+9NafY6S9l7cYoABgDEKJcaGNBZjqckx3L97gCMOXmxb1+lLG86jcUkHjsYYJmxsPX6F291q6Tl+f8rCswhzWPraLB37iXWSX5HPq/zxH06vnaT58idHeockHJCuJG84l52N/TmD93onTOy44LiYYJuvNnyR0//sZ/adfw+9pJnjv2wntexcmUpCkIERERERkRUvCOhuyOEriioiIzFPTsamTeJkmXJAz4/6swsjc58rLpnr32in3ZZfeTgTu/Ynv5vB/+QJjPYOTxkV7B6F38vZUs/PsiQuQN82Ca6MjHtberqJ99i9/kqbXLjDaO8RDP/vdOAH31tjdH3qC3R96AmstL//WP3D081+bMJdZaCluMIvA5gcS//bihN/87yclcKfiFJQT+eDvLeycIiIiIiKSVkriioiIzNPRv3k53SHMzSw5wjf+z4vU7t2Q1FNueMcD+HGPlz/9p0mdN5USfW/H+9+6Dtlrauhp709kau9KAHdeaKFm9zq8gSHu/4l3UXOgnpoD9TPOb4zhwZ/+Lja/fT/H/+KbnPu/id+fmz8ep2Y7gfoHsaOJBLcJhPGaz+FdfvX2HPnlRL7/d3DX35d4Hgwn6dWLiIiIiMhyoCSuiIjIPMXHYukOYU5G+mZe1Kr1ZGoWFQtGMivB2HbyBm5WPn7cx8Y9/LiX6FvrGKznQ9QAlkTvW6D1CgDl9RtoP988aT7fuLznCz9NpCR/XnGUbavj8V/+PkY6+xkbGKHu4HpyP/ANnLL1k6pyre8Rff4viL76tzhl68h+7/+Hk1u8kJcvIiIiIrI4hsxrp5Bh4SwFJXFFRETmKac0j77G7nSHMavOS61k52QRHZo6mZtbkZp+qLFpzpcuftzHH7xzUTUDFqxnmenqL68oi/Yptm9/94F5J3BvckNB3vG5fz/rOOO4hB/9COFHP7Kg84iIiIiIyMripDsAERGR5SZSNHOv2UzhxTwK1pROuW/LM3t41+/9QErOO9zem5J5l5rf2ztpW9nWGnZ99wNLH4yIiIiIiKxqSuKKiIjMk+/56Q5hzqZaPCuUm8Xbf/MDRIpyU3LOXT/ydqoP7UzJ3Etp+FozkZKJ36O3/taHCGaH0hSRiIiIiEiaOCazHquQkrgiIiLzNNo3nO4Q5qS8voq20w0Ttq05uImPfOmnCedlp+y8xhjq3/94yuZfKsZA5eZyAArqSnj6//teyrfVpjkqERERERFZjdQTV0REZB6iI1H6W3rTHcas8qsKifYNcHch7qFPvIWSDRUpP3/d43vY/Yl3c/y/fSnl50o2E3CxcQ8nFKD+qZ08/Vs/SF5VUbrDEhERERFJEwMm0+pAby5OvHooiSsiIjIPHRdasH7mXywUrymh+fClSdsbXrvE+kNbliSGnT/8Ngo31XDhi9+m5aXTS3LO+TIBl60feJJ1zxzAG42SXV5IKC9C62vnKL1nPbnVU/cUFhERERERWUpK4oqIiMxDbCSa7hBmlVOSy0hX/6TtgXCQNQc3LVkcjuuw5qm91D6+h6O/87ec/Yt/AztzAjy7vJDRzr6UJcpD+RE2vPNBskryGW7tZtN7HqFk+9pJ49Y9sz8l5xcREREREVkIJXFFRETmoWhNZldmukGXgsp8Os81TdjuBF1+8J9/htKNlUsek+M63PfT72PL+5+g4/hlLv3f52k/epFIeSFDzV23xpXfV88T//1T9Jy7QeeJK3jROKf/5F+JDY7canEAUPXAdlpePnPruPz1VeStKccbi9J95jrR/sk9i6sf3sWap/ZR9cA2VdeKiIiIiMyHIfMWE8uwcJaCkrgiIiLzkF9ViBsO4I3F0x3KJIW1xQSDZlICFyC7IJKWBO6d8urKyKsro+6JPfSca2CgoYOXfuGPAdj3099D/fseJ5AVonzvZsr3bgZg+4efBsAJBWh7/TxOMED5vZt46T/9CfHRKHs+8W7y191+XWN9Q3z1Q79B3+Vm1r3tIEWba4mPRrnnR96OE9Rlj4iIiIiILE96NyMiIjIPvufjx7x0hzFJ+ZYqhlq6GB4aS3coswpGsijfu5nS3RsZbGhnqLWb7R9+85Rj3XDw1r8rD2y99e+Dn/4g1loCWaEJ48MFObz97z9DtH+YcFEu5u6V3URERERERJYhJXFFRETmKRMXNhvpHcZxb68YG87N4t7ve4ixgREiJXlUbK9NY3RTc1yH3Z9494KOvTO5O2negEtWcd4CoxIRERERkUkcZ/YxklJK4oqIiMxDJiZwAQba+iivrwLHIZwd4m2/+QHWP7R19gNFREREREQk4ymJKyIiMg+BUICc0jyGOgfSHcok7RdaeMevv5+d79hLOC873eGIiIiIiIhIkiiJKyIiMk+V22u4/J1z6Q5jSmvv36wEroiIiIiIJI8xmddOYRWufZFhPwEREZHMF83gxcOajl1PdwgiIiIiIiKSZEriioiIzEPjsWs0HLma7jCm1fhG5sYmIiIiIiIiC6MkroiIyDx8+3f/Nd0hzOjklw4THc7cSmEREREREVmGHJNZj1VISVwREZE5OvdvJ7n07TPpDmNGo/0jaqkgIiIiIiKywiiJKyIiMgfxaJx/+fQX0x3GnHRdbU93CCIiIiIiIpJEgXQHICIishxc+MYp+lt60x3GrB746OPc+74H0h2GiIiIiIisJI7qQNNNSVwREZE5eONvXk53CLPKys/m6f/0LMaszh5RIiIiIiIiK5XS6CIiIrMY6h7k0nNn0x3GrKp21SmBKyIiIiIisgKpEldERGQWTW9cw/o23WHMyLgOj//E29IdhoiIiIiIrDTGZF47hVVYvKIkroiIyCwCWcF0hzDJ+kP17PveB4kORWk900j9UztZs39DusMSERERERGRFFASV0REZBZDnQPpDmGCSEku7/9fP0w4NyvdoYiIiIiIiMgSUBJXRERkFhe+cTrdIUzw3v/2ESVwRURERERk6WRaO4VVSElcERGRGQx1D3L2K8fTHQYAxjHs/d4HWXv/pnSHIiIiIiIiIktISVwREZFpjA2N8U8/89fEx2LpDgWA/R96hLf+8nenOwwRERERERFZYkriiojIqhYbjdJ8soHCmmLyqwoxxjA2NMZrf/4cL3/uWwx3D6Y7xFvUQkFERERERJaaNQabYe0UrDHpDmHJKYkrIiKrkrWWM/9yjH/++S8w0jsMQDgvi7yKQnobujKm+vZOb3zxZR746ONEinLSHYqIiIiIiIgsocxKo4uIiCyBpuPX+cIPf46//bE/uZXABRgbGKXzUmtGJnABBtv7+c5nv5ruMERERERERGSJqRJXRERWlZP/dIT/++N/jvVtukNZkPP/dpI3f/pZzCq8fUhERERERNLEcdMdwaqnSlwREVk1Oi628k//8a+XbQIXoOdGJ6f+6Ui6wxAREREREZElpEpcERFZ8Xoaujjy1y/y2l88T2wkmu5wFqV0UyWVO2rTHYaIiIiIiIgsISVxRURkxYmNRmk52UjHpRbOfuUEl547C3b5Vt/e6Xs//8OUrC9PdxgiIiIiIrJqGHAy7Wb+1ddeTklcERFZMay1fO1Xv8Rrf/EdvLF4usNJiWN/9xpP/vTb0x2GiIiIiIiILKFMS6OLiIgs2NEvvMzLn/vmik3gApz5lzfSHYKIiIiIiIgsMVXiiojIiuB7Hq99/uvpDiPlehq66LrarpYKIiIiIiKyNAyZ105h9XVTUBJXRERWhqZvvUFhx1UqNxYQKimEcJgx36WtcZC2692slL/yfszjyP95iad//t3pDkVERERERESWiJK4IiKy7PWcv8Grv/SnAIx29jHa2XdrXyFQvbUUt7yMwVGfeMwnKzuAF/e5caGbod6R9AS9CG7ATXcIIiIiIiIisoSUxBURkWVtuL2Hb/zgbxIbGJ5+TEsntHQC4AKx8e11rkPeQxu5dGmQntaB1Ae7SMFIiKf+4zu57/sfSncoIiIiIiKymmRaO4VVSD8BERFZ1t74rb+ZMYE7E+v59J+8SDXdVG8uTXJkyXfoY09x8COP4gZViSsiIiIiIrKaKIkrIiLLVusrp7nxlVcXPU98ZIwyv4fqTXNP5OaX5rD7oTXUbVu6BcbWHti0ZOcSERERERGRzKF2CiIisizFBkd4/Vf+PGnzjXb2UVpsqXxkDc0Ng7Re7WLKxdAMbD9Yi9NwndGTbUSA/Q/Xc/ZUD4M9qeuva1yHNfdtSNn8IiIiIiIiUzIG62TY3YBmZSxcPR9K4oqIyLJjfZ9X/tPnGWzsSOq8Y939jHWfoQAorY2QXV2Kzc7GWgeMxY1HGW3uYOzsObw7jus/cYF1eRGCu9Zx6tVmYmPxpMaVU5rHd3/2B9RGQUREREREZJVSEldERJaV6MAwR379r2j85tGUnic2MEzs/PX5jT9+ht276jh8uCepsYQiYdY/WJ/UOUVERERERGT5UBJXRESWjZ5zN3juE7/LSHtvukOZlh/JA5KXxHXDAd7+a+9L2nwiIiIiIiLz5mhZrXRTEldERJaNi1/4RsYmcPN3bQbH5eyp5LZ4cIMB8ioKkjqniIiIiIiILC9K4oqIyLLhZoXSHcKUwsX5vP5CM1MuhLZI0cFRTn/5Dcrrq5I+t4iIiIiIiCwPSuKKiMiyER8ZS3cIU4oNjRDOyWVsKJaS+Tc/vj0l84qIiIiIiMzOZGA7heQX0GQ6JXFFRGRZsNbS9uqZdIcxSe76aoab2rnnniJOn+lnuG80KfM+9PE3se2ZPbSdaaJm99qkzCkiIiIiIiLLU6al0UVERKY02tXPUHNXusOYIGf3do4c66c3v4aBC9fZXBYnOy85LR82P7admnvWsPf9D2DM6vuUWUREREREJNWMMbXGmD8xxjQbY8aMMdeMMb9njCma4/ElxpiPGmP+wRhzyRgzYozpM8a8YIz5IWNM0nKvqsQVEZFlIdo3mO4QJsiuLObEK00AtFzuovaRTfQfP092XjUjA9EFzZlfVcg7f/P7uPbqRSq21SQzXBERERERkYUxgOOmO4qJklDnYozZCLwElAP/CJwDDgA/DjxjjDlkrZ2tkui9wP8AWoBvATeACuC7gM8DbzHGvNdaaxcbr5K4IiKyLAy3dqc7hAnixRXEzzfcen7meBdV6zfTfaxlXvM4QZd192+msLaY/R98mKodtWx6dFuywxUREREREZGJ/juJBO4nrbWfvbnRGPM7wE8Avwp8bJY5LgDvBL5srfXvmOPngdeA95BI6P79YoNVEldERJaF5hdOpjuECULBiR/9DvWNcmmeCdx9HzjE0z//bsK5WckMTURERERERGZgjNkAPA1cA/7wrt2/BPw74IPGmJ+y1g5NN4+19pvTbG81xvwRiUTwYyQhiaueuCIikvG8aIyr//RCusOYYOTMBao2FC9qjs2PbVcCV0REREREMpzBGiejHknop/DE+Nev3VlBC2CtHQBeBCLA/Ys4R2z8a3wRc9yiJK6IiGS8jqMXiQ2MpDuMCfxYnJoiCyy8tdH/+/kv0HGxNXlBiYiIiIiIrB5bjTFHpnrM4dgt418vTLP/4vjX+oUEZowJAB8af/qVhcxxNyVxRUQk43WduJzuEKY0cKmB9TsrF3z8UMcAV144n8SIREREREREZA4Kxr/2TbP/5vbCBc7/G8BO4F+stV9d4BwTqCeuiIhkvN5LjekOYVoF8V5CkSDR4djsg8dlF+Xw0MeeovqeNVTfsyaF0YmIiIiIiCSB46Y7gqmcs9buS9HcN/s1zPvWS2PMJ4GfAs4BH0xWQEriiohIxhu4lrktB0Zauti9cy0nTvczNjRzItc4hoMfeYxHf/wZsgsiSxOgiIiIiIiI3O1mpW3BNPvz7xo3J8aYjwO/D5wBnrTWdi8svMmUxBURkYxmfZ/Bpo50hzGj/vPX2bW1ljdO9OPF/CnHFK0t5dnf+SBr7tuwxNGJiIiIiIjIXW72tZuu5+3m8a/T9cydxBjzKeB3gVMkErjtC45uCkriiohIRmt77VzGLWo2lYFLjew9uJljhzsoKMmhYk0eruPQ2TZI9f3befoX3k0oEk53mCIiIiIiIvNjTOa1UzBm9jEz+9b416eNMY619lY1jjEmDzgEjACvzC0c8zMk+uAeA95kre1cbIB3S8nCZsaYDxpj7Pjjo3M8psQY81FjzD8YYy4ZY0aMMX3GmBeMMT9kjJkUqzFmszHmZ4wx3zTGNBhjosaYNmPMPxpjHk/+KxMRkaV27csvpzuEOes/eZEN4V5KBpuInznH2KkzPPGjj/P2X32fErgiIiIiIiIZwlp7GfgasA74+F27fxnIAf7CWjsEYIwJGmO2GmM23j2XMebTJBK4R0hU4CY9gQspqMQ1xtQBnwUGgdx5HPpe4H8ALSSy4TeACuC7gM8DbzHGvNdae2dD4f8MvI9En4l/AbqBLcA7gXcaY37cWvsHi3tFIiKSLvHRKI3fOJLuMBZs7dvuZ9N3P5buMERERERERGSy/7+9O4+yqyoTNv68ValKqjJXQkiCkAqBQBhCmEkgIEGQBhRcCk2riGC3+ukSabVbwYYG7WXTy+EDP9qmxQEFnADbAWWwgQQEBA2DEELClDAFAkmADFVJqmp/f9wbLYpbw63hnlOp57fWXofss/c5b6yz3ZX37rvPJ4B7gG9GxDHAUuBQ4GgK2yh8sV3bnYrnV1JI/AIQEWcCXwJagbuAc+Ktq4RXpJSu6muw/ZrEjUKU3wfWAD8HPldG9+UUkq+/6bCE+XzgfuC9FBK6N7TrczPwHymlBzvEcRTwO+CrEXFdSmlVL/46kqSMPX/7A2zdkP+tFEqZPHdvDrngw1mHIUmSJEl9lqoG5Mv8mUopPRURB1FIwh4PnEBhcek3gYt7+FKy6cVjNXBuJ20WAVf1KVj6fzuFc4AFwFnAxnI6ppRuTyn9un0Ct1j/EnBF8Y9v73Duqo4J3GL9ImAhUAvMKycOSVI+pJRY9sNbsg6jV2JYNQd+4QMMcwsFSZIkScqtlNJzKaWzUkpTUkq1KaVpKaVPd0zgppRWpJQipdTYof6iYn1X5e39EWu/rcSNiFkU9n+4LKV0Z0Qs6K9rA1uLx5aB6hMRnX1fd88y7ilJ6icv3/cYax9bkXUYvTLt+EMZM31K1mFIkiRJkrYT/ZLEjYhhwNUU9rE9vz+u2eHaHyr+8eYe9pkGHANsAu7sz3gkSQMvpcQj3/pF1mH02sQ5u2UdgiRJkiT1jwioqs46ijd7676z273+Wol7IbA/cERKqb83L7wE2Af4bUqp2+/VRsRw4FpgOPDPKaV1PblJSunATq63GDig5+FKkvrqmV/dzasPPZl1GL3Wunlr940kSZIkSeqhPu+JGxGHUFh9+/WU0r19D+lN1z4H+CzwOHBGD9pXU1gRfDjwU+Br/RmPJGngbXj+FRZfcm3WYfTJ+hUvZR2CJEmSJGk70qeVuO22UfwQW9IAABhfSURBVFgOXNAvEf312p8ELgMeA47p7o1wxQTuNcCpwM+AD6aUUn/GJEkaWC2bNnP3P32Llo3NWYfSJ6vu/jNNa16nbsLYrEORJEmSpD4KUt62U2DobafQ15W4o4CZwCygOSLStgL8a7HNlcW6S3t60Yg4F7gceBQ4OqXU5ZKmYjL5x8DpwI+A96eUynkJmiQpBx698lesXbIi6zD6bOOLa7jlby/ihUUP0dbalnU4kiRJkqRBrq974m4GvtvJuQMo7JP7e2AZ0KOtFiLi8xT2wX0IODal9Go37WsprLw9GfghcFZKyX8xS9Igk1Jixa/uyTqMftO0+jXu/NRl1E0az4z3HsmM9x5F/aTxWYclSZIkSRqE+pTELb7E7O9LnYuIiygkcX+QUvpOu/oaYAawNaX0VIc+FwBfAhYDx/VgC4XhwM+BEygkkz9qAleSBqctb2yk6ZXXsg6j3zWtXsej//VLln7/JvY84zj2/PDfUDu6PuuwJEmSJKnncredwtDT15W4vbETsBRYCTRuq4yIMykkcFuBu4BzIt6yv8WKlNJV7f58BYUE7qvAC8CFJfosTCkt7LfoJUkDYvO6DVmHMKBam7ew5MobefqXv+e4ay6gfnJD1iFJkiRJkgaJLJK4nZlePFYD53bSZhFwVYk+E4ELu7j2wj7EJUmqgM3r1mcdQkU0rX6Nx773Gw46/4ysQ5EkSZIkDRIDlsRNKV0EXFSifgUlXiHXWftu7vH2XoQmScqhlqbNWYdQMasXL886BEmSJEnqkRRBytl2Cumt38Tf7uVpJa4kaQhr29KSdQhvUjWsmrodG6gZNYKaUfXUjBzBsPoR1NQPZ/PrG1n76NNsenldr649fo9d+jlaSZIkSdL2zCSuJCkX8vBeyh0OmMm04w+lYZ9Gxs3cmerami7bb1q9jjUPP8UrDz3BusefZe1jK2jZ2Nxp+5rRdUw5fDYHnveB/g5dkiRJkrQdM4krScqF1JYyvX9UV3HENz7JiIYxPe5TP2k89ccexM7HHgRAW2sbG59fzbO3/JEl37mR1uYtTJ67N7u+Zz4T9plO/ZSJVFVXDdRfQZIkSZIGRs62UxiKTOJKknKhtXlLn/rXjh3JjofMYvJhe9Gw93RW3nw/T/zkth5fd8K+u5aVwC2lqrqK0dMms/dH38WU+bOJ6irGz9y5T9eUJEmSJMkkriQpF3qbxB0/axoHX/Ahxs9qfNMq14a9Gpn14eN5/Ac388RPbu/2xWlTj5jdq/t3pmHWtH69niRJkiRp6DKJK0nKhbatrWX3mXLEvhz+tU9QUz+i5PkRDWOY84+nseeZx/Pny3/OUzfcCan0tg1ve8eBZd9fkiRJkrZ7EaS8bacQkXUEFefGfJKkXHj1kafKaj91/myO/OanO03gtjeiYQyHXPhh5nzmtJLnJ+yzK2N3nVrW/SVJkiRJqhRX4kqS+lVL02aqR9QSZXwyunVjEy8sfKis+zS+ax5Vw8r7NHjWmcezw5zdefaW+3nlweU0vfIaOx6yF/ud+76yriNJkiRJUiWZxJUk9Yu21jYeu/LXLLnyRibO2Y0DP/9+xvXgpV5tLa0svuRHbF2/qaz77XjIrF7FOXG/GUzcb0av+kqSJEnS0BOQt+0UGHrbKZjElST12abV6/jD+Vfy8v1LAVj9x8e55e++xH7nnsrM0xdQVfPm6aZtawvrV77MqnuXsPK397J2yYqy7jduz10Y0TCmv8KXJEmSJCnXTOJKknotpcSKG+9l8SXXvmUlbdvWFh786o9Zds2tvO3o/RneMJpNL63l9SeeZ92y52ht3tLr+47bbae+hi5JkiRJ0qBhEleS1CuvPfE8D3z1x7z8h8e6bLdp1RqW/+h/+/feT77Qr9eTJEmSJHUu5W47haHHJK4kqSzNa97gkW/9gqduWEhqS5nE8Nrjz7LxpTWMnDwhk/tLkiRJklRJJnElaRBpa22jqroqk3u3bt7KsmtuZcl3bqRlY3MmMbT3yuLljDxxbtZhSJIkSZI04EziStIgsHVTM49e8Sue/OntNJ40j/0+/V5qx4ys2P1feWA59/3r91i/8uWK3bM7zWveyDoESZIkSdr+RUBVzlKIEVlHUHE5+wlIktrbvG49T/3PnSz/0W00rV4HwJPX3cFL9y1hwbf/iZFTJw7o/VuaNvPwN28o7Gmbstk6oTNbNzRlHYIkSZIkSRVhEleScqZl02aW/+R/ef72B1n32AraWlrf0mbDs6u542Nf59irv8jwcaMGJI41jz7NveddyfqVLw3I9ftq87r1WYcgSZIkSVJFmMSVpBzZ+OKr3Hb2JWx8cU23bdevfIl7z/82R152DlU1/fd/5y3NW3jkW79g2Q9vzuzFZT3R0rwl6xAkSZIkaQgIqKrOOogOht52Ctm8HUeSVNKT1y3sUQJ3m1W/f4Tff/Y/ad28tV/uv3rxcm4+9UIev+qmXCdwAapq8vZLhCRJkiRJA8MkriTlyOhpOzLp4D2pmzSux31eWPgQt519CS/e9TCpra1X9926qZk/feVqbjvr33P18rKu1O/YkHUIkiRJkiRVhNspSFKO7HrKfHY9ZT4AW97YxEP/92c8dcOibvuteeRpFn3yUkbtPIkZ7z2S6ScfQd2EsT265ysPLOcPF3yXDc+t7lPslTZ57t5ZhyBJkiRJ27+AVJWzFOLQ203BJK4k5VXtmHoOvvBMRr1tBx6+7Poe9dnw3GoevvR6/nz5/zD18H1pPGkuU4+aw7ARtW9p29K0mT//v5+z7NrfQcr31gkd7fLOg5k4e0bWYUiSJEmSVBEmcSUpxyKCvT5yIvWTG7j3vG/3uF9qaeWFRQ/xwqKHGFY/gh32350dDpjJ6Gk7UlVTzbrHVvLk9QtpXvPGAEY/MCYdvCeHXvyRrMOQJEmSJKliTOJK0iDQeOJcnr/jQZ679Y9l923Z1Myqux9h1d2PDEBklTXthMM49MsfobrG6UuSJEmSKiOgKm8vlh56+yn4YjNJGiRmf/I9RNXQm6i22eOM45j7lX8wgStJkiRJGnJM4krSIDFm+hSmn3xE1mFkYub738H+nzudqHLakiRJkiQNPS5nkqRBZJ+Pn8yKX99DW0tr1qFUzPg9d2HOZ04jYuiuQpYkSZKk7AQp8pZCHHr/PnRJkyQNIiOnTGDMjKlZh1ExteNGMf+yc6iurck6FEmSJEmSMmMSV5IGmdE775h1CBVz2Jc/wsgpE7IOQ5IkSZKkTOVtLbQkqRujdpmUdQgVse8nTmGno+ZkHYYkSZIkDW0RUJWzFOIQ3G4vZz8BSVJ3xu+5S9YhDKhhdcM55OKzmHb8oVmHIkmSJElSLpjElaRBZur82VSPqKW1eUvWofS7ifvvzmFfOpvR0yZnHYokSZIkSblhEleSBpmakXVMPXI/nrv1j1mH0m9GT9uRvf/hXTSeNJeocrt2SZIkScqVvG2nMAT5E5CkQWj6uw8f9EncqAp2PWU+008+gon7zTB5K0mSJElSJ0ziStIgNHX+bKadeBgrf/OHrEPplUkH7cEBX/gA42funHUokiRJkiTlnklcSRqEIoKDv/ghXn3wSTa++GrW4fTY8PGjOej8D7LzcQcTQ/BtopIkSZI02CSClLPtFBJD79+TfndVkgapmlF17P2xd2UdRo/VT5nAMd/7PLu88xATuJIkSZIklcEkriQNYo0nzWPUzpOyDqNbY3fbiWOv/iJjZ+yUdSiSJEmSpHJEQAzLWRl6C4PytRZaklSW6pphHPPdz3PH//k6bzz1YsXvXztuFLufdjRtW1sYOXUitWNHUj28hqqaGqprh1FVO4zq2hpGN06mpn5ExeOTJEmSJGl7YBJXkga5+skNvOOq81j8lWtYedN9Fbtv40lz2f9zpzOiYUzF7ilJkiRJ0lBkEleStgPDx45i3n98nJ2O3p+HL71+QF92Vj9lAgf/y4eYOn/2gN1DkiRJkpQXATl7sRlD8MVmefsJSJL6YNrxhzJ57t7cde7lvLJ4Wb9eu2Z0PTNPX8Css0+gZmRdv15bkiRJkiR1ziSuJG1nho8dxdv/6zM8cvnPefqXv2fL6xsL9eNHMXHO7oxpnMyW1zfywqKHaF7zRrfXq5s0jj3OeCe7ve8ok7eSJEmSJGXAJK4kbYeGjahl/8+dzpzPnEbT6tdIbW3UT24gqqr+0mbrxiae+OntvHTPEtY+toLWLVupHTMSUqJ+cgOj3rYDUw7fl2knHEZ1bU2GfxtJkiRJUnbcTiEP8vYTkCT1o6iqon5yQ8lzNSPr2OvsE9nr7BNJKRXax9CbCCVJkiRJyjuTuJIkk7eSJEmSJOWYSVxJkiRJkiRJJUVARL5SiENxHVJV900kSZIkSZIkSVkxiStJkiRJkiRJOZavtdCSJEmSJEmSciSgqibrIDoYevspuBJXkiRJkiRJknLMJK4kSZIkSZIk5ZjbKUiSJEmSJEnqRBCRtxSi2ylIkiRJkiRJknLEJK4kSZIkSZIk5Vje1kJLkiRJkiRJyo0At1PInCtxJUmSJEmSJCnHTOJKkiRJkiRJUo7lbS20JEmSJEmSpLyIIKpylkIMt1OQJEmSJEmSJOWISVxJkiRJkiRJyrGcrYWWJEmSJEmSlCcRphCz5kpcSZIkSZIkScoxk7iSJEmSJEmSlGOuhZYkSZIkSZLUicjhdgqRdQAV50pcSZIkSZIkScoxk7iSJEmSJEmSlGN5WwstSZIkSZIkKSeCoCpn2ymE2ylIkiRJkiRJkvLEJK4kSZIkSZIk5Vi+1kJLkiRJkiRJyo8IIqqzjuLNwu0UJEmSJEmSJEk5YhJXkiRJkiRJknLM7RQkSZIkSZIkdSrCFGLWXIkrSZIkSZIkSTlmEleSJEmSJEmScsy10JIkSZIkSZJKCoKqquqsw3iTILIOoeJciStJkiRJkiRJORYppaxjyLWIWFNXV9cwa9asrEORJEmSJElSF5YuXUpTU9PalNKErGPZHkTE4rq62gNmzZqadShvsnTpizQ1bXkgpXRg1rFUikncbkTEM8AYYEXGofSHPYvHxzONQlJXHKfS4OBYlfLPcSoNDo5V9bdG4I2U0vSsA9keRMS1/HWc5s3jKaUPZB1EpZjEHUIiYjHAUPqUQhpsHKfS4OBYlfLPcSoNDo5VSeoZ98SVJEmSJEmSpBwziStJkiRJkiRJOWYSV5IkSZIkSZJyzCSuJEmSJEmSJOWYSVxJkiRJkiRJyrFIKWUdgyRJkiRJkiSpE67ElSRJkiRJkqQcM4krSZIkSZIkSTlmEleSJEmSJEmScswkriRJkiRJkiTlmElcSZIkSZIkScoxk7iSJEmSJEmSlGMmcSVJkiRJkiQpx0ziDrCIWBERqZPyUoe2jV20TRHxky7uc2ZE3B8RGyLi9YhYGBEnddG+LiIujohlEdEcEasj4mcRMauLPm+LiO9FxIsRsbn4d7s0IsZ30WdeRPw2ItZGxKaI+HNEnBsR1d39bydlISLmR8QNEbGq+JyviohbI+KEEm3Lfr4dq1Lf9WScOqdK2YiID3cz9lJEtJbo55wqVUi549Q5VZLyIVJKWcewXYuIFcA44NISpzeklL7Wrm0j8AzwMPCLEu0fTSldX+IeXwM+CzwPXA/UAqcDDcCnUkqXd2g/HLgNOBz4E3A7sDNwKrAFWJBSuq9DnxnAPcAk4JfA48AhwNHAMuDwlNKaDn1OBm4AmoGfAmuBdwF7ANenlE4t8XeUMhMR/wJ8GXgVuBFYBUwE9gfuSCn9c7u2ZT/fjlWp73o6Tp1TpWxExBzglE5OzwcWAL9JKZ3Uro9zqlRB5Y5T51RJyomUkmUAC7ACWNHDto1AAq4q4/rzin2eBMZ3uNYaChNTY4c+5xX7XAdUtas/uVi/pH198dwtxXOf6lD/jWL9FR3qxwCrgc3AQe3qR1CYZBNwetY/H4tlW6Hwy2ECfgeMLnG+pt1/l/18O1Ytlr6XMsepc6rFkrMC3Ft8Xt/drs451WLJUelknDqnWiwWSw5K5gFs74WBT+L+sNjnrBLnvlQ8d3G7ugBWFuunl+hzZ/Hc0e3qdi3WPVNi0hwNbAA2AiPb1Z9d7PODEvdYUDy3KOufj8WSUoLC1jJPF5/jHXrQvuzn27FqsfSt9GKcOqdaLDkqwD7FZ/V5oLpdvXOqxZKT0sU4dU61WCyWHBT3xK2M4RHxwYg4PyI+HRFHd7PXztSI+Fix/cciYnYXbRcUjzeXOHdThzYAM4BdgOUppWd62Gfbf9+aUmpr3ziltB64G6gHDuthXHcCm4B5xa/MSFmbB0wHfgusi4gTI+LzxfE6t0T73jzfjlWpb8odp9s4p0r58LHi8bsppfZ74jqnSvnR2TjdxjlVkjI0LOsAhojJwNUd6p6JiLNSSotKtD+2WP4iIhYCZ6aUnm1XNxLYicLeuqtKXOeJ4nFmu7o9isflncTa2z7HFfvc1l2flFJLRDwD7E3h09OlnVxXqpSDi8eXgQeAfdufjIg7gfellF4pVpX1fDtWpX5R7jjdxjlVylhE1AEfBNqA73Q47Zwq5UA343Qb51RJypArcQfe94FjKCRyR1L4R+d/U/hKyk0RsV+7tpsovKzlQGB8sRwF3AG8HbitOCFuM7Z4fL2Te2+rHzdI+khZmVQ8fhyoA95B4StY+1DYZ+tICntzbVPu853ncedY1WBR7jh1TpXy4zQKz+dNKaXnOpxzTpXyoatx6pwqSTlgEneApZQuTindnlJ6OaW0KaX0aErp4xQ2Wq8DLmrXdnVK6cKU0gMppdeK5U4Knx7eB+wG/H1vwiijbeS4jzRQtm1vEhRW8t2WUtqQUloCvIfCvmBHdfOV7fZ6+3zncdw5VpUXZY1T51QpVz5aPP53L/o6p0qV0ek4dU6VpHwwiZudK4rHI7trmFJq4a9faWnfftunhGMprdSnjN31GZNhHykr64rHp1NKD7c/kVJqorDKD+CQ4rHc59uxKvVdueO0JOdUqbIiYi8Ke1o/T2FP646cU6WM9WCcluScKkmVZRI3O6uLx5FdtvqrbXv8/aV9Smkj8AIwKiKmlOize/HYfr+fZcXjTEob8D4RMYzCy2laKLxpXMratuf1tU7Ob0se1XVo36Pn27Eq9Ytyx2lXnFOlyunuRUnOqVL2uhunXXFOlaQKMYmbnW1fy+7p5LDtjZod299ePB5fos/fdGgD8BTwLDAzIqb3sM8dxeNxEfGmZyYiRgOHA03AH3oY15EU3hJ6T0ppc4nzUqXdSeGXtd0jorbE+X2KxxXFY2+eb8eq1DfljtOuOKdKFRARI4AzKLwo6budNHNOlTLUw3HaFedUSaqUlJJlgAqFt1o2lKifRuFNmQk4v139oUBtifYLgOZi+3kdzs0r1j8JjG9X3wisKfZr7NDnvGKf64CqdvUnF+uXtK8vnruleO5THeq/Uay/okP9GAqfym4GDmpXPwK4p9jn9Kx/RhbLtgJcU3wu/61D/bEUfql9DRhXrCv7+XasWix9L2WOU+dUiyXjQiExlIBfd9HGOdViybD0cJw6p1osFksOSqSU0MCIiIuAL1D4hPAZYD0wAziRwiTxW+A9KaUtxfYLKSR+F1LYjwhgNoXJEeCClNK/lbjP14HPFPtcD9QCfwtMoDCZXd6h/XAKn0DOA/4E3AbsApwKbAEWpJTu69BnBoVJbRLwS2Aphcn8aApfT5mXUlrToc8pxXiagZ8Aa4F3A3sU609LPoDKiYiYBNxN4cUMdwH3U/jA5T0Ufpl7f0rpunbtT6HM59uxKvVNOePUOVXKXkTcBRwBvDul9Osu2p2Cc6qUiZ6MU+dUScqJrLPI23MBjgJ+DDxOYXXQVgqf+v0O+BAUkujt2n8EuJHCV0E3UPh08Fngp8D8bu51JvBHYCOFZPEi4KQu2tcBF1NYEby5GNd1wF5d9NkZ+D6wisIkuhK4jBKrjdv1OZxCsnodha+yPAL8I1Cd9c/HYulYgAYKn9o/U3zG11D4ZfCwTtqX/Xw7Vi2WvpWejlPnVIsl2wLMovDhynM9eUadUy2WypeejlPnVIvFYslHcSWuJEmSJEmSJOWYLzaTJEmSJEmSpBwziStJkiRJkiRJOWYSV5IkSZIkSZJyzCSuJEmSJEmSJOWYSVxJkiRJkiRJyjGTuJIkSZIkSZKUYyZxJUmSJEmSJCnHTOJKkiRJkiRJUo6ZxJUkSZIkSZKkHDOJK0mSJEmSJEk5ZhJXkiRJkiRJknLMJK4kSZIkSZIk5ZhJXEmSJEmSJEnKMZO4kiRJkiRJkpRjJnElSZIkSZIkKcdM4kqSJEmSJElSjpnElSRJkiRJkqQc+//vXAK133WhXAAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "image/png": { + "height": 436, + "width": 696 + }, + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "input_df['Local_Diversity'] = index.statistics\n", + "input_df.head()\n", + "ax = input_df.plot(column = 'Local_Diversity', cmap = 'inferno_r', legend = True, figsize = (15,7))\n", + "ax.set_title(\"Local Diversity\", fontsize = 25)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Local Entropy" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([0.24765538, 0.40474253, 0.50900607, 0.21433739, 0.16148146,\n", + " 0.21454691, 0.08889013, 0.08132889, 0.06782401, 0.18127186])" + ] + }, + "execution_count": 9, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "index = MultiLocalEntropy(input_df, groups_list)\n", + "index.statistics[0:10] # Values of first 10 units" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "Text(0.5, 1.0, 'Local Entropy')" + ] + }, + "execution_count": 10, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABXEAAANoCAYAAACGGKlcAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/d3fzzAAAACXBIWXMAABYlAAAWJQFJUiTwAAEAAElEQVR4nOzdd3xceXX//9e5o5FkWZblbq/t9drb7K3eysICuwu7hNAJIRUCpBASEgKE9MImJL8QSgKEfJPQSyCUsHSyLLC9wlav1733Jtnq0pR7fn/c8Voej6QZaWbuaOb99GMe47nl8znq0rnnno+5OyIiIiIiIiIiIiJSm4K4AxARERERERERERGRsSmJKyIiIiIiIiIiIlLDlMQVERERERERERERqWFK4oqIiIiIiIiIiIjUMCVxRURERERERERERGqYkrgiIiIiIiIiIiIiNUxJXBEREREREREREZEapiSuiIiIiIiIiIiISA1TEldERERERERERESkhimJKyIiIiIiIiIiIlLDlMQVERERERERERERqWFK4oqIiIiIiIiIiIjUMCVxRURERERERERERGqYkrgiIiIiJTKzW83MRz/ijklEREREROqXkrgiIiIiIiIiIiIiNUxJXBERkSows3PyKzfN7O6445LppVAFcBkfH4n77RMRERERkcKUxBURERGRmqcWFiIiIiLSyJTEFREREREREREREalhTXEHICIiIiJTshfoLsM4+8swhoiIiIiIVICSuCIiIiLT29+6++fiDkJERERERCpH7RREREREREREREREapiSuCIiIiIiIiIiIiI1TElcERERERERERERkRqmnrgiIiINxMyagWuBZcBCYCbQBRwBnnH3rRWefzlwOTAfmAe0AH3AYWATsMndU1OcYymwGjgHmA3MAHqJFv/aA/zM3YenMoeMzcwC4ErgUqLPMQeOATuAB6f68a02MzsbuAJYAcwCskSfr19198Eizk8QvT9WAguIPie7gaPAFnd/ukKh58exCrgKWE70NXGUaDG7h9y9HAvjiYiIiEgFKYkrIiLSAMzsZuAPgRcB7eMctwP4FvBBdz9UprlXAe8EXgqcP8Hhg2Z2D/AN4CvuPlDE+POB1wI3AzcAiyY4JWVmDwMfB77h7uFEcwiY2Y3AXXmbb3L3u3P7O4A/Bn6XsT8GA2b2daLF2PYWMefdRB/Tsfb7RGMAbym08JuZ7SJKzJ70eXd/c25fEvht4PeIktGF3AXsGie2q4neHy8B5o5z3AHg+8A/u/v2sd+MMc+/m9PfR/e4+425fQa8GXgXY78daTP7CfB+d7+nyDnvA54/alMfsNTd+0oK/vQxXwvclrf5ne7+0cmOKSIiIlJP1E5BRESkjpnZKjP7IfAj4FWMk8DNWQW8G9hmZn+Tq6qc7NzzzewzwGaiBPJECVyANuDngU8BB4uY48u54z4B/BITJ3ABmoEXAl8D1pvZxUWcI+MwsxcCG4C/ZfyPwUyipOJmM3tVFUIrmZmdDzwO/D/GTnyOd/58M/sK8FPgVxgngZtzFvA7wEYz+6iZtZQ65xhxLADuAT7D+G9HkugCy11m9ikzm1HE8B/Pez0L+PVJBXrK2/JeDwGfn+KYIiIiInVDSVwREZE6ZWZXAQ8RVQKWaibw98DXzKx1EnNfBvwMeAuTv/NnVhHHPG8K4wOsAR7OVSrLJJjZK4AfA0tLOG0G8A0ze2llopocM1tN9DVzySTPXwU8CPwyYCWengTeAfzIzOZMZv5RccwB7gVeUMppwG8B3y0ikfsN4EDett8rYa7TJzY7F7glb/P/uPuJyY4pIiIiUm/UTkFERKQOmdka4G4KV95uBb4JbCPqFbuYqE9uoUrd1wEtZvYqdy/m1nXM7EqiBNLMArt7iW5Df4ioD28/UY/QpUT9Op9H1Ct3MrJEFZTPEPXX7crNZ0AHUSXwdcD1nH4hux34ipldUcwt/nKatcA/ESUgIaqe/AnRx/8QkCHqwfoS4MV55zYBnzKzi929Z4zxtwGduf8v5swq36eKiLHYfq9twHc4/fNvPfB/wHbgOFGP3wuA1+efbGYLgfuBJQXG3kfUKmBjLp6FRL2hX8uZn+8vAH5sZs9z95EiY8/3RaK+0CftHTX/CaL349XAq4m+NkZ7MfCV3L6C3D1jZp8Abh21+bJczA9OIt63cWbS+z8mMY6IiIhI3VISV0REpM7kbsf+H85MyHYDf+Tu/z3GeXOAfyG63X20VxBVCE7Ym9LM5hFV6eUncPuIkn0fHW8xqNwiUDcBv0nUHmEiKaLk1H8Dd46TDBw9x4pcLL86avM8oqTRK4qYU075J+BkpfYXgT9z90JtMD5gZjcQfaxGtxdYSlTB+f5Cg7v7b5/8v5ndCrw3b//ayQZewC8Aidz/dwF/4O7fL3Sgmb0777UBn+PMBO4Q8FfAx9w9W2CcdwB/R9Q7d/SFhSuJ3ifvKvWNAJ7DqY/JCPDXwL+OMf9soq/538zb9Soze5O7j9fO4L+I3rbkqG1vI6pELlru+9Wb8zY/6u6PljKOiIiISL1TOwUREZH688dEVX6jdRMtQlUwgQvg7sfd/S3A/1dg9z+bWTG3y/87cE7etn3A9e7+T+MlcHMxZN39x+7+axTXQ/cad3+du3+zmARubo7dufFvzdv1stzt9FK8k8nCv3H33xgjgQtAbtGsVwH5Fd2/VangSnQygbuZ6PO1YAIXokpUd8+M2vSrRL2cRxsGXunuBROouXGG3P1PKdyK4I9yi6OV6uTHJAP8ort/aJz5e9z9t4B/LrD7X3NJ3oJyCx9+I2/zL+Uu5JTi9cD8vG2qwhURERHJoySuiIhIHTGzJPAHBXa92d3XFTOGu/8VcHve5hbg7RPMvZozbzMfBl7m7k8XM3deHDuLOKaoxO0Y/p6ob+9JxpkVidPB35vZk1N8fHUK89/m7v9QzIHu/gDw9bzN5+V6otaCDPCr7p7f73Ui7y6w7U/d/SfFnOzunwD+M2+zjTFusf7B3b9X5Px/TtR+ZbQ5wBsnOPXf8163EPXBLkV+AvsEUTsHERERERlFSVwREZH68jrOvKX7B+7+3RLH+QOiHrOjvTWXJB7Ln3Dm7xZ/N5kEbjXkevx+MW/z8+OIZYqWE1VeT+Vx4STnDoE/LfGcQtXgV01y/nL7ors/UcoJZnYdZ8b/NGcmOCfyF0R9d0f7RTPL7wNcjP0Urq4dzx8W2Pa28U5w9/uBJ/M2/26uvcSEzOxSoj7Yo31hoop9ERERkUakJK6IiEh9yV/hHeD/lTqIu28Hfpi3eR5Rr86x5PeT7af2b4vemvf6ygkS1XK6O3OfK6V4pMC2ySaRy+3Tkzin0Nfcf7l7WMog7n6CqJf1aEngxknE9EV3Hy5x/vVECw6OdrGZLZ/g1Pxk9XnAzUVOW6iNRH5FsoiIiIighc1ERETqzfV5rwc4szVCsb4GvKzA+Gck4czsYmBh3ubvTLHdQcnMrB14IXAZcBFR4rmDaKG1Qhev8xd/awEWEfXxlYndU+oJ7n7EzAY4ffG7MXuvVtEQ8PAkzsv/moMze8UW62vA7xcYv9R2F9+a5Py3Ac/N23YdsHecc74EfICo/cJJvwf8aLyJcl+rb8jbfLe7bywuVBEREZHGoiSuiIhInTCzmcAFeZufGGtRoyL8rMC2sSpx8xM/AA9Mct6SmdlVRO0cXgXMmOJwnUyvJO5b3P1zMc2dX8lcrB5qL4m7bpJfK/lfE/tyi35NxmNELSpGX3AYr/q9kAzw1CTnf7zAtqs4s4/xs9x9yMw+Q7Sg4kmvNLOl7r5/nLneAMzK21brlfsiIiIisVE7BRERkfoxj2gxpNGmUtW2iSihNFr+KvInFerbWfFeuGaWNLOPAz8FfpmpJ3ChNhKK00X3JM9L572uhRYWR0o9Idf7dW7e5kl/zbl7P2dWvY71NTeWPaW2UhhlU4Ft+RX2hfw/Tv9e0QT8zgTn5PfbPQx8s4i5RERERBqSkrgiIiL1Y06BbScmO1iup2dv3ub8hNV42/MXaSqrXO/arwNvp7y/09RCQnG6yE/GTmf5n+vF6AASedtOTDGO/K+bsb7mxjKVFiaFzu2c6CR338GZbVt+28wK3vVnZs8lWlBvtE+5ez19PomIiIiUlZK4IiIi9SP/1mSIeuJORf75heaAKJmVr3+Kc0/kz4BXF9i+n6gy8A1EbR6WEyWiWt3dRj+Amyoco0wfmUmcE+fXXLHnF83dBwCf5Pwfz3u9FHjlGMfmL2gWAp8och4RERGRhqSeuCIiIvWjr8C2mQW2lSL//EJzQOEqxvxFw8rGzBYCf5G3OUPUF/fj7l5sQq4c7RekccX5NVfs+UXL9dXOb8lS7Py3A9uA80Zt+z3yWiSY2Tzg9Xnn/sDd95QQqoiIiEjDUSWuiIhI/SjUvqBzsoOZWcCZFbZj9UDtKrCtUHuHcnkV0Ja37c/c/SMlJHCh9FvVRUbrBfIXQ+uc4pj555fad3gqPZ0LnXuimBPd3Ykq4Ee72czOy9v2FqA1b5sWNBMRERGZgJK4IiIi9eMYZ94KvWYK413Imb8rHBvj2EMFtl02hbknckve6+OceTt3MVaVIRZpULnEZf4FjEl/zeUqYc/O2zzW19xYzjaz/CRpsS4ssK2UBd8+CwyOem3A7z77IloI7q155+zizH66IiIiIpJHSVwREZE64e6DwOa8zWvNLH/hpWJdU2DbY2Mc+1CBbddPct5iLM97/Yi7pyYxznPLEYw0tMfzXi8zs0WTHOsqzvz9fKyvubE0MfkLKFcV2Fb0/O5+AvhS3ua3jEoq3wycn7f/v3KLKIqIiIjIOJTEFRERqS8P5r1uB146ybHy+1YWGh8Ad98IHM7b/Eozm8qt3eOZn/e61FvOMbP5aGGz6eSMNhlTuEBRToW+Jn5xkmMV/TU3gddMcv5fKLDt4RLHyK+IH90DN39BsxTwmRLHFxEREWlISuKWwMx+0cz+zczuM7NeM3Mz++8KzHOpmX3BzPaa2YiZHTGze8zsN8o9l4iI1J0fFtj2tlIHMbOVnJn8PcaZVYejfSvvdTvw+6XOXaSBvNf5Sd1ivJ0ze3NK7Sq0wFbFFs8rQaGvubfmekoXLXfB49fyNqeBuyYR0xvNrKXE+S/mzMr0Z9x9bynjuPs64L68zW8zs7OAV+Zt/4a7l9KuQURERKRhKYlbmr8G/gBYC+yvxARm9mbgCaIKivuADwP/S9RT7GWVmFNEROrKN4EDedteYWal/gz5N6Lbskf7L3dPj3POhzhzkae/NbNLS5y7GAfzXj8v10+0KLmE1V+UNySpsEIL98Xe09jdfwo8mrf5Mkq/ePKPnLnQ3tcmmeRcBvxpied8rMC2/5zE3HBmNe7zKPw9RQuaiYiIiBRJSdzSvAu4gGil7vzbwabMzK4DPgWsBy5w919z979099939xcCbyz3nCIiUl9ySdZCC3x93swuKmYMM/t74OV5m4c5c+X5/Lm3AV/O29wK/MDMLilm7rw4zhlnd36lXzvw3hLG/Q5QUqWixO7pAttq5QL3vxTY9iEzu6GYk83sNzmzat2Bf51CTH9jZj9f5Pz/ALwob/Nx4IuTnPs2zryYlN+qYYO7538di4iIiMgYlMQtgbvf5e5bcysRF8XMftXM7jKz42Y2bGYbzeyvx7jF7QNAAniDu5+xyvcE1U8iIiInfRh4Mm/bfOBuM/uVsU4ys04z+xTwNwV2/5m75ydlCnkHsCNv2zLgATP7MzNrG+9kMwvM7KZcu6Kt4xz6DSB/MaQ/MbP3mVl+td/o8X+VaBG2kxWcvePFIzVlPWd+vP7CzN5sZjPiCOgkd/8f4Ad5m2cA3zezPxirtYKZtZrZPwGfJLrrarSPuHupi5pBdMEFIAncZmbvGmf+2Wb2CeCvCux+l7v3TGJ+3D0D/NcEh6kKV0RERKQEVkI+UkYxsxuJepR9yd3fMMYxnwZ+E9gH3AGcAK4juqXsbuCW3C+5mNkyYC/R7XjXAjcSrRDsRH+I36WVe0VEpq9c9efOvM0DwLYyDP8ld/9g3nxrgJ9SuGfoJqL+tduI+owuAp4DvAqYVeD47wOvLPYippmtBe4dY6xe4CdEiyUdAfqB2cBZwBXA9cDCkwe7e35ia/Q8nwcK9YvfR9SKaF1u/LnAhURv37mjjhsE/pgzk0k3ufvdY82bm/tW8ip/x4u1XArNS/T7Q8kLuxXi7mvHmftGzuzPOuH7aoyxdgErRm36vLu/uYjz/p3CfZazRO+HPs5M7v+tu3+nXDGME9tCot/ZlhTYvYeoOnUj0e+D84nac72Wwv2cHwee5+4jRcx7NzC64vceou8to6uU9xBd+NiUm38hcA3waqKvv3zfcfdXTzT3BHEtzs2bLLB7AFg62SSxiIiISCMas1JFpibX2/Y3iXoT/rq7D43adyvRH2BvBz6a23xN7nkrcCdREne0p83sF3K3qoqISH2YCVxehnHuzt/g7hvN7CaiBOzCvN2rgT8vcuzbiH6OFX3V192fNLPrge9yepIMopZEr809puodRBc+V+dtXwa8c4Jz08DriRK5093y3KMRvI/otvzFedsTwDljnJPfZ7Yi3P2ImT0fuB04P2/32Uz8OXnS/cCrikngjuONwINEFy9Ozv+uIs/9CTBmxX6x3P2QmX1jjLG+rASuiIiISGnUTqFy/gjIAL85OoGb8z6gC/j1UdtO/oH9S8Aaoj9QZgPnEfUju5TolrzmSgYtIiL1w90fJVpt/seTOH2A6ILj6919eKKDC8z9NFGC9b85szKyWEcnmKMHuJmoqrcUB4Cb3T3/9nepcbl2Uy8CJtNmoOLcfQdRNfnXiO6mKkWaaPGvW9y90CJupcTRDbyQKJFbis8QVd3n/+46WYX6c8PkF0wTERERaViqxK2AXL+/y4FjwDvNCt5dOUKUrD0pMer5t939e7nXvWb2ptyxVwOvA/6nEnGLiEj9ySWVbjGzW4A/JEqAzRznlB3At4EPFOrPXuLcR4A3mtn/R1QF+FImrhjtIaoE/DpRFfBEc+w3sxcCbwXezalet4XsJlpA9KPu3jfxWyC1KFdlfg3wAqKK7suJKl87iD63E+OcXnHufhT4ZTP7IPAe4CXAnHFOOQh8D/hnd99exjiOmNkLgN8i+vpbM8ahGaKvufdPpjXGBJ4iSk6PbqnwiLs/XuZ5REREROqeeuJO0ng9cc1sKVE/vgmd7J+XW2jly0TJ3bb8/rdm9tdEFbwfcfdib4cTERE5Te6OjucQJVMXECW9uoiqXte7+5YKz7+aKJk0P/dwoj6mB4j6dW5x9+wUxr+AqAL45Ns2QPQzeZ27b55a9CKlM7ME0YX4c4g+LzuI+tIeIfp8XzfF8e8mryeuu99Y4LjziNZbWAa0EhUb7AcecveuqcQwTmxv5cwFzt7s7p+vxHwiIiIi9UyVuJVxssfXE+5+ZZHnnPzDsm+MBcxO3lYX6+rLIiIyvbl7Crgvxvk3ESVrKzX+FqCiiWiRUuQuSjySe8QZxzbKs5BiKX437/VxolYTIiIiIlIi9cStAHfvB54BLjazYhfTWEdUETHfzBYV2H9J7nnX1CMUEREREakcM3sekF/M8Jky9tsVERERaShK4lbOvwDNwGfMrDN/p5nNMbNnf7F19wynbjf7gJkFo469FHgzUc+y/61gzCIiIiIi5fBXea9Dxl7oTEREREQmoHYKJTCz1wCvyb1cnHt+rpl9Lvf/Y+7+HgB3/4yZXQX8PrDdzH4I7AHmAiuJVgz+LPC2UVP8f8CLgd8ALs31OFtAtJhZK/DHuVvhRERERERqkpm9EnhZ3ubb3H1XDOGIiIiI1AUtbFYCM7sVeO84h+x293PyznkFUaL2WqAT6CZK5t4B/HeuN+Do49uAPwV+hSjZOwz8DPiwu/9fOd4OEREREakPxS5sVqVYksBbgA8Bs0btygKXufuGOOISERERqQdK4oqIiIiITFNxJnHN7G2cuqusHTgbSBY49N/d/Q+qEZOIiIhIvVI7BRERERERmYzFwOUTHLMR+LMqxCIiIiJS17SwmYiIiIiIVMLjwM3uPhB3ICIiIiLTnSpxRURERESkHFLAMaLk7deA/3H3TLwhiYiIiNQH9cQVERERERERERERqWGqxJ2Ame0EOoBdMYciIiIiIiIiIiLjOwfodfeVcQdSD8zsS8DquOMYwyZ3//W4g6gWJXEn1jFjxoy5a9asmRt3ICIiIiIiIiIiMraNGzcyNDQUdxj1ZDVwZdxBiJK4xdi1Zs2auY899ljccYiIiIiIiIiIyDiuuuoqHn/88V1xx1F/ai2F2Hht94O4AxARERERERERERGRsdVaGl1ERERERERERERqiGFxh3AajzuAGKgSV0RERERERERERKSGKYkrIiIiIiIiIiIiUsPUTkFERERERERERETGYGC11U4BNxqtqYIqcUVERERERERERERqmJK4IiIiIiIiIiIiIjVM7RRERERERERERERkHKoDjVtFPgJm9kYz89zjt0s475/N7CdmttfMhsys28yeMLP3mtm8cc4zM3uTmd2dO2fIzHaa2dfM7ILyvFUiIiIiIiIiIiIi1Vf2SlwzWw78G9APtJd4+ruAx4EfAUeAmcB1wK3AW83sOnffmzdfK/B14BXAZuDLQB9wFvAC4AJgyyTfHBEREREREREREZFYlTWJa2YGfBboAm4D3lPiEB3uPlxg3H8E/hL4C+D383Z/mCiB+0/AX7t7mHdussQYREREREREREREJMdqrJ2Cxx1ADMr9EXgH8CLgLcBAqScXSuDmfC33fP7ojWZ2LvA24GfAX+UncHNjpkuNQ0RERERERERERKRWlK0S18zWAO8HPuru95rZi8o1NvDK3PO6vO2/SpSI/jzQYWavBJYTVQLf6e7byhiDiIiIiIiIiIiISNWVJYlrZk3AF4E9RG0Ppjree4j66c4GrgaeT5TAfX/eodfknmcD24HRi5+5mf0H8A53zxYx52Nj7FpdQugiIiIiIiIiIiJ1xMBqq50CbjRaU4VyVeL+LXAF8Hx3HyrDeO8BFo16fTvwZnc/mnfcwtzz3wM/zp23C7gW+C+i/rlHiRZGExEREREREREREZl2ppxGN7NriapvP+zuD009JHD3xe5uwGLgF4BVwBNmdmXeoYnc80Hgte6+3t373f1O4BeBEHi3mTUXMedVhR7ApnK8TSIiIiIiIiIiIiKTMaUk7qg2CluAvylLRKO4+2F3/ybwEqJWCV/IO+R47vn2/Apgd38K2AnMAtaUOzYREREREREREZHGENTYo/FM9a1uBy4gSpIOm5mffADvzR3zydy2j0x2EnffDWwALjaz+aN2bc49nxjj1JNJ3hmTnVtEREREREREREQkTlPtiTsCfHqMfVcS9cm9nyjZOtVWC2flnkcvUvYT4A+BS/IPNrMW4Pzcy11TnFtEREREREREREQkFlNK4uZaGPx2oX1mditREvfz7v6pUduTwLlA2t23j9q+Gjjh7ofyxgmA9xEtYvagux8ftfv/gB3Az5nZLe7+o1H7/gaYDdyTP6aIiIiIiIiIiIgUw7Caa2FgcQdQdVOtxJ2MpcBGYDdwzqjtLwU+aGb3AtuBLmARcAPRwmaHgN8ZPZC7p8zsTcAdwP+Z2Tdz414DvBA4Cry1km+MiIiIiIiIiIiISCXFkcQdy4+BTwDXA5cDncAA0aJpXwQ+5u7d+Se5+/1mdjVRD96bcucdzo31PnffV43gRURERERERERERCqhYklcd78VuLXA9l0UqHl29/XA2yc51wbglydzroiIiIiIiIiIiIwt6nYqcdJHQERERERERERERKSGKYkrIiIiIiIiIiIiUsNqqSeuiIiIiIiIiIiI1BzVgcZNHwERERERERERERGRGqYkroiIiIiIiIiIiEgNUzsFERERERERERERGYNhlog7iDwWdwBVp0pcERERERERERERkRqmJK6IiIiIiIiIiIhIDVM7BRERERERERERESnIAKuxOlADPO4gqkxJXBERERERERGZNtwdsiOQHQZrwprb8/aH+OGfQfczeGYYwgxYArJDkBmOzstE//f8bdlhyKagdR5Nr/xOTG+hiMiZlMQVERERERERkZK4O6QHYOQ4BE3gIWQG8VQvDHdHr4NElCDNDEN2KEqoZkdOJUufTZ6eTKaOjEq05o7P/T/aNyrROlrzbGhfhrUvhZbZ+P77YPDQ1N7AWSumdr6ISJkpiSsiIiIiIiIyDXmYzVWk5h4zFmBBIkqwdq3Hh7sgTEfJ1uxIlGxN9YJn8Ww6SogOHs4lTAchm46qVgkhzEK6Dx8+DmEKPAvpwVP7Rk6cmUyNS6oHunvw7mfKN2Z2pHxjiUx7hllttVOIGio0FiVxRURERERERIrg7lFSNJuKnk8mNz2X2ARINEN2GO/ZGb1OtmPJtqhCdeQEpPshPYCnB6LkamYA0oO5JGouGfts9WlUqerZNNa2AGYshJETeM826N0dzT9KcNFvQdsCwi1fhd6d1X3n1Jv0QNwRiIicRklcERERERERqXlRAjWTS24OPdvTlMwgfrKPaZirJA3Tpx6ZYTxMY0ETBMlnk6KEKcimsBkLsPNfjx+4Hz/6JH74p3j/vijZenLcZ6tdU8S1lI53TXxMuOHTlQ+kUWQGcHfMGq/aT0Rqk5K4IiIiIiIiUhIPM9Et7NmRZ2/V95HjUZIz2Y7NmB/dhj94GIYO4+nB02/7z/VF9Wd7nI6clpg9tX3otJ6qeFiZN+ieP8i1ERDJ8TBK9Cda4o5EpCYYtdZOofEoiSsiIiIiIjKNeZg9tdhTdvjZxaH85KJRJ7flkqLRYlG5hGmqJ0q+jvRCZjB6pAejRabSg1ESK7+y9eTreqIErhSSHlASV0RqhpK4IiIiIiIiZeDpQRg6nEuiDuPZkVO340PUKzXRggXNYIlocaljT+H9+3OJ1iE8MxQlUp/tizoc/d8CCJqxs1+Cd2+Agf344OFcpesx4rrFX6SupQegdW7cUYiIAEriioiIiIiInCb79H9Cz3YI0/jgUUj3QjaNdZ6PLb2BcO+P8YMPYvMuxuZejPfuwI8+Ccc3Ve52/xzfd2dFxxeRUTKDcUcgUhvMMKuxdgpmDXf9UklcERERERGRnPDA/YT3vrPgPt9/NzzzyVOvT2zBt3+zOoGJSPWlB+KOQETkWTWWRhcREREREYlHeOhhsj/57bjDEJEa4RklcUWkdqgSV0RERERE6pp3bSD7yHtJ3Phx/OhTMLAPPMQufAPW1BpV3z76T/jeO2m4ezNFZGxptVMQOcksEXcIDU9JXBERERERqUvuDr07yXz3lTCwn+xwV9S79mSfy8c+iM1YgHdvBFXcidQ1d2MkcSOpwfk0tfaR6utkaNtRgplttJ/ntNn3MMs7Se0URKSGKIkrIiIiIiJ1JdzyVcL1n4C2Rfj2257d7gcfPP3Avt143+4qRyci1eaeoGv/axjesgM4kdt6GIDs8W6O74PU2l+mY949JPzQqRO1sJmI1BAlcUVEREREZNrz3l34sXWEm7+E7/h23OGISA0Z4udyCdyxDTy5hcGWlcx+znOZmfhmVJUbpqoToEiNMwyrsWW1DGu4BkhK4oqIiIiIyLTm6UGy974T33173KGISA1xh+HgFo4/1FPc8SPDnLh3F3bTK5jJ9/BsusIRiogUT0lcERERERGZdtxDfPcdhI9/AD/0CHg27pBEpMZ0H/klhp7ZOuFxPqMD3PBkC9Z7hJ5HTtD6vEUE2ZEqRCkiUhwlcUVEREREZFrx3l1kvnw5KMEiImPIBCuKSuACnJh5BcPdAzQlWxgeWcSy1l0cOv46lqudgsizzGqrnUIjUhJXRERERESmDU/1k33gz5XAFZHTjATXMdy/AjPwEIZ29QKHJjwPoMP207Xn1PeUo3Muofe7+5lz3eXMrlC8IiKlUhJXRERERESmBT++hcw3b4Ghw3GHIiI1xmyIkQNDpPbsLfncoO8o0PHs696t+wA4srmZ2S8qV4QiIlOjWmgREREREal57k72vncrgSsiBTVnn2LBud+j47nnl3yuDffQunjemTuy6rUtEjGMRE09wOJ+p1SdKnFFRERERKQmeaqX8OH3Eu78DqT6IVXcCvMi0pjMQma1fo3hs19Nas+eos/zIMG8lbPYf6jrtO1hOlPuEEVEJk1JXBERERERqSnes4PwyY8QbvkKpHrjDkdEphEzaFuZIFV8DheyWfqPh2dsVhJXRGqJkrgiIiIiIlITvH8/2TvegB98KO5QRGQaa07uK/2kAndme0ZJXJGTzNSRNW76CIiIiIiISOw8zJJ98M+VwBWRKUtnF5R2/PJr8awz5+IVEJzK5oYpJXFFpHaoEldERERERGLl6QGyP3ozvvO7cYciItNcKnE1vT8dLOmcIDPAgqFN2GCWzktW0jW4mN5t+whViSsiNURJXBERERERiY0PHCB7x2/gB+6POxQRmcaywSIGBm6g96c7IXuipHObDj3z7P8T3TtZ0HyY/ubFuHriigBRt5Ggxm7mL9ABpe4piSsiIiIiIrEJH/uAErgiMmmZ4Bz6j19H/7odkN5aljFHFl1BuGOPKnFFpKYoiSsiIiIiIlUXHrif8KG/xg89HHcoIjINpYOL6O++lIEnt0O4uaxjD/RFFYeezpZ1XJHpyzBLxB1EnsarxVUSV0REREREqio89DDZb94cdxgiUuta50DLLOjdD53nEHSeRdZncPTONlK7dgNbKjLtyPGop26YTldkfBGRyaithhYiIiIiIlLXsuv+g+z3Xxd3GCJS69oXE8xpIwj2E3RCwC7oeYSepxK5BG5leHMbg/uPABBmVIkrIrVDlbgiIiIiIlIVPnKC8ME/h+xI3KGISFwsAT5BcjRIEsydA32nV9oOZ19C/2P7KxgceEv7qf9rYTORZ5nqQGOnJK6IiIiIiFSFn9imBK5Io5oxj+CsiyAL4a77xj00WHkddD/47GtvXkDPrqvofWgfle6DmZl9DnAQgFBJXBGpIUriioiIiIhIxYUHHyL747fEHYaIxMDOugobXpdLzBrB0pXQuhwfGcF79kLfgVPHLrgYuh86/fzUUYKWgIoncBdewIFnep997RklcUWkdiiJKyIiIiIiFeVd68ne/msweDDuUESk2lo6sewe8DC3wWFwDwzuwQBrApZfiAfzAbChDdExeTrm/YC2X7+BA1/qptzJXHfILrmYA9sh03cqiZsdSZV1HpFpy4zAaqydglmhbxV1rcY+AiIiIiIiUk88zJK5401K4Io0qGDZZZDqHv+g/m1Y78NY78OQ7h3zsKbhe1j2G9ByTmfZ4gvnruBI63XserSX1PHT5x452o2H4RhniohUlypxRURERESkrHzwCNm7fg/v3wcDh2DocNwhST1LzoD00KnXbfNgsCu+eOSUpjY48VhZhwwGnmbh81ew98BcSE2wQNoYsnNXYmak2pZw8InDZIcLL5bmmSxhKkOitXkqIYuIlIWSuCIiIiIiUla+54f4ru/HHYbUu6AJLv95yGyClvMwAjy9E7IDWOt1MJTBB3th50MTjyUVESy7EnrK//63od0sfPkajnzzwMQHFzq//wg79y7E03smPDZMpZTElYZngJGIO4zTVLZDdm1SEldERERERMrGs2myj30w7jCkXgRNUaXt7KWQGYZZi7DZ8/FEAHYUUuui44Y3nNYa0YfXR3/hzzRYuhb2P1n92AVsuGJDtzY/QNOcNWSOlz6HBQk8XdyiZZ5VOwURqQ1K4oqIiIiISNn4zu/AiS1xhyH1YM3NkNwL4TBwsl3CITw8BEXn1RzmHIfFr4Q9m+DY9lELbE3gwhdBewo2bIChCXq6ymls2bVY0wj0PFW5STJ9zLt5Doe/Xnq/7bB1dtHHenZyLRtERMpNSVwREREREZkSTw/ihx7Ed91O+Mwn4w5H6sHC1aMSuGUwsg4WASteCId6Yd/jp++fMQ+76Hk4PWAtkD4I2e0wAlx0EezcD907yxNLXTLoPBtrm4cl09Bb3j64Y2lJPEzQci7hSAYSRsvy2QTJBOCkjg6S7R+BzJnL12fbFwOHippDSVwRAMMI4g4iT+M1VFASV0REREREJs3dyd7xRvXAlfI6eyUMbyj/uMM7oRNY/HMwGGKJJJ5JQ2sXPrKu8Dkje2HFXFh4M2z6cfljqgO2ZC02vA6G9p0qmq6GdA8z1y7AUyFz1jyNjYyq/E124ol2+vZfSuviNE3NxxnpWYg1hfT3pune30L/3mEmSgSFGSVxRaQ2KIkrIiIiIiKT5gfuUwJXpsQu/Xm8JQWbn4HhHli8BlI7Kjvp8CYIwB1IAOkJjk93Q1M3rLoedjxQ2dimIZsxCyrX/rawmWdD29nM7uwj6HkERvKSrekTWPoEHfP2RR/fNMzIZUBaO2D+L4An5zBil/HUl+cysD9VcBr1xBWRWqEkroiIiIiITEr2iY8QPvgXcYch01Hncuycy/GmETy1A4aHYeVssLmQ7Sqh522VdQxAx1nQeyDuSGpL2Fv9Od3h6P1TusHb0sdp5R6ueeO59A+sZsP/Jhk8eHpGX+0URCKBJeIOoeEpiSsiIiIiIiUJjzxGeO+78cOPxB2KTCerngdzEpA6BJ7CM09DZtT+cvW/raTMcTj/PNg4AoNdcUdTGyyAvq3VnzdoLt9QQ9vpCLZzxRtfwAMf6DhtnypxRaRW1FpXYhERERERqXG+724lcKV0yVYY2QNe+Lb1aWNkN1y4AtauhateCFe8EoIGro/qXBFPAr4C7/OWkftYcUv7ads8kxnjaBGR6mrgnzQiIiIiIlKq8MADhI/8XdxhyHRkdbSSeDpXhZs5Hj1feQP0hrD9fshO1GC3vtisxdC3p/oTZyqTOF551aPsufNCPBt9vmaHp/lFB5GyMKzm6kDr6GdKkWrtIyAiIiIiIjUq+9S/kf3OyyBUUkMmoedI3BFUzvA2aN4BV74YEuW7zX86sGSy+pMuuB5GjlZk6GBoOxe/ccazr1WJKyK1QklcEREREREZl4/0EG78fLSIWXYk7nBkujr0DFid3ww6tBHWPhdmLYk7kuoJ+ys7/syzo6RtYga0zIc5l8HRByA7WLEpF87+BituaWf+ZW0YAxWbR0SkFHX+E1RERERERKYi3PsTsvf8EfRsizsUme5WXQ8ew2331TayC85bCocXwoGn4o6m8tK9lRu7eQ4MH4OB3OdNdghGjlVuvlFWXfZ/WHYIm//zwHOqMqdIrTIgIBF3GKdpvGYKSuKKiIiIiMgYvHc32e++CjwbdyhSB2xOBx7D+lexSB+FuQlswcvxp74fdzSV0zIbBvc++9ITLYRnvwCfsxxwgp33ExyfwgWgtmVw4umpxzkJlsklp9N9scwvIpJPSVwRERERETlDeOgRwvX/pQSulEdLB57aEXcUVZbFs+uhfQH0V6Z/a1wcYNFqOOcask0jYAmycxeRbeomytRHCdDkqhsIHptCErcW2m9UstJYRKQENfAdUUREREREaoV3PYMfe4pw/SfwQw/HHY7UAwuwS1+ID8dTURmrxCzo3x13FJPmTa3QuRSftwJmzcfbZ+Oz2sgme8EHgJM9srPAgVx295TsrFYSs1dgPZN8HzTNnEL0ZZKucM9fkWnBsJpbVqvxGiooiSsiIiIiIrg72dt/Fd/xrbhDkXoyYw6seT4+vC7uSOKRnB93BJMSLr2M7FU3ESaOECVoT+qJHj7GifnjcIjUlS+j+d7PYJNZFDFMl35OuWXUTkFEaoOSuCIiIiIiDcwHDxM+/iH88M9UeVsP2hfC/FWQHoGDT0OYqX4MyRkweynMWQpt3ZBq0AQuYMwsNt9ZM8KLfo706sXgB8sznh8hvODlJDbeVvrJVgOVdqrEFZEaoSSuiIiIiEiDcg/JfOMm6G20XqXT2FlroXUmpIZg3+PRtmVXwuKFkNoB4QiQS74tuQWevh9GKlhJuHA1tuRcPJmGsCW6uzWzA7L9wK7TizgbkGdr7fbjsTkQ3vDbZOb2gQ+Vd/D+I5M7LztY3jgmI6MkrghAUHPtFBqPkrgiIiIiIg3GM8P40cfJfuflkClzskYqp7kdFjdDah+0AYtvhDAFqf0w3HXm8cMb4KLVECyGg3ugcxGEWdj/DPQdKn3++efB8jWYOyTA3SCzJVq8q8GTtWPy6VOH69f+Cpm5lVjEK0lw4GeTO7V3a3lDmQTXwmYiUiOUxBURERERaSDev49w4xcIf/r3cYcixUo0wxU3QGoPpA6f2j68c+Jz00eAIzAX4AQEwIoWaL0J+hNYczMEAT44AL1HYdnZkNoOyQswc3wwBW1ZGExAay+k1kXtAWLo0jDtNC+GTQ/FHUXRwkWLeLaKu4zMZkGp/XCtGRZcC0fuL3s8JVM7BRGpEUriioiIiIg0CA8zhE99nPDJj8QdihQjaIILb4QZvTC8pbxjD++AJvAQCIFmYD4w/Ey0fySXrA2A4dxzqrwh1DsL5uODj8QdRtG8QndKu3eTuvHtJJ++i6Brw8QntC6J2nLUQgIXtLCZCGAYRiLuME5j1EDP7CpTEldEREREpAF4eoDwp+8j3PyluEORsSy5DFIDkE3ByrUQ7oTsViVPp61plmAIKldeHXKIkcuupuWZBMGRp8c/eNYqOPpAxWIpmSpxRaRGKIkrIiIiIlLnPJsie/cf4Fv+J+5Q5KRZS6J+xCP9UcXt4otg3jBkM0AA6XVxRyhTYc34nm1xR1GS0Pqi1c0qxQdIXXwtiZXXk9j8I4IT28c4LqxgEJOghc1EpEYoiSsiIiIiUsey6z8Z9b8dOhp3KI0p2QaXvhhCh8BgcAhmzoCRdUQ9DGbnDuzS4mDTnkHLpXBoHzQ1w5Hp00oBIPAOQoYrOof7CTIzILP2KhLZl9G07UGwJnzeSoKtd2DD3bWXxE2rnYIIQECFeq5I0ZTEFRERERGpQz7cTfjYBwk3fhZGTsQdTsOyi27CU6OqapuAEtd4kmmi5VJ47LtxRzEp3j6f0HorW4l7mizZxAGyq1cDDj4C815Cy8ZNBGGNpSnCFJ5NYYnmuCMRkQZXY98dRURERERksjzM4Ju+QLj5f/Djm2HoSNwhNbbmdkiiCtsGYemwejnQMvNzrwevbBVu4YlHz5kmddE1JA+eIFFrNw5k+iAxL+4oRKTBKYkrIiIiIlIHvGcHma89F1I9cYciloC1L4PsFnx4fdzRSJV4s8OyK2H/k7XXEmAC1t8NLIk7DNy78baOuMM4U7ofWpTElUZmNdhOYZotHlkGSuKKiIiIiExznh0he9fvKYFbI+yql+LDWpis4Qw/A51gi1+GZw0SKdi3Hw7VfiLfR/qohSQugB3dEncIZ8qoL66IxE9JXBERERGRac4P/xTff0/cYcRv1hI49yosk8FbkpDaBE2zIWjDmA0jGXyoD/qOwZFN5Zu3qQVaZsHsZdiS5UrgNjgffjr6TxqYDyy6FMsuxdf/kCo2nS2JNbcX3O42g0TzKkLvxWjCSOLhMGH2CFah9gu+4HzY+0BFxp609EDcEYiIKIkrIiIiIjKdhXt+RPZ7r447jPi1L4RV8yDzdJQmO7l4WDpqrvls6mxG9LCFL8XX3x5tW3YlLFgK+zZD1w4IM+PP1bEUzloN7UDYD+ku8DRwHB85XuY3TKa9bC9OL6y9FPYPwdGtcUd0Bl96EUHLWUS3JxtOCg8HwPvJZrZHx4w+ITAscS5GkmxqU1lvak7PDkm0dGAjvWUcdYpUiSsNLvrOkIg7jNM0XjMFJXFFRERERKY1W/YiaJkDw11xhxKfZBtc+BwYKb4C1oOdcMFNkElBRx+k18EiYNEyaF4Eg7Ng04+hfSG2+lqcQQhnAocgdQTYBjGsAyXTWKYH0rXVK9eB8NpfI70oA5kdJZ0ZZvcDkGi5mHDkmTIGNUD6OW+i+d5/K9+YU5XujzsCERElcUVEREREprWe7Y2dwAW47JqSErgAhMPQvAOagdMKbx1Sh6DpEFx1A6QPnbo9XmQqErPgRLz9cR3wJRfjyy7F5y0m2+44x8n7IihJNrOdRPOFhKnNZYoyUXMldp7pq7WQRKQBVSSJa2ZvBL6Qe/k77v6pIs/7Z+Bq4AKi7kFDwG7gW8DH3X3C307N7NPAb+Zenu/u20qLXkRERERkGmmdA4lWyDZoWeiC82FkV2XGrtS40piCFpgxD4biu+iSvfntZDpPtgboLt+42b0ETcvxzN6izzGbS1NvFju+F+s/hPXshpHe2kyWqhJXGp4REMQdRJ6a/G5RUWVP4prZcuDfgH6iLlGleBfwOPAj4AgwE7gOuBV4q5ld5+5j/lQws1cSJXAnM7eIiIiIyLTjx55uzATuyufCyBCcNQ+GVbch00D6GFx8GTz5EGSq/zUbXvX6UQncso+OWwbHsEKLt9kMjBk4w+CDJHs7SDz+yemTgskoiSsi8StrEtfMDPgs0AXcBrynxCE63M9c4tLM/hH4S+AvgN8fY+4FwCeBrwKLgRtKnFtEREREZFrxoaOEGz4bdxhVZ1e/HB9eH5V8DGshMZlGhndga1+MP/r9qk7rBKRXLgFOVG6O8DhB8mw8vfvZbYnsEhIHthBsv+3Z5K63LcAGj1YsjopIa2EzEYlfuWuh3wG8CHgLMFDqyYUSuDlfyz2fP87pn8g9v73UeUVEREREpqNw3b/j274edxjVteI5UQJXZJry4fXYZS+v7pxrX4VXMIF7kgWnbohNZJfQfN/HSWy/47Tq3GmXwAW1UxABAg9q6tGIyvZWm9ka4P3AR9393nKNm/PK3HPB1QrM7M3Aa4C3FdM3V0RERERkunP3xqtCTSRhwcy4oxCZMg83wNnXVG2+cPl5VZnHyULQQcASkg/8Z1XmrIpsyTVqIiJlV5Z2CmbWBHwR2EPU9mCq472HqKftbKKFzp5PlMB9f4FjVwAfBf7b3b81hTkfG2PX6smOKSIiIiJSCX70SbKPvh/f8a24Q5lY53JItkHPfkhNsZrtsrUwvL0sYYnEK4S5aTi+BPoORl8nK9fCQB9subu8M513A5mWI2Udc8y5MruwRCfJ9fdhYaYqc1ZFZjDuCEREytYT92+BK4Dnu/tQGcZ7D7Bo1OvbgTe7+2n3XZhZAHyeaCGzd5RhXhERERGRmhfuu3t6JHABzrsUhp+BxYswfz6+/vbJjTNvFaSrk4gSqYrMcbhwDRxaAotmwMg6mHUZzDkbju8pyxSebCO99gqguyzjFaOpJ0Nw5KmqzVcNnlElrjQ2A6zsHVmnZtosjFhGU07imtm1RNW3H3b3h6YeErj74tzYi4DnEVXgPmFmr3D3x0cd+i6iBcxe7u5TupfM3a8qtD1XoXvlVMYWERERESkXdydcPz1uU7bLX44PPxO98AzefBzWvgIO7oDDG4obZMU1MK8JMicgVDWc1Jnh7dAJjORepzbBqsvhsfIkccMXvAmvUgI3YD7Jvduxww9WZb6qUiWuiNSAKSVxR7VR2AL8TVkiGsXdDwPfNLPHc3N8AbgkN/f5wD8Cn3X3H5R7bhERERGRWpT94a9D7664wxiXXfUKPLsPz+QtQJY6BByCpUvhsMGoxY4KWnwxzHVIHahUqCK1xVOQ2RX1f86mpzRU5pY/JDO7pzxxFaF5/b0Eh5+o2nxVldHCZiISv6nWQrcDFwBrgGEz85MP4L25Yz6Z2/aRyU7i7ruBDcDFZjY/t/lioAV4y+h5c3PfkDtma27bayY7t4iIiIhILbEFV8QdwvgswP1wdKv4WFL74ZpbsEtfdmpb0BQlbdsXgiWwq14B8/shPQ1XsheZimwvrHrelIYI17ykqglcs07s6NNVm6/qVIkrDc8IauxfIzZUmGo7hRHg02Psu5KoT+79wGZgqq0Wzso9Z3PPu8aZ++XAYuDrQG/uWBERERGRac3dYfBw3GFEVlwLcxdBfy/WMgPvOQaD3bC0GVJF9K4d2hzV4V7zMnCD8FhUqbtwHjAPH6njhJDIRGbOmvSpHiTIXHQpUL0LIO4nCFfcQGLnT6o2Z1WpEldEasCUkri5Rcx+u9A+M7uVKIn7eXf/1KjtSeBcIO3u20dtXw2ccPdDeeMEwPuAhcCDJ3vfuvuT48x9N1ES9y/dfdsk3zwRERERkVi4O6R68a6nsY5zCDd9kXDr17GmmfiRn8UdXmR+a7QQU0uuKcJsYO4syPaVNs7QM6e/Vt9bEeid/JIv4fN/k9BiqGAPktWfs1rSSuKKSPymvLDZJCwFNgK7gXNGbX8p8EEzuxfYDnQBi4haI6wCDgG/U9VIRURERESqyLvWQ8eqKGl77x9FGxMtkI1WPZqgg2z1zF0BI7vP3F5qAldECtv1yKRO887lpBeWORaBTB/ujlnj3b4tclIw5Y6sMlVxJHHH8mPgE8D1wOVEa3QOEC1o9kXgY+5enWU1RURERESqJLvuPwif/FeCK/+E8KG/jiq+PDvqgJGxT66m9gVgTdDaASuWw/DWuCMSqV+zFkPPvpJPy9zwJqwlCSRyW0LMWvHMMTxzaLxTp8yTMyo6fqw8hHAEEq1xRyIiDaxiSVx3vxW4tcD2XRToPuzu64G3l2nuG8sxjoiIiIhIpXjPdsJnPkP4xIcBCO/5w5gjGsO5L4DOTkhtBE8Dw0rgilTa+RfAo/uZqP4+POe52LHtWP8RwlXPJ9PWDWGBAw2CllWYzQB38BTu0YFmAXiKMNMNPvm2AdZfRC/s6SzdpySuiMSqlipxRUREREQagg8cIvPlyyHMxB3K2Fo6sEtfiA8/DSN74o5GpLEMb4dkG6QHxjzEgwSp594IvJCmrhSZeS1E63oXFoZjJFlP5ombIJG4mHD4mcLHjSMRLiLY96WSz5tWMgPAgrijEImFuRF4bbVTMG+89ia19REQEREREalz2Sf+lcwXL6ztBO6CC+HiNVECV0Tice5zx90dXvl6nB6cPtLzRvBxErjFymb3QGJ+yecluo+debttvclocTMRiZcqcUVEREREqsjmXQIzz4LenXGHcrpV10NnFoJOSO+BVGX7Z4rIBGaO3WM2PPsa0ucvBYbKPKkTJBcRZo+d2mItJJIr8cAIR3ZjPnjmWW0dZY6jBqWVxBWReKkSV0RERESkioKzbyFY+0dxh3GmWcchdRCGN0J27Fu4RaRKRtbD7KUFd6Wf+1K87AncSDa7G2tZhbWsgual0NRK1vcRZveSSC4veE7YnKxILDUlo++L0tgCrKYejUiVuCIiIiIiVeDpQfzYU5DqI7z3nXGHc6am+UreitSUEOathJ79z27xpmYyP/dOwqCrsjOP1T83KJysTXQ1QOV+5swKZBGRalISV0RERESkQvzoE4TrP4V3PY13PVN7lVzLr4ySMgak9k94uIhU2dwmfOQKSLYSLjyX9LnLytL7dsqC2XjYj+E0peaTWP+vcUdUcZ4ZaNDaPxGpFUriioiIiIhUQPaRWwmf+ndI98UdSmEX3gQt+3MLrDl4GHdEIpLHGWD4hS8E0rkt8SZwnTRB68Vks/swb6Nl5y4S278Ya0xVU2sX4USqzNSRNXZK4oqIiIiIVII11W4Cd80tkNgCytuK1DRv7uRUAjd+YfZUxX5zV5rE9ttjjKbKlMQVkZgpjS4iIiIiUiY+0oO744OH8ROb4w7nTLMWw5WvhOTeuCMRkSJY/05q8892I1j35biDqC71xBWRmKkSV0RERESkTHzX9wg3fA48ix98MO5wTnfRS6D5EKTWxR2JiBTJwjRmHbifiDuUPI41tUB2OO5AqifTH3cEIrExIKixrtC1FU111OIlPRERERGRacdHevBUP37wwdpL4LbOhqbdkOmJOxIRKVEinYw7hILC5c+LO4TqUiWuiMRMSVwRERERkSnK3v8nZD6znPDePwLPxh3O6SzALnkBhA1UMSdSR5p230Et3kQbzj8v7hCqS5W4IhKz2vtJICIiIiIyjYSHHyV86t/iDqMgu/zleHY9Pvx03KGIyCTZ4AGa0p1kksfiDuU0Nngi7hCqylWJKw3NCLzW6kAbr6FCrX0ERERERESmlfCnfx93CGPy3evAVLchMt0Fg11xh3AaYxaJrf8XdxjVpUpcEYmZkrgiIiIiIiVyDwn334P3bMd7tscdTmGLLoLzLgZLxB2JiEyRt86OOwQAjDYSPo/mnduwodqqDK44JXFFJGa6LC8iIiIiUqLw3ncSrv9E3GGMrbkdls6E4Y1xRyIiZeBNzXGHABitj/6I4Nj6uAOJR1pJXGlcBgQ11r6gtqKpDlXiioiIiIiUwIe7azuBCzB7KaSOxB2FiJRBOP9qMomjcYeBMatxE7gA6d64IxCRBqckroiIiIhICfzgg3GHICINJL3kEsDjDoPGrHsbJd0XdwQi0uDUTkFEREREpAR++KdxhzC2RDM0z8RWnI8PPx13NCJSBuZWE/lTpx9vmoFlhuIOJR7pXtwdsxr4YIjEwGrhG1GDUyWuiIiIiEgRPDtC5vu/QLj5S3GHMrYrboFzO5TAFakjTQfXURv1V1myq18TdxDx8Qxkh+OOQkQamJK4IiIiIiJFCDd+Ad/1A+jfH3cop1t2JbR2Rv8P9eu9SL0Juh6juXuAWijHHVm2kOw5L4o7jPioL66IxKgWLueJiIiIiNS0cNtthI/cGncYZ5p7DszpgZZLoakJMlvijkhEKiCx/8c0N72SVEczMBJjJMP4yYtGjSjdBzMWxR2FSCyCGriQ1Oh0qV5EREREZBzZHV8j+8Nfg+GuuEM508qzo1t8Z3fCzHYIdauvSL1K7P4urZvuIsGCWOMI550T6/yxymhxMxGJjypxRURERETyuDv0Pk144Jv4ocfiDmdMlpkVrVmfWgckYo5GRCrN0sdJbvke4YUvwb0nlhiCwROxzFsT0v1xRyAiDUxJXBERERGRPH7gG4Tr/ih6YU3Y6pvxTT+ON6gCfMNdcOHJqrxsrLGISHXYyDGahiDdWp7xAp9LYiCFt7aQOLofb55BtnMe2UQ3iewcPIDQTt2JYMd3lWfi6SijJK40JsNqrp2C1Vg81aAkroiIiIhInnDnf5564Rnw3TBjDgwdjy+oAmzNTXi4Pu4wRKTKsjMSRGX45WA03//h07Y0tcwmXHodiR0/xIH0C95DeuYAAR14y+xyTTzteLqvAdNGIlIrlMQVEREREckXZk5/ne7Gzr8CX3/vqX1B05nHVdNZlymBK9KAPGgh9O6yjRdaN96+BOs/+Ow2G+khseOH0f+B5vs+RLKpDcsM4k1tZZt72skMxB2BiDQwLWwmIiIiIjJKuOtTMLD1zB39T2HnvRAAW3U9dtE12KU3Vje40Q6sg9bV8c0vIvFonlPmAZ3sWddMeJRlBk97bkhpLWwmjctq7F/Z3i6zZWb2GTM7YGYjZrbLzD5iZiV9szWzl5vZHWa2z8yGzGyHmX3dzJ5brlhViSsiIiIiAvjgXrJPvg16nhz7oKYu6DgLWvthcB+0ry1fAAtXY0vOxRMBDI/A8ADsfBi8QK/b1tlRJTDD5ZtfRKaFcOFV5R/UVN9VFPXEFakrZnYu8CCwEPg2sAm4Fvgj4KVmdr27d40zxMlx/hn4U6AL+BZwDDgPeDXwOjP7DXf/76nGqySuiIiIiAjgfRvHT+ACDO/DFjTB8L7o9ZEjU5u0qRXW3gRkYHgLnl0frU8WAG3A5ZeCLYcnvhsdf9Zl0LULVl4LiS0wvGtq84vItOFAePYrSM02ICzr2MGxzWUdr26pElek3vw/ogTuO9z9305uNLN/Ad4F/CPwtvEGMLPFwHuAw8Bl7n5k1L6bgDuBvweUxBURERERmSp3J9zwl0UenOuD27oM3/HU5Ce94CboAIY3jH1M5jg0OVzxSiydwdkAC1dBcAJSk59aRKYPT3aQXfFyMm0B7ico44pmz7LefWUfsy6pJ640sMDqa1k/M1sFvATYBfx73u73Am8F3mhmf+zu433xryC6/P7I6AQugLvfZWZ9wIJyxKwkroiIiIjIwHYYOVraOcGi0o6/6CWw6zFIzoBF58GMw1HLhIlkTgAnTqVtMsdLm1dEpi0Pmkmtfg0hXZXI3eYEkB2q1OD1RZW4IvXkRbnnO9z9tNsb3L3PzB4gSvJeB/xknHG2El1av9bM5rv7sZM7zOyFwCyiFgtTpiSuiIiIiDQU79sMGDbrAtxDyPRGVbgnK2yL1Vt8MtUu+jk82ARrLgYfgdTOqG2CiMg4vPOiKIFbQU2pTiws8ftfg3JV4orUmtVm9lihHe4+UQPxC3PPW8bYv5UoiXsB4yRx3b3bzP4M+Bdgg5l9i6g37rnAq4AfAb87QSxFURJXRERERBpKePDb+PaPwozlkOmD1iXQt7G0QYIW/MDTRR/ubUG0BtnI7tLmEZGGZn07gJVUqn+KMZPmRz5bkbHrUkaVuNKYDAiorXYKZYhmdu65Z4z9J7d3TjSQu3/EzHYBnwF+Z9SubcDn8tssTJaWoBQRERGRhhKs/F1IdsLQXkifKD2BCzDjfMgMTzBREyy7EhacD5kDkwlVRBqcpXsJbGZFxg7opPXBr2MDhyoyfl1K98cdgYicbpO7X1XoUYaxT+aJJ2xmY2Z/Cvwv8DmiCtyZwFXADuBLZvaBMsSjJK6IiIiINBZLzoaZ505tkAnytwBccCN0dsGiVK6vrYhIacK5VxB6JfpgN9Hys+8Q9O6twNh1TO0UROrJyUrb2WPs78g7riAzuxH4Z+A77v5ud9/h7oPu/jjwWmA/8Me5hdSmRElcEREREWk4wcKbp3S+H946/gGtnVj7rCnNISLicy6oyLjJgRkEXZO4C6HRaWEzaWBBjT3KYHPueaxvtOfnnsfqmXvSK3LPd+XvcPdB4KdEIV9RaoD5lMQVERERkYZj82+awslN0DtBe4S2eRDoV20RmTwPmknPDCc+sGRJkk/8TwXGbQAZtVMQqSMnk64vMbPTfmkzs1nA9cAQ8PAE47TknheMsf/k9ik3N9dvliIiIiLScLLP/PnkT/Ysds5zxz3E5i6DsHfyc4hIw/O5lxMVcZVX4B1Y//6yj9sQMv24T9geU0SmAXffDtwBnAO8PW/33xH1tf2Cuw8AmFnSzFabWX5Prvtyz281s6Wjd5jZzxMlg4eBB6cac9NUBxARERERmW6C5b9G2PPkJM92aDds2RX4vicAsEtvAdJAc7SI2cgGCMZP9IqIjMe6nyI575cJm5vIUpaFzWWqPITsEDS1xR2JSNXZs+t81ZXfJ0qufszMXgxsBJ4D3ETURuGvRh27NLd/N1Hi96T/BX4M3AxsNLNvAoeANUStFgz4c3fvmmqwSuKKiIiISOOZ6i2xg5uhfQF0nBW1VkjthHTe4kO9m6EpSZTcFREpjYUpmjZ/EYBw8Q2kFi7GXbfzxy7dpySuSJ1w9+1mdjXw98BLgZcBB4GPAX/n7t1FjBGa2cuIqnl/hWgxszagG/gB8DF3v6Mc8SqJKyIiIiINxwf3TH2Q1FFs2ZX4lm5Inyiw/xi0roTM0anPJSINLTh0Dy1H2wgXX0/YuYxMMPnKXFM3gKnJ9AOL4o5CRMrE3fcCbyniuF1QuBzZ3dPAR3KPilESV0REREQaT5AszzjZ3diyKzm1wPHoOWZA+ghYXd5+KCJVZtlBEvt/RGI/JBa9gPSiFYR+fOIT8wQDwxWIroFocTNpQGZGUGO/z5gZNNhFKS1sJiIiIiKNJzXltmSRdBfMTIMVqI1oXagErohURHD4PprX/TcB80s+N3FwfQUiaiBpJXFFJB6qxBURERGRhuO9G8o32NCOwtuzQ5Ao3zQiIqMZEGSNsNTvM4G+MZ0maILmDkjOguY2SLZDsi3qe9vcBk0zoKk192jBW9vqc3knEal5SuKKiIiISONJVaFP7cgRbP7z8MENQKby84lI45nErcThvFUktpU/lKmxKJHaPAua23OJ1BlRIjU5AxItudctkGjNPTdDU3P0nEhGydhEU5SkfvZhEATRXRFG1BD45IMwepTcJHhO+d98kWlAt/LHT0lcEREREWkonh2GzEB1Jjv2IJaYCbMvxYfWj7EchojIJHlY8impOQmaEi1YdqS8sVgA1/8VNM+ElpnQPOPU9uYmCD2XSLW8ZGoWrPS3Y3xO5S6e6aKciMRDSVwRERERaSi++zMQVnFhn+wAdD8MnRdA6kD15hWRumc+mVV9RiBohnIncT2E5eeAZXMbwlHP9ZT4rKe3RUSmEyVxRURERKQhhAe+hR/6Ln7kzngCSHfHM6+I1K1g390kl1xPps1xL3bBrWYgO+FRk4yogmPXinTcAYjEwrRYa+yUxBURERGRhuAHv4Mf+WF8AQStkK1iBbCI1L1gYC/Btq+QCJoJl95C2LGQMHCwDKGfYHTTXLOZJDJtJPbej2VSlQnIgwZoG6MkrojEQ0lcEREREWkIwWUfwXd/lnDrB2KKYDK3PYuITMzCFIm93ycxapsHrYRn3Ug4axFgNO28HRs+BEEneJlaAtz8QZi9IBeEgTVCq4FGeBtFpBYpiSsiIiIiDcGSHbDk1bD1g1Q9odo8HzInoiSHiEgVWDhMYt/tpyV2ASxYWL5JOhdAc4WqemuWKnGl8RhRs5Ra0oi/UdXax0BEREREpOw8zBDu/izZh15OLBWx2UFoXVH9eUVE8liqjEnIVKMlcMFViSsiMVElroiIiIjUvXD9e/D9X48vgOwg1rMTZp+Hj+yMLw4RkcFj5RtrZBDa28o33rSgSlxpTFrYLH6qxBURERGRuhcs+zVIxJxoCIcg0RFvDCIihOUbKtuIVamN+DaLSC1QJa6IiIiI1C0fOYof+QkMH0ALi4mIAEGyfGOFjZjQVCWuiMRDSVwRERERqVu+/38JN/9D3GGMko07ABFpdEEZ0wDZRkxoNmLiWkS38tcCJXFFREREpG7ZvBfEHcLpXNXAIhIvb++A9hcBIZYNYN+dJZxt0LYIZi6GmQth5txKhVnDGjFxLSK1QElcEREREalLYddT+P5vxB3G6Xo2YJ2X4oNPxx2JiDQoz+w49f/E/OKr6y77Lbj4OrBGvxiVwXEMLfIkItWlamgRERERqTueGcR/8gtw7KfgNfSHdqYPjj0EzUvijkREBLLHYNHzijx2RAlcIOqvrtY40lgMCKy2HjX0213VKIkrIiIiIvUp3Qd77saGOoBE3NGcxhIL1FpBRGqCtxaZCkn1VTaQaUV9cUWk+pTEFREREZG645s/Bene6EXfDix5MVhrvEGN1vUg1nQ21rIy7khEpMF5ehcsf/E4Rxg0zwKrrYth8VJfXBGpPvXEFREREZH6k+k/7aVzAnw4nljG0rcR5j4n7ihEpNGZEYY7CJra4ZZ/gtkdgIOFQJh7ltMpiSuNR32g46ckroiIiIjUDT+xETyE5OzTthudOHtiimocqmwTkZqQhgVXwIx2CEbiDmYaUDsFEak+JXFFREREpG74wbvwR/8SPG/RmRPboc3BVEUiIlKINycwfY8skipxRaT6lMQVERGRhuLZDN69E+tcjiVrqEeqlIXNvxrPFmib0L8H5lwNqZ3VD2o8YSruCEREAPDMLizQsjnFcDK6sVwaTqBP+tgpiSsiIiINIew9RPonHyC7/rsw0kfistfS8kv/EXdYUgbuWcID/4P3Pg6bfjTmH9Zm7XhVIyvCwC5IBOo5KSLFaz0bWuaDBbkelQYGOGCW930ujL4nugMhThjdqeBZ8DSEafAUJOdiy2/Cm4bU97IoqsQVkepTEldERETqmruTfeo2Urf/HfQfeXZ7duPteHpY1bh1wLvvIdzxjwDY8tX44gthy+2Y5/cszKt6bV4JZMBaMNpwBqNER2p7VeKOQjqGzX8OPvhM9eYUkeltxhLoewygqAtTEx1js6+E1bdgTerRXTz1xBWR6lMSV0REROpa6mtvI/v0t8/ckR4ifcc/kLjsF0gsv7L6gUnZ+PCpBct8aFP0nzXPgx3rseHuUwemAyx5KWCQTcG+h6JF0HIMYPaF0H4JHu6BsLcq8eNKnIhIDKwJO/t1sHQlZmqjUBpV4krjUY1+/JTEFRERkbqW3fngmPsyD32KzEOfInH562j++Vux9gVVjEzKZvjgmdtG9sLK62Hjd09tO3j/xGP1bIaezdiym/BwXfliHI/VXJMHEal3bediF7wSm9kWdyTTlCpxRaT6lMQVERGRupLd9zjetYvExa8gPLwB+o9OfM5T32Bo84+Y8a4HsZnzqxCllIN7CINb8b6nCh+QmEKf2eNbYKZDVVZqVxJXGkzLEmhbhjm4BZg7TjaqkA+HINMHmV7IDsUdaYUlIGiOHpaEIBk9t8yD1IFcv9o0WBM0zYZEOxa04JnuiYceizVhS18Jyy/UImZTokpcEak+JXFFRESkbqQf/CTpH/wNAPbjf8Z7DxR/8nAvmWd+QPLa36hQdFIunu4hu/GdeN8TEI6MfVxqLyy/Htv7QOmTDOyHuVdBatfkAx1P0yyYfR5YGz5cxR68IjXAZizB+5549vJFwcsYBiRnQKINghawUclOa8IsARYAhucW9zJ3wPHcs1kit5CXA9mofYpnIcwAGQhzi3tlR3KLfKVy31PGugAUQHIOJDujuBKtuRg8N/fJhcNOLh6WiR5kTyVkTy4kFqZy86SjRy5EADIFfnZl+8Z+XxVr1kXYuT+HzZwxlVEEUCWuNBozCKpyYbt4NRZOVSiJKyIiInUhs+EHpP/vb5997cd3lzxGuO9xaMAk7sg9nyI8sJHWV/0NNrMz7nAm5L2P4z0PT3xgtg9mLJv0POYdlauR7bwUH6xSuwaRmhHA7LX4wIbiDvc0ZHoK7ypiW8lfvwEQBEDy9ApZS0I4HMXiPZA6M6bpUE9vK29WArdMXElcEYmBkrgiIiIyrflQD5lHv0j6zg/nqq0mL9z5EJ4axJobp0dg+vFvM/Ltf4heZLPMeMNHYo2nKJ6d+JiTRgYmP89Ib5TUqQDPTNzmQ6TeWOfVeP/jcYdRhGzU1iGss3YOYQnfO2UCaqcgItWnJK6IiIhMSz7QReap20jf+7Gi+t4WNebx3Qx96GqCZVcQLL6YxAUvIjj7GixIlGX8WhJ27SF172dI3f+FZ7elH/8Wma0PkHzur5K8+BaCs1ZjiWSMUY7BS/jjuZSEb76+vTB3LmSn0H+ykM4rIbWlvGOK1LwAD/vjDqKxde2C2ZfHHUWdUBJXGo+6aMdPSVwRERGZVsLDm0jf9+9k138HMmP3Q520wW7CLT8h3PITMvd+DNrmYrOXEiw4n+QL/5Bg8Zryz1lF7s7gJ36D7Ob7Cu/vO0rqjo+R+sl/0vb7X6Zp5dVVjnBinjpS/MEdsyY/0fARCBae6lNZDs0L8LDMSWGR6WD2FTAwxiKEUhV+9H5YcQmWqL8Lk9WndgoiUn1K4oqIiEhN8jDEj+8mmLfy2W2Zp79F6rZ3QbqKt7gOduOD3WQPPk12+z00Xfsmgnnn0rT2ddWLoYyyux4bM4E7ms3sxGbOqUJEkzBSfBLXh7dDx3Ksd++kpjKfh3NwUucW1L4UhreVbzyRaSJaZExilemBg7tg2blxR1IHVIkrItWnJK6IiIjUFA9DMvd+jPRDn4KBY7T8xpegZRaZJ75G9tH/jje4gS4yd/0LmJHd8hMSF7+MxIrnAGDtC+KNrUh+osCq54WO6z3CwAdewqz3PY7NmF3hqIrnHuI9j5RwQhqWXA6TTOJGK8+XSfM8fGhrYy6nLA3PCeMOQQDf+y1Y9A4sWYOtcqYVVeJK49GvL/FTEldERERqhg90MfK/f0C49a5nt4184ddjjGgM7mTX3UZ23W0A2KLVNF32OsAhmyZx9a8TdCyON8Y82YObST96G+nHv138SWGWsOcwiRpK4oY7P4T3P1PSOW5HmPTfHalBrPVyIMSH103tL5i2syG1dfLni0xnplv4a0I4Atsfxi98PqaMzBSkcRyb/E8XEZGSVSSJa2ZvBE6ukvE77v6pIs/7Z+Bq4AJgPjAE7Aa+BXzc3bvyjj8f+AXg54DzgUXAceBh4CPufhciIiIyLYTduxn51Gvx3uIqRWuJH95E+kf/eOp1qp/ml773zOPCEAuquyxE6sEvkX70NrIHNkJqsOTzh7/257S8+m9oWnFFBaIrTXb/Fwn3f7bk8yyYQkL9yKmqX1t6A55+GqwJazkf+nshM4R3zoORIlokJFQ/IY3LPFQ7hRrhXfdhB8+Gs1bEHco05kQN0/V9XUSqp+x/RZjZcuDfgMksPfouYCbwI+CjwJeI7lO4FViXG3u09wHvJ0re/gD4MPAA8HLgTjN7xyRiEBERkSrzMCT1jT+algncQjIP/Cep7/45no1ut8w88TWGv/DrDP3jhaTv/gierXwvPc+kSG+8i+H//Suyux6bVAIXILvrcVJ3F3U9vqI800+4458md3L3vvIEsf8ebHAWdiKEPQ9A99PQuw3LtEx87pyr8MEN5YlDZBpy3X5eU/zww7grrT4VIffhpOIOQ6QqDAisth6NWAdf1stGFt2P8VmgC7gNeE+JQ3S4+3CBcf8R+EvgL4DfH7XrduCf3f2JvONvIEoEf9DMvu7uZVyNQkRERMot3PUg4e6H4w6jfNzJPPI5snseo+nyXyB9xz9CGCUw0j9+Pz50nOaf/7vyTZcagkQSy1V6hicOMvDxX8K7J9kHNk/mqe8z9NVZtL7iz7GZnWUZs1TW1A4zL4CBzaWf3NxevkD6d5+5bfAwTJTHTbSqmZw0rjnXQt/jcUchow1uhyMHYdFZcUcyjR0g5IcE3IgxK+5gRKQBlLv2/x3Ai4Abc88lKZTAzfkaURL3/LzjPzfGOPeY2d3ALcDzgG+UGouIiIhUT3ZdCX1apxE/+DTpg0+fsT3z4CdIXPZaEkvXTn2OMGTgI6/BR/ppfu6vQVMzqZ/8Bz7QPeWxR0s/8hXST32f5CW3QEs7wfyzabnht8s6x3g8fRxGjpR+YvMi2PFg+QMarX8/1nEVPrL+9O3JudCxGo4/Cl0/w+Zehg9tqmwsIrUm0a4Ebo3yI4/BwiXqjTslvYTcTsALMGqrF76I1J+yJXHNbA1Ra4OPuvu9ZlZyEnccr8w9ryvhnJP3Keq+HRERkRoVHt9D+kfvf3aBsIbhTvo7f0bwu/83YY/c8MShKHl61WsJ2ueesT9172cID0XVqSM/+GBFwn3WcB/pR3MfKzOC+StJXvziys4J+NBeMs+8DTLHSz85dQy/6CYYCWD3g1i6r/wBZvphaPDMRmWzzseH1kHbPMzmQqbybTRqTtNCzObi2UMQnjh9X2IuQX8I7YsJs0pu161wGLSmWW3qfRqOXgMLlXycmhQhd2JchXGBFjuTuqXP7PiVJYlrZk3AF4E9RBWzUx3vPUA7MJtoobPnEyVw31/k+SuAFwODwL1FnvPYGLtWF3O+iIiIFM/DkPQd/0DmoU9BtjH7yYX7nyK77jaa1v7imMcMf+/9pO77HKSHGfn2+0isvJrkc36J5mt/CYDUw19l5Dv/UKWI87jjJ071MPaRo5DswIIWsts/jDV1YEt/BWua3C2m4bEf471P4EM78ROPQDi5nr6QheFtOGAXXo9vfxQbOjbJscZxYhN21uX48MZT24Jc5irsw4M02Jzyz1vLrJ3g6D5I9uKzc58HTcsgcwjIELAIeu7EO+ZH6wNJfUrOgXASF2CkKnznN6DzrVhzMu5QpjnHeRQ4AVyN6cqFiFRAuSpx/xa4Ani+uw+VYbz3EC1WdtLtwJvd/ehEJ5pZC9GCaC3An7q7fmMQERGpNQNHyTz63w2bwD0p9X/vJXHxy7HkDADc/bTbWlMPfgnSp7pNZXc+Snbno4Td+2i68IWM/OADVY95tNQDXyCxLA29T+JHfoCd8/swsBU/+sNoFfpD3yRx9W1YorWo8dwdsoOE+z5BuPcTZY/XhzbDOefBLseGuso7eGYIsqOSIDPPxQefOfU6HIZUgyzTYO0E6U4Y7oKRLsL5ZxH4XGiaDwcfgraz8M6V0L0d5q7FU1vBkugGujo1cxX0jVUvI7HL9MDWu/CLblFbhTJwtuH05torFPezT0SkWFNO4prZtUTVtx9294emHhK4++Lc2IuIetq+H3jCzF7h7mM2VDKzBFFF8PXAV4EPlTDnVWOM+RhwZfHRi4iIyHiyux4m++Q3sGQbPtwbdzjxGugi9d2/hLZO0s/8lPDQVpouuB6bMRuammG48K3/qTs+RuqOj1U52DMFC5P4tlOVwL7r46cf0L+J7IM3Epz7boKzfqngGD5ymOyGPwAL8IFtU6i4LVLqMKy6Hp75TnnHnbUCz+6M/p+cizdlIN1Y5aWWPAfr74fjp/eBtqADPICRfsgOQd92rG97tHPW2QRNcyGdIrTteeOdh4VNarUwnc2+QgncacBPPIrtXAir1sYdSp04kuuTewNGg92BIXUt0HWe2E0piTuqjcIW4G/KEtEo7n4Y+KaZPZ6b4wvAJWPEkgD+G3g90UJob3B3L3dMIiIiMnnhoY2MfOV3oH/Cm2saRvbx/4G55xPu3wtAZuNdMUdUvKblRbRKSB3BD30HX/xaLDj9dt0wO0K44Q/x/vVjnFwhYQV+RRzugo4VMPMcvCkNI/vKP0dNa8KOH4L+nWfsscMbYNEV0FSgKu3QfbmDkgRnvQDSg4TJfgJfAHvvBpxgyQ2EvgNV6k4/ZgH6g2x68IO3w+LVWJuqR8tjgJA7CHgexvK4gxGROjHVStx24ILc/4fHuP3ik2b2SaIFz945mUncfbeZbQDWmtl8dz+tkVkumfxlogTul4HfcPfGKn0QERGpYdnNPya79U4yj34ZMsMTn9BgvHcvJJKQnV4LXwUt3TAy8XF+/EGyd1+MdV6DZ/oJlv4qBC2EB76Cpw9XPtBRbMZqWP/d8g+cOoH5FYSZXZANyz9+1TVjyeWYN0dJbw8J7SCEZ1aHW3IF1rUPBs9M4AKQOg577xx/Ok/D/uiYM5b6O3gPwdy1hMnDWlVlmnHXB2z6CGH3Q7DmprgDqSMZQu7FuAzjEi14JiJTNtUk7gjw6TH2XUnUJ/d+YDMw1VYLZ+WeT0vOmlkzUeXtq4kqdd/i7vXwm7OIiMi052GW7Ibvk/rq20A/nsdkmWGCRWsID2yc+OBaktpT/LGewY9Hvw6Gm07dbm+dV+PpI+WObGxhsmJ/Rnt7B6Tq4PPcnWBkFhy6/7TNwZIbCImSuJY8Dzu+F8IMDD0KXuEq2e4nYcn54P2VnUfKq+9pSDRV/vNDysK7H4Leq7COjrhDqSvOOqAHuA4r27JEItVlFLjIGrNGvCwype8guUXMfrvQPjO7lSiJ+3l3/9So7UngXCDt7ttHbV8NnHD3Q3njBMD7gIXAg6MXKsstYnYb8DKiZPJblcAVERGJX9i1i8zDnybz9Lehv4oJumksmNnOtPolJpmMqienqucpaJ0H2SqtRXt0jGrRqVhwJd4xH09PsyT8WBJz4ESBFhfd62H+YgIWwb57oNo3vlmA7s2fZsIRrOMqvP+puCORIvnWb8Flv4YllWwsJ2c3Tl+uT25b3OGIyDQVx3fmpcBGYDdwzqjtLwU+aGb3AtuBLmARcAOwCjgE/E7eWP9JlMA9BuwH/rZAS4e73f3usr4FIiIiMq7sutvIPPTJuMOYXoanV7I7sfQsYO/UB/I01noOPlCFJG5yPhz9WXnHtIBw1giEm8s7bowssYDo1/U8I10E+7uAZ6odEgAWzMPDBl8McbpJtOGhWuhMK8P78A3fgfN/HmubMe6hns2CGRbUWn1ebXLvYveTPyQRXMHyy8+JOxwRmYZq6fLaj4FPANcDlwOdwADRgmZfBD7m7t1556zMPc8H/nacse8uZ6AiIiJyptSd/0rYtZNw14OQHow7nGnHu7ZA63wYPrPnaC1qWrmIsiRxAdLVqcK1xJLy33o3fy14V7lHrS53rHkNNjwAmaHyJ7rLxLr34HMWQbbEPsruUHjtDqmUtlXQ1AZD22Cwfi5wNIz+TfgTW2DONbB4LXTOeTZR69ksHDuMH3oE+jdCy2K45Nex1pZ4Y65hA93GutsyPPaVPRzZcoRE87285p9+hStf/5y4QxMpiX6Uxq9iSVx3vxW4tcD2XRRoXeHu64G3lzjHjZMKTkRERMou8/Bn8f6jBGdfTXhkQ0P2qZoKw2ladiGZbY/GHUpREnP6i1rUrCj9m6F9FaT2l2nAMfSWMdkatMDS5+EtqbwVG6YZDwiyZ8Heu+KOZGKD+wiyQ4Rz5xbdG9eSF2IHfgqLryPM1km7i1qXnA/pg5CaXgs1Sr4QP/4IHH8Eghl4+wUQjsDgHghHXagdOYRv+SFc+gqiTogCEIbOjvsTPP6VLjbesZ1s6tQPimwqyzf++Esc3nyQn/uLVxEk9H4TkeLUUiWuiIiITGdBAoBwz6NY5zKYtQi6dsQc1PTiRx7F2mbjgz1xhzKu5uuugJHy9ri0xByYMQNIgKfAmvHBzbmEUDfYFDsGN58F2x+Y2hjJdlh4FRh4SxYPd0zvBC4QsBKO3T/xgbVipIsguLy4hGwwCzv0OGQHG3P1k5jYzJV4/xNxhyHlFA5B7zjf8/vWQ9+NoAXR6DlgPPG1FI9/bQcn9p0Y99j7P3Enh7cc5Fc+/mZaO8ZvXSEiAkriioiISLnkkrgAfmIfJJoJVlxHuOth3X5VJMsMEyy5iuz2x+IOZVzBnArcNttz5ttsQSuk90PrMpyB06u/SmTpWVPP4829hLB5V/T/abUK3RiCTjgwxcR2HA7cS9C5BppnEQYHwQv0XA06CEZmQXpL9Frfg6rG9b5uTEe2QMfVcUcRi0zK2fyjgMe/epht9+zCvfgVGLfevZH/ePWHeeNn3sr8lQsrGKXIFBkEtfb9vdbiqQLV7YuIiEh5NLef/jqbItz5CMGSy/C2efHENM24JZgOv5Fm9lWpUvjkgkjD+7BgLjbj3MmN07oKtv9o6vE011ellCU6geKTDTXDM3D8aTj8IMHQTLBR33vcseQFBMcOQ9eo1iSZTPXjbFDm9XCFQ0rlh+/Aj5bYr3qa69oZcPv7hvjQtc/w1d97mK137ywpgXvSse1H+I9Xfpht926qQJQiUk+UxBUREZGysESy4PbwwNOQdeystdUNaBrxZDssvBzvvIzs9trviZvZvK36kw5uh97N2IyLwUv4FTZow/bvwHwKfQ/mXgorbsaby9UEuDZ4oQrW6ebEeoKu7qj3bXI1wcg8bO89kDpx+nGHHoRgfiwhNpQZK/AB9R5uVL7ty/jRw3idJ/KH++CH/zDMv734ER785DoGuwemPmbvEJ/7jf/g4S/cP6lEsIg0BrVTEBERkfIYr2fC0HHCfccJzrmOcP8TWLa+kmFTZfMuJLPjmbjDKF4qDYlZkJ36H64l8Sz0PI7NuQ4fKK7npmWXYCd+PPk5515K2DEAtrU+WiiMlumOO4LySHVhe+8e/xjPEIy0EDYxHYrdpy1rXYD3VXiBQqld4RC+5dOwdwWc9yqsY1bcEZWVu7PuNuOH/98G+o/2lX/80Hn824+z5cFt/NKHfoXW9tayzyEyWUbt/fistXiqQZW4IiIiUh6J5gkPCXc9grUvhnmrqhDQNJIu/x+DFZeIcQGbEz/DWs7HZpw37mE2Yw3smEICd/4VhHNawab56mVjCVppqD+Buh7FkivijqJ+ta/G+8q74KFMU0O78S3/W1cVpQefCfj06w7wjXc9UpEE7knDfcM8+Z0n+OjL/4WjO45UbB4RmZ6UxBUREZHyaJo4iQvgx/fg3fuwFddRR3/fTU1QuBVFTbP2iY+pFM9Gq6EPHcFax7ggYE2wb+PkU5TLbiCc1Q1hnf4RnVhAcGKAadkTd7IWPg9P74o7ivrUeRUMb6OhPp9kfCMH446gLFKD8P2/GeQ/X/4wex7dV9G5Zq5YwBAB7s7hrYf56Cv/le0Px9C+SERqlpK4IiIiUh5j9MQtKJuOFj1b8ZzKxTOdpAfjjqBkHsaYxD0pdRT6d2Ktq7GZV5yWP7KWNdiJnZMe2puLuyhR05qWE9gFkJgbvW9GXTWxYB4MVjYhUWu8pWX8ti8yOYkZMLwn7iik1jQvxOrg6+343oBHPv80Hlb+AkWmYxY/e3g3HWtX0dSaZPD4IF/6k69xx+ceqPjcIsUIrLYejUhJXBERESkLa2op+Zxw10+xZVdVIJrpxQem34reYV8i7hAi4TD0PgXHH4amzmhb0AY7Hpz8mO1n43SVJbzYuBMMDMHBewj2P0Nw+CCBj65arrcGvxOzdCbuEOpT82LIHI87CqkxtvB5cYdQFsnW6mSK2pbO46mHoguPTz2wncMk8XMWs/PQAP/vHV/hP9/1VdIpfQ8TaXRK4oqIiEh5FNETt5Dw8FZoX1TmYKYXm7cm7hBKltl1NO4QTmleALMvhewJACyxEhs6Nrmx5lxMOD8JPr2TuEHyIjj+9Okb+/dwcl1jSzfgbe9hnfY2jlPrCqxlXtxRSK1pXwPLVscdRVkkWyt/wStobuJgKiCbOTVXz7F+dq4/wPHDvQDc/un7+euXfYzuQz0Vj0dEapeSuCIiIlIek0ziMtKHh47NH3+Rqro23AXJGXFHUZLsjl2QqJGVx5s68KEtuf/PhW13Tn6s3p1YYln0f2uDxNKpx1d1TXDk8TM3D+4j6OohOJ6GQ/dWP6y4NbeCN+j9l5Uw8wLIHsH7n4w7EqkhNv+F2CWvxhL1kWpoaq3s+O7O4KKF7Ns6cf/1zT/dyZ/c+CG2PaH2JRKPoMYejahR324REREpM0tM4fb6/qP48ADeXAN9VqupbSG+8LlkDhyC9FDc0ZTGHbfz444iMrwfPPq11rLzsMwUegxnB7Ht9xAcCwgOdhMcHyhTkNVjyXMgdaLwznQvjEyySnm623cnQXc/lhxjMTwpXtAMPgiejjsSqSF29uvhguvrJoELkJxR2bsWzIwZM4tfU6DrwAn+8qUf4f5vPFbBqESkVtXPd1cRERGJ1yR64o7mvYcIFlw4eu2luuczzyG764m4w5i0zL5U3CFEwmGs/WKs9WrYt648Y/bthKHD0Da3PONVkXlT3CHUrnQvNjCgitzJCJphznOwziuh/QJIHYo7Iqk185bVxWJmoyWSjlV4BaXmw120ziz+bqbUUJoPveVzfOl93yMMG6+/uUgjUxJXREREyiMovpJkLOHexwnOvqYMwUwP1jy1xHfc0k9tgESNVE/378d2PYwlktA0hTYPi55DeO4VsPi50HkhYdO+8sVYJaF3Rwk3Kaz7yVxF7oVxRzK9tJ0P/c/g/etgcFPc0UgtGp7CXRA1ysxIzqjs99OR4/2svXp5yed9/YM/5ANv/DRD/SMViErkdAaY1dgj7ndKDJTEFRERkfJomnoSFyA8uBFmLSnLWLUsO+MCMtum+e2QmQwe1EZLBct0wsDe6NFxLiQm12M4bDcIuwlnHCDsTAElVhu7E3s5efYIzL8q3hhqXboXS9VIJfk0YSMhAWfHHYbUsvRw3BFURHJG8b/fLFraxvNvWsArXtrJa14yg9c+P8PPv3TiOzr6ntrB8gtKX+T14e+u4y9e8i8c3j29F+MUkeIoiSsiIiJlYYkyVZWmBmDGnNjzYBU31As+/W+DDAdr4Nb9YB4cePjU6+4nYe5lkxrKGPV5bKV9fCx5IUF/K0F/MzQthsR8IJ73j7dUeDWeetC9niB9FkGwGms6G2x6LS5YbTbQTWgn4g5DalmmPi+MJFvH/z4+Z37A82+az2tubuGa5o107vwZbHqSzJaNpPftozXTX9Q8S9oouR1FInB2rT/Av7zhw6T3PVjSuSIy/dTAb90iIiJSFxLl+7XCD20kWHkdvvvhiQ+ejhZciu+vj9WlvS8FYxYZJcCzFb3fzZLnw97HIJO3AFlmAJo6INNb4oiTX6DPDj8NqagaKhjIfXwtgI4L8Y5ZeHpviaHMBZsJ6b0lvw89e6ghbzMsSboXuqJqeAOsfRXhrHbw4hIuDSWxAIa7oG16t4CRChs4CKyMO4qyS7aeWYn78tc1ce6CvSR8mGR2gA0/bicz1gBhtqh5BnYdYe31q3ji/u1FHX/xZQG3vunzpFvOIZneh/3gY4Qv+BjBmt8s6nyRUlW4PbQUQZW4IiIiUh6J8rRTOCnc+wTMqdNbd61+fgVLb9gOTYsgsRgAazoPC8/H+jqwfQex/g4seT6WWYk1XQgOBJ2QWMKU6gncscRFsONeSBdIuh1fD2Rh4XNh9oUQFJt8msJfKDOXFYgzhJ6N2MFnooRzMSXm7gSJNQT7NxDs+ylBfwtYkb2H3Qma1hB0Hy8tdoH+HQS9I1jywuI/Vg3AkqsJDmyAmWcB6r0pY/Oj9+KD9ddS4fRKXOdX3xRysX+T1r6tJI9v5diJVeMPUMJdN9md++lcWFxf9+5jjmWHaB7ciKX7IEwT3vN7ZO9/Nx6OmVIWkWlMlbgiIiJSHmVO4ka3ZTbhQRIL0+UdO25HnsJmnYsf3x93JFPmPb1wfA42uAk6VsKx+4gytTknNkWPnChFeiB60XEePm8xZEpYPMwBa8bCs2HXj8c/NjMQJeJ6No9/XHMnzL0IMsO4Hy0+ljzhzCRBTzOEBW4pzgxge+/F5q4lbB2EsK/wIO4Edj7sv/PUtoFdBKkOaF0I6T6YfR40teA2iGd2n3a6NZ8Le+9EJmlgD5arovalayF7ON54aoAd2wTWRNgy+a8NaRQh7PkprH5h3IGU1XmXJFi1pJkLVvQyl+0E3TuiHUM9AMxaFHJkvAHC4i8IZQdGWHPRIh46MsbPiFEOHnCG2y6ldfDp07b7+n8nPLGJ4JYvYS1zip5bRGqfkrgiIiJSFlbuJC7gXTsJVj6n/toqdCzHj477J9+0ku2dSVPYA8eeLO3E3m1YL9BxLj5vAWRGtZiwViyxHDwJ6VR0kSAw6D8GfXtg5N6Jx5+5HAYPjn/M4ucSzjgO5BLqUym+zOyPEq2D4ySlu58kSHbA3Mvw5iTufZA5AqTBjYBVcOi+M89L90YPgOEosWiALbkBElELiDC9AXPd7l42pj+VAGhbCkOHoh7P2Qm+nqThedf9kHou1lz+3wnicv2qx8mmHoHuwvtbjt1P21lXM3igcCuWbOssYOKk7Ek9z+zmwqvOZvNjE7VdcrIU/p7v+36Cb/gUdsWfFD2vyETUTSF++s1EREREyqNcC5vlCXc+QnDWpfihpyc+eLrIprGWmfjgibgjKYv0nkM0FegkULTe7VjvdmiZH/XQTbRA6hBkd0wtsKa28atwZy4jbD0wtTkmI90Lh++PkrAQJQs7zo/e9t4HShvr4D3P/jc46yYYULVkuQSDGch0QMdSwvQGKHHBoXrhbbOwLicYaSHUX49SjONHYdFZcUcxZemHdpN55GGyByf4WZRNs+CimeweI4l7dLiVUpK4Zsas/j6akgky6TP76T7/xqgl0+/94n20DD4z9kDNHUXPKSLTg34Mi4iISHk0Va7qJuw9DEETVi893gYOQet5UCdJ3LC7C1bOim71n4qRY+UJqH0l9O+cuJJyznlgO8sz50mT6XfsGejZOPW5D9w19THklO4no+fezQRNM6HzYsLEnlPJ3Fz/YXp2Q+c5hPRG1dj1wh1rXoUdXhe9bElAceszSSNLzoHZ8+KOoiz8eA/ZXcVdQB7v15PFgzuZOauTgb7if4cZOnyCtc87l0fv2Xba9gWLk7zt9Q/SMvg0Njj+eDbnoqLnE5HpoX5W1RAREZF4JZorN3b/UYJ551Zu/BhUov1EfAxvXR53EJGZK6B/D3SshhMFKpTmXwErboYVNxM2V2Dxr6CCXwcSn8wAHPspQXoxwfDcaPE4Ox/23wX9O2DfnQT7HiNoWoMlz8OSKyCxKLdA2vSq4A04j6BrkOBoN7b3QUh1weIX4JltE58sja15IXbxm7DW+mjrYjNaiz62uXXsxcvSR49x5dWl96Yd2bibi65ZQVtHK8nWJpadv5Bzz17Ep/7jOdA0Y8Lzs9+5hXC/Lu5JeRhRV6taekyvn67loUpcERERKYuKJyWbZ1Z2/GqrYOVyHJxFGBviDWLGYggSQBZ6N525v7mTcNYQsDV6PZX+t2MJ9Ot12XVciHcuwxwYGYThbuidYLG6SjlZnVvoAgEO++589o/KZ5+X3kSYLfD5WIsSc2H/qJ7MzfPwJZfg2R005p/LUrRZF2GrX15XvXBJFv/9vKXnp3SsXEvvzp6C++fTRW5lzqLHDFMZbOseVjUHtCxsZ+jIEfqOGn04g8nLmZm+f4IRnPD+d2M3fxGbd0nR84pI7VIlroiIiJRHU4Urb5rqrMJxmiT7gkXFVdim9g9WOJIxBM0w/2qYdW6U3Osbp3fhWdcAQ5UOqMLjNwBLwvIXE559NeHSlYQdg3i4hdC3EDbvI+wYhI4L4o6yeEfXTZtqXAsWnPY6XHJuLoErMjabcy128aumXQLX3fEND+ADY/z8KtCPdkxmhNlxqnF37eSCS+aWGGHEMyHDx3oxM8B5218dYebgRAncnOMbyP7wFwl3fW9Sc4tIbZkefz2IiIhI7atkOwWg3qrAbFoskuQ0zRoidTQB4fh/zGZ374ar5kCqAi0KxjJjETS1w7FHC+8/5xY84VhPFyRnELKZin8euZqGTtni5xL6lnGL1nzOMqx/N4QjVQ1tUlJdWPPz8fT23IYmaJoL6cO1s1iatUJiATaS9/4Mh+OJR6YHa8LOfh0sXTVNfqadzvbvxvd+Dw78BF/7dmz+6b18fSRV/GDDfZx99gYOdV7O0NFBhg4OMfobWKJ9JluenurPxyiBu8S/VdppvTsJH3g3mGFnv2xafqykNugydfz0MRAREZHyqPQfBfWyqFlOJe7kLz+D5tm0nLuA5JrLIRjnV0cHn7G6eqElO6BlPvRtL7x/3mWEbMbDrYSzuglb91cpYTZ2JZYUYe4VhE1HJzzMs1vhrOdXIaDysOMHIJgJTUsIunoI9j1FcPgwlqyBXtLBTIJDewj2/RSOPHRqe/sq8CpelJHpJdGOXfRWbNm50zIp6Fsex5/5ZPQiOwSbbsPzLlZmfBbZzkvwoLgK42zTfJZdeYhLbvo2q17Tcdq+FT8XcNFzAt5x626WnHPy/eW0dZw5zlhe8ith6Qnck/p2E/7fLxDe/07CJz+MHyyykldEaooqcUVERKQsfKCrshOkp0HFXQmmz5+87Xj34xibaV62CNovJLVlI2RSgENTM9baBhYQZmaTqEZIydkwY+GZfUkXXkPYkYDMYbABptN7uWFZAK0LITMEi68mDDcX3XogDLoI2s+B/l0VDbEs+ncQjHSAH4JMf26jAxMvTlQW7ljzKjzbBWFv7vVqLAzAHbzAomUdZwNjXCSRhmfLXo51dsYdxuQdfYLTLroN7IBtT8EFVz67KT3cRNcTJ7DkclqWL6NtTi9NJ/ti58nMuYz+YzOZteQbYDB3weMMXn8Vhx7o5fxfaaMz+Dq/fHMTpDI87yVv5hufaOEN7+znvPb/5TP/+1vs2XTmBcCmZmfF6gSXXjPEwoW9nNVyN5RQHFyIP/Of0UXk9hUkfvkJLFln6w2I1DklcUVERKQsrLWEcpJJ8JH+iQ+aTqZDj9/WmdC7/tTrgcMwcJjmOcko+ZbNJXJz/OgItFUhrjmXwJEHTt/WcS5h22HInlyuuAIVscn5WDYBzfMg3Rtta52H968D86jSMl1nn6eVMmMJvuCiqN+qZYAk+JbSqqXDLsLZRmDnQV+BJGStOfk5M4p1bcdmnw8eEtph8Ap8/gSdBL4Q9t6DtS6CtiUwfAwG7x77nMQMwsT+6XLLgMRh9qK4I5iaRIELKDu/js8+C1u0GICgLarA9XSK4R07GEkmmb32hSSP3nvat6r0vOdw4qkjJBe2PLvdBnaw8OIVdK6cxazwm9FGj+4ounTpD5j3F8/nrKYfYNkUb3jjI/QML2XTpkXc+fWAIAHveO8OZqfuxcJRWdspJnBP078bP/QAtvwlZRxU6prVTgegZ9VaPFWgJK6IiIiUhbXMquj4/z979x3fSHYd+P53qxAJ5pyazc45TofJmiDNKNsKlrVO67DyOqzD89q79jqnDc/P2d71Wo6Sg2TLcpLkkTRKk2d6Qs90zuzEHEESsarO+6PY3WQzASCAAsj7/QyHJFB164BNAqhT554rE71gBlH26qjIVcmb+Lq3gjhuqwgzAMp0FzxLjmHdvOlWyHkRW00D/q42mL4BE73zN3DSC+4nY33Q1AXT11YWQGQdhOrBDEG0BxIDdwV417v2QA1OUws4N1d23KWIgTIaYPI4xHru3D59AVW1A1Qlqv/V4vYELleBepyGCDjnV34CpgSqOssjibuQ2A33AzA6HsWxz+b9EEY8AGPfcL9JDMz/e5q3Qwg67nf/fTRtMX0noOo+r6PIXUULTJyYf/vFzyPN34NSBio4N10i6TTjxy4T2vw2Kn0nMZIjpBofYvy1q+DMv3CoRKiSz8+/PTlIh/oszHRvCE6/TjOv07wF7vv1HTiECU6/npeHuaT48q1rNE0rLTqJq2mapmlafgQLPCXPSmJ0H0WuvVTY4xTLxDVg8WSnCrcgsYmCh2G0rcdfC2LFIdhM6sJl/Ouaoff5ZfddiCPrMJZ4XBmp7ISRl92vfZXQ+iCMnID0Aj+P5sM4lVaBE7iCiuyG0ZcXvn/yDKpir07gZsJfjbTtB/tC3oZ0jBsYrQ9Cf5n3eJy4CpUr2F8EI1YJ1jTUbEb8JkoM6P9q5mPU7cWJRHUCV1uWjLwA9lGUWabL7BiLzIaZuoi6fAY27cKM2G4v+LsStImLl7BbNxJqO8jksTO3b0/d7CO9bzP+mfYkfvtM1otd+qfPLL9Rnjhv/H+oDR9A+YsxhUbTtHzQSVxN0zRN0/JC+UIFP4Zz4w2Mlp3IwOmCH8tzoSoodBI3FMGorEJutya4QKChCvpyT5TbF15H7bkfNfpCbgP4KmDk2J3vrSkYfgEi62HaBn8l+Csg0om0bkfs8xn3UM2GCm8BVeFW/VqxxRO4MyR2EjrvQ0kQiQ/D2GmUrLFFziJd4IvAxCJJiLo9OBXRvCZwXUkc8zpG7a75fZLLiNSth/QKKnGV/05Fcrwv+yLnSBdSXQ22vhihZcBJQnQC6uq8jiQ3zuK9CeTiX8HoIUKjr9P4TQ8z8VKcdF//nIRuur+PdH/fvH1j8f3UhNy/Q7Vc1bvXxk4jAy+hOh/zOhKtDCig1C7ZrMFuCjqJq2mapmlanhSjx6uVwhm+itG4BRnOdyKotBhVDYgvAKbfPXE0fZBK4PTn73EHN3cifXdV3CYnVzyudeY0/k2bYCqHRZHC7RC/PP/26avQ9CBOeBTkHDSb4FwoSIM2FdoA0QvuiuUZc2DqzJ0WousehWtfyXtspUwaOxH7Oob/MAzPSsQbQajZilRVgjNemIMrB6fKxlB7YGyBKdJrgcryQlrjIfdzchQAp64G7Kt5Dkpb1YYvQN0Rr6PIzYZ7oe/pxe8ffRWAqravU/HeRkbfvAdflWL8K0tXylqxIBT+mnbeSO8zoJO4mlY2dBJX0zRN07T8MP3FOU46hhMdRNVvgNErxTmmB9TQy/MrDFoPrni5LqO5A19jIxgppP+VFY62CCuJNebHFzCznkpKsH7hJC4gkRDYK08yzx1UUBXb3T6gKLATMPFW9nHfLXYJUcbqrcY1AtB0CBwbJnugeiNiXXfLYsKzFjlsexjH7AXGC5fAvUWmcSoMDOMAjLxR2GMVgBp4A1r2IHYfONOZ7+fbgJBGqUogw4s8wSac4JC7bzgBMgHOcG6Ba2uWDD4NjVtQZViNq6oiSO1+GD++7Lamf5imQ19k8sbyyU5r0oH6lcdXNKn5Cy5qmla6dBJX0zRN07T88AWLd6xEFDFMVG0XjK+w/2o5WVFCUAjs2g9DL0ER2lHI4FVk14Oo8W8svpERdNsjmCH3sxF0K44XG9Ppz1+AgXaUUQ3xmzB2PH/j3mKNQ/0eGHkz/2N7qWYHUtOGyADIdfe2YAC4cXsTxzkHXQdBUiBFvtCiHJxwDKN6G0TPFffYK5UaR11/FhWoxakLZVRlrvzbUde/lv2U0uQQxkgzJL6OqlgH9VsAhaMG3ISupmVILvwdHP4YSpXaROsMmNnNIPLXLH+hw7EcRAoySaQg5NQfIQf/K6qixetQtDJQLr/Xq5lO4mqapmmalheqmElcgNgYokxUTQdMFHBRq1JiJ3Pazb9jH4bVjwy/AvbifQDzzTrzGv6Dj0NqAERALLfSNT3pfpB2+2/awHJhNR4Eyd9K2spXA6MFXv076EN8EZSVeVVlyVAmrHsEbr4IdgyUH+m6H7Evu20sltxXgePlqucxnGqgdh/GtFF+VbmpcVTgISR9cdlN1cjy2ywqMeh+jl13P4wQdGzKfTxtbUqPQCwBkTJcHKvrfogPQCyzNiIiyyeqE5euwUYT94WtDIiN8/x/xnzHX3kdiaZpGSjDy2WapmmappUiFa4h8P7/WdyDTg8jaQuq24t7XI/IVD++LYcwtxxyFz5bRmD3LgJtDip6Ahk9D1aiCFHO4thYPddh8gJEz7ifY9chPU7WJ7ijp1Bmd95CEyvPbRkWEruEaj1a+OMUQucjOM55pHMvVG9Fuh5yE7jlxBlFIrVeR5ET1fsqxlQYQ211L4AAqPDM5xCG2oJhbHf/nvKl7T4QPbVay8HgCi4meEg1t8CD3w+d781oe8Nc/kJqsKMNpcokgTtDBl5GRJbfUNM0z+kkrqZpmqZpeeOM5LCQ1UpNDYJtQ1Vb8Y9dZCoxBjefQ918Dl9rOxi3JlXJzIfLv2c74XfsQ9kjkJqEhHerzcvwdaQ6s0SmU/EAi55HOklUIg/9Zf2NqIq9qGhxflclfhYJNhblWPmjcHCr28W+iVMdR+zyXEhQ7B5ofdDt4VtO7DhMXYa+b2DEqzHSbRiD/RhsxhidhL5noPdr+TteRSeOymNCWFtTpP9pZKQ8eyorZaDCGfb0Vcu/BqlA+U12Vlu+FaXnyWsZMJSU1MdaVH7PMJqmaZqmrYjYFqSm3QSg2EhsDNIJUAYYprtQkZ1G7JQ79d669XXa/d62Zn1vubc5FuJYWG/8gzePaXIQVd0KlS0wNeBJDEU3+Ca+7t2YzRF8tf2Q6gOzEvHVo2KvQ0pwVKfXUQJg3+jFV7n4/SJAaD3KTC3db230NLTUkFUVrxFGhbch08fdRcyogtGXM99/pewYNO1EboygbiXa1z2O9L2MsqaKF0c2mu8FubH8duVAWTi+q9DRjTI6UdZMs8qJqzDpwUWnXETP3/m6/9n8j++rwmnqALs3/2Nra4OTQM79Oez7YVSZtVUQcWD0/PLbOYromW7g7JLbVa5P5yewIlHbvgvj0C96HYamaRnSSVxN0zRNW2Oca6+S+PgHvA4j7yTaj6pph8pmtzp3DTCrHXzBFyA+c4MdR6XuPHZJ59ZDN99ktA9pP4yKHpt/n/IhaicyfB1juUVjUmMYzj4cY37yTYW6wawFHCQ95Ca1/Y2oQCeMvIiqOwLWJEwWflG3eaZOQ9djyLWvQLgNJl+DtoNw/Znix7IcfzVOaALyUPRcUsStJpZbFwnqGjGmjBUuFrgK+CqRjj1g6ypcbYUkDT3Pwa4nvI4kO2ePwcjSF/asdBODX91B8tLSCVyUotL/+TwGVwT+qlmzejRNK3X6r1XTNE3T1poiLmxVbDLR6y50FmmE6fKc2pkNo75yyaJUdaf201vhOpyBGxg1rahU/+2bxd+MSBfS9yqq4wgq9cqiQ4iIO91zogdq5y79rUKbYPw0tzKPCqByK0yeB2aSU2OLj10U0deg815IjUIqDvi9jeeWUDPUbHEXMhs5Do0HwCmz3re5cIahahNEPWoTUdEJMQ+rnY0gNN6DE0roBK6WP+EWryPIXnJ8ybsdq4qBf9tM6sbyi58pnw9HVWIymqfgCk9O/iFS3Y3a+6Neh6KVAd10w3s6iatpmnYXEcGxHMRxEEfcz8LthUVEBMT9LI6AiLvouuPcvg8ABcpQiO2O4dgOYs9sg0IpUKaBMhSGaaJM5fblUoBSmAEfvoAPw2/qPlVaXolVGtWZhSITN1G1nas/kasUhq9nySSub2sH1pUAMnjN24rD2AjU7cGJTWBU14ITB986nMGLMP0qADJyCafhCCpooCZfmjeEan4Cx7yCqtkJ06+7t4U2gVHpLpp2d+no1PLTY4vOmnQfe7gL+jxOKldtwqmrBnsI1DX3tpY2UL2URua/8KSuEWUnYfpaEY+qoPMxHNWP4a+GiSJVhvurIVAHgRqkqgmR6yDXV1/FteatmjJcZHT9UWjbB9eeh9FX59xlWzUMPL0vowQuAKaPpHMPFcaXCxBo4Thv/T5qz4/o8w1NKwM6iatpHrPTNobPwE6mScdT2IkUylBYSQs7kcJOWdhpC8RNCCpDgVJuMvB2YnAm0Wg77jamiVLgOA5izWzjODiW7SYl7ZnkpNzZ10nbJKMxfKGA2xtKIB1Lkp5O3Nlv5hi+2momBifdJOZMIlNsBztt46QtbMvGsdzjOZbt3j7rs5O2b+9nmAaByhCByhD+cABlKEy/j+Rk/PbjsS0bhDtJUEdw7FsxCY7jxiu24z7mW4/xVmzOTJy2+7Ng1u0wk7SddXupMQM+trx9L0/86kcJ10a8DkdbDazVW4l7i4zfcHvk1nXDWI/X4RSE0bkBkstUEU69ga8JaG/Ejq3DOfdaUWJbiHPzLYyIjTNmgxkE+66T4sQIcnMEqd+Kac6969aq2coeh9EXUNV7wJ6G8ZPFCT4PVOVB5MbXoH43jPWhrEnvgjErcOrqwBlgbhPi2JpJ4AKIfQNpbMe4O4kbqIPGfYgfII2b6fQBgrKDMHwCEjm2bGm8B4fz7vuaKqCyE1QQZbajLJ/br3zqGsT7lx1qSRUdEOmEYAQxE4h1Y2ZRpjFwvFvoUFvlguXVDxdA1dUCICNtzC6gFYGBp/eRvJxhAheQRBzbri2/5eOnrsHIW9C4z+tINE1bhk7iarfZqTRjl/pnVRvO3HHri1nLRYsIFU01VLbVA5CeThAbmcSKJW4nH61UGsNn4q8IEYgE8UdCBGsi+MKBvF7lc5OTbnLOsWzEst1Ep2FgGAoz6MfwmcsPhJskTEZjpKIx0tMJEhPTJMenSYxNkZqM305qJqMxrEQaO5nGiidJx1Okp+JuAlApNxk4M6ZSCrHdBObtqs1bMVs2ViKF2OVVBlF3YCtXXlkDUy1LhJ2yOPuF1wnXRXjiVz7qdTjaauArs1XacyTRfvCHMdYdRq7P78Va7syORrAznAqeHsX0j2IceghndByUQgWCEPCDUthXzsPEUEHjVdXtYPW439iLV4Mrw0TMWjdhe0vVXkjGIDjzffREocLMP18VmB1w46vuNMRR72OXjvvAKcFKZS9YvRBsguQQ1O1xq1Sdy8ClBavcBaCxAsN4HEYuwnQGCZ5gEzTsAnFw/JNzq1+VAlKI3eP26w0CwUoM6+GZRcwWyKorE4KNEGmHQBWYPsRQM0laC3FGQaLAzEJlNnoOrFYcvtWTXoiNPJBVAhcg2L2OcOCl8rsYFqgGX/kl4LXiUoBRYq8lJRZOUayeZ1ltxfqOXeDz3/e7We0TqAq7ich45lVdofoqmvesxwz4EQQ7aeGkLZzb1ZrWnSrOtHW7ctNJW26i1nYQy76dCM2EGfTjj7jJZF84eLvy1K3sdBOsdjJNaioxJ1mtLUxPtfHGic+8xJ4P30fb3vVeh6KVOeULLr/RapGO41x9FaPrME7/CZSV8Dqi/DHUkq0UFqISL2LOPk+b2d/YUI1j34d94sW8hTdHqApV6YfxDLYNRFBpd0NBgfIh46OotobCxFZIVfth8C1Ucn57CM+EWhAnu8TEqqbAaW4A1QTOuPuxLBvHOQ+1gmp8GDUdg+FXF9604R6cimmQmcX4MnrrmsTxXYF1W0BVoqhDjV+DilYk4EOkFyQGDM98ZDquphWQEYZgGV8kvmtxL7EyKwK6Rfn91O0YxCc38xlVURgH/guqdovXYWialgGdxNUAGD1/k2d+4a+y3i81GV9+o7skRie59o3iTn+0k27VbGLUw6mLq4iU3eXl1cFKpvnkh36D5h2dBCpDOJZN66513PfD7yLSWOV1eFo5WYOrEDvXXkXVdYFpwOiVrPdPBHcSTJymlK5hpU+cI7h/HSTysCiRFcXgGBx4EPuN58lrGZEZwGhsgtEzGe7g/pCl6gGIRxHHgooAIudK6ue/rIoNcP3rpVclkhjAGAvhNNTpafW3yHRuv/JKIfYVJAR0HcCwamDwNbf3caAOaT2I2OdwS2xziSsOEkcYQqoBenSyVitdTsothimrJ2rg5lXk4j9Beu55oh3P7oK3v7mJkPxTeZYGNuz1OgJN0zK09s7itHmSE9N84ft/n+l+/UZey5DO4XpGHGHg1J2Ezc3XLnPiH15i30cfoHX3etLxJFYizfoHttO4udXDSLWSVm4nWHkiY9fAF8DoOopz9eWsfgzR5E5qg3ECqewTwAUzOU7qdJDAtgZIj+RlSCP9Esa9R0i/dQZi0fyMuf4A9D+T+Q7pOBLZiVx7Fgw/qvtBxHcJRTov8RSNWVe65/LTVzH8u3AiZZhwKVXOMI4xDC2NYG4GZ9JtWaF/vtqaYcN0DKoqvQ4kO1YKEvN7UPsi2RUrpfoHkL1hFNkXOXlDoda9HbXpw6h17/A6GK1MlFu759VIJ3E1Tv7113UCV8uKPh0pLanpJMf+9Ktzbtv65H4+8L8/5lFEWulbw3/FVgqn5xWMrkM4A6dR6VhGu6XiJlawgQAllMQFZGQAa2AbvoYJECs/g069hn9HM+m3UpBeYfuJijoYWWQxtdrNbm/eSDOIDalpZOgEMtWHiJsAVRseAvNk+f3G+qpgss/rKJY2fgpV8zBil9bvdNlTFjjDXkehad6YHCm/JK6xcNuESPNz1D72JONfPbvsEL6GBhqPjGOUTQIX8IWh6RBq23ehlE7NaVq50H+tGoNv6TfvWnZE9w0uOWbAR9u+O71yW3at8zAareQZ+uXfufYaKtwADZsW3WbU/z76nY9wPfatTPaME7AuFjHCzNmXzuH4juR30OQgvoMHVzyM0bgB0tPz76hsh/QgRM8hfc/CwAuIFXVbffgjqPHzULUO8ZdoMsxfiwrvAdqh+iAEGqFyO1Tugsg2sKpQ45m2j/COGh/Us2s0TcsbufllxM6yWbvXlkhg1m77IhX7ti65e6CjncYjUcIUqKd8oVgx5PX/gfPlb8e5+nkkNr8aWdO00qMrcde41FSC/lczXNla02Yk+kfYcHiD+82taYLq9v9u3y4id04OZ+6ybeH6q5eLFOnaUdVayzf/4cewUxapqYRO4mpLU9kt1rFayfgNMAOodUdxrr2CmBFMZwoA26hm8KRFcqDH3VgpfPa4Z7EuJ33iHMEdvvxV4wIq9hrGjsM4Z47lPohvgRpaXwUEgqjojbkvG5NXkKoO8PkhVAdtJsrx8KQy3IVSdYipYOoUyEw7B+UDqwKGnnXDHz89s0NpJvmXNHEWVfM44pz3OhJN01aD1CD0vAmbVn4RsGiWSOIqBVXbp4i9ucgGPh+t+57FlPy0NPKCXP4scvmzoAzMbz2Oqt3mdUhaCdMdgrynk7hr3Ot/9HlSU6topW6tKOL9o8T7R3Pat3bPxjxHowGMXxvmjx/7JY583+Mc+f63ex2OVup8Zbx6dL7ZKeTqK8SrHqH3bA2R1gCRynH63jJJDsw6KRNhLPAeEEVd+nPexbuYyXEkfAgVezl/Y4qNGTgLm/bhXD3j9g3MgtF9GPqfu+tGH6ppGwwt3GJBTc+s6h2oBol52/kjfgNJj6GmryPhNlTDblAGMnkDdTtxW/7UwFtIU8jrMDRNWyWk/ymo6UQ1NnsdSmbspV/bwnUvEdz0EMlLVzFragHBrK0i1FmJEfJhygtFCbPgxEEu/zPq4H/xOhJN05agk7hrlDgOz/3apzj9N9/wOhRtrdFX7wrGTlm8+H++yLE/+yqdhzfRsmsd9RuaMQM+xnqGGDx9g2/+3x/DMPVU+rVO+bJbcXktqJj8Ol0bN9FzdjtDN8cX3Oba00MYoSB1ee5ckD8FmBdvxzHDpzDv2YbV5yDXMmwRUNkMwy/NvS3ciKpsWDSBO0cqCtd90LoHCV5DyQItGQrOgdp2JD2JivfBDbfH7ap7GUuNAW1eR6Fp2ioiFz8FVT+ACpbBRWPHWfJuZQht73gOeYcfw7g6907ZDD2FC63YJFm+FcWatlboJO4aFR+Z5Mynn/U6DG0NUj6/1yGselYyTc9zZ+l5bv5CDFODE1S31XkQlVZSVnES123ZbSCGD8HHrZSbY4QQ/IgRQDBxVBBRAQQ/jgRwlB/BpGG7w2CqjvTQwgt+Oqk0aX8n/vSNoj2mTClVwETn9Dl8zZ3Y5m6cnjPuQmRLxVJZD9Hrd24wQ1DVAqMnMj9mYhTp+Qaq60EkeA7lxRw+I4hKjRf/uEXluH84eo6kpmn5Yk8h5/4Ndr8PVep9+IORZTdRhoMiOf+OeLQAAXlHNezzOgSthCnAKLFG+mvxnYtO4q5BdipN77HzGD4T2176yqOm5Z2Vv36N2uKUabDl7XsZvzbE4NleEKHz8CYiDVVeh6aVglWYxL2a/jauvzCAWPatTG4OHCDGxsfXM7JIEhfAsEvkpM1fAaYfEhMAiFNV2DeziRuYETD3hKBiO/aY4Jx7ff52wQjKN+tkt6LZrcDNJoE7i1x7DrX9EXA8aGEwtQaqkswKncDVNC3/Jk/B9S2wfqfXkSxJArm+J1IwuorW+ajdhtr8Ea+j0DRtGTqJu8bYKYvPfe/v0P9qGS6+oa0KjlVmK9aWKbEdHv/5D1PdVsf08CTTw1EaN7di+PSCVhooY3W+/Es6PxeJohPzT+gaj2ygpraXisQrGM4C1ThFIRCsRtV3ISM9qIZ1yNhVVMtmVEUD4hjFqUhwkjD1JmYwiHnvUZyoIOk0MjWOjA9hrt+HXPuqu22kDUjA6KmVHXM6BeEVR541FW6AxfP5q4M1BdIESl9k1TQtv+TGP0GoFtXS7nUoizNznCUY2QfpL+Y3Fs8ojMO/tGrfH2raaqL/SteYwRM9OoGreUoZutqnWMauDFLdVkeksYpIo67A1e4QWX2zMJSRv+ld6Vh6zvdmZYSO0KfBy3VADR/G+ntwrr6IDLgVrTLgVqbK0HkEkLE2/FtqUEwUJyYnCVOvYRhAEAga0BzEmRiCmm5U01ak72VUcgVZUDMIGx5A1FlPpsyJPQxmCGWv8kVgl1idXdM0bSXk4ieB74Dmdm/a4iwnl3YP4W44/3zeQ/FEuAXj7Z/A6HjE60i0UqdKcOJOqcVTBDqJu8aIbp+geW0NPtF6obqjnrZ9670OQytVqzGJq/LYo+uu18rOe2uxQvehAgGM9E3URHEvhqqWHcjQKZyrLy65nUT7sMYO4a87VqTI7uYgVgJVF0GlLqGcIaRhB9L7SvZDVa1DtW9G1CjKOZn/UDOV7EW13gs3v+5dDIUWqAeWXp1d0zQtdzZy8S9RI0eRmg2gTLBT4KQhUAWtnd4md7NN4hoBuNELqanCxFNMNZsx3/M5VPUGryPRNC1DOom7xrQf2cqef/84J/7yK16Hoq1VpdULfdW67wefJBAJeR2GVqp0EndJInL7etP6x9sI9X+F2RPNfZsfwkxfR0323LUfbomCMt3pmcrnVjgapltRavjB57azUIYxc9+tbQyUYSLKnHk8xu2LXs7olYxjdy6/inPPIQxezfnxr4RSAukTd0o1fJehfhuMnstsgNqNqIZuxDgHcop85uZzJfYImBUoO+Z1KIVRuxW46XUUmqatcjL2Moy9PO92xbdDm4eFB0aWrcaC6yD6QmFiKSK17bswHvgtVEDP1tO0cqKTuGvQ/T/zEe754ffypR/9I3pfyvCkStPyROlS3KJo3dPldQhaKct54a/SZeSxncLslbRDamDe/dbFN92kbrDNvcGxwEovkhwXwJr5gGCbBempBa9nySJfZyt98jyBPS0omR97sSmSUB9BRjPcobUanJOl9UoRaAZWbysqCYdBt6vXNM0jcvWfoemHUV6t25BtqzdnujBxFFLlOlTnO5CxM5AcQbXej/HQ76HM1bfQrVZYujOi93QSd40KVlfw4M99lL9//68gzuo7mddKl/5tK7xQbYSGTa1eh6GVslXZ/3Lp6uLGA+uoqk8zMeDDilsEqvxU1AijV1OkogmUoUgOu71kA5EAKcBXEYCxS4sPmszhRE4V4SQ1OYkd340v5H0SF4DkeajZABPLVxSreJXbX7dUVN+Dura6Zy+JTHodgqZpa5k9BaOD0NzmzfGzrcRNDRcmjkIwfJjf9FVUy1GvI9E0LU90EncNq9vcTvvRbdx88azXoWhrySqcxl1KzICPd/+v78AfDngdilbKVmESd7F2CkbAR+d9rXQGPoMpCTrvur6xfrP7WQTSvlYSZjf+SB9Gu4ma7keiea64KdLP3u45j7m9HkVmJbAiJiAoVaDn6EBlZnFcfRa1/SFwSmCmkPJDn1f9hYsk0gV2fwmuVKJp2poyctbDJG6Wz38V2yibFjRVG3QCV9NWmdV3Fqdl5e2//f0YPv1roBXRKpzGXSqad3Twnf/wk2x5+16vQ9FKnMq26qQMLJR8rGhv4MDbB1nv/2tMSSyzPwTsfqp9lzCufAP6TiHRwfwHaobzP+ZCpkdIvTGJlbwfYeGLOoIf276X1NVNpN70kzpdTfJ0LenBvfl9qvbVo3whCFSTyeqW0nMKKYW3qGYYlY56HUVhBet1AlfTNM/J6EtI1KNZAaZyL9qpDOrbwhvhxuXCx5Qv+vldyyMFGEhJfazF33BdibvGhWojNO3ZwMAbS0wX1bR8ynYFWG1ZgcoQb/upb2Lftz6A6V99yTmtAFbhm3pDOfiqKmjdX084HKfGd4pQ8llUKrvKUqneAr0nChQl7gJnxeJY2CdfxKnvwuxoR5KCChmgBLEUzrXLyOSsRWbsJACSiIHRADKSlzCUPQb+MWgBSeyGoWV+volRMA6DczUvx89ZeD1wzdsYCk1fWNU0rSQIcu7TsOs7UBXFXZhXKQOe+BVkcgpe+PWFNzKC4N8BZ54GKaMm4obf6wg0TcszncTVePIPf5C/f/+vEB9e5dUmWkmYmkp7HcKqs/Ftuzj4HQ97HYZWTlZhOwWfMc3eh4eIJP/NbY+bIpOiz3mcRIGTWmZxT04BZPQa1mgGyUhfCN+ufRjmy6gCJPeUIuOaCWVX5fTvl1eTQx4HUATllIzQNG11Sw0ib/4RrHsfqnNT0Q4rIhCdhERs4Q0iO+H6RZj4YtFiyhdVv8vrEDRNy7PVdxanZS1cX8XRn/iA12Foa4RahRWAXrMSKa9D0MrNKkzi1qeeJpJ8c0VjiC+Cdb3AvVhLdSXoinr8+9sxfS8t2l84H1SgIqPtZKgHEY8riBJj3h6/GBx9YVXTtBLixJBr/4ikreIe96X/Acd/d/7tgb1w8mswcb248eSJ6n6/1yFoq4xSpfWxFq2+szgtJ9s+eD/bP/yA12Foa0AwUqIJjDJ28asn6T+5yqf8avm1CpO4edGwG+zCJrXErC3o+DkJ1+DfWY0hRWqt1LgLKpqX3mb8MkptL048i1BNuz09flHoSlxN00qNpOBm8RbeVkqBsUDv+IqDcO7LRYujIEy90LGmrTb6LE67bbxnwOsQtDXAShX5yvpaIMLLf/y011Fo5UQncRfkWIWv/ExfvgjhZRKYxVTZhH9XA4ZcKc7xAoOo8FX3hFkZqO6HYbFkqZFdP+N8k3QBFrYrNR6099A0TVuO9D2NWEU8Z7g7iRvZA6e/VLzjF4gMH/c6BE3T8kyfxWm3tR/Z5nUI2hqQmFx6hXgtN+f+7XXOffG412Fo5UIvMDiPCNh9hU9kSmKK5FglTvMjSCYrYReQ0bGLwDareBW4gLKHUEqhWjdB3Rbw2ajIkPv1nA0NxOuFzfA2iVwU/szaW2iaphWVE4OpqeIdz18HGG7/W7UDTpbZAmaLsfR5l5ZfRol9rEVr9XFrCzj0I+/j6E990OswtFVurfauKTRxhH/98T/n2ssXvA5FKwe6Enc+ZSCx4izwKVOjpE4fJ612Ig0HKMAaYssy2rbjazmDYrT4BwdU6nVUZT8k30Q5MVRtEqrWga8CteUx2HYQRRFP4BcyNent8YshegVPfgE1TdOWYxWnZ7dEp2DUggHL7X97+etFOW5ROHrdDE1bbbwtAdFKilKK3d/xGE7K4vjHv0g6lvQ6JG0Vcmx9slgodsri09/1e+x47z1senQPmx7dRSCSv6mydtrm1b/4GleeOc1HP/mjeRtX84BO4s4XqgNTCt4TdzZ74BpEjqLq3o3hS6Akjpo6B3YCZS2ySnaemB0OyuMqI4Vz+8qessegsQWCD4HzBsrrIthQB/Sf8jiIIkgOoXwPI3aR2mlomqZlqrK6OMepCEE8CrGh4hyvmAyd7tHyR0FBF7/NxVqsD9N/1docvqCfgz/4Hja/7yhP/eAfMnah1+uQtFUmES1sYmKtcyyHU/90jFP/dIz192/jWz/xI+6CDStw+RunuPbSBc499Qbj14YBmB6OEmks0ptrLf90EncOEbBSjWAX9zXPaFhH+vIpSM+6aGoE8XXtIuB7HWVNF+S4qnUbhhRv0ZhMKXsAoUT6pvubUayBJC6gxvqRahNYBVOHNU1bPRJxCBV+QWTl8yHv+wnU9avIN36j4McrJlXR5nUImqblmT6L0xZU3dnIxicOeh2GtgrZKX2SWCxXXzhHYnwaEWHsam7VBSLC537yE7z8x1++ncAF6HvT616V2oroJO5cNd04o8W/aCmj1/F13tUL1rGwes6SYn/BZrmb7aXbB1VVbPc6BAi2wnDpJbkLJnoeI9kMshbrWTRNK0mRbaja2qIdTlVWwI4d8MQvQKihaMctmMb9GO/4W9TeH/M6Ek3T8kyfxWmL2vSew7Qd2rL8hpqWBd0Tt3iC1WHEET79nb/Hnzz5q4xc6gfASi4/XVxESCdSOJbDvm+9f979L/zBvxHtHct7zFpxrLQ6e9Wp6PLu2Ia58M2V4YI8XxrdBzB4Pf8D50vsmvc9WgMdqHiftzEU29ArGOkOKK1ZkpqmrVXT55ARD9obdLSDESj+cfNAdb0L46Hfx/zoW5gfeglj0wf1+z0t77xeyEwvbKbbKWhLqNvYyvv/6id5+if+hEtfOOZ1ONoqIOImB7XiSEbj/O8Hfw475U5P/vIv/z273n+Ip3/1M9zz7x/h4Z9434L7xcem+MzH/ojeN66gDLVgPqXvrav80SO/wObH9vD2X/gw1e31hXwoWiEYJji6Mh7AjnqzgJX4Qzj9PfNuNzs24pv4et6Pp+rW4Ws4t2D/MDGaEJoBE8QE8YGRxHDeynscS4pdh9rtkPCq2t+AyTWWwL1l8EWMzsdw0AtkaprmPTn7cej+d9DUiQr4i3NQ2wE7UZxj5ZHa+AHMJz7ldRiaphWBTuJqSzr+J1/k8lOveh2GtgoY4QCVnc1MnO73OpQ15VYCF+Dq82e5+rw7RfjFP3yKHe+5h6Zt7UT7xnjl408TG5nE9Pu48twZpoeiAIizeNJdbIcLX36T3uNXeOBH3826w5upW9+EGdAvLWVBGegemCChBuy+S0U/rrFuP/b4KDIyN2GowpUEQ1dR8Tz3hvWH8W0yUDK/z64YrVgXLZg6MTeWtt3Qsh1ln0HMLSjnsrsYWYEpo9q7glAjAGPnvTq69wZehZZ69HODpmmlQHr+FnqA6n3Q9SCqpqagx1MVIfie30SeeQpO/11Bj5VXdsrrCDRNKxJ9pq0tKj46ybHf/ZclkziatpCqTe34KitwDJN4NM7UUJTYyBSjOoFbUuLj00wOjPPJD/0GUwMTOY8zPRTlSz/vXv0PVIZ4/+98D5se3Z2vMLVC0X1xXbVbof9k8Y+biuGMzK/4DG7egBr5at4PZ27Yg6Jn3u2iarGv+mBqfk9g6TuJ3QcEqyB5HnPn/SjfS3mPbZ7UaOGPsRgzjJISWVzNC+koyrwHsS96HYmmadptEn0TTp2BfT+EihShr/v6XXC68IfJm/qdXkegrQmCoUotN1Rq8RSePoPTFhWur2Lf973D6zC0MjSVEK682sPVVy4xeLaX2MiU1yFpCxDb4an/9jcrSuDeLTWV4OWPP5238bQC0n3SABDxqPddRe2cb43aJiq2RjDGXijI4ezzr5B6YxzbOXL7NiGM3duIjF1beuek227CPvcqYnQUJL45/IWttFpSehwJru32MGoq6nUImqZp80kKErGVD2PbyHLtpLo6Yds3r/hYxSJnP4FMXfc6DE3TikAncbUlbf/wg16HoJWZ2t0bGevxYCECLWuf/u4/4PLXT+V93NRU+fUSW5PUwgtqrTlFnm1ibDiCWneI9Lk35t5eXYea6kE5Bfz7sVNYbxzDUesQMbFHNyFDWbQOsFOIta5w8QHU3YNYXs7aELc6ey0beQ1lrvc6Ck3TtLwRceDGVeSVz8CXfha+9AvI838OF95CBvqQuxb9VUrBQ+/2KNocJIaQG1/zOgpN04pAt1PQllTd2cjGd97D5ade8zoUrUwk0mtvSkO5ErswvS3Hrg5x5vOv0bCxheYdnQU5hpYHup2Cq4gFycaGI/OSt7dYvT0EOhtQqZGCx2FdUpiNB5Abr2S9r33yBdi/D8M5sfzGmfLXQuUGMHzItAetLe6m/zZQI71IjYKSmzapadqalpoGGjPeXGwbpqbhwleRoVkzXcSB6Bkkesb9Xvlh00eQzXvdBC6gfD6kaj1MerXQZoZqNmM++Xeo+l1eR6Ktcoqivm3OSKnFUwwFeZeqlPpOpZTMfPyHLPb7X0qpryilriul4kqpUaXUG0qpX1RKNSyx3/1KqS/MbB9TSr2llPpxpXSZUT7c99PfQsd9270OQysTwbBHU5O1kpGaSvAvP/pn/POP/KnXoWhL0YmqohIMrOuXQCmM5q75G1gp7Mr9xYmkrg2nJ/sE7u0RRgzEvw5ZaX7PXwMNh5CKZiR+tjQSuAD+sNcReG/qMsrc4nUUmqZpc8jNryKp9NLbpNJuhe1zfwpf+hl44ddgaJlWRZJGLv41XHxz7u2te1cYcYEFajHf9U86gatpa0jez+CUUuuA3wdyaYL5/wAR4MvA7wJ/DVjALwFvzYx99/G+CXgGeBj4R+APgQDw28CncohBu0tlax3v+uMfZf2jJf4ippWEqbOXUaZODq11LbvW8ZG/+E9eh6EtxdSTcYDi9QYOhDBbu/FvPYhMDC+4iRRhJoO58T7k+osrGsMZvgTXTkF6HZJrJlf5kar1yPQpSJZYHz973OsISoJKxL0OQdM0ba5kH/LaHyA3ryz4+iPTcXjhfyMX/womz2U//sW/QfpmLfRpJVcQbIEFajHf8y+oWn3BTdPWkrxmWpQ79+DPgRHgj3IYolpE7hWR7xWRnxaRHxGRw8B/B9qBn7nreNXAxwEbeEREvk9EfgrYD7wIfFgp9dHcH5F2i+k3ufenPoQZ9Hsdilbi7EQaw6eL4NeySGMV/+6vf4yazkUnUGglQFWs7cWbik2lYpCOYl07hyRXvjBLLozuI8j151c+TtNMm5SRUxDalP0AvipoPAyxCyuOpSBiVxAvF1crFZZO4mqaVoKcONLzt8iJf0HSFoC7UNn1y/Di70L85srGv/bsna9jC190LQVq139EtRz1OgxtLVFglNjHWuynkO9yuR8FHgO+B5jOdmcRWWw1j7+b+Xz3ZaYPA03Ap0Tk1bvG+bmZb38w2zi0hdVubOWDn/lv1G9p9zoUrcTpRe/XttY96wlW6enIpU75Q16HUBqK9HxldOzEHhpE4otPVFpxe4Kljt+5H3pfzs9YkVl/3yrL36NAPRJpQSYX7g1cGhyo7vY6CO/pCz2appWyyVNw+SU3kfvcx5GTfwTp0ZWPO34SsSy30jcxsfLxCkTp1ylNW5PyNpdSKbUD+J/A74rIM0qpx/I1NvC+mc9v3XX7rWM8tcA+zwAx4H6lVFBElpwLoZRabOUu3Qx2lvot7Xzg73+GGy+cYejkVd74v/9WsMWRtPKldBZ3Tbt+7CKxkUkqGqq8DkVbiqlnVhSDoDC7D5O+cHz5LK1TmCyu0boDhk+6C7msmIATvf2dckJIoBuMCkhdRTmLXMM3AhBqg4oWmMrjomiFEGqH4UteR+E5MdPuXDdN07QSJdErqFcuwvTl/A3qJOHYp6GiCyZK87VAbf9ejB3f63UYmqZ5IC9JXKWUD/gkcA34b3kY7yeBSqAGOAQ8iJvA/Z93bbpt5vP5u8cQEUspdQXYBWwEzqw0Ls3lCwXofmwf3Y/twxcK8Mpv/WNexjWDfhq2dzL45pW8jKd5R/fEXdtSUwme/pW/5/2/q99cljRDtz0pBrNrH+nzGVadOvm/KKoaumHqKtj56Osn+LbvgJFX79xy9et37m45hKhzC17Ik9ptELsIU4N5iKPA0hNQ2QHjOfRTXEWU7afwXZo1TdNyoIIo1QbDxwsz/vibYJXo+UygFuOh3/E6Cm2NUkq/M/BavipxfwE4ADwoIvlooPWTQMus758CvltEhu7a7lbDssXmOdy6vXa5A4rIPQvdPlOhe3C5/deqXd/2NgbfukLPV95c8TzQJ37vP9L1tj30fPVNvv4zf0FywpuegdrKKUNX4q5lh7/vce79gSe8DkNbjqErcQuuqhHr5tWMN5c8J3FVZTPKnoTkZH4GrG6Zk8CdZ+BV6HobYp1Bze6Q5aumrJqW2dOgUtB6PzL8FlStR42d8jqq4go2IWZCV+JqmlY4IhBYjzKqwU4iVoZ90sVAmetgbInXo5UItkM8BKe+XJjxV8IMYjz8+ygz6HUkmqZ5ZMWXl5RSR3Crb39TRFa23PEMEWkVEQW0Ah/EraR9QymVbTL11hmDvlxQIIHKME/+wQ/ybU//Ovs/9mRGzVB9IT/hhioO/tB7eOIPfpDmfRs4+EPvoettewDofmwfj/yP715w3+quJirb9WJJpU4ZJXrlWiuKQ9/9CBX1lV6HoS3HzFtHJW0REptAVWXRVzSfSdxgFSochOn8Vb6q6gwey7VvgHmnE5WoEFLRVrqLmC1G0kjiNFT6QG4i6x5B/NVeR1U8hh+xr3kdhaZpq40IKtCNCu5CpYKokbdg6Dm35U4mblXgFiqBW7kbrl6F668UZvwVMh7/BMbmj3gdhqZpHlrRGdysNgrngZ/PS0SziMgA8I9KqddnjvEJYPesTW5V2i62hHD1XdtpBVLV0cDR//xB1j+6j2d/+W8YPXdjwe067t/Bu/7oP2EG7vzqbXj7/nnbdT+2j+0ffoCzn3meQGWIje86RNfb9tD1tj289Buf4eQnvjpvH2Uauj9viTB0Je6a5a8IUN2uF8MpB8rQSdyCkywvauWlZy3gC2A2tCNDp/Mz3gyzugLunhO1kL5XYd0hSBwHIwzOKijnnDwOrYeR619ZtKZYarZDVSs4CUhbqKECJRmKoWEHC3Qr0zRNy52vBZW05rdAqNmDJE8uXwwkgpI6d0GzvFNQcRBOfbEAY+eH8eBvozZ8k9dhaGucLtXy3krP4CqBrTNfJxZZzOjjSqmP4y549uO5HEREriqlTgP7lVKNIjI8c9c53J65W4E5C5PNJJg3ABaQx07n2lJaD27iQ5/9WS5+7hWO/e4/M9V7Z4XQyvZ6Hvz5fzcngbuUh3/1O7nnh99LpLVuTn+9oz/xAbZ9832MXepj4uogtRtaqe5qYuxiH1//mb/I90PScqDbKaxd6ViK4596nv0ffcDrULTl6IXNgIwmkOREBMx1e0lfuHtN1iX2yUclrgKzYyfSu9h6rTkO27ENhp7JbGMrhsRiKAOUPYZYjRDa7yZ1y9nka6i2B6Dv+YXvr2qE6MzPvWJT8eIqAMec1K0UNE3LH18LarLf7Tl+t/QU+CtB7loY09eMMhtBppFkDyq0FYaOFSC2Kkg1w5nSTeACqO3foxeP1jRtxUncJPCni9x3ELdP7nO4ydaVtlpon/k8+y3lV4FvB94J/O1d2z8MVADPiEg+VvPQMmSYBlu/6V42PHGQV3//Xzj9qWdw0hZP/N4PULuhZfkBZiilqGybX9HnCwVo3NlF486uObfXbmjl2V/8K+yUteLHoK2M4dcLJq1lX/r5v6W6rZaNb9vldSjaUnQlbsEYG45gD/VnlcAFMCIRmFrJkQVzw1Hkel66W82hgiFIZbHD4BvQ/SAk3kAlLiDpIajaDYmTeY+tmETFINwKFS0w8hZqdscumfX+I1ne70UUlboXmaZpeaNUHaQXWSwy1HT7PhXcgNgToHyo8R5wzs/c3gL28ML7r0SoC/qGIPpy/sfOp2AdmCGvo9C0VUsp1Qn8Cm5usQHoA/4J+GURGctyrIeAHwfuB+qBUeAE8Dsi8oWVxrqiM7iZRcz+w0L3KaV+CTeJ+5ci8iezbvcDm4C0iFyadft2YFxE+u8axwB+FWgGXrjrB/gZ4H8BH1VK/b6IvDqzTwj4tZlt/s9KHqOWO384wH3/5cMc+uH3khiboqqzsaDHC1SGaL93O9efKe8TxNXAH8qwr5W2KokjfP4nP8H3ffHndW/cUqYrcWfkN1VlbDhC+twbOe3r842s6NjmxvuQ64tUia6QEbQgm/XRxEYsud16QNnjiFNRiNCKzAd1nTB1Dpq3QKADmeqHVBSSA7e3UqFa70JcKbMCsa6U1Vp0mqaVMh+Mn1j87ugZVN0+tyJ3+Lj71GNWgDPryuGs59e8mjYher0wY+eTGYap61DVtfy2mlYgClCqtC7x5uOtilJqE/ACbs7xn4GzwBHgx4B3KqUeEJGM3qQrpX4ON385DHwONxnciJsbfQTwNombow7gDHAV6J51+zuB31BKPQNcAkaAFuBtuAub9QMfmz2QiESVUh/DTeZ+XSn1Kdws9/uBbTO3f7qQD0Zbnj8Swh8pzpXDDW/fr5O4JcDUlbhrXmx0ipf/+Ms8+tMf8DoUbRFKL2w2Iz+ZKhEwN95L+lxubQzMli7U2Gs5h2OsP1SwBC4AyRwWSLMtROT29E+FlHd1Z9UesCZheqYGIdGHJPrcr33MqVSW6Teh435IDUKwDcauoKYXXi+g5Bh+UOVdSaxpWulQwc0QfWnxDaxJd3Gz2exYYYMCqDwAp75c+OPkQ6wX+2+2YbzjbzA26vfWmpZn/xs3gfujIvL7t25USv0W8P8Avw78wHKDKKW+BTeB+zTwQRGZvOv+vFTQlFJf4qeBP8YtXf4g8FPAh3CTsr8M7BKReSt0iMg/4SZ6n5nZ/keANPATwEdFpKzPF7TsbH7vEfwVQa/DWPN0T1wN4OwXXvc6BG0phq7EdeXnbYK54XDOCVwAf3NNzv15jY697mJihSQZNEg1AmDOeg3ufQHC2+4MYZTxBb7IVpg4fieBm4nJE271WPQ4VNZm9JsmDfuQhv1IsLCzl5bkpMBo9u74mqatLslspnEUScVWuJD/1kMFZQRQIQ9fGzRtFVJKbQSeAHqAP7zr7l8EpoHvVEpFlhnHwO0SEAO+7e4ELoCIpPMRc8HKcETkl4BfWuD2HhaoMxGRk8AP53is54F357Kvtrr4K4J0PbKHS18o4xWhNW2ViN4cxUqm8QV1srAklXNCrQTZg70r2t9I5LYGq9G8BUbPZJZkXQlnmfed6x8BNXOt3bcbLj8LThpFGKnY7/bzix8vbIyFlOgFZeb+c45fRXU8itz8+tw+urNIRQekZ34PQn7E34WaupZjwCtgx1HUIuRQfa1pmnaLCCq0Z36VrdeMEFy/DKkVNaEvOrX3R1DtD3kdhrbGlVIVaJ48NvP5SyIyZ4VhEZlUSj2Pm+S9F/jKEuPcD2zA7QYwppR6D7AbSACviEjerhrpuZTaqtO8p1sncT2mV07VbjF8OlFYsnRPXAAEH2rdYZRhIgpwHLDcNgAgGKaDc2PpBcoEhTM1nnMMqrIOps5n3UpB1bZDYhCsRM7Hzli4DWJ9i98/fh2at0L6PNinoHsdmE2IjIM1CPHCh1hQ9hRENru9cHMkk69Cx73IwEmUNb8yTcVuIs1HQU1D/CrUbgYvkriAmuhDqjw5tKZpq4EKoGguvQQuQHgXTH3R6yiyE6jF2PJtXkehaaVqu1JqwelwInLPMvvemjJ2fpH7L+AmcbeydBL38MznAeB1YM/sO2faxn5YRIaWiWdZOomrrTrd7zjAy7/5WRzLWX5jrSB0ElcDqGqrwzBX4fXa1UJX4gIglkP6whILrviD+OvbkInFE5hS24UT7MIRPzhgWkOowbMZx+BrbkMlFnvvuIiKOpTpwPRodvvlRGB6mYVfJi65H1seAesMyDRY0+59q+ElQchPtfPkSWjZg9x8YcEfixp8Gane5H4Tv4goAyUevJ+ZOA01+8Apxu+XpmmrjfJvhuEXvA5jPuWDa0tfmC054RbMj7yOCutWCppWADUznycWuf/W7bXLjHOrD9UPAFeAtwMvA+uB3wSeBP4ed3GzFdFn19qqU93ZyMO/8p1eh7Gm6Z64GkBNZ73XIWhLMfR1XNcynUrTSaSi9c7WC2wuwWYmj59j+s2TTJ84yWTPJJJFpbMRyfLfwh/GqK6D6M3s9suRat0MiQwLBy49Dypc2IC8UHsYpi/mZ6zJE9D5MFK5fpENZn7J0mPQ8TbPFoMzLP0crmlrjgj421CBTWBU5zaGrxVGjuU3rnyJ7IWpJWaVlCBj74/oBK5WMgwlJfUx46yI3LPQRx4e8q3ExnJvx25VxyjcituviMiUiJwCPgDcAN6mlLpvpQHpJK62Km374P1s/eYV/31oOdJJXA3Q1fAlTpk6iQugWP731LpyCtW5H7v1Xiamt5CofwQR91zXqekmnZ671oGkUgtnexdhOGML3i5GAKvucVK++xGzYmZjE7N1E4xcyHj8FalpxqzNovWGkwazpXDxFIMIVO+HmsNu8rb2CEzkeaHG6Buomo13DhmsR+p2IZ2Pgt+atd2rqPa35ffYGdNrA+edCNAELLk+iqZ5QgXWo6QZNXIGhl9DTfSijI2o4C5UcCf4WkAMVKAbFdyNCuxCBXfB7PV+VAUqaUF+1u/JL389XCnDRXdDDV5HoGmr2a1K25pF7q++a7vF3Hozf1lE3px9h4jEgVs9XI5kHeFd9Bmctmod/KH3cOFfX0ZsnUgqNp3E1QCGzt3EsWzdF7dUGaurJ64TqCPBIcRxs6viOOA4+KpCBKe+tOhiUplKX70EnQdwYpPETp3G2XQf9nSc9Nle4PScbf2tbahMK1eVQk3Nb6Ug4VZSiS7s0+77QH+XH2zB7NqP3HxlRY8lY0rhC9+EkWwXXSvz361wJ4wv2Fotv2YWixMUVPjBvgbR+T1wxZkAw49abnG5fDN0rUd+hVAXeiB9CXY8iRiXvA5I08BsQPnaINYLw2/OvU8sGL+T9Lz97n5ybpsVpQJQuwd8YZi+CbE8zVrIKwXxKohl2brIa7VboXrj8ttpmparW4sdbF3k/i0zn5d78rg1zvgi999K8q54uppO4mqrVk1XE1UdDUSvrbh3tJYt3RNXA9KxFKM9QzRubl1+Y634VlslrhEkcfrMvJtTgOx+gtD0F1f21JROwpWXqOmoh8btTLxxdvFCRdtGqttQ0Zkpm8EAgY4GUpfnT+E0mzpR6bmVQVKzi8SNFDI1K3mqFObGe5HrRewxKA7YqVx2zHsoRRVsg1jhFxQTlUC1PeT+LUaXWJA1dgkatyCBVpgegPGzqHz0512GY8ag8IdZPSQMxG6/B1JOFygLUb0zG9RAesrd1JjVCkVMUPoHrRWRCqGCGyE5DWNvASu8oCApGCvCha+ViByE02W0mJkZxHj0T1GbPoRS+oKaVhoUpbfMQR7i+drM5yeUUobInYUIlFJVwAO4y/O+tMw4zwAWsEUpFRCRu99A75753LPSgPUzgraqbXjigNchrE1ZTCPWNM0jq+2kwFk82Rg/eYpU7RPzbhczDIu1U1gkyS2To8iVl6g9uGXB+wHS/b0QaQIgtGMddYeGidQ/j1FbNf8wtbVzvncaHyR+cRSZmttiwejYW9wELgAK/PNjXpaM5z2S4irSDJ6pc8j08aUTuLckrkP0mFut27yj4KEBIIniHKdMKOlwE7OyQG9KaUedOouKbUQ53aiRJjj5Vbg+gLI3oAYqUKeevzPWcBA13ozqiaNOnwf0dGktD4wIqMCSm6jgZtTkOAy+ABNvUvYX3TLhr4dLL3odRUbUhm/GeOdnMD/0Esbmb9EJXE0rMBG5BHwJ6AZ++K67fxm3/9EnRGQaQCnlV0ptV0ptumucYeDTuG0ZfmH2fUqpd+AubDYBPLXSmFdZGY6mzbXxiYO8+Sdf8jqMNUd0Eleb4Vi6uqhkrbYTA7GWvtuZf61e2XFkkevZyh9E7MXHdC4fI7L9INNnF2k1MD2M2VhLuPY4JNyEbPU9wvhzAUjOSjjPtJ8RZWLXPkrqxPF5Qxnd+3AGj+NJYxJ/JaSjmW8fqAFrqLxnZCQHvY5gafGriBFEOcmCHkapOoSRgh6jXChZB6dfBDuBCtYhWzeBGgf8IH5U36jbHuPSl+/s1LDHreg+e27+gAN3Vy3GCxi9tiaoACpuQ2ocqraCL+I+D4u4C5mqGBCCkePgrLULNJ2QLPE2CvW7MLZ/D2rnf0D5VuHioJpW2n4IeAH4PaXU48AZ4CjwKG4bhZ+dtW3HzP1XcRO/s/3EzH4/q5R6GHgFWI+7sJkNfExk5ZUOOomrrWo1G/Q0bi+Io5O4mmt6KArbO7wOQ1uAMsu8byngVG3H8nXh2Gomh3tq0W1jJ89i7HsCf/QZ1KwTWFn0rdDyz2O++FWMigqcWGzefUZ7N9WtL8DknYpaNX6c4IZHSZ69jgqEMds2YIQjSLKetLMd6/Tx+eN0bCPdc57QFg+S7sFKiGW5infdFlDXCxNPsQSaIHbV6yiWVrMVxk4U9BAqHkf8Ut4J+ZWSZlTfJAx/7c5tyTHU+UtQ1Qkjp2Gh1hat98HwsWUvLt2ixirBCUFlHRLUvXK15fjArMR9nRKUrxHiU3cSldGTXgZXevpPL7+Nh9S6JzGe+BTKX+F1KJq2LEOtvvN8EbmklDoE/ArwTuDdQB/we8Avi8joUvvPGmdQKXUU+DncxO29wCTweeB/iMhyLRkyopO42qoWqAxRu6GF8SsDXoeytqy+53YtR/Gxaa9D0BZjlP9bAMvXwdRrGZ6c2TZTr5/GqN5MaFMHAescxnQPIoskqDKoVJboCDXbDzD2+mVudeUKb6ilbr8ikP7XOQncW4LrQjjWfuyb57GvnUKmWhGrCYnOrxJSTd1YA/1gpT2pnDY3bIeR/ux2qqhefptSVw5/G0GQig5U7Oby2+Zq8CXU+gcRu8QT2gWkxg0YXiBZnhxzPxbS/hD0P5tdo77emVYptVvdGh9NW4gIKrwbxs9BqmfWHYXv4V22Ao0wddbrKBalNn/E7X1rLt0GQ9O0whKR68D3ZLBdD0u8ws8kfH9i5qMgyuBdqqblTinFgR94N1/7r3/udShryxou2tHmGjxzg02P7ebGq5fwhwOsO7wJNbPiuYhw8SsnuPyNU9z7H5+gplP3BCwqw5PJ+Xlj1R4kPZn9fk50nNgb48SAwKZHCcjClS9i224yz1m6ks6+8gY19xxl4rVzND3RSsR4CqbT8zeMdBHr30Dq9bnJWmd04SSpqmnGnoohielbAS372PLJ6N6DGvlG9jv6xF3WoVxV74XRvBRKFFasB4IR4n3vxKxIo4wUpnkRgywrp5ehnOCquy6rnHUwBcQnYHoQfCFQJkQaoKYSMXpAOe6CY6OLtEtZiK8CGnbCQJYJ3DkEJeshBlgpCITANMARCNqIWrsJ9TVBRdwK23T/nQp4EVRwM6gQJIZh8Pmlx9DmEtu9CCpF6nWeBbXz+zEe/B1Umb8f0zStuHQSV1v1trzvCCc+8RWGT+mr1MWiW+Jqt7z8x1/m2J99Bcdy3zw37+hg/f3b8IUCXHvpPDdfc0+QJ26M8pE/v7uXvFZQqrxPGlKJRpLnVzZFMnXpAqriHoz2bTMnzArxhUmlwtiWYJgKf0gwrQlk9DoSi0KwApJz2yek0z4qHzxAhD+evyZWoAYCDURPVOOM3cgssFAVYoSRydkr2BfviVU1b8BIHCenaRV2mfdatspo9oA9TfriVVK3FsEzffi3vgN/QwyfcQylFl/sL2OWhTfNmAtEauHcK5Be4N95DLgBKlgLgSqIDYOdYa/acDOEamE4g0XqljJ+wf1YSP0OaFvZ8FppUsFdEL0AyZnnfH+924/cVwmpEZi8u4eylrH0GHTcAzeOeR3JHOrgT2Mc/iXUWm5Xo5UfJahSa6dQavEUgU7iaqueMgx2fMtDPHvqr70ORdPWpFsJXIDBMzcZPDN/+u+VZ8+QnIwTrNKLORSNUd7JNjN06yuh+r27MSMGySuTxF7pyWqcdNxg6OWpWbcstohXJRjV4AhmuIVAQxVm0H0blTozRFPrEOm9D+FPPztnr5R9lMRbgzjjmZUNiy+AUduBdePi3DuKeKJn1gJja3ShpdglqFhf+j1xZ4TuWUf8GzNJXNsifeYEaUBVbabynlEMybIdxt18vlXVIklFKxdO4M6WHHc/MlWzBawoLNASJa8SE4DumVmWVAAVWA/4ARtJnHcTDyqICmyB4VdAZl10SY+6H1p+1FRChtdQi8G47//F2PdjXoehaVqZKu8zOE3L0Ob3HqFhxzqvw1g7dCmuli0R3vy0niJYVOXQ93MJSjn4Wmto+tEdVGx6nWDrq4S25rkfq2lgRm4lTZQ7pRmw4yniN0aYujTA1KUBarY0IVNjTB4bI+V7dM4Q6b7JeQlco7YOVRGZdzhBYbTtnJ/AdffKxyNalurYtrIFs4zB/AXjlWD5lDva4wuXycrkKFZy58oPkOO1A5EqSG+AdDdMb4Hh9YjM/50vumh+203QfAjiNyBRhLUXYn1AfeGPkw9ioGQTytmD6g+D5NjvUwQV3IAKbgFfMyq0CxXYhfLvQDnNKGlBBbeW7vtOEVRoJyqWhqFjMPQCDL2MMrpQod2oBDD03NwErpZ/UyegabvXUYAyMB75Y53A1TRtRcr7DE7TMhSoDPGBT/80f/++X2bi6io4wdS0Vehr/+MfGTrfxyP/5ZuJNFZ5Hc6qp0y/1yFkTcwwgffejzLHCMgAlfYYyKzn9Bze1Sw5Lcx2sKenMSoqUIbCSSQRa35vWuPWjzKdZOrFG4T2fYCw/x9RCtIj4/O2D3XXwNglpG4vdjThPjalcKglde74AkEaqNRw9g8uB2ZNGIZy3LlpP9h5TpJ5okQTQgtZIlRr1MTX2o5QiRDGlJMolUVv5UAdjuT2y6Cu+5Her829bfoA0jV1e/qwOM2AgTJWWC2cKTFh4kr+xmt/EPqfK+I6AIK6dAnaD7qV+aaC2DSk4lDX6LZy8QkoG1EJwINFfUWh7M1gA+mz4ExCdRuKdoSezMdREVSgG9IxGHrDvQmABaqdJ0GF2sBXBdYUhFrA70dSPd4lR1XA7WM7PQCDL8y/f+LN4se01lU2wZCHC5wZAYx3/BXGhm/yLgZNWyFF6VWBrsWGJDqJq60ZZsDH+sf28daff9nrUFa9Ui2I0ErfyX94ifZ96znw7Q97Hcrq5wt6HUH2TFDOW/P7zs5QBXlXo3BiS7cWcGw1p21o4s2TsPcDhGrewvD7ceJ3EgmBjZugz+3Np/qevf1GTNoeZurV4wsfwDRBirRaWHwFc05rq8Aq8ySuCNix5bcrEb6mOOregyTfOAfJuW0C0udOkD4HbouQKGbHUSo2n8ZgPKOxpW0P2LklPaVTwUjtnLYE0vcGquEdUHkBsVvg+ElU5wFoyekQiN2CGvFDdRgJXsig40gVOHlK6rU9CAPFTODOSIzA5QXex95Vn6AMP2x/EFHXixMXoKQL0mFIXwR75M4dVh84m8CMgMTdxbtkcvGfnb8NNT0BE1nMzkn0wa1F/RK9bjxV2xEzCc5YTo8nVyq4G8behIkFkread+KLtUoqAn8lxpN/j9H5mHcxaJq2apRaIl3TCmrHRx4iVFfpdRhrgM7iarlp2NLK7g/d63UYa4Mvx+mtHlKLZW9v3e/LYfXpPKxY7aTnj5F46yTjLwRQzTuRWVXP/vDE/AHa72Pq1TOLH8BK41TtWXGcy6pphqme3PZtvxesAvcELYbaIxBdQTuJIjPDJwk2PUvl48uvPmbfvExi+GhmA1dtQnJM4AIoYwT2d6F2vX3O7XLqqxDbAuduQnoa6Ts5U5E7c7+YMLkZbjTB+CZE7mT6xGmAq3WQ2Iw4tXBhALn8HHL8y6ixDcvHZDXk/HjmD6bcRQtLlZOGK6eLdlVdjTVD0oLEy3MTuLdMPYuK2ah4JWo6jjJ3zd/G34byb0ONXrydiF2RybOo6E1UaPfKx8qEgPJvd9sjWJn1QNeKaCyPVfjZCNZjvvcpncDVNC1vdCWutqbUbmjhyT/8If7lO/8/xF75ibu2CJ3D1XLUvq8bf6j8kotlqRx74lrpJe9WZg5PPnlIcqRjFgvWNdsW6XOvYbZ2oySFYVrI8Om527TuY/K1KyxX0mc5rSyfpsudat2E6bsByZz2hoqEO4W6nNUehtGXvI4iK0pl9w+WPnMKeXCJdfJqd+HURMBe+aJKSkXB3zz3RrGRt2ZVkibG4fhZ2H4UAklU7yTS+/SdMQ4+DoFL7teDIaTv+dsFl3OGvfAM6uBD4O+56w4fyloPYyPQ/6UVP6bbep+Fpn0wWsLT4uMDoDYxr0y3EKqrILlEFb5SYM1qmzE+jGo4Chhgx90K6ZEz5P0NpJOCwedRjfe7pUu2DXYS/D4keZk5T1oqiPJvRpxhsO5qRSGy9OKSvhaUE4aR8nr+WFO674VzeXwOyESkA/M9n0fV7yjucTWtgIyl2pBpRVGGZ3CatjKtBzfR/dg+rnz5Da9D0TTtLtdfuUg6kdKJ3CJQ5ZjEdZa5+GZkf3FOpZdulZCRZS4K2v094PNRec8WmDW7WTVuJXpiZPnHBSQvXCbQVY2y8j8l1Fi3A8M+C8kcq8c67gP7Un6DKhYRqD0EVrTsErizKWMI36b9WJeWqOgGjMY2lFqiZUZqAhwTZTaBgNj9oHJr5SFOK7z5teU3TEXnJnZnm3LctbzsDuTqi0sczEaOv4ja+TASHgWVhIkW1PgliH4xp/iX5S/93u2qP4q0VoFMg8qxeEECqGgd+EMQ8LnXm6yZk3hDIf5Rd+EyK8vexiMv5xZP1gSG57dmUCoAkQ0QbkTsAZTRAsPPo/x1ULMLVBwcC1QVjL4GwUYINECwEnEmUKrWHchOwtgbxWt5o+Um8TpsfwLOPZ2XGTjLqt6E+d4voKq7C38sTdPWlDI8g9O0ldv4znu4/twprLheDbYQ9PU5LVfj14b5xm/8C2//+Q8X9DiDFwf411/4DGM3Rtn0wFYe+N630byltaDHLDmqTDsqKRNk4ZJPlUMS17p5EV9VK9Zk7n1QHWe5Zz2hcm87XH/2zk31m5i6YkMqs9chSUyTrjhKIJr/vu6GfwQSuU7/VRCOl1YVrr8DVAhS14Clq7epO1LWydtblLIIbz9DLLUZ+/rFhTfyBwnvWOb33Axh0AQ3X3YX1GvYiwRsHHsEpMJtk5ABEeDC4KJ/q5mSa8dRgXuQntPLJ17sJHJi9t/HSei6F+EKKt+/oMqE6RX0jy4AteXtbuL94p1KZkZOokZwV19sO4zUpoGZHrFSjUo2wvQ4VNUhgUGQ6NyKUxFUrBVi/VCtIOUDGtw3eokpmOhB1W8B/1kWbVZeqiQFU+dg6tzMPIiZv5v02IJJX+I3bvcMX4sL6awK8ddh81Yw1sG5Aq6R0nQQ893/jAo3L7+tpmlalnQSV1uTNr37EK//n88zdrHMF2ApVXplM20FTnzmRQ5+x8PUbyjcm99P/oePM3TJnWI6fGWIl//qeXa9cy9Hvu1+1h/aQKgqXLBjl4zlVwEqUT4Wzxjm8NxjW9Rub2f42CKJr4yGcBBlohZJWIX37YL+Z+7c0HYPUycHkUR2U+GVyn+m1Fi/GyZzTGIqA7reBvbp5bctBlGgtkHPzM861AgNQRZN5FbtgvESng6fJWVME94zzNRAGFLzK8yDu3fg4ymEGuL9R3DGJ3AmRvF1byDUcsxd8GzyovsB0PoQtjmJumLBwAWo7YatGQbjtMJYHpLjiTHk5NPLbzeLWnffTJZNIH7TbR3j5PlvR2yIXoOG3TB2Mr9j56JmPURfAUB1PYhce27u/U4abr6AuglE2t2nytis57z+mR9Z1XqkqwMYBDFQE43Q/zx0bQPrVp/am+4nP9AIcK60LuJo2lJSw8AwbHoULmUwUyBLquNRjCf/HhUo/Up9TctFuZ49rCY6iautSWI7pKcTXoexiumndy13qakEX/rFT/PRT/xIwY7x6I88wT/+9KdJJ+4kd0499RannnoLgJr2OroOrufxH30nrTvaCxaHp8q6Enex+3K7gCRXjlG1dS+T57NbyV0FA1RvbEEZBrH4LirqUqjBs3O2MRubMMeP3TlW+0NMHTtLts+TwZ178I1/Me9Pr0aFQK5FyF1vA6PwCVxxgjhWB2JVkh6swR5PEN4oGLVxlJkG5QPHgKlhGJmVLE8Mg/8opBdY0KbmcH6SjCXGMG8SOvogiWfnt4yyhiaJW0+SvngZid9ZvC199gT26BZCW0P4jFfu9Nl1LFS8DumbSaL6w8BMxXa6G+npRVU1gumDqgCE7iQFlRPyZlaO4YfhZwt3jcofgZotMHEB0tOUyvsd1bwBojMVtskTqC2PgG2AqQAFyQQy3gPRGzC9xKJhk1dR50eheQ+M9UBFCNbvgXRPwR+DphWVfQ5a90F//i7kqU0fxnjsz1Dmgl3yNU3T8kIncbU1yfCZvP+TP8nfve+XdUuFgtCVuNrKXHvxHCOX+mnYVJgWBwc/dITXP/MKF587v+D9E71jnOgd4/SXTvCtv/Od7H3fwYLE4SmzTN8CqKXizvG5RwQVWGLZMEOhDAN/XQ1OKo014SayanZuIHnmzglgqhdCW44SrDRQ45dQU4MEu5pg8CKYAayao8SPnSOjxI9ShHbvxqd6UKkRjMRTec8XqeYNMJxlX0ozCOsfBDMB6VMUOomVnjxE7NmbSGwQGARlUPlAAHPy9O184pJUaIEbDYj15DfQDKnwTrefqC+IxI8X5Bj+6rdINXXiDN+cMzPGvnEJe5EOAM7gdWKDgL+N4J7thFpO4iQqkTOzphxPDiDSCEyj+idh5Dwy4j6Hqu77oRVEKoAY+EbADIBd5PdYNetRybPLb5crEUgOuheMWo8u83yUH077AZzO/fhGe1Gp6Zm2EgKmH/x+sIYh+vrsIO/63qXCQMN+MBshHoVABfh8yOQI9B9HrX8QAoBlupXL648g6auoYC2YmyA1BpWbEHvS/RlYK1/8TtM8IymozF9Bj+p+H8bjf1me6w1omlZW9LOMtmZVdTay+zse4/jHn/I6lFUnUh2k++im298rxe3cyq3TyVun/TLz9ezPi5u7l4gwcK6PxETuvSy10iSOcPxTz/P4z34o72M7jsPnfumziyZwZ7NTNp/+sU9S017H+ns25D0WT6klkpalbIm4VaYL91Q1ouo7QIFjhBi+KRjJWqBn3qa1B3dgD/ehfH6skSEkmaByz07ECGLdnF/hmbhwkYQbDJHdDyHHX6Ri39tIDY9inTi3ZFi3FkA3quup2BjAjBb29cmsMyHbPEzXAyAnwaLgLTlsax3TT18Ee9aCQeIg0pT5IM4Cvy/Vu2Hco8VN0w4MzVQAt+6D5NW8H0IZUSJHo4jUEHuhAWdsIIv4EiRfPw4H9uGPfmHufbFBOF8FwRqk/7W59xkmIn44G0PVdyLNo1DZBhP5f3xLUVXNUNAkrg1VGyCShqFjFLIPrLPuCOkD78QOuH2IlVGH78qLSEU7dss+JNKMSk1jXjmT+aWU2GXgsvv1zJ+VAmiphsSbMDunlZi5b3LWooWJfve2hqPIpE7iamUunVmP7+Wozd+K8eif6gSutuopwMhx1luhlMZ8mOLSzzTamrbu4V06iVsAY29cKNqxmja1k2itpbI2TDplMzUyRbimAiuRZuiC7nlczmLD0YKMe/bpU7zw588sv+EMO23zyY/9Cf/5az9LuKaiIDF5wijTJC5LxJ3BG0vpPsLo8SsEA5VcP9bHrXLOYJNNtUCwpZFQayOGqUBB6vxJxJrbUzV5IYMWAiJMnzhN5MDbmBy0sKf9pB0fKhBA+fwovw/l86FMA5TCGh7FGh+hYudmaiPPYkbzc3K5GKNrd24LepmTRel/KY5B7NU6sMfm3Zfqj+DPtGX25CDMbnFduRsml06mF1Rq4vaXyvIjtzL3ORDHwE7tIXnBJLgtDmJi+q+gjOmZISfwrd9DKpsk7ozk8bfw7252E7ezjV1acHu58jwMNsNUPzLRAwt0sCiKQpxb+ishPeV+bSehd2bRq/YHYeC5xffLkdOwmfQD3zaTvL3zPCCVraT3fYxUtQOkcBPIYYL+D6CiNzCvr6S/Z4Y/OH8dEqqE6Btr88xZ0+6idv8gxgO/hSrXFlWappUdncTV1rSa9S1eh6Ct0OQlt7fb7NP8+Ezutr2rgUBbI6l4GtNvYvoMlG2BwJXXilsdpGWv+8EdOe+biqf4X/f+IjXtdex8cg/3fddDROorAZjoG896vKmhSb72+1/i3T/3zTnHVHLKtWJkiRMlETerICiI1IE/iLItJDrkbtB9iNHjV8C25610nxwao/K+zajRXqzLp+YlbnMR2raDxJlTSCqzBcyCXeuoD/4zyl4ioWL6UU3rwDBQpg9M0/3aMME0wFDux0yCRc20xARBnBDKToCyYPyt7B+QEQC7OBfHUiP3Y984Pu92/5YdhJtezjxZN3oSuu+B1DWoPgRT58G+a/aGUQ3+LkicKPyCf7MXvxt+FdX+NiT+JqiAO703A45TjzW+i9SZPpxRtw/t7e4QSmHUbsCorkWSSez+HCuORZDIVtTdSdxFt3dgqj+3Y+WB6noAZU8goy/mc1So7oT4ADTuBl+le5vhcxcKs1PQcABG8lPVLYaJfd/HSLWFmZ28vSVVm2ahRfqS9WDWHlhhEjdTAskBncDVNEDd83MYh34OVbYLxWqaVo7K9AxO0/Ij0lxD484uhk9f8zoUrQBifSPE+uafCNUd2OJBNFo2tj65n90fPJrz/oFwgG/6tW/hX37hH3j6N/+NY3/7Ej/42R+jtqMew8ytWuL5P/sGR7/zQRrWN+YcVykp32l/8ytxrUQto2/tZ/p8Aju4k/R4FGckBrjJU3/zNpRSpF6/fGcnZ/406KRU4h/PxxRhoWL3PhKnj2e1V6g1jHKWzk76d6yHiVkLsdhkXBmr6u9FBlaQ5KrdyNxLZoVhp7qJP7PIYjOGwpDh7AYcm4TINjj7b24P0679kJpVKupfDz1fh5aj7sJYfj8kT+S8UN6izDoYv6uSdeAVVLgVpq5A+31I/MzSYxiVKKeTxCtvQdqaf78IztggzliGydclpMcMAisepbBU+2FITsLICyDpPOcWBWIj0HykIBW3tzh1G3B2PonV1oDDOG6VbXZsYyrvcd0W7oRIF0gSSQ5DSrew0laR6k53wb8sGQ/8Jsae/1SAgDSttKkSa6ewFpXrGZym5U3L/o06ibvGOKKvmJeye/79IzzyX785o8oGEeGFP3+Gxg1NbLxvC/6Q//Z9e993kJ1P7uXaa1d48S+f5fO/+k98+x99Lz3HFp4OvBw7bfOV33mKj/z2d+S0f8kp03YKvf+2g/TYBhzLQSwHSdkke4eQ9OJT5NODQ2DMTd5LIj5vu75Xr9N+z2F8PcdWFGPFrj1ZJ3ABDJ89P38TqUVV1bkL0RkGWCtos7DSaqGKRoqRxE0PrYNFErW+2hx6kE6cdz8AxIKEAaG9YF8DowtkEowgDMxa5K1xP/hvks+ep8rfBXJXnwE77iZwAXpfmqnMPcGczLxZjfJ3Q2ICrBQqfZnqxxuJfm0ckiuvGF9M+uYAgZblu9V7prID4hdRkfUQL9DPwYq57ROaD7vVt4EqGHoZnJUv2Ca+INbjP066ahr3Zzye81i+ZHj5jXIauBIiXYg1DtMXCl+prmnF1r4zuySuMjEe/ROMrd9WuJg0TdOWoJO42pq36d2HOPU3X/c6DK2I4pP5W41Wyy9lKB7+z+/DF/QvvzFw9dhl/vUX/wGAb/71b+He73pozv2+gI/O/eu53zD4q//4p3zld57izX+ev2p3pt747DEe//F3ro5qXDOzn3GpiV0cJdmbfY/PuytvUzdvUL9jF6Nnbt6+TSybmy9fp/XIgwR6nsspX+Hv7CJxJodWBUDAuH7nG6Uwd96DMf0y2HdiZDqnoWfGXGHPvlCqIP1ws2kLa/oHVh7DwCuzvrkEgVqQu5KAw8eh4yGwT3N76c2V5K9UGIaWe+4R6P06ygiCGXR/MOD++8vci82KG1Q/eoDoV0YXrsjNA5mags1dMFma7YdUfTtq+EVIDhX4SAKDsy7sVG9wq7SnenIbzQhgH/ku0p2NyExP7pUI9kbxXfrkisdZkDUFwy+gavYigca8LQSlaSUj/jrsfAAm03D9laW3NUMY7/hrjO73Fic2TdO0Begkrrbm1W7QfXHXEhGI5tATVSsOcYTP/sAf877f/h4ijVXLbj85dGfxs1NPvcWhb70XX9DPeO8YJz73Bq/8zQuMXR+lpq2WSG0FX/mdp3Ds3CvrxHErf9/3Sx/MeYySYZbnWwCVYzuMhVQYEyzUPKH/lYs07H+AyMBLKCe7jKEvEs4px2hURPDHj4ECc+sBDLMXot/IYaRCqsz7iLbVTuzFGiofPI9S7k9OFslJ+rfswGd/Pu8xkBpf+Pabz0LNZgjUQKgKrBM5H0KFtsHo1zPb2Em6H8uNOfUG1Y/vxppqIXG6D2d0Ytl9siWh9agSTeISu778NoUQvQLVG2/n9pcjkWac9n1Iw3qkrgkrYiNMQx4SuKY0Yl766xWPsyTlR2RSJ3C11Wv6HBjA1t3gb4GkwKWvz+2d76/CfNdnUe0PexWlppUEo1Rn56whehlFbc0L1VUSbqz2OgytSAK1lSQmdD+3Unb1hXP89bf+Fr1v9hAfn+bayxdIxxeeurr73fs58u33E6gIQDrN3/7HP+FTP/hn/MOPf4LzX3yDsGFTbaZx+gZIX++j++D6Fcd34nP5WcTGc0Z5VuIqM39tINL9iy/ENHL8EtH6w0gWFcv+1naSF5bpaboYBUZrN/4drRjx52Dq8vL7FFs6f60FbrHGNmAPXMeO70ZEkRq7j+RrCydLzUoPLjxMXISh12DkPPhacxsj2A19hempqqZO4ucrVB4pzN9z4mL+E8N5E/duITWil6F+z5KbiC9M6j0/S/xd30Jy31ZSnUHSkehMAjcffAROfgGVx5YfC5I0aqoXVXUPBNoKeyxN81KyH6behPRbsOMdd24PNWK+/8s6gatpWkkozzIcTcsjZRh0HN3Gxc+vrAeiVh7CLXUwXJzV1bXcjfUM8skP/sbt73d982He+5vfPW87pRRP/NR7SAyMcv2ZU8uOa/pW3s8vOjBBcipBsDK04rG8pMq2Enf5f8PKPRsIrwsw+uxN7MnFF/wRe+ma2fFTPZgHjlDZ+3wGkQm+uhrswewXSAEwwmF8LREYW/73OCc1O5G+ZaaKLkfyX32hTDcBNfWla6iKLiQ6N4FrdnTjjA4j8SlUcOV9SHMW64XUBHQcgVR27TKUUbN4eXGe2MlGIMsF3zIZNxqFmrwPu2Kq9SAqusLf55VFsOg94q/A2fFurM07sY1CVa+aBIfiGOOL9wLPKycJIy+ifJVIRQckbi6/j6aVs+nXYNMjMHAJ8z2fQ9Vt9zoiTdM0QCdxNQ2A2o05VtdoZceMFGjxD62gTv3TMULVFbTsWkf9plZadnbe7ptb2VDFwW+5N6MkrsrD2uWGaWAGVsHLZ5n2xFXG8pOIWt4xSHqyGjMSXjKJ6zZjZcl1m0aOXybSrFCLbBTetg3DEJTPR+xM7gnYys21YBWo+rZ2DzLaA/YKk6ABX1574tpWO4k3Z/qZWmkkOjfhFdy/h1DF0zjdbSQGtmP6hgvSkzdj1jTcfAUaQ1n1xxWJ5uGZZ5ljFGp9s1QK/BFI56t6dC7V9QAycBKSGVb8Gj5U51EYLkxl80KcjU8iLRtufy+BEE5tNU7QQVkfwJiOo6bGwDBxahuxKmK4KxQWJoHrS9bhP/1ZjKncLhitiDWFCuxFEjeza2ataWVIVTVg3PtxVFWX16FoWsnQT/veWwVnoZq2coEqndhbKxzdxqdsvfaJO/1B/91f/xhd9269/f2mR3djBnzYqWWq3ZyVTzsNVYXwrYYkrlGmj8FY/t1jarye1GiYVP/5Zbet6mpk8uoSFYwibv9gOz0vZxHq3oAzeB1rKkpg254VPcGEjTfAWnmPzIXI+E1IRZffcClV3eBcyEs8AHZ6PdPPmjijC0+JDx3cTSj4zyBgykUiTRe9TeDeUtkJDJFVFjdZ+Gn/voorBRtbag+ihp7N/8BmEMZeRoUroPl+pP84pBdpd1S7CVXdAvGrqOHi9Yq27/sBkl0B5v7ypbmdoPWDXQvUBmfuG8/TkQ18yVqUlSIdid8+vs9qJPDK7xa+hcJSJi+gqg/B5AWo2oxEX/MuFk0rlOrdGAd+DxVcBQvZapq2qpTpGZym5VdNt17cbK1ITC+/WIxW2h79bx+k696tiAhjPUPUdNTjDweobqtj7OrSq5Q76ZWXqzVual7xGCWhxJO4IuCoEI4K4KggooKIMrEDEZzGDjB8iOEDwwBlznxtIobJlRcDhNdDcuNhQCEYCMr9EJBZCThbBfBVdYCAiOA4gsx8OLaD2A6TLQ5VV5/F2XiIYPwmPjuGE5/GvukmNc36JuJnc+yFO8Owo2AXoF93oA6iK6wIDNZDcwicsbyEJALx43U4oxcX3cZfcaE0krZ3S4xCRRXIEhXed1GhbUBh2/goJ0FWieUsJC5GCdf5wMlzSwg7CfX3o4aegZFnwG9A7TqoWA9pC5keRFW2oFQaGTmGGi5S64AZztb3kewK41bVFkMQgwrMJPjO/DPGzIJyvspOnPajGL2vYEx5tJjbbMkh92PmaxVshqpNOpmrrR51RzHv+QuUX6+Zomla6SntMzhNKxLdTmFtEIFo37jXYWgrsP6+rRz67kdxbId//fE/5+wXXifSWMXGR3Yx2T++7P52Mg9J3A3ll8SV5BSkE0g6Duk4kk6AlfA0pjOJ7+LqGwnEFsRxbidNHctGZpKnCxuf+WzNfBTe+GUf2448xNTp66zbFsLum5tIMZvbYWhliVLVshmsF1c0xsID52EhOLFXnMAVgdToAzhRA+vmCHb/4glcd4f4io5XMIkhcO4DtXyVN+C26hhf5rHmQ6IX/7b7SJ+7lveh7eFhZPN9BanGlb4TEAiinKRbXTp91f1gJiU95v7sij19Uxr3ktp3gEK1RLhbYCKA7+QnUM78hLExdQPjvAetEzKVHEQq9PtobXVQTY9hHPhjlKlnaWra3ZQSDFVa01pVicVTDDqJq2lAVUcDVZ2NTN7I/6IgWukINVYz0V+Yvn5a4YVqI7z7N74LwzTofbOHs194HYDp4UlOfOYldj/QhTk1AYbhtjmNVHH61V7SiTuJPiu28krszQ9uXX6jEhP79T2eJ23vZqVN4sOFaR+Qb50H1jFx4iRdO03ouzrnPqO6lsS5sys+hr+6D6YL0NhU8lDOusKqbTvdRez1Wuzrb2a0vYrUYNhvFKqwdOX6X4T1+yGVQVVksBPGTxY8JADlK9zb+sSVScK1FWDluVo8NQmt9yMIWBakb6Km85+IzpazfhdOwRYlm0tRg/+tPyjKsQrCX4OKXoTa/cjkca+j0bScqbYPYOz9bZRRnmsGaJq2NugkrqbhrnCvrX6hlnroL8B0Za0o9n7LfVS31QFQ3V7nlmaJe/V14/52rJ6rxKNzk/RdAUVFdxO+hlps5aN3cGXTYmvaatn6th0rGsMTRh6qMfPMMMvjynnz3m5SJ98isq4FY+SNeff7O7pJn3xr1i0CPh/KMFCBIMpQKH8AZZru7+xMX2YnnUbSacS2QQTLacKn+gGFqAAoH2AgRjVCPeJUgNy1qJsomFWBoFQalA23+mWqNMrwY7DCCsqmXUDuU9kTFzqwr5/IeHujsrr0F86IpiEcBFnmwlDyOjTdC0MvFTykcNtFzMgO4q/kv+2APTCEve4+zLGv5H1s6XsLQjUweROq1nmSu3eatiG1naj4OPaW+0k3C0uueJgXAUDhnyxWu4Zl+Coh0Ai+CjBDYPjvVPKLQPQ0pGctQFe1DXyVSPwShFogUQKtHjQtR6rruzF2/ipKLb94qqZpmpd0ElfTZuz5rsd44b//nddhaAVkhILLb6TlRX1HDYGQ71aOFWUoDKXA/c9NbBnKTdQo5d5muhW0xsztSikwAAHHFuo6am6PX9lUQ2VLDVP941Q3VRIaHyAZXaDKWoTYzUG4OQhA+4Z2VrI009t/4l1UNlatYASP+AKQKq0q9HKY/lSzsRXfzQvIIlkls6aSyopLVB4wkOQkpOJguUk9te4g0Vevun1dFyiwvZ1WV+5H6vo6kjcq79pKgImZjxz5w0Q25b47AEF/zv1pRSB9PrtKZRUpg2msY6cgdD/IWfDVgT2+8HZKgT9UnJgSfQQCfaiHHif27BnyXcocf/UskXvvRw29kNV+IoAZWLBVAADpKfC5r88q0gTRwi3Sthhn2yOkOm6dFhVn0TBfugrf1Vcw+rL7eeZduBPCzcjkCbB6F+9SY1agau6H4Zcgsh5JXL7T5yKpL5Br5Utt+nGMLT+pi3o0LQOq4Bc4teXoJK6mzdj17Y9y+m+/wfiVAa9D0QrEsjxczXmN6Wr3M3m2J+f9F6qBSl5dd/vrxEQMQ2xqWqrY0OFn8kJmq7/bK2in0Lq9nYMfPpLz/l5Spr/k3nIZRqlFNFdVVzOR6T4k4bahiLRWQe/cbWp2NSPXn19wf7n+Or7mbViDGbbpUQV6S7bSdgoVreBcznl3pbhdMZ+pUPtwaS5qdre+FyDUBInLsG4PWDcX3i7Lx79SfvkKFQ89TuzZlbf5uNv0671U7t4EE5eW3E6CdajazWAGYLIPxnuQ+m1uRfro6TvbCVDZAYlRN+WcmkZq9yGOjfLXwuQZVKoIbQ3sNMU8LTKlEf/pf8LwIGF9W/0RxJmE6YswNbh842EnhkRfhZrNkMxge00rA8aOX8Ho/j6vw9A0TcuYTuJq2gzDNNj+4Qd56Tf+wetQtAKJjetKkeLJ/8nd2BtnufbKBbqObOHkp5+hOTmA2A6TWZTW2vEEub70Pflf34vpK722BBkxA15HMI9hlO5FlcqOBqrTgzhTUwAo06QiObdPZ3jLOri5zBR5J/PHKPlYgGwhVgqRHPMtVeuhpR7s3uW3XYRjt4CT+SJlgR278Nn/mvPxii4xBBUdiydwwZ1RUGT+wAkIVkAeFnOcI5XG8W3EYG4SV8KNqLpbrWYE+t9Eel+bu+/oBSRUh2o6gCRGUOFGVDqFDJ8GFFLVBb5qZHIUJq4i4qCadqKKsLiYcf4Z6HoPhV4s0XQaMeJx/K//tvctnw0fTF3K/skh3lOQcDStqJSJsee3MTo+5HUkmqZpWdFJXE2bZd/3PUFVZyNf/rH/63UoWp6JwMTNla2urnlr6tINLvzFF+j9WgtDX3oBsbNPAlrTCeDuKevLa9/dyfbHd2W9X8kowR5vZokmcSs7GqhV49jRO4uutRzqxrh+p6+sv6mWCvMC4ixTLupkU4FZwH8jI4PerbOFm6BlNxjXl03gijMzDd64M76V3ETqWitW7xDOyABIhv/WPj+h+teLNZs9f4K1wOKzAcSeLH7CLjlI9WP3Ev23a+R6US2wfQv+6hRCALF92HGb1JkLxF69QOTwEVTAj0wPo8INMHx60ar0ORJjSL/7WizjN2bdITB5A5m8MWdzGTqNtHSjYj05PYZMGSMXCb51nuTenUAhFoE08Mcq8b/2u6gS+AUXgOhZpPNJGD8HDTsQZaMmeiExjIpnNrtF08qSEcI48H8xmt/udSSaVnYMz69AajqJq2l32fDEAVrv2Uz/axe9DkXLo4qWOiZuTi6/oZYXhZplOfbC64ytoH2gGcptxeHDH72vvHulGaX3cm8YpTdfvrq7hcjENezUnd6dke42QteevZ0HU6EA1Z0JZDiDi0K+LBKzizXezQcVyjyJ27gHqsaA0xmt65QcOELytXOYzW2ocBBJ21iXzwHZtybyrduA4TyV9X6eM5b5d/boIoqafInKJ97G1DeuQTKbxbOEisM7UENfg8Ttts0YgH//DsTfBKlBZODszNYr6TSegWAzFDiJC2Bcfh5z+2HsQL6TuIrgcBLfmb/M87i5k83vx7Gvg30OaiKQOuPeHgJCYYyWd0Eqier9qreBalq++aox7/kLVP1RryPRNE3LSemd1Wmax5RSbHj7fp3EXWUCjTWgk7hrnjJzm7K+4x278xxJ5kQEccRd7G25ZNFizNJ7uTdUYactZ8tfXUFVapBAXRX+yrC72Fg0RnVrGHW7k4JQf6ABufF6RmOqEvi5q6pGcDKpqlOw6TFwzpLNlHKJCZKIYV1bukfq8oc3CLbHyq8KF2CqF5r3gpmE5Ll5d6tCtcrIgBn7BjX3VeKE9jL98hjOWHTZfUL7ZhK4Cxk7g+JMnqNcTnEWulPJKL4Lx5Fde3AYz8uYBg0ELjyP2X8sL+PlgwCiBJyZxS6duxe9FJzkGTCrMAJ1EKxFTXrYu1fT8iXQhHn4r1DV3r2n0zRNWynvzy40rQTt+MhD1G/v5MX//neMXsi9F6BWOoxQ6fUE1YrPTiTJ9qUvUldBfDhKbHAccQRxHOyUjZO2sC0HcRz3dtvBmfkQy8axHaxkmtjIFNPDUWLDkyQn4ziWjWPZ2JaDk7ax09acz7fGcL+2cWYtyOcL+vGFA/hDM5/DAXwh97M/7McfDt6+318RZNsWCEaCiLkNI5zCjF8riam8AKYqnUpcf3UFrQc2Yr36IvU7uglemyn39gGzWuHW3bcZufFcRmOqxg3Y1+5OjizOMcKYbXtxet/KXyW7P0Rwk6ASGfyb+yrAOU3WWdQ8zasL7tmF3/nnvIxVdMkRuP41d8GnMGBWgTP7oqHHVfzWFMbUC1QePUr0y1OwRCsao7YOM/7aovd7wbn2IkbX2yB5GRW7XtBjmSf/BTU1ROLowTyMFiR46mmM0ZN5GCuPArVIumf57exJnIYaMGsw2IiazH2BQ03Lu/B6jJ2/DEYIZYbACIMZAjOETLyJ88b337X9OszDf4uKbPAmXk1bBRRgqNJamLiM50nmTCdxNW0B/kiIzvt28J4/+3H+9bt/m/FLfV6HpK2QZZXWC87qV5ovqU7Kwuc3sNKZJ6oaO2v5qw/8vwWMKnNWMo2VTGfcsbH5neD03KqaC4O5E39jA8HmGnwhhRV3SEcTGD4TFfBh+A0Mv8LwCaZpYxhpDJVAyTSGM4lhjWOkx1Cy8sWSVIkkcRt3dVFRX4GavpV0W7jaufLAJoypc6iGNjD9KMME0+dWR5umO2XeMGZ6iShsVYtz+kTGcUgqTeryecyW7aiqWvdPyJqC/oUTQCKgatogHUdsC5WamrdNYPt2zMQXMgvAmgbfLrCuZhwzQL6KTP3VF6E0fiVyN3ERwvfD0Blo2gN+BQgisZJ4RlRTL1P99m1Y8U6UT3CmIf7yrcphwb9hA4HqAZhYvlq32JxrLwKgGnZDqBrlCyDKhvQoRvRUXo9l7X4UmFjRGAa1+KZSiC+Un6DySNY9BNb8ivFF2eM4NVUYaisqer5wgWnaopSboLVnLZIZv4rc+BSS6MfY9KMYLU/euS9x13lb5VbMw3+DCrUVJ1xN07QC0klcTVtCRVMN9/zQe/jKf/4Tr0PRVig+EfM6hJIQqgpS1VBBOBIgVOHn/LEby++0ynRva+TiycGMt6+oDDE/PVYeEmYVc2rQbZv0wCDpgcwf/x0m0AA0oIJBzEgEIxzCDAcwgm4C2PQLhikow8IwLJSkEQyUMhBRKGWRsOKoeA9GCSRx67d1Eqn203/iBlv3VxHZCap/fquE8KZWKlLPgZV5r0wTqD+0jambYVK9Q8tuLzM/DnugB3tWO9lA9w5kYP70daPrKKnzbwLg694NA6/Oj8HIslfpvGnVGewSW/m/o697Cz77iysepyT0z1Rx33zmzm3rH4ZQCySy7xOcb2r6HH7OQQrwg/HI40w/c4HIPc0w9OJKc5cF5xgpOLAVlQYJpYB1MHEYznwOIzac9XhS3YZsuh8iEZicQCoqkeDK4xTSGENnMQfn/116TaUT2V9ntSdxKoMY9e+CiWuosfwmzjVtQaEOzAN/BFU7UGYYsaaRnj/Bufz7YMeRgaegYgOq+Ym5+xmzLp7UHMA89AlUoL64sWuaphWITuJq2jKadq/HDPiwU6XVv1HLnAhM3MxgEaJVZt2uFhorARFiBKgIQPTNszAyAiNQsW97wY4tma5GXwZKbdpQNqIxP40FGFeSSaxkhgtl3eW5qsf47OfaOfTQRoy6FBWRAOGgQcAEUwkGgunYmFYSIx6H2DQSnUJlsspWFiJt9VTWBhi+Os66A+1U9n4B5cxPSPobqqiquQjT2S92JMPniERCmFsPED9/beltnYUfn/hr7nxtBMAwMBq6SfffvH27MzWOIfMXFBSyLJM1msDJLhGmKlZeihvsmC7PXriZWP8omKokErgL8dlfI3z/O+FGaS4oJxU1qEfeAwaImUbsa8AlxM/tym27EtS978L46ieXHssMQNsumB5Ftt6PE3EQuw+YuahVCzCKOV2BXZN7CyZ/rBr/a39YEtXXC5FAGHKZTCFJt1duRRgj3opKZNJrW9NyZ2z4flTtndYmyhdBbf4xVNd3QeIm+OvACLizVvxViJNCBr8CU+fBCGJs/gnU+u9F+So8fBSatrrk+/24lj2dxNW0ZdSsb+btv/0xvvjD/8frULQchZtrmOjNvsKs3DXWmERP3Jn6ePcE2YKeYC7Rc9FryUR2F2TE8r5iNFfDw3ZBkrgrcfyS+/OPx2yGTmWWBFBGFZs21eMPmIQiAfx+AwScmUXfmpvDSDKFaVuQTKAcGycWw0kkceIJJGXNSXAqn0FtZy3JJNR21FGn+hZM4ALU7QlB3/KVtIuyEoRCp0jVd2KPLl7mqNTCb4vTV07j33g/9vgwzkgv2BZM9szZxhm+gW+hil3VBJzNPNbhvplEVhbS+Xgz793CXwUVakQZCegtnUWt5hEHf0MKMe/BGb4K09lXsxaKoODxd+HIzKJ5SzwVi92D88B3IoaB+G2UY6JSDk7Ixkj5IDqONNThOJeBSuDGouNJ8jrINshh8UVfqoHAa7+T9X7F4rTci7PScmsnDi0HkKtP6ZN5rWCM3b+Jse6jC96nAnUQqJt/h2Mhg19G1ezBfOx1lL+2sEFqmqZ5QCdxNS0D6x/dS1VnI5M3SufkRstcsLEW1mAS15leuoVE9K1zbDuynfOvXieXwtlIbZiW7joilT7SltBzapDEpFudKU7pJnGzXTTKTq68/6tX+npibO/wOoo7LBWg55z7PCqS+cm/OMLU2DSJ6MLVsMEHNnL9lZ5F9g7hC/qI1EeoqA4TjAQIBAzGDB81kRRN4ShBZxLf9gM4U1Gc6SjK9GEN9bm/K5KHWRiJKNXbQ4y9sHjyZNG/GStF+vz8Fg+zqVAlzmjP/AszKsu/w7FzUNOS8RUex24kdfZidse4i6qoxmCVLpiUHIOxa1Dqia7hN1HTfZhBP054MzJ8yZMwBAU+P1hp1OF3QXsFYl/JeH/b1zPzxcxPfKZa1zaBOsDJcEaOM43hBHHMzP/2TWnA13sR8+rfZ7yPJyKNzL+kmz0ndQbV/STcfAGVLr0eylp5Uw0PLZrAXXI/XwXm3t8qQESapmmlQydxNS0DyjCo39Kuk7hlygjnocFdmQlVBZm+2rv0RiJYZ86wa0sjZnMzSoThkRQ3ziw97behs5aOGovpa/1waYhbqeJO06BidwtmpIL4jdKdZukPZlf1V85J3NhkGrOuAXtsxOtQAOiv2YozU/Fqp7OrcDbNpf7dls46WkmLib4JJvruJFG376un3d+LPzxManKY1F37hA/cizU8TGwyhBNzkHQKX0Mjvho/pjNG2qrHCAg+YwKVmkAkhUpNI/Hh2xcKZHaLg77XqTz4MFOvL5IgyyKpfTejtgk1scDrk5NlxV2oMeMEbjq5mcTxCiS+sgSsv3sdpnN8RWOUrPp7wFq6jYbnavbAzTfcr500hroMW45g3zgP8fGihCCtW1CRamR3EziTYFQi9gjY3jxvqfB2HDPzC7+hK9cwbyzdyqFUqKFTqNZNebmsIMmzqLpdMPhiHkbTtBmRzRg7f83rKDRNW0Q5t5lbLXQSV9MydPjH3s/Vr59Y0Ym25g27fGfD56yqoQIZyewEON47DL1uAigI7LxvJ6dfnJt4qO+oYWosRiDoozUYY/ra6LxxxHaYvto37/ayV+Z/81LTDCWSxD0VbwPcxfSsRXrALsYXXOotS+ZjmT7F2x+rR10+Q/2WCuibn/wMbd9D7HV3QaKK+o3Yw+5FidTE6Kxkby8qHCGg5v5sVagdFYogyTgYJr7WdW7VsePgrw9T98h6rGnBSdjYCQsnlsZJpjHCPmwM1OzmsOFqVKgSGVvmgswiVLZJsFQUzG1gL73wnWNVMvXWJtT153OK65bgnt2EIv+CCEhkP0r5ECcGKJyJMKTiYBgQqsKoDIFKoqZeQJXDCUTtLhh6BdbdD8kVtOMoJGUiibsuX9hJGHoOMwg0b8Mei0O0MBflBFCPfgsSueb+BdszlbL2eEGOlzFJA5n1xPWl6ssmgQsgLXuQVBYtVpYTqESCjZAaQ8kafLOl5VdkC+Z9/4LyV3sdiaZpWsnSSVxNy1DD9nU89IvfxrO/9Ndeh6JlKR6Nex1C0UWqQpBj3i558jR7HtzJieeuAopgZYC66E3aWuswK3xMXy3RhESGUonsTjStMq7EBUj6qvB7HcSM4eidBKUzq9dwbWcdkfZaEok0pmmgEmkGzsy9IGD6V943VSl418MhUmfeRICkfz1GdzOG4WBcegmlINC9mfi503N3WoRYae7+4UoihiTutDJJX3KrYf2b9uBLvY6auuzu4p/5qHK3syr8TBOCYBijugHl82PduIgihG/jEWR6ElVZ5fYtVQbK50esFJJOunG4KbG5wRjh7H5AGbSOcOwgo68cIt3XR+jupHM2AiFCVV9BwntxRgzkxtJtGW79tphbH4XYV7Nui1JQItDyEIjj/hOIA5NXAYFS7aldswtJAUNvLr7NxDnMiiak7hBipcBJIwPnYZH+0VkxTNTDH8aJ9Kx8rHxSQSTQCCz9vsGXbsB3443ySuBiQJ5bHTn2BaivRAX3Q3QENfpGXsfX1hZVd1gncDVN05ahk7ialoX1j+3TSdwyFO0b9zqEoonUhdnw/7P33wGSZPtdJ/o5EZG+Kst7X9XeTLvpnpkef7030pUuAiStQBIggdA+BOjBSrCYh/btIhCChxOLVrBiEfJXV/fq2vGuu6e9Le+9S58Z5rw/srrLpSubVd3nI9WdzogT5/wiMzIy83t+5/s7WoMeXSSyhX5i1+9w6lQT87aP8FwMwpCYLtBPcI8zMxEuuK3b5yI6tb/9/kIxF1XFDgKwNBeTU8uetrYlkVLSeqGDG5cGMHtXTw48dbGLubvjpGLpTMHtEHE/9vEaUneXRYa5q92P/l13/gKu0ADm1ORqoUNo2Ts0U0iXyFncR7h9uDoPY/ddQh7xZnUrECTBTCLNJHZk4dF2GZrFDGWekTEaqyh7LgUyhbAc0EtBpsBcAG8T0l2LoCktMjoWmHFkKgLJECRmWWuG7XR8FDsawXDPILTMYk+47yUSt2+nYz5xankp/gbRa+qQvnrsvptgFj7RZj/4AK3zVTTzDUSuSle7hTCg5jxMvJlxt5y9izAEe8IXV/dB+RnkTDeM5hBvV5KYRiSml6/bygBUnMfufm9jY/sr0RtbQXoh0Q+OCaEJnJKNdbPTiMBRUv7s16ORqsR99TcRqS0WBysG3gocObwjXctkD9IDWuunYOJ9ROrx+L6g2F1E8HixQ1AoFDkQyD23GupJLLCpRFyFYgMEasto//hpBr59rdihKApEGDrJ8JORiVtWW0KTP0785p38jQsg0jeKC6jclt72Bp6qMuIPUhRq/Nl1uoWpK935G+5hZmbsgkRc4XIhdAM0AUIgdB2h6+lMVCHS2wGh6QjdQOhaeqn70n4hBAgQQiCFln68ZAorNI0prZrFSwuPxkskUwQP13PlrcwZmDfe6aW8tpSuCx3EZyPIHC+ZGclc8GwlZ5+rRdzNXiDMcgzcugsnuibTPF/Kp5RZLyej7QjEprD7Li21zZ4FJ5yNF1/U/C5EZOX7fYU1ROQBggfrxwHQgYAAdy3R8EssfrCIE4kgv5M+3nfyZaqe/f6q46SjEZt+gfAby0uxU1FR4KJziSitQC8pR6/2onsEwlnAvl+gkLgGp+8SND+Dpl9DOLkLOG4bEnCVgu4GzQWuMvDWQGQIJt/JflxqESqOQ/j+7sSZCXc5lBxHTl6HwTe21pcVhek30Fou4AxfJePFX9aICFQhw1Pg2GgVTQiPD2bWjD1XAo0NW4tnm5GR6xieF7Bcq0Va3anGmOhF7/0vhdpG7ymc2gtLRc121vLIMe+h1ZxBjr62+Sx9xROLaPhisUNQKBSKPY8ScRWKDTD0+k1ST4ggqNg/VDQGSUZStB2qJHp9ewTcxxWjqQEeFPYj1hv0EurbnBfpXmKsP8bhpvztAocPkrh7I287yeZyCsuBhtoLhCPpe+jM+CLxWG6rioWpMFem0pnTz1xozdrOSuTup/NIObXTt7NKCkYwQImxQHJi/est80k2mg5rvCBFsAJXfRP2wJos1VyC8JIX7EYQWo4s4Xy4Kljof5rwpfWF1uI37xM/cBFv1fsIYePYQWZeO0Gqb7Xgnurvwd3VDnMDGQaQuA6eQqQWcOZGwJyC+Sn0uqOIia0XQnJGbiCrD6IHxxFmbg/fTeOuSHvbxsbS9giplVn540CB3qLuip2ILj/eevB1IMcvw9zr29q1CH+A3rz0nvQ2gNAhNQOaFxZuQWwgPVmgA5ExMi4NWehBWAeQxsYnMHYOiZaKPrJJMVKVGKPX9pVtQibEQjeypA7snX+uHacPrfEV5PjryidXsSHk4g1EzcvFDkOhUCj2NErEVSg2wN3ffYux94qYTaPYMNKycQcCpKLJYoeyI5RU+ql3RfAcqoTELmWk7WNmCnZSkHQcqmbqxuBOhrMrxMImenkl9sL6YnQrSUxOpUXGHSzk5nIti46OLaluKCNQ5mOif31xsbXYXk/WjL7OBwABAABJREFUfULPLmbWNpdwxBjCynIP8DbUUHe4lOSNS9l6zx2Ypi1XT3R7cHcdxx6+sV7AhdwetVYY2KAXoLaFnECZypUYzOwfDOA98SLBU5PMv16KOTKQsZ3tbURn7T6J++hpnP5L6wR/R/rYujHG0igzvVjJOoz6ICKR21N34wjwN2a1SdgQu52Q6G8FdyNy9D2QIzs3TmRo9X83gRb3YZfuJREXpFGGK5pAmxtAH/i/931GqUTDaX8emdy976+O7EO0vghDbyPk/vaVV+wesv/fIatfQIjt+pRQKBTbzRbSBxTbhBJxFYoN0Hj+kLJS2IcEGyqY6dmZ6trFRXLwUCmh21Ok5va3b+tuoHvd3L8xWVDbo891MnVlu0Wh4iHLayGPiGtNzxA4eozkg9s7FofPu/qrX//tdOZry6E64tEkM6MLWY8dH10gkGWfJ5hZHDVcGs+0x9CcACUNZWguHaFraJpAaAKvH/zVMXRnkcAzB5dqg8m0v5aUmCkN6S6B1qeRjgNSIh0HadlgW0hH4rLvI4SJ6+Ap5OwAdu/7Wc9B6tlFWmHNg14Jdv7iYo+O0Tcu4kpvM47ewuKtEqK3ct8XE7cekLgFkN3/M9HTQ6CiFJJLMyQCPIefwu7PIopvd6Gv8CRWqgSj/Qwitk1FlTQ3VD0Nk29vS3dy9m5Oa+VtI3gUHC9y4jLQtwsDbh2RMB8V99sLaK5OjA/+ZbHD2BKy8hjM3UnX2BM6svMzuyrgPoojNYBsPoHQ6xDzA4jFAjPXFU8scvYN5NBvIdp+otihKBQKxZ5FibgKxQZoOH+o2CEoNoGv3F/sEHYAyekXWghdVz+KCsXX3ow1mrlA1EraTjYxfXX9EvP9TNIIPlwdnBMrvLMZcT5PZtFx+MEkh8+15RRxZY4M4Vg0U6aX5BOvBtGTITS3F23kxtJWHpXDsrtaCJb9CeH+RjCtFUem0QHR+SyL97K/z0pOt2EQxRm4nLXNQ0SO/AUhQPhKkCuKmuXF2Fi2kul/in/+Xz5Nudem2RPC76snhg8dhxORDzbU10NkMoGsO4EYehcMF56uQ9gDV7K2t/puorW2IqKbz95cRzKC1T2AfugFtOhbGz9eSgg0pz1ujcCSz+32CLgAmBHInki+dYLHwQQ5tjmP4aKylWzybUYYteiD2TLy9wYy2AVlHTheA3ChJWIQnQAkJMM4jaeQ5gBaxeeRkWkorcUxi/g9wZpHWvNIP4iKTyDmh5SYq8iJ0/NriIpnEMFjxQ5FoVAo9iRKxFUoNkDloSbcQT+pkFq2vp/YoM6x53F5DE6crVEC7gaJGzmWsi/RdrKJeP8Y0nm8Kp2G4q6CipslR0bwHzxIqm9nirnV1JVx+GRpOuEVEJrAth2kBK9Hp+NwHbqhr7Z0EAIhoKGpHHetb1lhXSqaBuD1u2g60bwk9AqkdDhYZ2Lev4bRUI8ZD68rwOWqqqSh/W00J4/VStYqvBL/8acQi5dwkgVWqs+Tjik8XmQm79Cs3W1MAPvuhy/z9T9bW50+PeA//uGTdEVubqi/h6Rmw5QePYWc7sUezJ0NK7wlaZF0u7U7x8S+dw3Z+hLCu4CI3Ui7gwgf+E8h0YAUQsaQ8YF0ET/fcRCliNRNiIyk/3YCOwmeRkhu3btXCjfCU5kusuauRi6Ow26It8KA6iOIYF06W9xMgKYjp+9AYmHz3cb3jpWCkEFEdAftJzaBbH4VZu8iG88jJm8ia47hWPchld5vayxnMpf6IJUuZuhY98HnAjP3CozdRCYfQFkTBD8JUx8iktP5D1I8eaSmsd/7IvpLbyG8dcWORqFQrESAyPq9uEjsnbngXUOJuArFBtB0jYZzBxj8fv7iP4q9g5NIFTuEbURy4lwtoZvrq84rctPzILfQ1ny0nsTgOHaq8OXs+4XZGacgERfAcXZu3Xc0BOHuzJYW+abGPJVewt2jGfet1T2bTzZRGh7FfbCTyL0+3FWrC0sJj4fGc2MY5pKdgKYDmV93kaGMm1FZjasiSOreVTydASQGUvcgdQ+6SwfdzaNvlUJb6l8nZfkQ3lcxrDvo1vrnQegbm3GyIymshouIxBiaHMhZNw3gRk8AyJyN/u8/qOCXT5VTYi5sKAYAc2QQGfQiI/kFI2mllsTsnfEZdYY+BECUHUGUVuFMD7DkCYGoOYBY6EO0XMQZfge4Cr4K9NJdKGBYcnDTIq50VUDgKCz0AgI5sxtCo0DUnYaSChAWxHrBHIDQwOpWlWXgOwepBHLsCtiJjQ0TnQHKtinmreHYPTjNH0Eb+V7xYmh8AdCQAT8IDZkaQjSfQabuQ5UbrA3YIuxBL1ppjqYn8RrOwtglRKp4IrNs+UT63pyKQiqcnhhMTKcz8ueuP7r3S80LTuJJ1AmKh5MC/XFcRadQKBRbR4m4CsUGaXz2sBJx9xmpmQKz5PYwbp+LxkM1lImYEnA3gb+tgdkPs1c1azneiDk2hZXYez96t4PRvgiHmgprm+jtwdfWhjmy/UXdtC0snXbswmb+y5vKqSzVSA1Ok5pYyvRaOawQNL7kxmMu38c1jwsnmS0jV676t//4U5h9dzEX0wLwxEgz5nS6MJvm81Huyy8IVrxwKKOIu1FS3WM4nCd1bxq97hUCxx0Mo5fwg5NYE+P4z7Xi9b+LxlJ8rux+tCMDc/xqyTn+bsc7eOz4BiMR2P52tPnMIvsqzASUH4aFuxscY2PIxRHk4mqxU7jTrspyoR98VRCfhfg8sqIMYe3s54QcfgNR0wXRgcKP0f2I4GmYugaLbyzvcJdDamF7A3yI0BAdr4A5ColuyGe3bi6CmfaBFvX14OtEjt9ZWuJfAOERcKpA2xuTZ5ZvEaPxBbSxTdhybBJp+CHYgazqwkndB+SjTFsAmXq87H2AtEdv/REQZRCbhcQMIry9Ps4SoPQA+KohPAil7WAlYO46NL6C4wyDtXSve7hUw+MCFqDlHABCL0WaE2hWFUy+9WgViWJnEZUXEa49ZJatUCgUewhVXE6h2CDtHz1d7BAUGyQ2OY/hLcQRdO8QKPdx5tk6Dp1v5qkXWmkx5tH7HhDp3VtLPfcLVrAy677OMy0kB8cxo3mW1e9jYmELDp6HrrPQdS6dXZcVgfDtzI+nfJmiuckv4roDHoJeAXJ1lqcViaF3HAWg9uVmAtZ3V8flynF/WLJ2MKpq8HV0kLp3FZlazjbU3MvHSqfA7NKsDg0bX6L28Ah7cpTQ98ZZvH4Ac6AXmYgRffseyeT5R231PF/77t2a5Kr/woZjAIg+GFvKOC4gZlf9psbYMtbSezw8jihvW97u69yFwSW4Cz9vWfY0mB7k6BtgrlFSfTXbHNsSugfReRHCH0CiAEF+LakZWPwAUWojDnwUgq35j0nM4bo/has3hasnget+GGGVbHzsbcPCKkni1J3P33SbcDo+il1q4qTuUch97nFBmmM4qbs4xhROqYFseAlpZCtfueZYLW0yLdGQwUPIiuOr95d24LScwymxcPQJnHIPjj6O45nHaX0aR/aBk2OyypoBawaZ7AcnjuOxcdo/hdP6DLLsyKbPWVEYouVHih2CQqHIgAA0IffU35M4saYycRWKDRJsrqb6eCszt7exKItiRxECyhormO3buh/hbtFxrIbQzTsA7B3HwP1L/+B6o1Eh4NhznUxc3hn/173GwhwkugcAKOlswWg8AA/zipbEQyklwXpBebAHaqszWAlIxmaOE5tNgnwoN6zJTVopREqZ9qkVAiSUJzYvUOT1fxXQdriG6VuD+EoaV+1yEknQDMrPd1HGf1t/rJFL3HyYfXsHc2F8/bD68lcpaZpIoSNk9ozXR8FmGim5waXoGXqyJ9dkAsvlcxN5wvJ64CNH7xP7UAcr3zmsGTcURhw6jhzNv1LFiaWKkkUgk5Hl50tfdkmWIdIZqDtk8fBonInLCL8P8mQ6y/KLMPZG9gb6zlRJEx3Pw+LmCtytwo7D4vsIjwYdryL7v5+7/eztVQ+N+Qc4xz+JXTqz9Vg2g0xhlfsxuIA2uQ3PR66hXEHUpzwgUzgMQU0twtWIkCXpz42J99OZ+0JH+oIgI0iZBHMG4TmcfpwaBlLQcg6hBRDSj+OMgpWlkKm5ie+C5jiS9P3fCRjpIm3okIzA+JtPpIiwY5QcQdR/rthRKBQKxZ5FibgKxSYoaahUIu4+w18eyOIEuTdxyRQbXdCsyIyvsYbxmwtrtkqOXWh/YgRcANuznOEU6cue0e3zVULkGpA5JywR62Tx7ubuf5626g21d3kNmg9U4/a4KKkI4DvdmdacASdpMnd35JFofPi5TiaXXk8nQ0asKPVTVfLbGX9si0wFx9xevIcOInWdyLUPs8aouVd8lXIccHshmVuUkWTO/JW1R6HcypCyLHj4agjhIAdWCEu5snd1A7f38qOHDaW5/cH/2c9qeKevEZONOdtlw0wFCvpiaU8MoJfuvGi6Fmkll1//FUK7nL4HLc+Dcxdh7qBwaCfA2wLR/uwxlp3NLeACxNZPJmwVceAj2yPgrsKByCVE57PIvvcpOMvUiqENXMc+3gxakTJTnRhWEPTSL6L3/NG2dStL2kE3wLFw6o8iU/2QUitslpGPfHMBqCoDlqw5kquzw2VyjSWLNYtkdudzmaWFTD54NI7W9mkY/MZOj/rEoHX+bObPZIVCoVAASsRVKDbFzJ211b0Vex3DtR++EEqqWyqoaSoldOdesYN5bJDVNcDqH38HL7QzcXV7/ff2OvGUVtCHvnSAjdXXKhitwLehEHD2pU6mbg6R6BsnAfiONXHv6uos06ajjWhzCzQeqH4k4ALINf65enkFA5dnkRd+hK6y/3PdeNJZbi9KSvF2diCn78DIu4jGp3EMH9LlAzuJnloj0K6xEKg65wPHAN3P3NuZxTaZ5ZVIDQ5iL+Qu9OPuOFRwFmvgmQPofO3R41A8+xXw2Vf9HDX/FKRD4Fgb0ZvZhcaMlFQTmXURNAJoVp7MwmQUmg5AaHf9vbWqdhhLvyZy7EMINkMoLaDJ4cvI8jY0Xxxh72BmZDK7SCy9zTBzJ/fxmgcS2zslKZqf2wEBdwXhW4jmZ5Ej7xZ+zGIfrt5yzIOFLa/fKURs+wpvSW8NdpWXdFE/NzyGXrdPIk7qLlrLJxDD3yp2KI8Fwt9S7BAUCkUOhHhybH/2KkrEVSg2iGPZJBfV0rf9hkzt7YJVx59vxRkaJrUwsmP1ap5URsfXet1KnMX19gqPOwvzJgXlweZJjsxra5CDzIdKdEND6BrSkdS1VlJX7WXs0hqBw1n/pXH07jgHn27Diq6+J68UZXG5MH0VpCbGSSVzeG36ypE1R3Hrg8ihdx5tnpqr5Nq9tJDUdL6NqtIBpObC0dw4wo1Ym9u70A+JRdBdQF3msbby/Xdtlm4Wo2FXRxc+/7KAi7uSkdn18m9Xm5u//SNx2qN/CnY6U9dbEi5ogbfUDWTTKeIxF6G7/SBn0F++SOnCt/Mf62lCsHsirtb6NIy/vyIAG+GvRoZWZEEuDCJLnwbrzS36N+fAyWyZIYUbbDeYee5NJc2wUID4V9oCkbF0xrHuQzSeSWeJCw3iEWQqDAuDiOanIb6zReYAcCVZmVFeEJMfotd8CbtsBvCAyJ1JvhOI6PZkPcuWj2G7FsDOVylOsR9xrAeI9o8hcKUv8ZmbiKjKsN4wgU4oP1vsKBQKhWJPo0RchWKDaIbO6Z/6JJf+5fYtr1PsPPGxaVrPd2KlbKQjEZrA49UBQSyUwO13M90zSWIxVpT43MIhtBAuytiPM65ggIH7qzPfqlsrWejfP/7I28X0cIhqb/52MoNYupLNrnKM1nfy5q0kSQeeerELa3AcK2lhxlNLBcEc0EGOTzOxRjeREoyqILB6R2mln+j4HG3HgtRWNtF7OZ1x/dBOQUowOg6xeKNv6XFamYuJLvpHP4ZmSISAuuAs5uw4zv3beA+5V42xUssbvTTIKAKwlv5idDzTsDpx+WFmrm1S9twBDHOY6Hw1id4V2eDZFMKNPrlltTiJzMYr3pblYRwZJDr/KrOLq31u/8Ffc/Oc+zsQWi0sysVhwJdj3AZSZV0sPhjHurx6ZcrcoKS0LH/o5oNbuA89h5jeQHbmJhGldTB7a13BOzlxDdFyETm8LNrL4cuIAy9BKI+lwaYC0cDJMqFYegYm3s7fR3IetPRy/IzUnkSUl0H4FpQ3gasCEuNg3UlfsgBl5xCzt6BcQORy5n62m8gDRNczyLEeiBdgWWH4ES0X0G0bfcqCxAR28ylsfTfv3RrYm5sAlrovLaQvPEC2fTLt92pvzGdasb+QyZ7lKYqgAZVnEHotYuoWIraJQoFPEv52tMYfRHT8VYTYoaVACoVC8ZigRFyFYhM89T99jO6vfcBCb1pQqDraQmhwCk95gMjY9i29U2wfybkwybnVIulKuTYJBDwGNU93Mnylf1NV4jdLXWcVsd7Bnenc5ULv7GCVFCUelqtaziF8eLYeQ6I9LES1ou3adkIInFiUeM8Oxb1NeGorkf2rM58q68uYnShSwZwiEgulcDWUYc4v5mzn2PlE3M2lKL49HmR6eDr9QEpic4WvaKg+18X46Or3r+HWqGsKMnV/HP/kHKm5RU6+eJybb43gCXggCr6TT622WVg6tWuXXiHUl7ZmqD1SSWq6D7kkhtredozwwKNjNJFFLMuGsyzU6JOvIQGjonl1G5lNxM3fvTk+jFF9HM1fAotDWAOZsyiFbiIl2LKW8XefQS8r5Scvpvifr4NtS37tFzQOxf4EMmlUsXmErwIZX581arU9x/SlXsiSRRsbGCP1wjHc4Ty2ALZJ6v4D3LUBRD77hS2gtT8DU1fBzDxBJ0feg5rjML1cXMsZuInW2IxIbHMmnRGATG7n5RdgrAABFyA5B0YFpObX7RIdr0DyFoSXhHUrlP7Lyi4viQzdQgTdUHcKhJ4W1fUq5NQ9CC+JXKXNiMpOYDYtMK9ITNZ7puDAx3dNyNWdZkTk6qaOlXVP4/hB1B5AJnu2OTLFvsCaR1rzyKoGNN2DCD9ZFk4bQWv/abS2Hy92GAqFogC03f7uoFiHEnEVik1geN388Nd+mVQkwYf/v68D8KX/5+8ydb2fr/3YPy9ydIrNYictwtcf0NRZiygLsji+gO4yiE6HMOM7s4zTW+qhoQLC0ztTxkzz+bj+3kTB7Y+ebWD2TmFFq5rOdWw2rF1Dmuszn7Qt2AHsd/TqmrwirsxhpzDl/SJzH4xlb5CD1b7Uhb8GFQcbufXuAA0Ha1dslRw+15qecAHkUoZb9PptTl/oRJvqxn348CoBF2Dk7UnGPF/BjqVFoManqqmTN5Dx5fefmRCrvhwJTMjhQisLyBpy+VYLwVJm6a+ANfwyHsMc7sdz8BhyIbuYFXp7Fu3wTxC+MYy9MA6j45QC/+QnL9JR203Z7KWc4/gPNGT0xTVT+bOFF5Jd1JJHxIV01nK2jNJtQtgxZBYBFwDpIBwT6S1L22AAWAmkdgrBNou4VhTcbpDL5yz9bTB1bWP96O41j72IruchfKWw4+ODUHEW5rMX7NsxnBREV9pB9CC8QFkHGEGIDUIsW1wO+sDb6MGDOME6bHcKITWQGo4+va1hClcr2p2v5W+Y7XihgzmGZHIbo1LsS6wZnIoGtPDArhdz3BeUnUE0f7XYUSgUCsW+QYm4CsUmEZqGJ+jnuV/8oUfbGi8c4uO/9lf49s//h13N5FRsL9GhKWDq0RLphoPN2B4vjmkzfmtrRe1cXgOX2yAWTlDZWEZbs4fQnZ3LzpDSIZcAtY5CK08BGxHiioW5GGJtlS4z9eQuaXU8OZbIL2HGbGhrTQuKQkuLbPPDhEtfZPT1MaS1uefP7V5+HZIJi7ID9UtX0NL/CsF892qB2FMRYGg0jGM7q2wejl3sYvjyCiFoxXUbuttH9emDROfW25NI28aOpeM/+HIdgfF3kc7q87Fm5sCzomssYI1otrLPte8vd2BZDFzCjG7v8lD3gaPIqRWZsGutRptOEh0JY79xc92x7WKC4Gx+sc8d1Fb54srSGuKBQyxe7856zEMWu6ep6ipFt3JbxBgthxHhN/P2tyE8pQhPKTI0Bp4gcvZ+3kPk7ANEzTHkitdNjt5AVhgItlFklg6UdEE4HZPUPGAKsDZo41PSCME6RKAKDB2SA4ULuACpGUjNQtlJWFx/jRSF5HT6Lx9WBOauos2t/mQzD76K1Ba2LRw9FN3UJ5wEZOPLOMbmJrsUjynmONRdhMm3ih3JnkM/9o8QegFeTwqFQqEAlIirUGw7nZ88y5EfvMi93y1waaRizxPqTmdjBWqDnDpdTmpuEW9LI70PFglNh9EMDcfKJ9pLTr3QRuT6HZDgagxghkYJFZCstiXy+Jtuhf1QnTS1EMHlqcRMLgt108PzuIoYUzGJmzr55MTQUJgPh5ZLoLW+UE1JoIye1xKPMl43g8+3PPL9y2kbjq6nmhi6tewV2OhbkYwqBE5lBaGb6f0llQEWeqH9qSZGP1ye+Dh+rg5zePmN5C4vwRwfg2gcI+DFiq61BJCc/EQNel9hP6Y1mSSXiCvWLisz/Ova2AkLkGmxVejgiPQ8n9AAAboHhBvdZyBLvDiptHCoGfoKY1tnSaiVaD43jpUAQ6fkTBdCxghfHgbDh11/jujNW1njTfT04X3mVbzz38153gITqenIhmOkKGPxziBOMr+AC2AthFhwv0yV9Se5x/AasM1W4FrjMRh5G63jIhIBI4V9FsvpO1DaCOEl8c2Mp1+f7b7NuauBJWG55CmY2LgnsKgIpD1v44WtmsiMhOjdtMXDDtpZ7BausX5STeUFZbPnRXgQ4xv/Did9tThNx5Gm8j9VrEd60+ZU6z4znmTcNVB2qthRKBSKgpF78PffXotn51EirkKxAzz3iz/Evd97R2XjPmbUtwVZuJn2tkvN36dW12g7Uo1e4uf61VlkBi9RT4mbI2fqSfYPpQXcJczQLv1olpJDzy3ZHkhW+dsCjzL4Hm3fQBGX/XJ5V9QEmBpZ9oUMTYfpOljDwuD2Lr/dDyzMm1Rt8BjbEgyNtiHtrVVp92XQQdf66wbqggC4S/3EdTd915Yz3zVdo6q5nNjY7KOsXCGgJjrKQ7MTzdAJ1pYQ7RsmePoYkUurvSgNv5sjrzRgzNyBmlbQXWiGwNBtEAJXTSW6FkM6zwIaUmiUeAzOfD6Apktii2XgOOkkZWkjpE3ME2Ck8iLSkZhJm7LQDMGUQFrp95I0UyD78AVTeI4+hTP4HgxOkaBm3fNRcah32c80J7fguaM4CQ/OWFqM9pz9AvM3ZrFyCLgPiQ7F8ARdCLn+/S4lJErOExppZD6sYU9MwiaWhM/enKCyc3s0tc0gR94B13pBPReivA0ZXpFBGTgCkRvbHNkS5Rdg7J387TLhePK3KRR39WMh4hIbBaqBbVhpIS0QBmm3/MJwuj6PI8dACbiKLMjUKLR/HMYuITJ4Wj+JiJYfUYXMFAqFYoMoEVeh2AEMn4eKrnrme7Ymeij2DnVHGh4JuA+RtkNsNO1JefxANcmSKnqupn/AdTzVSJnXIXyvn8i14hW7E47D+OXCi6o0nWopvO+976YAQLDcu0rEBfDWlsMTKOJODYWo2uCqxWjES6R/azYiAD5jveov9NVWBN0DD9My16dnWo5DqNZP2ZyEUNrDtqouQGruYTaipOZkG6Gb9zFK/Exc6mbllIXQBQdO+ohd+mBVv5VPd8FIOhvSnFxd50v4SvB4xh8J3+b8aVJToVVz/rLrGSZuLnvTJg4ISkKZC+fJfDMfWoFfy4ItWCMTYC6JTFWHmf7uHTJbnKQLFbpbOzFHh5GWiTkxgaypRCSWxVkpIVr6KtN9XmKXxoGt2bzYkRiWvwlXPLuoJbfbDjdQBRMr/FRzeeFmiie0OlZndBKtbpsLnNkRZKALJrfgRxvP7Wu9IYQN/maIbbP/725Tfix9LtuCDbo3q7gtASqOIX01yEAZEEdag+CsLwSoUKxEJh9A4wUYu4xIzRZ+XOVJZLABIXVIxSA+BQv3973Hrig9WuwQFAqFYt+hRFyFYgfQdI0XfulH+NqP/2qxQ1FsA0IDjxPL6YwYH5sBZjjSVILmMkj0PiBXTfDdIu2JW3iWg9iAC2CuAlh7iZLS9eYJUyMLux/IHiAWSuFqKMtb3GwlzjbpIqaz/toqrQxw6LlOHl553Zf6caz1F1bLiUZ6Fxa49WE/dU0VPOV34cRMjh4rw15KPK07d5jQ9dsAaG4XrHrHSg5ebCR1b32leWlnv5ClmVrtj2us94xeO5khc73f8mWviwI8qYWG41SCuSwASFcZsD6zS/gDeBobkakUqaFehM+H9/BRdC9o4T9+1M4RXiatzzD3ve3155Z67kxYJ7y4gbtTHnQXemUTcmLzhaSEp3T1S5QMgfsCbJeIW9qCjAyA4wd784KfDI0gKirA3IZsvuQEoEHVMzD7/tb7KxbhPqg5BSJfVrEGmhecPAJ/ltdHeiqRrS/gpO4B45BSk/WKjSGT95G1zWiJdsTMei9rCdDyCRxmEXoFQrpwzD5IPli+P/mAwGHQywEHTVQiBr+xW6ewbTi3/x4IA63+M8UORaFQFIAAtD1mp7BPcoq2FSXiKhQ7RO3pzmKHoNgm2s53EL5+t6C2qYXIDkezMfJm/m2FffKp6fesD3R6cI5j59uZvD6w+wEVGb26ekMirvCUbHiM0danKUvN4Y6HcC+ms1IjGTSR6EKMviuDjx4fvtj1yNvDStkkwgls2yHi17j1ej8Ak6PzyFeOcbHSwb6VLspUcaSV0I1luxIntTKfVtL1kUNYNzN74EYGZij365DJ79c2kXJZqNVc6yXHtV9m1xU6W7Uzz/sx57JSgai/gL0YwRlb7U0rMoh5ruY2ZCJKsne5AJqMx0ncuQ6Ac+ij+MoXITLMyOhZYgPbX2BxIXmEWrL76DrTQ8jKzLYOG0Oi1XchJ7aQ3QrgDq7fZm+k2GMeKg5AaAJChX2eZCU6AY0fBXMDxcxy4oBVvBUj24IVxj0bJ1Wdq5GORhkyMYEInkHKODKZ+bqX1ScRE+8tP0ZAy0exXWFI3dve2BVPHvYijgtE+ycRyQREx9JLE0rbkW6RztgFpDWbfe7PiYMTR3gOQ2JvffcsGHMep+dXlYirUCgUG0CJuArFDjHy9k5XrFLsBp6gj0TvQLHD2DQCQcuRGnBkWtDNICJJKdP7HUl5UMPdXppuJiURI4gZTSIdiVHqY2wmhVhStFy2nzG7Ccd2cGwHKdNjSFviOA7nuwRytvDlgjuFK5Y5J3q4f56yihLi8/v0x88mcTyBgtuWHjtAcmrj4s5335jGTFq0HWnhVXcEpMPQwPrXwXEkh57tQiKJL8a5/07vujbVZ5p46/Xbq7a9famXk2cDlAD+xiqsifFV17ZjpQVZYWi0nW3Anp7MKq2a82G0g0dxhjJ4yUoJLg9YyUf9rW+ydpIgu+gnnTzp69nsFISGrDyP9eBm5v3RKaA2PYbQiLc+hyc6jDGb3TIk/qCHOKAF6yirgUDdIebmPZjhOB4jhTm8laJZaWY/7KfyQitGtgJctgWVT8HsFsVIXyVM5fcCzonQkNH1WbzO3ChaoBxhLWy+77IDEOyEqauQ2B4bFxma2755NKGDuwpyCO77grnriMqXkVrme5bm7oDIzfTzFroMaGilp3GSd8GoQhPlaWFXJnDKK9Em0sdJXy1O80lkamhbLHcViofI5P20SPvwY1n2b8SKGQCRjCEm3tzmyHYPrfNvFDsEhUKh2FcoEVeh2AGmbw7w/V/8zWKHodgGmo/VsnDtfrHD2DyOw2Jv4cs9y2r8RMeWhddEQCc2m/Yn9dqS0MTyUtWyxgqi87mWru6NYhXxoXFcniBmcvWv7/BMBHdTOSUNBpHxheIEVwRiKS3vh7+rIoinupJoz+CarNbCMNw6ZtJi8N4Uv0kVgTIf0cX12b/dV5bFvWMX169eKD9QzbtXHqzbHo8mGfG38lQwjBuTZGTN0mgpKe+oocyfJH73Dr625twB6xmqrj1iWZTNZKeQTK2W0pxcmbj5RNxsslztRezu7FmmMr5IouXTONIgnAww8vogtSc7aWUw6zGPQgotYkdjzJecY/Fe2j877nZRdewoiXtbzBh1HCZDJ2g0hrJ6aDtO6dbvFNvg7SIaziLHLq/fsTiM1Noh4EWkJjbeceOr4KRg+FtbjnElwvCS0+NnI3jrYfq9/O32OtLCSOiY61w8NDTvUWToyqp3mMBBxvvR/MeR4WsIl4E+Nw7JBeyWC+kuAy04DV3I1NZ9wRWKncBhBK3xFcTYa8UOZcOImo8gGr5Q7DAUCkWhCBB7zE5hv6wM3U52RMQVQvwo8FtLD39KSvkbBRxTBXwZ+CxwEmgCUsBN4D8D/1nK9d/ShRAe4CeBHwc6AS8wDHwb+OdSyvy/YBSKbSY0OksqtLGCKoq9yei9aco7O/GVetBwsKNR4uMzWNH9UcBkw3YKOT4IZV5DzzVo27gMeQs4pkXboSp6VhSfesjs6ALJqgB17bUsDKzf/zjSMy65bp3AcSTp5GxJXY0Pr+vh6yWpLndhxJPYtVUkbcF0FAwNbAnSkels7PT/P3Q/wHloOyAhWGIQv7IsekQX43njGu+dIVDuJ7qQvncGqgJ4Snw8+9Sh9CBL13J6PMHCIuh11ST712fvSsvEM9PDw3epriWoO+UBaYNtI20TrBTSssCx0N2NWcvDCN0NVjr+TJm4qdTq94Ujc0iS+UTcDJ64Tt2ncLrfyHlY3NXJ7TcXlh6l7Sumbg5T99xJPBNZsndXEKl5lsWry8+jkzKZvjZA9bnTJG5d21IRw9CdAWqeP4g7kjnL0xrqRquuQiS3kLWfWIRgFcQ314douoCczJ7JK+cHkPEKtObnEKF3c3fmrUln3QodwgMw9v1NxZQPuTiEKDypPjfxUah5Hqbf3qYOi0iGzzzhPQihyxk/3oQ1/2ifTA1gBwNoyQ70u7+HU/csji8K5tiOh61QbB6JI6bR2H9ahnb47z9a3aVQKBSKwth2EVcI0QL8OhABNmKk90PAvwXGge8DQ0Ad8APAbwCfFkL8kFyhSAghDOC7wPPAPeC/kV6Ech74G8CPCSEuSinVunbFrtL5ybMc+PwFer72Qf7Gij1NYiHGxMJaQV4SqK2lrC6IN+BCOBZWOEpsdHpTWYvFRDMEbo8OmkDXBYK1/p7Zhdu8NZoKaLNb1FS56cmyLzIbTS/9P9zI7P3H/8d6bGyenv7VourA+mTXLaEbGjX6xr5izE+GqG0uJ7oQQzM03BWl9FzKvqT/059ohgwCLiwVK1tRz04gcaZz2APkKiimL3ck9HQ7KQSax4NwuQmUQcsJL5omMNxQXmvjrjsIQkPzuBDaktotJLgD2L5nM/zQTm+xMKCsHpaKwDmxOPaHV9Bqj6OLSYjNZAwxQlfG7cOTQbpWePpmwmo5w8ylzL6gM1fuU/7USez+e2Bu/t4WFQdxZ1uqn4zi+E6jJ1/bdP8AIlCD3IyIW9aKnO0GK8PEqzuAqGlBGG7QdMCAuouAtvykSnvp+hFgRWHmw22zTMhJZBTKmsHaLjuYvXK33hpi8hKuuvPLj5NhrIYN5Ho7URxXFDrPg72wfyp4Kp5sNO++E3BxVUDgQLGjUCgUin3Htoq4Ij2V9p+BWeD3gV/YwOEPgC8AX1+ZcSuE+HvAB8APkhZ0f2/FMV8mLeB+F/jEmuP+V+CXl2L4S5s5H4ViswgheOGX/zyD37uBuU8yNhUbQRCdChGdWu3x2XmmmcW7/UWKKQtL817eEhcnng0CAq+eJGG7iccFlSVx6Ln6qPlC4FlWySAyy7/Jn/Ehtb3zk8I1P40Q2etKJSNJ+u7PcPBkG1M3H+8FHDKepKKmlPnp8I6NYVsOUpMbzrDRDQ0pJY2nWrn7Xvb30ulnW2gdvJTjIhRke8FF00lwBdJZyLYDUqIH3QReaACctCgnLXBMkBYTvcdJTMdwTBOZmkNqBtg2TjwJ8SStp/o57F2RKbuQ/fxE/TGsB9mvL9lxDDmyPnPWmRpAO3QOEcuckRtNVWUceKFvkuiLFykZeWf9WBVNhFwdzH2Qu6DZwo0eSjrbMSKT2KHM/tL5CI+ZVJRm32/1XENrqUPE13vSphGIxnbw+ZFD3WCm1rWQ3qqNB6YZEBoFJKKiKZ2hHZ2HYA16fRMsXgbzKqzUrzf3FOwAAnT/9om4i9fAVQnmPi9wZi4gRr69YoMGpZtYFWIXXvxRoSg2WtJT7BA2hjDQTv4qIpsPvEKh2LOsLeir2H22+875c8BHgFeW/lswUsrvZdk+IYT4d8A/Xep3pYj70EDv6xmsFv6ItIhbs5E4FIrtwlPqo+nZwwx893qxQ1HsFntwSdjDxQu+oAtf//IyYN/SX15WnJLuca3alT8Td21eb/GIjUxx9vljXHlrNGsbK2Vz/9ooR5/uZOJqbmFrv1PXVLajIi6ApmtIZ2NXgG7odDx7gJtvZcubhrq2Cp6O38r5dtO9biRJxEOTBE2AvwKqDhO7fWNdeyNwBJz3M/Ylk22Ysws5ot6AQJQnq08IPet7xnpwBVfHCZhZv+w/GvWTTT3u/mCe46eP4J66hwzWkqw4xOJIhNidKaCw6zzSN4KnthJ/jQdreuNZptG+UawL9RjJHJ6y2npfYu3EBURnFchhcGJAHI4fQw75ca6tFqad/vfRartgPnN2dhoJpTWIkkqEL4BwuUBEIHQPrJ509rYXIASzufrZA1QdheQ2rhxwUlB+Cmby2EUUC289uMvTkyuJKZAm2Hkmyd0V2E1Pgcw2OaBQPCbE9vAqImGAtNCO/RNE9Ss4D34FUXYKre4TxY5MoVAo9iXbJuIKIY4CvwL8mpTyDSHEhkTcPDzMgVhbwuFhuepPCyF+bY2Q+7ml/35nG+NQKDbE6Z/6FFM3+olN75nUHcVOsvc0XHAcXjoxglZejV1QfbMcJyFyPlyH3GOitmuoj9rmGqZGsr8fHVty+/0Bjl88wMTl7ELifqeyzLvjY2iGhp3aWCn38tZK+u5O4vK7kI5c8u1dljXLqkpoCOh8e6AyvWFpl1zTDuDHfqAZ9+BNZCqF4VjEJ5IwsV7AhXTybbYLWvfkXootN/TGz9M2j4+0k3IhMtgjROayi+V20uTWhwYtz36WyKWrFCrcriU5NYcTDBBsbSM1tPFs9bj3BKU5Rdylr6Sajn7hZai3wBwBe42FhB1CNEXRKz+D09ODqKhCVFeATyBCFmKxYimb2lzOxnbikJqH+GRaELaH06Zf+xhRWgvxbRZuxN4oRvkI3ZsWamuewQpEQViAC2Qj4MIYyO5jDCBrzyEZ2ZVQFYqiUnUUGRlYsrHaS1PooD39XxDBEwh3+nNbP/PvixyRQqHYLIK9V9hsb/3a3B22RcRd8qb9L6R9bP/edvS5pu8fW3r4zTW7v07atuEHgJtCiO+QLoZ2DniBtDfvvy5wnCtZdh3ZaMwKxUPqTnfyyX/zM3z7b/57IuPzxQ5H8QQiBAQPVYEjkVVNy56eVnrOK5IqIRTxgZRIYZBwV1B6rCT9A0BKvLoPq6kShED3ujlYVprWRBxJaYUH1/nWRwWuhBCrxaWZvWVLYEUTHGk1mZ82MJO5yroLbr/Tx7GLB5m8nMXHc58T2AWtxu13E0/lL2i2komRRaaHMy/n1g2Ngy1BJu5kz6Z+1FYXeOeGsFPpZffCyP11xzElrE8EBUBz5xZWN/Rj2Urm3p/LmxewRx/gOnQBxlf7rUcmcxfSdEyLyNzWrX3MUJT5pEnlocMku+9v6NjIvCf3qvbyA+inDkJ1AsyB1RYG67DBdw/tJMBk+k+CrKyHqmqQLohE4cG3EfZ664XHAuPx92q1Wo+BjIFYY20gBKtMr1firkLWngEhsA2Vgat4MnBSd6H5qfRqD2mijT3YE0KuaPkLiKrnEXttgkihUCj2MduVifvLwBngBSnlxn6x5edXgBPAn0op/2zlDimlFEJ8ZWn8XwKOrdj9XeC3pZQbSwNSKLaZ2qc6+Ni//Cv84Vd/pdihKHacvTgXKAgk3sq6jHtEfJUP3nj4AznJRrL0PCXtuPrvZt1f/J8P64kNTXDxucO8/lqOjEAABHfe6XtsM3Jd8Y0LelLm9rgtry6hva2a2d5pNF0nNh/beNXpHM2fe6GDkcv5Pad1t8bRoyXYs7eXN+aLI8fFqrvzncMGxLR8Im4B1gzmg9vo7c+iJQcgMoEtfMSm8vt3LvRNUF1ViTW7Nc9TJ5li5vYwNadPkriz3r83G6HuMeqOutGcNaKq34/nI2fR62bAmsoj3ubBnFh+KT3A2VfgwT3EYo6idvuVxE5kmC49e8Ej4C6D2Stpf+hdR+C0fhzkYPb3rnSg5jmIDK7KSHbqz+Hoj+HrrVDkw16xyqjhBRh/c2fG0f2I+vSCVzn1LTAX0tu9TYjSw2mvbuFCNP0AWs12LsxVKBQKBWyDiCuEuEA6+/afSym31UhLCPFzwN8C7gE/mmG/F/gt4NPAz5L2wY2RLnb2r4A3hBA/JKX8o3xjSSnPZYnhCnB2s+egUADUnerg2J9/mTu//XqxQ1HsJHtRw4V0VXU7s9Ak5RaC3osqbQFEb97n3Au5/XEfcue9fg4/1cL0neHCBxDgchtoLg2hCXRNQzM0NE2QiKVIRvJkBgpw+1x4S9w8vKgMt57+c+louoZuCHQ93afQwOXW0UV6idPKV1RIByGdtNWAbSMtCwfBtOal4rDr0eppKwKpsI0wBEIIpJRISwIC3SPwNUuujX3A6cYLRPvFo1XqQgOP5kEXBlJKPEEvZtwEzI0LuCwVGsvASx8/iDMTouVwzbKFggTLspfHWXrej7YbNE+/lZ6TyNNvIfs1r46vqQJhaKAJdEMDPf2aCkPgKjfQKs4BGlKIpXjSOVAPnwEpJUI6oLth6Fr2QAp8zuyBm9guL67Ol4jl9OtdcUw8yXwkQHVrC8mhDVzPmXAk0x/2UH3uFMnbhfm+O4kkyeAZfAtp72Hj1FHcpytJ17W9s94wazswJ6HpFDxuIq7m3pkCZLF+KGmBWE/623TFKZjLtlBtBxAGuCuQNaeWhNhc9j5JrJIkBGrQ5HGQAmGZOFr++7pC8bgjPd7t/UoqjLRI2/A5tPafRHhq0+NIG5IzoPsQruB2jqhQKPYkck9k+a9mr8Wz82xJxF1ho/CAdCbstiGE+Fng14A7wEellJm+rf4i8EPA35RSrjTY+cZShu61pT7yirgKxU7z4i//efzVZVz+9a9lrJiueAzYqy9rjiXae83XaLfQuu/TcaSd/nszOdtJBwZ652hoqiQ0WphocvpcJeEHK6wkHNJGP4Dud+M7XI+0baS19GdaOJaFk7KwkymktbSAZGWybJbEWbn0ly+/cyULB05z641BPpTfY2gqv+Bx4EAnvW+nRbC+/vWZsD/7kb/B6Afp59G9lUkBQGjrjz/7dCPcvI9YUyQt04LqYHMFTcMfrNd+8t1zc+wP+KN4AmuEyoevaQqMeBf21J3c/T+MuWQba62aCcz7V6DxJQq9+aQWo8y5DIJlQezFrXu1z1x5QPWZEyTv5vYmfUg0WUvZS+cxDkiw+0hbIewwfv8qQf2xYKeWJienVj/Wd947eyVO2ys4YgQ24mMrkjhiaVJCrdhWKACQyW6c9k8hFkcQ84Xdn9cjEC1/Hq39pyHQicjwXVIIHbx1WwtWoVAoFBtiq5m4JcChpX8nsmTd/EchxH8kXfDs5wvpVAjx88C/AG6RFnCnsjR9WLzs+2t3SCmvCyHmgDYhRJWUcraQsRWKneTcz3wWIeDSr/3xo23+2nLiM4sbruKu2HvsVZEgVXWOWCqIlOnMW7fLJJlyoWkSLRag7kQQIQS6W0fXBLpwlkUtbeWv4odSyNJ/zSTb7Z+zFlepj+rDTSQWY+heF4bbQEqYezCKGdm8x6e0bFo8EQZ1gWPnfu8lwgkS9aUIXcub0QnkzKa0Eyki3cXNCgwSR2iCp5qPFSTi2nYeV6KliYCuM60MXt/auWn66h+Jza3lVC7MkCzw/phYjOO0BtETqwXKVS+Jrqevayd9XprHQPMKKKlF6G7QXen9uguEjkjmsTjQCleOpLn975jJiVKgcEE2MbOIp7MBVzyOTG3FuyDN7I0Bqo4eItnzIHsjlxvvoSMsRmK0dvRnXRmwE0jrHuLMD8PV39m1MXccI4uB83Yz/wFUPQOz7+/4ULLl4zjkyb5VKBQFI5P3kF7Qqs8hZlZn1EvNA82voPmfRniakPPvIeevQPguDy2C9Gf/AFFxvgiRKxQKhSIXWxVxk8B/yrLvLGmf3LeA+0BBVgtCiL9L2gf3GvBxKWWuNCnP0n/XpbYIITzAw3Udj2lVC8V+5Oxf+yzlXQ04pk3NyXa8FSUs9I7z2t//LRZ6x4sdnmIr7NHfnq/9Nxesk1sfije9j8K2l/72EjVHGlm8tj7L0WPoVJ/uIDwTJTKyuTm62MgkZ587xuUCbBXGu6c5/nwXE5cKKHSWpzhVsdF67nPy4mnscGFx2vmsCJayQK2URf3hBtweg+GbIySjG/vo1QyNuYllMdIfcHGqRhAaLlz41N1GxveheLhWXwiw7fQfoAVKqDv+PvBh1nRmrfLV3IMaG8hWtJJkLchE2nZhI8iqDnq+GdnQMQCLfePUnj6MdfdWoQ4O2WOwbea6JylvbsYcHUFK0H0+tNIStJJS8AcJdY8QvpJ+71j/02EMLbuX9k4g5X1E2/Mw+PaujrtjmHHAvwsDSdB24X7ma8Q25tmzH6IKxT7GcYcQ7a+AY6ZtEZBIexHM+2hlP4RW+Wlo/GK67cD/iXP3lwABRkkxw1YoFHsU7QldxbmX2JKIu1TE7Ccz7RNC/EPSIu7/JaX8jRXbXUAXYEope9cc80vAPwKuAJ/IYqGwkjdJFz37e0KIt6WUK3+C/UPS53dJShneyHkpFDtN5ydW2yzXne7kh//kHzD2/gO++df+NVZczTsoFGjgxDILeNKyCd3uIXjq2KZFXADv7Di6IbCt/F9I7r7XT+ehOuZ78ywB9+xSltwW8Go2FUZZQW0dJ7e0/1DEHby9XFzo+PMHsFIWQkDvpYGc/rhSSiqbKkglUoSX7n1CwMefbWDuZv5CZg8J1pdytmUafS5DVurDbNk1IqnMl2X8MJic+zfwetsmetMh7NEs51Xo92KhEa5+lXf/yMQ2N5fVOnWtj6Zzx0jcLswKIhdOMsXieBTdX48ZjiIXLFiIABFg9eTk9LVKGopQaUDWNiEG87fbF5Q2Agu7M1b4HviaIb4ThdSWiI9hzASwqpUfgkKx7UgTmRzIsnP1JI1o+CKaHUO0/QTCCOx4aAqFQqHYOFsubLYJmoC7wCDQ/nCjEOLHSQu4Nmlx9ucy/OgbkFL+5orH/xT4PPBR4J4Q4puk082eBy4s/ftv7sRJKBTbjRCCpmcPc/LHP8rVf/eNYoej2ATK6nh7qT1YS/jBQM42MrV5SwWAxNQ8Z587zqU38wsUji1ZiNrobgM7lbkKU+3JNq7cXKSi5gB1tV60oT6scGxLMe4URrQwwSSfnYLMMCN/++2eR//2unUca1lolFLSdqYVw+siGk4wO7bAyNDqOdvPf7yduWur5nnxBzU6jnqpb7Tof6DRdzsOCNqPeXn+/ASCFFNvZSnYJbMU9jPz2wkILd8be2P56/bYQPadWeJcRUULtwdOMvTa+vlpoWsEmqrxVpaiGxp2PEliLoSdMNFcBppLRzN0dK8boWlIlyfDAJvDjiWwY/nfj72/M03DOS/Irb13N8wW/Zr3EqL6IEQu7c5gVhgqju6siAvgqwF2oFibQqHIijRXT0oLTxWi668XKRqFQqFQFEIxRNxsdCz9Vwd+Pkub14HffPhASjkqhDgL/F3gs8BPkJ5SHF9q979JKe/tTLgKxc5w8sc/xvX/9C0cc68tbM+N7tZpPNmCyyWQCBwpeVijSCIYujKAsypjTKIZGprLhe7S0HQdoWtoukBKSIbiWImt+zXuKs7u+Tw+/kj0YJDSI52E7/VlbRXrH0UYGtLa/HPvnh7FcGlYBWQ0zgzNc/RiJ1OXV9squHxuyo60cPf9fkCwMBWm/y40tNVwoCZEcnp+0/FtN1LXGZu2iI0XtgzfsvLdi3KLnJqurRJxu57r4uZbPVnbP3uxhfk1Am5Tl4ePXexHn7oNMWhrhlcOVyA9ZYjQGEykMBteyh5ENosL20KiIcjx2uddNrax7EHh8SETGxP2pYS4/wCpkoNc/noMMx7GWxXEX1eB4XMjLZvkfIjY+Czx4QniwxMF9au5DILGsj/wbmCFTBKx43h9V/I33k4el+V/wRaI397dMec/AKMMrMXt6c/bkBaHrQhUX8Au9SF3o8idQqFIo/nRq7+MXvnZYkeiUCj2GU9qUey9xI6JuFLKf0ja0mDt9gEymF5la1/AONPALyz9KRT7Hl9FCa0vn2TgO9eKHUoWJG0XOtGEgzkfShd6EhAbmyV8637WoyoDHqSUSNvBsezltFUnkdGLMlhfSSjuIzq19Qrqu8ZueAc+9kgqDjfjC/oyeuGuxU4kqT9zjPFL2UXBfCSnFzj73HE+eKOwTLO77/Ry/OIBpm8MYKcsqg42MDOf5P77A6z9eBsfXKT6QiO+vSTitnUy8m5a5DvWcYi4SGLoOpZlY1kmjiOxLItUyiSZTFFbV8PMzELW/pw8Iq7hMrCS6czllpNNOQXcrkNV+EbGsAChCzpON1FVBSfFf4a1JU6j84hogc9rjiTMmPYFPMYDjFTm602I3OK+MzeRsXspAcODsJNrthc24eCgEQo8zUysncmeONGxOUo6S/HU+CnxGIR6RlicWyior6xjmBbeQ60kegq3rdgORr5ncGCXtQPpjEKwGRHa4YzSnaSkCVFZAfFdLo7oroZYYRMDWfHUgqcC/HVYvhhIiRAlS+LtPvqcVygeA/Sar2I0ZHREVCgUCsUeZy9l4ioUiiVe+KUfYei1G6uy1/YK7c92sXB140VprHiWqkFZiE/MEayrRNQGiewTITeX76diGU9ZgKpDDYxf7UNaDsLQqDvdCVIS7x8k1de/oWqUkTvdBOoriU5sXig1xoZwedyYycw2CasR3H6nn5KqAKUNfrrvTuVcBX/zg1Ge7yrBXNx4AartIunRmav0MuUC01hRPCzo5fb13GJ5d/cDDMOFZWV+bvIV42o4Uodu6CQjCYZ6p3O2PdHoJdwvOXKxDXNkjOS9B4wDhz5SjyeVW0SyKcFz5MSKwJb/ofk9MP8g43Gh97opf6ENgyzPQ56EAycyhybS2bxSAjVnsKxSrMlxZDiB+8AB9NANRGLJuznL85juzCbqO8xY7DQj1+YwwzFgufCeJ+hn/nY/cbOQ67QwQrNJSluaSA7nL/C3XYz86SRdX6hF2GuV+R3EjiA7ayHxFOLenxZ2TPtLyNoauPIn68T4XUVzIdpfgtiN3RdwAQJdWxdxgx1YJYs8mo0RIIluOTSFQrFBhBu98lPFjkKhUCgUm0SJuArFHiRQV447GCAxt7dq8rWe79iUgLtZ4pNzBKrKSPo9mLEi/oAuFCXi5qX2VAfW1CSL1+4QcBu4Kv1IxyGcR0jMhZMyKa0JEJ2YY7PVzVPzYU6dP87ltwrP0ovMRonMFiJCCNzV5bsu4lqGxvUmD1+7d4v7t5YzLZ89e45zdALQWFGft59kMklZsJRwOHP8LnIX9rr/wQBVTeVYjiQWyu6D6nJplNcHqAhLItdX32cWXaeozSPimnGb6O3MqwF87S24Os+AEAge6rIi/ZaVEJ2HhP7VtLAkBeKhcivAtWCgk32VAckYWudpnJleUtphrDurM42Tt66D4cZz+FX0xQ/RjAqc+fXipQjWY9kBxuab6f8g83U4e6074/atEJuYI+XzUFZagp3lNd52pGBx+ADljbso4gJgI4Mi711CGj44+Xkk/ZDqQZz8Alz7H7sSYSZE+2mI7rL9xEpiA1DzLMxcArlJ6w1t7xd8VCieBIS3E+FpLnYYCoViHyIEaHvMTuFJ/PmtRFyFYg9ip0yqjjQz+s7uCab5aD7XRuhmDiFjhzD8XqyJhV0fV7H91J/rInzz3iMrDWlapOa3J8s6fK+PmqcOMX1jYNN9uCeGcXlcBWbjbhCff/v7zMFwUwn/6tb7jFwbX7fvys0bnD17GNFnUmlUFNSfYeTwfY3mthHx+N0Il85M30zG/ZouuPhCB9r0HE4kjjW3/poYHQ1SW15QqBkRGsTvbm6iIHDsMCV52kRjHkSyFWc6i1WElSJ5+zrCV4b74GE0fx3O/AgytohWdxDHdmMOd8PkVVqrWxl0VeGYu/cl2YoncR9uI3539+7x069ZlP2wD2HEd21MIG8FSglw5vNI8/6KbQ8QBz8O3d/e2dgyIDo/BtHLuz7uKpKT6T9fDZQcgKm3NtyF4/XuQGAKhWLDqAkVhUKh2NcoA0eFYo9hxZO8+Qv/jtF3Np+ZuN00n2sncrs774/fncAo8RVUsH1P8ATOBBZKoK6CWHffjl5D9vQUuse16eNT8yHOPps/M3UzmLv0o8nSBd9oEPydP/tDRkbXC7gApmnS5xoDIJAoTFjR9ewibmQytwjXeKSe8QwCrhDw3IsdvHCknOjNPsITC8gsbyJp579uchZasDd/E3HyWBfEjHp+58+OMJZoWT6m5Sw3Z5/nfvwlaDj0aLuMR0jeuESypxtzNo6V8JAaGMQaXsqwdXm41dO6qwLuQ8QuenqXd5TS4L+LPV+EbDB7Hql7Mu6SQoenv7pKwH2IU7KIrD+109GtR9uIucwOk5qB0G3wbvw+KbX98kGuUDzeCHdjsUNQKBQKxRZQmbgKxR5DcxmYM3M0HaggZhnMD2TOXtsdJK3nO9MZuEUQcGGf+czup1h3Ed3jwl9bRuzezlYfT84sUHf6GGNbKHJmTI6iGwLb2t7rPZaUO/6BO1Mb4N8M3eTet/vytrWc9JJofaYw4e7woaPU14WQMu2Ba9vp4ytKyjjoL4GmEoQQaX/cpadOMzTs8lLe//a9df0983w7vnCYxdv9rDRYyCbiHmztIZ99Zi4RV7K5ORbZepKQU0bC93lq419btz9u1PD7Vz/K7OAc1ypb+FTZe4jKRt7/NpiJdMBWspbj5Zn9eFfeV0VpJf3hU8wOFKsI3k7dvyQ1xyqo77LxmCPgmDB3FebAmWqEmh0aNhtODM59ASbHYXA5o1Qi4PznkKn112u6QRLZXAPzpYjkLlodyT2WNWdFofwwJAr1yNWQDS8h2TvFHRWKJxmt/JVih6BQKPYxOZMmFLuCEnEVij2GZui88h//Dn/6hV9ET6Qob61iYWh21+MoqSujujHAwo0sP2gVigIINFTg0Uxi97KIWNtM6OZ9SppriYxs7j2TnF7g7HPHufTm9lawD4dMCjMu2Di2kLzb7OU/fOdPMU2zoGMeaodyzqK8rIyFxcWc7UdHxhkZWZ/Z+4mzLzDdnVmcbzzVyjtrBNyjT7fS4MSZvzuQsXhdtkkbl5VbAEprx9m/VG50fkUisDqeY+pSNzCBcBlUn/GiOcuSc1yv4fevfYKZ/jkABq5OMvHDn2Po/SnMxPLZzQ5E4DNHYCz7vVTUdnD5Si3R2SIKXdus4VZ0ldJ4VMeX6oG5a5AhMdwenYHj2ztuIcjUA2SVF+H5BOLBt9IbT34JmcozAWJNw8nPwOX/vvNBLiFnehA+A+QO2LxshorzMP328mNhQNlRMEMQHVzfvuYCtneLRdEUCsW2ofmPFDsEhUKhUGwBJeIqFHsQV8DHxf/9Z/jeT/wzPB43rU+3M3S5n51ery80qOqqo7Q6QOh2Dwt3drvozHqSswtUddUwm6eqvWLvobkNXKkIydDuVSCXtk1pmYfIyGZzL8E9OYLh0rDM7Vv+OzsZ3RERN1Tu5T8s9nPlG7cLav/qc59Aj5bRGqwE5hBC0Nnazoc3r+c8TtMzZ+werzlAcni9AFzdWcsHV5aF8KPn2hDxJLMPJvEa2YsUHm4ap9LTj3QssO30TQmJPeUQpZLFWANOfMm+wVl6fTQNHAe/15f9BMQGrAKqmglZNUQuLRcRqzrZjOYs+5Im9Gr+4MYnmO6bW3VoX68ba3G9PD2+2EgD60Vcp+UMi/EK7r25iBkvbvHGbFnQhSJ0Qf1TFVQ3W3iSfels2zzanT3aj7Tqdt8XF8BJIP0JOP5FCE0i9QwCZAak3QuBWkR0lz4fFwegtB3Mhd0ZLx8PC5sZpVBxAqtEAgtALcbgODgpQIC/GfwNWIEivLYKhSIrMjmKcO32EgiFQqFQbBdKxFUo9iiJpeI+ydlFkrOLtF04wuAH/XmOKgRJeWs1pTWlGC4BjoO0LJyUSWxkCmtoiPmhbRhmm4hPzlN+um5/iLjKTmEV9SdbWLyx+8Xwwg8GqDl5iOmbA5s6Pjm7yOlnj3N5G7Nx56YiaA1GXn/VQpFScr+rmrfD05RW1vCZT3wOTAOBwOvzEI+lVrRN/xm6i4EbM8Qj45QFAjyUPJsqG/mQ3CJuMFiacXsg7GKt9BioCtA7GSMZt2g5UENFqYeRm8MAeAK5l4ZrOMhEdtFfJpPL4u1Dlh5LAUZFGUJoIEAubReawFWqE/Qspp8ITQdNQwh96T37MINX4NSd5tafLiLN1a+9v9R8ZOeQ0Mr4g1ufYqp3fba3M5c5A7z77Tnkcx+hvnoOfaYXfCWMxI7S+7U5YC7jMbvOJm5fmluj6+VKSn1zaLP3IRnJmHGbFelgjbTjai9eEU/pHoNaH9gFio3ShOMvIS/9PmI3DNvrzoKZ3yJlWzFKwFOFLG3HcVuAgR5aAMfELg0gS46DsGGVRUIYWf8CIj6HVe4GQkt/CoViL+HE7qKVnC52GAqFYl8i96Cdwl6LZ+dRIq5CscdIzIWYfP8ON//V767abs7MUnesEW+pB8eSjFwbLKjYDwK8ZX58ZX5KqksgHiHcO0p4Z+1JtxdzDxV2URRMYqx4mdz27DS6x4WdLMxeYC3uiWG8ATeJ6OaOX4/AU1NBfGzrkxHxgJf/YcT4/je+/WjbKy+8yM1305mETz93jKvv9a477sL5p4hH0pKrs6LQV7VrfY6w1+vjxYsfIxo20TSNhfD6uE+0H2Kue7Vnt+Y2MLoaKVuM03a8gf43u1dZ2TqWAzlqz9lOHiVR18HKLIRrwkGPZXl+kz6wVsvNme6eC4tBpLneh3y236KiIYBuR3k//CUmu9df26V1QZz57MJ/z7tzpN2au5a27BHx9hEbUXElTU9X01DdCzNX2IrdqXmtH6N1Y8nS24pMgb2xzxiZ6kac+Qp8+Ds7FNQSvmqEO0xG75GdpPwElm8GGH30RrEezeOMZrxUNKcVYYaxylKwyulaoVDsKeR2fa9RKBQKRTFQIq5CsYcY+JN3uPVv/4DoyHohIjY6DUw/ynrrOH+EvvcyZ+YaPjd1h+txuyAyMIoZmkfG5wnvU1u6cM8wutuFnbKLHUoeVCZuoL6CkoYKdEOwWEQ/5eT0/JaKnKXmQjxz/jCvv7Z9bxotWAJbFHFjHYf4cFjy5vXfW7V9Zd1Bx0k/KCn14Q+k822nJubouT36qI1lL7+XAol0G5fLxasvfppb1/uJxRJ88M5ydmRrR9W6WL7c9SqzN5bFTCklTns9V9/vJ7oY5/xzXeuOeRhbNkzpwalsB2Ra1Xt4Yg+z3GM5LAdyFV8spDCjN8D0vczCanRokqHGLzIcdXH1u5knJ2paK6B7e72Ui4nmElR0lOIrd+HyCQy3xOdP4bZnYWEIEtdgG+puOnMT2DPnMWq78zfeQ0jnPuLAR6Hnuzs2hqg8ANkKrW03rjIoP4HUDdANNvriSi2JFViAPZeho1AoViK0HNZDCoVCodjzKBFXodhDLDwYyijgZmLu6j3anz3C0JUhHNPGX11K3YEqkhMzxKcWiN7tzlfMfd9gJ02qupqZujtW7FAUWdBcOrWnOgjfvEtkdm+keYdu3aekqY7I6OaUpujN+xw6dYgH17fnfKTbu+ljhctFX/1xrnw/nW370dMX+bMrbyzvXzF/IDR45vkTXHr3DpFweom4z+chGcuczqfPCDrauyjzt/D+O3cytlnrifujL39xlYALUHKmg/deWyHEaesnNRzLAU/284yH3Yw/yJ7FV1LtRZJt2XsO8agQq5NElNRM9gJv8ckoH76dZO1kjeFzUdlaTVW1F3M2SGpuny4hFwI0aD5fRW3dItrUjXT2skPaSiLKljJuc2HeCmF8ZGf63klkZdnOTt3Zu5Mx5zR/FIdREJu/10km1TymQrEfMHaqzKpCoXjcEYC2xyZrn8SvHkrEVSj2ECXNtRtqv3D1HkFDoAfc2OEZ5q9uQ1rUHsWfQ/hRFJeSlmrcVpzw9cwCYLGQlk1JmYvI6OaLnNU58/ToAqcQ65I8JB19U8f5O1tYXDAZH1xW0No8LWtaLcfnOJJL764udBaPJ2msrGRhNgKAvcJOgTg4qTL6J7JnkS4uLoubL544T0WPG4tlW4OyEy289dqaTMoMT7mUksNn6laLziLtWwtg5HufZxCGl/vOc2wBdL5aQ8+3M2faJvoHOXruKUbHLSpaq7CTFpHpEItj80w/GKdKRKlortunIq6kpW2esspBZOQq7PJ8mT1wHyd2CM1f/GKaG0HKxM7+ePBXsBuzscKyMKaHsRq7gNjOD6hQKHYfVzVa4Cm00gvFjkShUCgUW6BYDmQKhSIDbZ99DmGsF3pcpX4++lv/C766yvUHORK7yFXNdwOh74Pb1RNa2CxYX05yZodS9LZIpHuQ2tPrl/UXSnxsmvMvNG1LLOHIBu1AdJ3AU8cZuzdNdHwel2v5PTB5c5qaimWLA0suC6pybeGvJRKJ5UzclbYGMm5jW9ljO3Ksk7GxdLWq84dOciF5ECu1PF5JaxWXPlwvAIss8lbp6F1Khu48+gsM3sHffxt//230VG7zT2Fkn3uWOc6hUIXXP/8e3orMGdMyWI7t8hOZXGDo/R5Grw2wODoHUnLsmRaSIxPpomn7jOrOAB/5SoLg+NeQkeL59MpkSdHG3jROGLmTMq6I7FzfK4eZeB2Ch0A+Lut3FArFSoS3E/fR38XV/o8RRrDY4SgUCoViC6hMXIViD+EK+HCV+EgtLP9wO/ZTn6fjiy9S0lKLnXj8xdpMCEMnaQnKW6vSGXsShC4QIv1vNNL/BoSmIR3n0eNVwuqSkCPSa0HS5ezTO1YMtiQ9CTInb8rlsdb2b/jclB1pWzpQrhN1F+4MFEXnbTh/IF1FXcLyuYos5yfTTQSr/UhXiGByVT+QmtlrBZpWkxobw/B5sDY72dHbQ1V9NbMTWxNU+rvnOO4WBQmKnoYaEngZXeHp21AbYLB3AQArZfOpsy/zX17/fQBu3LyFISsRQmT1nXW5DBJLFZJWeuIKIWhrbuTWnfWepIahU1Lq4cSJ41ihOK/op4nOLD8PrqCP7plEZquGLNe6Zug4qczFyfI+MyKXSJr96EKTdIW3hGRo/XXi1DRyZcBL4v7gun2eUi/J3n6EgMjY3pzMWIun1ODoS34qvWNoUx/A+B7wG0/lqHi3V7FDiK5Xofd7O9O/zDwhs+24q7BKUjyZixIViscf4WlFaPvwHqtQKPYcYo/ZKTyJKBFXodhjmJFlv8eOL73Iyb/+g48eP/OPf4o3/+avbc+64X2EtGxi99Ji1sMz34vPQCJHXR7NZRQtUddeXCTaP5q/4WOKOR+idgtFzux4kpNHPLw2EWYrIkd0MYn/XAOxwdxr1b1NdcxOJTAjq5fll470UlZezuJC2jNWDqcFWCkloVCE1oomoqFEVhG381gD19/pBcCxHVYuxqkvr+IW6y9gy7K5/H66wNmXXn2V6NVlAVdoglBZKTM3M19bMst9Smg6kFnEzffGlrlErRz3RVHgmy/qPYG0Vy/pl24PdxcqSIRWT1Z4Sr20nWhADg1iL6ZF7Oj4LP5SD3auAmxFxHBrPP05DyUL78PC3sq6TF2fwfNyJZpnb08KrUVWVsPiYcTM/R3oPHdm+raRmkfjNA7rJykUCsVjgKY8yRQKheJxQYm4CsUeo/PLLxHqHeXEX/9BKo+2r9rX+PJpTv7sl7n5r3+/OMEpNo3I4eW584Or7KrQ7Qf46yqJTS5s6vjIvT7OPn+MD9/emhjulJWTy3BUSohLD2ZkYd2+kqOdLH5rlIdC8vzoIp85/ypf/yCdBWj7F/GXajjuzIW/ZuaXs0SdNYJnvb+KF586jyY0NCEwdANd09CEhq7puHUXZa4Sas6WpJO0bYdkwI21mOD4813Ycjn7XVuKL1Dhp+PZtJXFyivQ3xhBc5zljStC8VcKyi52rN3Mw068pQ7C9iE0+ejYR47HbgNZ37EiQ2DZC1m4fcgckywAND1FzzfXCLgSJutOMffB8HKMFQFaj9ZgPujFurnae1hoAt3j3pMirmbAC19MYYy9XexQMmKP9GL1Pov72D4Tce1RaG9ElNZD/+uFHSO09OqIXBh+iA1tQ4R5qH4Oy2+BVAKuQvG4old9vtghKBQKhWKbUCKuQrHHOPf3fwykRGiZPWC7fugjdP/375GYXtjdwBRbQsoddU7MgxJxpWlRVl+6aREXwDM2SGl5CeGlTNjNMLPgkMv5s/TEQUY+zCzcfPvdGda+lo123aN/j45OAFBVVp3x+O57gxw5eICh7smlTNxla4Imp5aZe+F1xzhL/2diEiXGGGmRs/PZdr739as5zgReefk4fe8NrNt++rSJubB+LIDyF2uRk+9n7dN9vBZn4kHGfVrjUazhLPuaDpHLMMBpfpq7302tU45DB84RiruRCASSqvZqKs15UjfWF/Eraa7B7RVE+3e5KlgePAGdIy8FqHHdh7GBYoeTE/P2A1xHxLJIvx9wIuCAU1mGCB1AzObO+JcIOP9Z5Adfy31nLm9nNyrMWb4EyMzvR4VCsc/Rg+hVX0ArOVPsSBQKxeOA2IN2Ck/gz1wl4ioUewwhRM7MSU95CYf/4ie4/i9+ZxejUmwV6RRPxC1qFvAeInSnl+rjB5i5vbnsNjMU5ezpZl5/bWLTMfTeneF0mZ6xCJcUgsWp7EvcfQEXkfDq5dVjt6Z4qusoN3rvUloa4EBXB3VVtTRWtGGnbMyUg8ujoxsaEgcrmf7iZVo2sOyPlzQL90RtOdnI62/dLaBl5utO6Nl9bZ18YeSykpGb83W1m5/j9jdC6wRcq6qOy+/NYiZM2s62Y5hJSufHsCOx1THrGgPtHTQ7MUr7h9lLnPp0kBrzXQiF8jfeA8jwHM780+hVm7M+KSr2IrLzEMz25L7XC4G0ZhHBFghlv15EaT3EdmFC4KG3vEKh2NcIbyd61ZfQgs8ikyOguRGBUwixDwoDKxQKhaJglIirUOxDqp7qKnYIig0inV0qUKPIibMwh+Y2shbWykf05n0OnjxI982p/I0zkIxbcP4o3Lm1bl/p8UOMXBnIeJyvtpzp65kF3uebnsajVTDWu8DUDYepArL3PB4XrOhu5EFh51PRUMbNvjFsu4DrOctMfa5JhbxvkxwTXNk8eAHssR6MA09j9VxeHgsX44HPsfDm6DoRS0q4bzZjJtKCfXwxRl14DDu12iYh3lDLt6Yt+r5zl5b2an7EraWtIvYIfl9q3wi4D7H6HPSqYkexScxROPRJePBnWZsI6YDeDEEzu4hbcwJSuyNkC+lFsr+uEYVCsQKtBFfXryL8x5aL/HqaihyUQqFQKHYKNTWnUOxDas4e5sBXP1rsMBQboZiZTioT9xHJqTnqn2rF8G2+yEe9nMdwb/7j8/03hgmcOLRqm0SwOLl+SbPmNig53EqkqRVvqTdjfxPXp4lOb6wA0tTEsj9u1eFGIvOxHK3TGG6dmE+wMJdWfz/5Uhd+n3tD4wKQIxNXZinK9ggt+9yzsHMI89Lh5nQnXw/9KF9b+FF+f/pHuTL9Wbq/N4pT14Fck6k0f+ACw7eXM66bSy1YIeA6uk53Zxf/8f0x+rrT7YYHZphq78gd/y5z7Xs2+ILFDmNDmPduIy1fscPYNDIwi6w5mn2/pxxp9UFlS+YGFQcQ7hBYuyOs6kn1U0Ch2LdoXoy2X0YLHC+4gKdCoVBsBU3IPfX3JKK+uSkU+5Qzf/tH+Nw3/zmaSyXU7wtyLQPfYcSTaBaUg8Xr96g5XJe/YRbi4zM8+3zjFiIQvPP+HL6W5RhKjx8kPDILgLssQPmZw8jOTnojXq5cmmJywaLpRD3HXjnAyY8fofP5LsrqywBIJUyeP30s3bOAztPVdD1XRuezJbQ/E6D9mQAHL1bgL10WXJMJE3dDafqYQGZxeC01TzVw/266sNtXPnGEkp5hvnKknI+9kHllQLZLPpvfd65jlg/OcS3nKBQ17j3HH/73MFdfn+T6m5PceW+SqJMW8mdv9qMfOA5aWly2apr48N3J1R14l5+jWFM9f2CX8CffvbsuI3nC2ltfq+ILJmbFsWKHsTHMJPZkW7Gj2DzShLansu4WLedAmkjXDNJYL1aLiqpdE3ABSC7s3lgKhWLbEN52XIf+E3rZ88UORaFQKBS7iFJ/FIp9iuYyCDRU0f6F5+n7vcIqYiuKi5S5NagdQ2VnrCN0u4fSlibCw9ObOj55+x5NHc2M9i9s7vi4xfVhN6caaohNzLAwGQGg4tRBLr8/hj2y7NsrhMASgkuvdz/a1tRVQzxl0vp0K0OXh0hOROl6LsjNe7d4/cr1jGOWlZVy/uIFei7NYZsO1PiRY2FGe2fyxvvKxzvRE3GOfvIQqdFZ4rf6AIhOLlDGAn/5Y1281jNP78Bc/pPXc4m4eVTcHN5+MouhrpTwB+90YpuLq7abXv8jV+CZG31UnjgCI73cCtVgJVdfF5OLUGbodLe08c3v388aZ8raWxkBFS0+XJNvFDuMDWM+WMTYx6uBpd0LrHeFlsEmZFkKbMBehLoTMHppTavNWb1sCs2DXVYOcvM+3wqFYvfRghcx2v4RQt+/qxYUCoVCsTn2VsqIQqHYMEf/0meLHYKiUIpla6BE3IyU1m9+mbm0bQ7U2Ft6ahdmYtyYcBE8d5LI6CwlrbV8eGkiLbCuYe2H9WjvNHOTIXrvTeApc/OefZnX3nqT2Zn5dcc+ZHExzHfe/C7lh010XXBzfJKac53MT+TO+qusCRC92cPCnSEWbw4Qn1tv+7BwZ5izMs4XPnsEjz8tjWaVM3M8aXkLm+XwJXEWJxElleu2T/rOMje6uP4AuTqOuVsDWJ0nmehZL+xHLbhW38k3vncvp9CctPaOHy7AyWcTkMtmYo9i99/FSa5/LfcNwsg44SDqjoG9/H4Tbn+Ggyt2MLDVOE0XkUrAVSj2HXrjzygBV6FQ7DoCiRB77O8JrM6qMnEVin2Ov74Kw+/FiiWKHYoiD0ITYBfhg0aJuBmJPOhH97iwk+amjo/2jvDsy8d597WRTccwPx3ju98cpLalgakpCzOZWXDLJg6G52NUfbSSe98qvAjSteu3eOWF52kaLOHW23152x8/UUPsxkLedo5pY3SPEA4uEGwu4d3Rm7Bk+ykQSClxpKRfHCPhy/DjU0r8wRRnPvtQcBVLFgkOD2VsM9SKQ3n6mpYyvf+h8lt1FGukF9yliPIG7HAMe3qEkKzOGK9tuEi0dFIy1PfoLWKOry7wpntd+I+0cOXNXrqey7/EP2XmVaF3jbpDJbjHv1vsMDaNPVqP1llAZvdexInDma/Ah7+zarP0rBZtnSoXYqoOkGB4YXEIYa0unreTSJEorl+7QqHYMMLTgvDsY8sZhUKhUGwJJeIqFPsczdBp/8Lz9Pw/+/fH+pOCZug49u5n6ikJNzN2LEHl0cNM3+jffB/37lPb3MDUyFY8LAVTwws5WySyiLsAC4PxDY/42ltv88PPfwEKcJPwapL8Zc/SiEiKZ4518vXXP8zaJll/gIXRzBnDiYhAxIezD2AfQi6Ord8eqMXqvwOJtC2FjMwhdBfuw2dp636XisZPMj+2/Bo1nWnjt/7wAS6PwY+3CcRSdm18fIZgVQOh2TjlR5voHw4z92Z6abwVzZ/RupdE3GNPzcH43soM3gjm3WGMDrlvi/VI5z48/VXo+QBqlwoZ+iWsrEFoTSOPHAV7AZAI9xlkLIHYnMvLhhFOALlbgykUim3BaPm7iBzWQgqFQqF4vFGfAArFY0Dnl15S2Zb7AGHoRRlXqlSrrIgtWlw4pkVn1+ZtGQpFy/H+nu+O0dW58aycr334LfzH8xc1E/k9DlbRMRihrCyQvUGO59y287weGZ4HKUF6Gh8JuMudmTj971PaVMEnX1m9UiE+l277wgutaGvsEdoOVeE/2cGVD0aYG1+2YVjIYzsBkNwjIm7r6SD6+JVih7ElnMlhZLSl2GFsCWndQ7aXIf0T6b/U4PpG9jwP02FlagAiGdrsEMLa3CoEhUJRJIwKtJIzxY5CoVA8wRTdPmHN35OIEnEViseAiqNt1D2zzyqQP4FoenFEXKFycbOTr5BWAXhlKn+jLRKNZh9DCEFdVe2G+4zHE/z+jT/Bd8a9uj+PwH/ai3k+iX3eZEhb74GbCxE3efXsUTweN27DwNB1PG43HpeB2zDQXQKf38DjM3B7dDxeHX+Jgb/EQNfyvEcyiLha8zPYI/eyHuJM9tIkbqK7l/ueG5zFX+JepyfH2g7w+vUFbr6z2mZCNzTK6krRcxRlg9yv025yoGu02CFsC9ZAjsmAfcMG7zHG7vlciqjyw1Uo9hfq+5xCoVA86Sg7BYXiMcGK756PnmJzbDXrc/MDF2fY/YB0ti7i2nPZi4ltBimdpSXkyy/c3FRuIdVtuNdt87jcPHfkFCfqOxmNL/Kn73+fpLn6PmGaFr/z7h9z4tgR2qubmY8v8uGtm8TfW85c/TNd52+9+hn8dws1VYCWO7P89MWX+d73l8TQFQmqZ6vmcRYyW1j4E3W5O85wLTvTd9CqW3BmstswlCZ6OP/SC7z3nfTS8aaz7dz5fvej/bbfT2/5Aa68tjoLsuVEA0m3w63bA/RcvZ07NiCRSEFJ3mY7SuczZWgT7xY3iG3CvHUX1zEXQtsbGc67gaw6gghv3uJlQ4S7ofwIqz0eFArFXsWo/0vFDkGhUCgURUaJuArFY0LdM8eYvV54cSPF7uOuCOIK+JCahhBLoq7QHom7hp7OqhRaus7mw38LIUBbyqgV6bxaKVboWUvbhCaQjiQ6HcJbHsDwGmmR0tzcD3Sp6UQOnE7/Wy7XkgIoHbuPiEayH7xPkM7WPUPj4zN4/VUkYvk9UzPGICX+9lrMsgDj0xFsy+ZjVQ6yopye6+MkYykSsdyvoaGt/zj/G0e+TGh0keTIAnowyMfKPknNkSD9kX7evPEezgqbhFt37nGLzNmszx2r4Oe+8D3uHX2Wt35/Q2eWeXOOSQUnh/cvkNEfVaTCiJJa8r2SZSXLArazlFH71jsjuF89zoM5i6m3lwVczRC0vNzMa392I0+vq5mZDGFXuNHNYi1Tl3Q09BbkdbwfkLEQ9uwFjJoHxQ5l15Ds5n3VQYgapHw8MrcViscdrfxjxQ5BoVA84WhPqIXBXkKJuArFY0LXV16h7w/eIDG9UOxQFFlY7BvPuq/qZAep+9mXhG+U2LaskpVcf3Mo454LL7Tj7r61HYMUle3IxAVo7qyk59ZUwe2FW8fXVU9Y6PQ8mGTuw5FH+xrbqwgNzcHQNA0ug4oLTRwvMfj2G+NMTWfOuI+ZIZ69+BRXLt3BNC1ePH6G0GjazzXYVk33UmzR9+II/Hym6nOcf6GS2xO9/PHl90jkEPp/5S9U4ot8lzNNPThf+ou884fr2xgeaDmik0rA6P20OJxNq5U5CrI4+Txls3QqZ3uB3P6+0/M+IO1ray/GCFYHCLYH+e2v3+HQiWXvVV+Nl5nKMJORhdyxZIpDSuaamqkZ2KVMyjU0Hg8ipt8rytg7hdWdwKgpdhS7hxAlSM2LcBL5G2/HeFJTrukKxT7BCb2NXvmpYoehUCgUiiKiRFyF4jHBX1fJs//0p3ntp/+/xQ5FsRm2wZt1uxGOg2ZoONb6HMeQ5aG6CDFtN1ZyezIma6rd5MuDdwV9GG21TEdTPLg1SvKtvoztLNN+5FjvmBaztwZ5/uPlnDx0F/mxA/QmKvmTt8JMLAm6Ukru9NxlenqWY8cOU11dxV843EhtIsD7H8RxqoLAaoE5EY7juj3J8aiL0x0fw9NYRsIveG3kLt++cRWAMx21/IcvNFN+9R7hw1/EF+zmXNNvcvQXX6Cnr4upEReGW/LiM2+iR5YzJYde/Sp/9O98BAzJs+fr0xnl6UiXssrjWZ8jaWcXcaUUyCwirxCg1bThTGcvCjU6tCxUa6VuZlIRBi+nU1Zj0SRCSiqPVnB16gGzdxd5/mJl1r5y8c54gi9ImTFrWLFxrAe3cZ5uQnPnLyz3OCATdxDVp2Fq58V42fgRHDJP1CkUir2DKH0GzX8c4e0sdigKhUKhKDJKxFUoHiNqzh7C31hFbGy22KEoHhN0l55RxB0bWKRKZqwztW/w1FYy1zfOdpgGe+zMGbLehnKcmnLGpiP03B5D9i/k7cux5bqyo0YyhOk4iIEHHAD+X2fLcMqrGaea73aneP299Hv+zp37APx620XE9ARtXRrf1Ju58NIBuu9MMD+TXqr91KkGzJF09q8ZTWJ2p0Xen77Qyr95dhbb8GLMjsD4nXSbe3cQR86C1Y7XO83J6v8L8TA7cs3q77qKPuA4NS6T0unedeentTaTVarNMpdh60ewJoI4E9eyHYnm05h3HeRe7BlSpo7PZ+PWI3i0OJOxaib75ymtLSVU7uX3vndz1bEjA1M8/fEDfOf19zHNtKXDZq+Ku7dHOfmJI3T27b4FgJXauj3InsOxscea0NqfDBEXoxomLu3KUCKxAI9D7TiF4rFCR6v4CMJVh0yNIfxH0Wv+HCLHKhaFQqHYFQSIvWansI9/i24WJeIqFI8Rmsug4YVT9P7O94odimKj7LHPQ0gnB1tZPEpDE4twrAZm96/5pruyHEa3x3/SnJpJ/0OAv7OeuM9D/8As47cmgckN9WVbNrhWb7M8wVWPndAihBZpoJefOH2GLzd/gTG3m9+8cRshTMR02k8jHGjmznfSS/v9QOfpJowyPy1ByewI6zjQHkOMTq37ciACQcyea+DYmH3g6vg0/vL30Oz1Rd2GJw4BILPpiTntFFZfb7YsZ37s05jzgnL5zYzHSM2F9FXz4fiLvPm1eexUWtCWEjzlfkRFE5Pdk9Sfa+Nblx4Q7l6/TP3QM8184ztvr+53C18Kf/c79/mpV9qoGNrdLEfH2oM3km3AvD2K0fYEZDdrAbSkjpC7VMjNVgXNFIo9hRbA1fl/oJU8VexIFAqFQrFHUSKuQvGYEWxvKHYIik2wF6UX4fHk9IxNVjXh3ccirvDm9lAtFM3vQ6+txe31ceXDISIfZF/SXwh2hud8aETQkqGtFBrRwUnk7DwNwP/bHyB84jl6UhYzSTdT0xawbJA88WACkHz82RD6s0FiviqG++NMDqT9c0uj3RmvRaOpE6vn6qPHZn83sa6LBPxfX5eNfeX7HsDZXNG4JVuRlH2E8NRpQtcmccLd+I8fWvcmkYYXUXeO2QmHb79zktG7q69FIaDiYCMTA7PYB6r5ve+tLlIWKPMRXUxbOwzfmiJYFiC0GH20v8avU3qshoRp01Ef4O5giAdDiwWdhuNIfvvKJH/5SCXe2bmNPgubxjYfw0xcwJkcQoZPIYJbe2/teVxVMPrmrg0nfdVAhtkchUKx4+gNfxXhO4AQHhAG4CA8TQjXE2QCrlAoFIoNo0RcheIxY+yNa8UOQbEZ9qAnrvTkFjnnYxr7dcrAVVbKzJ3Nixeu6kpcjfVEQyZT3WM4V4Yx2tqILGT3ey2YDNdCaYULouubzrQdIDo6v8qfuP9Bgum+GRqe7mIhlERKqD1cz3T3BEg4fbYSa24Qa24enUHagYOnavB0NqEZ49gLkrVrk2R0Yd3YZu99nPPH0JN3ljdqBtNDNiAor3Bo/FgNgrTvhpSgCQeXOwaV7RlPXWgw+uEPkugZhBUuw7G7PZSc7cSI9j16ipzap7kz2MV3/jiGnVo/meA4sGDavDk6RTi8nH1b21pBaYMXXdd58E76GohHUlR0Bfn1F5qRk1NMt3aQkjYNxlD6m9IiNJ8+UbCICxBejPN7kwG+WurDiG/DdVEAVmrv3Ue2C7PHhedssaPYYZJDUHMepnfJTmG3Mn4VCsVqNC9G3Y8WOwqFQqHYEIK9Z6fwmK/RyogScRWKx4yqk51Mvne72GEoHgfc7py7x3pmqPfsT19co6Ee82bhWX0Sgb+9GRksY3E8xNTQNAz3r2pTXerKcnThNLZV8UK1hKll0a+6uYSK6WvrMmT7y6v56d/7NlLCR58+xcWyIEcdN9Mfpq0d5odm6OkOU1ZbSvetCUorA7QcrqO11UTe0RAr/A7MqWmaTxg4Q33oFdXotW04kQWssT70+nbs8X4yYdGOzrKI63gbkI6grtXLMfEd8B0kcus+K79i5ZONMhp4OA7R1GFKtVFE3dP0jzfz4e+5MAIe7FRmr1RNF/z+d5ezbz1+F51nG7j8/h3sEYfzzx1f1d7r9cDCIk4iRdWD+wi3a9Vz3uLZuOA1PDDDd8628cnEMLvxnfdxzcQFMG/fwv1UBcLYHUG8GGipSsTs7gi4ACQWIPdtfj16KUgLnMf3dVAodhrhO1TsEBQKhUKxT1EirkLxmNHyiQvc+Y9fK3YYig2Sy7agWKT9J7PHFV+MI0+3IMaHdy+obcAoDTBzc4B8c7fC48bX0Yqpe5jtnWL67gwwk7X9nYHCszSzUV1Tgphc4aMq4HhHFHNwdeG0yZIyfu6tW0QiMQD++PV3+WPA43Fz8cxZjvqb8fmqoTvM4lQYgPBclDvv9tIa9jOR6qTuYDWlWhR9+D5YSVzRIRzAWZzBWUyfp1YSxNNWj9bqJjUWwhwdY5UgG3Wt+iZh6bWA5MULC8jhMAx+SPBgG9EZC3t+a89P+GYP04f/Inf+zGG29+HrsEjdwUYmlwqzrUJKXC4d07TpOtXE2Mwk779zK2v/Ho8bYSxLyDJlrtrvnZ0k/X7Ift0caAnyuXM1tNuLOLpBvwzw63/US/2rhzg93JP1uO3CTD6+Ii5mAqu/HdfBu8WOZEfQRAdi9rXdHdQdBDYgxrrqcR/9bZzIh1hD/wSshZ2KTKF4fNECGE0/X+woFAqFQrFPUSKuQvGYUdpWR7CzkVDfWLFDUTwBxEtrCOwzEddbW8niXOZiY0ZFGe7mRuIxm5kH49hXRwvu17K3LqAN9M3gPdpBx1A68/X8R2owuz9Y1SZuuPg798aZmV1fVCyZTPH9997j+8CLT38c30kf9d4qEj0xkvMpDh2tITaVPqfBS2l/BsPbwIFnm3Bm/+91/cloCINxmHgPrwbe403IQBepmSSp/kGsqVlohIhTyrXIaWamD/PnvjAGw32P+rAnBvF1Pk1kAyKuRGCW1JEK1JHQy5gN+xi7O0Pq7nqxtrLax2R35n5q6oOUNAe4/P6ddfvkGtuKprIyzEoPIsPzCmDNzPH3v3KCclK4UgmIxZCxOKKygjlvGZWJRayhEeibfJRN3HbwAAAf3hjm85/sYPiDzBnN24WderyXxyffu4reVo/mXih2KNuEjvC0p31E+ne/IKnj8eVto9f+BbSSc5jD/xua/yhC8yBD76cFXOHC6Pj/ICPXsaf+684HrFDsc/TGn0Gv+jJC9xc7FIVCodgEEqHttcSjvRbPzqNEXIXiMUP3uOn40otc/9X/XuxQFBthD3riFsLMgk2g2EFsED2w/ONJSvC2NKBVVhGajjDVNwljA5vq1zD0LccWmosyMrJIB9BwoAx3/4ervppIKfm3mouq+iAdThN9fSNLGdOrqaur487NZcFQCMGxY134OkuRThlihaBqJVK49FiWiCREV4j0oVFEaBQP4DlUBWUefuKP/hxvvj+AZSUoLe3mGx+Zw7Oml3yOG/GKTmbdnYSiBsmozUzPJI5pkzZXmM157OztIQKVAaJzy6bBUkLpiXaSo/3cyyDgptssP7M/+EozF+0RrO7M1gwPqXiQzuRdZfkQiRJkJKMNhGthfqmJSfzObWpPHGLq1s4VknIsmRYE5WOakWsmMG9X4zmzUOxIto7mRYsKxPjui7cPkVo4728f4TuIFnwG97HfBdLXld70c+h1fwGMSoTQkd5O7PlvYjT9LTT/IVJ3fnDng1codhjhP4FMjoC9sNWe0MpfRa/9UTS/slFQKBQKxdZQIq5C8RhS/9wJrqNE3P3EfpBwhQDdbWAlLYJ1Qarba4gvxJCGgbAyOpnuSRzNwH+oE9vtY3ZglunuBWBhy/26XdqW+4C0uKi7NA5Vz2COrX5e+8or+K+//8ePHre1tdLe3sn8bJR7d/sRQqBpGqeOnePKOw9W9Xn7Vg8VoWomBxfpPFLPgaZSyubnYGqWBv1exliMxgYIXcscaGw2/Sc/h2WlM0DD4RiXfcd4PnZ9zTllOk+IVR+hP9bGwNujwAQAZReOIQ4GsNHxzM0iEwlEfQ0x3ERiJmUlLoyBAWQsXazMTpq0nqjl7jtp0drbWEnYX8o7bw9gN6zOTG2qr+ZMywHslI0v4GOqZJq//ek6XPfvZvbi3SLm9CwVpeXMhxPgSBgboKKzkfm+DPYP24IA3QVWMn/TfYp57Qqug0fRSvbxahPNiyaaEAvFE3ABhPQjyk+hBV/AmvgNSI2hBZ/HaP174CSQqSlE4Fi6rdAAbfnfrprlftz1eI7/EQBSOuj1fxmZGMBZeI2HLtjC04LwHUYmh9PCmBMFoxwkaBUfQa/8HNbYv0ZGPkx3qnkRrhpkcn+t9FDsf4TvMEbT30ArOYO04zjzf4Y18r+vbmRUYDT+DDIxhEyNIRMDSHMKtEBa9HXSn096zVfRqr+M5mnZ/RNRKBQKxWOJEnEViseQsoPN+OoqiU/OFTsUxWNE/bEmpu6M0nSimakH4wxOpbMWOy60IwZ23u9zu4iYLgaub382pMvYPhH3/MuVmA/WFziqTibQNA3HSWfEDQ4OMTiY9tBtamriQNdBEjGbm5f61h17qLODyd70PaHv3gR999Kiaee5aoan5/lSeSPtydXCmLep7KG2mpVz7YLvv7P8+PuTXp4vXXtSy/+MVR5i3tXCQJ/F/JuzwGrLilDM5tLra4rOda9+vRo6q2k3pvBUBTEqg8R0DxzrYG46ysidKSB9ns8cPsKp1k4cXSIQRMeiDFxJ99V8pI5ffsWPdX9nPVYvHKvmz94fRbhdOIkkPnOBkMfATu7QxMdjLuIiJakr4HlJZsxC3w9oCT9itrgCLr4WtPb/Gb38GQCEtxXzwU+iVX4GYZSnt7nrN9ytEBpG/V8CwJ79Gtbwr4CrFlfXryPcaeFXOilkcgShl4Cr5tHr6Or8PzD7/g4yOYKr458BYHb/FZCprZ6tQrGMcKM3/jW0kqcR7jpwYsjkOMgkGOUI74FH16TQfejVXwLNhzX6L8EOo1V8Cr32R9B8XRm7l1Iik4PgJND8R3bvvBQKhWIX0MRjutprH6FEXIXiMUQIQe35Iwz+yTv5Gyv2BnvQTmGtZ+hDJm6vFtSirnLWanY5cbnQKquQgSC220dK6iRTkng4hdtrUJWaRE7lUQ43gfD7MRqbiMR3xjd0O+wUAOx4HK37fsZ9ZYkEf/FjH+O3vvWtdftGR0cZHR3l5z7xab7yXJD5unpeHwvxR5d6iKcsDjS009273uM35Jrlv/7em3yjpZ2/d+oHaGp0qBe3CUS6Ean8nsA/VPsuv1HewcJCBIA/+v4dTv/QeT6buIQQkNDcJO0SFhsuMjDuZ/ytCSCzJzGA6OknWF1CaCaClBJvpQdvrR8R1EnpNiUeN7UxF0M9HszeCPSmx/UdaGBkTYGzyGSM4bvjGceZG1vE0nbO2uAhn65N8pGvtCJ708a9qdl5KtoOMPMgc1xbRt+e63AvY/XewXXyHHplb7FD2TDC04kY/36xw0Ac/ttoSwIupG0T9LofQws+t21j6FWfB6MK4a55JOACCM2N8HWuj0nz4D7wa0iZFujNoX+mBFzFtqPX/ShGzQ+v2BBArMgsz3hM5ScRniakFUIvu5izrRAC4W3fhkgVCoVCoViPEnEViseU2qeViLuv2HsabsFMT8bXi7guF64DB5GagYOGaTokIylic1FiMyFqOpp58G7mIk+Rtipa86V/FoBWVoZW30hSeFicjLA4OA0TO7WMHSpKXDn3H+wo56NPVeBLLVWDtx2wLKRpIk0LJ2XiJE2EYTJZeQEhJWY8hRVPYadsDK8Ll9/DF+YjXGpq4+7oYMZxPlPXgt0zTHAhxOeBL56tIdbczPsLAYZ9LhJxc1X7/tl0FvXd4QHePzxF13ccrlNDWcshOiugrcxPmX2DbEmPVWKG/+Urp/mF34g82va//o97/GZrF9XlAW7cHebvv1xF5OYokNlzVnPpBBoq8ZSVgNvgnMvgd+/dYWJ8lvB0FKZB1zS++vLzxK9NMZ6hgFdVcK0TL1lj3k2swWHWyqqaeweFVvH4i7gA9oQLvbLYUWwC6S3e2MJAHPyfEVUXoeLc6l3CwGj4K9s+ZD7BKxMPsyCNxr+G7W1PZwRLC3vum8jwe+BuQq/4GE70NjI1jvA0I8OXeWjdoFCsRkMLPo8TuQxOHC1wanO9BE5sc1wKhUKhUGwcJeIqFI8pteePFjsExQaQzs6puFWHKiitcYNMJ/xK5+F/JfNhD7GkCyElUoJYUpOlbiC9fmqEkRaYBfgrfbSfqMfl1gn4LKSZXg5uGA6p2uNYtkQ4NgHNQne76P0gV5ZjdnVtfnCWllodYRf+g1wLlqHV1mJ7AiQSDotji0SHF2B493wzy33rxTNNwMeeb+F4mU38/gDcniKer6Okydyd9T6QKxfI/8LzX+Qv/86/WtfmwoGDeHpXP+9OLE7pwjyT78Y55HdTd66NKIIPrw6g+eCd27cftf3X3/lD/s0XfprUrQkWh+e5OgxXOUB52wU6jju0lV2izL65Thz9Ysl3+JOLn+O1d5YzIweHplhyelg3SeEpLyHYUUfKkiyOL7IwschC7xwPbRAADh6soPt+uoMTXW1cCDYyczl79urUvTFcHh0zuXzd7MEEdwA0fXusNzKiPxlf7WQoUewQNozwHEcMfrt44x/9JbSuv1q08TeKMMoxan/k0WOt9Bms0V/DaP5bCN2/qq018i+wZ353t0NU7FWEG6PxryN8XQh3PcJdjxPvwwl/gCjZnIirUCgUTzwChNhjX673QMLGbvNkfNNXKJ5ASpprCDTXEB2ZLnYoioLYuQ/EunYdY+CNjPuG3T/A7XczC2OeaosHA7FHj4+frcc32I8JdD4fJLliyf+7/hd5cCUtmJ5/toHUjcxZtg+Rec5XGAZkEXGlBFdzE05ZDdGoxeLYAvGRMIzsXJZtIYg15/Tlj7fTFp0mMdFLfJvdIQK98zRX1TIyu/qc/9ZHPgo312fopiobgXmslMXo9bRAnOicJBD0wxqd+x+89t/5p6e+TGx0WVBdGJzj6iBc5SDlbc/QcVzSWnaZcvs6QqQzXv/xhat86nod0eh6mdoWUNJcja+uktBslOnuCaanB3KeY2fcIOD38KVnLhC7PsXMVPpe1nqqBTthEpkJU1JdiifoQzM0nJSNN25x69LQoz40Pfs3u3gkiaMZaM7uF+UT2g5+49SejExcJxQudggbRoxfQkgzf8OdwhUs3tjbgDCCuNp+KeM+veGvYi++Beb2W/Eo9g969Q8hSs4iXBVogZOr9mm+TrQMNh4KhUKhUOwndjAVRKFQFJtjf/lzxQ5BUSA7mYmbKxsxEsm+b21Mq4sIrRahmipXmNwXICJtWMJyuzEOHsY+fJpJdzPddyP0vtfPxM1h4rN7Q8xZ+YH6Y5/rpK7/AYmp+R0Zy06a/PzLX1q1raGiggPDfVSdPbzOR2A69v9n777D48iuO+9/b1UHoJFzJkGQBPOQQw7JmeHkpFHWWJYlS1ay5XWQLEv2em3LK1v2vk67zlqHXcmWLCdZXtmybFnBSpMTyWHOGTnn1KHu+0eDAUQGutEN4Pd5nn7Arqp76zSAGVSfPnXu1K0ennn2Fe47cGDCts7+Pv6i6QV8mYEpx/Re7ea1/+jhX/9hPf/60o9xpP9DdDn7KaeJX/qh0hvH+VyXR3fdwccef5KRtjGaL/dw8aWLdJyfW5Klv7GHn37gQQYOthCLxBP6BVUFdJxrpf1cK8PdQ7Sfa6Xh4GWuvnSRhsNXKMyaGHNG1uQWCzdYiGTnzSmWREtuEnd1fD7v9XSlOoR5ciGYn5pT++INb2z7d1Jz/iVg3Ez8a34JZultKiuXr+aX8VV/DDf/gUkJXBERkZVidVzpi6xSZXdvS3UIMkfW85J3N4ideuaxQCHXXp1+gamZE8sTVyYtHm2C8c6f1pnD54PWUrmtkqHuIfpa+ibPHoniLy/HFBQzMAIdZ1uJHUrvCqvrdxf90JPrCJ05k/Tzre2d+HP9/974JDQ3Ezn9GkX167BZBUSGw4w0tuExudrUHf85nTpxmZqaahoabrZheO3SOaJvfQCOz1zd3HuthyPX4AhVZJd/gM27/PzUm9aRM5zJ8IUuwtdGGb628JYWrS9foGprNU2nmjHGEMoKMtg8fWJ8oHFiYm+6ZKkv4PLUw/kEG44vOLbFcJKaxJ25N/NKYYd6sbFSjLs8Fr4ygU2Ylq8n7wS+HJy9X8A789vQ88rN7Zk1OI+8CK3fgMyq5J0/DTg5e/Gv/2NizX+K1/98qsORpeKE8FV9DLfojamORERkRTOkXzuFVdhNQUlckZUsVFGEmxEgNro83uSuZtazSfsjNN2f2qg/Dxvzptk7lZsR2uGhCXsyO66QXbiDwe5hRjwX3/YtWAvB6Bjhs5cmzdR94jLZVcW0tN9c6Mqfk0loXQXDUejobWX4XD8wuTdsuooZeGBfJUWXLyzJOnXh9j6e2vsA//LqM2T4/eweHr6RWo9cuwxcxgCZFu6vD3FnrcOxq/n4fOD3QW9DPIk7NDRMbV39hCQuwHOt57mPuVeqDrb2c/QbUFVeSHNLP9GxxbcpMAay8+ILQRWtLaJ9lire/tY+snIzGBrvlzrUOzzlcT/wUB4lKUrgQpIXXFslC5sB2LFCTCi9P9wBMMFazJUkJnAB8u/EFN+LKdyLvTWJm1WLcfxQ+ebknj9NOBlrcer+J7HurxNt+F9gx2YfJMuPCWICZeArwrfmF3GCNamOSEREZEkoiSuyghljKLmzntYXT6Q6FJlNEldgmi49nDHciHEq5tzKwd4aozcx+WsMrNtUyPEXhzn5ws1+uBt215A1xVyxcBSTm01GiUdGZRGleR4Fpp+YHaSxyzDY3ndb+4b0d7FjhN2RdiLzWJBtsd60bhf/8uoz/Oqb34DX2zvlMcbAWK9HTs/LHLj+Vz8Khwo282/jT08eP8eDDzzI0888fWPcVw8+z8NbnyIyNH0SxFpwAj6Mz8UbiR832trNut2bOP/i5OT9QozhkLl9Lf2eh7exivBYlEg4RkVNIS0X2vFiHpFwjLrNZQydacBnbyYxRwanXvwqOk3LAWuTnGC9LoknscZdNVUJsdYCnLr0TuKajC2Y5oPJ/Zlkb8LZ/Evxf4/eVvmegp7P6cAtfD1O1g6iTX+Cyagj1v43qQ5JFsXgFDyBW/IOTKAS3CyM0dtYERFZffTXT2SFK92/VUncZSCZPXGnKwsdyaqd8by355km3Jo+RcuE8uwxbq9tHOwbnZDEDeRmEqirYcQJEAqNsndzFBpewmuNJ9t8wHrgVLCKaHjpkqGJsKc6QPjo1JWfyZLTHD/f6zIzoHf64wYutZNR5IJ383t6+x39TY0d1FStJycnGwAv5tG2sZzYpTG8mIfjGGIxj2g4SiwcIxqJfwXIKsiiipvJ3r6j5ylaX0HXxcUvNjcSjnL0hYuTtueX5NDRcLO1wpHn4g2ei6tC1N9Vgj/gw1pLZ0Pv5Dnt5JYD4ex8jgQ2sa/75UXHPJukJvRWSU9cgLEXj+JWF+ME+mc/OEVspBETSV58Zs2PYLb/FsaN9382234DO3AB+sf/b+yt3kpUE6zGX/c/4//O2k708i+RzEVEZWGc3PsxWVsxviJM1nbwRvB6v0es44sA+Gp/CydnLxj/svtwV0RkZbFp105hNf5dXz1X+iKr1Jon9nLsj76U6jBkFqNdfRRt28boyZMJn9tO0xP3eO8OoGX6gbcnam+txJ2icrhw8BqQOWFbT2sf5TlB/HU19FsfZ0+3M/y9a7z7zfk4Z44yXTOH2LzaPKReMDeD2JnJicZkc0IBdqypgZaZqxFjI2O45euINV+4sS3gTvz5ep5He1sX7W03+8r+a/RZ7huun/VDhqGeIa7l5mE9i7UWG7EURJ3475C3uJ+lmWZ8NDJ1hWFnUy+dTb0AFFcXTHnMSNTFWvCCGRgvRnd5PV97dQzX7WFf6ZRDEiuJF8CrqRKXsWEI50IaJ3GxEXCD4CWnrZGpePONBC6ACZbi3P8NGDgLw1chqIW+ANy8+6D2f+D1v4TX/TVW45u+dORW/ARu6XsnJWed0Gbckndio704mXUpik5ERCT9KIkrssKFKovx52QSGRhJdSgyg9hYhM5TV8nCYOb55tJaOFexh+HhGBYbz696Fs+zeNYy0m3YP35sf0Y1X760D5/PIWZ92HW1NxKyxpgbLROMMYwBpVsLwFqM49AdMbhV9XjW0tFlsf46dhe2k9d2DoBgTzM5RXcw0BXvl2tcQ9W2ao4fvUbkhYn9VgPRkSmW2rrlNcWW1xvsyi0V9B5J/mJmtxvNC7C1smJOx8aCJcAtSVzfbUncKdpAnG24wlsfuY/O16ZfAO9GLP0TWxe0X2hn0911tB26MM2IuYleaycjFGB0eGIS7NTLl9m2v45LB69OOzYWnbqa+/vfucb3qQQgMyfIyLF4RW9BWc6kY62FzprtDJpMajpP4xsZXOhLuSGZSVbLHBYWXEHsWAZkpzqK6Tm+dZjI2aTN7536VZzCr2N8N+95MI4P8rbFH3KDm/8wbv7DePmPEG39DHb4HLC87vhYCUywBhPahlv0FpzsndMf5y/E+AuXMDIREZH0pySuyApnjCGntoLu44npTynJ441FyLprG8PH5tn+wnU4/tL0C4CVFFfQW1RLIDbIqJvP5RMdi4z0pvJHq8gjnsQ1BvJLshjoGiKvIg9/ZoALryzs9871O8Qiy6ca10nRrUUXvDwe2rgTms7NeuxIV5iwm8dJ/0ZODeZwJeKyYX28wsnzLFlZmbS0dGCtxXEcXNfB53N5qes0m7MqcH0ObsCH63MxPgfX58O4Do7PxbgmXnVrwBiHeB7RMGTc+C/GIno+R/uH2bJzLa+9eHnSPp/fxR/0EZlmEbVoZPYEzcjAzdvNe9oG+JesHaypzqI8FMbnRXj5sqHhW508+brqhCRwk2/V1OECMPZqF5lPOBgnPf9/YZ3Y4n4iwRKIjUJ0YOr9A2exFz6Nud4TV2bl5O7Hn70Lr/8FiA0T6/0OdiD5bVRWLScDE9oer64t/kFMQNXhIiLLlXGWV6HNSqQkrsgqULZ/q5K4y0TPpVYC86zGNZ5HZk4GIwNTL+J0+LkWDpOclZub22Osyy2jK7cWz59Jw380kFOag7XQfmmmZPFsr295JaKGBiNLfs7Wuk18+2uXcF2H5gfu48ngBTL6J7ZV6A3lcDq7hKMDMS4f7KP5ahHDgy1AC7v2b+TK5aYbxxYU5IAzRjQSAQ9279zOK6++zDcPNlC0930Mn15Yxdrdd9cwcPraYl4qZSbKQ3eUECgr4NK1Xi6cbScjK8i5WRZP8xbQlqP5UhfNl7ombNu6u5K1nafmPdfSs7hDTbMftoJ4zZeJnr8H/6bTqQ5lanZxl9rO9t+Gssewl/4v9tzvAQ54t/2/3qqadL6ME8TNfxgAt+iNxLq/TrThd8CuzoXgFs/g5D0IvjyMCYAvH5O5HowPJ3s3xgnOPoWIiIjMSklckVWg+rG7OP3Zf091GDIHY90DFGyrZfj85KrDmeQUZE6bxE2mi8dbuUg2GdkDZGeNkZmXiS/DT9e17pkHztIn1SyzO8I7L7Qz+Ub85Omu28BX/jP+OxKLeQSdLL52opS779lA0dBlgj1NGAN/0BPkpe++emPc3jv3cOZIvGq7u2NiZV/M84hEbiaj7S0diy95Zyhn44JiHUzApYbjOvQ1dkNjNznAQztKCFYW0tjQx6Wz039YEJtDJe5cnDrczGknjw3b69lY4VI+eI3MntlbTEzH2ORUjd7xZB70Lzyu5Spy+jK+ept+ix45GZgxoOQh6Pj+wuYo2o9xMzEbfxZb/gbwZWMb/gF79nfj+wNFmLqfTFDAq5db+HrwRok2/l6qQ1mWfNW/gFv81lSHISIisuIpiSuyCuRvrCGruoShxsTdRi+zC5UXUrB1HcOtXQw1dhDuj/eKvb1HsRPwxXvYjvfv9AKheZ8rKze1VS5rtlbSeqqJPU/t4eT3Zq6IK1tfStEb7mL4e99l4OTUvSKNk2bJmFl40Si4S3AeDC11m/n3b1+80b+4uCSbgZONRMeiPP3tDiCbnOI9VK3P4+hz/zZhfCB0MzveeKWdUGYGwyPx5H/ktoXCbl1c7qVDr/DD27YwcnX+VWqXT7dSu8iWCoFM/4TnfU3d0NRNANi3pYDMikKaWga4cLp9wnGJXCDPepbzx1o5fwzAJZi5lmAoQDDTTzDosqUuRH1T6m7JXnNnLqXD303Z+VPJ627FDt6ByVlcxXfCBdfgbv0cYPGefii+2Nh85GzCBG+utGdyxj9IWfPueBLXycDZ9SeYYFGiIl7VnKK3YXq+iR06nupQlgcnExOowi3+ASVwRURWA5O6FnLTWl5vGRNCSVyRVcDxuVQ+uIvzf/efqQ5lVTCOYd9vfIi1b7wH49xMmoUHhokMjpBVUcRgQzsN3z5I4dZayvZvJTo8Rt/FJpqffo2eM1cpPnAnvUfPEh0cntM5QyH/7Aclybrda2g8epUP//1PsvmBTXiex0tfepW2C+1k5mYQGYvynf/zfXwBl6d+5c3c88P7cRyH/u219L7yGtf+6ouT5nTSraJuFl7US2oS18MwUFvHK01hLnxr4kJh9+xaQ/vBiZXbA52DtOdlMDI8sTq7rf1mktPzPDasX8+xEycBiEUnJjyDgcCE58MlvRSZNQRzg7iB8V63rgELFkuePwiexRK/nrI2XlFtLWSHhxk837zg1++405dm9zf30N/cgw/YW59HVnUR7d1jnDneHP+5JMnYSISxkZuVy0ODYQp3bqOg9TxuNDzDSBaV0J5KQXUG9SWvwNDSt/VIF9FrmQTSbB0vt/DR8epggynYh51HEtfU/igU3T31voxynIeehUD+hCSvLI4xBrforUSVxJ2ZCeCv+11M9l3xHugiIiKyZJTEFVkl8jdUpzqEVWPT+56k9s0HJm0P5IQI5MSrbLNrStnywTfc2OcLBSnaUUfRjrob26JDI3S8dIxrX/om3Ydnrm7NzEhN0jMrP8RAcw8/+n8+wOYHNgHgOA73vmv/hOOe/JnHcAMuzi1J7dztm8jdvonuFw8xePr8hOOX3/tCg3EdbAIrP68bqazim1eitHx7cpVhcUk2PScapxwXK5j8J/7ihWuU59Yw2B9P7hbl36zgi0Ynth5wfRN/p1489jLrRt1Jyd7r1hcWEB6cOnm5+/71U26fsznmPAfa+hho6wPgjspM8jdU0NUf5tTRJmLR5FYO9LQN8I/fAtdfxrrNJTy1e4TohSbCPf2TD05gO4VAyGXPnqvQ2ZOwOZejyJlL+LemqKWCmw3+Ehgd/zDFl49b9h6csvfcPCZ/F1z7m7nNl7sVZ8dvz3iIyalfWKwyIyf7Tpzit4M3hh29BDgQ7cWGm4H0XDxvKZnQVtySd+Dk7Et1KCIiIgljjKkGfgN4EigCWoCvAL9urV3QRbYx5r3AF8af/ri19rMJCFVJXJHV4urXXkx1CGnJn5OJ4/cz1j1FomUeMkvyyd+0hqId69nyoTclJDZfViYVj+6n4tH99Bw/z5k//Bt6j5+f8tgMX+ISVMYYtj+6hcuvXWWwa2jGY+vvXscTP/UI9fdumPE4f8b0lcJ1H/0xTv78rxMbvtligmVWiQskLYn7lVPD9HYOTrlvqirc6xpGu8GCz+cjGo0S8PupKq+kuqKaIwfjv0exW3KusdjEJO7tybD27lYePVDG+Vdbpjyf65u+FHlkNLq4u50WkPQc7R+h9XB84bPt5RkUbKigb9Tj9LFmRoeTV7Eai8S4cLyV0J5mqmqPM3LHHgbClYwNjdcoG4svdxGXX4abSW0DB94wAi1auNL2dWAH7sDkJr+lgsmsx0Z7IdqHU/ZDuOUfxPiyiXX+O4TbcErfjvHlTxxT+ugMn0U4UP46TOHdYKOYgr3JfQEyLRMox1/9c5O222gfXt/TxLq/jh06loLIUihQgZOzFyd7D07+o+nXe1pERJaEAYxJrw80E/EXyRizHngBKAX+FTgD7AN+FnjSGHPAWts1wxRTzVkDfBoYBLITEOYNSuKKrBIZxXmpDiHtGJ/L43/3a2SvKSM6MkbXsYsc//SX6T4xt4SIcR3WvvEeNr77cQo2r03qG5uCHRvZ/39/lct/+zUufeHfiA5MTK4GWfyK2qW1xZTWlfDW//YkdXtqOfPcef7XU/970nF5ZbnU7qxhz5t3su+pPfiDi/tTkrtjM2s+9G4u/8lf3ti2LN8kJinmrOzgtEnc0cbpF5BrPBZhq90N1/OVYeAalNSUAvEkbtPVm32yjTGEQpkMjyfTp/oZtIxeBKbu2ezP8DPCyJT7Yp6ddMFhrQWfg/G5OJkBrGvivZAdB1wHHGD8+ah/caXZYwOjtL4WT3avz/JRsnsNw7icPN7CUF9yFgSMWh8GS6j/YPw7dkuO22Zt5RQL+3/y3U9lMjrq58h/9HP3U5m4LfqA7jqvLwsnd65HX/+dmt+bEZP/AL71/wtjDNaLYJybH1C5xTN8gOfPw9T9JHboMvQdh9F4exGz/TcxNT+M8WXNKw5ZWsaXh1v0FkxwDZFLPw/e0i8kOmcmgJN7N07OXmyki1j31yDaA3b66wQTrMXk7MHJqAMnc7zfbTnGlwf+ErVNEBGRlezPiCdwP2qt/fT1jcaYPwA+DvwmMOdVZE38TdTngC7gn4H/mshglcQVWSX2/9ZPYK2l4ZuvpDqUtFF5/x3krC0HwB/KoPzubZTfvY3u01foOnqB3nMNREfGCOZl4wYDjPUMEItEcHw+QuWF1L3tfrKqSpYsXsfnY/0H3krtu17P4KUGBq80E+kbpPV7r/Dy6cV9Krrjsa18+PM/NiEhe2v1rHEMj//Eg7zhZx8npyihHyYCUPVDb2aspY2O/3yWSN/iqqJXmsfX+vjCNYPnTa7j84cCU4yA0JoiBo82Tbmvu7GfDXfEf29dn6Fg3WY862EMBHwZeF78dyk7O8RjDz15Y5wl3sp1/SPFjI1GiHoxPM8jEo0Sjcboyu2mI6sTa+NVvdcre2OxGKMmTLeNEglHiURiRMLRGwuzzcXuPRuomfPRM4uFo7Qej1drrvW7lNy3hmHrcPJYM8MDs/Sync95mPpnA4CNTb9v6gFsuDefssoRMjtfIDsW4b4fvJeMltW5kNl0widbcatnb6ngVn0Yp/xHwFps/4tEr/wmRKf/QGTi2J+6Mf+tCdzZGF8Is+3XAbBjHXjPPgmjrZiSR5TAXUac7F0EtnyJWMeXiLX/PenWYsHJuRu3+mM4wZv/x/RV/Dg2NogdOQ9OFtgoNtyMk7UDnBA21osJVC/PD09FREQWwRhTBzwBXAH+9Lbdvwb8F+C9xpift9bOfIvqTR8FHgEeGv+aUEriiqwSjuuQVaEVrK/LXV/F7l9+35T7CrfUUrildmkDmgc3I0De1vXkbY33Ga394dezo3eYo988wWtfP87x75zGcR22PFBPVl4mjs+lYmMpmTmZDHQOcP6Vyxz/9qkb8+WX5/Hhz/3opIrauj1r2f7wZprPt/Fjn34Pm+/bmNTXVfezH2LdRz6IjXmc3p/QDyyXtcymRt7x2Aa+8mwzMRMjMhzDjN885MvKmHpQ4fSJ9rYr3VwZfI3W1rZJ+6rLNtLbE6/6raoup7FhciL4/vuzOfzy5LYe6zaXcfrMxSnPmZObQ2/3wpMd3b2DCUvi3sqLxGgbT+iuC7oU71zDMA6njrUw1D+2qLmjdvoEn4nNPVm8/u481pWdh86X4t25xmW0PLuY8FYkr/kyXs9u3MKZ76ZwCh/HGDfe3SL/fnx1v0H03EfiOzPW4VZ8EBMow+t/Gdv3AhgXk7UDJ/cunMxF9ncGTLAE584/hUgfJrtu9gGSVoy/CF/lT+EUvhEi7dhwM7Gur2KHZ+5dnzROJk7h6/GVvBsTrJjyEONmY7LvvLkha+vNfb6cZEcoIiIrgsWY5K4xMX+Ljud6kvVb1k7s32atHTDGPE88yXs38J3ZJjPGbAF+B/hja+0zxhglcUVk4VpfPJHqEFLGCfgov3sbOesqqHxgFyW76zHOyrk9MCs/xL3v3Me979x3o8Jxuqoaay2Hv3aML33qX+m82kUoP3PKnrXGGD7+pZ9KatyTzum6hIfGiAwvLoG20hReusA9jxTzQkcjHVc62bBuHbluHoPZUaLbQ3hO/Gce7APbMELvSBhfhsGX6eLPcPBlGtyAwQ0aPBMlENwwZRL3Vl5s6mrRaw3XsHZytaPrTt8T93p170JFIzES0/VqerFbErprAy4lB2oYdX2cOd5GX8/wvOeLMkOVpje39ie5ZUHW5bwEnb3zPv9qFb3s4BbOcICTFb9d/NZNuftwa34OO3gUt/ojmGBVfHvOnVA157vn5sUU3Z2UeWXpOBlrIGNN/N+Fb8aOnMMOHSPa9oU5V3YvhsnciMmoxVf5UYx/pl96ERGRFW2zMebQVDustXtmGbtp/Ou5afafJ57ErWeWJK4xxgf8DXAN+MQs510wJXFFVpHiXfX0nm1IdRgpUbp3C/d/+uOpDmNJzHZLpDGGPW/ayc4ntvHyPx+moDK9+iXHIovv75sS82gPsBBueIxYLEZHRzcdHd0UF+fz/aEhRkcmJrz9fh+BsxE6BjvjrfRvcd99e3n6mWe4997JCaSKijJ6Ogdu/P7Epkm8Xr3SxM5tO7lwZmKVrutO/6FINBZjQlPYeYq3kli6W329SIy2E/H/V1Y6hjv2VxLLzOT82Q46WubW7iNiZ7jE8mZfWC27JMi+e5qgo3dO55O4yOkTBHbmYXyTPwhyit+Myd2P8RdM2ueWvQvK3rUUIcoKZIzBhDZBaBNO4Rvwho4Sa/kMduTW94QucMuHY4EqCDdzs4rIATwwwfHq7zuww2fi/3ZD2NgwxAZxCl+HW/A6TGY9xp26R7mIiIjMyfU3wn3T7L++PX8Oc/0qcCdwn7V26oVCEkBJXJFVZN1b76PjtXP0nVsdidycdRVseu/ryCwtoGz/1tkHrDK+gI8D79qX6jAmUV++m6y19FTmcMQ3yjdffZ76+vob+zbUr+XFF16bNKa4JJ+LV2e+rffq1auTqmlbWtpYU7GJ7q54kjIyQzI9lDe5ytR1ZqjEXWwSN8kJ8plYz9JxJr4IVRFQv6cMJy+bixe6ab7WM+246ExJ3FnaKZRuzOKOjSego3UhIa9u4VFiHbvwVZy5uc0Eccrfi1vxoxhHl76SXMbNws29FydnP7GOf4JwKya0BSfvAHb4DN7IWfDGcEt+CK/vebze72EC5bjlH4gvmOaEwA1hjA9ro2BjGCcIMOVdECIiIkvFOOnWTgGAM3OouF2o6390Z3zhxph9xKtvf99am9RVh3UlK7KKFG5bx7o3H+DI738x1aEkXfGd9dzzuz9JqEy3GC43q/UNarggn9bCUrrHLH3DYXr7RvFn+fjKs/94ox3B9RXCLZaDrx6fcp6K6iIuXp36HNdzoU1NLaxZs5aGhuYJ+0NZGTeSuNHo9ItvHTlygqysIkaGblY7OjO0J4lO05phrmLRxSWBE6nrQhvQRi6wZkcRgdJ82juGuXC6jWjkZvVy1M4QbzSexM0qCnDXI2M8+xUHL+JRUJ3JtrujZAwcgb7OpL6OlSx6th//xl2YjFpMsAoT2oSTp/YFsrSMcfGVTqzuNjl34eTcdeO5W/g63MLXzTCHD4zvluer8++jiIhIklyvtJ3u1tTc246b5JY2CueATyYutKkpiSuyytS+5T4u/r/vM3B15VZ4VT18J/f+/s/gzHB7t0g6iGUE6apax8XuGI2dvTQcPDvpmLrqdVy4Fl8w7Pob+NzcbPr7B6ac0zJ9Ba29paK1pqZyUhL31r620RkqcUeGR9l9Tw1HXrlwY5txpk8uzDTXXCy2p26y9F7rgmtdAGwu8FG4vhKbEaSldZCY1xe/O3oq0TAYuOfeS9DSyCOPFIIbgL6WCYuXycJEr57HV/9lzAzV4SIiIiKy6l1/81U/zf7rK3tP1zMXIPuW8aPTfOD6GWPMZ4gvePax+QZ5KyVxRVaZYH42D/zZz/PtH/kNxnqmTgLNe87CXCIDw3hp0MvUCfi48xferQTuMmZTeOv8UvIch6ep4Nw3LwGwcVcNDbRPOu6O2j2TkrjT9Z91XZfTpycngm+c85bvbWyK6lif7+a80ejN/56ttfj9Ln6/D1/AxedziXhDlFXlYYyDMRDKDlC3oQLjOAQCLo7jYByDMYacrGwuNy28NVRxSR60pvdid9GxKO2nGoH4xVXWXdkwXe45Go6XRfe2xL8Odi1ZnKtCLILX04JbVJ3qSERERERWBgPGpNn7tMXfoPK98a9PGGMca+2Nq3djTA5wABgBXpphjjHgL6fZt5t4n9zniCeMF91qQUlckVUou7qE3b/0I7z4i38+Ybs/JxN/dojhlrklFDJLCyi9azN3fOwd9F1o4rmP/hHeDLdgJ5M/J5ON73qMdW97gKyqkpTEIImxXJO4ZoZ2AlO5smYz5759s5L1/JEGyqoKaWueuKp5dODm1Ykdr0gNj029MNbWHbW8/Or01xi3Jm4vXrw0qb9ic/tlsgocKipyOXv2DMZviEQijIyOwOht8TcepK5uG9euxUtHj56f/rWWl5eRy5bpD5jF5pJCaF1eJaoxb+Yq0JIN2aBbo5PCrd6Ck1+e6jBEREREJI1Zay8aY74FPAF8GPj0Lbt/HcgC/o+1dgjAGOMH1gMRa+3F8TlGgA9NNb8x5lPEk7h/ba39bCJiVhJXZJWqfnwvmX/wjzh+l+GWLmzMY9tPvI3atxzg6tdexA34CVUU0XX8ImPd/Yx09DHS3kOovJC8DVVs+KFHyCi62TomVFbInv/+fl791F+l5PVs/fG3sPn9r0/JuSWxlmvPPzcjQGx05gWrrotlBHn6+cmNa2vXlU9K4l4710FddR2XGi/R0BhflHBsbJrzODNXw3uxm6WhHR2drKtbz5XL127ZFv8Ap6Qkn8HBwVkT6tU1JTeSuDO5tap3IczFzplXE0hDMc+Zvp0CsLPs2xMWqpcEMg7G1SWuiIiIiMzqp4EXgD8xxjwKnAb2Aw8Tb6PwK7ccWzW+/ypQu7RhxukKV2SVclyHt3zrDwCIRaIMN3eSvaYMYwz17378xnEVB3bMec66px4gMjTCsT/+J7zw0rZWqLx/55KeT+R2btA/52O7K2sZO3F50vYTz19i196NHHn1ZllreDTCrrq9XGq8xLWGJg7cfYCDr55gzdoqKipKuHDhKl2dPWTnZHLkyLEZz3t78re6qnxCEvdGHCfOs3fvvRw8+OKM/WhPHD+K6/qmbM1wq9n2z8aGl1+2086UwZWk8vraUh2CiIiIyIqTdu0UEmC8Gvcu4DeAJ4E3EF+l4k+AX7fWds80fqkpiSsiuH4fOWsTc+vpph95Hbm1FbzwX/+U6MjS9LA0PhdfVuaSnEtkOk5g7knck61TV9Jaa7l6opXC4ly6O/tvbD//UislhSV0dHfQ0HQFn+uj4WoLDVdbqK4pI1BRQnVtEU8/Mzkhe6vobcnUkZHhaY89fPg09933IM88871pj+nu7uHuex7g4KsnAKhbX0t/Xz8lJcVkZWcRjUSx1iMQCNA3c355RsbnYKPpubjZdGIxZqzEleSxYwvvvywiIiIiq4u1tgH44ByOu8I8OvFaaz8FfGqhcU1Fby9EJOEq7ruDA3/0UXxZGUk/1/offIgn/9//IFRWkPRzyVJZnu0UHP/cPxdta+mfdt/YcJgNG6smbHN9zo2K2GsNTezcvenGvsaGNkZHw8S82avfh4cnJrdOnzmHM0Mv3xdeOMqDDz4045zhsUHu2nsna9ZUc+XyNfr6Bjh9+hwHX32NI0eOc/ToSY4cOTFrbDMxgeX3mXPM0yVWyoSHl21vbRERERGR6egdhogkRfnd23jii79OTm1yFpcxjqH68buof+/ryF1XmZRziMzHXBc2s8YwMjRzlfq5ww2EsoM3nq/fU0ZX780FB33+iefq7RmYse3BjRhvez40OMTmzRtmHPP888fYt2//tPsPHz5MS3MT16414nkekcjkRdcW2xMXd/ldrsS85flhxIpgLURGZz9ORERERObEAMax6fVI9TclBZbfuyIRWTZy1pSx+xd/JClzr/+hRzjwex8ht7YiKfOLzJeZY6IxXFrK6PDMC6CNjYbZvmfdjec9Yx0T9o+OTnW7+OyXMbEpEr2FRfmzjjt16hqbN2+edn/tLB+kzLkq0oLPdckIBcjOySS/MJeS8oJlWZwdiy7DoFcQOzZ9qxARERERkeVo+d2fKCLLStk928gsyWekozch8zl+H2tev58dH3l7QuaT9GOWae7LmLklcX1Dg2RmBSdV4/oCDr7to3R0d9HZ2c3Jpw9RU1NBbc0arC9KWXkZba3xBZs6OjonTzyeKLXW4roufr8Pv9+Pz+fiD/hwXZf8/BwcZw0+nx/XdXFdl4xggL17d+Nzfbg+F8cYMoIhYlFnPHdqsDb+yXtNzVrGxkaIRCM3ErPWWsLhUXbv2Yi1Fms9YjFvvDLY3qgQDvraGRwawvM8otEo0WiE3VWP0nV1lLGxCLFIjFjMgyh4UUuYKGHiFbzujhI8lldSLra8WviuOHZsGHKKUh2GiIiIiEjCKIkrIklljGH7R97Oq7/2l4uaJ1iQw2N/+0mChbn4Q8nvtSups2x7WTpzyz67g0M8cu9WvvafF8gpDlG0OZf2zm4GBobJCWZz9erNFcAaGlpoaGi58fzOXTsYHRsjGo1SUVlMS/PNZK41UTBhPC+GF4VIFBiB/Xfv4cUXX4zP1wilpSV0dgzcGHfx4hUcMgiHb1YHr11bTXvTKOa2jPradZVcajhB/0DfpNe1Z88uDh48OO3rrqpcT1vbxIrinRv7GeibvdWCCS6/yxVP7RRSyvjmvtCgiIiIiMzGYky6VSks0/eNi6B2CiKSdOveeh/lB3Ysao79v/lfyK4uVQJ3FbDe8vxjPNeeuABVjefZdv9aGkZbeOnF41w630RHaw9tlwd47P6Heey+R3jkvgcnjfM8jzOnL3Dh/BVqassm7ovFiMVik8a0tbVOeH77Qmajo2Ns3lI3YdvVq43ccefkXrlXLzeza9tD+HyTk6ozLZAGEAwGJ21r6Lw045ibky+/hGgstjx/j1cKk5Gd6hBERERERBJKSVwRSTpjDPf94c9Q/fhdCxpf9cgeyu7eluCoJG0tv3xd3DzidiIRNmRHGB2Z2Bu3u6OfI89f4sgLF7GRyX+ifW7mjX+3tLRM2DddBbPruBOeDw4OTTomOyc0adtoZHDK+Y4fPc/D97110vZDh45QUlIy5RgAv39y4vf4yRPklExO7t7OLsck7iLXcpPFibVfTXUIIiIiIiIJlZQkrjHmvcYYO/740BzHFBljPmSM+RdjzAVjzIgxps8Y85wx5sfMDM0GTdz7jTHfN8Z0j4+9bIz5kjGmPnGvTEQWyg0GuPd//jQ7f+6d+LMzZx8AlOzZxJ3/7d0c+P0P4yzD1elldZlPJS5A2bnL1G+qmnKfz+fS2tN043lVdQl779nCyVMnbmy7cOEK1WtuVuNOVwl7+387nje5Wrejc3KP3aNHTlBZVTzlnAdfPs0Tjzx127weW7ZsmfJ4mL5ncEHdHBK0aZrEfeixch54tJyy6hxcd7yDsIG19QUUFrizjJZkstGZFw8UERERkXkw8TUy0umxbIt/FiHhTeaMMTXAp4FBYD73sr0D+HOgBfgecA0oA34A+CzwemPMO+xtpUbGmAzgn4A3AWeBvwcGgErgfqAeOLeIlyQiCWIch83vfz21bz7A5X99jqbvHabr6IUpj930/ifZ+fF3TurJKSufXaa3odt5XkU4xvD68hzOnZ28b+veGr77/NMUFORSubaQw4eOcenqxUnHVVYX03gtvtiZ3z91RWtz88SKXW+KdhVnz5wnN7twUpVu1ZpimpumWEQNePXFszxw4HGeef4/b2y7erVhymMBfP6pk5odQ43A1Mni62ya/X+gdnMh9aURRk7E+xdvcl3ueHAjx89HyM4LUNF5mvxwFcxeZCxJMteFBkVERERElouEXuGaeLblc0AX8BfzHH4OeAtQba19j7X2l621PwpsBhqAtxNP6N7u94kncH8b2Gqt/cj42Pdba+uAby7w5YhIkmQU5rLlg2/g0c9/gjt+9h0EC3Im7N/zK+9TAncV84eCbHvXA6kOY94W8utacK2Fe/fdvGEkryCbjXtK+e7zTwNQu6GMw4eOTTecxsamm20UvKn/pN/eZiEajU7a5nke9ZvWTRrb2d0xadutzp3sYPeufTeeX7vWwLZtW6c89va2DtcdOX6EQGiWy5F5VjkvjMUXcAhl+8nOC5JXlEFuwVQ9uG08gXvuZlLdxmKMnjrDxshFKrrPABALT654lqVjI2OpDkFEREREJKESXYn7UeAR4KHxr3Nmrf3uNNtbjTF/Afzm+Lxfvr7PGLMe+EngVeBXbq/SHR8fmU8cIrJ0jOOw5UffyOYPvoG+C40MN3fhRaJUPbpHCdxVLJCdwaa33c3JLz6T6lDmZ4G/s/fbMc4U5nLHHRv59qFvc/HVfgBCGRlkdVTy5O5ybNYYYHCiAQZtD0FfkG8/9z0uX77G5o1buHypiZHhyX/uystLaWufuLBZNBrFMDmhGszw3/i3tZbyimJi0VH2HdhCNOJx9NB5YrH4irR+vw+f38V1HcJDIdbVbuDylXhVfW5uHtu2bcN14/sdx8VxHEqLq8jNzQfirR9u/DduoLqwiPDgze+fxXJ9tVkPj/ySTDL3rgdr4wloG4/RWov1rj88vFv+bb34/tq6XIq6L2KjUWwsho3GwPOw0RheLIa9vhjcFBXKmRvr+NazE7fVbi4iEvBPOvaG8Xm8qJK4qWSjSuKKiIiIJJIxy/OOyZUkYUlcY8wW4HeAP7bWPmOMmVcSdxbX35nevkzIDxOvJv5rINcY82aghngl8HettVPfpy0iacUYQ/7GGvI31qQ6FEkTZhX1QM7o6OUH79nJl796kgf2Pci/H/waRQUF7Kncz+XjLbcdHQb8+AKWbVs2UZRfREFuEZcvNdHZ0cd99+0bTybHE52O67CurhprLbGYRywWw/M8HMchFvPwPI9YLEosFmN0bIB1G/JxHJcLF85ztaGVqw1wb3YGhw+eYfuOLbQ3DVG/tZLnnnvpRkTt3VBdU0lhQRHdPV289NKrU77OvXflcPTIySn33X23j1OHm6f9Hu17uIK2I9Pvn0lVVYixlvYFjcV6E57WbMhnY+4Aoyeaphlw61Bd5KaUKnFFREREZIVJSBLXGOMD/oZ4H9tPJGLO2+Z+3/jTb9y2e+/41zzgIlB0yz5rjPlz4KPW2lnLYYwxh6bZtXke4YqISAKYNF3IKlGshYKdGxntHyUyPEbRqbPcfWcVL73SyFv3v5XGcx1TJHBv2r5vIydeduiNxBgNjbKjfivHz53iwrXzk1olzEdBQRZdXV0Tthkn/vnpieOnycnJ5rnnrk0a19jQzNZtmxgaOsRYeOrkmX+anrgAJ06cJOgvJhKZ+s+1XUROfzHfD2I3k7iPPVrC2MmTjA7ObagqcVNL7RREREREZKVJVKnTrwJ3Ah+w1o4kaM7rfgfYDvyHtfb2/ral419/AzgI7ABygEeJJ3V/GvhkguMREZEkc5ZjJe4M7RSshcyyQgp2biJn+0Zsbj4thy/Tc6GFweZuvGiMPfRTXZHLqZevEI1E2XVfPdl5mRPmKasppG5rJUeeO0d0POE5Ohwmo6OQbRs2U1Iy8wJhs6mv3zRp29mzp28kQgcGps9gnjp5nrv23Dd9K5QZcqmDg0PUb5upEn/hiVjPLvwDgeutFjbdUUys4eo8x6oSN6XUTkFEREQkoYyxafVYjRZdiWuM2Ue8+vb3rbUvLj6kCXN/FPh54Azw3ikOuV7W0wI8dUsC+bvGmB8EDgM/Z4z5LWtteKZzWWv3TBPDIWD3QuIXEZGFWQntFAIFOYRqyrE49Dd20d3UC0390x4/1jPIU+uKeLGkgoPHWjjy3Dn8AR/FFfkEMvz4Ay7Nlztpa+ieNLa/e4jMsXwqqippb595MbLb5efnUVtbS2ZmJrm5WVRWVpGXl0c0GiUcDhMKZbJtSw29vQPEojH8AR+u62JMvK+1ARzHYBwHiPLkk08yMNBHZjAP6/kwxmAw+Px+HnzgPq4Xxt7M9Rpc1yErI4+H9q290ffWWm70tR1cxDXaYgpx8Tw2bC+icvQa0f45luCOiw4O0xR4G67Pozj8PXzRgUUEIvNlIzNe9omIiIiILDuLSuLe0kbhHAmueDXGfBj4Y+AU8Ki1dvK7VugZ//qN2yuArbVHjTGXgfXAFuBoIuMTEZHkWX5JXIsJBsB1yb9jI4MtvfQ1dtLXcXles4w0d3Gn63DgkUoI+LE+HzHjEMYQsRCtyyXDNTjGErGGkYjH+aYBjp5uY2RojMKcmStxc3Pz2LChjuzsLEZGRmlsbKKlpY0jR45POK61tWfC89LSMo4df4nbbdiwgQsXL055rocfepzDL82tNX1uXjauzyXQXTplJe/GBwtZaD2tt4jetN7oKDXhhnkncAFio2GaXoi3nmgv2UvdjiGy+19ecCwyT2qnICIiIiIrzGIrcbOB+vF/j05zC+VnjDGfIb7g2cfmMqkx5mPAHwIniCdwp1uR5CzwBNA7zf7r70Izp9kvIiJpaNpb8lPA8TlkFecSzA8RyAzi+scTzNEY0dExwv3DjHT20/jsKUp31tHy6uLW1LQxj6FLk/vh+rj5R9sjfitKNvFeRgfuLeXvTvbj+PNuxu04bNiwntLSUjzPo7m5hStXrnH48Pw/07xypXHK7eXlZdMmcc+eO4kxuXPqSRuLevT29XP31q1cO9M1ab9nbt56M1+eN/sx0wl39sx+0ByMdvRy6rtQvv8pqsx3cKPTV2TPhxcqAy+MM5qYOFcSG4vMfpCIiIiIzIkxFuOkVwuD1dhSYbFJ3DHgL6fZt5v4e8vniCdb59RqwRjzi8T74B4BHrfWds5w+HeAnyHeM/f2eYLAxvGnV+ZybhERSQ9L1RPXOJBZlEtmQRaBUBBfwAUsXjhKdGiE0Z5BxnoGiXR0EemYnFy8XfvR+VXeJspwQzs/ckc5/28g3sO1rKyM/v4Bzp27yLlzUydZ56OhoZnNmzdz5syZCdsPHTpMQUEBPT2Tk4jNzc08eN8dHDk4+/ckEokn3DILp07eL+byLLaIStxEa335Kj1Fe6jbFSan7/lFzxfJ3kp0zCWQO4yv7YWZ2jKvPlElcUVERERkZVlUEne8hcGHptpnjPkU8STuX1trP3vLdj/xFgcRa+3F28Z8kvgiZYeAJ6ZpoXCrrwOXgNcZYx631v7nLfs+CeQBT1trW+f1wkREJKXi/VUTwZJTVURWcQ6+gA9jwEaiRIdHGesdZLR7AK+7h6HuHoYSdMZUGbrSSt3GMjL8QX5i39v582e+xMjIaMLmLy0rm5TEHRkZYe/eu3jm2eemHDM4PNPnsDeFw/GE2+XGK8Tri2/jGIKF2Yz1DM47o2vTKIkLMNbVx+nvQOmep6gOPo0vPNulztRiubUMNQwQbo1f4mRtfpgs9zzO4NRV06uNjaonroiIiIisLIte2GwBqoDTwFWg9vpGY8z7iSdwY8CzwEenuJ32irX289efWGvD4+O+BXzdGPMv4/PuBR4AOoD/kqwXIiIiyWF8i0/i5lYXkhny0Xexhd7W+S32tVztKCzht/f+JIPHennr7kf47Pf+36LnLC4qobKymra2qROyJ06eJBAIEA5PTpodOnyQxx59C709fcRiHp4Xf0SjMSKRCNFolNKiStrau+nu6uXKlUZ2rt1HR8PEdgNexMfxKwOEcjMoqSogFo3R2zlIQWkONWvyCXgexlqGO/sZaO0lsyCLzMIc/BkBAnm++PKnaab90FV68rezfg/k9j0zr7HRkr10Hm4D7+Zn1ENnzjNWXEzBmkLcrmOJDnf58aKpjkBERERkRTFmEX3KJCFSkcSdzrrxry7wsWmOeRr4/K0brLXPGWPuAn4NeBjIB9qA/wv8D2utSlJERJYZx11oB9S4yt3r6Dtzlb6W1XVLdWAsxmBTLwCbcmoWPd/DDzzBhTNtXDs/wJ592wkGHE6cOIl3S6PZ7q5uDhw4wPMvvDDlHLFYmGPHTk17Dp8J0d3Ve+N5UU3m5CTueF/d4f5RrvbfzMgO9gzjGsPY1Ymt83sG+uBaHwB1Oyspm9vLXXKR3kHOfM+w/cHdhAYOz2lMuOwBul+9DFP0Go52dtLR7ZC/+1GCHd/DsIovtGOxVEcgIiIiIpJQSUviWms/BXxqiu1XYPIi09MdP8dznQLeuZCxIiKSfpxFVOLmVBbQd/YasbHVlcAFMLdUwzotYwuao3btOurXb6erY5DXXrl0Y/trB8/QOXiMvLw8tm7dAsDJE6cYGBigtbU1nlScoinryVNHCAYDjI1NfXu745uYsG/vaeX2ywRvhsXRYtGZk3WxaJonMj3LhZP5bN1QjC98s9q5NfOttJ0eYM0dhvy+78RbgWDoOdY8ZQL35nwevQfPkrHuHrILh3E7j2AW1VV4ebKqxBURERGRFSadKnFFRESAyYm9uTIOhLL99LWtzn6YY20320YMtw+wq24LRy6dnvb4+g2bKS+rJODPwHFcwHDxbDOvvDB5jOd5lJVW0tbezIsvvgSAz+dj1507yc7OobikmEsXLzMyOsLIyCixWDyJ1t7eyt37Hubw4ROT5jTGMDQ4PGHbyVPn2FS0i/7ukRvbYnb6RGw0MnMS10uznrhTGW3v5fjYVgI5mWxcdwbjjdD4cgteOMr570Lh9reyNv8QJqcCe3VuvSFGL19l9DJkbX2Y7JHnMN4q+28ipiSuiIiISCIZJ/2vq1c6JXFFRCTtLDSJW33XejoOnUtwNMvHWGc/oYJChnviy7Q9smnftEncRx96PUdevUR747U5z7+mpo629uYbz6PRKK+9dgSAhx56jO4bidcMcrIz4wvUWYtxYNcdu2hrb6Wl9WYf14rKMjpbB7m1B761lor6PPpfupnE9WZI4rY19LCuLIvh3uEp9y+HJC5ApG+QSN8gV7LvIDIUwQvfbBHRfaKBvoxq6nYG5z3v0KlzxOr2kRc4igkPJDLk9KYkroiIiIisMIla/ltERCRh3KB/3mPy15bQdfRiEqJZPoyBwrVFN57XOMVTHrdubR1HD14iNs++ofm5U88HMDQ0MUE4PDzC0OAQQ0PDHDx4iKEeGO4OUJKznnvveoTN9ZtobmolOyc0aa6BsZ4Jz2dKxHqeJbc8b/r9sTRvp3Cb3jNNDDW0T9oeGw3jORkLmnP00hV6hrbgZZYuNrxlwyqJKyIiIiIrjCpxRUQk7TiuE89IztT789bjfQ5+x2N0lv6oq0FGxs0/7bHWqatTq8o3caLt/LzndpzAtPuamqZfR9TzPNbUldDe1k14LMLJYxdwXZfHHnqSaDRKNBbDWMAYHNch4Pez7Z5SMGAw+PNc1t9TB8Qrde31rzY+97oqh63lxYDBWBuv/sVirMWJDkPTvF9q2skoCOF1ty14fLi5me7RCgqrc3D6VsGHHbFV1j5CREREJMmMWR53uK1kSuKKiEhaclyDF53bhUL17nW0r+I2ChOEby5oNtI5SEVhCS3dN3vlPvzAE7z2yvwTuACD/bcsnOY41NWtIz+/gHB4jGPHjlO/cQeXLl2dcuzJs4eBrBvPY7EYr75wak7nvX/3fnoOjU67/95Hc8lqnfq8K0XltkKiZ68sao5odxcdg0EKdx7A3/58YgJLV9HVt7ChiIiIiKxsaqcgIiLpycztT1TxpkraDy8sKbkSxQaGJjzfv2HnhOf9PQtPbvX13myZcM8993Dx4mUOHTrM8eMnueuuu1i/Yc20Y5uaG9l+x/oFndfzZm6JYOf4u7K8WNYfKKNuu0vdfdV4zRcSM2t4jK5XrzJU8BjWmX/bkuXCxpTEFREREUkYY8FJs8cqrAxWJa6IiKQlbw6tEQJZQWJ9/XNuu7Aa2Nu+b/XFa2/8e+2aWi6eb1jw3CMjY2RlZRMOh3nhhRcn7Dt06DBbtmyZOTZ36vYOs5ktieuZhS2El64yCrOo2uAncu54fENbS8LPMXDkDGOVd5Jf2IozMPfF7ZYN9cQVERERkRVmJZauiIjICuD4Zk/MlW2uYKSjbwmiWT6Mf+LnsyVu7o1/r1+3aVFzRyIxdmzbQzQ6dYKssLBwxvEvHXye3NysGY+ZSsybOaEfc1ZOEte4DlWbQkQuJ789SLi5mUjmhqSfJxWs2imIiIiIyAqjJK6IiKQlxz9zYq585xo6jqyCBZrmyc3KnPDcP3izStnnTr8w2VwEgwEunR7gsYffOs0RZsbxkUiE+q018z5v1Ju5qtJb1u0ULLk1hZTuqKR0RyV1OwJELpxcsrOP9q7QxQBViSsiIiKSUMZ4afVYjdROQURE0pLrc5kuDZORn8VIQ/uSxrNsBDMmPB1u7MPv+sjNy+fapY5pBs1NUVEePV19vPbyZV73yA8xMtZLJBrGcVz8Pj89/W2zztHaOf9b98ORCDB9Un85J3GzKvLJHz0DrfHnS10/OnLpCpHcHXhjY/FWHI6hrCwx/XdTyUbHZj9IRERERGQZURJXRETSknGmq+q0FK8rpvPYpSWNZzmwGLqaJ7aXiIWjPHnvY5y91kNra+ei5s/OudkK4eBLZybtv2v/ZooeLOPpp5+bdo5jJ15jZ/2DNFxrnfN5o7HYjBcsMTtzBXA68wV8TPtpxVKIxYj29EzYZC2Y5fstjYuGUx2BiIiIiEhCKYkrIiJpyThTV1dW3rmOzmNqozCVnF2bufDS5OR2KKOY9rbFV1cGgzO3Yzj48hkKC/N48tE3E7OxG+vNWQtYsMQ31BWu476qvTB+J7/1LNYb/xqzWM/ixSw25uF5llBeJse5Ou157TLOOA629pKX78Asi7ctFRMILP8ELqidgoiIiEgCGcA46bWY9Eq4ZJ0vJXFFRCQtOb7JSdyMwmwGr7SkIJo05zhk31HPhZcvT7m7yB9KyGnMLdm9XXdsJ5QZ4sKlS7R33Kzw7e7u46Xn49XA/gyX0ZHJt7V3VPSxpr12zuctWTPzgmmxZXwJV76zCi6nz++08ftTHUJCWCVxRURERGSFWb5N5EREZEUzvtt7oFqKqvMJ9w+nJJ5UshYCxXkEinIxwQA4DrgugeJ8cnZtZrSwjAsvXeZG6ett8sIzLxI3V9mhHA7cvZ+92/dx+XgnJ1+5Rqwvg3v375vy+KxQ5pTbr7Q0Ur29bM7n9WIzV6l6y7idQrpZKUlcZlkMT0RERERkuVElroiIpCXHnfg5Y/Vd6+l87XyKokmdUF0VnT1R2hp7x7cYYDzRNjQCjVNX394qoysxy2V1Ng1w+fTEXrbRSJSLx9tYv66Wi5evTNgXm6FFwGBocM7njUVnTuLGlun9/6XbK/E1Hyedbkybro3JsqNKXBEREZHEMWBMOl21sir7KSiJKyIiaclxb1aPZpXl0Xtm+p6oK1l7Z4TB9r7ZD5yB6RolLy+bvr65J06n0t8zdRX06MgYtAV56N4HwPEwnkMs6vH9V56edq7vHX2O/Rn7CI/OnmD2orGZ9y/DStzKPTX4Gg5jp6meThVvLAw5qY5i8dROQURERERWGiVxRUQkLZkbPXEteSXZdHd2pzSeVPEii09GGWNYv7aaw8fOLGqO3o7pk8CjI2O89uK5CdtmSlAODA9RcW8xV1+evR9sNDJzEjeWXnnQSXwZfkq3lTPSOzr+3Eeg4xRemiVwAbyRYaxlUYubeW4GNnctTvdZxsoeITB2FdN3CesGcWKjiQt2JrHEVJ+LiIiIiKQLJXFFRCQtGSeeRaras56uI6uvjcJ1lZvKuPDSpUXPU11QxImAn7v37aHt6iDDA2N44+0OImNRMrMzqN1UxMlzp+ns7Jk0vqgon1j3zG0N5uvSwGVcMmY9brZ2CulciZtZlE1lVZjItUM3C1z7IbHfyQTyPPAFITZ5Qbq5iOXW0ttWSORSO07WJrxr53Cys3FDdxIbHCR3WzWBnpdwIknubZ2GCXIRERGR5ctinHS7vkq3eJJPSVwREUlLxnHIKsuj79y1VIeSUkPHz5FfXUpv4+Iqkav9JVTk1HHihaYp9w/0DHP8pWEKSsvZdO8Gzpw9T1dX7439hYX5dHTPL7HnGpeYnbqK1uf6GLMxKipzybJhSor8uI7B5zP4XYPfZwj4DfF13ByiZJLhh4APfC4YLK4DjoGMjDCxqV9Wahmo3BAgcmnxSfilZP1ZmAUmcSPB9UTazwLgDQ3Fvw4O4g3Gq7h7Xz1H8Z6tOJ0HsRZsfh2E+3FGOhMT/Di3YmNC5xMRERERSTUlcUVEJC0Zx5BbFKJnlbZRuM7GYhQXBeltXNw8Gf1hBqbpaXurnvZBetoHsTabfftqeeWVIwBU5Zby6D21eGMxvJjFAOXBGDbmYaMe1vPwoh5eJEYsEsOLRPl6bxnDw2Os315FLHOEju4OsjJDlOaU03Smh64Tg7z97SH2txycHIgHjI0/gGBgDDPNnfjupj1cXMg3JWksVXvXEhy8SuTSwltYpIxv9uroqdhALiOts/ddHmhzwdxNpLMb79owkEHmhgcI5Y/iRAewTgC35xTGW3hLBDs6sOCxIiIiIiLpSElcERFJSyUby7n87y+lOoy0MHj2CtW76mk8svDF3UxzP8aYOS+kZYwhI3AzmVcYzKXx8M1y18Kq/Fmrg/0+B8+znD8Wz0Cv37KGK8da6KDhxjHPv9bK/vI5BOTzwbSLVaXyVirL7UvjrrtvDbGzB1muS2tZE5jzsZ4vk3DhPfhjnfS1Bgk3z14SPdY4+ZiRC5cYueV5sGYPuYWduL0X5hzLreywkrgiIiIiCeWkbUOwVUNJXBERSUuD19pSHUJacbs6cP0usVkW+ZpWJEbNmlKuXZ3799VY58a/Q/5Mwrek2fo7BqjaVMbg1Q6Ma/DCsUmLYYWCAXq4Wf07VQL55KV+7L71mGsz19K6mZl4g1Mn5kyK+p/W3l+Eb7AHGyrBGh/gYGKjeO1XUhJPwrj+WQ+JFW5laKiEaP8g4YvnZj1+vsYaGuloNAQq9xMsziE08Oy8WjzYESVxRURERGRlURJXRETSknGd2Q9aRcY6eli7ZwuXFrHIWU1F0bySuJGxm5+2ZzAxsRcNxzh+vGP8mWXr+nxG2nonHJOZObGiM5QVnPI8h4byuWuWWKzjzrR3ltFJYKC64GUo9tNxZYyRxsmLwS1X1syexPV8+QyfS3ITC2sJNzURboLBQBW+/HxCawrwmSF8nYdmbLdgRwex1mJu/2RBRERERGSZUhJXRETSko3pdp3bjZ27TKggi+GeoQWNX5dfiLN/D57n4XkWLFjP4nn2lq8eXswS8zy8bo8H1j9CLOrhRaa/ZPAHfUSGJldJZgYmjvH5p57jH77fzt67gtix6SstjeubIVW79Encip25MNAKQEl5H32Fd9J3rGXJ40gKZ+YkrufPAhvFV1REtKtrSUKy4TCR9nb62tsByKy/lxzvICY8NKkCPD7Ag7EhyMhekvhEREREVjQDxqSyhdkUVuFn9UriiohIWoqFl2tH0eSJDY9StbWS8wtM4voHwhx/cWHVkxsKi6bdt3F3DSPHJ88bDE5MBna09mCxmNuuuHoHIvRVbyb34tHpA5jpIs0ufcLfDdwS0Gg/ec5zBO9/iPZnG6YftFw4M18ejmbfQ//B1C7YNnLuIl7NDmw0Rl5pH27v5JYONjyKURJXRERERFYI3asqIiJpKaMwJ9UhpKWBU5eouXPtgsY6XQvvExodDU+7r/lyF8Y3+ZLCf9u2pisdbNxeM+UcXz05c69f45t+sS2z5ElcS03tbYtzeTEyer5D5WPl4CzvsgA7w2f81sJoe/8SRjO9sYZGwi0tdBwdJlz6ABYz3ps4zkan/50VEREREVluVIkrIiJpyVFP3Ok1NxPIziA8ODqvYbHOfrJyMhgamN+46zKLQjg+B8fn4vgccA1uwIdxDU4ohIfBOgZrDB4QdA1779s63u3AYi04jsOd99bHWzmMb/dilg7PI3TPRvK97vFEXPwAgwfWcq1nI8OhSrDjLR+iHl40io16ZA0UA0tzWz/AnW8P4XY8P+U+X+sz1Dy8i+aXYsSmaDGxLJip+w9bHGKluwkfbF7igGbX/eolfAXbifb2krF2DTk5zRCdvmeuiIiIiMyPcdKsncIqpCSuiIikJeObaSGr1S3SN8iaXVu4MM9FzowxrKkt4fTx+d/y/+LpK/MeM1/fKC3kHaFTU+4bGa1g4FLrlPsChXnJDAsAX4bD1idD9HX6yIq+NuOxpu0IVbvX0n6hlNGWvqTHlmijA0EiRY9ho8ST5ZEo3miY6MAgsatT/wzSQbQnvrjc6JWrZNy1SZW4IiIiIrKiKIkrIiJpSZW4Mxs9fxlf0Ed0bH69g0sLszidpJgW62++3sWbP7yVjNbJiVwzw++Djc3ciiERssszyO37Brl+YC7dBHquUlrdT0/+dgZOtyU7vIQaOnM+1SEsmrUGYqrEFREREZGVQ++QRUQkPU255LxcFx0apWJb1bzH5aZ1ctzwfw8WT7nHmaLn7nU2lvyeuP2NI/MfNNJDQeAliu+dug+wJE/fa+eILtNuFiIiIiLpx4LjpdeD1dfeIZ3fyYmIyCqmStzZBWPzz1IFhhbWD3epfPvlfnor75q03cywWJj1kpvEXf9wPvvevsCqzliEUP93qHysAvS5xNLxPLzwUi94JyIiIiKSPHqHLCIiaWmm2+clbvB8A/5QcF5jvNaeJEWTOL/3zSC4Ezs+Oe4MSdxo8topOD6o8H8XX/tLi5rH1/o0NY9m42T4ExSZzMZG59dqREREREQknekdsoiIpCXj6E/UrDyPwjVF8xszGqG8ujA58STIsXNDNBTvn7DNzJDE9cLJ633qxYAFVDxPxbQepvruCP6CrITMJzOzMSVxRURERBLBGDDGptkj1d+Vpad3yCIikpZmun1ebgpkzr+ys7qqIAmRJNb/+FIYsvJuPJ/pIs1LYiVublXmeCY3QTrPUbFrjNXYw2up2YiSuCIiIiKyciiJKyIiaUntFObG2vknAwuz5teCIRVaOyN8f2zPjedmhixuMtsplNYn4XvVcYrsTWWJn1cmsNHkVWiLiIiIiCw13+yHiIiILD3HdVMdwrIQHpl/oiorlrykZyL94T92cfeHt5LRegozQ07fi8aStmZYQXE/dCR+3sziIINnEz/v6mDJWl9GRnEmjg8cF4yJYRwPYyMYGwUvTDBzJNWBioiIiKwYxtGdZKmmJK6IiKQlVeLOzWj//BNVbvdAEiJJPIvhF7+Swx8/mj9jOwUbjSYliVu8OZtgxzeSMHN8wTSZP39hNqXbPGh9GbpnPtbEhpcmKBERERGRJaB3yCIikpbUE3cOjGGwc/4J2WhbH6HsjCQElHiXm8b4fOOuGStxbcxjAV0lZhUIJe8yyRhVMsyXvzCbsg290HpybgNiaqcgIiIiIiuHkrgiIpKWjKM/UbPJrl+LF5l/awRjDDVri5MQUXL883d7Od6fOfNBCU76F9RlsXZje0LnnEgfUszH9QSu7WmY8xj1xBURERFJFAuOl16PVbhQsG7mExGRtKRK3Jk5fh89AwvvbVtWlM1yasn66S9f4FNPbYQz56fc7/hdbDi64PkzC/yU78giKz+G64uR0/cdaF/4fLNSJe6c+fJClG3sx3bPPYELQCycnIBERERERFJASVwREUlLqsSdnpMRxFZV03WyccFz5PmW2/fX8L++0cSv3F9BuKHlls2Gwl0b6Tt6ZoHzWuqfyKfU/idEw7BE7YLVTmFufHkhyrcMY7uuzn+w2imIiIiIyAqiJK6IiKQl46oSdyqZ1WX0jLn0LiKBCxAYGk1QREtnaCTK585EeX95FtGBIZyAn7yNNQtO4BbUZbF5bztu+/MJjnQO9Os9Kzcnk/ItI9iuywsab6OqxBURERFJCJOGRQir8Hp6uZXhiIjIKmFmWslqlTKuS3tvjN6GrkXPZdt6EhDR0jt/rY+vDhcQLCsku6aY/tMXFjzX2jstbvtrCYxOEsXNzqBiexjbdWnhk6gnroiIiIisIHqHLCIiaUmVuJP5crMY6kzM/f52JEJ5dWFC5lpqr5xo51teGYOXmhY8x4bH8snufyaBUc1XmlUypBE3FKTijhi2c+EJekDtFERERERkRVESV0RE0pJ64k4WGxnFuIn7vlRVFiRsrqX2vWcucmbt9gWNLdueQznfhGjqWkqk3e1oacLJ9FOxG2zHuUXPZZXEFREREUkY49i0eqxGeocsIiJpyTiqxL2dNxqmfHNlwubLzwokbK5U+OI3L9JeVTfvcb5MR1WaacgJ+qi4y49tW+gidbeJRRMzj4iIiIhIGlASV0RE0lIiK05Xkqxg4j51zrbL+xNsz7N8/uUehgpL5jWu6dVe8IeSE9QcqRL3No6hYn8mtJ5M3JyeEvUiIiIisnLoHbKIiKQn5bimNHz+Go7fTchcvp7BhMyTSgN9I/xdQ5BIRuacx+RUhiAynMSo5sJL8fnTS8WDFdByLKFzWlXiioiIiCSO46XXYxVSEldERNKTUTuFqXiRKIVrixMyV6ytl0DQl5C5UqnhSidfDlcylpUz43G+TIeijVnccW/DEkU2PaNPKW4ovX8tTuPziZ84qkpcEREREVk5lv87NxERWZGUw51eKHfuVaczMRZqaku4eLYlIfOl0snjTZQ9uJ4D3mUCIzerbIO5Pna+PoY/3IAZaIr3wu1KYaA3rM7qgdsV7FmDv/X7yZncUyWuiIiIiKwcSuKKiEhaMr7EtAxYiXz+xN1IU1aSsyKSuADfffoiocc2sn/kOADFm7PZvPkktKe+8nay1V2JGyzLo2hrJqbp2aSdw0bDSZtbREREZFUxNv3WdEi3eJaAkrgiIpKWDCrFnVYCvzX5gZV1KfC171yg6ol6DtS2U5PxLehLz0SeWaWVuIGibIp25OC0vAKNSa6UjamdgoiIiIisHOqJKyIi6clREncq/twsBjqHEjZfxmh6JjkXylrLN88MUlbWCLE0fm12dSVx3VCA8gdrKCk7j9P0wtK0OtDCZiIiIiKygqys8hsREVkx1BN3spw76rl8tIloe1viJm3rTdxcaeLtdxTT1A3rOJLqUKZnl2GC0THk31GFP9vFcSz+SCO2rxlKt9FzxTB8pXPSEON3Kd5XTWDwKDSfXdp4VYkrIiIikjjO6mtfkG6UxBURkbTk+PUn6laZNWVcOHgN6yX24skOjlJclkdnW19C502Vdzy6kciJi5xrz2PtXh8O6ZksXU7tFJyMAMV3lRMYOYPtfxbGC8Fv/CY2HaQg4JD74H30nh3EBFycgEtWRQaBoZPY9gspidsqiSsiIiIiK4jeIYuISFrKKMxJdQhpw7guw24I6/UmZf7qmsIVk8Rd74YZBobb+2h2X0917N9SHdLU7PKoZMjbXkVO4By27ezMS7FZD7f5GYpu/c+2NcXLt0WVxBURERGRlUNJXBERSUuOz011CGkjY1s9l1+5lLT5i3Iykjb3UsrO8jN6tfXG83PHcqjamqatOWx6JxiN36X8QBlO03PYsVRHs0BL0XdXREREZBUwgEmzdgrpeImfbFrYTERE0pJx9CcKxvvgJjGBC5C9TKpCZ/ODD9ThhW8m7vqudNEeeCyFEc0grROMlsp7c3Cank91IItio2m8sJ2IiIiIyDzpHbKIiKQl46zGz1YnytmxkYuvNSb9PL7eoaSfI9lKCkMUXpv8vTp/rjIF0cyBF0t1BNMqfWAtNL+W6jAWT0lcEREREVlB1E5BRETS0mpN4loMWRtqGCRIW8sQXiT5yb5Yaw+BoI/wWDpXh84sOxQgOjwwaXvHqTb6Nu0iL3xk6YOaiRcB/KmOYpKczRX4255LdRgJoYXNRERERBLEAE6aLcy7Ct8uqhJXRETSU1o2Mk0CYwhtqiW2bj1dmSW0O3mcOdpO49EGskrzcfzJ7w1sLNTUliT9PMlUMENf32s9O5cwkjmyaXYRDPjyQuSFLqR1lfC8KIkrIiIiIiuIkrgiIpKWzApO4loLoY21uFs30+Er4MzhVppONDHUOcDYwOiN466+eoncNWUE87OSHlNZSU7Sz5FM6yunj//aoT5iJnMJo5kDL70SjG52BuXbwtiB9lSHkjjR9Poei4iIiIgshtopiIhIWlrJ7RQydm7lzItzW6ys/VwLeVUFZFcEGGzpSVpM+cHlfUlQ54syMs2+8MAIbe6jVEb/fUljmlHKq0QtobXFBIuz8AUNQe8KtuNKimNKLC1sJiIiIpIoFmPSbTHkdIsn+Zb3OzYREVm5Vmglbta2DZyeYwL3ur6mHoI5GZRsqabjdHIWOssYWZ4JL8cYPvj6TYycPj/jcVcuFVO5ZomCSlNORoC8LWVk5EVxBy5h+w9Cf3zfirwEji3P32kRERERkakoiSsiImnJcVdex5/MumrOHWld0NixgVHaLrSTW1GQnIrc9r7Ez5lk2Vl+Pnxf9awJXIC24y0M19URis4vgZ48S/chhZudQdld+Zi2wzB4FgZXaNL2drEI1toV3ZpFRERERFYPJXFFRCQtmRWWxA1WFHOtYZhYOLrgOaKjEUwggHENNpbYNJwdGKGoLI+utuWRzPW7Dh85UMnwuWtzHtMwcg+b/OmSxF2aNGrO5gryQhewTaeX5Hxpxdr4Im2uLndFREREFs1ZFWUAaW1lvUMWERFJQ/7CPFr7HUZ6hxc9V9eldsp2rE1AVJNVVxcmZd5keOzutQyfn19riStHI9glrICdkfWSO7+BsgfWkOu9tLIWK5uvlPceFhERERFJDCVxRUQkPS3DW6CdYJCMqlLsrR9Suy5DWYUMtPcn7DzWJud7U5yTkZR5E23nplLq2+bfG3i4rY9O/4NJiGgBYguvyJ5NoDiHqvtC+FqeTn6yON1FlcQVERERkZVBSVwREUlLxll+SVxffR3nzvXjbt18I5GbuX0TrWdaEnqeZLWayF4mnVJfvzaEjS0sOXmtdV2Co1kgLznJxfyd1ZRUXYPWk0mZf7mxsbFUhyAiIiKy/BnA8dLrsfzeLi6akrgiIpKelkc+cYL+zni7hCsHr5C5ayuBonwuHpp7z9a58haYwJyNr3/x7R6SrTA/g+HzDQse33ionbCbBm0jYhES+kvuc6l4qJqs4WdhuDdx8y530XCqIxARERERSQglcUVEJC05fjfVIcxbKO9mO4JzL1ziSluU6Fjib5tvfO0qWaW5CZ831tKDL82/74/fVbOo8V4kSlPs0QRFszhOIDELbmVU5FO9z+A0PZuQ+VYSm8S2FSIiIiIiS0lJXBERSUvJahmQLNbCyODEqr9kJHCvnyyvpiTh0xrPsmZdacLnTZRN64qobFx4Fe51V88EExDN4hnf4hPmRfvWUlR4FttxPgERrUBK4oqIiIgkhHFsWj1Wo+X1DllERFYN4yyfP1GZayqwGzbSdjaxvW9n4nnJuXCpSEKFb6I8tS6T2Njie8n2XOxg0F+fgIgWaRGL9zmZfiofKiGj5/sQTv82GCkT08JmIiIiIrIyLJ93yCIisqo4y6gSN5qTT+OxxVeIzocXTU5f3PxAGrdTWETS83Yto3sSNtdCLbSdQtb6Uiq3D2GaXklwRCuQkrgiIiIiskIsn3fIIiKyqiynnriOs/RLo3Zd6cBNUE/VWwXH0nMhqG0bi4l29ydsvsZzqf/9Mr75XoZZSu5bS77/MLa3KSkxrTTqiSsiIiKSCBZMmj2W40rYi6QkroiIpCXjpj7JNlfDQ0uf+BzpHSZ/bXHiJ+5IXKI0UfJzg7yx2BDuHUzYnL2XOhjyr0/YfAvhZsw9Ce/mZFL1YD6Btu+runQ+Yun5oYSIiIiIyHwpiSsiImnJScCiT0shUFZE0/HGlJw7GQuneb1D5BdlJ3zexdhVX4qTGcTNCCR03paxvQmdb74yy7PmdFzOlkoqNnZA85HkBrQSqRJXRERERFaIxN+HKSIikgD+rAyKtqxhrH/o5sZbeqI6rkNGUS6ZhTn4szLoOHYZa2/eUmMcg3Gc+FcT/7cXixEdCRMbixAdDRMdCeNFomAM/qwM/KFg/GtWEDfgj493HRy/i+M6GNfF8bnx5z4Xz7Ncu9IPly4t5bfmhqzSfPqudSZ0TmMMNTVF9HYlrup1sbZVZDF84nzC520852PD5oRPO2e+zFnacBgoe2ANvpZnsQPJ6YG80tmoqpZFREREFs0ATpq1L1j6jnYppySuiIikpWBuiLd++ZNJP48X824keuej4fBlvvJf/5aui+1Jimx2V165RO3+DbQcvoiNJe6iqjQ/lLC5FquiJJvg5QaSUU/Zc7GDoR0byIpcSMLss3Pc6X9mgaJsSrZ60Pz0Eka0AqmdgoiIiIisEElpp2CMea8xxo4/PjTHMUXGmA8ZY/7FGHPBGDNijOkzxjxnjPkxY8ycYjXG/OUt596wuFciIiIrneM6807gWmv54o9/JqUJ3PFAuPLSRUp31CZ02pw0WiTgrfuriQ6NJm3+5tF9SZt7Nmaaaob8ndWUVDdA68kljmjlsaPpU1EuIiIiIrIYCU/iGmNqgE8D871qfgfwGWA/8DLwR8CXge3AZ4EvmVneZRtj3gz86ALOLSIiMmfGGDY9viPVYdzQmeBkstuTHn9G69cVknE2ua0qGs+m7j4sY2ITN/gcKh6qImv4WRjuTUlMK43XeTXVIYiIiIisCMaxafVYjRKaxB1Psn4O6AL+Yp7DzwFvAaqtte+x1v6ytfZHgc1AA/B24AdmOHcJ8STwPwKHFhC+iIjInPQ0dHH6G0dTHcYNsXBimw3EWnvJCCV2EbGFeKo+Dy8am/3ARei93Mmgvz6p55jezQRyRmUB1XsNTtNzKYolfZncEkx+xbzHuTV34K7dlfiARERERERSINE9cT8KPAI8NP51zqy1351me6sx5i+A3xyf98vTTPF/x79+eIZjREREFu3C06cZ6Rma/cAlEh6J4DcT1n1bFANUrSnm4pnmxEy4AGsqchk5d21JztUwuJ8twXNLcq5bWRv/gRXtW0vG0MvYzpEljyGtBbMIvf/T+LY8BED4u/+HyNFvELs2wwcoxsG/80kCD3wQd92eebdKERERERFJVwmrxDXGbAF+B/hja+0ziZp33PWlhacsNTLGfAB4G/CT1tquBJ9bRERkgvDQWKpDmMha/CF/QqcsLcpO6Hzz1dQ2QGh91ZKc68qhYbxUrPVqHCofKiWj5/sQVgJ3Ascl9IE/xb/1YYyJLzwYfPQnyf65r5D103877bDAfe8l9IE/xVd3lxK4IiIiIonk2PR6rEIJecdijPEBfwNcAz6RiDlvm/t940+/McX+tcAfA39rrf3KIs4zXQuGzQudU0REVp62s808/xffTnUYkwSyMoiORGY/cI7ygilIat4i5lnCmZlLcq7RnkHa/Y9SHvnmkpwPYMitpX+4kNKOf12ycy4bxpD5Q7+Jf8uDU+721R/Ard1N7Mrhyfu2P5rs6EREREREUiJRlbi/CtwJfMBam+hSkt8hvrjZf1hrJ7y7MsY4wF8TX8jsowk+r4iIyAR9zT389bs+zXB3eiz8datQUW5C58tMcJ/dhTjTHV6yc125Mv+eqwthLVzkB/jKN/bQ1ZmxJOdcTpyKTWR9/F8I3P3OGY/z3/W2yRuD2fjW709OYCIiIiIiKbboMhtjzD7i1be/b619cfEhTZj7o8DPA2eA905xyMeBB4E3Wmt7FnMua+2eaWI4BOxezNwiIrIyvPKFZ9IygQsQyE1s1arTPZDQ+RaiqXOIDUt0rpYjLQzUbiMncnLCdmvBM348k0HMZOCZIDGTiUeQGAGiZBIjgIefqBcgZv3ErI9YzKW7N5tY1HDrzV7DfTFaT7WPTx5aole3DASzyHjDzxO4/30Yx5318MA97yL8wt/jNZ+5ue2ut2F8qV+QT0RERGTFMSSwIWuCrMLOWYtK4t7SRuEc8MmERHRz7g8Tb5NwCnjUWtt92/6NxBc7+5y19j8SeW4REZGpZBWmtk/sTNrOtJBbXUR/Y2Jaw8c6+8nOzWSwP3W9Wk9d7OKhdQ426i1qnpp9dRgvBoD1PLAW61nwPNzsEL3tw9hYjBMtG2m5fCde1CM6FiU6GiE6Fo1ncucsws1W/jMn/O1qvPK8jcktxb/rDQQf/2mcnJK5j3P9ZH/sX4gc+heiV47gW7cH/763JzFSEREREZHUWmwlbjZQP/7v0WkWkPiMMeYzxBc8+9hcJjXGfAz4Q+AE8QRu+xSHbQOCwAeNMR+cZqrz4zE9tZh+uSIiIgC199TPflCKjPQOY60lVJLLcEf/ouczxrCmtoRTx64lILqFiURjBPLzGOvsW9Q83vAwA+euTrkve10l/Zc6ARi42kagpobOi22LOt9cWc+kX0VDMmTkkPG6j2LHhomeexY7OkTgwI/g3/wATlH1gqc1gQwC9/wwgXt+OIHBioiIiIikp8UmcceAv5xm327ifXKfA84Cc2q1YIz5ReJ9cI8Aj1trO6c59MoM534jUA78E9A/fqyIiMiilGwsS3UIMxrtG6F80/qEJHEBSgpSe7t/UUEmeIurwgUwzvQVrzY2cf6cHJfpLjwSbTVU4jplGwj96F/glq2Pb3hSSxiIiIiILEfGmc/daZIMi0riji9i9qGp9hljPkU8ifvX1trP3rLdD6wHItbai7eN+STwG8Ah4InbWyjcdu4jM5z7+8STuJ+w1l6Y+ysSERGZ3kDb4ipCl8JQAnv25rqpKxN1jOHHdxczfKl58ZOZ6V+HvS1J3HPqCiX1a+g417r4887C81ixlbgmu4jg6z9OYP871KdWRERERCQBFr2w2QJUAaeBq0Dt9Y3GmPcTT+DGgGeBj07RnuGKtfbzSxKliIjIbY5/5VCqQ5hVb1M3wZxMwgOL72XrHx5LQEQLU1qcxei1xLQ1mKkSd6yzF8fn4N3Sdzc726UjIWee2UqtxPXf9TYynvpVnKyCVIciIiIiIrJipCKJO511419d4GPTHPM08PmlCEZEROR21XtqwZh5LnS1tCIjEUo2lNN5umHRcdrWngRFNX+tHYNkbKti+GoCKmKd6ctdY6NhCtbX0nX2ZsVv7+mrBHOyGRsYXfy5Z2DtykniOqV1+LY/jn/X6/Gt2ZnqcEREREQk0VbOpeuylbSb+Ky1n7LWmltbKYxvvzK+vXaa42d6PDTHcz80frxaKYiISMKsv28zT/7aD6Q6jFk1H2+gYnfd4nPNI2Gq1hYnJKb52r2lnGjvQELmmmbh1RtCeZkTntuYR9mm8oSceybWW+ZXwpm5BB75L2T93L+S/cvfJvMtv6QEroiIiIhIkqzQTmwiIiLJsf8DD1KyMfkJvsW6+solynfWLnqeyor8Rc8x73OWZvNETZBw39CSnK/3yBny101ctM6NhpN+Xi99C7pn5as/QM6vfJfMt/wyvjV3zJooFxERERGRxVESV0REZB6MMVRsr0l1GHPi+t1Fz1EcWtpFqerXFfKeGj/D5xsTN+kMC5sBYC05hROrcXvPXiOQnZG4GKbgLdNKXHfD3YR+/C9xsotSHYqIiIiILAVDPIOYTo/leSm9KEriioiIzFNfS+p6xc5LAqojQ72DCQhkbrbXl/B6p5+x7v7ETjyHb8PAuSs4tyS9bcyjrL5shhGLtxx74joltYQ++GcYfzDVoYiIiIiIrCpK4oqIiMzDYEc/DYcupzqMJRNr7FqyvrinL3QSLMlP/MRzSGbHRsMU11dN2OZ3ktvvwIsldfqEM0U1hH7i8zhZBakORURERERk1fGlOgAREZHl5IXPfBcvsjyyb6MDo4uewxjD5roSmq52JiCimdXV5Cdn4jnmYoOhiZdFg1db4lW8Scrlel5y5k0Gp3IzWT/1BZycklSHIiIiIiKpoDLQlFMSV0REZB7Ofvt4qkOYs97GboxrsLHFZSHzhxafDJ6Lp7YVMnr6SsLntXNsKzHS0EI8Yxs/Ptw3RPnmWlpPNyc8JkjvJK5TXo9TVA1uAHfNHQTvfz8mGEp1WCIiIiIiq5aSuCIiIvMQKsimi/ZUhzEnuRX59F4YXvQ8sSvtFJfl0dnWl4CopvbDj9czevpiciafYw57rKuP/HXV9F6++fMN5fiTExPp2U7B5JUT+rH/g2/NHakORUREREREbqFiaBERkXnY+yP3pTqEOcvKT0zlpDGGbZsrEjLXVN7x6EZKLiQpgcv8uiHklOROeN574hKhwuzEBjTO85Lbc3feAplk/dTfKIErIiIiIhMZwDHp9Vh+awQvmpK4IiIi87D5dXfgBpbHjSwNR69RedeGhMxVNBZJyDy3e8cjG6i4dCkpc99g554sjfT0TnjuRWOU1yenD6xNs3YKGa//OG55Yn5fREREREQksZTEFRERmYdAKEjZlspUhzEn0dEILaea4p9UL5J3uY2C4pwERDXRuoylqEad++sfutJMqPi2atxjF8gtz09wTBCLpk8lrlu7m8ADH0x1GCIiIiIiMg0lcUVEROapuK4s1SHM2djAKEUbZm6F4AZ8bH/bXuqf2Mn9P/sGNjy8jazb2goYYMfWqoTHZwYX37N3VvOoxAUoqJ1YeetFYxRXJT6BnS7tFExuKaEP/hnGXR4V5iIiIiKytAxgnDR7pPqbkgK6WhcREZmn0s3LoxIXoHb/eppevYCZ5iqnZu963vDb76botsR0LBLj6d//N5peu0zz0avEwlGKY5NX4npgTzXrS7PJ8YEHtA/HeOVMB1eaemeN7fUH1jHScG0Br2p+7Ly64oIdHgJjMH4fjt+H8fsZauuhoLaYniudiYsrGe0UHB9O5WaMP4NY4wmIjM46JPSe38fJWz4fTIiIiIiIrEZK4oqIiMxT5faaVIcwJ7MlcH0Zfp741DsmJXABXL/LI7/0NgAuPn2Kr/7cXzNyuZU7D9TzE5/8AS6ebCQ0MID/5Dk6XruALyNAZmkBzuUW3lGZx1f8hfT2j5KVGWBgeIxYzKO3f2zCOXZmxliCOtx5J0sHLjXR4RUS7Q2Pb4kAEarvqsDazmm/nzcYgzFgZ6m0nXWe+QiEyHzqk/j3vBUTyATAejGIRbFjQ4Sf/1vGvvdZGB24OSYjh8x3/ha+TctnsT4RERERkdVKSVwREZF5GulbitTj4o31Dc2YKPyB//1jlG2pnnWe9Q9u5ae//ym6LrVTtrUK1+9jz/2bb+wf6ewjkBvCepavvOGXGWnv5fUGyAMYg0D8uMD6PExlKaa7l9jgCMMXmxb1+pImFqN8UxmNRxombG48eInqnWvpOnl1ymEZ+VmsfWgH93z8rWQW5XLiH56m6eWzNB+8wGjv0OQBiUriBrPJ+sm/xrdu98TpHRccF+MPkvG6jxK4+12MfvW38Hqa8d/5JgJ73ooJ5SUoCBERERFZ0RKwzoYsjpK4IiIi89R0ZOokXroJ5mXNuD8jPzT3uXIyqdy5dsp9mcU3E4G7P/6DHPyfX2SsZ3DSceHeQeidvD3Z7Dx74gLkTLPg2uhIDGtvVtE+9Tc/R9Mr5xjtHeK+X/pBHJ9749id73uEne97BGstL/7ev3D4s9+aMJdZaCmuPwPfxnvi/45FCb7uZyYlcKfi5JUSeu8fLeycIiIiIiKSUkriioiIzNPhf3wx1SHMzSw5wtf+4Xmqd9cl9JR1b74HLxrjxU9+LqHzJlO87+14/1vXIXNNFT3t/fFM7W0J4M5zLVTtrCU2MMTdH38rVfvqqdpXP+P8xhju/YUfYOOb9nL0C9/lzD/Hf3+u/3icqq346u/FjsYT3MYXJNZ8htjFl2/OkVtK6Ef+AHfdXfHn/mCCXr2IiIiIiCwHSuKKiIjMU3QskuoQ5mSkb+ZFrVqPJ2dRMX8ovRKMbcev4Wbk4kU9bDSGF43F+9Y6BhvzIGwAS7z3LdB6CYDS+jrazzZPms8zLm//4i8QKsqdVxwlW2p4+NffzUhnP2MDI9TsX0f2e76DU7JuUlWu9WKEn/0C4Zf/Caeklsx3/H842YULefkiIiIiIotjSL92CmkWzlJQEldERGSesopz6GvsTnUYs+q80EpmVgbhoamTudllyemHGpnmfKniRT28wVsXVTNgwcYsM1395RRk0D7F9q1v2zfvBO51bsDPmz/zM7MeZxyX4IMfJPjgBxd0HhERERERWVmcVAcgIiKy3IQKZu41my5ikRh5a4qn3LfpyV289Y8+kJTzDrf3JmXepeb19k7aVrK5ih0/eM/SByMiIiIiIquakrgiIiLz5MW8VIcwZ1MtnhXIzuBNv/seQgXZSTnnjp94E5UHtidl7qU0fKWZUNHE79Ebfu99+DMDKYpIRERERCRFHJNej1VISVwREZF5Gu0bTnUIc1JaX0HbyYYJ29bs38AHv/ILBHMyk3ZeYwz173o4afMvFWOgfGMpAHk1RTzx//0wpVuqUxyViIiIiIisRuqJKyIiMg/hkTD9Lb2pDmNWuRX5hPsGuL0Q98BHXk9RXVnSz1/z8C52fuRtHP3fX0n6uRLN+FxsNIYT8FH/2Hae+L0fJaeiINVhiYiIiIikiAGTbnWg1xcnXj2UxBUREZmHjnMtWC/9LxYK1xTRfPDCpO0Nr1xg3YFNSxLD9h9/I/kbqjj3pe/T8sLJJTnnfBmfy+b3PErtk/uIjYbJLM0nkBOi9ZUzFN+xjuzKqXsKi4iIiIiILCUlcUVEROYhMhJOdQizyirKZqSrf9J2X9DPmv0bliwOx3VY89huqh/exeE/+CdOf+E/wc6cAM8szWe0sy9pifJAboi6t9xLRlEuw63dbHj7AxRtXTvpuNon9ybl/CIiIiIiIguhJK6IiMg8FKxJ78pM1++SV55L55mmCdsdv8uP/vsvUry+fMljclyHu37hnWx61yN0HL3IhX9+lvbD5wmV5jPU3HXjuNK76nnkzz5Gz5lrdB67RCwc5eRffZ3I4MiNFgcAFfdspeXFUzfG5a6rIGdNKbGxMN2nrhLun9yzuPL+Hax5bA8V92xRda2IiIiIyHwY0m8xsTQLZykoiSsiIjIPuRX5uEEfsbFoqkOZJL+6EL/fTErgAmTmhVKSwL1VTk0JOTUl1Dyyi54zDQw0dPDCr/wlAHt+4Yeof+fD+DIClO7eSOnujQBsff8TADgBH22vnsXx+yi9cwMv/Pe/IjoaZtdH3kZu7c3XNdY3xDff9zv0XWym9o37KdhYTXQ0zB0/8SYcvy57RERERETkJmNMNfAbwJNAEdACfAX4dWttzxzGFwFPAW8EdgBVQBg4DnwO+Jy11ktErHo3IyIiMg9ezMOLxFIdxiSlmyoYaulieGgs1aHMyh/KoHT3Rop3rmewoZ2h1m62vv91Ux7rBv03/l2+b/ONf+//5Hux1uLLCEw4PpiXxZu+/CnC/cMEC7Ixt6/sJiIiIiIiAhhj1gMvAKXAvwJngH3AzwJPGmMOWGu7ZpgC4B3AnxNP/n4PuAaUAT8AfBZ4vTHmHdbO0lduDpTEFRERmad0XNhspHcYx725YmwwO4M7330fYwMjhIpyKNtancLopua4Djs/8rYFjb01uTtpXp9LRmHOAqMSEREREZFJHGf2Y5afPyOewP2otfbT1zcaY/4A+Djwm8BPzjLHOeAtwNdurbg1xnwCeAV4O/GE7pcXG6ySuCIiIvOQjglcgIG2PkrrK8BxCGYGeOPvvod1922efaCIiIiIiMgqY4ypA54ArgB/etvuXwP+C/BeY8zPW2uHppvHWvvdaba3GmP+gngi+CGUxBUREVlavoCPrOIchjoHUh3KJO3nWnjzb7+L7W/eTTAnM9XhiIiIiIiIJNNmY8yhqXZYa/fMMvaR8a/fur1nrbV2wBjzPPEk793AdxYYX2T8a0IWVFmRtdAiIiLJVL61KtUhTGvt3RuVwBURERERkcQxJt5OIZ0ei1/7YtP413PT7D8//rV+IZMbY3zA+8affmMhc9xOlbgiIiLzFE7jxcOajlyluK401WGIiIiIiIgk25k5VNxOJ2/8a980+69vz1/g/L8DbAf+w1r7zQXOMYEqcUVEROah8cgVGg5dTnUY02p8LX1jExERERERWSaul/rOe1EUY8xHgZ8HzgDvTVRASuKKiIjMw/f/8OupDmFGx79ykPBw+lYKi4iIiIjIMuSY9Hos3vVK27xp9ufedtycGGM+DPwxcAp42FrbvbDwJlMSV0REZI7O/OdxLnz/VKrDmNFo/whNR66mOgwREREREZF0dnb863Q9bzeOf52uZ+4kxpiPAf8bOEE8gdu64OimoCSuiIjIHETDUf7jk19KdRhz0nW5PdUhiIiIiIiIpLPvjX99whgzIT9qjMkBDgAjwEtzmcwY84vAHwJHiCdwE/6mTElcERGROTj3nRP0t/SmOoxZ3fOhh7nznfekOgwREREREVlJHCe9Hotkrb0IfAuoBT582+5fB7KAL1hrhwCMMX5jzGZjzPrb5zLGfJL4QmaHgEettZ2LDnAKvmRMKiIistK89o8vpjqEWWXkZvLEf38KYxLSI0pERERERGQl+2ngBeBPjDGPAqeB/cDDxNso/Motx1aN779KPPELgDHm/cBvADHgWeCjU7wfu2Kt/fxig1USV0REZBZD3YNcePp0qsOYVcWOGiVwRURERERE5sBae9EYcxfxJOyTwBuAFuBPgF+f46Jk68a/usDHpjnmaeDziwoWJXFFRERm1fTaFaxnUx3GjIzr8PDH35jqMEREREREZKUxJiEtDBIqQcUr1toG4INzOO4KMOmk1tpPAZ9KSDCzUBJXRERkFr4Mf6pDmGTdgXr2/PC9hIfCtJ5qpP6x7azZW5fqsERERERERCQJlMQVERGZxVDnQKpDmCBUlM27/u+PE8zOSHUoIiIiIiIisgSUxBUREZnFue+cTHUIE7zjf39QCVwREREREVk66dZOYRVSEldERGQGQ92DnP7G0VSHAYBxDLt/+F7W3r0h1aGIiIiIiIjIElISV0REZBpjQ2N89Rf/nuhYJNWhALD3fQ/whl//wVSHISIiIiIiIktMSVwREVnVIqNhmo83kF9VSG5FPsYYxobGeOWvn+bFz3yP4e7BVId4g1ooiIiIiIjIUrPGYNOsnYI1JtUhLDklcUVEZFWy1nLqP47w75/4IiO9wwAEczLIKcunt6Erbapvb/Xal17kng89TKggK9WhiIiIiIiIyBJKrzS6iIjIEmg6epUv/vhn+Kef/qsbCVyAsYFROi+0pmUCF2CwvZ9nPv3NVIchIiIiIiIiS0yVuCIisqoc/+oh/vln/xrr2VSHsiBn//M4r/vkU5hVePuQiIiIiIikiOOmOoJVT5W4IiKyanScb+Wr/+3vl20CF6DnWicnvnoo1WGIiIiIiIjIElIlroiIrHg9DV0c+vvneeULzxIZCac6nEUp3lBO+bbqVIchIiIiIiIiS0hJXBERWXEio2FajjfScaGF0984xoWnT4NdvtW3t/rhz/44RetKUx2GiIiIiIisGgacdLuZf/W1l1MSV0REVgxrLd/6za/wyheeITYWTXU4SXHk/73Co7/wplSHISIiIiIiIkso3dLoIiIiC3b4iy/y4me+u2ITuACn/uO1VIcgIiIiIiIiS0yVuCIisiJ4sRivfPbbqQ4j6Xoauui63K6WCiIiIiIisjQM6ddOYfV1U1ASV0REVoam771GfsdlytfnESjKh2CQMc+lrXGQtqvdrJS/8l4kxqF/eIEnPvG2VIciIiIiIiIiS0RJXBERWfZ6zl7j5V/7HACjnX2Mdvbd2JcPVG4uxi0tYXDUIxrxyMj0EYt6XDvXzVDvSGqCXgTX56Y6BBEREREREVlCSuKKiMiyNtzew3d+9HeJDAxPf0xLJ7R0AuACkfHtNa5Dzn3ruXBhkJ7WgeQHu0j+UIDH/ttbuOtH7kt1KCIiIiIispqkWzuFVUg/ARERWdZe+71/nDGBOxMb8+g/fp5KuqncWJzgyBLvwE8+xv4PPojrVyWuiIiIiIjIaqIkroiILFutL53k2jdeXvQ80ZExSrweKjfMPZGbW5zFzvvWULNl6RYYW7tvw5KdS0RERERERNKH2imIiMiyFBkc4dXf+OuEzTfa2UdxoaX8gTU0NwzSermLKRdDM7B1fzVOw1VGj7cRAvbeX8/pEz0M9iSvv65xHdbcVZe0+UVERERERKZkDNZJs7sBzcpYuHo+lMQVEZFlx3oeL/33zzLY2JHQece6+xnrPkUeUFwdIrOyGJuZibUOGIsbDTPa3MHY6TPEbhnXf+wctTkh/DtqOfFyM5GxaELjyirO4Qc//QG1URAREREREVmllMQVEZFlJTwwzKHf/lsav3s4qeeJDAwTOXt1fscfPcXOHTUcPNiT0FgCoSDr7q1P6JwiIiIiIiKyfCiJKyIiy0bPmWs8/ZE/ZKS9N9WhTMsL5QCJS+K6QR9v+q13Jmw+ERERERGReXO0rFaqKYkrIiLLxvkvfidtE7i5OzaC43L6RGJbPLh+HzlleQmdU0RERERERJYXJXFFRGTZcDMCqQ5hSsHCXF59rpkpF0JbpPDgKCe/9hql9RUJn1tERERERESWByVxRURk2YiOjKU6hClFhkYIZmUzNhRJyvwbH96alHlFRERERERmZ9KwnULiC2jSnZK4IiKyLFhraXv5VKrDmCR7XSXDTe3ccUcBJ0/1M9w3mpB57/vw42x5chdtp5qo2rk2IXOKiIiIiIjI8pRuaXQREZEpjXb1M9TcleowJsjauZVDR/rpza1i4NxVNpZEycxJTMuHjQ9tpeqONex+1z0Ys/o+ZRYREREREZGbVIkrIiLLQrhvMNUhTJBZXsixl5oAaLnYRfUDG+g/epbMnEpGBsILmjO3Ip+3/O67ufLyecq2VCUyXBERERERkYUxgOOmOoqJVmGdi5K4IiKyLAy3dqc6hAmihWVEzzbceH7qaBcV6zbSfaRlXvM4fpfauzeSX13I3vfeT8W2ajY8uCXR4YqIiIiIiMgypiSuiIgsC83PHU91CBME/BM/+h3qG+XCPBO4e95zgCc+8TaC2RmJDE1ERERERERWGCVxRUQk7cXCES5/9blUhzHByKlzVNRV0nJp4RXCGx/aqgSuiIiIiIikOYM16bas1urrp5BuPwEREZFJOg6fJzIwkuowJvAiUaoKLGAXPMe/feKLdJxvTVxQIiIiIiIisiIpiSsiImmv69jFVIcwpYELDazbXr7g8UMdA1x67mwCIxIREREREZGVSO0UREQk7fVeaEx1CNPKi/YSCPkJD0fmPCazIIv7fvIxKu9YQ+Uda5IYnYiIiIiISAI4bqojWPWUxBURkbQ3cCV9Ww6MtHSxc/tajp3sZ2xo5kSucQz7P/gQD/7sk2TmhZYmQBEREREREVn2lMQVEZG0Zj2PwaaOVIcxo/6zV9mxuZrXjvUTi3hTHlOwtpin/uC9rLmrbomjExERERERkeVOSVwREUlrba+cSbtFzaYycKGR3fs3cuRgB3lFWZStycF1HDrbBqm8eytP/MrbCISCqQ5TRERERERkfoxJv3YKxqQ6giWXlIXNjDHvNcbY8ceH5jimyBjzIWPMvxhjLhhjRowxfcaY54wxP2aMmRSrMWajMeYXjTHfNcY0GGPCxpg2Y8y/GmMeTvwrExGRpXblay+mOoQ56z9+nrpgL0WDTURPnWHsxCke+amHedNvvlMJXBEREREREVmwhFfiGmNqgE8Dg0D2PIa+A/hzoAX4HnANKAN+APgs8HpjzDustfaWMf8DeCdwCvgPoBvYBLwFeIsx5mettX+yuFckIiKpEh0N0/idQ6kOY8HWvvFuNvzgQ6kOQ0RERERERJa5hCZxjTEG+BzQBfwz8F/nMfwc8eTr16y1NxoKGmM+AbwCvJ14QvfLt4z5BvC71trXbovjQeA/gf9ljPkna23LAl6OiIikWON3DxMZTP9WClMpv2cb+z75gVSHISIiIiIismjWScrN/DIPif4JfBR4BPggMDSfgdba71pr/+3WBO749lbgL8afPnTbvs/fnsAd3/408H0gANw7nzhERCQ9WGs5+4VvpjqMBTE+lz2/9B58aqEgIiIiIiIiCZCwSlxjzBbgd4A/ttY+Y4x5JFFzA5Hxr9FkjTHGTHe/7uZ5nFNERBKk7eVTdJ+6kuowFmTtk/vJXVeR6jBERERERERkhUhIEtcY4wP+hngf208kYs7b5n7f+NNvzHHMWuBRYBh4JpHxiIhI8llrOf5nX0l1GAtWvGtDqkMQERERERFJDGPAcVMdxUTGpDqCJZeoStxfBe4E7rPWJrp54e8A24H/sNbOel+tMSYI/B0QBP6btbZnLiex1u6ZZr5DwO65hysiIot1+avP03nkQqrDWLDYWGT2g0RERERERETmaNE9cY0x+4hX3/6+tfbFxYc0Ye6PAj8PnAHeO4fjXeIVwQeAfwR+L5HxiIhI8g02dnDod/4u1WEsysCV1lSHICIiIiIiIivIoipxb2mjcA74ZEIiujn3h4E/Bk4Bj1pru2c53gX+FngH8CXgR6y1NpExiYhIckWHx3j+F/6M6NBoqkNZlJbnjzHS1UdmUV6qQxEREREREVkkg023dgqsvnYKi63EzQbqgS3AqDHGXn8AvzZ+zGfGt/3RXCc1xnwM+N/ACeBha+2MJU3jyeR/AN4F/D3wbmvtfBZBExGRNHDiM1+l++SVVIexaEPNXXzznZ+i6ekjeDEv1eGIiIiIiIjIMrfYnrhjwF9Os2838T65zwFngTm1WjDG/CLxPrhHgMettZ2zHB8gXnn7VuALwAettXrHLCKyzFhrufLVF1IdRsKMtPfyzM/8MZmlBax/+wOsf/uDhEoLUh2WiIiIiIiILEOLSuKOL2L2oan2GWM+RTyJ+9fW2s/est0PrAci1tqLt435JPAbwCHgiTm0UAgC/wy8gXgy+b8ogSsisjyF+4cY6ehNdRgJN9Lew4k//1dOf+7rbH7vE2z+wOsJ5IRSHZaIiIiIiMjcpV07hdVnsZW4C1EFnAauArXXNxpj3k88gRsDngU+asyk/hZXrLWfv+X5XxBP4HYCTcCvTjHm+9ba7ycsehERSYqxnsFUh5BUsdEwJz/z71z61+d44m8/Sai8MNUhiYiIiIiIyDKRiiTudNaNf3WBj01zzNPA56cYUwz86gxzf38RcYmIyBIY6xlIdQhLYqS9l1N/9TXu+sR7Ux2KiIiIiIiILBNJS+Jaaz8FfGqK7VeYYgm56Y6f5RwPLSA0ERFJQ9GRsVSHsGTaD51LdQgiIiIiIiJzYo3Bplk7BTv5TvwVL50qcUVEZBXzwtFUhzCB43PJLCvEn52BPzuEPysDXygDfyjIWN8Q3ScuMdzWs6C5CzatSXC0IiIiIiIispIpiSsiImkhHdalLNldz9on91O4vZb8+hrcgH/G44fbe+g6epGOI+fpOXON7lNXiA6NTnu8PyeTigN3sOeX35Po0EVERERERGQFUxJXRETSgvVsSs9vXIf7/uDDZBTmznlMqLSA0ON3UfP4XQB4MY+hxnauffNVTv7/7d15lJ5VnSfw760sZCcbIQQhCZEl7KggBAINboyg4GllGFtFcbp1uo+tbTtjq63TaB/HOa092MP02G5tt3sDto60CzarC6KCICK7EHaCAQSyL3f+eN9oUVaSqiRVz1Opz+ec33ly7nPv+9zifS636vfe9z6fvCQb16zL3OMOyX6vWJpZhy7MpL1mp2dMz1D9CAAAAEOjZdspjEaSuAC0wsY163ao/fjdJ2fPYxZn7rEHZ+YhC7PsWz/KHV+6bMCvO+uw/QaVwO1Pz5ieTJ0/N4f80cuy19LDU8b0ZMYB++zQawIAAIAkLgCtsL1J3BmL5+fo974uMxYveMYq15kHL8ji15+aW//pW7njS5dv88Fp8044fLuuvyUzF8/fqa8HAADA6CWJC0ArbFq/cdBt9jrhsBz/4T/OuEkT+j0/Yea0HPlnZ+Wgc07Nzy74Su66+Oqk9r9tw7Ne+NxBXx8AAGCXV0pq27ZTKKXpHgw7G/MB0Aq/uumuQdWft/TwnPh3b91iAre3CTOn5Zj3vT5Hvv2sfs/POnS/7L7fvEFdHwAAAIaLlbgA7FQbVq/NmAnjUwbxyej6lavzwJU3DOo6C162JD1jB/dp8OJzTs0eR+6fe7/9ozz609uz+tEnsucxB+eIt71yUK8DAAAAw0kSF4CdYtPGTfnFJ76emz9xSWYf+ew8952vzvQBPNRr04aNue5DX8j6p1YN6np7HrN4u/o5+4hFmX3Eou1qCwAAMPqUpG3bKWT0bacgiQvADlu1/PH88N2fyCM/uiVJsvzHt+bb/+n9OeJtr8oBZ5+SnnHPnG42rd+Qp5Y9koeuuTnLvnFNHrv5nkFdb/pB+2bCzGk7q/sAAADQapK4AGy3WmvuueSaXPehz//OStpN6zfkp3/zxdz2uUvzrJOPym4zp2bVw4/l13fcn8dvuy8b16zb7utOf/beO9p1AAAAGDEkcQHYLk/ccX+u/5sv5pEf/mKr9VY9tCK3f+Hfd+6173xgp74eAAAAW1Zbt53C6COJC8CgrFnxZG76+6/mrouvTN1UG+nDE7fem5UPr8jkubMauT4AAAAMJ0lcgBFk08ZN6RnT08i1N65dn9s+d2lu/uQl2bByTSN96LkvJWUAABJOSURBVO3R627P5NOOa7obAAAAMOQkcQFGgPWr1uTnH/t/ufPLl2fB6UtyxFt/P+OnTR626z96/e259r9/Ok8te2TYrrkta1Y82XQXAAAAdn2lJD0tSyGW0nQPhl3L3gEAelv7+FO561+vzu1fuCyrlz+eJLnzwivy8LU355SP/9dMnjd7SK+/YfXa3Ph3F3f2tK3NbJ2wJeufXt10FwAAAGBYSOICtMyGVWtz+5f+Pfdf/tM8/ot7smnDxt+p8/S9y3PFmz6SF332Pdlt+pQh6ceKn/8y17zrE3lq2cND8vo7au3jTzXdBQAAABgWkrgALbLywV/lsnM/lJUPrthm3aeWPZxr3v3xnPjRP03PuJ33v/MNa9blpr//am7752819uCygdiwZl3TXQAAABgFStIzpulO9DH6tlNo5uk4APTrzguvHFACd7OHvndTvvfn/ycb167fKddfft3t+dar3pdbP/PNVidwk6RnXNt+iQAAAIChIYkL0CJT5++ZOUcflIlzpg+4zQNX3pDLzv1QHvzujambNm3XddevWpOffPCzuewN/6NVDy/bmkl7zmy6CwAAADAsbKcA0CL7nbk0+525NEmy7slVueF//UvuuviqbbZbcdMvc9WfnJ8p+8zJot8/MQvPOCETZ+0+oGs+ev3t+eF7P5Wn71u+Q30fbnOPO6TpLgAAAOz6SlJ7WpZCHH27KUjiArTV+GmTcvT7zsmUZ+2RGz960YDaPH3f8tx4/kX52QX/mnnHH5YFpx+XeScdmbETxv9O3Q2r1+Zn//srue3z30lqu7dO6Gvflxyd2YcvarobAAAAMCwkcQFarJSSg994WibNnZlr3vXxAberGzbmgatuyANX3ZCxkyZkj6P2zx7POSBT5++ZnnFj8vgvluXOi67MmhVPDmHvh8acow/K8897Y9PdAAAAgGEjiQswAiw47bjcf8VPc9+lPx502w2r1uSh79+Uh75/0xD0bHjNf+mxef4H3pgx40xfAAAAw6MkPW17sPTo20/Bg80ARojD/+QVKT2jb6La7MDXvjjHffAPJXABAAAYdSRxAUaIaQv3ysIzTmi6G4044NUvzFHvODulx7QFAADA6GM5E8AIcuibz8g9X/9BNm3Y2HRXhs2Mg/bNkW8/K6WM3lXIAAAAzSmppW0pxNH396ElTQAjyOS9ZmXaonlNd2PYjJ8+JUs/+qcZM35c010BAACAxkjiAowwU/fZs+kuDJtjP/DGTN5rVtPdAAAAgEa1bS00ANswZd85TXdhWBz2x2dm75OObLobAAAAo1spSU/LUoijcLu9lr0DAGzLjIP2bboLQ2rsxN1yzHlvyPxTn990VwAAAKAVJHEBRph5Sw/PmAnjs3HNuqa7stPNPmr/HPv+czN1/tymuwIAAACtIYkLMMKMmzwx8048Ivdd+uOmu7LTTJ2/Zw75w5dlwenHpfTYrh0AAKBV2radwijkHQAYgRa+/PgRn8QtPSX7nbk0C884IbOPWCR5CwAAAFsgiQswAs1benjmn3Zslv3bD5vuynaZ87wD85y/+IPMOGCfprsCAAAArSeJCzAClVJy9Htel1/99M6sfPBXTXdnwHabMTXPe/drss+Lj04ZhU8TBQAAGGlqSmrLtlOoGX1/T/ruKsAINW7KxBzyppc13Y0Bm7TXrLzg0+/Mvi85RgIXAAAABkESF2AEW3D6kkzZZ07T3dim3Z+9d1702fdk90V7N90VAAAABqOUpIxtWYy+hUHtWgsNwKCMGTc2L/jUO3PFf/lInrzrwWG//vjpU7L/WSdn0/oNmTxvdsbvPjljdhuXnnHjMmb82PSMH5sx48dl6oK5GTdpwrD3DwAAAHYFkrgAI9ykuTPzws+8K9d98HNZ9s1rh+26C04/Lke94+xMmDlt2K4JAAAAo5EkLsAuYLfdp2TJ/3xz9j75qNx4/kVD+rCzSXvNytF/+brMW3r4kF0DAACAtihJyx5sllH4YLO2vQMA7ID5pz4/c487JN992wV59Lrbduprj5s6KQecfUoWn/vSjJs8cae+NgAAALBlkrgAu5jddp+S3/u/b89NF3wlv/za97Lu1ys75TOmZPaR+2fagrlZ9+uVeeCqG7JmxZPbfL2Jc6bnwNe+JM9+5UmStwAAANAASVyAXdDYCeNz1DvOzpFvPyurlz+RumlTJs2dmdLT85s661euzh1fvjwP/+DmPPaLe7Jx3fqMnzY5qTWT5s7MlGftkb2OPyzzX3psxowf1+BPAwAAQHNsp9AGbXsHANiJSk9PJs2d2e+5cZMn5uBzT8vB556WWmunfhl9EyEAAAC0nSQuAJK3AAAA0GKSuAAAAABAv0pJSmlXCnE0rkPq2XYVAAAAAACaIokLAAAAANBi7VoLDQAAAAC0SEl6xjXdiT5G334KVuICAAAAALSYJC4AAAAAQIvZTgEAAAAA2IKSUtqWQrSdAgAAAAAALSKJCwAAAADQYm1bCw0AAAAAtEZJbKfQOCtxAQAAAABaTBIXAAAAAKDF2rYWGgAAAABoi1JSelqWQiy2UwAAAAAAoEUkcQEAAAAAWqxla6EBAAAAgDYpRQqxaVbiAgAAAAC0mCQuAAAAAECLWQsNAAAAAGxBaeF2CqXpDgw7K3EBAAAAAFpMEhcAAAAAoMXathYaAAAAAGiJkpKelm2nUGynAAAAAABAm0jiAgAAAAC0WLvWQgMAAAAA7VFKShnTdC+eqdhOAQAAAACAFpHEBQAAAABoMdspAAAAAABbVIoUYtOsxAUAAAAAaDFJXAAAAACAFrMWGgAAAADoV0lJT8+YprvxDCWl6S4MOytxAQAAAABarNRam+5Dq5VSVkycOHHm4sWLm+4KAAAAAFtxyy23ZPXq1Y/VWmc13ZddQSnluokTxz9n8eJ5TXflGW655cGsXr3u+lrrc5vuy3CRxN2GUsrdSaYluafhruwMB3WPtzbaC2BrjFMYGYxVaD/jFEYGY5WdbUGSJ2utC5vuyK6glPL5/Hacts2ttdY/aLoTw0USdxQppVyXJKPpUwoYaYxTGBmMVWg/4xRGBmMVYGDsiQsAAAAA0GKSuAAAAAAALSaJCwAAAADQYpK4AAAAAAAtJokLAAAAANBipdbadB8AAAAAANgCK3EBAAAAAFpMEhcAAAAAoMUkcQEAAAAAWkwSFwAAAACgxSRxAQAAAABaTBIXAAAAAKDFJHEBAAAAAFpMEneIlVLuKaXULcTDfeou2ErdWkr50lauc04p5UellKdLKb8upVxZSjl9K/UnllLOK6XcVkpZU0pZXkr5l1LK4q20eVYp5dOllAdLKWu7P9v5pZQZW2mzpJTyjVLKY6WUVaWUn5VS3lZKGbOt/3bQhFLK0lLKxaWUh7r3+UOllEtLKS/tp+6g729jFXbcQMapORWaUUp5/TbGXi2lbOynnTkVhslgx6k5FaAdSq216T7s0kop9ySZnuT8fk4/XWv9cK+6C5LcneTGJF/tp/7Pa60X9XONDyf58yT3J7koyfgkZyeZmeQttdYL+tTfLcllSY5P8pMklyfZJ8mrkqxLckqt9do+bRYl+UGSOUm+luTWJMckOTnJbUmOr7Wu6NPmjCQXJ1mT5MtJHkvysiQHJrmo1vqqfn5GaEwp5S+TfCDJr5JckuShJLOTHJXkilrrf+tVd9D3t7EKO26g49ScCs0opRyZ5MwtnF6a5JQk/1ZrPb1XG3MqDKPBjlNzKkBL1FrFEEaSe5LcM8C6C5LUJJ8ZxOsv6ba5M8mMPq+1Ip2JaUGfNu/qtrkwSU+v8jO65Tf3Lu+e+3b33Fv6lP9tt/xjfcqnJVmeZG2S5/Uqn5DOJFuTnN30+yPE5kjnl8Oa5DtJpvZzflyvfw/6/jZWhdjxGOQ4NacK0bJIck33fn15rzJzqhAtii2MU3OqEEK0IBrvwK4eGfok7j9327yhn3Pv7547r1dZSbKsW76wnzZXd8+d3Ktsv27Z3f1MmlOTPJ1kZZLJvcrP7bb5p36ucUr33FVNvz9C1FqTztYyv+zex3sMoP6g729jVYgdi+0Yp+ZUIVoUSQ7t3qv3JxnTq9ycKkRLYivj1JwqhBAtCHviDo/dSimvKaW8u5Ty1lLKydvYa2deKeVN3fpvKqUcvpW6p3SP3+rn3Df71EmSRUn2TXJ7rfXuAbbZ/O9La62beleutT6V5PtJJiU5doD9ujrJqiRLul+ZgaYtSbIwyTeSPF5KOa2U8s7ueD2un/rbc38bq7BjBjtONzOnQju8qXv8VK2195645lRojy2N083MqQANGtt0B0aJuUk+26fs7lLKG2qtV/VT/0Xd+I1SypVJzqm13turbHKSvdPZW/ehfl7nju7xgF5lB3aPt2+hr9vb5sXdNpdtq02tdUMp5e4kh6Tz6ektW3hdGC5Hd4+PJLk+yWG9T5ZSrk7yylrro92iQd3fxirsFIMdp5uZU6FhpZSJSV6TZFOST/Y5bU6FFtjGON3MnArQICtxh94/JnlBOoncyen80fkP6Xwl5ZullCN61V2VzsNanptkRjdOSnJFkt9Lcll3Qtxs9+7x11u49uby6SOkDTRlTvf45iQTk7wwna9gHZrOPlsnprM312aDvb/bPO6MVUaKwY5Tcyq0x1np3J/frLXe1+ecORXaYWvj1JwK0AKSuEOs1nperfXyWusjtdZVtdaf11rfnM5G6xOT/FWvustrre+rtV5fa32iG1en8+nhtUmeneQ/b083BlG3tLgNDJXN25uUdFbyXVZrfbrWenOSV6SzL9hJ2/jKdm/be3+3cdwZq7TFoMapORVa5Y+6x3/YjrbmVBgeWxyn5lSAdpDEbc7HuscTt1Wx1rohv/1KS+/6mz8l3D396+9Txm21mdZgG2jK493jL2utN/Y+UWtdnc4qvyQ5pnsc7P1trMKOG+w47Zc5FYZXKeXgdPa0vj+dPa37MqdCwwYwTvtlTgUYXpK4zVnePU7eaq3f2rzH32/q11pXJnkgyZRSyl79tNm/e+y9389t3eMB6d+QtymljE3n4TQb0nnSODRt8/36xBbOb04eTexTf0D3t7EKO8Vgx+nWmFNh+GzrQUnmVGjetsbp1phTAYaJJG5zNn8te6CTw+Ynavatf3n3eGo/bf5DnzpJcleSe5McUEpZOMA2V3SPLy6lPOOeKaVMTXJ8ktVJfjjAfp2YzlNCf1BrXdvPeRhuV6fzy9r+pZTx/Zw/tHu8p3vcnvvbWIUdM9hxujXmVBgGpZQJSV6bzoOSPrWFauZUaNAAx+nWmFMBhkutVQxRpPNUy5n9lM9P50mZNcm7e5U/P8n4fuqfkmRNt/6SPueWdMvvTDKjV/mCJCu67Rb0afOubpsLk/T0Kj+jW35z7/LuuW93z72lT/nfdss/1qd8Wjqfyq5N8rxe5ROS/KDb5uym3yMhNkeSz3Xvy7/uU/6idH6pfSLJ9G7ZoO9vY1WIHY9BjlNzqhANRzqJoZrk61upY04VosEY4Dg1pwohRAui1FrD0Cil/FWSv0jnE8K7kzyVZFGS09KZJL6R5BW11nXd+lemk/i9Mp39iJLk8HQmxyR5b631r/u5zkeSvL3b5qIk45P8xySz0pnMLuhTf7d0PoFckuQnSS5Lsm+SVyVZl+SUWuu1fdosSmdSm5Pka0luSWcyPzmdr6csqbWu6NPmzG5/1iT5UpLHkrw8yYHd8rOqG5CWKKXMSfL9dB7M8N0kP0rnA5dXpPPL3KtrrRf2qn9mBnl/G6uwYwYzTs2p0LxSyneTnJDk5bXWr2+l3pkxp0IjBjJOzakALdF0FnlXjiQnJfliklvTWR20Pp1P/b6T5HVJJ4neq/4bk1ySzldBn07n08F7k3w5ydJtXOucJD9OsjKdZPFVSU7fSv2JSc5LZ0Xw2m6/Lkxy8Fba7JPkH5M8lM4kuizJR9PPauNebY5PJ1n9eDpfZbkpyZ8lGdP0+yNE30gyM51P7e/u3uMr0vll8Ngt1B/0/W2sCrFjMdBxak4VotlIsjidD1fuG8g9ak4VYvhjoOPUnCqEEO0IK3EBAAAAAFrMg80AAAAAAFpMEhcAAAAAoMUkcQEAAAAAWkwSFwAAAACgxSRxAQAAAABaTBIXAAAAAKDFJHEBAAAAAFpMEhcAAAAAoMUkcQEAAAAAWkwSFwAAAACgxSRxAQAAAABaTBIXAAAAAKDFJHEBAAAAAFpMEhcAAAAAoMUkcQEAAAAAWkwSFwAAAACgxSRxAQAAAABa7P8D5zBV1elIDPMAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "image/png": { + "height": 436, + "width": 696 + }, + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "input_df['Local_Entropy'] = index.statistics\n", + "input_df.head()\n", + "ax = input_df.plot(column = 'Local_Entropy', cmap = 'inferno_r', legend = True, figsize = (15,7))\n", + "ax.set_title(\"Local Entropy\", fontsize = 25)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Local Simpson Interaction" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([0.15435993, 0.33391595, 0.49909747, 0.1299449 , 0.09805056,\n", + " 0.13128178, 0.04447356, 0.0398933 , 0.03723054, 0.11758548])" + ] + }, + "execution_count": 11, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "index = MultiLocalSimpsonInteraction(input_df, groups_list)\n", + "index.statistics[0:10] # Values of first 10 units" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "Text(0.5, 1.0, 'Local Simpson Interaction')" + ] + }, + "execution_count": 12, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABXEAAANoCAYAAACGGKlcAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/d3fzzAAAACXBIWXMAABYlAAAWJQFJUiTwAAEAAElEQVR4nOzdd5xcd3X//9e5s1Va9W5ZtmTZstwbNsYF03sv+X0JEEoCIZBAKCl0AyEhIXRSaKGT0KspxsYN997Ue9dKK62275R7fn/ckbSand2dfmd33k897mM0t3w+Z3Zn7uyc+dzzMXdHREREREREREREROpTEHcAIiIiIiIiIiIiIjI2JXFFRERERERERERE6piSuCIiIiIiIiIiIiJ1TElcERERERERERERkTqmJK6IiIiIiIiIiIhIHVMSV0RERERERERERKSOKYkrIiIiIiIiIiIiUseUxBURERERERERERGpY0riioiIiIiIiIiIiNQxJXFFRERERERERERE6piSuCIiIiIiIiIiIiJ1TElcERERERERERERkTqmJK6IiIiIiIiIiIhIHVMSV0REphQzu9bMfOQSd0y1kPuYzezauGMSEZH6ofcJERGRya0p7gBERESmOjObBVwMLANmATOBFNAPHAa2A9vcfXdsQYqIiIiIiEjdUhJXRBqemS0HtuasvsXdn1L7aGSqMLOTgTcAfwqcCVgBxxwC7gfuAa4H7nD3dDXjFJnKdH4XERERkalC5RREREQqyMymmdm/A9uAjwKrKSCBmzUXeCbwfuAWoMvMnlyNOEWkfpnZ8jyXvr8+7riktsxsW85z4BtxxyQiIiLx0UhcERGRCjGzU4AbgDMq1ORMosSuiIiIiIiINDAlcUVERCrAzE4CbgZW5NkcAncC9wIbgCNENXHnAvOB84EnAKfVIlYRERERERGZXJTEFRERqYz/ZHQC14EvAf9UyKRlZnYq8DLg5cCVxXTu7oWWbBARkQak9wkREZHJTTVxRUREymRmTwFenLM6BF7l7n9VSAIXwN23u/tn3P0qotG5Xwb6KxmriIiIiIiITD4aiSsiIlK+V+dZ90V3/36pDbr7o8Bflh6SiIiIiIiITBUaiSsiIlK+5+ZZ94WaRyEiIiIiIiJTkkbiiojUCTNrAS4DTgYWAtOBLqATeNzdN1a5/2XABUQTbc0DWoFeYD+wDljn7sky+1gKrAaWA7OAdqAHOATsAO5196Fy+qg1M2sCTspZ3ePum+KIpxrMrJnouXk20XMDoufFA+7+cBHtzAQuBc4EZhOVitgH3O7uuyoZc56+5wFPBFYCM4kml9sDPOzumyvYjxFNUHc+sDjbVxMwCPQBu4BtwAZ3T1eoz2lEj+0kYAHQBhwgOnc8WO2f7Yg4zgAuAZYSnT+6iH7Gf3T3w7WIIQ7Zc+elwKnANKLz2X6i5/X+OGMrVPa1eRmwiOPPoYNEz6P7Ci0JU2YMC4kmeFxB9P7g2Rh+6u4HCzh+DtH7yxnAHKADGOD47+Medz9UneiPxTCN6LmwhOi9dBbRa78b2AiscfeuasZQS9nz3XlEP/MFRJN1HiE692wleo8IaxDHLODybByziM61B7L9r6t2/yIiIjXj7lq0aNHS0AtRQtFzlptr2P8zgJ8TJUxz4xi5bAY+BSyuYN+nAZ8HNkzQtxMl3H4N/DkwvcD25wNvAr5PlKybqI9h4BbglUBQ4mO6NrfdKv/+luR5HHtieB7nxnBtAcc8Jc9xTxmx/STgP4gS7WP9ztYDr52gn/OBHwBD47RzB3BlpX/fwDXA74D0OH3fD/wFYGX8/FcBnyvwee5EyaVbgfcBq0rs85XA9RP8XB14LPtzmlnp5xbRVV1vAB4dp/80cANweQyvi+V54rm5wGO35Rz3jZztLwXuHOdxh8DdwPMK7O/1BT53xlsKemzZ/lqBv84+D1MTtPs48F6go4Tfwc1jxQgY8KfZn2M4Rt9PGaPdtuzv4EtE56GJfjZh9rXwbmBGBZ9jbdmf4y1E72ETxfAQ8M/AGQU+X4teSnktF/mYVwFfJfqSZrxYDgLfBS4qsZ9v5LS3LWf7hcCPgOQ4MWwD/gZorvT5RYsWLVq0aKn1EnsAWrRo0RL3MsaHpptr0O9pRMmlYj+g9QEfpMQkZ7bv+cD/MPEH97GWngL6+F4Z7TuwBjinhMd2baEfaCv0e5yTJ/YUMK3Gz+OiP5wzThIXeBnR6LFCf18/AFpz2jfgQ4yfQB25hMD7KvH7BhLAF4t8zt0GrCiyfwM+xsTJm/GWfUX2eTFwTwn9HAD+slLPLaKrBu4oMoaP1/h1sTxPDDcXeOy2nOO+kV0/G/hFkY/7m0DTBP29voznULGP7dVEVz8U234n8P8V+Tu4OV+MRKN+bymgz6fkafMdRCM+S/05HQJeVoHn11uYOJE53vLyAp6vRS/FvpaLeLzTgP+k+Pf2EPg2MKfI/r6R08627PqA6Lxb6HuLAw8AC2t5/tGiRYsWLVoqvagmrohIDMzsEqKRR88q4fDpwEeBH5hZWwl9nw/cSzR6rtSyOjMK2OeKMtoHOAu4y8yeUUYbtdBNlMAbqYlohNikZGavIRrdNKuIw15J9MXA0TYM+ArwEaKEakFdAx83s78uot/RjUR9fwd4W5GHXgXcYmanFXHMN4EPAC1F9lUSM3su0cjJS0s4fD7w32b2OTMr62/A7M/oLuBJRR76PjP7p3L6jlO2LMdtwAuLPPTPiBJSsTKzwMw+Q/T6WFZCEwuA/zOzj5QZx2KiLwCeXGITFxGVKinVHOBHZvaPpRxsZm1m9h3gv4iuxihVIe+ldcHM5gN/AP6K4t/bDXgN8EczO6XMOALgW0Tn3ULfWyB6ztxqZh3l9C8iIhIn1cQVEakxMzuLaGRSvg8SG4GfApuILmFfTFSn8EV59n850GpmL3J3L7Dvi4kSQNPzbO4BbiJKLncSjfidRVTf8hKipOy8PMcVIkM0CuZxovq6Xdn+jOiD+BlE9eyu5MRJNzuIEgYXufvOEvuuKnd3M7uTaFTrSP9uZvd4lWsZV8ETiC71tez9bqIyGncRPS/aiRLsf0I0amykPzWzn7n7D4nKBPz5iG3bgV8RXc7cRTSa8bJsO7nJmH81s1+5+7YSH8O7gf834n4vUcmSe4lqY84mqp35ckYnspYBfzCzC929e7xOzOx1wGvzbDpANMr+UaJReoNEP7cZRPU+zyFKfs4p4jFhZk8lGgGa7++3h7PbtmX7W0JUSuLZRJfNj/R2ouRHqcnyGcBviM4NEI1yu4OoZMIOonPHAqLX80uJLjcf6b1m9kt3v7vE/uPSRHR+PnfEugeJftdbiF4rc4nqE7+M0V+CvDr7+vjRGO0fIvo9QvSlwFk523dm9xnPRLW4v8uJr42j9gA3Ej2eg0QlOuYSJb6eC+Qm3j5kZgfc/YsT9JdPQDRyf+SXJVuA64jeHw4SvdesAF5RYJvriX52a4G9RK/5JNFz9ZTs43gW0evwKAP+2cwedffrCg0+WyP8d+RPQIdE5VluJHotdBE9/+cR1Y59IlFt8bEkOf4cILtv84j7h7Pt1pSZtRP9fXBuns0HiV4XjxC9R8wjeu6+nNH14s8mSuRe6KXXJ/440Ujyo3YSPXcezcbSMaL/FTnHngl8gtLPfSIiIvGKeyiwFi1atMS9UMNyCkTJlIfy9NcFvGac4+YAX89znAPvKLDveUQTjeQe30NU63Dcy/+Jkj7PICqTkC6gvw3Aj4mSOLMKjPHUbPu5Mf6qiJ/xtbnH1+A59LYxfjd9RCNRT6pBDEVfJkv+cgoj66t+Hpg9znM5X7mCdUTJ2Uz2fj/RJceJMdpZDNyep50vlfr7JkpiHv3//4zzGAKihO9gnja+XkDfG3OOSQN/R05ZiXFeT1cS1fPcVMD+c4kmRcuNczvwnHGOO5koeZ7v+fniEp9bI39edwEXj3PscqKkVm4bv632a2JE/yWd3xldTmHk414PPG2cYxcAv83T99oy4n59mT+Ld+ZpcyfRKPq8r8/scU1ENaNz67YPA5cU0O/NeV4nR/9/kOiLkLz1qIkSraNeT0Tvh3cQ1Vw/ucDH3wF8mNGlTzqB9iJ+jmOVafkxcGYBx59OVBJp30S/0zzPwW+U+Rwo+n0ie9x/5zk2TZRQbRvjmATR+TBfze6fFNjvN/I8547WTu7J/v7Hem9pBv5ljLiXlvNz1KJFixYtWuJaYg9AixYtWuJexviwfHOV+npfnr66gPMLPP7jeY4fKuQDCfB/eY7dCZxXwuOYsG4oBSZuxzj2wzlxhsDqAo+9Nvdx1uA51Mr49SWPTnD0CeAlFJh0KDKGoj+ckz+Je3R5e4H95ktU7c/e9gJPLKCNOUSJlJFtHKGAxEq+3/eI5V8KfAwvIH+NxyePc8w5efb/cIm/uwnrJwNfztPflkKeS0SJsG/nOb6g5NU4P99fMkYCJ+f4uYye8C0DnFLp10GevpfnifvmAo/dNsbjvgeYW8DxreSf8O2qEuN+fRk/h3MZPfnTnRRxngYuYHQd2t8UcNzNY/wc9wFnl/h4Co47z7HPyPN6f3OBxz4nz+MIgXeXEEcbE0xUmuc5+I1SH3e2vVLeJ67Mc1yGCSa0HHH88/I895ycesBjHPuNMZ47XcAFBfaf79z5gXJ+jlq0aNGiRUtci2riiojUSPYSzHyX8L3e3R8ppA13fz9R0mykViao/Wlmq4lGW400RDRr+qOF9J0Tx9YC9jlSbLsjfJTo0vejDHhjGe1VlbsPE/18B8fYxYhGp/4D0WWnO81sn5ldZ2bvN7OrzSz3kvc4fc/dP1/gvh/Ms25h9vYdXsAl8+5+GPhUzuqZRCU8SnWzu7+3kB3d/VdAvjqtbx/nsHx1c79SSH95+h8Yb3u2FmVu2YYMURJkVwHtO1EN7NzX+oI87RZqG9HVA0MF9H+IaET6SAHwzBL7jlM38Aov4FLw7Hnh7/NsenalgyrAeznxsvy9ROf/gs/T7v4w8Nac1c8xswtLjOkv3H1NKQeW8/7i7jcAn82NpcDD853v/sXdc89fhcQx5O77ij0uBu/Ms+6z7v7tQg5291+T/+f27jJiekP2+ViIfyT6e2ekOF6DIiIiZVMSV0Skdl7O6AlQfu3uvyyynb8mSuCM9OZskngsf8foc/5HSkng1kI26ZT7AfGqOGIpVDZZ+Wyi2pKFWEQ0QumfiOoUd5rZ18ysnMRlJWSIRowXxN3vJX+NxvVElzwXKl+d0IuLOD7XeAnYfP6VqFzBSC82s7EmLco3IVFXkX0W6i8YXVf2S+7+YKENuHsa+Js8m0qtDfmRIhNp/8fo89YlJfYdp8+5ezE1Sa8nqpE8Uk0ft5ktJ6o9PdIHsl+eFOt7RGVERnpJCe3clP3yJC7fyrl/kZlNG+8AM7ua0V8sPU505ciUZGZLGf377QQ+VGRTn2b08+ZJ2Tr9xbrF3X9R6M7ZL1x+nbP6wnIndxQREYmD3rxERGon36iz/yy2EXffTDSpykjzGD/h9YKc+31Es2rXs9wPfBdPkKiOnbvfRnTJ8WcZPfJnIjOJRhvfbma/MrMzKxxeoW5w9+1FHvNQnnVfzybjC5J9XvfkrC71Z3BXsV9QZEeU5n5x0ER06XU++RK21fqiId+5o+jXr7vfQpR0Guk8M1tcZFP9RMm8Yvo+zOjXdFzP8XIUNdra3TNENYFHqvXjfgknTobXT5RUL1r2Nf2bnNXXlNDU10rpv4Jyn4tNRJM6judFedZ9OvsFyVT1NKLatiN9y937i2nE3VPkf+2UMhq/lCse7sm538HxiRlFREQmjXyzG4uISHVcmXO/n9GlEQr1A6JRnLntj7p03czO4fjl7Uf9osxyB0Uzsw6i2bzPJ5qheh5R4nI6+b9U7Mi530o0enXCy8fj5O4HgXea2b8QzQL/KqJSCsV8cfp84Boze527/6QKYY7n1hKOyZf0va3Eds4bcX92CW0A/KzE435CdNn5SJczOrkLUbmPkBN/r18xsxe6e26itGRmliB6/oy0zt0fK7HJHxLV8x3pCqLHXqi73D1ZQt+bgdUj7s8qoY04bXb33aUcl3O/1o87N8n60EQlPCaQW07nohLauKmM/kfJvk6eBFxIdA5ZQjRafgaFf945ZYLtT8m5n6LEZPgkkvt3C+S/aqIQPwD+rYD2J3JLCcfkvgYheh3uLKEtERGR2CiJKyJSA2Y2HViVs/rB7CitUtybZ91YI3GflGfd7SX2WzQzu4SonMOLgPYym5tNnSdxj3L3TuDzwOfNbBZRouxKot/TRcBEox87gB+a2YtrfNnxphKO6a1SO6Umu3JHPhbqUaLEzMgR33kvfXf3Q2b2C0681HgF8LCZ/Rz4X+B6d88dXVysMxn9hcZ9ZbQ31rmjmCRu7ijGQuV+cTTZkriT9XHnJsrOMbOHymhvbs79WWbWnB1tWYhOdy+07My4sqPI/5HoC7NFZTY3e5x+WhmdrC43GT4Z5P5dkQYKrUV7AnffbmadnPilcrHlFIYKqQOeR74vrSfb+UdERERJXBGRGplHNLnVSGvLaG8do0cBzh9j33wfbKteCzdb+uAzwF9RufI9k/JDV3bU828YcRlyttbg1USznb+UaFRyrgD4rpmdXeIIwFKUUiczX/KmEu2UWj5jfSkHufuwmW0DzhixOncU+0jvIRpdPjKplQBell0yZvYgcCdR8vTWEkpV5Htdl3PuyDeR1FjnjrFMOKnXGCr1+41LpR53zf7+NrMWognsRppN6aPcxzIX2F/gvoXuNy4zezPwSfKfO0sx3vvLfEaXFajLmvIVlntu2FrIZIbjWMuJ59S4zj0w+c4/IiIiqokrIlIjc/Ks6y61MXcPGV0/NHd01HjrS0mwFSybwP0h8DYq+14zZT50uftud/8/d389cBLRZfyDeXadyehL/Kup0NF04ypiVF41lFMqJPfY2WPtmK3j+wxGX15+VIKozubfEE2ktM3MtprZp4qY0Kei5w7yv/bHOneMJc7fbZwm4+OeV6N+irnKotzR6ZjZ3wNfonIJXBj//aXm76N1Ivf8011me7k/s9aJJpTLMRlfgyIiIhWjJK6ISG3km8m+qIlBCjg+Xx+Q/0NuX5l9T+QfgBfnWb+baDK31xCVeVhGlCRrc3cbuQBPrXKMdcPd+939E0QlF7rz7PK6ep/Urc6U89oq9HUFgLs/CJxL9JwvpL7icuBdwP1mdoOZXTjB/pU+d+Q7dtzHKJNavi8B4lbWRGBmdhXwr3k2HZ1w761E9WtPJ3r804Agz3tMMeJ4H60HueeGSv/dkq8PERERGYPKKYiI1Ea+mqHTy2wz9/h8fUD+UU+5NTYrxswWMnrkaJqoLu4Xi5jJu9z6uZOOuz9kZm8lSkSM1EE0uVXNahlPctMpfbRfoa+rY7J1Mf/NzD5JVCLjmURlFi5l/Ofx04G7zezN7v7NMfap9Lkj37ETPkaZtPKN7v+su7+z5pFUzmfyrPsG8E537y6kATNrK7LPmr6P1pFeTrwaodJ/txztQ0RERAqgkbgiIrWR77LL2aU2ZmYBo0cGjVUrrivPumqOznoR0cinkf7B3T9bRAIXir/Ee6r4P6Azz/ozax3IJFZO7eTcY7sLPdAjt7r7B939GqLX6KVEI29/Tf6EWgvwNTN78hjNVvTcMcaxpdaZlPp3MM+6FTWPokLM7HSiEiUj/dLd31BoAjer2DITtX4frRe555/ZZbaXe/xwA0wOJyIiUjFK4oqI1MZBwHPWnVVGe2cy+hye78M6wL48684vo++JPDPn/mHgiyW0c1oFYpl03N2B+/JsKnYCmEa2qpSDspNALc9ZnS+hXhB3T7v7fe7+GXd/PtGEPm8B9uTsmiCaoCmfA3nWlXPuODvPurHOHTLJuXsvo788qOb5v9py318APlpCO8W+vxxkdBmIyfxzLFTu+WeFmbWW0V7u+UfnHhERkSIoiSsiUgPZkSbrc1ZfaGa5s10X6tI86+4fY98786y7ssR+C7Es5/7d7p4soZ0nVSKYSSrfxFxl1ZFsMJeUeNz5jJ7caKzXVdHcvc/dvwRczOj6uZeZWe5rB2ADo2tv5o5ELEYx5w6ZGu7Jub/CzCbryP7c18iQu+f70msiRb2/ZN/DHshZfaGZlVteoN7lPuYm4MJSGjKzU4i+yBpJ5x4REZEiKIkrIlI7d+Tc7wCeU2JbryygfQDcfS2wP2f1C82snEvOx5M7YrToS7XNbD4NNLFZHovyrMv9HcrYXlLicS/Ls+6uMuLIy933A5/Ks+m8PPtmGJ2EW21m55TYfcHnDolVvi9tSv3S7/d51r2mxLbiVvb7S9aflHDMzTn3m4D/V2L/hcp9HpT6HChVvnPDK0psS+ceERGRMimJWwQze4WZfcHMbjOzHjNzM/tOFfo5z8y+ZWY7zWzYzDrN7BYz+7NK9yUiNfW7POveUmwjZraC0cnfg4weMTPSz3LudxDN4F0NubNPl1IG4G1AsRPPTAlmNg14Yp5Nm2sdyyT2pGKTnNlLhF+bszoN3FCxqE60Ls+6sb5YqdS542rg3JzVj2STylJf8k32VOpEWr/Is+7tZjYZ647nvr/MydaIL5iZXUNpo/V/mmfdO82smhNF5z4Paj2Z2o1AJmfda4sdgZz9Gb0pz6brSw1MRESkESmJW5wPAH9NdBnR7mp0YGavBx4kGkV0G9FInR8BBjyvGn2KSM38lNG1MF9gZsW+tr9ANAJopC+5e2qcY/6d0R/EPmRmo0b+VcDenPtXFPOBL5t8e29lQ6ouM/vLEmY7H8s7GD2DdyejR2PK+D5X5P5/D5ycs+7n7p77fK6UJXnW5at/C/A/wFDOureYWcE1ObNJlC/k2ZRvncSvl9GjMEuqE+7ujzI6kTsT+HaxCdA6kPt6bAeuLvTg7JdkXy6lY3e/C7g1Z/U5wEdKaa9AuROL1bRWvLvvYXTyehHw4SKb+ltGT855u7s/WGJoIiIiDWmy/eEWt3cSTZYyE/irSjduZpcDXwUeA1a5+5+6+/vc/a3u/mRGjxASkUkkm2TNN8HXN80s32RDo5jZR4Hn56weAv5zgr43Ad/LWd0G/NrMckfmFRLH8nE235Zzv4MCP/Bl2/0FUM7EKXH4HLDFzN5hZiWPlDKzlwPX5tn0A3cPS223QT3dzP6pkB3N7LnAB/Ns+vw4x7zezF5eSl1rM2tm9Ej4kOj9fxR3Pwh8K2d1E/BjM8uXDM7tz4j+vrggZ1MnUPEriqR82df7mpzVzy4j6fohRn+R9zzg66V+AWVm52SvHJtTYkylyH1/Afh49jU1ruzj/CElTnyYlW8Stfea2buKbcjMWs1s8QS7PZpz/9wxamdX02fyrHu3mRVUSsLMng18PM+mfCVlREREZBxK4hbB3W9y943ZmcMLYmavMrObzOywmQ2Z2Voz+8AYM7v+G1Gtq9e4+6jZ5CcYZScik8OngIdy1s0Hbh7vA5GZzTazr5I/0fQP2dEyE3k7sCVn3cnA7Wb2D9kRSmMys8DMnpotI7NxnF1/TJSQGunvzOxj4112amavIpqE7ehIo57x4qlDS4DPAvvN7Ltm9txCkyNmtiL7+/0B0JKzuYv8iV0Z29FRq+83s6+MVf85+5z+W+AnjJ7Q7BvunjvqbqQLia6U2WRm/2RmFxcSmJmdSvRFRe4EYzfke+8f4b3Arpx1pxO9fp8xTn9LgZ8Dr8uz+c3unjvCV+pHbr3QM4GvZp9DRXH3h4lGm+f6M+AuM3thNtk/LjObY2ZvNLPriRKMr6W2dVrvAbbnrLsS+Em2lnpeZnYpUQL46JUvJb2/uPuNjE5qGvApM/tRIRPGZc/37we2MXFd/NznQAD80MzKmdywKO5+B/BfeeL4tplda2a571kAmFkim9z+GaPf137q7vnKU4iIiMg4qlnDqeGZ2deANxJ96PoJ0A1cDnyMaITQM909nd33ZKLLwe4DHjezpxLV63KihM9NGoUlUlNPMLOHKtDOd939k0fvuHvSzP6U6IPoyBGbC4D/NbMPE33g2UR0Oe0iovqoLwJm5Gn/Ogq8HNrdu7MjPW/NaWsm8AngfWZ2I9FETp1AH1GNzpOAi4g+KOfOLJ2vnw3ZRG9uHe8PAK83sx8Bj2Tbn0uUmHgRsHLEvgPAPzD6g+NkMA340+ySMrOHgbuBHUQJ2W6iUdBzgNXAZYxO6B2VAv7c3buqHPNU8yGiL0YB/gL4EzP7GXAv0XN7NtHP/uXAKXmO30509U0hlgPvJ0oY7yWqTf0QUemUbiBJ9FpfDlwBPIXRCeNh4N3jdeLuh7K18a/nxL/fVgC/N7MHgF8SJYaGiL5UeDJRkijflwn/4e4/L+QBSmz+h9G1j98AvMHMDhCV38j9gv8+d/+LfI25+6ezV338ec6mC4i+WNhhZjcRPX+7iJ5Hszh+rrqEqHxAbJ8f3D1jZh8h+tmM9AJgm5n9mOg97CDR6+4U4LlE59mRSeq/ZvTo9kL9PdGXOLmTb74ceKmZ3UdUS3Y70cRrbUTvdecSnetzR8SP5+fZNkbWL34icK+Z9RKdZ0Z9EePuFxbRRyHeTfQ5ZeSVO01EV9n8lZn9lOh9/SDR8+Vsookic0vUAOwkOi+LiIhIkZTErZJsbds3EtWRerW7D47Ydi3RHz1v43jNvqMf4DcCfyD6kDfSo2b2suwl0SJSfdMp7oPWWG7OXeHua7Nf1FzH6KToauAfC2z7J0Tnl4KvDnD3h8zsSqJkT+5orpnAS7NLud5O9KF5dc76k4lq440nRTSL9UAF4ohbM/CE7FKsAeBV7p5vUiIZ378T/cyPzkA/k+hLhUImCN0FPM3du0vodwlRuZPckifjGQZe6+55SymM5O43mdmLiC4Jz62bfHF2KcQXmPh1KDFz93vN7OtEidtcC7JLru4Jmn0TsJWoLEDuFXmnEI3Yzjdqu264+9fN7JnAq3I2Taew1/nH3f3bZlZSEtfd0xbVsv8a0Zd1IwVE732XldJ2nr6GzOydwDfzbJ7B6DqzVeHug2b2NOBXjH5sC4G/LLCptcBz3P1QJeMTERFpFCqnUD3vIJqQ4o0jE7hZHyMa4fDqEeuOJnL+BDiL6NvrWUSXSn4bOA+4bqxLlkRkcnH3+4AnQUkz3/cTfRH0ylIuhc5OcnMZUS3MUkf4jzUB09E+jgDPIBoRVYw9wDPc/dclxhWXfyC6VLdSV0z8BDhLCdzSZL/YeDXw30Ueejtwjbvnlh3Jp5PoaplyPEaUMP5hoQe4+2+IRtjeV0J/XcBfufvbdXXPpPFXRF/4V+T35ZGPE52fS3kOjdRDVGu5r+zAiveGbN/FGALe7u4fKLdzdx9y91cDf0N0LihFhmiU7UR9fYto5Gpvif1UhLsfIBp9/N+MnnRvwsOJ6vJf6e47Kh2biIhIo1AStwqydSUvIJpR9m+z9aKOLUQ1LYeJkrVHJUbc/oW7/9Tde9x9M9GIiPuIJmJ4ea0eh4hUl7tvcfdnAs8iGhnbP8EhW4hq8Z3u7h8tJwnj7p3u/lqiSyO/QnR540SOECUXX0X+SyRz+9hNlGz6a0bX4s21nejcuHqCOqR1yd0/l52AcjHHk4ePUXjiJQM8TvQl32p3f7k+6JbH3dPu/ldEyao/MP7v4kGiEYpXF5jAxd3/mej3/Ubgu0SjGwuRAn5D9Dy5MFtvsiju/gDRFzH/H9EXQcMTHLKGaOTlSncvNrEtMXL3YXf/W6JyHH9PdA5eT5SQT5bR7k3ufilRuY0fMsEXcyNsJUqevhJY7O5viqOucvbn8iaiUe+3T7D7EeBLwDnuXlD5oSLi+CJRHfe/JyqTNNE5PyQqr/NB4NRCv6hz968BS4mS198mOmd1ArkDRarK3Qey59VziUpajFfHG6Ik9f8Cl7j7q939cLVjFBERmcqsiKtwZQQzewpwE1G9y9fkbFvK6MlH8nJ3yx7zKqJvqIeBabnJGTP7ANGH+8+6e6F1+kRkEsmOtH8isIzoMtnpRB/UDwCPufuGKve/mujLpfnZxYlG/uwB1gEb3D13dvNi2l9FlHg6+tj6ic6Vj7j7+vKir0/ZSSxXEl1VsYjo8tdpRCPCerLLJuDxPFdtSAFGlCg65uh7a85+84nq0q8kqpXZA+wFHsx+YVqJWOYBZxAldeZzvO51L1EyYy3R73qipGux/U4nemxLiK7saSGqTdlJ9PgK+ZJGGlh2UrOziQYMzMsuAdFztxvYDKyr1yScmS0iqtt+ElHN62FgP9Fr7sGjc1DUII45RCXSFhG917UTvdcdAjYAa9x9sk3aOabs8+Z8ovPeQqKffQ/R3y1biWo0a9S/iIhIhagmbnUcyd4+6O6F1qc7msDoHeOPnaN/NLeXFZmI1C13TxJdkh9X/+uIkrXVan8D0YfYhpFN1q3JLhIjdz9IVM+xmn10EX3xUmwZkXL77SeaSEmkJNkSJI9nl0nH3fcTjVKOO47DRJMPNoTs8+bh7CIiIiJVpnIKVeDufUR/BJ9jZnMn2j/r6Iyu87OjCXIdnQ12W/kRioiIiIiIiIiIyGShJG71fJrocsb/MbPZuRvNbI6ZHRulm73M60vZu/9mZsGIfc8DXk80icCPqhiziIiIiIiIiIiI1BmVUyiCmb0EeEn27uLs7ZPM7BvZ/x909/cAuPv/mNklwFuBzWb2O2AHMBdYQTTZz9eBt4zo4p+BpwN/BpxnZjcT1dN6OdAGvNvdN1XjsYmIiIiIiIiIiEh90sRmRcg3eUqO7e6+POeYFxAlai8jKvZ/iCiZez3wnWwNypH7TyOa4fb/ESV7h4B7gU+5+28q8ThERESmikInNhMREREREZnMlMQVERGRSUtJXBERERERaQSqiSsiIiIiIiIiIiJSx5TEFREREREREREREaljSuKKiIiIiIiIiIiI1DHVxBURERERERERERGpY01xB1DvzGwrMBPYFnMoIiIiIiIiIiIyvuVAj7uviDuQqcDMvgusjjuOMaxz91fHHUStKIk7sZnt7e1zzzrrrLlxByIiIiIiIiIiImNbu3Ytg4ODcYcxlawGLo47CFEStxDbzjrrrLn3339/3HGIiIiIiIiIiMg4LrnkEh544IFtcccx9dRbCjEddwA1p4nNREREREREREREROpYvaXRRUREREREREREpI4YFncIJ/C4A4iBRuKKiIiIiIiIiIiI1DElcUVERERERERERETqmMopiIiIiIiIiIiIyBgMrL7KKeBGoxVV0EhcERERERERERERkTqmJK6IiIiIiIiIiIhIHVM5BRERERERERERERmHxoHGrSq/ATN7rZl5dvmLIo77VzO70cx2mtmgmR0yswfN7MNmNm+c48zMXmdmN2ePGTSzrWb2AzNbVZlHJSIiIiIiIiIiIlJ7FR+Ja2bLgC8AfUBHkYe/E3gA+D3QCUwHLgeuBd5sZpe7+86c/tqAHwIvANYD3wN6gZOAq4FVwIYSH46IiIiIiIiIiIhIrCqaxDUzA74OdAE/Ad5TZBMz3X0oT7sfB94HvBd4a87mTxElcP8F+IC7hznHNhcZg4iIiIiIiIiIiGRZnZVT8LgDiEGlfwNvB54GvAHoL/bgfAncrB9kb88YudLMVgJvAe4F3p+bwM22mSo2DhEREREREREREZF6UbGRuGZ2FvAJ4HPufquZPa1SbQMvzN4+krP+VUSJ6G8CM83shcAyopHAf3D3TRWMQURERERERERERKTmKpLENbMm4NvADqKyB+W29x6ierqzgCcAVxElcD+Rs+ul2dtZwGZg5ORnbmb/Bbzd3TMF9Hn/GJtWFxG6iIiIiIiIiIjIFGJg9VVOATcarahCpUbifgi4CLjK3Qcr0N57gEUj7v8WeL27H8jZb2H29qPADdnjtgGXAV8iqp97gGhiNBEREREREREREZFJp+w0upldRjT69lPufmf5IYG7L3Z3AxYDLwNOAx40s4tzdk1kb/cCL3X3x9y9z93/ALwCCIF3mVlLAX1ekm8B1lXiMYmIiIiIiIiIiIiUoqwk7ogyChuAD1YkohHcfb+7/xR4FlGphG/l7HI4e/vb3BHA7v4wsBWYAZxV6dhEREREREREREQaQ1BnS+Mp91F3AKuIkqRDZuZHF+DD2X2+kl332VI7cfftwBrgHDObP2LT+uxt9xiHHk3ytpfat4iIiIiIiIiIiEicyq2JOwx8bYxtFxPVyf0jUbK13FILJ2VvR05SdiPwN8C5uTubWStwRvbutjL7FhEREREREREREYlFWUncbAmDv8i3zcyuJUriftPdvzpifTOwEki5++YR61cD3e6+L6edAPgY0SRmd7j74RGbfwNsAZ5tZs9099+P2PZBYBZwS26bIiIiIiIiIiIiUgjD6q6EgcUdQM2VOxK3FEuBtcB2YPmI9c8BPmlmtwKbgS5gEXAN0cRm+4A3jWzI3ZNm9jrgeuA3ZvbTbLuXAk8GDgBvruaDEREREREREREREammOJK4Y7kB+DJwJXABMBvoJ5o07dvA5939UO5B7v5HM3sCUQ3ep2aP259t62PuvqsWwYuIiIiIiIiIiIhUQ9WSuO5+LXBtnvXbyDPm2d0fA95WYl9rgP+vlGNFRERERERERERkbFG1U4mTfgMiIiIiIiIiIiIidUxJXBEREREREREREZE6Vk81cUVERERERERERKTuaBxo3PQbEBEREREREREREaljSuKKiIiIiIiIiIiI1DGVUxAREREREREREZExGGaJuIPIYXEHUHMaiSsiIiIiIiIiIiJSx5TEFREREREREREREaljKqcgIiIiIiIiIiIieRlgdTYO1ACPO4gaUxJXRERERERERCYNd4dwGDJDYE1Yc0fO9hC67sOPrIn2CdNgCcgMQmY4ezt0bPGc+4RJaJ1H4ik/iekRioiMpiSuiIiIiIiIiBTF3SHdD8luCJrAw+h+qheSh8EzYE2QGcTDYUgPHk+8npBMHc6TUB2daCUcOnH9SM2zYNpSmLYUa56Fd94GQ/vLe4DTTy3veBGRClMSV0RERERERGQS8jATJUbDYcgkoXU+FiSiBGv345A8BGEK0n14JokFTXiqJ0qwhqkoITq4P5soHYhGrIYpnDDaJ9UXJWTDZHQ/PQiE0X6pI6OTqXFJHYEjR+DImspdXl0vj02kLhhm9VVOISqo0FiUxBUREREREREpQHQZfyqb1ExBJhUlN48mPQGCligB2Lctut80HZqmQaoHkt14uj8asXpsGYiWzEA00jQcxkeOQM0MRX22LcDaFuLJw9C7Gfp3RHGMYCvfgLctwLf/EPq2jo6/uj+eqSU9EHcEIiInUBJXRERERERE6p67g6ej0aPpo5fkDx6/vD5MHV88BWEaD1PHtwVNEDSP2DeZrX26ADv15dB5O374YbzrXujfHSVYj17CHyaP38aYCp2oZ9/89ZrE0RAy/bg7Zo032k9E6pOSuCIiIiIiIlIUP3Y5fRLSfVFyM3k4So42TYfW+dH9of34UGd2pGk2CRqeWAM1qoN69P8j66Bm/3+slupgVHe1Go/n3ndECWKRozyMnq+J1rgjEakLRr2VU2g8SuKKiIiIiIhMYh5mogTnsYmfci7FzwxDmE2UpgdHJEgHIXkEUt2Q7MEzA9ntR28Hs0nXo6Nb0yfeTiVK4Eo+6X4lcUWkbiiJKyIiIiIiUgGeHoChzhGJ0+ETL8EPWiHREtVMtQR4Bj/8CAzsGTECdRDSg3g4dGI7BBC0YEueAUfW4oN7ogmphvbDcBeqdipSBekBaJ0bdxQiIoCSuCIiIiIiIicIN3wZ+rZEo02HDuCpXvAUNuN0WPRk2HsjfuBOmH02Nusc6NuKH34IetZX7XL/o3z/TVVtX0RGyPTHHYFIfTDDrM7KKZg13PeXSuKKiIiIiIhkeeft+P3vzr9t/y2w6WvHV/RuxHf+vEaRiUjNpQfijkBEqszMTgY+CjwHmAfsBX4GfMTdDxdw/OuBiWaVDN09UV6kSuKKiIiIiIgA4AfvJrzrLXGHISL1Iq2RuCJTmZmtBO4AFgI/B9YBlwHvAJ5jZle6e9cEzTwEfGSMbVcDTwN+U4l4lcQVEREREZEpzY+sJXz4IwSXfh4OP4wP7gYPsRV/iiXa8M7bCR//N9h3Ew13baaIjE0jcUWOMSt7IGk9+k+iBO7b3f0LR1ea2aeBdwIfB8b9dtfdHyJK5I5iZndm//vlCsSqJK6IiIiIiExN7g792whvegkM7iFMHoJDD0MmSsz4mk9D63zoWacRdyJTnIdG7+BTGTy8iNYZPQwcmEPP44dJdLQx/6IUs+f8ArOcg5TEFZmyzOw04FnANuA/cjZ/GHgz8Foze7e7F/1HgpmdC1wO7AauKy/aiJK4IiIiIiIypYTbfohv+iq0LYSdPzu+4cCdJ+7Yvz1aRGRKc29i2z2vpG/NduDoaz4qdZnqgl3boe+Jr2Hx6htoTuw7flxmgNy8rojUldVmdn++De5+yQTHPi17e737ibOSunuvmd1OlOS9HLixhNj+Mnv7NXfPlHD8KEriioiIiIjIpOd926H7EcKt/wu7fhl3OCJSR7q7n5tN4I6zz91b6Hn4bBY9/SrmLfxRNCo3TNYmQJE6ZxhGEHcYJzCs3AJIZ2ZvN4yxfSNREncVRSZxzawdeA0QAl8tNcBcSuKKiIiIiMik5ukBwvvfBXuujzsUEakj7tDT9yz2/Lawsgjh0BB7r9tD8JIXM3fuzyFMVTlCESnTugJG3I5lVvb2yBjbj66fXULbf5I97jp331nC8XkpiSsiIiIiIpOOewh7f0+45lNw8B6ozJWKIjKF7Hjo1fQ8uHXC/dLtM3E3vLmV5p5O9v1+gBmvWERLZrgGUYpInTpaTaWUAb9vzt5+qUKxAEriioiIiIjIJON92wmvuwRCJVhEJL9kenlBCVyANa2X0tU5yLQZLRzqPoVntq3jgQ1/yuUXq5yCyFFm9VVOoQKOjrSdNcb2mTn7FcTMzgauAHYBvy4ttPyUxBURERERkUnDU32ED75PCVwROUH/0BX07FuOGXho9K7vBzoLOnZl83bWbkkcu3/3vIvZ/c1OTn3KapaeXaWARSRu67O3q8bYfkb2dqyauWOp+IRmRymJKyIiIiIik4L3bCC88bkwVFhiRkQaR2AD9G9LMbhld9HHtvQeABYfu79rzX4AHrtvJkufNsZBIjLZ3ZS9fZaZBe4eHt1gZjOAK4FB4K5CGzSzNuC1RBOafa2CsQLU2dRyIiIiIiIiebg74f1/rwSuiOTV3voQK6/5MQuesbzoY5uHjjBn6exR68O0am2LRAwjUVfL8ZK1pXH3zcD1wHLgbTmbPwJMB77l7v0AZtZsZqvNbOU4zb4SmAP8upITmh2lkbgiIiIiIlKXPNWDP/xRfPevINUHqaLK0olIgzELWbTse/Sd9sqiRuRmLMFZq1u5I+eQTFJJXJEp7q3AHcDnzezpwFrgicBTicoovH/Evkuz27cTJX7zOTqh2ZerEaySuCIiIiIiUle8byu+9vP49h9AqifucERkEjGD2WfD4JbCjwnCDLsPjL5QOZNKVzAyEak37r7ZzJ4AfBR4DvA8YC/weeAj7n6o0LbM7CzgKqowodlRSuKKiIiIiEhd8IE9hLe/Dg4WXH5ORGSU9pk7gMSE+41kea7MzqQ0ElfkKLOpWZE1W/bgDQXst41xaji4+9rxtlfC1PwNiIiIiIjIpOJhBn/w/UrgikjZkoMLi9q/6+TLyGSc0y46CQuO52DSSY3EFZH6oZG4IiIiIiISK0/3E97x57D7urhDEZFJrn/oUvbdXFzytSXdz+WZ+wjSIec+aTkPHD6FXWv2aySuiNQVJXFFRERERCQ2PrCX8I43wIHb4w5FRCaxVGYRXbufzsGbd+Hp4iZBnLn/8WP/b+/axuXN+/lZy2lK4opkGRDU2cX8Va1bUKeUxBURERERkdj4mn9XAldESpZMr+DAlis5fPdOPLWtIm3uX3gJ6UcPaGIzEakrSuKKiIiIiEjNeefthA9/CA7eE3coIjIJDSXP4eCWizh81zYIt1S07b3dzQBkkhqJKxIxzIqbLLD6Gm8srpK4IiIiIiJSU37wbsIbnxN3GCJS57xlDrTMhP5dMHMFNmMZmUw7277fwcCmXUBlk7dHdR8cAjSxmYjUl/oqaCEiIiIiIlNauOFLhLf8SdxhiEid82lLYM58aDoMs6aDdeL9D7H/tpZsArc6Ms3tHNx+CIAwrZG4IlI/NBJXRERERERqwpPd+IPvh3A47lBEJCZuCczHT4560AKzF8PA5hPW93U/la5b91UzPDJtM479P61yCiLHmMaBxk5JXBERERERqY3ezUrgijQob50Hiy7AwhB23Tz+zidfBT33HT+2eR6d913IgRv3Uu06mEdmrgC6ATSxmYjUFSVxRURERESk6vzAXYR3vinuMEQkBr7wUkhuhJ77cAwWnw0ti7HkEN67HevffXzfuedCz/0nHG+pLhLTA6qdwO1fsIo77zv+RVMmpZG4IlI/lMQVEREREZGq8u7HCW9/LQxW9zJoEak/3jIbvBMIj66BoV0wtAsHaAY/6QLMZkWbhzdD6KPamX/675n5rivZ8OluKp3MdYfexedw22OtDB7pP7Y+PZyqaD8ik5YZgdVZOQUzGH2qmNKUxBURERERkarxMEN4xxuVwBVpVIsvPqE0Ql4DWwvKxbRwO2f/49ls/+ls+tcfqUh4g3NP5f5Dp7D7lk7gxPIJPfuOEIYhQVBnySsRaUhK4oqIiIiISEX50AHCe94G/bthaB8MdcYdkkxRDtA0DUsPHL/fNg8b6ooxKjnKm6ZD36MVbTNIrmH5S5ex9rNzCYdKK3cwOG85bgHdrSdx951HSA7kP0dlUhkyw2mC9pZyQhYRqQglcUVEREREpKJ8z/Ww+zdxhyFTnFsTvvqFeGYL1rIcMDy1E8IBrOXJ2PAwDB7Bdt8ed6gNyxY9Ae9/sPLtJndyymvOZNtXSxvh39x3gJ+tPZVM8sCE+6aH0zQriSsNzgAjEXcYJ6huhez6pCSuiIiIiIhUjIcpfM2n4g5Dpgi3JmhqhxknQ2YYpi+CGQvwIIHbYUiti/Yb3nDiccl1uAHTjGDRRdj+yicSZWIepCfeqUQdc+6iZf6ZJA8OT7xzLgvIJAsbxZvJaHIzEakPSuKKiIiIiEjl7PoV9G6MOwqZAvy0ZxM2d0I4lF3TCnRD2H18jqyJWyGcOYTNexm29zHo3oT5xAc7wIpnEk5zgs0PYEOHSngEjckBFl8OTQ69j1evo0wfJ79iFlv+u/hyLem2WQXvG6YLfrKJiFSVkrgiIiIiIlIWTw/AgbvwPb/DN30t7nBkCvC5Z+UkcMtsL7UWn5/ATnomHDwI++8/4VJcb5uLr7wGpw+zVjy9HzK7IAnhyosJdm3BjmypSCxTkWMw41Romw8tBv1ratLvtBn3EbStiGrjJozpp88k0RLgDkN7B0n3DOOp0VOm9U0/CShsYrQwoySuCBhGvU3w13gFFZTEFRERERGRkrk74R2vVw1cqSg/aRXklEioSLvJHfhMsAUvhMEUJJohnSRs7YVktjRD7kHJ3YQnLSaYewa29XcVj2lKWHAxpDZC6hCkathvpoe5V8wnMxRy0tVrsNSISdSaZuHBdLoeP4eO5Smap3UzsH8BQUtI+4FhlmxLsHdzmokSQWFK5RREpD4oiSsiIiIiIqU7cLsSuFIWP+MFeGuIbXkAkj0w/2w8taO6fQ5vwgOijG0CmKh0a/owYdNhgmVXYztvq2psk1L77NombwHalkL7MhZe2UswcD/kJlvTRzCOMP+MPdH9FMyYG/13ZQe89R/Am2ZzZPg8vvPJJezfkj9ZG4YaiSsi9UFJXBERERERKUm49vP4Qx+IOwyZZBxgximw9GK8KY0nd8HwML5sCbAUwv4iat7WVtiRJug4CevbE3co9SXsi6ffw3eVdYG3pbuZnbiNt3xwBfsPrubHX5zBge0nJnNVE1ckElgi7hAanpK4IiIiIiJSFO96gPD+90DXvXGHIpOIL72KcHY7pDrBk5BZDyPzZRWqf1tV6W7CU88h2DyMDXXFHU1dcAtgIIZ6wUFzxZpqSm1l6aytvP69V/LJtyw+YZuSuCJSL+qtKrGIiIiIiNQ533+LErhSvJZ2SO6KEriTWXIX4Yozyax+Eplznkl41ktxa+DxUTOWQzhc+36tcknco2YGt/PkPzmx3UxaNXFFpD4oiSsiIiIiIgXzA3fgj/5T3GHIpDSFZhJPH4ZMNyR34el1+DnPwpc/Ha/g6NDJwqafFE/H4WBVmn3qc+8m0XR8ervU4CT/0kGkIgwjqKtlSr2nFEhJXBERERERKUi47j8I//AiCJXUkBL07Ys7gqrx4a2EzXvws5+LJ1rjDqemvLml9p3OeSIkD1Wl6abUVl75nuP3M7kTpomIxERJXBERERERGZcnjxBu+XY0iVkcl03L1HDwMWBqT4zjwxsJV1+DT18Sdyi149UZEXtM29IoaRu0Qcs8mHEOHL4bMgNV6/Kc037Ck/+kmdVXNJMIqtePiEgxGrhwj4iIiIiITMT33UR43zuhd3Pcochkt+xqoDPuKKovuZPwlJUEXYuwzofijqb60r3Va7tpFqQOw9Du6H5yCJK1mVDuGc++DguHCE69CriwJn2K1CsDgjr7Eq7xiikoiSsiIiIiImPw/h2EN78UXJcTS/l85hwYboAkLkC6i3BWgmDOi7H1P487mqrxltkwtOf4/aAVX3oVmZmnYDjBrj8SHNlUegftS6F3TfmBlsAy2eR0NZPUIiJFUBJXRERERERG8YP34Bu/qgSuVIQ3z8RTO+IOo8YyhOEGgvYF2OCBuIOpKAd8/jmESy+H5hC3gHD2EtJNvUAyu0DzsmvKS+JaHaQs0n1xRyAiAiiJKyIiIiIiI3j3GvzwI/imr8LBu+MOR6YAtwBf9XRIros7lNpLdMDg2rijKJk3teMzTsbnrMA7FuLTZhNOn0WmZRAntxbu6DIH4fTphB2nEvRtLy2AxLTSjqsgVxJXBDCs7qbVaryCCkriioiIiIgI7k74x9fArl/EHYpMId46Bz/tKXgjJnABS8ydlGmGcNFFJM9/HpmmbiAcsSUDHCq4nUzQhZ/3Ilrv/jJWyqSInir+mEpTEldE6oSSuCIiIiIiDcwHO/G1n8a77oWD98QdjpTJ2xfCnNMhMwSdj2Cern0MTdOg4ySYuYxwWj+kGzOBG4l/JGmx0qc/n+EzzqCYZO14Qg4Rrngeic0/LeHoOhj5l+mPOwIREUBJXBERERGRhuUeEt7wTOjbEncoUiBfeBG0dECqH/Y/EK1cdAm+YCme3A6eBA4DYAueD+v/gKWqNzGTzz0LFqzCm0MIm8HA0zsg7Af2RQM3G1k48S71woH0E99Gcq4DJYyaHc9AiRPaZQYqG0cpNBJXBICgHr5UaXBK4oqIiIiINBjPDMGhBwlvejFkcutaSj1ygOYOwvkzIHUA2sHmPxv3JKT2wfDG0ccMb8BPvxALFmAHtsCMJRBmYP8j2MC+cfvKVwLAZ5+OLzkPc8cTBm54ZiuEGyqe85sy3OOOoGCZC/6M5NxqZJ2bCPbfV9qh/XXwBZOSuCJSJ5TEFRERERFpID6wG9/yHfzRf4o7FCmQBy342c/CU7ujBO7R9ckdEx+cPohzEJ8FsC26On3pHKzlQmzAobkFggQM9UJfJ754JZ7ajjWtABwbGsLbDRt0wtZBSK2LEsqNPsK2EM0LsS23xR1FwTLzl1GpEgojGdOh2Hq41gKzL4bDd1U8nmJpYjMRqRdK4oqIiIiINAgP0/j6/8DXfSHuUKQAbk2w4umEbYMwvLmybSe3401Ew24zQDMwBxhen92+NroNgOHsbR3MMTWZWDAHG+qKO4yCeaI6U7A5Rxi+/O20rLueoLuA+sgti8CsLhK4gGriigCGYSTiDuMENimnjSyPkrgiIiIiIg3A0/34ox/Ht/5v3KHIGHzBBZDqg0wKP/kS3HdBZoeSp5OVT64EgwfVG14dWhfDZ11F6/oEwaHHx995+nI4fHfVYimaRuKKSJ1QEldEREREZIrzTBK/92/xbf8XdyhCtr7t9CWQHoJkLySaYd5ZhLMNwhagBdIFjFiU+mUt2N7J9TsMrbqTiDmDDJ95NU2DV5PY8nuCnjFGl3udzQanJK6I1AklcUVEREREprBw0//gj3wMhg/GHUpD8qbp+BnPiia4CgJssA9v78BTa7N7LM7eDkKd5a6kWIa1rMYOboNEK3bo4bgDKkrg0wktWdU+nF5S7ZA65wqa0s+nadsfcWvCZ68gsf16bPgwdfdCSKucgghAQBB3CA1PSVwRERERkSnIhw/haz6Fb/4WpLrjDqdxnf4M/Oio2gxRHVqVR5iSrHk1weM/iTuMknj7QkKrZbIyJN3URfr0C7L3kzDvRbRteIggrLM0hSfxMIkFLXFHIiINrs7OjiIiIiIiUioP0/jW7+Dbvg9H1sPwgbhDamje3IEngmjiMJnyLJ2OO4SSZZZfDVR3FG5+I/tMM7zqSlr37Seop5q4EJVUaJkbdxQi0uCUxBURERERmQK8byvhb6+G1JG4Q2l4bgl89YvwzFZITq66qFI6bwlg0cXQ+RBWb3VdJ2ADB4GFcYeBc4Rw2sz6u2g73a8krjQ4q8NyCpNr8shKUBJXRERERGSS88ww4d1/rQRuDqf2H/Ec8LNfhCt523B8eD0+E2z+i6O5uRIZbN9WOPho3acabLh+Ju+yrvVxhzBapn5+PiLSuJTEFRERERGZ7Lruhc5b444idj59Cb7siVgmhbe04qnNkJgBQTtGB5ZMwVAP9B/ADq2duMFC+020QUsHzFiGL1iuBG6DO/b7T4PPAeZfRpBeAJt+jeGxxjYWb+kYY0sriaaTCb0XsybwFvAhwvAwMFydWOatgn13VKXtkmlyMxGpA0riioiIiIhMYr73BsJbXh53GLHz9oWEy06GzPooTXa01Ga6K9qeXWiLlmDe87GN10XbFl2Mzz0V27cGujdjPnZtUwfoWAoLzsGnN+FhP6QPg6eAIZVPkNEyvYTWC6svI9h/GDu8Ie6IRgkXnUOi6bTojoF7CvdB3PvJhNsB8JH558AIgqWYt5DJbK1oLKmZTSSaZ2Kpnoq2Ww5P99f9aGqRajLASMQdxgka8TWpJK6IiIiIyGS26KnQPBuSh+KOJDbeNB1fcRWkCh9dGwZ7CE59OmSShB1JSK/D5wcwfxU0LyAYbMW2Xo+3L8RPuxIYAm/H/SCkDwA7qzUQUaaqTA+kh+KO4gQOZC54HcmFLZBN1hZ6ZBjuByDRtJJMenMFYxokedEbaL3ncxVrs2wqpyAidUBJXBERERGRyaxvc0MncAHCM6+EZJHlEcIhwpY90f8zIzc4pDoJm4BznhUlbDW6Vioh0YH1Vq6MRykc8AXnEy4+n3DOUtIzmnB6yHkRFCUTbieRWE4ms61CUdbXaD8A0kriikj8qpLENbPXAt/K3n2Tu3+1wOP+FXgCsAqYDwwC24GfAV90964C2vga8Mbs3TPcfVNx0YuIiIiITCItcyDRBpn6GuFXKz5nFSR3VqfxarUrjcla8La52FB8X7qkrnwXqdmp7L2BirWb8T0EwWLCcF/BxxizaOodIjiyE+vfg/XuhFRPfV4irZq40vCMgCDuIHLU5dmiqiqexDWzZcAXgD5grOroY3kn8ADwe6ATmA5cDlwLvNnMLnf3Mf+SMrMXEiVwS+lbRERERGTy6X684RK4DrD0SkgN4AuXwHBla3KKVEX6EL7yMlh/C5YerH335/6/EQncSgtxSxElVfJN3taK0YYzDAzR3NNC0+P/OXlSMCqnICJ1oKJJXDMz4OtAF/AT4D1FNjHT3Uf9BWpmHwfeB7wXeOsYfS8AvgJ8H1gMXFNk3yIiIiIik4oPHcA3fyPuMGrOz3kpfrTEgRK4Mol4cjusfg489tOaJjCdgOSppwG91evDjxAESwjDPcfWNaXnkdi3jmDnDRhhtF/bAmzoQNXiqAbXSFwRqQOVHgv9duBpwBuAos9y+RK4WT/I3p4xzuFfzt6+rdh+RUREREQmI9/w3/iOH8cdRk35SU86nsAVmYR8eB2selFN+8yc9TK8igncoyxoP/b/pvQ8Wu79PImd1x9L4AKTLoELqCauCBB4UFdLI6rYozazs4BPAJ9z91sr1W7WC7O3j4zR9+uBlwBvKaRuroiIiIjIZOfukDwcdxg15UEzPnd23GGIlC30zfiSJ9asv8xJq2vSj5MB6yARzqP5/v+sSZ81kalc/WARkVJVpJyCmTUB3wZ2EJU9KLe99xDVtJ1FNNHZVUQJ3E/k2fdU4HPAd9z9Z2X0ef8Ym2rzbiciIiIiUiA/9DDh4/8Gu34RdygT8hmnQNM06NuFpUofzeZAeOblMLytYrGJxCcknBUQ9CzB+vfiM07BT74EBo4QbP9DRXvKnPpU0m1HKtrmWMJwFxbMpHndzViYrkmfNaEkrojUgUrVxP0QcBFwlbtXokL7e4BFI+7/Fni9u59w3YWZBcA3iSYye3sF+hURERERqXu+/5ZJkcAF8FMvwoc3wIIVBOEp2KbrSmto1kpIH6xscCJxynTjyy+EgycRzpsFqXVYx1n4zFOxnu0V6cKbppE850qgNklcgKaeIYJDeS+inbyUxJUGZ4BVvCJreSbNxIgVVHYS18wuIxp9+yl3v7P8kMDdF2fbXgRcQTQC90Eze4G7PzBi13cSTWD2fHcv61oyd78k3/rsCN2Ly2lbRERERKRS3B3f+JW4w5iQA5z5Inx4Y3ZFmrClD1v9EuzARqzr8cLaWfJEwjnTIHMEwkqMFxGpH57chs8EUlGS0FObYdkl2OOVSeKmL30zodUmgRv4bJr3bMQOrqlJf7XkGZ17RCR+ZSVxR5RR2AB8sCIRjeDu+4GfmtkD2T6+BZyb7fsM4OPA193915XuW0RERESkHoW3/xn0b4s7jHGF57wUD/dBeuOJG1KdOJ34osUEXWuwKNWblwPMP49wdguk9lU1XpG64Uk8swsPmrEwVVZTyaveTWpWskKBTaxlw80EBx+uWX81lS563nYRkYordyx0B7AKOAsYMjM/ugAfzu7zley6z5baibtvB9YA55jZ/Ozqc4BW4A0j+832fU12n43ZdS8ptW8RERERkXpicy+MO4RxuQV42AXp7rF3Su3Dz30BvuqFx9K4bk34/PPw9oW4JfBzXko4J60SCtJ4Mr1w8lXlNbHyuTVN4BozsEOFja6flFROQRqeEdTZv0YsqFBuOYVh4GtjbLuYqE7uH4H1QLmlFk7K3mayt9vG6fv5wGLgh0BPdl8RERERkUnN3WGwM+4wAPAll+Ozl2D93dA6DXo7YfAQ4eKZkD4w8fHDm3DAzn0xjuHhYUh1wryTgZMhua7aD0Gkbvm0WSWnJzxIkFx1KVBWxcHi+qSXcMnVJHbfVLM+ayqjkbgiEr+ykrjZScz+It82M7uWKIn7TXf/6oj1zcBKIOXum0esXw10u/u+nHYC4GPAQuCOo7Vv3f2hcfq+mSiJ+z5331TiwxMRERERiYW7Q6oHuh+DjuX4lu/iO34ETdOh6764wwMgnDsDkuvw1uyKGcDsuZDpK6odH96Q07BqT4pYX1fJx6af8BbCoHYJ3GOC5tr3WSsqpyAidaDsic1KsBRYC2wHlo9Y/xzgk2Z2K7AZ6AIWEZVGOA3YB7ypppGKiIiIiNSQdz8OHSvwrd/F73tXtDJohXA43sBy+MwVkNw1ekORCVwRGcPu0i5kDWeeQnJBG1C7UgoNId2Hu2PWeJdvixwVlF2RVcoVRxJ3LDcAXwauBC4AZgP9RBOafRv4vLsfii06EREREZEqCDd8CV/3eeysd+EPfxjSfeCZETvURwLX2xdA0AQts/ClK2F4S9whiUxdHUugd2fRh6UvfSOJRCvHp79xoJUw7MG9yvWlm9ur236swuhcnGiLOxARaWBVS+K6+7XAtXnWbyNP9WF3fwx4W4X6fkol2hERERERqRbv3YJv/jq+9rPR/fv+NtZ4xuKnXIPPmIenNoGnopVK4IpUlZ9yLjy+Czs29V9+4dIrsMObsIFOMsuuJt1+BML8+yYSi4FpRIndNO4hYJgZ7ince3AvYwKvgYlrYU9q6X4lcUUkVvU0EldEREREpCH44H7C6y4BT8cdypi8eSa+6ul4ch0k62MyNZFG4cltWPN0SI1dosSDBMMXPgPsaTQdHiI9px0Ye/8wzD8S10fkiROJlWQym/PuN55EZh7Bvm8WfdykkukH5sUdhUgszI3A66ucgnnjlTepr9+AiIiIiMgUF679HOEvzqnvBO6c1YRnXBQlcEUkHidfOe7mzFl/glsvTj+pORl8nARuocJwO2aziz4u0b1/9OW2U01Gk5uJSLw0EldEREREpIZs9jn4tJOgb2vcoZzAl11NOCOBBTPx1G5IafStSJx82vQxE6PhkktJrlgODFW83yCYQybTPWJNM4nEUsDJZPbn7dPbZ1c8jrqT1sSNIhIvjcQVEREREakhW/IM7My/jjuMEzgQThuA1H58eCOEZdTFFJGK8OR6fMbJebclL3wB1UjgAoThThKJxSQSiwmCuZgFhOEuwnB3tq5unlibm6sSSz3xzGDcIYjEKsDqamlEGokrIiIiIlIDnh6Aw49Aqhe//91xh3MCA2iaC0klb0XqRwizV0DvrmNrPGghdfW7CRPd1e15jPq5kMi7NujeU71g6kVG50cRiZeSuCIiIiIiVeKHHsI3/Q/e/SgcWRvNbl5HfPETIMiOoEvtizcYERnFZ07DF10CTa34vJUkT1lekdq35TLrwH0QcJqSM0lsmOKTmgGklcQVkXgpiSsiIiIiUgXhIx/D1/8XpHvjDiUvX/4MwpYD4EOAg4dxhyQiOUIbIHnp04FUdk3cCdwkicQKwnA3Zm20bN9EYufXY46pRjSxmTQ4U0XW2CmJKyIiIiJSDdZUvwnc055DmNgeFcMVkbrlTbM4nsCNXxjuPfb/5q5+EjuvjzGaGlM5BRGJmdLoIiIiIiIV4skjuDs+2Ak9G+IOZxSftpjw7JcSNu+POxQRKYANbKdeP7YH678fdwi1pSSuiMRMI3FFRERERCrEd/8a3/It8AwcuDPucE7gK59L2HwIUuviDkVECmSexujA6Yk7lFEs0QLhUNxh1IyrJq40MAOCaBrUulFf0dRGfX6lJyIiIiIyyXjyCKT7ouRtvSVwW2cRJvZCpv4SQSIyvkS6Psde+eInxh1CbWkkrojETElcEREREZEyhQ/8I+FPT8Pve1c0CrdOOOAW4Kc/DXw47nBEpATB7puARNxhjBLOOS3uEGpLE5uJSMzq8ys9EREREZFJwrvux9f/R9xh5HfmiwnDDZBUCQWRycqG9tKUmkW6+VDcoZzAho7EHUJtaSSuNDQj8HobB9p4BRXq7TcgIiIiIjKphI9+PO4QxrbnQTCN2xCZ7GywzhK4dBBs/33cYdSWauKKSMyUxBURERERKZJ7iO+/De/dAr1b4g4nL593Dn7qhehPfpHJz1tnxh0CAEY7QTiHll2bsOGuuMOpKc/0xR2CiDQ4fS0vIiIiIlIkv+/d+Kavxh3GmLy5g3DhPBjeGHcoIlIB3tQcdwgAtDx+I8HhtXGHEY+0auJK4zIgqLPyBfUVTW3oa3kRERERkSL48KG6TuAC0HEypA/EHYWIVIDPuYhMIv5yCkZH4yZwAdK9cUcgIg1OSVwRERERkWIcuDPuCESkgaQXnA143GHQmOPeRlASV0RipnIKIiIiIiJF8K774g5hTB60QPN0/KSzILku7nBEpAKsTpKnTj8etGHhUNyhxCPdh7tjVh+/D5Faq5dzUSPTSFwRERERkQJ4ZpjMLa/Et/1v3KGMyc9+HuEpi3ElcEWmjETnY9TH+KuQ8LTnxx1EfDwNjZrAFpG6oCSuiIiIiEgBfMt3YM9vYWB33KGcwBddgrfOju6E+vNeZKqx7odoPtxHPZQzSC5eROakJ8cdRnzSfXFHICINrB6+zhMRERERqWu+42f4Ix+NO4xRfNZphLOSBK0X4EEzntkad0giUgVB5800Nz2H1IxWYDjGSIbh6JdGjSjdC60L4o5CJBZBHXyR1Oj0Vb2IiIiIyDjCnT8mvP21kIx/dvhc4ckrwdN4xzy8fYYu9RWZwoI9v6Vly80EPi/WOHz2KbH2H6t0f9wRiEgD00hcEREREZEc7g59jxPu/wUcfCDucMYUpNsJAU+tBRJxhyMiVWapIzRt+y2pFU/D6Y0nhsHuWPqtCyqnICIxUhJXRERERCSH7/8Z4dq/i+5YE3bqM2D7DfEGlc/mG2HF0VFxmVhDEZHasGQXiSFIt1WmvcBnkxhIEra2kji8B29qJ5w5h0yim0RmNm4QBoePH9CzozIdT0Ke6dMF5dKQDKu7cgpWZ/HUgpK4IiIiIiI5wh1fO37H03i4C1rnYMOHxz4oDqc9HXxj3FGISI2FbRUcee9G04NfOHFV80wSiy4lsetGHEhf/HbS0wYImAktMyvX92SjcgoiEiPVxBURERERyeWpE++nDsPJl+B2fAzEyP/HwRdeSKgErkjD8aCVkO6KtRcGh/H2RSess1QPiV03Rv8Hmh/4PG13fY/WP36aYNcfKtb3pJNREldkqjGzk83sf8xsj5kNm9k2M/usmc0poa2rzezHZrY329ZeM7vezJ5XiViVxBURERERGSHc+Q0Y2Dx6Q/+j2LInA+AnXQnLn4ivfFptgxup8yGs9fT4+heReDTPrniTvvCSCfex9MAJtw1JNXGlgVmd/avIYzJbCdwPvAG4B/gMsAV4B3CnmRU8k6SZfQC4FXgy8FvgU8AvgTnAUyoRr8opiIiIiIgAPriLzONvh95Hxt7HumH6UmgehMHdMP38yvU/9yxYsAoPAiw5BMk+2HUH5qNr3XrrLLAm3Icr1r+ITA4+94LKN2qNV1uyJCqnIDLV/CewEHi7ux+rK2NmnwbeCXwceMtEjZjZK4GPATcAL3P33pztzZUIViNxRUREREQA7183bgIXgOHdMDN7C3BkX3l9NrUTnvtiwnNfQDgPwnADnl5HGGwjbDtIeOZlhGe99Pj+Cy/Em2fC0ssJly2E5M6y+heRycOBcMlzSM2swlisw5sq3+YU5BmNxBWZKszsNOBZwDbgP3I2fxjoB15rZtMnaCcA/hUYAP40N4EL4J5bp6s0GokrIiIiIg3P3Qk3XFvgzunotnUptu+B0vtc/nR8ejM+vGHsnTLdeMIJz3oplk4RshnmnQMMQrrkrkVkEvGmmYRLn0WmLcDpAcKK92H9uyre5pSkkbjSwIKpN2L/aE2s6939hBOru/ea2e1ESd7LgRvHaecKYAXwI+CwmT0fOBcYAu5x9zsrFbCSuCIiIiIiA1sgebC4YxILCt7VAVY+F3bfA83T8Lln4K3dkCygtmTmCM6RqA2AdHdxcYrIpOVBM+mVzyfkcBV7CSBUaZaCKIkrUm9Wm9n9+Ta4+0TFvs/M3o71bfpGoiTuKsZP4l6avd0PPACcN3Kjmd0KvMLdD0wQz4RUTkFEREREGor3b8D7N0b/9xBPHYlG4XqRQ1sHikiqrHxeVCJh5cWEy07DW/ZC2MCTA4lIYWasrnICF5qSM7FQQ/sLklESV2QKmZW9PTLG9qPrZ0/QzsLs7VuAduAZwAyi0bi/I5ro7IclRzmCRuKKiIiISEMJ91+Hb/8PaDsZ0r3QugT61xXXSNAK+yeonzuCtzfDMJDUJcsiUoT+7cByoCLlFEcxptH06Ler0vaUlFZNXGlMBgTUVzmFbDTrChhxW2YXxy+GGkNixP6vcPeHs/cfN7OXEo30vcbMnlRuaQWNxBURERGRhhIs+3Nomg1DuyB9pPgELkDbSiwzNO4ubk34okvwOavw9P7SghWRhmbpHoxx59QpvW1m0vrgT7HBzqq0PxW5RuKKTCVHR9rOGmP7zJz9xnL0coktIxK4ALj7INFoXIDLio4wh5K4IiIiItJQrHkmTFtRXhvJiQZlAMufTjhzgHB+AjIT/f0vIjKazz4fp7sKLTfR8uivNaFZsVQTV2QqWZ+9XTXG9jOyt+PMQHtCO91jbD+a5G0vLKyxKYkrIiIiIg0nmPfUso73wxvH394yG582c9x9REQmEs5cWZV2mwZbCY6sn3hHOZHKKUgDC+psqYCbsrfPMrMTmjSzGcCVwCBw1wTt3AqkgTPMrCXP9nOzt9tKDzWiJK6IiIiINByb9+QyDm6C/t3j79M2F7P6qh0nIpOLB81kyh63lU8TTWt/VI2Gpz6VUxCZMtx9M3A9UeHxt+Vs/ggwHfiWu/cDmFmzma02s5U57RwEvk9UluFDI7eZ2TOBZxOVZPhtuTFrYjMRERERaTiZ9R+aeKexeAZOehLsGXtuCpt1CmGoEVsiUoZZ5+EMVrzZwGdgA3sq3m5DSPfj7vqSTmTqeCtwB/B5M3s6sBZ4IvBUojIK7x+x79Ls9qMzTo70ruxx7zezJwP3AKcCLwUywJvcvbvcYDUSV0REREQaTnDSn5RxtENbAl9w0fE1K5+Nr3xqdHvqBXhqPWat5QcqIo3ryKM0JWcT+Ly4I5FjQgjHn9RSZKqyOvtXCdnRuE8AvkGUhH03sBL4PPAkd+8qsJ3O7PGfAZYBbweeBlwHXO3uP6xEvBqJKyIiIiKNp9zJaQY2Qtt8fPpJWP8eGN4G6e4T9+lZD23NQKq8vkSkIVmYIrH1/0gA4fwrSc9bhDNQfsMFzMso40j3QaIqdS5EJAbuvhN4QwH7bYOxs8fufohoRO67KhZcDo3EFREREZGG40M7y28kdRBbcC6eaIP0kTzbuyChyc1EpHzBwdtp3vQbmruHSWTml9eYqxRAWTS5mYjERCNxRURERKTxWHNFmvHMTlh0MYSbR28M2iB9EFQ7UUQqwDKD2P6bCPZDMO9JpOefitNddDuJwQqM5m1kmtxMGpCZEdTZ3zNm1nBXFmgkroiIiIg0ntShyrXTkgHLMzaidaESuCJSFUHXnTSv/z8C5hZ9rB1YW4WIGki55XhEREqkkbgiIiIi0nC8r4JJjKFt+ddnhvTXtohUjQGWtqLPMxYkqhLPpGVN0NwBTdOheTo0TYPmaVHd26Z2LNEGTW2QaIVEC97SXqEplUREiqM/K0VERESk8SQP1qCPToIZVxAmNwKZ6vcnIg3HSriWOJy9nKACZcEry6JE6shkamIaNLdBog1LtELiaCI1SqaSaI5ug2ZINEHQBEEiurUAguxils14ZxccLASyixX7M1Stc2lMupQ/fkriioiIiEhD8cxw7Woadt1BkJgOM88hTG0aZ05jEZESePFJ3NSsJhJBKxYOVziYALvob6ORrC3ZBCxESdTmRJQzHZlMtZCooGUm+/9KybZZtS/P0lVqV0RkfEriioiIiEhD8V3fhIonL8aR6YfD98CcsyC9v3b9isjUV0ISF5LRaNWKnwdDWLQU7GjydGSyMwVTpoqDkrgiEg8lcUVERESkIYT7f4l3/hrvujmeADKH4+lXRKasYO9tNC26nEwbOIVeYdAMXsmRryMlmPrlY1JxByASC9NkrbFTEldEREREGoJ3XocfvCG+AKwNPBlf/yIy5djQbhLbf0wQNOOLnko4fSEeOG4ZnO4T92UaQbqdYO+dWFilRKRbA5SNURJXROKhJK6IiIiINITgrE/iu75NuPXTMUVQymXPIiITszCF7b3+hImHPGjDF16JT1+EYyR23YAN74dgJnhlSgLYZR+GGXOzdwysERKcKqcgIvFQEldEREREGoI1zYBFz4etn6HmCdXm+ZDpiZIcIiI1YOEQtu/G0ettAbC2Mp3MnAvNNawxXhcaIVEtciKDE74kqgeN+BdVvf0OREREREQqzsM04a5vkbnvZcQyIjbTjzWfXPt+RURyWLqCSchU4yU0XSNxRSQmGokrIiIiIlNeuP59+L6fxBjAIHZkI8w+E0/tjC8OEZGhrsq1lRyEaa2Va29SaLzEtQhoYrN6oJG4IiIiIjLlBUv+BBLT4g0iHMKsI94YREQqeTVC2IijUhvxMYtIPdBIXBERERGZsjx5EO+6CYb2gmtiMRERrIJpgDBTubYmDY3EFZF4KIkrIiIiIlOW7/sp4eZ/jTuMERox4SEidSWoZBK3EUelNuJjFtGl/PVASVwRERERmbJszhVxh3ACj2NSNRGREXzaTGzak3FCLBNA561FHG3QtgDaF0L7fGifVbU465dG4opIPJTEFREREZEpKex+FN//87jDOIF1P47NPo8wuT7uUESkQXl627Gvkzwxr+DRdXbGq2HlhWCN/mVUGscxNMmTiNSWRkOLiIiIyJTj6QH8zj+FQ/eB19EH7UwfdN0JiYVxRyIiApkumHtZgfsOK4ELRBPDqTSONBYDAquvpY7+uqsZJXFFREREZGpK98K+27D0LCARdzQnCII5mmhNROqCtxSWCvF0X5UjmUxUF1dEak9JXBERERGZcnzbN6MkLkD/Vqz1bAja4g1qpEN3ErAQaz4l7khEpMF5eicsumacPQyaZlBvX4bFS3VxRaT2VBNXRERERKaedP8Jd927IRyKJ5ax9K3H5lymqc5EJF5mhOF2gsR07PL3Q8f0bNmEMFosjDvCOqQkrjQe1YGOn5K4IiIiIjJleM86wKF5xgnrzWbj7IwnqPGYRraJSD1IwZzzoW06BMNxBzMJqJyCiNSekrgiIiIiMmX4gVvxxz4CnjPpTO9WaHYwjSIREcnHmxMaZ1cwjcQVkdpTEldEREQaimfS+KGt2OxlWHMd1UiVirA5F+P5yiYM7IRFF8HwtprHNK6MRryJSH3w9M5oyneZkJNWwlsajk4P8VMSV0RERBqC9+wjddMnyDz+CxjuJXHey2h5xZfiDksqwD1DeODHhH2PYFt+P+YHa7Pp9Vd/dmA7tAaqOSkihWtZCi1ziSYaM6KT3lhnPo8Wz94SgqfBM7inwVPgSaxpDrb4SjwxqLqXBdFIXBGpPSVxRUREZEpzdzKP/pjU7z4MfZ3H1mfW/RZPDWk07hQQHrmd9K5PA2BLVmELzsS2/g7znJqFnjzxfsup4CEELZhNw30gSnQkt9QociDVRTDzcsLkhtr1KSKTW+sivP+hijVnMy4gOO0qLBFUrM2pTzVxRaT2lMQVERGRKS31ozeTeexneTYMkPr9R2k6/+UEJ19S87ikcnx494j/b8QBW3kVwY6HseTh4zuGCaz1XMAgk4TOe4hmX48YwIwzoP0cPLMTMj01egAa9SYixajQOcOaCJa8AFu0FDMlcIujkbjSePTXSvyUxBUREZEpLbPt9rG33f0VMnd/hcT5r6D52R/FOhbUMDKpmNT+Uas8tRtfdhW2+ZfHVx64c+K2ejdC70Zs0ZPxzKMVDHIcmmxNRIpSfmEYa1tOsPyZ2DRdjVIajcQVkdpTEldERESmlHDXA4SHtpI4+4X4/jXQd2DCYzKP/IjMhutpe/vd2PT5NYhSKsE9xAc3E/Y/ln97oow6sz2boMVrlGBVPVxpLN6yCGtdkr2XHQHqaQhTEA7hmT7I9EE4OGVHfkVp2ACCFrBmsBYImjCaoHkuntqbrVebAmuCxCwsMQ2sDdKHJ2h9PAmCxc/GFq/AAo2+LZ1G4opI7SmJKyIiIlNG+s4vkfrtB6L//+ETeM/uCY4YYaiHzJrraLr0dVWKTirF0z2ktr4P73sUfHic/fYQLrmCYO8dxXcyuAdmXAjJ7aUHOp5EBz57FUYbYWpndfoQqVPWshDvf2TiHROteNCeTXS2YNYSJTSDZiABx0oAjEhGenbyLhwscXxCL89E6/3oxF4jJvcKk9FCCsIkNsYXK04ATbOwplmQaAdrzcZwtI9wRF+ZEZOHZbL9pY4vYTIbZzKq1+39UXgA6b2jO8/0lT3+1qafSXDKNVh7a5ktiUbiSqMxg6DOrhyqs3BqQklcERERmRIya68j9bsPHrvvh7cV3Ua4+35owCRu6vYvEe57nJbnfgSbNifucCYU9j+C99438Y6ZPmhbXHI/ZjMqcNHyGGadjyfXVa99kTrkBFjHufjgugIPSEEmBZmjx9dAAE5zlCi2o6Nkm6IvjNI9EB7Bk0dqEUnFBSdfrQRuhbiSuCISAyVxRUREZFLzwSOk7/8W6Zs/mR1xVbpw2514cgBrmVah6Opf+uGfkvrNhwFIhhlaX/kfMUdUAM8Uvu9wf+n9JPtKP3YCYdhVtbZF6pXNuADvfzjuMAqQgTADDMUdSEV5GE7Z8hS1p3IKIlJ7SuKKiIjIpOT9XWQe+RGpP36uoLq3BbV5eBtDn7mYYOlFBIvPITjj6QTLLsOCREXaryfhoe2k7/wK6bv+59i6zMM/ZmDzbTRd+hqaVj8bW3w2lmiOMcoxeBEfnr2MerMDu6BjDmTKqT+Zx6yLIFOlMg0idcoJsEwZX6pI+Y7sghlnxh3FFKEkrjQeVdGOn5K4IiIiMqmEnetI//ELZB7/OaTHrodasoEuwo03EG68AW77HEybi81aSjB/FU1Xv51g0dmV77OG3J3hb76KcNPN+Xfo6yR906dJ3/pFWt/4IxKnXlbT+ArhqYOF7ztjJuQpL1mQ4QMwc8GxS7kromU+ofVWsEGRycE6zsMHHo07jIYWdt2FnXSGJjSrCJVTEJHaUxJXRERE6pKHIX54G8G8046tSz/2U1I/ewekBmsXyMAhfOAQmb2PktlyC01PeD02fyVN57+idjFUULjj3rETuCPYtDnYtLnVD6gUycJHXntyGz59GdZf2uRhZnPxkrPAeeKZcSokt1asPZFJw6beFQ2TTqYH79yNLV4WdyRTgEbiikjtKYkrIiIidcXDkPRtnyV991eh/wAtr/lfaJ1B5qHvk7n/2/EG13+Q9C3/DmaEG24gcfbzCU65HHCsY2G8sRXIj+wpbL/e/Qx94Rra37sGa59V5agK5x4S9t1fxAEpfNH52JbSkrgVnfq4eS4+vKUxp1MWKae0iVRMuPfX2Pw/x5qUCiiPRuJK49GfL/HTmVtERETqhvd3kfzJXxFuuunYuuR3XhVjRGNwJ/Poj8k8+mMAbOFZJM5/eTSxWpim6eLXYDMXxxzkicL9a0k/9CMyD/+kiIMyeM/eukriZnZ/ER8ocGb7rNC6Sq/jlh7C2s4DHB98tLxPMO2ngO8o/XiRycx0CX9d8CThjgcJVjwBU0amDCkcxzRVnIjUUFWSuGb2WuBb2btvcvevFnjcvwJPAFYB84FBYDvwM+CL7t6Vs/8ZwMuAZwNnAIuAw8BdwGfd/SZERERkUggPbSP59RfjPYWNFK0n3rmW9A3/dHzFcB/Nz7529H5hWPNahKl7vkXmoR8S7nsckgNFH5/82Xtoft5HSSy7uArRFSfd+X0ynd8r+rjAFpTeade9x/5rC6/Chx8Da8JaT4ehHsgM49PnwPDmCZvy5mZIlh6KyOTmcQcgWd59F35gKbbwpLhDmcScqGC6xsWJSO1U/FOEmS0DvgD0lXD4O4HpwO+BzwHfJbpO4VrgkWzbI30M+ARR8vbXwKeA24HnA38ws7eXEIOIiIjUmIchqZ/9zaRM4OaTvvM/Sf7q7/FMdLll+qHvM/ydVzH0idNJ3fJpPFP9WnqeTpLZcCOpX/w94Y57S0rgAoQ77yN9+39VOLrieaafzK7PlnSsdZdYSiFX5x+x1ExswGH/XXBkDfRtxrx14mNnXYwPb6pMHCKTjAO4aojWE+96AHcl1ssRchuub+akQRgQWH0tjTgOvqJfG1l0PcbXgS7gJ8B7imxiprsP5Wn348D7gPcCbx2x6bfAv7r7gzn7X0OUCP6kmf3Q3Ss3G4WIiIhUXLj9DsLtd8UdRuW4k7n364S77iNx3itI3/AxCLMJ3T/8Cwx20/ycj1auu+QAJFqwRPSnXXhkD8NffQl+uDKX7mce+yXDP303Lc/+ADZtTkXaLJYlpmPtK/HB4hOh3jKjcn/oD+T5mQ4egInmbGpqg7ARP25Io3PAZlyM9z8Udygygg9uhUMHYV4ZVyo0vD2E/I6Ap2DMiDsYEWkAlR77/3bgacBTsrdFyZfAzfoBURL3jJz9vzFGO7eY2c3AM4ErgB8XG4uIiIjUTubRn8YdQlX43kdJ73101Pr0Xf9N4ryXESy9sPw+wpChLz0PhnppuvTPoKmF1K1fgIFDZbc9Uub+7zL42C9InPUcrLUDm7uc5iv/sqJ9jMfTR/DUweIPbF6I7biz8gGNNLgHm38hPvR4Tt9zYMZqOHw/HLoXm3shnpy47ILIlBJMVwK3ToUHHyGY+zTVxi1LDyG/JeBqjPqqhS8iU0/FkrhmdhZRaYPPufutZlZ0EnccL8zePlLEMUev19G0kSIiInUqPLyD9I3/fGyCsIbhTvJXf0frm343YY3csGcvmcd+SdMFL8emzxu1PX3nl/H90URfqRv+pSrhHjPcS+ahH0b/NyOYt4LE6mdVt0/Ah3eT2vQuSHcXf3Cqi/CMpxMMO+y5A0uVUvFrAum+/OUqOs4gTK2HGYsIwg4sNdx4VUETCwiC2YSZAxB252ybQzDk0L6QML0hlvCkBny4Ma95nQS8fw0cuhDmjX5vkWIkCfkDxiUYqzTZmUxZembHryJJXDNrAr4N7CAaMVtue+8BOoBZRBOdXUWUwP1EgcefCjwdGABuLfCY+8fYtLqQ40VERKRwHoakb/gY6bu+DJnGrCfnex4i8+iPabrglWPuk/zdP5G+62uQGiT16w8RnHIZTZe8iqZLXgVA+r7vkfrNtTWKOIc74ZE9x6oIeKoLEjOwoIX0nv+GxAwS81+CJaaX1Hym+xa87xF8eDth7/0QDpYYaAYf3kIGsBVXE+y4BxvqmvCoovVsxOafiw+tO74uyP6p7f2EQQaCGdE8OI3CphMc2QtNvTC9I1qVOAnPdAJpAlsIfbfh0+bGG6dUV2IWhIfjjkLGkNn1KxIzX401a4Ku8jjOfUA38ARswho7IiLFq9SZ+kPARcBV7l7qX9gjvYdosrKjfgu83t0PTHSgmbUSTYjWCvy9u+svBhERkXrT30n6/m81bAL3qNTvPkTi7Bdgze0AuPsJl7Wm7/kmpI7/aRXuuIfkjnsIu3eSOP0pJH//8ZrHPFL67v/BTm3FBx8nPPwHEotfhw9tJey+OYr30G9oPvOrWNBWUHvuDuEAmX3fIrP/mxWP14c3kTl5NYmda7HhypabIDMIPuJP62mnESZHjC71IciMVTlsirHpBOFsGD4MqUOEMxcRMAea5kHXfVjbIrzjFOjdBjPPi0pMWDO6gG7qccDaT8X79ZGsbmV6CLffRbDySpVVqABnE05PtrxCYe99IiKFKjuJa2aXEY2+/ZS7V6TgmLsvzra9iKim7SeAB83sBe7+wDixJIhGBF8JfB/49yL6vGSMNu8HLi48ehERERlPZvudZB7+ETRPg6GeuMOJV/9BUtf9I7TPIbPpj3jnBoKVV2PtsyHRAsO9eQ9L3/Rp0jd9urax5mGLZpDZ87lj9zP7vn7Cdh/cRPLxV9C05C9JzH9h7uHRPslOUlv+AQjwoS1ljLgtUKoTP+UqbOMvKtvutGV4anv0/+Y5hM0GYVjZPuqcNZ2CDQ1A75oT1wczgABS/dHvd2AbNrAt2jhtKUGwGjJJQt+a095pGE0qtTCJ2fTzVA93EvCeB/Fd87BlZ8UdyhTRma2Tew1GPJOBilRDoO95YldWEndEGYUNwAcrEtEI7r4f+KmZPZDt41vAuWPEkgC+A7ySaCK017h7w5UdExERqWfh/jUkf/Dn0DfhxTUNI/Pg92De6XhnlMAKN9wYc0SFs+WLgAlKE6QOkjn8O4J5zyX60/G4MJMkveUf8YG11Qsyn7AKfyImD8H0ZdB8Kt4CpPdUvo+61oz1dcLgjlFb7PAGmHMeJFpHH9Z1V3anZoL5l0N6kDDRR8A8OHAH4ATzriAMt6GRupOQjV/zW+pHeOAP2PyVWHtL3KFMEf2EXE/AFRjL4g5GRKaIckfidgCrsv8fGuPyi6+Y2VeIJjz721I6cfftZrYGuNDM5rv7CVMTZ5PJ3yNK4H4P+DN3b6SKYyIiInUts+H3ZDbeSOaB70K6QS4pL4If2QVBM4SpiXeuJ+19BeXVvPc+kg9eg824CDL9JOa/GKyVzMGf46naJvSt9Qxswy8r33DqCGYXkLG9kJ4CI3CtGWs6GfMW8DCqgcw+CEdPDGdNp2C9u2Fod/620t1w4Lbx+/PUsX1Gpf267iCYeS5h0KlZVUSqJiTc8wCJlZfHHcgUkibkVozzMc7VhGciUrZyk7jDwNfG2HYxUZ3cPwLrgXJLLZyUvT0hOWtmLUQjb19MNFL3De4+Bf5yFhERmfw8zBCu/RXJH745SgRJXpYegoXn4/sejzuU4mSKGW2awXvvAyC94/jIW5t+fk0TueZNVfsY7dNmQnqMROZk4k6QngGH7j5hdTDvCkI2AdlSB317ouTr8EPgVR4l2/MYzF0B3l/dfqSiolH2CRprRr/Jy4/ci/edh3WUNiGl5Oc8AhwBLscqNi2RSG0Zeb5kjVkjfi1S1hkkO4nZX+TbZmbXEiVxv+nuXx2xvhlYCaTcffOI9auBbnffl9NOAHwMWAjcMXKisuwkZj8BnkeUTH6zErgiIiLxCw9tJX33V8k89jPo64w7nEnB2mYwqepANbdUJHHnA2shMQcytZn4yLq2VL7RORfhM+YTZjZVvu04JGZD97rR63vWwawFBLYADt4Jtb7wzQIm14tELEzCjAvw/kfjDkUKlNn+WxJnvgRrSsQdypTibMfpzdbJnRZ3OCIyScXxNdBSYC2wHVg+Yv1zgE+a2a3AZqICa4uAa4DTgH3Am3La+m+iBO5BYDfwoTwlHW5295sr+ghERERkXJlHfkLmri/HHcak4oMHJ96pjtjSU4EKlH/wFNa+HO+rQRK3ae6o0aXlC8h0pMGrkByOiSXmAxtHb0gdIjh4iOgiu9qzxDw8zD/Zn9QnD6ZhoUroTCrDewg3/Z7g1Kdi7XnqWI/gmQyYYUG9jc+rT+5dbLj/dySCizj94uVxhyMik1A9jeW/AfgycCVwATAb6Cea0OzbwOfd/VDOMSuyt/OBD43T9s2VDFRERERGS/7hM/ihLYQ7bofUQNzhTDp+cAO0zYahnrhDKUhw2nLyJvpKka7NY7ZgUeUvvZtzATA5fmdjcidoWQXJQcgMwZEH444oL+vZiXcsgEyR5TfcIf/cHVItbadCoh0GN+ODFTpPSM34wEYyazdjMy/C5p+DzZxxLFHrmRC6uwgPPIAPbICWhSTOeBnW2hxz1PWrt8u4/QcZbvrWdnatO0BTy2286bP/j2tedVncoYkURW+l8ataEtfdrwWuzbN+G3lKV7j7Y8DbiuzjKSUFJyIiIhWXvuvreN8BglMuwbsea8g6VeUwHFt8NuG2u+IOpTDzMhUrc+lDm6HlJEgWU2O3eNZXwdHOQSssvJywJQM+iZO4HhCwBDpvjzuSiQ3tJcgME86cBWFhtXGD5jOg6wGY+wTCdDwjiBuNN82D1D5ITrKJGiVHiPfcj/fcD0E7Nu00CJP40C4IB4/vluwk3HYLwaqnEVVCFIAwdB6/JcHN3z7EfddtJp08/oaZTmb4r7d+lx1r9vDqa19EkNDPTUQKU08jcUVERGQyC6L6eeGO+7HZJ0PHYji0eYKDZKRw7wPQPhsGu+MOZVyJy6+GTGXLB1jTPDwxDQggTELQAoMboGkepA8DZU570LwY235beW00dcC8iwAI28DDXZO+RmsQnFqFEhNVlDpEEJxNGG6YeN+gAw49ApnBifeVirH2U/D+h+MOQyopHMT7xp540/vXQv+TQBOi0bXLuPV7SW7+zlYO7uwed9/rvngTu9bu4x1fex3TZrXXJkARmdSUxBUREZHKCI5PguLdu/BEC8EpV+A779DlVwWy9CB28oWE2++JO5Txze2oeJM+kGfiI2uFdBe0LIHUEfDSy3QEqWnljw6ffTaZluxo4akwlW4wC7rq/LmWz8G7CDpWQVMHIfuBPEnaYCZBugPS2S8bdA4SqSo/tBXrODfuMGKRTjr3/ybglm938sgftuFe+Ld7D9+4lg8889P83f++iSUrF1YxSpEyGQT19l5ab/HUgMbti4iISGW05CT2MknCrfdgCy/Cp82LJ6ZJxm1yzAbuO/bXqKPh6Da5F2tZAG2nldSMtZyK7bih/Hiap9aM4hbMYlIOJfY09K6Bw/cQpNvBRoz+c8eaVxIcOQBHHjq+PlOh2h8yMdfPuhGFB2/CD3XFHUZN7dsc8N0PDPHXZ6/h86+/m4dv3FpUAveoPRs7+cDTP80jN62rQpQiMpUoiSsiIiIVYYn8k5qEex7FkwEsvqjGEU0e3tKBLb4Am39O/Y/CBcINY19WWy0+vB2GtmPTz6WoP2GDdoJ9m7ByEkuzzoGlTyNsnlo1Pv1oknwy611H0NtN0HwGQfMqgvQ8rPNOSB85cb9D90BibjwxNpLWZfigag83qsyOn+KHunCfCpcqjG2gB773wSH+/vJ7+PV/PEJvV2E1usfTf2SQf3nFf/O7r/2xpESwiDQGlVMQERGRyhivZsLgYcKdhwmWX4Hvux/LTIHkUQUF81cR7pxENSSTwxBMg7D08galyeD9j2HTL8T7HyroiER6Adb7SOldzjqHzMwUsH1SDlodV3go7ggqI3V44onZPE2QaiM0GvLyy5ppmQep3XFHIXEJB8ls+x7sXUbi1GdhHVPr6gV35/bvG/977Vq69/dWvv3QufVH9/PIbRt52xdexbQZbRXvQ6RU9fj2WW/x1IJG4oqIiEhlJFom3CXcdg+0L4W5K2sQ0OThw31xh1C8oPJ1cQvl/Y9i7WdC2/jPI2s9A3beWHpHcy4gM2s6MEUvD7c2Guoj0JGHsOZlcUcxdbWfjvfnqW0tjWd4J5ltv5pSI0q3PRrwsefu5b/+6p6qJHCP6u8d4rafPMDfPe1T7NnUWbV+RGRyUhJXREREKqNp4iQugB/eQXhwD5x8BVPo811ZxipFUd/iHGGViS7ZTnePXSfXmgj2ri09RbnoajIdfeBTtMZjYj5B/yBTb3jxOOZciqd2xB3F1NRxAT68hYZ6Psn4kjWqnV5lQ/3wjb8b4ANPuZv1d++qal9zVs5luCmDu7Nz/T7+7umf4rHbN1W1TxGZXJTEFRERkcooJhGZSUWTnp18RfXimUQ8VeuyBOWzTB1c5pnuguHd2LSzsekXnrApaD4D691actPe0lpmcPGzpqUEwemQmBPl1kZ8axIEc2FoT3zBxaG5dfyyL1ISD9rx5M64w5B607wAmwKvtwPbE/z+q4/hYQ2+oJjXzJ33rmHJ5Utobm+i9/AAn/vb7/KTr99U/b5FChBYfS2NSElcERERqQhrKj7pFW67Bzvp0ipEM7l43+QbseRH6mTiGh/GB9ZENXITs6J1wTRs5wQ1UsczbRmhdVciuvi4Y0PD0HUHwcH1BN2dBLb8+Gbq5PdXS5kpWhYjZta8IBoVLzJCMHdqvLe31uiik9nLZ3PPXdGkgPfcsZZDbUO0nzWDrV0H+Ohff42Pv+PrpJLp2gQjInVLSVwRERGpjAJq4uaT2bcJOhZXOJjJJZi/Ou4QihZuraPL0pvmQdsZkDkCQGAnY0MllkGYdRaZudPAD1cwwNoLms+E3jUnrhzcBUQj5i3TgJe9h0qAVFzLydAyN+4opM7YtFXYkhVxh1ERzW3V/8KrqS3Bfh8gkz7+RdPhg72sf2wHB/d3A/DDr97Inz/n4xzYO7nfm0SkPEriioiISGWUmMRluBdPGcxbVdl4JhEfPATN7XGHURTfsj7Wyc1GskQHDG2M7iTmYDvKuPS0bxsWHP1SoX3E/yeTJjicZ4Kpob0EvT0EfRnourP2YcWtqRW8Qa+/rIa2lXjmAN7/SNyRSB2xOU8iWPVMLJgaqYaWKr81uzuZU9vZunHvhPs+cvdGXv3kD7HmwdJLBYmUI6izpRE16uMWERGRCrNEouRjve8APjCAt9RHUrBWfPoC7KTL8K6dkBqMO5ziuGOZZXFHAYAn93H0z9pEZhaWLqPGcGaQYMctJA5lSHR2EhzpqUyQNWRNp0D6SP6N6V5ITdHJ2iZy4I8EfQNY0/K4I5n03FpwHwBPxR2K1JHgpBcRLL9kyiRwAVrbq3vVgpkxbVrh5ag69xzmjc/8GL/70V1VjEpE6tXUObuKiIhIvEqoiTuS9+zD5p09cu6lKS+YeQrhzvvjDqNk4Y7uuEOI+DA27WyC1gthX4VGBfZvg+FOaJt8l4qbNcUdQv1K92LDAxqRWwK3FphxMXSch007DVKTr5a3VJfNWjwlJjMbKdHsWJVnUPKdg0ybXvjfUEODSf7hdV/kPz76Q8KwAeubizQwJXFFRESkMoLmspsIdzxAcPITKxDMJNHcFncEZQkfuQ+C6XGHAYAP7yfYcQdGEyTKGNE971Iyp1wM858IM1aRaZ58iaowPARW/utxyup5jKBvgKD5jLgjmVSs7TS8fx0+8Dg+uCHucKQO+fBQ3CFUnJnROq3EclEFGjg4wKUXF19S6iv/+nPe8+rPM9A39X7uUn8MMKuzJe4fSgyUxBUREZHKaKpM0iizZx3MOKkibdW1macRbrsn7ijKk0phXh8lFRJDbTCwK5q8a/oKCEorZBh2NIEfIdN+kMwsB4q8XNyd2IeTZw7C7AvijaHepXshpVIAxQjSIYlEfbzepT5ZejjuEKqipb3wv29OPrmD5z1zCa954SLe8Lw5vPEpLfzpCyaurb7/7j2ctqr4v33+8Iv7eP3TP8ru7QeKPlZEJh9dayUiIiIVYYnyyikck+zHW04B38MUuyrzBD7UAz75L4P0PiD2wbgzsb0jJurqfgTmXQaH7y2+KR8x4sqK+/0EzadD707ACafPAU9D2A1kJjiyCib5KO+a6F1LMP00aO7AbQjPHADXiLYxDXUTtk7hk7KUzTPJKTkyrqVt/LTJwkUBTzh/IYsSgwxv3AKbnRA4mtJuW1XY+XhxUwdbzfAivghMBLDhsR28/zUf5cs/eg0tixroaiaRBqQkroiIiFRGonJ/Vvi+tQQrroBdd1SszXpiC8/FD2yJO4zK6BkYO4nrARBW9Xo342QSO++BTM5kZqk+aJoRjbgsSukT9HF4LaQOAxAM7squDKDjdLx9Op7eXVx7wWwsmI6ndhf9Mwwz+3XJ3UTSvXDkYSB7mei0UwnbpoP3xxtXPUrMh8HDeEsZrw+Z8nzwAHBy3GFUXOu00SNx3/Ba44KlO2hiiFbv46YfLmPMccgF1q09tKmLJ15xFnfdvqag/S+5uI0vvec3JJtOoSWzF7vzh4QXfpJg+WsLOl6kWFUuDy0F0N92IiIiUhmJytbgDHc+BLOXV7TNuhFMnURI5vHHgHkY84Aoqdo0tJimLqNp+yaaDhmBL/v/2bvr+EjS69D7v/NUNarFOCMNM8/sLMyid21n15zYIceJw+TkvuHkJr735jq5ASc3N+Q45IBjh8GUmGG96IXZYWYeMXarqaqe94/WzEgjakndXd3S8/18NJKqC05rmurUec6DnWhC6ZWgAaoRaWJBH0W1xnJXYV18Gpz45NuHT4DrQv39ENsAkl+luCwk4xyZaiisB/EzSP9pJLAuv1YLWqPsTai+s0jPQVQ6lH/v4VvbjgzNKXQDGL2MSmZRgQ35/18tASqwAdV3BsJtoDN+h2OUMd3/Ijq5+B4j4ytxBc0v/LcsD0f+narR04SHT3PpxraZdzCHyccSJwZobKnNa93uHhfxUoQyZxB3BHQWffBn8I78Ctpz8j6mYRiVw1TiGoZhGIZRGAVO4uJk0F4AVADxFlfvSt15GKlehR68NvvK5W64H6unHUmfhdgaGHiasUzt2O2nUcOngVzKdkLaNrYOt3kZmu78j6cBAtipBuj88szruolcIi5+dub1ArVQtwWcFJ7uzT+Wu0ML2YgEQE/xeHVHke5vIDXb8QKj4E2ReIZcElatg57n7ixLXkVlqyHYnKseja0FK4hmFO1cnbC5BFdD93MY85TM9VUWQDdtA9f0mWToHIiFa83heWosUR7ezUNYa+/3O5CC2r1H2LEywJ4NAyyzz2EPngdAUrmLZU3L01ycaQdzuCCUTWTYtruDZ7tnvxB39WqWZGArkezEyl19/i/RI2dQ9/01EqzL+9iGYZQ/k8Q1DMMwDKMgpNBJXED3XUSteQCuvVDwffuqpgM9vHgSIt5wAEsNw8DhuW0YP48VPw+xtbjNHWg6x90YQtECrkJl0mg7AEohI92QuAKZ47PvP9IB6a6Z12l6ADcSBxaerNPOTSTUBKmb0680fAxlV0PNVrADaD2CdnqBLGhBqdXQ/9Lk7ZyRO60h+nOxCiCND41Vdmu87GlEm164hSJiY2pxgfAySHcjViPa7Zx9fWNJ04Mvo7P3IIHFk2p4x/b9uGe+AdNce6se/jp1K55g8OrUPbXdSBWQzPt4XQdvsvOedRw5cH6WNTWOnuazV/fX0Rc/imz6mbyPaxizMd0U/Ld4XlkNwzAMw/BXoSY2u4t38WVUxy7ommOCsJx5DgSrYJEMO3WvXMVavYAdxC9gxS9AsBG0C1YYskPgHr29yrxOHALRmatwI+244flX3s6bMwL9LwNjiVixIboG8CDxytz21Xenb7RqehhSfYWLc4mTtIe4NRBdhpc9xaKeaXEmoRigUW7Yjyn6jEo0NABNzX5HsWDuKxdxXn0Rr3OWZKqbYdUem8GrU998c3RuF7lFhFC/ix2wcLKTn3VPfVMUgF/9keOEM6em31GgZk7HNQyj/JkkrmEYhmEYhWEXvhL3Fj3YDcpGFkuPt3gnUrMGnRzwO5KC0APdsH4+k4jdJTOWgFxo94yq1ZC4BDLLY7J2HcgcJxubjcyj37F2IDFLy4d89C6yinW/DY9dREicQ1lRqN6Mx9U7ydyx/sOMXoOqFWiG0c4MVdiVRmsksBoGclXv2lawSF6CjSKy66C6zu8oCsIbHMK7ciSvdV1n+os87aM3qK4JMjKc/5vbyI0R9u3bwvPPHZuwvG1ZiP/5w2eJOCeQzMxPSKnZnPfxDMOoDGZiM8MwDMMwCsMKFm3XOt6DNGwo2v59oRbTtXSBULvfQeREV+T6mtZshJEpZviu34VufwMsfz1ucIFJ56lI8Z4Hho/cURg8gPJaUdkGVGBTrndx7/Mwegl6nkN6jqACG5HAWsReAVYzElgLurIqeJVaixpJoYYGkZ5XITsAjfvwsrMN7TaWvEAz1vpvR0LFu6hbShLOvz1NODp9gjbd3cdj++ZemTxwqIfd920gVhMhFA6wZsMyNixbywf+125QkVm39557B7rn2Tkf1zCmIoCS8vqqrHfXwlhMZw+GYRiGYfioGD1xJwhWFXf/pVbEymU/aN3o/4fpcOtYctyduo1CoBY35gCXcr8Xo+HpfCpxjZlVrUdXLQNAsknIDELinD+xDI9VxcWnGsKsofv528+D29+bHsFzz5QguAKw6qF3XE/mQD26fjOee3HptpMw8iJVm1BrX7+oeuEyh/tSk3yBpg2P0Xs2MeXtrXqI3JtO/s8jN+3gHu5nhR0j2hQhfilOj3QDmmG9nVq+McseNN7hX0Hd9xGkdmvexzUMo3yZSlzDMAzDMArDLk5P3NvUIqtwVJWRxJWWVXmt517rL3Ik01BBqL8HqtdBdjBXFTkN3XIvMPXEMwUj5uP1gkkAmh/Fa96B29iBG47juWfx3LO46hpuOA5V6/yOMn9DxyumGldU44TfvfrVuQSuYcxAau5BbXhjxSVwtdboCwfRyfTUK0zRj3Z6gudMf2UwdeEKu3Y1zS3AMdrxSHQnEBFA85sfGqTWmy2BO2bkFN7L70Xf/MK8jm0YRnmprFdZwzAMwzDKVxHbKeRURhIkbxVR1aaxqlI4ygJv5pNZ98p57Na6XCK1VEItEKyGoYNT3qzb3wAWyEgv2BE8uUjRH0faTP20YA334noz9wjWsWVI8ip4FTA5YHYACT6Azt5KhgbAqgOnu4xeByKI3YBkJ/49tS7yRQ+jwlmo5W9HWjvGEowVpvsmuutL0PMsbPp+pK524u2ZaZK7U0mPsHv7S5xuepjhzgwjV1OMf7+xY1EOH17oxJO5BO7qqs/ObbPEJbwjv4JCoO3Jyvy/MsqCuUztP/N/YBiGYRhGYRT7pGCWJGLF0cUYy19oAsFa7NVt2Bv3gJrho6MGHSph32K7GsKNkLgw9e11O/DkIp6+hBuL44Z7SpQwq4T/1zJWswNXumddzXPOQdMDJQioMCTeCRJFrFbUyDCq9zhqsBexO/wODSSKGryG9ByEgf13lkdXgbc4Jl80isCKodZ/L6ptRUUmBfXlE+gL/5D7xUuhL30e7XkT1sm4tWRrdqJnmyRzjGs1s+UNN3ns+z7Nru+f2AJqx3fC/a+z+H9/0cnqjbfeSzU1dfn/7b7rR9XcE7i3jF7Be+k96CP/He/Mh9C9eVbyGoZRVkwlrmEYhmEYBaETC60wmUV2kVWEVcxJbwwGXgNOYS9vg6pNOOePg5MGdK6NRigKotCZqtLUSwdqINwCI3f1JW28Fy8WQLu9IBOroIxypSDUBG4KGnbhOmfybj3g6j6syEpIXilyjAUwehmVqQbdA+6tnpkaJP+JkxZEaySwGu0NgDcMWqOCG0Er0B7oS5O3ibaDnuYiibHkqdY3ompifocxb3rgGDAuaZu8DFdPwao7vWOzyQD9+4eRwBqCK9qpbhzCHjow5f6yNbsZ6a5mufUlAJavO8jIk3u58KU49/1EiJaG/+Cnvt9GtMOb3/Vu/uyDNr/0G2l2tn+GX//97+LM0ckXqoMhzaadNg+9Lkt7+whrG58HZ4H3+8Jf575HV6De8AJiL7L5BgxjkTNJXMMwDMMwCkLCNUXdv07HF1VKTqxg+ddshmN3JnICSHRCohO7NpDr/epmgDiQS+DrHhdqp9xTYdVshYGXJy6LrcGN9INXxOmK7QbEFQg0gDOSWxZqRI+eANEgUXDiRTr4IhNqRddtwHMukctKRME9O7eLG14/bkSwZC2MVkCy8dZjZhwZvohUrQft4dEFeupJkRZE1aBogZ4XkWBzbgLATB8MvjDDNhFcfaPwsRiLhlTPr79r2bAmX0DRN/4TqluRhlxvaBXNVeDqbIb0hYtkrgaou+dxgv1fn/BSlal7iIGDPdgt0dvLVfoiq/atoGVbDY1VnwZAdC4D+9C2r7LsD/axtv7LiJfhl37pEL3DyzhwoJl/+xsPZcHv//l1Gq0XET2uxckCE7gTjF6Fvpeh9fUF3KmxqEkZ1h+UWzwlYJK4hmEYhmEUhISqi7p/PXQT7BDizqFHXRnTiZuo5dsAF+06iBUEZYGy0ckBdO9l31ouSE0TVns7jF6D4ZuTV/CyU284cA3a1kHy2sICiLRDtBlUCIYvQvqu4fV3n0UEavAal4PXubDjzkQrROogdRRS4yo/k+eRqk2gqpG+w+AMFi+GxSJQhxuLgHNu4fsSDdG2ykjiTiV1M/cFqOZH8JwzBT+EyoZg+MXcL5me3NeMG4TQTffmkuqGMQ2v5xRW1R6/w5g3Cbeg4ycnLddXvgr1346IIEFr4m3ZLAMvXyK8/g3UhA6jMr2k6x5nYP8VuKsVA+TyS42xz0/qsqOyPayr/c/bhcCR7GFWRA6z4mF48xObcHWYSPZw0bvz6HTPUsyBGUZFM0lcwzAMwzAKI1TkIXlOGllxP1x7sbjHKZWhq+ihq7d/nXSuFm6E5GDRw5DWNVg1As4ohFtxLpzFWt4Gnc/Pa3/aaUFYYBK3egUMj01WZkeh9mEYOArZ4VtR31m3YS9ujCIncDUS2QxDr059e+I0EtlhErj5sKvR9dvBLUACd4yrr2M1PAD9L8++cjlLXIXQArbXGpWJgTsKsTVoSyHagoHn8t9H9Tbc4JBJ4Bqz0gOvoFfuQmbqlV7O1DSpkORFuH4BOtZhVZPrBX9XgjZ17jxu2wbCy+5j5JU7ieDs9Rtks2sJBHIXlcLWKcjOrZ9/MHN6TusvhD7zx+jlb0fsaMmOaRjGwpgkrmEYhmEYBSF28Xs7elcPoVq3Q/ex2VeucBKuQRc7iRuOoaqqoffWsOqz2HU10DX/CU+8s9/A2vkoDL8yvx1YURg+fOd3dxSG90O0AxIe2FUQiEBkObp5K553Ie8eqnMhoTUgkVzVrzM6fQJ3jE4eh6Z7EELo9ACMnEGYXJm1qEU6wIpAfJoEYPVW3MBgQRO4OWlcrmJVb57cJ7mSxFZAdgGVuBKA0Yu5n9Ndc6+wi3TgRavAKXJ/c2Nx0Bl0PIHUFHcUTtF40/cm0Ff/HYZ2E8ocofFb72X4+SGyN29OSOhmO2+S7Zw8UmW0fwu1rbkkrmRnn6TRVyOnoP9VaHmd35EYFUCAcrtksxQryU0S1zAMwzCMwrCDxT+Gk8HrvoJq2gS9patW8YNUNYIVBMsGZSHKRmdT6O7C3W979SrouqsvZmZ46pXnwD35CtaGNXcSSnMRXgbuFJW86WvQdD9uaAS4DE0R0BeL0qBNgishfh685By28mD09O2Kaml5CLrnV81cqbzqNrR7DcveA4MH79ygglC1Di8SBrdIiW3xcENZLLbAyOQh0pVhgWOn1RzLeGt3546ZHQLAjcXAqYBJ4oyyoQcuQs1Ov8OYn/Zd0PvMtDfr4UMAxNa8QmRZHYOvbMWqVgx9eeaLyM5IAFoLGWhx6d4XEJPENYyKYZK4hmEYhmEUhhUozXGyo3gDPaj6dTBwvjTH9IG+uX/i74As27PgFnnS1IHV2AKSge4iDT/PpvF6s6gqC/TchpISqs/14p2CjkbBnaJH70JojYQ3jCXABNwUjBwD5hj33btNXQDU4q3GlQDU7QY8SFyBqlVo51quLCY4bsb6xn24dAID4A4UNyadwA0ksWp2wPDR4h6rGPqPIQ1b0E4n6NG8N5PAatAZRGJAnhdOgo24VjcqsBovkAQ9nHvsG8Yc6L5n8OrWoGorrxpXohF09fax1/uZWeFBGh97ifj5B2Zd1xla2HtHyU0x4aJhGOXLJHENwzAMwygMeyHNHOcoNYynLFTtShhaQpVjc02ITtwYe9Ne6P0GdBe/UlF3n4ftj0N8htYMKpRrj2CFc99VKFd9PA3PK+DQ1EBbLumVujGxfUOhOENQsxmGTxR+336KbUBXteK5XaDHejpXWzCuD7LrnEFatqO9DOhLpY1PPNxgAqtqPSQK3bahyJwhpPslxK7FiwXzqjJXgY3zq/jO9GHFmyHzIla4Hao3AODSDd7Q3PdnLFne5c8gO74LkXIbaD07UYE5XRgN1M/+3PAcD62LMkikKPSFv0Zv/Fkk3OJ3KEYFqJTH9WJWea+0hmEYhmGUJSllEhdgdAAvmYGa9tIe10faycxrO3vjHuy17dD3Mnjz28d8uCeeh5YnoHEHNOyA+i1QuxaqWiAchSCgEqD7IHsF0mdh5LWpd1a3G3ThKobEqoGRw5DtKdg+J7EV2qrQCWPEQrc8mutxCyABdMuDuKERPOfczP8XImi3N1fd6Qc9ihuO4zZvgZod/sSwEM4QElyX37rD82hZcktm7LGfug49z0HfK6AXaeW4UTxOPyRL975SUG33Qrgj//W92TNYqXOXAWv+MZWadtFH3u93FIbhKxHpEJG/EZEbIpIWkUsi8ociUj+HfVwSET3NV8Fm3zWVuIZhGIZhFIREagm+44NkPvPLpTtoohdPWlDVHTAy9RD8xUTHu1Br9oEGr/MEpGZOktlbdkH/4dxw0VR/iaIcx3NwL5zGah4GnV3YvoZPIG33ot2rhYnNLcEQ0tRFpGEP9Lww+7rlpvkhPPcs0rgVlRhEVy3DK/iEZEXmDaAj6xCfcskLIb2HkHBrbrIx90yu/EnCoFNAGKU6cstSBXxsNdwHusL+j42yoPsvI9FNfocxZ9LQAPXvgYsH0V1fnn2DQHrWVYLtyxCprMlXdf+raK0RU2ZpLEEisg54EWgBPg2cAu4Hfhp4k4g8rLXOd8bPIeAPp1geL0CogEniGoZhGIZRQF6fDz1q493o6hakejmM3Cj98UtIUgPoK7mkjWrdidd5esoZttXOvVjtdegLZyHjc7+73ouw8vUwun/2dYM7IX146vF6XgaV8XAXWuBkNyB2KwwdWOCO8qOTZyDYiGTy/fxfDgTXyz2XtHsdNwxUWgJ3jOdcxmp4AAYOLPxCQil5KRi9DKOXUVXrcu1G4mehdheMnIXsi4U9Xng5rl78F8KM4vB6noFYK6quzu9Q5kxE0KHa/NbNYx0VKtH8AAUkK77VJHCNvChZ6MwMZelPySVwf0pr/aFbC0Xk94GfBX4T+PE89zWotf5AwSMcxyRxDcMwDGOJ0a4DmQQoOzeMbnQAsikQBcoCzwU3i3Yz4GbAufVzNve764z73ckt8xy05+Ac/A9/7tNIN9S0IbE2iBdsxFJZ011HUMt3ICsbUM0JcLpBxUDVQuYCcAlUeZxMupfPYzXPsILWEGwHy5u54drQKWiohblMFiYRJLwWnTyem8SMKhjKI6FcKN4o1GxC9/Yjt7ovNj+C7j+IuInSxTEX9Xth0ST0HFy5DA3tKLsDcceaVSauweglv4PLT2LcxbH+lwq/fyuGV9Na+EkDjaVDp/Eu/jOy6fuRaNjvaOZEaw1DF2ZfzxNGDrcCvTOuF9tQWUkuWfldyJZf8TsMw/CFiKwFngQuAR++6+b/Dfwo8F4R+XmtdVl8aDNJXMMwDMNYYrwr+0l95J1+h1FwergTapdDVQuSKOAEWGVM6gOo2pNwqx2hl2LCCWZ29qGfJdF/FVY+CMmjU9xog26H3stQNzDzfrKDWHoHrlyadJMEV4CVS/DqbB84XWNVt8tg8BWk9l7IDkPiVCHu0dyMnkZaHkZ3Pw+hVkgchIbt0PNy6WOZjV2Naw0xp9l+KkIq18sXcvct1oQ1qpjTBYHFyKrCa9yMdhdL0t7wjc7i3XgVa/2jfkcyN5eOomcZmeGkGuj9bAfp88dn3pcIsYavFDC4EghUg5i0kLFkvX7s+5e0ntgUXms9IiIvkEvy7gO+msf+QiLyPcBKIAEcAZ7VekEzE09gnq2GYRiGsdS4FToBSR700A2krh1d1YQkZq6WWQxUUz0wU/KlTIZHRuqh9xzUNoEz7v/FagSvITehUus+8E5Pv49b033HL0Ns4tTfElwNIye5lZATgOi6sQrGsR66pay+nYKOH4SmPZDth2wckfKokibYDLE1uUr8oeNQuwP07FVpFc/tharVkPDpvoaXQ8rH9i8qCLW78AJJk8A1CkbCLX6HMHeZmZtme9kqej7RSubapVl3JbaNRxUWg4WJrQT0+b+E6Cpkfb6jxY2lrEw+Vd5ts4hMOSuu1nrvLNveauZ9Zprbz5JL4m4kvyRuG/Dxu5ZdFJEf0Fo/k8f2szJJXMMwjLtorXEdD8/10J7OfWkNGjTjfta3bhv72fVu/wy5HluiBM/18DwPz82t43k6Nz+JCGIplBKUpVCWQpTklgvYQZtAyMYKWKZPlVFQ2imT6swi0YPXkboOdBWLO5GrFFR3wQxtPmXbNvSZIHSd93fW+dE+vPpdqNERqF6bqxi2WqD3JCTHqiMHz0LdZggFIXlk8j7qHsVT15GaLbdvl9AakAjETzOponLUh/7Ms3Hj4KUh1IHuO+jvyVB0NW5VVS6ZKVdyy+qaQS/uvtLjeVX1KLcdUtdLeFSBlkdwvU4se9PYY7cE7GoI1IFdg4404LlXgatQsNogwwCqWv2OYO6W7UKatkDnfvTwoQk3uZlqej6zmsy1y/nty7JJJXZSVf1s4eMsIn3uz9DrfsycbxhL0a2G2EPT3H5reV0e+/pb4DngODACrAX+G7mWDJ8XkQe11ofnH2qOSeIahs/crIuyFdlUlsxohmwqiyghm3bIpjI4aRc36+QKkJSglIBwJyE4lhS89bMoQdkWIuRuG0tG3v75VjLRyyUoPS/3s5txGR0aJRgJ4nkatCadyJBOpHAdbyxBmUtuhhti9HYO305uak/juRon6+BmXBzHxXM83GzuZzeb+3LGvruOe/vYlq2IVIcJx8KEokFECXbAIjmcwvM8RCR3fK1v3xftaVzXQ3u37nsujjv3Td9ez9Pj7qt79/JcslXf2m7csnJiBy32vmUn3/97306svsrvcIzFwFm8lbi36MFrSE0b1K+BgYt+h1MUsnI9ZGdpG5E5gawG1u+Evhr0Sf9OLPX1Q9AkMOSCCoF317DUdB90fQNqN0Hw7o312NcQeuglJLYN3FEYrpwZwCW6G937IlRvgkSPv/1wrQheVTV4PRN7EOtR/2LygXav49UsQ92dxLXroG4b2tJosrkLIJKbUU/pEAyegkzP/A5auwvXPQuAGwKCrSBBxF6OcgPgjELyGqQX2BImtAwiyyEQxZMk2rkOkgX6wK2kSfaMSiKhkN8hzJnUVAOgh1phXFGu1tDzmdWkL+SZwAV0KomXmakBfJlKXoOhY1C3w+9IDGM+TuVRcTtftz4kzZok0Fr/2l2LjgE/LiJx4OeBDwAL7mdnkrjGbdm0Q9fZTvSth+fYD3f/nvtRU9NSQ317PQDpRJrhnhEyiTTZdJZsKks25WAFFKGqEKGqMOFYiGh9lGAkWNCrfJ43lpx0PNyx5KGoXAWkshR2yMay85vK2nM9RgdHSQ4nScXTjA4mSAyMkuiPkxxOkUmkSSXSjA6Okk1lcdJZ0qMZMqMZUiMptNa5GU5vnWwCohTuWCLzdtLT9XDdXJIzm8ziuZXVj639vnUce6EMK5wWKSfj8vKnDhKrj/L9v/cdfodjLAb23RmyxUkPd6KTEaz2B9DXy7D36AJZK1dAvkM2nUGoHUT2vQ16unMfScNRCIZBCfrsQRgq8oRwNe2gx1obeDNUgysLVA14486mo5shMwK35suJz9KXsJxY1YjdDr0v5M4ERnzoyXsX3XgveiyRuNRp5yYEGyHTB9Vb0NFGPOci6PPgTF7fBagOoexHkeFLkLw6+0GCjVCzCbTGtUYmVr+KAFm0czm32AJiEazYPuh7mSnPG8WCQAOE2yAQA2WjBRAPTRbtDoAeAa7fKVA3BXZGKViVnF6Y+FxL3thD+sLczndCa1YSqV1woV3p2dVgR/2OwihzAqgyey8pQDi3Km1rp7m95q715uPPySVxH1vAPm6r5FdZo8DOv3SOP333n81pm0hNBDfrkknmX9UVa4yxcvdKAiEbrcFJZydUaLoZ93bS071rueeOJWrHVZbmIxAO5JLJsRChaBDP1bcTvp6TqxB10s7tRKwxszJ77V4ynv2nV3jsPQ+w9p5VfodiVDixK69SZt6ySdxLr6FW7UN3H0acpN8RFY41n1fjYzBFkZBsb4LEDvShLy84rCmFarAawrnBZbMJxMC7mftZCygbBm5A65bixFZEUrUTPXgKslO2avNHsHlsKL0BgIBbUwc0gB4AZ5bJ9QBw8JyzENFIzYOoVBKGDk29au0u3ED8Tp/hvNoXpHG5BI2rECuGUI8krkO4BW1beG4n6ATQk/uqrFoAY7FSEQhWcHpBTYxdO3O7LxIIUL93ENsu8gXRIpCNP4PE1vkdhmH44VZPo43T3L5h7Pt0PXPzcWtoTUGG1Fbwq6xRSDdO3eCff/Ff5rxdcnjuJ8PxvjgnvnpiztstRK4yOEu8L17S4y5WevFNWV0RsqksH3jqD1i5vZ1IdRjPcVm1cwXf/PNPUttc7Xd4RiVRS+/t37u8H6lfCQGBgbmPJBhSu6hxD1NO7eKcAwexH1kB2QL0MHXjED6L3PcW9KufJ49RY/mzgljty2Aoz/d+kdzhw7shNQiuA5EgHhXWFiO8Ct3zjfK78JnpwRoN48bqwBv0O5ryoOfZ2kIE7VzEtYGW7VheDQwcyT2f7Dp0ww4850zuYsS8pNBuCk3vWBX6pSmrgw2jLHiZOxNQVhDdfRN99QtwV4sbNzG3yScDrc2EI/nMe1R+xLRRMJaup8e+PykiSus7E0iISDXwMJAEXlrAMR4c+16QmVSX3lmcMcno4Ch//t1/weCNQb9DMQxjFtrTXD5yZxbpMy9f5Ll/fJknvu9B1uxemWvvkcyy7XUbad/U5mOkRlmrsBOsQtEDV9B2ELXiQfTVb8zpz3BteC+rakeJldMQ9KE+3FdCWPfV51k9mAfrBPLYW9D7X4TRwuxTrbkXBp7Lf4PsKFSth+tfBxWAjsfwAteptBmYxKr3O4TpJa9iWZtwg5WXcClbbi8uvVBXB2oVeAlwz5q/r7GEuJBMQ1XE70Dmxs1CZnIPaqt6bpPAZm52oXUEkUoZ8SPQ8gTS/i3Q8oTfwRgVQvkdQIFprc+LyJeAJ4GfBD407uZfI1c9+xda5672ikgAWAdktda3q0JEZBtwU2vdP37/IrIK+JOxX/++EDGbJK7Bs3/znEngGnNjCnHLSiqR5vN/+vUJy+59205++u9+yJ+AjAqwhJMKTgbv4quolQ+ge48i2fwmchpNBEjXtBCjjJK4gO65gXduB2qNDbpAJXqZ48g969CvHIfMAk9GI/XIyIGpb6tZDwhE2nKxZxO5KsbETfAac+useB2eXZDChdKyYuhkd3k/0+KnkdZ9aOeS35EsMg54ZuIwY2nSiQGk0pK4MnVaqmrFa2S/6SGGvjz7BJp2YxNNr0+iVKUkcAErgtTvQVZ9FzLN38AwloifAF4E/lhE3gCcBB4AniDXRuF/jFu3fez2y8Dqccu/HfhlEXkauEiugdg64K3kxtJ8Dvi9QgRrkrgGlw/lP+OmYeSYLG65CYRsVmxr58KB3PN59c4VPkdklDVlPqx7V15D6jqg2ob+c1Oucz77XSRGq0iO2vScG2VX28kSR5kf78xR1IpvAquAk6k4vcgDb0Q/958L2o1qWQ/xKUagRZdDug8yAzAyVq0YWwNig10Fw2egagVeYKQ833LsWiSwAp3uR6It6PRVCDQCVi4hnRlF4gtpn1YaKt6HG2JJX9cxDKNwvK5nkMbvQKz8JpUuCzMkMGt3v0i2535GD00/IWWwYzkN+0aIRPYXI7ricUfRp/8feuQsauW7oX43Em71OyrDKLmxatx7gV8H3gS8BbgJ/DHwa3dX107jaWATsIdc+4QqcrMPPw98HPi4LtDkSyaJu8Sl4inOvzT33oDG0jZyY5DtD60BLYgCPXb2J5JrhYUAWqbsnes6HqderrC+hhWgfnkdP/3RHySbcUiOpFi9s8PvkIxyJhV0clVEevAa2goiKx/Cu/IynhUloHMzb2WkllOvBInf7MmtLEIwr89w/nD2H8DeFypcNS5A9gSy7XH08a/PexcSUnB3O3o7mvtK3Zw41Dx+EarawQpCsB6vrRp0z7yPvWChDkTVgwI9evLO31Zs0NXQ93Lu3S9+duxd8Ipvoc5b4iwq9gieM/WFDMMwjDnJ9qKvn0ZWbvU7kvzNcGFbBKq2Zxg9NM0Ktk3b6w5gWQVqaeSHG5/Bu/EZQKHe+CJSvWHWTYyla7F2CNJaXwV+II/1LjHFpW+t9TPAM4WPbDKTxF3ivviHXyI1kvI7DKPCDN8YYPjG/D6sLNu9qsDRGADdF3v5hfv+D2/+iSd4y//3er/DMcqdHfQ7gvLhZtAXX6Ev/CSHX2unaYWiqaGLIy/WEb85eGc9rbnofgdoWGP/q2/hTmuoD9QbwT1SwJ26UNuJbHgAffEQOHPrD6jW7oO+FyYuFBvqtkD/NC0WRq/nvgdqQKf8rRBN30DrESR5A0KtyFj7Bz16Exk5PevmlUIGTkL13CbwMQzDmI7X+1WoXoaqL+O+4OO52RlvjrQdJrRuB+nzl7Bq6wCNVVdDaEUtVtTGso6WJMzi89A3/gvZ9LN+B2IYxgxMEneJ8jyPf/8f/8HzH33e71CMJUYW6+W7MpBNO3zmD77M5//s62zat5bVOztoW9+CHbTputDD5aPX+em/+0GUZYbSL3Vih/wOoew0pb7MA7s28eL+BzjzNORGQE30yifT2OEga95W6ujyJEXoO+CloDGFLH8YLg+gLx3Mb7tYCzL88sRl4SaINE+fwB0vO4y6bkPzLrxQD5Bf7+LC8iDags7GkXQX9HQBi7DzQHYIaPI7CsMwFhHvyqeQqu9BghVwgcjzZrxZlKb1ncfQno2yJ464EFZCZzGDK7FMBVcUG8YSYZK4S1S8N86LH3/R7zCMJUhsM4y72LKpLMe+fppjX59cKTbYOUxDe13pgzLKyyJO4moNGgst9th3BRo8FcYlgJYQHhYuYTwJ4hHA1SFcHUB7Npv2DHEsVcNo1/CU+3czWUbVKqJeGfaTV3OrlJ2T9AVY0YZY96IvHgTPnXF1qW6GzM07C6wwRJbB0OwTxNw5Zj9cexq1/DG8cMKfMXwqhDhTPxYWDe3lnjjmIqthGIXixvEufh218Q3lP2lWcPaJ2ER5iMpMviG9yN4farf7HYFRxgRQZTZRwVL85GKSuEtQNu1w7hvnsAIWnjvzlUfDKDTtFLBfozEtZSnuefN2ui/1cfX4DbTWbHpwHTXNMb9DM8rBIkzivjbyQxx7egDPGUtILcCupxo4P00SF8DWgwvaf8EEI2AFIDkWq1PkGcGzndAM0rIOgmuhK4E+9dwUccVQ4SzcOt8Nt+YqcOeSwB3vxrPIum9C40MP/9Rg6Y9ZalbEJHANwyg4nTiFvrEWaV/ndygzm/dnIoGRS4WMxF+xDUjHu/yOwjCMWZgk7hLjZBz+9Dv/lPMvm8nMDH942Zmrt4zC8FyP9/7Wt9LQXsdQzwhD3cO0b2rDMpXQBiBqcb79F+r1pX9wcs/gtY+2saLtPM36eSztVy95DeEaVFMHXs9lrI42GL4AbSsh1Ix2ZKZJtgsYRgbSp6A+hDz2VuhPQDYLw73owU7U2nug8yu5dSPLgCwMHV/QIWV0FB1deOhzPm6wQno6LoSbAOoBc5HVMIzC8ro+h4TejTQ1+x3K9Kz5fTaWyFbE+VKBg/GLoLa+f9F+PjSMxcQ8S5eYywcvmwSu4SuZYQZYo7Bunu+mob2O2uZqapur/Q7HKCNaL75RGEoV7j5lRicms4I1Ee5r/Qt8HUFm2Vjrd0HXsxDvxIoAfT252wZOAich0Y7eXI9IojQx6TRkjsOtAv96haxZhvT2QPUaaNwCnS8trMeeCsGKx/DsiwUJea6025NrqeAVsVVFWTCVuIZhFId75d+w+DZobC7PuTHmc/UztAKuvTD7epUg1IK67y+R5kf9jsQod1KGA3fKLZ4SMEncJcZzy6uHibEEld0r/+LUtKKBdfes8jsMo1wtyiRu4d7f7n6v3Pc2B2najdhhvHg39F8o2LHyoZZvREYP5hK4Mxm5jnSvgtYSJXEn8cBNoxuWofUIyGlU/Sboemnuu6pagW7bjJZh0D5efM50Ig33QO83/Iuh2AJ1wMyzsxuGYcyfi3vlX5ChvUhsJYgFbgY8B4JVSFOrv8nduRaYSBDpvYZk/XqvLaCqdaiH/w2pMucMhlEpTBJ3idnw0Hoe/9HH+fpfft3vUAzDKKK3/+w3EY4tvr6nRoEsxiSuFPA+eXeSuK97j9CW+Xf0jTuFuLLiPvRIFwxemXp7sXK9apWdOzlU9tjvAbAFsazcOkohygJl5S5wWdbYaIWxUodb57SJM3mHri+/iNR/EwTPzeuuL5hoNBdvX7DzYgOo9GYYPJXf9tXroGENnnUZOO9v9fMY7faBiiBe0u9QiiO2DrjudxSGYSxyeug19NBrk5Yr/W1IyzIfIroVwByTuKHlSKLyq3Bl5XchO38bCZjReoZRSUwSdwl616+9kzf93FP8zQ//DWeeP+t3OMYSY+pwS2Pt7hV+h2CUswVO/FWOClmJK+rOK1VT7CL0T7xdX30190NwrI+AlwU3eyc5rl1wpu7Pq5oEycQLFutU9ImXYed6RC2gjUHBZNHNHUieSVyvtQV0aSudZyOBFjTTJOwXAR0IgWlXbxiGT7ybX0Aavw+xfGq5puZ4duKOFieOYoq0Iy2vR4+chkw/0vgAsuv/IpYp+DDmZq5PF6PwTBJ3iYrWRvnW3/g2Pvj6D6K9xXcyb5Qz83grtlh9lGUbWv0OwyhnJZn9qrRklkrc1fe10dSSovN6iPSoR7TGorbe5fp5j+RQGlFComcEgFAsyCgQrlHY8RmG8s8nGSslmFwwM4yMNEBtOSRxQbtXkeo1MDJ7X1uVDOKFSxBUniS2G7qfX9QXILUe8TsEwzCWMjcOg/3Q2OTP8ef6mcjpQ1MhhSliox77L6ThPr8jMQyjQEwSdwlbtqmNDQ9v4Mxz+Q/TNIyFMtcMiisQsvmRD72HUDTodyhGOVuESVwlU7+4WEGbba+rZ1fNx7BJsmPdxNv37sl91xqS1jJGZB01raME7+3EznRCvMBVs6VI4gL6ymHYvgyR/BJ0WlugNVLACeImyHe45vVnkPVvQGt/JjKbQGx0/+HKOFGfr3A72u02/eoNw/CVN3gOy68k7lxb4obXI5UyOqNqlUngGsYiY5K4S9wP/MX38z92/k88Z/H1RzTKlMniFs3K7e386J+8h1U7OvwOxShzokqTSCylqSpxazvqeOKhw9S7h/LYHqLeTapiGaSnqwgRjrFKVGaa7IHXBmDj4+jqy4g4k1bR2kKSa9A3LsLQVbAjueqihrXojv7CTTSjaiAQhkANZEeYbUSGXD2Ibm+AQvY5ng8VQZxOf2MotmA9SK/fURiGscTpof3o+E4kFi39wZUCGUuL6MnvlROEVkFPebX8mZm5QGcUjgCqzEbVLsVHuEniLnFV9VWs2rOKi6+WQcWLsSSIaaRTcJHqMN/xv97G49/7EHZg8SXnjCJYhFV3SlxCNRE23B+juirBstAhqp0zKHduzT5V0xr09UWQxAXwHPSpr0Ddali+AdIZCAdzn3izGq4dQye+fGd9Nw2AzsSBGqBAw+z1CF5sBKqaUEOroe/IzOun+xFrK9q7UZjjz1d4BYws8iRumZ2MGYaxVGnci5/B2vAuJFza0WQiguz7eXQiiT7yx9OsFEIC6+HKVxFdQU3EVcDvCAzDKDCTxDX44b/5YT74+g8y0mN6ohnFNzSS8TuERWfnG7fwxh961O8wjEqyCNsphO04b3pzFw3OgdwCl/ldntfpQoY1iSgfJhEZvIQevDT7enYE2fwoOnIu7zYMcyK3/5l91WwE7fc1qWT/7OtUOm1GYhmGUSayPbinPoZqewrVVroJerXWkBiFTGrK2yWyCbrPIokvlSymQpGaLX6HYBhGgS2+szhjzqqbYrzjf7zd7zCMJUKZStyCyySzfodgVJpFmMRd4X3+TgJ3vgJRdNfxwgQ0Da0iRd3/vEWaYNduiJ5FpukvXBCBqvzW67uA71nczJC/xy8Fz7x/GIZRRrwk3s3PoZ3SVrvqo3+CPv1Xk5ZLYAtc/BqSuFrSeApm2Vv8jsBYZETK62spWnxncca8PPCdD7DvPfv8DsNYAiIxH6rQFrlDXzzOpcMV+uHS8MciTOIWglq2Cdwijxawaou7//kI1cG29YhVotYB9dsg3DLzOiPnUawpTTzTkNrNvh6/JCppWLBhGEuDzqA7S9d3VkRAJrdwkPAO5OpXKrrnpph2Coax6JizOOO2nvM9fodgLAHZ9CwTBhhzprXmvz70Vb/DMCqJSeJOSUpQ+OldO4meLYFZStEW2L4FUUXsAzyOF0vj1Y+CFcw9Dle8Hhp2TLmuLmZFcB600+3r8UuilD2aDcMw8uT1PoOeY0/7Bbkr2SmRLXD5y9OsXDn04FG/QzAMo8DMWZxx2/qH1vsdgrEEJIaTfoewKL3y6UO8+p+H/Q7DqBTKvP1PptG9Z4p/mPQI3nAY3fQEWvydmkDadsO2ttJV4ALogdz4t9atULsRHbTw6l2o3XhXcAotN0sX11SWQr9Yq0zbexiGsbR5SXSihOcMdh2gkMhGRK2Hi1+prAnMpuMVt8+/sfSoMvtaiszEZsZtb/nFNxOOhfj0//mM36EYi5gs1eY1RaY9zZ/92MeINbyPLQ+bCzLGLEwl7mSiIFWiHqijfXjn+pCGzVAXgv7XSt/Xq2U7ekUcEX9OUj05Bw0K9DkQwWuuQTkrIdULKx/Gs5Kgb/gS223pqSe5WVRGL0PMXrqN5QzDKF9uiXp2J0aR4RSMJpHOp0tzzFLxzITShrHYmLM44zYR4bEffIy3/tJbCFWZvqVGcXjuEqhs8kk27fA77/owf/7jH+elTx4gFS/s1Xcn6/LZP/kaH3znhwu6X8MHJok7WaQuN8S/hLy+i3jpZtzqt+HWvRGv9mF0oBFt5Tn51wLIijrfErh3gvDuJA/1MN6yFvTqJ/DUef8TuKHlkLzmbwylkOlDAqv9jsIwDGMSicZKc6BwCMkMI+ne0hyvlHwe8WMsLgKI6PL68vuP4gPzrDYmCIQDPPWzT3Hvt97LX37vX3LzdAmHWBpLQmLItFMoJtfxeOHf9vPCv+1n22Mb+e+f+IkFVz8f+epJTjx3llf/8xDdl/oAGOoepralphAhG34wSdy7aKxoCD1U2ooVqVuNc+kIOOMuuCgbq30vlnUAcePFOXDzNrCuF2ffC6H70SoFZXCtT+xm4KzfYZSEivfihm3A9Kw3DKN86HQaCZVgYi7LgkffB13X4eAfF/94pRRu8zsCwzAKzJzFGVNqXNnIrrft9jsMYxFyMuYksVSOP3uG+MAoWmu6Ls6vukBrzZ+/7+N89kNfvZ3ABTh/4EqhwjT8YJK4E0jDKvSQD1WXQ5ewlm+auMxzcK8ex/F2oYs0r5e0l/FJXWyL3xFAsAU9fN7vKEoncR7LbQG9FOtZDMMoRxJdj6opUSUuQCQCq9fD/b8EwYbSHbdYanei7v9bZP37/I7EMIwCM2dxxrT2fvM9rNu3zu8wjEXG9MQtnWhtBO1pPvjOD/PfH/wtbpzJzT6fSc3eY0xrTSaZwXU8Hn/vg5Nu//TvfZG+6wMFj9koDfM8nEjV+5jUVFMPilJVVUVpUyodD6ADZZygTPs8mRkggXYk3eV3GKU1eABLd0CRLhwYhmHMhR49hzcwWPoDN7eCKkH1bzG0Pons/j3UG19CPfE1pP0d5vOeUXB+T2RmJjYz7RSMGbRuaOWnP/lTfPR9f8eBTx3wOxxjEdA6NwGXURqjQ0l+Zuf/JpvOVT9/7Jf/nYe+7V4+/iv/wVM/9jq+7f1vnXK7kf4Ev/+ev+Tcq5cQJVOe1F84eIWf2/Pr7HlqG9/z2++iqWMRVC0sNcoCbxHMvFwIyX5fDqvtCG73hUnLVdsGVOJrhT9g7Sr0suGpT+p0Lbi1gAKtwFNgOWBfKnwcM0nfgPBKSPlV7a/Qqe4l2WONgVexmh/B9c75HYlhGAbexY9D5l1IQysSKFHawvPALeycEiWx/O1YD3zU7ygMwygBk8Q1ZvSVD3+Vg5856HcYxiJgRwLUr2rmzBGfJ6tZYm4lcAGOP3OG48+cAeDT/+9LPPDOPazYspz+64N89k++ynBvHDtgcfTrpxnqGgZmTrp7rsdrnzvKudcu885ffIrND66ndW0TdtC8tVQEUYBJ4hKtR/ecLv1x2+7DG+iH4bt604arsSOXkXSBW8/YUdiwDJEpKkx1PZy8BqN3vd+37oLlHaCugtcBchNU8RvWSqAB7VcSVwUgPjmxvmQMHIbaWkx/XMMwyoF3/RNwHSS2HVl2P6q6yBN/hkPwtl+HQ0/DxU8W91iF5M0+ys4wjMXBnGkb0xrpjfPZ3/2sqZw05qxpQxuhmgieKOJDSQa7hhnojdNjErhlJd4/ysDNIT7w5O8z0Dk07/0MdQ3z0V/4NwAi1WF+4iPfy+5v2laoMI1iMX1xAbBa1qKv95T+wNkEemDy5GL2mvXI0FcKfjhZeS+aKSZK01Vwrg9Gp0judh2GLiBYA5mLyOZvQseK34pBZweLfoxpqQii/anMLgvOCMreieeUccsNwzCWHB0/hj53Btn0fUg0XPwDtm2Gi8U/TKFIzabZVzKMBdMoKbfcULnFU3zmDM6YVnVTjDe87w1+h2FUoJGky7FvXOTEi+e5cvwGw71FmmHdWBDP9fjrn/3nBSVw75YcSfHZDxVhGLhReKZPWo5l+XPcUP2EX6WmlcC6GtTw80U5nL7wLBw8Bun14xYG4VIWhi7NvHFmrDL/zDOgm4oS3wR2dfGPMR1nCB2on329RUxS5j3bMIwypDPozMJbHWjXQ3uzjCppbYOVb1vwsUpFX/4n9OjkC8OGYSw+JolrzOjB9+zzOwSjwizbtZLOCz5UtRlz9rvf9mcc/vKJgu83FU8VfJ9GEYhPyctyo4vfHmCC5Q+jWx7COffahMVSXY9KXkR0EZ8/bgZ9+Mtorxm0BTei0Hcq/+29DJKsK1p4AMR2QMrPE1GNxNb4ePwyMHQYsVb6HYVhGEbBaO2he7rwTn4F79U/wHv1j3CPfgp97Ry6vx+dvauFjAjsfr0/wc5Huhfd84zfURiGUQKmnYIxo8aVjex++24O/echv0MxKkQyU+KEiDFvnluc/6uuC728/KmDtK1vYdX29qIcwygA006h5PTyR3DP7Z/yNq/rArq9Ecn2FT+Qs91QtxxuvjDnTfWJL8Ge14N1qXDx2LUQWgECxI8Wbr/zZZ4bqHgXblig7IZNGoaxpGVGgdq8V9euB8kU+trL6MFx77/ag8RZvMTZ3O9io9rfBu3r70z+adkQXQGjVwsXfzFUrUPt+zukZovfkRiLnIx9lZNyi6cUivIpVUTeKyJ67OuH57Dd74jIV0XkqogkRaRfRA6KyP8WkcYZtntIRD43tv6oiBwRkZ8RMWVGhfDOD7yTjY9u9DsMo0JEqoJ+h2D4LDmS4k9+6KP8yQ9+1O9QjJmYRNWY0nz80yjc62dBBGlaPXkFJ4MXuackkUh1O1ydewL3tp44WG0Lb0NmVUPVttz3xDGIH1vgDgvELkG/xXI3ehllr599PcMwjBLyup+bXDV7F+246GvncI98Au/V/4d37MMTE7hTb4R3LVeZO0Hj9gVGXGSBWtRD/2QSuIaxhBT8DE5EVgAfgqlmz5jVzwJVwJeBPwL+gdz0uB8Ajozt++7jfTPwLPAY8Engw0AQ+APgn+cRg3GX+uV1vO8ffpztT5b5m5hRFnqOXUVZJjm01K3e1cEv/fuP+x2GMRPLDMYBSncJPxDGalmDte4+9HD3lKvobPGrHqXjEbixwL67fWdR1w+iUvWg5xmz2BBsg8RxSF9bWDwFpt3C9QmvZJI1rXEMwygzmS7c4x/F67qOnuL9R6cyeEf+Ee/aJ2F07hM06uufQvf13lngLrwHb9EEalEP/QsSW+d3JIZhlFBBMy2SG3vwt0Af8Ofz2EWN1nqf1voHtda/rLX+/7TW9wG/BSwHfuWu49UAHwFc4HGt9Q9prX8R2A18A/g2EXn3/O+RcYsVsPjm//UOAuGA36EYZc5JZbFsk8Rdympbqnn/p/4/mldOO4DCKAMSbfA7hCVFsqPgDuJeOzk2HNSHGNofXHgCF5CmsZ6xQycgMOn6+uysGMR2QvLsgmMpiuQltB3zOwr/uSaJaxhGGfKSeNc/gXfmK2jHBUB7HrrrBt6xv4NM54J2rzvHVe0mS9DiaJ5kzQ8iDff5HYaxlAioMvtaiv0UCp1p+Sng9cAPAIm5bqz1tLN5/OvY9w13Lf82oBn4Z6317Vfbsf38z7Ff3zfXOIypta5v5Re+8PMs27zM71CMMidm1vslbc3uFURqzHDkcicB83+UU6LXq+aduD09kBqZfp0iFuJK217ofKkw+6quufMzc2yhY9fleuCOHChILMXhQdRM7EWozu8IDMMwpqUTp/CuHkQ7Lt7Rf8e7+A/gDC58v/HTaNfNjTTJDi880GKpWuV3BIZh+KBgYylFZAvwQeCPtNbPikghp3N8+9j3I3ctv3WML0yxzbPAKPCQiIS01jOOhRCR16a5aXPeUS4ByzYt4+c/93Ocfu4MVw5d4ct//OWiTY5kVC5RJom7lJ3+xgWGe+PUNJlKtrJmmZEVpaARaHsY9+Jrs7ce0MV5P5Wm7dB3tHD713cqicULou3lCGG0exN0cpogAhBshUADxO/+OFdmgstg5LLfUfjOk6zfIRiGYcwscRXv5HVIFvA1W2fQJ7+ADi1HxS8Wbr8FJKvei1r9Xr/DMAzDBwVJ4oqIDXwcuAK8vwD7+wUgRm7qyXuBR8glcD9416qbxr6fuXsfWmtHRC4C24C1wMmFxmXkBCNBdjy5nR1PbicYCfCfv/VfBdlvIBxg+dblXD5gTpwqnUniLm3JkRQf/5X/4Cc/8n1+h2LMRJm5P0tB2vbiXJhlQpVbvMIncaVuLcQvF6yvn9r6IAwfurPgxtO3h3VJwz14gVGYajRGeBUkz5Vd/9spOUMQboPE3PspLiZKB3D9DsIwDGMqEkLsDogfL8rudfwE4gqaMhytHahFdv2O31EYS5RI8edvMGZWqErcXwX2AI9oPV0Jxpz8AtA67vcvAN+vte65a73ase/TzUBxa3ndbAfUWu+davlYhW4ppouuSI98/6NcPnCZo188NmVz+bn4wb/6Aba9YRtHv3SMf/jpf2B00J+egcbCmYnNlrY3/+QTvP2n3+h3GMZslKnELTZd1Yp7Yw4XJgudxI22ghOHTIGGg1Yvm5jAvVv/AVTb6/C4DIxLGlvVlOFp8PS8UZAMNNyHHjoB0Q5k5LTfUZVWsBFPpcAMtjIMo1i0RoIrEbsOvAxeOs/XWa1QwVXoYo3qCLSiUhZc+EL5vXOpELL79xAr5HckhmH4ZMGZFhG5n1z17f/TWn9j4SGB1rpNay1AG/AucpW0B0VkrsnUW6+75nJBkUSqw/zw3/4w//vlX+WN/+0NefVCDYQDVDfFeOpnn+KH/+aHWL13NU/97FNse8M2AHY8uZ3v/sP3TLlt0+omGjrMZDzlTplK3CXtyR99jOpG00qh7FkF66hkTCc1iMTyn+BPFzKJG6xBghEY7SrYLqWmZfaVOp9B6fGTnQVB1ZXvJGbT0Q46dQJCgHsNmvctrcnOJIB2rvodhWEYi43WSHAVEt6OUA2Js+ihV9GS52cSCSOBFUVL4EpkM6rzDNL9cvklcAF171+gOt7ldxiGYfhoQWdw49oonAH+V0EiGkdr3QV8UkQOjB3jY8D2cavcqrStvXvbMTV3rWcUScOKBt7xP97B9id38K+//K/cOHFjyvU2PbaRH/v4j2EH7zz0dr5556T1djy1g33v2cdL//gS4eowe96+h21v3Mq2N27jU7/+aZ75q2cmbaMsZfrzlglRphJ3qQpVBWkyF1oqgiiTxC067SGi8r+SXKietSqI1HZAX2GHmUptPeRT1Nu7H1n2ANo5DRIG7RQ0Dj/oxFGkfg+65/lpT+x1bD0SbkbrFOJ4MHS4pDEWVM0G8Cos8W4YRlmTQAu4AvGJFbdStRkveWzqVjzjaY3YTTBajJERggptLc/q2zGy84Ow/G1+h2EsceYs338LPYOLARvHfk5NU4X5ERH5CLkJz35mPgfRWl8WkRPAbhFp0lr3jt10mlzP3I3AhInJxhLMawAHuDCf4xpzt/a+NfzSl36R/Z94jc/+zmcZuD5w+7b69nq+/be+fUICdybf9Xvv5s0/9ybqltdNqPB9+/vfxv3fcT+dZzrpvdRDy7pWmlY30nmmi3/46X8o+H0y5k5Z5frxxyi2dCLD0x97kSe+9yG/QzFmYyY2KyqtQVr34p4/lP9GnleQT8fSuhO6Xl34jsbvc/lOGH45v5XdJJIcQQcAPQxSD+GdkCrzCc1moRMHkYb7oH+av22oAR0/lFs3sqZsEwH58GTE7xAMw1hEJNAKqQFwJ18J1G4CrBh4iYk3BFoQqxm8ODp9CQlvhJGjhQ/OiqGyNcilqeZKLx+y+nvyGvVqGMbittAkbhr462luu4dcn9znySVbF9pqYfnY9/FzLHwN+G7gTcA/3bX+Y0AUeFZrXZjZPIy8KEtx/7ffx+637uJzv/d5nv+753GzLj/01z9Ey7o8hmKOERHq2+snLQ9GgqzY0cGKHR0Tlreub+VffulfcNKVX/FT6ayAmTBpKfvbn/9XGtvr2fmGLX6HYszEVOKOKfwJkV7+MF7vTfRcEriARKsgtaAjIx0Pw40XFrKTqYWqIDuH9fsPIe2P5qpxs5fBqYHwVkidKHxsJaRJQKgFgk0wchKZUGc97vOHU9kjg0RipheZYRgFI1YD2p26R7wEGtGp7tzPodVodxjERkY7QV8ZW6cZsoOFDyy4HNV7A0mU+RzogTpQYb+jMAyjDCzoDG5sErMfnuo2EfkAuSTu32mt/2rc8gCwDshqrc+PW74ZGNRad961HwX8H6AFeFFrPTDu5n8Hfgd4t4h8SGu9f2ybMPAbY+v82ULuozF/wWiQb/nVb+bNP/8m4v1xGlfk3xdwPsKxMBsf3sCJr5X5m/ASEIqYCr+lTHuaP/+Jv+d3XvwV0xu3nJlK3DGFTVXp5Y/gnts/r22tQP+CkrjS8QjceH7+O5hp3xE1tySudhHHu/PX1cOIji6CxKANVW0wehZqVkNwOTrVA84wZLpvryWBmul3Ue6sCJ5zye8oDMNYNGx0fPoWCHr0HCq2E+2MQvx47tKqioDO3Fkp2zO396A8qaRGEhXQ/9sKQ/I6RDtmX9cwikQAkfL6JLcUa9P9aGnRDpwEvnrX8jcBV0XkqyLylyLy2yLyN8BZchOndQI/Mn4DrfXw2DIL+LqI/JWI/C5wCHiQXJL3X4p5Z4zZhapCRU/g3jJVf12j9OyAqfBb6kZ64/zXh+5+mTfKiZiJzQpKa9DLH5t3AleaV8PwwXkfX5bvK1oCFwCnb+7buNncH+a28vrgP2dV23L9fUfHesVmOtHxA+BcBYYge+dvpEePohv3omtWopvuR4eX+RPzfEiACVXFhmEYCyDhdeCNTr+CG0cPvQqJcX3cvWTx44psg+5Xin6cgkh14n1xD/r6Z/yOxDAMn5VTX+KvAH8JNALvAn4R+FagH/g1YJvWetIYPK31p4DXAc+Orf//kbtO93PAu7XWFX7GYMzF3nftJVQV8juMJU/UUrwmZtztlU8d8jsEYybKVOIWkrQ/jHtu/ieDVlP9rHO6THvs1j3QVeQTUe3Ovo4Kghr3HtzzDSSwZtzt5fSxc44i63O9GJMX898mcQIyPRA/CuHqvFLYunorumYbOujjBJFeFlHN/h3fMIzFxVlQn6CikPBa5OpzlVXFp4IQavI7CsMwfFa0Mhyt9QeAD0yx/BJTVD1rrY8BPznPY70AvGU+2xqLSygaYtsbt3Lg0/OvZjIMozB6r/aTSWUJhk2ysCwp07u6kNye6wvaXrLzm4NVGjbBwMn8kqwLoWepzGx7DE+fycUU2IxcfwF0Fggiwc1g16AThyt33Fu6k9zAr3n+nVNXkaaH0b0v3tVH9w4dboPsWJLYstHhdiS1sMfVvHhJRNWhvZ7SH9swjMVDa1R0Z67KtpyoENJ5CskmZl+3jMj6H0OazMTBhr8q+HL8omHGUhqLzsrdq0wS12emEte4xTaT3JUv0xMXAM8LolseRpQCEbTngeOMtQHQSMBFul6bcR8aQSf65x2DVDUgibNzT3BWd0CqB5ziDzsl2AKpzulvj19F6tahs+fRzml026rcRDZ6ANI9kKFyE7gAXhyi6+60UpgHHT8AjXvQg6cRd3LyQFKdUHcPmngu6Vu9GvxI4gKS6AYzsMkwjHkLogLLyy+BC0hwA5L8vN9hzE2gFlnxHX5HYRhGGTBJXGPR2fWWnXzmNz+DV+EzQ1ey+Q4JNhaXxvY6lGWu15YtU4kLgHY83IsHpl8hECbQ0A7x6ZNpunotHmvxPBs0KK8b1X982vXvphrbEWeOycFIY25yidQ8etXOx2zJxPhFJH4ROl6Hds6ATqCdsUTlYnhP0MxejZyPxEmo24rue23qP8vgAYiuzh0yeQFQCD58nomfhsgW8AZmX9cwDOMuEt6AHp75AqgvxEI6K6zYJ9SCesPzSKg0c8wYhlHezNm1seg0rmzku37v3X6HsaSpSu57aBRM00rzYbOsKXMdF5h2aPtt2RRe8M5s0FN12vesNkaPnCB17Aip40dIXhxBq2D+MVTNsSrajiLRBohfm9t28yRtWyCTX7JYrr8IhIsbkA+k5p659cOdSeIE0rQPHVkxzQpjDzJnEGl+0Lfp4CztY19ewzD8oTUSWIaE1oJVPa9diN0GI4cLHFhhSHgLkpxhVEkZknU/ZhK4RtlQosvqaykyZ3DGovTAdz7A2RfP8cq/VsiMo4uMaadgALjZIvfoNBZELPMRIGf2D4Du1SPI2ntx0xFGz/YRWLGCcPKLua1j68mmYhP3mE2Dzr96UvTU1Y5agmSD34Q7lCQcfQnxRkFZSOMG6DmU9/4XpGY50lALw3mur7OI1YJ2rxQ1rKLSGmK7EJWrrNYi6OHCJiR0/DASuweSV3O/B+oh3JKbtCZ1nlvFt3rkANK4D/peKujx84zSh2MuclojuhEtSZAStEExjDmQ4Cpws5DI9WgXsaBq69iElR64fehMDxJaAaoGJNd2SKcvgjc6tpNI7vWrECMXCs2uQ66XX3uHWZkErmEY45gzOGPReupnn2L/f+zHc01bhVJTpp+CAVw9eQPXcbFsM2y/LKnF1RNXh+pxQ9vRWueScJ4HnoeKRVG9X5++4jbPPJVz9Ty03IuXjJM+eQxvzeN4iVHcS9eBYxPWtVvaEa8rvx2LIKOnJy32gstJD6zHvTGWPNwcBBJI273QWaKEnihU3SjMNYEpFf7xMrQcRg4VP4XpZYFcT2UCCrJXcl930d4wSADR2WJHNJEok8ctJC+Effo4ZA/jbXkrXsCffseGMYHViASWQaYn10ZlPO1C/OiERQKQnbieSACqNiNWCJ3ugtSlooY8P4JKBZF0r9+BzE1sPVK12u8oDMMoIxX+Kdswpte8uomGFQ30XqqwN+vFwORwDSCdyNB5vof2TW1+h2JMZbFV4lpBsuePTXlTYNPrsPq+Pk2/7jyzVNkUXH+e2MpGdN1WEodOTLup9lx0VTuSGEvShEJYy5bjXpo8HF8aVyLOxJ68XnQ3yfMuOn5h/JpIxyNw4/n84i0E7YGXKd3xyoQE29AlmFBMk0IaH0DEQsdn6NGYvAg1qyDQik73Qvwcoos/0sGTypq53X9h0MnbEwOI1wbioaU79zsxyMYB8OyeO5tpC8SMXDFKSCJIaA24qVyf7uQCX+90FuJHy/qaj4S3IRcraDIzFUL2fhhp/2ZETJs6ozwI5XeaX27xlIJ5RTAWtV1v3eV3CEtTOX+KMwwjZ7GdFLjTJxuzpw+jW5+YtFxbEaZ9wbKmrlTWib5cMveejdOH0nUNHWkFwN60kegDFqG2E0ht3aR1VU39hN+dqtczemwIHZ/YYkFa7yltAvcWOzb7OnfR3mDh4yipEr2JjZ5FJ47MnMC9JX0dHT+Qq9StXVf82ACt0yU5TqUQrxXx2hBdN8VtzdinDmIll6Hc5dh9VVinvoR1/Qoq0459XWMd++rt9e0uD7u3Cvt8D/bRA+BN3qdhzJmKATP3Y5fQeiQ7CsMHIHGCJfGh3a5Drr3gdxT5Wf421L6/Rz3xNVTHO00C1zCMSRZZGY5hTLT7rbv46oe/OvuKRkF5U838YyxJrmOqi8rWYjsx0C4wfeuOqVrUiptk2mv4dijXG3C6/V19ifDG+0mdOTfl7ZLqRjU2EWy5CJlBAML31pN8PgnpccmxsYkgNRbZ4JvJHDo0aV/Wml3o3lf9qTawq8AZyX/9QA24fUxT9lwRdKZn9pX8lLqKVkGkyFXSSurw6C/qMSqFeG1YZ5/NVS4G63HWbQMZBm0DNlZXF3hZ5NKX7jxP67bD0GVU/6nJO+zef9cBTMLcWKgg4go4SSSyDqxI7nVYa7SoXM9aFYb4SfCW1uNN6WYke3T2Ff1UswVZ9V5kzfciVsTvaAzDKGMmiWssai3rWvwOYUnSnkniGjlD3SOwze8ojKnINJWmlUTXbUSHlqM9QbsamL53a+b0MUJbHkf6XkLc1J0bZLrE7+yvY7ZzEYlG0aOjk29s2UB41QlIDt45VOIY9qrdOGfOooNRpHEjOlCDthtJJXbhnj00aTdW+yb09WOw0Yeke6gGUnn29r2lej3IzeLEUyISaESnrvodxsyq1sHIyaIeQrLp3MRFFZyQXyjxGrC6+6D/S3cWZgawzx+HWAcMHB67gHSXpn3Q/Qp4+U3uZPcq8ILoWCNuVWU/f4xSsMGKcWsGRLGbwElD8jwAenSKCwdLWd9xvyOYWesbUff/LWJH/Y7EMGalxJzn+80kcY1FLVwdpmVdC93nu/0OxTCWpHi/6alYtlTlfwTQwWWkj+U56ZbnkD5+GKleTmDlalTyHDJyJTep1JRmT5rqeA9Vm+8lfuA8typ6g2taiN1ThS3PT0jg3mK3N5AdfhDn+lk4dxrV0EYm24EeOTM5gpZV6IGruYpgHyqn1ep7IPHy3DYK14BX4UmoSnhuWB463IakOot3jIHXkNb70c7kydaWCmvIhf4pKvgyA9A/MHk5QPMjcPPZuR3oZm6ot6Q3QZWpwjOmoTUS3QajlyA5/rlvznOmZTcgyTlOzllC0vGuXO9bNXMbDMMwjFsq4FOqYcyfiPDkTz/J3//U3/sdimEsSZePXmf3k9s48/IFgpEgmx5ci7o1fFxrDn7hGIe/cpK3/fQbaF7Z6HO0S4yavvVAJdCNu3CT+VW5TdhuZIDM8VzyxV71IDbTJEy0m0vmzVJJp6/tp+qeh0kcOEnNkxsIR58FZ4o2DOEORs+3kT11ZMJir3/qJJyqa0HSw+h0fGxJaVuTyOoHIPHKnLfTSt8qDqtMVdvRQ/tnX89vqStgRUlf34eKeYjtoMJXUVZhW0EoHSrxI6/4xFuGFc9AagiS3WCFQGyINOLV1uGpGyAeaIHBqdulTMmKQs2WuSdwx9Me4ixDJRzESaODEbAs8DReGLRd4RdIjJmpKGJVozOddyrgtUbC60EikB2AoQMz78O4i4tGIWX4xiRrfgDZ9TvItCOCDMMwJjNJXGPRu/db9/LMXz3D1SNlPjRyEdGmJ64x5rMf+ipf+LOncZ3ch+eV29vZ9tgGgpEgJ58/y5mXLwLQe7WfX/zXH/cz1KWnwk8aXLcO58KR2VecgXP5FBK7D9WyJVfpKoK2ImRTUbysRmzBDmssbxA9dBmSQxCMQmZi+wQnGyD80IOEI/8yuQuDXYMONBD/ho3XdymvuCRSjQoG8PrGJXhL+bravBHRZ5jPhDeiVWVPk+NV0OgBdxTn7Nk7k+BZAeyNe7GXuVjh44iavqdz/sdYZClcXYN17nlwpvh/HgLVCSpYB4FqSPWCm8xvv+EWsGqg59WFxTd0Fmvo7O1fx48TsOq34qww1XqLkUS2wuiV3GOOfsSuA1UFVlUucTtS5u0AypkzBC335tqblBHZ9HPIlvcjS7hdjVGBRCPl1k6h3OIpAZPENRY9pRQPffeD/ItJ4hqGL24lcAGuHLvOlWPXJ61z9GunGB1OEq0xw0hLRlX2xGYqeOfEJ/zWB5FoAOdSL9lXT8xpP86oxdD++LglQ9OsWQ2qDjwPiSwn2BBDQrmEinOyi7oVXThN92LLxCrOzMhu0qeu4/UP5heQHcRqbMW7eVd7hRKe6KmmahiZ53tmpX+WTl6E8Aoo9564Y4L3bSD99Fhyws3inDyIcxIk1kDkUVBW78IOoKzKrqy+iz0SmDqBO15m8PZkhHmp3gCpQYhPbolSUOlBwMz1UJmCSHgVEAQcdPLMWL/pECq8AT18GPS4iy7OYO7LKAgdq0XKqOOE7PgN1Pr3+R2GYRgVqrLP4AwjT3vftZf27e1+h7F0VPpJvFFyWmu+/vFv+B3G0lIJfT9nIhppbaTqvz2OtfEyquMc9vrCJji0Ukg0duuA4OWyWTqZJn29j9SFm6Qu3KRqQwsk+km/dgnHu3/CPrLX+vH6JyaGVX0dEq2a4j5BYMXGyQnc3FYFuEezk+U7YWRuifDxPOkrYDT+kFCr3yHkzeubOsOq4/248TUL3r+e77UDtwpJLkeSy1H9HajrTeCWwUW6kRuF3V/DXhi5Ask5TgA4H6M3QdcW/ziFoBXirsDKbsK+7oGe50SaWiPBNUhoPdgtSGQbEt6OCm9FrPbcV2hjaUcqzIXWSHgr4ikYPgrDr8HwYSS4BhXZjnjBXPsWXYCqeWNaOnkKXbfZ7zAAhdzzxyaBaxjGglT4GZxh5CccC/Pzn/05fvuJD9JzobD94gzDKIx/+tVPc+3kTb7zf7+D2uZqv8NZ9MSa50m1j7QVwfrONyH2CAoHW1eBHpfwDMwn4zT9yb94Hl4ijopWgRK8VBKZYni5uvWnzKZIv3wCb/vjBGJfRwSc3sFJ60c3VMHIGdzovbhD6VwUAkgd7vkp+rGKQrKlKSOS+vrpi5FnU78T3MXwHlumCaE5cntcrFgLWkfBDaKC5xCZQ1mtXYen51fJq85n0de/CNz5a6r4HryN+nZVuWQbAIUOLLBaOF9aYORi4fbX/DDcfJ7SPV409plj6OX35lq/2BYqMQLZBF5dG6I12ha0ckGyaOXDBRUtqEwH4gmedQ2PUWhuRNxatD2HBLqqQkKrwU1D/Bhwq7VEbpK9u//iEmwBKwZuAoLNIAqdvgRkFnyX5ieY62Ob6YfhKXrYJk4skleZChJtgcFT/h1fBVH3fQRZ/jb/YjCMBRLKrwp0KTYkMUlcY8mwgzY7ntzO1/78ab9DWfRMT1xjvp77p1dYe88q3viDj/gdyuJnh/yOYO5sAXUGPU0eSuy5f5STWU6lRUAnE2PrTs1zhPEdhrPH9qO3vo5g4yVUQOGRun1bcP1a6H0eACv91dvb6aYnSL42zYRaygI990nc5iU79URr+dBV1eBUeBJXa7Sbmn29MmG1eUh0H5mDRyE9sU2Ac+oQzrichdW+nvCum4gayWvfXuMmcC7PKy5vbRTprRtrAZCjbxxEtbwZr/4akm2El19FVtyDXjWvQyDZRuSmh66PoWNX8ziTqwavQEm95ofh5nOF2ddcpPuQi7nk+Pi7q8au8dxepgK4W96Atub/fJ4rcZahsiE86wbaGh53Sx9Kt+N6EZA0EAES0/5/id0GThKGXsv/4JluYOyPkMlVRUtkPZoEuAPzuDfzJ5HtED81dfLW8E96vlcnC8CuQj3wcaTldf7FYBjGolFuiXTDKKqHvuchqhqmGMJqFJRJ4Rrz1b6pjce+6/7ZVzQWzq68CXJmm11a5nVpeuGvWDo7OS7nxGuMvjiM3bEe7DtVz8HaydVxuuURkq/N0MLAzaKjOxcc56xqlucm15mPpvvRzoXCxuOHmr0Qr5xJhFTsDIGOg0TeVD/ruu71c2SubMpvx9HV6HkmcAGwB9EPbEZ2vGnCYn34S8jQCjhyDrIJ9I2juYTuLZ6F6m1HzkWQrmXgjcv0OXWo0zYy0gFuNRy7jD7/LOz/HNI5ewsMla2Z//2ZSqCMWxt4WawLB0vWZsDuqUIcD886BQxPut3zDiOOINlqJOuirC2T1hG7DRXaAslrtxOxC5I8h6T6UJHtC99XPjSo8FYY2g9ufPb1jdIaLmAV/lwE6lEPf9IkcA3DKBhTiWssKS3rWviRj/4If/zOP8ZzF9FMHeXGZHGNeVq3dxXBSOUlFytSJfbEzc5SRWfNfPOUpivrnQM3OU2VrJvFu/gNAsvX4iYFsRwYODhxnaZ7SL52gdnKCB13GUEOzrjOQkjbFiQ6PM/Rx4IXzFT8BFgSuyfXn7KCiJpbL83siSMEV80wT15sE140ivb6Fv5ebiXQwYaJy7QLBz535/fUILxyANn+CISyyJV+9PUv3L5Z7n8zuuoaAOq6Rt84CDemeLacfhqpewM6cvOu49mobBtqqBt6Pr/AOzROzwtQsx36jxRun4WW7EL0dnQJ+lR7tXXomfqwiAD9t3/VqYOo6j25thBuOtcTdvQsmkuFDUxn0EOvITV7c33UtUZ7GVCCTl0AxrXHkXCu967bjb67fY3WMzxpQAItQDXaVN+Wr2UPwpUvlvaY4WWoh/8dqSmHfryGURhKzIm+3yrwDM4wFmbtfWvY8dR2Dn+ujD94V7ql2JzGKIhTL54jk8yYRG4JSCUmcb1ZsoTWPLKITnJ+sYyjZ7koqHsvoCyb0I6tMH50c/1mRo/1zX6/gOz5cwRW1SJu4YeESscexL4GmXlWjzU/AN4Cqjb9pDVU7wEnjh6urATueGL3Y63djnvh2IzrqabliFyafgVnBK0VopoBjXa7gfm18pBsExzII2mSGb6d2J10ajicgSqQTAv64gztsLQLrz6D2vF6vOo4SAbprUWNnkeSRUqsBcu4EneMdaMLp70WSMJc+iGPpwPY/WF0IIwOBkFAnLF9KYUbHkF0EE3/nD7/6ZHiXZS660gw9twe//gSCUB4JQQa0M4NJLAsV0Vr1yLR7aBHc21sVA3Ej4JdD4F6sKPgDiJWPRoQL4OOH8s9Bo2y5WVPoFY9BZe/POuonoKoWot6+D+QqpXFP5ZhGEtKBZ7BGcbC7X77Hk4+fYpM0q8JDxY50xPXmKfuS3386//5L77nt95V1OPcONPFx3/lP+i92s/WRzfy5I8+RvumtqIes+xIpXZUsphQPTXePC4geTfPoGJtePHE7CtPY7YkLmjCW1dC59fvLKpbT/K8B+l0fgdJJXBDD2KPfmH2dedEkGgKRuc7/Ffwgulp/0t8YS9DJITOXgdmrlSVmr0VV307FRGX0O5rpDMbcK+dnXolO0Ro9ywf/VUIiyboO5B7jajZimdn0Zk+0GGw87yIoIHjlxee2Lp0ABV8AH3xyOxV824afejzE18G1u1Dc6HwSRuxIHG1sPtcIL35rYjWcHpcpXP/Mex+crMvtt2P02iBjLU70DGsRAxJ9KOrm3AjQ0B8YsWp1ljDdTB6A6+1BsFGnBh4LjI6BMMXsRs241Zfo+JK8XUWkucheX7sMXM9t9wZup30nSBzM/d1a/O7vhvlz8ucgBU7UKoNuVzEqty6XaiH/gUJNRfvGIZhLFkmiWssSfd88x6++AdfpPNM6SZ8WEpMDtdYiGf/8WXe+EOP0LaupWjH+MP3/hU3z+WGS3ae7+FrH32Be9+6k8e/90E23r+WSE24aMcuGzMMDS1rYk2fGJrPEC/XIbZxBcMH5j9rteeADljINHEFt+6EnmfuLGi+j9GjPZCe4wRaUvjJzWTlvTA6c/Xm9BQsexTcMwWNad60oNR66HwBAAk24tWGc8maqUS3oEfme9/Lj6gkwb1pkt0RyEyuMA/u2okVfBntxUhf2Ig3MIg31Iu9ZgOhNWdyE56NXsx9ATTuw3WHUMeHoesY1K1B78rvtVGcJhg4uvA7lRpAH5nbhQtZ9dBYf2wN2RsgAdB5XizJl3YhdQ3qt8OA/48hXbsGkodzlaGrn4BLd1Ute1m48QL2DSC6PLds9NDtm6Vr7KQwtgp39Tq06getsPsi0Pks7sb7gF40oO2e3MohoL6B2xOKGUYlcPrx6Ed1PIFcK8Jk182PoR74GBKoLvy+DaMMVOjZw6JikrjGkuS5Hul45cw+bRhLSXIkxUd/8d/45U/8ZNGO8Y6fe5K//fl/IZO8k9zZ/9kj7P9srs1KY3sd6+5dzbf8wlOs2Lq8aHH4qqIrcacx3z5dV14isn4XyXNzbAkQCGK3r8ZTisHR+6lpS2ANTWzVIw0tqOFXbv+um58guf8Ec/0YHNi8Cyv++YJ/epZYcKp5iPLT9iieLn4CV3sBcJvBieD12+jhEeyVNUi1BssBbEQrSPbC0At3Nsz0IfZ96Ozk/1eprrz+t/lQgS5C+3aTfvblSbe5XYOks/eTPXsakoduL3dOHsTrW0lw2was6FFExl4XPQc1EEXffDb3ezDCrbpDSS6Ds5eQmhawbXRNFF0zrjLVCRXpHs5CBZDkC8W7RmVXQfUGGDkLTqIszmY1wPLNMJpLmmt9Dra8GXE02rZAgyRH0QPnkeErMHpj+p3FL2Od7ofmnTB4ESLNeBsfZGIfGMOofJ53GdWwEylgX2tp/xZk758ilk+vf4ZhLAkmiWssSZZt8VOf+il++3UfNC0VDKMMnXjuLDfOdLF84+wzjs/HI995H8//8yscf3bqBFTf9UH6rh/iwOeP8uN/9l4e+JY9RYnDV1aFfgQQq/DjV7VGAtP/PbQIKIVd24DOZvBGckPKg+u3kDpx5wSw7waEN7yecL2HPXoKlewksLwN+s+DFcKJPERm/0nyyvyIENi6E0tdQrK9KOdzhU8YNW+EuU7Eo0Kw7CG0pNHZ00Wv6NaJjTj7j0FqLPEkisDe1ajkIcirnfEUlaNaoZNXChhl/iS0CXFcsMN46eJUcFqN51DNK/B6r00YGuNeO4t7beptvO4rpLqvQCBMcNdegquvoPsV+ti4KtiRTvBWgSThWj/0nUH35V5DZc0j6BrAC4Ok0MFBxAqCW+LPWLWrEJmmnUQhaA2JLnBcaLgv16agyLxl9+B17MUauoGkR9F4oD3ECqJDEdD9txO4Y0HC6NHcy2Tm9hKoB73sYdC1MDqIhKrQgSAMdcHN15DVT6AjNpIB3Cx67aN40o2y65G0guwgxNahvVG00wtF6M9tGCWjs3hVYPXPvmpelr0ZufcvKnO+AcMwKop5lTGWrMYVjTz2Q4/xlT/5it+hLDo1tWG2PbwOuJNz0Iyd6986nxz38xSL8nbp+A0SgwufmMgoL9rTPP2xF/nu33hnwffteR5///5PTpvAHc/JuPzZj3+chvY6Nty3puCx+EpmqGgtawWoxI01o+tWAOBKhN6rChWvI8z5SauGtu4h29OF2DZOXw86nSK0YSsqECB9bXIiMHX2HCkACVG14yn08a8R3PZ6st0DeBdOzhjWrQnQpbqR0NogVuJzM66/UKqpDkbm2Nez7UE8d6z1RLETuE4Lzouv5IaC317ooXX+E0qJVpPfV2JbYcSfyU0l60L/WGV28y7IFr6vqlhxwo+NgNdI8us2emAOVZTZFJn9r0B2L/bAZyfeluhGjlZDMAadd1UxKws8GzncgzSswOtIQ2wZDJV2wjupbYVkMZO4LtSsAa8del6dvU/vAngd+8jufjtuKJcsDd10Ude/hI60oRt24kWbkWwCde1s/td3UmP/H1Zuzi4cIAis6kDrMzA67nPYyFkmjdfo70YAqbsPzyRxjUrnDBRkN9LxrcjeD5sErrHoCaDmO+qtSMpgQEzJmVcaY0nb+votJolbBNf3XyjZsZZvbCO1vI7a+ijpjMtQzwix+iiZZJZrp8zwv0o21DNSlP0e+uJxvvyRZ/Ne3826/NH3/jW/89L7qaqNFiUmX6jFmMSdPaHidjzIyNFz2FaMSy/2cKucM9TsElJgN7VgN7eN/X00ydPHwZnYUzV9duZkLABakzhyErX3KZybSbzRAK5WSCCI2AGwbcS2EWWBCM5AL95AL6FNm6iqeQ4r0Tv7MRZAVt4LI3PvWeqpeEnmL9Ke4B7PTkzg3oqhx8XKd76Y0e5ckuqW6BZInCtIjPOSvZP4Uo6FdytzPw/aE7zRjWRPZgluE9CCRK4jKomIoNUw9qpdZOeSxB2TOXIAe1NL7u83Xv/kCx0A+sJzSFcLxDvRg5eQ0n0MuCuQIpxc2jFwxib+89LQ+2Lu57aH4eZzBT+c17CB7EPfP5a8vfN48apa8TZ/P9mYJjdhnwaiBKy3I4kbWJ35v69Nluffza7Di9RB6uTSPHM2Fh3Nwh7KsvaHkZ2/jVRsiyrDMCqNSeIaS1rzWjNraKXrHZucbvy86gM3+gBYvaae2PIGksksgYCFbSu0k5t46PjLl0ocqTFXOx7fPO9t06MZfnb3B2hor2fvW3bwxh98hOrGGAD9NwbnvL+h7hE+8/tf5rt+7ZvnHVPZqdSKkZlOlHTuVEwjEK2HQARcB0a6css77mfk6Dlw3UkVdOmeAdSDO/D6b5A8e2pS4nY+ols34V48gJvJb1Ilu2MV1VWfQrwZEip2EBrX5pK/diD3/6isXHsMy0LEApVr/wDkfr6VoPEC4KZAeZA4MfdkrAqCU5pJjPTgFnTnM5OWq1W7sZsv5j9sY/gkLNsDmWtQvSeXwPVG79ppNRLoQKdOFH/Cv/GT3w0cQFofRaePgwRB59d6QDu1OD1rcU5ewRvr55i8VfAqgtS2oGrq0Zk0Xuer84xTo2MbkbuTuNOu70HcvwunsuZhROIw+srsK+e/Vwi1Q7ITarfmKpBFjbV0ccDLQOMe6DtYkKNpZeHu+wkyy2oZn7y9JVvjApMnT8zWK6yanQtM4uZLg9NrEriGAcjmX8p9VepEsYZhVKQKPYMzjMKoba2lY0cH145O0yTOqGhD1wcYuj55qFT73rU+RGPMxb1v28kj775v3tuHokG+73e/nY/98r/ziQ9+nmc+/g3+5+d+mqaOBpQ1v2qJL/7FM7zhBx6mZXXTvOMqJ5U67E+YPDzeTcYYfW0F6bNDePZ23OEhvN4Et6ps7abNuWrXw+MqML3JGcy0F8MeLESDPE31nm24Z+eWQAu2RpFZhqmpbffmErBTmZzfmaj6Hhh8aU4xTRBbw/xnQcufzi7D3T9NQkopRA/OaX9qZATC6+HSl0BsdMtOdPZOKwyxO5CbzyEN9+WS4nYAL31y/hPlTRtIHSQuTlgkPa8i4TYYvYRu3YdOz9LmRVUhehmZV1+DzBQXGrRGD3bhDnYtOFxnCIrf8XVhpON+SA0jyZcRvfALLxNpcPqh9YGiVNze4tWtxdvyFpxlbXgyzO1GtnPgWqOzrzRf4XaIrECTRTv94PQU71iGUWpVHZCY+3mg7Pwt1LofK0JAhlHeZvucahRfZZ7BGUYBrbl3jUniLjGz5TkMfz35o4/x7g98c16VDVprvvSXz9K2rpktj2wgGL6TcnjgW/aw9y07OPvqJb78V8/xj//r0/zU3/4AZ16a3zhfN+vyyf/7RX7sw989r+3LToW2Uxj8TAPOUBiddcF10RmHbGcXOjt9+wGnt/tOZeot6cSk9bpeu0LbPfdjXV5YNV/N7i04c0zgAijLnVwdW9UIsWbECuSqAN0FtBlZaLVQuJGSJHH766YdFq9q5pFWjJ/LfQFoB8kKEtyG51xD2R1oPZKbsK3/zv+Zqt2Bp7ryatGRL2W3g77r9cdLweglAKTrZaT1Ebz0KSa8U6lqlLUCMkOQzYB3idhTHcS/dB3SxZs4zLnZSaBhPt3qS6S6HdHnoGY1kih0AneMOwo9L0Lr/bnWHnYMul7OVeEukLbDZJ/4RZyaDLm/8fyfW3YmtOB4pmTFILoC7cXRqYvFr1Q3jFJr2o5OXMu/uFws5J4/Qa38jmJGZRiGMS3TvMVY8u55xyKcdd6YUWI45XcIxjRECd/+P95GIJTfNcYzL1/g79//CX7vO/+CZ//x5Um320GbtXtW8tSPPsapF8/xqd/7It/4xIF5x/fCv75K96Xi9iotGavca+ymlr7QRer4GdJnzpM+f4nM1WvobB4JnLsqb52bV2nctmzCMu243HzlMumVj8y7tWZoZQfOudfmtW3AHjfJlSjUtjeg2m1UdScSvYpELkNqARNhLbBnnw46C9p+2v3O4Y8tgQJMptT/GnQ+g+o9D53PIP3nJ/feHTqKsjfkcmtaLzyPKWHon23YvYau51DDw6h4FhXP5L4GrkHP8zB0FEZOQ/IGkjxG7MkVECze81jHR6B6ZdH2v1CqpQNx+pDE/J5v+dPQtx8GDkPPC1CzAqpXz39vKojzwI+T+ub349SkWeiDK9g9SODIny1oH9Ny49D/EuJqsOuLcwzD8JGXOY5e8zi65YHZn4kqjHrgYyaBaxiGr0wlrrHktaxv8TsEo4S0hr4pWiwY5UF7mj9871/xvr/8Xmqbq2ddf6j7TlXia589wuu+ex+BkE3f9QFe+fQhnv67F+m52k/Dslpi9VE++btfwHPnX1mnPc2XPvIs3/Ob75r3PsqGVZkfAcQqXAVxdaCfvimW97x6lvrdDxPtegnx5la7H6oN4syjI4NEqrDSr+V6mm54BAkPQbLYyam5KvzEftppwj2UxLoniaix56Yz9XNUrdqN0oXpPzpBdprEcM8LqNhaCNRCIIbn5DGh3TRUcD04efYs9dK5r1lI8gixp7bgDDWQOXYJr39w3vFNR0dWISOXZ1/RD1mfRlHFL461FsmPrmrFW7Yb3bgGr64NNwaaUSZ2858fpRtQV/55wfuZkdh4kgZnsLjHMQyf6NR5tAWs3IvYjUjGhWtPI+OHxtgx1IP/iDQ97FuchlEOJjc1M0rNVOIaS15VQxXVeSSLjMUhWh8lMZj0OwxjBsefPcNvvPWPOP/aZeIDCU6+cI706NRDV+97+y6e+L6HCEWDZNMOf/i9f8WHfuBv+fMf/zivfuYQnqfxHJfuS33cPNvNuntXLTi+Vz51aMH7KAuqMitxmWdP46k43TemvW3g0Dni9feh51CxHFzehnPx6PyCEUHaNqF27EL0UUhemX2bEpNpkqsLoYdb0H2XIL0WrcEb2oJ7Yuq+vVIVLvjxZxW/AAMHYfgc2PO86BtYAd0vFjauMZI8SSD4AtGHi1Mlmb441WWOMpHxbyI14hehYfuMq2g7QubNv07yTd9HetcuMh01OLHRsQRuIdgEzn5xYqKpGLSDil9FhbaBbSYENhaxbDc6eRLPPYNe+9SdVFWwEfXoZ0wC1zCMslCZZTiGUUBKKTY+soHXPjn/IdZG5ahuq4PuIk4AYhRE5/kePvDk79/+/eFvv5cf//P3TlpPRPi297+FvusDHPnK7FVyVgESgAOdQyRHUkSqfUgoFZBUaiXu3b1tpxDetpHgiiriz5/Di8/QQ3aWKtuhExexdt9P9OYLeUSmCTXFcOfZ1lJFoqhlMYgfmt8OZhPbBD1z79M7gfYKPyu9lTtNdl54DSK1EJ9YrSotG9BDnZAeQYI+Vn+kbqKyw9B8L17m+Jw2VaoGdHFaUdziJuuKsl9vZBiqirLrBZHlexF3v58RMN2TQdtR3M1vx1m/C88aLNLxLYJ9CdTw2SLt/y5eGgZfRlkxvKo2yPqYQDeMEtDJY0j749B/FvXwvyPVG/0OyTAMAzBJXMMAoGV9q98hGCUSiFV24m2peuHf9hOti7J6ZwfLN7Syckf77UnMapqqeew9D+SVxC0EZam8e/aWtQrtiStq9ixizVMu3kgGVRWdOYmrdS4PM0NusP/weSItgkyzUmTjJizbQ2wb58KBeec4w2sbwFtAv9uZVG+BwQt5DdGfkR0o6MyQ2mnCO3U+94ubgfjEWe+tLfuwoofQK5twu9cidtzfObbcBPTsh5rInJLZWo8UPPc96RiZIv1hMhkIVEF28kSAhSBrHkbfOAbpPHsdKxtZ+QCSLE5l81S8lU+iG9ffeeiFwng19XghEOfdqEQCSfSDsvFqm3GqMkAWGCxKPHa6Fvv8p5HR6UcSFI0bR9lNeNnOsddPM9GZsXjpqmas7X+ERDv8DsUwyoZ52fffIjgLNYyFq/SKOiN/RR50aBTRlz9yp0Lv/Z/+b2x5ZMPt33d/0zYCIZtseuZqt4X0w70lWhPGDi6Ct09VofchjySuO1CF02fjdHXNum7NqiaGZ5qsTutc/2A3OylnEVq9Gvouk40PEdq8Y0HDmkPWAXAL33MWgOErkJ1nifAtVSvx3IuFiQfQThvu/l700M0pb7e2PogdySXqRF9FNV/1N4F7S3Q50M9csrg62130JG6g5jrFmrJT1+9Bup8v/I6tEJLcjzRF0fZD6BuHIDvNSJn6dUhtG+JdRZJFiGUazp6fILOymslXL8aSzkFwg0B9zdjyQiW7BTtTizhpstHM7eNbTgP20T8tfguFmcTPoaq2Q/wsxNbjpeZWmW4YlUCim7E3/hYSaPA7FMMwjAkq9AzOMAqrZa2Z3GypSIwssBLN8N17/s+3sOWRDWit6brQQ9OKBkLRIA3tdXRdmCEZBziZhZcRti2WyRDLPImrNbgSxpMgroTRhNBikfJqSdWuRisbrQJ4KLTYeMpGi4UWm/6vhQmuCpFsfR0ahUbwtMJD0Frw9FhdrQZXQjgb1oIGT4PrarSn8VyN62o81yPYnKH55tN0tj7OSnUaW4+gk6Pom6fxAKuhmeyFIwtK1Ik3DG4RUn2BOhiZPZk9o2A9Xm0VeIOFiAitNe5JZ9oELoCK3iyPpO3dMgMQioGXf7JOBdcDRa6a9IqVwoX0xQHC1TZ4BW4J4aYh+jCSeB5xXkA3CIRWgL0SncmiR7qRmlYk4EJ8P5I8V9jjz8Jb8w4yK2vJVdWWQhBFFJXW2Bc+iyRyfbGt6HK8lvtQ3a8hoz5N5jZepjf3BTDQhwo2Q2wdXvKYv3EZRoFI9T3Ym/4Isc2cKYZhlJ/yPoMzjBJp3WDaKSwFWkPf9UG/wzAWYOujG3jqx16H53r86Y9+jJc/dZDalmp2vXEr/TdmH46bSS38ZLxtbeVN7KLTccim0NkkZJPobAqc4iV98nEg/oOcfS2L53poT6NdD8/18Jzcdz1t1bQD3H1i5QHjJ7+boYXCPPSes2jd9XauvtRDy6NVRHsvTbjdbl2OMzJ9QjIvLdvAPbOwfUxFrIXvQ7sLTuBqrWFwK17CRXfdRPfO3P5EKNMLbuleVGwtHhfyW18Dw+eLGhIAmU4Cm3eSPVX4Y3l9veg1+4pSjetdO4JqCCE6nWtZkr4C6Su5CyJhIHMx99Qu8fBNXbeTzLb7KVZLhLsFRmyss/+IeJMn8ZTRG1iXPl2SOOYl04P2lvkdhWEUhNQ9gr3h/yJWxO9QDKPsiGiUlNcVdimzeErBJHENA2hY0UDjykb6rpTxLMzGgsWaq7l2o7DJHaN0YvVRfuzD34OyFOdfu8zLnzoIwFD3CM/+48s89sRqrJE4YuUmnNGxKl588Srp5J3qsVRi4Ymhba/btOB9lNrob+7wPWl7Nydrkejp9zuMvDTtXMv5Vy/x9sd7ifZOnEhI1dSTvbSwKlwAqzEJ6SJU/OkCNLGVhX1c1NlW3BNZdOezs68MEKkD70bJE3d563sFWnaBc332dYPLYKg0w80lULyP9ZnLw4Sqo+AUeGLQzAhEH0aLRqeyiHUTSRepN/QcuCt3FHFSsomEauzTf1GSYxWFXYMMn0Vqt+OlStOb3jCKQTW+GWvdryOqMucMMAxjaTBJXMMgN8O9sfhVt9WCSeJWrMe+Zx8N7XUANHbUIyK56j5g533tZC5cJz08McGwNSLUbGgk0FhLViwu3Uwyc8OFmTUsr2PH6zcvYA8+UQWoxiwwZVXGlfOWnau5+PJ5Glc3UT3yjUm3BzpW4pwdPyFXroeuWBYEg4goJBAAywJRuZ4NaHQ2g3YccB3wNK5bh0UUkLGkqQ1YQBStq3ONN7XK7f92dvOun5UH4nG7+7e44AVQLLCdQv1WYP4Vnt7lCLoz/6HWEq1DZGDexysFlcrgBUKgZ7kwlLkBDfdD/ytFjym04gZStYP0S0cLvm+3pwuvfR+q/2sF37d39TCEa2HkOrpmBX4UwHmNm9A1K5HUAO6aR8k2l+I1MwiAHZ9cfesLqwoCjWBFwAqDCoxV8gtoD+KnwBnXW7tqA1gxPPcaWM2Q7fQtdMNYKNX6nVir/zsiyu9QDMMwZmSSuIYx5nU//Bif+NVP+h2GUURWJOR3CEvGshW1hCOBsb6jGqUEJZLLT4kgSlBKkFu/A5alQEApEFEoAVGC9jSu59HWUXd7/3WtNdS11TBwc4im1hjVg/2MDk9RIaY1w1d74Woudbt2XRuXF3C/3vnf30RtcwX2SLODkCnO7PLzVQnDn+rXtnH9VBfTlYRaNTGikYuwJZJrWZEZBSeX1FMr7iFz+kRuRWfsa9IOxr4AfaUWp3OwwPcACERQG2ZfbSbaDkye1ynfbbXGu3R4TttItAKeY8MnUU0P4HnnwKoDb5p2LiIQKNHkqZlOgrFO1OMPk/z6QQpdypw6dJzo3gehZ/LFjFmpIEzRKgCAbBzs3PuzxFrAvbKAKOfHW/cGMsuKNLHgNOxsFdaN/UjPyyU97iSh5ehoGzp5GqQ/dw1oqm42wTCqeh8MvAKRFXjuDfDGHmNespQRG0ZBqfYfxep4nynqMYw8SFlOWLC0mCSuYYx57Acf4/m/e4Hu891+h2IUSdbxcTbnJWbrygj9JxY2JHb8/5YAyUsrb/+eGBzFQtOyrJrtqyIMnM5jWDPgjM6/ncKKrct49N33z3t7P4kVKLuPXEqV9/OxdlUzvV0jZEZziaflq4JwV54itrUNfX3qPqHe1QOohlV4/XlWwS6wZcG0vAX+ncOtaG/+lz5EJNeQfA6sVqc8JzW7W+/LqFATpC/gtWwHZ5q+yHO8/wtl2y8Qefxhkl8/VPB9jx65SnTzOhiapTI7VA/16xArhI7fgKGLUL8hV93Zd2LiurHlkByrvE7H8Wp3gucgVh2kTiNOCVpduaWavCxH6Qas8/+Jii/ksuIC1d2L1qPo9GVIDecuOMxEp/BSx5DaDehsH+Xb78Qw8met+iWsZe/xOwzDMIy8mfEChjFGWYoHv/tBv8MwimhkoMC9/IwZFP7krmv/WU69mJud/IWPPc/K7ADtqf68E7gA2QUkcb/9f74Nyy6/tgR5sYJ+RzCJVcbtFKrbGxnsT5EayvURVrZiTWBi4im8fiVyc5aKxDklUIv02HLT888hRlfiNS4HPf8qO+00zKkvr1p3L0qfmH3FcpHuhXDb9AlcxrpglJgdPQOhIjzvs1m8wMrJyyNNSMcjSPsjSPvDuarbzv3o6y/kErgAA2chcRNadkPNSmi9Bxq3QvwGuCmo7oBANbovjr58Gu/8N9CZtsLfhymoC09TitoWy23AHg0TfO1P/E3gAoiNzlyZPXl7F525Drq8eqwbxtxZWOt+0yRwDcOoOKYS1zDGecP7Xk/jigb+5kf+1u9QjALTGnqvVsYkSsbUBs7d5LWPfJnzXz7M1S+8inbnXmGYTaSYT7Js1c4Odj+5bc7blY0y7PFmqQJMuFUE1e2NjCRcRsdd9Lnn8Saqh+8kbO3mesLWWUjPfB+0nstjtIj/RxIE5tB3M9QE9dvw5Aa4M/e51F5uAhhRdyoZdWY53o0Iuvs6evBcrp9mPqwgdv3lyqjCHS9YB/RMf7sXL1Ukd2R6iD15L/H/PMF8L6oFNm4kUJ1FSxDt2nhJh8zpM6QOnSK6+z4kFECP9iKRRnTfCfS1qavSJ0gN5L4Ahse3TdAwcg09cm3C6rrnBHrlKiRd3ISnGjhH6PhR0tt2AwufAHOKIxBIRrGO/ykyZa+C0tIA8dPo1kcgcRGq1wIuMtqLzg4gmRkez4ZR6SSEvfH/ouof8zsSw6g4ygzC8J1J4hrGXXa9dRdr71/LhVcu+B2KUUA1y2oZvDJNz0Kj4IrVVqzruaN0PTf/7e1QkPk093z8e/ZVdq80VX5v9+WYxK1d3UL31SGc9J0Gti0bmtk49J+382ASDlLdnkb3zT7xlig773yk1lK8wckSAp1nErd2G15kBDiTVzJV967HPX4AaexAwlFwsrmJquZBLduI6MJPylV0s14k8aeCX5L7qXrLQyS+egrSc0lMaiJ7tyE9T0Mq99AXcpcZ7J1b0IFmyHajr5/KrV3sOejsZihyEhdAXXkOa8M+3GDhk7jB/hTWhb8v+H7nS3c8hetehewpCEchfTJ3gwVYgqp9FHGz0P+Sr3EaRsFZMexNf4yqucfvSAzDMOal/M7qDMNnIsLON+80SdxFpqqpGkwSd8kTWzGfJO6eN20vfDB50lqjPZ2bBE7Ns1rTKr+3eyVTzfTln2BNhKH+FFWNMaK1QUSEeH+K1as1cvulQ1O7qxl947X8dloOf/dYC3jdeRRjCrQ/jueeZU7PkZQDmTj65qmFFdCKQrWWwd9rPpI3UfXb0ZJBZ85Nvt3HC0Aq8yLVj1fhBbaRfOE63sDgrNuEdowlcKcycBLhZGGDnIX2wiXpviqZYeyLr+FtvActwwXZp9L1BC59A9V3oCD7KwQNaNHgjY028O5uNaXx0idBVaPsWrBrkNTCetwbRlkINGJv/jCqarPfkRiGYcxbhX5aNozievi9D9G+bTmf+NVPcvPU9H3ujMphRUJ+h7CklOtoaCeZYa5Di6sbomT6hrnRM4j2NNrzcDMubtbBczy05+F5Gu16eK6X++64eK6Hk84y2hcn0TvMaO8I6ZEkruPmbnc83KyLl3Vws2P7y+a281xv7OfcerfYoQB2JEggHCAQCY79PPY9EiAQCRG4dXs0xJYNmlAshLY2oiJpVPJqWQzlhfKqxA3WRGjds45TXz3Jg082sHbwP3M3xIBx135q922E6/mVgkvTGnTfSN4xaIkizXvQ3QcLl/Ozw1hrahE3j8nVrAiecwZkbo8PXaBgrQ33YVGhVX+Zfuh6FomtRQcAKzaxhYIfTXHHcxMo9xWij+wl/rlhmKEVjdTWYyXzvEhRIvrSC3irH0G8S0j62uwbLIB16lOE4t2k9j5UgL2FCJz7GmqotEnvWQVq8bJ5VDZ7I3jRAFghFCuR1JXZtzGMUgl1YK/+JVChsa8wMvazjp/AOfsLd62/nMCWP0fCU/T0NgwjLwIoKa+zvEJ9ZBaRDuDXgTcBjcBN4FPAr2k9vzFHIvJe4GNjv/6I1vqvChCqSeIaxlRCVSE2PbqJn/yXn+BD3/YndJ3Nc3Zxo2w5TnkkrpaO8mw94GYc7EAIJ5v/42Hlqjo+9s7fLWJU+XPSWZx0lnynlFn2Fg996dYkUSGwNhFobCTYUocdFpykhzOSQmwLFbQRW6ECgrI1yvJQKouSFOIlEC+O5Qwi2QFEL3wmdyXlkcRt3raSYF0VyaHc5F1aT/3Yje7egEqchsZliBUAy0Is+/9n77/DI8nu+174c6qqczdyzgNgcs67s7OR3CUpSrZIirJkSVaw7PfasmU5PA56bV/5Pq9fyb729atgW7ZkpWtRvpIVTJGiSC25XG7e2Z2cMQNgkHNqdK6q8/7RGMSOQAPdmDmf58EDoOucU7+urq6u/p7f+f5A00DTklnSmpbMuhQCqQeQgx/lHIeMJTAH7iJqDyP8lQgEQi7AVGprAilBBJqRiTDYCURio++qvvckmvVubgFYYYTjMNLMTyRLZrdvHa1sonRnf3JlsRet+jzM34OKw0hDLD2n0iiqKSIf4/+ubqxgPcIB1qJF7L3H9hUSo6MTp38CFgqThVpIZP87yUNZvR/hLgenEzQJ9gxauLAiaeLAq0BoS2NolKOHYqC7CxNUAZF158G8n3sHaw7bHUAXeyDSt32BKRRpEUmh1l519xMbwpr4Y4hPoDf/JFrVy8ubZHxibW9PJ8bB/4xw1u9UwAqFYhchhOgC3gXqgP8F3AXOAX8P+LQQ4jkp5XSeY7YCvwwskkwLKRhKxFUoMlBWIiz+WQABAABJREFUV8an/8Gn+e2/9dvFDkWxRYKzpfElutj4y91UVnvxB5z4/U4uvfP0ZdZ0H6zj7vXMxZpWU1HhYrcacUS0MtZICJZFYmKCxMREui5ZqAAqEC4Xus+H5nGjuV1oLgPNoaE5QNMlQjPRtARCmkg0hNCWPF9NYmYEGXmEhkmxb0OqD7Sged1M3xqg6Ug1n3t5BEf49oZ27u4G/Nq3kl8gbZI/OejY3iMHiI07sCZyON/spIIpJ3uRq2oK6e1HENM3NzQXjRcwH1wBQGs9hpj9YGMbYzgvZwQp879OysjW/UO15sNocuNz3JVML70Ok+8sT2XJhufAVQux4heLEpEHGMYDkKD7QHvlIpFvX8d7ohGm3ofS02/XILUE9ukjiLjE9lggu9DnzyN6v4IWncp/PH8TdscFpCeAtjiL7QmAc+uTkJIEYuY+2syVLY9VcMxNvGftIJbTieZ/HhEeg1BP4eNSKNbjbMTY+28Rvr0IzY20wthjv4s1/N/AjiJn3wB3G6LypbX9tJXVd8J3BOPAryAcFTsZuUKh2F38J5IC7k9LKX/58YNCiP8L+PvAvwb+t1wHE8lCKr8JTAN/BPyjzD3yQ4m4CkUW2o63YriMNYVuFLsLKWFqaLsrr5QeB4830lymIaUkKA0CLsHMlQcwG4RZKDvZvX07l7s9pW4FozSTinNiPuxgO/LAZCyGmVehpBXeCbzGn3ylldMX96A3xfH4HLicOrqWrHgrpETYNsTjyEgUKxgiMR9GFDhN099Yhe7zEB6ZovlkM4cWfh9dbrzOGzUBymruQTjX/OdVzNzF5XGT2HOMRF/mDDaZ7j2jVay00ZwgdCjvxB5fyZiVoblkZu6GczW/glpC1CCZya+P25lX+1RoDU/w7WjDi0kxtwQE3FQY2ru4n30eBr9a7FBSIr0VyJc/BxpI3ULKIeARuOCxM4xZBtqp70F79zczj6U7kbVHEJFp7M7nsbwSaY0Ds8AsVjlAEBH2Q7lv0zE7Ij70W79WoutRQDrcOU1CbewYT3rlOjxojhpEIn/RXKHIB73xh9ECR5f/F7oXvflvoNV/PzI2ijDKQTjBCoHhR9oJ5NxbyMhDEE70lv8NreEHEbqniM9CoXiyKPT9eLERQnQCrwH9wH9ct/l/B/4m8CNCiH8opcx1mc5PA68ALy39LihP8F2zQlEYavfU8mO/+mP8+o8XxMJEUQQC9WXMDZV4etE20FzpYPraw+X/85Nmtoa0S9e+IhrJ79urZu3eCZypSYtSWzx47UEyNTQWsZi5k5vnuNCcdHdVojt0XD4X+tIS/sdF36pqvMhoHGmZWJE4tmkRD0UxI3HMcBQrbq0RODVDw9tUhbAsfI3VVOvDKQVcgIrjLpjcbOYyYEZxuO5iVjQg5/KfTLIGb6C3v4A9N4mcGwYrAfNrC2/KmQFoPwLrMnalqMxLSBLzI8h8tauCWNUU2TN2u3BWI4kiJnK31dh5bIw6G8RZ7Ol+CJWO2CwRyFc/h82jxw+kxbYHMM/8GGga0rDB1hAJC+mWiLiOFpzBqqzGlo+ASmA0bZa6jA+BfRi0/K/9RrwC49Z/yrvfTiGrTiO3urbEjkDFQeTk20/cl3lF6aB3/hx63fem3CaM8qSAux5pYs++ifAdxHH6dYRRtq0xKhSKJ4LHIus3pJRrbmqllEEhxDskRd5ngG9mG0wIcRD4BeAXpZTfEUIoEVehKAZHXjtMdVs10wN5WaEoSgRfXRk8hSKuFcq8NHrm6kPOPdfJpfcGkJvQYcorPbR3V1EZcBJL2Ny8Ps7i/FK2YobCOcVG5FmIyY5t3f+1WAz3hzncWuwoVjCFk0f3k9lbdh7Z2tKWhGdDRIOps2H9z3Yy+tGDtP11lwtvpQ9XmQen14Xu0NE9LipdEfzOIK2uUfS6k9iLC9ihBYRuYE6OJu1t04i7eRFbwLNnH+ErGURcO83xMONYDy9lHt8V2CDsJslTYAn2gLcxZ0traZVj9d7I3jATnnI0MbL7/XBTkZhFzA9Q8k9u4jIsjqC5HUhPN3Iq/XtpO5EIMBxgJuDc92A3lyPtHApwLWEZg8k/Hn/8OEgKtTpYFYDc6BudEjuMJh3Y5P7e12QlxvhDtJE/zLlPMbA9VSC3fj9kx+6g1V5AzlxDWDkeV4UiR0T5+bQCbsZ+ugej618VPiCFQlHqHBBCpKzKKqU8naXv/qXf6czie0iKuPvIIuIKIQzg/wYGgJ/Nst9No0RchSIHNE2j8UCjEnF3KYZn68t9dxv+cjfzfVkK8klJ4vZDnj9UjV5XjSZshiZi3LuR2b+zqb2CfVWC+f4JeLCwbKG4z6FRdqoWw+dhcWALmYvbjNOV30efFd+9Im44aKJVVmPPlsa1a6z8APaSWJlvsUHNSG8NkKYW2TJWLEFwbI7g2NzyY93HK6l3P6LMO405NrVBrnEeeY7E1BSRBQcyaCHNOHpVLUaZA03OYCaq0VwSw5iFxBzCSiDNEEQml7N+11gcTHyE6/ALxG6lK8K0eaFPlNUhIqnec8H8BnJW5yzg2rEW7LthiOW5j3VoTXsRMotIvVvxH4PESLGjyIz/EEy+l/zbTiC0fsTeZ7CH7kNkZ9ZvyMZ94K3AOtYC9iJoPrDnk38XAeHej6VHcm7vHBxAH//SNkZUOLS5+1iVbQUZy47dQ/PvhfkS9P1V7F7cezA6/mmxo1AoFGnQRIlPTOfP47T+dMtUHj9ekcNY/xI4CVyUUuZ+I5EnSsRVKHLks//4u7j1F7fS+xYqShbTevpes6oaL3ImN3ElODwNw0mRzwtceHEv777Zv6ZNY2s5czNhXG4Hnd4E8/1zG8aRlp1dON6N7PL3vCyvhxIRcW9HmoCkqGXnma1tZBDfRR6vkW4IXvxkOXrfdcpaAjC+0dfRsfcE4StJYVHWt2PPJG0fzIXpVWLvMMLtA/e6SQ9XPcLlR8bDoOloNe2ABNtGr/bjff4AdtjGjprIaAI7HEPG4+BxJovAsXJcpKsCXH7EwhAZSSO8Cnsu2+FYixkE/QBYmZfUS8tL/HYV+sTWxBt933l0//vJz1XnQZLGp1EQGnLGXDqGGsJdhvCXJZe3x6+m8P4tQXz7YfJDaLoI8RL1DhU6cnGdUGrHYOodNDdQtx97ZhGCuReCzAcJ8PIPYZUt2ao8Pl/tIpeSlHGSn4bZMeIVu0bABbArDyAT9wo3oOFFGpVgLiDyqaKoUKTC04nj8G8jjECxI1EoFLuLuzlk3G6W5Tq1GRsJcY5k9u2/l1K+t02xAErEVShypvlwM9//C1/k//knv1/sUBR5EprfREGiXU5ZmXvTJriR6z288MpevvOtPkDgC7hoWJyiq6Ucw5dDhm+JE4vml1lr7WI7BYCoHsCVvdmOMLVqFa+1SsQta67E01hJLJpA1zW0aJzJe2v9cjNn4uao6gl49SUD897HSCDhqEW01aFpNqLvPYQAo20fkbt3V+85/X5T+SXHQsjYSt0De2AuOUr7cXRxDRHrTd59+Zd+lkiICkLhSoTTjVZWDQ4n1lAPwq/jaHoea3ER3R9IWh4IHaE7kFYcYUaRZppzVORZ1s42s05aSNtJ5KMOrPERNNda0TkvHB70wDVw7MOeDMFMylVwyX2ycuesdb+ItC7lbYuyrUgJFefBtpPV+bBhoR+QSWuAUsR/ABmOQyYhfuEemr8Wqs4izThYJnLiLtgFEOs0HV78q1hlw1sfq5AIFzhrIIuVgpGoRBu7tqsEXImG2Ix3UgbsxD3w6gjnaURsEYK3Czq+4ulCCxxXAq5CodhpHs8cpzDaBqBsXbsNrLJRuA/8i8KFlhol4ioUeXDkU0eUiLsLmR7Ov5jQbqWiysORY/U4FheZ28I4wSs9vHymkXHTwfRUCEKLhCbmyfD5tWuYGM19+bfb5yA0sbv9lOfDTuqKHQRgag4mxlcmVCzTQkpJ09lObn74iMSDtdnCRy50snBvhHg4DoDu2Hom7kuvVWHeX1m6v3BtRaytPP0MerCP+NjkWpEqk1iYiCERmYv7OL0YbQewB99HVqYvNCZEBBJRZCKKFZpbflwuTBFfSGZyrpfO9JZ6fJ+sACTC3pNchi7jYAXBUQ9GNdhdgAQrjjSjkAhCbB5i0xsEWLvhJaxwEM0pEFrq5xR7eJTEvaUs5cNnEVMfpH/uGRCVzaCXYz+8BGZm/+41MT54E9H+HOjXNy8gFxQDyo7D+FupN8/eAYegJHxxdQ/4jiDHb8Fkjq9bdBKik8vnraj2Qvl57Afv5rdvbxVaUwdIN8T6wU4g50ewSqzukPDux/SmF3CNeAXGnd9FJHbhZ6GzAsvOktW/SWS8F0uAVvM8zF1HmLvw+CiKjvDuz95IoVAUDYFElJidQgEKbD5enrIvzfa9S7/TeeZCMi3jcf9omkSDXxNC/BrJgmc/k2+Qq1EirkKRB+X15Rz7zDGuf+16sUNR5IhmaIQXno5M3NqGAPsCJqFrPQUZb+7hKC6gqSCjlQbemjLCPWFyNf48fa6F+SuFOZ7FYnLSzknEFU4HQtdBaCAEwjAQ+lIWqqYhtOTfQtNA1xG6jtAEQmgg5HI/hEjqnmKpvUj2n9RqWbi08sU+GjUp29vElbcepozn5ru9VNQG2HOmhdhMMFn0KA1mKPt7/NizNRj30wtXtqVjSzd2aH0Ke/pMXGDJ+Db1Jq3lMETHsAffB8goOgpyFzKXx/e6EbHV5+eq2K0+oG/jra0GeABPGdKoJD51mOilR9ihBYjfAsBx4Cjec7fWdJO2IDF5nNgHl5cfM4MauTmOS/BVo3kroawMzaGBNY/d82auT3XtaI/egcZT4B1AbJ/l2LqdAoYPNBcIA4wAOKphcQAmMwiaiXmoOAqh4hQLA8BRDu59yJGPYez1rY1lhmH6LUTLWeTQx6Q8+cuaEP5q5MIESAtR2YJweWF6rdAtZgLQ2rG1eAqMDN1Ad13Ecqy1mdDtKvSpXrSBL+VqG11SyMqTSHcVMJq17Vaw43fQyg4hZz4okUkWxW5Cq/lMsUNQKBRPH28s/X5NCKFJubJkRQgRAJ4DIsD7GcaIAf8tzbZTJH1y3yYpGG/ZakGJuApFHtz65i2iwR36wqhQ5Eh9SxnhxTiHDtWwcCXTJKHC01oHPblVO/eXu4n1l3hRohwY7gtxuDV7u8ChLhL3l5ZWSyCx9LMJZIq/q4HG+hcJLibzSadG54ktZdmmY24yyJXJZOb0M+fTPwkzi+VFx4Fy6mevpp2r1wN+nNoi8fGNr3dWqwZNB7k2R1b4q9HqW5BD6wt2ZRKEQxm2pUHPIjBnwigncq+V2Mcbi4ol7t4g0XkCo+omQrORpp/Q23VYA5fXtDMH7uPY241YSCVQSrT204jEHHJ+AMxxWBhHqzgJ45nug3NDjl5GVu1Fq/Ig7G0qwGWUg3cfhEcgNACxTe7HUVnYuHLFVQdGK3LofTAHCjq0CF1CtCwVyHI3ADokpkFzw/xNiAwiHEuNQ+OpT+/5HkTiINJRSvdVMmkLsBS7Ea9AG7++q2wTUrLYh/TW5pX1vllsswe96hxy5pLyyVXkhVy8hai4UOwwFArFU4SU8qEQ4hvAa8BPAb+8avO/AnzAf5FShgCEEA6gC0hIKR8ujREBfjLV+EKInyMp4v62lPLXCxGzEnEVijx473ff5/7buzsr72nDNm3cfhfRxVixQ9kWKmu8dLnieNoqIFpKX4RLk6nFzD6HK0jOHKtm6kZugm8pEw6aaBVV2HOZBajIyDSGENtayM1hrAiitiWpbKzAW+ZhvD974bWEK72zr9DSC601zT72ux5iLaS+Bjjr66joriJ2Y6OYCYDMIuKKVSKuw4XecRQ5ehU5tDHjTWru9HYKcoEV263cyPS8s2Inkh6uaQj/2VUcB47gOhwh8q6JNZo6k9TS2zBYv02id51DDr27UTgXBXRonunBjjeiNbUjzAK/V6UAvRYm3t76WPYOLz30tAA1yMF3QG7jPUtoYO3vTaCHnZjlJfbZ5SjHCMfR5/oRI/9j12eUSjTshrPY8Z2b5LXMB4iaEzB9DSFz/dxVPO1Yo7+DKD+PEOk98BUKRXHZQvpAKfO3gXeBXxJCfAK4A5wHXiZpo/D/XtW2eWn7I6BjZ8NMokRchSIPup/tUlYKu5Dq5gqG7+3uYlypkZw+VMn0jX4iM7n7vD6tGG4nV6/mtpT0uZc6mbr65EzYyIp6yCLiJiYm8Rw7QuLBjW2Lw+NZe+vXfyuZ+dqyr45YKM708FzavqPD86TLZ3QGUleS1x2CM10L6NKHt7kc3bFkAaEJhC5wegWumiiaNYfvuU5AJr21lvy+EhEd4fYi2k8lfXKlBNtOFjSzTLBtbB6gizj6nlPIuYfIgUxeoelFWmHPgVaVLC6WK9ombqUdDUjqiVyPE7+VeYl/4u5NEnczNiHeew+9rgyRWPKOFqDvOYMcSn0cpGUWdjn64ih2/yJa5wFEPEuwuSKcEDgGk+8UZrzZ27ATmoRvHyQM5MD7lIQHbw6IaDx9KZEioBkdGDf+c7HD2BKybD8s3EMAUujI5k/sqIC7HEf8EbJiD5pRhwiNQrh3x2NQ7C7k/PvY43+A3vADxQ5FoVA8RSxl454B/g/g08B3kfQf+iXgX0kpt2nJ1+ZQIq5CkQfdz3YXOwTFJghUpBZ4djeST7zSwfSVIvos7jLKuxpIjGYXcQ+famLh+pN1XKN6GbnkP8ZmI9s6w+5OY6A6dH+CfafbM4q4MkM2Yyicyk5B8sorAYz4LLrThXPi441N9nQQaPk64bu1iMRG8dQJCN8FIg/ST965j7WhiRByOLtFgMxwdIUA4fUjF+eyjrMSYH7KoGns55//Sgc1Xkm3N0yZ7iUo3OjC5qJ5OfsAqYhHsStOo0++AYYTvfVQxmMhhy9DTRtiC9mbG2MIYt+/jrb3PCJxJf/+UoK7CZzVoHkg+KhwAi6AGQJ9G51UfQchEkP2p8kmL2Gy2pXsIEKvRR+7WuwwMiJ9HUh/G7ZTR2Ag4lFEZBKQkAhi1xzCTgygB16DyDTSW4OVuJd13G3DmsW2ZsEArfYCIjSmxFxFRqzhX0METqH50tUYUigUisIjpRwEfjyHdv3kWlwl2f7ngJ/bbFypUCKuQpEHTQeb8JR7iMyX2NI/RUYM48la+OF0G7xwvkEJuHkSNbLLmIdPNWEMjWDt9PLnbWYh4qQ2h3axwWHKDh4g8ahAGY3rqGmoYO/RlbQ7TRNYpo2U4HJqtO+vx9A17CVLByFE8i5JQFNrOd4FJ3LZ7mGpgBrg8jrxHmlF2hIhkoJvV0MU2XMJ2dRAPBjBvS4WvaqaqgMfIshitZL2Nk3iPHAKufgBMj6X2wEQma9FwuXJS8QVeXrifuWtbr6UZjXJ7/zoYU4kbqXclg1zNoiz6wxypgc5kkVIdAaSxcAKrd3ZCex7byNaziF8CYjfQwiBFG4w9gEChAUiArHhZHEyZydILyLRA/P9QH+Bg1rCioKzFeJTWx9LOMFZAXoAjErkzCD0b91jOPt+Dag5iChrSGahJ6KgaciJ2xCb3fSwWmSRUlmcqVGGiGxv4a98sesuIuZ7kLXHETN3kBX7sMz7EF+Va+15/NsJ8eR9gWXeB6cj6VNcItix+whPE8JzERZuIxIlldikKBUS05i3fhTHiS8jnLncuSgUih1DgBAl9h2pdOaCdwwl4ioUeaDpGl3nu7j5jZvFDkWRB1bkSfLDlbzwTBPT1x4WO5Bdx/17mb/M7jvagGNkFDP+5Pn3TU3ZOYm4AInE9q37XlyQBHvGUm7LVtbLWe0k/GAw5bb1pXoajzRTEenHsbeLSE8PRlXVmu3C5abq3DQ6S7FoOpDudd/oh6lV1mJUVmD1fojR4cfCAcKF1FzoDh10J8vClNCQQkcIHSvuxxIvYHAPTaaweNHzO/b2QgRbHIfEOEIfRWTJavzgXvob7//9TY3ffr6cCms+rxgArOFeZKULwjmIlFZsqSDb9viMyqEPk+JWWSvCX4ecfgixZCFgUbMPEboDDc8jB94GRsFdhShb3JZY1uDt3LyIq5cnrRKCvYBADu2E1YtA1J8EXxVoFkR6wRyCxaG1rWrKwH0G4hHkyEdJwTofQlNAXeHC3gKW9RBR/zza+FtFi0HWnAc0LI8b0JCJQUTdYWT8PgR0MPOwRZCbrEy5jcjECJIRtIoDyNnbCHOueLFUXwRNIMwo0gwjsJHxWYSzEhm8m7TWAaRwgYw9jTpB8ZCJ5KoIhUKhUGxAibgKRZ7sfW6vEnF3GaGp3e8X6/Y62Hewjho9rgTcTVC+p54rl9Nn/Rw80Yh7coJEtPS+9BaCwYchDrbm1jby4CGBvXswh/sKHoe+haXTdo7Z0eVNlVQGBObYOOZEUigVQqykrQlB5Yt+nOLD5T7C6UTG0k32yDV/Ow+cwhq6jjWU9POdftiGNT2ZHMftpawsu02A72JXahE3z+SGxN1+hH4C+WgIraYNx5EqhHOMxJ0KrIlBHCeOYlT0ILSkMKs50o/V1z/OT/v38avHb+KV+a42EVjOLnRysEgwo4ja/TB/J8995MnCIHJhnejv9CdnC4IPwVMDkSmIziAraxDWwvbGM/IdqN4HkTxsJDQPBI7A9DUIrSqw5qrcUvZrRoSG2PMKWKMQ7YNQluuAuQCLHyW7NrWAew9y5CaEcsxoDQ6C3QBaaRQPM51zGLXn0SY/2LF9Ss0D/nbs8vYl71oJ8VXb40+e/YAdu48obwXtKMTmIT6HiBbQYoWly6mnPZm5HhkFbzPCiiUF2qpz2NYjSCxd6x5/NLkAJqFqf/JhzY80x9Gog7mPkTyVSV87jig7gzD8xQ5DoVAoSpLSWL+kUOwijn36aLFDUOTJwug8TncG9aIEKa/08MkXmjn7XBsvvbKHg64wem8/sz0jxQ5tVyIr0lfOOXGuFefIKInQk5SxvZZw0ETbfwa9+wR690lEIF2JMACB7dieSkNZ3ASykF3hdHpd+F0SIdcKQubiIrQkr93lz3fi0b+1Ni5HputDcr9aVR3OPV1YvR9CfCXbUHOuMvqVVtYYk+3SHAiZ/xK1x4KCPTVA7NtXiV92Yg3ehViIxAfvYwW7ltsaWdSHqzcf8S1xMu8YAKIPhiHXiuKuImVeJpZet9AIorJ9VTztqdsXFAmOPJ534ARYDhh/G8x1E5HebVpirLsQXc9D6GOIbuKzJj4NCx8hygSi+1Uoa8veJzaD8/YQzvsLOO/P47wziUgUMwPPxPREsKtO7dge7ebnMT1R7Pg9dktBukIgE6PYsTvYjGC7TKg8mxS0c+krktddiQaePeDbu3a7uxW7ch+2I4Qth7HdNrY9iCUmkFX7scwHYGeYrDKnwJxCxvvBjiD1GLL2IrLqMHi70vdTFASt7nPFDkGhUKRAAJqQJfXzNE6sqUxchSJPqtuqaT3WyuD11Mt6FaWHEFDdUsnog4lih5IzR4/XM30tuWQ2/8XNivX09m08ikLACy/vYfryTixNLj6hOYvEw6RfoqejFb2yg+W0IgkgkVLiq3Xgdz9CnHicurumETOLXcRmokjkcr81uUnLAqoAmRzzsXltVTBHkTMFmpblNk1A874apm89wh1oWrNJxmKgGXhPHcDn/f2NfY30t0NSgvPgSazB61jDwxn7yngiaZ2Qq5i7fl/xPJeiA+vzwuypddlscmW7bmYWiLxuje85Moi8ZSR9T/NALizAvuMwkb1AmoxFinLTLeOLK/vVVsR3GYyALpaXT28bkx+Bxw12lte57CxMvJ1+u55LmcL8EXtegOBHWx/IjkDwI4RHg+pPIPu+mbn9zFovZsfsfezD34VZXqRPP5nA9DswOIk2s4lCefnsygggZTYzmacAGcey+sDvRzj2IkQZIGDuOvj2JCeIHB6kvQgyjjSn0Fz7kPYidmLJ4qNyH0L3IfBjm0NgpV59I83J/MNLjCGX7Hcsw0CrfRYwklYMs5eeShFhuxCebrSqV4sdhkKhUJQsSsRVKDZBZVOFEnF3GWVVXkqrXElm3NLM6hGqyI1ASzVXbqz/Mid56YV2Jp8SARcg7ggsf9GM9Ke/frmc9cjpa2nlrDiNLN7bnNWCu6khr/YOt0FzVw0ul4G30of3ePfyNhlLMH9vYDl7tet8J5MfJ/0ipZUiep+f8trfJ5WjQ0ovWacLR/cBMATh9z/cuH0JzbHqVkra4PBAPIvHqkx9+6U37UXW7GG5mhsrBd5WknQl1sMVoU1mspnQHehlK0ux28ozL1n/rZ+pwzf7LRZlfeb402BG/DndWMrph2BoiG3yxU2LuUo8XS20T9+GpvNIHiHMbSy2ZEXA3Q7hR+nbBI5lFnABFgv/aSa6Xy2MgLsGG8KXEV3PIR++S85ZpmYYre8yHOsGrUiZqTKM6QPd9xn0wa8VblhvK2gGSAurqgsZfwSJFJNDTy1y2TcXAK8D5FDy1Fm3WMaOrSvAac0grZkdyGU2sWMr9w5a7fMwWTwf5ScNrfnHEVtbtqNQKBRPNErEVSg2wdBNdcO923A4tq9YU+GQNHdU0dpaxsxN5XtbKPTaamCt3+XZ5zqYfMq8hRdjBoEc2mVd0b+FlCMtx7ehEHDq+U4mbzwi3jtCHPCKZh5cXyteNR5oxTk7TUN3zbKAC2Dba8VBrbyKwQ9nMPUfpL31NzbsT65qL3xlOPbsQcxdh4k3kbXPYOk+bMOLZkXR1y9tX/ek/EfLwfaC7iX0UX/K5yelnvI4msMPkQuZC/DprQczbl+N48xphLYizM1G0r94P/iJOs6I74Bt49rbSexefhMctqeOxXEvZX4/mp1FxI4vIqq7YH5nJ1G06k6YXDqHJj+CQGvSkxWQIx9A+R7w+BD2Nk6hxTO8vq4mmM3iFay5IJr5HMkX0XJhGwTcVSzeRrRcQA69k3ufhV6c9yuIH6jevrhyQEQL5z0sndWYAQfJon4axAvvO67YeezYHbTqi4jpLJMvipwQrqbsjRQKRdEQ4umx/SlVlIirUOSJZVqE5lSO5G5Dxku7YNXFlzqwBkaJzk4Qm989tg+7gcHR9YKSxBUKkm/ppt3O7IyZk4hLqizW1WyhOJmesqtEMzQ0XUPakvq2Kuqr3YxeerC2VYqM09G7o3SebscMLaRvaziIOmtJjAyTiJalD85diaw6hMPZixh7c/nh8fE6rr2fFJKazrdR77+HFE5s4cISLnR7XcbQQh9E55aqiKXzHk59DIXIYUH/+uOfJmFJbz2IUXlpZV9GBb2TGzNfD3X4+Hd/zcuBxNtgJaspOXyh9UlvKZHCQbzmLKF5D8GbvSDn4JOfoIL/lb2zqwnYORFXaz0PU++tPCAthL8GGRxg+RjN94HvPNK6nDo7uxBYaY6scIJtgJlFAPc0wXx2mwFZ3gYLwwhpIQ0vouUsuHygabA4B5E5mO9HtJyD2L28n0beOBOszi7PiYnLGHWfx6xcAFwg4lm7FBoRKcznsV3/IpY2A/buL7Sq2IiduIuofQbBkr/6Qg8iNlbcoHYj7naE/1ixo1AoFIqSRom4CkWe6IbOq3/nk3zlF75a7FAUeTA3NMPBZztJxExsKdGEwO0xAEFwPorH52Tw3hihueJIey5NMjOb5cu7Im9c5V6u3l3rf9fSUcVc/9MnlI8OLNKWQ72ypIdt+u0imzdtGqar9/LlSwkmojZnXuzGOTSKGTNJROJI2wKspCA5MsH4uppKUoJRXQ6s/VLsr/ISGZ2m87CP+upmei8lV0k8tlOQEmg9TPhmUhB+bNcbNTsZ6HkNzZAIIamtnMSODSF7buA8uPbWaLWsOvLBACM8LrxjAiZdF+pZU4rncXEvO4Hn1CE0c4j4fCWJR6uX0Kc5hnkKh6KiFpFYTCmL6W2BZSHStnzEJ44yNrtWQPzPP93Ma/43EdF1Hq3BATLdIlr+FiLOQ8zfHcVcV2xx5oFORWf22O3By2gtz8Lke9kbbxV/A8xfX+XXvMTUZUTL88ihlQw6OfIBYs/zEPqg8HEIDWSaCUXfkbUiczoSc8kJAjv1OLLhJNTWQ/QeNB5GGuUQH0fKgWQCqA2i4jAifguqnBDeXs/XZUI9SVuFkbsQmcre3vAiWp5Bt2z08SjEhjGbT2AZOfQtGBrYmxOOpeYCbwssPkQ2vIwlB8DevCe4ovSRsQcr12IX4N2LZtTBwkMl6GbD1Ype+1m0xh9F5FogU6FQKJ5SlIirUGyCl/7mS1z6w48Y7xkHoPlIM1N9U3grvMwOF27pnaJwhKcXCU+nF0kXAK/LoPX8Hu592J8UsnaIjr3VLPYMbcvYwmHg6m5dSoASa+tPpRCMHLoAe6kQ1bIvJ2sTqJYel+EwoW2Ku1B46yuR6wTb5tZyQnP5FzbZ7YTm4+jtFVhzcxnbSUtmvDvYbILi1/qrGR9MHndpS8Izua9oqDrdzcjw2gw23aFR3xhg8v4oZVNjJGbmOPL8MW6+PYzL74R5MA6eZvrjVVmGS+fwnW+/xGJvchl99YEqrLkeiIUBsB370FjxkdVEAsjjS6W9UhBMm/x28nfFi2vbrKsFt0wOB9eeeITWsA/hDaCFH2CP3EjZTmg2Ukpss5rpr7ehlxv88xc9fP6awLRs/vBnGzhhfj2pRa8nMoNwtyHXi7tApPZlJt7rA+5v7AdE+keI7j+OO3Et8xOx4tgD1xABH8LcvtUtWtuzMHsFEmn2MfEOouYIcurm8kNy4BI0NiHiI6n7bBbDR8oDXnYKJnIUs+Oz4AhAbK13rwTE3k+B6E1mggNYweTPBuS63zvE4i1EuRMaTicnO6QNWiVy/DYsLtlUBVoQVV0g5iByhdVLJoyH34Cu13ZMyNVlCyJ8K3vDVFSdxHLZUNmBjD9d1j2KJaxZbGsWfDVowomIDmTv85SiN/4IesP3FzsMhUKRA9pO3zsoNqBEXIViEzg9Tv7Zt/8p0WCUr/+HrwPwD/7079N/+RG//IVfLnJ0is1ixkzGr/TRubcGo8LP5PAchkNnfiJILLw9yzj9ZW66agxm7m6mKn12dK+b997NXWg9eKqFoeu5td9/vmOTUe0cdmKjYKI9xfUytOq67CJuhkJZC+WfJnhlc8K94Vh14PMQgsv3NnHzvX4a99atelSy73Qbwx8nxVZpJTPcYjevc/yZbpwzNzG6DzH18dpl4uPvjDJ56QtYkeQEXN2xWuoclyEaXm5jRfQ1N0dCmGQSceX6rKEUQqzhttbYE0i5+UwjGQ1hjT7A6DwKi+mzu6Lv3cVq+zShK33Y88MkhoepAX7r/3WWvU0PqFn4Zsb9ONtbU/rixsLZbx1nZw/T6M8i4kKywJOdi3HDFpARyCQSSzu5TN9VAbG55GNWFEQzUGAR1wyB0wdy1XXJ3QrTV/MbR3eu+VcabsTBV5HRmznpstIah5qziKlL+e23EMg4hHvXPCR8QOVeMMogMgDR62k62xj9b2GU7cUONGC5EgipgdSwjML6BGtGK1rf1zfdXwodaY4BT9+qD8U6zCmkrwGiRSjmuAsQviNodX+52GEoFArFrkGJuArFJtE0DW+5l8/93OeWH9t7oZuf+LUf5zf/5m/taCanorDM9E8ByUyfBNB+oAnpdGCZNr1XB7c0tstj4HQZLM5HaWit4HC7l+mbGSqVbxG5fvlwFvLxgdwmx8iCEpvbmH0djT29S1oTDl/WNlbURDS0AmJp+beJnBkiWvUsUx88QpqpUjez43KuCJfRqEl5ZyOGtuo8EoL5dUvzXZU+Hg0vYlv2GnH5wLOdDH+0Krtt1XkbvvsA14m9RGY2ZiBKy8KKJF//jhcb8M98B6JrzwdzagrXKuvcZCauK+3zkutNaQ0fMLd2zPD6mYN0nw+5vauMPUcQ8yuZo+utRq3qMyz2hrF7L2/oe1CboXzh4+z7CBhrhGfbW88Cx5i/lt3HduHeFHVny9HtzN6touEIYvbdrOPlhasMnAEIDoOrHObuZu8zdw9ReRg5Mcvj10COXoEqHUEBrxfSBm8HhJb8noULTAlWnjY+gWZkeRMiUA8uB5jDSQE3VxLTSGag4jhiLgexfSeITyV/smGFYPYq2uxaO2i7+xWkvpC2W75oofCmPuMkQO0FLE0VwFWsIBNjiIqTMJf92vu0oXf8E4SW/jNWoVAoFGtRIq5CUWBOfPcJzv/ged7/0vvFDkVRICbvJoWlyoYAr5yrJTq9gLetniu3ppmeWMQwNEwzm2gvefmVPcxdSQogrnYvsflJpvP43r0ZMmVVbpntKvxTQKKzIZwuN/FVwu1A3yyNRYypmITiDrLJuKGheXqGVlxe68514CkPMPz+LFibF7R83hXJ5daHyYmL46dbGbq5Ina0eFadVkKQqKwiuLTdV+Uj3A9tR5sZvbySyXf4dC3m6Ir466jww+QARjiC7vVihddnuUv2f6oWx9AbqQNdd17rIgb40z6vDaXIjI1H2I4lgCWvYaGDLZAaSZEcAZoLhAPhMRBxLzKezPwXhr4cz/J7WYLmccBMBHQD16GDIMPEbj5A6l7i/ouEr6S/sMQePiR2/lXc4cxZhkIkkMIgUXWMSKKGhVuPsGO5FSIz5xeYjn6GOuf/yLwPhyOn8fJBazwC429Bx8WkhczEW7l1nL0F/paVZf1mOJkiKgs86eOoWvnbdwim8r9XkPV1ELmLlLOw6UUcEmk/AsOPyFZMbRfgHHlIrKWmMJ9LwoWY/DDvbtJVi1W7F5kocAa34olA6snifjmUr3x6cFQj/IeKHYVCociZZC2J0qLU4tl+lIirUGwDn/u5z/HB732gsnGfMLo7y5m81gdAZGaRdl3jyLEqDL+HNz4Yx7Y2vt6+gItz55qI9g4vC7gAsfnwhrbbgbBtDj/XmfzakPJ8XErhe+zRmchHsNgd53dVnZ+xwZWMwOnxRQ4cr2X+0dPnizs9bWYVcddjW5LJiXqwtpZZ5k2RaLO+SJq3Pll5zRHwEtGdazLfhaZR1VxOdGRqRdAU0Bjt53GJJ+HQKW/wEHs0gefIceYvrRUdDa+TzpeaMOZuQFUHaE6EU6DrJgiBUVONMMJY9kVAB6Hhcxqc+IIb3bAJTtSBZScto6UF0ibkLOe24zWkLUnELJyLA1SKGNKMJwWlRAwtegdXVRyj+zQMvwMjE5h41x2NBP6OR7CYS7b/XThxCBk3kOPfAUA78HnmLs9i9WWfGQo9iuCqdSDYWBxLSgi7nmXhYRvzI06snhlgZuMgWZi5MkHtuSLO9Yy/nVJQz4Qo70AurjrP3d0QuVPgwJYOSD4+uOtHsI3CXX1dNfAEiLhERoAGKETmtDRBd4CZu42S3fwalj0KSsBVpEEmRhC1zyJnbyHMzKsUnha0us+pQmYKhUKRJ0rEVSi2AZfXSf3eesbuq2q0TwqdRxqWBdzHSMtmYTC5/PPiwWpC/nIuf5gUYI6ebqbOK5i9/Yi5y6kLAO0EUkoevt+bveESnSda8xi99DNxASoq3GtEXACjpgKeQhF3dGCRtvL8+sTCLiKP+rI3zILPsdHaQ6wzKL7f/9gCYaMVQsK2Ga1x0TBrw0Jy+Xl1g4/E7GPRRFJ7rI3I7VvoPh8Tl+6z5hzVBW1HvUQvv78mebHsTHcycxMw16/mdgdw+4eoA7AgOnuR2Nja2Ow9zzJ6feVcih6TSCuND2a2iT2RY2aqvw17bBDMpWdScZDpb9wh9XsyWajQ2bqH+OgQJBKY46PYzTXo8dE1oQWdrzJ130fk0QiQ+3UjFVYoTMLRhtNMX8xH2rKwVxFPDUyvWq6cb8G08CCrq87J0X6oK3CBMzsEnj0wdWXzY0TmWO/isVmkxwmyBREu7SKVWSk/CKJQWdMWCCeQ+vyRAGX7wVWN7fYjZQRpDoDcHm97xZODHbuPVnkYOXsHYeZRCNl/AOmpAnSEGYXYLDLcu+s9doV3b7FDUCgUil2HEnEVim1A0zW++PPfxy9/4VeKHYqiAAgNAnaMTHkTweFpYJpn2n1oToPwg34KW2Zlc+Rrp5CPJ+5uyTQPlG1MAe3tmydPLfOJIDQfx2ivwMxS3Gw1doEsOeL2RtXJW+Wl65nO5QWmfR/1YZsbv5Q2H27i7vwU1y8/pKG5iue8LgjHOXjID0uJkrVn9hG5lfT3FE4nrC0lRseFZsyejX6EMkUG/TLm2qJbQt/4HLR1y8rsDEXQsqZPihyUOaEhqQBzRYC19QpIcYXSvD5czY3IRBxz+D4Otxdj31GES0OP/+FKf+FhbOEvM3u5N+U4m0WK9DYUAITzEDGyoTvQalph6qPNj+EsW/t/fB4cx6BQIq6vNSkU206wtyD4BYegugLMua3HFJ9AGhrUXUBMFNifeCdZ7EPUnkRq2Va5aKC5wc7STqbOwpWOSuyGc9jxe8AIbE/NU8UTjB27D4FKNKsZsbBx5YQEqH4O255EGJUInNjxhxBbNctoAOVNCKMCpI3QqxGTOVrHlBBW388jhIFW9Ylih6JQKHJAsPG+t9jsjpSiwqJEXIVim+g41VHsEBQF4viFPcxdyS2bNjqXZ+bXdvN0W+IC4HVtFNUGe2fofmEPk9e3nmG62xBVtZCHiKu5sghxKbhTf4FaawpvbA5vMJmVupCidlNoNkLvxyuF/Q5c6Fr+20xYRIJRbNNm1ie5/maykNnY8AzRl4/ySo2NfidZuKv8QDvR2ysV7WVitbIiaXv5APadN1PGGumfwFFmgJ2iYJuVQMqVc11z5iDiykwibpasKS3TslIBdeeRwQXk+Nol/po1y/rUTEdLOyKxQKJ/pa2MhkncTx6zYPdreCrnsMODDD04T+TR1jJvUzEze4JG/+202+VMH3gcCLnR1iE/JFrDvq0JuABGGRu+DhTSErdiL4RGYfHeloYRkVFwHkUWQsQFwEayuLu/CJlBnFOLxOoyTYToCMqQ0TE0/wkkEWS8P3XT8oMwvXI+SQSy/nksfQHiW3v9FAqsBWwWELUX0EwTohNIaSG8TUjNRi6dY9KaSX8bJ6PIxBiaax8ikWdxxFLBnMMa+lUl4ioUCkUeKBFXodgm7r6ZQ0VsRcnjq3ATfpCLR2Xp0n6gPpk1K1n+vRopZfLHkvgCTurbq0gWvQGP30k8FEPaEiPgpncsvJytOycNhmUFlmVjWzbSXhrHltiWzbluD4nJuR1/vuvRQ6n9Hq/dnaWr0k9k9gnwg8yDhDOQc1vfwX0kpnKoGL+OL78+TSJmsedgF99fHkQg6e3daJEQtyTdz3SClEQWotx99+GGNtWnG3nzzetrHnvjw/ucPeejCvA0ViOmBtZYFUjTAjSEodN8qhF7eizt6nNzNojYfxg5fG3jRinBcIOVzJrUHRtHsTdIX+lFJGlvbL0Gkea2TGhQcQa7L01l88go0JzcBxoLTc8TiPbhnE9j6wDEH9wjDohAHVWNJommbmamvCSCYZyOOInB9DYIuTLzUT/Vn+zEaaYRiO0EouooTF/e2o481TBzPXu7TAgNGdp4vOTsI/CXIayFzY9d1g3+PTBzbW023VYITpIp6Ts/dIReUajBisfcdbTql7H11BnemtGODN9KOsEvXkaiofmPJbNq9So0UYEkAjKKHahCX1pOI501WHUHkImBwor6iqceGbufPKUeO+mYGz8DsyHMBMxtcQKriGhNf73YISgUCsWuQom4CsU2MHB1gP/+93632GEoCsCho/VMXn5Q7DA2jy0Z7xnPuXlZrZ/ZoZUiRrI2wOJUUnzzWjYzoytLrRvaqgjOZMo8Lo28rvm+cZwuB/HY2m/fMxOLuNoqaG9wsDhWwGXdJU4wZpBNxjUqynHWVBHp7UPG818v7HDqJGImfXcm+Dc04S/3sDi/cZn+7Uv9y3+feL57w/aK7mre+nhjJmc4FOOBq50LZQt4HFES6zLgpbQJdDQS8EeJ3buJq60tc8BaiqprKxuX/xIpRNx4bO15vqVM3HTvmZoL2P0fpB82Ok+o4fOYUmc+UsbgNweoP3aAA2QXBGRwjkQoxLTzWRbuJlccRJ0OKg4cInY/fRZtTtg2Y8PnaK3rTZu5L/Ft/Uoh7a1fbmrPwPCljY8HB5BaJ/hdiMQmfLQbXgI7AWPf3GKA6zDchVtp4aqD0e8UaLAiIk2MCMQ3LB7Q0Fz7sYNX1pwmAhs7+gjNcxA7eB0cBnpwEhGfw2qoSg7pacKqbkcmdrlnsOKJxbL60SvPw2z6z4hSRVQ8h1b9qWKHoVAockWAKDE7hRL5urmjbIuIK4T4EeB3lv79G1LKX8+hTzXwOeCzwFGSKSVx4Abwm8BvSrnx248QwgX8JPCjQCfgBgaBvwD+vZTy0fo+CsV2Mz04TWR+ly5tUqzhzs0J6jrbKCt34RASKxhmcWSGeGiXFDCRNoVK11pvgZvVErdE/BbshEXXgWbuXBvdsG10YI5orY/DHXXM9afPWnySuDskuBM6h20/zsKG+lo3bufjFoIav44jGMGqaCRmaUwEBYYusG2JvWQvIJJNl+tA2TZoIvlv8yEHPR/0L+9zMYfr4eCDSXwVXkJzSa9Kf7UPp9/D80cOr/VfloAQzMyA3lZFYnDj0maZSOCevUdiSZvXtQi1Z7Xk+8G2kFYsWXneNsFKIFyNpDBTWOrsBCsZk2ZsPKejsTzsFOwsIm4KT1y76jPQ/3rGbiGxj6tvPM50ngNg/PoQLS+dwj+TPct1vvx5Fq6sCL52PMHM9V6qTp0geuvqlt7KwVv9xFsO4UqkFoTl+G3wVSNiW3ARj85BZQ1EN5nlWvcMcuJG+u3zvchoJTSdQoSyHE9XDQQ6QegQHoCJbRJH5wegLHuznIiNQuNLMPrtAg1YWmjOLmTwcsrvecKcRQZnk5eyxCMsrw/D2YHe9xVk1WlMZxASGz87FIrSQWLJ5GqT0rjryh297e/nVYtBoVAoFNsg4gohWoFfBhaBfIz0vgj8Z2AUeAMYAOqBzwO/DnxGCPFFueqbnBDCAL4JPAfcBX6PZCWTs8DfBf6aEOKClHKLqSQKRX6c+O4TnPn8aT76ozRLXxW7hsXZCIuz6wUoSWVDFbWNZfgDDnTLIrEQJjg8jRXbqrfjzmI4wO020DTQdYGhrROZMiq1WVTcErovr6tycSfNttnJEFeiJqcPNjFzv4BV6EuUxZE5HvavLdj1KDfL55zRDS3vqYPp0Xna26sIzYXRDA2j0s+DS+mX9H/vdzXiTCHgAhvEUiFs5Ex/2rEyfonUnCvt9MfmuALN5UQ4nPgrbNqOOdA0gcMN5XUmuuswaALhcCaVbQQICU4/uJ9LuytLesHbgJRJNVyGI9hXLyFqT6A7RhCx1BMNi4mNWcwADwdrOObNPJ8SbzzHzPup7Q5mLt+l/OgxzL47YG7+2haMHcalpbkViy9C/TmIbbEoj7t2cyKuvx051QOJFIWunH5EdWdSyNcdSbuLmgtLsxhLB9W2V/63wjB7FWZmNo5VaMLDUNkNVon5sBcZMfEhTnl26fWREAtiNuZxNbJDmFoImo6BNZtD9rxCUQJorlK65coNowLh6Sh2FAqFQrHrKKiIK5Lfgn4TmAb+CPhHeXS/D/wl4KurM26FED8LfAh8gaSg+4er+nyOpID7TeC1df3+FfAvl2L4ic08H4Viswgh+OLPf5Eb37hJbDGWvYNilyGYHQsyO7bW4/PMuUambm3dR7KQPNZgA2U6n3rZixAQcMQIJlzMLmrsqVzE2bsy2XC3/AVWl/paI9Nu0Gwzf2UoqeyK6VmESK9Jh4Ix3r82zYWz7UzdfLIXcMhIjIpaP3OT2+cFbJk2mhB5nwO6oSGlpOl4G7fTCIsAp59t5sjEmxlOwSVRLdUL3ngCdH9SJE2mIyPKPHifaUsuEZMmSAtkAuwEcw/3kxhfRCbiyMQwgYo4WEvWHBIaOwSHa1cVTQsv/aSKqu4IVjrhGaDuFPZgimrlk33IvWcQsdRL8hcjdSTnztcy93Cc2VdepmrqjQ3brLJW5ulm9r3MBc3mb9zHu6cDfXECO7jREiMXggM2NR3pt8vBD6GqHhFNbf0iEdCwD9x+GL6JSKT4XHXV5B+YMJDzw8lrW0UbWHEIzUBZA1p9JyxeA+s+mLCcqp3mtd15BGiegom4MnwbnFWI+A4I0NtJYh4xsjpzXUOWOdI2T8tWPJAVih1Gs/MvQFpUhIHR+XOIdD7wCoWiZFlf0Fex8xT6yvnTwCvAS0u/c0ZK+a00j48JIX4V+NdL464WcTuXfn81hdXC/yIp4tbmE4dCUSg8ZR72PbePG1/PsERT8WRRSqLlY5ZErLJyB/VDby8/7AHqALJYwa5+Rrpr/RfhzB/isoSOx8LgFOcvdvP+W+kF2njM4jvvjfDi851MXs0sbO126psrtlXEBdB0DWnnd6OnGzp7nuni+tvpfagb2iv5pHYp49tNc7mQmAiStwZCE+CpQlYexOzZuBxe8x5H2O+nHizejDWbKcMzfSGzDWTL6tPSj2X1fIToOo6Y21iAbTHoJ5WIC3D7nSAnzx/BN3cT299AxH+Q+aEQkevjQG7nebhvEFdtNe5aF+Zk/rYj4d5hEl3NOKzh9I1055p/JcDBl5CdHdhiHOTSioijr6L3xxA3/mJNe7v/XbT6bljI4mHurQd/LcJVBoYTIaKw2APW0vPyacAEZCgKVxJUHoREgYqkAcg4VB6B8bezty0G7gZwlCf9hWOTyd92FlsjRyVm83GQm/AyVih2E2kmwEoCYYA00Tv+KVrFBayBX0b4D6FVvVTsyBQKhWJXUjARVwhxEPgF4BellN8RQuQl4mbh8Rq+9ZZ1t5Z+f0YI8YvrhNzvXvqd2UhOodhGPvl3P8mjK49YmFAZHU8FJSRaPkbaNn/nYg+iogY7B1u/jE9hg76UJRM3++52FNk3RENrOWOD6bMJbUvyxrcf8eIr3Uzv5oJ2Wagoy1TIqzDohoYZz6+Ue2V7FQN3x/H5XUhbYttyjR9uRbWPfeU6f36vNfnA0ia5rh3Aj/wgeEcvI+MxdD1AYioCU6n9TKUl056wmivzrZIs4JkuMoi4AHbYhSY3vk+DGbQ8K5bg8nsuOi58H/Erl8hVuF1PbHIaq8xPoK2D+EB/3v1D8jQVZBBxteRxlpoBp78bu8GNtMeA/rXzRfYiVpuOXvlXEb03kBV1UNOA9DgQ82G0YMvS5JVJ8kW1wY5BfDYp/smFZJZlyWTUbhJfPZgFLsiobSJjdTvR3Emhtvoc8UAUhAUYIFsBB87+jRMaq7FrT2GLsR0JVaEoKoFOZHR4yaZeIApW9XDrGAd+BeHdj3BUJv/f938WOSKFQrFZBKVX2KzUvm/uBAURcZe8af9vkj62P1uIMdeN/deW/v3zdZu/StK24fPADSHE6ySLoZ0GLpL05v2VHPeTzrz0QL4xKxSP2XO6g7/xWz/Jb/zkbzA7MlfscBRPIUKAv6sObImsaEPoGiCRZnLOaz7mZ2bRA0hsDGKikrbj5Usr0SVOt4PK1iqEEOhuB8fLfcniVpakqtqD53z70sp1sfTBDo8/Tu2J0ioGEw9FOdBRxsykQTyatowVIHjzW308//JeZq/07Fh8O4lX3/4bMLfPxWI8P6VscnieycHUwpRuCA63B5i8k0EIXG4L3oVeZDy57F7oxsp0cCpMG9LoV8KZWVjN68uyFc+8PUVhs9XYo/fQ9l2A6XfXPL44lrlwnJ0wWZiO4c4pyPSYC4vMx+JUdB8g9vBuXn2DEz4qMjkeVHYjj57BrtGR1hhkTFq2sAIjcLwasGBJHJY1tYiaPSB1tMV5tIffQNhZjvluxaltTG3YKlmrVe4s8bajQBjEOssIIUCm+QrjrMauOQFCw3QWMFNZoShh7NgdqNyTfA/LBNr8SEkIuVrdFxBlZxGiMAV2FQqFQlG4TNx/CZwELkops5egzo9fAI4Afyal/PrqDVJKKYT4vqX9/wvg0KrN3wS+JKXMLw1IoSgw7Sfb+fFf+3H+r8/+h2KHothmSnMmUOCau5R2Gfct7fv4xjceZ4rHgf6cR24IGMgH6bNVC60vFIL5/gleeLaL19/I5l0seOuNPl5+pZvJJzAjV49kWYacAillRo/b8ho/dS2VjPZMoBk6wZlQQX2RX3x+D2OXs2eR6k6NA4c9yNmV5aXZMlzJYPsgHNnsEnIvfCTNLMc9h+Nl3r+F1vY8mt2LiAxjSQ/hiexetXMPx2mqr8Ge2ZqwZcfizNwZoOr4MWJ3rufcb/HeCHaNC421frbSE0A8+yp2bRxpTyY12U0ircll2cL2gjjxGRw9VxDB0vIqLwQyvg2TZNpS0nP5IfBWw9j7CFmMYp0Cu/WTwHCG94SNrHkGsfgIoivHwq4/hWk8+QUqFYoNWCt1GkTlGZi9tD370Txo1a8CYM98e8U/2tmI8HYhNA8IA63ms2iVF7cnBoVCoXiK2bKIK4Q4RzL79t9LKd/bekhrxv5p4B8Cd4EfSbHdDfwO8Bngp0j64IZJFjv7JeA7QogvSin/V7Z9SSlPp4nhY+DUZp+DQgHQcaqDiz92kbd/q0S95hSFoTRV3KTPppVaaCrkUvDdwvTVhzzzfGZ/3Md8+9v9vHC+lek7g7nvQIDDaaA7NIQm0HWBpmtouiAaShBdzJaNCS6PgdvvWhYwnE4dw6lhOHR0XaAbGroh0DSB0MDl1NC1ZLGB1a+oJq1k4S5pg22BaWLaggHpomy/sZz4aS1CYtFGMwRSgJBgmxIpBbobXC2Sy8MfcKr5PNG+laJhQgOH5sIhDKQEf7mXeCQBJDYl4Kbz0H3p1W602Tma99Ut2yZIkgXUlg/b0nHf3yXoCv15ck7i8bhWZmUwk3ev5tZxNlWDnnw9haEjdA3h0BC6QK90I6pOg9AQiGQ2rUjGt3IEkgXU0JzYkxm8C7Nk4i6PNnAd2+HG2PMJQtNzOfUxIzHGZn00NrdjDW+xeJ9tM3PlPlUnjxO7k3lJ+3KXWIyI4xl8iaUicAfOwpG9SPEIyWg+WnjOSGsSu/Ek+hMm4krNWXgrBUDGhqBmP8RHIDSCqD4JUx8WfD9pEQY4KrBrji8JsRmuISJOIhAHfwOGfQRsEGYCUy9hb1CFYoeQhl7YuzthgLMBrfpV9IYfQjiTyypkpwWJGdDcCCNQyD0qFIqSRJZElv9aSi2e7WdLIu4qG4X7JDNhC4YQ4qeAXwRuA5+QUqYql/tPgS8Cf09K+V9WPf61pQzdq0tjZBVxFYrt5vt//ouU1ZbxtX/3tQ3ejQrFtqLpYKXOi93KB/FuPo0Td/vYe6iBntuZixdJGz6+NcvR1iqCw7lVbX/2XIDwg/51AwEmaOVO3IebkJaFNE0wLexEArn0247FkeaS4LhadzTJ6OH52AE0F+41neW9Nwd4z/VNhiezWxN0d3fy8O2kCPawr2/D9r/zyt9l+MNkdqe+xZNCaBu/dp4+04jz9u1lofVxC8FGm+ZASyWdM9/cqP1kiyvDdncgiKvyo9QbLRDmfphOFrBcP8qGUb11mePI51t3Iop5/yOoeznnLvH5EOOOcmrLypEL2bN3szFz5R5VJ44Su5tbAc9gsAnfC68h95Qj7SFg4/lUaKTHv05QfwLYrqXJ6wulObzbs580WG0vYWmjQB4+tiKOqY+ATlpLFIXiacOOPUCrfQ4RnoTQ/U2OItDqPo/e+MPgbkekmGQUQgenqiGuUCgUO8lWM3H9wL6lv6Npsm5+TQjxayQLnv1MLoMKIX4G+A/ATZICbrpv2Y+Ll72xfoOU8poQYgZoF0JUSymnc9m3QrGdfPoffAoh4Kv/9s+WHytvKGdhYiHvKu4KRa5Ea04SjJchZVKydRkJonEnmmYjIr5lD9zHWZ6GkIjH2Y6plqE/VkTiCbbbbdJT7mLfsRpmZ+K43Doej45lS3pvThFZ2PzebdOiyRHnoS6wrczvvcWFKONWAJ+uIdNkNK8hQzalHY1vFHh3mHojhNAEh9oO5STiWtmyWJcKHHSebOXe5a1leK4XcVvby2lYGCee4/UxOh/FaqrAiM+tHxm5VBBMakYyO922QUiE04Fwa8lCUboz+SMMhO4ATUfEtcxTHfkIamY2x6n8PwdGh8uBUNZ2j4lOzbPQ1UTAEYHE1t/Bszd6qTiwn/jDe+kbOZy49h5kYSFCXXsI7GD6tgXGog+O/iDGjd/bsX1uO/rOqJUydA3qLiAm3s3eeIvYLa9iiWGeMLldoSgaduwe6KCVHUEs3FyzTQonVJ9D955COJuQwY+RwevIcA+Pl0UYh38DLXCyCJErFAqFIhNbFXFjwH9Ls+0USZ/ct4F7QE5WC0KIf0LSB/cq8KqUMpN52+Py2humAIUQLqBs6d8ntKqFYjfyqb//KRr2NWAmLNpOtOGv8jHWM86X/v6XGO9RywAVhef3/7uHjVWdHvtSriwzLkUP28Mnq4jduEb50v+SZPblXo+O51gXfUMWE/2byyhcGJjk/HPdvPed7MJj791JXnili5nLORQ6S5FNWkpUDNzmwotnuR7Mbem+lUW4lkvCoxm36DzUhOFy0HNtkOhiLGO/9eiGxtz4irjn8zk4Uy9ZHMzdal936sgUE8pCJECKpH2IafE4zVl4A5QfvUlyQdHSw+s0axF4MctOPTnHhxmlcOUIQFZ2cv9/5V+KYP7hKO6ThzEeXMnFhjdzDJbF/INRyppbSYwMJl0jPG40fwDdHwBvOcEHg4QuJ0VeK9GJ7thZn2lLe4TWchFt6AmxNDKjgG8HdiR3RjB2N2I6FlACrkJReGwxjag5DTKRtEVAIq0FiN9Fr/lL6BWvQc2nAbDGfg+r/98AAnR/UeNWKBSliSZU4lmx2dI3iaUiZj+ZapsQ4udIiri/LaX89VWPO4AuICGlfLiuz78A/g/gY+C1NBYKq3mLZNGznxVCvCOlXP2N8edIPr9LUsqdS/lQKHLg+GePr/l/z+kOfvbNf0bPuw/4rz/yX4lH1LyDQiE00KOpMwylaRG+c5/GQ8c3LeIC6BNTGIbANLPfkLz9Zj/PHa9ntjfzZIt0ujcdz05RZpj4tfLsDQHbzlZpKnnsBm6tFBM6cKGLeNxEAHc+7M+6j5rmSmLROPFo8tonBHzmQh3zN7MXMntMoLGMs92PcARTeIVqS9my62wTsnnlJoPJtj0PkctOoNUfwB5PLWKKNAUINzbUmC9/lXd+X2ImNmcmO36lj/azR7Hu5WaFkAk7Fic4FkTzNmAGF5FzJswFgSCwtsjU7Ecuap7d8i7zxqptf3JEXF8zkH9xws0gow/B24oI5+ELni/RUZyTfuK1zu3bh0LxtCITyHiayep1K0m06k+BFUFr+AGEvrN2KgqFQqHIjcKlg+ROM3AHeAR0PH5QCPGjJAVci6Q4+9Mp7Bn6pZS/ter/fw18D/AJ4K4Q4s+BCMnCZueW/v572/EkFIpCI4Rg33N7eelvvsQ3fvEbxQ5HoSg6Z096CPdkFvHcVu7LyFMRGp/j7IXcsnFtS9I3Y1PtNLDiqfOWa4608+UP5mmoOUhHs4vK0fuYixnMbIuEBAjlZgOQq53Cau6+uzJHaxgaprlWaNx3uh2n20F0McbM6ByzI3Nrtn/utTbmr6/NevaUaXQcNahvTdB/20H/9RggaDvm5MIL/Qg5x8I7aTxW03nemtknzLJnquYgBK/CnniYdpvMwU5Blrdx/f4pHn1147kvdA1/cw3uqgC6oWFFY0RnFrCiCTSHgebQ0Qwd3e1ECA3T8BQs99EKR7HC2YXFof9ngJoLLpD5ZWpvlScqcaR6H0Sv78y+rEUoPwHbKeIC0lMDLGzrPhQKxVpkYu2ktHBUoTf/RJGiUSgUCkUuFEPETceepd868DNp2rwJ/Nbjf6SUw0KIU8A/AT4L/DjJlbajS+3+jZTy7vaEq1BsDy/9jRf55n/6JlYiP2Gg2BhOnfbjbWi6hhBgy1VFs4Sg91LfmkryAJou0J0GhsNANwRC19G0ZK/IfIREdL0FQGkj7W0or/7UIkn4qvDscxK5n170ij4aRHeUY20yGxFAG5/EcGg5ZTQO9c/S/tIe5q+uFRgdHieO7la+/VY/IJgYhes3oLOrmRdrpohPFb6S/GaxNZ37Izbzw4s5tTfNLCJuFuFR0zVY9d4/8lw3d95N/5peeK6F4DoBt3Gfg1deu41j9hoAHUdBnq1GOivQQkMwGyNR+Yn0QaRTYi0TiYYgw2ufNRM3zyJTTi/E0kw+pBGbpYSwcz9R7z4+/JM4iUgId3UZ3vpKHF4n0rSIzS4QHp0mMjRGZCi3wlCaw6DOo0PWbOvCYc7Hic934Sy7vWP7BJC5uYeUPNLfhoznYOtSyH2GroKjApGYK8yA7gZIBMEKQfVZzIAXW2RyT1MoFAVF82JUfg9GxaeLHYlCodhliCdqVnx3sm0irpTy50haGqx/vJ8UX4nStc9hP5PAP1r6USh2Pf5qP4c/cYjrf771Ja7bxd5nOpESQlNBbMsGIZgdmuHRR+krjbu8TqRTYls2dsJGSgm2REYTJKKJDY6tFU0VxE2bhfHdk5mTqnKvIl8k7UfqqKlxEL9xLatPrx2NcfxCI5ffzF6gKx3hiXnOX9jLO2/259T+nW/38uIr3czd7MeKm1TtbeT+aJyxtx6x/uOt9+ECrU2ttFA6Im6wZS+930yKfPs79hHXYhi6jmlamGYC25aYpkk8niAWi1NXX8vU1Fza8bKJuLrLgFjylew60ZpRwN27r5rykUFMQOiCjhNN1NZaHKr+FdYfQhGdRkRX1SzNJLZm2BYzP4PD9RDdSjPnK7J4As+NpBxeSkBzIdZnnGayTFglNttSZ851nslgJ+P3YywOz+DrrMRdaxFwGyw8GGJhdi5jbNmwEybGgT2YfTvrUTvxeoKWz+/oLrHlBNLfglgc2tkdFxDpbUZW10Fs89e7TeGohoX079uccNWBswLpqSfhi4G00fAtibelt1pBoXiSMaq+gKPuR4sdhkKhUCg2QSll4ioUiiW++PNf5Obrt7DN0svs3PtsF33v5/9lLh7Oz+d3bmSOiqYKyuvKmJ/YJUJuiRe0KhX8VR72H6vk6jtjWAkb3RAcfrYpWUNn8AHm6B3io7mPZ96/TXVzK9PDmz9P5NAoTrdBPJpLeTfBm9/qp7LWR2WDl1sfT2bU5d58a4wfPRXAnC+ePXvUZTBZ4WbUgEVtVfGwcjd3r2XOiOzpuY9hODDN1MdGprMqWKLzYCOaoRFajDHRmznb7niLg3C/zcHnWpEjAyQe3GT6AcT+cjMuK7NwZVkB9M4TSSF0XUzC64LFOyn7RT+6ifbMPnQ2uXAnNI3Uktm8UoIdOE8iVIU1MYaMRXDu68QwL6ElJpcCzbDCwDZZdBxmcOEUQ5fnSATDJBcXJXEHvMze7iOSKFwZwplJk6rmVszh7V0uv5qxrzyi5Qs1kLF2bYGxQ8S79uAIHUd78NXcurS+iFXbhHHtjxDWzto/rEYKB7S9hIzf3XkBFxDOVgRbFHH9HcTLQsBSuQsBNvkX5VMoFFtEONErXi12FAqFQqHYJErEVShKkPKGcrzlXhanc1vuvFN0n+vclIC7WeZG5gjUBnD6nMRDu6DY21bLvD8FHDjfiG92iPiNQQ5XGxh+L9KyMW8nl8lvRpqS8QTd+zWmhyWbrW4emVnk1Llu3s/BG/cxs5MhZidz8eQV6FWVOy7iJgyND+u9/PGdG9x7sOItfO7kGVrZB0B9eUPWcWKxGOVlAYLB1NcjB5mLEfVc6qe6uQJLQjiY3jPV4dCoavTQGIkRv7nW73PBOkUtWUTcsE3sXmpB2tnWjt50PvkeFYLHxdiEECAhMgkx4wuwpP+ufisbtoHB5fQ7ToTQWk9jzzwgGjqJeaWH1cW8YtdvEDPKcB08hyPxDsJfiZzfaHcgvc0kFisZnqyl7/2RDdsBpq8Vfhl9eGyG+IKL2rIAcnGHzlEpWOxrwt+x00voLcxyV5YzFqTuwTr0vVj6CFiPsA5+DuPm/9iRCDfEAsj2sxC9WZT9A8j4MDS+CGNvI+TmrDek7gS25mGuUCi2jnB1oDmbih2GQqHYhQgBWonZKTyNX7+ViKtQlCCJmEnz4Sbufed+sUNZpvNMR0a7hO3C5XMxN1m8DEZF4Th6sRnuXie+lCUpEyaJ2cJkWYfvPWDf2aPcv5RHCu86tOHxPLJx88Ny+wo+Zib6GgL8n9c+YPDDjcfjys1r7Dt6kEiPRZlemdN4hpHB9zWU2UbE5XWiO420Wbi6Lrj4fDuu6SnkYjjlOTHeV0ntnhSdV5PhplJoEO/ZnEWN68ChrDdLoUUP9tQB5GQakdWME7txnbinEee+/YiqZkToEcRmoOIwiUU/5sMe4Crt1e30OeqxEzt3k2yGYxgH20jcu7Vj+5x7Yw7/jzjB2OEJuiyZ4xIwj30e2+57rPVj6QOIPZ9C7/v69se3no7XIFpke6XEJDIxCVUd4GxDjL6R9xDS7WGDJ4pCodhxhHAUOwSFQqFQbAFl4KhQlBjxcJzf+Vu/VXIC7uDlR1mXTW8H7oAn23duxS6gujmA3n8vq4CyFQLzQzg8m5+bjMwEOfdMSwEjWjV21ty/wpDQBX9Yq/PTf/YnDA6nFrQTiQTjnmRWqzPszmlcXU8v4i6OZ14S3XygkdEUAq4QcPGFdj552I956wGhsbmk2poCaedw3mQQcaW1+fNOxjOL+iHRzJ/88QnGI63Lj1nNZ7g69iK3F16B+v0rY0UWiV37mOitR0T6ITJWTeTOKObgkvjrcHP97p4dFXCX2cFUhvJOPy01H6PNlO/YPh8j7QWk7kq9TRhYJ34oKeCuwyyPYded2OboUqAVflJp0ySmkdEepKcx764yi7e0QqHYGYTKwlUoFIpdjcrEVShKDN2pszA2T8OeGixgsq+4FZu7z3Xy6KO+ogi4wGZXxxcF8TSu58gBh1unutGP1Zd+KX0hiE/Pcuz8UT7+9uazceXoBIYhMM3Cnu9zEagt6IgbGavx8+/7bnL3UnbLE9NOLom2JnKby923bz/19UGQEltKbCvZv9JfTqfHD01+hBBrrhOarkFlgEuv31s3muTCxXbKQvME7zxktUmDjSCVXNyx/05Wr43tqJZrN55gMVFJVPs+arT/uWF7mAa+/OZfYubRDDcr2nml6j1EZTPvfk0nEU0WazJjjRyrXX8Mllh1vIS/mgdzJ5nqmy/488iN7bp+SWqOVNBwMI5LPkLYcZh/BPPAZBfUbdNu04YTwTz+BfSJQbSht1ZFKTBPfR7bTLPiRMYxW1pwzPUi4jvo026V2K26FYbAQYjkep3VkPXPY4ld4m2vUDzh6GUXix2CQqHYxWzH/bYiP0rszlChUOiGzt/6/Z/i5y/+axKRONVt1UwPTGfvWGAqGsqpaCij/1Jv9sbbyS7SRdVH2kaqW8rp8M8R79uZ5cCJ27ep6+hgon9zQlh4Yp7zz+3lnTf7CxrX1Ky5bSKuJSTfavDyn7/xZyQSGYpmrSF5tsamTMrLy5mfz3y8hodGGRraKNq8dup5JnrGU/ZpPtHG++sE3P2nW+kUIRbu9ZLKJCXd290hM18DpQSZ6R2Y53VEIkg0P8/sR/eAUYTDoOo5D5pcyTqOUM+Xv/M5ZvqShZoGr40x+n1/mf53J0lEV16Hqb4Q8ughxFiGAnK1nXzwQROLU8UScEEWeBKqottP4zGBjzsw/+5yPas1+xwdhsOBgu43F2yrH7vGheH8FHpv0iLBPvQFbHMoYz9pzWAd/B6Ma7+7E2EmmbkPfgNkaWTkCu9RxNibqx4woOwAJIIQ3ugpLmvOkvAWdzJaoVCsoLn3Z2+kUCgUipJFibgKRQni9rv50f/yY/zK534Jh9tB17k9PPxw+/1ohYCGvQ0Eqv0MXn3E0HjxBIXHBCeC1HfVMf5wotih5MAuUpx3AMNl0OYYJz65cwX6pGXR0SCZ6N98kTNGxzEcGmaicMt/R0fDHPQWbLhlZss9/NJ0Px99NbeiRy9e+CQy7KOxrI4YIYQQ7Gnr4OqNaxn7aWnsFA7VdhMd2JhhV9NZx+XLK4XI9p1uww7HmLg3To0nnHY/+7oGqa6/C7YJtpW8KEkJkzZRqlicb0FGI0uq7dLrIzSQNo79nrTjijzOBVnRRjBaT+SjFQG67Egbmnxv+f8IdXz57c8z3bdWmex74CI6v1FIH55toYWNIq7VfJrZcBV33giSCMdyjrEUEQbUn6iguiOOx76/km2bATneA+YzO++LCyBjmIEYHPg8YmEU07Gx2FwqLAbRPXWIyM58JolgP7L8AJjF/zwGVmxLDD+y4gimX0OKeZANOB+NgowDAjzN4G0k4d8FRUkViqcIOz6C7qgpdhgKhUKh2CRKxFUoSpTgVDJPLTgZJDgZpPuZTh68X5is2Oq2airqy9B0gbQlVsLCjJlMP5pismeMdLV5isH86Bx7znfuDhFXabhrOHW+isit3ISRQhLp6WXfmaPc/2hztgrhyQXOPbuXd7/TX7CYRkdDiAMGMlGYbDopJdc76nhzfopAZT2ffa0TaRoIwO1xEV4lCEqZ/HHoBvdvjBBanKPM6+exK2hjZRNXySzilpX5Uz7uW3Cy3iTDV+1jYDJMPGLS3F1LwOdk8NogAC5fZm9ggQmx9KK/jEWT4u6aBx+LuaBXLBVqeyz+Lv2tBXQCgdnkY5oBmgZC39DOqj5D75/OIRMDa3bhLk8sp9rHqORP3/0+ph5uzA42p1KkmwL335pFPvcaTXVT6DM94A4wEDzMgz+eA+YyHJGdJP8LmObU6PxkOf7AJMbCbYgH86tdJW20oXLsjsm8910oTPc0eMrAzrWApol58JMYl/8Hgu33eZW1p8DcvEXMptB94KgCbwuWHkdgoEUXwTaxvB7sjmMgLFidTy8WkQ3PISLTxCs8IBaB9BM2CoWiONjRe+i+Y8UOQ6FQ7EpkCdoplFo8248ScRWKEmNxepH737nHn/3CV9Y8vjAyR8vhZtwBN9Ky6fu4HzuHYj9CgKfci6/CS1ltgGgwwvi9MeYHd96iYbOYsdJYRqrID2t8h4WHVQSCwzjcDhJRK3vjVIyM4fU5CYcKlUUmcNZUERvd+mRE2Ofhd2Scb33lm8uPvXjxItffT2brn3n2MJff3zgTc+bcEUKLScnVtm0ei3bleuWGtm6Xm+cvfJLQYhxNE8wubLxeHOnYx3TP2mXSmsvA1d1E2XyUlkONPPhOzxqJ0jZtMtV4s+z0BdQAhG4grdTXAw0LPZp60kCLu0FbErat9K/p4kwZMrFRUJx/aFLeFUCXQT4Y+SEmeza28deVY86OpB27551ZetCBA0uPzKVtWxTyslOQNJ6voqnlLmLuLdhCErG8cQ3amopXalcmkj95YFv9WMd+AOP6l7YpqCTSXYN0xyG/8LaO/wCmMQYMgJ38emQ/ft/aiyn1fsNshsQC8Qp7ScBVKBQlSZ7XO4VCoVCUFkrEVShKiI/+8BJf/3dfY/rRRsFkZnBthlfX+S563k9dwMjhcdB8oBFd15h4ME5kPkx8Pszso93pSzd2dxTDqWPGNynI7RSqsBnVzWU0tPnxOCWx27kt8d8O4lMzHHvmGB9/O72olonIdJAL57p4/Y2B7I1zRPoDwNZE3MWOQ1wegO/c3Fhka3k/S5M7voAHny9pMTAxNsP9W4PLbUzT4vEtgCOcbONwOHjp4qe4ea2XcDjKB+/eWm7f1rlx6eX3dn6Cqesrz0dKCR31XP6gl9B8hNPPdm/ok23iKWG5sQLdgEQKsbxyG5EUkuT8Ni7NdvmZvZM6kzY6OMpw4xd5NOvhxl+kzhqtbK2Eu5s730oRzaFR3unDW+3A8IDhknj8EZxMoS32QWyhIDq0nB9BmzqBXbcLVluswhL9iI5Pove/vn07qeiGxEaf2W1BL4PAftAMpKbnndhi63Fs/+KK3YJCoShJhJbeekihUCgUpY8ScRWKEmLk1khKATcVfR88ZO+zXfR+1IeVsAnUBmjoqmNueIb5sXmGrhZOfCo2iWiC+oNNDN8udYHk6f3yajh0Dj/TgH33OtyXW0nMKxiJO7eobd/D5KO5TfWfvvqQwyfauHW1MBnFCcfmvzgJh4OeuhNcWRKVXzt9kT/78Nsr21fPH2iSc88d4YP3rrEQTPrVejwuIqstFlY1tyYEezo6KfO2rBFuV6Pra9Mkf/jF710j4AKUndzD+2/eTx3TEraZefl5dM7NeG/6zPtAoxMIpdwmZab3Xw4TLLFF4tNz6TePh7j+5uKGsQyPk4rWaqpq3ISqyojNbPQI3g1IBOiC5mcqqG2Zxpj7CMxV7+QYW8q4zbjv2wNQ596ewbcRu6oGvX8bd2AlIHNyekGQNRex5CCw9Bm7iY8yWxTPEkOhUOSBXlHsCBQKxS5FAFqJTdY+jSlUSsRVKEqI6vbqvNr3vf8QTRO4fE4iU0H6pnL19Nt9OBw78E12yzyNHyNQ11FBq2ua+O3Mvqo7jTQt9jRYTD7afJGzaiuEpgtsa+s3LCFLZzO1zdx72licSzD+aMVstMvVkra9ZVt8+N7a1yISidFQXcXsdPIakbRTWGofAYsAfaODpGNufqWo0gtHzlHR48JkRWytPNLK26sEXAC0jcdcSkn3qbo1r4YQYlnwNVxZPEYzZLuLTCJuji9/y8t1DP3FeMpt5qNeDpw+y8iITUVbNVbcJDw1T3BklrkHI1TrQcraapnclSKupH3/OFVddyE8BTu8aEMO3YTQK+DbXcdOss1Fu3zVEN3+yUthWxhzk5hVTSAj274/hUJRBIxqdO9hdP+ZYkeiUCgUii1QLAcyhUKRgtNfOINmbHxbeso9/PSXf4aKxooN26QtiYef/OrPqY6LojRo7fAQn8qnmtHOEXnQx8FnmjfdPzg0zYXn2wsSy+R8nkWQdB3P0SNM3JsgPDaDw7HyHpi6NUVd5cqkj2mvCKoyjWVBLLpynVgj4oYsLDO9VcmBQ12MjCSzkc/sO8bp6D7M+Mr+/G3VXLqSXgBeT/noDcqGry//BIau4R9M/mjxLNcyzZF2k7Qy2K1kzNJdwRt+G0dl6oxQK1CF7fASmZxl5FIP49f6CA7PgJTsPddKfHAUTd99Ezm1e9186iemqVr4g6SAWyREzJW9UYkh5WIyg3m7xhfrywZuEzPvga8LbFWITKF4EhGuDtx7/zvOln+J0APFDkehUCgUW0Bl4ioUJYTb78YT8BCaXVku/OrPvMbZ7z9PTUcN8eiTL9amQnfoWJakpr0aoSXNMYUuEEtZeUKAEEmBS2giuax66Xu1WPUFWy6tERUs9RXLGx43Xv6dbLMxFrm6nVybGGi7XJTtb1uV9SfW/Jq//agotrknX2jGIUwkcpXHqFizYjYZllx6glkEL/n4OEokAjlb2stoPZP9uHw+YqHNFfOI9wxQ2xBgcmxrme43bs3RXiNyEhSdDXXEcDP+0UqBsoZ6L496kxmxZtzis2df4jff+EMArt+4iSbLEUKk9Z11OAwer4c3V4m2QgjaWpq5def+hj6GoeMPuDh6+DCJYIwXtZOEZlaKFjnLPDycjhBLMZGU7lwXuoG0U78W2Q6N0LQMZ2eGzrkmUrv8JBY2egYkalq5/CBAbGGjTY3T7yb+4CFCQGQstaduqeEu0znyqkFN+SOMmeswXQJ+4/HdJ4BjL2K3v4L+6JvZ225uB9s07joclZjOEE/rahKF4klHOFsRIv0kqEKhUOSKKDE7hacRJeIqFCVGJLiylPHcD5znM//4s8v//+D/74f4jR/79Szej08eVsJi+Frpe/yOZqjjpTt1Got0xXWEpon0DxVn5yVAYm6BI2fa+fjNzXnbJsIxjh+u5/WxBbYicszPxXGdbCI2MJyxnaupgbnJKInF+TWPVw7dp6yiloW5ZHaeMZycjJBSsrCwSEtVI6GFSNpM3K5DzVx+NynUWvZacai2IrWVi2lafPTBbQC+9+VXCF1ZEXCFJghW+Jm6keb5pLlMCV1LXxw7y7VNZhRqt26nENZPgLXWTsF2urkzWU9sYa1fudPvpvlwE3KgF3shKWJHRqcwvB7McCm4Qm/EcAme+SJUxL4N8UXIzYJ9Z7j5ECoawb2YvW0JYVc1IIIH0GbubsPgOzRxm5hH1w5h2f07sz+FQrGjCG33rXRQKBQKRWqUiKtQlBjP/NVnGbs3xmf+yXfRcqx1zbbDrx7h0//4u/jav/lqkaJTbBZNK6IdRDHSf0uMxL07VDW1MjOyuWza6VsDnL/YzQdvb61SfMRXjUZ6EVdKiEoXicWN9hSeA10s/MU4jxXJuZF5vufcy3z5g28l+3qC+P0atjP1EuzpmZUs0fVCb52nhmePnkUTGrqmoWsGmqYt/+/UnPh1P1Un/MnzybIwA07M+QgHLu7BknbS25aV7HdvlZd9z3Yl97e0HwF4OirR7NSZn54aKG/cs9J4qfPjWX8jINFs//L/q8eVLid6S9fKo48zBaQGTg/0ptzlMnbdKYa+ulbAlRJGqs4x9+GKXYS70kfz/jqsnh6sm9fXDqIJdLezJEVczYCXf2gO1/S7xQ4lJXLsHlpvK/ahYkeSHzbj2O2dGP5G9IE3cuoj0RBZsmyl7oVY5gmfglB+BssRRSoBV6F4YtErPlPsEBQKhUJRIJSIq1CUGF/4+S8ipUwr+l34ked457feYmF8dxWAedqRtiyiC7kScWXCpPuAgw+3UCNIDI1QVulmYXbzPpX905LODNv9h/YzerU/5ba/eH+O9a9lG43Lfw8PjwFQWV6Zsv/9u/0c2LuXvp7RDZm41WYtg7fmsEku4E4myj7+DyDOJIs8XPpv34UOvvW19zI8E/juF87w6P2NovcLZhBzPvX1q/yFOrSxt9OO6djfhJy4t/z/6qNhNB2EqesbOwGi7hCZDAOs+mfo+3p8Q/bwVNsFZkIeJAKBpKK9lkpzmsSNGxvG8DbXIR0OFno3l/G9Xbj8GodfddIQuI42/TB7hyJi37sKB/aAtotWm9hhIIxZHUAE96LN9mRsLhEkTn8ex8f/M/OVuXwPsP32HKZjEeSTWxRVoXiq0QMYFd+F7jte7EgUCsWTgChBO4Wn8GuuEnEVihIjWak9/dXIV+Xjhb/xEl/5/3x5B6NSbJWiWmCoTFwAInfv03XqCA8vj22qf2w+zLkTXbz+xuatPa5en6GrRUemKCQmhWBhMv1ScrfXYDG4dnn1+K0JTnQf5OqDOwQCPrq69lBXU0d9VTNmwiIeN3E6DQxDR2KTiCVFWTOxdv+JDIXN1tNxrJk337+WtV066wOh6+n7ZLMAzfA+ktLe1H2cWf8CvV+Z3yDgxiuauPTeHGZ0ktaTnbjMCP7ZIazQ2uJPtq5zt2UfjVYEf29p2b6c+pybJse3IDYP89nbF53QFGLmLLKmtH22U2IHMfccwTHbk+U8FEhrDgKtEMxQENDfCPGd8FhWnw8KxZOAcHVgVH4Pmv8sMj4CwoHmPbpcM0KhUCgUTwZKxFUodiEdpzuKHYIiT2zLhmLVlFAi7jIV4VEMlwMzZm6q//TVhxw83sqda5sTgiMhk/mOo5Q9uLphm+/QfsYu96Xs566rZOpq6srxL7aeQ+o+Bh9OMnAzyADZs+pcrrUn48D98TQt11LVWM7Ngf4NmbwpSXfeZbAWkVa2ymYZzuUMMcnJu+idz2D1frjSHAcjfB/hbw1uEHClhBuRLsxo8nWOzoepCA1gx9faJCzWN/KVMUHvX9ynpaOGv+LU0HI5NjuEzx+Fhd2g3q4g+ueRNcWOYnNIaxzZ+RlE79fSthHYaKIe6V9ApBFxZfVRpLUzEwJCeJBSrexRKHYtmg9X2y8gPAdWkkCcTcWNSaFQKBTbhpqaUyh2IZ3nu3jux54vdhiKfChqIq4ScR8Tn5zm5DM1uHybV9RrrRAO5+Y/Pv/06yMYBw+seUwiCI5vFF81p4FrbzvjDW04A6kLk0zemCQ4GUm5LR3j4ysZfk0HGwnOhLL2MZw68XKbublktvDnX9yP3+NM2z5tETI9g4ibTf/UMrxudgZhXtrcHDrInw3/bb46+FP8Se9PcfnhF+l7fYR49V7kukylsbbnGb61ItQ3l8UQqwRcW9e50XaQ//juFL09SQF8qH+KyY5MZhk7z0dfMcBVXuww8sJ+8DGYu7eKeiIQwq5Kb+wrnRXY9iCysj319vK9SHcMrJ2xONB38bFWKJ56hBtn8z9D8x5U93oKhWJH0IQsqZ+nESXiKhS7lO/9V5/jX3z4v6M70y9NVpQOxbRTkOrGfg3Rmzc5fjKw6f7B4RkuPp9agMkNwe+/EcTV3LD8iO/QfkLDUwA4ynw4jx5krHE/fz5czh98a467EybGvmqqL3TQ8lI31c+04a1PPodENMEnT5xMjiwE+443cuh8LQfOVbP/bBX7z1Zy+JkGvKtE4Fg0jq/ZB4CzLLeq1U0nG7h7N5kd+BOfPkJL3xB/+3At3/v8vtQd0pzyIlMmbta3SYZzOYMCPMxzfPW/x7jx7UlufmeCe+9NELI9AMze7MVsO4nUktfSWHUbV96dWjuAy7v850JTM1+K1vKnr9/Hstbuc9wsretxZNYk6j9W7DDyw4whxlL7Ou8OTOzWk2m32k1nABPTtYDUPRu2y6r6HRNwAUjsrkxthUKRRLjacXX+R/TAM8UORaFQKBQ7iLJTUCh2KbpDp7KlirNfPMf7v5u5wJCiNJCySM4GSsTdQOTOfer37GW8b3ZT/ReuP6C1s5bB3s15VkZCJl+55+Gz3XXExieXs3DdR/bzJ9+cJHF7pTiWEAJLg/e/c2f5sbauesLhKEdONjFzZQQ5GePg+Rpu3bnF25dup9xneXmAM8+c4+7HYyQSNs4GF4tDiww9yO4/+rnv7sKXCHHxM0eQo1PEbidtH6ITc7Qxxz997SB/0jPF3b6VsdLqsZlE3GyZuBm8/aRtpZR4pYQvv34EK7F2yXjC6eOxfD1z4yGVh4/hGLvDlekWzNjaYzK+IKgyDG407uVr3+pJOykTN0srI6Cq3YV79vVih5E/D4egJX2Wd6ljMYjOxikH6W/GrNSWagYGkbVHEWMfrmuUuz/1lhFOLI8PbFXYTKHYTWj+8zhb/jlC2zgRpFAoFIonG5WJq1Dscj7xdz5Z7BAUOSK04oipaoldatrac8tATYVt2uyt0bekj0+MR/izhz58J48TGpnC01rPl789TSKxUckU6+SggYfjTI3Pc/n2AEa5g29H3+XNt95iaiq9qDw/H+Sb3/kmtXs1dF1wb2KIPc/sYWYscyZefZ0P/U4P4TsDRG/1EZvZKPiE7w7waS3OD3/3UVze5PLstHYKGQ6anc0TN4MviVyYAG/1hsdHxbPMDafw/FwXx+ytPkJtZ5hIIWoHE4L3ag7yZ9+8nzGrPmaWjh8uwMlX5sBOFDuMvJGD1yHqL3YYm0cYpLrFtmuPgL1SvFA6fRu7ys2vEsgXu+YM0t6cv7dCoSgejvq/qQRchUKx4wgkQpTYTzE9C4uEysRVKHY5Fc2VuHwuYqFY9saKoiJ0DWnuYJbVyp6LsM/SJ/HwAQ5PBYnI5oqczfaM8PzLe/nOt/o3HcP4WJhf+4MQHXvaifSZxKKp38dxK/V5szAbwvyknzt/3pPzPq9evcGLFy9S0VfN9bcfZG1/7kQd9t3sGct2wqT8wTDSH6e62ccHQ7cRLY+3CqSUSCm5bR4kplds6C+lxPLb7PtU2VIXbSkrUfL4HLZnHUhHGUmBTCZTd5e8cGX5YeToA/BWI8qbkdF5mH1E0KxPGa+pO4g076N86P6ynmuOri3wprkdOPa1c+mtXjqfyW6hEU8U4/2dmoaDHjyzXy92GJtGG3Zjdy1mb1iKyCjWsR/AuP6ltY+7fLCq8KBV40Obqk+mixtuCA6AGd25MEldLFGhUJQuwtmMcLYWOwyFQqFQFAkl4ioUuxzd0Dn7/ed4+zffKnYoiiwUT8RVpMIKR+k8Wsu9D0ezN05D6GYvja2VjA5uxVdS0N+XuX8slj6bcqw/f6Hrzbff5nPPfQ4msrctd9g5Sz16OMaFw3v48revpG0Ta+pibji1KBxbdEJ8JP0OrEoIDm94WHrqkYM3IZYUyGR4GnQnWvuztD96g/LGH2B+dCUbt+5EB7/1R704XAY/2SUQS9m1sbFJyqrbWJiOENjfyoPBRWbe6gXADGcX++MpsqiLxbFnR2C6dOLJF9lzDzqrdq0djCX64cQPofe+g6w5CAIsrw6rPgKkNUN8/ymwFwCJ0J9BD0cQczsToyYDWGS3U1EoFKWDo/EfIDJYCykUCoXiyUZ9AigUTwDnfuAZtWR+FyD0Yl1yn75lJrmibdHiwk5YdHdvfxGmTFYc4z2LdHV25D3mn1/+GpVH3VnbaVmNatdyeHiO8vKNy8RXBkz/XKxsOmmK65yUgNGyLOCuDBbHfvQenpo6PvmpuTWb4jNJ4fvixWa0dfYILfuqMQ538eGHw8yMrojr82MpLBnWESuRTNz2s16c0+8XO4wtIaf6YLGq2GFsCUv2Ed/TTCIwT8I/j7Q2TkBgz/P4Gi2tIYgM7lh8wt7cKgSFQlEk9Ap03/FiR6FQKJ5iim6fsO7naUSJuArFE0DL0Rb2pqsQrygZNKNIleuVwJ+WPPXJlLh2QAgJhdIvsRZCUFddl/eYkUiUr9z4MlVn1noD6y5B1Sk3zvNR3M/E6SW/LGM9muDV0wdwuZw4DQOHruNyOnE5HDgNA90QuH06bq+O063j8uh4Aw68AQdGtomOFOeyqL+AHLuVtouc6qHRcRXdsfL+mxuYwud3oq0bb77tAN+6EuTGu31rn5OhUVYXQM8SX7hEbG0OHu0tdggFQXtUGqL41sjzC4aRfWKlYERVFq5CsbtQ93MKhULxtKPsFBSKJ4R4iYgHivQIrTjzZlLd9KfFtrc+gxub2oqVwkaktJcy61det+mJzFmgDodzw2Muh4tzB05wsG4vY7FZvv7BN4kl1orBiUSCP3rvjzhy6CBtNW3MR+b44OY1Ih+stPsLXedffOq7qbqXu3/mgZ5xOp5/nte/+Sj5wCqx/LnmUbTE3ZT9XGZj5oFTZeLO3kRUtiNnH6XtFkjc48RLr/LxX0wDUH+igyvfWhE6TY+PO4FDfPzNgTX9Wg43EnVIbt56xP3LdzLHBkSjCShyPa7uiz6M6fR2FrsJ+95lOLgP9N1rC5EvduV+9FD6c7mghHvB0wGo+weFYjfgqP1rxQ5BoVAoFEVGibgKxRPC3uf30/9xf7HDUGTAWRnA8HuSQpRIirpCCIQmMDSbMped3KQJBMkMS6GDJsRSO7lsmyEEIJd+C4EQoGtg2zAxEqa82o3Xq2FZIOTmitdITWd6z+nk30v7erzyvHr8DloomKH37sAqgIi7ODKDx+clEkrvW5sJKSUV3dWIahfj0/NYpsUnyn1Y5WXcuDxCJBQnEs4sshjaxo/zn+j6K8z2zzPft4BZFeBC2adpOFjOULCXd268i22vZDnevH2Hm6QWKZ89WsXf+sHv0HvrPJf+IPfMyHQrnDJNKsh45qxmITbmNYrEApTXI7PUXisPRJb/tvRkVu7b7wzjfOUUd6ckE++sCLjCEDQ/38ybX0+f4ZuKqfEFrEoHemJz58LWkezrvgXZ69DtDiJzaNM12HU5mDc/IchNXq83h42m1WLbQzu4T4VCsVn08peLHYJCoXjK0Z5SC4NSQom4CsUTwrM/fIEPfu89Fsaz+zYqisPdW1Npt+0900LL6KUtjf84V60OYGGlfs7mJQHJR2+m9md8/sU9+B5e3/TIpYK0CnMj0t5Vzd3rYzm31506FQdqiDokPT0j3LzVs7ytpaOWuUeTwCRdHp2qE81YZZI/e6uP0anUtgqRxCIXnjvFpQ9vkEgkuHDoDLNLxdYq91TTeztZLOzBexHAy0tVf4kXX6zl1ugDvnzpbaKJeNpY/91P1uGNfosj3Q+wv/BDfPyHG4VcwwWNBx0kopKxu0khVqRZRi4zFGSxs3nKpukr53qAzMvQJ2d8PH43yIUQgRofgbZyvvTlHrqPtCy3c9e6GK6YQVucyRxLqjikZLa5lZr+4tgZNB/3oc1mzxjeTciHk0sXtacDTXiRmhthp7dQKfAed2g/CoViq1jB9zAqXi12GAqFQqEoIkrEVSieECqaKvirv/TD/Opf+U/FDkWxCWQBMkILjbBtNEPDNjcuZZ6Je8hQumrXEIsUxs+2rsZNaoOAFVwVbgLdVcxEIty5PUDsw9TZheYqIdNKWEzeHOCTr1ZwonMUXt7D/UQZ//OdSUYnk5mlUkruPrjL5OQUhw7tp6ammh8/2EJF2M+3342i1QQ27CMSjOK6NcnRkJtTXZ/F3VROxAtvDN7gG9c+BuBUVz2/+YVWKj++Q3D/d+Oufcixvb/N3p+7SN+9TmYGdXQnnHvxHfTI/eWxh0Pfzzd+2YnfYXPxfO2SA0Iy+1bTQGhzaY+RtNKLuFKCTJPhKgRQtQc505dyO8Doo5XXWvjdTEfGGLiUFGoj4RhISfnBcj4Yu8X0nTnqLtSmHSsT743G+W6prKgLhey7DKcvgDOSvfETgJXowag8CtNbm9TLiernsO3+7d+PQqHYEprvDJrnIJp7T7FDUSgUCkWRUSKuQvEE0fVMN5UtVcwO5Z9BpigyJar46A49pYg71DdHi16yYeeEs7aa4btTFKJQiNNMLS4GWspwNPkZm57n5u1B5FiK6vTrsKyNx9uIBYnbNvQ9ZB/wL46VYVdUM6xV8I2+RX7j3WSW9+3b9wD41W4NbW6Ug0d0viY+j+/lA1y/OczkZNIC4/SJJhIjowAkQjESPUlB+W89s4f/+uI0lsOFY2YIJpJ2Aubdm8TkKRJ2M87GWQ62/Q6ifSm4ddpaTU0fsJ9GV5SG+dsbnove2Zr+ycvUkxk27TCeQE6+n7ar8GrMzR3g/swLJBI6bq+FoQdxG2EmgvVM9c3iqw0wHfDx+99Ym6063DfJ0dfa+PM33yKRSIq9m51WuXtrmKOv7aej994mR9g8ZuwJ9I61LbRhH/aep0PEFXoVjF/emZ0lguDYmV0pFIpc0dHLXkQ46pCJEYT7AEb19yEyrGJRKBSKHUGAKDU7hV38XXSzKBFXoXiC0B06Bz9xkHd/+51ih6LIE5lGvComUoIZS52pOj+2gH28Hn16fIejKhx6ZQVQmKJkkbGliRMBVftrMQM6/Y/GufGgDx7kN5ZlWrDk2foY07U2m9aaX4D5BZqAf3hmP39776cZ0N38l4/vYGOhTSYF2qC3hZ7Xk9mpLcDJc+3Yfg8tZTAzsnHfe7tCaGPjGxZYC28Zdt/H2LaF2QdGxyfwNHyMkHMbxhgZ3guk1WMBPd0GpLn2fLPtAOH+c1hzJn7Hn6buIxzY7jpu9r/KB38yjxWfXd6/s8KLXV7P5INxak7u4Wvv9RIMbsyA7nimjj99/Y11T3rz78k/fL2Hv/5SOxUDO1Sgagm7MInlJYe8dw86qnb3rFEuaF70CAhy957eEnZ6GxWFQlEENC/Otv8vuvdIsSNRKBQKRYmiRFyF4gmjrqu+2CEoNkPpabhIlyujzUOospmyXSziJpx+CiHiOn0uqloqqauu5MPLD7lxNZuxQmZsW27QOR8OC1IuotQF9tgj9JkZ9gC/UGtwp/VTvBWS6MLBzKQJrLxGk/fHAcn3XJhCe76coLOO/t4YY33J41AWSZ09ajR3Yvd9tPy/2X+PiHYWT81fbNDVbnzDCZhImamEWbonnzzfzHgH0ZFuItf7kYs3cB04uKGpNDyIqnPMjth8+62zjN+ZXLNdCAh0tTDeP014Tz2//421WcHecjfh+aTv6OiNWcrK/SzMLy5vr/EalB+qJRa3aK/3cXdgngeDuXmO27bk9z6e5CcOVOGa3rmVEVb8CczEBeRUH2JhH7J8utihbCtCq4TZt3duh85KYPcXqFQodiNG3V9Hc3WB5gRhgJRozkaEo6bYoSkUCoWihFEirkLxhHH79fyqqStKgxJMxAVX5kJRUyGdsh0KpdAY5QHuXk5faC4bgYZyqtursUJRZh8MM3ujF097E8H5rVeWT5WVXVHpSKm1LHS2EZoboWHVY+9dMRnsmeLoc11Yc3GkhNr9DUz1jIGE46cqsWZ7sGZncdPPAeDImVr0Pa0YbhfmvGTD2qTw7IZ9m713sOsPoturrAmEwcxAAhAEKi2aX61LFjgTyXNcCInDGYK6rrUTF0u7ExrMvu8k0fsQWCmcF7t3D8/pbvTYg6VjBHblOe4/OMhbfxzDiq8VcAFsG2ZjNt/qnyMYXCkSVdtWgbfRja7r9L6btLeILSao6i7nF5/dhz02yXRHK3EJ9QyBE5iFpuOHchZxARbnI/zRuI8vBjwYkZ2xAjCf4MRK0RtGnix2FNuLNIeh8hTM7pCdgrSfymWICkXREW4cNT9Y7CgUCoUiLwSlZ6fwNN7GKBFXoXjCaDvZzv3v7LwXo2JryBJMxZUOV8btg/en2ePfnSucFyvbifSO5d5BQG13A/5qH9GJWRYGJpmcWpthWR/IfLxyobm9hotlPuTESoZwXauf6vHrrM+xfFRVyd/+w68jpeS1s8d4qcbPfmkw+F5SnB7pmyIysUB5XYAHN8fwV/lo2V9Pa3sMeVdDyJURzclJmk9paGN3cDXUIqo7MeeDmMN96PUd2OOpPSEsqw1drIi4tqsRaQtq2jzs1V5HuLuI37/J6lusTGe6hA3PM7nBJho5hMcYQlSdY3CwnZtfcqF7XVjxUMqxNF3wB6u8b11eB22nG/jo/dtYQzZnnz20pr3b7YLZeexonMq7D9GcjjWxNLvyX+I+1D/FG6fa+GR0ALEDMzVPaiYugH3vEhw9BcaTq1QbsQBibocEXIDEAuR72dL8IE2Q0extFQpFSjR3V7FDUCgUCsUuRYm4CsUTxonvOcHrv/iNYoehyBNZitqLllmdjcxHMPe24hgb3KGACoMR8NHz8SjZ5m4Nt4P6/Y04XToLfWOE+4YJ96Vvf6V/68vm62rKkKsLEwo41REm3h9b026iLMA/eO8yi4tJAfOPv/0+fwy4XE7OHT9Ni7ONxkA1vRMLzE8kU3gXZ0Lcfe8hXYsOZuJd1OytxaeH0IfuIMwYzlgvADI4iQxOogHOmgqMPfVoexzER+axhodZfdysoM7qdGxT1AGS8+dnYXgB+egKrrYOEvMR7PmN2bz5EL7dw1THj3P/LZjrnQKiwDy13W1MPtjoc4uUOB068YRFx4lGhiYn+OCdm2nHd7tcCMfKG9GOry1W55ycICkzpz9vOlvK+cypWlrNeWzDYEB6+dU/fUjdy3s5Png/vye8CRJPYmGzx5hRtF4/9r4ns3CnLlsQc2/t7E4dASD37HLhqMfV9ZvYoavER/4tWHPbFppC8cSieXE0/J1iR6FQKBSKXYoScRWKJ4zazjrq99Yz3rN7vUqfSkrSTyE7i/4GKtldIq6jtgb6U2dv+moC1HTWImMx5npGmLuVQbVdR8LauoDW1zeB50AzLQ+T79+Lr9QSv//RmjZRh8E/7+lnKoXXaiwW560P34P/P3v3HSfJfRb4//Otqk4zPTnnnZnNUZslrVZaZVlOchBOOBvwYTAG4+OAM5h4cPeDw+QD+wCT8YExxllWsKRV2KjNcXLOuadD1ff3R8/O7Oz05O7pnpnnrVe/ZrvCt57u7dVUP/XU8+UV7j3wEGnbfVT4CrHrgoT7w2zels94d3SyrdaT0ffA9Jay4e4y6P/SzIDGBrCMNug6jtcN7KpA+2oJdQeJNDRgd/VAJoxEMjjdu5e+0c28/alGaL05OYTT2YC75gDji0jiahThtFKCnmLGjRz6B9PovNxN+MzMFhg5+V66Z5k8Lq/Yj68inZOvXp6x7s62FRVZeUSywtAzEHOscE8/P//O7WTpEFYwCGNjOGMBzLwcBnxZZAcGCTW2wo0ubtWKVmyOVludfaOFNz1WS9vJmzHHjpfIWk7iAs7pH0LlIfAuv21JajAwXJWAQrU8v+JH16Z73n7sVt57MNLvItz+v1HeLSjDjT16MprAVS7c5V/AGTtHpPefVyRmIVYzq/DHsHLfhjJ8yQ5FCCGWQKOMVPvOmmrxJJ4kcYVYY1xeF4feezff+I2vJzsUsQir9ddPZ59DTrKDWCxfOnAriavJqy4isyiDYO8Qg/Ud9JweWNKwbsucf6N5DPSN0NjaSzlQsTETT93ZaZ8NrTVfdmvySrKo1uXU3WxGxehnUVRUxMXz0czmCUApxc7tm9i6oQpbZ2EOTLVrsMdDuK3YSW3QMNY09XSkGTXSjAfwbMtH+9186J/ex4uvNBCJjJORcYMfvLl9xh3a832+R/2b6TE2Mzjswg6EGbzZiROOEG2u0DvxiG3wcj1pOZmM9U+9Bq3Bvb2GQEMzF2MkcG9tc8tbHyhnX7CNyLW5qxIzr1xCA7fX6NojY6TRSqyb/I2BAQBGxkIMX7hC/o5aei42xdgyPpyIjjYWTsnS/jiIjGNc1jhroTeu8mCNOqjh55IWgqMG5/3Hqby1mP6DGBv/jlsbu4o+iSvvR8DKQSkT5d1AZPAZ3MWfRvk2Erz+gcQHL0SCGb7tOKFWsJc7AarCzDyKlf9+DO/GuMQmhBBi/ZIkrhBr0JYHtvCN30h2FGIxVkMhrjLAclmEgxFyijMpq80jPDiKtixUJJLs8BYsqNyU7CzHm+ZmpLmLseZ2xpvblz2ux2XEITpAg+ky2J7fR7h1+vvamJvJ3//Hv04+r6qqZMOGGvp6Rrl8+SZKKQzDYPf2vbx+/NLUkFpz/sI18obK6GwcpXZrOVsq/BQO9WB191DsuwDTOzYAYBaVwci5mSsAAj2oQA845UQi0X6xw8NjvGrt5oHwqWmbxuoHqzWMZO/i5sBGmp5rBaItETIP7SBUk0kQi/SBLhgP4BQVM6w9jIxGyMqw8DffgLHoZGF2MEzZ3gKuvxJN4rqK8+j1ZnPlxSYiRdP72JaV5HGgqgY7ZOPNSKPX38OnHi/EuHKFRHyCw129ZGdkMjA8Do4m3NxEdnURA/WJulNCgemCSIy/zDXCufQSbHwEMpbXniOplAdTF6GGX0huGPgxMndi+O8l0v036HA7hv9u3KWfQzvj6Eg3hm9rdFs19f83pQxw5U8+N1xF+DZHK3G1drAKPoQONmEP/ZBbXa6VuxzDuwkn1IoOtYAzBmY2oDEzH8DKfhPhzv+DM3Z24iBelCs/uq0QK0h5N+Eq+iRm+h60E8Ae/AHh9j+YvpGZjavox9HBZnS4HSfYiA53o8x0dGRwsme0mfsurJy3YnjKV/6FCCGEWJMkiSvEGlSyrZTskmwG2geSHYpYQyq3lzJyvZnCvRX0XG+j/WQ0iVJ1oBrVeD3J0S2c7RgMXalfRCfIhXHFoRIXwNGao8dyCV85NWNdzngIwzBwnGhipLGxicbGaGVnWVkZtbWbCIxGeOPEzP6rW2s20nkz2oLh5pUObl6JLt+4v5grzYM8XVRFjW6cto9VnAvdc8d7oFbz3MtTz59tT+OB/Onb3N66YDhzG33U0njDZuBkL9A6bduBUYdTP7wjcXN1epK9qLqYbVYzrtxsjJxsRgwf45s30ds9SuuFbm71+bxn22b2bajGNjRKQaBtlKbT0bHLthbx2ft9hK5cmfsFLtOBbfk883prdKK08RDu4DCm28IOJejCh+EmZkZ+rdAadbYbfZ+5OmdVBKxxN2oguQlcPKVYpT+JmXkAAMNTTrD+p7CyH0dZWSiywF206GGVMnAVfAiASP+3Cbf/HsoqwFP1/6EmEr/aCaFDbSgzHaz8ybsJ3JW/Taj5v6NDrbgrfg2AYP1Pgw7HPpgQS6FcuAp/DCN9H8pVCM4YTrgDnCDKykZ5aiY/k8rwYeW8BZSXcOefgD2CmfUoVt67Mbw1MYfXWqNDTeAEMXybV/KVCSFEwhlqjd7ttYpIEleINUgpxcYjmzj5/04kOxSxQHf250wJs4TUdWl6D9wxdzb+RQyrXC7IySOclk3IlUbQsRgPaUaHwrh9FuVOK0bX8itjZxw3LQ2zpJzhMXv+jZcgXklceyyAcTV2L96sQJAffeQxvvK978xY19raSmtrKz/7+BO8r6yYrvxinmkZ4F9fv0ogFGFzyUau35z5vg66e/m7fz7Otyqq+PzeD1FeEabMewZ/8Aoq3Dpj+zu9p/IF/jJ7OwMDIwD8+w8us++99/A25xWUgnHcBMPZjOQco74lk84THdyquo3FvFlHRl4Gw70jaK1x5bhxF3pxMhQBI0ymx0PJuJu6mxlEeseBDqADq6aM1uvTM85jXWO0XI79WeprGyS0gNe3XA/nh7j/nVXo69H2FqGeAbKqNtB3vS0xBzTW/qmdbjyL2v4EOm9mj+RUp1yVqM4kJ3ABs+qnMSYSuADKuzF6u7f/UNyOYeW8CWXloFwFkwlcAGW4Ud4NM7ZXhhtP1f9Ea41SilDb70kCV8Sdlf8+rLx3Ti0w0zBd+bPvAFjZj6DcpWAPYWbcPee2SimUpyoeoQohhBAzrP0zfSHWqdp7NkoSdzVJwRwujgPM3yKgpyswI4mrXC5cmzaBMnGUQSSsCY0GGe8fIdAzREZ1BSdfaAYGZow3XJXHDpafxFVZ2RjFZQTxMNg5wmBjN7TPU1a6DLl+95zrt1bn8eZdRaSHgqBBOTaEI+iJhxMK4wTDKJfFQNFecBwi42EigSB2yMbyunCleXhr/wgnyqq53Bo70fvWknLsukbyBgZ5D/C+u0sYLi3n5b5Mmn09jAemJ0UaeqOTbV1qbuSVrd1s/q7NG1SSWbGHasthQ0E6WersrEWP+WY3n39/Op/905HJZb/yT9f5cuV28nPSOHephV9/sJDAxRYg9oRUhsskrTgXT3YGuF3st0z+78UW2tt7GOoYgQ4wDYOPP/gQnOujKzzzVvr8TBdX71g2Z6HmCv2bCze0zDic4U7g6ZeKU1uPFKc6w+i8ZEexeIYz9/8nEkpZGBWfRGUdRGXeNX2VsnAVfizuh5wv4RXLrSpIV+EnUJ5KDFcRWkewB76PM3oC5SrFzDqGE7iCDnWg3KU4o2eAxFygE6udgZFxd/Qz4gQw0nYtaRQzbXuc4xJCCCEWT5K4QqxRG49sSnYIYhEcJ3EZpfyt2WQUuaJzHeloL1LHAW1r+gbTGBt3oTRodLR3qQJtunA8aeTZLiCaDPPm+cj3FuF2m/g8NvZEH1yX5RDI34ntgOHY+M0wLrdF08nZJ3DSzJ5d623sRZebKHvhX8iNzCxUYTG2O43xgGawfZDRpgFoSlC1Ywz5XtfMuJTizfdWszfTYPxqI1wYYny+gYJh+i7NfO9uv0H+s/e+nU989Q9mbHN44yZ89dP3dcYCZA0O0P+qzZ4MD/kHNzCM4vVT9Zg+ePXixclt//D7X+f/vP3HCF9sZ6i5nzea4Q22k1V1H9W7bSrzj5Ot3piRHH1n/rf4xpGnef7luslljU1dNM7yEfBk+/FvKCYS0Qx3DjLcMcBwfR/QN7nNjpp8rl5tAOCujTU8nF3DwOnZk/C9V9twe0xCwanPTSoWuAMoM3GJVm245vjXtXbo4dkm40tdprUJ1Za8icyMDZ/FLP9I0o6/WMrKwpX39ORz03+AcMef4Sr5NMrwTds21PHH2H3/vsIRipSlXLiKPonyVKPcRRiuIpzxepzRU0tO4gohxLqnQKkUO7leDye9d5AkrhBrVF5lHnlVefQ2zj6ru1gfimrB0/ZMzHVN7g9w8XhHzHVWboSz16YqJ+85XERBV7TXatXhPILXp+oeX/Ie49qpaML03nsK0RduzhnTvMk1y4JZkrhag1VWjp1dwOiIzVDrAIHmYWie/Rb9lWDcUdr5/ke2UDvST7C9mfE4d4dIv9lPWW4hrX3TX/N/feQhuFQ3Y/tgbjkwRCQUoeNctB1GoLqR9Cw/dxY9//Jz/8Lv7n07gdaphOpgYx9nG+EsO8iqOkr1bpuq/FfJUmdQKprk/61jr/LY2SpGRwMzjm8r8JcX4C3MYaRvlN4bHfT1xK4kvmVn0Mf303y8/577cM73MtAbTeCW7anEHg8y2jNMen4m7gwfpmXghCNYow4XTkz10zWM2c/sxkeDOIaJ4ax89Z6RyF6uRnzaeqS84X4gI9lRLIrqPo1KYnsAZa2u9+tOyszEXfYLMde5Cj+OM/wKOpyoSQPFamDmvgMz7S6wsjHTdkxbZ3irMbzVyQlMCCGEiJP1cc+dEOvUwz/9aLJDEAuUyEpcrWdPGI0Mz7Xf9JiMab8xpo9ZlntbIsycP4m06Ku4bjfmpq2EN++jw6rk+uVR6l5poPN8M4G+OV7ECro9MffJN2+nvK6OYNfM2/7jwQ6G+cyxd0xbVpqTzebWm2Tv3Tajj0D3SOxbuJ9/4WXuvXd6D8yeoUH+pOVVLF/sfQYb+zj7jUG+/lfb+Pozn+JMx0/SY99LqdnML75/6v52l2ny2N5d/MLjjxHuGqezoY/G12/SeyP2RYM7jbb28YsPPkHkdBdOOPr5yirLofd6Gz3XOwj0j9JzvZ2203U0v36D1jMN5PqnV0N70j2zH0CDk5G1oFjiTc2RXF7+4DMrwtciPZTcizaLZ4I7M0mHjja8cfp+mJzjrwBl+HCV/BxYc/c2FWuXq+SzuIs/hZl5ZEYCVwghhFgrpBJXiDVs8/1bkh2CWCDHTuBMn7MkcYNWHk1n50iE3JFnnZbT1dPjLQi2ANHkkaPMee9sMbWmZncxQ71j9LQOzTx0OIJVXILOLmAkoOi+2o59MrUrrNTEG/Thx7eSefl6wo+3oX/6ddjfftsT0NFC5MppsjfVQHoO4bEg460d2ERm7G9M9E49f+4K5RVltDRPTfJ1+uY1gu84inl+7vd8sKmfc01wjg34i3ezfb/JT7+tlpyAl3BdD6G2cSJtrYzMOcrsek5co2RbJe2X21BK4Uv3MNreN+v2Y209RD+4t2YWj/1JtNwmbzqai9VwMeb6RFNm4pK466WdAmP9ELHAmvnZTkWmWYMa+V4CD+DH3P4nOI1fRA+dnlruKcM68G1077PgLUnc8VOA6d+Pp+p/Eu78C5yRV5MdjlgpRhqu4k9hZT+e7EiEEGJNU6ReO4V1cc57B0niCrGG5ZTl4Pa5CQVCyQ5FzEMnshJ3luUhMwe9qOTx1K9JHZjejzK9px5/7l2M9I0xYlu4tu7C0ZDujKOvz0xoDl++QU5pAQ0dU+k9l9+Ht6aYkZCmK+Bl7Oog0LyI+JLLBh45VEVxXcOKzJkV7BrkHQcf4GsnXsDrcnFgfGTyuJHmaEsFBXg13Le9mbs2mpyvz8WywOXStNdFK6ZHR8eoqamalsQFeLH9OsdYeOXgSMcQ578JFcW59HQNYgeXf9u4UpCe7QUgpzKPnhtz96UY7hgkPTON0aFo5+HR/tgTqb3pvhyykpTABVCJPOVU66SdAkAwHazBZEcxL+UqR7UkMIELqIxdGNmH0P13TUviKl8FynChCtZHgsvwVOKp/E0iA98j3P5F0MH5dxKrj/KgXIUoKwdXyc9heMqTHZEQQgixIiSJK8QappSi+lANV1+4kuxQxDwSOQHTbO0U0oKNKGPDghPI+vbUpDM9+asUVG/J4fwrY1w43jC5fOO+CgpijOWEIgTTsvEUWLhLc6nKC1Lm7ieke7nebjDaODA5Q/lqcalrhHtCA4QXMSHbcr25ei9fO/ECX3j7k+iB2P2vlYLggCZz6CWO3DYX0Cu5myf/fP78ZY4evYcXX3xlctnXTxznkZ1PERmdfSo2rcFwWyjLwglEtwt09FG+bwuNr83dF3mhxrSB2l5Nj6OJVPsIBSOEwzYlFTl03ejGcRwiIZvqrYUErzbisqcqlMdHYydwbCP26Y/WMzpRJEYCj6HV+jm1MzpcOLXJjmJuhmsjRtfpxFaKpNViVP0MADp4R/W8szoqlePNyn4MI20n4Y4/w/BsINL7j8kOSSyLwsx6GCv3HShXMZjpqHX0/zohhBDiFvntJ8Qat+m+zZLEXQUcJ3HtFGZLEI96a+dM4Ko76kmnTcZkzGypXpIR5Pwdy0YGx6clca3MdCIVlfQ7HjZkjfCm/UO420+jW6cmw8oHXvNsIhJKYIuJBLinPJ3wGy3zbxhHGa3RStMn090wR2vg0bpOfIUm3DaJl3lHtrKlqYOy0ioyM6L9M23HpqWmGLsuhGM7KEPh2A6RUIRIyCYSjmCHouOl56ZTw1Syt//sdXJqSuivW34LjLGgzdnjMydryy7IoKdlqufwGy9Fq7rzytxsPFCAy22hgd6WmX2JgzFOfyL+LK75N7G94+SyY55PQhN66yix4Zx6ESr2gXvmZHqpwrE7MMIzW8bEiyp+GrP2v6OMaA9rs+a/ERmrg9HL0Q30+r0Tx3CX4qn8jeif07YTav4VZr83RSSLkXEvhm8rysrD8G0DZxx76AUivf8KgLviCxjp+0C5Vt3FXSGEWFt0yrVTWI+/19fPmb4Q69Rdb7uL//yt/0h2GGIeQ10jNO87TEXza/EffJZK3LOdB4A5bk+fkai97ZdkjMxw3kgD4J+2rL9jkKpsD+HKKjpCbq5d7GLkQjOf+0Aa/rqTd446ybFX1y9kT6YX58rMRGOiGWludldWoDrmbjNgjwUxCmtxOq5NLnNZ0/9+bW3T1dlLV2fP5LJ/D7/AfWPb5q3WHu0b5UZmDtrRaK1xbE1uwMJrGDOqthfL0LH3D4djVzz3tg7Q2zoAQF55Tsxtxm0DrUF7POA4jJRt5NkzAQyzl+0rMddZIitxWUftFEKjEPSmdBIXHQbTA5HltxeJxch/fDKBC6Dc+Vh7/wVGb6DHm8EtE30BmBn34C7/PPbI69gD32U9fulLRVbhx7Dy3jcjOWv4NmPlvRsdGcDwVicpOiGEECL1SBJXiDUupzwXb6aP8aEU/pIrCI+HuXKqjfJCNaMCdj5aw8s5+xkZi6A1OJrJRJqjNfe0w5sm/m/fa1byp2fuw3IpbG1BSSVaa1DRSltnIjl76wtVwbYsNBrDMKgfVbRkbsfRmldbwLFreLC4m6LeqwB4B9rIyNvLcG+0X64yFblby/jWySbCN9qmxexzYvcqvWW1JXGLtpXSf3rlK97Hs91sL1vYZEW2Ox/FVBLXY96RxI3RH/lqcx1vf+gBes7MX1EbGJredqHzRhc7j2xk+Oy1WfZYoOYOvGluxsemVxRefq2enYeraTzVOOuudiR2ovfl55p4mUIAfBkeAlejrSiyCzNmbKs1DG3YzpjhpbDjKuYd/aBTzbpK4gIqaKFn/rWlDNOoQEUS9/8Gu+53UHf9E8pMn1ymlAX+rSj/1oQddzUyM+/HzLwfO/MBwl1/jR6/QbSbuVhJyl2O4duGmfMkZtqu2bezclBW7AtxQgghxHolSVwh1jilFIUbC2k6PXuiQ6SGSDBCT81BCupeX9R+2jR47eWmWdeXFJXQXVWDR48wonK4cq5ruaFOqnyinCKiSVylILsgneHeUfxFWYyaLs68tLTqVNOlsMOrJ5FrJKmq66adxYOb90DH5Xm3DfRGCJlZvMEmzg/5aQp52LY5mhjVjiY93UtXRz9aR5P2pmlgWSav9J5nW3oFhmVguExMl4UyDQzLRFkTPw2FMgxQoA2FUgqNoscxcSuFWkbTZ2d4lM27azn3asOMdabLxPJYRIKx+37as1TrTntfhqf65g50DfOD9G2UlaVT4ItgOmHONGpan+3hoUcqUj6Buy6dvgEPZ4OZmv+/0MYy28K48sEZB3sk9vqxGzjNX8Lc8DPLO846YvoPYqTtwRl5Fe2MYQ8+jzOa+DYq65byYqRtx/Buxsp9CuWS6nAhhFitlJGa51vriSRxhVgHNt+3WZK4q8TVi/3k+xZXjWs4DumZXkaHYk9A9dJz7bxETbxCnKauw2Z3XhEtaRswvGk0f7uV9IIM+oKavvbuWfeb//UpVtPtroGRxNwqPZfO2i088606TNOg5f5jvCXtKmkj09sqDPgyueAr4uyww83jQ9Q3ZjM6Ek347z+8ncb61sltc3IyMEyHcDiMY8Puu3by+onXeOZUB9n7f5T+i0ubIOnxoxU412e/yLAQaeEwuzfn4y/Noa1tkIZrXXjTPdS9OvdFAidGdfF82ut7aa+fPknclr2lFHXEs5oyUZ9tjRVsTtDYqUl3Xce48SjOlpm9j1OCXl5ltFn731G5D+C0fQWn8Y9BGeDcOWHf6uofngqU4cbMvB8AK/sJIgPfI9z2+8D6nAhu+RRGxn0oMxMMN8rMwvDWABZG+l3TWn4IIYQQYukkiSvEOrD7yT0884ffT3YYYgGGe0YIHdmMp+nqovbLyk2bNYmbSJfPtnOZdNIyhqnNC+PN9DGiLPra++bcT+m5KyQNQ62qm1x7b3biW8Hj9dds5N+/Xw9E2yCYys+/nCnl/vs2Uxy4iW+wBaXgd7rTePXMqcn99u7dxYWzN6Mxdw9MG9N2ogncW/RtiaFmruFf4oWAbtsib0l7TjFNg77mPvqao5+r3ZvyyajIpbd9kNbrs18siCygEnchrp5p45rhp2ZHLdVFFrmDLbj7ll7RvpzK5Lnse8qHGpm7P/JapK9dhM0l0dsBUonyYAZtVPYR9MDLSxsiaz/K9GJW/DhG3iNgpuN0/itO4x9FN7ByMMo+Er+Y1ykr+zFwgoQ7vpjsUFYlV8nPYOW8JdlhCCGEEEuilCoHfh14AsgjOnHMvwO/prVeUKWAUup3gQPAZqJzdQeAxolx/lhr3Tv73gsnSVwh1oGS7aXkVeXR2xiX/2+IBcouzaZiTyX9rf30NvUSGIj2gb2zR7HlsdCOnrz1u1NnU7nIY2Vmemibf7OE2bWnjKFr7Wx96z5OfX/uW/tLNxaS9sg+ePnbBK7E3laZKZaMmYcTiSR0sqrJ46DoqN3Kfz5zM9rLGMgr8DNwoYVIMML3vxsEssnIL6dyUxZvnPrGtP19aVPVUE0NHfh8XgKBaPI/HJ5egXZ7j9zXTr3OU1u3MNyw+Irjaxc7uDtteS0VvGmuac/7Wvroa4kmdDdsyCa7Io/ermGar05PrDqR+FUoakdz83wHN89Hn7t9ZXh8bjw+F26vyaYNaVQ0nJp7kATacCiNUuMb67LFpx5sQw3vQmem1u845S7D2vhHgCZy+u0wdmNxA6RtRN02MZlKi15IMYreHU3iGh7MLf8D5ZK+ofFg5rwFe/AZnMDFZIeyOihv9DOe+1ZJ4AohxHqgwFApdqdkHL5/KaVqgeNAIfB14ApwCPgZ4Aml1JEFJmB/FjgNfB/oAtKBu4EvAD+ulLpba73sW+YkiSvEOmBaJtsf3cmLX3oh2aGsC8pQvO8PPsC+d+7HMKYmjwoMBRgfCpBTnktPQw/nvvkGFXsq2HTfZoJjQTqudnDxexdov9BM3pG9DL5xlcjI3BOA3eL3u+bfKEG2H6ii/2IzP/kPn2Tr0S04jsPz/3iCtuudpGX6CAfD/OefPo/lMvnAF97GQz96GMMwGNu5gZFTJ+n6u6/MGDPVCurm40QcSOBfgYNipLqG11pD3Pze9ETQoT2VtJ+on7ZsuGeEjiwvgbHp1dldXT1TYzoOm2qruHAhWvVt35Hw9Lin3/4aKRogX5XjzXJjekwwFMqMTvyl0fgNH9rRaM1ENwyNUgZaa0wdwKlf+mUGl2XMuq6/dYD+1gEAKiuyyK3KY2goSMPFtiW1U1ioUCBMKBBmeOL52HCIrJ3bSG+7iRkOzbmvjnMlbm6lm501z0Fg7uOuZao5jN6R7Cims/xHJyaJVBiZ+3AWkcQ1Sj6Aytofc53yFGLt/0+wsqYlecXyKKUwc94sSdz5KDfuit/ASN+LUrP/v1kIIYRYJf6UaAL301rrP7q1UCn1+0QTs78FfHIB42RqrWfcGquU+i3gl4BfBH5yucFKEleIdaJk68JmsBfLd+wnHuTAuw/OWO7L9OHLjN50n78hn4c+9fDkOk+ah6q9VVTtrZpcFhkN0PvqGzT/v+/Qf/rSnMf0e5OT9czIScPqHeJDf/4Rth7dAoBhGDz0gcPTtnvHzz6K5TanJbXTtm0nbdt2hk+8TuDq9H6jhrHKsrgolGmgE5A0DJSV8b2GCO3PzOwrm1fgp+d8S8z9dO7MX/E3bzSRk5nH8FD04kBOdvbkukhkegmnaU3/O3jt/OsUhsJE6mOXelb4Cxkfjp1EzHpwE5kx1yyMucCr/oMdgwx2DAJQmOOjaHMxo2Nh6i+0YkcSWzkw0DXMfzwLpiuPqi0FvHnvGKNXOgn1Dc/c2IlfLO50g7sfvAQDc7cwWeucGxdhe3lyrgAZ6SgrFx2aKK4wM3HlvBMr552Tm6iMndDxLwsbL30L5sb/PucmKq12qdGKORhpezBz3g46iBNsQGGg7UF0qB3pPQzKuxUr7x2Y/tgXGIQQQojVRClVAzwGNAB/csfqXwV+HPigUuqzWus5ZziOlcCd8C9Ek7iblhdtlCRxhVgnTv2bzLwcizfTh+U2GemZZebvBcoszqJ0eylV+zbwyKcfjUtsVrqPoofvpujhuxk4f41rX/wKg+evxdw2PY5VoEopDjy2nWsnGxnsnft9OXx0I2//qYfZdO/GObdze2cPsOQn/gsN//0XccZuqzpebaW4kLAk7tcvjTEwy+czVhXuLS3j0bt+LNMkYtu4LIuSkmJKios5fTJ6USAcmkrI2vb05Ky64++gu6+T+46WculE7LuAzDmqZYfHwstK4i6lFUNgMEDDxHuTn+mleEsJwbBN/cV2goHETURnh23qLnSQc/81dh0+zZB1H71D1QSGVPSOLwXu7GUc4PY5/xQce08vRu/15Ya9+g13oobuQmclvqWC8tSAPYi2h7Gy34Yr9z0oM53I4DPoSDdW9pujEzzdvk/O/XOMaKDyHkRlHQAngsrcm9gXIGZluItwl/z0jOU6Mog9/DL2wPdwAheSEFnyKFcxRvo+jPS9mJnHZvxuEEIIsT4oQKnUuqAZh99ID038/J7WetqL01oPK6VeJprkvRv4wRKP8daJn+eWuP80ksQVYp3ILFhOCmVtMiyDn/3Wz5FfXUBoLETjqQa+9bvfpOlM48L2Nw32v+sARz92P2W7yhP6xSZ712YO/PkXaPz7/6Thb79OZHj6hcA0Y/kzapfU5FNWW8iP/tKTbD1YzRsvXOMX3jxzkpfc4iw27a3gvqf2cuzdB3B5lverJG37Dgo/9BE6/vxPpxauwi+Jifr7T/d7Zk3ijjbPXn15/kIPBVRP9UiNQKAZMium+mc2NXZM/lkpRVqaj7GxwOTzO/UEGgAz5vHcPhej/bEvQNsxKk+11mAZYJngc4NSaMMAQ0WXK4U2FBiKgGt57+348DgNJ6MJXb/bYtPBSrRpUn+xnbHhxEwIaGs3Ck1W5EWy0l6EtNvW5e7mCmVLGve+DyjGx9yc/Lcg931A4e59NU4Rr35q0EBnLXTrWxcdFvdlxEy/G3fp51FKoXUYpaYuUFlZj8y+o5WJUfYRdKAJPXIJQtF/e0bNL2MUvxNlps2+r0g6ZWVh5TyJcpcTavolmLXYJgUoN4b/EGb6XnSkn8jAdyAyAMx+nqDclRjpezG81WD4UMqLcheBmYmy8qVtghBCiFS2VSkVc2IKrfV8t45smfgZu1IKrhNN4m5mgUlcpdTPA34gi+hEZ/cRTeD+zkL2n48kcYVYJz7wxx9Ea83Z/ziT7FBSxvaHd1BQUwiAJ93D5vu3sPn+LbSca6bhVANtl1oJjYVIy0nH5XUx2jtCJBTBdJlkl+Zw+H2Hya3IW7F4Dcui+sNPUfmeJxmpb2asoZXw4Aidz7/Gv59eXhL34OM7+Pw//Bhuz1RCwu2b+rNhKJ761IO857OPk5XvX9axYsl/6p2EOzoYeO5Z7KHBuI+/mj1SZfG3TQonRiLUneaOsQd4q7IZvtAec11nSz9bd5ehAMNSlFRvjiZUFbgt9+SEZhkZPh469tjkflpHH1seyGV8fJyIbeM4NuFImEjEJpTVx3hGP+hoVe+tyt6IbVNnRTgRcgiHIoTDNuFQZFF9Yffu28iCc3PziIQiNJ+NtqbwukxqDlTgmCZ1F9oYH41fT9mwjv13A6D0Yv+9ajYf81NSNUTG6IvghDj2kQfx9z+zvCDXGH3lBlRkznsRyJX/0YlWBxpn9BTBzi+CPbCgY7jyPzR5geP2BO58lOnDrPmFaJyhXiJnn4ZQN0bufZLAXUXM9N14N32FSO+/Een9F1KtxYLhP4Sr6CcxPOWTy1yFH0HbIzjjN1FGGmDjhNox0nagjDR0ZADlLpMKWyGEEOvRra8Ys30BvbU8exFj/jxQdNvz7wAf0Vp3Ly602CSJK8Q6YZgGOWUyg/UtxVuKeedvvzvmuvLdFZTvrljhiBbO9LrJ2lZL1rZoT8TK9z7J1v4xXvv2eY5/4w1Ofv8SpmVw17Et+LPTMC2Dis1FpGX6GOwe5uKrdZz47tTELXklWXz+76cncAG2HtzA/ke20Xy1g8/++YfY88DmhL6ukk/+JMU/9hNo2+b1u38+ocdaTXwtLTz98Eb+/aU2bGUTHrOZuDEfl98bcx8nL/ZygLbGHkaHr9HR0TljXVlhLQP90R6uZeXFNDXP7Ld75L4DHH/l9Izl27dv4sqVmzGPmZmZsayWrf2Do3FL4t7ODts0vxFtD5HmNtl4oALHMqm/0E5gJLissSN6jgSfXniyeNP9aWyqPo8xcA0GppZLAncm3XUd1f8EOrdnzu3MjPtRKlpRbvoP41GfI9j6ywAodwWu3PeirALssdM4oydBGRjebRhpezA8G5Ydp3LnYW75nxAZRvmWP55YWcrKxVX0CczsJ9DhLnS4g0j/N9HjV5MUkBcz+zGsvB/BcBfH3sT0Y6bvmXxu+LZOWyeEEELMT6MWOE/FytEAVxZQcbtUt65wLviFa62LAZRSRcC9RCtwzyil3qK1nvklapEkiSvEOnL1hSR9wUgBlsdi89EtFG4sYvujO6g5XDNtkq3VLiMnjUfef5hH3n94ssJxtqoarTUv/8cbfOmX/42Ohl782Wkxe9Yqpfitf/+phMY945imSWg0SHhseQm0tSan7gZ3P5jH8e4mOhu62FRdS6aVTcAfQe1KxzY1SoM1qLGbAvSMj+H2mri9Ji6fhdtrYLkNXG4DDJuguzZmEvd2ziz9fVta2tFaz/h8zfXvyXEcpm5fX7xIOEKiT1ns0FRC1+cyqT1QAS6LhsudjAyMzbP3TJG5KnGdhfXkzSx1s6X0WRjoX/Tx1yvVMILOnWODiVvFb2em78VV8OM4gUu4Cj6G4Yomwsy0nZD/oYTEaWQdSMi4YuUYnnKYqHg1s9+EHr+BE7hAuPsfwE78v1nlrcVwV+Eq/i8oSy7SCyGEEEtwq9J2tnqRzDu2WzCtdSfwNaXUaaLtGr4C7Fx0hHeQJK4Q60j1oRraLrUmO4yk2HjvJj7xlR9PdhgrYr5bIpVS3Pf2uzj8pp08/9WT5Jdmr0xgC+SEl9/fNxkW0x5gKcxwENt26O7uo7u7j/z8XH44FmI8MD3h7XJZmJdH6R7smXG6cd/Rw/zwhR9y5MjdM8YvLimiv3to8vNjO7GTuI0NrWzbvokrl6dX3VpW7F65cGvStKUncWO1kkik2yt0LUOxbU8pLr+X5hs99HcOLWiMiDNHJe4CkrgZRS7ue+wq9EsCdzGc66dg9x6wZv5/xMx8DDNtL8qaeZ7uynkKcp5KfIBiTVJKoXybMHybMLMewxm7QLj7r9DjN27bymSqSTkoVyk63M5UcY8BOKA8oEwM3w6c8WugTJThQzvjYI9gZj2MmfUIhm8TyvCt3IsUQggh1p5bVW6z3XK6aeLnbD1z56W1blRKXQLuUkrla63nvmVsHpLEFWIdOfSeQ9S9fpP2S23JDmVFFG4s4oGfOEZWcRab79sy/w7rjMtt8egHZibzkk768k3SWtNf6uesFeC7r7/E5s2bJtdt3lLLq8fPztgnryCL6w2zTM43kStoaGicUU3b0d5JRfFG+nqjScpwePZEY3Z2xoxlc1XiRpO4C+8feicnwQnyuWhH03bb/zM3by/Cl+enrb6P7pbZE6zhOZK4ypm7nULRVi8H9r+G6l8f/6+Oq3AA1ZWLLu2aWqbcWDnvxpX3XpSSU1+RWMpMx8w4jOE/QKTva+hwJ4ZvK6b/ME7gGs74ddAhrNx3YI+8hj30AspVhCv/R9F6PJqYNdJRykTrCGgbZXgAYt4FIYQQQqwUZaRaO4Vle27i52NKKUNrPVnFopTKAI4AAWC5MwmXTvy059xqAeRMVoh1pGJPJQefPsR//Nq/JzuUhKs+VMMH//TDZKdYlamY33r9ghrKyaYjt5D+kGZwLMTA4DiudIuvvfgPE+0ImDZD+KkTF2KOU1KWy/WG2MfQE1nc1tZ2qqqqaW6eniRMS/dOJnEjkdnPMc6evUR6uo/R0cDksvmTuEtnzxHLSuu83gnXo60oajbmkVmSzWDfGE3XOrHDU9XLEWf2ymTsaPV0eoGLe946wLN/68cJO+RWetjz0CjpwZMwEpe5D9anG60YtXeh3BUYrhIMTy1m+r5kRyXWGaVMXHnTe++b/n2Y/qnPopX1MFbWw1P73HE3p1IW3HbhYb3+fhRCCCESQWt9Uyn1PeAx4FPAH922+teAdOD/aK1HAVR0VttaIKy1nrwtUSm1FRjQWnfcPr6Kfnn7DaAQOK61XvYtdpLEFWKdOfj0IV752+N013XNv/EqtfPxXXzkSx/DMNdOz1uxNtleD91lVVzvj9DRM0TLqZl9q2vKa7jRFL0lVxnRL/CZmX5GhmP3DXaYvcpT39aWoLy8ZEYS17ytJUIkMntbi8DYOHffs4/XXj07uWyu5EJ4mS0yVrqdwkL1NvbS29gLQI7HomhnKVa6h77uYWxnjjulIiFQcOyJc6jeRp58dz7adKOGW0G6Jyybbr2Et+w7KGOORLoQQgghhBDwk8Bx4A+VUg8Dl4HDwINE2yj88m3blk2sbwQ23Lb8CeB/KaV+CNwEeoEi4AGgBugAfiwewUoSV4h1Jj03nR//h0/yxTf/PiO9I3EZ05/vJzAUwA4lv1rO8lg89evvkATuKpbo3rKpwjEMnlWFXPleNEG7+a5KYGb15e7qA1NJ3IkJUg0zdnLKNA0uXb486zFvf29tZ2Zi1bpt3MhtiVetNS6XicttYbksLMvE0WFKywqiFbgK0v0eajaWYRgGLreFaRrRPpEK/P4M6tsCM463UPn5mdCU2r2Sw8EILRdaphYcmn1iM+wgaI0aaQE0jHUj9XVxZIfRg62onMpkRyKEEEIIsTYoUCrFvqfF4QR6ohr3APDrRJOxTwLtwB8Cv6a17lvAMM8Af0G0/cIeIBsYJZoE/lvgDxc4zrwkiSvEOpRXmcc7fvNd/O1/+Ztpy72ZPnwZXvpbF1YKllWSRe09G3nLL72NjmvtfPnDf4kdTk4i15vp4+jHjnLovXeTW5GXlBhEnKzSJK6ao51ALDerNnHlmeuTz6+dbaKoLIfOtun//uzhqXFvtWkKBWNX4W7bVcUrr7806zFvb2tw82bdjP6K7d2N+HMNSkoyuXr1CoZbEQ6HCYwH4I5DNreeoaZmB00N7QBcv3lx1uMWFxfhZ+l9qWvz8hhr6lzy/skQsec+xSrakgZKLjYlgireicosnX9DIYQQQgix7mmtm4GPLmC7BmKkjrXWF4i2Y0g4SeIKsU7tectdfOPXv47pNulv6cexHR7/ucc58PQhTv/bKSyPRU55Do2nGhjpGWGoa4jBjkGyS7Mp3lLCkQ8fIaMgc3K87NJs3v07P8I/f/Yfk/J6HvvMYxz75ENJObaIs1Xa88/0urHH556w6hbb6+G5lxtmLC+vLpqRxG261k1NeQ11LXU0N0crPYPBCLEuPWtj7uPb9lTP1u6uHmpqN9JQ3zy1rDvaGqCgIJuRkZF5q6LLKwpoamqfcxuYuzXDQgSvxuXC9YqynbkTtAe3/lscpjYQMSkDZcoprhBCCCGEWFvkDFeIdcowDX7l1K8BEAlF6G/pI7+6AKUURz9+/+R2W49tW/CYh993N+Mj43zzt79BJLiytz5ve3j7ih5PiDuZHteCt+0tqyR48eaM5edevsHug7WcOzG1LjQeZm/NYepa6mhqbuHeu+/l1IkLVFaVUlJaTN2NFnp7+vFn+Dhz5uycxw0Gpyd5y8uKpyVxb7lw4ToHD97LyZOvTE6qFsuF829gmta8E5ctd2IzJwVatSyWo6XKNln08PwXFoQQQgghxOKkXDuFdUi+YQghsNwWBTWFcZn1+IEfO8ZHv/xx3Glz9IOMM8My8Pi9K3Y8IWIx3QtP4p7viN0OQWtN3YU2cvIzpi2//lonBbkFALS0NmGaJk2Nbbz2ymk8XpPikgK27CifkaS9k21Pv7gyNjY267anT1/mvvsemHO8vr5+9u6butBTU1tFfn4u27Zt4sCBu9hz13Z2795GbW3VnOPMx7BW3+mKba++mNeM0OyfayGEEEIIIVYr+YYhhIi7bQ9t52P/9xN4/J6EH+ueD97L537w38guyU74scQKWaXtFAzXwm9u6WgfnHXd+FiI6k3T+3maljFZEdvU3MJdtyVOW5rbGQuMYjvzt3IYG5s+udiVK1ejE5PN4vjxN3jggWNzjhkKjnDg4F1UVJRQX9fAwMAAly5d4cSJU5w9c5433rjA2bPn541tLsqz+m4cCkfkFCtpwmPrZoJEIYQQQgixfsg3DCFEQmy+fws/993PUVhbmJDxlaHY85a7eODHjlG0qSghxxBiMZS5sF+pWinGRmNX4t5y5XQjabddBKndX0jvQO/kc8s1/VgD/YNztj2YCnJ6gnxkZJStW2vn3OXll89x6NDhWdefPn2attZWmppacByHcDg8Y5vl9sQ1FvjephLbWZ0XI9YErSEcmH87IYQQQgixIApQhk6tR7LflCRYfd+KhBCrRkF1Ae/4jXclZOwjH76PD//FRyncKAlckRrUHBWttwsWFjI+NnfVbHA8xLb9Uy0I+oPd09aPj48vPkDAidGbNjc3e979Ll1qYuvWrbOur64unXUdsPCqSA2WaeJL8+DPSCM3N5PC4pxYc7ilvEhkFQa9loRGkx2BEEIIIYQQcbX67k8UQqwqmx/YQmZxFkMds98+vhim22TfU/t50y+8OS7jidSzalNfxsIit0ZH8KV7CNxRjWu5Fd4dQbr7eunp6ePq8yepqCiluqIKrAhFxYV0dnQB0N3dNWPcW2lSrTWmaeJyuXC5LCzLwu22ME2T7OxMDLMKl2VhmhaGaeDxuDlwcB8u08S0TAxl4PGk4UwmIVV0cENTUVFFMBggHAlPJma11oTCQfYf2IrWDlprbNuOVgZrcLQDWuNx9TEyOoLjaCKRCJFImP1lj9DfOE4wGMYO29i2AxEgEj1kkAhBIri2uQn1rq4+p1KJm1w6PLZ6/18ihBBCCCFEDJLEFUIklFKKJ//rk/zTz/3jssZJz03nM9/8Ofz5GXjSE99rVyTPau1lqdTCKnGtkVEevXcr//H9a2Tmp1OwNYOunj5GhsdI8/ppbHxjctvm5jaam9smn991106CwSDhSISS0nza23puG9lGqQiOYxOJQCQSIBCAu+85wCuvvApAS2s9hYUF9HRPXVSpu9mAwksoNFUdXFVVTlfr+IzJDquqS6lvvsDQ8MyLMvv338XJkydnfd1lpZvo7JxeUbxn0yDDgzOrg+9kLGLSuFThzP+yRCKZKze5phBCCCHE2qdRagHt21bU6vzeuBzSTkEIkXAH33OYrQ9um3/DOXzgjz9IXlW+JHDXAe2s0l/G5sLr/iqab7DraBWt4628+so56q630NXRR3v9MI8cfZhHjj7CQ0ePzdjPcRwuX77Ojev1VG4onr7OtrFjtEvo7Oyc9vzOiczGx4Ns3Ta9L25jYwu7926aMVZjfRt7dtyPZc28BjzXBGkAHs/Mf7vNPTfn3GeSubDNUsky2wCLZVKejGSHIIQQQgghRFxJElcIkXBKKT765Y+z5y13LWn/XW/azeajW+IblEhZapXeA31n1epcjHCELX6b8cD03rh93YOcOX6DM8evo8Mzf0W7LO/kn9va26et07Ncib4zuToyMrNXaEZG2oxlwfBwzPHOv3GdY/e9bcbyU6fOUlBQEHMfAJdrZuL3/MWLZBQsoGJyFX4oJImbXLq3LtkhCCGEEEIIEVcJSeIqpT6olNITj08scJ88pdQnlFJfU0rdUEoFlFKDSqmXlFIfV3Pcp6qiPqyUel4p1Texb71S6l+UUpvj98qEEEvl8rr44J9/mLf9ytvxZnjn3wGoubuWp379HXz4Lz+6KmenF+vMAtsp3FJ0tZEtm8tjrrMsk46+lsnnZeWFHLxnOxcuXphcduNGPRWVUxP7GbMc3zSnl7E6Me7z7+7pnrHs7NkLlJbFTsqefO0Sjz301B3jOmzbNnvF/WxJ7qyaWXeZ2jdF//2/6y15PPXmfMor/ZgTldiGgi3bsijOS82Y1wsdCc6/kRBCCCGEWBgFytAp9ViPEyDEvSeuUqoC+CNgBPAvYtengT8D2oHngCagCHgn8CXgTUqpp/UdzRKVUl7gq8BbgKvAPwDDQClwFNgMXFvGSxJCxIlhGBz75EMcePoQr//Ta1z4zjkaTjXE3PbYJx/irZ9/26KqG8Xa4Nirs53CYj+qhlI8WZzF1WstM9btOFjJsy89T05uJmWVeZw69QZ1jTdmbFdaXkBzU7RdgssVu9VIW9v0il0nRruKq1euk+HPnVGlW1aZR1vrzAQvwOuvXOH+I4/ww5efmVzW2Ngcc1sAK0YlLkD3aAtQOOt+wIInjVsp23Zkc7ByjMjV0wA8kGai3rSFF85DdrabXWNnyVCxE/RihSzyoooQQgghhBCpLq5nuCqabfkroBf480Xufg14G1Cutf6A1voXtdYfA7YCzcC7iCZ07/R7RBO4/wPYrrX+qYl9P6y1rgG+u8SXI4RIEH+en4c+9TA/9fWf4c2/9FbSc9OnrX/X/3haErjrmCvNw/b33p/sMBZNL+FScE5TJ0cOTbUKycrxs3lfMc++9DwA1RuLOXXqjVn2huaWlqmJ4JzYx79zorhIJDJjmeM4bNkysyS2t69nxrLbXb3Yxd67Dk0+b2pqZseO7TG3NWfpmXvm/Bu40+Y5HVlEv+Gl07jdCn+GRVaOm7x8Lzl5sRLjOprAvXF9aolt41y9xFH3JXaNnwPACcnMZkkllbhCCCGEEGKNiXcl7qeBh4BjEz8XTGv97CzLO5RSfw781sS4/3prnVKqFvgkcAL45TurdCf2Dy8mDiHEyjEMg4d/6hEe+tTDtF9pp7+lDztss+tNuyWBu465/V42vf1uLv3TD5MdyqIs9TN71IlwKTeT3bu38OzJ71F3YggAn9eH2V3AwweexEgLAQoVcTGmB/BYXn7w4rPU1zexddN26utaCNzRXxeguLiQru6uacsikQgK14xtPd6pUwKtNcUlBUQi4xw+sp1w2OaNUzcmJ05zuSwsl4lpGoRGfVRv2Eh9Q7RSODMzix07dmCa0fWGYWIYBoX5ZWRmZgPRf/uT75dSVOTmEh6ZSuRqdevXucbRmoJCH5VHaqLJZz3R/9fRaK2jE+E5Gu04OJPLHLSj0RpqNqZTPngFHYmAbUd/Og7aticeE7PsOjNn27VqN/KV70xftm1HDgHLiPEOMm0cJyxJ3KSKjCc7AiGEEEKINUWp1XnH5FoStySuUmob8DvAF7XWP1RKLSqJO49bidg7pwl5H9Fq4r8BMpVSbwUqiFYCP6u1nnnvqRAi5SilKN1WSum20mSHIlKEYZnzb5Rqlnjdwdc9yNvu3sfX/vMs9x58gO+c+Ca5uTnsKjvAjQut0DhzH8sdYsf2reRm5ZGblU99XQvdXUPcd/TwZBgaMA1FTU0FWmts28Z2HBzbwTAMbNvGcZzocttmPDhCzcZcDMPkxo3rNDV30dQM6X4vp05eZteu7XS2jrB5exkvvfTKZCxdfVBeUUpOTh79/b28+uqJmK/z4IEM3jh7MfabcLfBlTOx2zYAHDhWQNPZtgW+o9NVllcQ7uhc0r5KT0/sbtqSyaGiXsJXZrbAuJOO0bZCrBzpiSuEEEIIIdaauCRxlVIW8LdE+9j+UjzGvGPsD008vaMehoMTP7OAm0Debeu0UurPgE9rrecth1FKnZpl1dZFhCuEECIO1nolttbAtq00dtuMj4QYON7KXbuqOHuikTcffhv11zuiCdwYFIq9B7dy/rUbdIdtRtJG2bllBxeuXqSu6dSMVgmLkZObQW9v7/TjGdFfoefPXyIjw89LLzXN2K+luY3tOzYzOnqaUCh28szlmj0xf/7CRdJcJYRnq15dRk/cZbwd06pz3/fWLNSVc4Rnb/s7/bgRqcRNKkniCiGEEEKINSZePXF/BdgLfERrHYjTmLf8DrAT+JbW+s7+trdmQvl14CSwC8gAHiaa1P1J4PNxjkcIIUSCKXM1Tko0e6JRazAK8rG37aC3eifnnBKOv9hG65VOelv6scM2+cOa4qIcLrxWjw5pDh7ZTkZW2rRxSivy2bytkjMvXSUykfAMjAWxerLYvmkbBQX5y3oFmzdtnrHs6tXLk4nh4eGRWfe9dPEaB/bfO3sCfo5k6sjIKJu2z16Jr+faeR7Lqoe1ozcA7d2fi9Vat7jjxmjPIFaQtFMQQgghhIgrpXRKPdajZVfiKqUOEa2+/T2t9Svzbb/IsT8NfBa4Anwwxia3ynragXfclkB+Vin1buA08HNKqd/WWs9sFngbrfX+WWI4BexbSvxCCCGWxliVSdzpVFYmTkkpgxEXrfUDDFwaJDpPZ2yjvSPsK8+lOc/P+UvNnHnpKi63RUlxPm6vC5fbpLW+m65Q/4x9B/tG8QUzKCktpatr9rYEsWRnZ7OhugqfL43MTD+lpWVkZWURiUQIhUKkpfnYvq2MwYERIhEbl9vCNA2UMjAMBWgMw8BQCoXNE48/zvDIIF53Jo42URP/udxujh49wq206u25XtM0yfBmc//BKtATfW11tCWBozUjyzhHW1Yu1XHYtSefnfo69hwJ7FgiIwHaQu/DsGwKrO9gOkPLCEQslrRTEEIIIYQQa82ykri3tVG4RpwrXpVSnwK+CFwCHtZa98XY7NY32e/cWQGstX5DKVUP1ALbgNmn9xZCCJFSVlslrtYwZnnRpklg0w5amobovtEHNxbXx7W/pZ9M0+Dt+7dheiyUywRT4QA2mu0lhbhMA0NHn4dsh+aufq5eayUwGiQnY+5K3MzMLDZuqsWf7icwPk5LSyvt7Z2cvaNXbUfH9ERxYWER586/NmO8jRtruXHjZsxjHTv2CCdejb1uRlxZGbhdHrx9pTEreTc9kLPUlsPYy0ji6uA4d1k3sYcWl8AFcMaDdLwUbWjcU3CUqv2DZIReWnowYnEkiSuEEEIIIdaY5Vbi+oFb916Oz3IL5V8qpf6S6IRnn1nIoEqpzwD/G7hANIHbNcumV4HHgIFZ1t/6FupbyHGFEEKkhpTqiWuZWDlZGJnpKI8H27QIO4pQ2CEwGmZkMMBg1xDnv1nHlgPbuPpiw7IO59gOXdcWPhFXJvDE9o283NxKmmuqZNUwTDZurKGwqAjH0bS1tdPQ0MTp0+cWHVNDQ+yJvIqLi2dN4l67dgmlvAvq0WtHbHoH+7l7+y5ars68ZqvVkueNW1YlbqQn1vXjxQt193P9O1Bw+P2UZHwTyxmMy7iOtwTsMEa4Jy7jrSn2nDdgCSGEEEKIRVBKo4zUamGwHlsqLDeJGwS+PMu6fUT75L5ENNm6oFYLSqlfINoH9yzwqNZ6rm8mPwB+mmjP3DvH8QCbJp42LOTYQgghUsOKVeIqhZWbiZnpR/t82KaLsAPj4xFGh4IM944y0jMKPWPA2LzDXT05c9KvldDb0MPRjRW8EYkev6i4iKGhUa5dr+fa9fplj9/c3MbWrVu5cuXKtOWnTp0mJyeH/v6ZLR7a2to4et9jnD55fd7xw+EwAL682OuXNTeZnTond92vNTCYdy+VB8fJDD237PHC7l3Y4yaurDGsgRdIpWsfSWeHkx2BEEIIIYQQcbWsJO5EC4NPxFqnlPoC0STu32itv3TbchfRFgdhrfXNO/b5PNFJyk4Bj83SQuF23wbqgMeVUo9qrb9/27rPA1nAC1rrjkW9MCGEEEkVrySu1uAuzkPlZuFYbsKOYjxoMzYSYrhvlOGeEXR/kOg1ydWt+0YXpfvz8bg8PL3nR/jH1/6ZQCB+kzsVFhXNSOIGAgEOHjzAD3/4Ysx9xgK9Cxo7FAoDBvXNdUD2zA0MhTfXz3j/yKIzuk7q5HABCPUOcuM7kHfg/ZTlfA/LXloVrZ1Wy3jzMJHONgKAZ8tjpHmuYIwn50JCqpGeuEIIIYQQYq1Z9sRmS1AGXAYagQ23FiqlPkw0gWsDLwKfjnE7bYPW+q9vPdFahyb2+x7wbaXU1ybGPQjcD3QDP56oFyKEECIx4jGxmbsknzYnnbarncDo8oNaBTZklPBftv80/ScGeGT3w/zzi19d9pj5eQWUlpbR2Rk72Xjh4kXcbjeh0Mzb10+dOsXDD7+Vgf5BbNvBcaKPiG0TDoWJRCIU5JXS1dVHb28/DQ0t7N1QQXfz8LRxdNjiUuMIvgwvBeXZ2BGHwZ4RcgozKKvMxmXbKDSj3UMMdwzgy0knLTcDy+fGm2VCCnYb6D3ZwFDWfirvsckKPbOofcNZ9zB0qhOcqZ7LwatXieQW4q/Owxo+E+9wVx/HTnYEQgghhBBrilLLmTFYxEMykrizqZ74aQKfmWWbF4C/vn2B1volpdQB4FeBB4mW8HQCfwH8htY6diM/IYQQKUuZ5rL2d+/YxBsn2wkHFz8h1WqmAw79zQMAVHorlz3eg/c/yvUrHTReH+LAoe143AYXLlzEua3RbF9vH0eO3MvLLx+POYZthzh37tKsx7BUOn29A6iJrre5Fd4ZSVxnovw2MDxO0+Wpm2tG+scwFQQap7fOHxwZhOZo39maPaVTV4xTTHhwmJvfM9jy2CHSQ68vaJ9Q1sMMn7wZLTO/g93XzWC/Qfq+J/AMf4/olHjrlBNJdgRCCCGEEELEVcKSuFrrLwBfiLG8gRjzk8y2/QKPdQl4z1L2FUIIkXoMa+mVuK6iPM6d7iAcXH9JHDs41Qd0vHlpEzttqKpmc+0OerpHOP36VNej0yev0DtyjqysLLZv3wbAxQuXGB4epqNj9onYLl16A4/HTTAYOx7zjr/rzr527jw9ceaYHC0SnjtRaUdSPJHpONSfKmDL3iJckan3scN+Dz0XhynbD9mhb6EUaBQj51piJnAnaYfRU5cJVd1PWsEo5tBJ1LK6Cq9SksQVQgghhBBrTCpV4gohhBAAGNYSK3GVoh0/ocDsScW1bLB1aoKxoc5hdmzYxsWGy7Nuv3njFoqKynC7PJiGCShuXG3lteMzK2cdx6GosJTOrjZeeeVVACzL4q69e/D7M8jPz+fmzTrGxwMEAuPYdjSJ1tXVweHDD3L61PkZYyqlGBmZPmHcxUtX2ZZ/gKG+wNSx9eyJ2Ehk7mSdTrWmuDGEuvu5/NoeXH4ftTvPoXSA9hc70OEw9d+FrJ3vpaLsOMpXjg62LmjMcGM9g43RXrnp6nmUs856xEoSVwghhBAirpSR+ufVa50kcYUQQqScpSZxjZ1baXuxPs7RrB5DXcP489IZ6Y32AL679u5Zk7gPH3uCMydu0tnSsODxKytq6Oya6sMaiUQ4c+YsAMceeJi+vlsJWQ9+fzaGYaC1Rim4a/dddHZ10t7RPrl/aWkx3R0j3N4DX2tN8eYMhl6dSuLazuxJ3M7mATYUpTE2MBZzvb0KkrgAkcERIoMjNPoPEhkLocNTLSIGLzQxfKOW6v2LP20LXr2C3nAv6WmnMSKD8Qw5tdnh+bcRQgghhBBiFYnP9N9CCCFEHJke16L3cZcXcf7VpgREs3ooBYVVeZPP85z8mNttqKrh7Mmb2PbiJn/Kzsybdd3o6PT+w2NjAUZGRhkdHePkyZOMDsBYv4vCzFruPfgQWzdvobW1HX9G2oyxhsb7pj135kjEakeTWZQ163rHTvF2CncYvtpCoLlrxnJnPIhj+JY0ZqihjuH+nTie4uWGt2poqcQVQgghhBBrjFTiCiGESDmGaUQzknP1/rydZdI06sIOy4z0Ht9UAnysNRBzm/LiTZzvvL7osQ3DPeu61rbZ5xF1HIfKmgK6OvsIBsNcPHcD0zR59NibCNsR7IgNaEBhmCZut4vt92RMdtC3sgxq7qmJboJGa9ATPx1Hs7HcYXdZDqBQ2gE0SmuUdrAig9AxW2SrhycnHQba5t9wFpH2FobGy8jYkIk5ei2OkaUoe2k9oYUQQgghRGxKrY473NYySeIKIYRISYapcCILPFHYupmul9ZvG4XbhQNTyavh7hEKcwro6u+eXHbs/kc58/riE7gAw0NTfVUNw6Cmpprs7BxCoSDnzp1n08ad1NU1xNz34pXTQPrkc9u2ef2Viws67rH99zB0avak3AOPesnpvjnr+rWgeHc2zs3lJV/t/h4GRz349xzDPfh8fAJLVdJOQQghhBBCrDHSTkEIIURqUgv7FeWuqeD8yw2JjWUVCQ6PT3u+t+auac+H+pee3BocmGqZcM8993DzZj2nTp3m/PmLHDhwgI0bK2fdt7WthZ27Ny7puPO1fdAL/KysLprq+wup3gtV95ejOq/GZ9RQkOET9Yx5n0Sr2SurVz2pxBVCCCGEiB+lwUixxzqsDJZKXCGEECnJiczfGsFI83K9NYheaNuFdeDOlhJVOVVTf67cwM3rS+8bHAgESU/3EwqFOH78lWnrTp06zbZt2+bcX5uxJx+bj63n7mtrG0ubCC9VeXLTKdtqYtediS7obiXen/DAuYuESw6SUdiKEWiI8+jJp23piSuEEEIIIdaWtVi6IoQQYg0wrPkTc+MVVQx2Dq1ANKuH6Zr+vmWpqUm/aqo3L2vscDjCrh37iURiJ8hyc3Pn3P/VEy+Rmelf9HHnq8SNGGvnmrQyDUp3eLGbLif8WJH2FsKuLQk/TlJIJa4QQgghhFhjJIkrhBAiJRmuuZO47m21XHmtcYWiWT08fu+053pw6s8uc3m3z3s8buouD/PIg29f0v7hcJjN28sXvV/EmTuJ66zq0xmNvyKX/N2l5O8upXqfhVN/bsWOHupfo5MBSiWuEEIIIURcKeWk1GM9WjulK0IIIdaUuSpxzUw/l6/0r2A0q4fLNz1R2980iGVaZGVl01jXtayx8/KyGegd5sxr9Tz+0I8QCA4QjoQwDBOX5aJ/qHPeMTp6Ft/OIRQO4cI163pnFffETSvJIU+fh77o85VOqYYa6ujP2IsOBqOJT6XIrYpP/92kiozPv40QQgghhBCriCRxhRBCpCTDUDGXaw0jhaWMNi29t+ta1tM2MO15JBjhkbsf4WZLLx0dPcsaOyMjffLPJ1+9MmP9gcNbyXugkOdfeHHWMc6dP8OeLQ/Q3NSx4OPatj1HChdsvXqTuKbHhGQWjdo2zkDftEVag4r9z2/V0NJOQQghhBBCrDGSxBVCCJGajNiJOc+OjZw/LgncWDYcquXy8Zszlqd58+jqvLbs8d2eudsxnHztCrm5WTzxyNtwtDMx4ZyK/tTR5CBATX41D5TdDY6OLnNAOxo9+VPjRJzJP6dl+rjI7H/nehVnHMfaBsktNmGelhErxuVe9QlcQNopCCGEEELEkQKUkVqTSa+FU9bFkiSuEEKIlBSrnYKZncGli71JiCa1KUNReaCGK6/UxVyfaabHXL7o49yW3du7exc+Xxo36m7S1T1V4dvXN8hrL0cb8bq8JuOB4IxxuksGqe6uXvBxCyrnnjAtsoorcQv3lkJr6vR2Vq7l9U1OGY4kcYUQQgghxNqyer/1CCGEWNMMa/qvKK1hMLuIscFAkiJKHq0hozCTjIIMLK+FMhTKVGQUZVJ1qJa04hyuHL85Ufk6k2c8PtdsM9IyOHL33RzaeQ/15/u49HoLzmAa9x4+HHP79DRfzOUN7S2U7Sha8HEde+6JC+x1eR0+MZRrrsYVq4gTTnYEQgghhBBCxJVU4gohhEhJhjk9ievetYXzL6VOxeJKKdpczNDgOF2tAzPWjbUO0dU6NO8Ydkd8qhJ7W0epvzx9crRI2KbufDe11Ru4Wd8w/bjO7MnX4fThBR/XjsydxHVWaRI3f1cpnu4zpNKNaWqWNiarjrRTEEIIIYSIHwVKpdJZK+uyn4IkcYUQQqQkZU61U7Dyszl/uj2J0STPQN8YAx3zJ2rnEuoKkpnlZ2hwZFnjDPXHroIeDwSh08OD9x5DGw7KMbAjDs+//tysYz179iXu9R4mND5/xaQdmbtfrK1X3xlc0YEKvJ2vzVo9nSxOaI1MCCaVuEIIIYQQYo2RJK4QQoiUdKudgtbQl5ZHaKw1yRElRyS8/AmvlFLUVFZw9vzlZY0x0D066/rxQJAzr1yftmyuBOXw2CjF9+bT9Pr8yXl7nvfASa086Aym10X+zmICA+MAuDwWvoFzKZfABdCBMbRmWZObadOH46vGGL5EKPMJLKcOY/Q6mF6UvTLtULRU4gohhBBCiDVGkrhCCCFS0q1JtDy7NnP+paYkR5M85VuLufLyzWWPU5SVj9vt4u5DB+hqHGVsOIgz0e4gHIzg83up2pLHxWsX6enpn7F/Xl42dt/cbQ0W68ZwHW5i98293bztFFK4EteT56dsQwC741W8txaOk1ItFKZxbDC94IwvaXc7rZbh1nzs7g5U2g709csY6Rko30Gc0RHSt1fiHnsRZc9+QSA+UvYdFkIIIYRYhTTKSLXzq1SLJ/EkiSuEECIlKdOItlE405HsUJKq+VQ9+ZW59DT1LWucQqOA0oyNXDzeFnP9cP8YF14dI6ewlC33buTK1Rv09k4lc3Nzs+ldZBLXVCa2jl1Fa5kugtqmoDSTdCdEfp4L01RYhsKyFC4XuF0GbhcYhoFhufC6NW4LLAMMpTEMMA2N1z0GnYsKbWUoKNtqYTeurosQ2vKjQktL4obNzdjdl6LjjEXbdzijwzAa7YE8cuoymQd24Rp6Fa3BSd+Esgcwgt3xCX6CUbAlruMJIYQQQgiRbJLEFUIIkZoMRY8nl+Bo7KTjeuFEHLJy05adxNX9EYb7x+bdrr9rhP6uEbTO4NChDbz++hkAKrKKeNORGnTIxok4KAWV3hDadtARBxyNY9s4IRsdsbHDNv+vO5/RsRC1O0uJ+AJ09XXj96VTmFFM25V++i+M8K53pXGg9dTMQMITjwkF+T2oEBCrZWvtIVJryjtN8eEqfIE67MaLyQ5m8Qzv/NvE4FjZhNrnn7Au0GYRUEeJ9PWgA2NAGu6ah/HljaPsIbThxhw+j9JL78+rg8vrIy2EEEIIIUSqkSSuEEKIlGRXVNB0/HSyw0gJbRdaqN1fxc1TS09VjjUPo5RacB9WpRRe91QyL9+TRfuZlsnnuaXZDLfNXT3pskwcR3P9XLSfce22ShrOddBD8+Q2x890cKBwAQGZFjix+5yqpN5KpblzatzK+ytRda8Q3+YTK0cb7kVsm0Yo/X5MOhlt9RHpaJ53n3DbzG1CdTcI1U09d5UfJr2gC3P06oJjmWZckrhCCCGEEHFlrNaz27VDkrhCCCFSUtP13mSHkFJGOgaw3CaR0NImOnOCNuWVhTQ3LrzvgNLG5J/TXT5GmJqUaqhnmKotxQSau1CmgROKzJgMy+d1TXseK398qW4IDtZAY93MlbfH4k2HscFZ1iYniVt8qIw0pw2dVoBWFhoDwxmHvhurNoELwAKSuLZ/F4GhYuyBYSJXlj5h3mzCLU0MtCqskiO48jLxhZ9DLaJPr5YkrhBCCCGEWGMkiSuEECIlGaYx/0bryFDnIBsP1XLl+NInOSstyltUEjcSnEqOepWLkdvXhWzOnO8FTAB2b8wh1DV9QrR03/RkoC/dE/M4Z8Zy2DtPLNqwmH36siQkcRVkq0soj0VoJEykK/q+rurk7S1q/iSuY+YSvHEtsXFoTaSthUgbBFwVmNm5eCtyMM1RrKHX5m63EBxGaz05QaIQQgghhBCrnSRxhRBCpCTHXhPpsLhqv9iCPy+dkd7RJe1fnpGP79BBHEejHQ0atNY4tp5cph0Hx9HYtoPu1Txc83j0zyHXrOO6PBb22MwqSa97+j6WK/Zpxz8/38m+fR50MDh78IY56yq1wBYR8ZS7rQA9eB0NuHwZmDW1BOuWnmBPJVrN/ncN4FgZKMKYufnYfT0rE1Q4hN3dwWh3dKJDz8b7SXO/hgoPz6gAB0A7EBoFj39l4hNCCCGEWMsUKJXMFmYxrMNr9ZLEFUIIkZIiodj9T9ez0GiQ8j1FXF9iEtcZDHPxtfol7bspP2f2dfsqsC/OrMr0eqYnXns6+tFo1B1nXAPDYYbLt+C/eW6OCOaozNYrn/A3LWNykjUdGEYFL+HbuZ/AhQsrHku86XlOD8ddRwmcSO6EbcEb13HK7kJHIvhLBzBHY7R0CI9JElcIIYQQQqwZcq+qEEKIlOTPk+RLLC1vNFF7oGpJ+wa6hpd8XGd89lvX2+p7wZpZKeu+Y1lrQzcbd1bEHOM/L8/T69ea6xb/lU7iavIKBu4IwUY3vE76nh3ELg1dRdTsSVytIdw1W2/ilRVubSLS2cbAmTFCWQ+hUejbYteROdotCCGEEEIIscpIJa4QQoiUJD1xZzfQ0I3X72F8ZI72AzGMdAyRluFlbHjhE0TdzpuXjjINDJeJYRooQ2G4LTAN7PR0bAWOMtAKNAo3ikNHdkR31tEEoGkqsu/ZGu1iqzVag+M49Dma/MfLyKY7mkScrK51UFpT17KVAJVoHW35oCMOTtjGsW3SewqBlZsIr/bRYnTzSzHX2TdPkL5tB2P1HehAIOY2qS/26aHGIJJ1iMj1lhWOZ37DJ25iZO/FGezDVbGB9NwWsCWJK4QQQggRL8pIsXYK65AkcYUQQqQkM0Zlp4gaGxij+lAtlxc5yZlSivIN+Vw7v/gk3MsXmhe9z2J9uyyd95c8E3NdoKea4bqOmOs8uVmJDAsAw2NSdV8hYwMa18iNOadSs5su4isqJzjsx+7tTnhs8RYc8hBJexId0ZPJch0MYg8N41xrT3Z4s3IGoon8cFM94fztksQVQgghhBBriiRxhRBCpCTDkkrcubRfasXlsQgHF9c7ODs7PUERLd9Xvj7CU7+8m7Temb1x56rM1iswCV5afjru1h/iBvQCWhI7PS2407OwqzYQamxIdHhxFbx6NdkhxIcdTnYEQgghhBBCxI18QxZCCJGSVntb0UQLjoxTtbt80ft5UnoaV8WfPr8h9po5k7jz9NONg9GOkUXvo0cHMQau4duxPQERibmMnr1KZDyVP+tCCCGEEKuJBsNJrcec98atTZLEFUIIkZIMU9opzEeHFl9pGBlaWj/clfLMy2P05N0zY7ma4+OgncSewJXcXcLmh5ZYwWxH0I0nJyY8i29cYg6OjQ4lPrkvhBBCCCHESpEkrhBCiJQk7RTm1365DU+6e1H7DLcMJCaYOPpf/5YLpmvaMsOcPQPqRBKYrDMVmWMnoPn0soaxb54gfXsNyuOJU2BiPjqyuFYjQgghhBBCpDL5hiyEECIlKUPKFuejHU1hVf6i9okEwhSV5yYoovh443KQ+vT7py2bM4m7hIrkBXM0ROIzQZbdeAFfRQ5GRmZcxhPzsCWJK4QQQggRD0qBUjrFHsl+V1aeJHGFEEKkJGM9/lZeArfPNf9GdygqzY5/IHH263/tQvtyJp+rOc5YEllxmVaUAU78Kn2djjp8JRmsxx5eK01HZGIzIYQQQgixdkgSVwghREqSdgoLo5eQDPR7U/+W/vauCM/0H51aMEdSXyewnUL2Bn/cx7TbruOurIr7uGI6SeIKIYQQQoi1xEp2AEIIIUQshiUTmy1EKLD4RJW5SiZ8+v2/HuXIL+8hrfcNjDly+onsiZueGYSB+I9rZmbEf9B1Q+OtKcWV78OwFMrUKMNGKQdFBEUYnCBWWiDZgQohhBBCrBnKkDvJkk2SuEIIIVKSIT1xF2RscPGJqkD3SAIiiT+N4uf/tpQ/eXcTaniO7SIRSEDOP6s2B6PptfgPDChpF7IkZk4GOTs19ByHOT4TAMoZXZmghBBCCCGEWAFyr6oQQoiUpOYqvRRRCga75slkxTDcNkCa35uAgOKvrinMly7eP+cZi7YddAIKAyxvAq91Sw530cycDHK2DEDP+YXtYEs7BSGEEEIIsXbIN2QhhBApyTAlyzWf0h3l2OHFtxJQSlFalZeAiBLjX787yoWB9Lk3inPS31+RRX5JIis55fO9GJMJ3MGmhe9khxIWjxBCCCHE+qLBcFLrsQ4nCpZ2CkIIIVKSknYKczLdJqMjS09S5ebMkxRNMX/0z0386ru2oK5ejbnesCx0eOnvhzvLS+7mHDx+hWk6uNpegZbIksebl1p/J51LZWalk7N1GAYWkcAFqcQVQgghhBBrilTiCiGESEmGtFOYlcvnIm9jCR03upY8hmfVvb+K//WtLlwVpXcsVuTt3bSMBK6m7Egp1RVXyRr+Id72F3C1vAhOAhO4YsHMrHRydgRgoH7R+2qpxBVCCCGEEGuIVOIKIYRISYa52pKMKyNvQz7BsKbxXMuyxokMBuMU0coZC0T4q4uKD5elYw+PYrhd5GwpI3DxwpLG81dkUb45iG59Ic6RLoRUms/HzEgjZ8c49N9c2gCSxBVCCCGEiA8FKtXuJFuHp9PyDVkIIURKknYKMxmWwdBgkO7G3mWPNdwysPyAkuBG0xDfGC7EU5hHVmUugVnaKyxE4VYvunWBk2SJFWX4feTsDkH/jaUPIklcIYQQQgixhkgSVwghREqSStyZ0rLTGOoejstYkUCIovLcuIy10l6/0MP3nDLGGxfZI/U2pfeU4uo4EceoFketw4kYFspI85K7x4G+68sbSHriCiGEEEKINUS+IQshhEhJUok7U3AkGNfkdmFJVtzGWmnPPV/PudL9S9o3e3MeGUMvQ3j1tZRY65TXTe4+BX1Xlj+YJHGFEEIIIeJGGTqlHuuRJHGFEEKkJEnizhQeD1Oxo3T+DRfI7/PEbaxk+MdvN9FatHnR+1keE2yZuCzVKLeLvINu6L0Ul/G0TE4nhBBCCCHWEEniCiGESEnSTiE2jzt+74sZWd1XsB1H8+XjAYayixe1X8/5TnD7EhTVQq3u9z7uDIO8u9OhJ449iqUSVwghhBBCrCHyDVkIIURqkhxXTG2XWjFdZlzGCnaPxGWcZBoZDPDXdVkEPWkL3sdXlAGhQAKjWgAtH/Db5R4tg+4z8R3UkSSuEEIIIUTcGE5qPdYhSeIKIYRISdJOITY7ZFNUnR+XsYbbBnB5rLiMlUwtDb384+hGxtPm7vFreiwyNuRQtTUVkteSxL0l60gNRtcP4z+wVOIKIYQQQog1ZPV/cxNCCLE2SQ53VmlZcWoFoKFsQwENV9vjM14SXTrXxnPHNvOQ9zKe8akkrcvvofreNIzRdvRAO9gRdGcSA50kSVwA/95qXH0/SMzgUokrhBBCCCHWEEniCiGESEmmGZ+WAWuR5YrfjTR5eX4a4jZacj33fD3pj27n/vHXAciqzaGkqAXddCH1UqbrvJ2CqzCHjO1pGF3PJ+wYWipxhRBCCCHiQ2mUSrHz11SLZwVIElcIIURqkkrcOcTvzfG51tapwDefqafiyR3cXdpLdvBVdF+qJvLW30kngJmbQdbuLIzuV6AzktiD2aHEji+EEEIIIcQKkp64QgghUpL0xI0tLTuNod749XTVI8G4jZUKtNZ843wYv38AIqmawAX0+pqMwfB5yLl/Azll1zA6XwQnwQlcAHsFjiGEEEIIIcQKWVvlN0IIIdYMpSSJe6fKA9XUnWkm3BO/pq4jrYNxGytV7NtYwrleN/s4n+xQZufYyY5g8ZQifXclVrqJYWpMuxlGWtC5uxmug1BT18x9XCZZB6pwBc9A95WVjVd64gohhBBCxI+xPu8kSyWSxBVCCJGSTJf0xL1dfnUB115vQDvxPXkKDo2TV5RFb+faSOY+cHQzbacaGGvNYM9+C5MUrcZcRZW4yusma385VugijDwPd3QpUJ2vkek3sO9/gJFrgyiXheG28BT7cAUvwECCJi6bj7RTEEIIIYQQa4gkcYUQQqSkjPyMZIeQMgzLQLusuCdwbykuz1kzSVx/WDMKDHQMc9XzKNuD3052SLGtkonN0nZUkpZ2Bfquzr2hdjC7nyMr57ZlfQkNbV4ysZkQQgghhFhLJIkrhBAiJZmWtG2/pXzvBq6+Upew8TPTvQkbeyWlpbnpvTl1S//LZzPYthVSsjNHqvdrdZnk3luK0fUCxK8F88qSJK4QQgghRFwoQKVYO4VUPMVPNPmGLIQQIiUpU35FQbQPbiITuABWJLVOyJbqvsMbiYSmkqMddX3Upx1LXkBz0CndE1eTf28WRtcPkx3I8kgSVwghhBBCrCHyDVkIIURKMoz1eG11usr9G7hxqinhxwn2jib8GImWlZ3G6NWOGcuPXy1NQjQLkMJJ3Oz7aqDrVLLDWD47mOwIhBBCCCGEiBtppyCEECIlqZS8B35lFGwpIWSadLcPYYcTn+wbaunH5bEIB1P8Fv85pKd5CI7OTNrVn++ia/MuCsfPJyGqOaRoOwXf5jKsvheSHUZ8SCWuEEIIIUR8KMBIsYl51+HXRanEFUIIkZLUeqnEVVC0oxz/ljKCGX5GXB4uvtHG9dPNpBdlYbpW4Fe1hrINBYk/TgJlZHhmXXduaNcKRrJAOvUqcc2sdNKzrqdkbEuh7VCyQxBCCCGEECJuJIkrhBAiNa3hSlytNYXby8i/awNjXh/nTzVT90YLg93DjA2PT2536ZU6MjYU4svxJTymvDx/wo+RSMWFmbOuO/vaEGGVWpO36RSrxDX8PnJ2hmGkM9mhxI9U4gohhBBCiDVE2ikIIYRISWu5J27JwVrOvXRzQds2X26noCKH7FIPA20DCYvJ51rdpwQZNszW2TcwNM5NzwNsHf/uisY0p6QncTXuykLceX4Mj8Kt6qEvsRPorbiI9MQVQgghhIgPjVKpNhlyqsWTeFKJK4QQIiWt1XYKJXdVLTiBe0t3cz89/QFKd5QlKCrQo6vz1nOlFI8/tJ2Oi61zbnemLm+FIkpdyuvGf9cGco+Vk38wSGb663jHn8U9+AMYWGMJXJBKXCGEEEIIMS+lVLlS6v8qpdqUUkGlVINS6g+UUjkL3D9PKfUJpdTXlFI3lFIBpdSgUuolpdTHlVJxy72u7rIbIYQQa5ZhrL3rjPmbi7l0pmVJ+waGx6m/2klRaXZCKnJHWgfjPmaipaW5eWjvBjpONc677Y0zXQxWbyAr2JD4wBZk5S5SGBk+svfnYvSegOBVWEMdE+Zkh9Bar+tJEoUQQgghxOyUUrXAcaAQ+DpwBTgE/AzwhFLqiNa6d55hngb+DGgHngOagCLgncCXgDcppZ7WWi+7dFiSuEIIIVKSMtdW4iWrPJem5kHCwaXfRh8aD2O7XRimwrHje/tQcDBAblEmfZ1DcR03UUzT4MHdVXRcmLsC93YXgoc4QkPiglqUlbn9y7e5LDpZWeelFTleatHRSdqUnO4KIYQQQiybsSbbF/wp0QTup7XWf3RroVLq94GfBX4L+OQ8Y1wD3gZ8U2vt3DbGLwGvA+8imtD91+UGu/bKnIQQQogUk5afQc9wmJH+sWWP1Xaji/I9lXGIaqaSstyEjJsIB/ZtoPNy26L2OXM6grOCFbBzcpz5t1kOBdlHq0m3jq+tycoWy16dbUKEEEIIIURiKaVqgMeABuBP7lj9q0Sn3PigUip9rnG01s9qrb9xewJ3YnkH8OcTT4/FI2ZJ4gohhEhJq7EnruVzkV2Zx+13yihToTPT6Y9jhWuipsTK9HsTNHJ8bdxUhL7Zvej9+tuHaPIdSUBEi6cTOLGZmZdJ/n1+rJ5nQSc4WZzqpC+uEEIIIcRatlUpdSrWYwH7PjTx83sxErDDwMtAGnD3MuK7dTIal5N/SeIKIYRISauxJ27e9gquXeuh4K7qyURu8d4aGi+1x/U4ZoLeGyvOLRoSZUt+Jo69tOTkuY4N8Q1mqRKUXEzfVUVOZRP0nE/I+KtOJJjsCIQQQgghVj8FGE5qPZZf87Nl4ue1WdZfn/i5eSmDK6Us4EMTT7+zlDHuJE3ChBBCpKQ49H1fcf09IwBceq2ePfdtZLipi0snG+J+HHuJCcz5hPpGEzJuPGVm+ei8tLg2Cre78Ho3j70pB2+kP45RLYEdAVzEbYIz0yT3aDlG5/OJK9VehbQdSpUGGkIIIYQQIv6uaK33L3HfrImfs83wfGt59hLH/x1gJ/AtrfV3lzjGNKuvzEkIIcS6YLnMZIewaP4s3+Sf33jpBs1dY4TH459Ru3aykcyizLiPO9Q8kPLv+75l9gO2QzaX1ANximaZXO74DFOcS/7dZjSBK6aTdgpCCCGEEGJpbtUCLLq6SCn1aeCzwBXgg/EKSJK4QgghUpIyV9evKK01YyPTb91ORAL31rFyq/LiP66jKa8uiPu48VJZlUfw6vIn6TpzyROHaJZPmctPmGccrCGr8Ar0XY1DRGuQI2XJQgghhBDxoAydUo84uFVpmzXL+sw7tlsQpdSngC8Cl4AHtdZ9SwtvptX1DVkIIcS6YayiJG5uTSFZ2ytoinPv27lEnMS0m8gviH+Fb7zsKMgiPL78ysq2a730ezfGIaJlUku/0V953eQdK8Ez8gMIp34bjKSRSlwhhBBCCBHbrSqI2Xrebpr4OVvP3BmUUp8B/hi4QDSB27Hk6GJYPd+QhRBCrCurKYlrZadz40zzih7TjiSmL643DtWhibKMnOcM10J3xW+wJVKWa0n7eWtKyNszhuo8HueI1iA7lOwIhBBCCCFEanpu4udjSqlpXz6VUhnAESAAvLqQwZRSvwD8b+As0QRuV/xCjVo935CFEEKsK2aK92a9nWGs/NRJbTe7sTzxn59Uj6Vm0qu6poDRiYnj4uHCleR/vpS12L8/Tda9Nfh9J2BoZS8arFrSTkEIIYQQIg40qBR7LL5V7fRXpPVN4HvABuBTd6z+NSAd+IrWehRAKeVSSm1VStXeOZZS6vNEJzI7BTyste5ZVnCziP+3PyGEECIOTGv1XGccHVn5xOdI/xibdpTQcTWud+gw1rGolk8rwp/hpdbrYaC1P25jtl3vZWBnNdmh+riNuVjKtfBKXDMjjZx9Xuj6QQIjWnu0VOIKIYQQQojZ/SRwHPhDpdTDwGXgMPAg0TYKv3zbtmUT6xuJJn4BUEp9GPh1wAZeBD6tZt5C2KC1/uvlBitJXCGEECnJtJJfKbkQGaXZ3DybnKrIcDD+/T7HesfIyvMz2Bu/qtfl2lhbiMs0cflchAPxe83XIvs4RPKSuFZuLpGu+Sdq820pJz3jGixgW3EHWypxhRBCCCFEbFrrm0qpA0STsE8ATwLtwB8Cv7bAScmqJ36awGdm2eYF4K+XFSySxBVCCJGiPH4PFbvKGRsYm1p42xVN0zLw5/vJyM/Am+6h4Uwj+rY7apShMAyFMhTKMDAMhR2xCQXChMfDhAIhwoEQkZCNUgqP34Mn3YN34qfL60IphWEZmC4T0zQwLBPTMjFdBqZlYjuapoY+qItfhehiZBRl0dvQG9cxlVKUVuSmVBK3LD+DzhMNcR/3wlWLQ5vm3y5RDNc8p2EKso9WY/U8D6OJ6YG85kklrhBCCCHE8inASMzEyksWp452Wutm4KML2K4h1lG11l8AvhCfaOYmSVwhhBApKS0rjf/2/c8l/DiO7UQTvYucNevaiXr+5Cf/nrbrce9Xv2AXjtex495amk/W4djxO6nKzkyL21jLlZfvZ+Bye0LGbr3WS//OGnKCdQkZf15znAibuRnk7NDQ/ewKBrQGSRJXCCGEEEKsEQlpOKiU+qBSSk88PrHAffKUUp9QSn1NKXVDKRVQSg0qpV5SSn38zpni5hjny7cde+PyXokQQoi1zjCNRSdwtdb8z/d/KakJ3FtxXHj5BiV7KuM6rhVJnavsh/dUERwJJmz8q+H9CRt7PmqW8oH03VXkbGiGnvMrHNHao4OpU1EuhBBCCCHEcsQ9iauUqgD+CFjsWfPTwF8SbSD8GvAHwL8CO4EvAf+i5vmWrZR6K/CxJRxbCCGEWDClFAee3JXsMCa1xDmZPN6TGr9GKyrz6H0jsf2GL1yO031YS3JHiwTLIPeBSnzh5yGQnBYda43uS1KVtRBCCCHEGqMMnVKP9SiuSdyJJOtfAb3Any9y92vA24ByrfUHtNa/qLX+GLAVaAbeBbxzjmMXEE0C/zNwagnhCyGEEAvS1djL6994I9lhTIqE4jt503DLAN40d1zHXIo9FXnYYTuhx2i/0Ue/N1k37kwlkN0leeQfNjC6XkhSLCnMX4jKLF30bqr0Lozy5FVaCyGEEEIIEU/xrsT9NPAQ0YbAo4vZUWv9rNb6G1pr547lHUwlhI/NMcRfTPz81GKOK4QQQizW2R9cZrhvUb/mEio4Fkbr+F6NLqnIi+t4i1VUlEXHhdYVOdb50QMrcpzZZBysJrPgEvRdT2ocKcedjvv9/4j35y7i+cwbWI/8Cqps39z7KANz+9txf/SbeD7xfcxNj65MrEIIIYQQQiRY3JK4SqltwO8AX9Ra/zBe404IT/yMWWqklPoI8BTwSa11fKfpFkIIIe4wPpq4Hq1LobXGkx7fytmcPH9cx1us7u4hCrcUr8ixTp0IYCdjrldTkXesBM/IsxAeW/njpzJl4n76rzA3PYpS0YkHXUc+jfcT38P9wX+bdTfz4MdxP/1lzMrDi+51LYQQQggh5mDo1HqsQ3H5xqKUsoC/BZqAX4rHmHeM/aGJp9+Jsb4K+CLwd1rrf1/GcWZrwbB1qWMKIYRYe5outfHvf/BMssOYwZ3mJTQWnn/DBfK5kpDUvI3jaKwM74oca6R3lHrfA2wM/GBFjgcw6ikn5KRT0fkfK3bM1UPhesvvYW58KOZas+Z+jPKDOC0nZq7b/HiigxNCCCGEECIp4lWJ+yvAXuAjWutAnMa85XeITm72La31d29foZQygL8hOpHZp+N8XCGEEGKanpZ+vvDWP2K4N3VaKdySURDfylk1Hr+E8FJ1Dsf7lGJ2pxtWpupXa7iZ9ma++sJOurp9K3LM1UQVbsfzie9i7fvRObczdz89c6Hbj7Hh3gRFJoQQQgghRHItu8xGKXWIaPXt72mtX1l+SNPG/jTwWeAK8MEYm/ws8ADwZq31sqZx1lrHnPliokJ3ngZsQggh1oPvfOnFlEzgAniy4psQDHQOx3W8pejtHyV7hY519WQnPe/aSv74lWnLtQbHcGEbbhzDh6Pc2IYXx3Bj4yKivNi4cbCI4MLGha0tIo5J35CPSERx+81eo4M2rZe6JsZOX6FXtwq403E99MuYBz+OMsx5Nzf3fZDIqb9Bd16cWrb7aZSZ/An5hBBCCCHWHEX8Z9VarnXYOWtZSdzb2ihcAz4fl4imxv4U0TYJl4CHtdZ9d6zfBPwW8Fda62/F89hCCCFELFlJ7hM7l/qL7eRV5tHXFJ/W8COdw6Rn+hgdWrlq2Ds11PewLysNJ+LMv/Ec9t9fjaltlNZoR0czs1qjbQcrw0dXxyhOxOG1nmpGW7fhhB3CwQjh8TCRYCS6/YLYE49bBufc2tHr8MzzTv4izO1vx3X0Myh/4YJ3U6YLz8e/g33uqzgtpzAqD2HueW8CAxVCCCGEECK5lluJ6wc2T/x5fJYJJP5SKfWXRCc8+8xCBlVKfQb438AFogncrhib7QA8wEeVUh+dZajrEzG9Yzn9coUQQgiAHUc3JTuEWY30j6G1Jqswk+GuoWWPp5SivCqPq+eb4xDd0kQiNum5/mW/HjU2Rs+VlpjrcmqL6bneA0BffTelmwsZaOlY1vEWSq+XJK4nA+uBz0FoFKfuBXRwBOvARzA2PoSRXbnkYZXLh7X/Q7D/Q/NvLIQQQgghxCq33CRuEPjyLOv2Ee2T+xJwFVhQqwWl1C8Q7YN7FnhUa90zy6YNcxz7zUAx8FVgaGJbIYQQYlnKthQlO4Q5jQ4E2LC9NC5JXIDs7LS4jLNUWVlpaHt5VbgQTUjP5s7xldez7OMtlKNT7Z60+FP5m3G/528w8icugDzwueQGJIQQQgghlkQZC707TSTKspK4E5OYfSLWOqXUF4gmcf9Ga/2l25a7gFogrLW+ecc+nwd+HTgFPHZnC4U7jn12jmM/TzSJ+0ta6xsLf0VCCCHE7Po75r49PhUM9o7EbSx3EhtNKaU4srmErmtxqIo1Zn8djjM9idt6rpmyrSX0Xm9f/nHnoZ01XImbXoDr2H/F3PsB6VMrhBBCCCFEHCx7YrMlKAMuA43AhlsLlVIfJprAtYEXgU/HqJxp0Fr/9YpEKYQQQtzhpa+eSnYI8+pq6iM700cgDr1s7ZFQHCJamtzcNHrru+MyljJmr3gd6xrCdBnY4alk7kpV467Vnrjm7qdxPf5bqLTcZIcihBBCCCHEmpGMJO5sqid+msBnZtnmBeCvVyIYIYQQ4k6bD1WjlEIveKKrlRcKhMnYUkzgYgssM8zh5llviEm43t5RDu6rpudmrLb4izRHEjcyHqJkUwUtl6Yqb9sutOD3ewmNjC//2HNYSz1xVd5GzC1vwtz+VoyyfckORwghhBBCxNvaOXVdtRLWjE1r/QWttbq9lcLE8oaJ5Rtm2X6ux7EFHvvYxPbSSkEIIUTc7D62hY/8j3cmO4x53TzbTMXBmmUnm8NjYUqr8uMU1eJs2VLMWF98WkPM1RMXICPbO+25E3HI21wal2PPxVl+u9/k8mZh3ftTeH7s+3g+9QquR39VErhCCCGEEEIkyNqfUUMIIYSIozf9xP2Uby1OdhjzunT8JpX7qpY9TkFRVhyiWZz8Aj8bczIY6x+Ly3jzFbx2nb5B8caCactCQTsux57Lau6Ja9Q8gPenXsP16BcwSvfOmygXQgghhBBCLI8kcYUQQohFUEpRvbs82WEsiOkylz2G37eyk1JVVOaxMzOdzsttcRx1ngSj1uTmp01b1H6pFXe6d5Yd4sNepUlcY8MR3O/7e1R6cqq0hRBCCCHEClNEM4ip9Fidp9LLIklcIYQQYpF6WweSHcLCxKE6MtI1HIdAFqamtoDi4SAjPfFpozBpAW9D7+VmLM9U0tuJOORuLolvHHdwVmESV+XW4H76r1BWYhPcQgghhBBCiOkkiSuEEEIswkDXEFdfr092GCtmoKGPksq8FTlWQ30PmcUJaN+wgGR2ZDxE2dbpSdtEJ1lXW09clV2F+wP/jErLTXYoQgghhBBCrDtWsgMQQgghVpNv/PFz2OHE90uNh5Gh8WWPoZRiw4YC2pt64xDR3EpLcxIyrp6vKe6E9PTpp0XddV1oFIrlTRA3G8dePZW4qmgHnh/9KspfmOxQhBBCCCFEMkgZaNJJElcIIYRYhJPfPp/sEBasq6kPy1Q49jKTkAPLTwYvxN6aQtrfaI77uAt99cONnRNbR5OrgYExyneU0nOlNe4xATgpfC1AFWxF5VSC6cYo3Yt16BMod3qywxJCCCGEEGLdkiSuEEIIsQgZeX643pXsMBYkvyybvmsdyx6n73oXeUVZ9HYOxiGq2B66f2tCErhRC0vjjvUMU1RbTOfNnsllZlrier/aqdhOIaMEz3u/glG6N9mRCCGEEEIIIW4jxdBCCCHEIjz+sSPJDmHBMnPT4jKOUorazcVxGSuWB45uZihhCVxwFlGInFucOe1589kmfDmJqUBNuUpcVxqeD/6rJHCFEEIIIcR0CjBUaj1WT2eyuJEkrhBCCLEIB9+8G8ttJjuMBbl6sokNh2vjMpY1Eo7LOHd64OgWRs8lpl3BLYtpJhHuG5r23AnbZNeWzLL18qTaxGbWsV/AKNic7DCEEEIIIYQQMUgSVwghhFgEb7qHqp1lyQ5jQULjYW6ca0EZy79M3Xe1k5z8jDhENV3milxCX/gx+us6yCyc/jobTzfiL86Oc0xgRxIzYdpSGOUHse7+iWSHIYQQQgghhJiFJHGFEEKIRSrdWJjsEBYsMDxO0Za5WyFYHot7nj7Avjfv5u3/9Ql2P7qdrMLMGdtt2hr/itTQcCDuY95JL6afAlBSmz/tuRO28RXmxDOk6Lip0k7BX4T7R/4vypCpEoQQQgghxEwKUEaKPZL9piSBnK0LIYQQi1S1o5QXkx3EAu06Ukv9qzdRKvZpzua7a/nIH7yX4jsS05Gwzdd++5vcPNFA3ZlGIsEIrvGZWcc9uyspyvfjNhSgGAmGuXqjk/b2gXljO3ywht5rnUt5WYuiF1nwqsfGQClMl4nptjDdFgPtg2RVFTDY2B2/uBaZXF4Qw0IVbUdZPpz2cxCZP0nufsefojIS0zJCCCGEEEIIER+SxBVCCCEWqeauimSHsCA750ngun0u3v8775qRwAWwXCZP/+rbADj/g8v85X/5W/qudnLXkU382K88xc0LrUT6R+g80UD9iXpcPhfZxdmM3Ohka2EGVkUuQ8PjpPncjI2FsB2HkeHxacfIU4qu+L/sGfQis7h919uxXV7GA2EI2EAQgJpD1eiGbmZ5O6cohVLzJ2ln+3tZElc6rid+E3PXu1Cu6IR22rHBCUNolMiJvyLyyp9C8Laev55MXG/9fcyaB+IXhxBCCCGEECIhJIkrhBBCLNLIwFiyQ1iQ8YGxOROF/+XLH6VyAf19dz28jd899St0XO+kYlcZlsti79Etk+uHuofwZaahHYffuPc3GewYpAgoQsFYGFBgmKRtKCR7Qx5jnUOMj4zTdbUjDq9yfoutd9W2Q+nWYhrPNE9bXvd6PbV7q+i92BhzP19OOhsf3MGxn38r6fmZnP67F2l49RrNJ24S6B+duUO8crhuP+4f/SpmxcHpwxsmGCZYXlwP/DzWvh8l/P0voAdbMHe8I5rw9WXHKQghhBBCCLGmxWGeDbE8ksQVQgghFun6ydhJvFTjy06bc316ztzrp42V4aV6X1XMdZkFU/1z3/bLb+XffvVrjPbNTFqO9Y8yFiuZmWCLrcQFSPfEnjZgdCyC1kxW4/7oP/4Mja9dZ3xgjEd++R0Yljm57cGPHuPgR4+htea53/06r/yfZ6aNteRCXMuHUX0k+mfHxrr/szMSuLGojGLc7/zzJR5UCCGEEEIIkUySxBVCCCEW6dm/fTXZISyInqfU84W/Oc7Gg9VxPebBdx/Ejtj8w8/+Y1zHTSTjVu9bl4UyDbxVJbS1jaCUmpEA7rjawcZ9ldjDYxz7+bdRdfcmqu7eNOf4Sike+m9Psf1tBzjxV89x7v+9NrFi4kfxLszqo+jgcHSB5UV3XsRpPD41iL8I9zv+DKPyUHQfyxuX1y6EEEIIIYRYHSSJK4QQQixSOBhOdggLMjI496RWDW80z7l+qTzpnoSMu1SXT7Xg8WZgR2wiERs7bKOUQhkKx3aIZlMdIBTdobEegKrtJXRcaZ8xXgiLj/2/z5Ken7GoOIq3l/Om33wvoz3DjA8FqLm3Cs9HXkXl1s5oe6EdG/vEl4mc+QdUXg3uN/8vVFreEl69EEIIIYQQy6RIvXYKKRbOSpAkrhBCCLFIWfkZdDf3JTuMebVc6yDb7yU4Mh5zfXZxVkKOOz4STMi4S2WHHcbCt78HCq1B25q5zv48WbHbTex718FFJ3BvsTwu3vtXPznvdsowsQ7/ONbhH1/ScYQQQgghhBBrS+yGb0IIIYSYVUZeerJDWJBIyCZvQ+zqzf1v3cNP/J8PJeS4g+2DCRl3pQ12D89YVrKtlIPvOZyEaIQQQgghhBDrmSRxhRBCiEWyI06yQ1iwO2/TB/D6PXzsD9+PPzcxyejHf/Yxth7bmpCxV1LnjS78ef5py977xR/F7XMnKSIhhBBCCCGSxFCp9ViHJIkrhBBCLNLowFiyQ1iQim0ltJyb3vd2y70b+ZVnfh5fRuImxlJKcfQj9yVs/JWUv7EIgNzKPN71u++hdEdZkiMSQgghhBBCrEfSE1cIIYRYhOBYiN62gWSHMa+80mwi/aMzKnHf+vOPUbyxMOHH3/X4Lp783JN86399K+HHijfDMnAiDpbHYutjO/nAH3+I7NLsZIclhBBCCCFEkihQqVYHqgCd7CBWlCRxhRBCiEVovtKOdlL/ZKG0Op+G127OWH7t+E22379lRWJ47GcepWRrMS9/5ThXXriyIsdcLMMyeODj97PvqX2ExsJkFWfiy0zj+vHrbNhbRW5FbrJDFEIIIYQQQghJ4gohhBCLERwLJTuEeWXm+xntGZqx3OV1seXejSsWh2Ea7HlyD7se38XXf+PrPP8XL6D13AnwrOIshrqGEpYo92X5OPT0ITIKMhho6+ee999Dxe6KGdvte9vehBxfCCGEEEIIIZZCkrhCCCHEIhRtyE92CHOy3CbFpVm0X2qbttx0mXzhuc9RsqloxWMyTIN3fOEdHP3oUepPNvDqP77Kzddukl2cTV9L3+R2tXfX8sm//wlazrfQeKaRSDDCM3/yA8aHxydbHABsuX8LV394dXK/oo1F5FfnEx4P03K+hbEYPYu3P7SNPW/ew5ajW6S6VgghhBBCiMVQpN5kYikWzkqQJK4QQgixCHll2bg8FuFgJNmhzFBQmUu6y5iRwAVIz0lLSgL3dvlV+eRX5bP7iV20XGiht7GXv/uZvwfgqV99ivs+fAS3z03t4VpqD9cC8OBPPAiA5bG4fvwGltui5mA1f/+z/0A4EOLJzz1JYe1Uj9+xgTH+4O1fpONaB/vfsZ/SbSWEAmGe+NnHMV3myr9oIYQQQgghhIgDSeIKIYQQi+DYDpGwnewwZqjcXsJoax+9o6nf7sGT7qH2cC3VB6rpaeyhv7Wfhz75YMxtXV7X5J83H9k0+ecf+R9Po7XG7XNP2z4tO41f+MF/ZWwggD8vfcbEbkIIIYQQQgixGkkSVwghhFikVJzYbKR/DMuaqjT1ZXg59pEjBIYC+PP9VO0qT2J0sRmmwZOfe3JJ+96e3L2TaZlk5PuXGpYQQgghhBDiToaR7AjWPUniCiGEEIvgpGACF6CvfZCKbSVggC/Nw0f/8P3seGBLssMSQgghhBBCCBEHksQVQgghFsHltsgqyGCwezjZoczQfLmdn/iD93DkXfvxZXiTHY4QQgghhBBCiDiRWmghhBBikTbsKkt2CLPaft8mSeAKIYQQQggh4kepaDuFVHqsw7kvJIkrhBBCLNL4aDDZIczqxqnGZIcghBBCCCGEECLOJIkrhBBCLML1U41cfa0+2WHM6trJhmSHIIQQQgghhBAiziSJK4QQQizCV3/n28kOYU4v/cvJlK4UFkIIIYQQQvC3kUcAACYsSURBVKxChkqtxzokSVwhhBBigU586zxnvn8p2WHMaXQwIC0VhBBCCCGEEGKNkSSuEEIIsQDhUIQvf+6ryQ5jQdpvdic7BCGEEEIIIYQQcWQlOwAhhBBiNTj9nYv0tg4kO4x5veVTD/LQB+9OdhhCCCGEEEKItcSQOtBkkySuEEIIsQA/+LtXkh3CvNKzfHzoN59CqfXZI0oIIYQQQggh1ipJowshhBDzGOod4ewzl5Mdxrxq7qqQBK4QQgghhBBCrEFSiSuEEELM4/rJRrSjkx3GnAzT4Ed+8clkhyGEEEIIIYRYa5RKvXYK67B4RZK4QgghxDzcXleyQ5hh1wObefjD9zI+EqThfCsH3rSDrXfXJDssIYQQQgghhBAJIElcIYQQYh6D3cPJDmGazHw/n/u7T+DL8CY7FCGEEEIIIYQQK0CSuEIIIcQ8Tn33QrJDmOZn/+9HJIErhBBCCCGE+P/bu/Mwu4oy8ePf6k46S2cjIRshISF7DLsQCBBkFQQEFRxxwIjCuMxPZdRHxh0cnccZdwdncJQRV0RBQRYBDQkghC0IEsgK2UkI6ay9d6fr98e9wU5ze799z7np7+d56jmkTtU5b9unrOS9desUTtq2U+iFTOJKktSG3RWVPHHX35IOA4BQEjhr/lxmnTIl6VAkSZIkSQVkEleSpFbUVNZx48duoaG2IelQADj3qlP5wH9eknQYkiRJkqQCM4krSerV6mrqefnZDYwcP5wR44YRQqCmso77fvQwd93wIHsqqpIO8XUDhriFgiRJkqTCiiEQU7adQgwh6RAKziSuJKlXijHy+B+e5X+vuZXKHdVAJkk6fOxQtq7bnprVt80t/MXjXPDR0xk8vDzpUCRJkiRJBZSuNLokSQWw+pl1/Od7f8S35//k9QQuQM3uWjateDWVCVyAHVt2c/s37086DEmSJElSgbkSV5LUqzx6+xK+d/XPiE0x6VC65Ol7n2f+195B6IVfH5IkSZKUkJLSpCPo9VyJK0nqNTau2ML/fOyWok3gAry6toJHb38m6TAkSZIkSQXkSlxJ0gFv67oK/nTzo9z/40eoq65POpxuGTd9NJOOPDTpMCRJkiRJBWQSV5J0wKmrqWfNcxvZuGILT979N5798zJiLN7Vt81d+6urGTt5VNJhSJIkSeo1ApSk7cv8vW97OZO4kqQDRoyRn3/xTu770cM01DUmHU6PWHTLk1z2hQuSDkOSJEmSVEBpS6NLktRlD/58MXfd8OABm8AFWHzHs0mHIEmSJEkqMFfiSpIOCE1793L/fy9IOowet3VdBZtf2uqWCpIkSZIKI5C+7RR6324KJnElSQeGdQ8+x7Td6znyyKGUjRhKU1k/djeW8tK63by8ejsHyiy/t2Evf/7pYq74ykVJhyJJkiRJKhCTuJKkolexfAOPfPGnANRu20Xttl1AZs+gqcBRbx5BHHkwFZVN1NbvZfDAvjTsjSxduo0d22uSC7yLSvuWJh2CJEmSJKmATOJKkopa1dad3PP+b1K/u7rVNtWvVMArFQwEBmbr+gJzyksY9OZJPPrCHjZv2lOIcLulX3kZ//ilCzn7A6ckHYokSZKk3iRt2yn0Qv4GJElF7Yn//E2bCdy2xL1N7Fn6EscO2MWMWQfnObL8u+jjZ3Leh06jjytxJUmSJKlXMYkrSSpamx57kZfvfarb12msrmN6n91Mnzmiw31Gji7nrWcdxuwjC/eCsVlzpxTsXpIkSZKk9HA7BUlSUaqvrOEv1/8ib9er3baL6cObmPrWw1i+ppLVK7eR62VoIcBpp41n0OYNNLy4jXHA9LdOZeHTFWyv6Ln9dUtKS5h+4uE9dn1JkiRJyikEYknKvg0YDowXV3eGSVxJUtGJTU089Nn/Y8+G1/J63brte2D7ciYDM6cPpP8hB9PYbwB7CQQiZXsbqN+yjdqVK2lo1q/y+VWcfPBA9h53GAse3kRdbWNe4xo6cjDX3DTfbRQkSZIkqZcyiStJKir1e6p57Ku3sG7Bsz1+n/oV6/erq22nPUuXc+GcQ7ntoYq8xtK/vIzZ86bl9ZqSJEmSpOJhEleSVDQqlq3n/o/8F9VbdyYdSqvq+g8C8pfE7duvD1d/5x/ydj1JkiRJ6rQSX6uVNJO4kqSi8eIti1KbwB08ezJNJaU89HR+t3joU1bK8DFD83pNSZIkSVJxMYkrSSoapf36Jh1CTv2GD+a2BzaR60Vo3VWzp47Fd/yV8TPH5v3akiRJkqTiYBJXklQ0Gmvqkg4hp8aqWsoHDaSqsr5Hrn/MOW/qketKkiRJUvtCCrdTyP8CmrQziStJKgoxRl55fHnSYbzB4MPHUrXxNd524nAeeHonu3a29fqzjnvHJ89mzoVHsfb5TUw5dkJerilJkiRJKk5pS6NLkpRTzbbdVL6SvxeG5UPZETO47S87Wd1vDJUr13P6xMigIWV5ufYxZ81i8jETOPN9JxFC7/uUWZIkSZL0d67ElSQVhbpdVUmHsJ+BY4Zzz8INAKxaUcGR5x5O5d9WMXTIaCp3d21bhRHjhvHh71/Gi4+u5rDZh+QzXEmSJEnqmgCUlCYdxf564ToXk7iSpKJQtWV70iHsZ/fQkdTXr3/9zwue2MbUqZPZ9OQrnbpOad9S3nTKFEZOGMFbP3gKk448lKPPnJnvcCVJkiRJRcwkriSpKGx4ZGnSIexnQNn+H/3u3FHLU51M4J595clc8ZWLGDC4fz5DkyRJkiR1QAjhUOArwLnACGAzcAdwfYxxRwevcQlwGnA0cBQwGPhljPHyfMZqEleSlHp76xtYdcdjSYexn73LVzNl+mhWr+j6CuFjzpppAleSJElSygViSNtrtbq/n0IIYTLwGDAKuBNYDpwAfAI4N4RwcoyxIy9m+QKZ5G0lsBGY0e3gckjbb0CSpDfYsmQ19Xtqkg5jP00NjRw9OgCxy9f44b/cysYVW/IXlCRJkiSpo/6bTAL34zHGi2OM/xpjPAP4DjAd+FoHr/MvwDRgCPCRHokUk7iSpCKw9bmXkw4hpz2rN3L0MWO63H/X1j08v2hFHiOSJEmSJLUnhHA4cA6wFvhBi9NfBqqAK0II5e1dK8a4MMa4KsbY9RU+HeB2CpKk1NuxalPSIbRqUskeVpb3pbqqocN9Bg8v56JrzmLy0eOZfMyEHoxOkiRJkvKgpDTpCPLtjOzxgRhjU/MTMcY9IYRHySR5TwQWFDq4XEziSpJSb9faV5MOoVXVmys4/4QJ3PvULqoq69tsG0oCb/vwaVzymXMZNGxggSKUJEmSpAPSjBDCklwnYozHtdN3eva4spXzq8gkcadhEleSpPbFpib2bHwt6TDatHvFes479lDuWLyDxoamnG1GTzqYj914OdPnHF7g6CRJkiRJLQzNHne1cn5f/bCeD6VjTOJKklLtlSdWpO6lZrnsWb2Ri0+fzN2PbGXkqHKmHj6U0hJYt7GKiafM5IqvXET/8n5JhylJkiRJnRNC+rZTCAFgeQdW3Hb5Dtljj+5z2xk98mKzEMIVIYSYLVd1sM+IEMJVIYTfhxBWhxBqQgi7Qgh/CSF8MITwhlhDCFNDCNeGEB4MIWwIIdSHEF4NIdwZQjg9/z+ZJKnQVt/1eNIhdNiepS9x2kF7mNWwhb4rVlCybAVXfOp0rv7Wu03gSpIkSVJ67FtpO7SV80NatEtc3lfihhDGA/8FVAKDOtH1UuB/gM3AQmA9MBp4J/Bj4LwQwqUt3vT2b8A/AC8C9wLbyexp8Xbg7SGET8QYv9+9n0iSlJTG2nrW/vmvSYfRZZMvmMOMd89LOgxJkiRJ0v5WZI/TWjk/NXtsbc/cgstrEjeEEICfABXA74BPd6L7SjLJ13uavxUuhPA54EngXWQSurc363Mf8B8xxv3+hR9COA34E/CNEMJvY4ybu/DjSJIStm7BX2moTP9WCrmMmzuLU667IukwJEmSJKnbYkmPfJk/SQuzx3NCCCUtcpGDgZOBGiA1Xw3N92/g48AZwJVAVWc6xhgfjDHe1fx/tGz9FuDG7B/f0uLczS0TuNn6h4BFQBkwtzNxSJLSIcbI8zf/KekwuiT0KeWkz19G34FuoSBJkiRJaRNjfAl4AJgI/HOL09cD5cDPYoxVACGEviGEGSGEyQUNtJm8rcQNIcwEvg58L8b4cAjhjHxdG2jIHht7qk8IYUkrp2Z04p6SpDx5ZfEytr2wLukwumTy245n2KQxSYchSZIkSWrdR4HHgO+HEM4ElgFzgNPJ7Bjw+WZtx2XPryOT+H1dCOFi4OLsH/f9Q/CkEMLN2f/eFmPszG4FOeUliRtC6AP8nMw+tp/LxzVbXPt92T/e18E+hwFnAtXAw/mMR5LU82KMLPnBH5IOo8tGH53Yh7OSJEmSlF8hQElp0lHsL4RuXyLG+FII4c3AV4BzgbeReVfX94HrY4zbO3ipo4H5LeoOzxbIJH7TkcQFvgQcA5wSY8z35oVfB2YD98YY72+vcQihH/BLoB/wmRjjjo7cJMZ4XCvXWwIc2/FwJUndteqOx9j615eSDqPL9tZ35osjkiRJkqQkxBg3kNkWtr12a4GcmeMY43XAdfmMK5du74kbQjiBzOrbb8UYF3c/pP2u/XHgU8ByoN23w4QQSsmsCD4ZuBX4Zj7jkST1vD0bX2Pxv/866TC6ZeeaLUmHIEmSJEk6gHRrJW6zbRRWAl/MS0R/v/Y/A98DXgTObG8JczaB+wvgUuA3wOUxxpjPmCRJPauhuo4Fn/whDVW1SYfSLRsfWUr1tt0MPHhI0qFIkiRJUjcFYtq2U8i9KPaA1t2VuIOAacBMoDaEEPcV4MvZNj/K1n23oxcNIVwD3AAsBU6PMba5pCmbTL4FeA/wK+C9MUa/yypJRebZG+9h29LifJlZc5WvVHDHJf/G+kXP0bS3KelwJEmSJElFrrt74tYBN7Vy7lgy++T+BVgBdGirhRDCtWT2wX0WODvGuK2d9mVkVt5eBPwMuDLG6L+YJanIxBhZdedjSYeRN9Vbd/LAR29g4OhhzLjkVKZfOo/yUcOSDkuSJEmSVIS6lcTNvsTsqlznQgjXkUni/jTG+ONm9X2ByUBDjPGlFn2+SOaNcEuAczqwhUI/4Hdk3h53E/BPJnAlqTjV7aqm+rVdSYeRd9Wv7uSZH9zFczfdzxHzz+LID7yVssEDkw5LkiRJkjouddsp9D7dXYnbFeOAZcA6YOK+yhDCfDIJ3L3AI8DHQ3jD/hZrY4w3N/vzjWQSuNuATcCXcvRZFGNclLfoJUk9om7nnqRD6FF7a+t59of3svL3j3HRrz9L+ZjhSYckSZIkSSoSSSRxWzMpeywFrmmlzUPAzTn6HAx8qY1rL+pGXJKkAqjZXpl0CAVRvXUnz/34PuZ+4b1JhyJJkiRJKhI9lsSNMV4HXJejfi05XiHXWvt27vGWLoQmSUqhxpq6pEMomM1Pr0w6BEmSJEnqkBgCMWXbKcQ3fhP/gJemlbiSpF5sb31j0iHsp6RPKeVjDqJveX/KBg+k76D+9B3Yj74D+1O3q4rXnl9D1ZYdXbr2iBnj8xytJEmSJOlAZhJXkpQOTTHpCBhz3FQOf9vxjJw9keHTD6W0rG+b7au27mTrsy/x6l9XU7FsA9teWEdDVW2r7csGD+DQU2cz9/OX5Tt0SZIkSdIBzCSuJCkVYmxK9P6htIQzv/cRBgwf3OE+5aOGMemc45h0znEANO1tYs+G13j5vqd57kf30lhTz7i5s5j2rlMYOXsigw4ZQUlpSU/9CJIkSZLUM1K2nUJvZBJXkpQKjbUN3erfb2g5h8yZwSEnzWTkERN56d6nWHbLQhpr6jvUf+SRkzqVwM2lpLSEoRNHc8yHz2f8vCMIpSWMmH5ot64pSZIkSZJJXElSKjTWdizZ2tKIWRM45cuXM2LWYfutcj141mEc+YG38vxP7ufFXy1q98Vp4089okv3b83Bsybk9XqSJEmSpN7LJK4kKRWaGjr/YrNDT53Nmd/+EH3L++c8P2D4YE741CUcceVbWfK9O1h+2yMQc++9O/HsYzt9f0mSJEk64IVATNt2CiEkHUHBuTGfJCkVXvvbmk61Hz/vCM75wf9rNYHb3IDhgznl+is44dOX5Dw/8ohJHDR5bKfuL0mSJElSobgSV5KUV401dZT2LyN04pPR+qpa1i18rlP3mXLRSZT06dynwUdeeQ5jjp3My398mi3PrKJ66y4OOXEGx3/yXZ26jiRJkiRJhWQSV5KUF017m3j2h/fw7A/vZfQxkznpc+9h+LT2X+rV1LiXxV+7hfrd1Z263yFzZnQpzlFHTWbUUZO71FeSJEmSep8AadtOgd63nYJJXElSt1Vt3clD197EK08sB2Dzkyu449KvccKn3sWsy95CSd/9p5umhkZ2rX2VTYuXsfrux9m2dF2n7jdixngGDB+ct/glSZIkSUozk7iSpC6LMbL6rsdZ/O+/fsNK2qaGRh7/+q0s/emfmHDG0QwYMZiqzTvYvmoT21dsoLGmvsv3PWjquO6GLkmSJElS0TCJK0nqku2rNvH412/llcXL2mxXuXk7L/7ywbzee8eqTXm9niRJkiSpdTF12yn0PiZxJUmdUlOxmyU3/IEVv32Y2BQTiaFi+QYqN29n0NjhidxfkiRJkqRCMokrSUWkaW8TJaUlidy7sa6BF372Z57933tpqKpNJIbmtixZxZQL5iQdhiRJkiRJPc4kriQVgYaqWp75n7tZdssiprz9RI6/5h30G1pesPtvWbKKh79wM7vXbS3YPdtTs21X0iFIkiRJ0oEvBChJWQoxhKQjKLiU/QYkSc3V7tjDitv/wgu/fJDqV3cCsPzWh3hl8TLOu+mTDB43okfv31hTx1Pf/T0v/OJBiMlsndCa+srkVwNLkiRJklQIJnElKWUaqut48VcPsm7Bs2x7YR1NjXvf0Gb3+q3cd/V3uPBX/0r/YYN6JI7Xnl/DomtvYtfaV3vk+t1Vu2NP0iFIkiRJklQQJnElKUX2bKrgnvnfoPKVinbb7lr7KouuvYlzbvhnSvrm7//OG2vrWXLDH1h68wOJvbisIxpr6pMOQZIkSZJ6gQAlpUkH0ULv204hmbfjSJJyWv6bhzqUwN1n4yNL+fM1N9JY15CX+295eiW/e8f1PP9/96c6gQtQmsfEtSRJkiRJaWYSV5JSZOhhoxl7wnQGjhrW4T7rFz7HPfO/wYaHnic2NXXpvg1VtTz21V9x9/u+kaqXl7WlfMxBSYcgSZIkSVJBuIxJklJk2jtPZto7Twagbnc1T37rNlb89pF2+732tzXc/5HvM2T8SKZfeipTLz6ZgQcP6dA9tyxZxcOf+wm7N7zWrdgLbdzcWUmHIEmSJEkHvgCxJGUpxN63m4JJXElKq35DBnLKdVcw5NCRPPWd33Woz+4Nr/HUt3/H09+/k/GnzmbKBXOYcPpR9Olf9oa2jTV1PP29O1j68wUQ0711QkuTzn0zo446POkwJEmSJEkqCJO4kpRiIQSOuvo8yscOZ9FnftzhfrFxL+sXPsf6hc/Rd2A/Rh87lTHHTWHoxDGU9Cll24vrWP6bh6mp2N2D0feMsSdMZ95X3590GJIkSZIkFYxJXEkqAlMumMO6BX9lzf1LOt23obqOjX9Zysa/LO2ByApr8vknMO9rV1Ja5vQlSZIkSYURoKQ06SBa6H37KfhiM0kqEsd9/GJCSe+bqPaZPf8s3vIfHzSBK0mSJEnqdUziSlKRGDZpDFMvnpt0GIl40+VnMucz7yaUOG1JkiRJknoflzNJUhE59qMXsvoPj9PUuDfpUApmxMwJnPDpdxFC712FLEmSJEnJCcSQthRi7/v3oUuaJKmIDDpkBMMmj006jILpN2wQZ//XRykt65t0KJIkSZIkJcYkriQVmSGHjUo6hII57d/fz6BDRiQdhiRJkiRJiUrbWmhJUjuGTOgdSdxj/9/bmfCWo5IOQ5IkSZJ6txCgJGUpxF643V7KfgOSpPaMmDkh6RB6VJ8B/Tj1q/OZfN7xSYciSZIkSVIqmMSVpCIzft4RlPYvY29tfdKh5N3oY6cw76vvZ+jE0UmHIkmSJElSapjElaQiU1benwmnHcGa+5ckHUreDDlsFMd8+HymXHgiocTt2iVJkiQpVdK2nUIv5G9AkorQ1IvnFn0SN5QEpr3zFKZePJfRRx9u8laSJEmSpFaYxJWkIjR+3hFMvmAOL939RNKhdMmY46dx0ucuY8T0Q5MORZIkSZKk1DOJK0lFKITAyV/6R17962oqN1UkHU6H9R8+mLmfv4xJ576Z0AvfJipJkiRJxSYSiCnbTiHS+/496XdXJalIlQ0awDEfviDpMDps0NjhnH/zpzn8vONN4EqSJEmS1AkmcSWpiE258ESGjB+ZdBjtOmjqOC685bMcNOWQpEORJEmSJHVGCBD6pKz0voVB6VoLLUnqlNKyPpz/00/zx6u/y86XNhf8/v2GDWLme06jqaGRQeMOpt/QcvqU9aWkrA+l+0q/vgw9bDR9y/sXPD5JkiRJkg4EJnElqciVjxnOBT+/lsVf+xUv3fNkwe475cITmXPtuxkwfHDB7ilJkiRJUm9kEleSDgD9h5Vz+jeuZsIZR/PUt2/v0ZedDRo7nJO/fDnj5x3RY/eQJEmSJKVFgJS92Ixe+GKztP0GJEndMPm84xl30iz+/PH/ZsvTK/N67bIhA5l12Vs48qrzKHNrBEmSJEmSCsYkriQdYPoPK+fc//0ES75/Jyt//yh1u6oy9QcNYvQxUxg6aTR1u6pZv/A5aip2t3u9gaOGMXv+2cx49zyTt5IkSZIkJcAkriQdgPr0L2POZy7lhE+/i+qtO2naGxk09iBCScnrbeqrall2y0I2Pfoir72wjqb6BsqGlEOMlI89iMGHjmT8KbOZfMEJlJb1TfCnkSRJkiQlx+0U0iBtvwFJUh6FkhLKxwzPea6svD9HXXUeR111HjHGTPvQ+yZCSZIkSZLSziSuJMnkrSRJkiRJKWYSV5IkSZIkSVJOIUAI6Uoh9sZ1SCXtN5EkSZIkSZIkJcUkriRJkiRJkiSlWLrWQkuSJEmSJElKkQAlfZMOooXet5+CK3ElSZIkSZIkKcVM4kqSJEmSJElSirmdgiRJkiRJkqRWBEJIWwrR7RQkSZIkSZIkSSliEleSJEmSJEmSUixta6ElSZIkSZIkpUYAt1NInCtxJUmSJEmSJCnFTOJKkiRJkiRJUoqlbS20JEmSJEmSpLQIgVCSshRicDsFSZIkSZIkSVKKmMSVJEmSJEmSpBRL2VpoSZIkSZIkSWkSginEpLkSV5IkSZIkSZJSzCSuJEmSJEmSJKWYa6ElSZIkSZIktSKkcDuFkHQABedKXEmSJEmSJElKMZO4kiRJkiRJkpRiaVsLLUmSJEmSJCklAoGSlG2nENxOQZIkSZIkSZKUJiZxJUmSJEmSJCnF0rUWWpIkSZIkSVJ6hEAIpUlHsb/gdgqSJEmSJEmSpBQxiStJkiRJkiRJKeZ2CpIkSZIkSZJaFYIpxKS5EleSJEmSJEmSUswkriRJkiRJkiSlmGuhJUmSJEmSJOUUCJSUlCYdxn4CIekQCs6VuJIkSZIkSZKUYiHGmHQMqRZCqBgwYMDwmTNnJh2KJEmSJEmS2rBs2TJqamq2xxhHJB3LgSCEsGTAgLJjZ848JOlQ9rNs2SvU1NQ/E2M8LulYCsUkbjtCCGuAIcDahEPJhxnZ4/JEo5DUFsepVBwcq1L6OU6l4uBYVb5NBHbHGCclHciBIITwS/4+TtNmeYzxH5MOolBM4vYiIYQlAL3pUwqp2DhOpeLgWJXSz3EqFQfHqiR1jHviSpIkSZIkSVKKmcSVJEmSJEmSpBQziStJkiRJkiRJKWYSV5IkSZIkSZJSzCSuJEmSJEmSJKVYiDEmHYMkSZIkSZIkqRWuxJUkSZIkSZKkFDOJK0mSJEmSJEkpZhJXkiRJkiRJklLMJK4kSZIkSZIkpZhJXEmSJEmSJElKMZO4kiRJkiRJkpRiJnElSZIkSZIkKcVM4vawEMLaEEJspWxp0XZiG21jCOHXbdxnfgjhyRBCZQhhVwhhUQjhgjbaDwghXB9CWBFCqA0hbA0h/CaEMLONPoeGEP4vhPBKCKEu+7N9N4RwUBt95oYQ7g0hbA8hVIcQ/hZCuCaEUNre/3ZSEkIIp4YQbg8hbM4+55tDCA+EEN6Wo22nn2/HqtR9HRmnzqlSMkII729n7MUQwt4c/ZxTpQLp7Dh1TpWkdAgxxqRjOKCFENYCw4Dv5jhdGWP8ZrO2E4E1wHPAHTnaL40x3pbjHt8EPgVsBG4DyoD3AMOBj8UYb2jRvh+wADgZeBp4EBgPXArUA2fEGJ9o0Wcy8BgwCrgTWA6cAJwOrABOjjFWtOhzEXA7UAvcCmwHLgSmA7fFGC/N8TNKiQkhfAH4N2AbcDewGTgYOAZYGGP8TLO2nX6+HatS93V0nDqnSskIIRwNXNzK6VOBM4B7YowXNOvjnCoVUGfHqXOqJKVEjNHSgwVYC6ztYNuJQARu7sT152b7rAYOanGtCjIT08QWfT6b7fNboKRZ/UXZ+hea12fP3Z8997EW9d/O1t/Yon4IsBWoA97crL4/mUk2Au9J+vdjsewrZP5yGIE/AYNznO/b7L87/Xw7Vi2W7pdOjlPnVIslZQVYnH1e396szjnVYklRaWWcOqdaLBZLCkriARzohZ5P4v4s2+fKHOe+kj13fbO6AKzL1k/K0efh7LnTm9Udnq1bk2PSHAxUAlVAebP6D2T7/DTHPc7Innso6d+PxRJjhMzWMi9nn+ORHWjf6efbsWqxdK90YZw6p1osKSrA7OyzuhEobVbvnGqxpKS0MU6dUy0WiyUFxT1xC6NfCOHyEMLnQgifCCGc3s5eO4eEED6Ubf+hEMKRbbQ9I3u8L8e5P7ZoAzAZmACsjDGu6WCfff/9QIyxqXnjGOMe4FFgIHBiB+N6GKgG5ma/MiMlbS4wCbgX2BFCOD+EcG12vJ6Uo31Xnm/HqtQ9nR2n+zinSunwoezxphhj8z1xnVOl9GhtnO7jnCpJCeqTdAC9xBjg5y3q1oQQrowxPpSj/dnZ8roQwiJgfoxxfbO6cmAcmb11N+e4zqrscVqzuunZ48pWYu1qn3OyfRa01yfG2BhCWAO8icynp8taua5UKMdnj68CzwBHND8ZQngYuCTG+Fq2qlPPt2NVyovOjtN9nFOlhIUQBgCXA03Aj1ucdk6VUqCdcbqPc6okJciVuD3vJ8CZZBK55WT+0flDMl9J+WMI4ahmbavJvKzlOOCgbDkNWAi8BViQnRD3GZo97mrl3vvqhxVJHykpo7LHDwMDgLPIfAVrNpl9tuaR2Ztrn84+32ked45VFYvOjlPnVCk93k3m+fxjjHFDi3POqVI6tDVOnVMlKQVM4vawGOP1McYHY4yvxhirY4xLY4wfJrPR+gDgumZtt8YYvxRjfCbGuDNbHibz6eETwBTgqq6E0Ym2IcV9pJ6yb3uTQGYl34IYY2WM8QXgHWT2BTutna9sN9fV5zuN486xqrTo1Dh1TpVS5Z+yxx92oa9zqlQYrY5T51RJSgeTuMm5MXuc117DGGMjf/9KS/P2+z4lHEpuuT5lbK/PkAT7SEnZkT2+HGN8rvmJGGMNmVV+ACdkj519vh2rUvd1dpzm5JwqFVYIYRaZPa03ktnTuiXnVClhHRinOTmnSlJhmcRNztbssbzNVn+3b4+/19vHGKuATcCgEMLYHH2mZo/N9/tZkT1OI7ce7xNC6EPm5TSNZN40LiVt3/O6s5Xz+5JHA1q079Dz7ViV8qKz47QtzqlS4bT3oiTnVCl57Y3TtjinSlKBmMRNzr6vZXd0ctj3Rs2W7R/MHs/N0ee8Fm0AXgLWA9NCCJM62Gdh9nhOCGG/ZyaEMBg4GagBHu9gXPPIvCX0sRhjXY7zUqE9TOYva1NDCGU5zs/OHtdmj115vh2rUvd0dpy2xTlVKoAQQn/gCjIvSrqplWbOqVKCOjhO2+KcKkmFEmO09FAh81bL4TnqDyPzpswIfK5Z/RygLEf7M4DabPu5Lc7NzdavBg5qVj8RqMj2m9iiz2ezfX4LlDSrvyhb/0Lz+uy5+7PnPtai/tvZ+htb1A8h86lsHfDmZvX9gceyfd6T9O/IYtlXgF9kn8uvtqg/m8xfancCw7J1nX6+HasWS/dLJ8epc6rFknAhkxiKwF1ttHFOtVgSLB0cp86pFovFkoISYoyoZ4QQrgP+lcwnhGuAPcBk4Hwyk8S9wDtijPXZ9ovIJH4XkdmPCOBIMpMjwBdjjF/NcZ9vAZ/M9rkNKAP+ARhBZjK7oUX7fmQ+gZwLPA0sACYAlwL1wBkxxida9JlMZlIbBdwJLCMzmZ9O5uspc2OMFS36XJyNpxb4NbAdeDswPVv/7ugDqJQIIYwCHiXzYoZHgCfJfODyDjJ/mXtvjPG3zdpfTCefb8eq1D2dGafOqVLyQgiPAKcAb48x3tVGu4txTpUS0ZFx6pwqSSmRdBb5QC7AacAtwHIyq4MayHzq9yfgfZBJojdr/0HgbjJfBa0k8+ngeuBW4NR27jUfeAqoIpMsfgi4oI32A4DryawIrsvG9VtgVht9xgM/ATaTmUTXAd8jx2rjZn1OJpOs3kHmqyzPA/8ClCb9+7FYWhZgOJlP7ddkn/EKMn8ZPLGV9p1+vh2rFkv3SkfHqXOqxZJsAWaS+XBlQ0eeUedUi6XwpaPj1DnVYrFY0lFciStJkiRJkiRJKeaLzSRJkiRJkiQpxUziSpIkSZIkSVKKmcSVJEmSJEmSpBQziStJkiRJkiRJKWYSV5IkSZIkSZJSzCSuJEmSJEmSJKWYSVxJkiRJkiRJSjGTuJIkSZIkSZKUYiZxJUmSJEmSJCnFTOJKkiRJkiRJUoqZxJUkSZIkSZKkFDOJK0mSJEmSJEkpZhJXkiRJkiRJklLMJK4kSZIkSZIkpZhJXEmSJEmSJElKMZO4kiRJkiRJkpRiJnElSZIkSZIkKcX+P7yPLF1D17QkAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "image/png": { + "height": 436, + "width": 696 + }, + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "input_df['Local_Simpson_Interaction'] = index.statistics\n", + "input_df.head()\n", + "ax = input_df.plot(column = 'Local_Simpson_Interaction', cmap = 'inferno_r', legend = True, figsize = (15,7))\n", + "ax.set_title(\"Local Simpson Interaction\", fontsize = 25)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Local Simpson Concentration" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([0.84564007, 0.66608405, 0.50090253, 0.8700551 , 0.90194944,\n", + " 0.86871822, 0.95552644, 0.9601067 , 0.96276946, 0.88241452])" + ] + }, + "execution_count": 13, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "index = MultiLocalSimpsonConcentration(input_df, groups_list)\n", + "index.statistics[0:10] # Values of first 10 units" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "Text(0.5, 1.0, 'Local Simpson Concentration')" + ] + }, + "execution_count": 14, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABXEAAANoCAYAAACGGKlcAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/d3fzzAAAACXBIWXMAABYlAAAWJQFJUiTwAAEAAElEQVR4nOzdd3xcV5n/8c+ZUZcty7Ll3hO3OMWxE6c4DQgdlr4LLCywCyw/WGApuyxtCWHZhaUsCbBLCL2GkB4SQqpL3HtvkizJclHvZer5/XHHjjwaSTOjGd2R5vv2a16ybjnnmXY189xzn2OstYiIiIiIiIiIiIhIZvK4HYCIiIiIiIiIiIiIDE5JXBEREREREREREZEMpiSuiIiIiIiIiIiISAZTEldEREREREREREQkgymJKyIiIiIiIiIiIpLBlMQVERERERERERERyWBK4oqIiIiIiIiIiIhkMCVxRURERERERERERDKYkrgiIiIiIiIiIiIiGUxJXBEREREREREREZEMpiSuiIiIiIiIiIiISAZTEldEREREREREREQkgymJKyIiIiIiIiIiIpLBlMQVEZG4GWPuMMbY/je3YxoN0ffZGHOH2zGJiIiMN9n6OUNERCQeOW4HICIiMhLGmEnAKmAuMAkoAQJAN9AK1ADV1trTrgUpkuWMMQZYAlyK816dCOQDnTjv0xbgoLW22q0YRUREREQymZK4IpJWxpgFwMmoxeuttbeNfjQyXhhj5gAfAN4NLAVMHPu0ALuA7cDTwGZrbTCdcYpkM2NMMfB24K3ArTgnWYbbpwnYBjwIPGit7UhrkCIiIiIiY4TKKYiIyJhhjCkyxnwbqAbuBJYRRwI3ogx4JfBFYD3QbIy5JR1ximQzY0yxMeZO4BTwC+CviCOBGzEVeD3wM+CcMeZXxphL0hKoSJyMMe+PUVZngdtxZQI9NiIiIqNHSVwRERkTjDHzgL3AZwBvCposwUnsikiKGGNeCRwHvgxMHmFzhcB7gSPGmLuNMQUjjU9EREREZKxSOQUREcl4xphZwDpgYYzVYWALsAMnedSOUxO3DGdU35XANcCi0YhVJFsZY/4N+E8GHx3fCjwHHAYaIzcDlOK8t68BbsBJ3vaXC3wc+C7OKHwRERERkayjJK6IiIwF/8vABK4F7gH+I55Jy4wx83Fqc74NWJtI59baeEs2iGQlY8x/4JQqieUvwH8AW6y1oWHaKQLeiJO0Teh9KiJjn7X2DuAOl8MQERHJSCqnICIiGc0YcxvwpqjFYeBd1tr/F08CF8BaW2Ot/R9r7U04o3N/DHSnMlaRbGSM+SCxE7hngZdba19jrX1xuAQugLW2x1r7h8j79BXAwRSHKyIiIiIyJimJKyIime5vYyz7gbX2D8k2aK09YK39R2vtMyOISyTrGWOWA9+PseoYcKO19oVk27bWPg+sBr6dbBsiIiIiIuOFyimIiEime22MZbGSRiIy+n4ERE841oIzAvfMSBu31vqBfzHG7Ab8I21PRERERGSsUhJXRLKCMSYPWAPMAaYBxUAz0AAcstaeSHP/c4GrcCbamgLkA51APXAUOBpJVoykj9nAMmABMAlncqAOnIRKLbDDWts3kj5GmzEmB5gVtbjDWlvhRjzpYIzJxXltXobz2gDndbHbWrsvgXZKgGuBpTgTRXUD54BN1tq6VMYco+8pwHXAJUAJzuRyZ4B91trKFPZjcCaouxKYEekrB+gFuoA6nImvjltrgynqswjnvs0CynESlo04x4496X5s+8WxGGdU6myc40czzmP8orW2dTRiiBHT64BbYqz6aCoSuP1Za3+f7L7Z/BxG/vZdg/O3bwowGfDh/G2oBA5ba8+lsL9LcY5l5ZGbD2jCeW9utdb2pqqvIWK4HLga5xjhjfR/CudxHlMldIwx03Cev4U4f9ctzv152FrbFMf+k3E+FyzGee4nAD04nwvqge3W2pb0RJ85jDGlOH9nZ+C8Lr047/8GnM9GjaMUx7h5bYqIiEustbrppptuabvhJBRt1G3dKPZ/O/AoTsI0Oo7+t0rgO8CMFPa9CLgbOD5M3xYn4fYk8A9AcZztTwU+BPwBJ1k3XB8+YD3wDsCT5H26I7rdND9/M2PcjzMuvI6jY7gjjn1ui7Hfbf3WzwJ+iJNMGew5Owa8d5h+rgTuB/qGaGczsDbVzzdwK86kVcEh+t4FfBAwI3j8lwB3xfk6tzhJig3AF4AlSfb5DuDpYR5Xi1Oz9Q6gJNWvLZyyVx8ADgzRfxB4FrjehffFMzHieW6049BzOCAeL/Be4Cmcvy3DvV+OAd8Drk6yv4U4V0dUDtNPb+T5eG0SfSyI0d77+63PBz4FnByifx/wEHBZnH3+Io7HbrjbHYO0vS5qu3X91hng3cAWnPrvsdq9bZB2C4C34Ez6eSyO+MKR1/9ngIkJPB/pfGzuiN42yddlDs5npI0M/TcqDOwAPg3kj4XXpm666aabbtl7cz0A3XTTbXzfBvlwu24U+l2Ek1xK9EtFF/BlkkxyRvqeCvwMCCT5xaYjjj5+N4L2LXAYWJHEfUvJl6sE+pscI/YAUDTKr+O4vnxG7XNbjP1ui6x7K9CWwPN1P1FfLnG+6P87Q385jf6i+oVUPN84SaIfJPia2wgsTLB/A3wN5wtusq/1cwn2uQrYnkQ/jcA/puq1hTNycnOCMXx9FN8Tc4mdYHrraL439RwOiOVtwIkRvF8+nUBfJTjHAX8S/WwE5iXQ14IYbbw/sm4FcCSBvoPAR+Lo8xcjeBwvei3EaHtd1HbrIsun45xsHa7d22K0+UmcqyCSjbWFON+/aX5s7ojeNon3wStwrnJKNKYa4C0J9jXqr03ddNNNN92y96aJzURk3DHGrMYZwfKqJHYvBu4E7jfGRNd5jKfvK3FGdHyA5EvWTIxjmxtH0D7AcmCrMeb2EbQxGtpwEnj95eCMNBqTjDHvAR7AuTQ2Xu/AOTFwvg0D3At8FSehGlfXwNeNMf+UQL8DG3H6/g3wsQR3vQlYb4xZlMA+vwS+BOQl2FdSjDGvxRnBe20Su08FfmSMucsYM6LPV5HHaCtwQ4K7fsEY8x8j6TsBb8R5TfV3DnhslPqPKVufQ2OMxxjz3zjHlksT3b+fkjj7mw9swjkO5CbRz03AdmPM9Uns2z+Oa3ES5csS2M0L/J8x5kMj6TvVjDEzcO5LrBIl8biaOJ+/QUwGHjDG/NsI2nCdMeYDOKPQlyax+zzgQWPMv6QgjnHz2hQRkcyhmrgiMq5EZkpfh1P3LdoJ4GGgAucS9hk4NdL+Ksb2bwPyjTF/Za21cfa9Cid5UBxjdQfwAk5yuQFnxO8knNqIq3GSslNi7BePELAbOIQz8qQ50p/B+UK3GLgeWAsXnbybANxnjLnaWnsqyb7TylprjTFbcEa19vdtY8x2m+ZaxmlwDfCfvJT8asMpo7EV53VRiJNg/2uc0T39vdsY84i19o84ZQL+od+6GuBPOJfFNuPUxF0TaSf6S/03jTF/stZWJ3kfPgO8s9/vnTglS3bg1FgsxfnS+jac0Zr9zQWeN8astNa2DdWJMeZ9OJeER2vEGWV/AKeeaC/O4zYR57LuFTiJs8kJ3CeMMS/DSUDG+my0L7KuOtLfTJxSEq/GuVS2v0/gfBFPNlk+EfgzzrEBnNFZm3Eut6/FOXaU47yf38LAScU+b4x53Fq7Lcn+4/WyGMs22BTVIk5Glj+Hv8a5BD+WgzilLypxanDmAmU4tWuvxUn+RSfkBxVJ4G7DGTUabTtOcvcY0IpzAmYmzt+413LxYz0deMIYs8paWxNv//3MAb7FS8e4IM7f/xeA0zhlNGbivFZfz8ATXt81xjwzxLGwFud1A87jFX08O8Lwk+3FW2/Yg3PFRf+TXFXAEzh/15twPiMsBN4eZ5vHcOI/ApzFOVb7cV6f83Ce91fhHD/PM8B/GmMOWGufGKLt0Xxs4maMeS/9Tnj2Y3E+f/0ZpwZtEOf9+Uqc10f/14YB/tsYY621304ylHS/NkVEJFu5PRRYN910G983RrGcAs6Xw70x+msG3jPEfpOBn8fYzwKfjLPvKcSud9YBfJ5hLv/H+QB/O06ZhGAc/R0HHsRJAEyKM8b5kfajY/xTAo/xHdH7j8Jr6GODPDddOCNRZ41CDHFdBhq1z20x9utfm/NuoHSI13KscgVHcZKzocjv3cBHAO8g7czASahEt3NPss83TgLs/P9/NsR98OAkfHtjtPHzOPqOviQ8CPwLcdQsjLyf1uLUhayIY/synImXYl1a+5oh9puDkzyP9fp8U5Kvrf6P11Zg1RD7LsCpORzdxlOj8J6IVf/0M+nuV89hzDY+O0j8LwDXxrH/bOCfI8/pHcNsm0fsUhWPA8uH2XcGTrI5et/tDHIMi3qchnqcnwQWD7H/lcT+G/2jOB/j98fYd8EIXq/rotrqXxanCecEVsw64jhJxgHHQZzPMZtx6sDOiTOOCcBXGFiypgEodOmxuSO6vTj3u5TY8x8cANYMsd9ynARv9H5+4Jo4+nX1tambbrrpplt23VwPQDfddBvft0E+3K5LU19fiNFXM3BlnPt/Pcb+fcDsOPa9L8a+p4Arkrgfw9YNJc7E7SD7fiUqzjCwLM59k/pyNcLnNR9n1E+sJMX5+LcB3wDeHO+X1wRjiO7zjjj2uW2ImD8RZ79Pxdi3PvKzE7gujjYm43wh799GO3F8QY/1fPe7/Vec9+ENxK7ffMsQ+6yIsf1Xknzuhq2fDPw4Rn9V8byWcBIqsRJTcSVBhnh8HwcK4ti/jIETvoVIoN5oEo9pHrHr4d6arj71HA667+XErov9PyRY2x3n5MfcYbb5zxh9fS7BfmIdV/5mmH0WDPE4/zie+wpcgjPpYfSxMJ5jxPtj9LtgBK/XdYPcl3MkObkVI/tccDsDj9MfjnPfVD82A14fce73dIw4dsbzuOCMhn8uxv7749jX1dembrrppptu2XVTTVwRGReMMbnEvvT1/dba/fG0Ya39Ik7SrL98hqn9aYxZhlOztL8+4HXW2gPx9B0Vx8k4tmlPtN1+7sS59P08A/z9CNpLK2utD+fx7R1kE4MzOvVzOOUyThljzhljnjDGfNEYc7MxJvpyaTf9zlp7d5zbfjnGsmmRn5+0cVxuba1tBb4TtbgE5/LmZK2z1n4+ng2ttX8CYtX4/MQQu8Wqm3tvPP3F6L9nqPXGmKkMLNsQAt5mra2Lo32LUwM7+r1eHqPdeFXjXD3QF0f/LTgj0vvz4FwmnC6ziX35fcovj45Hlj+HX2Dgpdi/s9Z+ylobjifQfnGE7BCldYwxk4GPRy3+kbX2mwn2cwdOeYf+kq3Duh34aDz31VpbCXw/anEJidctTqcPWmsPJ7PjSD4XWGufBb4XHUuy7Y02Y8zlDHy/dOKMph/2cYm8T9/KwGPYFcaYZOZXgPH32hQRkQygJK6IjBdvw6kv1t+T1trHE2znn3C+/Pf34UiSeDD/wsDj6VeTSeCOhkjC4tdRi29yI5Z4RZKVr8apgRqP6cDrcJKHG4AGY8xPjTEjSVymQggn6RIXa+0OnFHI0Y7hXDobrwdiLFuVwP7RhkrAxvJNnEvd+3uTMSb6PXterMn9mhPsM14fZGBN0nustXvibcA6dWCjk1uQfE3VryaYkLmPgcet1Un2HY/B6g23pbHPoWTlc2iMWYBT97q/RuD/JdBvIj7GxfXju3BOniXjzqjfV0buT6I+ZxOrw/ybGMvS+V5JxAuRk15u+VXU71cbY4pciSRxsd6nX7PWno63gcj7NdbJhGSPAePptSkiIhlCSVwRGS9ijVj630QbiYyG+EvU4ikMnfB6Q9TvXcD/Jdr3KIueEGzVMIlq11lrNwJX4YwWGnZ0W5QSnNHGm4wxfzLGJDNrdSo8axOfwGdvjGU/jyTj4xJ5XXdELU72Mdia6AmKyCin6BMHOTiX8MYSK2GbrhMNsY4dCb9/rbXrcSYX7O+KyIzziejGqV2dSN+tDHxPp/M1XjjI8pFcITAS2focxpoQ6UfW2uj3eqpET6j1xxH0tZmBSf9bE2zjhLV2XYL7HMJ5fvpz6+9BtJ+63H/06y8HZzLOsSD6GOAnucfzPqAlatnLjDHR77PhjLfXpoiIZAglcUVkvFgb9Xs3A0sjxOv+ONoHwBizgpcubz/vsRGWO0iYMWaCMeZ1xph/M8b8KlJKYKMxZrcxZm/0DWfSrP7yiT3TeEax1jZZaz+FM0nbJ3EmDUrokmGcxMdOY8xbUx1fHDYksU+spO/GFLRTmkQbAI8kud9DMZZdP8i2Oxj4vN4beb+lTOSL+ZqoxUettQeTbPKPMZYlOvp7q7V2uFndY6mM+n1SEm3EK1YpBXDqOI6qLH8Ob4uxLPpkSUpESilcEbV4c7LtRS4xjz4mXZ1gMwkfTyP9VkctTud7JREvpLIxY4zXGHOTMeafjDH3GGMeM8a8YIzZOcjngq0xmpmXypjSwRgznYEleJ6PlClJSKR802NRiyfgnEBOxHh7bYqISIbIcTsAEZGRMsYUA0uiFu+x1kZfmhqvHTGWDTYSN1a9sk1J9pswY8xqnHIOf8Xgo+PiVcrAS94zkrW2AbgbuNsYMwknybIW53m6GmcW9KFMAP5ojHnTKF++WpHEPp1paifZL4e7ktzvAM7EOf1HfMe8VNRa22KMeQxnorrzFgL7jDGPAr8Hnk7BiMOlXHx5ODgT4SRrsGNHrAT2YKJHw8Ur+sRROr/8D1afuhRn4r3RlM3PYfTfn0ZrbbJ9D+cGBg7++LwxJtlLzQEujfp9aoL7j4X3SrwarLXxlgsaUmTk+L8B72TkJ2dLRxxQ+sX6OzLSY8D7o5atAnYn0MZ4em2KiEgGURJXRMaDKQwcGXZkBO0dxRkF2P8L62BfLmN9QUp7LdxI6YP/wal9mKqrKsbkl4XIqOc/R24AGGNmAzcDrwHeglNOIZoH+K0x5rJE6uaNUGsS+wTS1E6y5TOOJbOTtdZnjKkGFvdbHD2Kvb/PArcAZf2WeXEmn3krEDLG7AG24Hzp3pBEqYpY7+uRHDtiTUiUaGIq4dFjEal6fuMxWIyljH4SN5ufw+j3Tzr/9syJsSzWBIQjMSXB7cfCeyVeKXnfGGM+DHyL2H/zkjEWPhdk8zFARESyjMopiMh4EGuSnbZkG4tc0hY9wq8s1raDLE8mwRa3SAL3jziTzKTyOD5uvixYa09ba++z1r4fmAV8ntijB0si60ZLrIRswqy1KWknSSMpFRK9b+lgG0bq+N4OnBxkEy9OvcaP40zIU22MOWmM+Y4xJt5J21J67CD2e3+wY8dg3Hxu43Wa2KUT3CjJkpXPoTFmIgOP2en825NogjUZiV5NMhbeK/EacR1jY8y/AveQugQujI3PBVl5DBARkeykJK6IjAexZrKPnhwiUdH7x+oDYn9Z6hph38P5HPCmGMtP40zm9h6cS1/n4iTJCqy1pv8NeFmaY8wY1tpua+03cEoutMXY5H2ZPqlbhhnJeyve9xUA1to9wOU4r/lTcbS/APg0sMsY86wxZuUw26f62BFr3yHv41gUqfdaHWOVG5MgZetzONp/e2IlyiR1giPZ2RhzE/DNGKvOT7L3UZwaypfiPJdFgCfGZ4OxKFuPASIikoVUTkFExoNYNUOLR9hm9P6x+oDYo2ei6zOmjDFmGgNHjgZx6uL+wFob7xfBkdbPHXOstXuNMR9l4KzxE3AmRhq1WsZjXDHJjxqL9311gbW2B/hvY8y3cEpkvBKnzMK1DP06fgWwzRjzYWvtLwfZJtXHjlj7Dnsfx6hdOHWK+4ueYGw0ZOtzOKp/e4h9JcNKa+2+NPYp8fufGMt+AXzKWtsWTwPGmIJUBjSKsvUYICIiWUgjcUVkPIh16Vtpso0ZYzwMHOU0WH2z5hjL0jli6a9wRtD09zlr7fcSSOBC4pcGjhf3AQ0xli8d7UDGsJHUSIzety3eHa1jg7X2y9baW3Heo9fijLx9kthJpjzgp8aYWwZpNqXHjkH2TbY2YqZbF2PZLcYY7yjHkZXPobW2E/BHLU7n356mGMuik/jiAmPMpQwcBf+4tfYD8SZwI0ajZEY6ZOUxQEREspOSuCIyHjQxsD7j8hG0t5SBx8dYX2ABzsVYduUI+h7OK6N+bwV+kEQ7qZ6QZkyw1lpiz1qd6KQl2WxJMjsZY/Jwyh30FyuhHhdrbdBau9Na+z/W2tfjTPL0ESB6hncvzkQ/sTTGWDaSY8dlMZYNduwY6x5n4HF3Js6JptGUzc9h9GRYV4xiX5Dev3USv+jPBQB3JtHOWP1ckM3HABERyTJK4orImBe53PpY1OKVIxgRdm2MZbsG2XZLjGVrk+w3HnOjft8WqU+ZqBtSEcwYFWtirhHVI8wyq5Pc70oGTpIz2PsqYdbaLmvtPcAqBtbPXWOMiX7vABxnYB3RkdR1TeTYMaZZa2uB52Ks+ugoh5LNz2H0359yY0xSJ1nisC3GstemqS9JTPSxrc9aG+tk5XDG6ueC3TGWZcsxQEREsoySuCIyXmyO+n0C8Jok23pHHO0DYK09wsARSm80xozkkvOhRI8YTfgSP2PMVLJoYrMYpsdYFmuUmcT25iT3e2uMZVtHEEdM1tp64DsxVg0YpWitDQHboxYvM8asSLL7uI8d48T3Yiy73RjzttEKIMufw3Uxlr03HR1Za2uAiqjFa9KYNM40sU70jXbpkMGM+HNBxF8nuZ+rj03kmF8VtfhlxpiEy0ZFrhiJvpqgC9ifZHgiIiIppSRuAowxbzfGfN8Ys9EY02GMscaY36ShnyuMMb8yxpwyxviMMQ3GmPXGmL9LdV8i48hfYiz7SKKNGGMWMjD520TskR7nPRL1+wTSNxotetbkZMoAfAwYqxOYjIgxpgi4LsaqytGOZQy7IdEEmTEmn4HJpSDwbMqiutjRGMsGO7GSqmPHzcDlUYv3RxIM45K19glgY4xV9xhjZqayL2PMu4wxswZZna3P4Z8YmED7R2NMdE33VHk06ncP8O9p6ivTxJrYKp0TySUi+nPB5Eht/7gZY24l+assMuGxiT4G5AMfSKKdv2FgbeDnIyeLREREXKckbmK+BPwTsBI4nY4OjDHvB/bgjHTaiDOa6AHAAK9LR58i48TDDKyF+QZjTKLvm+8DOVHL7rHWBobY59tA9Af8fzfGpKM+4dmo3280xsQ9C3Mk+fb51IaUXsaYf0zhrNmfZODM0w0MHMknQ7srwe3/FZgTtexRa2306zlVYiUQY9VNBPgZ0Be17CPGmLjrfRpjcnCOHdFiLRtv/pGBj98U4LlBSlgkxBiTZ4z5NvA7nInqYsnK59BaewrncemvHPi/NHX5HQY+zn9rjPmbNPWXSWJNnpUpNWSjj6OFwM3x7hw5ufnjEfSfCY/ND2Ms+3IiJ5MiJz++GWNVxh4DREQk+yiJm5hP4UzoUgL8v1Q3boy5HvgJcBBYYq19t7X2C9baj1prbyFNl8iJjAeRJGusCb5+aYyJNUnFAMaYO4HXRy3uA/53mL4rGPhFugB40hgTPaornjgWDLE6etTbBOArCbT7GM4IlbHkLqDKGPNJY0zSo3sil3jfEWPV/dbacLLtZqlXGGP+I54NjTGvBb4cY9XdQ+zzfmPM25Kpa22MyWXgSPgwzt/WAay1TcCvohbnAA/GkwAwxhicv91XRa1qAFJ+tU6miZSU+USMVcuBLZERfkkxxrwC5yqIzwwTQzY/h/8FRJ9kfLcx5ruR+xU3Y4x3qMR75KRLrGTZz5ItoRHp82+MMV9PZv9RFOv4kSmDK2KNhv965Fg4pMgJ0j+S5ISVEa4/NtbaQ8DTUYsnAQ8bYyYOt3/kapEHGHgCcL+1Nl1XjIiIiCRMSdwEWGtfsNaeiMxuHpfI5X8vGGNajTF9xpgjxpgvRT4sRPtvnBpS77HWDpjxfpiRgCLijBLaG7VsKrDOGPPOwXYyxpQaY35C7ETT56y10SN8Y/kEA2uyzQE2GWM+FxnpMihjjMcY87JIiZYTQ2z6IE5Cqr9/McZ8LTKSbLD234UzCc750TEdQ8WTgWbi1N+sN8b81hjz2nhH5xpjFkae3/sZOJKvmdiJXRnc+ZF4XzTG3DtY/efIa/qfgYcYOKHZL6y1G4boYyXOF+oKY8x/GGNWxROYMWY+zomK6Ilpno31d7WfzwN1UcsuxXn/3j5Ef7NxLjF/X4zVH7bWRo9aHJestfcCsZJws3GOv08YY26M5xJvY0yhMeavjTEbccptxFu6IyufQ2vtUeCzMVZ9Cmc09LATPBljZhpjPoEzQeg/DLP5lxh45UIR8IAx5ifGmEviCBtjzOWRE6fHgfsYmEDPKNbaFgaWafmAMeZTgx0DR9F2oCZq2VrgIePUwI/JGHMtTgL4fMI1qc8FGfTYfJSBpR2uAzYM9TfEGLMMeB54ZdSqAMO/H0REREbVoF/4ZeSMMT8F/h7nS8VDQBtwPfA1nFFMr7TWBiPbzsG59GkncMgY8zKc2lQWJyn1gkaKyThyjTFmbwra+a219lvnf7HW+o0x78b5QtN/xGY58HtjzFdw6tdW4HzQn47zAf+vgFgjNZ4gzsvorLVtkZFIG6LaKgG+AXzBGPMczkRODTgTZUwCZgFX43zhmhZHP8cjid7oGtlfAt5vjHkAZwKOLqAMWBq5f/2/WPcAnyN9l9ymUxHw7sgtYIzZhzNrei1OQrYNZxT0ZGAZsIbYM01D5AuatbY5zTGPN/+Oc9IR4IPAXxtjHgF24Ly2S3Ee+7cB82LsX4OTYIrHAuCLOAnjszijMvfilE5pA/w47/UFwI3AbQxMGPsYfiRni3Hqzj/NxZ+NFgLPGGN2A48D1ThJ7JnALTj1s2OdTPihtTa6fui4Zq39kjGmGyeZGz0C9HWRW4sx5lngME6t8abI+lKcE0yrgRtw3ueJ9p+1z6G19u5IQu49UateBuwwxuwHnsE50diE8x6ZjDNa+prILa6BHdbaPmPMW3D+lkWP2v0HnL9DO4H1OI91C84AhVKcv3ErI/3NTuQ+Zoif8dKxD5z79V3gO8aYOqCdgaWVfmSt/VE6g7LWhowxX43E198bgGpjzIM4z1cTzvFyHvBanL+P/d+r/8TAEe3xcv2xsdZWGmM+xsD7sBLnfbAJeAo4FYllNnA78HJifyf+grV2Z6riExERSQUlcdPEOLVt/x6nTuffWmt7+627A+fy54/xUl3B80mGEzhng2+LavKAMeatkcu2Rca6YlIz6mZd9AJr7ZHISZAnGJgUXQb8W5xtP4Tz3o175L21dq8xZi1OomB+1OoS4C2R20h9AufL17Ko5XOAfx5m3wDO7Os9KYjDbbm8lIBIVA/wLmvtY6kNKSt8G+cxPz+TeQnOSYV4Jt+sA15urW1Lot+ZOOVOokueDMUHvNdaG7OUQn/W2heMMX+Fc2lxdN3kVZFbPL7P8O/Dccla+1+RZOnPcE5QRSvjpddNInpxPi8NWUM5y5/D9wHniD0q98rILSWstWeMMWuAP+Akwvvz4pwcjTWB5Fj3Q5zHOXp0uMFJaMcqRTEj3UEBWGt/box5JfCuqFXFxHd8/rq19tfGmGSTuBnx2ETuQy5wDxd/z/XgDJaJp1awBT5vrf12quMTEREZKZVTSJ9P4swY/Pf9E7gRX8MZMfa3/ZadTzb9Nc7IiLfijNK7FPg1cAXwhDFmsEk9RCQiMnLiBpxLcRPVjXOS5R3JXEZrrT2Ak2D9DQPLHsRrsAmYzvfRjjN6ZGuC7Z4BbrfWPplkXG75HM4ln6m6GuEhYLkSuMmJnNj4WyDREVSbgFuttdFlR2JpwPkiPRIHcRLGf4x3B2vtn3GSUsmMvmoG/p+19hPZfOWMtfYvOFcAfB1ntPRIdOFMuLTEWvt5a60vjv6z8jm01oattf8CvBNnBGxSzTDM359+/Z0DXoFzFUhLkv2ddwSn3E1Gs9b2AK/GGdWciT6AU9s5EX3AJ6y1XxpJx5n02Fhrf4Yz0vh4ErufAt5urY01wZmIiIjrlMRNg0jty6twZmv9Z2PMHf1vOHU3fTjJ2vO8/X5+0Fr7sLW2w1pbiXNmeyfOpANJTRwhkm2stVXW2lcCr8IZGds9zC5VwP8Al1pr7xzJF3hrbYO19r3A5cC9OF8KhtOOk1x8F86I2uH6OI2TqPgnBtbijVaDc9xZNkwd0oxkrb0rMrnjDF5KHh4k/qRuCDiEcwJtmbX2bdba2rQEmyWstUFr7f/DOZnwPEM/F3uADwE3x5nAxVr7nzjP998DvwVOxhlaAPgzzutkpbV2c5z79e97N86JmL/BORE0XOLwMHAncEm6L5seK6y1XZGk0BycxNLjxF9vswGnrvF7genW2n+01kbXuh2u/6x9Dq21f8D5vPiPOCUN/HHsth9ngrSl1tpYE5cN1lfQWvt1nCtPPgO8GGd/QWAzzmO+xlp7mbU22RGgo8pae9pa+yqc0h/fAP6CkzRvw7lfrrHW+qy1H8K5WmHTMJu344xWXWGtjatsVBz9Z8xjE5mMbAXO+2ATA0s5XLQ5sAvnNbzEWvtQ+iMUERFJjkngSmHpxxhzG/ACTk3O90Stm83AyTVistaayD7vwpnd3gcURSeQjDFfwklAfM9aG28tQRGJiIxivw7nkr5ynEsMm3FGHR201iYzYiOR/pfhnLiZGrlZnLq8Z3AmBDlurR3qS8Zw7S/BSVqcv2/dOMeh/dbaYyOLPjNFJoi8BOeKhek4tYiLcEYWdURuFcChGFdESBz6lf+54PzfrajtpuLUfL8Ep+ZiB86l73siJyNTEcsUYDFO7dSpvFT3uhNnJOARnOd62NGaCfZbjHPfZuJcNZOHU1uyAef+xXOSJutFJjVbgvMczsV5/vJxnr9WnOPxAWtt9ARNqeg7a5/DyH2/Due+T8U5TnbjJNYqgMOprAseGchwDU45jSk4tXB9OM9zA87kaRXW2niSvTICxpjpOPX2Z/HS81CPc6zcYyPzcmQDY0wpzjFgOs7nJC/O5796YIe1tsG96EREROKnJG6ShkniTsD5sLrHWhvvjNqrcM4CN1lry2Os/xjwA+Aea+1HRha9iIjI8OJN4oqIiIiIiEh6qZxCGlhru3Au3V1hjCmLc7f9OKNCpkbOnEe7PPKzeuQRioiIiIiIiIiIyFihJG76fBfncr2fRS7huYgxZnJk9C3g1BXDqU0F8N+Ryw7Pb3sF8H6celIPpDFmERERERERERERyTA5bgcwlhhj3gy8OfLrjMjPG4wxv4j8v8la+1lwZkY1xqwGPgpUGmP+AtQCZcBCnAmJfg70L43wnzgz/f4dcIUxZh1O3aa3AQXAZ6y1Fem4byIiIiIiIiIiIpKZVBM3AbFqA0apsdYuiNrnDTiJ2jU4kwq04CRznwZ+Y609GrV9EfCvwDtxkr19wA7gO9baP6fifoiIiMRDNXFFREREREQyg5K4IiIiEpOSuCIiIiIiIplBNXFFREREREREREREMpiSuCIiIiIiIiIiIiIZTElcERERERERERERkQymmrgiIiIiIiIiIiIiGSzH7QAynTHmJFACVLscioiIiIiIiIiIDG0B0GGtXeh2IOOBMea3wDK34xjEUWvt37odxGhREnd4JYWFhWXLly8vczsQEREREREREREZ3JEjR+jt7XU7jPFkGbDK7SBESdx4VC9fvrxs165dbschIiIiIiIiIiJDWL16Nbt37652O47xJ9NSiEG3Axh1mthMREREREREREREJINlWhpdREREREREREREMojBuB3CRazbAbhAI3FFREREREREREREMpiSuCIiIiIiIiIiIiIZTOUUREREREREREREZBAGTGaVU8Aasq2ogkbiioiIiIiIiIiIiGQwJXFFREREREREREREMpjKKYiIiIiIiIiIiMgQNA7UbWl5Bowx7zXG2Mjtgwns901jzHPGmFPGmF5jTIsxZo8x5ivGmClD7GeMMe8zxqyL7NNrjDlpjLnfGLMkNfdKREREREREREREZPSlfCSuMWYu8H2gC5iQ4O6fAnYDzwANQDFwPXAH8GFjzPXW2lNR/RUAfwTeABwDfgd0ArOAm4ElwPEk746IiIiIiIiIiIiIq1KaxDXGGODnQDPwEPDZBJsosdb2xWj368AXgM8DH41a/R2cBO5/AV+y1oaj9s1NMAYRERERERERERGJMBlWTsG6HYALUv0MfAJ4OfABoDvRnWMlcCPuj/xc3H+hMeYS4CPADuCL0QncSJuBROMQERERERERERERyRQpG4lrjFkOfAO4y1q7wRjz8lS1Dbwx8nN/1PJ34SSifwmUGGPeCMzFGQn8vLW2IoUxiIiIiIiIiIiIiIy6lCRxjTE5wK+BWpyyByNt77M49XQnAdcAN+EkcL8Rtem1kZ+TgEqg/+Rn1hjzf8AnrLWhOPrcNciqZQmELiIiIiIiIiIiMo4YMJlVTgFryLaiCqkaifvvwNXATdba3hS091lger/fnwLeb61tjNpuWuTnncCzkf2qgTXAPTj1cxtxJkYTERERERERERERGXNGnEY3xqzBGX37HWvtlpGHBNbaGdZaA8wA3gosAvYYY1ZFbeqN/DwLvMVae9Ba22WtfR54OxAGPm2MyYujz9WxbsDRVNwnERERERERERERkWSMKInbr4zCceDLKYmoH2ttvbX2YeBVOKUSfhW1SWvk51PRI4CttfuAk8BEYHmqYxMREREREREREckOngy7ZZ+R3usJwBKcJGmfMcaevwFfiWxzb2TZ95LtxFpbAxwGVhhjpvZbdSzys22QXc8neQuT7VtERERERERERETETSOtiesDfjrIulU4dXJfxEm2jrTUwqzIz/6TlD0HfBy4PHpjY0w+sDjya/UI+xYRERERERERERFxxYiSuJESBh+Mtc4YcwdOEveX1tqf9FueC1wCBKy1lf2WLwParLXnotrxAF/DmcRss7W2td/qPwNVwKuNMa+01j7Tb92XgUnA+ug2RUREREREREREJB4Gk3ElDIzbAYy6kY7ETcZs4AhQAyzot/w1wLeMMRuASqAZmA7cijOx2TngQ/0bstb6jTHvA54G/myMeTjS7rXALUAj8OF03hkRERERERERERGRdHIjiTuYZ4EfA2uBq4BSoBtn0rRfA3dba1uid7LWvmiMuQanBu/LIvvVR9r6mrW2bjSCFxEREREREREREUmHtCVxrbV3AHfEWF5NjDHP1tqDwMeS7Osw8DfJ7CsiIiIiIiIiIiKDc6qdipv0DIiIiIiIiIiIiIhkMCVxRURERERERERERDJYJtXEFRERERERERERkYyjcaBu0zMgIiIiIiIiIiIiksGUxBURERERERERERHJYCqnICIiIiIiIiIiIoMwGON1O4goxu0ARp1G4oqIiIiIiIiIiIhkMCVxRURERERERERERDKYyimIiIiIiIiIiIhITAYwGTYO1ADW7SBGmZK4IiIiIiIiIjJmWGsJ+IL4+wJ4czwUTii4aH04HObozmpOHj6DrzdAKBjC4/Xg7w3g9wXw9Qbw9frx+4LOz74A/j5nud8XIOALMmnKBL75yMdduociIgMpiSsiIiIiIiIiCbHW0tfto7OtB6/XS9iG6ev209PZR0dLN+FQGG+OB19UgtTfF7gomervC7yUTPVF1vUF8PXf58J2L+3TX/GkQqbNnkz57MlMmFTI3o3HaanvGNH9mzF/yoj2FxFJNSVxRURERERERMagUChMwBckcH70aPlEvF4P1lqqDp6mo6WbYCBEb7ePgC+IN8dDd2cf4VCYoD+IrzdAS30Hvj4/vh4/wUCIYDCEDVvCoTA9nT46W7sJ+EOEw2F8PX7CYUsoGKKrvXdAMtUt3e29nGzv5eThMylrM1Pum0hmMBiTWeUUnIIK2UVJXBEREREREZE4WGudRKc/SDAQupDctGFLKBQGIDc3B78vwJmTTQAUTsinoDCP7s5eutp66O3y0dvjp7erj74eP33dPvq6/fT1+p0SATFGqwYDISaXT2TytBI623o4XdnAuZpmAv7gRfG94e9vZnL5RJ67f/uF/iU5fT1+t0MQEbmIkrgiIiIiIiKS8ay1hIJhfL3+yCX1zs++SE3ToD90YSRpKBD5fyDkrAuE8OZ6ycnx4vcFCPqDBPxOMra0fCIve/s17H/xBCf2n+LI9pM01LXS292Hvy/ojHT1O5f8B/0hrM3cqXT+9LONbocwbvR1+7DWYkz2jfYTkcykJK6IiIiIiIgk5Pzl9AF/kN4u51L9zrYegv4ghRPymTR1Ip2t3bTUd9Da0HHhcv6AP3hhQqr+tVID5yeb6vO/VCe176Vl/r4g/l7nUv50+O4nfksoGE5L2zI2hcOWgD9IXn6u26GIZARDppVTyD5K4oqIiIiIiIxhoVAYf28k0emLMYlUv4mjzidIfb1+fH0Butp6nFtHL76eAL4eP709PvyREa7nywb0H90aCoYJBkJu3+2UUgJXYunr9iuJKyIZQ0lcERERERGRFOjr8dPa0HEhcRrwByM/nUvw8/JzyM3PJSfPi9fjIRQOU7G/jqbTrc6I00hi1dfjjyRggxfaMR5Dbq6XNa9cwckjZ2k63UpLfQct9R20N3dl9CX+ImNVX4+PkrJit8MQEQGUxBUREREREbnIw/es40xlA8FgiNbGTno6+ggGQsxdPJ2Vtyxh53NHOLClgoWXzWLRitmcrmrkxN5T1B47m7bL/c/b9cLRtLYvIi/p69bkZiIAGIMxGVZOwRjIsvOXSuKKiIiIiIhE7N90grs/fV/MdXvWH+Oxn2y48Pup4/VseGTPaIUmIqOst8fndggiIhdkWBpdRERERETEHYe2VfGND//S7TBEJENoJK6IZBKNxBURERERkXHt5OEz/PSrj/Lpu/+Win2naDzTSjhsefW7ryevIJf9m07w6288ya4Xjqq2rIhc0Netkbgi5xnjdTuErKckroiIiIiIjEvWWs5WN/Gvb7qbpjNtdLR0c2JvLX09zui63337KUqnTqD66Dkla0TGOY+Bl984h3lluTR1h5k1wZBz9hye4kJO503iwadPAuaiffpUTkFEMoiSuCIiIiIiMq48d/8OHvvJeiZPK2H9w7svLD+wueKi7c7VNHOupnm0wxORUeb1Gv7pldPoOV4JZ2E6EIrcaG6njHN87I2LeXBbM+caui/s19cTcCliEZGBlMQVEREREZEx71xNExX763j6d1vZ+Nhet8MRkQzyxpfNo+f48SG38R86wZvL8+m4ZiG/e7IKMAQDwdEJUCTDGQwmw6bVMhiyrQCSkrgiIiIiIjKm9fX4+d6n7mPbXw66HYqIZBTL626dz8xztcSTjg31+ig+epS3vWopDz5dTcCvJK6IZA4lcUVEREREZMwJh8Nsf/oQv/vOXzi0rYpwKOx2SCKSYT7++jn0HTkxbAK3aHIuxkBeoZfW071MP1fL9PJiAj4lcUUkcyiJKyIiIiIiY8q5mib+7uo7lGARkUEtmFtC35GquLa9/pV95PnrCedOxNNzjvWblvPxd5VS6w+lOUqRscOYzCqnkI2UxBURERERkTGjt6uP//38g0rgishF1l4zk8tmFWAxeAhT0NJM75n49j1+ZBKXl269UPHzltunYho2knfFmrTFKyKSKCVxRURERERkTKg9fo5/fvV3aW3ocDsUEckw3b1Birra6ak+iwV6E9i39bQPSl/63dQfBmDFhPhG8oqIjAaNhRYRERERkYxnreX7n71fCVwRiWnvoUZ+sK4Fe/myhPftbglA6eyBK0IqpyDiMBi8GXUD4/aDMuo0EldERERERDJSd0cvP/3qo7z4+D56uvrobk9kbJ2IZJtQGH7yWBWffPkseqrjrKUAeHINLZ4VlHH6ouU2FEh1iCIiSVMSV0REREREMsqZk4384a5neO4P2+nu6HM7HBEZUwxNBSUUEX8SNxwIU5p3duCKoD+FcYmIjIySuCIiIiIikhEaz7Ry59/9hINbKt0ORUTGsMpzvVyR8F4xLs3WSFyRC4xRRVa36RkQERERERHXhUJhfvT5B5XAFZERmzWlIKHtL799EtgQoZlXQ79ElQ1oJK6IZA6NxBUREREREVf1dvv4+t//jE1/2ud2KCIyxq1ZOYOZrWdIJP3a0w7PrislHISZy27nyhWnMA1HIBxMW5wiIolSEldERERERFzTdLaNr73/p+x/8YTboYjIGDa9vJg33jANz9ET+IOhhPat2tFx4f9nj3bTcqqcl62pxAZVTkEEnGIjngy7mD9GAZRxT0lcERERERFxzW+/9WclcEUkaQvnlfCalZMJH68ifLAFm4I2L39ZEbT7QUlcEckgSuKKiIiIiMio27/pBD/+8sMc2lbldigiMgatWDqFW5dOIHikguDBxpS2PbmoEdrBamIzkQiDMV63g4iSfWNxlcQVEREREZFRdWhbFZ981XfcDkNEMlzx5EIKJ+TTfLqdafPLmDyrhKICDzebdnqqThM4mJ5+c3xNzn+CmthMRDKHkrgiIiIiIjJqHv7RC/ziP//kdhgikuFKp0+k1+On6tRZANpP9uCt9fAPN82h59TptPWbX+yFlhrnl5AmNhORzKEkroiIiIiIjIquth7+7wsPEvApMSKSrYzHYMNDV67NyfXimeSl8XjbRcvf9PLFTKxMbw3totLcC/+3GokrcoHJsInNspGSuCIiIiIiMirqKhuUwBXJUhPLipm5fCoGw7FN1UNuu/DaOezafPTC72VTJ/LWK6ZQUnEcTHrrYM5Znge+yC+qiSsiGURJXBERERERSbuDWyv5z3/4udthiIgLFq2aw/69FZze1IQxhhnzpjB7bjnhQIiWunZaznRc2Hbu8uns3nLsov1bmjoJeqdj0pzAnXvVRGZ7Nl/43QaVxBWRzKEkroiIiIiIpFXVwdPc8bc/pvlcu9uhiMgoKy4t5GT1WcKREgrWWs7WNnG2tunCNvMuncH08skAHD5UjbUDyy384tkKbrt5MavqKtKQzLUsunYSS6Zug65+xymVUxBxGIPHZFg5BWNg6Mos446SuCIiIiIikjahUJj/+MBPlcAVyVKzV0xj56ajQ25TW3GO2opzw7a1buMJGi6fw8uL+shvaklJfNOXFLPyihpMw2bounhduK0eGw5jPBmWvBKRrKQkroiIiIiIpFRrQwff/thvaKhrpflcO60NHcPvJJIEiyWvIIdAX+jC78WTC+hp9Q2zp4yGvKI89u+qTGmbhw/W0TF/Ku/I8+IJhZJqY+ayYozHMHORobx3PTT0xt4wFHBG4+YVjCBiEZHUUBJXRERERERSatvTh9j85H63w5BxzuM1zL5hKlt37WfFNZfg9Xo5cqSK6vZe1lx/OUXeIkLdYer2NrodatZauHIWOzYfSXm7dTVN1LxyKQsrTyS1f8tpHy9bvRnah695a4M+jJK4kuUMYPC6HcZF0lshOzMpiSsiIiIiIikTDIT43XeecjsMGSc8XkNOgZeS6cWE/CGKygrIKfEQIszJU3Vs2LwLgD27L75cf/v2gwAYY7h++UrOHUnNpfeSmJ6+vrS1/ZetNXxwfhE5PT0J7+vxGmeUbTySHO0rIpJqSuKKiIiIiEjKvPj4Xk4dr3c7DBkH5t8wjW3799Pb64PqyMIzibVhrWXLsT2sXXs1vtNBWmo7sOE49sMy/7rp1DSfpqixmN52TXAVL4tl8TXz6Orr5cje6rT1093ZR9WMZSypOp7wvhOn5Ma/cTiYcPsiIumgJK6IiIiIiIxIX4+fg1sq2PrUQR776Qa3w5FxoHzRpJcSuCmwacseABYvnUe5ZwpnDjVj+l2MW1SaT8mKIuobmygqLKC29izVO2oBWLBoFmUlZbSe6kxJLOPVtPmTKZ5cRLe/j907E0+sJmPdjhoume7FGwxhDfinlGG9XrCQ09mFx+/DExqYtZ+2IAfizMtbjcQVAQyGTJvgL/sKKiiJKyIiIiIiSbPW8rX3/UQ1cCWlAmUBeqtTPznZiWO1nKCWK69eQllBKXiBEBysOs6hLW0x96muOkNneQ9XXL+Emq0aZR7Lwqtms29fBdSMbr+d7b10Xb0AbzjIQ8e7aKxsurBuYmkREyaU8OplkzkXzqG+3cclZfkErSEnEKDQO5Oy4FnMcHmgcJxlF0RE0kxJXBERERERSdq+F08ogSsjMn/tNOrbm8k5l4evy8/US0rZc+RQWvvcvy+xkaLNjW2sa9zOzauuoW63JkqLljcxgfIEKTJz3hRmzpvKXl+IPdtrCUWNuO1s66GzrYdf1L1UD3nPRVssYFLZCq65qowPL1xPWWiQBH04jvobIiKjQElcERERERFJyv13PcOPvviQ22HIGGOxlM6cwKRLi2juaGPr3n309fopLMzHk+fh+JEqt0Mc1OG6E8yZNpOOhl63Q8koHe3do96ntbD7xWMjaqO9pZvnXuimsnYN11+ez9vK1lMajkrSh1QTVwTAY7xuh5D1lMQVEREREZGEHNtdw92fuY/D20+6HYqMIXOuLqeu6yxn6hqorg9A1MDHVNW/TafmpnYmXTKRokARPa2ZH+9oMAZOnjg76v3m5qUuoVRd2UR1JdTfdhtfmP/Hi9bZsGriikhmyLSqxCIiIiIikuF2rzuqBK4kzJPn4WTlafy+sV1jtKqyjvq8BtrL2zCLQ8y9aSoeb/ZNsHNe+fwy/H2j/5zm5KR+TNoL6+rY7bnx4oUaiSsiGUJJXBERERERiduBzRX8/GuPux2GjEHDTiA1hjQ1ttHS3E5VZR0bNu8ib7mHeddNw5OTfV+xS6dPdKVfX58/Le3+aOMUQval59H6VTpDBAwGT0bdYBz9UYlT9v2FERERERGRpDzwg+f4zBu+R8CvkWmSuN6W9CTdMsGRw1Ws37GDiVfl483Nsq/ZLhRpvHrtElobO9PS9smKJp4MvO6lBaGxPXJcRMaPLPvrIiIiIiIiiepq7+XPv9rMj774IAGfEriSnMaKVnJyxvfEOHv3HIVFQSaWF7kdyqjp7upLa/sz503h6rVLyC/MZfLUiSy9ch57Nh2ntyd9NYnv/n0zezw3UJuzlI5uHfNEJDNoYjMRERERERnUrueP8L1P/Z66iga3Q5Exbs7V06jaU+N2GGlXceIU02aUccmyeZw72up2OGnX2dGTtrYnTi6mramLs7XNAPh6A7Q2pWcEbrQ7Hyykr7ecO9bm8NpVo9KlSMYygIfMOgmXfcUUlMQVEREREZFBnKtt5l/f/H3CobDbocg40JOTvmRfpmk410JzYxs337yamo3j9wRI0aQCzp5qvvC7J8cwc1kx3onO6NWOamg7m/xI3Rlzyjhx4NRIw0xKV4dTC7e7UzVxRSQzKIkrIiIiIiIDHN5exSM/Xq8ErqRE/oRcDh+udDuMURUKhVm3aQeXly2ju2V8JQKttUyak8/UZcXktQcwHktXuJXdB3ZzYE/3he1ee+vraTubfD+ZUH6ju2N8PXciMnYpiSsiIiIiIhecPHSaiv11PPqT9RzaWuV2ODIOGA+UXF5Iz/b01k7NRCWTiulq6cGM0Qt/vbmGwrIcCqZ68RSFCeUEaPM1c6TiKM3VLVA99P7n2uqYWD6LzsbkJrUrLM5Par9USnfNX5GxwWAyblqtsXlcHQklcUVEREREBGstX/nbH7Px0T1uhyLjSMGkfKZeMYGNm3e7HYorps+YQrB17CUaJs3Pp620lq179xCsC0Jdcu3s2beP5cv6yGmdSzhoE94/EAgl13EK9XQqiSsimUFJXBERERGRLNZS38Hvv/MUR3ZWc2ibRt6OdROmFDBpzgRCgTANx1oJhxJPnI1UboGXkunFFE8rYG/lEY5s7hr1GDLF5EklNDI6E3GlSvkVBayr+AsdFamJ+8jRY7z2hmXU7kz8deAx7ifAezQSV0QyhJK4IiIiIiJZKhwO8/Hbv8WZqka3Q5E4TV9eRl6hl2BfiDOHnQmlZq2YQnd+D0ePnsTX6odWZ9urVy2j50gAf3cwbfFMXTSJ4tn5NHe1Mal4ImEb5sCh4xw/1QPuzEeVUfJz8mGMJHGttZTf6OXxjQ9ibWqT/4Gu5Nrr6/GlNI5kdHepJq4IgCfjyimkhjFmDnAn8BpgCnAWeAT4qrW2Nc42DPAB4MPACsALHAN+DvzQWpuSywqUxBURERERyTL+vgDH9tTwL2+8C19vwO1wJA4WS15RHjWdpzh7rAmAxcvm0dfnZ/OR2CUw9uw+yoyZU1i0ci62GfLL8iAMzRUddDUNnpiy2Jg1XKfML6FoXh4GD76gjxyvl117DtNb7X6iLVNlwkjSeE2/Lp9HNzyU8nYLCwuor+hJat+aE+dSHE3iujs0EldkvDLGXAJsBqYBjwJHgTXAJ4HXGGPWWmub42jql8B7gQbgD0A3cDtwF3CLMeYdNgVnx5TEFRERERHJIo2nW/nzrzfz86897nYoEidvrpeCyzxUVpyi98xLCdMTx2uH3ffc2WbOnR34/XPJZfOZVTIdcizWWPAbfK0BgqV+Dh2q5OqVywmHwxSYAuo7GpleUk7F6RrqNtWn9L6NZ7PmlNN0sMPtMOLWEkzPczt9+jRCdWFMAgnt3LwcrlhzCbtfPJaWmBLRo5G4IuPZ/+IkcD9hrf3++YXGmO8CnwK+DnxkqAaMMW/GSeCeBNZYa5siy3OB+4G3Ae8DfjHSYJXEFRERERHJEqFgiAd+8Bz33/2s26FIHDxew9w15Rw7dZKKA00pbfv40RqOUzPo+s1b9l70+xFOprT/bDB75nSaasdGKQUAXyA9I6qrq2tZeWUpE7vm0XJq+ITo1JmlGMiIBC5AtyY2E8FgMHjdDuMisa4YSWh/YxYBrwKqgR9Grf4KTmmE9xpjPmOt7R6iqbdGfn7nfAIXwFobMMZ8GXgz8HFSkMQdnwUtRERERETkIr3dPn785Yd5+nfb3A5FBjF96WTK5k1k0sxi5t40lcaSRtZt28HZM6lN4MroSGTkaSZo62xLW9t79+/nUNsmpswvGnbbuYum03g2fbEkShObiYxbL4/8fNpaG+6/wlrbCWwCioDrh2lnRuRnrNlhzy9bZYwpTTLOCzQSV0RERERknAv4g/zPJ37HM/cpgZsJLJaS8mKC/hC+Lj+eHA/ll0xiX93RlyZRUtWCMS0vPxcaxlYS98zZs2ltv6WllcrCnay44Uq6TubQfi52cjQcDsdc7pZuJXFFMtkyY8yuWCustauH2Xdp5OfxQdafwBmpuwR4boh2zp9pXRhj3aJ+/18GbB0mpiEpiSsiIiIiMo499tMN/PzOx2lrGjuXdY8neYU5TFs9CY/xELJhcoI5BLwBNm3pNxlZAE4cdS9GSQ1jDDdcfxW21eDN8XB6/9gaQb1g7jwOHjmS1j5Onz7L6dNnycnJ4fpr1pDTOgWP15A/GeoP+/B1BQmHRzz3T0r1qJyCCACe8Xcx/6TIz/ZB1p9fXjpMO38C3gV82hhzn7W2BcAYkwN8td92k5OM8wIlcUVERERExqGOlm5+9+2neOKXm+hqS25meBm5GdeUsX7TDrfDkFFw4/UrObOpxe0wkpJf4uXAqeEnykuVYDDIi1s3M2FCMdZC9+FuCgryuW7hK8nJyaxEUcAfJOAPkpun9IlIBjoax4jbZJ2/nGK4M0v3Ae8BXgscNsY8BvQAtwOX4IzoXQyERhqQjkIiIiIiIuNEKBjiqd9s4Zn7tlF79BytjRp966bcolx6A5rZPlvkmrH79brkkhy6tg81b096dHW91Gdfn49q336meScNsYc7ujv7KJ0ywe0wRCS1zo+0HeygUxK1XUzW2rAx5q+ATwLvjdwCwGbgfcAPcJK4DSMNeOz+lRERERERkQvOnGzkw2v/k+52JQ3dZjyGOTdOYfueAxzf7nc7HBklXf4eZl5WxrmjLdjMKus6rHBvZtTvramp5bL5bW6HMUBPV6+SuJLlTAaWUxjxcetY5OeSQdYvjvwcrGbuBdbaIPCdyO0CY0whsBLoBQ4lFWU/SuKKiIiIiIxxfl+Ab3/0N0rgRrFYzMi/5CXc59RrJ7Jhc8x5VmQc27nT+X6+Zs0V5Ofk0dHTSWFXEeeOt4z66zBRQV/m1KH1t2ZemqJbdXFFxqMXIj9fZYzxWPvS6TdjzERgLU7ydSSTkb0XKAB+aa0NjKAdQElcEREREZEx78iOavZsODb8huPcxPIiSpcV4wl78ONn5+5DlE6eyIQJRUwvn0q+ySPcG6av1U9j1ZBXRybEm+chf0IeE6cXYcosW7bsTVnbMvZs337got8nlU3g6uWXUbO5fvjKii7x5sVOMk+cOIGrrrqMM2fOkV+QT8nEiXR2dXOq9jSdnV1piSVvcjAt7Y5Eb7fP7RBEJMWstZXGmKeBVwEfA77fb/VXgWLgHmttN4AxJhenxm3AWlvZvy1jTIm1tiNq2bXAN4Au4M5UxKwkroiIiIjIGLb9mUN8/q0/cDsM102YUkB1sJaOTRfX9Ww410IDLVRV1F20/La1a6jZVA/AzMvKyCnz0HvaT0ttJ+HQ4Jk2i6VkejFlCydS39VIe3sXjY2tBNqC0JbyuyXjQHtbF+u2bKe0bCKXTlxAc3XH8DuNsoJpsPamNRicPHN3dzctLW00NTazcePAQWgej4fLL1/KhIkT2LJ5J8akbqTxtoObmV90Lf6eEc8BlDLdnbrKQbKbAQxet8O4SIqOOh/FqV17tzHmFcAR4DrgZThlFL7Yb9vZkfU1wIKodp4xxvQCB4FOYAXwOsAHvNVaW5WKYJXEFREREREZw1a/fDkTJhfR0Tz6kxJlirzCHEqWFdGxJf7HYNvefaxZcyU2aNlfc4y2o84kcMYYZs6bypJZC6nZWs+EKQUUL8mntaOD8sllVFTXUn2mFhrTdW9kvGpr7SSYlzmJSQBrLdPX5PP4i4/g88VfvzkcDnPgwBEAbr75el58cXvKYmppaWXZmg78e4pT1uZI9XSpnILIeBQZjXsNzkjZ1+AkXs8CdwNftda2xNnUA8A7gfcAhcAZ4CfAN6y11amKV0lcEREREZEx7HRlQ1YncAFC8/xs2rInoX16e32s37ljwHJrLWfqGjlT18ilS+dSUVdN7zbnUupjVKciXMlSJZOKaT/r7nvVWsukufkUzABfThdHa4+wZVPNiNrcuHEr199wDdu27k5JjLm5uYQzbGY41cQVGb+staeAD8SxXTWDDAC21n4L+FZqIxsoLUlcY8x7gV9Ffv2QtfYnce73TeAanJnhpuIUEK4BHgF+YK1tjqONnwJ/H/l1sbW2IrHoRURERETGjpLJxeQV5OLvG/F8GWPSlAUl7DxxYPgNk1Bx4lRa2pXsVFCQR1FpPj1t7tVXLbvR8sT6ByAlF/a+ZOeOvVx22RIOHx52EvcL5s+fx2XzryDclUNvR5jORh++7iAGQ+fe1MY3UhqJK2Lw4HE7iCiZPWFkOqQ8iWuMmYtTDLgLmJDg7p8CdgPPAA04RYSvB+4APmyMuT6SIR+s7zfiJHCT6VtEREREZMypPHg66xK4FsvcldMI+EK0e9vcDkckLg31rZQuLSGn10vQN/plFaatzuOR9Q+kpe1gMEh7++C1fktKJlJWNpn29nZaW9t57S2vp2ZzL7VnLk6OprK2biopiSsimSClSVzjHHF/DjQDDwGfTbCJEmvtgKOjMebrwBeAz+MUHY7VdzlwL/AHYAZwa4J9i4iIiIiMKW2NnTzxixfdDmPUlV9XwsYdO90OQyRhx4/VsGbN5TRs7cCM8iiy3XUDJyhLpbq6M1x55YoLtXIBbrnhJgr8Uzi9vwtOO6O0LpmaS+2WvoxN2Maiic1EJBOkeiz0J4CX49SSSLjYT6wEbsT9kZ+Lh9j9x5GfH0u0XxERERGRseih/3uBFx7IrmTm7CunsmPHQbfDEEna9u0HWXDT9FHtc9rV+dSeqkt7P5MmlVz4/803rKV5Z76TwO2nt33sXTmgkbgi4LGejLplo5Tda2PMcuAbwF3W2g2pajfijZGf+wfp+/3Am4GPxFM3V0RERERkrLPW0tGaXROaeXI8NIXjnShaJHNt2LqLWVdMGbX+2r0No9KPz+ejvHwKq1aupG13waj0ORp6u92rYywicl5KyikYY3KAXwO1OGUPRtreZ3Fq2k7CmejsJpwE7jdibDsfuAv4jbX2kRH0uWuQVcuSbVNEREREJB1O7K3l1//9ZzY+usftUIY1aWYxOYU5dJzrIdCT/Ag8i6V7egfnDmvMhox94XCYI+cqmVM+i87GHibNLKbkkkKM30Pt9tQmXKcsy+fxzetT2uZgtm/fzZw5s5jYPZemcM+o9DkaenuUxBUR96VqJO6/A1cD77fWpqJYzGeBrwD/jJPAfQp4lbW2sf9GxhgP8Eucicw+kYJ+RUREREQy3p71x8ZEAhfAOwd2Vu/nZKia+WuTv4R8yrwSzp1VAlfGj5bmdnzlvcxcUUZLYSsbNu8ikBtg0qzilPXhyTMc6tyRsvbicfmilTRVj58ELkBvt9/tEERcZQCDJ8Nu2WfEI3GNMWtwRt9+x1q7ZeQhgbV2RqTt6cCNOCNw9xhj3mCt3d1v00/hTGD2emtt6wj7XB1reWSE7qqRtC0iIiIikirWWh758eiMqhsJi2XBTdNZv8Wp2RsIBDl+6iSX3jyfvrMBGiva4mpn9pVTqe6o40hzfRqjFXHHsaPVQPWF33fuPsQ1q1bQfiY1pVJKV4d5cX31sNulwtIli1lYejkdVWOv5u1w+jQSV0QywIiSuP3KKBwHvpySiPqx1tYDDxtjdkf6+BVweaTvxcDXgZ9ba59Mdd8iIiIiIpnoq++9l7PVTW6HMaTpN0ziRGUN6zbXXrT8TF0jZ+oamTtvBjkmH+zgbVgs0xeXcaKpmvpzGoEr2cHvC3DoSAVTc8oJB8MjamvyDSH+tP6JFEU2vJksp25v1/AbjkGa2ExEMsFIyylMAJYAy4E+Y4w9f8MphwBwb2TZ95LtxFpbAxwGVhhjpkYWrwDygQ/07zfS962RbU5Elr052b5FRERERDLJkpXz3A5hSMYD1afO0NzUPug2p2rPMeGqPObfNB0byeR6vIZpiyczYUoBxmOYeeNktlXuVQJXsk57Wxdzrp46/IZDmHp5AU+MYgJ37tw5tNSmorJiZlJNXBGDJ8P+kYUFFUZaTsEH/HSQdatw6uS+CBwDRlpqYVbkZyjys3qIvl8PzAD+CHTQ//oUEREREZExylpLS32H22EATpkDTwkYnweTB4H2EH0dfg63VNB7ZvhRawf2nwBg1bXL8RgPZ841sK2ymqLiAiiGqq3Vab4HIhmsYIhh6sMwxlLVdyCFwQzv1Kk6ll99DWcOpaYMRKbp7VISV0TcN6IkbmQSsw/GWmeMuQMniftLa+1P+i3PBS4BAtbayn7LlwFt1tpzUe14gK8B04DN52vfWmv3DtH3Opwk7hestRVJ3j0REREREVdYa+nu6KPqYB0zF0zlqd9s4fk/7qSgOI+jO6vdDg+AM731VB2su2hZyaRiensSu+x4964jF/3e063LlkXsCHKhU67zsmnDkeE3TDHjGb+j4rpVTkFEMsCIJzZLwmzgCFADLOi3/DXAt4wxG4BKoBmYjlMaYRFwDvjQqEYqIiIiIjKKqg6eZtaicp76zWbu+tR9AOTm5xDwBV2O7GKTZ09kd+XBAcs72sfnKDyR0XZ6X3J1rwun5PD87qdTHI30dPZircWY8ZuoFhmOZ8QVWWWk3EjiDuZZ4MfAWuAqoBToxpnQ7NfA3dbaFteiExERERFJg4d/9AJ/uOsZ3v2Z1/Djf3+Y3i4f4dBLExplSgK3uKwQj9eQNzGXnuJuOOt2RCLj18TyItrPJX5SJGdJB/OaZpGb63zVD4XClJaWcO5sIxUVJ1Md5kU8ucmXgMh04bDF7wuQX5DndigiksXSlsS11t4B3BFjeTUxqg9baw8CH0tR37eloh0RERERkXQ5XdXIn362kfv+xxk19z+f/J3LEcU2d/U0ggUBduw6SMAfdK6XE5G06i3rgXpgmLxo6SX59DQG8XeEmHxpPn9a/8ig2y5btpiyssl4PIa+Pj+hUBhjwOPx4OvzcfZsPc3NrUnHHOhKetcxoaezT0lcEXFVJo3EFRERERHJCi3n2nnf1V8hFAwPv7FL8ifkUnpFERu27XA7FJGsc+xoNUsLL8XfExh0G2Msh3u34s/zc/UN17Cv8sUh2zx69MSw/d588w28uHFbwvFef+11nN3bNa7LDfR0+5hc7nYUIu4w1uCxmVVOwdjxe7wZTGY9AyIiIiIi49wfvvc077zsixmdwJ2yaBIdk9vZum2/26GIZK2ZV5YNuX7qqnxOVtdw+sxZ/rT+cU7VnR5xny++uJV58+ckvF9ZwYxxncAF6NHkZiLiMiVxRURERERG0cIVsymfVep2GAPMWVVOYH4fk1YXcLS5gjOnG90OSSSr+b3+QddNWpDPxmPPpLxPay1z5sy8aFlRUSE33HAN165ZyaRJJTH3C5rxn+BUEldE3KYkroiIiIjIKFrzyhW8/eO3ux3GRSyW3RWHqDtVz949x+jq7HE7JJGst3XbfkpmFMdcdyb/CM0tydevHcqmTdtYuuwSli67hFlzphMIBti8ZTvbt+/mssuWxNynLzD+jxm93T63QxBxlQeTUbdspJq4IiIiIiKjoK/HT8X+U/R09HH3p+9zO5yLGAzTZ0yhqqLO7VBEJCIcDjNpVjEd57ovLDNemHhtH5s2pLfUyWD1c7053pjLJ3im0EJ3zHXjRW+Pkrgi4i4lcUVERERE0uT4nloe/9lGKg/UcfLwGfoybCTXzBVT8HgNGNh2dJ/b4YhIlLO99UxbVorxhAkX9bGrdjOnNoy89u1ITZ9eTnNzK9ZabrnhZmq2je9JzUAjcUXEfUriioiIiIikwc/ufIwH//d5ejozs47i/OumseXAPoKBINY6o/5EJLPU1zewo+Npenp63Q4FgK6ubm5cey3bt+9m8uRSVs27hdPbuxjn+VtASVwRo4qsrlMSV0REREQkDbw5nsxN4N44nXVbt7sdhogMo3BCPj3nMiOBC7Bnz0tlHK6//GZObupyMZrRpSSuiLhNaXQRERERkRTpau/FWktLfQe1x865Hc4AE6YWMvumKWzbn956miKSGk1nO8jJybyxV8YYaraN/8nM+lNNXBFxW+b9NRARERERGaM2P7GPJ3+1iXDIcmBzhdvhXGT+jdPZe+wIBzZ3uh2KiMQpFLLMmTOL6upat0O5iLWWnDwP/mDI7VBGTW9XZl5ZITIaDOAhs+qmZFY0o0MjcUVEREREUqCrvZeerj4ObK7MuARuwcRctu7bS1urErgiY838uQvdDiGmqYsK3A5hVGkkroi4TSNxRURERERG6If/ej+P3ruBgD/odigXsVg8HsOkK4rp2+p3OxwRSULjySD5+fn4fJmVRPRMzK5jSk9XZj3+IpJ9NBJXRERERGQEju6q5oEfPp9xCVyA+TdPp4oatm7d53YoIpKktqYebrjuBrfDGMATzHU7hFGlkbiS3Qwe68moWzYWVFASV0RERERkBH7+tcfdDmFQ7RXd5Obq4juRsc4bzqzSBbNnz6LhaHaNxFVNXBFxmz7RiYiIiIgkKBwOs//FE5TPKeN0VYPb4cRUfmkpvpI+PO0eCLgdjYiMiDczJhArL5/KrBkzmVW4mLq93W6HM6q6lcQVEZcpiSsiIiIikqC7Pn0fj927we0wBpVblEtt32nOVTW5HYqIpIA/2Ot2CBhjWD5xLa3H+qgjuxK4AL2qiStZzACeDCtfkFnRjA6VUxARERERSUBHS3dGJ3ABSmYUce6MErgi48G8JVPYtGWz22Ewe/ZMWuuydzRqV0eP2yGISJZTEldEREREJAEHtlS4HYKIZJFe6gmHw26HQY43uy/k7e50fzS0iGQ3JXFFRERERBJwZMdJt0MYlDfXS8GkfLzTrNuhiEiK5Obmuh0CAKfPnMWbm40XMDu6OvqwVsdWyV4mw/5lIyVxRURERETi4PcF+MLbf8jTv9vmdiiDKr26kCOdx9m2/YDboYhIiuQGyigoyHc7DAKBALOuKnQ7DNeEgiF8fZolUkTcoySuiIiIiEgcnvr1Frb8+QCNp1vdDuUiM1eUUVCSB0B+Xp7L0YhIqtUcb+b6q27D43H/6/vmw88zY1mx22G4prtDJRVExD3u/xUQEREREclw6x/exU/vfNTtMAaYPGcCOyoOUL5kEvOvm8buPYfdDklE0uD4vgZeduOrKCmZ6GocbW3t5GTvYFzVxZWs5sFk1C0bKYkrIiIiIjKEp/6whTvecy8dzd1uhzJAW2E7gUCQUEGIUG6I3l6f2yGJSJoc2VnPtPwVrFq50tU4wgXZm8js7uxzOwQRyWLZPb2kiIiIiEgM1loO7z3Jk/dv4sSeU26HM6h502dSVVnHps178Ho1PkNkvOvp9OE9W8jcuXM4darOlRi84XwgOxO5PV1K4oqIe5TEFRERERGJ8vh9G/nCh/4XgJwcL9euvYyKTZmXzD27q+XC/0OhsIuRiMho6Wzv47LrlqcsiXvZ8mXMKV9AV18bk/NmYj0hmrrPsmvvblZdtRKf38f+gwcvbB9oz94TRt1K4kqWMhlYwsBkWDyjIXuPviIiIiIig/jFXX+68P9gMMTRY9UUTSpwMaLYZq4uczsEEXFBzZmTKWsrx5vD2a2Wzr2TqN3ew6mtPkKV5dx+5ZvoOziV8LFZvOqWV+P1erlk0SJyMu9QOGp6VBNXRFykJK6IiIiISJRgIHTR763NnZQumYjH+9Koj/7/d8P0pZNZt3mHqzGIyOjLyfVw4kRFyto7cOgQRaW5Fy3z94Q4c8ipA26M4exWuLLwVRTVLebc4exNZPZ0q+64iLhHSVwRERERkX5+/cMnqTp2esDyfTtPsOi6OQAsunY2JUsnMGP11NEO74Jzx1q46qolrvUvIu4onpif0vastZTNzxt2u6A/fNHPbNSjic0ki5kM+5eNVBNXRERERAQ4XdPAZ/7uLg7uqhx0m9oz5yidMYG6xgZO1zRy9ZqlKeu/fNEkimbnE7IhcsI5BPvCnN7bhA3bAdsWTMzFk+Ohqyd7R8SJZKuZC0s4cibFjWZnPiRhPV065oqIe5TEFREREREBjh+sHTKBC3C6ppGcHC/BoFNuIdw+shFpOfleJlyRTyAQYPuB/VB98fqyKZO4fNmlnNrYBDglFNpOdzH98jLWbdsO7SPqXkTGEGstl107g/Vbn015290NoeE3Ero1EldEXKQkroiIiIhkPWst//Hpn8W17fkE7uz55Zw52ph0n/Oum8bZjgb27D4y6DYtze0cOHKCK25ajAcv6zZvZ8rUSbSdaku6XxEZWwqLc1l4eSkVNUd57sW9aemjs8WflnbHm17VxJUs5jEasu82JXFFREREJOudPH6G5vrEhrXOmTONquqBtXNjsVgW3DiDxiNt5ObnMGleMbuOHqKrs2fYfVtbOtiwedeF35ubNPxWJFvk5HjImdrKs+u3p7GPHMJZXOc2ERqJKyJu0sRmIiIiIpJVKg6fovJIHQDhcJj21i6+/umfXRhhG69QZ/xJjwU3zmDd1u30lvfQkNfI+p074krgikh2m7mglGPHTqS1j7VrbiSsHG5ceruVxBUR92gkroiIiIhklT8/sJl7/vthZs8vp7Ojhxmzp3D8YG1CbeQX5CZUSqEj0AlAVUVdQv2ISHZrOttJcXER3d3pOekzfVo5fRUTgWBa2h9vNBJXspUBPBk2A2JmRTM6NBJXRERERLLK+z7xBiaVTeB0TSMdrd0JJ3ABFi+bS8A3dNLD4zXMXFHGlAUlnDwZX9kFEZH+ersDzJw5Iy1tX7JoIYu819PTpgRuvHq6lMQVEfcoiSsiIiIiWaWktJgFi2eOqI0J+UXDbjP32mlsPrKHnbUHaG3pGFF/IpKd5i2eQkVFVcrbLSjIZ3b4SrqaNaFZInpUTkFEXKQkroiIiIhknVtfs2pE+zdXtw25vrCkAArsiPoQEZlQ5k1LuzevuZXWM0pIJqpH5RQki3ky7JaNsvV+i4iIiEgWu+mVK5PeNyfHS+u5ziG3mVBWgPHoo7aIJC8nx8PeQztT3m5hYQGdx/JS3m426FY5BRFxkT5ZioiIiEjWufOTP0l631AozKLVs4fcpmT6BJpb2pLuQ0Rk9qLJNDU1p7zdSxddQndrIOXtZoPerj6s1VUWIuIOJXFFREREJOu8/f0vT3pfay1tfV3MvWL6hWULbpzFjFVTWLh2Nt45XrbvPMTECcWpCFVEstTpqlZefusrWHX1SrdDkYhw2NLXqzrCkp1Mhv3LRjluByAiIiIiMtpGekns8cO1TJ02icnTS2ir7+TEsVO0tVxcYuHU8Uby8nLx+zXiTUQSFwyGObqtBTDccu2rOFqzh4aGxhG3a4xBY0mT19PZR2FRvtthiEgW0khcEREREck6dSfrR9xGU0M7UxeXkpOfQ3tr14D1LY0dTJlSOuJ+REQqDjRS5F/Abde/hrU33DCitnJzVQ93JHpUF1dEXKKRuCIiIiKSdXLzUvMx+NixGi69fA5ndzcNWFdQmMfZM41k6RV/IpJi/r4gx/c6J6BuvuZVnG2roKKiKuF2ppZM5wzhVIeXNZTElWxkjMFjMusDjTGGbLusQCNxRURERCTrtDR1pKydxs42cnK8A9ZNnVGqBK6IpEXlwUa6T5Vw2WXLEt+5ozD1AWURJXFFxC0aiSsiIiIiWefY/pqUtXXyxJmYyzX5jYikkzGGqZPLgaMJ7piWcMYsYyw5BV5yCzzk5Bpy8g2eHJxbrvPTeCzGa8GE6ehpdTtkEclSSuKKiIiISNZpbmhPex9N59pYu3YV27fvJxAMpr0/Eck+xpP4xbXeCZk32aK1ltxCD7n5HnLyDDn5Hrw5Bk8uGK/FmwPGC/RLploTBhMmTAhLiLANEQoHL9wCoQChYAB/0E8gGMDv9+EP+PH5fPj9Pnw+H729vYRCIeiOP9Z3t7wWuD5dD4VIxtKl/O5TEldEREREsoqvz093V++o9LVvUyWTJ0xhybVz2bRlFzbbireJSFp5zcBSLsPZuOcFFuWsJZzyc0uWOWsgZAIEwn30+rvBWkI2TGt7EwV5BYTCIXx+Hz5fH319ffT5+ujt7cXn88HoHJZHrLOz0+0QRCRLKYkrIiIiIlnlt//3FL6+0RuJ1tPVx97NJ5i3YCY1NbFLL4iIJCWJiYY6O7vwlHgIB1M9uZnhuR2P0t2dwLDWMairq8vtEEQkSymJKyIiIiJZ4cn7N/HUQ1vZ+PQeV/pvaGh2pV8RGb8aT/q4/dZXcfDYXs6da4hrn+LiIkyaLgooKiwa90nczk4lcSU7mSROGklqKYkrIiIiIlnhqYe28PyfdrrWf1FhAb29Ptf6F5Hxp7mhm+aGbvJy5vLytavoC7XT3dtNd3cXlZUnsfalbG15+RSWL72MjrOG8Nn0JGMKC4vS0m4mUTkFEXGLkrgiIiIikhW+fs9H+d09f+H7d/7Blf5VDVdE0iUYDHN0V33kNy8wibkTV3Pp5VMJe/uwNkxDVZCKnV1MnToZGwylpN8Z1/loaDuFMYZQKEjj8fhGA49lSuKKiFuUxBURERGRrDBxUhGvffsN/OBr9180Om00TJlWQk3DKdCViCIySoL+EEd31w9Yvmj+XCobzqWkj3MtNeze594VDm5QTVzJRgbwuB1ElGz8SJVpz4GIiIiISMoFgyF+96OneOetXxz1BC5AT5ePSxfPG/V+RUSiFeWkruRByYTSlLU1Vqgmroi4RSNxRURERGTc+8rH7uHR325wrf/eHh+2zrJ02UKOHT3pWhwiIp2tvSlrqyB3QsraGitUTkGylSY2c59G4oqIiIjIuPe2972cwuJ8V2Po6/VTXlbmagwiIjacuqsRPCb7UgpK4oqIWzQSV0RERETGrab6Njb8ZQ/n6po1s5iICJCT601ZW4bUtTVWqJyCiLhFSVwRERERGbce+/1Gvvul37odxgW+gN/tEEQky3m8qRs9a7Lw4l5NbCbZKvve7ZlHSVwRERERGbdueNnlbodwMRcmVRMR6c/n7WHxdbMJBAJMLJrAgRer4t7XWktBSQ6FE73kFRl8oYY0RpqZVE5BRNyiJK6IiIiIjEvH99fy5z9scTuMi5w61sT1113F1m373A5FRLLUnn1HLvx/zpzpce83e2UuT2z9NeH6MNSnI7KxobOzE2utJnkSkVGn0dAiIiIiMu709fj4l7fezcHtlXgy6It2V0cvB7dWM2/eTLdDERGhrq6eFdctjGtbGzaEw+E0R5T5wuEwfX19bochMqoM4DGZdcucT3ejR0lcERERERmXerp8HN1cw5J5C8jxZtbkO/PnzNZEayKSEZq6muPaLhzIxpRJbCqpICJuUBJXRERERMadR366nu6OXgDOnGzkuusup7Ao3+WoXrJn0wlWrljB0mXxjYATEUmXw4cruOKmwY9F1lpy8g068/QSJXFFxA2qiSsiIiIi405vl++i3882NNPb4xtka3dUHKrjqhsWc4yTbociItnMwJZde5g2YQZFyxs4WnUAn7+Pvj7n5vP5oBfY5XagmUNJXMlGJisLGGQWJXFFREREZNw4eeQM4bCleFLhRctnTptCVUWdS1ENzqPr4kQkA/h8fi65bhZH249Se6rG7XAyXldXl9shiEgWUhJXRERERMaNneuO8MMvPkA4dPHkOw21rc6VwBpEIiISU6evk2Aw4HYYY0Jnp5K4IjL6dO5fREREskooGOLsiXoCffqiOh5dtnoh/r4AwUDoouX1tS0sWT7PpagGFwxopncRyQwHDh8nFA66HcaYoHIKko08JrNu2UgjcUVERCQrtJ1r59FvPsmux/bS29nHmreu4kM/ep/bYUkKhEIhfnXv4+zccohzuzoG3W7SpAmjGFV8Tp9sxOvxEAormSsi8Zm3cAZTykvxej0YAxgw1ly40sAYsBbAYq0zMVk4HMZaSygUJhQMEQyGCASCBPwBfL4AJaXF2IIWnt+4x8V7NnYoiSsiblASV0RERMY1ay3bHtzFA3c8SnvDSwm+vU8dJNAXILcg18XoJBWef2o7d/zL/wJw1cqlXHLzDE5ubhhQUqGv7+KJzS5dMpdQKERBQT6TSoppb+/CYjl6ePTqQbY0drBqzQp27Dgwan2KyNg2Y9YUtm3an7L2ll85nxf3PUh3txKT8VJNXBFxg5K4IiIiMq7d+4+/ZMcjA0cW+Xv8PPi1x1jz1tUsWr1g9AOTlKk5eebC//ftPQbAgkWzKWgooqf9pcTthIJi1t54FRhDOBDmyPaThMMWgNM0AjBvyXTW3nAVB49U0t42Ol/SC3LzR6UfEZH+cnNzWL56Gk8890usM3RX4qSauJKNsrSCQUZREldERETGtWObKgZd99y9G3ju3g1c97bV/PWdb6GkfOIoRiapcqauYcCy6qrT3HzjNVRtfGndoS1Vw7ZVe7wejtdzxU2XsGnzvpTGOZhASDUoRWR0zb9kBk29h/jTs8+4HcqYpJG4IuIGJXFFRERkXDm5u4aGk42sfuNK6g6foaNx+MtDtz24i/3PHObrW7/ExKmZVzdVYguHwxw7XM3u7Udjru/29STd9rmTLWAZlWEnYat6uJJdZs6Zyuy55QB4PR4sEAqF8fsC9Pb66OrooaO9m+7uXsw4HftlsXg9HvIL8sjLyyUvP4ec3Bxyc3MomzqJU9VnCASC+P1BcnK8TJ5SwoSJRRQW5NPc2Jp0vzk5Xi6/djZ/Xvd7AgF/Cu9RdlFNXBFxg5K4IiIiMm48++N1/OFLDwPw6DeepOVMW9z79nb0svuJfdz6vrVpik5Spb21k4+892vs2nYYX9/gSYiKilouv3oZNXsGjtQdTuPpVi5dNpeK46dGEuqgJpQUUr6ghNKSEvYdjJ2EFhmvps8sY8eWg8Nul5uXQ3FxIfkFeReSnbl5TqLT6/Xi8XrwGIOJ3OD8JF4WrMXj9WCtxYadZaFQmFDImdQrFAwRCIQIBoL4/QF8fQECgSB9vf5BSwsYY5g8ZSKTy0ooKi6goCAP4zGRPsKEIxOHhUNhgiGnj2AgRDAYjEwi5vTl9zmTiYXCQXp6gvREnW+qOXl6QN+dHd2JP9BRFi+fQ13rXh575tkRt5XtNBJXso0x4DGZdVItw8IZFUriioiIyLiw+4l93P/lRy783ljTnHAbJ3fXZGUS99kfvUDd4TO846tvpnhysdvhDGvn1kNsXr932O062rvILfYk3c/0qWVpS+IuvmIOGzfvTEvbIpnKGMPVa5ayf/exuLYP+IO0+Ud/xKPX6yEvP4/8/EjSOC+Xvl4fbS2dNDe10tyU/EhYNzV2H+VYhSZRTAXVxBURNyiJKyIiImNaT3sPG361hce//ecRT8xyfHMFvh4/+UV5KYou8+14aBcPfOURAMLBEH//v3/nbkBxCAZDcW8b8iX/mvB1B5LedzjVpwaOtBMZ7665YTnbN2d+EjEUCtPb00dvT5/boaRUfn6h2yGMGyqnIDJ+GGPmAHcCrwGmAGeBR4CvWmvjPmtnjHk98Engsn7t7AK+a63dkopYlcQVERGRMamzuYttD+7kz3c9G1fd23g01jTzb6vvYOHV85mzYhaXv+IyLr12IR5v8qM5M1VjdRPP37uedT/beGHZ9gd3cXTjCW5+7w1c+eormHPZLLy5XhejjC0QiH8isJGUm2083crU8lKaGtuSbySGy69ZxNZde1LapkimM8akpCSAJG/mlEuADW6HMS4oiSvZaPx9GgZjzCXAZmAa8ChwFFiDk4x9jTFmrbV22Mv7jDHfBP4VaMZJADcBlwJvAt5mjPk7a+1vRhqvkrgiIiIyppw+epa//OA5djy6h6Av/mRevLqauznw7GEOPHuYP9/1LBPKiimbPZkZi6fz2k/czpzLZqW8z9FkreX77/wRh9fFrsPa0dDBE9/5C3/5/rP884P/xKVrFo1yhMOrPxt/qYwuOpLup7Whk0kLipLeP5Yp0yZRfTo9JRpEMtmqNcvYuW34OriSPiePNpGfX4jP1+t2KGOeyimIjBv/i5PA/YS19vvnFxpjvgt8Cvg68JGhGjDGzAA+C9QDV1prG/qtexnwPM5I3xEnccdjIl1ERETGgXA4TENV40XLdjyym/989XfYcv+OtCRwY+lq6ab2QB3bH9rFd9/+Qx795pNsfWDs1jKt3HFy0ARuf8WTi5lQlpn1cc+daYp728OHKymdmfz9mDd7ZtL7xjJxej7nzsUfv8h44c3RV0+3tbd18cqb3+p2GOOCJjYTGfuMMYuAVwHVwA+jVn8F6Abea4wZ7oPkfJz86rb+CVwAa+0LQCdQnoqYNRJXREREMko4HObPdz3Lc/eup7Opi0/8/h8pnFDA5vu3s/HXKSknlbTOpi7+9J2/YIzhwLOHWfX6K1l8/SVgLSXTSlyNLV6tp9vi2q69voM7b/kG3z7ydYompXY06kiEw2G2bNwX9/YBf5Cpl06g7WySl3GncObjyVNLOHjgRErbFBkrwuGR1SyX1Di2t4myyeW0tDYOv7EMSuUUJBuZ8ff55eWRn09be3EBLmttpzFmE06S93rguSHaOQH4gTXGmKnW2gtn640xtwATcUosjJiSuCIiIpIxOpu7+OlHf82hF14aKXr3u+5xMaLYrLVsf2gX2x/aBcDs5TO57m2rsRZCgRA3v+cGSmdMcjnKi50+coZtD+xk+4PxjyIOh8K0nW3PqCTuf37pJxzYcyKhfY5WVZFDcqNxg74QN9x4BaFQmO1bD40oATtr/hRONauUgmQnj2f8ffsfi3x9fm685o38ad3P3A5lTOvs7MRaixmHWS2RMWaZMWZXrBXW2tXD7Ls08vP4IOtP4CRxlzBEEtda22KM+RzwXeCwMeYRnNq4lwB/BTwD/OMwscQlLUlcY8x7gV9Ffv2QtfYnce73TeAanAdoKtAL1OBkrH8QXUzYGLMYeCvwamAxMB1oBbYC34sMWxYREZExoLG6iW+9+fu0nmlzO5SEnT5ylof+408Xfu/r8vGOO940YLtwOIzHM7qXFG/41Sa23r+D04dO4+vxJ7z/bz5zH++48y0sXL0g9cEl6Of/9zD3fv+BhPdbsmghVacbht8whiM7qi/8f+1NV7Fp0z5ycrysuHIRps/g9wWxBWGOHK4etI3z/Dbxx19kvLAaiJsx9u88yete/k6efP4+t0MZs4LBIH19fRQWFrodiogk7/yIi/ZB1p9fXjpcQ9ba7xljqoGfAR/qt6oC+EV0mYVkpfxbhDFmLvB9IJkiMZ8CinGy1HcBvwWCwB3A/kjb/X0N+AZO8vZJ4DvAJuD1wPPGmE8kEYOIiIiMsnA4zM8/8bsxmcCN5Zn/e4Hffu6PhIIhADb/YTt3v/se/nnx53nif54mGAilPYagP8jB5w7zu3+5n6odJ5NK4AJU7azmmR+5f168s6Obr37uR0nt62tOzeN94MVKlsydz8ySck7uOkvVoTPUVTRQVjL8qOsrrr2EPbsPpyQOkbHGYvH7dRIjk3Q1q0bxSL397X9De/tguR+R8cUAHpNZt8g4+KPW2tWxbim62wDDnoY0xvwr8ADwC5wRuMXAaqAK+K0x5r9TEE9qR+Ia51qCn+MMG34IZ3a2RJRYa/titPt14AvA54GP9lv1FPBNa+2eqO1vxUkEf8sY80dr7dkE4xAREZFRdHxzJSe2VrodRspYa1n38xep2lnNdW9bzUP/8TihoFNq65H/eoLu1m7++s63pKw/f48fb54Xb44XgNYzbXznTXfTVNs8zJ7x2f3YXn498T7e+uU3UjzZncnOJpYUs2zFQo4crEp437yi1H3kPRfjMW1vGr7ebk6+R7VwJStZLGtuXMH2zQfcDkX6qa48yytvfQvPrH/Y7VDGrCef/DM33HAzjz32EJdeeqnb4YhI4s6fhRnsbHxJ1HYxGWNuA74JPGyt/XS/VbuNMW/BKdfwGWPMj6y1iX+Q7SfV5RQ+gVMY+DZeKhAct1gJ3Ij7cZK4i6O2/8Ug7aw3xqwDXgncCDyYaCwiIiIyenY8vNvtENKi9kAdtQfqBix/9p71rHnrahasnDfiPsLhMN947Xfp6+rj5vfeSE5+Dn/5/rN0NSc5kdcgNv12C7se28PK115B/oQCyudP4faPvCylfQyltbmD+rOJJ6VnzS6nZk96J/BpOtPKtWsuY8f2i0faTp4ykQXLZnBoZzUHt59k5dXL2bvnSFpjEck0E0uKlcDNULZvotshjHlHjhxhzZob+eMf7+MVr0g4BSIi7joW+blkkPXnc5CD1cw97w2RnwMuXbPW9hhjtgNvAa7GGZmbtJRdQ2GMWY5T2uAua+2GVLUb8cbIz/0J7BOI/AymOBYRERFJkabaZu79yK/Y8OvNbocyqqy1/OZf7yccDg+7bevZNp67Zx1dzbErVT3/4/WcOXqWlrpWHv2vJ3jwjkdTnsA9r6+zj63372D9zzby4B2Psv/pg2npJ1rtybO87VWfoqU58ctW6881M3GFl0tunEF+cXrm9O3p8kFg4DDb+Uums3HzTkKFPhYunUWezU9L/5ls7twZXHftVUybNmXAuhkzpnL1kiu45cY1LkQmo8XX63M7BBnE8UOnuP3mgfXbJTGtra28+tWv4wc/+CFWxZ9lHDMZdkuB80nXVxljLsqPGmMmAmtx5uraOkw75z/glQ+y/vzyEdcVSsknWWNMDvBroBZnxOxI2/ssMAFnSPM1wE04CdxvxLn/fOAVQA8QV0J5sNnsgGXx7C8iIiLxC4fDPPS1x3nu3vUE/emvD5uJavaeYvuDu7j+HdcOus3DX3uM53+6gUBvgD/++8NcsmYha999PTe+63rAGR37wFceGaWIL2atvaiGcUN9C5NKJ5Cfn8e37vw5JZMm8O4PvI6JJcmVX/jL45vYufUQVSfq2LxhLz3dg12wNbRQKMzhQ5VAJVdctYSckzl0tybX1lBOHa9n5aol7N390mCNsHGS9O3tnRwLVlBWVpryfjNZ6aSJeLsK6GrwkZfnfO249NL51Nacxh8IsmTRQva/WMWiVdNdjlTSaXJZCfX1TW6HIYOoPxlmWvksGhrPuB3KmBYKhfj4x/+ZAwcO8v3v30VeXp7bIYnIMKy1lcaYp4FXAR/Dmd/rvK/i1LW9x1rbDWCMycWpdxuw1vavA7cR+Cfgw8aYe6y1p8+vMMa8FicZ3AeMeNRKqoYj/DvOsOCbrLW9KWjvsziTlZ33FPB+a+2w18IZY/JxJkTLB/7VWtuagnhEREQkhToaO9nw6y1Zm8A97/6vPMKqN1xFXqHzZc9aizPFgGP9LzcR6A1c+L1y+0kqt5+k+VQLy29bxiNf/9Oox9zfCz9dT0V3A3t2HOGJhzfysc++kxNHa3nqsRcBePi+53jk+bsoKIxvBKq1lu6uXv73O/fxw++kftb0A/uOM2t2OcW2lJ621I4O9PX6KS54aZbyBYtnsn37SxeRdXf30t2dio/JmW/SpAmsWLSUjtYe6qoaCBT1cun8BSyYN5eKXadZOmcxeaUemk51sPSqeWzbs4e8vBz8AV1AN95YLAsunaUkbgZrb+ti1cpX83TzL+O6OkSG9uMf/4SjR4/xwAN/oLx8sEF5IpJBPoqTXL3bGPMK4AhwHfAynDIKX+y37ezI+hpgQb/lDwDPArcDR4wxDwPngOU4pRYM8G/W2hFPVmFGOtzfGLMG5w5/11r7r/2W3wF8BfiQtfYnSbY9Haem7TeAicAbrLWDFs0zxniB3wPvAP4AvMuO8A4aY3atWrVq1a5dgw3UFRERkUQc31rJtj/uZP8zh2g7p1md1777OopLizn+4nHOHjvLsluWUjSpkJy8HDb/fpvb4Q2pcFkpD+3eMuQ202aU8dkvv5+/+bvXxFx/7kwTH3rXHXg9Ho4dqU56xG0ibrh+JbWbWlLa5uxF5Zxua6SjrYvJUybiz+2lvj41E8uNFZevWEwhRZyIqgM9f2U5E4snYP1waMfJi9ZdeeMlhE0YT9jDhm3bL1p39crLKCmawPrNFy+XsePqNUvZHVUrWjLTyusX8NizP3c7jHFjwYIFPProg1x55ZVuh5KVVq9eze7du3dba1e7Hct4YIzZVeYtX/XG0ne5HcpFHm/7PS2hxhE/z8aYucCdwGuAKcBZ4BHgq9baln7bLQBOAjXW2gVRbeTijOZ9J3AZUAS0ANuBu621T48kxvNGNBK3XxmF48CXUxFQf9baeuBhY8zuSB+/Ai4fJBYv8BucBO79wHtGmsAVERGR1Ko7fIZ7/uHndDR2uh1Kxtj0u23MuHQajZUNABx8duwkPLqKhx852XCuhUf/+AJvfdft5OZe/NHT5/Pz4Xd/lf27h5svIrVyPLkpb7O9uZuyqROZt2g6De0NnKrKrgRuXl4utsvLiZMDJ/JrrelhwvJicvK8A9bt3+xcjZiT6+WWG68l7IfK09UsWbiI/ZsqsbaeW9dex5aduzRSdwxKUc1CGQX7t9eyeNEKTlQdcjuUcaG6upobb7yF3/zml7z5zao7LJLJrLWngA/EsV01g/xps9YGgO9Fbmkz0nIKE3hpFre+/pf/9XOvMeZenAnP/jmZTqy1NcaYw8BKY8xUa+1F1+NEksm/w0ng/g74O2ttdl+fKSIikkEOPHuIA88d4cXfbiXQFxh+hyzTXNeCN9dLKDC2Pr7UNDTEtd2mdXtYNu2NrFl7BV2dPbz7/a8jvyCP3//iSerPju5l1letXErlxnOYFKeXutp7uPLKS3lm60ZC4+CS5IKCfJYtXUhJ8UQMHrCw/+gRWls7Bmx72fJLCbUZTp+MXfmso7WbQ5uHnmwvGAix/8WXJmzed7ripf9vqmDlVVew48BeLBqjMZYYT8rm0ZY0C4fDLJlznZK4KdTd3c1b3vJ2vva1r/LFL36eQfIlIiJxG2kS1wf8dJB1q3Dq5L4IHAOGvtZueLMiPy/6dmOMycMZefsmnJG6H7DWjv1PziIiIuNAOBRm9xP7+PGHf4kNK/kymEBfkPmXz6Lu0NiZWMZaS1XV6eE3jAgGQ2xevxfgopG311y/gnNnRm/U6oSiYppIT23aQK5/XCRwsbBi4TIq99QBLyVmr1q7nPVbnBIfV6+8DH9LmGAgRP2xdkLB9J6AOL6vlkmTJ9DWrlH8Y8nBvZXk5HgJpvn1IalxYPdJVl91I7v2jXjuHenny1/+CgcPHuJnP7uXoqIit8MRSYoBMu20XDaeFhlREjcyidkHY62L1MS9Gvhl/5q4g83mZoxZBrRZa89FteMBvgZMAzb3n6gsMonZQ8DrcJLJH1YCV0RExH0NJ5t4/qcb2PnIHtobBo7ck4EKSgqH3yiDePI8BHpHfnn7vt3HKJtaSktT28iDioOvPvUfFS9dOYdwUZBN2wadumFMKZ9WRuWhgWURao7WM2PGVJYsWsihLdWEQqP7sdvjzbSvjzIcX5+fVdctZde2sVMmJtvl+udQOmkKbe3ZVRIm3f7wh/upqKjgkUceZM6cOW6HIyJj1EhH4iZjsNncXgN8yxizAagEmoHpwK3AIpyZ3T4U1daPcBK4TcBp4N9jXKKwzlq7LqX3QERERIa0/aFdPPfj9W6HMaZ0NHW5HUJC8mcWQwrmpQv4gyxeOpdto5DEnTa9jDPHm1NaSsHjMeyvPUJb+/g5WTFv7iwq688OWN7W7IyC3X+masC60TB71gxaWjQZ4lhSPKGA3p70T1YoqXPmVCNXL30tZ9r3caziwJDbFhVNIBDwEwj4Rym6sW3Xrt38z7/9Hd/4xn+RO+c6t8MRkTHIjSTuYJ4FfgysBa4CSoFunAnNfo0zm1v0NMILIz+nAv8+RNvrUhmoiIiIDPTkd/9CQ1UjR7ZU4O/RF7pEnTtRT3FJAb0dYyPhESzPhaOpaautdXQukb9k4Txqz0R/nByZRVfOZsOBgaNWxxQL1625ipxwLr7eAKcOxVfreLT5m8PMnzeTmtqBCeYhWbLzmksXLVo8m4LCPI4dPsnhA+4k/SV5lcdO4/FM43U3f4BO/xm27HqeYNCpZ19YWMxNa15FqLuYiqOnmb6gjPrevdTWVQ7Tava6dPZk/uv9V/LqOfXkd2/DPvAaQq/8Pt4V73E7NJGEqKyz+9KWxLXW3gHcEWN5NTE+RllrDwIfS7CP25IKTkRERFJuw8820tHYycJrFlBzeOzUds0U1sLsy2ZTsTXzvwhba6luS12i79jhauYumMGp6nPDbzwCnt7UffTNzc9h8TVzONOa3pjTzevxcN1VV3N4W7XboQyr/nQLpVMmUlpaQltbfCOfr7v2KmoPNLJ41Rw2bN6e5ggFoHx6KbU1Zwj4R15uRdwTDoc5uKcagEvKbmfeomkEAyHO1jVzbFcb0AZA/dkWlly2llOnq7BWte/PMwY+89er+H+3FDLbtw8T3uIMUQMI+Qk99Y/YxkN4b/kPjMfraqwiMnZk0khcERERGcNMpF7lyZ3VlM0tg+le6qtiz1YvsVXtraWotIieth63QxlS4copHNiyKaVtlk+bTHFxId4cD74+PwUF+RzcV8G06ZNpamwjPMKJ8ebOm8HJ3fUjKqVQNCGfBVfOBANnW+t5dmtqHwM3rL32GvZvyfwTB+e1NXdy5U1L2bB5x7DbTp5cwumjzfT2+JRcGkULLplFw2bVUx1Penv6OHawdtD1xw+fYtWVN2hCNOCapTP4+nuWcdOUanJ6DjLUPJrhXXdjm4+Q84ZfYvInjV6QIjJmKYkrIiIiKeHNeWnSoZZTLXjzvCy9YRHHtuhS2ngFegMsvGouldsy+zHry039CLvd248MWFZQmEdDfStz5k2nrbWDrs4hvg0PY9GseVScHNmo2bnLpvPstrGfuD2vvLyMA1sz+7UWy6GtNVxz2VUUTshjz+GDdHUNfF1MKStlybxFHNldA4BFcx+PFiXMs9PsqcvYRXYmcQvzc/jK313De1dZpnbvBTZDnOdibfUzBH57G7lv+SNm8qXpDFNkZAx4Mq2cQqbFMwo0xauIiIikRH5x/kW/h/whqrZWseiqOUycUuxSVGOLJ+M+HcdW0DU6HyH7ep3aynW19cyYOZWlly1Iqp0lyxZQtbV+xPF4C8bXR+fp06aMyYRbKBii4mAdB7ZWsXTuEkonTXxppYVrVl1OcbDkQgIXwKuxK6MmFFLCPBvt3XaSV9z8JrfDGFUvXzWPLd+6jZZvT+VTS3cztXsPThHuBLUeJ/DbWwlXP5fyGEVkfNGnGREREUkJb27smm6n9tdRPLmIhSvncnLvqVGOamwomJDP9IXlYG3Gj8IF8FXFV480lSqOn8Lr9bBqzXL27jwad3mFouIC8tuL6Q4lP3nawhUzKSzL43RTghNqZbjOrswu2xGPykN1lE4pY9maRXiMF197kIqdpwdsd3DbSWbOLOfsWZV4Saf5i2ZycN8Jt8MQl9Qd8/OKm9/E8y8+NiZPEMVr5pRiHvq3NazyboPwOfCloFFfG8GH3oznFd/Fe+UHMZpBSkRiUBJXREREUsIMMYq0u7WH7tYell2/iMo9tQR8mvCmv5mLp1O7d/B6g5nG+sMUTyikO8Zl7OkUCoXZvf0I1629gm2bDsS1z+oVV1K1JfkyCgtXzGJH5R78R8ffa7a+vokCJrgdxoi1NXfR1tw15DahYIgF0+dz7mwTNpmRchKXKdMmUV1V53YY4pLenj5O7OnjxhV/Ta+nlt37t7gdUsr94J9u5B+W1eDp20TKq7TYMFTdT7hhPZ5b/w+TN3H4fURGiSHzqhdkWjyjYXxdEyYiIiKuyckd/txw5bYqpsyYxPRF5aMQ0djR193ndggJK53kXvJv59ZDXL7yUpatWDjkdiuvXkblluRHz15y5WxOd5/BHxh/CVyAoqKCrBrtdWR3DcuWLXI7jHFr2YoF7N522O0wJAOcqm7A2zfb7TBS6u23LqbpR1fzoQU78fSlcUR/sANb+UdCD9+EbdOodhG5mJK4IiIikhI5+fFd4NNc20x7XQtLb1Ay5bycnLF3cVRJiXtJ3FAozMG9FTQ3tbF42fyY2+Tm5hCu92KSHKdx2doFbDy0nepTAy/NHw/mzJlOecG0cX3Jc7QrrlvEkSOVbocxLq2+fjlHDlVm1etJhlZ/phmPZ+ynG6aUFLDru7fy2786xcSuQ2nty8xcDhMjcwi0HiX08C3YMxvT2qeIjC1j/6gqIiIiGWGwmrixhALOpGdLr1ciF6CvNxUF9UbX5BL3L/NsrG/lVM1Zrlq9lDX/n737jm9sPwv8//keVcu23HuvM/ZUTy+335veA4RAKEkg9BJY6i4sC8uywALZwA9YEmogEEoqNyTk3pvbptsz47HH9rj33i3J6uf8/tDMeDxusi3pSPb3/Xr5NWPp6JzHTTp6zvN9notHVt135vRRZod33gfXpyXez+RxtTXlPH3+LPn52aFk9iP5tdLiIiZH5vQLTgcB4d+fay+jzJZspa9H9juXVsvNz0BVE3/I3YXDRRxWr4ZaHUSZKCkFQx8ceSeYbOCdI3j95wiO/FPUjy1J4VBEfH3sRzKJK0mSJElSRBjN268m7bveR9Wp8sgHk2AWJ3eebNRLljlZ7xAA8Lh93LnZyY3LrWRm2QFITkli+u7mPVI3k1eaSc9Q4vQoXpcGdlMady734BnTSFMzefLs6Yd3+/1+HYPTh1mx6B3CnpRbkMnczKLeYUhxprBC/wt9kbDg8sXkOCKvBrwtoU+Wb0NVBRx5BjIFWsevEuz4b2hqbGKRJCl+ySSuJEmSJEkRYQqzncLjpromSM+zRziaxFJ0IF/vELbNOBvUO4SHcvIyqDtSydzsEgAnjx7GNb+zPsPldQW0Td9jbHwqkiHG3JMXT9Fzd/WAqanhBcxmEwA2c5IeYelqL1QFxpuyigKysvf387e0VvXBIr715r/qHUZELDhi0LPelIQoywDtkf7r/jlY7gRfqP+uNvJ5gk0fRvMm9muTJEm7I5O4kiRJkiRFxHbaKTzK4/CgaBoFNbkRjihxOOddmJNMeoexLZ4BB3Z7fFTjpqWl0NHaB0BWTjpDjbM73tfE4CyHDlQDYLencqBm8+Fp8chsMjJ4d+0b/cnROXIteVRklnPn8v7rDSuMoAj59idSautKGR2doOladPuESonl6OkKrtz9Eh7Pst6hRMR8DJK4yolT4OnfesPFWwSvvxdtqTXqMUnSepQ4+9iP9uvXLUmSJElShCnGnSVxARzTDvxOL9aU/bXc2Z6TSvXpcuYGZ/G5E295+/FDNXqHAMDI8CTK/eZohypr8XsCWzxiY55lH5PNS5wsOUqpuZgcU3akwoyZQ4dqWVpwrXufc9HN/Ezite+IhJZLfRQmF3Ls6EG9Q0l4ZosJh8OJ37fzvzVp7zl2rogXX/3rPZPABZiLRSUu2zj38U4QbPwu1Il/j144kiTFrcQbhSxJkiRJUlzaaTuFBxYnFik/WUZ302CEIop/2SUZ9DcN6B3GjmUH42NJvsfto+H0QbLsGUzeiUyCcnwgVM2bX5MZkf3Fks0aHz+XeORcclOo5aAIBTUGg4r2ErPFxPFTtfh8fnxeH20t+6+aW9pcZ3+z3iFE3LLHD8Ia1cFmakcrSpUNgmEmv1UPautPozm7UKp+DiFXGEjSviH/2iVJkiRJioidtlN41MDNQWrOJN7y9Z0yWROrhcLj3PcWSbXb9A4DgOnxeebb3VjMJmyp1h3v58CpUijycfB0GSW1eVy63RTBKGNjcGQU0w4GDe4XXXeGKEwu5NyZ43qHklAO1JfTdqeH240dMoErrSsvu0jvEKJCM0b5wtjSJKjbX9mi9f8JasuPowXWX3khSZEkACHi7EPvb4oOZBJXkiRJkqSIMEYgiQsw3j5KRmFaRPYVz/LKs+i93qd3GLsT0DhSV613FADUl9YyNTLP5PAcpVV5WHbYY3hkcYyxiWm+fesKTf3NeDze7e1Au/+ho5GRCQ40lOobRJxzLrkxkdgXUWLNbkml4chhvcOQ4pgtKUXvEKJCM4R/YdArKpjxfwdDsx+nd+jjtN/5PkYWPrrl49Q7r4C1cvuxTf0nwcbvQHMPb/uxkiQlHnmJXpIkSZKkiDBGqPLP6/KRVZbN/NhiRPYXr9xLbjRV52xfBGRY9K/ELcjLof/mxMPPu5qHOHS2ktbr268WtCWtVFwF1e0tnz1z+hjOCQ+aBssGJ4FAgKnJWfyB2PcNDSqyV+lW+tvHOXfsBJZkE5Oz04yOTuBw7p1enpHmd2lMLI7pHYYUx4yGvdnXXlUsm1a/OYP5uIMXWRhJY6F1GLRFYOUcxphSAulbHUVDG3UisgTbuRIYDAoMznvMvvpDTGT9MYfPyp7fkrSXySSuJEmSJEkREYl2Cg+MtY9x4HwlnVcTvFJ1AyWHC5numdI7jIgw+zd+a2s0GAgGVbQolqaePn6ExU4v7uXVFbNul5dkuxXX0vaG0ljM5h3HMtWzwMKsc9VtqUo6ZbUFLOOksyuM6eOPyMvLIs2eSnf34La/hz19g+zPhYbhcy65uXd7pQd3WUUZI4YRFhb35+C3zRQX57E052JqbkbvUKQ4pqg7b2UTz1SxNjndOPcDtNwrwrus4VzSeFa5yaOJ20dpwfCev7XRNkTR28BzK6ztR+cr+eiPH6CkMo3xYSde96f4hf/7Ed77safCerwkbZciTyt0J9spSJIkSZIUEYYI9+AcujVETllWRPcZL5Q9NIQk0O+irLSQyrISAE4dPcxbzz3FhaozFKulXKg+zdmGY7zl9JNcOHkCgSAnO4vKslJMxl38zmjw/PkLTN5y4HaubXnQd3cUgnDsfDXltflhD94zGnZ+MSK3KGPNbaqq0X9vjKVhLycbDoVXYKXBUxfO4JsQTHU6qCupJT3dHl4QGjx5/jRpYm0s0uZG+qcoSA31yj114rDubTHixfkzx3GPaWTlp+J2b7O9iLSvtN4cpKbykN5hRFxArLReUTV4eeSn+MJfmxlodzLUscDJks0vFoabxAVQW66CKTusbZMtS3jdfnraZnAteQj4g/zuT36OT/3CPxEIBMM+piRJiUNW4kqSJEmSFBEGY2QTkwFfAJNBwWhSCPj31hT5wdYRckoymBuZ1zuUXQss+Th0sJa+rgmePnSB/uYxJrWVSsahzkkAxlgAoJhSmAQ/cLLqOPOGWTp7w69QFQgsVgtPHTtDx6XBTbd1u7xoKgx0TWy6XUpaEsUHcgl4g7T3d4Udy+Pm3POYzEb8vrWtDNwuL703JzhztIHu0V7m55fW34kGT507Q8ullVYQY4MzpNjtlFYW43J4KKrMBgNMz83ScW91y4ijRw/QenlvVrDHwvjQDONDof+XlRcwODSub0BxYGbQgcGo0Hi3We9QpDinqioHSs/S3demdygR1b94AMVzgO6xWrraFMZ7Qq/dywtuAOaUfDa7zKZt5xTGs4TmOIywbl31nm6boe54Lh3Nq1f2/OufvcJA5zj/83M/ij0jeRsHlyQp3skkriRJkiRJERGpnriPmu6fpvpcFfeu7q1J6FnFGSxNbZDES0AZVhOuRTd9LaPbetxo7zQAZytP4rQu0dbZ/fC+5GQbh2pqSE6yYVJNYNAIaiqBJY2ZkQU6rmyewAXIK8lkemJh020OnimjsfMOXTd7thX7enp6BzlQUMPk6NyG23S1DJGSZufI2YP48TM9M8fwyDherw9FKFw8c4qWdX7fnUtunEuhhMHs5MqS3acvniUogigI3rjcSFpqKiCXvEeCybTz1hp7SXZBGjMTixRX5dPbN6R3OFKca2nqJyc7n+mZzS+eJZKvvXSImbszbNQuofHyOEVHcjEtrt8myZq5vfMjresK4tyzsHx38+00sFjWv4De+Eo7X/mr1/mBX3jnto4tSZuR3RT0J5O4kiRJkiRFRDSSuAC913opO1LMYOtIVPavh2AgiCXZQsC3N4YouUcWdvX4sb5Q0vFw1iHUoIrZasK55Gb85gKw832bk0wMblKFm1ucwas3r0a1Z+96nIvuVYnaFGM69bV5qKpK67XtXbC4c3kl+fz0E2dZXtxeD2BpY1m2TFJqUknJsXLpctO+ffcqrKBpGsU5RTKJK4Wl4dAFvvX6l/QOY9c+8ZYfoshXyFLf5hddg74gs+mV5G+QxLXnzG772Gp3H0qxCTT/mvs6x48B8Ad/Wk9n68avcSn2pA3vkyQpMckkriRJkiRJERHJwWaPc0wuYjAqBAN7o63CwsQSuWWZuOb3RhJ3edqBLdXKsmN3CcTFx4aC7VRhRTZj/TOYTJuf6maXpaGNRzaBqxi231YkGAjSf29s18e+c2n31cTSis479xOWnVCQXEhFXSFXbj6SzNXg6YtnmB1zkF6QzMTUND29W1eIJwwNDh+uYawzlIBa9kfm71Pa2zIyU+nsa9E7jIhIN6cz0xpeAlZh4x60o41m0s6nY9zORcnZQah4G/hWDzlb9mfyx589TPudaYKB6U13UVFfFP7xJElKCDKJK0mSJElSRESrEhfAMe0gvzaf0c69szwzmknvWBNCkF+cQV/H7hORu5VfmsXY0CwlB/LpaVtbvV19rAizPfS72tp9L+LHN5n3zs9VWuF2eWlv6ufM0QaCgSC2DDNCU7hzv3fxSF/o7+CJC6dYdi/j8XpxOpfJzsqk+U4H6raaYurrqXNn6G8bx+P2MdIaag1y9HwVr1+7um+rkaXw5OZn4FJ6GOzaGxeUvMHwB/l51I3br3gn51jwv0C26d+2dXz1zusoJy6Cry9UkWsuJMmp8pvv/he+v+ttuLa4cPpTb/s/fPrrP8+pZ+q2dVxJWo8AlDh7DYizcGJCJnElSZIkSYqIaCclrSmWqO4/1oxbVIkmmrwcu+5J3Kz8NIRRoAZVBjvXDqRKSUvi9kAbDqcrajFEesCfBOW1BdiyTShCAb/AuehhYJ2fbyx0tWzcTkDTNO5eXj2kb2lwgiefOMXrV25EO7SIyM/PpuXKSkuP9KwUMsttvH5dJnClzdXUFdPS/9Ke6oXrV/0YCO/c5lbjDHmHirHMrt/6abYvhaxaENv5O/J7UK+/AgYTpOTAYuh5JMMAxxrSufLG5t9rTdP41C/8E7/1tz9C1eHibRxYkqR4Jc8yJUmSJEmKCJM1uklJ4x6qXAVQEiTZl1meE9Z2ypI+rSFMZiN1p8oprMphYc7BaN/Gy0tLjuZENYELIERi/FzjmdFk4OgTlaRVmFi2znO75w6XrzXx5tUbvNl0ndvddyirzdc7zLANdkyGEtAJoLS4YNXnxswgN29vPlxJkg41lHO59YsJmcD94As/RnX5+pWqJoMp/B0JgVA3bqmwdG+UZeXsdsMLCfphMXSRVNPgz1p/essE7gP97WP88nf/KZe+3ryzY0uSFFf2VgmIJEmSJEm6MUS5slTE2xquXUqEr0fTwB0EYRBowc17xy72zmDPSGZpPrpJ0kdl5tmxplhoa+pf9/66J0px+z0YPSaMFiOvXL4S9WpCVU2cZfPxqv5MOa9fubrpNtYMA2aLEZ83EKOodm5h1snRhgM03+kAwGw2kZeXxfDQRNxUt6akJFFYkIdZWFfd7nDtjb7dUnQYjQbqT+bx4it/o3coO/KOZ76blmvDWJPquHCqiCtNL6+63yzMeAiv17vH4eE/ezJ46pAN09IcSa75VVW3xhQbydpLu4r3QQL3X/91ZluPG+uf5lO/8AWEEFx4x1HEtsqBJWlFYlyO3Nvkz0CSJEmSpIhQopyUVPfIULOHIjtPKyqEgGS7FVtpLiWnK7dMPFfGsDoy2W7FnpXCSO/608ArDxfyypWrXGm6zRt3b/Dtm9FP4AJoagL8YOPYgWOltHS0bbndtcbbHDxdGoOIIiOwAHZ7ChXlxeSa83AM+skgm4MHKvQODbs9BYsrhalOB3ev9z28vbgih4mJzQcnSftXit1GTlWAF1/5vN6h7MgH3vIJem+FLlJ43F7MnmKMxtWVtynJCpWHcjGawkubZGQl8eZCNr/xppGOwoZV9zWnHqTXc5Lfu/ZJpv2h5y5Ng+Vgatgxvzn3gW0ncB8YH5zhF7/zT/ijn/9HPv+pb9J8uWtH+5EkSV+yEleSJEmSpIhwzEZ3crnf44/q/mMuQQphkmwmem4PM9oJ6Xl2SqpzGG8ZJOANoGlgtBiw2CxgUEi2J8UkppS0JNJzUulrH111e+2JEkaWxukfHGa6ezJhvsf7maIIMnPT8Lp9VBzJ4/XL18P+uXUP9FFUnsPoQPwnGkf6p7Db0/FOaSw7Q5V9mqaRmpISmwA0OHKklrGxKWbnFkCDs2eOYTGZEYiHA9oelVVoh8HYhCclnsr6dF58+et6h7Fji5OBVSsnRgamec+zH+XLL3324W3Ct4xleJ6D6SZSy/OY9Rroalm/jUHV4XyyDF6++kboQsgr7R7SD9ZSONnFrfxT/NO/D/IP3zhIMDBJfenTvKfw7/mn/k/wN5/38LlfuUaBqXvNPv2qifHAAe7OHmN4Lp3/+JYH2F11/Bf/4lUgNAT08zd/i6TkvTVvQJL2OpnElSRJkiQpIpJSo5vA8zrDW9KYKIzm+D8Ns6RYGeiYfPj5wuQSC5NLGEwGFMVIwB9E8wfBGXpTmRbmAJjdqjxURPOV1W94Cyuzea352sMEYDAKbQ3y8rOw2+xkZKXiWFpGIEjNTKLx2l1UTcVuT2HZGf408/0spyCdrPIUbt1uZXYq9Ds2dGVgW4n3sbEpJsQMR6oPMdQzufUDdOZccq+5bWnMw9Pnz6KpGi33OlhYdET8uNnZGRyqqeXO5R6y8jKpOlLB4oyTzuvrD2ACsCaZaWq9E/FYpL1jeDyxKzlNlrWvwa1Xx3jm/Lt57eqLACwHPIAg6PWz0DmC2Wyk4UIFt68M8uiT1aFTxYiBQbS8jIe3DfXNcLO4nKHcM3zx66GWP8H7K4r+9otWxp77Sb74FQd+X4DfefGdVJVpnCof5EL6V1Ex8LtXfprXX53F7wsAKjAX0a9/YmiWO1e6OfeWwxHdr7SHiW0O5ouFeIsnBuL/3YMkSZIkSQnBmmrdeqNdWBhbwGQx4k+AHpjhmJ9YouhQEZqmEQyoGM0GFIOCwWjAOe9itn8GTdNnaX5KTir20hxmxhZwDK594xj0B1lvfMvi+CL5pVlMDM3u6vi5xRkkZyZhtpqYHpxnbnJp9QaPvYtISUvCaXZE9WTeoCgUFxVw92YvQ32rK7EOH64lzZ7MYNs00+Pz0Qtij0jLTGHUOUzX9bVJze1SNZWMvJSESOKuZ3J0jsnR0N/Y0SfqeOPKjYgfozK/jDuXewCYnVxkdnJx0+3NVhNVJwq4dHXjJK8kleYd4U5bo95h7JgtZf1UiOJaGebpCXiBlXOboC9A8G43F86WcrfbwdLcMg0XSvG296Cu00pH0+Ar31pbzj475eSfvrDyeeutKVpvwVewUVP/01itCq23ov+cNj8d+YtGkiRFl0ziSpIkSZIUEdaU6C7J83sDVJ6tovPa2mW/iWh2eI7Z4Y3vT82wsbwQ/aFC2ZW5BE0mvG4/6TkpzHSMkFKcRfvVvq0fvI6yot0ncbOK02i+Hqq0taVYOHyxiv67Y7gWQ0m/R3O4tSdK6JrsY6x7/d64kXLm3FFuXelc977Ou4OcOXs4pkPdElVKWhIFtWkM3NjZ79d6bty5zanzx2nd4e9svJgb3WVCRYMjlfV4lr0UVGThCbixmKy0Xg7/+1JzpJjmrlYuXR3demNpX7vXMorVasPjSdDhd8r6F0mH+qZ4/wsf4ysv/w0+gxFhUNCCq1d2zHcMcbAkG+ORUuZvr6wKcQ5PU12RSU9/6MJMe+csweD2VoV0t++s5+1O/MMffYNn338Cq022VJCkRCGTuJIkSZIkRcR6SxMjbej2ICWHChluG4v6sfSWZLdGPYlrSbFiSUui7XqoUmisZ4qkVCtT1wd2vM/RWyM0XKjh9pW1/f3CYbWZaW1cSdQvO73cvHKPorJstKCKNdmCyWogpyid1FILr12/FpUK3PrDVaSn2dE0Da/bv2EC94GmxjYOHCsnNSUZ57ybgXvjaHtsFt9WCkqzsNrM9N8bX/f+6sPF3LrXzPCNyDZaXV72cLnxBg31x+htT9zkY2qeZVc9aM1mI8O9oeq96fGFbT++oDSLZZz4/Hus/7gUFV6PjxNHznOl8RW9Q9kZdeMXjrvXpnjX+R/llUtj5D9zjFKHj+XRWYQiHg6vdAzPwPDahOupAzkPk7izU/Fd6drfPsbd632cerZO71CkBCCA8Eb8xc4+7KYgk7iSJEmSJEWGMQZJ3IAvwNzADIW1eYx1Jeby6XClZqVgNBvv959VMJgUfG4/453rD1XZifSqfNoeS9i6HbvvPTx3d5LiylxG+rZfHZtdmM5i79qK1tHBGU5cqKWps5WWV9tDN04QlTP42oNljPXN0rsc/sUCVdXoaO1/+Pnp84e4e7l/k0fsPSI1wK2ODi6cPEPHzYGHt5stRkqr81kKzEelVzGEeiD3jPdQc6iGnrbEbAOg7rJ9ii3ZBttoyVx3ohzQcCyEKtznA7OMtK2fgJek9WTby/QOYcc6hq8AxRve39kaeh75+2/fpjA7jR88dRCPAO5sfqUlNTat4SPm1hudMokrSQlEJnElSZIkSYoIgyk2pxW+ZR/OyUVyK7KZ6o/dssNY6701tOa28uMlu95vRmkWKXnp+ANBOhujM3o+6A2QaTIzZlBQt7mUNDUjecP7nJqL2fmFXUa31pFjtdhsVhRFIeAN0na7b9tLYB/XdW8QobBnq3FNZiMHGkrRVI2JoTkKyjK51BTq52pMWsmsH71QSVPrHRo7ol89v7Do4JajmdPHT9DZvPbvJ96Nd87TcLye3r4hlpacYT/uyOEDeLwesjMz6bga3tedmWPneksTDccPM+4cY2YmskOTpP2h+Xo/F04/n5DVuPd67vCOs2fpbtu6en9sZpH//c3rfPyFk6Rtsa0xwSrZXY7d9yaXJCl2ZBJXkiRJkqSIiEUl7gPuJQ+K0UB2aSYzQ/sn+aCtMzgl7MdqUHq2io4bAwR6dtezNhxzA3OculjLjTfubbiNyWLElmLBbDWTlGLBZDaiGDcure3siVxla0lZPvk5OYyPzNJ1Z5PmxDu0OO/kUH01fXf3VuuPioMFWNINdPX08WbjtYe390yvbPPG5euUlhWy7Pbw+rVr6+wleoKqSvvAPapqqxjoSqyq0qUFF0u3XKSnZ7KkOcOqMr9w9gTtV0MXY6YJP/E7N71ERW4VvU0T5JfkcehCLQDt3V1MT++f51Rp99wzqQghdBvEuRsGw/aWcvTNLNKw1UZRWm0QLV/6i1f5wV98J5l5W6WnJWnNXFlJBzKJK0mSJElSRMSiJ+6jXHMuUhVBZlEGc6PzMT22XvzewI4eV3K6krlpF/eaBgn4ghGOamMTTcOcfPYAU1MLAAQDQTxuPy7HMi6HF6/PjXMuvCqg2uMlXG5pilhsmZlptDT1RGx/6/EEPFhtZjzLvqgeJxoMBoWD50rouz2Be9mL0WSg9GgWN2/f2frBAoaG9UteLy05ub10h8KiXEpzShOuKndpwUXDiXpuN7dvue3cSPiJ28fNTi0CMDE8y8TwLGarCTUlsRJQkv5mpxepqzlKe1cYzw1xxhEcprA0h7Gh8Fb1GJStM1jO3jGMBoXALldzxEowqPKpX/wC//NzP6p3KJIkhSHe+hJLkiRJkpSgbGk2Pvx73xXTYzpmnIhAgMzC9JgeVy+LU0tUn6ui+lwVSXbrltsXnqzEa7HQ3z7BaNckfs/OksA7pQY1PMMOBrrH6Wkfob9rnPHhGZYWlgkGt5dMHugY58ih2ojFtrAQ/YEzvV0j1J7YfQsMPdSfL+PS1UZSS02U1eZTfTKfm7fv6h3WtoyNT6GZY/s7HyljHfMcLqvj6fNn4H6BY2qKDYDk5CSePn+Wpy+cZWI4clX1dadKmZ1biNj+pP2juvSE3iHsyOvX/4M32v+Oo2fDe552ebZulZBcnJMwCdwH7l7vTchKaknaj2QSV5IkSZKkiJnq3f4gq91amnIgVJWMwr2/FNA1v0zn1V46r/aSWZqFYgydymmatuoNWPKhbDiRyezsEm6HF+f8sl4hszi8wIkzNWFte/GJwxve5/MGyLJl7jqevPwszl9oYGpwYdf7CkfrnW7Ssjbu8xuPhBC0tIWqQDu7+mjuaeHqjds6R7UzzS1tHDlficmcWAsQvW4fI/1T3Lncy7GaQ5w7doKUQDpPnT1DriWPO5d7uHMpcpXkecWZNN5pjtj+pP3l3p0xnjr3dr3D2LGgCG8ioBpGk3MRo/kAkfTW7z6LkOvkpTAoQourj/0o8Z5hJEmSJEnalWAgiNflRTEa0IIqrjkXfm8AoQgUg0ANagR8AQK+AEF/kIAvSNAfePhv0K8S8AcI+oIEA8HQdgEVNRDkxhcjt9x9O5Yml0jLTyM9z87C5JIuMcTaUOsohYcLcFiCtI+PMz42S2qqjawsO51NzWiaxlNVh/QOEwD/mGvLbYrLcnB7N287MNw1hdFgILCNKt7klCSOHjvA1cvNAOTn5HDrysZ9eiNt2eWhvKqAxTnXw4rKo09W0XVrBI8rvMRBrB06Xc6bTdf1DiMivD4/b1y/RmqKjfqGWpJMSYDG3LiTYR0uOu3EYNfEw/+3XO2N+P6TU60EbR5cY3LAkbQzHreP0S4jdbVH6ehq0TucbQu6LVtuowjB82UFeFo2Hwg6bdx6X/Hknd93gU/8+vv0DkOSpDDJJK4kSZIk7TP9TQP80fv+WO8wIm5xYpGMonTsuaksTUV/qXw8WAr6+I9LzQ8/97i9TE+u9AdWvbHrf7sZx7iDE2dquHWje819RqOB44eqmB6e597M5r1Ll+ZdPHXxDN++enXNfTUHysjJziAYVBkbm2J4aIK8/Cyqqkq5efke588fx7nk5l7r5m/Ao6G9pZ8zFw/RcqmP7Pw0rl9u5dipWrpujMQ8lq2kpCXR1he7JHesOJzLXG9sfvh5cXEBiiJQdzEscC+wpVhJLTbR0Rn55LC0v/h9AWpyTiRcEveDL/wILdc2H25ZkpvORw+U49wigYsQfO3VxPpbSrYnYTAa9A5DkqQwyXYKkiRJkrTPBHY4HCsRzI8uYDUbSc1O0TuUmAgmb3EqFyerI20ZNpwjLnLzM1bdnp2bxqnjtfS3jFJYncOyy7PlvmZGFh9WtD5wsK6Cke5pbl7upPlaN1NDi9QfrGFhYpmbl0MJyVtXO+lq02/A1Y0rbZQfzcOrhKpvzWaTbrE8Kis3jSPnKjl6oYqUtCSqDhcyN7eod1hRNzIyTnFVrm7HzyvefWuQ3TBbjBw+W4khKyATuFLEmJPi5EVnG9TA5gnM9NQkfrCyBGfvxKbbARhMBlKSzZEKLSb+9c9e4V/+9GW9w5AShIizj/1IVuJKkiQ9RtM0UAOgBUFT739ogLby74P/P3q7FnzkfgABQgndrgbv3x+837dSIAQgDKFtFOPK/8X9lyWDGYwWUEyyT5UUUX7v1oM5Etn86DyZJZmQnYJjZueT2+OegDu9m1cFufMg1WzHMbS0JvEZS65ZF8VHirAuWUhLT8bj8VJSnMd07yzdN0OJ1YneGc6frSeASuP1tZWgT77lKNfv3MVengT3i6bq6ivJSE+ju314TUVl7734q3J1LLnwLHspKc+jt3lU11hKqnKZ88/QM9xNz0yoQtpuT6GpdVrXuGLJa1ymoCSL8QgOB9uKEIIjFyto6+yksq6Mvo6xmBw3xZ6EPSOZZLsVU6pCy9123myMzbGl/WNxeVLvELZtZK6V0qOZJGkFdLauft3ISrPxE0dqcfZtncAFEEYDp47k8a03+6IRatR84U9e4kM/+YJ8vyFJCUAmcSVJZ1rQH0rgBTxoPjf4PaEknt+LFvBAwAcBP6CtJPiEAFVFe5AYVNWVJOHDhKAI3aYG7v8bDG3/MJmogqo9/L8W8KO5FxHmpIdJS83rQvO67ic07yczgwGUjHSEdzT0+YMEphoE1QdBHwQDaFoAgv77x/eH/h/0h/6v+tHu708oRjCngjkVYbYBChhMaN6l0P6FgGAgdJxHE6vqownW4MMkauh7svJ1rf5Y5zZY2R/aym3xxGBGqXkXxrf9ESJJ38odaW8I+ONjiX00zQ3PkV6QRlJFFlP9sUvQxJKtPJ2J9s2XgN5sCiVDM7LsnKysZva2fgm64ZYRHJqGGlQxWYx0Dvavun9pzsXSDRfFtXnrPl5VVWZmFph5c4GG4/W4XV762seA8RhEv3tnLxyh5XIvFXWFzE8t4XZu3v83mpJsFpbUeUZGJlaVsiwt7eGLHuu419lLTXX5mtvtGclU1Ofj9DhZ9njQNBWT0YimQWZaBqNds8xO7axa+WBDGa9fuQbAzOw8CLAmWThQU0lGajp+T5CpkQVmJhZ28ZVBblEGOYXpGCyCqbkZOjv7GHbG4TmOtKfMzSdeErep5RIAH3zhR9fct50ELkBg2UuyJfFaE0wOz9HdMkztsVK9Q5EkaQsyiSs9pAW8qJM9PCzVeTjl+vHPCSXf7Hko6YWhT70uNMc0mm8ZAl40vyeUjDSYEJZksCQjLCkIWzqYkiJ6lU9T1ZVEZdAf+lfcr4BUDGC0IAzh/aprahDNvQjuxdDXtLyAtjyP5ppD8zjgflJTcy+C34MW8IJvOfR1e5yhxKQQq6sxhRJKQgb9K0lPVUVTA6Hb/e77CcTEYao/jph8IyL70jb4v/SIoA/13pcJJGVietsf6R2NtAcYTYn3BmMnFsYXMSeZqDlTQfeN/q0fkGC0rPCX48/PLvHy7C2eeaIBg0MLLRSwGB6eCbr7HCxPR3eoUUZhOotDoYS6f5OWHopBkJaezOLCyjC0+iPlBJZXXivbmxPn55lqt1FTXUbLpdCS9f52/asfK47ncfmaPkMI401PzyCVOVXMTS9RfagYQ6rGzVutDF7d+HfMbDJx5sIx5keXGRuc2fIYmTl2Smpz0IDe4YHVdwrweLzcae14eJPNZuX0hQZar/bdX72zmsGgkJ6dSnZBGhabCRSNgBrA7/fj8XoYG5+ic7yTzsS4viHtIYtL81tvlCC+48kjYbVQeFRqZT7fbt3eY+JBsj2JpOTEGsgmxZ4AlDgr1o6zcGJCJnGlh4J913F/9iPbe5DVHkpO+sN/4yeSs1BKjiGMFkALJUID96szg4GHlZwEA2gP/q/6IeC/X0m6UlmKGmZfR6MFYUkJJZPNtlDl6YOErxoI7TvgBa9jdbJa2sB+fLrUn9r6edSjH0EpOKl3KFKCM1nioxdnLPjcfgYa+6k9U0F/6wh+995pJaHu4Kn4tUu317091W7j7Jk6Zm9M7TKq9SWlWgmEWZ1kSTY/TOAqQmAwGggs+AnYE+/3tuHMQca6Zuloiv0wtY1k5aXR3NqmdxhxQ0NjNjCJkq3Q2HErrMf4/H4uXWsCDRoa6kkSyXTcWv9nfLChjI6Be/Re7Qk7puVlD69fu0pqqo2MjHRKigpxTntJz07BE3Rzr7uXnukJevZP5wspASTZrHSPD+gdxi6sfg9o3eawL4PZyF23wthk4g1W/f5feAcl1euvgpEkKb7IJK4EQHDiHp5/+5XtP9CztO2HaK5Zgve+vf1j7UbAG0rSumZltWdEyO+iLgIe/J97AZF7GMx20AIoeccwXPhFRHKO3tFJCUQx7r+5pv2N/WSVZqIqClP9W1fOPa6+PoX2dgfxdBFL7V6iuDSXkaHdJ14dS8u8fOUmzz9xgrlrkc0MGc0GzHmpDHaEWRZ4f7XOhYuH8Tq8BAMqiknhUtOdiMYVbRXVhXRcG0TE0e8MwOzkIuVlFcymTDExuf2/hb1oYXGHSRcBt++0A1BcWkB1STk9LaO4HB7sGckU12Vx+Wrjjp82HM5lHM5lhobvV2/L+WNSHPN5fRiNJnw+r96hbMvbn/4Qi6Mmeu+ubr2UZt7egLKk/AzevKzf8MzdqD0q2yhIUqKQSVwJbXkB91/+ANqiXHMlhUnmcPWjqWiTLQ8/DY5cI9j6eQzHPoooaAC/C/weRPkzKNkHdAxUimci3tZCxcjs0BxGs5Has5V0Xd/e0JHTdYLl5WQGBpajFN32+Re81OdmsJzlYW52+xdV1/PKpVucPlOP0u3F54hMz9aSE6XcfrM77O39bj8HDpXScbkPo8lA5dlirjTfwe8Pc/VNnMjKTmeia0HvMNY1NjhDVX0JExMz8XRdIqGNjIwzMjKOxWwipzSLmfkJBq/1y++vtG8EgyoHq4/S0t6odyjbYjSYmZ5Y2wZizuOlYBv7cY3NkmQ14vYkxmuVEIIzz9fz/Hec5swL9XqHIyWI/VcGEn/kz0DCd/lvZQJX2h6ZxI0vPifBxv+PwNd+iMA3fobAy79E8I3/qXdUUhzbz9OHA74A/Tf6qDldjtkWfpVNssFDdlb8Xfv2TC1zrrgC4zaXfW6m8UY7feY5DNbd7zM5w0bHrfUrk4qqcyiqzuXwxWrqzlVQeaQIgLnxRUz+0Clq5dkiXrpyHdeyZ9exxFKK3YZjJro9hnert32U48flG/dI8/r8jIxM4HLF989fkqKhOL9K7xC2TdtgqPEXXr8Dx8rC2kdSbho9GbkJk8AFsCSZqDtZwTu//wKKItNCkpQo4u/diBRzweHEWp4oxQOZxY07Bgsi9zDa+E0ARP4xnQOS4tl+rcR91EDTAJnFGYiCNCZ6128f8J3vSSPNEsCqeLHMD9PdWxLjKMPj7JrjmfPHePnN8Pp5hmN6cp6a88W4Gxd2tZ/symxGr62tes4qTGd+2olzYZnh7tA084KKbAxGBWuyhdGuKXKKM+gajs+lqemZKdRUl+GYd5OSbWWgd4zs3HQMBgMBfwDhVxjsjP8p7cqyCYFAk6/rkiRFwOSgD5stheVlp96hhE3VNh4w/alvXOfX3nIaV9vwhtuklObQ6jVy9ebG28Qjz7KPv/29FxnsGuedH7nAwRPlZOWn6R2WJElbkEncfU7zOAn2X9c7DCnBBKYnMWY/Gepb+CAXdL+yTwiN0I3a/fsefWMoQPPDxNWYxrsvpBZi+sDfQ9CL5nWgyCSutAlZcREyNzKPwWzgwNlKum/0Yks24nSG3szZ7UZKvd2oY6F+s6oQLC7k6xnuprSeJYxGA4HAxm9Gt+v6jTaePXmc2Vs775GrrlP1bbWZMVmMTI+uXr463j9DdlE6BpOB1Awb95YGcDr1q2YsKc+jID8Hf9BPa3MPAX/oe2s0GsjPzuXutf7Qhp2hf1wT0RkKF039neOcO9/A1euRuwAgSdL+NT05zwsXvouvvfw3eocSNlXd/HWzfdnNRvW4itHAv7QvMDefuJX3r375Jq9++SaKIvj8rf9JWW38nutI+tvHi/nihkzi7nO+V/4YPIk3QVPSlzY7gX92YkePNVYfln1comGhH99fNGA481MYzv6M3tFIcc5okS//DwR9Qfpu9PH0M9k0pA7gtOYwPG+lTulCnXkkKadpvP9d6Qjgy19f0CvcDfkXvJw9U8flK3cjts9gUOVSaxsXD9ex2DVP0Lf+ktONlJ8pp/lyz6rbDEaFkgP5dN4aXPcxM6MLANjsVlxOfVsojA5NoXgNTI0ukJ+fQ1F1DgiYG3cweG9nr4HxaKonMv2UJUmSAJqvDfDsxXfz6uUX9Q4lLCajBdg4CfuVK238tyeO4eydwJKZAhqY0mz40mxgNjP3pfbYBRtFqqrx+ldv8QO/+E69Q5EkaRPyXdw+pakq3q/8Ov6rn9M7FGm/kVfvoifoJXj1Dwk2/imi+DxK/jFERjUYLWhzvWhTrRg/8PcIJXK9M6XEJJO4a116bZbRqjzeXTvCgbkx1ktXlk9cQlgsQE2swwuLpkZ+SbzH7eWV5mYO1JVRpGQw37l2+Mt67LkptD42PC4tO4XUrJQNE7iPWl7ycCizgsK6HK633WVxybWj+HdDVTWsmSZSnEnMTiwxO7E3k52L87H/3kqStLdN9msUFZQxOr71873ehNi8vETVNH7ncgtmkwH32OoLeGcbjkYztJhbnEucNhiStF/Jd3H7lOacwX/983qHIe1Ditmkdwh7X8CDNvAqwYFX197nnAB7UexjkuKKybyXX/41FEVgNAoMBoFQBAIwWxVMRjCZDRgNYLEqmM0Ck1FgsQhMRjAYBT1aBdWZPtS5mfX37vdTWGRlbDT+Bm0tRXGQUmfHII6SHOrqC5m/N79lwjg5K4Xg/apaALPVREZ+Kn2tY2Ef0zG3TOflQc6cP8xL167rchHQmmTBubjzdhKJQFPVUOcjeZFVkqQIcS4tc7D+KSam/olgML6HfXl8W1/ICqoqbu/ay7tepz8aIemm5mh89v6X4oMAlDjrob8fT1328rs4aQNawEuw7xooRtiiB5AkRZrqC8h2CrEgDCg170RbGECbugtoiOILkJyjd2RSHDBa997FlB/6sIWM8RsQDIC2gxNMFfCFPpyVT2PYIIkL4HTExxtSk82MwWTAsxhK3mbaU6J6vLHhacaGpzFbTNQfKSfHkMpM89oEpyXZgsu38j3KyE3Fnp2yrQTuo7quDnLh7FGuNLbsOPad8jn2/nmS1WaBZb2jkCRpr+luH+Fdz32Er730d3qHsinX8iJg3fbjhBDMDC1EPB69lB3I54XvOqN3GJIkbUEmcfcZLeDD/ZnvJdh/Q+9QpH1KC8RH8mPP04IYX/g9hL0IzTWN5ppEZB9EKPJpXwKDcY+21AhEpiIm3ezg8W7x3qoT3B2zcaNxEa9Xn+cxTdNIsieRUZrJbP8MycVZTPTPkF2RS3pOClPEZhmkz+un+XY3FquJow3VpCtJaAEN/6IP97SbgoYiml/tAiAzPw2v109/284SuA/YdvAGOxJS0pN0OW4sLTs9WKwmvL69VVEmSZL+mq8O8danP8i3Xv+S3qFsyOv3sJMk7onTdQxdTbyBlusRQvCJ//5+jHv1/FCS9hD5bn6fCQ43ywSupCuhyDrcWNHmehD2IkRyDkJW4EqPUNXtDahKBKoWuQVVim91WwIlOYU//5f7Zbo6UYwKRQ3l3L3cy+TsKADTC6HE6EjnJCOdk2QUpJGZlsrcYmwGlno9fhobO1ZiVARmixnbdDp5ZZnk1WTR2zSCY37nZZ4mi5GK04W8duNWJELetpHRCcwWIz6dEvexIl+bJUmKlu7mRd72zHfwn699Ue9Q1uXzebf9mPKqQqZawusRH+8yc+385t/9CCefPqh3KFK8EyDirX9BvMUTAzKJu9/I9gmS7vbhM60e7KWIwpN6RyHFqWgMwNKbGsHnFk1b/VrZkXqWsmNmzFYTi1NLTPVv3GohGvIOFtDVMsb85d5Nt5sfX+TJ04f56rWrMYpsNVXV8Hn8uC0+rt9tgyF4/sRpHE3bT+LmFGdgKTIzMjnFS1f0u/g8PjLDmfNHaN3ie5/I0jJTmF/YG9VkkiTFn2BQpaNpjnc++TGE2YumBTEoZoRQ8AfcfOPVf9E1Pn9gexdozRYTFqeFOVdsLphGU0l1Hp/62icpLJfFHpKUKGQSd58xVp3H9OQP43/zL/UORZKkKDJe+HmEObr9MaXEtReTuEE1gheIHvn+tOc8x7e+Prnq7qpT5SxOLTEzNLfuwxWDwGAyYDAaEIqCYhQYTUYMJgOaIlAMBhSDCN1nUFCU0P+FQUEo4n6lw0q5w0hP+IO1BhqHeebscV673rz9rzsCVE3l+q27D6/XXWq7w6nag4x0hZckzK/Iwl6UwmuNN/GPxUf169jYJJYkM163fpXY0VRcncNAU5/eYUiStMfdvT2w7u3veO67+ca3/zm2wTzC6/OwnSYCpeX5zLUnfgL3nd93gZ/7w+8lOVWfdkWSJO2MTOLuQ9b3/gaWt3wS9+d+lGDPZb3DkSQpCkR+g94hSHFM28ngrzgXyUpcHlla3jO6dr+9TQNAaIAXgBoIEvAHHybH1aCGGgzgZ20S0mc24XZGNxno6XRSmJ/N2ERsK4bX4/X6WDSG36t3Rixy/UpbFCPavoLCHLrHR/QOI2q8mnvrjSRJkqJk8J6T5ORUXDpVtno8bpK3sb3TsUyirSzMK87kzAuHGLg3xuKci6PnqvmFT38Es2XvDbqVoktJrF/9PUkmcfcpkZSG5f2/xfIfvgW0vdcbUZL2NWsGIqtW7yikOKbswTOwrdr8+kuPMhdMJ1uZwRDwEDAl4ySVdO8Iwu0ARUFbmA1tbAm9nfObbIx1Lmy4T69r+330lBj0HnU7PJw8UhMXSVyAux19nCk/xOTA7JbbVuYV0TsQPwnT0+fruXu5X+8womp6ZuufiyRJUrQ4l5a5cPJ5XnrjK7oc3+vzbCuJOzO1QDrpiARI5BqMBv785V/i8JkqvUORJClCZBJ3HzPk1WKoukCw55LeoUj7yF6sAIwrBgvGd/0ZwmTTOxIpjok9mcTd4GsymVgoOM3ffzmA17MM2O5/QGhQWe79D43cvFrKy62og5lMBwqZHV3G41yKaJyKITYDpOa75sjOTGNmbjGs7U0GAyoawWB0Luxak81hbdd1dZBTJ+ppam6PShzbYTQZ6GsZ1zuMqCooyaJ9oCPRisokSdpjTGTqdmyPd5nt9FOoO1zBxM2FqMUTSUUV2TKBK0l7jEzi7nNJ3/9nOH/zBKjx0XdO2gdk5XfUiNwjGN/1Zyh5R/UORYpzsagGjbX12vyK7AL+o6+WttdcYexBMDXpZzlgYX5mMOLxPWC2xubUyzHjotSYxvkn6/jW9Zt4ff61sZiMPHemAXXKz9zoAiarCSEgszSDF29HbphYTnY6piQjNrsVt8O75cU8z4AHg6IQ3Kq8OspsNivL89uvtk4kqZk2GNU7CkmS9ru22wOcOHqeWy2xH8y57HZhzDCABoHA5kPAK2uKCUwlUEGKkFfopMgRgEJ8/f7vx99wmcTd54QtA6XkOOpgk96hSPuE2IPJI91Z7Bif/u8oxz6KMMjeVtLW9mIlblAVCFsqi9mHmfdYuN2m0nd1GVUNJ4G7Irsyh/mZ8Hu4blcs+88FAypDV0Z4sqwOS6ENo6bgF0E0NIzCwFLvIuPXVipN/d7QBd3U7BRyszOYmpmPSBzTswu8MtuIQPDkoeMM3t28utUxt0ztwVI6ugYicvydKqsqoKdpTNcYok0ujpEkKR5omoayXEBVRR29/R0xP/69+a9RV3McxovWvd9iNXHqxCF6roziCHpiG9wuGE3bGdkmSVIikElciaSP/iXLf/gWNGf4068laacUQ2SSAtIKpfIFDCc+oXcYUgLZi0ncJRf858xJWl5yAmurTsPl921ehbNbJkvsT72mB+dgcG7L7cxWE9kNOfznlSbUKFTBamiIMKuCirJzdU/iehf3/iolNUrtMyRJkrZramIeW3I5737hBC++/PmYHvv4obOk23MYGV97ZevwsSr8kxpdb8ZPv/ZwVdavn5SWJClxySSuhJKSheWdv4LnX/6L3qFI+4KsxI04v5wsLm3PXkzivvLK7qdam21mRtqju7Y8Vu0Utis1K5kZu5vGS5Fro7AeU1J4X79j1IXJZMTv1y+R6lzY+8+tQb9M4kqSFD+WXR7u3Z4mIz2b+YXYDed0DmbjXGeZ+MXzx+m8NJwQQ8zW89R7jusdgrTHyA4d+pPZFAkA0+kPYTrzYb3DkPYDU6reEew5as83USea9Q5DSiCyrcn6CuoKCES5EjfFnhTV/e9EcnoSUyku7vUMxeR4pXX5pOdu/low0T/LE6eOxSSejZQczNX1+LEQrUF2kiRJO+Xz+nny9Ltjesz1Wh2dv3CUrksjCZvABTCZ4vPCsSRJOyffxUkPqdN9eocg7Qfq3h4Sow+N4PVP6x2ElED2YiVuJGgxKC8Ybx8lPTcl6scJlz0nhbkML119sVkmene4lzfvNWM0GVAUwYGLZZQdKlh3W38wugn1rYyOTOp6/FiI18pwSZL2t66WSVJT0mN2PJN59XPh8ZMH6Luyef/2RNB1JzYXZyVJih2ZxJUeMlSd1zsEaT/wLeodwZ6k3vsKwc6v6R2GlCAUmcRdQ9NgvCv6STuPw0OyQXD8ySoMRn1/DsWHC+jwjcesAhdgYnIWBKSUJVNYnYPT7+bW8D0Ka3JWbacogrudPTGLaz2quvenflmS5DBMSZLiz7LLQ/2B4zE7nj3NhqIoHD5WxfnTxxi5MYMaTPzXAJ935zMCJGk9Spx97Efy8rv0kPmt/wVhScH79f+ldyjSniaTR1GhqQS+9sOI7/4SSukTekcjxTnZTmEtocDyYmx6oDpnnThnnVRUZSOSLHQ3x35YSlFdPt+6e0u3atfXr93EoCih5fwCus1DlJcUsjTjouRkHiPTUyx0O3WJ7QGzagZcusYQbRODc6AhX5olSYo7SZbkmBynqvgghcl5WO3JTN5aZJLFhG6h8KhoD2uVJCn25Ls46SEhBKaLH8X8tl+AGL1oSvuQJk8moiboxf+F9+H/9x8h2PFFNF9kEyBa0E/g+h/j+6f3RnS/UuzJSty1kjNsGM2GmB5zun+G7HQrF1+o5cRTVRw+W0Zqhg2LLfrVkSPBed3bFQRV9WHycGZukXF1hrKzBbxypZHO7kFdYysqzWFieE7XGGJhbnqJ48fq9A5DkiRpjb7BjpgcZ2RqAK/Tj3N2OSbHiyWDUaZ7pMgRgBBafH3o/U3RgazElVYRJiuWF34W04kP4P7rj6FOdukdkrTXeBb0jmBvUwOobf+M2vbPiLKnMX34q4hd9vlU+15GHXyDYOdXYWEAAM01hUje+0N/9irZE3c1TQNDkoVAjN/A5ZRlMdw8SMAbeHhbqlGh4HAhbW2TeFy+qBy38GAe32i7GZV978bo+DTzDofeYQCQV5DF3MDersJ9yGXCbDLh88tlt5IkxY/CgjKGRqM/s8Xr83Bz8aucOv0UE41RP1xMZRek6x2CJEkRJi/NSOtSMksxHn2X3mFIe1EwOkkJaS1t8HXwzKNpGtr8zk6CNU0LVfZe//TDBC6AOhZ/CSApfDKJu1p2eRazI/MxP+704CwFdYWrblMDKqOtI9QdzNngUbvnssVvsu7QsUq9QyCvMJOp/gW9w4iZwe4JTh9pQBHybYEkSfGhsraQa02vxux4wxP9fPmNvyP9uAt7pi1mx42W2mOl/Pbnf4wP//Rb9A5FkqQIk2dr0oaMx9+LofKs3mFIe00Mpr9L91nSQFPxf+G9+D57BnU2VFmvBTxbPlTTNDS/G9QAhuM/uOb+4JXfR1uKfR9PKTJ2W52916TpWKmiGNY/FTOlWKNyvLITxbzR2BKVfUfC2PC03iFQXlHE7MSS3mHEVHvTABdPnd4zfSAlSUpsfV1jPH3hnTE/7tW7r2Iwxra1UqRcePtRfvHT38c/Nf82f3Pl13nuA6fk+Z4UcXoPMpODzWQ7BWkThtxqbD/+b7g//5MEmuXUeykSNNBUvYPYP7yL+P60HoJeAAIv/SKG+g8RePmXMZz6MYxP/dq6D9Pcc/j/7bvRRm+Epj1pa6fzauO38P35UZTqd2B84XcRaSVR/VKkyFMMCmpQ/j0COOb1WTZvTjIx3Te15va82nxuXo78EtLskgxe7Vg/gZufm0VRfjYmgwGz0YjJYMTl9XDtdnvE49jM6NA0ZVUFDPaOx/S4DyiKYHFK34Fqerl7vZ+nnzjLa1eu6R2KJEkS/S1u3vX893C9+dvMzE7G5JhJliQCCTgM7Jn3n+R3/vHH9Q5DkqQY2K/JaylM3lf/nMCdF/UOQ9oLzFYMpbUQRhWoFEH3E7gA2sBrBP7jJ8DnIHjl/6BOh5Iz2tIogZd+Gf9XP47/xR/D95fnQglcuJ90X5vEDd0XRO1+Ed/nnid4+69QZ+6hyXYZCUO2VAhJzrQx3hmbN4ePqjpRRnZuCsvzq/vwWu1WhiedBAMb/N3tkDnJxJCYx+Fc2/e3uCCHGkMu/jYXyy1LLNyaY7pxikw1meP11QAcOlCBYYOq4UjLzLbH5DjrMVtMjPToXw2sl96Wccym6A/WkyRJCkfr9Qls3nreeu4HOd3wVNSPNz4zwrfG/5ya89lRP1YkBXyBrTeSJGlPkJW40oZU5yy+//wDWTkpbZtSVImSkopiAvwLsDwBy1PgWltxJunIPYfmGMf3uefBuYuqN9ckgf/8+dD/LXaM7/0rDFVvjUyMUtTIJG5ITlUeC7P9MT+ud9nL/Dp9eLMOFDLwRm/Ej1d4NJ+xvu41t2em26m15jMztDaWkbuh54Wz6dW4ezy8/cIZvv5m9Ks0F+b0G25mTbLgdSVeFVakOJfcHDtVR+Ot+G25IUnS/nPv7hBmi5W62qN0dEX/+WnM2Q1kRP04kVJRX7j1RpK0axqKiGyRwe7FWzzRJytxpQ0pKVmYn/lRvcOQEpDR6kCZeRPG34SZVljev1VNcU0NEvjmz+wugfs47xLBa5+O3P6kqJFJ3BARo+rSx6VmrB6cYs+zQ246LTcGo3K8gevD5C8m88K5Ew9vS7Ylcbqget0E7qPcjtAKivGmccqK86IS36NS05KjfoyNLM47sWfqd/x4YAxa9A5BkiRpDZ/XT05W0a73k2S1YTRuvuLg5Rtfo+Zs7q6PFStf/9xlJkfm9A5DkqQYkElcaVOmMx/WOwQpwRirDsNC5KvIpMjz//MHUHu/Ffkd+/SropPCpyjyFABAU2N7Bb/ufCUHz5QzcGN1z9vkrBQmBufxe6K3JDLgCzLdOEVlaSFGg4FnDhxhvCv8FRIBX5D68rKoxQdw9FQNI4P6rdrQNI3CysRaRhtp924PcuTwQb3DkCRJWmOnc7qEELztqe/gXRc+QbH5GapS38YLDR/j/S98jGfOvZPszLUXKP/l6p/uMtrYWZhx0PRqh95hSJIUA7KdgrQpJbMU49F3E2iRfXGl8Cjmtf0WpTilRWfJsLbQT7DjS4jMGpS8I1E5hrR7shI39urOVzFwY/2LXNM9U6Rm2nDMRf85tMKQxZHT5fQ3Dm37saNXxzh7vI7rzZF7s5iWkUJJRR4CQUvT2pYPsabIvw1wGFCEgipbakmSFEds1u31TE+y2qipqKcs6wTtt4aA0CBTVVXp7x6H+y85WabTPPFCDl95+W8ePtbjXSanOp3p0YUIRR8dJdV5/M4//QRVh3ZfpSxJmxH3P+JJvMUTC1EpwxFCfL8QQrv/8cPbeNzvCSFeEUIMCyHcQog5IcRtIcRvCCGyNnncBSHEf9zfflkI0SKE+KQQwhCZr2h/s7znv2OofkLvMKREYUjROwJJb94lAl/9GIGvflTvSKRNyCRuyE6rerZ9HAUmO8cQQpBdvrbSM+ALcPBI9HvaaUB2UeaOErgP5BjTKC8rROzy1Nmelszhhirs6cncvdVL662eXe0vUgxmWaU+0j/N+bMntt5QkiQphmZGguTmbP5amZGWxftf+BjPH/8ohcancA1n0968+WtewB+g9do473/h46tuTy827zrmaEpNt/EHX/oZmcCVpH0k4mepQogS4E8A5w4e/nNAMvAS8Gng80AA+B9Ay/19P3689wFvAE8BXwb+FDADnwK+sIMYpMco6QUk/fDnMNS/oHcoUgLwdXaCvH6y74m8Y5g+9CW9w5A2YTDKv9NYMlvN5FblUn62kqXppXW3EcHoD9Sqv1hFx9XdtbyZ7pvB1efl1IFDO54nYTQZyC/K4u7tXob7J3cVT6TNzi7oHUJcUIJywZ4kSfFlcmyWDHGMdz3/Peu2haooraUu7220XhtnoGdi2/tvvTbGcxfe+/BzLRi/F7xT02384Vd+lpLq6PeqlyQpfkQ0iSuEEMDfALPA/9vBLuyapp3TNO3jmqb9iqZpP61p2mngd4BC4FcfO54d+CwQBJ7RNO2HNE37ReA4cBX4TiGEbOoaAcJgwvquXwOjHHYhbcHvBWXzYQHSHpeci+l7X0SkR7d3prQ7KVn7e3jTiti8QfMu+3AseRlvG8Xn8sXkmI87cK6S9su771meURqa2D3QPk5t7fb/zlPsNo6erKGrfefVwNHU3z2KzW7VOwzdRbM/syRJ0k65lz20Xp/g2VMfIT0ttFjXaDTxjme+m0yOMjm2uwFfFnVloJnfFb8tZT7wiWc4fKZK7zCk/USAEmcf+7GfQqQrcX8GeA74GA8azmyDpmmeDe76l/v/1jx2+3cCOcAXNE1remw/v3b/0x/fbhzS+pTcKmw/+3WU/AN6hyLFu334ZCqtUPIbEJbt9SyTYs9klRdbIHbtFMqOFOEan8fj2OhUJ7qqTpTSeaM/IvsSSSu/Ozbb9pKd6ZmppGWkcOvavYjEEg2qqpFfmql3GLqzpMpqfUmS4ld3+whPNLyPtNQMLh78HrqaFlmY28li4NUGuiexJYUudHuW4/diVuE6rZkkSdoZIUSxEOKvhRBjQgivEGJACPF/hRAZYT7+o4+0lN3oIyJL7iK2TkoIUQf8LvBpTdPeEEI8F6l9A++5/2/LY7c/OMY313nMG8AycEEIYdE0zbvZAYQQNze4S47nfYQh/wC2n/l3gt2XCA7fwfft/w/U6C//lBKMkP0E9zN15Cra8gzCJk8u45lspxAbQkDduUoGGvvRtM17D2jqDnsTbKG0vpDBtrGI7F/TNJxO98PP05JTqK4qITXFRnfvME7n+oPZTGYjeYVZZGXbuRMHw8s2U1iSw1j/rN5h6G7J5dA7BEmSpE05FwKcqf0AfZ1jEdunz+vnySMfJifHTu+3d1fVGy3v+eiTvPdjT+kdhiTtCUKIKuAKkAt8FbgHnAF+Fni7EOKipmlbnRg2A7+5wX1PEspdfiMS8UYkiSuEMAJ/DwwB/zUC+/sFIAVIA04BTxBK4P7uY5s+KAntenwfmqYFhBD9wCGgEojcGOV9TpiSMNa/BWP9W8CUhO8bj/9YdshoQSmsRx26HZn9SfqRPXH3N+8SgZd+CdP7/lrvSKRNGIzyYgsQ9ZUDVSdK6b/RF9a20Uji5lVkMzU8h9+7+2oiTdPIPJpP+82Bh7e1vxn6/yLLHDtxgMvNt9f9npZXF9DdPszIQHz1v13P4ryDwoJ8Rnqm9A5FV/ZkuaJCkqT4ZE2yUF9XHbWBmD3to2ScTUdD2/UQz0hLTbfxXz71vXqHIe1TQkSn4EBnf0Yogfszmqb9yYMbhRB/RGhu1/8CfmyzHWia1kwokbuGEOLq/f9+JgKxRqwS978DDcATmqa5t9o4DL8APNqh+5vARzVNm35su7T7/y5usJ8Ht6dvdUBN006ud/v9Cl05nncD5gs/gDp0m0D7t2CLCqOtJP3AZzDWPUeg/SXcX/g5cG/0Y5XinqzE3dcMZ34Kw7mf1zsMaQuKrMQFdv3Stam03FRme8NPBGpqZHvvpefZ8Sz7cEeohYM9374qgfu4rltDPPPEKW7cucvy8soxU+22uHsTvBmX00O/d5hjZw7Q1zZOfmkmAx3jeocVU5k5dqbnZTWyJEnRVV1bSk5OFgF/kMYbjy+6XZ9BUTh8uJY7jWvquCKisDiH4sxC+q+Mx91rl9li5Bc+/X2YLbIlliRFghCiEngrMAD86WN3/wbwI8D3CyH+i6Zp224ZK4Q4DJwDRoGv7y7akF1nWoQQZwhV3/6hpmlXt9o+HJqm5WuaJoB84IOEKmlvCyG2m0x98Ky7Jy8XxANhTSXpo39J8q9ewfzsT4TXXNBkRaRkY37hZ7H+4GdRSk9gfuFnMdaFumMY699C0nf/0frHyypDZBRH8kuQokFW4u5rhpM/hrBl6R2GtAWDSf6dQnQLcV0Ly6RkpYS9vRqM3OmKLdWKOcnEwuRSxPaZHMYwvLZL/Zw5evjh51armazs9LgdYraRgD/IzaZ25t3zdHT2cvBsCbbU/TPc1Wgy0N4R320vJElKTAcOlnP+YgOF+fkMdk3SdLkdY5jnJEk2C/WHaqKWwD3WUItp3srA7Ym4S+AC/I+/+QRv+a4zeochSXvJgxat39I0bVU1haZpDuAyYCOUiN2JH73/719pmqZ/T9xH2ih0Ab8eiYAepWnaJPBlIcSt+8f4HHD4kU0elGqmPf7Y++yPbSdFiZJRjOWdv4qx/i14vvRfUcfX715hqHmSpI//LcJofnib6fDb12xnPPRWTGc+jP/GF8CaiunouzHUPYex7nm8L/4v/Jf+ap0gDLI/b7yQlbj7lykZkVaidxRSGGQ7hejTVA1hCP/7HKlKXKPZQFZJBkPtka0eVVLMW28E9Nwe5fyZY1y9cSc0+Cx+h3uH7XZjJ2cvHuHOmz0bvrEvrcnDnm1jedmDSTHReTuxEtePyq/MoHNC7ygkSdpLikrysFls9N0bo4+V16f6oxVcvRxeO73K8jLutQ5EPDYhBBfOH6frzdG4TN4C/Pwffi9Pv08uEJb0FafvHg5uNONqoxX3j9iwRet93YQqdWuBV7YTlBAiCfg+QmfCf7mdx25mt+0UUgh9MQAesX4V5meFEJ8lNPDskzs5iKZpg0KIduC4ECJb07SZ+3d1EuqZWwus+qHdTzBXAAEgvGZ00q4Zyk9h++Q3CNz+Ct5v/h+0hdGH94n0Iqwf+O1VCdzNWL7z9zG/5ecQaQU8+rtleecvYzr1naiT3agzAyi5lShZZaiT3Xj+WS7hjgsyibt/+V0Em/8Ww/GP6h2JtAU52Cz6qhpKGb41EPb2kUrilh0ppufmYET29UB+XT43L3WGta132YfiDb0OzM0tkZObwfkLR7l6JbylsvHq+uVWTp2tp+36wLr3J6WbuXktdBG7srYohpFF3shE5IYESZIkFZfk4XYEmBpe+9zicnpItSfjWFq9UrmoJI/CwlwWF5foujfIkeO13GuO7GsbQKo9mfryarrfHIvbBC7Aez76BBvkWyRJ2rmItWhdx4fuP+7rmqYN7+Dx69ptEtcLrFMSCYT6yDYAlwglW3fbaqHw/r+Pllp+G/gI8Hbgnx7b/ilCZc9vaJrm3eWxpW0QigHTye/AeOSdeL/1h/iv/j0E/ST94GdQcirD348QiPTCtbebkjAUHcZQdHjV7UpONXzxVyEgf9y6M8g+TftZ4D9/DmEvRql8Qe9QpE3Idgr3ReEN0cHzlSyNzm8rgQtgTkna1XE1oO58FR1Xe3e1n/WYkrZ3ythzZ4SLZ49z+XoznfcGycy0c/J0HTcbE3vO7Oz8Apl5djJzU+m5O7qqYVfAv3KKajYkduuFnKwsevsSt5JYkqT4UlyUz81r99a9LzPHTk/fABBqtTA3t4jRZGRhysXUcKg4rii/APeSL+JxlZTnk+xOof92fC89SM2wYbbK91eStIF7YVTc7tRuWrT+yP1//yJCsQC7TOLeH2L2w+vdJ4T4H4SSuH+nadpfPnK7CagC/Jqm9T5y+0FgQdO0icf2owD/k9C0uCuaps0/cve/Ab8HfFgI8SeapjXdf4wV+O372/z5br5GaeeEOQnru38Ny1t+Ds01h5IZ3SXWwpqCofoCwXuvRvU4UhiMNr0jkPSkqfhf/FHMP3xD9saNY7IS974ITzaru1DJwPWdLQCaX9rdRcj6i1W0X458AhdgeZvtitSgiklZOc2cm1vi5In6SIcVc0aTEUuOQtvdXvKLsigtL2Bh2onL4WFyfGUQWIrdqmOUu5Nks3D7zl29w5AkaY8wmUzcu7txBW13xzDnLx7H6/bTeqsHCD0P+bz+h9tMTcxFJbYCey4DvZNR2XckWaxmJkfmyC+R59WSfgQgRHyNm4pAKUZUWrQKIeqBC8AI8B87C219eqx5LgI6WNtP4u3AsBDiFSHEZ4QQ/1sI8deEelD8V2AC+MSjD9A0ben+bQbgNSHEXwohfh9oBs4TSvL+czS/GGlrwpIc9QTuA8Z1+utKOlDkleJ9b3mG4PX/q3cU0iYUWYkbcfUXq3acwM2uyKGndedL2GvPVkQtgQswN739AWlqQFtVt6BFOGEea0caqlH9Kl1toQrVidFZbly+S1fXAKPjE8xOrZzfN11vp+ZEEWkFSRw8XUpOUYZeYW+b0WTA6/NvvaEkSVIYDh+tweV0b3i/c2mZpssdDxO4AO7l6K+sPHXmUNxX4D4wM77Ad9b9Cq9+Zd22n5Ik7dyDXmG1G9xfc//f7U5TjPhAswfiqXHly8BngCzgg8AvAt8BzAG/CRzSNK398QdpmvYV4Gngjfvb/zTgB34e+LCW6O8YpG0xNbwfLFtPz5aiTPbElYBgx1f0DkHahBxsFlkHz1XSf23nSVRrtn3rjTZQebyE7qbI9wl8lBrc+nTKZDZisqxU33ZcG+DwoeqVDRK4lV9tfSltt/ro7w4/0X73di9TE/PcaepCsWpoYazEqz5SRPWRItKy9DuX8fsClJUmdk9fSZLiR8AXf4OnD9SXM9WyGNc9cB9nNBtJz07VOwxJ2mseLON+6/0uAA8JIVKBi4AbuBbuDu93Bvh+QgPNNmo/u2O77Ym7IU3T/gfwP9a5fYB1TuM1TbsL/OQOj3UZeOdOHivtLcJsw3jwOQJ3/l3vUPa5xDkhkqJoaQgt4EEYE3dZ8V4m2yk8EJlrvQvDs1tvtImRwZ0tFS06kMfwvQnUYGSGom0k4A9sev+hJyp47UoTAOfOH2WwaYKAP0hychKnTx/Cnmbj8pXmqMYYTWPD0xgMCsEdfp+H+iY488Rh7lzu2fBXLrswnba7oQsBRpOBwpJcJofn1984ijxuHxUFpQwOjW69sSRJ0ibOX2yg6fKaOixdWZPMqBMCjyuxVhx890+9QMMTGxULSlJs7LUSEE3TeoUQ3wLeSigf+SeP3P2bQDLwF5qmuWDj9rCP+S4gA3gxkgPNHohaEleS9GIoOS6TuHqTk1OlB2RrjbglB5uFmIwG6s9VIBSBEAJN1Qj6A6Gl/xoENOi9vfn5lxDgmnNtus1mkjOT6d1BEjerOIPFaSc+T/TfiObkpzMzvnE7sPkxB8eO1XLnThfXbrRgtydTWJDLyNgkY6PTYVWhxjOnw82BujK623d+Ln7j8l0OHa9ktHsWt3PtUuGZsQWOnzrI3PwCQ30T5Jdl6pLEBfAubJ60lyRJ2ozFauFAbUXcJXABTjTU0/PmuN5hbEtquo23ffic3mFI0l71E8AV4I+FEM8Tav96FniWUBuF//bItg/aww4C5Rvs78FAs89EI1iZxJX2HOORt+P9j/8NqnwDoh+ZxJUAezFCkYnCeKUY9tq19J3RgiqDTf0b3m+ymsgoTGN+bOMEZl5ZJiXFdoxGARrMzS0z1B7+oJT04kwYdW4r7tSsZDRNw7GL5HG4NE1jfHjzJPNY3wwAZ88e5nrTXZaWXCwtbfx9TTQCQSCw+2rntuY+DjdU0XVrZN1lvB1NAxRWZgPQ1TGEEBGfvReWvo4xCopyGR+fiv3BJUlKeCdO1NF0pUPvMNYwGg1Md26/x7ueMnPt/EPTb8pWCpIUJfercU8Bv0VoVtc7gXHgj4Hf1DQt7EoLIUQd8ARRGGj2gHwHJ+05SmYp1u/8Pb3D2N9kT1wJEPZSvUOQNqHInrj3bZ4h83v85BY82q927fZZOSnMNPcy0dTDxM0emJ7DYA7/+6tYzWFvC2C2mUjNTGF2dGFbj9upvNpcFmYcYW07dGsKW/Lea6Fy6kId/V2RaS9w93Yvh86Wk1+6/pTxB4OfF+YcHLlQqVsV84GKKl2OK0mSvkrLCzl0uJr0jJ31ai8pzae5sTvCUUXGiVP1LE5F/+JnJH3op16QCVwpbihCi6uPSNE0bVjTtI9pmlagaZpZ07QyTdN+9vEErqZpA5qmCU3TyjfYT8f9+0siPdDsAVmJK+1JptMfItB7lcDNf9M7lP1JJnElADWxeo3tN7In7n1hnP+N3Bmm+kQpSWZBcHQSe3ke194cAKCwIotUq2D5ke0DXj+aGv6KhKXF9ad2G80K5y5WEHS6ud02jWfZj2IQFNXk0XdnJOz974Y9LxW/Jfzn9IA/SFlNPh2dA9ELKto0OH6mFpMpdJoshKClsWeLB23P7RudnLl4mImhUC9le2YyWXlp2LNsdHUMPNyu8Uo7py8couXKzofm7Vhid8CITxpUlZUwt7jI/GJiVQNKe1/twTIUzUhv5wjjzGI0Gjh56jBmiwl/wM/E2DTjo9NU15aSmZUBQDAYoKO9F8dS6FUwJTUJm8VGwK9PK5jNZGTZmbkX3gXJeJKelaJ3CJIkxRGZxJX2LMsLP0vg9pdBjb+JqHufTOJKoE23o6kBhCJfauLRXuuJm5xho+pANpqqoWmgqSqaqmFKttJyuW/DJelamGvVZ7rGqT5RwtySG/ftPk6fLsbv9LA4PM3k9PSqbdOKsxhrD2/QmRCCoZ7pNbdn5adSXWBjvOn+oCujFQ0/1SfL6bwRozYFAvqm5vAPb29JvdmyvcrieFNUmkPLjcgmbdejPmjPIMDlczF9b/3fmdnZBQxGhWAE2jlshxbBChcJ7KnJVKsVuAe9HDuTz2uNjXqHJEnk5WdRWVXKzOQC/ffGVt0XCARpaVpdUatgou/eOH2s9JQ1mY2cOn0Eo9nAzPgCfd3xNxRRCEF1fhmDLYnVIqa0Np+iyly9w5AkKY7Id9bSnqVklyMyitFmB/UOZf+Rg80kAL8Lba4XkX1A70ikdey1JK7RZGCsef3n+6MXKrlzuY/d9Ov2e/x0XOkjJTuVktpcpm/1IDYoVdSCKpmFaczd76OrWIzYCtJxDsys2TazLIvxjtVJ3OpD+SQ5Hcz0PNJXVwjqL1TRHsOKTE3VCAR2cCE0wXN/BcU5jA+Fl4TfjSWnkyPnK0FA09WNh//0dY1SVJZLUXEuS7PLDHaOo6rR/yaPTYff11mCtNQUFpecD59mTh4+hMfnpa0rdEEgPzsHd19ooN3NjpWft8Vkxuv3xTxeaf+yJVupP1xN0KfS1txH08Tuho/5fQHuNHZFKLroOHv+KH1vTugdRtjMFiO/9tmP89wHT6EosjhGig+C+Jt8E2/xxIJM4kp7munIO/G99ud6h7H/6DGFRZKkbRF77GJLMBDAtMF9ozf7OPpkNS1vrk6Amq2mDZ+uDCYDQf/aBKZzxknHjJPac1UsNK9frbkwNEPGgVLmxhZJrc2jdXCWhdZhzhRn4VtcXrWtLSsFWEninrxYjqNjmOXHjl3VUELza7F9kyyEwJZqxbW0fruHjUxORz8BGk1aDBKkAF1tQ2FvOzo4xehgqIKstDKfyd6FKEW1wuVKrL6R0Xb0QC0mk4nZxQUGhldXGtbXVEGfgScuFjK7PE+mIZ2exhGKa/PIOpVO0nISQ20rCaQnq06hmBQWRh3MjS/hKnYyODL2+CElaVvsaSl4vX68Hu+G2xw6WsNQ9wR3rsdnz9poyMiyM9Yc9lwiXT3zvhO84yMXKKrMobK+SO9wJEmKQzKJK+1pxiPvkElcXcR2yacUx2Rf3LgllD2WxPVvnnhbr2rW5/FvuHDAaDGum8R9oOtaPwdPlDLXvn4ibmHaiTUnhVvdkzgWQonb+fQkUj0+VG9gJa77ASgGwcWnKhlrWltpW9xQzp02fZanJiVbtpXETU5LYmB8JKFLI2YmF/QOYVNDfROkmFPw+wJbb7wLRQX5jI0l1tLjaDlxqA5ft4bD4yEzPRNfno+xyWmsFgsWi5kCJY9h/yTdl4YBmMNJ5eEipkcWWO52A4ur9tffvDphu+hwxupLkfYos8WM3ZbKnHuJo0crSLJZEEKgaRqKQWFhYQmbzUrX3WE87v1V+V1fXU33lfhr8fCoykNFvOejT/L+jz+FJSmxWxJJkhRdMokr7WlKjpysrAtZiSs94JoEDusdhbSOvdBOobA6h+wCeyhBq2qM3uzbcNvx2/0cfaKSjqYh/J6V5Jdi2GCZYhhPY6PDS9iTrfhdnjX35VRlc699JYEL0NkyzNOnKnB0T2KxmSmoycWaasWeYeNQTfq6Cdy8g4WMtI4gzElbBxRhlhQLExOLW2/4iMLKbAZaYjN0LVqyctMY7o/vVgIlNbn0tUW3ctNCUujvIIET8rtVVVZCRVIpQ60rVbTOhWXyyaf+YC0jnVOobpXhhdW/L4fOVdF9czDsPsZP1JxEC2hoyRr/cfn1iH4N0t5jMpmwpyWjaRqappFfkA1BhZ57oYsIHS0x6pueIKa642/I2qPOv/Uw/+sffxyrzaJ3KJK0JUX2y9edTOJKe5s1FSWnCnVah6nO+5p8cpdCNHd8nzjvZwZj4vdYy8xLZawxvAFUakBlrKmXgswUMqrKGB2YZWZ4YcPtw6lUdkw7yD1Vjq+192FFryE/k8X0VN58s3dVAvehDBsHz5Yz1TnGdNswaYUZlKcbmOpYm5DLrMhhdniOoD+IYo19Ji33UD4Dby5s6zHmlMQ/tTQY4/8Cx7LXTXZhOjNjC1E7RltjP0eOHKC1rTNqx4h3B3Or6L4+vOZ258IyzvX+voGjT9Rw91LPtlrW9DaGLnwUVufsLFBp3zh99gjDfVPMTi88vK1nLr6rTPWUnZPO4sT6f6vx4IXvOsOvf/bjmMyJ/9opSVJsyGcLaU8TQmB+/qfxfOGTeoeyz+zjsh1pFW2yBa3qbagj1xCmJETJBYQIJQ81TUPt+QZq30sYz34SkV6mc7T7y4YVqAmi4kgRwrf9dh3Lc06W50KJ30MnizFa1z8VUoMqilFB3aKSrrdpgIMXapi71Y1aX8a33uwl4B9fs11+SSZH8lPx3Orj0ZTQ4tj6FzpS8+y4Fz14nd6H8cRS0fEiGi9tP3nn9m/cizERHD1Rw83LHXqHsaXB3nGSU6x8zwsncAQCeP0B2nvHGZ2I7IWzdHtaRPcXD04cqqcwNQ+/M4BjdhmTxYhiECSlW1nCwfU7d/AHAhgNBmaHwq9EtySZqThUSNvl3h33HNc0jTNHj5CXkg0BgWbSULUgilCYds5x/U7LjvYrJYZUu420tFRGhldXdtcfqSbNnsrinJPm6/E9QCzeBIMqBgW0OOz09oFPPMPP/9H3Ykjw8zFJkmJLJnGlPc/Y8AGUS3+FOtKqdyj7iKzElUKC1z9NsPFPQQ0tXxe5R1DKngZTEurQm2gj1wDwLw5h/tAX9Qx130n0JG5qqomxW7tbMjrZNkLZ+VqK6goQQiCU0LCzFDOgBkEoBBQjDoeX6cE53ItuzMlmfK7V/QRNQqPgyYP81b/eWXOMlLQk0jNTqDGoePrC6y9qTU1CMZtxTqwMCFNj2KYmuzKb1tZBtB0c02JM7F5+Ltf2hrjpyeX0sNw3g3cuNIDsiMnEM882MO7xcPlmN94I9Mw1EP9VydtRmJdDoA+6XBsPlTucdhBbqoXFWRdz40th7Tc9NxV7ejLdN8MfVree8d4ZABysbUlSfCB3V/uW4tfps0cYHZhmenIez9ICuVk5pKQmYUtJYn5mie7WtdXgUnjm55Y4c6ycgdvx1SLnB3/pXfzIb7x/zw2ZlfY4oSHirZ1CvMUTAzKJK+15QlEwnflevCO/qnco+8j+ezKVNqGuJBK0qVaCU2svqGh9r6B5FhHWvVf1Fa8UJbGTuCgrFd3ew+n4DRrJTg2lz7Gt3ZgJkDQysOo215ptoFADkaaA6kXJsWBKT0WxmADwD44wvGzm7JlKrt9Y3Zf3/PESgiOz+OfDW85pMBtJLchgonN1Na8Swzd6bqOG170/hxL2do5QVlEQ9z1xH/CWpMD9JG7QH2Tq9hAG4B0lhdxwORjbZWWuKuKwfG0XTpQfouvq5gkx16Ib12L4yfzimlzcS15Gu6M7BG55cW3vbSkxmC1mDtaVY7FY8PsDtNzuRNVUrEkWjp+oo6Wxe9WgwvnZJeZnw7uAIG3Na4ivv52f+b0P8eGffqveYUiSlKBkElfaF0wN78d/7R9Qx9r0DkWSpHVpBO98DuPZn9Y7kH1DSfCeuJoGZJjpzvHx+puvAfChZ59iu5cBNis2VQwCo82Kz+EO9bxVQwkt1ePFO7HSNiD5SC2uK4OYln1cvFDN5SsrfXq1OSf+x3pnJmWlEvD58Tsef2MpyKsrYrh5bTVfOD16IyG/Lo/bdwZ2/PjeocSvGMstzEiYJG6G0czMOre7Zl2cOF6y+yTuDtcg52ZmcKC8DE2D7OQ0LJh4ubWR2cXtDcqLNNdMZJM5B06WM9Qxji8GFz3mJx2UFOYzPDax9cY6MygK5xqOkZuVxfKIlzf7G1l27+x7X3eoCqPRwOzsAkXF+RgNBjRVY3HeGWqblmSg+da9CH8FkXP67BEGu8fpaB58eNvR4wex2kwM900lRPuWRHfndhfHauoY757TNQ5FEfzKn/0g7/6BJ3SNQ5KkxCaTuNK+IKwp2H76a7j+8AW0GTmxVZLiUfDVX0Ob6cD4zG8ikuVwl2gzmBNvmbTZamK0xsv49AyNHaNMTc3h611JngR2kHDabN2AGtTwOdyYUqwIIQi4vev2yFXv93n2e/zQPsZ7XjjEv78cumjon3Ou2T6YnclYzzQHGqpRl1cq/lLsVgYfq+SFUAJ3KcxK3l1LNu34oVVHi7nWtralRKKJYeeKqEpDobggk9QUKzarmTvtQwS20VvZnpFMT//Ajo79dHkDIy2havJJQhWqzx05wb/efvXhNrVlpRgMCh19OzvGdhkNBiYHI5fEOXqxmrYra/9eo0XTNAo8+Ry7UAdCw6f6sQTNBDwqweQAilBY9rnx+LwsOBx07fBntxuKUHjrxYtYjBau3r7DjZvtVJQWcfTAAa41h//ckGpPpq6+ioA/SOvNlYti0yPrXwQoLiwkJdXGstNNdn46qhakva0Pn9e37vbRZraYOXq8lqW55XV72LY1y4HLsZacadX1+Cazkd/6ux/h6fed0DUOSdoNAcRbCch+bEgik7jSviGMZoz1b8H/xmf0DmXvi8fpAVJCUFs/j1pwAsOJH9Y7lD0vESchB7Qgl643b3w/O3juCSNh53duXkGmPLaT8aZ+3vN8Pc29UwiC4FlJNKcfKOLO/b6Zt99ceSN/7MkqBm+s/8ZeMSgEA8GtA42AyQ0GrYXDa4yvJas7ooFnWZ/Ez06MLjvJOVWMp2Man2v1ULmp5mHqEOD2Al6+88QBvtk9yMJCeBcE0sus3GnZ2YXvxql7VKXls/xIW4KR1gne/+TTfOXN1zlYUU7+XBp59Tk7TuIerCjnWEE1i5qL/7x2bcseznk5WQTGIvN3dCTGCdwHHLMuHJcfb/iylsVk5dThwzTdvRuDqEJOHTlESW4hTa1tTEyt9PPuHxrl0IGnyExPY3HJQVZGOtOz82gbPPmWlhVAQOH2tfAHK06OzTJJ6Jjjo6Ha9Jr6Mqamp5mZXtj5F7UD5y4co/PuEHeud8f0uNLmvE79WgTZUiz87j//FKeerdMtBkmS9o54S6RLUlSZz30EkZypdxiSJG1AZB9EOfIRvcPYF4wJmMTdqkIyoO6gEjcSZZfBtQOkxm8OUOjykl9XvKrqeda5Nol06HwFMzc3rswK+oNU1RfsPs4t2PNSGRtYb3H+1g6eLuP2nfCTLvHq9MVDtDfHPjm3U2/e7uQfX7nOLWXrXtCz3VO868SBsPZbUpXLnZadL/MeGBnjLgMUnM9fdfv0jRnec/FJqtR8vC4fs91zHKgoe3i/xWTmg08+y4dOP893PfX8qt7d5cWFfFfDs7z9/HmK8nKpEYUM3RhlsXGB73riuS1jOlheteOv53FCCGxpSRHbX6QF/EFMk+aYjSh496lnSTYn8+Irb6xK4D7w4rfeIDMlg/rKGpJMNl545sKabUrLCjh77hjTY0sPE7G70d0+hHspwLkLx3a9r3AIBOfOH+fmlXs4l2K0ckIK2/SQPq1c7JnJ/PHX/4tM4EqSFDGJ9w5OknZByakk6aN/xfKff2do8rgkSXFFFJxCmOL3jfFeYjAlXjsF1b95kjawg+d1Vd19lkPbYMlu0B+k52ovuVW5GNQAgaBGW+fqXqtVx4tZujvAVnPLcrOTiGZdV25NDgMTO1tqLoRgcHoswhHF3ukL9QnXn9Lj3V512UzLyKb3V9UXseifo3ts979tk7NzuAOrq7PVoMrM9ZUEnWvBTVEwk9qLpUwszlFuzmXk6krP12dPneSVG40AnC2pZ6hxFIBSspiZXakaH70xwYVjR7lyp2XV8axmM0+cOInRbaL/auR+R1sudVN9tIT+1tGI7TPSFqYc1FSU0z0wEPVjuZRlJifXJm8fEjA4sjKscWximrPnjiGEwOf14/MF6GobZDyC7S4AfF4/t652cv5iA0E1iIKCz+cnEPTTcbcPf2DlAlySzcLxhnqGhsYYHd5eT+yikjxys7O4eTWxnj/2k9LjOXS9Gdu/15zCDP7vv/8cFXWFMT2uJEWTIvZIz6kEJpO40r5jKD+Fsf6tBO5+Q+9QJEl6jDp8Cc3vloncGEjIwWZbJFx9gbUVsVuJxEAibYsK4KneKRSTQs7xSuhcSTwVH8gjMDyJFkYiebZjlORUK641w9B2r/BwAR3dYyzvcN8Hz5TxRtPNCEcVIxqcPHcQl8PDzcvxOxxpK6MTczx75gTTbZsnKtOKMmBmesP7nUtuHOoyZaXFaJrKwMAIXt/O/kbqKstZurW05XZuhwf3dQ9GYITVQ7uyLKFRhccO1DB8c+OvTQ2qGHsU3vfEU9wZ6MHpXOa5oyeZHVlm6MrUjuLfii1V3x6b4aiwFrOYtcTs/ALBHaxUALAlWXn+8HmESeBWPWiahsVoBiCoqbT1d2NPSeFqU8sWe1rt1rXY/L1pmkbT5fY1t5vMFqoPlpOelcpA/zDlFSU0XW4nPTOV8xcbWFhYxO8PkJOTxd1bPWRmp5GZbcecZGJ6apa8vGwEAr8/yN1bPUwNL8Tk65F25tKVWzzx1Am6L43GpOtbcVUun37x5ykoy47+wSRJ2ldkElfal4zH3kWg8zXwu7fcVtqBvTIVRoq9hQGCr/8mxhd+N6qHUWe7CLz0S7A4hCh/GsPJH0PJDm+Z8V4htir9jENCCIxGA4EN+sMGNY3tjjiY6JogP8NGYDfLX7cYFqVpkFJdROsbKwN6CqpysDgdeD3hJci8Ti9HTlZy7fXID8SZWHDsOIErhGBoenzrDWOooqIQW1IS3T1D+LZIQJ6+WJ/QydsH/IEg/9Zylw8erGO2e/0qQqPFSKd/85+z2WKitqCS3uZxFEVwtuEkk/OTTIxPkW63Mzga3s9aCEGNUsR0cHeVlXMd83zgyWfwDLhZUDdPCAe8AaauTVNAGpDG8JUxyk+XMdo/g7qNgW7hUAwKM6M77x8dDSUXC1BQGLy8Um043DFJFlnkmXIpO1FA82g7I+Oh34/8nGxO1R5Gc4FmU2nqvMvUzNzqp1ANnm+4gGfWR69zCIvJTFlBIQIFzQ2Lww4aKutpamnfcZJYL35fgJ57ww8/nxkLJXoX5hyrkr6DXaHv19jwNGPDKxdAhns2vhgixadLl2+RnZvOwZrKqFblHmwo4w++/LNk5tqjdgxJkvYvmcSV9iXjsfeivPzHqJNrJ8ZKkqSvYOvnUU58AiUzcv0LHxf44veizYWWC2vzvai3/xql9t0oxz6KUnwWYdn7J96JmMQFMJqMGydxVRXYXpsI1R8kpaqChds77+cqVBXFIFCD61/AKjxZyZ3LK31Wa06W4h8YDzuB+0Bgg/3vRuGxQm427iwxrCiCugvlvHa1KcJR7YwiFJ4408DdK30s4qYoK58xMYl3g3YXh45V0nYrcfrfbsXhdPPm5AjHbMn41xnOlnakiG+8fIu0NBvvbqjFv+BmedZJWnUOX7/dxcLCMsO9kwzf/3U4er6KobEhTmbVkuO3kZWcwSDhJXEPVVUyPbD7pfGuhWVcV7d3gaX6XAWqFqrAHB+dx2g04ItwElcNqkwMzVJeX8Rgu/6tRDJK7Fy9HBpidvHMEQZvrI4p4A/S2zhCKnYuFpSApjE3sUTv1EoiK4ssDpZUM2acpGdgEIOi8I4TTzPYNI6vwMfwaCiZ2TMwvGrfyFymlEBmphe4NH2LixdO0H0l8oncU8/W8b+/8JMkJ0ClviTtRGK+e9hbZBJX2p/UIJrXqXcUkiStx7tE4Fs/j/nDX43aIQwXfoHANz8JgZVqfLXrRdSuF0Of2ItRCk9huPBLKLmHohaHnoQhAdspAEbDxknanQ4p67o2QNXhEhzdw1tv/AiDxUhmZT6KonCizs6saqG/ffXS7dT8dDpurez32JNVzNzs3bIH7uOKTlZw+Y3+7T0oDN5d9DaLVQLXajFRWZJPemoKpfYMhCfIcpKRea+bxWUXFrMJi9GMZ8HH3SsrSdnFWSeVh4rouLf2+xbqf5v4FbiP6xue4uSzp/HfWptYFIsevvf5Ezi6JplqXvmdnLo9zFvLipk/ZOTNpu6HfXbVoEpDeS2j93vUGq0rbxsuHDtKricNS6YFFFhSXXzj6tWH92ekphLAG60vc0MGk4Hrb0RvwJ412UJxTS4j3VN4XF5EHPQG1NAw5Zvh/o/0SuNdGs7UYjNZ8KsBFMWA4ofFEQcLYw7mxjce8DQ9PI89NZV3n3qW+eElAu4gSgX0dm7eS1mSEs2N2y0cqT/ISHvkrkI8/x2n+PW//CHMFlPE9ilJkvQ4mcSV9iVhMGL78X/D9QfPy5YKUaH/mxopsWmDb6DOdqFk1UZl/4bDHybY+o9og6+vv8HSCOrSCGr3f2B8919gqPtgVOLQkyERe+ICRmPkk7hoGgbTxqdEQoSS3klZdoI+P555FwB5R8qZaFppkWACzp4txWu0Mtgzy/ykk+TiLIIjDkwWI4dOFDNzK7wErhCCglMVjIw4WJx30f965CtGsyuzab2xvf2aLEaqTxex4HTy2pWmqJdkPHfmCOYhL+5RN+BkQnHhzk+mu2tiy8cCpKTY1tymKArDfdHpk7qVhhMHsRosKCbB5SvNUTnGK7c6eGdJBYsj86v+JmY2aLMAMD8YGkr1XEYWqYcLee3eAIX2NEYeWZrvnHaRbk9hYclJkTGbkd5xuF+1W3q6CIB0ewqLDhedg4McMBcR8MV2iGxOaSZTHdFbJq2pGkvTLhSg/mwlhhhcDEspMWHKV7GbciCghHpoayBMgqCiMj45y63GlcS1pmncurF+IrusqoDi/GyCyypGq4GgohJcDDJ2d4qys4U4/G5SLTYCqkr2sUzudvaQk5vB4boDLM65KK7KZmFxicmJWeZmN04GS1K88/sCDMwOYyQyFbNPvvs4v/E3n9j0HEWSJCkSZBJX2reUzBLMT3wc36t/qncoe44mMhEFTz12I4Te7T94Q/no/x/x4OaHiYFHt19zJJhvBc/C7gKW4o+mojb/LcrzvxP5XWsqwZd/ZeME7qOCPgL//iMIezFK0ZmIx6InRdl7SdygGiSUSt2cPSeFrJIMhACrRcHuncGW4WdhnW2LTtfgHJtDMRlwTS4QcPvIP1qOYjKy0Lc2kTjfPgRAjhAceKqKxqv9NDxZhWdqkZmWgS0iCz35pWSn4k9L4fKrke9/+yifZfsZ2NozJaHkLUQ9gVtVVgD3HLj9K4lATdXIykihO8x9JJkta247fLyKuzej+73diFWx0HY9VBlcVVtMb0/kKxznFp38w2IrWempvDW/BMdE+Mk2v8fPXNMgbz1TTeNrq79HS9NOnqo4jrnCyMidx9oqCLBaLDyZfRTbIRsvdTSSlmdndji2fWNTc1KhI3r7V1WV/PIsAr40upoGwxpKuFP2CjMz9kG+duMK9MBbzryPwTuLpGSYySqxYjCqaF6F8dHwV5YN9o4z2Lu2JYYQgpHrs+s+Zmpg5fdneiL08zx+voZrs83b+4IkKc7MzSySG4Ek7ls+dIZf/+zHZQJX2vMEoMTBCpRH7cf2DjKJK+1rhoPPgEziRpz/XnPMjqUUVWHM9qEZshDCA55psGSElsnPRvGdnBR1mis6lXJqzzcJ3vyLbTzAj/9LH8H8iUaENT0qMelB2YOVuGoYCZWD58pYvNtLhjkVa/+dlcd6MgCNlPxMUgszUe5X2E0296P6A6v2MbVlMpZQz8nbPZx7+iBub4BAmpGUQhtGiwmDyYhiMoQ+DAoIgWtqEdfUItlHyrjaPMXiQHT7bBYeLeRm0/YTmaNTsalgVRSFE2mFTK1zvHRD+KevrtnVS/oPHa+k7170KjW34npkgFxWaga92siO34EYFIWLDbVUGpNpX17AoCjc7R3B4QytMJpdcGA5Yd9WEveBicZe0nJSWZx2rLp9un/9RN9w0xjP5BxjZmgehuY5QCGzTj0Gf0X+zWVSigW3M/R75PcGaLkcuoRw9Ika2i5H/mKALdfIQsEwX7lxZdXthqQgledsXGp6HWej6+Htb3/yPfgdguGOzQe/bSbcVQxpmSmIpCDXr93ZemNJSgAaGmIXaaDv/LHn+OQffDhhL4xLkpR4ZBJX2teU7Aq9Q5B2SR3tJTS+5dFelqE3mSLrAKb8PNBcoJhBM6H6Q8NNlNlLsQ5V2ial4rkdP1bzL+P7s8MIexFKzbsxnPhhhC0rdKdjBwkc1xTBK3+A8bnf3nFM8SZRk7iGTXriCiX0RkwISMlMxmgxogZVFidDyY2a06EErhZQUR+bpO6bmafk2BHmRheZbh1ck7jdicwjlQw2DRIIc4BZRmUe//naIJvlUxSTQkZpOsKgoBgVFIOCMIjQh6KEEoJCoN2vlNBYSWslWSz4PX4CAZWOu9vr/wtgMhsZGg6vjcFuvffJ00zdWJvILjpWwvWO8GPvbx+jqraE3p5hTl+op/feGMsuz6pt0jPs1NaUcuP63aiXdKiBld+7ezcHOXvhCNevtWK1mvF41h/A9ri8rDSeOXYAw7iLpZ4FZnCQe/++Z4xZpBxIxZJuI+gNMHNz+z9nADQors5ek8TdcHNVY3EyvG2jofp8BUuLbm5ei1xSVQhBXkkm85NLVB4qJinFDIrAYFAI+IP4vAGqjhfT2xyhamqhkXZG8PKtr+MYXltd+83XX1z3Yd988985c+oUkBKZODahqRqTYzNRP44kJYKP/9f38EP/7b0JOyhWkqTEJJO40r6m2PNQio6gjrbqHYoUBdrsOL7ZtcsGTQeP6RCNtB1K7XtQDn/Pjh8vTDaMb/0DAi/9EsFLv0Ow5XOYP/JNRFoJiJ0tdws2/T8MJ34Ikb43Lv7EopdjNKxX7VKQmcFHz54mw6VCTQDvvAOfcx7uF6tlV2QghMDRutK/dr1l0CnJMDqz82q2h/vWIOvkAQauby+hJNJT0bTNh6yYq+3cDKcSeB0N52ppv7rz4WgFFVmM9WzcVzVSDlaWsNC49rkbQon6+bntDSZN0Ww8efYEbZf6MRgN1NaW0tU19PD+2ppSuq4Nc/70MRSjgqaoXLvWiqqpm+x1+7Ky0hjtW/3z7bs9xsGyKsb6pzl4soLm25sP5bLbkzlysIbl1gm0dfrNapqGY2IJx8Tuf49N/vAuPuip8lQZHoeHW1d78ft2f+HlUZqmMT/t4MDp8qhU3D6QlG3EWhXkzshtet7YWe/r7t4ecjge2cDuKyjJpqA0k2WPm6nJWZCtcKU9JLMglfnx7Q+7/uQffJgP/cQLUYhIkuJbPAz03O9kElfa9wxlJ2QSd58Rxsi+MZciy3DyxzA8+1thVTZomkbw5l8gMqpQyp5EGFd6mxnqPohS+2600RsEb36GwLf/G6YPfA515NrOAlP9BC79PqZ3//nOHh9nlATt3faTx09DtQdUFYIaBIJ4JhYI3hllozpA1/j8wyrdB7xOL8mPbRfobKfmXB3d13ZXWZfZULvtBC6Af52npqR0K0mZyRhMCkIRjCwu7Diu3VYLpWQm7erx4TpaWsLk+PoVpD7D9r+G4e4pHjTRDQZUMlPSOX8unc6uQeoPVjI1M4vJYqSjceDhY04creN2ewdBNXKvF3UHKmm5tPr3wuv2M9YfSuz235rg/IVjNN64SyC4kqBNS0/lSH017iUvfl+Qgf5psvPt5Ew60LyRTVw+yjEyhxBi5wMDoyyzMI2ergmKyrMjnsB9wOv20Xq5hwMnywj4g9hSrXQ2DkRkYJtiBPPJZb5x6T9RR3f3e9Zw6AQjjZE/t0lOTSKvNIOZuXm6Ogb2Z/NBaU/LrrYzN+4Iu6WCwaDw3z7zMd7+PeejHJkkSdL6ZBJX2veMx96D/8rf6R2GFEt+WUYSt4SC4elfRxjXDiNajzZyjeDLvwyA8a1/iOHED6/encEMBScwnPox/F/+fgKXfx+1/d92HJ7a9gW0J35pT1TjGkyJmcQVk0s4R7a/nPfxytuFgWlyj1cR6F9JqmmBIMGOuxx68jBtbw6zk4xFakU+g407q6Ybn1zpc4mAorMlNDZ24ZuOTB/a3a74nFhcvx9qpGmb9DWdmtv9kv17TYMP/3/3Uh8paTaC/tVJuZ6WEc5fOMbla81omhZKZu6i36ot2UrPnc1buWiaRtvlftItaZiSTA+Tp95F35rk79TIPIcaysgeW1y3IjcSfEvL5JRkMjU0F5X971ZKQRrdV6eZn4luGwdN07jXNPDw84KKbIQGk4M7+74IA6SdVLjRd5mRN3bf+/pt595Hf2N0zmtcDjfNl7s5eKyMrJx0ZmcWonIcSdLL5Su3OXi0ArvBTv/t8U2T7Vc1/AABAABJREFUuWarid/++x/liXcdj12AkiRJj0nMtZSSFEFKbpXeIUgxpYEz8tPApQjRVPxf/F401+ZLyh9u7lpZ2h3sehEtEBo+oy2NELjx/+H7zCl8/7cc/9d/AqwZBC/9Lmi7SHhoKsGmz+z88XHEkKA9cZUItoGYXlw/ke1uucuRCwUoxu1nPbWkx+t7w2NOsdLZFuo3W3iqiECRlctvtuELs59uWHaZxc1KS4tQICvKinP5YN1xjI/8XA0bvIkuOlZCa8vQuvfthnNxed2heHev9HGospozDUd44kLDro7RcPwgyw7P1hsCPm8A15KbZYeHZYeHYHD9Csu224OM56RgOVaCMcO2q/g2klucHpX9RsL4iD7J5fH+GTQR/jAws10hvc5M+hkF0xkHrclv8KU3/5WR0d0ncI8dOUL/7ehemDaaDMwuzMkErrRn3Wvr50bLHQwlQYrOZlBzoQjx2KmGLdXKp776SZnAlfY9BS2uPvYjWYkr7XvClolIyUFzhpc0khKbSM4AT+STAFLkaIOv4/+Ht2F8z2cRGRVo0+2IghMI09okhXLgfSjHP4ra9i8Q8OL/0kcQpmS05WlQ/WiaCmoAFkJ9QEXRWbTR67uKL3jvyxhf+N+72kc8SNhK3AgmcReHZ8nYIOfqarvHoZNVtN9aWFOluZHk4hzG7gxuveE6hBBkVWQxFVjmytWOHe1jS7s81zUrpsjE8YiGqnJmb4xz7tgBLt++xzsunGDy5voVq8IS+9PWkZ5QFXR2QTpFxbmMjmy/KrqqpoT2qwMRjiyk6+4IXUDdsVJy5pcjvv/AeGyqr3diZkK/VTXj/TNUHS5ioG393s0AiknAsTm+efnbEIVTTKvVQpKzBDeR/7k/KuAPsjTp4fyFBgYHRxgblefL0t40MTbLxFjoOe/chaP0XppAIEjPTuFTX/05DjSU6RyhJEmSrMSVJISiYKi+oHcYUowoWblbbyTpTpvvxf+55/B9ugL/P76LwDc/ue52QggMT/46ouQi2sgVtL6XUDu/gjZ8GW30Bsz3rq68VSKQuHSOo3n1m8IeKYYE7YkbThI3+UAh6rEizPbNqxPVDSocH3Dd66X+TE5YcWkaGDJ2XqlqSrYQSDMw3BeZ1gmPq6orovORnq87EY16h8D9n4Gl1827Sg7iujWFGlj5ueRW52JNDfW69gaj0zYgHDPjC6izcOHC8W0/Nic7g2Agur3YCzJSorJfz4Jr6410UNFQQiDMiyvREOovvX7FuGKGzOMmZiq6ePnyt6NyfLPZzDOn3sbcWHQTuA94PX5uX+7Cu6hRUpofk2NKkp6uXW2h9nwxecWZ/NlLvywTuJIkxQ1ZiStJgJJbrXcIUowoybaHE+ulxKG2/TMBazoi7xgiqxaRd+ThEDMlORvD0Y8Q6HspjD1FYCqLMECYPXvjWaJW4q5Z47iOr00OUJSWRoPNAkubJDk0DQ2B2CQ96WrrBJG2YQYz63A5QQSKychgU/+WsW3EWJDNUt/k1hvuQM3hEmYGF/DvsndqkMgmzcqKczGMh1qgBHxBHNOrJ4QXnynntWtd5OWlcbCimInNfpYx4HZ56b89dv83JvyU9uzsQvSCus+ARjRGewW9AazJZjwuXxT2DtXnKxhrn2B50R3W9gajQuXpcm5c6opKPOupPleAmuq93ytTw6t6mXKOc3mylZxjOaQnZWJWk0CoONQFrty+iut69H5Xn3vyORZ7TfQ1LkXtGBtxOdxUH6lmeGgi9JwoB51Je5jRLvjzV36Z/JIsvUORpLix2/kK0u7JJK4kAcKaqncIUowIQ3SroaToCd78i4f/N33Pi4iyJx9+rlS9DQwWCHo334kagSSUxR4amJbgItlbNpaEsvXZY0VWFoXJKbhbNl7q/ICxoIDg+Ca9KTUNg9Fwv6XC6qxFek0RM4OzeBZc5J+oQtvF08vdjhmcvvB6pm7X/JiD5aXd7Tu/LIubd9ojFBHUlBdRp2SwMLaw7v1FZ8r5xrfvAjDQP81Af3ws4c4pymC8e2pbyavR0SmMRPc5497QLNEat1h1tIi2qzu/QLERk8VI8/U+rDYzdecqGGoZxbu8frI4ryKb1Hw7w4PTXHv9XsRj2UjlW7L4+5f+Ep9v/bg66Y7KcQ0GA0+dfwqTwcJrV7/98PgXz11g5IYKbPFaF0UjPdNcuNDAYPckpTV5XL1yW7dYJCla6o9V8vuf+SRZOel6hyJJkrSKTOJKEqDkVOodghQrgdhXrkiRZXjuf6GUPYmmaWjzfYi0EoTJhrAXoc33bf7g4O6ryURWza73EQ/ivxJXw2JRMJsVzFYFs0mgGAT2dIG1MhmDScFoEigGMBgERpPAYBAYTHDCYmBaLJOXk46igEEBITQUBRShItAQAgQaZrNAOZgPaAhUhBYE7cG/QVCD5ARSuf6tec6+LY22djPLrgA+p4fxe6EkcUpeOiO3Bnb11bqcPjxbXYTYAXtGMo7Z3S0/sGcmM+Gdwe2OXHwN6QVMdm5cedw9PBOxY0WSY96FPS2ZpaXwv6fHjx3k7qUtnpt2yeuJTqUsQHBiDoNRiXhLCL83wNFzlTS+0cm1NzpRFEFeSSbFpdkQVHFMO7HnpuLxB2ht7Efr3P0gsO2ofaKIf3ztrzdM4EZaamoKBfn5FOeX4ug3M9roATwcyX6W7HILswNepm/rl7x9YHZqkdmpxYf/L84roqgyi+vXWnSOTJIi4/SFQ3zmX36d1LSdDSqVJEmKJpnElSRAya3SOwQpJjRwjugdhLQLouwpDKd+HE0NEvjaD6He+zIk56JUvhXNsfUbfC24+0pHkZF4zxcepwe/24/P48fn9uH3+PF7/LrG9LEPW8hxtIeqo1UVNBXUIFowCMHgxlXTTuDRVrfB+x+P5VnydhCTxvpdEzKN/bznQ3UYJ68yaH+S6YHVF4NSi7OZH9/dBaLcmizu3Yz8EClDBCqug0GV6em5Xe/nvU+dxiZM+KaXN03gQnSTkrsxP+3g8JkarjQ1h7W9QDA9sBDVmACmxhZoOFmJuy/yFcuuyUUOnq6ISjXueNsYZosJn9ePqmqMD84yPvjI30H31tX00VBxuJDrU6/hcsWmhcfbn34Xg43LBIc0RoZUYOW1yjHrxTGrf/J2IzOTC9hzrXqHIUkR8cxbT/Enf//LJNnk77QkPU4IDUVEY0LCzok4iycWZBJXkgCRUYLILEWbG9I7FCmKhD0L3AN6hyHtlDUD07v+H0IxoI7dDCVwAVxTqK3/gNv8btyzPoSigABztgVb8CWE9sibcN/uGyIr5c/seh+x9suHfk33pO3jzEoAbTHySctosB08QHDgJpdnn2Hw3sKq+5IyUxhtHtz1Mfpm5qIyqCm4xfC2cBiNu0sEV5cV0pBewFTjBIthbG9Lt9E6HJ0Bb5HQfqOfiuoi+vtGt9y2tDyfyb7dJ8DDssuf02bUqQXMSSZ87sg+j7gdXo6fq0TVNERAZXh0jomhGH2/NrFkmabl1t2YHKustIS+a4nbrD81zcZ47zwnTx/iZmOb3uFI0o6990NP83v/75OYTDJFIklS/JLPUJLEgynD0l6nZOXB0oDeYUg7ZDj2/Qh7EQDCXgz3h8wA+JKewHlnAtXleLi9rx+cohRjXgGmnDSMSSpW0ceu0hypRSgVz+9mD7qIx/63wd39JGLGUlNHoLcJkVvK4OW1VXkZlfks3VhZKq9poJgMCAWMVjNCUTCYjSgGAyigqaHfWdXnJ+gLov7/7L13eCRJep/5RmZ5A++BBhpAez9tpt3M7Mzu7OysIbkrcUlKFEnx6I8UyRMpL/JISTzK3p0oQ/K0J0OdRImUtCTF5frZ3Zlp73030A3vbQHlqzIz7o8CGkCjLFwVZuJ9HpjKjIz8qjKrKvMXX/w+0wRLUlPlY8o3hxACu8OGrmnouobf56KqwofH7UBb+K4SIrUfgYCFDAQpIWmYmJaFJVPLkkkT3a5z+/L6Miib99bx9MraBzlPtbQxcjP/WRCeCg+U+KSJCocft9uZ02Kiv3eUsy8f5cHVjc9ifZGbA1O8dLiZ2L3c4nKhhEZnOXiyk1vvPdvwvofvj+ApdzMzHKC6pZKxDd9DbrwNdhwVGmZMojXE+eJ7f7jp+/T5fAgB+9oP0zte3KJ9AB6fi6raMtweJw6XHbtdR+gL5dwkPH0wRHBuKc7O/c14fC4ePO6mqqaM/r6ttbtQKDaSv/STn+ZX/8lPomnb49pEoVB8eFEirkKxgOOV/4X4n/xascNQbCKa2wXKEndLMBw7QfMu1IFaLAalpyRXkfofNCRiYd3iMgFoIDSkFCC0lD8pJk7Xzuf9C189+BshOIJpb2L+oblCwH2OlBhjIxhjqZvL2I42qmrWnl1le+VvIry1a96+WNicNuLh0pqOK2XpD57ZW9pg6nHGSrz2Mi99YzESNbXEQjHikQRG3IAY7DzexsTdvrz31bLDQ9x0ph4Yi0stmIsQGY6wVonH4bavccsljKWA1sTE/cKmxDt8znXtbyvofTjK8TP7uXDlNlXV5czMZMgxFiC2qA7i5GiAr40GePP1A8RvD2z4APXUjWfsf3knj672FbytzaFjJNJnmsdCcezO1C1JWa0PerJbbWwGzp0mX3z3D1IPurZmn8ePHEcLltNzab6oyQSNO6opq3Fz59YTZsKZZ0d4vG6On9/H7UvdtLTX8eBR1/MCf5FQdIuiVSg2np/7G9/PL/ydH1RJPQpFHoi0xmOKrUSJuArFAvbzf5nkpf+INbnxWSaK0kCI0vRY/CASmjlIvPvpC0vXJwSVV43iOJv6X8ZmsZIC6djB/MQhzEB+RYOs6NpvNEXtQbTDf3HN2xcT3VZ6RcysEhdxbY0taLFRiKfOmbBrB7DSmsDe3sLoxfTnXt/Nfhp2VDA/Gshrf/omTYW3rPVdbFfVl3HnwfpULVlgCGPreJ9uJQ8u99Je20JgKkRbeyP9fenFam2Ls86/8e2HvPn6ARJ3Bje870j3EA3tNYz1Zi88563w0NBZi91hY2Y0wETfNI276tBtGkOPV+baVjWVE5pNDVPEwwn2Ht2BYZhUVPp49nCYwMwWWA1YW3uMjh05QnTIw9x4sGjC0dEzu5gJzNL9eCCV+Z4jjEg4ysWLt2jvaGFofDRne4ViO/Ar//gn+JGf+e5ih6FQKBR5o0RchWIBoenYX/4B4l/6jWKHotgsEsX32fvwsPF3d9F7d/ENXEBvPU/i8n9i8kr5QvGr/Ku+y9jaC5vpH/lVhLY9vzZtztKL25SlO2XRVteILTmFjCyk7us6d++5gSUxybermUdX+rL2Y1n5+9HqmzSF04ivffCkvrWKsD1CaGrtU71bGmqwgvm/Di3HW/nyuw/XvL+tZnYySG1TBd19mX2RDWt9A1hr4ebDIQ47bch1HP90WHGDhpbyVSJuWY2P5j1L5QR77gzy7MbK12T06QTeSg/tR3cQnAlRVu0jGTcYfDSKEILq5grcfifmdJjpgRkC1hRt+xu3RMSN9YHL5SQW29wZC6dOnKTSV0vvpQhCrL/Q5nrQdY3uJwMFf1339pS414lCkQe6rvGPfucX+ewPvFHsUBQKhaIgSu+uTqEoIo7XfxpR1UrsP/5UsUNRbDgS5lXhui1jEzJ0Ev19zP/x/4e98TvMff29BQG3MKzo2sQAUX8ErfMTa9q2FCjFKYKGWXoxwYKAq80jQ4Hny2brXqPv/aVzx1lbQd9gGCtH0TBp5p+CKrTNez2cThvxAsS8ihofzftquf3oCYFAGpuSZbicKbuGWHyp4NXB3a0caWghOhZibnQubzHb5tC52bX9fDV9FW6yGbnOBLbex2dmYp7g6U68T8bX/P6vPriDGBp2u45NF5A0mLrXz8ytHnafaEW325ifDuGv8jL4aJRHF3PPZArPRuhdyLqdGpx9vlxKyfRwgOnhwIr2Q49GadpZzUjf5hZBjEwYfPLgZ3mn58vMzW388bLZbLxx/qP0X04wR7Ton8kSSdf9QV56ZTej/TPU7ygnFo+TCFvMz0aYHs+nBKFCsT1xuhz8y//4N3nj7VPFDkWh2HZs4uWqIk+UiKtQvIDt8CfR209h9l4rdiiKDURUNoDRXewwFOsk+P4N4MaatxeOtXlt6kd/uOg33eths6bqrwdji6cv54O9aQdaeBCZXJYhV9/BV/5HlMWRCc1lJ6B5CM9M5uxPt+dvY7GZF8UOpz1vEbf9YBN3ep/QfSlzZulyPnP2JPP3JynfX4HNZcMyLMYejDIyVPhU/rrd9dy6skWGpBuIyJFFbStSoZybV55x/rV92J+MYyXyF/GlhOoTndx+f7Uou2NvPeU1Xmanwgw92ZqB0erask0XcQHme5Ic3nuI969e3NB+hRC8eeZT9FwuHVP+/a80cffeI/rff4q/zMuzwaVjLYTg9NmjCKlz97KyGFN8sPCXe/l//uuvcOr8wWKHolAoFGtCibgKxQsIIbAdfFuJuB8wtIoqVdRMgdDX9rWn7frkBkeSP1JKkBYgcopFmShETNwqjMITqTcV4fWjG1Pgq8Ry+QGBFg0wxU4g5dEqJYi2ViZu5ideiRLwIi6r9fN0cCJnOyEEe8+3cvnaXZJG/oKf3RLEw3EmnqyvGJXQBAHyt10oJaZH53j13HHmwkHu3lk9WKgV8Ty48O5jPD4XBw/voGxsjmQgt99w3fF2bqYRcAEGn4wz+GSjo8yO1701leGMqKTWbKWjfZSe3t4N6fPA/v3UiF30XCudCxCJJJFIEJxPzS5Y/Pt8vZRcvnSbisoy/OU+/OUeRgayeyArFNuBmroK/u0Xf50DRzqKHYpCoVCsGSXiKhRpsJ/5QbSmA8T/5Newxrb4bkWxKWhupxJxFVjxwj0IpbOa5OQcTMwipQWWBUYSaSSRpgGWBGmCZSEtC0wDaZpgmchkHGt+FnNuGmtuBisSWlhvpP4aBpgLfRnJpW1Nc6FvE8xlgprdiXC60BwuhNOFcCz8LP7vdK/4f9Tah+b20razDCsSZWJ4LqUHlwClJOIKrx/3voOYj77NRO2bfPN/LIoaVSwKuAD+l/by4EJ+Hsy1HbUk5kN5x+B02+g41kLP7Y3zm7S77My79byKmznddi5euY1ZgI8vwEbVp2s+0caXv3V/YzrbYuamQ9x7P0TLrjoEgrJyL3NzS8deK3IWfyQU49qlbo6/3IlvPpb6zMqAu9rHo7vpC7QVi+7LvZx+bS/9vZOMDW6ut/3MvTiHOk/Tw/pF3LIyP5VGB2MD2S1JthpfmZv793NnvAdm54F5DEclTW01jPQrIVdROuxob+BX/tFP4HI7cbkcON0OXC4HLreTe7e6+bm/9A9XtG9pq+Pf//HfZ2dnU5EiVii2PwLQxPoK5m4023ee5NpRIq5CkQbh9GLb/QraT/xnor/7A1gTahr+dkdoydyNFBtHqVoPJBNI7AjyPx8MfRdzv/pDmxhUASTjyGQck/z8Cp+Z383InZTHaBPQXKPhqavEXl2BpdvQjCRmOIJm0xF2G+g2pK5hoWFKQdKQxBMmsahJJJwgNBcjOBfDSK5fCTaM0jhHnLv2ovvLkLHUKI/IcHFadriT3u4pypsr0e06mq6lXjddQ2gaQhOp/1Od4PE5GL6Y23JhEStuMP5giPZ9dXgqvSAgEkrQe3c44zZVTeXEI0kswyQaWl2Qqf5oM+98K78iYbFIgl37d/CkKz8bhUU2SsR9Nrz50+U3m6GnE5w9fZTBJ+McPrObuJlASslcAWL+ZnLz6jPa9zTS2VyJISVOSxK9lzq/pITKPY1MzieIBksj3uU8vZwSVQ8dbMFd5kZz6CRNg7mZMM8ebqzoHKpcX1Y5QGdHO7t27CcyURqfc8tpPVLFwIX8bRKmJmcxKk12dDQw2JM7q1+h2GiEELjcDqKRpe+5wd4x/vD3vs746DQ/88vfx8c/c+b5uvGRld8nu/bt4N//8d+noal6y2JWKBSKzUKJuApFFrSyOhwf/wVi/+nnih2KYr3ENzd7Z7tg6RVYtnosrQxJGc7oN4sd0pZjuI9ij17Pu71pVQPbMwPJX77ysTQswiPTMJK/YKYBnoWfGgA/6C4HDr8bm9uJ5nIg7Haw6VhCx0JgWBLDBMOwEAI0TUMIiWmAaYUZH54lR02wLcGxcxeax0XsaRdG8x6ujL7B3P3EqnautgauXB0lEStsMKh5bz1eK0FoOI/PH5kSjyeerRRJWg82MvBgtUi1/2w7A9dTwlbb0VYeX19t8dBbYObc/BrERs1Yf0ZG48EmvrYNvXDT8fBK6pjcv7iUsd1xqolkvcXMePGng/R2jdLbtXQ+feyNAxj3hnB2tnDvduE+xltNYH6OHu8AXsvN6OwkFpIjb++l79I0sbnCB2vd1Q7K97pIagnsSQem3WAwuP7iesFgkOScjfGe4h/zVZiF2/IEZueJxeK8dO4AwekovU+yVPJTKDaIph21/NZ/+BvsO7QTl9tJOBTlP/z2n/Db//QPiUbifP1PL7Ozs4k3P316xXYOl/35/0dP7uEL/+1/p7K6bKvDVygUik1BibgKRQ70liNgc4KxOstJsV2QECz9m9ONJuk6RWS2ASnBVR0lGfERuf5oYe083peaWVuZrzzIY/r2dsEyiu9rulZ8zs3JqDNjCaKx1WJnOiSw3DnhUz8bpdH2Bxhlb2BNupG6D4kTy7QhpUg5UyQlZsTECMVIzkUx50KpjjYQW009ut9NcnQc2g/xp/8lgpFc7QVrq/TzeDhRsIALMPxkHIfLzu59Tcx25RCGMrxn/OWupVjsGpqu0dBRS2CZR2VkNpxuUzS9sCzAHS2NjI4VlhErbevPNAxYJeStscEcfKUd0yoNATcd3/rOI77rE8e4+87TYoeSFptXJ74/gWGazIeD3H3wBF5wHHn4qJvjxw7BLVf6ThbQbIKKdi+JeQPvbhs9433cedaPvLTyvXfo6O51xfzxj3yCvksxhuZL85hbIn/P6+XEonEuXbyF1+ehuq6G6YnSfH6KDw7/y899lmOn9j5/7PW5+V//2vfzF3/sU4wMTVJR6cPhtBMKRvGXeUgkknz7K9d5+mQAh9POz/+tv8AP//R34fFm/2xQKBT5Izb6glxRMErEVShyoNW04/rBf0XsP/x4sUNRrBFRUQfJD1+F5WiomdjjlGibbghCSjbPSKgU0iwzIGSkoPZWfPterHjMSdg8qX5N1JY/gDBoVgRrsgvBgsdWusaLKcBNGnF5AHQ72L2wWKBuoeibYavDihpYhoGMxZGmiRWJYMVjyFgUmUyw4mTXdWz1dVhJib2+jqejOkYGjTZSU89cT2EWA8tJxJL09szSUOUjNpNFVM+QHDd0Z5BD5zsITswzOzyLmTSY7l6ZmTs9MJ02Y7eqyscz8p8abswW/r4VG/BW17TSm3K+EZRX+5gLhhi8m7+txlZjWZI506LtRCsz/TMEp0rLSmG2Y56rl+7kbHfz9n0+9sorWNJiJjSL3+3DbXMxMjtOfUUtDsPFjDXNO9e/ndogiytAf+8IFRUVBAKBguN9/ZXX6b8cR5SopVDn0QaGR9eXRRsORTh6tFaJuIpN5Tf/1c/z+R/+eNp1FVV+Kqr8q5YbSZN3vnyVA8c6udT9e5RX+jY7TIVCodhylIirUOSB7cDHEVWtyJn8KpIrSgutogaCHz4R15zPXoU8cucx9rNv4oy+g1hDVXjLVo1h349hVKLpCRzJK2hmACBVnKtkKezm2opuXz9ld6gP2Jur2ZZhc4EtspgNXoA4Li1kOICMpi8QJHa8QrJrpdAjAB1S4qjPgeavQPP4EU436HY0l4tAyMN80EHvsJOWU/XE5iLE5sJoNp35BQsEw1i/ShmZj6HtaoUsIq7MkIlrJAx6r2YvpubyuxjvXW2dIAscfxjsGkfoApnnsWmoqWTm8foESk+5m4HB7e+Hm47gbBjNriELPRBbzOD9UQJjQWx2nZ2dtUw8K559jLAJpCHxn/DSNdfHw5v51yT45oX30y5/QGFWHcH5MDUt1QWJuEcOHaLe28HQ7SAbPm1gA3H6dazA+j/TLl64wamXD9P3aJJIsPCCoQpFNs6/cSyjgJsNj9fFP/ztX9iEiBQKhaJ0UCKuQpEHQtPQGvZgKhF3W6J5nFBaxaE3HUuvIDGYw0JCSuYuDmKrexVXawXSFDjdg9ijN7JuZjo7mBtoJzkyBEwu/ABaE/amk+g+N8ZUaVU3X44UhU2rsxL52QaUIjYjiKeujEiJZEztOWsDuSAgyALFcS2brUUO0SSZwJqZwJpZSr8LVx3lcbed8XmL0ORq0arjtX1EJmZJ+hy4dldgJgx89RVIt4P5QIzKciemphGYTxCej2EmTWLhOHNT6a0Nnt4c4OjZdibvZKh6vw4LkrK6MqYfr04tnJ8vLOu8vNrHZCA/QfXI3p3sdVUz0bW+QkfVu+q48p0H6+qjVDl4op2BvtIuBLXn8A6mH6TOfyNp0t87xb5TbUx2TxAJZB8I3CjczS5sXp1LU7eYnZ2jorKMicvFE/YPH93N+1ffybv9R499N0OP5umnND5nszHVH8bt3ZjZGdeu3uPk8aM8urn2mQoKxYt07mnhV//JTxY7DIVCkQEtQwFgxdahRFyFIk+cn/hrRB59s/DUJkXREdra/N+2M5a9HvL0mTQmxghNpKZXhoGys2/jjn1lZRvHTjRjCqm5me1uwpweWt2RZZIcGmT75q1mYJu/5SsafCUj4u5+aXKZQW5h2drC7tyQQ2EJneGyTzB4ZQyjtozQ5Gq7gZaT7QxfeAiA64CP+ZFZAMJTS6NBo4DT52RidqXIX1fpxOlzkogk0GwaNW01SFKZtsLvxn20HZthIpMGMmFgxpJY8STCYUdoSxo3gLfCg8vnYHookP1JZUgun51JLyhnIhKM0dxcx/BwduGx3O/h9bad3HlvfTMcdpzayZ996z4AB4+0YbNpRCJxhNCodriIRxJousDldyHcOvGkwbXL3SWf2Qqw+2ALXdcH2XO6jdnJ0hxF1HUNp7VycCQZN7h3MXVcd+yph0iSuU3y85VS4jnr4k/fWymYTkwUNzM7kcj/muH1868zdL00Pl/zoXKHi4uXNm7QxOmyU17lIxgIY32AvPAVxaFz7w7+2zf/Cf5yb7FDUSgUipJFibgKRZ7oTQdwfu7/IP4//laxQ1EUSiJQ7Ai2HEtUArNr2nb+Ui/y9Gdwx/8UIcDSy5m+4kSvOormcWNOb+8icUIWll0mE9u7qKGvonS8Gd2umdRIAYBcEkpETRO25trUsRE6xqyBNfDCNGo92yVLfs9RIngq3mL8QuocrqpxUFnbhiUFTy72AoK6A81M3l3Kls3mbWkmVwvR8XCceHjpnBmYTc3g2PFSG/fvjTCUxvYA4OXaciq9NhxuB94aP7rDxsSTEZwejYPnO0jMR3GUeRjpmULTBDaHjWTcIBlLYCYMpJSrYnV5HHm9Ls+fj2Giy+yvpcfl4C8eO0x4YHKV6FwIDredb13p4sDhVnymzugLmcRphokAePW1A7xbgpm7J17ZB5bEQmJZksmB2ZTYXKLC1u5DLXg0B0P3M8+aGOwap7zWz84TbZgJA9MwGesaxzLX/5w0XeA75+eL73x13X1tJG63i/JKT852r517DVukYlsJuEKArm3srd+Fi9cBOHx0D7rhoPtBpneuQpGbE2f2KwFXoVAocqBEXIWiAGwHP65E3O1I6MNzU2HpNcRtp4kOJVmriAsQvNJNrPUtfC0BNDOVqWjOTGHObFCgRURL5H8+WJoPc3Z7+3X6naVRqMjmBIdcJhhJA5DYDryEFroIU0vCnA3g6KsknvRALGUJIGz2dccwWvk24+8tHf/Z20tembvP7GOsf47I6BRyWWE+kaXolhE3EEJknaDh8DhoONhC9+UerOrVhVgWicVNnLEkRixJZHYpgzY0GST0QianCSQBW52fLo8JVpgpfwKvz0UiYRCcC9PQVE1NnZf9LT6klFiGJBlNEgsnCc9FCc6EVwmwe842MT0xzbimYVrp1dm/8MoJpm+kRPA9x9t4cn1tNkPlzZWcLGtk5M4IwQJ8p3sv9fH6qwd57+IjzBIooGiz6Rw5tYt77z9Nu37w8fjCOVJ8MdflcXDoeAczz2aYeThNPh/nc5NB7i47/1weB3tP7aT3cgZbkAz4qjyUtVbhctoZ6Z/CSJo4Yu4Cn8Hmc+BwB1//1lcyrn/jlTeYeqAzdsOAbWCfsBxfuZubd+5tSt/37qQ+S8+fP8Gz+6ME5wqzclEoAPYf6Sh2CAqFIgsCiSgxOwWx3adMrgEl4ioUBaCV1WM79DbG/cwX+IoSQ7dB/AOgPOaBaW9htmsHZiC9mFAoyYF+UkmEhXnIljJ6RRXCfJJ3bbOE4zUwn2xuUJuMx5wAcnsgag4bwqYjhEBoAmGzoWkilb4lNMTCrGuhaWg2HaHrCE1LvZZCpLJAhQDB0v8s/K8J6juSmKFJdG2hH6I4DrXB7LfSBzT1Ho6WOiz3MazpuefWy+kww7mzq+dqz/LsW5kFfJsOTqfG/MTKvrJouAAL4lz6Rk2HWpidCNJ9OVWYLNt040g4nsdRegGXja7bS2LazNSSqNTTPUJP90jWzStqfLx1ah+OwVlicxGST2ZoRPCRV07x2+9eWdFW1zQ++8oxQreHny9zmvlNO5cS/NVePFVenOUe0HXCwRh9l9fmpfnsSh9nT+zm+r1eYtGt8awWCNx+J3aHHbtdx1fmprqunMnBWe5fymwrEZmP0ba3gb4nxfMJ91d42HeojbGH4/ReXJ9/aSyS4M573Rw61U7/rYG0meoVjeX4qr3MTwSxLEllUzl2t4Pb76/Mrrd71j8ws9HcvPaIs6fPcenKxRXLTx4/TpWjhd6rcyV3A5sPHYcbcJfZmM6Seb0RXLhwg3NnT3D3ck9JDFwothff9b2vFTsEhUKhKHmUiKtQFIDx6B1krDS97RQfXgxHG5o5T5zjmIHtLThuNs62erLMjl+BpVcQeTy2uQFtAe5QH7A3Zzv//g6GrvcsW7Kx7sYDN+HALzTi0FJCo4iNgJnDszU6gRadQBNgq3gDM4P+kMvyIlqxnweXMot99jIPoYjF/OBqq4NsdgoAmq6tml7urfZR2VbDs2t9L/SVuZ9IJEll1j2lId+TOQ1lFV4+uruV+LU+Xnz1pu8N813nj/Lly/cwTIvKci/ft3cfs/fGV+Q7jD8aprGjhtGe1dnqUkL7qZ2EAlGmBmeYmQozMxWm9Xgrjy8VlsWZjv7bQxze1UTv5AxTk5uTEVlW6WX3wR3MjM4x1j+NETQwMIgC82MhRrqyjCwso6LKtynx5aKmoZyOXY0M3Bqh52LfhvZ9/1ovdTuqAKhuLEfTBXPTYRxOG30PRrAGls6JkdFA2j7Ge6Zpa2ymf3Q47fpiIKXE4yx7/vj1V15HC5Ux9GCeeeZzfh6UKuMDAdoOVxOcL8wney1cvHSDs2dOcP9qj/LJVRTEvVvdvPqx48UOQ6FQKEoaJeIqFAWQvPr7mE8vFDsMRSGYBjh8kCiNKeUbjWmrY/ZxI/baQxRaKOrDiNM7DXlY4koJ4eh5rODjzQ9qk7EZQTw1fiJT2QegEuOTKVFwE7OnLLks806a4GsGZznM5xb17LUa8UcZVmpaxu0S3mbuPajAjKX/DPA01SAamhi4lGEAJIdmo2niuYhrc9poOdZG7+1BZl4QcAFcrsyZh6FQDPSMqzPsfO2CkpE0EFmOtfvhND9x/hRXpyY44Sxntnt1ATiAxqayVSKulNBxpoMnl3pWtXc4Nu7Sc+zpJI0NZfg73fQ+Sx/fWtGEoKm5JqNNQmF9ZT4/N4PG1mp2tNTSe22AZxPry7zNxsTgzIq/a+FA696SEnEBHE7BWx95GyvsYODaPNvNNuFFhIC6PW7eu3B1y/Z56fIN9h/oYKRrDsNQ1yaK/PjCb32Rc68fRdcL/TJUKBRbxdZe0SjSoURchaIA9I4zykphO+JrgZntL8a9iJQQCp3BmntCfG7t/rcfFoTDhT2W301s3P0p4vc/OOdMeVNuETc6NkvT0V2M3O7btDhM+YIH5sw9kEDlXkiEIZzZ7kC3MotRutdHuon9lrDTNXMAm1+i1dQgbLaU4KtpIASm7mRa2jBiJq4j+wGJlDz/cQgDh9fJzpNtWKZESok0LSzDwjJMLEsS7QtgJC3aTrYz1jPFk4uZp9b7yjJbk8wHYmj1DiyjAJ/XNWQFNjRX0dJUTZvUST6bzKpRT98bphMIkL4YG8DEg0HcfhfRYOz5sp0vt6cVcIHCnl8eBMbmcfudHDraxv07GyNYOhw2Dp/s5F6WY1kIg082VmDORMf+Zip9HvpuDPFsaPPE243EayutIkYvvXSIZ+8ujvTFsrYtVVp21zDYPYlAoGmCvecaef/CtS2P49HDHmrrqtizcwfhmQT9T7fmfaDYvlx45zb/6Qtf5od/6jPFDkWhUChKFiXiKhQFoHecKXYIirXgKHiScskjJYTFZ4k9ypSaqHgRx84dCHknZ7uk5wyhq905220n/BWCfJwQZWhzM9YNK00hIwEEnkDtqawiLlkKF+isFqilhAHvW5gxC92l8/T2agGhYncTf3Rlgj1lNqxE+myxPec6Gb/Zl3Hf1Z0tRCIGXVdyZxPrWTKGAZx+N9HZAqY72wrLhzh4eAf/5P+QhAMGo12S4GQZvmoNMwnf+UKgoL4WSUaT7DnZyp33e9AdOk2HdtCd5bXovdlPbUslk0MbN/AUDcZJPDU4fW4vVy6uzVKmvrmSytpyPF4nk4OzGybgAsRC2e0+1svuQy14NQcD90aYE9vLA94SxS9Ot8iO1iaiI6WdY9TQVkFlo49AZBa3y4VTuAjNxJFANJTA36xz/8EjTr1yjETQwuEXRRFwF5mcmGFyInVOHj9xkNicocRcRVb+9T/+r7x8/iD7DrUXOxSFQqEoSZSIq1AUgNa4D9zlEJ0rdiiKApDSnm8dq22BFG6CibeIPlACbiE4qySrzD9fIOk5w9yNOZClIyxsBD5HfsJgqH+M+oM7GX+QTUxdB45GLN+xlB4rQKAhpQFIMJzgOQCavszSIVUoDSmwtJ1Qb7Ik5i4VFJM2N7a2fantBCAlo5EdDL47iLe5FiOy+sB76sr51uN5EgmTtVwOSQktL3fy4NYo4fn8MvZEDvsDu9tRmIhbYCbuj/+on5rab1JTC227V64Lz77C9f++tu+2xGyI9pc7GOme4Nn1vqxt3X7Xhgq4i5hJk5HrQ7x2dj+TwTCP7g8A4HQ5OHSkFU3TSCQMwpEEIwOTaDaNvftbKPd7ePxwmKnhALPDm+N5n4gnqaorY2Zi/dPyHQ4bZVVevH431bVlRCciTDycZobc/s3rQdMF9btrcVe7wAIzbiI0wXj3FNG5tWes2o3SKW7W2tzM00ulJYLve7mZsd45GveWMdUXpnKHl/cvXMm8wYKN+/sXruJw2knEN9bbfD3cvPGA9o4Wjp3fRd/jMQLTH0ybK8X6mJoI8H1v/nW+cft3qWuoKnY4CoViOYLSK+75QbrJzxMl4ioUBSA0Hb39FObDbxQ7FEUBWNF4wVaTpYqUEDQ+oQTcNeCQd7OuNzzHmb81D8bWVLvfSrzWFPl+5ds3MTPOnZzD6FpbUatk+Q4iTwbzaita9zPwxKBybxszD/tw1ZSvWG9zOXiccDI5mSpMJYRGJk/pdBXWffXlOKvK6L3Sg7uqHJtdw+7QsTt1NJsdm8PGog2qEALdpqFpAt3v5uy5drq7p5iaXC0YagVm1hJLcvb0HkZHZukbzF1ka/fezCLlx3/8Kc+uNjE7WLjoM/10nFiNQTAPUSYZNxCaQG5SwaPeGynx9lhHC/4aH5N9U0zcTuWhN+6pZ+TpDKfP7+XJxWeM3hwhWOlhaiKwKbEsIhC072lcs4hbVull78EdjPRMoQlBZDREaCJB6NnmDii3HGrAUe4kGo/T2zXK3Uer37v+cg/7z7chExZDd8cw4umMTTKTmC8dv9QLl67x6snzdF0vXkHLPSeaAEHImEPXNK7fu82+fR1L2bQF2AeXkoC7SG/PEL09Q5w4eRDLtJgPRIoWy7Hzu5BYWEmIRhIgJXMzYcqrvDx9sPRCO5x24vEE4sOoFBSJRDyJ25PZfkihUCg+zCgRV6EoENuu80rE3WZYgRn00p4hmRNL82I4jxIeKSPRpwTcQrE370BPZH7fJj2nmL8TQyY2d9pzsXCHe4A9ebUNPB6gqrOFmWcbL2TI9Qyn5JkdLaoaiZkVhEdmCI+ksupWZMAKwVxTI48vDjxfpDttmBkEj+Ua7mL27dDdQWZGU4Lc7rIk4fEAxMCuOxkYk+QaBmjf1ZxWxM3iGJEWo3+Go6d24X40y4lD+5jywNOBCV5pbWZ+cBbX/jreu9XF1GxKXE1mKWSmyTF+4rfd/MsfKicyW5iwJgQ0t1UwlUeBq2QsScueOgYfb+6U6umhWaZfyPh1ep0AjPZO4q/2EpwOE5qN4Ct3E5rLo+LhOnjwfg9NO2sZ6cstti/i8jg4dLyDnrtD3F1WYK2+qoxwYHPiFQLaz7XS3zfOrXu5LSWCcxGuvp/6TqqsLaPjeAuBZwHmJ/LLspwbC+JxuYnENvf1z5fLd65w6tjLPEtjv7JZOFw26ndU4K7VuXz5+qqBozu3Pzj+7IvcuP6Ane3NHD3YSSycJDgbYaQ/s/f2WpBIWnbWUVbpYWIkQH1zJcm4wdOHwxw+3cHtOw8Jh9KIyKPQ2FQLQGVlGf39oxw+vIf71/uQSCXmbgGnXzuMv8xT7DAUCoWiJFEirkJRILaDbxH/k18vdhiKApCzY1DvAmP7FCmxbNUEQ+dxVYYxDS/Bq0+A6YUfRaG4mj2QISkp6XmNuRuTH8gM3EVsyXl2nunATFogYKpnkuhM+mn7QoCv3MFmTCqW67n5zWf6ltNDIulBOlcuTsxH2HGklcG7wzgPd/K1r60UpzRHZnF5UVDxN5RjL/fRe2VlwS7duTQdXJr5qbCZZr2ny/rNhVxQfmcHptGBM621TD5OCfDx64OcfamT//mdlBe0sLKPZtm1Xj7606/xp79ZuN1BuGcMTdewzNxie2WNn0G23hczuSDUT4/Msft4K8Hp1Hugtb2Oh7c3vxBYQ1NV3iLukVOdjPfNcG+ZeLtIWbV3U0Rcm0On+lANV95f20Dh7OQ8NybncbkdHD7fyVz/HLND2bOFgzMR3tr7UeweG1KClbS4NXub3pH8su43mmTS4Mbj6xw7eJy+B/kL7uuh5Ug5167dgdWH+gNNX+8wfb2pjFeny8FLLx+i+/4QsUju72K7w0YyYSCEoKW9Fptdo/fJ0sBjU2sN84lZuvq6oS+1bGA89R5vbqnn0uUbWfsfHZlc+XdqgoOnWxkdncDnqGDgafGytT8MfN+PvFXsEBQKRRoEoJWYncKHcVhNibgKRYFoVa1oLYexhu4VOxRF3gjw74DZ7VOsKq6fIfboyTatjV16OPXHq0RcKQVRx2eIXHlYnKC2GHsyyNz9lNdtbUczenvl88xPiUz9LyVJbxn9YybOfe2LK1ewq1Egg6GlFVKuVCUXp8kveNOmhMnU+kgoxtpr0WcXICUCWb2HZHcXeqtvxTozlsBh1yg/2skffvUpL17yabZsIi60nNrF4N0BkiOrp8Mv39ZMJNF0B1aeYu6LGLHCpz+/mBU2O7BSfteWHxsj+6VuMmnnO1/2oNnmsIzCbDXigTA7D7fSczu3+JaMFmfAZHmBMbtj6RLYYYGmCaxNsnhY5OnNAZxuO/Fo9uN88pV9acXbRWzOzfGRbT7ZxPUL68/6jEUTXHv/EZomOHVuP88u9GX16x1+slIsbXa3suflTr569dvrjmUtxGMJHg7e4+Chw/Te31wh1+N3MBsIbOo+tgPxWILLV28ihGBnRzNNjQ0APLs/wo6OWoSmIewWU9OzxGJxRocnOXXmCFPTMzzu7gKgvqGasnI/dTXVPHjYTWA2vX3J8FDhA0gDfSMM9I0AYLdPcfD4blxOJ5gad68+U9m5G8ieA2188rPnix2GQqFQlCxKxFUo1oBW3qRE3O2GsxrYPiJuMvhBcfEtPrb6RvTYt1cskxLC1meI3fxwCLgA3nKNxcmqwZ7Mxopaezv9dzLn4Xb4qgg+XpuvbXy/q6Ahc6m5kGV7QHMh7JV4j3oRIpWxasUNok96n/sdaJ2nCN+9D4BIY73g8Dv5n3/UR9oA0hQcs7ns1B7ageGw03M5s7ClOZZl4loSh9uxQixMhy2DaFy3uwG5szYV4nIHCMTzMm5SSvquLcsGzpK9q9t1Lj9YOlYzo06amjLH9bX//gZPLo/S7F2bmOl35edbM/5sYlN9cTOxXCS3rKVzZOjRGC+f2c2TrhFmpzav2FIiZlDTXsFwb2Zh8NCJjqwCLkBgbP0F0pYjpaT9fCvXNkDAXY5lSa5ceMi+I21M38t/qnw8mqR8wo9dt5E0C/PY3SiC82Eu37/M6+fP8+jCxmVd1raUo+salmVhqzJ5cL8bq/uDVUhzPUgpn/vmLjJ2ayRt2yuXb694PD42zfjYNN1P+jYxwlS29u2bS9nq584d587FnixbKArhp/7q96Jp29wDTaFQKDYRJeIqFGvAHHlQ7BAUBeModgA5kRIs1y6SopPo7e0jOJc6rh3lq2pWJbwfI/YhycBdxG3Pc/p1zin9a884ytcTVyIwKz9GvOsxDKWKUtlaHegzt5630QHHkX2EemLI6l2EFgRcAGmZLM/cddf4cQ085oc+uZN/88XVAvZyGwRXuYeK3Y30Phhl7EIPe0+14fLYcHlsJOIGkeBKUUm8IADLpjr0pIXTbSfysC/t87OlEY0BprrHCE9lLj4G0HioZeWCLIfDf7SJ8XduPn/sLcssiPV0H+Cr/3YSaUkq9+1g5sFAxrbpqKj1UkEMt9dBNJw90zYWitPYUcvI04mC9rFeattrGF8QQLtuDFDXUvncN/fptX4a26qJRZNEw5vnjT2b5fg27Khm6En2LEG700YwgxXKWmk/uWPDBdzlPL7bz6lTe+m7PpS78QITfTN89+FP8d/v/cmmxZUPycjGDTSUVXnoGn28NICQ/8uhKGEuXrzJ+fMnuX3hQ+aHsUm0tNYVOwSFQpEFUWJ2Ch9GlIirUBSINA1kJFDsMBQFYsWMHJOxi0vU+WlCD6ew5gM8N3BTbAgOe+8KEVdKiA6WTkX0rcJl5pkJl0vEXc+sUSlWbS8loNlA6ICF9O7ESDaSfHAnZ1xy/DHevScJDKwsTiOWtdUcOtU1diL9E7gaMh93b4Wb1v0N9I+EuX9hyTO3zR+hvTb1WDtxmIcDGg67wO7QcDrEKh/b8b5pwoEoul2nIcOs94xTy9f02qbfqG5fI/9lmYBbUeWjqn51EZ9AoIZv/LeTvPsH4xiJ1OsTTOR3gW6za+w93kCZnkhlZw+Ocu70Qb75Tm51qqaxbEtF3M5TO3l4ZSkr2TItfNVepgZnnh+Pif5pjpxs48qlrk2LI5HBMsPhsOFzuZgNZfeQrWuuZK4vkHM/ZU0+gmNhpCWxu3TqD9YinKn3n4gLksEkM0NzNB9t4O7tzc8inA4WnuE8cG+M7z73Cf7kwlcpK/MzH8w+wLEZBGc2xtRo/5kWHnQ/WpEBrvjgcOHCdY4e24fH40YIjdHeGSZGCvcW/7DTvquZYy/vLXYYCoVCUdIoEVehKBCh23C88b+S+Mo/LnYoigIwJ0fQWs+DFQcsQEOSqnwrrADYvDD7CGKBosRnxOwLAq5iI9F8Zdii11foXJZrF0aRiuYUE3uoH2jN3TCXiLvGaY47zzpp3/11tMgcZuWbBC/PgRFHxmOwwv4gsPCzIijs9WWYL94Tu6tIDk+SdB/DbKtD70+JlqlMXB2Q7DjSSPBBKrNdLPj4trf6+J6TXkwEEsFg0M38wAzDt/tIlleu3POyl8N6fI99L4QQ63iJ5ZN9NT31+phJk+rTu5gYnafKozH3bGlKdkYNN4tvaDq8dWVEM1g3hFxLfZX5XHzy1B5cnpUZ/t/+szf4o38xTyK6crry1OAs5Vn2W9NcRufuMpJ9AyS6HrNcWquI5VcSr+9GH/tf3smjq315tV8PFQ1l9DwYWeV5+/T2IIfP7+LxxSXR/tn1fl5+ZS9X33+y4XEIAUYy/UDC4ROd3L/0LO265QQDEXSbhpnBs7hufzVhR5w7d57hL/NQWe1naHiCrhtLx/jl04d4+DjlUzt0YWuEpp7Hw+w72kZsKEx4JvesALvbzo5jTeguwRsH3iQ4G4GdUa7fu5Vz241C1/WMxysXdqdOTVM5I73THDy3g0vXrmMYH77Bww8Td26vzGavrauira2ZqaEgk6OB4gS1TWjtaOSzP/AGP/7zn0PXlZ2YQqFQZEOJuArFGnC89uMYN7+INZG6IdaaDmJN9yHcFchAZq9JRfGQ8zMk7ucQF+xOHHvOwthlVlVz2kQM1wGidwqbupw3Dhv+w00LHpsLzpqLQlEavUiadrBkqsnzn4WGiwWqRKoPYy5B5PEmxb1B2GprVk37MfR24MPnX2dLzOGs8hOfyZHNZuUQGgoUGhc5ev4aWqh/YR8SGcpfPPKcOIBu9a1wxZCaA8u+A2v8KYOjUeLTczS8/Aqu/gvg8gJJ2s50EryzZH+zGPnn9ydJPH6IDljNbUw/DpBYqIje3FbBaP/SZ4VRYJGy5eLa3fdTolz9uZ35bZzHazvTN0nDngacfjcj/bNM3Euf9Ro3UtYJ9dV+vr+zHq9NcPkP9/Lq9z0FYfGn//kTfOULo2m3Dc2Eqa52YKQpQHb81RYS9x8SvpNmQyDSP8re/R08eTSd9XkYCZPBO4O4vA5iOewX1sPusx103RoknqHi/YNLz2g/2MjAg6XXYvDOEA0tVYwN5SdI54vL5yQaXJ2Je+zM7rwEXID5mTD1VWWEAyuFUImk9WwTF6/dey4WBucjBOdXZ18vZo+/mEW+2Ty+04/dYaNpVw26rmNZFvV1lUz3zDA3mvpcqmgso7KtgpGxKa5cXGl5o40LTh5+acuE3FfPnOXRhfTvkVx0HK5ncHKIHS+V896lKxscmWI7MDkxw+TEDI1NtTS11TDSn78v9IeNH/srn+UHf/xTxQ5DoVDkgbaF98iK9CgRV6FYA8LuxvNL34B4kPg3/jkAnp/7I8yBW0R/5/uKHJ1izSTjJB48QKs/iK3GB+FB0B0QHofk6hvhjcDSKwhN7ERG8ruBLxTd58JjfT3/ePynsYbzK9pnazzL5rwqG4dMrvYAlfLDm+VR1lTOZC4RN8u12bnXW4h0rc2vWbLMW6AAHdje0YY2+R5U71nqSwJ1JzG6UkqiZaZEq7Grz6g4cJaR2wEajjauEHABtO4n/NIJO4nBlMBote7i1uPEcwEXwC5XithJI/vFqq6vfDLpdNikXJm9rGXwxM1HH4+H4kx0jdF0rI3AWOap9/beAL/4uTMkuoYIDU4RGpxi/Ca43G9x+57kzjezi1NlHQ1pfXGdwiCX5Hqw1cGTRzkaAZpNw1xjpmO+xKLJjAIupIpvxRMmnnI3kbmUMJqMGew+umPDRdxYKL4qi7Z5Zy09dwsb/LU5Vl6+25w6lS9V8u6l23lt39M3xJ4TO+i6sfUzEpIJg/7upaz0vq7UeVhVV4a/3ENP7wTmSPpz07IkkR6NN4+8heYz6R3pxeFw4rDZufXw7obGeeDAbh5eGEGs0T9GCMHgwCiDA2sTgRUfHEZHJmndaUeI1fY7Cjh6cg/f+5feLHYYCoVCsW1QIq5CsUaEpoG7HNd3/erzZbbOs7h+6HeJ/X8/nUdxIEWpYo0PkFhWW0Zv3Y9erYOVhIn1ZQBJ4UFqToQRwHTuJBw4RPzZ5vkvYhbov1fIVPn1eKNuEebcHNSuXKaJPAt8fQDxlOU+vjIZp6q1CiEEmiYwDYuZwRkOnmwk/vAxco1Tgi2cz//XRATnnhYsQ0v55AIIQbKnb8U2Wlk5TnsPJE1YJq6KHeeIP1xKBV1uQxB42Evd4f0Ys4HVz800MaOpfuJ7jnHz4hjyhfdIZGKlMGrkEHFf1GOdHseqLMkXheHMYm1+b6qmo630P85cAGv3sWZsM9PMX15drKrvisndK9mLZwHgXFkMsqLOy4G9Pubv5f68MoeG8ftdBIPZ5d4dB5t5sMF2Cm6/C5ffxexIAHeZm4HHYzm3Geoap+1AI+FA5Pm51H93KKttwVqQEnZ01tP3JCXsOZ02XDY7U1lE5nRUNJXhqnHiqLCTkAbdTwfpvjySe8MFpifmmJmc5/CR3fTczX+7zWRmYp6Zifmc7SKhGE/vLIrebpJAGJNdO9t52t+bbdOCqPbUMU3uc+dFJJJ9p1q4cP3qhsWi2P4M9I1w+uQx7l/vK3YoJcev/OOfxOkq/eLDCoVCUSooEVeh2GDsRz6Feer7SV79L8UORbFBmAPdmIDlbiQa+wTGbADXzkY8ritoiVEQNgSZq75D6uY9YvseQtdToorm24UVmgc2UcCFlP3vZiFLX8W1gnNI4ULIpeI0erIbcBcvqCLicuQu0iMnpuhg2bTPPXvxuatx9XcjzbVnTRrSx+Jtmpi9hMcPhn4WOXr/eZskdTwXMoXAs9sFEwuxuKuBUag/QvzRUrZ4uOplEveXsott5WVM982QDMcoc7uwoiufs5QQ3H2S++9lsgJZeV7HcxT5evEt5vKsvhk148bCuJ5AS1n1AgsZuUJgd+g4HDrCacPmc2ElUlPuha4vuZlYi1PgQXPaiUcTCJug7mgHsWiSwIMBXB47R042MXnzKenLZ8Hs4yHOvLqbS9/py/q8koaFZhN0Hqqnplwj0tXD/P38sgoTgSBvnN/Bn3wle4ap7tj4y9CWQ83cu/CUQ+c6EQLuXchvlkP/w1HqmyuZGQkAkIgm0YSGucEfotW15c9F3IMvdfDgcuHWLpNyjgcP1zd7Q0rJ3Xtd1PqqiIY2z85iq6iVO3gqezdkcNHtdtFzp/Cie+XVHqiMcVEJuIo0TM5mt5j5MFJTV8Hh47uKHYZCocgbucqmrviUWjybjxJxFYpNwPldv0ry2n9V2bgfMOLaARL9KY++yN0AEa0SW90+dJ+Hcv9XEKwWuCy9nKh4ncijEazQUlZcSsDdfCxpQf2rqRtbycKvdHe5C+dq7INXOdu0N2BL9D1/rCdHsDV+BGM0vZfoBxmXWbgnn5AWbb4Y4an1TXtPJjxpOl95LurV1QBofh/OGgPGlzLfha5BeQuJ4YnnhdAkgt77yy5lbDaMshpiT0doOLmb6L0XrEFcLox9xxl9OEXdzmp0u47UdQwL0ASe2nIicZPDleVomkBoGsIhGLSfwZQajT4TTImUAsuSmCbUVGq89ZZASBNhJLg8pyMjfoyEiRCQjBsMdo1jGhqtp9p5fLEHLvXR4ravjC1h8nTGYHJ4eRZv+sGhe19/Suv+Rhy64P6CSPmRT+1DGxhi8ubTzAdh8XWencVm1zCS6d7vkqPHG2iviGE0Jkj2d5HDgCMtsrcXsFOslP37F5/hTCOoZ6O2req5iAvQvq+Brgyew2sn9Vl77MzuNQm4AOVe34ZFU17jIxraWNuIYjA5EsDlchGL5x6oykUymUR3ZHp/pGf/K83cf/iYwLOt+W5XbD96ng1y/MRBRp7OEpwrdTOqreH7fuQtVchMoVAoCkSJuArFZuDwoNXtxhrf5CxLxZZhVh4ldmdlkRUsE2NsBAOYqXsF3y5wRN8DIOk+RzRQRezJUzBXT2neKoQpsfoKKKrScHzzgikSUq8G+lYsczSWfyhFXEeoD2gtaBuPliTYt/4p14m4C15wcxCavmL83O1ZMFI1gRdn/Nsl7o81Y707Q7InJSsa7gYSMynRREpw7t7L5O1n2H1uInfvrdSINY1gzS7Gv5MqaLa4G9+RPTy4uFBwjZWZpq4yF8OTMRbdNl/b58CaCaxoU/5aI3L44fPnYXO1Mj+RQfbMMa6n2/KzM6ndUUVgYJpkLCXy7thbT/jyvbQ2Dal6hILqPY0EesexkibzQ9OUV1UwPR5aEdy5V5qptwJE+ruI5uG4kA0jFKWhuYqx4VDmRhs80Omv8dF1s//542xeuOmYGJpFSvncUiE2EtzwAmfhUIy2XQ08u732z59EKFOedeHMJ0LUtlQwORTYsD6LQdu+Bp7e3xhfXMMwsftsxCPpB1EkkpZdNfgqXVi2JLOBADdv3SUSWb+ArPhgc/PGA06cOsTIU8H8bDjv7Tr2NWH3ClwuJ5YB8zMRBp6Ob3uP3b2HdhY7BIVCodh2KBFXodgEhKbj/Nw/UEXOPiBINCIT2TO6jIkxAhOg+U8ibHbM2UlgcmsCzELhF/gFZM2J7ZG1a1GxaplTf1zyRdk2A1tiDld1GbHpArLFNugmUbcbvJisLvyV6DtPPz/tzP4bYK0WTrTGg+g7JcSu4n+tgdkJNzIUZd51FEiJYd6jhxi9lspC1Z12xDKdS0owdx9l/Goaz0wr83lsxF6IRV8tssoXlGlbtiurHK+lSNP/qjaaoKzcxciyjFFfmQuRJsna4XPhba3DiBuMPh7F4XVSf6QddJ27X13KAnW6bHzqtSoiDx5t6PvC67FnXR+eyV/EyIVu16hoqWTyZiabjNx4ylwsl2sj8zE69u/cMBG3dkclw72TVJT5SMTWLsQGRkJUVPkJ5CpSmAcTozNo2iwnTh/g0ZX+3BuUKGP9M9TX1jE+md0GQdd1PF4Xwfns514ykV7A9VW4aDpQzqVLN9ccq+LDzY1r96mqKmfPkVa67q4uLiiRvHR+N0+f9VLfUIPX4+HWrYfEovEV7bxeN9W1lVimRWtrE3curC2zv5j82v/229h0nU98z7lih6JQKPJAAFqJ2SmUvrnfxqNEXIVik9BbXyp2CIoNwqj5CMbN/LJprWDmavFFwdrEL1pZQBG0ImIa3lXL9FgXzv2fIf7oUREiKi6+Bn9BIq7T6yx4Ov3LPyyYeOpgftRipjclVrmcQVYphLEZ5PCN5w/1tleQyFRFeCuOTATBMtH31UPseqpRcgzfm2fof7eB/ndTAq57dwej15c8Qs1lAoyU4Dj5Mo/eST8zIj40jmbTsNIUsDKTLxQk01dfNlkveENn02FzDaroWTYWQrDnVBvxuSgjj1YWXArORXlxgn1FZz2RYIKx+0siQSIcZ/Ba6nU6f66VmZhgcnCWV3dD5EF31tjWwpEOJ8+ydDvRN7UhxcOklNTtbqB7HQIugNfvXlEkD8D2YuW6ddDQUY173En/4/y8hTMxNxGi82wLN65szOeXZUkmpre3pUJ4PsqRzpf4+uRXM7ax2XR2tOxgeHCCc6+cZG5ungcZCvU1dVbRe2+ZICxg/+kWnvR0cenS+vyIFYqZmTlmZu5x4tQh7JqD2YkglimpaSpnLjTHhQup77vxscw+uuFwlHA4yomTBzFzeLeXKrMzQX7rN39fibgKhUJRAErEVSg2CbPr3WKHoNgALEcF4cfbedq9RJYdQkoLkAuZgMt9cReWSZnyGRXlWN72peW6H5kIgyURfg+u6t7nPqbSG6Xh1XGQBljmc59SpAnSZHrgZZKjgS1/xi8Sn0jgqVy93OO+QdLfhBUMbHlMxcRbrpOvM27lwXaiE7MF76PF/z9oORLHOHeIr/7uEaSUuOWTVe2E3UC0nwFLIqNB5ND7wErXAe3oK5C8vmI7u/8ukWhKtnTU1zLdN7siy9UyFsRXXUd0HmB+OJAx1mQgSMvBTgburH6fSymxO20k4ylRWKbx7nsxIyGdpcHz/szsN9paBhFXaIJ9x1vpu5FepJwZD9JoW2wLx16rZ6AvTnAs86DS1INUXy2VXuZt1fiOVlOtBzFCEWKGzlzPWMZt8yX+qJuW1maGBtIPGphJk/ZDLTy9vTobrRB8VR5672cvopYLTRPMT66Oc2YogL/CTTAQTbNVbiSS5s46mtpr6L49QGAqi71EIf1uTDdAavCguqac6afrz+wtJj33Rtm/aw+PnqYXZo+9dIjb11OfQ1cv3EcIwdlzx7l08SYNDTW0tDQTmJsjGAxh8y8N4JRVe7HVxHn/SgHWRApFHty4dn/F4+41jEPZNSf3rm6/LNxFfuaXP1/sEBQKhWJboURchWITMAfvEP2vf7XYYSg2gITrJDLyoNhhrBlpgTWRf4adcNciZ5eJWe56ZDAl+Qm9GtxL3qjC04aMlX615cTQELLKhZAr/Qr15Cjle13M9zZgThdeiXy74nbkFqMclX5ctZXMdg9hxQuf9i01B8KMYwvd59M/eB/pqEBEA6vaicDlpQeVryNfOAyi7SDC/XS1l6wVofm8YPqxj3DcTjL0gvhkWdhbWggaLgK3einvaMwar92Z+XJILM/EtK0WcW2snOKarUZLrkzcF7NAFzl4poNnV9JYQSwQmYtw4NO12G1Q5Ykhuy5yrHMfI3nc10dnw4yFY5x4yc/cw9Q+NIed+qPtjN/py91BFqRpcWavjf82kKmgIrhzWC7ktZ8NcHbZfbyNnhur7QSmBmdpba9m3OFgaqKwmRYSybGP7MVIGFz7xsPcGxSAzblxxYDqmqp4cnkwlQG/jTENk/b6jlUirqZpnDn7Elcvrvwul1LS+3SEc+dPcPPqY2qrDSq0BuxESRqpz73qxjKSniDdXdt5MFfxQebKtVucOf0Sd69sPyH3I2+d4NN//tVih6FQKPJFgCgxO4VtfumyJjZFxBVC/BDwewsPf0JK+YU8tqkGPgd8GjgMNAMJ4B7w74B/J+Xqy3QhhBP4ceBHgA7ABQwCXwf+mZRy+xp8KbYt1swgREtsWr1iTTjjN7Efa8XSKjETOkYwijExhoxuE0fVjVA3MvadQ5DawGnI68JIYjgPY49dW7VKj/dS3hZh3rEfY3R92YDbhdryZ+z6W4OIxexsJAnZgGm4FlpIYkkbsbkQ+qsSuzOJ1zeLJXWEsBALhgeppgKEBCkQwnq+XPgOw/DF5/sUiUDuwKJd4KqE2ELmr7cKzWuDuRqWssgXOxRU2B7jajvFzI3VecVm0mTwydI+o3GL2apmLMvCMi2MhIERNzGN1E9HFmsQu9NGIrogZGur29nkCyJuFjsFK4v/bqr71e+Z02/u4+63shfJbN/ppW4sJYgvvkrms8fse+llHt/KPU3+xOkawveXLGOsRJLwwy6aTh1g5Fo367lCDj/ppXP3Tp51p8/oHn44gr/KS3Ad/riRuShl1V7mp9fWx77T7QxlyeQd753GV+mh5XQnt69kn0pfUeOjqbMWTdMY65/i9ndWZ6BvBLNDBfha52B0cIrTrxzmwfuZBwq2M8eOH1gl4C4yNRlgajIAwKOHzygr83Fo9wEeXx1i19FG7nbfJzYWT7utQlEKSCl58KgLib7tBmL+xt//0YyDlwqFQqFIz4aLuEKIHcC/AEKwyqItG58HfptUaehvAQNAPfDngC8AnxRCfF4uS2MRQtiAbwLngcfA7wNx4BTwV4AfFkKck1JubPqDQpED25FPY3vpcxi3vljsUBTrRMRn0OMz6MBivpisAelpRLqbsbRyjCiYwTDG+CgyWVg19GJjYscSbiQaUujYrRcuptdT1KqELsyTVgOZ8v205Dhl9TGCzpdJ9m2/TJZCscbGsbWtnMLpZqXnsw+gfNmCQouuxwu/vBCxEbB3pkRczYZeXwGjlzO2n4h/PyNpBFxIZYCyrOCYJWGyL4uJRJZT1bY8+1Zb+F8INJcd3eEgovlJlHci0TA1B0GtjKbDfoQQqQJrQoBIvZWcXif7znWm358Eu8dBfY07tVqCEYkzdLGLvftrGZ+KEphMP4e+c6eTdMbFnf4xHmPP+gT3nmwi/CD9ZdL87Yc0H9/N6L0hrBf8gQthb4c3o4gbC8XpPNXOvUvre++V1/rXJOLWtVYx3j1OPLI649zpdVDVVoVu19F0Dc2ucfhcJ0IIhEgNZ0hLPj/GsUiCJzf7mZ3afFuC2bEg3nI34eDabB5exLTWfnxLicH703zq/NvPH1txwbwr/5kW8/MhLt64SlVNBdfv38o58KJQlAJuj4vQfPpifKVKZZWfjj0txQ5DoVAoth0bKuKK1FDavwOmgf8B/HIBm3cB3w18aXnGrRDibwNXgT9PStD978u2+RwpAfebwFsvbPfrwK8uxPC/rOX5KBRrRQiB63P/gNDDr0N8A43rFCWBECCioxAdXRJ3NYi0fYR4Bi++orGgwSa0cvqSnwIgFHbh9cbwOuYZnazn2YWlIjuvfA80pesAChZ0S0jDJdofwt0gMk4B0sw5ysreJbTnTeJd+RWx265YoRg46yC+iRYSco03k5oNkOi7DsPkxYzNot6PcPF3Mp9gQiz8SnPO7jzagtvrSIVpWqk2PjeO/a1IKTFNC9OwMAwT07A43GDDqrIwEwbz/ZOYljNVBC0ugTgzg35uXfYv20PmjO4dB5sYfzSScX3HsRaG762etj3ZM0n76U5uZRBxGypIK+IaQwO8/JEzXP3OagG7tqWcjjYH4YfZ7WLm7nVT29FCYDxCPLC27zN3OLuv8rNrvVTU+QlMZBY/PS1udJdGqD+CTK4+rhXVviyvfHp0m8bcSAApobKlAjNpEp4JU1bnx99Szv2bfQyt01JisxBC4PY4N0zEvXuzm5qqSuZntskskwwEAxEevr/0HDRNwI5CR6FgZjqwgVEpFJtLa3MLD8f6ih1G3thsOr/5r39h5SCpQqHYFrxYC0Kx9Wx0Ju7PAx8FXl/4mzdSyncyLB8TQvwO8BsL/S4XcTsW/n4pjdXCH5MScWsLiUOh2CiEuwzbrnMYD75W7FAUW0UpqZaLLIhYhqjg5p8F0jTIVSV96TkJR4HelSX0ehhjI8Tb38IVy1y5XMg4PudXEIc+Rez+B3sCh+VsQdtMERdSFbYKtPMQuh1t92mY/E7GNpannXf+3xYgc9+6y4GIWCwm0UlNw1flYcfeBgaurZ4O33Cyk0fX+tL2tdtbRTKLF2ohp7m0cliQZDHU7b/yjPZDTfTeXy0CVzgzzwCoGr9J56EjPLsfoKLBR8eeCvSZCaLDfYTzPM3DPUP466qwuysJjRZe6C7SO0JdfSMT45kFQrtj5XOXUlJxuIxx2zT3H3cR6kttW1lZxmsHTzF3e6Xg233pGU2dtYw8m8y4Dykl5XU+fNU+nD4Huk0nFInR93iUid6lQm5jfRHoGy/4eW4ljbtruLuBg4aJeJKW43U8vNi3YX1uJDWN5XjL3ZhJk9nJEEbSIB7N7tddVuVF1Md58ET52So+2MxkGQArNjabjmGY/Oo//Slee/M4/+zXf4/DL+3mzU+fLnZoCoVCsS3ZMBFXCLEf+IfAP5dSviuEKEjEzcHiVdqLqT2L6SOfFEL88xeE3M8s/P3GBsahUBSE442fxRy4jQx+eIomfagpIdFyEWlZ/Pd3Poe/3gdkmU7+nCzPQWQx+0zbvrRej/nbE9iO7MSW6MvYRmDi5X+iHftuIre3b0G7XFhmJQUezcLRbGAWZi8iancggw9B+FIDENJckU1rOWoJd+/g/IFFf+OFddJalXV71fhBuq9MYsSSlCUEcj6cVsAFEFmyzIUt+6WSVsh5nqOppmdv4LGlj9NjBFfVfltEJhLstm6z93tOMfBuF4l7a/N+jk3MYC/zUrGrkcDTXIM/qzl0sIp3soi4+mJGlgblJ/w8mHzKd26v9rGenZ3nS7e/zSfOvooYE+hlGkmPQSgZwV3uor2mFcuSJA0TQUq4jUeTzM+GmZmYZ250BkZz+wSXOr5qFzzd2D5Lxsd8AafbTjyaZP+pNt69d4H4+II3rQSXy0kN2aditxyo5msXv7UFkSoUxaW+tZzRwamS9MT9f//Hr7H/cDtVNSmPpn/xe3+zyBEpFIq1kproVlqZuKX3qbf5bIiIu+BN+x9J+dj+7Y3o84W+f3jh4VdeWP0lUrYNfw64J4T4BqliaCeAV0h58/7LPPdzI8OqfYXGrFAsorcdx/2Xv0D0P/40MpB5Cq1CsXkI7C2NxKTEs9sHizfpZmrMq6IsRqU3hJSg26C8No4mji5MRbdA9yCrmlOPXS5Ml4dUBqQJsh6qzwNioaDVws9CIXqrt/AprJuJjEaYH+yksmEcITNPQRYC3MafIE5+mvD1D6a1ghFyYNvsqx6bD8wCxbL4IAQH0q6S2IhOHsKazJ19aGFjuCuMEUuNAeu5pmyambN6ZY5trQJsRox4dpuJXCLa6KNRDry8k4dX+1Ys1+anyeZoKg0DW3T9wmVyPowWT1J7qI3J+4XVja3Ssn8eVLWWE66P82jsKd++dDVrW8Mw+dJ73161vLVtmMryMnxuHx6bj+Frs1hGad1sbBSh5MbYKCyn1G6EAt5xZuIBhm68MPgiwOl0QJqXoKLaR9P+KiQWF+5c2ZpAFYoic/HCTSqryjBNk2QiiRZ1FzskAH7gRz/BmdcOo2eZZaJQKBSKwtioTNxfBV4CXpEyy53x2viHwCHgz6SUK+bBSimlEOJ7F/b/K8CBZau/CfxnKeUHo1KDYtuit76E+4d+h8i/+O5ih6LYbErtDpiUIPn41njGadyf/0vQFvmfSwsGyCoGLV8nWmoJXCt8anUxSY4MEar9BH7tj7K2EwLc8S8hj343kTsfvIzc5GQSV11h2yxo85lx1YCjCWa7QLNDYuOyHaWEuPwURv+93G11OwHnIeZHl1kg5BBHZTYhNsfNZyFW0ckcIm4+2etjd/o4erqVwYEAM6PzuFwa5sx07n0P9eOtbyI8ntkaIh+seIJo91MaT+xj9EVxLQux3kEcDi+JxErBXPNo2A66+eMn32J4eH0WBgP9IwywNGC6Y0cjDfFWgmMbL3gWm8H+jbd7sKSFRLJzfwOOMhs9N0Yxja0v7CWEYPe5Bt65+Czjh45pWex/uY2poTkmRwLPl9fu9ansW8WHktmZ+ef/n3n5IPeubk6hVo/XxSc/ex6Ab/zZFeZmU17pTTtq2bO/DbfXid1u43u+/3U+8tbJTYlBoVAoPsysW8QVQrxMKvv2n0kpL60/pBV9/zzwS8Bj4IfSrHcBvwd8EvhZUj64EVLFzn4LeFcI8Xkp5R/n2peU8kSGGG4Ax9f6HBQKSAm59rM/TPLS7xU7FMWmUoIqLqDpWubK4yU2JWYriNx5hP3sJ7L64y7itv4Uo/MtEs+68+5fIpC6M2UnIDTQ9FSas9AhHkJLZi8OJRFgc2M5fTw/p3QHUncgNftCvzYsoaf6FBomTiypI6VAyqXz0DJTP9KSWKaFlTARNotmbR5r19ug25BCIOZHEeEJ0J0L+5RgxkFKpNOP3HmOZPsu7L1P0brfWcjUNkGzIeMxhGmABOGqAiNK2hS5vF689IJR3PlZon0RRPWeZbX2rFQMLBQwEwJ0B5PGHr7x5TipiTkL3WbJtE11lXm9cNhxNlSBpiE0DaFrqf9tOmgapt9Lx8mdIARCEwghnr+Ez/cvJZYlsTtsBEcyD3zkOxV28PYAdpedl17rxJjJxyYFrFiMav8kjl0tzD5dp8WPJQnefUTTyQOMXM9vTr8ZS3DkpXauX0l5z3r2eBlxznLl5l3M9zZnvH1wcJR9Z/Z84ERcm11ncnrjLSF6ng3jb3Hx4HFKnD9x4gBPrqfPjN8MdJtOWaWHxr2VKSE2y9shFArz9evv4Pf5OHb6IA6bAxt2vnX9vS2LV6EoVaLJjS1QaLPpNO6o5ZOfPc+P/uz3UFtfCYBpmkxPzuF2O/GXezd0nwqFohSRiIwGXsWi1OLZfNYl4i6zUegilQm7YQghfhb458BD4GNSynRXq38T+DzwC1LK3122/MsLGbq3F/rIKeIqFJuN68/9BsJfS+Lr/2dhqVuKbURpHtesU7TleoTn0ny++TB3dQj99FHs0TtZ2wksfP7LzNUewpzMzwd0wvEa80/SCx+aqxxfa31KUE2aSMPEShpYSRMrmcSKJ5BGJkHLAuILP2vn2I9IPKGvkjz4K0hP7imOQlRgmWNAkERHPXT8hRXrne/fQz7804UHu9c3lJHGdzmmvcrYV0azCq2LaLWNfPnb87yo/mTNtCX7R3IgJuh9nLloTMN+6H+Qn11OeZ0/e4MCXrxkLEn/lWe89NoOyFPPM4NByirHiVR6ic+u/yZ//s5D6l/ax/it/DK+misFD4756AoOcO/u1kx1j4sYElmSXpFrRegi+5SJNTI1HljxWHNu7WvWeNTH5Vs3uXcx/22CoRDvXVO2CQrFcu7cesyplw8TnTfofVy4hzmkMuK//y+/xY/+7PfQvrsZTVv9/azrOnUNVesNV6FQKBQFsN5MXB+wZ+H/mEg/DfDfCCH+DamCZ7+YT6dCiF8E/i/gPikBN1PKyGLxslXzpqSUd4QQM0CbEKJaSpl7rqFCsck4P/6LIASJr/7T58tEWT0yOFlwFXdF6VGqIsGe47VUliUXopPEDRtuexJLajhcIUTlEUADzY7EhpXUn4te4kXj1EWxS4AZ3Xy3GuksJ1pzFEdyGkt3YWoeBCaO6ftosfncHWTCNJjvraeqQUfkUEM0M4C/PUBgWk+lteYgw3chAFYswXzX2gpLbRSzQ2V4KjW02Simx5fHFjnEei0lBIv64zBzfX3BvSDiJrVOJi7YwMrPX1mGg/grGwnOvlC1ftkh0WypjFppWYAEux1p0yiv92Oz27A5dDRNw+bQU1m3tuwl4HIVI1tOIprY8IJyza7CLE2M2RmaWv30R2xYuewd8iDyqJuag+1MPcicsak7bNQd2cns3DRfvHoBKw9BfqN499IVPvrqeUbeK93q7YVic+jLE803jeuXHnLqzAEeXi7M/3gt7HulmW9ceLdUJ7QoFNuOa1dT9kMvHTlM192V1x12h42Dp9r46MfP0drWwNUL97l19QlP7vc9/3z+L1/9h5w4e2BVvwqFQqEoLusVcePA/5th3XFSPrnvA0+AvKwWhBB/g5QP7m3g41LKbPMEnQt/a9P04wTKFh5uwaWuQpEfzjd/Aa1+D5gJ9JajCG8V1sRTYn/wy1gT+U/ZVijy5TxfhEx65wMIbGUwBRKsPMH4xUXfzSUbAmGrofLAcSpEL3pgbQKDMTpMfOebedkq2KL38R7/LsLXH+ZsKwoQ9YpB/zeDVPzw23hmA5jNGyDiLgqvVgL8h5B2J8zeQhjZbSNW7UXYILzk82kJP5P3D2KF888iEjZ7Wl9Zw5BoIiWwS9N6bq/gKnNzoS8EI5kzSU++ujvrPh0ue97xJWIGrizrC52k0dBRTc1kprqsWeIY6GfnSwfpuTzKelUzaZok+gco31nHXN8EILF5XDjLPDjLPbjLXER6BgjeeYgNOHNsLxdvPlrXPgvlnQsX+OjRjzByZ3t5eGciGV2/+J4PUkpMsfmCe21TBfe6HyoBV6HYBB48eUzHgR3EYwnsDjtIydTULBcu3OD7fvhtPvO9r/GZ730NgN/7nf/J3/tr/w9CCHxlniJHrlAoShHtQ2jFV2qsS8RdKGL24+nWCSF+jZSI+x+klF9YttwOdAJJKeWzF7b5FeDvATeAtzJYKCznPVJFz/62EOKClHL5HNNfI/X8rkkpPzjpF4oPBPbDn1zxWG87jueXv4n57BLRf/uXYROqTisU2w2JRmwumX6dYTJztxf3uTY8axRxAUJdYZytNgS5RRFX/M9ItHyE5FD2/dndpV+FORp0452dAlpyN841S2BhiqWcvP98kdhxHikXxk8nL2et1yUl4GsBIwaJ6MIywfT4Z0iM5Oe3CkBFHVdHOwjOhFeHqC/E+IJKamW0rsgfuy3/420mTer21zPRnb4oVS7bh0WEJjj7eiN7p95FS65N0Is/eUDzqZcYvrZ+z1MrnkCfnaKqwU1yPoxMBmE6SGJ69Sj6+doqCpgtv2GEXevI3C8xKhp9jA5Nbsm+njzsp25HNRODmyeAT44E6Ni9h/HJ/PydFQpF/iTiSR4/TD9Qqesr54Z8+s+/RiQc44d+6jN4fe6tCE+hUCgUBbLuwmZroBl4BPQDOxcXCiF+hJSAa5ISZ38+zZTUPinlv1/2+DeA7wI+BjwWQnyFVDWV88DLC///wmY8CYVioxFCYNt1DsdrP07im/+i2OEo1oDcxh6xpci47QzBx9kFpvC8YD25Iub0JLE9b+KOfSVnW4GJr2GA2TEHGOkneDj37mOn50s0tDQSinUweCGKEdzYAiMbgQCYGQKO5dE6h5+spq9KoJODF5b25baBXBIapQRRexJ0NzIRgtAwzA2v2H4m8BcI31s5MyFh8zLr72SaWhrNfirmniIEzJZ1cmFmH86gi2hPV0FPwUjmFnFzvatNq7D3/cTT9AIupArQ5aK2tZLXO2com3hn9faajqOhAVt5BWg6ZiyOEZjDiscRdjtC1xF2G5rTiRACsYEDDmYkhhnJbXuxe2QKt8dFNI+2G4nDZmdTjGSLQGVbGQxtzb5C8xH2H9q5qSIugL/KBc9yt1MoFBvH8ODK76Pq2nJ++pc+X6RoFAqFQpEPxRBxM9G+8FcHfjFDm+8A/37xgZRyWAhxHPgbwKeBHwU0YHSh3T+SUj7enHAVis3B/uqPk/j274CZPgOxVJG6A735KAh9YTqzXFI/NIHZfw1hrRRy0HSwOUC3IzRbKqNP6CAlMjaPMLb2Jn/dFCjmKDIjJfjrHOjONgIPM2e+Bp+OUt1oQ7PWPr04/DiIa6cdQe73nB5/iu/4pwhdfbJiuXC68R1rxBH+EsIAH0P4HNeo+Ng+Hl44THyydKZxazZBRWU3TA8uKKrZ5zBLcmTi5tg+9Z5eOj6i4VXk8PsZm0f4OMEbKwXceW8rXxk9yLPvjAOzQBn+qlfwVbiYvD6PER/l+GvtaftL7TT9YitpomkCK8t7N9e7uhBPXACHx0kinL44XeZMXEl7p5/W3WW0j11An4yjV1Zhr65GuNzIpEkyMEdiYpLo4BgMjuUVi7DZEHrZc3uJrcCeTPLREwf40ns3t2yfAAlje32nZqKquYxbt7b20vbaxYc0VNQSCmzMLKGaxgoiwRiRUIx9J1sZCQ3ztWurByUUCsXm4PN7+JEf+yw/8EOfKnYoCoVimyE+oHYKQogWUkmlbwPVpDTFPwJ+XUpZ0I2cEOJVUprmOaCKVAnie8D/LaX8s/XGumkirpTy10hZGry4vI80t1OZ2uexn0nglxd+FIptj+atwrbvoxgPcvt0FgMpQW8/DRbI0DTSMlMizswwZm+Wm3KHB6lJsIzUj5RgsZDRmFgllIiKJpBxCGWqa1iCaMrQb71ICUb9IWJ6LWOXcle8N2NxIg2v4Bv59pr3ac5OEdv3cdyx/L5TnZE/wzr23UTud4ORwN7ajq+2Gz1yf9W3m8t6TPvZdh7/yZrD23CaX/Ghz90FQER18JYjEAti7YKYJ00kJmCiCS8mWa5d0lSsXoHuBGtBtKx+KauAm9APMfntBUsFoWPtOMq8rOJ3/ssMsDJjKDgTITiTb5Zz5vfmmx/dxbP+AM+6009Pt3JYHASGM702EofTRiL+QvZnlqJey2cgaRocO17BnmYLb2AIY+IpHq0FWVcDNifR3n7iU3NZY8uFNAyq9jQy/Wg4d+MN5IzDzpe2dI/wuOspe+oOEJzYvnZFFQ0+Is4o0Uj6QYDNorqunOB4ZF3FO6vqyvBXevBVubj17DaG06ShpY5v3FxVm1ihUGwyP/mz38df+zs/VuwwFAqFoiQQQnQCF4E64I+Bx6Rm9v8C8LYQ4ryUcjrPvv4u8PeBKeBPSYnBNaSsZl8HSlfEVSgUa8f5uX+A8eibKbGzxNDbz2I+u1r4honCppTLwAiiohH89RDMPP24lEhjAaNIg+WuIlxxFO/4e2iWgdR0oo3nEMDYvSmMgSCQv5X5+I0hPPua0ebWLkSFHkzj2uVGyNwCjxDgMf8E15F6LFstevQdRCKzMFchv4y94rMkA4UV+tpI7DVeKk634D9UTVmDkSo5CmjOSqSW8pB98exNPdaBKJgaZMrIFTlEXP8hpKaDFYTZ7MJ8YOAQljVMcuc5ZrqnSVwbAUaoq+9kYjz7sfG6bdSfWMrGXdJeJbrHRX93+muv6Zs9NB/ZmVHEzUVwOoTQFq2DJftfaqHKZyM0PEMyGqdi304e3Btlbir1GZjNwsE0LXbt8fPyfnCOPMEKdUMXzx2bNa+f8JNu5Bp9cNPhTkxQ3l7LXO/WeKwCNA1N0NJcx9Dw1g3Szc0FuWW7zhtnXmHwcn4JFU0vVTKnTRO7a8NMbl228ovoNo2OM81cvXYfY2LrLSE6drXwaHzt3uMA9W0VfP3GSsF2Zjawrj4VCkXhuFwOPv8X3i52GAqFQlFK/GtSAu7PSymf+1oKIf5P4H8jZeP607k6EUJ8npSA+w3gz71Ym2uhPti6USKuQlGCaOUNCHc5MpzXgM+WobWdXpuAu0ZkYBThr0E6vIjE6mJFJYcScXMSbzrNeHeM+OMehL0Nu8+DtCySvWsvrmQlkkybndTI4TUfAms+QNz5Gq5Y/hnwWnIcLZl7gEEIcNeVbbmIq/kcdPzV05Sf0cC+mLEZQUuUPxdxRSiKrMrVkwnYgfTZfyKW/b0pR66Arxl0iUhkLi4lcZD01TMe1klcWSn2Hjno5xs5RFzNSDJ2K71IXLGrkT2n2lIHY+EcEct+m5rgc5/YlT4ul4tsUmM8nGDXS62MPp3k0J4KJh8PsdzMYPz6U+odNg690cntG8P4y5zMja3OoK1uKqfao7GnxsDedTetZB66/yhLJGsjOTmJxx0kWlZJYn5rslQ1IXjrYCf/dgtFXADDMOmd6cNGedZ2NqdO3cseLly/RDye4GPnX2H4veIURpNIvLtdXLx4pyj7B+jvGWHvmR10Xx3Kaj2SDc2WY7BHoVBsCXsPdLCzo7nYYSgUim2IEKCVmJ3Cem+/hRAdwFtAH/CvXlj9vwM/CfyQEOKXpJQZb3qEEBrwj4AI8BdfFHABpJQb4u2lRFyFogSRRhyt6QBm93vFDuU5WutJzN4bW79jpw8iW5chptg8os2vMHRp6HmKpEwaJGY3RhgJPOin/MwpHKPX1txH8OEczs78snELxVm5tV+3jZ8/RNOPV4C2OqPZcgSRBz6GePhNxOwkVFXn7E+gZfaGnR3JvrHNAw4HYj591SIpdaLaJwk9jJJ0xdOeEzvsuc+TbNdwEsHord6cfaSj7ujOnG189iR7W1xMPk7/WpgJg7HrT2nzu6g9UE+gwc/EwAzBQIS2fY34HTD5ZISh6wFiO6s5a9cR1tZlXFrRGFWdtYzdWvtgSqEcxUWl389sMP+s+43AymJnASnRtOy4zjsXlorzffPC+7z58usMXZ3Z7PBWsefVVi5eKJ6ACzAxNsvE2CzVdeXs2t3Kg/cLfy9FrOLNRFAoFEs4HBuSCKZQKBSlxD4hRFqhQkp5Ise2H134+zUp5YqLRCllUAhxgZTIewb4ZpZ+zpGq8/XfgFkhxKeBQ0AMuCqlvJT7aeSHGhZXKEoMmYgS/Y8/h9FVYgJu3+3l85O3DOHyIXIVVioRVCJuZsyyJkZvTW7qOTT2NIG0u9e8vTU3S8zx0dwN14DLvzXWKJrHzsHffpOmn7SBlkk0sTBfej317+jT/DrOZpkwm32atajdn1bAlVIQ1d5m8skbzL03gDk9idAzdCJzfwZkbWGu/byzstgfADQ02vn+jit0NieeL9t1spm3T4R564xB077658vjwRhDl54QejKIJxqm3gWx3hEmn6TEX5vLzsnaoS0VcJ+zhZ7eRk0D9wddnD1wZMv2ucjExDS6Pf35rGmC+vMeLl65vmrd+w8uUbunbLPDW0UwUjqzUKYn5nhw7xnVjdkzmdMRTWyzQqUKxQeUne0qC1ehUCiWsXfhb1eG9YvVlvfk6OfUwt9x4CYpP9x/CPzfwEUhxHeEELXriPM5KhNXoSg1dDtWYAJR1YnQLOT02rLHNgIpQd95OpWBWwQBF9heyuh2inULkTYXprcJM7q5GdXxqQChzjP4x9ZeKCf8JIBrpw3BxoquLufmT8WueqOT9r+2A+xTuRsvFiMbvAOcztlcWG6wJCzk48pFyTQGibl2EO2p81/Kpc8K3Yaj2QsTX1nRl5QQ198i+ERgjK/MXM2kI14f8wKJ9CsXyJpgucapX+3HmvCX63zyrRa+/LWhVevr6u38zOs9MDnE0ZYKbuCnsqWCvcHL6EbKfuJIZZIRMgwuLPtc9VX7OLM/jmN0a4uMLaJt0ueXlGA0tzLhqGV4JIqRNJm8OQPM0Hy6YVP2mY1QKIL3pMQXr2DkTmBphQBxIMK7l9JnvcaicZ5Guqj1tpAIb51fvd/j3bJ95UMkFOXAgQ6mR/Mrqqdpgv1n27j+JEvhU4VCsWV86rtfK3YICoViGyNKzE5hgcd5ZNxmYnFkOtOFzeLyihz91C38/WmgF3gTuAK0Af8M+ATwh6SKm60LJeIqFCWG0G14f+Y/EfrNN7CSUbTKNmSOTLdNoawBzdeA2bM6I0mhyBervIXhsVpiz7bGEmP8ej+eQ23ogbW9Z8zZKWL7Po479uUNjctpn4RMQt56sWns+42P4D0+BwTy22ZRr5vqAekAkUMgNWeRcnXf2riONZ4+m1dvPwLjX3m+LymBqpeZvllDcni1ILoirheYnc1lISWRmQ0fsqzJgIBD51sJ3n7EHKDZbThdZcRjS+JdbZ2dn/1oL0wOAqAP3efNz3wPzp676PEl/2DH7DAtB15h6OHYi3t5Tl1nDSe9j7GNBgqNtGQxahuZ9jfxrDfE5OUZII1Vw0xxindevX4Ht9vF+ZdPM3Q1VeSs5XwF37h4N+t2oyMT7D7bzsSFrYt7pj+IzaZjGEXIzk7DqbOHVtgp6DadnfsbiMzHGO1f7eO/92QrX72UbfahQqHYSo6d2F/sEBQKhWI7sXh3kut2YnE+oQC+V0q5mBXwQAjxOVKZvh8RQpxdr7WCEnEVihJEuHy4f+RfEfmX34e0u9DaTmH2Xdv0RE+Jhla3C+Gpxhy4i5wtvhetnJ9E1HYiJ9P7aZYUKhF3BVJ30t9XhjG/dT6S0jSZTrRSK/vX/H4JPwrgarcj2BDveQAcDLA0W2fj8B9pZPdvHEC48iuCaAsJ9OmHYKSmhQtAJO1IR3YRN5Vlm2bxQPoMY62uHTsXnifniupTyFAMRrpIDmeeVn1vqo5rsw4sw8IyLYQQKXnWjFDr0Wip1khG4iAlcqHAktAE0pL4bJJIxvDzPxlqWitpqJQEby8VEXPvaSfev1TErqbGxs++2QcTK4XJRjHIXHy1jcWuujBDD1fva9fJZur8CapGb6GFizzdfJ2fX1LTSDS3M2OrpLcvyOSNDMLtMqaeTRfFFxcgGo3xjevf4ePnP4IxJ/nWlQu5NwIu37jJoaqjRGZyvGc2iOmBAN5qN3OzpeEpmzRSn4sev4u2/fU8GnnMdx68S0NdLW5HFcmEgRCCupZKKut9XHp8pcgRKxSK5fQ+G6KhsabYYSgUCkWpsJhpm8krquyFdpmYXfjbs0zABUBKGRVCfBX4MeBlQIm4CsUHERmcXvg7hRmcQu84jdW//pshKUGrakP460DoIC2kaUAyjpwewBp9BpSOYCrnxtBqTm0PEVexgkDFeYyerT9uc48GqDh7EsfI2rLIzcAMcdfHcMW+krtxnjjMQYT9IDK5cRl87b9whJqPVyK0BFrEhYjPLbzBXUhrmZxpGQhppdbN3gArirDveq7JinAM6ci+LyHcyOfXJkvIp6uzcIWvCnv5ICIRRfr2gOXH6r+XWmnPPjXcNCTxUDzjeiNqIM2VvgmLYi4IXNV+EAKBYLE2gRAaptPJqOFEApquoWkCoWspcXfR0kAI9rzUjP/pHYIvZIhGWCoEU1Gh83OfGESMr872jo4H0sZdNniL1z9yjMFQOcNd07jLXBztTFI2/B3SvKxFYS2DHlK3Mdd+kPGgRt+jSWJ980D+1iHSknz61Hn+v+9s3HutUN69eQmv141p5pfpmkgk0Q8nEIG8rJrXTevhem48eJS74Qbi9buprPZT01zO6NQobqcTl/BhJE1mY1NMOAdIhJN0XX/wfJuxiUk+ce4w8XmTJxOPuDH8FIrjDKJQKLJw5+Zjzr5yrNhhKBSKbYksQTuFdcfzZOFvJs/b3Qt/M3nmvthPIMP6xSv+dU/NVCKuQlFiWKFpzK73if3ZP1m5PDCOaDyIcPrBMjEHbyJk7ptOiUC4yxGeCoS3FhkNYY11wVSG6cwliExkFnVKCpWJu4LgwNZXcl9k7KnBjjIXwlhbdmPwYQDHLj+atTEZgkKAq66C6HAefrU5cLV42f8bO9G9z5Cx1KWLZjbC5HdS+/IdQ8ZWpn1KQHPuBSu6bMlCbDMTUFm91FZKQKBFDEhMAjo4PKvP71kda/AFccnhwHV8J8KaRXIY+fA7K9fn+MzStewXYppNx8owrdy0JDMT6YtAVZX5SMZzC+g1ziTxxOp27vlpPF4bkbDBj37WRAyt9irXKmpJdGU+X8qGbnMQOLjomFVqAlcBKq6UEG/bzd1RG6PvjOTeIAv60ELGdZF81+PxBPF4YVm1127c5Y3z5xh9b3OzY33VHvonRzd1H+no3N/Eu9cuQgGuNB85fRYrAe89fB+zGIX5FApFXiQSGzfLSKFQKD4ALBZTeUsIoUm5NEQvhPAD54EocDlHP+8CBrBbCOGQUr54cXlo4W/fegNWIq5CUUIkrn+R+Ff/L+T06imocmYQuUwT0ztOYfWn/yyRdjd6/T4QNszxZ8jQHDIUBAY3KfLNxRrrAt2BMLdm+upaKWTK9gcVq7yZhK+VhOEmfr2naHHEJ2cJdZ7FP7q2ImfW3Cxh42P4tT/asJhc1W6i6xTuWj9SQWPzQ8xsY7gL1x5S84DmAUAYU8hw1zJTp2UphOPPoLM6lcQbMZCh2yDjWMtHth2HV+1Ge+cZL+TE4jmzAxG9Ask5pPPs6thyiDsuJzR1VCGlRNPEUt0vkdKQtblA1u0zkoc+6PI5kUPpPyMjg+N8zyf20VA2QsXQxbRtRHUzpafM5s+Ln16WrmPVNGC4vZiaHUPYCJp2ZmYTjPXPEn0/sCH7nRud41Mvn+dLV97fkP62im9duMibJz/C0PXNS6Wu3VlB762tGXD1l3vo2N+EpgvMNRR2nAnM8qDrCtZWpCcrFIo14/Vtkj+/QqFQbEOklM+EEF8D3gJ+FvgXy1b/OuAFfldKGQYQQtiBTiAppXy2rJ8pIcR/BX4Q+FXg7y6uE0J8nFRhszlg3dPPlIirUJQQ1sijtAJuOsyea+idZzEHriOsJPhq0Gp2Yc2MwNw4Zn/2Ai3bimQMrXkvciyNqaSiJLA0O7HGswxfHgBrfZl5G8X49X48B9de5Cxy5xHOc6dxRDfG09FVvnaRXzhsHP3zFs6ZP4Zp0MeOYjYts0xYNoAghYbwH0dGH7I4tV3a/YhEBt/c/tvw8jlEoAvLyHTstJWPHkmsRysHkVznjiDml4nm6QY1rOzikF8kKZ/OfP7EvRUkwukz87Nmcubx0sdCceIz4YxNrdk5yucuru7L4UKvayZhq8dWEcYIBHLvrBQRYAlBom0PgzEv3XdGSfYmgM0fPGtOVm76PjaDSWMCllltbDRmcmsE0YNnWrlx+w6DV1ZnmOfLvSePNzAihUKxWVTXVBQ7BIVCsU0RgFZidgoblEL1vwIXgd8SQnwMeAScBt4gZaPwd5a1bV5Y3w/sfKGfv7qw3d8RQrwGXAXagM8BJvATMl2l6AJRIq5CUUJo1TsKam8+uwpCQ9p9MDeLOXdtkyIrAbQcpp2KomFW7mR4qIJ479rE0s1CGiZTsR3UraPIWfCZm6omHcH6pwc7vdHcjdLg39WMLTGHCC35T4ruEWiqWNZqmcgqBFb0/spOZBxs5WAsZg0uXYDJ8DRy5jpYmaeGy2VCnhjTsf74D1esdxw+gB55Ies57Ysuide/tFJ0RiCEhpQSkcOcV2hZDuQGXFMmdu/H+fh+2nUzT0YJv3aCMjmMXtOMTCQxAtOYU+OYfX2EPF4cTU3bUsSVEp5Gq7kYkgTfnQG21gpl4vEEB3a287Bv7SJiMQiFw9ip2LT+neWbJxAvx647qNIbiZTPEpjL39NYoVBsHxoaazh15jCvf+x0sUNRKBSKkmIhG/ck8PeAt4FPAaPAbwG/LqXM68JYSjkhhDhNKgv3c8AZIAh8CfhNKWUuS4a8UCKuQlFC2E98jtgXf311tpq7DM9P/Duiv/dzyMAL/njSgsTaxKFthaYXO4LcfEjdFCLOduJTxbNOyMb8k0Eqzp7BObK270xjfJRY+9u4419adyxuR4ZM2AwIm07NsQ6iD+6RlBK5TOCUz67DmbfBmfqskDYby2XRtFjLM1iXMvxEdA5k5gxZYW9FilTWr5jUkf/5S2Asibr6jhbsjuus0rkzKOdPrwTBSh+j72hjxjgAdHvmz4FMXrlA3gLv7WtjnG70QWi1oO2rdePyCpI90yTHJ1esM1tfJnSjB/+R7VfxO1LRzLXILp78z+IOwtRXVm87EXd6JkCDqNiQAYS0/W/RgMDtC0858NJOLt7q/9B+jykUH2T2Hejgq+99AYdjawaGFAqFYrshpRwEfjSPdn1kuVpaEHz/6sLPpqBEXIWihBAuH8LtR4aXPPYcH/8rOE59L1pN24dDrE2HbgcMRFUbCA2QIPSUSJSqwZRaLgFNS6WVCcHSykVSd9oCbWGxWLF8ce2S+JTH3ewyocpu0/Hsa39h3VIMkUfP8utzgwk3vU4yoa1e8WIocuE1WBAkFqenLxYdSj0bwaJR6eIzi46kLyZVKow+DtNa7UVLri3O4O1hHEda0JPr86b0iusgTkAeBZzcTTV4PBbR+0u2KAmtBediYVQzga1XYOxbeCjHU28DeO6JuwrNtky7XRI8BSBkBZKxNBvp4KxBlybm/Dz8569BJLC0rd+Pq2UCopHVm2Y41TWbjpWmeBiQUwzTtDTn8fNt16+kuX1OZGRmVei17WXsLn+IfLa6cJlwe5l5MAQI4i+Iu6VK0uFhuOYYPeM2ei6NY5nFt0Apc3mKHULBBGbnOXG8kuEbm+OLa2UY7NhoKqv93H16Twm4CsUHlM7dO5SAq1AoNgRRYnYKH0aUiKtQlBgyuiQS2F/+Plyf/KXnj11/4Z8R/bc/viFixbbCTGL1p5/iXEoIHpJxMrhuJ0JxfB/nx+OEeoov0hSL5Ow84T2n8Y+9s6btZSxKMHCMcs/Qmm0ZAOxyBl97PaGedGLpEp6WOmyRSeIzK4XRgW9G2ftaFTYrNaNH3rsBe46knBRkFGxlYMwDGURc3z4IXF18VitWiYSN9E4GJjJ0EwDbXBtGcJlIqWm4j/khmCF7MsPHlNB1yFg4Kftnm8xSNCnrx2Kex23f/irE45XFyexunT1NQ1iTKwVc4fYiWg4w+XASM5YaIEiMT2L3uZDRWH473GJM3c6TmvNcvzJF7GZpCc51ET/tjU30jm6vz6qwbZ6qnV5m+jZ+MCse35pinnOzIQ6f3M+laze2ZH8KhWJrcbmdxQ5BoVAoFBuEEnEVihLDfub7sca6cX7yl9BbVlaEtx/8GNbbv0T8y/+0SNEp1kwR7SDEepTHDwjjN/vx7GtEnx/N3TgN8a5u4mc/jiv29XXFUd6qE8rqPCFxu03iU6szWyuPtaGbl5YEycAQ+ugZzOZUW7NuP6ChWR4I9KXpOZLRckGbjyBcnueLhbXQZPGxaUFiCv3EIUAgkxZaQyXCHoDyjy6k8y5kaUtS2cDRckTb2VVxVB3diZV4MUM+lecdcZbhOHIgwysDSZsDT13D8+iX95L0OvEcdT8PYREhwHQ7gOyiZeexZuyr/HAlx19zYvUuCbuavxyrfh8Tt4cxB/pWNtc0dIcTowRFXEtoXHad58E3h3M3LgKT3VO8efoU/2b0j4sdSkE8fNKNy+Xk8PFDDN/MLyNXaJkT5hdxuG0M9Y1vQITZOXK6k56RXiXgKhQfYP7ij3ym2CEoFAqFYoNQIq5CUWK4/vw/ACkRGaYN28/9IIkLv4ecn9jiyBTrItcd+2aiRFxk0mCWvdSwNhEXIHgvgGNfFZq59qJPZeVDDGdJC6080km860HadfVlX06Jq8sQ959Bc8pHVlopAUmip92DTAyApwMiPavOR33gKcy8l/8T2fE6aJezn9bx/cjh91ctDnU1k5hdbUsAENt9lEcXM2cqe9obGXmSfn3jgSb676fP4mw5kN1rd++pVmpHHiNeELePfaKC8ooAwQVnFL1hB5PDNhI9q5V4Z1MDNqdGfGAw6762GsPuZqTuGLe7JWP3SlPAXST6NIiuaZhWET8vC2R+PsT8fIhbxm32th5gdiBHRq4Aa08IHnsRWT4LalorGO7e/O/5Rz2PmZza2kJ2CoVia6isLOMH//J3ce6Vl4odikKh+CAgStBO4UN4m6tEXIWixBBCZBXdNG8ljtd+jPif/uYWRqVYN0W0wFAaborZe72UnT6OY+zmmra3QvOEk6/h1/5ozTH4uYKwnUemK8KlCcT8VOb9a150a27FMjlwC22uA6s8CsKFJmoQpg3NeQBhJZBmHKE7kZodEEgzunCt88L+RTL/J1HzEmhPc7fLcOIJPbOvrcgx2CGzvI/kGv1DD59ro/zZ/VUCbnWbh+r59zCn4/iPHCU6qzH2JIbxQtEzzS7Y8xMVBB4nmfpOaQ2uDTSf5d3LYSK3Mp9XpURoOszHjp/ia9evFDuUgpmZmWO8Ygg7FVnFWSFgeGyc/fUHmR/PnLHtrXVD92ZEuhJd3wZFQxUKRU72Hejgh3/se/jox8/Q2zOEw2nnzLmj2b3kFQqFQrHtUCKuQrEN0XeqEfVth5VGtNsqlIr7nPFeSYvPiTDja9o+cucRznOncESvrWl7XYbY+fFyer+8OvOt6nAniSf30m7nqK3CblxNu067O4l+1A2hO6uEyIwl+sQLBU5CXXlED3iawB+BfDIlN0HEzWYNkk3EHX48xp4znfRcfvZ8mW4TfNfbtQSfPCWxyotXcvTIJIymzhMZnmf0kQ0zstLLt+pkJe1v96IlruE718rM5VqseOlkkQaTTiJz20PAXaTD3VTsENZMT88gb57uZOhK5sxWacGhfXtxzDszirjN+2u5/yCPgZINwO/3MbZNCvIpFIrVlJX7+P0v/lNeOnng+XdkW/v2/RxVKBQKRXbU0JxCsQ2xdbyM/fwPFzsMRUEUMxNXibiLxCZmmK8+j2X3rrmP4FMPUqy9SEi97Q+ofbl15UIBzK3O4hR2O2WHd9D4Zhl4y9L2J59ehbnBVQJuVoxpFqVd0XAQ4nlMp9Yc0NgKVsoKITR2Dst0ZW6f4bTLLuJmfw66PXPWoJUuu3kBaUle3j3FL/9kmL/+k0H+1k/N8kNvWDge3aR1bznihZBOfrocMfrw+eOp2boVAq7m0tj/Vyro/Ng7aImU2CYSAzR/pjZr/FvN3rnreMrdxQ6jIKbvT1Du8xU7jDXz7p0LVLf7M653+m3cuH0Pe3X6N0hdRyU9Y0PMz218obR0NNcqsUeh2K64PS7+5b/5uxw/dVBd6ykUii1BE7Kkfj6MKBFXodimuD77K/h+5QLoaUvKK0qNItopqE/6lUxce8as59Satzcmxojob695eyGgvfEP8LTWPV9WdbiTxFiqiJFe5qPmXDvtn7Rx4I3LtDX+Fyqa+7EfP4z9/BvYznwc25mPIKoXfF6NGMykhBiJhlV9BqP1sxhtn8PYufCz47uQtmUisExAXUcqHn96cXgVO18FYwApIdDzMcZ+f4iB3z9AePxs+tM7o4ib7UYz+/sk2z2qZWbOgD191sWB0B9RNnYR39hl3KPX8fkSAIQfddF5shFhS71R6nb5KJ9Z6eXr9C9lLtecreKlX57A5/4GyJXCsad5bRnem4UtHmL3wepih1EQybjBW8dOFzuMNZNIJNGbjIzra/f6SSSS3Hx0B5tz9aBEwp3cMgEXIDxfWuesQqHIjz37dvKV7/wbPv7J88UORaFQKBRbiLJTUCi2KUK3IyqbsZ/68yQv/36xw1HkhaQY7usqO2M1M3d7qTjWjj7bu6btQze7cZ7aiy3+ZE3b6zLE/uPf5qH5GtHRaZhLTWeuOtVOY+UfoJFYYVsrHDZENGWnIADcO9H2aljh0xh3rmANDiJPfhZTDyJlGHih+JcNjB3HsSe8aKNfR1gJRGMHcuIphJ+Ri7noDxD5mg3N2UKkexwzkDLrNCanGP3P4DnyUWrOPcXhHlgWdPrzTsuSiZtrsCNTwUfIbKcgkHzPnusQWCmsuSuXBLTwwyd0HN3NwKNpDu8ZgImVwpbPNcmkW2PfT/nwOr4OifT70u2ZxbtiEPPXc//a2ov5FYuq2Noz5UuByzdu0s6+Vd64vloX13tvASkP3SP7fIw9XOlzbWbJKN9oHE47IWMud0OFQlFSvPmJs/zuf/h1PN7tNdNCoVAoFOtH5WcpFNsc58d+ptghKPLlxTnbW7bf4uy21AnZ29e+sWkSHN2JlGt/cR3WCPtPvU/92T0kxsdx7Wigseq/pwTcF3lRoIz2QWICzd2DLK/F/NxbGNrYgoCbiRhJxzTGzk8hhQ1ZZaHtPgfR7CKfQRNTXx8mfPcpwWtPMAOBVW0id58y+AU7oam3kbontTDTS5PlJRM5vHazFTabG5/DX716Gv6p025EYPVzfDGMyJNu9p2phYnVorbdG+HYLwq8jnfIli0s9AIKxG0B9/UDmMki+nGvkfGH47Q3bt9p/na7DU1bfaJXtHsIzM4/f6y7Vn8nNNTVbGpsy2k7VM2jJ1tQPU2hUGwof/cf/IwScBUKxZYjkAhRYj9FtCwsFioTV6HY5oiKJnB6Ib510y8Va0TTwNx6QUVl4qZn+sEwZU1uRDK6pu0T/X1EGz6NJ/Gna47BaQ3RXvWvSHxyD5rsR7PSxyLsEtLpg0YA/e0fxtCm896nKccQrd+N4xv/GqKrfXhfJBw6izSGc7aTRpKpL/fj+cUWpO4Fy0S0fGx5C0CyVwYwW9Jk/0nJE2uKO57UjakQAsu0sKREWziHT7kc6LUVCCGQUiItiblgo9C8v4HxrjF81T6qmiuIzEWZ6p+mIYNNrc0HLa/7GPp2kEVJNzQ4TV35UhvhcuB/uRlt+h1E9FXI4V6jaaWTiRuuauXW+7mPW6ny2r6X6B0dKXYYayIcjtJw3sfoe6EVy4V95Y3Gw4lHNFa3gZToDp35sQhWYusK480EVBauQrHd6OhsYfeetmKHoVAoFIoioURchWKbI3Qb9lPfS/L9/1DsUBQ5ELqGLIKIq0iPGYmRqD2Mc+TqmvsI3ujDcWIntkTfmvsQApxmV45GmTM8RfAh1BaWVWxoI2gHP4nteu7PjcR8/tk+xlSYxOx+HP4bmRvFbMiZ9OKcdNYxOhjJHMvOFqaHA6uWV9T5Gbo7SCwYAyA0HcLm0Nl9tpNvv9vDmc82IOaWLCYc+w9S7v0Cot7J0Hsff25dERudwqyvRo9N4zrYhsvbBdPvpFZGQzlFXCGSlMokp1vRdqS1PUVQAH1s68TMzeBbFy7y6rmXSfRp+He4EEgGZwZXtBkdmSBZm2R6KoCUkv0HdzFnbZ2w2tzQwLOevi3bn0KhWD//5F/+dbQs1kIKhUKh+GCjvgEUig8Ajpc/n73ij6I0sK0uYrMVfPgmmRTCOr8GjSRJcWhjQslK5ji1ietoorLgHhPNPqy9n87Zzkrj7pCN0S/0gubPuF5k8cTVyC7cZfqYq2ssey7gLmIkTLovPcNTX8f1yLkV68zplFAW0j++wnsYIFm1l7KP7MDFtyG8JILK+dyCqEhnhVEE5ur28vDa9hVwAWb6Zzixd3+xw1gX712+ytXxK3zj2rf5+rXv8PhJz6o2U5Ozz21CHj16ytjgzJbFp6tcDoViW1FTW8m5V14qdhgKheJDTNHtE174+TCiRFyF4gOA3nIIffcrxQ5DkQOtSCKukvczI3KIhvmQnN+Cr1KZOTtVAJppX0OnSWL7WjFf+osrd2X3Yh7+XpJv/nWSH/trOI41FNSrORcjPrUXsIPUQAqQNpA6SA1Tt2PqXgzdg6m5MHQ3hs2PYfMjtJyprqsW7T/TztCDzLYBY93j3LprgG3pNTInhkDzI62V/e143U990zfRpt5d2YlmQ/gbkDkumwSZj9NWcn26rtghbAgnGvcUO4R1k83HOR0O19YJq3NTyoZJodhOKHsshUKhUKgheIXig0JC3YyVPFpxRFyVpZ2NDRBxJwPQsv5IFlnUfFYcNiOH563F6mFZE/QZG/pICFnvJVlrgP7iuWASb/Wh7fhb6KEElsuJaZ8jZcAbAMD5EQ3v7MuEv5i/7cTwbz2k/u1m/Pofr1p359FHGb3pSbude0cdkCWDNM2p3P9glJq2aqb6M79GvV1Rpl8/S/V4Spx1HDiEkEuxOatsHPpsGOfcV2CZLbGoP4Ko9oP1FEFv5rgWkWvzV95IZhoO8ewbY7kbbgOCT+Zw2u3Ek6VVMG4zqWxxMT6wNfvq6x7F63UTDhf/vFUoFLn5pb/9o8UOQaFQKBRFRom4CsUHBH33K5h9N4sdhiIL9soydK8bhEhlU2gaQhMgBIapE4t6kUIDobGoVkmhAdrC31RbKReUrOeClrZQMkpHYOGIDP//7N11eCTZdfDh361qFjONNDPSMO3wzDJ6dw1rWHvNa9w45thxEid2wA46aCcO53Nix05iCG/MXmYY2mEe4YgZGqrqfn+0RtgttaRudUs67/P0o+mCW6db2u3qU6fOxfYVEVFZmMqG/vndamK4FBtfnTstb6YUXHw6SLA7NK9xM4peeBLX6mjDqcnGcAZn3zgOtWoTRtUqcA+gHZve//Pjq/bhDj6PsgfAnqXC05nSE0BrPN99GnoaAI1nRymecyM4FQexSiqI5NpgjP9mHdWFkwMwMG3otoYcvvyPLu6uPcCmnhcSf1EOEOO6hZqhmFVH5j4x2PBAEKssfvuGa/qCAYpG/234oj9zeIStP3c/+VUt6OPj1bfa9GDsvQ+j76dzyvOrSAeunNVYA+mZ4ExreKExF+hIy/GTbaRvhLt2H+D7Lzyd7lAWTXtn56Idy3E062vXcvT4qUU7phBi/t745jtn30gIIVLIWKEtDDKJJHGFWCY817+DyAvfRvfPPtu8SA9feDTJrkcfE5JDdvk+Tv/n/JOA03Ww0ESORpPV8UjMdRXX3cPlx5Z+EldNTX7Ok+3dhDHycuI7uLwYddehinPAboBIG1htYIHyVGO1djHYCrgq8Ky9iUhLIbkFT+H1xEnwePMwPRXYodOAjdHpHk3ggiqvhWB04jSj/od46sHjKWDAfgBd4cGoG0K545+Q/fjrhVw4ep7LJww+/Pp9bOx5ado2EcNNX1YVLjtC/nC0tUG8EY1p1cDjtDXL7yNOVXnLhQ4Cs5zRFPv7YHTOKKt9GOpKUeUbKez7L2DLWGtcXVAJBw+Axdj2idOU3lZEy8Ntc90xKQZL6mh8fHkkcK+pNopm32gZKS4sZMDbTSS0OBcCXK75tGIRQqTDT374DA+84950hyGEECKNJIkrxDJh5Ffgf+eXGf7bd6U7FDEvse6HTy9tAYYLnOnJhNz85dG+w7CTcxtxxC5n1lRIdiFG3TZUDhA6D855CMbacML7bUUInz9DU8vraH5pN8U7yqnYPkTF6ifxeqPJOg047hG07sbw1qLwcPmlMDr0Nqp9j5FdUQpD5yYdQYcGGPzRS+jgMMofwFVdjWtVEebeAEbNEErBQFsuj/xhPu1PXOENr1rHqfo+/uo/O9h7/avYUzFAodOLpUy+e6KI+vPjyeW3vn4jNw08SmjIT2/gDqIV5NFANQZqhlJcbccve1VKoa3460vWFtNxOX4VY3Z4vG+uUZgN2Qb0jV5YuVbpXLsPvSEHrAZQdXHHmknJtnpaHvaSjm7Uy7FxSvuJdiqKirnatXgVqun03POHuX73fs4dTv3EdDtvWsfjzzyT8uMIIRbmtrv2s2ffVjZvnd/nkhBCiOVDkrhCLCNm3X5UQRW6J/4kP0LMiemOmcR1D10AqljKaSNfaSFGx5GkvIRIvwG+6ctV6RqMmlrwDcHIeeD4pJ6rMenp1ahDvRG07dBxpIWOI3C24Eayq3Io2WxRsbMZc3RQrTvQwNF/dei95KDM23lXUQ++/NswXScxnGjiN2ztQQd7o/uMDBM5d5bIOeg4vIfHjpXgyfbQcb4T7fQD0Hr4Cjv211FXGqBlyOLv/rOf6EUHDUxOrp1uVtyUC70thVx9eXqy39wwQ2/oOJNAbVxfSYUvm/qX4zcL1S4X69b7uHO/g9uwCDoeBsMOg8MGNaVBjO4GjLxiAnuzcLt/AhPeZj1cD3e8G8c8D/Zo+e08e0kb4dPUvv9uLv3T4lfEKjsCeBf9uKnk2A53bd/HNx//YbpDWRTl5cVcOHp1UY4VHkrOnQhCiORxuUzuu/8OqlaVUn+5hV17NvPzn3gbhpFZF/qFECuQApVp7RSW7lfReZMkrhDLiDLduDbfTuTZb6U7FDFXGfZ5GKXBitMyob+VvNWb6KtPZguIxeUrzkElqaA40toJawBloNZsxygvAdUKoWbQR2ZP3E6kpyfNs/Ld9Ex4HuoZJNQzSNcJaDq3i+A3RijZlU/Nqy1sNL2XLgFQUevCuPgM4dH9jMp9uMqzGeoo5trEZRM1jNTQ2zx9UixfXoD6ly/j2A4u4N6bVvPsiTb6e6eXEu+stqJtCJzYVbNqhnYKzpR2Cnm5fu6/YT1+W/Pok40x9zFdBvml2bzh+mEqrj4LzddercbIySFrVQCn9SLe63bgL38Wpab/zeo1d+OYp6cEOv+zwrzCn1F61120/2xxE7mGY7HckrgA7vR0p1h0OblZrClfy/nWxUniWhFJ4gqRSXJys/jWv/8R+6/fke5QhBBCZChJ4gqxzBilcqvVUqQyMIvrCrhnnPirdKN3SSdxA3kGJCOJ6w1A/irY82pM16norfjhhUwvP/09L3JfpilWuw3DoPtKByMdfXSdaObMN+Hmnwvw+o8OYUbc+O3mSa2RnZbzhJrhuaNvxFdwJyUVBrnh87h7rwBw8WzsbHPx+jIGXro89rz9VDM37qjmh09enrbtptC1ZOg8Jo1zov8dbKwr4/r1ZdiX2hg8chn/jjXTNvX63WzYXUMg0snrN15ENVyYsoUiULca+i6TfeeqaPXtBNqTjwr3RrdsfhZqt4IziNbR/G2wP4Ae3IoywoSGyvHnXMHni51IjvFCqNzzPCMNuxg41z+392ABVIyq+eWgu76bG7Zdx7MnjqU7lJQqLyvh3NEW1CKVlWTlLb+EvxBLxee+8PNs2b4Ov9+Ly2XiOJo1tVWUVxSnOzQhhBAZTJK4Qiwz1qlH0x2CmJfMS+J6smb+iMjO6plxfSZz5+Xg7zo07/1VQSlGcQ3W4Aih+itw6iw511USKE5Nwi5sFhKrcrbi1ZvpauhlZEKitjL7KcyBs1BxC+GrgzhozKp12C2XQGv6fAcY6exnpLOfnvMAWWRV3ETu+lKMdget+6YVoQ72DE87dtuJRtZtKOHCufGDmy6DrGD0+aDKYXB99WhSVIHWOCgc24Vvx9bJg432zHWAnyscoffcVYaOjCeIO0/Us2ptEU2Xx//mNu5exf7VXdT2PAZXw0zn4M4bJrDh4qTqW529BopqAQPqfxY9fGQAZeZw8svrGLrSQcWrV2N4NI3fyR3dy6Lu7bupqE00iQvK6qfuzZc59beVhHsWZxLA5ZrEBdhRuJZnWd5J3PPnr3Dgun1cOLY4lbhxupcIIVLMH/Dxic+8O91hCCHEnCgyr53CCuymIElcIZYbs+Y67HNPpTsMMWeZ9YEI4PLP0LsUMHvPAutYih+flZu9GFcHEt5eozAraiG7iEhHF5GWZmg5MWmbcH82gYUW0HhW0ftoAGgfHzermnPPT0+iVtxdw5ZfCQJegu27aHk8SNfTDdEELqAHL+IKdcKqUhg6illRCAWbGWlYhzKuTiqyHrraQ1deNY1n68kpzaWstoRw3xBd59soqi2h9ULs+9mrV+VPSuIWl+dioAnmVPDIExZl6w1aj1xZSGeC6GtxNBtW59LW0s+mPTVsKRmkNvgi7pAfIrESuIAyCZT9ZOzY2syCVTegh47D0HFU1s4pO7gJtvbhBEM0/9c5DM/kqeoGmgNU1M4tbhVuYOPPF3L8jw2wU//fuGFHUn6MdOk60UlBTg49A4n/d7vU7N26Z9ESuADDA3O/uJCXn00kYjM8lJxJIYVYibbtWJ/uEIQQQixRksQVYplx73wt4Z/9ZbrDEHM2j1vPU0zNlnkb6aNoUz5dZ/oWJ6AkceVk4W45NHvu2ePDrFyHY/iINDYSutQMxJ800F+6kBYKUQ6FRC6Pj6NRXO7egh2cPFN94Z5StnzOD0STu77SZmrfCrVvzSUS/CLmlQtw5Sp0PgVDownhkW708DPoc1lsq7NQlWvpG3TRfKKDSNCmqT6aHBtoH2CgPfrvQH4AX3Uphbm5RDp76W/onJSQ9U+5Gl9U7ENrOB7aQbC/hfpD9RTVluEMDjHStbDWG90nLvPuN1ZTPnIcu7kRG7C7wL+xFt12afoOWoN2g4qgS/ag3UEYOjrDEdwYnvGWFU54ckK072wf+qaZW+UGg9V0Ne6l8xUD02tSuDlMZd1/s/Fjt3H2L1L/34lhLd8kbiQY4U0HbuMfH3s43aGkxE0HDnL6haZFPWYg2zOn7VfVlPPUoW/xzJNH+IWf/z26OntTE5gQy1hObha/+8e/kO4whBBCLFGSxBVimTFK1mKUrcNpm9ofUmS0zCvETUhJrUHXmXRHMTf+sgJUnFyXyi3EKF2DPWIRqr+MPp34f0fKWPgkQYbTQOH71tH99ehxOwvvoeeJyYljT6GPXX9UDipWOwsb29eDvakId5kXtbMKdXUI58SLqN42wt6dRDq7o5uePUYWsLHci1O3ixe/0z1ttOHeYdo7hjjzwhUAilYVULW2CAaG6L3Qykh7NDGZX+zizjflsG2Lm8e/cwdtJ8aTzl2X2lm7v3ZuSVwFJRUBisu95OcbFHgHUc0XcS6eZeq7bHlKMYmRxAUcdwXGqg3ooWMwrWB38n90Tq8isKaAUHvsNiGh9h4aTryVkXaDcJ9FuC+INTiCrzyPvHVu+i9YDJxvAcYnhjM8NVTWgVu9gnfLfYROvZL4ezAPyo5TlbxMDBzrobq0jMb25THTmWmabNm6DkMZnHkx/gWiVLGYvf3Gxz71Tm68dTe//Mk/ZufuTfh8Xh5/5EW6OnvxeNz847/+Hs8/c4y//PK/LELEQixtv/E7H+G9D72RrOxAukMRQoh50Cgj0760Zlo8qSdJXCGWGeX24d7/VkIP/366QxErQMDdBsytmivdfHle6Iz+W2swy1ejckuJdPcRbmqAtlPzGlfrJHykWr2YnmgSMJS7nkvPtE7b5MZ/vAdPNtgRL7Y9fT2Acjzo0IXoaU0FUFEH6haMcx78Z5sZaZzQIzYUYjAYOxytoaO5d+x5V1MvXU3R57nF2QTy8/mXJzrJ8Z0CbLQK8MRX1s35Za/emM36dYpscwgdjBBpqEdbFvQD/dHTs3inaINnL5JXmg+DvROWavIO1EBxTzSBG/vVjb+urru48E8OkZ7YyeBrGh+e3hN3cGCYwfOxtx9uir7Phhqm+9h5CjZvIHzh3IzHWAjlOChDoZ3leUIbCUZ47d7r+dv2/053KAvm9/vYULWJplc60xZDY/Pslb9bd6zn9rsO8OKJ7+I40TtGvvgHH+djn3onJaUFmKbJxi21/Pu3f8zv/+mn2b5zI/u2vCXVoQuRcnv3b+PSxUa6uxZ2F4VSite98TY++UsPShsFIYQQCyZJXCGWIdfGmwktzztOly2Vge0UptIY4PKgrCA6uxydswGrbxDDY+CEMz/+azxeB7NmM9qdTai5hdCVNmDhlX3acc++UWIj4Sg3F5pq0Fb7pDWrXrOBwKro5GmGmY2b69COGyvchm03XtsdV1BNSXpqtNNIgGbWvuoKjn8zI31r6XwxwtC5fl45Hzvpl19TxNlzXTHX9XcO0t85ONqVIlofq/QwN7wnl8f/pnfy0WMOr1m/PY/ta/tQl5+B0S4S+bdsQa8uwh2w6T4VITJkkbc+m0BRCJfqJ2IX0PzkAFZ/tOpUh8Poki2owecA8FYXkr8tgtH1I7Cum9Q2Q+tCaA1AJAT5Fradw+Ujb6LtyQaiGePkCrZ2Y1k5mOYAOJq+i23krqoh0rTw1huxKAUut0kktHwnOGs71Mqu9Rs5cv5sukOZN7/fx96duzj1XOIT5aVCSXExO/Zu4O7X3Mif/P4/Un+5hVfdewNf/ptfY3g4yNXmdnbt3QKAYRgYhjH27/KK8Qbgq6rLOHLuvwBwHIdf+twHOH/2Cv/3309g29H/N9Stq2b7zg1cutjE5YtNDPQPUVScj9aa199/B+94z2v57c//Nc88eRiITvxUWVnCxQvpfY/EyrN95wa+8Acf54abdjE8NMK/f+cnfPYX/mTSNsUlBfzG73yEC+cbaLjSwrkzV2hpbicnN5uuzl5GhqNXRj/0sbfy3ofeSO266nS8FCGEEMuQJHGFWIaMik2o/Ap07+JNkCIWaglMDla6jZEz9bjX7CDSeBHsaIVj8aYbaX+lfZadM4dp2AydvZz0cbWTrI9UTXveqxh4ZXryovd0B+hVMNaLdghlgNvnxc12tOPFCnbh9D6MMibva9h5MPhM9N8jp8nynCbrJrDuvwOXWQV/1cG5pyYnbL2l+RAniXtNw8UCtmwdf7755iEe/5upL2k8i7t2Sw51a6EgdAWn7RWY8qvwevpwD/4MwlBZOWHFaBheoPbmWi78tBBvST7+kiy8hRGyNxRhOq2ovqfGtqWnFO3kgtcDWqNbr0BPdEI6bW3m5BOvY+B8ahKq1wwNbCGv4AUMjxsnGGK4N4Lb7Yk/IdsCmcs8iau1Zn/BRo6wdJO4W2u3pj2BW1lTwq/+9kPceNtOANatr+HVt32It737NRQV51MEVNeUz3lcwzD4zK+9H4B//cb/8ZmP/yGVVaV87/t/TkVlCQChUJgrl5rJyc2iorJkrP/6t/7jj3jvW3+VSxeb+Kd/i95N9Lo7PkwotLzbhIjF5fV6+Pxvf5hbbt9L1aoyBgeHabjSQjAYpqg4ny3b6sb+JgNZft7zgTcQCPj4zV/5C3p7B3jgHffw4U++nc1b62KOr7Xm/Nl6RkZCXLdr42K+NCGESDlDLZ3CneVKkrhCLENKKVzrrify8n+mOxSRsKXzgRi5Mjl5kl+mmUsK1/C4yCrPJqfUjS9X4fVZuFQQw+pDm37qTwfou5z8qkh3tpf8tcW47BFSMv2TYyZlmMhwkCtPx77NefByD0OX/GTVDcdYO4IyRuh+2eSV36um/MZSSvf2UVB7AcNtYcZpSavXbKWqqJG3fclD55eH6bRLOHwSLp4bpKN19t/Dv/xRiN/952yUjh4gL+8I9/3GTTz8Oz2AwptjUFhks/r2fKr9V9GNx6Ah/l98x7MdVO4uhuHR28zzS1DlNaiSEsgN4Iy4CD7dRsWaSxCphz6gD1RuGWpoSquCnhZ0Z5z2GH3NDJxfNevrW6grj67CV7wWZ7RSOtzVQ9aGKsL1yb+QAGC6kvN3mMnaTrRx5+79PHL4xXSHMmdbt63n8on09/T9xOffNpbAhWjbhE/+0oPccffBpB3jne99HaVlhVRUlY4lcCGaRNu4ee207X0+L9/53y+jtUYpxWc+9iVJ4Iqk+8Rn3s3PffSBsefZOYFJleWxvOXt97BmbRW9Pf3cde8NM26rlGLDpjXJCFUIIYSYRpK4QixTZt1BSeIuJbHvN08rJ8G+mp5QKzA5cWR4XBRvq8ZwKUwDcCIQHMbu78Xq6aZgfRGBzkfGKyZHKWDt2hqOXs5dcPy+omzy1xTg8zuo/nas1gZoayCSovyJNZIFBfHXh0ZW03N2O8GWCGhwLAcnZOGELXQ4ghOK4ITDKJeLTQdz0ZZGh4PoYBBtRTA8XpTfT/Pn/4u1X70bd0ns6u2mh9sIdQ1Q/78D1P8vuLLKKbu+km0HzuLFj2JkctwF+UAPZlGYgtfW4Pzlz7grB+6+t4Kr3iye9mZx4uQg8arFr14K89RPd3PLXU+OLdt68Gk2/6AMy8rGY9bT9Z9Bhg+ditvXVrnduEtLcOXmYHhcDHs2k/26PrTuAWcICOM4Ldhnawk+/jRY09Pw4eES/NMGjnPARTRwtoWBqUWjrmS13pjOMDPgRS+CtXlzrxLNBEV5hbSy+JOYAbhcJh/+lTez7+at7Ny/YdI6t9vFr/3Wh5J+zNkSXrFcq4L83Bc/zPqNa1hVU0YkYvO9f/sRj/30BdbUVvGGN9/JkZdP0VB/lTW1VTz9+CEsa+GTS4rlxzAMXvXqG3j6iUMMDY5w4IYd8xpn74FtSY5MCCGEmDtJ4gqxTLnWXZ/uEMScpC6Ja1XUEA4UoNDRnJZ2ov92HAq8gwTcoWgO2QGNRqEw3Aa+PAP3mg3RBLNSWCoPq3QHWnkJag/ajt6yrSNuqm9xMJWFHdEMD/hQphfnwlEciDn/uZohz6S7GjDc23Eiib8nvsIsclbl488xMfUIursNu/siNF7r1pp6kT4/VE5eph3FYOdBuo/kM3DsEhBnBqyJ+4TChM5P327i6+j6bjPlH5teRTrUpLj6+JlJy6yhID0ne7Cs57DdebhW78cscjDMo5BdhGP0jG3rPjhM1uFdDD17BKfjKmVc5c0F8Jb7K2n1ruWpY3Dy1PSE7te/2MPum7aQ7RuvejV0Gx7zWsZ88u/SzM3FV1OFgYXT047d0w7dAzjdjP3NuDdch6d6CACnv4TQo8PYjc/Efd8iVy7iW+NF6dD4wsy7NgKAMo3ZN5on05W6sTOJK7z0XudNN+7n7AuxJyNcDJ/5nXfzvk/cl7bjz1VRcT4f/uTbx57fdud+futXv8of/NmnycoOTNr213/5K3ztb/9jsUMUGcrr9fBbv/8xNm2ppXp1Bauqyzhz6hJPPPoSB264Lt3hCSHE0qRAqQw7uV4ZtQuTSBJXiGXKKKpGFdWgu1Lb71EkS+o+EPsCFRx7KvbfwbveZpDd8FLMdW5vLq7ws2PPR/QdNL8U/aQcWrWbzhP1o2tC3P3eHtwdL4EXen130fXyLImKWU4ATLeJE4nX11OTt7aEvMoALnsQp6sVu68NWkG3xk4aL4op/QF6m26n/Wchwu1dQHdSD9Xzk5cpfrAKV+7kM5em70diVnWX1AWiiXMrjHXxONZFMD77cZQnEH3TRrPqSimy359DuKGKSNN4taBub6GMFt5SCA/cX0mbdw1Pv6I4Plahq/jKL2bz+b/xo/TItOMrt4GnvBxPWREM9WA1X8K+2D5jgn3oxx243uPBvlBN6PEXYPSigbl6G04wjO7rQuUVYWZlg2GiIxZ2oBjX0Pjf7LTGwBNFBjE8CiechpPRmeJaoJWSxLUHU9IUJaVazvSmtVo0Jy8w+0YZrKAwl7/4+8/HXPe5L/w8P/7BMzQ1pC9JLtLvgx95CzfevIvikgL2Hdw+ad2mLbVs2lKbpsiEEEKI5JAkrhDLmPfOjxH87mfTHYZIgNKp64mrZkgQ+3ScRqkwLRmoJ17qnHLVs3ewnGsdDw13ApdEnbldNjW9Loo2l5OV7aDbrmD3nUSfJzW9bedp4q+w89y9tP53anqeAuhQiL4f9lD0tsKxZeF+xbGvHaVi52b6jp2Z9PvLy+mB4PRxbF2PadRh6/GErRGwKfj0Bjo+34UOTt9Jt7dQSgv3F8Cb31RJu38NL501eOnQAC89s5f9NzwV3c5WWB01RC764GoLRt9VrL4rCb9Gq7WF4Ud2wIXx6lujsIJI/WWIjMY10DspEWxs3z75xMaTHf8AWhMo9TLYFOONSTVJ4i7YUGesvtCZy+UyCeT66Ota/LizcwMM9g/z5I+P8Ob33Lnox18MgSw/f/qXn+VTH/59rrZ0pDsckQZ/9le/yjve89p0hyGEEEKklCRxhVjGXBtuTHcIIlE6ddVZ8VoX5Be5cDWfjLufdmZILE/pl9t01qSkJvpvwzN7gta2FVbxToxgJ8bg9Em87IhFTnUhOZXZ+NQQVuMFdEtz+qpsE6BHg+upvyulCdxrun9wlMK33j7WP/Liv1tYwTCNL16kaEMNWQUBdHCE4aZ27Fjv3Oiv0I40gisfGJ/EzCwPk33bTgZ+9PyMMeiOFkpo4TV+eN19xbQfy2KgZDdc7CV06iJ6OP7fVyJGDh0ja/MmnJYzoBTalQOR+NPoRZra8JVP+JuP98dverjafx+DTcmfQC8hRuoSrS738p/YDGC4Z5hsv5/BkemV35no+gN7OfVM6nrhZucG+KvvfJY//+1/4/Bz4y1VqlaX8sOjf8Gj//cSFdUzT9601N1y+16+879f5nd+/a/56Y+enX0HsSxk5wT43T/6Bd727tekOxQhhFjWFJnXTmEFdlOQJK4Qy5kqqAKPH8JL40vuipbSStzY8vLd4MyQPNZT9pzwNDQYmrSq5cQQuzYWwkg3vqwg1feUogyH4W43nS9cnTZ0//FLhCrKKHSNrzOys/BuqMCVPUxN0MLuOQ2XM6vadiaGBwa7d9P87y2LcrxIWwfBUzb+rS7siObMv44nbrrOXZ0wZ5zmpYtb8XnXsKH8Mo52YWk3q7pMAhUAYQztwkFPSnp692Yz8KPE43F6Oinu6WTg/0pwh69CJBmzyivw5AFgFFdjNV+cJYZ29Kp8lN0bXRDqjbnd1b77qH8kTQlcIJWnnCtlYjOANeUVnLh8Kd1hzGrjplpOPtOESuHvffuedey/eSs7D2yclMStXluG2+3injetjD756zeu5p+/94d8919/xGc/9ScER0Kz7ySWHJ/fS9WqMkrLCvmTr/4Kteuq0x2SEEIIsSgkiSvEMqaUwly7F/vsU+kORcwmlUncOFdMmxtGoMxI/NgThplepasIZW/GO/IMrrYnx5bmlu2lM9ZQkQg5FSYuowB3TTFd/eVcbcjDfcmiuOgKVnfbWIXpUuGr6qD+XwF78Xpe9j3ein/rKhp+qBhp74uzlcIVGuHYc+0cI2ts6VtuNllbEf23Y7dgutdh6/GqaNf6EYxAAGd4ptu/NcrjxnCZ2MPRZEmkvQP/rh1Y515e4KuLMvMtsu9YBURQ2wpBB0GH0Z7V6I7z0Sp2O4yTtZ2Bl5pBuceji8RuF2J64r+eRbmmn8JDmCmcNC3T7F69KeOTuAcO7KL9/BCKZFzUiK1u0yp+4TejE4C1NXdNWmdF0teDN53e+s572X9wO7/1q19l45a1fPVPv5XukMQCKKW4/22v4qGPPEDN6gpycrNwu+VrrBBCiJVHPv2EWOZc62+UJO5SkMIkbqyJrgBqav0zH3daLkhxLZOrjOlZqO6eYiqm7hHpBXxjz82cbIp2FxCoHKKtzc/ZC7fQ8oNerOEQjKV78zmwoQ9lL60Kqt6z1diDZ2bfMIn6nzpB6UcqOf2NKzNuF2pswTDdOPb471tPqbR2Ih0YdhiU/9oSKt+1DueVl6IV24YR/WmHwQpHf9qjddKBAloOF4zHdewMuetqsJoXPrGi6R7G6Hly2nJVXII90Dj23Bh5jLy1gHcVFO0DlxelHXRv47R9PVnT20v4y7xsuneQI99wT1uXfKnL4pqupXXxYyFCJweoKCrmalesS0WZ4ezZC3iHCmbfcJ4eeN9d/PqffhCPN/p3+6tfeh+XzjVz+li0pUs4vFTuZUi+NbVVfOO7XwJg7/5tvO/tv4aO83ko0uee197E7r1bKCsvYve+rQwPB/m//3qMv/vL7wDwtX/5XW65Yx8ej3vJXdwVQojlRWdcO4VUTg6eqSSJK8Qy5975WkL/96V0hyFmM9TBdfev5th/Jj9xGe8rz207e2CGHJua1rdzwoekM/0Ds/GkpmLjlIWDV3Flr6doXx65q3pxjzwHoR5ePvppzv2sA4hT5elkcvfb6VQgm57nFr8i0MzOItjuovf8zDOy62CI0nVVtJ4d3862prbL0Ginn4m9cfVmDzx9dfaLDMM9VO60o9uNPlQe9Fw1YKbeyglwwsS4oACoOJWNA03ogdGK4tzYt9h6vGFA48p241gOq67PprLkUQi5gJ0LijcRqTzdNFdQO4XQUJjK6pKMTuKGQhGyvS6spLQXme6eNx0cS+ACFJfl890nvsSF0400Xm6juCw/Jcddau5+zY38/T9/kUd/8gLf/tYPJJmbIX7ttz7EJz7z7mnJ2et2beRDH38rXZ29bNpSm6bohBBCiMwjSVwhljlVsAp8ORAcSHcoYiaRIJ7Ol0DtmEeGR3PwU4O4jEFQmugADopoMq2hK5+Xn4xWV67aYPDen3sejQu3Ceqgh/EDGsC1hJsCghjmttGnBnm6h10fNwEHR78EOJx4ajOXnowmnjsujsCuIhgevZ3XMHGvW8eGsmfBDkLveMRDvTPf8m2kcKK3VDCrN6KPnlr04/rWVTLSlti2+UV+JqZ6nalJ3Fh/eLlhjG3X4xx/ZvYDBCf3mNWdF8jZfQsDL59LLMA4Bo93EdiTBdbQ5BUdz2PUXI/TcCj+zk7sKsTA4A85+IbRJ54cCA9ACAiUxdhas/rOPPz5FpcfjRDqSUJlYwrzR2aMKvnlrDgnP90hzGjf7p2cfGb65I3J8qVf/QbffmwjWdn+sWUul8mm7WvYtH1Nyo67FL3ujbfzujfezn33384f/e7XOHHsHJa1tD5rloO6ddXs3reVd73vPg7csCPudiWlhZSUFi5iZEIIIUTmkySuEMucUgqztA674Wi6QxGzsUJsfX0uJ/9nbhMuGS6FL/h43PUFuWWs3bqewX5NQRl4R47OKzyD6QWRq3dWcunJa+0SFI6/FGO4C1VQiqfcgt7H5nUsx3BhLKFq3KmtCRZLye4uWk6VJLStOTJAQbWbXa/LYvV1EUo29GIOXquE1mA42O6xhhmAicJA76mGi1ko00S5XeByo0wXuF1gmiiXiTINMA1AoUwVnSDNAMwRBg6rmJXbibJ7hnGydqF6n2bqnbTK7QaXF6w4Fex2AgnX8IQLXMNtHHjwEmG1hoGePKygoqz8OKr/HH3GG5KTwE21lZXDpTpYgNvlImJl5v8vBkcWdgG1uDSfYDDMYH/suxYunG7k//3Zf/MLv/mOBR1nJbn9rgNcf9NOfvajZxkcGOZ//vNRHv/Zi+kOa9nyB3zsO7CNHbs28oGffzMVlYl9ZgkhhMg8ypA7WdJNkrhCrADmhhslibtEBIaPgVo7p0o9xwLtzkVFYid/8yOP8P63PZKkCCfLzWmgaP1W1h5wcLvdGG2nUXnFeIr7oa8l7n6z3cmqYt4/n7lUKPYEWqlU/bYS/IPfps5nUvqF23jq62V0XZl8y3b+uizWvTaPsussfPntuOzLKCeaDFLmdixrvDZXm3noQCkQrUwz3evQZh/kgPfV12Ge+Z/EAptS2Jaz/14Gnm+e9+sEiLQpVOQ6zNIyFA2o4TModxb2xedn3tGZe5Wd6r+Il4t4DSAA9INVsI9L/5P5CVytoa158f8W06nzUhfvufnVfO2xh9MdSkx+XwCIN+ng7H79Tz/Irffu5p//6vv85e9/F8MwCAUn/3fuLLBlyUrk83l53RtvB+DtD76W7/7rj/ilj/8hkUhmXgzIdEopXvP6WygozMPr81BUnM+WrXW43C5uvGUXPp833SEKIYQQy4IkcYVYAdw7Xk34Z3+V7jBEIoY6qdy7h5aXuue0m3YVxU3ippJ7+DC3v+4wuHMINlWgA7l4ysMwED+BC7O3vNWGQi2hvIR19QqLWQJZeV8J+Xnfjz7RNn7L5radj3J1951cPAZtF4OA4o4/AJfnyNh+yr0ahk9Hn0S6p5wFOEzOwI5n2u1NtySexJ0isGqYBTdzUSa6pxGrJzpJmSrYgVFaicptRvednVahOyZOO4W5cvW8xK5bDey8HQwMrqHlsKb/cpx+zolIURFD06qD9JzsSs3gGcxqyMxJEP1+H2V55RTdWcozjxyb1xh7btiMz+/lQ790P3fdd4CsHB//8c+P8tXfjU76VFCUy/s+fl8yw16R3vrOexkZCfKrn/rTdIeyJP3hV36JBz/w+nSHIYQQQix7ksQVYgUwKjahimrQXQufKV4kTuVXYlZvx+lpwelqgJHRaqypPYpdnmgJ3eit3yXVQ7S8NLdjOUZ+WmtXLbUHPXwB3033oJt+NPPG+evZ8o6D2Byn41icycDU0qrE1VYE8KT+QAasfkcRuVk/4FomUKtiwq+cACtEBf8bnVxudzGh7I2Ynp7J+7uzx2MOXwVXITCa6JySWdeMZ9FtTz/OqoMYTbNUvsZghl4Bo2ZBLRUwA5Nj62nC7on2GVV5GzCKqyDcCn2nJyd051GJG5d2MHuPks9R8ncAuwPg8qNdfjB8DIY3c/I7wcSGSl5UY3pLN/HTx3pTMHLm67vax/Vbt/PcyePpDmWSuvXV/M13P4fWmjcc+AwXTjfOaf91m6snTUxWu7EKgLe8906++rvfwevz8Ad//3EKinOTGfaK9Z4PvIH/+Lcf89ILJ9IdypIQyPKztraK9z70JkngCiHESqDAUBnWTmGFtREDSeIKsSIo04V7y52En/qndIeyMigD3zv+BPfuN6KM8WSkHulHBwcwCqpwOuuJvPJDzOoduNbfgA4N47SeI3LyZxhNpyi+YSu9r5zBGkys2s92ctL2P3Sdv5/Iy6fxve9buNbdjNYO+sy30D3nwJMHdhDn6FfB8GDe8DuoLe+lWhn4arbQ/MxJjv3V/04fM25pZYayUzw5jgFlryqheNNFjJEXJq2KDG0H6+XJ2w914ssrQJE1abF2+iac6zgYZimOfa3VweTXoJR7UrLR3vwa1HAP+AtRbh8YLjDdoEZ/X0MjqIkT0l3rmaEUgR1+ho/Ov6WC43jjXqTQfS3Yo607VO46jKJq0D3QcxylU3hrtDUM1vDY+5kTGKDm9ptoeWEQa3iWMvIk3/4ezCnlB0e9WOEFVAcvcdtKazMuifv6N92JUgqlFLsPbppTEvddP/9q9tywOea60opC/u/lr5BXkD0pySsWRinFuz/wBknizsLn8/D173yJm2/bg2EsrQuuQgghxFInSVwhVgijYlO6Q1gxPLf9HJ69909brvy5KH+0YsooXo33jg+Pr/MGMFfvxFy9E4DrAGtohK4XjtL0vR/Re+TUjMe0IlmkpeOcp4DQ2T58b/8bXOtuBkApA7X5PZM2M/b8Mpge1IQK25Lr6ii5ro7mJ4/TefzypO3VEqvEVQowjKQn5wAK9hVSdfAEKvQCjExep1Ux1tnYCQejqgronbx95CoY2Sgn2jfVwDdebzsl4akM36QkrpVt4coNgW6M5mdtJud9+0YgHLulR9a6Oxk+Gv81zsaxjYQqzXV/K3b/aJ9fXxlGxQaUGoCeY6lN6AIMt1GZ+x9U3uPGzt3MidO3Ejl3Fat3ej/U2XpCz4Xt9vGzjjoGuzuTN+gSFLw8lLZj5+ZlU15ezLmzVwAoKsrnI598Jx/55DvHttm2p47v/tNPExpv47bV/PqffnDGbeo2rZp3vCK+62/ayQd+/n5GhkOcPX0ZwzDo6uql/nKL9B4Gdu3dzEMfeYBb79iX7lCEEEKIFUmSuEKsEJFD/5XuEDKTLwfl8qIHF5YAUbllmJWbMVfvwnPXx5ISmivLT9kd11N2x/X0nTjH+T//Bn3Hz8XcNjziI8udlMMCClbdAx0vQ2jm98X234bvgU9i1l4/84guX9x1+z77Nn72818hMjTxVvQlVokLKNNEp+BLftX+F1Gh2H1OI4PbIfJyzHWqwofWGjCJZltNlMrB8OSig6N9ce2JvURnid2t0EUHUZ1Px16v4p9SGO6FJdj0fFoxBPtxLo++N94SjIoNGGYQ3XccZaWwYtWJYPa+wuFL+zn6ci679q5lfbnGawfH/qyH3Tnzbr7hoDBG0+sOiudcB2i5MHMP6pVgoH2A67ft4LkTr6T8WNt2bKCrs4ee7n4e+sgDfOqX3kduXjbf/pfv09LUxvseejOFRXmT9rnl7l1xxzMMg9tfs5e9N23GitjsOrAx1S9BxFFdU87v/cmnpy3v7urjhw8/yXf/9Ue8+Fzq/8YySfXqCm65fS8337aH199/B2qp3SkjhBAiKRSgMmzSkpX4iSRJXCFWCJVbku4QMo/hIuvT/4tRvAbCw9j1Rwj+4I9xGhKcgMYwce95I56b349RtTWlX2zytm1g9998kYZ/fZj6b/4P1sDkpFh4yA35CzxITi3krsPY+euokv3oq4/j/Pje6dv5K6BoF2r1/bjXPoByLawGuHTXOnZ+4o289KVvL2ictEvV79/MhkjsJK7d1BQ3Fpc6Ai0xphQrPIg9GqoONXOthDu6yM1Yj9wYnVvt4lpc8ZK47iwIxZ6QT6lY7SY0uE0Mjwsj1x9tPWJGH4bXhTIUmArlMjALvbCQ+bpCAzhXDkXT1C4fRsUulE9B7yspmxDQ44m2AT70UheHpqyr3Z7LXfMc92zZLQTMCKtbnuVs2S2cekQSuNesLiznORJLsF27DXyu1ZX3vvZmvvHtP0IpRTgcweMZv3r29ne9Nu5+ufnZvO8T99Fw6Sqnjl6mtTn6B/35P/4A97/nDgJZ8S90ifQrLMrjXe+7j9p11bzrzb/MyHBi/a/TwefzcPurDnLL7Xtpb+vi29/8AZ0dPUQi8e9GWL9xNTfftoeNW2rJyvITCPioXl1BQWEuFZUl0jZBCCGEyBCSxBVihfC/6yuMaI119P/SHUrGcG25HbNkbfSJNwvXhpvI3nATdtMJ7CuHsVtOo8PDGIECcHvRQ91oK4wy3aj8SjwHHsAorF60eA2XizXveRPVb30NQ5ebGLrSTKR/gI7HX6C46gewkGLHVfdi3P4dlDkhIWv6x/+tDNSWT6C2/zLKV7yAA8W25cG7GGzq5PIPXiDYM5j08Zeylhe2UHVdI7EqZZUvgJ5+tz7m2lqwr8YcTw83o1cdjD4xPChPDigNGJjaRunR4wQHMYzRxJLWgMbxmkTWvx2uJWWVRqMBB6U9oAeBa8uuJYEdlM6lvPAx0JHxx1ym9/JsJXw+8c1nZIVxGkcv1JhujMobUF4FvcdQVvL+9jye+K/PspxogXSCtIauyh20RIo4/GwbVthm70238+IjcZL4K1R2d2Kntb/+2x/lY7/wLhxH89jPnudTH/09Ojt6Zt8R+LXf/PDYBbuJCdzZ+ANePvsH7wWgq72PB279LB1Xe7jpVbskgbuEXH/TTp5/5dv8w19/j7/+yr9lXIuFO+4+yO/84SepXTd+bvIrv/4Q/X2DnDh+npycLKyIRUP9VfYe2EZ2doCuzl7W1q2SClshhBBiCVA6mY3ZliGl1KHdu3fvPnRoah2NEEtP8OE/IPzY36U7jIxglG8g8KF/xsgvT3coSaFDPejG76MbHobmH0dvba+4HeXNj/47byN4ciHYgW5/Dpp+NL5zoBLj/lPTWh5orXF++nroO4Nx0z+gKm5L+etwbAdt21x68HXokZHZd8ggI3YeOhxOydiV95VQVPUIjtuDCo1PThbquAH78vTJnDx33IgROBJzLA2Ed38AHSPrr/pbUXY0K6zMIhw1PalpuDfghE5PX25WoiMNMY9pmFW4Lnw/zqtLgKeG8MMpnmzI9GBUbkJ5jdGEbowq5jn4n9Mf5Gffj32OVVFXxH3+5xMap6t8O8/XZ9N8fmX3vE1U/0abR4/EbjFyzcsn/5Oa1ZVjz5947EUeuO+TAGzYuIZPf/b9VFWV8fgjL/DIT5/DNA327t/OTbfu4d7X3pKUOF9+5hQDfcPc/pq9SRlPLL6L5xtoaW6n4cpVvvX1hzl6aPr/FxdDIMvPW995Lx/9hXdQvboiLTEIIUSm2bNnD4cPHz6std6T7liWA6XUoW35gd0P37k93aFMct8jxznRO7yifs9SiSvECmKdfTLdIaSPy4Nrw80YpXW4ttyBWbs/evv2MqG8Bah174Z17+baxbl4VTVaa2j4H5yXfhUGr4AnP2bPWqUU5t0PpzLsaQzTwB4ZWnIJ3FRrebgD45d/Hv9uDwQvYzp5GAP9cMXGXF0MPg9o0A3NOOdPo/I0WmeBKxvtygJPdrSy2gyAK4DSeWg1W+l27Aoz7cSrWJypimuhF4xTPCkZgB3GaRy9Fd90Y1TcgPIb0HcSFU6sSnMirzf+a7YjDvjjrh4Tzirix4cMBnskgZuoDTnVPEr8JG52ToBAYPKbf+vt+/ndP/w0Lz7/Cr/xOx9j9ZpogvfgjTv51d/8+ZTEuffGLSkZVyyeuvU11K2vAeCd730dx4+d46Xnj/Pnf/xNOtpjt5ZJpm071rN+0xq++Acfp6S0MOXHE0IIIUT6SRJXiBXEXLsPpyU9lSLpZq67nsBDX0t3GItitlsilVKw+o0Yq16DvvwdVKBqkSJLjLYWIWGXCim+syUyqPGjwenHph87Nwe2DICeUP1b60XdtpdQyS5g+uRIplmLozowVPZ469tRSmWDPd6bQWsdMy+r7Q6UexU6MuVWfhW/P4CebdK02Sz2XUN2BKdpNKGrDIzyfajsAAyeQ43EblMxlcfjALEvFFnW7O9HOKuAn/VuZLCnI9GoBdB9soOcQBYDw9MvUrzzPfdx6+37KS4pmLbuQx97Gx/62NsWI0SxDCml2LFzIzt2buSt73w1Lz73Cl/6nX/gxLHxPjAul4lljfcHX1NbRf3llrELr4Zh4DgOPr8Xl8tk38HtHDt8BpfLJDs7wNDQCH19g7z5bXfz5rfdzY6dG8jKDiz6axVCCCFE+kgSV4gVxLP/LdiXXsS5eibdoSwKo7QOz60PofLKcW24Id3hZBxlelDrHkx3GNNJX75Jcm5dR8HranBV9zA2CxlgmGU4kekVmspTimZ4xjG1nt4qQOtBDLMA7GtVp/GT6crIjlFbO1Nl+0KTsGnsO6kdnKvjF79U6U6MvAIYvogait0+AmbuiRsJz3yhYqighh9eLKW7RRK4cxUeiXD37gP8x9OPji3z+bx87FPv5hc/+37cbjn1FamVk5vFnfdcz2137ecf/vp7NDW2sWvPZl517w0cO3KG40fPEQyGeOgjD/DTHz3Lw//1GKtqyvn0r7yXkZEQWVl+cnIDuFwuIhELy7Lx+6P/79daS+9aIYQQaaMMaceabnImK8QKYlbvwL3vLYT+93fTHUrKmWv34X/wLzDypT/cUrNSv6AG1uZQcmsW3vwgpnsIw+hH+XIZ3mSAagZA6dxoOlRrnGDsizHKv5p4s9zp0WSqZhClCtB6SpsAMzCexNU28ThWPSgv6NDEI8/w6haahI0fy2LT7Rew26P/VoVbMQrLwO6E3tMoPV7e7HLNMLFZKPp6Iv48Drt3s2/gSZRjE8ot5YxnK2dO9dLfEWPGOpGQ4lA2B2/YyfoNq1ldW8X26zZy+50H0h2WWGFM0+TDn3j7pGU337aXm28b74N8rao2HrfbNenCw0r9fBRCCCFElCRxhVhh3PveTOS5f8XpuJTuUFLGte1V+N/3tyhjDtO/C5EGrjwPFfcWkFPTgWk2QnC0svNaLjAEZngjtnd0wbUv8CoA9MYe1J1NvCSuGkvjgmEWYltTkriTWiLYxE3M6jCGuw4nfC7eS5uy/QKTsDqzZoC/RnfXY3fXR5+4cjHK1qECAQi34uqLH3MkbOGg+H77RjoamrlctAOXx6T7ZB/QFHc/kZjOc538d8NfY5jLp++5EEIIIYQQksQVYoUxsgoIfOgbDP35G9GDXUkZU2UXo0f6wQ7PvnGquTz43vibksBdwvRi9z9NFxdseGgAM/Q8jAB5O2Ju5unqZ6RydCKma++Nip2c0rhwVH/cQ+qJbQ1ijKGUe3wLbTP5NMEFhgdwowwXmD5wlY2Oo1CufFBrQRlo5UEpEzBAKZR2A48yb2YBcGX++y8GK4TTfHLsqVvtm2FTC6U1nc19aK3p7xxcjAhXDDti093cQ3FNUbpDEUIIIYRYHhQolWHf01bgDSqSxBViBTKKqvG96QuMfPMTk1f4clD+XHRPc0LjqLxyXHUH8b7uszit5xj+2kNgR2bfMRV8OXhufh+e/W/FKKxOTwwiOZZqEteYW9Vf3QcLMUM/G1/Q9wpkrYJQ66Tt1GALUDf6ZPRMRcf+78zI3o7NyAxHHa8OdfT0ZK/jzwX/bryBTcDQ6PEc4rUzCI/4cZxoX16LfvB4Jhxn/FgKc0EnHE6HfwF7p4fbNXP18EhhNYah0tntd9mq3lZFQWV+usMQQgghhBAiqSSJK8QK5bruNaiHfx9MdzRp69h47/kFPHvfQuTwf4PLg1FQhV1/BGewC93fjtPXipFfiVG+Ac+N78bIKRkbz8ivwPeW3yP4nV9Jy+vx3v1JvLf9XFqOLZJsifb8M7xe7FBo9g2JtlEIeJ+e3irWXzM9idt7EiO0EcdrYTMYnT5Mx5kYy18MtMU/sNYTrlgPo4xCtNM9vnp0QjQr3IXLO/spgtu7mtDI9MnVpltYqtI69sqC9k8H05j5NX/rKR+Z1Ot3OVGGwnTJ3RhCCCGEEGJ5kSSuECuUMkxyfvM5ALQVxulpxiheg1IKz83vG9vOtenWhMf0HHgrOjhA6Pt/CNbitlZwbb59UY8nxFSGx5NwSq78ngJwgtNXdD4HRXuh78j4MieEt7OPkaosNAMY3o3RSc08lRhmAU6oEZx+tJmNw2wJ1ckVvIZRiD0hiXuNZV0BtQ6XRwHxK6OVMQIYzJak1TOMkZBwYsnxTGLK7L1p03tVJoUTQgghhEi2jGunsALJjA9CCJTLg1myNimzHntv/SD+9/8deAJJiCxBhgvlzV684wkRg+FxJ7xtbnW8yas09J4A9+RenkbTj1FW9CPbctnRCcicLpzIBXBlocxCjNzdzF7ZOSXZOsN/8lbkAo7lm2W8MG7PhvHhjCJQWSijFMNcNeFRMsMYCXAn/t5mitkqcUXqhIYzoD+7EEIIIYQQSSZJXCFE0rk3307gA38Pi5BYdV//TrJ++UcY+eUpP5ZYHEu0mwJqDolGw2mNv9IegcDaKYOP3zijGUB514+vc7rRBuCavW+sntJL19HdzHQqEA4dRzt5M45purIwzGqUWYxmAJSFpgdHt014tM8a24zGeu0uHS5DWiWkS3g4vHImSBRCCCGEECuGJHGFECnh2nAT2b/4fxiltak5gDJwXfcaPLd+ELNsXWqOIcRcJDqxmalQ9uDM2/QcATNr7KlTcSt64kRZ5pSErR6aZ8uCCMoonXGL0Mhh0PnxN1B9aBVC6z6irRdiVaAurCpVmUuxEleSuOmitSY8kqZJNoUQQgghliEFKENn1iPdb0oaSBJXCJEyRskafG/6QkrGdt/4IIH3/jVmaV1KxhdirlSCSdzcrfngjMy4jXZC6MJ9Y8/t3MntFfS8k6LTE72GmTvrPsHhV0DnxN3C7VqVwJETeH+0BkxQPjCywMwDV/GSLM82lSRx0yk0tPT6KAshhBBCCDETmdhMCJFS5oabUbll6P62JA3owb37Pnyv/kxyxhMZaOkl7ACUkVjcwbZgtMrWHpq0XJt+IjseQBtBtB4AHUJVvhHDzsLxFaAYQOshUArNyCzvkjH6MFHKBEzAQKksNObovkb0rdYmhiof3V4BCuXYqHB/tLpXaxQOVvA8rvxNYLpB20xMCCtD4/fvnrSMKRMfhPYUARFQ1yY6c/CeeQGj8yg4IdDW6LjTKV/NQqdGW3SGkp646RSWvrhCCCGEEGKZkSSuECKllFJ4X/MZgt/+lYWNk1VI1qf+G5VdhPJmzb6DWLKWbC/LBCtxw20jDA7cRHbgx2hfKbp8N9rpA2cYZVk4rs6xbbXTja26IdSIEQKduxu0jcZGuUrA6hjbVhl+lJHL1Gpb06xGc227CAoXzrX9NGhcOFYPYI2PpfJRg4fHEsXXRoyEGzFKdqBivFRlVIHqjfu6tRFC68ltJOzy7RitT8Z/s66N7Z1tgrXMY8w6yZxIJdNjpjsEIYQQQohlRKMyrkhhiX5vXABppyCESDn3vgcwN926oDH87/oyRlGNJHBXAifTTg4Sk2glLkD9v3Vjl9yOU5CNHjkOoQaIdGL0HMcdLsUdLMIVKZu+o3ZwnFa004HyrZ4SAMQ6kdF6auuGqXFaGK6qKfv0YmRtnz5W5Cq6+0rMRLvjzJa0nJ5Us3Nna+Vwbdeld7piSDuFtPLnLL3EvxBCCCGEEDNZet+KhBBLjlKKwPv/Dtd1r5nX/q7t92BuuCnJUYmMtQT7nwJzitsZsek5WxRtIzBRpBs6n4LuZ1HhgemHiAyPj6GmJmfjXImeVjY7fcInw5h+ccTxxO6B6wTPons7piVyHd0G2hs7BkDFSOI6Rh9Oztq4+4wHuPSqKo0Jlc1i8bVd6ph9IyGEEEIIIZaQlCRxlVIPKqX06OOhBPcpUko9pJT6L6XUBaXUiFKqTyn1tFLqg0rFunlzbF+llHqvUupxpVT36L6XlVLfVUptSN4rE0LMl3L78D/4l3hf/3nwxZ8gaSKzdj/eN/4m/vf+DWoJJnHEypLoxGbXXP23i2gzTgJTmdj+CZWE7jLI2YdtjvfRdZxOcJePbxP3bqKpyeUY1bpqev9QR7dOHn/iuqEjMDA9iazJjhdEjDhGx6q5fYZ9Rvd0ZeY15yuRd9Jgv50RVy3OaIcqjWLIcx2D4djvnVgcVkiS6EIIIYQQSaOi82Bk0mOJTqWyIEnviauUqga+CgzCjN/mpnoA+BvgKvAY0ACUAfcD/w94tVLqAT2l9Ecp5QO+B7wOOAv8KzAAVAI3AxuAcwt4SUKIJFGGgfe2n8O9934iL34P68RPsK8cjrmt57YP4b3v11BLtSpTzN+st+UvE1rR9kgh5bddnr6q+EYcow1t5ELWehynCZyG6WN4V0GkdXSn2O+b1sNTioRjtVzoBnxAcPIK/9rx8aew+5/CdN2FCoxfYHHsXsx4ZxbKiJlotgvKZz8ZmWOCPNUGPTu5XL+dzleaAbhk1lG25ybWlD5DRBVx6OFsfHVFwNDMA4mUmUt7EyGEEEIIIZaCpCZxVTTb8k9AF/CfwC/NYfdzwOuB72utxxoiKqU+B7wIvJloQvc/puz3p0QTuH8A/PrEfUf3d8/xZQghUszILsJ7x4fx3PYhwo/9HeHH/wE91D223vfm38F9w7slgbtCGb4Aefe+gb4f/U+6Q5mbefy9dj/SRPEtO3AZr0QXuPJwiq7DNtuiQ2ZtxI6VvB3lqGEU0YvQyhqJ1XaW6ZnTWCW7GtNViW1dmrzU1DNe4La7n8A070B5r40yALocVH+MrWMnYm3XANqTiwrH2meUK/WV+FqDo7xow4dWLjQuwMFjd0zb7nLDeAIXQNs2rS820cpqMBSgwZretkIsnohU4gohhBBCiGUm2ZW4nwTuAG4b/ZkwrfWjcZa3KqX+Fvi90XHHkrhKqTrgw8BLwOenVumO7i/fooTIUMow8N75ETx3fBjn6lmcnmawI7i23yMJ3BXMCATIveOeJZfEne+fbPO3I6x+dy7Kt55wXhhUNIGLNnGf/xmu3FU4uVWgNSrYj5NTgrJtIp5OtNOF4VkF4Sa0NQBez+SYyAKmVujGnjhOmX4mtnE1jCKUGYDcG1BOCGfwKGp0LI0LlBswsHuOYhbtQbmj6xxtYJA3FsG1h9JgEGOyNhTWpndhDDROWDS6n2EAGvs46LLsaB9eTTSTOvrQ2olOhjf2c+IyzZB3E2efVTiWjWM5OJaNtp3ow7Jx7NH3x5me3C7aXsWOym9OWjbk3UlWgaYz5rs4YRxrhVSUZygrKKd/QgghhBDJpFTc/m1ikSQtiauU2gx8CfhzrfWTSqk5JXFnce1MfGpZxTuIlvZ8A8hVSt0HVBOtBH5Ua30hiTEIIVJEKYVZuQmzclO6QxEZQplLsAfyPLO4Q6e7CLevx+f+Kd7IQULFCrQXb0cPDJyDgXOYzZP30aYPe/vbMWwDZWscmtDhNly5t4wnQKNBMV55q8cehnvy8+jDQ5bvRjQKxRCoaLI3YmYTDp7AKNiH7j2OytuFQ8ukeJxIK25XOUrZOE5LzDSxtoPYdmOMNUBOOXpgQluJayGP5kHtrhKsc7Fbr8yqfC1DzfNra6DtySeqQ55tnD21mf6LLXH2mLCvEztZLhaHVOIKIYQQQojlJilJXKWUC/gm0T62n0vGmFPGfs/o0x9NWb1v9GcecBEomrBOK6X+Bvik1nEaBU4+zqE4qySrJIQQiy3+XJbLhKbs5ipysuohMgTPn8W5YQNG5/N4nf0wfBysvni7orK24Tv0DdARMANYtbdg045WHbH3STiqIpSaXMFougsgCI5uh7waYHoCUzu9WEE/Ll9O/Cv0Kv4ph003SnlQevoEa8ACe+LOv2LAmZDEPT/4HpqeaQLaEtvZtknR/LEiAZGQVOIKIYQQQojlJVmVuL8J7AJu0lpPna56ob4EbAN+oLX+8ZR1paM/fxv4GdEevFeA/cDfAR8FOoAvJDkmIYQQqZRhE1ktnCawKp+8dQH8Wf0YA+dg+ARM+MSMHG7Ds7cY1f0imFmQtxeGzoI9ML6RtwJUALqfH19mD+O68gJ69X5iTk42lyi1f1oS1zAmjheKu69jX8UO+TC9Zpx2KDMlU8OQdx30vhR79QImqVrIbV+OFa2m7fNcT9uJnjntq20HSeKmTyQolbhCCCGEEMkk7RTSb8FJXKXUfqLVt3+qtX5u4SFNGvuTwGeAM8CDMTa5dr/tVeBNExLIjyql3gIcBn5RKfX7Wscr74nSWu+JE8MhYPd84hdCCDE/S7GdwtS8pbcki/xNeQTyhjCHLsDACRgk+ohBD3URPr4K99Y6DC5GE7XKDZ4iMLxgeGC4Plp9O1WkB/flp7CqbkWbc0viau1GqWyUduE4KnpM7WK8zYKBy7sNnCE0Fgr3aKW04lqSUikDMEEpDApQysAJduPYQ0R78GqUdjBVtLdvdCdz7BhaKzCHcEXKor1trx1ba8BBF0zvp5QoFacHcELvje3Q79nP8SeLifTNrSWDNTTMm169HssxeOyZTgYHpTJ0MUklrhBCCCGEWG4WlMSd0EbhHPAbSYlofOyPAX8OnALu1Fp3x9jsWlnMj6ZWAGutjymlLgN1wGbgWDLjE0IIkUJLrhJX4yuw6Xcpal5VhCdyCXqPRytt53B/iu5uIvyMiVFWBx4fyuNGuV3gMsANSuWjLRXNi5qg3Brl60apKyh7GBUOo/0zjK/dKJUD2gQiaD2AZgCtR6t9babPgwa43evidLjIASZUCqOB6Me1cvmw+mPOWTqd8uNoje59mVg1t4Yr5nXWhBhq/kncyHCE40+WzTmBC+AEw3DiJAq4d30Bl80KDr3cPu9YxNxYksQVQgghhBDLzEIrcbOBDaP/DsaZTf4flFL/QHTCs08lMqhS6lPAl4ETRBO48b71nAXuBnrjrL+W5J3hK60QQohMozKpJ67bwFuci6cggCvbhelTmG4LgxDKGYRQLwy2w8BFsu85gNH22MKO59g4V8/NaRdVshbP5l5UcAD8HiBaxKrIBeUF7YwmbPvHE7ZzYNkduI1Ypwx+JidxJ8TkgskTq83EAT0EhddBd4xrrgv4c1CxstIJCrb3zv/AE4Q7e6iihzX3bubHz/Yx2D/jzUEJKyzLxorY9Hcnu5PV0meF5/97F0IIIYQQkymlUUZmtVNYie0dFprEDQFfi7NuN9E+uU8TTbYm1GpBKfVZon1wjwKv0lp3zrD5I8AniPbMnTqOF1g/+vRKIscWQgiRIRarEtdQeIpz8BQGcOV6cPvBcFkYDKMi/TDSCcMTbgQZGn3EG67thZSHHIvuuEzEWIdrXSMU1KG1D60H0bQvZF6v8fHpA9YC/VPWdAEeIEZSUgVx51xPZODZBA4QTbg5BXWYMZO4C+iJiw0x63sXX+Tkae5dm0eDfxUvPp/gBGkzWL+pGDcOg2E4+lw9mfI6M4EVkSSuEEIIIYRYXhaUxB1tYfBQrHVKqS8QTeJ+Q2v9/yYsdxNtcRDRWl+css9vEJ2k7BBwd5wWChP9ELgE3KOUepXW+qcT1v0GkAc8obVundMLE0IIkVYqaUlcjW9VEb6yLFxZCtNtYzCCsgYg2AVDnaM9WJk1QZvpnLYL6J6dsMrBfPEY1q5q8CYvGa61a1rf32jvhWIgdkLS9BURSajw10IDtitIzG7IpsLIz8fp6xvvqZsoPdp7IkOEu/sop48H7tnIT18cpLcn/mRxM6lYU4DT0UNHU/Ra9403rOFc/QAdzVMT7SuTFZKJzYQQQgghxPKy4InN5qEKOA3UA2uuLVRKvZdoAtcGngI+GaM9wxWt9devPdFah0f3+wnwQ6XUf42Ouw+4BegAPpSqFyKEECJFkjCxma+6iMLaPuh8EYJEH8ucbuxDvfRP6O7LmAUfxd5YuPBBbQPlmNiqB1fMs4Ye4rVN0KofI+cGtB6f4AxA4xD9uHdQwWGwutAMop0unJxajIFLk8YxnT78xSehMheyqsGJQLAD/OXY5lqcAQMcjd3bjd3djpGdh5FbgOHzESKPuLPJpVHo1FnurMqmZfMannt2bteat+6twr7YQH/3eL/fzhNXqC7LJ397BeePX012uEuOY0slrhBCCCFEMqkFzDUhkiMdSdx41o7+NIFPxdnmCeDrExdorZ9WSu0Ffgu4HcgnWhL098DvaK2bUhCrEEKIFFILTOIWHKzBP/IMdM6vynHJ6u+F7ssAqCtXYCFJXK0xgi6cvpfRehgV2IEq3oWml8kJ2zBQQvS66WRKKQyXj0j40rR1Y9s4I6AHxxoB6KJtMCWJO9ZOIdwP4ZPjy0M9GDkGdkM0aWkAhgcI90DnFTRgluwCcufwwhdPpG+QkoGTbL9uI8ePzdQ9atyem9YwePxCzIrkobZeTKOPg7et54UnL48Vma9EtrWCX7wQQgghhFiWUpbE1Vp/AfhCjOVXiNG0Ld72CR7rFPC2+ewrhBAiA5nz/3jyVRbgDz4H1gpL4AI6FBpPhl4+CnoXMXogzMxyYQRD6GATTmT8OqgzfBxULQZeIA+tHTQ9gMVMZc6mSxEJu0a3i2HKJHaO15je/GCml+DMfNu80hl+W72j2Wi20VycTXfn+ARlr7+3Ak9rIx151TzxRAugUAqC5+tnbCmhHU3P4XMc2FVJr+3m7LGWOXegWA4cSeIKIYQQQohlJpMqcYUQQghgAZW4hqJw/QBMSIatJE731fEEaH8LqtdCF7jj72C5UZZGOfZoMlTjDB3HcWL1VdVga3BFgE6UAqUVUAzaxNZuohOfaaKtEjRKKZRhY5iVOHZDjDEV2h6ZlKN1nFa0rxQVbJ+42QwvOsakapNk/m314Y4ebi+PYNQFeLYli1DQwjh/mnDYIq+rl7feWcuTZ2yKKgqwzl1OaMye8y0A3HDDGl58uZVIKPPfh2SyrZX1eoUQQgghUk0ZK7AyIMNIElcIIUTGUbGbr86q5JZq6Hg0ydEsHXqgHYqLYLgLAKO+E7ugIua2xrDC6XsSjROjm21sTsTGdE2onFUa6AEFOuInYjVP2NrFteyroXJRVjaOEUar0Fh1sFI5oBunvgqckt2YjT+acJwZghqpB/8aGOmNvV4vjWRepG8Q+ga5qW41Ohgm2DxeQRw8d4mDAQ9dZhbtM4wRS+fxK+zdXsWxc/0M96+AxtCj7MjS+L0LIYQQQgiRqORNWy2EEEIkiXJ75ryPf20J7u6nUhDNUqJQeWvGn125EHsz24XT9xzRycbmIBK/wlkZUzOtFhABIjh0onpOYba/iKv9FO6+YQw7gNb9oPzTxnL8WVOWxE8zKxyM/LL465dIEveakYv1BJvbpi13gmG8vvld3Og+18y21T4KS7MXGt6SIZW4QgghhBBiuZFKXCGEEBlHmWa0WjPRZp5ug4KqNuiJpDawJUAb40lRffUMcPOUDTSqvwU9jzYDTmQAM84kYUrN8N4rhcrZgu59GnQEPXIOY+QCZvYutCoaregdrc4F0CZOxe0oFFop1KCDse7G8fXoCQ+HtrMbGNYbon8ydvTPxnFAOxA6r4GBOb/WTKNyc+lp6Z33/n31HawpzSOQU0jTxe7kBZahrLAkcYUQQgghkkkpaaeQbpLEFUIIkZkMA+zEEjFlN1dC2+OpjWeJ0KHgePeBgTYYscE/3mPYCLpwgufnN3a4C6iK/lsDZAFuohW9vSiVj9a9Mfd1Aj7UpFUOevDQ9GOM/rQnLHBRgOqKX2XdVV9H07PLu1VApKqWwecT64cbz1B7H3m+YUqur+HIc7F6FC8f0k5BCCGEEEIsN9JOQQghREZSKrGPqJwtlZjtT6Q4mqVDBydXnRodk5ObeujS/Me2+6I/tUbrfBynG8dpw3E6QOfhNmP33wXQpo3yb5rfcWfqiQsY5iwbLEFaw8i6HbTm1mJt3knzmbl2w43NCkYYPnmRG29bjduzfE8DrbA1+0ZCCCGEECIxSoORYY8VWBkslbhCCCEykrZnT8KY2T5ycs/BwMr7AI9HW5PbGqiOHqgZ7TFrudCRpvmP7YSwbYto5e3kvq2aTjDyZt4/axWMnJn7gWc5QTPdcx8yk6ncXPpyV9F6qB6AvsaupB+j8/AFdm0soaEPWht6kz5+uklPXCGEEEIIsdws3xIMIYQQS5oyZ7/OWHowBwZaFyGapUNNyWiqjvFkqxGZ40RmU2kLPRwi7kRjeubfmeOzwZg6adnCuXzLKIlvmAwWrab1ZHPKD9VX38HqtQUpP046SE9cIYQQQgiRCKXUKqXUPyqlWpRSIaXUFaXUV5RSCZ8oj+6j4zyS9oVVKnGFEEJkJpcLrPiTZeXtqUZdfWwRA1oalD8bhiYsaG8A9kT/bS9w4jflxm77PmbRnZCThVJT2xjM0tZAgcragh54aY7HnXm1sYQrcbUGs7wMIzsHjaatz6Tr6OL1qzWDI4t2rMUklbhCCCGEEMml1AILQjKQUqoOeBYoBf4HOAPsB34BuFcpdaPWOtHb4vqAr8RYPpiEUAFJ4gohhMhQyjTj1XviLsgiSx1dzHCWDOXzTXquOy6A7QBu9PDphY1t5AAd2F0/xQgfAH8RKGN0ljMNvtkTgjqQDwOzbjZ5H2PmE8YEirYzlqu0mFPngkB6JmbrOd/MrtpsrGAYx7JBKU62Lf3KZisoPXGFEEIIIcSs/ppoAveTWuuvXluolPoz4NPA7wEfTnCsXq31F5Ie4QRL+GuPEEKIZc0w46zQFO/2QGvPooazJChgcMpt+HYIo9vB0cfR9sLeM2X4xhLrzsAL05KxRs5+zOw12Eb8O4YcdwTTXY6OzOWuopmTioZrCVcFuN3AAiukF8CxHIY7+6csdTFr+XOGi8jEZkIIIYQQYgZKqVrgbuAK8FdTVv8W8CHgQaXUZ7TWQ2QASeIKIYTISMqInUQq2L8a1froIkezNLjW7YXmZ6avGG4DTzKS3jP3LXAGXoShM5g529EolGK0StcB9Oi/QQXLcF26Co4FjgZtgzPhoe3RdTZoB7wzT5gWN9+/BNidnSgzG21nRiLa9C7h3hQTSDsFIYQQQojkUYAyMuturdFvi5uUUodirdda75lliDtGf/5Eaz3pZFxrPaCUeoZokvcg8EgCIXmVUu8Gaog2uHsFeFJrnbQTU0niCiGEyEwx7pF3F2bjt2N+Rq9shoGrbjc0PxtzteofgeJkHGj0xE1rDKMSpV049KAntnly+tF90USy484BHZ4ej/JiXppDP+Oc1TOuNszMSIDOh1G3Ad3RlO4wxpgeF7D0q1gda+n+TQghhBBCiEWxcfTnuTjrzxNN4m4gsSRuOfDNKcsuK6Xer7V+Yn4hTiZJXCGEEBlJmVPLKzUlOw1o60tLPOmlUbml0WLWYP/oBGUKlVOEWVIDQ42xK3Cv6ehIShJX2QYG1RgjHTD0PACGcuEUH8SmMcYO3phJXO0LQfluaD2c2IG1PePd/cqVWVUBS9lySeLaEanEFUIIIYRYAc4kUHEbz7Xb/eJ9wby2PD+Bsf4JeAo4SbTpXC3wcaItGX6olLpea31snnGOkSSuEEKIjDQ1iVt00xpoS+QC6PJilK/HoAf6R6s13Yx3NYgMQ0uM5OkUuuEcbF638FgGLqL6TkwZ3MLoehmneAvTJ26Nn1x1atZhJJrEdSIwQ8sEw1yaSVyzbh3njranO4xJ4rUxWWqknYIQQgghRBIpUCrDzrlTf9p67QizvnCt9RenLDoBfFgpNQh8BvgC8KaFBmQsdAAhhBAiJSYkcT1leXgHn0tjMOljOJ3Q3zz7hjNpbwQVWHgwoalJ2lFOEFfnKdxWOS6nGrdVjjtUBPZg7O0BqzgELn9ix3VmTsgZxtK7dd7YtJlTRzqxgtMrldPJDqVvkrVkkkpcIYQQQggxi2uVtvEm4Midst18/O3oz1sWMMYYqcQVQgiRkdTYbFWa4q0WtA2nNZ60cRaeVFOA0gVoFvIeKgh1xF/tBKHnhckXxAPriXuJ3LRh9Q1wMYHq6lneg2hP3My9Lq08Xoy1tTA0EH3u9nDuRNfYRG+ZJDwUIvpezr+0weN3UV5dQMO5dg7etpamxn6aL3Xj9rkIjyxOqwapxBVCCCGEELM4O/pzQ5z160d/xuuZm4hrt91lLWCMMZLEFUIIkZlGb+suvH7NimyjMKZwMww/veBh1LCBDrgwjWqM7pMQ6QdGK1jtMLiycQp3YJsDoAemD2DkoHRyE3B2VQnmxQQ2nCWJm2kz5U5k5OXRZpTQ/WJLukNJiLYdPD4v4eD8ftcVawqo8lkMtLSwvcpPz+HzFOYGKNuYTbh/hKwDazj6YjPB4dRW/GZgflwIIYQQYgnTGXjOveB4rs20fLdSytBaj93ep5TKAW4ERoDnF3CM60d/XlrAGGMkiSuEECIjKcPEU5aHL7iQz8ylz7p4BFdpDfQ1LGgcs7kFs6ANFTkVe4NIN2bb4yhvGU7xbhzawRlP5io1j4vHWgEaVIyqTkeBz4TcVYz0KcJOKVqbaEy0duNoN7b2YNteNCbBQQPbcWNZHhzHRGuFow20Y2CSBVyZe3wpplH05VXTfXz2vsWZxJ/lmXcSd82afLoPR4sVwgMjAIT6hwn1R6vAw4fPU7t5LacONQGaqtoihvpD9HYOJSX2ayo3lid1PCGEEEIIsbxorS8qpX4C3A18DPjqhNVfJFo9+3da6yEApZQbqAMiWuuxUhSl1Fbgqta6e+L4SqnVwF+OPv1WMmKWJK4QQojMZBoUbwlBe3KTO0uObaHNIhQLS+Lq9qsY2b2zbmeE2jCaf4gGnOp7sK3L0RXdNvbZGggF0Xb0VvWeyyVgO2jLBsdG2zY6EkFbFkQilD94EkONQP427LxKHJeNchTmcAij4wiEu2jlTTz9tdnbPDQN+Zk8t4DmWiVx3cGqjDqh0RrMLVtpqh9kYIklcAHc3vm9m9m5Puzu3tm3iwxx4LpChtv7CHe2kQ1s2b+Kfu1maDCM221y+UwbkfD8ex2P9Afnva8QQgghhFgxPgo8C/yFUupO4DRwALidaBuFz0/Ytmp0fT2wZsLyB4BfVUo9BlwGBogme18L+IAfAH+SjGAz6TuPEEIIMaZgRx6cPZHuMDKC3XQKd91e9NWX5z2GbroItcUketuRgrFuCwCqJ4xzYcLxc6uI1M+SfLVNcDnQ+wpm7yuYWRtQfScnbZLtP8Z4u6n4DLeJE4md1EvnrfM6RqGx3rqT089dTk9ASeB2m7NvNMobcLNrfxVdXSHy9Qh9V9pn3SfWNl1nmgDwjD7fvaWMq4MGDRc6E45lopH+kXntJ4QQQggh4liCkwnPZrQady/w28C9wGuAq8BfAF+cWl0bx2PARmAX0fYJWUAv8DTwTeCbWifnG4skcYUQQmQk1/AZlt9pwvxZne2Ypifav3Y+wkFwV0Ak8d6syrbGil9V0J6c/h3qwF+7m5ErbeAyIBxh6mRYWvuA/olLph0jO+sSJTtuoeOVqzPG4s3yMtIbOzGXpHOiuduwmbb2CPnFAUyXgaEgFHLovtiVnniSxO2ZPYm7dksZFbkGkf4heg6fx2Dyb3qhei+14VeK/TtKcBfk8tILzXNq8SBJXCGEEEIIkQitdSPw/gS2u0KM2X+11k8ATyQ/sukkiSuEECIzGYlXA64Euq8NNuyDpmcWMEgBMIcJtiJD46WRw1OSx3aYbNfzZK+LPu3r30W4dfKFasfxMem3aAZiHmbN/h46Xpk5FNM04q5LRw5Xozh/KYjhMrFaBhi6mshF+qXB5Y7/Xl+Tl+el62Qis9ItgNbRqt0r7azLcRNYk4O7vIihEZvTR5pnbLcwMhBEa42K1Y9ZCCGEEEKIJUiSuEIIITKTI3W4U1n1p3HlFMHwPCs9exyMrDXg2KCjfW3RTvTf2gGcCc9tjMEjuJQCx8aOlMevjHZ5sYdi9CB1vJOfq9inHZU1j2L6bsMOxq8yNlyZlcRVNTX0H+4DwJvjo3xTNd1nll7/21hcrpkvoPizPViWJqs0j6H2vkWJyQ5FGGjphpZosnzf7hqOnOhiZDBEjIIItKMJDYXwZfsWJT4hhBBCiGVNgVJp7GEWywq8Vi9JXCGEEJnJCqU7gswTGkKXb0fNM4mre7tg6Mj89h3JjbvOKdmLfapp+j6Oe/KCcDua6edbbtcANTcXc/mn8auEZ6qo1E4aTiiN8VOo0ECQhlOtrN27jo7DFxY/liQzZ6nE3bO3go7DF4gsUjyxdJ1qYEddGY7lpy3ipuHc9N654eGwJHGFEEIIIcSyMfv9ckIIIUQaqKyidIeQkez646jKvfPa1+mYue/sTHQwfo9RY+AimNOrN7Wecq14pBFyt8YcY+2umfspuDzxrzs7i1yKqzW0hia3htC2w6UXLlO8e8P0mc6WGJc5U/yacNfiVN/OpvdyG/2Nnfhbr7LnptUoBYZrPPZIOPEeukIIIYQQQmQ6qcQVQgiRmQz5iIrHamnE9GRDeHBuO3a3Qk02WHPcb5QqKAbDAJcH5TbBMFFuD7hc5OYUYrgVyg3KAGWCp1ChPLtH+x3o0Z8G5OyOluNeS75qm8KsEHr/Ftqbov1vtdZoHZ20TDuafWuCUOqN7uM4aNtGWxbatvHmD9I+r1c0P8FNu2h6pj7mussvXKRy+2pGGq5iDS/NavJ4/YeVAZt3raLv/JXFDSgBg69cYGdtLsOdAxTUldPQ42CH7XSHJYQQQgixbCgjw9oprEDyDVkIIURmilHZKaL0cC9U7YPmp+e+s68GBk/NeTd32fkZ1+dmx1jYO7djbNtRwT9+vyDmur35BqGG2D1nPYX5czvQfLjdhOq24YkM0XR55krUluONFNQUEcgJM9zWm/rYkixL2dx4+xqU46BtBx2xsENhQn3DjGRgAvea4Y5+AHouXGXN7g1YUokrhBBCCCGWEUniCiGEyExSiTsjq/E0Lo93zr2Dtc7N2DkANlV9n7q9n+biyx3TV8apDgXQduorLlVePsefjl19G0tPQxf+/ADF6yvpPR+/128m6jxxJd0hLJgG7IhU4gohhBBCiOVDeuIKIYTIUJmaaswQwUFU6Y4576aDmXsblFLw2jc8F3ulMVMS10lRROOc7u457zPSO0zz+U5KdtalICIxk55jFzAcSeIKIYQQQiSHBsPJrAeZ+70mVSSJK4QQIiMpQ9opzMYJzv12caenN/mBJFF14fPsvKtk+go1wylLipN1zobNdFdvn9++EZtLL12heM96tFyYWDTadsCSdgpCCCGEEGL5kCSuEEKIzCTtFGZlt5wBd9ac9tGtsfvKZpJ7XvUDTPfkJL6eIanvWKlL4mrD4PiRHi4faljQOJefv0Te5tWYPneSIhOzcaSdghBCCCGEWEYkiSuEECIzzVR5KaIcB5W/Zm77hIfBV5WScJKlOPssN7whd9IyPcPfg45EUheMo5M2QVbzK424y0rw5s0t8S7mx05hcl8IIYQQYiVRCpTSGfZI97uy+OQbshBCiMwkSdyEaLd/7ju5ypMfSJLddeO/kVUYGF8ww1maE0ndbfOqoCCpPXc7LrRhFBWgV14Lr0WXyr8LIYQQQgghFpt8QxZCCJGZTOmJmwg1j2ygY3lTEElyBTydvPbBgbHneoYkbionNnNKkp/wbj97lYJ1mZ9IX+psaacghBBCCCGWEWk4KIQQIjNJT9zEWCNz3kUPBGEJtGbds+7fOLzv01x4qQNmmBRMW9aM6xdiwE5Nwtudm52ScVcCrcG/phwjJxttGGilsB1wtMayNJblEAlbDEZW4D12QgghhBApogy5lSzd5BuyEEKIzKSkEjcROtQ39306W6EiBcEkmWHAO972Pb586TUzVuI6lkUqstKqopLzL9QnfVwADEkwzocrP4e+nEJOv9ICdM24bWgkhb2ShRBCCCGEWGTSTkEIIURGUiuxU/1cKQWD7XPeTXe1gLk0KkFz/U2866MXZ5zYDNsBkl8ZoD2epI8p5s+Vn0OLDlB/oiWh7ZM1IZ0QQgghhBCZQJK4QgghMpMhlbizMas2gzPPakNfdXKDSaF15Y+wamvnzBslu7K1pJQOOze5Y04gFynm5loCt7OhO+F9LOmJK4QQQgiRJBoMJ7MeKSjiyHTSTkEIIURmmqnyUoDLg1KD895dk5eiLrKpsWb1vxC88b20P9MQc73hcuEspPIyKwtdsYqI24+jFaeeb8SxmuY/3mxW3jnnvJm5AVpVFp31M7dPmMoOSxJXCCGEEEIsH5LEFUIIkZkMSeLG5fHjrqpBt70y7yF0MFVTgaWGUrDh4PcYvvp6Bi+1TVqRvW0Lw4cuzGtcrcHZtI1XXmrHru9IUrQJHHfRjrS0mbkBOtx5tF+apRI7Bisi7RSEEEIIIcTyIUlcIYQQmUkmNovJKF6N4QktKIEL4PT0YqSuW0BKmOYwW+97nkP/tA2rfwjD48azppb2eSZwKSml3V1G4zPNyQ1UJIUr20+7J5/Wi/NLrlshSeIKIYQQQiSFAqUyrAxhKVWkJImUOQkhhMhM0k5hOtOFoXqgt37BQ+n22G0JMp3Pe4UdDzbhLSvCKK2i+8SVeY81UlhF4yuSwM1EZpaPzkDhvBO4ID1xhRBCCCHE8iLfkIUQQmQmmdhsGuXPg6Ek3fIfHAZfVXLGWmQ5WUfZ/t4u+i+1zHsMZ8NWzh6a//4idUy/l+6cYlrOty9oHGshPZKFEEIIIYTIMJLEFUIIkZmkEncaHRpKbpsJV1nyxlpkWTzG7g/757dzVTVHX2rHCkaSG9QcZNjNaBnD8HnoLSil+Wzb7BvPwracJEQkhBBCCCEAlKEz6rESyTdkIYQQGUlJEne6SBBVujVpw2nbl7Sx0qGs+H+pvTdr7ju6PTjpvtV+ZZ53zsjwuBkoqaDxdGtSxrPT/TsWQgghhBAiieQbshBCiMwk7RRichxv0sbSQ+GkjZUeDhsO/pSirXNLRuvLF3H7PSmKKeEo0nz8DGMYDFeuov5E8lpcSBJXCCGEEEIsJ5LEFUIIkZm0JLlisZvPgOFOylhO58JvWU83ZfWz9+1H8RW5Et7HKCwgMpLeBLb8eU9mblnHpWNNSR3TtiSJK4QQQgiRNIaTWY8VSJK4QgghMpMhH1ExWWFUwdqkDKU7msBIXmVvuhihK9z8qQayK2eurtVuN6qsnAZVvkiRzRCLZHHH+HZs4Pgzl5M+rhWWJK4QQgghhFg+5BuyEEKIDKXSHUDm8uYnZxytwV+TnLHSzBV6hd0fGCBQOqUi1++nr3YXl7LWc6Qzn5dOhmk7lwEVyJLDBSCwpZbDTyU/gQtSiSuEEEIIIZYXSeIKIYTITNITNy5tJN46YNaxVGHSxkq3LB5j5/usseeqopILTiXnX6ynu74r/ZOZTbDSK3E9JfmwZQOHXkhuC4WJpBJXCCGEECJJlEZl2AO18s6nJYkrhBAiMympxI0vee+NDi2vU4E8z4/Z+OZsdN0GDp+J0Nvck+6QYlqpOVx3QQ7G1g28cmWEU89dRjupeyPsiDX7RkIIIYQQQiwRy+ubmxBCiOVDyUdUTIE81Ehn0obTfQNJGyszaNZse4HOERM7gypvp9LOypqMwfB78OzYyKlWmxPPXsaxUv/6M/n3L4QQQgghxFwl735MIYQQIqmkEncqV91u6DiM7mpP2phOawNmbdKGywhWxxp272ij/pV0RxKfYy/BUlylCGxcjfZ4sFG0XR2gq7mXtVsryRruI9jcMX0XlwvfllrOnmxn8KlLixqu9MQVQgghhEgiYwmevy4zksQVQgiRmUx3uiPIKEbpGmh9AXSSKxiH+8FbCqHkJYbTybKvxzpziLXZzZiug9gZekd9KtsIJJvyuvFuXMul8130vtA8bf3Zl+tRhuK6GzeiWtvBZWK4Xei8XC6e7aQvRROXzUZ64gohhBBCiOVEkrhCCCEyksouTncImcN0Yfpd6MEU3YLurlw+SdyWMABqsJW7Xu/ix/+ZmVncpTKxWWBDDRcahuidJRGrHc3RaZW2XakLLAGWtFMQQgghhBDLiCRxhRBCZCRlyEfUNa7aHejm51I2vrYDy6J5hSaAc/Xi2PMtxYf5MdvJxNYcTobf6q9cLoyNtbz8bHqqaJNBeuIKIYQQQiSHAlSGtVPIvDP81JNZY4QQQmQmQz6iYLQPbgoTuAB6KJLS8ReLHd4DVnjsudF7iZvu9aQxovgcO3MnNtMaQqtrOL6EE7gAdiQzq7CFEEIIIYSYD/mGLIQQIjMp+Yhy1e6CtpdTfhynqy3lx0g1TR7h42emLd+9dvqyTOBYmZvE9V+3gQuHG9MdxoJFQlKJK4QQQgghlg+5V1UIIURmWqlJXAVm9XpcuQ5ObzPaSX2VrG5vhDIvOKGUHytVNH4I9U9b7u46zubdmzl9OBxjr/SxM7SdQqC2isPP1qc7jKSQSlwhhBBCiCRRgJFhRQgrsJ/CCv2GLIQQIuOtlCSuUrjWbsK7dQ3etW681Tau8IvQ+TJGUQmY7tTHoDX4alJ/nJTKjrvm4L6eRYwjMdrJrJ5iAGZugAstwYxu9TAXVjgzE+VCCCGEEELMxwr5hiyEEGLpWc6XVjWuNRvxbt+Mt0ZjjjwHXUdgpB3CE6pJ257GrK6CQH7qIzIKU36MVHLskrjrCkdewOPPrL+nTJvYzMzy0e0vpLdtejXzUmVJJa4QQgghhFhGpJ2CEEKIzKQyK+mWTJ4d16Han4BgAht3n8IsqMHxVKJ7W1IWkw6bSzptbrfOkLAL9nPrPSY//e/MSerZETutJ2Fag39VCUZeDrhMGpsHaTu39HsjT2SFMuf3LYQQQgixtGmUyrQ7yTItntSTJK4QQojMZCzPm0Xc67dFE7hzMdCA4clFV23GaT6dkrh0Xz/4UzJ0SmmtsMM3Y9fPPAHcpsoL/JQ1ixNUhlJeN/7aKoKGh+ZL3fSc6gV60xxV6liRzKp2FkIIIYQQYiEkiSuEECIzKTPdESSduaoOY/jF+e0c7kc5p1D5VSmpyHVamzDXJn3YlNIECLdsnTWBC+DpPEp13ToaL6686kwzy4ezuoZzhxuJPN+c7nAWjR220VqjlnFVvxBCCCGEWDmWZ5mTEEKIJU8ZyyuJq4orcZkXwQ7NfxBrBCPXgFS8N0O94C1N/rgporVJqHEzdv3JhPe56daRFEaUmQK1VTTaWZx87jKRFdZeQGu9bCZpE0IIIYRIO0Nn1mMFkiSuEEIIkWIqrwhPbheEehY+WO85jJodCx8nFndFasZNAYfrcBrn1lqiQh3OmFbLjp3aE0+NwrtjI4eOdSyrycrmygpLSwUhhBBCCLE8SBJXCCFEZsqUbNtceHwYpauY1GTfMPFU+WC4NWmHUe7UJKa0E0jJuMnmUEvohfNz3k8NXOXAHZ4URDR3jpW65KK7MIfh6hqOPHUJ7azMKoVr7MjKqj4WQgghhBDLlyRxhRBCZCa19D6iPJs24DaO492xhWuJXPfWbdB9IslHSk2rCT28NBJekcYCcOaXBN25Mfn9hOfDTlESN7BpNRd6DOpPZMbrTLeV1kJCCCGEECIlFGA4mfVYgjU/C7X0viELIYRYGfTSqyBU4bboP9qfxbN9Jyq/GKP7+eQfSKcmMeV0daRk3GTS5GDPsY3CRFk9L5JXlP7THydiJ/dP3GXi2r6Rl19oYah3OIkDL21WWJK4QgghhBBieUj/txghhBAiFjMzbnufE3fB2D9Vx+N4shrBDib/OO0vQm5Z0ofVrQ2g3EkfN5lsa9sCBwhz+72ZMdmV6UlORbWntIC+ogpeefpSUsZbTuxIZvyuhRBCCCGEWChXugMQQgghYjKW2nVGDdaUCaRSkcAdPZZZUo3d35bkYR3w18LwheSOmyQO1YSPnF3wOGuyTwJbFx7QAhluEyeysLYKgW3rOH70KqGhwSRFtbykqm2FEEIIIcRKo4yld6fkcrPUviELIYRYKYzU9H1NBaNiNd5tddBzchEPmqLJzYyilIybDOHLhRBZeGLc7DnPms2ZUHE8/0Zehs+D3rSel5+pJzQUTmJMy4u9wCS5EEIIIYQQmUKSuEIIITKTsXRuFnGX5EDnocU9qI6kZthQBp8aJHHygv0HUlUlnTjTPb+/cd/qclo9+Zx+4UpyA1qGLEniCiGEEEKIZWLpfEMWQgixoqgllMTVGIs/OWrfeXB5wQoldVjdPwD+pA6ZFA6r0X1dSRuv0nuGdLdUMFxzqzbXGgLXbeDo8w1SYZogeZ+EEEIIIZJBg8q0dgqZFk/qZXC5jRBCiBXNXDpJXOUMLP5BQz2o4pqkD+u0X036mAulySJ02o0e6k7amGbPearXpbelgulL/PiubD+RuloOPXVZEpNzYIWtdIcghBBCCCFEUkgSVwghRGZaIpW4qrAcOg+n5+CRFPRCHegCd2Hyx10AR9eivAFwJ7dE+MCNya1initfUW5C2wXqqqiP+LlwpDHFES0/MrGZEEIIIYRYLpbGN2QhhBArjvJmY1RuQ4/0TVw6/k/DhcouQmUXozzZ2E2Ho/ebj21qoAwTlAFKRX86Njo8AlYw+jMyAnY4ut6TjfJmgTcL5ckGt3d0DFc0oWy4wDTBcKNMFxhuwMbU56H19GK9LZMYBSXYXfXJH9hbBZHkVb0ulDNciNP6UtLHXeU/A2xJ+riJUrP0xNUofDs2cOiZy2hn5d0ulgx2WJK4QgghhBALpgAjw85HF72fXfpJElcIIURGUv48Ap/4ScqPox07mqxVczsLcK6+gP3TD0HPuRRFloD2pzDX34J98TA4yUtWaSc7Y86JNEVEzqQmSW52n2P1huuoP5eaSeJmo2Z4l90FOfRmF3L6qUuLGNHyIxObCfimcxkAADz6SURBVCGEEEKI5SIl7RSUUg8qpfTo46EE9ylSSj2klPovpdQFpdSIUqpPKfW0UuqDSqmEYlVKfW3Csdct7JUIIYRY7pRhzjmBq7XGfvit6U3gRiOBticw67Yld9TB9CQ1Y7GGt0FoMGXjH7ghmLKxZxOvliGwaTUX+wzqT7QsajzL0chA+n6/QgghhBBCJFPSk7hKqWrgq8Bcv3E9APwDcAB4AfgK8B/ANuD/Ad9Vs3zLVkrdB3xgHscWQgghEqaUQtW9Lt1hjOs9k9ThnI62pI43X45aReT40ZQeo8p7KqXjz0RPzeK6TMxtG3n5hRYGe4bTEtNy0365I90hCCGEEEIsC8rQGfVYiZKaxB1Nsv4T0AX87Rx3Pwe8HliltX6X1vrXtNYfADYBjcCbgftnOHYJ0STwd4BD8whfCCGESIjur0df+J90hzHOSe4EZ7qjEczkTiI25xg0RJoqwE5tVbDRc5E1m90pPUY8Ey9Ne8sK6S0s5/gz0j5hqrzSXAoq8+e835qd1dTuXp38gIQQQgghhEiDZPfE/SRwB3Db6M+Eaa0fjbO8VSn1t8DvjY77H3GG+PvRnx+bYRshhBBiwZwrP4FgV7rDGBcZBnwktbu/bxUMnU/eeHOkVSl2/clFOdZNNw1w5bRvUY4VS2BbHcePtBIaHkhbDJnIm+Xlw//wXrbfFZ187kd/+SiH/u8Ylw/Hn8xPGYo9r7uOuz50K+v2r51zqxQhhBBCCCEyVdIqcZVSm4EvAX+utX4yWeOOulaGY8U59vuANwIf1lpn0LdqIYQQy1Ik07r2aHBnJXdIVZDc8eZ6eN2JUbVxUY5VFnkJMw1TvWql0JvX8/IzDYSGk1tNvdQZpsFH//H97HjV1mj7EqV49Sfu5Nd//It85j8+Gne/Oz5wMx/52vtZf6BWErhCCCGEEMlk6Mx6rEBJSeIqpVzAN4EG4HPJGHPK2O8ZffqjGOtXA38OfEtr/d8LOM6hWA+i7RyEEEIIAHTnSZxDf5buMKbzBZI6nBM2kzreXCnlYOTlLM7Bhru46R7P4hxrVHmNl4KCQU4/f2VRj7sUKKV4z5+8lW13bI65fsstG6nbtybmuuvu2ZrCyIQQQgghhEifZFXi/iawC3if1nokSWNe8yWik5v9QGv944krlFIG8A2iE5l9MsnHFUIIISbRA41Y/3kvjHSmO5RpVHZxUsfTg8n+OJ87M3do0Y61bfVi9aLV3H1fgDdueYYSX88iHXPpWLWlgs//+NPc/O7rZ9zu4Fv2Tlvmy/ay8YZ1qQpNCCGEEEKItFrwzYNKqf1Eq2//VGv93MJDmjT2J4HPAGeAB2Ns8mngVuC1WusFfRPSWu+JE8MhYPdCxhZCCLE8OMf+LiMTuABGdg52EsdzOq5iViVxwHlQxuIlOX2dL7N+ey3nj09ta6BxuRUer4HHZ+DxGni9Bm6vwu1R+Hzg8ajoNm6N261xuTQuQ1PoH8BQNorx273cVj9G69no6wuszNvAYvFmebn/c6/ljg/ejGHOXmNwy4M38MQ/P0vTyZaxZQcf2IvLk4a+GEIIIYQQy50iiQ1Zk2QFds5a0JnuhDYK54DfSEpE42N/jGibhFPAnVrr7inr1xOd7OyftNY/SOaxhRBCiJgCya12TareV1CF1ejuxuSM19MGq3PASt9kW0o3gBEAJ2ZL/ISFi+7EDinQoB0NWkd/Og5GdgB3pBkcm3tv7eLOdW3gWCgrhA4HwQqDTiDZ6gCh0UeCjBV44jlVXlkue1+/k9d+6lXkleYmvJ/LbfL5H36a5/79ZS69fIV1+2u58e37UxipEEIIIYQQ6bXQcoVsYMPov4NxJpD4B6XUPxCd8OxTiQyqlPoU8GXgBNEEbnuMzbYCXuD9Sqn3xxnq/GhMb1pIv1whhBACwFh1K066g4gn1IPh1di5JdDfkZwxfTUweDI5Y82LhcouRPfHOg1IXLgnQvjyhZjr3KtWYwyNtlJoq8dVtAGruYXFqJFVamVU4vpzfNz3y/cSGgpx6vGzBAdD3Pb+G9l2+yaKa4rmPa7H7+HWB2/g1gdvSGK0QgghhBBCZKaFJnFDwNfirNtNtE/u08BZIKFWC0qpzxLtg3sUeJXWOt59q1dmOPZrgXLge0D/6LZCCCHEwhRm+FyXoV7M8u3YSUriap2b3ruUVC44C28SoWYqeXUmp+XNLA8Lq/tNnJFpt6SlQMWGMj729Q9Ssb4MgNf/0r1pjkgIIYQQQsyHMlZGAUImW1ASd3QSs4dirVNKfYFoEvcbWuv/N2G5G6gDIlrri1P2+Q3gt4FDwN1TWyhMOfbRGY79ONEk7ue01rFLb4QQQoi5Grya7ghmF0pSFS6ggzptSVytFaH6WvTguYUPNkMSV9uTk7h2wwlcqzZhNaV+ojNjUep90yO3JJs3/MqruemdB6VPrRBCCCGEEEmQjrPqKuA0UA+subZQKfVeoglcG3gK+GSM9gxXtNZfX5QohRBCiCmcs99JdwizG2gAXy4E+xc8lNPXj5GdhJjmQxXgtF1OzlAzlLzaPV3oHDfKiYwtM7Pci1KNq1TGNudYkIMP7OUdv3s/2YVZ6Q5FCCGEEEKIZSOTSiPWjv40gU/F2eYJ4OuLEYwQQggxlao4QHQa1AyuoLSGMas2YV8aSGxCrhno1npYl6S45kjRjVG8Dadt4RWxyoyfxNXhIKpkPbSdGltmN55G+XPQI0MLPvZMltPEZuXrStn56u3sve861u5ane5whBBCCCFEsi2jc9elKmVJXK31F4AvxFh+hRi/+njbz/PYtyVjHCGEEGIio+YO9K1/jPPEL6U7lJl1HMZcdxP2+UMs6GwrOAT+GhhpSFpoiXJYhzMQt6vS3MzyFjjuAialeR0L95o6wmdeSc7x41A4wNJtjBvI83PLg9ez7w27WH1dNXEmuBVCCCGEEEIkQSZV4gohhBAZz7juozjHvwbdp9MdyszansaouR6n4djCxjFLgMVN4mqKCDfmwXDLohxv5MQJstatg87xNvrKCab8uIbK4IruWWy5dQMf+tv3klOcrn4bQgghhBBCrCxLt/xDCCGESAOlFKp0Z7rDSIhyuxc8hhP2JiGSORxPrSJ4PAunMXlJcjVb3wKtsV2lkxbZTWdQ/tT2dDWWaE/cjTeu45Pf+pAkcIUQQgghVgpFNIOYSY8VeBOYJHGFEEKIuRpoSncEiUnCiY1zdXGqYQEc1hB8thc90JncgRN4H0IXL6BNz4RgLNzVa+PvkARGJvdWjqOstoSP/uMHcPsWfoFACCGEEEIIkThJ4gohhBBzoIfa0FefT3cYi0ZfvQL+6kU5ltINqLyyFAw8+yY6HESVbZ68m5naSlmDpVWJW7y6iE99+8NkF6a2QlkIIYQQQggxnfTEFUIIIebAOfLn4ETSHUZinL6kDKOpRtGYlLFmPI6qSMm4ic63ZZONOeG503Y5mgBOUcGsWkLtFFZtreQXv/sR8kpz0x2KEEIIIYRIBykDTTtJ4gohhBBz4Fz6frpDSNxAPRgmOPaChrFbO3HlJSmmOLSGSFs1uveV5A+eYBI33NyMj/Gkrx7uw12zlUj9+eTHBBg6c5O4lZvKKakpwnSbrN1Vw50P3YI3a3H7IwshhBBCCCHGSRJXCCGEmAPlK1o6nUyzVkHHpQUPoxvPQWkphNqTEFRstnUD9qWjKRlbqcR+Y05vN2pdHXRdHFtmZPlSEhOAysB2CgUVeXz8nx9izc6adIcihBBCCCGEmECKoYUQQog5MHb8XLpDSJy7KGlDaVdt0saayrKvJ/zS0ZSNzxySpTowuaWDXX8MIzc/yfFEGSysQjrZPAEPv/jvH5UErhBCCCGEmEwBhsqsRxImcV5qJIkrhBBCzIGqez2YnnSHkZiuFzHX7UvKUHZbf1LGmTaufT3hF46lZOxr5nJ+F+ma0kfYtvBUr05qPNeoDKvpfuNnX03lhvJ0hyGEEEIIIYSIQZK4QgghxBwodxaqeHu6w0iMNQK9R0At/ONeXzkFnuRV9l5jdSxCIjPBdgoAkeZ6yCmdtMy6cgSzqDTOHvNnaCvpY85X3b413PWhW9MdhhBCCCGEECIO6YkrhBBCzFXBBmg7lO4oEhPuR5XvQl89G38b04ux5fUQHsYo24Zz9QjO1WMw2DZpM+1ejwp3JTU8PZiaCt/JB5lboljn16EGJvT/tS1cJUXYXcntCax0ZrRTyCvL5SP/+AFMl5nuUIQQQgghRAZSJKUuJKlWYDcFSeIKIYQQc6WKtmbYjfAzKLsVff5F4p3mqJrrcb/uKxhF6yYt13YE67Hfw2l+Gd18GOwQTtcQ5oR5vrQGh23oSAFOyEAZoLxhDPdlDN06a2i23o3TfmYhry4xc6jEBbD6Q7iVApcbZbrB7UH3teIqr8ZqbUxeXHNMLifCdBms2lKJ2+em4XgT4ZHIrPs89FfvpqA8L+mxCCGEEEIIIZJHkrhCCCHEHKnS3ekOITHlt2Cfi5/AxeXHfc+XpiVwAZTpxn3XFwCwLzxC5L8/jHPpFOZNBzG2fg7ddwqnvRvr6EvYV14Gtx8jrxyn/QIqtwTvtlUoBtDKj9LDgA16CKXGc5eRhsQnHFuYuSVLw42X8FcpiAxEF0SiD9ea/Vitmlmv+ysV3UbP9vqSVz/gDXh4++/ez4E378EbiPZsdmwHO2ITHArx+Nef4cd//Rgj/SNj+/hz/bz3T9/Glls3Ji0OIYQQQgghRGpIElcIIYSYq1BPuiNIiNPfz0yJQvdb/hGjfNus45jr7sT4xCF01wUo244y3ajiGzHqwH09OAMdKH8uaIehL92M7m8j+Oy1vccrQVVWFUblapzOdvTIAATPLewFJmyOFa+2gyrbiG46Ommxc+VFvOv3EDofO26VnY/3upvJecsnMHILGX70u4RPv0T43BH0YG+MHeYWVjy+bC+f/u5HWLdv7aTlhmlgmAZun5v7PnMPN7/rIN/74v/Q1dTL/jfu4sCb95CVH0hOEEIIIYQQYnkzVmIDg8wiSVwhhBBijnTrS+kOISFGdh4zdV1V/oKEx1LeXFRl7ApkI6dk7N/e13yO0MNfRA91T9tOD/Vgn1/8BLiaR9sCy8oiVodY0xwkmhSOnsQW/trXCJ9+GWeoj5x3fAZljp9aZd39LrLufhdaawa/+xWGfvD1SWPpec4v6/G72XjjegAcy+G+z9w9LYEbS3553v9v777jJKvKhI//nqoO0xN6cgAGGHJGwgjsIDkrmFl8VVR2VXx1BRR3V91VwV1cw+or6BpxjewKZkUUlCAiAgoqkuOQJufUPdPddd4/qgZ6ejpVd3Xf292/7+dzPpe+95xzn7bqeHqeOnUub/vimwZ0T0mSJEnZMokrSVKVSvd/M+sQ+qePvWDb7/4GDXNfXNNb1h/+aii10XrN+2ra76D0tSduXT1RV0/U1UGxyPg95lDX8Qyp894PFaUlD9O41+G0r21h4mvfTcO+82nYd37vt49g0jnvYdxRZ7Dphqtoue2n21zf+cCd2O/YvWld3wpAfWM9zz6wiIdvf+z5OpNnN/PWL7yRvY7YvVxnXH1/f3tJkiRJPYiIucBHgdOB6cBi4MfApSmlAa1AiYhzgW9VfnxbSunKGoRqEleSpKp1tGYdQf+0r+n1clr8l6G5b8OEoel3gIqr7mLKnk1EqQ1SO3S0lfetjQKUOspb2Ha28n4A0g4HUlr08Hb91TV10HzBNyk2T68qjvpd96X5LR+iY90q0qb11O3xYi674xxm7z6T6BJEqaPETV/7Lbf9z53M2n0m537qbCZNn1jV/SRJkqSaCPK3nUINwomIPYDbgVnAT4CHgCOAC4HTI+LolNLKKvvcGfgcsAGo6R/wJnElSapW00xY/3TWUfRt9UPQOAU2b+j2ckyaMzT37eF+WYlSWzmB+/wJgASpo9c//goTmunu0WQNR7yy6gTu87eub2Daxf/VZ71CscDJbz+Ok99+3IDuI0mSJKlPX6CcwL0gpfS5rScj4jPAe4DLgHf0t7Mor8z4OrAS+CFQ068nDmwzNkmSxrBompF1CP1T2kJhxi7dXirsexb1r/rK0Nx27ZIh6XfYbVy+3anCjvvScOTZGQQjSZIkqVYiYnfgVGAh0HWVxUeAjcC5EVHN1wwvAE4Ezqu0rymTuJIkVSmV2rMOof+22ysAaJhI/cuvIMZPG5JbNpx8IcW9R/4K0tLyR4mJ2664nfDGTxMNTRlFJEmSJGWkEPkqg3di5XhDSmmbL+CllNYDvwPGA0f1p7OI2A/4OHB5SunWWgTYlUlcSZKqtXlA+9sPv2n7U3r2vm1Oxa5H0/DWG4nG5iG7bUTQsOBNQ9b/cImA4pzyg8QK03em6ZzLKO60X8ZRSZIkSarYNyLu7q70o+0+leMjPVx/tHLcu6+OIqIO+DbwNPDBftx7QNwTV5KkKqS2TbDhuazD6NvEnehYuYGum77WHXMxhel7Dvnt6w44lYZTL2bLDZ8e8nvVXKEOSu1Q10j9QScy/tzPUpiyQ9ZRSZIkSRmpPBQ4VwJIg+lgcuW4tofrW89P6UdfHwYOBV6SUmoZTFC9MYkrSVIV0soHIHX3uKucGb8nLPrDdqdLT/2e4m7Ds9VBw0nvpjBnH9ru+A4djwzJN4oGr1BH/UvOo/6Ql5O2tFBongNNzXQ8fjvFXQ6lMHVu1hFKkiRJ6t5DKaXDh6jvrathes0UR8QRlFfffjql9PshigUwiStJUnXah+yD1dppmklp7crtz9eNo7DrgmELIwpF6g86g7oDTmXzzy+j7bdXQur90/Jonk1av3zoEuVNk6k//LXEpBmkNYuoP+L/UJx70HbVCi86a2juL0mSJCkPtq60ndzD9eYu9bbTaRuFR4AP1S607pnElSSpCjF5XtYh9K7QQKm4C2npg13O19PwtpspzOhzS6eai0KRcWd9mIYFb6bjqXtou+u7dDx5FzF5Dmn1s8/XK+5+JE1//y06nruP0tN/IrVvYcstX4TW9S9scQAU9zqGjkd/+8KvNmtPYvo8aGul47m/Qsv2f2cV9z2BuoNeSt1eL3F1rSRJklSNoFYPE6udwYfzcOXY0z+Q9qoce9ozF2Bip/at0d1DpeGrEfFVyg88u6jaIDsziStJUjUmzoViI3RszjqS7U3alVJLE2nRg9tfa5qaSQK3s8L0XSlM35W6A06lY9H9pJVP03r1ewBoPPND1C84l6hvom63I2C3IwBoOPZt5cZ1jXQ8/nuiroHivPm0XHMxbGmh8bT3UZi5+/P3SJvWsOkLr6G09BHqDn0lhTn7QlsLDSdfSBTrh/13liRJkpRLN1eOp0ZEIaUXvgoYEZOAo4EW4I5e+tgMfK2Ha4dR3if3NsoJ40FvtWASV5KkaqQOKLVlHcX2ph1Ax6KlsGV51pH0KRonULfbEaRdD6dh5VOU1jxHw3Fv775u/bjn/7tuzxe2ghj3qsuARNQ3bVt//BTGv+d6UstaYsI0evg0XJIkSdIYllJ6PCJuAE4F3gV8rtPlS4EJwJdTShsBIqIe2ANoSyk9XumjBXhrd/1HxCWUk7jfTCldWYuYTeJKklStPD7YbPNqKHaa1hsnUTzsLbB5PYyfTmHO9vu+Zi0KRRpPu3hgbTsld7e7VqwjJk4faFiSJEmSuioUso5gKLwTuB24IiJOAh4EjgROoLyNwr90qrtT5fpTwLzhDbPMJK4kSdXIYwIXYOMiirP3p2NZAeomUH/WFRR3Pz7rqCRJkiQplyqrcecDHwVOB14KLAauAC5NKa3KMr6uTOJKklSFKDZA0yxoWZZ1KNtb9QD1p3yewj5nE43NfdeXJEmSpDEspfQMcF4/6i2kiseppZQuAS4ZaFzdMYkrSVKVYubBpKd/nXUY3SrsfKwJXEmSJEm1E5G/7RTG4LMvcvYKSJI0ArRtyDqCHqWlf8w6BEmSJElSjZnElSSpCqUlfyAtviPrMHqUFt+ZdQiSJEmSpBoziStJUhVKd1yWdQi9Kj18NaltY9ZhSJIkSRpNCpGvMgaZxJUkqZ9KT1xLeur6rMPo3eY1pCVuqSBJkiRJo4lJXEmS+iF1bKHj5ouyDqNf0ppHsw5BkiRJklRDdVkHIEnSSJCevA42PJd1GH0qHHoBhQPeknUYkiRJkkaTgutAs2YSV5Kkfijd/82sQ+hb4xQKx3yciLG5R5QkSZIkjVam0SVJ6kNqWUF66oasw+hTzDrUBK4kSZIkjUKuxJUkqQ9pyR8glbIOo3dRpHDUv2YdhSRJkqTRJiJ/2ymMwcUrJnElSepLXVPWEWwndj6BwoHnwZaNpBV/IXZ7GYUdF2QdliRJkiRpCJjElSSpL5uWZh3BtppmUjzzaqJhUtaRSJIkSZKGgUlcSZL6UHryF1mHsI3iGd82gStJkiRp+ORtO4UxyCSuJEm9SC0rSI/9JOswyqJA4YC/I+Yek3UkkiRJkqRhZBJXkqQepC0b6Pj1/4WO1qxDAaBw8PkUj/9M1mFIkiRJkoaZSVxJ0piW2ltIS+8hmneBiXOJCNKWDZT+8kVKf7oCWlZkHeILGpqzjkCSJEnSGJMiSDnbTiFFZB3CsDOJK0kak1JKpMd+RMdN74bWVeWTDc0wcUdYuzA3q287Kz3wTQqHvptomp51KJIkSZKkYZSvNLokScOgtOSPdFz7t3Rc94YXErgAW9bBqodymcAFYOMSSn/4RNZRSJIkSZKGmStxJUljSunha+i4/jxIpaxDGZDSE9dSOOYTxBj8+pAkSZKkjBSKWUcw5rkSV5I0ZqRVD5UfVDZCE7gArH2S9Mg1WUchSZIkSRpGrsSVJI16ad1TlP56JaV7vwztm7IOZ3Cm7UvMPCTrKCRJkiRJw8gkriRp1EntLaRlf4JVD1F67Kekp24AUtZh1UTdmd8jpu6ZdRiSJEmSxoyAQt6+zD/2tpcziStJGjVSSpRu+wClv3wJOjZnHc6QKD34HYoLLsk6DEmSJEnSMMpbGl2SpAFL93+D0j2Xj9oELkDp0R9mHYIkSZIkaZi5EleSNCqUOjrY/PsvjP6Jbd1C0urH3FJBkiRJ0vAI8redwtjbTWH0/1tXkjQ2bLzzdzz3kwnUTTudhplTqJtYpHHyJsbVP0R9x4PEaJnkS22U7v9vii/5WNaRSJIkSZKGiUlcSdKI1/rEYyy+/JMAtK9aTfuq1Z2uNlM/5ywm7DaJxomrKBRa6WhvJgptNMUfKabl2QQ9GIX6rCOQJEmSJA0jk7iSpBGtbeUKnv7ARZQ2bui5zpJlrFmyrNOZlvKhsCeTDj6VqbNvo7701NAGWgv1Eygs+CiFg96WdSSSJEmSxpK8bacwBvkKSJJGtGVf+0KvCdxelUqs//NjPPOb3dhcPLS2gQ2BwuHvpXjIO4miK3ElSZIkaSwxiStJGrE2/vmPrL/1pkH3k1pbWHLXbDYXD+l3m/bYiXUdr6a1+OJB37+/YqeXDNu9JEmSJEn54XYKkqQRqWPTRpZ8/jM166991WoW3zGbyQefw/jx99PQfl+3D0NLKdjAS1lxewuljc8BBZoPfwNTZ/yautLSmsWznSgSO/zN0PUvSZIkSd2JIBWKWUexrVHz5Or+M4krSRpxUqnE4s/8B21LFtW03441a1h16xpWMYHChJMYt/NMGqYUiLoEJWjbELQ8s5KO1Su2abfu7sfYMOFApr34WCbVX0th6567tdI0i+IZ33IbBUmSJEkao0ziSpJGlI6NG1j6pcvZcMdtQ3qf0sYNbHpoA5uqqL/ilg1s3Ossdpx3TW2DaZhAYefjatunJEmSJGnEMIkrSRoxWp94lGcv+QDtq1b0XTkjTTvU+Gs9xUaKJ3yutn1KkiRJUjUKPlYrayZxJUkjxuprf5zbBO6kQ/ak0AiTxt0IqYYdFxuIiTvUsENJkiRJ0khjEleSNGIUGhuzDqFbxSlTmDnjqvLe+rVM4AJsWU/p0R9SnL5/jTuWJEmSJI0UJnElSSNGqbU16xC6Vdq0iRTNBOuGpP+Yd9qQ9CtJkiRJfYscbqdQ423sRoC8vQKSJHUrpcTGv9yddRjbaZy3M6TEssUvoyOm16zfwvx/pPi62yie9EVi9vya9StJkiRJGnlM4kqSRoSONatoX7Y06zC2Me2Y3Zi71/fZ6cR1bHzoaZ6950g6YkpN+o55p1KYfTiFA99CxNj7lFmSJEmS9AK3U5AkjQgd69dnHcI26mfNZPK4HwHQWLqX5kPfwLo/PEYpplJMawbW6cSdKJ78RdKzvyVmHFy7YCVJkiRpoAIoFLOOYltjcJ2LSVxJ0ojQtnxZ1iFsY+pBBQpsfv7naVOvZ8JpB1JferK6jgr1xNxjoXlXige/nZj5Itj1lBpHK0mSJEkayUziSpJGhI1335l1CNtob2uCxhd+LqYVjE+3VNVH4cC3UjjmY0TDpNoGJ0mSJEkaVUziSpJyr9S2hbU3/jLrMLax+vbnGH/yQTR2/HXAfcS8U03gSpIkScq5IEXeHqs19vZTyNsrIEnSdlru/yuljRuzDmMbqb2NlY/tR0oD76PjpneTVj1Uu6AkSZIkSaOSSVxJUu61PPxA1iF0q+Wxp2gtLhh4B5uWUnr6ptoFJEmSJEkaldxOQZKUe5sXPpF1CD1a/ufpzH3RJAppff8bjZtOYf57iVmHE7MPG7rgJEmSJKkWCsWsIxjzTOJKknJvy6Jnsw6hR21Ll7HkqZcyZ5dfUGBd75WjQOGQd1E44gPEuKnDE6AkSZIkacRzOwVJUq6lUom2JYuyDqNXLQ8vZPETp5Fo6LnS5N0pvvbXFI/9pAlcSZIkSVJVXIkrScq1Tff+KXcPNetO6+NPs3zS2cyY+SM6ijvS2r4fqVRHY8PjNO1/FIVjPkbUT8g6TEmSJEmqTkT+tlOIyDqCYTckSdyIOBf4VuXHt6WUruxHm+nAq4CXAQcBOwFbgL8CXwe+nlIqdWmzF/Bq4DRgL2A2sBq4A/hsSunmmvxCkqTMrLvlV1mH0G/r//wY6zmo8tMyAOb8w79SPPGs7IKSJEmSJI14NU/iRsTOwOeADcDEKpqeDXwRWAzcDDxNOSn7auBK4IyIODullDq1+TfgHOAB4DpgFbAP8HLg5RFxYUrpisH9RpKkrJQ2b2b97b/NOowBaz7+ZKacbgJXkiRJkjQ4NU3iRkRQXjW7Evgh8L4qmj9COfn6884rbiPig8BdwGsoJ3R/0KnNL4FPpJT+1CWO44BfAZ+KiO+llBYP4NeRJGVswx23UdqU/60UujP+0PnM+YeLsw5DkiRJkgYtFXysVtZq/QpcAJwInAdU9a/ulNJNKaWfdd0yIaW0BPhS5cfju1z7RtcEbuX8b4BbgAZgQTVxSJLyIaXEqh9dnXUYA1MsMvv8CyiMa8o6EkmSJEnSKFCzlbgRsR/wceDylNKtEXFirfoG2irH9qFqExF393Bp3yruKUmqkU1/uZvWxx7JOowBaT72JBrn7pJ1GJIkSZKkUaImSdyIqAO+TXkf2w/Wos8ufb+p8uMv+9lmV+AkYBNway3jkSQNvZQSK676RtZhDFjTfgdkHYIkSZIk1UYEFIpZR7GtiKwjGHa1Won7YeBQ4CUppZYa9bnVx4EDgetSStf3VTkiGoGrgEbgn1JKq/tzk5TS4T30dzdwWP/DlSQN1tobf0nLg/dlHcaApbYtWYcgSZIkSRpFBr0nbkQcQXn17adTSr8ffEjb9H0BcDHwEHBuP+oXKa8IPhq4GvjPWsYjSRp6W5YsZtmXP5d1GIOy5dlnsg5BkiRJkjSKDGolbqdtFB4BPlSTiF7o+13A5cADwEkppVV91C8C3wHOBq4B3phSSrWMSZI0tEqtLSz6xCWUWjZlHcqgbLj7TtpXr6Ju6rSsQ5EkSZKkQQpS3rZTYOxtpzDYlbgTgb2B/YDWiEhbC/CRSp2vVs59tr+dRsRFwOeB+4ATUkpL+qhfB/wv8Drgf4DXp5SqeQiaJCkHVnz327Q++nDWYQxa+7KlLLzw7Wy463ZSR0fW4UiSJEmSRrjB7om7GfhaD9cOo7xP7m3Aw0C/tlqIiH+mvA/un4FTUkor+qjfQHnl7SuAbwHnpZRK/bmXJCk/Ukqsu6nPrc9HjPZVK3j2ox+kbvoMppx2JpNPO5P66TOyDkuSJEmSNAINKolbeYjZW7u7FhGXUE7ifjOldGWn8/XAHkBbSunxLm0+BHwUuBs4tR9bKDQCPwReSjmZ/HYTuJI0MpU2rKd91cqsw6i59pUrWPE/32DlD/6Xaa88m2mvfh3FCROzDkuSJEmS+i932ymMPYNdiTsQOwEPAk8B87aejIg3U07gdgC/BS6I2G5/i4UppW90+vlLlBO4K4DngA930+aWlNItNYtekjQkOtatzTqEIZU2b2bl1d9h7a9+ya6f+QL1M2ZlHZIkSZIkaYTIIonbk90qxyJwUQ91fgN8o5s2M4AP99L3LYOIS5I0DNrXrsk6hGHRvmoFK7/3P8z5vxdlHYokSZIkaYQYsiRuSukS4JJuzi+km0fI9VS/j3scP4DQJEk5lFpbsw5h2LTcf2/WIUiSJElSv6QIUs62U0jbfxN/1MvTSlxJ0hhWamvLOoRt1dVRP30mhfHjKUyYSKFpPIWmJgrjmujYsJ7WRx6kfcXyAXXduNueNQ5WkiRJkjSamcSVJOVDDp5L2XTAwTQfeyLj9tqXxt12p1Df0Gv9tpUraHnofloeuI/NTzxK62OPUGrZ1GP9woQJTDj8SGa/44Jahy5JkiRJGsVM4kqS8qGUsr1/ocBOH/wodZOn9LtJ/fQZ1B99HM1HHwdA6uigbcli1t12MyuvuYq0uZXxh85nyikvZdze+1I/czZRzNfXkCRJkiSpTznbTmEsMokrScqF0pbNg2pfmNTMhIMPZfwhh9O0176su/UmVv/8x6TN/dtrt2mf/atK4HYnikUadprLjHPOZeL8o6BQYNxuewyqT0mSJEmSTOJKknKhv8nWrhr32Js573ov4/bYa5tVruP23Jtpr3kdq354Nat//qM+H5w2Yf6RA7p/T8btsVdN+5MkSZIkjV0mcSVJuZDa26tuM+HwI9np/R+h0DS+2+t1k6cw67zzmfbqc1jx7a+x5vprIXW/bcOkBcdWfX9JkiRJGvUiSHnbTiEi6wiGXSHrACRJAmh5+MGq6k+YfxRzP3xZjwnczuomT2HOP1zMzPPe0e31cXvvR+POu1Z1f0mSJEmShosrcSVJNVVqbSUaG4kqPhnt2LSJDXf+rqr7TD7xVKJY3TQ2/dXnMH7/A1n325tpeeCvtK9cyfgXHcbMt7y9qn4kSZIkSRpOJnElSTWROjpYec13WHn1d2ja7wBmnX8B4+bt3o927Sz7yhWUNm6o6n7jX3TYgOJs2vcAmvY9YEBtJUmSJGnsCcjbdgqMve0UTOJKkgatbeUKFn/6Y2y69x4ANv31zzx10fnMPO/tTH3Zq4i6baeb1N7OlueeYeOf/8i6W35N66MPV3W/xt33pG7ylFqFL0mSJElSrpnElSQNWEqJdTf/iqVf3n4lbWpvY9lX/4tVP/4+k446muLkKbSvWM7mhU/Q+uTjpM2tA75v4667DTZ0SZIkSZJGDJO4kqQB2bzwCZZe+V9s+vPdvdZrX76U1T/7YW3v/dSTNe1PkiRJktSzlLvtFMYek7iSpKq0r1nNiqu+zprrr4VSKZMYNj/xGG3Ll1E/c1Ym95ckSZIkaTiZxJWkESR1dBDFbD4BLW3ZzOqffJ+V11xFqWVTJjF0tun+e5l8/MlZhyFJkiRJ0pAziStJI0CpZRMr/vdbrL7ux0w+4VRmvvltFCdOGrb7b7r/XhZf/knaFj07bPfsS8fqVVmHIEmSJEmjXwQUcpZCjMg6gmGXs1dAktRZ+9o1rP3Vdaz+2Q9pX7kCgDW/+Ckb/3w3u1z2aepnzRnS+5daW1n+ra+W97RNaUjvVa2OTRuzDkGSJEmSpGFhEleScqbU2sLqa3/E+t/fRuvjj0B7+3Z12hY/xzMf+kd2/dTnKTZPHpI4Wh55iMWfvowtzz0zJP0PVse6tVmHIEmSJEnSsDCJK0k50rZsCU+9/0Laly3ts+6W555h0ac/xtwPXUbU1e7/zkubN7Piqq+z6sfXZPbgsv5Im1uzDkGSJEmSxoCAQjbPZunZ2NtOoZB1AJKkF6z5xc/6lcDdauPdd/Lcf3yE0pbNNbn/pvvu5cl3/z2rfvjdXCdwAaKuPusQJEmSJEkaFiZxJSlH6necy/iDDqFu2ox+t9lw5+94+gMXseEPd5AGmHgttWxiyRc/y9PvvyBXDy/rTd30mVmHIEmSJEnSsHA7BUnKkSmnnMGUU84AoGPDepZ9/cusvf7aPtu1Pvwgz176fup32JEpp53J5JNOp27qtH7dc9P997L4sx+nbfGiQcU+3CYcNj/rECRJkiRp9AtIhZylEMfebgomcSUpr4oTJzHnHy6mYc4OLP/mV/vVpm3xIpZ/4yss//bXmHj4kTSfcAoTj1hAobFxu7ql1laWf/tKVv/0B5BSrcMfUpOOOYGmffbPOgxJkiRJkoaFSVxJyrGIYPrZb6Bu5mwW/+e/979hRwcb7rqdDXfdTqGpiab9D6LpgINp2HEuUVdH6+OPsuYXP6VjzeqhC36IjD/oEHa48J+yDkOSJEmSpGFjEleSRoDJx5/MhjtuY/1tt1TdttTSwsa772Lj3XfVPrBh1nzcyexw0T8T9T7UTJIkSZKGR0ChmHUQXYy9/RR8sJkkjRAz3vh3UBi7/7c99RVns8PFHzSBK0mSJEmqiYiYGxH/HRGLImJzRCyMiM9GxNQq+vhERNwYEc9EREtErIqIP0XERyJieq1iHbvZAEkaYRrn7sLkk07POoxMTD3rNcx66zuJMZzEliRJkiTVTkTsAdwNnAfcBfw/4AngQuD3VSRg3wNMAH4FXA5cBbQDlwD3RsTOtYjX7RQkaQSZ8X/ezNqbb4D29qxDGTaNe+zFzL87n4ix93UZSZIkScpekCJvKcSa/PvwC8As4IKU0uee7zniM5QTs5cB7+hHP80ppdbtIoy4DPgg8AHgnYMN1iVNkjSC1M+aTePOu2YdxrApNjcz91/+nUJ9Q9ahSJIkSZJGiYjYHTgVWAj8V5fLHwE2AudGxIS++uougVtxTeW41wDD3IZJXEkaYRp22CnrEIbNDhe9n/pZs7MOQ5IkSZI0upxYOd6QUip1vpBSWg/8DhgPHDWIe5xVOd47iD6el7e10JKkPtTvODaSuDPecB4Tj1iQdRiSJEmSNLZFQCFnKcTydnv7RsTd3V1OKR3eRw/7VI6P9HD9UcordfcGbuxfSPE+YCIwGZgPvIRyAvfj/Wnfl5y9ApKkvozbvSbfxMitGDeOHS74J5qPPbHvypIkSZIkVW9y5bi2h+tbz0+pos/3AZ2/SvpL4C0ppeXVhdY9k7iSNMJMmH8U0dhI2rw561Bqrmn/A9nhwvfTsNPcrEORJEmSJOXbQ/1YcTtQW5+clvrbIKU0ByAiZgMLKK/A/VNEnJlSumewAZnElaQRpjh+PBNf/Desv+2WrEOpmfod5zLjnHNpPuEUouB27ZIkSZKUK3nbTmHwtq60ndzD9eYu9fotpbQU+FFE3EN5u4ZvAQdWHWEXo+4VkKSxYPJJp438JG6hwOSTz2DyyafTtO8BJm8lSZIkScPl4cpx7x6ub93HsKc9c/uUUnoqIh4ADomIGSmlFQPtC0ziStKINGH+UTQffzLrbvl11qEMSNOBL2L2+Rcwbrc9sg5FkiRJkjT23Fw5nhoRhZRSaeuFiJgEHA20AHcM8j47Vo4dg+zHJK4kjUQRwex3voeWB++jbemSrMPpt+LkKcx+x4VMesnxRETfDSRJkiRJmUoEKWfbKSQG9+/JlNLjEXEDcCrwLuBznS5fCkwAvpxS2ggQEfXAHkBbSunxrRUjYl9gTUppm3+YR0QB+DdgFnB7Smn1oALGJK4kjVjF8ROYfs6bWHLFJ7MOpV/qZs5m50s/QeMu87IORZIkSZKkdwK3A1dExEnAg8CRwAmUt1H4l051d6pcfwqY1+n86cCnIuJW4HFgJTAbOA7YHVgCvK0WwZrElaQRbPIJp7Dye9+hbfGirEPpVeOuuzH3o5+ifvqMrEORJEmSJFUjAiJnKcQafLOzshp3PvBRysnYlwKLgSuAS1NKq/rRza+Br1DefuFFwBRgI+Uk8LeBK/rZT59y9gpIkqoR9fXs8h+f5ZkP/xNbnl447PcvNjcz5YxXkNrbqZ89h+LESURDA1FfT9SXj4X6Bhp2mkuhafywxydJkiRJUk9SSs8A5/Wj3kLYfg+HlNJ9lLdjGHImcSVphKufMYtdP3EFS790Oet+c+Ow3bf5hFOY9dZ3UTd5yrDdU5IkSZKkscgkriSNAsVJzez4jx9i4pFHs/ybXxnSh53VzZzNnHe9l4nzjxyye0iSJEmS8iIgZw8262ZR7KiXt1dAkjQIzceeyIRD5/PsZR+i5b6/1LTvwoSJTD3zlUx7zespjndrBEmSJEmShotJXEkaZYqTmtn50k+y4jtfY82vf0lp/bry+ebJNO1/IA077ULH+nVsuOt2Otas7rO/umkzmPrKs5ly+lkmbyVJkiRJyoBJXEkahQqNjcz6+3cy87x30L5qBZRK1M2YRRQKz9fp2LSJNdf9mI33/JHWxx4mtW2hMHESpET9zFnUz9mRCYcdQfPxJ1Gob8jwt5EkSZIkZcftFPIgb6+AJKmGolCgfsasbq8Vx49n+mtfz/TXvp6UUrl+jL2JUJIkSZKkvDOJK0kyeStJkiRJUo6ZxJUkSZIkSZLUrQiIyFcKcSyuQyr0XUWSJEmSJEmSlBWTuJIkSZIkSZKUY/laCy1JkiRJkiQpRwIK9VkH0cXY20/BlbiSJEmSJEmSlGMmcSVJkiRJkiQpx9xOQZIkSZIkSVIPgoi8pRDdTkGSJEmSJEmSlCMmcSVJkiRJkiQpx/K2FlqSJEmSJElSbgS4nULmXIkrSZIkSZIkSTlmEleSJEmSJEmScixva6ElSZIkSZIk5UUEUchZCjHcTkGSJEmSJEmSlCMmcSVJkiRJkiQpx3K2FlqSJEmSJElSnkSYQsyaK3ElSZIkSZIkKcdM4kqSJEmSJElSjrkWWpIkSZIkSVIPIofbKUTWAQw7V+JKkiRJkiRJUo6ZxJUkSZIkSZKkHMvbWmhJkiRJkiRJOREEhZxtpxBupyBJkiRJkiRJyhOTuJIkSZIkSZKUY/laCy1JkiRJkiQpPyKIKGYdxbbC7RQkSZIkSZIkSTliEleSJEmSJEmScsztFCRJkiRJkiT1KMIUYtZciStJkiRJkiRJOWYSV5IkSZIkSZJyzLXQkiRJkiRJkroVBIVCMeswthFE1iEMO1fiSpIkSZIkSVKORUop6xhyLSJWNjU1Tdtvv/2yDkWSJEmSJEm9ePDBB2lpaVmVUpqedSyjQUTc3dTUcNh+++2YdSjbePDBRbS0bLknpXR41rEMF5O4fYiIJ4FmYGHGodTCvpXjQ5lGIak3jlNpZHCsSvnnOJVGBseqam0esC6ltFvWgYwGEXEVL4zTvHkopfSGrIMYLiZxx5CIuBtgLH1KIY00jlNpZHCsSvnnOJVGBseqJPWPe+JKkiRJkiRJUo6ZxJUkSZIkSZKkHDOJK0mSJEmSJEk5ZhJXkiRJkiRJknLMJK4kSZIkSZIk5ViklLKOQZIkSZIkSZLUA1fiSpIkSZIkSVKOmcSVJEmSJEmSpBwziStJkiRJkiRJOWYSV5IkSZIkSZJyzCSuJEmSJEmSJOWYSVxJkiRJkiRJyjGTuJIkSZIkSZKUYyZxh1hELIyI1ENZ0qXuvF7qpoj4bi/3eXNE3BURGyJibUTcEhFn9lK/KSIujYiHI6I1IpZFxDURsV8vbeZGxH9HxKKI2Fz53T4bEVN7abMgIq6LiFURsSki7o2IiyKi2Nf/dlIWIuKYiPhBRCyuvM8XR8QNEfHSbupW/f52rEqD159x6pwqZSMi3tLH2EsR0dFNO+dUaZhUO06dUyUpHyKllHUMo1pELASmAJ/t5vKGlNJ/dqo7D3gS+Avw427q35dS+n439/hP4GLgWeD7QAPwOmAa8O6U0ue71G8EbgSOBv4I3ATsDJwNbAFOTCnd2aXNHsDtwCzgJ8BDwBHACcDDwNEppZVd2rwC+AHQClwNrALOAvYBvp9SOrub31HKTET8K/BvwArgWmAxMAM4FLg5pfRPnepW/f52rEqD199x6pwqZSMiDgFe2cPlY4ATgZ+nlM7s1MY5VRpG1Y5T51RJyomUkmUIC7AQWNjPuvOABHyjiv4XVNo8Bkzt0tdKyhPTvC5tPlBp8z2g0On8Kyrn7+98vnLt+sq1d3c5/5nK+S91Od8MLAM2A/M7nR9HeZJNwOuyfn0slq2F8h+HCfgVMKmb6/Wd/rvq97dj1WIZfKlynDqnWiw5K8DvK+/Xl3c655xqseSo9DBOnVMtFoslByXzAEZ7YeiTuN+qtDmvm2sfrVy7tNO5AJ6qnN+tmza3Vq6d0Onc7pVzT3YzaU4CNgAbgQmdzv9dpc03u7nHiZVrv8n69bFYUkpQ3lrmicr7eGY/6lf9/nasWiyDKwMYp86pFkuOCnBg5b36LFDsdN451WLJSellnDqnWiwWSw6Ke+IOj8aIeGNEfDAiLoyIE/rYa2fHiDi/Uv/8iDi4l7onVo6/7ObaL7rUAdgD2AV4JKX0ZD/bbP3vG1JKpc6VU0rrgd8B44Gj+hnXrcAmYEHlKzNS1hYAuwHXAasj4mUR8c+V8fo33dQfyPvbsSoNTrXjdCvnVCkfzq8cv5ZS6rwnrnOqlB89jdOtnFMlKUN1WQcwRswBvt3l3JMRcV5K6Tfd1D+lUp4XEbcAb04pPd3p3ARgJ8p76y7upp9HK8e9O53bp3J8pIdYB9rm1EqbG/tqk1Jqj4gngQMof3r6YA/9SsPlxZXjUuAe4KDOFyPiVuC1KaXllVNVvb8dq1JNVDtOt3JOlTIWEU3AG4EScGWXy86pUg70MU63ck6VpAy5EnfofR04iXIidwLlf3R+mfJXUn4RES/qVHcT5Ye1HA5MrZTjgJuB44EbKxPiVpMrx7U93Hvr+SkjpI2UlVmV4zuAJuBkyl/BOpDyPlvHUt6ba6tq3995HneOVY0U1Y5T51QpP/6W8vvzFymlZ7pcc06V8qG3ceqcKkk5YBJ3iKWULk0p3ZRSWppS2pRSui+l9A7KG603AZd0qrsspfThlNI9KaU1lXIr5U8P7wT2BN46kDCqqBs5biMNla3bmwTllXw3ppQ2pJTuB15FeV+w4/r4ynZnA31/53HcOVaVF1WNU+dUKVfeXjl+eQBtnVOl4dHjOHVOlaR8MImbnS9Vjsf2VTGl1M4LX2npXH/rp4ST6V53nzL21aY5wzZSVlZXjk+klP7S+UJKqYXyKj+AIyrHat/fjlVp8Kodp91yTpWGV0TsT3lP62cp72ndlXOqlLF+jNNuOadK0vAyiZudZZXjhF5rvWDrHn/P108pbQSeAyZGxA7dtNmrcuy838/DlePedG/I20REHeWH07RTftK4lLWt79c1PVzfmjxq6lK/X+9vx6pUE9WO0944p0rDp68HJTmnStnra5z2xjlVkoaJSdzsbP1adn8nh61P1Oxa/6bK8fRu2pzRpQ7A48DTwN4RsVs/29xcOZ4aEdu8ZyJiEnA00ALc0c+4jqX8lNDbU0qbu7kuDbdbKf+xtldENHRz/cDKcWHlOJD3t2NVGpxqx2lvnFOlYRAR44BzKT8o6Ws9VHNOlTLUz3HaG+dUSRouKSXLEBXKT7Wc1s35XSk/KTMBH+x0/kigoZv6JwKtlfoLulxbUDn/GDC10/l5wMpKu3ld2nyg0uZ7QKHT+VdUzt/f+Xzl2vWVa+/ucv4zlfNf6nK+mfKnspuB+Z3OjwNur7R5XdavkcWytQDfqbwv/73L+VMo/1G7BphSOVf1+9uxarEMvlQ5Tp1TLZaMC+XEUAJ+1ksd51SLJcPSz3HqnGqxWCw5KJFSQkMjIi4B3k/5E8IngfXAHsDLKE8S1wGvSiltqdS/hXLi9xbK+xEBHEx5cgT4UErp37u5z6eB91bafB9oAM4BplOezD7fpX4j5U8gFwB/BG4EdgHOBrYAJ6aU7uzSZg/Kk9os4CfAg5Qn8xMofz1lQUppZZc2r6zE0wp8F1gFvBzYp3L+b5NvQOVERMwCfkf5wQy/Be6i/IHLqyj/Mff6lNL3OtV/JVW+vx2r0uBUM06dU6XsRcRvgZcAL08p/ayXeq/EOVXKRH/GqXOqJOVE1lnk0VyA44D/BR6ivDqojfKnfr8C3gTlJHqn+n8PXEv5q6AbKH86+DRwNXBMH/d6M/AHYCPlZPFvgDN7qd8EXEp5RfDmSlzfA/bvpc3OwNeBxZQn0aeAy+lmtXGnNkdTTlavpvxVlr8C7wGKWb8+FkvXAkyj/Kn9k5X3+ErKfwwe1UP9qt/fjlWLZXClv+PUOdViybYA+1H+cOWZ/rxHnVMtluEv/R2nzqkWi8WSj+JKXEmSJEmSJEnKMR9sJkmSJEmSJEk5ZhJXkiRJkiRJknLMJK4kSZIkSZIk5ZhJXEmSJEmSJEnKMZO4kiRJkiRJkpRjJnElSZIkSZIkKcdM4kqSJEmSJElSjpnElSRJkiRJkqQcM4krSZIkSZIkSTlmEleSJEmSJEmScswkriRJkiRJkiTlmElcSZIkSZIkScoxk7iSJEmSJEmSlGMmcSVJkiRJkiQpx0ziSpIkSZIkSVKOmcSVJEmSJEmSpBwziStJkiRJkiRJOfb/AbSkKGa7yKtTAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "image/png": { + "height": 436, + "width": 696 + }, + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "input_df['Local_Simpson_Concentration'] = index.statistics\n", + "input_df.head()\n", + "ax = input_df.plot(column = 'Local_Simpson_Concentration', cmap = 'inferno_r', legend = True, figsize = (15,7))\n", + "ax.set_title(\"Local Simpson Concentration\", fontsize = 25)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Local Centralization" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Let's assume we want to calculate the Local Centralization to the group `'BLACK'`:" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([ 0.03443055, -0.29063264, -0.19110976, 0.30243257, 0.03929596,\n", + " 0.16414059, 0.78917647, 0.53129412, -0.12673592, -0.20216325])" + ] + }, + "execution_count": 15, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "index = LocalRelativeCentralization(input_df, 'BLACK', 'TOT_POP')\n", + "index.statistics[0:10] # Values of first 10 units" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "Text(0.5, 1.0, 'Local Centralization')" + ] + }, + "execution_count": 16, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABYEAAANoCAYAAACWVCXFAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/d3fzzAAAACXBIWXMAABYlAAAWJQFJUiTwAAEAAElEQVR4nOzdd3xcaXX/8c+Zol5ty93rtvba2xvLwtJ7ryG/hIRkSQhJgB8kgV8SCGVpCQTSIJDQey9LWRZY2M72Yq/Xu+62bMuWLau36ff5/XHHXnk0KiONdGdG37df85Lnluc5kmZG0plzz2POOURERERERERERESkMoWCDkBERERERERERERE5o6SwCIiIiIiIiIiIiIVTElgERERERERERERkQqmJLCIiIiIiIiIiIhIBVMSWERERERERERERKSCKQksIiIiIiIiIiIiUsGUBBYRERERERERERGpYEoCi4iIiIiIiIiIiFQwJYFFREREREREREREKpiSwCIiIiIiIiIiIiIVTElgERERERERERERkQqmJLCIiIiIiIiIiIhIBVMSWERERERERERERKSCKQksIiIiIiIiIiIiUsGUBBYREVngzOw6M3Njb0HHJBI0M7s293lhZuvm6jwpnJndlvN1vi3omERERERKVSToAERERESmYmZ1wEXAOmA5UJfd1Q/0AZ3ANufcYBDxiYiIiIiIlDIlgUVEpGDZqrZDOZtvd849a/6jkUplZpuA1wMvBy4FwlOc4sxsD3AH8C3gTuecqppFRERERGTBUzsIERERKSlmdqGZ/QzYA1wHXMHUCWAAA7YAbwZuBw6Z2bvMrHquYi13agUi88nMvprzeGsPOiYRERGRhUJJYBERESkJZhY1s48D2/Grf22WQ64FPgHsNbPfm+VYIiIiIiIiZUvtIERERCRwZtYK/By4ZpLDdgO3AB1AN34v4FpgKbA5e+4Fec47B3gb8MMihiwiIiIiIlI2lAQWERGRQGUTwHcAF+bZPQL8J/A559zRaYy1Dvhj4K34C8iJzCvn3FeBrwYcxoKgPvQiIiIi06d2ECIiIhIYM4sA15M/AfwT4Fzn3HunkwAGcM61O+c+AqwH/gk/iSwiIiIiIrKgKQksIiIiQXov8Mw82/8HeK1z7sRMBnXOxZ1z/wxcBjw0i/hERERERETKnpLAIiIiEggzOw+/WjfX95xzb3HOebOdwzm3D3ga8IPZjiUiIiIiIlKu1BNYRETKlplVAVcBq/EXB6sHeoAu4LFsAnAu518DXAIsARYD1cAQcBJ/EbPdzrnkLOdYBWwB1gHN+AuhDQK9wBHgAedcfDZzBOjDjP9d5Djw18WcJPv1+cxsxjCzC4Fz8R9ni4FR4BTQjv89SM0yzKnmDwGXAxdlY3D4i+MdBO6e7eNsvpnZOfhV2muBRiCD/7z5nnNudBrnL8V/XmwEWvCf+0P4z4tjwP3OueE5Cb5CVfhrzbRlH5uXAm3ZWxz/uX4cuNc5F5uHGKL4P9vOx//5ksrGsBf/sZ2Z6xhERESk8igJLCIiZcfMngf8X+A5QMMkxx3E7yv7iZm2Fcgz5gbgb4AXAZumOHzUzG4HfgR81zk3ZX9aM1sCvBp4Hn6bhGVTnJI0s3uB/wZ+VIzq2fmQTaC/Js+uf3TO9c13PPmY2cX43+sXAisnOXTYzH4LfNw5d2+BczwLuDVn87Odc7dl9zcB7wT+kokfCyNm9gPg/dNcPO828rfgOL3fTTUG8MbsAmi557bjJ3ZP+5pz7trsvijwJvwk/0UTjHsrfmI9d9xG4BXAC4BnAedMEV/GzLYBnwO+Pp9JcjO7FvhKzub1zrn2Ao6fNeecTbZ/vl5r8jwmxlo7zcfbmedEzti3cfZj+faZLBZnZi34z7PX4CdeJxI3szuA/3XOXT+Dea5lkseGmS0H/hG4Fj8Rn0+/mX0V+IhzrqfQGERERGThUjsIEREpG2a2wcx+DfwGPyE0YQI4awPwd8B+M3tftppypnMvMbMvA3vwE9BTJYAB6oAXA18EOqcxx7ezx30e+H2mTsoAVAHPAL4P7DSzC6ZxTin4UyCcs60b//MIlJmtMLNvAduBNzJ5Ahj8x+GrgHvM7CdmtqhIcTwDeBx4P5M/Furxk0Z7zOwVxZi72MxsE/Aw8FkmTgBPdO6/4lf3fxP4E6ZOAIP/2LoS+AJwwMyeXlDAFW6BvdZMysz+L35F/XuZPAEMUIP/RsSPzexuMyvosTxFHK8FdgHvYOIEMPiV73+D/3y/uljzi4iISOVTElhERMqCmV0B3IP/B3ih6oEPAd83s5oZzH0x8AB+QnCmV9E0TuOYp85ifICtwL3ZSulSly9Z+VXnXGLeIxnDzC4B7gdeD0xaSTmBV+J/DzbPMo6XAb8FVhVwWi3wIzN70WzmLjYz24L/3L1whkNchZ98m6nVwM1m9oZZjFFpFtJrTV5mFjazzwGfAlpnMMRTgN+Z2XOKEMtf4fctbyngtMXAb83s0tnOLyIiIguD2kGIiEjJM7OtwG3kr/zdB1wP7MfvX7kcP2mUr1L4tUC1mb3COTedS5Axs8uBO/ATybkG8S9fvwe/UnEYv4JrFXAFfqJl8XTmySODXzn5GH5/4Z7sfAY04VciXw1cw9lv6jYA3zWzy6bTGiAI2Uv7r8iz65b5jmUsM7sS//uZ+7jxgDuBu4FDQD9+wnU1/qXoz+XsquZNwI1mdoVzbmAGoVwK/AsQzd6PATfjPw5PAGlgDf4bIs/NOTcCfNHMLphk7v08kWxazvgq0EemEWPvNI4Bvxr+Z5z9PNgJ/BI4APTh9zjeDLxuGuM54NHsbRd+n9RB/OdLI371/5OAZ/PE14/s/79gZo855x6eZuzzpZfpfc0nUo3fy3em5vq15nH85wz4VdxjE66p7P6pzEV/588Df5Znexz4Nf7zrRP/ub4O/w2ei3OObQJ+aWbPcc7dNcM4XozfYuP0m04DwE34rzdd+F/zdcDLgCfnnFsPfMXMnuScS89wfhEREVkonHO66aabbrrpVtAN/w9Sl3O7bY7mqsa/LD93vh7gjyc5rxW/92LueQ54xzTnXoyf9Ms9fxB4N1A3xflh/H6b3wbS05hvL37/4FcDzdOMcW12/NwYbyjga3xd7vlz/Ph5+gTfl8UBPqZbJ/hefxk4Z4pzNwK/ynPuj6Yx77PynBcb8/+vAysmOf+Z2edC7hj/GMT3Hr+f79jx0mP+fwh46STnRoBInu234Cfl/ghom2YcS/ArPL2ceB4t4HO5Ns/Xdd1cnTfDr3cIv4I0d777pjgvqNear+ac2z7Lz/+2nPFum+Z5/yfP5+Hwe8ivnOS8lwEdec47NJ2v4wSPjdPPdw/4JNAyyfmv4+zXh9O3P5iLx5duuummm2666VZZN7WDEBGRUvdO4JKcbb34CwV9c6KTnHN9zrk3Av+cZ/fHzWw6l9l/Bj/hPVYHcI1z7l+cc6OTneycyzjnfuucez3T6yH8JOfca51z17tpVpA65w5nx78uZ9dLspfhl6Lz8mxrd8EucpT7vc7gv8nwZ865I5Od6Jw7gF/N95WcXa8xs9zKvek43frgfc65P3HOTdhP2jl3O37Vu8vZ9eczmHcunK6Q3oP/vPnFRAc659IufzXjq51zL3TOfcs5d2o6kzrnup1zb8dv4TLWhWY2k5Yypeq/gN/L2bYPP1k5mYXyWjOOmTUA/5Nn1xfwH2vHJzrXOXcD/ptYx3J2rQM+MsOQavCfv3/qnHuXc65/kvl/QP7n9ptmOLeIiIgsIEoCi4hIyTKzKPC2PLuudc7tmM4Yzrl/wq/SHKsaeOsUc29h/OXpceAlzrlHpzN3ThyHpnHMTFoHnPYh/L7Fpxn5L3UuBWvybDsx71Fkmdl5+JWBY/2Tc+5b0x3DOeeAv8RvUTDWP84wrB8756aVVHL+Zeg/yNl8rpltnOHcxZYG/nCy5NpkZvO8cM59DfhhzuaKSJiZ2XsY//p4EnjhVMnyBfRak8+1jO8B/ADwV9nn8aSyr+WvY/wbL280s5n0Fgb4D+fcN6ZzoHPu2/h9y8d65kz63YuIiMjCoiSwiIiUstcCK3K23eic+3mB47wNv7JzrDdnk8wT+X+M/zn5wZkkgOdDNnmRm0R4WhCxTEO+REn/fAcxRu73+hD+ZdkFcc6lGF95/uIZJGc84O8LPCdfVXy+vstB+IZzbluA8389536pPi+mzcz+FPhozuYh4MXTecNpNsrstSaffG8svtU55013AOfcPcDXcjbXM77yfDqGgA8WeE7u8z3C+H7FIiIiImdRElhERErZ8/Ns+2yhg2Qv1/91zubFwOWTnJZ7OfUw+S8hLiX7cu5fPkWiOyi1ebbNpjJxxszMgNfkbP6qcy73TYPpujHnfjXjF3Oayi3Zx2wh7suzLV/bjSB8KeD5c58XK8zsnEAiKQIzezHwxZzNKeA185hsL5fXmrOY2RrGPy8edM49kO/4KeT7WZTvZ9ZUvuecGyzwnNxKYCid57uIiIiUqEjQAYiIiEzimpz7I4xv7TBd3wdekmf8cckzM7sAWJqz+WezvIS6YNnelc/Ar/A6Hz9x3YRfcZbvjdyGnPvVwDL8PsalxPJsm/Iy7DlyMeMrk++e6WDOuV4zGwCax2y+DLi9gGEKOfb0vF1mNoL/2DiteaLj51EMuLeYA5pZNX7l6SXAhUAb/vOigSd6EI9VlWfbOcCkvZ5LkZldhd/6Y+zv8A6/Rc5vZzFupb7W5Mr9mQLj24VMi3PuATM7BKwfs/kpZmbTaSsxRsHPdyDfm0Sl8HwXERGREqYksIiIlCQzqwc252zeNosKzXyVXhNVAj8lz7a7ZjhvwczsCvwWBa8gf9VsIVoovcRMLM+2lvkOIitfUujTZpaYxZh1OfeXFHh+bpXldA1QekngHbN4zp7FzM7F77H8e8z+c2uZdUDzzMw2ATdw9vcY4P9l+8TOZMxKf63Jle81/8FZjPcgZyeBm4GNwP4CxpjJ8z1f5XApPN9FRESkhCkJLCIipWox4ytGcxfdKsRu/F6rY6vaJkrOLcuzbc57AWcvp/4P4K8pXsumUkwM9ObZ1jLfQWStzrNtS5HnWFzg8fm+PtORyrlfCpfndxVjEDN7P/Ae/IrTYijF58WEzGwZfkubtpxd/+Gc+7cZjLdQXmty5XvNn83PlccnmKOQJHDBz3fnXNLvZHOWUni+i4iISAlTElhEREpVURcPc855ZjbI2cnGRRMcnm9730znno5sUuYHwCuLPHQpJgbyVQvmS7zPh0ITtDNRaIVlbjK3nBXa63QcM/sM8JYixDJWKT4v8jKzRuCXnF1xCvBd4J0zGG8hvdbkKvailPl+Lkz0c2UilfR8FxERkRKmJLCIiJSqxjzbRmY55ghnJ4HzzQF+L8xcw7Oceyr/QP6kzDHgp/h9ag/gJ1CHgLhz7qyWBWb2LODWOY2yOPbk2bbezBY552ZaBTtT+ZJCUjzp2ZxsZn9M/gRwL3A9fpuWfcBR/HYYcedcPGeMdcCh2cQRFDOrAn6M31d6rJuBPy2w9+xpC+m1Jlfua75zzo3OYrx8P5Mm+rkiIiIiEiglgUVEpFQN5dmW2wuzULnn55sD8lcv5i6EVDRmthR4d87mNH6vzv92zk03kTbbnp7zZRv+Yla51zNfxcwX/pupfP2JW51z/fMch+TIVqz+a55dHwM+5JzL973Lp1yeF2cx/3r/rwDPy9m1HXiNcy45gzEX2mtNrtzXfDOzulkkgvP9TJro54qIiIhIoIrVA0xERKTY8l1m2zLTwcwsxPgK34mqTnvybJvLitFXMH4xsX9wzv1nAUkZKPwy5EA454aAh/Lses58xwJ059m2br6DkLyeCazI2fZp59y7C0gAQ5k8L/L4JPD6nG3twEucczNts7GgXmvyKOrPlQnOne+rGURERESmRUlgEREpVd341aJjbZ3FeOcx/udevgQgwIk82y6exdxTeX7O/T7gv2cwzoYixDJffpZn27XZy9/n08k82+byey3Tl/u88ICPzmCccnpeAGBmfwf8Xc7mHuCFzrnOWQy9EF9rxjqVZ9tsfq6cn2fbRD9XRERERAKlJLCIiJSk7OW5ub1jLzWz8AyHfFKebfmqUQHuybPtmhnOOx1rcu7fN5NLvYGnFCOYefI1/KTeWG3A6+Y5jvvzbHvxPMcg+eU+L/Y65/Il7adSTs8LzOz1+FXAY40CL3XO7Z3l8AvxtWash/Nsu3IW4+X+XOnH76csIiIiUnKUBC6Amf2emX3azO40s0Ezc2b2zTmY5yIz+7qZHTWzhJl1mdntZvYnxZ5LRKTE3Z1zvwF40QzHypdczB0fAOfcLsZXiL7czJpnOPdUluTcL/hyYjNbAjy7OOHMPefcEfwFr3J9zMxa5jGUuxm/uNNLzWyhLBg3rgXALN5oKbZiPC+iwKuKEs08MLPnAV/l7H7ZGeD3nXP3FWGKoF9rch9v8/1YuyvPtt+byUBmdgWwPmfzvTNcrE9ERERkzikJXJj3Am8DLsVfQbnozOxa/AVzXgXcCfwb8EP8PwZeMhdzioiUsF/n2fZXhQ5iZusZnzzuJn9V2Gk/ybnfALyl0LmnKTcJmZuomY63AjVFiGU+vZfxSaHVwGeKOYmZ1ZhZ3u9dtgoydzG6RuCdxYyhhOVbxGrOFkEsUDGeF69nfF/hkmRml+G/MRLN2fWXzrlfFGmaoF9rch9v8/pYc851ALtyNl+ZTegWKt9ryk0zGEdERERkXigJXJi/BTbjLyz018Ue3MyuBr4I7AQ2O+de75x7j3PuLc65ZwBvKPacIiIl7nrgeM62l5lZoW+KfRqI5Gz7nHMuNck5n8SvwBvr/WZ2UYFzT0duj8+nmlm+VefzMrMLgHcXN6S555zbA/xznl2vN7NPZRfzmxUz2wT8Dvj9SQ7L12f2783sabOdvwzkWyirVPq95j4vNpvZuumebGbLGN9WoSRl36i6Ef8NiLHe55z7UhGnCvq1Jvfx1hJA1X2+N5n+28wsz/a8zOwq4NqczSPAV2YRl4iIiMicUhK4AM65W51z+wq5zMvM/tDMbjWzPjOLm9kuM3uvmVXnOfxf8S+L+2Pn3LhFiaZIVoiIVJzs616+RYu+Zmb5FuQZx8w+BLw0Z3Mc+OwUc+8Hvp2zuQa40cwunM7cOXGsm2T3nTn3G4APFDDuz4B8P1fKwUeA2/Ns/7/A981s6UwGzVb/vgfYDkxa5eec2wb8KGdzFLjezJ4xw/mrzezNZva3Mzl/Hj2aZ1upXHmU+7wA+Ph0TjSzRcANzKzSdV6ZWRv+VQ/Lc3b9r3PuI0WeLujXmlJ4vH2V8W0wrmaaC+SZ2Vr8q/Ry/476knOuf7bBiYiIiMwVJYHnkJl9CT+BcC7+5X2fwf+l88PAr8wsMubY1cDTgQeBx8zs2Wb2LjN7p5k9txjVUCIiZerf8BN5Yy0BbjOzP5joJDNrMbMvAu/Ls/sfnHO5Fcb5vB04mLNtNXCXmf2DmdVNdrKZhbKv598E9k1y6I8Yv0ja/zOzD4/9WZFn/D/EX8TudOXm4GTxlKJsov/V+FfB5HotcMDMPpT9OTklM1trZu8FDuFX+E76PRrjL7PnjLUEuNnMPmFmuQm6ieZ/spn9G9AOfA7YOM35g7KT8Y+bd5vZtWZWG0RAY/yK8e0Dft/MvjhZ9aqZvQC4lycW/Cr158UvgE05267Hb7tQbEG/1tybZ/5/M7NXZvs3zznn3Aj5r+h7i5n9IFtBnlf2KpTfMX6BvXbg/UULUkRERGQOTPjLnsxOtrfvn+H/Ev9HzrnYmH3X4VddvBX4r+zm06sL7wNuAZ6VM+SjZvaabGWaiEgputLMthdhnG855z5x+o5zLmlmrwfu5+z+kW3Ad8zsA/j9e/fjJ4yWAU8GXsH4S6vBT7h8ejqBOOf6zey1wB05YzUBHwPeY2Y34yc2uoBhoBlYCVwGXANMWcnqnNubTRTnLgD6XuBaM/shsCM7/iLgvOznNzbBOAr8A/A/0/ncSolzrs/Mngn8HHhqzu4G/ET++8zsceBWoAM4BfTjV2cvw/+aPBW4gLMX1ZpuDD1m9gr8BM/YBQAjwLuAt5vZPfiPhQ78y9qrgRb8nrOX4Scd2wqdO0jOuVT2sTe2v2k9/mXtXzSzo/jPq9zE3fudcz+b49j6zOw/GJ9c+3PgVWb2A/y+3n3434cNwMuAsS1bMsA7KO3L9J+UZ9tW4OECOhSM45y7NM+2QF9rnHOdZvYrzq7+XYb/Gp7MPt5GgNyr7t7knHuw0PkmieP7ZvZC/N/Vx/o9/IUhf4lfNX0C/zVmPf7X4dI8w6Xwr+IbKFZ8IiIiInNBSeC58w78xW7+bGwCOOvD+AvM/RFPJIFPJwl+H3+xotcAN+P/MfkB/H7AvzCzi7KL2IiIlJp64JIijHNb7gbn3C4zezZ+Ajc3qboF+Mdpjv1j/Dfmpt3Wxzm33cyuwU9Qrs3Z3YRfxfrq6Y43ibcDV+F/PmOtBv5minNTwOvwkzNlyTnXa2bPwq/e/Tv89ki5zs/eCrUX+MRUBznndprZk/AfJ7ktP6qAZ2ZvlebD+L935FY7h4F1E5yzaC4DGuMj5P+6L2bqRSIdfnL7tuKHNedyXweKKejXmv+H//3MreauYuLK+blYQO7N+G8S/EXO9lr858NrpjHGIPAa59xdRY5NREREpOjUYmAOZC8PvgS/MuVvzOy6sTf8iqYEfpXHaeExH9/knLveOTfonDsA/Cl+m4jN+JfGiogsONkqsKcAv53B6SP4b6i9zjkXn8Hcj+InTb7J+IrI6To1xRwDwPPwq4oLcRx4nnPuxhnGVTKccynn3N/jV9XewPhqwELtw7/q5gLn3C+mGcM+/Eryf8d/3MzGg/iLfZW07DoEzwEeCjqWXNl2Ia/EfzwUoh/4fefc54seVJkL+rXGOfc48Hz8qzcC45zLOOfejF+4kW+BxKncCzzNOXdzcSMTERERmRtKAs+NVvxLUU9X8ea7reTsqobTv3wmyPmDMVux9tPs3avmLGoRkRLnnDvonHs+8AL8ytypknQHgf8AznXOfcg5N9MELs65LufcG/ArRL8AHJ3GaQP4VaV/iF9lN9Ucx4Bn4F8tktuLONdh/DcVtzjn7phGLGXDOfeoc+7l+JeifxDYhl+xNxUPeBx/0b+nOuc2O+c+65xLFzj/qHPunfhVsNfhJ3OnM38cv6XTe/ATz08ql+S8c24XfluCZwL/yRNtNwaZ3uc+Z7JJy1fgX0G1Y4rDu/Crvs9zzv1wrmMrV0G/1jjn7sGvRH4J/vP1d/hJ5mFm/kbbTGP5FH4F8keA3VMcHgd+A7zWOfeU7BuEIiIiImXBCrgiVsbIXrJ6K37vyj/O2deA3z9vm3Pu8mmOdzl+BU63c25cP0Ezeyv+qsWfc85NdfmjiMiCYGZV+FWba/DfeKsHevCrbnc65/bO8fxb8K/qWJK9OfzX/+P4yYS9zrkZJ9DMbDP+m3+nP7cR/MTcDufcntlFX16yC4FdhN+bcxlPLPjWl70dx/+5m7uQWLHmb8ZPki7Fb0XQDMR44vu9Bzg4m++3TI+ZnYN/VcAy/JYscfzvwWP4zw39clsgvdY8wczW4vf+bcN/XU/iv7lwHLjXOVe2bXdERERkYVMSeIYmSwJn9+/EX+l5hXOudxrjRYBO/F82lzvnTubs/x/83nfvds59bNafgIiIiIiIiIiIiCwIagcxd/4df4GLL5tZS+5OM2vNVv8CkL1U9XPZu/9qZqExx14EXIu/0JwubRQREREREREREZFpUyVwAczsVcCrsneXAy/E76N2Z3Zbt3PuXWOO/wz+qtS9wK+BI/iraa/H78P2lbGtHbILyt0MXI3f//A2/EvRXou/UvE7nXP/PiefnIiIiIiIiIiIiFQkJYELYGbX4S/qNpHDzrl1Oee8DL+Nw1VAC35C+AhwE/BN59zunOPrgL8H/gA/WRwHHgD+zTn3y2J8HiIiIiIiIiIiIrJwKAksIiIiIiIiIiIiUsHUE1hERERERERERESkgikJLCIiIiIiIiIiIlLBlAQWERERERERERERqWBKAouIiIiIiIiIiIhUsEjQAZQ6MzsENAHtAYciIiIiIiIiIiKTWwcMOufWBx1IJTCzbwFbgo5jArudc38UdBDlQkngqTXV1tYu2rp166KgAxERERERERERkYnt2rWLWCwWdBiVZAtwedBByOwpCTy19q1bty566KGHgo5DREREREREREQmccUVV/Dwww+3Bx1H5Sm1FGI66ADKjnoCi4iIiIiIiIiIiFSwUkvji4iIiIiIiIiISAkxLOgQzuKCDqAMqRJYREREREREREREpIIpCSwiIiIiIiIiIiJSwdQOQkRERERERERERCZgYKXVDgJnqClEYVQJLCIiIiIiIiIiIlLBlAQWERERERERERERqWBqByEiIiIiIiIiIiKTUB1puZuT76CZvcHMXPb2pgLO+7iZ3WxmR80sZma9ZrbNzD5gZosnOc/M7E/N7LbsOTEzO2Rm3zezzcX5rERERERERERERETKT9Ergc1sDfBpYBhoKPD0vwUeBn4DdAH1wNXAdcCbzexq59zRnPlqgB8ALwP2AN8GhoCVwNOBzcDeGX46IiIiIiIiIiIiImWtqElgMzPgK0AP8GPgXQUO0eSci+cZ96PAe4B3A2/J2f1v+AngfwHe65zzcs6NFhiDiIiIiIiIiIiIZFmJtYNwQQdQhor9HXw78BzgjcBIoSfnSwBnfT/7cdPYjWa2Efgr4AHgn3ITwNkxU4XGISIiIiIiIiIiIlIpilYJbGZbgY8B/+Wcu8PMnlOssYGXZz/uyNn+h/iJ7K8BTWb2cmANfiXyLc65/UWMQURERERERERERKTsFCUJbGYR4BvAEfy2DbMd7134/YSbgSuBp+EngD+Wc+iTsh+bgQPA2MXjnJn9D/B251xmGnM+NMGuLQWELiIiIiIiIiIiUkEMrLTaQeAMNYUoTLEqgd8PXAY8zTkXK8J47wKWjbn/K+Ba59ypnOOWZj9+CPht9rx24Crgc/j9g0/hLywnIiIiIiIiIiIisuDMOo1vZlfhV//+m3PuntmHBM655c45A5YDrwE2ANvM7PKcQ8PZj53Aq51zO51zw865W4DfAzzg78ysahpzXpHvBuwuxuckIiIiIiIiIiIiEoRZJYHHtIHYC7yvKBGN4Zw76Zy7HngBfquHr+cc0pf9+KvcCmTn3CPAIaAR2Frs2ERERERERERERBaGUIndpFCz/ao1AJvxk6xxM3Onb8AHssd8IbvtP2c6iXPuMPA4cIGZLRmza0/2Y/8Ep55OEtfOdG4RERERERERERGRcjbbnsAJ4EsT7Lscv0/w7/CTtbNtFbEy+3HsIm83A/8XuDD3YDOrBjZl77bPcm4RERERERERERGRsjSrJHC2BcOb8u0zs+vwk8Bfc859ccz2KLARSDnnDozZvgXod86dyBknBHwYfxG4u51zfWN2/xI4CLzQzJ7vnPvNmH3vA5qB23PHFBERERERERERkekwrORaMFjQAZSd2VYCz8QqYBdwGFg3ZvuLgE+Y2R3AAaAHWAY8E39huBPAX4wdyDmXNLM/BW4Cfmlm12fHfRLwDOAU8Oa5/GRERERERERERERESlkQSeCJ/Bb4PHANcAnQAozgLzr3DeBTzrne3JOcc78zsyvxexA/O3veyexYH3bOdcxH8CIiIiIiIiIiIiKlaM6SwM6564Dr8mxvJ0/NtnNuJ/DWGc71OPB/ZnKuiIiIiIiIiIiITMzv1irlTN9BERERERERERERkQqmJLCIiIiIiIiIiIhIBSulnsAiIiIiIiIiIiJSclRHWu70HRQRERERERERERGpYEoCi4iIiIiIiIiIiFQwtYMQERERERERERGRCRhm4aCDyGFBB1B2VAksIiIiIiIiIiIiUsGUBBYRERERERERERGpYGoHISIiIiIiIiIiInkZYCVWR2qACzqIMqMksIiIiIiIiIiUDeccXjKFl0xh4TCRupqz93seA4/tZ/jAUbxEEpfxIBzCiyfxkkkyiRReIvv/eBIvkSSTPL3NHzfa0sQV//XugD5DEZHiUxJYRERERERERArinCMTS5AeGsbCYZznyMTipEdipAaHcZ5HKBwmk0jiJVL+x2Q2yZoYm4hNPZGMTZ4+7vQx/rmnj8sk/YStl0idFUukoY6aZYupXrqYaGMdvQ89TrKnf1afX82KtlmdLyJSapQEFhERERERESlDLuPhpVLZRGqaqtYmLBzCOcfw/iOkBobw0hkysTheMo2FQ6RHYuB5eKk0mUSSZE+/n2yNJ/HSaVw6g3MOMh7pUT+h66XS4Hlk4kmc53CZDOnhkXHJ2KCkh0cZHh5l+MDRoo3pJUvjcxMpDYZZabWD8BtCSCGUBBYRERERERGZBuccLp3BS6Vx6bT/0fPAc/5HIBSNkEmkiB07CUC4roZwTTXpkVHSgyOkY3EysQSZMx8TZOLxM5WwZ25nKmGTuHSGqkXNVC1qJjU4wujRTmKdp3Cp9FnxrX71c6lqbabz13edmV9mJhNPBB2CiEhRKQksIiIiIiIiJc85vwLViz+RHD1dwZpJJnGpNF4641eypjNnqlq9ZAovlcYiYUKR8Jn7pxO5Va3NLHv+U+jbtouhPe0M7NxH/GSPn6RNpPBSKdyYc3CluxRRx/U3Bx1CxcjE4jjnMFO1oYhUBiWBRUREREREpCBeOkN6eBQvlSIzGsdLpf0+sOk04doaqlqbSA0Ok+gZ8NsNxBNPJF/HVLqO7RV7ukfs6QTvmX1n9ifBm5sE7OP/8gVcJjMnY0uZ8hwulcaqokFHIlISjFJrByGFUhJYRERERESkjLmM98SiW4nUmMW1xtxPps6qoD2dbE0PjZAaGiE9PEomniQTT/gJ24T//7Ora7P/z/j3K4kSwJJPJpYgpCSwiFQIJYFFRERERESKIBNPkOgZ8JOvY3u7ZlsIhKqihKJRQtEIhEOQ8Rjc206iq+fsKth4wk/aJlLZsdJYyLBohCVPuYThgx0kunpJ9PST6Okn1T9U0i0KRMpVJh4n2twQdBgiIkWhJLCIiIiIiMgYR37wa0aPnsBlMiR7B0iPxHDpDHXnrGDRFRfQc98j9D2yh4aNa2jcuIbRjpMM7jnESPuxOWtXcFrv/Y/O6fgi8oRMTIvDiQBghlmJtYMwA73/WRAlgUVERERERLL6tu1i9ye+nHdf74M76fjxb87cHz18nK5b7puv0ERknikJLCKVpMTS+CIiIiIiIsHo37GXnR/8bNBhiEiJSMfiQYcgIlI0qgQWEREREZGKNnzgKPv+57uc/+6/YGhvO/GTPeAcK17yDMLVVfRt28XBL/+YnvsfVW9dETkjE1clsMhpZuGgQ5BZUhJYREREREQqknOO2PEuHnrHP5Po6uWRgWEG9xzCyyZ2Dn71J1S1NjFyqEOXfYtUOoO1T2+mZWmSkcEqmhcNU5t4DFfVRPfQFvbcOOAfNIZeF0SkkigJLCIiIiIiFaXz13dx9Ec3Ub2omZNjevb2P7L7rOPinaeId56a7/BEZJ6FIvDk3x8k3H07DEIjQK+/z0ZO0sY+ml//dB77bQ0jXU8kfj1VAotIBVESWEREREREyl7seBdDew9z/Mbb6brtgaDDEZEScu5zm/wE8CSquu/ksifV0Rd9No/9ZAgwvFR6fgIUKXGGYSW2rJhhqIFTYZQEFhERERGRspaJJ9j1iS/Tfde2oEMRkZLi2PDsFpZGb4HkNA5PjdKa+gXnveTl7LlxEC+tJLCIVA4lgUVEREREpOw4z6P7nkc49NWfMLBzLy7jBR2SiJSYJ/9Rguipn02ZAHZVLTgMC9fAaCdt4ds50nY1LqkksIhUDiWBRURERESkrMSOd3HX7/8dXjIVdCgiUqKa1tQSPTV5C4jTktHLyQwOEKqpIzPaSl1VB5ue2UJM7SBEzjArrXYQUjglgUVEREREpGykR+Ps+a9vKAEsImdZ+aQmlm2I41yIkHnUertgYHrnRiOdJE/0kMnejzdegO2+g7pznzln8YqIzDclgUVEREREpCyMHD7OA395HcneaWZ2RGTBSMcctXaEUN+ewk+OnQCiT4x19AAAde54kaITEQmearlFRERERKTkOefY/cmvKAEsInl17Rzi7h8sY7jlhQWfG0r2EVq8fPyOjNpBiPgMI1xSN7CgvyhlR5XAIiIiIiJSktLDo+z7n+/SdfuDZEZjpIdHgw5JREpZxtj+/RhP/YMthHp3T/s0ZxGqVy0h1nMiZzy1nRGRyqEksIiIiIiIlJTRYydp/+bPOfGr35EeiQUdjoiUFWMgfi6tTD8JjJcmPZgct9mllQQWkcqhJLCIiIiIiJSEeFcvO/7pP+l/ZAY9PUVEsvqOGq2LCz0rz6XlSgKLnGGmjrLlTt9BEREREREJnMt47P3UN5QAFpFZa1haWK9Qb8k1OM8jumELjEl0ufT46mARkXKlSmAREREREQlUOhbn0fd9mlN3PBh0KCJS5lZc1sjS6ruhgBbi5g1T4+3EEhmqzjuXxEgb6aMHcFoYTkQqiJLAIiIiIiISmPipXh5976fo27Yr6FBEpIzVtlVz3rONhsFfw2hhbRxCfY888f+h/dREjjMcWaR2ECJZBoRKrJlAYfX+AkoCi4iIiIhIgA599SdKAIvIjDWdU8fma+LU9N8O/YmijJlpuQoOP66F4USkoigJLCIiIiIi865v2y72/ve3GXh0b9ChiEgZWnxeAxuuGKa65yboyRR17PSwy/5H7SBEfIZZOOggcqgWuFBKAouIiIiIyLzq37GXB/7yuqDDEJES59U34mrrCfV2kWlbwXDjcqK1xvMv/CWhntuhe47mHRoEtDCciFQWJYFFRERERGTeHPn+rzjwhR8GHYaIlLhMy2Ie6F7MwN5BYCkczRAKd/JnbzhOqOfxOZvXRerIHDuWDUKVwCJSOZQEFhERERGReZEaGmHvp76Jl1SfTZGFyoVCmOdNeowXjvBYciUDJ0+dtf35r6phrd0+l+FBtBnw20uoJ7DIE6zEFoaTwikJLCIiIiIi82L0aKcSwCILlNfYRNeSLdSFMzTtf2jSY0+uuZzOu46cud+4pJ7XvvQo6+17cx0mXt0GYJ9/J6PXKxGpHEoCi4iIiIjInOvfsYdH3//fQYchIgGIrz+fO+7uw+0+gpmxaPVWzlnXSAMxqvtPEO59ouI3tWoDj9599Kzzh7pHSHi1hOY4g+E1n09s/8kz91UJLCKVRElgERERERGZU0P7j/DIP/4Hie6+oEMRkXnm6hp44LE4znP+fefoOdpHz9HTrwdhlm24kI1rogA8/HAfzrlx43znG7Vc8dy38so1n8GsyDE6cIsuIXY4jhsdfGJ7KlHciUTKlRkhK7F2EGYw/qVCJqEksIiIiIiIzBmX8Xj0fZ9SAlhkgepafj6j+45MeszJg92cPDj1WA/d3E33RW/l1U+6hcVuV1Hi8xo2kBhZSnrn+AC8vi6c52GhEkt+iYjMgJLAIiIiIiJSVIneAR7/6OeIn+wh0d1Hsncg6JCkQjkgVBXFZXtNOyDa2EB6aDjQuMTnqqvZef/xoo55+NFuvjnwDN7ynENELT6jMbzGc8FCeFUrie8+hEtMkIHOpCGdhKqaWUQsIlIalAQWEREREZGi6r57O6funHzhJ5FZC4VoueQ8Bh47QMPWjYTCIYYOdpAcGqHlos1YKIQXTzC051DQkS5Yw2vOJ32ws+jjdh/p596h1/P0pi/P6HyLn2C4oxnSj095rEslMSWBZYEzwAgHHcZZitwVZkFQElhERERERIrGS6c59LWfBB2GVIpQiFB1lKrFLbhUmmhzI5H6WhwQ6+ymb9tuAAZ3nV3J2f/oPv8/ZjRuWM3IwY55DlwATg7OXRuFO36d5orfb6POnZr64HHCMN1F3zLpGYwvIlJ6lAQWEREREZGi6brtAUYPF/fyb1mYmi8+j4G97aRjSdIdXQDETvYWNohzDB08RuulW0l0dRPr7MbyLDo27jSg+aLNJPsGSfUPkhkencFnsDA5B/GNF9DeW8XRR+butSA+nODenlfxnEVfKPhcV9UKTO976rxMweOLiJQiJYFFRERERGRWMvEE/Y/s4dRdD9Px498GHY5UgNrVyxjY244XTxZlvL7tfsVw/bpVhMLG8IGjZ11KHGmop37jGhJ9g4Rrqoh1njpTTVy3ehmRhloSJ3qKEkslchhe2zLS9S3s762h484T8zLvvbcmefpra4kSw3NhhiPn4lEFOGq9TiLeIGEbX/HralYC+6c3SUZJYBEwjFJbIFENIQqlJLCIiIiIiMyYc44d//Rf6gEsRRVpasDLVv8W00j7MQCazltPuLoKC4dwGY+RjpP0PbIn7zmjHSepam2i6aLNDD66t+gxVYLkus3cdtcA0D+v88YG4xz1rqExMsodt21kpGvwzL7qpgupaqjmyqf20DWwnP7uMCvXjJDORGgehLqaYapiJ7Ap8khO7SBEpEIoCSwiIiIiIjPWt22XEsAyK82XbiU1NEKqt5/0SIy6NcsZmuMevoN72gs6Ptk3SLJvkOatGxjK6T8sMBRuAgbmdc6la1o4Z30zB44s48S2o7jM4Fn7E4MxEoMxbv1hGPD7Bh/bNvaI9VQ3X8CK81o5v+4OqhMTvOmgdhAiUiGUBBYRERERkRlp/9bP2fupbwUdhpQZB1QvaaVuzQpSI6MM7DqIl0gSqqnCIhGGDpTuIm6xEz1ULWom2Tu/Cc9Sd6p3/qtlV9YmGdi2Z1ap58TAKO33j9J/zlWs3FDFOncH1cnusw9SElgEgJCFgw5BZklJYBERERERKcjA4wfY/cmvMLBzX9ChSBlpOG896dE48ZM9xLv7iXf3n7W/WP1/51Kyb5C6c5YTSWVIDw0HHU5J8Mw4vu/UvM8bihYvndF/pIf+IzDypGdxeeSHZ+1TOwgRqRSl1tVZRERERERKXO+DO5UAloKFqqKMHj2Blxy/UFc5GT1yAqIRwi1N1JyzgubLtkJo4f5p7dqWk07Mf6K0O11d9DEPP3CMnuannL1RSWARqRCqBBYRERERkWnr276b/Z/7ftBhSBmqpHXcT7eDSPUPMXrkBA0b1xCprWZw1wHIeAFHN78SjW1A8Rfxm3LeWJrip4Fhx67FPHNliBD+99El43Mwi0i5Mazk6kgr6afK/Ci176CIiIiIiJSow9/5BQ+97SO4lCrjpHDJwcptnzB84Cj9O/fTsHk9RBZW38whr2aeZnLZG1z2tLUsivfMySz9h3voaHzxExvS5V25LiJymiqBRURERERkUqnhUbpuvY+9n/oWLqNFkmRmRo90YuFwRT+GBncdpH7tSjKDwyT7Fsbicf2Dc/um0NI1Laxf38TArkNE66qpXdpK3yN75nTOh27qpeGFV1OV6aUunqFqTmcTEZkfSgKLiIiIiMiEeu7fwa6Pf5nRo51BhyJlrmnrBgYePxh0GHNu5PBxqpe0ULduFaPtx4IOZ86NDMxdu4SGlloWJ3rp3XYCgEw8Rbx3firK77mrlnR8Kc9+YYTGy+dlSpGSZUCI0rrKQc0gCqcksIiIiIiI5BXrPMXD7/gX3ALrcSpzwxbQ4mmJ7n6SfYO0XraV/m27gg5nznh19fQc6j9z30Ugs85joHoYw1jU1QSn3IzHX7ammXR7XxEiLVxy2E9uJ0digcwvIlJsSgKLiIiIiMg4/Y/u5egPb1ICWIoiVFfD0IGjQYcxr1zGo3fbbqqaG0gPVFY/ZOccvS21HG9rYTgSx5nHkUQHv9t+N0NHhs4c96cv+GMWn2qa8TyR6Onl2YJzOhksIlLulAQWEREREZEzhg4cYWjvYTp+dBP9O/YGHY5UAGdGw8Zz6H90X9ChzLtIYx2pgeGyvWw5FTZG6qL01kXoDXv0ekn2DnRz7+M7OdXdPeX5u0/t5amLnoT1zqwauKkxSv+Mziye1IiSwCJgGKV2NUe5vrIGR0lgERERERHBOccj//jvdN16f9ChSAUJN9TRsGktfdt2Bx1KIKoXtxIbGgk6jIJ1Larha4OHue2B+0inZ77w233b7md06yjPizwDm8EwoVnMXSxKAotIpSi1NL6IiIiIiMyjRE8/u//9a9z/pvcrAVwBoi2NNJy3jvoNqyGgHrxWFaVmRRtNF5yLs9CCTQADRBvrgg6hYHuX1/G2e2/gt/fcNasE8GmP7tpJYlNqZieHgq/0S40kgg5BROaQma02sy+b2XEzS5hZu5n9p5m1zmCsp5vZj8ysMztWp5ndZGYvmYvYC6VKYBERERGRBcp5Hvf/xfuJdZwMOhSZprr1qwlXV+ElUwwf9HvsNmxcg0WjDB/sINE/TKLf7z/btHUDo+0deLG5S2LVrF5GTdsiUqNxIrU14BxD+48w2tnNaOfU7QIqnUXCQYcwbc45bl4Z4ZM//xbOzXwxt3yqYtGZxRQPPgGbVCWwCAChCqwjNbONwN3AUuCnwG7gKuAdwIvM7BrnXM80x3ov8GGgG7gB6ASWAJcBzwJuLHb8hVISWERERERkgckkkgzuPshDb/soXiIZdDgyDQ4I11SRGokxfOgYAPXrVuElUgwd6Mh7zuCug1S3tdK4eT2pgSGizQ3gHKNHT5DqG5x0rnz1lzUr2qhe3oYBLpOBUIiB3QcZ7eia9edXqYKvY52+B1bV8Imffqfo49bW1mL5H6KTMoOh9uDfoEoNx4IOQUTmzmfxE8Bvd859+vRGM/t34G+BjwJ/NdUgZvY6/ATwb4HXOOeGcvbP7J2wIlMSWERERERkAYmf7OHYDbdx4HPfDzoUma5ImIYNaxg50km6q/fM5pH241OemjjVR+JU37jt9etXE22owyJhDMNLpUgPDRNuaGDowBGaz1uPcw4zIzU8SrShjtjJHvq27Srqp1bJapYtZnj/0aDDmLb7+07Mybgrl6+AuPOzutMUrQ5z8ZNXM7htz5zEVIik2kGIVCQz2wC8AGgHPpOz+wPAm4E3mNk7nXMTNnc3sxDwcWAUeH1uAhjAOTfDnjjFpSSwiIiIiMgC4aUzHP7ujRz+1g1BhyLTEQrRfOEmRk90M7T3cFGHHslWE0+k75Hgk2/lrrqtlaGd+4IOY9pGEnPT9uDAoYPcdemDPM2ugpNTt5lYvKKR1XWpkkgAgxaGEwEwDKO02tvY7K+1eE72403OOW/sDufckJndhZ8kvhq4eZJxngqsB34I9JnZS4ELgThwv3PuntkGWixKAouIiIiILADpWJwDn/8Bx2+8I+hQZAJ1a1fhJZJ46TS1a5YztP8IfTv2Bh2WzJAVUPlaCrr6x1eMF8v92x/gwOKD/Mm6P8A6J08Er924iKESehNCSWCRkrbFzB7Kt8M5d8UU556X/TjRD9p9+EngzUyeBH5S9uNJ4GHgorE7zewO4Pecc6emiGfOVV5XZxEREREROYuXSrPrY1/k8LdumLQXrMwPB1S1NhNuqINQCKuKUL9hDbFTvYye6Cbe3U/ftt2kh0aDDlVmKFQVJdU3EHQYBTl8fPLq8Nnq6enhhyd/yvHzT8GSiRPkUfMm3BcEJYFFKlZz9uNEL9ant7dMMc7S7Me/AmqB5wGN+NXAvwaeAfxgxlEWkSqBRUREREQq2NEf/4b9n/u+kr8Bseoqms7fCBg4h/M8LBSib/vuJw5KZhg6OIOVs6S0mNF68WbSQ8NYJMLw3vagIyrI5rXreGjno3M6x9GODr7b8QMikQjPufpZnJ88Dws5RhrjNByq8TtqeqWVBFZPYBFfqDTrSHdPo+J3pk6/WzVVH5vTfTIMv+L3kez9x8zs1fiVxs80s6cE3RpCSWARERERkQqUGhjm4Nd+wrGf3kJ6aML1TGSONZ2/kb5tu6c+UMpe6yXnMbC9PBfOG62JsHd3+7zNl06nuel3v+WexvtwzjE8PExNTQ1/feGf48Kl1XfUS6XJJNOEq5Q+Eakwpyt9myfY35Rz3ERO99I5OCYBDIBzLmZmvwb+HLgKUBJYRERERERmz0tnOH7DbXT+6neMtB8j2Vtel6NXmlBNFS6dCToMmS/l1QL4LAdbqxgaGreg/ZwbO2c8Huen3TeybN0rJ8zIBCU1Eidc1RB0GCJSXKebj2+eYP+m7MepmvOfHqd/gv2nk8S10wtr7igJLCIiIiJSAUaPneTeN/wj6WH1kQ1cyGi5ZAv9jx+k/9F9QUcj88RLpqnfsIbhQx2Ym+rq4dLSlCmNeA+2H+Lo1i6aqQk6lLMkR+LUtCoJLAuZlWA7iFm/83Zr9uMLzCzknDvTi8bMGoFrgBhw7xTj3AGkgU1mVuWcS+bsvzD7sX22Ac9WqX0HRURERESkQF4yxWMf+ZwSwDmCSGs5oOn8TfRu242XyP07UCrZwGP7GTrYQfOFm2i+bCsNWzZQt3ZFII/DQlWng47gCasS9UGHME5KfYFFKo5z7gBwE7AOeGvO7g8C9cDXnXMjAGYWNbMtZrYxZ5xu4Hv4bSXeP3afmT0feCF+S4lfzcGnURBVAouIiIiIlLn+nfvoe+ixoMMIXFVrM3XrVuKcAwcDuw4SbaonXFdDdWszZkYmkSQ9NEys42TR5rVohHBtNVWLW4k2NdD3yJ6pT5KKlVv9HWlsoHHjavq378FKNCWcCOevqGttWsILnvQ64iejRKvDjNYep3fwJLsP7aB/qHdOYjlePUJriVUCp0bjQYcgInPjLcDdwKfM7LnALuDJwLPx20D805hjV2X3H8ZPHI/1d9nz/snMngHcD6wFXg1kgL9wzvXP2WcxTUoCi4iIiIiUse57tvPw334s6DACF21pJJ1O05uzCFuiux+A0SMnztreeukWBrb7x9ZvWEO0uYF4Vw/xzm7wPCbigKrFLdStXEpqNE56eJRE7wCZwVGSg6rElvHSQyP0bd9DtKmeaEMt8eOngg5pnMGGZfzec/6CEEbU6sjEwgz3JRnoHuHAPYNjjowAq9gcWs3aJy0lUdvFz+74ZlFj+e79v+YDq15FJFE6CXNVAstCZ4BRWos2FqMNu3PugJldCXwIeBHwEqAT+BTwQefctN7tcs51mdmTgffiJ36vBoaAXwD/4pybqqXEvFASWERERESkjC2+6mKijQ2kBuZ/UadSYdVV1K1bTd/23VMfnDWw+xBNF27CpTOMHu9i6GBHdjCjZtkSapYtZnDHHqItjdSes5L08CjRpgZGj3WRONVLokeL7klhUoMjhKuiQYdxFufg0Nqt/Og3HSQTp3tCjEx5nuc5Dj3mV9P/wXPfyndv/kzRYuru6eGGLQd4VWJD0cacrdSIKoFFKpVz7ijwxmkc184kuedswvjvsreSpCSwiIiIiEgZG+04saATwAA1y9sKSgADePEk/Tv3j9/hHPGTPcRP9lC/dhWxk90kdky1MLjI1CKNdSS7+6Y+cA45ByOL2+huWExnuopH9vVx9Jftsxpz/z39vOzpf8gNd36nKDFGo1Eyk1TjByGpJLCIVIA5SQKb2RuAr2fv/oVz7ovTPO/jwJXAZmAJ/ip8h4GfAP/tnOuZxhhfAv4se3eTcy7Pb3YiIiIiIpUh2tRAqDqKl0gFHUogala2MXL4+JyMPVfjysIUqqoi1ADp4akrbefKtjUX8aNf7weGizruqUciPPniZ3Hfjtumfc7Gdet5wdarWZ6pp37UqB70CMU9QmYwN+2GZ0yVwCJGiFDQQeQoRkOIhaXoSWAzWwN8Gv+nSkOBp/8t8DDwG6ALfyW+q4HrgDeb2dXZMu2J5n45fgJ4JnOLiIiIiJSdoX2HF1wC2AFN560nk0xBqNT+KBXJL9nTT/36VWSSCVwyPfUJRXZkzXn86FdzUyOVSXssjV2A2R04N76Kt7mpibbFS+jt76O3r4+3vvj1nH+gmtBBA8Ycb6WZ1FESWEQqQVGTwGZmwFeAHuDHwLsKHKLJOTfu1dXMPgq8B3g3/sp9+eZuA74AfA9YDjyzwLlFRERERMpKsm+QYz+9Oegw5l3zhZvp37kv6DBECjZy6BgtF21i4NG981rD5mH8/LHiVv/m6jrWzzWXPpffbfvNmW2veOYLuKL6HJYczhDCYCmk1hnRg66sivi0MJyIVIJiv23+duA5+A2VC77GJV8COOv72Y+bJjn989mPby10XhERERGRcnTke7/kxG/uCTqMedWweZ0SwFLW+h/dR8tlW+d1zs7Vmzh+dO57LKxe9MSf7C97xvN58YnVLD3s+QngrOiom/M4ik09gUUg5EIldZPCFe2rZmZbgY8B/+Wcu6NY42a9PPtxxwRzXwu8Cvir6fQNFhEREREpd845UoNzW9lXcsIhvEwm6ChEZq3vkT00bFo7b/PtilXNyzyhVC0rl57DNVdcxYtPrZmXOedDOqZKYBEpf0VpB2FmEeAbwBH8tg2zHe9d+D19m/EXinsafgL4Y3mOXQv8F/BN59xPZjHnQxPs2jLTMUVERERE5sLgnkMc/PKP6br1/qBDmVLVklZC1VUke/rw4skZj+OAqkUtDB/oKF5wIkHxHLFTfVS1NpPsG6BqSSu1a5bjkikGHytu396e5edw680HijrmRPY+eIJLV72cZ9elCA3Pf9/juZKKzfy1S0SkVBSrJ/D7gcuApznnYkUY713AsjH3fwVc65w7NfYgMwsBX8NfCO7tRZhXRERERKTk9T64sywSwADVyxYz8NgBLBKm5dItDGzfPaNxapcvYfSELvqTypHqH6J6w2qii5pIx5L0bdtN6yXnUdW2iOSp4rRuyESi/PBgUYaatqu2LKdh76H5nXSOqRJYFjoDrOgdZWenjNqKl4xZJ4HN7Cr86t9/c84VpSGZc255duxlwFPxK4C3mdnLnHMPjzn0b/EXgHupc65vlnNekW97tkL48tmMLSIiIiJSLM45jv7gpqDDmJIDWi47n75s0telM8Q6u2m5bCuJ7j5iR09Ma5yGTWtJDcdI9A/OYbQiwRg+eHZl+8CugzRv3VC0JPDOFVs48khxK4snsmHzcq5eWU/1qe55mW8+pUZVCSwi5W9WSeAxbSD2Au8rSkRjOOdOAteb2cPZOb4OXJidexPwUeArzrkbiz23iIiIiEgp2vHu/yB2vCvoMCbVfPF5jBw9Qd+2XWdtj5/sIX6yh9oVbTgMY+IFohxQf84KEn1DJLpnVe8hUja8ZIqhgx0QDkHGm9VYD666mOt/NX+LKD69OUSkQtu1pEe1MJyIlL/Z1nI3AJuBrUDczNzpG/CB7DFfyG77z5lO4pw7DDwOXGBmS7KbLwCqgTeOnTc79zOzx+zLbnvVTOcWERERESklTVs3BB3CpJwZo53dJPsmrtyNdZ6icfM6Wi7b+kQaOBSi7pwVRFsaIWS0XLKF4SMnlACWBSc9NELTltk9z7tWruf6m+YvAbxizSLCXcWpXi5F6gksYoRK7J8aQhRutu0gEsCXJth3OX6f4N8Be4DZtopYmf14ejng9knmfimwHPgBMJg9VkRERESkrDnnSPT0Bx0G4LdpCDfU4ZIpLBolPTxCZniURP8wiWlcyj64tx2A5vPPhZCRONXH8JEThGursepq+h7ZM8efgUjpClVFZ3xuxoxfH5vf3p2dR3tJPm0d1Yc753Xe+ZIaVU9gESl/s0oCZxeBe1O+fWZ2HX4S+GvOuS+O2R4FNgIp59yBMdu3AP3OuRM544SADwNLgbtP9/51zm2fZO7b8JPA73HOzU8DJBERERGRInHOkR6JMbzvMLUrl3L8htvo/M3dhGtrGHysNH69TSeSDO47cta2SGMdmXhhyZKBxw+cdT+jBZhEZvU82L3mAnb/8sDUBxaZC5fWolHFlBpROwgRKX+zXhhuBlYBu4DDwLox218EfMLM7gAOAD3AMvzWDhuAE8BfzGukIiIiIiLzaGj/EepWL+PYDbex+1+/DPgVgV4yFXBkZ6teupjRI+MXdksPjQYQjUjlGcpWyhcq3tDET+48VtxghNRIHOccZrr8XBau0Kw7ykrQgkgCT+S3wOeBa4BLgBZgBH9BuG8An3LOVW6TIRERERFZkI58/1e0f+sG1v/JK9n3mW+TicVxYxaEKpUEcKS5gVAoTKiuhnBtDVRw/0+RoFUtaiLZ3V/weVuf1MgXz+8hE/L/1DeXoYtFXL/N485thY9XiEwoPKfjB8l5jkwyTaR65m06RESCNmdJYOfcdcB1eba3k6d7s3NuJ/DWIs39rGKMIyIiIiIyV0Y7TtBx/c20f+NnAOz6+BenOCMYjedvJBSN0v/4AVwqDZMs+CYixRFpaiTRPYA9sXRiXq0bFzNyaoTkYJzWTUsI77sPgLHp2FXA25bCW/50PX1Vizg8VMOJAUikPMyMqojRO5zhkX0jHDkx87YHVYnKbuWSGokrCSwiZa2UKoFFRERERBaERHc/d73u73CZzNQHByRUV0PDuWvp37E36FBEFpzhgx1EaqJ48eTEB4VgaVMX1KVJLdpAtP8Qmdgkh584xGIOsfj0htOZYg+ogz++BDpecjXv/HJPwfFeedUGIkc6oILbJaRGE9Quagw6DJFAmDNCrrTaQZir3NebuVJa30ERERERkQrX/s2fc+er3lbSCeCaVcuINDYoASwSoIZN6ybdv/LyVWROdZLpO0XowH1kerpmPefq4/dxxdbCE51rm6oqvl9uaqSyK51FpPIpCSwiIiIiMo8aNq6hum1R0GGM07h1A1XL22jYspFE/xDxk4VXA4pI8Vho4j/Xm9ctomF4V/EndY4/v+bseVubIrz9NUv50l/UsaKtOu9pw17ezRUlNTLzVhkiIqVA7SBERERERObRkqdcytrXv5Tdn/hy0KGc4YDhw51kRuPET3QHHY6IAH2P7qV6cQupnv5x+5avGCVzdG76cy8++iDfuXY9OAglR2CwD0ZSMAKve8Y1fOpH4yuOhxOle2VDsaRiqgSWhS00fnkvKTNKAouIiIiIzINMPMHQ3nbSI7GSSgCDv2pz9ZJWRo90Bh2KiJzmOWqWLj4rCWzhEBufvozM/gfmdOpQ56G8289pyp/sXVlT+RcZp2OT9GcWESkDSgKLiIiIiMyRwd0H6bj+twztO8zwgaNkSqySrH7jGizsrw41dLAj4GhEJFc6lqBu/SqiEUdjq1GfODTnCeDp2Ly2jiOdMVIZ45qnnkvjnkMVvSgcqBJYRMqfksAiIiIiInNg//9+j8Pf+yWZkVjQoeTVdNEmBvccxmUyOOfAc0GHJCI50gO9rFt0BBeLQwyCbrqwNDTAZ97UzJLj23lX6gKesWk5NQcPV3wCGCCtheFkgTMtK1b2lAQWEREREZkDFg6VbAK4+ZLz6Htkb9BhiMgUquurcInSWZCsumMXp5eGe/7la7BH2oMMZ16pElhEyp3S+CIiIiIiRZIaHsU5R6Knn5HDx4MOZ5xoaxPNl25lcM/hoEMRkWkY6hyCbMuWkmJG+LGF9TqinsAiUu5UCSwiIiIiUiSn7niQYz+7FZfx6H9kd9DhnKX5ki0MH+qgb3tpxSUiE3MZj/CipWROldiijc4RrQ6TSKeDjmTepEZLpyJbZL4ZEKK02r6UVjTlQZXAIiIiIiJFkBoeJT0ao/+R3SWXAA7X1TCw+xCpwZGgQxGRAnnNK4MOIa+1WxuCDmFepUZVCSwi5U2VwCIiIiIis7T737/G0R/dhEuVVlWcAzCj/ty19O9QD2CRcnR05yirG6OQSgUdylna2mAhvaqkRtUTWETKmyqBRURERERmYeDx/Rz57o0llwAGaL3sfJxDCWCRMjbaPQxrLwk6jHFGYwsrnZDWwnCyoBkhFyqpmxpCFG5hvWqLiIiIiBTZ/s/9IOgQJjR6tBOLlOCiUiJSkHi8tC7iDS1ayp6Hh4IOY16pElhEyl1p/SQRERERESkDzvPo27aLmmWLiXWcCDqcvGrXLCdcX0dycARHJuhwRGQWqqtd0CEAEGpqxTUt4fDgckYH+4IOZ16lRrQwnIiUNyWBRUREREQKtOsTX6bjR78JOowJhWqqSMdTjBw9FHQoIlIEYUviBR2EGQ93bqbr3hFgYSWAQZXAsrAZECqx9gulFU15UDsIEREREZECpAaGSzoBDFC1uJXEqd6gwxCRIlhy3hK8A48EHQah1ja6Do8EHUZgkkOxoEMQEZkVJYFFRERERArQ98juoEMQkQWkbfEwuMDrgCG0sPuLJ4fVDkJEypuSwCIiIiIiBRjYuT/oECYWCRNuqKNqUXPQkYhIsYSiQUcAgNd3ikjVwk0hpEZiOFcavZlFgmAl9k8Kt3BfwUVERERECuAlUzz8dx/n+I13BB3KhBq3bCA1HKP/0X1BhyIiRdLVVYNFq4IOAzJpzn9yS9BRBMZLe2QSqaDDEBGZMSWBRURERESm4djPb6P7dw+T6OoJOpSz1G9cQ7i+FoBQROs+i1Sanr2nGGq9DCz4P99XxB5m/cUL90oDtYQQkXKm3xJFRERERKZw4uZ72f+/3ws6jHGqly1m+HAnTZvXYWFjYPfBoEMSkTlw/OHjnHP1VdT2PIqLBbc4mxsdpq554fYGTg7HqFvSFHQYIoEIqQVD2VMSWERERERkEj233syOd38+6DDysuoqXDpDqCoKBl48GXRIIjJHjtx7jKrGFWy8OEzm8J7A4li0KB3Y3EFLjSSCDkFEZMaUBBYRERERyeGcI334cRL3/YLhnUeCDmdC1YtbGT1ygr7tu7Fw8JeKi8jcSg4lOPhYLRvWLiPTczKQGEbjCzeNkBpROwgRKV8L99VbRERERGQCiXt/ztCX3g1AXSjC5uc9nb2/PRVwVOMNPr7/zP9dxgswEhGZL4n+GKlL1hEqUhI4tHI9serlVLsRumMtVEUdTeFeOLobW3MelknidTzxWtN7KlOUecuRksCyUBlWcu0grMTiKQdKAouIiIiI5Bj99VeeuOOlaRjdTnXLehL9pdVuoen8jfRt2x10GCIyz6IjnRQtFRsKc/svhrJ3egGoro+y5rynsv+XfUA1z3zp1VQffoDQkhXUxhdwT2AlgUWkjCkJLCIiIiKSK3N2z0s33MfWp65nx02Gl3YAhCJP/D8IdetWKQEssgCFoiEyJw4XbTzv2AEaF13GUO8Tb3IlRtLsf7gve8+4/RfDRKsvILXTI1rdX7S5y01qVD2BRaR8qXGYiIiIiMgYo7/9BpnOg+O2W8fDrH9GGwDnPLWNS5+T4NKXBFdTMdJ+jKYt6wObX0SCUd1YU9wBnWPVpvopD0slvLM+LkRqByELmZXYPymcKoFFRERERIBM9zEG//fvSLfvnPCYZm8vDStWsaRqH+5EB27Nk4D0hMcXonb1MqrbFuEAPIeXTDK05xB446uNw3U1WDhCZlQJCZGFZsmmFjhW3DFN+ZRpURJYRMqZksAiIiIiIkC6Y8+kCWAA19vBpmUncL1+4vd4ey0Qm/GcVhWh4dy1eOkMQ3sPM9LRddb+aEsjjetX0b9tF+C3gIh39dBw7lr6duwlOTQy47lFpNw41jx5NbUnHij6yKeOlVa/81KVGlE7CBEpX0oCi4iIiMiC55xj+Fsfnd7Bnp8AtkWrOXVb74znbLpwE6mRGAOPj289cVqqf4ihg8dovmwr5qB3+26qWpsY7eye8bwiUl6i9VWcc2UbVYOHyRy7d07mGOye+ZtZC4l6AstCFtIlA2VPSWARERERWfAyJw7hDRaWWE3WrQP6p3WsA1ouOY+Rg8cIVUeoWbaEoUPHyIxMnXhJDQydtQBcsm+woDhFpHyFIiHOPT9N5sC9ZOZqknCYdDK4RS7LSVLtIESkjGlhOBERERFZUNLH9pM+vh8A53l4IwMMf+sjkCmst29f1/TrKVou3ULfI3uJtDZBOEL/YwemlQAWkYWtZV0rmc7DczqHt/ZSvIySwNORViWwiJQxVQKLiIiIyIKSeOBGRm/4HKElq3CjQ4QWLSfTsbewQaLVnNjZN+3DvaSfYB490lnYPCKyoA11DtG2vAaXmJsK1FDzIu66Swng6VIlsCxUBoQorXYQpRVNeVAlsIiIiIgsKLUvuBarb8brPoYbHSw8AQywdDOZ+BQXZ4dC1G9cQ83KNkaPdU1+rIhIHqmRJKHWtjkZO7R0FXcf2MBInxaFm66UksAiUsaUBBYRERGRBSVU10R4+fpZjTEwOnVSpumCcxk60MHo8W5SA0Ozmk9EFqZFm5aQOXG06ONatIoHD6xmsEtJzUJoYTgRKWdKAouIiIjIglN18TNndX7X3pFJ91c3V1PTqAsVRWR2WpZXz8m4idWX03108tcxGU+VwLKQhUrsJoXT101EREREFpyqC58285NDEYY7hyc9pHZRDQ0NozOfQ0QWvFAkRFX37qKPa1XVPHRfqujjLgRKAotIOVMSWEREREQWnOFvfHDmJ7sMa65eOukhredUM9oTm/kcIrLgLTp3Md5Qf9HHtbbVDHWrrcFMpEYTOKeF9ESkPEWCDkBEREREZL7VPOP3GG7fObOTnWNJ03HSly6nc3sPABe/tJGwN0o6VE90+BCu/3EiS2fXckJEFrbe/T0setpVhFODZA4XsSLY1KpmppznSMdTRGurgg5FZN4Zeu0od0oCi4iIiMiC4+Kz7IV5Yg8rGnsYXL6RkRMjRHp34Ub6iQCna8QaRx8hXH0OmURmtuGKyALkpT323tYJwPJLnkRL+gDeQG/AUUlqJK4ksIiUJbWDEBEREZEFJ3OqY9ZjuKFu1lxSS7gmjBsdyLO/l7olNbOeR0TkxCMn2Le/mZFlTya08ZJZjeVC0SJFtTCpL7CIlCtVAouIiIjIgmOR4iRB6oZ2sPLSS2A0T4/IqhqGjg2DLp8UkSLIJNIce+g4AMsuupJF1SfJnDha8Dij4VZgsMjRLRypUfVTloXHzAiVWCsZM3vi8iuZFlUCi4iIiMiC4w31FWUcN9xLW8NhCI2vrbCmpSgBLCJz4eSjJ9n1oCO8akPB53YeVxpgNlQJLCLlSpXAIiIiIrLgpI8Wb5El13Uw/45kDGgu2jwiImczvNqWgs8KhYsfSTkLhSBaG6GqJkS0Oky0OkS0KkSkyohGjUiVEYlAJGKEw46oNxx0yCIiM6IksIiIiIgsON5gz5zP4QZPcd7zL2TfbT14KV2vKCJzofCrDRYvmYMwZs1RXRsmWuMnYyM1YaJRI1oVIhyFSDR0JgkbiUI4DOGQIxx2hEKOsHmEzBGyDCE8jAwhl8ZcBjKp7Mcklk7jMklIpyCVxKWS4E2yeGcGiJ29qTb9vDn9SoiUKl1DUP6UBBYRERGRBcWlErj4yLzM1XDyVi67tJ700ot55MZh9a4TkaJyM0jLNJ16mHDVRjLJIr8gGVz9wmaqIh7RUIoIcQwwPEKJQVy4CnNeNhmbxKWT2URsAlLJicf1gET2NkMu5+NsuNj8/PwQESk2JYFFREREZEGJ/fabkJrHhX0SI0SO3kPr+mvoO6jFmESkmAqvBHaxUcJhI1Psd6UcLO69D5eI5duV92M58uLjPz8RkXKgJLCIiIiILAjx+35B4sFfk3z0jkDmH+4cDWReEalcxx4fYvmWq4n27sPrn16bG6uuwbk5WrSyqhryJIEriYvrtVwWJjMtdlvulAQWERERkQUh8cCvSG6/JbD5o/VRUrF0YPOLSOUZ6RrmQNcwoUgDK6/YRENNDEvFIBkjc7ID3BM1t6GmFtzSDRzfnySdnptaXIvWlHWV73R4agchImVKSWARERERWRAa/+yfid3ybUZ/8qlgAnCVnhoRkaB4aY+O+46dtS1ctZbllyyjoT4DOA7vGCb2+CnCzc24tFeUeZ/58gbqXQ9g4DJ4XX1FGbeUqRJYRMqVksAiIiIisiCE6hqpuerFjP700/OekLXGxYz2xJhJ/04RkZnIJDMce+D4uO2h5Svh6PjtM1HvnYKO3UUZq1yoJ7AsRAYzWIZybuk3qsKV2vdQRERERKToXCZN7JZv0feR/xNIRa5LjLLkvNZ5n1dEJFfMVRdtrEykoWhjlQundhAiUqZUCSwiIiIiFW/oa+8ncfdPgwsgGWNt4wOELriKrscq/3JpESldo/3Fq2RNumpqizZaefDUDkIWKC0MV/5UCSwiIiIiFa/26a+F6oBTFck4i1aFg41BRBY85xXvagjPLbykkIspCSwi5UmVwCIiIiJSsbyBbhKP3oHXe4KKX7JeRGQaQpHivRnluYVXV+YpCSwiZUpJYBERERGpWPF7fsbID/8t6DDOSIwuvKo5ESktoUjxEreet/Be01xCSWBZmBbeWz6VR0lgEREREalY0fOfEnQIZwlgTToRkbM0VydovmoVlk6Trqrn0L0HCzjbUddcRX1zlLrGMLXRxJzFWapUCSwi5UpJYBERERGpSLED+4nf86ugwzjL4tT9hJ95FQduPxV0KCKyQKUP7D/z/3Bb27TPu+hpLawZvh2c98TG9iIGViZcbBTnnBbJEpGyo2puEREREak4XjzOkQ+8l9ieXbhS+pU3PkxL3y20rGsKOhIRETKnTrHqsnXTOjad5uwE8ELlPFxq4VVAy8JmQMhK66a3YQpXQr8Ri4iIiIgUT2Z0lN4HDtLvXYoLldYFcGvOD6GV6kSkFNSm+6d1XDKh16zTnFpCiEgZUhJYRERERCpO74034I36f6Qnj3eSaHs6XrQ24KieUNVxJ1e8MM2yC1uDDkVEFrhU+2E2PGX9JEc4ojUhQiq7O0N9gUWkHJVWSYSIiIiISBF4sfhZ96uSHYRSsYCimUDnbpavbeHkzqADEZGFzAy8fY8RrW/lGc81aocO4dJJSCdxqSSkkv6BmWDjLCUuriSwLDymBgxlT0lgEREREakY8cOHwXmE6+vP2p6qXkU1+wKKamKeiwYdgogIJFMs27qSarcXr/dE0NGUPE9JYBEpQ0oCi4iIiEjFGNn+MCe+9AXwzl68aORoH1URv+JNRETGq3Ux8FTuOx3qCSwi5Ug9gUVERGRBcZk0ma79uFR86oOl7NSetwWXTOLS6bO2p0524bVtDSiqiUWsxFpUiMiClWo/iDklgafDi48EHYLIvAtZad2kcKoEFhERkQXBGzhB4tf/TmrHLyA+ROSyV1L3R58OOiwpApfJ0P3zGxjZ+RiJA7snPM6LthKex7imI9x/EAuvxmVc0KGISJlo21rHovUQrnKEIo5QyIE5zCAU9giFPCzkETIPswwW8jAymHmESGGkMJKYS2JeArw4VC1itP8chh88COr7OSVVAotIOVISWERERCqac470tp8Q//lHcEOnzmxP77wJl4pj0ZoAo5NiGLzvfo595rMA1G46l5oLLiG2ayeWc1lzKHP2H+3e4vPAS0O4lky0lVC6F5wj3P34vMXuhnpZd/WlHLrr1NQHi4gA5zwpRtPoDU9sGNv9Jj3u8Cm5xZfTfWcGL3YIJYCnx4vrKg4RKT9KAouIiEhFi33rbaS3/3z8jlSMxC/+hchlryKy9rL5D0yKJtHZeeb/sX37AahauQKG+vFGh584Lt1KaOmzwQwv6TH06L5s7+BRoAeA6jWrqW57NjVD27B4/7zE39CcnJd5RETOEoqSrH8Ofb85AroYoSAupnYQsvDoLaLyp57AIiIiUtEyB+6dcF/yd19h9NOvJPbtd+ANdc9jVFJMqa6ucduSxzupWr/xrG1DO3Yz8PBuBh7axdCje8YtHgeQONrB4LbdJFvm742B2GjVvM0lIhWgGAnb5nMZOPUU+m5TAngmXEKVwCKVwsxWm9mXzey4mSXMrN3M/tPMWmcx5hvMzGVvbypmvLOhSmARERGpKJkj2/G624lc/BK8zl1ntYCYSOrh60k9fjMN/3g7oYbF8xClFIPzPOLt7Yzsyt8H2EvMvMJ2pL2bqmqweSh78bQOkywwLRtrOO+ZgxiOVKqWVCJKMhYmMRwiPuCI9WYY7UmRHEpTubVnjlDECNeEidSEidQY4WojUhVi0TpYueR2zEtCJgmhKK56CZlwMxnXRJQumGkOMhQh3fRsem4/Dmm1oZkpTz2BRSqCmW0E7gaWAj8FdgNXAe8AXmRm1zjnegoccw3waWAYaChuxLOjJLCIiIhUjMSdXyLx0w8CYL/+JK6/c4ozxogPkn70l1Q95Y/nKDoplvTQEO0f+ggjjz+OS06c6E0cO0bNuZtJ7N9b8Byp7m7cxedhvXtmE+rEahroTF1JyzI4fu/A3MwhUqLOf3YX1f13AlB7emN19rYY2JDdFq6CSD0uUguhGlyoBmfVeFTjUYVzEZwL4bkI6XSUTCpCJh0ikwrhPIhWe2QyhpcOkUlBJm1kkpBJONJJyCQd6YQjnfBIj3r+x1gal8mfeLawo35pNQ3LotQtgppmj5q6JJGqBKFQmpBlMNKYpTCX8v/vJcGlMJcEL4n5AUAmDm781Qhn5CR5LTlAhFn+Ad96AQP7FhF/oGM2owjg4koCy8JiBqH5eGe8AEUK57P4CeC3O+fOrBhtZv8O/C3wUeCvph+TGfAV/D5jPwbeVZQoi0RJYBEREakIqUd/ReJnHzpz3/UcKXiMzJHtsACTwL0/+QHxQ/tZ9qa3Em5sCjqcKY089hjD27dPeVxmeASrrp3yuIkkoyupYW6SwIkll3P8xh6Oz8noIqXJwo7zXlJP9eBN0zsh41fCWqLPPz+7OTzVedEx/w9nb9UFBQqRaghV48LVEKqCTAyL94xP3CaytzIweLiN+OGTQYdREVQJLFL+zGwD8AKgHfhMzu4PAG8G3mBm73TOTbcR+NuB5wDPyn4sKUoCi4iISFlzsQGS936bxE3/AW52jQ3TB+/FJWNY1cwTh+Vm8Pab6fpi9vfeTIaV73pvsAFNg8tMUj2Xe2xq5i0hUsMpamZ89uQ6HkvP0cgipevCV9eyhB/A9J/CwXAZSI0CoxXVjCJUNWX6XKZJlcAiFeF0kvYm585+h885N2Rmd+Enia8Gbp5qMDPbCnwM+C/n3B1mpiSwiIiISDF4I72kHr6e5C2fnVbf3+lwPUcY/uhTCK+5lNDKrUS2PIvwuiuxUOX94Zw8cZy+n/6Ivl9cf2bb4G2/ZeSRh2l50ctpfPJTqV63EYuU3q+LLp2a/sF5Fn+bruTJHtzSNmy0uH0z3erL6d8xVNQxRUqdhR2tLQehP+hIFq6alY6Rx4KOojKoElgWolDQAeS3xcweyrfDOXfFFOeel/04Ud+wffhJ4M1MkQQ2swjwDeAI8J4p5g1M6f1WLyIiIjKJzIk9JG/9X1KP3ADp4l+D60Z6Se++BXbfQvKWz2B1rVjrKkJLz6X6OW8hvGJL0eecT845Ot7/94xseyDv/kxfLz3f+Rq9P/g2a/7536k7/6J5jnBqqZ7pr88xixww6f5+3KraolYCWuMS9m6rAgpIZItUgPNeWke4f1vQYSxokZGHoWoNJHUlwmy5+HSvDBeREtac/TjR4gynt7dMY6z3A5cBT3POzXTpzjmnJLCIiIiUJOd5uN4jhJasO7Mttf1nxL73LkjF5y+O0T7caB/esZ1k9t5J9Kl/TLhtA9HLXz1vMRRTbNfOCRPAY4Wbmgg3NU95XBBS3dNPAscPtVO1aDGZ3oIWdj4jUbWRWgrvLz2R46MXMtQ5s1hEyll1XQaUewxWop/Wpz6ZvtuK95q2UHnxks3xiCw0u6dR8TtTp+sAJu03Z2ZX4Vf//ptz7p45iqUolAQWERGRkuI8j+QtnyH5u6/ghrup/fOvYTUNpB78Ian7vhNsbCM9JH/zX2BGatetRC96EeH1VwGOUGNboLFNV/pU1/SO6+3h0FuuZdO3f0q4oXGOo5o+53kMb39k+sen00RXrJ5xEtiKeO2jNSzi+N3dUFFdRkWmJxUP66/PElA1ejvh5vPJDCiJORtO7SBkAbLK+/XldKXvRFUPTTnHjTOmDcRe4H3FC21u6MewiIiIlAxvpJfYt99BZs/tZ7bFvvSnAUY0AedIb/sJ6W0/ASC0/Dyil7/KX5gukyb65D8g1Lw80BBzJdoPMnDrbxi87TfTP8nzSPd0l1QS+PgXvkhs376CzokfOz7j+dKxDMkVz8Bcmkjn3bP6A8hrWYtKIWWhqm2Kg/JmwcvEWfTkGk7dNIrekJo5Lz6Ccw6rwKyYyAKyJ/tx8wT7N2U/TtQzGKBhzPnxCV4TvmBmX8BfMO5vCg2ymOYkCWxmbwC+nr37F865L07zvI8DV+J/AZcAMeAw8BPgv51zPTnHbwJeA7wQ/5uzDOgD7gX+0zl366w/GREREZkXXs9hRj77+7iBzqBDKZh3Yg+JGz9+5r5LjFDz8n8ad5zzPCw0v8tq9P3yZwzechPxQ/tx8cLbaJz49CdZ+hdvpfa88+cgusKcuv4nnPrhjwo+r2bVSuL9M1vcbeTxfZzu/Nh02bOp6boVwhG8tosZ7qvGJZI0Lo0TPjX1akvdPS1A94ziECl3yVhV0CFIVqjnblqe8UL671BbiBnLZHCpBFZVE3QkIjJzp3OGLzCzkHPuzEoSZtYIXIOfl7x3kjESwJcm2Hc5fp/g3+EnnANvFVH0JLCZrQE+DQzjZ8QL8bfAw8BvgC6gHrgauA54s5ld7Zw7Oub4DwP/B3gcuBHoxV/d7xXAK8zsHc65T838sxEREZH54DyP2HffWZYJ4HySd3wel4pR88rrsHCE5IM/JL39BtLtD1D9rL+i6tl/hYWjcxqDS6UYeeRhTn7m32c1Tmz3Y/Re/31W/eN1xQlshjIjIxz7n/+d0bne0IRX8RVkcNtuYssuwRuOkznyxGO1um0LtUyeBPbWXMGRX5xClXeyMDmamrugP+g45LTqyEEgjF6TZq7739/Nkrd/mFBdoWkPkfJjQKjEXi5mG45z7oCZ3QS8AHgrfi7ztA/i5yQ/55wbATCzKLARSDnnDmTHiAFvyhuf2XX4SeCvTbc4dq4VNQlsft3zV4Ae4MfAuwocosk5N65Excw+it9k+d3AW8bs+hXwcefctpzjn4mfSP6Emf3AOVcZf1GKiIhUqMzBe8kcuj/oMIrHOVJ3f53M4YeJXvYqEjd+DDy/DUDiV5/AjfZT84ritQ3z4nEsGsHC/q92qe4ujvzDO0idLM6vQEO/u43OT32CpW/8S8KNTVOfMAfC9fXUrF9H/OChgs+16uJVaqVOju+pnOgdpnaK8xKZBiBZtDhEyofjqms9qvp/F3QgMtbAPpqf8kIG7lE18EzFt93Fiff+OW1//0miy9cEHY6IzMxbgLuBT5nZc4FdwJOBZ+O3gRh7ad+q7P7DwLr5DbM4il0J/HbgOcCzsh8Lki8BnPV9/CTwprEbnXNfnWCc283sNuD5wFOBwq8bFBERkXmT2v6zoEOYE96xnSSO7Ry3PXnnF4le9grCay6Z9RzO8zj8zr8mMzpKy4tfjkWi9P7w22QGi1P9etrATb9g6He30XD10wjV1lK1YhWLXvW6os4xmfTgIKme3oLPi7a1ET+wb05r3VKnekhd+BSinWdf5WcNrSRaLqTqxH3Udt3NmquextH71Q5CFpaalij1wz8NOgzJo7rhOP6i9yVW3ldG0scOcfI9b2TJ3/4zNRddFXQ4IlKgbDXwlcCHgBcBLwE6gU8BH3TOFf7LZwkrWhLYzLYCH8NvdHyHmRWcBJ7Ey7MfdxRwTir7UatviIiIlCiv9yjxX37izAJrC4ZzxH70T9S//WdT9ghOdZ9i6K7baHrW84k0t4zb3/fTH5I47FfHdn99bq8080ZHGLzl1/4dM6pWrqLhqqfO6ZwAic5ODv7T+8gMFJ7YTvX0ULNuPZG6WhKH9s2oL/JUvFiMxFCE3AYfqdYtPPqLfmpaLuaCJ4/SFurlaN4RKpe1LcO1tmFdx3D9fWfva11Mpy1j8dIaorsfDihCmWupWCboEGQC1vsoTVe/kMF7VQ08G97IIF3//A5a//RvaXjh67RYnFSsSn1kZ9vOvnEax7VTwJfBOXcdfnvbklGUJLCZRYBvAEfwK3ZnO9678PsJN+MvFPc0/ATwx6Z5/lrgufjrz94xzXMemmDXlumcLyIiItPnPI/Ejf9C8s6vQGZhXiLvdewgte0nVF3xmgmP6frq5+j7+Y9xiQRdX/gMtedfSPPzX0rL818MQP9Nv6DrS5+dr5DP5hyp7icWW+s62UtzSwPV1VV84kNfoam5gde/8SU0NtXPaPj+u+5m5LHHSBztYHj7dryZJm8970wLidpzN5I51Yk3PDSzsSYRO3Kc2q1XED75xK+UsXgtMEy8P8GO39VQv6QGKP7cpcrqG9h3spqa0SRrav0/O2zlGryuTiydJrXsHE7ddYQVrW24gGOVuVO/VAvClbLa0H2MLNpEpnc46FDKm5eh7yufJHXkAK1/9i4sMrd9/0VEZqJYlcDvx292/LRsU+TZehewbMz9XwHXOuemXNbZzKqBbwHVwN875/qmOEVERETmmRs+RfLe7yzYBPBpiZ99mOjFL8Gifs9a59xZFUT9N/4Ml0icuR97fCexx3eS6jpB/WVXcuprX5j3mMfq/tmPuf5Qmocf2M0vrr+Tt77rD9i3+wi/+pnf+/P6797MT275L2pqq6c1nnMOLxbj5He+S9d3v1f0eGP7DxBtayNU7/BGipvw8BIJUjQRzt63pRvYf9sTrR9SIyn6R1L5T64wVl9P76JNjPTFiPV1s6ktRmzROUSXrGLvwydpWraRVUuN44eHWXnhKrz9OyAawdK6gK/yOM59RtpfO11KU6KfxVc6un5j4PR2zGwN33w9qePtLPm7jxFuag06HBGRs8w6CWxmV+FX//6bc+6eqY6fDufc8uzYy/B7+n4M2GZmL3POTXitmJmF8SuSrwG+B3yygDmvmGDMh4DLpx+9iIiITCZ98D5SD1+PVdXi4oNBhxMoN9JD/Pr3QU0LJ28+ROLwYeouvYJwQwMWrcIbHcl7Xs93vkbPd742z9GO9+hIFR/8x8+duf/pf/32Wft37TzI0y/+U971vmv5P3/yorxjJLu7OfSBD2KhEPH29plX/E5T6tQpGi68gPiuQrqMTa1q2VKq+/1fU62hlT072/DSo0Wdo9TZ2g10xeo5ses4HBnT+KKphWgow9CokY4l6W3vprfd37Vk1Tq8rZcSS4VpOJBzYd7G80hF69Uqooxtfkk9zYkfBB2GTMF6HmTx855Dz2+0nnoxJHZt48R7rqXt/32SqrWbpj5BpEyEKrUfxAIyqyTwmDYQe4HiLXGd5Zw7CVxvZg9n5/g6cOEEsYSBbwKvw19I7o+d01uZIiIipSTTuZvYN96CG5ry4p4FI3X/90g3nk/8gJ/8HHnw3oAjmr6H441THtN1opef/uBWXvOHzyMaPftXz0wySft1HyS2d+9chZjfHPwVkx4cwi1ajFuyniP7Gxk60V/0OUpaNMrR7gh9R46P27V3X5yNF9ZRVR0et+/Afe0AhKJhzrvqMkbj0Dx4hHjbOvbecxhcN+c+5QpqDj6iSuEytGTFKSjuGpUyRyJ9t1F9zlNJHOkJOpSKkDnVycn3vYnF//eD1D3pWUGHIyICzL4SuAHYnP1/fIIG6F8wsy/gLxj3NzOZxDl32MweBy41syXOubOWVc4mo7+NnwD+NvAnzjmtQCAiIlIiUrtuIb37NlL3fQfSui44V2j0EETWQJklubYdmV52567btrFl6cu56pqLGB4a5fXXvoTqmiq++7Ub+cu6HhbPcZxj1W46l9jORyj2uj3e8DCj4QvZe9NJXKa/uIMHwEWrCK1ZS6qqgYwL4TmoPb4X8vRTtnPW034ixOAEyaP4wCiP3TV5VbSXyrDrrjGLU+1rP/Pf/fe0s+KC81l84lFM3YPLSl93G8vVGrU8OI/mLWm6tEZc0bhEjO5P/j3Nv/+XNL3mz7RgnIgEbrZJ4ATwpQn2XY7fJ/h3wB5gtq0iVmY/npXcNbMq/MrfV+JXCr/ROefNci4REREpAudlSD/6S2LffBvox/OEQpkYNWvXED9wKOhQps052LNv+pcOp9MZ7r59OwA7Hn6i8nfFsy/gjcxf5Vm4pqboCeDTkq4alyn/JKVzcKplMycf6AR6z2w/9ymbqd2bbdmw8TyOdjq8dIbhRwfx0nP7/O587Bht59TjitzLWebWvt/EWf6yCHjl9QbXQmU991K79TnEdqktRDENfP9zpI4eZNFfv49QdU3Q4YjMiAGhoIPIobdVCjerJHB2Ebg35dtnZtfhJ4G/5pz74pjtUWAjkHLOHRizfQvQ75w7kTNOCPgwsBS4e+xCb9lF4H4MvAQ/Gf1mJYBFRESC53W3k7zrq6S2/1ytH6apZkmU+IGpjysV6VCUVGr2iZ0b79rDa57WQvNo/+yDmobMQO/UBxWoasNmEtbI0Xs7ij52EEItrZzcPT4JdGz3KTYtXkxq2TnsvrcDl5nnX7tDpfbnp0wlPeoRb3waNQO3BR2KTFPTsv0kOpbgDRVjvXc5bfSe35A+eZQl7/oEkcXLgg5HRBaoWS8MNwOrgF3AYWDdmO0vAj5hZncAB4AeYBnwTGADcAL4i5yx/hc/AdwNHAPen+cSi9ucc7cV9TMQERGRSaW2/ZTknV8OOoyyEnXllUA82bAUmH2CP5lMc1ftal4yD0ngyKJWkh1Hi1sJHArRsTdGcrD4yeXAtC2Dg+O/t7G+EXb0AfsDul588VIYWtiLSZabquYIEdP3rKwMHaHtyfX071tC4nD3pIeGaqN4qQzM8ZUAlSJxYDcdn/gILX/0NlouOi/ocERkAQoiCTyR3wKfB64BLgFagBH8BeG+AXzKOZf72/X67MclwPsnGfu2YgYqIiIi4/V876vYwAEiXbdgqZGgwyk7kcHHCNVfiDdSHl+7x8NtFCMJDHD/0SFeUleUoSZVvXIFiYHJkxqFqlp3LskHyzsB7BzYeRfSH4+SjKfoeaS4X6NiaT/uWLd0Oa7rxNQHj+Ecc9YCRPJbfkkdm550iMjgduhXK4iy07eLlrYQ7rwrGe1uZnjHMUj7rW6sOkLT5SupqT8KfTugfiW9e9eSWmiLYRbAq2kmvuhSeo7GGL31JPa7D3L+u9/Mypc+K+jQRAqin6Xlb86SwM6564Dr8mxvJ0/rDufcTuCtBc7xrBkFJyIiIkU3cOP1ZPp7qbvwfOozd5dc37BSZzgat65m4ME9QYcyJefg9sPFu1R42452Ol+4ghUDhSX3CpZKFm0oi0aJbLyAvq5U0cYMRChE/6qL6bjnaNCRTGmws5998XrObWrMu0BdPm7zBezZ3svGy1cQ3f3wHEcoAI1rqtm65afQX7znmwTAeVjP/dQb1F9Zh2vchLkkDB+E5KNw+ts7cpzWCxfTdRK0buMTnIP0iksZiLfS+9hR3O7DT+xLpXnsQ59leP8RNr3tj7GwfmMSkflRSpXAIiIiUs6y/TpHd+4mtXQrzasHCA+VfkKzlNSO3s5Q4ya8oekluILywKILePCOfUUd86exVp63pIY0YWq9JLFQFZu6DzBY30rjSD+RWWYXqpYtI75vz6yqWEK1tYTXbgagvztN393l1cIjn+H1l9Fxf3vQYUxbrG+E9PnnEtm9beqDGxrZt3OAVCyJKTs1b9ZeZZBRAriipEax3kcm3G19j1K7RQvKAXgNyxhpPJ/eA/3E7+0D+ic89vC3b2D4UAcXfeRviDbMw+UwIrLgKQksIiIiRWHh8Jn/p7pO0t0bpeXy51HV+1tdPjZNIW+U+nNXMbRtd9ChTOpwqrroY/7yjsf5Zc62mtoq4rFe1q1bxr+sGaIuNfPq46qli4l3H59VjJHV6zl497FZjVFKrLmVQw8cnvrAErPnvg7aNl1IbUMVjZ27IDb+cWFNzfQ2rSdx2K9wDikJPG/qm4agtN/HkjlQv8YjtivoKILhQmGSy65gYLCWvseOgDs07XN77tnO/X/2Hi795D9Qf86KOYxSZJYMQqX2+3ypxVMGdN2BiIiIFEWoNqeKJZ2i//59DNlz8WraggmqzDgLl8XvsxdG5mehp3jMryZsbz/JR7oXc3DR2hmNU7P2HGK7Hpt1PC5S/OR3oFpa/WuWy4yX9ji5q5P2Bw7T1bARq284s8854Nzz2dvbSMcjT7S4SGTCeUaSuRAOqwp4IQr33EbTk88JOox5lWlezcCy53CoZyvt93TR99jhGb2mjh4+zv1/9h567tsxB1GKiDxBSWAREREpCgvnv8Aotm8/Pe3LSbVePc8RlQ8v0kSy5Un0p57FYIlXAQNsHJz/6tHHdh3lXb8+wv9Et5IuIFUeqqnBJYYxN/PV66vWbiC85Qr6TiRmPEZJio8GHcGsndzdyb6hRbjNF+KddzFdbRfy6H0niQ+cXR188MEj2OLFAUW5cLRdUEf10D1BhyEBqbU7/URwObybOQtetJ6B5c/lwM5qTtx3kNTA8KzHTA+N8PDffJT2H/4WV4ZvzolIeVASWERERIpjkmvEvKFBeu/vZKT+RbhQhVVTFkG64UK67+0htn/6l5AGqcpL0dBQO+/zZjIev7rzcX7ecuG0z6nbuJ7MqVMznrNq7QYO7Rzh8N2H6T/QNeNxSpHX2xt0CEUR6xth5z2dPHb3Mbr25O9J6qU9emvX4Co9OxWwc6/ugUyFvVki05capTb9a5Y9K07tluVBR1N0zkF85VM43L2RE/cewGUyxZ3Acxy48X5u/3+fJzUSL+7YIrNkJXqTwigJLCIiIkVhkeiUxwxv30XfwGVkGs+bh4jKRygzEHQIBWtpaZj6oDnyjd/s5OPpjRxYvG7S42o3byK2a+eM56lafy5dp8K4VJH/0C8RoZoaFlLD7o5HjhJaM7OWIjK11VfXUzNwa9BhSCkYPETT0j1QQb2404s2cqLqaRy+u5Nk39y1RIoNpmj/5QPc8AcfZfDwyTmbR0QWJiWBRUREpCgsOnUSGCB1opPuHWkSrc8rx3akc8KFqoIOoWCLW4JbyTyT8bj7wf18/KF+Dk3QJ9giEdxA74xznNEtl3DwoX6GO/pmEWnpsiVttCeXlmVP4Jlad+VavCPtQYdRkba+so5Nq79PJSX9ZJZGjoOVf7rBRWrob3sOB7Z7DO7rmNO5IqtX44UjOAcDBzv5xR/+Myce3Dunc4rIwlL+r8oiIiJSEqZTCXxGOk3//fsYbXjR3AVURkLp2fcTnG8rWue/HUSukyf6+Mdbj/OftplfL76QsfW69Vu3kO6eefuGZDp/j+tyYqvOIbb5Cqx1MQ47K9/rLV7B4PHKTHBPpKEquZAKn+dNVVOYZU23BR2GlJr65RXxJpPXuJyTDxwEb+4/l3RjG92PtrP0ik2Ea6IkBka454PfYM8P7pjzuUWmI2SldZPCKQksIiIiRTHdSuCxhrfvIrnoaXMQTXmxRP4+pqVsS2tp/BoZjyW59Z49fPYXjzJS2wRAqLaW5JGDMx4zsnQZfUfKO0HqHJxMNbH/nnZ27IedPYsY3nD5mf3mpQKMLhgxT/3I50LLumosNvO+21KZ0lXT791e0jLJeZkmsmIFHQ+3A3Dyof2Ea2to3rSG+MAod33gG9z9wW+SSabnJRYRqVyl8du7iIiIlL2CKoHHGHi0F692ZZGjKS/phouDDqFgF7ieoEM4Y9nyVj75sg00xfw+jXWbNuIND81orOg56zhy0Bg9MXc9H+eDt/VSTu46+82F3mMDkH2zZpTg2nkEJZMu/6rEUtN2fi0brqyMBQaliFrPp/eOCllIMz0PCx1WVdGXasSlvTOb4r3D9O3tINbt/yza/b3b+eW1n2T0VP/cxyMiFUtJYBERESmOGVQCA3ijI/QeWUq66fwiB1Q+wukurLq8qhRXDXbQ1FwfdBgALGltYFP3IQAiLS3E9+2a8Vjpk50sOncpANHGGlo2tBUlxvnkIhEO7uwet32ws5+9I8s44NZy4N72+Q8sYLXVDqd+EEWz6qp6LrzoZ9QO3hx0KFJCvCXX0HVHBJesjKsNbI6TwM7BaNu59B+aehG4ru0H+Nnvf5Tuxw7PaUwiEwmV2E0Kp6+biIiIFIWFwjM+N9Pfx0B7LV60qYgRlT6vZjmD0Rdx8kEPl5iHaqMiCuN41uX5F2WbbwfaT5LGT+7VrF4ByZlfvusSCWpO7GD91igr20ZY1DI/lwIXk63dSHwglndfYijGaG/59aAuhl13HWFvfCW2flPQoZS9SJ2x6fx75u1SeSkPqaYXcurXPRWTAAawdHxuxzeoqp3+m+ijJ/v5xRv+lYO/fGAOoxKRSlX+K16IiIhISbCqqlmdn+7pZmT51TS4mxbM4k2DyUsYfbx8V/5+akucnwUdBH5f4B1tW2htaWRz576ijJk66bdSCK1YCwwUZcz54kVqgg6hZCWH45yKLWaxGVYBi1bNp0idcfFrQtTU9BFmFOs/GnRIUmJGDowAFfYDPJP2V6Caw4XhqroPE6mrJj06vTeDM/Ekt73z8/TtO8blb3sFFlJtn4hMj14tREREpCgsPPv3lkcf20Nq0TOLEE15qKov7z+WL+jfT2NTafSW/fajvZzT3UHa1WE1tTMep+rcrfRGNlC16QKiq9Zw5METRYxyfkR6OwlHZ16ZX+k6HzvG3vhK3OaLgg6lrCy7vIWa2J1U999JpP+hoMOREhRdMvPX3lJlBuHq2b3JPRWvv5/VF60o+LxH/vcX3PI3/0tqZG6rlUXAf3vHrMRuQX9RypCSwCIiIlIUFinOBUb9O06SqV1TlLFKWffANfQ/tD/oMGalyktzzSXnBB0GAH991Uq8U90ku07B0nVQNbMey91djtGuQQ7ed5L2x+NkEoWtxu6cfwuSd6qL1RevCjaIEpccjjOcnlkf84XqaPc57O5/TdBhSAkL11Tmm0+hApLAjavq2ficNi56WSOXvizC5S8Y5sKXNk95XvrxHbRsWFZwbId/u40b/vjjDB0b3wdeRCSX2kGIiIhIUVi0OJUyLh5jaHgjzaGjFd0WIjM8Ap439YElbkNz8H/0n79mEWuP7+d07nV030GaL9pEcu/OgseKjunN6DIFZnM3X0BHRxLnYG3TEKQzeP29WCZTcByz1VhdWPJ6ITq+6yRtGy6hviFCzWgPrvskxPL3Uhbo7Xdcfv79QYchJSxUVZktVsJVESbrclzTWsWqS5toquvBOu+BPgd9T+yPrmyYcg7D0Vodp9+soHcSHUbfng5u+LP/5MoPXsumq8+d9rkisvAoCSwiIiJFUaxKYIDEwUMkr3oe1X2/LdqYpSTVfAXewZGgwyiKZdGJ/zSujoZJpz0yc1ga+yfP2syrMifwYmf3UkyOpLDaOlxstKDxItUzT2rv3z1ErM//vu7IbrNQK0s2LmVF3TCu40hB41nrIqhrwDt2FKOwr2HoRAe66G9yyeE4x3Z0nLnfuvYc1tQfw40szIXzJmNL2hjpG6Xe2oMORUpYpKoyfq7lClWNv2rg3OctoqXxFOYlCHmnSHU8AP35zzeXAab+2ZLuOMLqKy+j44GD04urbRH3HMiwZHULfXsGueXVn+UN//o6nvGGp0zrfJFChSq4OGOhUBJYREREiuP/s3ff4W1k18H/v3cGHey9iJRISlTvK62k7c1et9117yWxHdtJnDhOc5I3iVOcX/y+6c1xnMSxkzhx4t53vb1IuyqrLpESSbH3gt5n7u8PSKIkdhIgAPJ+nocPRWAwc1gEYM6ce04Kk8AA3pOdlG5rQg+0p3S/2UCKlZOc2xrsYs+GSuy6xpGWAd579wburXFREvEhBwYQ1dX8yGvj7kobL48n+KefttBQVUhFkZOT7SOEY4uvWP3Dt+xkS89FzGmSzOGOTjSnA3fzTgh6SAwPQDw25z61JQzYKaouvJ4EvkaakpHLQ3hcdjZt34y8fHHOCncpIbF5Dy2Hu0EGKapbT502CAH/nDFICcbm3fRc9gC+RX8vq9FE1yjmmmrqmh0IMzGv39VqIDdu5/zRQRr3W7GJuf8GldVLGz+Mvf4Q0e6xTIeSUprlxgSuZOubinCPPg5mIcQjyLJNQP/MO5hnEhhA62rBWVZGeHTu528ZjhCPwEDbyPXb/u1X/pvei/288w8fQ7dkfqWOoijZRSWBFUVRFEVJiVQMhruRjMfxDddS5O5ByLmTd7nE5jmGpegA8eHhTIeyZPlRP5870ES4u5/Etma0rk5ok9frVmVvL68D8MMDwAN7LUAQCKK9toa/6zJ5+oZqzLnoQpDntPIXj2yisO3CrNua4UgyKdrXNet2mjsPS+1aSMTo71h88qJcn2DYqmPEp7Z/iIeinH1lmOqtOygLXJkxoSslhDbsoeOlyZg9PeOE8grIK68lGohS0VCM3Qq24Diyp/Pm76VhPedeWljFsTLJ2zuO9+qf447NVcjh3BsMmGqdbQE0XeOhbV/IdChKtpMmhZsNhlfYU1BRvY3i6hKKK6M44l0wejx5R9gLgOacYyCenH/rJxkOU93spmM+SeBAiDUbG+htHbrp9if/6XkGLg3x8X/+EO6i7BjeqihKdlBJYEVRFEVRUkJYU/+2ItbXR3jP/bj8P0n5vjPJcK8j0TYx94Y5wmaTBINBtOCVBT3OHBjg523wi2+q50v9gh+fmEx8lhY4eNOetdQX2VnrAK+pEUpImrUwlrFRzLaLc8dVUQ7e2RPttuat9Jz1EO8ZmnW7+ZD9vbjLmvANeGbcZuB8H+P5hdRsbsZtiaH5J5AjQxCPI4Ug2LibK69MTVrHAhHGA8kJ8FdGJpMDGw7uxaoZSAT6xZMYjnxuakapLF6KVzfkqqLqQnpH/HjNTZTpJzIdjpLlxOgR9OLbMCZWTmuI2opLyL4zMMPLhNl9Aq2oAtMzMu39hrUYmH+/8VhrCxXbtzN8dvZsupRgsU5f7Xv+2Vae/cpLvOGXH5r3cRVlLmpxTO5T72wURVEURUkJYUnNYLhb+V+9iHX/bVgnjqdl/xlhxNGcRRj+2UbN5A5zpGdpjx8Y4MMCPvpAKRgm2KzIYAgZ6ICr7VlvnK0+35oqe55Gom/mKmNLWTkdrwyxwHa7Sxb1h7lytPP615qliNKGckxTMnZs9qrlW10+Mrmf5kN78Y2vrKr5TBqVJcSKC6iotKFdPLVqW0MUuU16peRM5z3c36SSwMrc8jaX4T2c+0ngvN3NWOQocqRt9g2NOJY1a4jNkAT2+fJYSBJYCHAFB9EsOmZi6soSrbYagPagnb5zM7ehcOXPUaGsKMqqs3Ia0imKoiiKklHpqAS+xnspgRRTB7PkKj3Sh+ZeOUs0Dc84mmvpJ5um14cZCGCOTyCj0bkfMAN7TRUAQp/9b0aU1aY8ASz0hb+9NhMmI5eHGGtfWnuQS4c7Gbw4S19KZUH6z/Ux2jbEhZd6aI3U4KnfxY3tp6WE2MY99OZtxNi0C1GzJnPBpoGUINY20X7RA8C6moVV+iurlKOUUIc301GkhG4BOdQKsbkHjMpZBqCWaOex5i3sPYwxMsKavWunxlTgoivm5KWzfvouzf6aUbOpakHHVBRl5VOVwIqiKIqipISwpC9Ja3gmMNdvQveeTdsxlptYQQNbhAB7eRnhzqVVBKeCrbICMdFLQeMa4t1ThwraGjZg2AtASAZbx1N+fH2GpblKbouHovSc7CGxdQdGwqSszEIkodNxuBOAiS5ACLYc2oUlHoF4BMJhKCjC7LiEmCVBlG2C6/fSd3GIRDiG8aoHgG0PltHg+GpmA1Oyn7sKb3cz8cHpK2JzjSnFvKvmZrsAKD0DrL19C21PjS7o+LLtHJU7NzPePoQZN8ivKaGk0KRiqJ0hZwmGf/aLpf/30b/j177582y+u3lBx1WU6QhAy7IVMVkWTk5QSWBFURRFUVIinUlgAEMvmOds7dygpbFyOhNsRXkLWOyaHtbSYuwOk4THID7NMDjNnUdPS4h4MH09c/VFVAIrs6toLmX73jEM08JAfzGeYZOh1sUP8FuKgfN9AAy3TnOnlFx46dYLIaNsPLQbW+uraY8tFURxKR2vdF7/2lns4sFH+lUCWJlb8VZGTzgxJlZGAhiYf+8hwOw/h15eizHSN+39BbZBQGdBaatYHFvHGaosOlpJIcbIJeKjoEtY19xMy4npj3WNlJKv/fY3+dg/fZA1W2rmf1xFUVaslXX2oSiKoihKxghrenoCX2PKldXbLlcqgSMl63GMz9EPERDBzCTlhNWCe30DIuQhMTpEIjBLn+W6jcR7FtZzd8HxZFuZTA7SrDoH3mSnsfQIBeIyFjG5FHtHEbAF/lv+CsOXMvM3t1DdF0dp0kVOVAPLskpom5x+9dhbX6VcP5rBiJRcIEv3MfJsFBnLtT7AkrIHavC1xIj1TfN8spBregKkObV/73VDFyjfdg8j5xZxEdIwMCfGESLZpuVK/e20PDv70Lhr+loG+dsP/DPv/uO3sOvhbQs/tqIoK4oqVVAURVEUJSXS2RMYQBq5kTSdtxyYMiUlnB2swdTm/tkn+jvR8/OWIapJ1pJi8mqKMTrOkRjshcTNCWBt416MdbuxNWzA1ryN7qtL99PJNLM/0Zfttt9XxG3l/0iJdvqmBPCN9uzvR7flRj1LeCKI1rBh8garFVFeSVblhJ1ORG09vrj9ppvtIvUtU5QVRLMQy38tw0/4kbHcG3RaeLABffQ5iqtO4d42taf3gl6mIwF06SNcugWfpWbq/29nweISwDe4lgB+ZZ4J4GtGOsf42m9/k1OPn5u1d7GizEXLsg9l4XLjnZOiKIqiKNlPpPftmBFL6+6XXw6ciAkBrkI7J4N3Ub9GUjrwApqcfn2sQOKqr8F//tKyxKa7XThKnCR6ph9WZVvXRMeRTm5eepv+xLtUSeAlqd9Twb51/zHnds3ur+N/08d56ZuJZYhq6XqGBWtcbrSCQi52CWKDERBl7NzhxuxNb3X6nFxuzvW7kL1BYLKSs7ShmAJt7lUAyiplKyAQ2EfwWDe52Jmz9P46LONPJr9IhMkruULQYofE5GucXqih29cR7+qFxNzPNVqpmxdbN/DEt6K86x372Gt+9/p9R8MPYFTEuKJV0xS6jNU3gZRg2uzo8fkNQvWt28YrTy8sAXzNaPc4f/PeL3H/h++idE0xTbeto/lg06L2pShK7lJJYEVRFEVRUsLwetK7/0juVRnNKgcqgQHKihOcPDXMyGXIq9hP81YHZcNH0BJRpARpsWHa85BCw+pYnpYdutuNq8I9JQFsW7+J0SHw947BGT+5mJhYbYQmyCvPIx5OsPch2FP6Z/P+r7G+9BkurnuY8c709XhOlYmuUYJ5RTAuiQUjyRulxHS6luX4UoLW0ATjo0ifN3kNauNWDM2GITVkT+eUx9RtUv9/lJnF7AcJHllcQjIbWIxOuPGipvcKpXc/wNjTk329NZsfu/UI9p0OpHsjsaF84q1TB44CWDc0oJV7+OmfRgDBs8dcFB+8g8bYS7xovoPvfsuHbtEwEj2UPdhAmW+CwYZ9vPjCAI/tiGKdppeyqekkiivw51fiN22cObn0FjhP/8sLAJTWlfDHL34Gu9s+xyMURVlJVBJYURRFUZSU0NzutO7fCIYhvYdYVro9+9tbGPZ8Wk4Frn8dGPbx6rAPzdKM0ARG3LiporlsOMHGZYjL1VRPovXUTbdZq2roODrCZOI39RW5lpISglohzhI3EV8YIQT5JQ7CF84n+7263ESD86voWu3yqwo4+MA4693fmbHlw1wKRSvveU0bX3/6k4y0ZX/bglggMuW2rq4YFRv2YpqSvMFLyGBgmkcujSgsIlzZRNuRTtzlJRRUrSU4HsR3ZHDGx1icVm6v+0rKY1FWjkhfjj/XaY4pN1nGniJ/z4P4X00mt82YACtgRBC+09jddrS9dxA9cYEbLzLatm/EZj1CXK5FyuTtg1cmOL52PZ0F9fz4e8kLVcbVKuNXTvnZun0/x18cIBEzOB5eQ3ltIxV6gPyu80hNcLF8HxdO9JO4bABDpNpYzziXX+lg2/2bU75vZYUSWVi/kG3x5ACVBFYURVEUJSU0Z3oztImRUWS+HWHm+InnVW7bJZwHSpKVSGYMNDsIK6awoidGGT4ey1jLiHheBT32XQz3hAhPTE2umYnph9+M9gbYtqeC+PDwko5vrSgnbi9Ft1sQY30kJm6u9BS3nIVobjcT0SJgacedlaaRKK7Gd7YT3w3Fb552KNm4AT3fxeUzY0S83vTFsEI4i12855H/wC48S96XJgxqN8BIjnYt8A148A14ANh0RzPWlldTfowRRx0DRzoBCI74CI74Zt3eYrdw16MGdpH9FdZK5uQ1GoQvZzqKxTP1oml7irryruBHAwQyIZNJ4OsPimLlaSz37CZ0Koz0erHv3YzVfBbMqa2SpITHfzj1NcE3GuDIM5MXfDrPD9J59d+1G3Zgtel0HumZ8rhU842m/qKToijZTSWBFUVRFEVJCS3Ny5plPEas8E7sE0+l9TjLRQ92oNMx4/1a3k5Mvz/tcYTLNnDZW080lKC0ys5a/0t0WnbRfrh3Ufsbd6wlf6nJ2OJqJl5N/mx0t52yLTsxutowgsl+pTfmgG1NmxjsjhHqSV8CWEqwbdpG//HplwGPt/aRt2MjEe/iKlpXE3uBg7vf4E1JAviaA3VfJn7/hzn/9GjK9pkJQ71Bpo6mmj8pob9gE7FQlMqGElwiTEK3M/DS/Jfsr9lZziO3/z0WMbVqWVFupE0cQ9iac3IgXNIMq3G87ZTc+xDjz3aBsIHQQd584VN4T+Le1oipbULzP339dmv4Ept3PcDFU8mE8OWLQUxj+j76M+m7PLUtRLr8+G+eZO8bd2J32ZbtmIqiZJZKAiuKoiiKkhLClv6TCO/JLkp27sbiPZn2Y2Wa7nanPQls2POJ2krpPzcAwFgHdOZtJBZYXAIY4MzhYe5+cAdGy5lFPV5zOBg5Pdnr1whGGTrWjru2DIfTRHM6wGbDUlZOrKCOjmNdpGM9oL2xAdNZgCZMIqHEjAnga4LnLrFxVx2mw4V/IszQ5SFmmKG3YhXXFWHPszB4cfpkbO2Och67/a/RtdQOc7MJL/c2/Q0Tw79E/7ncTQTX1lqhdQk7sFoY70wmkALDs1f7Tqe4rojb955UCWBlfowI7s2VBE4v/vUis6Zf0QJgnfgpFffvQow/gVl2EE32QrAzOQD32hN7sANtmgu5973Wz8VTyZVR3uHsrrTtaxmk/fgVtty9HI2clFwnYNrq+UxS3SAWTiWBFUVRFEVJCWG1zr3REsl4nPGzIUq2bcXiO5/242WSrSQfzWpBWC0ITSCsOkY4TrSzK2XHaLMf5MozN5/AT9e3dKGOvBDgjp01xPv7F/xYS2kpcmzq8tlg3xiu2zbhaRtg6JlrCdn0TKW319cx2O4hEZ5/dbE0Jd7WyYrLTQeauXg4d4cmLcYDrzlDjeVZflDwa3S8Mvmz020WqjYWc+e+IylPAF8/hpbgDYf+kx+J99F3dvkq6VJJLLH7i1jgYMbG2yuQEnyjyd/JGx54giLtwtKCUFYVZ2WU7E5zzsx/WVJYNPP9YuwUAOal45juYiwNB5HSiph4ftb9VpR6yaUBBi0vtakksKKsIioJrCiKoihKSghL+pPAADIaYaLFTcnGZnT/pWU5ZiYUmo/ffB4pIVZ1gGjn0vYbKV6Hz7kOb8hG57G+pe1sBvGowaXxMhq0wWn7JM5Gz88Hpu+rG41pRD3BFEQ4SUpwbmgCuwMpNGIRk77z3cgFLuG9VbCj76aisZVGt+psOFSCkRAMXA5Tu9FBlfYfANTW+eh4Jbnd9gfLONT4rylt/zATpxjisQN/zQ9sn6LrRBr7Q6fJ5QsempubkYN9EJr/37lYtx4Rj2LkFUHX/C68uMvyeN2Ov6Ir9kYq7K+SJ1bXBQslNbSx58nb+SCB0+l5LUmnSNcoBU3bEWNn5944OEHi3ATaxn1zXnbMd44DNakIcVlE/KryX1FWE5UEVhRFURQlJZajEvgaMxhkvK2AksZG9ODMfXVXnsVnFKWEodr7OPPiKGY8/Qmy/jYv6x7cjWg5MeM2wmpFczrR7DY0hxNhtWIwc1uRYPdAyuKzVlWSyCsjMDDB6JnBlO33mpg3SPXGdfRfTP2+M6lqcxk79gxS534Kt7ia+Nl28za7Sv6Jho9uwyJ8y55c1LUEr937Fb7jfx/Dl8aW9dhLFfGGOXMsjKOwmPV6cF5T2M2NOzh/+FoCbv49qYOjAb7ynZ8jMBKgaM2jbLrNQBOSTWU/Ik9L3WoDZeVz558mIMogM3NMl0YsLB0iA3O3aNJFjOQPIzcWqj/9Ly/yhk89RGFFQaZDUXLAfF6XlOymksCKoiiKoqSEsC7vYBHT52PiShHF69aih1ZH0kIzF1exM1JzD109gonDY5jxmfsgptorz45x6MH9GOMeJGAaBmYkTswfIRGKIIMmeEwgcvUDmGGoXP6mBrwtnSmLTS8ooP9U6vY3HbeIYnVaiYdzb3CS0DXufZvgxe/pxMMxNKvOG94zRoPjq3M/VkCROLcMUU7PIUZ4131/ifeeZp599ZGcqwqOeMNo+5qRHXOvdOjpXPwwwsBIciG/p9fLy71gsVvY/MH0tOtQVrDwCI51m4lcyb02LKHxEtwF9eCb58UqwZzJblf0JBbrbhI58rRvGib/9dvf4uP//KFMh6IoyjLItr7OiqIoiqLkKD0vn/KPf3pZj2l4PUx0l2C465f1uJmiRfoo2t9M4f5mNPfcPQfbS1/D0327OX8yyGjbMEZ0eRM8RkJy8UIE75UhvJf78XcMEewfJ+4PLbjdQrCjl/z1qfs9m/70d7L0XxmgcXdt2o+TDnc8ZmN70Zd5y3svUtFcykPvjNDg+F6mw1qQQu0SW7bk5gWiC2d99OZtJNK8F3kt6eS82vPX4SC8YS/RjXvx9U+k7Ji7HnJPVncrygK41y/fSqBUCpzsYegFO0b5PfN7QHzuzG7c0Uwinlvlku3HO5EyF0u5FUVZKJUEVhRFURQlZeJ9Pct+TGNinInuUgxn3bIfe7lpsTFcvp/g9v2E0m120PWr90huLE/K37KWsoONBCeCxAJRIp7FVwsu1Wi3F8fmTfPadqhxPzOdh5qxOBanfcnxWEpKsGzZQf+VuZf1pkKw9QruktwZEgSAEGwu/S4AlfpLvOu+v2Sj+78yHNTiNDh/yNb7y9Ct+twbZ5FEJM5E1yiXj3QyULyZsZqdtIwVEVy/h/ZwJW0vd3LpcGfKjldYW8jemn9P2f6U1cXiO0z+3lx9DRaY8XmuZJpHotSQCxvQmA1uf+tehFrnr8yDJmRWfSgLp9pBKIqiKMoqI40EZjiM0HWkaWL6fZixKELTQNPANJGJODIev/o5kfycSH4mkbj+b2kk/00igTQM/M89kZHvyRgfxyMqKK410MLzG4yU66ze45Tv2008XoYt3o/pHUI48hDuYszB4zAh0Y2HMx0mAFc6wlTNcr+UYFZUUSBCs/abC3b1IzQNuYBhc8LpxNa0nui5s0gJ0bxyxo+3zz/4JUqEoqzZWEnrRPB6nn7ToXV0nOonFootWxwLsfHOMpxiKNNhpIRFhHhgw19w5/pSeiL3MzRejUU3aD9rZbRjPNPhzctY+2Q7i45XUl/ZbMuz8/rXHV2W4X3KCpUI49KfJb7uAJHOXGsLIbFY5tc/XK8ogjmeNs62b116SMvojnfv57HPvD7TYSiKskxUElhRFEVRVplIy3l6f/sXMx1GyiXGRpnQaimuNtHCK2sY10ys1gSy68j1cXEyFkH6Rq/fH4tmR5XEeL+f0r1bsbadn3Kf1HVaC3cw0unljpK2WfeT8AUo3rWJ8VOtU+6z1dchCooQpokxNkJ8aBhLSQlazRp6j7ZTvXcHEX+EiZbelH1f8+Vt7WbLwY1cONxJQUUBnpMtNG1r5OKx7LtgYS9wcNfm3Kz6nY1djLHe+b+sv9qdY2PFFv69cx/SzI7/I5lic9t57J0tlOuvZDoUJdcZMQqag0Q6Mx3IwpQ+sAYx+szsG+WVYqkrhPHDc+xN8NUv5FYlsDPfgW5RC8QVZbVQSWBFURRFWWXkPHra5arEyDAT1FFcZaJFcmsY1KLYCme9O1uWd9oK3ZxojbO/tBTNM1lxZRYWc8XZRNeJXjbuq0Pr75hxH1ImB45Fhsa4dfK6fV09fS3jSHOyRKuoaT0j7QPQm6z6HTixfNW/0xk/2crGnXVEx31E/CCs2dFDM688j7qtTixWyaVXAmw+5MIlsi85nWpF2gXKml7LyOX5VQCmWmFtId4+b0aODaDbLKw/UMztGx+nSMvcED9lZTFkIZC59kOLoYvw7BvY3VhqHOC9MOe+pGYjv1AQjeTOxaUn/+l5yupLec3H7810KEoOyI53lcpSqCSwoijKLaSUGAkT0zCRpsQ0ZXJYgpQkP0m4+nnyIzldV0om+4UJgaYJTCO5L8MwMQ2JNGVyubMQaLpA0zR0i4amawhNIEQycWOxWbDaLVisetYkcpSVwYxHMx1CWiVGhvGIdRRVsqITwRINo3/2ZN3dh0Y5Yiujry2MaWbueSQ24ad2Uz1nvDa21hYgYhEChbVcbPHhG0pW5va2jcOGfZQ7Y7jbTk/ZR97+vQyc7cVaXo3sH0UIsDesw3QVMNw6MKWi09M+sCzf20IkAiGMSAz3mnLaT2e2Wr2ssYTXP/g4hVy83oLjYEM5guUdHphJ9999jMcje/D0eJbvoEJwx1ucbCr9Dj968e0MXBid+zEpYM934Cp24C620rx5lA0F38UuMpMAV1au2ETupRf8vXYs7odwFo4gxk7dfKcjD8u6cvBdnN/ONCt3v9bgW1/Nrcran/7jszz0sXvU+YairAK59yytKCuMETfQLBqJaJxEKEYiEgNNw4jGSUTjGLEERiwBSBCTScJkMtFEGpPJSmmYyft1DSFEstdnwsQ0DKQhJz+bV7e//llixhNEvCEsThtcTXrGQ1FiwQhmwry+rWmYRPPyudLrTz5Wyuu3J2IG8XgCI25iJAyMhEEibmLEDRJxg8TV+xJxI/kYaaLrOq4CB848Ow6XDaFpWGw6IV8Y05AITZCIG3BjYvbav83JY0spMW/43kzjhvtv2O76/VdvAzCv3odM3p5tLDYLB964nU/8xTvJz7XhQkp2Sqz8JE98eIgJo46i+gL0wOwtBnKVKGnEvDJ7ItHWf5x7aoANxbSED3H86eDyBDcN38VuRmJ2nm43sdgsJGI3t2UITgRpPRrEt6GcHbc8VkqIJQTh8SC9L7dRumUzsVCUkfNDQG70nyzcvYnWI51UN1cyPuInGszcxRir08bDDzxDkbg5seEQufGzTJVKy4u87rVx/uufN950u7PIyeZDDmrLO3FYPAhMEtKOQDLo3cDp5zUCI4FFHbNxfzl7y/4MgLff9RfIOyFBHoPxO+gZaWZizM5wRxj/0NIGFxbUFFCxzkF5ZZC6knNU6IfRhLGkfSrKXOIT2dnnfDbhluQFQ/sDNdw8PlIuLAEMiESAgsI4sPQhpstprHeCnnN91G9fk+lQFEVJM5UEVq5LROOMtw9eH1oib5l+euPX0pTklReQX1MCQCwYITTqJx6KJpOZkWQCU7fqWF12bG4HNrcdR5Ebi9OW0quMk4lOEzNhYCYMhHY1WaoJLHYrmmV+E6FNwyTqDRHxhYgHo0S8QcITQcITAWL+MLFQlFgwStQbSn6PsTjxUJR4OEYsELle4XljNajQBGbCxIgnJitIryZuzbhBPBJDGvMfcJMNzK0beP6ZmZfsKqmViCV48VsnyS9284m/fGemw1FWAsvqePlPjI0yFrBTtPMebBPPZTqc1HNWAfOsJg1OsIkfUvmOB+jqsSOEwOWWuFwmmoBTR03G+tN78u6sLMbsTCbOErGZL0RomoZ05SFCk0k2x/pGYuHJNiZjF7rTF2iKWfOc6GvW0Hq4E4CB1swPXLv7sRgl2tRq69WoVBzDXbaX4GiA2u3lbNvZR5Pr61jE9En62rKn2PlmBy2+d3LycCET3Z45j+Euy2PDPhvSEOxc+6Ob7hMCrASosz1OXe3jUAux7YW8dOXDnH1ybHJ10Y2P0TXcpW5K65wUlhq43VFcjgAOWxC77qXY0opb9Czq56EoS2EEIpkOYfFuOT3VGveA78iCdhF1buepHzqB3Dq3c+Y7sLtsmQ5DyXIC0LKsWDzLwskJq+MsUJmXvmNtfPNDf7ugx9jznclqz/D8TxydJXlU7ViLbreClCSiCcx4AiOeTOCa8WQFqRk3Jm9LGMkk6g3J3mvJ3/nQ7VZs7mQy2uqyIQ2JkTCQhnE1QWtgRONEA5Fp32wrNxPq6TYjnvrPV3jwfQfYsHdtpkNRcpxmza0KlaWQ0SgTRztxb38trvgLaEZu9SqclVz4c3Hx8FMUX/v1x4GrLUmrd+bTvedOnv/BHL0RF8mS58CrOYG5qyddeVbEYHI7KQRC1/GMx3BW5d5rT/GO9XRdGid0MnsScnkV+azP/89Mh5E1NM3kPW/5JhJ93r2QLSLCtsKvsPVh6Im/ntPnt3Dl6PStZ9btq+Ch3f+OU8w/+W8TXu5r/AsOfbSUsKym17+XsydKqFwrqKvuYY3zOZxi5ba6UXKU1UV82JfpKBZN3vqaqi+spYPU7Hz/qYP0dORWAhjg9Z96kMqmikyHoSjKMlBJYAWA0Uv9/PT/fG3Bj4v6F36yGB4PcOXZqdPB08mIxglH44THF7d0T7mVSpRnQiwS59cf+HPWba/Fle/ASJg07azjHb/xWorK8zMdnpJL9PmtjlhJgmdbiFVup7B2At1/acGPD9m34IxcIKva5Y2fQyutwRxLwRCvsJ96fsxDb3ktT347mtLrocJqIVJcznDr/KqWr/2Mbdt3EPVHMQwTm64zcvpK6oJaBvlrK7n4Sg/ZVqcSGPbzPz/5AI89/APyhVrVAywoQXsjIaDe9iPqd/8Iz84tnOl9DRdeCBILRHEWOTn0ujBb8v9s0c8bdjGGXYxRVHiObfcvbh+KsmwSUbBoEM+ttiOFB9bh0M6A7+bXUrHAVVMJ+1oe/1YqI1s+9dtUGwhFWS1UElgh4g3xrZ/9OwKDnkyHoijKHExT0nF6so/mxZc7eOo/X+Y1HzrE+t31REMxYuE4O+/bSN3GqgxGqmQzkW1ruZZJfGiQsXErhbvvwzb+zIISM6PRbVTYwzhiWZSIjExgybMTzytGBiZSssvK8cd527v38+Mf5xOYSM2JfN7WJi4cnn+yMRxOYG9YR/+xNjSLTsnO9Yye7cJM5FZiwVpcwPVS6ywz0e3hJy89xtvu+IvsurCRw4q0C9xdf4FD73ERYC1OBrALT6bDUpTlIw2c68oIX858y5uFEBbAP/UipYzFF3QJzxLpwJV/H6GltfNeNkIItt63kX2P7mbrfRvnfoCiALk18lCZjkoCK5z692dVAlhZEHW+mF3CgSjf/btnbrrt4CM7+a3/+EiGIlKy3+r9XyzjcTxHO3Bvew0u4zBaYn4rRCJhC3FHGQ6yKAkMEBjEWrmZWMgPZmoG/tn7j/LYXeX875PbiYaWtqzVWuim7VTvtPdVNJaDgKpqNzYSDHlMes71Mz7gx2tPnmaU7FzP4LHLS4ohE6x5TsZGsrs35sD5UXr2v456248zHcqKYhEhipj/IClFWUns1XbCufaUPcPKF7P9VcTWuxETz8+5C8Ney9cff2POJIABrE4r63bXc8e796NpKrWnKKuF+t+uMHi6M9MhKDlGqL7JWcdqt9B8Q6/gpp11GYxGyXqrtBL4RsFzrUyMbcHI3zTjNoPWR+k030Vr6D1MdPhxxNuWMcIFGL2IdeP21O7TN8IbHpt+MNZCOOsqiYWmzg0oqi5krTFI3UQ71gtn4OIFqplAs2jYXTaCXYO4qkrw940vOYZ0sBW6cW9rRtbWU7KrGUdpAYXNdRRtXkvhhjXEi8oYahvJdJhzOnJkM6apTgcURUkNuzyF5rRmOowFkbNc6zTOvwLF+2Z9fNzZzDd++kae+UGKA0uzWCjGD/78Cf7xI1/h1OPn8A7lbj9nRVHmT1UCr3KxQITeY1l6UqtkLW10nPvubQCRvHgur1YVSpEcqpC8LTljz7yeME6Ok4smTF59Kcsq6VaA0poiPvMfHyYeTRDyR1QSWJmdtvp6Ak8nMTzE6LiVwt33Yxt/FtPiwmImK4MTWgHdZyShwb7kxkJgNVLTciEdxPg50CwpqwYGcA2+zP4HH+bok8FF7yMmpr7VtLlsNJfFMfuDN7UiMAeGuK2pDOxxLH43IU+YRGjpiejFcq8pR5SUYJUG3otXrrejEBaNWEEp3ce6ARi69jaqN/uTvrcaahnl0t53sSlv4XMhFEVRpggNUXLXFkafmF8P+GwwWxIYBGZYm7FyTmpWfv+P72dkIHcLZI5/7xTHv3cKoQn++KXfonpDZaZDUrKYaiGV+1QSeJV7+R9+TCyQ3csVlexjDI/D8GR1lrjl82xcmxrSEtNqN3hllI/t+kMe++T9vPmXHsh0OEqWE9bcqtJJq0Qc77F2jHWPMthjoajGQkH+OB2nHIQGb6hClZIh25tAQGX0+5mLdyaRCazr7yR+6VTq9mkaNFueInLHA7ScCBGLLOwkt2DnBs4fufmin2bR2LWjGPPy9OuFzdFRAGSek0Q4cwlggFD/KOGghqffS0FFCVVNpWgCxgYDjFwazmhsqfTS40Vsemumo1AUZaXQx54hf99r8V+9UJbttDkyImbHabTNW8B7AexlyRttJWCtwBMqy+kE8I2kKXn1h2d4w6ceynQoiqKkkUoCr1LSNHn6D/6H0/85d48jRUmllfE2KTvFown+98+e4Lt/9wxbDjbRtGsNNesrsNos9LePcOVsL5/5j4+g62rp72qnWW2ZDiHr6J2vUl28ht7OSrp7Q0BoyjYXH/egO2xUHlz++OYlHa16YhF2WH/Itkc38mp7Ey3Hp/5cpmMvLeDiLQmAvNI8ttbrGDMkgG8UD4RxFbkpaKplrLWPuD+8qPCXQpqSyjIr0YAD37Af33AONXtcgLBnfr9TRVGU+XJZjhAp30x8JPtbDIh5vC1OtFwBrQCMa3MEAkA3h3s+mM7Qll1gfPErfxRFyQ0qCbxKhcb8nPnvFzMdhrIKxXVVgZhusUicU8+0cOqZlin3TQx6KastzkBUSjYRKzgJLCWgaUhNQwgdee3sTreCZkHqVqTQkZarX2uW5GdhQQqN8nwrRrSIyIhn2v0bsThR6xrs8emHnWWSGUlfolQbauW2Oj+6vouLJ0Jzdp2wFudj9kzGY7Fb2NJgw7jSOe9jxrxBRl+9RNmuDQy+2kYmBhpqdhth38peMSVNiZRqiaeiKCkU81G8M8jw0xqYSxswmm7GfBadSAnG1P72g4M6YKQ8pkyp31ab6RCULCYALctKutRbl4VTSeBVKBGN03v0MppFxzCy+0VZWXlsKexXqcxM0zVuf8N2Bq+M0nmuHyklWw41UVien+nQlCywEpPAY9X303O8L9m3dUEVsYmrH5Ma725iYIYkMIBuZEdlk2nJA2FFiyd7FWsud3pPRSf62e3sZ/e9NhLlW7g8WMuJZ6ZWDekuOxORybfl+eX5bK63YC4gAXyj0VOXKd+5npHTHYuNfNEmvCv/NcvqtKkEsKIoKScmzlF6/4OMPdmX6VBmZYQSsKhRCYILZ1dOArh6QyX737In02EoipJmKgm8yhixBN/80N/Sp4bBKZlirJw3S9nMNEw++vm3UlZbjGfEz8SQj/pNVegWNRBMAVbo34EZT03CLhiauja09mAd5UU95EdeQTcz06tWSjBthSSczViDLYz4DhHpG8JeuRdnpYO8aVpYpEUihmXgFJutF2l8z066R8qJxWB82GS0P4Zj81pOPZ3sBVxYWUCz04vZubRWClqGkpR5Rc7MHHgZxYJREtKFRai2EIqipJZl4kkKDz2M93BXpkOZkRk3FpUEHs+7F58n5eFkhBCCN//W69V5gqKsAioJvMoMnulUCWAls1S50bLpaxumrLaYovJ8ilQFsHKjLF+auRipTBLGw/Gbvrbmu9jg+BpksCuAFFZ8ztcy/kob4AdqgeRJdbizl3An+MtKKSspQot6lieoeBR7/1E2QHI9XpUGdTb+u6OK8rXFbNnhJnS2G+kPzLGjmWk2CyXbmhg+2Z6qqBfEHBnBYreQiK7simCJ6hWvKEp6OGI/hUMP4T3cSTYu3pZxExwLe0w8v5nP//VaVsK0k4KKfD72xQ+y+a4NmQ5FyXYiC0/lsy2eHKCSwKuMqdo/KJmmnqiXRUV9Cc1712U6DCVbmbl/0jKFSN33JG95rSzcuJZzY+/BmQ9VBWdwR86l7FjzEcvfTd9LYWD2i7jx0TECVXsoiD69PIHdSpqY0Tj7NwzQEHoaYcC5DW9l4NWFJ4FdVSU4KkoIjXgZPD73ILl0CQ2O07B7I5dfzt4qtqVyFruwisUn6hVFUWYlDRzRn2B/zX7isWKkKdAsEiFMjJiG54UuMnmCIBMLPD/W7fzNf9+Jz5P7qxsrG8v59P9+gvK1pZkORVGUZaKSwKtM3e3N7PmZ+3n1yxk6QVQUZVm87VdfgzPPnukwlCwl5cq7IChSWI0jb+gpXLJ7EyPHJocsdlNC9f73srb0OM5o6y2PA4RAYkEKK6ZmAzQQFkzNgRQ2dF0kB9Ghg9CvbmsBkv9GWJBSINGQUkMIycRFPzC/oW/+c5dw3H4Q2+CRpf8gFkETBo3hp6+fz2+2/5Bw00N42ofn9fi8NeU4KksYPtmBr9+TvkAXwBwdw+q0TqkQXynqtuZlOgRFUVYBMXaUWycSWICiux6+mgjOjIW2koq519PWmvsJ4DvevZ/3/MlbceYvsAxaUZScppLAq9C9v/M2Dnzy9Xz/F75Ez5HWuR+gKCmlSoGXw4bd9ZkOQclmCxqclhtSuTxNaJNL4+P+qX1SB472MEAlFtdaAEzDSJ5EzqPCet2aAERCTA6kS31/4bGzY1Suq0ILDqZ83wulmxE2NfTwcvv8LkoZUmPwWOYqf6djqyhB9vZnOoy02dC4/AP3FEVRrrEnDqM5GzDDsYwcX8YWlgS2GN40RZI+JbVFbLtvM/2XBgmMB1l/ewPv/7/vwGpX6SBlYTI1o0FJHfW/fpVyFLi4//fewVff8MfIlbgsWFFWsfxiF2uaKzMdhpLFbkxyrhRzVQJX7qzHnQc+j0kiksDmtuJ0a0wMhIn5wqAJIqM+AGxuGxFAc9oJ9Y3MuM9EaBFNgkX6f/ZmKETEtQVXFiSBAfJ8p8ivez3+nrE5t3VXFODvmflnvtyKdzdz8XB3psNIq2J7ZvotK4qiABDzkberGt+RzFQDy9jCqnq18CDJXsDZnw3TLRqf+cEv03TbukyHoihKllBJ4FWsdEM1dQea6T6sqoGV5SNW4ECqbGK1W/ilL7wPu+vWBXeKcoOsm+qQCtMngTWbhbq9tZQMv4TwRim6docv+VEKUJAsjpYVJcQLqvFpgvwNa4lN+IiMeFIb5jIl4P2Xh3BUl6CFx+e1vdQsICVCpmeJq809v+ek0ZOXKd3awNj5zPfg1Sw6HaezI5GeLkV1RRSL05kOQ1GUVc6RP4EvQ8c2Ywtr9RPM30suJIABytaWqQSwoig3UUngVe4Nf/MRvnjgNzEX2hBfURZrBS5DzxYN22v55S+8j8YdazIdipLtND3TEaScmGYwnLumhMbqcawDc/fBFwJEaByrJhi5mMYhWVYHLMOpbsLrZSCQT8meXThGX0SYU5fZSs1KrOIQ/r4wsf4RNLsNEDhqKiiMPJ+yawVxRwW2uI41z0E8GJ3zdSDcP4zQRMZXKulOO9HhzCxPXi4F5daVeU1IUZScIsaO4tx0L+GW5b/wJqMx0KyABHP21hDxgs388/9uBXKjJ7B6fldSSQBaCmdwpIL6E184lQRe5ZxFbqp2rKP/VdUPTlkecgUuQ880V4GDD/z+m3jNh+7AYl15yT0l9cQKbOglpIk130X11grslhjOQCe69wRibGEXOaPFG4CB9AQJYLGmb9+3MgzGj13CVr2dvLoCjJiGxWYCEtPU8HeMkrgy2QrAiCeroYxwIdJdigjP3b5hPmzRYbbZvoncKjjle5TRi7P/fGPeIAXravB2ZLYK111XCcNp/FvIAitwRqSiKDlJUlBxESPQRKx3fitYUkcwdLIBx9pyCotemn4T3cGF2Jv4wudcJOK5kQAG0NV5gaIot1BJYIVHvvAxvvqGzxEazdQiHGU1aR9dmdPVM2nvg1t4/UfvznQYSi5Zhr60y02XUTZtDGMdfGpJ+/H709xKxTq/AWmpFBsYYnxgaM7thM1Gya467EMvIMKpzw4K5LxLNpwl+RlPAo97Vv7rlbGweUiKoijpExykeI2f2Po7mXh2OXuxS5zrq7EU2KYt8A0W7ueL/72Vyxdz76pZ7abqTIegKEqWUUlgBVdpPnf9+qM8/pv/nulQlFVAW4EViJkWzdA0ZSWHrcD1gc6+40veh2l1Md7Sl4JoZpGBJPB8WAoLKFsXQx96Lq3HsbvmV5UUGR5Hs+iYicxVXIW8ixj8l2MSsdxLaiiKsoLFg9jMZ9Hzt2L4w8t22AL389MmgE9F3sUX/8IG5OZz5Z7Xb890CMoKswJPIVadlVcKpCzK1rceZNvbD2U6DGUVyM/PzgRILjv2k/O0n+rJdBhKLlFtWaYVr9qKGU9vaWTcVpjW/S+GnpdH2doIuqdtWY5X0lyFozR/1m0CvSOU72pYlnhmsqa5LKPHXw6mkV29/RRFUTCiFN1esowHFKBPPT/psj7CF//BTi53HdVtqh2Eoig3U2eBynUTncOZDkFZBSJRtfY01aSUfOuvnsx0GEoOEeoy/rQCEVfajzF0bgDyl/PkdnaW4iLKmxLo3uWZDdDkfpk9Rd9Ft1oQmqDxrlpKZ1iuKjM8tDY+PJrR4y8Hm1MlCBRFyT6WwBE09zIWjug3t4LyFdzJn/1F8fIdP026z6R5dZOiKDlHJYGV69bcviHTISirgH8VLK/NhJe+c5LD3zuV6TCUXKGpxM+tpITxtvRfDE0EwvR7ikk03Y7M8O/BtX4d5ZX9y1YBDGCP9CEENG4TFDaUU+iYYEfpUxQ2lN+0ndAEE+2ZHcomzZVfJevMVxeEFEXJQvEgzsbS5TuevQiERqhwH8+PvJ/PfLaRxApoCx+ProBvQskqWpZ9KAunegIr1x365Tdiczt44fPfznQoiqIskGlK/vzDX6Hg22623aku6ChzUL25p9I04r7QshwqNuGn9xU/efWbKS0zoevCsvdYczaupch4GZHm9hczqfL/mIoyC8KbQAjYteYoJ6J7CI8HKd7SQHjMh/fK3MPs0mkisvLfJg9eDiG3qx5/iqJkH82xPM/BXmcd3/tpMwPdEQZ6c7P370wS8cz11VcUJTup5LlynRCC3R+4l0O/8iasy7n8RllVTHNlvbnKJvFogt995O/4i49+lRe+eYJwIJrS/SfiBt/+m6f43Uf+NqX7VZafEOrl/1bSWYRmXd6kX6B7iJilEDYdRN+0B8v6bQh3PsLmSPuxCwvHEWZm2/NoJK4nH22xYXY3n6didwODxy9nPAHsrillot+T0RiWQ3A0QE/84UyHoSiKMkWk27ssx3FFhujts624BDCArqv3e0rqCEAImV0fmf6h5KCVX+KgLIjFbuXAL7yOzY/s4zs/9wXGLmd2Kaay8vgnlm/S72pkJEye/foxnv36MXbe28wffvcXl9z/9cRPL3D2hcsc/s4pBjuTPTInhn0UVxSkImQlE1TZ302khG7fOsz42LIeN29NOZGWVkKxyeWaQtfJ29CAZeQyRNPzfOlcV48+fjgt+14KR7iHkXNXMh0GALbyYmgPZjqMZfHSi5upue9ZLEK1a1IUJXvYKvKID6U/EWyVMT6w9SRdu7fzv98JpP14y6moKvuG0SqKklnq0pAyrcK6MjY8vDvTYSgrUCKmBsMtl9PPXsI/HkJKyUDHyKL2IaXkL3/u3/nWXz15PQEMcPlEV6rCVDJBUy//NzJL1xIaWN4EMECgdxRn47qbbpOGgb/lCvGSJmSaWtLmV2Tv8tB9D2W+X7Wzopi+juWpQMsGI5fHePzsL2LKzP/sFUVRACjaRPDs8g01y4sOstX/U973mIW8kvQPiU23+u1r+Pl//Rle84l7Mx2KoihZRp0FKjPa9MbbqN23PtNhKCvMUqtSlflzFzmR0uR3H/k7fmHf5+i9NAhALDL3kAgpJdFwDCNh8poPHZxy/9c//xNGeidSHrOyPNT/w5uF3Wszdmwxw1JNW74jLQXbeVvWYxl8JfU7TpG8aBuQ2YFsjjWV+Ib9GY1hubUfGeanLZ/CNNWpgaIoWcDTQv5tdct+2DXhU1gsufk8uOOhLbz//72dzx35bX7/6V/jtkd2qfd7SsplehCcGgy3dKodhDKjkqYq3vlfn+aHn/pXWn9wPNPhKCuAlGCmq7RNmSLoCfOzm3+PeDRZff3FX/8G977jNv7pN77Jmz5+D+/73TdO+zjfWJA/fucXaTl6BU0T01YjXn61m49u/yz7X7eNj37+rZTXlaTzW1HSQdPBzN6K0OXkHc7M9GzdYSPSM7XSyd24BrPtZMr7nNkqKyiIHZs2uawXF6GXFSeT0hYdoWvIaJxoS3uKo5jDeC+1mzfTdzEzS3KFJpgYXh1tIG7V+vwIRcWf4Paqv890KIqiKLjkE1jueS2+02MYnuV5XjZ0B/FY7r032vumnfzCl38202EoipIDVBJYmdWxf3qCSz86kekwlBVAOGxYasqJvTyY6VBWlWsJYIDTz7Ry+plWAP7n/z3OXW/dw9otNYz2TfDtv34Kz4gfi83CqadbmBjyAWCaMyftTcPk5R+cofVYJ+/6zOvYekcT1Y3lWG3qpSUnaAJW3gyUBTNdJXgvLX//+/Id6xC+UaKDN7dq0fNcOGLDmClO0Au7nZLKCYR36om0XlqCs2oEghfhxnx42XbMxrXEOzqxrq0j3tMPyzDcc9NWP30XM1O9pFktDFwZnXvDFerU03H2vtuh+gMripIVbIHHKWsCWbKLYH8pwfP9aT2eOzrCr+99mp/yZl56KnfOWYwcTFwripIZ6kxdmVFozM/hv/wBcpYkkKJMx7K2GsPtImhqjE9EGB304ekOQHfuvJlaDfzjQcYGvPza/X/O+MDi+19ODPn4wq98HQBXgYNf+5cPcdtrt6YqTCVNhNAyvOg+O8RKm0EufxI4Ho4hB6f26i7eWIvR+mrKj1eweR0ifn7K7SI/D2dtAHzDUx80ehY7YG/Oh9gxrHvvI3SsJeWx3coWGwYq036c6VicdkzP6u1dH/VH6I6+jkbHtzMdiqIoynVi/BR5bjvGutuJdC5uzsVCbCgY5KW0HyV1ajZVZToEZVWQaCLbzh5SE48QYg3wh8DDQCkwAHwH+AMp5Zw9EIUQpcCbgTcA24FaIAacBb4MfFlKmRXlN6qNhjIjV2k+t330wUyHoeSglgnJM892cvT5DtrO9uMZWVmTdlcKwzD5+09+bUkJ4FuFfBG+9ddPpmx/ShqpPnEARE1HRo7rLHTe9LWtrJjSBjdGx7m0HM97qpXBVgexyjsnb3TYcW/QwDfHoMdYsj+uNv4SekV5WuK7UcJWnPZjzCTqDeIqzv2hQEtx7kJTpkNQFEWZyohiLU3Ba7ZuR2qzD8Jc6z3C7fdWL/1Yy+TF/3qF8T41q0NRFkMI0QScAH4GOAr8JdAB/DJw5GqCdy5vB74E3A68AvwV8E1gG/DPwP+ILGnSrZLAyqy2vf1QpkNQcoy+qYHetvRfoVeW7vcf+weOP3Eh5fsNB6Ip36eSBpp6CwDL3xa5+rYmaveuJXTu5mSvrbgAc2QQ4rG0HVsmEowc7cQsWAu6Tt72Ihhvnf8OjBi2+vm8D168RO1ejr6Yn9ZjzEpKKtat7h7nnceG6Y09lOkwFEVRUkYiMOv3ESzex/BwIaNj5ficO0msvQO5Zhe4Cm/aXgh40PrDzAS7CP7RABeev5TpMBQlV/0DUAH8kpTyMSnlZ6SU95NMBm8EPjePfVwCHgHWSCnfK6X8LSnlzwKbgB7grcBb0hP+wqgzQGVWhXVlNL9uT6bDUHJInz8rVjko82Aa6fldDXSM8OK3XuXK2d607F9JDaGSwMuuel8ToXPnCJyf2lIh2NmPyCtYljjGRktx31YHI6cW/Fh99BlsGxtTG5CrEKNmN13Wh/npN2x4BzN7IUloWVGokVHPPbsFU85eKacoirLcdNcC37vodmR5E+HS/YyeuELw0hUwTWQiQaS7j/HjrYyc7GWkz5lMCN+wstxqRilbUzjzvrNEZWM5f/Dcb3Dnu2/PdCjKCiey9GNJ35MQjcBrgE7g1sm4vw8EgfcLIdyz7UdK+bSU8vu3tnyQUg4C/3j1y3uXGG5KpOUMUAjxfiGEvPrxkQU87vNCiKeEED1CiLAQYlwIcVII8fuzlWALIQ4JIX50dfuQEOKMEOJTQgj17jUF7vntt1J/aGOmw1ByREG+LdMhKBkW8kX4vx/6Mv/3g1/OdCjKbLJjRVLGLduPQYNY5xUQAseaqUtMZTyOVtu8DIFIag9EEENHFr0Ha0EUUVqHXOpbb2cBV7TXcqpnH09808GF51PXmmYpHHb19nHsygQX/e/NdBiKoig3sYsz6CV5s24jHfkk1t6Bz7GD4cF8Ri54CbS0z/6YRILx460k1t5x0+3rGrO7PZCr0Mmn/uvnWLO5JtOhKEquuv/q5yemSeD6gZcAF3BgCce4NnY5K4ZOpDwJLISoA/4WWEwT0F8B3MBPgb8G/pPkD+qzwJmr+771eI8CzwN3A98mmb23kSzd/u9FxKDcIr+6mDf/yy/SeP/2TIei5ADXlU40XVUYrnZNu+r47Ld/PtNhKLMQFjUbdjnpdjuOujXkbd9KbGz6vn2JePpXUtS/sQzb+FNL2of0dBDpGcEs3XJT1dSC6BZaPAdoecnHwKXgkuJJNcObHcnoTOvtS3//Z0VRlAUJ9lPWfJ7ie+qnvYori6rxhGsYP95KpKd/wbufONGKWTe5CjaeFSmb6bkKnfzK1z9OZVNFpkNRlEzbJIQ4Md3HPB57rdpxpn4ql69+XlSlhhDCAnzg6pc/Wcw+Ui2lmZqrjY6/DIwxWfK8EAVSygNSyp+92ofjk1LKfcCfADXAb91yvAKSzZcN4F4p5YellL8O7AKOAG8TQrxr8d+Rco1u1bn7M29Bt1szHYqS7aJxLFaVBF7Niiry+dwPPknl2vT2DlWWRs/P/iWOy2KZKoGNcJSAL064vQMzHFmeg96i5sEKnP6lv/807cn3wYmedrTKRQwRc+QxlPcAV171LzmWdPB3DuLIs2c6jIwLB9RqAUVRslA8hC3wOBUPaGj5ySGrUtMx6m9nYshBfHRsSbsP+SbPY3ze7M0C3/ezd9J027pMh6GsJgK0LPtIwfv4aydEM1UAXLu9aJH7/1OSw+F+JKV8fJH7SKlUZ2p+iWQ59c+Q7J2xIFLKmc6K/ufq5w233P42oBz4bynl8Vv283+ufvmJhcahTK+ksZL3fvs3KW1Wy02UOahl5qva+t31uAqcmQ5DmYOwqyQXXH0DuQxKNq9BH+/HCIaW54C3KD9UQX7ixynZVzxWNvmFdYFLZd3FvNpzO6/+xJeSWNJBmpKSuuJMh5FxdesWs6hPURRleYiJc5QeciDtbnz6ZsZOtJPwLf3iYrirDyx2pIRQIHuTwOVpHtSqKDmkRUq5d7qPFOz72pnCgte+CSF+CfhVoAV4fwpiSYmUrQUVQmwmmeX+aynl80KI++d6zAK86ernM7fcfu0Y05W1PA+EgENCCLuUctYpI7OUim+ad5SrQFlzDe/51m/Q/VILg2e7OPqFx5FpGi6l5C5NJYFXtQtH2vGO+iksy890KMoshK7aQcAyXLMSUHtbA4FzF5mrd4I0l9xld1rFu8oocTwJKXi9lhIS/tjkDTY3oqwB7G7k6BWIzlADYLFCYTU9wS0MtWV3uwVXdQm9XeOZDiPjygq6Mx2CoijKrGKeIAF9C9He1A0jlvE4AedWjKpShp6evn1Tpt39voPc/f6DmQ5DUVaCa29KZ1oiWXDLdvMihPgFki1uLwAPSCmz5o1lSs4Ar/a5+HegG/jtFOzv14A8kr+I24A7SSaA//SWTWfs3yGlTAghrgBbgUbg4lLjUpKsDhtND+yg6YEdWB02Xvyz76Zkv7rdSvmmWgZPd6Zkf0rmCF0lgVezkC/CP/36N/j1L/9MpkNRZqOr4VfLoXz7OgJnL8xrW2mm/qJq/voiKspfgtis18LnRUoIJh4m1t56/bbI+VPX/21r3AwDJ6dNrLcE7+fKCz4W+B46I2LeEIVVZYx0jGY6lIwa8a5lrWo1qShKFjJEHr29b8Z3thNIXQL4mlBHN8aGIpLFf9l1XuMqdPLez78t02Eoq5QQix0GkbWuvamdqefvtW4EM/UMnkII8SmSM8rOkUwADy86ujRIVRnQ7wG7gTullOEU7O/XgMobvv4J8CEp5cgt26Wsf8dMpeJXK4T3THefAjvfezcDpztpf/LMnBVOc3nT33+Uxnu30f7UGX7yG18l6s3Mklll6TRN9QRezR775P287dMPZToMZQ6qEjj9HGUFGH1d895emql9Y+2odlPTfAaCqWm9YDpqiZ5snfH+WMdF7FsOIPtPIWI3dPhy5kM0d04aEqEI1tgADXsb6bs4RMmaIgYvZdX797Rzl+VRW3I+02EoirKCSQkRyx4CoY1E/VbWlH11no+z0D/0Fnxnr6QlLr28nFPRBl745jjZlgC22C28//+9A6tdvYdTlBR55urn1wghNCnl9YoMIUQ+cAcQBl6ez86EEL9Jsnj1FPCQlDLrKgqWnKkRQuwnWf3751LKI0sPCaSUVVJKAVQBbyFZyXtSCLHQZOyi+3co82PPd/LoFz7GR579Q/b93Gvmta7W4rDiKs3n9l98HY984eeo3tXA7b/4Ohrv3QZA0wM7ePjzH5j2sYX15RTUlqT0e1BST1OVwKvamz5+DwWleZkOQ5mDsKgTiKT0vUWI+UJYi+c/gC+V7ZWshXbW3tYFwaGU7dO0VM+5TfTCKUT1zutfS6uDk30HsnYI3EzMhEH4wmVKpA96utm8vxa725bpsJaNbtWotjyX6TAURVlhpISQvo+h0HtpPf4IbT90M/hMLxbH/F7/DJFPZ+c78JxMTwJYNG7iqyfKeeHFCbItAQzwsS9+gNvfourTFCVVpJTtwBPAOuAXbrn7DwA38FUpZRBACGEVQmwSQkyZjCyE+F2SCeATJCuAsy4BDEusBL6hDcQl4HdTEtENpJRDwLeFEK9ePcZXSU7WuyYt/TuUhSuoLeWu33iMpge38+Tv/TejLX3Tbld/xybe/KWfR7dN/umtf2jXlO2aHtzBtrcf4tz/HsaW56D59XtpvG8rDfdu5/nPf4uT//bMlMcIXVP9ibOEqgRevRxuG+V16kJNTlDtINJOmiZiIU2HU1QJrNk1Gu73wnhqT5LjsSpg7qnrsfZW7E23IbuOI2xO0tDlYtlNnG2ncfcmLh6+wkyJgaoNZVRW2JHRCP6EnSun+pc3yBTadsDIdAiKoqwwMa2Z7vO7CHcNkOwimZS/uZ5K93/M+Xgpoav9jQQv96Q+OCHwNuzjP7+TfdW/17z3T9/KnjfsyHQYyiq3Qs/yfx44DPyNEOIBkq1kbwfuI5mH/J0btq29en8XycQxAEKIDwJ/CBjAC8AvTXMO0Cml/Le0fAcLsNQyoDwme2dEZjjR+ZIQ4kskB8Z9ajEHkVJ2CSEuALuEEGU3ZNRbSfYMbiaZbb/uaoK6AUgAHYs5rrJwNXuaeN93f4uW7x3jpb/8Pv7+yf7X+TUlPPDZd96UAJ7NQ3/yXg5+8vXkVRffdBJ95689ytY3H2CsbQBP1wjFjZUU1Zcx1jbI478xv2VESnppWna+eVLSLxKM8fi/vcRrP3RHpkNR5qDaQSSlbzCcpGL7WsIX59cPGFLUE1hA4xsEYuzs0vd1g4R7L+Fj82sPIGMRjKiRPFEITrB3aye9azdy9sm5E8jZbOJkC423NdNxfPqBaZWlOr4zyXYZ7nVzV01ns3VlxzIdgqIoK0hUb6b9+UYM/8CU++KBGIZWikWO3fKYDYQTm7FZBnAmjhHU7yN4OfX9fzW3m9P6Nl7I4gQwwF3vPbCwC8uKosyLlLJdCHEbySTuw8DrgQHgb4A/mOdQt4arn3XgUzNs8xzwb0sKNgWWegYYBf5lhvv2kOwT/CLJZO1SW0XUXP18Y2nC08B7Sf6i/uuW7e8GXMDzUsqlT0NR5k3TNba8+XY2PLybw3/9A8587QWMeIJH/uHnKG6onHsHVwkhyK+ZWlFoddio2FpHxda6m24vaaziyf/zNYxYYsnfg7I0FquqMFzNvvCpr1NWW8zeh7ZkOhRlFkJVAqdN9W1NGCODRBaQAAaw5jnh1ukHCyJpeKwAfezppexkWqbIA+Y/2DjeeQnHpn3IzmMwdJk17lHidx2i5YWsGY68KHrAS0FFHoXlbnouDN3UTUQmJt+iTsSdQG61wLjReLiJMvfxTIehKMoKMTZ6AMM//eoUZ6UT3RxDAmHLfqyyH1PYufxEHTI+ATiwlj2C7rQDgymNS6+q5rutFXR3Zfdrk7vIhdVhzXQYirJiSSl7gDmnmkspO5nmapGU8rPAZ1MdVzosKQl8dQjcR6a7TwjxWZJJ4K9IKf/5htutQBMQv9p/49rtmwCPlHLwlv1owB8BFcBhKeXEDXd/A/g88C4hxN9KKY9ffYwD+OOr23xhKd+jsnhWp417PvMWDn7y9YQnghSuKU3r8Wx5DuoObqTzOTXIJNMcrtXTN1GZyjQlf/Wxf+fvj/2O6g2czVRP4KtS2xO4el8TobPnFvVYq+FjKZcx699Qjm38x0vYw8xiPvfCHmAaSHnDhYbgBGua4rS8kNq4lpuwWlhXq+Fva2dzUwl6VRVjw2HC/iixkckkQl6hI4NRLo3VaaPR9Y1Mh6EoygphYmfizMzJW9/FIRy3v4vgiAXf2S6gAc1hR8Yn67jioxPE0xDbyUAd3V0Tc2+YYVaHlfG+CUrXqJZrSuYIQIjsGrelauMXLhMtPa710HjqltsfBnqEEE8JIf5JCPH/CSH+FbhMcvDcIPDRGx8gpfRdvU0HnhVC/LMQ4v+SnMR3kGSS+Ovp/GaUudncjrQngK9Z/9DOuTdS0s5qUxWGq513NMA3/+rJTIehzEK1g0hK3ZtHSe3+xSeAnXVVxLvaFn306vsrcAbSkwAGSEwsfLyCNAzkDecKgtzuM1u+bS12GcXfluxHGRkaJ3j6Ao6BKxQH+omO+65vG7twgZ37y9ncaGHngUqKawpm2m3W0a06FhHKdBiKoqwQAXEvZjg84/1GMMTA031XE8BJZiT9C3mNDTt48XB2VwBf4xn08ht7/pDj3z+V6VAURclx2dTX+Ungn4BS4C3ArwNvJbn28A+ArVLKKesqpZTfAe4Bnr+6/SeBOPBp4F1Syuy6VKGk1eZH9mF12zMdxqqn+lUpAC99+2SmQ1BmIVQl8FWpeZtQfdt6AmcWlwAGcFcWLLo/cdnt5RSYP1n0sedlPv2KLVawTK4EiV06i1az6frXkVjuVseWNNcQaGkn0DX/pci+i1eIjHjwnW+npjDBfP7W6rZWUr+tirwS1xKiXZpEPMGEuT1jx1cUZWUZ61ieYqCF0Osb+M/H4+RSHaHFZiFfrbBTFGWJ0nYGOFNPjFl6aJwDfmGRx3qJZPNmZZWzuuw03ruN1h+emHtjJW1UDlgBGO4eJxaJY1M9zLKT6gmcUomh/qXtYGxxjy/cVkpp3tOQSHOVbWL2RhXRtXfw0veCAGy/t4Ry3/NgJMDmQtTvxWtWcfxHnvTGmEb+/nGsuoY0Fje8L9Q7zNY7tnD+cPeMueCi6gIs3clOaRUWHVttFeN9C6/AXqpEOM5AcCfF+akdLqgoyuoiJYzF30WgtSfTodxE2Gz874k8AoFIpkNZkIc+dg8bD63PdBjKKpdNVaTK4qgyIGXFqdqxTiWBM0xVAivX6GpIYNZS7SCS3M4ETQerkcKCBAQmIhEHJEhJMOZg8PQc08gFxD2LHwJmLconMdy/4AtorrUFVK05BuH0n8jqpSUYE6Mz3u8IddO0bwPtx8Y5++wErqI9lNa5CB1OMNYThHkNVs5e8UCEko01+NoXP5k+dOYCO29bR8tFH9FAbMr9ngEfpXs34QiNE+odZk1jYUaSwADnT1Ww5a6MHFpRlBXAxE1392P4L3ZnOpQpQvXbGTzum3vDLOIqdHLw7bdlOgxFUVYAdQaorDjrX7OTF/7ftzETi6vWUZZOaCoJrEDZmmJ0XV0vzlZCVQIDoMkEkYstM95vsdvIq6olMDhzMk6rrGCoqIyQYSNhQrU5gntg/v19ndXliJ6FVQLby5zUbWuFwNiCHrcYUkJieGT2bUZ6WEsPjrvv5/zzE4Q8cUKezCQw00KAaSy92trX0smmLQ2cPjrMdMuQ20/0Ur6umDwg2tmN0EBm4O3MwIVRfHduoEBcXv6DK4qS84b8b8F/sTPTYUyl6/zk5XSMmEufgop8/uiFz6hWEIqipIQ6O1dWnMK6Mh763HszHcaqpqkksAJU1KsJxllNJYGT5hgdIKMxKusn+9xOt3nIVcqTTw5x+Jkejj7Xw+MnJeYCKq1troVdk9ddFtbeMQSBxVelLoTh3oHpm9/09MrA89jzVt7fVs3eJgKdAynZl+/iFXYeqqG0rmjW7WKeADsOrSFVfasX6mzf6zJyXEVRMkdKiOpbCOp3ktAqFrWPqL6RsVeW5/VpoRKN2xnon3lIXTZ66GP3qASwkjU0IbPqQ1k4VQmsrEhb33qQnlcuc+FbL2c6lFVJV0lgBTDiae5RqiyJqgS+Zu43kJFLrVTt2sGVQAFHzwRo2FhKXXdy8KFZWcVw/OaBZ/FoYs7k8o1ENDD97RYL7i2bMIMBIj39mLEYWASND8cQY63z3v9SGLY1RLw1wDyPZySobMyj+0wuVwFLKnc1oFt0EAIhwHNu/pXd8+E7e5mqHVsY6/EA4C52UliZT0mZg1hnN9fq1HynW9h8aAsXDy//kmrDVLUiqSYlRLQtWOQIVmavrleU5RbS9zFwsZFQx9WVKfoWCre/Fkehid3pw6G3Ykt0ELbsIRBcjzQFNmeQAu159KstfwxRRM/5nchEai6apZJeUMj/vjB7f/tslF+iEsCKoqSOSgIrK9aBX3gdF797dNFDXJTFU5XACkDXhX6MhJFMpChZZ6X1BNby8nGvq0qunZcSKU0wTYQjD/+ZC7PkeueXrLX0t1BUs5uIL8TZI0GCO7YT8EUZfnUMuDlBV7muBM3sml/gQpAYnDo0x1JcjLXQTfjcmeRmznyIRWl6xIE29sL89r1EEg3POTckFpZwttpzO3mYV1OKL8VJ3+kkElf/9gRUW30YfSME+6Zup/sn0KwaZnx538/YrLmXLMlmCYo59vg9GKEImx7dQJn+3UyHpCjEtHV4QofwdSQIdw8AN7QmMgy8pzqZvKRXefUDYPJ1S1h3UrC1DndZhPFWSaQn+xLACMHx+EZGhue3qiVbVK2voHxdWabDUBRlBVlZZ4CKcoOiteUU1Jbi7VaVFstNDYZTACLBGP3tI9RtrMp0KMp0LCvrLYCwWoi3n532vvwdu/Cfvsh0PVjnu9JexmKUdb7CRw8UMVy0kW//sB9zhscaCZNYaQU2z3Dya4uNcEkNecOdU7Z11laA5+aEo2PdWkzPOLHuG5LLAtY+UoJl7In5BZwK0gRjMb0Tc3t5Xn51MZ7h4bQfxx4LsPFAPQ6Lie/0zH2pg50DbGosQy+vYGw0wsDlEaSR/p9xY8XxtB9jJYmLEizm+PUBjx7uQSdEPscAiGl1GKHkEMci/bnrjzNxoJH+4Y6Kco1BAQHuwdNbiO98N8ipFyIXQsYTeE9dIZvXf0TX7+bIN3MnAWyxW/jI372X2x7dhabl9oVVZeUQTPtOOqOyLZ5csLLOABXlFhse3sXxf/pppsNYdeQClkEripIZQqywk4rEzFWL8UunyN+5F//p8zfdLux2ZkpYCosFOc0+DY+HUs8rfPCx3Xz529O3cRi6MkZkbRk2zzDe6mZ+fE7Dez7Iz+4uxBq6+TTZXlIAnsmv3Vs3E73cOuXYVXcV4/B+e8bvMR2EAOFwIcPBBT1urC+apoiWh2B5Km79bcnES2we24b7R6F/FDuwpbmC8xdDaY0NwK7lTsJkOfg4gIkduxjCKW9O2gfEPk5+p5K6e8opLOxjsGsdIyd6cK9tYu3uSgZaK/C2TFZYtl5+GxaHwN8dIDLsYe9b23Gal5b7W1JWmIRWhmaG0Zj5OTug3U3nU1Zk1MNNLz4rmF5QyDeezI0LLXvfuIND79xPRUMZtZuqMx2OoigrkEoCKyvahtfuVkngDDBnKo9TVp2E6gucvVZY2xZpzPG3Ns3wCBmNImaoIRA267RJ4Gusl09y152388KL49Pe7wiOEi0o43uvSoKeZLL4+fgG7rWcQU9Mpv2ur5zQBHnbtl5v/3Cjwp2NOOPPzxhLOmkOF8YCksDCmYenP0Qu12bExrK5ng1CvcNYbIUkYul9fh2NbKXQuTy9p7Odl7s4+/1izFgca8E2dr8mgkN2YuDCxEXbme3IxADdTw0COtBD3vq1RIeGaflugpuW2AMTZ28emmWRKuGuLI0pXLQfu4O4x0fe+hqsBTqC5GVO3WqSX9hOwiim96kYMprbF+oWqit/E17v9K/V2aJ2czV3v+8A93zgEDanbe4HKIqiLJJKAisrWklj5dwbKSlnqkpg5SrPkA+21WY6DGUaK6EnsG1NLbbSYgQSpEH88swnefG20+Tt3E3wYisyNtniQGoz9Kyex9PYNnGJM4XVeL1TWyYMF6/nZEuQoGfs+m2Xzwyy7/61FAxcRnfZKGyswlFkIZafh72ibNoEcN7GOiwjJxFly1+5beqFGJ7RBT1GljWQywlgAFtJAcHe9LeDWIrKpjL6Lg6l9RiX2htp3AqrucNTSGzl8tnb8bYOwNVxfXFfkJNP3Iar+n58bUNXZ0/c3AO1aMdGfBcuwTznUrR3PYYZlxRUxVjj/mqKvwtlpTGxY2ilgAlIYqKJwZZ6YiPJpuL+i1MHSY5gAfzLGme2OHoq/SsnlmL7g5v5+X/9WewulfxVsp82TVGFklty/wxQUWZhy3NQ3FjJREd6T5SUm6kcsHKNb3xhy8iVZbQCegJbS4pIXJpn31LDIHHpOM7iYvTqZiL9I8SHh0HOUAk8j0ppY2KCt9+/hn/+doxric/iuhLyqot55qV+gp7wlMcM2SvYvD9KvKsds/ssMlyObtWJXumYsq2rvhJH+BIyEScTidWY/RDImXvVTidEMTmfaMiBCyTFIkCwugDPgC9tx7j80jA7Nj5ArfWptB0j2/X03oG3dWq/1LgviNc3/etb8e7NeE5eWFDyfPT41dYgvkrW7F5UqMoqICV4xSMMvmISn7h1xcI0UyUV9KIiBs9kbyuI/W/ew0f+/r1YbNn/uqMoysqgnm2UFU0Iwe2feJif/PpXMh3KqrKKi4aUW1w528e+h7dx8Ug7dpeNLYearg+4kFJy9MfnOPHTC7z1Uw9SubY0w9GuLiLHB404mhrREmEWuiDe9E1g+k6gA/bNm4jo0/8cpGGArsMcbSa0y2d596P7+K/veqjf18jFY10YHVMrkivqinhs2zgV4z8iesPd8ZHph5faKopwWQeQ/muJpuXpU3tNPO9OgscW3grA78/tt5blO9YycXJhie9MCPYMUe5ycHSzmxLNgdWQ5A3H0MdTm+wYDayjtjilu8w4L3czMryR8IQkMhpGs+kIXcNZZqNiTT/F4gk0EcPEiqd9/hc0NIeN/KY6vKcWlgC+kTQlHu5nYryBeETDnpfAYklgGBYK8rspYvUm5FcDQ5SQ0MqwJS5d/xuSEkL6XQQC9QT7DYJtKtm7IKaJpoG5vC+h83Lfz9zBe//0bWgzvA9RFEVJh9x+p64o87D50X2c/MozDJ2bujRKSQ9VCKxc862/epLv/t3TGInku++G7bXsuKcZu9PG2Rcuc/HlZPXjcNcYn/3Wz2cy1NUnx5PAVpeFeNvU9gkLkehswbaxCFdTPUITCCHQHRaceRE0EpjoJAwXEW+ccN8ohj+A5nRghm9OtDVVjvL291XxL1+eppq3wEFRqYt3r72Ac3xsyv3TseS5KCyLYI7emExevjNYw7kZ/6nRRS3rcLmy8Ex7AeKB3OmVmQhFeKm/i9FRDwBWq4W7btvBBmsR+R1+RHzpvwuvLx9WUBI4ItZx7oclGOHeKfcFrsDIMbDkvwlrnoPoeAAz6pnXfm0lhdjyXfgvtC0pvmDXMOe6bExX1Zm/vo6iHUvavZKlPDzC4DFJfMwDgKVwA3qeA2uenehYgPjoBKDOYxbD8Pk4dGATLx7Orr7bb/z0a3jzb71+ci6AouQCIRHZ1g4i2+LJASoJrKx4QtPY/s47VBJ4Oal+EMoNriWAIVkZfOXs1JPbk0+1EPSGcRc6lzO0VU3M1As3R0jNeu1fuLdvRFg04p4Q0SsLe663W0NU6i9O3hC5+nGDfEBWATU6QhqYFjemsxypJ/9etcApyrvqePCezTz53M1VwI/cbac2cB5neH5DaYTNQskGO0bf5VvuWb6kfWisFhlrX7bjZRNPxyBl6yqyvifwNe/ds52/fuIFAOLxBE8feZWngbKyYj5Qthl9YmlJ7Tz31JYmuaxn8KFpE8A3SvhDJPzz7yHqqq/GDAYJdffPvfESxLzZu6RdmZ0pXATFAQwjD10Pk2c8hRAmhsjDE389A8+NIOOTg0gTXh8Jr4/cuSSV3XZW+Hhx7s2Wzbv+6DFe84n7Mh2GoiirlEoCK6vCpjft4/TXXmDk4uxv/JXUUClgZaGklDzx1cO8+ZMPZDqU1UPP7SQwEvTCAtwbSpA9RwCwrbmT6JXUHcLEiml1Y4l7kktzZbI1hJYIovkn+4GGy+4l4e1ht+0ktgd286OnJhO+5dG+KQlge5ULI2yQ8N5yii+gfFcFRuc0Fc5ieZLACfceYhcWnwDuOJ+Ye6MsZysvyZkkcEdk+iTt6OgEE9vtlC0xCWyxTB16OB9RUY3f2IFAEgxXEvK7aaz6Jjamb3+yXPx9i/t+ZlKwpYlgRzcyGkvpfqcTHfUS0dbjMJdWbbwcTGnBw2sIRhoZb4+wbdt/oxNY8H6khJDlIBI7VnoJJbYSC+djxDXCwzGEgPLmUfKMJ7NygKGU4OURBo4kSHj9QLIaNX/beyioijJ8Kkp8dGD2nShLJjta2LJ1LxfOp6+H+nwITfChv3oXd73nQEbjUBRldVNJYGVVsOU5eM83f4OvvP6P8XTmxoldTlNZYGURvvw736H7wgAf/MNHKSrPz3Q4K57IwcFwwm6nfH8xhMbAOId0jyB7bsj6agt/8pFy5j7mGnFEzEPCWogUOnoigCanJntMmfxZyliMLeOv0PD2Pfz9//oAgSs09TVnzV0h9FALQXEn4cHrB8NidWNcPjE1EKEhYvNrJbFU0UgN1xIVC7ZmC2Onc38YpFwhq1muhDwUl7gwnRYMq8DW7UdbQIcIZ5GTdQWL60F74cKjjJ65VhnrBbyEtr+V3Zv/8XqyLii2IrGQJ08v6hgLZWIl2Ju6/0dFuzbjPX0RsVxveqTk9JO7qNp7F0KT2GxhfKMFxIMmpesCmIYFu92HrgWxaaO4zKW1y1lciDpDsXfi91QQvdyKDJzGWlGFj4MU89N57ychSvEbd+Efysd7uhMwgGpg/OrHpGAb2MofxZLvJBGI4KzOp7h2ALc8jCbnX9GdSqZw4ZMPMNriJNw1NcnrP9eF/1wGAlvF6qqsXDifueNbbDof+9IH2fuGnZkLQlGWSLCc69LmJwuv/2W93DsDVJRF0m0Wmh7Yzol/UUM10m2lnEAry++p/3yFDXvX8vqP3JXpUFY8YbVlOoRFMJE90yRJr0v9c48QYEncOoX9lm1uyaw5217lk2/fxfde1TF1GyQmqzVLbitDn/gBAG5+gLsoeXui+EG8z80wkEzXQS5PhW18aPF9E7tHqlh0AjlrSGQ0dxZhb7U5KH3oDr5x5CSBwM0Jr2dfOcmzN267uYmHo2Vowfn9Lb32zV0UaIurOt245Wm8V/YQv6GtwtjZfnrWfoB691cJsIOj39tI5a4yttYtLgkcYAfdvXdQXDFCleWbiDkuAsXEmpuW3C9F0a7N+E5fWPaTz7gnQM9TN1bUJp+bJm5KKNoQljq2PVJMIc8tW2weeQ+jY7uJXr6C6Z18njaGB/H6d5NXcBrdHCehVWA1B2bsKxnVN9N5bCOx4TFgfkn72Mg4satF5rHhMbynwb3+Ueqan8dqLu8gtTHjbQwd9mMEPYBnWY+tzGzUs9Axsqljd9v55L9/mC13b8xYDIqiKNdkWyJfUdJqx7vuxFmcl+kwFEWZQd2mKh547+2ZDmNVEBbr3BtlG3P2JI9YzPC0FFy00uTUpKG97RTvKDmNu6EJbvhZl66dOjzOLL0b73Oz9LFIxDHc6Z8IZdjWYAwvrq+pWb+HtqO5ngCG2n3r8V7szHQY81bTO87+K6P8/ubNc257/mI7Z6vnlwgpayyh3vaTRcflkpc4+Prn2fD6kptuv/RjH73hd3Pqud0YoSgj5yYIiu3X7zdw0On/GU5d/jjtEx/BlJNta0KimVcvfJyB2NuIsJYzL+2l76U+zn07xuWxj84Zkyd626K/n1sJAXqeK2X7SzWZMGh9rmrZRjS0dH+UwY5NhI+fwPRO7X/ue/Ekl4/fTevZd9D2yn56Ax+bsk1U30zf+Ae4/HjV1QTw0gTbemn96UbGE29f8r7mQ0pBv+cD9P90CCOYmQpkZWZtbZlZpeIudvHr3/4FlQBWFCVrqEpgZVUpbqjk0S9+jK+/+y+RRm5PMM9mqhBYWazm29Zhd+ZihWruycV2ENKYK4G1iHYQcySW50Mzpj/hl4kEgTPncNStwUIEuzuE8L588zale5l4bpC5FrQljBosnFxyrDPu37UDf6vGtcrCBRGCC+ddQG63gqjZt57xkzNUY2cpS2Jh1W1Pv3KSHSU7Z5xIX721jHsPvkihdnHJsdnpx26/uQ+sNEwufi/Itb+VuC/E0R9sYcP923A7+7hycQtjV9tIjAD5b30DFZbvAdDR+QBjZ/sYOwuwkxurRLufG6bsrQ9QIm5e7WVIJyPxNzHaVcj4NENJF2vi5EUKmusJXO5K2T5TLTbmJaxtxyXPpv1YpTWjjJ6d+bVbCDBGhq5/7XlpDG3/BxA6xAMmZswkcKkXZAqbugMyHqfvqSHid70PmyNI2JdPIiwpru3DbbyIJibb+xgin5HAo5TkH8VmXrp5P5JZew7HtGYGuvfjO5fa+JXUefiefL7+vfkNaE2V4upCPv2Nn6d2Y9WyHldR0kmbYRWHkjty7wxQUZaoZk8TTQ/uoO3xU5kORVGUW5x/sY1oOKYSwcshFwfDmXNcvJMLX+6ZioFOgtmXmEd6+hBWnTXvtN7czrJoMxOHQ3N/X0Ck9Qq2xkI0YxFJ2jkk3PvxnQshw/5FPd6o38vw93I1ASyp3tOEGQoxkWMJ4Bs5fCEO7tnCkVcvzLrd2voaRHDmbFbIE8cuxpkwdgImpfopLGJxVY0BsZPz35u7/UIiEObi9wCKgJsr0T0T1VSUg4/bGTg6c5W6NExOfqeQ5te+j1L3USx46B57lInLCcK9g8Di/rZno7uytxL4mrazt7Fp+xgWcxhNLK4VhkEe7b3vxuoyceb50YRBLOoGQLckKHa+QiRWQXy4ZUHtMcaPLlPCVEqGn7+WrB8FwHsahPUOnPWV5K/RKXIfYSJwkJEXupgoWE/xzv3kF3SgEcXn38zIKwPYiguwl7nJrw7jsrUTjGwkkbASD2pMnOwGI3svCChQ2vkK7350P1///sR8XnKXrKKhjF/75s9TVl+a/oMpiqIsgEoCK6tS8+v20Pn8BRLh9E9zXo2kmgynLNJg5yhf/ez3+ejn35rW40hfK+aJ34BgF6LyXkTzxxGFm9J6zGwzUyVgdhOgWcCcKZmx8DO7WHcHlvJCiCwhuTpn8lmy5R1h9PFnJm8q3IDntB0ZDcz8sBv3EAkSdx7EHlj8Ev1p9ysFwW4bMjyyuB0IQcsFJzC/72M5uOvK0R12/J0DyPjsv5ua29Yzcap1mSJLH90weVfUSnBLE2cutE+7jcNh442ljRCc+Xdldei0jT/A0Z+YCE2wft8BtjW8TImlhbgoxSUvzyseaQrOvrIXaYwu6vu5pv+ED/sdH6LnuAmmZ9ZtzViClu/7gGvP5UOU7l4P/cPzutCyEELXiKagZUEqXai5HZsuWd9z9PptvksDHL20A2HRKdtdw9r6p3DIZEuaqKhj2PcA/mELhdURyt1PYzX7b6p4lRK6x99JcERiNzxEdAtacTWm0EmE44QHxxivez0MdyJkbq2wk/EEofY+Qu0wRC3QDUDC52fkBT8j6IALSCZ3o4OjRAdH8Z0DyOfWCxZK9iu+cpRfuLOIoaKN/E8aq4LX7qzjV/77YxSoIceKomQhlQRWVqWNb9jLK3/3Y8bapk7sVVJA5YCVJXjqP1/mDR+9i5r1FWk7hvn8u8GfTGZIfzuy7V9gzZvQmj4E5QcQ1oK0HTtr5GQSGNBnSQIvJglhJJDl2xE9Ly06JGkaSKHNmASpf30J+sR3J7cv28/E4QAysrDEqTZHxfFiJPIPkri4yGXyQiNSd4ih72dJAlgIinduYPDV5DAzR3EeWjiEGZv+51a2pQ5fy8pZvm2NxnlfSRGfdTkIhSJT7n/dgX3YLgYwXVZOVETpGxtjaHiM27ZsZPewFS2YYLR9nBev5pC3PVDG/vU/ovX8PZy9WEleXQkHbp9fEjig7SbQvbQEMEDcG+TSjxZWZV66u/nq05skPjqGsOjIWGoTlNIwCQ2OktdUT6i9O6X7XoxISSXPP52MI/81O6jsPnPT/TJhMHKsh5Fjzdgr9oOE6IgHGARg/DRcYQfOmvvYfPA0LnkOU1q43PMzjJ0ZpLjWRWJ0OLmzocnkpxMwL6tkqJI7DI+HMs8rvPHhA/zgJ6m/kLP57mZ+8SsfxpnvSPm+FSUb5OjZg3IDlQRWViVpmMSCU0+QFEXJvJAvwhd+9X/4o+/+YtqOIbb+OvLYL4MRnryx9/uYvd9P/tu1BlG6D7HtNxFFW9MWR0ZpOTobVpu5jcVi35iGz53D1bwVhs4v6HGG5uKc52G0oCDsjlNeGIW+tpu2ca/No8jyU67lbxMlD+J9+sqCo3Vs24bF/6OUv/uO+oqAxV0QjdYd5PD3l6ENhNWCpaIM4XQSsroJBhJUl1twEEOGo2hWC8JqIeINX08AA0QmApRtqMLfPjVJVXNb04qoAL5V3niAD965jy888cKU+9qGh4g0l/LSmXP4rkwm7p9++VW6Gut4YNN68tsCaIlkwjQeE4z6DzB+Lvn3YXFO/t8blw9w6XgDeRVWdKukqGyUats3rt8fNcvS9S3OSlh0/GfOp+0al+504KqvJtQ9gBGOILLgdFhKOC3XAj0AfOeno+w+uJ/KPBNPVMdmgVI9TKFvALtnhOiwZ8Z9hfvHOP2TDZRsPoivy4+tUFC8rpBEr2p1oKwsa4ePs3fPbk686knZPvc9upuP/MP7sNpVikVRlOylnqGUVUmz6Lzjvz7NV173R6olRBqoQmBlqc4+d4neS4OsaU7PMA2t4d0YV74GQ89Ov0GoFxnqRfb9EHHwS2j1b0lLHJkkcrEnMCTbQcxksVMppUTqthnTOSYaCAsxexWaGcEWS1bEdYrXM3q+9/p2fqB0y17y80Eb6QTvGBW7LGDEQbcT0e8m+Ow8E8BC4NyxFavWgUiMosV+mPIEsOHcTPTEAgeAWWz4Kg4xMSJo//4E6a4JsWzcwMULHsLnAkAAoY2yfXM+nuOD83u8a2o1ltAF4b7hFEc6P45N64liw2bTiJ45l5ZjbBzw0Liulitd/cgb/k+cvdDGWdqmfUx7Rw/tHT04nHbecGAfu702GmoitD3uub5NaDhEnFIscoyu1g34O/rxJzsLYByopXotyfvNcfL1s2jWg5jx1Fevz8ZVU06ivydt+5fSJD7hQWBQtH3DsvRWN8qriRRWEjIE0jAQSISUJISF0ZidKz0h+o5Mfs9SSl49PN3PwMKa9dvZ1OCkRPoJ6068cSu1jJPf38ZI/Q4uj1tpKDXpHzZwVtdSOHqJCUclx2Jr8IyFObjLTYU5Sl5wCGdoeYdsKUoqyUSCQ4WXOEFqVp3tft12fu6L70e35Oh7K0VRVg2VBFZWrcI1pez+wL0c++ITmQ5lxakrs1Nxb9NkakAA1yYry5tvg5mTxpLJnI5gcvW6vPq1IeH86X4CnvD0O1BylmlKHv/yYT78/6U++SqliXz1N2dOAN8USAx55CNIVy2i7PaUx5JRs1TUZjOh6TNfaJpnO4i4qxKjqB6nLYahORjtA4fHSRUnp2zb7XgLA5ej6FadwKAHIxyjas89lJSGGDjhmbL92IVuxgCETvXe27nygxOsed1bsHoHiHXM3nrg2gR6raCEvA06euCH8/p+Fis0UQfMb3n/9cdUHeD4D6/1T05zAriyjNMnhjFu6OsrTYnIc897H5rVOuW2sq31BGbom5tuEWmj72QnAI0ba4j2pH4pvS0c49O6m/j27fzZ2CB9C0h4R8JRvvnMi5Q8fAc1j9+caI+O+Tj+8qNY3VYmLtwct2aRGLg49tIjFNY72FD3DRwVBYT6ljdR6CgrIJDO7gSmxFlTiZkoxXfhMpjpu+ydqFxDj6im7UQvMIRzYx3njg9SWOqirqEUt9tKLGYy2u+Z9z5720bpvX4dYPJxQlQjW5J/JzdfmrDftN0PBnwAHLxnB3fz7EK/JUXJKobXCylIAt/+lj18+O/fpxLAyoonAE1kV7lX5tfj5B6VBFZWtYZ7tqokcDqcb8O+TIc60FzDlVARteVOPGGT0eEARcVOwuE4Vy7Mr1JMyU6e4dRPcweg78fIS/84/+3NOOYL70F7wwmErSg9MWWAyNEk8KyVwPMYDDdWcR/nnp+gfEs1su081waaOcqLqFwDUdc6fPomooYDw9C58uLQlGrGwVd7mPPZRUoGjndQcfshWi7GCftr8Q34sdit6DYd3aZjsWroFoEQ4BkIEhr2Urevir3V/4MeSG+latx9kNiFhSWAAbo70hDMdISg3yjAiE/9OXgiOvPtthj23tyuonxrPeErvTNsnX4R/2QrqrC9ACH7F926wBAwVFfGT0ZHeVNxCVJA8YgfazSOJgS2YIR9G9YuKAl8zZefOMLdt+8kPu676fZA1/R9fvsODzBW+lYiI2MEe6Gfg8DKqBTVXQ6Mqz2WzViciVMtABTv3oz31IWUH88sLKHL2XQ1+Tv5t5rntnHo3iYmLvYQbu3h2uXvnbc14vVGaD2z+Oy3nOcqivwSFx/aPoTD/9yij6Uo2eVaacniPPCRu3j3n7wFLVdbbCmKsuqoJLCyqhWtS9/gKWV5JDr7qQMYhhKSH9eG1DduLyVSWoonEMdu13FaNewymcx5+jnV3y7b7bp/09wbzUAmQpjf25Ls7bvmjYgNH0HYkz0qZXgRJ8qRYeT5/4fY/blFx5RtcrcdxMxxy6snchJBwlmKqTvRzDiWYDJl66m8m3PPTyATJvKWCr7IiIdzpe/A1+Yh5g1gxj1LDrVw23p6jndhROPz2r50QzkHGv4ebZamOlLYMF1NgAWpWRFYkEIHrEh0QEdKHRBXl1NoVxM8AqxWzIiBGYfouc6Ff0MWKyOty9ADGBBbtjD44tTn6XW76nCN9mJM85jpTFzup7ShEn/nENW3NRHq7MMIR2/axlKYh7O+Bt+ZS2mfl2gakxcqBs50s37/ZsLnLiLsNmR0fu2pInkOLpbn83hLG91PJ/saH796nxCC6uoyqkqLCUYitD57aVFxJkyTYGUptluSwDMyJZER79zbpUnZ3o2Y4RCBCyns8ywEzsoSYuMe8tbXYXE6QQiErmEmDMxYnLyNDQRaUzNc0BSCQNMeTh0fIxqceqFi5NXpq9fHTnVQtb2O5ehwLU2Jyz+0DEdSlOz3yK8/zKO/8TAiVwftKoqyKqkksLKq5VUUUrG1juHz6esfp2SOMTSGdWiM8htuMwG2rM9QRMp8HXxkJ/e/Z/+iHy8sLsRtf4E8/mvIs59Dtn8F7cEnEO46EItLfspLX0Bu+Agir2HRcWWVXE0Ci6nVNjFLGV2JBxk9JoiFNhMeDxAPTFZcuqs3IoQgcH6yMtE0JbfuyWK1EhmdZ9JrFlJC0Z4tDBxbWKVtZaOJps1ekReO30n89MIreAH0xt1EWxY2/O5GoqyeeGR+LTeWwlJTycmXuqePQRcY/oUlohNSo3jXBrqOtSMsGtUNtYS6+q7f76yroedEJ5U7N6LpAosu8J1pQSy2x/QM9KICPN03V9J2nunHXV6Pt2eUpt11RFpnb1OhuV3E19TztZ/+hGA0OuV+KSX9/SP0948sOd7nR8Z4cMl7Sa/i7U3EgxH851sgkeL+w1IS9fgp3LoB76kF9s5eALOwmGB5I21dUUafW1w1r7d7+grtVKisL2LrRjc1Fh+F4UFY+lOkomSNuno3Pd2hBT/u3X/yFh76uXvSEJGiZDeRZe0glIVTSWBl1ave3aiSwKtM0FBX7LPZmz5+Dx/6o0fnVVkhpURe+kdEfhNU3o3QJxeJa/VvQda+EcaOYl76IubJ30a/899h5MjiAjPjyHN/ijjwxcU9PsvkaiXw2eGHCHlimAmJaUiMuIGvz4MZm7k6LTgwgdBu/nuKByNT2tYEL7ZSvaeZgVeX1vOgcNfmBSeAAWz2qZWgpq0UaakAzQYIzL4lVOIusVopYS8F5lfVvBSxonKk7Jz2vjyHYKHjXL2dQ3g7k38fMmGScLrJ37mJcGcfjoY6jAkvus3C0OnJis7STQ0YnZ1gpi7prdXVI/tv/ttKROJ4e5IJvPZTgzTt30LkQisYk7XOer4bbV0DIV8UI24gB3z8n0MP8LkjTxOIREiXF1qu8GB52eIHLqaZo6KEWH8/9uoK4qlOAF9lRmJMnGqlcMsGzISBxeXAd/4SMgUD76SuM1J/G2cO9yAvLK2RcfH6auhNfa8WZ76dA9vslCcGKBlMf6W8oiy3u/bY+Vp3kPm2hNB0jQ//7Xs4+I596Q1MURQlTVQSWFn1Nr5hL6f/Q/U2W00mPOk7aVaWRtME7/u9N2G1Tx3mNK3RI8hXfyPZ0e22v0Rs+MhNdwvdhizZg9b8ccwX34d57vPIrv9ddHyy87+R2z6zMqqB9dx8CzDaGcDfM7bgx93a/sHXNcya7Q1E2ycTfzJhEDx/kTW3b6H3lTYW0yfQva6GwRNtc284jfK8yaX7Eo14/kOEz7VDPLCo/U2xxAxOR4cLSP2S/2sD8a6ZLUwttPSfxfCZzskvRtqw5bswEzc3mBhr6aVm70aCZ1uuByhmadMxF83hoP/cHIk+KWl/pRPd5ka3Wa5PTY2PxpBDtyT4Bjz8zqH7+eOXnpq2IjgVesY8WLdvJD6QvirTpXBXFxM4P0TCm+bSVCnxnp/8P+2srURIk8jA4vp2S00n2LiDC5fCeF+cvuJ9IfI21/PCs+lp1h32R/nuj4bYvKea1+SN4giujD7PinJNUcdRPvmmRk5NlPHCi+PM9rpvdVj5xD9/iF0Pb1u+ABVFUVIsN88AFSWFShorMx2CsoykhMGeiUyHoczANCV/8p5/4lf/5UMUlefP/YDw5Em47P0+svH9CN2ODPYie76NbPsyMthNwlqHSQW2c/8fQs63m+g0pIm89EXEnj9d/D6yhLDk5lsALYUVzD6/mHaIpe/UBdbs3Ujf6W5kYoGVoE43sPCl+NY8ByXycLKfceHdRHujGG2pHjq1tCRwcYVGqtfN6OUl9MTyqfH3XK+6NWb4ka/bXUekI/WdT2P+6ZcC959op3BtLbY8BzaXjeDpxf8+rM3rib08v0SdEUtgxOauNA20DPB/br+PHlucH5w5Q/fw0ltA3MpXnI8zS5PAsZHMxBXuG8JZWznl4sVMTJebREkVMXsBAcPGldZxAs+lZnBtxaYaXj629ETybHSrzn2FV3B4VQJYWZmMrg6208Gu+8owiivpC+fz/cfHbloI4siz88v/+XNsvEO1lFNWt9nmVii5ITfPABUlhZzFblxlBYRS0AdSyX56oZtAW3juDZWMOf3sJT7zmr/k01/6ANWN5XRd6GfDnrXYXbapG9c9imj6GczOr3P0RCXO1l8lv9BCPDDGle4Czpy+mxNHEkSjyTP1f/jCGqq1J5YUn+z+FqyEJHCOtoPQLKlbjxzoHcU+zZ8VgO9cKzVbmxi4MIAZn9+FA2dtBSNnOxcVixACM28T4cFijPb0VPUtVUFe6ldRmBXVjL7Yxdp9a4m1dWLZspFzr0yf1HI5LfMeCJcq3q7khSZXRRH5laVEhxZehW6vr6HzeGeKI0sKtA1RDHxiyz5+a/hHKd//P756nl9xuFK+31SIjWXugm64b4j89WsJts88ZNbULQzU7uXCkW4gdPUjdSx2Cx0DobR36zDiBl86ksfBO+5lu9FKnm8gvQdUlAwxxkZhbJRa4GfevJt/+aYfEOSVuvnV//kEa3fWZTpERVGUJVNJYGXVE5pG3cFmWr9/fO6NlZynlRVDmzqByXb97SP82v1/fv3re9+5j09/6QNTthNCIHf8Ht/+dgn//vfXkjMGUHTDvyeTht6gm+p5FBjPKjyAjPsR1qXuKLNytxJ46mC4W1Vur6ao3OTKcT8x38yJF3OmktOr/C3t1OzcSO+8EngSS3ExdC0uMWXLsxELr8UYSnX1b5Jes57o5cUPhQOW1A5hJlpyXCenTo/jKqjE/1LvTfdXbqjAO+gj4o9gEeayJ4GvCQ17iLnsVO3cTOD0woaEicIizIQnPYFdNeZIz8C+7pEJqMu+JHDR1kbCramvCp83IWCG4TjSYiW6ppkrEzZ6j6SnSle36uRtrKP1pStzb5wC8UiC55/q5Vh+CT9zm06+t3fuBylKDrNfPskbXnuAI+cMfvUbP0/1BrVyVFGUlSE3zwAVJcVKGqsyHYKyTBJOx9wbKVnn2a8fI6/IRdOuNdRuqKRxxxpsjmTfYM1RRvX+R+Hv/3XO/YTCNlhq7lbooE3XRCDH5GhP4PkMDNy89hwRSunLK541CYyUSGbv9eo7dwmEjZk2qd1dS549BhYrp55ffAVv4x6BGVjC0LdZ6GuaiQ0MQXxpQ90CEQeQumpgvbyEKx1+AIyYgX/05n6/mw81INsuU1FTgM+xBhFJbSXlQiVCUQbP9+Ke42/mVjLdPWuBcJoGo3lDEXSnHSOcnr7DZXs34rnUQ2KGlhy3ErpOya71BM6m52LJdBzbthC25QMCJMQMwbhPcrY3SEFVFXkucGpxJAJfzErb6UFiXelrnVBzWyNnzw1xaZkSwDcK+6MMOOvJ9/bOux2GouSqDdUm937+lyldU5LpUBQla6jn/dyXm2eAipJi9nyVGFwtQoZ65cpVP/ji5ADHz/3wl9h+14brX+977Vasdgvx6OyJEK/PChVLDMRagNBn6CGQQ3K1HYTQ5v4/HKKSYLSYQP/cPVLtNVXE+mdZHSAlmkW/2hJCcmNlecWmSuzjV4j4/CSa9iCXUIxZX/gM5ljR4ncwi/jIGDK8tASzKK3l3Iv+FEUElqoK2j1WvAOeae/fckcDxrlk5XJscBQHoylMPy9eXmUxste/oPbK8eFRYO4K9qWoTd2vZopQQw32C6lPOGo2C4GLrdgcdgr3NOO52DVjstldV4mzoojY0BCB0+dSHstM5J7b+cnjvRjx6ZO6ixsNNzdN16jatQ4pBMOnOzGutqSp2bWOF5/tSHsLiNk8eyKMf+c9HD/lZef2Ig5MPJu5YBQlTVzrm9jwO5/CWlyU6VAURVFSSiWBFQUoblBLfFYLjzc91UzK8vnZP3kz2+/agJSSgfYRyutLsLtslNUWM9Axe9JvbMwCS53pUbBh7m1ygMj6SmCJsFgQVh1htaJZNISmU2g30Jud6FaBxSrQLMmiZov12meBtAjqqiZwvtGFpkk0XSY/axKhSTQhEUiEkFisQYTpAiSaMNBEAoGR/JAJkAYjgVJOft/Pztfn03XeSqllDDMUwhwawwCsZaW0HFtamxkbHiIxZ0p+cjcS7kLMCe+S93H8Qj3xUGrSsFLCoCzAOzDzcCx9YjRjrR9mE/EGcec5MYLz7y1va26Cl9NbtWnOcQFsKf7h1fN82p2PNFL7GzFjCfK2N+M/fZ7AmfPoQuCuLcNWWYERN4mOe7GXFqLJBP6LbSQGlrcFgX3nDp58euB6Ajbtx8uz4y4vwFFawPkLw1x+NrmyoKjcTcPGcjrbRml/oXNZYpnNxJCfJ59IXnV47qkAZyp3c99eBxsGj2Q4MkVJjbztW1n/uc9iyXNnOhRFUZSUy/YzQEVZFiWNKgm8GkgJg72eTIehLMGOe5p50yfuxTBM/vzD/8aL3zpJUUU+e1+zlbF+z5yPHx9bejWeyGta8j6WmxkKYcaiyFgUGY1c/3cmld+1Ds3XAtIA07z62QAzcfXz9ImXYs7Cujl2HgK6oTZFsVbqLTzwwduwjj+HWXMAX8vNfX+jJeuQRt+SjhF3bUdG0tA/VEtBBapp4B1cWgJYStC3bSFqaIwOBhhpmTkBDCCX2LoiXSLjfop2NWBcmF8/WolguMuT3qCA8LCXB3Zu56nTZ1O+77NdA0TevDUt1cCelm4sNisyFkdISXRohOjQ5MW80FA/sKDC65Rwr6/nxBVBLBRbluNV7G3i6IsdGAMjwM0XMz0jQU6OpKdVTCpMDPkpNNUFdmVlKLx9H42//1voDrVKVFFuJUSykCKbiCyLJxeoJLCiAAVrSimsK8Xbs/Cp30ru0Evz8bVk74mUMrv8Yhef+sf3oesal4538uK3TgLgGfbz1H+8zOseasAZCoAmAEHC5eaJ57uJhCcr5IYGU5BKqLpv6ftYZh0ffBMytjzJjPkSwoTA3O0asoG2dhfW7pfpG7sDX/vNyUtLYSEXjs2e0JyPxIAJRhqqOc0UDAxbYtW4paqcfqOAwRfnl+R2FbmIDY1mbd+5wVNXqG6qJNwzNOe29poK+tsWNyxwoZxWa9r2/aXTrfxSfh5mJLXPI4lghKK9zSAlRtwkMT5GbCjzzwtjZgF9LXP/flOhsLaYI8+2L8ux0sFd6ORrzxu85d7bqB9UQ5aV3FXywL2s+81Po+Xo4FxFUZT5UM9wisL8Bg0puU+UlZAsEVRy0YMfOEhZbTEA5XUlCCGQVxsj3n77GkRXH95bhoDdUSTI31qKXlpIVOqMR5d4Uu+qRVQ/uLR9ZIKWff1/kwPZsp9WvxPzyitQ2oDvqGfK/Ynq9RhtN1YBS3SLBroFYbOCpqFZLQiLnpymYSb/Zs1YHDMeRyZMQGI4irA4nMltdAtC15KPdTrR8tzoNkvyPnH9MFPKI6UhkabJtYahMmGCbiE+cXlJP4NY6SZg8ZV+PUYqUwABAABJREFUXlc5gyfmX+XsKnIhlidvumgR4USz2zCjsydFo31D1O7eQt/JzrTHdCCeT9k9d/Nvzz2f8n2/2tHDlTfey9rLPSnf98TFbqz5LiJD4zirSlO+//kwi8sw3QWIWIRgQQ3HX1haZf982Nx2hABHdQm0ZP4P3plnp7jCjcttw+3UcToEDivomiRmCF49MUbQO9kGpXFLBYWFVu6Vx4i6irH4lydprijpUP7oG6n/5McRqVg9oyiKksVUElhRrtr9wft49o+/kekwlDSKWXN/mFeuqK8vwum2IqVEStA0gX51oJcQoOsampgc8iU0gUVLJrg0IdB0gSbE9URvImGypr7o+v6LKwsoqS5krN9DZVUe5cFxwr5pEvxS4u8dhd5RANZuLlvS9yW2/RbCUb6kfWSCsNqQkfn3MF0e2Z8C1iqaMIdbZwzVUuAmn14O7o8gw0FkNDJZcd20ne/8wABMYLYK32Tluu6O4AhN01c4yrzzr4JpQrU6gaX1NfSFXPMP4hZSQufZhSXUnPl2yHxObFYTbf1U7W4kfK4Fa1E+Ce/0k9mEAIdtef7WwyM+akfgkw89yN/+9MmU7/8PfvAsX3rsAfSLnQt8pES3WTBi07d4MUIRdFuyitleWkh4dOmV9QsVKqvnlef6r361PL2HyzbW0D8S4vAzma0Crqgr4uFtcaoGT09W3yeAwM3b7dvk4lTBPp55qp/ahhLeZj+MuPq0YIupC+xK7qp+/7up+dD7VFGQosyDQLVfyHUqCawoV+16/72c/toLTHSoSoaVKhBVL1rLZV+TE8/F1FWM2YFY19rrXwcmQlgwqa4t4FCTE8+l+SWZIr4l9Bkt3Ir4/9n7zzBHsvQ8E75PRMAD6b3Pqsos77vaVXs7PT00QzfDISlSFEUjkRQps9RSK5HiJ+mTVteKS4my5EoUjSTukBL9cGz39LSp7qrq8j6r0nuHTHggIs7+QGalg0sLZPW5r0ZnIeLEiRdAIBDxnPc8b+cPbHz7IiKMEswELvGvo6jpwI6Mw4K4kXK2AsEVbSq6m0ncupy5g/vXaGw/w2h/YRY0Fts0lV9urqiVKK/hzkfh/A2zbS9gvfcLVUaCrSlBt72MXXqAu6qauakwDR11xIcnMrazd3jAo+zG9LYJwX/7y+/x7546SSrLa13EVe6hel8VLreGERrGHBvG0dzKTKySqdvLt5X4GyuIz6a/Z2Y0jq+rA4eI461wM3VvkuTs9ts4aXILbFPWQd2BJm7dnWZqdH5H97ucJ55t4ZhniMrJC4hx8o7LOVJRzkx/k+6XOvCGriFK07ZboVgXrT/9E9R/13cUOwyFQqHYMZQIrFAsoOkaR7/vad755/+r2KEotomZaZWpsnNsvegx+fFdrr93jyNnu/jm77zLURFEWjbBu4X3kYxs/K5VO/5LCG13/myKksyCL90pl6KqBRmbhdiCQKMZTNxeeUz797WSuHM1Zz+WWbiwZNrb9BmZSTJ6RxSAqG7i+uA+4vOZs1wLQa+qwJ4rXIjee6ad+N1bG97fThOfCeGrr8gqAAPomxTiN0LdWBK/2004vrVyeigWZzjgoW7Vck+1j6ZDabseISR2303kYLqQ3GIefGp4kHJ/EOP4PqLTMXw1XgLGLKmBO1AuMPbUIiriyHAQc2IMpmwaO/bQvwNZ4e7JAQyXFzOxDb7cy2g40gpuJ+8VOfsXIOCRVE31rPvUUD7Tty3xKBQ7iqbR+Qt/m+pXXyp2JAqFQrGj7M67WYVim3jsx16lrKWGP/vp3yh2KIotRkoYG5gpdhiKTTDXM8ql3/wqvV+7wuiXzyOt9WduJcMbFEQqj0PTpza2bSlQglMcpV2aqcCiqgVpRiG2pDzFq59n/qOlYlXO2kqM8ChWnqJr66nJZtnbeEnmcEKq8AEQEagkVnmYK++liMzkEYAdC3GnlsQzR3MDIV81U8PzBPvmCv6sdaeOe2okp3lGKeIMeJE5hEo7vPFM6o0Snw7xvz/3Cv/gK3+24T5+6pUjvNHkIorGVErQMxPn1796nX/0Z9/kP7z5PO3VNq7YOPgrsYZ6sO/kFzbtcAhP+BIegBF4eFRKiTk1AVMrxfRU/wP8LV2Eh7b391ubm+Hpk9V8dDNFfH7r89A1Q6P+RCfvvX2/RGZBSC5fnOTF7zxEYmQCT1MNpJIkQknMUJjUTLDYASoU24ZwOtn7y79IxZOPFzsUhWLXoZXeLYVinSgRWKFYRdfrJ2h+bC/DF4qfpaHYOoy6ChKTG89mU6yTbbpAmHnvGjPvbXx7w72xKfdi7w/vaq84oZegHYRdeu+nVtuJPTcE5jL/2+ouer80weJBrbmd+CsEqZH807gNR+GvMWVt32ckHAayUBG4aT/vvOUnFS9sCr7sPsDdS6NUtVTg8jiwTJvB6yOsMRQtZNfd9ZiDPevertgILY9DXpEKDUWvD/NLb3yGf/X21wjF1ids/ucffJzO/hvQCwGgHjgMfNv37WfCGaAuMYLWM7gg4hZe9G8jeGt82y4CA+hjA7R0HaXn4tZ6AgshKD/UzrslkP27yM99v5+K8Zskb0TQvV7iN0YertOFwHfiCNIWzF29XcQoFYqtR/f52PdPf4nAsSPFDkWhUCiKghKBFYpVCCHY9+oJJQI/alSWA0oE/qSjbdAbVzS9scWRFI6UEqQNiA1XrRZ66f3c77AFZ3485djxIPhqwFkGCEjMEqMdWMxOlFQdaCRxrzC7AodjHZ/XNmUHCn8tcqwAAVAI5hpe4PLX5rBShX84SRMSkQSjdzbnpy80QZVX7gov4NVEJoLUHj8E8RjhO71r1gu9eNYn5pVh/k7LCYy9NfzHi+cYnJzKu82vfPZUWgDOgDY8QMNWB5kHj3dnBoy0ZIJGZ4jZtiqmt2jmUM2+esYjNhfeW3tcFA+JRySQ0fRAjx1dZZUlJfGb19ADAfSAD8PnJTE2maEfhWJ3YVRW0v0vfgXvvr3FDkWhUCiKRundFSoUJcDRz5+l9mAzb/2TP2D67kj+DRQlT7IkPVEfZUovyxMgFU2uexvpqMKenYSZibRyaVtgpcBKIm1zaZm00vP/bXPhYSHNODI8BeEpZGQSGZ8HywQ7hVz4i5VK+7ZaKaSdSvdlmwvtFh6LGG5weBAODzg9S/9+uMy74t96UyXC5Sdw2E1EKyc+NA9WScxFLi0R2FOO3nEK687XiVa+Sv+XFgXNWpYEYKh5bH/2QnCr0Btbmb9SuAWDLXxQfwI5dnnr3DscbuLJZpD5MxuF082lr85hr/P42KpYux9vJ37r5tZ0tsMkghGGzvdQ3l4HCAy/Byu8TFgr8iyCVCRB6uowP3nySX75618iZWX3KD7QXM1z0cGSqv2dun2J9qdPMtUbIjK6vQbBzv47HGlo5ZtbkNzsCrgZnE0x0ldaVlTVlU5cw7fzfsZWKIQD0N0S0VhHfDR3MUCFYidxNTbQ+tM/geZyoTmdaC4XwuVEczqJ3r3H/V/+ZyvaOxvq6f6X/xR3c1ORIlYodj8C0EQpXSGU6h1naaNEYIUiA06fm7anD/A9//Vn+OIP/hoz98eKHZJik0SSpfWDpSgOVtLEsl3oWiJ/4wUk7ST/Q/EygVdgxsGMp4uWLZDryNZO7UUGL1LmgrITwEkD6WnG0tqwU150RxiNGSQOpPAgpRNpO7FNB3ZKx4prWFEwIzbmfIrUXJJUMAbJzSu4peIJrLUcRfgqID6XXpDl4rby5F7kVB/upmqEw0AYGpquIR4+BEITadsQDabMWubz+ekuJ5EiMXAfveEoWll5OjbmYSJz8TkpgUATIhVFSguRzLCvusdIXihsOrdMxGg6EGDoRn6bi+VsVZKrKzRD4d/K0mSuf4KGE/uZeTBGzdEOdJlCSkkqVBr5zdHrw/zKEy8z4pd4NYPxeITfevudh+u/96ku/kazRI6PFjHKzKRuX6IcqDnWhvAGsDUXyZQgHowRvLe5LPTVjDsbgMFN9VHZVoOrrpzI0Pq+TzvBF153I/sK/7ZZc0H0gIW7pYH4kLoeVhQBIdBcTuz40nGbGB1j6i++QnJqmsYf/ByVZ596uC41Nb1ic3d7G93/5z/BWVuzYyErFApFqaJEYIUiB77acp78mU/zFz/3n4sdimKTTE9H8zf6BFBW4aa2xkdZmZMyv4NvvrO9Xo6lyNj80zRXvFVwe2mWbWM024vEv3KEXJqIaD8G/ennC/dTWUfRXQuPylXLdS/SUQ66H6n5kHiwbRfScmKbBnZSw0poyJQEPW2zg5BIE6KTDiL3w1ACIrDWdBDcPuzB66SqjjIydpbE7bWZhuXdtVSl3gHXgphnLTxy0Aj8tS9089XzXfTfzS8CRmJOqgFrrA9rmc7i6joMk2un5ovmp0jcvA6Asecw+sy5NW3iw8G8+10RQ7DwzOVFElswINByuInE0O7zAs7E2OUHAIxcXHo9LSfa8NYEiE4V35Io3DfJ4hmtGfj511/n33/ja/yvzx3F3X8PtlZP3XKmZhP82cA+KrzQO5pCSg/PHm2lsucWjlhhPtbLSfjKGa7qYDZlUOtIMmc7iM1t/tyUjMSZn3LQf6/0bBSmIgZV69zGCoUQiSSVJ/YTD4aJ9Q1vS2wKxXKcdbXs+aX/He+eTjSXCysWY/wP/5ix//b72PEEwfc+wNXSRMXTT67YTjiXZv/5DnTT9f//FYzy3Xstp1AoFFuJEoEVijzUH2lDdxpYyd1Wr1yxiJQwPrC9U0hLkRMnG9lbpYOUTFsGlW7B/JUeCIchDGUn9m3fzkuj/PmWIK3i+XluFhnfpmlSVhRhpQdWFvtf4basAZ6FxyrGZn+C27cNmvwdeKwyHF4HDo9Ad1homo0QFrpIYhBGt+fQzWn05BR5Sm+tG1HRBG4/cnoQ2XSKnv85gTTX7sNd66e27B5yA9mc2sRdXt83wIdVr3DlXCxnWzPLT4wtKlk8AqXmBE1DVOwhNbykFNuhIJrM4Dqgr+/Tb9zrZnY4d5yrcTo3//2o9tm70gu4EFrO7MW0KQkBOBO+G5P80mefx93/YbFDyUjC8PFn8glSFszMmdx8Z5TVWbp3rsPx03t5k8xZ84tYmk6kuglHIkJfWQeXH0TpuzGJlCv7O3iilc3IRY2P7V0oArf+4og7QVMgARvQpmUyQezmNTSPB0dlBanZ4JbHplAsp/57P4v/4IGHz3WPh6Yf/Dx13/4myYkJ9EAAzeHAjsbQfV7sVIq5c+eJ9Q8gHA6afvgHqPvst6N73EV8FQrFo8VWX48rdh4lAisUeajsqOPNX/tr/MlP/cdih6LYIEZNOfHJ0rwZ20721joJXk0XONSB1ZNSt9XSyS4lw9eVuIz1iTEysXsHgOxQCM1R7ChWMnYzHZCVMAn35vOqdQFNoLXgaqhDd2oYXif6gvAobYm0IdDgQJhRDD2GIecQMoVmzaGZEYQVQliJlQKpZiCqmsG20KqamR4RGQVggObjBnJwOuO6gkjFeaLum4w0nWVyJHumrZalZmHqwS2c+57FmpnBmh5Je0VPrRSt7MlhRIaMYaPcTyq/HfBDGt293KSi8A2AHPayhVNkz9ztwl3px4zEuH+t9LJBF5G25FC5l0BNF7GhCczZuWKH9BAbwf+IPs75c/mtGa5cHKLx1dOkLBifTVLud1DhEfSMxmmrd9PgSHB71uD8W4uzX/qy9jXwYJITFW7M8PqHJppO7+Fbb5VuYeFXnqugLNLHZn6h7VgM/+FuZoPBbStoqVB0/L2fo+aN1zKuM8oCGGWBNculaRH84EN8Xfs4/ge/ixFY20ahUCg+6SgRWKEogL0vH6W8tZq5zQgBiqIhqioo1Yyc7USurvi9irmr93nh+T1861v9WBu4I6ys8tDdVU1NhZN40ub8pTHmg+mbZrmRDncIyTozFxO7N0fRnhyDEqqBYtlugvfTgpiUsvAsZdsmNRciHs58TGuOA0Su9a1a6l941COcThwVARwBL4bPgeEQOIMGphSYpmRmQOA+Uo8dnscKhdB0neT4eFqblFswCBAL8eYrk/zWb1dkbZJKZXk3zCTJ25dzdi88fuRs79r3c50Z+XK8F8TJgoUdrTxA/43NeYR6yj1Yk4/mb2t8LsoYzpKfGVEdvADRETy6QaptL/GB4hTEtRHYmo5mW9yseoK3egzuXC98FOMvv9qbcfmda+uLIzIfx9FesS4RuG5/I2Hh4IP3+9a3sx2mq8GG+OaPx9iNK1QcPUSoZwgrunt/IxWlSeD0iawCcC50j5vO/+3ntyEihUKheHRQIrBCUQBC06jualIi8C4ltcwb7JNCWYWb+d485o5Sot+5z2dOViNrq9GR3B+NcfVKblGnvaOSU/WC+f4J6A8RX7CXfdynEThQi+bzEBss3SriKTODR0EOZCq5TZHsAPEoeBogVhrFfGbjTz30ArZNmyzJrxkR+npar0QmkyQnpklOLJ3Djfa9BKdtdCuOORtcM0y071PdOKODfNB3gsG7+zCTFjUtPpob41Q7Rnkw20lVWZx95X1oqTmwUpCKIKJTDxNb5TKLBufoRV548zO8/eeZ7RY2M26ildcg4muLeVnh9Vk7CH9lwQKw0drESNxDPLQ5E9nm7jpSd29tqo9S5eSLXj6+ULoDYgCNhxtwRy+mn1gmjkgvntNHmL83ijW/M4Ons/5m4oaP//hRgLmZCGWVXqbHi3e9dehkG7H+ws+ZekcjH1wovWJ6mfjGJYvvP+bakr7it2/i2XOQ8O3SzXxW7D7cba20/cxPFTsMhUKRBW1bp5IqdgIlAisUBXL257+NB29dL/mMHsVawslP3mdWW+tDhgq7gQ8PT8Nw+oa7Fnj15S6++vWVGVVtbRVMT0dwexwcL08x3x9c04+0bOb7Sryq0EbY7d95V1PJiMBjg4eB9ADBerPFta0azNF0RNcJJq73U9ZSlVHsaXumCaPnLWwgYZ4guFBgLTwZou8SpM2Ox3D6XVQ2Lxd/nGievWheD3YsjtB13K2NSCnBtmkoN3julRpCUUEibhOPW0QjFsmYiW64kEkNsWyitumqwjYCOCP9uV9TliTi9Yp4Mh6mus3H9ECeAltuNwPOWqaubk786X6yA27eBCFpPVKPZggSURMhoKksgkzEQWgIr4+EESCRlNz7aHRXTEHf95if9sRXmNj/Oe6+X5ozUYSucah+AJZb5qeSmPc+xgsYBzqITNkkp7bHU19KeLfiBX7/T4dJf6hp06Lp8eL6JyeSJoVOIm863cm33s6cgVyKfOaMRD7o27L+dLcTozyAGSqNYp+K3Y27vZUD/+ZfYfh9xQ5FoVAoHlmUCKxQFEjtwRZe+ZXP87V/+N+LHYpincwGP3lTFSsrXLDB+2j7xj0+/VoXf/GVB4AgUOaiKznF8b3lGF73rhd6ncY6K8indvfxI0Vge4rDbYDI7FI2r71MMNDrGqC6iVTCRNM1HKl5Un0PVmwrjI1nAi8iEVgthwlevAeAFijDd+wIAghduY4QUHe8Hu/E+w+3yebVC2Cn1hri2rEYdmwpAzdyM/1FTLadgrEpXOMjrMnD84AjdoBrd4+ju524a8rQnTpzN0dwVPip3X+E8LRJoFanPHUVKTSk7kaz4ggzhkzY6BkKwwn3OjP+LCstWOdAOhzcK2tn7M4kFYINC7IOjwPtQQ/Nh2upd8+SGEwX9VoU3xIza7dxAUefPcW1d4bZppKHG0Ty/Ge9uIwE8xEvliVo1i/DnKSxcoq7xQ4vAw0H6znYNEbZTHavBHOkD09ZJe6j3VjJFNK0iPYNbS5tfRFd42LNc/z+F4c339cW4vI6qavxY49O5WzXdKqT8Zn4rhKANQ3CpgP/FvaZuHkFA/Dt78JMSiL3B/Juo1Bkw3/4kBKAFQqFYptRIrBCsQ72vHwMlAi86xgf3J4splKkqtrL4yfr8cbCbKa8T+LqPb7rbCO9MYOJqSgkI0Qn5mBTvZYGAXfh2YtS+JCh0rW2KAQZLw25zLJdRMaXrDVs00ZKcB46zvjVAezeeyva1548CQO3kfG0oCqMzV+y6AdOMX1haT8zl5fkueqTh2F2kGp5DWkvibtaDgtpM2EiETkrJUuXl7naxxg618verhyKspnCTiSxE0lSc0uZo8npOYbfT3/v5u7AEOUP1xm1jUSMSgDis104fS6spEkiFMffUEZ5gwdfdRwNG0MkMOwIhhnGSM2ix6bRVpWHGix7hakRgRAxRBYxeKp9PzffSgtfe55qZ+baxkSfutZyDnf70HpvkJhMFLydvPUxp54/xqV3J5FW8TMPDYfglc+Ce/hrAHhXra+LXwRxvCRmFBhuJ92P19BhX8AVuQgZhPbV2POzMH/xoZN6WZUbrf0IwQt31rVvvTxAeWcVluZBzA4iLZMjvtIrmHf4RCv2Gn/xJZpO7+HChSHuf3P3iL+L1FQ7aZy8vC2J9In76fNqxcnjhHoGsELrHGxVKADvvj3FDkGhUORAIBElZgeR6xpckRklAisU68BfV86+147T85UrxQ5FUSiGTmR+d2dyFkpjU4DTVRax6/e2RKqduz9KFVC1BX2VCr7aAE698EEBm8fAurCNEW0/9nwYzZG/ndRcIBwgNECA5gSxIFoKDRZlIGEse+jptgIEC9uJ5X8loCHRiIQ6SE4vqU6ppIXecojpCyszfheZvNSDq6qKykN1MD+NFNmzD+1YfsHB2HeYsQv3sq4XuqS1dQp7cmUKfd4EZCmzquyplqMM9kP0o96Fptlfg0wULoQuIpwugveW7CjiM0vicfDBJMGMb6134dGMq8JHpL2Dcx/PMj8TIxFLF947fGY/XWO3V8YnBLGu/Xzw9pI1xUy40KJ5kkCNn/IqD3taJGVuic+cxbx9j43klCZvXuXUE91cvRQlFduCwn2FIMATMHC4NRxOjUCVQftek0rzDgxnL17mNGep3VfD5L3iCZ6ucg8HTpXTGnsPRyi4qb5kIo519wKBQycI3ewh08HvrK3GURkgOT2HtCzcDTXoXiepnvMr2tU4PKRNiEqHSx884IWze4jeHFyxvOFwCyFb41tvZz5flTovnq2gswGYXWdh1HUSv3EF/8FjzF27o+whFOum6qUXih2CQqFQPPIoEVihWAcP3r5OIvTJEBQVu4fmtnIi8wlOH60ldqUUJx6XDh2n3WumzGdDinLMB7u/4I09OQpNBTT0nUEOfLDh/eS73fdzAX/d9zPTm84Gjk3MYcdyC5+JmXnGZtI+oY1HGrO2sxO5i/fpzW1M3M5uY+Io89JS3Y/dP7hmnablsUfQNMQqcVf6q5nxH2L0o74Vy4XInq8gExv4bcmVppwHR5mXB65GPvrTtX7DN84P0vpiN64HPQjbRno9XNUb6f36yvfnwbVhjh2qITyQqYiX5OCT7RjRCKHhaczYLAzPUtZeg+vuZTYr3Sbu3eXogRbuDvoIT21P1mGg2smZF6DM7IWZIbBXRV3gJIHqeoPJ7OMP24a/rowDx5w0zX0LPRjd2s6HLlOxpwEArbwWqekQngWHC3OwB8Zs3IttR4Yziv1icpADe9q4/WB9BQy3EyklIcTDopVNp/cwPh3jvXPZhf7dwNVbUQ62uJHR7c/QTdy6SvmRY8xdV0KwYn1E7tyj/MypYoehUCgUjzRKBFYo1sH1//c9Bj9Y3xRIRZExLTx+L7Hw+rPsdgPVtT5O+JO491RCIkbp3EqXJh37egpqJyWYkcMQfQSy/uNRcNdDPI+Xc6qPdFbf9t20a44lBV5aNq7aKhx+L9Hh/Gqa7c7uZClyiKFaVQ2z4xZ2PLNQ7GmsYd9pDdnzTubt84jACANkum/pcBFpOsPg5TGsWN+aptKR3aPXjm/g26tt3OhDpiwsV/bX9pdvDXP4sW72GPNcmnIydCfL8VNZBmtEYMnJZzuY/Hit8hmRvrWeyBskOTREV00VQ4F6Jnu31vZH0+DFF8bQxm5tuq+qsp0tDFfeUsnBg5L66W+iTW9fprQ1Nbbi70Z4/pSzpERggLqAC8dje5mdS/DuNx+UgpPHptA0+InXTRy953Zsn4nbVynf28l87xjSXOudrlBkYvz//UPKTh1H6JuvAaBQKLaH7Z1PotgJlAisUKyDlse7lBXELqS+pYK+HFmAuxfJC8crCV7vIz5T3GrquwHD46C16qsFtbX157H7drcNxArczXlFYBEfguYnkcPnc7bbDA73StFy7t4QIAl0NGHH48THs5uUhsfnlzILV6H5swjEukHMqCVQF8GzrwrDqaEZoOugGeBwaRgeic87g6jqBljwOks/zLhO44zJmbMNYFvp0QHbRpoW0rKQtg1SR9qCRMfjDN0JE/9gbWbtQ9zZC97YkQhCL0NahQsmQqz/UtxdV4leXcW1Mcn1S7mPiRsXBrmRp787Hw/SUe4mFY4vxAQnzrZlFIABkqmtVdRS0zM0emO4j3YxeG1r/LsdLsGL3y7QRjYvAAM0pj4CDm5JX7mo21/H/tY5qqe/jpjaHcplU/kO2XkUyIFT7Xz0tSKkbW8hp44H+PjKPCAwDMFPfY8fR++HOx5Hor8Xb3Uljvom4rMR4oMjOx6DYncxf/ESk3/yF9R99tuKHYpCoVA8sigRWKFYBy2PdxU7BMUGqKr20lfsILYcyWc/1UnwcmGZrQpoPlaJoeefcm8bpzCvfrwDEe0cUgQKKw4ntreIopExBVQQ6huj6khnThE4VzpeKprK3LzzGD57lraWaeTIdVZ7EOgt+zBmryPmbbDWZgobQHVZgPvXs9tN2Kc6GZn2Mv9+AQJHDtFWCDD8XlJzhQ/orDdbyru3id8JjeAOxnFpHrwHnOCUIAWhK7ktNbKRiKUInGlj5uMHGC6do6cbmbyU3UZl4ONB6g41ok2PZm2zXuxojIrkTTxPHOPuhxsRmiR1HV5qmg0qq2xq5Q0YGd6y+Axzewfp6g/Wc6hpnPLpLyEyOXOUMEmrdHKKGtqqSU7sbNb2ejmw38exfU4O+CZIGR56ggEeDFtIJLNBky88ncAxfImnP3+SW8M6R1pMKoogAC9izc5izaZ/VyqOHCA+F1disCInI7/7P/AfO4J3b2exQ1EoFIpHEiUCKxTroGZ/M64yD4n50pq6qMiNz7nxKdOliNtt8OazjUoAXidt+4N529jGKVLXeyFHAa/diEyIgkRgEbkD9aeQ49sz48FdXU55V83S/jTxcKqwZuj4OxoRurbMkUKm1VEE/oYy9Ep7SQyWYqkmlcuDc2932ptXCKRtY7nKmLh0n1PPhbDnImtev1ZRi0P2g50EPfvlkKZlPhakBNfRw9y73YcVLnCmQR5Dat3jWpcInEtUzsTHbsmXv/SNjOu+98T3Er69MducyYkQjz3bTrhvlMkruQtnOf1uxNS9rMX0Noo0TZwPPub0MwcZnzUYujEBCAy3QfuRmrQfs2ai+SIMfRxHWgbth6qoqIJG8R7MLVga5BiH2Ci6FcNb4yc6tXmB0XDquCt8uAMuqhqcdDhu45u7mI57G3/qpKZD7V5MVx2aMNGsOFLoaJP3ID6/4X5r3VvsVbwJGloqGTo/UOwwVvBdn6rko2sxPvusg788b/HKSY3qvvdgGpzAIeCQZ6GxB+hNnz6r+z7kWYcD2bt2gKxYxO/extHUjPvkQcIPhjDXc65TfGIwZ2e5/TN/hyO/85s4qx+l0sQKxSOAWJwxV0I8Wrf5O4ISgRWKdaDpGs2P7ePBN64VOxTFOnCmNpbhVppI3nyumeDV3V+wbKfpbPlmzvW24wip6/0ZM0J3O/Z8GK3AX3zhsrbNFTg+I4jdz2yXkG9ozevvIHpvbeG2TFQeaqXZe5HmV6uRQ/2I8pqVDZxunFUCggtpkznEVE1ba89g1FQR9dUy9GEfHR1OnI60OKc7dRwuHd2poS349Qoh0AyBpgv81Q40z16iwxOYwbUCiNDXJ+raiRitr3QRn51n8mJ+IbonmN279fzsOY6VP0Zqbv3+nf23xznsKSM2k1/ktJIm+LVtG2hJ3LlFBVB7uBatvApzbBirP13Uq/rJKjpf+SbRV17g/q/3w+B95FwAqjfuaVsIQsD+k24ufXVjInBZlYMnnzUIhO+gCYE5vWB7sY36qURA4yEsRwXJmE20fxRrbBZYOVtA91dRvv8YOjG0ketgrW8gIWDNAdn9vneSy+/3cOqJvQx8XNh5Zjv49MuVaAJOVU8ihY4+cp7Dz+5B67vNF2phPdOaZKp0BOBFUiPDpEaG8e8/SLhPYoaKl3ldceIgCLBTFmYsgQBSwXkcFWVEHvQ/HIwUTgcymUQpDTuHTKXQ3dkMoBQKhUKxGZQIrFCsk7an9isReLcxO1fsCDaNx+vg6JE6WpwpJQBvgJruaspc2d8323Gc1M1RMPPbRexG7IlRaCqsrZy/gqg+hJze+iKYG7CwfYhdYJV5b2MlldVJmBiGmeG1OxYC155WmLi4tMzhyvrZa8Jm8eZ/Mfu3/8oIZjwtLO6rmcKcmky31T1o0XBWcc4eARvwdB4ilEEEXi+pwSGO/NwBys64kal93PudEKNvj/DMvz+E7g0z8Z6Hq796jVB/OlPToWcXMfr6B/Ef9NGRPIAVW69AK0hVV8NI/jRaM57CaujEGN3e81hqYhImJlcsc9c5APBU3Mbd1Ex8JII1H8JuLEdLbu/vxIHk/6Sv7TuZHSg81djt13nqBQ9Vs+eRgxEkYAHCF0BGtkc8k2hY7U8R6p8heWUCyO2zbIUjzFxMnyuMilb8HQ245u9AeDLndos4QuMEfGWEIqUx++Lqx30cOdbG0NWtswPJh8+ncWCfnxcPp/D1vp8+0YSXynRqfbd3LJadIn7nFp7GJox9raSiCcz5MPHRrfH0XkLibmrACPhITM3gqqtBJpNEegcpP7KfZO9d7NjK4UcNsELj+BvSA4d6IEBqfAx9Xxehmz2kPxElBm83gRPH0H3eYoehUCgUjyRKBFYo1sneV47x9j/9g2KHoVgH5kQQp8dNMlZ6WTHZqKzy8NKpaqaSGgGPQezKXRjoZ/fL2cVh36ns2WmW8TjmtXuPZAbwQ+IRTPdrYJpIBLq8jmZlzhwVAggEkNvhLbrN986G10V1ZQTBSq9cOzqPo+0w9sANXAePI8beWbmhntGsGAAhbEDHqK0i7K5m6MO+lQ0czof/lPYmhawChe7l6P70pZxwzNP9o9D1Q90IRzpbs+6ZFIeih/jwF8+lG+dR4a/fus2h5w4R+mj9r+Pi5QmOOjWklX/bmLeWADs/mLWY5SxSY3T+SBO3/ll6uVXWiTZ1eVv3rSE5eCTF+wW6DZx+oZwOLiFHZtZk5utllZjbIAJLw0ms/BSh83c3tL0ZnCN4eQ7N5aL8yDM4Qw8gmNv/VYbn+LXvnyGlexFINNvkX71Vw82e4thumSmLmzeG2H+wkdFb25shvsjPfoeG88E5yO2k8siRGh0hNZo+PoTTSdmRbsL3+rET+bPJhcNApkzQBO6meoShE+tbEu5dDbU4iGFODWJOgQ6YobTI7G+sI3H7as7+zempFX/18CwVx7uwpqdIaR7iA8rXeDupefP1YoegUCgyIACtxOwg1LDc+lEisEKxTspba6g/0sb49dLyjVNkRwhoaK1k4O5WZ5lsH0+caiB4/R4G+afJK/Kzp+P9NcukFFjyBawrHxUhop0nNWJjDaYzyvSm/QjviQV/3YV8MwlIifAHYHgOjBcXtlx2sSdBK/dBLLisUNuqzKiH0/wX+13a3l+28aNZ5PHTRUDTkTJS929h+FZNI03GQXPg6D4Oo++svWLM4QkspcR59DD9l0cw4xlu/JdtK1MppKalvYlzv5iMi63E+gcirMjKanfCsTLDWDOW9mVZud9Dl8NFl6jlqmMcM7U+IXhmKkrFi63M3sxs97GcuXkIrKv3rSE+tTQQaCXdLKZsz035qEZDsL3ZqK3xb2C4n8aM5x6QfPU7vAQGv57VlkUsG3jYSpINjxP6ePMzAOxEgtmLd0DTqDn1NFr/+zntsPWxByuGbX7hWD/vHH2a/+d/BTcdy0ZIxlM86Jtgz6EGRm9urxBcXuHAFZvdNgue3YJMJknevY5TCBwdTeiV6UzcUM8AnuYGhKahOwX23BwymSA1PYX78GHsuSDJ4QEk4G+oQvP50coqSQ08wAxlnm1hTq7/WjA1NkpqbKGYpWFQcXgvOJxYpiR0/Q5Khtg6PJ3tVD73TLHDUCgUikcWJQIrFBvA31ipROBdRlW1l930ifmESbDYQTwiVLZXUuVZmfUjJZiJZ7HvfzIEYADh9jz8tzWSvaig3nwQOXYjez979iNHNmaJ43R0rau97tKp2lONw63jqHBiOA+yKC7bySTRe70PBdeWpzpI3bkAZM7ITehV+Ga+lEWMWpshm8TPvdS3MXq7hf5zOTIjjWWCnG2jed3IWG6zVqFlFgxE6x70emtB8F4S14VYeqYLi/j16w+3sSK5PHw1bv7G0lRyv57be/UnX/w8Ex+PI+XGJKkp01iVg52ZifuTNJcXIJZvMcsFc81Y+nesd5D5oy8SMK+gxae2bf+GFSVQH2C2P7slxMlnywkMfj1nP+bs1qbpSwnJ1mcIboEAvALbZurCPXxdj+ObO48oVOpMxnm25i6/46gjWaQJPJH5ONeuDPDYs930nevbsn679npxOASmCZ8/PY8YvI0cLQ0rjJJAyoe+wQAOwHyQntmw+lCI31z5O2TOzMDMDGz31Z5pEr+39F2pOHmM4KVHz7KjWDR8//chtE14RykUCoUiJ0oEVig2wOTN4hUNUWyMgLsQaaLYSDr3VLGnvZy5G8r3d6vY89ha4UE6zmLfvJih9aOLEIUV/JJ5syE3nvFUsCewgK7nGxF9V5Fz/TAHDk83w5dXZnb593YgZyep3leFtSAAA7DKkiDhbuTdP3PQdeZ7Oej83bX7WyZGxrQ6boY/zZV3U8SCUZpOmOhuB7rLiZ0yMaMrpypLbeW5pfU5G2HrSN3LwF9mzkTLdoM7fW+M+PR8xnWLVB1sWyFZCyP75zH5gZ+5e0uFvOI5LE9eOPYE8ashpC05cLKVG+fXJ6Q0NnqxEgk8XifJaO6M5lQkgd3dhj7Wt659bJa655ZEcAcX8R84Q/h2EID5a/dINHZS648hzMi2xRCZzt53Q4eXPdYHuaVShxMZDm5pTLL11NYLwMuI3OvFe+okYujjgrcRU0P8278a4K//J0/+xtuIuYU2Ug31Lr5Q/zEsDlLlT5pX7ALiN65SceI4wcu3ih3KI4Gzoa7YISgUihyIErODUKwfJQIrFOvENi3iwW0sya3YFpxWafsBf+qVTvThUeKzk3Br8hM/NXQr2dOxUniQEsyR3ELbo4hIFegonc+XNp8tQ65NM2qfEqHraLrAtiUVreU0NJuYd8+v+B7IDFmj4fuDlB3ugsToyh6XZbJawsXHw48Rn5kgkfRDlpn0SaOWodDrXL7jZvTuUqalLQWzIQmhBG2PdWLPhRAODU030AydpJxYkf0q5h5AfA6hO4B9md+HbG9hAe/t6iaaM7OgbIUrefdnl7yPneU+puPBNe3a6pv4vuNvELo6i5VMDxR4C7zAdzo0nj9bT4c3TuLuA5iWuI4d5s65/AJyxNdIGX0F7WcraP9CA9VtyzJspUXrd8W59c+WMq4To+PMH32SstDXN3OY58SMmxmXO1waZw8OIsdzX1/oVXWYY/mLlqUCTejhcTRpYRtuYtXHSQkfttTw60Ec5hwEh7EbjzNzfWhDr2U9hGcggCg8Gxhwjtzi53/gRX7194JUVTiZCe7873hkZmuu9z73mUoOJa5hh1TW76NI/OYVyg91ozndIASRwXGSU4UXgVSkcbU04z94oNhhKBQKxSONEoEVinWiGTpnfuI13vtXf1LsUBTrYXyKM8/uIRo3kbZEaIIav4EERqcTBAJO7t4YIxwsjgOvR5fMz25PtfdPMu4KL7X+cyuWSUcHcvITVoEHkPMFzmDI62e7sWmaCe8JIrciNFdOEzhxBDl6F5lKIhOJpcw4gASYaz4eiV5RDazMojTKywgOzVJ5rJxATReh6/cWXkK6PynhhvUmMz3DK15a1Ojg1tRL6IZECEmrf5ie806SwREsT9uqPS8xcKF3zetqfrGCquULFjODrRSNLzfhlH3MjLQQur3chzKLHcQ6hcfA0QZ8+52sfl8Axr6VeBi8u9aLPH6AuXe/vKLNj7/8efRbJsELKy0Q5oZnyUV7e4BnjwVwDfeRGrzB8txoI5R720XufDjCscdP4npwqaD2m8G3109t1/trMsQN6zIdP/4Sff9pyet5/to9XE88h3vindXdbBpbathm5oz81z8tkP1rj6/VyEgofYzZmftJVB9mZL6R6YtDOPz1uCp9RMeC2DfnYKG0aOuZVrjXD8IPQ9mtYbaSWN8gWvcZfMl7iGj+Y0Q63NhNJ9mLzr/8HgdaOMhXQx385XuTOxBtGk3XsFOFzaBYjcejs6/Tw7WbIX7wO6vYO3kO29pYX4rdQaJnyTZIA3z1lTjqGomOTJOcLuy8+EnF1dRI9asvUf99343Qd8PMPYVCodi9KBFYodgAp370JW798UfM3E8XDKk92EJwYBJ3uY/QiBr5L0Ws2RC+2RC+VcsF0AwwBmf8BnOHO7n0ft+GPTE3Qtf+GuL3tycTS3fqtB1pTD8RYkl6EouLFpdIpIQyXwynkUITaUFKiKW2yKUpQELA9DTcOl/aGbVV7T40baXwI2ULsHNCQqkgkvMIfysynMdPNIOf7op+1pXLt8R4byPJ8QWxTdrY8wVmJgOeI8cxg6u8Wg0DUVFNomeIivgocmKaisfOELx4B93rgST0+7+DwW8sZU0ufq3fv/osM/fT2cO1XbVErkqsWPpYbmrzMzGwLLY878calolzzul05qmrZg+ZjSFWUYAKPNc/ga+pC2+dj65/UI5elllcSIZSIKCso4JPffFZxgc0OPht/NjfvkkqZfLzr/0IoQuzGc0/IrMRPD4nschaW4fveqMZ/91rcHOtRydApH+E+n2djPfk9ta1UxZXzk3zWKsXLbF9s2v2/rV6KpvfAyvzAF+g8m1qXniWqbfHHy6bujRC4/4W9PDWnpctR+ZyeE+8Uo6zP7cP8CJ2eA7hK0OGVx5RUsJ84/P0vDeFtNJxp8IxUuG1r3vRcZod/J0DiNztJepw42o4nhZ6bBtPnR8jeA8xn37/ZXkDdnkboZEoifNLArUFvKQF4eyJHROCTz21j74P+za07ctnyzjjuc93HqtA63tvawNT7Aqs2Vms2Vmc1TVojXXER3dPceKdpv57v4u673iz2GEoFIoC0NR81V2PEoEVig3gcDv54S/9HyTCcT789S8B8P1/8PcYvdzLF3/g/y5ucIoNI5MmZfd6ePlELVPuMoYHgjhcBjNj88TzeFxulLJyN8caDIJ34tvSv8vvwrxTuNfjnld05ED2omDLqeg4w63zG41sZ0jFM1yoyE9uwRGtqgErnwicwxPY6D6NPbqxzE3NWGGaUPB2rvY9xG9dw2jueLhMSvDv72bqcjrzd1F4tXrOU3n8MPb0PaYqnuXGl8dW9HX//Qn6nN+JGU0LlA0HG3FMD2HGlnJZ3WKltGnnscewCyiF5vat+n5nefmFZAKbkThz90fwt3fjrs9+Xur8PkHri9+JrzGJ0KM0dcF3dXmp6fj7fOv/GmfqQm5BYs+hhoy+wJVGMqP4u5y6OhfjBSSYarqG2GarnkDzDNi5ZnjY1D8zwvwNH8nJ9Ockk0mixgECbK0IrKdCaIaGbS59x5r3+WgOr08kFIZzxS2YrbsZ8z/PyDuFmcyO35+jfs9h5IPCzvVbiUyZxAeXMq9jC4eYUdmF4feSeDCOtLJkRNs2r7hu8dL3NdNrVnLuTgyPS8Pj0vn6B1tb0G/P4SZ6z/UuGyhdH4YO9uQY2uRY/saKRxpzegpHQyNxTeS3W/oE4jvQTc0brxY7DIVCofjEoERghWKDCE3DXebl+V/87ofLWp/o5jO//tf5s5/5zR3PsFFsHebwJBVMUgGQAuNYMxPSRTJlc/vjzRUFdHsM3C6Dubk4rW0VnNnnI3hj+6rDSGudx+G6pvpvk2nmFhKeyCD+aIm1yz4hCJc7f6NUElHVupAKroFtImeG0DuOIIfPwwZFO82xJJbayRR6y140zX4ofAoEif6VPhBaWTnW3HQ6G3dZRm7Z8UNMXLy37IUtHYtm3w3ch44weNEBrBRJpWljmunPv+PxdpK3b2GusgiwpleKSdLKnQlss+o74/RBfGWWc2zetbJNdlPgnPtapOn5Lo79H14eCvbSXvHdNbQWDENAy9r848cer+NPbl3Pu4+Ab6V5clOTjzdOe0jdzD+olBgYxuV3kgjnHjxrOtyI2OLicM5qF65qJ6G7IZy1LgzyC51a6h5dP3GQG/9kyR94/mY//hYDYWf28N0ImrCp7qxm8l46k9Xp1niyqw85vr5BQK2ylqjRQMKoJRp3MdUzQ+JW4b8jiZl5BmZDtB/rxu6/m3+DHcCcDWLOBvO2s2Mx6OuhE+hcnNpjwdTBI1y5VfjsgnxU+DzMb0gAlnz7a1Ucn1PZv4olUmOjBA4cInRzZ+xXdhOtP/OTaM4sZv0KhUKh2HKUCKxQbDHdnzrJke95iutffL/YoSi2CPPBMFWAt7aMw8/UEZ+Zx9Vaz3tXphkfC2EYGqaZT2yVfPvre4hcSQtXrnovibkpgje2NntpzV63cTBiNwxzxGYjmJYHQ18SgzXZV7yAiowQ+a0N7NmRFc+NjmMIhwMmrsAmBDHdvSQCR26lhafKw80ke++tavnQqwRHTQ3J3oWbZn8FMIGvq5OJS0s30u1nqpGhJVFTLyvDmbrJ2e4wfz78ItG51T6ckq6nOwhfySIOrhJ+bDP3a15jjmF417SxojZSgkQgtPRkfCkBLS3cak4HQtdxaAYOvwsrmd6nphtLuvBCBplE4m32onts7KTEMTWFZs6Sau0C4cDl2IfQstsSeStC/MC/foLf/qlzWdsACNvGYQieeKyOrlqQD+6TulnYjIhkMETX8UNcfy/3oFnAt/VnkT0/EMBf9hbRxHMk55x5soCX0FK38HU9QeReWki0Ewm2Y6CrtUMyuXDIv/4GyP71DwLeG2pl+sYgsIksUynpvzJNa4MH4sXxwt9K/sq+Kf7uLQO5BZ+Zy+Nk+Hr+4nuraWx08ZNPTGKP3dp0DIpHDxGdW+bFogAwKivxdXcVOwyFQlEw8qE1YOlQavGUPkoEVii2ged/8bu5/gcfqGzgR4zK1irGLqenqcZnwhzVNZ56rArd7+GPvjWGlSHrNlDm4sWnmjH7hx8KwACJue3zwFyObUncRw+n7ztWh7fM63cx/y2a7MezI5HtHJFkO+We2w+fC2scUXMEOZW/CNOjhkgG172NtG10h4ncZEak7sqwcFXmuV5Vk/7rD6C5nCR67ixrquOqr2FucGZpSq2ARsd15KKGZRj4OhzIiQlmK15fIwDrHidtj+8lMdiPs6kRYRjohkATNkII9OpqwnE4WmaiaQLdkDS3TpM8oWPoNuFQOYa00ZBoWGjSYkh4+EPrRSxLEotbdH/oJdQ3jZm0QAjMhIlt2VjJap55qRbX3Y/hwz5g2RuSALDwV0cwzFkeJhdLMl7bzv7PD7h5u5muz8/gqrkJgLPqOFpVPYj8vvRH33Dj9BkkI5k+U8nhE3W0V0Y4eDiGOXkLawMWrPH7faRfyM7OGNCM9Bvmdb2Dt8GTy91kDdVn/Q9FYACz8gCO6WtbGp9ppwdDnnilHEeBPsCrqai2yGfqUiiirBL5CIjA9vQUXk8Lkdjmi6+ZKRPN58FKFX7w/PTnA9RO3cQeK8j9W/EJJDkyTMXhA4T6x7FCa4t5fhKp/fRrqhCcQqFQ7DBKBFYotgGH10X13game0aLHYpii6g50PRQAF5EWjahoXQm72dOVDPlLuPcB+nMt8fOtNASEMzf7idypXjTbaWUDJ+/X3D75pfcj54InGhYIQIDaLW1WJ9AEViGNmJnYiGnNj+FVXdkEGe0lSKwPTu14u9yTEsQrmxHWGMQSg+ilDV4kfOLcpik7EQbcugjcJfxtd9bub3QBFWd9Qy8c3PF8o7H24ndWMgkvp/Oyly8ONL9Xpp833rYdiJ4nMTEymKIsvkprp5fKs7WUNZKaCK89rUCeZwlEHphdiye5mqO/cQFdEfaRkB4uxBVfhBrB5eklGDD/DUT/0Ed3aVhOKPU7y1n8OpyKVHy+NNN1FkzxAZukxhf09W6MMNRyuqbmB/PLorFUzqZS6VtDE+LF6//wyXht8As4EXKWu4APhaF68lbJvV7trZA3MyUoP2gn+bQt/I3zoLbzlwMcCNMBj3U1tQjpzb5gRcZ2dJO5P2t8e63TBvDoZPK6n4tOXmsjNYGgwM1UbzJIIw+wE5sj7e/4tEhfvc2gf0HCfePY85n/p3IhLezFafPAQ4XtmmRmgsTGxrd9R7Dnr2dxQ5BoVAoPnEoEVih2AY0XeOlX/4cX/zB/7vYoSi2AKGBTOT2QQ0PT+Nmmk91+9AcBtH+PoI7E15O5HpvENbhgSh2SaZ7OFJH2uB5Cc3Zz+bzxXYfIjmPCLQiQ+vII9yij9m2Mgicviqc+08hFw675L2rCGttdqrevp8r/VUMX3mAv6GCKo8bOxan45gbFmZt+08fQg4tCGuGi5UZqJKGk/uY+Hi19UQ6Wz5rzMmV3/tMIq2hrdpey/4dyveVEVoBIrAmOPAjsYcCMACuqowFrFLzknu/fBMzFCd0sxfd66HuzZO4n2hbIQC73AavPlNB7MZ1tjIn1OVx5Fw/Px2ndov2pbk1un/UXLfwuxybcmDp+LMiEVLefVsmAofdnQQHpnn9sT7k9MYFS2dkGGdFG8lg4SJSNmITQQamBG2nTyDvXd50f8VCmxilvbmV/uHcs2w0XcPjcxKZzy3YmqnMvxC1NQ5++DUD34MPYR6YVxNRFesjfucWrrIyXF0dRO71ZWghqTh5CHN0EKOyGlweEj13iA+vrGfg9XvQKyrAttFr6wleup2hr9Jm4P/+dwhNp/K5s8UORaFQFIAAtBKzgyj9CjWlhxKBFYptovGkGt1+VGg+vZfRi4VlQsaDpTXFb90i8Hr63mDV9J1mfr4Kmlcu08wHaJ3PYPdeKk5QRUSrqMdahwis+V2Q32FgBfPuN3FpI+jmJEYyLaCZ8bXHizkfIXZ7yT/Tf/zYwr8EdtLEisbAtngQ28PwlQEAwmNB6p7cR1fDGJ7htwFwd+9BjLy7rOPlApvkwMtd3PvGWgEYYLJ3mkpdR1prRR87ZSLl0tiI5lw7bdVYfTGco7hihl2s2jSHCCwE9c910PLCEIH6lX7GMrH28wzdNLnzj94lMbqUVW1FY4x+8X344vt8/+vd3J310dsX5elOm9iN/AXf1ktDk4fJvuzrZ/qm2NNgZBT+14fk+N+30M0rm+ol3N/Aw1GFBUxz6y6VB+wzvP70beTo5mYJGdFxqvedZPTC5kVgAGzJzHiCyq3prSjY0Sh/4xnJL/x+9ja6ofEPX49TMd/DBxXPcGNIcv1S5s+itrOGkRtL6zQB3/PpSg6bN7EfbF0mtuKTiTU/D/PzVBw9iI1BcmYOaVm46qoQiQjxG+lzmTmT/cfXjsewx2K49x/EyjJoUeqY8/OM/PbvKRFYoVAodhAlAisU20T/t1RhkEcBV5mX6bvrLxBTKuiazZuvBwE7nYYoM5iMLi6XFl+ffZ7evjcWFkk6qg2SkQTSlnjK3Bix0MOMw0pfLfW1w0jLxrZskAvFr2wbaduY5VWExrauWvtG6b/h4bGDa5cbgbskfVUQWafCucsR7sINPxx7jiBCI+vOdBv/YByZsvF0HKO5YRawiQ4F17SzbfAcOQZSYkfCGYu1zbc+we13BlYsG7w6Spc/XRTLaKjDkby9Ms3WSmfw6obGibPliFD24luxmQjNpzuI3M5gmyIltu5Gt9NZg5qxVqQ15SpxO8fYiJlPBM5mB6EJjvxsNTXd38i8fpl3g23C9T+UzP/+BcR49sKTqXt36QS6mstwVdcjWjppberFMGe4d7+D0WvzWbctlPCNu1Q0NhIczdyXbVqYLftx9Gcp0lcg7gYPunl+U32ARvD62uzQyNAs3opytOTGzmVSwrzvEFR2sGf4feT01giI1a4RtspwSuga3mp/OrN1FyMG7vPE8cN8eCXze/yTnymjejptz/RM8B2eCmhc/o6n+K0/Hqe2sZza5ipCc1GioTi6z/lwu8YGFz/x9Axy5OZ6LKYVirzE7yzdKwggObP+601L6oSuF892bLM0fuFzxQ5BoVAoPlEoEVih2AbGrvXzl//bfy12GIotoHZ/A6MXC/fULTWkDXKscD/XUNhkciD48Hmt8BCdDi30JdGDS0JIoKmKRI7pyKWSJzx+ewbT8mDoK6eJC2sCx742zL4m5NxIkaLbeYTInzEkApU46iqRU1eRZiJv+zXbOwxkKkWsb5ievn3ofh9WeG22auTW0o1r4PjhNesTdd1cObdWfEtFE0zSTZl/BG95EDm3Wr2yqd9XRWvlHMk713G2tuWO18hhW7Ass1c41mYCz8VWCbc5MuQzFY8sZNv9P9pMTXd2D1lphrjzVTCj8ODdea588Sbtx5vZQ34bA3NuHjsW5vArNmI0XQStu6qfwIsvcvetYN7tcyEtm9ZmF8HRxdKTa5m1y6nb1F7S57nNkhKnmb+09hhNjk8ype+nprIPLTqxvrgkzDW+ikhaOG9/c0ttAyzNA1k9a9eHp64C54PzpXPS3iiWxfMHHXy4KiFc0wTf9qkWuqffXrFclzb7Y3d48/WjvJ74FqKpnS/dr+V2zIG5MGLT2e7hR06OYY/s3sFgxaNN6t4Nyo4dYf7q1s/m2G7KHn+MyhefK3YYCoWiUASIErOD2PXXLkVgW0RgIcQPAb+98PSvSyl/s4BtqoHPAm8CR0lP3k0C14D/AvwXKdde5gshXMCPAT8M7AHcwCDwVeD/klJmT/9RKLaJ+cFpEvO7v9q2AqbujlG1vwVXwA1SkgzFCA3PkIzsjgIw9jrVkZwOD6sMTbfE33QHsFMW4/NP0Vy5NotSMwdwtNeQGt2DnHxQhOh2ntkZk7+488PpAQIpkRKq6gxcrvQHKiVUOiTOgTks+xTJlIOZWTeanhbbbDutiwpI/29B35N2+viRgOVzsj/61sN9WuH8NimxwVH0QAArlB50sPxV9CbaqOy2VyWvp3c4MmWz73g1MnhhTV/STFEfvkZyYYwiFBeMVbQjbRvbtEklTaykhWWmH/64N2uBMincQNpnVNPXfkFCq0/1Ob5Edh57FpHBT3jvmx00nnorQ+slgrMtfPHHz61Y1n9lmJYn9+MczC8MHHzNixj5YGmBmaCRv8T3Ha9w6Y9DbOYKO3T7AbUd7Uz2Zc64H7oxTk1TBVo4uOF9JCbiSKMKYW4sqz/JE9z/t9m9ZBMjY4yFaqg5tAfnxLms7QCkvxqtqhPbNkiNj+G69/6GYsqHOzLAGrPzDRIdnaHyiTOIO5vNpi5NzjzZzCuhzN8hf2yKT7GwbvA+b1aO0VBzgj/5yiCvPFfJM1zEHlv/QJhCsWNIiTn4gIc/xruI1p/40Yx+9gqFQqHYPrZcBBZCtAL/BggD/nVs+r3AvwdGgbeAAaAe+C7gN4E3hBDfK+WS7CCEMICvA2eB28B/BxLAGeBngL8ihHhaSrmyFLhCsc10vXGSA99+htt/8mjeUH2SiM9Fic+tFgck3tpyAvXlOL3pSs2J+Sjzw9NYeQrI7Th5hFqpGWA4AQ00DbFKq8u1ed7L9hK6rh8b78ooAgMIawpHfQLTcQB7ZPcVVlkv3sQ9Rm+3r1g2kTNZPMZ654lrhsb+jvXFZc7MYNRXQiiE1AxuJQ4ycbcva/snPxPAm0EABsBeme1s24KpvuzWCHaOg1VqS9PCxYIILIWGdLiRDhcV5YLHTrrRNfC4Nfa1R9CqPegalJfZuJw2umZj6BbCEWey8uSqvYmF/ySVdUmaOurQhAVCYpjzyJ6vEPzDdgKfiaK7ghljnB5rhQwT1e9N+Tgkcw/uND9dhz6a+btRNvU1nv6eJ/noTzXMxMbTbWub/VlF4FQkwWTFIerDmxNLpahFrNe8GpCOFvp+I4UZWnvu1r1uvC01aA4dzdBImRqu9seRaCye4ATWwnMNK5Ygef82jG6/HZQeHsXwNWBu0YCkaQqc+ZuVPHUTd/iFz3cjEQgk5SLOx/Oy4FOYHYlwkvc4/Vo5dvgO0lYGEIrSR3O52aqZATuFUVaGu6212GEoFArFJ44tFYFFeijvvwDTwP8E/u46Nr8LfDvw58szfoUQvwh8BHw3aUH4D5dt81nSAvDXgddWbfePgX+0EMOPbuT1KBQbRQjBy//48zz4+rVdkzGqWA+C6OQ80cmVd5WNx1qZuD6QZZvisDhsJp0+zPqTAJimhqHbaDJBIuVm/urSlPzqmmTmDlgrCOebDFRKyR13zrk42a2haZlv6IUMYVRex3Scxu7fXHGpUsfNLP4aH+Gp7StiaJv2ioJqhSJ0HSmhv/pZJj4azNpuzxMNHNSyTzISYuF/GdLVH3+6koYqiaHZOEmmhaLGIBXH0kIs0kRIC2GnQKa4cPcZpgdTmEkLK2liJfcgzaXj6IlPTfJc19tLO0gAi+4SkYXHArLxEFfP+7LGXfuCG8fMh0vtF/6aQ/0kbp/GezyYcbvZ8QoyVe+b6Jmg47lT+O5/vGZdoL2M9qNJtJGvZ40HwDF6jqff2M/H7zUQntxYRqSYD+Zc33d+gNoD1WhzmQsWSgR6TT04XVgTwwhzbSG56HQT/rJ1TocWBjf+RQBpxXA3VmOnTFJzEVw1ZZS3l2MPXEeu8ujMni+8wwiB4XFtmQg8ea2flvpyZKj4Pu6bwQ6HqQ4vO941jecaytffz/zufh8UnyxEVT2MhYodRsEIXafj7/0cQl9rsaRQKEobrdTsIBTrZqszgX8WeAl4YeFvwUgpM6ahSCnHhBD/AfinC/0uF4H3LPz98wxWEX9MWgSuXU8cCsVW4Qp4aH2qm/tfu1rsUBQ7Rgmpnoss/k67/Eyfv7f+7ZepeIZr5U9G/ldbOu/HTO8Mt4e+wKG2383aRpDA8H+Iue8sds/FHYxu56lp3V4RGEBqGmK9diSGwXTbczx4J7sAXNFSydONXyTXNait+x5aVEA6c7e61sVLTxs47p6DVXWjjMou9OnMMzfs2CEiE7mkv8JtT/K9H7aW/bIs+vZFHC37cVSvtS2ZGXVl3e7jj2Z58uheHCP38TX5aTrmxmM+gJlrUKAVtpi8w+kz81y7eZCZvvXLoJHeYQI1jYSmsnuIo6/0ZZYStM79RGw/sz1jmD1xIIWzvImmvX7kg5WTvG7/+hSnfmkPWiq7rYuUYKdqsVK12LEyrLiL+hNgjfQiEwuZ4uVAahyrcCv1opCs2k/8ztYJlXbSRDbuhdDaAYNSwFFdhe73IU0TMziHbZrIRDLnNkZZAG+tn9RQ384EqVAUieR0sNghZEXoOtKyaPuZn6Ls8dMM/+Zv4d3fRcXZJ4sdmkKhUDxECNEC/ArwKaCatEPBHwH/WEpZcFXfrepnO9kyEVgIcRD458CvSSnfEUKsSwTOw+L8ltWpH4vlpN8QQvzaKiH4Mwt/v7aFcSgU6+LMT7zO2JU+IpO7vOS2oiBKKfN1Edu2mZjvwOmopBDFJ9drEJpYkf2bPxO4tN6Qd3/fRfNPH6Dck93yQWBhON/BOvAi1u2PdjC6naW61qJvu3eiGWDlFmlWE6/YQ/jmLC1VFkiZnoq97EDzVrs52nWH8GAZULa0Lm1wvKIvx4HjTF0dwE4k8Zjwes3V9JyjDNg5auU5PbljlusQgfMh81yWRT+wKXtTrvluzQxl/zaa8RQfXNY5++nT7LV/C9ZX22yJuVGOdsXoKX+c4Svr/01r3FeVUwSWCwK41DS0fUeZGU8RujwOrLTxSM5F6L8Sp/Wxx9DmxsATwHL6SKUEoxfDBIwO7JSNTNjpcShbYseSWMEQVnAGLAuYXHjsXhLOejb+YWbGxtjCo3nzCJcTmUjiP9SN1X8bwqMIwCFBOJ3EErl/Y3x7WkneurQzwSoURcTTVEtifJJFe6EtrUK5Sbr++a/g2bcHR3k6I3/vL/1ikSNSKBQbJT3RroROMGxNypEQYi/wPlBHOpn0NvA48LeATwkhzkopM09X24Z+tpstEYEXvHl/h7SP75ae2Rf6/isLT/9y1eo/J2078V3ANSHE10gXkzsNPEPam/jXC9xPtrSvA+uNWaFYpOlkJ9/+H36SP/vp3yA0WhIDP4rtpMREzzSCiu4qkBJPZdPDwlP2wnR2S7owEwvT8TSNOsPgmWer0m2kpMavYyVdCAEurxNa67DtdIErZ7WBOL734X6WKoWl/4w9yO7BWgyS4QRf+oPX+e4vDOLQs2fBCgG69hbiyAuY1x9NX++a8u2f6my7vGjR9YnAE4NxYqOZr400Q3D0SBh7cChvP1LozPfPYC9kCmpG7imndir7Ba3Dlft7LTJ48WYljyhuydxxpu7fIzV8HGfLyizYmcHc2blWymJ4GE42FhZmVqJB9lW+g/vsC9x/L7iuTV12biuJeFUbvqo6ZsdihD7K/RlLy2Lgw96FZ0uV+cLj1bjLG3H7dMp8EcomPkCTu8sns1BmZrNnf28UUUrKEeAJaNgkse5fW7FcCBAOB2tzQ8AoL8PX2QJAqnf7vZkVilIgfuMKvuoypG0jzRSxsCwJIbjmM28QOHFM2T4oFIpS59+RFm5/Vkr5bxYXCiH+FfDzpF0JfnIH+9lWtioT+B8BJ4FnpJSr62Rvln8OHAH+Qkr55eUrpJRSCPE9C/v/h8ChZau/Dvw3KWWO/B6FYvtpPN7BZ/7Nj/Hfv+dfFjsUxScSQSDywdK8+FVEa15m8sb9h8993GPf8gY56iwZ5Ue4dCHH9O4SZKpnmm+d+3FeOvurOdsJAbp8G7n/Raw7j15GcLV7mHTt1fWQu/K4r9rH44ctfJP3kJqBFglvoSOI5PQrAeze/KK81B1YlXuILy9EpuXOb5QZvIMXceStllW4CCzM3P6tNvlvlOf/8Aquo0fwPjWN7pkilXQxP5o/M3fg5izzbe2UpfoLjjcjqTgt4it43niV618qfDAh+mAA3eHFSq28LHN4nHQcbyLSN8bUxOYGS8PD04SXWfj6mp7kUNM9HJGxTfVbiswPbv3AsmkLDAl66x6iRhXuwctgrRVatx0hKD+2n8StK9nHVqWN//B+EuNTpKaWBo58HY0q+1fxicQKLf0OBA4fIXQ9y9SXTaK53VQ+/wwAwffPYYXS14HOulo8nR1obhfCMKh+5UXKnzizLTEoFArFViGE2AO8BvQB/3bV6l8Cfhz4ISHE35FSZs0i2qp+doJNi8BCiMdJZ//+X1LKDzYf0oq+fxb4O6TTqH8ow3o38NvAG8DfJJ1yHSVdLO5fA+8IIb5XSvnH+fYlpTydJYaLwKmNvgaFAqDxRCfHf+A5rvzeO8UORfFJRNPA2o4K5yWQZrIBbn5lkobWH8zpD7yIbnwT2XIGe+h6wf1LBGgupOYAdBA6UhgIoYMVQjNzF2+RCKTuBSPAoooqdRdSuEA4QDiQGAvT53VAIKULWxpgixWuCLYlwJZISyItG5kysaWGr8pB+4FahKEhgMh8gmg4gWFoLM4lNc20FYPTZdDSGcAfniDsr6P/XnDBb1ei6RoIkX7NEkJGFYHUQtbeBgRgaWc+Tg++1IIe7YWGvSttH2wzvSPJgnLvIO5sZfjCykxSaeUeD5aWzBqv4TbwNVYjNA2hifR7pmloDh2habirZ3E1HwJNIIRAaAuxsNinXMiwtLFw545DFjYZP3HtOok7LnwvHCdcXlhhsFQ0yf/4xmk++3I1tclN+r5Km+r5L3Pszde4+ueFWUNY8SQthzrpv5K2pWnY30BFmcbcrV5CV7YnYzMyMkO4+wCVj5gIbGtOErNbPwAX7JtCuPcRuz4LzNF2+gDyfuHnvk2j6xgBP76OZpK3LuWcXCNjMayeqzjcHrxHu0DTkWgke3YwXoWiRNHt9c3CyYfQdZx1tVQ+/yz13/MdOKrSM8akZZEKzqG5XBj+7EVPFQrFo4IsuVlDC/ejB7LN7M+m8y1j0cb2K6vrjEkpQ0KI90iLu0+STjTd7n62nU2JwMtsIO6SzsTdMoQQfxP4NeAm8LKUMlM+2t8Hvhf4W1LK/7hs+ZcWMoQvL/SRVwRWKLabl//x5/HVlvH+r/15xor1CsW2oenbk821iw/jt39bp+pnz9JQ9l7OdgIbo+IWqUgLcja/DQHAfOolEvfvZ1wnXM04m5uQpo00TaRlIVOp9L/NFDKRyPFZJRYemyPVdpbgV25TjZvYaNpGwE26cgEZtFJ/bR3m3evEAJ2JdEXWxc/eAtfhI4xeTL/eMj2PgW4eMvlINx2rx771MbNZBOLlOOrqGb7XwxpFN985V2YXgaeDfoLDo1k3PX4giDafewx8ce+arw44lrWdnccOYgXJBJGvXCDefrbgTWLBGH/6rX18/uwIXnPzwmhl8CscfPVT3PpqsKD2Ab9G+8lWnGaUUE8vhW21OSJxDxWyRN16NkqezPaNEp9amdmdFF4cWdpuB+UH2kn23CJ5q3CvYxmPkbyrhF+FYjnxnrtUHDtEYi5OrL+wa5c1CEHNm5+i/nu+E3dLMyLDeUfoOs7qqk1Gq1AoFEVl/8LfbNMn7pEWb7vJLd5uVT/bzmYzgf2kXwRAPEsRoN8QQvwG6YJxP1dIp0KInwN+FbhOWgDOdjW4WPztrdUrpJRXhBAzQLsQoroUDJgViid/+tMgBO//6p8+XOarLyc6OY+0d7Gipihp4rUnCSfLSGtoApcjRTzpQNMkmubHsXc/CIGtO7HRiaQcLOptzgUF4OHRKcGWaQ1iNiKB7Z3N4i13sf94FTPTKVweHY9Hw7bh/rVpovMbz3SxUxbf+F+n+dwPfYiu5RbIhZzHaGsiNafnriD2cIPsapNMxEk8eLDecLcUgwhoGuX1ZcRmcnvJwkKWbAHUH2vFN7y5DFOhr7zJLGsuozzcg12AAAxgRcI4ygKk5ldmx0oWdF4B6Eb6ALbThcN0h47m0JDuBtAcoDvTAye6E4SOK5H79dtyHTKZmfv9tu31K5V9YwGg8KzQ0ESIP7v1Kp/t/gMcW+DgVRf/GvGnX6H3/WDWNoZH48CLAXz6Jd75kwCJHfy9Gzg3gPHMp2iYXl1WYveSnmWw/YxdfEDbYyeQ9y5v+77KTxwkcfPyoyXWKxRFJH477R3v6+omcq9vxTrhMCg/0oX/9BmcDY2Erl4nfPMWsQd9LF4A7v+1/5PAkcM7HLVCoVBsiNsFZPxmo3zhbzaPs8XlFTvUz7azWRE4Afw/WdadIu0T/C5wByjIKkII8QukfYAvA69KKXNVFlqsilGboR8XULbwdGvnxCgUm+DJv/kG1fsasFIWDUfb8VT5me4Z4yt//3eYuf9oTVn9xFGiN69/+Htu1p4GFzNKl0+yKGxa+U5y9FQ55o2PqVm1/JBfx3mii54BmOjbWJGzmQcz3B78fg63/07etpp5G+Pgi5g38vsDZ8qWKSXEwGUqTjyNiOQ1uwWyWzQ87G/huLeSFhMVJynz27iHryES6xsgkLpBdHLJWsDhcdBWEyI1VrjAKRwORIYvom1LJkIV6WCXZQUbAS8Hqq7C2PDCcEaS1QMb5XUrXLLXELfLcq5fgZk7k3vdInBtOxe/nF/IX83o7Snerv4cr1T+1uZFN9ukzfk20UPPMn4zBEhcAQfeaieBGgd1bUl8oUswF0yHfPj7mLg2ssmdro8H7w4SePYkvqlHwytW5DmOtgwpiVsOtr4E3UocNdWYI/1KAFYotgF7pJfyrmbsVAphGCAl1twc8RtXqH7jdSpfep6ql54HYPx//gmDv/4fQAh0r7fIkSsUilJEE5+4xLXFq5PNvvCt6mfTbEoEXigC92OZ1gkhfpm0CPxfpZS/uWy5A9gLpKSU91dt8w+BXwEuAq9lsYBYzrdIF437RSHEe1LK5VfFv0z69Z2XUuY2YFQodpiu10+ueN50spMf/st/yOC5u/zRj/97zJgat1AohAZ6Ipyh/jtI0yJx+zbNB05tWAQGuPClAAf+uhNdz/+d03gHUXcEOdGTs53u2aqaq9uHLiwcemEWIflE4MVLmqnbaWFvDNh39jgOOz2o4Oj9OLe3pwSqGxDJOGYo+bDP/acDpO7dKChGAL26mvlEOcn5tZcOmqYv29myfZv5M7t1Pfe12my4ivZC75WtFG0nfQxcyiyQFywCC43Zxuf4o/9lYSY35vd9871x2j77bew3/zR/43yk4hxoeJ8DbV6IBsFKLa0bX9m0qXmOiWub3+V6mYg00Lnzu90WLH/jju1r5u4oTfUNyOntG6ROTU2jtzYj2PpidwrFJx2ZSpHo78u4TmgrLYiqXnoeOx6n7rPfhu7ZnL2TQqFQ7BIWbyTLs6wvW9Vuu/vZdopxp9oM3AL6gY7FhUKIHyYtAFukxd2fzWAv0Sel/K1lz/8p8G3Ay8BtIcRfAjHSheEeX/j339qOF6FQbDVCCNqe2s/pv/oSH/67R2fa6ieKoo/rPVo89ZiDRE9mb91FPPbmiiOFRue5Pfh5Dnf8dt62AgujcY7UtBOszKKx1nGcisC7+DoaSEZamP9gAjuy9QWcNo0AES8sLpmnqGCmzNue9wYe/vtYi7HC51hKkJ1HSeo+ovMm4bEgiTsh0pN70sLx4efqSN2+snI/Lg9afRPCU4acm8QcHUrXgqtvJuWuwXS4iVy8k+VFZP5y2qn8Qriu5X79Ae/6xpmHrobJNm2gINeL6mbeHzjCjd9fKyQbDug84KatHWorYwT0GZyxcUjF0vYWugOpO7F0b3qUxVsBG7SLXEMikn7kCz/+Lrr7Caz4zg52Gk6Rvip8BJhzdbN1H1xuzHCM5P69OLZRBAYwyvxYhVsBKxSKLSA1sXKUzlFRTuMXvq9I0SgUCkVRWLx56M6yvmvhbzav363uZ9sppXSlxQQNHfi5LG2+CfzW4hMp5bAQ4hTwC8CbwF8FNGB0od2/kFLe3p5wFYrt4dSPvMT53/gqdqoA79ESwumGs2/q1FSHSJpOEgmDMl96mnIs6eJL/11fNRNaYjgETreG4RIYDoHuAF0X2LZkftoiHt5dqmrejEnFOpAkPDW4ulwk7t3L2io10I/uqMFKbfy9P/8lPwd+woWu5Z9irZl9GIdewLx2fuUKhxfj4H40812EDS5jFFf5Jdyv7WPynWas6VzORjuL1HRiM0nMiRnSwmvu7FNp2ZtzOhEr7TGS+55k4Fxv1uZtp5swb68s8KvV1JM0qgnfGmAxtdQob8Th9xIfnEGm7hM4lsO7MEsqsjQtJBqC7MePpuU+D0ViAVhHwpTL7yA2l1l8zn4Kkei1TYT9XXzxi5CIRahvddK5T6ehLkWVJ4g7OYYIDqUF9xSQRVATLLv4MxxI3UDIbSgcmQXDjtB0oo7BczsjYi5iJnfX70k2UoEWBi5O7ug+xy7ep7U5AJGtmVjnqKnCisSwYzH8B7vQEiFSPVe3pG+FQpEfzeul6s1vo+K1TxU7FIVCscsQj54dxGJ9sdeEEJqU8uHVuBAiQDrBNAac26F+tp1tE4GllL9M2pJh9fI+MtxxZmtfwH4mgb+78FAodj2eKj+dLxzh/lev5G9cFCSf+oKgsnwOvxxASAsQaKF+sE2YX9Z02b9/7HM+kHa6sJadypqZ93AvgRb+11eeZqJ/58SJzVLqXrC7A0nn0TpqajTsGx+TT5a14wlOnq3jwtsbz1ILj81zo+8LHNvzXwpqr1lvox94EeveZbCSaI37MWonEda7a37dHFoPFU+2Mv3nGw5vyxHNh4heTmfqVrTW43BKhC6wTYmVstNfUzNtM2AmLHx1fqKhHNO08ynEhhPMdNan3X4opwBc3VmFd/J6OqleE1SdaMNVZnDrz8dZ7dVrzoUw55aJUrniyOFHMV//It5kH47ZzFnnhsg9IDdw2+LYybXLpQR0F8JeeRTbOQrtrTiFCIGzbQ96mQ85O4Q908vlwSO07ZO8fOI++sStdLvgwmMjmCm05m7k6M0NdrAxmip7GWRnipstMnVvitbueozoeP7GJYrpa6RnrBMrtrODSq6qMmS4d1OevY7KCvSAH0dFAHu0D+mzMRobSD24zu4a8lYodj/Vn/1u6n/oh4sdhkKhUBQdKeV9IcRXgNeAvwn8m2Wr/zHgA/6jlDIC2e1t19tPMSmlTGCFQrHAy7/8OXrfuoZtll5m6bf/iEVT/E9Yt3Vfcn3nOxEa4rOvvccff/UsY327RAhWVW0Kwl/l5uDxcj5+dxIrZaMbgqNPNSAB1/AdrPEx7PXoNPeuU9PSydTQxrPULvyZk4N/04dDz3+cCgGG/hb64RqkaEWYlxE5LBM8rrfQAk9jh4pnAWU5fZhl7SScNUg9AKT9ew8fmMEaXJiV5Fx4rMbh5KrRgW1mFi/zHfXTVccxDEEZMwzczl3ErKnRxBq2qTnbgTF3Bzn1PkyBp/Ykscnc2xpOB9Un9iJIO7MICXLBo0XzeAj3Zx4oGHyvn45nmnCQWQTOl+8QnYpgSx1NWEgJZsUZYtEqEiOTyHgc/6F23MkLaIl09qaVyH6smCmJ0dCEo6Yae/Q2cvIG1rKkz8cOz+Cb+AgmUln7WC/WfAi9thM5mV2c32rKwx/ibfgM0bHgju0zFYpy/nI9B5/ppmLiWwVtE6l9jNHZavbYb6HZxfPqt4WDYN1zPHh/HGnu/KyCyj21iJ7NHR+uxjqs+9cwl53bU6H57BsoFIptQTidVLz8arHDUCgUilLibwDvA/9aCPEyafvaJ4AXSds3/INlbTPa226gn6KhRGCFogTx11fgKvMSmyktL9FXP6+lBeAdQoSG+Y6X3+Z3/+A5InOlJ4ivRmnA+Tn4RAPl832kbvRyss5A9/nAtjHvpEXJjWSEyVSK7i7J1JAkvySZmeh0hHvDn+VQ2+8WvI2wphDkF2SEAEdtJYkdFoFt3UWo7inG+kxCPZOk391xqg46CSw2cgWyd7BIKonhcZAMZRbBbDu3TDp8sR9vQyVhXZIKZzdlFbqOsyFAuXseOdi3Qnyt6S5nMI8IbKeShK9ndoDy72li79l60sfHwjEiQCIQSAwn2G1PLvsSL+5dYGrlZPVWAFLRBCPGqzRp55iLnSRxvhdYUm7nL94i5KjAf/QxPIkPKGtyMtO/Nse9vNlHU00I4QlgPTi/Zj2Ab/S9nO/BRrBnx7CjXgxPBcSCW95/JoSA1sNu7myvzewapGUx1G9Qkce+w9bdTFS8QN+5UezkEIFnX6R+6ss7E+QqpIQe8xnm3hkpyv4Bgv3TlHWewdl3ESE39lssdD1/I4VCse242ztwNTUVOwyFQrELEQK0ErOD2Ir774Us3sdI1yj7FPBp0haz/xr4x1LKtVWnt7Gf7UaJwApFCWImUtQebGHgvdKxtH7+szp7xR/sePEz6QgQC6ctJ0qf3RBj8Tj+bCPG3UukFqxAZMrEDG6NMJq4d48DZ05y+/zGVaVzf+yn628Ulg28XvRy15b3mYt43XHu97iJ3Rlds2723ghlB/cghx5gWkZBR62uZ2+VCOc27TA8TrxuQXQoy3WPplF5bB+h4Rmic3HKQmvblbk354Gq65C6ey3r+lx5tdreo3n77+ltwV1+EHM8c7akTKUIfXyLiLeZvcf9+KvKmB4IE52N0XiompbqGazBK9AD0YYmvGJnfXpJRBGtR5ADl3Zsl5XuIRw+P6lIfMf2CSDzDFpICYOeFxl+d6m44f1vDeF5/mnKJt7f7vDWMFv/CnPfGt7x/S4nPhkkPhnEVdVOdVct+t2P1t2Hxi6Z0aNQPOIIx85a8SgUCsVuQEo5SLrGWL52feS46S+0n2KiDCwVihJDJqP0/9t/wMB7t4odykOe/6zBQfcf5PXx3Q5SehW2tTvEVZUJnJ3qZj/OgZvbegxVhPtwejY+thmdCnOz73NbGNESRgEJt1uBrTmZqH2N6+/HiU0EM7aRpkXMUQNAYr6wKe6akf1yITKZW8iv7WogOrTW30MiqDjWhVFTzfjH94mOz2LLbNmCm5sJkMuHNx/Cym294K70MTeZIijrHy7zHDhA+T4X5fvLcbZ3LMURjWBf/5DauQ84UH6NU533aYx+iDWYLn4onC68geDOCsAP2blLwphnH/euV1O+p2HH9vlw31MhbC2T7wnYQme44g2Gzw+sWXfrXJR45f7tDm8N88HSuVRPzMwzcXMEUVWz7m2lWTw7DYVCsYRTZQErFArFJxqVCaxQlBq6k2bPVX78J0N8/dwZ7l8u5o2T5NXP6+wVXyyKAJxmFymrSgXOiNOtU9Poxx7Y3oy/1PQsJ55s56O3Nl746dJX3Bz5cSe6vrXfO8O7/TUAklVd9I7VE/qgP2/bxWzI2Pgc7gKuBA4/aUMsAcj0uUCmjTuk4WNqLAZ7jfTxL+XSuUI3mHO1MrJqQEtKqDy2j+hUiInLD1ass2VmwWtspBKYzveqNrgux1ZtRwiLKvafdXDnvbXCoKvci8PvZX5wkv7KJg4DRm09zrkLCCudIe0pbyHr0bTsvKqXV+BvcSMmb2wo1k2zTecvKSHqO8ZkvJvZoSRWyiIyNA1MU3mydlv2mQszGqfP+TL1gXF8kx8vxYngrvkiM+fWfs4AViLF7fs1HK0fQk/tXE2PQIVkc3nwW4sZjUNNK8wU6E2saZQdPYA5/CB/W4VCse2UnX2m2CEoFIpdjCgxOwjF+lEisEJRYgjdwPWjf4D9q0/z6vE/x0q9Sd+NnReCG/c4eP2NXtzTH+24BcRy5G4SgRVrqGkpY1/5FKkdmmZu375GXUcXE30bs5kIj81za/D7OdLxX7c0LsO1fRZQUmgEG17kwQejSHN9clFyZh7R4UdGc/uPi7lh7Jm14rpdd5jkYGbR2dV9kJH3brI0kCOpPdLB/FyKiStZikxlESLjc7nPgcu158zdru88IhGkOp9i9MP7wCTCYWC4yjATSxm6rjIvznIf8wPp93z02gjHPncG38x7iOSSRYaYG8LVeYZEb3YRzNnciscYQEwWzyos7Y68dcQ83UyZRxjvSSyIvkNr2qRmi1MYbOzSAJNuJwefWLJ4mK57mZlvrrVPWU50PMho53O0zH1pJ8IEoCx+B6GXIa2NOKZvPS1nOpB3Liwt0HW8Ha1Y0RiJ0bXnCP+BfaRu75zNiEKhyI2ne+dnNCgUCoWidFAisEJRggiXH9fn/xOJ3/xOXn/yG9w79Dzf+KLJdmfFarpk/2NuDhwJUZ/4C5jeWa/GTLiSQ3Sf7uTuxV0wlVTp1SswXDp7XMOkJneuwKG0LPY1mUz0bbxI3Pk/93Lwp1zoWm6v2/Wga8NA5Zb1t4hZ1kR/qJvZb60V2DLReqaJSm0crTzCbD+AQKtqwIr25N5Qy2zTkDJqgLXCpbOlhbsfz5H+DCS1RzvQE2HiA32EgtkvPebD5Xxw+yzStLAtG6GJdPKxbQNlJBx+zGgCpHyYzSw0gbQldsyb/aJmPSJwdQuzyTpCH95/uMjXvQfz3JLftDPgxVXpZ65/ZcG4RHiOQDK0pkt3mU2mo8mz/wCGR6JNXELEshfN2wnkJs9fNgZh/0lmY+1MPogtCL+5i5mFB0Zx+Hw77gsMYMWTXP9mkgMvvITbnOLeu4XNIBi6OELDkSqM+M4I9o75ARz+x0jO7Vz2cS6SSYEL0LwevJ1tMDuKNXQHo6KSpMNApkwQAmdtDY7qCuyRPOcWhUKxoyRHRnBUr9/SRaFQKBSPBkoEVihKFBlJT7UUkQm69S/i+MJ38+X/thV5WpKOwy46D1jUVodw6AkMLY4hIzjC9yEZgdK41wRAhIbpOpTg7kWlsO42zjxVQfJmYeLkVpLo6eHAmRPcPr8xW4jIRIjbg9/H4fbf2bKYdDECRh2Yuf1lC0VKSLSfZTZSgbdCUvbsPhx2AgmYhpeZZT6i0pZIKdENgW/qfcxkBJdrmSequzzv/jS3P6Mrb3RyrXBpVJQzMOzEjIcp66jD79MI370LgO5x59yPbUnMZYLg6jOeZSaR1spIFsVgiUArr0Rq6XOFWFyuCeJagKGZtnQrXUdoAqFpa8Th6kNtzF6+g51cWYjLXOYh6/C5cNcEmOvNkPWY7Mv4usToRcqOnSKVcJMYHELz+fA2utDG3oPZrG/HDrP+c6ytOZl0v8rslJfpu5MLn906vvO2pPpgC2MXiicU3n1/GofXg7QKG6yyUyb98nH28BXEJr2qCyFWc5zknZ39UTZ8blyVfsqbyvAmRpEOF7ORALZpEdBn0H02mEGsnuDDbezgLIHDJzHDMURoAjs4hD238+d/hUKRm9jdO/iOHit2GAqFYlciS9AOotTiKX2UCKxQlBgyMoXV8y1SX/1nK5a3+y9y4oUnaWpJEIsZvPPHFlYBtYOEBuU1BlWNGu37LPbW38SYWfCcLM5M3HVTWzYKlH4hC6FSgVcgx3NnAW4nFZEBnG4vyfjGplB/9Kc+un6yAqcR3JJ4hACjphpzbCx/4zxYnipmnUeYfa8PGASg9vQ+UreuAOA4eIzRC2ttIY48W4M2uSAmLfNOMC1jxZErJWC4SDU9nrZh0ARGfHjN0W2XtRC7NbhimeZ24D/aQvtcEsPbSN9X+1guraWntOcodJXnKyQMHczMn6lpCUYHYe3FoKTCYWAnFwX47CdOISR2cu16EZzC4XWQiqaoPtjKaAbR0ldfhjuZ3U5AG/sYF+DyLyzY/KGwxRR+/pISQoEn6bldR6h/gvx+zdmJD08sJowXBTtpkkiub7bC+OVBvGdfp3Fme20hLE81PbfdkN1Veluo6m6gYuR9WOb08jBvMMt1g3P/MayUhT10FyG3XxxXKBQbQ6a2ZjBaoVAoFLsTJQIrFCWEefkPSH39XyJn13psavN9PNnQl9YvHFDzo5/ii//Jm7Efb0DjxPM6e9rG8EevQDy4tLJ4lpMbxj13Gae7iWTx3SlyozRgaloCNLT58LlsUreuFS2O1NQMx59q4/wGi8RFJsO8++Ff5aWzv7plMRmVfsxNCn/xxscYG3GS6slcvAp4KMA4fC5cPhcA4Yl53OPXH7ZZ7i+amE/iBqRmkGx+itnrA9jxBAzffdim4qSb1YYQEdEJLBdDJR3PehHTXwczxGTytTWxpW0dsuN02dR2BZA2aLpALorVIj3EMtxnsyFZvwCB0fC5CT3I/AHFBsfofvw40yE9owAMUL/Hn3H5bmG1DmsLJ3H3XpJ6FRYeTNtJNOYjPG0RGpwlFY4BE1l6K5z4xAw1R7qYupbFJ7pE6X1vAP/zTxKYOLdt+4gH9hKf3pnRWkfAS3V3PbohMLQCRphXYUfnMYcGlACsUJQ4msdT7BAUCoVCUUSUCKxQlBD22I2MAnAmquf/ks/88Hfylf+hk0xIatsMXnxjjgp5Cy08Ara5KwXfjJhxDj7u5Mo7u8AX+BOK4dA5+lQd2t3L0GPnyLXcOeSda9S1dzHRv7EicTe/MknXwVdprfrqlsRjlG38J9fWncxWPsvYB2mhrOpQJ+E795e1WBqBkEKw58lO5q/egvm0rOetcCJSmUdRYuNzuGpbmA1VEz9/N2MbxMrs3VTTE4TOrxRD215uRgx/8+HzTDbCq60cVtNQMYE/9q2s66e8z5DMMjNe5qwMl3O3AJiROIlE9pEme3aW0SuzazozPE7KW2uornNgxevR4xsbeCg2UggkGnP+pxmfamTi+hh2IgVY8DCfe3t+VETJj/BlZnSyjMA29q/JncnY63yyGWPwCmJo47Yc5mCfGgdVKHYBenlFsUNQKBS7FAFoJWYHoa491o8SgRWKEkJUtq+rfUvij/jR79LAcEMqChvTunYFp47e58o7rcUOQ5GB+o5yOj0TpG5/XOxQViBNi33tSSb6N14k7p0/OsDnf+Qt9A1kxq3G8G9M0EnVHWJ40IMVWvqC29rqn++l12ebgvnLN1esteNJ8JVDeMGAdlm2XiqaZHLIhRnKnqYsEkvZiHZNN1OXV9oe1D3ejGP07ZXbaBnecylpP1G30opXiIdtdWfugR4tU58Pu978RWn5sf3MXb6VcV3kwQAtR/czNx2noqUKO2USn5ojMjpD5P4gUaeXWNdB/LtQBJYSRqfb6LsZIDEbYtFmZKcI9Qzib6onPLJxW4likIwkIfOEnC0hJqqB4bztNkvSdjEw08yehmlEdJf4RCkUinVhVFfjPXSYwOnHih2KQqFQKIpIDmM+hUKx0xgnvgfWiDuAuxzXj/8ZoiyDL6600wLwI44lnfkbFRvxyRyLbO90k5ouzbTzxP0HHH6qccPbz/bPcv3BD29JLIYnuK72tm4w1/gSPRfixMZmEMbST/bcnX4Mv2+p7fIE2yxi6IpM4GUb2LHECnuI1fj2tqKF06KvXdnJ5AO5wlMwsKeaQOLDtfvLkilQMXWJ8vGLS4+xC5SNnKds5DwikcgaB4DuzCECmzmyjAvUh2dv9WEEfBnX6RXlONxOzMlpJi/eZfrqAyIj0yAle59owRoZIhrPvG0pE/d2cjfxHdz50sCCAFwcnGXbqKZuE/FgFLmNOSgzEzuTbTP80QMq9tRDRAnACsWjiKujg+7f+l3a/sE/Qg9s5/wFhUKhUJQ6KhNYoSghhMsP7jKILglqxgs/j3Hyc2jVHchUrIjRFRHNwZ0HLXQeEWhGWuPS9QXNVYCmgRBpR0tdB3vJRnRFsTa5oAQJIRAaiAzK0GKf6b+Zbu6XbvnTq5fa+OpmqQ+40tsjF3xMl/Zx8WsJijFp5fTzjTjFomgnF/6/Mo7l79LDv3LZSrn8nyu3lsHxjfm07hD+6Qe4fOUkIhvLxD33h5I9P7eHgOvBpuJwOq6BaM4q0i7HrGxjdLaJ8Lkln1RXRRmxkSkAZMrEs3cvoSvpIo9zdwfxyYVjMosnp9QdCNLnkOWirxDgrKsl1rfWZ1joOoFagZk6hJYIMjXsxgoFH653VHior+9Dzq09N2UbExG6nt0bOM9bo+sbG7uWBarAhteNObd2SoWjsZ6JCZvkyNpjwOF3Y/feQQgIDc5TV72hEHcUywgw4znL9LiTmY9HkdZQsUNCdzmKHcK6Sc5FCJ94nMDE2kGQrUDaOyMCOyv8VIWvflLHMRWKRx5XSyuaY/edYxUKRemRLclDsXtQIrBCUWrElzJx9FPfj/OVX3j43PXdv0bi9364IBHpkcJOcbLi96Gi2IEUQE2W5bqTi7y5o6Es4opOkejPXkjsUccMznH88U4+2mCRuFQ0ydtf/04+88a/2pRIomuzOFufIDmQe6q9WdVJ710PZmRlvKG7fRgBL2YonfkfGZ5Ekh5oMCMxtBofMhrJKgKb9Ydw9C4UsVp1DjH8mbMwpWUxdi597JSfOo45e3lppSZoO2UixzLbSGQ9Tek6ZKtOnufUZucoOpWr6JwQmYZ81hJob2Du8uzKbV0u5hJukqGpFcsdfjeNh5swRu4iQ+kM5vjoFHa9H80MU4rYmpNR1xsMXZjCjE4WO5wVyHAYT205scnd5Ws0Ha7CVd6Bc65vy/u2Ejvjrp6cj2AdOIDRW1qWPgqFYmsQTlexQ1AoFApFiaBEYIWixDAe+wL2+F0cr/wCWvOxFev0A6/hePkXSH3tnxcpOsWGEUV031HZXdh3r1PVvIeZ4Y1Nd+//cII7x77AgZb/tqk4XK1ekjn0eClhdLYBM7JWWC07tIfZq/dY/EDj4zNUHdlL+Fa6mFNUq0KU1eAQmQXduYnU0hjFKjHVcrixWrsXjlMBmo5cSIuXQkNqBlNxJ3Q+iQR0maKh1STOJHb9S1ipdPq8EKDpNpqwiUUbKT9Rv2I/Aiirm0WzzaVU4WVqseUuY77m1fTih9tIpEy33dfkYN8hJ5qWjt9GsJB0j3SmMFuqEQ8z1eXC1gLboXE/zzhI+cEOgpdvr/q6SERnF6GPl2dk+2g8UIvWexN5Z2SluKwJbMNbkiKwjc6D1JuMf1iaA0LhvhEqTx7YdSLw5N1JZpyNdB+uxT95vqBtJBqC3EUSbcNDaGgqZ5utoP5kJ4H4AzQlACsUjyxVn3qj2CEoFAqFokRQIrBCUWI4vu1fgJQILbNoaDz+VzA//C/I0O4rPvSJpqjZ20oFlimTA/sF72+ixtK7X/TT/tN1eBwTG+7DVTlBLhk60fIE4fczZ9bO9wyx+rM0k0tCUmIibSOj+TL70s7fH6H6eCdivHdN1uxsyMHtC4ULl22PdxL5i0s52wSO28xcurNmedPRGcxllhLLSbU+zuhH2TOl9z3pxhruybhOazlApKc/4zpX276csVYe3Ufk7oM1FjHVJ7uxSTK6YIlS1l5LjRxH3h5ck1nsaa6jpWMKY27jx8d2YOp+gr6zDN8ThAdKUwBeJNI3jNCyJrOXJKlQjBQx7lz1c3R/O875zMfgIhLBreQLHHR8I+fMgmRZx5K30TZSNn8LES5NT3eFQrE59ECAyjc+je/Y8WKHolAoHgVECdpBqNvcdaNEYIWixBBCZDfTBIS3CuPpHyf15f/fDkal2DTFVDWKmYVcQiTu3GHfqRP0fLyxAZR4MMoHH/0AL5391Q3H4HJcAn0fWGuneUuhMd6f/TjRXU6saHzFsvm7A5S1NRAfHkP3efC31uGq9OGt7MSQcYSdxNZc2JoT09KwiaADrCoEF00UfjlQe6gZ/e6VvO2ynsZ0Pfs2ebIjcw6myI05U1ef6Gbu6p01ArC7voro3R7sRJIDT+xnMqhTPt+bttxYjqZjd5+gqvIezrkbG4phu5gqe50HH0VJhbY/o3QrSM6GqDqwh+mbpS1WZyIRDHNntJMj3v48tjGCyPg81oEGjAwZ/4vEHY3A6FaHuZYN+mwrFIrSwtXRQdWnv43AmTMkRkbQHA68R45mTSpRKBQKxScTJQIrFLsQrfV0sUNQrJcNClRbghohfUhNYpA+lwczsbHP4+ZXJuk+9DItlV/f0PaaFqHyxVZmv9a7Zl2i6QmiWbKAXbVVxCZmM64zqippLg8jJ/oRU4OwSu9bvP1zLlsmlhWIkQgmegoTCX115QSCAzn9d/OiZReB8w6W5FLXcmRNmkMP2Pfc4/S8s5QKrhmC42+W0fPu2gxgkHgr3USmk+mn4RBls5PIRGJFK72pjcmol7lzvcy01PFMpxNdJnO/hh0knnTvGgF4EYcrx/FR4oQGJpl//izlE+9lbSOwqT1QS8oVzyoCJ6oO0Xdph2wx3AGY213HiEKhWELz+ej4p/8cz/4DC0WSwdnYVOSoFAqFQlGqqKFBhWIXonc8ifHEXy12GIp1UcSpM6rk+0NSk9M89lQVLt/Gq2S//T8PYlruDW/vK/szvCf3r1gmEYz3r80O1pwGFUebkW17wJvZ6zd4qx85P5lByMyOOTvzcHDAaukmHozk3gDQHAaNtRIZThtaND3WjO7awFhyLhE432vQcuzPzlFEy7YJVNgcf7WME68EOPGyl6ffCOIf/ypHn0+uuRqqOb1/hbWEZghYJgBLw8A68Bj370SZ60vbP4SGZpjyPZ87/h2m0XwbRyDzcVOqzN/uw/Du3iJGt94Pkyjfk3W95QgwdmWEiN6YcX2yYg+3rntILRSA3G7CzuYd2Y9Codh6hMtNy//2v+M9cPChAKxQKBTbiSZkST0U60eJwArFLsXx6V/B/XcvgO7M31hRfIrpCazsIFaQunmV06c2LowFB4JcvPnXNry9EFDZ8WUczUviS6L5CaLD6Ww8R7mPtteaOPXX4rz4U1/mzCv/kfLWPvRTTXhf6abs1UNYR08hqqsBsBNJzKZ0EUlbaEzXn+ZW9Wtcr3idq+Xpx73aV0i5Ag/3J5NJXHXpMnFh42G5uJzsOdmANTgASNqfacU9+hF7uqM0nm5mPYMcuaamijzfE5njJlfa2bO7Xe3t2Lc/gAcfI3svIfuuAumBAH3kAme+XaSFXsDbXEPk1t0V2+sez8N/a60dTLv3MHDuAdJambkcjFXkjH+n0c05qvcX9vmWCnYyRfX+lmKHsWHslMkk+7Ouj1Yexk6Z9F+dx9bXDib1z3TsmAAMEJ9P5G+kUChKDldbO3v/zb+l7Iknix2KQqFQKHYRyg5CodilCN2BqGhBP/l9WBd+t9jhKApCUhRvBpUcsobEnds07DnI2IPghra/+Ech9u05TrUvvzduJjQtQu0TV5l47zCpiQnG+9ICZtPzzRw6+V/QtJWWAqGQn/N/vGQHUbuvivh8gL37G9HuXGdqKMpM1evcuxYkcjUCjKzZ59Wy/Zx+vIy2yXfR7CTu+griY1OM3w/mjfeJN2qpEIPI56qRk4PYvecAsGYm8TBJ9zOHGOmF8HABU9g3kQkscg1oZLWSkOjmHNYqH2bpKHv41dBHzvPYm6f4+CtOnC5BLJla0daMJ5EOB/ae4/R+1Jt1UMc0RUl935KeFsY3Uw2xSNixWLFD2BRDF0do3rt2EkbKW8edy+njNBEMkziyD8/09RVtbHPn/OM1p0G1ZxZ2yHlCoVBsDYHHn6D1F/8PNLcnf2OFQqFQKJah0sMUil2O47mfKXYIigLRtGKpQyWkSpUQHe0bz6K3TZu3/uIlbHvjP6O6GKP27C3M7meIjkzh76jl4MnfWSMAAxjGyizXyZ4ZQhMh7tycA3+A63NVXP7mMJGZ7LYO8fk4731tgvflc1hCx5qfJdhxlshEbgWorM6Nf+g9zN6bWPevYs+v9SY2e29SZ9yj8dkuhGtxKn+24y6Xr28er+YcmcJ2cBK9vGLNcldbG9Z0/mKA2ujHnPi0i9jAWgEdCXLPMQY+fJAzBiuVdVVRGI6fQZpF9CPfIKF7A3hqy4sdxobRHHrGGRgx/z6Sc0vfUUtbK+DUtuxcfkbn8Uq0sZ4d259Codga6v/ajysBWKFQ7DgCiRAl9iim5eIuRWUCKxS7HFHeDE4fJPN7eiqKi+YAuxgzb5VPXEasB3dxempIxnJ4yeZg7Pokl4/9GKf2/6cNx2CIEToP/3vquw6ia1fRtczTwOdmvcDa7MhYMMr88aNMfOPu2o2y0H91DO/Z17HvjhGb7s/bvvu4F4YKUDfNFI7hSwxZh3BVupl8kISKJW9UiQQpGY4JUqmqNf6F0pZU2D46j6U9doXQ0hYPUj48hp0VTuxUZVpgkzKd/WulRU5XZxti5kZ6WVkLwQGd+OAUus9LRhnUcCGajmAPX3/4FTHC94Hqh000t4vA/r0EL9/Ce7SsgLdArqzAV0Tivi5G3hksdhgbpqKjjtjk7kxRNaMJxqpeo3HmL1cux8PytNueO06ONFeDlEjdiREewyF2LgtaxDMXm1QoFKWLs7kZV2trscNQKBQKxS5FicAKxS5H6AbGqc9hnvvPxQ5FkQfDEJgJNVpZKtixGHuP1XDrw7EN93Huiwn2/N2DVLhvbbgPIcDnyr19ZD57xvHUwPqFnFvvDXDoiTaYDuVt63fGC+7XSMzRdrCcO+8OZW1j1vqJj01nXlelY0dzZO02VWLPrF2vVVbCxMfI+MLricxQ7nbgO/sUsxf7cVfVYs1MPmzv2n8Y8/b7WA4nhkMDFqbgzw7hrm4mPh3H191JcmaO4OWFzyaRX5yzUqXz/R4MHgZ794rAifFpimahswX0vjeI+cQbNNhXiXo7ABhb5cwRHQ9yNdVFfDYMUlLZdQRjxgXM7EiMpr8J58TAjuxLoVBsDc1/62/n9NZXKBQKhSIX6hdEoXgEME59v8r23AXoDvUZlRqbvY+yUxa9g2e3Jpgc5LLRnX0wQVX7+ot/3b0yiq+7Pf++5foypZvD38JVln2aqshhiyLzFlDMtK3E0+iD+CpB20phjL5D3XGJVr8ya8oKBgFw7juCYKUHa+2hKsqOHSB8p4/k5JLAnprKL8yZyZ3zc81FJHCcicu7VwAGiA5PUNbRWOwwNsXghwOcv1DJjW8GufHNIMGetQNO8ZnQQ4uR2XujREcyD5BsBylb5YIoFLsJvaIC37HjxQ5DoVB8gim6/cOqh2L9KBFYoXgE0JqOou15rthhKPJgFE0EVuJzNuwt0OzGB/LbBGyW8Gz2ixwhwFfpW3efZjzF3RuT+I/sW9mf04H/0B5cxw7gPnaQiVR1lh4yYyQj7D1Zhe4y0B0amiEwnDq6Q0d3aGDo6B4nmtuJ5jLQXA50jwvd40IYuYrGQaZj2X3oMPbozaxbyMkevPIGGI6l1z4+jHB617QNlz3N2I0oc1furNyrruOorkToub9LqVhpmAIPjOUX93cDvhp/sUPYPHkHNlaiu3ZOmA1N7u4CfArFJ43VNkoKhUKhUKwXlQKgUDwqKE/gkkczinTxru4ZsiLtzY8gT/auLeS2GaRtgxArbvaCI7nFGs1YO6brdMHRJzUOHZmnv7eRD74eJrXKjsRKWdz8aJD67nbKq70k4ibDt0YxLyzNW+/RNd58/XFqxj8q+DW0TH6Z+peeZOTcWs/hgMuJQTB9XK46NrWEO3fHGW6AE339eBrbkDPZp7WL+UE8B18idu06AK4DR2Dow4frU0YlY9bzTL7Vt2I7774OYvgYvTNO6uMCMoHjG/OX3kpCZY8zc344f8NdQLhnEE3XsK3SyLDeCVz1NcRGdyYbeL5vjPoWD6IAqxOFQlF86n7wrxQ7BIVCoVDscpQIrFA8Imh7n8UevFDsMBQ5qGvRKK92IjTQBOhGur6Vpgss0yAZ9yA0gRDpbA8h0lPnNSEQGgvLF9YBIGHZc10Hy4aJkRjlVW78PkHKAmR4Q/FKTWe6/fGFPQkEErmw5+qJ62iR+a14W4qKmbFi2PqYGwyStMpx6hssYiUlBLrAVQvxGYRtIpNJCDQiQzcQVoRkngxTsUYDlvzC3/4GWqQfKcGe/3YajyRINXZzf8zJtY9nV2RBj98dI5sTb+tejcP7L5BobSV4YR0WA1kyIHNlMslUPhF17bYyGiEZb8GRofVyNH3pBS+K5skHN5mq+iwDQ+U47l5eaqzreE6e4s5bd4HCPZejUyHMgz4MuziDclJCf18tsHGf61IiFYpQdaiLqWu9xQ5lx4jPbOx8vSFsiV3XiT6YPZNeoVCUDuXPv1jsEBQKxSccTVkw7HqUCKxQPCIYZ34I6+J/Q4ZyFFVSFJXnOn8/6zqz9gmufnHzKbsa0AywoCM4gMQG+5JILr+TucDXU8/txdd7aYM9lw5blWE4GTpFc8VbhW8gnFB+CIQL5ntg9jZwO73O1w7zvcj5+6A5kdXHeOOnXbzze5LZocxisGVJ2h/fy+ClXuyUzYmzOloknYWbNI6SnExnFur3PqYbOHAqQKrjGH1DFtcuBknlKGj2qU/NYARvYWj34PQLBC9mEIIdGu6mKmTKJDESTL9EsvSZQwS2TRNyOUJk2dQcHsRRmWM7wF6WsG3OhbBc9dwMP8vgO8NU7/c8FJH1igri3lqs0AZGCKRk1vs4teF1HAtbSCxwiLkLj4YAvIjOFozU7CJcFT4S/x97/x3f2HXf+f+vc+9FB9g7OSzD6U0zozbqslVcZVvuPY7teJ2NYzvJbrKb6rRNNrv5pv+c4sR2erWz2WziuMmSLKtY0hSNpnPI4bD3in7v+f0BDivAChAg5/N8PPggecu5ByRmCLzxwef0Wej4JlWVG/JUQIitYuK5Zyl9+JF8T0MIIcQWJo/8hNgmjOI63O/8fWJffFe+pyLWIbU41Ur9UDeX4TgYloGTXBqUjib8rL0LbeGJR7MTMPX37145BHaVQmgP2FEYPQeDGSr35y/E5sRh8EX2372HvSfaiCb30HGmmqe/HGG0MxUIaw1D7UNMD09RtaeGQGmAmtoIA/F3Uup+ionpQ8DCVgnO9DSuKy/TGomw+6APVVlHzFPC+U6DC2fGAUXdDjePPTCE++xpwnsexevqIDD1TfwP30ZkspT4aBxlQnHldRi7Ojt2fM/DDH7nOjYKo3lXKvNVCq1T+W9SZf6Za9vO/M9AAU6mYEyhypvRwx0Zx04Mj81+HTHLeealCuJTqbYJiXAcrcHT3MRwf4xYbw9lx/ZmHGs5be2lVFTIWp3ZMnGxA09JEbGxTayQzaOhU1eoONjE+PncVz83nmjGbP9ezq8jhNiY4K234du3H29LS76nIoQQYouTEFiIbcRoPoEqaUCPpa/eFIWsMBMj02WmDYF72seot7Z20OWqLKfr1WGy8bPv7wxBuszQvwN8DRAdgbFzEB5ceTC9NCTVZhwcG691nn3Hz7P3thISySr62qt58V+8nPl2ql/twKVUFegBx+bSs1Mo8zaGd+6laEcjZSPnsaZTFcHe5maiV1PBrROJQGcbFnDPvnoeae1Cu3yooU7oTv3uExfPEnjfYayiMuyOMP6Bb+C/0b53bOFcXWbqNkbjBpdOLe2je/DuqsytGzK0kHDVNeDyOiTbTmc6k0SiiLinlZ7Y7SSTBv5AkrriHhQJHAIkT53FKC7nmn2IC/+6sMXDRNcQNQ/cSe/z59GzPULWd78YutjP9ca30Bj5l3WdvxGGjgO+Tb9uLmnboXRXDX0vXsn3VDaFt7KE8YtLe2nnwvSUwwpduIUQm800Kb7/AVyVVcR7e/Dv3Uf529+JMmQ9dyFEnilQhdYOYgs/F80XCYGF2EaU6cLc8xDJF76c76mINSuwP6ik8rhkLH3l5UTfBM4t1ZgjW7f9iFFSxmzfjA3qvxyGRwAUFO0HqwimOmG8PfWxFmmqXZXtXnAPUc4YbmOMxtZLTN/yEJ6RElRxEdc7p7BUgnjvRQDs0irOP30jUCqnZu9+GusUOwLpe9b6K0y42r/k8ZRRFsLyfB9iNmYtmM13kvjuBZhe2gc5Hq8iVXmcvtWGozJXvOukDZ55t9Pno+jQDpQTJXIuQwhomqjiMrrit3DhW7048RvtEDRXSwMcPzqO03uWZMsdPPtEkujU0h6/9cdb6H3m7MKNG3hQ+cq3Rgi+7i7KJp9d/yDroNK8gLAdxAdHSP0fub0f6buCPgKVRUwMr7wIYTY4ie15fxFiqzL8fpp++X8QOHgo31MRQgixTUkILMQ2oyp353sKYl0KMAT2eNFO5nlNlzRStIVD4JgrSDZC4GCZ4tiD4+jSe1FjJ2H4zMYG1GnC0+5LULt0s5M0ufSvU4T7J4AeioB7PhSkxOvl+bMHGejTQO/s8X0XB+i7qCk/OoGrrhV3SRB7uJ9EXx9KaYzRa2mj28BdTSxYbCx2Ade9B0j8x9KQc/xCKmRV6W7HCm7c31y11fjqS1CD59Adz6Gaji05Vrnd+A7sYno0yulzexm5tLhXsWLP7QGY6uaa/wEu/d+F4a8n5CM2GQFg4HwPoZCfxGSYG2GjxwOVO0uxEw6hci9jvdOM96/u/qIdzYvfDXDviZ34I1dXPiFLlLP8AoJbVbhrgJLdjYxd7sn3VHLKW1HM+PmOTXuHhb/EvaSSXwixOap/8GN4d7ai3G6UZYHWuGtrcZVX5HtqQgghtjEJgYXYZuwL38j3FMS6FGIIvPzbyoenLYo2aS7ZZhWHOP3S+qvtavcYHH0wSn31RTzhk6k+vvHbIb60Mnbt0twXghXA0JLNQ1duw2NpwvO21QWfxRy/xLFDDl+/3gpoGvdXcf3iINqBPUfKSY5cIzkySmTmHHdVHSUHK7CMs8RHl1ZcuuuHIM5CsXOoxt3ozstz2wyLxNBk6ku/xcPvtjCM1O3RGgzDwevpxdhZvXCsmcsppXHbVTi95+Ha3E/C6TyNWdWCPXAj0Na4d+/j+mANZ78+hhNP92KEg2UkePLlhgXVv6HaMopqilCGQddLqYA2EY7hri5l125Nsq8Ps/UAjp7CP/1q6qRe8O++bdUhMEB8MsL3zx/k7l0juJJjqz5vI5TeniEwgDe0/RsXTHb0Ub6/iYlNagfhZGddTCHEGimPl8r3vC/f0xBCiDVJLfNRWM9Zt/d7xHJDQmAhthmj4RhO25P5noZYI1WIIbDlXnZ/z+VhmkNbsy/waHEr0curr2JWhmb/PSb7bxulMvgK5vSl1I55XRWUykJIFWhEJxxgeHaTLtuJUzS5JBuODjYz9jdXaPHCrtfsZizsJTI9iTmemps/fJmSAZPq1mJivZc5uiOIu2kHoWITPW4sqNSNDwxR+ppp/OGn4c5qbN8Bot02sSvdeA42ouLn007XqK/Fnh8CB6pAQyRQz799w+Dhhy12xf5tTfeRtLmUdnBXlRAZHcJ3YBeDI1Wc+rbG9Bs48QyLxSmTJ/81zI2Hh5bXTc3hHQyfvsLwwCAVx/YsONz0uLBHR3FiMZxzJ1Huhfd/rxlb/Y2YMdk1wunSRzhe/E8YGdpjZJNyFif128fEhQ5cAS+J6Wi+p5IzZXvqNy0ABohOJAit8RwjGIRkEie6fX8PQuSar7U131MQQghxk5IQWIhtxjr8FpJP/na+pyHWah1vnc81ZSyf3EXGIyR3N+Hq37zQIhvMUJBLL/ax0mvH3pDi2MOa1n09FPEiKjZTiZu+nS46vrSX7pp5KmD0xbkxUei9xyCx8GccH6/m+h/HcCKpICZ56RWCQMjlomf0PYSqxhgarwWGiA2nqpMT41PET58nXlmGo+spba3GoyLY1y6jEjF85kzQG+7HDPcT8ELg1lJGvPfT9dxB6va+SlHJ+QWBrhFSzO8qqj3laB3nZOQo0Yle/vUrULP7gzx26AmCie4N/WiSHWeINL2eV7+rmGgfmNk6RnFLA+PtfUtP0BrDSi1sWHmggeToOEMvX5p/wILDDbcLZc89LNLxhYGqHuwB3Cx3vwlVB9ixtxhvdAhMi4hVwvmne7h8/zvY6/zD2m7wOih7+wZzTixOxfFWer9/eeWDt6DKo62Mndnc2+YJrq0dhKuqmt1f+CLTp0/R9b9/A3t8DScLIYBU39/aH/5UvqchhBDiJiUhsBDbjCrfiarcjR7cnk+URWGZDNRSxtYKga2KCmhLX9VZ2WRy9KEoO+rb8EVeAicGqy0AzcaiXFMdqLq70D0zvXaPvhOdWLiwnB330f3lIPb40uBTJxJMnrnKJBDaG+TwfUGm7SJ6z48SGY0QaqllvD1VAd3/cqoVgukto+FEA2ryO0vnExul/UKQzu/2co5yAvWPUX+Hj9q9VymveglFKoxNqBBj6jZGBvbxzKRF/5V5fYgvD9N58HYOsPoQWKOIe+qJueqJ6nJGxwIMnhsk+b3BJcf6S/0Z197zVRRRWl/G0Kk0/x8uqqy2Al5Mq5JkhkW5ksPDHHnwOJYdhVgYHZ7GiYQxS8uxg+WY0yPEOy/DxbnOGb7d+wC4fmqYHa99Df6hJ1b7I1iX7VwJDDD+ahve8hDR4cl8TyUrlGlQvKsBZShGX7my6W9p9LpXvr9UvOs9BG45Ss/v/ha+PXsx3G6mXnoRe3wM5XLR+HOfY/rsGYb+/u82YcZCbG3VH/shyt78Fkzf8u22hBCiMGmUUWjvXi20+RQ+CYGF2GaUy4t16/tIfO2X8j0VsSZb8w/Y4IimLN+TWCPtCzKX7Gp23WFx6MQ41cWvYt3oAZuh2ndZKgt/UuMjEEkFqLr6EI7r+oK7htbw+3/yAO4ph0NFbirGO9O2WrBKiom3XwHAAzQHFNa+nYz5K4lOxogNjc0ea0fjeH3pexlrDcNX56pLp7tHufTVUS7hxVv2OiqPlBAZvp+BV3vRSQcrMMjwsGfpOCvEW0bVDsyyStBxzry8k8FzIziJG20eRmY+0hs/346nJEhsbH6/Xs2eu6vo7dbpA2BA67kf7M5bqykdOU1sfPmezs75l5e0RranpoFO0r0EoMeGAReJaIKB53uou+M23MMvpjkyO5S2wVCwzIKOW5kTi1O6r5nebRACm143oZoSpi93APnpaeca71rxGO/OVkK33c6eL/1l6j8EoOYTn6TiXe/GKilFmSae5mbGvvVN6n7k03h37eLShz+Q66kLkXO+/QeI93Rjr/B3YUVKUXTvfVS+9/34WndlZ3JCCCHEOkkILMQ2ZO56kAQSAm8thR/aKAMst0UimqS8NsjuvcUY0+NgWZDM0Je1ACVMi1vfpNhzcIAS6yWMaE9qx3qC3/kMc8Nzu0GbbvTOVljUQuFS+17+6a/myl7rm45w54Eijlh91I5cSQXChiLQXE/03LyqWa1JXGujX5cQHhwn1FKHtyxEpHeYSO8QtWUvpZ3HJEeY7hlNuy86MsX170xRvK8ZnUy1M0lOR9l1pIkLL/YsODZ9P1yNWdeKEfTiXD+JM5kKrUd9tzPZXEVUuyiZ6EXFIsQr6hjTXianbEqLTMq7L6IiqeXwnHiCsoO19L6YCnvLm0Ls2RtDtz9Nf/K2BVcsrfdx/I4pDCfKlDnE4HkXR+4sInnh5bQh7kYlBgdx+5uIh+PgOPSdnKL2yD5cYxdycLVUf27DZeHEtu8CcaNnLhNqqmXy2sDKBxco0+umbH8jY6cvrXxwDjnBCkoP7KLoxN30/+WXSfT2ErrzBPU//l9xolESQ4P496aq2ZVhzJ6nDANXecXs9+6qavb9VaoSWDsOVR/8MLHrnYw//dTs6nPu+gZ8u3YT6+km3t2FEw5jFpcAmuL7HqD0dW+g7wt/xPTpU6lreLy4KiqId68cVAuRTd5du6n9xCcJHLkFJxph7Fvfouf3fnvBMWZJCTUf+wSxrusk+nqJXrtGYmgQ0x8gOT6OjqVePC1//B2UvfkxPPUNebglQgghxFISAguxDanq/aiiOvREz8oHC7FKOw9VE+y6SPBoM9NXrxM5k3pyXnyoiUR7W55nt3r7j52jyPk/kCT1kS0qSyGwduDo29GJK0t2VZYPYhhVODOVnt3XRvjKtRG+AtTUH+LOQyUcDgyz+9IrS861K5qZOpVacG6yvZfJ9lTFcXB/K2e66zhYn6BUnVlwTs/ICZarwgWw/Asrf4u9S1/QMNRcCGzWNGGUlKOnetDD53EWZcxRO8ITT0zM22ICCxfxq2mp51arnUBlEb7yIjx+xe2PBnBFhnD6LqBncvKj92ichEnc9gKaYKwNuq4DEKpJcPRwNfELC29ztlXtLKHr7CDK7caJxRi4WkptpRcjR/17Dcvc1iEwWuMLuJhEs1XXhC5urMx7AOyvraDxEx+h9NYjALgbGrj6mU9R8sjrsIqLobgYd3X1msdVhkHVBz8MQODYv9Pz27+JVVFJy//837gqUsGxE48T7+nBDASwKipQM29naPrl/8G1X/hZ4t3dNP7CLwJw9bM/ik5s4/uz2HTK5aL6Yz9E8OhxXFVVOJEw8b4+dCyGWVKCt2Xn7H3S8Pooe9ObMbxeev/wD7Cnpih56BEq3vFOvC07046vtSZ2vRMdi+HbvSftMUIIsVXNf0wvtiYJgYXYhpRSGDvvxj71j/meili1AqwE1unnNHWpY8H3jrd4TcM6lgtVWokVCqHdPpJYJOIO8akYltdFINqPM9C78kBr5C61qLzFh9ffC1MrH79m2WgHAWgdwVHpQ/Wy4hHe+u5jfPVvl1bH9XWP8X+6x6h4t4+H7+ohGTjIVJ/F+KsDkHCY9jdBmv7NUdPPqf8zQEfznbzncT9myI+KtcNkOz0XVg62J9u6cIX8JCZTlbnjZy5x5O4DnPleJ6BweUz8AY1VcQRlT+H0ncdZ5t219xV9he9WvJWJoWlAEyrzU1FbTFGxF4/LIOSDOqef2DUHZ3CA6cEBpoHSO4I4fQtvnyfajd1zGXea66jxHuKduV9Irco3TuX9ZSQup3o4J4ZHsVt3Y4wuDeqzQVnZq0gvVBMXr1G2v4WR89fzPZU1K97dwOSVznxPg/2ffHw2AAbwte6i8r3vJ3T7HVm7Rtnr34CrtBSrsnI2AAYw3G68zc1Ljjfcblp+7TfQWqOUovu3flMCYJF1le95HxVve/vs96bfv6CyPZ2Shx7GXVuHPTlB6M4Tyx6rlMLb2JSVuQohhBDZJiGwENuU2SIh8JaSIXDNq1XOaXp4Cu+ibY7lItx4GFtZxB2LSAymJxNMDoeZ7J5kb10zzsn0IVh0RyWlbDwE9td5qDrqpqhuAq/ZhjE90xs2FwEwoIzlF3pxzCYS0QM4E9HUz9a20ckEJBPoZBwScXQiBqaF2VsG2kFHI+hoGBJx8PhQvgA/XPdvnGu5nYvt6Vese+ORLhgfwgo/SYkJJbcFsUuOkGhP4PJZJCILy59HhlJBaG9HgrPXDnLI8/ep21N6gEN3DtPm8dF3Pkymqsv4+DRlR3YxeGouuI6fPcexPeVYQR/THb3UFY+ju7+f8aUObXgg1IB2V2ApPz/y3hhfe6qSqYFxYpPT2B3TjBlw5/116EvniCSWlnBPJCopX7wxXcPkTRbv7FiyTRtL+yZnizLyf5s3gyeQu59hLnmK/YTzdG1lmez7+FuouHU/ZUdaF+2zqP7IR7N+zZUCs3RuVGFWf/TjeBobcVVVo5NJxr71DaZe/D7u2jqKH3iQ8MULJPr6cNfVMXXqJNi5aOoitjzDIHTnCaZPncSJRPAfOryuYfwHDmR5YkIIIcTmkxBYiG3KaLkn31MQa6DS9kzNjtK9pQSr3alMV2u0A1orHNshHnHhJFRqkSzNTEGyRrlMHE+AI14fWqeytFCZG1egAcNl4fUmZ/sAG5aiuHEHStk4Sc3gpJ+oHeT5pwYzzmm5mGry+iClZRbYq+/V4Kv1UL7PQ6g+hi84gsu+iorMVMvmvtgTAI215HZprbBdJ0gM+LA7zgEnVx4oAfbVNAH51Fy9+H99V4yP/8bSQ44edFM+/uzCjfEpzGgnwfZ+jjV7UPV7GYsVc/WlMRyPn4FLfbOHfvMrSVo+dS+B4e+iR69TynVu2wn6WDNj+gBtJ930XVgaCA+fvkLZgWZGzs1V4kb6hme/VoviX+2tQBftIxk1SA4NY48MgB4HUiXCPmD3jtfxXFvql1e3s4TdZREir2Zu3TByoYeyGjfKnrd0WyG+uALoLFWNp2PcBJXAwJasEK26dQ+jeWwDcejT72b3h96Qt+uvlVVcTMU73jX7ffC22+j7o89T+yOfxvQtfNGt5//3+4z8yz9v8gxFoVIuFzU/9Em8LS24qqtxV1UT7Whn6uWXCKwzBBZCiJueAqUK7LH1zVH7kFUSAguxTRllTajSJvTo0rd/i0KUuz+oFbsUnr5vpN0XrnyEqVPn0+5TxRXUD84Fau7QbgavpvpM152oIN42d17JbTU4nWcBuMobef7p5fvILg4Fl7CWC4E1ZYdDVB9J4i/qw0q0oaLzFonKUaXvyhbepqT5GmKXR9Fj7RmOX7/G6Wepq76fnv6FQdgnP+qGvqU/W9u7E+hJVRt3vEIx0LLvThLeEi5eG2TuEZTib/6ylo++txljvGP2fDXeQSkd3NYK+vhMIHzaTd+5VCCsFESHxrD8HpLhpRXKtrawilqwvc0khqdItrcDyy+OdrjoLKf8Ozl6Rw364qtErqWq/Cpu2UFNeQfueC8Jdx2DUy14vDZe1yQe1Uz80ryQTRkZRgcdDaOsSnRy86sHNZnntVGGmbuxC0lyKpLvKazZVHsX2PnrpecK+fN27WywQkU0/JefSruv5qMfY/K5Z0kM9KfdL24O5W99nMAtR7FKSvAfOLhgn7e5BW9zS55mJoQQQhQGCYGF2MZcD3yG+D//eL6nIVZD5zAY0JlfIrUjmatt9ZI5LTOOCs3udadrwLp47JUPWcDyG9TeE6S8ZRSPc2ou9J1c40CbJKFfR+z7p3N4gSifeZfBT/3+3KaqWjf77jmP0fUwzvPfYv5POT7lSjtM9Mxpbr3vOC89PRecTI05/PMTJ3j7nQOQWPrG9dlAuAX00SbGOcC1816unxyl/OheBl5Otd0wTEXjkRJqGhLY3QNMDU8Cq++Dq4e7eewN+7n21Fz1r6+2jGbf1zFn+g+7Yv00cRIiQARU053E5w/iCSx3BdxlAWIDE8sckyPZWkQw3dA3SSVwbDQPv7cNUKaJFfCTGNv8V6msoI/kVIS+756h+W0PbPr1N4Ph9VH/2R+n6//7XySHhvI9HZEH9T/2E5S+butUugshhBD5ICGwENuY0XpfvqcgViuHIbDOEAJrdwmRy+kXIANQi99KP3+YRfsi/RPcqDHzela+LUkbvLuasccnSQ4OpzkgQcn+AOX7FCU13bjCL4MdJW/NNFdj5neYUA8RezmHAfCMWzyngb3c+MX8188Vo4ihG7pRJQ/AkAnDo+i+NqZjwaUDzPSODfaco2pHMwPX5xL1zosJRl57L2VjX192Dmr8GiVco6QObtlTy5hlUl1bS4kxiDlwER2Zgmusu9lJUe83Kdn7EGMXu0Apdu0fmA2A0xrrIBV+p26b42R4mGO5CBffQaw9PwuLaXIX1BrWzVEJnBifwvT4sGNboy1E5dFWRk8uX/2+EVbQx12/9WOc+4N/YPjU5dnt/roKHv3n36D3Oy/jq13SNXtbCR6/lZZf+w36vvDHTD7/XL6nIzaJ4fdT+8kfofTR1+V7KkIIsa0pCq8dhHSDWDsJgYXYxlRJA7h8kNh6b5u96egcviU9w99q7S4CZ33xnI4urGaLdPYR2FmCnhqjqmiKd77XjWU4XO/388y3ppec336yi7IdZZQMj85ucwX9FLXWooE7H/kCKjKzOFyBVvsuoQyS1q3EXry4KZczJnt57DW38n+fmMbjNbjt6MW533WwH4JAM6BraftKM1OBFmr9/WgsHEx0bCYojUQ5sjPGN6/PhacAr54v477aNUxoqpcSeikKNjJxRaET8ZXPWYFSUFypGLsIgR0V+Ce/tuzxerwfw9+AE079n5eYmE77QCdcdAdDL+UnAAbQOndBrbpJ2kEA+CqLmeoq/KrPop11jLx8IafrFJYd3Enlbfsou2X3ghA40FCF4bKof+SO3F28gHh2NNL0i7/C6De/Ts/v/Q46ln4BTbG1KY8HV2UVVmkp9Z/9cTz1DfmekhBCCLElSAgsxDamlMJouhPnynfyPRWxghV75G6AzvAaqZruAaNu1UHw/OJfveQchapoQU+dJNTzXUIzW/31x3lm9rs5djxJVaUb0ygh2FBBwK9w29NoEkxN2ujp3uXauRYkJz5N9JUwOKtf0G6j3nr7NP/3Cfj0T1dg6PQLTimlqD8wxP/9qzipI1LzO3qibPZBQOxqO3e99jjPfnuuLcSp7ya474NBiC339nUNLg+YFkRTFbpGuJPAoYeZPvnqhm8fQEnZNKVv9mGqMZRxFJ1MgJ3EKK0h2dsBjo1OJnDVtWD3nEJZcw9tnHD6VQENK1MatzAIz5VM/yazwTBvnpqIYE1pwYfAFbfsItzZk9MAOLSzngM/8k4AIv0L+7Hno+d1ISh9+FH8Bw7R90efx9PczNDf/U2+pyQ2QimKX/MQFW97HFdNDaY/sOD/eiGEEEKsjvz1FGKbM1vvlRB4K8hhJfDirg43OMFGcDJXay4+Tc1LMVSahDZpe5Ysd+WKj8K8ENhX7KPpQDXFASj2xnAHLWLXTuNEotyI61wA9/pINXrdOpKj9RB5aVOvuSN+GjjMo48uX9Va3XIBZe5CL1iUamEq5R7uoXWHD1fQB6SC/omGe6n0fxd0EjBSn5146sOOz91/POXE5q0vaI0+gbXjVpLXN15t6zGnca59H7gRX8/MPliGM9w7+338Yqqq3F/uoFp2og0vjq3g2tKWJ1aavtXusiA1h/10PjmwdGe2LdOne6NuloXhACYvXMVTEiSWhz67qzXe3oOK5u7/sua3P8gtP/UhTHeq7/eR//IBJjt6Gb+QWhTWTmzei1KFxlNXR9Mv/jIA/v0H6PzFn8/8B1HkTeiuu/Hv3YdVVo5//36caJTxp59k+Cv/BMCOn/scwWPHUS7XgschQgghNpsuuHYQuVxcfbuSEFiIbc489BYS//Er+Z6GWMn0AIfe1cLZf8jBW1czBE7heDOQvnoUQBkmMC+cnvfkWad5Ih3uHmVx51k10Y8n0ErzgWpCXs10ezfxs69ScU890VOvLBPzbo0+nzdos5TExexUvq6F4w6y91AQN2eWPc7tDVN9sJK+M3OVvhiLwkLtEB2eIDo8t+DWyX/18Oibu1buWR0bxrO3GHBSx2oHj7+DgR4X2Bvrd7206nyGnT7cckb6YKQPAKOsNm0/YtO0AY3p86CTNmWH6gjEz8KwCUvuxdmXqU93NqibqBLYjsTw7Kgs6BDYiSdxuS3sHFXk1j98+2wADOAtL+Y1f/E5Jtq6me4ewFtenJPrbjVFJ+5ix0//HJPff4Gxb/yHhMEFovojH6XiPe9bEu76du+h4vF3khwfw9vckqfZCSGEENuPhMBCbHOqZAd4iyC6tVZSv+kko7hHnwN1bB0vaGoqju5M9WDVzDy51anwTGtsxz97ZNJbx/DofjANiJtQfzh1fKrT/7wnxqkGFUV7Zr43DFBJdhyvRmsHxwRjRwiTGInr7QDE+oYItZaiJ1MVmY5yMei7lybfJMkLF5nr/gsqnv5t+jcYamtVryXNOyGxfBCbC6NmA7v2eVZ17I5jJn3zpri4JUG6sHXgUpJpz2sIRL+18gUS4wu+VZMXKHnwjYx969qq5pdx2OudWG4fxBe+ZJC8egqr9RaSbcv83DO05lDXnqWxeeZrbwA92p5qBFFUkeZoTcXxRtx+xcDpQZKThV2hvjjb3+5cgdXd//Ol/GBzTheEe+U3/5ryP/8FLL93dpthmZTsbaRkb2POrrsVFd93f+rj/gcY+PMvEWm7AvbN2S4jn9z1Dfj376f09W8kcOhwxuOs0lKs0tJNnJkQQgix/UkILMQ2p5TCqNiF0/VyvqciVpKMse9tRVz46hoDe9MgcuF8xt2ekl3Y/iawp9GuEsJXs7cgVuiWg/O+U6hgGXpylKhvB2euH2L8+4PrGtfRbgy18YXFNou285O8uX0h3vDQ6v6U1x/s41yJh6a9RZSGNOXlCTzBmXlrjfZEaLvqBTTKUCjTQJkmZ57aye23vwzKjdYeNB40qa8d7QbtRmtX6gOFdky0NgEDjR/NdVTaetzVcaYmMPYdwO44uaSvqrJcqd4OyfT3FZ1c+cUEHZ1buFBPDNF8WyNOsIZYzI0T1wTMbpyBZ0gG7s1aAJzLSuCcNp8tROFplGksanVSOJLRjf0/5ikvxo7FSU6lv+9NtHVz8Yv/ysGZnsBiZaHbbidw5BYmn38OJxJm/MnvMPXSi/me1ralPF78Bw7g272H8re8DVdFuhfbhBBCbAXKkHfSbHUSAgtxEzBa75MQeIvwx14GtWtt1cC2xij244TDaXdPnLnCBB7Aw8KuqhuXnAxjllVgVdbhCpk4nd8g5qvlpUt7CPcvFwCvdAO3Vjmj6Rre9AYWqvEEvotP0tJmEoseQx0I4y5e+DMfGi3n5Cu7OfVSgI4rcX6w/BKu7lSYlDyyB2uge/ZY21dGZbBidiGp4oM7GX/1KuMvwRX9TlRXphcaHCA287FUyZHD0HV6Q7c1MqJwXPtw11RgRHpg6CrK6ydxcYUezM7aq/ycoU4Y6uRGfakDqIZDDJxa3wsa6eTqnehaw1TvZG4GL1DTnX3UHNtP74uX8z2VtEyPa+WDlnH0pz5EzX1HufJX/8H5P/oqGAontvB/G+3IE7K1Mtxuiu+7H4DSR1/P6De/Ts9v/3+reuFIpKEURffcixkqwnC7MYuL8bbsRFkWgVuOYrjTNGIXQgghxKaTEFiIm4B18E0kn/ydfE9DrEZ4iJrb76DvhZGVj53HDIUyhsC5FLmaagVhjCeoapwk4S7lZPsRwv3Dy5+Yqc/rDL3FQmAj9gpQsmnXUw23Eb80E6w6NlNdQcb+fZzKtx/D19yLVdyHUvCrv3KIl5/pBoYA6H5zM80DqTA3NjyBd/6Y2p4NgFPjzgVL49HQum9dwvGzsRgMME2SA30kB1K9fq2qfXiqq1BTPejBtszFrxn6Bq+V7jpLXYWBcXgPcaOCsbYJwr1j6x8vR5ndcPGjRAZW+Le3DUW6+0m9sFRYVdCm1423yEfVXYcYePbsusYoP74X0+tm78ceo+61t2IFvHT881Oc//xXAHCXhNj9wddnc9o3pdKHH0XHYvT8njxWWo+6H/0MZW98c76nIYQQQogVSAgsxE1AVR9AlTahRzfWm1OsjSqux6i/BT3WhTPaCZGx1I7FPZotT2oxLTtV3VXRNEXfC2u7lun353UptfJDVZgjPfQ1fQy77eKyx4aaq6l80wOMfvMJJl/NdOzWCoFhc1pXaBRG44lUADyTJDreckZPdaLjcfr/6hwAVmk1vr21nDs5sOD8K/Eimme+jvYOUFTtRSVm+jPbi6sL54L60XOdFB9sRA12rnnOkfYuLI+xoZYQhmdhFdmCQLhiN+7aKoxoP3rgyoJAWK+jEjgj7eD0XMACKjzAHi/K5QW3F2V5SPga6H5qla1WnOyHldOho1x+anzlA7eh6MAIxa07GG/rzfdUFgg11XDXb/8YaM233v0zTLR1r3zSPEWt9QsWdgu11AHQ/LYHOP/5r2B4XNz2S5/AUxrK6rxvVqVvfDNj3/om4XObv8jnVmR4vbjr6il782MSAAshxM1AgaEK7N1HhfX6/5YgIbAQNwFlWpj7HiX57J/keyo3B2XgfvvvYN7yDtS8VZp0dAIdncAoacAZ7sA+968YdUcxW+9Fx6dxBi5in/86qudVSu8+zMSZ89hTq6vuVR7vygflSPDALqyBZyn+8T+g6sAJjv43h6v/8j0mOvpwBX3Y8QQX/uIbGC6TY599J61vuxdlGJTsb2HshZN0/tnfLhlTY+bhlmxAhgXIskWjMOqP4kzHiF88uWBfNHAUHV8YpidHx5jsLCIaXvhA7dy1MA/fyJQcBypaoHemzcOiwNRwL6zfjQUbCZo2hj+Y6sNrKFBm6sGXhqFwiKRtpLJplXpdw2U5JG0D01dGYGT9LSGUmfn+kBwaIDmUCrvNslY8dTUY9hi67wIql4s+xaPoeBSmUzWoVtE05cf2MHa+Hzu6/EsyOsulwHFvA+deLsZJTGV13K3EXxqg0CLwHY/ejlIKlKLs6J41hcA73/MwFcf3pt3nqyrl4X/6NdzFwQUhsdgYpRSlb3yThMArUG43TZ/7ZQJHjy14jCOEEEKIwichsBA3CaN6f76ncNOw7vkk1rF3LdmuvEUobxEARnkzxn2fmtvnDmA2HMdsOA7AQSAZjjD2/El6/un/MXFqhSelZn7+OzdDQUL6AiWf/J94DpwAQBkGrW+7d8Fxhz72JgyXueAJY9GhvRQd2svIsy8xdX5xP8+t9cRSKcAw19WDdsWxq/ZiT8ZJXlnak9fxljPxSnva84Y8lcDCSuC2SwNE7w3gjaUWQ7M9JbMPBNSiINuwFgavIxd7wBwBO31v3GtTLcSm0ldEW/c1EmADIfAqq4jtkSHCI6nWF0agBk9TEyaT6L7zS25ftumJIQIMEai3MKpbGYruJnq1k+TY2NJjs9jD1Tb9XLx+mPjYwMoHb2Phzl7y1RLCFfLhqyxl4moPAJ7SEHs/9Dr2fniuTUPpgRY6/umJVY1XvHsHR//bh5c9pmhn/fonLDIKHL6Fsre8FScaI9bZAcrAHh8n3te7Yhujm4Fv7z7K3/Y4weO35nsqQgghhFgHCYGFuEkkT/9jvqdQmLxFYLphemhDw6hQDar2AGbDrVgPfCYrU7P8PipeczcVr7mbibMXaf/9P2Py7Ca0T1CKottvI3zxEsnx5WvrKu7YSdnj78a977Zlj1tucaSdn/4Yr/7EL2KHI/MnsZYZF4YchcCJ4Qn01GjafVH/0irgGy6NpUp0PW5FPK7xehUH97pINNXhvZQK3RMRPfdAYMncF/4OYmNhvHfuJXrxXNrrmVbm+2A4vMHf5zoqZ53pKSIzFX3KX4W3uRnTiKQqhJORFc7eADuJ03OR0UgNA9cMKvcfJFRioZJRbvxMtdcH62zhrVGomYUVNYqr0UeZ6FhlG4ptLDY8TsmuRsau9OT8WiV7G4mNThIfn2L3+x5h/8ffjDvkp/1fvku4b4Rd734tnpLggnNq7j2SeUBDUfvAcSqO70Unbcpu2ZXjWyAycVdXU/eff3TJ9uTEOBPPPMPYN79O+NX19XfeqlzVNQSPHyd49BhF9z+Yqm4XQghx01GAUoX1gqj8RVo7CYGFuEmoYFW+p1B4DAvvJ7+GKm+BeBjn+kskvvlrOF0nVz4XwDAxb3kHrrs+jqo9nNMnRkWH9nL493+V7r/5P3T91Vewp6YX7HeyUFnorqvFU19P7Yc/SGD/PiZPnebKf/mpJcdZ5WX4d++m5P57KXvNAyjXxlb9Ljq8j8aPv5/23/3TeVu34p/03MxZefwZQ+BwZ4YXLxR85M6/5CNHJ5bsipY8zIVLM+d3D+KbeSSgVGohKzsanx1jsemwmbFRh8vngrFo2n2One7+qcG0UJaF8voBlaoUN8xU+wfDSP2bMg3wbmxpOR2enguEXQE8zYexvBoGLkBsckNjZ2K4FGgYPNfL4trp0n11lK2zjWuv7y24XTEqJr5Gr+8tDHxfAuAbPEX+VR+rjJlAfo3/d9Y9eIx7f/vTKKWwE0lM19xD6Za33JvxPFcowK4Pvp7p6/2MXbhGpD+1+OctP/lBmt72AJbPs6Z5iM1lFRVT9oY34mlooONnfxodS/9/XSFQbjeh2+4gcOwYydFRRr/+NeyxMXQy87shPI2NBI4ew9vUguHzYXi9uKqrMYuKcJVXSNsHIYQQYpuQEFiIm4T7XX9AHI39yv/J91QKhrn3YYyKnalvPAHMXfdj7rofp+cMdueLOH3nIB5G+UvB5UVPD0MyDqYLVVyHdev7MEobN22+hmWx40PvoO7dbybcfp3ItS4S45MMP/UchDdWyVx0x+20fO7nMNxzge78rzEMKt/+Nmre9x6s4uz3oKx/92PEevsZ/MbTJMaXBpc3MyvoIj5ipJrsLmL40veCDu0phVj6n6M7eZmq225HGWBYECjai8JBKdg5VIm2U9cx/XHKHkgtRKXQMx8Jgjt3YuoIaBu0k2qzoJN4plxMV/lT78h3nLmF5RwHf2kUt/KBnUgFEXZiprp3pndudPkg1sxiQKYTCaKXZ6qnTTfenXdg+TT0nYP49PInr4FpZX5RIH0onpnWMFl8F+PRarpf6MdJJJm+83G6nlr7Qn3bWXJ0jNW0hDjymXex9wfeAI5D3/fO8sLn/ozYyOr+3zn8qXfMvuA3PwBeieXzcOQn3g9AdGSCJz7wC0SHxqi++4gEwFtI4PAR9nzxzxn+568w9I9/X3AtIoK330HtJ/8znvqG2W3VH/4I9vQU0bY2DL8fbdsk+nrxHTiI6fOTHB/DXVcvFb5CCCHETUBCYCFuEsowUcXSQ/AGVbUX12O/lnafUXcEo26Zt+7mmenxENq3i9C+1FuG69/9GMnJScaffZ7x732PiRdeRJkmoWNHMUNBlGHiadyBGfCTHBtn+uyrTLzw/dnxXOXlSwJgAP/+fYRuu5Vo53WafvInCB29Jae3a+dnPk7Lp34QbTs4f1Ezmw/e7PTABdy7biPecRlHmxjJaW6EXFbARyzNOUUtLtLuANTkNSoCHvTkICSBeQVt7pF92OOpxcWsiirs3lS1op75ANDHDqC7Xpyb341xrTKi19L3C3YXedBq/ct26WiOXhiwk3OBsOXD23IwFQj3n4fYxhZZWzYEjq++bchk0Qk6rpYx8WI/MFf12/U9CYAXm+7so2xfCyMXlq+ObnzdHRimAaZB3QNHOfFr/4kn/9P/AqBoZx0Hfugx/DVl9H3vLL3PvIIyDMpvaaX6jgOU7G5YduzV8JYVcfuvfpLEZJhgU82GxxOby1VWRs1HP07po68nMThAvK+P0X//f0QuZWrXlFuG10vJw49S8c53465Jf38yA0ECR+b9Dd+7b25fMJjmDCGEEGIxjVLZXdx44wptPoVPQmAhbiL2lSfzPYX8sTwYrfdjVO7C3PsIRtOJbfX2RisUovzRhyl/9GH0TP/UTFU9WmvGv/sM3X/0BeJ9fZih4JIA+Mb5u379V3M67yXXNE1ITkJiYwHcdqO7XmSo9O3EppLsrHwKVdqM1m7C/cX019xBUrkATVF8gMDIVdz+cZKxIDapj6QKYms/lsvE4wL8fphMH9jOXjNDhVukZ4SAnlkMbx5lZg49taPJ2EdiNezcLuoGQHJ+hbAHT8t+XH6FHryIiqw9wF42BE6uLgSOe6q58KKb+Hj/mq9/s/L4lm8dYgW8SyrLa04c5NhPvp+hU5c58pl3E2yoBKDy+F4Of+odOZlnxfG9ORlXbB5PQwOehtSLAqWvfwPRK1cInzvL4N/+NcnR9C18ssnb2oqnsYnaT/wwVmlpzq8nhBBCiK1PQmAhbiJm0x0k+17N9zTywmi5G++H/iLf09gUK72lUylFyX33UnTiTkaf+A7uiopNmtkqOfF8z2CdcvtKtI7H0I6BnhpGTw0zadTzF/+4g0R0/iJnbkz3Ae772wTx0fIlY7Tcu4Pqka/hPXCIxbG/ClVht08y+1b6DCFwor8PdXAvDCysejOWC4FtZ2Mh8DoWhtsQO0nsyqVUMbUycDcdx1XsQY20weTAqoYwlnmEtZoQOOGu4mLvbcTH+1Y3ZwHAxKUOLK+bZHTp/yMtb7uPmhMH8ZYVLdm35wOPsucDj27GFMU2pJTCt3s3vt27KXn4UcKvnqX/y18k2nZl7iDTBHvu3767to54X+/c/2+GAY6D8nhQpon/wEEily+hDBPD78OJRLGnpyh57UOUvPZhvLt2Y/p8m3xLhRBCCLGVSQgsxE3EPP4e7GvPo/vO5Xsqm0JV7sZ1939CFdVgtN6X7+kUHMPlovzRR/I9jTSkL+ENWsOk7yjdUwfpfHGCfXfO7fvuwJtIRJdW81ZUBYmPpm8V4OjUzzbR14/LtbCaV08OYJXuJzma6s+73CJCcaMSNwtD4GUrge0N9s1M0w9502iHeEcbNyJFV8MR3OUh1Hg7jPVkPM1YJvReqR1ENLCLc+ebiPRLALxWdjRO+ZEW+k+2zW4zPS72feSNHPihxzDW0MdXiPUwAwFCd9xJ8NbbGP7nr5IY6Me3dx+hO+8kcukSkSuX0fE45W97nMnnn2f86SdxV1VT+f4P4sSiGD4fpj+AMk10Mom2bQxPqnpday29e4UQQuSNMqT9wlYnj4SFuImY9Uexjr2bxL9/Lt9TyTmj6U7c7/48RnFdvqci1kptnzYdaxH1NDKijxMJe4lOa2ITCZTXS9crfWinFwDD9IEDjoYXnxhJO05Tcwgupb+GdlLhgT0yiN61AzW1sHeq6ffMhsA4mYPK8KU23BV+iIdnt+UyBNbLzGWzJbqukehKfW3V7MdTVYaKj6AHLqcWyZuxXLcZO5E6LukqozPxAM38K0onSPga6LVvZ/CVMWLDYzm8FdubjkapPL6HUEstwYYqSvc1UXP3oXxPS9xklGlS8Y53LtgWPHac4LHjs9+nqnofmnfEwoVXlWWhrLmnaxIACyGEEGIjJAQW4iZjHXs3ye//BXqobeWDtyhz/+txv+9PUcuV4glRAJJmESPu+xjqCzE1FCXcvbSyN1hTw2RPqr+kYQAORM0y7ET6YLTIkyScdk8qPL5BB5pgUQiszLnkUi/Th1fHYjhVhzG6np87d5lsQq+yB25GGVpT5Fuyr4dkX6oaWLlKce9owgp5UOEBliuUcOIJNIqznbcz3X2dkdJ7MFwWkf5RQBZ826jJq1089uwXF9yfhRBCCCGEuNlJCCzETUb5y/B8+K+J/tEbYXo4O4MGKiA6AXYB9HK1PLje+EsSAG9l+Xzr/yZysDjf8whjl3qBUYr2NRPuXnpcaUPpwhAYQKf/821aikRnmkFunDYvi7Vj5pI2vYY1t2V+cKs1YFlgWmC6wLQIR7z4Q/WzfQ9Mf4Bgcw3KMFCWleoRrBRKgRXwwNrXVpubV7AMWH4hu3zTiTixq5dTfYQBu6k147FOPAlaE+4dBa2JjUxuziRvEjppE+kfxl9Xme+pCCGEEEJsDwqUKrB2EPIGmTWTEFiIm5BR1oT7zb9K/O8+uXCHtwjlCaHHM4dI86miWoyWu3E9+jPogYvE/vLDYCdyMONV8BZhnfgY1vH3YpQ25mcOIksK7MHFaqm1vfDQZTzO2KW5f2sTFzrwVZUTGVjY5sGJzC38ZtupRzomEdI5eKyaxLULGa9pJ+d+tvGeHly+hRW8Qf9VQocNLnY/yPjVQRSpRcycWJoXeK4OUL2zGmfoRt/aM8yvu5wf5RtlpRDMOK0V2Vbhh8CLLdcOAiAeaEUZakEwL7KjeG8T3qqyfE9DCCGEEEKIgiIhsBA3KfPgY6iiXwLThR7vAsfG9ZqfSLWLOP1PKMuDKmnAuf4SenoIPTmAnuhFFdehqvbhuvMjqOC8KqviOtxv+Z/Ev/rjebk9rgd/DNe9P5yXa4ts25ov6Sq3F51IH84uljSLuP7s0lAzsKNySQg81d5NsKacqb5Rui447NgNphNNO2510GZ6mes68/pBOBOjUNMMEx1zB0wPo4G62muMnDXmVq3PNF5pAwytvHiZtjeWdE5fubah8/NhpUqJF58sATK33BAboNSCqnYhhBBCCCGEhMBC3LSUYeL7yZcB0Mk4eqwLVd6CUgrXXR+fPc7c/ZpVj2nd+n50bIrE138VkrGVT8gic89DKx8kRC65PKs+dMR9L05sbMn20ZMXKTvcysgrcz27nXiCssZSpvpGGWiLErvnLtz9z/KjH7pAd2I/3/imn8mhaQJFHiKX25e9bjJqM78HhONrwpwfAs8Ihl/gwCP3c+6b8YWNhBcZu9xDsWGiVli4bcMLwyXy9A6DDZD1m/InOjia7ykIIYQQQmw7BdcOQqyZrJghhEBZboyKnVlZddp19yfwvP/PwO3PwsxWybDAG9q86wmRhnK5V33sQGeGfx9aM3WlE3fZwvvz+CsX8ZSkznn5mQqUaVJun+eI8RV+8A0vUFIb4ujxylSv2WU4i8LYxHTm8LYo/BStr61YdrzExDRWy/656VftQIdK0XWtOM1HGK68neHy2xgKHVx2nJUoa+u9Zq22aluTbSAZ2dwXIYUQQgghhNgKJAQWQmSduechPO//Eng20AR0lazbP4z3R5/AKKrN+bXEZtmiJZSWa9WHhgcyLwRmR+MUNS28PyvTQM9U5A60RYlX3D67r8y+xCde+zVqilZeXCwRXlhRm7h+Db1ML+PK6L/ScN/yPbYjERO75Ra6XQe5cj7JlU4/l09Pc+X7Awyfu87whS6Gz3WtOLflKNfqf7aFQkLg/LEjMfQKrUyEEEIIIYS42UgILITICXPX/Xj/8zdQFbtycwFlYB58M9bdn8Co3J2bawixBspYXQ9SjUEyvHyl4vi5q5j+ufYSRQd2EZ+Y6zc8NrWwQtevBzDVKvruLsrXdSwCpXuXPaVe/yMVxzIHweMXOui7FmO6ZxjtaHRy6TwWVyCvlTK3Xn9XpTZ2m8UGaI0dTbOYoRBCCCGEWBcFKEMX1ke+fyhbkITAQoicMcpbcL/pV3IytnXnR/C87wsYlTkKmYVYK3N1f1Ijvn0rBlR2LEHZodbZ7+OxhYHi1PjS9gireRCknaXBpO2qWvYchaYl9P8I7azJeExZc/kKF9as5mGa1qCVhWP5cVxFJL3lJP21qzq30CgtIXA+2ZH0iycKIYQQQghxs9p6TfaEEFuKsesBVKgGPdmXnQFNN+aRt+F6+L9lZzxReLbqilpqdSGwKzGI6avGXtS3VLks/K1NxMamiI1O0vf8BXw1lfhrynBMN/6KIsJD44BisMthZ8vCcefe/q5RpoEyTQyXhWEaGC4TwzTwFPtJFLdgKzdamWhlEpmqIOF6hIT2krDdJB0XAZ/Gp2NoR6G1wrEVoVoLf/V+nISNoeOpxDZ1YTAmaTzekAp7tU4tJuc4qYYIWoPWnJx6G/FwHO2kKoOdpE1dvYXd34sTS+DYNmSoGN5x0I1ibLW/iQIh7QjyKRmJsfqlGoUQQgghhNj+JAQWQuSUUgrXwz9F/Ks/trGB/GV4P/nvqEAFyhPIzuREYdqqFZTG6sJrV3KQprtKufrtPnzlQWr3F6MmhnEi00RDCa6dG5o9NtI3TKRvGEhV+r7+XVFIxlBOEty1MNk7N66p8bkdtO0ANtgJsKHsll2Mv3IJgPjoIFdLyxjom6tENjzjDIS92HEbiAARiuvLaI5dWZLHe+urcUf6SUbCS2/+jlsYP9ee8XZP+uqIDk8s2BZvbkFPtq38Q7O8Kx9TYKQSOL8MlzzEFUIIIYTIHl2A7c6k6GKtpB2EECLnzOPvxdj9mg2N4XnXH2CUNUkAfDPYouGZMlb/J7XG/jfqTzRR6e4mcf4U8e7rJEdG8Ay3sfu+evbeV0frPQ1LT9QOauASDF2FotZFu/RMALxQbGRs4YZF83RiCWr2VC/YNt49gm49sGSsaHc/urIFnab/sdedzHBrU0zP0lBucmR1b9nXq6yyLixb8368XVgBX76nIIQQQgghREHZis+qhBBbjFIKz/u/iHnwzes63zzwRozW+7M8K1Gwtmw7iNXP23Si1FT3o+MLewPb42M4F14ieeFl3ESWnHe9t27u2NGRhTszvBBuLAp90/VKDRa5lmwbmEr/ZvrJi+1Yuw7PdoO4IXH1PO7SovSTAAxraXA8erkXo6Q04zlzJ2/Bhytp+i+LzTPdmaUWREIIIYQQQmwTOXlWpZT6kFJKz3x8fJXnlCulPq6U+qpS6opSKqKUGldKfVcp9TGlMpcBqZQfUEp9Ryk1MnNuu1Lq75VSe7J3y4QQ66VcXtzv+WNcr/8F8IRWdY7RfALXG38Z93u/gEpTeShEQVllO4gbfMPfxttYn36naTLQPzdeWXOAOx/30mg9ObvN7r8GxY2z32f8K7loR9rF4cYnlmzre7UHyquXbAcYO30Jz4FjCy+jHYqXWTxOZQrJaxvTb19wcmH++3d2nkC33gmlNeiZOWoUqqoJvcr/50RuOPHlK9OFEEIIIcQaKFCGLqiPLbh2dN5lvWGaUmoH8HvAFBBcw6nvAj4P9AJPAJ1ANfB24AvAG5RS79J6Ye2RUsoL/APwZuAi8NfAJFAH3AfsAS5t4CYJIbJEGQaue38Y69i7SL78t9jnvoZz/cW0x1r3/jCu1/185uBIbF+One8ZrM8a76tKQVn9BD2daXa2HmP4mS4CFR6O3TuN0fMd6F56mA42osZTA3j86X9usaFFFcPO0pLhqY5ePIEiYtMLK5Nj5TvwDPenHXf45YuU33KQ+KVX527TaFfaYwEMK31KHZ7WrNTxVxdYCKyqW4hSyvTL51MbTJPQ/uO4pq9jeIMMnx/E01KW30ne7Nb4oowQQgghhBDbXVYrgVUqrfkiMAz84RpPvwS8BWjQWn9Aa/3ftdYfBfYB14F3kAqEF/tNUgHwrwEHtNafmjn3B7TWO4H/WOfNEULkiApU4LrvU3h+6F9wPfoz4F8Ylrge+3UJgG9mriDqwA/lexZrtp67q3v8ZUIH53r7mqEQscbjtD2TClNvuS+J0XMy4/n28OBsWwave+libbC0S0Sqb/DCrdrRVO+uWnLu8NDy1ZQj57pwNc3N3x7sI7gzfXVzpp7Jwxd7wLNCDLwJIbDWoE0X2uMHXwgCxeAvTntclFKmL85b0M62mTx7iZH2CMMXUwv56WQi53MWmTlx+fkLIYQQQggxX7YrgT8NvBZ4cObzqmmtv51he59S6g+BX50Z959u7FNKtQKfBL4P/MziKuGZ8+VZgBAFShkGrvt/FOu+T6H7L6DHrqPtBOaBN0oAfBNT7hDGng9in/uTfE9lbdZ5ny32XSBSXEpofzNnnpwkfrUHAMtrMdKWwFdxD/5SBRriUYXPH8XRLozr38MZ7MJsbIXRNjzmMLAwLPWUF5McH1+wTds26f78+33zQ1pNcXURlrIpPb4fZScYPXt1duE55TJRpoUyFeGxBN7KGuzBVA/WQIkLWhtQhoEyFMo0UEqRDAQpKt4BaqZIc6ZSUwFFZRZWbAI98/3sj1Jp0JpQnY27ejep8Dq1DZyZ5Nae+eykvnacma9T+xPBVvpfmUQnbbRto5NJcDTaTqa+v7GYXpo2GYE9O/GEF4bwRk0LLr878y/0xjhJaUeQT05MHv4JIYQQQmSTUhkWIRFbRtZCYKXUfuDXgd/RWj+llFpTCLyCG4/kFz+jeh+pauYvA0VKqceAHaQqkb+ttb6SxTkIIXJEKYWq2Q81+/M9FVEojKx3K8q9db5uYU53UHX7QWKnnuLo3cd44evgK/axY6dFpL2XSBcsauiA4TZpumM3yhdC+/2o0Ta89nWqbnt4NkBVkApak6lKe+04qX7AjkMZBui577XtYLomOHIkiDIUka4+nMgERMCuacC+cpay3c2MXR+jbF8D4bNnU3lsEhgdQ1VVYgRDOFOTJC+fId2SclbjASYvtwOwuHGFfXg3ztXMFc+u8mqczpfW/sMF8NYT7xtY16lL+idXNjId8RO9eH7t54pNZUslsBBCCCGEEAtk5Vm2UsoC/oJUH9+fzsaYi8b+8My3X1u0+/aZz8VAG1A+b59WSn0e+LTWesUGk0qpTM8u961hukIIIbIh81qgBWz1r4xrDU713USHbJxIhORLp/A07sK+dpI733CM4XPDxNqn05+soOrWJsJXXwK7B+XxEmjdh3vsIlOvnIOlb4pZtaS/nPjY1IJtce3BBKLtHfj9vlQAvEh8YBBfSxOxaCRjBayyMrd0mGq7TsjlggwtFPQG7g9qDb+XJde154Jcu+lOxk9fAMYznzCfvUV7W28TUgkshBBCCCHEQtl6lv3zwDHgI1rrSJbGvOHXgUPAv2mtF/f3vdHA8JeAF4HDQAh4iFQo/J+Bn8vyfIQQQuRagS0EtirLtIPQGnRwB8mq+4iEHmRici8TL7cR7+wgOdgPdpLE8BiqqBx99STlJQPU3L0TK+RbMI6vrpy6Y8Xoq8+DnQpbdSxKuNNGF+/GXRLa0E0INVUu2TbRPjCbKzvhzH/iI+3X8LXuQmcsic4cxtrhKFbT7rVMdQ02HgKr+r1MXc286F3ac6USOK/seHzlg4QQQgghxKoppQvqQ6zdhiuBlVJ3kKr+/U2t9bMbn9KCsT8N/ARwAfhQmkNupAS9wOPzAuhvK6XeCbwM/LhS6n9orZd9NqC1vjXDHF4Cjq9n/kIIIdZpC7aDWJwBa18lTmg3ibiXeE8/dvcQqTVQ03MmxlCVNVi1Ldi97dD2POVFLoz6EpTlAcuFPdiG3b20wtGZGmf6qg9PRRHx0Yk1zdsK+fHXVmJ43Rg+L76qYtwhH07SwUkksbxu3BWHYXoSHBtMC2WaaBQR2z3TxNdAK8VYzMQ4eD/JSIzq0im8ViT1c1GauAOBEy3cCGUdbc783DTKUCTx49+/H7RmtsW/M9PXN+ngWtOtmrOhB4iOjardxVjnFPbk1MrHzz91epqdd+/DwaD7dC+JaQklN5NUAgshhBBCCLHQhp5lz2sDcYksV9wqpX4E+B3gHPCQ1npxS0SA0ZnPX1tcgay1Pq2Uagdagf3A6WzOTwghRA5tsXYQWkNSh9DKIlH2ALG+EZJdPaTelLJ69mAftmHiqtuNcrtRlgtlGamfhwIrWEYqdZ1ZQk076KkRkv3XIRbBU+phcpnxraAPf0MNlt+DjseIDwyRGB4l2jYXHHsAJlOvst54pVVXHmbk0tK+uhNlrQx3DC/a2p/6dH89TWPfma3Ddc18pKP8QXoH63FFB9IWVAfKdy5zq1ag11+Ra0djjE8k1hwAAzixGLFzqYcedTVlRHx1DJztWfdcxNpIT2AhhBBCCCEW2mipVRDYM/N1VKV/K+yfKKX+hNSCcZ9dzaBKqc8CvwWcJRUAZ1rR5SLwKDCWYf+NkNiXYb8QQohCVEAhsMaNrRqwVTWOXYyd9GNHXdgRhT0dx56YJjk6CsmLePfdS/T00p65a+LYJLra13SKVbMDIsO4PHOBpzIVvvpqvGXFoB0Sw8PEegeIXl4uJk4v3teXdntNnYfhjvTnXL8wxY4aA4NVhLC2TXJ8gsCuZhJdSwfM3GJiZWo1188gMZTu9ee1Sw6P4GKE1rsP03lmiMRULCvj+ipCOAmb2Hg4K+NtJ04ifW9qIYQQQgixdql37xVWC4ZCaQmhlLob+FngBOAFrgB/BvzeatYomxljN/B24HXAbqCaVKb5HPDbWusnsjHXjYbAMeBPM+w7TqpP8HdJhbWrahWhlPopUn2ATwGPaK2Hljn8W8CPkuoZvHgcD6kfHEDHaq4thBCiQGxST2CtDWyjAZsaHKeUZCKYCninHezJKMmxCZyJGwuBRWc+MoteOJ/zOaeT7OvCVd+ER6UWk3OXFWNEJ0l2dzHVvbZetukkBgbxNzcT7uhesD16+Qq+4nIi40t7BU8PjDN66F7Kh55acXw909+YUClp/2TrjbwoUDi9eaPnXqGuspTYzh30ndn476WitQKDJPFEJb0vd8AGwvLtxknIwnxCCCGEECK3lFJvBf6J1BPFvwNGgMdIFbbeA7xrlUP9MvAeUt0Q/m1mnL3AW4C3KKU+o7X+3Y3Od0Mh8EwLho+n26eU+hypEPjLWusvzNvuItWiIaG1blt0zs+RWuTtJeDRDC0g5vt34CrwOqXUI1rrb8zb93NAMfCk1jp9CZMQQojClKUQWGtImrtJOs3Y8SB2zI0dhuRkDHt8EntsbKZdQAIYmPnYmhLd13DtrwHTQte1oK+dA7LXh9ZbFiLcsXCbE4vTfLiC889cT3tO92CQ8tXkkskEoIn2jZDuN68xcfwVqPDI2it7N9AOIheSo6OYo6O0njjI9fNjxNME6KsRaihDj/QT6U09xGm6dQ9D3VGm+8ayONuty0lIOwghhBBCCJE7Sqki4E8AG3hQa/3izPafA74NvFMp9V6t9d+uYrivAf9Ta31y0TUeAL4B/C+l1D9orXs3Mud8rLxTD5wHrgHNNzYqpX6AVABsA08Dn07TXqJDa/2lG99oreMz530d+Hel1Fdnxr0duB8YBD6RqxsihBAiR7KwMFzC2Mvoxf3Er10DhmY+trdpu4hwyMX0C1dovLUF+9KrGx7TVRzCU15MYiT967LJa+1Ybg/J+NLKy95Xurn1/cexYiOg7dmF3rRjg50A22ZwuoVI3xQwRay3n1BDNfZQ/4Jx4lEXYxc8GP5W3NUV6KRNcmwCV1kJocYgft8wWoMzNow9OoARLMEIlaC8PmyziMxdo/IneuFVaoqLiO9spu/k2qqCqw7vgGvniY/NBdyRi5coqSjHu7eW4Ysbemy4LeikVAILIYQQQmSTUoVVXFEA3glUAn9+IwAG0FpHlVI/S6p7wQ8DK4bA87PORdufVEp9B3gEuJtU1fG6FdLy6y0zn03gsxmOeRL40vwNWuvvKqVuA34BeA1QQmpVmj8GfllrvfH3WwohhNhcamN/nsLOGxl9chiduJalCW0N0xOa6Z5U2B3Hm7aqdvU0pUf3Er/Wht09RHD/AWyriemr11Nh7ozkxBTNx1q48ny6amDFZNhDUe/FjFeJT1YTH5vmRisDs7JuSQh8Y3U5Jxwm2t45u9menMTlrsajX5jdZgJMTaKnrqeWz6s7vLabvYnsiQnMqbNU7N3H0MXVvWmp/vZmEhdeSZW5L5IYGsY0Rmk8cZjOF9oLqRPGptP2TXzjhRBCCCFuHvuUUi+l26G1vjXH137tzOevpdn3FBAG7lZKebTWG1kU5MZb3Da86EXOQmCt9eeAz6XZ3kGapnWZjl/ltc6R6p0hhBBiO9hAJXDC2MXo06PoRPZaIWwVHuYWfRvvHKZUQ/o1WzPz1pQTqK/AHhshev6V2e3hixeYGA9gBQMEWupRSjN9tRMnHMU1MUgqqV16sTPPOdzb6oZk+t+Hshb2+42nWeRMk3nRByfpsGza7RR4RajjEEz2M1kSIDY2Pbu55Z5GnN5OkmWNdL94DVCgwG6/mDYAnj9e9OxpGg82EXECDJ7rYpkf37al7QL/vQshhBBCiK1u78znS4t3aK2TSql24CCwk1RHhDVTSjUBD5EKlFdebGUFhVQJLIQQQqQYrnWdprXB6MVD6NjNVQF8g3eyAygFIDI4RuXOKuzBzH2OfQ3VeMpCKMvEmMlv49c7CJ/tWXqw4+ApCxEbmWL8lcsAKNMkuHsnlt/LjmMGw9dGSUQTJOPJmbfjK0b7YiTv2o/Vc3rpmEqRmFr4oni4vZNgRTHO5PjcxmVCTyeRXD4EXt2CvHmVGB6muiiOWRNgcNxHMpYkcelVdCIBIyO03rabvusJAtXFOFdX1+Ij2n4NBTTdupfrZwZx4hsuHNhSHGkHIYQQQgiRVcooyMqCC5tQ8ZtJ8czn8Qz7b2wvWc/gSikP8FeAB/hJrfXoesaZT0JgIYQQhWedIfBk7B3Er13J8mS2DnOqH0/pDmKjUwDoijrIEAKXHdtL5MJZYoOrf9t8oKaE2MjU7Pfatpm82AFA0dGDxCKDqR0uMEPu2TLk6331tNTEYXoIPTE4W52siqtIXImwoIJYa1z1TcQunJnb5mR+wBnpGUMdKkaH0z/2UgW2MFwm9sQk9sQkVS070TGbeM/cwmbRK5cp83gwDRdL66SXF7lwkYa9zfS2h0lMRbM76QImPYGFEEIIIcRKlFIdQNMaTvkrrfUHVzv8zOc1p+dKKRP4C+Ae4O+A/73WMdKREFgIIUThMb1rPiVuHGLi2Y7sz2ULUQpKmkrpnwmBo1FwpznOW1NB5OKrC3r7roYnmG60FCe6sKLXjs61fxg4c52qAzHssTjKVYG7sQmPMYoevooV2ENyemGriERs0byWbX+goagWMoTAqXYQG+uOvJli7VfTbndiMVzu9b04Em3voKa+jqHhEJGhyZVP2AakElgIIYQQQqxCG7CWSon5b5m88QSkON2BQNGi41ZlJgD+S+BdwN8DH9R6uSdEqychsBBCiIKjDJPUC6er+1uncTN6thns7lxOa0sIhTQ3llWb7B6hfMkRGn+5j8jo2kMyY5kVgeNDw5lPdCBRsQtjbBidSBBru0LMMPAfuIeSYjdOMtX1VylQhsJwgXnLvrmKYX8A48ghFtwntJ79mLANKKpBqRvdHzTa0WgHkkM2kLklxlZhFhURHxha9/mx7h7KysuY9Fcw0bn+cbYKJ3Fztb8QQgghhMg1pQqyHcSGaK0f2sDpF4HbgD3AgsXplFIW0EJqMbf0VR5pzJz316QC4L8GPqx19vrbSQgshBCiMBkmOKsLciamHyfRs6Qf/03JO++F5ujwBKomiJ6ea+FQenQvkXkLvq2FjsxVkSpTEWyowFPkw44nGbnQjb++nnB3+sC1+/wUO+YXsjoO4bNnATAWHatZuPSta+cBIhcyt/lQda2E27f3CwDuHc1MnD63oTESwyP4PVMEju+l9+Xt3TdbQmAhhBBCCJFj3wY+ALwe+JtF++4H/MBTWuvY4hPTUUq5SVX+vhX4c+AHtc5ub7vFz7uEEEKIArG6P1ExdYLJ5y7neC5bhxUfW/C9UVmz4Hs9uf71BJzJGyGwpuG2BryjV1DXXsHqPc+OW2uo2lWS8dyp/kms5n3ru/AKj32Usf0ezmgN3n0HMSrr8R08Qrj9elbGdWJx7Euv0HyiEcO1ddpkrJWTlBBYCCGEECJrlAajwD7yX5n8j8AQ8F6l1G03NiqlvMCvzHz7+fknKKWKlVL7lFK1i7Z7gK+SCoD/lBwEwCCVwEIIIQqVk1j5EFXCyEtB0Mu0IrjJKCcO+Ga/177Q7Nfe6jJiXV3rHtuJx6iqjKGTSaLnzy7YF7tyCXfj8msqjMeKCazjuiu2wNpmIbBZXIRZVs3k2YsAxHr7Vzhj7cJnz1K/s5bRSTdTPRteaLjg6IT0BBZCCCGEELmjtZ5QSv0QqTD4O0qpvwVGgLcAe2e2/92i0x4Hvgh8GfjIvO1/CLyRVKjcDfy8UmrRqXxHa/2djcxZQmAhhBCFyXCBE1/2kLHB12OPXNykCW0N2li4eFgiqWaXRfPVVRAd613/2MkkRTurmTjfmf6AQBEwlX4f0HWyn/07gzjhzMeko1Z4EdywtlEIbJhY1fVMnct9dXusu5fSg7dsyxBYKoGFEEIIIUSuaa3/WSn1APAzwDsAL3AF+HHgd9ewoFvLzOcK4OeXOe4765wqICGwEEKIQrVCCBzRDxM+JQHwYkl3CfOD2PBYmBu1wIax5NXkNTHcblyDZyi//TaGv3+Z1EJtq+ckHXT9Hrj88prO0/YK74RSWzcE1hrcNTWYoRBoTTKS2JQA+AYjvrZAfqvQSakEFkIIIYTIJrXMItE3M631M6SqeFdz7JeAL6XZ/mBWJ5WBhMBCCCEK06KK1vlsVc3o8yu3i7gZRXQp80Pgqa4hgj4DV8hPonf9rSAArKIQhB24+gJVd95KIqpwkg7KUCjTIDIxlcqFl3m9e6hPUb7WC6/QGkSZWzcEdlVVEu4eIvXOr80XvdpB/Y4QTjyOTiZBKfqGPHmZSzbZMfn/QQghhBBCiPkkBBZCCFGYjPSLVmkNY30P4kxe2uQJFT6NYuBaZME2J57Ef2w31uh1EsMbe9u/FfRBOPW1feUlDBYu31e06zjNdzfR8cy1jGMMnB+g6lgt9uDq21JoZ4WF4VY9UuFRVuYXOzaDtm0So2OLtrrZ2j9VcBISAgshhBBCCDGfhMBCCCEKVPrqzgivJ3JWAuB0Rmtey+TT3Uu2uz0QH9l431fTkz6Yv8G+8jKlwWKCjx7EthXT04FUao9OFQjPtMQyagwCdSHQDmjQ2kl97cx91o49+7XyW0QytCFODbh1K4ETQ4Op+a8QdG8W5d76ATCAI+0ghBBCCCGyRgHKWG17282x9R+xbj4JgYUQQhSmNO0gbFXL2HPhPEymsDnKZKz6QS5/tyft/qSTnWpT00gFlVqD1bgPXF6coU70xMjsMXpqHGvqe1jAyEgjTmxpX2c9VIzlOr/661bULrt/Kz8A9O3eQ+JM4fS2Nlz5rUzOFp0sjFBdCCGEEEKIQiEhsBBCiMJkLPwTpTWMdt+LM3UlTxPKH63BDtWA1hixcbAToMD2VzMd2kt3W5ypNBXAN4SnbLxZmIfp9WLuPEpyOs70paupjZZFYO9R7KunlhxveL1pQ+Bo/zjmib3YXasLP1dqB5GhaFysg3JZLNvUeYvQyWS+pyCEEEIIIURBkRBYCCFEYVrUEzhsv5Xo+ZsvAI5WHORyexHhKzfaOZQuOmLl3rpj3ZPUZGEuiaEBol1tCzcmk4SvtOOr3oEzeH3hPp05vI3qMlZdc2qvFOhtzVpgb2srUxc78j2NBVKL7G39VgrSDkIIIYQQIosUKFVghQJb8ylAXkkILIQQojCpuT9RSdXM2LMDeZxM/ly6EiQyuLF+vlODkxhNAZzp6Q2N40yNp92uYzEi/RP4dt2GMlWq1W/SJvl8+vYUAINneqmr9UA8tooLrxDobcEHgL59+5l49cpMz+TCkarcXr7381YgIbAQQgghhBALSQgshBCiMM20g9AaxjpvQ8faVjhhe8pOmKVwVVUTa7+6gSEUzsRoxrxVx2KEXz27aGMxmRJaOxLHaDiIc/XlFS+t7SRbOZhUHjfelp04U1Op790eptq6Ci4ABrDDESDARpJ10+siVFfK2NV+dpzYyXjPJBPXhzA9LuxoImtzXY6WEFgIIYQQQogFJAQWQghRmFSq0WvYeYzopZszAAbYcaiEK09PbXgcx1uEsiw8+w4yfm2Y5HR0tteuk0hi+b0U76rB6bmGPb604tcqKkIlNz6P+SaGFMHVHGjbLBcCF3IhsFlcDL4iJs5ukVYmjoPhceHE1tdTN9RQRrEnTLz/CrXVfmJnTxMIBSlq8WFPT2Md3U3P6S7sSK7D4MIL2IUQQgghti6NMgrt8VWhzafwSQgshBCiMClzpg3EcL5nklelA98hWH8nU90b+zlMRT3YqoyxF9KHkYnxaYZeasNTXkTpgR3Euzuxxydm91vFIVjrFAwFmdoCGybhiI9AUQ3KjoMvhFIGWhkoZaINM9UX2jDRyqCoMtWvVhmg1Ezsq0ApSKjCXBlOozArapi+uLVexHD5PMTWGQKXNhQTPdsBgD0dTn2enMKeTL2AYJ89TfmuAwy80gVoihoriE/FiI5k9wWG0M6GrI4nhBBCCCHEVichsBBCiIKklclo+3F0tD3fU8krw0nS0hzhle6NjTM1GsEaX7kncGx4gr7hCUBTc3w/kQvnAbACHjxlB9CJONp2QIHXPY127FSlruOgnSQkEmg7iU4mMGNu7FgSf2sThttDYmIS3D60N8hEWw+T53vxPXAU5+yzwNiy8yopH0GlKfnVgLXzzjX/PHJJawgcOECkf2TLBcAApnt9rTfcQS96bGjF4zyJcXbsLyI5PIw90o4XqD66k6j2EZ+OY7hMRq/04yTW39IhMRVe97lCCCGEEEJsRxICCyGEKEjTk/cTu/JUvqdREPwDL1Nz9FH6TnWue4yJ68OUWWoNfWgV2nLPfme5TaKXXpn7vqKS5NC15UcwDXAcwpdTQb6vuZGBVxem2cMXByhdzXRMC5z01akqj28F05ol4bT/8BHGT53Lz4SywHCv/uGh6XVTd7Se8GgUv54g1rXyqxXpjolcSfWrds18X7+7gYmwh/GOwVXPZb7EpITAQgghhBBZZWR6i5/YKiQEFkIIUZDCl27uNhCL1RlnGXCV4STW9zZ9O5bE01BJrHdg1efoeY/zlLkw6bTHxlBNO3H6r4FpQiK+JAw1PS6SU9G58dIE0OG+capvbSXesXzFrPIEITKWYW9+HpC69xwgMT6Jp7QoFXijcBJJItd78zKfbDFdK1cCl+6qoSjkYE9OEjt7GhOIZXEOsc4uPEqxY18tRnEZ10/1rKlPcVIqgYUQQgghhFhAQmAhhBAFSRmF2ec1X1yTPTTecYiOZ9ZfDewqLV1TCJycF7optTDA1ckE0219gAeAQEMperR/wTGmZ+HDDMPnS3udqFHCir9tY5lgctXVzdmjUUz2jKMsCz0wSmJg9T/XQmeaK4fA3iIPkXmV4TmhNbGuHujqoTLgwtVQilFZSzxqM/Bq97LtIhLTEbTWc/2jhRBCCCGEuMlJCCyEEKIgaUfebrRYxfj36C3dR2x0fYtoTVklRHfdimNrHEeDTlXn6pnvtdZoR6NtB8fRDFxzUNatOLbD3qkEgQzjKrcboksrLxf3llVm+ocdg2d7qCn1oGPL1JJmOBcgHzGfu7GZyYup0DsZ9BNsbSXWtvX6/6ajXMtH8q6AG8fWuCrKSAyNbMqcdDxBvH8A+lNh+45Du+i5NEZiOkbae4CjSYajuALpX3gQQgghhBBroJYWheSdvNa/ZhICCyGEKEyJRL5nUHDM2BS7Dhm8+vT6zo+ORbh+en0rzKlmV8Z9vt270R3fX7LdcC18mJEcGSa1lNvCR2zJSALr+D4SF04vN4Nl9m3+CwZqXrVscirM2OUoZYcPEXn17KbPJdtMc/kQuO5wLZGzr5DPf6GRy1eoaWwA22IyEWSsfWklth2NSwgshBBCCCHEDHmvrRBCiIJkFJXkewoFKdj3ArXHG9d1bmxodN3XNZOZe6zGe/vQxtLXlZW1MLiN9fZTvGdH2jHG+laIFOctUreE3twQWGuI2YvmYzuMnLqE9+ARtNraD6/UsiGwxhkd2rS5LCd2vYtYTx/uwSvU3dacqlCx5ubuxOWFJCGEEEIIIW6QSmAhhBAFSa2iL+nNqi75EoOBHSSnoysfPE9scBRXoJjEGs+7IRGsBGWhTQttuMAwcAwPjuHCKtqBrU1sXGgUWptEdZDkriYcwHEUWoPGxNlbCcy08tWpVhS9tuaeN47jox+tXCjtkKoaTn02fAZEA6nAVzvgJMGJg5PEDqw/3F4P94FjDL98Me2+0VMXCO3bg9PTgRNZ38853wwzQ9W1AVUHG4m1v7q5E1qF5IUz1O8oJTE6hrepkdExY92LKAohhBBCiKWUUWDtIMSaSQgshBCiMEkInJEVGab5+FGuPL221g5KQVFDOcMX194S4tnnXEB5mj32zEc6a6sYvVJdwpHSr6Vt/KCqd6GHL6U9T3lrubFAXc5YLlx7DkEszFT38rdr8sJVvHVVuAIRkkPDuZ1XDrhVjKa7msGxwbYhmcCJx7AnJkkWYAB8Q2Ik9WJAtOMapYdukRBYCCGEEEKIeSQEFkIIUZCUISHwckpGXsDwNOPE1vaWd2+RN0cz2rjT34iy/5PHcI2cXLpzmfuD0glyHQJbJaUMv5S++jedaM8AyaIgweZmYh0duZtYDkQupg/btxaNTmZ6cUIIIYQQQoibz9ZuWieEEGL7UrLc63LM+CTVh2rXfl4eFlFbPcULL+zNsGuZFwV07is+U4varfGciSnG2/vxHTiYgxmJ5UTPnUU50hNYCCGEECI7NBhOYX0g7SnWSkJgIYQQhUnaQayowje45nOSk5M5mEn2XH05RqTsvqU7lltsTee24tO95wCqZX1Brk7ajJy+jPfQEXTaRhciJxwHkvF8z0IIIYQQQoiCISGwEEKIgiTtIFbmHTiD5V9bG4Ro79r69ObD09+oA8O1cONy7SByWPGplcHIxV7Gz17Z0DijJy/g3rUX5XFnaWZiJdIOQgghhBBCiDkSAgshhChMhvyJWomhbYob0y3WlpkTjRGsKc3RjLKjvy3OWPChhRuXqwS2Y7mbjNY4ieyEzBPnr0J5PUZRUVbGE8vTSVkYTgghhBAiG5QCpXSBfeT7p7L1yDNsIYQQhWm50E/McvvXvsZroLo4BzPJrie+GgTf/LB6mUd5du7e9m+VlYGdvT7K4WvdUFKJlhZmOSchsBBCCCGEEHPkGbYQQoiCpKQn8KrodeSTbk/h/2ynhm3aJh+e27DcS/05XBjOrKjO+pjTbdfxNDVmfVyxkJOQEFgIIYQQQogb1l4+JIQQQmwGCYFXJR5ZR9CVyGH7hCz63lcSNH7yGK6Rkyu0g8hdT2Cb3PTwNUPSEmK9tAZd10LSX4pjWDgY2LbC1go7qbGTDsm4TW3MzdqapQghhBBCiEyUIW9l2+okBBZCCFGQlPQEXpXoeGTN58SHxrI/kZxQ/Me/7OLNj1xj+XYQuQmBrdp6Rk5fysnY0sRsfXSohB7XLgZO9QB9yx67rhdIhBBCCCGE2KbkGbYQQojCJD2BV6SVQXRoYs3nRfuHcQU8OZhR9o32JHnp6qMs+5BF20D2KxOUKzdVwKnBJQReKx0q4Wq0gYHzPas63k7YOZ6REEIIIYQQW4c8wxZCCFGYpBJ4RZHKozjJtQddSkGobuu8Uf7c0zE6e1booZvl+4tZWU3CCGR1TLF+NwLgia6RVZ8jPYGFEEIIIbJFg+EU1kcOikC2O3mGLYQQoiApqQRelmN66OwJrft8X7Evi7PJvSf+Mk649IGM+w33xu4vKhDAvXs/7gNHce0/xlh3mInzVzc0psgOHSiiI964pgAYpBJYCCGEEEKI+eQZthBCiMIklcAZOS4/7eZ9jLf3r3sMUzlZnNFmUPzLlyqxS/Yu2T7pfSNOdH2Bn9bg3nuYiXGLoTPXGHrpEsMvX0TbEiAWAh0o4prTwljn0JrPlUpgIYQQQggh5sjCcEIIIQqThMBpxUtbudxTy1RX14bGsSensjSjzRMPa77xtWO8/sF+iI6B5WE49jB9/zG4rvHMympsfwVDp9qyO1GRFdof4prTwmjH+n6/dlxCYCGEEEKIrFCgVIG1X5AlNtZMnmELIYQoSEpC4CUcw+J8WxlTXWuvilws0re+YC3fBtoTPH3qDehQA70DD9L33fXfDqOyjokL7VmcncgW7QvQqVrXHQAD2FIJLIQQQgghxCypBBZCCFGYJARewvGVER2ezM5YkRjBmhqm+kazMt5maj8Zx3G9i/Lrz6DWWQHg3nOIkbP5C4B1gRVSFBLt9XHd2sPIlfW3OwFwpCewEEIIIYQQs+QZthBCiMJkmPmeQcExYpMoM3t/ugNVRVkba7Nde6GTcOuJdZ3rqm9k+NVrOLF4lmclNkp7vHR59jO8wQAYJAQWQgghhMgmZeiC+hBrJyGwEEKIgqTWW+K5jRnJCOX76rI2nsu7td8QdPF7PSR2HFj7iS43OikBYaHRlpuewCGGLvVlZTxHfsdCCCGEEELMkhBYCCFEYZJ2EGnVlGWnHQSASiayNlY+aEdz4VwSp3xtwXi8/QqG15OjWa2SFC8soA2DvtJbGDjfk7UxJQQWQgghhBBiztYuARJCCLF9SUiWlm/wFIa1KysBV2JkbOMTyrP4ZIS20Up2eSdQ0alVnWOWluL0xnI8s5XIHXy+iaY76XvuWlbHlBBYCCGEECKLDCffMxAbJGVWQgghCpMh7SDSMewYRU2VWRkr2jeE6d76rwdPdI1w3XUAHSxZ/kCXG6u6loQ3Oz+/jZCF4eZEdt3B1SwHwAB2Ipn1MYUQQgghhNiqJAQWQghRoCQEzsRf4s7OQFoTaqjIzlh5Nnixl+GSQzj+0ILtyufH3HOURFkLk2EPIx3jTLd35WmW80gKDEBi5y1ceCY3vw9ZGE4IIYQQQog5W7/8RwghxLakTDPfUyhYrixlwAD+Uj9j2Rsur669cA3rrlsoufZdAKzaesJhk+jpS3me2VL6Jg+BdWkVY0WtXHu+M2fXkBBYCCGEECJLlEapAnv8Wmjz2QIkBBZCCFGYlFQCZ5LNThnbLWtve66TwyeOErAijFzsRRdqS4Cb9DGrDpUyXr6Pay9dx0lmvwXEfNIOQgghhBBCiDnSDkIIIURhkhA4LdtXxmh/PGvj6elw1sYqCFrTPWyTUEbhBsCAdm6uhTW0x8dU6wnOdhXR/vw1nGTub78sDCeEEEIIIcQcqQQWQghRmCQEXmKi9n4uPj+KE+vL2pjRvsGsjVUoHvhZk2SPycQr+Z5JZtrZeqXAWhnYzQdImH4cDAZ7okz2jlFzoIbyZDdG//Wl51gWseZjtJ8bI/q93LV+SEdCYCGEEEKILDK23uNXsZCEwEIIIQqSslz5nkJBiZXt5sJ3B7MeHianwvgrKgkPTWR13Hw58eM1BMtehvIyDLfCiRfog9UtVAms3R6ijUe5fnmC6edGgJEF+7te7qTbUOw6cReB0atgutAuFzF/JZ2XJgg/052XeUtPYCGEEEIIIeZICCyEEKIgmcWl+Z5CwXAMi86xHWinJyfjB2tKtk0I3HzfWOoLPULLxw7S9vkreZ1PJltlYTi7aT9t7ZrpZ5ZW+c6nHc3l710DTMABYkDXJswwM+kJLIQQQgghxBwJgYUQQhQmY5utWLYB/aUPMfJc7hbRcvu3R9W1t9TC5ZoLKyvuHqHtDzXowmstou3CrgTWlsV4w+20P5/bxdtySSqBhRBCCCGyQwGqwNpBFN4j/MInC8MJIYQoSEpCYCDVB7gzhwEwgLITOR1/s9z1Y5XA3G1R9NL43pb8TWgZ2i7cgFJrGKi4dUsHwAC2hMBCCCGEEELMkhBYCCFEYTLktd2J2nu5+L3hnF8nMTKe82vkWqjeQ8Ot55Zsr3k0lofZrKyQQ+DI7jvpOb18+4etwIlLOwghhBBCCCFukHYQQgghCpO6OV+n1CimK47QOV5L4so0TjL3YWG0dxDT7cfewqGZt8QCHVmy3bA6qLiviaGn+/Iwq8x00i7It7A5Dbu49Fx+FnLLNukJLIQQQgiRJQowCqydWSE+mC5wEgILIYQoTOrm+KvuKIOpiuN0Dpcz3juJHUsQPxcFuqm9dRdqYBSdzHGYpTWhhnLGrvbn9jo5FKhyZ9zX8Hio8EJgRxfc41YdKOJKp1Xw/YpXy5EQWAghhBBCiFkSAgshhChM2zgE1hqmqo7TH6mh9+IwsVfDQM+S43pfukLprnrU2DCJ8amczslfGmAsp1fIrZpjnoz7vFVXMQMW9nThhII5D/bXSPsCXDdamR7cui8ELCY9gYUQQgghhJgjIbAQQoiCpLZxO4iuijdw8ckuYOW+q6NXegjWleGtdhPrH8nZnExza4fuTfdMZN6pwzR+4ADtf9y2eRNagZO0yefSh1qDrm7ADpbjGC56uuKMXdk+ATCwpdubCCGEEEIUFo1SOt+TWKTQ5lP4JAQWQghRmLbpwnCj1fdw8YmuNZ0z1TNCLOilYncTU5ev5WReTng6J+PmmjLhtb9ci9vz0rLHVZyI0v7HmzSpAqXdHuz6PUzpIAMdY0y/Mg4M5ntaOSPtIIQQQgghhJgjIbAQQojCZOSzTjI3pssPc+qZ8LrOTUxFGWgbpLS6LCcVwbH+oayPmWveUou3fsGzYgAMYLquUnSwlolXc1dNXai0L8hY1WGun+7Bvj4MDOd7SpvCTthorVHbuLWMEEIIIYQQq7V932srhBBiS1PG9voTFS1u5uUz/g29Rd2OJUi4/GBmPyBPTkzjqyjK+ri5YrgVb/szC7fn8qrPaXxvRQ5nVJichl1cnm6g44Vr2LFEvqezubTeNovcCSGEEELknaEL60Os2fZ6hi2EEEIUoESgmpev1BMbX18V8Hzj7f0U7W/JwqyWCtaU5GTcXDj8/ipcrqtrOifY0l04j3yc3IaTGsX0rhOcORlhenCZfsnbnCwOJ4QQQgghREqhPBUSQgghFtqCb+G2XX6ixa3oeS9MO8rk3OQthLMYxCV1blplePyunIybbY33l3DknafXfqIeof7tTdmf0Do4ydyFk7qojJ6yW7n0TCfaubmrJKQvsBBCCCGEECkSAgshhChMauv9ieoKPcB3n/VzJfTG2SC4t+JhBi/0ZvU6Ro4WzVP21gjM7v5sDFhfJW3NQ4Vxv9LJ3Pysk80HOT9QxsD5npyMv9VspP2KEEIIIYSYoQDDKayPrVczlHeF8UxICCGEWGLrVTCO9KV6rl574Trdla8nHqzl0nODWb+Ok6M+p4nR8ZyMm02BGjcud9u6z3cFr+Cp9mVxRuujk/aCivENj2daTOy8i1eeH81K25HtQkJgIYQQQgghUiQEFkIIUZCUtTVaE8wXKHXPfn3hqW6eOV2bk8W4+s904Kkszfq40d5BDCs3rSay5cgHyzc4QpKWH9iRlblslHJn5z6uy2u47j9M27PXsjLedpLLthtCCCGEEEJsJVa+JyCEEEKkZWyt1ym1hvDEwsA3FwHwjYt56qqJDY5md1zHoWhHBWPt/dkdN0tqby1i12te2XCRePGhkexMaIOUaaITG7uPxHcd59LJURLhwvyd5ZsjC8MJIYQQQmSFMrbeOzXFQlvrGbYQQoibhjIKuyJ1vkjZXs65Xs/Qxb5Nu6aTm44Q+MsCuRk4C17z8xHQ8Q2Po1Q3JccqsjCjjc5j/edqj5fhHXfx6jN9JMKx7E1qm5FKYCGEEEIIIVIkBBZCCFGYzK0TAvfarfSe6d7Ua9o5CrcK+ceezdqDusfKsjjaOrncKx+ThlPbQpu9i84Xpf3DSuyE9AQWQgghhBACpB2EEEKIAqXMrfMnyrI2/61R49cG8LpdOPHstpzQ4UhWx8uWhhPFWFZ31pLg0K78t4QwLJO1FHRrDdHdd3Dp+V6cZP7nvxVIJbAQQgghRDZoUIXWDqLQ5lP4pBJYCCFEYSrkktRFJsc2/wFIbDyMr6E66+NGB4azPuZG+SvcPPizQ6AnsjamUt0UHcpvNbBaQyWw9ocYqLmTC890SbC5BtITWAghhBBCiBQJgYUQQhSkrVIJHCtqpPeVzW0FcYOTg4XnEmOTeEsKqy9w0wNFOLYPlCer4za8Lb99gc3S0lUdZ+/Yw6WpenrOXM/xjLYfCcyFEEIIIYRI2RrPsIUQQtx0lM+Pu2UPzvTk/K1zX5omZnEpZlEpyhcgdvlV5r8lSCkFhplafcswUEqhbRsdj6U+YlGcWBSSCVAK5fNjeP0orx/D509VaRpGaoE6y0p9Nk2UaaEsC0wL24YrrxhAfnqzuitLiXT3Z3VMpSBYV0p0bDqr425E84MmptmZ9Xd8hfaMZnfANVKWa9n9GkV41wkuP9uJduTtbuthx6UnsBBCCCHEhinAKLDHoxtYZPlmJSGwEEKIgmQGQtT9rz/P+XW0bc+GxGsxcLqNp3/6S4y39+VoZivrevEq9bftZ+KVS2Bnr+LRG8xuxe1GFDf7qNh5ISctv5TqovhIHeNn8tQCY5n7nA6V0uNqZeAZWfxtIxxZGE4IIYQQQgggR+0glFIfUkrpmY+Pr/KccqXUx5VSX1VKXVFKRZRS40qp7yqlPqaUWtVclVJ/Ou/auzZ2S4QQQmx3yjTXHABrrfn6p/4grwHwzETo/v4VAvuy++dOJbPfZmK9Tny6GHTuFqtreLw8Z2OvV7L5EBeGKhg435PvqWx58alovqcghBBCCCFEQch6JbBSagfwe8AUEFzDqe8CPg/0Ak8AnUA18HbgC8AblFLv0lpnrAVSSj0GfHQd1xZCCCFWTSlF02uPcvEfns73VAAYbe9j9UuMrSwxMpbF0dav9niIqj1ncnqNYGv+FsLTzqLvTYvJxttpe06qf7NlvHMw31MQQgghhNgWVKG1gxBrltVKYJUqpfoiMAz84RpPvwS8BWjQWn9Aa/3ftdYfBfYB14F3kAqEM127EvgT4O+Al9YxfSGEEGJVJruH6PjGyXxPY5adyO7iV5HeISxvNmPl9dDc/zMOkNu38yvVQ8mxPC0QN68A3SmvodN7SALgNPyVRQRqVreI3nyVh5qovqU5+xMSQgghhBBiC8p2JfCngdcCD858XjWt9bczbO9TSv0h8Ksz4/5ThiH+eObzjyxzjBBCCLFhXU+fJTY2le9pzEpG4mhz2Raza6LQhOrKGL2av3YX5XuDuD2XN+VaO95TxtjJoU25Vjrx1mNcPDlKMjKQtzkUIpffw6O//XEa7z8EwKkvfJ22r59k4ExHxnOUodj56DGOfPi11BxvXXOrFyGEEEIIIbarrIXASqn9wK8Dv6O1fkoptaYQeAU3mhOmLQdSSn0EeBvwuNZ6WB7wCyGEyKVEOJbvKSykNZbPjR2NZ21Ib4k/a2Otx2jbNMlkM5bVkfNrBRquYbgVTnxz3+KmlcHwjrvo/J5U/y6mTIPX/e4naLzv4Oy2Yz/0Oo790OvoevYC//KR30573qEPPMh9P/ueTZqlEEIIIcRNRNpBbHlZaQehlLKAvyDVx/enszHmorE/PPPt19LsbwJ+B/hLrfU/b+A6L6X7INWOQgghhABg5HI3Z/50yZ+jvDP93qyOZ1n5fUHVSUJktGhzLqYn2PHels251oxYcQXnJ8vpfFEC4CWU4oFf/MCCAHi+hrv2UX1sZ9p9za85nMuZCSGEEEIIsWVlqyfwzwPHgI9onfUlvH8dOAT8m9b6P+bvUEoZwJdJLQT36SxfVwghhFhgqneEf/vI/yY6WjitIG5wl5VkdTwdi2Z1vPXoeMrctGtV3Z9Y+aAs0Bp6m47zd68WMTwp1RSLle2p5x1//1MceNc9yx6397E7lmxzBbzU3b4nV1MTQgghhBBiS9twOwil1B2kqn9/U2v97MantGDsTwM/AVwAPpTmkB8DHgDepLUe3ci1tNa3ZpjDS8DxjYwthBBiezj3N08UZAAMYAQDWR0vPjSS1fHWY6Rt89pumJ4rlN3ZwMjzgwu2aw3aMNEuF9py45gWjuVCmxaOYWGbLmzDQhsmNia2YWGjsLXBcMQkaQPzst7xyThX/6N/027XVuHye7jzx97KoQ88iGGuXKOw/9338erfPc3wxe7ZbXvecgemO9vLXQghhBBCCBTZKyPNFukEu2YbeqQ8rw3EJeDnsjKjubF/hFSbh3PAQ1rrkUX7d5NaLO6LWut/y+a1hRBCiHS8paF8TyGjoUs9FNVVEu0ZXPngVYgNjuEOFhOfyl9FcM8L44AJ2Bsaxz5djx6Oom0NtgOOg7YdSNpoXzEjF2100sYMFPHP01Ukkw7xaJJ4JEEilkTrTBW7STIsV7AqUgcM/spiWl9/nFs/+Qb8Fatv/2G6TN7x9z/FpX95nr5T7dQeb2Xv43flcKZCCCGEEEJsbRstlwgCN953F82wINufKKX+hNSCcZ9dzaBKqc8CvwWcJRUAp1su+yDgAX5QKfWDGYa6PDOnxzfSL1gIIYQAqLtzb76nkFFsPMy4hlB5CfHhsQ2PpxSEGsoZvtC98sE5kow6aFWM0hurSravDJG8ci7tPqO6leiVcOprumiqvIvvvzy5oeuJhdxBL7d96s0kpmN0fe888ekoh953PzvuPUBRQ8W6x7W8bg68+z4OvPu+LM5WCCGEEEKI7WmjIXAM+NMM+46T6hP8XeAisKpWEUqpnyLVB/gU8IjWeijDoR3LXPtNQA3wD8DEzLFCCCHEhpTsrM33FJYVnwjj2bMrKyEwgDeU3cXm1ipY6wXCGx9oufYC2lnw7SN7xvn+y5vzXjd9E7yHrbS1htf/3icpba0B4PZPvSnPMxJCCCGEEOuhDHkf21a3oRB4ZhG4j6fbp5T6HKkQ+Mta6y/M2+4CWoGE1rpt0Tk/B/wS8BLw6OIWEIuufWqZa3+HVAj801rrK6u/RUIIIURm4YGxfE9hReGR7PUsNpWz8kE5okx47PMOSo9vfLDlQmBnYasJs+McJ26/m+e+P7Hx664gc5uJrc9XHuL2H32M/e+4W/r0CiGEEEIIUQDy8ai8HjgPXAOab2xUSv0AqQDYBp4GPp2mvUSH1vpLmzJLIYQQYpG2//dCvqewoqmeEUJBP8mpjVfQ2lkYY72KGrxYVmdWxlKmmXGfMzGAsirQybkw+DW7Jnju+1m59LK2awS85y13cu9PvwtvaTDfUxFCCCGEEELMKKTSjJaZzybw2QzHPAl8aTMmI4QQQixWdcvOVLPcAq7gTEbjWK2NJC9f3fA8Iz39WZrV2o1fi2I7NZhG18YHszKHwMSjBFtrmbw4dx2r8zzlpUcYHk1s/NrLKNx70dqVtFTT8tAt7HzdcaqPNOd7OkIIIYQQItu2fyezbS9nTe+01p/TWqv5rSBmtnfMbG/OcPxyHw+u8toPzhwvrSCEEEJkTf3dBzjx396T72msaPDVTkJH9m44q3YiMUL15dmZ1Bo1v6YU08xCKwhYvh0E4KtY9Jq4bfPaewLZufYyCvi1hFXxFPk5+rFHeOc//nfe9++f467/+nYJgIUQQgghxE1FKXW3UurflFIjSqmwUuqMUuqzSqllKlFWNe6fKqX0zMeubMx1c1Y+EUIIIbaJgx98LSWthb1AHEDPi20UHdz4Y4VAZSgLs1mbkp0+Tnw6AnoyK+Mt7S61aH/ncwR21izYtic4nJVrL2crh8ANd+/j/f/xi9z9k++g6nATaVp4Cf/V+4oAADR9SURBVCGEEEIIsa0ppd4KPAXcD3wV+APADfwW8LcbGPcx4KNA9hZ8QUJgIYQQYk2UUlQcaMr3NFZFuTb04jMALs/Gx1iL2uMh3vx7w7hcV7M36AqVwGhNqHZhNbBx/RKlJa7szSENZ4uGwHV37OGNf/gj+Mo2/wUCIYQQQgiRB4pUglhIH3muQVBKFQF/Qmptswe11h/TWv9X4CjwLPBOpdR71zFu5cy4fwe8lL0ZSwgshBBCrNlU30i+p7Aq2ajOTAzmviL2hoa7i3n4ly6j9Fh2B14pBAZ07ysLQ3Pb5sETuV3YbCtWAhc3V/H63/0Elie3AbkQQgghhBAF7p1AJfC3WusXb2zUWkeBn5359ofXMe4fz3z+kY1NbykJgYUQQog1CA9NMHCyLd/T2DSRrn5C9WWbcq2eF8bR5OBa5irC8HiUor31CzbtKZ3I/lzmcbZYKXBRQwVv/pMfxVua23BcCCGEEEKILeC1M5+/lmbfU0AYuFsp5VntgEqpjwBvAz6ptc56NY618iFCCCGEuOGVL30dJ2nnexqrEpmMb3gMpaC4vpTJ7txXP1ceDAHZrzxWqwmBAW8JzF+Kzjt4FUM15axtg95CpcDle+t57M8+g7+iKN9TEUIIIYQQ+VCYZaT7lFJpWyZorW/N8bX3zny+lObaSaVUO3AQ2AmcX2kwpVQT8DvAX2qt/zmL85wlIbAQQgixBp1PnM73FFZtsnsYj2mCvbHQ2hkfX/mgDdPc/zMKxVD2RzZWFwKrkTZSD41SxztTk9x3VzFPfi83t7+QK4HLdtcRaijHdFlUHW7i8Adfg8u/6iIGIYQQQgghtrvimc+Znizc2F6y0kBKKQP4MqmF4D694ZllICGwEEIIsQbe0iDj7fmexeoEa0tJtG88wJxu78ZfUUl4KHftEe75qTq8/qyuezBrtZXAemIIf/Mxwh19s9tub47w5PdyMq2CDIED1SW84Q9+mKrDW2PxQyGEEEIIcVO7sJGKX6VUB7CWB75/pbX+4GqHn/m8mgf9PwY8ALxJaz26hvmsiYTAQgghxBrsf88D9L98Jd/TWBVfsY9EFsZRCkpbchcCn/jxGnbel5sAGABz5UNuCNT5CXfMfe/rPENt7S309sayPq1CC4Etn5vHvvgZylpr8z0VIYQQQghRSBSwynfXbZrsTKcNiK7h+J55X9+otilOdyBQtOi4tJRSu4FfBb6otf63NcxlzSQEFkIIIdag6aFjGC4LJ5HM91RW1HfmGrVH9zN+asUWVCubntr4GGmc+LFadr82hwEwrKl/mRXrW7ghmeSdD1r83t/kIgTO+pAbcsenH5MAWAghhBBC3DS01g9t4PSLwG3AHmDBExqllAW0AEng6grjHAQ8wA8qpX4wwzGXlVIAj2+kX3BhtnUWQgghCpTL76F8X0O+p7EqdixB//kuMDb+536q7TresmAWZrVQ4925CZfnU2uoWnD623BXLHwxv+T6S+za6c/2tHDswkmBq4/t5MiHX7vygUIIIYQQQgiAb898fn2affcDfuB7WuuVqkk6gD/N8HGjQuUfZr7v2MiEpRJYCCGEWKPi5hoGX+nI9zRWJTEVpXxfPdNt1zMeY7gtdjxyO8lInJK9Oxg5287o+Q6iQ3PvXFJoyndW0z2S3dDW5Z3M6njZUNRaztC8204yyTvvjPDrK72Gv0a2XRjtIPyVxbz+dz6BYa2hb4YQQgghhLhpKEAVWBlpATSn+EfgfwLvVUr9ntb6RQCllBf4lZljPj//BKVUMVALjGutewG01qeAj6e7gFLqO0AN8NNa6w33JJQQWAghhFij0j31+Z7CqtXfsYvxl8+jMjxKqjy+h9t/4aOEmmsWbHcSSV75/a8wfOYKw2ev4sSTqFhk0dmafY9XUnvcRaDSxkkoRjsMLv/7BEPnplec2y0fqcZQJ9d5y1ZPr/EBq6VH0MpAWVbqw+XBM97PLYd3cvqV7IXgWmc/BDYsg/K9DZgeF0PnOklGV+4K/dBvfIRAdUnW5yKEEEIIIcR2pbWeUEr9EKkw+DtKqb8FRoC3AHtntv/dotMeB74IfBn4yObNNkVCYCGEEGKNKg6sZQHZ/Km7ffkA2PS6OfbfPrgkAAYwXBa3/Ni7Aeh95gzP/fQfM9XWSc2t+7j9M29l5FI3RfWDVO1+mf9/e/cdJllVJ3z8+6vQYaYnB4YhDXEYkkoYFESiqIioqwi7GNbXuGsOq7uGXXB93g3qru66q76rK+qKCXaNGMmYcDEAkgRmiAMTmdSxqs77R9VAT09Pd1enW1Xz/TzPee70veec+2u6Lqf7V6fOqfTeBtFOFBaw4MCHOPiMefz4/YvpXtdP+5wCvZtKVAYS3ev7qL5nX01+HvGiKdv4didR5wTXyqN/oKd8KJXuPqqx9gK9nHlEhd/dmhht3kFEQEAaZeO33f1cxqMwo51nvu98Dj13JcXONqC63ESlVGZgex+//8p1/PbzP6F/65OJ/LZZnZz2oYvY76QVkxeIJEmStIdIKX0zIk4F3g+8BOgA7gHeCfxLmopZHxNgEliSpDr1b+nOOoQxqWzZOmKi8aSP/Dnzlu8/aj97n3wM537vI2xZvYa5y/cnXyywdOVhtasvI5U2Qb4LUoXe+18P5Y2c/eFhErwxm54t+9Ixax0R3ZBGny08KaK+372iUqLr0H3YctvO6z+kO2/lrGet5CfXbxi23az5M3na2UdwwQfOZc7iWfz4P2/k9hv+wJ0/v4+tG4f7XicnC1yc2cELPvdWljztoJ3O5/I5cvkchfYix7/p+aw4/5n87B+vYNuajRxyzvEceu4JdMyZOSkxSJIkqcXVsc/GniSl9FPgnDHWvRS4tI6+TxtXULthEliSpDqtvWWSF4edIoXZs0a83jZn7Bu9Fbs6WXDUQcNei8K82j+guPBP6V/3Wahs2bVi2kLnrNtr/x7zrSduHL+vzpzdzzDfAU+ds5afkHui07/+7lu4/cY/sG1TN6/48IvID1pX93lvOJXnveFUUkpcdvF3+M6/XLVzWONcV63QUWTpicsBSOUKx//ZObskgIf9nhbP4dkf/T/ju6kkSZKkpmYSWJKkOt19xY1ZhzAmo+VZ7738GhY+5ZBJvWdh1umQyvSv/cSk9jsho627UCgShTYoFCGfp+3pR1JcWmLNzwOGfIKr/MBqzjr1BG59IMeFHzyXI04+hCNOHvm/YURw0SXncfJLj+X7n76O6y67qXq+dn3hiv3Y5xnLGdjWC0C+vciGux7ikZv+8EQfMxbN4ayPvJolxx5cDbm9WMd/AEmSJEl7OpPAkiTVqdRfyjqEMend0jvi9U233z81N851TE2/4xT7P0Ln24+AXAWiDPkypKiWXKW6hu9OHiYPdK04gG23r96lv+P32sr5//E3zFk08kzroZYdvS+v/acL2Lx2K9s393DUyQfxnFe+mjnLFu8SQ6Vc4bYvX8sdV/yMuQcs5lkX/wmd88c+c1uSJEmaNEHjLQfRYOE0A5PAkiTVqXP+LLY9Mvy6sI1k032PMntmB+XtwyeDOxfNnZobV3pGrzONolCBQt/gM7VfGkfe5G3WU7rYdvuu55c897S6E8A7FNsL/OU33jhqvVw+xzGvPINjXnnGuO4jSZIkSYONczU6SZL2XB3zmmNGZmWgxIx99hr22r5nHc/T/370ZOR4pFLjJ8jHYuaKx3c5N+PgZSx63lnTH4wkSZIkTYAzgSVJqlOlVM46hLEbZvexwswOVl7yGopdnVNyy8K8Cyj33kGl+9dT0v906VjyEMX5cxjYuPmJcwf91TvJdzTWcheSJEnSlGu05SBUN2cCS5JUp/4t3VmHMCbzDlnKljtX7XRu0fHLOfuyi6csAQzVjdAKc86Zsv6nS+SCBWfsB0D73ntx4LvezMxDDso4KkmSJEmqnzOBJUmqQ6mnj+2Pbco6jFHN3Gseua2bGLrn2ZGvfyGzli2Z8vsXZp5Imn8RAxu/POX3mnx5oAxRZPGLV7LkZe+mffHCrIOSJEmSMhLDfsIwW0F1jw+NlUlgSZLqsOmeR0iVxv9lY97+C9j82zt2Ob/u5rvY68QjpiWGwrzzibYDKG3+PpWe30zLPeuXpzD3BeS7ToHUR+QXEPmZlLtvIdexnFxxcdYBSpIkSdKEmQSWJKkOpd7+rEMYVcf8WQxsfHyX8/n2IouOWz5tcUTkKXQ9g/zMlQxsuJTS499itHfrIz+fVH4cqExNULmZFGadSeTnkkrrKMw+m1zHIbtUK8w6ZWruL0mSJEkZMAksSVIdZu27KOsQRpQrFpi3pIttf3hg5/OFPGd/7RJmH7h02mOKyNO28DUU5jyfSu+dlLb8mErP74nCAlJp7ZMxdhxJ+9KLqfTdS6X3bkgDDDx+BVS6eWKJBiDX+VQqPb99sv/ivkRxb0j9VPruhcq2XWLIzTiOQtdJ5Dqf6uxeSZIkqR5B420M12DhNAOTwJIk1WHmknnk2wqU+0tZh7KLrqULmNFW2SUBDNA2Z2YmCeDBcsUl5IpLyM88kUrffaSBx+hf+88AFBe8hsKc5xG5dvKdR5LvPBKAwtwXVRtHkUrPrRBF8p0r6HvsE5D6KM6/iFzbPk/cI5W30fvwe0j9D5LvOpVc+wGkSh/F+RcS4a89kiRJkvZM/jUkSVIdUrlCpVTOOoxdzD90KZW1j9Kzri/rUEYVuU7ynUeSOg6nMLCGVFpHcd6LdlO37Yl/52cc88S/2xb9GZCIXPvO9fNddOz3r9XZwLnZxNCd8SRJkiRpD2QSWJKkOjXixnC9m7tpz+ef+LrY1cnBLz2dgW3dtM+bxbzDD8gwuuFF5GlbcNH42g5KDg/XL/k54w1LkiRJ0lC5XNYRaIJMAkuSVIdGTAADdK99nPZDllLMbaDY2cYJl7yGJU8/MuuwJEmSJEkNwCSwJEl1yLcV6Fgwi94NW7MOZReb7nmEZ178cg4+ZyXFrs6sw5EkSZIkNQiTwJIk1WnB4fvx8E9vzzqMYe29crkJYEmSJEmTJ6LxloNw74+6NdhPUJKkxjfQ3bibr629ZXXWIUiSJEmSGoxJYEmS6rD2llWs/c29WYexW+tuuS/rECRJkiRJDcYksCRJdfj1v3076xBGdM93f9nQM5UlSZIkNaFcNFZR3UwCS5I0Rvdf/VseuuG2rMMYUf+WbtbduirrMCRJkiRJDcQksCRJY1DuL/GzD1+WdRhjsnn1Y1mHIEmSJElqIIWsA5AkqRk8cN0tbH90U9ZhjOqoVz2b5S95ZtZhSJIkSWolOeeRNjuTwJIkjcHdV9yYdQijaps9gxPfcz4RrpElSZIkSXqSaXxJkkbRu2krD93Y2GsBAyw84gATwJIkSZKkXTgTWJKkUay9ZRWpkrIOY0SRz3Hsm8/LOgxJkiRJrSai8ZaDcPJL3UwCS5I0ikJ7MesQdrH06StYfv4plLp72XDHg+x/+lNYcuwhWYclSZIkSWpAJoElSRpFz4YtWYewk475szjrX/+ctpkdWYciSZIkSWoCJoElSRrFA9feknUIOznjY683ASxJkiRp+jTachCqm0lgSZJG0LtpK6t/8puswwAgcsHyl57C3icclnUokiRJkqQmYhJYkqTdGNjeyw0f/CLlvoGsQwFgxR+fzknv/+Osw5AkSZIkNRmTwJKkPVqpt5/1v7+frqULmLlkHhHBwPZebr/sGm699Ef0btqWdYhPaOtyCQhJkiRJ0ytFkBpsOYgUkXUITccksCRpj5RSYvWPfs2NF3+Jvs3bASh2dTJz8Vy2Pry+YWb/Dnb3f/+Uo171bDrmdmUdiiRJkiSpiZgEliTtcdbduorffPp7PHDN73Y6P7Cth8e39WQU1ei6123mt5/5Hk9/7wVZhyJJkiRJaiImgSVJe5R7r7yJa9/zWVIlZR3KuNx/9e848T0vI/z4kyRJkqTpkstnHYEmqLEW9JAkaQptuncNN3zwC02bAAbY+uA67rvypqzDkCRJkiQ1EWcCS5Ja3taH13Pn167n9q9cQ6mnP+twJmTuQXuzYMX+WYchSZIkSWoiJoElSS2n1NvP+tsf4PF7H2H1T37DQzf+HlLzzv4d7NmffBNzlu2VdRiSJEmS9hgBuUZbTMDl8eplEliS1DJSStz0kcu5/bKrKfeXsg5nSvzhWz/j+Le9OOswJEmSJElNpNHS+JIkjdtdV9zIrZf+qGUTwACrfnhz1iFIkiRJkpqMM4ElSS2hUilzzzevzDqMKbf1ofVsXv2YS0JIkiRJmh5B4y0H4WoQdTMJLElqCWnbzzjzfb8ixXwG+hfSv30GG+5tZ9U1vTz8i820ym8JlVKZOy+/gRPf/dKsQ5EkSZIkNQmTwJKkplfpvZf+Rz4GQKSNtBU30jYXuo6DA46DSixh88P7svb2PP3bEjP3yjHQk7jr21vY+lBvtsGPQ66QzzoESZIkSVITMQksSWpqaWA9favfBZVtu62TS48yb+mjzFu68/nlZ+To3nYUN/xDhfV3bJ/iSCeu0NnOCe94MSsuODXrUCRJkiTtSRptOQjVzZ+gJKmpDTz2mRETwCOrMKPrFp7z4Xs58Mx5kxrXVDjmNc/hyJefSa7oe7iSJEmSpLEzCSxJalrlbTdT3nLNxDtKPTzjz1dz4Olzx9xk3sEzOPWDiznknPkTv/8YLTn+sGm7lyRJkiSpdTiVSJLUlFJ5OwNrPj5p/UXayDPeXOGQ5xzGXd/p54GfPQ5p183kIg8r37SYQ069DdJ29n0KHPWSp3DNJf1sfmDq1heOfI4lTzt4yvqXJEmSpGFFkHINti9JtMbG39PJJLAkqemkVKH/kX8kDayZ1H4jPc7iQ25i8TuAd3bR37+U7g2zKPXlyeUTnfN76Jj5MJFWQXqy3cw5v+Pcf+5ize1HcuM/bqB/a3lS4+pYMIszPvp6l4GQJEmSJI2Lf01KkppKKm9j4NFPUtn60ym+0TbainfTtmTo+d3X33vFL3nRZw/h6xdMbijFGR0sPfHwye1UkiRJkrTHMAksSWoald576Hvg/VDakHUou7Vp9Xxg3aT1l28rcPLfvHzS+pMkSZKkuuXcVqzZmQSWJDWN0sZvNWwCuHvbMQz0FLjp37dOar+5YoGZi+ZMap+SJEmSpD2LSWBJUvPItWcdwbBSzOV//nQLMPmbEwxs7+W+H97McYfuM+l9S5IkSZL2DCaBJUnNo9KbdQTDCrrpnL+Ino2lKel/v2cdPSX9SpIkSdLoogGXg5j8CTitziSwJKkppJSobP9N1mHsolxZRj7/MM//lyI//IscW9f0T0q/T3nd81j27GPZeNeDLDp62aT0KUmSJEnaMzVaGl+SpOGVN5EGHss6ip2svW8lX31ZcMMnjqS9425e8MkNzFjcNil973fKUSw6ahnLX3IKEb7LLUmSJEkaP2cCS5KaQipP7oZrE5ViMddcXN2k7oHrN7P15Ucza/5v6Fq8N91rxzcbeOaSeZzyoVey5ld3M//w/SYzXEmSJEkanwBy+ayj2JnzZOpmEliS1BTSwNqsQ9jJ6p8fRKn7yZnJ11zSw7JTT2Dtbevr6idXyLP3yuV07bOAIy48jQUr9mffZx412eFKkiRJkvZgJoElSU2hvO1XWYewk5kLKzt9vfXhPm69rK+uPg5/2bNY+Rfn0zazYzJDkyRJkiRpJyaBJUkNL1X6KT/+w6zD2MniQ37N/qcczQM3PD7uPvY75WgTwJIkSZIaXJCi0bYVcz2IejXaT1CSpF1Uum+DyvaswxiixDPevAVI4+7hxou/xKZ710xeSJIkSZIkDcMksCSp4VV67sg6hGEV8vdy+B8tGnf7ng1beOTnt09iRJIkSZIk7crlICRJDS/1rco6hN069qIHWH3NbHo3lcbcpn1uF095zXNZeNQBLDxq2dQFJ0mSJEmTIZfPOgJNkElgSVLDq/Q/lHUIuxXpMc779zl8500FejaOnAiOXHDkK87kaW88l/Y5M6cpQkmSJEnSns7lICRJDS2lCqm/sdfNLRbv5rxPVSh07H5Ynb3fIs790nt4+nsvMAEsSZIkSZpWzgSWJDW0yvbfNuCmcLsq5O/lBZ8+hu+9rYf5B3Vy4Omd5NuCB3/Rx4wlT2Xlu19KcUZ71mFKkiRJUn0iGm85iIisI2g6U5IEjohXAF+sffm6lNJnx9BmAfBi4PnA0cA+QD9wK/B54PMppcqQNocCfwQ8BzgU2AvYBPwC+HhK6ZpJ+YYkSZkpb74q6xDGbEbXLZz/uZ3PHfKCt1OYd242AUmSJEmSxBQkgSNiP+BfgW1AVx1Nzwc+BawBrgEeoJrU/SPgs8DzIuL8lFIa1OZvgQuA24ErgY3AcuA84LyIeFtK6V8m9h1JkrKSKn2Ut96QdRjjlp9zpglgSZIkSVLmJjUJHBFBddbuBuC/gXfX0fxuqsnb7w2e8RsR7wNuAl5CNSF8xaA2PwD+IaX0myFxnAr8GPhIRHwjpdTYi0lKkoZV3vpTqHRnHca45GYeR3Hvt2cdhiRJkiRNWMq5rVizm+yf4FuBM4BXA3Ut4JhSujql9J2hSz6klB4FPl378rQh1y4dmgCunb8OuBZoA06qJw5JUmNIKVHacHnWYYxTnuKSNxO5zqwDkSRJkiRp8mYCR8QK4O+BT6SUro+IMyarb2CgdixNVZuIuHk3lw6v456SpElS2f5rUu/dWYcxLvk5p5Nr3y/rMCRJkiRJAiYpCRwRBeBLVNfxfd9k9Dmk71fWvvzBGNscAJwJdAPXT2Y8kqSpl1KitO6Lo1dsULnOI7MOQZIkSZImRwTk8llHsbOIrCNoOpM1E/ivgacBz0wp9UxSnzv8PXAUcGVK6YejVY6IduDLQDvwnpTSprHcJKV03G76uxk4duzhSpImqrz5R1R6fp91GOOX+rOOQJIkSZKkJ0x4TeCIWEl19u/HUko/n3hIO/X9VuBdwJ3AK8ZQP091RvLJwNeAj05mPJKkqVfpX8PAo/+WdRgTUul/MOsQJEmSJEl6woRmAg9aBuJu4IOTEtGTfb8J+ARwO3BmSmnjKPXzwH8B5wNfB16eUkqTGZMkaWqlSg/9D/0tVLqzDmVCKtt+RSptIgrzsg5FkiRJkiYoSI22HAQuB1Gvic4E7gIOA1YAvRGRdhTgb2p1/qN27uNj7TQi3g58ErgNOD2l9Ogo9QvAV4ALgcuAP0kp1bOJnCSpAZTWfblpN4MbLA08Ru99b6S89RekVM46HEmSJEnSHm6iawL3AZ/bzbVjqa4TfCNwFzCmpSIi4r1U1wH+LfDslNL6Ueq3UZ35+0Lgi8CrU0qVsdxLktQ4UkqUNv846zAmT2kD/Q9+AAoLKcw7h8Lcc4jiwqyjkiRJkiTtgSaUBK5tAvfa4a5FxMVUk8BfSCl9dtD5InAwMJBSundImw8CHwJuBs4ewxIQ7cB/A+dQTUa/3gSwJDWpylYobcg6islXWk9p3Rcprf8ahQUvobDgZUS+K+uoJEmSJGnsGm45CNVrojOBx2Mf4A7gfmDZjpMR8SqqCeAycAPw1ohd1vdYnVK6dNDXn6aaAF4PPAz89TBtrk0pXTtp0UuSpkQqbck6hKmV+iitv4zS4z+k48BPEsVFWUckSZIkSdpDZJEE3p0Da8c88Pbd1LkOuHSYNguBvx6h72snEJckaRqk8uNZhzA9ShsYWP9V2vZ+S9aRSJIkSZL2EFOWBE4pXQxcPMz51Qyzhd/u6o9yj9PGEZokqRFVerOOYNpUum/JOgRJkiRJGpMUQWqw5SDSrisBaBSNNBNYkrQnSwNZRzBEobqRW24mkZ8JuRlErhNyHaTyVlLPXaTSunH1nOs4eJJjlSRJkiRp90wCS5IaRPb7euZmHE1+9mnkOpcT7QcRubYR66eB9VR6bqfc/XtS7z1Uev8Ale4RbjCTfNdKikvePMmRS5IkSZK0eyaBJUmNIaWMA8jRtu/fEIW5Y24RxYXki88iP/tZAKRUJvWvobzlOkrrvwKpl9zM48jPfW41sVzci4jG+hiVJEmSJI2qwZaDUP1MAkuSGkJKfRPrID+L3Iynke86llzHcspbrqG08duQxrbWcK5zRV0J4OFE5In2fcktuoh810qIPLmOgybUpyRJkiRJE2USWJLUGCrjSwJHx6G07f02ouPQnWbZ5joPpbDgZZQ2fIPSxm+NmgzOda0c1/1321/noZPanyRJkiRJ45XLOgBJkoBxbQyX61pJ+7J/Itd5+LDLLERhLsW9XkfHof9Ffu7zgd3vIJuf/cy67y9JkiRJLS+ClMs3VCF2/7fddIqIkyLiyojYGBHdEXFLRLw9xrEOYFS9KiKurfXXExGrIuLrEXHYRGN1JrAkqSFUeu6sq36uayVt+/3tmNbYjcJc2pa+g4H2fSk99pldr3ccTq79gLruL0mSJEnac0XEC4ErgF7ga8BG4AXAPwMnA+fX0VcH8A3gXOAu4DJgK7AUOAU4DLh7IvGaBJYkTapU6YVoJ+p4ZzaVuylv/Xld98nPeXbdm6wVF5xPvvNISluupdJ9G6m0gfzMp1Fc/Nq6+pEkSZIk7bkiYjbwH0AZOC2l9L+18x8ErgZeGhEXppS+OsYuP0Y1Afx3wAdSSpUh9ytONGaTwJKkSZFSmdL6yyitv4xc5xEUl7xpTJuipVRm4NF/g8q2uu6Xn/m0ccWZm3EEbTOOGFdbSZIkSdrzBOTqXt1gimW+HMRLgUXAF3ckgAFSSr0R8QHgKuDPgFGTwBFxMPBG4FfA+1NKaWidlMaxfuIQJoElSROWBtbT//A/UOn+DQCV7t/Rt+pNFBe/lvz8FxKx83CTUonU9xCV7TdT2nwVqbe+T7VEx8FEYe5khS9JkiRJUj3OqB1/MMy164Fu4KSIaE8pjbYL+h9T3bftC8DsiHgBsB+wAbg6pXTPZARsEliSNG4pJcqbfzL8TN40wMBjn6K08Qpys04i8nNJA+tIfauo9N4HqXfc9821HzjByCVJkiRJTe7wiLh5uAsppeOm+N7La8ddZjSllEoRsQo4EjgIuGOUvk6oHecA9wILBncXEZ8C3ppSKk8kYJPAkqRxqfSuYuCxT1HZ/usR66WBtZQ3fnNy7923alL7kyRJkiTtXmq45SAyN6d23Lyb6zvOzx1DX4trxw8BPwHeDawGVgKfAf4cWAdcXH+YTzIJLEmqSyptYmDdFyhvuhKojFp/SmLovZfKwFpyxcWjV5YkSZIktaI7JzLjNyJWAwfU0eTLKaWXj7X72nGX9X2HsSPDvgZ4cUqpp/b11RHxUuDXwDsj4v+mlPrHHu7OTAJLUhNJqUxENu/Apko/pY1XUFr/Fah0ZxLDYJXuW8nNOTPrMCRJkiRJzeleoJ51Ch8Z9O8dM33nDFcRmD2k3kg21Y4/GJQABiCl9Lva0hIHAyuA340x1l2YBJakJpAqPZTWfYnSxm+Tn3sWxcWvIfKzpu3+5e5bGXjko6T+h6ftnqNJpU2jV5IkSZIkTUwE5BoshRgxep1RpJQmMqvoLuB44DBgp3WJo7oz+oFACbhvjH2dDTy+m+s7/vjtHE+gO+Qm0liSNLVSaTMD679K7z2vprTh65B6KW/6Ln2r3kyl/7Gpv3+ll/5H/53+1e9sqAQwAOXtWUcgSZIkSdozXV07PneYa88CZgA/Syn1jaGvq2rHo4ZeiIh24NDal6vrjHEnJoElqcGkSk818bvqLfTefQGltZ+F0vqd6/Q/TP8D7yWVxvLJkvGp9NxJ331vpLzxvxnbMkbTK5Wn7nuXJEmSJGkElwPrgQsj4vgdJyOiA/hw7ctPDW4QEXMi4vCI2HtIX9+nOmP4ORHx7CHXPkh1yYnrUkqPTiTgBpvLLUl7tkr/Y/Tf/07SwOizfFP/Q/Q/8g+07fchqp82mRyp0kdp3RcobbicrDZ+G5PKWN5QlSRJkiRNTEAum71pdm/iy0FMREppS0S8jmoy+NqI+CqwETgPWF47/7UhzV4MfB74AvCng/rqj4hXAT8Cvh8R/wPcD5xAdVbxOuD1E43ZmcCS1EDKm747pgTwDpVtN9H/4CWkyrg3CN35/ttvpe++11eXnmjkBDDAJCa+JUmSJEmqR0rpm8CpwPXAS4C3AAPAO4ELU0pj/khtSulGqmsMX1Hr863AQcD/A45NKd090Xj9C1qSGki070NuxlOo9D8EpQ1jalPZ9nP67n8nxYWvINd1AhH1v7+XKj0MPPZZypu+VXfbrERxUdYhSJIkSZL2YCmlnwLnjLHupcClI1y/HbhgUgIbhklgSWoghbnPpTC3uq58Km9j4LH/R/nxK0dtl3rupP/B9xPFpeTnnUNh7nOIwrwx3bPcfSsDD3+ENPDIhGKfbvmZx2UdgiRJkiS1voCUa7AUYrarQTSlBvsJSpJ2iHwXxb3fQbTtTWnt58bUJg08QmntZymt/Ty5rpXk55xJftYziFz7rnUrvQys/U/KG/+HRtz4bST52aeSm7Ei6zAkSZIkSWoKJoElqYFFBMWFf0wUFzPw8N/V0bJMZdvPqWz7OQO5TnKdR5GbcTS59n0h8lR67qG06btQ3jRlsU+V3IynUFz67qzDkCRJkiSpaZgElqQmUJhzJpWtP6W85fr6G1d6qGz/FZXtv5r8wKZZfvYZFPf5CyKKWYciSZIkSXuIgFw+6yCGcD2IetW/e5AkKROFRa9mT/7fdn7+Syju85cmgCVJkiRJqtOem02QpCaTa9+P/Nyzsw4jE/n5L6a41xuJcNiSJEmSJKleLgchSU2ksOgVlB//CVDKOpRpEx2HUFz8OiL8uI8kSZIkTb8gRaOlEP37sF5OqZKkJpIr7kW0H5B1GNMnP5u2/S4hcm1ZRyJJkiRJUtMyCSxJTSbalmYdwrRpW/oecsW9sg5DkiRJkqSm1mhzuSVJo8i1LaWSdRDToLDoVeRnPT3rMCRJkiRpzxYBuQZLIbpcYN0a7CcoSRpNdBySdQhTKzooLn0XhTmnZx2JJEmSJEktwSSwJDWZfNeJDEQ7pL6sQ5l0uc4jKS79C3Lt+2YdiiRJkiRJLcMksCQ1mcjPID/rRMpbrs86lEkTbftQWHgR+TlnEeFy9ZIkSZLUUBptOQjVzZ+gJDWh/JyzWyAJnCM/9znk5z6HXOcRJn8lSZIkSZoiJoElqQnluk4kP+dMypuvyjqUccnNOIbikjeT6zgo61AkSZIkSWp5JoElqQlFBMUlb6XS/XvSwKNZhzN2+bkUl7yZ/OxTCXdzlSRJkqSGlwhSgy0HkfDvyXr52VtJalKRn0lh4UVZhzFmUVxM+7KPUZhzmglgSZIkSZKmUWOl8SVJdcnPPYvS+q+QBh7JOpQRRfsy2vf/e6K4MOtQJEmSJEn1iIBosBSiE4vq1mA/QUlSPSKKtC/7GH0P/CWp7/7pDyA/m8K8F0AqEcW9ID+LyLVBFCGqx4g2on1fItc5/fFJkiRJkiSTwJLU7KK4iPZl/8zAmn+lvOWaabtvfs5ZFPd6I1GYO233lCRJkiRJ9TMJLEktIPKzadv3/ZQ2n0Rp7eemdLO4KC6muOTt5GetnLJ7SJIkSZIaRUCDbQyHG8PVrdF+gpKkCSjMOZ1813H0P3gxle5bJrfzXBeF+edRWHAhkZ8xuX1LkiRJkqQpYxJYklpM5GfTtv/fUVp7KaXNP4Dy1uqF/BxyM44k17YfqbyF8tZfQHnT6B0WFlBY8FIKc59v8leSJEmSpCZkEliSWlDk2ikueQOFvV4HpQ2kVCGKi4jIPVEnlbspbfo2lW03U+m9C9IA5GdBSkRxEbm2vcl1nUB+9hnVzd4kSZIkSXsgl4NoBY32E5QkTaKIHBQXDTs8Rn4GxYUXwsILSSnV6juQSpIkSZLUakwCS5JM/kqSJEmS1MJMAkuSJEmSJEkaVgRENFYK0XlM9cuNXkWSJEmSJEmS1KxMAkuSJEmSJElSC2usudySJEmSJEmSGkhArph1EEO4HkS9nAksSZIkSZIkSS3MJLAkSZIkSZIktTCXg5AkSZIkSZK0G0FEo6UQXQ6iXs4EliRJkiRJkqQWZhJYkiRJkiRJklpYo83lliRJkiRJktQwAlwOouk5E1iSJEmSJEmSWphJYEmSJEmSJElqYY02l1uSJEmSJElSo4ggcg2WQgyXg6iXM4ElSZIkSZIkqYWZBJYkSZIkSZKkFtZgc7klSZIkSZIkNZIIU4jNzpnAkiRJkiRJktTCTAJLkiRJkiRJUgtzLrckSZIkSZKk3YgGXA4isg6g6TgTWJIkSZIkSZJamElgSZIkSZIkSWphjTaXW5IkSZIkSVKDCIJcgy0HES4HUTdnAkuSJEmSJElSCzMJLEmSJEmSJEktrLHmckuSJEmSJElqHBFE5LOOYmfhchD1ciawJEmSJEmSJLUwk8CSJEmSJEmS1MJcDkKSJEmSJEnSbkWYQmx2zgSWJEmSJEmSpBZmEliSJEmSJEmSWphzuSVJkiRJkiQNKwhyuXzWYewkiKxDaDrOBJYkSZIkSZKkFhYppaxjaGgRsaGzs3P+ihUrsg5FkiRJkiRJI7jjjjvo6enZmFJakHUsrSAibu7sbDt2xYqlWYeykzvueISenv5fp5SOyzqWZmESeBQRsQqYDazOOJTJcHjteGemUUgaic+p1Bx8VqXG53MqNQefVU22ZcCWlNKBWQfSCiLiyzz5nDaaO1NKF2UdRLMwCbwHiYibAXyXRGpcPqdSc/BZlRqfz6nUHHxWJWl6uCawJEmSJEmSJLUwk8CSJEmSJEmS1MJMAkuSJEmSJElSCzMJLEmSJEmSJEktzCSwJEmSJEmSJLWwSCllHYMkSZIkSZIkaYo4E1iSJEmSJEmSWphJYEmSJEmSJElqYSaBJUmSJEmSJKmFmQSWJEmSJEmSpBZmEliSJEmSJEmSWphJYEmSJEmSJElqYSaBJUmSJEmSJKmFmQSeYhGxOiLSbsqjQ+ouG6FuioivjnCfV0XETRGxLSI2R8S1EXHuCPU7I+KSiLgrInojYm1EfD0iVozQZt+I+M+IeCQi+mrf28cjYt4IbU6KiCsjYmNEdEfELRHx9ojIj/bfTspCRJwSEVdExJra63xNRPwoIs4Zpm7dr2+fVWnixvKcOqZK2YiIPx3l2UsRUR6mnWOqNE3qfU4dUyWpNURKKesYWlpErAbmAh8f5vK2lNJHB9VdBqwCfgd8c5j6t6WULh/mHh8F3gU8BFwOtAEXAvOBt6SUPjmkfjtwFXAy8L/A1cB+wPlAP3BGSumXQ9ocDPwMWAx8C7gTWAmcDtwFnJxS2jCkzQuBK4Be4GvARuAFwHLg8pTS+cN8j1JmIuIDwN8C64HvAmuAhcDTgGtSSu8ZVLfu17fPqjRxY31OHVOlbETEU4EX7ebyKcAZwPdSSucOauOYKk2jep9Tx1RJahEpJcsUFmA1sHqMdZcBCbi0jv5PqrW5B5g3pK8NVAe2ZUPa/FWtzTeA3KDzL6yd//3g87VrP6xde8uQ8/9UO//pIednA2uBPuD4Qec7qA7SCbgw65+PxbKjUP3lMgE/BmYNc7046N91v759Vi2WiZc6n1PHVIulwQrw89rr9bxB5xxTLZYGKrt5Th1TLRaLpQVK5gG0emHqk8BfrLV59TDXPlS7dsmgcwHcXzt/4DBtrq9dO33QuYNq51YNM+jOArYB24GZg87/n1qbLwxzjzNq167L+udjsaSUoLo0zn211/GiMdSv+/Xts2qxTKyM4zl1TLVYGqgAR9Veqw8B+UHnHVMtlgYpIzynjqkWi8XSAsU1gadHe0S8PCLeFxFvi4jTR1lraGlEvKFW/w0RccwIdc+oHX8wzLXvD6kDcDCwP3B3SmnVGNvs+PePUkqVwZVTSluBnwIzgKePMa7rgW7gpNpHfqSsnQQcCFwJbIqI50fEe2vP6zOGqT+e17fPqjQx9T6nOzimSo3hDbXj51JKg9cEdkyVGsfuntMdHFMlqYkVsg5gD7EE+NKQc6si4tUppeuGqf/sWnlCRFwLvCql9MCgczOBfaiuLbxmmH7+UDseNujc8trx7t3EOt42Z9faXDVam5RSKSJWAUdSfff2jt30K02XE2rHx4BfA0cPvhgR1wMvTSmtq52q6/XtsypNinqf0x0cU6WMRUQn8HKgAnx2yGXHVKkBjPKc7uCYKklNzJnAU+/zwJlUE8Ezqf7R+hmqH6n5fkQ8ZVDdbqqb3RwHzKuVU4FrgNOAq2oD6g5zasfNu7n3jvNzm6SNlJXFteMbgU7gLKofITuK6jpjz6K6NtkO9b6+G/m581lVs6j3OXVMlRrHy6i+Pr+fUnpwyDXHVKkxjPScOqZKUgswCTzFUkqXpJSuTik9llLqTindllJ6I9WF6juBiwfVXZtS+uuU0q9TSo/XyvVU3738JXAI8NrxhFFH3WjgNtJU2bE8S1CdSXhVSmlbSun3wIuprot26igfOR9svK/vRnzufFbVKOp6Th1TpYby+trxM+No65gqTY/dPqeOqZLUGkwCZ+fTteOzRquYUirx5EdyBtff8S7lHIY33Luco7WZnWEbKSubasf7Ukq/G3whpdRDdZYhwMrasd7Xt8+qNHH1PqfDckyVpldEHEF1Te+HqK7pPZRjqpSxMTynw3JMlaTmYhI4O2trx5kj1nrSjjUOn6ifUtoOPAx0RcTew7Q5tHYcvN7RXbXjYQxvyttERIHq5j4lqju9S1nb8Xp9fDfXdySfOofUH9Pr22dVmhT1PqcjcUyVps9oG005pkrZG+05HYljqiQ1CZPA2dnxsfKxDi47djQdWv/q2vG5w7R53pA6APcCDwCHRcSBY2xzTe14dkTs9JqJiFnAyUAP8IsxxvUsqru0/iyl1DfMdWm6XU/1l71DI6JtmOtH1Y6ra8fxvL59VqWJqfc5HYljqjQNIqIDeAXVjaY+t5tqjqlShsb4nI7EMVWSmkVKyTJFhequovOHOX8A1Z1KE/C+QedPBNqGqX8G0Furf9KQayfVzt8DzBt0fhmwodZu2ZA2f1Vr8w0gN+j8C2vnfz/4fO3aD2vX3jLk/D/Vzn96yPnZVN8V7gOOH3S+A/hZrc2FWf+MLJYdBfiv2uvyw0POP5vqL8WPA3Nr5+p+ffusWiwTL3U+p46pFkvGhWpiKQHfGaGOY6rFkmEZ43PqmGqxWCwtUCKlhKZGRFwM/CXVdyhXAVuBg4HnUx1krgRenFLqr9W/lmri+Fqq6zEBHEN1cAX4YErpw8Pc52PAO2ttLgfagAuABVQHw08Oqd9O9R3Qk4D/Ba4C9gfOB/qBM1JKvxzS5mCqg+Ji4FvAHVR/GTid6sdrTkopbRjS5kW1eHqBrwIbgfOA5bXzL0u+ANUgImIx8FOqG1vcANxE9Q2bF1P9ZfBPUkrfGFT/RdT5+vZZlSamnufUMVXKXkTcADwTOC+l9J0R6r0Ix1QpE2N5Th1TJalFZJ2FbuUCnAp8BbiT6uykAarvOv4YeCVUk/CD6r8G+C7Vj7Juo/ru5APA14BTRrnXq4BfAdupJpuvA84doX4ncAnVGcl9tbi+ARwxQpv9gM8Da6gOwvcDn2CY2c6D2pxMNdm9iepHcW4F3gHks/75WCxDCzCf6qyBVbXX+Aaqv0w+fTf16359+6xaLBMrY31OHVMtlmwLsILqmzMPjuU16phqsUx/Getz6phqsVgsrVGcCSxJkiRJkiRJLcyN4SRJkiRJkiSphZkEliRJkiRJkqQWZhJYkiRJkiRJklqYSWBJkiRJkiRJamEmgSVJkiRJkiSphZkEliRJkiRJkqQWZhJYkiRJkiRJklqYSWBJkiRJkiRJamEmgSVJkiRJkiSphZkEliRJkiRJkqQWZhJYkiRJkiRJklqYSWBJkiRJkiRJamEmgSVJkiRJkiSphZkEliRJkiRJkqQWZhJYkiRJkiRJklqYSWBJkiRJkiRJamEmgSVJkiRJkiSphf1/e4O0X+icoBQAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "image/png": { + "height": 436, + "width": 704 + }, + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "input_df['Local_Centralization'] = index.statistics\n", + "input_df.head()\n", + "ax = input_df.plot(column = 'Local_Centralization', cmap = 'inferno_r', legend = True, figsize = (15,7))\n", + "ax.set_title(\"Local Centralization\", fontsize = 25)" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python [conda env:segregation]", + "language": "python", + "name": "conda-env-segregation-py" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.8.8" + }, + "widgets": { + "application/vnd.jupyter.widget-state+json": { + "state": {}, + "version_major": 2, + "version_minor": 0 + } + } + }, + "nbformat": 4, + "nbformat_minor": 4 +} diff --git a/_sources/notebooks/04_multiscalar_example.ipynb.txt b/_sources/notebooks/04_multiscalar_example.ipynb.txt new file mode 100644 index 00000000..6ab0c76c --- /dev/null +++ b/_sources/notebooks/04_multiscalar_example.ipynb.txt @@ -0,0 +1,2208 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "id": "nominated-breakdown", + "metadata": {}, + "source": [ + "# Multiscalar Segregation Profiles" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "id": "38237d4c-fb11-48b2-8bd0-a69ae16d077c", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Author: eli knaap\n", + "\n", + "Last updated: 2021-05-11\n", + "\n", + "Python implementation: CPython\n", + "Python version : 3.9.2\n", + "IPython version : 7.23.1\n", + "\n", + "segregation: 2.0.0\n", + "geopandas : 0.9.0\n", + "libpysal : 4.3.0\n", + "pandana : 0.6.1\n", + "\n" + ] + } + ], + "source": [ + "%load_ext watermark\n", + "%watermark -a 'eli knaap' -v -d -u -p segregation,geopandas,libpysal,pandana" + ] + }, + { + "cell_type": "markdown", + "id": "crude-situation", + "metadata": {}, + "source": [ + "For measuring spatial segregation dynamics, the `segregation` package provides a function for measuring multiscalar segregation profiles, as introduced by [Reardon et al](http://link.springer.com/10.1353/dem.0.0019).\n", + "The multiscalar profile is a tool for measuring spatial segregation dynamics--the way that a segregation index changes values as the concept of a neighborhood changes, and what that tells us about macro versus micro patterns of segregation. " + ] + }, + { + "cell_type": "markdown", + "id": "86036737-22d9-446c-a35e-abb850c17b2b", + "metadata": {}, + "source": [ + "The basic idea is to calculate a segregation statistic, then expand the spatial scope of a neighborhood, recalculate the statistic, and repeat. \n", + "A multiscalar profile can be computed for any generalized spatial segregation index, which in the case of the `segregation` package, means a total of 23 indices, including single and multigroup varieties" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "id": "5695a732-5ab5-41d4-a13b-975f9c442547", + "metadata": {}, + "outputs": [], + "source": [ + "from segregation.batch import implicit_multi_indices, implicit_single_indices" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "id": "65ba4fe0-7717-49c0-82a1-05531aba2ced", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "23" + ] + }, + "execution_count": 3, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "len(implicit_single_indices) + len(implicit_multi_indices)" + ] + }, + { + "cell_type": "markdown", + "id": "845fa493-032f-405d-b684-ce54864aa02e", + "metadata": {}, + "source": [ + "## Computing a Single Group Profile" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "id": "2c87dc74-d9b5-4d7b-ac71-a0e98d397f8d", + "metadata": {}, + "outputs": [], + "source": [ + "import geopandas as gpd\n", + "import matplotlib.pyplot as plt\n", + "\n", + "from libpysal.examples import load_example\n", + "from segregation.singlegroup import Dissim, Gini\n", + "from segregation.dynamics import compute_multiscalar_profile" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "id": "a48fc4e5-2014-4bc7-bf5f-f313f04f12da", + "metadata": {}, + "outputs": [], + "source": [ + "sacramento = gpd.read_file(load_example(\"Sacramento1\").get_path(\"sacramentot2.shp\"))\n", + "sacramento = sacramento.to_crs(sacramento.estimate_utm_crs())" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "id": "5d995e53-eb74-4134-a803-a614f3939e59", + "metadata": {}, + "outputs": [], + "source": [ + "sac_gini_profile = compute_multiscalar_profile(sacramento, segregation_index=Gini, \n", + " group_pop_var=\"BLACK\", total_pop_var=\"TOT_POP\", \n", + " distances= range(500,5500,500))" + ] + }, + { + "cell_type": "markdown", + "id": "4045ceea-2677-4950-903f-2ce2fe281d15", + "metadata": {}, + "source": [ + "The function returns a pandas Series whose index is the neighborhood distance threshold, and the value is the segregation statistic." + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "id": "9f33e3a2-7e40-4942-a847-efd9a70e70c1", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "distance\n", + "0 0.636176\n", + "500 0.636064\n", + "1000 0.623789\n", + "1500 0.585520\n", + "2000 0.536810\n", + "2500 0.499351\n", + "3000 0.472796\n", + "3500 0.452424\n", + "4000 0.436661\n", + "4500 0.424358\n", + "5000 0.412987\n", + "Name: Gini, dtype: float64" + ] + }, + "execution_count": 7, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "sac_gini_profile" + ] + }, + { + "cell_type": "markdown", + "id": "ca6804ba-31be-494c-8c92-744e036665d0", + "metadata": {}, + "source": [ + " " + ] + }, + { + "cell_type": "markdown", + "id": "247dffec-ad18-463e-a275-9c65fefba085", + "metadata": {}, + "source": [ + "As such, the profile is easy to plot:" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "id": "dc1c884d-f924-4011-ba01-5328ee867fb6", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 8, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAvQAAAILCAYAAACHGAjaAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Z1A+gAAAACXBIWXMAABYlAAAWJQFJUiTwAABXOUlEQVR4nO3dd3hUVf7H8c83hYSW0AMEkCK9BUITFHvFgr33uva2v1W36bru2nXtuypY1u4qNuxUQQVC7zWAhF4ChPSc3x93GGJMSAJJ7szk/Xqeea733DLfycXwmcu555hzTgAAAADCU5TfBQAAAAA4cAR6AAAAIIwR6AEAAIAwRqAHAAAAwhiBHgAAAAhjBHoAAAAgjBHoAQAAgDBGoAcAAADCGIEeAAAACGMEegAAACCMEegBAACAMEagBwAAAMJYjN8FhDozWyUpQVK6z6UAAAAgsrWXtNM516EyBxHoy5dQt27dJt27d2/idyEAAACIXIsWLVJ2dnaljyPQly+9e/fuTdLS0vyuAwAAABEsNTVVM2fOTK/scfShBwAAAMIYgR4AAAAIYwR6AAAAIIwR6AEAAIAwRqAHAAAAwhiBHgAAAAhjBHoAAAAgjBHoAQAAgDBGoAcAAADCGIEeAAAACGMEegAAACCMEegBAACAMEagBwAAAMIYgR4AAAAIYwR6AAAAIIzF+F0Afss5p4IiJ0kySWYWWHr/DQAAAOxFoA9Byzft1vFPTSp3P7NfB/59bd6GvV8CJK+ttP1VvC3w39Kvv0QocGxg9+B7lNw/+P57ayitxl+dx351PklKrBur43sk6fSU1kpKiK/Mjw0AAKBWItCHIFfR/VxgX1fyiIqeITRNS9+mf3y5SEM7NdXIlGSd1KulGsbH+l0WAABASCLQh6iYKJOT1/3GW/pdUc1yTpqyfKumLN+qP42Zr+O6J2lkv2Qd2aW56sTw6AcAAMBeBPoQ1CWpoZb/45RSt7lAst97d75k4Hdy+/7beev7219u3zGu+PmLH+/23fN3Ze3vSt+u37xnsfpK7u+k+esyNWb2Ov24cmtwv9yCIn0xb72+mLdejerFakTvVhrZL1mp7RorKopnCgAAQO1GoA8zxfuqB1p8q6U69GidoPMGttWGzBx9OmedxszK0ML1O4Pbd+zJ11s/r9FbP69Rm8Z1dUZKa41MSVbnpIY+Vg0AAOAfc7WtL0clmVla//79+6elpfldSq21dOMujZm1Tp/MztC6Hdml7tOzdYJGpiTzMC0AAAhbqampmjlz5kznXGpljiPQl4NAHzqKipxmrN6uj2et09h565WZnf+bfczEw7QAACAsEeirCYE+NOUWFGrCks36ZPY6fbdok/IKin6zT1xMlI7rkaSRKTxMCwAAQt+BBnr60CMsxcVE68SeLXViz5bamZOvr+ZtKP1h2rnr9cVcHqYFAACRi0CPsJcQH6vzBrbVeQPban1mtj6bk6GPZ2VoEQ/TAgCAWoAuN+Wgy034WrJhl8bMXqdPy3mY9sx+yTqtLw/TAgAAf9GHvpoQ6MNfUZHT9PRtGjM7g4dpAQBAyCLQVxMCfWThYVoAABCqeCgWqIDiD9NmZufr6/kb9PGsdfppFQ/TAgCA8ESgR62VWPfXD9N+OjtDY2aX/zDtmf2SdWgLHqYFAAChgS435aDLTe3Dw7QAAMAP9KGvJgT62qv4w7RfzM3QzpyC3+zDw7QAAKCqEOirCYEe0r6HacfMWqfvF/MwLQAAqHo8FAtUo5IP0341f73GzMoo92HaM/slK/WQxjLjYVoAAFA9CPRAJSXWjdX5A9vp/IHteJgWAAD4ji435aDLDSpq78O0n8xap4zMnFL34WFaAABQFvrQVxMCPSpr38O06/TF3PVlPkw7rFMznZHSmodpAQCAJAJ9tSHQ42BU5GHahvExeu6i/jqyS3MfKgQAAKGCh2KBEFSRh2l35RTohjfT9M51Q5TStpGv9QIAgPDDuHpADdn7MO071w3R1HuO0b0nd1NSQpwkKTu/UFe9Nl2rtmT5XCUAAAg3BHrAB60S6+r6IzvprWuGqFE9r//8tqw8XTbqZ23aVfoDtQAAAKUh0AM+OrRFA716+UDFx3r/K67dlq0rR0/Xrpx8nysDAADhgkAP+Cz1kMZ6/qL+io7yJp9akLFTN/w3rdQHaAEAAEoi0AMh4NjuSfrHmb2C61OWb9XdH8xRURGjUAEAgP0j0AMh4vyB7XTX8V2C65/OydA/xi7ysSIAABAOCPRACLn5mEN18eB2wfVXflillyet9LEiAAAQ6gj0QAgxM/3tjF46oUdSsO2hsYv0yex1PlYFAABCGYEeCDHRUaZnLuynge0bB9vu/mCOJi/b7GNVAAAgVBHogRAUHxutVy4bqC5JDSRJ+YVON7yZpvnrMn2uDAAAhBoCPRCiEuvF6rUrB6lVYrwkKSuvUFeMnqbVW5lNFgAA7EOgB0JY60Z19fpVg5QQHyNJ2rI7T5ePmqYtu3N9rgwAAIQKAj0Q4rokNdSrVwxUXIz3v2v61j266rXpysot8LkyAAAQCgj0QBgY2L6JnrmwnwKTyWruL5n63VszlV/IbLIAANR2BHogTJzYs6X+dsa+2WQnLd2sP/xvrpxjNlkAAGozAj0QRi4ZcohuPbZzcP2jmev06NdLfKwIAAD4jUAPhJk7juusCwa2Da6/OGGFRk9Z5WNFAADATwR6IMyYmf4+speO7dYi2Pa3zxfq87kZPlYFAAD8QqAHwlBMdJSeu6i/+rVrJElyTrrzvTmaumKLv4UBAIAaR6AHwlTdOtEadflAdWxeX5KUV1ik699I08KMnT5XBgAAahKBHghjjevX0RtXDVKLhnGSpF25Bbpi9DSt3bbH58oAAEBNIdADYa5N43p6/apBahjnzSa7aVeuLh89Tduy8nyuDAAA1AQCPRABurdK0H8uG6A60d7/0is3Z+nq16crO6/Q58oAAEB1I9ADEeKwTk311PkpssBssrPW7NDNb89UAbPJAgAQ0Qj0QAQZ0aeV/npqj+D694s36Y8fz2c2WQAAIhiBHogwVwzroBuP6hRcf2/GWj317VIfKwIAANWJQA9EoN+f2FVn928TXH9m3HK9+dNqHysCAADVhUAPRCAz08Nn99ZRXZsH2/7yyXx9NX+9j1UBAIDqQKAHIlRsdJSev6i/+rZJlOTNJnvru7M1bdU2nysDAABViUAPRLD6cTEadcVAtW9aT5KUV1Cka16friUbdvlcGQAAqCoEeiDCNW0QpzeuGqxmDbzZZHfmFOjyUdOUsSPb58oAAEBVINADtUC7pvX02pUD1SAwm+yGnTm6fNQ0Ze7J97kyAABwsAj0QC3RKzlRL12Sqthob+apZZt265o3pisnn9lkAQAIZwR6oBY5vHMzPX5u3+D69PTtuvWdWSosYuIpAADCFYEeqGXOSEnWn0Z0D65/s3Cj/vwJs8kCABCuCPRALXTNER113fCOwfW3f16jZ8ct97EiAABwoKos0JtZGzMbZWYZZpZrZulm9rSZNT6Acx1hZv8zs/WBc603s2/M7JQy9h9qZmPNbJuZ7TGzuWZ2u5lFH/wnAyLTPSd108iU1sH1J79dqnenrfGxIgAAcCCqJNCbWSdJaZKulDRN0lOSVkq6TdKPZta0Euf6k6RJkoZL+krSE5I+k9RY0lGl7H9Gsf0/lvS8pDqBGt490M8ERLqoKNOj5/TVEZ2bBdvu+3ievl240ceqAABAZVXVHfoXJLWQdKtzbqRz7h7n3DHyQnVXSQ9V5CRmdq6kByV9J6mjc+5K59x9zrnrnHMDJf2xxP4Jkl6WVCjpKOfc1c6530tKkfSjpHPM7IKq+YhA5KkTE6UXL0lVr+QESVKRk255Z6bSVm/3uTIAAFBRBx3ozayjpBMkpcu7O17cXyVlSbrUzOqXc54oSY9I2iPpIufcb6aydM6VHDT7HEnNJb3rnJtRbL8cSX8KrP6uwh8GqIUaxMVo9BWD1K6JN5tsTn6Rrn59upZv2u1zZQAAoCKq4g79MYHlN865ouIbAqF8iqR6koaUc56hkjpIGitpu5mNMLM/mNltZnZYOe/9VSnbJsn7cjDUzOIq8DmAWqt5wzi9ftUgNa1fR5K0Y0++Lh81TRt35vhcGQAAKE9VBPqugeXSMrYvCyy7lHOegYHlRkkzJX0u6WFJT0uaamYTzax5Rd/bOVcgaZWkGEkdS24vyczSSntJ6lbesUAk6NCsvkZdMVD16njPkq/bke3NJpvNbLIAAISyqgj0iYFlZhnb97Y3Kuc8LQLLGyTVlXScpIaSekn6Wt5Drx9U03sDkNS3bSO9cHF/xUR5s8ku3rBL170xg9lkAQAIYTUxDr0FluXNWrN3iEmTdI5z7nvn3G7n3AJJZ0r6RdKR++l+czDvLedcamkvSYsr8X5A2Duqaws9ek6f4PrPq7bpzvdnM5ssAAAhqioC/d674IllbE8osV9Z9g6rsdI5N6f4Budctry79JI0qBreG0AxZ/Vvo3tO3tfbbOy8DfrbZwuYTRYAgBBUFYF+SWBZVh/5zoFlWX3sS55nRxnb9wb+uhV5bzOLkfeQbYG8MfEBVML1wzvqymHtg+uv/7haL05c4V9BAACgVFUR6McHlicEhp4MMrOGkoZJypb0UznnmSQvfHc2szqlbO8VWKYXaxsXWJ5Uyv7D5Y2uM9U5l1vOewMowcz05xE9NKJPq2Dbo18t0Ydpv/hYFQAAKOmgA71zboWkbyS1l3RTic0PSKov6Q3nXJYkmVmsmXULzC5b/DxbJL0nr/vMX4pvM7PjJZ0or+tM8SEqP5S0RdIFZjag2P7xkv4eWH3xYD4fUJtFRZmePK+vDuu4b7LnP/xvrsYv2eRjVQAAoLiqeij2RkmbJD1jZmPM7J9mNk7SHfK62hSf4TVZ0iJJ35dynjslLZf0RzObZGaPm9kHkr6UNxvstc65HXt3ds7tlHStvAdqJ5jZK2b2qKTZkg6TF/jfq6LPCNRKcTHR+vdlqerWsqEkqbDI6cb/ztTstTv8LQwAAEiqokAfuEs/QNJrkgZLuktSJ0nPSDrMObe1gufZFDj+KUltJd0qb/KoLyQd4ZwrOWylnHNjJB0pr8vO2ZJukZQv78vBBY6n+ICDlhAfq9evGqTkRt4jLNn5hbrqtelatSXL58oAAICRd/fPzNL69+/fPy0tze9SAN+t2Lxb57w4Vdv3eJNNtW1SV//73VC1aBjvc2UAAIS/1NRUzZw5c2Zg6PQKq4lx6AFEiE7NG+jVKwYqPtb71bF2W7auHD1du3KYTRYAAL8Q6AFUSv92jfX8Rf0VHZhNdkHGTt3w3zTlFRT5XBkAALUTgR5ApR3bPUn/PLN3cH3K8q26+4M5KmI2WQAAahyBHsABOW9gW919wr453T6dk6F/jF3kY0UAANROBHoAB+ymow/VpUMOCa6/8sMqvTyJiZkBAKhJBHoAB8zMdP/pPXVSz5bBtofGLtIns9f5WBUAALULgR7AQYmOMj19QYoGtW8SbLv7gzmavGyzj1UBAFB7EOgBHLT42Gi9fNkAdUlqIEnKL3S64c00zV+X6XNlAABEPgI9gCqRWM+bTbZVojfJVFZeoa4YPU2rtzKbLAAA1YlAD6DKtEqsqzeuGqTEurGSpC2783T5qGnasjvX58oAAIhcBHoAVapzUkO9evkAxcV4v17St+7RVa9NV1Zugc+VAQAQmQj0AKrcgPZN9MyF/RSYTFZzf8nU796aqfxCZpMFAKCqEegBVIsTe7bUgyN7BdcnLd2sP/xvrpxjNlkAAKoSgR5Atbl48CG67djOwfWPZq7To18v8bEiAAAiD4EeQLW6/bjOunBQ2+D6ixNWaPSUVT5WBABAZCHQA6hWZqYHz+il47onBdv+9vlCjV+yyceqAACIHAR6ANUuJjpKz17YT/3bNZIkOSf9/oM5DGcJAEAVINADqBF160TrlcsHqkXDOEneGPX38JAsAAAHjUAPoMY0qV9Hj53bN7j+3aJNemfaWh8rAgAg/BHoAdSoI7s01xVD2wfXH/x8oVZu3u1fQQAAhDkCPYAad8/J3dQlqYEkKTu/ULe/N5tJpwAAOEAEegA1Lj42Wk+f3091or1fQXN/ydS/vlvmc1UAAIQnAj0AX/RonaDfn9g1uP7ChOWanr7Nx4oAAAhPBHoAvrn68A4a2qmpJKnISbe/O1s7c/J9rgoAgPBCoAfgm6go0xPn9VVi3VhJ0rod2br/kwU+VwUAQHgh0APwVavEuvrHmb2D6x/NWqfP5mT4WBEAAOGFQA/AdyP6tNJZ/ZOD63/8eJ4ydmT7WBEAAOGDQA8gJDxwek+1bVJXkrQzp0B3vT9HRUXMIgsAQHkI9ABCQsP4WD11XoqizFv/ceVWvTx5pb9FAQAQBgj0AELGgPZNdNPRhwbXH/9miRZkZPpYEQAAoY9ADyCk3HpsZ/VtkyhJyi90uu3d2crJL/S5KgAAQheBHkBIiY2O0lPnp6hubLQkafmm3Xr4y8U+VwUAQOgi0AMIOR2bN9BfTusRXH9taromLNnkY0UAAIQuAj2AkHTBwLY6vkdScP3uD+Zq6+5cHysCACA0EegBhCQz08Nn9VbzhnGSpC27c3XPR/PkHENZAgBQHIEeQMhq2iBOj53TJ7j+7cKNenf6Wh8rAgAg9BDoAYS0o7q20OWHHRJc/9tnC7VqS5aPFQEAEFoI9ABC3r2ndFfnFg0kSdn5hbr93VnKLyzyuSoAAEIDgR5AyIuPjdbTF6QoNtqbRnbOL5l65vtlPlcFAEBoINADCAs9Wyfq7hO6BtefH79cM9K3+VgRAAChgUAPIGxce0RHHdaxqSSpyEm3vzdbu3Lyfa4KAAB/EegBhI2oKNMT5/VVQnyMJOmX7dm6/9OFPlcFAIC/CPQAwkrrRnX10Jm9g+v/m/mLvpi73seKAADwF4EeQNg5rW9rndUvObh+38fztD4z28eKAADwD4EeQFi6/4yeSm5UV5KUmZ2vu96fo6IiZpEFANQ+BHoAYSkhPlZPnZ+iKG8kS01dsVWv/rDK36IAAPABgR5A2BrUoYl+d1Sn4PpjXy/RwoydPlYEAEDNI9ADCGu3H9dFfdokSpLyCot0+3uzlJNf6HNVAADUHAI9gLAWGx2lp89PUd3YaEnS0o279fCXi32uCgCAmkOgBxD2OjZvoD+d2j24/trUdE1cutnHigAAqDkEegAR4aJB7XRc96Tg+t0fzNG2rDwfKwIAoGYQ6AFEBDPTI2f3VrMGcZKkzbtydc//5so5hrIEAEQ2Aj2AiNG0QZweO6dPcP2bhRv1/oy1PlYEAED1I9ADiChHd2uhyw47JLj+wGcLtWpLlo8VAQBQvQj0ACLOvSd3V6fm9SVJe/IKdft7s5VfWORzVQAAVA8CPYCIU7dOtP51QT/FRnvTyM5Zu0PPjlvuc1UAAFQPAj2AiNQrOVF3ndA1uP7cuGVKW73Nx4oAAKgeBHoAEevaIzpqcIcmkqQiJ93+3mztzi3wuSoAAKoWgR5AxIqOMj15fooaxsdIktZuy9b9ny7wuSoAAKoWgR5AREtuVFd/H9kruP5h2i8aO2+9jxUBAFC1CPQAIt4ZKckamdI6uH7vR/O0ITPHx4oAAKg6BHoAtcLfRvZScqO6kqTM7Hzd9cFsFRUxiywAIPwR6AHUCgnxsXryvL4ybyRLTVm+VaOmrPK3KAAAqgCBHkCtMbhjU/3uyE7B9Ue/WqJF63f6WBEAAAePQA+gVrn9uC7qlZwgScorLNLt785WTn6hz1UBAHDgCPQAapU6MVF6+vx+io/1fv0t2bhLj361xOeqAAA4cAR6ALXOoS0a6E8jegTXR01ZpUlLN/tYEQAAB45AD6BWunhwOx3brUVw/e4P5mh7Vp6PFQEAcGAI9ABqJTPTI+f0UbMGdSRJm3bl6t6P5sk5hrIEAIQXAj2AWqtZgzg9cnaf4PpXCzbog7RffKwIAIDKI9ADqNWO7Z6kS4a0C64/8OkCrd6a5WNFAABUDoEeQK33x1N6qGPz+pKkrLxC3f7ebBUUFvlcFQAAFUOgB1Dr1a0TrX+d308xUd40srPW7NBz45f7XBUAABVTZYHezNqY2SgzyzCzXDNLN7OnzaxxJc6RbmaujNeGUvZvv5/9nZm9W1WfD0Bk690mUXee0CW4/uy45Zq5ZruPFQEAUDExVXESM+skaaqkFpI+kbRY0iBJt0k6ycyGOee2VvB0mZKeLqV9936OmSNpTCnt8yv4ngCg64d30oQlmzVt1TYVFjnd/u5sjb3tCDWIq5JflQAAVIuq+lvqBXlh/lbn3LN7G83sSUl3SHpI0g0VPNcO59z9lXz/2QdwDAD8SnSU6cnz+urkf03WrpwCrdm2R3/7bIEePaev36UBAFCmg+5yY2YdJZ0gKV3S8yU2/1VSlqRLzaz+wb4XAFS3No3r6e8jewXX35/xi76av97HigAA2L+q6EN/TGD5jXPuV8NCOOd2SZoiqZ6kIRU8X5yZXWJm95nZbWZ2tJlFl3NMazO7PnDM9WbWp5z9AaBMZ6Qk6/S+rYPr93w0Txt35vhYEQAAZauKLjddA8ulZWxfJu8OfhdJ31fgfC0lvVmibZWZXemcm1jGMccHXkFmNkHS5c65NRV4T5lZWhmbulXkeACR5cGRvTQjfZsyMnO0Y0++7v5gjl6/cpCiAiPhAAAQKqriDn1iYJlZxva97Y0qcK7Rko6VF+rrS+ot6d+S2kv60sxKdmTdI+lBSamSGgdeR0oaL+koSd/T1QfAgUisG6snz0+RBfL75GVbNHpquq81AQBQmpoYh37v7SxX3o7OuQecc+Occxudc3ucc/OdczdIelJSXUn3l9h/k3PuL865mc65HYHXJHn/IvCzpEMlXVORIp1zqaW95I3YA6AWGtKxqa4f3im4/shXi7V4w04fKwIA4LeqItDvvQOfWMb2hBL7HYiXAsvhFdnZOVcg6ZXKHAMApbnz+C7q2dr7NZZXUKTb352tnPxCn6sCAGCfqgj0SwLLLmVs7xxYltXHviI2BZaV6T6z+QCOAYBfqRMTpX9dkKK4GO/X5eINu/T410vKOQoAgJpTFYF+fGB5gpn96nxm1lDSMEnZkn46iPc4LLBcWYlj9o6qU5ljAOA3Dm3RUH8a0T24/soPq/TDsi0+VgQAwD4HHeidcyskfSPvwdWbSmx+QN4d8jecc1mSZGaxZtYtMLtskJn1NLMmJc9vZodIei6w+t8S2wabWZ1SjjlG3oRWvzkGAA7EJUMO0dFdmwfX7/pgtrZn5flYEQAAnqqaKfZGSVMlPWNmx0paJGmwpKPldbX5Y7F9kwPbV8v7ErDXuZLuMbPxklZJ2iWpk6QRkuIljZX0eIn3fURSz8AQlb8E2vpo39j4f3bOTT34jwegtjMzPXpOX5309CRtzcrTxp25uu/jeXrh4v4yYyhLAIB/qmSUm8Bd+gGSXpMX5O+SF8afkXSYc25rBU4zXtLHkjpIukjSnfKGoPxB0uWSTnXOlbwd9qa80WwGSrpW3heLzpLelzTcOff3g/pgAFBM84ZxeuTsffPWfTl/gz5M+2U/RwAAUP2q6g69nHNrJV1Zgf3StW8oy+LtEyWVNXFUWed6VdKrlTkGAA7GcT2SdNHgdnr7Z2/Ouvs/XaDBHZqqXdN6PlcGAKitamIcegCIKH8a0V0dm3kDaGXlFer292apoLDI56oAALUVgR4AKqlenRg9fUGKYqK8f2ycuWaHnh+/wueqAAC1FYEeAA5AnzaNdMfx+6bfeGbcMs1as93HigAAtRWBHgAO0A1HdtLA9o0lSYVFTne8N1tZuQU+VwUAqG0I9ABwgKKjTE+el6KGcd74Aulb9+jBzxf6XBUAoLYh0APAQWjbpJ7+NrJncP3d6Wv11fwNPlYEAKhtCPQAcJBGpiTr1D6tguv3fjRXG3fm+FgRAKA2IdADwEEyMz00srdaJ8ZLkrbvydfdH8xRUZHzuTIAQG1AoAeAKpBYL1aPn9dXFpg2b/KyLXr9x3RfawIA1A4EegCoIkM7NdN1R3QMrv/zy8VaunGXjxUBAGoDAj0AVKE7T+iiHq0SJEl5BUW69Z1Zyi0o9LkqAEAkI9ADQBWKi4nWvy5IUVyM9+t18YZdevzrJT5XBQCIZAR6AKhinZMa6r5TugfXX568SlOWb/GxIgBAJCPQA0A1uOywQ3Rkl+bB9bven6PNu3J9rAgAEKkI9ABQDcxMj53bR03q15EkbdiZo8tHTdPOnHyfKwMARBoCPQBUkxYN4/XEeX0VHeWNZblw/U5d+/oM5eTzkCwAoOoQ6AGgGh3dtYX+eVbv4PrPq7bplndmqaCwyMeqAACRhEAPANXsvAFtde/J3YLr3y7cqPs+nifnmEkWAHDwCPQAUAOuP7KTrh++b9Kp92f8oke+YjhLAMDBI9ADQA255+RuOje1TXD9pYkr9PKklT5WBACIBAR6AKghZqZ/ntVbx3VPCrY9NHaRPkz7xceqAADhjkAPADUoJjpKz13UT4M6NAm2/eF/c/Xdwo0+VgUACGcEegCoYfGx0Xrl8gHq3ipBklRY5HTT2zP188qtPlcGAAhHBHoA8EFCfKxev2qgDmlaT5KUW1Cka16foYUZO32uDAAQbgj0AOCTFg3j9eZVg9W8YZwkaVdugS4bNU2rt2b5XBkAIJwQ6AHAR+2a1tMbVw1Sw/gYSdKW3bm69NVp2rQrx+fKAADhgkAPAD7r3ipBr14+UHEx3q/kNdv26PJR05WZne9zZQCAcECgB4AQMKhDEz1/UX9FR5kkadH6nbr29RnKyS/0uTIAQKgj0ANAiDiuR5IeObtPcH1a+jbd/PYsFRQW+VgVACDUEegBIISck9pGfzyle3D9u0Ubdc9H8+Sc87EqAEAoI9ADQIi5dnhH3XBkp+D6h2m/6J9fLvaxIgBAKCPQA0AI+sNJXXX+gLbB9f9MWqmXJq7wsSIAQKgi0ANACDIzPXRmL53QIynY9vCXi/X+9LU+VgUACEUEegAIUTHRUXrmwn4a3KFJsO2ej+bqmwUbfKwKABBqCPQAEMLiY6P18uUD1KNVgiSpyEk3vzNLP63c6nNlAIBQQaAHgBCXEB+r168apPZN60mS8gqKdO3rMzR/XabPlQEAQgGBHgDCQPOGcXrz6sFq0TBOkrQrt0BXjJ6m9C1ZPlcGAPAbgR4AwkTbJvX0xtWDlBAfI0nasjtPl476WZt25vhcGQDATwR6AAgj3VomaNQVAxUf6/36XrstW5eNmqbMPfk+VwYA8AuBHgDCzID2TfTCxf0VHWWSpMUbdunq16crO6/Q58oAAH4g0ANAGDqmW5IeO6dPcH3G6u266e2Zyi8s8rEqAIAfCPQAEKbO6t9GfxrRPbg+bvEm/eF/c1VU5HysCgBQ0wj0ABDGrjmio248qlNw/aOZ6/SPsYvkHKEeAGoLAj0AhLnfn9hVFw5qG1x/5YdVenHiCh8rAgDUJAI9AIQ5M9PfR/bWST1bBtse/WqJ3p22xseqAAA1hUAPABEgOsr09AUpOqxj02DbfR/P01fz1/tYFQCgJhDoASBCxMdG6z+XpapXcoIkqchJt74zW1NXbPG5MgBAdSLQA0AEaRgfq9euHKQOzepLkvIKi3TdG2mavy7T58oAANWFQA8AEaZZgzi9cdUgJSXESZJ25xbo8lHTtGpLls+VAQCqA4EeACJQ2yb19MZVg5VYN1aStDUrT5e++rM27szxuTIAQFUj0ANAhOrasqFGXTFA8bHer/pftmfrslenKXNPvs+VAQCqEoEeACJY6iFN9OIlqYqJMknSko27dNXr05WdV+hzZQCAqkKgB4AId3TXFnr83L7B9bTV2/W7t9KUX1jkY1UAgKpCoAeAWmBkv2T95dQewfUJSzbr9x/MUVGR87EqAEBVINADQC1x1eEddPPRhwbXx8zO0INfLJRzhHoACGcEegCoRe46oYsuGtwuuD56SrpemLDCx4oAAAeLQA8AtYiZ6cEzeumU3i2DbY99vURv/7zGx6oAAAeDQA8AtUx0lOmp81M07NCmwbY/jZmnL+et97EqAMCBItADQC0UFxOtf186QL2TEyVJRU667d3Zmrp8i8+VAQAqi0APALVUg7gYvXblQHVsVl+SlFdYpGvfmKG5v+zwtzAAQKUQ6AGgFmvaIE5vXD1ILRPiJUlZeYW6YvR0rdi82+fKAAAVRaAHgFquTeN6euPqQUqsGytJ2paVp8tenab1mdk+VwYAqAgCPQBAXZIaavSVA1U3NlqStG5Hti57dZp27MnzuTIAQHkI9AAASVL/do314iX9FRNlkqRlm3brytema09egc+VAQD2h0APAAg6qmsLPXFe3+D6rDU79Lv/zlReQZGPVQEA9odADwD4lTNSknX/aT2C6xOXbtbdH8xRUZHzsSoAQFkI9ACA37hiWAfdesyhwfVP52Tob58vlHOEegAINQR6AECp7ji+iy4e3C64/trUdD07brmPFQEASkOgBwCUysz0tzN6aUSfVsG2J79dqjd/Wu1jVQCAkgj0AIAyRUeZnjyvrw4/tFmw7S+fzNcXc9f7WBUAoDgCPQBgv+JiovXSpanq2yZRkuScdPt7s/TDsi0+VwYAkAj0AIAKaBAXo9FXDlLH5vUlSfmFTte9OUNz1u7wtzAAAIEeAFAxTerX0ZtXD1arxHhJ0p68Ql0xepqWb9rtc2UAULsR6AEAFZbcqK7evHqQGtWLlSRt35Ovy179WRk7sn2uDABqryoL9GbWxsxGmVmGmeWaWbqZPW1mjStxjnQzc2W8NuznuKFmNtbMtpnZHjOba2a3m1l01Xw6AMBeh7ZoqNFXDFS9Ot6v2IzMHF02apq2Z+X5XBkA1E4xVXESM+skaaqkFpI+kbRY0iBJt0k6ycyGOee2VvB0mZKeLqW91H/TNbMzJP1PUo6k9yRtk3SapKckDZN0boU/CACgQvq1a6yXLknV1a9PV36h0/JNu3XFa9P19jWDVT+uSv5qAQBUUFX91n1BXpi/1Tn37N5GM3tS0h2SHpJ0QwXPtcM5d39FdjSzBEkvSyqUdJRzbkag/c+Sxkk6x8wucM69W9EPAgComOFdmuvJ81J067uz5Jw0Z+0O3fDfNL16+UDViaFHJwDUlIP+jWtmHSWdICld0vMlNv9VUpakS82s/sG+VynOkdRc0rt7w7wkOedyJP0psPq7anhfAICk0/q21gOn9wyuT162RXd9MEdFRc7HqgCgdqmKWyjHBJbfOOeKim9wzu2SNEVSPUlDKni+ODO7xMzuM7PbzOzo/fSF3/veX5WybZKkPZKGmllcBd8bAFBJlx3WXrcd2zm4/tmcDN3/2QI5R6gHgJpQFV1uugaWS8vYvkzeHfwukr6vwPlaSnqzRNsqM7vSOTexou/tnCsws1WSekrqKGnR/t7UzNLK2NSt/JIBoHa7/bjO2r4nT2/8uFqS9MaPq9WobqzuOL6LzMzn6gAgslXFHfrEwDKzjO172xtV4FyjJR0rL9TXl9Rb0r8ltZf0pZn1rcb3BgAcIDPT/af11Kl9WgXbnhm3XLe8M0tZuQU+VgYAka8mhiLYe2um3H97dc49UKJpvqQbzGy3pLsk3S/pzGp679RST+Ddue9fifcEgFopKsr05HkpyszO1+RlWyRJn89dr8UbdumlS/rr0BYNfa4QACJTVdyh33sXPLGM7Qkl9jsQLwWWw314bwBABdWJidLLlw3QRYPbBduWb9qt05+bos/mZPhYGQBErqoI9EsCyy5lbN/7pFRZfewrYlNgWXKknDLf28xiJHWQVCBp5UG8NwCgEuJjo/WPM3vr8XP7Ki4wfOWevELd8s4sPfDZAuUVFJVzBgBAZVRFoB8fWJ5gZr86n5k1lDe5U7aknw7iPQ4LLEsG83GB5UmlHDNc3ug6U51zuQfx3gCAA3BOaht9fOMwHdK0XrBt9JR0XfjyT9qQmeNjZQAQWQ460DvnVkj6Rt6DqzeV2PyAvLvqbzjnsiTJzGLNrFtgdtkgM+tpZk1Knt/MDpH0XGD1vyU2fyhpi6QLzGxAsWPiJf09sPrigXwuAMDB69E6QZ/efLhO6JEUbEtbvV0jnpmsKcu3+FgZAESOqprK70Z53WKeMbMxZvZPMxsnb5bYpZL+WGzfZHlDSJYcwvJcSRlm9qWZvWBmj5jZh5IWSzpU0lhJjxc/wDm3U9K1kqIlTTCzV8zsUUmz5d3V/1DSe1X0GQEAByCxbqz+fWmq7j25m6ICQxVszcrTpa/+rOfHL2cSKgA4SFUS6AN36QdIek3SYHkj0nSS9Iykw5xzWytwmvGSPpbX7/0iSXdKOlLSD5Iul3Sqcy6vlPceE9hvkqSzJd0iKT9w/AWOmU0AwHdmpuuP7KS3rhmiZg28uf6KnPTY10t03ZszlLkn3+cKASB8GXl3/8wsrX///v3T0sqadwoAUBkbd+bo5rdnanr69mBbuyb19OIl/dWzdVmDlgFA5EtNTdXMmTNnljWcelmqqssNAAAVkpQQr7evHaJrj+gQbFuzbY/OemGq3p++1sfKACA8EegBADUuNjpKfxzRQy9c3F8N4rw5DnMLivR//5urP3w4Vzn5hT5XCADhg0APAPDNKb1b6ZObh6lLUoNg23sz1ursF6dqzdY9PlYGAOGDQA8A8FWn5g005qZhGpnSOti2IGOnTn12sr5ftNHHygAgPBDoAQC+q1cnRk+dn6IHR/ZSbLQ3tuXOnAJd/foMPfb1YhUytCUAlIlADwAICWamS4ccovevP0ytE+OD7c+PX6HLRv2sLbuZ9BsASkOgBwCElH7tGuvzW4/QEZ2bBdumLN+qU5/5QWmrt+/nSAConQj0AICQ06R+Hb125SDdemznYNuGnTk6/98/avSUVWIOFQDYh0APAAhJ0VGmO4/votFXDFRi3VhJUkGR0wOfLdQt78xSVm6BzxUCQGgg0AMAQtrR3Vro81sOV+/kfbPIfj53vc54foqWb9rlY2UAEBoI9ACAkNe2ST19cMNhumhwu2Db8k27dfpzU/T53AwfKwMA/xHoAQBhIT42Wv84s7ceP7ev4mK8v7725BXq5rdn6YHPFiivoMjnCgHAHwR6AEBYOSe1jcbcNEztm9YLto2ekq4LX/5JGzJzfKwMAPxBoAcAhJ3urRL06S2H64QeScG2tNXbNeKZyZq6fIuPlQFAzSPQAwDCUkJ8rP59aaruPbmborzJZbU1K0+XvPqznh+/XEXMLgugliDQAwDClpnp+iM76a1rhqhZgzhJUpGTHvt6ia57c4Yy9+T7XCEAVD8CPQAg7B3Wqam+uPVwDWzfONj23aJNOu25H7QgI9PHygCg+hHoAQARISkhXm9fO0TXHtEh2LZm2x6d9cJUvT9jrY+VAUD1ItADACJGbHSU/jiih164uL8axMVIknILivR/H87VHz6cq5z8Qp8rBICqR6AHAEScU3q30ic3D1OXpAbBtvdmrNXZL07Vmq17fKwMAKoegR4AEJE6NW+gMTcN08iU1sG2BRk7deqzk/X9oo0+VgYAVYtADwCIWPXqxOip81P04Mheio32xrbcmVOgq1+foce+XqxChrYEEAEI9ACAiGZmunTIIXr/+sPUOjE+2P78+BW6bNTP2rI718fqAODgEegBALVCv3aN9fmtR+iIzs2CbVOWb9Wpz/ygtNXbfawMAA4OgR4AUGs0qV9Hr105SLce2znYtmFnjs7/9496bcoqOUcXHADhh0APAKhVoqNMdx7fRaOvGKjEurGSpIIip/s/W6hb352trNwCnysEgMoh0AMAaqWju7XQ57ccrt7JicG2z+Zk6Iznp2j5pl0+VgYAlUOgBwDUWm2b1NMHNxymiwa3C7Yt37Rbpz83RZ/PzfCxMgCoOAI9AKBWi4+N1j/O7K3Hz+2ruBjvr8U9eYW6+e1ZeuCzBcorKPK5QgDYPwI9AACSzkltozE3DVP7pvWCbaOnpOvCl3/ShswcHysDgP0j0AMAENC9VYI+veVwndAjKdiWtnq7RjwzWVOXb/GxMgAoG4EeAIBiEuJj9e9LU3Xvyd0U5U0uq61Zebrk1Z/1woTlKmJ2WQAhhkAPAEAJZqbrj+ykt64ZomYN4iRJRU569Ksluu7NGcrck+9zhQCwD4EeAIAyHNapqcbeergGtm8cbPtu0Sad9twPWpCR6WNlALAPgR4AgP1okRCvt68domuP6BBsW7Ntj856Yaren7HWx8oAwEOgBwCgHLHRUfrjiB564eL+ahAXI0nKLSjS/304V/f8b65y8gt9rhBAbUagBwCggk7p3Uqf3DxMXZIaBNvenb5WZ784VWu27vGxMgC1GYEeAIBK6NS8gcbcNEwjU1oH2xZk7NSpz07WV/PXyzlGwQFQswj0AABUUr06MXrq/BQ9OLKXYqO9sS135hTohv/O1JWvTdeqLVk+VwigNiHQAwBwAMxMlw45RO9ff5haJ8YH2ycs2awTn5qkR75arKzcAh8rBFBbEOgBADgI/do11tjbjtDFg9vJAhNR5RUW6cUJK3TsExP12ZwMuuEAqFYEegAADlKjenX00Jm99dnNh6t/u0bB9g07c3TLO7N04cs/acmGXf4VCCCiEegBAKgivZIT9eENQ/XEuX2DM8xK0k8rt+mUZybrgc8WKDObWWYBVC0CPQAAVSgqynR2ahuNu/tIXX14B0VHef1wCoucRk9J17FPTNAHM9aqqIhuOACqBoEeAIBqkBAfqz+f2kNf3naEhnZqGmzfsjtPv/9wrs5+aarm/ZLpY4UAIgWBHgCAatQlqaHeumawnr+ov1oVGw1n1podOv35H3TvR/O0LSvPxwoBhDsCPQAA1czMNKJPK31/15G6+ehDVSfa++vXOemdaWt09OMT9OaP6SqkGw6AA0CgBwCghtSrE6O7T+yqb+4YrmO6tQi2Z2bn68+fLNBpz/6gGenbfKwQQDgi0AMAUMPaN6uvUVcM1KuXD1C7JvWC7QvX79Q5L/2oO9+brU07c3ysEEA4IdADAOCTY7sn6Zs7huuu47soPnbfX8kfzVqnY56YqJcnrVR+YZGPFQIIBwR6AAB8FB8brVuO7azv7zpKp/RuGWzfnVugh8Yu0sn/mqwflm3xsUIAoY5ADwBACEhuVFcvXJyqt64ZrENbNAi2L9+0W5e8+rNufCtN63Zk+1ghgFBFoAcAIIQMO7SZvrztCP1pRHc1iIsJto+dt0HHPjFBz36/TDn5hT5WCCDUEOgBAAgxsdFRuuaIjhp315E6q39ysD0nv0hPfLtUJzw1Sd8v2uhjhQBCCYEeAIAQ1SIhXk+el6IPbzhMPVolBNvXbNujq1+foStHT9OqLVk+VgggFBDoAQAIcQPaN9FntxyuB0f2UmLd2GD7+CWbdeJTk/TY14u1J6/AxwoB+IlADwBAGIiOMl065BCNv/soXTioncy89rzCIj0/foWOfWKiPp+bIeeYbRaobQj0AACEkSb16+ifZ/XWpzcdrn7tGgXb12fm6Oa3Z+mil3/W0o27/CsQQI0j0AMAEIZ6t0nU/24YqsfO6aNmDeoE239cuVUn/2uyHvx8oXbm5PtYIYCaQqAHACBMRUWZzh3QVuPuPkpXDeug6CivH05hkdOrP6zSMY9P1Idpv6ioiG44QCQj0AMAEOYS4mP1l9N6aOytR2hIxybB9i27c3X3B3N0zktTNX9dpo8VAqhOBHoAACJE15YN9c61Q/Tshf3UMiE+2D5zzQ6d9twPuu/jedqeledjhQCqA4EeAIAIYmY6rW9rfX/XkbrxqE6Kjfa64Tgnvf3zGh39xAT996fVKqQbDhAxCPQAAESg+nEx+r+Tuunr24frqK7Ng+079uTrT2Pm6/TnflDa6m0+VgigqhDoAQCIYB2bN9DoKwbqlcsGqG2TusH2BRk7dfaLP+rO92dr064cHysEcLAI9AAARDgz03E9kvTtHUfqzuO7KC5m31//H81cp2Men6hXJq9UfmGRj1UCOFAEegAAaon42GjdemxnfXfnkTqpZ8tg++7cAv39i0U65V+TNWX5Fh8rBHAgCPQAANQybZvU00uXpurNqwepU/P6wfZlm3br4ld+1k1vzdS6Hdk+VgigMgj0AADUUkd0bq4vbxuu+07ppvp1ooPtX8xbr+OemKjnxi1TTn6hjxUCqAgCPQAAtVidmChdN7yTxt19lM7slxxsz84v1OPfLNWJT0/SuMUbfawQQHkI9AAAQEkJ8Xrq/BS9f/1h6t4qIdi+euseXfXaDF392nSt3prlY4UAykKgBwAAQYM6NNFnNw/Tg2f0VEJ8TLD9+8WbdPyTk/T410u0J6/AxwoBlESgBwAAvxITHaVLD2uv8XcfpQsHtZV5k80qr7BIz41fruOemKix89bLOWabBUJBlQV6M2tjZqPMLMPMcs0s3cyeNrPGB3HOS83MBV7XlLK9fbHtpb3ePbhPBQBA7dW0QZz+eVYfjblxmPq2bRRsz8jM0Y1vzdTFr/ys+esy/SsQgCQppvxdymdmnSRNldRC0ieSFksaJOk2SSeZ2TDn3NZKnrOtpGcl7ZbUoJzd50gaU0r7/Mq8JwAA+K2+bRvp498N1Yczf9EjXy7W1qw8SdLUFVt16rM/aNihTXXd8E4a3rmZbO/tfAA1pkoCvaQX5IX5W51zz+5tNLMnJd0h6SFJN1T0ZOb9NhgtaaukjyTdXc4hs51z91eyZgAAUEFRUabzBrTViT1b6qlvl+rNn1arsMjrcjNl+VZNWb5V3Vsl6LrhHXRqn9aKjaZXL1BTDvr/NjPrKOkESemSni+x+a+SsiRdamb1VXG3SjpG0pWB4wEAQAhIrBur+0/vqbG3HqHT+rZWVLEb8ovW79Qd783RkY+O1yuTV2p3Lg/PAjWhKr4+HxNYfuOcKyq+wTm3S9IUSfUkDanIycysu6SHJf3LOTepgjW0NrPrzey+wLJPBY8DAAAHoGvLhnr2wn6a+PujdcXQ9qobu29iqozMHP39i0Ua+s/v9ehXi7VpV46PlQKRryq63HQNLJeWsX2ZvDv4XSR9v78TmVmMpDclrZF0XyVqOD7wKn6uCZIud86tqcgJzCytjE3dKlEHAAC1Stsm9XT/6T1127Gd9eZPq/X61PRgH/udOQV6YcIKvTJ5lc7qn6xrh3dUp+blPRYHoLKq4g59YmBZ1mPue9sbVeBcf5HUT9IVzrnsCuy/R9KDklIlNQ68jpQ0XtJRkr6vZFcfAABwABrXr6Nbj+2sKfcco4fO7KX2TesFt+UVFund6Wt13JMTde0bMzQjfZuPlQKRp6oeit2fvb3r9jtYrZkNkndX/gnn3I8VObFzbpO8LwHFTTKzEyT9IGmwpGsk/asC50oto640Sf0rUg8AALVdfGy0Lh58iC4Y2E7fLtyglyau1Oy1OyRJzknfLtyobxduVOohjXXd8I46vnuSoqIYGQc4GFVxh37vHfjEMrYnlNjvN4p1tVkq6c8HW5BzrkDSK4HV4Qd7PgAAUDnRUaaTerXSxzcO1fvXH6Zju7X41fa01dt1/ZtpOu6piXpn2hrl5Bf6VCkQ/qoi0C8JLLuUsb1zYFlWH3vJG2e+i6TuknKKTw4lb6QcSXo50PZ0BevaHFjS5QYAAJ+YmQZ1aKJXrxiob+8YrnNT2yg2et8d+ZWbs3TvR/N0+CPj9fz45crck+9jtUB4qoouN+MDyxPMLKr4SDdm1lDSMEnZkn7azzlyJb1axrb+8vrV/yDvy0OFuuNo36g6Kyu4PwAAqEadkxrqsXP76u4Tu2r0lHS99dNq7QoMbblld64e+3qJnh+/XBcMbKerDm+vNo3rlXNGAFIVBHrn3Aoz+0beSDY3yZvdda8H5N0h/7dzLkuSzCxWUidJ+c65FYFzZMvr6/4bZna/vED/unPulRLbBkua5ZzLK9F+jLwJrSTpvwf1AQEAQJVKSojXPSd3001Hd9K709Zq1JRVWp/pDW25J69Qo6as0us/puvUPq103fCO6tm6rF69AKSqeyj2RklTJT1jZsdKWiTvgdSj5XW1+WOxfZMD21dLan+Q7/uIpJ6BISp/CbT10b6x8f/snJt6kO8BAACqQcP4WF07vKMuH9pen83J0H8mrdSSjbskSYVFTp/MztAnszN0ROdmun54Jw07tKm8yeQBFFclgT5wl36ApL9JOknSKZLWS3pG0gPOueoan+pNSWdKGijpZEmxkjZKel/Sc865ydX0vgAAoIrUiYnS2altdFb/ZE1Yuln/mbhSP67cGtw+edkWTV62RT1aJej6IztqRO9WiomuiscAgchgzu13NMlaz8zS+vfv3z8trax5pwAAQFWb+8sO/XvSSn05b72KSkSV5EZ1dc0RHXTegLaqH1cTI3ADNSM1NVUzZ86cWdZw6mXh6y0AAAg5fdo00vMX9deEu4/WZYcdovjYfZFl3Y5sPfDZQg19eJwe/3qJNu/K9bFSwH8EegAAELLaNa2nv53RS1PvOVa3H9dZTerXCW7LzM7Xc+OXa9gj43TvR/O0cvNuHysF/EOgBwAAIa9J/Tq6/bgumvKHY/TgGT3Vrsm+IS3zCor0zrQ1OvbJibr+zRmauWa7j5UCNY+OZwAAIGzUrROtSw9rr4sGH6Kv5m/Qfyat0JxfvMnonZO+XrBRXy/YqIHtG+v64Z10TLcWiopiZBxENgI9AAAIO9FRphF9WumU3i3108pt+s+kFRq/ZHNw+/T07ZqePkOdmtfX9cM76Yx+rRUXE+1jxUD1ocsNAAAIW2amwzo11egrB+nr24fr7P5tFBu97478is1Z+r//zdURj4zXCxOWKzM738dqgepBoAcAABGha8uGeuK8vpr0f0fruuEd1aDYkJabduXq0a+WaOg/v9ffP1+ojB3ZPlYKVC0CPQAAiCitEuvqvlO6a+q9x+iek7spKSEuuC0rr1Cv/LBKwx8drzvfm61F63f6WClQNQj0AAAgIiXEx+qGIztp8v8do8fO6aPOLRoEtxUUOX00a51O/tdkXT5qmqYu3yIm20S44qFYAAAQ0erEROncAW11dv82mrB0k/49caV+XrUtuH3i0s2auHSzeicn6rrhHXVyr5aKieaeJ8IHgR4AANQKUVGmY7ol6ZhuSZq9dof+M2mFvpy/QXtvzM9bl6lb3pmltk3q6prDO+rcAW1Urw5RCaGPr58AAKDWSWnbSC9cnKrxdx2lS4a0U1zMvki0dlu2/vrpAg19eJye/Haptu7O9bFSoHwEegAAUGu1b1Zffx/ZW1PuOUa3HttZjerFBrft2JOvZ75fpqEPj9OfxsxT+pYsHysFykagBwAAtV6zBnG68/gumnrPMXrg9J5q26RucFtuQZH++9MaHf3EBP3uv2matHSzCgqLfKwW+DU6hgEAAATUqxOjy4e218WD2+nL+Rv0n0krNW9dpiTJOenL+Rv05fwNat4wTqf1aa0z+yWrV3KCzKycMwPVh0APAABQQkx0lE7r21qn9mmlH1ds1b8nrdTEpZuD2zfvytWoKas0asoqdWpeXyNTkjWyX7LaNqnnY9WorQj0AAAAZTAzDT20mYYe2kyLN+zUBzN+0SezM7Sl2IOyKzZn6Ylvl+qJb5cq9ZDGGtkvWaf2bqXG9ev4WDlqE2MShf0zs7T+/fv3T0tL87sUAAAQAgoKizR1xVaNmbVOXy3YoD15hb/ZJybKdFTX5hrZL1nHdU9SfGy0D5Ui3KSmpmrmzJkznXOplTmOO/QAAACVEBMdpeFdmmt4l+b6e16Bvl24UZ/MztDEpZtVWOTdKC0ocvpu0SZ9t2iTGsTF6KReLXVmv2QN6dhU0VH0t0fVItADAAAcoHp1YnRGSrLOSEnWlt25+mLueo2ZvU6z1uwI7rM7t0Afpv2iD9N+UVJCnE7v21oj+yWrRysepkXVoMtNOehyAwAAKit9S5bGzF6nT2ZnaFUZ49d3SWoQ+DLQWm0a8zAtDrzLDYG+HAR6AABwoJxzmvNLpsbMWqfP5mRoa1ZeqfsN6tBEI1OSNaJ3KyUWm9wKtQuBvpoQ6AEAQFXILyzSD8u3aMysdfpmwUZl5//2Ydo60VE6ultzjUxJ1tHdWvAwbS3DQ7EAAAAhLDY6Skd3baGju7ZQVm6Bvlm4QWNmZWjyss0KPEurvMIifb1go75esFEN42M0oncrnZGSrMEdmiiKh2lRBgI9AABADasfF6Mz+7XRmf3aaNOuHH0+Z70+mb1Oc37JDO6zK6dA705fq3enr1XrxHidnpKskf1aq1vLBB8rRyiiy0056HIDAABqyorNu/XJrHUaMztDa7btKXWfbi0b6sx+yTo9pbVaJdat4QpRnehDX00I9AAAoKY55zRzzQ6NmbVOn8/N0PY9+b/Zx0wa0qGpzuyXrJN6t1RCPA/ThjsCfTUh0AMAAD/lFxZp0tLN+njWOn27cKNyC4p+s0+dmCgd172FRqYk66iuLVQnJsqHSnGweCgWAAAgAsVGR+nY7kk6tnuSduXk6+sFGzVm1jpNXbFl38O0BUUaO2+Dxs7boMS6sRrRp5VGpiRrwCGNeZi2FiDQAwAAhImG8bE6J7WNzklto407c/TZnAx9PGudFmTsDO6TmZ2vt39eo7d/XqPkRnV1RkprndkvWZ2TGvpYOaoTXW7KQZcbAAAQ6pZt3KUxs9dpzKwMrduRXeo+PVsnaGSK9zBtUkJ8DVeIiqAPfTUh0AMAgHBRVOSUtma7Pp61Tl/MXa/M7NIfph3WqZnOSGmtk3q1VEMepg0ZBPpqQqAHAADhKK+gSBOWbNInszP07aKNyivlYdq4mCgd3yNJI1OSNbxLcx6m9RkPxQIAACCoTkyUTujZUif0bKmdOfn6at4GjZm9Tj+u3Kq993NzC4r0+dz1+nzuejWuF6tT+7TWyH6t1b9dY5nxMG24INADAABEuIT4WJ03sK3OG9hW6zOz9ensDI2ZnaFF6/c9TLt9T77e/Gm13vxptdo1qaeRKa11Rr9kdWrewMfKURF0uSkHXW4AAECkWrxhp8bMytCns9cpIzOn1H16Jyfq1D6tdErvVmrbpF4NV1i70Ie+mhDoAQBApCsqcpqWvk1jZq3TF/PWa1dOQan79U5O1Cm9W2lE71Zq15RwX9UI9NWEQA8AAGqTnPxCTViySR/PWqfxizcrr/C3D9NK3jCYe8N9+2b1a7jKyMRDsQAAADho8bHROqlXK53Uq5Uy9+Tr20UbNXbeek1etln5hftuBC/I2KkFGTv12NdL1L1Vgkb0bqlTerdSR/rc1zgCPQAAAEqVWG/fzLSZ2fn6buFGfTl/vSYt3fKrO/eL1u/UovU79fg3S9WtZUOd0tvrc39oC8J9TSDQAwAAoFyJdWN1dmobnZ3aRjtz8vX9oo0aO2+DJi7d/Ksx7hdv2KXFG3bpyW+XqktSg2C3nM5JDX2sPrIR6AEAAFApCfGxOrNfG53Zr4125eRr3OJNGjtvvSYs2azcYuF+6cbdWrpxmZ7+bpk6t2igkwPhvktSA8a5r0IEegAAABywhvGxOiMlWWekJGt3boEX7ueu1/glm34V7pdt2q1l3y/TM98vU6fm9TWidyud3LuVurVsSLg/SAR6AAAAVIkGcTE6vW9rnd63tbJyCzR+iXfnftziTcrJ3xfuV2zO0jPjluuZccvVsVl9ndK7lU7u3VI9WiUQ7g8AgR4AAABVrn5cjE7t01qn9mmtPXkFmrBks76Yt17jFm1Sdn5hcL+VW7L03Pjlem78crVvWi/4QG3P1oT7iiLQAwAAoFrVqxMTDOrZeYWauHSTvpi3Qd8v2qg9efvCffrWPXphwgq9MGGFDmlaTyf38vrc90om3O8PgR4AAAA1pm6dfePc5+QXauLSzRo7b72+W7hRWcXC/eqte/TSxBV6aeIKtW1SV6f08r4Q9GmTSLgvgUAPAAAAX8THRuvEni11Ys+Wyskv1KSlm/Xl/A36buFG7cotCO63dlu2/j1ppf49aaWSG9XVKYFJrFLaNiLci0APAACAEBAfG60TerbUCT1bKregUJOXbtHY+ev17cKN2pWzL9yv25Gtlyev0suTV6l1YrxODnTl6de2kaKiame4J9ADAAAgpMTFROu4Hkk6rkeScgsKNWX5Fo2dt0HfLNigncXCfUZmjl79YZVe/WGVWiXG66ReLTWidyv1b9e4VoV7Aj0AAABCVlxMtI7plqRjuiUp78zemrJii8bOXa9vFm5UZnZ+cL/1mTkaPSVdo6ekKykhTicH+twPOCTywz2BHgAAAGGhTkyUju7aQkd3baF/FBZp6oqtGjt3vb5euEE79uwL9xt35uq1qel6bWq6WjSM00m9vD73A9s3UXQEhntzzvldQ0gzs7T+/fv3T0tL87sUAAAAlCK/sEg/rdyqsfPW6+sFG7UtK6/U/Zo3jNNJPVvq5N4tNbhD05AL96mpqZo5c+ZM51xqZY4j0JeDQA8AABA+CgqL9POqbfpi3np9PX+DtpYR7ps1qKMTe3p37gd3aKKY6KgarvS3CPTVhEAPAAAQngoKizQtfZvGzluvr+Zv1JbduaXu17R+HZ3Q03ugdkhH/8I9gb6aEOgBAADCX2GR0/RAuP9y/gZt3lV6uG9cL1Yn9mypU/u01uGdm9VojQca6HkoFgAAABEvOso0pGNTDenYVH89rafSVm8PhPv12rhzX7jfvidf705fq1Vbsmo80B8oAj0AAABqlego06AOTTSoQxP95dQeSlsTCPfzNmjDzhxJ0im9W/lcZcUR6AEAAFBrRUWZBrZvooHtm+jPI3po1trtGjtvg07q1dLv0iqMQA8AAADIC/ephzRR6iFN/C6lUvwfnwcAAADAASPQAwAAAGGMQA8AAACEMQI9AAAAEMYI9AAAAEAYI9ADAAAAYYxADwAAAIQxAj0AAAAQxgj0AAAAQBgj0AMAAABhjEAPAAAAhDECPQAAABDGCPQAAABAGCPQAwAAAGGMQA8AAACEMQI9AAAAEMbMOed3DSHNzLbWrVu3Sffu3f0uBQAAABFs0aJFys7O3uaca1qZ4wj05TCzVZISJKXX8Ft3CywX1/D7omZxnWsHrnPtwHWOfFzj2sHP69xe0k7nXIfKHESgD1FmliZJzrlUv2tB9eE61w5c59qB6xz5uMa1QzheZ/rQAwAAAGGMQA8AAACEMQI9AAAAEMYI9AAAAEAYI9ADAAAAYYxRbgAAAIAwxh16AAAAIIwR6AEAAIAwRqAHAAAAwhiBHgAAAAhjBHoAAAAgjBHoAQAAgDBGoAcAAADCGIE+xJhZGzMbZWYZZpZrZulm9rSZNfa7ttrMzM4xs2fNbLKZ7TQzZ2b/LeeYoWY21sy2mdkeM5trZrebWfR+jrnczKaZ2W4zyzSzCWZ26n72r2tmD5jZEjPLMbNNZva+mXU/mM9bG5lZUzO7xsw+NrPlZpYduAY/mNnVZlbq70uuc/gxs0fM7HszWxu4ztvMbJaZ/dXMmpZxDNc5zJnZpYHf3c7MriljH65zGAlkJFfGa0MZx0TmNXbO8QqRl6ROkjZKcpLGSHpY0rjA+mJJTf2usba+JM0OXIddkhYF/vu/+9n/DEkFknZLelXSY4Fr6CR9UMYxjwe2r5X0lKTnJW0NtN1cyv5xkn4IbJ8u6RFJb0vKl5QlabDfP7dwekm6IfCzzJD0lqR/SholaUeg/UMFJuPjOof3S1KepJ8C1/dhSc8GfrZO0jpJbbnOkfWS1Dbw//KuwM/4mlL24TqH2UtSeuC63l/K6+7adI19vxi8fvWH4OvAH4BbSrQ/GWh/ye8aa+tL0tGSOksySUdpP4FeUoKkTZJyJQ0o1h4vaWrg2AtKHDM00L5cUuNi7e0DvzhyJLUvccy9e38JSYoq1n5GoH1B8XZe5V7jYySdVvJnJqmlpDWBn+nZXOfwf0mKL6P9ocDP9AWuc+S8Ar+3v5O0Ql6A+02g5zqH50teoE+v4L4RfY19vxi8ghe6Y+BCryp5oSU1lPdtMktSfb9rre0vlR/orwpsf72UbccEtk0s0f5GoP3KUo75W2DbA8XaTNLqQHuHUo6ZFNh2tN8/r0h4Sbov8PN8luscuS9JfQM/z2+5zpHzknSbpCJJw+XduS0t0HOdw/ClygX6iL7G9KEPHccElt8454qKb3DO7ZI0RVI9SUNqujBU2t5r+VUp2yZJ2iNpqJnFVfCYL0vsI3nds9pJWuqcW1XBY3Dg8gPLgmJtXOfIc1pgObdYG9c5jAX6LD8s6V/OuUn72ZXrHL7izOwSM7vPzG4zs6PL6A8f0deYQB86ugaWS8vYviyw7FIDteDglHktnXMF8v4VJkbev8rIzOpLSpa02zm3vpTzlXbt+fNSQ8wsRtJlgdXiv9S5zmHOzO42s/vN7CkzmyzpQXlh/uFiu3Gdw1Tg/9035XWZu6+c3bnO4aulvOv8kKSn5T17uMzMjiyxX0Rf45iqPiEOWGJgmVnG9r3tjaq/FBykyl7LA7n2/HmpOQ9L6iVprHPu62LtXOfwd7ekpGLrX0m6wjm3uVgb1zl8/UVSP0mHO+eyy9mX6xyeRkuaLK9f+i55YfxmSddJ+tLMDnPOzQnsG9HXmDv04cMCS+drFagKB3otK7M/f16qgJndKukueaMgXFrZwwNLrnOIcs61dM6ZvDt8Z8kLA7PMrH8lTsN1DkFmNkjeXfknnHM/VsUpA0uucwhxzj3gnBvnnNvonNvjnJvvnLtB3mAideU9M1FRYX2NCfShY++3tsQytieU2A+hq7LXsrz9S/vGz5+XamZmN0n6l6SF8h5g2lZiF65zhAiEgY8lnSCpqbwH4fbiOoeZYl1tlkr6cwUP4zpHlpcCy+HF2iL6GhPoQ8eSwLKsflWdA8uy+mUhdJR5LQN/0XSQ93DlSklyzmXJG/u6gZm1KuV8pV17/rxUIzO7XdJzkubLC/OlTVDCdY4wzrnV8r7A9TSzZoFmrnP4aSDvZ9ldUk7xyYYk/TWwz8uBtqcD61znyLIpsKxfrC2irzGBPnSMDyxPsBIzUppZQ0nDJGXLmwwFoW1cYHlSKduGyxutaKpzLreCx5xcYh/JG095jaQuZtahgsegAszsD/ImD5ktL8xvKmNXrnNkah1YFgaWXOfwkytv0qDSXrMC+/wQWN/bHYfrHFkOCyxXFmuL7Gvs9xiivH41PikTS4XBSxWbWGqzInTyikh+yfvneSdphqQm5ezLdQ7Dl6RuklqW0h6lfRNLTeE6R+ZLZY9Dz3UOs5eknqX9npZ0iLzRZJyk+2rLNbbAmyAEmFkneX+oWkj6RNIiSYPlzVK6VNJQ59xW/yqsvcxspKSRgdWWkk6U981/cqBti3Pu7hL7fyjvf/Z3JW2TdLq8Ia0+lHSeK/E/n5k9IelOSb8E9qkj6Xx5fXpvcc49V2L/OHnf8ofKC6Dfyxv/9lx5U9sf45z7+WA/e21hZpdLek3endlnVXofx3Tn3GvFjhkprnNYCXSnekzeuNMr5P2lnCTpSHkPxW6QdKxzbmGxY0aK6xwRzOx+ed1urnXOvVJi20hxncNG4FreI6+Hwyp5o9x0kjRCXkgfK+lM51xesWNGKlKvsd/fsHj95ptlW3nDMK0PXPjV8h7M2+/dQl7Vfl3ul/fNuqxXeinHDJP3C2W7vO5S8yTdISl6P+9zuaTp8mYF3iVpoqRT97N/XUkPyLsbkSvv7sMHknr4/TMLt1cFrrGTNIHrHN4veUOQPi+vS9UWeX1mMwPX4/6yftdynSPjpTLu0HOdw+8l70v4O/JGIdshbwLAzZK+lTd3iNWma8wdegAAACCM8VAsAAAAEMYI9AAAAEAYI9ADAAAAYYxADwAAAIQxAj0AAAAQxgj0AAAAQBgj0AMAAABhjEAPAAAAhDECPQAAABDGCPQAAABAGCPQAwAAAGGMQA8AEcbM0s0svdj6FWbmzOwK/6oCAFQXAj0AYL/M7P7AF4Kj/K4FAPBbMX4XAACodh9L+knSer8LAQBUPQI9AEQ451ympEy/6wAAVA+63ABAGDLPzWa2wMxyzGydmT1nZoml7FtqH3oz62Nm7wT63Oea2WYzm2lmT5tZbGCfdEl/DRwyPnAeZ2au2Hm6mNnDZjYjcI5cM1ttZv8xszal1HNU4Bz3m1mKmX1hZjvMbI+ZTTSzoWV85mgzu8HMpphZppllm9lyM3vFzDqX2DfGzG40s5/MbGfg3LMCPzP+7gMQUbhDDwDh6WlJt8rrRvMfSfmSzpA0WFIdSXn7O9jM+kj6WZKT9KmkVZISJB0q6UZJfwqc82lJIyUdKel1SemlnO4sSTdIGi9pauC9e0q6RtJpZjbAObeulOMGSPo/ST9KekVSO0lnS/rezFKcc0uK1VtH0heSjpO0VtLbknZKai/pTEk/SFoW2DdW0meSTpS0JLBvjqSjJT0b+Bldur+fDwCEEwI9AISZwB3sWyWtkDTIObct0P5HeaG6laTV5ZzmcknxkkY65z4pcf7GkvZIknPuaTNrJC/Qv+acm1DKud6U9JRzLrfEeU6Q9KW8Lwe/K+W4EZKudM69VuyY6yW9JOk2eV8s9rpfXpj/TNK5xd/LzOLkfRnZ64/ywvxzkm53zhUG9ouW9+XnKjP7sOTnBoBwxT87AkD4uTKwfGhvmJck51yOpHsrea7skg3Oue3OuaKKnsA5t65kmA+0fyNpgbxwXZopxcN8wChJBZIG7W0IBPEbA7XeUPK9nHO5zrnNgX2jJN0saYOkO/aG+cB+hZLukvevEhdX9PMBQKjjDj0AhJ/+geXEUrZNlheIy/OevLvgY8zsQ0nfyQvYKypbjJmZvIB8haS+khpLii62S1ndf2aUbHDO5ZvZxsA59uomKVHSz865jHLK6SKpqbzuN3/ySvuNbEndyzkPAIQNAj0AhJ+9D75uLLnBOVdoZlvLO4FzbpqZHSGve8o5CvQpN7Mlkh5wzr1TiXqelHS7vP78X0tap313/q+QdEgZx+0oo71Av/5C0CiwLK0ffklNA8vO2vcwb2kaVOBcABAWCPQAEH72DkGZJGll8Q2B7ilNVYHw65z7UdKpgT7oqZJOknSLpLfNbLNz7rvyzmFmLeT1558vaahzbleJ7ReW/3HKtSOwTK7Avnt/Nh87586qgvcGgJBHH3oACD8zA8sjS9l2hCp5sybQB32qc+4v8sK55I2Ys9fefujR+q2O8v4u+aaUMN8msP1gLZYX6vuYWesK7jtk79CbABDpCPQAEH5eCyz/aGZN9jaaWbykf1bkBGZ2RGlj1su76y8FRrkJ2NuFp10p+6cHlocH/nVg7/kbSHpZVfAvwYGHWV+QVFfSS4F/UQgyszpm1jywb4G8oSlbSXrGzOqWPJ+ZtTKzHgdbFwCECrrcAECYcc5NMbNn5XWPmR94qHXvOPTb5fVlL89dkk4wswnyuu3sljd2/MmBc/yn2L7jJRVJ+qeZ9Qpsl3Pu7865DWb2rqQLJM02s2/k9fE/Xt7Y77MlpRzM5w14QN748adJWmpmn0vaJamtpBMk/V77vug8KO/h3BvkjYM/Tl4XpBby+tYPk/fswMIqqAsAfEegB4DwdJukpZJuknS9vLvoH0u6T9KcChz/grxgPlhewI2R9Eug/QnnXHAce+fcIjO7XNLd8oaPjA9s+ntgebW8LwXnB+rZLG+yqr9I+t8Bf8JinHN5ZnaSvJB+mbxx9E1ShrzP/UOxffPNbKSkS+Q9lHuqvIdgN8ubQOvPkt6qiroAIBSYc678vQAAAACEJPrQAwAAAGGMQA8AAACEMQI9AAAAEMYI9AAAAEAYI9ADAAAAYYxADwAAAIQxAj0AAAAQxgj0AAAAQBgj0AMAAABhjEAPAAAAhDECPQAAABDGCPQAAABAGCPQAwAAAGGMQA8AAACEMQI9AAAAEMYI9AAAAEAYI9ADAAAAYez/AaQzj/nEI0cbAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "image/png": { + "height": 261, + "width": 378 + }, + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "sac_gini_profile.plot()" + ] + }, + { + "cell_type": "markdown", + "id": "c9f98da3-4c3f-4fca-a064-a9c65cbd2752", + "metadata": {}, + "source": [ + "A good way to compare multiscalar profiles is to plot them in the same figure. For example to compare profiles for gini and dissimilarity indices:" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "id": "62a3b6a3-a822-4f0d-b18c-0c6617b5fee9", + "metadata": {}, + "outputs": [], + "source": [ + "sac_dissim_profile = compute_multiscalar_profile(sacramento, segregation_index=Dissim,\n", + " group_pop_var=\"BLACK\", total_pop_var=\"TOT_POP\", \n", + " distances= range(500,5500,500))" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "id": "5b6c017d-88bc-452e-b903-b8f19c2a3737", + "metadata": {}, + "outputs": [], + "source": [ + "from libpysal.weights import DistanceBand" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "id": "c3c25704-0e1b-4173-b174-5ae72c839c99", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 11, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA9QAAAO+CAYAAADlu124AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Z1A+gAAAACXBIWXMAABYlAAAWJQFJUiTwAAC9x0lEQVR4nOzddZxVZeLH8c8zRXejlKiIYIECgoGFujYgIoLdvcauu7rW6qo/uztBUQzAbrAQAxQEURRFLLpjgJk5vz/OwAUkBpiZM/F5v173ded5znPP/bIvFvlyKkRRhCRJkiRJ2jhpSQeQJEmSJKk0slBLkiRJkrQJLNSSJEmSJG0CC7UkSZIkSZvAQi1JkiRJ0iawUEuSJEmStAks1JIkSZIkbQILtSRJkiRJm8BCLUmSJEnSJrBQS5IkSZK0CSzUkiRJkiRtAgu1JEmSJEmbICPpACVdCOFnoDowOeEokiRJkqTC1xyYH0VRi439oIV6w6pXqlSpduvWrWsnHUSSJEmSVLgmTJjAkiVLNumzhVaoQwhbAtcCBwF1gD+BIcA1URTN2ch97QlcCHQGagOzgW+AO6Ioen2Vdc2Bn9ezq+eiKOq9Md+9FpNbt25de9SoUZu5G0mSJElSSdO+fXtGjx49eVM+WyiFOoTQEhgB1AeGAt8BHYALgINCCF2iKJpVwH1dAfwXmAm8SlzM6wK7AF2B19fysTHE5X1N4zbm1yFJkiRJUkEV1hHq+4jL9PlRFN29YjKEcBvwd+B64MwN7SSEcDRxmX4X6B5F0YI1tmeu46NfR1F09aZFlyRJkiRp4232Xb5DCFsB3Yhv2nXvGpuvAhYB/UIIVTawnzTgJmAx0GfNMg0QRdHyzc0rSZIkSVJhKIwj1Pvmv78dRVHeqhuiKFoQQviEuHB3At5bz346Ay2AF4A5IYRDgLZANvB5FEWfruezjUMIZxBfuz0L+DSKorGb9KuRJEmSJKkACqNQt8p/n7iO7T8QF+ptWX+h3i3/fRowGthh1Y0hhA+BnlEUzVjLZw/If626fjhwQhRFU9YXfpX167rr2HYF+bwkSZIkqXzZ7FO+gRr57/PWsX3FfM0N7Kd+/vuZQCVgf6Aa8VHqt4C9gOfX+Mxi4muu2wO18l97A8OIb2D23oZONZckSZIkaVMUx3OoQ/57tIF16aus7xlF0Zj88fgQwlHER8D3DiHsvuL07yiKpgNXrrGfD0MI3YCPgY7AqcCdGwoZRVH7tYaPj1y329DnJUmSJEnlS2EU6hVHoGusY3v1Ndaty4pnVf+0SpkGIIqiJSGEt4BTiB/Htb7rqYmiKCeE8Ahxod6LAhRqSZIkSaVDXl4es2fPZsGCBSxdupQo2tCxO5UXIQQqVKhAtWrVqF27NmlphXFS9roVRqH+Pv9923Vs3yb/fV3XWK+5n7nr2L6icFcqWCxWXGvtKd+SJElSGZGXl8evv/7K4sWLk46iEiiKIrKzs8nOzmbRokU0adKkSEt1YRTqYfnv3UIIaave6TuEUA3oAiwBRm5gPx8COcA2IYSsKIqWrbG9bf775ALm6pT//lMB10uSJEkq4WbPns3ixYvJyMigYcOGVKlSpciPQqr0yMvLY9GiRUydOpXFixcze/Zs6tatW2Tft9m/86IomgS8DTQHzllj8zXER4ifiqJoEUAIITOEsF0IoeUa+5kJPEd86vhq10WHEA4ADiQ+bfzNVeY7hhCy1swUQtgX+Hv+cMAm/+IkSZIklSgLFiwAoGHDhlSrVs0yrdWkpaVRrVo1GjZsCKR+vxSVwrop2dnACOCuEMJ+wATi65f3IT7V+/JV1m6Rv/0X4hK+qovyP3d5CGEv4HOgGXAUkAucFkXR3FXW3wS0yX9E1m/5czuSejb2f6IoGrH5vzxJkiRJJcHSpUsBqFLFKzu1bit+f6z4/VJUCqVQR1E0KYSwK3AtcBDwN+BP4C7gmiiKZhdwP9NDCB2BK4hLdCdgAfAacEMURWueNt4/f91uwMFAJvFzrAcB90RR9NHm/tokSZIklRwrbkDmkWmtTwjxw6aK+oZ1hfbYrCiKfgVOKsC6yaQepbW27bOJj1RfVIB9PQo8WvCUkiRJkqSybkWhLmr+s44kSZIkSZvAQi1JkiRJ0iawUEuSJEmStAks1JIkSZJUznTt2rVYrjO++uqrCSEwfPjwIv+uJBTaTckkSZIkScVnzUKclZVF9erVadKkCe3ataNHjx5069aN9PT0hBKWfRZqSZIkSSrFrrrqKgByc3OZO3cu48ePp3///jz66KPsuuuuPP3002y77barfeapp55i8eLFRZ7t3HPPpXfv3jRt2rTIvysJFmpJkiRJKsWuvvrqv8xNmzaN8847j+eff57999+fL7/8kvr166/cXlwFt27dutStW7dYvisJXkMtSZIkSWVMgwYNePbZZ+natSu//vor//vf/1bbvrZrqKMo4sknn6Rz587Uq1ePihUr0qRJEw488ECee+651daOHTuWY489lubNm1OhQgXq1atHu3btuPDCC1m+fPnKdeu6hjqEQNeuXZk2bRonn3wyDRo0oEqVKnTu3JmPPvoIgEWLFnHppZfSrFkzKlSoQJs2bXj++ecL8X+lzWehliRJkqQyKC0tjSuuuAKAgQMHEkXRetdffvnlnHjiiUydOpVevXpx0UUXsf/++/P777+vVmTHjh1Lx44dGTp0KJ06deKiiy6iV69e1KtXj/vuu4+lS5cWKN/cuXPp0qULX331Fcceeyw9evTgyy+/5MADD2TMmDHst99+DB06lEMPPZQTTjiBKVOmcMwxxzBy5MhN/x+lkHnKtyRJkqQyo/llryUdocAm33hIkX/HHnvsQUZGBtOnT2fy5Mm0aNFinWsffPBBtthiC8aNG0flypVX2zZz5syVPz/55JNkZ2czZMgQjjjiiNXWzZkz5y+fXZcxY8ZwxhlncN9995GWFh/rPeCAAzj++OPZZ5996NKlC8OHD6dixYoA9OvXj7322oubbrqJwYMHF+g7ippHqCVJkiSpjKpQoQJ16tQBYMaMGRtcn5mZuda7gq/tOuhKlSr9Za5WrVory/GGVK5cmZtvvnm19X369CEjI4M5c+Zw5513rizTAHvuuSfNmzfn66+/LtD+i4OFWpIkSZLKsBWnem/oudPHHXcckydPpk2bNvzrX//izTffZN68eX9Zd8wxx5Cens6RRx7J8ccfz1NPPcWkSZM2Ote2225LtWrVVptLT0+nQYMG1KxZk6222uovn9liiy347bffNvq7ioqnfEuSJEkqM4rjNOrSJDs7m9mzZwNQr1699a69/fbbadmyJY899hg33ngjN954IxkZGfztb3/j1ltvZeuttwagQ4cOfPTRR1x//fW88MIL9O/fH4BWrVpx1VVXceyxxxYoW40aNdY6n5GRsd5tOTk5Bdp/cfAItSRJkiSVUR9//DE5OTk0aNCA5s2br3dteno6F1xwAWPGjGHatGm8+OKLHHXUUbz88sscdNBBq91sbPfdd+fVV19lzpw5fPLJJ/znP/9h2rRp9OnTh3fffbeIf1Ulh4VakiRJksqgvLw8rr/+eiC+Nnlj1K9fn+7duzNo0CD23XdfJk2axLhx4/6yrkKFCnTu3Jlrr72Wu+66C4ChQ4dufvhSwkItSZIkSWXM9OnT6d27N8OHD6dp06b8+9//Xu/6pUuX8t577/3l0VrLly9fecr4irt3f/TRR2u9tnratGmrrSsPvIZakiRJkkqxq6++GoiPSM+dO5fx48fz8ccfs2zZMjp06MDTTz+91rt0r2rJkiXsv//+NG/enI4dO9KsWTOys7N55513mDBhAocffjitW7cG4NZbb+Xtt9+ma9eubLXVVlStWpXx48fzxhtvUKtWLU4//fSi/iWXGBZqSZIkSSrFrrnmGgCysrKoVq0azZo14/jjj6dHjx5069atQI+xqlKlCjfddBPDhg1jxIgRDBkyhGrVqtGyZUvuv/9+Tj755JVrzz77bGrVqsVnn33GJ598Qk5ODltuuSVnn302F198Mc2aNSuyX2tJE9Y8pK/VhRBGtWvXrt2oUaOSjiJJkiSVexMmTABYebRUWpeC/l5p3749o0ePHh1FUfuN/Q6voZYkSZIkaRNYqCVJkiRJ2gReQ12aRRHM/SV/ECCEVd7XNpc/v865Nbdtyj7WkmPlviRJkiSp7LBQl2Z5OXDnTkmn2AibUcpXm6MQ9rHqHJCWAY13gR2Ohpb7QUZWkfwvIEmSJKnssFCXZqXuhnLR6plLWvzZP8G4F6FSLWhzFOzQC5p0hALcFVGSJElS+WOhLu1qNs0vpivKan5LXfHzau+sZW7N9RTCPlaZK42WzIEvH4tfNZrCDj3ict1g+6STSZIkSSpBLNSlWUYWXPhN0ik2LNqMUr7O9ax9/UbtY5X1S+bAt0Phmxdg/m+p/c+bAh/fHr8atI1PCd+hJ9TYshD/B5IkSZJUGlmoVfTCqtcsl1QtYIt2sN9VMOVT+GYQjB8C2XNTS6aNi1/vXgXNusTlevsjoHLtpEJLkiRJSpCFWlpVWho07xK/Dr4Zfnw3LtffvwE52al1v3wSv16/FLbpFh+1bnUwZFZKLrskSZKkYmWhltYlIwu2+1v8yp4P370K3zwPPw2HKC9ek7ccvn8tfmVVg9aHwY5HQ4u9IS090fiSJEmSipaFWiqIitVh5z7xa8E0GP8SjB0Ef4xOrVm2AMY8E7+qNoC2PeIj143blYJT3iVJkiRtLAu1tLGqNYBOZ8WvmT/GR62/GRQ/dmuFhdNg5H3xq87W+TczOxrqtEwutyRJkqRC5QN2pc1Rd2vY519w3mg47X3oeBZUqb/6mlk/wvAb4O528NA+MPJ+WDg9mbySJEmSCo2FWioMIcAW7eHgG+GiCdD3JdipT3xd9ar+GA1vXga3toL+R8HXA2HpgmQyS5IkqVw68cQTCSEwefLkzdrPE088QQiBJ554olBylUYWaqmwpWfA1vvBUffDpT9Az8eh1d8gLTO1JsqDSe/DkDPh5q3h+RPhu9chZ1lisSVJklQ6TZw4kYsuuoh27dpRu3ZtMjMzqV27Nh07duSSSy5h1KhRSUcss0IURUlnKNFCCKPatWvXzt+E2myLZ8O3Q+Nrrn/5ZO1rKtWC7Y+EHXtBk07xY7wkSZK00oQJEwBo3bp1wkmSF0UR1157Lddeey15eXm0a9eODh06ULt2bRYsWMDYsWP59NNPWbZsGffccw/nnHMOAH/++Sfz5s2jZcuWZGZmbuBb1m3evHn8+eefNGrUiBo1ahTWL6vQFPT3Svv27Rk9evToKIrab+x3eFMyqbhUrg27nhS/5v4K416Asc/D9PGpNUvmwKjH41eNJvGdwnfsBQ3aJJdbkiRJJdK1117L1VdfTZMmTRg4cCBdunT5y5rp06dzxx13MG/evJVzjRo1olGjRpv9/TVq1CiRRbo4efhLSkLNJrDH3+HsEXDWiPjnGk1WXzPvV/jkDri/M9zXGT6+PS7ikiRJKvd++uknrrvuOrKysnjjjTfWWqYB6tevz//+9z/+8Y9/rJxb2zXUkydPJoTAiSeeyOTJk+nduzd169alYsWK7Lrrrrz66qt/2bfXUFuopeQ1aAP7Xw0XjIWT3oD2J8Wnfq9q+nh492q4oy08/jf48rH4FHJJkiSVS48//jg5OTn07NmTNm02fDZjRkbBTk7+5Zdf6NChA5MnT6Zfv34cc8wxjBs3jiOOOIJhw4Ztbuwyx1O+pZIiLQ2adY5fB/8fTHoPxg6C71+HnOzUul8+iV+v/wO2OSB+vvW2B0FW5eSyS5IklRRXl6JTkK+et+E16/DJJ/E9efbdd9/CSgPA8OHDufrqq7nqqqtWzvXp04eDDjqIm2++mX322adQv6+0s1BLJVFGFrQ6OH4tXQATXoVvBsFPw+M7hAPkLY/L9vevQ1ZVaH1YXK5b7B3faVySJEll1tSpUwHYYost/rJt8uTJfzkNu2bNmlx44YUb3G+zZs244oorVps78MADadq0KZ9//vkm5y2r/Fu3VNJVqAY7Hxu/Fk6HcS/F5fr3Ve48v2whjBkYv6rUz7+Z2dHQuF38jGxJkiSVKSue1hTW8ne9yZMnc80116w216xZswIV6p133pn09PS/zDdp0oRPP/1008KWYRZqqTSpWh86nRm/Zk2KH8E1dhDMnpRas2g6fHZ//KrdMj5qvWMvqNMyudySJEnFZTNOoy5NGjVqxHfffcfvv//+l21du3ZdWbhzcnI26tFYNWvWXOt8RkYGeXl5m5S1LPOmZFJpVacldL0MzhsFpw2DTmdD1Qarr5k9CT64Ee5uBw/tAyPvhwXTkskrSZKkQrPirt7vvfdewknKNwu1VNqFAFu0g4NugIsmQL/BsPNxkFVt9XV/jIY3L4PbtoOnjoSvn4Hs+YlEliRJ0uY58cQTycjI4IUXXmDChAlJxym3LNRSWZKWDi33hSPvg0t/gKOfgFaHQNoqp/lEefDTMBhyFtyyDTx/Inz3OuQsSyq1JEmSNlLLli254oorWLZsGQcffDAjRoxY67q5c+cWb7ByxmuopbIqsxK0OSp+LZ4N3w6Fb16AXz5OrcnJhvGD41fFmtDmSNihFzTdPX6MlyRJkkqsK6+8kiiK+O9//0uXLl1o3749HTp0oHbt2sydO5fJkyfz7rvvArDXXnslnLZsslBL5UHl2rDrSfFr3m9xsf7meZg2LrUmey6MeiJ+1WgS3yl8h6OhYduEQkuSJGl9QghcffXVHHvssTzwwAMMGzaMZ555hkWLFlGtWjVatmzJWWedRb9+/WjXrl3SccuksOLub1q7EMKodu3atRs1atSGF0ulzbRv40dwffMCzPt17Wvqbx8X6x2OhppNijefJEnSGlZcL9y6deuEk6ikK+jvlfbt2zN69OjRURS139jv8JxOqTxrsD3sfzVcMBZOehN2PRkq1Vp9zfRv4b1r4I628NjB8OVj8SnkkiRJUjnnKd+S4uulm+0evw66CSa9Hx+5/u51yFmSWjdlRPx6/R+w9f6w49Gw7cGQVTm57JIkSVJCLNSSVpeRBa0Oil9LF8B3r8HYQfGdwaO8eE3ecpj4RvzKqgqtD4MdekKLrpDuHyuSJEkqH/ybr6R1q1ANduodvxZOj+8GPnYQ/P5las2yhTBmYPyqtx30fQlqbJFcZkmSJKmYeA21pIKpWh86ngGnvQfnjYau/4Y6W6++ZsZ3MKC711hLkiSpXLBQS9p4dVpC13/CuV/C6cOh09mQlhlvm/EdDDwWli9Z7y4kSZKkolJcT7OyUEvadCFA413goBvgqAdS87+OhBdOhtyc5LJJkqQyKYQAQF5eXsJJVJKtKNQrfr8UFQu1pMKxQ0848IbU+PvX4dULwWfdS5KkQlShQgUAFi1alHASlWQrfn+s+P1SVCzUkgrP7mdDlwtS46/6w7Drk8sjSZLKnGrVqgEwdepUFixYQF5eXrGd3quSLYoi8vLyWLBgAVOnTgVSv1+Kinf5llS49r8mviP4mIHx+MOboUp96Hh6srkkSVKZULt2bRYtWsTixYv57bffko6jEqxy5crUrl27SL/DI9SSClcIcPjdsPUBqbk3/hE/ckuSJGkzpaWl0aRJE+rVq0fFihWL/BpZlS4hBCpWrEi9evVo0qQJaWlFW3k9Qi2p8KVnQq8n4cnD859ZHcFLp0PlOtBir6TTSZKkUi4tLY26detSt27dpKOonPMItaSikVUF+gyCOtvE49xlMLAP/Dkm2VySJElSIbFQSyo6VepAv5egWqN4vGwBDOgJs39ONpckSZJUCCzUkopWzabQ90WoUCMeL5oOA7rDwhnJ5pIkSZI2k4VaUtFr0AaOHQjp+c8BnP0TPN0Tli5INpckSZK0GSzUkopH8y7Q8zEI+X/s/Pk1PNcPcpYlGkuSJEnaVBZqScWn9aFwyG2p8U/DYMhZkJeXXCZJkiRpE1moJRWvXU+Crv9Ojce9AG9fDlGUXCZJkiRpE1ioJRW/vf8Bu56cGo+8Dz65M7k8kiRJ0iawUEsqfiHA326B1oel5t69Cr5+JrlMkiRJ0kayUEtKRlo6dH8Emu2Rmht6Lkx8O7lMkiRJ0kawUEtKTmZF6P00NGgbj6NceP4E+PWLZHNJkiRJBWChlpSsSjXhuBegRtN4vHwxPHM0zJiYaCxJkiRpQyzUkpJXvRH0GwyV68TjJXNgQHeY/0eyuSRJkqT1sFBLKhnqbg19nofMyvF43q8woEdcriVJkqQSyEItqeTYsj306g9pGfF4+rcwsA8sX5JsLkmSJGktLNSSSpZt9ocj7kuNp4yAF0+F3JzkMkmSJElrYaGWVPLsdAx0uy41/u5VeP1iiKLkMkmSJElrsFBLKpk6nwe7n5saj3oCht+QWBxJkiRpTRZqSSXXAf+FHY9JjT+4Cb54JLk8kiRJ0ios1JJKrrQ0OOJeaLlfau61S+DbocllkiRJkvJZqCWVbOmZ0OspaNwufyKKb1L280eJxpIkSZIs1JJKvgpV4bjnoXbLeJy7DJ7tA1O/STaXJEmSyjULtaTSoUpd6DcYqjaMx0vnw4AeMGdyorEkSZJUflmoJZUetZpB3xehQvV4vHAa9O8Oi2Ymm0uSJEnlkoVaUunSsC0cOxDSK8Tj2ZPg6aNh6cJkc0mSJKncsVBLKn2a7wE9HgZCPP5jNAw6HnKWJRpLkiRJ5YuFWlLptP0RcMitqfGk9+DlcyEvL7lMkiRJKlcs1JJKr91Ogb3/mRqPfQ7e+U9yeSRJklSuWKgllW5d/wXtT0yNP70HPrkrsTiSJEkqPyzUkkq3EOCQ22C7Q1Nz7/wHxjybXCZJkiSVCxZqSaVfWjr0eASadk7NDT0Hfng3uUySJEkq8yzUksqGzErx47Tqbx+P83JgUD/4bVSyuSRJklRmWagllR2VakLfF6FGk3i8fDE8czTM/CHRWJIkSSqbLNSSypbqjaHvS1CpdjxePAv6d4f5fyabS5IkSWWOhVpS2VNvWzjuecisHI/nTYGne8KSuYnGkiRJUtlioZZUNm25K/R6CkJ6PJ42Dp7tA8uzk80lSZKkMsNCLans2uYAOOLe1PiXT+ClUyEvN7lMkiRJKjMs1JLKtp2Phf2vSY0nvAKvXwJRlFwmSZIklQkWakllX5cLoNM5qfGXj8EH/5dcHkmSJJUJFmpJZV8I0O062OHo1Nzw/8XFWpIkSdpEFmpJ5UNaGhxxH2y1T2rutYvjU8AlSZKkTWChllR+ZGTBMf2h0c7xOMqDF06ByZ8kGkuSJEmlk4VaUvlSoRoc9wLU3ioe5y6FgcfCtPHJ5pIkSVKpU2iFOoSwZQjhsRDCHyGEpSGEySGEO0IItTZhX3uGEF4MIfyZv68/QwhvhxD+to71nUMIr4cQZocQFocQxoYQLgxhxQNoJWkVVetB35egSv14vHQeDOgBc6ckm0uSJEmlSqEU6hBCS2AUcBLwOXA78BNwAfBpCKHORuzrCuBDYC/gTeBW4BWgFtB1LeuPWGX9YOBeICs/w7Ob+muSVMbVbgF9X4SsavF4wZ/QvzssmpVsLkmSJJUaGYW0n/uA+sD5URTdvWIyhHAb8HfgeuDMDe0khHA08F/gXaB7FEUL1tieuca4OvAwkAt0jaLoy/z5/wDvAz1DCL2jKLJYS/qrRjvCsc/ER6dzl8GsH+CZo+GEVyCrStLpJEmSVMJt9hHqEMJWQDdgMvHR4VVdBSwC+oUQ1vu30xBCGnATsBjos2aZBoiiaPkaUz2BesCzK8p0/rps4Ir84VkF/sVIKn9a7AXdHwJCPP59FAw6AXLX/ONGkiRJWl1hHKHeN//97SiK8lbdEEXRghDCJ8SFuxPw3nr20xloAbwAzAkhHAK0BbKBz6Mo+nQ93/3mWrZ9SFzOO4cQKkRRtHR9v4gQwqh1bNpufZ+TVAa0OQoWzYTXL4nHP74DL58HR94fP8NakiRJWovCuIa6Vf77xHVs/yH/fdsN7Ge3/PdpwGjgVeBG4A5gRAjhgxBCvYJ+dxRFOcDPxP9osNUGvltSedfhNNjr0tR4zEB496rk8kiSJKnEK4xCXSP/fd46tq+Yr7mB/eTfbpczgUrA/kA14qPUbxHfdOz5Ivpuoihqv7YX8N2GPiupjNjncmh3fGr8yZ3w6ZpXskiSJEmx4ngO9YrzJaMNrFvxiKsA9Iyi6L0oihZGUTQeOAr4Ddg7hLB7EXy3JMWndx9yO7Ra5Ql9b/0bxg5KLpMkSZJKrMIo1CuOAtdYx/bqa6xblzn57z9FUTRm1Q1RFC0hPkoN0KEIvluSYukZ0PMxaNIpNTfkLPhxfbeAkCRJUnlUGIX6+/z3dV0jvU3++7qusV5zP3PXsX1F4a5UkO8OIWQQ3+Qsh/iZ2JJUMJmV4NiBUK91PM7Lgef6xXcAlyRJkvIVRqEelv/eLf/RVyuFEKoBXYAlwMgN7OdD4vK7TQghay3b2+a/T15l7v3894PWsn4voDIwYkN3+Jakv6hcG/q+CNW3jMfLF8HTR8OsScnmkiRJUomx2YU6iqJJwNtAc+CcNTZfA1QBnoqiaBFACCEzhLBdCKHlGvuZCTxHfPr2latuCyEcABxIfOr2qo/IegGYCfQOIey6yvqKwHX5w/s359cnqRyrsQX0ewkq1YrHi2dB/6NgwdRkc0mSJKlEKKybkp0NTAfuCiEMCSHcEEJ4H/g78anel6+ydgtgAmt/JvVFwI/A5SGED0MIt4QQngfeAHKB06IomrticRRF84HTiG9oNjyE8EgI4f+Ar4HdiQv3c4X0a5RUHtVrBX0GQUb+1SZzf4EBPSHbWzNIkiSVd4VSqPOPUu8KPAF0BC4GWgJ3AbtHUTSrgPuZnv/524EmwPnAvsBrwJ5RFK352CyiKBoC7E18yngP4DxgOXE57x1FkXf4lrR5mnSAo5+AkP8wgmnfwLPHwfLsRGNJkiQpWcG+uX4hhFHt2rVrN2qUNyOSyr2vBsDQVa5s2f4I6Pk4pKWv+zOSJEkq0dq3b8/o0aNHR1HUfmM/WxzPoZaksmGXvrDfVanxt0PhjX+C/zApSZJULlmoJWlj7PF36HhmavzFw/DhLcnlkSRJUmIs1JK0MUKAA2+ANt1Tc8Oug1FPJpdJkiRJibBQS9LGSkuDox6AFnun5l69EL57LbFIkiRJKn4WaknaFBkV4JgB0GineBzlwQsnwy+fJptLkiRJxcZCLUmbqmJ1OO4FqNUiHudkw8BjYNq3yeaSJElSsbBQS9LmqFof+r0EVerF4+x5MKAHzP012VySJEkqchZqSdpctbeKj1RnVY3HC/6AAd1h8exkc0mSJKlIWaglqTA03hl6Pw1pmfF45kR4phcsW5RoLEmSJBUdC7UkFZatukL3B4EQj3/7Ap4/CXKXJ5lKkiRJRcRCLUmFqW0POPim1PiHt+CVCyCKksskSZKkImGhlqTC1vEM2OOi1Pjrp+G9a5LLI0mSpCJhoZakorDflbBL39T449th5P3J5ZEkSVKhs1BLUlEIAQ69E7Y9KDX35mXwzQvJZZIkSVKhslBLUlFJz4Cej8OWHVJzg8+EScOSyyRJkqRCY6GWpKKUVRn6PAd1W8XjvOXwXF/446tkc0mSJGmzWaglqahVrg39XoLqW8TjZQvh6aNh1qRkc0mSJGmzWKglqTjU2BL6vggVa8TjRTNgQHdYMC3ZXJIkSdpkFmpJKi71W0OfQZBRMR7PmQxP94Ts+YnGkiRJ0qaxUEtScWraKb5RWcj/43fqWHjuOMhZmmwuSZIkbTQLtSQVt+3+BofdmRr//CEMPgPy8pLLJEmSpI1moZakJLQ7Hva9IjUePzh+TnUUJZdJkiRJG8VCLUlJ2fMS6HB6avz5g/DxbcnlkSRJ0kaxUEtSUkKAg26E7Y9Mzb13LXw7NLFIkiRJKjgLtSQlKS0duj8ELfZKzb18Psz7PblMkiRJKhALtSQlLaMC9OoPNZrG4+y53qRMkiSpFLBQS1JJUKkmdH8w9TityR/Bp3cnGkmSJEnrZ6GWpJKiWWfY46LU+L3/wp9jkssjSZKk9bJQS1JJ0vUyaNwu/jlvObx4KixbnGwmSZIkrZWFWpJKkvRM6PEIZFaJxzMnwttXrP8zkiRJSoSFWpJKmjot4eCbUuMvH4Xv30gujyRJktbKQi1JJdEufaH14anx0HNgwbTk8kiSJOkvLNSSVBKFAIfdCdUax+PFs2DIWT5KS5IkqQSxUEtSSVW5Nhz1ABDi8aT34POHEo0kSZKkFAu1JJVkW+0Nnc9Ljd+5EqaNTy6PJEmSVrJQS1JJt+8V0HCH+OfcpfDiabA8O9lMkiRJslBLUomXUQF6PAoZFePx9PHw3jXJZpIkSZKFWpJKhXqt4MDrU+OR98GP7yaXR5IkSRZqSSo1dj0Ftj0oNR5yNiyamVweSZKkcs5CLUmlRQhw+D1QpX48XjgNXj4PoijZXJIkSeWUhVqSSpOq9eDI+1Pj71+HUY8nl0eSJKkcs1BLUmmzzf7Q8czU+M1/w4yJyeWRJEkqpyzUklQa7X8N1N8+/jlnCbx4CuQsSzaTJElSOWOhlqTSKLMidH8Y0rPi8dSxMOy6ZDNJkiSVMxZqSSqtGraNj1Sv8Mld8POHyeWRJEkqZyzUklSadTwTWu6bP4jgpTNg8exEI0mSJJUXFmpJKs3S0uK7fleqHY8X/AGvXuijtCRJkoqBhVqSSrtqDeGIe1Ljb4fC188kl0eSJKmcsFBLUlmw3SHQ/qTU+I1/wKxJyeWRJEkqByzUklRWHHg91Nkm/nnZQnjpdMhdnmwmSZKkMsxCLUllRVYV6PEIpGXG49+/hA/+L9lMkiRJZZiFWpLKksY7w76Xp8Yf3QK/fJpYHEmSpLLMQi1JZU3n86H5nvHPUR4MPh2y5yWbSZIkqQyyUEtSWZOWDkc9ABVrxOO5U+D1S5PNJEmSVAZZqCWpLKqxJRx2Z2o89jkY+3xyeSRJksogC7UklVVtjoKdj0uNX7sI5vySXB5JkqQyxkItSWXZwTdBrebxz0vnw+AzIC830UiSJEllhYVaksqyCtWg+yMQ0uPxlE/h49uSzSRJklRGWKglqaxrsht0vSw1HnYD/DYquTySJEllhIVaksqDPS6CJh3jn6NceOlUWLow2UySJEmlnIVaksqD9Azo/hBkVYvHs3+CNy9b/2ckSZK0XhZqSSovajWHQ25Njb/qD98OTSyOJElSaWehlqTyZMde0LZnavzy+TDv9+TySJIklWIWakkqT0KIj1LXaBKPs+fCkDMhLy/RWJIkSaWRhVqSyptKNePrqUP+fwJ+/hA+vSfRSJIkSaWRhVqSyqNmneM7f6/w3rXw55jk8kiSJJVCFmpJKq+6XgaN28U/5y2HF0+FZYuTzSRJklSKWKglqbxKz4Qej0BmlXg8cyK8fUWymSRJkkoRC7UklWd1WsLBN6bGXz4K37+ZXB5JkqRSxEItSeXdLv2g9WGp8dBzYMG05PJIkiSVEhZqSSrvQoDD7oJqjeLx4pkw9GyIomRzSZIklXAWakkSVK4NRz2QGv/4Lnz+UHJ5JEmSSgELtSQptlVX6Hxeavz2f2Dat4nFkSRJKuks1JKklH3/Aw13iH/OXRo/Smt5drKZJEmSSigLtSQpJaMC9HgUMirG4+nj4b1rks0kSZJUQlmoJUmrq9cKul2XGo+8L76mWpIkSauxUEuS/mq3U2GbA1PjIWfDopnJ5ZEkSSqBLNSSpL8KAY64F6rUi8cLp8HL5/soLUmSpFVYqCVJa1e1Hhx5f2r8/Wsw6onE4kiSJJU0FmpJ0rptcwB0OCM1fvNfMGNicnkkSZJKEAu1JGn9DrgG6rWOf85ZAi+dCjnLks0kSZJUAlioJUnrl1kJejwC6Vnx+M8xMOz6ZDNJkiSVABZqSdKGNWwL+6/yPOpP7oSfP0wujyRJUglgoZYkFUzHM2GrffIHEbx0BiyenWgkSZKkJFmoJUkFk5YW3/W7Uu14vOAPePXvPkpLkiSVWxZqSVLBVW8Eh9+dGn87BMYMTCyOJElSkizUkqSN0/pQaH9iavz6pTD7p8TiSJIkJcVCLUnaeAf+D+psHf+8bCG8eBrkLk82kyRJUjGzUEuSNl5WlfhRWmkZ8fj3L+HDm5PNJEmSVMws1JKkTdN4F9j3itT4w5thysjk8kiSJBUzC7UkadN1Ph+a7xn/HOXBS6dB9rxkM0mSJBUTC7UkadOlpcNRD0DFGvF47pT4JmWSJEnlgIVakrR5amwJh96RGo99Dr55IbE4kiRJxcVCLUnafG27w059UuNXL4qPVkuSJJVhFmpJUuE4+Cao1Tz+eek8eOkMyMtNNJIkSVJRslBLkgpHxerQ/WEI6fF4ygj4+PZkM0mSJBUhC7UkqfA06QB7/zM1Hn4D/DYquTySJElFyEItSSpce14MTTrGP+flwEunwtKFyWaSJEkqAhZqSVLhSs+A7g9BVrV4PPsnePOyZDNJkiQVAQu1JKnw1WoOh9ySGn/VH74dmlgcSZKkomChliQVjR2PgbY9UuOXz4f5fySXR5IkqZBZqCVJRSMEOOQ2qNEkHmfPhcFnQl5eorEkSZIKS6EV6hDCliGEx0IIf4QQloYQJocQ7ggh1NqIfUwOIUTreE1dy/rm61kfhRCeLaxfnyRpE1SqCUc9CIR4/PMHMPLeJBNJkiQVmozC2EkIoSUwAqgPDAW+AzoAFwAHhRC6RFE0q4C7mwfcsZb59d0idgwwZC3z4wr4nZKkotK8C+x5EXx0azx+9xposTc02jHZXJIkSZupUAo1cB9xmT4/iqK7V0yGEG4D/g5cD5xZwH3NjaLo6o38/q834TOSpOLS9V8w6X344yvIWw4vngqnD4esykknkyRJ2mSbfcp3CGEroBswGVjzPL6rgEVAvxBClc39LklSKZWeCT0ehcz8Aj3ze3jnP8lmkiRJ2kyFcYR63/z3t6MoWu1OM1EULQghfEJcuDsB7xVgfxVCCH2BpsRlfCzwYRRFuev5TOMQwhlAHWAW8GkURWM35hcRQhi1jk3bbcx+JEnrUKclHHwTvHxePP7iEdj6AGh1ULK5JEmSNlFhFOpW+e8T17H9B+JCvS0FK9QNgf5rzP0cQjgpiqIP1vGZA/JfK4UQhgMnRFE0pQDfKUkqDrv0g4lvwXevxuOh58BZI6Bag2RzSZIkbYLCuMt3jfz3eevYvmK+ZgH29TiwH3GprgLsADwINAfeCCHstMb6xcB/gfZArfzX3sAwoCvwXkFPNY+iqP3aXsQ3WJMkFYYQ4PC7oVqjeLx4Jgw9G6Io2VySJEmboDieQ53/rBQ2+LelKIquiaLo/SiKpkVRtDiKonFRFJ0J3AZUAq5eY/30KIqujKJodBRFc/NfHxIfEf8M2Bo4tVB/NZKkzVO5Nhx5f2r847vw+UPJ5ZEkSdpEhVGoVxyBrrGO7dXXWLcpHsh/36sgi6MoygEe2ZjPSJKKUct9YPdzU+O3/wPTJySXR5IkaRMURqH+Pv9923Vs3yb/fV3XWBfE9Pz3jblT+IxN+IwkqbjsdyU02CH+OXdp/Cit5dnJZpIkSdoIhVGoh+W/dwshrLa/EEI1oAuwBBi5Gd+xe/77TxvxmU6b8BlJUnHJqAA9HoGMivF42jh479pkM0mSJG2EzS7UURRNAt4mvnHYOWtsvob4CPFTURQtAgghZIYQtgshtFx1YQihTQih9pr7DyE0A+7JHw5YY1vHEELWWj6zL/D3tX1GklSC1N8Oul2XGo+8F34syAMhJEmSklcYj80COBsYAdwVQtgPmAB0BPYhPtX78lXWbpG//RfiEr7C0cBlIYRhwM/AAqAlcAhQEXgduGWN770JaJP/iKzf8ud2JPVs7P9EUTRi8395kqQis9up8MM78MNb8XjIWXDWp1ClTrK5JEmSNqBQ7vKdf5R6V+AJ4iJ9MXEZvgvYPYqiWQXYzTBgMNAC6ANcRPwIrI+BE4BDoyhatsZn+hPfzXs34DTiYr8NMAjYK4qi65AklWwhwBH3QpV68XjhNHj5PB+lJUmSSrzCOkJNFEW/AicVYN1kUo/SWnX+A+CDjfzOR4FHN+YzkqQSqGo9OOI+eOboePz9azDqCdh1g/9ZkSRJSkxxPIdakqQN27YbdDg9NX7zXzDzh+TySJIkbYCFWpJUchxwLdTbLv45Z0n8KK2cNa/2kSRJKhks1JKkkiOzUvworfT8Bzj8+TUM/1+ikSRJktbFQi1JKlka7gD7X50af3wH/PxRUmkkSZLWyUItSSp5Op4FW+2TP4hg8BmwZE6ikSRJktZkoZYklTxpaXDk/VCpdjye/zu8cqGP0pIkSSWKhVqSVDJVbwSH350afzsExgxMLI4kSdKaLNSSpJKr9aHQ7oTU+PVLYfZPyeWRJElahYVaklSyHXQD1Nk6/nnZQnjpdMjNSTaTJEkSFmpJUkmXVQW6PwxpGfH4ty/gw5uTzSRJkoSFWpJUGmzRDva5PDX+8P9gymfJ5ZEkScJCLUkqLbpcAM32iH+O8uClUyF7frKZJElSuWahliSVDmnp0P1BqFgjHs+dEt+kTJIkKSEWaklS6VFjSzj0jtR47LPwzQuJxZEkSeWbhVqSVLq07Q47HZsav3pRfLRakiSpmFmoJUmlz8H/BzWbxT8vnQcvnQF5uclmkiRJ5Y6FWpJU+lSsDj0egZAej6eMgI9vTzaTJEkqdyzUkqTSqUkH2PsfqfHwG+D3UcnlkSRJ5Y6FWpJUeu15CWzZIf45LwdePA2WLkw2kyRJKjcs1JKk0is9A7o/BFnV4vHsSfDWv5LNJEmSyg0LtSSpdKvdAg65JTUe/ZSP0pIkScXCQi1JKv12PAba9kiNB58JP76XXB5JklQuWKglSaVfCHDIbVB323ictxye6wu/fpFsLkmSVKZZqCVJZUOlmtBvMFTfMh4vXwxP94TpExKNJUmSyi4LtSSp7KixJRw/BCrXicfZc6H/UTDnlyRTSZKkMspCLUkqW+puA31fhKyq8XjBn9D/SFg4PdFYkiSp7LFQS5LKnsa7wLEDIb1CPJ79EwzoDtnzks0lSZLKFAu1JKlsarEX9HwMQv5/6qZ+A8/0huVLks0lSZLKDAu1JKnsan0oHH53ajxlBDx/EuQuTy6TJEkqMyzUkqSybZe+0O261HjiGzD0XMjLSy6TJEkqEyzUkqSyr/N5sMffU+Oxz8Jb/4YoSi6TJEkq9SzUkqTyYb+roN0JqfFn98OHtySXR5IklXoWaklS+RACHHo7bH9Eam7YdfDFI8llkiRJpZqFWpJUfqSlQ/eHYauuqbnXLoFvXkgskiRJKr0s1JKk8iWjAhzzNGzRPn8igsFnwA/vJhpLkiSVPhZqSVL5U6EqHPcC1G0Vj/NyYFA/mPJZsrkkSVKpYqGWJJVPlWtDv8FQo0k8Xr4Ynjkapo1PNpckSSo1LNSSpPKrxhbQbwhUrhuPs+dB/+4w++dEY0mSpNLBQi1JKt/qbg19X4SsavF44VTofxQsmJZsLkmSVOJZqCVJarwz9HkW0ivE4zk/w4AesGRukqkkSVIJZ6GWJAmg+R5w9BMQ0uPxtG9gYG9YtjjRWJIkqeSyUEuStMJ2f4Mj7k2Np3wKz58IucsTiyRJkkouC7UkSava+Vg48H+p8Q9vwZCzIS8vuUySJKlEslBLkrSm3c+BPS9Jjb8ZBG9eBlGUXCZJklTiWKglSVqbfa+A9ielxp8/CB/8X3J5JElSiWOhliRpbUKAQ26FNkel5ob/Dz57KLlMkiSpRLFQS5K0LmnpcNRD0HLf1Nwbl8LY55PLJEmSSgwLtSRJ65ORBb36w5a7peaGnAkT304ukyRJKhEs1JIkbUiFqtBnENRrHY/zcmDQ8TBlZLK5JElSoizUkiQVROXa0O8lqNk0HucsgWd6wdRxyeaSJEmJsVBLklRQ1RtDvyFQpV48zp4HA7rD7J8SjSVJkpJhoZYkaWPUaQl9X4QK1ePxwmnQ/yhYMDXZXJIkqdhZqCVJ2liNdoJjn4WMivF4zmTo3x2WzEk0liRJKl4WakmSNkXzLnD0ExDS4/H08fDMMbBsUaKxJElS8bFQS5K0qVodDEfelxr/+ll89++cZcllkiRJxcZCLUnS5tipNxx0Y2r847sw5CzIy0sukyRJKhYWakmSNlens2Cvf6TG416AN/4BUZRcJkmSVOQs1JIkFYZ9/g27nZoaf/EwDL9x3eslSVKpZ6GWJKkwhAAH3wxte6TmPrgRRj6QXCZJklSkLNSSJBWWtDQ48gHYev/U3Jv/hLGDksskSZKKjIVakqTClJEFvZ6CLTuk5gafCRPfSi6TJEkqEhZqSZIKW1YV6PMc1N8+Hke58eO0fhmRbC5JklSoLNSSJBWFyrWh70tQs1k8zsmGZ3rD1G+SzSVJkgqNhVqSpKJSvRH0GwxV6sfjpfOgf3eYNSnZXJIkqVBYqCVJKkp1WkK/l6BCjXi8aDr0PxLm/5loLEmStPks1JIkFbWGO8TXVGdUisdzp8CA7rB4drK5JEnSZrFQS5JUHJrtHt/9Oy0jHk//Fp45BpYtSjaXJEnaZBZqSZKKy7bd4Mj7U+PfPofn+kHOsuQySZKkTWahliSpOO3YCw7+v9R40nsw+AzIy00ukyRJ2iQWakmSilvHM2Dvy1Lj8S/B65dAFCWXSZIkbTQLtSRJSeh6GXQ4PTX+8jEYdn1yeSRJ0kazUEuSlIQQ4KCbYIejU3Mf3gyf3pdcJkmStFEs1JIkJSUtLb5J2dYHpObe+hd8PTC5TJIkqcAs1JIkJSk9M36cVpNOqbmh58D3bySXSZIkFYiFWpKkpGVVhj7PQYO28TjKhedPhMmfJBpLkiStn4VakqSSoFJN6Psi1Goej3OyYWBv+HNMkqkkSdJ6WKglSSopqjWEfkOgaoN4vHQ+DOgBsyYlGkuSJK2dhVqSpJKkdgvoNxgq1ojHi2bAU0fC/D8SjSVJkv7KQi1JUknToA30eR4yKsXjeVOg/1GweHayuSRJ0mos1JIklURNO8IxAyAtIx7P+A6ePhqWLkw2lyRJWslCLUlSSbXN/nDUg0CIx79/Cc/1hZylicaSJEkxC7UkSSXZDj3hbzenxj8Ng5dOh7zc5DJJkiTAQi1JUsnX4TTY5/LU+Nsh8NpFEEWJRZIkSRZqSZJKh70uhY5npsajnoD3/5tYHEmSZKGWJKl0CAEOvAF2PCY199GtMOKe5DJJklTOWaglSSot0tLgiHth24NSc29fDl89nVwmSZLKMQu1JEmlSXomHP0ENO2cmnv5PPjutcQiSZJUXlmoJUkqbTIrwbEDocEO8TjKhedPgp8/SjaXJEnljIVakqTSqFJN6PcS1N4qHucuhYHHwh9fJRpLkqTyxEItSVJpVbU+9BsM1RrF42ULYEAPmPlDsrkkSSonLNSSJJVmtZpD35egYs14vHgW9D8K5v2WZCpJksoFC7UkSaVdg+3huOchs3I8nvdrXKoXzUo2lyRJZZyFWpKksqBJBzimP6RlxuOZE+HpnrB0QbK5JEkqwyzUkiSVFVvvD90fBEI8/mM0PHsc5CxNNJYkSWWVhVqSpLKkbQ845NbU+OcP4MVTIS83uUySJJVRFmpJksqa3U6Bfa9IjSe8DK9eCFGUWCRJksoiC7UkSWXRnpdAp3NS49FPwbtXJxZHkqSyyEItSVJZFAJ0uw526pOa++QO+OTOxCJJklTWWKglSSqr0tLg8Luh1d9Sc+9cCaP7J5dJkqQyxEItSVJZlp4BPR+DZl1Sc6+cDxNeSS6TJEllhIVakqSyLrMSHDsQGu4Yj6M8eOFk+OmDZHNJklTKWaglSSoPKtaAvi9B7ZbxOHcZPNsHfh+dbC5JkkqxQivUIYQtQwiPhRD+CCEsDSFMDiHcEUKotRH7mBxCiNbxmrqez3UOIbweQpgdQlgcQhgbQrgwhJBeOL86SZLKgKr14PghUK1xPF62EJ7uCTMmJhpLkqTSKqMwdhJCaAmMAOoDQ4HvgA7ABcBBIYQuURTNKuDu5gF3rGV+4Tq++wjgRSAbeA6YDRwG3A50AY4u8C9EkqSyrmZT6DcYHj8IlsyBxbOg/1Fw8ptQs0nS6SRJKlUKpVAD9xGX6fOjKLp7xWQI4Tbg78D1wJkF3NfcKIquLsjCEEJ14GEgF+gaRdGX+fP/Ad4HeoYQekdR9GxBfyGSJJV59beD416AJw+H5Ytg/m+pUl2lbtLpJEkqNTb7lO8QwlZAN2AycO8am68CFgH9QghVNve71qInUA94dkWZBoiiKBu4In94VhF8ryRJpduWu0LvAZCWGY9n/RCf/r10QbK5JEkqRQrjGup989/fjqIob9UNURQtAD4BKgOdCri/CiGEviGEf4cQLggh7LOea6FXfPeba9n2IbAY6BxCqFDA75YkqfxouS/0eBgI8fiPr+IblS3PTjSWJEmlRWGc8t0q/31ddzT5gfgI9rbAewXYX0Og/xpzP4cQToqiaM3ne6zzu6Moygkh/Ay0AbYCJqzvS0MIo9axabsNR5YkqZRqcxQsmQuvXhiPf/4QXjwFjn4yfoa1JElap8I4Ql0j/33eOravmK9ZgH09DuxHXKqrADsADwLNgTdCCDsV4XdLklQ+7XoS7HdlavzdqzDoeMhe139eJUkSFN5NydYn/zwyog0tjKLomjWmxgFnhhAWAhcDVwNHFdF3t1/rDuIj1+024jslSSp99rgIFs+GT++Jx9+/Bg/uDb2egkY7JptNkqQSqjCOUK/45+sa69hefY11m+KB/Pe9EvhuSZLKvhCg23Ww+7mpuTk/w6MHwOg1r8SSJElQOIX6+/z3bdexfZv893VdY10Q0/Pf17xT+Dq/O4SQAbQAcoCfNuO7JUkqH0KAA6+Hno9DVtV4LicbXj4XhpwDy5ckm0+SpBKmMAr1sPz3biGE1fYXQqgGdAGWACM34zt2z39fsxi/n/9+0Fo+sxfx3cVHRFG0dDO+W5Kk8qVtdzh9ONRrnZr7egA8cgDMmpRYLEmSSprNLtRRFE0C3ia+cdg5a2y+hvio8lNRFC0CCCFkhhC2CyG0XHVhCKFNCKH2mvsPITQD8i/oYsAam18AZgK9Qwi7rvKZisB1+cP7N+XXJUlSuVZ3GzjtPdjxmNTctG/goa4w4ZXEYkmSVJIU1k3JzgZGAHeFEPYjfkRVR2Af4lO9L19l7Rb5238hLuErHA1cFkIYBvwMLABaAocAFYHXgVtW/dIoiuaHEE4jLtbDQwjPArOBw4kfqfUC8Fwh/RolSSpfsqrAUQ9C007wxj8hdxksnQ/P9YXO58F+V0F6ZtIpJUlKTGGc8r3iKPWuwBPERfpi4jJ8F7B7FEWzCrCbYcBg4uue+wAXAXsDHwMnAIdGUbRsLd89JH/dh0AP4Dxgef7ne0dRtME7fEuSpHUIAXY9GU55G2o2Tc2PuBuePAzm/5lcNkmSEhbsm+sXQhjVrl27dqNGjUo6iiRJyVo8G4acBRPfTM1VqQc9H4MWaz6IQ5Kk0qF9+/aMHj169Loepbw+hXKEWpIklQOVa0PvgbDflbDiPqSLZsBTR8CHt0BeXrL5JEkqZhZqSZJUcGlpsOfFcPzQ+Og0QJQH7/8XBvaOj2JLklROWKglSdLGa7EXnPERNO2cmvvhLXhwb/h9dHK5JEkqRhZqSZK0aao3ghNehs7np+bmTYHHDoQvHgXv0yJJKuMs1JIkadOlZ0K3/8IxT0OF6vFc7jJ47SJ46XRYtijZfJIkFSELtSRJ2nytD4UzPoAGO6TmvhkED+8HMyYml0uSpCJkoZYkSYWj9lZw6juwS7/U3IwJ8PA+MO7F5HJJklRELNSSJKnwZFaCI+6BI+6FjIrx3LKF8MLJ8Po/IGdZsvkkSSpEFmpJklT4dukLp74bH7Ve4fMH4fGDYe6vyeWSJKkQWaglSVLRaLgDnD4cWh+Wmvv9S3hwL/jx3cRiSZJUWCzUkiSp6FSsAb36Q7frIaTHc0tmw4CeMOwGyMtNNp8kSZvBQi1JkopWCND5XDjxNajaMH8ygg9uhKd7wqKZicaTJGlTWaglSVLxaLY7nPkRtNgrNTfp/fgU8F8/Ty6XJEmbyEItSZKKT9X60G8I7HlJam7+7/HNykY+AFGUWDRJkjaWhVqSJBWvtHTY7z/QZxBUrBnP5eXAm/+EF06CpQsSjSdJUkFZqCVJUjK2PRDO+BAa75KaGz8YHtoHpn2bXC5JkgooI+kA2nR5eRHPj4qf5bnqGXKrniy3+ny0jvm1f2Cd+ynImtXm13763sZmWzG/rrWr77vg+wNIC7B94+p02bouFTPT175TSVLhq9UMTn4L3vwXfPloPDfrB3h4XzjsDtipd6LxJElaHwt1KZYbRfzzxW+SjlGmVMlKp+t29TmwTUP2aVWPahUzk44kSWVfRgU49DZo2gleuQCWL4acJTD4DJgyEg66ETIrJp1SkqS/sFBLq1i0LJfXxv7Ja2P/JCs9jS5b1+HANg3Zf/sG1K1aIel4klS27dgLGu4Az/WLj1IDjHoc/vgKej0JtZonGk+SpDVZqEuxtBDoteuWK8eBkPo59eNqP7OuNauuWG2+IOtX+4LN2M9f97eO6Bu1v4KsX7A0h2HfTWfyrMUrty3LzWPY9zMY9v0M0gZ/w67Na3Ngm4Yc2KYBW9aqjCSpCNRvDacPg5fPh/EvxXN/fh0/Wuuoh6DVQYnGkyRpVWFd17cqFkIY1a5du3ajRo1KOoqKWBRFTJy2kLfGT+Wt8VMZ/8f8da5tu0V1Dty+IQe2bcg29auu8x8VJEmbKIrg84fhrX9D3vLU/B4XwT6XQ7rHBCRJhaN9+/aMHj16dBRF7Tf2sxbqDbBQl1+/zl7MW+On8vb4aXzxy+x13gBtq7pV6JZ/5HqnLWuSlma5lqRC8+sX8PyJMP+31FzzPaHHo1CtQWKxJEllh4W6CFmoBTBjwVLenTCNt8ZP5ZMfZ7I8d+3/v2lYvSLd2jTgwDYN6dCiNpnpPplOkjbbolnw0mkw6b3UXNWGcPTj0KxzcrkkSWWChboIWai1pvnZyxn23XTeHj+NYd9PZ/Gy3LWuq1Epk/1bN+DANg3Ya9t6Po5LkjZHXi58eAsMv4GVD0EM6bD/1dD5vDVvGCJJUoFZqIuQhVrrk708l49/mMlb46fy7oRpzFm8fK3rKmWm07VVvfhxXNvVp0YlH8clSZtk0vvw4qmweFZqbrtD4Yh7oVLNxGJJkkovC3URslCroHJy8/h88mzeHh+fGv7nvOy1rstMD+zesi4HtmnAAds3oH41n60qSRtl3m/xddW/fZGaq9UCej0FjXZMLJYkqXSyUBchC7U2RRRFjP1t3so7hk+asWit60KA9k1r5T+OqyFN6/g4LkkqkJxl8M6V8Nn9qbn0CnDILdDu+ORySZJKHQt1EbJQqzD8OH0Bb+UfuR7727x1rtuuYTUOahuX6+0aVvNxXJK0IeMHw9BzYdnC1NzOfeFvN0OW/0gpSdowC3URslCrsP0+dwlv5x+5/vzn2eSt4/+CTWtXzi/XDdilSS0fxyVJ6zLzB3iuH8yYkJpr0DY+BbxOy+RySZJKBQt1EbJQqyjNWriU9yZM563xU/nox5ksy8lb67p61SrQbfv4cVydtqpDVoaP45Kk1SxbBK9eBGOfTc1VqB7frGz7w5PLJUkq8SzURchCreKycGkOw7+fzlvjpzHsu+ksXJqz1nXVKmas9jiuylkZxZxUkkqoKIJRT8Ab/4DcZan53c+NH6+V7hMWJEl/ZaEuQhZqJWFpTi4jfpzFW+On8s6305i1aNla11XMTGPPbepxUJuG7Ne6PjUrZxVzUkkqgf74CgYdD3OnpOaadIKjH4fqjZPLJUkqkSzURchCraTl5kWM+mUOb46Lr7v+fe6Sta5LTwvsvlUdDmzTgG5tGtKguo/jklSOLZkDg8+EiW+m5qrUgx6PwlZ7J5dLklTiWKiLkIVaJUkURYz/Y/7Kx3FNnLZwnWt3aVpz5eO4WtStUowpJamEyMuDT+6A9/8LUf49KkIa7HM57HERpHk/CkmShbpIWahVkv00Y+HKx3F9/evcda5r1aDayiPXbRpX93FcksqXnz+CF06GRdNTc9t0g6MehMq1k8slSSoRLNRFyEKt0mLqvGze/jY+cj3yp9nkruN5XFvWqrTyyHX7ZrVI93FcksqDBVPh+ZNgyojUXI2m0OtJ2KJdcrkkSYmzUBchC7VKo7mLl/HehOm8OX4qH06cwdJ1PI6rbtUsDtg+PnLduWUdKmSkF3NSSSpGuTnw3jUw4q7UXHoWHHQD7HoKePaOJJVLFuoiZKFWabd4WQ4fTpzBm+Om8t5301mQvY7HcVXIYJ/t6nNgm4Z0bVWPKhV8HJekMmrCqzDkbFg6LzW3Qy847A7I8p4TklTeWKiLkIVaZcmynDxG/jSLN/MfxzVjwdK1rsvKSGOvberSrU1D9m/dgNpVfByXpDJm9k/xo7WmfpOaq7cd9OoP9bZNLpckqdhZqIuQhVplVV5exFe/rngc1zSmzF681nVpATq2SD2Oq3HNSsWcVJKKyPIl8Pql8FX/1FxmFTjibmjbI7lckqRiZaEuQhZqlQdRFPHd1AUrn3X93dQF61y745Y1Vt7UbOv6VYsxpSQVka8GwGsXQ052aq7DGdDtOsjwDB1JKuss1EXIQq3y6JdZi/KfdT2N0VPmsK4/JlrWq8JBbeNyvcMWNXwcl6TSa+o38Sngs39KzW2xKxz9BNRsklgsSVLRs1AXIQu1yrvp87N5+9v4WdefTppFzjoex9W4RkV6d2jKOfts7aO4JJVO2fNg6Dkw4ZXUXKXa0ONh2Hr/5HJJkoqUhboIWaillHmLl/P+99N4a9w0Ppg4gyXLc/+y5oidG3Pr0TuRkZ6WQEJJ2kxRBJ/eC+9cCdGKP+MC7P0P2PufkObjBSWprNmcQu1zcSQVWI3KmRy1y5YctcuWLFmWy4c/zOCt8VN5b8J05i1ZDsDQr/9geW4ed/behUxLtaTSJgTofC5s0R5eOAkW/AlE8MFN8Ovn0OMRqFI36ZSSpBLCv+1K2iSVstI5sE1Dbuu1M19esT/9OjVbue31b6Zy9tOjWZrz1yPYklQqNNsdzvgQWuyVmvtpGDywZ1ysJUnCQi2pEGSmp3HtEW04uUuLlXPvfDuNM/uPInstp4VLUqlQtT70GwJ7XZqaW/AHPH4wjLyfdd6xUZJUblioJRWKEAL/ObQ1Z+7dcuXcsO9ncOqTX7JkmaVaUimVlg77XgF9noeKNeO5vBx48zJ4/kTInp9kOklSwizUkgpNCIF/HtSK8/fdeuXcxz/O5KQnPmfR0pwEk0nSZtq2W3wKeONdUnPfDoGH94Fp4xOLJUlKloVaUqEKIXBRt1ZcfMC2K+dG/jSbEx77nAXZyxNMJkmbqVYzOPkt2PWU1NysH+Hh/WDMs8nlkiQlxkItqUict982/Ovg7VaOv/xlDv0e/Xzl3cAlqVTKqACH3gbdH4bMyvFczhIYfAa8cgEsz042nySpWFmoJRWZM/ZuyZWHbr9y/PWvcznukZHMXbwswVSSVAh27AWnDYO6qbNxGPUEPNYN5kxOKpUkqZhZqCUVqZP3aMF/j2y7cjzu9/n0fmgksxYuTTCVJBWC+tvBae9Dm+6puT/HwIN7wfdvJJdLklRsLNSSily/Ts24qccOhBCPv5u6gN4PjWT6Ak+NlFTKVagGPR+Dg2+GtMx4LnseDOwNr/8DlsxNNJ4kqWhZqCUVi2N2a8qtR+9EWn6p/mH6Qno/OJKp8yzVkkq5EKDj6XDym1B9y9T85w/C3e1h9FOQl5dcPklSkbFQSyo23dttyR29dyE9v1X/NHMRxzz0Kb/PXZJwMkkqBFvuGj9aa+sDUnOLZ8LL58Ej+8FvXyaXTZJUJCzUkorV4Ts15p5jdyEjv1T/Mmsxxzz4Kb/OXpxwMkkqBFXqwHHPw9FPrH60+o/RcakecjYsnJ5YPElS4bJQSyp2B+/QiPv7ticrPf4j6Lc5SzjmwU+ZPHNRwskkqRCEAG2OgnM/h73+AekVUtu+fjo+DfzTeyHXxwhKUmlnoZaUiAO2b8BDx7cnKyP+Y+iPedn0evBTfpy+MOFkklRIsqrAvpfDOZ9Bq0NS80vnw1v/hvu7wKRhyeWTJG02C7WkxHRtVZ/HTtiNipnxH0XTFyyl90Of8v3UBQknk6RCVLsFHPsM9H0R6mydmp/5PfQ/Ep7rC3N+SSyeJGnTWaglJWqPberyxEkdqJyVDsDMhcs49uGRfPvH/ISTSVIh23p/OOtTOOC/kFU1NT/hFbi3Awy/EZZ7k0ZJKk0s1JIS12mrOjx1cgeqVsgAYPaiuFSP/W1ussEkqbBlZEGX8+G8UbBj79R8TjYMvwHu6QDfvgxRlFxGSVKBWagllQi7Nq/NgFM7Uq1iXKrnLVnOcQ9/xugpcxJOJklFoFpD6P4gnPw2NNopNT9vCgzqF58KPv27xOJJkgrGQi2pxNi5SU0GntaJmpUzAViwNId+j3zGF5NnJ5xMkopI045w2jA49A6oVDs1/9NweKALvPlvyJ6XVDpJ0gZYqCWVKG23qMHA0zpRp0oWAIuW5XL8o58zYtLMhJNJUhFJS4ddT4LzR0OH0yHk//UsLwdG3hs/ZuurAZCXl2xOSdJfWKgllTitG1Xn2dM7Ubdq/OzWJctzOenxL/hw4oyEk0lSEapUC/52M5zxETTbIzW/aAYMPQcePQB+H5VcPknSX1ioJZVI2zSoxnNndKJB9bhUL83J49SnvmTYd9MTTiZJRaxhWzjxVej5GFTfIjX/+5fw8H4w9FxY6D8wSlJJYKGWVGK1rFeVQWfszhY1KwGwLCeP0/t/yVvjpyacTJKKWAjQtgec+wXseTGkZ+VviOCr/vFp4CPvh9zlicaUpPLOQi2pRGtWpwrPnt6JJrXjUr08N+Kcp0fz2tg/E04mScUgqwrsdyWc8xlse3Bqfuk8ePMyeGBP+OmD5PJJUjlnoZZU4jWpXZnnTt+dFnWrAJCTF3HewNEM/fr3hJNJUjGpvRX0eRaOewFqt0zNz5gATx0Og46Hub8ml0+SyikLtaRSoXHNSjx7eida1otLdV4EFz73Nc9/6V8gJZUj2xwAZ4+E/a+BrKqp+W+Hwj27wfCbYPmS5PJJUjljoZZUajSoXpFnT9+dVg2qARBFcOkLY3nmsykJJ5OkYpSRBXtcCOd+CTsek5rPWQLD/wf3doAJr8Z/SEqSipSFWlKpUq9aBQae3ontG1VfOffvwd/w1KeTkwslSUmo3gi6PwQnvwUNd0jNz50Czx0HA7rDjInJ5ZOkcsBCLanUqV0li2dO68iOW9ZYOXfl0PE88tFPCaaSpIQ07QSnfwCH3BY/y3qFSe/D/bvDW5dD9vzk8klSGWahllQq1aycxYBTO7JL05or5657bQL3Df8xuVCSlJS0dNjtFDhvNOx2KoT8v+Ll5cCn98A9u8LXAyEvL9mcklTGWKgllVrVK2bS/5SOdGhee+Xc/735PXe++wOR1w5KKo8q14ZDbo2PWDftnJpfOA2GnAmPHQh/fJVcPkkqYyzUkkq1qhUyeOLk3dh9qzor525/dyK3vj3RUi2p/Gq0I5z0OvR4FKo1Ss3/9jk8tA+8fD4smplcPkkqIyzUkkq9ylkZPHbibuy5Td2Vc/cM+5Eb3vjOUi2p/AoBdugZ3w18j79Delb+hghGPwl3t4PPHoTcnERjSlJpZqGWVCZUykrn4eN3Zd/t6q+ce+jDn7jmlW8t1ZLKtwpVYf+r4+dXb3Ngaj57HrzxD3hwT/j5o8TiSVJpZqGWVGZUzEzngb7t6bZ9g5VzT4yYzBVDxpGXZ6mWVM7VaQnHDYI+g6D2Vqn56d/Ck4fC8yfCvN8SiydJpZGFWlKZkpWRxr3HteOQHVPXDD792RQue2ksuZZqSYJtD4yPVu93FWRWSc2PHwz37AYf3gzLs5PLJ0mliIVaUpmTmZ7GncfszJE7N145N+jL37jk+THk5PrIGEkiowLseRGc+wW07ZmaX74Y3r8O7usI370OXjIjSetloZZUJmWkp3Frr53p2X7LlXODv/qdC5/7muWWakmK1dgCej4KJ70BDXZIzc+ZDM8eC0/3hJk/JBZPkko6C7WkMis9LfB/PXakT8emK+deHfsn5z4zmmU5lmpJWqlZZzh9OPztFqhYMzX/47tw3+7w9n9g6YKk0klSiWWhllSmpaUFrj+yLSd2br5y7q3x0zhrwCiyl+cmF0ySSpr0DOhwGpz/Fex6MhDi+bzlMOIuuLs9jHnW08AlaRUWakllXgiBqw7bntP2bLFy7r3vpnN6f0u1JP1F5dpw6O1wxgfQpFNqfuE0GHwGPHYg/PF1YvEkqSSxUEsqF0II/PtvrTlnn5Yr5z6cOIOTn/iCxctyEkwmSSVUo53g5Deh+8NQtWFq/tfP4KGu8MqFsGhWUukkqUSwUEsqN0IIXNKtFRfuv83KuRGTZnHiY1+wcKmlWpL+IgTYsRec9yV0uQDSMvM3RDDqcbi7HXz+MOT6Z6ik8slCLalcCSFw4f7bcumBrVbOfT55Nsc/+hnzs5cnmEySSrAK1eCAa+HsT2Hr/VPz2XPh9Uvgob1h8ieJxZOkpFioJZVL5+yzNZf/rfXK8egpc+n3yGfMW2yplqR1qrsNHPcCHPss1Gqemp82Dp74G7xwMsz7PbF4klTcLNSSyq3T9tqKqw/bfuV4zG/zOPbhkcxetCzBVJJUwoUArQ6Gsz+Dff8DmZVT28a9CPfsCh/dCjlLk8soScXEQi2pXDuxSwv+d9QOK8ff/jmfYx8aycyF/kVQktYrsyLsdQmc+wW06Z6aX74Y3rsW7u0I37+ZXD5JKgYWaknlXp+OTfm/njsS8h+5+v20BfR+aCTT52cnG0ySSoMaW8LRj8OJr0H9Nqn5OT/DwGPg6aNh1qTk8klSEbJQSxLQa9cm3NZrJ9LyS/WP0xdyzEMj+XPekmSDSVJp0XwPOONDOPhmqFgjNf/D2/HR6neugqULk8snSUXAQi1J+Y7aZUvuOnYX0vNb9c8zF3HMgyP5bc7ihJNJUimRngEdT4fzvoL2JwL5/0qZtxw+uSO+vnrs8xBFCYaUpMJjoZakVRy6Y2Pu7dOOzPT4L4FTZi/mmAdH8susRQknk6RSpEodOOxOOH0YbNkhNb/gT3jpVHj8YPhzbHL5JKmQWKglaQ0HtW3IA33bk5Ue/xH5+9wlHPPgSH6a4amKkrRRGu8CJ78FRz0IVRuk5qd8Gj+7+tWLYPHs5PJJ0mayUEvSWuzXugGPnLArFTLiPyanzs/mmIdG8sO0BQknk6RSJi0NduoN534Jnc+DtIx4PsqDLx+Fu9vBF49AXm6yOSVpE1ioJWkd9tq2Ho+fuBuVMtMBmLFgKb0fGsmEP+cnnEySSqGK1aHbdXDWp9Byv9T8kjnw2sXxEetfPk0unyRtAgu1JK1H563r8uTJHaiSFZfqWYuWcezDIxn3+7yEk0lSKVVvW+j7IvR+Bmo2S81P/QYePwhePA3m/5FcPknaCBZqSdqADi1q89QpHalWIT5Nce7i5fR5eCRf/zo32WCSVFqFANsdAud8DvtcARmVUtu+GQR37wof3w45S5PLKEkFYKGWpAJo36wWA07tSPWKcamen51D30c+Y9Qv3kxHkjZZZkXY+1I49wvY/sjU/PJF8O7VcFc7GHEPZHupjaSSqdAKdQhhyxDCYyGEP0IIS0MIk0MId4QQam3GPvuFEKL816lr2d58le1rez27eb8qSUrZqUlNBp7eiVqVMwFYuDSHfo9+zmc/zUo4mSSVcjWbQK8n4fiXoV7r1Pz83+Dty+H2tvDOlZ4KLqnEKZRCHUJoCYwCTgI+B24HfgIuAD4NIdTZhH02Ae4GCvKcmjHANWt5vbCx3ytJ69OmcQ2ePX136lbNAmDxslxOePxzPvlxZsLJJKkM2GpvOPNjOOgmqFIvNb90HnxyJ9yxIww+C6Z9m1xGSVpFYR2hvg+oD5wfRdGRURRdFkXRvsTFuhVw/cbsLIQQgMeBWcADBfjI11EUXb2Wl4VaUqFr1bAaz57eifrVKgCQvTyPk5/4guHfT084mSSVAekZ0OlMuHAcHHYn1Nk6tS1vOYx5Bu7fHQb0gJ8+gChKLqukcm+zC3UIYSugGzAZuHeNzVcBi4B+IYQqG7Hb84F9iY94L9rcjJJU2LauX43nztidRjUqArA0J4/TnxrFu99OSziZJJURmRWh/YlwzhfxHcGb7r769h/fhacOjx+39c0LkJuTSExJ5VthHKHeN//97SiK8lbdEEXRAuAToDLQqSA7CyG0Bm4E7oyi6MMCZmgcQjgjhPDv/PcdC/g5SdpkLepWYdAZu7NFzfjutMty8zhzwCjeHPdnwskkqQxJS4vvCH7ym3DKu9D6cCCktv85Bl48Be7aBUbeD0sLcrWgJBWOwijUrfLfJ65j+w/579tuaEchhAygPzAF+PdGZDiA+NTw6/Pfx4QQhoUQmhZ0ByGEUWt7AdttRA5J5UyT2pV57oxONK1dGYCcvIhznvmKl8d44xxJKnRNdoNj+sN5o2DXUyCjYmrbvCnw5mVw+/bw7jWwYGpyOSWVG4VRqGvkv89bx/YV8zULsK8rgV2AE6MoWlKA9YuB/wLtgVr5r72BYUBX4L2NPNVckjbalrUqM+iM3dmqbvzHTW5exIXPfsVLo39LOJkklVF1WsKht8Hfx0PXf0HlVe5/mz0PPr4N7tgBhp4D079LLqekMq84nkO94pyc9d4xIoTQgfio9K1RFH1akB1HUTQ9iqIroygaHUXR3PzXh8TXdH8GbA385XFb69hX+7W9AP8UlrRBDWtU5NkzOrFN/aoA5EVw8fNjGPTFrwknk6QyrEpd6HpZfAOzQ26D2lultuUug68GwH0d4eleMPljb2AmqdAVRqFecQS6xjq2V19j3V+scqr3ROA/mxsoiqIc4JH84V6buz9JKoj61Soy8PRObNewGhD/ve0fL46l/8hfEk4mSWVcVmXY7RQ490s4ZgBs2WH17T+8BU8cAg/vC+Ne8gZmkgpNYRTq7/Pf13WN9Db57+u6xhqgav7nWwPZIYRoxYv4TuEAD+fP3VHAXDPy3z3lW1KxqVu1AgNP60SbxtVXzv1nyDge+/jnBFNJUjmRlg6tD4NT34GT34LtDmW1G5j9MRpeOAnubgefPQjLfJiMpM2TUQj7GJb/3i2EkLbqnb5DCNWALsASYOR69rEUeHQd29oRX1f9MXF5L9Dp4KTuKv5TAddLUqGoVSWLZ07txPGPf86YX+cCcO2r37I8N48z9m6ZbDhJKi+adopfM3+AT++Fr5+B3KXxtrm/wBv/gGH/g91OhY5nQNX6yeaVVCpt9hHqKIomAW8DzYFz1th8DfER4qeiKFoEEELIDCFsF0Jouco+lkRRdOraXsDL+cuezJ97bsXnQggdQwhZa2YKIewL/D1/OGBzf42StLFqVM5kwCkdaN+s1sq5G974jnve/2E9n5IkFbq628Bhd8Q3MNvrH1Ap9ecy2XPho1vg9rbw8vkwY30nVErSXxXWTcnOBqYDd4UQhoQQbgghvE9caicCl6+ydgtgAvBeIXzvTcDvIYTnQwi357/ey993BeA/URSNKITvkaSNVq1iJk+d3IEOLWqvnLvl7Ync9s5EIm+MI0nFq2o92PfyuFj/7Rao1Ty1LXcpjH4S7t0NBh4Lv3zqDcwkFUihFOr8o9S7Ak8AHYGLgZbAXcDuURTNKozvWYv+xHfz3g04jbjYbwMMAvaKoui6IvpeSSqQKhUyeOKk3eiydeqRLne99wM3vfm9pVqSkpBVBTqcBueNhqOfgMbtVt/+/evw+EHwyP7w7VDIy00kpqTSIfgXuvULIYxq165du1GjRiUdRVIplr08lzP6j+KDiTNWzp2yRwuuOKQ1IYT1fFKSVKSiCH4ZASPuholv/HV7rRaw+zmw83Hx3cQllTnt27dn9OjRo/Mfm7xRiuM51JJU7lXMTOeh49uzf+vUTW8e/fhnrnp5PHl5/sOmJCUmBGjeBfo8C+d8Drv0g/RVbtEz52d4/RK4vU18E7NFM5PLKqnEsVBLUjGpkJHOfce15+C2DVfOPfXpL/x78DeWakkqCeq1giPugQvHwZ4XQ8WaqW1LZsMHN8XF+pULYdakpFJKKkEs1JJUjLIy0rj72F04bKfGK+ee/eJXLn1hLLmWakkqGao1gP2ujG9gdtBNULNpaltONox6HO5uD88eB1M+Sy6npMRZqCWpmGWkp3HHMTvTfZctVs69OPo3Lhr0NTm5eQkmkyStpkJV6HQmnPcV9HwMGu28ysYIvnsVHusGj3aDCa94AzOpHLJQS1IC0tMCNx+9E8fs2mTl3NCv/+D8Z79iuaVakkqW9Axo2wNOHw4nvArbdFt9+6+fwXN94Z7d4MvHYPmSRGJKKn4WaklKSHpa4IbuO9C3U+pUwte/mcr1r01IMJUkaZ1CgBZ7wnHPw9kjYee+kJaZ2j57Erz6d7i9LQy/CRYV1ZNjJZUUFmpJSlBaWuC/R7TlpC7NV849MWIyg7/6LblQkqQNq98ajrwXLvwGulwIFWqkti2eCcP/F9/A7LWLYfZPicWUVLQs1JKUsBACVx66PQe1Sd39+7IXv2Hc7/MSTCVJKpDqjeCAa+Ci8XDg/6D6lqltOUvgi0fgrnbwXD/47cvkckoqEhZqSSoBQgjc0msntq5fFYClOXmcOWAUcxYtSziZJKlAKlSD3c+BC76G7o9Awx1W2RjBhJfhkf3gsYPhu9chz/tlSGWBhVqSSoiqFTJ4sF97qlbIAOC3OUs4/9mvfJyWJJUm6Zmw49Fwxkdw/FBoud/q26eMgGePhXs7wKgnYHl2IjElFQ4LtSSVIC3rVeW2XjutHH/0w0xuffv7BBNJkjZJCLBVV+j3Epz5Cex0LKRlpLbP+gFeuQDuaAsf3AyLZycWVdKms1BLUgnTrU1Dztt365Xj+4ZP4s1xfyaYSJK0WRq2haMegAvGQufzoUL11LZFM2DYdfENzF6/FOZMTiympI1noZakEujC/bdl723rrRxfPGgMP05fkGAiSdJmq7EFdPsv/H0cHPBfqNY4tW35Yvj8IbhrF3j+RPh9VGIxJRWchVqSSqD0tMBdvXehae3KACxalsvp/UexIHt5wskkSZutYg3ocj5cMAaOehAatE1ti/Jg/GB4eF94/BD4/k1vYCaVYBZqSSqhalTO5MF+7amYGf9R/dOMRVw0aAx53qRMksqGjCzYqTec+TH0fSm+5npVv3wMA4+B+zrB6P6QszSRmJLWzUItSSVY60bVuanHjivH73w7jfuG/5hgIklSoQsBtt4vviv4GR/BDr0gpKe2z/weXj4X7tgBProVlsxJLquk1VioJamEO2LnLThljxYrx7e+M5Fh309PMJEkqcg02hF6PByfDr77uZBVNbVt4TR471q4rQ28cRnMnZJcTkmAhVqSSoXLDt6Oji1qAxBFcMHAr/hl1qKEU0mSikzNJnDg9fD38bD/NVCtUWrb8kXw2f1w587wwsnwx9dJpZTKPQu1JJUCmelp3HtcOxpWrwjA/Owczug/isXLchJOJkkqUpVqwh4Xxo/cOvJ+qL99aluUC+NehIf2hicPgx/eif/VVVKxsVBLUilRt2oFHujXnqz0+I/u76Yu4F8vfUPkX54kqezLyIKd+8BZI+C4F6DFXqtv//lDeLon3N8ZvnoacpYlk1MqZyzUklSK7NykJtce0WbleOjXf/DYJ5OTCyRJKl4hwDYHwAmvwOnDoW2P1W9gNv1bGHo23LkjfHwHLJmbUFCpfLBQS1Ip07tDU47t0HTl+H+vT+DTSbMSTCRJSkTjXaDnY3D+V9DxLMisktq24E949yq4ZVsYdDxMeNXHbklFwEItSaXQ1Ydvz85NagKQmxdx7jOj+XPekmRDSZKSUasZHHwjXDQe9rsSqjZIbctdCt8OheeOi8v1y+fD5E8gLy+5vFIZYqGWpFKoQkY69/dtR92qWQDMWrSMMweMZmlObsLJJEmJqVQL9rwYLvwGDr8HGuyw+vbsuTD6SXjib/Ezrd+5CqaNTySqVFZYqCWplGpUoxL39GlHeloAYMyvc7n6Zf9iJEnlXkYFaNcPzvoYzh4Je1wENZquvmb+b/DJHfFNzO7rDB/fDnN/TSSuVJpZqCWpFOu0VR0u/1vrleOBn//KwM+nJJhIklSi1G8N+18FF4yBk96EXU+Oj2Svavp4ePdquKMtPP43+PJxWDw7kbhSaWOhlqRS7qQuzTly58Yrx1cNHc9XU+YkmEiSVOKkpUGz3eHQ2+HiiXDss9CmO2RUXH3dL5/AqxfG11sP7APjB8Ny79EhrYuFWpJKuRACN3TfkdaNqgOwLDePswaMZsYC7+YqSVqLjCxodTAc/Thc+iMc+QC03BfCKtUgbzl8/xo8fyLcvA0MORsmDYM879UhrcpCLUllQKWsdB7s254alTIBmDo/m3OeGc3yXO/iKklajwrVYOdjod9guOg7OOhGaNxu9TXLFsDXT0P/I+G21vDmv+GPryCKEokslSQWakkqI5rWqcydvXcmxPco4/OfZ3PD698lG0qSVHpUawCdzoLTh8G5o2Dvy6D2VquvWTgNRt4LD3WFe3aDD/4PZv+USFypJLBQS1IZ0rVVfS7p1mrl+LFPfmbo178nmEiSVCrV3Rr2+RecNxpOfR86nglV6q2+ZtYPMOx6uGsXeGR/+OwhWDgjmbxSQizUklTGnLV3S7pt32Dl+J8vjuXbP+YnmEiSVGqFAFu2h4Nvik8J7/si7NgbMqusvu63L+CNS+HWVjCgJ4wdBEsXJpNZKkYWakkqY9LSArf22omW9eK/7GQvz+OMAV8yd/GyhJNJkkq19AzYen/o/mB8M7Mej8K2B0FaRmpNlAs/vgMvnQa3bAMvngoT34bc5cnlloqQhVqSyqBqFTN5sN+uVK0Q/yXn19lLOP/Zr8nN8wYykqRCkFUZdugJfZ6LH8N1yK3QpNPqa5Yvhm+eh2eOjo9cv3YJ/Pq5NzNTmWKhlqQyauv6Vbnl6J1Wjj+cOIPb35mYYCJJUplUpQ7sdiqc8hZcMAb2/Q/U2271NYtnwRcPw6MHwF07w/vXwQz/m6TSz0ItSWXYQW0bcs4+LVeO7xn2I2+Nn5pgIklSmVarOex1CZw9Es74CDqfB9Uar75mzmT48Ga4dzd4cC8YcQ/M/zOJtNJms1BLUhl30QGt2Gvb1J1ZLx40hh+ne6MYSVIRCgEa7QjdroO/j4MTXoFd+kGFGquv+3MMvH15/HzrJw+HrwZA9rxkMkubwEItSWVcelrgrt4706R2JQAWLs3hjP5fsiDbG8RIkopBWjq02AuOuAcumQi9+sN2h0J61iqLIvj5Axh6Dty8DQw6Hia8CjlLE4stFYSFWpLKgZqVs3iw765UzIz/2J80YxGXPD+GyBvDSJKKU2ZF2P5w6P10XK4Puwua7wmE1JrcpfDtUHjuOLhlW3j5fJj8MeTlJRZbWhcLtSSVE9s3rs6N3XdcOX5r/DTuGz4pwUSSpHKtUi1ofwKc+Cr8fTwccC002GH1NdlzYfST8MQhcMcO8M6VMHVcInGltbFQS1I5cuQuW3BSl+Yrx7e8/T0fTJyRXCBJkgBqbAFdLoCzPo5vaLbHRVCj6epr5v8Gn9wJD3SB+3aHj26Dub8mk1fKZ6GWpHLm339rTYcWtYH4UaDnD/yKX2cvTjiVJEn56reG/a+KH8F10puw68nx0exVTf8W3rsG7mgLjx0MXz4Gi2cnk1flmoVaksqZzPQ07u3TjgbVKwAwb8lyTu8/iiXLchNOJknSKtLSoNnucOjtcPFEOPZZaNMdMiqtvm7KCHj17/H11gOPhXEvwfIlyWRWuWOhlqRyqF61Ctzftz2Z6fFNYCb8OZ9/vTTWm5RJkkqmjCxodTAc/Thc+gMc+QC03BfCKnUmbzl8/zq8cFJ8p/DBZ8Gk9yHPfzBW0bFQS1I51a5pLa45vO3K8ZCv/+CJEZOTCyRJUkFUqAY7Hwv9BsNF38FBN0LjdquvWbYAxjwD/Y+Kn3H95r/g99HxtU5SIbJQS1I51qdjU3rv1mTl+PrXJvDZT7MSTCRJ0kao1gA6nQWnD4PzRsPel0HtrVZfs3AajLwPHt4H7tkNht8Es39KJq/KHAu1JJVzVx/ehp22rAFATl7EOc+MZuq87IRTSZK0keq0hH3+FRfrU9+HjmdClXqrr5n1Awz/H9y1Czy8H3z2ICz0aRfadBZqSSrnKmamc3/f9tSpkgXAzIXLOHPAKJbmeM2ZJKkUCgG2bA8H3xSfEt73RdixN2RVXX3d71/CG/+AW1vBgB4w5jlYujCZzCq1LNSSJBrXrMQ9fdqRnhbfpOzrX+dyzSvfJpxKkqTNlJ4BW+8P3R+ES36AHo/CtgdBWkZqTZQLP74Lg0+HW7aBF06BiW9B7vLkcqvUsFBLkgDYvWUd/nXwdivHz3w2hee+mJJgIkmSClFWZdihJ/R5Ln4M1yG3QpNOq69ZvhjGvQDP9IqPXL92MUz5DPLyksmsEs9CLUla6ZQ9WnDYTo1Xjv8zZDxf/zo3uUCSJBWFKnVgt1PhlLfggrGw73+g3narr1k8C754BB7rBre3gTf+Cb+M8DFcWo2FWpK0UgiBm3rswHYNqwGwLDePswaMYubCpQknkySpiNRqBntdAmePhDM+gs7nQbXGq69Z8Ad89gA8fnD8GK7XLoafP4TcnGQyq8SwUEuSVlM5K4MH+7WnesX4+rI/52Vz7jOjycn1dDdJUhkWAjTaEbpdB38fBye8Au2Oh0q1V1+3cFp85PrJw+LTwl+5ECYNs1yXUxZqSdJfNKtThTuP3YUQ36OMkT/N5sY3vks2lCRJxSUtHVrsBYffHd/MrN8QaH8SVK67+rrFM2HU49D/yPiGZkPPhR/ehZxlSaRWAizUkqS12qdVfS7af9uV40c+/pmhX/+eYCJJkhKQngEt94HD7oBLJsIJr8Jup0HVBquvWzIbvuoPT/eAW7aGwWfFdwvP8bKpsixjw0skSeXVOftszZjf5vHuhGkA/PPFsWzboBqtG1VPOJkkSQlIS4cWe8avg2+CXz+Hb4fGrwV/pNZlz4Mxz8SvCtWh1cGw/RHQcl/IrJRcfhW6EEVR0hlKtBDCqHbt2rUbNWpU0lEkKRHzs5dz5D2f8NPMRQA0rV2ZV87dgxqVMxNOJklSCZGXB79/mSrX835d+7qsqrDtgXG53vqA+FFeSlz79u0ZPXr06CiK2m/sZz3lW5K0XtUrZvJgv/ZUyUoHYMrsxVzw3Ffk5fkPspIkAZCWBk06wIHXw4XfwGnvQ5cLoGaz1dctWwjjXoRBx8PNLeP3cS/C0oXJ5NZms1BLkjZomwbVuOXonVaOh38/gzvenZhgIkmSSqgQYIv2cMC1cMEYOP0D2OMiqL3V6uuWL46PZr9wclyunz0Oxj4P2fOTya1N4jXUkqQCOXiHRpzVtSX3D58EwF3v/8gOW9bkgO0bbOCTkiSVUyFA453j135XwrTx+aeFD4GZq/zDdE42fPdq/ErPgpb7xaeFtzoYKtVMJrsKxGuoN8BrqCUpJTcv4sTHP+ejH2YCUK1CBkPO7ULLelUTTiZJUikz/btUuZ7+7drXpGXCVl3jcr3dIVC59trXabNszjXUFuoNsFBL0urmLFrGoXd/zO9zlwCwdf2qDDmnC1UreNKTJEmbZMZEmJB/Q7Op36x9TVpG/Gzs7Y+A7Q6FKnXXvk4bzZuSSZKKTa0qWTzYrz0VMuL/hPw4fSGXPj8G/4FWkqRNVG9b2OtSOPNjOG807H81NN5l9TV5OTDpfXjlArhlG3jyMPjiEVgwLZHIilmoJUkbre0WNbih+w4rx2+Mm8oDH/yUYCJJksqIOi1hj7/D6cPjm5p1uw623G31NVEe/PwhvHYx3NoKHj8EPnsI5v+ZSOTyzEItSdok3dttyYmdm68c3/zWd3z0w4zkAkmSVNbUag6dz4NT34W/j4cDb4AmndZYFMEvH8Mbl8Jt28GjB8Kn98G835JIXO54DfUGeA21JK3b8tw8+jw8ki8mzwGgZuVMXjl3D5rUrpxwMkmSyrD5f8CEV+Nrrn/5BFhHp9ti1/ia6+2PgFrN1r5GXkMtSUpGZnoa9x7XjvrVKgAwd/FyzhwwiuzluQknkySpDKveGDqeDie9Bhd/D4fcFt+wLKxR737/Et75D9y5IzzUFT6+HWZNSiRyWWWhliRtlvrVKnJ/3/ZkpgcAxv8xn38P/sablEmSVByqNYDdToETXoFLfoDD7oSW+0JIX33dH1/Bu1fD3e3ggT3gw5th5g+JRC5LLNSSpM3WvlktrjqszcrxS6N/56lPf0kwkSRJ5VCVutD+ROg3GC79EY64F7bpFj/PelVTv4H3r4N7doX7dofhN8XPxdZG86GhkqRCcVzHpoz9bS6DvoxvgvLfV79l+8bV2a157YSTSZJUDlWuDbv0jV9L5sL3b8TXXE96D3KXpdZN/zZ+Df8f1G2Vuua6QRsIIbH4pYU3JdsAb0omSQWXvTyXXg9+ytjf5gFQr1oFXj1vDxpUr5hwMkmSBED2fJj4Fnw7BH58F3Ky176udstUuW60U5ku196UTJJUIlTMTOf+vu2pXSULgBkLlnLWgFEsy8lLOJkkSQKgYnXY8Wjo/TRcOgl6Pg7bHwmZazyhY/Yk+Pg2eGhvuGtneOdK+H0UeEB2NRZqSVKh2qJmJe45dhfS8v8he/SUuVz76vhkQ0mSpL+qUBXadodeT8bXXPd6Ctr2gKyqq6+bMxk+uRMe3hfu2AHeuhx+/Rzy/AdzC7UkqdB13rou/zq49crxgJFTGPTlrwkmkiRJ65VVJT69u+djcbnu/QzseAxUqL76unm/wqf3wKMHwO1t4I1/wi8jIK98PjLTm5JJkorEqXu2YMxvc3l17J8AXDFkHNs1rMaOW9ZMNpgkSVq/zEqw3SHxK2cp/DQcxg+B71+D7HmpdQv+gM8eiF9VG0Drw+NS3qwzpKWva+9lijcl2wBvSiZJm27xshyOuncE309bAEDjGhV55bw9qFO1QsLJJEnSRstZBj9/GN/Q7LtXYcmcta+rUg+2OzQu1833hPSSfRzXm5JJkkqkylkZPNivPdUqxv8h/WNeNucN/IqcXK+5kiSp1MnIgm32hyPugUt+gH5DoP1JULnu6usWzYBRj0P/I+GWbWDoufDDu2XyhmYWaklSkWpetwp39t555dM2Rkyaxf+99X2yoSRJ0uZJz4SW+8Bhd8DF38MJr8Bup8anfq9qyWz4qj+89//t3XmclWX9//HXNTvrsO8gO7ggCMimgmDua2VqpVma5Vdbba9vpS2/sr7uVmpWZpm5pKlp5oIKCKKyiiCL7Pu+Mwwzc/3+OIfjQDMyDDNzZnk9H4/7cT/OdS/nc+CCM++57/u6bqyXU28ZqCVJ1W5c//Z87bS+qdf3TVjMv2avTmNFkiSpymRmQY/RcO4tcMM8+Ny/Yfi10KzTB/scc2H66qtGtftmdklSvfHlcb15Z9VWXpq3HoBvPz6bPu2a0a9DszRXJkmSqkxGZmJQsqNGwZm/gFVvw9yn4NiPpbuyauEVaklSjcjICNx66SB6tGkCwO7CYr74l7fZtmdfmiuTJEnVIiMDug6DM38OrXulu5pqYaCWJNWY5nnZ3HvFEBrnJKbSWLppN19/ZCYlJfVvkBJJklT/GaglSTWqb/tm/PriganX499bzx0vL0xjRZIkSZVjoJYk1bhzj+/IF8f0TL2+4+WFvDxvXRorkiRJOnwGaklSWnzrjH6c1Lt16vXXHpnJko270liRJEnS4TFQS5LSIiszg7s+OZjOLRoBsKOgiC/+5W127S1Kc2WSJEkVY6CWJKVNqyY53HP5EHKyEl9HC9bt5Nv/mE2MDlImSZJqPwO1JCmtBnTJ5/99dEDq9bOz13DfhMVprEiSJKliDNSSpLS7eEgXPjPyqNTrm59/j9cXbUxjRZIkSYdmoJYk1Qr/e+4xDD2qJQAlEb70t+ms3LI7zVVJkiSVz0AtSaoVcrIy+O2nB9O2WS4AW3bv49q/TqNgX3GaK5MkSSqbgVqSVGu0a57H7z49mKyMAMCcVdv533/OcZAySZJUKxmoJUm1ytDurfjx+cekXj8+bSV/nbo8jRVJkiSVzUAtSap1Lh9xFB8f3CX1+ifPvMu0ZZvTWJEkSdJ/M1BLkmqdEAI//+hxHNe5OQD7iiPX/nU667cXpLkySZKkDxioJUm1Ul52JvdcPoSWjbMB2LBjL9c9NJ3CopI0VyZJkpRgoJYk1VpdWjbmrk8OJjlGGW8v28LPnp2b3qIkSZKSDNSSpFrt5D5t+M5Z/VOvH5yyjMenrUxjRZIkSQkGaklSrfeF0T05d0DH1OsfPPkOc1ZtS2NFkiRJBmpJUh0QQuBXFx9P3/ZNAdhbVMIX/zKNzbsK01yZJElqyAzUkqQ6oUluFvdeMZRmuVkArNq6h688PIOiYgcpkyRJ6WGgliTVGT3aNOH2ywalXk9atJFfvzA/fQVJkqQGzUAtSapTTju6PV89rU/q9b2vLebZ2WvSWJEkSWqoqixQhxC6hBD+GEJYHULYG0JYGkK4PYTQ8gjOeUUIISaXz3/IfqNCCM+FEDaHEHaHEGaHEL4WQsis7HtLkmqvr57Wh3H926Vef+vxWSxYtyONFUmSpIaoSgJ1CKEXMA34HPAmcBuwGPgqMCWE0LoS5+wK3AXsPMR+FwITgNHAk8BvgJxkDX8/3PeVJNV+GRmB2y4dxFGtGwOwu7CYL/5lGtsL9qW5MkmS1JBU1RXq3wLtgK/EGC+KMX43xjiORKjtB/z8cE4WQgjAn4BNwD0fsl9z4PdAMXBqjPHqGOO3gEHAFODiEMJllfg8kqRaLr9RNvddMZRG2YmbkZZs3MUNj8ykpCSmuTJJktRQHHGgDiH0BM4AlpK4Olzaj4FdwBUhhCaHcdqvAONIXPHe9SH7XQy0Bf4eY3x7f2OMsQD43+TL/zmM95Uk1SH9OjTj1584PvX6pXnrufuVRWmsSJIkNSRVcYV6XHL9QozxgLlLYow7gNeBxsCIipwshHA08EvgjhjjhAq+9/NlbJsA7AZGhRByK/C+08pagP4VqVuSlB7nHd+JL4zumXp920sL+Nfs1WmsSJIkNRRVEaj7JdcLytm+MLnue6gThRCygL8Ay4HvH8l7xxiLgCVAFtDz4O2SpPrj22f2Y1SvxHAdMcJXHp7Bo2+tSHNVkiSpvquKQJ2fXG8rZ/v+9hYVONePgBOAz8YY99Tke8cYh5S1AO9VoA5JUhplZWZw1ydPoGebxNNFJRG+/Y/Z3D9xcZorkyRJ9VlNzEMdkusPHSUmhDCMxFXpW2KMU2ryvSVJdV/rprk8eu1Iju3UPNX2s2fnccsL84nRrwFJklT1qiJQ778KnF/O9uYH7fdfSt3qvQD4YU2+tySp/mjTNJeHvzCCE7u3TLXdNX4RNz79rqN/S5KkKlcVgXp+cl3eM9J9kuvynrEGaJo8/migIIQQ9y8kRgoH+H2y7faKvHcypPcAikjMiS1JagCa52Xz4FXDObVf21Tbn6cs4xuPzWJfccmHHClJknR4sqrgHK8k12eEEDJKj/QdQmgGnATsAd74kHPsBf5QzrbBJJ6rnkQiQJe+HXw88GngLODhg44bTWJ08Qkxxr0V+yiSpPqgUU4m910xlBsencm/Zq8B4MkZq9hRsI+7PzWYvOTc1ZIkSUfiiK9QxxjfB14AugPXH7T5JqAJ8GCMcRdACCE7hNA/hNCr1Dn2xBg/X9YCPJ3c7c/JtkdKnf9xYCNwWQhh6P7GEEIe8LPky98d6WeUJNU9OVkZ3HHZCXxyWLdU20vz1vPZP73Jzr1FaaxMkiTVF1U1KNl1wHrgzhDCP0MIvwghjAe+TuJW7x+U2rczMA94+UjfNMa4HbgGyAReDSHcH0L4FTATGEkicD9S/hkkSfVZZkbg/330OK4dk/odLm8s3synfv8Gm3cVprEySZJUH1RJoE5epR4KPAAMB74B9ALuBEbGGDdVxfuU897/BMYAE4CPA18G9gE3AJdFh3aVpAYthMB3z+7Pd87qn2qbvXIbl947hbXbCtJYmSRJquuCefPDhRCmDR48ePC0adPSXYok6Qg9NHUZ//vPOez/6uvSshF/vXo43ZPzV0uSpIZnyJAhTJ8+fXqMccjhHlsT81BLklQrfHr4Udxx2QlkZQQAVm7Zw8X3TGHemu1prkySJNVFBmpJUoNywcBO/P4zQ8nNSnwFbty5l0vvncK0ZVvSXJkkSaprDNSSpAZnbP92/OXq4TTLTcweub2giMvvn8rEhRvSXJkkSapLDNSSpAZpWI9WPPyFEbRukgPAnn3FXP3A2zw/Z02aK5MkSXWFgVqS1GAd1zmfR68dSaf8PAAKi0u47qHpPPr2ijRXJkmS6gIDtSSpQevVtimP/c8oeiZH+i6J8O3HZ3P/xMVprkySJNV2BmpJUoPXuUUjHr12JMd0bJ5q+9mz87j1hfk4vaQkSSqPgVqSJKBN01we/sIITuzeMtV25/hF3PTMXEpKDNWSJOm/GaglSUrKb5TNg1cNZ0zftqm2ByYv5ZuPzaKouCSNlUmSpNrIQC1JUimNcjL5/WeGcu7xHVNtT8xYxbV/nU7BvuI0ViZJkmobA7UkSQfJycrgzstO4JPDuqbaXpq3js/96S127i1KY2WSJKk2MVBLklSGzIzA//voAL44pmeqbcriTXz692+wZVdhGiuTJEm1hYFakqRyhBD43tlH8+2z+qXaZq3cxiX3TmHttoI0ViZJkmoDA7UkSYdw3am9+dlFxxFC4vXC9Tv5xL2TWbZpV3oLkyRJaWWgliSpAi4fcRS3XzqIrIxEql6xeQ8X3zOF99ZuT3NlkiQpXQzUkiRV0IWDOnPfZ4aQm5X4+tywYy+X3vsG05dvSXNlkiQpHQzUkiQdhnH92/PgVcNolpsFwLY9+7j8/qlMWrgxzZVJkqSaZqCWJOkwDe/Zmoe/MIJWTXIA2F1YzFUPvMXzc9amuTJJklSTDNSSJFXCcZ3zefSLI+mYnwdAYXEJ1z00jcfeXpHmyiRJUk0xUEuSVEm92zXlsWtH0qNNEwBKInzr8dn8cdKSNFcmSZJqgoFakqQj0KVlYx794kiO6dg81faTf83l1hcXEGNMY2WSJKm6GaglSTpCbZvl8vAXRjD0qJaptjtfXshNz8ylpMRQLUlSfWWgliSpCuQ3yuYvVw9nTN+2qbYHJi/lm4/Poqi4JI2VSZKk6mKgliSpijTKyeT3nxnKuQM6ptqemL6K6x6aTsG+4jRWJkmSqoOBWpKkKpSTlcGdnzyBy07smmp7Ye46rnrgLXbuLUpjZZIkqaoZqCVJqmKZGYFffGwAXxzdM9U2+f1NfPr+qWzZVZjGyiRJUlUyUEuSVA1CCHzvnKP59ln9Um2zVmzl0vumsG57QRorkyRJVcVALUlSNbru1N789KLjCCHxesG6nVx8z2SWb9qd3sIkSdIRM1BLklTNrhhxFLdfOoisjESqXrF5DxffM5n5a3ekuTJJknQkDNSSJNWACwd15r7PDCE3K/HVu37HXi65dwozlm9Jc2WSJKmyDNSSJNWQcf3b8+erhtE0NwuAbXv28en7p/L6oo1prkySJFWGgVqSpBo0omdrHr5mBK2a5ACwu7CYz/3pLZ6fszbNlUmSpMNloJYkqYYN6JLPo18cScf8PAAKi0u47qFpPD5tZZorkyRJh8NALUlSGvRu15THrh1J99aNASiJ8M3HZvGn15ekuTJJklRRBmpJktKkS8vGPHbtKI7u2DzVdtMzc7n9pQXEGNNYmSRJqggDtSRJadS2WS5//8IIhh7VMtV2+0sLuemZuZSUGKolSarNDNSSJKVZfqNsHrx6GKP7tk21PTB5Kd96fDZFxSVprEySJH0YA7UkSbVA45ws7v/MUM4d0DHV9o/pK7nuoekU7CtOY2WSJKk8BmpJkmqJnKwM7vzkCVw6tGuq7YW567j6z2+xa29RGiuTJEllMVBLklSLZGYEfvnxAXxhdM9U2+uLNvHp+6eydXdhGiuTJEkHM1BLklTLhBD43tn9+daZ/VJtM1ds5ZJ7p7Bue0EaK5MkSaUZqCVJqoVCCFw/tjc/veg4Qki0LVi3k0/cM4Xlm3antzhJkgQYqCVJqtWuGHEUt186iMyMRKpevnk3F98zmQXrdqS5MkmSZKCWJKmWu3BQZ+67Ygi5WYmv7fU79nLJvVOYuWJreguTJKmBM1BLklQHnHZ0e/581TCa5mYBsHX3Pj79+zeYvGhjmiuTJKnhMlBLklRHjOjZmoevGUHLxtkA7Cos5rN/eov/vLs2zZVJktQwGaglSapDBnTJ57FrR9KheR4AhcUlXPfQdP4xbWWaK5MkqeExUEuSVMf0bteMx64dSffWjQEoLol847FZPPD6kjRXJklSw2KgliSpDuraqjGPXjuS/h2apdpufGYud7y0kBhjGiuTJKnhMFBLklRHtWuWxyNfGMmQo1qm2m57aQE//dc8SkoM1ZIkVTcDtSRJdVh+42z+cvUwTunTJtX2x9eX8O1/zKaouCSNlUmSVP8ZqCVJquMa52Rx/5VDOWdAh1Tb49NWcv3fprO3qDiNlUmSVL8ZqCVJqgdyszK565ODuXRo11Tbf95dx9UPvM2uvUVprEySpPrLQC1JUj2RmRH45ccHcM0pPVJtkxZt5PI/TGXr7sI0ViZJUv1koJYkqR4JIfD9c47mW2f2S7XNWL6VS+99g/XbC9JYmSRJ9Y+BWpKkeiaEwPVje/PTC49Ntc1ft4OL75nCis2701iZJEn1i4FakqR66oqR3bn90kFkZgQAlm/ezcd/N5kF63akuTJJkuoHA7UkSfXYRSd05t7Lh5CTlfjKX79jL5fcO4VZK7amtzBJkuoBA7UkSfXcR45pz58/N4ymuVkAbN29j0/9/g0mv78xzZVJklS3GaglSWoARvZqzd+uGU7LxtkA7Cos5rN/eosX3l2b5sokSaq7DNSSJDUQx3dpwaNfHEmH5nkAFBaV8D8PTeeJ6SvTXJkkSXWTgVqSpAakT/tmPHbtSI5q3RiA4pLIDY/O4oHXl6S5MkmS6h4DtSRJDUzXVo157NqR9O/QLNV24zNzufPlhcQY01iZJEl1i4FakqQGqF2zPB75wkgGd2uRarv1xQX87Nl5hmpJkirIQC1JUgOV3zibv35+OKf0aZNq+8OkJXz78dkUFZeksTJJkuoGA7UkSQ1Y45ws7r9yKGcf1yHV9ti0lVx63xssWLcjjZVJklT7GaglSWrgcrMyueuTJ3DJ0C6ptmnLtnDunRO55YX5FOwrTmN1kiTVXgZqSZJEVmYGN3/8eL7+kb5kZQQA9hVH7hq/iLPvmMjkRRvTXKEkSbWPgVqSJAEQQuCrH+nDs1855YDBypZs3MWn7p/KNx6dxeZdhekrUJKkWsZALUmSDtCvQzMev3YUP7voOJrlZqXa/zF9JR+59TWemL7SkcAlScJALUmSypCREbh8xFG89I0xnDPggwHLNu8q5IZHZ3HFH95k2aZdaaxQkqT0M1BLkqRytW+ex28/PYT7PzOUTvl5qfZJizZyxm0T+M0ri9jnFFuSpAbKQC1Jkg7pI8e058UbxnDVST1IjlnG3qISfv2f+Zx35ySmLduS3gIlSUoDA7UkSaqQJrlZ/Oj8Y/jn9SdxbKfmqfb563Zw8T2T+eE/57C9YF8aK5QkqWYZqCVJ0mE5vksLnrr+JH5wztE0ys4EIEb4yxvLOP3W13h+zhoHLZMkNQgGakmSdNiyMjO4ZnRPXvj6aE7t1zbVvm77Xq7963SueXAaq7fuSWOFkiRVPwO1JEmqtK6tGvOnz57IXZ88gTZNc1PtL81bx+m3vsafXl9CcYlXqyVJ9ZOBWpIkHZEQAucP7MTLN4zhk8O6pdp3FRZz0zNz+dhvX+fd1dvSWKEkSdXDQC1JkqpEfuNsfvGxATx27Uh6t2uaap+1chsX3P06v3huHrsLi9JYoSRJVctALUmSqtSJ3Vvx7FdO5obT+5KTmfhRo7gkcu+ExZxx2wRenb8+zRVKklQ1DNSSJKnK5WZl8pXT+vDvr53C8B6tUu0rt+zhs396i688PIMNO/amsUJJko6cgVqSJFWbXm2b8vcvjOBXHz+e/EbZqfanZ63mtFte5e9vLqfEQcskSXWUgVqSJFWrEAKXnNiVl78xhosGdUq1by8o4rtPvMNlv3+DRet3prFCSZIqx0AtSZJqRJumudx+2Qk8eNUwurZqlGp/c8lmzrljIre9uIC9RcVprFCSpMNjoJYkSTVqdN+2vPC1MVw7pheZGQGAwuIS7nh5IefcMZGpizeluUJJkirGQC1Jkmpco5xMvnt2f5750skM7Noi1f7+hl1cet8bfOfx2WzdXZi+AiVJqgADtSRJSptjOjXnif8ZxU0XHEvT3KxU+yNvr+Ajt77GUzNXEaODlkmSaicDtSRJSqvMjMCVo7rz4g2jOfPY9qn2jTsL+erfZ3Lln95ixebdaaxQkqSyGaglSVKt0DG/EfdeMZR7rxhCh+Z5qfYJCzZw+m2vce9r71NUXJLGCiVJOpCBWpIk1SpnHtuBF28YzZUjjyIkxiyjYF8Jv/j3e5x/9+vMWrE1rfVJkrSfgVqSJNU6zfKyuenC43jif0bRv0OzVPu8Ndu56Levc+PT77Jzb1EaK5QkyUAtSZJqsRO6teSZL5/Md8/uT1524seWGOGByUs5/dbXeHHuujRXKElqyAzUkiSpVsvOzODaMb144WtjOKVPm1T7mm0FXPPg21z7l2ms3VaQxgolSQ2VgVqSJNUJ3Vo35sGrhnH7pYNo3SQn1f78u2v5yK2v8eCUpRSXOMWWJKnmGKglSVKdEULgohM689INY7hkaJdU+869RfzoqXe5+J7JvLd2exorlCQ1JAZqSZJU57RsksOvLh7Iw9eMoGebJqn2Gcu3ct6dk/jV8+9RsK84jRVKkhoCA7UkSaqzRvZqzXNfPYWvnNaH7MzEHFtFJZHfvvo+Z94+gUkLN6a5QklSfWagliRJdVpediY3nN6X575yCid2b5lqX7ZpN5f/YSpff2Qmm3buTWOFkqT6ykAtSZLqhT7tm/HIF0byi48NoFleVqr9yRmrOO3W13js7RXE6KBlkqSqY6CWJEn1RkZG4JPDuvHyN8Zw3vEdU+1bd+/jW4/P5lO/n8riDTvTWKEkqT4xUEuSpHqnXbM87v7UYP70uRPp3KJRqn3K4k2cdcdE7np5IYVFJWmsUJJUHxioJUlSvTW2XztevGE015zSg4zEmGUUFpVwy4sLOPfOiby9dHN6C5Qk1WlVFqhDCF1CCH8MIawOIewNISwNIdweQmh56KNT57g5hPByCGFFCGFPCGFzCGFGCOHHIYTWZezfPYQQP2T5e1V9PkmSVDc1zsniB+cew9NfOpkBnfNT7QvX7+Tie6bw/SffYduefWmsUJJUV2UdepdDCyH0AiYD7YCngPeAYcBXgbNCCCfFGDdV4FRfB6YDLwLrgSbACOBG4AshhBExxhVlHDcL+GcZ7XMO75NIkqT66rjO+Tx53Sj+PGUZt7wwn92FiXmq/zZ1OS/OXceN5x/LOQM6EEJIc6WSpLqiSgI18FsSYforMca79jeGEG4lEZJ/DlxbgfM0jzEWHNwYQvg58H3ge8B1ZRw3M8Z4YyXqliRJDUhWZgZXn9yDs47rwI/+OYeX31sPwIYde7n+b9MZ178dP7nwWLq0bJzmSiVJdcER3/IdQugJnAEsBX5z0OYfA7uAK0IITQ51rrLCdNKjyXWfSpYpSZKU0rlFI+6/cii//fRg2jXLTbWPf289Z9w2gfsnLqao2EHLJEkfriqeoR6XXL8QYzzgmyfGuAN4HWhM4tbtyjo/uZ5dzvZOIYQvhhC+n1wffwTvJUmSGoAQAucM6MhL3xjD5SO6pdp3Fxbzs2fncdFvX2fOqm1prFCSVNtVxS3f/ZLrBeVsX0jiCnZf4OWKnDCE8E2gKZAPDAVOJhGmf1nOIacnl9LneBW4Msa4vILvOa2cTf0rcrwkSaqbmudl87OLBvDREzrzvSfeYcG6xDzVc1Zt54K7J3HVST34+ul9aZJbVU/KSZLqi6q4Qr1/uMzyfoW7v73FYZzzmyRuF/8aiTD9PHBGjHHDQfvtBn4KDAFaJpcxwCvAqcDLFbnVXJIkachRrfjXl0/hm2f0JScr8SNSSYT7Jy3hjNsmMP69dWmuUJJU29TEPNT7h8qMFT0gxtghxhiADsDHgJ7AjBDC4IP2Wx9j/FGMcXqMcWtymUDiivhUoDfw+Qq+55CyFhIjlkuSpAYgJyuDL43rw3++NppRvT6YsXPV1j1c9cDbXP+36azfUd6QL5KkhqYqAvX+K9D55WxvftB+FRZjXBdjfJJEQG4NPFjB44qA+5MvRx/u+0qSpIatR5smPPT54dzyiYG0bJydan929hpOu+U1Hpq6jJKSCl8rkCTVU1URqOcn133L2b5/ZO7ynrE+pBjjMmAucGwIoU0FD9t/e7i3fEuSpMMWQuDjQ7rw8jdO5WODO6fadxQU8YMn53DJvVNYsG5HGiuUJKVbVQTqV5LrM0IIB5wvhNAMOAnYA7xxhO/TKbkuruD++0cVX3yE7ytJkhqwVk1yuPWSQfz16uEc1fqD+anfXraFc++cyC0vzKdgX0V/PJEk1SdHHKhjjO8DLwDdgesP2nwTiSvED8YYdwGEELJDCP1DCL1K75hs63Dw+UMIGSGEnwPtgMkxxi2ltg0PIeSUccw44OvJl3+t9IeTJElKOrlPG/7ztdFcP7YXWRmJIWL2FUfuGr+Is++YyOT3N6a5QklSTauq+R+uAyYDd4YQTgPmAcOBsSRu9f5BqX07J7cvIxHC9zsL+HUIYQLwPrAJaE9i1O6ewFrgmoPe92YSt4G/CqxMth3PB3Nj/zDGOPnIP54kSRLkZWfyrTP7c8HAznzvidlMX74VgCUbd/Gp30/l4iFd+ME5R9OyyX/9vl+SVA9VySjfyavUQ4EHSATpbwC9gDuBkTHGTRU4zUvAfSQGH/sY8C3g48BmEle6j40xzj3omL+QGM37RBJh+zoSz2w/CoyOMf7siD6YJElSGfp1aMbj147ipxcdR7NS81M/Pm0lp936Gk/OWEmMDlomSfVd8D/7DxdCmDZ48ODB06ZNS3cpkiSpFlq3vYAbn36Xf89Ze0D7Cd1a8OVxvRnbrx0hhHKOliSl25AhQ5g+ffr05LTJh6Um5qGWJEmqt9o3z+N3lw/h/s8MpVN+Xqp9xvKtXPXA25x31ySee2eN02xJUj1koJYkSaoCHzmmPS/cMIarT+5BTuYHP2K9u3o71z00nTNun8CTM1ZSVFySxiolSVXJQC1JklRFmuZm8cPzjmHCt8dy1Uk9yMv+4EetRet38vVHZjHultf429Tl7C1yqi1JqusM1JIkSVWsQ34ePzr/GCZ9ZxzXndqLpqUGLlu+eTfff/IdxvzqVf70+hL2FBqsJamuMlBLkiRVkzZNc/n2Wf15/Tvj+PpH+tKicXZq29rtBdz0zFxOvnk8v3v1fXYU7EtjpZKkyjBQS5IkVbP8xtl89SN9mPSdcXzv7P60aZqb2rZpVyE3P/8eJ9/8Cre9uICtuwvTWKkk6XAYqCVJkmpI09wsvjimF5O+M5abLjiWjqVGBd+2Zx93vLyQk345nl/8ex4bduxNY6WSpIowUEuSJNWwvOxMrhzVnde+NZabPz6Ao1o3Tm3bVVjMva8t5uSbx3Pj0++yeuueNFYqSfowBmpJkqQ0ycnK4NITu/HyDWO447JB9GnXNLVtb1EJD0xeyphfv8J3/zGbZZt2pbFSSVJZDNSSJElplpWZwYWDOvOfr43mnsuHcFzn5qlt+4ojf39rBWP/71W+/shMFq7bkcZKJUmlZR16F0mSJNWEjIzAWcd14Mxj2/Pagg3cPX4Rby/bAkBJhCdnrOKfM1dx1rEduH5sb47rnJ/miiWpYTNQS5Ik1TIhBE7t144xfdsydclm7h6/iEmLNgIQI/x7zlr+PWctY/u15UvjejPkqFZprliSGiYDtSRJUi0VQmBEz9aM6NmaGcu38JtXFvHSvPWp7a/M38Ar8zcwsmdrvjyuNyN7tSaEkMaKJalhMVBLkiTVASd0a8n9V57I3NXb+c2ri3junTXEmNg2ZfEmpizexAndWvClsb0Z17+dwVqSaoCDkkmSJNUhx3Rqzm8+NZgXvz6Gjw/uQmbGB8F5xvKtXP3ntzn3zkk8984aSkpiGiuVpPrPQC1JklQH9W7XlFsuGcir3zyVTw/vRk7mBz/WzV2znesems7pt73GE9NXUlRcksZKJan+MlBLkiTVYV1bNebnHx3AhG+P5eqTe5CX/cGPd+9v2MUNj85i7C2v8repy9lbVJzGSiWp/jFQS5Ik1QMd8vP44XnH8Pp3xnH92F40zf1gqJwVm/fw/SffYcyvXuWPk5awp9BgLUlVwUAtSZJUj7Rumsu3zuzP698Zxw2n96VF4+zUtrXbC/jJv+Zy8s3j+e2ri9hRsC+NlUpS3WegliRJqofyG2fzldP68Pp3xvH9c/rTpmluatumXYX86vn5nPTL8dz64gK27i5MY6WSVHcZqCVJkuqxJrlZfGF0LyZ9Zyw/ufBYOuXnpbZtLyjizpcXctIvx/OL5+axfkdBGiuVpLrHQC1JktQA5GVn8pmR3Xn1W2P51cePp3vrxqltuwqLuXfCYk65+RV+/NQcVm/dk8ZKJanuMFBLkiQ1IDlZGVxyYldeumEMd1w2iL7tm6a27S0q4c9TljHm16/w3X/MZtmmXWmsVJJqPwO1JElSA5SVmcGFgzrz/FdHc+8VQxjQOT+1bV9x5O9vrWDs/73K1/4+gwXrdqSxUkmqvbIOvYskSZLqq4yMwJnHduCMY9ozYeFG7h6/kLeWbgGgJMI/Z67mnzNXc9axHfjSuN4cVyp4S1JDZ6CWJEkSIQTG9G3LmL5tmbp4E3e/soiJCzemtj//7lqef3ctp/Zry5fG9mZo91ZprFaSagcDtSRJkg4wvGdrhvdszcwVW7l7/CJemrcute3V+Rt4df4GRvRsxZfH9WFUr9aEENJYrSSlj4FakiRJZRrUtQX3XzmUeWu285tXFvHsO2uIMbHtjcWbeWPxVAZ1bcGXx/VmXP92BmtJDY6DkkmSJOlDHd2xOXd/ajAv3TCGi4d0ITPjg+A8c8VWrv7z25xz5ySenb2G4pKYxkolqWYZqCVJklQhvdo25f8+MZBXv3kql4/oRk7mBz9Kzluznev/Np3Tb3uNf0xbyb7ikjRWKkk1w0AtSZKkw9K1VWN+dtEAJn5nLFef3ING2ZmpbYs37OIbj81i3C2v8tDUZewtKk5jpZJUvQzUkiRJqpT2zfP44XnHMOk7Y7l+bC+a5X4wPM+KzXv4wZNzGPOrV/nDpCXsKTRYS6p/DNSSJEk6Iq2b5vKtM/sz6bvj+MbpfWnZODu1be32An76r7mcfPN4fvvqInYU7EtjpZJUtQzUkiRJqhL5jbL58ml9mPSdcfzgnKNp2yw3tW3TrkJ+9fx8TvrleG59YT5bdhWmsVJJqhoGakmSJFWpJrlZXDO6JxO/PZafXngsnVs0Sm3bXlDEneMXcdLN4/nFc/NYv6MgjZVK0pExUEuSJKla5GVncsXI7rzyzVP51cXH06NNk9S23YXF3DthMafc/Ao/fmoOq7buSWOlklQ5BmpJkiRVq5ysDC4Z2pWXbhjDnZ88gX7tm6W27S0q4c9TlnHqr1/hO4/PZunGXWmsVJIOj4FakiRJNSIzI3DBwE78+6uncN8VQzi+S35q277iyCNvr2DcLa/y1b/PYMG6HWmsVJIqJuvQu0iSJElVJyMjcMaxHTj9mPZMXLiRu8cv4s2lmwEoifDUzNU8NXM1p/Rpw4WDOnPmse1plpd9iLNKUs0zUEuSJCktQgiM7tuW0X3bMnXxJu5+ZRETF25MbZ+4cCMTF27k+09mMK5fOy4Y1Ilx/duRl52Zxqol6QMGakmSJKXd8J6tGd6zNbNWbOXuVxbx4tx1qW2FRSU8/+5ann93LU1zszjjmPacP6gTJ/duQ3amTzBKSh8DtSRJkmqNgV1b8PvPDGXllt38a/Yanp65mrlrtqe279xbxBMzVvHEjFW0apLD2cd14MJBnRl6VEsyMkIaK5fUEIUYY7prqNVCCNMGDx48eNq0aekuRZIkqUFatH4nT89azTOzVrOknFHAO+bncf7ATlwwsBPHdmpOCIZrSRUzZMgQpk+fPj3GOORwjzVQH4KBWpIkqXaIMTJn1XaemrmKf81ew9rtBWXu17NNk0S4HtSJXm2b1nCVkuoaA3U1MlBLkiTVPiUlkTeXbubpWav59ztr2LJ7X5n7HdupORcM7MT5AzvRqUWjGq5SUl1goK5GBmpJkqTabV9xCZMWbuTpWat54d217CosLnO/E7u35IKBnThnQEdaN82t4Sol1VZHEqgdlEySJEl1WnZmBmP7t2Ns/3bsKSxm/HvreXrWKl55bwOFxSWp/d5auoW3lm7hxmfmcnLvNlwwsBNnOMe1pCNgoJYkSVK90Sgnk3OP78i5x3dke8E+/jNnLU/PWs3rizZSkrwxs7gk8tqCDby2YAO5T2Ywrn87LhjYibHOcS3pMBmoJUmSVC81z8vmE0O78omhXdm4cy/PvbOGp2auZtqyLal99haV8O85a/n3nOQc18e254KBnTjJOa4lVYCBWpIkSfVem6a5fGZkdz4zsjsrt+zmmVlreHrWauYdPMf19FU8MT0xx/U5AxJzXA/p5hzXksrmoGSH4KBkkiRJ9dei9Tt4euZqnp61mqWbdpe5T6fkHNfnO8e1VC85ync1MlBLkiTVfzFG3lm1jadnrv7wOa7bNuGCgZ24YGAnejrHtVQvGKirkYFakiSpYSk9x/Vz76xhazlzXB/XOTHH9XnHO8e1VJcZqKuRgVqSJKnh2j/H9VMzV/HC3HXsLmeO62HdW3H+oE6cO6AjrZrk1HCVko6E81BLkiRJ1eDgOa5ffm8dT89czavzD5zj+s2lm3lz6WZufPpdTu7dhgsHdeKMYzvQNNcft6X6zH/hkiRJUgU0ysnkvOMTt3hv27OP/7y7lmc+bI7rrHc47ejEHNen9nOOa6k+MlBLkiRJhym/UTaXDO3KJUO7smFHYo7rp2f99xzXz72zlufeWUuz3CzOOLYDFwzqxEm9WpPlHNdSvWCgliRJko5A22a5XDmqO1eO6s6Kzbv51+w1PDVzFe+t3ZHaZ8feIv4xfSX/mL6S1k1yOGdARy4c1InBznEt1WkOSnYIDkomSZKkyli4bgdPz0rMcb2snDmuO7doxHkDO3LBwE4c09E5rqV0cJTvamSgliRJ0pGIMTJ75TaenrWaf81ezbrte8vcr1fbJlwwsDMXDOpEjzZNarhKqeEyUFcjA7UkSZKqSnFJ5M0liTmu/z2n/DmuB3TOT8xxPbAjHfOd41qqTgbqamSgliRJUnUoLCph0qINPD1zdblzXIcAJ3ZvxQUDO3GOc1xL1cJ5qCVJkqQ6Jicrg3H92zOuf3v2FBbz0rx1PD1rNa+VmuM6RnhzyWbeXJKY4/qUPm24YFAnTj/GOa6l2sB/hZIkSVKaNcrJ5PyBnTh/YHKO6zlreXrWaia//8Ec10UlkVfmb+CV+Yk5rj9ydHvOH9iJU/u1dY5rKU0M1JIkSVItkt8om0tO7MolJ3Zl/Y4CnpudmON6+vKtqX32FpXw7DtrePadNTTLzeLM4zpwwcBOjHKOa6lGGaglSZKkWqpdszw+e1IPPntSD1Zs3s0zs1fz9MzV/zXH9ePTVvL4tJW0aZqY4/qCgc5xLdUEByU7BAclkyRJUm2zf47rp2auZvnm8ue4Puu4Dozu25bhPVp5W7hUDkf5rkYGakmSJNVWMUZmrdzG0zMTc1yv31H2HNe5WRkM69GKMX3bckqftvRt35QQvHotgaN8S5IkSQ1SCIFBXVswqGsLfnDu0UxdsolnZq3muXfWsm3PB3Nc7y0qYeLCjUxcuBGYR4fmeZzSpw2n9G3LKb3b0NLpuKRK8Qr1IXiFWpIkSXVNYVEJk9/fyGsLNjBx4UYWrd9Z7r4hwPGd8xmdvHp9QrcWZDuwmRoQr1BLkiRJSsnJyuDUfu04tV87AFZt3cPEBRuYsHADkxZuZHtBUWrfGGHWym3MWrmNu8YvolluFiN7teaUvm0Z06ct3Vo3TtfHkGo9A7UkSZJUz3Vu0YjLhnXjsmHdKC6JzFq5lQnJq9czlm9JzXUNiVHDX5i7jhfmrgOge+vGnNKnLaP7tmVkr9Y0zTVCSPv5r0GSJElqQDIzAoO7tWRwt5Z87SN92bZnH5MXbWTCwg1MWLCRVVv3HLD/0k27WbppGX95YxnZmYljR/dty+g+bTm2U3On5lKDZqCWJEmSGrD8RtmcPaAjZw/oSIyRxRt3pa5eT3l/E3v2Faf23VccmbpkM1OXbObX/5lP6yY5nNynTeIKdp82tGuel8ZPItU8A7UkSZIkIDFqeK+2TenVtimfO6kHe4uKmbZ0C68t3MDEBRuZu2b7Aftv2lXIUzMT82ED9O/QLHX1emj3ls59rXrPQC1JkiSpTLlZmYzq3YZRvdvwvbNh/Y4CJiWn35q4cAMbdxYesP97a3fw3tod3DdhMXnZGQzv0ZrRfdsypm8berV17mvVPwZqSZIkSRXSrlkeHxvchY8N7kJJSWTumu1MXLiRCQs28Payzewr/mB0s4J9Jby2YAOvLdjAT4FO+Xmpwc1O7t2G/MbZ6fsgUhUxUEuSJEk6bBkZgeM653Nc53z+59Re7NpbxBuLN6UC9uKNuw7Yf/W2Ah55ewWPvL2CjADHd2mRuno9sEsLspz7WnWQgVqSJEnSEWuSm8VpR7fntKPbA7Bi8+5UuH79/Y3sKDX3dUmEmSu2MnPFVu58eSHN8rI4qVebxPPXfdvQpaVzX6tuMFBLkiRJqnJdWzXmU8O78anh3SgqLmHmiq1MSAbs2Su3Hjj3dUERz7+7luffXQtAzzZNUuF6RM/WNM4xtqh2smdKkiRJqlZZmRkM7d6Kod1bccPpfdm6u5DXF21iwoINTFi4gTXbCg7Yf/HGXSzeuIsHJi8lOzMw9KhWqYB9dAfnvlbtYaCWJEmSVKNaNM7h3OM7cu7xibmvF63fmbp6PXXJJgr2laT23VccmbJ4E1MWb+Lm56FN01xO6dOG0X3bcHLvtrRtlpvGT6KGzkAtSZIkKW1CCPRp34w+7Ztx9ck9KNhXzNtLtzBh4QYmLNjAe2t3HLD/xp17eXLGKp6csQqAYzo2T129HnJUS3KznPtaNSfEGA+9VwMWQpg2ePDgwdOmTUt3KZIkSVKDs257QWpws0mLNrJ5V2G5+zbOyWREz9aM7tOGU/q2pWebJs59rUMaMmQI06dPnx5jHHK4x3qFWpIkSVKt1b55HhcP6cLFQxJzX7+7ejsTFibmt56+bAtFpUY3211YzPj31jP+vfUAdG7RKDU118hebchv5NzXqloGakmSJEl1QkZGYECXfAZ0yef6sb3ZUbCPNxZvTg1utmzT7gP2X7V1Dw+/uZyH31xOZkZgUNcWjO7TllOSc19nOriZjpCBWpIkSVKd1Cwvm9OPac/pxyTmvl62aVdqcLMp729i594P5r4uLolMW7aFacu2cNtLC8hvlM3JvRODm53Spy2dWjRK18dQHWagliRJklQvHNW6CVe0bsIVI45iX3EJM5ZvTV29fmfVNkoPH7Vtzz6efWcNz76zBoDe7Zqmrl6P6NGaRjkObqZDM1BLkiRJqneyMzMY1qMVw3q04ptn9mPzrkImLUpcvZ64cAPrtu89YP9F63eyaP1O/vj6EnKyMhjWvRWn9GnDyX2c+1rlM1BLkiRJqvdaNcnhgoGduGBgJ2KMLFi3M3X1euqSzRQWfTD3dWFRCZMWbWTSoo3wb2iel8WwHq0Y3qM1w3q04thOzcnKzEjjp1FtYaCWJEmS1KCEEOjXoRn9OjTjmtE9KdhXzNQlm1NXrxes23nA/tsLinhp3npempcYPbxJTiZDurdieI/EcnyXFuRkGbAbIgO1JEmSpAYtLzuTMX3bMqZvWwDWbNvDxAUbmbBwA28s3szGnQfeHr6rsDhxdXvBhuTxGZzQtSXDeyauYp/QrQV52T6D3RAYqCVJkiSplI75jbjkxK5ccmJXYows2biLqUs28+aSzUxdvInV2woO2L9gXwlTFm9iyuJNwEJyMjMY2DU/dZv4kKNa0iTX6FUf+bcqSZIkSeUIIdCzbVN6tm3KJ4d1I8bIyi17mJoM128u3fxf818XFpfw1tItvLV0C7955X0yMwLHdc5nRHKQtKHdW5HfKDtNn0hVyUAtSZIkSRUUQqBrq8Z0bdWYi4d0AWDttgKmLtmUuoq9aP2Bz2AXl0RmrdjKrBVbuXfCYkKAozs0T90iPqxHK1o1yUnHx9ERMlBLkiRJ0hHokJ/HhYM6c+GgzgBs3LmXN5Ph+o3Fm5i/bscBc2DHCHPXbGfumu386fWlAPRt3zR1i/jwHq1o1zwvDZ9Eh8tALUmSJElVqE3TXM4Z0JFzBnQEYOvuQt5auoU3k1ex56zaRkk88JgF63ayYN1O/vrGcgB6tGnCsO6tElexe7amc4tGNf0xVAEGakmSJEmqRi0a53D6Me05/Zj2AOwo2Me0ZVtSt4jPXrmVfcUHJuwlG3exZOMuHnl7BQCdWzRK3iKeuIp9VOvGhBBq/LPoQAZqSZIkSapBzfKyObVfO07t1w6APYXFzFi+hTeSA53NWLGVwqKSA45ZtXUPT0xfxRPTVwHQvnkuw5K3hw/v0Yre7ZoasNPAQC1JkiRJadQoJ5NRvdswqncbAPYWFTNrxbbULeLTlm1hd2HxAces276XZ2at5plZqwFo1STng1vEe7Smf4dmZGQYsKubgVqSJEmSapHcrEyGJafY+hKwr7iEOau2pW4Rf2vJZnbsLTrgmM27Cnn+3bU8/+5aAJrnZaXOMbxHa47t1JyszIw0fJr6zUAtSZIkSbVYdmYGJ3RryQndWnLtmF4Ul0TmrdmeDNibeHPJZrbs3nfAMdsLinhp3npemrcegCY5mQzp3ip1i/jxXVqQk2XAPlJVFqhDCF2AnwBnAa2BNcA/gZtijFsqeI6bgaFAX6ANsAdYljzP3THGTeUcNwr4X2AEkAcsAv4I3BVjLC7rGEmSJEmqizIzAsd1zue4zvlcfXIPSkoiC9fv5M0lm5LPYW9m4869Bxyzq7CYCQs2MGHBBgByszIY3K0lw3smrmIP7taSvOzMdHycOi3EGA+916FOEkIvYDLQDngKeA8YBowF5gMnlReGDzpPITAdmAusB5qQCMlDgdXAiBjjioOOuRD4B1AAPAJsBs4H+gGPxxg/cYSfbdrgwYMHT5s27UhOI0mSJEk1IsbIko27UreIT128idXbCj70mOzMwMAuLVLPYA85qiVNchvGDc1Dhgxh+vTp02OMQw732KoK1P8BzgC+EmO8q1T7rcDXgXtjjNdW4Dx5Mcb/+psOIfwc+D7wuxjjdaXam5O4Gp1PIrS/vf88wHhgJPDJGOPfj+CzGaglSZIk1VkxRlZu2ZO6RXzqks0s27T7Q4/ZfxV8/y3iQ7u3Ir9Rdg1VXLPSGqhDCD2B94GlQK8YY0mpbc1I3PodgHYxxl2VfI+BwEzgpRjj6aXarwL+ADwYY7zyoGPGAS8DE2KMYyrzvsnzGKglSZIk1StrtxUwNRmu31yymUXrd37o/iHA0R2aM6xHK0b0bMWwHq1p1SSnhqqtXkcSqKviGv645PqF0mEaIMa4I4TwOomr1yNIBNzKOD+5nl3Oez9fxjETgN3AqBBCboxxbxn7SJIkSVKD0yE/jwsHdebCQZ0B2LhzL28t2czUJZt5Y/Em5q/bQelrrzHC3DXbmbtmOw9MXgpAn3ZNk89gt2ZEj1a0a56Xhk+SXlURqPsl1wvK2b6QRKDuSwUDdQjhm0BTErdyDwVOJhGmf1nR944xFoUQlgDHAj2BeYd4z/IuQfevSM2SJEmSVFe1aZrL2QM6cvaAjgBs3V3IW0u3pG4Rn7NqGyUH3dy8cP1OFq7fyV/fWA5AjzZNUnNhD+vRii4tG9f0x6hxVRGo85PrbeVs39/e4jDO+U2gfanXzwOfjTFuqIH3liRJkqQGrUXjHE4/pj2nH5OIZTsK9jFt2ZbULeKzV25lX/GBCXvJxl0s2biLR95OjCPduUWjxDPYyYHOurdpUuOfo7rVxLBtIbmu8MPaMcYOACGE9sAoElemZ4QQzosxTq+O9y7vfvnklevBh/GekiRJklSvNMvL5tR+7Ti1XzsA9hQWM2P5Ft5IDnQ2Y/lW9hYd8AQwq7bu4YkZq3hixioGdM7nmS+fnI7Sq1VVBOr9V4Hzy9ne/KD9KizGuA54MoQwncRt3Q8Cx9XEe0uSJEmSytYoJ5NRvdswqncbAPYWFTN75TamLk7cIj5t2RZ2Fxan9h/Wo1W6Sq1WVRGo5yfXfcvZ3ie5Lu8Z60OKMS4LIcwFBoUQ2sQYN5Z676HJ9z7gGegQQhbQAygCFlf2vSVJkiRJHy43K5MTu7fixO6t+BKwr7iEOau2JebBXrKZU/q0SXeJ1aIqAvUryfUZIYSMMqbNOgnYA7xxhO/TKbkuLtU2Hvg0cBbw8EH7jwYak5g2yxG+JUmSJKmGZGdmcEK3lpzQrSVfHNMr3eVUm4wjPUGM8X3gBaA7cP1Bm28CmpCYJ3oXQAghO4TQP4RwwJ9qsq3DwecPIWSEEH4OtAMmxxi3lNr8OLARuCyEMLTUMXnAz5Ivf3ckn0+SJEmSpLJU1aBk1wGTgTtDCKeRmKJqODCWxK3ePyi1b+fk9mUkQvh+ZwG/DiFMAN4HNpEY6XsMiWmv1gLXlH7TGOP2EMI1JIL1qyGEvwObgQtITKn1OPBIFX1GSZIkSZJSqiRQxxjfT14h/gmJYHwOsAa4E7gpxri5Aqd5CbiPxC3iA0lMdbWLRCD/C3BnWeeJMf4zhDCGRGj/OJAHLAJuSB5T4dHFJUmSJEmqqCqbNivGuAL4XAX2W8oH01mVbp/Df98yXtH3fp1EiJckSZIkqUYc8TPUkiRJkiQ1RAZqSZIkSZIqwUAtSZIkSVIlGKglSZIkSaoEA7UkSZIkSZVgoJYkSZIkqRIM1JIkSZIkVYKBWpIkSZKkSjBQS5IkSZJUCQZqSZIkSZIqwUAtSZIkSVIlGKglSZIkSaoEA7UkSZIkSZVgoJYkSZIkqRIM1JIkSZIkVYKBWpIkSZKkSjBQS5IkSZJUCQZqSZIkSZIqwUAtSZIkSVIlGKglSZIkSaoEA7UkSZIkSZVgoJYkSZIkqRIM1JIkSZIkVYKBWpIkSZKkSjBQS5IkSZJUCQZqSZIkSZIqwUAtSZIkSVIlGKglSZIkSaoEA7UkSZIkSZVgoJYkSZIkqRIM1JIkSZIkVYKBWpIkSZKkSggxxnTXUKuFEDY1atSo1dFHH53uUiRJkiRJVWzevHns2bNnc4yx9eEea6A+hBDCEqA5sDTNpZSnf3L9XlqrkOyLqh3sh6oN7IeqLeyLqg3qQj/sDmyPMfY43AMN1HVcCGEaQIxxSLprUcNmX1RtYD9UbWA/VG1hX1RtUN/7oc9QS5IkSZJUCQZqSZIkSZIqwUAtSZIkSVIlGKglSZIkSaoEA7UkSZIkSZXgKN+SJEmSJFWCV6glSZIkSaoEA7UkSZIkSZVgoJYkSZIkqRIM1JIkSZIkVYKBWpIkSZKkSjBQS5IkSZJUCQZqSZIkSZIqwUAtSZIkSVIlGKjrqBBClxDCH0MIq0MIe0MIS0MIt4cQWqa7NtVeIYSLQwh3hRAmhhC2hxBiCOGvhzhmVAjhuRDC5hDC7hDC7BDC10IImR9yzJUhhDdDCDtDCNtCCK+GEM77kP0bhRBuCiHMDyEUhBDWhxAeDSEcfSSfV7VTCKF1COHzIYQnQwiLQgh7kv1kUgjh6hBCmd9N9kVVhxDCzSGEl0MIK5J9cXMIYUYI4cchhNblHGNfVLUKIVyR/I6OIYTPl7OP/VBVKpknYjnL2nKOafD9MMQY012DDlMIoRcwGWgHPAW8BwwDxgLzgZNijJvSV6FqqxDCTGAgsBNYCfQHHooxXl7O/hcC/wAKgEeAzcD5QD/g8RjjJ8o45v+AbyTP/ziQA1wGtAK+HGO8+6D9c4GXgZOAt4HxQFfgE0AhMC7GOPVIPrdqlxDCtcDvgDXAK8ByoD3wMSCfRJ/7RCz1BWVfVHUJIRQC04G5wHqgCTACGAqsBkbEGFeU2t++qGoVQugKvANkAk2Ba2KM9x+0j/1QVS6EsBRoAdxexuadMcb/O2h/+yFAjNGlji3Af4BIotOVbr812X5Pumt0qZ0LiV+69AECcGqyv/y1nH2bk/jhci8wtFR7Holf6ETgsoOOGZVsXwS0LNXeHdhE4j/c7gcd873kMY8BGaXaL0y2v1u63aXuL8A4El+4GQe1dyARriPw8VLt9kWX6uyPeeW0/zz59/7bUm32RZdqXZLfzy8B7wO/Tv59f/6gfeyHLtXV/5YCSyu4r/1wfy3p/otzOcy/MOiZ7DxLDu48QDMSVx53AU3SXatL7V44dKC+Krn9z2VsG5fc9tpB7Q8m2z9XxjE/SW67qVRbAJYl23uUccyE5Lax6f7zcqmZBfh+8u/8rlJt9kWXGl9I3M0TgRdLtdkXXap1Ab4KlACjgRspO1DbD12qq/8tpeKB2n6YXHyGuu4Zl1y/EGMsKb0hxrgDeB1oTOJ2NelI7O9rz5exbQKwGxiVvBWnIsf8+6B9AHoB3YAFMcYlFTxG9du+5LqoVJt9UelwfnI9u1SbfVHVJvk86C+BO2KMEz5kV/uhqlNuCOHyEML3QwhfDSGMLed5aPthkoG67umXXC8oZ/vC5LpvDdSi+q3cvhZjLCJxl0QWibsmCCE0ATqTeMZmTRnnK6tv2p+VEkLIAj6TfFn6y9a+qGoXQvhmCOHGEMJtIYSJwE9JhOlfltrNvqhqkfz/7y8kHnv5/iF2tx+qOnUg0Rd/TuJZ6vHAwhDCmIP2sx8mZaXzzVUp+cn1tnK2729vUf2lqJ473L5Wmb5pf1ZpvwSOA56LMf6nVLt9UTXhmyQGx9vveeCzMcYNpdrsi6ouPwJOAE6OMe45xL72Q1WXPwETSTyXvINEGP4S8AXg3yGEkTHGWcl97YdJXqGuf0JyHdNahRqCyva1w9nf/txAhBC+QmLUz/eAKw738OTavqhKizF2iDEGEldnPkbiB8kZIYTBh3Ea+6IOWwhhGImr0rfEGKdUxSmTa/uhDkuM8aYY4/gY47oY4+4Y45wY47UkBj5uROK5/opqMP3QQF337P9NTH4525sftJ9UWYfb1w61f1m/ZbQ/ixDC9cAdJKYtGhtj3HzQLvZF1ZjkD5JPAmcArUkMorOffVFVqtSt3guAH1bwMPuhato9yfXoUm32wyQDdd0zP7ku71mBPsl1ec8aSBVVbl9L/gDQg8TAUYsBYoy7gFVA0xBCxzLOV1bftD83cCGErwF3A3NIhOm1ZexmX1SNizEuI/FLnmNDCG2SzfZFVbWmJP6ujwYKQghx/wL8OLnP75Nttydf2w9V09Yn101KtdkPkwzUdc8ryfUZIYQD/v5CCM1ITHq+B3ijpgtTvTM+uT6rjG2jSYwmPznGuLeCx5x90D6QmGdzOdA3hNCjgseongghfAe4DZhJIkyvL2dX+6LSpVNyXZxc2xdV1fYCfyhnmZHcZ1Ly9f7bwe2Hqmkjk+vFpdrsh/ulc84ul8otwH9IPCvw5YPab02235PuGl1q/8Kh56FuDmwg8WU/tFR7HjA5eexlBx0zKtm+CGhZqr07sAkoALofdMz3ksc8Rqm51YELk+3vctCc6y51fyFxa2ME3gZaHWJf+6JLdfXD/kCHMtozSIxwG4HXS7XbF11qbKH8eajthy7V0d+OLev7GDiKxGjaEfh+qXb7YXIJyYJUh4QQepHoqO2Ap4B5wHBgLIlbHkbFGDelr0LVViGEi4CLki87AGeS+G3jxGTbxhjjNw/a/3ES/8H9HdgMXEBiGoPHgUviQf+JhBBuAW4AVib3yQEuJfEs4pdjjHcftH8uid8sjiIRrl4mMefgJ4BCYFyMceqRfnbVHiGEK4EHSFz1u4uyn31aGmN8oNQxF2FfVBVLPnLwaxJzpr5P4ge69sAYEoOSrQVOizHOLXXMRdgXVQNCCDeSuO37mhjj/Qdtuwj7oapQsr99l8TdsEtIjPLdCziXREh+DvhojLGw1DEXYT/0CnVdXYCuJIa2X0OiMy0jMajPh17pcWnYCx/8tru8ZWkZx5xE4j/RLSQeJ3gH+DqQ+SHvcyXwFrCLxH/IrwHnfcj+jYCbSPwGdC+J33g+BhyT7j8zl6pfKtAPI/BqGcfZF12qdCExTdtvSDx2sJHE837bkn3mxvK+U+2LLjWxUM4V6lLb7YcuVbaQ+EXiwyRm29gK7Ev+fb8IfAYSF2LLOK7B90OvUEuSJEmSVAkOSiZJkiRJUiUYqCVJkiRJqgQDtSRJkiRJlWCgliRJkiSpEgzUkiRJkiRVgoFakiRJkqRKMFBLkiRJklQJBmpJkiRJkirBQC1JkiRJUiUYqCVJkiRJqgQDtSRJkiRJlWCgliSpFgkhLA0hLC31+rMhhBhC+Gz6qpIkSWUxUEuSVI+FEG5MBvJT012LJEn1TVa6C5AkSR/qSeANYE26C5EkSQcyUEuSVIvFGLcB29JdhyRJ+m/e8i1JUg0LCV8KIbwbQigIIawKIdwdQsgvY98yn6EOIRwfQng4+cz13hDChhDC9BDC7SGE7OQ+S4EfJw95JXmeGEKIpc7TN4TwyxDC28lz7A0hLAsh3BdC6FJGPacmz3FjCGFQCOHZEMLWEMLuEMJrIYRR5XzmzBDCtSGE10MI20IIe0IIi0II94cQ+hy0b1YI4boQwhshhO3Jc89I/pn5s4skqdbwCrUkSTXvduArJG7jvg/YB1wIDAdygMIPOziEcDwwFYjA08ASoDnQG7gO+N/kOW8HLgLGAH8GlpZxuo8B1wKvAJOT730s8Hng/BDC0BjjqjKOGwp8G5gC3A90Az4OvBxCGBRjnF+q3hzgWeAjwArgb8B2oDvwUWASsDC5bzbwDHAmMD+5bwEwFrgr+Wd0xYf9+UiSVFMM1JIk1aDkFdyvAO8Dw2KMm5PtPyARajsCyw5xmiuBPOCiGONTB52/JbAbIMZ4ewihBYlA/UCM8dUyzvUX4LYY496DznMG8G8S4fx/yjjuXOBzMcYHSh3zReAe4Kskgv1+N5II088Anyj9XiGEXBK/DNjvByTC9N3A12KMxcn9Mkn88uGqEMLjB39uSZLSwdumJEmqWZ9Lrn++P0wDxBgLgO8d5rn2HNwQY9wSYyyp6AlijKsODtPJ9heAd0mE27K8XjpMJ/0RKAKG7W9IBuHrkrVee/B7xRj3xhg3JPfNAL4ErAW+vj9MJ/crBr5B4qr8pyv6+SRJqk5eoZYkqWYNTq5fK2PbRBKB9FAeIXEV+J8hhMeBl0gE3PcPt5gQQiARUD8LDARaApmldinv9vO3D26IMe4LIaxLnmO//kA+MDXGuPoQ5fQFWpO4/ft/E6X9lz3A0Yc4jyRJNcJALUlSzdo/8Ni6gzfEGItDCJsOdYIY45shhFNI3B59MclnikMI84GbYowPH0Y9twJfI/E893+AVXxw5fuzwFHlHLe1nPYiDgzkLZLrsp7DPljr5LoPHwymVpamFTiXJEnVzkAtSVLN2j8FVntgcekNydujW1OB8BljnAKcl3wGeQhwFvBl4G8hhA0xxpcOdY4QQjsSz3PPAUbFGHcctP2Th/44h7Q1ue5cgX33/9k8GWP8WBW8tyRJ1cpnqCVJqlnTk+sxZWw7hcP8ZXfyGeTJMcYfkQjHkBgxfL/9zyFn8t96kvhZ4IUywnSX5PYj9R6JUH18CKFTBfcdsX/qL0mSajMDtSRJNeuB5PoHIYRW+xtDCHnALypyghDCKWXNWU3iqjckR/lO2n8Lebcy9l+aXJ+cvDq+//xNgd9TBXeyJQcT+y3QCLgneUU9JYSQE0Jom9y3iMTUWB2BO0MIjQ4+XwihYwjhmCOtS5KkquAt35Ik1aAY4+shhLtI3J49Jzmo2P55qLeQeJb5UL4BnBFCeJXEbeM7ScwdfXbyHPeV2vcVoAT4RQjhuOR2Yow/izGuDSH8HbgMmBlCeIHEM96nk5j7eSYw6Eg+b9JNJOaPPh9YEEL4F7AD6AqcAXyLD37R8FMSg6NdS2Ie7PEkboFvR+LZ6pNIPDs+twrqkiTpiBioJUmqeV8FFgDXA18kcRX5SeD7wKwKHP9bEsF4OImAmQWsTLbfEmNMzWMdY5wXQrgS+CaJ6avykpt+llxfTSKUX5qsZwPwNPAj4B+V/oSlxBgLQwhnkQjJnyExj3YAVpP43JNK7bsvhHARcDmJQdHOIzEI2QZgCfBD4KGqqEuSpCMVYozprkGSJEmSpDrHZ6glSZIkSaoEA7UkSZIkSZVgoJYkSZIkqRIM1JIkSZIkVYKBWpIkSZKkSjBQS5IkSZJUCQZqSZIkSZIqwUAtSZIkSVIlGKglSZIkSaoEA7UkSZIkSZVgoJYkSZIkqRIM1JIkSZIkVYKBWpIkSZKkSjBQS5IkSZJUCQZqSZIkSZIqwUAtSZIkSVIl/H+0n3h+xX0QbwAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "image/png": { + "height": 479, + "width": 490 + }, + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "fig, ax = plt.subplots(figsize=(8,8))\n", + "\n", + "sac_dissim_profile.plot(ax=ax)\n", + "sac_gini_profile.plot(ax=ax)\n", + "ax.legend()" + ] + }, + { + "cell_type": "markdown", + "id": "7fa031c9-1a2b-493f-8f21-55ef2486d1cc", + "metadata": {}, + "source": [ + "The multiscalar profiles for Gini and Dissimilarity indices are very similar, but have slightly different shapes. " + ] + }, + { + "cell_type": "markdown", + "id": "4e5df335-d13d-430e-ac8a-b1e959a8643d", + "metadata": {}, + "source": [ + "### Network versus Euclidian Multiscalar Profiles" + ] + }, + { + "cell_type": "markdown", + "id": "9969d404-b734-4fe0-ae49-7429cc52a48f", + "metadata": {}, + "source": [ + "To calculate a multiscalar profile using travel network distance instead of Euclidian distance, simply pass a `pandana.Network` object to the function" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "id": "4fff2c7d-ee86-45d1-bb9a-4e562fc2304a", + "metadata": {}, + "outputs": [], + "source": [ + "import pandana as pdna" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "id": "19509f40-b26a-4cd2-9aa4-52bd515c0169", + "metadata": {}, + "outputs": [], + "source": [ + "net = pdna.Network.from_hdf5(\"../40900.h5\")" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "id": "64ecc4dd-2bb4-482f-b9f2-2467396832b9", + "metadata": {}, + "outputs": [], + "source": [ + "net_dissim_profile = compute_multiscalar_profile(sacramento, segregation_index=Dissim,\n", + " group_pop_var=\"BLACK\", total_pop_var=\"TOT_POP\", \n", + " network = net,\n", + " distances= range(500,5500,500))" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "id": "53821a52-29a9-4ca5-860e-2096796d5899", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 15, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA+AAAAO+CAYAAACEo3/6AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Z1A+gAAAACXBIWXMAABYlAAAWJQFJUiTwAADjEklEQVR4nOzdd3gVZdrH8e+kEDqEjhBAUJodEBRRKYqKYu/uWlF3XXvZdV376trXsuraQNfVd4tdULFQFBRRQXEFBOkC0juhpMz7x4QcOgGSTHLy/VzXuc7cc+bM+SVK4M4z8zxBGIZIkiRJkqSSlRJ3AEmSJEmSKgIbcEmSJEmSSoENuCRJkiRJpcAGXJIkSZKkUmADLkmSJElSKbABlyRJkiSpFNiAS5IkSZJUCmzAJUmSJEkqBTbgkiRJkiSVAhtwSZIkSZJKgQ24JEmSJEmlwAZckiRJkqRSkBZ3gGQUBMF0oCYwI+YokiRJkqTi1QJYEYbhnjv7RhvwklGzSpUqddq1a1cn7iCSJEmSpOIzceJE1qxZs0vvtQEvGTPatWtXZ8yYMXHnkCRJkiQVo44dOzJ27NgZu/Je7wGXJEmSJKkU2IBLkiRJklQKbMAlSZIkSSoFNuCSJEmSJJUCG3BJkiRJkkqBDbgkSZIkSaXABlySJEmSpFLgOuCSJElSTPLz81myZAkrV65k3bp1hGEYdySpQgmCgIyMDGrUqEGdOnVISSnZMWobcEmSJCkG+fn5/Pzzz2RnZ8cdRaqwwjBk7dq1rF27ltWrV5OVlVWiTbgNuCRJkhSDJUuWkJ2dTVpaGo0aNaJatWolPvomaVP5+fmsXr2aefPmkZ2dzZIlS6hXr16JfZ5/wiVJkqQYrFy5EoBGjRpRo0YNm28pBikpKdSoUYNGjRoBiT+XJfZ5JXp2SZIkSVu1bt06AKpVqxZzEkkb/hxu+HNZUmzAJUmSpBhsmHDNkW8pfkEQAJT4RIj+aZckSZIkVWgbGvCSZgMuSZIkSVIpsAGXJEmSJKkU2IBLkiRJKre6d+9eKpcP33nnnQRBwPDhw0v8s5S8XAdckiRJUqw2b6ArVapEzZo1ycrKokOHDpx22mn07t2b1NTUmBJKxcMGXJIkSVKZcMcddwCQl5fHsmXLGD9+PP/85z/p378/nTp14tVXX6V169abvOfll18mOzu7xLNdeeWVnH322TRr1qzEP0vJywZckiRJUplw5513brFv/vz5XHXVVbz22mscddRRfPPNNzRo0KDw9dJqiOvVq0e9evVK5bOUvLwHXJIkSVKZ1bBhQ/7973/TvXt3fv75Z/7yl79s8vrW7gEPw5B//OMfdO3alfr161O5cmWysrI45phj+M9//rPJsd9//z3nnHMOLVq0ICMjg/r169OhQweuvfZacnJyCo/b1j3gQRDQvXt35s+fz8UXX0zDhg2pVq0aXbt2ZcSIEQCsXr2am266iebNm5ORkcE+++zDa6+9VozfJZUXNuCSJEmSyrSUlBRuvfVWAP71r38RhuF2j//Tn/7EhRdeyLx58zjzzDO5/vrrOeqoo5gzZ84mje/3339Ply5deOeddzjkkEO4/vrrOfPMM6lfvz5PP/0069atK1K+ZcuWcdhhh/Htt99yzjnncNppp/HNN99wzDHHMG7cOHr16sU777zDCSecwAUXXMCsWbM466yz+PLLL3f9m6JyyUvQJUmSJJV53bp1Iy0tjQULFjBjxgz23HPPbR777LPP0qRJE3744QeqVq26yWuLFi0q3P7HP/7B2rVrefvttznppJM2OW7p0qVbvHdbxo0bx+WXX87TTz9NSko0xnn00Udz/vnn06NHDw477DCGDx9O5cqVAfj1r3/NEUccwQMPPMBbb71VpM9QcrABlyRJksqgFje/F3eEIptx//El/hkZGRnUrVuX+fPns3Dhwu024ADp6elbnTV9a/dxV6lSZYt9mZmZRc5WtWpVHnroocLmG+Dcc8/l4osvZunSpTz++OOFzTfA4YcfTosWLfjuu++K/BlKDl6CLkmSJKlc2HDp+Y7W/T7vvPOYMWMG++yzD3/84x8ZPHgwy5cv3+K4s846i9TUVE4++WTOP/98Xn75ZaZOnbrTuVq3bk2NGjU22ZeamkrDhg2pXbs2LVu23OI9TZo0Yfbs2Tv9WSrfbMAlSZIklXlr165lyZIlANSvX3+7xz766KM89thjVKtWjfvvv5/jjjuOevXqcdJJJzFlypTC4zp37syIESPo2bMnr7/+OhdccAF77bUXbdu25V//+leRs9WqVWur+9PS0rb7Wm5ubpE/Q8nBS9AlSZKkMqg0LusuT0aOHElubi4NGzakRYsW2z02NTWVa665hmuuuYYFCxYwcuRI/v3vf/Paa68xfvx4xo8fT0ZGBgCHHnoogwYNYt26dYwZM4bBgwfzt7/9jXPPPZf69etz1FFHlcJXp4rCEXBJkiRJZVp+fj733nsvEN1bvTMaNGjAqaeeyn//+1969uzJ1KlT+eGHH7Y4LiMjg65du3L33XfzxBNPAPDOO+/sfnhpIzbgkiRJksqsBQsWcPbZZzN8+HCaNWvGLbfcst3j161bx5AhQ7ZYqiwnJ6fwEvYNs5uPGDFiq/eGz58/f5PjpOLiJeiSJEmSyoQ777wTiEa8ly1bxvjx4xk5ciTr16+nc+fOvPrqq1udxXxja9as4aijjqJFixZ06dKF5s2bs3btWj7++GMmTpzIiSeeSLt27QB45JFH+Oijj+jevTstW7akevXqjB8/ng8++IDMzEwuu+yykv6SVcHYgEuSJEkqE+666y4AKlWqRI0aNWjevDnnn38+p512Gr17995kma9tqVatGg888ADDhg3jiy++4O2336ZGjRq0atWKv//971x88cWFx15xxRVkZmYyevRoPv/8c3Jzc2natClXXHEFN9xwA82bNy+xr1UVU7D5pRnafUEQjOnQoUOHMWPGxB1FkiRJZdTEiRMBCkdjJcWrqH8mO3bsyNixY8eGYdhxZz/De8AlSZIkSSoFNuCSJEmSJJUCG3BJkiRJkkqBk7CpVGyYayAMIdx8X8H+aDtxXOK9idcS25u+v/C4rZynKJ9HuNl5tvJ5G86xYV/VSqnUrZ5RxO+AJEmSpIrOBryC+WHkQJp9cnlix0aN5+4rOxP6BZs9l4Qc0phQeU8atutK3b27wB4HQe3mEJTkp0qSJEkqr2zAK5j8vFxqsjqxw15xt9RbNw6+Gwff/T3aUaVO1Ihv/Ki5h025JEmSJBvwisY+sIStWQJTh0SPDao33LIpr94gvoySJEmSYmEDXsG0PaQPy/edEhUFzXgQbHzJdpDYDjbat1njHr0n2Ow4CAqKjc+RrE3/1J9/YdCHH5A+/zv2C6axf8o0agXZWx64aj5MHhw9NqjZFPY4cNOmvGqdUssuSZIkqfTZgFcw6ZUyqFWnftwxkkKr1plcvXc7hk9ayJ3vTWDqwlU0CxZwQDCV/VKmc1iVWbRlGqk5q7d884rZ0ePHQYl9mS02asg7QOMDoHLNUvt6JEmSJJUsG3BpNwRBQI+2Dei2dz3+9dUsHv14MgOzGzIwvyushIB8Lm+fz2/2Xk7tZeNh7rfwy/eQu2bLky2dET3Gv5XYV3fvRFPepAM02g8qVSutL0+SJElSMbIBl4pBemoK5x/agpMOaMLfhv7EP0bNICcvJCSFZyak8NJP9bnsiEv4za9bUjUVWPhj1IxveMz/AfLWb3nixT9Fj//9N6qDFKjfdtOR8ob7QHrlUv16JUmSJO08G3CpGNWqms6tJ7TnV4c0574PJvLh+PkArM3J54khP/Gfr2dx0zFtOfWgfUhptC90+HX0xtz1sGD8Zk35BAjzNv2AMB8WTIge370a7UtJgwbtE6PkexwU1anppfiVS5IkSdoRG3CpBLSoV41nf92JUVMXc897Exg/dwUA81es48bXxvHSF9O57fj2dGlZN3pDWqXEqPYGOWtg3g8bNeVjYeEktlhvPT8X5n0fPcb+I9qXmgGN9o1GyDect34bSEkt+S9ekiRJ0lbZgEsl6NBWdXn3ym68MXY2D304iYUr1wHww5wVnPXclxy7TyP+2Kctzetu5b7u9CqQdXD02GDdqqjR3tCUzxkLS6Zu+d68dTBnTPQoPF/VaGK3jWder9MKUlKK+auWJElScWrRogUAM2bMiC3DnXfeyV133cWwYcPo3r17iX3O8OHD6dGjB3fccQd33nlniX1OXGzApRKWmhJwZqcsjt+vMc9+OpVnP5vGutx8AAaPn8fQHxdw4WEt+F2PvahVZQeXjWdUh+Zdo8cGa5bBL+MSo+Rzv4Vls7Z8b042zBoVPQrPV3PLpjyzRfKuHSdJksqkDUvZNmvWjEmTJlG58pbz27Ro0YKZM2eSk5NDWtqutzHdu3fn008/JQzDHR+cZDZ87RukpqZSo0YNGjZsyP77789xxx3HGWecQfXq1WNMmdxswKVSUi0jjet7t+Hszs14cPCPvP3dXADW5+Xz3GfTeH3MbK47am/O6dyMtNSdGJWuUhtaHhk9Nli9GH7ZMEpe8Lxy7pbvXbcCZoyIHoXny9y0Id/jIKjZxKZckiSVuFmzZvHYY49x8803xx0lqV1wwQW0aNGCMAxZsWIF06dP55NPPuG1117jlltuoX///vTp02eT91x55ZWcffbZNGvWrESzde7cmYkTJ1KvXr0S/Zy42IBLpWyP2lV47OyDuPCwPfnzoAmMmbkUgCWr13PbO+N5edRM/nR8O7q3abDrH1KtLux1VPTYYOU8mPtdYpR8zljIXrTle9cshalDo0fh+Rps2pA36QDVdyOfJEnSZjIzMwmCgPvuu49+/folbQNWFlx44YVbXEa+du1aHnnkEW6//XZOOeUUPv74Y4444ojC1+vVq1cq/02qVq1K27ZtS/xz4uLNn1JMDsyqzeu/OZQnzz2IJrWrFO7/acEqLnzxay4Y8BWT568svg+s0QjaHAs9boHzXoObpsB14+GsV6Db9dCyB1SuvfX3rl4AP30In94P/zoLHt4b/toe/n0efPYQTBkC2UuKL6skSapwqlatym233caKFSu46667duq9o0eP5vTTT6dRo0ZUqlSJrKwsLr/8cubOTVwBOGPGDIIgKLwEOwiCwseGZvTQQw8lIyOD1atXb3L+I444giAIuOSSSzbZP2HCBIIg4Pzzz99k//Lly/njH/9ImzZtqFy5MpmZmRxzzDF88sknW2QfPnw4QRBw55138tVXX3H88cdTp04dgiDY4T3f//d//0dGRgbt2rVj5syZRf12bVXlypX505/+xK233sr69eu55pprNnn9zjvvJAgChg8fvsn+ESNG0LdvX5o2bUpGRgaNGjXikEMO2eK/4fz587nxxhtp06YN1apVo3bt2rRp04YLL7yQadOmbfX7sbHu3bsTBAE5OTncfffdtGrVisqVK9O2bVuef/75wuOeeeYZ9ttvP6pUqULTpk254447yM/P363vTXFyBFyKURAEnLD/HhzVriEDPp/O08OmsmpdLgCfTl7IyCmLOKdzFtcd1Zq61TOK+8OhVtPo0a5vtC8MYemMxCj53O+ix/qt/CJgxZzo8eOgxL7azTddDq3xAVC5VvHmliRJSet3v/sdTz75JM8++yxXXXUVrVu33uF7XnzxRS699FIyMjI48cQTycrK4qeffuKFF15g4MCBfPnllzRr1ozatWtzxx138NJLLzFz5kzuuOOOwnNsmOSsV69efPnll4wYMYJjjz0WgOzsbEaPHg3AkCFDNvnsoUOHFr5vg2XLlnHYYYcxYcIEDj74YK699loWLVrEf//7X3r37s3f//53Lr/88i2+jlGjRnHffffRrVs3Lr74YhYtWkSlSpW2+XU/+OCD3HzzzXTt2pV3332XOnXq7PB7VRQ33ngjDz30EN999x3jx49nn3322eaxgwcP5vjjj6dmzZqceOKJNGnShCVLljBx4kSefvrpwu9xdnY2hx12GFOnTuXoo4+mb9++hGHIzJkzeeeddzj99NNp2bJlkfKdffbZjB49mj59+pCens7rr7/OZZddRnp6Ot9//z3/+Mc/OOGEE+jVqxfvvvsud999N1WrVuUPf/hDsXx/dlsYhj6K+QGM6dChQyjtrAUr1oY3v/F9uOfNg8Lmf0g89r19cPjM8Cnh2pzc0g+VlxeGCyaF4Xf/DsP3/xCGL/QOwz83DMM7ahbt8USHMHz9kjD84qkwnPFFGK5bVfpfgyRJZdCECRPCCRMmxB2jTADCJk2ahGEYhq+99loIhKeccsomxzRv3jwEwpycnMJ9kyZNCtPT08NWrVqFs2fP3uT4IUOGhCkpKeHJJ5+8yf4jjzwyjNqgLQ0ZMiQEwhtvvLFw3+DBg0MgPProo0MgnDJlSuFrJ598cgiEs2bNKtx32WWXhUB42WWXhfn5+YX7J0+eHNasWTOsVKlSOH369ML9w4YNC4nWmQ2feeaZreZq3rx52Lx58zAMwzAvLy+88sorQyA89dRTwzVr1mz1PVuz4WsfNmzYdo/r1q1bCIQDBgwo3HfHHXds8d5TTz01BMLvvvtui3MsXLiwcPvdd98NgfDaa6/d4rh169aFK1asKKw3fD/uuOOOrWbv1KlTuHTp0sL9U6dODdPT08PatWuHLVq02OT/g6VLl4Z169YN69Wrt8n/N9tS1D+THTp0CIEx4S70io6AS2VI/RoZ3Hfqfpx/aHPufW8iI6dE92ivXJfLfR/8yKujZ/HH49py7L6NCmcLLXEpKVC/dfQ44KxoX14uLJq00Rrl38K8/0He+i3fv3hK9Pjfa1EdpEC9NomR8vYnQ/X6pfO1SJJUntxZjq4iu3N5sZ3q9NNP59BDD+Wtt95i5MiRdOvWbZvH/v3vfycnJ4fHH3+cJk2abPJaz549OfHEExk4cCArV66kRo0aO/zsrl27Urly5U1GuocMGUJaWhp33XUXH3/8MUOGDKFVq1bk5+czfPhw9t57b7KysgDIycnhlVdeoXr16tx3332b/Htt77335uqrr+aee+7h5Zdf5vbbb9/ksw888MCtjoxvbO3atZx77rm89dZbXHnllTz++OOklMCSshu+lwsXLizS8VWqVNli39buF9/acZUqVdruSP/m7r//fmrXrl1Yt2zZkm7dujFs2DAeeeSRTf4/qF27Nn379uWll15izpw5NG/evMifU1JswKUyqF3jmvzzks4M/XEB974/kWkLo/uQZi3J5revjqXznnW47fj27Nc0pr+YU9Og4T7R46BfRfty18OCCZs25QsmQH7upu8N82HhxOgx7v9g2F/g9AHQqkfpfx2SJKlMeuSRR+jatSs33HADX3755TYHHkaNipZX/fTTT/n666+3eH3BggXk5eUxefJkOnbsuMPPrVy5Ml27dmXYsGEsXryYunXrMnToUA4++GAOPfRQGjZsyJAhQ7jssssYO3Ysy5Yt46yzzip8/48//lh4ufXWLgnv2bMn99xzD99+++0Wr3Xu3Hm72dasWUOvXr0YNWoUDzzwAL///e93+PXsqrBgibYdDficd955vPnmm3Tp0oWzzjqLHj16cNhhh9G0adNNjjvyyCNp0qQJ999/P2PHjqVPnz4cdthhHHjggaSmpu5Utk6dOm2xb4899gDY6n/jDQ357NmzbcAlbVsQBPRq15AjWtfn1S9n8tiQn1iWnQPAV9OXcOJTIzn1oKbcdEwbGtXacq3MUpdWCfY4MHpwUbQvZw3MH59oyOeMjUbOw40mwlizBF45FXrdDodd63JnkiSJQw89lNNPP53XX3+d//73v5s0uRtbvHgxAA899NB2z7dq1aoif3avXr0YOnQow4YNo1evXnz77bfccsstQNRAf/zxx4RhWDhKvvH938uXR1cCNG7ceKvn3rB/2bJlW7zWqFGjHX4NY8eOpWbNmhxzzDFF/np2xYbJ6+rX3/5ViqeeeiqDBg3ikUceYcCAATz77LNA1Ajfd999HH300QDUrFmTL7/8kjvuuIN3332XDz/8EIhGya+44gpuvfVW0tPTi5StVq0tB6A2rAu/vddycnKKdP6SZgMulXHpqSlceNienHxQE54YMoWXR80gNz8kDOGNsbN5/3+/cPmRLbnsiJZUrVTG/kinV4GmnaLHButWRZerzx0Lnz8Bq+ZFDfknd0YN+slPQ8aOLxGTJCnpFeNl3eXR/fffzzvvvMMf//hHTjnllK0es6HhWr58OTVr1iyWz+3ZsycAn3zyCSkpKeTn5xc22T179uRf//oX48aNY8iQIQRBQI8eiav4NuSZN2/eVs/9yy+/bHLcxnY02ly/fn369+/PiSeeSI8ePfjoo4+2Ohq8u1auXMmYMWMA6NKlyw6PP/744zn++ONZvXo1o0ePZtCgQfz973/nhBNO4Ntvv6V9+/YANG3alP79+xOGIRMmTGDo0KE89dRT3H333eTn5/PnP/+52L+WsshlyKRyonbVStzetz0fXXcER7VrWLh/TU4ej33yEz0f/pQ3x84mPz+MMWURZFSH5ofCob+Dyz+DZocmXpv4LjzfCxb9FF8+SZJUJrRq1YorrriC6dOn87e//W2rxxxyyCFAtBRWUW245DkvL2+rrx988MHUrFmTIUOGMHToUKpUqcKhh0b/XtnQiL///vt8/vnn7L///pvc69ymTRuqVq3Kd999x9KlS7c497BhwwDo0KFDkfNurFevXgwePJjc3FyOOuqowkvwi9NDDz3EmjVrOOigg2jXrl2R31etWjV69uzJX//6V2655RbWr1/PBx98sMVxQRCwzz77cNVVV/Hxxx8D8PbbbxdX/DLPBlwqZ1rWr84LF3Ti//p1oV3jxG96561Yy/X/HcfJT3/O1zPKyZrcNRrCBQOhy28S+xZNgud6wMRB236fJEmqEG6//XZq167Nvffeu9XLyK+88krS09O57rrrmDx58havr1+/fovmvG7dugDMmjVrq5+ZmprKEUccwZQpU3jttdfo1q0bGRnRcrB77rknLVq04PHHHyc7O7twtHyDSpUqcd5557Fq1aotJlmbOnUqTzzxBOnp6fz6178u+jdhM4cffjgff/wxQRDQu3fvwnXNd9fatWv5y1/+wr333kulSpV44okndvieIUOGsGbNmi32z58/H4jWdgf44Ycftrqm+ebHVQRl7HpVSUXVda96DLqqG6+P+ZmHPpzMolXrAPh+9nLOeGYUffZrxM3HtqNZ3TL+Ay01HY57APboAAOvgdw10brj/zkPDr8RetwCKTs3OYckSUoOderU4ZZbbtnmhGNt27ZlwIABXHzxxeyzzz4ce+yxtG7dmpycHGbNmsWIESOoX78+P/74Y+F7evXqxWuvvcapp55Knz59qFKlCs2bN9+kKe7VqxeDBg1iwYIFm9zjveG1/v37F25v7v7772fEiBE8+eSTfP311/To0aNwHfCVK1fy5JNPsueee+7W96VLly4MHTqUo48+mj59+vD2228X3m9dFC+99BLDhw8HonvLp06dymeffcaSJUto3LgxAwYM2O7s8xvccMMNzJgxg+7du9OiRQsqVarEmDFjGDp0KM2bN+fss88Gosv5r7/+erp27Urbtm1p0KABs2fP5p133iElJYWbbrppl74P5ZENuFSOpaYEnHVwM47ffw/+PnwKz4+YzvrcaIKz9/83j08mLOCibi34XY+9qFm5aBNbxOaAs6BBu6jxXlbwG+kRD0eTt532AlTdciZRSZKU/K6++mqefvrprY6gAvzqV7/igAMO4JFHHmHYsGF89NFHVKtWjT322IPTTz99iwnc+vXrx8yZM/n3v//Ngw8+SG5uLkceeeQWDfgGm49yb2jA09LSOOKII7bIU6dOHUaNGsV9993Hm2++yV//+leqVKlC586duemmm+jdu/dufDcSDjroIIYPH85RRx1F3759eeONNzj++OOL9N5//OMfQDTaX716dRo1asRRRx3FcccdxxlnnEG1atWKdJ5bbrmFt956i2+++abwnvlmzZpxyy23cO2115KZmQnAMcccw7XXXstnn33GO++8w4oVK2jcuDFHH310YWNeUQQbpphX8QmCYEyHDh06bJi8QCots5dm8+DgSbw7bu4m++tWq8R1R7fm7IOzSEst43eeZC+BN/rB1MT6m9RuDme9Ao33jy+XJEnFbOLEiQA7dZ+tpJJT1D+THTt2ZOzYsWPDMNzx2nabKeP/Epe0M5pmVuWJcw7izSu6clCz2oX7F69ez61v/0CfJ0bw2eSF8QUsiqp14LzXosvPN1g2E/r3hnH/iS+XJEmStJtswKUk1KFZJm/+tiuPn30gTWpXKdw/ef4qzh/wFRe++BVTFqyMMeEOpKRCr9vgrFehUsGSZLlr4K3L4P3fQ17ZWMdRkiRJ2hk24FKSCoKAkw5swpAbjuSmY9pQrVJiIrPhkxZyzGMjuP2dH1iyen2MKXeg3Qlw2TCo1yax76tn4R99YeX8+HJJkiRJu8AGXEpyldNT+V2PvRh2U3fO6pRFEET78/JDXh41kyMfGsYLI6YVTt5W5tTbGy4dAu1OTOybNQqePQJ+/iq+XJIkSdJOsgGXKogGNSrzwOn7895Vh9O1Vd3C/SvX5nLPexM5+tFPGfzDPMrkxIwZNeDMl+GoOyEo+LG1ah682Ae+fgHKYmZJkiRpMzbgUgXTfo+avNqvC8+f34k96yWWmJi5OJvfvDKGc57/kh/mLI8x4TYEAXS7Dn71JlQpWJIsPwfeuwHe+R3krIk3nyRJkrQDNuBSBRQEAUe3b8iH1x7BbSe0p2bltMLXvpy2hL5PjuTG18Yxf8XaGFNuQ6secNlwaHxAYt93r8KAYxLrh0uSJEk7obSuArUBlyqwSmkpXNJtTz69qQcXdm1BWkp0g3gYwutjZtPj4eE8MeQn1qzPiznpZjKbw8UfwgHnJvb9Mg6ePRKmDosvlyRJOyEomJglP7+MzsMiVSAbGvANfy5Lig24JDKrVeLOE/fhw+uOoFfbBoX7s9fn8dePJ9PzkeG8/e0c8vPL0L3W6VXg5Kfh+EcgJT3at2YJvHIqjHzU+8IlSWVeRkYGAKtXr445iaQNfw43/LksKTbgkgq1ql+d/hcezCuXdKFtoxqF+39ZvpZr//Mdp/z9C76ZsSTGhJsJAji4H1z4HlRvFO0L8+GTO+G/58O6MrzWuSSpwqtRI/q7dt68eaxcuZL8/PyyORmqlKTCMCQ/P5+VK1cyb948IPHnsqQE/iEvfkEQjOnQoUOHMWPGxB1F2mV5+SH//eZnHvloEotWbbpW+PH7N+bmY9uSVadqTOm2YuV8eO2CaImyDeq1gbNfjZYykySpjMnPz+fnn38mOzs77iiSgKpVq5KVlUVKyvbHqTt27MjYsWPHhmHYcWc/wxFwSVuVmhJwTudmDLuxO7/t3opKaYkfF+99/wu9/vopDwz+kZVrc2JMuZEaDeH8d6Hz5Yl9iybBcz1g4qD4ckmStA0pKSlkZWVRv359KleuXOL3nkraUhAEVK5cmfr16xep+d7tz3MEvPg5Aq5k9POSbB4Y/CODvv9lk/31qlfi+qPbcNbBWaSmlJF/OIz7Dwy8BnI3Wprs8Bugx58gJTW+XJIkSSr3HAGXVOKy6lTlyXM78MZvD+WArNqF+xetWs8tb/2P458YwcifFsUXcGMHnAWXfAS1myX2jXgEXj0DssvQPeySJEmqUGzAJe2Ujs3r8NZvu/LYWQfSuFblwv0/zlvJr/qP5pKXvmbKglUxJizQeH+47FNo1Suxb+oQeK47/PJ9bLEkSZJUcdmAS9ppKSkBJx/UhKE3dOeGo1tTtVLisu4hPy7g2Mc+4853x7N09frtnKUUVK0D570Gh9+Y2LdsJvQ/OrpMXZIkSSpFNuCSdlmVSqlc1Wtvht3YnTM6NmXD3DG5+SEvfTGDIx8axgsjprE+Nz++kCmp0Os2OOtVqFSwrETuWnjrMnj/95BXRiaRkyRJUtKzAZe02xrWrMxDZxzAwCu70WXPOoX7V6zN5Z73JnLMY5/x0fh58a5t2u4EuGxYtDTZBl89C//oGy1hJkmSJJUwG3BJxWbfJrX492WH8OyvO9KibmKN8OmLVnPZP8dw7vOjGT93eXwB6+0Nlw6Bdicm9s0aBc8eAbNGx5dLkiRJFYINuKRiFQQBx+zTiI+uO5Jbj29Hjcppha+NmraYE/42kt+/Po4FK9bGEzCjBpz5Mhx1JwQFPwJXzYOXjoevngeXZpQkSVIJsQGXVCIqpaXQ7/CWfHpTDy44tHnhGuFhCP/9ZjbdHx7Ok0N/Ym1OXumHCwLodh386g2oUnDJfH4OvH8jvPM7yFmz/fdLkiRJu8AGXFKJqlOtEnedtC8fXns4PdrUL9yfvT6Phz+azHkvjCY3L6ZJ2lr1hMuGQ+MDEvu+exUGHAPLZsWTSZIkSUnLBlxSqdirQQ1evKgzL1/cmdYNqxfuHzNzKf/3VYzNbmZzuPhDOODcxL5fxsGzR8LUofHlkiRJUtKxAZdUqo5oXZ/3rz6cy45oWbjvrx9PZll2jGuGp1eBk5+GPg9DSsE962uWwCunwchHvS9ckiRJxcIGXFKpS0tN4fqjW5NVpwoAy7JzeOyTn+INFQTQ+VK48H2o3ijaF+bDJ3fCf8+HdStjjSdJkqTyzwZcUiwqp6fypz7tC+t/fjmTn+aXgSa3WRe4/DNodmhi38R34flesCjmXxJIkiSpXCu2BjwIgqZBEAwIgmBuEATrgiCYEQTBY0EQZO7GOX8dBEFY8Oi3lddf2uj1bT2GbPaeC3dw/G92Na+knXPMPg05tGVdAPLyQ+4eNIGwLFzuXaMhnP8udL48sW/RJHiuB0wcFF8uSZIklWtpOz5kx4IgaAV8ATQA3gF+BDoD1wDHBkFwWBiGi3fynFnA34BVQPVtHPY2MGMbr/0aaAl8sI3X3wG+28r+b4qaUdLuCYKA2/u25/gnRpAfwoifFjH0xwX0atcw7miQVgn6PAhNOsDAayB3LaxfCf85Dw6/AXr8CVJS404pSZKkcqRYGnDgaaLm++owDP+2YWcQBH8FrgPuBYo8shwEQQC8CCwG3gRu3NpxYRi+TdSEb/7+2sDvgfXAS9v4mLfDMNzWa5JKSbvGNTmnczNeHR3NhH7PexM5fO/6VEorI3fIHHA2NGgH//lVYmmyEY/A3O/gtBegap1Y40mSJKn82O1/4QZB0BLoTTQS/dRmL98BrAZ+HQRBtZ047dVAT+CigvfvrF8DVYA3wzBctAvvl1SKrj+6NTUrR78PnL5oNf/4Yka8gTbX+AC47FNo1Suxb+oQeK47/PJ9bLEkSZJUvhTHEFPPguePwjDM3/iFMAxXAp8DVYFDinKyIAjaAfcDj4dh+NkuZrq04Pm57RxzYBAE1wZBcHPBveZNd/GzJO2mutUzuOao1oX1E0N+YtGqdTEm2oqqdeC81+DwjS7IWTYT+h8N4/4TXy5JkiSVG8XRgLcpeJ68jdc3TBvcehuvFwqCIA34JzALuGVXwgRBcCiwHzA5DMNh2zn0GuBR4D7gZWBGEATPBEFQeSc+a8zWHkDbXckuVWTnH9qcVvWjC2VWrsvlkY8mxZxoK1JSoddtcNarUKlGtC93Lbx1Gbz/e8jLiTefJEmSyrTiaMBrFTwv38brG/bXLsK5bgcOAi4Mw3DNLua5rOD5+W28Ph24iugXB9WAPYAziS6hvxwYsIufK2k3pKemcOsJiWXJ/v31z/wwZ1s/VmLW7gS4bBjUa5PY99Wz8I++sHJ+fLkkSZJUppXGLEdBwfN21xYKgqAz0aj3I2EYjtqlDwqCWkTN9DYnXwvD8NMwDJ8Mw3ByGIbZYRj+Eobha0APYClwThAEBxTl88Iw7Li1B9Es8JJ2Uo82DejRpj4AYUjZWZZsa+rtDZcOgXYnJvbNGgXPHgGzRseXS5IkSWVWcTTgG4aoam3j9ZqbHbeFjS49nwzcthtZfkV0v/lOT74WhuHPwPsF5RG7kUHSbrj1hPakpUS/t/tq+hLe/9+8mBNtR0YNOPNlOOpOCAp+nK6aBy8dD189H/0WQZIkSSpQHA34hhs1t3WP994Fz9u6Rxyidb5bA+2AtUEQhBseRDOpAzxfsO+x7Zxnw+Rrz+449lYtLHjemRnbJRWjVvWrc0HXFoX1X96fyNqcvPgC7UgQQLfr4FdvQJWCJcnyc+D9G+Gd30HOrt5NI0mSpGRTHA34honOegdBsMn5giCoARwGrAG+3M451gH9t/H4tuCYkQX1Vi9PD4KgC3AA0eRrw3flCwG6FDxP28X3SyoGV/famzrVKgEwZ9kanv+sHPyRbNUTLhseLVm2wXevwoBjYOnM2GJJkiSp7NjtBjwMw6nAR0AL4HebvXwX0Wjyy2EYrgYIgiA9CIK2QRC02ugca8Iw7Le1B/BuwWH/KNi3rfV+Nky+tr2lxwiC4PCt7AuCIPgjcCiwCBi8vXNIKlm1qqRzQ+/ERTVPD5/KvOVrY0xURJnN4eIP4YBzE/t+GRetFz51aGyxJEmSVDYU1yRsVwALgCeCIHg7CIL7giAYClxHdOn5nzY6tgkwERhSTJ9NEAQ1gbOIJl/7xw4O/ywIgklBELwSBMEDQRA8A3wP/AXIBs4Lw3BFcWWTtGvOPrgZbRtFS32tycnjgcHlZG7D9Cpw8tPQ52FISYv2rVkCr5wGIx/1vnBJkqQKrFga8IJR8E5EM493AW4AWgFPAIeGYbi4OD5nO84jGmkvyuRrDwPzgJ5Ea4GfD6QDTwH7hWH4UUkGlVQ0qSkBt/dNLEv21rdzGDtraYyJdkIQQOdL4cL3oXqjaF+YD5/cCf89H9atjDWeJEmS4hGU2SV+yrEgCMZ06NChw5gxY+KOIpV7v/nnGAaPj2ZCPyCrNm/9tispKcEO3lWGrJwPr10QLVG2Qb02cNYrUH9bc1dKkiSprOrYsSNjx44dW7AE9U4pjXXAJWmX3dKnHZXSoh9V435extvfzYk50U6q0RDOfxc6X57Yt2gSPN8TJg6KL5ckSZJKnQ24pDKtWd2q9Ou2Z2F9/wc/snpdboyJdkFaJejzIJzyLKRVjvatXwn/OQ+G3A35ZXiZNUmSJBUbG3BJZd4VPfaiQY0MABasXMffh0+NOdEuOuBsuOQjqN0ssW/EI/DqGZC9JL5ckiRJKhU24JLKvOoZafz+2LaF9XMjpvHzkuwYE+2GxgfAZZ9Cq16JfVOHwHNHRkuWSZIkKWnZgEsqF049qAkHNK0FwPrcfO77YGLMiXZD1Tpw3mtw+I2JfctmQf/eMO4/8eWSJElSibIBl1QupKQE3N53n8L6/f/N48tpJb3CYQlKSYVet0WzoVeK1jsndy28dRm8/3vIy4k3nyRJkoqdDbikcqNj80xOPnCPwvqugRPIyy/nSym26wuXDoV6Gy1J9tWz8I++sHJefLkkSZJU7GzAJZUrfziuLVXSUwGY+MsK/vP1zzEnKgb1W0dNeLsTE/tmjYJnj4RZo+PLJUmSpGJlAy6pXGlcqwq/7d6qsH7ko0ksX5MEl2tn1IAzX4aj7oSg4Efzqnnw0vHw1fMQlvORfkmSJNmASyp/LjuiJU1qVwFg8er1/G3ITzEnKiZBAN2ug1+9AVUyo335OfD+jfDO7yBnTbz5JEmStFtswCWVO5XTU/ljn8SyZC99MYOpC1fFmKiYteoZLVXW+IDEvu9ehQHHwNKZ8eWSJEnSbrEBl1QuHb9fYzq3qANAbn7Ive+V42XJtiazOVz8IRxwbmLfL+Pgue4wdWhssSRJkrTrbMAllUtBEHB73/YEQVQP/XEBwyctiDdUcUuvAic/DX0ehpS0aN+aJfDKaTDyUe8LlyRJKmdswCWVW/s2qcWZHbMK6z8PmkBOXn6MiUpAEEDnS+HC96F6o2hfmA+f3An/PR/WrYw1niRJkorOBlxSuXbjMW2onhGNDk9duJpXvkzSe6SbdYHLP4Vmhyb2TXwXnu8JCyfHl0uSJElFZgMuqVyrXyODq3ruVVg/+vFklqxeH2OiElSjEZz/LnS+PLFv0WTofzQsmR5fLkmSJBWJDbikcu/Cw1rQom5VAFaszeXRj5N4RDitEvR5EE55FtIqR/vWLoM3LoHcJP3FgyRJUpKwAZdU7mWkpfKn49sX1q+OnsmP81bEmKgUHHB2NBq+YXK2OWNg6J/jzSRJkqTtsgGXlBSOateAw/euB0B+CHcPnECY7LOEN+sCve5I1F88AVM+iS+PJEmStssGXFJSCIKA205oT2pKtC7ZF1MX89GE+TGnKgWHXgl7HZWo37wcVs6LL48kSZK2yQZcUtJo3bAGv+rSrLC+972JrMvNizFRKUhJgZOfgeoNozp7Ebx5GeQn2XJskiRJScAGXFJSufao1tSqkg7ArCXZDBg5I95ApaF6/WhSNqLRf6Z/Cp8/GmskSZIkbckGXFJSyaxWieuPbl1YPzn0JxasXBtjolLSqgccfn2iHnovzBodXx5JkiRtwQZcUtI5r0sz9m5QHYDV6/N4aPCkmBOVku5/hKwu0XaYFy1NtmZpvJkkSZJUyAZcUtJJS03h9r6JZcleHzub72cviy9QaUlNh9NegMq1onr5z/DuVZDss8FLkiSVEzbgkpLS4XvX56h2DYCo/6wQy5IB1G4GJz6ZqCcOhG/6x5dHkiRJhWzAJSWtPx3fnvTUaGKyb2YuZeD3v8ScqJS0PxEO7peoB98C836IL48kSZIAG3BJSWzPetW46LA9C+v73p/ImvVJvizZBr3vhYb7Rtt56+D1i2H96ngzSZIkVXA24JKS2pU996JutUoA/LJ8Lc9+NjXmRKUkvTKcPgDSq0b1oknwwR/izSRJklTB2YBLSmo1K6dz0zFtCutnPp3K3GVrYkxUiuq3gT4PJepv/wn/ez2+PJIkSRWcDbikpHdGpyzaN64JwNqcfO7/4MeYE5WiA8+DfU9P1AOvhSXTYosjSZJUkdmAS0p6qSkBd2y0LNm74+byzYwlMSYqRUEAJzwKmS2iev3K6H7w3PWxxpIkSaqIbMAlVQhdWtbl+P0aF9Z3DZxAfn4FWJYMoHJNOP1FSEmP6rnfwpC74s0kSZJUAdmAS6owbj6uLRlp0Y+9/81ZzutjZ8ecqBQ16QBH3ZmoRz0Jkz+KLY4kSVJFZAMuqcLIqlOVy45oWVg/OHgSK9fmxJiolB1yBezdO1G//RtYUUHWRpckSSoDbMAlVSi/7d6KRjUrA7Bo1TqeGlZBliUDSEmBk/8O1RtFdfZiePNSyK8ga6NLkiTFzAZcUoVStVIafzgusSzZgJHTmbl4dYyJSlm1enDa80AQ1TNGwMi/xhpJkiSporABl1ThnHRAEw5qVhuA9Xn53PvexHgDlbY9j4AjbkrUw+6DmaPiyyNJklRB2IBLqnBSUgLu6LtPYf3RhPl8PmVRjIlicOQfoNmh0XaYB2/0g+wKsjSbJElSTGzAJVVIB2bV5tQOTQrruwdOIDcvP8ZEpSw1DU57ASrXjuoVs+HdqyCsIEuzSZIkxcAGXFKF9Ydj21K1UioAk+av5F9f/xxzolJWqymc/HSi/nEQfP1CfHkkSZKSnA24pAqrYc3K/K7HXoX1Xz+axPLsCrQsGUDb46HzZYn6w1vgl+/jyyNJkpTEbMAlVWiXdNuTpplVAFiancNjQybHnCgGR/8ZGu4Xbeeth9cvhnWr4s0kSZKUhGzAJVVoldNT+VOfdoX1y6NmMmXByhgTxSC9MpzxIqRXi+rFP8EHv483kyRJUhKyAZdU4R27byO67FkHgLz8kLsHTSSsaJOR1dsbjn84UX/3Knz/3/jySJIkJSEbcEkVXhAE3N63PSlBVH82eSHDJi2IN1QcDjgH9j8rUQ+6DhZPjS+PJElSkrEBlyRgnz1qcdbBzQrrewZNZH1uBVqWDCAI4PhHoE7LqF6/Cl6/CHLXxZtLkiQpSdiAS1KBG3u3pkblNACmLVrNy6NmxBsoDhk14PQXISU9qn8ZB5/cFW8mSZKkJGEDLkkF6lbP4JpeexfWjw/5iUWrKuDo7x4HQu8/J+ovn4JJg2OLI0mSlCxswCVpI+cf2oKW9aLZwFeuzeWRjyrgsmQAXX4DrY9N1G//FlbMjS+PJElSErABl6SNVEpL4dYTEsuS/fvrWYyfuzzGRDEJAjjpaaixR1SvWQJvXAr5efHmkiRJKsdswCVpMz3aNODI1vUBCEO4e+CEircsGUC1unDa8xAU/FUxcyR89vD23yNJkqRtsgGXpM0EQcBtJ7QjtWBdstHTlzD4h3kxp4pJi25wxO8T9af3w4zP48sjSZJUjtmAS9JW7NWgBucf2rywvvf9iazNqaCXXx9xEzQ/LNoO8+HNSyF7SbyZJEmSyiEbcEnahmt7tSazarQc1+yla+g/cnrMiWKSmganPg9VMqN6xRx453fR9fmSJEkqMhtwSdqGWlXTub53m8L6qWFTmL9ibYyJYlSrCZz890Q96X346rn48kiSJJVDNuCStB3nHJxFm4Y1AMhen8cDg3+MOVGM2hwHXX6bqD+6FX4ZF18eSZKkcsYGXJK2Iy01hdv7ti+s3xw7h29nLY0xUcyOvgsa7R9t562H1y6CdSvjzSRJklRO2IBL0g4ctlc9erdvWFjfNXAC+fkV9P7ntAw44yWoVD2ql0yF92+KNZIkSVJ5YQMuSUXwp+PbUSk1+pH53c/LeGfcnJgTxahuKzj+r4l63L/gu3/Fl0eSJKmcsAGXpCJoXrcaF3fbs7C+/4MfWb0uN8ZEMTvgLDjg3ET93g2waEp8eSRJksoBG3BJKqIre+5F/RoZAMxfsY5nPp0ac6KY9XkI6u4Vbeeshtcvgtx18WaSJEkqw2zAJamIqmekcdMxiWXJnv1sGj8vyY4xUcwyqsPpL0Jqpaie9z18fEe8mSRJksowG3BJ2gmnd2jKfk1qAbA+N5/7P6jAy5IBNN4fet+TqEf/HX58P748kiRJZZgNuCTthJSUgDs2Wpbsvf/9wpfTFseYqAzofBm06ZOo37kCllfgSeokSZK2wQZcknZSpxZ1OPGAPQrruwdOIK+iLksGEARw0lNQs0lUr1kKb/SDvAo8SZ0kSdJW2IBL0i64+bi2VE6PfoRO+GUF//3m55gTxaxqHTjtBQgK/lqZ9QV89lC8mSRJksoYG3BJ2gV71K7Cb45sVVg//OEkVqzNiTFRGdC8K3T/Y6L+7EGYPiK+PJIkSWWMDbgk7aLLj2jFHrUqA7B49Xr+NuSnmBOVAYffAC0Oj7bDfHjzUlhdwe+RlyRJKmADLkm7qEqlVG7u066wfumLGUxbuCrGRGVASiqc+jxUrRvVK3+Bt38LYQW+R16SJKmADbgk7Ya++zemU/NMAHLyQu59b2LMicqAmo3h5L8n6p8+hC//vu3jJUmSKggbcEnaDUEQcEfffQiCqB7y4wI+nbww3lBlQetj4NArE/XHt8Pcb+PLI0mSVAbYgEvSbtqvaS1O79C0sP7zoAnk5OXHmKiM6HUHND4w2s7PgdcvhnUrY40kSZIUJxtwSSoGNx3bhmqVUgGYsmAVr345M+ZEZUBaJTh9AFSqHtVLpsGg670fXJIkVVg24JJUDBrUqMyVPfcurB/95CeWrl4fY6Iyom4rOOGxRP2//8K4f8UWR5IkKU424JJUTC7u1oLmdasCsHxNDo9+MjnmRGXE/mfAgb9K1O/dAItcsk2SJFU8NuCSVEwy0lK5ZaNlyV75ciaT5nnPMwB9HoS6BVcI5GTDaxdBztp4M0mSJJUyG3BJKka92zfksL2iNbDzQ7h70HhC73mGStXgjBchNSOq5/8PPr4t3kySJEmlzAZckopREATcdkJ7UgqWJft8ymI+njA/3lBlRaP94Jh7E/VXz8HEQfHlkSRJKmU24JJUzNo2qsl5XZoX1ve+P5F1uXkxJipDDu4HbU9I1O/8Dpb9HF8eSZKkUmQDLkkl4LqjW1OzchoAMxdn8+LnM+INVFYEAZz0JNTKiuq1y+DNSyEvN9ZYkiRJpcEGXJJKQJ1qlbju6NaF9ZNDp7BgpZOOAVAlE057AYJo3XRmjYJPH4g3kyRJUimwAZekEvKrQ5qzV4PqAKxal8vDH06KOVEZ0uwQ6HFLov7sIZj+WXx5JEmSSoENuCSVkPTUFG47oX1h/dqY2fxv9vIYE5Ux3a6DPY8oKEJ441JYvSjWSJIkSSXJBlySStCRrevTs20DAMIQ7hrosmSFUlLhlOegar2oXjUP3voN5OfHm0uSJKmE2IBLUgm79fh2pBWsS/bNzKUM+v6XmBOVITUbwynPJOopH8OXT8eXR5IkqQTZgEtSCWtZvzoXdm1RWN/3/kTWrHdZskJ7Hw1dr0rUn9wJc8bEFkeSJKmk2IBLUim4qtfe1K1WCYC5y9fy3GfTYk5UxvS8HfboEG3n58DrF8PaFfFmkiRJKmY24JJUCmpVSeeG3m0K679/OoW5y9bEmKiMSasEpw+AjJpRvXQGDLouunFekiQpSdiAS1IpOevgLNo1jhrMtTn5PDD4x5gTlTF19oS+jyXqH16H716NLY4kSVJxK7YGPAiCpkEQDAiCYG4QBOuCIJgRBMFjQRBk7sY5fx0EQVjw6LeV11ts9PrWHv/ezrkvCILgqyAIVgVBsDwIguFBEJywq1klaUdSUwLu6JtYluyd7+YyZuaSGBOVQfueBh3OT9Tv3wQLXT9dkiQlh2JpwIMgaAWMAS4CvgIeBaYB1wCjgiCouwvnzAL+BqwqwuHjgLu28nh9G+d+GHgJaAw8D7wC7AcMDILgyp3NKklFdUjLuvTZr1FhfdfACeTne5n1Jo59AOoVXK6fkx3dD57j5fqSJKn8K64R8KeBBsDVYRieHIbhzWEY9iRqxNsA9+7MyYIgCIAXgcXAMzs4HOC7MAzv3MpjiwY8CIKuwA3AVGD/MAyvC8Pwd0BHYAnwcBAELXYmryTtjD8e145KadGP3+9nL+eNsbNjTlTGVKoKZ7wIaZWjev4P8NGt8WaSJEkqBrvdgAdB0BLoDcwAntrs5TuA1cCvgyCothOnvRroSTSivnp3M27mNwXP94ZhuHTDzjAMZxDlzyj4XEkqEVl1qnLZ4S0L6wc/nMSqdbkxJiqDGu4Dx/wlUX/9Akx4N748kiRJxaA4RsB7Fjx/FIZh/sYvhGG4EvgcqAocUpSTBUHQDrgfeDwMw8+KmGGPIAguD4LgloLn/YuQd/BWXvtgs2MkqUT8tnsrGtTIAGDhynU8NWxKzInKoE4XQ7sTE/W7V8KyWfHlkSRJ2k3F0YBvWFdn8jZe/6ngufWOThQEQRrwT2AWcMtOZDia6FL1ewuexwVBMCwIgmabnb8a0ARYFYbhL7uTteB8Y7b2ANruRHZJFVC1jDRuPi7xo6L/iOnMWpwdY6IyKAjgxCegVsGP8rXL4fVLIC8n3lySJEm7qDga8FoFz8u38fqG/bWLcK7bgYOAC8MwLMqMO9nAn4nu384seBwJDAO6A0M2u/S9OLNK0m45+cAmHJBVG4D1efnc+/6EeAOVRVUy4fT+EKRG9eyvYPh98WaSJEnaRaWxDnhQ8LzdaX6DIOhMNOr9SBiGo4py4jAMF4RheHsYhmPDMFxW8PiM6J700cBewBbLlxXl1EX8/I5bewAu7itph1I2W5bsw/Hz+WLKohgTlVFZnaHnRpOwjfgrTBseWxxJkqRdVRwN+IZR41rbeL3mZsdtYaNLzycDt+1uoDAMc4EXCsojNnppR1l3NEIuScWqQ7NMTjmoSWF996AJ5Oblb+cdFdRh10LL7gVFCG9eBqsWxhhIkiRp5xVHAz6p4Hlb903vXfC8rXvEAaoXvL8dsDYIgnDDg2gmdYDnC/Y9VsRcG/5lVngJehiGq4E5QPUgCBrvYlZJKlZ/OLYtVdKjS6x/nLeSf3/9c8yJyqCUFDjlOahWP6pXzYe3fwP5/rJCkiSVH8XRgA8reO4dBMEm5wuCoAZwGLAG+HI751gH9N/G49uCY0YW1EW6PJ3ErOvTNts/tOD52K2857jNjpGkEteoVmWu6N6qsH7ko0ksz3aisS3UaAinPJuop3wCo56ML48kSdJO2u0GPAzDqcBHQAvgd5u9fBfRCPTLBaPPBEGQHgRB2yAIWm10jjVhGPbb2gPYsPDrPwr2/WfD+4Ig6BIEQaXNMwVB0BO4rqB8ZbOXnyl4/lMQBJkbvWdD/nXAizvxLZCk3XbpES1pUrsKAEuzc3h8yE87eEcFtVev6HL0DYbcBbPHxBZHkiRpZxTXJGxXAAuAJ4IgeDsIgvuCIBhK1ARPBv600bFNgInAkGL43AeAOUEQvBYEwaMFjyEF584AbgvD8IuN31BQ/xVoBXxf8J6ngG+AOsCNYRjOKIZsklRkldNTuaVPu8L65VEzmLJgVYyJyrCet0KTTtF2fi68flG0RJkkSVIZVywNeMEoeCfgJaALcANRg/sEcGgYhouL43O24p9Es50fDFxK9IuAvYH/AkeEYXjPNvLeAFwIzAMuA84HxgN9wzD0ekZJseizXyM671kHgNz8kHvec1myrUpNj5YmyyiYN3PZTBh4DYRFWsBCkiQpNkHoP1iKXRAEYzp06NBhzBgvi5S0c36Ys5y+T44s7CVfvPBgerRtEG+osmr8W/DahYm67xPQ8YLY4kiSpIqhY8eOjB07dmzBEtQ7pTTWAZckFdG+TWpx9sFZhfWf35vA+lxn+t6qfU6Bjhcm6g/+AAsmxhZHkiRpR2zAJamMuaF3G2pkpAEwbeFqXh41I95AZdkx90H9gnvnc9fAaxdBzpp4M0mSJG2DDbgklTH1qmdwda+9C+vHh/zE4lXrYkxUhlWqCme8CGnRDPIsnAgf3hJvJkmSpG2wAZekMuiCri3Ys141AFauzeWRjyfHnKgMa9AOjrs/UX8zAMa/HVscSZKkbbEBl6QyqFJaCrcen1iW7N9fzWLC3BUxJirjOlwQ3RO+wbtXw9KZ8eWRJEnaChtwSSqjerZtwOF71wMgP4S7B43HlSu2IQig7+NQu1lUr1sOb1wCeTnx5pIkSdqIDbgklVFBEHD7Ce1JTQkA+HLaEj4cPy/mVGVY5Vpw+ouQEk1gx+yvYdi98WaSJEnaiA24JJVhezeswa8PaV5Y3/PeRNbm5MWYqIxr2gl63Z6oRz4KU4bEl0eSJGkjNuCSVMZde9Te1K6aDsDspWvoP3J6zInKuEOvgla9EvVbl8PK+fHlkSRJKmADLkllXO2qlbj+6NaF9VPDpjB/xdoYE5VxKSlwyjNQrUFUr14YNeH5+fHmkiRJFZ4NuCSVA+d2bkbrhtUByF6fx4ODJ8WcqIyr3gBOfQ6I7p9n2jD44olYI0mSJNmAS1I5kJaawu0n7FNYvzF2Nt/9vCy+QOVBqx7Q7bpEPfTP8PPX8eWRJEkVng24JJUT3faux9HtGxbWdw10WbId6nELNO0cbefnwhsXw5plsUaSJEkVlw24JJUjf+rTjvTU6LLqb2ct453v5sacqIxLTYfTXoiWKANYNgsGXgP+4kKSJMXABlySypEW9apxcbc9C+v7P/iR7PW5MSYqBzKbw4l/S9QT3oYxL8WVRpIkVWA24JJUzlzZYy/qVc8AYN6KtTwzfGrMicqB9idBp0sS9eCbYf6E+PJIkqQKyQZcksqZGpXT+f0xbQrrZz+b5rJkRXHMvdCgYCK73LXw+kWwPjveTJIkqUKxAZekcuj0jk3Zt0lNANbl5vPyqBnxBioP0qvAGS9CetWoXvhjNBIuSZJUSmzAJakcSkkJuLLHXoX1q6NneS94UdRvA8c9mKjH/gN+eCO+PJIkqUKxAZekcuro9o3IqlMFgGXZObwxdk7MicqJg34F+56eqAdeC0tnxJVGkiRVIDbgklROpaYEXHxYYkb0ASOnk5/v8lo7FARwwqOQ2SKq162A1y+G3PWxxpIkScnPBlySyrEzOmVRo3IaANMXrWbYpAUxJyonKteE0wdASvS9Y84Y+OLxeDNJkqSkZwMuSeVY9Yw0zuncrLB+YcT0GNOUM006Qq/bE/WnD8GiKfHlkSRJSc8GXJLKuQu6tiA1JQBg1LTF/DBnecyJypFDr4Q9OkTbeetg4DWQnx9vJkmSlLRswCWpnGtSuwp99mtcWA8Y6Sh4kaWkwolPQJAa1TNHwnevxJtJkiQlLRtwSUoCl3RLTMb27ri5zF+xNsY05Uyj/aDrVYn6o1th5fz48kiSpKRlAy5JSeDArNp0ap4JQG5+yMujZsQbqLzpfjNkFvwSY+1yGPyHePNIkqSkZAMuSUmi3+GJUfBXR88ie31ujGnKmfQq0dJkG4x/CyYNji+PJElKSjbgkpQkjm7fiKw6VQBYlp3DG2PnxJyonGnVAw44N1G/dwOsWxlfHkmSlHRswCUpSaSmBFx8WGIUfMDI6eTnhzEmKoeOuReq1o22V8yGoffEm0eSJCUVG3BJSiJndMqiRkYaANMXrWbYpAUxJypnqtaBY+9P1KOfhdlj4ssjSZKSig24JCWR6hlpnNOlWWH9wgiXJNtp+50BrXoVFCG8exXk5cQaSZIkJQcbcElKMhd0bUFqSgDAqGmL+WHO8pgTlTNBACf8FdKrRvWC8fDFE/FmkiRJScEGXJKSTJPaVeizX+PCesBIR8F3WmYL6HFLoh7+ACyeGlscSZKUHGzAJSkJXdItMRnbwO/nMn/F2hjTlFNdfguND4y289bBoGshdFI7SZK062zAJSkJHZhVm07NMwHIyQt5edSMeAOVR6lpcOITEKRG9fTP4LtX480kSZLKNRtwSUpS/Q5PjIK/OnoW2etzY0xTTjU+AA69IlF/+CdYtTC+PJIkqVyzAZekJHV0+0Zk1akCwLLsHN4YOyfmROVU91ugdvNoe+0yGHxzrHEkSVL5ZQMuSUkqNSXg4sMSo+AvjpxOfr73MO+0SlXhhEcT9Q+vw08fx5dHkiSVWzbgkpTEzuiURY2MNACmLVrNsEkLYk5UTu3VC/Y/K1EPuh7WrYovjyRJKpdswCUpiVXPSOOcLs0K6xdGuCTZLjvmL1ClTrS9fBYM+0u8eSRJUrljAy5JSe6Cri1ITQkAGDVtMT/MWR5zonKqWj049r5EPfrvMGdsfHkkSVK5YwMuSUmuSe0q9NmvcWE9YKSj4Lts/7OgZY9oO8yHgVdDXk68mSRJUrlhAy5JFcAl3RKTsQ38fi7zV6yNMU05FgTRhGxp0ezyzPsfjHoq3kySJKncsAGXpArgwKzadGqeCUBOXsjLo2bEG6g8q7Mn9Phjoh5+PyyZFl8eSZJUbtiAS1IF0e/wxCj4q6Nnkb0+N8Y05dwhv4NG+0XbuWtg0HUQusSbJEnaPhtwSaogjm7fiKw60aXTy7JzeGPsnJgTlWOpaXDi3yAo+Gt02nAY9+9YI0mSpLLPBlySKojUlICLD0uMgr84cjr5+Y7a7rI9DoJDrkjUH94CqxfFl0eSJJV5NuCSVIGc0SmLGhlpAExbtJphkxbEnKic6/5HqFWwzvqaJVETLkmStA024JJUgVTPSOOcLs0K6xdGuCTZbsmoHs2KvsH3/4Epn8SXR5IklWk24JJUwVzQtQWpKQEAo6YtZvzc5TEnKuf2Pgr2OyNRD7oO1q+OL48kSSqzbMAlqYJpUrsKffZrXFj3H+ko+G475j6oEi3zxrJZMPy+ePNIkqQyyQZckiqgS7olJmMbOG4u81esjTFNEqheH3rfm6hHPQVzv4stjiRJKptswCWpAjowqzadmkcjtjl5IS+PmhFvoGRw4Lmw5xHRdpgPA6+GPNdalyRJCTbgklRB9Ts8MQr+6uhZrFmfF2OaJBAEcMJjkFY5qn8ZB6P/HmskSZJUttiAS1IFdXT7RmTVqQLAsuwc3hg7O+ZESaBuKzjyD4l62F9g6YzY4kiSpLLFBlySKqjUlICLuiZGwQeMnE5+fhhjoiTR9SpouG+0nZMNg66H0O+rJEmyAZekCu3Mg7OokZEGwLRFqxk2aUHMiZJAajr0fQKIlnpj6hD432uxRpIkSWWDDbgkVWDVM9I4p0uzwvqFES5JViyadoQuv0nUg2+G1YvjyyNJksoEG3BJquAu6NqC1JRotHbUtMWMn7s85kRJouefoGbTaDt7MXx0a7x5JElS7GzAJamCa1K7Csft26iw7j/SUfBikVEDTvhroh73fzB1WHx5JElS7GzAJUn0O7xl4fbAcXOZv2JtjGmSSOtjYJ9TE/Wga2F9dmxxJElSvGzAJUkcmFWbTs0zAcjJC3l51Ix4AyWTY++HyrWi7aUz4NMHYo0jSZLiYwMuSQKg3+GJJcleHT2LNevzYkyTRGo0hN73JOov/ga/fB9fHkmSFBsbcEkSAEe3b0RWnSoALMvO4Y2xs2NOlEQO+jW0ODzaDvNg4NWQ7y84JEmqaGzAJUkApKYEXNQ1MQo+YOR08vPDGBMlkSCAEx6D1IyonvstjH421kiSJKn02YBLkgqdeXAWNTLSAJi2aDXDJi2IOVESqbcXHHlToh56DyybFV8eSZJU6mzAJUmFqmekcU6XZoX1CyNckqxYdb0GGrSPtnNWw6DrIfQqA0mSKgobcEnSJi7o2oLUlACAUdMWM37u8pgTJZG0StD3CSD6/jLlY/jhjVgjSZKk0mMDLknaRJPaVThu30aFdf+RjoIXq6yDofOliXrwzZC9JL48kiSp1NiAS5K20O/wloXbA8fNZf6KtTGmSUK9boeaTaLt1Qvh49vizSNJkkqFDbgkaQsHZtWmU/NMAHLyQl4eNSPeQMkmowb0eThRf/sKTP8svjySJKlU2IBLkraq3+GJJcleHT2LNetdt7pYte0D7U9K1AOvgZw18eWRJEklzgZckrRVR7dvRFadKgAsy87hjbGzY06UhI57EDJqRdtLpsFnD8WbR5IklSgbcEnSVqWmBFzUNTEKPmDkdPLzXTKrWNVoBEfflag/fxzm/RBfHkmSVKJswCVJ23TmwVnUyEgDYNqi1QybtCDmREmowwXQrGu0nZ8LA6+GfC/3lyQpGdmAS5K2qXpGGud0aVZYvzDCJcmKXUoK9H0cUitF9Zwx8PUL8WaSJEklwgZckrRdF3RtQWpKAMCoaYsZP3d5zImSUP3WcPiNiXrI3bDce+4lSUo2NuCSpO1qUrsKx+3bqLDuP9JR8BLR7Tqo3zbaXr8K3rsBQu+5lyQpmdiAS5J2qN/hLQu3B46by/wVa2NMk6TSKkHfJxL15MEw4e3Y4kiSpOJnAy5J2qEDs2rTqXkmADl5IS+PmhFvoGTVrAt0uiRRv/97WLM0vjySJKlY2YBLkoqk3+GJJcleHT2LNeudqbtEHHUH1Ggcba9eAB/fHm8eSZJUbGzAJUlFcnT7RmTVqQLAsuwc3hjrJGElonIt6PNwoh77MswYGV8eSZJUbGzAJUlFkpoScFHXxCj4gJHTyc93krAS0e4EaHtCoh54DeR4370kSeWdDbgkqcjOPDiLGhlpAExbtJphkxbEnCiJ9XkYMmpG24unwIiHt3+8JEkq82zAJUlFVj0jjXO6NCusXZKsBNVsDEfdmahHPgrzJ8QWR5Ik7T4bcEnSTrmgawtSUwIAvpi6mPFzl8ecKIl1vAiyDom283OjS9Hz8+PNJEmSdpkNuCRppzSpXYXj9m1UWDsKXoJSUqDv45CSHtWzv4Jv+sebSZIk7TIbcEnSTut3eMvC7YHj5jJ/hROElZgGbeHw6xP1J3fB8jnx5ZEkSbus2BrwIAiaBkEwIAiCuUEQrAuCYEYQBI8FQZC5G+f8dRAEYcGj31Ze3zsIgj8EQTA0CIKfgyBYHwTB/CAI3gmCoMc2znnhRufc2uM3u5pXkiqKA7Nq06l59OM9Jy/k5VEz4g2U7A6/Aeq1jrbXr4T3b4LQGeglSSpviqUBD4KgFTAGuAj4CngUmAZcA4wKgqDuLpwzC/gbsGo7h/0ZuB9oCLwPPAJ8DhwPDA2C4OrtvPcd4K6tPL7Z2aySVBFd0i2xJNmro2exZn1ejGmSXFpGdCn6BpPeg4nvxpdHkiTtkrRiOs/TQAPg6jAM/7ZhZxAEfwWuA+4FijyyHARBALwILAbeBG7cxqGDgQfCMPx2s/cfCXwMPBQEwWthGP6ylfe+HYbhS0XNJEnaVO99GpFVpwo/L1nDsuwc3hg7m18d0jzuWMmreVfoeCGMeSmq3/897HkkVKkdYyhJkrQzdnsEPAiClkBvYAbw1GYv3wGsBn4dBEG1nTjt1UBPohH11ds6KAzDlzZvvgv2fwoMByoBXXficyVJRZSaEnBR18Qo+ICR08nP97LoEnXUXVC9YAK8VfPgkztjjSNJknZOcVyC3rPg+aMwDDdZGyUMw5VEl4RXBQ4pysmCIGhHdFn542EYfrYbuXIKnnO38fqBQRBcGwTBzQX3mjfdjc+SpArpzIOzqJERXUw1bdFqhk1aEHOiJFelNvR5MFGPeRFmfhFbHEmStHOKowFvU/A8eRuv/1Tw3HpHJwqCIA34JzALuGVXAwVB0BzoBWQD22riryG6V/0+4GVgRhAEzwRBUHknPmfM1h5A213NLknlSfWMNM7p0qywdkmyUtDuRGjTJ1EPvAZy18WXR5IkFVlxNOC1Cp6Xb+P1DftrF+FctwMHAReGYbhmV8IEQZABvApkAHeGYbh0s0OmA1cR/eKgGrAHcCbRJfSXAwN25XMlqaK6oGsLUlMCAL6Yupjxc7f114GKRRBAn4ehUo2oXjQZRvw13kySJKlISmMd8KDgebs3BgZB0Jlo1PuRMAxH7dIHBUEq0Qj6YcB/gIc3PyYMw0/DMHwyDMPJYRhmh2H4SxiGrwE9gKXAOUEQHFCUzwvDsOPWHsCPu5JfksqjJrWrcNy+jQprR8FLQa0mcNQdiXrEI7DAv3okSSrriqMB3zDUUWsbr9fc7LgtbHTp+WTgtl0JUdB8vwKcAfwX+FUYFn2R1DAMfyZaygzgiF3JIEkVVb/DWxZuDxw3lwUr1saYpoLodDE0PTjazs+JLkXPz9/+eyRJUqyKowGfVPC8rXu89y543tY94gDVC97fDlgbBEG44UE0kzrA8wX7Htv8zQUN/L+As4H/A84Nw3Bbk69tz8KC552ZsV2SKrwDs2rTqXkmADl5IS+PmhlzogogJRX6PgEp6VH985fRpGySJKnMKo4GfFjBc+8gCDY5XxAENYguB18DfLmdc6wD+m/jsWGZsZEF9SaXpwdBUAl4nWjk+2Xg12EY5u3i19Kl4HnaLr5fkiqsS7olliR7ZfRM1qzf1R/FKrKG7aHbtYn6kzthxS9xpZEkSTuw2w14GIZTgY+AFsDvNnv5LqLR5JfDMFwNEARBehAEbYMgaLXROdaEYdhvaw/g3YLD/lGw7z8b3lcw4dpbwElEzflFmy+FtrkgCA7fyr4gCII/AocCi4DBO/M9kCRB730akVWnCgDLsnN4Y+zsmBNVEIffCHX3irbXrYAPboo3jyRJ2qa0YjrPFcAXwBNBEPQCJhKNJvcguvT8Txsd26Tg9ZlETfvueAboQ9Q0zwFuD4Jg82OGh2E4fKP6syAIJgNfF7ynFtEo/b5Ey5adF4bhit3MJUkVTmpKwEVd9+TuQRMAGDByOud2bkZKyhY/l1Wc0itD38fhpeOjeuJAmDgI2p0Qby5JkrSFYmnAwzCcGgRBJ+Bu4FiipvgX4AngrjAMlxTH52zFhusd6xEtYbYtwzfafhjoDPQE6gD5ROuOPwX8NQxDLz+XpF105sFZPPrxZFauy2XaotUMn7yAnm0bxh0r+bXoBh3Oh7EvR/X7N8KeR0Dlmtt/nyRJKlXFNQK+YRbxi4pw3AwSS5MV5bx3Andu47XuRT3PRu/x2jxJKiHVM9I4u3MWz4+IliJ7YcR0G/DScvTdMGkwrF4AK3+BIXfB8Y/EnUqSJG2kNNYBlyRVIBd0bUFqwWXnX0xdzPi521yFUsWpSiYc90Ci/ro/zBodXx5JkrQFG3BJUrFqmlmV4/ZtVFj3Hzk9xjQVzD6nQOtjC4oQBl4NuetjjSRJkhJswCVJxa7f4S0LtweOm8uCFWtjTFOBBAH0eRgqVY/qhT/C54/FGkmSJCXYgEuSit2BWbXp1DwTgJy8kJdHzYw5UQVSOwt63paoP3sIFk6OL48kSSpkAy5JKhGXdNuzcPuV0TNZsz4vxjQVTOdLoUnHaDtvPQy8BvLz480kSZJswCVJJaP3Po3IqlMFgGXZObwxdnbMiSqQlFTo+wSkFCx2MusL+PbleDNJkiQbcElSyUhNCbioa2IUfMDI6eTnhzEmqmAa7Qtdr07UH90OK+fFl0eSJNmAS5JKzpkHZ1EjIxqFnbZoNcMnL4g5UQVz5O+hTsGEeOuWwwd/iDePJEkVnA24JKnEVM9I4+zOWYX1CyNckqxUpVeBEx5L1BPehkkfxJVGkqQKzwZcklSiLujagtSUAIAvpi5m/NzlMSeqYFoeCQf+KlG/dwOsXRFfHkmSKjAbcElSiWqaWZXj9m1UWPcf6Sh4qev9Z6haL9peMQeG3hNvHkmSKigbcElSiet3eMvC7YHj5rJgxdoY01RAVevAcQ8k6q+eg5+/ji+PJEkVlA24JKnEHZhVm47NMwHIyQt5edTMmBNVQPueBnsdXVCEMPBqyF0fayRJkioaG3BJUqno1y2xJNkro2eyZn1ejGkqoCCAE/4K6VWjesEE+OKJeDNJklTB2IBLkkpF730akVWnCgDLsnN4Y+zsmBNVQLWbQc9bE/WnD8KiKfHlkSSpgrEBlySVitSUgIu6JkbBB3w+nfz8MMZEFVSX38AeB0Xbeetg0LUQ+t9BkqTSYAMuSSo1Zx6cRY2MNACmLVzN8MkLYk5UAaWkQt8nIEiN6hkj4NtX4s0kSVIFYQMuSSo11TPSOLtzVmH9wgiXJItF4/2h65WJ+qNbYZW/DJEkqaTZgEuSStUFXVuQmhIA8MXUxYyfuzzmRBXUkTdDZotoe+0y+OAPcaaRJKlCsAGXJJWqpplVOW7fRoV1/5GOgseiUlU44dFEPf5NmPxhfHkkSaoAbMAlSaWu3+EtC7cHjpvLghVrY0xTgbXqCQeck6jfuwHWrYovjyRJSc4GXJJU6g7Mqk3H5pkA5OSFvDxqZsyJKrDe90LVutH28p9h6D3x5pEkKYnZgEuSYtGvW2JJsldGz2TN+rwY01Rg1erCMfcl6tHPwOwx8eWRJCmJ2YBLkmLRe59GZNWpAsCy7BzeGDs75kQV2P5nQqteBUUIA6+GvJxYI0mSlIxswCVJsUhNCbioa2IUfMDn08nPD2NMVIEFAZzwV0iLfiHC/B9g1JPxZpIkKQnZgEuSYnPmwVnUyEgDYNrC1Qyf7FrUsclsAT1uSdTD74fFU2OLI0lSMrIBlyTFpnpGGmd3ziqsXxjhkmSxOuQKaHxAtJ27FgZdB6FXJUiSVFxswCVJsbqgawtSUwIAvpi6mPFzl8ecqAJLTYO+T0BQ8M+D6Z/CuH/Fm0mSpCRiAy5JilXTzKoct2+jwnrAyBnxhRHscWA0Er7Bh7fAqoWxxZEkKZnYgEuSYnfJRkuSvTtuDgtWrI0xjehxC9RuFm2vWQof/jHePJIkJQkbcElS7A5qlknH5pkA5OSFvDxqZsyJKrhK1eCERxP1/16Dnz6JL48kSUnCBlySVCb022gU/JXRM1mzPi/GNGKvo2C/MxP1e9fB+tXx5ZEkKQnYgEuSyoTe+zQiq060DvWy7Bze/HZ2zInEsfdBlTrR9rJZMOwv8eaRJKmcswGXJJUJqSkBF3VNjIL3Hzmd/HyXwIpVtXpwzEZN95dPw9xv48sjSVI5ZwMuSSozzjw4ixoZaQBMW7ia4ZMXxJxIHHA2tOwebYf58O7VkJcbayRJksorG3BJUplRPSONsztnFdYvjJgeYxoBEATRhGxp0e0BzPsevnwq3kySJJVTNuCSpDLlgq4tSE0JAPhi6mLGz10ecyJRpyV0vzlRD7sPlvjLEUmSdpYNuCSpTGmaWZXj9m1UWA8YOSO+MEo49HfQcL9oO3cNDLoOQu/RlyRpZ9iAS5LKnEs2WpLs3XFzWLBibYxpBEBqOpz4BAQF/3SYNgy+/0+8mSRJKmdswCVJZc5BzTLp2DwTgJy8kJdHzYw5kQBo0gG6/DZRD/4jrF4cXx5JksoZG3BJUpnUb6NR8FdGz2TN+rwY06hQj1ugVrNoe80S+PCWePNIklSO2IBLksqk3vs0IqtONPP2suwc3vx2dsyJBEBGdTjhr4n6+3/DlCHx5ZEkqRyxAZcklUmpKQEXdk2MgvcfOZ38fCf9KhP2Phr2PT1RD7oO1mfHl0eSpHLCBlySVGad2akpNTLSAJi2cDXDJy+IOZEKHXsfVK4dbS+bCcPvizWOJEnlgQ24JKnMqlE5nbM7ZxXWL4xw7ekyo3oDOObeRD3qKZj7bXx5JEkqB2zAJUll2gVdW5CaEgDwxdTFTJi7IuZEKnTgedDi8Gg7zIM3+sG6VfFmkiSpDLMBlySVaU0zq3Lsvo0K6/4jHQUvM4IA+j4OlapH9eIp8P5N8WaSJKkMswGXJJV5Gy9J9u64OSxYsTbGNNpE3VZw/COJetz/wbj/xJdHkqQyzAZcklTmHdQsk47NMwHIyQt5edTMmBNpEwecDQeck6jfux4WT40vjyRJZZQNuCSpXNh4FPyV0TNZsz4vxjTaQp+HoU6raHv9Knj9IshdF28mSZLKGBtwSVK50HufRmTVqQLAsuwc3vx2dsyJtImM6nDGi5BaKap/GQef3BlrJEmSyhobcElSuZCaEnBh18QoeP+R08nPD2NMpC00PgB635Oov3waJn0QXx5JksoYG3BJUrlxZqem1MhIA2DawtUMn7wg5kTaQufLoE2fRP32FbBibnx5JEkqQ2zAJUnlRo3K6ZzdOauwfmGES5KVOUEAJz0FNZtE9Zol8MalkO89+5Ik2YBLksqVC7q2IDUlAOCLqYuZMHdFzIm0hap14LQXICj4Z8bMkfDZw/FmkiSpDLABlySVK00zq3Lsvo0K6/4jHQUvk5p3hSNvTtSf3g8zPo8vjyRJZYANuCSp3Nl4SbJ3x81hwYq1MabRNh1xIzTvFm2H+fBGP8heEm8mSZJiZAMuSSp3DmqWScfmmQDk5IW8PGpmzIm0VSmpcNrzUKVOVK+cG03KFjp7vSSpYrIBlySVSxuPgr86eiZr1jvJV5lUcw845ZlEPfkDGP1sfHkkSYqRDbgkqVzqvU8jmmZWAWBpdg5vfjs75kTaptbHwCG/S9Qf3wa/jIsvjyRJMbEBlySVS6kpARcdlhgF7z9yOvn5XtpcZh11BzQ+INrOWw+vXQTrVsabSZKkUmYDLkkqt87s1JQaGWkATFu4muGTF8ScSNuUlgGnvwiVqkf1kqnw/k3xZpIkqZTZgEuSyq0aldM5u3NWYe2SZGVc3VZwwqOJety/4Lt/xZdHkqRSZgMuSSrXLujagtSUAIDPpyxmwtwVMSfSdu1/Jhx4XqJ+7wZYNCW+PJIklSIbcElSudY0syrH7tuosHYUvBw47kGou3e0nbMaXr8QctfFGkmSpNJgAy5JKvc2XpLs3XFzWLBibYxptEMZ1eH0AZCaEdXz/gcf3x5vJkmSSoENuCSp3DuoWSYdm2cCkJMX8vKomTEn0g413h+OuTdRj34Gfnw/vjySJJUCG3BJUlLYeBT81dEzWbM+L8Y0KpKD+0HbExL1O1fA8jnx5ZEkqYTZgEuSkkLvfRrRNLMKAEuzc3jz29kxJ9IOBQGc+Deo2TSq1yyFN/pBXm68uSRJKiE24JKkpJCaEnDRYYlR8P4jp5OfH8aYSEVStQ6c9gIEBf8kmfUFfPZQvJkkSSohNuCSpKRxZqem1MhIA2DawtUMn7wg5kQqkuaHQvdbEvVnD8L0EfHlkSSphNiAS5KSRo3K6ZzdOauwdkmycuTw66HF4dF2mA9vXgqrF8ebSZKkYmYDLklKKhd0bUFKEG1/PmUxE+auiDeQiiYlFU59HqrWjeqVv0STsoXeRiBJSh424JKkpNI0syrH7de4sHYUvByp2RhOfiZRTx4cLU8mSVKSsAGXJCWdjZcke3fcHBasWBtjGu2U1r3h0CsT9Ue3wdxv48sjSVIxsgGXJCWdg5pl0rF5JgA5eSH//HJmzIm0U3rdAY0PjLbzc+D1i2HdylgjSZJUHGzAJUlJ6ZKNRsFf+XIma9bnxZhGOyWtEpw+ACrViOol02DQ9d4PLkkq92zAJUlJqXf7hjTNrALA0uwc3vx2dsyJtFPqtoK+jyXq//0Xxv0rtjiSJBUHG3BJUlJKS03hosMSo+D9R04nP98R1HJlv9PhoF8l6vdugEU/xZdHkqTdZAMuSUpaZ3ZqSo2MNACmLVzNp5MXxpxIO+24B6Fe62g7JxtevwhynFRPklQ+2YBLkpJWjcrpnN05q7B+YeS0GNNol1SqBqe/CKkZUT3vf/Dx7fFmkiRpF9mAS5KS2gVdW5ASRNufT1nMhLkr4g2knddoXzjm3kT91bPw43vx5ZEkaRfZgEuSklrTzKoct1/jwrr/yOkxptEuO7gftD0hUb99BSx3Yj1JUvliAy5JSnr9NlqS7N1xc1iwwnuIy50ggJOehFoFtxSsXQZv9IO83FhjSZK0M2zAJUlJ76BmmXRsnglATl7IP7+cGXMi7ZIqmXDaCxCkRvWsUfDpA/FmkiRpJ9iAS5IqhEs2GgV/5cuZrFmfF2Ma7bJmh0CPWxL1Zw/B9M/iyyNJ0k6wAZckVQi92zekaWYVAJZm5/Dmt94/XG51uw72PKKgCOHNy2D1olgjSZJUFDbgkqQKIS01hYsOS4yC9x85nfz8MMZE2mUpqXDKc1C1XlSv/AXe/i2E/veUJJVtNuCSpArjzE5NqZGRBsC0hav5dPLCmBNpl9VsDKc8k6h/+gi+fDq+PJIkFYENuCSpwqhROZ2zDs4qrF8YOS3GNNptex8NXa9K1B/fAXPGxpdHkqQdKLYGPAiCpkEQDAiCYG4QBOuCIJgRBMFjQRBk7sY5fx0EQVjw6Led47oGQfB+EARLgiDIDoLg+yAIrg2CDdOkbvU9FwRB8FUQBKuCIFgeBMHwIAhO2NbxkqTkcOFhLUgJou3PpyxmwtwV8QbS7ul5O+zRIdrOz4HXL4a1/jeVJJVNxdKAB0HQChgDXAR8BTwKTAOuAUYFQVB3F86ZBfwNWLWD404CPgOOAN4CngIqFWT49zbe8zDwEtAYeB54BdgPGBgEwZU7m1WSVH40zazKcfs1Lqz7j5weYxrttrRKcPoAyKgZ1Uunw3vXez+4JKlMKq4R8KeBBsDVYRieHIbhzWEY9iRqgtsA9+7MyYIgCIAXgcXAM9s5riZRA50HdA/D8JIwDG8CDgRGAacHQXD2Zu/pCtwATAX2D8PwujAMfwd0BJYADwdB0GJn8kqSypd+Gy1J9u64OSxYsTbGNNptdfaEEx5N1P97Db77v/jySJK0DbvdgAdB0BLoDcwgGn3e2B3AauDXQRBU24nTXg30JBpRX72d404H6gP/DsPwmw07wzBcC9xaUP52s/f8puD53jAMl270ng35Mwo+V5KUpA5qlknH5tEdUjl5If/8cmbMibTb9jsdDvp1on7/Rlg4Ob48kiRtRXGMgPcseP4oDMP8jV8Iw3Al8DlQFTikKCcLgqAdcD/weBiGnxXxswdv5bXPgGygaxAEGUV8zwebHbOjrGO29gDaFuX9kqT4XLLRKPgrX85kzfq8GNOoWBz3ANRrE23nZMPrF0GOVzdIksqO4mjAC/6mY1u/Zv6p4Ln1jk4UBEEa8E9gFnDL7nx2GIa5wHQgDWhZcP5qQBNgVRiGv+xOVklS+da7fUOaZlYBYGl2Di9+4b3g5V6lanDGi5Ba8Hv3+T/AR7du/z2SJJWi4mjAaxU8L9/G6xv21y7CuW4HDgIuDMNwTQl8dnFmJQzDjlt7AD8W5f2SpPikpaZw2REtC+u/DZnC3GVF+atHZVrDfeDY+xL118/DxIHx5ZEkaSOlsQ54wWIvbHc60iAIOhONej8ShuGo0vzsrXDqVEmqAM7t3Iy2jWoAsCYnj3vemxBzIhWLThdDuxMT9Tu/g2Wz4ssjSVKB4mjAN4wa19rG6zU3O24LG116Phm4rQQ/e0fH72iEXJKURNJSU7j7pH0L6/f/N4/PJi+MMZGKRRDAiU9ArWZRvXY5vHEp5OXGm0uSVOEVRwM+qeB5W/dN713wvL2pSKsXvL8dsDYIgnDDg2gmdYDnC/Y9VpTPLmjq9wRyidYkJwzD1cAcoHoQBI03f08Rs0qSkkjnPetwaocmhfWd745nXa4TspV7VTLh9P4QpEb1z1/Cp/fHm0mSVOEVRwM+rOC5dxAEm5wvCIIawGHAGuDL7ZxjHdB/G49vC44ZWVBvfHn60ILnY7dyziOIZl//IgzDdUV8z3GbHSNJqgD+eFw7amSkATBt0WpeGOGEbEkhqzP0/FOi/uxhmPZpfHkkSRXebjfgYRhOBT4CWgC/2+zlu4BqwMsFo88EQZAeBEHbIAhabXSONWEY9tvaA3i34LB/FOz7z0bnfx1YBJwdBEGnDTuDIKgM3FNQ/n2zTM8UPP8pCILMjd6zIf864MWd+y5Iksqz+jUyuKF34mKqvw39iTlOyJYcDrsOWnYvKEJ481JY5W0GkqR4FNckbFcAC4AngiB4OwiC+4IgGApcR3Q590a/fqYJMBEYsrsfGobhCuBSIBUYHgTBC0EQPAh8BxxK1KD/Z7P3fAH8FWgFfB8EwaNBEDwFfAPUAW4Mw3DG7maTJJUvvzqkOe0aR1OHrM3J588DnZAtKaSkwCnPQbX6Ub1qPrz9W8jPjzeXJKlCKpYGvGAUvBPwEtAFuIGowX0CODQMw8XF8Tnb+Oy3gSOBz4DTgKuAHOB64OwwDLeY0TwMwxuAC4F5wGXA+cB4oG8Yhk+WVFZJUtmVlprCn0/ap7AePH4ewyctiDGRik2NhnDKM4l6ysfw5VPx5ZEkVVjBVvpT7aYgCMZ06NChw5gxY+KOIknaSTe+No7Xx8wGoEXdqnx43RFkpKXGnErF4uPb4fPHo+2UNLjkI2jSMd5MkqRyp2PHjowdO3ZsGIY7/ZdIaawDLklSuXHzcW2pUTmakG3G4mye/2xazIlUbHrelmi483Ph9Yth7Yp4M0mSKhQbcEmSNlKvegY3HdOmsH5y2BR+XpIdYyIVm9R0OK0/ZET3+rN0Bgy6FrwaUJJUSmzAJUnazHldmrPPHhtNyDbICdmSRp09oe9jifqHN+DbV2KLI0mqWGzAJUnaTGpKwN0n7VtYfzRhPsN+dEK2pLHvadDhgkT9/k2wcFJ8eSRJFYYNuCRJW9GxeSZndmpaWN85cDxrc/JiTKRidez9UL9ttJ27Bl67CHJc+12SVLJswCVJ2oY/HNuWmgUTss1cnM1zTsiWPCpVhdNfhLTKUb1gPHz4p3gzSZKSng24JEnbULd6Bjcd27awfsoJ2ZJLw/bRSPgG3/SHCe/El0eSlPRswCVJ2o5zOzdj3ybRhGzrcvO5a6ATsiWVjhdC+5MT9btXwbJZcaWRJCU5G3BJkrYjNSXgzxtNyPbJxPkMmTg/xkQqVkEAfR+HWs2ieu1yeP0SyMuJN5ckKSnZgEuStAMHNcvk7IOzCmsnZEsyVWrD6QMgSI3q2V/B8PtijSRJSk424JIkFcHvj21LrSrpAPy8ZA3PfDo15kQqVlkHQ6/bEvWIv8LUYfHlkSQlJRtwSZKKoE61Svz+2DaF9dPDpzJrsROyJZWu10DLHgVFCG9dDqtc/12SVHxswCVJKqKzD27G/k1rAbA+N5+7Bo6POZGKVUoKnPocVGsQ1avmw1u/gfz8eHNJkpKGDbgkSUW0YUK2IIjqIT8u4JMJTsiWVKo3gFOeSdRTh8CoJ+PLI0lKKjbgkiTthAOyanP2wc0KaydkS0J79YLDrk3UQ+6C2WNiiyNJSh424JIk7aTfH9OG2lWjCdlmL13D08OdkC3p9LwVmnSKtvNz4fWLoiXKJEnaDTbgkiTtpMxqlfjDsW0L62c+ncqMRatjTKRil5oOp/eHjOief5bNhIHXQBjGm0uSVK7ZgEuStAvO6pTFAVm1gWhCtjsHjie0OUsumS3gxMcT9fi3YOzLscWRJJV/NuCSJO2ClJSAP5+0T+GEbMMnLeRjJ2RLPvucAh0vStQf/AEWTIwvjySpXLMBlyRpF+3ftDbndk5MyHbXwAmsWe+EbEnn2PugQftoO3cNvHYR5KyJN5MkqVyyAZckaTfcdEwbMgsmZJuzbA1PD58ScyIVu/QqcPoASKsS1Qsnwoe3xJtJklQu2YBLkrQbaletxM3HJSZke/bTaUx3Qrbk06AdHHd/ov5mAIx/O7Y4kqTyyQZckqTddEbHLA7cMCFbXj53vOuEbEmpwwXRPeEbvHs1LJ0ZXx5JUrljAy5J0m5KSQm45+R9Cydk+2zyQj4c74RsSScIoO/jULvgvv91y+GNSyAvJ95ckqRywwZckqRisG+TWvyqS/PC+s+DJpC9PjfGRCoRlWvB6S9CSlpUz/4aht0bbyZJUrlhAy5JUjG5sXcb6lSrBEQTsj01zAnZklLTTtDr9kQ98lGYOjS+PJKkcsMGXJKkYlKravomE7I999k0pi1cFWMilZhDr4JWvRL1m5fDqgXx5ZEklQs24JIkFaPTOzSlQ7PaAOTkhU7IlqxSUuCUZ6Bag6hevQDeuhzy8+PNJUkq02zAJUkqRikpAXeftC8pBROyjfhpEYN/mBdvKJWM6g3g1OeAgv/YU4fCF0/EGkmSVLbZgEuSVMz2bVKLXx+SmJDtbidkS16tekC36xL10D/Dz1/Hl0eSVKbZgEuSVAKu792GugUTsv2yfC1/G+qEbEmrxy3QtHO0nZ8Lb1wMa5bFGkmSVDbZgEuSVAJqVUnnj33aFdYvjJjGlAVOyJaUUtPhtBeiJcoAls2CgdeA9/5LkjZjAy5JUgk59aAmdGqeCUQTst3phGzJK7M5nPi3RD3hbRjzUlxpJElllA24JEklZPMJ2UZOWcT7/3NCtqTV/iTodHGiHnwzLJgYXx5JUpljAy5JUglqv0dNzj+0RWH950ETWL3OCdmS1jF/gQbto+3ctfDaRbA+O95MkqQywwZckqQSdt3RralXPQOAeSvW8sTQn2JOpBKTXgVOfxHSqkT1wonw4R/jzSRJKjNswCVJKmG1qqRzS5+2hXX/EdOZsmBljIlUohq0hT4PJuoxL8EPb8YWR5JUdtiAS5JUCk45qAkHt4gmZMvND7n9HSdkS2oH/Rr2PS1RD7wGls6ILY4kqWywAZckqRQEQTQhW2rBjGxfTF3MoO9/iTmVSkwQwAmPQmaLqF63Al6/BPJyYo0lSYqXDbgkSaWkXeOaXLDRhGz3vDeBVU7Ilrwq14LTBkBKWlTP+QaG3hNvJklSrGzAJUkqRdcevTf1a0QTss1fsY4nhjghW1Jr2hF63ZGoP38MpgyJLY4kKV424JIklaKaldP5U592hfWAkdOZPN8J2ZLaoVfCXkcl6rcuh5Xz48sjSYqNDbgkSaXspAP3oPOedYANE7L94IRsySwlBU5+Bqo3jOrVC+GtyyA/P95ckqRSZwMuSVIpC4KAP280IduX05bw7ri5MadSiapeH059Doj+mzNteHQ5uiSpQrEBlyQpBm0a1eCiri0K63vfm8jKtc6QndRadofDb0jUQ++Bn7+KLY4kqfTZgEuSFJNrjtqbBgUTsi1YuY7HP3FCtqTX/Y+Q1SXaDvOipcnWLIs1kiSp9NiAS5IUkxqV0/nT8YkJ2V78YgaT5jkhW1JLTYPTXoiWKANYPgvevQqcA0CSKgQbcEmSYnTiAXtwSMtoQra8/JDbnJAt+dVuBic+magnvgtjXowvjySp1NiAS5IUoyAIuPukfUkrmJDtq+lLeOc7J2RLeu1PhIP7JerBf4T54+PLI0kqFTbgkiTFrHXDGlzcbc/C+t73J7LCCdmSX+97oeG+0XbuWnjtIli/Ot5MkqQSZQMuSVIZcHWvvWlYM5qQbeHKdTz2sROyJb30ynD6AEivGtWLJsG7V7s+uCQlMRtwSZLKgOoZadx6fPvC+h+jZjDxlxUxJlKpqN8G+jyUqH94HYbeHV8eSVKJsgGXJKmMOGH/xnRtVReIJmS73QnZKoYDz4NOlyTqkY/C1/3jyyNJKjE24JIklRHRhGz7FE7I9vWMpbz17ZyYU6nEBQEc9yC0Pjax7/0bYdLg+DJJkkqEDbgkSWXIXg1qcMnhiQnZ/vL+RJavcUK2pJeaFt0PvsdBUR3mw+sXwZyx8eaSJBUrG3BJksqYq3vuTaOalQFYtGo9j348OeZEKhWVqsG5/4XazaM6Jxv+70xYOiPWWJKk4mMDLklSGVMtI43bTkhMyPbyqBlMmOuEbBVC9QbwqzegSmZUr14Ir5wO2UvizSVJKhY24JIklUF99mtEt73qAZAfwu3v/EB+vhOyVQj19oaz/wWp0bJ0LP4J/n0u5KyNN5ckabfZgEuSVAYFQcCdJ+5Demo0Ids3M5fyphOyVRzND4VTn03Us0bB279xjXBJKudswCVJKqP2alCdfoe3LKzvc0K2imWfU6D3PYl6/Fvwye3x5ZEk7TYbcEmSyrCreu7FHrWiCdkWr3ZCtgrn0Cuh8+WJ+ou/wejn4ssjSdotNuCSJJVhVSttOSHb+LnLY0ykUhUEcOx90PaExL7Bf4Af34svkyRpl9mAS5JUxh27byMO33vjCdnGOyFbRZKSCqc+D006RXWYD69fArO/iTeXJGmn2YBLklTGBUHAXRtNyDZm5lLeGDs75lQqVZWqwrn/gcw9ozp3DfzfWbBkWry5JEk7xQZckqRyoGX96lx2RGJCtvs/+JHl2U7IVqFUq1ewRnidqM5eFK0RvnpxvLkkSUVmAy5JUjnxux570aR2FSCakO2RjyfFnEilrm6raCQ8LZqYjyVT4V9nQ86aeHNJkorEBlySpHJi8wnZXvlyJj/McUK2Cierc3RPONEtCcz+Ct68FPLzYo0lSdoxG3BJksqRY/ZpyJGt6wPRhGy3vfODE7JVRO1PjGZH32DiQPjo1vjySJKKxAZckqRyJAgC7jxxHyqlRn+FfztrGa+PcUK2CumQ38Ihv0vUXz4No56OL48kaYdswCVJKmf2rFeNy4/caEK2wT+yLHt9jIkUm973QLsTE/WHt8CEd+LLI0naLhtwSZLKoSu6JyZkW7J6PQ9/5IRsFVJKCpz6HGR1KdgRwpuXwazRscaSJG2dDbgkSeVQlUqp3NE3MSHbq6Nn8b/ZTshWIaVXgbP/BXVaRXXu2mhm9EVT4s0lSdqCDbgkSeXU0e0b0qNNNCFbGMKtTshWcVWrC796HarWi+o1S+DV02DVwnhzSZI2YQMuSVI5VTghW1r01/m4n5fx329+jjmVYlOnJZz7X0iLbk1g6Qz411mwPjvWWJKkBBtwSZLKseZ1q/GbI1sV1g8M/pGlq52QrcJq2hFOHwBBwT/x5oyBN/q5RrgklRE24JIklXNXdG9F08xo1HNpdg4POSFbxda2Dxz3YKKe9B4Mvjm6T0GSFCsbcEmSyrnK6anc2XefwvpfX81i3M/L4guk+HW+FLpenai/eg5GPRlfHkkSYAMuSVJSOKp9Q3q1bQBEA523vfMDeU7IVrEddRfsc2qi/uhW+OHN+PJIkmzAJUlKFnf0TUzI9v3s5fznaydkq9BSUuDkv0Ozrol9b10OM7+IL5MkVXA24JIkJYlmdatyRffEhGwPfvgjS5yQrWJLrwxnvwr1Wkd13nr41zmwcHK8uSSpgrIBlyQpifzmyFY0q1MVgGXZOTz04Y8xJ1LsqtaB816DatEtCqxdVrBG+IJYY0lSRWQDLklSEqmcnsqdJ7YvrP/99c98O2tpjIlUJmS2gHP/A+nRL2dYNgv+70xYvzrWWJJU0diAS5KUZHq2bchR7RoC0YRst78z3gnZBE06wBkvJdYIn/stvH4x5OXGGkuSKhIbcOn/27vvMCvKs4/j32cLvXcB6QgqigKiNBFs2CJir4AtKrFFTTExahJfWzT2Loq9966gqKAiRRQVUelVivS6u/P+MYfddQOyyLKz5fu5rnOdzD3l3IsT2N+ZmeeRpDLoyiN2oWJqQLav5izjyTEzE+5IJcJOB8NhN+UtT3kL3rzMOcIlqZgYwCVJKoN2rFOFIX3a5C7f+PZ3LF65LsGOVGJ0OR16/jFveexQGHVLYu1IUnliAJckqYw6e99WNK8bP/O7bM0Gbnjru4Q7UonR9wrY7di85feugi+fTawdSSovDOCSJJVR8YBsu+YuPz12FuMdkE0QzxF+5J3Qolde7eXzYPrHyfUkSeWAAVySpDKsT7sGHLRLw9zlK16a5IBsimVUhOMfg/rt4+Xs9fDUSfCTU9dJ0vZiAJckqYy74vBdqJQZ/5P/9dzlPPHZjIQ7UolRuRac/BxUaxQvr10Gjx8DK+Yn2pYklVVFFsBDCE1DCENDCHNDCOtCCNNDCLeEEGpvxTGuDyEMDyHMCiGsCSEsCSFMCCFcGUKou4ntHw4hRFt4DS+wz6AtbH9OUfx5SJJUUuxYpwp/KDAg2yIHZNNGtXaEk5+BCtXi5WWz4PFjYd2KZPuSpDIooygOEkJoDYwGGgAvA5OBrsCFQL8QQo8oihYX4lAXA+OBd4GfgKrAPsBVwNkhhH2iKJqVb/uXgOmbOdapQCvgzc2sfxn4YhP1sYXoU5KkUuWsfVvx3LjZTF+8muVrs7j+zcnceGzHpNtSSbFDRzh2GDxxHETZMP9LeHYQnPg0pBfJr4uSJIoogAN3EYfvC6Ioun1jMYRwM3GovgYozJXlGlEUrS1YDCFcA1wO/BU4b2M9iqKXiEN4we1rAX8C1gMPb+azXoqiaHPrJEkqUypmxAOyDXrocwCeHTebE7ruSOfmdRLuTCVG2wPgiFvglfPj5R/eg9cvhiNugxASbU2SyoptvgU9hNAKOIj4SvSdBVZfCawCTg0hVN3SsTYVvlOeSb23LWRbpwKVgReiKFpUyH0kSSrT9mvXgH67NspdvuKlr8nKzkmwI5U4nU6Dff+Utzz+EfjoP8n1I0llTFE8A9439f5OFEW/+Fc8iqIVwCigCvGt5L/VEan3Lwu5/Vmp9/t+ZZs9QggXhRD+EkI4NYTQ9Le3J0lS6XDFEXkDsn0zbzmPfzYz4Y5U4vS5HDqemLc84t8w8ank+pGkMqQobkFvl3qfspn13xNfId8JGL6ZbX4hhHApUA2oCXQBehKH7+sKsW83YDdgShRF7//KphcWWM4OITwAXPQrV+ILfta4zaxqX5j9JUkqbk1qVeb8vm258e3vAPjPO99x6G47UL96xYQ7U4kRQnzb+fK5MG1kXHt5CFRvBK32S7Q1SSrtiuIKeM3U+7LNrN9Yr7UVx7yU+Pb1i4jD91vAQVEULSzEvmen3u/fzPppwPnEXxxUBRoDxxHfQv97YOhW9ClJUqlzZq+WtKoXPxm2Ym0W173pvM8qIKMCHP8oNNg1Xs7JgqdPhQVfJ9uXJJVyxTEP+MZRO6LC7hBFUaMoigLQCBhAPJr5hBBCp1/9oBBqEofpzQ6+FkXRyCiK7oiiaEoURaujKJoXRdGzQB/gZ+DEEEKhhoWNoqjzpl7Eo8BLklQibRyQbaPnx8/m8+lLEuxIJVKlmnDys1C9cby8bnk8Pdnyucn2JUmlWFEE8I1XuGtuZn2NAtsVWhRFC6IoepH4Fva6wCNb2OUU4ufNt3rwtdT0Zm+kFvfd2l4lSSpN9t2pPofuln9AtkkOyKb/VbNJHMIrVI+Xl8+JQ/ja5cn2JUmlVFEE8O9S7zttZv3Gkcs394z4FkVRNAP4Btg1hFDvVzbdOPjavb/xozbe4r7FEdslSSrt/n7YLlTOTAdg8vwVPPrpjIQ7UonUqAMc/wikpYYOWjAJnjkNsjck25cklUJFEcA3DnR2UAjhF8cLIVQHegBrgE+38XNS9z+RvamVIYS9gY7Eg6998Bs/Y+/U+9TfuL8kSaVG41qVuWD/vBk+b35nCj+tKNQ4pCpvWveNB2bbaOr78OqFEBX6CUNJEkUQwKMo+hF4B2gBDCmw+mriq8mPRFG0CiCEkBlCaB9CaJ1/w1StUYH9CSGkhRCuARoAo6Mo+nkzrWwcfO3Xph4jhNBrE7UQQvgr0A1YRDzomyRJZd4ZPVvSqn5qQLZ1WVz3hsOYaDP2PBn2uzxv+YvHYeT1yfUjSaVQUUxDBnAeMBq4LYSwP/At8dXkPsS3nv8t37ZNUutnEIf2jfoBN4YQPgR+BBYDDYHexIOwzSfvFvNfCCHUAI4nHnxt2BZ6/TCEMAX4HJhD/Ox6D6ADsBo4OYoiH2ySJJULFTLS+OfvOnDKg58B8MKEORy/147s3apuwp2pROr9J1g2EyY8Fi9/cC3UbAp7npJsX5JUShTJKOipq+BdiEce3xu4BGgN3AZ0i6JocSEO8x7x1eu6xCOfXwYcDSwhvpK+axRF32xm35OJr7QXZvC1/xCH+b7Ec4GfBmQCdwK7RVH0TiF6lSSpzOjZth6H7b5D7vI/Xv6aDQ7Ipk0JAQ6/Jb4lfaNXL4QfhifWkiSVJiHy2Z0iF0IY16lTp07jxo1LuhVJkgpl3rI17H/TSFavj4daueLwXTijZ8uEu1KJtXY5PHQoLPgqXq5QHU5/ExrtlmxfklQMOnfuzPjx48enpqDeKsUxD7gkSSrhdqhZmQvzDcj233en8NNyB2TTZlSqEU9PVqNpvLx+RTw92bLZyfYlSSWcAVySJAEwuEdL2jSoBsDKdVn83xvfJtyRSrQaO8QhvGLNeHnFvDiEr1maaFuSVJIZwCVJErBxQLZdc5df+mIun04tzDAuKrca7gLHPwppmfHyT9/AM6dC1vpk+5KkEsoALkmScnVvU48jOjbOXf7Hy5MckE2/rlVvOPLOvOVpH8Ir5ztHuCRtggFckiT9wt8O3ZmqFdIBmLJgJcNGT0+2IZV8HY+HvlfkLX/5FLx/TXL9SFIJZQCXJEm/0KhmJS46YKfc5f++O4UFDsimLel1CXQamLf84Y0w7uHE2pGkksgALkmS/segHi1omxqQbdX6bK553QHZtAUhwGE3Q9uD8mqv/RG+fze5niSphDGAS5Kk/5GZnsY/j+yQu/zKxLmM/nFRgh2pVEjPgGMegh06xstRNjwzEOZ+kWhbklRSGMAlSdImdWtdlyP3yD8g29cOyKYtq1gNTnoWajaLlzesgieOg6Uzk+1LkkoAA7gkSdqsyw/dmWoVMwD44aeVPDRqWsIdqVSo3hBOeQ4qpeYIX7kAHjsG1vycbF+SlDADuCRJ2qyGNSpx0QFtc5dvee975i1bk2BHKjXqt4MTnoT0CvHyou/gqVMga12yfUlSggzgkiTpVw3s3oJ2DasDsNoB2bQ1WvSA/nfnLc/4GF46D3J8lEFS+WQAlyRJvyoekG3X3OXXvpzHqB8ckE2FtNsxcMDVecuTnoMR/0yuH0lKkAFckiRt0d6t6nLUnk1yl//x8iTWZ3kVU4XU40Lockbe8sf/hc8fTK4fSUqIAVySJBXKXw9tT/XUgGw/LlzFUAdkU2GFAIfcADsdkld741L47q3kepKkBBjAJUlSoTSoXomLD9wpd/m24d8zd6kDsqmQ0jPgmAehcad4OcqB5wbDnHHJ9iVJxcgALkmSCu20bs1p38gB2fQbVagKJz0NtZrHyxtWwxPHw8/TE21LkoqLAVySJBVaRnoa/zyyQ+7y61/N46PvFybYkUqdag3glOehcu14edXCeI7w1UuS7UuSioEBXJIkbZWuLeswoFPegGxXvvw167KyE+xIpU69tqk5wivGy4u/h6dOgg1rk+1LkrYzA7gkSdpqfz1k59wB2aYuWsWDHzsgm7ZS824w4F4gxMszP4GXznGOcEllmgFckiRttfrVK3LJQXkDst0+/Adm/7w6wY5UKu16FBz077zlr1+E9/6RXD+StJ0ZwCVJ0m9yyj7N2XmHGgCs2ZDNmcPGsnzthoS7UqnTbQh0/X3e8ujb4bP7kutHkrYjA7gkSfpNMtLT+Hf/DmSkxbcQT56/gt8/Ms7nwbV1QoB+10L7w/Nqb/4JJr+eXE+StJ0YwCVJ0m/WuXltrjt699zlT6Yu5rJnvyQnJ0qwK5U6aekw4H5ouleqEMFzZ8DssYm2JUlFzQAuSZK2yTGdm3LZwe1yl1+ZOJfr3pqcYEcqlSpUgROfgtot4+WsNfDEcbBkarJ9SVIRMoBLkqRtdt5+rTl1n+a5y/d9ONWR0bX1qtaL5wivUjdeXr04niN81eJk+5KkImIAlyRJ2yyEwFW/25WDdmmYW/v369/w2pdzE+xKpVLd1vGV8IxK8fKSH+HJE2DDmmT7kqQiYACXJElFIj0tcNuJe9K5eW0Aogj++PREPp3q1UttpR27wtEPkDtH+Owx8MJZkOMAf5JKNwO4JEkqMpUy03ngtC60rl8VgPXZOZz1yFgmz1+ecGcqdXY+Avpdl7f87avwzt+T60eSioABXJIkFanaVSsw7PSuNKheEYAVa7MYNPRz5i71FmJtpX3OgX2G5C1/ehd8cldy/UjSNjKAS5KkIte0dhUeGrwX1SpmADB/+VoGPTSGZas3JNyZSp2D/g07/y5v+e3L4ZuXk+tHkraBAVySJG0Xuzauyb2ndiYzPX6Od8qClZz16FjWbvA5Xm2FtDQYcB/suHeqEMELZ8PMzxJtS5J+CwO4JEnabnq0qcd/ju2Yuzxm2hL++MwX5ORECXalUiezcjwyep3W8XLW2nhk9EU/JNuXJG0lA7gkSdqujtyjCZcf2j53+Y2v5vPP174higzh2gpV6sApz0GVevHymiXw+NGwcmGyfUnSVjCAS5Kk7e6sXq0Y3KNF7vLDo6dz/0dTk2tIpVOdVnDSM5BROV7+eTo8eTysX51oW5JUWAZwSZK03YUQuOKwXThstx1ya//3xmRemjAnwa5UKjXtDMcMhZD6NXbOOHj+TOcIl1QqGMAlSVKxSEsL3HRcR7q2rJNbu+y5iXz8/aIEu1Kp1P5QOOSGvOXvXoc3/ww+1iCphDOAS5KkYlMpM537T+3CTg2rAbAhO+Kcx8bx9dxlCXemUqfrWdD9grzlz++H0bcn148kFYIBXJIkFauaVTJ5eHBXGtWoBMDKdVkMeuhzZi3xOV5tpQOuhl0H5C2/ewVMfCq5fiRpCwzgkiSp2DWuVZlhp3eleqUMABauWMfAh8bw86r1CXemUiUtDfrfDc175NVe/D18+B9vR5dUIhnAJUlSIto1qs79p3WhQnr868jUhas485GxrN3gYFraCpmV4PjHoP7OebUR/4KXh0CWX+hIKlkM4JIkKTH7tKrLzcd3JIR4edyMn7ngyQlk53j1UluhSh04/U1o0Suv9sXj8OhRsHpJcn1JUgEGcEmSlKjDd2/MFYftkrv8zjcLuPKVSUTeQqytUbk2nPIC7HlKXm3Gx/DAAbD4x+T6kqR8DOCSJClxp/dsydn7tspdfuzTmdz1gaFJWymjAvzuDjjgqrzakh/hgf1h+qjE2pKkjQzgkiSpRPhLv/b8rmPj3OUb3/6OZ8fOSrAjlUohQM+L4dhhkBGPtM+an+GRI+GLJ5PtTVK5ZwCXJEklQlpa4MZjd6d767q5tb+88BUffPdTgl2p1Nq1Pwx6A6o2iJdzNsBL58CIaxwhXVJiDOCSJKnEqJiRzr2ndmbnHWoAkJ0Tcd7j4/lq9rKEO1Op1LQznDUcGuSNMcCHN8DzZ8CGtcn1JancMoBLkqQSpXqlTB4evBdNalUGYPX6bAY/PIaZi1cn3JlKpVrN4PS3oc0BebVJz8OwI2DlwuT6klQuGcAlSVKJ07BGJYadvhc1K2cCsGjlegY+NIbFK9cl3JlKpUo14MSnYa8z82qzx8ADfeGnycn1JancMYBLkqQSqU2D6jw4sAsVM+JfV6YtWsXpw8ayen1Wwp2pVErPgEP/A/2uh5D6FXjpTHjwQPhxRLK9SSo3DOCSJKnE6tKiDreesCchxMsTZy3lD09MICs7J9nGVDqFAPucAyc8CZlV49q65fDYMTDu4URbk1Q+GMAlSVKJ1q9DI/75u11zl0dM/om/vzSJyJGs9Vu16wenvwXVU9PeRdnw6oXwzt8hJzvZ3iSVaQZwSZJU4p3arQVD+rTOXX7q81ncOvz7BDtSqbfD7nDWCNihY15t9O3wzGmwflVyfUkq0wzgkiSpVLj0oHYM6NQkd/mW977nqTEzE+xIpV6NHWDwm9DusLza5NfgoUNg+bzk+pJUZhnAJUlSqRBC4Pqjd2ffnern1v720iSGf7sgwa5U6lWoCsc/Ct3Pz6vNmwj394V5XybXl6QyyQAuSZJKjcz0NO46uRMdmtQAIDsnYsgT45kw8+eEO1OplpYOB/0bDr8FQnpcWzEXhvaDKW8n2pqkssUALkmSSpVqFTMYOmgvdqxTGYC1G3I4Y9hYpi5cmXBnKvW6DIZTnoOK8Rc8bFgFT54An94DDvonqQgYwCVJUqnToHolhg3uSu0qmQAsWbWegQ+NYeGKdQl3plKvdV84412o1SxejnLgrT/DG5dBtnPQS9o2BnBJklQqtapfjaGD9qJSZvzrzKwlaxj88BhWrjMkaRs1aA9njoCme+XVPr8fnjwe1i5Pri9JpZ4BXJIklVp7NqvNnSd1Ii3Ey5PmLOe8x8ezITsn2cZU+lWrDwNfhV0H5NV+eA+GHgxLHX1f0m9jAJckSaXa/js35Jqjdstd/nDKQv7y/FdEPrOrbZVZGY5+EPa9LK/20zdw//4we1xyfUkqtQzgkiSp1DuxazMu3L9t7vLz42dz0ztTEuxIZUZaGvT9O/S/B9LiMQdY9RM8fCh8/VKirUkqfQzgkiSpTLjogLYc32XH3OU73v+BRz+dkWBHKlP2OBFOexkq146Xs9bCswPh4/86QrqkQjOAS5KkMiGEwDVHdaBPu/q5tStfnsTbX89PsCuVKS16wJnDoU7rvNp7V8Erf4Cs9Ym1Jan0MIBLkqQyIyM9jTtP7kTHpjUByInggicnMHb6koQ7U5lRtzWc+R4075lXm/AYPDYA1vycXF+SSgUDuCRJKlOqVMhg6KC9aFG3CgDrsnI4Y9hYfvhpRcKdqcyoUgdOfRE6npRXm/4RPHAgLP4xub4klXgGcEmSVObUrVaRYad3pV61CgAsW7OBgUM/Z8HytQl3pjIjowL0vwv6XpFXW/w9PHAAzPgkub4klWgGcEmSVCY1r1uVoYP2okqFdADmLF3DoIc+Z8XaDQl3pjIjBNj3UjjmIcioFNfWLIFHfgdfPpNsb5JKJAO4JEkqs3ZvWou7Tu5EeloA4Nt5yznnsXGsz8pJuDOVKR0GwMDXoGpqAMDs9fDCWfD+tY6QLukXDOCSJKlM269dA64bsFvu8qgfFvOn5yaSk2MwUhHaca94hPT67fNqI6+D58+EDT76IClmAJckSWXesV125NKDdspdfumLuVz/1uQEO1KZVLs5nPEOtO6bV5v0XHxL+qpFyfUlqcQwgEuSpHJhSJ82nLx3s9zlez+cytCPpyXYkcqkSjXhpGehy+l5tVmfwf19YeF3yfUlqUQwgEuSpHIhhMA/j+zAgbs0zK396/VveP3LeQl2pTIpPQMOuxkO/j8gHn+ApTPiacqmfpBkZ5ISZgCXJEnlRnpa4PYT96Rz89pAPD7WxU9/wadTFyfcmcqcEKDbEDjhCciM56Rn3TJ47GgYNyzZ3iQlxgAuSZLKlUqZ6TxwWhda1a8KwPrsHM56ZCzfzV+RcGcqk9ofCoPfhOo7xMs5WfDqBfDuPyDH0fil8sYALkmSyp3aVSswbHBX6levCMCKtVkMemgM85atSbgzlUmN94CzRkCj3fNqo26FZ0+D9asTa0tS8TOAS5KkcmnHOlV4ePBeVKuYAcC8ZWsZNPRzlq3ZkHBnKpNqNI6vhO90SF7t21fh4UNhxfzk+pJUrAzgkiSp3Nq1cU3uOaUzGWnxQFnfLVjB2Y+MZe2G7IQ7U5lUsRqc8DjsMySvNncC3L8/zJ+UXF+Sio0BXJIklWs929bjxmPzbg3+bNoSLnlmIjk5UYJdqcxKS4d+/weH3QQhPa4tnw1DD4Yp7yTbm6TtzgAuSZLKvaP2bMpfDmmfu/z6V/P41+vfEEWGcG0ne50JJz8DFarHy+tXwpPHw2f3JduXpO3KAC5JkgT8ft9WDOreInf5oVHTeeCjack1pLKvzQFwxjtQs1m8HOXAm5fBG3+C7Kxke5O0XRjAJUmSgBACVxy+C4fu1ii3ds0b3/LyF3MS7EplXsNd4Kzh0KRLXm3MvfDUibDOqfGkssYALkmSlJKeFrj5uD3o2qJObu3SZycy+odFCXalMq9aAxj0GuzSP6/2/TswtB8snZVYW5KKngFckiQpn0qZ6dx/WhfaNqgGwIbsiN8/Oo5v5i5PuDOVaZmV4ZiHoNclebUFk+CB/WHO+OT6klSkDOCSJEkF1KySybDTu9KoRiUAVqzLYtBDY5j98+qEO1OZlpYG+/8DjrwL0jLj2soF8NCh8Zzhkko9A7gkSdImNK5VmYdP34vqFTMA+GnFOgYOHcPS1esT7kxl3p4nw6kvQqVa8XLWGnj6VBh1Kzgyv1SqGcAlSZI2o32jGtx3WhcqpMe/Mv24cBVnDhvL2g3ZCXemMq9lLzjzPajdMlWI4N1/wKsXQPaGRFuT9NsZwCVJkn5Ft9Z1ufn4jrnLY2f8zIVPTSA7xyuR2s7qtYUzh0Oz7nm18Y/AY0fDmp+T60vSb2YAlyRJ2oLDd2/MFYfvkrv89tcLuOqVr4m8HVjbW9W6cNpLsPsJebVpI+HBg2CJ89RLpU2RBfAQQtMQwtAQwtwQwroQwvQQwi0hhNpbcYzrQwjDQwizQghrQghLQggTQghXhhDqbmL7FiGE6FdeT/3KZw0MIYwJIawMISwLIXwQQjj8t/78kiSpbDujZ0vO6tUyd/nRT2dw98gfE+xI5UZGRTjqHujz97zaoinxCOkzP0uuL0lbLaMoDhJCaA2MBhoALwOTga7AhUC/EEKPKIoWF+JQFwPjgXeBn4CqwD7AVcDZIYR9oija1GSIE4GXNlGftJl+/wNcAswG7gcqACcAr4YQzo+i6I5C9CpJksqZvx6yM/OXr+PViXMBuOGt72hYvRJHd26acGcq80KA3pdBnZbw0nmQvQ5WL4ZhR0D/u2C3Y5LuUFIhFEkAB+4iDt8XRFF0+8ZiCOFm4lB9DXBOIY5TI4qitQWLIYRrgMuBvwLnbWK/L6IouqowjYYQuhOH7x+BvaIo+jlVvxEYB/wnhPBaFEXTC3M8SZJUfqSlBf5z7O4sWrGOT6bG1xb+/PyX1Ktekd471U+4O5ULux0DNXeEp06C1YviIP78GbD4R+j9pzioSyqxtvkW9BBCK+AgYDpwZ4HVVwKrgFNDCFW3dKxNhe+UZ1LvbX9jm/lt/CLgmo3hO/XZ04n7rwgMLoLPkSRJZVDFjHTuPa0z7RtVByArJ+Lcx8bx1exlCXemcqPZ3vEI6fXa5dU++D948feQtS65viRtUVE8A9439f5OFEU5+VdEUbQCGAVUIb6V/Lc6IvX+5WbWNw4h/D6EcHnqffdC9PvWJta9WWAbSZKk/1GjUiYPD+5Kk1qVAVi9PpvBD49h5uLVCXemcqNOSzjjHWi1X17ty6fhkSNhVWGe/JSUhKII4Bu/epuymfXfp953KuwBQwiXhhCuCiH8N4TwEfAv4vB93WZ2ORC4h/hW93uAiSGE90MIzQoctyrQBFgZRdG8be01hDBuUy+gfWH2lyRJpVejmpUYdvpe1KycCcCilesZ+NAYlqxan3BnKjcq14KTn4NOA/NqMz+JB2db9P1md5OUnKII4DVT75u772pjvdZWHPNS4tvXLwJ6El+tPiiKooUFtltNHM47A7VTr97A+8B+wPACt75vj14lSVI51aZBdR4Y2IUKGfGvVNMWreL0hz9nzfrshDtTuZGeCUfcCgf+C0g9//3ztDiET/sw0dYk/a/imAd840gQhZ4oM4qiRlEUBaARMABoBUwIIXQqsN1PURT9I4qi8VEULU29PiR+Jv0zoA1w5m/ouVC9RlHUeVMv4lHgJUlSObBXizrcdsIeuWNffTFrKec/OZ6s7Jxf31EqKiFAjwvg+EchI34sgrXL4NGjYMJjyfYm6ReKIoBvvGpcczPraxTYrtCiKFoQRdGLxIG6LvBIIffLAh5ILe6bb9WWet3SFXJJkqT/0a/DDlx1xK65y+99+xNXvDyJKCr09Qdp2+18BJz+JlRrFC/nZMHLQ+C9qyDHL4SkkqAoAvh3qffNPTe9ceTyzT0jvkVRFM0AvgF2DSHUK+RuG29Xz70FPYqiVcAcoFoIYYft0askSSqfBnZvwbn7tc5dfnLMLG4b/kOCHalcarwnnDUcGnbIq338X3h2IKx3kEApaUURwN9PvR8UQvjF8UII1YEewBrg0238nMap98I+VLVx1PWpBeojUu/9NrHPIQW2kSRJKrQ/HdyOAXs2yV3+73tTePrzmQl2pHKpZlM4/S1oe3Be7dtXYNjhsGJBcn1J2vYAHkXRj8A7QAtgSIHVVxNfgX4kdfWZEEJmCKF9CKF1/g1TtUYFjx9CSAshXAM0AEbnn7s7hLB3CKHCJvbpC1ycWiz44Ms9qfe/hRBq59tnY//rgId+9YeWJEnahBAC1x29O73a5t2wd/mLkxgx2dCjYlaxOpz4JOx9Tl5tzrh4cLYFXyfXl1TOFdUgbOcBPwG3hRBeCiFcG0IYQRyCpwB/y7dtE+BbYHiBY/QDZoUQhocQ7ksdYyjx1GCXA/OBswrscz0wJ4TwbGrKsv+GEIanjl0RuCKKotH5d0gt3wy0Br5M7XMnMBaoA1waRdH0bfvjkCRJ5VWFjDTuPqUzuzaOh8HJzokY8vgEvpi1NNnGVP6kpcMh18MhN8LGG1WXzYIHD4bv30u2N6mcKpIAnroK3gV4GNgbuIQ44N4GdIuiaHEhDvMecB/xYGsDgMuAo4ElxFfSd42i6JsC+zxKPNr5XsTh/Dzi57ifAfaNoujfm+n3EmAQcag/GzgN+Bo4IoqiOwrzM0uSJG1OtYoZPDR4L5rWjkekXrMhm9Mf/pzpi1Yl3JnKpb3PhpOegQrV4uX1K+CJY2HM/cn2JZVDwdE5i14IYVynTp06jRs3LulWJElSgn5cuJJj7h7Nz6s3ANCsThWeP7c79atXTLgzlUvzJ8ETx8Py2Xm1vc+Fg6+Jr5ZLKpTOnTszfvz48akpqLdKccwDLkmSVC61rl+NBwftRaXM+FeumUtWc8awz1m1LivhzlQuNeoQj5DeuFNe7bO74amTYN2K5PqSyhEDuCRJ0nbUqVltbj+xE2khXv5y9jLOe3w8G7Kdl1kJqN4IBr0OO/8urzblLRh6CCybk1xfUjlhAJckSdrODtylIf/qnzcv88gpC/nrC1/ho4BKRIUqcOww6HFRXm3BV3B/X5g7IbG2pPLAAC5JklQMTt67ORf0bZO7/Ny42dz87pQEO1K5lpYGB14Nv7sd0jLi2sr58NCh8PVLibYmlWUGcEmSpGJy8YE7cVyXprnLt4/4gcc+nZFgRyr3Op0Gp7wAlWrGyxtWw7MD4YXfw5qfk+1NKoMM4JIkScUkhMA1R+1Gn3b1c2v/eHkS73w9P8GuVO616g1nvAe1W+TVvnwK7urmfOFSETOAS5IkFaPM9DTuPLkTHZvGVxxzIjj/yQmMm+HVRiWo/k5w9gew+/F5tRXz4PGj4ZULHCVdKiIGcEmSpGJWpUIGDw7ai+Z1qwCwLiuHM4Z9zpQFhhwlqHJtGHAfHP8YVKmXVx8/DO7uDtM+TK43qYwwgEuSJCWgXrWKDBvclbpVKwCwdPUGjrl7NKN/XJRwZyr3dj4Chnz2y6nKls6EYUfAG3+C9auT600q5QzgkiRJCWlRrypDB+1FlQrpACxfm8XAoWN4btzshDtTuVe1Hhz3CBz9IFSqlVcfcy/c0xNmfpZYa1JpZgCXJElKUMcda/H02d1oUL0iABuyIy59diI3v/Od84QrWSHAbsfEV8N36pdXX/IjPNQP3rkCNqxNrj+pFDKAS5IkJWy3pjV5aUgP2jeqnlu7bcQPXPT0F6zdkJ1gZxJQvRGc+BQceSdUrBHXohwYfRvc1xvmTki2P6kUMYBLkiSVAI1rVebZc7rRe6e8Kcpe/mIupz74GUtWrU+wM4n4aviep8C5o6HVfnn1hZPh/v3h/f+DLM9TaUsM4JIkSSVE9UqZPDiwCyft3Sy39vn0nxlw1yimLlyZYGdSSq0d4dSX4LCbILNqXIuyYeT18EBfWPB1ou1JJZ0BXJIkqQTJSE/jmv4d+NuhOxNCXJu+eDUD7h7NZ1MXJ9ucBPHV8L3OhHM/hmbd8+rzv4J7e8NHN0F2VnL9SSWYAVySJKmECSFw1r6tuPvkzlTKjH9dW7p6A6c8+BkvTnCEdJUQdVrBoNfh4P+DjEpxLWcDDP8nDD0IFk5Jtj+pBDKAS5IklVD9OjTi6bO7Ua9a3gjpFz89kVvem+II6SoZ0tKg2xD4/UfQpHNefc44uLcXfHIn5OQk159UwhjAJUmSSrCOO9bipSHd2alhtdzaLe99zyXPTGRdliOkq4SovxOc/g7s/w9Iy4xrWWvh7cvh4cNgydRk+5NKCAO4JElSCde0dhWeO7c7vdrWy629MGEOpz04hqWrHXlaJUR6BvS6BM7+ABrtllefORru7gmfPwDeuaFyzgAuSZJUCtSolMnQQXtxwl475tY+m7aEAXeNZsbiVQl2JhXQqAOcOQJ6/xlCelzbsApevwQe7Q9LZyXanpQkA7gkSVIpkZmexrUDduPP/drn1qYuWsVRd41m7PQlCXYmFZBRAfpcDme+B/XzzlemfgB3d4cJj3k1XOWSAVySJKkUCSFw7n6tufOkTlTIiH+VW7JqPSc98BmvTJybcHdSAU06wdkjoceFQGpevXXL4eUh8OQJsGJ+ou1Jxc0ALkmSVAodtvsOPHnWPtStWgGA9Vk5XPDkBO4Y8b0jpKtkyawEB/4TTn87nrpsoylvwZ17w1fPeTVc5YYBXJIkqZTq3Lw2L57Xg9b1q+bW/vPOFC577kvWZzn1k0qYZnvDOaNg73PyamuXwvNnwLMDYdWixFqTiosBXJIkqRRrVrcKL5zbg26t6ubWnhs3m0EPjWHZmg0JdiZtQoUqcMj1MPBVqNksr/7Ny/HV8G9fTa43qRgYwCVJkkq5mlUyGXZ6V47p3DS3NvrHxRx992hmLVmdYGfSZrTcF84bDZ0G5tVWL4KnT4EXzoY1PyfXm7QdGcAlSZLKgAoZadx4zO5cdnC73NoPP62k/52jGD/TMKMSqGJ1+N1tcPLzUL1xXv3Lp+GubvD9u8n1Jm0nBnBJkqQyIoTAkD5tuO3EPXNHSF+8aj0n3vcpb3w1L+HupM1oe0B8NXz3E/JqK+bB48fAK+fD2uXJ9SYVMQO4JElSGfO7jo154sy9qV0lE4B1WTmc9/h47hn5oyOkq2SqXBsG3AsnPAFV6+fVxz8Szxs+dWRyvUlFyAAuSZJUBnVpUYcXz+tBy3p5I6Rf9+ZkLn/xKzZkO0K6Sqj2h8F5n8Eu/fNqy2bBI7+DNy6D9asSa00qCgZwSZKkMqpFvaq8cG53urask1t7cswsTn/4c5avdYR0lVBV68Jxw+CYofGV8Y3G3Af39ISZnybXm7SNDOCSJEllWO2qFXj0jK4ctWeT3NpH3y/imLtHM/tnR0hXCdbh6Phq+E6H5NWWTIWh/eCdv8OGtcn1Jv1GBnBJkqQyrmJGOjcf15GLDmibW5uyYCX97xzNxFlLk2tM2pLqDeHEJ6H/3VCxRqoYwejb4d59Yc64RNuTtpYBXJIkqRwIIXDRATvx3+M7kpkeAFi0ch3H3/cJb02an3B30q8IAfY4Cc77BFr1yasv+g4eOBBG/Buy1ifXn7QVDOCSJEnlyFF7NuWxM/amVmqE9LUbcjj38XE88NFUR0hXyVazKZz6Ihz+X8hMDS4YZcOHN8L9fWH+pGT7kwrBAC5JklTO7N2qLi+c250WdasAEEXw79e/5YqXJ5HlCOkqyUKALqfDuaOgeY+8+oKv4L794jCenZVYe9KWGMAlSZLKoVb1q/HCeT3o0jxvlOnHPp3JGcPGssIR0lXS1WkJA1+Dg6+FjEpxLWdDfDv6gwfCwu+S7U/aDAO4JElSOVWnagUeO3NvjujYOLc2cspCjr3nE+YuXZNgZ1IhpKVBt/PgnI+h6V559bnj4Z5e8UBtOdnJ9SdtggFckiSpHKuUmc6tx+/B+X3b5NYmz19B/ztHMWnOsgQ7kwqpXlsY/BbsfyWkV4hr2eviqcoePiyeukwqIQzgkiRJ5VxaWuCSg9px4zG7k5EWj5D+04p1HHvPJ7z3zYKEu5MKIT0Dev0Rzh4JjXbPq8/8BO7uAWPuhxzHN1DyDOCSJEkC4NguO/LI6V2pUSkDgDUbsjnr0bE8NGpawp1JhdRwFzhrBPT+C6TF5zEbVsMbl8Kj/WHprETbkwzgkiRJytW9TT1eOK87O9apDMQjpF/96jdc9crXZOc4TZlKgfRM6PNXOPM9qL9zXn3aSLirG4x/ND6xpQQYwCVJkvQLbRpU58XzerBns1q5tYdHT+fsR8ayap1TPKmUaLwn/H4k9LgIQir2rF8Br/wBnjgOls9LtD2VTwZwSZIk/Y961Sry5Fn7cNhuO+TWhk/+iePu/YT5y9Ym2Jm0FTIqwoFXw+lvQ53WefXv34G79oEvn/VquIqVAVySJEmbVCkzndtP3JNz98sLLl/PXU7/O0fxzdzlCXYmbaUdu8bTle19bl5t7VJ44Ux45lRYuTCx1lS+GMAlSZK0WWlpgT/3a891A3YjPTVC+vzlazn2ntG8P/mnhLuTtkKFKnDIdTDwNajVLK/+7avx1fBvXkmuN5UbBnBJkiRt0Qldm/Hw4L2oXjEeWXrV+mzOGPY5j34yPdnGpK3VshecOxo6D86rrV4UXwl//kxYvSS53lTmGcAlSZJUKL3a1uf587rTpFY8QnpOBFe8/DX/eu0bR0hX6VKxOhxxC5zyPFRvnFf/6tl4pPQp7yTWmso2A7gkSZIKbaeG1XlxSHc6Nq2ZW3vw42mc89g4Vq93hHSVMm0OgPM+gY4n5dVWzocnjoWXh8BaxzpQ0TKAS5Ikaas0qF6Jp87uxsG7NsytvfvNAo6/91N+Wu4I6SplKteCo+6GE56Eqg3y6hMeg7u7w9QPkupMZZABXJIkSVutcoV07j65M2fv2yq39tWcZfS/cxST53vVUKVQ+0PhvE9h1wF5tWWz4JEj4fVLYf2q5HpTmWEAlyRJ0m+Slha4/NCd+Xf/DrkjpM9dtpZj7v6EkVOc1kmlUNW6cOxDcMxDULlOXv3z++HuHjDjk+R6U5lgAJckSdI2OWWf5jw4sAvVUiOkr1yXxekPf84Tn81MuDPpN+owIL4a3u7QvNrP0+ChQ+Dtv8GGNcn1plLNAC5JkqRttl+7Bjx7Tjd2qFkJgOyciMtf/Ipr3/iWHEdIV2lUvSGc8AT0vwcqbhx0MIJP7oB794XZ4xJtT6WTAVySJElFYucdavDSkB50aFIjt3bvh1MZ8sR41qzPTrAz6TcKAfY4MR4pvXXfvPqiKfDggTD8X5C1Prn+VOoYwCVJklRkGtaoxDO/78YBO+eNkP7mpPmccP+nLFyxLsHOpG1Qswmc8gIcfgtUqBbXomz46D9wfx+Y/1Wi7an0MIBLkiSpSFWpkMG9p3bm9B4tc2sTZy2l/52j+H7BigQ7k7ZBCNBlMJw7Cpr3zKsvmAT39YGRN0J2VnL9qVQwgEuSJKnIpacF/nHELlz9u11JDZDOnKVrGHD3aEb9sCjZ5qRtUbsFDHwV+l0PGZXjWs4GeP/f8OAB8NPkRNtTyWYAlyRJ0nYzsHsLHhjYhSoV0gFYsTaLgUPH8MznsxLuTNoGaWmwzzlwzsfQdK+8+twJ8QBtH93kSOnaJAO4JEmStqu+7Rvy7DndaFijIgBZORF/ev5LbnhrsiOkq3Sr1wZOfxsOuBrSK8S17HUw/J9we2cY/4i3pesXDOCSJEna7nZtXJOXhvRg5x3yRki/64MfOf+pCazd4AjpKsXS0qHnRXD2SNihY159+Rx45Xy4uzt8+ypEftkkA7gkSZKKyQ41K/PsOd3o065+bu31L+dx0v2fsnilI6SrlGu4C5w5HA79D1RtkFdf9B08fUo8bdn0j5PrTyWCAVySJEnFplrFDO4/rQundWueWxs/cylH3TWaH35amWBnUhFIz4SuZ8EFE6DP36FC9bx1sz+Hhw+Dx45x2rJyzAAuSZKkYpWRnsbVv9uVfxy+CyE1QvrMJasZcNcoPvlxcbLNSUWhYjXofRlcOBH2GZL3fDjAD+/CPb3g+bPg5+mJtahkGMAlSZJU7EIInN6zJfee0pnKmfEI6cvXZnHa0M94btzshLuTikjVutDv/+D8cdDxJCD1jRMRfPUM3N4F3vgTrFyYZJcqRgZwSZIkJeagXRvxzO+7Ub96PEL6huyIS5+dyM3vTiFy0CqVFbWawVF3w7mjYadD8uo5G2DMvXDbHvD+tbBuRWItqngYwCVJkpSo3ZrGI6S3b5T3vOxtw7/noqe/YF2WI6SrDGm4C5z0FAx+C3bcJ6++fiWMvA5u3QM+vQeyHJSwrDKAS5IkKXFNasUjpO+7U94I6S9/MZdTHviMJavWJ9iZtB007wanvwUnPgX1d86rr14Eb/0Z7ugCE5+GnJzketR2YQCXJElSiVC9UiZDB3bhpL2b5dY+n/4zA+4axbRFqxLsTNoOQoB2h8C5o6D/3VBzx7x1S2fCi2fDvb1gyjvOIV6GGMAlSZJUYmSkp3FN/w5cfmj73BHSpy9ezVF3jWLMtCXJNidtD2npsMdJ8IexcPD/QeU6eesWTIInjo2nL5v1eXI9qsgYwCVJklSihBA4e9/W3H1yJyplxr+uLl29gVMe+IyXJsxJuDtpO8msBN2GwIVfwL6XQWaVvHUzRsGDB8BTJ8PC7xJrUdvOAC5JkqQSqV+HHXjq7G7UqxbPobw+O4eLnv6CW9/73hHSVXZVqgl9/w4XfAF7nQlpGXnrJr8Gd+0DLw+BZU7XVxoZwCVJklRi7bFjLV48rwdtG1TLrf33vSlc8uxE1mc5QJXKsOoN4bCbYMgY6HB0Xj3KgQmPwW2d4J2/w2ofzShNDOCSJEkq0XasU4Xnzu1Ozzb1cmsvjJ/DaUM/Y+lqR0hXGVe3NRwzFM4eCa375tWz18Ho2+Opyz66CdavTqxFFZ4BXJIkSSVezcqZPDR4L47vkjdS9KdTlzDg7tHMWOwI6SoHGu8Bp74Ip70CjTvl1dctg+H/hNv2hLFDIXtDYi1qywzgkiRJKhUy09O47ujd+HO/9rm1qQtXcdRdoxk3w9twVU606g1njYBjh0HdNnn1lfPhtYvhzr3h6xeduqyEMoBLkiSp1AghcO5+rbnzpE5UyIh/lV2yaj0n3v8Zr06cm3B3UjEJAXbtD+d9CoffAtUa5a1b8iM8Owju7wNTP0imP22WAVySJEmlzmG778CTZ+1DnaqpEdKzcjj/yQn83xvfsnp9VsLdScUkPRO6DIYLJsD+V0LFmnnr5k6AR46ER/rD3C+S6lAFGMAlSZJUKnVuXpuXzutB6/pVc2v3fTiVA2/+kBGTFyTYmVTMKlSBXn+M5xDvfgFkVMpbN/V9uK83PDsYFv+YWIuKGcAlSZJUajWrW4UXzu1Br7Z5I6TPWbqG0x8eyzmPjmPesjUJdicVsyp14KB/wfnjYc9TIeSLe1+/AHd2hdf+CCv8giopBnBJkiSVajWrZPLI6V254ZjdqV0lM7f+1tfzOeCmkQz9eBpZ2c4ZrnKkZhM48o74GfH2h+fVc7Jg7INw2x4w/F+wdlliLZZXBnBJkiSVeiEEjuuyI8Mv2Y9jOjfNra9an80/X/uG/neNYuKspck1KCWhfjs44XE44z1o3jOvvmE1fPSfeA7x0XfAhrWJtVjeGMAlSZJUZtSpWoH/HNuRp87ehzYNquXWJ81ZTv+7RnHly5NYvtZ5klXO7LgXDHoNTn4OGu6WV1+zBN75G9zeGSY8DjnZyfVYThjAJUmSVObs06oub1zQi8sObkfF1HRlUQTDPpnBATeN5LUv5xI5T7LKkxCg7YHw+w9hwP1Qq3neuuWz4eXz4O4eMPkN5xDfjgzgkiRJKpMqZKQxpE8b3rl4X/bdqX5u/acV6/jDExMY9NDnzFy8OsEOpQSkpcHux8EfxsIhN0CVvAEMWfgtPHUiDO0HMz5JrscyzAAuSZKkMq153aoMG7wXd5y0J/WrV8ytj5yykAP/O5I73/+B9VkO0qZyJqMC7P37eOqy/f4KFfIe2WDWp/BQP3jieFjwdWItlkUGcEmSJJV5IQQO370xwy/pzcBuzQkhrq/LyuHGt7/j0Ns+4rOpi5NtUkpCxeqw31/ggi9g73MgLW8mAaa8Fd+W/uI5sHRmYi2WJQZwSZIklRs1KmVy9ZEdeOm8HuzauEZu/YefVnL8fZ9y2bMTWbJqfYIdSgmpVh8OuR7OHwu7Hw+kvqUigolPxgO1vfVXWOUXVdvCAC5JkqRyp+OOtXh5SA/+cfguVK2Qnlt/dtxs+t70Ac98PstB2lQ+1W4BA+6Dcz6Gtgfl1bPXw6d3wa0dYeQNsG5lYi2WZgZwSZIklUsZ6Wmc3rMlwy/Zj0M6NMqtL129gT89/yXH3/sp3y9YkWCHUoIadYCTn4VBb0DTvfLq61fA+9fAbXvCmPshyztGtkaRBfAQQtMQwtAQwtwQwroQwvQQwi0hhNpbcYzrQwjDQwizQghrQghLQggTQghXhhDqbmL7tiGEP4cQRqT2WR9CWBBCeDmE0GcznzEohBD9yuucbflzkCRJUunSqGYl7j6lM0MHdaFJrcq59THTl3DobR9x49uTWbPe+ZFVTrXoAWe8C8c/DvXa5dVX/QRvXAp37gVfPQc5DmRYGKEobq0JIbQGRgMNgJeByUBXoA/wHdAjiqItPiwQQlgPjAe+AX4CqgL7AF2AucA+URTNyrf9U8Dxqe0/BpYA7YDfAenAhVEU3VbgMwYBD6X6/GITbbwWRdHYwv3km/05xnXq1KnTuHHjtuUwkiRJKmar12dx2/AfeOCjqWTl5P2evGOdyvzryA7s165Bgt1JCcvOip8H/+BaWD7nl+sa7Q4HXAmt9yd3lMMyqnPnzowfP358FEWdt3bfogrgbwMHARdEUXR7vvrNwMXAvVEUbfHKcgihUhRFazdRvwa4HLg7iqLz8tUHAROjKJpQYPvewLtABLSIomhegX0eAgZHUfTwVvyYhWYAlyRJKt0mz1/O316cxLgZP/+iftjuO/CPw3ehYY1KCXUmlQAb1sS3n390E6xd+st1LXrBAVdD063OpqXGtgTwbb4FPYTQijh8TwfuLLD6SmAVcGoIoeqWjrWp8J3yTOq9bYHtHy4YvlP1kcAHQAWg+5Y+V5IkScqvfaMaPPv7blw3YDdqVs6blun1L+ex/00jeXjUNLJzHKRN5VRmZehxAVw4EXr+ETLyHt1g+kfwQF94+lRY9H1yPZZQRfEMeN/U+ztRFP3ixv8oilYAo4AqxLeS/1ZHpN6/3Ip9NqTeszazfo8QwkUhhL+EEE4NITT97e1JkiSprElLC5zQtRnDL+nNgE5Ncusr12Vx1avfcNRdo5g0Z1mCHUoJq1wrvu38ggnQeTCEvBkF+PYVuHNveOUCWD43sRZLmowiOMbGJ/GnbGb998RXyHcChhfmgCGES4FqQE3i5797Eofv6wq5f3Ngf2A18OFmNruwwHJ2COEB4KJfuRJf8HM2d495+8LsL0mSpJKvXrWK3HzcHhzTuSl/f2kSUxeuAuDL2cv43R0fc1q3Flxy0E5Ur5S5hSNJZVSNHeCIW6DbH2DEv+Cbl+J6lA3jh8GXT8Pe50DPi6ByocfoLpOK4gp4zdT75r7+21ivtRXHvJT49vWLiMP3W8BBURQt3NKOIYSKwONAReCqKIp+LrDJNOB84i8OqgKNgeOIb6H/PTB0K/qUJElSOdG9dT3evLAXfzxwJypkxL9G50Tw8OjpHHDzSN78ap5zh6t8q9cGjhsGZ70PLXvn1bPWwqhb4jnEP74lfoa8nCqOecA3DoFX6L+NoihqFEVRABoBA4BWwIQQQqdf/aAQ0oFHgR7A08B/NnHskVEU3RFF0ZQoilZHUTQviqJniUds/xk4MYTQsZB9dt7Ui3gUeEmSJJUxFTPSuWD/trx90b70bFMvt75g+TrOfXw8pz/8ObOWrE6wQ6kEaNIJBr4Cp74IO+SLVmuXwXtXwm2dYNyweFT1cqYoAvjGK9w1N7O+RoHtCi2KogVRFL1IfAt7XeCRzW2bCt+PAccSD9p2SrQVX0Gmpjd7I7W479b2KkmSpPKjZb2qPHpGV249YQ/qVauYW3//u4Uc+N+R3PXBD2zIdl5klXOt+8JZH8AxD0GdVnn1FXPh1Qvgrn3gm1egHN05UhQB/LvU+06bWb9x5PLNPSO+RVEUzSCe63vXEEK9gutDCBnAk8AJwBPASVEU/ZavUzbe4r7FEdslSZJUvoUQOHKPJgy/pDen7NMsd+rjtRtyuOGt7zjsto/4fPqSZJuUkpaWBh0GwJAxcNjNUK1h3rrF38Mzp8IDB8C0j5LrsRgVRQB/P/V+UAjhF8cLIVQnvh18DfDpNn5O49R7doHPqAA8R3zl+xHg1CiKsvlt9k69T/2N+0uSJKmcqVk5k3/3343nz+3OzjvUyK1PWbCSY+/5hD8/9yU/r1qfYIdSCZCeCXudEY+Y3vfvUDHv/yvMGQvDDofHjoZ5WzPxVemzzQE8iqIfgXeAFsCQAquvJr6a/EgURasAQgiZIYT2IYTW+TdM1RoVPH4IIS2EcA3QABidf1C11IBrLwJHAg8CgwtOhbaJ4/XaRC2EEP4KdAMWEQ/6JkmSJBVap2a1efUPPfj7YTtTpULedExPj53F/jeP5Plxsx2kTapQFfa9LJ5DvNsfID3vEQ5+eA/u7QXPnwlLpiXX43YUiuIvgVSYHk0ckl8GviW+mtyH+Nbz7lEULU5t24J4JPIZURS1yHeMi4AbiacN+xFYDDQEehMPwjYf2D+Kom/y7fMQMIg4NN/Fpgd6+yCKog/y7ROlevocmEP87HoPoAPxtGVHRVH0zm/+w4g/Y1ynTp06jRu3uVnKJEmSVJbNWbqGq1/5mne+WfCL+j6t6vDv/rvRpkG1hDqTSpils+CD62DiE5D/WmpaJvT6I/S5PLneNqNz586MHz9+fGoA7q1SFPOAE0XRjyGELsA/gX7AocA84Dbg6iiKCvPwy3vAfcRhuCPxtGWriMPyo8BtmzhOy9R7PeAfv3LsD/L97/8AXYG+QB0gB5gJ3AncHEWRt59LkiRpmzSpVZn7TuvCu98s4MqXJzF32VoAPp26hENu/ZBzerdmSJ82VMpM38KRpDKu1o7Q/07o/gcY/i/47vW4nrMBKtVKtLXtoUiugOuXvAIuSZKkjVaty+LW4d/z4MfTyM7J+927ed0q/OvIDuy7U/0Eu5NKmJmfwXtXwbJZcP44yKi4xV2K27ZcAS+OecAlSZKkcqtqxQwuP3RnXv1DT/ZsViu3PmPxak4bOobzn5zATyvWJtegVJI02xsGvwFnvlciw/e2MoBLkiRJxWCXxjV4/pzuXHNUB2pUynsS9NWJc9n/ppE8+sn0X1whl8qtEKD6/4zPXSYYwCVJkqRikpYWOHnv5gy/ZD/679E4t75ibRZXvPw1A+4ezddzlyXYoaTtyQAuSZIkFbP61Styywl78tgZe9OyXtXc+sRZSzni9o/512vfsHJdVoIdStoeDOCSJElSQnq2rcebF/biwv3bUiE9/tU8J4IHP57GgTeP5K1J8507XCpDDOCSJElSgiplpnPxgTvx5kW96N66bm593rK1nPPYOM56ZCyzf16dYIeSiooBXJIkSSoBWtevxuNn7s1/j+9I3aoVcuvvffsTB978IfeO/JEN2TkJdihpWxnAJUmSpBIihMBRezZl+CW9ObFrs9z6mg3ZXPvmZI64/WPGzfg5wQ4lbQsDuCRJklTC1KpSgWsH7Mbz53ajfaPqufXJ81dw9N2j+esLX7Fs9YYEO5T0WxjAJUmSpBKqc/M6vHp+T/56SHsqZ6bn1p8cM5O+N33AixNmO0ibVIoYwCVJkqQSLDM9jd/3bs27f9yX/ds3yK0vXrWei5+eyMkPfMbUhSsT7FBSYRnAJUmSpFKgae0qPDCwC/ec0plGNSrl1kf/uJh+t3zEf9+dwtoN2Ql2KGlLDOCSJElSKRFCoF+HRrx3SW/O6NmStBDX12fncOvw7znk1o8Y9cOiZJuUtFkGcEmSJKmUqVYxgysO34VX/tCTjk1r5tanLVrFyQ98xkVPTWDhinUJdihpUwzgkiRJUinVoUlNXjivB/86cleqV8zIrb/0xVz2v+kDHv9sBjk5DtImlRQGcEmSJKkUS08LnNqtBcMv6c0RHRvn1pevzeJvL07i6HtG8+285Ql2KGkjA7gkSZJUBjSoUYnbT9yTYad3pVmdKrn1CTOXcvjtH/N/b3zL6vVZCXYoyQAuSZIklSG9d6rPOxfvy/l925CZHo/Slp0Tcd+HUznw5g9595sFCXcolV8GcEmSJKmMqZSZziUHtePNC3uxd8s6ufU5S9dw1iNjOfuRscxduibBDqXyyQAuSZIklVFtGlTnqbP34T/HdqRO1Qq59Xe+WcABN4/kgY+mkpWdk2CHUvliAJckSZLKsBACx3RuyvA/9ub4Ljvm1levz+bfr3/LEXeMYsLMnxPsUCo/DOCSJElSOVC7agWuP2Z3nvl9N9o2qJZb/3becgbcPZq/v/QVy9ZsSLBDqewzgEuSJEnlSNeWdXj9gl78qV87KmXGcSCK4LFPZ7L/TSN55vNZbPC2dGm7MIBLkiRJ5UyFjDTO268N717cm/3a1c+tL1q5jj89/yV9b/qAp8bMZH2WQVwqSgZwSZIkqZzasU4VHhq0F3ed3ImGNSrm1mctWcNfXviKPv/5gEc/ncG6rOwEu5TKDgO4JEmSVI6FEDh0tx0Yfsl+XHZwO2pVycxdN2fpGq54aRK9b/iAh0dNY+0Gg7i0LQzgkiRJkqhWMYMhfdrw8Z/78pdD2lM337Rl85ev5apXv6HXDe/zwEdTWbPeIC79FgZwSZIkSbmqVczgnN6t+ejPffj7YTtTv3rerekLV6zj369/S68bRnDvyB9ZtS4rwU6l0scALkmSJOl/VKmQwZm9WvHRn/pw1RG7/OIZ8UUr13Ptm5Ppef0I7nz/B1asdfoyqTAM4JIkSZI2q1JmOoN6tGTkZX34V/8ONK5ZKXfdz6s3cOPb39Hz+ve59b3vnUdc2gIDuCRJkqQtqpSZzqn7NOeDy/pw7YDdaFq7cu66ZWs28N/3ptDzuhHc/M53LF29PsFOpZLLAC5JkiSp0CpkpHFi12a8f+l+3HDM7jSvWyV33Yp1Wdw24gd6XDeCG96azJJVBnEpPwO4JEmSpK2WmZ7GcV12ZPgfe3PzcR1pVa9q7rpV67O564Mf6Xn9CK5941sWrliXYKdSyWEAlyRJkvSbZaSnMaBTU979Y29uPWEP2jaolrtu9fps7v1wKr1uGMG/XvuGn5avTbBTKXkGcEmSJEnbLD0tcOQeTXj7on256+ROtG9UPXfd2g05PPjxNHre8D5XvjyJecvWJNiplBwDuCRJkqQik5YWOHS3HXjjgl7ce2pndm1cI3fd+qwchn0yg943fMDfXvyK2T+vTrBTqfgZwCVJkiQVubS0wMG7NuK183vy4MAudGxaM3fd+uwcHv9sJvvd+AF/ef5LZi42iKt8MIBLkiRJ2m5CCOy/c0NeGtKDhwfvRadmtXLXZeVEPPX5LPrc9AGXPjuRaYtWJdeoVAwykm5AkiRJUtkXQmC/dg3ovVN9Rv+4mFvf+54x05cAkJ0T8dy42bwwfjZH7tGEIX3a0CbfYG5SWWEAlyRJklRsQgj0aFOPHm3q8enUxdw2/HtG/7gYgJwIXpwwh5e+mMPhuzfm/L5t2Klh9S0cUSo9DOCSJEmSErFPq7rs06oun09fwm3Dv+ej7xcBEEXw6sS5vDpxLod0aMT5fduyS77B3KTSymfAJUmSJCVqrxZ1ePSMvXnhvO70aVf/F+venDSfQ2/7iLMeGctXs5cl1KFUNAzgkiRJkkqETs1q89Dgrrzyhx4csHPDX6x795sFHHHHx5z+8OdMmPlzQh1K28YALkmSJKlE2b1pLR4Y2IXXzu9Jv10b/WLdiMk/cdRdozlt6BjGzViSUIfSb+Mz4JIkSZJKpA5NanLPqZ2ZPH85d4z4gde/mkcUxes+nLKQD6cspEebupzfty37tKqbbLNSIXgFXJIkSVKJ1r5RDe44qRPvXrwv/fdoTFrIWzfqh8WccN+nHHfvJ4z+YRHRxoQulUAGcEmSJEmlQpsG1bnlhD1574+9ObpTU9LzJfEx05Zw0gOfccw9nzByykKDuEokA7gkSZKkUqVV/WrcdFxHRlzSm+O77EhGviA+bsbPDBw6hv53jWbE5AUGcZUoBnBJkiRJpVLzulW5/pjdef/S/Thp72ZkpucF8YmzlnL6w2M54o6Peefr+QZxlQgGcEmSJEml2o51qvB/R+3GyMv6cFq35lTIyIs5k+Ys5+xHx3HobR/z5lfzyMkxiCs5BnBJkiRJZULjWpX555Ed+OhPfTi9R0sq5gvi385bzrmPj6ffrR/yysS5ZBvElQADuCRJkqQypWGNSvzjiF346M99OHvfVlTOTM9dN2XBSi54cgIH/nckL06YTVZ2ToKdqrwxgEuSJEkqkxpUr8Tlh+7Mx3/uw7n7taZqhbwgPnXhKi5+eiIH3DySZ8fOYoNBXMXAAC5JkiSpTKtbrSJ/7teej//cl/P7tqF6xYzcddMXr+ay576k700f8NSYmazPMohr+zGAS5IkSSoXaletwCUHtePjP/flogPaUqNSXhCftWQNf3nhK/r85wMe+3QG67KyE+xUZZUBXJIkSVK5UrNKJhcdsBMf/6Uvlx3cjlpVMnPXzVm6hr+/NIneN3zAsNHTWbvBIK6iYwCXJEmSVC7VqJTJkD5t+PjPffnLIe2pW7VC7rr5y9dy5Stfs+8N7/PAR1NZs94grm1nAJckSZJUrlWrmME5vVvz0Z/78PfDdqZetYq5635asY5/v/4tvW4Ywb0jf2TVuqwEO1VpZwCXJEmSJKBKhQzO7NWKj//chyuP2IWGNfKC+KKV67n2zcn0vH4Ed77/AyvWbkiwU5VWBnBJkiRJyqdSZjqDe7Rk5GV9+Ff/DjSuWSl33c+rN3Dj29/R8/r3uW349yxbYxBX4RnAJUmSJGkTKmWmc+o+zfngsj5cO2A3mtaunLtu2ZoN3PzuFHpeP4Kb353C0tXrE+xUpYUBXJIkSZJ+RYWMNE7s2oz3L92PG47ZneZ1q+SuW7E2i9uGf0/P69/nxrcns2SVQVybZwCXJEmSpELITE/juC47MvyPvbn5uI60qlc1d93KdVnc+f6P9Lx+BP9+7RtmLVmdYKcqqQzgkiRJkrQVMtLTGNCpKe/+sTe3nrAHbRpUy123en02D3w8jd43vs/vHx3LZ1MXE0VRgt2qJMlIugFJkiRJKo3S0wJH7tGEI3ZvzJuT5nP7iO+ZPH8FADkRvP31At7+egG77FCD03u25IiOO1AxIz3hrpUkr4BLkiRJ0jZISwsctvsOvHFBL4YO6kKvtvV+sf6becu59NmJ9LhuBP99dwo/rVibUKdKmlfAJUmSJKkIpKUF+rZvSN/2DZmyYAUPjZrOixNms3ZDDhDPJX7r8O+564MfOGL3xgzu0ZLdmtZMuGsVJ6+AS5IkSVIR26lhda4dsBuf/GV//tSvHTvkm0t8Q3bECxPmcMQdH3PsPaN586t5ZGXnJNitiotXwCVJkiRpO6ldtQLn7deGs3q14u2v5zP042mMn7k0d/3n03/m8+k/06RWZU7r1pwT9mpGzSqZyTWs7cor4JIkSZK0nWWmp3H47o154bwevDSkB0fu0ZiMtJC7fs7SNVz75mT2uXY4f3/pK374aWWC3Wp7MYBLkiRJUjHaY8da3HrCnoz6S1/O79uGOlUr5K5bsyGbxz6dyQE3j2Tg0DF88N1P5OQ4jVlZ4S3okiRJkpSAhjUqcclB7RjSpw2vfDGXoaOm5U5jBjByykJGTllI6/pVGdSjJUd3akKVCka40swr4JIkSZKUoEqZ6Ry31468eWEvnjhrbw7YuSEh7+50fly4iitemsQ+/zeca9/4ljlL1yTXrLaJX59IkiRJUgkQQqB763p0b12PGYtXMWz0DJ4ZO4uV67IAWL42i3s/nMoDH0/j4F0bMrhHS7o0r03In9ZVohnAJUmSJKmEaV63Kv84YhcuPrAtz42bzcOjpzNj8WoAsnMi3vhqPm98NZ/dmtRkcI8WHLb7DlTMSE+4a22Jt6BLkiRJUglVvVImg3u0ZMQl+/HAaV3o0abuL9Z/NWcZf3xmIj2ue59b3/ueRSvXJdSpCsMr4JIkSZJUwqWnBQ7YpSEH7NKQyfOX8/Co6bw4YQ7rsnIAWLRyHf99bwp3vv8Dv9ujMYN7tGDXxjUT7loFeQVckiRJkkqR9o1qcN3Ru/PJX/fnsoPb0bBGxdx167NzeG7cbA677WOOv/cT3po0n2ynMSsxvAIuSZIkSaVQnaoVGNKnDWfv24o3vprHQ6Om88WspbnrP5u2hM+mLaFp7coM6t6CY7vsSM3Kmck1LK+AS5IkSVJplpmexpF7NOGlIT144bzuHNGxMRlpeSOjz/55Df9+/Vu6XTucK1+exNSFKxPstnzzCrgkSZIklRGdmtWmU7PazDu0PY9+MoMnxsxk6eoNAKxen82wT2Yw7JMZ9GlXn9N7tqRnm3pOY1aMDOCSJEmSVMbsULMyf+rXnvP7tuWlL+bw0KhpTFmQd+X7/e8W8v53C2nboBqDe7TkqD2bULmC05htb96CLkmSJEllVOUK6ZzYtRlvX7Qvj5+5N/u3b0D+C97f/7SSy1/8im7XDee6Nyczd+ma5JotB7wCLkmSJEllXAiBHm3q0aNNPaYtWsWw0dN5duwsVq3PBmDp6g3cM/JH7v9oKv06NOL0Hi3p1KyWt6cXMa+AS5IkSVI50rJeVa763a58cvn+/P2wndmxTuXcddk5Ea9/OY+j7x5N/ztH8fIXc1ifmmtc284ALkmSJEnlUI1KmZzZqxUfXNqH+07tzD6t6vxi/cTZy7jwqS/oef0Ibh/+PYtXrkuo07LDW9AlSZIkqRxLTwsctGsjDtq1Ed/MXc7Do6fx0hdzc698/7RiHTe9O4Xb3/+B/ns0ZnCPluy8Q42Euy6dvAIuSZIkSQJgl8Y1uOGYjnzyl75ccuBO1K9eMXfd+qwcnhk7m0Nu/YgT7/uUd76eT3ZOlGC3pY9XwCVJkiRJv1C3WkXO378tv+/dmje+msfQUdP4cvay3PWfTF3MJ1MX06xOFQZ2b8FxXZpSvVJmgh2XDkV2BTyE0DSEMDSEMDeEsC6EMD2EcEsIofZWHOP6EMLwEMKsEMKaEMKSEMKEEMKVIYS6v7Jf9xDCG6ntV4cQvgwhXBRC2OxEdiGEgSGEMSGElSGEZSGED0IIh2/tzy1JkiRJZVWFjDT679mEl4f04Plzu3HY7juQnpY3MvrMJav512vf0O3aEVz1ytdMX7QqwW5LvhBF237LQAihNTAaaAC8DEwGugJ9gO+AHlEULS7EcdYD44FvgJ+AqsA+QBdgLrBPFEWzCuxzJPA8sBZ4GlgCHAG0A56LoujYTXzOf4BLgNnAc0AF4ASgDnB+FEV3bN2fwP8cf1ynTp06jRs3blsOI0mSJEklztyla3jkkxk8OWYmy9Zs+MW6EGD/9g0Y3KMl3VvXLZPTmHXu3Jnx48ePj6Ko89buW1QB/G3gIOCCKIpuz1e/GbgYuDeKonMKcZxKURSt3UT9GuBy4O4ois7LV68B/ADUJA75YzceBxgBdANOjKLoqXz7dAdGAT8Ce0VR9HOq3gIYRxz620dRNH1r/gwK9GsAlyRJklSmrV6fxYsT5vDQqOn88NPK/1nfrmF1BvdoQf89m1Apc7M3J5c62xLAt/kW9BBCK+LwPR24s8DqK4FVwKkhhKpbOtamwnfKM6n3tgXqxwD1gac2hu98x/l7avHcAvts/CLgmo3hO7XPxv4rAoO31KskSZIklWdVKmRw8t7NeffifXnk9K70aVf/F+u/W7CCv7zwFd2uHc6Nb09m/rLNxb3yoyieAe+ben8niqJfzNAeRdEK4qvNVYhvJf+tjki9f7mZz35rE/t8CKwGuocQKuar/9o+bxbYRpIkSZL0K0II7LtTfR4a3JXhl/TmtG7NqVIh74r3z6s3cOf7P9Lz+hFc8OQEJsz8+VeOVrYVxSjo7VLvUzaz/nviK+Q7AcMLc8AQwqVANeJby7sAPYnD93WF/ewoirJCCNOAXYFWwLepq/BNgJVRFM3bTK+kei1Mn5u7x7x9YfaXJEmSpLKkdf1q/PPIDlxyUDue+XwWD4+ezpylawDIyol4ZeJcXpk4lz2b1WJwj5Yc0qERmenlZ3bsogjgNVPvyzazfmO91lYc81KgYb7lt4BBURQt3MbP3h69SpIkSZLyqVk5k7P2bcXgHi1479sFDB01nTHTluSunzBzKRNmTqBRjUqc2q05J3VtRu2qFRLsuHgUxzzgG4e9K/Rob1EUNQIIITQEuhNf+Z4QQjg8iqLx2/Ozt2b7zT10n7oy3mkrP1OSJEmSypSM9DT6ddiBfh12YNKcZTw0ajqvTpzL+uz46eX5y9dy49vfcdvw7xnQqQmDurekXaPqCXe9/RTFtf6NV41rbmZ9jQLbFVoURQuiKHqR+Bb2usAj2/jZW9p+S1fIJUmSJEm/QYcmNbnpuI6M+ktfLj5gJ+pVyxuqa11WDk+OmcXBt3zIyQ98yvBvF5CTs+0zdpU0RRHAv0u9b+656Y0jl2/uGfEtiqJoBvHc4LuGEOoV5rNDCBlASyALmJo6zipgDlAthLDD9uhVkiRJkrR59atX5MID2jLqL324+biOdGhS4xfrR/2wmDOGjeWSZycm1OH2UxQB/P3U+0EhhF8cL4RQHegBrAE+3cbPaZx6z85XG5F677eJ7fclHn19dBRF6wq5zyEFtpEkSZIkbQcVM9IZ0Kkpr/6hJ8+e041DOjQiLeSt79ehUXLNbSfbHMCjKPoReAdoAQwpsPpqoCrwSOrqMyGEzBBC+xBC6/wbpmr/8yccQkgLIVwDNCAO0/nHrH8OWAScEELokm+fSsC/U4t3FzjkPan3v4UQaufbZ2P/64CHtvRzS5IkSZK2XQiBvVrU4e5TOvPhn/pw9r6t6NCkBgfs3HDLO5cyRTUI23nAaOC2EML+wLfA3kAf4tu5/5Zv2yap9TOIQ/tG/YAbQwgfAj8Ci4lHQu9NPI3YfOCs/B8aRdHyEMJZxEH8gxDCU8AS4HfEU5Q9BzxdYJ/RIYSbgT8CX4YQngMqAMcDdYDzoyiavg1/FpIkSZKk36Bp7SpcfujORFFECGHLO5QyRRLAoyj6MXUF+p/EQfpQYB5wG3B1FEVLfm3/lPeA+4hvWe9IPBXYKuIA/yhw26aOE0XRSyGE3sQh/2igEvADccC+LYqi/3lyP4qiS0IIXwJ/AM4GcoDxwI1RFL22FT+6JEmSJKmIlcXwDUU4DVkURbOAwYXYbjp504Plr0/if29hL+xnjyIO/VuzzzBg2G/5PEmSJEmStlZRDMImSZIkSZK2wAAuSZIkSVIxMIBLkiRJklQMDOCSJEmSJBUDA7gkSZIkScXAAC5JkiRJUjEwgEuSJEmSVAwM4JIkSZIkFQMDuCRJkiRJxcAALkmSJElSMTCAS5IkSZJUDAzgkiRJkiQVAwO4JEmSJEnFwAAuSZIkSVIxMIBLkiRJklQMDOCSJEmSJBUDA7gkSZIkScXAAC5JkiRJUjEwgEuSJEmSVAwM4JIkSZIkFQMDuCRJkiRJxcAALkmSJElSMTCAS5IkSZJUDAzgkiRJkiQVAwO4JEmSJEnFwAAuSZIkSVIxMIBLkiRJklQMDOCSJEmSJBUDA7gkSZIkScXAAC5JkiRJUjEwgEuSJEmSVAwM4JIkSZIkFQMDuCRJkiRJxcAALkmSJElSMQhRFCXdQ5kTQlhcuXLlOjvvvHPSrUiSJEmSitC3337LmjVrlkRRVHdr9zWAbwchhGlADWB6wq1sTvvU++REu5A8F1UyeB6qJPA8VEnhuaiSoKSfhy2A5VEUtdzaHQ3g5VAIYRxAFEWdk+5F5ZvnokoCz0OVBJ6HKik8F1USlOXz0GfAJUmSJEkqBgZwSZIkSZKKgQFckiRJkqRiYACXJEmSJKkYGMAlSZIkSSoGjoIuSZIkSVIx8Aq4JEmSJEnFwAAuSZIkSVIxMIBLkiRJklQMDOCSJEmSJBUDA7gkSZIkScXAAC5JkiRJUjEwgEuSJEmSVAwM4OVICKFpCGFoCGFuCGFdCGF6COGWEELtpHtTyRVCOCaEcHsI4aMQwvIQQhRCeGwL+3QPIbwRQlgSQlgdQvgyhHBRCCH9V/YZGEIYE0JYGUJYFkL4IIRw+K9sXzmEcHUI4bsQwtoQwk8hhGdCCDtvy8+rkimEUDeEcGYI4cUQwg8hhDWp8+TjEMIZIYRN/nvmuaiiFkK4PoQwPIQwK3UeLgkhTAghXBlCqLuZfTwPtd2FEE5N/RsdhRDO3Mw2nosqUqk8EW3mNX8z+5Tr8zBEUZR0DyoGIYTWwGigAfAyMBnoCvQBvgN6RFG0OLkOVVKFEL4AOgIrgdlAe+DxKIpO2cz2RwLPA2uBp4ElwBFAO+C5KIqO3cQ+/wEuSR3/OaACcAJQBzg/iqI7CmxfERgO9ADGAiOAHYFjgfVA3yiKPtuWn1slSwjhHOBuYB7wPjATaAgMAGoSn3PHRvn+UfNc1PYQQlgPjAe+AX4CqgL7AF2AucA+URTNyre956G2uxDCjsBXQDpQDTgriqIHCmzjuagiF0KYDtQCbtnE6pVRFP2nwPaeh1EU+SoHL+BtICI+SfPXb07V70m6R18l80X8JU1bIAD7pc6XxzazbQ3iX0jXAV3y1SsRfwEUAScU2Kd7qv4DUDtfvQWwmPgv6BYF9vlrap9ngbR89SNT9a/z132V/hfQl/gf6LQC9UbEYTwCjs5X91z0tb3OxUqbqV+T+m9+V76a56Gv7f5K/fv8HvAjcGPqv/mZBbbxXPS1vc6/6cD0Qm7reRhFBvDy8AJapU62aQVPNqA68ZXNVUDVpHv1VbJfbDmAn55aP2wT6/qm1o0sUH8kVR+8iX3+mVp3db5aAGak6i03sc+HqXV9kv7z8lU8L+Dy1H/z2/PVPBd9FeuL+E6hCHg3X83z0Nd2fwEXAjnAvsBVbDqAey762l7n33QKH8A9D6PIZ8DLib6p93eiKMrJvyKKohXAKKAK8S100rbYeK69tYl1HwKrge6pW4MKs8+bBbYBaA00A6ZEUTStkPuobNuQes/KV/NcVHE7IvX+Zb6a56G2q9TzrNcBt0ZR9OGvbOq5qO2pYgjhlBDC5SGEC0MIfTbzPLfnIQ7CVl60S71P2cz671PvOxVDLyrbNnuuRVGURXwXRgbxXRmEEKoCTYifEZq3ieNt6tz0fFauEEIGcFpqMf8/zp6L2q5CCJeGEK4KIfw3hPAR8C/i8H1dvs08D7XdpP7+e5T4MZzLt7C556K2p0bE5+I1xM+CjwC+DyH0LrCd5yHxD6iyr2bqfdlm1m+s19r+raiM29pz7becm57Pyu86oAPwRhRFb+erey5qe7uUeCDAjd4CBkVRtDBfzfNQ29M/gD2BnlEUrdnCtp6L2l4eAj4ifq56BXF4/gNwNvBmCKFbFEUTU9t6HuIVcMVC6j1KtAuVB7/1XNua7T2fy4kQwgXEo6JOBk7d2t1T756L+k2iKGoURVEgvvIzgPiXzgkhhE5bcRjPQ/0mIYSuxFe9b4qi6JOiOGTq3XNRWyWKoqujKBoRRdGCKIpWR1E0KYqic4gHeq5MPC5BYZWL89AAXj5s/Kan5mbW1yiwnfRbbe25tqXtN/UtpuezCCEMAW4lngqqTxRFSwps4rmoYpH6pfNF4CCgLvGAQRt5HqrI5bv1fApwRSF381xUcbsn9b5vvprnIQbw8uK71PvmnnVom3rf3LMSUmFt9lxL/cLQknigrKkAURStAuYA1UIIO2zieJs6Nz2fy7kQwkXAHcAk4vA9fxObeS6qWEVRNIP4C6FdQwj1UmXPQ20P1Yj/e+8MrA0hRBtfwJWpbe5P1W5JLXsuqrj9lHqvmq/meYgBvLx4P/V+UAjhF//NQwjViSepXwN8WtyNqcwZkXrvt4l1+xKPtj86iqJ1hdznkALbQDzP6UxgpxBCy0LuozIihPBn4L/AF8Th+6fNbOq5qCQ0Tr1np949D7U9rAMe3MxrQmqbj1PLG29P91xUceuWep+ar+Z5CM4DXl5ewNvEzzqcX6B+c6p+T9I9+ir5L7Y8D3gNYCHxLwdd8tUrAaNT+55QYJ/uqfoPQO189RbAYmAt0KLAPn9N7fMs+ea2B45M1b+mwJz3vkr/i/hWywgYC9TZwraei762xznYHmi0iXoa8ei/ETAqX93z0Fexvtj8POCei762x/m266b+PQaaE482HgGX56t7HkYRIdWMyrgQQmviE7sB8DLwLbA30If4FozuURQtTq5DlVQhhP5A/9RiI+Bg4m8zP0rVFkVRdGmB7Z8j/gvxKWAJ8DviaSGeA46LCvzFE0K4CfgjMDu1TQXgeOLnKc+PouiOAttXJP7msjtxGBtOPOfjscB6oG8URZ9t68+ukiOEMBB4mPjK4u1s+tmt6VEUPZxvn/54LqoIpR5/uJF4vtofiX/5awj0Jh6EbT6wfxRF3+Tbpz+ehyomIYSriG9DPyuKogcKrOuP56KKUOp8+wvx3bbTiEdBbw0cRhyq3wCOiqJofb59+lPez8OkvznxVXwvYEfiqQLmpU6+GcSDGP3qlSRf5ftF3rfpm3tN38Q+PYj/0v2Z+PGGr4CLgfRf+ZyBwOfAKuK/wEcCh//K9pWBq4m/YV1H/I3qs8AuSf+Z+Sr6VyHOwwj4YBP7eS76KrIX8ZR3dxI/ArGI+FnFZanz5arN/XvqeeiruF5s5gp4vvWei76K7EX85eOTxLORLAU2pP57vwucBvHF3k3sV67PQ6+AS5IkSZJUDByETZIkSZKkYmAAlyRJkiSpGBjAJUmSJEkqBgZwSZIkSZKKgQFckiRJkqRiYACXJEmSJKkYGMAlSZIkSSoGBnBJkiRJkoqBAVySJEmSpGJgAJckSZIkqRgYwCVJkiRJKgYGcEmSSrkQwvQQwvR8y4NCCFEIYVByXUmSpIIM4JIk6RdCCFelAvx+SfciSVJZkpF0A5Ikqci9CHwKzEu6EUmSlMcALklSGRNF0TJgWdJ9SJKkX/IWdEmSSoEQ+0MI4esQwtoQwpwQwh0hhJqb2HaTz4CHEHYPITyZemZ8XQhhYQhhfAjhlhBCZmqb6cCVqV3eTx0nCiFE+Y6zUwjhuhDC2NQx1oUQZoQQ7gshNN1EP/uljnFVCGGPEMLrIYSlIYTVIYSRIYTum/mZ00MI54QQRoUQloUQ1oQQfgghPBBCaFtg24wQwnkhhE9DCMtTx56Q+jPz9x1JUongFXBJkkqHW4ALiG8rvw/YABwJ7A1UANb/2s4hhN2Bz4AIeAWYBtQA2gDnAX9PHfMWoD/QGxgGTN/E4QYA5wDvA6NTn70rcCZwRAihSxRFczaxXxfgT8AnwANAM+BoYHgIYY8oir7L128F4HXgAGAW8ASwHGgBHAV8DHyf2jYTeBU4GPgute1aoA9we+rP6NRf+/ORJKk4GMAlSSrhUleILwB+BLpGUbQkVf8bcQjeAZixhcMMBCoB/aMoernA8WsDqwGiKLolhFCLOIA/HEXRB5s41qPAf6MoWlfgOAcBbxKH+XM3sd9hwOAoih7Ot8/vgXuAC4m/CNjoKuLw/SpwbP7PCiFUJP7yYKO/EYfvO4CLoijKTm2XTvxlxekhhOcK/tySJBU3b8mSJKnkG5x6v2Zj+AaIomgt8NetPNaagoUoin6OoiinsAeIomhOwfCdqr8DfE0chjdlVP7wnTIUyAK6biykgvN5qV7PKfhZURSti6JoYWrbNOAPwHzg4o3hO7VdNnAJ8VX/kwv780mStL14BVySpJKvU+p95CbWfUQcYLfkaeKrzC+FEJ4D3iMOxD9ubTMhhEAcaAcBHYHaQHq+TTZ3O/zYgoUoijaEEBakjrFRe6Am8FkURXO30M5OQF3i29H/Hrf2P9YAO2/hOJIkbXcGcEmSSr6NA60tKLgiiqLsEMLiLR0giqIxIYRexLdrH0PqmegQwnfA1VEUPbkV/dwMXET8PPrbwBzyrqwPAppvZr+lm6ln8csAXyv1vqnnyAuqm3pvS97gcZtSrRDHkiRpuzKAS5JU8m2cUqwhMDX/itTt2nUpRFiNougT4PDUM9SdgX7A+cATIYSFURS9t6VjhBAaED+PPgnoHkXRigLrT9zyj7NFS1PvTQqx7cY/mxejKBpQBJ8tSdJ24zPgkiSVfONT7703sa4XW/mFeuoZ6tFRFP2DOExDPKL6Rhufo07nf7Ui/v3hnU2E76ap9dtqMnEI3z2E0LiQ2+6zcSo1SZJKKgO4JEkl38Op97+FEOpsLIYQKgHXFuYAIYRem5oznPiqOqRGQU/ZeEt7s01sPz313jN19X3j8asB91MEd9elBk+7C6gM3JO6Yp8rhFAhhFA/tW0W8VRjOwC3hRAqFzxeCGGHEMIu29qXJEnbylvQJUkq4aIoGhVCuJ34dvFJqUHUNs4D/jPxs9hbcglwUAjhA+Lb2FcSz919SOoY9+Xb9n0gB7g2hNAhtZ4oiv4dRdH8EMJTwAnAFyGEd4ifUT+QeO7tL4A9tuXnTbmaeP7uI4ApIYTXgBXAjsBBwGXkfTHxL+LB4M4hnod8BPEt+Q2Inw3vQfzs+zdF0JckSb+ZAVySpNLhQmAKMAT4PfFV6heBy4GJhdj/LuIgvTdxIM0AZqfqN0VRlDuPeBRF34YQBgKXEk8HVim16t+p9zOIQ/zxqX4WAq8A/wCe/80/YT5RFK0PIfQjDtWnEc9jHoC5xD/3x/m23RBC6A+cQjwI3OHEg64tBKYBVwCPF0VfkiRtixBFUdI9SJIkSZJU5vkMuCRJkiRJxcAALkmSJElSMTCAS5IkSZJUDAzgkiRJkiQVAwO4JEmSJEnFwAAuSZIkSVIxMIBLkiRJklQMDOCSJEmSJBUDA7gkSZIkScXAAC5JkiRJUjEwgEuSJEmSVAwM4JIkSZIkFQMDuCRJkiRJxcAALkmSJElSMTCAS5IkSZJUDAzgkiRJkiQVAwO4JEmSJEnF4P8Bob9C+rhaS4UAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "image/png": { + "height": 479, + "width": 496 + }, + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "fig, ax = plt.subplots(figsize=(8,8))\n", + "\n", + "sac_dissim_profile.name='Dissim'\n", + "net_dissim_profile.name='Network Dissim'\n", + "sac_dissim_profile.plot(ax=ax)\n", + "net_dissim_profile.plot(ax=ax)\n", + "ax.legend()" + ] + }, + { + "cell_type": "markdown", + "id": "ab801769-33df-416c-b303-c81462c06a5f", + "metadata": {}, + "source": [ + "In this case, comparing the two profiles reveals the role of travel infrastructure on the experience and measurement of segregation; the network-based dissimilarity profile falls slower, indicating that travel networks help insulate segregation at larger distances" + ] + }, + { + "cell_type": "markdown", + "id": "6eb10ed2-d922-440a-a6e2-836140c1ffbb", + "metadata": {}, + "source": [ + "## Computing a Multi Group Profile" + ] + }, + { + "cell_type": "markdown", + "id": "04db2601-b035-4a60-bc09-9f58b8ea2cdf", + "metadata": {}, + "source": [ + "To calculate a multigroup index (e.g. the multigroup information theory index from the original paper), simply pass a MultiGroupIndex class to the function with multigroup arguments instead of singlegroup" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "id": "2aad866e-7cfa-4dcc-af84-de4c33fcfa83", + "metadata": {}, + "outputs": [], + "source": [ + "from segregation.multigroup import MultiInfoTheory, MultiGini" + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "id": "8176a13a-79ad-4f90-8c9a-fbfbf6b56307", + "metadata": {}, + "outputs": [], + "source": [ + "multi_info_profile = compute_multiscalar_profile(sacramento, segregation_index=MultiInfoTheory, \n", + " groups=[\"HISP\", 'BLACK', \"WHITE\"], distances=range(500,5000,500))\n", + "\n", + "multi_gini_profile = compute_multiscalar_profile(sacramento, segregation_index=MultiGini, \n", + " groups=[\"HISP\", 'BLACK', \"WHITE\"], distances=range(500,5000,500))" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "id": "c46b3627-de27-4d31-81ef-e9cbc7e6db06", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 18, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA8cAAAO+CAYAAAApImdTAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Z1A+gAAAACXBIWXMAABYlAAAWJQFJUiTwAACJiElEQVR4nOzdeXxVxcH/8e/c7HtIQvYNkH0nCAoIggpqsdrWWrH1p120i08tXbSPrVVs7d7H9rF2sbWi7aO2VesCtooi4AIKgrLvkISsQEJC9u2e3x/n5iaXJBAgyU1yPu/Xa16XzJkzd44vEb7OnBljWZYAAAAAAHAyl78HAAAAAACAvxGOAQAAAACORzgGAAAAADge4RgAAAAA4HiEYwAAAACA4xGOAQAAAACORzgGAAAAADge4RgAAAAA4HiEYwAAAACA4xGOAQAAAACORzgGAAAAADge4RgAAAAA4HiB/h5AXzLGHJYULSnXz0MBAAAAAPS8bEknLcsadrY3OiocS4oOCwuLGzt2bJy/BwIAAAAA6Fm7d+9WXV3dOd3rtHCcO3bs2LjNmzf7exwAAAAAgB6Wk5OjLVu25J7LvbxzDAAAAABwPMIxAAAAAMDxCMcAAAAAAMcjHAMAAAAAHI9wDAAAAABwPMIxAAAAAMDxCMcAAAAAAMdz2jnHAAAAQLe43W6Vl5erqqpKDQ0NsizL30MCHMUYo5CQEEVFRSkuLk4uV+/O7RKOAQAAgFO43W4dOXJEtbW1/h4K4FiWZam+vl719fWqqalRRkZGrwZkwjEAAABwivLyctXW1iowMFDJycmKiIjo9VkrAL7cbrdqampUUlKi2tpalZeXKyEhode+j9/hAAAAwCmqqqokScnJyYqKiiIYA37gcrkUFRWl5ORkSW2/L3vt+3q1dwAAAGAAamhokCRFRET4eSQAWn8ftv6+7C2EYwAAAOAUrZtvMWMM+J8xRpJ6fVM8frcDAAAAAPqt1nDc2wjHAAAAAADHIxwDAAAAAByPcAwAAACg3zHG6NJLLz2re2699VYZY5Sbm9tj4+ipPp944gkZY/TEE0/0yLjQ8wjHAAAAALpkjJExRi6XSwcPHuyy3fz5871teysALlu2TMYYrV279pzu37dvn771rW9p2rRpiouLU1BQkOLi4jRz5kx95zvf0ebNm3t2wBhQCMcAAAAATiswMFCWZekvf/lLp9f379+vdevWKTAwsI9H5uunP/2pdu/erbS0NJ96y7L0wAMPaOzYsfr1r38tY4w+85nP6O6779bnPvc5hYWF6be//a2mT5+u3/3ud93q82x94hOf0O7du/WJT3zivPpB7/Hvv70AAAAA+r2kpCSlpKRo+fLl+uEPf9ghBD/22GOyLEuLFy/Wiy++6J9BSkpJSVFKSkqH+h/+8IdatmyZMjIy9Mwzz2j27Nkd2hw9elS/+c1vVFlZ2a0+z1ZMTIxiYmLOux/0HmaOAQAAAJzRbbfdppKSEq1cudKnvqmpSU8++aRmzZql8ePHd3pvdna2srOzO73W3aXS2dnZeuCBByT5LuFuf8xPZ+8HHzp0SA8++KCCg4P1n//8p9NgLEmJiYn6yU9+orvvvtunvrM+c3NzZYzRrbfeqtzcXN14441KSEhQaGiopk+f3uGfkcQ7xwMB4RgAAADAGS1ZskQRERF67LHHfOpffvlllZaW6rbbbuvV71+6dKnmzZsnSbrlllt0//33e8vpLF++XM3Nzbr++uu7DO/tnc3S8Ly8PM2YMUO5ubm6+eab9ZnPfEY7duzQtddeqzVr1nS7H/QPLKsGAAAAcEZRUVG68cYb9cQTT6igoEDp6emSpD//+c+Kjo7WDTfcoJ/85Ce99v1Lly5VRUWF1q1bp1tvvbXbO1m/++67kqQFCxb0+JjWrl2rZcuW+QT0m266SVdeeaV++ctfav78+T3+neg9hGMAAADgLGX/9yv+HkK35f7sYz3W12233aa//OUvevzxx3XfffcpLy9Pr7/+ur785S8rPDy8x76nJ5WUlEhSpxtq5ebmdljmHBsbq6VLl3ar76ysLN17770+dYsWLVJmZqY2btx4TuOF/xCOAQAAAHTLzJkzNXHiRD3++OO699579dhjj8ntdvf6kurzYVmWJPm8m9wqNzfX+x5zq6ysrG6H4ylTpiggIKBDfUZGhjZs2HD2g4Vf8c4xAAAAgG677bbblJeXp1dffVXLly9XTk6Opk6d6u9hdal1p+nCwsIO1y699FJZliXLstTU1HTWfcfGxnZaHxgYKLfbfdb9wb+YOQYAAADOUk8uVR5obr75Zn33u9/Vl7/8ZRUWFuq+++474z0ul0uNjY2dXquoqOjhEfqaPXu21qxZo9WrV+sLX/hCr34XBjZmjgEAAAB0W2xsrK6//noVFBQoIiJCS5YsOeM9Q4YMUWlpaaezsx988EG3v7t1CXNLS0u377n11lsVGBio5557Trt37+72fXAewjEAAACAs/Lggw/qhRde0GuvvaaoqKgztp8xY4aam5u1fPlyn/onnnjCu5t0d8THx0uS8vPzu33PiBEjdO+996qxsVFXXXWV1q9f32m73p7BRv/HsmoAAAAAZyUzM1OZmZndbv/1r39dy5cv11e/+lWtXr1aGRkZ2rp1q9avX6/Fixdr5cqV3epn/vz5crlcuueee7Rjxw4NGTJEkjrsGH2q++67T5Zl6Uc/+pFmz56tnJwczZgxQ3FxcaqoqFBubq7eeOMNSdLcuXO7/VwYXJg5BgAAANCrxo0bpzfeeEOzZ8/WihUr9Kc//UnBwcHasGGDcnJyut3P2LFj9eSTTyo5OVm///3v9YMf/EA/+MEPznifMUbLli3Trl27tHTpUjU3N+vpp5/Wz3/+cz399NMqLS3VV7/6VW3evFl//etfz+dRMYCZ1q3NncAYs3natGnTNm/e7O+hAAAAoB9rfTd17Nixfh4JAKn7vydzcnK0ZcuWLZZldf//ungwcwwAAAAAcDzCMQAAAADA8QjHAAAAAADHY7fqfqT0ZL0am93en41p/bR/YdrVG89P3jbem7q+Zozx6cO+1taos/Zn+l6d5tppv/fUDgAAAADAjwjH/cjXntqizXkn/D2MPne6UN5ZiPdt271Q3vE+o9jwIGUMCVdGXLgy48KVERemTM+vY8KCCPAAAACAgxCO+xEn7RzeXutjW6dW+Lbq8e+trGtSXlltp9eiQgOVMcQOypnxdoDOGGKH57QhYQoJDOjx8QAAAADwH8JxP5IYFaq02DCfutbAbHl/lizPT6eGSvvnrq5Zp7Q7pe9O2rf+3NZX533rtGPq+L0DQVV9s3YVn9Su4pMdrhkjJUeHemec2886Z8SFa2hkCLPOAAAAwABDOO5H/njzWR/FNaBZltVpmG79uatQrtNcO20ob3eP25LKqhuUX16rI+W1yi+vU355rQpO1Cq/vFa1jS2nGbdUXFmv4sp6bTxc3uF6aJDLO+ucERfeIUSHB/PbDgAAAOhv+Fs6/MYY02Fjr3Zbi/W6uIhgjUyK6lBvWZbKahq9wdkOz7Wen+tUXFkn92lmweub3Np/tFr7j1Z3ej0hMrjtPWefEB2mlJgwBbiYdQYAAAD6GuEYOIUxRgmRIUqIDNG0zCEdrjc2u1VUUacjJ9qHZjs455fXqrKu6bT9H69u1PHqRn2YX9HhWlCAUVpsWIcZ59YgHRMe1FOPCQAAAKAdwjFwloIDXcpOiFB2QkSn1ytrm3TkxCkzzifqdMSzbLuppetp56YWS7lltcrtYqOw6NBAe4OwdjPOrZ9psWEKDuTocgAAAOBcEI6BHhYTHqSY8BhNSIvpcK3FbankZL03OPsu267T8eqG0/Z9sr5ZOwpPakdhx43CXEZKiQlT+pC2I6ky48OV7gnSCZHBbBQGAAAAdIFwDPShAJe9bDotNkwXDY/vcL22sVkFJ+qUX9Y261zQbvl2fZO7y77dllRYUafCijq938lGYWFBAd5NwXzeefbMRIcFczwVAAAAnItwDPQj4cGBGpUUpVFdbBR2vLqx3Q7bvp/FJ+tPe1xWXVOL9pZWaW9pVafXh0aFeM9yzowLV3q7952TokPZKAwAAPQpY4zmzZuntWvXdvueW2+9VU8++aQOHz6s7OzsXhnXyZMnde+99+rll19WQUGBWlpa9OGHH2rKlCm98n3t9cXzORnhGBggjDEaGhWioVEhysnquFFYQ3OLiirq22ac273znF9eq6r65tP2f6yqQceqGrSlk43CggNcShvSOuMc5vvOc3y4okPZKAwAgMGq9bUsY4z279+vESNGdNpu/vz53iC7fPly3XrrrT0+lmXLlumBBx7QmjVrdOmll3b7vtZnsE43k9BNd999tx599FEtXrxYN998swICApScnHxWfWRnZysvL6/b7e+//34tW7bsLEeKs0U4BgaJkMAADUuI0LDTbBTWtkGY78xz4Yk6NZ/mfKrGFrcOH6/R4eM1nV6PCQtqN+Mc5rPLdmpsmIIC2CgMAICBLDAwUM3NzfrLX/6in/zkJx2u79+/X+vWrfO285ef/vSn+u///m+lpaX12nesXLlSo0aN0ooVK865j6VLl6qiosKn7oknnlBeXp5uueWWDrPCZ/M/AnDuCMeAQ8SEB2lieIwmpnfcKKy5xa2Sk/UdjqVqfef5eHXjafuurGvS9sJKbS+s7HAtLChAl49L0jWTUjRv9FCFBPJuMwAAA01SUpJSUlK0fPly/fCHP1RgoG+MeOyxx2RZlhYvXqwXX3zRP4OUlJKSopSUlF79jqKiIs2dO/e8+li6dGmHurVr1yovL0+33norYdhPmM4BoMAAl9KHhGvWiAR95sJMfWfRaD28ZKpevGO2Prj3Cu18YJFeXXqJ/nRzjn6weJxunZWtBWMSNTIxUiFnOD6qrqlFK7YW6fa/bdb0H72hb/9zq9bsPaqmlq43FwMAAP3PbbfdppKSEq1cudKnvqmpSU8++aRmzZql8ePHd3pvdnZ2l+/ILlu2TMaYM75bnJ2drQceeECSvYTbGOMtrW699VYZY5Sbm3vG58nNzZUxRrfeeqtyc3N14403KiEhQaGhoZo+fXqH57z00ktljJFlWVq3bp33u9sHWbfbrT/+8Y+68MILFRkZqYiICF144YX6wx/+ILe7Z//u8+ijj2rixIkKDQ1VUlKSbr/9dlVWdpyokKSCggL913/9l4YPH66QkBDFx8fr4x//uDZt2tRp+8rKSt1zzz0aPXq0QkNDNWTIEC1atEhvvPFGh7Zr166VMUbLli3Txo0b9bGPfUxxcXEyxujgwYPKyMhQdHS0qqurO/2u//qv/5IxRs8///y5/8PoIcwcAzijiJBAjUmO1pjk6A7XLMvSsaqGtuXaZXXeGei88hqVnmw7nqqqoVnPbynQ81sKNCQ8SFdOSNE1k1I0c3g8G34BANDPLVmyRN/61rf02GOP6brrrvPWv/zyyyotLdXPfvYzHThwoNe+f+nSpXrxxRe1bt26Tpcen6u8vDzNmDFDw4cP180336zy8nL94x//0LXXXqs33nhD8+fPlyTvjO4DDzygrKws7zvV7cdx88036+mnn1ZGRoa+9KUvyRijF154QV/72tf0zjvv6KmnnuqRMd9999167bXXdM0112jhwoVas2aN/vznP+vAgQN68803fdpu2bJFCxcuVHl5uRYtWqRPfvKTOn78uF588UXNmTNHL7zwgq6++mpv+4qKCs2ePVu7du3ShRdeqKVLl+r48eP65z//qYULF+oPf/iDvvzlL3cY04YNG/TTn/5Uc+bM0Re+8AUdP35cYWFhuu2223T//ffrmWee0W233eZzT11dnZ566iklJyfr4x//eI/8szkvlmU5pkjaPG3aNAtA33C73dauokrrF6/uti75+ZtW1ndXdlqmP/i6df9LO6xNh8uslha3v4cNAIC1a9cua9euXf4eRr8gyUpLS7Msy7K++MUvWgEBAdaRI0e81xctWmRFR0dbNTU11ve//31LkrV8+XKfPrKysqysrKxO+7///vstSdaaNWs6fO+8efO61bbVLbfcYkmyDh8+3KEvO/q0OXz4sLd+2bJlPtdeffVVS5J11VVXdfiOzsZlWZb19NNPW5KsqVOnWlVVVd766upqKycnx5JkPfXUU52O27Isa968ead9tvbPl5GRYeXl5Xnrm5qarEsuucSSZL3//vs+9SNGjLBCQkKstWvX+vRVWFhopaamWsnJyVZ9fb23/vbbb7ckWbfffrvldrf9vWzfvn1WdHS0FRwc7PPPd82aNd5/jn/84x87jLmoqMgKDAy0cnJyOlxbvny5Jcn63ve+1+Uzt+ru78lp06ZZkjZb55AXmTkG0GuMMRqbEq2xKdH6zsLR2l5YqRVbi7RyW7GKK+u97Y5VNeiJ9bl6Yn2uUmNCtXhyqhZPStHEtBifpVIAAPQbyzru4dFvLet8qe25uO222/SXv/xFjz/+uO677z7l5eXp9ddf15e//GWFh4f32Pf0paysLN17770+dYsWLVJmZqY2btzY7X4ef/xxSdLPfvYzRUZGeusjIiL085//XJdffrkee+wx3XTTTec95vvuu0+ZmZnenwMDA/X5z39eb7/9tjZu3KgZM2ZIkl555RUdPHhQ3/nOdzRv3jyfPlJTU3X33Xdr6dKlWr16ta6++mo1NTXp//7v/xQZGamf/vSnPn8PGzlypO688049+OCD+utf/6r77rvPp78pU6Z0OqOckpKi6667Ts8995w2b96snJwc77VHH31ULperw4yyvxCOAfQJY4wmpcdqUnqs7rlqrLbkn9CKrUV6ZXuJjle3Lb0uqqzXn946pD+9dUhZ8eG6ZlKqFk9O0eikKIIyAAB+NnPmTE2cOFGPP/647r33Xj322GNyu939JtyciylTpiggoOOGoRkZGdqwYUO3+9myZYtcLlenm2nNmzdPAQEB+vDDD89nqF7Tp0/vUJeRkSFJOnHihLeudfx5eXmdHgW1f/9+SdLu3bt19dVXa8+ePaqtrdXs2bMVFxfXof2CBQv04IMPdvocrYG8M1/72tf03HPP6dFHH9Wf/vQnSdL27dv13nvv6aqrruo3ZzYTjgH0OZfLaHp2nKZnx+m+a8br/UNlWrGtSP/ZUaKK2iZvu7yyWj2y5oAeWXNAIxMjtXhSqq6ZnKLhQyNP0zsAAOhNt912m+688069+uqrWr58uXJycjR16lR/D+ucxcbGdlofGBh4VptoVVZWKi4uTsHBwZ32lZCQoKNHj57rMH10NubWHcRbWlq8dWVlZZKkZ5999rT9tW6W1bqhV1c7frfWn3oMlaTTnvU8f/58jR07Vs8884z+53/+R1FRUXr00UclqdPZZn8hHAPwqwCX0awLEjTrggT98NoJeufAca3YWqRVO0tV3dB2TuL+o9X69Rv79Os39ml8arQWT7KXXmfEDcwlXACAAa4HlyoPNDfffLO++93v6stf/rIKCws7LK/tjMvlUmNj50dDdha0BqKYmBiVl5erqalJQUFBPteam5t1/PhxRUd33Ny0t8ckSS+99FK3NrxqbV9SUtLp9eLiYp927Z1phd9XvvIVfeMb39BTTz2lW265RU899ZTS0tK0ePHiM46rr3CUE4B+IyjApfmjE/XQDVP0wb2X69Gbc7R4UorCgnyXOu0sOqmfv7pHl/xija773bv6yzuHVdLuHWYAANB7YmNjdf3116ugoEARERFasmTJGe8ZMmSISktL1dTU1OHaBx980O3vbl3+3H52tL+YOnWq3G633nrrrQ7X3nrrLbW0tGjatGl9OqaLLrpIkvT22293q/3o0aMVHh6ujz76yGd5dqs1a9ZI0jk9xy233KKIiAg9+uij+sc//qGKigp98Ytf7HRJu78QjgH0S6FBAVo0PlmP3DRNm39wuX67ZKoWjktS8CnnKn90pEI/WrlLF/9stW54dIP+9l6eytq9wwwAAHregw8+qBdeeEGvvfaaoqKizth+xowZam5u1vLly33qn3jiCb377rvd/t74+HhJUn5+/tkNuA984QtfkCTdc889qq2t9dbX1tbqv//7vyVJX/ziF/t0TNdee61GjBih3/3ud/r3v//daZsNGzZ4xxscHKzPfvazqq6u7rAi4ODBg3r44YcVFBSkm2+++azHEhMToyVLluijjz7Svffeq4CAAH3pS186+4fqRSyrBtDvhQcH6prJqbpmcqpO1jfp9Z2lWrmtSG/vP65mtyVJsixp4+FybTxcrmUv79SsEfG6ZlKqFo1PVkx40Bm+AQAAnI3MzEyf3ZLP5Otf/7qWL1+ur371q1q9erUyMjK0detWrV+/XosXL9bKlSu71c/8+fPlcrl0zz33aMeOHRoyZIgkddht2h9uuukmvfTSS/rnP/+p8ePH67rrrpMxRi+++KIOHz6sG264QZ/97Gf7dExBQUH617/+pUWLFuljH/uYZs2apSlTpig8PFxHjhzRpk2bdOjQIRUXF3t3G//Zz36mt99+W4888og2bdqk+fPne885rqqq0iOPPKJhw4ad03i+9rWv6bHHHlNhYaGuueYa7yZi/QXhGMCAEh0apE/lpOtTOek6UdOoV3eWaOW2Im04WCZPTlaL29Lb+4/r7f3H9f0Xt2vuyKG6ZnKqLh+XpMgQ/rMHAEBfGzdunN544w1973vf04oVKxQYGKhLLrlEGzZs0L/+9a9uh+OxY8fqySef1K9+9Sv9/ve/V329/VpVfwjHkvTMM89o3rx5evzxx70bTo0dO1bf/va39dWvftUvY5o0aZK2bt2qhx56SCtXrtTy5cvlcrmUkpKiqVOn6oEHHlBCQoK3fVxcnDZs2KCf/vSn+te//qWHHnpIYWFhmjFjhu666y4tXLjwnMcydepUTZkyRR999FG/2oirlbEsy99j6DPGmM3Tpk2btnnzZn8PBUAPO1pVr/9st4PyptyO78hIUkigSwvGJOqayamaPzpRYcH95x0XAED/snv3bkl2sAHQM6qqqpSamqq4uDgdPnxYLlf33/Lt7u/JnJwcbdmyZYtlWTmnbdgJplAADAqJUaG6ZVa2bpmVraKKOv17e7FWbC3S1oK23UQbmt36z44S/WdHicKDA3TFuCRdMylVl4xKUEggQRkAAKA3/eEPf1B1dbXuvffeswrGfYVwDGDQSY0N05cuGa4vXTJceWU1WrnNDsp7Sqq8bWobW/TSR0V66aMiRYUG6srxybpmcqpmjYhXYED/+481AADAQFRZWak//OEPKiws1J///GelpKToa1/7mr+H1SnCMYBBLSs+QnfMv0B3zL9AB45WacXWYq3YVqRDx2q8barqm/Xs5gI9u7lAcRHBumqCHZQvzI5TgOv0Z/YBAACgaydOnNA999yjkJAQ5eTk6Le//W23djj3B8IxAMe4IDFK37wiSksvH6ldxSe9M8oFJ+q8bcprGvXU+/l66v18JUaF6GOTUnTN5FRNzYg94+H2AAAA8JWdna2Bss8V4RiA4xhjND41RuNTY3T3otHaWlCpFVuLtHJbkUpPtp2RfLSqQcvfzdXyd3OVFhumxZNTdM2kVI1PjSYoAwAADDKEYwCOZozRlIxYTcmI1fevHqsP8k5oxdYi/Xt7scpqGr3tCivq9Oi6Q3p03SENS4jQNZNStHhyqkYl9c9lQQAAADg7hGMA8HC5jGYMi9OMYXG6/5pxeu9QuVZsLdKrO0tUWdfkbXf4eI0efvOAHn7zgEYnRWmxJygPS4jw4+gBAAAGp75alk04BoBOBAa4NGdkguaMTNCPrpugdw4c04qtxVq1s0Q1jS3edntLq7T39Sr9z+v7NDEtRtdMTtHHJqUqLTbMj6MHAJwvY4wsy5Lb7e6XR84ATtIajnv7tTbCMQCcQXCgSwvGJGnBmCTVN7Vo7d6jWrG1WKv3lKq+ye1tt72wUtsLK/WTf+9RTtYQLZ6Uoo9NTFFidKgfRw8AOBchISGqr69XTU1Nv91ZF3CKmhr7lJGQkJBe/R7CMQCchdCgAF05IUVXTkhRTUOz3thdqhVbi/XWvmNqbGkLypvzTmhz3gn9cOUuXTQsXosnp+iqCSmKiwj24+gBAN0VFRWl+vp6lZSUSJIiIiJkjGFDRqCPWJYly7JUU1Pj/X3Y2/+jygyUbbV7gjFm87Rp06Zt3rzZ30MBMMhU1jVp1c4SrdxWrHcOHFeLu+N/WwNcRnMuSNDiSSlaOD5ZMWFBfhgpAKA73G63jhw5otraWn8PBYCk8PBwZWRknPE1h5ycHG3ZsmWLZVk5Z/sdhGMA6GHlNY36z45irdxarPcOl6mz/8wGB7g0d9RQXTM5RZePTVJECAt5AKC/cbvdKi8vV1VVlRoaGgbMWa3AYGGMUUhIiKKiohQXF9et9//PJxzztzEA6GFxEcH67MwsfXZmlo6erNcr24u1cluxNued8LZpbHHrjd2lemN3qUKDXLpsTJKumZyiS0cnKjQowI+jBwC0crlcSkhIUEJCgr+HAqAPEI4BoBclRofq87OH6fOzh6mwok6vbCvSiq3F2l5Y6W1T3+TWK9uL9cr2YkWGBOqKcXZQnnPBUAUHskMqAABAXyAcA0AfSYsN0+1zR+j2uSOUe7xGKz1BeW9plbdNdUOzXviwUC98WKiYsCBdOT5Z10xO1UXD4xQYQFAGAADoLbxzDAB+tq+0Siu3FmnFtmIdPl7TaZuEyGBdNSFF10xO1fSsIXK52C0VAADgVGzI1U2EYwD9mWVZ2ll0Uiu2FWnl1mIVVtR12i45OlQfm2QH5cnpMRwrAgAA4EE47ibCMYCBwrIsbcmv0MptRXplW7GOVjV02i4jLkyLJ6XqmkmpGpca3cejBAAA6F8Ix91EOAYwELW4LW3KLdeKrUX6z44Sldc0dtpuzgUJ+s6i0ZqSEdu3AwQAAOgnOMoJAAaxAJfRRcPjddHweD3w8fFaf7BMK7YW6dWdJaqqb/a2e+fAcb1z4LgWjkvStxeO1ujkKD+OGgAAYGAhHAPAABIY4NLcUUM1d9RQPfiJCXp733G9+FGh/r29WG7PQqBVu0r1+u5SXTs5Vd+8YpSy4iP8O2gAAIABgHAMAANUSGCALh+XpMvHJengsWr9+vV9WrmtWJJkWdKLHxVp5bZi3XBhhu5cMFLJMaF+HjEAAED/xaGZADAIjBgaqUdumqZX7pyjBWMSvfXNbktPv5+veb9cox+/sqvL95UBAACcjnAMAIPI+NQYPX7rhXr+qxdr5rA4b31Ds1t/fvuwLvn5m3ro9X06Wd/kx1ECAAD0P4RjABiEcrLi9PfbL9LfvjhDk9JjvPU1jS16ePV+zf3FGj267qDqGlv8OEoAAID+g3AMAIOUMUaXjByql+6YrT9+LkejkiK91ypqm/TT/+zRvF+u0d/ey1Njs9uPIwUAAPA/wjEADHLGGF05IVn/+cZc/fozk5URF+a9drSqQT94cYcue2itnt9coJbWLa8BAAAchnAMAA4R4DL6xNR0rf7WpXrwuglKjArxXjtSXqdvP7tVV/7mLb26o1iWRUgGAADOQjgGAIcJDnTpcxdl6a275+t7V4/RkPAg77X9R6v1lf/boo8/8q7e2neMkAwAAByDcAwADhUaFKDb547QW3fP19LLRyoyJNB7bXthpf7f4xt145/e0we55X4cJQAAQN8gHAOAw0WFBmnp5aP01t3zdfvc4QoJbPuj4f3D5br+jxv0+eUbtaOw0o+jBAAA6F2EYwCAJCkuIljfu3qs1t01X5+dmalAl/FeW7P3mBb/9h3d8fQWHTxW7cdRAgAA9A7CMQDAR3JMqH78iYl689uX6pNT02TaMrJe2VasKx5ap7ue3aqCE7X+GyQAAEAPIxwDADqVGR+uhz4zRa8tnatF45O89W5LenZzgRb8ap2WvbxTR6vq/ThKAACAnkE4BgCc1qikKD1683S9dMdsXTIywVvf2OLWE+tzNe8Xa/WLV/eosrbJj6MEAAA4P4RjAEC3TM6I1d++OFPP3HaRcrKGeOvrmlr0+7UHNecXb+qRN/erpqHZj6MEAAA4N4RjAMBZuXhEvJ77ysV6/NbpGpsS7a2vqm/Wr1bt09xfrNHj7xxWfVOLH0cJAABwdgjHAICzZozRgjFJeuXrc/TITVM1PCHCe62splE/XLlLC361Vv/YlK/mFrcfRwoAANA9hGMAwDlzuYwWT0rVqm/O1S8+NUmpMaHea0WV9fru89t1xa/f0stbi+R2W34cKQAAwOkRjgEA5y0wwKUbLszQmrsu1f3XjFNCZLD32uHjNbrzmQ919cNva/XuUlkWIRkAAPQ/hGMAQI8JCQzQ52cP07q75uuuRaMVHRrovbanpEpffPIDfeoP67XhYJkfRwkAANAR4RgA0OMiQgJ1x/wL9PbdC3TH/BEKCwrwXtuSX6Elf35Pn3vsfX10pMJ/gwQAAGiHcAwA6DUx4UG6a9EYvXX3fN06K1vBAW1/7Lxz4Liu+927uv2vH2hvSZUfRwkAAEA4BgD0gaFRIVr28fFac9el+sz0DLlM27VVu0p15f++pW/+4yPlldX4b5AAAMDRCMcAgD6TFhumn18/Sa9/a54WT0rx1luW9MKHhbrsf9bpey9sV0llvR9HCQAAnIhwDADocyOGRuqRm6bplTvnaMGYRG99s9vS0+/na94v1+jHr+xSeU2jH0cJAACchHAMAPCb8akxevzWC/X8Vy/WzGFx3vqGZrf+/PZhXfLzN/XQ6/t0sr7Jj6MEAABOQDgGAPhdTlac/n77RfrbF2doUnqMt76msUUPr96vub9Yo0fXHVRdY4sfRwkAAAYzwjEAoF8wxuiSkUP10h2z9cfP5WhkYqT3WkVtk376nz2a98s1+tt7eWpsdvtxpAAAYDAiHAMA+hVjjK6ckKxXl87VQzdMVkZcmPfa0aoG/eDFHbrsobV6fnOBWtyWH0cKAAAGE8IxAKBfCnAZfXJaulZ/61I9eN0EJUaFeK8dKa/Tt5/dqit/85Ze3VEsyyIkAwCA80M4BgD0a8GBLn3uoiy9dfd8fe/qMYoND/Je23+0Wl/5vy36+CPv6q19xwjJAADgnBGOAQADQmhQgG6fO0Jv3z1f37hspCJDAr3XthdW6v89vlE3/uk9fZBb7sdRAgCAgYpwDAAYUKJCg/TNK0bprbvn6/a5wxUS2PZH2fuHy3X9Hzfo88s3akdhpR9HCQAABhrCMQBgQIqLCNb3rh6rdXfN12dnZirQZbzX1uw9psW/fUd3PL1FB49V+3GUAABgoCAcAwAGtOSYUP34ExP15rcv1Senpsm0ZWS9sq1YVzy0Tnc/t1UFJ2r9N0gAANDvEY4BAINCZny4HvrMFL36jblaND7JW++2pH9+UKAFv1qnZS/v1NGqej+OEgAA9FeEYwDAoDI6OUqP3jxdL90xW5eMTPDWN7a49cT6XM37xVr94tU9qqxt8uMoAQBAf0M4BgAMSpMzYvW3L87UM7ddpGmZsd76uqYW/X7tQc35xZv63ZoDqmlo9t8gAQBAv0E4BgAMahePiNfzX52lx2+drrEp0d76qvpm/fK1vZr3yzV6/J3Dqm9q8eMoAQCAvxGOAQCDnjFGC8Yk6ZWvz9Fvl0zVsIQI77Xj1Y364cpdWvCrtfrHpnw1t7j9OFIAAOAvhGMAgGO4XEbXTE7V69+cq198apJSY0K914oq6/Xd57fril+/pZe3Fsnttvw4UgAA0NcIxwAAxwkMcOmGCzO05q5Ldf8145QQGey9dvh4je585kNd/fDbWr27VJZFSAYAwAkIxwAAxwoJDNDnZw/Turvm665FoxUVGui9tqekSl988gN96g/rteFgmR9HCQAA+gLhGADgeBEhgbpj/gV65+4FumP+CIUFBXivbcmv0JI/v6fPPfa+PjpS4b9BAgCAXkU4BgDAIyY8SHctGqO37p6vW2dlKzig7Y/Jdw4c13W/e1c3/fk9rdxWpMZmNu4CAGAwCTxzEwAAnGVoVIiWfXy8vnTJMD28er+e21yg1v251h8s0/qDZYqPCNanctJ144UZGj400r8DBgAA542ZYwAAupA+JFy/uH6yXv/WPC2elCKXabtWVtOoP711SAv+Z51u/NMGvfRRoRqaOSsZAICBipljAADOYMTQSD1y0zQVV9bpn5sK9I9N+SqqrPdef+9Qud47VK4h4UH61LR03TgjUxckMpsMAMBA0mMzx8aYdGPM48aYImNMgzEm1xjzG2PMkLPoI9cYY3VRSnpqrAAAnIuUmDB94/KRevu7C7T81gt1xbgkBbSbTj5R26TH3jmsyx9apxse3aAXPyxUfROzyQAADAQ9MnNsjBkhab2kREkvSdojaYakb0i60hgz27Ks7p6DUSnpN53UV/fAUAEAOG8BLqP5YxI1f0yiSirr9ewHR/T3TUdUWFHnbbPxcLk2Hi5XzMv2bPKSGRkamRTlx1EDAIDTMZZlnX8nxrwmaaGkOy3L+m27+ockfVPSo5ZlfaUb/eRKkmVZ2ec9qM773zxt2rRpmzdv7o3uAQAO1uK29Pb+Y/r7xiN6fXepWtwd/3ydnjVES2Zk6mOTUhTa7rgoAADQM3JycrRly5YtlmXlnO295x2OjTHDJR2UlCtphGVZ7nbXoiQVSzKSEi3LqjlDX7kS4RgAMLAdPVmvZzcX6O+b8nWkvK7D9ejQQH1yWrpunJGhMcnRfhghAACD0/mE455YVr3A87mqfTCWJMuyqowx78qeVb5I0upu9BdijPmcpExJNZK2SXrLsixe2gIADAiJ0aG6Y/4F+uq8EXr34HE9szFfq3aWqtkzm3yyvllPrM/VE+tzNS0zVktmZGrxpFSFBTObDACAv/REOB7t+dzXxfX9ssPxKHUvHCdL+tspdYeNMZ+3LGtddwZkjOlqanhMd+4HAKAnuFxGl4wcqktGDtWxqgY955lNziur9bbZkl+hLfkV+uGKXbpuapqWzMjUuFRmkwEA6Gs9sVt1jOezsovrrfWx3ehruaTLZAfkCEkTJT0qKVvSf4wxk895lAAA+NHQqBB99dIRWvPtS/X0l2Zq8aQUBQW07XRd1dCsv72Xp6sfflvX/u5d/WNTvmoamv04YgAAnKUvzjlu/ZP/jC83W5b1wClVOyR9xRhTLenbkpZJ+kQ3+ul0fblnRnname4HAKC3uFxGsy5I0KwLElRW3aDntxTomY1HdPh427YcW49UaOuRCv1o5W5dOyVVS2ZkakJazGl6BQAA56snZo5bZ4a7+lM7+pR25+KPns+559EHAAD9SnxkiG6fO0JvfnuenrntIn18cqqCA9r+aK5uaNZT7+dr8W/f0TW/fUdPv5+vamaTAQDoFT0xc7zX8zmqi+sjPZ9dvZPcHUc9nxHn0QcAAP2SMUYXj4jXxSPiVV7TqH9tKdAzG/N18FjbbPL2wkptf2G7Hnxll3c2eWJajIwxp+kZAAB0V0+E4zWez4XGGFcnRznNllQn6b3z+I6LPZ+HzqMPAAD6vbiIYH3pkuH64pxh2pR7Qs9szNcr24vV2Gz/8Vrb2KJnNh7RMxuPaHxqtJbMyNS1U1IVFRrk55EDADCwnfeyasuyDkpaJXvTrDtOufyA7Nnev7aecWyMCTLGjDHGjGjf0Bgz3hgTd2r/xpgsSY94fvy/8x0vAAADgTFGM4bF6defmaKN37tM9y0ep5GJkT5tdhad1L0v7tCMH6/Wd5/bpg/zT8iyzrjFBwAA6ITpiT9EPUF3vaRESS9J2i1ppqT5spdTz7Isq8zTNlvSYUl5lmVlt+tjmaT/lj0TfVhSlaQRkj4mKVTSvyV9wrKsxvMY5+Zp06ZN27y5q5OeAADovyzL0ua8E3p6Y75e2VashmZ3hzZjkqN008xMXTslTTFhzCYDAJwlJydHW7Zs2dLVJs2n0yPhWJKMMRmSfijpSknxkoolvSjpAcuyytu1y1bn4XiepK9Imqq2o5wqJH0k+9zjv1nnOVjCMQBgsKisbdILH9o7Xe8trepwPTTIpcWT7HeTp2XG8m4yAMAR+kU4HggIxwCAwcayLH14pELPvJ+vFduKVN/UcTZ5dFKUlszI0CempismnNlkAMDgRTjuJsIxAGAwO1nfpJc+LNRT7+drT0nH2eSQQJc+NilFN83IVE7WEGaTAQCDzvmE457YrRoAAPQD0aFBuvnibH3uoixtLajUM+/n6+WtRaprapEkNTS79a8thfrXlkJdkBipJTMy9cmpaRoSEeznkQMA4H/MHAMAMIhV1Tfp5a1Fevr9fO0sOtnhenCgS1dPSNaSGZmaMSyO2WQAwIDGzDEAAOhUVGiQPjszS5+dmaXtBZV6emO+Xv6oUDWN9mxyY7NbL35UpBc/KtLwoRG6aUamPjktXXHMJgMAHIaZYwAAHKa6oVkrthbpmY352lZQ2eF6cIBLiyYka8mMDF08PJ7ZZADAgMHMMQAA6LbIkEAtmZGpJTMytaOwUn/flK8XPyxSdUOzJKmxxa0VW4u0YmuRhiVE6MYLM/SpnHQlRIb4eeQAAPQeZo4BAIBqGpr1yrZiPb0xXx8dqehwPSjAaOH4ZN00I1MXD4+Xy8VsMgCg/2HmGAAAnJeIkEDdcGGGbrgwQ7uKTurvm/L1wpZCVXlmk5taLL2yrVivbCtWZly4bpyRoetz0pUYFernkQMA0DOYOQYAAJ2qbbRnk5/ZmK8t+RUdrge6jK4Yl6QlMzI154IEZpMBAH7HzDEAAOhx4cGB+vT0DH16eob2lJzU3zce0b+2FOhkvT2b3Oy29J8dJfrPjhJlxIXpxgsz9emcdCVGM5sMABh4mDkGAADdVt/Uon9vt2eTN+We6HA9wGV0+dhELZmRqUtGDlUAs8kAgD7EzDEAAOgToUEB+uS0dH1yWrr2l1bpmY1H9PyWAlXWNUmSWtyWXttZqtd2liotNkyfuTBDN0zPUHIMs8kAgP6NmWMAAHBe6pta9OqOEj29MV8bD5d3uO4y0oIxSbppZobmjUpkNhkA0GuYOQYAAH4TGhSg66am6bqpaTpwtFr/2JSv5zYX6EStPZvstqQ3dpfqjd2lSo0JtXfFnp6h1NgwP48cAIA2zBwDAIAe19Dcotd2luqZ9/O14VBZh+suI80fbb+bfOnooQoMcPlhlACAwYaZYwAA0K+EBAbo45NT9fHJqTp0rFr/2HREz24uUHlNoyR7Nnn1nqNaveeokqNDdcP0dN1wYYbSh4T7eeQAAKdi5hgAAPSJhuYWvb6rVH/feETvHDje4box0rxRQ7VkRqYWjElUELPJAICzxMwxAADo90ICA7R4UqoWT0pVXlmN/r7piJ794IiOV9uzyZYlrd17TGv3HlNMWJAuG5uoheOSNW/UUIUFB/h59ACAwY6ZYwAA4DeNzW6t3l2qpzfm6+39HWeTJSk0yKVLRg7VovHJumxMooZEBPfxKAEAAwUzxwAAYEAKDnTpqokpumpiivLLavWPD/L1ry2FKq6s97apb3Lr9V2len1XqQJcRjOy47RwfJKuGJfEO8oAgB7DzDEAAOhXLMvS9sJKrdpZqtd2lmj/0eou205Ii9bCcclaND5Zo5IiZQxnKAOAkzFzDAAABg1jjCalx2pSeqy+s2i0Dh2r1qpdpVq1s0Rb8it82u4oPKkdhSf10Ov7lBUfrkXjk7VwXJKmZQ6Ry0VQBgB0HzPHAABgwDh6sl6v7y7VaztLteHgcTW1dP73mITIEF0xLlELxydr1oh4hQSyoRcAOAEzxwAAwBESo0P12ZlZ+uzMLJ2sb9KaPUe1alep1u45qprGFm+749UNembjET2z8YgiQwJ16eihWjg+WfNHD1VUaJAfnwAA0F8RjgEAwIAUHRqka6ek6dopaWpobtH6A2VatatEr+8q9R4PJUnVDc1aua1YK7cVKyjAaNaIBC0an6zLxyUqMSrUj08AAOhPWFYNAAAGlRa3pS35J7RqZ4le21mq/PLaTtsZI03LHKKF45K0aHyyshMi+nikAICedj7LqgnHAABg0LIsS3tLq/TajlKt2lWinUUnu2w7KinSs6FXsiakRbPzNQAMQLxzDAAA0AljjMYkR2tMcrS+cflIHSmv1eu77COiNuWWy91ujmBfabX2lR7Qb988oNSYUC0cn6yF45M0IztOgQEu/z0EAKBPMHMMAAAcqbymUW/sLtWqnaV6e/8xNTS7O20XGx6ky8YkaeH4JM0dOVRhwex8DQD9FTPHAAAAZykuIlg3TM/QDdMzVNvYrLf2HdNrO0u1enepTtY3e9tV1Dbp+S0Fen5LgUKDXJo7cqgWjU/WZWMTFRse7McnAAD0JMIxAABwvPDgQF05IUVXTkhRU4tb7x8q16pdJVq1s1QlJ+u97eqb3Fq1q1SrdpUqwGU0c1icFo5L0sLxyUqNDfPjEwAAzhfLqgEAALpgWZa2FVRq1S575+sDR6u7bDsxLUaLxttBeWRiJBt6AYAfsKwaAACgFxhjNDkjVpMzYnXXojE6eKxaq3baO19/mF/h03Z7YaW2F1bqV6v2aVhChHdGeWpGrFwugjIA9HfMHAMAAJyD0pP13p2vNxwsU7O7879TDY0K0RXjkrRwXJIuHhGvkEA29AKA3sLMMQAAQB9Lig7V5y7K0ucuylJlXZPW7j2q13aWaO3eY6ptbPG2O1bVoKffz9fT7+crKiRQl45J1MJxSbp09FBFhQb58QkAAO0RjgEAAM5TTFiQrp2SpmunpKm+qUXvHjiuVTtL9cbuUpXVNHrbVTU0a8XWIq3YWqTgAJdmXRCvReOTdfnYJA2NCvHjEwAACMcAAAA9KDQoQJeNTdJlY5PU4ra0Oe+EXttZotd2lqjgRJ23XWOLW2v3HtPavcf0PbNdOZlDtHB8khaNT1ZWfIQfnwAAnIl3jgEAAPqAZVnaXVzlPSJqV/HJLtuOTory7nw9PjWana8BoJt45xgAAKCfM8ZoXGq0xqVGa+nlo3SkvFarPBt6fZBbrvb7ee0trdLe0io9/OYBpcWG6Ypx9ozyhdlDFBjg8t9DAMAgxswxAACAn5VVN2j17qNatatEb+0/rsZmd6fthoQH6bKx9s7Xc0cNVWgQO18DQHvMHAMAAAxg8ZEhuuHCDN1wYYZqGpr11r5jem1niVbvOaqq+mZvuxO1TXpuc4Ge21ygsKAAzR2VoEXjk7VgTKJiw4P9+AQAMPARjgEAAPqRiJBAXTUxRVdNTFFjs1vvHy7Tqp2lWrWrRKUnG7zt6ppa9NrOUr22s1QBLqOLhsdp4bhkLRyfpJSYMD8+AQAMTCyrBgAAGADcbkvbCiu9O18fOlbTZdtJ6TFaND5ZC8cl6YLESDb0AuAY57OsmnAMAAAwAB04Wq1Vu0r02s5SbT1S0WW74QkRusJzRNSU9Fi5XARlAIMX4bibCMcAAGAwKqms1+u7SrRqV6k2HCxTs7vzv98lRoXoinH2EVEXD49XcCA7XwMYXNiQCwAAwMGSY0J188XZuvnibFXWNmnN3qN6bWeJ1u49prqmFm+7o1UNeur9fD31fr6iQgJ1yagEXTw8XhcNj2f5NQDHIxwDAAAMIjHhQbpuapqum5qm+qYWvbP/uFbtKtEbu4+qvKbR266qoVn/3l6if28vkSTFRwTrouHxumh4HGEZgCMRjgEAAAap0KAAXT4uSZePS1Jzi1ub8054drguUWFFnU/bsppGvbK9WK9sL5YkJUQGa6ZnVvni4XEaMZSwDGBwIxwDAAA4QGCASzOHx2vm8Hj9YPFY7S2t0oaDZXrvUJneP1yuitomn/bHqxv1yrZivbKNsAzAGQjHAAAADmOM0ZjkaI1JjtbnZw+T2211CMuVdYRlAM5COAYAAHA4l8tobEq0xqZE6wtz7LC8p6RK7x06m7Ac4n1f+aLh8RoxNIKwDGBAIRwDAADAh8tlNC41WuNSzyYsN2jltmKtJCwDGKAIxwAAADgtwjIAJyAcAwAA4Kx0FpZ3l5zUe4fK7bB8qEwn65t97jldWL54RLyGJxCWAfgX4RgAAADnxeUyGp8ao/GpMfrinGFqcVvac5ZheWhUiM85y4RlAH2NcAwAAIAeFXAOYflYVYNWbC3Siq1FkgjLAPoe4RgAAAC9qrOwvLv4pOed5XJtPHx2Yfni4fEaRlgG0MMIxwAAAOhTAS6jCWkxmpAWoy9dMvycwnKiNyzbgZmwDOB8EY4BAADgV2cKy+8fLlPVKWH5aFWDXt5apJcJywB6COEYAAAA/QphGYA/EI4BAADQr50+LNvnLJ8pLCdFtw/L8cqODycsA/BBOAYAAMCAci5hufRkg176qEgvfURYBtA5wjEAAAAGNMIygJ5AOAYAAMCg0llY3lXUFpY3Hi5XVcPpw3JydKj3jOWLhscri7AMDHqEYwAAAAxqAS6jiekxmpgeo9vmdi8sl5ys14sfFelFwjLgGIRjAAAAOAphGUBnCMcAAABwtJ4Iyykxod5joy4aHq/MOMIyMNAQjgEAAIB2Tg3LzS1u7Wp3zvKmTsJycWW9XviwUC98WCjJNyxfmB2n7PgIuVyEZaA/IxwDAAAApxEY4NKk9FhNSo/V7XNHdAjLGw+Xq/oMYTkqNFCT0mM0MS3W8xmj9CFhzC4D/QjhGAAAADgL5xKWq+qb9e6BMr17oMxbFxcRrIlpMd6wPCk9VskxoX39OAA8CMcAAADAeegsLO9s987y1oJKldc0drivvKZR6/Yd07p9x7x1iVEhvjPM6TFKiAzpy8cBHItwDAAAAPSgwACXJmfEanJGrL48b4Qsy1JhRZ22F1Rqa0GlthdWaFtBparqmzvce7SqQW/sPqo3dh/11qXFhmlimh2UJ6fHamJajGLCg/rykQBHIBwDAAAAvcgYo/Qh4UofEq6rJqZIktxuS/nltdpaUKHtBZXaVlipHYWVqm1s6XB/YUWdCivq9OrOEm9dVny4JqZ5wnJ6jCakxSgyhL/aA+eD30EAAABAH3O5jLITIpSdEKFrp6RJklrclg4dq9a2gkptL6zUtoIK7Sw6qYZmd4f788pqlVdWq5XbiiVJxkjDEyI8y7vt95jHpcQoLDigT58LGMgIxwAAAEA/EOAyGpkUpZFJUfpUTrokqanFrf2l1d6l2NsKKrWn5KSaWiyfey1LOnisRgeP1Xh3yA5wGY1MjPS8uxyrSWkxGpMSpZBAAjPQGcIxAAAA0E8FBbg0LjVa41Kj9ZkL7bqG5hbtLamyZ5gLKrW1oEL7j1arxe0bmFvclvaUVGlPSZX++UGBpz+jMcnRmpgeo0me95hHJUUpKMDV148G9DuEYwAAAGAACQkM8O6O3aqusUW7ik9qe4FnhrmwUgePVcvyzctqarG0vdBetv20tz87gNthOVaT02M0fGikAlycwQxnIRwDAAAAA1xYcIBysoYoJ2uIt666oVk7Cyu9YXl7QYVyy2o73NvQ7NaH+RX6ML9CUp4kKTw4QBNS7Zll+x3mWGXFhctFYMYgRjgGAAAABqHIkEDNHB6vmcPjvXWVtU32Zl+Fnl2yCypVWFHX4d7axhZtzC3Xxtxyb11UaGCHI6XSh4TJGAIzBgfCMQAAAOAQMeFBmjMyQXNGJnjrjlc32EutPWF5W0GFjlY1dLi3qr5Z6w+Waf3BMm/dkPAg71LsiWn2DHNSdAiBGQMS4RgAAABwsITIEM0fnaj5oxO9daUn6z0bflVoq+doqfKaxg73nqht0lv7jumtfce8dUOjQjxhOdazU3aMEiJD+uRZgPNBOAYAAADgIyk6VFeMC9UV45IkSZZlqbCizp5d9pzBvK2gUlX1zR3uPVbVoDd2H9Ubu49669Jiw7xLsid5Zpljw4P77HmA7iAcAwAAADgtY4zSh4QrfUi4rpqYIskOzHlltXZYPlKhbYWV2lFYqdrGlg73F1bUqbCiTq/uLPHWZcWHe5Zi27PME9KiFRUa1GfPBJyKcAwAAADgrBljlJ0QoeyECH18cqok+2zlw8ertfWIvRR7W0GFdhadVEOzu8P9eWW1yiur1cptxZ7+pOEJEZrk2exrckaMxqXEKCw4oE+fC85FOAYAAADQIwJcRhckRumCxCh9KiddktTc4ta+0mptL7SXYm8vrNTu4pNqavE9hNmypIPHanTwWI1e+LBQkuQy0qikKHuGOSNWk9JiNCYlSiGBBGb0PMIxAAAAgF4TGODSuNRojUuN1mcutOsamlu0t6TKs+mX/R7zvtIqtbh9A7PbkvaUVGlPSZWe3VwgSQoKMBqdHKVJ6XZYnpgeo1FJUQoKcPX1o2GQIRwDAAAA6FMhgQF2uE2P9dbVNbZoV/FJbS+o8Gz6VamDx6pl+eZlNbVY2lF4UjsKT+ppT11woEtjU6I1JilKI5MiNTo5SqOTojQ0imOl0H2EYwAAAAB+FxYcoJysIcrJGuKtq25o1s5Ceyn2Vs/RUrlltR3ubWx2a+uRCm09UuFTHxMWpNFJURqVHKlRSVHeEhfBTtnoiHAMAAAAoF+KDAnUzOHxmjk83ltXWdukHUWV2lpQYS/JLqhUYUVdp/dX1jVpY265NuaW+9QnRIZo9CmBeVRSJLtlOxzhGAAAAMCAERMepNkXJGj2BQneurLqBu0pqdLekirtK20t1apu6HgOsyQdr27Q8QMNevdAmU99akyoRnmWZI9Msj8vSIxkx2yHIBwDAAAAGNDiI0M0+4IQn8BsWZaKKuvtoFxSpb2lVdpfWq39R6tU39TxaClJKqqsV1FlvdbuPeatM0bKjAv3zi6PSorS6OQoDUuIYNfsQYZwDAAAAGDQMcYoLTZMabFhmj860Vvf4rZ0pLzWO8O8t7Ra+0urdPBYdYfjpST7iKnWM5lf31XqrQ9wGQ1LiPDMMkd63m2OUlZcuALZOXtAIhwDAAAAcIwAl1F2QoSyEyK0cHyyt76pxa3c4zXaV1qtvZ7Z5n1Hq5R7vEbujplZLW5LB45W68DRaml7W31wgEsjEiM1OinSuzR7VFKU0oeEyeVi5+z+jHAMAAAAwPGCAlwa6XnX+GNK8dbXN7Xo0LEazyxzlfZ7Po+Ud74JWGOLW7uLT2p38Umf+rCgAI1qH5iT7WXaydGhHDfVTxCOAQAAAKALoUEBGpcarXGp0T71NQ3NOnC0/SxztfaVVKnkZH2n/dQ1tWhrgX0kVXtRoYHtNgCL9ITmKCVEhvTaM6FzhGMAAAAAOEsRIYGanBGryRmxPvWVdU3e2eV9Jfau2ftKq1RW09hpP1X1zfog74Q+yDvhUx8fEdy2CVi7HbRjwjhuqrcQjgEAAACgh8SEBWl6dpymZ8f51B+vbvDunN06y7y3tEpV9Z0fN1VW06gNh8q04ZDvcVPJ0aE+G4CNSorSyMRIRYQQ7c4X/wQBAAAAoJclRIYoITJEs0b4HjdVerKh3Sxz2xnNdU0tnfZTcrJeJSfr9fb+4z71GXFhGpUY1W6WOVIjhkYqNIjjprqLcAwAAAAAfmCMUXJMqJJjQjVv1FBvvdttqbCiTntL2m8CVq2DR6vV2NL5Gc1Hyut0pLxOq/cc9da5jJSdEOETmkclRSo7IUJBHDfVAeEYAAAAAPoRl8soIy5cGXHhunxckre+ucWtvPJan3eZ95ZW6fDxGrV0ct6U25IOHavRoWM1enVnibc+KMBoxNDItk3APMdNZcSFK8DBx00RjgEAAABgAAgMcGnEUHu59FUT2+obmlt0+HiN9pZUaX/rOc2lVcovr5XVyRnNTS2W9pRUaU9JlVa0qw8NcumCRDsst57PPCo5SqkxzjhuinAMAAAAAANYSGCAxiRHa0yy73FTdY0t3uOm2u+gXVTZ+XFT9U1u7Sg8qR2Fvmc0R4YEtm0C5ikXDY9T4CBbmk04BgAAAIBBKCw4QBPTYzQxPcan/mR9k/Z7lmW33wTsWFVDp/1UNzTrw/wKfZhfIUkKDnBp1w8X9fbw+xzhGAAAAAAcJDo0SDlZQ5STNcSnvrymUft8ZpntWefKuiafdiMSIwfdrLFEOAYAAAAASIqLCNZFw+N10fB4b51lWTpW5TluqtQ+nzklNtSPo+w9hGMAAAAAQKeMMUqMDlVidKguGTn0zDcMYINvLhwAAAAAgLNEOAYAAAAAOB7hGAAAAADgeIRjAAAAAIDjEY4BAAAAAI5HOAYAAAAAOB7hGAAAAADgeIRjAAAAAIDjEY4BAAAAAI5HOAYAAAAAOB7hGAAAAADgeIRjAAAAAIDjEY4BAAAAAI5HOAYAAAAAOB7hGAAAAADgeIRjAAAAAIDjEY4BAAAAAI5HOAYAAAAAOB7hGAAAAADgeIRjAAAAAIDjEY4BAAAAAI5HOAYAAAAAOB7hGAAAAADgeIRjAAAAAIDjEY4BAAAAAI5HOAYAAAAAOB7hGAAAAADgeIRjAAAAAIDjEY4BAAAAAI5HOAYAAAAAOB7hGAAAAADgeIRjAAAAAIDjEY4BAAAAAI5HOAYAAAAAOB7hGAAAAADgeIRjAAAAAIDjEY4BAAAAAI5HOAYAAAAAOB7hGAAAAADgeIRjAAAAAIDjEY4BAAAAAI5HOAYAAAAAOB7hGAAAAADgeIRjAAAAAIDjEY4BAAAAAI5HOAYAAAAAOB7hGAAAAADgeIRjAAAAAIDjEY4BAAAAAI5HOAYAAAAAOB7hGAAAAADgeIRjAAAAAIDjEY4BAAAAAI5HOAYAAAAAOF6PhWNjTLox5nFjTJExpsEYk2uM+Y0xZsh59HmzMcbylC/11FgBAAAAAGgvsCc6McaMkLReUqKklyTtkTRD0jckXWmMmW1ZVtlZ9pkh6beSqiVF9sQ4AQAAAADoTE/NHP9edjC+07Ks6yzL+m/LshZI+rWk0ZJ+fDadGWOMpOWSyiT9sYfGCAAAAABAp847HBtjhktaKClX0u9OuXy/pBpJNxtjIs6i2zslLZD0ec/9AAAAAAD0mp5YVr3A87nKsix3+wuWZVUZY96VHZ4vkrT6TJ0ZY8ZK+pmk/7Us6y1jzIIz3dNJH5u7uDTmbPsCAAAAAAx+PbGserTnc18X1/d7PkedqSNjTKCkv0nKl/S98x8aAAAAAABn1hMzxzGez8ourrfWx3ajr/skTZU0x7KsunMdkGVZOZ3Ve2aUp51rvwAAAACAwakvzjk2nk/rtI2MmSF7tvh/LMva0OujAgAAAADAoyfCcevMcEwX16NPaddBu+XU+yT9oAfGBAAAAABAt/VEON7r+ezqneKRns+u3kmW7HOMR0kaK6neGGO1Ftk7XkvSnz11vznfAQMAAAAA0F5PvHO8xvO50Bjjar9jtTEmStJsSXWS3jtNHw2S/tLFtWmy30N+R3YQZ8k1AAAAAKBHnXc4tizroDFmlezjmu6Q9Nt2lx+QFCHpUcuyaiTJGBMkaYSkJsuyDnr6qJP0pc76N8Yskx2On7Qs67HzHS8AAAAAAKfqiZljSfqapPWSHjbGXCZpt6SZkubLXk79/XZt0zzX8yRl99D3AwAAAABwznpkt2rPDPB0SU/IDsXflj07/LCkiy3LKuuJ7wEAAAAAoDf01MyxLMs6Iunz3WiXq7bjnbrT7zJJy851XAAAAAAAnElfnHMMAAAAAEC/RjgGAAAAADge4RgAAAAA4HiEYwAAAACA4xGOAQAAAACORzgGAAAAADge4RgAAAAA4HiEYwAAAACA4xGOAQAAAACORzgGAAAAADge4RgAAAAA4HiEYwAAAACA4xGOAQAAAACORzgGAAAAADge4RgAAAAA4HiEYwAAAACA4xGOAQAAAACORzgGAAAAADge4RgAAAAA4HiEYwAAAACA4xGOAQAAAACORzgGAAAAADge4RgAAAAA4HiEYwAAAACA4xGOAQAAAACORzgGAAAAADge4RgAAAAA4HiEYwAAAACA4xGOAQAAAACORzgGAAAAADge4RgAAAAA4HiEYwAAAACA4xGOAQAAAACORzgGAAAAADge4RgAAAAA4HiEYwAAAACA4xGOAQAAAACORzgGAAAAADge4RgAAAAA4HiEYwAAAACA4xGOAQAAAACORzgGAAAAADge4RgAAAAA4HiEYwAAAACA4xGOAQAAAACORzgGAAAAADge4RgAAAAA4HiEYwAAAACA4xGOAQAAAACORzgGAAAAADge4RgAAAAA4HiEYwAAAACA4xGOAQAAAACORzgGAAAAADge4RgAAAAA4HiEYwAAAACA4xGOAQAAAACORzgGAAAAADge4RgAAAAA4HiEYwAAAACA4xGOAQAAAACORzgGAAAAADge4RgAAAAA4HiEYwAAAACA4xGOAQAAAACORzgGAAAAADge4RgAAAAA4HiEYwAAAACA4xGOAQAAAACORzgGAAAAADge4RgAAAAA4HiEYwAAAACA4xGOAQAAAACORzgGAAAAADge4RgAAAAA4HiEYwAAAACA4xGOAQAAAACORzgGAAAAADge4RgAAAAA4HiEYwAAAACA4xGOAQAAAACORzgGAAAAADge4RgAAAAA4HiEYwAAAACA4xGOAQAAAACORzgGAAAAADge4RgAAAAA4HiEYwAAAACA4xGOAQAAAACORzgGAAAAADge4RgAAAAA4HiEYwAAAACA4xGOAQAAAACORzgGAAAAADge4RgAAAAA4HiEYwAAAACA4xGOAQAAAACORzgGAAAAADge4RgAAAAA4HiEYwAAAACA4xGOAQAAAACORzgGAAAAADge4RgAAAAA4HiEYwAAAACA4xGOAQAAAACORzgGAAAAADge4RgAAAAA4HiEYwAAAACA4xGOAQAAAACORzgGAAAAADge4RgAAAAA4HiEYwAAAACA4xGOAQAAAACORzgGAAAAADge4RgAAAAA4HiEYwAAAACA4xGOAQAAAACORzgGAAAAADge4RgAAAAA4HiEYwAAAACA4xGOAQAAAACORzgGAAAAADge4RgAAAAA4HiEYwAAAACA4xGOAQAAAACORzgGAAAAADge4RgAAAAA4HiEYwAAAACA4xGOAQAAAACORzgGAAAAADge4RgAAAAA4HiEYwAAAACA4xGOAQAAAACORzgGAAAAADge4RgAAAAA4HiEYwAAAACA4xGOAQAAAACORzgGAAAAADge4RgAAAAA4HiEYwAAAACA4xGOAQAAAACORzgGAAAAADge4RgAAAAA4HiEYwAAAACA4xGOAQAAAACORzgGAAAAADge4RgAAAAA4HiEYwAAAACA4xGOAQAAAACORzgGAAAAADge4RgAAAAA4HiEYwAAAACA4xGOAQAAAACORzgGAAAAADge4RgAAAAA4HiEYwAAAACA4xGOAQAAAACORzgGAAAAADge4RgAAAAA4Hg9Fo6NMenGmMeNMUXGmAZjTK4x5jfGmCFn0cfPjTGrjTFHjDF1xphyY8yHxpj7jTHxPTVWAAAAAADa65FwbIwZIWmzpM9L2ijp15IOSfqGpA1nEWy/KSlC0uuS/lfSU5KaJS2TtM0Yk9ET4wUAAAAAoL3AHurn95ISJd1pWdZvWyuNMQ/JDrw/lvSVbvQTbVlW/amVxpgfS/qepHskfa1HRgwAAAAAgMd5zxwbY4ZLWigpV9LvTrl8v6QaSTcbYyLO1Fdnwdjjn57Pkec4TAAAAAAAutQTy6oXeD5XWZblbn/BsqwqSe9KCpd00Xl8xzWez23n0QcAAAAAAJ3qiWXVoz2f+7q4vl/2zPIoSau706Ex5juSIiXFSJouaY7sYPyzbt6/uYtLY7pzPwAAAADAWXoiHMd4Piu7uN5aH3sWfX5HUlK7n1+VdKtlWcfObmgAAAAAAJxZT23IdTrG82l19wbLspIlyRiTJGmW7BnjD40xiy3L2tKN+3M6HYg9ozytu+MAAAAAADhDT7xz3DozHNPF9ehT2nWbZVmllmW9IHtZdrykv5798AAAAAAAOL2eCMd7PZ+jurjeusN0V+8kn5FlWXmSdkkab4xJONd+AAAAAADoTE+E4zWez4XGGJ/+jDFRkmZLqpP03nl+T6rns+U8+wEAAAAAwMd5h2PLsg5KWiUpW9Idp1x+QFKEpL9allUjScaYIGPMGGPMiPYNPXXJp/ZvjHEZY34sKVHSesuyTpzvmAEAAAAAaK+nNuT6mqT1kh42xlwmabekmZLmy15O/f12bdM81/NkB+pWV0r6pTHmLUkHJZXJ3rF6nqThkkok3dZD4wUAAAAAwKtHwrFlWQeNMdMl/VB2yL1aUrGkhyU9YFlWeTe6eUPSn2Qvw54s++inGtnh+m+SHu5mPwAAAAAAnJUeO8rJsqwjkj7fjXa5ajveqX39DnVclg0AAAAAQK/riQ25AAAAAAAY0AjHAAAAAADHIxwDAAAAAByPcAwAAAAAcDzCMQAAAADA8QjHAAAAAADHIxwDAAAAAByPcAwAAAAAcDzCMQAAAADA8QjHAAAAAADHIxwDAAAAAByPcAwAAAAAcDzCMQAAAADA8QjHAAAAAADHIxwDAAAAAByPcAwAAAAAcDzCMQAAAADA8QjHAAAAAADHIxwDAAAAAByPcAwAAAAAcDzCMQAAAADA8QjHAAAAAADHIxwDAAAAAByPcAwAAAAAcDzCMQAAAADA8QjHAAAAAADHIxwDAAAAAByPcAwAAAAAcDzCMQAAAADA8QjHAAAAAADHIxwDAAAAAByPcAwAAAAAcDzCMQAAAADA8QjHAAAAAADHIxwDAAAAAByPcAwAAAAAcDzCMQAAAADA8QjHAAAAAADHIxwDAAAAAByPcAwAAAAAcDzCMQAAAADA8QjHAAAAAADHIxwDAAAAAByPcAwAAAAAcDzCMQAAAADA8QjHAAAAAADHIxwDAAAAAByPcAwAAAAAcDzCMQAAAADA8QjHAAAAAADHIxwDAAAAAByPcAwAAAAAcDzCMQAAAADA8QjHAAAAAADHIxwDAAAAAByPcAwAAAAAcDzCMQAAAADA8QjHAAAAAADHIxwDAAAAAByPcAwAAAAAcDzCMQAAAADA8QjHAAAAAADHIxwDAAAAAByPcAwAAAAAcDzCMQAAAADA8QjHAAAAAADHIxwDAAAAAByPcAwAAAAAcDzCMQAAAADA8QjHAAAAAADHIxwDAAAAAByPcAwAAAAAcDzCMQAAAADA8QjHAAAAAADHIxwDAAAAAByPcAwAAAAAcDzCMQAAAADA8QjHAAAAAADHIxwDAAAAAByPcAwAAAAAcDzCMQAAAADA8QjHAAAAAADHIxwDAAAAAByPcAwAAAAAcDzCMQAAAADA8QjHAAAAAADHIxwDAAAAAByPcAwAAAAAcDzCMQAAAADA8QjHAAAAAADHIxwDAAAAAByPcAwAAAAAcDzCMQAAAADA8QjHAAAAAADHIxwDAAAAAByPcAwAAAAAcDzCMQAAAADA8QjHAAAAAADHIxwDAAAAAByPcAwAAAAAcDzCMQAAAADA8QjHAAAAAADHIxwDAAAAAByPcAwAAAAAcDzCMQAAAADA8QjHAAAAAADHIxwDAAAAAByPcAwAAAAAcDzCMQAAAADA8QjHAAAAAADHIxwDAAAAAByPcAwAAAAAcDzCMQAAAADA8QjHAAAAAADHIxwDAAAAAByPcAwAAAAAcDzCMQAAAADA8QjHAAAAAADHIxwDAAAAAByPcAwAAAAAcDzCMQAAAADA8QjHAAAAAADHIxwDAAAAAByPcAwAAAAAcDzCMQAAAADA8QjHAAAAAADHIxwDAAAAAByPcAwAAAAAcDzCMQAAAADA8QjHAAAAAADHIxwDAAAAAByPcAwAAAAAcDzCMQAAAADA8QjHAAAAAADHIxwDAAAAAByPcAwAAAAAcDzCMQAAAADA8QjHAAAAAADHIxwDAAAAAByPcAwAAAAAcDzCMQAAAADA8QjHAAAAAADHIxwDAAAAAByPcAwAAAAAcDzCMQAAAADA8QjHAAAAAADHIxwDAAAAAByPcAwAAAAAcDzCMQAAAADA8QjHAAAAAADHIxwDAAAAAByPcAwAAAAAcDzCMQAAAADA8QjHAAAAAADHIxwDAAAAAByPcAwAAAAAcDzCMQAAAADA8QjHAAAAAADHIxwDAAAAAByPcAwAAAAAcLweC8fGmHRjzOPGmCJjTIMxJtcY8xtjzJBu3h9vjPmSMeYFY8wBY0ydMabSGPOOMeaLxhiCPAAAAACgVwT2RCfGmBGS1ktKlPSSpD2SZkj6hqQrjTGzLcsqO0M3n5b0B0nFktZIypeUJOmTkh6TdJUx5tOWZVk9MWYAAAAAAFr1SDiW9HvZwfhOy7J+21ppjHlI0jcl/VjSV87Qxz5JH5f0imVZ7nZ9fE/SRkmfkh2Un++hMQMAAAAAIKkHllUbY4ZLWigpV9LvTrl8v6QaSTcbYyJO149lWW9alrWifTD21JdI+qPnx0vPd7wAAAAAAJyqJ97jXeD5XNVJsK2S9K6kcEkXncd3NHk+m8+jDwAAAAAAOtUTy6pHez73dXF9v+yZ5VGSVp9t58aYQEn/z/Pjq928Z3MXl8ac7fcDAAAAAAa/npg5jvF8VnZxvbU+9hz7/5mkCZL+bVnWa+fYBwAAAAAAXeqpDblOx3g+z3qXaWPMnZK+LXv365u7e59lWTld9LdZ0rSzHQcAAAAAYHDriZnj1pnhmC6uR5/SrluMMXdI+l9JuyTNtyyr/NyGBwAAAADA6fVEON7r+RzVxfWRns+u3knuwBizVNIjknbIDsYl5zw6AAAAAADOoCfC8RrP50JjjE9/xpgoSbMl1Ul6rzudGWO+K+nXkj6SHYyP9sAYAQAAAADo0nmHY8uyDkpaJSlb0h2nXH5AUoSkv1qWVSNJxpggY8wYY8yIU/syxvxA9gZcmyVdZlnW8fMdHwAAAAAAZ9JTG3J9TdJ6SQ8bYy6TtFvSTEnzZS+n/n67tmme63myA7UkyRhzi6QfSmqR9LakO40xOkWuZVlP9NCYAQAAAACQ1EPh2LKsg8aY6bLD7ZWSrpZULOlhSQ90czOtYZ7PAElLu2izTtIT5zVYAAAAAABO0WNHOVmWdUTS57vRLldtxzu1r18maVlPjQcAAAAAgO7qiQ25AAAAAAAY0AjHAAAAAADHIxwDAAAAAByPcAwAAAAAcDzCMQAAAADA8QjHAAAAAADHIxwDAAAAAByPcAwAAAAAcDzCMQAAAADA8QjHAAAAAADHIxwDAAAAAByPcAwAAAAAcDzCMQAAAADA8QjHAAAAAADHIxwDAAAAAByPcAwAAAAAcDzCMQAAAADA8QjHAAAAAADHIxwDAAAAAByPcAwAAAAAcDzCMQAAAADA8QjHAAAAAADHIxwDAAAAABwv0N8DQDsni6Tmes8PxvNhOvn5dNd64medZftOfu6psZw6JgAAAADoBYTj/uTZW6Uj7/t7FP1cD/yPgNZfB0dIUclSZLIUlSRFpUiRns+oZPvXkUlSYHDvPQ4AAACAfoFwjAHG8nxYnVaflaZaqeaYpO2nbxce3y44J3cRqJOlwJBzGAQAAACA/oBw3J9EJUtDstsFP8vno2Mw7Kufz+P7z/e7+4PaMruU7jh9u7AhntCcfPoQHRTWN+MGAAAA0G2E4/7khr/6ewT9l9ULwb+uQqoukapKpapiqbpUqiqxS7Xns+aYZLm7N8a6E3Y5tvv07UJjfEO0dyn3KSE6OKJ73wsAAADgvBGOMTD0xgZdwRFSTNrp27Q0S7XH7fDcZYguteuslu59b32lXY7vPX27kOhTlnKf8j50a6AOiere9wIAAADoEuEYOJ2AwLZwejruFnvp9akzz1UlnjDtCdfVJZK7uXvf3XDSLmX7T98uKOIMS7lbQ3Q0u38DAAAAXSAcAz3BFSBFJtolZVLX7dxuqa68ixDd+mtPiG5p7N53N9VI5QftcjqBYWdeyh2VLIXGEqIBAADgOIRjoC+5XFJEgl2SJ3TdzrLs95dPDdDtl3K3LvH2no19Bs110onDdjmdgJDOZ559NhtLsTcgI0QDAABgkCAcA/2RMVJ4nF2SxnXdzrLs95fPtJS7qsQ+uqo7Whqkiny7nE5AcNuMc4djrtoF6vB4+38KAAAAAP0Y4RgYyIyRwmLtkjim63aWJTVUdT7zfOqy7sbq7n13S6NUecQupxMcKaVfKGXNlrJmSWk5UlBod58QAAAA6BOEY8AJjJFCo+0ydNTp2zZUt5t5PmUW2huoS6WGyu59d2O1dGiNXSR7xjktxw7KmbOkjBn2uAAAAAA/IhwD8BUSaZf4Eadv11jbySz0KUu5q4rtZd/ttTRK+Rvsov+RjEtKnmSH5axZUubF9jvZAAAAQB8iHAM4N8HhUtxwu5xORb6Ut17Ke1fK29DxaCrLLRV/ZJf3fm/XJYxuC8tZs6SY9N54AgAAAMCLcAygd8Vm2mXyjfbP1UftWePWwFyyQ5Lle8/xvXbZvLytj8zWsDzbntVmp2wAAAD0IMIxgL4VmSiNu9YuklRXIR3ZaAfl/A1S4RbJ3eR7T+vu2dv+bv8ckShlXWwH5cyLpaTx9lnTAAAAwDkiHAPwr7BYadRCu0j2u8yFH9hLsPPelQo2dTyGquaotOslu0hSSIyUeVFbYE6ZIgUG9+VTAAAAYIAjHAPoX4LDpWFz7SJJLU1S8VbPO8vr7dnlUzf5aqiU9r9mF0kKDJPSp7cdH5V+od0vAAAA0AXCMYD+LSDIDrrp06XZ35DcbunoLk9QXm9/Vpf63tNcJ+W+bRdJcgVKqVPbjo/KnCmFDen7ZwEAAEC/RTgGMLC4XFLyBLvMvF2yLKn8kGeDL09gPpHre4+72V6eXbBJevd/JRn7PWXv8VGzpKgkfzwNAAAA+gnCMYCBzRh79+r4EdK0m+26ysJ2O2Kvl47tPuUmSyrdYZeNf7Kr4kb4Hh8Vm8WO2AAAAA5COAYw+MSkSROvt4sk1ZRJR95rOz6qeJtktfjeU37QLh/+zf45Os3eCbv1+KihownLAAAAgxjhGMDgFxEvjfmYXSSpocpzfJRng6+CD6SWBt97ThZKO56ziySFxbVbhn2xlDxJCuA/oQAAAIMFf7MD4DwhUdIFl9lFkprqpaItbcuwj7wvNVb73lNXLu1ZaRdJCo6UMma2HR+VOk0KCu3b5wAAAECPIRwDQFBo26ywJLU0S6Xb28Jy3no7HLfXWC0dXG0XSQoIkdJyPP1cbAfnkKi+fQ4AAACcM8IxAJwqwHP0U+pU6eI77OOjju9rOzoqb7297Lq9lgb7ev566W1JJkBKmWTvhN26FDsi3i+PAwAAgDMjHAPAmbhcUuIYu0z/gn18VEV+2wZf+RuksgO+91gtUtGHdnnvd3bd0DFtG3xlXmxvHAYAAIB+gXAMAGfLGGlIll2mLLHrqko9M8ueI6RKd0iyfO87tscuHzxu/xybZQfl1veW44azIzYAAICfEI4BoCdEJUnjP2EXSaqrsDf2ynvXDstFH0ruZt97KvLssvVp++fIJM/xUbPtGebEcfasNQAAAHod4RgAekNYrDRqkV0kqbHGPjIqz/Ne8pFNUnOd7z3VpdKuF+0iSaExbWctZ86SUqdIAUF99wwAAAAOQjgGgL4QHCENn2cXSWpulIo/atvgK/89qaHS9576Smnfq3aRpKBwKX1628xy2nQpOLxPHwMAAGCwIhwDgD8EBksZM+wyZ6nkbpGO7vI9PqrmqO89TbXS4bfsIkmuIHtH7axZUvYcadhcKTCkzx8FAABgMCAcA0B/4AqQkifaZeaX7R2xyw62Oz7qXXuH7PbcTVLBRru8+xspJEYad4004Xo7KLsC/PIoAAAAAxHhGAD6I2OkhAvsMu3/2XWVBZ7dsD3HRx3b43tPQ6X04f/ZJdKzQdjET0tpOeyCDQAAcAaEYwAYKGLSpUmftosk1Ry3Q3LeemnPK/bO162qS6X3/2iXIdn2bPLE66XEsX4ZOgAAQH9nLMs6c6tBwhizedq0adM2b97s76EAQM+yLKlws7T9WWnHvzq+r9wqaYI04VN2GZLVt2MEAADoZTk5OdqyZcsWy7JyzvZeZo4BYDAwxt7JOn26tPDHUu7b0o7npF0rfHfBLt1hl9UPSBkz7WXX466TIof6begAAAD9AeEYAAabgEBpxHy7fOwhaf/r9ozyvlel5vq2dkfet8t/vmsfMTXx09KYxVJotP/GDgAA4CeEYwAYzAJDpLGL7dJQZb+bvP056eCbktVit7Fa7J8PvikFLJVGLbLfTx65SAoK9evwAQAA+grhGACcIiRKmnyjXWqOS7tetINy/oa2Ni0N0u6X7RISbc8kT7xeGjbPnpEGAAAYpPibDgA4UUSCdOGX7FJxRNrxvP2Ocsn2tjYNJ6WtT9slYqh9NNSE66WMGRwNBQAABh3CMQA4XWyGNGepXY7ttWeTdzwnlR9qa1NzTNr4J7vEZtq7XU/8tJQ03l+jBgAA6FEufw8AANCPDB0tLfi+9PUt0m1vShfdIUUm+7apyJfe+bX0h1nS7y6S3vqVVH7YP+MFAADoIcwcAwA6MkZKy7HLwh9Jee/aO17vekmqb3c01LHd0ps/skvadHs2efwnpKgk/40dAADgHBCOAQCn5wqQhs21y9W/kg6stpdd7/m31FzX1q7wA7u8do/ddsL10thrpLBYvw0dAACguwjHAIDuCwyRxlxtl4Zqae9/7Bnlg6sld7PdxnJLh9ba5ZVvSSMX2jtej7pSCgrz5+gBAAC6RDgGAJybkEhp0qftUlvuORrqeXsJtiy7TUujtGelXYIj246GGn6pFBDkx8EDAAD4IhwDAM5feJw0/Qt2qSyUdv7LnlEu3trWprFa2vZ3u4THS+Ous99RzpgpudgfEgAA+BfhGADQs2LSpFlft8vx/W1HQ5UdaGtTWyZ98Be7RKdLEz9lv6OcPJEzlAEAgF/wv+oBAL0nYaQ0/x7pvz6Qbl8nXfxfUlSqb5uTBdK7/ys9eon0u5nSul9IZQf9M14AAOBYzBwDAHqfMVLqFLtc8SMpf709o7zrRanuRFu743ulNT+2S+o0+/3k8Z+UolP8NHAAAOAUhGMAQN9yuaTsOXa56hfSoTX2+8l7/i011bS1K9pil9e+b7ed+Glp3MelsCH+GzsAABi0CMcAAP8JDJZGLbJLY419NNSO56X9r0vuJk8jS8p92y6vfFsaeYU04VPS6Kuk4Ai/Dh8AAAwehGMAQP8QHGEvo554vX001O4V9oxy7jvyHg3lbpL2/tsuQRH2ecsTPy2NWMDRUAAA4LwQjgEA/U94nJRzi11OFnuOhnrOXmbdqqnGDs/bn7WXWo+7zg7WmbM4GgoAAJw1wjEAoH+LTpEuvsMuZQftZdfbn5WO72trU3dC2rzcLlGp0oRP2jPKKZM5GgoAAHQL4RgAMHDEj5Dm3S3NvUsq2W6H5B3/so+DalVVJG14xC7xF9jnJ0+83j5WCgAAoAuEYwDAwGOMlDLJLpc/IB15r+1oqNqytnZlB6R1P7NLymR7Nnn8J6WYNL8NHQAA9E+EYwDAwOZySVmz7HLVz6VDa+2gvGel1Fjd1q54q11W/UDKmi1N/JT9nnJ4nL9GDgAA+hHCMQBg8AgIso96GnmF1Fgr7X/NDsr7V0ktjZ5GlpT3jl3+fZc04jJ7Rnn0VVJIpF+HDwAA/IdwDAAYnILDpfGfsEtdhX001I7npMNvSZbbbuNutgP0/tekoHA7IE+4XrrgcvsMZgAA4BiEYwDA4BcWK0272S5VpdLOF+zNvAo/aGvTVGvvhL3jeSk0Vhr3cXtGOWu25Arw18gBAEAfIRwDAJwlKkm66Ct2KT/cdjTUsT1tbeorpC1/tUtksjThU/Y7yqnTOBoKAIBBinAMAHCuuGHS3O9Il3xbKt1pL7ve/rxUmd/WprpEeu93dokbLl1whZQ9x55Rjoj339gBAECPIhwDAGCMlDzBLpfdLx3ZaM8m73xBqj3e1q78kLTxUbtIUuJ4KXt2u7Cc4J/xAwCA80Y4BgCgPWOkzJl2ufJn0uF19o7Xu1dIjVW+bY/utMvGP9k/J45rC8rZcwjLAAAMIIRjAAC6EhAoXXCZXRY/JOW9K+W+K+W+IxVtsXe7bu/oLru0huWhY+2QnD1bypojRQ7t+2cAAADdQjgGAKA7gsLsI54uuNz+uaFaOvK+JzC/IxVu7hiWj+22y6Y/2z8PHeM7sxyZ2LfPAAAAukQ4BgDgXIREts0qS1JjjR2Wc9uH5Sbfe47tscumx+yfE0Z7ZpbnEJYBAPAzwjEAAD0hOEIascAukicsb2ybWS74oGNYPr7XLh/8xf45YVRbUM6aYx87BQAA+gThGACA3hAcIY2YbxdJaqyVCjbaQTn3XalgUydheZ9dPnjc/jl+pO/MclRy3z4DAAAOQjgGAKAvBIdLwy+1i+QJy5s8YfkdqfADqaXR956y/XbZvNz+Of4CT1C+xH5vOTqlL58AAIBBjXAMAIA/BIdLw+fZRZKa6nzDcsGmTsLyAbtsfsL+OW5EW1jOni1Fp/bpIwAAMJgQjgEA6A+CwqRhc+0iecLyB6eE5Qbfe8oP2mXLk/bPccN9Z5Zj0vr2GQAAGMAIxwAA9EdBYdKwS+wiSU319tLr1rB8ZGMnYfmQXbb81f45brjn2KhL7NBMWAYAoEuEYwAABoKg0LaNuSRPWN7sCctv2zPLzfW+97SG5Q//Zv88ZJi9/NobltP79hkAAOjHCMcAAAxEQaGeoDtb0nel5gbfsHxkY8ewfOKwXT78P/vnIdn2kVGtoTs2o6+fAgCAfoNwDADAYBAYImXNssu8uz1hecspYbnO954TuXb5yBOWY7PaNvfKniPFZvb1UwAA4DeEYwAABqPAECnrYrvMu6stLOd53lnOf79jWK7Ikz7KaxeWM9s298qeIw3J6vvnAACgjxCOAQBwgvZhee5dUnOjVLSl3QZf70tNtb73VORLHz1lF0mKyWxbgp09255pNqbvnwUAgF5AOAYAwIkCg6XMi+wy9zuesPyhvQQ7710p/72OYbkyX9r6tF0kKSajXVieQ1gGAAxohGMAAOAJyzPtou9ILU1tYTm3NSzX+N5TeUTa+oxdJCk63TcsD8kmLAMABgzCMQAA6CggSMqYYZdLvu0Jyx95wvI7nYflkwXStr/bRZKi004Jy8MIywCAfotwDAAAziwgSMq40C6XfMsOy8VbfcNyY7XvPScLpW3/sIskRaX6huW44YRlAEC/QTgGAABnLyBISp9ulznflFqaTwnLGzqG5aoiafs/7SJ5wrJnJ+zsSwjLAAC/IhwDAIDzFxAopefYZc5SOyyXbG3bDTtvg9RY5XtPVZG0/Vm7SFJUStuxUenTpYTR9rvQAAD0AcIxAADoeQGBUlqOXWZ/wxOWt7WF5fwNUsNJ33uqiqUdz9lFklxBUuIYKXmSlDzRLkkTpLDYPn8cAMDgRzgGAAC9LyBQSptml9l3Su4W37Cct75jWHY3SSXb7dJeTGZbWG4tsZksyQYAnBfCMQAA6HuuACl1ql1mfb1dWH7XnlUu2SZV5Hd+b2W+Xfa+0lYXEuMJyhPaAvPQMVJgSN88DwBgwCMcAwAA//MJy/9l19VVSKU72maPS7ZLR3fbM8qnaqiU8t6xi7fPQDsgt59hTpoghcf1ySMBAAYWwjEAAOifwmLbjn1q1dwoHd/XLjBvsz/rKzre7262w3XpDmnrM2310emdLMvOklyu3n4iAEA/RjgGAAADR2CwZ+n0BElL7DrLss9UPjUwn8jtvI+TBXbZ95+2upBoe1bZZ1n2WCkotLefCADQTxCOAQDAwGaMFJNul9FXtdXXV0qlOzsuy25p6NhHw0kpf71dvP0GSENHty3HTp5o75wdEd/7zwQA6HOEYwAAMDiFxkhZs+zSqqVJOr6/bYa5dIdUvE2qK+94v9UiHd1lF/2jrT4qteOy7CHDWJYNAAMc4RgAADhHQJCUNM4ukz9j11mWfcZy+yXZJdul8kOd91FVZJf9r7XVBUdKSeN9A3PiOCkorPefCQDQIwjHAADA2YyRolPtMmpRW31DlVS6yzcwH90lNdd37KOxWjryvl28/bqkhFEdl2VHDu39ZwIAnDXCMQAAQGdCoqTMmXZp1dIslR3ouCy79njH+y23dGyPXbY/21YfmdxxWXbccPs4KwCA3xCOAQAAuisgUEocY5dJn7brLEuqLu24LLvsoCSrYx/VJdKBEunA6211QeGnLMueZC/LDg7vk8cCABCOAQAAzo8xUlSyXUZe0VbfWNNxWXbpTqm5rmMfTbVSwSa7ePt1SfEX+C7JTp4oRSX1/jMBgAMRjgEAAHpDcISUcaFdWrlb7Bnl0u2+R0xVl3a833JLx/fZZee/2uojEj1heUJbYI6/gGXZAHCeCMcAAAB9xRUgDR1llwmfaquvKj0lMO+QyvbbAflUNUelg6vt0iowzN6B+9Rl2SGRvf9MADBIEI4BAAD8LSrJLhdc3lbXWCsd3d1xWXZTTcf7m+ukws128TL2Rl/tA3PyRHv5tzG9/kgAMNAQjgEAAPqj4HApPccurdxu6cRh38Bcst0+p7kDSyo/aJddL7ZVhyd4lmRPlIaOleJHSHEjpIgEQjMARyMcAwAADBQulx1m40dI4z/RVl99zLMse0dbYD6+T7JaOvZRe1w6tNYu7YVES3HD7KDcGpjjhtu/Do8nOAMY9AjHAAAAA13kUClygTRiQVtdU51nWXa7GebSHVJjded9NJyUirfa5VQhMVL8cDssnxqew+MIzgAGBcIxAADAYBQUJqVNs0srt1uqyG13FvMBe/fs8kNdh2ZJaqiUij60y6lCY9oF5uG+vw6P6/HHAoDeQjgGAABwCpfLE2CHS+Oubau3LKnmmCcoe8Jy66/LDnW+CVir+kqpaItdThU2pPPZ5vjh9jUA6EcIxwAAAE5njBSZaJesi32vWZZUfdQTlNuH50P2r5tqu+637kQnu2h7hMV1PtscP8KejQaAPkY4BgAAQNeMaTtqKmuW7zXLkqpK7LDcPjyXHbLrmuu67reuXCoolwo2dbwWHn/KbPOwtl+HRvfs8wGAB+EYAAAA58YYKTrFLtmzfa9Zln3EVIel2q3Bub7rfmvL7FKwseO1iKHtZptPmXUOierZ5wPgKIRjAAAA9DxjpOhUuwy7xPea220HZ5+l2ofbwnNLQ9f91hyzy5H3O16LSOx8tjluuBQS2bPPB2DQIRwDAACgb7lcUkyaXYbN9b3mdksnC09Zqu2ZdT5xWGpp7LrfmqN2yd/Q8VpkUuezzXHDpeCInn0+AAMS4RgAAAD9h8slxWbYZfg832vuFjs4d5htPiidyD19cK4utUv++o7XolI6zjbHj5CGDJOCw3v08QD0X4RjAAAADAyuACk20y4j5vtec7dIlQW+s83eGedcyd3Udb9VxXbJe6fjtahU31nm9su2g8J69PEA+BfhGAAAAAPf/2/v7qMsq8o7j3+fruo3+o3uhqYbGsOLIKhLibLQgTgITgiZ0bFDZGJWJMCErBCNqCNJltFok4QVZ2VUIuiwjJNhEk1MJIsQJyayRDQIakLUMSLvUtDNS9N0N/3+Wv3MH/tc6vbte6tud92uW1Xn+1lrr+PdZ59z9213UfW7+5yzZwzA4p8o5dQLD9w3vA82rzkwMDceErZpCPbv63zerU+XMnT3wfsWrjx4tnnJKWXGeeacnn48SUee4ViSJEnT28BgCbFLTgbedOC+4X2w+cmR5aeaHxK26QnI4c7n3bK2lIOCc8CilSOzzUtOLq8XnQgLT4AFy0uYlzSpGI4lSZJUXwODIyG21fBeeOHJg2ebNzxW6jsG5ywz1ZvXwOPfOHj3jMFyufaiE6rQvLKE5kUnVq9PgDlHlyd+S5owhmNJkiSpnYGZ5VLppafCaT994L59e0aC8wFLUv24Cs77O593fzVbvfnJzm1mzW8KzdWsc2uYHpzdm88pCTAcS5IkSYducBYc89JSWu3bAy88MRKYX6hmkbc8VR4atn392Offsw3WP1hKJ/OWjYTl5rKw2s47tjz9W1JXDMeSJElSLw3OgmNOK6WdvTthy9MlKDfKlrUHvt67Y+z3aazr/PR32+8fmAULjx+5XLvdLPTsBYf/OaVpxnAsSZIkTaSZc0cu124nE3ZuqkJzNdu8eQ1sfmokPG99evRLt6Gs+7xpqJRO5iwamWlu3O/cHKYXHl8uL5dqwHAsSZIkTSYRcNSSUla8qn2b4X2w7dkDZ5tbZ6F3bhr7vXZtLuW5+zt1BhasaLnfueUy7qOW+vAwTQuGY0mSJGmqGRgcCaed7NlezTav6TwLPbx7jDfKkbWe1/5L+yaDc9o/cbt5+apZRx32R5UmiuFYkiRJmo5mzYNjTy+lnUzY/vzB9zs3l23rgBz9ffbtgg2PltLJ3CUdnrpdbV37WZOA4ViSJEmqowiYf2wpx/9k+zb79pRZ481rO8xCr4XdW8Z+r50bS3n2Bx36MlA9PGxl54eHufazjjDDsSRJkqT2BmfB4pNK6WTX5qaHha05MDg3gvT+faO/Tw5XwXtN5zaz5jeF5tblq04oZeacw/mUEmA4liRJkjQecxaVctzL2+/fPwzbnqtC85r2s9Ddrv38/EOldOzL0TD/OFhwXNk2l+a6uYudhdZBDMeSJEmSjpwZA7BwRSkrz27fpt3az62z0N2s/bzrhVJGC9BQ1oCefxzMX9YhQC8f2Tc461A/saYow7EkSZKk/jqUtZ9fvOe5eRZ6LWx9plye3Y3hPWNfxt0wd/HoAXpBtfWe6CnPcCxJkiRpcutm7ef9+2HHhvKE7W3Plku5t1bbxutt62DrOtiztfv33rmplPUPjt5uYPbIbHQjMLcG6PnLYd6xzkZPUoZjSZIkSVPfjBkjT9/mlaO33bO9CtGtAbqlbvtzkPu7e//h3bD5yVLGMndJhwDdfJ/0snIvt7PRE8ZwLEmSJKleZs2DJaeUMpr9w2U2erQA3ZiV3rOt+/dvLG313I9Gbzc4Z/QA3bjEe96xMDCz+/dXW4ZjSZIkSWpnxkAVTpeN3Xb3tio4rxu5fLsRpBuheuu66snc2d3779sFLzxZyqgCjlra/kndra9nL3A2ugPDsSRJkiSN1+z5pXR6qFjD8D7Y8XxLgG65J7oRsLt5QjcAWc6543l47v7Rmw7OHSVANz2le96xMFCvuFivTytJkiRJ/TQwWC6PXrAcVozSLrNcqt0aoLc2BelG2f483c9G74RNQ6WMKmDeMe0fKjZ/Gbzi56bdDLThWJIkSZImm4hyCfTsBXDMS0dvO7y3BOS2Abq5bl25VLsrWS4B374e1rXsmnM0vPKSw/hQk1vPwnFErAR+D7gYWAo8A/wtcF1mburyHG8DzgfOAl4NLAA+n5nv6FU/JUmSJGlaGZgJC1eUMppM2L3lwLC8rene6OaHjO3Y0Pk8C5b3tv+TRE/CcUScCtwLLANuBx4EzgHeA1wcEedl5ij/ui/6ECUUbwPWAmf0on+SJEmSVHsRZXmoOYvgmNNGbzu89+DLtxsBet4xE9PfCdarmeNPU4LxNZl5Y6MyIj4OvA+4Hri6i/O8jxKKH6XMIN/Vo/5JkiRJkro1MBMWnVBKTcwY7wki4hTgImAI+FTL7o8A24HLImLeWOfKzLsy85HM7PJuckmSJEmSxm/c4Ri4sNrekZn7m3dk5lbgHuAo4PU9eC9JkiRJknquF5dVv6zaPtxh/yOUmeXTgTt78H5jioh/7bDLe5glSZIkSQfpxczxomq7ucP+Rv3RPXgvSZIkSZJ6biLWOW6sDD1h9xFn5mvbdqTMKL9movohSZIkSZoaejFz3JgZXtRh/8KWdpIkSZIkTSq9CMcPVdvTO+xvLKDV6Z5kSZIkSZL6qhfhuLEW8UURccD5ImIBcB6wE/h2D95LkiRJkqSeG3c4zszHgDuAk4B3tey+DpgH/FlmbgeIiJkRcUZEnDre95YkSZIkqRd69UCudwL3Ap+MiDcBDwCvAy6gXE79waa2J1T7n6AE6hdFxCpgVfVyebX9dxFxS/W/n8/Ma3vUZ0mSJEmSgB6F48x8LCLOBn4PuBj4j8AzwCeB6zJzY5enOgu4vKXulKpACdSGY0mSJElST/VsKafMXANc2UW7IUaWd2rdtxpY3as+SZIkSZLUjV48kEuSJEmSpCnNcCxJkiRJqj3DsSRJkiSp9gzHkiRJkqTaMxxLkiRJkmrPcCxJkiRJqj3DsSRJkiSp9gzHkiRJkqTaMxxLkiRJkmrPcCxJkiRJqj3DsSRJkiSp9gzHkiRJkqTaMxxLkiRJkmrPcCxJkiRJqj3DsSRJkiSp9gzHkiRJkqTaMxxLkiRJkmrPcCxJkiRJqj3DsSRJkiSp9gzHkiRJkqTaMxxLkiRJkmrPcCxJkiRJqj3DsSRJkiSp9gzHkiRJkqTai8zsdx8mTERsmDt37pIzzzyz312RJEmSJPXYAw88wM6dOzdm5tJDPbZu4fhxYCEw1OeujOaMavtgX3sh9YbjWdOJ41nTjWNa04njWQ0nAVsy8+RDPbBW4XgqiIh/BcjM1/a7L9J4OZ41nTieNd04pjWdOJ7VC95zLEmSJEmqPcOxJEmSJKn2DMeSJEmSpNozHEuSJEmSas9wLEmSJEmqPZ9WLUmSJEmqPWeOJUmSJEm1ZziWJEmSJNWe4ViSJEmSVHuGY0mSJElS7RmOJUmSJEm1ZziWJEmSJNWe4ViSJEmSVHuG40kiIlZGxJ9GxNMRsTsihiLihohY3O++afqLiLdFxI0RcXdEbImIjIjPjXHMuRHx5YjYGBE7IuIHEfHeiBgY5ZjLI+KfI2JbRGyOiK9HxJtHaT83Iq6LiIciYldEPBcRfx0RZ47n82r6ioilEXFVRNwWEY9GxM5qrH0zIn4lItr+3nM8azKLiP8eEXdGxJpqTG+MiO9FxEciYmmHYxzTmjIi4rLqb4+MiKs6tHFM64iLzOx3H2ovIk4F7gWWAbcDDwLnABcADwHnZeaG/vVQ011EfB94NbANWAucAXw+M9/Rof1bgb8BdgF/BWwE3gK8DLg1My9tc8z/AN5fnf9WYBbwdmAJ8O7MvKml/WzgTuA84D7ga8CJwKXAHuDCzPzOeD63pp+IuBr4n8AzwF3Ak8BxwCXAIsq4vTSbfvk5njXZRcQe4LvAj4DngHnA64GzgaeB12fmmqb2jmlNGRFxIvBvwAAwH/jVzPxsSxvHtCZGZlr6XICvAEn5QW2u/3hVf3O/+2iZ3oXyRcxpQABvrMbd5zq0XUj542w3cHZT/RzKlzwJvL3lmHOr+keBxU31JwEbKL/sTmo55gPVMV8EZjTVv7Wqv7+53mLJTIALKX8wzWipX04Jygn8fFO949ky6Qswp0P99dX4+XRTnWPaMmVK9XfHV4HHgD+qxs5VLW0c05YJK15W3WcRcQpwETAEfKpl90eA7cBlETFvgrumGsnMuzLzkax+C4zhbcCxwBcy876mc+wCPlS9/PWWY66uttdn5qamY4Yo4342cGWjPiKi6Zjfysz9TcfcDtwNvBw4v4v+qkYy82uZ+aXmMVPVPwvcXL18Y9Mux7MmvWo8tvPX1fa0pjrHtKaSayhfal5J+Zu3Hce0JozhuP8urLZ3tPljbitwD3AU5fIpaTJojNl/bLPvn4AdwLnV5UndHPMPLW0ATgVeAjycmY93eYw0lr3Vdl9TneNZU9lbqu0Pmuoc05oSqvt4Pwr8cWb+0yhNHdOaMIbj/ntZtX24w/5Hqu3pE9AXqRsdx2xm7gMeBwaBUwCqqx5OALZl5jNtztdujPtzoZ6KiEHgl6uXzX8sOZ41ZUTEtRGxOiI+ERF3A79PCcYfbWrmmNakV/03+c8pt7v8zhjNHdOaMIP97oBYVG03d9jfqD/6yHdF6sqhjtnDGeP+XKjXPgq8EvhyZn6lqd7xrKnkWsoD5hr+EbgiM9c31TmmNRV8GPhJ4Kcyc+cYbR3TmjDOHE9+UW19rLimisMds4fS3p8LdS0irqE8sfRB4LJDPbzaOp7Vd5m5PDOD8oC5SygzZd+LiNccwmkc0+qriDiHMlv8scz8Vi9OWW0d0xo3w3H/Nb6JWtRh/8KWdlK/HeqYHat9u29r/blQT0TEu4A/piyBc0Fmbmxp4njWlJOZ6zLzNsoDPZcCf9a02zGtSavpcuqHgd/t8jDHtCaM4bj/Hqq2ne5haDyBstM9ENJE6zhmq196J1MeePRjgMzcDjwFzI+IFW3O126M+3OhcYuI9wI3AT+kBONn2zRzPGvKyswnKF/8vCIijqmqHdOazOZTxs2ZwK6IyEahrNIC8CdV3Q3Va8e0JozhuP/uqrYXRcQB/39ExALKQuQ7gW9PdMekDr5WbS9us+/fU56ufm9m7u7ymJ9taQNlvcMngdMj4uQuj5FeFBG/DXwC+D4lGD/XoanjWVPd8dV2uNo6pjWZ7Qb+V4fyvarNN6vXjUuuHdOaOP1eaNmSAF+h3MPw7pb6j1f1N/e7j5b6FMoasAl8rsP+hcB6yi+4s5vq5wD3Vse+veWYc6v6R4HFTfUnARuAXcBJLcd8oDrmi8CMpvq3VvX3N9dbLI1CuVQvgfuAJWO0dTxbJnUBzgCWt6mfAVxfjZ97muod05YpWYDV1di5qqXeMW2ZsBLV/+nqo4g4lfLDvQy4HXgAeB1wAeXyjXMzc0P/eqjpLiJWAauql8uBn6FcnnR3Vfd8Zl7b0v5Wyi+XLwAbgf9MWQrhVuC/ZMt/XCLiY8B/A9ZWbWYBv0C5X+7dmXlTS/vZlG9oz6WEnDspaxBeCuwBLszM74z3s2t6iYjLgVsos2g30v7+sKHMvKXpmFU4njVJVbcH/BFlPdfHKH/YHwecT3kg17PAmzLzR03HrMIxrSkmIlZTLq3+1cz8bMu+VTimNRH6nc4tpQAnAv8beIbyA/gE5SEyo856WCy9KIx8W9upDLU55jzgy8AmyqX//wa8DxgY5X0uB/4F2A5sBb4BvHmU9nOB6yjrC+6mfHP8ReDl/f43s0zO0sVYTuDrbY5zPFsmZaEsQfYpyi0Cz1Purdxcjb3Vnf5OcExbplqhw8xx037HtOWIF2eOJUmSJEm15wO5JEmSJEm1ZziWJEmSJNWe4ViSJEmSVHuGY0mSJElS7RmOJUmSJEm1ZziWJEmSJNWe4ViSJEmSVHuGY0mSJElS7RmOJUmSJEm1ZziWJEmSJNWe4ViSJEmSVHuGY0mSjpCIGIqIoabXV0RERsQV/euVJElqx3AsSdIUERGrq3D9xn73RZKk6Waw3x2QJKlGbgO+DTzT745IkqQDGY4lSZogmbkZ2NzvfkiSpIN5WbUkSeMQxW9ExP0RsSsinoqImyJiUZu2be85johXRcRfVvco746I9RHx3Yi4ISJmVm2GgI9Uh9xVnScjIpvOc3pEfDQi7qvOsTsinoiIz0TEyjb9eWN1jtURcVZE/H1EvBAROyLiGxFxbofPPBARV0fEPRGxOSJ2RsSjEfHZiDitpe1gRLwzIr4dEVuqc3+v+jfz7xBJ0qThzLEkSeNzA3AN5VLpzwB7gbcCrwNmAXtGOzgiXgV8B0jg74DHgYXAS4F3Ah+qznkDsAo4H/g/wFCb010CXA3cBdxbvfcrgKuAt0TE2Zn5VJvjzgZ+C/gW8FngJcDPA3dGxFmZ+VBTf2cBfw/8B2AN8BfAFuAk4OeAbwKPVG1nAl8CfgZ4qGq7C7gAuLH6N7pstH8fSZImiuFYkqTDVM2sXgM8BpyTmRur+g9SAuoK4IkxTnM5MAdYlZm3t5x/MbADIDNviIijKeH4lsz8eptz/Tnwiczc3XKei4B/oATtX29z3H8CrszMW5qO+TXgZuA9lJDesJoSjL8EXNr8XhExmxLsGz5ICcY3Ae/NzOGq3QDli4T/GhG3tn5uSZL6wcuZJEk6fFdW2+sbwRggM3cBHzjEc+1srcjMTZm5v9sTZOZTrcG4qr8DuJ8SVNu5pzkYV/4U2Aec06ioQu07q75e3fpembk7M9dXbWcAvwE8C7yvEYyrdsPA+ymz5b/U7eeTJOlIcuZYkqTD95pq+402++6mhMux/BVldvZvI+JW4KuUsPrYoXYmIoISNq8AXg0sBgaamnS6xPu+1orM3BsR66pzNJwBLAK+k5lPj9Gd04GllEusP1S6dpCdwJljnEeSpAlhOJYk6fA1Hrq1rnVHZg5HxIaxTpCZ/xwRb6Bcgvw2qntwI+Ih4LrM/MtD6M/HgfdS7n/+CvAUIzPSVwA/0eG4FzrU7+PAcH10tW1333KrpdX2NEYeJNbO/C7OJUnSEWc4liTp8DWWZToO+HHzjuoS5KV0ESQz81vAm6t7dl8LXAy8G/iLiFifmV8d6xwRsYxy//MPgXMzc2vL/l8c++OM6YVqe0IXbRv/Nrdl5iU9eG9Jko4o7zmWJOnwfbfant9m3xs4xC+hq3t2783MD1OCLpQnXzc07tsd4GCnUH6v39EmGK+s9o/Xg5SA/KqIOL7Ltq9vLEclSdJkZjiWJOnw3VJtPxgRSxqVETEH+MNuThARb2i3JjJlNhqqp1VXGpdpv6RN+6Fq+1PVrHXj/POBP6EHV4tVD9L6NDAXuLma6X5RRMyKiGOrtvsoyzWtAD4ZEXNbzxcRKyLi5ePtlyRJveBl1ZIkHabMvCcibqRcAv3D6oFajXWON1Hu/R3L+4GLIuLrlEuzt1HWJv7Z6hyfaWp7F7Af+MOIeGW1n8z8g8x8NiK+ALwd+H5E3EG5J/qnKWsLfx84azyft3IdZX3itwAPR8T/BbYCJwIXAb/JyJcGv095MNjVlHWWv0a5zHwZ5V7k8yj3Wv+oB/2SJGlcDMeSJI3Pe4CHgXcBv0aZ3b0N+B3g/3Vx/KcpIfd1lLA4CKyt6j+WmS+uk5yZD0TE5cC1lCWV5lS7/qDa/golYP9C1Z/1wN8BHwb+5rA/YZPM3BMRF1MC7y9T1mkO4GnK5/5mU9u9EbEKeAflgWBvpjyAaz3wOPC7wOd70S9JksYrMrPffZAkSZIkqa+851iSJEmSVHuGY0mSJElS7RmOJUmSJEm1ZziWJEmSJNWe4ViSJEmSVHuGY0mSJElS7RmOJUmSJEm1ZziWJEmSJNWe4ViSJEmSVHuGY0mSJElS7RmOJUmSJEm1ZziWJEmSJNWe4ViSJEmSVHuGY0mSJElS7RmOJUmSJEm1ZziWJEmSJNWe4ViSJEmSVHv/HxcqO2cXgiWUAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "image/png": { + "height": 479, + "width": 483 + }, + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "fig, ax = plt.subplots(figsize=(8,8))\n", + "\n", + "multi_gini_profile.plot(ax=ax)\n", + "multi_info_profile.plot(ax=ax)\n", + "ax.legend()" + ] + }, + { + "cell_type": "markdown", + "id": "25bf9e40-8676-462b-8e29-673bfede4c15", + "metadata": {}, + "source": [ + "## Batch-Computing Profiles" + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "id": "fcf4eb7a-64e5-4b4e-a8b2-098c4120b4f8", + "metadata": {}, + "outputs": [], + "source": [ + "from segregation.batch import batch_multiscalar_singlegroup, batch_multiscalar_multigroup" + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "id": "1c02c3a9-d249-46bd-b564-2a9ff5da6b48", + "metadata": {}, + "outputs": [], + "source": [ + "single_profs = batch_multiscalar_singlegroup(sacramento,group_pop_var=\"BLACK\", total_pop_var=\"TOT_POP\", \n", + " distances= range(500,5500,500))" + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "id": "540bc492-bdc7-4d06-b792-db0ec605bce7", + "metadata": {}, + "outputs": [], + "source": [ + "multi_profs = batch_multiscalar_multigroup(sacramento, distances=range(500,5000,500), groups=[\"HISP\", 'BLACK', \"WHITE\"])" + ] + }, + { + "cell_type": "markdown", + "id": "8c6c867f-cdf5-46a4-80c2-cc47f211a092", + "metadata": {}, + "source": [ + "With several profiles to examine at once, it's helpful to use an interactive plotting library like hvplot" + ] + }, + { + "cell_type": "code", + "execution_count": 22, + "id": "9fa5b6b9-199b-4631-9565-59b2ce2ebd6f", + "metadata": {}, + "outputs": [ + { + "data": { + "application/javascript": [ + "\n", + "(function(root) {\n", + " function now() {\n", + " return new Date();\n", + " }\n", + "\n", + " var force = true;\n", + "\n", + " if (typeof root._bokeh_onload_callbacks === \"undefined\" || force === true) {\n", + " root._bokeh_onload_callbacks = [];\n", + " root._bokeh_is_loading = undefined;\n", + " }\n", + "\n", + " if (typeof (root._bokeh_timeout) === \"undefined\" || force === true) {\n", + " root._bokeh_timeout = Date.now() + 5000;\n", + " root._bokeh_failed_load = false;\n", + " }\n", + "\n", + " function run_callbacks() {\n", + " try {\n", + " root._bokeh_onload_callbacks.forEach(function(callback) {\n", + " if (callback != null)\n", + " callback();\n", + " });\n", + " } finally {\n", + " delete root._bokeh_onload_callbacks\n", + " }\n", + " console.debug(\"Bokeh: all callbacks have finished\");\n", + " }\n", + "\n", + " function load_libs(css_urls, js_urls, js_modules, callback) {\n", + " if (css_urls == null) css_urls = [];\n", + " if (js_urls == null) js_urls = [];\n", + " if (js_modules == null) js_modules = [];\n", + "\n", + " root._bokeh_onload_callbacks.push(callback);\n", + " if (root._bokeh_is_loading > 0) {\n", + " console.debug(\"Bokeh: BokehJS is being loaded, scheduling callback at\", now());\n", + " return null;\n", + " }\n", + " if (js_urls.length === 0 && js_modules.length === 0) {\n", + " run_callbacks();\n", + " return null;\n", + " }\n", + " console.debug(\"Bokeh: BokehJS not loaded, scheduling load and callback at\", now());\n", + " root._bokeh_is_loading = css_urls.length + js_urls.length + js_modules.length;\n", + "\n", + " function on_load() {\n", + " root._bokeh_is_loading--;\n", + " if (root._bokeh_is_loading === 0) {\n", + " console.debug(\"Bokeh: all BokehJS libraries/stylesheets loaded\");\n", + " run_callbacks()\n", + " }\n", + " }\n", + "\n", + " function on_error() {\n", + " console.error(\"failed to load \" + url);\n", + " }\n", + "\n", + " for (var i = 0; i < css_urls.length; i++) {\n", + " var url = css_urls[i];\n", + " const element = document.createElement(\"link\");\n", + " element.onload = on_load;\n", + " element.onerror = on_error;\n", + " element.rel = \"stylesheet\";\n", + " element.type = \"text/css\";\n", + " element.href = url;\n", + " console.debug(\"Bokeh: injecting link tag for BokehJS stylesheet: \", url);\n", + " document.body.appendChild(element);\n", + " }\n", + "\n", + " var skip = [];\n", + " if (window.requirejs) {\n", + " window.requirejs.config({'paths': {'tabulator': 'https://unpkg.com/tabulator-tables@4.9.3/dist/js/tabulator'}});\n", + " require([\"tabulator\"], function(Tabulator,) {\n", + " window.Tabulator = Tabulator;\n", + " })\n", + " }\n", + " if (((window['tabulator'] !== undefined) && (!(window['tabulator'] instanceof HTMLElement))) || window.requirejs) {\n", + " var urls = ['https://unpkg.com/tabulator-tables@4.9.3/dist/js/tabulator.js', 'https://unpkg.com/moment@2.27.0/moment.js'];\n", + " for (var i = 0; i < urls.length; i++) {\n", + " skip.push(urls[i])\n", + " }\n", + " }\n", + " for (var i = 0; i < js_urls.length; i++) {\n", + " var url = js_urls[i];\n", + " if (skip.indexOf(url) >= 0) { on_load(); continue; }\n", + " var element = document.createElement('script');\n", + " element.onload = on_load;\n", + " element.onerror = on_error;\n", + " element.async = false;\n", + " element.src = url;\n", + " console.debug(\"Bokeh: injecting script tag for BokehJS library: \", url);\n", + " document.head.appendChild(element);\n", + " }\n", + " for (var i = 0; i < js_modules.length; i++) {\n", + " var url = js_modules[i];\n", + " if (skip.indexOf(url) >= 0) { on_load(); continue; }\n", + " var element = document.createElement('script');\n", + " element.onload = on_load;\n", + " element.onerror = on_error;\n", + " element.async = false;\n", + " element.src = url;\n", + " element.type = \"module\";\n", + " console.debug(\"Bokeh: injecting script tag for BokehJS library: \", url);\n", + " document.head.appendChild(element);\n", + " }\n", + " if (!js_urls.length && !js_modules.length) {\n", + " on_load()\n", + " }\n", + " };\n", + "\n", + " function inject_raw_css(css) {\n", + " const element = document.createElement(\"style\");\n", + " element.appendChild(document.createTextNode(css));\n", + " document.body.appendChild(element);\n", + " }\n", + "\n", + " var js_urls = [\"https://unpkg.com/tabulator-tables@4.9.3/dist/js/tabulator.js\", \"https://unpkg.com/moment@2.27.0/moment.js\"];\n", + " var js_modules = [];\n", + " var css_urls = [\"https://unpkg.com/tabulator-tables@4.9.3/dist/css/tabulator_simple.min.css\"];\n", + " var inline_js = [\n", + " function(Bokeh) {\n", + " inject_raw_css(\".bk.alert {\\n padding: 0.75rem 1.25rem;\\n border: 1px solid transparent;\\n border-radius: 0.25rem;\\n /* Don't set margin because that will not render correctly! */\\n /* margin-bottom: 1rem; */\\n margin-top: 15px;\\n margin-bottom: 15px;\\n}\\n.bk.alert a {\\n color: rgb(11, 46, 19); /* #002752; */\\n font-weight: 700;\\n text-decoration: rgb(11, 46, 19);\\n text-decoration-color: rgb(11, 46, 19);\\n text-decoration-line: none;\\n text-decoration-style: solid;\\n text-decoration-thickness: auto;\\n }\\n.bk.alert a:hover {\\n color: rgb(11, 46, 19);\\n font-weight: 700;\\n text-decoration: underline;\\n}\\n\\n.bk.alert-primary {\\n color: #004085;\\n background-color: #cce5ff;\\n border-color: #b8daff;\\n}\\n.bk.alert-primary hr {\\n border-top-color: #9fcdff;\\n}\\n\\n.bk.alert-secondary {\\n color: #383d41;\\n background-color: #e2e3e5;\\n border-color: #d6d8db;\\n }\\n.bk.alert-secondary hr {\\n border-top-color: #c8cbcf;\\n}\\n\\n.bk.alert-success {\\n color: #155724;\\n background-color: #d4edda;\\n border-color: #c3e6cb;\\n }\\n\\n.bk.alert-success hr {\\n border-top-color: #b1dfbb;\\n}\\n\\n.bk.alert-info {\\n color: #0c5460;\\n background-color: #d1ecf1;\\n border-color: #bee5eb;\\n }\\n.bk.alert-info hr {\\n border-top-color: #abdde5;\\n}\\n\\n.bk.alert-warning {\\n color: #856404;\\n background-color: #fff3cd;\\n border-color: #ffeeba;\\n }\\n\\n.bk.alert-warning hr {\\n border-top-color: #ffe8a1;\\n}\\n\\n.bk.alert-danger {\\n color: #721c24;\\n background-color: #f8d7da;\\n border-color: #f5c6cb;\\n}\\n.bk.alert-danger hr {\\n border-top-color: #f1b0b7;\\n}\\n\\n.bk.alert-light {\\n color: #818182;\\n background-color: #fefefe;\\n border-color: #fdfdfe;\\n }\\n.bk.alert-light hr {\\n border-top-color: #ececf6;\\n}\\n\\n.bk.alert-dark {\\n color: #1b1e21;\\n background-color: #d6d8d9;\\n border-color: #c6c8ca;\\n }\\n.bk.alert-dark hr {\\n border-top-color: #b9bbbe;\\n}\\n\\n\\n/* adjf\\u00e6l */\\n\\n.bk.alert-primary a {\\n color: #002752;\\n}\\n\\n.bk.alert-secondary a {\\n color: #202326;\\n}\\n\\n\\n.bk.alert-success a {\\n color: #0b2e13;\\n}\\n\\n\\n.bk.alert-info a {\\n color: #062c33;\\n}\\n\\n\\n.bk.alert-warning a {\\n color: #533f03;\\n}\\n\\n\\n.bk.alert-danger a {\\n color: #491217;\\n}\\n\\n.bk.alert-light a {\\n color: #686868;\\n}\\n\\n.bk.alert-dark a {\\n color: #040505;\\n}\");\n", + " },\n", + " function(Bokeh) {\n", + " inject_raw_css(\".bk.card {\\n border: 1px solid rgba(0,0,0,.125);\\n border-radius: 0.25rem;\\n}\\n.bk.accordion {\\n border: 1px solid rgba(0,0,0,.125);\\n}\\n.bk.card-header {\\n align-items: center;\\n background-color: rgba(0, 0, 0, 0.03);\\n border-radius: 0.25rem;\\n display: flex;\\n justify-content: space-between;\\n padding: 0 1.25rem 0 0;\\n width: 100%;\\n}\\n.bk.accordion-header {\\n align-items: center;\\n background-color: rgba(0, 0, 0, 0.03);\\n border-radius: 0;\\n display: flex;\\n justify-content: space-between;\\n padding: 0 1.25rem 0 0;\\n width: 100%;\\n}\\np.bk.card-button {\\n background-color: transparent;\\n font-size: 1.25rem;\\n font-weight: 700;\\n margin: 0;\\n margin-left: -15px;\\n}\\n.bk.card-header-row {\\n position: relative !important;\\n}\\n.bk.card-title {\\n align-items: center;\\n display: flex !important;\\n font-size: 1.4em;\\n font-weight: bold;\\n padding: 0.25em;\\n position: relative !important;\\n}\\n\");\n", + " },\n", + " function(Bokeh) {\n", + " inject_raw_css(\".bk.panel-widget-box {\\n min-height: 20px;\\n background-color: #f5f5f5;\\n border: 1px solid #e3e3e3;\\n border-radius: 4px;\\n -webkit-box-shadow: inset 0 1px 1px rgba(0,0,0,.05);\\n box-shadow: inset 0 1px 1px rgba(0,0,0,.05);\\n overflow-x: hidden;\\n overflow-y: hidden;\\n}\\n\\n.scrollable {\\n overflow: scroll;\\n}\\n\\nprogress {\\n appearance: none;\\n -moz-appearance: none;\\n -webkit-appearance: none;\\n border: none;\\n height: 20px;\\n background-color: whiteSmoke;\\n border-radius: 3px;\\n box-shadow: 0 2px 3px rgba(0,0,0,.5) inset;\\n color: royalblue;\\n position: relative;\\n margin: 0 0 1.5em;\\n}\\n\\nprogress[value]::-webkit-progress-bar {\\n background-color: whiteSmoke;\\n border-radius: 3px;\\n box-shadow: 0 2px 3px rgba(0,0,0,.5) inset;\\n}\\n\\nprogress[value]::-webkit-progress-value {\\n position: relative;\\n background-size: 35px 20px, 100% 100%, 100% 100%;\\n border-radius:3px;\\n}\\n\\nprogress.active:not([value])::before {\\n background-position: 10%;\\n animation-name: stripes;\\n animation-duration: 3s;\\n animation-timing-function: linear;\\n animation-iteration-count: infinite;\\n}\\n\\nprogress[value]::-moz-progress-bar {\\n background-size: 35px 20px, 100% 100%, 100% 100%;\\n border-radius:3px;\\n}\\n\\nprogress:not([value])::-moz-progress-bar {\\n border-radius:3px;\\n background: linear-gradient(-45deg, transparent 33%, rgba(0, 0, 0, 0.2) 33%, rgba(0, 0, 0, 0.2) 66%, transparent 66%) left/2.5em 1.5em;\\n}\\n\\nprogress.active:not([value])::-moz-progress-bar {\\n background-position: 10%;\\n animation-name: stripes;\\n animation-duration: 3s;\\n animation-timing-function: linear;\\n animation-iteration-count: infinite;\\n}\\n\\nprogress.active:not([value])::-webkit-progress-bar {\\n background-position: 10%;\\n animation-name: stripes;\\n animation-duration: 3s;\\n animation-timing-function: linear;\\n animation-iteration-count: infinite;\\n}\\n\\nprogress.primary[value]::-webkit-progress-value { background-color: #007bff; }\\nprogress.primary:not([value])::before { background-color: #007bff; }\\nprogress.primary:not([value])::-webkit-progress-bar { background-color: #007bff; }\\nprogress.primary::-moz-progress-bar { background-color: #007bff; }\\n\\nprogress.secondary[value]::-webkit-progress-value { background-color: #6c757d; }\\nprogress.secondary:not([value])::before { background-color: #6c757d; }\\nprogress.secondary:not([value])::-webkit-progress-bar { background-color: #6c757d; }\\nprogress.secondary::-moz-progress-bar { background-color: #6c757d; }\\n\\nprogress.success[value]::-webkit-progress-value { background-color: #28a745; }\\nprogress.success:not([value])::before { background-color: #28a745; }\\nprogress.success:not([value])::-webkit-progress-bar { background-color: #28a745; }\\nprogress.success::-moz-progress-bar { background-color: #28a745; }\\n\\nprogress.danger[value]::-webkit-progress-value { background-color: #dc3545; }\\nprogress.danger:not([value])::before { background-color: #dc3545; }\\nprogress.danger:not([value])::-webkit-progress-bar { background-color: #dc3545; }\\nprogress.danger::-moz-progress-bar { background-color: #dc3545; }\\n\\nprogress.warning[value]::-webkit-progress-value { background-color: #ffc107; }\\nprogress.warning:not([value])::before { background-color: #ffc107; }\\nprogress.warning:not([value])::-webkit-progress-bar { background-color: #ffc107; }\\nprogress.warning::-moz-progress-bar { background-color: #ffc107; }\\n\\nprogress.info[value]::-webkit-progress-value { background-color: #17a2b8; }\\nprogress.info:not([value])::before { background-color: #17a2b8; }\\nprogress.info:not([value])::-webkit-progress-bar { background-color: #17a2b8; }\\nprogress.info::-moz-progress-bar { background-color: #17a2b8; }\\n\\nprogress.light[value]::-webkit-progress-value { background-color: #f8f9fa; }\\nprogress.light:not([value])::before { background-color: #f8f9fa; }\\nprogress.light:not([value])::-webkit-progress-bar { background-color: #f8f9fa; }\\nprogress.light::-moz-progress-bar { background-color: #f8f9fa; }\\n\\nprogress.dark[value]::-webkit-progress-value { background-color: #343a40; }\\nprogress.dark:not([value])::-webkit-progress-bar { background-color: #343a40; }\\nprogress.dark:not([value])::before { background-color: #343a40; }\\nprogress.dark::-moz-progress-bar { background-color: #343a40; }\\n\\nprogress:not([value])::-webkit-progress-bar {\\n border-radius: 3px;\\n background: linear-gradient(-45deg, transparent 33%, rgba(0, 0, 0, 0.2) 33%, rgba(0, 0, 0, 0.2) 66%, transparent 66%) left/2.5em 1.5em;\\n}\\nprogress:not([value])::before {\\n content:\\\" \\\";\\n position:absolute;\\n height: 20px;\\n top:0;\\n left:0;\\n right:0;\\n bottom:0;\\n border-radius: 3px;\\n background: linear-gradient(-45deg, transparent 33%, rgba(0, 0, 0, 0.2) 33%, rgba(0, 0, 0, 0.2) 66%, transparent 66%) left/2.5em 1.5em;\\n}\\n\\n@keyframes stripes {\\n from {background-position: 0%}\\n to {background-position: 100%}\\n}\\n\\n.bk-root .bk.loader {\\n overflow: hidden;\\n}\\n\\n.bk.loader::after {\\n content: \\\"\\\";\\n border-radius: 50%;\\n -webkit-mask-image: radial-gradient(transparent 50%, rgba(0, 0, 0, 1) 54%);\\n width: 100%;\\n height: 100%;\\n left: 0;\\n top: 0;\\n position: absolute;\\n}\\n\\n.bk-root .bk.loader.dark::after {\\n background: #0f0f0f;\\n}\\n\\n.bk-root .bk.loader.light::after {\\n background: #f0f0f0;\\n}\\n\\n.bk-root .bk.loader.spin::after {\\n animation: spin 2s linear infinite;\\n}\\n\\n.bk-root div.bk.loader.spin.primary-light::after {\\n background: linear-gradient(135deg, #f0f0f0 50%, transparent 50%), linear-gradient(45deg, #f0f0f0 50%, #007bff 50%);\\n}\\n\\n.bk-root div.bk.loader.spin.secondary-light::after {\\n background: linear-gradient(135deg, #f0f0f0 50%, transparent 50%), linear-gradient(45deg, #f0f0f0 50%, #6c757d 50%);\\n}\\n\\n.bk-root div.bk.loader.spin.success-light::after {\\n background: linear-gradient(135deg, #f0f0f0 50%, transparent 50%), linear-gradient(45deg, #f0f0f0 50%, #28a745 50%);\\n}\\n\\n.bk-root div.bk.loader.spin.danger-light::after {\\n background: linear-gradient(135deg, #f0f0f0 50%, transparent 50%), linear-gradient(45deg, #f0f0f0 50%, #dc3545 50%);\\n}\\n\\n.bk-root div.bk.loader.spin.warning-light::after {\\n background: linear-gradient(135deg, #f0f0f0 50%, transparent 50%), linear-gradient(45deg, #f0f0f0 50%, #ffc107 50%);\\n}\\n\\n.bk-root div.bk.loader.spin.info-light::after {\\n background: linear-gradient(135deg, #f0f0f0 50%, transparent 50%), linear-gradient(45deg, #f0f0f0 50%, #17a2b8 50%);\\n}\\n\\n.bk-root div.bk.loader.spin.light-light::after {\\n background: linear-gradient(135deg, #f0f0f0 50%, transparent 50%), linear-gradient(45deg, #f0f0f0 50%, #f8f9fa 50%);\\n}\\n\\n.bk-root div.bk.loader.dark-light::after {\\n background: linear-gradient(135deg, #f0f0f0 50%, transparent 50%), linear-gradient(45deg, #f0f0f0 50%, #343a40 50%);\\n}\\n\\n.bk-root div.bk.loader.spin.primary-dark::after {\\n background: linear-gradient(135deg, #0f0f0f 50%, transparent 50%), linear-gradient(45deg, #0f0f0f 50%, #007bff 50%);\\n}\\n\\n.bk-root div.bk.loader.spin.secondary-dark::after {\\n background: linear-gradient(135deg, #0f0f0f 50%, transparent 50%), linear-gradient(45deg, #0f0f0f 50%, #6c757d 50%);\\n}\\n\\n.bk-root div.bk.loader.spin.success-dark::after {\\n background: linear-gradient(135deg, #0f0f0f 50%, transparent 50%), linear-gradient(45deg, #0f0f0f 50%, #28a745 50%);\\n}\\n\\n.bk-root div.bk.loader.spin.danger-dark::after {\\n background: linear-gradient(135deg, #0f0f0f 50%, transparent 50%), linear-gradient(45deg, #0f0f0f 50%, #dc3545 50%)\\n}\\n\\n.bk-root div.bk.loader.spin.warning-dark::after {\\n background: linear-gradient(135deg, #0f0f0f 50%, transparent 50%), linear-gradient(45deg, #0f0f0f 50%, #ffc107 50%);\\n}\\n\\n.bk-root div.bk.loader.spin.info-dark::after {\\n background: linear-gradient(135deg, #0f0f0f 50%, transparent 50%), linear-gradient(45deg, #0f0f0f 50%, #17a2b8 50%);\\n}\\n\\n.bk-root div.bk.loader.spin.light-dark::after {\\n background: linear-gradient(135deg, #0f0f0f 50%, transparent 50%), linear-gradient(45deg, #0f0f0f 50%, #f8f9fa 50%);\\n}\\n\\n.bk-root div.bk.loader.spin.dark-dark::after {\\n background: linear-gradient(135deg, #0f0f0f 50%, transparent 50%), linear-gradient(45deg, #0f0f0f 50%, #343a40 50%);\\n}\\n\\n/* Safari */\\n@-webkit-keyframes spin {\\n 0% { -webkit-transform: rotate(0deg); }\\n 100% { -webkit-transform: rotate(360deg); }\\n}\\n\\n@keyframes spin {\\n 0% { transform: rotate(0deg); }\\n 100% { transform: rotate(360deg); }\\n}\\n\\n.dot div {\\n height: 100%;\\n width: 100%;\\n border: 1px solid #000 !important;\\n background-color: #fff;\\n border-radius: 50%;\\n display: inline-block;\\n}\\n\\n.dot-filled div {\\n height: 100%;\\n width: 100%;\\n border: 1px solid #000 !important;\\n border-radius: 50%;\\n display: inline-block;\\n}\\n\\n.dot-filled.primary div {\\n background-color: #007bff;\\n}\\n\\n.dot-filled.secondary div {\\n background-color: #6c757d;\\n}\\n\\n.dot-filled.success div {\\n background-color: #28a745;\\n}\\n\\n.dot-filled.danger div {\\n background-color: #dc3545;\\n}\\n\\n.dot-filled.warning div {\\n background-color: #ffc107;\\n}\\n\\n.dot-filled.info div {\\n background-color: #17a2b8;\\n}\\n\\n.dot-filled.dark div {\\n background-color: #343a40;\\n}\\n\\n.dot-filled.light div {\\n background-color: #f8f9fa;\\n}\\n\");\n", + " },\n", + " function(Bokeh) {\n", + " inject_raw_css(\".codehilite .hll { background-color: #ffffcc }\\n.codehilite { background: #f8f8f8; }\\n.codehilite .c { color: #408080; font-style: italic } /* Comment */\\n.codehilite .err { border: 1px solid #FF0000 } /* Error */\\n.codehilite .k { color: #008000; font-weight: bold } /* Keyword */\\n.codehilite .o { color: #666666 } /* Operator */\\n.codehilite .ch { color: #408080; font-style: italic } /* Comment.Hashbang */\\n.codehilite .cm { color: #408080; font-style: italic } /* Comment.Multiline */\\n.codehilite .cp { color: #BC7A00 } /* Comment.Preproc */\\n.codehilite .cpf { color: #408080; font-style: italic } /* Comment.PreprocFile */\\n.codehilite .c1 { color: #408080; font-style: italic } /* Comment.Single */\\n.codehilite .cs { color: #408080; font-style: italic } /* Comment.Special */\\n.codehilite .gd { color: #A00000 } /* Generic.Deleted */\\n.codehilite .ge { font-style: italic } /* Generic.Emph */\\n.codehilite .gr { color: #FF0000 } /* Generic.Error */\\n.codehilite .gh { color: #000080; font-weight: bold } /* Generic.Heading */\\n.codehilite .gi { color: #00A000 } /* Generic.Inserted */\\n.codehilite .go { color: #888888 } /* Generic.Output */\\n.codehilite .gp { color: #000080; font-weight: bold } /* Generic.Prompt */\\n.codehilite .gs { font-weight: bold } /* Generic.Strong */\\n.codehilite .gu { color: #800080; font-weight: bold } /* Generic.Subheading */\\n.codehilite .gt { color: #0044DD } /* Generic.Traceback */\\n.codehilite .kc { color: #008000; font-weight: bold } /* Keyword.Constant */\\n.codehilite .kd { color: #008000; font-weight: bold } /* Keyword.Declaration */\\n.codehilite .kn { color: #008000; font-weight: bold } /* Keyword.Namespace */\\n.codehilite .kp { color: #008000 } /* Keyword.Pseudo */\\n.codehilite .kr { color: #008000; font-weight: bold } /* Keyword.Reserved */\\n.codehilite .kt { color: #B00040 } /* Keyword.Type */\\n.codehilite .m { color: #666666 } /* Literal.Number */\\n.codehilite .s { color: #BA2121 } /* Literal.String */\\n.codehilite .na { color: #7D9029 } /* Name.Attribute */\\n.codehilite .nb { color: #008000 } /* Name.Builtin */\\n.codehilite .nc { color: #0000FF; font-weight: bold } /* Name.Class */\\n.codehilite .no { color: #880000 } /* Name.Constant */\\n.codehilite .nd { color: #AA22FF } /* Name.Decorator */\\n.codehilite .ni { color: #999999; font-weight: bold } /* Name.Entity */\\n.codehilite .ne { color: #D2413A; font-weight: bold } /* Name.Exception */\\n.codehilite .nf { color: #0000FF } /* Name.Function */\\n.codehilite .nl { color: #A0A000 } /* Name.Label */\\n.codehilite .nn { color: #0000FF; font-weight: bold } /* Name.Namespace */\\n.codehilite .nt { color: #008000; font-weight: bold } /* Name.Tag */\\n.codehilite .nv { color: #19177C } /* Name.Variable */\\n.codehilite .ow { color: #AA22FF; font-weight: bold } /* Operator.Word */\\n.codehilite .w { color: #bbbbbb } /* Text.Whitespace */\\n.codehilite .mb { color: #666666 } /* Literal.Number.Bin */\\n.codehilite .mf { color: #666666 } /* Literal.Number.Float */\\n.codehilite .mh { color: #666666 } /* Literal.Number.Hex */\\n.codehilite .mi { color: #666666 } /* Literal.Number.Integer */\\n.codehilite .mo { color: #666666 } /* Literal.Number.Oct */\\n.codehilite .sa { color: #BA2121 } /* Literal.String.Affix */\\n.codehilite .sb { color: #BA2121 } /* Literal.String.Backtick */\\n.codehilite .sc { color: #BA2121 } /* Literal.String.Char */\\n.codehilite .dl { color: #BA2121 } /* Literal.String.Delimiter */\\n.codehilite .sd { color: #BA2121; font-style: italic } /* Literal.String.Doc */\\n.codehilite .s2 { color: #BA2121 } /* Literal.String.Double */\\n.codehilite .se { color: #BB6622; font-weight: bold } /* Literal.String.Escape */\\n.codehilite .sh { color: #BA2121 } /* Literal.String.Heredoc */\\n.codehilite .si { color: #BB6688; font-weight: bold } /* Literal.String.Interpol */\\n.codehilite .sx { color: #008000 } /* Literal.String.Other */\\n.codehilite .sr { color: #BB6688 } /* Literal.String.Regex */\\n.codehilite .s1 { color: #BA2121 } /* Literal.String.Single */\\n.codehilite .ss { color: #19177C } /* Literal.String.Symbol */\\n.codehilite .bp { color: #008000 } /* Name.Builtin.Pseudo */\\n.codehilite .fm { color: #0000FF } /* Name.Function.Magic */\\n.codehilite .vc { color: #19177C } /* Name.Variable.Class */\\n.codehilite .vg { color: #19177C } /* Name.Variable.Global */\\n.codehilite .vi { color: #19177C } /* Name.Variable.Instance */\\n.codehilite .vm { color: #19177C } /* Name.Variable.Magic */\\n.codehilite .il { color: #666666 } /* Literal.Number.Integer.Long */\\n\\n.markdown h1 { margin-block-start: 0.34em }\\n.markdown h2 { margin-block-start: 0.42em }\\n.markdown h3 { margin-block-start: 0.5em }\\n.markdown h4 { margin-block-start: 0.67em }\\n.markdown h5 { margin-block-start: 0.84em }\\n.markdown h6 { margin-block-start: 1.17em }\\n.markdown ul { padding-inline-start: 2em }\\n.markdown ol { padding-inline-start: 2em }\\n.markdown strong { font-weight: 600 }\\n.markdown a { color: -webkit-link }\\n.markdown a { color: -moz-hyperlinkText }\\n\");\n", + " },\n", + " function(Bokeh) {\n", + " inject_raw_css(\".json-formatter-row {\\n font-family: monospace;\\n}\\n.json-formatter-row,\\n.json-formatter-row a,\\n.json-formatter-row a:hover {\\n color: black;\\n text-decoration: none;\\n}\\n.json-formatter-row .json-formatter-row {\\n margin-left: 1rem;\\n}\\n.json-formatter-row .json-formatter-children.json-formatter-empty {\\n opacity: 0.5;\\n margin-left: 1rem;\\n}\\n.json-formatter-row .json-formatter-children.json-formatter-empty:after {\\n display: none;\\n}\\n.json-formatter-row .json-formatter-children.json-formatter-empty.json-formatter-object:after {\\n content: \\\"No properties\\\";\\n}\\n.json-formatter-row .json-formatter-children.json-formatter-empty.json-formatter-array:after {\\n content: \\\"[]\\\";\\n}\\n.json-formatter-row .json-formatter-string,\\n.json-formatter-row .json-formatter-stringifiable {\\n color: green;\\n white-space: pre;\\n word-wrap: break-word;\\n}\\n.json-formatter-row .json-formatter-number {\\n color: blue;\\n}\\n.json-formatter-row .json-formatter-boolean {\\n color: red;\\n}\\n.json-formatter-row .json-formatter-null {\\n color: #855A00;\\n}\\n.json-formatter-row .json-formatter-undefined {\\n color: #ca0b69;\\n}\\n.json-formatter-row .json-formatter-function {\\n color: #FF20ED;\\n}\\n.json-formatter-row .json-formatter-date {\\n background-color: rgba(0, 0, 0, 0.05);\\n}\\n.json-formatter-row .json-formatter-url {\\n text-decoration: underline;\\n color: blue;\\n cursor: pointer;\\n}\\n.json-formatter-row .json-formatter-bracket {\\n color: blue;\\n}\\n.json-formatter-row .json-formatter-key {\\n color: #00008B;\\n padding-right: 0.2rem;\\n}\\n.json-formatter-row .json-formatter-toggler-link {\\n cursor: pointer;\\n}\\n.json-formatter-row .json-formatter-toggler {\\n line-height: 1.2rem;\\n font-size: 0.7rem;\\n vertical-align: middle;\\n opacity: 0.6;\\n cursor: pointer;\\n padding-right: 0.2rem;\\n}\\n.json-formatter-row .json-formatter-toggler:after {\\n display: inline-block;\\n transition: transform 100ms ease-in;\\n content: \\\"\\\\25BA\\\";\\n}\\n.json-formatter-row > a > .json-formatter-preview-text {\\n opacity: 0;\\n transition: opacity 0.15s ease-in;\\n font-style: italic;\\n}\\n.json-formatter-row:hover > a > .json-formatter-preview-text {\\n opacity: 0.6;\\n}\\n.json-formatter-row.json-formatter-open > .json-formatter-toggler-link .json-formatter-toggler:after {\\n transform: rotate(90deg);\\n}\\n.json-formatter-row.json-formatter-open > .json-formatter-children:after {\\n display: inline-block;\\n}\\n.json-formatter-row.json-formatter-open > a > .json-formatter-preview-text {\\n display: none;\\n}\\n.json-formatter-row.json-formatter-open.json-formatter-empty:after {\\n display: block;\\n}\\n.json-formatter-dark.json-formatter-row {\\n font-family: monospace;\\n}\\n.json-formatter-dark.json-formatter-row,\\n.json-formatter-dark.json-formatter-row a,\\n.json-formatter-dark.json-formatter-row a:hover {\\n color: white;\\n text-decoration: none;\\n}\\n.json-formatter-dark.json-formatter-row .json-formatter-row {\\n margin-left: 1rem;\\n}\\n.json-formatter-dark.json-formatter-row .json-formatter-children.json-formatter-empty {\\n opacity: 0.5;\\n margin-left: 1rem;\\n}\\n.json-formatter-dark.json-formatter-row .json-formatter-children.json-formatter-empty:after {\\n display: none;\\n}\\n.json-formatter-dark.json-formatter-row .json-formatter-children.json-formatter-empty.json-formatter-object:after {\\n content: \\\"No properties\\\";\\n}\\n.json-formatter-dark.json-formatter-row .json-formatter-children.json-formatter-empty.json-formatter-array:after {\\n content: \\\"[]\\\";\\n}\\n.json-formatter-dark.json-formatter-row .json-formatter-string,\\n.json-formatter-dark.json-formatter-row .json-formatter-stringifiable {\\n color: #31F031;\\n white-space: pre;\\n word-wrap: break-word;\\n}\\n.json-formatter-dark.json-formatter-row .json-formatter-number {\\n color: #66C2FF;\\n}\\n.json-formatter-dark.json-formatter-row .json-formatter-boolean {\\n color: #EC4242;\\n}\\n.json-formatter-dark.json-formatter-row .json-formatter-null {\\n color: #EEC97D;\\n}\\n.json-formatter-dark.json-formatter-row .json-formatter-undefined {\\n color: #ef8fbe;\\n}\\n.json-formatter-dark.json-formatter-row .json-formatter-function {\\n color: #FD48CB;\\n}\\n.json-formatter-dark.json-formatter-row .json-formatter-date {\\n background-color: rgba(255, 255, 255, 0.05);\\n}\\n.json-formatter-dark.json-formatter-row .json-formatter-url {\\n text-decoration: underline;\\n color: #027BFF;\\n cursor: pointer;\\n}\\n.json-formatter-dark.json-formatter-row .json-formatter-bracket {\\n color: #9494FF;\\n}\\n.json-formatter-dark.json-formatter-row .json-formatter-key {\\n color: #23A0DB;\\n padding-right: 0.2rem;\\n}\\n.json-formatter-dark.json-formatter-row .json-formatter-toggler-link {\\n cursor: pointer;\\n}\\n.json-formatter-dark.json-formatter-row .json-formatter-toggler {\\n line-height: 1.2rem;\\n font-size: 0.7rem;\\n vertical-align: middle;\\n opacity: 0.6;\\n cursor: pointer;\\n padding-right: 0.2rem;\\n}\\n.json-formatter-dark.json-formatter-row .json-formatter-toggler:after {\\n display: inline-block;\\n transition: transform 100ms ease-in;\\n content: \\\"\\\\25BA\\\";\\n}\\n.json-formatter-dark.json-formatter-row > a > .json-formatter-preview-text {\\n opacity: 0;\\n transition: opacity 0.15s ease-in;\\n font-style: italic;\\n}\\n.json-formatter-dark.json-formatter-row:hover > a > .json-formatter-preview-text {\\n opacity: 0.6;\\n}\\n.json-formatter-dark.json-formatter-row.json-formatter-open > .json-formatter-toggler-link .json-formatter-toggler:after {\\n transform: rotate(90deg);\\n}\\n.json-formatter-dark.json-formatter-row.json-formatter-open > .json-formatter-children:after {\\n display: inline-block;\\n}\\n.json-formatter-dark.json-formatter-row.json-formatter-open > a > .json-formatter-preview-text {\\n display: none;\\n}\\n.json-formatter-dark.json-formatter-row.json-formatter-open.json-formatter-empty:after {\\n display: block;\\n}\\n\");\n", + " },\n", + " function(Bokeh) {\n", + " inject_raw_css(\".bk.pn-loading:before {\\n position: absolute;\\n height: 100%;\\n width: 100%;\\n content: '';\\n z-index: 1000;\\n background-color: rgb(255,255,255,0.50);\\n border-color: lightgray;\\n background-repeat: no-repeat;\\n background-position: center;\\n background-size: auto 50%;\\n border-width: 1px;\\n cursor: progress;\\n}\\n.bk.pn-loading.arcs:hover:before {\\n cursor: progress;\\n}\\n\");\n", + " },\n", + " function(Bokeh) {\n", + " inject_raw_css(\"table.panel-df {\\n margin-left: auto;\\n margin-right: auto;\\n border: none;\\n border-collapse: collapse;\\n border-spacing: 0;\\n color: black;\\n font-size: 12px;\\n table-layout: fixed;\\n width: 100%;\\n}\\n\\n.panel-df tr, .panel-df th, .panel-df td {\\n text-align: right;\\n vertical-align: middle;\\n padding: 0.5em 0.5em !important;\\n line-height: normal;\\n white-space: normal;\\n max-width: none;\\n border: none;\\n}\\n\\n.panel-df tbody {\\n display: table-row-group;\\n vertical-align: middle;\\n border-color: inherit;\\n}\\n\\n.panel-df tbody tr:nth-child(odd) {\\n background: #f5f5f5;\\n}\\n\\n.panel-df thead {\\n border-bottom: 1px solid black;\\n vertical-align: bottom;\\n}\\n\\n.panel-df tr:hover {\\n background: lightblue !important;\\n cursor: pointer;\\n}\\n\");\n", + " },\n", + " function(Bokeh) {\n", + " inject_raw_css(\"\\n .bk.pn-loading.arcs:before {\\n background-image: url(\\\"\\\")\\n }\\n \");\n", + " },\n", + " function(Bokeh) {\n", + " /* BEGIN bokeh.min.js */\n", + " /*!\n", + " * Copyright (c) 2012 - 2021, Anaconda, Inc., and Bokeh Contributors\n", + " * All rights reserved.\n", + " * \n", + " * Redistribution and use in source and binary forms, with or without modification,\n", + " * are permitted provided that the following conditions are met:\n", + " * \n", + " * Redistributions of source code must retain the above copyright notice,\n", + " * this list of conditions and the following disclaimer.\n", + " * \n", + " * Redistributions in binary form must reproduce the above copyright notice,\n", + " * this list of conditions and the following disclaimer in the documentation\n", + " * and/or other materials provided with the distribution.\n", + " * \n", + " * Neither the name of Anaconda nor the names of any contributors\n", + " * may be used to endorse or promote products derived from this software\n", + " * without specific prior written permission.\n", + " * \n", + " * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS \"AS IS\"\n", + " * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE\n", + " * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE\n", + " * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE\n", + " * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR\n", + " * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF\n", + " * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS\n", + " * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN\n", + " * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)\n", + " * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF\n", + " * THE POSSIBILITY OF SUCH DAMAGE.\n", + " */\n", + " (function(root, factory) {\n", + " const bokeh = factory();\n", + " bokeh.__bokeh__ = true;\n", + " if (typeof root.Bokeh === \"undefined\" || typeof root.Bokeh.__bokeh__ === \"undefined\") {\n", + " root.Bokeh = bokeh;\n", + " }\n", + " const Bokeh = root.Bokeh;\n", + " Bokeh[bokeh.version] = bokeh;\n", + " })(this, function() {\n", + " var define;\n", + " var parent_require = typeof require === \"function\" && require\n", + " return (function(modules, entry, aliases, externals) {\n", + " if (aliases === undefined) aliases = {};\n", + " if (externals === undefined) externals = {};\n", + "\n", + " var cache = {};\n", + "\n", + " var normalize = function(name) {\n", + " if (typeof name === \"number\")\n", + " return name;\n", + "\n", + " if (name === \"bokehjs\")\n", + " return entry;\n", + "\n", + " if (!externals[name]) {\n", + " var prefix = \"@bokehjs/\"\n", + " if (name.slice(0, prefix.length) === prefix)\n", + " name = name.slice(prefix.length)\n", + " }\n", + "\n", + " var alias = aliases[name]\n", + " if (alias != null)\n", + " return alias;\n", + "\n", + " var trailing = name.length > 0 && name[name.lenght-1] === \"/\";\n", + " var index = aliases[name + (trailing ? \"\" : \"/\") + \"index\"];\n", + " if (index != null)\n", + " return index;\n", + "\n", + " return name;\n", + " }\n", + "\n", + " var require = function(name) {\n", + " var mod = cache[name];\n", + " if (!mod) {\n", + " var id = normalize(name);\n", + "\n", + " mod = cache[id];\n", + " if (!mod) {\n", + " if (!modules[id]) {\n", + " if (externals[id] === false || (externals[id] == true && parent_require)) {\n", + " try {\n", + " mod = {exports: externals[id] ? parent_require(id) : {}};\n", + " cache[id] = cache[name] = mod;\n", + " return mod.exports;\n", + " } catch (e) {}\n", + " }\n", + "\n", + " var err = new Error(\"Cannot find module '\" + name + \"'\");\n", + " err.code = 'MODULE_NOT_FOUND';\n", + " throw err;\n", + " }\n", + "\n", + " mod = {exports: {}};\n", + " cache[id] = cache[name] = mod;\n", + "\n", + " function __esModule() {\n", + " Object.defineProperty(mod.exports, \"__esModule\", {value: true});\n", + " }\n", + "\n", + " function __esExport(name, value) {\n", + " Object.defineProperty(mod.exports, name, {\n", + " enumerable: true, get: function () { return value; }\n", + " });\n", + " }\n", + "\n", + " modules[id].call(mod.exports, require, mod, mod.exports, __esModule, __esExport);\n", + " } else {\n", + " cache[name] = mod;\n", + " }\n", + " }\n", + "\n", + " return mod.exports;\n", + " }\n", + " require.resolve = function(name) {\n", + " return \"\"\n", + " }\n", + "\n", + " var main = require(entry);\n", + " main.require = require;\n", + "\n", + " if (typeof Proxy !== \"undefined\") {\n", + " // allow Bokeh.loader[\"@bokehjs/module/name\"] syntax\n", + " main.loader = new Proxy({}, {\n", + " get: function(_obj, module) {\n", + " return require(module);\n", + " }\n", + " });\n", + " }\n", + "\n", + " main.register_plugin = function(plugin_modules, plugin_entry, plugin_aliases, plugin_externals) {\n", + " if (plugin_aliases === undefined) plugin_aliases = {};\n", + " if (plugin_externals === undefined) plugin_externals = {};\n", + "\n", + " for (var name in plugin_modules) {\n", + " modules[name] = plugin_modules[name];\n", + " }\n", + "\n", + " for (var name in plugin_aliases) {\n", + " aliases[name] = plugin_aliases[name];\n", + " }\n", + "\n", + " for (var name in plugin_externals) {\n", + " externals[name] = plugin_externals[name];\n", + " }\n", + "\n", + " var plugin = require(plugin_entry);\n", + "\n", + " for (var name in plugin) {\n", + " main[name] = plugin[name];\n", + " }\n", + "\n", + " return plugin;\n", + " }\n", + "\n", + " return main;\n", + " })\n", + " ([\n", + " function _(t,_,n,o,r){o();t(1).__exportStar(t(2),n)},\n", + " function _(t,e,n,r,o){r();var a=function(t,e){return(a=Object.setPrototypeOf||{__proto__:[]}instanceof Array&&function(t,e){t.__proto__=e}||function(t,e){for(var n in e)Object.prototype.hasOwnProperty.call(e,n)&&(t[n]=e[n])})(t,e)};n.__extends=function(t,e){function n(){this.constructor=t}a(t,e),t.prototype=null===e?Object.create(e):(n.prototype=e.prototype,new n)};function i(t){var e=\"function\"==typeof Symbol&&Symbol.iterator,n=e&&t[e],r=0;if(n)return n.call(t);if(t&&\"number\"==typeof t.length)return{next:function(){return t&&r>=t.length&&(t=void 0),{value:t&&t[r++],done:!t}}};throw new TypeError(e?\"Object is not iterable.\":\"Symbol.iterator is not defined.\")}function c(t,e){var n=\"function\"==typeof Symbol&&t[Symbol.iterator];if(!n)return t;var r,o,a=n.call(t),i=[];try{for(;(void 0===e||e-- >0)&&!(r=a.next()).done;)i.push(r.value)}catch(t){o={error:t}}finally{try{r&&!r.done&&(n=a.return)&&n.call(a)}finally{if(o)throw o.error}}return i}function u(t){return this instanceof u?(this.v=t,this):new u(t)}n.__assign=function(){return n.__assign=Object.assign||function(t){for(var e,n=1,r=arguments.length;n=0;c--)(o=t[c])&&(i=(a<3?o(i):a>3?o(e,n,i):o(e,n))||i);return a>3&&i&&Object.defineProperty(e,n,i),i},n.__param=function(t,e){return function(n,r){e(n,r,t)}},n.__metadata=function(t,e){if(\"object\"==typeof Reflect&&\"function\"==typeof Reflect.metadata)return Reflect.metadata(t,e)},n.__awaiter=function(t,e,n,r){return new(n||(n=Promise))((function(o,a){function i(t){try{u(r.next(t))}catch(t){a(t)}}function c(t){try{u(r.throw(t))}catch(t){a(t)}}function u(t){var e;t.done?o(t.value):(e=t.value,e instanceof n?e:new n((function(t){t(e)}))).then(i,c)}u((r=r.apply(t,e||[])).next())}))},n.__generator=function(t,e){var n,r,o,a,i={label:0,sent:function(){if(1&o[0])throw o[1];return o[1]},trys:[],ops:[]};return a={next:c(0),throw:c(1),return:c(2)},\"function\"==typeof Symbol&&(a[Symbol.iterator]=function(){return this}),a;function c(a){return function(c){return function(a){if(n)throw new TypeError(\"Generator is already executing.\");for(;i;)try{if(n=1,r&&(o=2&a[0]?r.return:a[0]?r.throw||((o=r.return)&&o.call(r),0):r.next)&&!(o=o.call(r,a[1])).done)return o;switch(r=0,o&&(a=[2&a[0],o.value]),a[0]){case 0:case 1:o=a;break;case 4:return i.label++,{value:a[1],done:!1};case 5:i.label++,r=a[1],a=[0];continue;case 7:a=i.ops.pop(),i.trys.pop();continue;default:if(!(o=i.trys,(o=o.length>0&&o[o.length-1])||6!==a[0]&&2!==a[0])){i=0;continue}if(3===a[0]&&(!o||a[1]>o[0]&&a[1]1||c(t,e)}))})}function c(t,e){try{(n=o[t](e)).value instanceof u?Promise.resolve(n.value.v).then(f,l):s(a[0][2],n)}catch(t){s(a[0][3],t)}var n}function f(t){c(\"next\",t)}function l(t){c(\"throw\",t)}function s(t,e){t(e),a.shift(),a.length&&c(a[0][0],a[0][1])}},n.__asyncDelegator=function(t){var e,n;return e={},r(\"next\"),r(\"throw\",(function(t){throw t})),r(\"return\"),e[Symbol.iterator]=function(){return this},e;function r(r,o){e[r]=t[r]?function(e){return(n=!n)?{value:u(t[r](e)),done:\"return\"===r}:o?o(e):e}:o}},n.__asyncValues=function(t){if(!Symbol.asyncIterator)throw new TypeError(\"Symbol.asyncIterator is not defined.\");var e,n=t[Symbol.asyncIterator];return n?n.call(t):(t=i(t),e={},r(\"next\"),r(\"throw\"),r(\"return\"),e[Symbol.asyncIterator]=function(){return this},e);function r(n){e[n]=t[n]&&function(e){return new Promise((function(r,o){(function(t,e,n,r){Promise.resolve(r).then((function(e){t({value:e,done:n})}),e)})(r,o,(e=t[n](e)).done,e.value)}))}}},n.__makeTemplateObject=function(t,e){return Object.defineProperty?Object.defineProperty(t,\"raw\",{value:e}):t.raw=e,t};var f=Object.create?function(t,e){Object.defineProperty(t,\"default\",{enumerable:!0,value:e})}:function(t,e){t.default=e};n.__importStar=function(t){if(t&&t.__esModule)return t;var e={};if(null!=t)for(var r in t)\"default\"!==r&&Object.prototype.hasOwnProperty.call(t,r)&&n.__createBinding(e,t,r);return f(e,t),e},n.__importDefault=function(t){return t&&t.__esModule?t:{default:t}},n.__classPrivateFieldGet=function(t,e){if(!e.has(t))throw new TypeError(\"attempted to get private field on non-instance\");return e.get(t)},n.__classPrivateFieldSet=function(t,e,n){if(!e.has(t))throw new TypeError(\"attempted to set private field on non-instance\");return e.set(t,n),n}},\n", + " function _(e,t,o,s,l){s();const n=e(1);l(\"version\",e(3).version),l(\"index\",e(4).index),o.embed=n.__importStar(e(4)),o.protocol=n.__importStar(e(404)),o._testing=n.__importStar(e(405));var r=e(19);l(\"logger\",r.logger),l(\"set_log_level\",r.set_log_level),l(\"settings\",e(28).settings),l(\"Models\",e(7).Models),l(\"documents\",e(5).documents),l(\"safely\",e(406).safely)},\n", + " function _(n,i,o,c,e){c(),o.version=\"2.3.1\"},\n", + " function _(e,o,t,n,s){n();const d=e(5),r=e(19),_=e(34),c=e(13),i=e(8),a=e(16),u=e(395),l=e(397),m=e(396);var f=e(395);s(\"add_document_standalone\",f.add_document_standalone),s(\"index\",f.index),s(\"add_document_from_session\",e(397).add_document_from_session);var g=e(402);async function w(e,o,t,n){i.isString(e)&&(e=JSON.parse(_.unescape(e)));const s={};for(const[o,t]of c.entries(e))s[o]=d.Document.from_json(t);const a=[];for(const e of o){const o=m._resolve_element(e),d=m._resolve_root_elements(e);if(null!=e.docid)a.push(await u.add_document_standalone(s[e.docid],o,d,e.use_for_title));else{if(null==e.token)throw new Error(\"Error rendering Bokeh items: either 'docid' or 'token' was expected.\");{const s=l._get_ws_url(t,n);r.logger.debug(`embed: computed ws url: ${s}`);try{a.push(await l.add_document_from_session(s,e.token,o,d,e.use_for_title)),console.log(\"Bokeh items were rendered successfully\")}catch(e){console.log(\"Error rendering Bokeh items:\",e)}}}}return a}s(\"embed_items_notebook\",g.embed_items_notebook),s(\"kernels\",g.kernels),s(\"BOKEH_ROOT\",e(396).BOKEH_ROOT),t.embed_item=async function(e,o){const t={},n=_.uuid4();t[n]=e.doc,null==o&&(o=e.target_id);const s=document.getElementById(o);null!=s&&s.classList.add(m.BOKEH_ROOT);const d={roots:{[e.root_id]:o},root_ids:[e.root_id],docid:n};await a.defer();const[r]=await w(t,[d]);return r},t.embed_items=async function(e,o,t,n){return await a.defer(),w(e,o,t,n)}},\n", + " function _(t,_,o,r,n){r();const a=t(1);a.__exportStar(t(6),o),a.__exportStar(t(35),o)},\n", + " function _(e,t,s,o,n){o();const r=e(1),i=e(7),l=e(3),_=e(19),a=e(264),c=e(14),d=e(30),h=e(15),f=e(17),u=e(31),m=e(9),g=e(13),v=r.__importStar(e(132)),w=e(26),p=e(8),b=e(319),y=e(130),k=e(53),M=e(394),j=e(35);class S{constructor(e){this.document=e,this.session=null,this.subscribed_models=new Set}send_event(e){const t=new j.MessageSentEvent(this.document,\"bokeh_event\",e.to_json());this.document._trigger_on_change(t)}trigger(e){for(const t of this.subscribed_models)null!=e.origin&&e.origin!=t||t._process_event(e)}}s.EventManager=S,S.__name__=\"EventManager\",s.documents=[],s.DEFAULT_TITLE=\"Bokeh Application\";class E{constructor(e){var t;s.documents.push(this),this._init_timestamp=Date.now(),this._resolver=null!==(t=null==e?void 0:e.resolver)&&void 0!==t?t:new i.ModelResolver,this._title=s.DEFAULT_TITLE,this._roots=[],this._all_models=new Map,this._all_models_freeze_count=0,this._callbacks=new Map,this._message_callbacks=new Map,this.event_manager=new S(this),this.idle=new h.Signal0(this,\"idle\"),this._idle_roots=new WeakMap,this._interactive_timestamp=null,this._interactive_plot=null}get layoutables(){return this._roots.filter((e=>e instanceof b.LayoutDOM))}get is_idle(){for(const e of this.layoutables)if(!this._idle_roots.has(e))return!1;return!0}notify_idle(e){this._idle_roots.set(e,!0),this.is_idle&&(_.logger.info(`document idle at ${Date.now()-this._init_timestamp} ms`),this.event_manager.send_event(new a.DocumentReady),this.idle.emit())}clear(){this._push_all_models_freeze();try{for(;this._roots.length>0;)this.remove_root(this._roots[0])}finally{this._pop_all_models_freeze()}}interactive_start(e){null==this._interactive_plot&&(this._interactive_plot=e,this._interactive_plot.trigger_event(new a.LODStart)),this._interactive_timestamp=Date.now()}interactive_stop(){null!=this._interactive_plot&&this._interactive_plot.trigger_event(new a.LODEnd),this._interactive_plot=null,this._interactive_timestamp=null}interactive_duration(){return null==this._interactive_timestamp?-1:Date.now()-this._interactive_timestamp}destructively_move(e){if(e===this)throw new Error(\"Attempted to overwrite a document with itself\");e.clear();const t=m.copy(this._roots);this.clear();for(const e of t)if(null!=e.document)throw new Error(`Somehow we didn't detach ${e}`);if(0!=this._all_models.size)throw new Error(`this._all_models still had stuff in it: ${this._all_models}`);for(const s of t)e.add_root(s);e.set_title(this._title)}_push_all_models_freeze(){this._all_models_freeze_count+=1}_pop_all_models_freeze(){this._all_models_freeze_count-=1,0===this._all_models_freeze_count&&this._recompute_all_models()}_invalidate_all_models(){_.logger.debug(\"invalidating document models\"),0===this._all_models_freeze_count&&this._recompute_all_models()}_recompute_all_models(){let e=new Set;for(const t of this._roots)e=v.union(e,t.references());const t=new Set(this._all_models.values()),s=v.difference(t,e),o=v.difference(e,t),n=new Map;for(const t of e)n.set(t.id,t);for(const e of s)e.detach_document();for(const e of o)e.attach_document(this);this._all_models=n}roots(){return this._roots}add_root(e,t){if(_.logger.debug(`Adding root: ${e}`),!m.includes(this._roots,e)){this._push_all_models_freeze();try{this._roots.push(e)}finally{this._pop_all_models_freeze()}this._trigger_on_change(new j.RootAddedEvent(this,e,t))}}remove_root(e,t){const s=this._roots.indexOf(e);if(!(s<0)){this._push_all_models_freeze();try{this._roots.splice(s,1)}finally{this._pop_all_models_freeze()}this._trigger_on_change(new j.RootRemovedEvent(this,e,t))}}title(){return this._title}set_title(e,t){e!==this._title&&(this._title=e,this._trigger_on_change(new j.TitleChangedEvent(this,e,t)))}get_model_by_id(e){var t;return null!==(t=this._all_models.get(e))&&void 0!==t?t:null}get_model_by_name(e){const t=[];for(const s of this._all_models.values())s instanceof k.Model&&s.name==e&&t.push(s);switch(t.length){case 0:return null;case 1:return t[0];default:throw new Error(`Multiple models are named '${e}'`)}}on_message(e,t){const s=this._message_callbacks.get(e);null==s?this._message_callbacks.set(e,new Set([t])):s.add(t)}remove_on_message(e,t){var s;null===(s=this._message_callbacks.get(e))||void 0===s||s.delete(t)}_trigger_on_message(e,t){const s=this._message_callbacks.get(e);if(null!=s)for(const e of s)e(t)}on_change(e,t=!1){this._callbacks.has(e)||this._callbacks.set(e,t)}remove_on_change(e){this._callbacks.delete(e)}_trigger_on_change(e){for(const[t,s]of this._callbacks)if(!s&&e instanceof j.DocumentEventBatch)for(const s of e.events)t(s);else t(e)}_notify_change(e,t,s,o,n){this._trigger_on_change(new j.ModelChangedEvent(this,e,t,s,o,null==n?void 0:n.setter_id,null==n?void 0:n.hint))}static _instantiate_object(e,t,s,o){const n=Object.assign(Object.assign({},s),{id:e,__deferred__:!0});return new(o.get(t))(n)}static _instantiate_references_json(e,t,s){var o;const n=new Map;for(const r of e){const e=r.id,i=r.type,l=null!==(o=r.attributes)&&void 0!==o?o:{};let _=t.get(e);null==_&&(_=E._instantiate_object(e,i,l,s),null!=r.subtype&&_.set_subtype(r.subtype)),n.set(_.id,_)}return n}static _resolve_refs(e,t,s,o){function n(e){var r;if(f.is_ref(e)){const o=null!==(r=t.get(e.id))&&void 0!==r?r:s.get(e.id);if(null!=o)return o;throw new Error(`reference ${JSON.stringify(e)} isn't known (not in Document?)`)}return u.is_NDArray_ref(e)?u.decode_NDArray(e,o):p.isArray(e)?function(e){const t=[];for(const s of e)t.push(n(s));return t}(e):p.isPlainObject(e)?function(e){const t={};for(const[s,o]of g.entries(e))t[s]=n(o);return t}(e):e}return n(e)}static _initialize_references_json(e,t,s,o){const n=new Map;for(const{id:r,attributes:i}of e){const e=!t.has(r),l=e?s.get(r):t.get(r),_=E._resolve_refs(i,t,s,o);l.setv(_,{silent:!0}),n.set(r,{instance:l,is_new:e})}const r=[],i=new Set;function l(e){if(e instanceof c.HasProps){if(n.has(e.id)&&!i.has(e.id)){i.add(e.id);const{instance:t,is_new:s}=n.get(e.id),{attributes:o}=t;for(const e of g.values(o))l(e);s&&(t.finalize(),r.push(t))}}else if(p.isArray(e))for(const t of e)l(t);else if(p.isPlainObject(e))for(const t of g.values(e))l(t)}for(const e of n.values())l(e.instance);for(const e of r)e.connect_signals()}static _event_for_attribute_change(e,t,s,o,n){if(o.get_model_by_id(e.id).property(t).syncable){const r={kind:\"ModelChanged\",model:{id:e.id},attr:t,new:s};return c.HasProps._json_record_references(o,s,n,{recursive:!0}),r}return null}static _events_to_sync_objects(e,t,s,o){const n=Object.keys(e.attributes),r=Object.keys(t.attributes),i=m.difference(n,r),l=m.difference(r,n),a=m.intersection(n,r),c=[];for(const e of i)_.logger.warn(`Server sent key ${e} but we don't seem to have it in our JSON`);for(const n of l){const r=t.attributes[n];c.push(E._event_for_attribute_change(e,n,r,s,o))}for(const n of a){const r=e.attributes[n],i=t.attributes[n];null==r&&null==i||(null==r||null==i?c.push(E._event_for_attribute_change(e,n,i,s,o)):w.is_equal(r,i)||c.push(E._event_for_attribute_change(e,n,i,s,o)))}return c.filter((e=>null!=e))}static _compute_patch_since_json(e,t){const s=t.to_json(!1);function o(e){const t=new Map;for(const s of e.roots.references)t.set(s.id,s);return t}const n=o(e),r=new Map,i=[];for(const t of e.roots.root_ids)r.set(t,n.get(t)),i.push(t);const l=o(s),_=new Map,a=[];for(const e of s.roots.root_ids)_.set(e,l.get(e)),a.push(e);if(i.sort(),a.sort(),m.difference(i,a).length>0||m.difference(a,i).length>0)throw new Error(\"Not implemented: computing add/remove of document roots\");const c=new Set;let h=[];for(const e of t._all_models.keys())if(n.has(e)){const s=E._events_to_sync_objects(n.get(e),l.get(e),t,c);h=h.concat(s)}const f=new d.Serializer({include_defaults:!1});return f.to_serializable([...c]),{references:[...f.definitions],events:h}}to_json_string(e=!0){return JSON.stringify(this.to_json(e))}to_json(e=!0){const t=new d.Serializer({include_defaults:e}),s=t.to_serializable(this._roots);return{version:l.version,title:this._title,roots:{root_ids:s.map((e=>e.id)),references:[...t.definitions]}}}static from_json_string(e){const t=JSON.parse(e);return E.from_json(t)}static from_json(e){_.logger.debug(\"Creating Document from JSON\");const t=e.version,s=-1!==t.indexOf(\"+\")||-1!==t.indexOf(\"-\"),o=`Library versions: JS (${l.version}) / Python (${t})`;s||l.version.replace(/-(dev|rc)\\./,\"$1\")==t?_.logger.debug(o):(_.logger.warn(\"JS/Python version mismatch\"),_.logger.warn(o));const n=new i.ModelResolver;null!=e.defs&&M.resolve_defs(e.defs,n);const r=e.roots,a=r.root_ids,c=r.references,d=E._instantiate_references_json(c,new Map,n);E._initialize_references_json(c,new Map,d,new Map);const h=new E({resolver:n});for(const e of a){const t=d.get(e);null!=t&&h.add_root(t)}return h.set_title(e.title),h}replace_with_json(e){E.from_json(e).destructively_move(this)}create_json_patch_string(e){return JSON.stringify(this.create_json_patch(e))}create_json_patch(e){for(const t of e)if(t.document!=this)throw new Error(\"Cannot create a patch using events from a different document\");const t=new d.Serializer,s=t.to_serializable(e);for(const e of this._all_models.values())t.remove_def(e);return{events:s,references:[...t.definitions]}}apply_json_patch(e,t=new Map,s){const o=e.references,n=e.events,r=E._instantiate_references_json(o,this._all_models,this._resolver);t instanceof Map||(t=new Map(t));for(const e of n)switch(e.kind){case\"RootAdded\":case\"RootRemoved\":case\"ModelChanged\":{const t=e.model.id,s=this._all_models.get(t);if(null!=s)r.set(t,s);else if(!r.has(t))throw _.logger.warn(`Got an event for unknown model ${e.model}\"`),new Error(\"event model wasn't known\");break}}const i=new Map(this._all_models),l=new Map;for(const[e,t]of r)i.has(e)||l.set(e,t);E._initialize_references_json(o,i,l,t);for(const e of n)switch(e.kind){case\"MessageSent\":{const{msg_type:s,msg_data:o}=e;let n;if(void 0===o){if(1!=t.size)throw new Error(\"expected exactly one buffer\");{const[[,e]]=t;n=e}}else n=E._resolve_refs(o,i,l,t);this._trigger_on_message(s,n);break}case\"ModelChanged\":{const o=e.model.id,n=this._all_models.get(o);if(null==n)throw new Error(`Cannot apply patch to ${o} which is not in the document`);const r=e.attr,_=E._resolve_refs(e.new,i,l,t);n.setv({[r]:_},{setter_id:s});break}case\"ColumnDataChanged\":{const o=e.column_source.id,n=this._all_models.get(o);if(null==n)throw new Error(`Cannot stream to ${o} which is not in the document`);const r=E._resolve_refs(e.new,new Map,new Map,t);if(null!=e.cols)for(const e in n.data)e in r||(r[e]=n.data[e]);n.setv({data:r},{setter_id:s,check_eq:!1});break}case\"ColumnsStreamed\":{const t=e.column_source.id,o=this._all_models.get(t);if(null==o)throw new Error(`Cannot stream to ${t} which is not in the document`);if(!(o instanceof y.ColumnDataSource))throw new Error(\"Cannot stream to non-ColumnDataSource\");const n=e.data,r=e.rollover;o.stream(n,r,s);break}case\"ColumnsPatched\":{const t=e.column_source.id,o=this._all_models.get(t);if(null==o)throw new Error(`Cannot patch ${t} which is not in the document`);if(!(o instanceof y.ColumnDataSource))throw new Error(\"Cannot patch non-ColumnDataSource\");const n=e.patches;o.patch(n,s);break}case\"RootAdded\":{const t=e.model.id,o=r.get(t);this.add_root(o,s);break}case\"RootRemoved\":{const t=e.model.id,o=r.get(t);this.remove_root(o,s);break}case\"TitleChanged\":this.set_title(e.title,s);break;default:throw new Error(\"Unknown patch event \"+JSON.stringify(e))}}}s.Document=E,E.__name__=\"Document\"},\n", + " function _(e,o,s,r,t){r();const l=e(1),d=e(8),i=e(13),n=e(14);s.overrides={};const a=new Map;s.Models=e=>{const o=s.Models.get(e);if(null!=o)return o;throw new Error(`Model '${e}' does not exist. This could be due to a widget or a custom model not being registered before first usage.`)},s.Models.get=e=>{var o;return null!==(o=s.overrides[e])&&void 0!==o?o:a.get(e)},s.Models.register=(e,o)=>{s.overrides[e]=o},s.Models.unregister=e=>{delete s.overrides[e]},s.Models.register_models=(e,o=!1,s)=>{var r;if(null!=e)for(const t of d.isArray(e)?e:i.values(e))if(r=t,d.isObject(r)&&r.prototype instanceof n.HasProps){const e=t.__qualified__;o||!a.has(e)?a.set(e,t):null!=s?s(e):console.warn(`Model '${e}' was already registered`)}},s.register_models=s.Models.register_models,s.Models.registered_names=()=>[...a.keys()];class u{constructor(){this._known_models=new Map}get(e,o){var r;const t=null!==(r=s.Models.get(e))&&void 0!==r?r:this._known_models.get(e);if(null!=t)return t;if(void 0!==o)return o;throw new Error(`Model '${e}' does not exist. This could be due to a widget or a custom model not being registered before first usage.`)}register(e){const o=e.__qualified__;null==this.get(o,null)?this._known_models.set(o,e):console.warn(`Model '${o}' was already registered with this resolver`)}}s.ModelResolver=u,u.__name__=\"ModelResolver\";const _=l.__importStar(e(38));s.register_models(_)},\n", + " function _(n,r,t,e,i){e();\n", + " // (c) 2009-2015 Jeremy Ashkenas, DocumentCloud and Investigative Reporters & Editors\n", + " // Underscore may be freely distributed under the MIT license.\n", + " const o=n(9),u=Object.prototype.toString;function c(n){return!0===n||!1===n||\"[object Boolean]\"===u.call(n)}function f(n){return\"[object Number]\"===u.call(n)}function a(n){return\"[object String]\"===u.call(n)}function l(n){const r=typeof n;return\"function\"===r||\"object\"===r&&!!n}function s(n){return l(n)&&void 0!==n[Symbol.iterator]}t.isBoolean=c,t.isNumber=f,t.isInteger=function(n){return f(n)&&Number.isInteger(n)},t.isString=a,t.isPrimitive=function(n){return null===n||c(n)||f(n)||a(n)},t.isFunction=function(n){return\"[object Function]\"===u.call(n)},t.isArray=function(n){return Array.isArray(n)},t.isArrayOf=function(n,r){return o.every(n,r)},t.isArrayableOf=function(n,r){for(let t=0,e=n.length;t0,\"'step' must be a positive number\"),null==t&&(t=n,n=0);const{max:r,ceil:o,abs:i}=Math,c=n<=t?e:-e,f=r(o(i(t-n)/e),0),s=new Array(f);for(let t=0;t=0?t:n.length+t]},e.zip=function(...n){if(0==n.length)return[];const t=c.min(n.map((n=>n.length))),e=n.length,r=new Array(t);for(let o=0;on.length))),r=Array(e);for(let n=0;nn[t]))},e.argmax=function(n){return c.max_by(m(n.length),(t=>n[t]))},e.sort_by=function(n,t){const e=n.map(((n,e)=>({value:n,index:e,key:t(n)})));return e.sort(((n,t)=>{const e=n.key,r=t.key;if(e!==r){if(e>r||void 0===e)return 1;if(en.value))},e.uniq=function(n){const t=new Set;for(const e of n)t.add(e);return[...t]},e.uniq_by=function(n,t){const e=[],r=[];for(const o of n){const n=t(o);l(r,n)||(r.push(n),e.push(o))}return e},e.union=function(...n){const t=new Set;for(const e of n)for(const n of e)t.add(n);return[...t]},e.intersection=function(n,...t){const e=[];n:for(const r of n)if(!l(e,r)){for(const n of t)if(!l(n,r))continue n;e.push(r)}return e},e.difference=function(n,...t){const e=a(t);return n.filter((n=>!l(e,n)))},e.remove_at=function(n,t){const e=s(n);return e.splice(t,1),e},e.remove_by=function(n,t){for(let e=0;e2*u;)n-=2*u;return n}function c(n,r){return a(n-r)}function f(){return Math.random()}function i(n){switch(n){case\"deg\":return u/180;case\"rad\":return 1;case\"grad\":return u/200;case\"turn\":return 2*u}}t.angle_norm=a,t.angle_dist=c,t.angle_between=function(n,r,t,e=!1){const o=c(r,t);if(0==o)return!1;if(o==2*u)return!0;const f=a(n),i=c(r,f)<=o&&c(f,t)<=o;return e?!i:i},t.random=f,t.randomIn=function(n,r){return null==r&&(r=n,n=0),n+Math.floor(Math.random()*(r-n+1))},t.atan2=function(n,r){return Math.atan2(r[1]-n[1],r[0]-n[0])},t.radians=function(n){return n*(u/180)},t.degrees=function(n){return n/(u/180)},t.resolve_angle=function(n,r){return-i(r)*n},t.to_radians_coeff=i,t.rnorm=function(n,r){let t,e;for(;t=f(),e=f(),e=(2*e-1)*Math.sqrt(1/Math.E*2),!(-4*t*t*Math.log(t)>=e*e););let o=e/t;return o=n+r*o,o},t.clamp=function(n,r,t){return nt?t:n},t.log=function(n,r=Math.E){return Math.log(n)/Math.log(r)}},\n", + " function _(r,n,e,o,s){o();class t extends Error{}e.AssertionError=t,t.__name__=\"AssertionError\",e.assert=function(r,n){if(!(!0===r||!1!==r&&r()))throw new t(null!=n?n:\"Assertion failed\")},e.unreachable=function(){throw new Error(\"unreachable code\")}},\n", + " function _(n,t,e,r,o){r();const i=n(10);function l(n,t,e,...r){const o=n.length;t<0&&(t+=o),t<0?t=0:t>o&&(t=o),null==e||e>o-t?e=o-t:e<0&&(e=0);const i=o-e+r.length,l=new n.constructor(i);let u=0;for(;u0?0:r-1;for(;o>=0&&ot[t.length-1])return t.length;let e=0,r=t.length-1;for(;r-e!=1;){const o=e+Math.floor((r-e)/2);n>=t[o]?e=o:r=o}return e}e.is_empty=function(n){return 0==n.length},e.copy=function(n){return Array.isArray(n)?n.slice():new n.constructor(n)},e.splice=l,e.head=u,e.insert=function(n,t,e){return l(n,e,0,t)},e.append=function(n,t){return l(n,n.length,0,t)},e.prepend=function(n,t){return l(n,0,0,t)},e.indexOf=function(n,t){for(let e=0,r=n.length;ee&&(e=t);return e},e.minmax=function(n){let t,e=1/0,r=-1/0;for(let o=0,i=n.length;or&&(r=t));return[e,r]},e.min_by=function(n,t){if(0==n.length)throw new Error(\"min_by() called with an empty array\");let e=n[0],r=t(e);for(let o=1,i=n.length;or&&(e=i,r=l)}return e},e.sum=function(n){let t=0;for(let e=0,r=n.length;et[r]=n+e),0),t},e.every=function(n,t){for(let e=0,r=n.length;e(n-t)/r))}},\n", + " function _(t,e,n,c,o){c();const s=t(9),{hasOwnProperty:r}=Object.prototype;function u(t){return Object.keys(t).length}n.keys=Object.keys,n.values=Object.values,n.entries=Object.entries,n.extend=Object.assign,n.clone=function(t){return Object.assign({},t)},n.merge=function(t,e){const n=Object.create(Object.prototype),c=s.concat([Object.keys(t),Object.keys(e)]);for(const o of c){const c=r.call(t,o)?t[o]:[],u=r.call(e,o)?e[o]:[];n[o]=s.union(c,u)}return n},n.size=u,n.isEmpty=function(t){return 0==u(t)},n.to_object=function(t){const e={};for(const[n,c]of t)e[n]=c;return e}},\n", + " function _(t,e,s,n,r){n();const i=t(1),o=t(15),c=t(17),a=i.__importStar(t(18)),_=i.__importStar(t(21)),h=t(34),u=t(13),l=t(8),f=t(26),p=t(30),d=t(35),g=t(26),y=t(36),v=t(37),m=i.__importStar(t(21));class b extends(o.Signalable()){constructor(t={}){var e,s;super(),this._subtype=void 0,this.document=null,this.destroyed=new o.Signal0(this,\"destroyed\"),this.change=new o.Signal0(this,\"change\"),this.transformchange=new o.Signal0(this,\"transformchange\"),this.exprchange=new o.Signal0(this,\"exprchange\"),this.properties={},this._pending=!1,this._changing=!1;const n=t instanceof Map?t.get.bind(t):e=>t[e];this.id=null!==(e=n(\"id\"))&&void 0!==e?e:h.uniqueId();for(const[t,{type:e,default_value:s,options:r}]of u.entries(this._props)){let i;e instanceof a.PropertyAlias?Object.defineProperty(this.properties,t,{get:()=>this.properties[e.attr],configurable:!1,enumerable:!1}):(i=e instanceof _.Kind?new a.PrimitiveProperty(this,t,e,s,n(t),r):new e(this,t,_.Any,s,n(t),r),this.properties[t]=i)}null!==(s=n(\"__deferred__\"))&&void 0!==s&&s||(this.finalize(),this.connect_signals())}get is_syncable(){return!0}set type(t){console.warn(\"prototype.type = 'ModelName' is deprecated, use static __name__ instead\"),this.constructor.__name__=t}get type(){return this.constructor.__qualified__}static get __qualified__(){const{__module__:t,__name__:e}=this;return null!=t?`${t}.${e}`:e}static get[Symbol.toStringTag](){return this.__name__}static init_HasProps(){this.prototype._props={},this.prototype._mixins=[]}static _fix_default(t,e){if(void 0===t||l.isFunction(t))return t;if(l.isPrimitive(t))return()=>t;{const e=new v.Cloner;return()=>e.clone(t)}}static define(t){for(const[e,s]of u.entries(l.isFunction(t)?t(m):t)){if(null!=this.prototype._props[e])throw new Error(`attempted to redefine property '${this.prototype.type}.${e}'`);if(null!=this.prototype[e])throw new Error(`attempted to redefine attribute '${this.prototype.type}.${e}'`);Object.defineProperty(this.prototype,e,{get(){return this.properties[e].get_value()},set(t){return this.setv({[e]:t}),this},configurable:!1,enumerable:!0});const[t,n,r={}]=s,i={type:t,default_value:this._fix_default(n,e),options:r},o=Object.assign({},this.prototype._props);o[e]=i,this.prototype._props=o}}static internal(t){const e={};for(const[s,n]of u.entries(l.isFunction(t)?t(m):t)){const[t,r,i={}]=n;e[s]=[t,r,Object.assign(Object.assign({},i),{internal:!0})]}this.define(e)}static mixins(t){function e(t,e){const s={};for(const[n,r]of u.entries(e))s[t+n]=r;return s}const s={},n=[];for(const r of l.isArray(t)?t:[t])if(l.isArray(r)){const[t,i]=r;u.extend(s,e(t,i)),n.push([t,i])}else{const t=r;u.extend(s,t),n.push([\"\",t])}this.define(s),this.prototype._mixins=[...this.prototype._mixins,...n]}static override(t){for(const[e,s]of u.entries(t)){const t=this._fix_default(s,e),n=this.prototype._props[e];if(null==n)throw new Error(`attempted to override nonexistent '${this.prototype.type}.${e}'`);const r=Object.assign({},this.prototype._props);r[e]=Object.assign(Object.assign({},n),{default_value:t}),this.prototype._props=r}}toString(){return`${this.type}(${this.id})`}property(t){const e=this.properties[t];if(null!=e)return e;throw new Error(`unknown property ${this.type}.${t}`)}get attributes(){const t={};for(const e of this)t[e.attr]=e.get_value();return t}[v.clone](t){const e=new Map;for(const s of this)s.dirty&&e.set(s.attr,t.clone(s.get_value()));return new this.constructor(e)}[g.equals](t,e){for(const s of this){const n=t.property(s.attr);if(e.eq(s.get_value(),n.get_value()))return!1}return!0}[y.pretty](t){const e=t.token,s=[];for(const n of this)if(n.dirty){const r=n.get_value();s.push(`${n.attr}${e(\":\")} ${t.to_string(r)}`)}return`${this.constructor.__qualified__}${e(\"(\")}${e(\"{\")}${s.join(`${e(\",\")} `)}${e(\"}\")}${e(\")\")}`}[p.serialize](t){const e=this.ref();t.add_ref(this,e);const s=this.struct();for(const e of this)e.syncable&&(t.include_defaults||e.dirty)&&(s.attributes[e.attr]=t.to_serializable(e.get_value()));return t.add_def(this,s),e}finalize(){for(const t of this){if(!(t instanceof a.VectorSpec||t instanceof a.ScalarSpec))continue;const e=t.get_value();if(null!=e){const{transform:t,expr:s}=e;null!=t&&this.connect(t.change,(()=>this.transformchange.emit())),null!=s&&this.connect(s.change,(()=>this.exprchange.emit()))}}this.initialize()}initialize(){}connect_signals(){}disconnect_signals(){o.Signal.disconnectReceiver(this)}destroy(){this.disconnect_signals(),this.destroyed.emit()}clone(){return(new v.Cloner).clone(this)}_setv(t,e){const s=e.check_eq,n=[],r=this._changing;this._changing=!0;for(const[e,r]of t)!1!==s&&f.is_equal(e.get_value(),r)||(e.set_value(r),n.push(e));n.length>0&&(this._pending=!0);for(const t of n)t.change.emit();if(!r){if(!e.no_change)for(;this._pending;)this._pending=!1,this.change.emit();this._pending=!1,this._changing=!1}}setv(t,e={}){const s=u.entries(t);if(0==s.length)return;if(!0===e.silent){for(const[t,e]of s)this.properties[t].set_value(e);return}const n=new Map,r=new Map;for(const[t,e]of s){const s=this.properties[t];n.set(s,e),r.set(s,s.get_value())}this._setv(n,e);const{document:i}=this;if(null!=i){const t=[];for(const[e,s]of r)t.push([e,s,e.get_value()]);for(const[,e,s]of t)if(this._needs_invalidate(e,s)){i._invalidate_all_models();break}this._push_changes(t,e)}}getv(t){return this.property(t).get_value()}ref(){return{id:this.id}}struct(){const t={type:this.type,id:this.id,attributes:{}};return null!=this._subtype&&(t.subtype=this._subtype),t}set_subtype(t){this._subtype=t}*[Symbol.iterator](){yield*u.values(this.properties)}*syncable_properties(){for(const t of this)t.syncable&&(yield t)}serializable_attributes(){const t={};for(const e of this.syncable_properties())t[e.attr]=e.get_value();return t}static _json_record_references(t,e,s,n){const{recursive:r}=n;if(c.is_ref(e)){const n=t.get_model_by_id(e.id);null==n||s.has(n)||b._value_record_references(n,s,{recursive:r})}else if(l.isArray(e))for(const n of e)b._json_record_references(t,n,s,{recursive:r});else if(l.isPlainObject(e))for(const n of u.values(e))b._json_record_references(t,n,s,{recursive:r})}static _value_record_references(t,e,s){const{recursive:n}=s;if(t instanceof b){if(!e.has(t)&&(e.add(t),n))for(const s of t.syncable_properties()){const t=s.get_value();b._value_record_references(t,e,{recursive:n})}}else if(l.isArray(t))for(const s of t)b._value_record_references(s,e,{recursive:n});else if(l.isPlainObject(t))for(const s of u.values(t))b._value_record_references(s,e,{recursive:n})}references(){const t=new Set;return b._value_record_references(this,t,{recursive:!0}),t}_doc_attached(){}_doc_detached(){}attach_document(t){if(null!=this.document&&this.document!=t)throw new Error(\"models must be owned by only a single document\");this.document=t,this._doc_attached()}detach_document(){this._doc_detached(),this.document=null}_needs_invalidate(t,e){const s=new Set;b._value_record_references(e,s,{recursive:!1});const n=new Set;b._value_record_references(t,n,{recursive:!1});for(const t of s)if(!n.has(t))return!0;for(const t of n)if(!s.has(t))return!0;return!1}_push_changes(t,e={}){if(!this.is_syncable)return;const{document:s}=this;if(null==s)return;const{setter_id:n}=e,r=[];for(const[e,i,o]of t)e.syncable&&r.push(new d.ModelChangedEvent(s,this,e.attr,i,o,n));if(0!=r.length){let t;1==r.length?[t]=r:t=new d.DocumentEventBatch(s,r,n),s._trigger_on_change(t)}}on_change(t,e){for(const s of l.isArray(t)?t:[t])this.connect(s.change,e)}}s.HasProps=b,b.init_HasProps()},\n", + " function _(n,t,e,l,s){l();const i=n(16),o=n(9);class c{constructor(n,t){this.sender=n,this.name=t}connect(n,t=null){u.has(this.sender)||u.set(this.sender,[]);const e=u.get(this.sender);if(null!=g(e,this,n,t))return!1;const l=null!=t?t:n;a.has(l)||a.set(l,[]);const s=a.get(l),i={signal:this,slot:n,context:t};return e.push(i),s.push(i),!0}disconnect(n,t=null){const e=u.get(this.sender);if(null==e||0===e.length)return!1;const l=g(e,this,n,t);if(null==l)return!1;const s=null!=t?t:n,i=a.get(s);return l.signal=null,d(e),d(i),!0}emit(n){var t;const e=null!==(t=u.get(this.sender))&&void 0!==t?t:[];for(const{signal:t,slot:l,context:s}of e)t===this&&l.call(s,n,this.sender)}}e.Signal=c,c.__name__=\"Signal\";class r extends c{emit(){super.emit(void 0)}}e.Signal0=r,r.__name__=\"Signal0\",function(n){function t(n,t){const e=u.get(n);if(null==e||0===e.length)return;const l=a.get(t);if(null!=l&&0!==l.length){for(const t of l){if(null==t.signal)return;t.signal.sender===n&&(t.signal=null)}d(e),d(l)}}function e(n){var t;const e=u.get(n);if(null!=e&&0!==e.length){for(const n of e){if(null==n.signal)return;const e=null!==(t=n.context)&&void 0!==t?t:n.slot;n.signal=null,d(a.get(e))}d(e)}}function l(n,t,e){const l=a.get(n);if(null!=l&&0!==l.length){for(const n of l){if(null==n.signal)return;if(null!=t&&n.slot!=t)continue;const l=n.signal.sender;null!=e&&e.has(l)||(n.signal=null,d(u.get(l)))}d(l)}}function s(n){const t=u.get(n);if(null!=t&&0!==t.length){for(const n of t)n.signal=null;d(t)}const e=a.get(n);if(null!=e&&0!==e.length){for(const n of e)n.signal=null;d(e)}}n.disconnect_between=t,n.disconnect_sender=e,n.disconnect_receiver=l,n.disconnect_all=s,n.disconnectBetween=t,n.disconnectSender=e,n.disconnectReceiver=l,n.disconnectAll=s}(c||(e.Signal=c={})),e.Signalable=function(){return class{connect(n,t){return n.connect(t,this)}disconnect(n,t){return n.disconnect(t,this)}}};const u=new WeakMap,a=new WeakMap;function g(n,t,e,l){return o.find(n,(n=>n.signal===t&&n.slot===e&&n.context===l))}const f=new Set;function d(n){0===f.size&&(async()=>{await i.defer(),function(){for(const n of f)o.remove_by(n,(n=>null==n.signal));f.clear()}()})(),f.add(n)}},\n", + " function _(e,n,t,s,o){s();const a=new MessageChannel,l=new Map;a.port1.onmessage=e=>{const n=e.data,t=l.get(n);if(null!=t)try{t()}finally{l.delete(n)}};let r=1;t.defer=function(){return new Promise((e=>{const n=r++;l.set(n,e),a.port2.postMessage(n)}))}},\n", + " function _(n,t,i,e,c){e();const r=n(8),s=n(13);i.is_ref=function(n){if(r.isPlainObject(n)){const t=s.keys(n);return 1==t.length&&\"id\"==t[0]}return!1}},\n", + " function _(e,t,n,a,r){a(),n.YCoordinateSeqSeqSeqSpec=n.XCoordinateSeqSeqSeqSpec=n.YCoordinateSeqSpec=n.XCoordinateSeqSpec=n.YCoordinateSpec=n.XCoordinateSpec=n.CoordinateSeqSeqSeqSpec=n.CoordinateSeqSpec=n.CoordinateSpec=n.BaseCoordinateSpec=n.NumberUnitsSpec=n.UnitsSpec=n.DataSpec=n.VectorSpec=n.TextBaselineScalar=n.TextAlignScalar=n.FontStyleScalar=n.FontSizeScalar=n.FontScalar=n.LineDashScalar=n.LineCapScalar=n.LineJoinScalar=n.ArrayScalar=n.NullStringScalar=n.StringScalar=n.NumberScalar=n.ColorScalar=n.AnyScalar=n.ScalarSpec=n.VerticalAlign=n.UpdateMode=n.TooltipAttachment=n.TickLabelOrientation=n.TextureRepetition=n.TextBaseline=n.TextAlign=n.TapBehavior=n.StepMode=n.StartEnd=n.SpatialUnits=n.Sort=n.SizingMode=n.Side=n.RoundingFunction=n.ResetPolicy=n.RenderMode=n.RenderLevel=n.RadiusDimension=n.PointPolicy=n.Place=void 0,n.TextBaselineSpec=n.TextAlignSpec=n.FontStyleSpec=n.FontSizeSpec=n.FontSpec=n.LineDashSpec=n.LineCapSpec=n.LineJoinSpec=n.MarkerSpec=n.ArraySpec=n.NullStringSpec=n.StringSpec=n.AnySpec=n.NDArraySpec=n.ColorSpec=n.NumberSpec=n.BooleanSpec=n.ScreenDistanceSpec=n.NullDistanceSpec=n.DistanceSpec=n.AngleSpec=void 0;const i=e(1),s=e(15),l=e(19),o=i.__importStar(e(20)),c=e(24),_=e(9),u=e(12),d=e(10),S=e(22),p=e(27),m=e(8),h=e(28),v=e(29),y=e(33);function x(e){try{return JSON.stringify(e)}catch(t){return e.toString()}}function g(e){return m.isPlainObject(e)&&(void 0===e.value?0:1)+(void 0===e.field?0:1)+(void 0===e.expr?0:1)==1}r(\"Uniform\",y.Uniform),r(\"UniformScalar\",y.UniformScalar),r(\"UniformVector\",y.UniformVector),n.isSpec=g;class f{constructor(e,t,n,a,r,i={}){var l;let o;if(this.obj=e,this.attr=t,this.kind=n,this.default_value=a,this._dirty=!1,this.change=new s.Signal0(this.obj,\"change\"),this.internal=null!==(l=i.internal)&&void 0!==l&&l,this.on_update=i.on_update,void 0!==r)o=r,this._dirty=!0;else{const t=this._default_override();if(void 0!==t)o=t;else{if(void 0===a)return void(this.spec={value:null});o=a(e)}}this._update(o)}get is_value(){return void 0!==this.spec.value}get syncable(){return!this.internal}get_value(){return this.spec.value}set_value(e){this._update(e),this._dirty=!0}_default_override(){}get dirty(){return this._dirty}_update(e){var t;this.validate(e),this.spec={value:e},null===(t=this.on_update)||void 0===t||t.call(this,e,this.obj)}toString(){return`Prop(${this.obj}.${this.attr}, spec: ${x(this.spec)})`}normalize(e){return e}validate(e){if(!this.valid(e))throw new Error(`${this.obj}.${this.attr} given invalid value: ${x(e)}`)}valid(e){return this.kind.valid(e)}_value(e=!0){if(!this.is_value)throw new Error(\"attempted to retrieve property value for property without value specification\");let t=this.normalize([this.spec.value])[0];return null!=this.spec.transform&&e&&(t=this.spec.transform.compute(t)),t}}n.Property=f,f.__name__=\"Property\";class A{constructor(e){this.attr=e}}n.PropertyAlias=A,A.__name__=\"PropertyAlias\",n.Alias=function(e){return new A(e)};class C extends f{}n.PrimitiveProperty=C,C.__name__=\"PrimitiveProperty\";class L extends f{}n.Any=L,L.__name__=\"Any\";class T extends f{valid(e){return m.isArray(e)||m.isTypedArray(e)}}n.Array=T,T.__name__=\"Array\";class P extends f{valid(e){return m.isBoolean(e)}}n.Boolean=P,P.__name__=\"Boolean\";class b extends f{valid(e){return S.is_Color(e)}}n.Color=b,b.__name__=\"Color\";class w extends f{}n.Instance=w,w.__name__=\"Instance\";class q extends f{valid(e){return m.isNumber(e)}}n.Number=q,q.__name__=\"Number\";class N extends q{valid(e){return m.isNumber(e)&&(0|e)==e}}n.Int=N,N.__name__=\"Int\";class B extends q{}n.Angle=B,B.__name__=\"Angle\";class D extends q{valid(e){return m.isNumber(e)&&0<=e&&e<=1}}n.Percent=D,D.__name__=\"Percent\";class F extends f{valid(e){return m.isString(e)}}n.String=F,F.__name__=\"String\";class z extends f{valid(e){return null===e||m.isString(e)}}n.NullString=z,z.__name__=\"NullString\";class U extends F{}n.FontSize=U,U.__name__=\"FontSize\";class M extends F{_default_override(){return h.settings.dev?\"Bokeh\":void 0}}n.Font=M,M.__name__=\"Font\";class R extends f{valid(e){return m.isString(e)&&_.includes(this.enum_values,e)}}function k(e){return class extends R{get enum_values(){return[...e]}}}n.EnumProperty=R,R.__name__=\"EnumProperty\",n.Enum=k;class O extends R{get enum_values(){return[...o.Direction]}normalize(e){const t=new Uint8Array(e.length);for(let n=0;n0){let o=r[e];return null==o&&(r[e]=o=new v(e,l)),o}throw new TypeError(\"Logger.get() expects a non-empty string name and an optional log-level\")}get level(){return this.get_level()}get_level(){return this._log_level}set_level(e){if(e instanceof i)this._log_level=e;else{if(!s.isString(e)||null==v.log_levels[e])throw new Error(\"Logger.set_level() expects a log-level object or a string name of a log-level\");this._log_level=v.log_levels[e]}const l=`[${this._name}]`;for(const[e,o]of g.entries(v.log_levels))o.level\",\"*\"),t.HTTPMethod=a.Enum(\"POST\",\"GET\"),t.HexTileOrientation=a.Enum(\"pointytop\",\"flattop\"),t.HoverMode=a.Enum(\"mouse\",\"hline\",\"vline\"),t.LatLon=a.Enum(\"lat\",\"lon\"),t.LegendClickPolicy=a.Enum(\"none\",\"hide\",\"mute\"),t.LegendLocation=t.Anchor,t.LineCap=a.Enum(\"butt\",\"round\",\"square\"),t.LineJoin=a.Enum(\"miter\",\"round\",\"bevel\"),t.LineDash=a.Enum(\"solid\",\"dashed\",\"dotted\",\"dotdash\",\"dashdot\"),t.LinePolicy=a.Enum(\"prev\",\"next\",\"nearest\",\"interp\",\"none\"),t.Location=a.Enum(\"above\",\"below\",\"left\",\"right\"),t.Logo=a.Enum(\"normal\",\"grey\"),t.MarkerType=a.Enum(\"asterisk\",\"circle\",\"circle_cross\",\"circle_dot\",\"circle_x\",\"circle_y\",\"cross\",\"dash\",\"diamond\",\"diamond_cross\",\"diamond_dot\",\"dot\",\"hex\",\"hex_dot\",\"inverted_triangle\",\"plus\",\"square\",\"square_cross\",\"square_dot\",\"square_pin\",\"square_x\",\"star\",\"star_dot\",\"triangle\",\"triangle_dot\",\"triangle_pin\",\"x\",\"y\"),t.MutedPolicy=a.Enum(\"show\",\"ignore\"),t.Orientation=a.Enum(\"vertical\",\"horizontal\"),t.OutputBackend=a.Enum(\"canvas\",\"svg\",\"webgl\"),t.PaddingUnits=a.Enum(\"percent\",\"absolute\"),t.Place=a.Enum(\"above\",\"below\",\"left\",\"right\",\"center\"),t.PointPolicy=a.Enum(\"snap_to_data\",\"follow_mouse\",\"none\"),t.RadiusDimension=a.Enum(\"x\",\"y\",\"max\",\"min\"),t.RenderLevel=a.Enum(\"image\",\"underlay\",\"glyph\",\"guide\",\"annotation\",\"overlay\"),t.RenderMode=a.Enum(\"canvas\",\"css\"),t.ResetPolicy=a.Enum(\"standard\",\"event_only\"),t.RoundingFunction=a.Enum(\"round\",\"nearest\",\"floor\",\"rounddown\",\"ceil\",\"roundup\"),t.SelectionMode=a.Enum(\"replace\",\"append\",\"intersect\",\"subtract\"),t.Side=a.Enum(\"above\",\"below\",\"left\",\"right\"),t.SizingMode=a.Enum(\"stretch_width\",\"stretch_height\",\"stretch_both\",\"scale_width\",\"scale_height\",\"scale_both\",\"fixed\"),t.Sort=a.Enum(\"ascending\",\"descending\"),t.SpatialUnits=a.Enum(\"screen\",\"data\"),t.StartEnd=a.Enum(\"start\",\"end\"),t.StepMode=a.Enum(\"after\",\"before\",\"center\"),t.TapBehavior=a.Enum(\"select\",\"inspect\"),t.TextAlign=a.Enum(\"left\",\"right\",\"center\"),t.TextBaseline=a.Enum(\"top\",\"middle\",\"bottom\",\"alphabetic\",\"hanging\",\"ideographic\"),t.TextureRepetition=a.Enum(\"repeat\",\"repeat_x\",\"repeat_y\",\"no_repeat\"),t.TickLabelOrientation=a.Enum(\"vertical\",\"horizontal\",\"parallel\",\"normal\"),t.TooltipAttachment=a.Enum(\"horizontal\",\"vertical\",\"left\",\"right\",\"above\",\"below\"),t.UpdateMode=a.Enum(\"replace\",\"append\"),t.VerticalAlign=a.Enum(\"top\",\"middle\",\"bottom\")},\n", + " function _(e,n,t,s,r){s();const i=e(1).__importStar(e(8)),a=e(22),l=e(13),_=window.Map,{hasOwnProperty:u}=Object.prototype;class d{}t.Kind=d,d.__name__=\"Kind\",function(e){class n extends d{valid(e){return!0}}n.__name__=\"Any\",e.Any=n;class t extends d{valid(e){return!0}}t.__name__=\"Unknown\",e.Unknown=t;class s extends d{valid(e){return i.isBoolean(e)}}s.__name__=\"Boolean\",e.Boolean=s;class r extends d{constructor(e){super(),this.obj_type=e}valid(e){return!0}}r.__name__=\"Ref\",e.Ref=r;class c extends d{valid(e){return!0}}c.__name__=\"AnyRef\",e.AnyRef=c;class o extends d{valid(e){return i.isNumber(e)}}o.__name__=\"Number\",e.Number=o;class p extends o{valid(e){return super.valid(e)&&i.isInteger(e)}}p.__name__=\"Int\",e.Int=p;class y extends o{valid(e){return super.valid(e)&&0<=e&&e<=1}}y.__name__=\"Percent\",e.Percent=y;class m extends d{constructor(e){super(),this.types=e,this.types=e}valid(e){return this.types.some((n=>n.valid(e)))}}m.__name__=\"Or\",e.Or=m;class v extends d{constructor(e){super(),this.types=e,this.types=e}valid(e){if(!i.isArray(e))return!1;for(let n=0;nthis.item_type.valid(e)))}}f.__name__=\"Array\",e.Array=f;class K extends d{valid(e){return null===e}}K.__name__=\"Null\",e.Null=K;class b extends d{constructor(e){super(),this.base_type=e}valid(e){return null===e||this.base_type.valid(e)}}b.__name__=\"Nullable\",e.Nullable=b;class A extends d{constructor(e){super(),this.base_type=e}valid(e){return void 0===e||this.base_type.valid(e)}}A.__name__=\"Opt\",e.Opt=A;class x extends d{valid(e){return i.isString(e)}}x.__name__=\"String\",e.String=x;class S extends d{constructor(e){super(),this.values=new Set(e)}valid(e){return this.values.has(e)}*[Symbol.iterator](){yield*this.values}}S.__name__=\"Enum\",e.Enum=S;class N extends d{constructor(e){super(),this.item_type=e}valid(e){if(!i.isPlainObject(e))return!1;for(const n in e)if(u.call(e,n)){const t=e[n];if(!this.item_type.valid(t))return!1}return!0}}N.__name__=\"Dict\",e.Dict=N;class O extends d{constructor(e,n){super(),this.key_type=e,this.item_type=n}valid(e){if(!(e instanceof _))return!1;for(const[n,t]of e.entries())if(!this.key_type.valid(n)||!this.item_type.valid(t))return!1;return!0}}O.__name__=\"Map\",e.Map=O;class g extends d{valid(e){return a.is_Color(e)}}g.__name__=\"Color\",e.Color=g;class P extends d{valid(e){return i.isFunction(e)}}P.__name__=\"Function\",e.Function=P}(t.Kinds||(t.Kinds={})),t.Any=new t.Kinds.Any,t.Unknown=new t.Kinds.Unknown,t.Boolean=new t.Kinds.Boolean,t.Number=new t.Kinds.Number,t.Int=new t.Kinds.Int,t.String=new t.Kinds.String,t.Null=new t.Kinds.Null;t.Nullable=e=>new t.Kinds.Nullable(e);t.Opt=e=>new t.Kinds.Opt(e);t.Or=(...e)=>new t.Kinds.Or(e);t.Tuple=(...e)=>new t.Kinds.Tuple(e);t.Struct=e=>new t.Kinds.Struct(e),t.Arrayable=new t.Kinds.Arrayable;t.Array=e=>new t.Kinds.Array(e);t.Dict=e=>new t.Kinds.Dict(e);t.Map=(e,n)=>new t.Kinds.Map(e,n);t.Enum=(...e)=>new t.Kinds.Enum(e);t.Ref=e=>new t.Kinds.Ref(e);t.AnyRef=()=>new t.Kinds.AnyRef;t.Function=()=>new t.Kinds.Function,t.Percent=new t.Kinds.Percent,t.Alpha=t.Percent,t.Color=new t.Kinds.Color,t.Auto=t.Enum(\"auto\"),t.FontSize=t.String,t.Font=t.String,t.Angle=t.Number},\n", + " function _(n,t,r,e,s){e();const u=n(23),c=n(10),l=n(8),{round:i}=Math;function o(n){return c.clamp(i(n),0,255)}function a(){return[0,0,0,0]}function f(n){return[n>>24&255,n>>16&255,n>>8&255,255&n]}function d(n,t){var r;let e,s,u,c;return null==n?[e,s,u,c]=[0,0,0,0]:l.isInteger(n)?[e,s,u,c]=f(n):l.isString(n)?[e,s,u,c]=null!==(r=_(n))&&void 0!==r?r:[0,0,0,0]:([e,s,u,c=1]=n,c=o(255*c)),255==c&&null!=t&&(c=o(255*t)),[e,s,u,c]}r.transparent=a,r.encode_rgba=function([n,t,r,e]){return n<<24|t<<16|r<<8|e},r.decode_rgba=f,r.compose_alpha=function(n,t){return 255==(255&n)?4294967040&n|o(255*t):n},r.color2rgba=d;const h={0:\"0\",1:\"1\",2:\"2\",3:\"3\",4:\"4\",5:\"5\",6:\"6\",7:\"7\",8:\"8\",9:\"9\",10:\"a\",11:\"b\",12:\"c\",13:\"d\",14:\"e\",15:\"f\"};function g(n){return h[n>>4]+h[15&n]}r.color2css=function(n,t){const[r,e,s,u]=d(n,t);return`rgba(${r}, ${e}, ${s}, ${u/255})`},r.color2hex=function(n,t){const[r,e,s,u]=d(n,t),c=`#${g(r)}${g(e)}${g(s)}`;return 255==u?c:`${c}${g(u)}`},r.color2hexrgb=function(n){const[t,r,e]=d(n);return`#${g(t)}${g(r)}${g(e)}`};const b=/^rgba?\\(\\s*([^\\s,]+?)\\s+([^\\s,]+?)\\s+([^\\s,]+?)(?:\\s*\\/\\s*([^\\s,]+?))?\\s*\\)$/,m=/^rgba?\\(\\s*([^\\s,]+?)\\s*,\\s*([^\\s,]+?)\\s*,\\s*([^\\s,]+?)(?:\\s*,\\s*([^\\s,]+?))?\\s*\\)$/,$=(()=>{const n=document.createElement(\"canvas\");n.width=1,n.height=1;const t=n.getContext(\"2d\"),r=t.createLinearGradient(0,0,1,1);return n=>{t.fillStyle=r,t.fillStyle=n;const e=t.fillStyle;return e!=r?e:null}})();function _(n){var t;if(!(n=n.trim().toLowerCase()))return null;if(\"transparent\"==n)return[0,0,0,0];if(u.is_named_color(n))return f(u.named_colors[n]);if(\"#\"==n[0]){const t=Number(\"0x\"+n.substr(1));if(isNaN(t))return null;switch(n.length-1){case 3:{const n=t>>8&15,r=t>>4&15,e=t>>0&15;return[n<<4|n,r<<4|r,e<<4|e,255]}case 4:{const n=t>>12&15,r=t>>8&15,e=t>>4&15,s=t>>0&15;return[n<<4|n,r<<4|r,e<<4|e,s<<4|s]}case 6:return[t>>16&255,t>>8&255,t>>0&255,255];case 8:return[t>>24&255,t>>16&255,t>>8&255,t>>0&255]}}else if(n.startsWith(\"rgb\")){const r=null!==(t=n.match(b))&&void 0!==t?t:n.match(m);if(null!=r){let[,n,t,e,s=\"1\"]=r;const u=n.endsWith(\"%\"),c=t.endsWith(\"%\"),l=e.endsWith(\"%\"),i=s.endsWith(\"%\");if(!(u&&c&&l)&&(u||c||l))return null;u&&(n=n.slice(0,-1)),c&&(t=t.slice(0,-1)),l&&(e=e.slice(0,-1)),i&&(s=s.slice(0,-1));let a=Number(n),f=Number(t),d=Number(e),h=Number(s);return isNaN(a+f+d+h)?null:(u&&(a=a/100*255),c&&(f=f/100*255),l&&(d=d/100*255),h=255*(i?h/100:h),a=o(a),f=o(f),d=o(d),h=o(h),[a,f,d,h])}}else{const t=$(n);if(null!=t)return _(t)}return null}r.css4_parse=_,r.is_Color=function(n){return!!l.isInteger(n)||(!(!l.isString(n)||null==_(n))||!(!l.isArray(n)||3!=n.length&&4!=n.length))},r.is_dark=function([n,t,r]){return 1-(.299*n+.587*t+.114*r)/255>=.6}},\n", + " function _(e,r,l,a,i){a();l.named_colors={aliceblue:4042850303,antiquewhite:4209760255,aqua:16777215,aquamarine:2147472639,azure:4043309055,beige:4126530815,bisque:4293182719,black:255,blanchedalmond:4293643775,blue:65535,blueviolet:2318131967,brown:2771004159,burlywood:3736635391,cadetblue:1604231423,chartreuse:2147418367,chocolate:3530104575,coral:4286533887,cornflowerblue:1687547391,cornsilk:4294499583,crimson:3692313855,cyan:16777215,darkblue:35839,darkcyan:9145343,darkgoldenrod:3095792639,darkgray:2846468607,darkgreen:6553855,darkgrey:2846468607,darkkhaki:3182914559,darkmagenta:2332068863,darkolivegreen:1433087999,darkorange:4287365375,darkorchid:2570243327,darkred:2332033279,darksalmon:3918953215,darkseagreen:2411499519,darkslateblue:1211993087,darkslategray:793726975,darkslategrey:793726975,darkturquoise:13554175,darkviolet:2483082239,deeppink:4279538687,deepskyblue:12582911,dimgray:1768516095,dimgrey:1768516095,dodgerblue:512819199,firebrick:2988581631,floralwhite:4294635775,forestgreen:579543807,fuchsia:4278255615,gainsboro:3705462015,ghostwhite:4177068031,gold:4292280575,goldenrod:3668254975,gray:2155905279,green:8388863,greenyellow:2919182335,grey:2155905279,honeydew:4043305215,hotpink:4285117695,indianred:3445382399,indigo:1258324735,ivory:4294963455,khaki:4041641215,lavender:3873897215,lavenderblush:4293981695,lawngreen:2096890111,lemonchiffon:4294626815,lightblue:2916673279,lightcoral:4034953471,lightcyan:3774873599,lightgoldenrodyellow:4210742015,lightgray:3553874943,lightgreen:2431553791,lightgrey:3553874943,lightpink:4290167295,lightsalmon:4288707327,lightseagreen:548580095,lightskyblue:2278488831,lightslategray:2005441023,lightslategrey:2005441023,lightsteelblue:2965692159,lightyellow:4294959359,lime:16711935,limegreen:852308735,linen:4210091775,magenta:4278255615,maroon:2147483903,mediumaquamarine:1724754687,mediumblue:52735,mediumorchid:3126187007,mediumpurple:2473647103,mediumseagreen:1018393087,mediumslateblue:2070474495,mediumspringgreen:16423679,mediumturquoise:1221709055,mediumvioletred:3340076543,midnightblue:421097727,mintcream:4127193855,mistyrose:4293190143,moccasin:4293178879,navajowhite:4292783615,navy:33023,oldlace:4260751103,olive:2155872511,olivedrab:1804477439,orange:4289003775,orangered:4282712319,orchid:3664828159,palegoldenrod:4008225535,palegreen:2566625535,paleturquoise:2951671551,palevioletred:3681588223,papayawhip:4293907967,peachpuff:4292524543,peru:3448061951,pink:4290825215,plum:3718307327,powderblue:2967529215,purple:2147516671,rebeccapurple:1714657791,red:4278190335,rosybrown:3163525119,royalblue:1097458175,saddlebrown:2336560127,salmon:4202722047,sandybrown:4104413439,seagreen:780883967,seashell:4294307583,sienna:2689740287,silver:3233857791,skyblue:2278484991,slateblue:1784335871,slategray:1887473919,slategrey:1887473919,snow:4294638335,springgreen:16744447,steelblue:1182971135,tan:3535047935,teal:8421631,thistle:3636451583,tomato:4284696575,turquoise:1088475391,violet:4001558271,wheat:4125012991,white:4294967295,whitesmoke:4126537215,yellow:4294902015,yellowgreen:2597139199},l.is_named_color=function(e){return e in l.named_colors}},\n", + " function _(r,t,n,a,o){a(),n.GeneratorFunction=Object.getPrototypeOf((function*(){})).constructor,n.ColorArray=Uint32Array,n.RGBAArray=Uint8ClampedArray,n.infer_type=function(r,t){return r instanceof Float64Array||r instanceof Array||t instanceof Float64Array||t instanceof Array?Float64Array:Float32Array},n.ScreenArray=Float32Array,n.to_screen=function(r){return r instanceof Float32Array?r:new Float32Array(r)},o(\"Indices\",r(25).BitSet)},\n", + " function _(t,s,r,e,i){e();const n=t(26),o=t(11);class a{constructor(t,s=0){this.size=t,this[Symbol.toStringTag]=\"BitSet\",this._count=null,this._nwords=Math.ceil(t/32),0==s||1==s?(this._array=new Uint32Array(this._nwords),1==s&&this._array.fill(4294967295)):(o.assert(s.length==this._nwords,\"Initializer size mismatch\"),this._array=s)}clone(){return new a(this.size,new Uint32Array(this._array))}[n.equals](t,s){if(!s.eq(this.size,t.size))return!1;const{_nwords:r}=this,e=this.size%r,i=0==e?r:r-1;for(let s=0;s>>5,r=31&t;return!!(this._array[s]>>r&1)}set(t,s=!0){this._check_bounds(t),this._count=null;const r=t>>>5,e=31&t;s?this._array[r]|=1<>>t&1&&(e+=1)}return e}*ones(){const{_array:t,_nwords:s,size:r}=this;for(let e=0,i=0;i>>t&1&&(yield e);else e+=32}}*zeros(){const{_array:t,_nwords:s,size:r}=this;for(let e=0,i=0;i>>t&1||(yield e);else e+=32}}_check_size(t){o.assert(this.size==t.size,\"Size mismatch\")}add(t){this._check_size(t);for(let s=0;s{if(a(t)&&a(e))return t[r.equals](e,this);switch(n){case\"[object Array]\":case\"[object Uint8Array]\":case\"[object Int8Array]\":case\"[object Uint16Array]\":case\"[object Int16Array]\":case\"[object Uint32Array]\":case\"[object Int32Array]\":case\"[object Float32Array]\":case\"[object Float64Array]\":return this.arrays(t,e);case\"[object Map]\":return this.maps(t,e);case\"[object Set]\":return this.sets(t,e);case\"[object Object]\":if(t.constructor==e.constructor&&(null==t.constructor||t.constructor===Object))return this.objects(t,e);case\"[object Function]\":if(t.constructor==e.constructor&&t.constructor===Function)return this.eq(`${t}`,`${e}`)}if(t instanceof Node)return this.nodes(t,e);throw Error(`can't compare objects of type ${n}`)})();return s.pop(),o.pop(),u}numbers(t,e){return Object.is(t,e)}arrays(t,e){const{length:r}=t;if(r!=e.length)return!1;for(let n=0;n{const n=navigator.userAgent;return n.includes(\"MSIE\")||n.includes(\"Trident\")||n.includes(\"Edge\")})(),e.is_mobile=\"undefined\"!=typeof window&&(\"ontouchstart\"in window||navigator.maxTouchPoints>0),e.is_little_endian=(()=>{const n=new ArrayBuffer(4),i=new Uint8Array(n);new Uint32Array(n)[1]=168496141;let e=!0;return 10==i[4]&&11==i[5]&&12==i[6]&&13==i[7]&&(e=!1),e})(),e.BYTE_ORDER=e.is_little_endian?\"little\":\"big\",e.to_big_endian=function(n){if(e.is_little_endian){const i=new Uint32Array(n.length),e=new DataView(i.buffer);let t=0;for(const i of n)e.setUint32(t,i),t+=4;return i}return n}},\n", + " function _(e,t,r,i,s){i();class _{constructor(){this._dev=!1,this._wireframe=!1}set dev(e){this._dev=e}get dev(){return this._dev}set wireframe(e){this._wireframe=e}get wireframe(){return this._wireframe}}r.Settings=_,_.__name__=\"Settings\",r.settings=new _},\n", + " function _(t,e,s,r,n){var a,i,h,u,l,c,o,y;r();const p=t(8),_=t(11),A=t(26),d=t(30),D=t(31),N=Symbol(\"__ndarray__\");class f extends Uint8Array{constructor(t,e){super(t),this[a]=!0,this.dtype=\"uint8\",this.shape=null!=e?e:z(t)?t.shape:[this.length],this.dimension=this.shape.length}[(a=N,A.equals)](t,e){return e.eq(this.shape,t.shape)&&e.arrays(this,t)}[d.serialize](t){return D.encode_NDArray(this)}}s.Uint8NDArray=f,f.__name__=\"Uint8NDArray\";class m extends Int8Array{constructor(t,e){super(t),this[i]=!0,this.dtype=\"int8\",this.shape=null!=e?e:z(t)?t.shape:[this.length],this.dimension=this.shape.length}[(i=N,A.equals)](t,e){return e.eq(this.shape,t.shape)&&e.arrays(this,t)}[d.serialize](t){return D.encode_NDArray(this)}}s.Int8NDArray=m,m.__name__=\"Int8NDArray\";class g extends Uint16Array{constructor(t,e){super(t),this[h]=!0,this.dtype=\"uint16\",this.shape=null!=e?e:z(t)?t.shape:[this.length],this.dimension=this.shape.length}[(h=N,A.equals)](t,e){return e.eq(this.shape,t.shape)&&e.arrays(this,t)}[d.serialize](t){return D.encode_NDArray(this)}}s.Uint16NDArray=g,g.__name__=\"Uint16NDArray\";class q extends Int16Array{constructor(t,e){super(t),this[u]=!0,this.dtype=\"int16\",this.shape=null!=e?e:z(t)?t.shape:[this.length],this.dimension=this.shape.length}[(u=N,A.equals)](t,e){return e.eq(this.shape,t.shape)&&e.arrays(this,t)}[d.serialize](t){return D.encode_NDArray(this)}}s.Int16NDArray=q,q.__name__=\"Int16NDArray\";class I extends Uint32Array{constructor(t,e){super(t),this[l]=!0,this.dtype=\"uint32\",this.shape=null!=e?e:z(t)?t.shape:[this.length],this.dimension=this.shape.length}[(l=N,A.equals)](t,e){return e.eq(this.shape,t.shape)&&e.arrays(this,t)}[d.serialize](t){return D.encode_NDArray(this)}}s.Uint32NDArray=I,I.__name__=\"Uint32NDArray\";class U extends Int32Array{constructor(t,e){super(t),this[c]=!0,this.dtype=\"int32\",this.shape=null!=e?e:z(t)?t.shape:[this.length],this.dimension=this.shape.length}[(c=N,A.equals)](t,e){return e.eq(this.shape,t.shape)&&e.arrays(this,t)}[d.serialize](t){return D.encode_NDArray(this)}}s.Int32NDArray=U,U.__name__=\"Int32NDArray\";class w extends Float32Array{constructor(t,e){super(t),this[o]=!0,this.dtype=\"float32\",this.shape=null!=e?e:z(t)?t.shape:[this.length],this.dimension=this.shape.length}[(o=N,A.equals)](t,e){return e.eq(this.shape,t.shape)&&e.arrays(this,t)}[d.serialize](t){return D.encode_NDArray(this)}}s.Float32NDArray=w,w.__name__=\"Float32NDArray\";class x extends Float64Array{constructor(t,e){super(t),this[y]=!0,this.dtype=\"float64\",this.shape=null!=e?e:z(t)?t.shape:[this.length],this.dimension=this.shape.length}[(y=N,A.equals)](t,e){return e.eq(this.shape,t.shape)&&e.arrays(this,t)}[d.serialize](t){return D.encode_NDArray(this)}}function z(t){return p.isObject(t)&&void 0!==t[N]}s.Float64NDArray=x,x.__name__=\"Float64NDArray\",s.is_NDArray=z,s.ndarray=function(t,e={}){let{dtype:s}=e;null==s&&(s=t instanceof ArrayBuffer||p.isArray(t)?\"float64\":(()=>{switch(!0){case t instanceof Uint8Array:return\"uint8\";case t instanceof Int8Array:return\"int8\";case t instanceof Uint16Array:return\"uint16\";case t instanceof Int16Array:return\"int16\";case t instanceof Uint32Array:return\"uint32\";case t instanceof Int32Array:return\"int32\";case t instanceof Float32Array:return\"float32\";case t instanceof Float64Array:return\"float64\";default:_.unreachable()}})());const{shape:r}=e;switch(s){case\"uint8\":return new f(t,r);case\"int8\":return new m(t,r);case\"uint16\":return new g(t,r);case\"int16\":return new q(t,r);case\"uint32\":return new I(t,r);case\"int32\":return new U(t,r);case\"float32\":return new w(t,r);case\"float64\":return new x(t,r)}}},\n", + " function _(e,r,t,i,s){i();const n=e(11),a=e(13),l=e(8);t.serialize=Symbol(\"serialize\");class o extends Error{}t.SerializationError=o,o.__name__=\"SerializationError\";class f{constructor(e){var r;this._references=new Map,this._definitions=new Map,this._refmap=new Map,this.include_defaults=null===(r=null==e?void 0:e.include_defaults)||void 0===r||r}get_ref(e){return this._references.get(e)}add_ref(e,r){n.assert(!this._references.has(e)),this._references.set(e,r)}add_def(e,r){const t=this.get_ref(e);n.assert(null!=t),this._definitions.set(e,r),this._refmap.set(t,r)}get objects(){return new Set(this._references.keys())}get references(){return new Set(this._references.values())}get definitions(){return new Set(this._definitions.values())}resolve_ref(e){return this._refmap.get(e)}remove_ref(e){return this._references.delete(e)}remove_def(e){return this._definitions.delete(e)}to_serializable(e){const r=this.get_ref(e);if(null!=r)return r;if(function(e){return l.isObject(e)&&void 0!==e[t.serialize]}(e))return e[t.serialize](this);if(l.isArray(e)||l.isTypedArray(e)){const r=e.length,t=new Array(r);for(let i=0;i{switch(t){case\"uint8\":return new u.Uint8NDArray(a,n);case\"int8\":return new u.Int8NDArray(a,n);case\"uint16\":return new u.Uint16NDArray(a,n);case\"int16\":return new u.Int16NDArray(a,n);case\"uint32\":return new u.Uint32NDArray(a,n);case\"int32\":return new u.Int32NDArray(a,n);case\"float32\":return new u.Float32NDArray(a,n);case\"float64\":return new u.Float64NDArray(a,n)}})();return _!==s.BYTE_ORDER&&i.swap(f),f},n.encode_NDArray=function(r,e){const n={order:s.BYTE_ORDER,dtype:r.dtype,shape:r.shape};if(null!=e){const t=`${e.size}`;return e.set(t,r.buffer),Object.assign({__buffer__:t},n)}{const e=i.buffer_to_base64(r.buffer);return Object.assign({__ndarray__:e},n)}}},\n", + " function _(t,e,n,r,f){r(),n.buffer_to_base64=function(t){const e=new Uint8Array(t),n=Array.from(e).map((t=>String.fromCharCode(t)));return btoa(n.join(\"\"))},n.base64_to_buffer=function(t){const e=atob(t),n=e.length,r=new Uint8Array(n);for(let t=0,f=n;t\"'`])/g,(t=>{switch(t){case\"&\":return\"&\";case\"<\":return\"<\";case\">\":return\">\";case'\"':return\""\";case\"'\":return\"'\";case\"`\":return\"`\";default:return t}}))},r.unescape=function(t){return t.replace(/&(amp|lt|gt|quot|#x27|#x60);/g,((t,e)=>{switch(e){case\"amp\":return\"&\";case\"lt\":return\"<\";case\"gt\":return\">\";case\"quot\":return'\"';case\"#x27\":return\"'\";case\"#x60\":return\"`\";default:return e}}))},r.use_strict=function(t){return`'use strict';\\n${t}`},r.to_fixed=function(t,e){return t.toFixed(e).replace(/(\\.[0-9]*?)0+$/,\"$1\").replace(/\\.$/,\"\")}},\n", + " function _(e,t,s,n,o){n();const i=e(30);class r{constructor(e){this.document=e}}s.DocumentEvent=r,r.__name__=\"DocumentEvent\";class a extends r{constructor(e,t,s){super(e),this.events=t,this.setter_id=s}}s.DocumentEventBatch=a,a.__name__=\"DocumentEventBatch\";class d extends r{}s.DocumentChangedEvent=d,d.__name__=\"DocumentChangedEvent\";class l extends d{constructor(e,t,s){super(e),this.msg_type=t,this.msg_data=s}[i.serialize](e){const t=this.msg_data,s=e.to_serializable(t);return{kind:\"MessageSent\",msg_type:this.msg_type,msg_data:s}}}s.MessageSentEvent=l,l.__name__=\"MessageSentEvent\";class _ extends d{constructor(e,t,s,n,o,i,r){super(e),this.model=t,this.attr=s,this.old=n,this.new_=o,this.setter_id=i,this.hint=r}[i.serialize](e){if(null!=this.hint)return e.to_serializable(this.hint);const t=this.new_,s=e.to_serializable(t);return this.model!=t&&e.remove_def(this.model),{kind:\"ModelChanged\",model:this.model.ref(),attr:this.attr,new:s}}}s.ModelChangedEvent=_,_.__name__=\"ModelChangedEvent\";class c extends d{constructor(e,t,s){super(e),this.column_source=t,this.patches=s}[i.serialize](e){return{kind:\"ColumnsPatched\",column_source:this.column_source,patches:this.patches}}}s.ColumnsPatchedEvent=c,c.__name__=\"ColumnsPatchedEvent\";class h extends d{constructor(e,t,s,n){super(e),this.column_source=t,this.data=s,this.rollover=n}[i.serialize](e){return{kind:\"ColumnsStreamed\",column_source:this.column_source,data:this.data,rollover:this.rollover}}}s.ColumnsStreamedEvent=h,h.__name__=\"ColumnsStreamedEvent\";class m extends d{constructor(e,t,s){super(e),this.title=t,this.setter_id=s}[i.serialize](e){return{kind:\"TitleChanged\",title:this.title}}}s.TitleChangedEvent=m,m.__name__=\"TitleChangedEvent\";class u extends d{constructor(e,t,s){super(e),this.model=t,this.setter_id=s}[i.serialize](e){return{kind:\"RootAdded\",model:e.to_serializable(this.model)}}}s.RootAddedEvent=u,u.__name__=\"RootAddedEvent\";class v extends d{constructor(e,t,s){super(e),this.model=t,this.setter_id=s}[i.serialize](e){return{kind:\"RootRemoved\",model:this.model.ref()}}}s.RootRemovedEvent=v,v.__name__=\"RootRemovedEvent\"},\n", + " function _(t,r,n,i,e){i();const s=t(8),o=t(13);n.pretty=Symbol(\"pretty\");class c{constructor(t){this.precision=null==t?void 0:t.precision}to_string(t){return function(t){return s.isObject(t)&&void 0!==t[n.pretty]}(t)?t[n.pretty](this):s.isBoolean(t)?this.boolean(t):s.isNumber(t)?this.number(t):s.isString(t)?this.string(t):s.isArray(t)?this.array(t):s.isIterable(t)?this.iterable(t):s.isPlainObject(t)?this.object(t):`${t}`}token(t){return t}boolean(t){return`${t}`}number(t){return null!=this.precision?t.toFixed(this.precision):`${t}`}string(t){return`\"${t.replace(/'/g,\"\\\\'\")}\"`}array(t){const r=this.token,n=[];for(const r of t)n.push(this.to_string(r));return`${r(\"[\")}${n.join(`${r(\",\")} `)}${r(\"]\")}`}iterable(t){var r;const n=this.token,i=null!==(r=Object(t)[Symbol.toStringTag])&&void 0!==r?r:\"Object\",e=this.array(t);return`${i}${n(\"(\")}${e}${n(\")\")}`}object(t){const r=this.token,n=[];for(const[i,e]of o.entries(t))n.push(`${i}${r(\":\")} ${this.to_string(e)}`);return`${r(\"{\")}${n.join(`${r(\",\")} `)}${r(\"}\")}`}}n.Printer=c,c.__name__=\"Printer\",n.to_string=function(t,r){return new c(r).to_string(t)}},\n", + " function _(n,o,r,e,t){e();const l=n(13),i=n(8);function c(n){return i.isObject(n)&&void 0!==n[r.clone]}r.clone=Symbol(\"clone\"),r.is_Cloneable=c;class s extends Error{}r.CloningError=s,s.__name__=\"CloningError\";class a{constructor(){}clone(n){if(c(n))return n[r.clone](this);if(i.isArray(n)){const o=n.length,r=new Array(o);for(let e=0;e{null!=this.layout&&(this.layout.visible=this.model.visible,this.plot_view.request_layout())}))}get needs_clip(){return null==this.layout}serializable_state(){const t=super.serializable_state();return null==this.layout?t:Object.assign(Object.assign({},t),{bbox:this.layout.bbox.box})}}i.AnnotationView=a,a.__name__=\"AnnotationView\";class l extends o.Renderer{constructor(t){super(t)}static init_Annotation(){this.override({level:\"annotation\"})}}i.Annotation=l,l.__name__=\"Annotation\",l.init_Annotation()},\n", + " function _(e,i,t,n,s){n();const r=e(1),a=e(42),_=r.__importStar(e(45)),o=e(20),l=e(53),d=e(54);class h extends a.View{get coordinates(){const{_coordinates:e}=this;return null!=e?e:this._coordinates=this._initialize_coordinates()}initialize(){super.initialize(),this.visuals=new _.Visuals(this),this.needs_webgl_blit=!1}connect_signals(){super.connect_signals();const{x_range_name:e,y_range_name:i}=this.model.properties;this.on_change([e,i],(()=>this._initialize_coordinates()))}_initialize_coordinates(){const{x_range_name:e,y_range_name:i}=this.model,{frame:t}=this.plot_view,n=t.x_scales.get(e),s=t.y_scales.get(i);return new d.CoordinateTransform(n,s)}get plot_view(){return this.parent}get plot_model(){return this.parent.model}get layer(){const{overlays:e,primary:i}=this.canvas;return\"overlay\"==this.model.level?e:i}get canvas(){return this.plot_view.canvas_view}request_render(){this.request_paint()}request_paint(){this.plot_view.request_paint(this)}notify_finished(){this.plot_view.notify_finished()}get needs_clip(){return!1}get has_webgl(){return!1}render(){this.model.visible&&this._render(),this._has_finished=!0}renderer_view(e){}}t.RendererView=h,h.__name__=\"RendererView\";class c extends l.Model{constructor(e){super(e)}static init_Renderer(){this.define((({Boolean:e,String:i})=>({level:[o.RenderLevel,\"image\"],visible:[e,!0],x_range_name:[i,\"default\"],y_range_name:[i,\"default\"]})))}}t.Renderer=c,c.__name__=\"Renderer\",c.init_Renderer()},\n", + " function _(t,e,s,i,n){i();const r=t(1),o=t(15),h=t(43),l=t(8),a=r.__importDefault(t(44));class _{constructor(t){this.removed=new o.Signal0(this,\"removed\"),this._ready=Promise.resolve(void 0),this._slots=new WeakMap;const{model:e,parent:s}=t;this.model=e,this.parent=s,this.root=null==s?this:s.root,this.removed.emit()}get ready(){return this._ready}connect(t,e){let s=this._slots.get(e);return null==s&&(s=(t,s)=>{const i=Promise.resolve(e.call(this,t,s));this._ready=this._ready.then((()=>i))},this._slots.set(e,s)),t.connect(s,this)}disconnect(t,e){return t.disconnect(e,this)}initialize(){this._has_finished=!1,this.is_root&&(this._stylesheet=h.stylesheet);for(const t of this.styles())this.stylesheet.append(t)}async lazy_initialize(){}remove(){this.disconnect_signals(),this.removed.emit()}toString(){return`${this.model.type}View(${this.model.id})`}serializable_state(){return{type:this.model.type}}get is_root(){return null==this.parent}assert_root(){if(!this.is_root)throw new Error(`${this.toString()} is not a root layout`)}has_finished(){return this._has_finished}get is_idle(){return this.has_finished()}connect_signals(){}disconnect_signals(){o.Signal.disconnect_receiver(this)}on_change(t,e){for(const s of l.isArray(t)?t:[t])this.connect(s.change,e)}cursor(t,e){return null}get stylesheet(){return this.is_root?this._stylesheet:this.root.stylesheet}styles(){return[a.default]}}s.View=_,_.__name__=\"View\"},\n", + " function _(t,e,n,i,o){i();const s=t(8),l=t(13),r=t=>(e={},...n)=>{const i=document.createElement(t);i.classList.add(\"bk\");for(let[t,n]of l.entries(e))if(null!=n&&(!s.isBoolean(n)||n))if(\"class\"===t&&(s.isString(n)&&(n=n.split(/\\s+/)),s.isArray(n)))for(const t of n)null!=t&&i.classList.add(t);else if(\"style\"===t&&s.isPlainObject(n))for(const[t,e]of l.entries(n))i.style[t]=e;else if(\"data\"===t&&s.isPlainObject(n))for(const[t,e]of l.entries(n))i.dataset[t]=e;else i.setAttribute(t,n);function o(t){if(s.isString(t))i.appendChild(document.createTextNode(t));else if(t instanceof Node)i.appendChild(t);else if(t instanceof NodeList||t instanceof HTMLCollection)for(const e of t)i.appendChild(e);else if(null!=t&&!1!==t)throw new Error(`expected a DOM element, string, false or null, got ${JSON.stringify(t)}`)}for(const t of n)if(s.isArray(t))for(const e of t)o(e);else o(t);return i};function a(t){const e=t.parentNode;null!=e&&e.removeChild(t)}function c(t,...e){const n=t.firstChild;for(const i of e)t.insertBefore(i,n)}function d(t,e){var n,i,o;const s=Element.prototype;return(null!==(o=null!==(i=null!==(n=s.matches)&&void 0!==n?n:s.webkitMatchesSelector)&&void 0!==i?i:s.mozMatchesSelector)&&void 0!==o?o:s.msMatchesSelector).call(t,e)}function h(t){return parseFloat(t)||0}function u(t){const e=getComputedStyle(t);return{border:{top:h(e.borderTopWidth),bottom:h(e.borderBottomWidth),left:h(e.borderLeftWidth),right:h(e.borderRightWidth)},margin:{top:h(e.marginTop),bottom:h(e.marginBottom),left:h(e.marginLeft),right:h(e.marginRight)},padding:{top:h(e.paddingTop),bottom:h(e.paddingBottom),left:h(e.paddingLeft),right:h(e.paddingRight)}}}function f(t){const e=t.getBoundingClientRect();return{width:Math.ceil(e.width),height:Math.ceil(e.height)}}n.createElement=function(t,e,...n){return r(t)(e,...n)},n.div=r(\"div\"),n.span=r(\"span\"),n.canvas=r(\"canvas\"),n.link=r(\"link\"),n.style=r(\"style\"),n.a=r(\"a\"),n.p=r(\"p\"),n.i=r(\"i\"),n.pre=r(\"pre\"),n.button=r(\"button\"),n.label=r(\"label\"),n.input=r(\"input\"),n.select=r(\"select\"),n.option=r(\"option\"),n.optgroup=r(\"optgroup\"),n.textarea=r(\"textarea\"),n.nbsp=function(){return document.createTextNode(\"Β \")},n.append=function(t,...e){for(const n of e)t.appendChild(n)},n.remove=a,n.removeElement=a,n.replaceWith=function(t,e){const n=t.parentNode;null!=n&&n.replaceChild(e,t)},n.prepend=c,n.empty=function(t,e=!1){let n;for(;n=t.firstChild;)t.removeChild(n);if(e&&t instanceof Element)for(const e of t.attributes)t.removeAttributeNode(e)},n.display=function(t){t.style.display=\"\"},n.undisplay=function(t){t.style.display=\"none\"},n.show=function(t){t.style.visibility=\"\"},n.hide=function(t){t.style.visibility=\"hidden\"},n.offset=function(t){const e=t.getBoundingClientRect();return{top:e.top+window.pageYOffset-document.documentElement.clientTop,left:e.left+window.pageXOffset-document.documentElement.clientLeft}},n.matches=d,n.parent=function(t,e){let n=t;for(;n=n.parentElement;)if(d(n,e))return n;return null},n.extents=u,n.size=f,n.scroll_size=function(t){return{width:Math.ceil(t.scrollWidth),height:Math.ceil(t.scrollHeight)}},n.outer_size=function(t){const{margin:{left:e,right:n,top:i,bottom:o}}=u(t),{width:s,height:l}=f(t);return{width:Math.ceil(s+e+n),height:Math.ceil(l+i+o)}},n.content_size=function(t){const{left:e,top:n}=t.getBoundingClientRect(),{padding:i}=u(t);let o=0,s=0;for(const l of t.children){const t=l.getBoundingClientRect();o=Math.max(o,Math.ceil(t.left-e-i.left+t.width)),s=Math.max(s,Math.ceil(t.top-n-i.top+t.height))}return{width:o,height:s}},n.position=function(t,e,n){const{style:i}=t;if(i.left=`${e.x}px`,i.top=`${e.y}px`,i.width=`${e.width}px`,i.height=`${e.height}px`,null==n)i.margin=\"\";else{const{top:t,right:e,bottom:o,left:s}=n;i.margin=`${t}px ${e}px ${o}px ${s}px`}},n.children=function(t){return Array.from(t.children)};class p{constructor(t){this.el=t,this.classList=t.classList}get values(){const t=[];for(let e=0;e{document.addEventListener(\"DOMContentLoaded\",(()=>t()),{once:!0})}))}},\n", + " function _(o,i,t,e,r){e(),t.root=\"bk-root\",t.default=\".bk-root{position:relative;width:auto;height:auto;z-index:0;box-sizing:border-box;font-family:Helvetica, Arial, sans-serif;font-size:13px;}.bk-root .bk,.bk-root .bk:before,.bk-root .bk:after{box-sizing:inherit;margin:0;border:0;padding:0;background-image:none;font-family:inherit;font-size:100%;line-height:1.42857143;}.bk-root pre.bk{font-family:Courier, monospace;}\"},\n", + " function _(e,t,r,a,c){a();const l=e(1),n=e(46);c(\"Line\",n.Line),c(\"LineScalar\",n.LineScalar),c(\"LineVector\",n.LineVector);const i=e(49);c(\"Fill\",i.Fill),c(\"FillScalar\",i.FillScalar),c(\"FillVector\",i.FillVector);const s=e(50);c(\"Text\",s.Text),c(\"TextScalar\",s.TextScalar),c(\"TextVector\",s.TextVector);const o=e(51);c(\"Hatch\",o.Hatch),c(\"HatchScalar\",o.HatchScalar),c(\"HatchVector\",o.HatchVector);const u=l.__importStar(e(48)),V=e(47);c(\"VisualProperties\",V.VisualProperties),c(\"VisualUniforms\",V.VisualUniforms);class h{constructor(e){this._visuals=[];for(const[t,r]of e.model._mixins){const a=(()=>{switch(r){case u.Line:return new n.Line(e,t);case u.LineScalar:return new n.LineScalar(e,t);case u.LineVector:return new n.LineVector(e,t);case u.Fill:return new i.Fill(e,t);case u.FillScalar:return new i.FillScalar(e,t);case u.FillVector:return new i.FillVector(e,t);case u.Text:return new s.Text(e,t);case u.TextScalar:return new s.TextScalar(e,t);case u.TextVector:return new s.TextVector(e,t);case u.Hatch:return new o.Hatch(e,t);case u.HatchScalar:return new o.HatchScalar(e,t);case u.HatchVector:return new o.HatchVector(e,t);default:throw new Error(\"unknown visual\")}})();this._visuals.push(a),Object.defineProperty(this,t+a.type,{get:()=>a,configurable:!1,enumerable:!0})}}*[Symbol.iterator](){yield*this._visuals}}r.Visuals=h,h.__name__=\"Visuals\"},\n", + " function _(e,t,i,l,s){l();const n=e(1),a=e(47),o=n.__importStar(e(48)),r=e(22),_=e(8);function h(e){if(_.isArray(e))return e;switch(e){case\"solid\":return[];case\"dashed\":return[6];case\"dotted\":return[2,4];case\"dotdash\":return[2,4,6,4];case\"dashdot\":return[6,4,2,4];default:return e.split(\" \").map(Number).filter(_.isInteger)}}i.resolve_line_dash=h;class c extends a.VisualProperties{get doit(){const e=this.line_color.get_value(),t=this.line_alpha.get_value(),i=this.line_width.get_value();return!(null==e||0==t||0==i)}set_value(e){const t=this.line_color.get_value(),i=this.line_alpha.get_value();e.strokeStyle=r.color2css(t,i),e.lineWidth=this.line_width.get_value(),e.lineJoin=this.line_join.get_value(),e.lineCap=this.line_cap.get_value(),e.lineDash=h(this.line_dash.get_value()),e.lineDashOffset=this.line_dash_offset.get_value()}}i.Line=c,c.__name__=\"Line\";class u extends a.VisualUniforms{get doit(){const e=this.line_color.value,t=this.line_alpha.value,i=this.line_width.value;return!(0==e||0==t||0==i)}set_value(e){const t=this.line_color.value,i=this.line_alpha.value;e.strokeStyle=r.color2css(t,i),e.lineWidth=this.line_width.value,e.lineJoin=this.line_join.value,e.lineCap=this.line_cap.value,e.lineDash=h(this.line_dash.value),e.lineDashOffset=this.line_dash_offset.value}}i.LineScalar=u,u.__name__=\"LineScalar\";class d extends a.VisualUniforms{get doit(){const{line_color:e}=this;if(e.is_Scalar()&&0==e.value)return!1;const{line_alpha:t}=this;if(t.is_Scalar()&&0==t.value)return!1;const{line_width:i}=this;return!i.is_Scalar()||0!=i.value}set_vectorize(e,t){const i=this.line_color.get(t),l=this.line_alpha.get(t),s=this.line_width.get(t),n=this.line_join.get(t),a=this.line_cap.get(t),o=this.line_dash.get(t),_=this.line_dash_offset.get(t);e.strokeStyle=r.color2css(i,l),e.lineWidth=s,e.lineJoin=n,e.lineCap=a,e.lineDash=h(o),e.lineDashOffset=_}}i.LineVector=d,d.__name__=\"LineVector\",c.prototype.type=\"line\",c.prototype.attrs=Object.keys(o.Line),u.prototype.type=\"line\",u.prototype.attrs=Object.keys(o.LineScalar),d.prototype.type=\"line\",d.prototype.attrs=Object.keys(o.LineVector)},\n", + " function _(t,s,o,i,r){i();class e{constructor(t,s=\"\"){this.obj=t,this.prefix=s;const o=this;this._props=[];for(const i of this.attrs){const r=t.model.properties[s+i];r.change.connect((()=>this.update())),o[i]=r,this._props.push(r)}this.update()}*[Symbol.iterator](){yield*this._props}update(){}}o.VisualProperties=e,e.__name__=\"VisualProperties\";class p{constructor(t,s=\"\"){this.obj=t,this.prefix=s;for(const o of this.attrs)Object.defineProperty(this,o,{get:()=>t[s+o]})}*[Symbol.iterator](){for(const t of this.attrs)yield this.obj.model.properties[this.prefix+t]}update(){}}o.VisualUniforms=p,p.__name__=\"VisualUniforms\"},\n", + " function _(e,l,t,a,c){a();const r=e(1),o=r.__importStar(e(18)),n=e(20),i=r.__importStar(e(21)),_=e(13);t.Line={line_color:[i.Nullable(i.Color),\"black\"],line_alpha:[i.Alpha,1],line_width:[i.Number,1],line_join:[n.LineJoin,\"bevel\"],line_cap:[n.LineCap,\"butt\"],line_dash:[i.Or(n.LineDash,i.Array(i.Number)),[]],line_dash_offset:[i.Number,0]},t.Fill={fill_color:[i.Nullable(i.Color),\"gray\"],fill_alpha:[i.Alpha,1]},t.Hatch={hatch_color:[i.Nullable(i.Color),\"black\"],hatch_alpha:[i.Alpha,1],hatch_scale:[i.Number,12],hatch_pattern:[i.Nullable(i.Or(n.HatchPatternType,i.String)),null],hatch_weight:[i.Number,1],hatch_extra:[i.Dict(i.AnyRef()),{}]},t.Text={text_color:[i.Nullable(i.Color),\"#444444\"],text_alpha:[i.Alpha,1],text_font:[o.Font,\"helvetica\"],text_font_size:[i.FontSize,\"16px\"],text_font_style:[n.FontStyle,\"normal\"],text_align:[n.TextAlign,\"left\"],text_baseline:[n.TextBaseline,\"bottom\"],text_line_height:[i.Number,1.2]},t.LineScalar={line_color:[o.ColorScalar,\"black\"],line_alpha:[o.NumberScalar,1],line_width:[o.NumberScalar,1],line_join:[o.LineJoinScalar,\"bevel\"],line_cap:[o.LineCapScalar,\"butt\"],line_dash:[o.LineDashScalar,[]],line_dash_offset:[o.NumberScalar,0]},t.FillScalar={fill_color:[o.ColorScalar,\"gray\"],fill_alpha:[o.NumberScalar,1]},t.HatchScalar={hatch_color:[o.ColorScalar,\"black\"],hatch_alpha:[o.NumberScalar,1],hatch_scale:[o.NumberScalar,12],hatch_pattern:[o.NullStringScalar,null],hatch_weight:[o.NumberScalar,1],hatch_extra:[o.AnyScalar,{}]},t.TextScalar={text_color:[o.ColorScalar,\"#444444\"],text_alpha:[o.NumberScalar,1],text_font:[o.FontScalar,\"helvetica\"],text_font_size:[o.FontSizeScalar,\"16px\"],text_font_style:[o.FontStyleScalar,\"normal\"],text_align:[o.TextAlignScalar,\"left\"],text_baseline:[o.TextBaselineScalar,\"bottom\"],text_line_height:[o.NumberScalar,1.2]},t.LineVector={line_color:[o.ColorSpec,\"black\"],line_alpha:[o.NumberSpec,1],line_width:[o.NumberSpec,1],line_join:[o.LineJoinSpec,\"bevel\"],line_cap:[o.LineCapSpec,\"butt\"],line_dash:[o.LineDashSpec,[]],line_dash_offset:[o.NumberSpec,0]},t.FillVector={fill_color:[o.ColorSpec,\"gray\"],fill_alpha:[o.NumberSpec,1]},t.HatchVector={hatch_color:[o.ColorSpec,\"black\"],hatch_alpha:[o.NumberSpec,1],hatch_scale:[o.NumberSpec,12],hatch_pattern:[o.NullStringSpec,null],hatch_weight:[o.NumberSpec,1],hatch_extra:[o.AnyScalar,{}]},t.TextVector={text_color:[o.ColorSpec,\"#444444\"],text_alpha:[o.NumberSpec,1],text_font:[o.FontSpec,\"helvetica\"],text_font_size:[o.FontSizeSpec,\"16px\"],text_font_style:[o.FontStyleSpec,\"normal\"],text_align:[o.TextAlignSpec,\"left\"],text_baseline:[o.TextBaselineSpec,\"bottom\"],text_line_height:[o.NumberSpec,1.2]},t.attrs_of=function(e,l,t,a=!1){const c={};for(const r of _.keys(t)){const t=`${l}${r}`,o=e[t];c[a?t:r]=o}return c}},\n", + " function _(l,t,e,i,s){i();const o=l(1),a=l(47),r=o.__importStar(l(48)),c=l(22);class _ extends a.VisualProperties{get doit(){const l=this.fill_color.get_value(),t=this.fill_alpha.get_value();return!(null==l||0==t)}set_value(l){const t=this.fill_color.get_value(),e=this.fill_alpha.get_value();l.fillStyle=c.color2css(t,e)}}e.Fill=_,_.__name__=\"Fill\";class n extends a.VisualUniforms{get doit(){const l=this.fill_color.value,t=this.fill_alpha.value;return!(0==l||0==t)}set_value(l){const t=this.fill_color.value,e=this.fill_alpha.value;l.fillStyle=c.color2css(t,e)}}e.FillScalar=n,n.__name__=\"FillScalar\";class p extends a.VisualUniforms{get doit(){const{fill_color:l}=this;if(l.is_Scalar()&&0==l.value)return!1;const{fill_alpha:t}=this;return!t.is_Scalar()||0!=t.value}set_vectorize(l,t){const e=this.fill_color.get(t),i=this.fill_alpha.get(t);l.fillStyle=c.color2css(e,i)}}e.FillVector=p,p.__name__=\"FillVector\",_.prototype.type=\"fill\",_.prototype.attrs=Object.keys(r.Fill),n.prototype.type=\"fill\",n.prototype.attrs=Object.keys(r.FillScalar),p.prototype.type=\"fill\",p.prototype.attrs=Object.keys(r.FillVector)},\n", + " function _(t,e,s,l,a){l();const o=t(1),_=t(47),i=o.__importStar(t(48)),n=t(22);class x extends _.VisualProperties{get doit(){const t=this.text_color.get_value(),e=this.text_alpha.get_value();return!(null==t||0==e)}set_value(t){const e=this.text_color.get_value(),s=this.text_alpha.get_value();t.fillStyle=n.color2css(e,s),t.font=this.font_value(),t.textAlign=this.text_align.get_value(),t.textBaseline=this.text_baseline.get_value()}font_value(){return`${this.text_font_style.get_value()} ${this.text_font_size.get_value()} ${this.text_font.get_value()}`}}s.Text=x,x.__name__=\"Text\";class r extends _.VisualUniforms{get doit(){const t=this.text_color.value,e=this.text_alpha.value;return!(0==t||0==e)}set_value(t){const e=this.text_color.value,s=this.text_alpha.value,l=this.font_value(),a=this.text_align.value,o=this.text_baseline.value;t.fillStyle=n.color2css(e,s),t.font=l,t.textAlign=a,t.textBaseline=o}font_value(){return`${this.text_font_style.value} ${this.text_font_size.value} ${this.text_font.value}`}}s.TextScalar=r,r.__name__=\"TextScalar\";class u extends _.VisualUniforms{get doit(){const{text_color:t}=this;if(t.is_Scalar()&&0==t.value)return!1;const{text_alpha:e}=this;return!e.is_Scalar()||0!=e.value}set_vectorize(t,e){const s=this.text_color.get(e),l=this.text_alpha.get(e),a=this.font_value(e),o=this.text_align.get(e),_=this.text_baseline.get(e);t.fillStyle=n.color2css(s,l),t.font=a,t.textAlign=o,t.textBaseline=_}font_value(t){return`${this.text_font_style.get(t)} ${this.text_font_size.get(t)} ${this.text_font.get(t)}`}}s.TextVector=u,u.__name__=\"TextVector\",x.prototype.type=\"text\",x.prototype.attrs=Object.keys(i.Text),r.prototype.type=\"text\",r.prototype.attrs=Object.keys(i.TextScalar),u.prototype.type=\"text\",u.prototype.attrs=Object.keys(i.TextVector)},\n", + " function _(t,e,a,h,r){h();const i=t(1),s=t(47),c=t(52),n=i.__importStar(t(18)),_=i.__importStar(t(48));class l extends s.VisualProperties{constructor(){super(...arguments),this._update_iteration=0}update(){if(this._update_iteration++,this._hatch_image=null,!this.doit)return;const t=this.hatch_color.get_value(),e=this.hatch_alpha.get_value(),a=this.hatch_scale.get_value(),h=this.hatch_pattern.get_value(),r=this.hatch_weight.get_value(),i=t=>{this._hatch_image=t},s=this.hatch_extra.get_value()[h];if(null!=s){const h=s.get_pattern(t,e,a,r);if(h instanceof Promise){const{_update_iteration:t}=this;h.then((e=>{this._update_iteration==t&&(i(e),this.obj.request_render())}))}else i(h)}else{const s=this.obj.canvas.create_layer(),n=c.get_pattern(s,h,t,e,a,r);i(n)}}get doit(){const t=this.hatch_color.get_value(),e=this.hatch_alpha.get_value(),a=this.hatch_pattern.get_value();return!(null==t||0==e||\" \"==a||\"blank\"==a||null==a)}set_value(t){const e=this.pattern(t);t.fillStyle=null!=e?e:\"transparent\"}pattern(t){const e=this._hatch_image;return null==e?null:t.createPattern(e,this.repetition())}repetition(){const t=this.hatch_pattern.get_value(),e=this.hatch_extra.get_value()[t];if(null==e)return\"repeat\";switch(e.repetition){case\"repeat\":return\"repeat\";case\"repeat_x\":return\"repeat-x\";case\"repeat_y\":return\"repeat-y\";case\"no_repeat\":return\"no-repeat\"}}}a.Hatch=l,l.__name__=\"Hatch\";class o extends s.VisualUniforms{constructor(){super(...arguments),this._static_doit=!1,this._update_iteration=0}_compute_static_doit(){const t=this.hatch_color.value,e=this.hatch_alpha.value,a=this.hatch_pattern.value;return!(null==t||0==e||\" \"==a||\"blank\"==a||null==a)}update(){this._update_iteration++;const t=this.hatch_color.length;if(this._hatch_image=new n.UniformScalar(null,t),this._static_doit=this._compute_static_doit(),!this._static_doit)return;const e=this.hatch_color.value,a=this.hatch_alpha.value,h=this.hatch_scale.value,r=this.hatch_pattern.value,i=this.hatch_weight.value,s=e=>{this._hatch_image=new n.UniformScalar(e,t)},_=this.hatch_extra.value[r];if(null!=_){const t=_.get_pattern(e,a,h,i);if(t instanceof Promise){const{_update_iteration:e}=this;t.then((t=>{this._update_iteration==e&&(s(t),this.obj.request_render())}))}else s(t)}else{const t=this.obj.canvas.create_layer(),n=c.get_pattern(t,r,e,a,h,i);s(n)}}get doit(){return this._static_doit}set_value(t){var e;t.fillStyle=null!==(e=this.pattern(t))&&void 0!==e?e:\"transparent\"}pattern(t){const e=this._hatch_image.value;return null==e?null:t.createPattern(e,this.repetition())}repetition(){const t=this.hatch_pattern.value,e=this.hatch_extra.value[t];if(null==e)return\"repeat\";switch(e.repetition){case\"repeat\":return\"repeat\";case\"repeat_x\":return\"repeat-x\";case\"repeat_y\":return\"repeat-y\";case\"no_repeat\":return\"no-repeat\"}}}a.HatchScalar=o,o.__name__=\"HatchScalar\";class u extends s.VisualUniforms{constructor(){super(...arguments),this._static_doit=!1,this._update_iteration=0}_compute_static_doit(){const{hatch_color:t}=this;if(t.is_Scalar()&&0==t.value)return!1;const{hatch_alpha:e}=this;if(e.is_Scalar()&&0==e.value)return!1;const{hatch_pattern:a}=this;if(a.is_Scalar()){const t=a.value;if(\" \"==t||\"blank\"==t||null==t)return!1}return!0}update(){this._update_iteration++;const t=this.hatch_color.length;if(this._hatch_image=new n.UniformScalar(null,t),this._static_doit=this._compute_static_doit(),!this._static_doit)return;const e=(t,e,a,h,r,i)=>{const s=this.hatch_extra.value[t];if(null!=s){const t=s.get_pattern(e,a,h,r);if(t instanceof Promise){const{_update_iteration:e}=this;t.then((t=>{this._update_iteration==e&&(i(t),this.obj.request_render())}))}else i(t)}else{const s=this.obj.canvas.create_layer(),n=c.get_pattern(s,t,e,a,h,r);i(n)}};if(this.hatch_color.is_Scalar()&&this.hatch_alpha.is_Scalar()&&this.hatch_scale.is_Scalar()&&this.hatch_pattern.is_Scalar()&&this.hatch_weight.is_Scalar()){const a=this.hatch_color.value,h=this.hatch_alpha.value,r=this.hatch_scale.value;e(this.hatch_pattern.value,a,h,r,this.hatch_weight.value,(e=>{this._hatch_image=new n.UniformScalar(e,t)}))}else{const a=new Array(t);a.fill(null),this._hatch_image=new n.UniformVector(a);for(let h=0;h{a[h]=t}))}}}get doit(){return this._static_doit}set_vectorize(t,e){var a;t.fillStyle=null!==(a=this.pattern(t,e))&&void 0!==a?a:\"transparent\"}pattern(t,e){const a=this._hatch_image.get(e);return null==a?null:t.createPattern(a,this.repetition(e))}repetition(t){const e=this.hatch_pattern.get(t),a=this.hatch_extra.value[e];if(null==a)return\"repeat\";switch(a.repetition){case\"repeat\":return\"repeat\";case\"repeat_x\":return\"repeat-x\";case\"repeat_y\":return\"repeat-y\";case\"no_repeat\":return\"no-repeat\"}}}a.HatchVector=u,u.__name__=\"HatchVector\",l.prototype.type=\"hatch\",l.prototype.attrs=Object.keys(_.Hatch),o.prototype.type=\"hatch\",o.prototype.attrs=Object.keys(_.HatchScalar),u.prototype.type=\"hatch\",u.prototype.attrs=Object.keys(_.HatchVector)},\n", + " function _(e,o,a,s,r){s();const i=e(22);function l(e,o,a){e.moveTo(0,a+.5),e.lineTo(o,a+.5),e.stroke()}function n(e,o,a){e.moveTo(a+.5,0),e.lineTo(a+.5,o),e.stroke()}function t(e,o){e.moveTo(0,o),e.lineTo(o,0),e.stroke(),e.moveTo(0,0),e.lineTo(o,o),e.stroke()}a.hatch_aliases={\" \":\"blank\",\".\":\"dot\",o:\"ring\",\"-\":\"horizontal_line\",\"|\":\"vertical_line\",\"+\":\"cross\",'\"':\"horizontal_dash\",\":\":\"vertical_dash\",\"@\":\"spiral\",\"/\":\"right_diagonal_line\",\"\\\\\":\"left_diagonal_line\",x:\"diagonal_cross\",\",\":\"right_diagonal_dash\",\"`\":\"left_diagonal_dash\",v:\"horizontal_wave\",\">\":\"vertical_wave\",\"*\":\"criss_cross\"},a.get_pattern=function(e,o,s,r,c,k){return e.resize(c,c),e.prepare(),function(e,o,s,r,c,k){var _;const T=c,v=T/2,h=v/2,d=i.color2css(s,r);switch(e.strokeStyle=d,e.fillStyle=d,e.lineCap=\"square\",e.lineWidth=k,null!==(_=a.hatch_aliases[o])&&void 0!==_?_:o){case\"blank\":break;case\"dot\":e.arc(v,v,v/2,0,2*Math.PI,!0),e.fill();break;case\"ring\":e.arc(v,v,v/2,0,2*Math.PI,!0),e.stroke();break;case\"horizontal_line\":l(e,T,v);break;case\"vertical_line\":n(e,T,v);break;case\"cross\":l(e,T,v),n(e,T,v);break;case\"horizontal_dash\":l(e,v,v);break;case\"vertical_dash\":n(e,v,v);break;case\"spiral\":{const o=T/30;e.moveTo(v,v);for(let a=0;a<360;a++){const s=.1*a,r=v+o*s*Math.cos(s),i=v+o*s*Math.sin(s);e.lineTo(r,i)}e.stroke();break}case\"right_diagonal_line\":e.moveTo(.5-h,T),e.lineTo(h+.5,0),e.stroke(),e.moveTo(h+.5,T),e.lineTo(3*h+.5,0),e.stroke(),e.moveTo(3*h+.5,T),e.lineTo(5*h+.5,0),e.stroke(),e.stroke();break;case\"left_diagonal_line\":e.moveTo(h+.5,T),e.lineTo(.5-h,0),e.stroke(),e.moveTo(3*h+.5,T),e.lineTo(h+.5,0),e.stroke(),e.moveTo(5*h+.5,T),e.lineTo(3*h+.5,0),e.stroke(),e.stroke();break;case\"diagonal_cross\":t(e,T);break;case\"right_diagonal_dash\":e.moveTo(h+.5,3*h+.5),e.lineTo(3*h+.5,h+.5),e.stroke();break;case\"left_diagonal_dash\":e.moveTo(h+.5,h+.5),e.lineTo(3*h+.5,3*h+.5),e.stroke();break;case\"horizontal_wave\":e.moveTo(0,h),e.lineTo(v,3*h),e.lineTo(T,h),e.stroke();break;case\"vertical_wave\":e.moveTo(h,0),e.lineTo(3*h,v),e.lineTo(h,T),e.stroke();break;case\"criss_cross\":t(e,T),l(e,T,v),n(e,T,v)}}(e.ctx,o,s,r,c,k),e.canvas}},\n", + " function _(e,t,s,n,c){n();const a=e(14),i=e(8),r=e(13),l=e(19);class o extends a.HasProps{constructor(e){super(e)}get is_syncable(){return this.syncable}static init_Model(){this.define((({Any:e,Unknown:t,Boolean:s,String:n,Array:c,Dict:a,Nullable:i})=>({tags:[c(t),[]],name:[i(n),null],js_property_callbacks:[a(c(e)),{}],js_event_callbacks:[a(c(e)),{}],subscribed_events:[c(n),[]],syncable:[s,!0]})))}initialize(){super.initialize(),this._js_callbacks=new Map}connect_signals(){super.connect_signals(),this._update_property_callbacks(),this.connect(this.properties.js_property_callbacks.change,(()=>this._update_property_callbacks())),this.connect(this.properties.js_event_callbacks.change,(()=>this._update_event_callbacks())),this.connect(this.properties.subscribed_events.change,(()=>this._update_event_callbacks()))}_process_event(e){var t;for(const s of null!==(t=this.js_event_callbacks[e.event_name])&&void 0!==t?t:[])s.execute(e);null!=this.document&&this.subscribed_events.some((t=>t==e.event_name))&&this.document.event_manager.send_event(e)}trigger_event(e){null!=this.document&&(e.origin=this,this.document.event_manager.trigger(e))}_update_event_callbacks(){null!=this.document?this.document.event_manager.subscribed_models.add(this):l.logger.warn(\"WARNING: Document not defined for updating event callbacks\")}_update_property_callbacks(){const e=e=>{const[t,s=null]=e.split(\":\");return null!=s?this.properties[s][t]:this[t]};for(const[t,s]of this._js_callbacks){const n=e(t);for(const e of s)this.disconnect(n,e)}this._js_callbacks.clear();for(const[t,s]of r.entries(this.js_property_callbacks)){const n=s.map((e=>()=>e.execute(this)));this._js_callbacks.set(t,n);const c=e(t);for(const e of n)this.connect(c,e)}}_doc_attached(){r.isEmpty(this.js_event_callbacks)&&0==this.subscribed_events.length||this._update_event_callbacks()}_doc_detached(){this.document.event_manager.subscribed_models.delete(this)}select(e){if(i.isString(e))return[...this.references()].filter((t=>t instanceof o&&t.name===e));if(e.prototype instanceof a.HasProps)return[...this.references()].filter((t=>t instanceof e));throw new Error(\"invalid selector\")}select_one(e){const t=this.select(e);switch(t.length){case 0:return null;case 1:return t[0];default:throw new Error(\"found more than one object matching given selector\")}}}s.Model=o,o.__name__=\"Model\",o.init_Model()},\n", + " function _(s,e,_,t,a){t();class r{constructor(s,e){this.x_scale=s,this.y_scale=e,this.x_range=this.x_scale.source_range,this.y_range=this.y_scale.source_range,this.ranges=[this.x_range,this.y_range],this.scales=[this.x_scale,this.y_scale]}map_to_screen(s,e){return[this.x_scale.v_compute(s),this.y_scale.v_compute(e)]}map_from_screen(s,e){return[this.x_scale.v_invert(s),this.y_scale.v_invert(e)]}}_.CoordinateTransform=r,r.__name__=\"CoordinateTransform\"},\n", + " function _(t,e,s,a,i){a();const n=t(1),_=t(56),r=t(133),o=t(48),l=t(20),d=t(24),h=t(122),c=n.__importStar(t(18)),u=t(10);class v extends _.DataAnnotationView{async lazy_initialize(){await super.lazy_initialize();const{start:t,end:e}=this.model;null!=t&&(this.start=await h.build_view(t,{parent:this})),null!=e&&(this.end=await h.build_view(e,{parent:this}))}set_data(t){var e,s;super.set_data(t),null===(e=this.start)||void 0===e||e.set_data(t),null===(s=this.end)||void 0===s||s.set_data(t)}remove(){var t,e;null===(t=this.start)||void 0===t||t.remove(),null===(e=this.end)||void 0===e||e.remove(),super.remove()}map_data(){const{frame:t}=this.plot_view;\"data\"==this.model.start_units?(this._sx_start=this.coordinates.x_scale.v_compute(this._x_start),this._sy_start=this.coordinates.y_scale.v_compute(this._y_start)):(this._sx_start=t.bbox.xview.v_compute(this._x_start),this._sy_start=t.bbox.yview.v_compute(this._y_start)),\"data\"==this.model.end_units?(this._sx_end=this.coordinates.x_scale.v_compute(this._x_end),this._sy_end=this.coordinates.y_scale.v_compute(this._y_end)):(this._sx_end=t.bbox.xview.v_compute(this._x_end),this._sy_end=t.bbox.yview.v_compute(this._y_end));const{_sx_start:e,_sy_start:s,_sx_end:a,_sy_end:i}=this,n=e.length,_=this._angles=new d.ScreenArray(n);for(let t=0;t({x_start:[c.XCoordinateSpec,{field:\"x_start\"}],y_start:[c.YCoordinateSpec,{field:\"y_start\"}],start_units:[l.SpatialUnits,\"data\"],start:[e(t(r.ArrowHead)),null],x_end:[c.XCoordinateSpec,{field:\"x_end\"}],y_end:[c.YCoordinateSpec,{field:\"y_end\"}],end_units:[l.SpatialUnits,\"data\"],end:[e(t(r.ArrowHead)),()=>new r.OpenHead]})))}}s.Arrow=p,p.__name__=\"Arrow\",p.init_Arrow()},\n", + " function _(t,n,s,a,e){a();const i=t(1),o=t(40),c=t(57),_=t(130),r=t(65),l=i.__importStar(t(18));class h extends o.AnnotationView{constructor(){super(...arguments),this._initial_set_data=!1}connect_signals(){super.connect_signals();const t=()=>{this.set_data(this.model.source),this.request_render()};this.connect(this.model.change,t),this.connect(this.model.source.streaming,t),this.connect(this.model.source.patching,t),this.connect(this.model.source.change,t)}set_data(t){const n=this;for(const s of this.model)if(s instanceof l.VectorSpec||s instanceof l.ScalarSpec)if(s instanceof l.BaseCoordinateSpec){const a=s.array(t);n[`_${s.attr}`]=a}else{const a=s.uniform(t);n[`${s.attr}`]=a}this.plot_model.use_map&&(null!=n._x&&r.inplace.project_xy(n._x,n._y),null!=n._xs&&r.inplace.project_xsys(n._xs,n._ys));for(const t of this.visuals)t.update()}_render(){this._initial_set_data||(this.set_data(this.model.source),this._initial_set_data=!0),this.map_data(),this.paint(this.layer.ctx)}}s.DataAnnotationView=h,h.__name__=\"DataAnnotationView\";class u extends o.Annotation{constructor(t){super(t)}static init_DataAnnotation(){this.define((({Ref:t})=>({source:[t(c.ColumnarDataSource),()=>new _.ColumnDataSource]})))}}s.DataAnnotation=u,u.__name__=\"DataAnnotation\",u.init_DataAnnotation()},\n", + " function _(t,e,n,a,i){a();const s=t(58),r=t(15),l=t(19),o=t(60),c=t(8),u=t(9),h=t(13),g=t(59),d=t(129),_=t(29);class m extends s.DataSource{constructor(t){super(t)}get_array(t){let e=this.data[t];return null==e?this.data[t]=e=[]:c.isArray(e)||(this.data[t]=e=Array.from(e)),e}static init_ColumnarDataSource(){this.define((({Ref:t})=>({selection_policy:[t(d.SelectionPolicy),()=>new d.UnionRenderers]}))),this.internal((({AnyRef:t})=>({selection_manager:[t(),t=>new o.SelectionManager({source:t})],inspected:[t(),()=>new g.Selection]})))}initialize(){super.initialize(),this._select=new r.Signal0(this,\"select\"),this.inspect=new r.Signal(this,\"inspect\"),this.streaming=new r.Signal0(this,\"streaming\"),this.patching=new r.Signal(this,\"patching\")}get_column(t){const e=this.data[t];return null!=e?e:null}columns(){return h.keys(this.data)}get_length(t=!0){const e=u.uniq(h.values(this.data).map((t=>_.is_NDArray(t)?t.shape[0]:t.length)));switch(e.length){case 0:return null;case 1:return e[0];default:{const n=\"data source has columns of inconsistent lengths\";if(t)return l.logger.warn(n),e.sort()[0];throw new Error(n)}}}get length(){var t;return null!==(t=this.get_length())&&void 0!==t?t:0}clear(){const t={};for(const e of this.columns())t[e]=new this.data[e].constructor(0);this.data=t}}n.ColumnarDataSource=m,m.__name__=\"ColumnarDataSource\",m.init_ColumnarDataSource()},\n", + " function _(e,t,c,n,a){n();const o=e(53),i=e(59);class s extends o.Model{constructor(e){super(e)}static init_DataSource(){this.define((({Ref:e})=>({selected:[e(i.Selection),()=>new i.Selection]})))}}c.DataSource=s,s.__name__=\"DataSource\",s.init_DataSource()},\n", + " function _(i,e,s,t,n){t();const l=i(53),c=i(9),h=i(13);class d extends l.Model{constructor(i){super(i)}get_view(){return this.view}static init_Selection(){this.define((({Int:i,Array:e,Dict:s})=>({indices:[e(i),[]],line_indices:[e(i),[]],multiline_indices:[s(e(i)),{}]}))),this.internal((({Int:i,Array:e,AnyRef:s,Struct:t,Nullable:n})=>({selected_glyphs:[e(s()),[]],view:[n(s()),null],image_indices:[e(t({index:i,dim1:i,dim2:i,flat_index:i})),[]]})))}get selected_glyph(){return this.selected_glyphs.length>0?this.selected_glyphs[0]:null}add_to_selected_glyphs(i){this.selected_glyphs.push(i)}update(i,e=!0,s=\"replace\"){switch(s){case\"replace\":this.indices=i.indices,this.line_indices=i.line_indices,this.selected_glyphs=i.selected_glyphs,this.view=i.view,this.multiline_indices=i.multiline_indices,this.image_indices=i.image_indices;break;case\"append\":this.update_through_union(i);break;case\"intersect\":this.update_through_intersection(i);break;case\"subtract\":this.update_through_subtraction(i)}}clear(){this.indices=[],this.line_indices=[],this.multiline_indices={},this.view=null,this.selected_glyphs=[]}is_empty(){return 0==this.indices.length&&0==this.line_indices.length&&0==this.image_indices.length}update_through_union(i){this.indices=c.union(this.indices,i.indices),this.selected_glyphs=c.union(i.selected_glyphs,this.selected_glyphs),this.line_indices=c.union(i.line_indices,this.line_indices),this.view=i.view,this.multiline_indices=h.merge(i.multiline_indices,this.multiline_indices)}update_through_intersection(i){this.indices=c.intersection(this.indices,i.indices),this.selected_glyphs=c.union(i.selected_glyphs,this.selected_glyphs),this.line_indices=c.union(i.line_indices,this.line_indices),this.view=i.view,this.multiline_indices=h.merge(i.multiline_indices,this.multiline_indices)}update_through_subtraction(i){this.indices=c.difference(this.indices,i.indices),this.selected_glyphs=c.union(i.selected_glyphs,this.selected_glyphs),this.line_indices=c.union(i.line_indices,this.line_indices),this.view=i.view,this.multiline_indices=h.merge(i.multiline_indices,this.multiline_indices)}}s.Selection=d,d.__name__=\"Selection\",d.init_Selection()},\n", + " function _(e,t,s,n,i){n();const o=e(14),c=e(59),r=e(61),l=e(123);class p extends o.HasProps{constructor(e){super(e),this.inspectors=new Map}static init_SelectionManager(){this.internal((({AnyRef:e})=>({source:[e()]})))}select(e,t,s,n=\"replace\"){const i=[],o=[];for(const t of e)t instanceof r.GlyphRendererView?i.push(t):t instanceof l.GraphRendererView&&o.push(t);let c=!1;for(const e of o){const i=e.model.selection_policy.hit_test(t,e);c=c||e.model.selection_policy.do_selection(i,e.model,s,n)}if(i.length>0){const e=this.source.selection_policy.hit_test(t,i);c=c||this.source.selection_policy.do_selection(e,this.source,s,n)}return c}inspect(e,t){let s=!1;if(e instanceof r.GlyphRendererView){const n=e.hit_test(t);if(null!=n){s=!n.is_empty();const i=this.get_or_create_inspector(e.model);i.update(n,!0,\"replace\"),this.source.setv({inspected:i},{silent:!0}),this.source.inspect.emit([e.model,{geometry:t}])}}else if(e instanceof l.GraphRendererView){const n=e.model.inspection_policy.hit_test(t,e);s=s||e.model.inspection_policy.do_inspection(n,t,e,!1,\"replace\")}return s}clear(e){this.source.selected.clear(),null!=e&&this.get_or_create_inspector(e.model).clear()}get_or_create_inspector(e){let t=this.inspectors.get(e);return null==t&&(t=new c.Selection,this.inspectors.set(e,t)),t}}s.SelectionManager=p,p.__name__=\"SelectionManager\",p.init_SelectionManager()},\n", + " function _(e,t,i,s,l){s();const h=e(62),n=e(63),o=e(116),a=e(117),c=e(119),d=e(98),_=e(57),r=e(120),p=e(24),g=e(12),u=e(9),y=e(13),m=e(122),v=e(104),f={fill:{},line:{}},w={fill:{fill_alpha:.3,fill_color:\"grey\"},line:{line_alpha:.3,line_color:\"grey\"}},b={fill:{fill_alpha:.2},line:{}};class V extends h.DataRendererView{get glyph_view(){return this.glyph}async lazy_initialize(){var e,t;await super.lazy_initialize();const i=this.model.glyph;this.glyph=await this.build_glyph_view(i);const s=\"fill\"in this.glyph.visuals,l=\"line\"in this.glyph.visuals,h=Object.assign({},i.attributes);function n(e){const t=y.clone(h);return s&&y.extend(t,e.fill),l&&y.extend(t,e.line),new i.constructor(t)}delete h.id;let{selection_glyph:o}=this.model;null==o?o=n({fill:{},line:{}}):\"auto\"==o&&(o=n(f)),this.selection_glyph=await this.build_glyph_view(o);let{nonselection_glyph:a}=this.model;null==a?a=n({fill:{},line:{}}):\"auto\"==a&&(a=n(b)),this.nonselection_glyph=await this.build_glyph_view(a);const{hover_glyph:c}=this.model;null!=c&&(this.hover_glyph=await this.build_glyph_view(c));const{muted_glyph:d}=this.model;null!=d&&(this.muted_glyph=await this.build_glyph_view(d));const _=n(w);this.decimated_glyph=await this.build_glyph_view(_),this.selection_glyph.set_base(this.glyph),this.nonselection_glyph.set_base(this.glyph),null===(e=this.hover_glyph)||void 0===e||e.set_base(this.glyph),null===(t=this.muted_glyph)||void 0===t||t.set_base(this.glyph),this.decimated_glyph.set_base(this.glyph),this.set_data()}async build_glyph_view(e){return m.build_view(e,{parent:this})}remove(){var e,t;this.glyph.remove(),this.selection_glyph.remove(),this.nonselection_glyph.remove(),null===(e=this.hover_glyph)||void 0===e||e.remove(),null===(t=this.muted_glyph)||void 0===t||t.remove(),this.decimated_glyph.remove(),super.remove()}connect_signals(){super.connect_signals();const e=()=>this.request_render(),t=()=>this.update_data();this.connect(this.model.change,e),this.connect(this.glyph.model.change,t),this.connect(this.selection_glyph.model.change,t),this.connect(this.nonselection_glyph.model.change,t),null!=this.hover_glyph&&this.connect(this.hover_glyph.model.change,t),null!=this.muted_glyph&&this.connect(this.muted_glyph.model.change,t),this.connect(this.decimated_glyph.model.change,t),this.connect(this.model.data_source.change,t),this.connect(this.model.data_source.streaming,t),this.connect(this.model.data_source.patching,(e=>this.update_data(e))),this.connect(this.model.data_source.selected.change,e),this.connect(this.model.data_source._select,e),null!=this.hover_glyph&&this.connect(this.model.data_source.inspect,e),this.connect(this.model.properties.view.change,t),this.connect(this.model.view.properties.indices.change,t),this.connect(this.model.view.properties.masked.change,(()=>this.set_visuals())),this.connect(this.model.properties.visible.change,(()=>this.plot_view.invalidate_dataranges=!0));const{x_ranges:i,y_ranges:s}=this.plot_view.frame;for(const[,e]of i)e instanceof v.FactorRange&&this.connect(e.change,t);for(const[,e]of s)e instanceof v.FactorRange&&this.connect(e.change,t);const{transformchange:l,exprchange:h}=this.model.glyph;this.connect(l,t),this.connect(h,t)}_update_masked_indices(){const e=this.glyph.mask_data();return this.model.view.masked=e,e}update_data(e){this.set_data(e),this.request_render()}set_data(e){const t=this.model.data_source;this.all_indices=this.model.view.indices;const{all_indices:i}=this;this.glyph.set_data(t,i,e),this.set_visuals(),this._update_masked_indices();const{lod_factor:s}=this.plot_model,l=this.all_indices.count;this.decimated=new p.Indices(l);for(let e=0;e!d||d.is_empty()?[]:d.selected_glyph?this.model.view.convert_indices_from_subset(i):d.indices.length>0?d.indices:Object.keys(d.multiline_indices).map((e=>parseInt(e))))()),r=g.filter(i,(e=>_.has(t[e]))),{lod_threshold:p}=this.plot_model;let y,m,v;if(null!=this.model.document&&this.model.document.interactive_duration()>0&&!e&&null!=p&&t.length>p?(i=[...this.decimated],y=this.decimated_glyph,m=this.decimated_glyph,v=this.selection_glyph):(y=this.model.muted&&null!=this.muted_glyph?this.muted_glyph:this.glyph,m=this.nonselection_glyph,v=this.selection_glyph),null!=this.hover_glyph&&r.length&&(i=u.difference(i,r)),h.length){const e={};for(const t of h)e[t]=!0;const l=new Array,o=new Array;if(this.glyph instanceof n.LineView)for(const i of t)null!=e[i]?l.push(i):o.push(i);else for(const s of i)null!=e[t[s]]?l.push(s):o.push(s);m.render(s,o),v.render(s,l),null!=this.hover_glyph&&(this.glyph instanceof n.LineView?this.hover_glyph.render(s,this.model.view.convert_indices_from_subset(r)):this.hover_glyph.render(s,r))}else if(this.glyph instanceof n.LineView)this.hover_glyph&&r.length?this.hover_glyph.render(s,this.model.view.convert_indices_from_subset(r)):y.render(s,t);else if(this.glyph instanceof o.PatchView||this.glyph instanceof a.HAreaView||this.glyph instanceof c.VAreaView)if(0==d.selected_glyphs.length||null==this.hover_glyph)y.render(s,t);else for(const e of d.selected_glyphs)e==this.glyph.model&&this.hover_glyph.render(s,t);else y.render(s,i),this.hover_glyph&&r.length&&this.hover_glyph.render(s,r);s.restore()}draw_legend(e,t,i,s,l,h,n,o){0!=this.glyph.data_size&&(null==o&&(o=this.model.get_reference_point(h,n)),this.glyph.draw_legend_for_index(e,{x0:t,x1:i,y0:s,y1:l},o))}hit_test(e){if(!this.model.visible)return null;const t=this.glyph.hit_test(e);return null==t?null:this.model.view.convert_selection_from_subset(t)}}i.GlyphRendererView=V,V.__name__=\"GlyphRendererView\";class G extends h.DataRenderer{constructor(e){super(e)}static init_GlyphRenderer(){this.prototype.default_view=V,this.define((({Boolean:e,Auto:t,Or:i,Ref:s,Null:l,Nullable:h})=>({data_source:[s(_.ColumnarDataSource)],view:[s(r.CDSView),e=>new r.CDSView({source:e.data_source})],glyph:[s(d.Glyph)],hover_glyph:[h(s(d.Glyph)),null],nonselection_glyph:[i(s(d.Glyph),t,l),\"auto\"],selection_glyph:[i(s(d.Glyph),t,l),\"auto\"],muted_glyph:[h(s(d.Glyph)),null],muted:[e,!1]})))}initialize(){super.initialize(),this.view.source!=this.data_source&&(this.view.source=this.data_source,this.view.compute_indices())}get_reference_point(e,t){if(null!=e){const i=this.data_source.get_column(e);if(null!=i)for(const[e,s]of Object.entries(this.view.indices_map))if(i[parseInt(e)]==t)return s}return 0}get_selection_manager(){return this.data_source.selection_manager}}i.GlyphRenderer=G,G.__name__=\"GlyphRenderer\",G.init_GlyphRenderer()},\n", + " function _(e,r,t,a,n){a();const s=e(41);class i extends s.RendererView{get xscale(){return this.coordinates.x_scale}get yscale(){return this.coordinates.y_scale}}t.DataRendererView=i,i.__name__=\"DataRendererView\";class _ extends s.Renderer{constructor(e){super(e)}static init_DataRenderer(){this.override({level:\"glyph\"})}get selection_manager(){return this.get_selection_manager()}}t.DataRenderer=_,_.__name__=\"DataRenderer\",_.init_DataRenderer()},\n", + " function _(e,i,t,s,n){s();const l=e(1),_=e(64),r=e(106),h=e(108),o=l.__importStar(e(48)),a=l.__importStar(e(107)),c=e(59);class d extends _.XYGlyphView{initialize(){super.initialize();const{webgl:e}=this.renderer.plot_view.canvas_view;null!=e&&(this.glglyph=new h.LineGL(e.gl,this))}_render(e,i,t){const{sx:s,sy:n}=null!=t?t:this;let l=!0;e.beginPath();for(const t of i){const i=s[t],_=n[t];isFinite(i+_)?l?(e.moveTo(i,_),l=!1):e.lineTo(i,_):l=!0}this.visuals.line.set_value(e),e.stroke()}_hit_point(e){const i=new c.Selection,t={x:e.sx,y:e.sy};let s=9999;const n=Math.max(2,this.line_width.value/2);for(let e=0,l=this.sx.length-1;e({x:[p.XCoordinateSpec,{field:\"x\"}],y:[p.YCoordinateSpec,{field:\"y\"}]})))}}i.XYGlyph=d,d.__name__=\"XYGlyph\",d.init_XYGlyph()},\n", + " function _(n,t,e,o,r){o();const c=n(1),l=c.__importDefault(n(66)),i=c.__importDefault(n(67)),u=n(24),a=new i.default(\"GOOGLE\"),s=new i.default(\"WGS84\"),f=l.default(s,a);e.wgs84_mercator={compute:(n,t)=>isFinite(n)&&isFinite(t)?f.forward([n,t]):[NaN,NaN],invert:(n,t)=>isFinite(n)&&isFinite(t)?f.inverse([n,t]):[NaN,NaN]};const _={lon:[-20026376.39,20026376.39],lat:[-20048966.1,20048966.1]},p={lon:[-180,180],lat:[-85.06,85.06]},{min:g,max:h}=Math;function m(n,t){const o=g(n.length,t.length),r=u.infer_type(n,t),c=new r(o),l=new r(o);return e.inplace.project_xy(n,t,c,l),[c,l]}e.clip_mercator=function(n,t,e){const[o,r]=_[e];return[h(n,o),g(t,r)]},e.in_bounds=function(n,t){const[e,o]=p[t];return e2?void 0!==e.name&&\"geocent\"===e.name||void 0!==n.name&&\"geocent\"===n.name?\"number\"==typeof r.z?[r.x,r.y,r.z].concat(t.splice(3)):[r.x,r.y,t[2]].concat(t.splice(3)):[r.x,r.y].concat(t.splice(2)):[r.x,r.y]):(o=c.default(e,n,t),2===(a=Object.keys(t)).length||a.forEach((function(r){if(void 0!==e.name&&\"geocent\"===e.name||void 0!==n.name&&\"geocent\"===n.name){if(\"x\"===r||\"y\"===r||\"z\"===r)return}else if(\"x\"===r||\"y\"===r)return;o[r]=t[r]})),o)}function l(e){return e instanceof i.default?e:e.oProj?e.oProj:i.default(e)}t.default=function(e,n,t){e=l(e);var r,o=!1;return void 0===n?(n=e,e=u,o=!0):(void 0!==n.x||Array.isArray(n))&&(t=n,n=e,e=u,o=!0),n=l(n),t?f(e,n,t):(r={forward:function(t){return f(e,n,t)},inverse:function(t){return f(n,e,t)}},o&&(r.oProj=n),r)}},\n", + " function _(t,e,a,s,i){s();const u=t(1),l=u.__importDefault(t(68)),o=u.__importDefault(t(79)),r=u.__importDefault(t(80)),f=t(88),p=u.__importDefault(t(90)),d=u.__importDefault(t(91)),m=u.__importDefault(t(75));function n(t,e){if(!(this instanceof n))return new n(t);e=e||function(t){if(t)throw t};var a=l.default(t);if(\"object\"==typeof a){var s=n.projections.get(a.projName);if(s){if(a.datumCode&&\"none\"!==a.datumCode){var i=m.default(p.default,a.datumCode);i&&(a.datum_params=i.towgs84?i.towgs84.split(\",\"):null,a.ellps=i.ellipse,a.datumName=i.datumName?i.datumName:a.datumCode)}a.k0=a.k0||1,a.axis=a.axis||\"enu\",a.ellps=a.ellps||\"wgs84\";var u=f.sphere(a.a,a.b,a.rf,a.ellps,a.sphere),r=f.eccentricity(u.a,u.b,u.rf,a.R_A),h=a.datum||d.default(a.datumCode,a.datum_params,u.a,u.b,r.es,r.ep2);o.default(this,a),o.default(this,s),this.a=u.a,this.b=u.b,this.rf=u.rf,this.sphere=u.sphere,this.es=r.es,this.e=r.e,this.ep2=r.ep2,this.datum=h,this.init(),e(null,this)}else e(t)}else e(t)}n.projections=r.default,n.projections.start(),a.default=n},\n", + " function _(t,r,n,u,e){u();const f=t(1),i=f.__importDefault(t(69)),a=f.__importDefault(t(76)),o=f.__importDefault(t(71)),l=f.__importDefault(t(75));var C=[\"PROJECTEDCRS\",\"PROJCRS\",\"GEOGCS\",\"GEOCCS\",\"PROJCS\",\"LOCAL_CS\",\"GEODCRS\",\"GEODETICCRS\",\"GEODETICDATUM\",\"ENGCRS\",\"ENGINEERINGCRS\"];var d=[\"3857\",\"900913\",\"3785\",\"102113\"];n.default=function(t){if(!function(t){return\"string\"==typeof t}(t))return t;if(function(t){return t in i.default}(t))return i.default[t];if(function(t){return C.some((function(r){return t.indexOf(r)>-1}))}(t)){var r=a.default(t);if(function(t){var r=l.default(t,\"authority\");if(r){var n=l.default(r,\"epsg\");return n&&d.indexOf(n)>-1}}(r))return i.default[\"EPSG:3857\"];var n=function(t){var r=l.default(t,\"extension\");if(r)return l.default(r,\"proj4\")}(r);return n?o.default(n):r}return function(t){return\"+\"===t[0]}(t)?o.default(t):void 0}},\n", + " function _(t,r,i,e,n){e();const f=t(1),a=f.__importDefault(t(70)),l=f.__importDefault(t(71)),u=f.__importDefault(t(76));function o(t){var r=this;if(2===arguments.length){var i=arguments[1];\"string\"==typeof i?\"+\"===i.charAt(0)?o[t]=l.default(arguments[1]):o[t]=u.default(arguments[1]):o[t]=i}else if(1===arguments.length){if(Array.isArray(t))return t.map((function(t){Array.isArray(t)?o.apply(r,t):o(t)}));if(\"string\"==typeof t){if(t in o)return o[t]}else\"EPSG\"in t?o[\"EPSG:\"+t.EPSG]=t:\"ESRI\"in t?o[\"ESRI:\"+t.ESRI]=t:\"IAU2000\"in t?o[\"IAU2000:\"+t.IAU2000]=t:console.log(t);return}}a.default(o),i.default=o},\n", + " function _(t,l,G,S,e){S(),G.default=function(t){t(\"EPSG:4326\",\"+title=WGS 84 (long/lat) +proj=longlat +ellps=WGS84 +datum=WGS84 +units=degrees\"),t(\"EPSG:4269\",\"+title=NAD83 (long/lat) +proj=longlat +a=6378137.0 +b=6356752.31414036 +ellps=GRS80 +datum=NAD83 +units=degrees\"),t(\"EPSG:3857\",\"+title=WGS 84 / Pseudo-Mercator +proj=merc +a=6378137 +b=6378137 +lat_ts=0.0 +lon_0=0.0 +x_0=0.0 +y_0=0 +k=1.0 +units=m +nadgrids=@null +no_defs\"),t.WGS84=t[\"EPSG:4326\"],t[\"EPSG:3785\"]=t[\"EPSG:3857\"],t.GOOGLE=t[\"EPSG:3857\"],t[\"EPSG:900913\"]=t[\"EPSG:3857\"],t[\"EPSG:102113\"]=t[\"EPSG:3857\"]}},\n", + " function _(t,n,o,a,u){a();const e=t(1),r=t(72),i=e.__importDefault(t(73)),f=e.__importDefault(t(74)),l=e.__importDefault(t(75));o.default=function(t){var n,o,a,u={},e=t.split(\"+\").map((function(t){return t.trim()})).filter((function(t){return t})).reduce((function(t,n){var o=n.split(\"=\");return o.push(!0),t[o[0].toLowerCase()]=o[1],t}),{}),c={proj:\"projName\",datum:\"datumCode\",rf:function(t){u.rf=parseFloat(t)},lat_0:function(t){u.lat0=t*r.D2R},lat_1:function(t){u.lat1=t*r.D2R},lat_2:function(t){u.lat2=t*r.D2R},lat_ts:function(t){u.lat_ts=t*r.D2R},lon_0:function(t){u.long0=t*r.D2R},lon_1:function(t){u.long1=t*r.D2R},lon_2:function(t){u.long2=t*r.D2R},alpha:function(t){u.alpha=parseFloat(t)*r.D2R},lonc:function(t){u.longc=t*r.D2R},x_0:function(t){u.x0=parseFloat(t)},y_0:function(t){u.y0=parseFloat(t)},k_0:function(t){u.k0=parseFloat(t)},k:function(t){u.k0=parseFloat(t)},a:function(t){u.a=parseFloat(t)},b:function(t){u.b=parseFloat(t)},r_a:function(){u.R_A=!0},zone:function(t){u.zone=parseInt(t,10)},south:function(){u.utmSouth=!0},towgs84:function(t){u.datum_params=t.split(\",\").map((function(t){return parseFloat(t)}))},to_meter:function(t){u.to_meter=parseFloat(t)},units:function(t){u.units=t;var n=l.default(f.default,t);n&&(u.to_meter=n.to_meter)},from_greenwich:function(t){u.from_greenwich=t*r.D2R},pm:function(t){var n=l.default(i.default,t);u.from_greenwich=(n||parseFloat(t))*r.D2R},nadgrids:function(t){\"@null\"===t?u.datumCode=\"none\":u.nadgrids=t},axis:function(t){var n=\"ewnsud\";3===t.length&&-1!==n.indexOf(t.substr(0,1))&&-1!==n.indexOf(t.substr(1,1))&&-1!==n.indexOf(t.substr(2,1))&&(u.axis=t)}};for(n in e)o=e[n],n in c?\"function\"==typeof(a=c[n])?a(o):u[a]=o:u[n]=o;return\"string\"==typeof u.datumCode&&\"WGS84\"!==u.datumCode&&(u.datumCode=u.datumCode.toLowerCase()),u}},\n", + " function _(P,A,_,D,I){D(),_.PJD_3PARAM=1,_.PJD_7PARAM=2,_.PJD_WGS84=4,_.PJD_NODATUM=5,_.SEC_TO_RAD=484813681109536e-20,_.HALF_PI=Math.PI/2,_.SIXTH=.16666666666666666,_.RA4=.04722222222222222,_.RA6=.022156084656084655,_.EPSLN=1e-10,_.D2R=.017453292519943295,_.R2D=57.29577951308232,_.FORTPI=Math.PI/4,_.TWO_PI=2*Math.PI,_.SPI=3.14159265359},\n", + " function _(o,r,a,e,s){e();var n={};a.default=n,n.greenwich=0,n.lisbon=-9.131906111111,n.paris=2.337229166667,n.bogota=-74.080916666667,n.madrid=-3.687938888889,n.rome=12.452333333333,n.bern=7.439583333333,n.jakarta=106.807719444444,n.ferro=-17.666666666667,n.brussels=4.367975,n.stockholm=18.058277777778,n.athens=23.7163375,n.oslo=10.722916666667},\n", + " function _(t,e,f,o,u){o(),f.default={ft:{to_meter:.3048},\"us-ft\":{to_meter:1200/3937}}},\n", + " function _(e,r,t,a,n){a();var o=/[\\s_\\-\\/\\(\\)]/g;t.default=function(e,r){if(e[r])return e[r];for(var t,a=Object.keys(e),n=r.toLowerCase().replace(o,\"\"),f=-1;++f0?90:-90),e.lat_ts=e.lat1)}(d),d}},\n", + " function _(t,e,r,i,s){i(),r.default=function(t){return new d(t).output()};var h=/\\s/,o=/[A-Za-z]/,n=/[A-Za-z84]/,a=/[,\\]]/,u=/[\\d\\.E\\-\\+]/;function d(t){if(\"string\"!=typeof t)throw new Error(\"not a string\");this.text=t.trim(),this.level=0,this.place=0,this.root=null,this.stack=[],this.currentObject=null,this.state=1}d.prototype.readCharicter=function(){var t=this.text[this.place++];if(4!==this.state)for(;h.test(t);){if(this.place>=this.text.length)return;t=this.text[this.place++]}switch(this.state){case 1:return this.neutral(t);case 2:return this.keyword(t);case 4:return this.quoted(t);case 5:return this.afterquote(t);case 3:return this.number(t);case-1:return}},d.prototype.afterquote=function(t){if('\"'===t)return this.word+='\"',void(this.state=4);if(a.test(t))return this.word=this.word.trim(),void this.afterItem(t);throw new Error(\"havn't handled \\\"\"+t+'\" in afterquote yet, index '+this.place)},d.prototype.afterItem=function(t){return\",\"===t?(null!==this.word&&this.currentObject.push(this.word),this.word=null,void(this.state=1)):\"]\"===t?(this.level--,null!==this.word&&(this.currentObject.push(this.word),this.word=null),this.state=1,this.currentObject=this.stack.pop(),void(this.currentObject||(this.state=-1))):void 0},d.prototype.number=function(t){if(!u.test(t)){if(a.test(t))return this.word=parseFloat(this.word),void this.afterItem(t);throw new Error(\"havn't handled \\\"\"+t+'\" in number yet, index '+this.place)}this.word+=t},d.prototype.quoted=function(t){'\"'!==t?this.word+=t:this.state=5},d.prototype.keyword=function(t){if(n.test(t))this.word+=t;else{if(\"[\"===t){var e=[];return e.push(this.word),this.level++,null===this.root?this.root=e:this.currentObject.push(e),this.stack.push(this.currentObject),this.currentObject=e,void(this.state=1)}if(!a.test(t))throw new Error(\"havn't handled \\\"\"+t+'\" in keyword yet, index '+this.place);this.afterItem(t)}},d.prototype.neutral=function(t){if(o.test(t))return this.word=t,void(this.state=2);if('\"'===t)return this.word=\"\",void(this.state=4);if(u.test(t))return this.word=t,void(this.state=3);if(!a.test(t))throw new Error(\"havn't handled \\\"\"+t+'\" in neutral yet, index '+this.place);this.afterItem(t)},d.prototype.output=function(){for(;this.place90&&a*o.R2D<-90&&h*o.R2D>180&&h*o.R2D<-180)return null;if(Math.abs(Math.abs(a)-o.HALF_PI)<=o.EPSLN)return null;if(this.sphere)i=this.x0+this.a*this.k0*n.default(h-this.long0),s=this.y0+this.a*this.k0*Math.log(Math.tan(o.FORTPI+.5*a));else{var e=Math.sin(a),r=l.default(this.e,a,e);i=this.x0+this.a*this.k0*n.default(h-this.long0),s=this.y0-this.a*this.k0*Math.log(r)}return t.x=i,t.y=s,t}function M(t){var i,s,h=t.x-this.x0,a=t.y-this.y0;if(this.sphere)s=o.HALF_PI-2*Math.atan(Math.exp(-a/(this.a*this.k0)));else{var e=Math.exp(-a/(this.a*this.k0));if(-9999===(s=u.default(this.e,e)))return null}return i=n.default(this.long0+h/(this.a*this.k0)),t.x=i,t.y=s,t}s.init=f,s.forward=_,s.inverse=M,s.names=[\"Mercator\",\"Popular Visualisation Pseudo Mercator\",\"Mercator_1SP\",\"Mercator_Auxiliary_Sphere\",\"merc\"],s.default={init:f,forward:_,inverse:M,names:s.names}},\n", + " function _(t,n,r,u,a){u(),r.default=function(t,n,r){var u=t*n;return r/Math.sqrt(1-u*u)}},\n", + " function _(t,n,u,a,f){a();const e=t(1),o=t(72),_=e.__importDefault(t(84));u.default=function(t){return Math.abs(t)<=o.SPI?t:t-_.default(t)*o.TWO_PI}},\n", + " function _(n,t,u,f,c){f(),u.default=function(n){return n<0?-1:1}},\n", + " function _(t,n,a,o,u){o();const c=t(72);a.default=function(t,n,a){var o=t*a,u=.5*t;return o=Math.pow((1-o)/(1+o),u),Math.tan(.5*(c.HALF_PI-n))/o}},\n", + " function _(t,a,n,r,f){r();const h=t(72);n.default=function(t,a){for(var n,r,f=.5*t,o=h.HALF_PI-2*Math.atan(a),u=0;u<=15;u++)if(n=t*Math.sin(o),o+=r=h.HALF_PI-2*Math.atan(a*Math.pow((1-n)/(1+n),f))-o,Math.abs(r)<=1e-10)return o;return-9999}},\n", + " function _(n,i,e,t,r){function a(){}function f(n){return n}t(),e.init=a,e.forward=f,e.inverse=f,e.names=[\"longlat\",\"identity\"],e.default={init:a,forward:f,inverse:f,names:e.names}},\n", + " function _(t,r,e,a,n){a();const f=t(1),i=t(72),u=f.__importStar(t(89)),c=f.__importDefault(t(75));e.eccentricity=function(t,r,e,a){var n=t*t,f=r*r,u=(n-f)/n,c=0;return a?(n=(t*=1-u*(i.SIXTH+u*(i.RA4+u*i.RA6)))*t,u=0):c=Math.sqrt(u),{es:u,e:c,ep2:(n-f)/f}},e.sphere=function(t,r,e,a,n){if(!t){var f=c.default(u.default,a);f||(f=u.WGS84),t=f.a,r=f.b,e=f.rf}return e&&!r&&(r=(1-1/e)*t),(0===e||Math.abs(t-r)3&&(0===r.datum_params[3]&&0===r.datum_params[4]&&0===r.datum_params[5]&&0===r.datum_params[6]||(r.datum_type=p.PJD_7PARAM,r.datum_params[3]*=p.SEC_TO_RAD,r.datum_params[4]*=p.SEC_TO_RAD,r.datum_params[5]*=p.SEC_TO_RAD,r.datum_params[6]=r.datum_params[6]/1e6+1))),r.a=_,r.b=t,r.es=u,r.ep2=d,r}},\n", + " function _(t,e,a,r,u){r();const m=t(1),_=t(72),o=m.__importDefault(t(93)),d=m.__importDefault(t(95)),f=m.__importDefault(t(67)),n=m.__importDefault(t(96)),i=m.__importDefault(t(97));a.default=function t(e,a,r){var u;if(Array.isArray(r)&&(r=n.default(r)),i.default(r),e.datum&&a.datum&&function(t,e){return(t.datum.datum_type===_.PJD_3PARAM||t.datum.datum_type===_.PJD_7PARAM)&&\"WGS84\"!==e.datumCode||(e.datum.datum_type===_.PJD_3PARAM||e.datum.datum_type===_.PJD_7PARAM)&&\"WGS84\"!==t.datumCode}(e,a)&&(r=t(e,u=new f.default(\"WGS84\"),r),e=u),\"enu\"!==e.axis&&(r=d.default(e,!1,r)),\"longlat\"===e.projName)r={x:r.x*_.D2R,y:r.y*_.D2R,z:r.z||0};else if(e.to_meter&&(r={x:r.x*e.to_meter,y:r.y*e.to_meter,z:r.z||0}),!(r=e.inverse(r)))return;return e.from_greenwich&&(r.x+=e.from_greenwich),r=o.default(e.datum,a.datum,r),a.from_greenwich&&(r={x:r.x-a.from_greenwich,y:r.y,z:r.z||0}),\"longlat\"===a.projName?r={x:r.x*_.R2D,y:r.y*_.R2D,z:r.z||0}:(r=a.forward(r),a.to_meter&&(r={x:r.x/a.to_meter,y:r.y/a.to_meter,z:r.z||0})),\"enu\"!==a.axis?d.default(a,!0,r):r}},\n", + " function _(t,e,a,u,c){u();const m=t(72),o=t(94);function _(t){return t===m.PJD_3PARAM||t===m.PJD_7PARAM}a.default=function(t,e,a){return o.compareDatums(t,e)||t.datum_type===m.PJD_NODATUM||e.datum_type===m.PJD_NODATUM?a:t.es!==e.es||t.a!==e.a||_(t.datum_type)||_(e.datum_type)?(a=o.geodeticToGeocentric(a,t.es,t.a),_(t.datum_type)&&(a=o.geocentricToWgs84(a,t.datum_type,t.datum_params)),_(e.datum_type)&&(a=o.geocentricFromWgs84(a,e.datum_type,e.datum_params)),o.geocentricToGeodetic(a,e.es,e.a,e.b)):a}},\n", + " function _(a,t,r,m,s){m();const u=a(72);r.compareDatums=function(a,t){return a.datum_type===t.datum_type&&(!(a.a!==t.a||Math.abs(a.es-t.es)>5e-11)&&(a.datum_type===u.PJD_3PARAM?a.datum_params[0]===t.datum_params[0]&&a.datum_params[1]===t.datum_params[1]&&a.datum_params[2]===t.datum_params[2]:a.datum_type!==u.PJD_7PARAM||a.datum_params[0]===t.datum_params[0]&&a.datum_params[1]===t.datum_params[1]&&a.datum_params[2]===t.datum_params[2]&&a.datum_params[3]===t.datum_params[3]&&a.datum_params[4]===t.datum_params[4]&&a.datum_params[5]===t.datum_params[5]&&a.datum_params[6]===t.datum_params[6]))},r.geodeticToGeocentric=function(a,t,r){var m,s,_,e,n=a.x,d=a.y,i=a.z?a.z:0;if(d<-u.HALF_PI&&d>-1.001*u.HALF_PI)d=-u.HALF_PI;else if(d>u.HALF_PI&&d<1.001*u.HALF_PI)d=u.HALF_PI;else{if(d<-u.HALF_PI)return{x:-1/0,y:-1/0,z:a.z};if(d>u.HALF_PI)return{x:1/0,y:1/0,z:a.z}}return n>Math.PI&&(n-=2*Math.PI),s=Math.sin(d),e=Math.cos(d),_=s*s,{x:((m=r/Math.sqrt(1-t*_))+i)*e*Math.cos(n),y:(m+i)*e*Math.sin(n),z:(m*(1-t)+i)*s}},r.geocentricToGeodetic=function(a,t,r,m){var s,_,e,n,d,i,p,P,y,z,M,o,A,c,x,h=1e-12,f=a.x,I=a.y,F=a.z?a.z:0;if(s=Math.sqrt(f*f+I*I),_=Math.sqrt(f*f+I*I+F*F),s/r1e-24&&A<30);return{x:c,y:Math.atan(M/Math.abs(z)),z:x}},r.geocentricToWgs84=function(a,t,r){if(t===u.PJD_3PARAM)return{x:a.x+r[0],y:a.y+r[1],z:a.z+r[2]};if(t===u.PJD_7PARAM){var m=r[0],s=r[1],_=r[2],e=r[3],n=r[4],d=r[5],i=r[6];return{x:i*(a.x-d*a.y+n*a.z)+m,y:i*(d*a.x+a.y-e*a.z)+s,z:i*(-n*a.x+e*a.y+a.z)+_}}},r.geocentricFromWgs84=function(a,t,r){if(t===u.PJD_3PARAM)return{x:a.x-r[0],y:a.y-r[1],z:a.z-r[2]};if(t===u.PJD_7PARAM){var m=r[0],s=r[1],_=r[2],e=r[3],n=r[4],d=r[5],i=r[6],p=(a.x-m)/i,P=(a.y-s)/i,y=(a.z-_)/i;return{x:p+d*P-n*y,y:-d*p+P+e*y,z:n*p-e*P+y}}}},\n", + " function _(e,a,i,r,s){r(),i.default=function(e,a,i){var r,s,n,c=i.x,d=i.y,f=i.z||0,u={};for(n=0;n<3;n++)if(!a||2!==n||void 0!==i.z)switch(0===n?(r=c,s=-1!==\"ew\".indexOf(e.axis[n])?\"x\":\"y\"):1===n?(r=d,s=-1!==\"ns\".indexOf(e.axis[n])?\"y\":\"x\"):(r=f,s=\"z\"),e.axis[n]){case\"e\":u[s]=r;break;case\"w\":u[s]=-r;break;case\"n\":u[s]=r;break;case\"s\":u[s]=-r;break;case\"u\":void 0!==i[s]&&(u.z=r);break;case\"d\":void 0!==i[s]&&(u.z=-r);break;default:return null}return u}},\n", + " function _(n,t,e,u,f){u(),e.default=function(n){var t={x:n[0],y:n[1]};return n.length>2&&(t.z=n[2]),n.length>3&&(t.m=n[3]),t}},\n", + " function _(e,i,n,t,r){function o(e){if(\"function\"==typeof Number.isFinite){if(Number.isFinite(e))return;throw new TypeError(\"coordinates must be finite numbers\")}if(\"number\"!=typeof e||e!=e||!isFinite(e))throw new TypeError(\"coordinates must be finite numbers\")}t(),n.default=function(e){o(e.x),o(e.y)}},\n", + " function _(e,t,s,i,n){i();const r=e(1),a=r.__importStar(e(18)),o=r.__importStar(e(99)),_=r.__importStar(e(45)),l=e(42),c=e(53),h=e(19),d=e(24),u=e(8),f=e(100),p=e(12),g=e(26),y=e(101),x=e(104),v=e(59),{abs:b,ceil:m}=Math;class w extends l.View{constructor(){super(...arguments),this._index=null,this._data_size=null,this._nohit_warned=new Set}get renderer(){return this.parent}get has_webgl(){return null!=this.glglyph}get index(){const{_index:e}=this;if(null!=e)return e;throw new Error(`${this}.index_data() wasn't called`)}get data_size(){const{_data_size:e}=this;if(null!=e)return e;throw new Error(`${this}.set_data() wasn't called`)}initialize(){super.initialize(),this.visuals=new _.Visuals(this)}request_render(){this.parent.request_render()}get canvas(){return this.renderer.parent.canvas_view}render(e,t,s){var i;null!=this.glglyph&&(this.renderer.needs_webgl_blit=this.glglyph.render(e,t,null!==(i=this.base)&&void 0!==i?i:this),this.renderer.needs_webgl_blit)||(e.beginPath(),this._render(e,t,null!=s?s:this.base))}has_finished(){return!0}notify_finished(){this.renderer.notify_finished()}_bounds(e){return e}bounds(){return this._bounds(this.index.bbox)}log_bounds(){const{x0:e,x1:t}=this.index.bounds(o.positive_x()),{y0:s,y1:i}=this.index.bounds(o.positive_y());return this._bounds({x0:e,y0:s,x1:t,y1:i})}get_anchor_point(e,t,[s,i]){switch(e){case\"center\":case\"center_center\":{const[e,n]=this.scenterxy(t,s,i);return{x:e,y:n}}default:return null}}scenterx(e,t,s){return this.scenterxy(e,t,s)[0]}scentery(e,t,s){return this.scenterxy(e,t,s)[1]}sdist(e,t,s,i=\"edge\",n=!1){const r=t.length,a=new d.ScreenArray(r),o=e.s_compute;if(\"center\"==i)for(let e=0;em(e))),a}draw_legend_for_index(e,t,s){}hit_test(e){switch(e.type){case\"point\":if(null!=this._hit_point)return this._hit_point(e);break;case\"span\":if(null!=this._hit_span)return this._hit_span(e);break;case\"rect\":if(null!=this._hit_rect)return this._hit_rect(e);break;case\"poly\":if(null!=this._hit_poly)return this._hit_poly(e)}return this._nohit_warned.has(e.type)||(h.logger.debug(`'${e.type}' selection not available for ${this.model.type}`),this._nohit_warned.add(e.type)),null}_hit_rect_against_index(e){const{sx0:t,sx1:s,sy0:i,sy1:n}=e,[r,a]=this.renderer.coordinates.x_scale.r_invert(t,s),[o,_]=this.renderer.coordinates.y_scale.r_invert(i,n),l=[...this.index.indices({x0:r,x1:a,y0:o,y1:_})];return new v.Selection({indices:l})}_project_data(){}*_iter_visuals(){for(const e of this.visuals)for(const t of e)(t instanceof a.VectorSpec||t instanceof a.ScalarSpec)&&(yield t)}set_base(e){e!=this&&e instanceof this.constructor&&(this.base=e)}_configure(e,t){Object.defineProperty(this,u.isString(e)?e:e.attr,Object.assign({configurable:!0,enumerable:!0},t))}set_visuals(e,t){var s;for(const s of this._iter_visuals()){const{base:i}=this;if(null!=i){const e=i.model.properties[s.attr];if(null!=e&&g.is_equal(s.get_value(),e.get_value())){this._configure(s,{get:()=>i[`${s.attr}`]});continue}}const n=s.uniform(e).select(t);this._configure(s,{value:n})}for(const e of this.visuals)e.update();null===(s=this.glglyph)||void 0===s||s.set_visuals_changed()}set_data(e,t,s){var i;const{x_range:n,y_range:r}=this.renderer.coordinates,o=new Set(this._iter_visuals());this._data_size=t.count;for(const s of this.model)if((s instanceof a.VectorSpec||s instanceof a.ScalarSpec)&&!o.has(s))if(s instanceof a.BaseCoordinateSpec){const i=s.array(e);let o=t.select(i);const _=\"x\"==s.dimension?n:r;if(_ instanceof x.FactorRange)if(s instanceof a.CoordinateSpec)o=_.v_synthetic(o);else if(s instanceof a.CoordinateSeqSpec)for(let e=0;e=0&&r>=0))throw new Error(`invalid bbox {x: ${i}, y: ${e}, width: ${h}, height: ${r}}`);this.x0=i,this.y0=e,this.x1=i+h,this.y1=e+r}else{let i,e,h,r;if(\"width\"in t)if(\"left\"in t)i=t.left,e=i+t.width;else if(\"right\"in t)e=t.right,i=e-t.width;else{const h=t.width/2;i=t.hcenter-h,e=t.hcenter+h}else i=t.left,e=t.right;if(\"height\"in t)if(\"top\"in t)h=t.top,r=h+t.height;else if(\"bottom\"in t)r=t.bottom,h=r-t.height;else{const i=t.height/2;h=t.vcenter-i,r=t.vcenter+i}else h=t.top,r=t.bottom;if(!(i<=e&&h<=r))throw new Error(`invalid bbox {left: ${i}, top: ${h}, right: ${e}, bottom: ${r}}`);this.x0=i,this.y0=h,this.x1=e,this.y1=r}}static from_rect({left:t,right:i,top:e,bottom:h}){return new o({x0:Math.min(t,i),y0:Math.min(e,h),x1:Math.max(t,i),y1:Math.max(e,h)})}equals(t){return this.x0==t.x0&&this.y0==t.y0&&this.x1==t.x1&&this.y1==t.y1}[n.equals](t,i){return i.eq(this.x0,t.x0)&&i.eq(this.y0,t.y0)&&i.eq(this.x1,t.x1)&&i.eq(this.y1,t.y1)}toString(){return`BBox({left: ${this.left}, top: ${this.top}, width: ${this.width}, height: ${this.height}})`}get left(){return this.x0}get top(){return this.y0}get right(){return this.x1}get bottom(){return this.y1}get p0(){return[this.x0,this.y0]}get p1(){return[this.x1,this.y1]}get x(){return this.x0}get y(){return this.y0}get width(){return this.x1-this.x0}get height(){return this.y1-this.y0}get size(){return{width:this.width,height:this.height}}get rect(){const{x0:t,y0:i,x1:e,y1:h}=this;return{p0:{x:t,y:i},p1:{x:e,y:i},p2:{x:e,y:h},p3:{x:t,y:h}}}get box(){const{x:t,y:i,width:e,height:h}=this;return{x:t,y:i,width:e,height:h}}get h_range(){return{start:this.x0,end:this.x1}}get v_range(){return{start:this.y0,end:this.y1}}get ranges(){return[this.h_range,this.v_range]}get aspect(){return this.width/this.height}get hcenter(){return(this.left+this.right)/2}get vcenter(){return(this.top+this.bottom)/2}get area(){return this.width*this.height}relative(){const{width:t,height:i}=this;return new o({x:0,y:0,width:t,height:i})}translate(t,i){const{x:e,y:h,width:r,height:s}=this;return new o({x:t+e,y:i+h,width:r,height:s})}relativize(t,i){return[t-this.x,i-this.y]}contains(t,i){return this.x0<=t&&t<=this.x1&&this.y0<=i&&i<=this.y1}clip(t,i){return tthis.x1&&(t=this.x1),ithis.y1&&(i=this.y1),[t,i]}grow_by(t){return new o({left:this.left-t,right:this.right+t,top:this.top-t,bottom:this.bottom+t})}shrink_by(t){return new o({left:this.left+t,right:this.right-t,top:this.top+t,bottom:this.bottom-t})}union(t){return new o({x0:x(this.x0,t.x0),y0:x(this.y0,t.y0),x1:y(this.x1,t.x1),y1:y(this.y1,t.y1)})}intersection(t){return this.intersects(t)?new o({x0:y(this.x0,t.x0),y0:y(this.y0,t.y0),x1:x(this.x1,t.x1),y1:x(this.y1,t.y1)}):null}intersects(t){return!(t.x1this.x1||t.y1this.y1)}get xview(){return{compute:t=>this.left+t,v_compute:t=>{const i=new s.ScreenArray(t.length),e=this.left;for(let h=0;hthis.bottom-t,v_compute:t=>{const i=new s.ScreenArray(t.length),e=this.bottom;for(let h=0;h{const s=new Uint32Array(r);for(let n=0;n>1;i[s]>n?e=s:t=s+1}return i[t]}class r extends o.default{search_indices(n,i,t,e){if(this._pos!==this._boxes.length)throw new Error(\"Data not yet indexed - call index.finish().\");let s=this._boxes.length-4;const o=[],x=new d.Indices(this.numItems);for(;void 0!==s;){const d=Math.min(s+4*this.nodeSize,h(s,this._levelBounds));for(let h=s;h>2];tthis._boxes[h+2]||i>this._boxes[h+3]||(s<4*this.numItems?x.set(d):o.push(d)))}s=o.pop()}return x}}r.__name__=\"_FlatBush\";class l{constructor(n){this.index=null,n>0&&(this.index=new r(n))}add(n,i,t,e){var s;null===(s=this.index)||void 0===s||s.add(n,i,t,e)}add_empty(){var n;null===(n=this.index)||void 0===n||n.add(1/0,1/0,-1/0,-1/0)}finish(){var n;null===(n=this.index)||void 0===n||n.finish()}_normalize(n){let{x0:i,y0:t,x1:e,y1:s}=n;return i>e&&([i,e]=[e,i]),t>s&&([t,s]=[s,t]),{x0:i,y0:t,x1:e,y1:s}}get bbox(){if(null==this.index)return x.empty();{const{minX:n,minY:i,maxX:t,maxY:e}=this.index;return{x0:n,y0:i,x1:t,y1:e}}}indices(n){if(null==this.index)return new d.Indices(0);{const{x0:i,y0:t,x1:e,y1:s}=this._normalize(n);return this.index.search_indices(i,t,e,s)}}bounds(n){const i=x.empty();for(const t of this.indices(n)){const n=this.index._boxes,e=n[4*t+0],s=n[4*t+1],o=n[4*t+2],d=n[4*t+3];oi.x1&&(i.x1=e),di.y1&&(i.y1=s)}return i}}t.SpatialIndex=l,l.__name__=\"SpatialIndex\"},\n", + " function _(t,s,i,e,h){e();const n=t(1).__importDefault(t(103)),o=[Int8Array,Uint8Array,Uint8ClampedArray,Int16Array,Uint16Array,Int32Array,Uint32Array,Float32Array,Float64Array];class r{static from(t){if(!(t instanceof ArrayBuffer))throw new Error(\"Data must be an instance of ArrayBuffer.\");const[s,i]=new Uint8Array(t,0,2);if(251!==s)throw new Error(\"Data does not appear to be in a Flatbush format.\");if(i>>4!=3)throw new Error(`Got v${i>>4} data when expected v3.`);const[e]=new Uint16Array(t,2,1),[h]=new Uint32Array(t,4,1);return new r(h,e,o[15&i],t)}constructor(t,s=16,i=Float64Array,e){if(void 0===t)throw new Error(\"Missing required argument: numItems.\");if(isNaN(t)||t<=0)throw new Error(`Unpexpected numItems value: ${t}.`);this.numItems=+t,this.nodeSize=Math.min(Math.max(+s,2),65535);let h=t,r=h;this._levelBounds=[4*h];do{h=Math.ceil(h/this.nodeSize),r+=h,this._levelBounds.push(4*r)}while(1!==h);this.ArrayType=i||Float64Array,this.IndexArrayType=r<16384?Uint16Array:Uint32Array;const a=o.indexOf(this.ArrayType),_=4*r*this.ArrayType.BYTES_PER_ELEMENT;if(a<0)throw new Error(`Unexpected typed array class: ${i}.`);e&&e instanceof ArrayBuffer?(this.data=e,this._boxes=new this.ArrayType(this.data,8,4*r),this._indices=new this.IndexArrayType(this.data,8+_,r),this._pos=4*r,this.minX=this._boxes[this._pos-4],this.minY=this._boxes[this._pos-3],this.maxX=this._boxes[this._pos-2],this.maxY=this._boxes[this._pos-1]):(this.data=new ArrayBuffer(8+_+r*this.IndexArrayType.BYTES_PER_ELEMENT),this._boxes=new this.ArrayType(this.data,8,4*r),this._indices=new this.IndexArrayType(this.data,8+_,r),this._pos=0,this.minX=1/0,this.minY=1/0,this.maxX=-1/0,this.maxY=-1/0,new Uint8Array(this.data,0,2).set([251,48+a]),new Uint16Array(this.data,2,1)[0]=s,new Uint32Array(this.data,4,1)[0]=t),this._queue=new n.default}add(t,s,i,e){const h=this._pos>>2;return this._indices[h]=h,this._boxes[this._pos++]=t,this._boxes[this._pos++]=s,this._boxes[this._pos++]=i,this._boxes[this._pos++]=e,tthis.maxX&&(this.maxX=i),e>this.maxY&&(this.maxY=e),h}finish(){if(this._pos>>2!==this.numItems)throw new Error(`Added ${this._pos>>2} items when expected ${this.numItems}.`);if(this.numItems<=this.nodeSize)return this._boxes[this._pos++]=this.minX,this._boxes[this._pos++]=this.minY,this._boxes[this._pos++]=this.maxX,void(this._boxes[this._pos++]=this.maxY);const t=this.maxX-this.minX,s=this.maxY-this.minY,i=new Uint32Array(this.numItems);for(let e=0;e>2]=t,this._boxes[this._pos++]=e,this._boxes[this._pos++]=h,this._boxes[this._pos++]=n,this._boxes[this._pos++]=o}}}search(t,s,i,e,h){if(this._pos!==this._boxes.length)throw new Error(\"Data not yet indexed - call index.finish().\");let n=this._boxes.length-4;const o=[],r=[];for(;void 0!==n;){const a=Math.min(n+4*this.nodeSize,_(n,this._levelBounds));for(let _=n;_>2];ithis._boxes[_+2]||s>this._boxes[_+3]||(n<4*this.numItems?(void 0===h||h(a))&&r.push(a):o.push(a)))}n=o.pop()}return r}neighbors(t,s,i=1/0,e=1/0,h){if(this._pos!==this._boxes.length)throw new Error(\"Data not yet indexed - call index.finish().\");let n=this._boxes.length-4;const o=this._queue,r=[],x=e*e;for(;void 0!==n;){const e=Math.min(n+4*this.nodeSize,_(n,this._levelBounds));for(let i=n;i>2],r=a(t,this._boxes[i],this._boxes[i+2]),_=a(s,this._boxes[i+1],this._boxes[i+3]),x=r*r+_*_;n<4*this.numItems?(void 0===h||h(e))&&o.push(-e-1,x):o.push(e,x)}for(;o.length&&o.peek()<0;){if(o.peekValue()>x)return o.clear(),r;if(r.push(-o.pop()-1),r.length===i)return o.clear(),r}n=o.pop()}return o.clear(),r}}function a(t,s,i){return t>1;s[h]>t?e=h:i=h+1}return s[i]}function x(t,s,i,e,h,n){if(Math.floor(e/n)>=Math.floor(h/n))return;const o=t[e+h>>1];let r=e-1,a=h+1;for(;;){do{r++}while(t[r]o);if(r>=a)break;d(t,s,i,r,a)}x(t,s,i,e,a,n),x(t,s,i,a+1,h,n)}function d(t,s,i,e,h){const n=t[e];t[e]=t[h],t[h]=n;const o=4*e,r=4*h,a=s[o],_=s[o+1],x=s[o+2],d=s[o+3];s[o]=s[r],s[o+1]=s[r+1],s[o+2]=s[r+2],s[o+3]=s[r+3],s[r]=a,s[r+1]=_,s[r+2]=x,s[r+3]=d;const m=i[e];i[e]=i[h],i[h]=m}function m(t,s){let i=t^s,e=65535^i,h=65535^(t|s),n=t&(65535^s),o=i|e>>1,r=i>>1^i,a=h>>1^e&n>>1^h,_=i&h>>1^n>>1^n;i=o,e=r,h=a,n=_,o=i&i>>2^e&e>>2,r=i&e>>2^e&(i^e)>>2,a^=i&h>>2^e&n>>2,_^=e&h>>2^(i^e)&n>>2,i=o,e=r,h=a,n=_,o=i&i>>4^e&e>>4,r=i&e>>4^e&(i^e)>>4,a^=i&h>>4^e&n>>4,_^=e&h>>4^(i^e)&n>>4,i=o,e=r,h=a,n=_,a^=i&h>>8^e&n>>8,_^=e&h>>8^(i^e)&n>>8,i=a^a>>1,e=_^_>>1;let x=t^s,d=e|65535^(x|i);return x=16711935&(x|x<<8),x=252645135&(x|x<<4),x=858993459&(x|x<<2),x=1431655765&(x|x<<1),d=16711935&(d|d<<8),d=252645135&(d|d<<4),d=858993459&(d|d<<2),d=1431655765&(d|d<<1),(d<<1|x)>>>0}i.default=r},\n", + " function _(s,t,i,h,e){h();i.default=class{constructor(){this.ids=[],this.values=[],this.length=0}clear(){this.length=0}push(s,t){let i=this.length++;for(this.ids[i]=s,this.values[i]=t;i>0;){const s=i-1>>1,h=this.values[s];if(t>=h)break;this.ids[i]=this.ids[s],this.values[i]=h,i=s}this.ids[i]=s,this.values[i]=t}pop(){if(0===this.length)return;const s=this.ids[0];if(this.length--,this.length>0){const s=this.ids[0]=this.ids[this.length],t=this.values[0]=this.values[this.length],i=this.length>>1;let h=0;for(;h=t)break;this.ids[h]=e,this.values[h]=l,h=s}this.ids[h]=s,this.values[h]=t}return s}peek(){if(0!==this.length)return this.ids[0]}peekValue(){if(0!==this.length)return this.values[0]}}},\n", + " function _(t,n,e,i,s){i();const r=t(105),a=t(20),o=t(21),g=t(24),p=t(9),c=t(8),l=t(11);function u(t,n,e=0){const i=new Map;for(let s=0;sa.get(t).value)));r.set(t,{value:l/s,mapping:a}),o+=s+n+c}return[r,(a.size-1)*n+g]}function d(t,n,e,i,s=0){var r;const a=new Map,o=new Map;for(const[n,e,i]of t){const t=null!==(r=o.get(n))&&void 0!==r?r:[];o.set(n,[...t,[e,i]])}let g=s,c=0;for(const[t,s]of o){const r=s.length,[o,l]=h(s,e,i,g);c+=l;const u=p.sum(s.map((([t])=>o.get(t).value)));a.set(t,{value:u/r,mapping:o}),g+=r+n+l}return[a,(o.size-1)*n+c]}e.Factor=o.Or(o.String,o.Tuple(o.String,o.String),o.Tuple(o.String,o.String,o.String)),e.FactorSeq=o.Or(o.Array(o.String),o.Array(o.Tuple(o.String,o.String)),o.Array(o.Tuple(o.String,o.String,o.String))),e.map_one_level=u,e.map_two_levels=h,e.map_three_levels=d;class _ extends r.Range{constructor(t){super(t)}static init_FactorRange(){this.define((({Number:t})=>({factors:[e.FactorSeq,[]],factor_padding:[t,0],subgroup_padding:[t,.8],group_padding:[t,1.4],range_padding:[t,0],range_padding_units:[a.PaddingUnits,\"percent\"],start:[t],end:[t]}))),this.internal((({Number:t,String:n,Array:e,Tuple:i,Nullable:s})=>({levels:[t],mids:[s(e(i(n,n))),null],tops:[s(e(n)),null]})))}get min(){return this.start}get max(){return this.end}initialize(){super.initialize(),this._init(!0)}connect_signals(){super.connect_signals(),this.connect(this.properties.factors.change,(()=>this.reset())),this.connect(this.properties.factor_padding.change,(()=>this.reset())),this.connect(this.properties.group_padding.change,(()=>this.reset())),this.connect(this.properties.subgroup_padding.change,(()=>this.reset())),this.connect(this.properties.range_padding.change,(()=>this.reset())),this.connect(this.properties.range_padding_units.change,(()=>this.reset()))}reset(){this._init(!1),this.change.emit()}_lookup(t){switch(t.length){case 1:{const[n]=t,e=this._mapping.get(n);return null!=e?e.value:NaN}case 2:{const[n,e]=t,i=this._mapping.get(n);if(null!=i){const t=i.mapping.get(e);if(null!=t)return t.value}return NaN}case 3:{const[n,e,i]=t,s=this._mapping.get(n);if(null!=s){const t=s.mapping.get(e);if(null!=t){const n=t.mapping.get(i);if(null!=n)return n.value}}return NaN}default:l.unreachable()}}synthetic(t){if(c.isNumber(t))return t;if(c.isString(t))return this._lookup([t]);let n=0;const e=t[t.length-1];return c.isNumber(e)&&(n=e,t=t.slice(0,-1)),this._lookup(t)+n}v_synthetic(t){const n=t.length,e=new g.ScreenArray(n);for(let i=0;i{if(p.every(this.factors,c.isString)){const t=this.factors,[n,e]=u(t,this.factor_padding);return{levels:1,mapping:n,tops:null,mids:null,inside_padding:e}}if(p.every(this.factors,(t=>c.isArray(t)&&2==t.length&&c.isString(t[0])&&c.isString(t[1])))){const t=this.factors,[n,e]=h(t,this.group_padding,this.factor_padding),i=[...n.keys()];return{levels:2,mapping:n,tops:i,mids:null,inside_padding:e}}if(p.every(this.factors,(t=>c.isArray(t)&&3==t.length&&c.isString(t[0])&&c.isString(t[1])&&c.isString(t[2])))){const t=this.factors,[n,e]=d(t,this.group_padding,this.subgroup_padding,this.factor_padding),i=[...n.keys()],s=[];for(const[t,e]of n)for(const n of e.mapping.keys())s.push([t,n]);return{levels:3,mapping:n,tops:i,mids:s,inside_padding:e}}l.unreachable()})();this._mapping=e,this.tops=i,this.mids=s;let a=0,o=this.factors.length+r;if(\"percent\"==this.range_padding_units){const t=(o-a)*this.range_padding/2;a-=t,o+=t}else a-=this.range_padding,o+=this.range_padding;this.setv({start:a,end:o,levels:n},{silent:t}),\"auto\"==this.bounds&&this.setv({bounds:[a,o]},{silent:!0})}}e.FactorRange=_,_.__name__=\"FactorRange\",_.init_FactorRange()},\n", + " function _(e,t,i,n,s){n();const a=e(53);class l extends a.Model{constructor(e){super(e),this.have_updated_interactively=!1}static init_Range(){this.define((({Number:e,Tuple:t,Or:i,Auto:n,Nullable:s})=>({bounds:[s(i(t(s(e),s(e)),n)),null],min_interval:[s(e),null],max_interval:[s(e),null]}))),this.internal((({Array:e,AnyRef:t})=>({plots:[e(t()),[]]})))}get is_reversed(){return this.start>this.end}get is_valid(){return isFinite(this.min)&&isFinite(this.max)}}i.Range=l,l.__name__=\"Range\",l.init_Range()},\n", + " function _(e,t,i,n,l){n();const o=e(1).__importStar(e(107));function a(e,t,{x0:i,x1:n,y0:l,y1:o},a){t.save(),t.beginPath(),t.moveTo(i,(l+o)/2),t.lineTo(n,(l+o)/2),e.line.doit&&(e.line.set_vectorize(t,a),t.stroke()),t.restore()}function r(e,t,{x0:i,x1:n,y0:l,y1:o},a){var r,c;const s=.1*Math.abs(n-i),_=.1*Math.abs(o-l),v=i+s,d=n-s,h=l+_,g=o-_;t.beginPath(),t.rect(v,h,d-v,g-h),e.fill.doit&&(e.fill.set_vectorize(t,a),t.fill()),(null===(r=e.hatch)||void 0===r?void 0:r.doit)&&(e.hatch.set_vectorize(t,a),t.fill()),(null===(c=e.line)||void 0===c?void 0:c.doit)&&(e.line.set_vectorize(t,a),t.stroke())}i.generic_line_scalar_legend=function(e,t,{x0:i,x1:n,y0:l,y1:o}){t.save(),t.beginPath(),t.moveTo(i,(l+o)/2),t.lineTo(n,(l+o)/2),e.line.doit&&(e.line.set_value(t),t.stroke()),t.restore()},i.generic_line_vector_legend=a,i.generic_line_legend=a,i.generic_area_scalar_legend=function(e,t,{x0:i,x1:n,y0:l,y1:o}){var a,r;const c=.1*Math.abs(n-i),s=.1*Math.abs(o-l),_=i+c,v=n-c,d=l+s,h=o-s;t.beginPath(),t.rect(_,d,v-_,h-d),e.fill.doit&&(e.fill.set_value(t),t.fill()),(null===(a=e.hatch)||void 0===a?void 0:a.doit)&&(e.hatch.set_value(t),t.fill()),(null===(r=e.line)||void 0===r?void 0:r.doit)&&(e.line.set_value(t),t.stroke())},i.generic_area_vector_legend=r,i.generic_area_legend=r,i.line_interpolation=function(e,t,i,n,l,a){const{sx:r,sy:c}=t;let s,_,v,d;\"point\"==t.type?([v,d]=e.yscale.r_invert(c-1,c+1),[s,_]=e.xscale.r_invert(r-1,r+1)):\"v\"==t.direction?([v,d]=e.yscale.r_invert(c,c),[s,_]=[Math.min(i-1,l-1),Math.max(i+1,l+1)]):([s,_]=e.xscale.r_invert(r,r),[v,d]=[Math.min(n-1,a-1),Math.max(n+1,a+1)]);const{x:h,y:g}=o.check_2_segments_intersect(s,v,_,d,i,n,l,a);return[h,g]}},\n", + " function _(t,n,e,i,r){function s(t,n){return(t.x-n.x)**2+(t.y-n.y)**2}function o(t,n,e){const i=s(n,e);if(0==i)return s(t,n);const r=((t.x-n.x)*(e.x-n.x)+(t.y-n.y)*(e.y-n.y))/i;if(r<0)return s(t,n);if(r>1)return s(t,e);return s(t,{x:n.x+r*(e.x-n.x),y:n.y+r*(e.y-n.y)})}i(),e.point_in_poly=function(t,n,e,i){let r=!1,s=e[e.length-1],o=i[i.length-1];for(let u=0;u0&&_<1&&h>0&&h<1,x:t+_*(e-t),y:n+_*(i-n)}}}},\n", + " function _(t,e,s,i,a){i();const o=t(1),n=t(109),_=t(113),r=o.__importDefault(t(114)),h=o.__importDefault(t(115)),l=t(22),g=t(46);class u{constructor(t){this._atlas=new Map,this._width=256,this._height=256,this.tex=new n.Texture2d(t),this.tex.set_wrapping(t.REPEAT,t.REPEAT),this.tex.set_interpolation(t.NEAREST,t.NEAREST),this.tex.set_size([this._width,this._height],t.RGBA),this.tex.set_data([0,0],[this._width,this._height],new Uint8Array(4*this._width*this._height)),this.get_atlas_data([1])}get_atlas_data(t){const e=t.join(\"-\");let s=this._atlas.get(e);if(null==s){const[i,a]=this.make_pattern(t),o=this._atlas.size;this.tex.set_data([0,o],[this._width,1],new Uint8Array(i.map((t=>t+10)))),s=[o/this._height,a],this._atlas.set(e,s)}return s}make_pattern(t){t.length>1&&t.length%2&&(t=t.concat(t));let e=0;for(const s of t)e+=s;const s=[];let i=0;for(let e=0,a=t.length+2;es[h]?-1:0,n=s[h-1],i=s[h]),o[4*t+0]=s[h],o[4*t+1]=_,o[4*t+2]=n,o[4*t+3]=i}return[o,e]}}u.__name__=\"DashAtlas\";const f={miter:0,round:1,bevel:2},c={\"\":0,none:0,\".\":0,round:1,\")\":1,\"(\":1,o:1,\"triangle in\":2,\"<\":2,\"triangle out\":3,\">\":3,square:4,\"[\":4,\"]\":4,\"=\":4,butt:5,\"|\":5};class d extends _.BaseGLGlyph{constructor(t,e){super(t,e),this.glyph=e,this._scale_aspect=0;const s=r.default,i=h.default;this.prog=new n.Program(t),this.prog.set_shaders(s,i),this.index_buffer=new n.IndexBuffer(t),this.vbo_position=new n.VertexBuffer(t),this.vbo_tangents=new n.VertexBuffer(t),this.vbo_segment=new n.VertexBuffer(t),this.vbo_angles=new n.VertexBuffer(t),this.vbo_texcoord=new n.VertexBuffer(t),this.dash_atlas=new u(t)}draw(t,e,s){const i=e.glglyph;if(i.data_changed&&(i._set_data(),i.data_changed=!1),this.visuals_changed&&(this._set_visuals(),this.visuals_changed=!1),i._update_scale(1,1),this._scale_aspect=1,this.prog.set_attribute(\"a_position\",\"vec2\",i.vbo_position),this.prog.set_attribute(\"a_tangents\",\"vec4\",i.vbo_tangents),this.prog.set_attribute(\"a_segment\",\"vec2\",i.vbo_segment),this.prog.set_attribute(\"a_angles\",\"vec2\",i.vbo_angles),this.prog.set_attribute(\"a_texcoord\",\"vec2\",i.vbo_texcoord),this.prog.set_uniform(\"u_length\",\"float\",[i.cumsum]),this.prog.set_texture(\"u_dash_atlas\",this.dash_atlas.tex),this.prog.set_uniform(\"u_pixel_ratio\",\"float\",[s.pixel_ratio]),this.prog.set_uniform(\"u_canvas_size\",\"vec2\",[s.width,s.height]),this.prog.set_uniform(\"u_scale_aspect\",\"vec2\",[1,1]),this.prog.set_uniform(\"u_scale_length\",\"float\",[Math.sqrt(2)]),this.I_triangles=i.I_triangles,this.I_triangles.length<65535)this.index_buffer.set_size(2*this.I_triangles.length),this.index_buffer.set_data(0,new Uint16Array(this.I_triangles)),this.prog.draw(this.gl.TRIANGLES,this.index_buffer);else{t=Array.from(this.I_triangles);const e=this.I_triangles.length,s=64008,a=[];for(let t=0,i=Math.ceil(e/s);t1)for(let e=0;e0||console.log(`Variable ${t} is not an active attribute`));else if(this._unset_variables.has(t)&&this._unset_variables.delete(t),this.activate(),i instanceof r.VertexBuffer){const[r,o]=this.ATYPEINFO[e],l=\"vertexAttribPointer\",_=[r,o,n,s,a];this._attributes.set(t,[i.handle,h,l,_])}else{const s=this.ATYPEMAP[e];this._attributes.set(t,[null,h,s,i])}}_pre_draw(){this.activate();for(const[t,e,i]of this._samplers.values())this.gl.activeTexture(this.gl.TEXTURE0+i),this.gl.bindTexture(t,e);for(const[t,e,i,s]of this._attributes.values())null!=t?(this.gl.bindBuffer(this.gl.ARRAY_BUFFER,t),this.gl.enableVertexAttribArray(e),this.gl[i].apply(this.gl,[e,...s])):(this.gl.bindBuffer(this.gl.ARRAY_BUFFER,null),this.gl.disableVertexAttribArray(e),this.gl[i].apply(this.gl,[e,...s]));this._validated||(this._validated=!0,this._validate())}_validate(){if(this._unset_variables.size&&console.log(`Program has unset variables: ${this._unset_variables}`),this.gl.validateProgram(this.handle),!this.gl.getProgramParameter(this.handle,this.gl.VALIDATE_STATUS))throw console.log(this.gl.getProgramInfoLog(this.handle)),new Error(\"Program validation error\")}draw(t,e){if(!this._linked)throw new Error(\"Cannot draw program if code has not been set\");if(e instanceof r.IndexBuffer){this._pre_draw(),e.activate();const i=e.buffer_size/2,s=this.gl.UNSIGNED_SHORT;this.gl.drawElements(t,i,s,0),e.deactivate()}else{const[i,s]=e;0!=s&&(this._pre_draw(),this.gl.drawArrays(t,i,s))}}}i.Program=n,n.__name__=\"Program\"},\n", + " function _(t,e,s,i,a){i();class r{constructor(t){this.gl=t,this._usage=35048,this.buffer_size=0,this.handle=this.gl.createBuffer()}delete(){this.gl.deleteBuffer(this.handle)}activate(){this.gl.bindBuffer(this._target,this.handle)}deactivate(){this.gl.bindBuffer(this._target,null)}set_size(t){t!=this.buffer_size&&(this.activate(),this.gl.bufferData(this._target,t,this._usage),this.buffer_size=t)}set_data(t,e){this.activate(),this.gl.bufferSubData(this._target,t,e)}}s.Buffer=r,r.__name__=\"Buffer\";class f extends r{constructor(){super(...arguments),this._target=34962}}s.VertexBuffer=f,f.__name__=\"VertexBuffer\";class h extends r{constructor(){super(...arguments),this._target=34963}}s.IndexBuffer=h,h.__name__=\"IndexBuffer\"},\n", + " function _(t,e,i,a,r){a();const s=t(11);class h{constructor(t){this.gl=t,this._target=3553,this._types={Int8Array:5120,Uint8Array:5121,Int16Array:5122,Uint16Array:5123,Int32Array:5124,Uint32Array:5125,Float32Array:5126},this.handle=this.gl.createTexture()}delete(){this.gl.deleteTexture(this.handle)}activate(){this.gl.bindTexture(this._target,this.handle)}deactivate(){this.gl.bindTexture(this._target,0)}_get_alignment(t){const e=[4,8,2,1];for(const i of e)if(t%i==0)return i;s.unreachable()}set_wrapping(t,e){this.activate(),this.gl.texParameterf(this._target,this.gl.TEXTURE_WRAP_S,t),this.gl.texParameterf(this._target,this.gl.TEXTURE_WRAP_T,e)}set_interpolation(t,e){this.activate(),this.gl.texParameterf(this._target,this.gl.TEXTURE_MIN_FILTER,t),this.gl.texParameterf(this._target,this.gl.TEXTURE_MAG_FILTER,e)}set_size([t,e],i){var a,r,s;t==(null===(a=this._shape_format)||void 0===a?void 0:a.width)&&e==(null===(r=this._shape_format)||void 0===r?void 0:r.height)&&i==(null===(s=this._shape_format)||void 0===s?void 0:s.format)||(this._shape_format={width:t,height:e,format:i},this.activate(),this.gl.texImage2D(this._target,0,i,t,e,0,i,this.gl.UNSIGNED_BYTE,null))}set_data(t,[e,i],a){this.activate();const{format:r}=this._shape_format,[s,h]=t,l=this._types[a.constructor.name];if(null==l)throw new Error(`Type ${a.constructor.name} not allowed for texture`);const _=this._get_alignment(e);4!=_&&this.gl.pixelStorei(this.gl.UNPACK_ALIGNMENT,_),this.gl.texSubImage2D(this._target,0,s,h,e,i,r,l,a),4!=_&&this.gl.pixelStorei(this.gl.UNPACK_ALIGNMENT,4)}}i.Texture2d=h,h.__name__=\"Texture2d\"},\n", + " function _(e,t,s,i,h){i();class a{constructor(e,t){this.gl=e,this.glyph=t,this.nvertices=0,this.size_changed=!1,this.data_changed=!1,this.visuals_changed=!1}set_data_changed(){const{data_size:e}=this.glyph;e!=this.nvertices&&(this.nvertices=e,this.size_changed=!0),this.data_changed=!0}set_visuals_changed(){this.visuals_changed=!0}render(e,t,s){if(0==t.length)return!0;const{width:i,height:h}=this.glyph.renderer.plot_view.canvas_view.webgl.canvas,a={pixel_ratio:this.glyph.renderer.plot_view.canvas_view.pixel_ratio,width:i,height:h};return this.draw(t,s,a),!0}}s.BaseGLGlyph=a,a.__name__=\"BaseGLGlyph\"},\n", + " function _(n,e,t,a,i){a();t.default=\"\\nprecision mediump float;\\n\\nconst float PI = 3.14159265358979323846264;\\nconst float THETA = 15.0 * 3.14159265358979323846264/180.0;\\n\\nuniform float u_pixel_ratio;\\nuniform vec2 u_canvas_size, u_offset;\\nuniform vec2 u_scale_aspect;\\nuniform float u_scale_length;\\n\\nuniform vec4 u_color;\\nuniform float u_antialias;\\nuniform float u_length;\\nuniform float u_linewidth;\\nuniform float u_dash_index;\\nuniform float u_closed;\\n\\nattribute vec2 a_position;\\nattribute vec4 a_tangents;\\nattribute vec2 a_segment;\\nattribute vec2 a_angles;\\nattribute vec2 a_texcoord;\\n\\nvarying vec4 v_color;\\nvarying vec2 v_segment;\\nvarying vec2 v_angles;\\nvarying vec2 v_texcoord;\\nvarying vec2 v_miter;\\nvarying float v_length;\\nvarying float v_linewidth;\\n\\nfloat cross(in vec2 v1, in vec2 v2)\\n{\\n return v1.x*v2.y - v1.y*v2.x;\\n}\\n\\nfloat signed_distance(in vec2 v1, in vec2 v2, in vec2 v3)\\n{\\n return cross(v2-v1,v1-v3) / length(v2-v1);\\n}\\n\\nvoid rotate( in vec2 v, in float alpha, out vec2 result )\\n{\\n float c = cos(alpha);\\n float s = sin(alpha);\\n result = vec2( c*v.x - s*v.y,\\n s*v.x + c*v.y );\\n}\\n\\nvoid main()\\n{\\n bool closed = (u_closed > 0.0);\\n\\n // Attributes and uniforms to varyings\\n v_color = u_color;\\n v_linewidth = u_linewidth;\\n v_segment = a_segment * u_scale_length;\\n v_length = u_length * u_scale_length;\\n\\n // Scale to map to pixel coordinates. The original algorithm from the paper\\n // assumed isotropic scale. We obviously do not have this.\\n vec2 abs_scale_aspect = abs(u_scale_aspect);\\n vec2 abs_scale = u_scale_length * abs_scale_aspect;\\n\\n // Correct angles for aspect ratio\\n vec2 av;\\n av = vec2(1.0, tan(a_angles.x)) / abs_scale_aspect;\\n v_angles.x = atan(av.y, av.x);\\n av = vec2(1.0, tan(a_angles.y)) / abs_scale_aspect;\\n v_angles.y = atan(av.y, av.x);\\n\\n // Thickness below 1 pixel are represented using a 1 pixel thickness\\n // and a modified alpha\\n v_color.a = min(v_linewidth, v_color.a);\\n v_linewidth = max(v_linewidth, 1.0);\\n\\n // If color is fully transparent we just will discard the fragment anyway\\n if( v_color.a <= 0.0 ) {\\n gl_Position = vec4(0.0,0.0,0.0,1.0);\\n return;\\n }\\n\\n // This is the actual half width of the line\\n float w = ceil(u_antialias+v_linewidth)/2.0;\\n\\n vec2 position = a_position;\\n\\n vec2 t1 = normalize(a_tangents.xy * abs_scale_aspect); // note the scaling for aspect ratio here\\n vec2 t2 = normalize(a_tangents.zw * abs_scale_aspect);\\n float u = a_texcoord.x;\\n float v = a_texcoord.y;\\n vec2 o1 = vec2( +t1.y, -t1.x);\\n vec2 o2 = vec2( +t2.y, -t2.x);\\n\\n // This is a join\\n // ----------------------------------------------------------------\\n if( t1 != t2 ) {\\n float angle = atan (t1.x*t2.y-t1.y*t2.x, t1.x*t2.x+t1.y*t2.y); // Angle needs recalculation for some reason\\n vec2 t = normalize(t1+t2);\\n vec2 o = vec2( + t.y, - t.x);\\n\\n if ( u_dash_index > 0.0 )\\n {\\n // Broken angle\\n // ----------------------------------------------------------------\\n if( (abs(angle) > THETA) ) {\\n position += v * w * o / cos(angle/2.0);\\n float s = sign(angle);\\n if( angle < 0.0 ) {\\n if( u == +1.0 ) {\\n u = v_segment.y + v * w * tan(angle/2.0);\\n if( v == 1.0 ) {\\n position -= 2.0 * w * t1 / sin(angle);\\n u -= 2.0 * w / sin(angle);\\n }\\n } else {\\n u = v_segment.x - v * w * tan(angle/2.0);\\n if( v == 1.0 ) {\\n position += 2.0 * w * t2 / sin(angle);\\n u += 2.0*w / sin(angle);\\n }\\n }\\n } else {\\n if( u == +1.0 ) {\\n u = v_segment.y + v * w * tan(angle/2.0);\\n if( v == -1.0 ) {\\n position += 2.0 * w * t1 / sin(angle);\\n u += 2.0 * w / sin(angle);\\n }\\n } else {\\n u = v_segment.x - v * w * tan(angle/2.0);\\n if( v == -1.0 ) {\\n position -= 2.0 * w * t2 / sin(angle);\\n u -= 2.0*w / sin(angle);\\n }\\n }\\n }\\n // Continuous angle\\n // ------------------------------------------------------------\\n } else {\\n position += v * w * o / cos(angle/2.0);\\n if( u == +1.0 ) u = v_segment.y;\\n else u = v_segment.x;\\n }\\n }\\n\\n // Solid line\\n // --------------------------------------------------------------------\\n else\\n {\\n position.xy += v * w * o / cos(angle/2.0);\\n if( angle < 0.0 ) {\\n if( u == +1.0 ) {\\n u = v_segment.y + v * w * tan(angle/2.0);\\n } else {\\n u = v_segment.x - v * w * tan(angle/2.0);\\n }\\n } else {\\n if( u == +1.0 ) {\\n u = v_segment.y + v * w * tan(angle/2.0);\\n } else {\\n u = v_segment.x - v * w * tan(angle/2.0);\\n }\\n }\\n }\\n\\n // This is a line start or end (t1 == t2)\\n // ------------------------------------------------------------------------\\n } else {\\n position += v * w * o1;\\n if( u == -1.0 ) {\\n u = v_segment.x - w;\\n position -= w * t1;\\n } else {\\n u = v_segment.y + w;\\n position += w * t2;\\n }\\n }\\n\\n // Miter distance\\n // ------------------------------------------------------------------------\\n vec2 t;\\n vec2 curr = a_position * abs_scale;\\n if( a_texcoord.x < 0.0 ) {\\n vec2 next = curr + t2*(v_segment.y-v_segment.x);\\n\\n rotate( t1, +v_angles.x/2.0, t);\\n v_miter.x = signed_distance(curr, curr+t, position);\\n\\n rotate( t2, +v_angles.y/2.0, t);\\n v_miter.y = signed_distance(next, next+t, position);\\n } else {\\n vec2 prev = curr - t1*(v_segment.y-v_segment.x);\\n\\n rotate( t1, -v_angles.x/2.0,t);\\n v_miter.x = signed_distance(prev, prev+t, position);\\n\\n rotate( t2, -v_angles.y/2.0,t);\\n v_miter.y = signed_distance(curr, curr+t, position);\\n }\\n\\n if (!closed && v_segment.x <= 0.0) {\\n v_miter.x = 1e10;\\n }\\n if (!closed && v_segment.y >= v_length)\\n {\\n v_miter.y = 1e10;\\n }\\n\\n v_texcoord = vec2( u, v*w );\\n\\n // Calculate position in device coordinates. Note that we\\n // already scaled with abs scale above.\\n vec2 normpos = position * sign(u_scale_aspect);\\n normpos += 0.5; // make up for Bokeh's offset\\n normpos /= u_canvas_size / u_pixel_ratio; // in 0..1\\n gl_Position = vec4(normpos*2.0-1.0, 0.0, 1.0);\\n gl_Position.y *= -1.0;\\n}\\n\"},\n", + " function _(n,t,e,s,a){s();e.default=\"\\nprecision mediump float;\\n\\nconst float PI = 3.14159265358979323846264;\\nconst float THETA = 15.0 * 3.14159265358979323846264/180.0;\\n\\nuniform sampler2D u_dash_atlas;\\n\\nuniform vec2 u_linecaps;\\nuniform float u_miter_limit;\\nuniform float u_linejoin;\\nuniform float u_antialias;\\nuniform float u_dash_phase;\\nuniform float u_dash_period;\\nuniform float u_dash_index;\\nuniform vec2 u_dash_caps;\\nuniform float u_closed;\\n\\nvarying vec4 v_color;\\nvarying vec2 v_segment;\\nvarying vec2 v_angles;\\nvarying vec2 v_texcoord;\\nvarying vec2 v_miter;\\nvarying float v_length;\\nvarying float v_linewidth;\\n\\n// Compute distance to cap ----------------------------------------------------\\nfloat cap( int type, float dx, float dy, float t, float linewidth )\\n{\\n float d = 0.0;\\n dx = abs(dx);\\n dy = abs(dy);\\n if (type == 0) discard; // None\\n else if (type == 1) d = sqrt(dx*dx+dy*dy); // Round\\n else if (type == 3) d = (dx+abs(dy)); // Triangle in\\n else if (type == 2) d = max(abs(dy),(t+dx-abs(dy))); // Triangle out\\n else if (type == 4) d = max(dx,dy); // Square\\n else if (type == 5) d = max(dx+t,dy); // Butt\\n return d;\\n}\\n\\n// Compute distance to join -------------------------------------------------\\nfloat join( in int type, in float d, in vec2 segment, in vec2 texcoord, in vec2 miter,\\n in float linewidth )\\n{\\n // texcoord.x is distance from start\\n // texcoord.y is distance from centerline\\n // segment.x and y indicate the limits (as for texcoord.x) for this segment\\n\\n float dx = texcoord.x;\\n\\n // Round join\\n if( type == 1 ) {\\n if (dx < segment.x) {\\n d = max(d,length( texcoord - vec2(segment.x,0.0)));\\n //d = length( texcoord - vec2(segment.x,0.0));\\n } else if (dx > segment.y) {\\n d = max(d,length( texcoord - vec2(segment.y,0.0)));\\n //d = length( texcoord - vec2(segment.y,0.0));\\n }\\n }\\n // Bevel join\\n else if ( type == 2 ) {\\n if (dx < segment.x) {\\n vec2 x = texcoord - vec2(segment.x,0.0);\\n d = max(d, max(abs(x.x), abs(x.y)));\\n\\n } else if (dx > segment.y) {\\n vec2 x = texcoord - vec2(segment.y,0.0);\\n d = max(d, max(abs(x.x), abs(x.y)));\\n }\\n /* Original code for bevel which does not work for us\\n if( (dx < segment.x) || (dx > segment.y) )\\n d = max(d, min(abs(x.x),abs(x.y)));\\n */\\n }\\n\\n return d;\\n}\\n\\nvoid main()\\n{\\n // If color is fully transparent we just discard the fragment\\n if( v_color.a <= 0.0 ) {\\n discard;\\n }\\n\\n // Test if dash pattern is the solid one (0)\\n bool solid = (u_dash_index == 0.0);\\n\\n // Test if path is closed\\n bool closed = (u_closed > 0.0);\\n\\n vec4 color = v_color;\\n float dx = v_texcoord.x;\\n float dy = v_texcoord.y;\\n float t = v_linewidth/2.0-u_antialias;\\n float width = 1.0; //v_linewidth; original code had dashes scale with line width, we do not\\n float d = 0.0;\\n\\n vec2 linecaps = u_linecaps;\\n vec2 dash_caps = u_dash_caps;\\n float line_start = 0.0;\\n float line_stop = v_length;\\n\\n // Apply miter limit; fragments too far into the miter are simply discarded\\n if( (dx < v_segment.x) || (dx > v_segment.y) ) {\\n float into_miter = max(v_segment.x - dx, dx - v_segment.y);\\n if (into_miter > u_miter_limit*v_linewidth/2.0)\\n discard;\\n }\\n\\n // Solid line --------------------------------------------------------------\\n if( solid ) {\\n d = abs(dy);\\n if( (!closed) && (dx < line_start) ) {\\n d = cap( int(u_linecaps.x), abs(dx), abs(dy), t, v_linewidth );\\n }\\n else if( (!closed) && (dx > line_stop) ) {\\n d = cap( int(u_linecaps.y), abs(dx)-line_stop, abs(dy), t, v_linewidth );\\n }\\n else {\\n d = join( int(u_linejoin), abs(dy), v_segment, v_texcoord, v_miter, v_linewidth );\\n }\\n\\n // Dash line --------------------------------------------------------------\\n } else {\\n float segment_start = v_segment.x;\\n float segment_stop = v_segment.y;\\n float segment_center= (segment_start+segment_stop)/2.0;\\n float freq = u_dash_period*width;\\n float u = mod( dx + u_dash_phase*width, freq);\\n vec4 tex = texture2D(u_dash_atlas, vec2(u/freq, u_dash_index)) * 255.0 -10.0; // conversion to int-like\\n float dash_center= tex.x * width;\\n float dash_type = tex.y;\\n float _start = tex.z * width;\\n float _stop = tex.a * width;\\n float dash_start = dx - u + _start;\\n float dash_stop = dx - u + _stop;\\n\\n // Compute extents of the first dash (the one relative to v_segment.x)\\n // Note: this could be computed in the vertex shader\\n if( (dash_stop < segment_start) && (dash_caps.x != 5.0) ) {\\n float u = mod(segment_start + u_dash_phase*width, freq);\\n vec4 tex = texture2D(u_dash_atlas, vec2(u/freq, u_dash_index)) * 255.0 -10.0; // conversion to int-like\\n dash_center= tex.x * width;\\n //dash_type = tex.y;\\n float _start = tex.z * width;\\n float _stop = tex.a * width;\\n dash_start = segment_start - u + _start;\\n dash_stop = segment_start - u + _stop;\\n }\\n\\n // Compute extents of the last dash (the one relatives to v_segment.y)\\n // Note: This could be computed in the vertex shader\\n else if( (dash_start > segment_stop) && (dash_caps.y != 5.0) ) {\\n float u = mod(segment_stop + u_dash_phase*width, freq);\\n vec4 tex = texture2D(u_dash_atlas, vec2(u/freq, u_dash_index)) * 255.0 -10.0; // conversion to int-like\\n dash_center= tex.x * width;\\n //dash_type = tex.y;\\n float _start = tex.z * width;\\n float _stop = tex.a * width;\\n dash_start = segment_stop - u + _start;\\n dash_stop = segment_stop - u + _stop;\\n }\\n\\n // This test if the we are dealing with a discontinuous angle\\n bool discontinuous = ((dx < segment_center) && abs(v_angles.x) > THETA) ||\\n ((dx >= segment_center) && abs(v_angles.y) > THETA);\\n //if( dx < line_start) discontinuous = false;\\n //if( dx > line_stop) discontinuous = false;\\n\\n float d_join = join( int(u_linejoin), abs(dy),\\n v_segment, v_texcoord, v_miter, v_linewidth );\\n\\n // When path is closed, we do not have room for linecaps, so we make room\\n // by shortening the total length\\n if (closed) {\\n line_start += v_linewidth/2.0;\\n line_stop -= v_linewidth/2.0;\\n }\\n\\n // We also need to take antialias area into account\\n //line_start += u_antialias;\\n //line_stop -= u_antialias;\\n\\n // Check is dash stop is before line start\\n if( dash_stop <= line_start ) {\\n discard;\\n }\\n // Check is dash start is beyond line stop\\n if( dash_start >= line_stop ) {\\n discard;\\n }\\n\\n // Check if current dash start is beyond segment stop\\n if( discontinuous ) {\\n // Dash start is beyond segment, we discard\\n if( (dash_start > segment_stop) ) {\\n discard;\\n //gl_FragColor = vec4(1.0,0.0,0.0,.25); return;\\n }\\n\\n // Dash stop is before segment, we discard\\n if( (dash_stop < segment_start) ) {\\n discard; //gl_FragColor = vec4(0.0,1.0,0.0,.25); return;\\n }\\n\\n // Special case for round caps (nicer with this)\\n if( dash_caps.x == 1.0 ) {\\n if( (u > _stop) && (dash_stop > segment_stop ) && (abs(v_angles.y) < PI/2.0)) {\\n discard;\\n }\\n }\\n\\n // Special case for round caps (nicer with this)\\n if( dash_caps.y == 1.0 ) {\\n if( (u < _start) && (dash_start < segment_start ) && (abs(v_angles.x) < PI/2.0)) {\\n discard;\\n }\\n }\\n\\n // Special case for triangle caps (in & out) and square\\n // We make sure the cap stop at crossing frontier\\n if( (dash_caps.x != 1.0) && (dash_caps.x != 5.0) ) {\\n if( (dash_start < segment_start ) && (abs(v_angles.x) < PI/2.0) ) {\\n float a = v_angles.x/2.0;\\n float x = (segment_start-dx)*cos(a) - dy*sin(a);\\n float y = (segment_start-dx)*sin(a) + dy*cos(a);\\n if( x > 0.0 ) discard;\\n // We transform the cap into square to avoid holes\\n dash_caps.x = 4.0;\\n }\\n }\\n\\n // Special case for triangle caps (in & out) and square\\n // We make sure the cap stop at crossing frontier\\n if( (dash_caps.y != 1.0) && (dash_caps.y != 5.0) ) {\\n if( (dash_stop > segment_stop ) && (abs(v_angles.y) < PI/2.0) ) {\\n float a = v_angles.y/2.0;\\n float x = (dx-segment_stop)*cos(a) - dy*sin(a);\\n float y = (dx-segment_stop)*sin(a) + dy*cos(a);\\n if( x > 0.0 ) discard;\\n // We transform the caps into square to avoid holes\\n dash_caps.y = 4.0;\\n }\\n }\\n }\\n\\n // Line cap at start\\n if( (dx < line_start) && (dash_start < line_start) && (dash_stop > line_start) ) {\\n d = cap( int(linecaps.x), dx-line_start, dy, t, v_linewidth);\\n }\\n // Line cap at stop\\n else if( (dx > line_stop) && (dash_stop > line_stop) && (dash_start < line_stop) ) {\\n d = cap( int(linecaps.y), dx-line_stop, dy, t, v_linewidth);\\n }\\n // Dash cap left - dash_type = -1, 0 or 1, but there may be roundoff errors\\n else if( dash_type < -0.5 ) {\\n d = cap( int(dash_caps.y), abs(u-dash_center), dy, t, v_linewidth);\\n if( (dx > line_start) && (dx < line_stop) )\\n d = max(d,d_join);\\n }\\n // Dash cap right\\n else if( dash_type > 0.5 ) {\\n d = cap( int(dash_caps.x), abs(dash_center-u), dy, t, v_linewidth);\\n if( (dx > line_start) && (dx < line_stop) )\\n d = max(d,d_join);\\n }\\n // Dash body (plain)\\n else {// if( dash_type > -0.5 && dash_type < 0.5) {\\n d = abs(dy);\\n }\\n\\n // Line join\\n if( (dx > line_start) && (dx < line_stop)) {\\n if( (dx <= segment_start) && (dash_start <= segment_start)\\n && (dash_stop >= segment_start) ) {\\n d = d_join;\\n // Antialias at outer border\\n float angle = PI/2.+v_angles.x;\\n float f = abs( (segment_start - dx)*cos(angle) - dy*sin(angle));\\n d = max(f,d);\\n }\\n else if( (dx > segment_stop) && (dash_start <= segment_stop)\\n && (dash_stop >= segment_stop) ) {\\n d = d_join;\\n // Antialias at outer border\\n float angle = PI/2.+v_angles.y;\\n float f = abs((dx - segment_stop)*cos(angle) - dy*sin(angle));\\n d = max(f,d);\\n }\\n else if( dx < (segment_start - v_linewidth/2.)) {\\n discard;\\n }\\n else if( dx > (segment_stop + v_linewidth/2.)) {\\n discard;\\n }\\n }\\n else if( dx < (segment_start - v_linewidth/2.)) {\\n discard;\\n }\\n else if( dx > (segment_stop + v_linewidth/2.)) {\\n discard;\\n }\\n }\\n\\n // Distance to border ------------------------------------------------------\\n d = d - t;\\n if( d < 0.0 ) {\\n gl_FragColor = color;\\n } else {\\n d /= u_antialias;\\n gl_FragColor = vec4(color.rgb, exp(-d*d)*color.a);\\n }\\n}\\n\"},\n", + " function _(i,t,s,e,l){e();const a=i(1),n=i(64),_=i(106),o=a.__importStar(i(107)),h=a.__importStar(i(48)),c=i(59);class r extends n.XYGlyphView{_inner_loop(i,t,s,e,l){for(const a of t){const t=s[a],n=e[a];0!=a?isNaN(t+n)?(i.closePath(),l.apply(i),i.beginPath()):i.lineTo(t,n):(i.beginPath(),i.moveTo(t,n))}i.closePath(),l.call(i)}_render(i,t,s){const{sx:e,sy:l}=null!=s?s:this;this.visuals.fill.doit&&(this.visuals.fill.set_value(i),this._inner_loop(i,t,e,l,i.fill)),this.visuals.hatch.doit&&(this.visuals.hatch.set_value(i),this._inner_loop(i,t,e,l,i.fill)),this.visuals.line.doit&&(this.visuals.line.set_value(i),this._inner_loop(i,t,e,l,i.stroke))}draw_legend_for_index(i,t,s){_.generic_area_scalar_legend(this.visuals,i,t)}_hit_point(i){const t=new c.Selection;return o.point_in_poly(i.sx,i.sy,this.sx,this.sy)&&(t.add_to_selected_glyphs(this.model),t.view=this),t}}s.PatchView=r,r.__name__=\"PatchView\";class p extends n.XYGlyph{constructor(i){super(i)}static init_Patch(){this.prototype.default_view=r,this.mixins([h.LineScalar,h.FillScalar,h.HatchScalar])}}s.Patch=p,p.__name__=\"Patch\",p.init_Patch()},\n", + " function _(t,e,s,i,n){i();const a=t(1),r=t(24),h=t(118),_=a.__importStar(t(107)),l=a.__importStar(t(18)),o=t(59);class c extends h.AreaView{_index_data(t){const{min:e,max:s}=Math,{data_size:i}=this;for(let n=0;n=0;e--)t.lineTo(s[e],i[e]);t.closePath(),n.call(t)}_render(t,e,s){const{sx1:i,sx2:n,sy:a}=null!=s?s:this;this.visuals.fill.doit&&(this.visuals.fill.set_value(t),this._inner(t,i,n,a,t.fill)),this.visuals.hatch.doit&&(this.visuals.hatch.set_value(t),this._inner(t,i,n,a,t.fill))}_hit_point(t){const e=this.sy.length,s=new r.ScreenArray(2*e),i=new r.ScreenArray(2*e);for(let t=0,n=e;t({x1:[l.XCoordinateSpec,{field:\"x1\"}],x2:[l.XCoordinateSpec,{field:\"x2\"}],y:[l.YCoordinateSpec,{field:\"y\"}]})))}}s.HArea=d,d.__name__=\"HArea\",d.init_HArea()},\n", + " function _(e,a,_,i,r){i();const s=e(1),n=e(98),t=e(106),c=s.__importStar(e(48));class l extends n.GlyphView{draw_legend_for_index(e,a,_){t.generic_area_scalar_legend(this.visuals,e,a)}}_.AreaView=l,l.__name__=\"AreaView\";class d extends n.Glyph{constructor(e){super(e)}static init_Area(){this.mixins([c.FillScalar,c.HatchScalar])}}_.Area=d,d.__name__=\"Area\",d.init_Area()},\n", + " function _(t,e,s,i,n){i();const a=t(1),r=t(24),h=t(118),_=a.__importStar(t(107)),l=a.__importStar(t(18)),o=t(59);class c extends h.AreaView{_index_data(t){const{min:e,max:s}=Math,{data_size:i}=this;for(let n=0;n=0;s--)t.lineTo(e[s],i[s]);t.closePath(),n.call(t)}_render(t,e,s){const{sx:i,sy1:n,sy2:a}=null!=s?s:this;this.visuals.fill.doit&&(this.visuals.fill.set_value(t),this._inner(t,i,n,a,t.fill)),this.visuals.hatch.doit&&(this.visuals.hatch.set_value(t),this._inner(t,i,n,a,t.fill))}scenterxy(t){return[this.sx[t],(this.sy1[t]+this.sy2[t])/2]}_hit_point(t){const e=this.sx.length,s=new r.ScreenArray(2*e),i=new r.ScreenArray(2*e);for(let t=0,n=e;t({x:[l.XCoordinateSpec,{field:\"x\"}],y1:[l.YCoordinateSpec,{field:\"y1\"}],y2:[l.YCoordinateSpec,{field:\"y2\"}]})))}}s.VArea=d,d.__name__=\"VArea\",d.init_VArea()},\n", + " function _(i,e,s,t,n){t();const c=i(53),o=i(59),r=i(24),a=i(121),u=i(57);class _ extends c.Model{constructor(i){super(i)}static init_CDSView(){this.define((({Array:i,Ref:e})=>({filters:[i(e(a.Filter)),[]],source:[e(u.ColumnarDataSource)]}))),this.internal((({Int:i,Dict:e,Ref:s,Nullable:t})=>({indices:[s(r.Indices)],indices_map:[e(i),{}],masked:[t(s(r.Indices)),null]})))}initialize(){super.initialize(),this.compute_indices()}connect_signals(){super.connect_signals(),this.connect(this.properties.filters.change,(()=>this.compute_indices()));const i=()=>{const i=()=>this.compute_indices();null!=this.source&&(this.connect(this.source.change,i),this.source instanceof u.ColumnarDataSource&&(this.connect(this.source.streaming,i),this.connect(this.source.patching,i)))};let e=null!=this.source;e?i():this.connect(this.properties.source.change,(()=>{e||(i(),e=!0)}))}compute_indices(){var i;const{source:e}=this;if(null==e)return;const s=null!==(i=e.get_length())&&void 0!==i?i:1,t=r.Indices.all_set(s);for(const i of this.filters)t.intersect(i.compute_indices(e));this.indices=t,this._indices=[...t],this.indices_map_to_subset()}indices_map_to_subset(){this.indices_map={};for(let i=0;ithis._indices[i]));return new o.Selection(Object.assign(Object.assign({},i.attributes),{indices:e}))}convert_selection_to_subset(i){const e=i.indices.map((i=>this.indices_map[i]));return new o.Selection(Object.assign(Object.assign({},i.attributes),{indices:e}))}convert_indices_from_subset(i){return i.map((i=>this._indices[i]))}}s.CDSView=_,_.__name__=\"CDSView\",_.init_CDSView()},\n", + " function _(e,t,n,s,c){s();const o=e(53);class r extends o.Model{constructor(e){super(e)}}n.Filter=r,r.__name__=\"Filter\"},\n", + " function _(n,e,t,i,o){i();const s=n(9);async function c(n,e,t){const i=new n(Object.assign(Object.assign({},t),{model:e}));return i.initialize(),await i.lazy_initialize(),i}t.build_view=async function(n,e={parent:null},t=(n=>n.default_view)){const i=await c(t(n),n,e);return i.connect_signals(),i},t.build_views=async function(n,e,t={parent:null},i=(n=>n.default_view)){const o=s.difference([...n.keys()],e);for(const e of o)n.get(e).remove(),n.delete(e);const a=[],f=e.filter((e=>!n.has(e)));for(const e of f){const o=await c(i(e),e,t);n.set(e,o),a.push(o)}for(const n of a)n.connect_signals();return a},t.remove_views=function(n){for(const[e,t]of n)t.remove(),n.delete(e)}},\n", + " function _(e,r,n,t,i){t();const s=e(62),o=e(61),l=e(124),d=e(125),a=e(126),p=e(122),_=e(64),h=e(127),c=e(128),u=e(11);class y extends s.DataRendererView{get glyph_view(){return this.node_view.glyph}async lazy_initialize(){await super.lazy_initialize();const e=this.model;let r=null,n=null;const t=new class extends l.Expression{_v_compute(n){u.assert(null==r);const[t]=r=e.layout_provider.get_edge_coordinates(n);return t}},i=new class extends l.Expression{_v_compute(e){u.assert(null!=r);const[,n]=r;return r=null,n}},s=new class extends l.Expression{_v_compute(r){u.assert(null==n);const[t]=n=e.layout_provider.get_node_coordinates(r);return t}},o=new class extends l.Expression{_v_compute(e){u.assert(null!=n);const[,r]=n;return n=null,r}},{edge_renderer:d,node_renderer:a}=this.model;if(!(d.glyph instanceof h.MultiLine||d.glyph instanceof c.Patches))throw new Error(`${this}.edge_renderer.glyph must be a MultiLine glyph`);if(!(a.glyph instanceof _.XYGlyph))throw new Error(`${this}.node_renderer.glyph must be a XYGlyph glyph`);d.glyph.properties.xs.internal=!0,d.glyph.properties.ys.internal=!0,a.glyph.properties.x.internal=!0,a.glyph.properties.y.internal=!0,d.glyph.xs={expr:t},d.glyph.ys={expr:i},a.glyph.x={expr:s},a.glyph.y={expr:o};const{parent:y}=this;this.edge_view=await p.build_view(d,{parent:y}),this.node_view=await p.build_view(a,{parent:y})}connect_signals(){super.connect_signals(),this.connect(this.model.layout_provider.change,(()=>{this.edge_view.set_data(),this.node_view.set_data(),this.request_render()}))}remove(){this.edge_view.remove(),this.node_view.remove(),super.remove()}_render(){this.edge_view.render(),this.node_view.render()}renderer_view(e){if(e instanceof o.GlyphRenderer){if(e==this.edge_view.model)return this.edge_view;if(e==this.node_view.model)return this.node_view}return super.renderer_view(e)}}n.GraphRendererView=y,y.__name__=\"GraphRendererView\";class g extends s.DataRenderer{constructor(e){super(e)}static init_GraphRenderer(){this.prototype.default_view=y,this.define((({Ref:e})=>({layout_provider:[e(d.LayoutProvider)],node_renderer:[e(o.GlyphRenderer)],edge_renderer:[e(o.GlyphRenderer)],selection_policy:[e(a.GraphHitTestPolicy),()=>new a.NodesOnly],inspection_policy:[e(a.GraphHitTestPolicy),()=>new a.NodesOnly]})))}get_selection_manager(){return this.node_renderer.data_source.selection_manager}}n.GraphRenderer=g,g.__name__=\"GraphRenderer\",g.init_GraphRenderer()},\n", + " function _(e,t,s,n,i){n();const c=e(53);class l extends c.Model{constructor(e){super(e)}initialize(){super.initialize(),this._connected=new Set,this._result=new Map}v_compute(e){this._connected.has(e)||(this.connect(e.change,(()=>this._result.delete(e))),this.connect(e.patching,(()=>this._result.delete(e))),this.connect(e.streaming,(()=>this._result.delete(e))),this._connected.add(e));let t=this._result.get(e);return null==t&&(t=this._v_compute(e),this._result.set(e,t)),t}}s.Expression=l,l.__name__=\"Expression\";class h extends c.Model{constructor(e){super(e)}initialize(){super.initialize(),this._connected=new Set,this._result=new Map}compute(e){this._connected.has(e)||(this.connect(e.change,(()=>this._result.delete(e))),this.connect(e.patching,(()=>this._result.delete(e))),this.connect(e.streaming,(()=>this._result.delete(e))),this._connected.add(e));let t=this._result.get(e);return null==t&&(t=this._compute(e),this._result.set(e,t)),t}}s.ScalarExpression=h,h.__name__=\"ScalarExpression\"},\n", + " function _(o,e,r,t,n){t();const s=o(53);class c extends s.Model{constructor(o){super(o)}}r.LayoutProvider=c,c.__name__=\"LayoutProvider\"},\n", + " function _(e,t,d,n,s){n();const o=e(53),r=e(12),_=e(9),i=e(59);class c extends o.Model{constructor(e){super(e)}_hit_test(e,t,d){if(!t.model.visible)return null;const n=d.glyph.hit_test(e);return null==n?null:d.model.view.convert_selection_from_subset(n)}}d.GraphHitTestPolicy=c,c.__name__=\"GraphHitTestPolicy\";class a extends c{constructor(e){super(e)}hit_test(e,t){return this._hit_test(e,t,t.edge_view)}do_selection(e,t,d,n){if(null==e)return!1;const s=t.edge_renderer.data_source.selected;return s.update(e,d,n),t.edge_renderer.data_source._select.emit(),!s.is_empty()}do_inspection(e,t,d,n,s){if(null==e)return!1;const{edge_renderer:o}=d.model,r=o.get_selection_manager().get_or_create_inspector(d.edge_view.model);return r.update(e,n,s),d.edge_view.model.data_source.setv({inspected:r},{silent:!0}),d.edge_view.model.data_source.inspect.emit([d.edge_view.model,{geometry:t}]),!r.is_empty()}}d.EdgesOnly=a,a.__name__=\"EdgesOnly\";class l extends c{constructor(e){super(e)}hit_test(e,t){return this._hit_test(e,t,t.node_view)}do_selection(e,t,d,n){if(null==e)return!1;const s=t.node_renderer.data_source.selected;return s.update(e,d,n),t.node_renderer.data_source._select.emit(),!s.is_empty()}do_inspection(e,t,d,n,s){if(null==e)return!1;const{node_renderer:o}=d.model,r=o.get_selection_manager().get_or_create_inspector(d.node_view.model);return r.update(e,n,s),d.node_view.model.data_source.setv({inspected:r},{silent:!0}),d.node_view.model.data_source.inspect.emit([d.node_view.model,{geometry:t}]),!r.is_empty()}}d.NodesOnly=l,l.__name__=\"NodesOnly\";class u extends c{constructor(e){super(e)}hit_test(e,t){return this._hit_test(e,t,t.node_view)}get_linked_edges(e,t,d){let n=[];\"selection\"==d?n=e.selected.indices.map((t=>e.data.index[t])):\"inspection\"==d&&(n=e.inspected.indices.map((t=>e.data.index[t])));const s=[];for(let e=0;er.indexOf(e.data.index,t)));return new i.Selection({indices:o})}do_selection(e,t,d,n){if(null==e)return!1;const s=t.edge_renderer.data_source.selected;s.update(e,d,n);const o=t.node_renderer.data_source.selected,r=this.get_linked_nodes(t.node_renderer.data_source,t.edge_renderer.data_source,\"selection\");return o.update(r,d,n),t.edge_renderer.data_source._select.emit(),!s.is_empty()}do_inspection(e,t,d,n,s){if(null==e)return!1;const o=d.edge_view.model.data_source.selection_manager.get_or_create_inspector(d.edge_view.model);o.update(e,n,s),d.edge_view.model.data_source.setv({inspected:o},{silent:!0});const r=d.node_view.model.data_source.selection_manager.get_or_create_inspector(d.node_view.model),_=this.get_linked_nodes(d.node_view.model.data_source,d.edge_view.model.data_source,\"inspection\");return r.update(_,n,s),d.node_view.model.data_source.setv({inspected:r},{silent:!0}),d.edge_view.model.data_source.inspect.emit([d.edge_view.model,{geometry:t}]),!o.is_empty()}}d.EdgesAndLinkedNodes=m,m.__name__=\"EdgesAndLinkedNodes\"},\n", + " function _(t,e,i,n,s){n();const o=t(1),l=t(65),r=t(48),_=o.__importStar(t(107)),c=o.__importStar(t(18)),h=t(12),a=t(13),d=t(98),x=t(106),y=t(59);class g extends d.GlyphView{_project_data(){l.inplace.project_xy(this._xs.array,this._ys.array)}_index_data(t){const{data_size:e}=this;for(let i=0;i0&&o.set(t,i)}return new y.Selection({indices:[...o.keys()],multiline_indices:a.to_object(o)})}get_interpolation_hit(t,e,i){const n=this._xs.get(t),s=this._ys.get(t),o=n[e],l=s[e],r=n[e+1],_=s[e+1];return x.line_interpolation(this.renderer,i,o,l,r,_)}draw_legend_for_index(t,e,i){x.generic_line_vector_legend(this.visuals,t,e,i)}scenterxy(){throw new Error(`${this}.scenterxy() is not implemented`)}}i.MultiLineView=g,g.__name__=\"MultiLineView\";class u extends d.Glyph{constructor(t){super(t)}static init_MultiLine(){this.prototype.default_view=g,this.define((({})=>({xs:[c.XCoordinateSeqSpec,{field:\"xs\"}],ys:[c.YCoordinateSeqSpec,{field:\"ys\"}]}))),this.mixins(r.LineVector)}}i.MultiLine=u,u.__name__=\"MultiLine\",u.init_MultiLine()},\n", + " function _(e,t,s,i,n){i();const r=e(1),o=e(98),a=e(106),_=e(12),c=e(48),l=r.__importStar(e(107)),h=r.__importStar(e(18)),d=e(59),y=e(11),p=e(65);class x extends o.GlyphView{_project_data(){p.inplace.project_xy(this._xs.array,this._ys.array)}_index_data(e){const{data_size:t}=this;for(let s=0;s({xs:[h.XCoordinateSeqSpec,{field:\"xs\"}],ys:[h.YCoordinateSeqSpec,{field:\"ys\"}]}))),this.mixins([c.LineVector,c.FillVector,c.HatchVector])}}s.Patches=f,f.__name__=\"Patches\",f.init_Patches()},\n", + " function _(e,t,n,s,o){s();const r=e(53);class c extends r.Model{do_selection(e,t,n,s){return null!=e&&(t.selected.update(e,n,s),t._select.emit(),!t.selected.is_empty())}}n.SelectionPolicy=c,c.__name__=\"SelectionPolicy\";class l extends c{hit_test(e,t){const n=[];for(const s of t){const t=s.hit_test(e);null!=t&&n.push(t)}if(n.length>0){const e=n[0];for(const t of n)e.update_through_intersection(t);return e}return null}}n.IntersectRenderers=l,l.__name__=\"IntersectRenderers\";class _ extends c{hit_test(e,t){const n=[];for(const s of t){const t=s.hit_test(e);null!=t&&n.push(t)}if(n.length>0){const e=n[0];for(const t of n)e.update_through_union(t);return e}return null}}n.UnionRenderers=_,_.__name__=\"UnionRenderers\"},\n", + " function _(t,n,e,s,o){s();const r=t(1),i=t(57),l=t(8),c=t(13),a=r.__importStar(t(131)),u=t(132),h=t(35);function d(t,n,e){if(l.isArray(t)){const s=t.concat(n);return null!=e&&s.length>e?s.slice(-e):s}if(l.isTypedArray(t)){const s=t.length+n.length;if(null!=e&&s>e){const o=s-e,r=t.length;let i;t.length({data:[t(n),{}]})))}stream(t,n,e){const{data:s}=this;for(const[e,o]of c.entries(t))s[e]=d(s[e],o,n);if(this.setv({data:s},{silent:!0}),this.streaming.emit(),null!=this.document){const s=new h.ColumnsStreamedEvent(this.document,this.ref(),t,n);this.document._notify_change(this,\"data\",null,null,{setter_id:e,hint:s})}}patch(t,n){const{data:e}=this;let s=new Set;for(const[n,o]of c.entries(t))s=u.union(s,m(e[n],o));if(this.setv({data:e},{silent:!0}),this.patching.emit([...s]),null!=this.document){const e=new h.ColumnsPatchedEvent(this.document,this.ref(),t);this.document._notify_change(this,\"data\",null,null,{setter_id:n,hint:e})}}}e.ColumnDataSource=_,_.__name__=\"ColumnDataSource\",_.init_ColumnDataSource()},\n", + " function _(t,n,o,e,c){e(),o.concat=function(t,...n){let o=t.length;for(const t of n)o+=t.length;const e=new t.constructor(o);e.set(t,0);let c=t.length;for(const t of n)e.set(t,c),c+=t.length;return e}},\n", + " function _(n,o,t,e,f){function c(...n){const o=new Set;for(const t of n)for(const n of t)o.add(n);return o}e(),t.union=c,t.intersection=function(n,...o){const t=new Set;n:for(const e of n){for(const n of o)if(!n.has(e))continue n;t.add(e)}return t},t.difference=function(n,...o){const t=new Set(n);for(const n of c(...o))t.delete(n);return t}},\n", + " function _(e,i,t,s,o){s();const n=e(1),a=e(53),l=e(42),r=n.__importStar(e(45)),_=e(48),c=n.__importStar(e(18));class d extends l.View{initialize(){super.initialize(),this.visuals=new r.Visuals(this)}request_render(){this.parent.request_render()}get canvas(){return this.parent.canvas}set_data(e){const i=this;for(const t of this.model){if(!(t instanceof c.VectorSpec||t instanceof c.ScalarSpec))continue;const s=t.uniform(e);i[`${t.attr}`]=s}}}t.ArrowHeadView=d,d.__name__=\"ArrowHeadView\";class h extends a.Model{constructor(e){super(e)}static init_ArrowHead(){this.define((()=>({size:[c.NumberSpec,25]})))}}t.ArrowHead=h,h.__name__=\"ArrowHead\",h.init_ArrowHead();class v extends d{clip(e,i){this.visuals.line.set_vectorize(e,i);const t=this.size.get(i);e.moveTo(.5*t,t),e.lineTo(.5*t,-2),e.lineTo(-.5*t,-2),e.lineTo(-.5*t,t),e.lineTo(0,0),e.lineTo(.5*t,t)}render(e,i){if(this.visuals.line.doit){this.visuals.line.set_vectorize(e,i);const t=this.size.get(i);e.beginPath(),e.moveTo(.5*t,t),e.lineTo(0,0),e.lineTo(-.5*t,t),e.stroke()}}}t.OpenHeadView=v,v.__name__=\"OpenHeadView\";class u extends h{constructor(e){super(e)}static init_OpenHead(){this.prototype.default_view=v,this.mixins(_.LineVector)}}t.OpenHead=u,u.__name__=\"OpenHead\",u.init_OpenHead();class m extends d{clip(e,i){this.visuals.line.set_vectorize(e,i);const t=this.size.get(i);e.moveTo(.5*t,t),e.lineTo(.5*t,-2),e.lineTo(-.5*t,-2),e.lineTo(-.5*t,t),e.lineTo(.5*t,t)}render(e,i){this.visuals.fill.doit&&(this.visuals.fill.set_vectorize(e,i),this._normal(e,i),e.fill()),this.visuals.line.doit&&(this.visuals.line.set_vectorize(e,i),this._normal(e,i),e.stroke())}_normal(e,i){const t=this.size.get(i);e.beginPath(),e.moveTo(.5*t,t),e.lineTo(0,0),e.lineTo(-.5*t,t),e.closePath()}}t.NormalHeadView=m,m.__name__=\"NormalHeadView\";class T extends h{constructor(e){super(e)}static init_NormalHead(){this.prototype.default_view=m,this.mixins([_.LineVector,_.FillVector]),this.override({fill_color:\"black\"})}}t.NormalHead=T,T.__name__=\"NormalHead\",T.init_NormalHead();class p extends d{clip(e,i){this.visuals.line.set_vectorize(e,i);const t=this.size.get(i);e.moveTo(.5*t,t),e.lineTo(.5*t,-2),e.lineTo(-.5*t,-2),e.lineTo(-.5*t,t),e.lineTo(0,.5*t),e.lineTo(.5*t,t)}render(e,i){this.visuals.fill.doit&&(this.visuals.fill.set_vectorize(e,i),this._vee(e,i),e.fill()),this.visuals.line.doit&&(this.visuals.line.set_vectorize(e,i),this._vee(e,i),e.stroke())}_vee(e,i){const t=this.size.get(i);e.beginPath(),e.moveTo(.5*t,t),e.lineTo(0,0),e.lineTo(-.5*t,t),e.lineTo(0,.5*t),e.closePath()}}t.VeeHeadView=p,p.__name__=\"VeeHeadView\";class H extends h{constructor(e){super(e)}static init_VeeHead(){this.prototype.default_view=p,this.mixins([_.LineVector,_.FillVector]),this.override({fill_color:\"black\"})}}t.VeeHead=H,H.__name__=\"VeeHead\",H.init_VeeHead();class V extends d{render(e,i){if(this.visuals.line.doit){this.visuals.line.set_vectorize(e,i);const t=this.size.get(i);e.beginPath(),e.moveTo(.5*t,0),e.lineTo(-.5*t,0),e.stroke()}}clip(e,i){}}t.TeeHeadView=V,V.__name__=\"TeeHeadView\";class f extends h{constructor(e){super(e)}static init_TeeHead(){this.prototype.default_view=V,this.mixins(_.LineVector)}}t.TeeHead=f,f.__name__=\"TeeHead\",f.init_TeeHead()},\n", + " function _(s,e,i,t,l){t();const _=s(1),o=s(135),r=_.__importStar(s(48));class h extends o.UpperLowerView{paint(s){s.beginPath(),s.moveTo(this._lower_sx[0],this._lower_sy[0]);for(let e=0,i=this._lower_sx.length;e=0;e--)s.lineTo(this._upper_sx[e],this._upper_sy[e]);s.closePath(),this.visuals.fill.doit&&(this.visuals.fill.set_value(s),s.fill()),s.beginPath(),s.moveTo(this._lower_sx[0],this._lower_sy[0]);for(let e=0,i=this._lower_sx.length;e({dimension:[n.Dimension,\"height\"],lower:[h,{field:\"lower\"}],upper:[h,{field:\"upper\"}],base:[h,{field:\"base\"}]})))}}i.UpperLower=d,d.__name__=\"UpperLower\",d.init_UpperLower()},\n", + " function _(t,i,o,n,e){n();const s=t(1),l=t(40),a=s.__importStar(t(48)),r=t(20),h=t(99);o.EDGE_TOLERANCE=2.5;class c extends l.AnnotationView{constructor(){super(...arguments),this.bbox=new h.BBox}connect_signals(){super.connect_signals(),this.connect(this.model.change,(()=>this.request_render()))}_render(){const{left:t,right:i,top:o,bottom:n}=this.model;if(null==t&&null==i&&null==o&&null==n)return;const{frame:e}=this.plot_view,s=this.coordinates.x_scale,l=this.coordinates.y_scale,a=(t,i,o,n,e)=>{let s;return s=null!=t?this.model.screen?t:\"data\"==i?o.compute(t):n.compute(t):e,s};this.bbox=h.BBox.from_rect({left:a(t,this.model.left_units,s,e.bbox.xview,e.bbox.left),right:a(i,this.model.right_units,s,e.bbox.xview,e.bbox.right),top:a(o,this.model.top_units,l,e.bbox.yview,e.bbox.top),bottom:a(n,this.model.bottom_units,l,e.bbox.yview,e.bbox.bottom)}),this._paint_box()}_paint_box(){const{ctx:t}=this.layer;t.save();const{left:i,top:o,width:n,height:e}=this.bbox;t.beginPath(),t.rect(i,o,n,e),this.visuals.fill.doit&&(this.visuals.fill.set_value(t),t.fill()),this.visuals.hatch.doit&&(this.visuals.hatch.set_value(t),t.fill()),this.visuals.line.doit&&(this.visuals.line.set_value(t),t.stroke()),t.restore()}interactive_bbox(){const t=this.model.line_width+o.EDGE_TOLERANCE;return this.bbox.grow_by(t)}interactive_hit(t,i){if(null==this.model.in_cursor)return!1;return this.interactive_bbox().contains(t,i)}cursor(t,i){const{left:o,right:n,bottom:e,top:s}=this.bbox;return Math.abs(t-o)<3||Math.abs(t-n)<3?this.model.ew_cursor:Math.abs(i-e)<3||Math.abs(i-s)<3?this.model.ns_cursor:this.bbox.contains(t,i)?this.model.in_cursor:null}}o.BoxAnnotationView=c,c.__name__=\"BoxAnnotationView\";class u extends l.Annotation{constructor(t){super(t)}static init_BoxAnnotation(){this.prototype.default_view=c,this.mixins([a.Line,a.Fill,a.Hatch]),this.define((({Number:t,Nullable:i})=>({top:[i(t),null],top_units:[r.SpatialUnits,\"data\"],bottom:[i(t),null],bottom_units:[r.SpatialUnits,\"data\"],left:[i(t),null],left_units:[r.SpatialUnits,\"data\"],right:[i(t),null],right_units:[r.SpatialUnits,\"data\"],render_mode:[r.RenderMode,\"canvas\"]}))),this.internal((({Boolean:t,String:i,Nullable:o})=>({screen:[t,!1],ew_cursor:[o(i),null],ns_cursor:[o(i),null],in_cursor:[o(i),null]}))),this.override({fill_color:\"#fff9ba\",fill_alpha:.4,line_color:\"#cccccc\",line_alpha:.3})}update({left:t,right:i,top:o,bottom:n}){this.setv({left:t,right:i,top:o,bottom:n,screen:!0})}}o.BoxAnnotation=u,u.__name__=\"BoxAnnotation\",u.init_BoxAnnotation()},\n", + " function _(t,e,i,a,n){a();const o=t(1),r=t(40),s=t(138),l=t(144),_=t(162),c=t(165),h=t(198),u=t(166),p=t(205),m=t(169),g=t(203),d=t(202),f=t(209),w=t(217),b=t(220),v=t(20),y=o.__importStar(t(48)),k=t(9),x=t(221),C=t(222),j=t(225),z=t(140),L=t(11),S=t(122),M=t(8);class T extends r.AnnotationView{get orientation(){return this._orientation}initialize(){super.initialize();const{ticker:t,formatter:e,color_mapper:i}=this.model;this._ticker=\"auto\"!=t?t:(()=>{switch(!0){case i instanceof f.LogColorMapper:return new h.LogTicker;case i instanceof f.ScanningColorMapper:return new h.BinnedTicker({mapper:i});case i instanceof f.CategoricalColorMapper:return new h.CategoricalTicker;default:return new h.BasicTicker}})(),this._formatter=\"auto\"!=e?e:(()=>{switch(!0){case this._ticker instanceof h.LogTicker:return new p.LogTickFormatter;case i instanceof f.CategoricalColorMapper:return new p.CategoricalTickFormatter;default:return new p.BasicTickFormatter}})(),this._major_range=(()=>{if(i instanceof f.CategoricalColorMapper){const{factors:t}=i;return new b.FactorRange({factors:t})}if(i instanceof d.ContinuousColorMapper){const{min:t,max:e}=i.metrics;return new b.Range1d({start:t,end:e})}L.unreachable()})(),this._major_scale=(()=>{if(i instanceof f.LinearColorMapper)return new w.LinearScale;if(i instanceof f.LogColorMapper)return new w.LogScale;if(i instanceof f.ScanningColorMapper){const{binning:t}=i.metrics;return new w.LinearInterpolationScale({binning:t})}if(i instanceof f.CategoricalColorMapper)return new w.CategoricalScale;L.unreachable()})(),this._minor_range=new b.Range1d({start:0,end:1}),this._minor_scale=new w.LinearScale;const a=y.attrs_of(this.model,\"major_label_\",y.Text,!0),n=y.attrs_of(this.model,\"major_tick_\",y.Line,!0),o=y.attrs_of(this.model,\"minor_tick_\",y.Line,!0),r=y.attrs_of(this.model,\"title_\",y.Text),l=i instanceof f.CategoricalColorMapper?_.CategoricalAxis:i instanceof f.LogColorMapper?_.LogAxis:_.LinearAxis;this._axis=new l(Object.assign(Object.assign(Object.assign({ticker:this._ticker,formatter:this._formatter,major_tick_in:this.model.major_tick_in,major_tick_out:this.model.major_tick_out,minor_tick_in:this.model.minor_tick_in,minor_tick_out:this.model.minor_tick_out,major_label_standoff:this.model.label_standoff,major_label_overrides:this.model.major_label_overrides,major_label_policy:this.model.major_label_policy,axis_line_color:null},a),n),o));const{title:c}=this.model;c&&(this._title=new s.Title(Object.assign({text:c,standoff:this.model.title_standoff},r)))}async lazy_initialize(){await super.lazy_initialize();const t=this,e={get parent(){return t.parent},get root(){return t.root},get frame(){return t._frame},get canvas_view(){return t.parent.canvas_view},request_layout(){t.parent.request_layout()}};this._axis_view=await S.build_view(this._axis,{parent:e}),null!=this._title&&(this._title_view=await S.build_view(this._title,{parent:e}))}remove(){var t;null===(t=this._title_view)||void 0===t||t.remove(),this._axis_view.remove(),super.remove()}connect_signals(){super.connect_signals(),this.connect(this._ticker.change,(()=>this.request_render())),this.connect(this._formatter.change,(()=>this.request_render())),this.connect(this.model.color_mapper.metrics_change,(()=>{const t=this._major_range,e=this._major_scale,{color_mapper:i}=this.model;if(i instanceof d.ContinuousColorMapper&&t instanceof b.Range1d){const{min:e,max:a}=i.metrics;t.setv({start:e,end:a})}if(i instanceof f.ScanningColorMapper&&e instanceof w.LinearInterpolationScale){const{binning:t}=i.metrics;e.binning=t}this._set_canvas_image(),this.plot_view.request_layout()}))}_set_canvas_image(){const{orientation:t}=this,e=(()=>{const{palette:e}=this.model.color_mapper;return\"vertical\"==t?k.reversed(e):e})(),[i,a]=\"vertical\"==t?[1,e.length]:[e.length,1],n=this._image=document.createElement(\"canvas\");n.width=i,n.height=a;const o=n.getContext(\"2d\"),r=o.getImageData(0,0,i,a),s=new f.LinearColorMapper({palette:e}).rgba_mapper.v_compute(k.range(0,e.length));r.data.set(s),o.putImageData(r,0,0)}update_layout(){const{location:t,width:e,height:i,padding:a,margin:n}=this.model,[o,r]=(()=>{if(!M.isString(t))return[\"end\",\"start\"];switch(t){case\"top_left\":return[\"start\",\"start\"];case\"top\":case\"top_center\":return[\"start\",\"center\"];case\"top_right\":return[\"start\",\"end\"];case\"bottom_left\":return[\"end\",\"start\"];case\"bottom\":case\"bottom_center\":return[\"end\",\"center\"];case\"bottom_right\":return[\"end\",\"end\"];case\"left\":case\"center_left\":return[\"center\",\"start\"];case\"center\":case\"center_center\":return[\"center\",\"center\"];case\"right\":case\"center_right\":return[\"center\",\"end\"]}})(),s=this._orientation=(()=>{const{orientation:t}=this.model;return\"auto\"==t?null!=this.panel?this.panel.is_horizontal?\"horizontal\":\"vertical\":\"start\"==r||\"end\"==r||\"center\"==r&&\"center\"==o?\"vertical\":\"horizontal\":t})(),_=new C.NodeLayout,c=new C.VStack,h=new C.VStack,u=new C.HStack,p=new C.HStack;_.absolute=!0,c.absolute=!0,h.absolute=!0,u.absolute=!0,p.absolute=!0;const[m,g,d,f]=(()=>\"horizontal\"==s?[this._major_scale,this._minor_scale,this._major_range,this._minor_range]:[this._minor_scale,this._major_scale,this._minor_range,this._major_range])();this._frame=new l.CartesianFrame(m,g,d,f),_.on_resize((t=>this._frame.set_geometry(t)));const w=new j.BorderLayout;this._inner_layout=w,w.absolute=!0,w.center_panel=_,w.top_panel=c,w.bottom_panel=h,w.left_panel=u,w.right_panel=p;const b={left:a,right:a,top:a,bottom:a},v=(()=>{if(null==this.panel){if(M.isString(t))return{left:n,right:n,top:n,bottom:n};{const[e,i]=t;return{left:e,right:n,top:n,bottom:i}}}if(!M.isString(t)){const[e,i]=t;return{left:e,right:0,top:0,bottom:i}}})();let y,k,L,S;if(w.padding=b,null!=this.panel?(y=\"max\",k=void 0,L=void 0,S=void 0):\"auto\"==(\"horizontal\"==s?e:i)?(y=\"fixed\",k=25*this.model.color_mapper.palette.length,L={percent:.3},S={percent:.8}):(y=\"fit\",k=void 0),\"horizontal\"==s){const t=\"auto\"==e?void 0:e,a=\"auto\"==i?25:i;w.set_sizing({width_policy:y,height_policy:\"min\",width:k,min_width:L,max_width:S,halign:r,valign:o,margin:v}),w.center_panel.set_sizing({width_policy:\"auto\"==e?\"fit\":\"fixed\",height_policy:\"fixed\",width:t,height:a})}else{const t=\"auto\"==e?25:e,a=\"auto\"==i?void 0:i;w.set_sizing({width_policy:\"min\",height_policy:y,height:k,min_height:L,max_height:S,halign:r,valign:o,margin:v}),w.center_panel.set_sizing({width_policy:\"fixed\",height_policy:\"auto\"==i?\"fit\":\"fixed\",width:t,height:a})}c.set_sizing({width_policy:\"fit\",height_policy:\"min\"}),h.set_sizing({width_policy:\"fit\",height_policy:\"min\"}),u.set_sizing({width_policy:\"min\",height_policy:\"fit\"}),p.set_sizing({width_policy:\"min\",height_policy:\"fit\"});const{_title_view:T}=this;null!=T&&(\"horizontal\"==s?(T.panel=new z.Panel(\"above\"),T.update_layout(),c.children.push(T.layout)):(T.panel=new z.Panel(\"left\"),T.update_layout(),u.children.push(T.layout)));const{panel:B}=this,A=null!=B&&s==B.orientation?B.side:\"horizontal\"==s?\"below\":\"right\",O=(()=>{switch(A){case\"above\":return c;case\"below\":return h;case\"left\":return u;case\"right\":return p}})(),{_axis_view:R}=this;if(R.panel=new z.Panel(A),R.update_layout(),O.children.push(R.layout),null!=this.panel){const t=new x.Grid([{layout:w,row:0,col:0}]);t.absolute=!0,\"horizontal\"==s?t.set_sizing({width_policy:\"max\",height_policy:\"min\"}):t.set_sizing({width_policy:\"min\",height_policy:\"max\"}),this.layout=t}else this.layout=this._inner_layout;const{visible:F}=this.model;this.layout.sizing.visible=F,this._set_canvas_image()}_render(){var t;const{ctx:e}=this.layer;e.save(),this._paint_bbox(e,this._inner_layout.bbox),this._paint_image(e,this._inner_layout.center_panel.bbox),null===(t=this._title_view)||void 0===t||t.render(),this._axis_view.render(),e.restore()}_paint_bbox(t,e){const{x:i,y:a}=e;let{width:n,height:o}=e;i+n>=this.parent.canvas_view.bbox.width&&(n-=1),a+o>=this.parent.canvas_view.bbox.height&&(o-=1),t.save(),this.visuals.background_fill.doit&&(this.visuals.background_fill.set_value(t),t.fillRect(i,a,n,o)),this.visuals.border_line.doit&&(this.visuals.border_line.set_value(t),t.strokeRect(i,a,n,o)),t.restore()}_paint_image(t,e){const{x:i,y:a,width:n,height:o}=e;t.save(),t.setImageSmoothingEnabled(!1),t.globalAlpha=this.model.scale_alpha,t.drawImage(this._image,i,a,n,o),this.visuals.bar_line.doit&&(this.visuals.bar_line.set_value(t),t.strokeRect(i,a,n,o)),t.restore()}serializable_state(){const t=super.serializable_state(),{children:e=[]}=t,i=o.__rest(t,[\"children\"]);return null!=this._title_view&&e.push(this._title_view.serializable_state()),e.push(this._axis_view.serializable_state()),Object.assign(Object.assign({},i),{children:e})}}i.ColorBarView=T,T.__name__=\"ColorBarView\";class B extends r.Annotation{constructor(t){super(t)}static init_ColorBar(){this.prototype.default_view=T,this.mixins([[\"major_label_\",y.Text],[\"title_\",y.Text],[\"major_tick_\",y.Line],[\"minor_tick_\",y.Line],[\"border_\",y.Line],[\"bar_\",y.Line],[\"background_\",y.Fill]]),this.define((({Alpha:t,Number:e,String:i,Tuple:a,Dict:n,Or:o,Ref:r,Auto:s,Nullable:l})=>({location:[o(v.Anchor,a(e,e)),\"top_right\"],orientation:[o(v.Orientation,s),\"auto\"],title:[l(i),null],title_standoff:[e,2],width:[o(e,s),\"auto\"],height:[o(e,s),\"auto\"],scale_alpha:[t,1],ticker:[o(r(c.Ticker),s),\"auto\"],formatter:[o(r(u.TickFormatter),s),\"auto\"],major_label_overrides:[n(i),{}],major_label_policy:[r(m.LabelingPolicy),()=>new m.NoOverlap],color_mapper:[r(g.ColorMapper)],label_standoff:[e,5],margin:[e,30],padding:[e,10],major_tick_in:[e,5],major_tick_out:[e,0],minor_tick_in:[e,0],minor_tick_out:[e,0]}))),this.override({background_fill_color:\"#ffffff\",background_fill_alpha:.95,bar_line_color:null,border_line_color:null,major_label_text_font_size:\"11px\",major_tick_line_color:\"#ffffff\",minor_tick_line_color:null,title_text_font_size:\"13px\",title_text_font_style:\"italic\"})}}i.ColorBar=B,B.__name__=\"ColorBar\",B.init_ColorBar()},\n", + " function _(t,e,i,s,l){s();const o=t(1),a=t(139),n=t(20),r=t(143),c=o.__importStar(t(48));class h extends a.TextAnnotationView{_get_location(){const t=this.model.offset,e=this.model.standoff/2;let i,s;const{bbox:l}=this.layout;switch(this.panel.side){case\"above\":case\"below\":switch(this.model.vertical_align){case\"top\":s=l.top+e;break;case\"middle\":s=l.vcenter;break;case\"bottom\":s=l.bottom-e}switch(this.model.align){case\"left\":i=l.left+t;break;case\"center\":i=l.hcenter;break;case\"right\":i=l.right-t}break;case\"left\":switch(this.model.vertical_align){case\"top\":i=l.left+e;break;case\"middle\":i=l.hcenter;break;case\"bottom\":i=l.right-e}switch(this.model.align){case\"left\":s=l.bottom-t;break;case\"center\":s=l.vcenter;break;case\"right\":s=l.top+t}break;case\"right\":switch(this.model.vertical_align){case\"top\":i=l.right-e;break;case\"middle\":i=l.hcenter;break;case\"bottom\":i=l.left+e}switch(this.model.align){case\"left\":s=l.top+t;break;case\"center\":s=l.vcenter;break;case\"right\":s=l.bottom-t}}return[i,s]}_render(){const{text:t}=this.model;if(null==t||0==t.length)return;this.model.text_baseline=this.model.vertical_align,this.model.text_align=this.model.align;const[e,i]=this._get_location(),s=this.panel.get_label_angle_heuristic(\"parallel\");(\"canvas\"==this.model.render_mode?this._canvas_text.bind(this):this._css_text.bind(this))(this.layer.ctx,t,e,i,s)}_get_size(){const{text:t}=this.model;if(null==t||0==t.length)return{width:0,height:0};{const{ctx:e}=this.layer;this.visuals.text.set_value(e);const{width:i}=this.layer.ctx.measureText(t),{height:s}=r.font_metrics(e.font);return{width:i,height:2+s*this.model.text_line_height+this.model.standoff}}}}i.TitleView=h,h.__name__=\"TitleView\";class _ extends a.TextAnnotation{constructor(t){super(t)}static init_Title(){this.prototype.default_view=h,this.mixins([c.Text,[\"border_\",c.Line],[\"background_\",c.Fill]]),this.define((({Number:t,String:e})=>({text:[e,\"\"],vertical_align:[n.VerticalAlign,\"bottom\"],align:[n.TextAlign,\"left\"],offset:[t,0],standoff:[t,10]}))),this.prototype._props.text_align.options.internal=!0,this.prototype._props.text_baseline.options.internal=!0,this.override({text_font_size:\"13px\",text_font_style:\"bold\",text_line_height:1,background_fill_color:null,border_line_color:null})}}i.Title=_,_.__name__=\"Title\",_.init_Title()},\n", + " function _(e,t,s,i,n){i();const l=e(40),a=e(43),o=e(20),r=e(140),d=e(143),c=e(11);class _ extends l.AnnotationView{update_layout(){const{panel:e}=this;this.layout=null!=e?new r.SideLayout(e,(()=>this.get_size()),!0):void 0}initialize(){super.initialize(),\"css\"==this.model.render_mode&&(this.el=a.div(),this.plot_view.canvas_view.add_overlay(this.el))}remove(){null!=this.el&&a.remove(this.el),super.remove()}connect_signals(){super.connect_signals(),\"css\"==this.model.render_mode?this.connect(this.model.change,(()=>this.render())):this.connect(this.model.change,(()=>this.request_render()))}render(){this.model.visible||\"css\"!=this.model.render_mode||a.undisplay(this.el),super.render()}_calculate_text_dimensions(e,t){const{width:s}=e.measureText(t),{height:i}=d.font_metrics(this.visuals.text.font_value());return[s,i]}_calculate_bounding_box_dimensions(e,t){const[s,i]=this._calculate_text_dimensions(e,t);let n,l;switch(e.textAlign){case\"left\":n=0;break;case\"center\":n=-s/2;break;case\"right\":n=-s;break;default:c.unreachable()}switch(e.textBaseline){case\"top\":l=0;break;case\"middle\":l=-.5*i;break;case\"bottom\":l=-1*i;break;case\"alphabetic\":l=-.8*i;break;case\"hanging\":l=-.17*i;break;case\"ideographic\":l=-.83*i;break;default:c.unreachable()}return[n,l,s,i]}_canvas_text(e,t,s,i,n){this.visuals.text.set_value(e);const l=this._calculate_bounding_box_dimensions(e,t);e.save(),e.beginPath(),e.translate(s,i),n&&e.rotate(n),e.rect(l[0],l[1],l[2],l[3]),this.visuals.background_fill.doit&&(this.visuals.background_fill.set_value(e),e.fill()),this.visuals.border_line.doit&&(this.visuals.border_line.set_value(e),e.stroke()),this.visuals.text.doit&&(this.visuals.text.set_value(e),e.fillText(t,0,0)),e.restore()}_css_text(e,t,s,i,n){const{el:l}=this;c.assert(null!=l),a.undisplay(l),this.visuals.text.set_value(e);const[o,r]=this._calculate_bounding_box_dimensions(e,t);l.style.position=\"absolute\",l.style.left=`${s+o}px`,l.style.top=`${i+r}px`,l.style.color=e.fillStyle,l.style.font=e.font,l.style.lineHeight=\"normal\",n&&(l.style.transform=`rotate(${n}rad)`),this.visuals.background_fill.doit&&(this.visuals.background_fill.set_value(e),l.style.backgroundColor=e.fillStyle),this.visuals.border_line.doit&&(this.visuals.border_line.set_value(e),l.style.borderStyle=e.lineDash.length<2?\"solid\":\"dashed\",l.style.borderWidth=`${e.lineWidth}px`,l.style.borderColor=e.strokeStyle),l.textContent=t,a.display(l)}}s.TextAnnotationView=_,_.__name__=\"TextAnnotationView\";class u extends l.Annotation{constructor(e){super(e)}static init_TextAnnotation(){this.define((()=>({render_mode:[o.RenderMode,\"canvas\"]})))}}s.TextAnnotation=u,u.__name__=\"TextAnnotation\",u.init_TextAnnotation()},\n", + " function _(t,e,i,l,r){l();const a=t(141),o=t(142),n=t(8),h=Math.PI/2,s={above:{parallel:0,normal:-h,horizontal:0,vertical:-h},below:{parallel:0,normal:h,horizontal:0,vertical:h},left:{parallel:-h,normal:0,horizontal:0,vertical:-h},right:{parallel:h,normal:0,horizontal:0,vertical:h}},c={above:{parallel:\"bottom\",normal:\"center\",horizontal:\"bottom\",vertical:\"center\"},below:{parallel:\"top\",normal:\"center\",horizontal:\"top\",vertical:\"center\"},left:{parallel:\"bottom\",normal:\"center\",horizontal:\"center\",vertical:\"bottom\"},right:{parallel:\"bottom\",normal:\"center\",horizontal:\"center\",vertical:\"bottom\"}},g={above:{parallel:\"center\",normal:\"left\",horizontal:\"center\",vertical:\"left\"},below:{parallel:\"center\",normal:\"left\",horizontal:\"center\",vertical:\"left\"},left:{parallel:\"center\",normal:\"right\",horizontal:\"right\",vertical:\"center\"},right:{parallel:\"center\",normal:\"left\",horizontal:\"left\",vertical:\"center\"}},_={above:\"right\",below:\"left\",left:\"right\",right:\"left\"},b={above:\"left\",below:\"right\",left:\"right\",right:\"left\"};class z{constructor(t){this.side=t}get dimension(){return\"above\"==this.side||\"below\"==this.side?0:1}get normals(){switch(this.side){case\"above\":return[0,-1];case\"below\":return[0,1];case\"left\":return[-1,0];case\"right\":return[1,0]}}get orientation(){return this.is_horizontal?\"horizontal\":\"vertical\"}get is_horizontal(){return 0==this.dimension}get is_vertical(){return 1==this.dimension}get_label_text_heuristics(t){const{side:e}=this;return n.isString(t)?{vertical_align:c[e][t],align:g[e][t]}:{vertical_align:\"center\",align:(t<0?_:b)[e]}}get_label_angle_heuristic(t){return n.isString(t)?s[this.side][t]:-t}}i.Panel=z,z.__name__=\"Panel\";class m extends o.ContentLayoutable{constructor(t,e,i=!1){super(),this.panel=t,this.get_size=e,this.rotate=i,this.panel.is_horizontal?this.set_sizing({width_policy:\"max\",height_policy:\"fixed\"}):this.set_sizing({width_policy:\"fixed\",height_policy:\"max\"})}_content_size(){const{width:t,height:e}=this.get_size();return!this.rotate||this.panel.is_horizontal?new a.Sizeable({width:t,height:e}):new a.Sizeable({width:e,height:t})}has_size_changed(){const{width:t,height:e}=this._content_size();return this.panel.is_horizontal?this.bbox.height!=e:this.bbox.width!=t}}i.SideLayout=m,m.__name__=\"SideLayout\"},\n", + " function _(h,t,i,e,w){e();const n=h(21),{min:d,max:s}=Math;class g{constructor(h={}){this.width=null!=h.width?h.width:0,this.height=null!=h.height?h.height:0}bounded_to({width:h,height:t}){return new g({width:this.width==1/0&&null!=h?h:this.width,height:this.height==1/0&&null!=t?t:this.height})}expanded_to({width:h,height:t}){return new g({width:h!=1/0?s(this.width,h):this.width,height:t!=1/0?s(this.height,t):this.height})}expand_to({width:h,height:t}){this.width=s(this.width,h),this.height=s(this.height,t)}narrowed_to({width:h,height:t}){return new g({width:d(this.width,h),height:d(this.height,t)})}narrow_to({width:h,height:t}){this.width=d(this.width,h),this.height=d(this.height,t)}grow_by({left:h,right:t,top:i,bottom:e}){const w=this.width+h+t,n=this.height+i+e;return new g({width:w,height:n})}shrink_by({left:h,right:t,top:i,bottom:e}){const w=s(this.width-h-t,0),n=s(this.height-i-e,0);return new g({width:w,height:n})}map(h,t){return new g({width:h(this.width),height:(null!=t?t:h)(this.height)})}}i.Sizeable=g,g.__name__=\"Sizeable\",i.SizingPolicy=n.Enum(\"fixed\",\"fit\",\"min\",\"max\")},\n", + " function _(i,t,h,e,n){e();const s=i(141),r=i(99),g=i(8),{min:l,max:a,round:_}=Math;class o{constructor(){this.absolute=!1,this._bbox=new r.BBox,this._inner_bbox=new r.BBox,this._dirty=!1,this._handlers=[]}*[Symbol.iterator](){}get bbox(){return this._bbox}get inner_bbox(){return this._inner_bbox}get sizing(){return this._sizing}set visible(i){this._sizing.visible=i,this._dirty=!0}set_sizing(i){var t,h,e,n,s;const r=null!==(t=i.width_policy)&&void 0!==t?t:\"fit\",g=i.width,l=i.min_width,a=i.max_width,_=null!==(h=i.height_policy)&&void 0!==h?h:\"fit\",o=i.height,d=i.min_height,u=i.max_height,c=i.aspect,w=null!==(e=i.margin)&&void 0!==e?e:{top:0,right:0,bottom:0,left:0},m=!1!==i.visible,x=null!==(n=i.halign)&&void 0!==n?n:\"start\",b=null!==(s=i.valign)&&void 0!==s?s:\"start\";this._sizing={width_policy:r,min_width:l,width:g,max_width:a,height_policy:_,min_height:d,height:o,max_height:u,aspect:c,margin:w,visible:m,halign:x,valign:b,size:{width:g,height:o}},this._init()}_init(){}_set_geometry(i,t){this._bbox=i,this._inner_bbox=t}set_geometry(i,t){this._set_geometry(i,null!=t?t:i);for(const i of this._handlers)i(this._bbox,this._inner_bbox)}on_resize(i){this._handlers.push(i)}is_width_expanding(){return\"max\"==this.sizing.width_policy}is_height_expanding(){return\"max\"==this.sizing.height_policy}apply_aspect(i,{width:t,height:h}){const{aspect:e}=this.sizing;if(null!=e){const{width_policy:n,height_policy:s}=this.sizing,r=(i,t)=>{const h={max:4,fit:3,min:2,fixed:1};return h[i]>h[t]};if(\"fixed\"!=n&&\"fixed\"!=s)if(n==s){const n=t,s=_(t/e),r=_(h*e),g=h;Math.abs(i.width-n)+Math.abs(i.height-s)<=Math.abs(i.width-r)+Math.abs(i.height-g)?(t=n,h=s):(t=r,h=g)}else r(n,s)?h=_(t/e):t=_(h*e);else\"fixed\"==n?h=_(t/e):\"fixed\"==s&&(t=_(h*e))}return{width:t,height:h}}measure(i){if(!this.sizing.visible)return{width:0,height:0};const t=new s.Sizeable(i).shrink_by(this.sizing.margin).map((i=>i==1/0&&\"fixed\"==this.sizing.width_policy&&null!=this.sizing.width?this.sizing.width:i),(i=>i==1/0&&\"fixed\"==this.sizing.height_policy&&null!=this.sizing.height?this.sizing.height:i)),h=this._measure(t),e=this.clip_size(h,t),n=this.apply_aspect(t,e);return Object.assign(Object.assign({},h),n)}compute(i={}){const t={width:null!=i.width&&this.is_width_expanding()?i.width:1/0,height:null!=i.height&&this.is_height_expanding()?i.height:1/0},h=this.measure(t),{width:e,height:n}=h,s=new r.BBox({left:0,top:0,width:e,height:n});let g;if(null!=h.inner){const{left:i,top:t,right:s,bottom:l}=h.inner;g=new r.BBox({left:i,top:t,right:e-s,bottom:n-l})}this.set_geometry(s,g)}get xview(){return this.bbox.xview}get yview(){return this.bbox.yview}clip_size(i,t){function h(i,t,h,e){return null==h?h=0:g.isNumber(h)||(h=Math.round(h.percent*t)),null==e?e=1/0:g.isNumber(e)||(e=Math.round(e.percent*t)),a(h,l(i,e))}return{width:h(i.width,t.width,this.sizing.min_width,this.sizing.max_width),height:h(i.height,t.height,this.sizing.min_height,this.sizing.max_height)}}has_size_changed(){const{_dirty:i}=this;return this._dirty=!1,i}}h.Layoutable=o,o.__name__=\"Layoutable\";class d extends o{_measure(i){const{width_policy:t,height_policy:h}=this.sizing;return{width:(()=>{const{width:h}=this.sizing;if(i.width==1/0)return null!=h?h:0;switch(t){case\"fixed\":return null!=h?h:0;case\"min\":return null!=h?l(i.width,h):0;case\"fit\":return null!=h?l(i.width,h):i.width;case\"max\":return null!=h?a(i.width,h):i.width}})(),height:(()=>{const{height:t}=this.sizing;if(i.height==1/0)return null!=t?t:0;switch(h){case\"fixed\":return null!=t?t:0;case\"min\":return null!=t?l(i.height,t):0;case\"fit\":return null!=t?l(i.height,t):i.height;case\"max\":return null!=t?a(i.height,t):i.height}})()}}}h.LayoutItem=d,d.__name__=\"LayoutItem\";class u extends o{_measure(i){const t=this._content_size(),h=i.bounded_to(this.sizing.size).bounded_to(t);return{width:(()=>{switch(this.sizing.width_policy){case\"fixed\":return null!=this.sizing.width?this.sizing.width:t.width;case\"min\":return t.width;case\"fit\":return h.width;case\"max\":return Math.max(t.width,h.width)}})(),height:(()=>{switch(this.sizing.height_policy){case\"fixed\":return null!=this.sizing.height?this.sizing.height:t.height;case\"min\":return t.height;case\"fit\":return h.height;case\"max\":return Math.max(t.height,h.height)}})()}}}h.ContentLayoutable=u,u.__name__=\"ContentLayoutable\"},\n", + " function _(t,e,n,r,a){r();const l=t(11),c=(()=>{try{return\"undefined\"!=typeof OffscreenCanvas&&null!=new OffscreenCanvas(0,0).getContext(\"2d\")}catch(t){return!1}})()?(t,e)=>new OffscreenCanvas(t,e):(t,e)=>{const n=document.createElement(\"canvas\");return n.width=t,n.height=e,n},o=(()=>{const t=c(0,0).getContext(\"2d\");return e=>{t.font=e;const n=t.measureText(\"M\"),r=t.measureText(\"x\"),a=t.measureText(\"Γ…Εšg|\"),c=a.fontBoundingBoxAscent,o=a.fontBoundingBoxDescent;if(null!=c&&null!=o)return{height:c+o,ascent:c,descent:o,cap_height:n.actualBoundingBoxAscent,x_height:r.actualBoundingBoxAscent};const s=a.actualBoundingBoxAscent,u=a.actualBoundingBoxDescent;if(null!=s&&null!=u)return{height:s+u,ascent:s,descent:u,cap_height:n.actualBoundingBoxAscent,x_height:r.actualBoundingBoxAscent};l.unreachable()}})(),s=(()=>{const t=c(0,0).getContext(\"2d\");return(e,n)=>{t.font=n;const r=t.measureText(e),a=r.actualBoundingBoxAscent,c=r.actualBoundingBoxDescent;if(null!=a&&null!=c)return{width:r.width,height:a+c,ascent:a,descent:c};l.unreachable()}})(),u=(()=>{const t=document.createElement(\"canvas\"),e=t.getContext(\"2d\");let n=-1,r=-1;return(a,l=1)=>{e.font=a;const{width:c}=e.measureText(\"M\"),o=c*l,s=Math.ceil(o),u=Math.ceil(2*o),i=Math.ceil(1.5*o);n{let e=0;for(let n=0;n<=i;n++)for(let r=0;r{let e=t.length-4;for(let n=u;n>=i;n--)for(let r=0;r{const t=document.createElement(\"canvas\"),e=t.getContext(\"2d\");let n=-1,r=-1;return(a,l,c=1)=>{e.font=l;const{width:o}=e.measureText(\"M\"),s=o*c,u=Math.ceil(s),i=Math.ceil(2*s),f=Math.ceil(1.5*s);(n{let e=0;for(let n=0;n<=f;n++)for(let r=0;r{let e=t.length-4;for(let n=i;n>=f;n--)for(let r=0;r{try{return o(\"normal 10px sans-serif\"),o}catch(t){return u}})(),h=(()=>{try{return s(\"A\",\"normal 10px sans-serif\"),s}catch(t){return i}})(),g=new Map;function d(t){let e=g.get(t);return null==e&&(e={font:f(t),glyphs:new Map},g.set(t,e)),e.font}n.font_metrics=d,n.glyph_metrics=function(t,e){let n=g.get(e);null==n&&(d(e),n=g.get(e));let r=n.glyphs.get(t);return null==r&&(r=h(t,e),n.glyphs.set(t,r)),r}},\n", + " function _(e,t,s,_,a){_();const r=e(145),n=e(157),g=e(156),i=e(159),c=e(104),h=e(99),o=e(13),l=e(11);class x{constructor(e,t,s,_,a={},r={}){this.in_x_scale=e,this.in_y_scale=t,this.x_range=s,this.y_range=_,this.extra_x_ranges=a,this.extra_y_ranges=r,this._bbox=new h.BBox,l.assert(null==e.source_range&&null==e.target_range),l.assert(null==t.source_range&&null==t.target_range),this._configure_scales()}get bbox(){return this._bbox}_get_ranges(e,t){return new Map(o.entries(Object.assign(Object.assign({},t),{default:e})))}_get_scales(e,t,s){const _=new Map;for(const[a,g]of t){if(g instanceof c.FactorRange!=e instanceof r.CategoricalScale)throw new Error(`Range ${g.type} is incompatible is Scale ${e.type}`);e instanceof n.LogScale&&g instanceof i.DataRange1d&&(g.scale_hint=\"log\");const t=e.clone();t.setv({source_range:g,target_range:s}),_.set(a,t)}return _}_configure_frame_ranges(){const{bbox:e}=this;this._x_target=new g.Range1d({start:e.left,end:e.right}),this._y_target=new g.Range1d({start:e.bottom,end:e.top})}_configure_scales(){this._configure_frame_ranges(),this._x_ranges=this._get_ranges(this.x_range,this.extra_x_ranges),this._y_ranges=this._get_ranges(this.y_range,this.extra_y_ranges),this._x_scales=this._get_scales(this.in_x_scale,this._x_ranges,this._x_target),this._y_scales=this._get_scales(this.in_y_scale,this._y_ranges,this._y_target)}_update_scales(){this._configure_frame_ranges();for(const[,e]of this._x_scales)e.target_range=this._x_target;for(const[,e]of this._y_scales)e.target_range=this._y_target}set_geometry(e){this._bbox=e,this._update_scales()}get x_target(){return this._x_target}get y_target(){return this._y_target}get x_ranges(){return this._x_ranges}get y_ranges(){return this._y_ranges}get x_scales(){return this._x_scales}get y_scales(){return this._y_scales}get x_scale(){return this._x_scales.get(\"default\")}get y_scale(){return this._y_scales.get(\"default\")}get xscales(){return o.to_object(this.x_scales)}get yscales(){return o.to_object(this.y_scales)}}s.CartesianFrame=x,x.__name__=\"CartesianFrame\"},\n", + " function _(e,t,r,n,_){n();const c=e(146);class s extends c.Scale{constructor(e){super(e)}get s_compute(){const[e,t]=this._linear_compute_state(),r=this.source_range;return n=>e*r.synthetic(n)+t}compute(e){return super._linear_compute(this.source_range.synthetic(e))}v_compute(e){return super._linear_v_compute(this.source_range.v_synthetic(e))}invert(e){return this._linear_invert(e)}v_invert(e){return this._linear_v_invert(e)}}r.CategoricalScale=s,s.__name__=\"CategoricalScale\"},\n", + " function _(t,e,r,n,s){n();const i=t(147),_=t(105),a=t(156),c=t(24);class o extends i.Transform{constructor(t){super(t)}static init_Scale(){this.internal((({Ref:t})=>({source_range:[t(_.Range)],target_range:[t(a.Range1d)]})))}r_compute(t,e){return this.target_range.is_reversed?[this.compute(e),this.compute(t)]:[this.compute(t),this.compute(e)]}r_invert(t,e){return this.target_range.is_reversed?[this.invert(e),this.invert(t)]:[this.invert(t),this.invert(e)]}_linear_compute(t){const[e,r]=this._linear_compute_state();return e*t+r}_linear_v_compute(t){const[e,r]=this._linear_compute_state(),n=new c.ScreenArray(t.length);for(let s=0;s({args:[s(t),{}],func:[r,\"\"],v_func:[r,\"\"]})))}get names(){return o.keys(this.args)}get values(){return o.values(this.args)}_make_transform(t,r){return new Function(...this.names,t,u.use_strict(r))}get scalar_transform(){return this._make_transform(\"x\",this.func)}get vector_transform(){return this._make_transform(\"xs\",this.v_func)}compute(t){return this.scalar_transform(...this.values,t)}v_compute(t){return this.vector_transform(...this.values,t)}}s.CustomJSTransform=m,m.__name__=\"CustomJSTransform\",m.init_CustomJSTransform()},\n", + " function _(n,s,o,r,c){r();const e=n(53);class t extends e.Model{constructor(n){super(n)}}o.Transform=t,t.__name__=\"Transform\"},\n", + " function _(e,t,n,o,s){o();const i=e(151);class r extends i.RangeTransform{constructor(e){super(e)}static init_Dodge(){this.define((({Number:e})=>({value:[e,0]})))}_compute(e){return e+this.value}}n.Dodge=r,r.__name__=\"Dodge\",r.init_Dodge()},\n", + " function _(e,n,t,r,s){r();const a=e(149),i=e(105),o=e(104),c=e(24),f=e(8);class u extends a.Transform{constructor(e){super(e)}static init_RangeTransform(){this.define((({Ref:e,Nullable:n})=>({range:[n(e(i.Range)),null]})))}v_compute(e){let n;if(this.range instanceof o.FactorRange)n=this.range.v_synthetic(e);else{if(!f.isArrayableOf(e,f.isNumber))throw new Error(\"unexpected\");n=e}const t=new(c.infer_type(n))(n.length);for(let e=0;e({x:[s(r,o(e))],y:[s(r,o(e))],data:[a(n(i.ColumnarDataSource)),null],clip:[t,!0]})))}connect_signals(){super.connect_signals(),this.connect(this.change,(()=>this._sorted_dirty=!0))}v_compute(t){const e=new(a.infer_type(t))(t.length);for(let r=0;rs*(e[t]-e[r]))),this._x_sorted=new(a.infer_type(e))(n),this._y_sorted=new(a.infer_type(r))(n);for(let t=0;t({mean:[t,0],width:[t,1],distribution:[o.Distribution,\"uniform\"]})))}v_compute(t){return null!=this.previous_values&&this.previous_values.length==t.length||(this.previous_values=super.v_compute(t)),this.previous_values}_compute(t){switch(this.distribution){case\"uniform\":return t+this.mean+(a.random()-.5)*this.width;case\"normal\":return t+a.rnorm(this.mean,this.width)}}}e.Jitter=h,h.__name__=\"Jitter\",h.init_Jitter()},\n", + " function _(t,s,_,r,e){r();const i=t(9),o=t(152);class n extends o.Interpolator{constructor(t){super(t)}compute(t){if(this.sort(!1),this.clip){if(tthis._x_sorted[this._x_sorted.length-1])return NaN}else{if(tthis._x_sorted[this._x_sorted.length-1])return this._y_sorted[this._y_sorted.length-1]}if(t==this._x_sorted[0])return this._y_sorted[0];const s=i.find_last_index(this._x_sorted,(s=>s({mode:[_.StepMode,\"after\"]})))}compute(t){if(this.sort(!1),this.clip){if(tthis._x_sorted[this._x_sorted.length-1])return NaN}else{if(tthis._x_sorted[this._x_sorted.length-1])return this._y_sorted[this._y_sorted.length-1]}let e;switch(this.mode){case\"after\":e=n.find_last_index(this._x_sorted,(e=>t>=e));break;case\"before\":e=n.find_index(this._x_sorted,(e=>t<=e));break;case\"center\":{const s=n.map(this._x_sorted,(e=>Math.abs(e-t))),r=n.min(s);e=n.find_index(s,(t=>r===t));break}default:throw new Error(`unknown mode: ${this.mode}`)}return-1!=e?this._y_sorted[e]:NaN}}s.StepInterpolator=d,d.__name__=\"StepInterpolator\",d.init_StepInterpolator()},\n", + " function _(t,e,s,n,i){n();const a=t(105);class r extends a.Range{constructor(t){super(t)}static init_Range1d(){this.define((({Number:t,Nullable:e})=>({start:[t,0],end:[t,1],reset_start:[e(t),null,{on_update(t,e){e._reset_start=null!=t?t:e.start}}],reset_end:[e(t),null,{on_update(t,e){e._reset_end=null!=t?t:e.end}}]})))}_set_auto_bounds(){if(\"auto\"==this.bounds){const t=Math.min(this._reset_start,this._reset_end),e=Math.max(this._reset_start,this._reset_end);this.setv({bounds:[t,e]},{silent:!0})}}initialize(){super.initialize(),this._set_auto_bounds()}get min(){return Math.min(this.start,this.end)}get max(){return Math.max(this.start,this.end)}reset(){this._set_auto_bounds();const{_reset_start:t,_reset_end:e}=this;this.start!=t||this.end!=e?this.setv({start:t,end:e}):this.change.emit()}map(t){return new r({start:t(this.start),end:t(this.end)})}widen(t){let{start:e,end:s}=this;return this.is_reversed?(e+=t,s-=t):(e-=t,s+=t),new r({start:e,end:s})}}s.Range1d=r,r.__name__=\"Range1d\",r.init_Range1d()},\n", + " function _(t,e,o,n,s){n();const a=t(158),r=t(24);class c extends a.ContinuousScale{constructor(t){super(t)}get s_compute(){const[t,e,o,n]=this._compute_state();return s=>{if(0==o)return 0;{const a=(Math.log(s)-n)/o;return isFinite(a)?a*t+e:NaN}}}compute(t){const[e,o,n,s]=this._compute_state();let a;if(0==n)a=0;else{const r=(Math.log(t)-s)/n;a=isFinite(r)?r*e+o:NaN}return a}v_compute(t){const[e,o,n,s]=this._compute_state(),a=new r.ScreenArray(t.length);if(0==n)for(let e=0;e({start:[i],end:[i],range_padding:[i,.1],range_padding_units:[_.PaddingUnits,\"percent\"],flipped:[t,!1],follow:[n(_.StartEnd),null],follow_interval:[n(i),null],default_span:[i,2],only_visible:[t,!1]}))),this.internal((({Enum:t})=>({scale_hint:[t(\"log\",\"auto\"),\"auto\"]})))}initialize(){super.initialize(),this._initial_start=this.start,this._initial_end=this.end,this._initial_range_padding=this.range_padding,this._initial_range_padding_units=this.range_padding_units,this._initial_follow=this.follow,this._initial_follow_interval=this.follow_interval,this._initial_default_span=this.default_span,this._plot_bounds=new Map}get min(){return Math.min(this.start,this.end)}get max(){return Math.max(this.start,this.end)}computed_renderers(){const{renderers:t,names:i}=this,n=o.concat(this.plots.map((t=>t.data_renderers)));return d.compute_renderers(0==t.length?\"auto\":t,n,i)}_compute_plot_bounds(t,i){let n=r.empty();for(const a of t){const t=i.get(a);null==t||!a.visible&&this.only_visible||(n=r.union(n,t))}return n}adjust_bounds_for_aspect(t,i){const n=r.empty();let a=t.x1-t.x0;a<=0&&(a=1);let e=t.y1-t.y0;e<=0&&(e=1);const s=.5*(t.x1+t.x0),l=.5*(t.y1+t.y0);return al&&(\"start\"==this.follow?e=a+s*l:\"end\"==this.follow&&(a=e-s*l)),[a,e]}update(t,i,n,a){if(this.have_updated_interactively)return;const e=this.computed_renderers();let s=this._compute_plot_bounds(e,t);null!=a&&(s=this.adjust_bounds_for_aspect(s,a)),this._plot_bounds.set(n,s);const[l,_]=this._compute_min_max(this._plot_bounds.values(),i);let[o,h]=this._compute_range(l,_);null!=this._initial_start&&(\"log\"==this.scale_hint?this._initial_start>0&&(o=this._initial_start):o=this._initial_start),null!=this._initial_end&&(\"log\"==this.scale_hint?this._initial_end>0&&(h=this._initial_end):h=this._initial_end);let r=!1;\"auto\"==this.bounds&&(this.setv({bounds:[o,h]},{silent:!0}),r=!0);const[d,u]=[this.start,this.end];if(o!=d||h!=u){const t={};o!=d&&(t.start=o),h!=u&&(t.end=h),this.setv(t),r=!1}r&&this.change.emit()}reset(){this.have_updated_interactively=!1,this.setv({range_padding:this._initial_range_padding,range_padding_units:this._initial_range_padding_units,follow:this._initial_follow,follow_interval:this._initial_follow_interval,default_span:this._initial_default_span},{silent:!0}),this.change.emit()}}n.DataRange1d=u,u.__name__=\"DataRange1d\",u.init_DataRange1d()},\n", + " function _(a,e,n,t,r){t();const s=a(105),i=a(62);class R extends s.Range{constructor(a){super(a)}static init_DataRange(){this.define((({String:a,Array:e,Ref:n})=>({names:[e(a),[]],renderers:[e(n(i.DataRenderer)),[]]})))}}n.DataRange=R,R.__name__=\"DataRange\",R.init_DataRange()},\n", + " function _(n,e,t,r,u){r();const l=n(9);t.compute_renderers=function(n,e,t){if(null==n)return[];let r=\"auto\"==n?e:n;return t.length>0&&(r=r.filter((n=>l.includes(t,n.name)))),r}},\n", + " function _(i,s,x,A,o){A(),o(\"Axis\",i(163).Axis),o(\"CategoricalAxis\",i(170).CategoricalAxis),o(\"ContinuousAxis\",i(173).ContinuousAxis),o(\"DatetimeAxis\",i(174).DatetimeAxis),o(\"LinearAxis\",i(175).LinearAxis),o(\"LogAxis\",i(192).LogAxis),o(\"MercatorAxis\",i(195).MercatorAxis)},\n", + " function _(t,e,i,s,o){s();const n=t(1),a=t(164),l=t(165),r=t(166),_=t(169),c=n.__importStar(t(48)),h=t(20),b=t(24),m=t(140),d=t(9),u=t(8),x=t(167),g=t(104),{abs:f}=Math;class p extends a.GuideRendererView{update_layout(){this.layout=new m.SideLayout(this.panel,(()=>this.get_size()),!0)}get_size(){const{visible:t,fixed_location:e}=this.model;if(t&&null==e&&this.is_renderable){const{extents:t}=this;return{width:0,height:Math.round(t.tick+t.tick_label+t.axis_label)}}return{width:0,height:0}}get is_renderable(){const[t,e]=this.ranges;return t.is_valid&&e.is_valid}_render(){var t;if(!this.is_renderable)return;const{tick_coords:e,extents:i}=this,s=this.layer.ctx;s.save(),this._draw_rule(s,i),this._draw_major_ticks(s,i,e),this._draw_minor_ticks(s,i,e),this._draw_major_labels(s,i,e),this._draw_axis_label(s,i,e),null===(t=this._paint)||void 0===t||t.call(this,s,i,e),s.restore()}connect_signals(){super.connect_signals(),this.connect(this.model.change,(()=>this.plot_view.request_layout()))}get needs_clip(){return null!=this.model.fixed_location}_draw_rule(t,e){if(!this.visuals.axis_line.doit)return;const[i,s]=this.rule_coords,[o,n]=this.coordinates.map_to_screen(i,s),[a,l]=this.normals,[r,_]=this.offsets;this.visuals.axis_line.set_value(t),t.beginPath();for(let e=0;e0?o+s+3:0}_draw_axis_label(t,e,i){const s=this.model.axis_label;if(!s||null!=this.model.fixed_location)return;const o=new x.TextBox({text:s});o.angle=this.panel.get_label_angle_heuristic(\"parallel\"),o.visuals=this.visuals.axis_label_text;const[n,a]=(()=>{const{bbox:t}=this.layout;switch(this.panel.side){case\"above\":return[t.hcenter,t.bottom];case\"below\":return[t.hcenter,t.top];case\"left\":return[t.right,t.vcenter];case\"right\":return[t.left,t.vcenter]}})(),[l,r]=this.normals,_=e.tick+e.tick_label+this.model.axis_label_standoff,{vertical_align:c,align:h}=this.panel.get_label_text_heuristics(\"parallel\");o.position={sx:n+l*_,sy:a+r*_,x_anchor:h,y_anchor:c},o.align=h,o.paint(t)}_draw_ticks(t,e,i,s,o){if(!o.doit)return;const[n,a]=e,[l,r]=this.coordinates.map_to_screen(n,a),[_,c]=this.normals,[h,b]=this.offsets,[m,d]=[_*(h-i),c*(b-i)],[u,x]=[_*(h+s),c*(b+s)];o.set_value(t),t.beginPath();for(let e=0;et.bbox())),O=(()=>{const[t]=this.ranges;return t.is_reversed?0==this.dimension?(t,e)=>T[t].left-T[e].right:(t,e)=>T[e].top-T[t].bottom:0==this.dimension?(t,e)=>T[e].left-T[t].right:(t,e)=>T[t].top-T[e].bottom})(),{major_label_policy:A}=this.model,M=A.filter(v,T,O),z=[...M.ones()];if(0!=z.length){const t=this.parent.canvas_view.bbox,e=e=>{const i=T[e];if(i.left<0){const t=-i.left,{position:s}=y[e];y[e].position=Object.assign(Object.assign({},s),{sx:s.sx+t})}else if(i.right>t.width){const s=i.right-t.width,{position:o}=y[e];y[e].position=Object.assign(Object.assign({},o),{sx:o.sx-s})}},i=e=>{const i=T[e];if(i.top<0){const t=-i.top,{position:s}=y[e];y[e].position=Object.assign(Object.assign({},s),{sy:s.sy+t})}else if(i.bottom>t.height){const s=i.bottom-t.height,{position:o}=y[e];y[e].position=Object.assign(Object.assign({},o),{sy:o.sy-s})}},s=z[0],o=z[z.length-1];0==this.dimension?(e(s),e(o)):(i(s),i(o))}for(const e of M){y[e].paint(t)}}_tick_extent(){return this.model.major_tick_out}_tick_label_extents(){const t=this.tick_coords.major,e=this.compute_labels(t[this.dimension]),i=this.model.major_label_orientation,s=this.model.major_label_standoff,o=this.visuals.major_label_text;return[this._oriented_labels_extent(e,i,s,o)]}get extents(){const t=this._tick_label_extents();return{tick:this._tick_extent(),tick_labels:t,tick_label:d.sum(t),axis_label:this._axis_label_extent()}}_oriented_labels_extent(t,e,i,s){if(0==t.length)return 0;const o=this.panel.get_label_angle_heuristic(e);t.visuals=s,t.angle=o;const n=t.max_size(),a=0==this.dimension?n.height:n.width;return a>0?i+a+3:0}get normals(){return this.panel.normals}get dimension(){return this.panel.dimension}compute_labels(t){const e=this.model.formatter.format_graphics(t,this),{major_label_overrides:i}=this.model;for(let s=0;sf(a-l)?(t=_(r(o,n),a),s=r(_(o,n),l)):(t=r(o,n),s=_(o,n)),[t,s]}}get rule_coords(){const t=this.dimension,e=(t+1)%2,[i]=this.ranges,[s,o]=this.computed_bounds,n=[new Array(2),new Array(2)];return n[t][0]=Math.max(s,i.min),n[t][1]=Math.min(o,i.max),n[t][0]>n[t][1]&&(n[t][0]=n[t][1]=NaN),n[e][0]=this.loc,n[e][1]=this.loc,n}get tick_coords(){const t=this.dimension,e=(t+1)%2,[i]=this.ranges,[s,o]=this.computed_bounds,n=this.model.ticker.get_ticks(s,o,i,this.loc),a=n.major,l=n.minor,r=[[],[]],_=[[],[]],[c,h]=[i.min,i.max];for(let i=0;ih||(r[t].push(a[i]),r[e].push(this.loc));for(let i=0;ih||(_[t].push(l[i]),_[e].push(this.loc));return{major:r,minor:_}}get loc(){const{fixed_location:t}=this.model;if(null!=t){if(u.isNumber(t))return t;const[,e]=this.ranges;if(e instanceof g.FactorRange)return e.synthetic(t);throw new Error(\"unexpected\")}const[,e]=this.ranges;switch(this.panel.side){case\"left\":case\"below\":return e.start;case\"right\":case\"above\":return e.end}}serializable_state(){return Object.assign(Object.assign({},super.serializable_state()),{bbox:this.layout.bbox.box})}}i.AxisView=p,p.__name__=\"AxisView\";class k extends a.GuideRenderer{constructor(t){super(t)}static init_Axis(){this.prototype.default_view=p,this.mixins([[\"axis_\",c.Line],[\"major_tick_\",c.Line],[\"minor_tick_\",c.Line],[\"major_label_\",c.Text],[\"axis_label_\",c.Text]]),this.define((({Any:t,Int:e,Number:i,String:s,Ref:o,Dict:n,Tuple:a,Or:c,Nullable:b,Auto:m})=>({bounds:[c(a(i,i),m),\"auto\"],ticker:[o(l.Ticker)],formatter:[o(r.TickFormatter)],axis_label:[b(s),\"\"],axis_label_standoff:[e,5],major_label_standoff:[e,5],major_label_orientation:[c(h.TickLabelOrientation,i),\"horizontal\"],major_label_overrides:[n(s),{}],major_label_policy:[o(_.LabelingPolicy),()=>new _.AllLabels],major_tick_in:[i,2],major_tick_out:[i,6],minor_tick_in:[i,0],minor_tick_out:[i,4],fixed_location:[b(c(i,t)),null]}))),this.override({axis_line_color:\"black\",major_tick_line_color:\"black\",minor_tick_line_color:\"black\",major_label_text_font_size:\"11px\",major_label_text_align:\"center\",major_label_text_baseline:\"alphabetic\",axis_label_text_font_size:\"13px\",axis_label_text_font_style:\"italic\"})}}i.Axis=k,k.__name__=\"Axis\",k.init_Axis()},\n", + " function _(e,r,d,i,n){i();const s=e(41);class t extends s.RendererView{}d.GuideRendererView=t,t.__name__=\"GuideRendererView\";class _ extends s.Renderer{constructor(e){super(e)}static init_GuideRenderer(){this.override({level:\"guide\"})}}d.GuideRenderer=_,_.__name__=\"GuideRenderer\",_.init_GuideRenderer()},\n", + " function _(c,e,n,s,o){s();const r=c(53);class t extends r.Model{constructor(c){super(c)}}n.Ticker=t,t.__name__=\"Ticker\"},\n", + " function _(t,o,r,e,c){e();const n=t(53),a=t(167);class m extends n.Model{constructor(t){super(t)}format_graphics(t,o){return this.doFormat(t,o).map((t=>new a.TextBox({text:t})))}compute(t,o){return this.doFormat([t],null!=o?o:{loc:0})[0]}v_compute(t,o){return this.doFormat(t,null!=o?o:{loc:0})}}r.TickFormatter=m,m.__name__=\"TickFormatter\"},\n", + " function _(t,e,s,i,n){i();const h=t(99),o=t(143),r=t(9),a=t(8),c=t(168),_=t(22);s.text_width=(()=>{const t=document.createElement(\"canvas\").getContext(\"2d\");let e=\"\";return(s,i)=>(i!=e&&(e=i,t.font=i),t.measureText(s).width)})();class l{constructor(){this._position={sx:0,sy:0},this.font_size_scale=1}set position(t){this._position=t}get position(){return this._position}infer_text_height(){return\"ascent_descent\"}bbox(){const{p0:t,p1:e,p2:s,p3:i}=this.rect(),n=Math.min(t.x,e.x,s.x,i.x),o=Math.min(t.y,e.y,s.y,i.y),r=Math.max(t.x,e.x,s.x,i.x),a=Math.max(t.y,e.y,s.y,i.y);return new h.BBox({left:n,right:r,top:o,bottom:a})}size(){const{width:t,height:e}=this._size(),{angle:s}=this;if(s){const i=Math.cos(Math.abs(s)),n=Math.sin(Math.abs(s));return{width:Math.abs(t*i+e*n),height:Math.abs(t*n+e*i)}}return{width:t,height:e}}rect(){const t=this._rect(),{angle:e}=this;if(e){const{sx:s,sy:i}=this.position,n=new c.AffineTransform;return n.translate(s,i),n.rotate(e),n.translate(-s,-i),n.apply_rect(t)}return t}paint_rect(t){const{p0:e,p1:s,p2:i,p3:n}=this.rect();t.save(),t.strokeStyle=\"red\",t.lineWidth=1,t.beginPath();const{round:h}=Math;t.moveTo(h(e.x),h(e.y)),t.lineTo(h(s.x),h(s.y)),t.lineTo(h(i.x),h(i.y)),t.lineTo(h(n.x),h(n.y)),t.closePath(),t.stroke(),t.restore()}paint_bbox(t){const{x:e,y:s,width:i,height:n}=this.bbox();t.save(),t.strokeStyle=\"blue\",t.lineWidth=1,t.beginPath();const{round:h}=Math;t.moveTo(h(e),h(s)),t.lineTo(h(e),h(s+n)),t.lineTo(h(e+i),h(s+n)),t.lineTo(h(e+i),h(s)),t.closePath(),t.stroke(),t.restore()}}s.GraphicsBox=l,l.__name__=\"GraphicsBox\";class x extends l{constructor({text:t}){super(),this.align=\"left\",this.text=t}set visuals(t){const e=t.text_color.get_value(),s=t.text_alpha.get_value(),i=t.text_font_style.get_value();let n=t.text_font_size.get_value();const h=t.text_font.get_value(),{font_size_scale:o}=this;if(1!=o){const t=n.match(/^\\s*(\\d+(\\.\\d+)?)(\\w+)\\s*$/);if(null!=t){const[,e,,s]=t,i=Number(e);isNaN(i)||(n=`${i*o}${s}`)}}const r=`${i} ${n} ${h}`;this.font=r,this.color=_.color2css(e,s),this.line_height=t.text_line_height.get_value()}infer_text_height(){if(this.text.includes(\"\\n\"))return\"ascent_descent\";return function(t){for(const e of new Set(t))if(!(\"0\"<=e&&e<=\"9\"))switch(e){case\",\":case\".\":case\"+\":case\"-\":case\"βˆ’\":case\"e\":continue;default:return!1}return!0}(this.text)?\"cap\":\"ascent_descent\"}_text_line(t){var e;const s=null!==(e=this.text_height_metric)&&void 0!==e?e:this.infer_text_height(),i=(()=>{switch(s){case\"x\":case\"x_descent\":return t.x_height;case\"cap\":case\"cap_descent\":return t.cap_height;case\"ascent\":case\"ascent_descent\":return t.ascent}})(),n=(()=>{switch(s){case\"x\":case\"cap\":case\"ascent\":return 0;case\"x_descent\":case\"cap_descent\":case\"ascent_descent\":return t.descent}})();return{height:i+n,ascent:i,descent:n}}get nlines(){return this.text.split(\"\\n\").length}_size(){var t,e;const{font:i}=this,n=o.font_metrics(i),h=(this.line_height-1)*n.height,a=\"\"==this.text,c=this.text.split(\"\\n\"),_=c.length,l=c.map((t=>s.text_width(t,i))),x=this._text_line(n).height*_,u=\"%\"==(null===(t=this.width)||void 0===t?void 0:t.unit)?this.width.value:1,p=\"%\"==(null===(e=this.height)||void 0===e?void 0:e.unit)?this.height.value:1;return{width:r.max(l)*u,height:a?0:(x+h*(_-1))*p,metrics:n}}_computed_position(t,e,s){const{width:i,height:n}=t,{sx:h,sy:o,x_anchor:r=\"left\",y_anchor:c=\"center\"}=this.position;return{x:h-(()=>{if(a.isNumber(r))return r*i;switch(r){case\"left\":return 0;case\"center\":return.5*i;case\"right\":return i}})(),y:o-(()=>{var t;if(a.isNumber(c))return c*n;switch(c){case\"top\":return 0;case\"center\":return.5*n;case\"bottom\":return n;case\"baseline\":if(1!=s)return.5*n;switch(null!==(t=this.text_height_metric)&&void 0!==t?t:this.infer_text_height()){case\"x\":case\"x_descent\":return e.x_height;case\"cap\":case\"cap_descent\":return e.cap_height;case\"ascent\":case\"ascent_descent\":return e.ascent}}})()}}_rect(){const{width:t,height:e,metrics:s}=this._size(),i=this.text.split(\"\\n\").length,{x:n,y:o}=this._computed_position({width:t,height:e},s,i);return new h.BBox({x:n,y:o,width:t,height:e}).rect}paint(t){var e,i;const{font:n}=this,h=o.font_metrics(n),a=(this.line_height-1)*h.height,c=this.text.split(\"\\n\"),_=c.length,l=c.map((t=>s.text_width(t,n))),x=this._text_line(h),u=x.height*_,p=\"%\"==(null===(e=this.width)||void 0===e?void 0:e.unit)?this.width.value:1,g=\"%\"==(null===(i=this.height)||void 0===i?void 0:i.unit)?this.height.value:1,f=r.max(l)*p,d=(u+a*(_-1))*g;t.save(),t.fillStyle=this.color,t.font=this.font,t.textAlign=\"left\",t.textBaseline=\"alphabetic\";const{sx:m,sy:b}=this.position,{align:y}=this,{angle:w}=this;w&&(t.translate(m,b),t.rotate(w),t.translate(-m,-b));let{x:v,y:z}=this._computed_position({width:f,height:d},h,_);if(\"justify\"==y)for(let e=0;e<_;e++){let i=v;const h=c[e].split(\" \"),o=h.length,_=h.map((t=>s.text_width(t,n))),l=(f-r.sum(_))/(o-1);for(let e=0;e{switch(y){case\"left\":return 0;case\"center\":return.5*(f-l[e]);case\"right\":return f-l[e]}})();t.fillStyle=this.color,t.fillText(c[e],s,z+x.ascent),z+=x.height+a}t.restore()}}s.TextBox=x,x.__name__=\"TextBox\";class u extends l{constructor(t,e){super(),this.base=t,this.expo=e}get children(){return[this.base,this.expo]}set position(t){this._position=t;const e=this.base.size(),s=this.expo.size(),i=this._shift_scale()*e.height,n=Math.max(e.height,i+s.height);this.base.position={sx:0,x_anchor:\"left\",sy:n,y_anchor:\"bottom\"},this.expo.position={sx:e.width,x_anchor:\"left\",sy:i,y_anchor:\"bottom\"}}get position(){return this._position}set visuals(t){this.expo.font_size_scale=.7,this.base.visuals=t,this.expo.visuals=t}_shift_scale(){if(this.base instanceof x&&1==this.base.nlines){const{x_height:t,cap_height:e}=o.font_metrics(this.base.font);return t/e}return 2/3}infer_text_height(){return this.base.infer_text_height()}_rect(){const t=this.base.bbox(),e=this.expo.bbox(),s=t.union(e),{x:i,y:n}=this._computed_position();return s.translate(i,n).rect}_size(){const t=this.base.size(),e=this.expo.size();return{width:t.width+e.width,height:Math.max(t.height,this._shift_scale()*t.height+e.height)}}paint(t){t.save();const{angle:e}=this;if(e){const{sx:s,sy:i}=this.position;t.translate(s,i),t.rotate(e),t.translate(-s,-i)}const{x:s,y:i}=this._computed_position();t.translate(s,i),this.base.paint(t),this.expo.paint(t),t.restore()}paint_bbox(t){super.paint_bbox(t);const{x:e,y:s}=this._computed_position();t.save(),t.translate(e,s);for(const e of this.children)e.paint_bbox(t);t.restore()}_computed_position(){const{width:t,height:e}=this._size(),{sx:s,sy:i,x_anchor:n=\"left\",y_anchor:h=\"center\"}=this.position;return{x:s-(()=>{if(a.isNumber(n))return n*t;switch(n){case\"left\":return 0;case\"center\":return.5*t;case\"right\":return t}})(),y:i-(()=>{if(a.isNumber(h))return h*e;switch(h){case\"top\":return 0;case\"center\":return.5*e;case\"bottom\":return e;case\"baseline\":return.5*e}})()}}}s.BaseExpo=u,u.__name__=\"BaseExpo\";class p{constructor(t){this.items=t}get length(){return this.items.length}set visuals(t){for(const e of this.items)e.visuals=t;const e={x:0,cap:1,ascent:2,x_descent:3,cap_descent:4,ascent_descent:5},s=r.max_by(this.items.map((t=>t.infer_text_height())),(t=>e[t]));for(const t of this.items)t.text_height_metric=s}set angle(t){for(const e of this.items)e.angle=t}max_size(){let t=0,e=0;for(const s of this.items){const i=s.size();t=Math.max(t,i.width),e=Math.max(e,i.height)}return{width:t,height:e}}}s.GraphicsBoxes=p,p.__name__=\"GraphicsBoxes\"},\n", + " function _(t,s,r,n,i){n();const{sin:e,cos:a}=Math;class h{constructor(t=1,s=0,r=0,n=1,i=0,e=0){this.a=t,this.b=s,this.c=r,this.d=n,this.e=i,this.f=e}toString(){const{a:t,b:s,c:r,d:n,e:i,f:e}=this;return`matrix(${t}, ${s}, ${r}, ${n}, ${i}, ${e})`}clone(){const{a:t,b:s,c:r,d:n,e:i,f:e}=this;return new h(t,s,r,n,i,e)}get is_identity(){const{a:t,b:s,c:r,d:n,e:i,f:e}=this;return 1==t&&0==s&&0==r&&1==n&&0==i&&0==e}apply_point(t){const[s,r]=this.apply(t.x,t.y);return{x:s,y:r}}apply_rect(t){return{p0:this.apply_point(t.p0),p1:this.apply_point(t.p1),p2:this.apply_point(t.p2),p3:this.apply_point(t.p3)}}apply(t,s){const{a:r,b:n,c:i,d:e,e:a,f:h}=this;return[r*t+i*s+a,n*t+e*s+h]}iv_apply(t,s){const{a:r,b:n,c:i,d:e,e:a,f:h}=this,p=t.length;for(let o=0;o({min_distance:[e,5]})))}filter(e,n,s){const{min_distance:t}=this;let i=null;for(const n of e)null!=i&&s(i,n)({args:[s(e),{}],code:[n,\"\"]})))}get names(){return c.keys(this.args)}get values(){return c.values(this.args)}get func(){const e=o.use_strict(this.code);return new a.GeneratorFunction(\"indices\",\"bboxes\",\"distance\",...this.names,e)}filter(e,n,s){const t=Object.create(null),i=this.func.call(t,e,n,s,...this.values);let l=i.next();if(l.done&&void 0!==l.value){const{value:n}=l;return n instanceof a.Indices?n:void 0===n?e:r.isIterable(n)?a.Indices.from_indices(e.size,n):a.Indices.all_unset(e.size)}{const n=[];do{n.push(l.value),l=i.next()}while(!l.done);return a.Indices.from_indices(e.size,n)}}}s.CustomLabelingPolicy=m,m.__name__=\"CustomLabelingPolicy\",m.init_CustomLabelingPolicy()},\n", + " function _(t,s,e,o,i){o();const a=t(1),r=t(163),l=t(171),_=t(172),n=a.__importStar(t(48)),c=t(20),p=t(167),h=t(8);class m extends r.AxisView{_paint(t,s,e){this._draw_group_separators(t,s,e)}_draw_group_separators(t,s,e){const[o]=this.ranges,[i,a]=this.computed_bounds;if(!o.tops||o.tops.length<2||!this.visuals.separator_line.doit)return;const r=this.dimension,l=(r+1)%2,_=[[],[]];let n=0;for(let t=0;ti&&cnew p.GraphicsBoxes(t.map((t=>h.isString(t)?new p.TextBox({text:t}):t))),_=t=>l(this.model.formatter.doFormat(t,this));if(1==t.levels){const t=_(i.major);r.push([t,a.major,this.model.major_label_orientation,this.visuals.major_label_text])}else if(2==t.levels){const t=_(i.major.map((t=>t[1])));r.push([t,a.major,this.model.major_label_orientation,this.visuals.major_label_text]),r.push([l(i.tops),a.tops,this.model.group_label_orientation,this.visuals.group_text])}else if(3==t.levels){const t=_(i.major.map((t=>t[2]))),s=i.mids.map((t=>t[1]));r.push([t,a.major,this.model.major_label_orientation,this.visuals.major_label_text]),r.push([l(s),a.mids,this.model.subgroup_label_orientation,this.visuals.subgroup_text]),r.push([l(i.tops),a.tops,this.model.group_label_orientation,this.visuals.group_text])}return r}get tick_coords(){const t=this.dimension,s=(t+1)%2,[e]=this.ranges,[o,i]=this.computed_bounds,a=this.model.ticker.get_ticks(o,i,e,this.loc),r={major:[[],[]],mids:[[],[]],tops:[[],[]],minor:[[],[]]};return r.major[t]=a.major,r.major[s]=a.major.map((()=>this.loc)),3==e.levels&&(r.mids[t]=a.mids,r.mids[s]=a.mids.map((()=>this.loc))),e.levels>1&&(r.tops[t]=a.tops,r.tops[s]=a.tops.map((()=>this.loc))),r}}e.CategoricalAxisView=m,m.__name__=\"CategoricalAxisView\";class u extends r.Axis{constructor(t){super(t)}static init_CategoricalAxis(){this.prototype.default_view=m,this.mixins([[\"separator_\",n.Line],[\"group_\",n.Text],[\"subgroup_\",n.Text]]),this.define((({Number:t,Or:s})=>({group_label_orientation:[s(c.TickLabelOrientation,t),\"parallel\"],subgroup_label_orientation:[s(c.TickLabelOrientation,t),\"parallel\"]}))),this.override({ticker:()=>new l.CategoricalTicker,formatter:()=>new _.CategoricalTickFormatter,separator_line_color:\"lightgrey\",separator_line_width:2,group_text_font_style:\"bold\",group_text_font_size:\"11px\",group_text_color:\"grey\",subgroup_text_font_style:\"bold\",subgroup_text_font_size:\"11px\"})}}e.CategoricalAxis=u,u.__name__=\"CategoricalAxis\",u.init_CategoricalAxis()},\n", + " function _(t,c,o,s,e){s();const r=t(165);class i extends r.Ticker{constructor(t){super(t)}get_ticks(t,c,o,s){var e,r;return{major:this._collect(o.factors,o,t,c),minor:[],tops:this._collect(null!==(e=o.tops)&&void 0!==e?e:[],o,t,c),mids:this._collect(null!==(r=o.mids)&&void 0!==r?r:[],o,t,c)}}_collect(t,c,o,s){const e=[];for(const r of t){const t=c.synthetic(r);t>o&&tnew m.DatetimeTicker,formatter:()=>new r.DatetimeTickFormatter})}}i.DatetimeAxis=c,c.__name__=\"DatetimeAxis\",c.init_DatetimeAxis()},\n", + " function _(i,e,s,n,t){n();const r=i(173),a=i(176),o=i(177);class c extends r.ContinuousAxisView{}s.LinearAxisView=c,c.__name__=\"LinearAxisView\";class _ extends r.ContinuousAxis{constructor(i){super(i)}static init_LinearAxis(){this.prototype.default_view=c,this.override({ticker:()=>new o.BasicTicker,formatter:()=>new a.BasicTickFormatter})}}s.LinearAxis=_,_.__name__=\"LinearAxis\",_.init_LinearAxis()},\n", + " function _(i,t,e,n,o){n();const s=i(166),r=i(34);function c(i){let t=\"\";for(const e of i)t+=\"-\"==e?\"βˆ’\":e;return t}e.unicode_replace=c;class _ extends s.TickFormatter{constructor(i){super(i),this.last_precision=3}static init_BasicTickFormatter(){this.define((({Boolean:i,Int:t,Auto:e,Or:n})=>({precision:[n(t,e),\"auto\"],use_scientific:[i,!0],power_limit_high:[t,5],power_limit_low:[t,-3]})))}get scientific_limit_low(){return 10**this.power_limit_low}get scientific_limit_high(){return 10**this.power_limit_high}_need_sci(i){if(!this.use_scientific)return!1;const{scientific_limit_high:t}=this,{scientific_limit_low:e}=this,n=i.length<2?0:Math.abs(i[1]-i[0])/1e4;for(const o of i){const i=Math.abs(o);if(!(i<=n)&&(i>=t||i<=e))return!0}return!1}_format_with_precision(i,t,e){return t?i.map((i=>c(i.toExponential(e)))):i.map((i=>c(r.to_fixed(i,e))))}_auto_precision(i,t){const e=new Array(i.length),n=this.last_precision<=15;i:for(let o=this.last_precision;n?o<=15:o>=1;n?o++:o--){if(t){e[0]=i[0].toExponential(o);for(let t=1;t({base:[t,10],mantissas:[i(t),[1,2,5]],min_interval:[t,0],max_interval:[a(t),null]})))}get_min_interval(){return this.min_interval}get_max_interval(){var t;return null!==(t=this.max_interval)&&void 0!==t?t:1/0}initialize(){super.initialize();const t=r.nth(this.mantissas,-1)/this.base,i=r.nth(this.mantissas,0)*this.base;this.extended_mantissas=[t,...this.mantissas,i],this.base_factor=0===this.get_min_interval()?1:this.get_min_interval()}get_interval(t,i,a){const e=i-t,s=this.get_ideal_interval(t,i,a),n=Math.floor(_.log(s/this.base_factor,this.base)),l=this.base**n*this.base_factor,h=this.extended_mantissas,m=h.map((t=>Math.abs(a-e/(t*l)))),v=h[r.argmin(m)]*l;return _.clamp(v,this.get_min_interval(),this.get_max_interval())}}a.AdaptiveTicker=l,l.__name__=\"AdaptiveTicker\",l.init_AdaptiveTicker()},\n", + " function _(t,i,n,s,e){s();const o=t(165),r=t(9);class c extends o.Ticker{constructor(t){super(t)}static init_ContinuousTicker(){this.define((({Int:t})=>({num_minor_ticks:[t,5],desired_num_ticks:[t,6]})))}get_ticks(t,i,n,s){return this.get_ticks_no_defaults(t,i,s,this.desired_num_ticks)}get_ticks_no_defaults(t,i,n,s){const e=this.get_interval(t,i,s),o=Math.floor(t/e),c=Math.ceil(i/e);let _;_=isFinite(o)&&isFinite(c)?r.range(o,c+1):[];const u=_.map((t=>t*e)).filter((n=>t<=n&&n<=i)),a=this.num_minor_ticks,f=[];if(a>0&&u.length>0){const n=e/a,s=r.range(0,a).map((t=>t*n));for(const n of s.slice(1)){const s=u[0]-n;t<=s&&s<=i&&f.push(s)}for(const n of u)for(const e of s){const s=n+e;t<=s&&s<=i&&f.push(s)}}return{major:u,minor:f}}get_ideal_interval(t,i,n){return(i-t)/n}}n.ContinuousTicker=c,c.__name__=\"ContinuousTicker\",c.init_ContinuousTicker()},\n", + " function _(t,s,e,i,n){i();const r=t(1).__importDefault(t(181)),o=t(166),a=t(19),c=t(182),m=t(9),u=t(8);function h(t){return r.default(t,\"%Y %m %d %H %M %S\").split(/\\s+/).map((t=>parseInt(t,10)))}function d(t,s){if(u.isFunction(s))return s(t);{const e=c.sprintf(\"$1%06d\",function(t){return Math.round(t/1e3%1*1e6)}(t));return-1==(s=s.replace(/((^|[^%])(%%)*)%f/,e)).indexOf(\"%\")?s:r.default(t,s)}}const l=[\"microseconds\",\"milliseconds\",\"seconds\",\"minsec\",\"minutes\",\"hourmin\",\"hours\",\"days\",\"months\",\"years\"];class f extends o.TickFormatter{constructor(t){super(t),this.strip_leading_zeros=!0}static init_DatetimeTickFormatter(){this.define((({String:t,Array:s})=>({microseconds:[s(t),[\"%fus\"]],milliseconds:[s(t),[\"%3Nms\",\"%S.%3Ns\"]],seconds:[s(t),[\"%Ss\"]],minsec:[s(t),[\":%M:%S\"]],minutes:[s(t),[\":%M\",\"%Mm\"]],hourmin:[s(t),[\"%H:%M\"]],hours:[s(t),[\"%Hh\",\"%H:%M\"]],days:[s(t),[\"%m/%d\",\"%a%d\"]],months:[s(t),[\"%m/%Y\",\"%b %Y\"]],years:[s(t),[\"%Y\"]]})))}initialize(){super.initialize(),this._update_width_formats()}_update_width_formats(){const t=+r.default(new Date),s=function(s){const e=s.map((s=>d(t,s).length)),i=m.sort_by(m.zip(e,s),(([t])=>t));return m.unzip(i)};this._width_formats={microseconds:s(this.microseconds),milliseconds:s(this.milliseconds),seconds:s(this.seconds),minsec:s(this.minsec),minutes:s(this.minutes),hourmin:s(this.hourmin),hours:s(this.hours),days:s(this.days),months:s(this.months),years:s(this.years)}}_get_resolution_str(t,s){const e=1.1*t;switch(!1){case!(e<.001):return\"microseconds\";case!(e<1):return\"milliseconds\";case!(e<60):return s>=60?\"minsec\":\"seconds\";case!(e<3600):return s>=3600?\"hourmin\":\"minutes\";case!(e<86400):return\"hours\";case!(e<2678400):return\"days\";case!(e<31536e3):return\"months\";default:return\"years\"}}doFormat(t,s){if(0==t.length)return[];const e=Math.abs(t[t.length-1]-t[0])/1e3,i=e/(t.length-1),n=this._get_resolution_str(i,e),[,[r]]=this._width_formats[n],o=[],c=l.indexOf(n),m={};for(const t of l)m[t]=0;m.seconds=5,m.minsec=4,m.minutes=4,m.hourmin=3,m.hours=3;for(const s of t){let t,e;try{e=h(s),t=d(s,r)}catch(t){a.logger.warn(`unable to format tick for timestamp value ${s}`),a.logger.warn(` - ${t}`),o.push(\"ERR\");continue}let i=!1,u=c;for(;0==e[m[l[u]]];){let r;if(u+=1,u==l.length)break;if((\"minsec\"==n||\"hourmin\"==n)&&!i){if(\"minsec\"==n&&0==e[4]&&0!=e[5]||\"hourmin\"==n&&0==e[3]&&0!=e[4]){r=this._width_formats[l[c-1]][1][0],t=d(s,r);break}i=!0}r=this._width_formats[l[u]][1][0],t=d(s,r)}if(this.strip_leading_zeros){let s=t.replace(/^0+/g,\"\");s!=t&&isNaN(parseInt(s))&&(s=`0${s}`),o.push(s)}else o.push(t)}return o}}e.DatetimeTickFormatter=f,f.__name__=\"DatetimeTickFormatter\",f.init_DatetimeTickFormatter()},\n", + " function _(e,t,n,r,o){!function(e){\"object\"==typeof t&&t.exports?t.exports=e():\"function\"==typeof define?define(e):this.tz=e()}((function(){function e(e,t,n){var r,o=t.day[1];do{r=new Date(Date.UTC(n,t.month,Math.abs(o++)))}while(t.day[0]<7&&r.getUTCDay()!=t.day[0]);return(r={clock:t.clock,sort:r.getTime(),rule:t,save:6e4*t.save,offset:e.offset})[r.clock]=r.sort+6e4*t.time,r.posix?r.wallclock=r[r.clock]+(e.offset+t.saved):r.posix=r[r.clock]-(e.offset+t.saved),r}function t(t,n,r){var o,a,u,i,l,s,c,f=t[t.zone],h=[],T=new Date(r).getUTCFullYear(),g=1;for(o=1,a=f.length;o=T-g;--c)for(o=0,a=s.length;o=h[o][n]&&h[o][h[o].clock]>u[h[o].clock]&&(i=h[o])}return i&&((l=/^(.*)\\/(.*)$/.exec(u.format))?i.abbrev=l[i.save?2:1]:i.abbrev=u.format.replace(/%s/,i.rule.letter)),i||u}function n(e,n){return\"UTC\"==e.zone?n:(e.entry=t(e,\"posix\",n),n+e.entry.offset+e.entry.save)}function r(e,n){return\"UTC\"==e.zone?n:(e.entry=r=t(e,\"wallclock\",n),0<(o=n-r.wallclock)&&o9)t+=s*l[c-10];else{if(a=new Date(n(e,t)),c<7)for(;s;)a.setUTCDate(a.getUTCDate()+i),a.getUTCDay()==c&&(s-=i);else 7==c?a.setUTCFullYear(a.getUTCFullYear()+s):8==c?a.setUTCMonth(a.getUTCMonth()+s):a.setUTCDate(a.getUTCDate()+s);null==(t=r(e,a.getTime()))&&(t=r(e,a.getTime()+864e5*i)-864e5*i)}return t}var a={clock:function(){return+new Date},zone:\"UTC\",entry:{abbrev:\"UTC\",offset:0,save:0},UTC:1,z:function(e,t,n,r){var o,a,u=this.entry.offset+this.entry.save,i=Math.abs(u/1e3),l=[],s=3600;for(o=0;o<3;o++)l.push((\"0\"+Math.floor(i/s)).slice(-2)),i%=s,s/=60;return\"^\"!=n||u?(\"^\"==n&&(r=3),3==r?(a=(a=l.join(\":\")).replace(/:00$/,\"\"),\"^\"!=n&&(a=a.replace(/:00$/,\"\"))):r?(a=l.slice(0,r+1).join(\":\"),\"^\"==n&&(a=a.replace(/:00$/,\"\"))):a=l.slice(0,2).join(\"\"),a=(a=(u<0?\"-\":\"+\")+a).replace(/([-+])(0)/,{_:\" $1\",\"-\":\"$1\"}[n]||\"$1$2\")):\"Z\"},\"%\":function(e){return\"%\"},n:function(e){return\"\\n\"},t:function(e){return\"\\t\"},U:function(e){return s(e,0)},W:function(e){return s(e,1)},V:function(e){return c(e)[0]},G:function(e){return c(e)[1]},g:function(e){return c(e)[1]%100},j:function(e){return Math.floor((e.getTime()-Date.UTC(e.getUTCFullYear(),0))/864e5)+1},s:function(e){return Math.floor(e.getTime()/1e3)},C:function(e){return Math.floor(e.getUTCFullYear()/100)},N:function(e){return e.getTime()%1e3*1e6},m:function(e){return e.getUTCMonth()+1},Y:function(e){return e.getUTCFullYear()},y:function(e){return e.getUTCFullYear()%100},H:function(e){return e.getUTCHours()},M:function(e){return e.getUTCMinutes()},S:function(e){return e.getUTCSeconds()},e:function(e){return e.getUTCDate()},d:function(e){return e.getUTCDate()},u:function(e){return e.getUTCDay()||7},w:function(e){return e.getUTCDay()},l:function(e){return e.getUTCHours()%12||12},I:function(e){return e.getUTCHours()%12||12},k:function(e){return e.getUTCHours()},Z:function(e){return this.entry.abbrev},a:function(e){return this[this.locale].day.abbrev[e.getUTCDay()]},A:function(e){return this[this.locale].day.full[e.getUTCDay()]},h:function(e){return this[this.locale].month.abbrev[e.getUTCMonth()]},b:function(e){return this[this.locale].month.abbrev[e.getUTCMonth()]},B:function(e){return this[this.locale].month.full[e.getUTCMonth()]},P:function(e){return this[this.locale].meridiem[Math.floor(e.getUTCHours()/12)].toLowerCase()},p:function(e){return this[this.locale].meridiem[Math.floor(e.getUTCHours()/12)]},R:function(e,t){return this.convert([t,\"%H:%M\"])},T:function(e,t){return this.convert([t,\"%H:%M:%S\"])},D:function(e,t){return this.convert([t,\"%m/%d/%y\"])},F:function(e,t){return this.convert([t,\"%Y-%m-%d\"])},x:function(e,t){return this.convert([t,this[this.locale].date])},r:function(e,t){return this.convert([t,this[this.locale].time12||\"%I:%M:%S\"])},X:function(e,t){return this.convert([t,this[this.locale].time24])},c:function(e,t){return this.convert([t,this[this.locale].dateTime])},convert:function(e){if(!e.length)return\"1.0.23\";var t,a,u,l,s,c=Object.create(this),f=[];for(t=0;t=o?Math.floor((n-o)/7)+1:0}function c(e){var t,n,r;return n=e.getUTCFullYear(),t=new Date(Date.UTC(n,0)).getUTCDay(),(r=s(e,1)+(t>1&&t<=4?1:0))?53!=r||4==t||3==t&&29==new Date(n,1,29).getDate()?[r,e.getUTCFullYear()]:[1,e.getUTCFullYear()+1]:(n=e.getUTCFullYear()-1,[r=4==(t=new Date(Date.UTC(n,0)).getUTCDay())||3==t&&29==new Date(n,1,29).getDate()?53:52,e.getUTCFullYear()-1])}return u=u.toLowerCase().split(\"|\"),\"delmHMSUWVgCIky\".replace(/./g,(function(e){a[e].pad=2})),a.N.pad=9,a.j.pad=3,a.k.style=\"_\",a.l.style=\"_\",a.e.style=\"_\",function(){return a.convert(arguments)}}))},\n", + " function _(r,t,n,e,i){e();const u=r(1),a=u.__importStar(r(183)),f=r(184),o=u.__importDefault(r(181)),l=r(21),s=r(8);function c(r,...t){return f.sprintf(r,...t)}function m(r,t,n){if(s.isNumber(r)){return c((()=>{switch(!1){case Math.floor(r)!=r:return\"%d\";case!(Math.abs(r)>.1&&Math.abs(r)<1e3):return\"%0.3f\";default:return\"%0.3e\"}})(),r)}return`${r}`}function p(r,t,e){if(null==t)return m;if(null!=e&&r in e){const t=e[r];if(s.isString(t)){if(t in n.DEFAULT_FORMATTERS)return n.DEFAULT_FORMATTERS[t];throw new Error(`Unknown tooltip field formatter type '${t}'`)}return function(r,n,e){return t.format(r,n,e)}}return n.DEFAULT_FORMATTERS.numeral}function d(r,t,n,e){if(\"$\"==r[0]){return function(r,t){if(r in t)return t[r];throw new Error(`Unknown special variable '$${r}'`)}(r.substring(1),e)}return function(r,t,n){const e=t.get_column(r);if(null==e)return null;if(s.isNumber(n))return e[n];const i=e[n.index];if(s.isTypedArray(i)||s.isArray(i))return s.isArray(i[0])?i[n.dim2][n.dim1]:i[n.flat_index];return i}(r.substring(1).replace(/[{}]/g,\"\"),t,n)}n.FormatterType=l.Enum(\"numeral\",\"printf\",\"datetime\"),n.DEFAULT_FORMATTERS={numeral:(r,t,n)=>a.format(r,t),datetime:(r,t,n)=>o.default(r,t),printf:(r,t,n)=>c(t,r)},n.sprintf=c,n.basic_formatter=m,n.get_formatter=p,n.get_value=d,n.replace_placeholders=function(r,t,n,e,i={},u){let a,f;if(s.isString(r)?(a=r,f=!1):(a=r.html,f=!0),a=a.replace(/@\\$name/g,(r=>`@{${i.name}}`)),a=a.replace(/((?:\\$\\w+)|(?:@\\w+)|(?:@{(?:[^{}]+)}))(?:{([^{}]+)})?/g,((r,a,o)=>{const l=d(a,t,n,i);if(null==l)return u?u(\"???\"):\"???\";if(\"safe\"==o)return f=!0,`${l}`;const s=`${p(a,o,e)(l,o,i)}`;return u?u(s):s})),f){return[...(new DOMParser).parseFromString(a,\"text/html\").body.childNodes]}return a}},\n", + " function _(e,n,t,r,i){\n", + " /*!\n", + " * numbro.js\n", + " * version : 1.6.2\n", + " * author : FΓΆretagsplatsen AB\n", + " * license : MIT\n", + " * http://www.foretagsplatsen.se\n", + " */\n", + " var a,o={},l=o,u=\"en-US\",c=null,s=\"0,0\";void 0!==n&&n.exports;function f(e){this._value=e}function d(e){var n,t=\"\";for(n=0;n-1?function(e,n){var t,r,i,a;return t=(a=e.toString()).split(\"e\")[0],i=a.split(\"e\")[1],a=t.split(\".\")[0]+(r=t.split(\".\")[1]||\"\")+d(i-r.length),n>0&&(a+=\".\"+d(n)),a}(e,n):(t(e*o)/o).toFixed(n),r&&(i=new RegExp(\"0{1,\"+r+\"}$\"),a=a.replace(i,\"\")),a}function p(e,n,t){return n.indexOf(\"$\")>-1?function(e,n,t){var r,i,a=n,l=a.indexOf(\"$\"),c=a.indexOf(\"(\"),s=a.indexOf(\"+\"),f=a.indexOf(\"-\"),d=\"\",h=\"\";-1===a.indexOf(\"$\")?\"infix\"===o[u].currency.position?(h=o[u].currency.symbol,o[u].currency.spaceSeparated&&(h=\" \"+h+\" \")):o[u].currency.spaceSeparated&&(d=\" \"):a.indexOf(\" $\")>-1?(d=\" \",a=a.replace(\" $\",\"\")):a.indexOf(\"$ \")>-1?(d=\" \",a=a.replace(\"$ \",\"\")):a=a.replace(\"$\",\"\");if(i=m(e,a,t,h),-1===n.indexOf(\"$\"))switch(o[u].currency.position){case\"postfix\":i.indexOf(\")\")>-1?((i=i.split(\"\")).splice(-1,0,d+o[u].currency.symbol),i=i.join(\"\")):i=i+d+o[u].currency.symbol;break;case\"infix\":break;case\"prefix\":i.indexOf(\"(\")>-1||i.indexOf(\"-\")>-1?(i=i.split(\"\"),r=Math.max(c,f)+1,i.splice(r,0,o[u].currency.symbol+d),i=i.join(\"\")):i=o[u].currency.symbol+d+i;break;default:throw Error('Currency position should be among [\"prefix\", \"infix\", \"postfix\"]')}else l<=1?i.indexOf(\"(\")>-1||i.indexOf(\"+\")>-1||i.indexOf(\"-\")>-1?(r=1,(l-1?((i=i.split(\"\")).splice(-1,0,d+o[u].currency.symbol),i=i.join(\"\")):i=i+d+o[u].currency.symbol;return i}(e,n,t):n.indexOf(\"%\")>-1?function(e,n,t){var r,i=\"\";e*=100,n.indexOf(\" %\")>-1?(i=\" \",n=n.replace(\" %\",\"\")):n=n.replace(\"%\",\"\");(r=m(e,n,t)).indexOf(\")\")>-1?((r=r.split(\"\")).splice(-1,0,i+\"%\"),r=r.join(\"\")):r=r+i+\"%\";return r}(e,n,t):n.indexOf(\":\")>-1?function(e){var n=Math.floor(e/60/60),t=Math.floor((e-60*n*60)/60),r=Math.round(e-60*n*60-60*t);return n+\":\"+(t<10?\"0\"+t:t)+\":\"+(r<10?\"0\"+r:r)}(e):m(e,n,t)}function m(e,n,t,r){var i,a,l,s,f,d,p,m,x,g,O,b,w,y,M,v,$,B=!1,E=!1,F=!1,k=\"\",U=!1,N=!1,S=!1,j=!1,D=!1,C=\"\",L=\"\",T=Math.abs(e),K=[\"B\",\"KiB\",\"MiB\",\"GiB\",\"TiB\",\"PiB\",\"EiB\",\"ZiB\",\"YiB\"],G=[\"B\",\"KB\",\"MB\",\"GB\",\"TB\",\"PB\",\"EB\",\"ZB\",\"YB\"],I=\"\",P=!1,R=!1;if(0===e&&null!==c)return c;if(!isFinite(e))return\"\"+e;if(0===n.indexOf(\"{\")){var W=n.indexOf(\"}\");if(-1===W)throw Error('Format should also contain a \"}\"');b=n.slice(1,W),n=n.slice(W+1)}else b=\"\";if(n.indexOf(\"}\")===n.length-1){var Y=n.indexOf(\"{\");if(-1===Y)throw Error('Format should also contain a \"{\"');w=n.slice(Y+1,-1),n=n.slice(0,Y+1)}else w=\"\";if(v=null===($=-1===n.indexOf(\".\")?n.match(/([0-9]+).*/):n.match(/([0-9]+)\\..*/))?-1:$[1].length,-1!==n.indexOf(\"-\")&&(P=!0),n.indexOf(\"(\")>-1?(B=!0,n=n.slice(1,-1)):n.indexOf(\"+\")>-1&&(E=!0,n=n.replace(/\\+/g,\"\")),n.indexOf(\"a\")>-1){if(g=n.split(\".\")[0].match(/[0-9]+/g)||[\"0\"],g=parseInt(g[0],10),U=n.indexOf(\"aK\")>=0,N=n.indexOf(\"aM\")>=0,S=n.indexOf(\"aB\")>=0,j=n.indexOf(\"aT\")>=0,D=U||N||S||j,n.indexOf(\" a\")>-1?(k=\" \",n=n.replace(\" a\",\"\")):n=n.replace(\"a\",\"\"),p=0===(p=(f=Math.floor(Math.log(T)/Math.LN10)+1)%3)?3:p,g&&0!==T&&(d=Math.floor(Math.log(T)/Math.LN10)+1-g,m=3*~~((Math.min(g,f)-p)/3),T/=Math.pow(10,m),-1===n.indexOf(\".\")&&g>3))for(n+=\"[.]\",M=(M=0===d?0:3*~~(d/3)-d)<0?M+3:M,i=0;i=Math.pow(10,12)&&!D||j?(k+=o[u].abbreviations.trillion,e/=Math.pow(10,12)):T=Math.pow(10,9)&&!D||S?(k+=o[u].abbreviations.billion,e/=Math.pow(10,9)):T=Math.pow(10,6)&&!D||N?(k+=o[u].abbreviations.million,e/=Math.pow(10,6)):(T=Math.pow(10,3)&&!D||U)&&(k+=o[u].abbreviations.thousand,e/=Math.pow(10,3)))}if(n.indexOf(\"b\")>-1)for(n.indexOf(\" b\")>-1?(C=\" \",n=n.replace(\" b\",\"\")):n=n.replace(\"b\",\"\"),s=0;s<=K.length;s++)if(a=Math.pow(1024,s),l=Math.pow(1024,s+1),e>=a&&e0&&(e/=a);break}if(n.indexOf(\"d\")>-1)for(n.indexOf(\" d\")>-1?(C=\" \",n=n.replace(\" d\",\"\")):n=n.replace(\"d\",\"\"),s=0;s<=G.length;s++)if(a=Math.pow(1e3,s),l=Math.pow(1e3,s+1),e>=a&&e0&&(e/=a);break}if(n.indexOf(\"o\")>-1&&(n.indexOf(\" o\")>-1?(L=\" \",n=n.replace(\" o\",\"\")):n=n.replace(\"o\",\"\"),o[u].ordinal&&(L+=o[u].ordinal(e))),n.indexOf(\"[.]\")>-1&&(F=!0,n=n.replace(\"[.]\",\".\")),x=e.toString().split(\".\")[0],O=n.split(\".\")[1],y=n.indexOf(\",\"),O){if(x=(I=-1!==O.indexOf(\"*\")?h(e,e.toString().split(\".\")[1].length,t):O.indexOf(\"[\")>-1?h(e,(O=(O=O.replace(\"]\",\"\")).split(\"[\"))[0].length+O[1].length,t,O[1].length):h(e,O.length,t)).split(\".\")[0],I.split(\".\")[1].length)I=(r?k+r:o[u].delimiters.decimal)+I.split(\".\")[1];else I=\"\";F&&0===Number(I.slice(1))&&(I=\"\")}else x=h(e,null,t);return x.indexOf(\"-\")>-1&&(x=x.slice(1),R=!0),x.length-1&&(x=x.toString().replace(/(\\d)(?=(\\d{3})+(?!\\d))/g,\"$1\"+o[u].delimiters.thousands)),0===n.indexOf(\".\")&&(x=\"\"),b+(n.indexOf(\"(\")2)&&(o.length<2?!!o[0].match(/^\\d+.*\\d$/)&&!o[0].match(u):1===o[0].length?!!o[0].match(/^\\d+$/)&&!o[0].match(u)&&!!o[1].match(/^\\d+$/):!!o[0].match(/^\\d+.*\\d$/)&&!o[0].match(u)&&!!o[1].match(/^\\d+$/)))))},n.exports={format:function(e,n,t,r){return null!=t&&t!==a.culture()&&a.setCulture(t),p(Number(e),null!=n?n:s,null==r?Math.round:r)}}},\n", + " function _(e,n,t,r,i){!function(){\"use strict\";var e={not_string:/[^s]/,not_bool:/[^t]/,not_type:/[^T]/,not_primitive:/[^v]/,number:/[diefg]/,numeric_arg:/[bcdiefguxX]/,json:/[j]/,not_json:/[^j]/,text:/^[^\\x25]+/,modulo:/^\\x25{2}/,placeholder:/^\\x25(?:([1-9]\\d*)\\$|\\(([^)]+)\\))?(\\+)?(0|'[^$])?(-)?(\\d+)?(?:\\.(\\d+))?([b-gijostTuvxX])/,key:/^([a-z_][a-z_\\d]*)/i,key_access:/^\\.([a-z_][a-z_\\d]*)/i,index_access:/^\\[(\\d+)\\]/,sign:/^[+-]/};function n(e){return i(a(e),arguments)}function r(e,t){return n.apply(null,[e].concat(t||[]))}function i(t,r){var i,s,a,o,p,c,l,u,f,d=1,g=t.length,y=\"\";for(s=0;s=0),o.type){case\"b\":i=parseInt(i,10).toString(2);break;case\"c\":i=String.fromCharCode(parseInt(i,10));break;case\"d\":case\"i\":i=parseInt(i,10);break;case\"j\":i=JSON.stringify(i,null,o.width?parseInt(o.width):0);break;case\"e\":i=o.precision?parseFloat(i).toExponential(o.precision):parseFloat(i).toExponential();break;case\"f\":i=o.precision?parseFloat(i).toFixed(o.precision):parseFloat(i);break;case\"g\":i=o.precision?String(Number(i.toPrecision(o.precision))):parseFloat(i);break;case\"o\":i=(parseInt(i,10)>>>0).toString(8);break;case\"s\":i=String(i),i=o.precision?i.substring(0,o.precision):i;break;case\"t\":i=String(!!i),i=o.precision?i.substring(0,o.precision):i;break;case\"T\":i=Object.prototype.toString.call(i).slice(8,-1).toLowerCase(),i=o.precision?i.substring(0,o.precision):i;break;case\"u\":i=parseInt(i,10)>>>0;break;case\"v\":i=i.valueOf(),i=o.precision?i.substring(0,o.precision):i;break;case\"x\":i=(parseInt(i,10)>>>0).toString(16);break;case\"X\":i=(parseInt(i,10)>>>0).toString(16).toUpperCase()}e.json.test(o.type)?y+=i:(!e.number.test(o.type)||u&&!o.sign?f=\"\":(f=u?\"+\":\"-\",i=i.toString().replace(e.sign,\"\")),c=o.pad_char?\"0\"===o.pad_char?\"0\":o.pad_char.charAt(1):\" \",l=o.width-(f+i).length,p=o.width&&l>0?c.repeat(l):\"\",y+=o.align?f+i+p:\"0\"===c?f+p+i:p+f+i)}return y}var s=Object.create(null);function a(n){if(s[n])return s[n];for(var t,r=n,i=[],a=0;r;){if(null!==(t=e.text.exec(r)))i.push(t[0]);else if(null!==(t=e.modulo.exec(r)))i.push(\"%\");else{if(null===(t=e.placeholder.exec(r)))throw new SyntaxError(\"[sprintf] unexpected placeholder\");if(t[2]){a|=1;var o=[],p=t[2],c=[];if(null===(c=e.key.exec(p)))throw new SyntaxError(\"[sprintf] failed to parse named argument key\");for(o.push(c[1]);\"\"!==(p=p.substring(c[0].length));)if(null!==(c=e.key_access.exec(p)))o.push(c[1]);else{if(null===(c=e.index_access.exec(p)))throw new SyntaxError(\"[sprintf] failed to parse named argument key\");o.push(c[1])}t[2]=o}else a|=2;if(3===a)throw new Error(\"[sprintf] mixing positional and named placeholders is not (yet) supported\");i.push({placeholder:t[0],param_no:t[1],keys:t[2],sign:t[3],pad_char:t[4],align:t[5],width:t[6],precision:t[7],type:t[8]})}r=r.substring(t[0].length)}return s[n]=i}void 0!==t&&(t.sprintf=n,t.vsprintf=r),\"undefined\"!=typeof window&&(window.sprintf=n,window.vsprintf=r,\"function\"==typeof define&&define.amd&&define((function(){return{sprintf:n,vsprintf:r}})))}()},\n", + " function _(e,i,n,t,a){t();const s=e(9),r=e(178),c=e(186),m=e(187),_=e(190),k=e(191),o=e(189);class T extends c.CompositeTicker{constructor(e){super(e)}static init_DatetimeTicker(){this.override({num_minor_ticks:0,tickers:()=>[new r.AdaptiveTicker({mantissas:[1,2,5],base:10,min_interval:0,max_interval:500*o.ONE_MILLI,num_minor_ticks:0}),new r.AdaptiveTicker({mantissas:[1,2,5,10,15,20,30],base:60,min_interval:o.ONE_SECOND,max_interval:30*o.ONE_MINUTE,num_minor_ticks:0}),new r.AdaptiveTicker({mantissas:[1,2,4,6,8,12],base:24,min_interval:o.ONE_HOUR,max_interval:12*o.ONE_HOUR,num_minor_ticks:0}),new m.DaysTicker({days:s.range(1,32)}),new m.DaysTicker({days:s.range(1,31,3)}),new m.DaysTicker({days:[1,8,15,22]}),new m.DaysTicker({days:[1,15]}),new _.MonthsTicker({months:s.range(0,12,1)}),new _.MonthsTicker({months:s.range(0,12,2)}),new _.MonthsTicker({months:s.range(0,12,4)}),new _.MonthsTicker({months:s.range(0,12,6)}),new k.YearsTicker({})]})}}n.DatetimeTicker=T,T.__name__=\"DatetimeTicker\",T.init_DatetimeTicker()},\n", + " function _(t,e,i,s,r){s();const n=t(179),_=t(9);class a extends n.ContinuousTicker{constructor(t){super(t)}static init_CompositeTicker(){this.define((({Array:t,Ref:e})=>({tickers:[t(e(n.ContinuousTicker)),[]]})))}get min_intervals(){return this.tickers.map((t=>t.get_min_interval()))}get max_intervals(){return this.tickers.map((t=>t.get_max_interval()))}get_min_interval(){return this.min_intervals[0]}get_max_interval(){return this.max_intervals[0]}get_best_ticker(t,e,i){const s=e-t,r=this.get_ideal_interval(t,e,i),n=[_.sorted_index(this.min_intervals,r)-1,_.sorted_index(this.max_intervals,r)],a=[this.min_intervals[n[0]],this.max_intervals[n[1]]].map((t=>Math.abs(i-s/t)));let c;if(_.is_empty(a.filter((t=>!isNaN(t)))))c=this.tickers[0];else{const t=n[_.argmin(a)];c=this.tickers[t]}return c}get_interval(t,e,i){return this.get_best_ticker(t,e,i).get_interval(t,e,i)}get_ticks_no_defaults(t,e,i,s){return this.get_best_ticker(t,e,s).get_ticks_no_defaults(t,e,i,s)}}i.CompositeTicker=a,a.__name__=\"CompositeTicker\",a.init_CompositeTicker()},\n", + " function _(t,e,n,i,s){i();const a=t(188),o=t(189),r=t(9);class c extends a.SingleIntervalTicker{constructor(t){super(t)}static init_DaysTicker(){this.define((({Int:t,Array:e})=>({days:[e(t),[]]}))),this.override({num_minor_ticks:0})}initialize(){super.initialize();const t=this.days;t.length>1?this.interval=(t[1]-t[0])*o.ONE_DAY:this.interval=31*o.ONE_DAY}get_ticks_no_defaults(t,e,n,i){const s=function(t,e){const n=o.last_month_no_later_than(new Date(t)),i=o.last_month_no_later_than(new Date(e));i.setUTCMonth(i.getUTCMonth()+1);const s=[],a=n;for(;s.push(o.copy_date(a)),a.setUTCMonth(a.getUTCMonth()+1),!(a>i););return s}(t,e),a=this.days,c=this.interval;return{major:r.concat(s.map((t=>((t,e)=>{const n=t.getUTCMonth(),i=[];for(const s of a){const a=o.copy_date(t);a.setUTCDate(s),new Date(a.getTime()+e/2).getUTCMonth()==n&&i.push(a)}return i})(t,c)))).map((t=>t.getTime())).filter((n=>t<=n&&n<=e)),minor:[]}}}n.DaysTicker=c,c.__name__=\"DaysTicker\",c.init_DaysTicker()},\n", + " function _(e,t,n,i,r){i();const l=e(179);class a extends l.ContinuousTicker{constructor(e){super(e)}static init_SingleIntervalTicker(){this.define((({Number:e})=>({interval:[e]})))}get_interval(e,t,n){return this.interval}get_min_interval(){return this.interval}get_max_interval(){return this.interval}}n.SingleIntervalTicker=a,a.__name__=\"SingleIntervalTicker\",a.init_SingleIntervalTicker()},\n", + " function _(t,n,e,_,E){function N(t){return new Date(t.getTime())}function O(t){const n=N(t);return n.setUTCDate(1),n.setUTCHours(0),n.setUTCMinutes(0),n.setUTCSeconds(0),n.setUTCMilliseconds(0),n}_(),e.ONE_MILLI=1,e.ONE_SECOND=1e3,e.ONE_MINUTE=60*e.ONE_SECOND,e.ONE_HOUR=60*e.ONE_MINUTE,e.ONE_DAY=24*e.ONE_HOUR,e.ONE_MONTH=30*e.ONE_DAY,e.ONE_YEAR=365*e.ONE_DAY,e.copy_date=N,e.last_month_no_later_than=O,e.last_year_no_later_than=function(t){const n=O(t);return n.setUTCMonth(0),n}},\n", + " function _(t,e,n,i,s){i();const r=t(188),a=t(189),o=t(9);class c extends r.SingleIntervalTicker{constructor(t){super(t)}static init_MonthsTicker(){this.define((({Int:t,Array:e})=>({months:[e(t),[]]})))}initialize(){super.initialize();const t=this.months;t.length>1?this.interval=(t[1]-t[0])*a.ONE_MONTH:this.interval=12*a.ONE_MONTH}get_ticks_no_defaults(t,e,n,i){const s=function(t,e){const n=a.last_year_no_later_than(new Date(t)),i=a.last_year_no_later_than(new Date(e));i.setUTCFullYear(i.getUTCFullYear()+1);const s=[],r=n;for(;s.push(a.copy_date(r)),r.setUTCFullYear(r.getUTCFullYear()+1),!(r>i););return s}(t,e),r=this.months;return{major:o.concat(s.map((t=>r.map((e=>{const n=a.copy_date(t);return n.setUTCMonth(e),n}))))).map((t=>t.getTime())).filter((n=>t<=n&&n<=e)),minor:[]}}}n.MonthsTicker=c,c.__name__=\"MonthsTicker\",c.init_MonthsTicker()},\n", + " function _(e,t,a,i,r){i();const n=e(177),_=e(188),s=e(189);class c extends _.SingleIntervalTicker{constructor(e){super(e)}initialize(){super.initialize(),this.interval=s.ONE_YEAR,this.basic_ticker=new n.BasicTicker({num_minor_ticks:0})}get_ticks_no_defaults(e,t,a,i){const r=s.last_year_no_later_than(new Date(e)).getUTCFullYear(),n=s.last_year_no_later_than(new Date(t)).getUTCFullYear();return{major:this.basic_ticker.get_ticks_no_defaults(r,n,a,i).major.map((e=>Date.UTC(e,0,1))).filter((a=>e<=a&&a<=t)),minor:[]}}}a.YearsTicker=c,c.__name__=\"YearsTicker\"},\n", + " function _(i,s,t,e,o){e();const n=i(173),r=i(193),_=i(194);class c extends n.ContinuousAxisView{}t.LogAxisView=c,c.__name__=\"LogAxisView\";class x extends n.ContinuousAxis{constructor(i){super(i)}static init_LogAxis(){this.prototype.default_view=c,this.override({ticker:()=>new _.LogTicker,formatter:()=>new r.LogTickFormatter})}}t.LogAxis=x,x.__name__=\"LogAxis\",x.init_LogAxis()},\n", + " function _(t,e,r,i,n){i();const o=t(166),a=t(176),s=t(194),c=t(167),{log:l,round:u}=Math;class _ extends o.TickFormatter{constructor(t){super(t)}static init_LogTickFormatter(){this.define((({Ref:t,Nullable:e})=>({ticker:[e(t(s.LogTicker)),null]})))}initialize(){super.initialize(),this.basic_formatter=new a.BasicTickFormatter}format_graphics(t,e){var r,i;if(0==t.length)return[];const n=null!==(i=null===(r=this.ticker)||void 0===r?void 0:r.base)&&void 0!==i?i:10,o=this._exponents(t,n);return null==o?this.basic_formatter.format_graphics(t,e):o.map((t=>{const e=new c.TextBox({text:a.unicode_replace(`${n}`)}),r=new c.TextBox({text:a.unicode_replace(`${t}`)});return new c.BaseExpo(e,r)}))}_exponents(t,e){let r=null;const i=[];for(const n of t){const t=u(l(n)/l(e));if(r==t)return null;r=t,i.push(t)}return i}doFormat(t,e){var r,i;if(0==t.length)return[];const n=null!==(i=null===(r=this.ticker)||void 0===r?void 0:r.base)&&void 0!==i?i:10,o=this._exponents(t,n);return null==o?this.basic_formatter.doFormat(t,e):o.map((t=>a.unicode_replace(`${n}^${t}`)))}}r.LogTickFormatter=_,_.__name__=\"LogTickFormatter\",_.init_LogTickFormatter()},\n", + " function _(t,o,e,i,s){i();const n=t(178),r=t(9);class c extends n.AdaptiveTicker{constructor(t){super(t)}static init_LogTicker(){this.override({mantissas:[1,5]})}get_ticks_no_defaults(t,o,e,i){const s=this.num_minor_ticks,n=[],c=this.base,a=Math.log(t)/Math.log(c),f=Math.log(o)/Math.log(c),l=f-a;let h;if(isFinite(l))if(l<2){const e=this.get_interval(t,o,i),c=Math.floor(t/e),a=Math.ceil(o/e);if(h=r.range(c,a+1).filter((t=>0!=t)).map((t=>t*e)).filter((e=>t<=e&&e<=o)),s>0&&h.length>0){const t=e/s,o=r.range(0,s).map((o=>o*t));for(const t of o.slice(1))n.push(h[0]-t);for(const t of h)for(const e of o)n.push(t+e)}}else{const t=Math.ceil(.999999*a),o=Math.floor(1.000001*f),e=Math.ceil((o-t)/9);if(h=r.range(t-1,o+1,e).map((t=>c**t)),s>0&&h.length>0){const t=c**e/s,o=r.range(1,s+1).map((o=>o*t));for(const t of o)n.push(h[0]/t);n.push(h[0]);for(const t of h)for(const e of o)n.push(t*e)}}else h=[];return{major:h.filter((e=>t<=e&&e<=o)),minor:n.filter((e=>t<=e&&e<=o))}}}e.LogTicker=c,c.__name__=\"LogTicker\",c.init_LogTicker()},\n", + " function _(e,t,i,r,s){r();const a=e(163),o=e(175),c=e(196),n=e(197);class _ extends a.AxisView{}i.MercatorAxisView=_,_.__name__=\"MercatorAxisView\";class x extends o.LinearAxis{constructor(e){super(e)}static init_MercatorAxis(){this.prototype.default_view=_,this.override({ticker:()=>new n.MercatorTicker({dimension:\"lat\"}),formatter:()=>new c.MercatorTickFormatter({dimension:\"lat\"})})}}i.MercatorAxis=x,x.__name__=\"MercatorAxis\",x.init_MercatorAxis()},\n", + " function _(r,t,e,o,n){o();const i=r(176),c=r(20),a=r(65);class s extends i.BasicTickFormatter{constructor(r){super(r)}static init_MercatorTickFormatter(){this.define((({Nullable:r})=>({dimension:[r(c.LatLon),null]})))}doFormat(r,t){if(null==this.dimension)throw new Error(\"MercatorTickFormatter.dimension not configured\");if(0==r.length)return[];const e=r.length,o=new Array(e);if(\"lon\"==this.dimension)for(let n=0;n({dimension:[t(e.LatLon),null]})))}get_ticks_no_defaults(t,o,n,r){if(null==this.dimension)throw new Error(`${this}.dimension wasn't configured`);return[t,o]=c.clip_mercator(t,o,this.dimension),\"lon\"==this.dimension?this._get_ticks_lon(t,o,n,r):this._get_ticks_lat(t,o,n,r)}_get_ticks_lon(t,o,n,r){const[s]=c.wgs84_mercator.invert(t,n),[i,e]=c.wgs84_mercator.invert(o,n),_=super.get_ticks_no_defaults(s,i,n,r),a=[];for(const t of _.major)if(c.in_bounds(t,\"lon\")){const[o]=c.wgs84_mercator.compute(t,e);a.push(o)}const m=[];for(const t of _.minor)if(c.in_bounds(t,\"lon\")){const[o]=c.wgs84_mercator.compute(t,e);m.push(o)}return{major:a,minor:m}}_get_ticks_lat(t,o,n,r){const[,s]=c.wgs84_mercator.invert(n,t),[i,e]=c.wgs84_mercator.invert(n,o),_=super.get_ticks_no_defaults(s,e,n,r),a=[];for(const t of _.major)if(c.in_bounds(t,\"lat\")){const[,o]=c.wgs84_mercator.compute(i,t);a.push(o)}const m=[];for(const t of _.minor)if(c.in_bounds(t,\"lat\")){const[,o]=c.wgs84_mercator.compute(i,t);m.push(o)}return{major:a,minor:m}}}n.MercatorTicker=_,_.__name__=\"MercatorTicker\",_.init_MercatorTicker()},\n", + " function _(e,i,r,c,k){c(),k(\"AdaptiveTicker\",e(178).AdaptiveTicker),k(\"BasicTicker\",e(177).BasicTicker),k(\"CategoricalTicker\",e(171).CategoricalTicker),k(\"CompositeTicker\",e(186).CompositeTicker),k(\"ContinuousTicker\",e(179).ContinuousTicker),k(\"DatetimeTicker\",e(185).DatetimeTicker),k(\"DaysTicker\",e(187).DaysTicker),k(\"FixedTicker\",e(199).FixedTicker),k(\"LogTicker\",e(194).LogTicker),k(\"MercatorTicker\",e(197).MercatorTicker),k(\"MonthsTicker\",e(190).MonthsTicker),k(\"SingleIntervalTicker\",e(188).SingleIntervalTicker),k(\"Ticker\",e(165).Ticker),k(\"YearsTicker\",e(191).YearsTicker),k(\"BinnedTicker\",e(200).BinnedTicker)},\n", + " function _(i,t,e,r,n){r();const s=i(179);class _ extends s.ContinuousTicker{constructor(i){super(i)}static init_FixedTicker(){this.define((({Number:i,Array:t})=>({ticks:[t(i),[]],minor_ticks:[t(i),[]]})))}get_ticks_no_defaults(i,t,e,r){return{major:this.ticks,minor:this.minor_ticks}}get_interval(i,t,e){return 0}get_min_interval(){return 0}get_max_interval(){return 0}}e.FixedTicker=_,_.__name__=\"FixedTicker\",_.init_FixedTicker()},\n", + " function _(e,n,t,i,r){i();const c=e(165),o=e(201),s=e(12);class a extends c.Ticker{constructor(e){super(e)}static init_BinnedTicker(){this.define((({Number:e,Ref:n,Or:t,Auto:i})=>({mapper:[n(o.ScanningColorMapper)],num_major_ticks:[t(e,i),8]})))}get_ticks(e,n,t,i){const{binning:r}=this.mapper.metrics,c=Math.max(0,s.left_edge_index(e,r)),o=Math.min(s.left_edge_index(n,r)+1,r.length-1),a=[];for(let e=c;e<=o;e++)a.push(r[e]);const{num_major_ticks:_}=this,m=[],h=\"auto\"==_?a.length:_,l=Math.max(1,Math.floor(a.length/h));for(let e=0;eo.binning[o.binning.length-1])return r;return e[a.left_edge_index(n,o.binning)]}}i.ScanningColorMapper=c,c.__name__=\"ScanningColorMapper\"},\n", + " function _(t,o,e,n,s){n();const l=t(203),i=t(61),c=t(9),a=t(8);class r extends l.ColorMapper{constructor(t){super(t),this._scan_data=null}static init_ContinuousColorMapper(){this.define((({Number:t,String:o,Ref:e,Color:n,Or:s,Tuple:l,Array:c,Nullable:a})=>({high:[a(t),null],low:[a(t),null],high_color:[a(n),null],low_color:[a(n),null],domain:[c(l(e(i.GlyphRenderer),s(o,c(o)))),[]]})))}connect_signals(){super.connect_signals();const t=()=>{for(const[t]of this.domain)this.connect(t.view.change,(()=>this.update_data())),this.connect(t.data_source.selected.change,(()=>this.update_data()))};this.connect(this.properties.domain.change,(()=>t())),t()}update_data(){const{domain:t,palette:o}=this,e=[...this._collect(t)];this._scan_data=this.scan(e,o.length),this.metrics_change.emit(),this.change.emit()}get metrics(){return null==this._scan_data&&this.update_data(),this._scan_data}*_collect(t){for(const[o,e]of t)for(const t of a.isArray(e)?e:[e]){let e=o.data_source.get_column(t);e=o.view.indices.select(e);const n=o.view.masked,s=o.data_source.selected.indices;let l;if(null!=n&&s.length>0?l=c.intersection([...n],s):null!=n?l=[...n]:s.length>0&&(l=s),null!=l&&(e=c.map(l,(t=>e[t]))),e.length>0&&!a.isNumber(e[0]))for(const t of e)yield*t;else yield*e}}_v_compute(t,o,e,n){const{nan_color:s}=n;let{low_color:l,high_color:i}=n;null==l&&(l=e[0]),null==i&&(i=e[e.length-1]);const{domain:a}=this,r=c.is_empty(a)?t:[...this._collect(a)];this._scan_data=this.scan(r,e.length),this.metrics_change.emit();for(let n=0,c=t.length;n({palette:[r(t)],nan_color:[t,\"gray\"]})))}v_compute(t){const r=new Array(t.length);return this._v_compute(t,r,this.palette,this._colors((t=>t))),r}get rgba_mapper(){const t=this,r=p(this.palette),e=this._colors(s);return{v_compute(n){const o=new c.ColorArray(n.length);return t._v_compute(n,o,r,e),new Uint8ClampedArray(l.to_big_endian(o).buffer)}}}_colors(t){return{nan_color:t(this.nan_color)}}}e.ColorMapper=u,u.__name__=\"ColorMapper\",u.init_ColorMapper()},\n", + " function _(r,e,n,s,o){s();const p=r(149);class t extends p.Transform{constructor(r){super(r)}compute(r){throw new Error(\"mapping single values is not supported\")}}n.Mapper=t,t.__name__=\"Mapper\"},\n", + " function _(t,r,a,e,c){e(),c(\"BasicTickFormatter\",t(176).BasicTickFormatter),c(\"CategoricalTickFormatter\",t(172).CategoricalTickFormatter),c(\"DatetimeTickFormatter\",t(180).DatetimeTickFormatter),c(\"FuncTickFormatter\",t(206).FuncTickFormatter),c(\"LogTickFormatter\",t(193).LogTickFormatter),c(\"MercatorTickFormatter\",t(196).MercatorTickFormatter),c(\"NumeralTickFormatter\",t(207).NumeralTickFormatter),c(\"PrintfTickFormatter\",t(208).PrintfTickFormatter),c(\"TickFormatter\",t(166).TickFormatter)},\n", + " function _(t,n,e,s,i){s();const r=t(166),c=t(13),a=t(34);class u extends r.TickFormatter{constructor(t){super(t)}static init_FuncTickFormatter(){this.define((({Unknown:t,String:n,Dict:e})=>({args:[e(t),{}],code:[n,\"\"]})))}get names(){return c.keys(this.args)}get values(){return c.values(this.args)}_make_func(){const t=a.use_strict(this.code);return new Function(\"tick\",\"index\",\"ticks\",...this.names,t)}doFormat(t,n){const e=this._make_func().bind({});return t.map(((t,n,s)=>`${e(t,n,s,...this.values)}`))}}e.FuncTickFormatter=u,u.__name__=\"FuncTickFormatter\",u.init_FuncTickFormatter()},\n", + " function _(r,t,n,e,a){e();const o=r(1).__importStar(r(183)),i=r(166),u=r(20);class c extends i.TickFormatter{constructor(r){super(r)}static init_NumeralTickFormatter(){this.define((({String:r})=>({format:[r,\"0,0\"],language:[r,\"en\"],rounding:[u.RoundingFunction,\"round\"]})))}get _rounding_fn(){switch(this.rounding){case\"round\":case\"nearest\":return Math.round;case\"floor\":case\"rounddown\":return Math.floor;case\"ceil\":case\"roundup\":return Math.ceil}}doFormat(r,t){const{format:n,language:e,_rounding_fn:a}=this;return r.map((r=>o.format(r,n,e,a)))}}n.NumeralTickFormatter=c,c.__name__=\"NumeralTickFormatter\",c.init_NumeralTickFormatter()},\n", + " function _(t,r,i,n,o){n();const a=t(166),e=t(182);class c extends a.TickFormatter{constructor(t){super(t)}static init_PrintfTickFormatter(){this.define((({String:t})=>({format:[t,\"%s\"]})))}doFormat(t,r){return t.map((t=>e.sprintf(this.format,t)))}}i.PrintfTickFormatter=c,c.__name__=\"PrintfTickFormatter\",c.init_PrintfTickFormatter()},\n", + " function _(r,o,a,p,e){p(),e(\"CategoricalColorMapper\",r(210).CategoricalColorMapper),e(\"CategoricalMarkerMapper\",r(212).CategoricalMarkerMapper),e(\"CategoricalPatternMapper\",r(213).CategoricalPatternMapper),e(\"ContinuousColorMapper\",r(202).ContinuousColorMapper),e(\"ColorMapper\",r(203).ColorMapper),e(\"LinearColorMapper\",r(214).LinearColorMapper),e(\"LogColorMapper\",r(215).LogColorMapper),e(\"ScanningColorMapper\",r(201).ScanningColorMapper),e(\"EqHistColorMapper\",r(216).EqHistColorMapper)},\n", + " function _(t,o,a,r,e){r();const c=t(211),l=t(203),i=t(104);class s extends l.ColorMapper{constructor(t){super(t)}static init_CategoricalColorMapper(){this.define((({Number:t,Nullable:o})=>({factors:[i.FactorSeq],start:[t,0],end:[o(t),null]})))}_v_compute(t,o,a,{nan_color:r}){c.cat_v_compute(t,this.factors,a,o,this.start,this.end,r)}}a.CategoricalColorMapper=s,s.__name__=\"CategoricalColorMapper\",s.init_CategoricalColorMapper()},\n", + " function _(n,t,e,l,i){l();const c=n(12),u=n(8);function f(n,t){if(n.length!=t.length)return!1;for(let e=0,l=n.length;ef(n,h)))),s=_<0||_>=e.length?r:e[_],l[g]=s}}},\n", + " function _(r,e,a,t,s){t();const c=r(211),i=r(104),l=r(204),n=r(20);class p extends l.Mapper{constructor(r){super(r)}static init_CategoricalMarkerMapper(){this.define((({Number:r,Array:e,Nullable:a})=>({factors:[i.FactorSeq],markers:[e(n.MarkerType)],start:[r,0],end:[a(r),null],default_value:[n.MarkerType,\"circle\"]})))}v_compute(r){const e=new Array(r.length);return c.cat_v_compute(r,this.factors,this.markers,e,this.start,this.end,this.default_value),e}}a.CategoricalMarkerMapper=p,p.__name__=\"CategoricalMarkerMapper\",p.init_CategoricalMarkerMapper()},\n", + " function _(t,a,e,r,n){r();const s=t(211),c=t(104),i=t(204),p=t(20);class l extends i.Mapper{constructor(t){super(t)}static init_CategoricalPatternMapper(){this.define((({Number:t,Array:a,Nullable:e})=>({factors:[c.FactorSeq],patterns:[a(p.HatchPatternType)],start:[t,0],end:[e(t),null],default_value:[p.HatchPatternType,\" \"]})))}v_compute(t){const a=new Array(t.length);return s.cat_v_compute(t,this.factors,this.patterns,a,this.start,this.end,this.default_value),a}}e.CategoricalPatternMapper=l,l.__name__=\"CategoricalPatternMapper\",l.init_CategoricalPatternMapper()},\n", + " function _(n,r,o,t,a){t();const e=n(202),i=n(12);class s extends e.ContinuousColorMapper{constructor(n){super(n)}scan(n,r){const o=null!=this.low?this.low:i.min(n),t=null!=this.high?this.high:i.max(n);return{max:t,min:o,norm_factor:1/(t-o),normed_interval:1/r}}cmap(n,r,o,t,a){const e=r.length-1;if(n==a.max)return r[e];const i=(n-a.min)*a.norm_factor,s=Math.floor(i/a.normed_interval);return s<0?o:s>e?t:r[s]}}o.LinearColorMapper=s,s.__name__=\"LinearColorMapper\"},\n", + " function _(o,t,n,r,l){r();const a=o(202),s=o(12);class e extends a.ContinuousColorMapper{constructor(o){super(o)}scan(o,t){const n=null!=this.low?this.low:s.min(o),r=null!=this.high?this.high:s.max(o);return{max:r,min:n,scale:t/(Math.log(r)-Math.log(n))}}cmap(o,t,n,r,l){const a=t.length-1;if(o>l.max)return r;if(o==l.max)return t[a];if(oa&&(e=a),t[e]}}n.LogColorMapper=e,e.__name__=\"LogColorMapper\"},\n", + " function _(n,t,i,e,o){e();const s=n(201),r=n(12),a=n(9),l=n(19);class c extends s.ScanningColorMapper{constructor(n){super(n)}static init_EqHistColorMapper(){this.define((({Int:n})=>({bins:[n,65536]})))}scan(n,t){const i=null!=this.low?this.low:r.min(n),e=null!=this.high?this.high:r.max(n),o=this.bins,s=a.linspace(i,e,o+1),c=r.bin_counts(n,s),h=new Array(o);for(let n=0,t=s.length;nn/g));let m=t-1,M=[],_=0,f=2*t;for(;m!=t&&_<4&&0!=m;){const n=f/m;if(n>1e3)break;f=Math.round(Math.max(t*n,t));const i=a.range(0,f),e=r.map(u,(n=>n*(f-1)));M=r.interpolate(i,e,h);m=a.uniq(M).length-1,_++}if(0==m){M=[i,e];for(let n=0;ne*n+t}compute(e){return this._linear_compute(e)}v_compute(e){return this._linear_v_compute(e)}invert(e){return this._linear_invert(e)}v_invert(e){return this._linear_v_invert(e)}}n.LinearScale=u,u.__name__=\"LinearScale\"},\n", + " function _(n,e,t,r,i){r();const a=n(146),o=n(12);class c extends a.Scale{constructor(n){super(n)}static init_LinearInterpolationScale(){this.internal((({Arrayable:n})=>({binning:[n]})))}get s_compute(){throw new Error(\"not implemented\")}compute(n){return n}v_compute(n){const{binning:e}=this,{start:t,end:r}=this.source_range,i=t,a=r,c=e.length,l=(r-t)/(c-1),s=new Float64Array(c);for(let n=0;n{if(na)return a;const t=o.left_edge_index(n,e),r=e[t],c=(n-r)/(e[t+1]-r),l=s[t];return l+c*(s[t+1]-l)}));return this._linear_v_compute(_)}invert(n){return n}v_invert(n){return new Float64Array(n)}}t.LinearInterpolationScale=c,c.__name__=\"LinearInterpolationScale\",c.init_LinearInterpolationScale()},\n", + " function _(a,n,e,g,R){g(),R(\"DataRange\",a(160).DataRange),R(\"DataRange1d\",a(159).DataRange1d),R(\"FactorRange\",a(104).FactorRange),R(\"Range\",a(105).Range),R(\"Range1d\",a(156).Range1d)},\n", + " function _(a,o,i,t,e){t();var n=a(141);e(\"Sizeable\",n.Sizeable),e(\"SizingPolicy\",n.SizingPolicy);var c=a(142);e(\"Layoutable\",c.Layoutable),e(\"LayoutItem\",c.LayoutItem);var r=a(222);e(\"HStack\",r.HStack),e(\"VStack\",r.VStack);var l=a(223);e(\"Grid\",l.Grid),e(\"Row\",l.Row),e(\"Column\",l.Column);var S=a(224);e(\"ContentBox\",S.ContentBox),e(\"VariadicBox\",S.VariadicBox)},\n", + " function _(t,e,h,i,r){i();const n=t(142),o=t(99);class s extends n.Layoutable{constructor(){super(...arguments),this.children=[]}*[Symbol.iterator](){yield*this.children}}h.Stack=s,s.__name__=\"Stack\";class c extends s{_measure(t){let e=0,h=0;for(const t of this.children){const i=t.measure({width:0,height:0});e+=i.width,h=Math.max(h,i.height)}return{width:e,height:h}}_set_geometry(t,e){super._set_geometry(t,e);const h=this.absolute?t.top:0;let i=this.absolute?t.left:0;const{height:r}=t;for(const t of this.children){const{width:e}=t.measure({width:0,height:0});t.set_geometry(new o.BBox({left:i,width:e,top:h,height:r})),i+=e}}}h.HStack=c,c.__name__=\"HStack\";class a extends s{_measure(t){let e=0,h=0;for(const t of this.children){const i=t.measure({width:0,height:0});e=Math.max(e,i.width),h+=i.height}return{width:e,height:h}}_set_geometry(t,e){super._set_geometry(t,e);const h=this.absolute?t.left:0;let i=this.absolute?t.top:0;const{width:r}=t;for(const t of this.children){const{height:e}=t.measure({width:0,height:0});t.set_geometry(new o.BBox({top:i,height:e,left:h,width:r})),i+=e}}}h.VStack=a,a.__name__=\"VStack\";class l extends n.Layoutable{constructor(){super(...arguments),this.children=[]}*[Symbol.iterator](){yield*this.children}_measure(t){const{width_policy:e,height_policy:h}=this.sizing,{min:i,max:r}=Math;let n=0,o=0;for(const e of this.children){const{width:h,height:i}=e.measure(t);n=r(n,h),o=r(o,i)}return{width:(()=>{const{width:h}=this.sizing;if(t.width==1/0)return\"fixed\"==e&&null!=h?h:n;switch(e){case\"fixed\":return null!=h?h:n;case\"min\":return n;case\"fit\":return null!=h?i(t.width,h):t.width;case\"max\":return null!=h?r(t.width,h):t.width}})(),height:(()=>{const{height:e}=this.sizing;if(t.height==1/0)return\"fixed\"==h&&null!=e?e:o;switch(h){case\"fixed\":return null!=e?e:o;case\"min\":return o;case\"fit\":return null!=e?i(t.height,e):t.height;case\"max\":return null!=e?r(t.height,e):t.height}})()}}_set_geometry(t,e){super._set_geometry(t,e);const h=this.absolute?t:t.relative(),{left:i,right:r,top:n,bottom:s}=h,c=Math.round(h.vcenter),a=Math.round(h.hcenter);for(const e of this.children){const{margin:h,halign:l,valign:d}=e.sizing,{width:u,height:g,inner:_}=e.measure(t),w=(()=>{switch(`${d}_${l}`){case\"start_start\":return new o.BBox({left:i+h.left,top:n+h.top,width:u,height:g});case\"start_center\":return new o.BBox({hcenter:a,top:n+h.top,width:u,height:g});case\"start_end\":return new o.BBox({right:r-h.right,top:n+h.top,width:u,height:g});case\"center_start\":return new o.BBox({left:i+h.left,vcenter:c,width:u,height:g});case\"center_center\":return new o.BBox({hcenter:a,vcenter:c,width:u,height:g});case\"center_end\":return new o.BBox({right:r-h.right,vcenter:c,width:u,height:g});case\"end_start\":return new o.BBox({left:i+h.left,bottom:s-h.bottom,width:u,height:g});case\"end_center\":return new o.BBox({hcenter:a,bottom:s-h.bottom,width:u,height:g});case\"end_end\":return new o.BBox({right:r-h.right,bottom:s-h.bottom,width:u,height:g})}})(),m=null==_?w:new o.BBox({left:w.left+_.left,top:w.top+_.top,right:w.right-_.right,bottom:w.bottom-_.bottom});e.set_geometry(w,m)}}}h.NodeLayout=l,l.__name__=\"NodeLayout\"},\n", + " function _(t,i,s,e,o){e();const n=t(141),l=t(142),r=t(8),h=t(99),c=t(9),{max:a,round:g}=Math;class p{constructor(t){this.def=t,this._map=new Map}get(t){let i=this._map.get(t);return void 0===i&&(i=this.def(),this._map.set(t,i)),i}apply(t,i){const s=this.get(t);this._map.set(t,i(s))}}p.__name__=\"DefaultMap\";class f{constructor(){this._items=[],this._nrows=0,this._ncols=0}get nrows(){return this._nrows}get ncols(){return this._ncols}add(t,i){const{r1:s,c1:e}=t;this._nrows=a(this._nrows,s+1),this._ncols=a(this._ncols,e+1),this._items.push({span:t,data:i})}at(t,i){return this._items.filter((({span:s})=>s.r0<=t&&t<=s.r1&&s.c0<=i&&i<=s.c1)).map((({data:t})=>t))}row(t){return this._items.filter((({span:i})=>i.r0<=t&&t<=i.r1)).map((({data:t})=>t))}col(t){return this._items.filter((({span:i})=>i.c0<=t&&t<=i.c1)).map((({data:t})=>t))}foreach(t){for(const{span:i,data:s}of this._items)t(i,s)}map(t){const i=new f;for(const{span:s,data:e}of this._items)i.add(s,t(s,e));return i}}f.__name__=\"Container\";class _ extends l.Layoutable{constructor(t=[]){super(),this.items=t,this.rows=\"auto\",this.cols=\"auto\",this.spacing=0}*[Symbol.iterator](){for(const{layout:t}of this.items)yield t}is_width_expanding(){if(super.is_width_expanding())return!0;if(\"fixed\"==this.sizing.width_policy)return!1;const{cols:t}=this._state;return c.some(t,(t=>\"max\"==t.policy))}is_height_expanding(){if(super.is_height_expanding())return!0;if(\"fixed\"==this.sizing.height_policy)return!1;const{rows:t}=this._state;return c.some(t,(t=>\"max\"==t.policy))}_init(){var t,i,s,e;super._init();const o=new f;for(const{layout:t,row:i,col:s,row_span:e,col_span:n}of this.items)if(t.sizing.visible){const l=i,r=s,h=i+(null!=e?e:1)-1,c=s+(null!=n?n:1)-1;o.add({r0:l,c0:r,r1:h,c1:c},t)}const{nrows:n,ncols:l}=o,h=new Array(n);for(let s=0;s{var t;const i=r.isPlainObject(this.rows)?null!==(t=this.rows[s])&&void 0!==t?t:this.rows[\"*\"]:this.rows;return null==i?{policy:\"auto\"}:r.isNumber(i)?{policy:\"fixed\",height:i}:r.isString(i)?{policy:i}:i})(),n=null!==(t=e.align)&&void 0!==t?t:\"auto\";if(\"fixed\"==e.policy)h[s]={policy:\"fixed\",height:e.height,align:n};else if(\"min\"==e.policy)h[s]={policy:\"min\",align:n};else if(\"fit\"==e.policy||\"max\"==e.policy)h[s]={policy:e.policy,flex:null!==(i=e.flex)&&void 0!==i?i:1,align:n};else{if(\"auto\"!=e.policy)throw new Error(\"unrechable\");c.some(o.row(s),(t=>t.is_height_expanding()))?h[s]={policy:\"max\",flex:1,align:n}:h[s]={policy:\"min\",align:n}}}const a=new Array(l);for(let t=0;t{var i;const s=r.isPlainObject(this.cols)?null!==(i=this.cols[t])&&void 0!==i?i:this.cols[\"*\"]:this.cols;return null==s?{policy:\"auto\"}:r.isNumber(s)?{policy:\"fixed\",width:s}:r.isString(s)?{policy:s}:s})(),n=null!==(s=i.align)&&void 0!==s?s:\"auto\";if(\"fixed\"==i.policy)a[t]={policy:\"fixed\",width:i.width,align:n};else if(\"min\"==i.policy)a[t]={policy:\"min\",align:n};else if(\"fit\"==i.policy||\"max\"==i.policy)a[t]={policy:i.policy,flex:null!==(e=i.flex)&&void 0!==e?e:1,align:n};else{if(\"auto\"!=i.policy)throw new Error(\"unrechable\");c.some(o.col(t),(t=>t.is_width_expanding()))?a[t]={policy:\"max\",flex:1,align:n}:a[t]={policy:\"min\",align:n}}}const[g,p]=r.isNumber(this.spacing)?[this.spacing,this.spacing]:this.spacing;this._state={items:o,nrows:n,ncols:l,rows:h,cols:a,rspacing:g,cspacing:p}}_measure_totals(t,i){const{nrows:s,ncols:e,rspacing:o,cspacing:n}=this._state;return{height:c.sum(t)+(s-1)*o,width:c.sum(i)+(e-1)*n}}_measure_cells(t){const{items:i,nrows:s,ncols:e,rows:o,cols:l,rspacing:r,cspacing:h}=this._state,c=new Array(s);for(let t=0;t{const{r0:e,c0:f,r1:d,c1:u}=i,w=(d-e)*r,m=(u-f)*h;let y=0;for(let i=e;i<=d;i++)y+=t(i,f).height;y+=w;let x=0;for(let i=f;i<=u;i++)x+=t(e,i).width;x+=m;const b=s.measure({width:x,height:y});_.add(i,{layout:s,size_hint:b});const z=new n.Sizeable(b).grow_by(s.sizing.margin);z.height-=w,z.width-=m;const v=[];for(let t=e;t<=d;t++){const i=o[t];\"fixed\"==i.policy?z.height-=i.height:v.push(t)}if(z.height>0){const t=g(z.height/v.length);for(const i of v)c[i]=a(c[i],t)}const j=[];for(let t=f;t<=u;t++){const i=l[t];\"fixed\"==i.policy?z.width-=i.width:j.push(t)}if(z.width>0){const t=g(z.width/j.length);for(const i of j)p[i]=a(p[i],t)}}));return{size:this._measure_totals(c,p),row_heights:c,col_widths:p,size_hints:_}}_measure_grid(t){const{nrows:i,ncols:s,rows:e,cols:o,rspacing:n,cspacing:l}=this._state,r=s=>{let o;o=\"fixed\"==this.sizing.height_policy&&null!=this.sizing.height?this.sizing.height:t.height!=1/0&&this.is_height_expanding()?Math.max(t.height,s.size.height):s.size.height;let l=0;for(let t=0;t0)for(let t=0;ti?i:e,t--}}}},h=i=>{let e;e=\"fixed\"==this.sizing.width_policy&&null!=this.sizing.width?this.sizing.width:t.width!=1/0&&this.is_width_expanding()?t.width:i.size.width;let n=0;for(let t=0;t0)for(let t=0;ts?s:o,t--}}}},c=this._measure_cells(((t,i)=>{const s=e[t],n=o[i];return{width:\"fixed\"==n.policy?n.width:1/0,height:\"fixed\"==s.policy?s.height:1/0}}));r(c),h(c);const p=this._measure_cells(((t,i)=>({width:c.col_widths[i],height:c.row_heights[t]})));r(p),h(p);const{row_heights:f,col_widths:_}=p;return{size:this._measure_totals(f,_),row_heights:f,col_widths:_}}_measure(t){const{size:i}=this._measure_grid(t);return i}_set_geometry(t,i){super._set_geometry(t,i);const{nrows:s,ncols:e,rspacing:o,cspacing:n}=this._state,{row_heights:l,col_widths:r}=this._measure_grid(t),{size_hints:c}=this._measure_cells(((t,i)=>({width:r[i],height:l[t]}))),f=this._state.rows.map(((t,i)=>Object.assign(Object.assign({},t),{top:0,height:l[i],get bottom(){return this.top+this.height}}))),_=this._state.cols.map(((t,i)=>Object.assign(Object.assign({},t),{left:0,width:r[i],get right(){return this.left+this.width}}))),d=c.map(((t,i)=>Object.assign(Object.assign({},i),{outer:new h.BBox,inner:new h.BBox})));for(let i=0,e=this.absolute?t.top:0;i{const{layout:r,size_hint:c}=l,{sizing:a}=r,{width:p,height:d}=c,u=function(t,i){let s=(i-t)*n;for(let e=t;e<=i;e++)s+=_[e].width;return s}(i,e),w=function(t,i){let s=(i-t)*o;for(let e=t;e<=i;e++)s+=f[e].height;return s}(t,s),m=i==e&&\"auto\"!=_[i].align?_[i].align:a.halign,y=t==s&&\"auto\"!=f[t].align?f[t].align:a.valign;let x=_[i].left;\"start\"==m?x+=a.margin.left:\"center\"==m?x+=g((u-p)/2):\"end\"==m&&(x+=u-a.margin.right-p);let b=f[t].top;\"start\"==y?b+=a.margin.top:\"center\"==y?b+=g((w-d)/2):\"end\"==y&&(b+=w-a.margin.bottom-d),l.outer=new h.BBox({left:x,top:b,width:p,height:d})}));const u=f.map((()=>({start:new p((()=>0)),end:new p((()=>0))}))),w=_.map((()=>({start:new p((()=>0)),end:new p((()=>0))})));d.foreach((({r0:t,c0:i,r1:s,c1:e},{size_hint:o,outer:n})=>{const{inner:l}=o;null!=l&&(u[t].start.apply(n.top,(t=>a(t,l.top))),u[s].end.apply(f[s].bottom-n.bottom,(t=>a(t,l.bottom))),w[i].start.apply(n.left,(t=>a(t,l.left))),w[e].end.apply(_[e].right-n.right,(t=>a(t,l.right))))})),d.foreach((({r0:t,c0:i,r1:s,c1:e},o)=>{const{size_hint:n,outer:l}=o,r=t=>{const i=this.absolute?l:l.relative(),s=i.left+t.left,e=i.top+t.top,o=i.right-t.right,n=i.bottom-t.bottom;return new h.BBox({left:s,top:e,right:o,bottom:n})};if(null!=n.inner){let h=r(n.inner);if(!1!==n.align){const o=u[t].start.get(l.top),n=u[s].end.get(f[s].bottom-l.bottom),c=w[i].start.get(l.left),a=w[e].end.get(_[e].right-l.right);try{h=r({top:o,bottom:n,left:c,right:a})}catch(t){}}o.inner=h}else o.inner=l})),d.foreach(((t,{layout:i,outer:s,inner:e})=>{i.set_geometry(s,e)}))}}s.Grid=_,_.__name__=\"Grid\";class d extends _{constructor(t){super(),this.items=t.map(((t,i)=>({layout:t,row:0,col:i}))),this.rows=\"fit\"}}s.Row=d,d.__name__=\"Row\";class u extends _{constructor(t){super(),this.items=t.map(((t,i)=>({layout:t,row:i,col:0}))),this.cols=\"fit\"}}s.Column=u,u.__name__=\"Column\"},\n", + " function _(e,t,s,n,i){n();const a=e(142),c=e(141),o=e(43);class r extends a.ContentLayoutable{constructor(e){super(),this.content_size=o.unsized(e,(()=>new c.Sizeable(o.size(e))))}_content_size(){return this.content_size}}s.ContentBox=r,r.__name__=\"ContentBox\";class _ extends a.Layoutable{constructor(e){super(),this.el=e}_measure(e){const t=new c.Sizeable(e).bounded_to(this.sizing.size);return o.sized(this.el,t,(()=>{const e=new c.Sizeable(o.content_size(this.el)),{border:t,padding:s}=o.extents(this.el);return e.grow_by(t).grow_by(s).map(Math.ceil)}))}}s.VariadicBox=_,_.__name__=\"VariadicBox\";class h extends _{constructor(e){super(e),this._cache=new Map}_measure(e){const{width:t,height:s}=e,n=`${t},${s}`;let i=this._cache.get(n);return null==i&&(i=super._measure(e),this._cache.set(n,i)),i}invalidate_cache(){this._cache.clear()}}s.CachedVariadicBox=h,h.__name__=\"CachedVariadicBox\"},\n", + " function _(t,e,i,h,o){h();const s=t(141),r=t(142),n=t(99);class g extends r.Layoutable{constructor(){super(...arguments),this.min_border={left:0,top:0,right:0,bottom:0},this.padding={left:0,top:0,right:0,bottom:0}}*[Symbol.iterator](){yield this.top_panel,yield this.bottom_panel,yield this.left_panel,yield this.right_panel,yield this.center_panel}_measure(t){t=new s.Sizeable({width:\"fixed\"==this.sizing.width_policy||t.width==1/0?this.sizing.width:t.width,height:\"fixed\"==this.sizing.height_policy||t.height==1/0?this.sizing.height:t.height});const e=this.left_panel.measure({width:0,height:t.height}),i=Math.max(e.width,this.min_border.left)+this.padding.left,h=this.right_panel.measure({width:0,height:t.height}),o=Math.max(h.width,this.min_border.right)+this.padding.right,r=this.top_panel.measure({width:t.width,height:0}),n=Math.max(r.height,this.min_border.top)+this.padding.top,g=this.bottom_panel.measure({width:t.width,height:0}),a=Math.max(g.height,this.min_border.bottom)+this.padding.bottom,d=new s.Sizeable(t).shrink_by({left:i,right:o,top:n,bottom:a}),l=this.center_panel.measure(d);return{width:i+l.width+o,height:n+l.height+a,inner:{left:i,right:o,top:n,bottom:a},align:(()=>{const{width_policy:t,height_policy:e}=this.center_panel.sizing;return\"fixed\"!=t&&\"fixed\"!=e})()}}_set_geometry(t,e){super._set_geometry(t,e),this.center_panel.set_geometry(e);const i=this.left_panel.measure({width:0,height:t.height}),h=this.right_panel.measure({width:0,height:t.height}),o=this.top_panel.measure({width:t.width,height:0}),s=this.bottom_panel.measure({width:t.width,height:0}),{left:r,top:g,right:a,bottom:d}=e;this.top_panel.set_geometry(new n.BBox({left:r,right:a,bottom:g,height:o.height})),this.bottom_panel.set_geometry(new n.BBox({left:r,right:a,top:d,height:s.height})),this.left_panel.set_geometry(new n.BBox({top:g,bottom:d,right:r,width:i.width})),this.right_panel.set_geometry(new n.BBox({top:g,bottom:d,left:a,width:h.width}))}}i.BorderLayout=g,g.__name__=\"BorderLayout\"},\n", + " function _(t,e,i,s,n){s();const o=t(1),l=t(139),a=t(10),_=t(143),d=t(20),h=o.__importStar(t(48));class r extends l.TextAnnotationView{_get_size(){const{ctx:t}=this.layer;this.visuals.text.set_value(t);const{width:e}=t.measureText(this.model.text),{height:i}=_.font_metrics(t.font);return{width:e,height:i}}_render(){const{angle:t,angle_units:e}=this.model,i=a.resolve_angle(t,e),s=null!=this.layout?this.layout:this.plot_view.frame,n=this.coordinates.x_scale,o=this.coordinates.y_scale;let l=\"data\"==this.model.x_units?n.compute(this.model.x):s.bbox.xview.compute(this.model.x),_=\"data\"==this.model.y_units?o.compute(this.model.y):s.bbox.yview.compute(this.model.y);l+=this.model.x_offset,_-=this.model.y_offset;(\"canvas\"==this.model.render_mode?this._canvas_text.bind(this):this._css_text.bind(this))(this.layer.ctx,this.model.text,l,_,i)}}i.LabelView=r,r.__name__=\"LabelView\";class c extends l.TextAnnotation{constructor(t){super(t)}static init_Label(){this.prototype.default_view=r,this.mixins([h.Text,[\"border_\",h.Line],[\"background_\",h.Fill]]),this.define((({Number:t,String:e,Angle:i})=>({x:[t],x_units:[d.SpatialUnits,\"data\"],y:[t],y_units:[d.SpatialUnits,\"data\"],text:[e,\"\"],angle:[i,0],angle_units:[d.AngleUnits,\"rad\"],x_offset:[t,0],y_offset:[t,0]}))),this.override({background_fill_color:null,border_line_color:null})}}i.Label=c,c.__name__=\"Label\",c.init_Label()},\n", + " function _(t,e,s,i,o){i();const l=t(1),n=t(139),a=t(56),r=t(130),_=l.__importStar(t(48)),c=t(20),h=t(43),d=l.__importStar(t(18)),u=t(143);class x extends n.TextAnnotationView{set_data(t){a.DataAnnotationView.prototype.set_data.call(this,t)}initialize(){if(super.initialize(),this.set_data(this.model.source),\"css\"==this.model.render_mode)for(let t=0,e=this.text.length;t{this.set_data(this.model.source),\"css\"==this.model.render_mode?this.render():this.request_render()};this.connect(this.model.change,t),this.connect(this.model.source.streaming,t),this.connect(this.model.source.patching,t),this.connect(this.model.source.change,t)}_calculate_text_dimensions(t,e){const{width:s}=t.measureText(e),{height:i}=u.font_metrics(this.visuals.text.font_value(0));return[s,i]}_map_data(){const t=this.coordinates.x_scale,e=this.coordinates.y_scale,s=null!=this.layout?this.layout:this.plot_view.frame;return[\"data\"==this.model.x_units?t.v_compute(this._x):s.bbox.xview.v_compute(this._x),\"data\"==this.model.y_units?e.v_compute(this._y):s.bbox.yview.v_compute(this._y)]}_render(){const t=\"canvas\"==this.model.render_mode?this._v_canvas_text.bind(this):this._v_css_text.bind(this),{ctx:e}=this.layer,[s,i]=this._map_data();for(let o=0,l=this.text.length;o({x:[d.XCoordinateSpec,{field:\"x\"}],y:[d.YCoordinateSpec,{field:\"y\"}],x_units:[c.SpatialUnits,\"data\"],y_units:[c.SpatialUnits,\"data\"],text:[d.StringSpec,{field:\"text\"}],angle:[d.AngleSpec,0],x_offset:[d.NumberSpec,{value:0}],y_offset:[d.NumberSpec,{value:0}],source:[t(r.ColumnDataSource),()=>new r.ColumnDataSource]}))),this.override({background_fill_color:null,border_line_color:null})}}s.LabelSet=v,v.__name__=\"LabelSet\",v.init_LabelSet()},\n", + " function _(t,e,i,s,l){s();const n=t(1),h=t(40),o=t(229),a=t(20),_=n.__importStar(t(48)),r=t(15),d=t(140),c=t(143),g=t(99),m=t(9),b=t(8),f=t(11);class u extends h.AnnotationView{update_layout(){const{panel:t}=this;this.layout=null!=t?new d.SideLayout(t,(()=>this.get_size())):void 0}cursor(t,e){return\"none\"==this.model.click_policy?null:\"pointer\"}get legend_padding(){return null!=this.model.border_line_color?this.model.padding:0}connect_signals(){super.connect_signals(),this.connect(this.model.change,(()=>this.request_render())),this.connect(this.model.item_change,(()=>this.request_render()))}compute_legend_bbox(){const t=this.model.get_legend_names(),{glyph_height:e,glyph_width:i}=this.model,{label_height:s,label_width:l}=this.model;this.max_label_height=m.max([c.font_metrics(this.visuals.label_text.font_value()).height,s,e]);const{ctx:n}=this.layer;n.save(),this.visuals.label_text.set_value(n),this.text_widths=new Map;for(const e of t)this.text_widths.set(e,m.max([n.measureText(e).width,l]));this.visuals.title_text.set_value(n),this.title_height=this.model.title?c.font_metrics(this.visuals.title_text.font_value()).height+this.model.title_standoff:0,this.title_width=this.model.title?n.measureText(this.model.title).width:0,n.restore();const h=Math.max(m.max([...this.text_widths.values()]),0),o=this.model.margin,{legend_padding:a}=this,_=this.model.spacing,{label_standoff:r}=this.model;let d,u;if(\"vertical\"==this.model.orientation)d=t.length*this.max_label_height+Math.max(t.length-1,0)*_+2*a+this.title_height,u=m.max([h+i+r+2*a,this.title_width+2*a]);else{let e=2*a+Math.max(t.length-1,0)*_;for(const[,t]of this.text_widths)e+=m.max([t,l])+i+r;u=m.max([this.title_width+2*a,e]),d=this.max_label_height+this.title_height+2*a}const x=null!=this.layout?this.layout:this.plot_view.frame,[p,w]=x.bbox.ranges,{location:v}=this.model;let y,k;if(b.isString(v))switch(v){case\"top_left\":y=p.start+o,k=w.start+o;break;case\"top\":case\"top_center\":y=(p.end+p.start)/2-u/2,k=w.start+o;break;case\"top_right\":y=p.end-o-u,k=w.start+o;break;case\"bottom_right\":y=p.end-o-u,k=w.end-o-d;break;case\"bottom\":case\"bottom_center\":y=(p.end+p.start)/2-u/2,k=w.end-o-d;break;case\"bottom_left\":y=p.start+o,k=w.end-o-d;break;case\"left\":case\"center_left\":y=p.start+o,k=(w.end+w.start)/2-d/2;break;case\"center\":case\"center_center\":y=(p.end+p.start)/2-u/2,k=(w.end+w.start)/2-d/2;break;case\"right\":case\"center_right\":y=p.end-o-u,k=(w.end+w.start)/2-d/2}else if(b.isArray(v)&&2==v.length){const[t,e]=v;y=x.bbox.xview.compute(t),k=x.bbox.yview.compute(e)-d}else f.unreachable();return new g.BBox({left:y,top:k,width:u,height:d})}interactive_bbox(){return this.compute_legend_bbox()}interactive_hit(t,e){return this.interactive_bbox().contains(t,e)}on_hit(t,e){let i;const{glyph_width:s}=this.model,{legend_padding:l}=this,n=this.model.spacing,{label_standoff:h}=this.model;let o=i=l;const a=this.compute_legend_bbox(),_=\"vertical\"==this.model.orientation;for(const r of this.model.items){const d=r.get_labels_list_from_label_prop();for(const c of d){const d=a.x+o,m=a.y+i+this.title_height;let b,f;[b,f]=_?[a.width-2*l,this.max_label_height]:[this.text_widths.get(c)+s+h,this.max_label_height];if(new g.BBox({left:d,top:m,width:b,height:f}).contains(t,e)){switch(this.model.click_policy){case\"hide\":for(const t of r.renderers)t.visible=!t.visible;break;case\"mute\":for(const t of r.renderers)t.muted=!t.muted}return!0}_?i+=this.max_label_height+n:o+=this.text_widths.get(c)+s+h+n}}return!1}_render(){if(0==this.model.items.length)return;for(const t of this.model.items)t.legend=this.model;const{ctx:t}=this.layer,e=this.compute_legend_bbox();t.save(),this._draw_legend_box(t,e),this._draw_legend_items(t,e),this._draw_title(t,e),t.restore()}_draw_legend_box(t,e){t.beginPath(),t.rect(e.x,e.y,e.width,e.height),this.visuals.background_fill.set_value(t),t.fill(),this.visuals.border_line.doit&&(this.visuals.border_line.set_value(t),t.stroke())}_draw_legend_items(t,e){const{glyph_width:i,glyph_height:s}=this.model,{legend_padding:l}=this,n=this.model.spacing,{label_standoff:h}=this.model;let o=l,a=l;const _=\"vertical\"==this.model.orientation;for(const r of this.model.items){const d=r.get_labels_list_from_label_prop(),c=r.get_field_from_label_prop();if(0==d.length)continue;const g=(()=>{switch(this.model.click_policy){case\"none\":return!0;case\"hide\":return m.every(r.renderers,(t=>t.visible));case\"mute\":return m.every(r.renderers,(t=>!t.muted))}})();for(const m of d){const d=e.x+o,b=e.y+a+this.title_height,f=d+i,u=b+s;_?a+=this.max_label_height+n:o+=this.text_widths.get(m)+i+h+n,this.visuals.label_text.set_value(t),t.fillText(m,f+h,b+this.max_label_height/2);for(const e of r.renderers){const i=this.plot_view.renderer_view(e);null==i||i.draw_legend(t,d,f,b,u,c,m,r.index)}if(!g){let s,n;[s,n]=_?[e.width-2*l,this.max_label_height]:[this.text_widths.get(m)+i+h,this.max_label_height],t.beginPath(),t.rect(d,b,s,n),this.visuals.inactive_fill.set_value(t),t.fill()}}}}_draw_title(t,e){const{title:i}=this.model;i&&this.visuals.title_text.doit&&(t.save(),t.translate(e.x0,e.y0+this.title_height),this.visuals.title_text.set_value(t),t.fillText(i,this.legend_padding,this.legend_padding-this.model.title_standoff),t.restore())}_get_size(){const{width:t,height:e}=this.compute_legend_bbox();return{width:t+2*this.model.margin,height:e+2*this.model.margin}}}i.LegendView=u,u.__name__=\"LegendView\";class x extends h.Annotation{constructor(t){super(t)}initialize(){super.initialize(),this.item_change=new r.Signal0(this,\"item_change\")}static init_Legend(){this.prototype.default_view=u,this.mixins([[\"label_\",_.Text],[\"title_\",_.Text],[\"inactive_\",_.Fill],[\"border_\",_.Line],[\"background_\",_.Fill]]),this.define((({Number:t,String:e,Array:i,Tuple:s,Or:l,Ref:n,Nullable:h})=>({orientation:[a.Orientation,\"vertical\"],location:[l(a.LegendLocation,s(t,t)),\"top_right\"],title:[h(e),null],title_standoff:[t,5],label_standoff:[t,5],glyph_height:[t,20],glyph_width:[t,20],label_height:[t,20],label_width:[t,20],margin:[t,10],padding:[t,10],spacing:[t,3],items:[i(n(o.LegendItem)),[]],click_policy:[a.LegendClickPolicy,\"none\"]}))),this.override({border_line_color:\"#e5e5e5\",border_line_alpha:.5,border_line_width:1,background_fill_color:\"#ffffff\",background_fill_alpha:.95,inactive_fill_color:\"white\",inactive_fill_alpha:.7,label_text_font_size:\"13px\",label_text_baseline:\"middle\",title_text_font_size:\"13px\",title_text_font_style:\"italic\"})}get_legend_names(){const t=[];for(const e of this.items){const i=e.get_labels_list_from_label_prop();t.push(...i)}return t}}i.Legend=x,x.__name__=\"Legend\",x.init_Legend()},\n", + " function _(e,r,n,l,t){l();const i=e(1),s=e(53),o=e(61),_=e(57),a=e(230),u=i.__importStar(e(18)),d=e(19),c=e(9);class f extends s.Model{constructor(e){super(e)}static init_LegendItem(){this.define((({Int:e,Array:r,Ref:n,Nullable:l})=>({label:[u.NullStringSpec,null],renderers:[r(n(o.GlyphRenderer)),[]],index:[l(e),null]})))}_check_data_sources_on_renderers(){if(null!=this.get_field_from_label_prop()){if(this.renderers.length<1)return!1;const e=this.renderers[0].data_source;if(null!=e)for(const r of this.renderers)if(r.data_source!=e)return!1}return!0}_check_field_label_on_data_source(){const e=this.get_field_from_label_prop();if(null!=e){if(this.renderers.length<1)return!1;const r=this.renderers[0].data_source;if(null!=r&&!c.includes(r.columns(),e))return!1}return!0}initialize(){super.initialize(),this.legend=null,this.connect(this.change,(()=>{var e;return null===(e=this.legend)||void 0===e?void 0:e.item_change.emit()}));this._check_data_sources_on_renderers()||d.logger.error(\"Non matching data sources on legend item renderers\");this._check_field_label_on_data_source()||d.logger.error(`Bad column name on label: ${this.label}`)}get_field_from_label_prop(){const{label:e}=this;return a.isField(e)?e.field:null}get_labels_list_from_label_prop(){if(a.isValue(this.label)){const{value:e}=this.label;return null!=e?[e]:[]}const e=this.get_field_from_label_prop();if(null!=e){let r;if(!this.renderers[0]||null==this.renderers[0].data_source)return[\"No source found\"];if(r=this.renderers[0].data_source,r instanceof _.ColumnarDataSource){const n=r.get_column(e);return null!=n?c.uniq(Array.from(n)):[\"Invalid field\"]}}return[]}}n.LegendItem=f,f.__name__=\"LegendItem\",f.init_LegendItem()},\n", + " function _(i,n,e,t,u){t();const c=i(8);e.isValue=function(i){return c.isPlainObject(i)&&\"value\"in i},e.isField=function(i){return c.isPlainObject(i)&&\"field\"in i},e.isExpr=function(i){return c.isPlainObject(i)&&\"expr\"in i}},\n", + " function _(t,i,s,n,e){n();const o=t(1),l=t(40),a=o.__importStar(t(48)),c=t(20);class h extends l.AnnotationView{connect_signals(){super.connect_signals(),this.connect(this.model.change,(()=>this.request_render()))}_render(){const{xs:t,ys:i}=this.model;if(t.length!=i.length)return;const s=t.length;if(s<3)return;const{frame:n}=this.plot_view,{ctx:e}=this.layer,o=this.coordinates.x_scale,l=this.coordinates.y_scale,{screen:a}=this.model;function c(t,i,s,n){return a?t:\"data\"==i?s.v_compute(t):n.v_compute(t)}const h=c(t,this.model.xs_units,o,n.bbox.xview),r=c(i,this.model.ys_units,l,n.bbox.yview);e.beginPath();for(let t=0;t({xs:[i(t),[]],xs_units:[c.SpatialUnits,\"data\"],ys:[i(t),[]],ys_units:[c.SpatialUnits,\"data\"]}))),this.internal((({Boolean:t})=>({screen:[t,!1]}))),this.override({fill_color:\"#fff9ba\",fill_alpha:.4,line_color:\"#cccccc\",line_alpha:.3})}update({xs:t,ys:i}){this.setv({xs:t,ys:i,screen:!0},{check_eq:!1})}}s.PolyAnnotation=r,r.__name__=\"PolyAnnotation\",r.init_PolyAnnotation()},\n", + " function _(e,t,i,n,o){n();const s=e(1),l=e(40),r=s.__importStar(e(48));class c extends l.AnnotationView{connect_signals(){super.connect_signals(),this.connect(this.model.change,(()=>this.request_render()))}_render(){const{gradient:e,y_intercept:t}=this.model;if(null==e||null==t)return;const{frame:i}=this.plot_view,n=this.coordinates.x_scale,o=this.coordinates.y_scale;let s,l,r,c;if(0==e)s=o.compute(t),l=s,r=i.bbox.left,c=r+i.bbox.width;else{s=i.bbox.top,l=s+i.bbox.height;const a=(o.invert(s)-t)/e,_=(o.invert(l)-t)/e;r=n.compute(a),c=n.compute(_)}const{ctx:a}=this.layer;a.save(),a.beginPath(),this.visuals.line.set_value(a),a.moveTo(r,s),a.lineTo(c,l),a.stroke(),a.restore()}}i.SlopeView=c,c.__name__=\"SlopeView\";class a extends l.Annotation{constructor(e){super(e)}static init_Slope(){this.prototype.default_view=c,this.mixins(r.Line),this.define((({Number:e,Nullable:t})=>({gradient:[t(e),null],y_intercept:[t(e),null]}))),this.override({line_color:\"black\"})}}i.Slope=a,a.__name__=\"Slope\",a.init_Slope()},\n", + " function _(e,i,t,n,o){n();const s=e(1),a=e(40),l=s.__importStar(e(48)),h=e(20);class c extends a.AnnotationView{connect_signals(){super.connect_signals(),this.connect(this.model.change,(()=>this.plot_view.request_paint(this)))}_render(){const{location:e}=this.model;if(null==e)return;const{frame:i}=this.plot_view,t=this.coordinates.x_scale,n=this.coordinates.y_scale,o=(i,t)=>\"data\"==this.model.location_units?i.compute(e):this.model.for_hover?e:t.compute(e);let s,a,l,h;\"width\"==this.model.dimension?(l=o(n,i.bbox.yview),a=i.bbox.left,h=i.bbox.width,s=this.model.line_width):(l=i.bbox.top,a=o(t,i.bbox.xview),h=this.model.line_width,s=i.bbox.height);const{ctx:c}=this.layer;c.save(),c.beginPath(),this.visuals.line.set_value(c),c.moveTo(a,l),\"width\"==this.model.dimension?c.lineTo(a+h,l):c.lineTo(a,l+s),c.stroke(),c.restore()}}t.SpanView=c,c.__name__=\"SpanView\";class d extends a.Annotation{constructor(e){super(e)}static init_Span(){this.prototype.default_view=c,this.mixins(l.Line),this.define((({Number:e,Nullable:i})=>({render_mode:[h.RenderMode,\"canvas\"],location:[i(e),null],location_units:[h.SpatialUnits,\"data\"],dimension:[h.Dimension,\"width\"]}))),this.internal((({Boolean:e})=>({for_hover:[e,!1]}))),this.override({line_color:\"black\"})}}t.Span=d,d.__name__=\"Span\",d.init_Span()},\n", + " function _(i,e,t,o,l){o();const s=i(40),a=i(235),n=i(122),r=i(43),_=i(140),h=i(99);class b extends s.AnnotationView{constructor(){super(...arguments),this._invalidate_toolbar=!0,this._previous_bbox=new h.BBox}update_layout(){this.layout=new _.SideLayout(this.panel,(()=>this.get_size()),!0)}initialize(){super.initialize(),this.el=r.div(),this.plot_view.canvas_view.add_event(this.el)}async lazy_initialize(){await super.lazy_initialize(),this._toolbar_view=await n.build_view(this.model.toolbar,{parent:this}),this.plot_view.visibility_callbacks.push((i=>this._toolbar_view.set_visibility(i)))}remove(){this._toolbar_view.remove(),r.remove(this.el),super.remove()}render(){this.model.visible||r.undisplay(this.el),super.render()}_render(){const{bbox:i}=this.layout;this._previous_bbox.equals(i)||(r.position(this.el,i),this._previous_bbox=i),this._invalidate_toolbar&&(this.el.style.position=\"absolute\",this.el.style.overflow=\"hidden\",this._toolbar_view.render(),r.empty(this.el),this.el.appendChild(this._toolbar_view.el),this._invalidate_toolbar=!1),r.display(this.el)}_get_size(){const{tools:i,logo:e}=this.model.toolbar;return{width:30*i.length+(null!=e?25:0),height:30}}}t.ToolbarPanelView=b,b.__name__=\"ToolbarPanelView\";class d extends s.Annotation{constructor(i){super(i)}static init_ToolbarPanel(){this.prototype.default_view=b,this.define((({Ref:i})=>({toolbar:[i(a.Toolbar)]})))}}t.ToolbarPanel=d,d.__name__=\"ToolbarPanel\",d.init_ToolbarPanel()},\n", + " function _(t,s,e,i,o){i();const c=t(8),n=t(9),a=t(13),l=t(236),r=t(237),_=t(247),p=t(248);e.Drag=l.Tool,e.Inspection=l.Tool,e.Scroll=l.Tool,e.Tap=l.Tool;const u=t=>{switch(t){case\"tap\":return\"active_tap\";case\"pan\":return\"active_drag\";case\"pinch\":case\"scroll\":return\"active_scroll\";case\"multi\":return\"active_multi\"}return null},h=t=>\"tap\"==t||\"pan\"==t;class v extends p.ToolbarBase{constructor(t){super(t)}static init_Toolbar(){this.prototype.default_view=p.ToolbarBaseView,this.define((({Or:t,Ref:s,Auto:i,Null:o,Nullable:c})=>({active_drag:[t(s(e.Drag),i,o),\"auto\"],active_inspect:[t(s(e.Inspection),i,o),\"auto\"],active_scroll:[t(s(e.Scroll),i,o),\"auto\"],active_tap:[t(s(e.Tap),i,o),\"auto\"],active_multi:[c(s(r.GestureTool)),null]})))}connect_signals(){super.connect_signals();const{tools:t,active_drag:s,active_inspect:e,active_scroll:i,active_tap:o,active_multi:c}=this.properties;this.on_change([t,s,e,i,o,c],(()=>this._init_tools()))}_init_tools(){if(super._init_tools(),\"auto\"==this.active_inspect);else if(this.active_inspect instanceof _.InspectTool){let t=!1;for(const s of this.inspectors)s!=this.active_inspect?s.active=!1:t=!0;t||(this.active_inspect=null)}else if(c.isArray(this.active_inspect)){const t=n.intersection(this.active_inspect,this.inspectors);t.length!=this.active_inspect.length&&(this.active_inspect=t);for(const t of this.inspectors)n.includes(this.active_inspect,t)||(t.active=!1)}else if(null==this.active_inspect)for(const t of this.inspectors)t.active=!1;const t=t=>{t.active?this._active_change(t):t.active=!0};for(const t of a.values(this.gestures)){t.tools=n.sort_by(t.tools,(t=>t.default_order));for(const s of t.tools)this.connect(s.properties.active.change,(()=>this._active_change(s)))}for(const[s,e]of a.entries(this.gestures)){const i=u(s);if(i){const o=this[i];\"auto\"==o?0!=e.tools.length&&h(s)&&t(e.tools[0]):null!=o&&(n.includes(this.tools,o)?t(o):this[i]=null)}}}}e.Toolbar=v,v.__name__=\"Toolbar\",v.init_Toolbar()},\n", + " function _(t,e,n,i,o){i();const s=t(42),a=t(9),r=t(53);class l extends s.View{get plot_view(){return this.parent}get plot_model(){return this.parent.model}connect_signals(){super.connect_signals(),this.connect(this.model.properties.active.change,(()=>{this.model.active?this.activate():this.deactivate()}))}activate(){}deactivate(){}}n.ToolView=l,l.__name__=\"ToolView\";class _ extends r.Model{constructor(t){super(t)}static init_Tool(){this.prototype._known_aliases=new Map,this.define((({String:t,Nullable:e})=>({description:[e(t),null]}))),this.internal((({Boolean:t})=>({active:[t,!1]})))}get synthetic_renderers(){return[]}_get_dim_limits([t,e],[n,i],o,s){const r=o.bbox.h_range;let l;\"width\"==s||\"both\"==s?(l=[a.min([t,n]),a.max([t,n])],l=[a.max([l[0],r.start]),a.min([l[1],r.end])]):l=[r.start,r.end];const _=o.bbox.v_range;let c;return\"height\"==s||\"both\"==s?(c=[a.min([e,i]),a.max([e,i])],c=[a.max([c[0],_.start]),a.min([c[1],_.end])]):c=[_.start,_.end],[l,c]}static register_alias(t,e){this.prototype._known_aliases.set(t,e)}static from_string(t){const e=this.prototype._known_aliases.get(t);if(null!=e)return e();{const e=[...this.prototype._known_aliases.keys()];throw new Error(`unexpected tool name '${t}', possible tools are ${e.join(\", \")}`)}}}n.Tool=_,_.__name__=\"Tool\",_.init_Tool()},\n", + " function _(e,o,t,s,n){s();const u=e(238),_=e(246);class l extends u.ButtonToolView{}t.GestureToolView=l,l.__name__=\"GestureToolView\";class i extends u.ButtonTool{constructor(e){super(e),this.button_view=_.OnOffButtonView}}t.GestureTool=i,i.__name__=\"GestureTool\"},\n", + " function _(t,e,o,i,s){i();const n=t(1),l=n.__importDefault(t(239)),r=t(240),a=t(236),u=t(43),h=t(34),_=t(8),c=t(9),d=n.__importStar(t(241)),m=d,p=n.__importDefault(t(242)),g=n.__importDefault(t(243)),v=t(244);class f extends r.DOMView{initialize(){super.initialize();const t=this.model.menu;if(null!=t){const e=this.parent.model.toolbar_location,o=\"left\"==e||\"above\"==e,i=this.parent.model.horizontal?\"vertical\":\"horizontal\";this._menu=new v.ContextMenu(o?c.reversed(t):t,{orientation:i,prevent_hide:t=>t.target==this.el})}this._hammer=new l.default(this.el,{touchAction:\"auto\",inputClass:l.default.TouchMouseInput}),this.connect(this.model.change,(()=>this.render())),this._hammer.on(\"tap\",(t=>{var e;(null===(e=this._menu)||void 0===e?void 0:e.is_open)?this._menu.hide():t.target==this.el&&this._clicked()})),this._hammer.on(\"press\",(()=>this._pressed()))}remove(){var t;this._hammer.destroy(),null===(t=this._menu)||void 0===t||t.remove(),super.remove()}styles(){return[...super.styles(),d.default,p.default,g.default]}css_classes(){return super.css_classes().concat(m.toolbar_button)}render(){u.empty(this.el);const t=this.model.computed_icon;_.isString(t)&&(h.startsWith(t,\"data:image\")?this.el.style.backgroundImage=\"url('\"+t+\"')\":this.el.classList.add(t)),this.el.title=this.model.tooltip,null!=this._menu&&this.root.el.appendChild(this._menu.el)}_pressed(){var t;const{left:e,top:o,right:i,bottom:s}=this.el.getBoundingClientRect(),n=(()=>{switch(this.parent.model.toolbar_location){case\"right\":return{right:e,top:o};case\"left\":return{left:i,top:o};case\"above\":return{left:e,top:s};case\"below\":return{left:e,bottom:o}}})();null===(t=this._menu)||void 0===t||t.toggle(n)}}o.ButtonToolButtonView=f,f.__name__=\"ButtonToolButtonView\";class b extends a.ToolView{}o.ButtonToolView=b,b.__name__=\"ButtonToolView\";class B extends a.Tool{constructor(t){super(t)}static init_ButtonTool(){this.internal((({Boolean:t})=>({disabled:[t,!1]})))}_get_dim_tooltip(t){const{description:e,tool_name:o}=this;return null!=e?e:\"both\"==t?o:`${o} (${\"width\"==t?\"x\":\"y\"}-axis)`}get tooltip(){var t;return null!==(t=this.description)&&void 0!==t?t:this.tool_name}get computed_icon(){return this.icon}get menu(){return null}}o.ButtonTool=B,B.__name__=\"ButtonTool\",B.init_ButtonTool()},\n", + " function _(t,e,i,n,r){\n", + " /*! Hammer.JS - v2.0.7 - 2016-04-22\n", + " * http://hammerjs.github.io/\n", + " *\n", + " * Copyright (c) 2016 Jorik Tangelder;\n", + " * Licensed under the MIT license */\n", + " !function(t,i,n,r){\"use strict\";var s,o=[\"\",\"webkit\",\"Moz\",\"MS\",\"ms\",\"o\"],a=i.createElement(\"div\"),h=Math.round,u=Math.abs,c=Date.now;function l(t,e,i){return setTimeout(T(t,i),e)}function p(t,e,i){return!!Array.isArray(t)&&(f(t,i[e],i),!0)}function f(t,e,i){var n;if(t)if(t.forEach)t.forEach(e,i);else if(t.length!==r)for(n=0;n\\s*\\(/gm,\"{anonymous}()@\"):\"Unknown Stack Trace\",s=t.console&&(t.console.warn||t.console.log);return s&&s.call(t.console,r,n),e.apply(this,arguments)}}s=\"function\"!=typeof Object.assign?function(t){if(t===r||null===t)throw new TypeError(\"Cannot convert undefined or null to object\");for(var e=Object(t),i=1;i-1}function S(t){return t.trim().split(/\\s+/g)}function b(t,e,i){if(t.indexOf&&!i)return t.indexOf(e);for(var n=0;ni[e]})):n.sort()),n}function x(t,e){for(var i,n,s=e[0].toUpperCase()+e.slice(1),a=0;a1&&!i.firstMultiple?i.firstMultiple=H(e):1===s&&(i.firstMultiple=!1);var o=i.firstInput,a=i.firstMultiple,h=a?a.center:o.center,l=e.center=L(n);e.timeStamp=c(),e.deltaTime=e.timeStamp-o.timeStamp,e.angle=G(h,l),e.distance=j(h,l),function(t,e){var i=e.center,n=t.offsetDelta||{},r=t.prevDelta||{},s=t.prevInput||{};1!==e.eventType&&4!==s.eventType||(r=t.prevDelta={x:s.deltaX||0,y:s.deltaY||0},n=t.offsetDelta={x:i.x,y:i.y});e.deltaX=r.x+(i.x-n.x),e.deltaY=r.y+(i.y-n.y)}(i,e),e.offsetDirection=V(e.deltaX,e.deltaY);var p=U(e.deltaTime,e.deltaX,e.deltaY);e.overallVelocityX=p.x,e.overallVelocityY=p.y,e.overallVelocity=u(p.x)>u(p.y)?p.x:p.y,e.scale=a?(f=a.pointers,v=n,j(v[0],v[1],W)/j(f[0],f[1],W)):1,e.rotation=a?function(t,e){return G(e[1],e[0],W)+G(t[1],t[0],W)}(a.pointers,n):0,e.maxPointers=i.prevInput?e.pointers.length>i.prevInput.maxPointers?e.pointers.length:i.prevInput.maxPointers:e.pointers.length,function(t,e){var i,n,s,o,a=t.lastInterval||e,h=e.timeStamp-a.timeStamp;if(8!=e.eventType&&(h>25||a.velocity===r)){var c=e.deltaX-a.deltaX,l=e.deltaY-a.deltaY,p=U(h,c,l);n=p.x,s=p.y,i=u(p.x)>u(p.y)?p.x:p.y,o=V(c,l),t.lastInterval=e}else i=a.velocity,n=a.velocityX,s=a.velocityY,o=a.direction;e.velocity=i,e.velocityX=n,e.velocityY=s,e.direction=o}(i,e);var f,v;var d=t.element;_(e.srcEvent.target,d)&&(d=e.srcEvent.target);e.target=d}(t,i),t.emit(\"hammer.input\",i),t.recognize(i),t.session.prevInput=i}function H(t){for(var e=[],i=0;i=u(e)?t<0?2:4:e<0?8:16}function j(t,e,i){i||(i=F);var n=e[i[0]]-t[i[0]],r=e[i[1]]-t[i[1]];return Math.sqrt(n*n+r*r)}function G(t,e,i){i||(i=F);var n=e[i[0]]-t[i[0]],r=e[i[1]]-t[i[1]];return 180*Math.atan2(r,n)/Math.PI}q.prototype={handler:function(){},init:function(){this.evEl&&I(this.element,this.evEl,this.domHandler),this.evTarget&&I(this.target,this.evTarget,this.domHandler),this.evWin&&I(O(this.element),this.evWin,this.domHandler)},destroy:function(){this.evEl&&A(this.element,this.evEl,this.domHandler),this.evTarget&&A(this.target,this.evTarget,this.domHandler),this.evWin&&A(O(this.element),this.evWin,this.domHandler)}};var Z={mousedown:1,mousemove:2,mouseup:4},B=\"mousedown\",$=\"mousemove mouseup\";function J(){this.evEl=B,this.evWin=$,this.pressed=!1,q.apply(this,arguments)}g(J,q,{handler:function(t){var e=Z[t.type];1&e&&0===t.button&&(this.pressed=!0),2&e&&1!==t.which&&(e=4),this.pressed&&(4&e&&(this.pressed=!1),this.callback(this.manager,e,{pointers:[t],changedPointers:[t],pointerType:X,srcEvent:t}))}});var K={pointerdown:1,pointermove:2,pointerup:4,pointercancel:8,pointerout:8},Q={2:N,3:\"pen\",4:X,5:\"kinect\"},tt=\"pointerdown\",et=\"pointermove pointerup pointercancel\";function it(){this.evEl=tt,this.evWin=et,q.apply(this,arguments),this.store=this.manager.session.pointerEvents=[]}t.MSPointerEvent&&!t.PointerEvent&&(tt=\"MSPointerDown\",et=\"MSPointerMove MSPointerUp MSPointerCancel\"),g(it,q,{handler:function(t){var e=this.store,i=!1,n=t.type.toLowerCase().replace(\"ms\",\"\"),r=K[n],s=Q[t.pointerType]||t.pointerType,o=s==N,a=b(e,t.pointerId,\"pointerId\");1&r&&(0===t.button||o)?a<0&&(e.push(t),a=e.length-1):12&r&&(i=!0),a<0||(e[a]=t,this.callback(this.manager,r,{pointers:e,changedPointers:[t],pointerType:s,srcEvent:t}),i&&e.splice(a,1))}});var nt={touchstart:1,touchmove:2,touchend:4,touchcancel:8},rt=\"touchstart\",st=\"touchstart touchmove touchend touchcancel\";function ot(){this.evTarget=rt,this.evWin=st,this.started=!1,q.apply(this,arguments)}function at(t,e){var i=P(t.touches),n=P(t.changedTouches);return 12&e&&(i=D(i.concat(n),\"identifier\",!0)),[i,n]}g(ot,q,{handler:function(t){var e=nt[t.type];if(1===e&&(this.started=!0),this.started){var i=at.call(this,t,e);12&e&&i[0].length-i[1].length==0&&(this.started=!1),this.callback(this.manager,e,{pointers:i[0],changedPointers:i[1],pointerType:N,srcEvent:t})}}});var ht={touchstart:1,touchmove:2,touchend:4,touchcancel:8},ut=\"touchstart touchmove touchend touchcancel\";function ct(){this.evTarget=ut,this.targetIds={},q.apply(this,arguments)}function lt(t,e){var i=P(t.touches),n=this.targetIds;if(3&e&&1===i.length)return n[i[0].identifier]=!0,[i,i];var r,s,o=P(t.changedTouches),a=[],h=this.target;if(s=i.filter((function(t){return _(t.target,h)})),1===e)for(r=0;r-1&&n.splice(t,1)}),2500)}}function dt(t){for(var e=t.srcEvent.clientX,i=t.srcEvent.clientY,n=0;n-1&&this.requireFail.splice(e,1),this},hasRequireFailures:function(){return this.requireFail.length>0},canRecognizeWith:function(t){return!!this.simultaneous[t.id]},emit:function(t){var e=this,i=this.state;function n(i){e.manager.emit(i,t)}i<8&&n(e.options.event+Dt(i)),n(e.options.event),t.additionalEvent&&n(t.additionalEvent),i>=8&&n(e.options.event+Dt(i))},tryEmit:function(t){if(this.canEmit())return this.emit(t);this.state=bt},canEmit:function(){for(var t=0;te.threshold&&r&e.direction},attrTest:function(t){return Ot.prototype.attrTest.call(this,t)&&(2&this.state||!(2&this.state)&&this.directionTest(t))},emit:function(t){this.pX=t.deltaX,this.pY=t.deltaY;var e=xt(t.direction);e&&(t.additionalEvent=this.options.event+e),this._super.emit.call(this,t)}}),g(Mt,Ot,{defaults:{event:\"pinch\",threshold:0,pointers:2},getTouchAction:function(){return[It]},attrTest:function(t){return this._super.attrTest.call(this,t)&&(Math.abs(t.scale-1)>this.options.threshold||2&this.state)},emit:function(t){if(1!==t.scale){var e=t.scale<1?\"in\":\"out\";t.additionalEvent=this.options.event+e}this._super.emit.call(this,t)}}),g(zt,Pt,{defaults:{event:\"press\",pointers:1,time:251,threshold:9},getTouchAction:function(){return[yt]},process:function(t){var e=this.options,i=t.pointers.length===e.pointers,n=t.distancee.time;if(this._input=t,!n||!i||12&t.eventType&&!r)this.reset();else if(1&t.eventType)this.reset(),this._timer=l((function(){this.state=8,this.tryEmit()}),e.time,this);else if(4&t.eventType)return 8;return bt},reset:function(){clearTimeout(this._timer)},emit:function(t){8===this.state&&(t&&4&t.eventType?this.manager.emit(this.options.event+\"up\",t):(this._input.timeStamp=c(),this.manager.emit(this.options.event,this._input)))}}),g(Nt,Ot,{defaults:{event:\"rotate\",threshold:0,pointers:2},getTouchAction:function(){return[It]},attrTest:function(t){return this._super.attrTest.call(this,t)&&(Math.abs(t.rotation)>this.options.threshold||2&this.state)}}),g(Xt,Ot,{defaults:{event:\"swipe\",threshold:10,velocity:.3,direction:30,pointers:1},getTouchAction:function(){return Rt.prototype.getTouchAction.call(this)},attrTest:function(t){var e,i=this.options.direction;return 30&i?e=t.overallVelocity:6&i?e=t.overallVelocityX:i&Y&&(e=t.overallVelocityY),this._super.attrTest.call(this,t)&&i&t.offsetDirection&&t.distance>this.options.threshold&&t.maxPointers==this.options.pointers&&u(e)>this.options.velocity&&4&t.eventType},emit:function(t){var e=xt(t.offsetDirection);e&&this.manager.emit(this.options.event+e,t),this.manager.emit(this.options.event,t)}}),g(Yt,Pt,{defaults:{event:\"tap\",pointers:1,taps:1,interval:300,time:250,threshold:9,posThreshold:10},getTouchAction:function(){return[Et]},process:function(t){var e=this.options,i=t.pointers.length===e.pointers,n=t.distance .bk-divider{cursor:default;overflow:hidden;background-color:#e5e5e5;}.bk-root .bk-context-menu.bk-horizontal > .bk-divider{width:1px;margin:5px 0;}.bk-root .bk-context-menu.bk-vertical > .bk-divider{height:1px;margin:0 5px;}.bk-root .bk-context-menu > :not(.bk-divider){border:1px solid transparent;}.bk-root .bk-context-menu > :not(.bk-divider).bk-active{border-color:#26aae1;}.bk-root .bk-context-menu > :not(.bk-divider):hover{background-color:#f9f9f9;}.bk-root .bk-context-menu.bk-horizontal > :not(.bk-divider):first-child{border-top-left-radius:4px;border-bottom-left-radius:4px;}.bk-root .bk-context-menu.bk-horizontal > :not(.bk-divider):last-child{border-top-right-radius:4px;border-bottom-right-radius:4px;}.bk-root .bk-context-menu.bk-vertical > :not(.bk-divider):first-child{border-top-left-radius:4px;border-top-right-radius:4px;}.bk-root .bk-context-menu.bk-vertical > :not(.bk-divider):last-child{border-bottom-left-radius:4px;border-bottom-right-radius:4px;}.bk-root .bk-menu{position:absolute;left:0;width:100%;z-index:100;cursor:pointer;font-size:12px;background-color:#fff;border:1px solid #ccc;border-radius:4px;box-shadow:0 6px 12px rgba(0, 0, 0, 0.175);}.bk-root .bk-menu.bk-above{bottom:100%;}.bk-root .bk-menu.bk-below{top:100%;}.bk-root .bk-menu > .bk-divider{height:1px;margin:7.5px 0;overflow:hidden;background-color:#e5e5e5;}.bk-root .bk-menu > :not(.bk-divider){padding:6px 12px;}.bk-root .bk-menu > :not(.bk-divider):hover,.bk-root .bk-menu > :not(.bk-divider).bk-active{background-color:#e6e6e6;}.bk-root .bk-caret{display:inline-block;vertical-align:middle;width:0;height:0;margin:0 5px;}.bk-root .bk-caret.bk-down{border-top:4px solid;}.bk-root .bk-caret.bk-up{border-bottom:4px solid;}.bk-root .bk-caret.bk-down,.bk-root .bk-caret.bk-up{border-right:4px solid transparent;border-left:4px solid transparent;}.bk-root .bk-caret.bk-left{border-right:4px solid;}.bk-root .bk-caret.bk-right{border-left:4px solid;}.bk-root .bk-caret.bk-left,.bk-root .bk-caret.bk-right{border-top:4px solid transparent;border-bottom:4px solid transparent;}\"},\n", + " function _(t,e,i,n,s){n();const o=t(1),l=t(43),h=t(245),d=o.__importStar(t(243));class r{constructor(t,e={}){this.items=t,this.options=e,this.el=l.div(),this._open=!1,this._item_click=t=>{var e;null===(e=this.items[t])||void 0===e||e.handler(),this.hide()},this._on_mousedown=t=>{var e,i;const{target:n}=t;n instanceof Node&&this.el.contains(n)||(null===(i=(e=this.options).prevent_hide)||void 0===i?void 0:i.call(e,t))||this.hide()},this._on_keydown=t=>{t.keyCode==l.Keys.Esc&&this.hide()},this._on_blur=()=>{this.hide()},l.undisplay(this.el)}get is_open(){return this._open}get can_open(){return 0!=this.items.length}remove(){l.remove(this.el),this._unlisten()}_listen(){document.addEventListener(\"mousedown\",this._on_mousedown),document.addEventListener(\"keydown\",this._on_keydown),window.addEventListener(\"blur\",this._on_blur)}_unlisten(){document.removeEventListener(\"mousedown\",this._on_mousedown),document.removeEventListener(\"keydown\",this._on_keydown),window.removeEventListener(\"blur\",this._on_blur)}_position(t){const e=this.el.parentElement;if(null!=e){const i=e.getBoundingClientRect();this.el.style.left=null!=t.left?t.left-i.left+\"px\":\"\",this.el.style.top=null!=t.top?t.top-i.top+\"px\":\"\",this.el.style.right=null!=t.right?i.right-t.right+\"px\":\"\",this.el.style.bottom=null!=t.bottom?i.bottom-t.bottom+\"px\":\"\"}}render(){var t,e;l.empty(this.el,!0);const i=null!==(t=this.options.orientation)&&void 0!==t?t:\"vertical\";l.classes(this.el).add(\"bk-context-menu\",`bk-${i}`);for(const[t,i]of h.enumerate(this.items)){let n;if(null==t)n=l.div({class:d.divider});else{if(null!=t.if&&!t.if())continue;{const i=null!=t.icon?l.div({class:[\"bk-menu-icon\",t.icon]}):null;n=l.div({class:(null===(e=t.active)||void 0===e?void 0:e.call(t))?\"bk-active\":null,title:t.tooltip},i,t.label)}}n.addEventListener(\"click\",(()=>this._item_click(i))),this.el.appendChild(n)}}show(t){if(0!=this.items.length&&!this._open){if(this.render(),0==this.el.children.length)return;this._position(null!=t?t:{left:0,top:0}),l.display(this.el),this._listen(),this._open=!0}}hide(){this._open&&(this._open=!1,this._unlisten(),l.undisplay(this.el))}toggle(t){this._open?this.hide():this.show(t)}}i.ContextMenu=r,r.__name__=\"ContextMenu\"},\n", + " function _(n,e,o,t,r){t();const f=n(9);function*i(n,e){const o=n.length;if(e>o)return;const t=f.range(e);for(yield t.map((e=>n[e]));;){let r;for(const n of f.reversed(f.range(e)))if(t[n]!=n+o-e){r=n;break}if(null==r)return;t[r]+=1;for(const n of f.range(r+1,e))t[n]=t[n-1]+1;yield t.map((e=>n[e]))}}o.enumerate=function*(n){let e=0;for(const o of n)yield[o,e++]},o.combinations=i,o.subsets=function*(n){for(const e of f.range(n.length+1))yield*i(n,e)}},\n", + " function _(t,e,i,n,o){n();const s=t(1),c=t(238),l=s.__importStar(t(241)),a=t(43);class _ extends c.ButtonToolButtonView{render(){super.render(),a.classes(this.el).toggle(l.active,this.model.active)}_clicked(){const{active:t}=this.model;this.model.active=!t}}i.OnOffButtonView=_,_.__name__=\"OnOffButtonView\"},\n", + " function _(t,e,o,n,s){n();const i=t(238),c=t(246);class l extends i.ButtonToolView{}o.InspectToolView=l,l.__name__=\"InspectToolView\";class _ extends i.ButtonTool{constructor(t){super(t),this.event_type=\"move\"}static init_InspectTool(){this.prototype.button_view=c.OnOffButtonView,this.define((({Boolean:t})=>({toggleable:[t,!0]}))),this.override({active:!0})}}o.InspectTool=_,_.__name__=\"InspectTool\",_.init_InspectTool()},\n", + " function _(t,o,e,i,s){i();const l=t(1),n=t(19),a=t(43),r=t(122),c=t(240),_=t(20),u=t(9),h=t(13),v=t(8),p=t(249),d=t(99),b=t(53),g=t(236),f=t(237),m=t(251),w=t(252),y=t(247),T=l.__importStar(t(241)),z=T,B=l.__importStar(t(253)),x=B;class L extends b.Model{constructor(t){super(t)}static init_ToolbarViewModel(){this.define((({Boolean:t,Nullable:o})=>({_visible:[o(t),null],autohide:[t,!1]})))}get visible(){return!this.autohide||null!=this._visible&&this._visible}}e.ToolbarViewModel=L,L.__name__=\"ToolbarViewModel\",L.init_ToolbarViewModel();class M extends c.DOMView{constructor(){super(...arguments),this.layout={bbox:new d.BBox}}initialize(){super.initialize(),this._tool_button_views=new Map,this._toolbar_view_model=new L({autohide:this.model.autohide})}async lazy_initialize(){await super.lazy_initialize(),await this._build_tool_button_views()}connect_signals(){super.connect_signals(),this.connect(this.model.properties.tools.change,(async()=>{await this._build_tool_button_views(),this.render()})),this.connect(this.model.properties.autohide.change,(()=>{this._toolbar_view_model.autohide=this.model.autohide,this._on_visible_change()})),this.connect(this._toolbar_view_model.properties._visible.change,(()=>this._on_visible_change()))}styles(){return[...super.styles(),T.default,B.default]}remove(){r.remove_views(this._tool_button_views),super.remove()}async _build_tool_button_views(){const t=null!=this.model._proxied_tools?this.model._proxied_tools:this.model.tools;await r.build_views(this._tool_button_views,t,{parent:this},(t=>t.button_view))}set_visibility(t){t!=this._toolbar_view_model._visible&&(this._toolbar_view_model._visible=t)}_on_visible_change(){const t=this._toolbar_view_model.visible,o=z.toolbar_hidden;this.el.classList.contains(o)&&t?this.el.classList.remove(o):t||this.el.classList.add(o)}render(){if(a.empty(this.el),this.el.classList.add(z.toolbar),this.el.classList.add(z[this.model.toolbar_location]),this._toolbar_view_model.autohide=this.model.autohide,this._on_visible_change(),null!=this.model.logo){const t=\"grey\"===this.model.logo?x.grey:null,o=a.a({href:\"https://bokeh.org/\",target:\"_blank\",class:[x.logo,x.logo_small,t]});this.el.appendChild(o)}for(const[,t]of this._tool_button_views)t.render();const t=[],o=t=>this._tool_button_views.get(t).el,{gestures:e}=this.model;for(const i of h.values(e))t.push(i.tools.map(o));t.push(this.model.actions.map(o)),t.push(this.model.inspectors.filter((t=>t.toggleable)).map(o));for(const o of t)if(0!==o.length){const t=a.div({class:z.button_bar},o);this.el.appendChild(t)}}update_layout(){}update_position(){}after_layout(){this._has_finished=!0}export(t,o=!0){const e=\"png\"==t?\"canvas\":\"svg\",i=new p.CanvasLayer(e,o);return i.resize(0,0),i}}function V(){return{pan:{tools:[],active:null},scroll:{tools:[],active:null},pinch:{tools:[],active:null},tap:{tools:[],active:null},doubletap:{tools:[],active:null},press:{tools:[],active:null},pressup:{tools:[],active:null},rotate:{tools:[],active:null},move:{tools:[],active:null},multi:{tools:[],active:null}}}e.ToolbarBaseView=M,M.__name__=\"ToolbarBaseView\";class S extends b.Model{constructor(t){super(t)}static init_ToolbarBase(){this.prototype.default_view=M,this.define((({Boolean:t,Array:o,Ref:e,Nullable:i})=>({tools:[o(e(g.Tool)),[]],logo:[i(_.Logo),\"normal\"],autohide:[t,!1]}))),this.internal((({Array:t,Struct:o,Ref:e,Nullable:i})=>{const s=o({tools:t(e(f.GestureTool)),active:i(e(g.Tool))});return{gestures:[o({pan:s,scroll:s,pinch:s,tap:s,doubletap:s,press:s,pressup:s,rotate:s,move:s,multi:s}),V],actions:[t(e(m.ActionTool)),[]],inspectors:[t(e(y.InspectTool)),[]],help:[t(e(w.HelpTool)),[]],toolbar_location:[_.Location,\"right\"]}}))}initialize(){super.initialize(),this._init_tools()}_init_tools(){const t=function(t,o){if(t.length!=o.length)return!0;const e=new Set(o.map((t=>t.id)));return u.some(t,(t=>!e.has(t.id)))},o=this.tools.filter((t=>t instanceof y.InspectTool));t(this.inspectors,o)&&(this.inspectors=o);const e=this.tools.filter((t=>t instanceof w.HelpTool));t(this.help,e)&&(this.help=e);const i=this.tools.filter((t=>t instanceof m.ActionTool));t(this.actions,i)&&(this.actions=i);const s=(t,o)=>{t in this.gestures||n.logger.warn(`Toolbar: unknown event type '${t}' for tool: ${o}`)},l={pan:{tools:[],active:null},scroll:{tools:[],active:null},pinch:{tools:[],active:null},tap:{tools:[],active:null},doubletap:{tools:[],active:null},press:{tools:[],active:null},pressup:{tools:[],active:null},rotate:{tools:[],active:null},move:{tools:[],active:null},multi:{tools:[],active:null}};for(const t of this.tools)if(t instanceof f.GestureTool&&t.event_type)if(v.isString(t.event_type))l[t.event_type].tools.push(t),s(t.event_type,t);else{l.multi.tools.push(t);for(const o of t.event_type)s(o,t)}for(const o of Object.keys(l)){const e=this.gestures[o];t(e.tools,l[o].tools)&&(e.tools=l[o].tools),e.active&&u.every(e.tools,(t=>t.id!=e.active.id))&&(e.active=null)}}get horizontal(){return\"above\"===this.toolbar_location||\"below\"===this.toolbar_location}get vertical(){return\"left\"===this.toolbar_location||\"right\"===this.toolbar_location}_active_change(t){const{event_type:o}=t;if(null==o)return;const e=v.isString(o)?[o]:o;for(const o of e)if(t.active){const e=this.gestures[o].active;null!=e&&t!=e&&(n.logger.debug(`Toolbar: deactivating tool: ${e} for event type '${o}'`),e.active=!1),this.gestures[o].active=t,n.logger.debug(`Toolbar: activating tool: ${t} for event type '${o}'`)}else this.gestures[o].active=null}}e.ToolbarBase=S,S.__name__=\"ToolbarBase\",S.init_ToolbarBase()},\n", + " function _(e,t,i,n,s){n();const o=e(250),a=e(99),r=e(43);function h(e){!function(e){void 0===e.lineDash&&Object.defineProperty(e,\"lineDash\",{get:()=>e.getLineDash(),set:t=>e.setLineDash(t)})}(e),function(e){e.setImageSmoothingEnabled=t=>{e.imageSmoothingEnabled=t,e.mozImageSmoothingEnabled=t,e.oImageSmoothingEnabled=t,e.webkitImageSmoothingEnabled=t,e.msImageSmoothingEnabled=t},e.getImageSmoothingEnabled=()=>{const t=e.imageSmoothingEnabled;return null==t||t}}(e),function(e){e.ellipse||(e.ellipse=function(t,i,n,s,o,a,r,h=!1){const l=.551784;e.translate(t,i),e.rotate(o);let c=n,g=s;h&&(c=-n,g=-s),e.moveTo(-c,0),e.bezierCurveTo(-c,g*l,-c*l,g,0,g),e.bezierCurveTo(c*l,g,c,g*l,c,0),e.bezierCurveTo(c,-g*l,c*l,-g,0,-g),e.bezierCurveTo(-c*l,-g,-c,-g*l,-c,0),e.rotate(-o),e.translate(-t,-i)})}(e)}const l={position:\"absolute\",top:\"0\",left:\"0\",width:\"100%\",height:\"100%\"};class c{constructor(e,t){switch(this.backend=e,this.hidpi=t,this.pixel_ratio=1,this.bbox=new a.BBox,e){case\"webgl\":case\"canvas\":{this._el=this._canvas=r.canvas({style:l});const e=this.canvas.getContext(\"2d\");if(null==e)throw new Error(\"unable to obtain 2D rendering context\");this._ctx=e,t&&(this.pixel_ratio=devicePixelRatio);break}case\"svg\":{const e=new o.SVGRenderingContext2D;this._ctx=e,this._canvas=e.get_svg(),this._el=r.div({style:l},this._canvas);break}}h(this._ctx)}get canvas(){return this._canvas}get ctx(){return this._ctx}get el(){return this._el}resize(e,t){this.bbox=new a.BBox({left:0,top:0,width:e,height:t});const i=this._ctx instanceof o.SVGRenderingContext2D?this._ctx:this.canvas;i.width=e*this.pixel_ratio,i.height=t*this.pixel_ratio}prepare(){const{ctx:e,hidpi:t,pixel_ratio:i}=this;e.save(),t&&(e.scale(i,i),e.translate(.5,.5)),this.clear()}clear(){const{x:e,y:t,width:i,height:n}=this.bbox;this.ctx.clearRect(e,t,i,n)}finish(){this.ctx.restore()}to_blob(){const{_canvas:e}=this;if(e instanceof HTMLCanvasElement)return null!=e.msToBlob?Promise.resolve(e.msToBlob()):new Promise(((t,i)=>{e.toBlob((e=>null!=e?t(e):i()),\"image/png\")}));{const e=this._ctx.get_serialized_svg(!0),t=new Blob([e],{type:\"image/svg+xml\"});return Promise.resolve(t)}}}i.CanvasLayer=c,c.__name__=\"CanvasLayer\"},\n", + " function _(t,e,i,s,n){s();const r=t(168),a=t(8),o=t(43);function l(t){if(!t)throw new Error(\"cannot create a random attribute name for an undefined object\");const e=\"ABCDEFGHIJKLMNOPQRSTUVWXTZabcdefghiklmnopqrstuvwxyz\";let i=\"\";do{i=\"\";for(let t=0;t<12;t++)i+=e[Math.floor(Math.random()*e.length)]}while(t[i]);return i}function h(t){var e;const i={left:\"start\",right:\"end\",center:\"middle\",start:\"start\",end:\"end\"};return null!==(e=i[t])&&void 0!==e?e:i.start}function c(t){var e;const i={alphabetic:\"alphabetic\",hanging:\"hanging\",top:\"text-before-edge\",bottom:\"text-after-edge\",middle:\"central\"};return null!==(e=i[t])&&void 0!==e?e:i.alphabetic}const _=function(t,e){const i=new Map,s=t.split(\",\");e=null!=e?e:10;for(let t=0;t=0?Math.acos(e):-Math.acos(e)}const w=v(f),b=v(g);this.lineTo(d+f[0]*n,m+f[1]*n),this.arc(d,m,n,w,b)}stroke(){\"path\"===this.__currentElement.nodeName&&this.__currentElement.setAttribute(\"paint-order\",\"fill\"),this.__applyCurrentDefaultPath(),this.__applyStyleToCurrentElement(\"stroke\"),null!=this._clip_path&&this.__currentElement.setAttribute(\"clip-path\",this._clip_path)}fill(t){if(\"path\"===this.__currentElement.nodeName&&this.__currentElement.setAttribute(\"paint-order\",\"stroke\"),\"none\"!=this.__currentElement.getAttribute(\"fill\")){const t=this.__currentElement.cloneNode(!0);this.__root.appendChild(t),this.__currentElement=t}this.__applyCurrentDefaultPath(),this.__applyStyleToCurrentElement(\"fill\"),null!=t&&this.__currentElement.setAttribute(\"fill-rule\",t),null!=this._clip_path&&this.__currentElement.setAttribute(\"clip-path\",this._clip_path)}rect(t,e,i,s){isFinite(t+e+i+s)&&(\"path\"!==this.__currentElement.nodeName&&this.beginPath(),this.moveTo(t,e),this.lineTo(t+i,e),this.lineTo(t+i,e+s),this.lineTo(t,e+s),this.lineTo(t,e))}fillRect(t,e,i,s){isFinite(t+e+i+s)&&(this.beginPath(),this.rect(t,e,i,s),this.fill())}strokeRect(t,e,i,s){isFinite(t+e+i+s)&&(this.beginPath(),this.rect(t,e,i,s),this.stroke())}__clearCanvas(){o.empty(this.__defs),o.empty(this.__root),this.__root.appendChild(this.__defs),this.__currentElement=this.__root}clearRect(t,e,i,s){if(!isFinite(t+e+i+s))return;if(0===t&&0===e&&i===this.width&&s===this.height)return void this.__clearCanvas();const n=this.__createElement(\"rect\",{x:t,y:e,width:i,height:s,fill:\"#FFFFFF\"},!0);this._apply_transform(n),this.__root.appendChild(n)}createLinearGradient(t,e,i,s){if(!isFinite(t+e+i+s))throw new Error(\"The provided double value is non-finite\");const[n,r]=this._transform.apply(t,e),[a,o]=this._transform.apply(i,s),h=this.__createElement(\"linearGradient\",{id:l(this.__ids),x1:`${n}px`,x2:`${a}px`,y1:`${r}px`,y2:`${o}px`,gradientUnits:\"userSpaceOnUse\"},!1);return this.__defs.appendChild(h),new p(h,this)}createRadialGradient(t,e,i,s,n,r){if(!isFinite(t+e+i+s+n+r))throw new Error(\"The provided double value is non-finite\");const[a,o]=this._transform.apply(t,e),[h,c]=this._transform.apply(s,n),_=this.__createElement(\"radialGradient\",{id:l(this.__ids),cx:`${h}px`,cy:`${c}px`,r:`${r}px`,fx:`${a}px`,fy:`${o}px`,gradientUnits:\"userSpaceOnUse\"},!1);return this.__defs.appendChild(_),new p(_,this)}__parseFont(){var t,e,i,s,n;const r=/^\\s*(?=(?:(?:[-a-z]+\\s*){0,2}(italic|oblique))?)(?=(?:(?:[-a-z]+\\s*){0,2}(small-caps))?)(?=(?:(?:[-a-z]+\\s*){0,2}(bold(?:er)?|lighter|[1-9]00))?)(?:(?:normal|\\1|\\2|\\3)\\s*){0,3}((?:xx?-)?(?:small|large)|medium|smaller|larger|[.\\d]+(?:\\%|in|[cem]m|ex|p[ctx]))(?:\\s*\\/\\s*(normal|[.\\d]+(?:\\%|in|[cem]m|ex|p[ctx])))?\\s*([-,\\'\\\"\\sa-z0-9]+?)\\s*$/i.exec(this.font),a={style:null!==(t=r[1])&&void 0!==t?t:\"normal\",size:null!==(e=r[4])&&void 0!==e?e:\"10px\",family:null!==(i=r[6])&&void 0!==i?i:\"sans-serif\",weight:null!==(s=r[3])&&void 0!==s?s:\"normal\",decoration:null!==(n=r[2])&&void 0!==n?n:\"normal\"};return\"underline\"===this.__fontUnderline&&(a.decoration=\"underline\"),null!=this.__fontHref&&(a.href=this.__fontHref),a}__wrapTextLink(t,e){if(t.href){const i=this.__createElement(\"a\");return i.setAttributeNS(\"http://www.w3.org/1999/xlink\",\"xlink:href\",t.href),i.appendChild(e),i}return e}__applyText(t,e,i,s){const n=this.__parseFont(),r=this.__createElement(\"text\",{\"font-family\":n.family,\"font-size\":n.size,\"font-style\":n.style,\"font-weight\":n.weight,\"text-decoration\":n.decoration,x:e,y:i,\"text-anchor\":h(this.textAlign),\"dominant-baseline\":c(this.textBaseline)},!0);r.appendChild(this.__document.createTextNode(t)),this._apply_transform(r),this.__currentElement=r,this.__applyStyleToCurrentElement(s),this.__root.appendChild(this.__wrapTextLink(n,r))}fillText(t,e,i){null!=t&&isFinite(e+i)&&this.__applyText(t,e,i,\"fill\")}strokeText(t,e,i){null!=t&&isFinite(e+i)&&this.__applyText(t,e,i,\"stroke\")}measureText(t){return this.__ctx.font=this.font,this.__ctx.measureText(t)}arc(t,e,i,s,n,r=!1){if(!isFinite(t+e+i+s+n))return;if(s===n)return;(s%=2*Math.PI)===(n%=2*Math.PI)&&(n=(n+2*Math.PI-.001*(r?-1:1))%(2*Math.PI));const a=t+i*Math.cos(n),o=e+i*Math.sin(n),l=t+i*Math.cos(s),h=e+i*Math.sin(s),c=r?0:1;let _=0,u=n-s;u<0&&(u+=2*Math.PI),_=r?u>Math.PI?0:1:u>Math.PI?1:0,this.lineTo(l,h);const p=i,d=i,[m,f]=this._transform.apply(a,o);this.__addPathCommand(m,f,`A ${p} ${d} 0 ${_} ${c} ${m} ${f}`)}clip(){const t=this.__createElement(\"clipPath\"),e=l(this.__ids);this.__applyCurrentDefaultPath(),t.setAttribute(\"id\",e),t.appendChild(this.__currentElement),this.__defs.appendChild(t),this._clip_path=`url(#${e})`}drawImage(t,...e){let i,s,n,r,a,o,l,h;if(2==e.length){if([i,s]=e,!isFinite(i+s))return;a=0,o=0,l=t.width,h=t.height,n=l,r=h}else if(4==e.length){if([i,s,n,r]=e,!isFinite(i+s+n+r))return;a=0,o=0,l=t.width,h=t.height}else{if(8!==e.length)throw new Error(`Inavlid number of arguments passed to drawImage: ${arguments.length}`);if([a,o,l,h,i,s,n,r]=e,!isFinite(a+o+l+h+i+s+n+r))return}const c=this.__root,_=this._transform.clone().translate(i,s);if(t instanceof m||t instanceof SVGSVGElement){const e=(t instanceof SVGSVGElement?t:t.get_svg()).cloneNode(!0);let i;_.is_identity?i=c:(i=this.__createElement(\"g\"),this._apply_transform(i,_),c.appendChild(i));for(const t of[...e.childNodes])if(t instanceof SVGDefsElement){for(const e of[...t.childNodes])if(e instanceof Element){const t=e.getAttribute(\"id\");this.__ids[t]=t,this.__defs.appendChild(e)}}else i.appendChild(t)}else if(t instanceof HTMLImageElement||t instanceof SVGImageElement){const e=this.__createElement(\"image\");if(e.setAttribute(\"width\",`${n}`),e.setAttribute(\"height\",`${r}`),e.setAttribute(\"preserveAspectRatio\",\"none\"),a||o||l!==t.width||h!==t.height){const e=this.__document.createElement(\"canvas\");e.width=n,e.height=r;e.getContext(\"2d\").drawImage(t,a,o,l,h,0,0,n,r),t=e}this._apply_transform(e,_);const i=t instanceof HTMLCanvasElement?t.toDataURL():t.getAttribute(\"src\");e.setAttributeNS(\"http://www.w3.org/1999/xlink\",\"xlink:href\",i),c.appendChild(e)}else if(t instanceof HTMLCanvasElement){const e=this.__createElement(\"image\");e.setAttribute(\"width\",`${n}`),e.setAttribute(\"height\",`${r}`),e.setAttribute(\"preserveAspectRatio\",\"none\");const i=this.__document.createElement(\"canvas\");i.width=n,i.height=r;const s=i.getContext(\"2d\");s.imageSmoothingEnabled=!1,s.drawImage(t,a,o,l,h,0,0,n,r),t=i,this._apply_transform(e,_),e.setAttributeNS(\"http://www.w3.org/1999/xlink\",\"xlink:href\",t.toDataURL()),c.appendChild(e)}}createPattern(t,e){const i=this.__document.createElementNS(\"http://www.w3.org/2000/svg\",\"pattern\"),s=l(this.__ids);if(i.setAttribute(\"id\",s),i.setAttribute(\"width\",`${this._to_number(t.width)}`),i.setAttribute(\"height\",`${this._to_number(t.height)}`),i.setAttribute(\"patternUnits\",\"userSpaceOnUse\"),t instanceof HTMLCanvasElement||t instanceof HTMLImageElement||t instanceof SVGImageElement){const e=this.__document.createElementNS(\"http://www.w3.org/2000/svg\",\"image\"),s=t instanceof HTMLCanvasElement?t.toDataURL():t.getAttribute(\"src\");e.setAttributeNS(\"http://www.w3.org/1999/xlink\",\"xlink:href\",s),i.appendChild(e),this.__defs.appendChild(i)}else if(t instanceof m){for(const e of[...t.__root.childNodes])e instanceof SVGDefsElement||i.appendChild(e);this.__defs.appendChild(i)}else{if(!(t instanceof SVGSVGElement))throw new Error(\"unsupported\");for(const e of[...t.childNodes])e instanceof SVGDefsElement||i.appendChild(e);this.__defs.appendChild(i)}return new d(i,this)}setLineDash(t){t&&t.length>0?this.lineDash=t.join(\",\"):this.lineDash=null}_to_number(t){return a.isNumber(t)?t:t.baseVal.value}}i.SVGRenderingContext2D=m,m.__name__=\"SVGRenderingContext2D\"},\n", + " function _(o,t,n,i,e){i();const s=o(238),c=o(15);class l extends s.ButtonToolButtonView{_clicked(){this.model.do.emit(void 0)}}n.ActionToolButtonView=l,l.__name__=\"ActionToolButtonView\";class _ extends s.ButtonToolView{connect_signals(){super.connect_signals(),this.connect(this.model.do,(o=>this.doit(o)))}}n.ActionToolView=_,_.__name__=\"ActionToolView\";class d extends s.ButtonTool{constructor(o){super(o),this.button_view=l,this.do=new c.Signal(this,\"do\")}}n.ActionTool=d,d.__name__=\"ActionTool\"},\n", + " function _(o,e,t,i,l){i();const s=o(251),n=o(242);class r extends s.ActionToolView{doit(){window.open(this.model.redirect)}}t.HelpToolView=r,r.__name__=\"HelpToolView\";class c extends s.ActionTool{constructor(o){super(o),this.tool_name=\"Help\",this.icon=n.tool_icon_help}static init_HelpTool(){this.prototype.default_view=r,this.define((({String:o})=>({redirect:[o,\"https://docs.bokeh.org/en/latest/docs/user_guide/tools.html\"]}))),this.override({description:\"Click the question mark to learn more about Bokeh plot tools.\"}),this.register_alias(\"help\",(()=>new c))}}t.HelpTool=c,c.__name__=\"HelpTool\",c.init_HelpTool()},\n", + " function _(o,l,g,A,r){A(),g.root=\"bk-root\",g.logo=\"bk-logo\",g.grey=\"bk-grey\",g.logo_small=\"bk-logo-small\",g.logo_notebook=\"bk-logo-notebook\",g.default=\".bk-root .bk-logo{margin:5px;position:relative;display:block;background-repeat:no-repeat;}.bk-root .bk-logo.bk-grey{filter:url(\\\"data:image/svg+xml;utf8,#grayscale\\\");filter:gray;-webkit-filter:grayscale(100%);}.bk-root .bk-logo-small{width:20px;height:20px;background-image:url();}.bk-root .bk-logo-notebook{display:inline-block;vertical-align:middle;margin-right:5px;}\"},\n", + " function _(t,e,i,s,l){s();const o=t(1),n=t(40),h=t(20),a=t(43),r=o.__importStar(t(255)),c=r;class d extends n.AnnotationView{initialize(){super.initialize(),this.el=a.div({class:c.tooltip}),a.undisplay(this.el),this.plot_view.canvas_view.add_overlay(this.el)}remove(){a.remove(this.el),super.remove()}connect_signals(){super.connect_signals(),this.connect(this.model.properties.content.change,(()=>this.render())),this.connect(this.model.properties.position.change,(()=>this._reposition()))}styles(){return[...super.styles(),r.default]}render(){this.model.visible||a.undisplay(this.el),super.render()}_render(){const{content:t}=this.model;null!=t?(a.empty(this.el),a.classes(this.el).toggle(\"bk-tooltip-custom\",this.model.custom),this.el.appendChild(t),this.model.show_arrow&&this.el.classList.add(c.tooltip_arrow)):a.undisplay(this.el)}_reposition(){const{position:t}=this.model;if(null==t)return void a.undisplay(this.el);const[e,i]=t,s=(()=>{const t=this.parent.layout.bbox.relative(),{attachment:s}=this.model;switch(s){case\"horizontal\":return e({attachment:[h.TooltipAttachment,\"horizontal\"],inner_only:[t,!0],show_arrow:[t,!0]}))),this.internal((({Boolean:t,Number:e,Tuple:i,Ref:s,Nullable:l})=>({position:[l(i(e,e)),null],content:[s(HTMLElement),()=>a.div()],custom:[t]}))),this.override({level:\"overlay\"})}clear(){this.position=null}}i.Tooltip=p,p.__name__=\"Tooltip\",p.init_Tooltip()},\n", + " function _(o,t,r,e,l){e(),r.root=\"bk-root\",r.tooltip=\"bk-tooltip\",r.left=\"bk-left\",r.tooltip_arrow=\"bk-tooltip-arrow\",r.right=\"bk-right\",r.above=\"bk-above\",r.below=\"bk-below\",r.tooltip_row_label=\"bk-tooltip-row-label\",r.tooltip_row_value=\"bk-tooltip-row-value\",r.tooltip_color_block=\"bk-tooltip-color-block\",r.default='.bk-root{}.bk-root .bk-tooltip{font-weight:300;font-size:12px;position:absolute;padding:5px;border:1px solid #e5e5e5;color:#2f2f2f;background-color:white;pointer-events:none;opacity:0.95;z-index:100;}.bk-root .bk-tooltip > div:not(:first-child){margin-top:5px;border-top:#e5e5e5 1px dashed;}.bk-root .bk-tooltip.bk-left.bk-tooltip-arrow::before{position:absolute;margin:-7px 0 0 0;top:50%;width:0;height:0;border-style:solid;border-width:7px 0 7px 0;border-color:transparent;content:\" \";display:block;left:-10px;border-right-width:10px;border-right-color:#909599;}.bk-root .bk-tooltip.bk-left::before{left:-10px;border-right-width:10px;border-right-color:#909599;}.bk-root .bk-tooltip.bk-right.bk-tooltip-arrow::after{position:absolute;margin:-7px 0 0 0;top:50%;width:0;height:0;border-style:solid;border-width:7px 0 7px 0;border-color:transparent;content:\" \";display:block;right:-10px;border-left-width:10px;border-left-color:#909599;}.bk-root .bk-tooltip.bk-right::after{right:-10px;border-left-width:10px;border-left-color:#909599;}.bk-root .bk-tooltip.bk-above::before{position:absolute;margin:0 0 0 -7px;left:50%;width:0;height:0;border-style:solid;border-width:0 7px 0 7px;border-color:transparent;content:\" \";display:block;top:-10px;border-bottom-width:10px;border-bottom-color:#909599;}.bk-root .bk-tooltip.bk-below::after{position:absolute;margin:0 0 0 -7px;left:50%;width:0;height:0;border-style:solid;border-width:0 7px 0 7px;border-color:transparent;content:\" \";display:block;bottom:-10px;border-top-width:10px;border-top-color:#909599;}.bk-root .bk-tooltip-row-label{text-align:right;color:#26aae1;}.bk-root .bk-tooltip-row-value{color:default;}.bk-root .bk-tooltip-color-block{width:12px;height:12px;margin-left:5px;margin-right:5px;outline:#dddddd solid 1px;display:inline-block;}'},\n", + " function _(e,t,i,s,r){s();const a=e(135),h=e(133),_=e(122),l=e(48);class o extends a.UpperLowerView{async lazy_initialize(){await super.lazy_initialize();const{lower_head:e,upper_head:t}=this.model;null!=e&&(this.lower_head=await _.build_view(e,{parent:this})),null!=t&&(this.upper_head=await _.build_view(t,{parent:this}))}set_data(e){var t,i;super.set_data(e),null===(t=this.lower_head)||void 0===t||t.set_data(e),null===(i=this.upper_head)||void 0===i||i.set_data(e)}paint(e){if(this.visuals.line.doit)for(let t=0,i=this._lower_sx.length;t({lower_head:[t(e(h.ArrowHead)),()=>new h.TeeHead({size:10})],upper_head:[t(e(h.ArrowHead)),()=>new h.TeeHead({size:10})]}))),this.override({level:\"underlay\"})}}i.Whisker=n,n.__name__=\"Whisker\",n.init_Whisker()},\n", + " function _(n,o,t,u,e){u(),e(\"CustomJS\",n(258).CustomJS),e(\"OpenURL\",n(260).OpenURL)},\n", + " function _(t,s,e,n,c){n();const u=t(259),i=t(13),a=t(34);class r extends u.Callback{constructor(t){super(t)}static init_CustomJS(){this.define((({Unknown:t,String:s,Dict:e})=>({args:[e(t),{}],code:[s,\"\"]})))}get names(){return i.keys(this.args)}get values(){return i.values(this.args)}get func(){const t=a.use_strict(this.code);return new Function(...this.names,\"cb_obj\",\"cb_data\",t)}execute(t,s={}){return this.func.apply(t,this.values.concat(t,s))}}e.CustomJS=r,r.__name__=\"CustomJS\",r.init_CustomJS()},\n", + " function _(c,a,l,n,s){n();const e=c(53);class o extends e.Model{constructor(c){super(c)}}l.Callback=o,o.__name__=\"Callback\"},\n", + " function _(e,n,t,o,i){o();const s=e(259),c=e(182),r=e(8);class a extends s.Callback{constructor(e){super(e)}static init_OpenURL(){this.define((({Boolean:e,String:n})=>({url:[n,\"http://\"],same_tab:[e,!1]})))}execute(e,{source:n}){const t=e=>{const t=c.replace_placeholders(this.url,n,e,void 0,void 0,encodeURIComponent);if(!r.isString(t))throw new Error(\"HTML output is not supported in this context\");this.same_tab?window.location.href=t:window.open(t)},{selected:o}=n;for(const e of o.indices)t(e);for(const e of o.line_indices)t(e)}}t.OpenURL=a,a.__name__=\"OpenURL\",a.init_OpenURL()},\n", + " function _(a,n,e,r,s){r(),s(\"Canvas\",a(262).Canvas),s(\"CartesianFrame\",a(144).CartesianFrame)},\n", + " function _(e,t,s,i,a){i();const l=e(14),n=e(240),r=e(19),o=e(43),h=e(20),_=e(13),c=e(263),d=e(99),p=e(249),v=(()=>{const e=document.createElement(\"canvas\"),t=e.getContext(\"webgl\",{premultipliedAlpha:!0});return null!=t?{canvas:e,gl:t}:void r.logger.trace(\"WebGL is not supported\")})(),u={position:\"absolute\",top:\"0\",left:\"0\",width:\"100%\",height:\"100%\"};class b extends n.DOMView{constructor(){super(...arguments),this.bbox=new d.BBox}initialize(){super.initialize(),\"webgl\"==this.model.output_backend&&(this.webgl=v),this.underlays_el=o.div({style:u}),this.primary=this.create_layer(),this.overlays=this.create_layer(),this.overlays_el=o.div({style:u}),this.events_el=o.div({class:\"bk-canvas-events\",style:u});const e=[this.underlays_el,this.primary.el,this.overlays.el,this.overlays_el,this.events_el];_.extend(this.el.style,u),o.append(this.el,...e),this.ui_event_bus=new c.UIEventBus(this)}remove(){this.ui_event_bus.destroy(),super.remove()}add_underlay(e){this.underlays_el.appendChild(e)}add_overlay(e){this.overlays_el.appendChild(e)}add_event(e){this.events_el.appendChild(e)}get pixel_ratio(){return this.primary.pixel_ratio}resize(e,t){this.bbox=new d.BBox({left:0,top:0,width:e,height:t}),this.primary.resize(e,t),this.overlays.resize(e,t)}prepare_webgl(e){const{webgl:t}=this;if(null!=t){const{width:s,height:i}=this.bbox;t.canvas.width=this.pixel_ratio*s,t.canvas.height=this.pixel_ratio*i;const{gl:a}=t;a.enable(a.SCISSOR_TEST);const[l,n,r,o]=e,{xview:h,yview:_}=this.bbox,c=h.compute(l),d=_.compute(n+o),p=this.pixel_ratio;a.scissor(p*c,p*d,p*r,p*o),a.enable(a.BLEND),a.blendFuncSeparate(a.SRC_ALPHA,a.ONE_MINUS_SRC_ALPHA,a.ONE_MINUS_DST_ALPHA,a.ONE),this._clear_webgl()}}blit_webgl(e){const{webgl:t}=this;if(null!=t){if(r.logger.debug(\"Blitting WebGL canvas\"),e.restore(),e.drawImage(t.canvas,0,0),e.save(),this.model.hidpi){const t=this.pixel_ratio;e.scale(t,t),e.translate(.5,.5)}this._clear_webgl()}}_clear_webgl(){const{webgl:e}=this;if(null!=e){const{gl:t,canvas:s}=e;t.viewport(0,0,s.width,s.height),t.clearColor(0,0,0,0),t.clear(t.COLOR_BUFFER_BIT|t.DEPTH_BUFFER_BIT)}}compose(){const e=this.create_layer(),{width:t,height:s}=this.bbox;return e.resize(t,s),e.ctx.drawImage(this.primary.canvas,0,0),e.ctx.drawImage(this.overlays.canvas,0,0),e}create_layer(){const{output_backend:e,hidpi:t}=this.model;return new p.CanvasLayer(e,t)}to_blob(){return this.compose().to_blob()}}s.CanvasView=b,b.__name__=\"CanvasView\";class g extends l.HasProps{constructor(e){super(e)}static init_Canvas(){this.prototype.default_view=b,this.internal((({Boolean:e})=>({hidpi:[e,!0],output_backend:[h.OutputBackend,\"canvas\"]})))}}s.Canvas=g,g.__name__=\"Canvas\",g.init_Canvas()},\n", + " function _(t,e,s,n,i){n();const r=t(1),a=r.__importDefault(t(239)),_=t(15),h=t(19),o=t(43),l=r.__importStar(t(264)),c=t(265),p=t(9),u=t(8),v=t(27),d=t(244);class g{constructor(t){this.canvas_view=t,this.pan_start=new _.Signal(this,\"pan:start\"),this.pan=new _.Signal(this,\"pan\"),this.pan_end=new _.Signal(this,\"pan:end\"),this.pinch_start=new _.Signal(this,\"pinch:start\"),this.pinch=new _.Signal(this,\"pinch\"),this.pinch_end=new _.Signal(this,\"pinch:end\"),this.rotate_start=new _.Signal(this,\"rotate:start\"),this.rotate=new _.Signal(this,\"rotate\"),this.rotate_end=new _.Signal(this,\"rotate:end\"),this.tap=new _.Signal(this,\"tap\"),this.doubletap=new _.Signal(this,\"doubletap\"),this.press=new _.Signal(this,\"press\"),this.pressup=new _.Signal(this,\"pressup\"),this.move_enter=new _.Signal(this,\"move:enter\"),this.move=new _.Signal(this,\"move\"),this.move_exit=new _.Signal(this,\"move:exit\"),this.scroll=new _.Signal(this,\"scroll\"),this.keydown=new _.Signal(this,\"keydown\"),this.keyup=new _.Signal(this,\"keyup\"),this.hammer=new a.default(this.hit_area,{touchAction:\"auto\",inputClass:a.default.TouchMouseInput}),this._prev_move=null,this._curr_pan=null,this._curr_pinch=null,this._curr_rotate=null,this._configure_hammerjs(),this.hit_area.addEventListener(\"mousemove\",(t=>this._mouse_move(t))),this.hit_area.addEventListener(\"mouseenter\",(t=>this._mouse_enter(t))),this.hit_area.addEventListener(\"mouseleave\",(t=>this._mouse_exit(t))),this.hit_area.addEventListener(\"contextmenu\",(t=>this._context_menu(t))),this.hit_area.addEventListener(\"wheel\",(t=>this._mouse_wheel(t))),document.addEventListener(\"keydown\",this),document.addEventListener(\"keyup\",this),this.menu=new d.ContextMenu([],{prevent_hide:t=>2==t.button&&t.target==this.hit_area}),this.hit_area.appendChild(this.menu.el)}get hit_area(){return this.canvas_view.events_el}destroy(){this.menu.remove(),this.hammer.destroy(),document.removeEventListener(\"keydown\",this),document.removeEventListener(\"keyup\",this)}handleEvent(t){\"keydown\"==t.type?this._key_down(t):\"keyup\"==t.type&&this._key_up(t)}_configure_hammerjs(){this.hammer.get(\"doubletap\").recognizeWith(\"tap\"),this.hammer.get(\"tap\").requireFailure(\"doubletap\"),this.hammer.get(\"doubletap\").dropRequireFailure(\"tap\"),this.hammer.on(\"doubletap\",(t=>this._doubletap(t))),this.hammer.on(\"tap\",(t=>this._tap(t))),this.hammer.on(\"press\",(t=>this._press(t))),this.hammer.on(\"pressup\",(t=>this._pressup(t))),this.hammer.get(\"pan\").set({direction:a.default.DIRECTION_ALL}),this.hammer.on(\"panstart\",(t=>this._pan_start(t))),this.hammer.on(\"pan\",(t=>this._pan(t))),this.hammer.on(\"panend\",(t=>this._pan_end(t))),this.hammer.get(\"pinch\").set({enable:!0}),this.hammer.on(\"pinchstart\",(t=>this._pinch_start(t))),this.hammer.on(\"pinch\",(t=>this._pinch(t))),this.hammer.on(\"pinchend\",(t=>this._pinch_end(t))),this.hammer.get(\"rotate\").set({enable:!0}),this.hammer.on(\"rotatestart\",(t=>this._rotate_start(t))),this.hammer.on(\"rotate\",(t=>this._rotate(t))),this.hammer.on(\"rotateend\",(t=>this._rotate_end(t)))}register_tool(t){const e=t.model.event_type;null!=e&&(u.isString(e)?this._register_tool(t,e):e.forEach(((e,s)=>this._register_tool(t,e,s<1))))}_register_tool(t,e,s=!0){const n=t,{id:i}=n.model,r=t=>e=>{e.id==i&&t(e.e)},a=t=>e=>{t(e.e)};switch(e){case\"pan\":null!=n._pan_start&&n.connect(this.pan_start,r(n._pan_start.bind(n))),null!=n._pan&&n.connect(this.pan,r(n._pan.bind(n))),null!=n._pan_end&&n.connect(this.pan_end,r(n._pan_end.bind(n)));break;case\"pinch\":null!=n._pinch_start&&n.connect(this.pinch_start,r(n._pinch_start.bind(n))),null!=n._pinch&&n.connect(this.pinch,r(n._pinch.bind(n))),null!=n._pinch_end&&n.connect(this.pinch_end,r(n._pinch_end.bind(n)));break;case\"rotate\":null!=n._rotate_start&&n.connect(this.rotate_start,r(n._rotate_start.bind(n))),null!=n._rotate&&n.connect(this.rotate,r(n._rotate.bind(n))),null!=n._rotate_end&&n.connect(this.rotate_end,r(n._rotate_end.bind(n)));break;case\"move\":null!=n._move_enter&&n.connect(this.move_enter,r(n._move_enter.bind(n))),null!=n._move&&n.connect(this.move,r(n._move.bind(n))),null!=n._move_exit&&n.connect(this.move_exit,r(n._move_exit.bind(n)));break;case\"tap\":null!=n._tap&&n.connect(this.tap,r(n._tap.bind(n))),null!=n._doubletap&&n.connect(this.doubletap,r(n._doubletap.bind(n)));break;case\"press\":null!=n._press&&n.connect(this.press,r(n._press.bind(n))),null!=n._pressup&&n.connect(this.pressup,r(n._pressup.bind(n)));break;case\"scroll\":null!=n._scroll&&n.connect(this.scroll,r(n._scroll.bind(n)));break;default:throw new Error(`unsupported event_type: ${e}`)}s&&(null!=n._keydown&&n.connect(this.keydown,a(n._keydown.bind(n))),null!=n._keyup&&n.connect(this.keyup,a(n._keyup.bind(n))),v.is_mobile&&null!=n._scroll&&\"pinch\"==e&&(h.logger.debug(\"Registering scroll on touch screen\"),n.connect(this.scroll,r(n._scroll.bind(n)))))}_hit_test_renderers(t,e,s){var n;const i=t.get_renderer_views();for(const t of p.reversed(i))if(null===(n=t.interactive_hit)||void 0===n?void 0:n.call(t,e,s))return t;return null}set_cursor(t=\"default\"){this.hit_area.style.cursor=t}_hit_test_frame(t,e,s){return t.frame.bbox.contains(e,s)}_hit_test_canvas(t,e,s){return t.layout.bbox.contains(e,s)}_hit_test_plot(t,e){for(const s of this.canvas_view.plot_views)if(s.layout.bbox.relative().contains(t,e))return s;return null}_trigger(t,e,s){var n;const{sx:i,sy:r}=e,a=this._hit_test_plot(i,r),_=t=>{const[s,n]=[i,r];return Object.assign(Object.assign({},e),{sx:s,sy:n})};if(\"panstart\"==e.type||\"pan\"==e.type||\"panend\"==e.type){let n;if(\"panstart\"==e.type&&null!=a?(this._curr_pan={plot_view:a},n=a):\"pan\"==e.type&&null!=this._curr_pan?n=this._curr_pan.plot_view:\"panend\"==e.type&&null!=this._curr_pan?(n=this._curr_pan.plot_view,this._curr_pan=null):n=null,null!=n){const e=_();this.__trigger(n,t,e,s)}}else if(\"pinchstart\"==e.type||\"pinch\"==e.type||\"pinchend\"==e.type){let n;if(\"pinchstart\"==e.type&&null!=a?(this._curr_pinch={plot_view:a},n=a):\"pinch\"==e.type&&null!=this._curr_pinch?n=this._curr_pinch.plot_view:\"pinchend\"==e.type&&null!=this._curr_pinch?(n=this._curr_pinch.plot_view,this._curr_pinch=null):n=null,null!=n){const e=_();this.__trigger(n,t,e,s)}}else if(\"rotatestart\"==e.type||\"rotate\"==e.type||\"rotateend\"==e.type){let n;if(\"rotatestart\"==e.type&&null!=a?(this._curr_rotate={plot_view:a},n=a):\"rotate\"==e.type&&null!=this._curr_rotate?n=this._curr_rotate.plot_view:\"rotateend\"==e.type&&null!=this._curr_rotate?(n=this._curr_rotate.plot_view,this._curr_rotate=null):n=null,null!=n){const e=_();this.__trigger(n,t,e,s)}}else if(\"mouseenter\"==e.type||\"mousemove\"==e.type||\"mouseleave\"==e.type){const h=null===(n=this._prev_move)||void 0===n?void 0:n.plot_view;if(null!=h&&(\"mouseleave\"==e.type||h!=a)){const{sx:t,sy:e}=_();this.__trigger(h,this.move_exit,{type:\"mouseleave\",sx:t,sy:e,shiftKey:!1,ctrlKey:!1},s)}if(null!=a&&(\"mouseenter\"==e.type||h!=a)){const{sx:t,sy:e}=_();this.__trigger(a,this.move_enter,{type:\"mouseenter\",sx:t,sy:e,shiftKey:!1,ctrlKey:!1},s)}if(null!=a&&\"mousemove\"==e.type){const e=_();this.__trigger(a,t,e,s)}this._prev_move={sx:i,sy:r,plot_view:a}}else if(null!=a){const e=_();this.__trigger(a,t,e,s)}}__trigger(t,e,s,n){var i,r;const a=t.model.toolbar.gestures,_=e.name.split(\":\")[0],h=this._hit_test_renderers(t,s.sx,s.sy),o=this._hit_test_canvas(t,s.sx,s.sy);switch(_){case\"move\":{const n=a[_].active;null!=n&&this.trigger(e,s,n.id);const r=t.model.toolbar.inspectors.filter((t=>t.active));let l=\"default\";null!=h?(l=null!==(i=h.cursor(s.sx,s.sy))&&void 0!==i?i:l,p.is_empty(r)||(e=this.move_exit)):this._hit_test_frame(t,s.sx,s.sy)&&(p.is_empty(r)||(l=\"crosshair\")),this.set_cursor(l),t.set_toolbar_visibility(o),r.map((t=>this.trigger(e,s,t.id)));break}case\"tap\":{const{target:t}=n;if(null!=t&&t!=this.hit_area)return;null!=h&&null!=h.on_hit&&h.on_hit(s.sx,s.sy);const i=a[_].active;null!=i&&this.trigger(e,s,i.id);break}case\"doubletap\":{const t=null!==(r=a.doubletap.active)&&void 0!==r?r:a.tap.active;null!=t&&this.trigger(e,s,t.id);break}case\"scroll\":{const t=a[v.is_mobile?\"pinch\":\"scroll\"].active;null!=t&&(n.preventDefault(),n.stopPropagation(),this.trigger(e,s,t.id));break}case\"pan\":{const t=a[_].active;null!=t&&(n.preventDefault(),this.trigger(e,s,t.id));break}default:{const t=a[_].active;null!=t&&this.trigger(e,s,t.id)}}this._trigger_bokeh_event(t,s)}trigger(t,e,s=null){t.emit({id:s,e})}_trigger_bokeh_event(t,e){const s=(()=>{const{sx:s,sy:n}=e,i=t.frame.x_scale.invert(s),r=t.frame.y_scale.invert(n);switch(e.type){case\"wheel\":return new l.MouseWheel(s,n,i,r,e.delta);case\"mousemove\":return new l.MouseMove(s,n,i,r);case\"mouseenter\":return new l.MouseEnter(s,n,i,r);case\"mouseleave\":return new l.MouseLeave(s,n,i,r);case\"tap\":return new l.Tap(s,n,i,r);case\"doubletap\":return new l.DoubleTap(s,n,i,r);case\"press\":return new l.Press(s,n,i,r);case\"pressup\":return new l.PressUp(s,n,i,r);case\"pan\":return new l.Pan(s,n,i,r,e.deltaX,e.deltaY);case\"panstart\":return new l.PanStart(s,n,i,r);case\"panend\":return new l.PanEnd(s,n,i,r);case\"pinch\":return new l.Pinch(s,n,i,r,e.scale);case\"pinchstart\":return new l.PinchStart(s,n,i,r);case\"pinchend\":return new l.PinchEnd(s,n,i,r);case\"rotate\":return new l.Rotate(s,n,i,r,e.rotation);case\"rotatestart\":return new l.RotateStart(s,n,i,r);case\"rotateend\":return new l.RotateEnd(s,n,i,r);default:return}})();null!=s&&t.model.trigger_event(s)}_get_sxy(t){const{pageX:e,pageY:s}=function(t){return\"undefined\"!=typeof TouchEvent&&t instanceof TouchEvent}(t)?(0!=t.touches.length?t.touches:t.changedTouches)[0]:t,{left:n,top:i}=o.offset(this.hit_area);return{sx:e-n,sy:s-i}}_pan_event(t){return Object.assign(Object.assign({type:t.type},this._get_sxy(t.srcEvent)),{deltaX:t.deltaX,deltaY:t.deltaY,shiftKey:t.srcEvent.shiftKey,ctrlKey:t.srcEvent.ctrlKey})}_pinch_event(t){return Object.assign(Object.assign({type:t.type},this._get_sxy(t.srcEvent)),{scale:t.scale,shiftKey:t.srcEvent.shiftKey,ctrlKey:t.srcEvent.ctrlKey})}_rotate_event(t){return Object.assign(Object.assign({type:t.type},this._get_sxy(t.srcEvent)),{rotation:t.rotation,shiftKey:t.srcEvent.shiftKey,ctrlKey:t.srcEvent.ctrlKey})}_tap_event(t){return Object.assign(Object.assign({type:t.type},this._get_sxy(t.srcEvent)),{shiftKey:t.srcEvent.shiftKey,ctrlKey:t.srcEvent.ctrlKey})}_move_event(t){return Object.assign(Object.assign({type:t.type},this._get_sxy(t)),{shiftKey:t.shiftKey,ctrlKey:t.ctrlKey})}_scroll_event(t){return Object.assign(Object.assign({type:t.type},this._get_sxy(t)),{delta:c.getDeltaY(t),shiftKey:t.shiftKey,ctrlKey:t.ctrlKey})}_key_event(t){return{type:t.type,keyCode:t.keyCode}}_pan_start(t){const e=this._pan_event(t);e.sx-=t.deltaX,e.sy-=t.deltaY,this._trigger(this.pan_start,e,t.srcEvent)}_pan(t){this._trigger(this.pan,this._pan_event(t),t.srcEvent)}_pan_end(t){this._trigger(this.pan_end,this._pan_event(t),t.srcEvent)}_pinch_start(t){this._trigger(this.pinch_start,this._pinch_event(t),t.srcEvent)}_pinch(t){this._trigger(this.pinch,this._pinch_event(t),t.srcEvent)}_pinch_end(t){this._trigger(this.pinch_end,this._pinch_event(t),t.srcEvent)}_rotate_start(t){this._trigger(this.rotate_start,this._rotate_event(t),t.srcEvent)}_rotate(t){this._trigger(this.rotate,this._rotate_event(t),t.srcEvent)}_rotate_end(t){this._trigger(this.rotate_end,this._rotate_event(t),t.srcEvent)}_tap(t){this._trigger(this.tap,this._tap_event(t),t.srcEvent)}_doubletap(t){this._trigger(this.doubletap,this._tap_event(t),t.srcEvent)}_press(t){this._trigger(this.press,this._tap_event(t),t.srcEvent)}_pressup(t){this._trigger(this.pressup,this._tap_event(t),t.srcEvent)}_mouse_enter(t){this._trigger(this.move_enter,this._move_event(t),t)}_mouse_move(t){this._trigger(this.move,this._move_event(t),t)}_mouse_exit(t){this._trigger(this.move_exit,this._move_event(t),t)}_mouse_wheel(t){this._trigger(this.scroll,this._scroll_event(t),t)}_context_menu(t){!this.menu.is_open&&this.menu.can_open&&t.preventDefault();const{sx:e,sy:s}=this._get_sxy(t);this.menu.toggle({left:e,top:s})}_key_down(t){this.trigger(this.keydown,this._key_event(t))}_key_up(t){this.trigger(this.keyup,this._key_event(t))}}s.UIEventBus=g,g.__name__=\"UIEventBus\"},\n", + " function _(e,t,s,n,_){n();var a=this&&this.__decorate||function(e,t,s,n){var _,a=arguments.length,o=a<3?t:null===n?n=Object.getOwnPropertyDescriptor(t,s):n;if(\"object\"==typeof Reflect&&\"function\"==typeof Reflect.decorate)o=Reflect.decorate(e,t,s,n);else for(var c=e.length-1;c>=0;c--)(_=e[c])&&(o=(a<3?_(o):a>3?_(t,s,o):_(t,s))||o);return a>3&&o&&Object.defineProperty(t,s,o),o};function o(e){return function(t){t.prototype.event_name=e}}class c{to_json(){const{event_name:e}=this;return{event_name:e,event_values:this._to_json()}}}s.BokehEvent=c,c.__name__=\"BokehEvent\";class r extends c{constructor(){super(...arguments),this.origin=null}_to_json(){return{model:this.origin}}}s.ModelEvent=r,r.__name__=\"ModelEvent\";let l=class extends c{_to_json(){return{}}};s.DocumentReady=l,l.__name__=\"DocumentReady\",s.DocumentReady=l=a([o(\"document_ready\")],l);let i=class extends r{};s.ButtonClick=i,i.__name__=\"ButtonClick\",s.ButtonClick=i=a([o(\"button_click\")],i);let u=class extends r{constructor(e){super(),this.item=e}_to_json(){const{item:e}=this;return Object.assign(Object.assign({},super._to_json()),{item:e})}};s.MenuItemClick=u,u.__name__=\"MenuItemClick\",s.MenuItemClick=u=a([o(\"menu_item_click\")],u);class d extends r{}s.UIEvent=d,d.__name__=\"UIEvent\";let h=class extends d{};s.LODStart=h,h.__name__=\"LODStart\",s.LODStart=h=a([o(\"lodstart\")],h);let m=class extends d{};s.LODEnd=m,m.__name__=\"LODEnd\",s.LODEnd=m=a([o(\"lodend\")],m);let x=class extends d{constructor(e,t){super(),this.geometry=e,this.final=t}_to_json(){const{geometry:e,final:t}=this;return Object.assign(Object.assign({},super._to_json()),{geometry:e,final:t})}};s.SelectionGeometry=x,x.__name__=\"SelectionGeometry\",s.SelectionGeometry=x=a([o(\"selectiongeometry\")],x);let p=class extends d{};s.Reset=p,p.__name__=\"Reset\",s.Reset=p=a([o(\"reset\")],p);class j extends d{constructor(e,t,s,n){super(),this.sx=e,this.sy=t,this.x=s,this.y=n}_to_json(){const{sx:e,sy:t,x:s,y:n}=this;return Object.assign(Object.assign({},super._to_json()),{sx:e,sy:t,x:s,y:n})}}s.PointEvent=j,j.__name__=\"PointEvent\";let y=class extends j{constructor(e,t,s,n,_,a){super(e,t,s,n),this.sx=e,this.sy=t,this.x=s,this.y=n,this.delta_x=_,this.delta_y=a}_to_json(){const{delta_x:e,delta_y:t}=this;return Object.assign(Object.assign({},super._to_json()),{delta_x:e,delta_y:t})}};s.Pan=y,y.__name__=\"Pan\",s.Pan=y=a([o(\"pan\")],y);let P=class extends j{constructor(e,t,s,n,_){super(e,t,s,n),this.sx=e,this.sy=t,this.x=s,this.y=n,this.scale=_}_to_json(){const{scale:e}=this;return Object.assign(Object.assign({},super._to_json()),{scale:e})}};s.Pinch=P,P.__name__=\"Pinch\",s.Pinch=P=a([o(\"pinch\")],P);let v=class extends j{constructor(e,t,s,n,_){super(e,t,s,n),this.sx=e,this.sy=t,this.x=s,this.y=n,this.rotation=_}_to_json(){const{rotation:e}=this;return Object.assign(Object.assign({},super._to_json()),{rotation:e})}};s.Rotate=v,v.__name__=\"Rotate\",s.Rotate=v=a([o(\"rotate\")],v);let g=class extends j{constructor(e,t,s,n,_){super(e,t,s,n),this.sx=e,this.sy=t,this.x=s,this.y=n,this.delta=_}_to_json(){const{delta:e}=this;return Object.assign(Object.assign({},super._to_json()),{delta:e})}};s.MouseWheel=g,g.__name__=\"MouseWheel\",s.MouseWheel=g=a([o(\"wheel\")],g);let E=class extends j{};s.MouseMove=E,E.__name__=\"MouseMove\",s.MouseMove=E=a([o(\"mousemove\")],E);let O=class extends j{};s.MouseEnter=O,O.__name__=\"MouseEnter\",s.MouseEnter=O=a([o(\"mouseenter\")],O);let b=class extends j{};s.MouseLeave=b,b.__name__=\"MouseLeave\",s.MouseLeave=b=a([o(\"mouseleave\")],b);let M=class extends j{};s.Tap=M,M.__name__=\"Tap\",s.Tap=M=a([o(\"tap\")],M);let R=class extends j{};s.DoubleTap=R,R.__name__=\"DoubleTap\",s.DoubleTap=R=a([o(\"doubletap\")],R);let f=class extends j{};s.Press=f,f.__name__=\"Press\",s.Press=f=a([o(\"press\")],f);let S=class extends j{};s.PressUp=S,S.__name__=\"PressUp\",s.PressUp=S=a([o(\"pressup\")],S);let D=class extends j{};s.PanStart=D,D.__name__=\"PanStart\",s.PanStart=D=a([o(\"panstart\")],D);let k=class extends j{};s.PanEnd=k,k.__name__=\"PanEnd\",s.PanEnd=k=a([o(\"panend\")],k);let L=class extends j{};s.PinchStart=L,L.__name__=\"PinchStart\",s.PinchStart=L=a([o(\"pinchstart\")],L);let C=class extends j{};s.PinchEnd=C,C.__name__=\"PinchEnd\",s.PinchEnd=C=a([o(\"pinchend\")],C);let T=class extends j{};s.RotateStart=T,T.__name__=\"RotateStart\",s.RotateStart=T=a([o(\"rotatestart\")],T);let B=class extends j{};s.RotateEnd=B,B.__name__=\"RotateEnd\",s.RotateEnd=B=a([o(\"rotateend\")],B)},\n", + " function _(t,e,n,l,o){\n", + " /*!\n", + " * jQuery Mousewheel 3.1.13\n", + " *\n", + " * Copyright jQuery Foundation and other contributors\n", + " * Released under the MIT license\n", + " * http://jquery.org/license\n", + " */\n", + " function u(t){const e=getComputedStyle(t).fontSize;return null!=e?parseInt(e,10):null}l(),n.getDeltaY=function(t){let e=-t.deltaY;if(t.target instanceof HTMLElement)switch(t.deltaMode){case t.DOM_DELTA_LINE:e*=(n=t.target,null!==(a=null!==(o=u(null!==(l=n.offsetParent)&&void 0!==l?l:document.body))&&void 0!==o?o:u(n))&&void 0!==a?a:16);break;case t.DOM_DELTA_PAGE:e*=function(t){return t.clientHeight}(t.target)}var n,l,o,a;return e}},\n", + " function _(m,i,u,s,a){s(),a(\"Expression\",m(124).Expression),a(\"CustomJSExpr\",m(267).CustomJSExpr),a(\"Stack\",m(268).Stack),a(\"CumSum\",m(269).CumSum),a(\"ScalarExpression\",m(124).ScalarExpression),a(\"Minimum\",m(270).Minimum),a(\"Maximum\",m(271).Maximum)},\n", + " function _(t,e,s,n,r){n();const i=t(14),o=t(124),a=t(24),c=t(9),u=t(13),l=t(34),h=t(8);class p extends o.Expression{constructor(t){super(t)}static init_CustomJSExpr(){this.define((({Unknown:t,String:e,Dict:s})=>({args:[s(t),{}],code:[e,\"\"]})))}connect_signals(){super.connect_signals();for(const t of u.values(this.args))t instanceof i.HasProps&&t.change.connect((()=>{this._result.clear(),this.change.emit()}))}get names(){return u.keys(this.args)}get values(){return u.values(this.args)}get func(){const t=l.use_strict(this.code);return new a.GeneratorFunction(...this.names,t)}_v_compute(t){const e=this.func.apply(t,this.values);let s=e.next();if(s.done&&void 0!==s.value){const{value:e}=s;return h.isArray(e)||h.isTypedArray(e)?e:h.isIterable(e)?[...e]:c.repeat(e,t.length)}{const t=[];do{t.push(s.value),s=e.next()}while(!s.done);return t}}}s.CustomJSExpr=p,p.__name__=\"CustomJSExpr\",p.init_CustomJSExpr()},\n", + " function _(t,n,e,i,s){i();const a=t(124);class c extends a.Expression{constructor(t){super(t)}static init_Stack(){this.define((({String:t,Array:n})=>({fields:[n(t),[]]})))}_v_compute(t){var n;const e=null!==(n=t.get_length())&&void 0!==n?n:0,i=new Float64Array(e);for(const n of this.fields){const s=t.data[n];if(null!=s)for(let t=0,n=Math.min(e,s.length);t({field:[t],include_zero:[e,!1]})))}_v_compute(e){var t;const n=new Float64Array(null!==(t=e.get_length())&&void 0!==t?t:0),i=e.data[this.field],u=this.include_zero?1:0;n[0]=this.include_zero?0:i[0];for(let e=1;e({field:[n],initial:[t(i),null]})))}_compute(i){var n,t;const l=null!==(n=i.data[this.field])&&void 0!==n?n:[];return Math.min(null!==(t=this.initial)&&void 0!==t?t:1/0,m.min(l))}}t.Minimum=s,s.__name__=\"Minimum\",s.init_Minimum()},\n", + " function _(i,t,a,n,l){n();const u=i(124),e=i(9);class m extends u.ScalarExpression{constructor(i){super(i)}static init_Maximum(){this.define((({Number:i,String:t,Nullable:a})=>({field:[t],initial:[a(i),null]})))}_compute(i){var t,a;const n=null!==(t=i.data[this.field])&&void 0!==t?t:[];return Math.max(null!==(a=this.initial)&&void 0!==a?a:-1/0,e.max(n))}}a.Maximum=m,m.__name__=\"Maximum\",m.init_Maximum()},\n", + " function _(e,t,l,r,i){r(),i(\"BooleanFilter\",e(273).BooleanFilter),i(\"CustomJSFilter\",e(274).CustomJSFilter),i(\"Filter\",e(121).Filter),i(\"GroupFilter\",e(275).GroupFilter),i(\"IndexFilter\",e(276).IndexFilter)},\n", + " function _(e,n,l,o,t){o();const i=e(121),s=e(24);class a extends i.Filter{constructor(e){super(e)}static init_BooleanFilter(){this.define((({Boolean:e,Array:n,Nullable:l})=>({booleans:[l(n(e)),null]})))}compute_indices(e){const n=e.length,{booleans:l}=this;return null==l?s.Indices.all_set(n):s.Indices.from_booleans(n,l)}}l.BooleanFilter=a,a.__name__=\"BooleanFilter\",a.init_BooleanFilter()},\n", + " function _(e,t,s,n,r){n();const i=e(121),o=e(24),u=e(13),c=e(8),a=e(34);class l extends i.Filter{constructor(e){super(e)}static init_CustomJSFilter(){this.define((({Unknown:e,String:t,Dict:s})=>({args:[s(e),{}],code:[t,\"\"]})))}get names(){return u.keys(this.args)}get values(){return u.values(this.args)}get func(){const e=a.use_strict(this.code);return new Function(...this.names,\"source\",e)}compute_indices(e){const t=e.length,s=this.func(...this.values,e);if(null==s)return o.Indices.all_set(t);if(c.isArrayOf(s,c.isInteger))return o.Indices.from_indices(t,s);if(c.isArrayOf(s,c.isBoolean))return o.Indices.from_booleans(t,s);throw new Error(`expect an array of integers or booleans, or null, got ${s}`)}}s.CustomJSFilter=l,l.__name__=\"CustomJSFilter\",l.init_CustomJSFilter()},\n", + " function _(n,t,e,i,o){i();const r=n(121),u=n(24),s=n(19);class c extends r.Filter{constructor(n){super(n)}static init_GroupFilter(){this.define((({String:n})=>({column_name:[n],group:[n]})))}compute_indices(n){const t=n.get_column(this.column_name);if(null==t)return s.logger.warn(`${this}: groupby column '${this.column_name}' not found in the data source`),new u.Indices(n.length,1);{const e=new u.Indices(n.length);for(let n=0;n({indices:[i(n(e)),null]})))}compute_indices(e){const n=e.length,{indices:i}=this;return null==i?c.Indices.all_set(n):c.Indices.from_indices(n,i)}}i.IndexFilter=r,r.__name__=\"IndexFilter\",r.init_IndexFilter()},\n", + " function _(e,a,l,i,t){i(),t(\"AnnularWedge\",e(278).AnnularWedge),t(\"Annulus\",e(279).Annulus),t(\"Arc\",e(280).Arc),t(\"Bezier\",e(281).Bezier),t(\"Circle\",e(282).Circle),t(\"Ellipse\",e(286).Ellipse),t(\"EllipseOval\",e(287).EllipseOval),t(\"Glyph\",e(98).Glyph),t(\"HArea\",e(117).HArea),t(\"HBar\",e(289).HBar),t(\"HexTile\",e(291).HexTile),t(\"Image\",e(292).Image),t(\"ImageRGBA\",e(294).ImageRGBA),t(\"ImageURL\",e(295).ImageURL),t(\"Line\",e(63).Line),t(\"MultiLine\",e(127).MultiLine),t(\"MultiPolygons\",e(297).MultiPolygons),t(\"Oval\",e(298).Oval),t(\"Patch\",e(116).Patch),t(\"Patches\",e(128).Patches),t(\"Quad\",e(299).Quad),t(\"Quadratic\",e(300).Quadratic),t(\"Ray\",e(301).Ray),t(\"Rect\",e(302).Rect),t(\"Scatter\",e(303).Scatter),t(\"Segment\",e(306).Segment),t(\"Spline\",e(307).Spline),t(\"Step\",e(309).Step),t(\"Text\",e(310).Text),t(\"VArea\",e(119).VArea),t(\"VBar\",e(311).VBar),t(\"Wedge\",e(312).Wedge)},\n", + " function _(e,t,s,i,r){i();const n=e(1),a=e(64),o=e(106),_=e(48),d=e(24),u=e(20),h=n.__importStar(e(18)),l=e(10),c=e(59);class g extends a.XYGlyphView{_map_data(){\"data\"==this.model.properties.inner_radius.units?this.sinner_radius=this.sdist(this.renderer.xscale,this._x,this.inner_radius):this.sinner_radius=d.to_screen(this.inner_radius),\"data\"==this.model.properties.outer_radius.units?this.souter_radius=this.sdist(this.renderer.xscale,this._x,this.outer_radius):this.souter_radius=d.to_screen(this.outer_radius)}_render(e,t,s){const{sx:i,sy:r,start_angle:n,end_angle:a,sinner_radius:o,souter_radius:_}=null!=s?s:this,d=\"anticlock\"==this.model.direction;for(const s of t){const t=i[s],u=r[s],h=o[s],l=_[s],c=n.get(s),g=a.get(s);if(isNaN(t+u+h+l+c+g))continue;const x=g-c;e.translate(t,u),e.rotate(c),e.beginPath(),e.moveTo(l,0),e.arc(0,0,l,0,x,d),e.rotate(x),e.lineTo(h,0),e.arc(0,0,h,0,-x,!d),e.closePath(),e.rotate(-x-c),e.translate(-t,-u),this.visuals.fill.doit&&(this.visuals.fill.set_vectorize(e,s),e.fill()),this.visuals.hatch.doit&&(this.visuals.hatch.set_vectorize(e,s),e.fill()),this.visuals.line.doit&&(this.visuals.line.set_vectorize(e,s),e.stroke())}}_hit_point(e){const{sx:t,sy:s}=e,i=this.renderer.xscale.invert(t),r=this.renderer.yscale.invert(s);let n,a,o,_;if(\"data\"==this.model.properties.outer_radius.units)n=i-this.max_outer_radius,o=i+this.max_outer_radius,a=r-this.max_outer_radius,_=r+this.max_outer_radius;else{const e=t-this.max_outer_radius,i=t+this.max_outer_radius;[n,o]=this.renderer.xscale.r_invert(e,i);const r=s-this.max_outer_radius,d=s+this.max_outer_radius;[a,_]=this.renderer.yscale.r_invert(r,d)}const d=[];for(const e of this.index.indices({x0:n,x1:o,y0:a,y1:_})){const t=this.souter_radius[e]**2,s=this.sinner_radius[e]**2,[n,a]=this.renderer.xscale.r_compute(i,this._x[e]),[o,_]=this.renderer.yscale.r_compute(r,this._y[e]),u=(n-a)**2+(o-_)**2;u<=t&&u>=s&&d.push(e)}const u=\"anticlock\"==this.model.direction,h=[];for(const e of d){const i=Math.atan2(s-this.sy[e],t-this.sx[e]);l.angle_between(-i,-this.start_angle.get(e),-this.end_angle.get(e),u)&&h.push(e)}return new c.Selection({indices:h})}draw_legend_for_index(e,t,s){o.generic_area_vector_legend(this.visuals,e,t,s)}scenterxy(e){const t=(this.sinner_radius[e]+this.souter_radius[e])/2,s=(this.start_angle.get(e)+this.end_angle.get(e))/2;return[this.sx[e]+t*Math.cos(s),this.sy[e]+t*Math.sin(s)]}}s.AnnularWedgeView=g,g.__name__=\"AnnularWedgeView\";class x extends a.XYGlyph{constructor(e){super(e)}static init_AnnularWedge(){this.prototype.default_view=g,this.mixins([_.LineVector,_.FillVector,_.HatchVector]),this.define((({})=>({direction:[u.Direction,\"anticlock\"],inner_radius:[h.DistanceSpec,{field:\"inner_radius\"}],outer_radius:[h.DistanceSpec,{field:\"outer_radius\"}],start_angle:[h.AngleSpec,{field:\"start_angle\"}],end_angle:[h.AngleSpec,{field:\"end_angle\"}]})))}}s.AnnularWedge=x,x.__name__=\"AnnularWedge\",x.init_AnnularWedge()},\n", + " function _(s,i,t,e,r){e();const n=s(1),a=s(64),u=s(24),_=s(48),o=n.__importStar(s(18)),h=s(27),d=s(59);class c extends a.XYGlyphView{_map_data(){\"data\"==this.model.properties.inner_radius.units?this.sinner_radius=this.sdist(this.renderer.xscale,this._x,this.inner_radius):this.sinner_radius=u.to_screen(this.inner_radius),\"data\"==this.model.properties.outer_radius.units?this.souter_radius=this.sdist(this.renderer.xscale,this._x,this.outer_radius):this.souter_radius=u.to_screen(this.outer_radius)}_render(s,i,t){const{sx:e,sy:r,sinner_radius:n,souter_radius:a}=null!=t?t:this;for(const t of i){const i=e[t],_=r[t],o=n[t],d=a[t];function u(){if(s.beginPath(),h.is_ie)for(const t of[!1,!0])s.arc(i,_,o,0,Math.PI,t),s.arc(i,_,d,Math.PI,0,!t);else s.arc(i,_,o,0,2*Math.PI,!0),s.arc(i,_,d,2*Math.PI,0,!1)}isNaN(i+_+o+d)||(this.visuals.fill.doit&&(this.visuals.fill.set_vectorize(s,t),u(),s.fill()),this.visuals.hatch.doit&&(this.visuals.hatch.set_vectorize(s,t),u(),s.fill()),this.visuals.line.doit&&(this.visuals.line.set_vectorize(s,t),s.beginPath(),s.arc(i,_,o,0,2*Math.PI),s.moveTo(i+d,_),s.arc(i,_,d,0,2*Math.PI),s.stroke()))}}_hit_point(s){const{sx:i,sy:t}=s,e=this.renderer.xscale.invert(i),r=this.renderer.yscale.invert(t);let n,a,u,_;if(\"data\"==this.model.properties.outer_radius.units)n=e-this.max_outer_radius,u=e+this.max_outer_radius,a=r-this.max_outer_radius,_=r+this.max_outer_radius;else{const s=i-this.max_outer_radius,e=i+this.max_outer_radius;[n,u]=this.renderer.xscale.r_invert(s,e);const r=t-this.max_outer_radius,o=t+this.max_outer_radius;[a,_]=this.renderer.yscale.r_invert(r,o)}const o=[];for(const s of this.index.indices({x0:n,x1:u,y0:a,y1:_})){const i=this.souter_radius[s]**2,t=this.sinner_radius[s]**2,[n,a]=this.renderer.xscale.r_compute(e,this._x[s]),[u,_]=this.renderer.yscale.r_compute(r,this._y[s]),h=(n-a)**2+(u-_)**2;h<=i&&h>=t&&o.push(s)}return new d.Selection({indices:o})}draw_legend_for_index(s,{x0:i,y0:t,x1:e,y1:r},n){const a=n+1,u=new Array(a);u[n]=(i+e)/2;const _=new Array(a);_[n]=(t+r)/2;const o=.5*Math.min(Math.abs(e-i),Math.abs(r-t)),h=new Array(a);h[n]=.4*o;const d=new Array(a);d[n]=.8*o,this._render(s,[n],{sx:u,sy:_,sinner_radius:h,souter_radius:d})}}t.AnnulusView=c,c.__name__=\"AnnulusView\";class l extends a.XYGlyph{constructor(s){super(s)}static init_Annulus(){this.prototype.default_view=c,this.mixins([_.LineVector,_.FillVector,_.HatchVector]),this.define((({})=>({inner_radius:[o.DistanceSpec,{field:\"inner_radius\"}],outer_radius:[o.DistanceSpec,{field:\"outer_radius\"}]})))}}t.Annulus=l,l.__name__=\"Annulus\",l.init_Annulus()},\n", + " function _(e,i,s,t,n){t();const r=e(1),a=e(64),c=e(106),d=e(48),_=e(24),l=e(20),o=r.__importStar(e(18));class h extends a.XYGlyphView{_map_data(){\"data\"==this.model.properties.radius.units?this.sradius=this.sdist(this.renderer.xscale,this._x,this.radius):this.sradius=_.to_screen(this.radius)}_render(e,i,s){if(this.visuals.line.doit){const{sx:t,sy:n,sradius:r,start_angle:a,end_angle:c}=null!=s?s:this,d=\"anticlock\"==this.model.direction;for(const s of i){const i=t[s],_=n[s],l=r[s],o=a.get(s),h=c.get(s);isNaN(i+_+l+o+h)||(e.beginPath(),e.arc(i,_,l,o,h,d),this.visuals.line.set_vectorize(e,s),e.stroke())}}}draw_legend_for_index(e,i,s){c.generic_line_vector_legend(this.visuals,e,i,s)}}s.ArcView=h,h.__name__=\"ArcView\";class u extends a.XYGlyph{constructor(e){super(e)}static init_Arc(){this.prototype.default_view=h,this.mixins(d.LineVector),this.define((({})=>({direction:[l.Direction,\"anticlock\"],radius:[o.DistanceSpec,{field:\"radius\"}],start_angle:[o.AngleSpec,{field:\"start_angle\"}],end_angle:[o.AngleSpec,{field:\"end_angle\"}]})))}}s.Arc=u,u.__name__=\"Arc\",u.init_Arc()},\n", + " function _(e,t,i,s,n){s();const o=e(1),c=e(48),r=e(98),a=e(106),_=e(65),d=o.__importStar(e(18));function l(e,t,i,s,n,o,c,r){const a=[],_=[[],[]];for(let _=0;_<=2;_++){let d,l,x;if(0===_?(l=6*e-12*i+6*n,d=-3*e+9*i-9*n+3*c,x=3*i-3*e):(l=6*t-12*s+6*o,d=-3*t+9*s-9*o+3*r,x=3*s-3*t),Math.abs(d)<1e-12){if(Math.abs(l)<1e-12)continue;const e=-x/l;0({x0:[d.XCoordinateSpec,{field:\"x0\"}],y0:[d.YCoordinateSpec,{field:\"y0\"}],x1:[d.XCoordinateSpec,{field:\"x1\"}],y1:[d.YCoordinateSpec,{field:\"y1\"}],cx0:[d.XCoordinateSpec,{field:\"cx0\"}],cy0:[d.YCoordinateSpec,{field:\"cy0\"}],cx1:[d.XCoordinateSpec,{field:\"cx1\"}],cy1:[d.YCoordinateSpec,{field:\"cy1\"}]}))),this.mixins(c.LineVector)}}i.Bezier=h,h.__name__=\"Bezier\",h.init_Bezier()},\n", + " function _(s,i,e,t,r){t();const a=s(1),n=s(64),h=s(283),d=s(48),l=s(24),c=s(20),_=a.__importStar(s(107)),u=a.__importStar(s(18)),o=s(9),x=s(12),m=s(59);class y extends n.XYGlyphView{initialize(){super.initialize();const{webgl:s}=this.renderer.plot_view.canvas_view;null!=s&&(this.glglyph=new h.MarkerGL(s.gl,this,\"circle\"))}get use_radius(){return!(this.radius.is_Scalar()&&isNaN(this.radius.value))}_map_data(){if(this.use_radius)if(\"data\"==this.model.properties.radius.units)switch(this.model.radius_dimension){case\"x\":this.sradius=this.sdist(this.renderer.xscale,this._x,this.radius);break;case\"y\":this.sradius=this.sdist(this.renderer.yscale,this._y,this.radius);break;case\"max\":{const s=this.sdist(this.renderer.xscale,this._x,this.radius),i=this.sdist(this.renderer.yscale,this._y,this.radius);this.sradius=x.map(s,((s,e)=>Math.max(s,i[e])));break}case\"min\":{const s=this.sdist(this.renderer.xscale,this._x,this.radius),i=this.sdist(this.renderer.yscale,this._y,this.radius);this.sradius=x.map(s,((s,e)=>Math.min(s,i[e])));break}}else this.sradius=l.to_screen(this.radius),this._configure(\"max_size\",{value:2*this.max_radius});else{const s=new l.ScreenArray(this.size);this.sradius=x.map(s,(s=>s/2))}}_mask_data(){const{frame:s}=this.renderer.plot_view,i=s.x_target,e=s.y_target;let t,r;return this.use_radius&&\"data\"==this.model.properties.radius.units?(t=i.map((s=>this.renderer.xscale.invert(s))).widen(this.max_radius),r=e.map((s=>this.renderer.yscale.invert(s))).widen(this.max_radius)):(t=i.widen(this.max_size).map((s=>this.renderer.xscale.invert(s))),r=e.widen(this.max_size).map((s=>this.renderer.yscale.invert(s)))),this.index.indices({x0:t.start,x1:t.end,y0:r.start,y1:r.end})}_render(s,i,e){const{sx:t,sy:r,sradius:a}=null!=e?e:this;for(const e of i){const i=t[e],n=r[e],h=a[e];isNaN(i+n+h)||(s.beginPath(),s.arc(i,n,h,0,2*Math.PI,!1),this.visuals.fill.doit&&(this.visuals.fill.set_vectorize(s,e),s.fill()),this.visuals.hatch.doit&&(this.visuals.hatch.set_vectorize(s,e),s.fill()),this.visuals.line.doit&&(this.visuals.line.set_vectorize(s,e),s.stroke()))}}_hit_point(s){const{sx:i,sy:e}=s,t=this.renderer.xscale.invert(i),r=this.renderer.yscale.invert(e),{hit_dilation:a}=this.model;let n,h,d,l;if(this.use_radius&&\"data\"==this.model.properties.radius.units)n=t-this.max_radius*a,h=t+this.max_radius*a,d=r-this.max_radius*a,l=r+this.max_radius*a;else{const s=i-this.max_size*a,t=i+this.max_size*a;[n,h]=this.renderer.xscale.r_invert(s,t);const r=e-this.max_size*a,c=e+this.max_size*a;[d,l]=this.renderer.yscale.r_invert(r,c)}const c=this.index.indices({x0:n,x1:h,y0:d,y1:l}),_=[];if(this.use_radius&&\"data\"==this.model.properties.radius.units)for(const s of c){const i=(this.sradius[s]*a)**2,[e,n]=this.renderer.xscale.r_compute(t,this._x[s]),[h,d]=this.renderer.yscale.r_compute(r,this._y[s]);(e-n)**2+(h-d)**2<=i&&_.push(s)}else for(const s of c){const t=(this.sradius[s]*a)**2;(this.sx[s]-i)**2+(this.sy[s]-e)**2<=t&&_.push(s)}return new m.Selection({indices:_})}_hit_span(s){const{sx:i,sy:e}=s,t=this.bounds();let r,a,n,h;if(\"h\"==s.direction){let s,e;if(n=t.y0,h=t.y1,this.use_radius&&\"data\"==this.model.properties.radius.units)s=i-this.max_radius,e=i+this.max_radius,[r,a]=this.renderer.xscale.r_invert(s,e);else{const t=this.max_size/2;s=i-t,e=i+t,[r,a]=this.renderer.xscale.r_invert(s,e)}}else{let s,i;if(r=t.x0,a=t.x1,this.use_radius&&\"data\"==this.model.properties.radius.units)s=e-this.max_radius,i=e+this.max_radius,[n,h]=this.renderer.yscale.r_invert(s,i);else{const t=this.max_size/2;s=e-t,i=e+t,[n,h]=this.renderer.yscale.r_invert(s,i)}}const d=[...this.index.indices({x0:r,x1:a,y0:n,y1:h})];return new m.Selection({indices:d})}_hit_rect(s){const{sx0:i,sx1:e,sy0:t,sy1:r}=s,[a,n]=this.renderer.xscale.r_invert(i,e),[h,d]=this.renderer.yscale.r_invert(t,r),l=[...this.index.indices({x0:a,x1:n,y0:h,y1:d})];return new m.Selection({indices:l})}_hit_poly(s){const{sx:i,sy:e}=s,t=o.range(0,this.sx.length),r=[];for(let s=0,a=t.length;s({angle:[u.AngleSpec,0],size:[u.ScreenDistanceSpec,{value:4}],radius:[u.NullDistanceSpec,null],radius_dimension:[c.RadiusDimension,\"x\"],hit_dilation:[s,1]})))}}e.Circle=p,p.__name__=\"Circle\",p.init_Circle()},\n", + " function _(t,e,s,i,a){i();const r=t(1),o=t(109),_=t(113),l=r.__importDefault(t(284)),h=r.__importDefault(t(285)),n=t(282),f=t(12),u=t(19),c=t(24),g=t(22),b=t(11);function d(t,e,s,i,a,r,o){if(a.doit)if(r.is_Scalar()&&o.is_Scalar()){e.used=!1;const[i,a,_,l]=g.color2rgba(r.value,o.value);t.set_attribute(s,\"vec4\",[i/255,a/255,_/255,l/255])}else{let a;if(e.used=!0,r.is_Vector()){const t=new c.ColorArray(r.array);if(a=new c.RGBAArray(t.buffer),!o.is_Scalar()||1!=o.value)for(let t=0;t2*t))),i.data_changed=!1),this.visuals_changed&&(this._set_visuals(a),this.visuals_changed=!1),this.prog.set_uniform(\"u_pixel_ratio\",\"float\",[s.pixel_ratio]),this.prog.set_uniform(\"u_canvas_size\",\"vec2\",[s.width,s.height]),this.prog.set_attribute(\"a_sx\",\"float\",i.vbo_sx),this.prog.set_attribute(\"a_sy\",\"float\",i.vbo_sy),this.prog.set_attribute(\"a_size\",\"float\",i.vbo_s),this.prog.set_attribute(\"a_angle\",\"float\",i.vbo_a),0!=t.length)if(t.length===a)this.prog.draw(this.gl.POINTS,[0,a]);else if(a<65535){const e=window.navigator.userAgent;e.indexOf(\"MSIE \")+e.indexOf(\"Trident/\")+e.indexOf(\"Edge/\")>0&&u.logger.warn(\"WebGL warning: IE is known to produce 1px sprites whith selections.\"),this.index_buffer.set_size(2*t.length),this.index_buffer.set_data(0,new Uint16Array(t)),this.prog.draw(this.gl.POINTS,this.index_buffer)}else{const e=64e3,s=[];for(let t=0,i=Math.ceil(a/e);t2*t))):this.vbo_s.set_data(0,new Float32Array(this.glyph.size))}_set_visuals(t){const{line:e,fill:s}=this.glyph.visuals;!function(t,e,s,i,a,r){if(a.doit){if(r.is_Scalar())e.used=!1,t.set_attribute(s,\"float\",[r.value]);else if(r.is_Vector()){e.used=!0;const a=new Float32Array(r.array);e.set_size(4*i),e.set_data(0,a),t.set_attribute(s,\"float\",e)}}else e.used=!1,t.set_attribute(s,\"float\",[0])}(this.prog,this.vbo_linewidth,\"a_linewidth\",t,e,e.line_width),d(this.prog,this.vbo_fg_color,\"a_fg_color\",t,e,e.line_color,e.line_alpha),d(this.prog,this.vbo_bg_color,\"a_bg_color\",t,s,s.fill_color,s.fill_alpha),this.prog.set_uniform(\"u_antialias\",\"float\",[.8])}}s.MarkerGL=p,p.__name__=\"MarkerGL\"},\n", + " function _(n,i,a,o,_){o();a.default=\"\\nprecision mediump float;\\nconst float SQRT_2 = 1.4142135623730951;\\n//\\nuniform float u_pixel_ratio;\\nuniform vec2 u_canvas_size;\\nuniform vec2 u_offset;\\nuniform vec2 u_scale;\\nuniform float u_antialias;\\n//\\nattribute float a_sx;\\nattribute float a_sy;\\nattribute float a_size;\\nattribute float a_angle; // in radians\\nattribute float a_linewidth;\\nattribute vec4 a_fg_color;\\nattribute vec4 a_bg_color;\\n//\\nvarying float v_linewidth;\\nvarying float v_size;\\nvarying vec4 v_fg_color;\\nvarying vec4 v_bg_color;\\nvarying vec2 v_rotation;\\n\\nvoid main (void)\\n{\\n v_size = a_size * u_pixel_ratio;\\n v_linewidth = a_linewidth * u_pixel_ratio;\\n v_fg_color = a_fg_color;\\n v_bg_color = a_bg_color;\\n v_rotation = vec2(cos(-a_angle), sin(-a_angle));\\n vec2 pos = vec2(a_sx, a_sy); // in pixels\\n pos += 0.5; // make up for Bokeh's offset\\n pos /= u_canvas_size / u_pixel_ratio; // in 0..1\\n gl_Position = vec4(pos*2.0-1.0, 0.0, 1.0);\\n gl_Position.y *= -1.0;\\n gl_PointSize = SQRT_2 * v_size + 2.0 * (v_linewidth + 1.5*u_antialias);\\n}\\n\"},\n", + " function _(n,a,s,e,t){e();s.default='\\nprecision mediump float;\\n\\nconst float SQRT_2 = 1.4142135623730951;\\nconst float PI = 3.14159265358979323846264;\\n\\nconst float IN_ANGLE = 0.6283185307179586; // PI/5. = 36 degrees (star of 5 pikes)\\n//const float OUT_ANGLE = PI/2. - IN_ANGLE; // External angle for regular stars\\nconst float COS_A = 0.8090169943749475; // cos(IN_ANGLE)\\nconst float SIN_A = 0.5877852522924731; // sin(IN_ANGLE)\\nconst float COS_B = 0.5877852522924731; // cos(OUT_ANGLE)\\nconst float SIN_B = 0.8090169943749475; // sin(OUT_ANGLE)\\n\\n//\\nuniform float u_antialias;\\n//\\nvarying vec4 v_fg_color;\\nvarying vec4 v_bg_color;\\nvarying float v_linewidth;\\nvarying float v_size;\\nvarying vec2 v_rotation;\\n\\n#ifdef USE_ASTERISK\\n// asterisk\\nfloat marker(vec2 P, float size)\\n{\\n // Masks\\n float diamond = max(abs(SQRT_2 / 2.0 * (P.x - P.y)), abs(SQRT_2 / 2.0 * (P.x + P.y))) - size / (2.0 * SQRT_2);\\n float square = max(abs(P.x), abs(P.y)) - size / (2.0 * SQRT_2);\\n // Shapes\\n float X = min(abs(P.x - P.y), abs(P.x + P.y)) - size / 100.0; // bit of \"width\" for aa\\n float cross = min(abs(P.x), abs(P.y)) - size / 100.0; // bit of \"width\" for aa\\n // Result is union of masked shapes\\n return min(max(X, diamond), max(cross, square));\\n}\\n#endif\\n\\n#ifdef USE_CIRCLE\\n// circle\\nfloat marker(vec2 P, float size)\\n{\\n return length(P) - size/2.0;\\n}\\n#endif\\n\\n#ifdef USE_SQUARE\\n// square\\nfloat marker(vec2 P, float size)\\n{\\n return max(abs(P.x), abs(P.y)) - size/2.0;\\n}\\n#endif\\n\\n#ifdef USE_DIAMOND\\n// diamond\\nfloat marker(vec2 P, float size)\\n{\\n float x = SQRT_2 / 2.0 * (P.x * 1.5 - P.y);\\n float y = SQRT_2 / 2.0 * (P.x * 1.5 + P.y);\\n float r1 = max(abs(x), abs(y)) - size / (2.0 * SQRT_2);\\n return r1 / SQRT_2;\\n}\\n#endif\\n\\n#ifdef USE_HEX\\n// hex\\nfloat marker(vec2 P, float size)\\n{\\n vec2 q = abs(P);\\n return max(q.y * 0.57735 + q.x - 1.0 * size/2.0, q.y - 0.866 * size/2.0);\\n}\\n#endif\\n\\n#ifdef USE_STAR\\n// star\\n// https://iquilezles.org/www/articles/distfunctions2d/distfunctions2d.htm\\nfloat marker(vec2 P, float size)\\n{\\n float bn = mod(atan(P.x, -P.y), 2.0*IN_ANGLE) - IN_ANGLE;\\n P = length(P)*vec2(cos(bn), abs(sin(bn)));\\n P -= size*vec2(COS_A, SIN_A)/2.;\\n P += vec2(COS_B, SIN_B)*clamp(-(P.x*COS_B + P.y*SIN_B), 0.0, size*SIN_A/SIN_B/2.);\\n\\n return length(P)*sign(P.x);\\n}\\n#endif\\n\\n#ifdef USE_TRIANGLE\\n// triangle\\nfloat marker(vec2 P, float size)\\n{\\n P.y -= size * 0.3;\\n float x = SQRT_2 / 2.0 * (P.x * 1.7 - P.y);\\n float y = SQRT_2 / 2.0 * (P.x * 1.7 + P.y);\\n float r1 = max(abs(x), abs(y)) - size / 1.6;\\n float r2 = P.y;\\n return max(r1 / SQRT_2, r2); // Intersect diamond with rectangle\\n}\\n#endif\\n\\n#ifdef USE_INVERTED_TRIANGLE\\n// inverted_triangle\\nfloat marker(vec2 P, float size)\\n{\\n P.y += size * 0.3;\\n float x = SQRT_2 / 2.0 * (P.x * 1.7 - P.y);\\n float y = SQRT_2 / 2.0 * (P.x * 1.7 + P.y);\\n float r1 = max(abs(x), abs(y)) - size / 1.6;\\n float r2 = - P.y;\\n return max(r1 / SQRT_2, r2); // Intersect diamond with rectangle\\n}\\n#endif\\n\\n#ifdef USE_CROSS\\n// cross\\nfloat marker(vec2 P, float size)\\n{\\n float square = max(abs(P.x), abs(P.y)) - size / 2.5; // 2.5 is a tweak\\n float cross = min(abs(P.x), abs(P.y)) - size / 100.0; // bit of \"width\" for aa\\n return max(square, cross);\\n}\\n#endif\\n\\n#ifdef USE_CIRCLE_CROSS\\n// circle_cross\\nfloat marker(vec2 P, float size)\\n{\\n // Define quadrants\\n float qs = size / 2.0; // quadrant size\\n float s1 = max(abs(P.x - qs), abs(P.y - qs)) - qs;\\n float s2 = max(abs(P.x + qs), abs(P.y - qs)) - qs;\\n float s3 = max(abs(P.x - qs), abs(P.y + qs)) - qs;\\n float s4 = max(abs(P.x + qs), abs(P.y + qs)) - qs;\\n // Intersect main shape with quadrants (to form cross)\\n float circle = length(P) - size/2.0;\\n float c1 = max(circle, s1);\\n float c2 = max(circle, s2);\\n float c3 = max(circle, s3);\\n float c4 = max(circle, s4);\\n // Union\\n return min(min(min(c1, c2), c3), c4);\\n}\\n#endif\\n\\n#ifdef USE_SQUARE_CROSS\\n// square_cross\\nfloat marker(vec2 P, float size)\\n{\\n // Define quadrants\\n float qs = size / 2.0; // quadrant size\\n float s1 = max(abs(P.x - qs), abs(P.y - qs)) - qs;\\n float s2 = max(abs(P.x + qs), abs(P.y - qs)) - qs;\\n float s3 = max(abs(P.x - qs), abs(P.y + qs)) - qs;\\n float s4 = max(abs(P.x + qs), abs(P.y + qs)) - qs;\\n // Intersect main shape with quadrants (to form cross)\\n float square = max(abs(P.x), abs(P.y)) - size/2.0;\\n float c1 = max(square, s1);\\n float c2 = max(square, s2);\\n float c3 = max(square, s3);\\n float c4 = max(square, s4);\\n // Union\\n return min(min(min(c1, c2), c3), c4);\\n}\\n#endif\\n\\n#ifdef USE_DIAMOND_CROSS\\n// diamond_cross\\nfloat marker(vec2 P, float size)\\n{\\n // Define quadrants\\n float qs = size / 2.0; // quadrant size\\n float s1 = max(abs(P.x - qs), abs(P.y - qs)) - qs;\\n float s2 = max(abs(P.x + qs), abs(P.y - qs)) - qs;\\n float s3 = max(abs(P.x - qs), abs(P.y + qs)) - qs;\\n float s4 = max(abs(P.x + qs), abs(P.y + qs)) - qs;\\n // Intersect main shape with quadrants (to form cross)\\n float x = SQRT_2 / 2.0 * (P.x * 1.5 - P.y);\\n float y = SQRT_2 / 2.0 * (P.x * 1.5 + P.y);\\n float diamond = max(abs(x), abs(y)) - size / (2.0 * SQRT_2);\\n diamond /= SQRT_2;\\n float c1 = max(diamond, s1);\\n float c2 = max(diamond, s2);\\n float c3 = max(diamond, s3);\\n float c4 = max(diamond, s4);\\n // Union\\n return min(min(min(c1, c2), c3), c4);\\n}\\n#endif\\n\\n#ifdef USE_X\\n// x\\nfloat marker(vec2 P, float size)\\n{\\n float circle = length(P) - size / 1.6;\\n float X = min(abs(P.x - P.y), abs(P.x + P.y)) - size / 100.0; // bit of \"width\" for aa\\n return max(circle, X);\\n}\\n#endif\\n\\n#ifdef USE_CIRCLE_X\\n// circle_x\\nfloat marker(vec2 P, float size)\\n{\\n float x = P.x - P.y;\\n float y = P.x + P.y;\\n // Define quadrants\\n float qs = size / 2.0; // quadrant size\\n float s1 = max(abs(x - qs), abs(y - qs)) - qs;\\n float s2 = max(abs(x + qs), abs(y - qs)) - qs;\\n float s3 = max(abs(x - qs), abs(y + qs)) - qs;\\n float s4 = max(abs(x + qs), abs(y + qs)) - qs;\\n // Intersect main shape with quadrants (to form cross)\\n float circle = length(P) - size/2.0;\\n float c1 = max(circle, s1);\\n float c2 = max(circle, s2);\\n float c3 = max(circle, s3);\\n float c4 = max(circle, s4);\\n // Union\\n float almost = min(min(min(c1, c2), c3), c4);\\n // In this case, the X is also outside of the main shape\\n float Xmask = length(P) - size / 1.6; // a circle\\n float X = min(abs(P.x - P.y), abs(P.x + P.y)) - size / 100.0; // bit of \"width\" for aa\\n return min(max(X, Xmask), almost);\\n}\\n#endif\\n\\n#ifdef USE_SQUARE_X\\n// square_x\\nfloat marker(vec2 P, float size)\\n{\\n float x = P.x - P.y;\\n float y = P.x + P.y;\\n // Define quadrants\\n float qs = size / 2.0; // quadrant size\\n float s1 = max(abs(x - qs), abs(y - qs)) - qs;\\n float s2 = max(abs(x + qs), abs(y - qs)) - qs;\\n float s3 = max(abs(x - qs), abs(y + qs)) - qs;\\n float s4 = max(abs(x + qs), abs(y + qs)) - qs;\\n // Intersect main shape with quadrants (to form cross)\\n float square = max(abs(P.x), abs(P.y)) - size/2.0;\\n float c1 = max(square, s1);\\n float c2 = max(square, s2);\\n float c3 = max(square, s3);\\n float c4 = max(square, s4);\\n // Union\\n return min(min(min(c1, c2), c3), c4);\\n}\\n#endif\\n\\nvec4 outline(float distance, float linewidth, float antialias, vec4 fg_color, vec4 bg_color)\\n{\\n vec4 frag_color;\\n float t = linewidth/2.0 - antialias;\\n float signed_distance = distance;\\n float border_distance = abs(signed_distance) - t;\\n float alpha = border_distance/antialias;\\n alpha = exp(-alpha*alpha);\\n\\n // If fg alpha is zero, it probably means no outline. To avoid a dark outline\\n // shining through due to aa, we set the fg color to the bg color. Avoid if (i.e. branching).\\n float select = float(bool(fg_color.a));\\n fg_color.rgb = select * fg_color.rgb + (1.0 - select) * bg_color.rgb;\\n // Similarly, if we want a transparent bg\\n select = float(bool(bg_color.a));\\n bg_color.rgb = select * bg_color.rgb + (1.0 - select) * fg_color.rgb;\\n\\n if( border_distance < 0.0)\\n frag_color = fg_color;\\n else if( signed_distance < 0.0 ) {\\n frag_color = mix(bg_color, fg_color, sqrt(alpha));\\n } else {\\n if( abs(signed_distance) < (linewidth/2.0 + antialias) ) {\\n frag_color = vec4(fg_color.rgb, fg_color.a * alpha);\\n } else {\\n discard;\\n }\\n }\\n return frag_color;\\n}\\n\\nvoid main()\\n{\\n vec2 P = gl_PointCoord.xy - vec2(0.5, 0.5);\\n P = vec2(v_rotation.x*P.x - v_rotation.y*P.y,\\n v_rotation.y*P.x + v_rotation.x*P.y);\\n float point_size = SQRT_2*v_size + 2.0 * (v_linewidth + 1.5*u_antialias);\\n float distance = marker(P*point_size, v_size);\\n gl_FragColor = outline(distance, v_linewidth, u_antialias, v_fg_color, v_bg_color);\\n}\\n'},\n", + " function _(e,l,i,s,t){s();const _=e(287);class p extends _.EllipseOvalView{}i.EllipseView=p,p.__name__=\"EllipseView\";class n extends _.EllipseOval{constructor(e){super(e)}static init_Ellipse(){this.prototype.default_view=p}}i.Ellipse=n,n.__name__=\"Ellipse\",n.init_Ellipse()},\n", + " function _(t,s,i,e,h){e();const r=t(1),a=t(288),n=r.__importStar(t(107)),l=t(24),o=t(59);class _ extends a.CenterRotatableView{_map_data(){\"data\"==this.model.properties.width.units?this.sw=this.sdist(this.renderer.xscale,this._x,this.width,\"center\"):this.sw=l.to_screen(this.width),\"data\"==this.model.properties.height.units?this.sh=this.sdist(this.renderer.yscale,this._y,this.height,\"center\"):this.sh=l.to_screen(this.height)}_render(t,s,i){const{sx:e,sy:h,sw:r,sh:a,angle:n}=null!=i?i:this;for(const i of s){const s=e[i],l=h[i],o=r[i],_=a[i],d=n.get(i);isNaN(s+l+o+_+d)||(t.beginPath(),t.ellipse(s,l,o/2,_/2,d,0,2*Math.PI),this.visuals.fill.doit&&(this.visuals.fill.set_vectorize(t,i),t.fill()),this.visuals.hatch.doit&&(this.visuals.hatch.set_vectorize(t,i),t.fill()),this.visuals.line.doit&&(this.visuals.line.set_vectorize(t,i),t.stroke()))}}_hit_point(t){let s,i,e,h,r,a,l,_,d;const{sx:c,sy:x}=t,w=this.renderer.xscale.invert(c),p=this.renderer.yscale.invert(x);\"data\"==this.model.properties.width.units?(s=w-this.max_width,i=w+this.max_width):(a=c-this.max_width,l=c+this.max_width,[s,i]=this.renderer.xscale.r_invert(a,l)),\"data\"==this.model.properties.height.units?(e=p-this.max_height,h=p+this.max_height):(_=x-this.max_height,d=x+this.max_height,[e,h]=this.renderer.yscale.r_invert(_,d));const m=this.index.indices({x0:s,x1:i,y0:e,y1:h}),v=[];for(const t of m)r=n.point_in_ellipse(c,x,this.angle.get(t),this.sh[t]/2,this.sw[t]/2,this.sx[t],this.sy[t]),r&&v.push(t);return new o.Selection({indices:v})}draw_legend_for_index(t,{x0:s,y0:i,x1:e,y1:h},r){const a=r+1,n=new Array(a);n[r]=(s+e)/2;const l=new Array(a);l[r]=(i+h)/2;const o=this.sw[r]/this.sh[r],_=.8*Math.min(Math.abs(e-s),Math.abs(h-i)),d=new Array(a),c=new Array(a);o>1?(d[r]=_,c[r]=_/o):(d[r]=_*o,c[r]=_),this._render(t,[r],{sx:n,sy:l,sw:d,sh:c,_angle:[0]})}}i.EllipseOvalView=_,_.__name__=\"EllipseOvalView\";class d extends a.CenterRotatable{constructor(t){super(t)}}i.EllipseOval=d,d.__name__=\"EllipseOval\"},\n", + " function _(t,e,i,a,n){a();const s=t(1),h=t(64),r=t(48),o=s.__importStar(t(18));class _ extends h.XYGlyphView{get max_w2(){return\"data\"==this.model.properties.width.units?this.max_width/2:0}get max_h2(){return\"data\"==this.model.properties.height.units?this.max_height/2:0}_bounds({x0:t,x1:e,y0:i,y1:a}){const{max_w2:n,max_h2:s}=this;return{x0:t-n,x1:e+n,y0:i-s,y1:a+s}}}i.CenterRotatableView=_,_.__name__=\"CenterRotatableView\";class l extends h.XYGlyph{constructor(t){super(t)}static init_CenterRotatable(){this.mixins([r.LineVector,r.FillVector,r.HatchVector]),this.define((({})=>({angle:[o.AngleSpec,0],width:[o.DistanceSpec,{field:\"width\"}],height:[o.DistanceSpec,{field:\"height\"}]})))}}i.CenterRotatable=l,l.__name__=\"CenterRotatable\",l.init_CenterRotatable()},\n", + " function _(t,e,s,i,h){i();const r=t(1),a=t(290),n=t(24),_=r.__importStar(t(18));class o extends a.BoxView{scenterxy(t){return[(this.sleft[t]+this.sright[t])/2,this.sy[t]]}_lrtb(t){const e=this._left[t],s=this._right[t],i=this._y[t],h=this.height.get(t)/2;return[Math.min(e,s),Math.max(e,s),i+h,i-h]}_map_data(){this.sy=this.renderer.yscale.v_compute(this._y),this.sh=this.sdist(this.renderer.yscale,this._y,this.height,\"center\"),this.sleft=this.renderer.xscale.v_compute(this._left),this.sright=this.renderer.xscale.v_compute(this._right);const t=this.sy.length;this.stop=new n.ScreenArray(t),this.sbottom=new n.ScreenArray(t);for(let e=0;e({left:[_.XCoordinateSpec,{value:0}],y:[_.YCoordinateSpec,{field:\"y\"}],height:[_.NumberSpec,{value:1}],right:[_.XCoordinateSpec,{field:\"right\"}]})))}}s.HBar=c,c.__name__=\"HBar\",c.init_HBar()},\n", + " function _(t,e,s,i,r){i();const n=t(48),o=t(98),a=t(106),h=t(59);class c extends o.GlyphView{get_anchor_point(t,e,s){const i=Math.min(this.sleft[e],this.sright[e]),r=Math.max(this.sright[e],this.sleft[e]),n=Math.min(this.stop[e],this.sbottom[e]),o=Math.max(this.sbottom[e],this.stop[e]);switch(t){case\"top_left\":return{x:i,y:n};case\"top\":case\"top_center\":return{x:(i+r)/2,y:n};case\"top_right\":return{x:r,y:n};case\"bottom_left\":return{x:i,y:o};case\"bottom\":case\"bottom_center\":return{x:(i+r)/2,y:o};case\"bottom_right\":return{x:r,y:o};case\"left\":case\"center_left\":return{x:i,y:(n+o)/2};case\"center\":case\"center_center\":return{x:(i+r)/2,y:(n+o)/2};case\"right\":case\"center_right\":return{x:r,y:(n+o)/2}}}_index_data(t){const{min:e,max:s}=Math,{data_size:i}=this;for(let r=0;r({r:[c.NumberSpec,{field:\"r\"}],q:[c.NumberSpec,{field:\"q\"}],scale:[c.NumberSpec,1],size:[e,1],aspect_scale:[e,1],orientation:[h.HexTileOrientation,\"pointytop\"]}))),this.override({line_color:null})}}s.HexTile=y,y.__name__=\"HexTile\",y.init_HexTile()},\n", + " function _(e,a,t,_,s){_();const i=e(293),n=e(203),r=e(214);class o extends i.ImageBaseView{connect_signals(){super.connect_signals(),this.connect(this.model.color_mapper.change,(()=>this._update_image()))}_update_image(){null!=this.image_data&&(this._set_data(null),this.renderer.request_render())}_flat_img_to_buf8(e){return this.model.color_mapper.rgba_mapper.v_compute(e)}}t.ImageView=o,o.__name__=\"ImageView\";class m extends i.ImageBase{constructor(e){super(e)}static init_Image(){this.prototype.default_view=o,this.define((({Ref:e})=>({color_mapper:[e(n.ColorMapper),()=>new r.LinearColorMapper({palette:[\"#000000\",\"#252525\",\"#525252\",\"#737373\",\"#969696\",\"#bdbdbd\",\"#d9d9d9\",\"#f0f0f0\",\"#ffffff\"]})]})))}}t.Image=m,m.__name__=\"Image\",m.init_Image()},\n", + " function _(e,t,i,s,a){s();const h=e(1),n=e(64),r=e(24),_=h.__importStar(e(18)),d=e(59),l=e(9),g=e(29),o=e(11);class c extends n.XYGlyphView{connect_signals(){super.connect_signals(),this.connect(this.model.properties.global_alpha.change,(()=>this.renderer.request_render()))}_render(e,t,i){const{image_data:s,sx:a,sy:h,sw:n,sh:r}=null!=i?i:this,_=e.getImageSmoothingEnabled();e.setImageSmoothingEnabled(!1),e.globalAlpha=this.model.global_alpha;for(const i of t){const t=s[i],_=a[i],d=h[i],l=n[i],g=r[i];if(null==t||isNaN(_+d+l+g))continue;const o=d;e.translate(0,o),e.scale(1,-1),e.translate(0,-o),e.drawImage(t,0|_,0|d,l,g),e.translate(0,o),e.scale(1,-1),e.translate(0,-o)}e.setImageSmoothingEnabled(_)}_set_data(e){this._set_width_heigh_data();for(let t=0,i=this.image.length;t({image:[_.NDArraySpec,{field:\"image\"}],dw:[_.DistanceSpec,{field:\"dw\"}],dh:[_.DistanceSpec,{field:\"dh\"}],dilate:[e,!1],global_alpha:[t,1]})))}}i.ImageBase=m,m.__name__=\"ImageBase\",m.init_ImageBase()},\n", + " function _(e,a,t,_,i){_();const n=e(293),s=e(8);class r extends n.ImageBaseView{_flat_img_to_buf8(e){let a;return a=s.isArray(e)?new Uint32Array(e):e,new Uint8ClampedArray(a.buffer)}}t.ImageRGBAView=r,r.__name__=\"ImageRGBAView\";class m extends n.ImageBase{constructor(e){super(e)}static init_ImageRGBA(){this.prototype.default_view=r}}t.ImageRGBA=m,m.__name__=\"ImageRGBA\",m.init_ImageRGBA()},\n", + " function _(e,t,s,r,a){r();const i=e(1),n=e(64),o=e(24),c=e(20),_=i.__importStar(e(18)),h=e(12),l=e(296);class d extends n.XYGlyphView{constructor(){super(...arguments),this._images_rendered=!1,this._set_data_iteration=0}connect_signals(){super.connect_signals(),this.connect(this.model.properties.global_alpha.change,(()=>this.renderer.request_render()))}_index_data(e){const{data_size:t}=this;for(let s=0;s{this._set_data_iteration==r&&(this.image[a]=e,this.renderer.request_render())},attempts:t+1,timeout:s})}const a=\"data\"==this.model.properties.w.units,i=\"data\"==this.model.properties.h.units,n=this._x.length,c=new o.ScreenArray(a?2*n:n),_=new o.ScreenArray(i?2*n:n),{anchor:d}=this.model;function m(e,t){switch(d){case\"top_left\":case\"bottom_left\":case\"left\":case\"center_left\":return[e,e+t];case\"top\":case\"top_center\":case\"bottom\":case\"bottom_center\":case\"center\":case\"center_center\":return[e-t/2,e+t/2];case\"top_right\":case\"bottom_right\":case\"right\":case\"center_right\":return[e-t,e]}}function g(e,t){switch(d){case\"top_left\":case\"top\":case\"top_center\":case\"top_right\":return[e,e-t];case\"bottom_left\":case\"bottom\":case\"bottom_center\":case\"bottom_right\":return[e+t,e];case\"left\":case\"center_left\":case\"center\":case\"center_center\":case\"right\":case\"center_right\":return[e+t/2,e-t/2]}}if(a)for(let e=0;e({url:[_.StringSpec,{field:\"url\"}],anchor:[c.Anchor,\"top_left\"],global_alpha:[s,1],angle:[_.AngleSpec,0],w:[_.NullDistanceSpec,null],h:[_.NullDistanceSpec,null],dilate:[e,!1],retry_attempts:[t,0],retry_timeout:[t,0]})))}}s.ImageURL=m,m.__name__=\"ImageURL\",m.init_ImageURL()},\n", + " function _(i,e,t,s,o){s();const a=i(19);class n{constructor(i,e={}){this._image=new Image,this._finished=!1;const{attempts:t=1,timeout:s=1}=e;this.promise=new Promise(((o,n)=>{this._image.crossOrigin=\"anonymous\";let r=0;this._image.onerror=()=>{if(++r==t){const s=`unable to load ${i} image after ${t} attempts`;if(a.logger.warn(s),null==this._image.crossOrigin)return void(null!=e.failed&&e.failed());a.logger.warn(`attempting to load ${i} without a cross origin policy`),this._image.crossOrigin=null,r=0}setTimeout((()=>this._image.src=i),s)},this._image.onload=()=>{this._finished=!0,null!=e.loaded&&e.loaded(this._image),o(this._image)},this._image.src=i}))}get finished(){return this._finished}get image(){if(this._finished)return this._image;throw new Error(\"not loaded yet\")}}t.ImageLoader=n,n.__name__=\"ImageLoader\"},\n", + " function _(t,s,e,i,n){i();const o=t(1),l=t(101),r=t(98),h=t(106),_=t(12),a=t(12),c=t(48),d=o.__importStar(t(107)),x=o.__importStar(t(18)),y=t(59),f=t(11);class g extends r.GlyphView{_project_data(){}_index_data(t){const{min:s,max:e}=Math,{data_size:i}=this;for(let n=0;n1&&c.length>1)for(let e=1,i=n.length;e1){let l=!1;for(let t=1;t({xs:[x.XCoordinateSeqSeqSeqSpec,{field:\"xs\"}],ys:[x.YCoordinateSeqSeqSeqSpec,{field:\"ys\"}]}))),this.mixins([c.LineVector,c.FillVector,c.HatchVector])}}e.MultiPolygons=p,p.__name__=\"MultiPolygons\",p.init_MultiPolygons()},\n", + " function _(a,t,e,l,s){l();const _=a(287),i=a(12);class n extends _.EllipseOvalView{_map_data(){super._map_data(),i.mul(this.sw,.75)}}e.OvalView=n,n.__name__=\"OvalView\";class v extends _.EllipseOval{constructor(a){super(a)}static init_Oval(){this.prototype.default_view=n}}e.Oval=v,v.__name__=\"Oval\",v.init_Oval()},\n", + " function _(t,e,i,o,s){o();const r=t(1),_=t(290),d=r.__importStar(t(18));class n extends _.BoxView{scenterxy(t){return[this.sleft[t]/2+this.sright[t]/2,this.stop[t]/2+this.sbottom[t]/2]}_lrtb(t){return[this._left[t],this._right[t],this._top[t],this._bottom[t]]}}i.QuadView=n,n.__name__=\"QuadView\";class a extends _.Box{constructor(t){super(t)}static init_Quad(){this.prototype.default_view=n,this.define((({})=>({right:[d.XCoordinateSpec,{field:\"right\"}],bottom:[d.YCoordinateSpec,{field:\"bottom\"}],left:[d.XCoordinateSpec,{field:\"left\"}],top:[d.YCoordinateSpec,{field:\"top\"}]})))}}i.Quad=a,a.__name__=\"Quad\",a.init_Quad()},\n", + " function _(e,t,i,s,n){s();const a=e(1),c=e(48),o=e(65),r=e(98),_=e(106),d=a.__importStar(e(18));function l(e,t,i){if(t==(e+i)/2)return[e,i];{const s=(e-t)/(e-2*t+i),n=e*(1-s)**2+2*t*(1-s)*s+i*s**2;return[Math.min(e,i,n),Math.max(e,i,n)]}}class x extends r.GlyphView{_project_data(){o.inplace.project_xy(this._x0,this._y0),o.inplace.project_xy(this._x1,this._y1)}_index_data(e){const{_x0:t,_x1:i,_y0:s,_y1:n,_cx:a,_cy:c,data_size:o}=this;for(let r=0;r({x0:[d.XCoordinateSpec,{field:\"x0\"}],y0:[d.YCoordinateSpec,{field:\"y0\"}],x1:[d.XCoordinateSpec,{field:\"x1\"}],y1:[d.YCoordinateSpec,{field:\"y1\"}],cx:[d.XCoordinateSpec,{field:\"cx\"}],cy:[d.YCoordinateSpec,{field:\"cy\"}]}))),this.mixins(c.LineVector)}}i.Quadratic=y,y.__name__=\"Quadratic\",y.init_Quadratic()},\n", + " function _(e,t,s,i,n){i();const a=e(1),l=e(64),h=e(106),r=e(48),o=e(24),_=a.__importStar(e(18));class c extends l.XYGlyphView{_map_data(){\"data\"==this.model.properties.length.units?this.slength=this.sdist(this.renderer.xscale,this._x,this.length):this.slength=o.to_screen(this.length);const{width:e,height:t}=this.renderer.plot_view.frame.bbox,s=2*(e+t),{slength:i}=this;for(let e=0,t=i.length;e({length:[_.DistanceSpec,0],angle:[_.AngleSpec,0]})))}}s.Ray=g,g.__name__=\"Ray\",g.init_Ray()},\n", + " function _(t,s,e,i,h){i();const r=t(288),n=t(106),a=t(24),o=t(12),l=t(59);class _ extends r.CenterRotatableView{_map_data(){if(\"data\"==this.model.properties.width.units)[this.sw,this.sx0]=this._map_dist_corner_for_data_side_length(this._x,this.width,this.renderer.xscale);else{this.sw=a.to_screen(this.width);const t=this.sx.length;this.sx0=new a.ScreenArray(t);for(let s=0;s({dilate:[t,!1]})))}}e.Rect=c,c.__name__=\"Rect\",c.init_Rect()},\n", + " function _(e,t,r,s,i){s();const a=e(1),n=e(304),_=e(305),l=e(283),c=a.__importStar(e(18));class o extends n.MarkerView{_init_webgl(){const{webgl:e}=this.renderer.plot_view.canvas_view;if(null!=e){const t=new Set(this.marker);if(1==t.size){const[r]=[...t];if(l.MarkerGL.is_supported(r)){const{glglyph:t}=this;if(null==t||t.marker_type!=r)return void(this.glglyph=new l.MarkerGL(e.gl,this,r))}}}delete this.glglyph}_set_data(e){super._set_data(e),this._init_webgl()}_render(e,t,r){const{sx:s,sy:i,size:a,angle:n,marker:l}=null!=r?r:this;for(const r of t){const t=s[r],c=i[r],o=a.get(r),g=n.get(r),h=l.get(r);if(isNaN(t+c+o+g)||null==h)continue;const d=o/2;e.beginPath(),e.translate(t,c),g&&e.rotate(g),_.marker_funcs[h](e,r,d,this.visuals),g&&e.rotate(-g),e.translate(-t,-c)}}draw_legend_for_index(e,{x0:t,x1:r,y0:s,y1:i},a){const n=a+1,_=this.marker.get(a),l=Object.assign(Object.assign({},this._get_legend_args({x0:t,x1:r,y0:s,y1:i},a)),{marker:new c.UniformScalar(_,n)});this._render(e,[a],l)}}r.ScatterView=o,o.__name__=\"ScatterView\";class g extends n.Marker{constructor(e){super(e)}static init_Scatter(){this.prototype.default_view=o,this.define((()=>({marker:[c.MarkerSpec,{value:\"circle\"}]})))}}r.Scatter=g,g.__name__=\"Scatter\",g.init_Scatter()},\n", + " function _(e,t,s,i,n){i();const r=e(1),a=e(64),c=e(48),_=r.__importStar(e(107)),o=r.__importStar(e(18)),h=e(9),l=e(59);class x extends a.XYGlyphView{_render(e,t,s){const{sx:i,sy:n,size:r,angle:a}=null!=s?s:this;for(const s of t){const t=i[s],c=n[s],_=r.get(s),o=a.get(s);if(isNaN(t+c+_+o))continue;const h=_/2;e.beginPath(),e.translate(t,c),o&&e.rotate(o),this._render_one(e,s,h,this.visuals),o&&e.rotate(-o),e.translate(-t,-c)}}_mask_data(){const{x_target:e,y_target:t}=this.renderer.plot_view.frame,s=e.widen(this.max_size).map((e=>this.renderer.xscale.invert(e))),i=t.widen(this.max_size).map((e=>this.renderer.yscale.invert(e)));return this.index.indices({x0:s.start,x1:s.end,y0:i.start,y1:i.end})}_hit_point(e){const{sx:t,sy:s}=e,{max_size:i}=this,{hit_dilation:n}=this.model,r=t-i*n,a=t+i*n,[c,_]=this.renderer.xscale.r_invert(r,a),o=s-i*n,h=s+i*n,[x,d]=this.renderer.yscale.r_invert(o,h),y=this.index.indices({x0:c,x1:_,y0:x,y1:d}),g=[];for(const e of y){const i=this.size.get(e)/2*n;Math.abs(this.sx[e]-t)<=i&&Math.abs(this.sy[e]-s)<=i&&g.push(e)}return new l.Selection({indices:g})}_hit_span(e){const{sx:t,sy:s}=e,i=this.bounds(),n=this.max_size/2;let r,a,c,_;if(\"h\"==e.direction){c=i.y0,_=i.y1;const e=t-n,s=t+n;[r,a]=this.renderer.xscale.r_invert(e,s)}else{r=i.x0,a=i.x1;const e=s-n,t=s+n;[c,_]=this.renderer.yscale.r_invert(e,t)}const o=[...this.index.indices({x0:r,x1:a,y0:c,y1:_})];return new l.Selection({indices:o})}_hit_rect(e){const{sx0:t,sx1:s,sy0:i,sy1:n}=e,[r,a]=this.renderer.xscale.r_invert(t,s),[c,_]=this.renderer.yscale.r_invert(i,n),o=[...this.index.indices({x0:r,x1:a,y0:c,y1:_})];return new l.Selection({indices:o})}_hit_poly(e){const{sx:t,sy:s}=e,i=h.range(0,this.sx.length),n=[];for(let e=0,r=i.length;e({size:[o.ScreenDistanceSpec,{value:4}],angle:[o.AngleSpec,0],hit_dilation:[e,1]})))}}s.Marker=d,d.__name__=\"Marker\",d.init_Marker()},\n", + " function _(t,e,i,o,l){o();const n=Math.sqrt(3),c=Math.sqrt(5),r=(c+1)/4,s=Math.sqrt((5-c)/8),f=(c-1)/4,a=Math.sqrt((5+c)/8);function h(t,e){t.rotate(Math.PI/4),d(t,e),t.rotate(-Math.PI/4)}function v(t,e){const i=e*n,o=i/3;t.moveTo(-i/2,-o),t.lineTo(0,0),t.lineTo(i/2,-o),t.lineTo(0,0),t.lineTo(0,e)}function d(t,e){t.moveTo(0,e),t.lineTo(0,-e),t.moveTo(-e,0),t.lineTo(e,0)}function _(t,e){t.moveTo(0,e),t.lineTo(e/1.5,0),t.lineTo(0,-e),t.lineTo(-e/1.5,0),t.closePath()}function u(t,e){const i=e*n,o=i/3;t.moveTo(-e,o),t.lineTo(e,o),t.lineTo(0,o-i),t.closePath()}function z(t,e,i,o){t.arc(0,0,i,0,2*Math.PI,!1),o.fill.doit&&(o.fill.set_vectorize(t,e),t.fill()),o.hatch.doit&&(o.hatch.set_vectorize(t,e),t.fill()),o.line.doit&&(o.line.set_vectorize(t,e),t.stroke())}function T(t,e,i,o){_(t,i),o.fill.doit&&(o.fill.set_vectorize(t,e),t.fill()),o.hatch.doit&&(o.hatch.set_vectorize(t,e),t.fill()),o.line.doit&&(o.line.set_vectorize(t,e),t.stroke())}function k(t,e,i,o){!function(t,e){t.beginPath(),t.arc(0,0,e/4,0,2*Math.PI,!1),t.closePath()}(t,i),o.line.set_vectorize(t,e),t.fillStyle=t.strokeStyle,t.fill()}function P(t,e,i,o){!function(t,e){const i=e/2,o=n*i;t.moveTo(e,0),t.lineTo(i,-o),t.lineTo(-i,-o),t.lineTo(-e,0),t.lineTo(-i,o),t.lineTo(i,o),t.closePath()}(t,i),o.fill.doit&&(o.fill.set_vectorize(t,e),t.fill()),o.hatch.doit&&(o.hatch.set_vectorize(t,e),t.fill()),o.line.doit&&(o.line.set_vectorize(t,e),t.stroke())}function m(t,e,i,o){const l=2*i;t.rect(-i,-i,l,l),o.fill.doit&&(o.fill.set_vectorize(t,e),t.fill()),o.hatch.doit&&(o.hatch.set_vectorize(t,e),t.fill()),o.line.doit&&(o.line.set_vectorize(t,e),t.stroke())}function q(t,e,i,o){!function(t,e){const i=Math.sqrt(5-2*c)*e;t.moveTo(0,-e),t.lineTo(i*f,i*a-e),t.lineTo(i*(1+f),i*a-e),t.lineTo(i*(1+f-r),i*(a+s)-e),t.lineTo(i*(1+2*f-r),i*(2*a+s)-e),t.lineTo(0,2*i*a-e),t.lineTo(-i*(1+2*f-r),i*(2*a+s)-e),t.lineTo(-i*(1+f-r),i*(a+s)-e),t.lineTo(-i*(1+f),i*a-e),t.lineTo(-i*f,i*a-e),t.closePath()}(t,i),o.fill.doit&&(o.fill.set_vectorize(t,e),t.fill()),o.hatch.doit&&(o.hatch.set_vectorize(t,e),t.fill()),o.line.doit&&(o.line.set_vectorize(t,e),t.stroke())}function M(t,e,i,o){u(t,i),o.fill.doit&&(o.fill.set_vectorize(t,e),t.fill()),o.hatch.doit&&(o.hatch.set_vectorize(t,e),t.fill()),o.line.doit&&(o.line.set_vectorize(t,e),t.stroke())}i.marker_funcs={asterisk:function(t,e,i,o){d(t,i),h(t,i),o.line.doit&&(o.line.set_vectorize(t,e),t.stroke())},circle:z,circle_cross:function(t,e,i,o){t.arc(0,0,i,0,2*Math.PI,!1),o.fill.doit&&(o.fill.set_vectorize(t,e),t.fill()),o.hatch.doit&&(o.hatch.set_vectorize(t,e),t.fill()),o.line.doit&&(o.line.set_vectorize(t,e),d(t,i),t.stroke())},circle_dot:function(t,e,i,o){z(t,e,i,o),k(t,e,i,o)},circle_y:function(t,e,i,o){t.arc(0,0,i,0,2*Math.PI,!1),o.fill.doit&&(o.fill.set_vectorize(t,e),t.fill()),o.hatch.doit&&(o.hatch.set_vectorize(t,e),t.fill()),o.line.doit&&(o.line.set_vectorize(t,e),v(t,i),t.stroke())},circle_x:function(t,e,i,o){t.arc(0,0,i,0,2*Math.PI,!1),o.fill.doit&&(o.fill.set_vectorize(t,e),t.fill()),o.hatch.doit&&(o.hatch.set_vectorize(t,e),t.fill()),o.line.doit&&(o.line.set_vectorize(t,e),h(t,i),t.stroke())},cross:function(t,e,i,o){d(t,i),o.line.doit&&(o.line.set_vectorize(t,e),t.stroke())},diamond:T,diamond_dot:function(t,e,i,o){T(t,e,i,o),k(t,e,i,o)},diamond_cross:function(t,e,i,o){_(t,i),o.fill.doit&&(o.fill.set_vectorize(t,e),t.fill()),o.hatch.doit&&(o.hatch.set_vectorize(t,e),t.fill()),o.line.doit&&(o.line.set_vectorize(t,e),t.moveTo(0,i),t.lineTo(0,-i),t.moveTo(-i/1.5,0),t.lineTo(i/1.5,0),t.stroke())},dot:k,hex:P,hex_dot:function(t,e,i,o){P(t,e,i,o),k(t,e,i,o)},inverted_triangle:function(t,e,i,o){t.rotate(Math.PI),u(t,i),t.rotate(-Math.PI),o.fill.doit&&(o.fill.set_vectorize(t,e),t.fill()),o.hatch.doit&&(o.hatch.set_vectorize(t,e),t.fill()),o.line.doit&&(o.line.set_vectorize(t,e),t.stroke())},plus:function(t,e,i,o){const l=3*i/8,n=[l,l,i,i,l,l,-l,-l,-i,-i,-l,-l],c=[i,l,l,-l,-l,-i,-i,-l,-l,l,l,i];t.beginPath();for(let e=0;e<12;e++)t.lineTo(n[e],c[e]);t.closePath(),o.fill.doit&&(o.fill.set_vectorize(t,e),t.fill()),o.hatch.doit&&(o.hatch.set_vectorize(t,e),t.fill()),o.line.doit&&(o.line.set_vectorize(t,e),t.stroke())},square:m,square_cross:function(t,e,i,o){const l=2*i;t.rect(-i,-i,l,l),o.fill.doit&&(o.fill.set_vectorize(t,e),t.fill()),o.hatch.doit&&(o.hatch.set_vectorize(t,e),t.fill()),o.line.doit&&(o.line.set_vectorize(t,e),d(t,i),t.stroke())},square_dot:function(t,e,i,o){m(t,e,i,o),k(t,e,i,o)},square_pin:function(t,e,i,o){const l=3*i/8;t.moveTo(-i,-i),t.quadraticCurveTo(0,-l,i,-i),t.quadraticCurveTo(l,0,i,i),t.quadraticCurveTo(0,l,-i,i),t.quadraticCurveTo(-l,0,-i,-i),t.closePath(),o.fill.doit&&(o.fill.set_vectorize(t,e),t.fill()),o.hatch.doit&&(o.hatch.set_vectorize(t,e),t.fill()),o.line.doit&&(o.line.set_vectorize(t,e),t.stroke())},square_x:function(t,e,i,o){const l=2*i;t.rect(-i,-i,l,l),o.fill.doit&&(o.fill.set_vectorize(t,e),t.fill()),o.hatch.doit&&(o.hatch.set_vectorize(t,e),t.fill()),o.line.doit&&(o.line.set_vectorize(t,e),t.moveTo(-i,i),t.lineTo(i,-i),t.moveTo(-i,-i),t.lineTo(i,i),t.stroke())},star:q,star_dot:function(t,e,i,o){q(t,e,i,o),k(t,e,i,o)},triangle:M,triangle_dot:function(t,e,i,o){M(t,e,i,o),k(t,e,i,o)},triangle_pin:function(t,e,i,o){const l=i*n,c=l/3,r=3*c/8;t.moveTo(-i,c),t.quadraticCurveTo(0,r,i,c),t.quadraticCurveTo(n*r/2,r/2,0,c-l),t.quadraticCurveTo(-n*r/2,r/2,-i,c),t.closePath(),o.fill.doit&&(o.fill.set_vectorize(t,e),t.fill()),o.hatch.doit&&(o.hatch.set_vectorize(t,e),t.fill()),o.line.doit&&(o.line.set_vectorize(t,e),t.stroke())},dash:function(t,e,i,o){!function(t,e){t.moveTo(-e,0),t.lineTo(e,0)}(t,i),o.line.doit&&(o.line.set_vectorize(t,e),t.stroke())},x:function(t,e,i,o){h(t,i),o.line.doit&&(o.line.set_vectorize(t,e),t.stroke())},y:function(t,e,i,o){v(t,i),o.line.doit&&(o.line.set_vectorize(t,e),t.stroke())}}},\n", + " function _(e,t,s,i,n){i();const r=e(1),_=r.__importStar(e(107)),o=r.__importStar(e(18)),h=e(48),a=e(65),c=e(98),d=e(106),x=e(59);class y extends c.GlyphView{_project_data(){a.inplace.project_xy(this._x0,this._y0),a.inplace.project_xy(this._x1,this._y1)}_index_data(e){const{min:t,max:s}=Math,{_x0:i,_x1:n,_y0:r,_y1:_,data_size:o}=this;for(let h=0;h({x0:[o.XCoordinateSpec,{field:\"x0\"}],y0:[o.YCoordinateSpec,{field:\"y0\"}],x1:[o.XCoordinateSpec,{field:\"x1\"}],y1:[o.YCoordinateSpec,{field:\"y1\"}]}))),this.mixins(h.LineVector)}}s.Segment=l,l.__name__=\"Segment\",l.init_Segment()},\n", + " function _(t,e,s,i,n){i();const _=t(1),l=t(64),o=_.__importStar(t(48)),a=t(308);class c extends l.XYGlyphView{_set_data(){const{tension:t,closed:e}=this.model;[this._xt,this._yt]=a.catmullrom_spline(this._x,this._y,20,t,e)}_map_data(){const{x_scale:t,y_scale:e}=this.renderer.coordinates;this.sxt=t.v_compute(this._xt),this.syt=e.v_compute(this._yt)}_render(t,e,s){const{sxt:i,syt:n}=null!=s?s:this;this.visuals.line.set_value(t);const _=i.length;for(let e=0;e<_;e++)0!=e?isNaN(i[e])||isNaN(n[e])?(t.stroke(),t.beginPath()):t.lineTo(i[e],n[e]):(t.beginPath(),t.moveTo(i[e],n[e]));t.stroke()}}s.SplineView=c,c.__name__=\"SplineView\";class h extends l.XYGlyph{constructor(t){super(t)}static init_Spline(){this.prototype.default_view=c,this.mixins(o.LineScalar),this.define((({Boolean:t,Number:e})=>({tension:[e,.5],closed:[t,!1]})))}}s.Spline=h,h.__name__=\"Spline\",h.init_Spline()},\n", + " function _(n,t,e,o,s){o();const c=n(24),l=n(11);e.catmullrom_spline=function(n,t,e=10,o=.5,s=!1){l.assert(n.length==t.length);const r=n.length,f=s?r+1:r,w=c.infer_type(n,t),i=new w(f+2),u=new w(f+2);i.set(n,1),u.set(t,1),s?(i[0]=n[r-1],u[0]=t[r-1],i[f]=n[0],u[f]=t[0],i[f+1]=n[1],u[f+1]=t[1]):(i[0]=n[0],u[0]=t[0],i[f+1]=n[r-1],u[f+1]=t[r-1]);const g=new w(4*(e+1));for(let n=0,t=0;n<=e;n++){const o=n/e,s=o**2,c=o*s;g[t++]=2*c-3*s+1,g[t++]=-2*c+3*s,g[t++]=c-2*s+o,g[t++]=c-s}const h=new w((f-1)*(e+1)),_=new w((f-1)*(e+1));for(let n=1,t=0;n1&&(e.stroke(),o=!1)}o?(e.lineTo(t,a),e.lineTo(r,_)):(e.beginPath(),e.moveTo(n[i],s[i]),o=!0),l=i}e.lineTo(n[r-1],s[r-1]),e.stroke()}}draw_legend_for_index(e,t,i){r.generic_line_scalar_legend(this.visuals,e,t)}}i.StepView=c,c.__name__=\"StepView\";class d extends l.XYGlyph{constructor(e){super(e)}static init_Step(){this.prototype.default_view=c,this.mixins(a.LineScalar),this.define((()=>({mode:[_.StepMode,\"before\"]})))}}i.Step=d,d.__name__=\"Step\",d.init_Step()},\n", + " function _(t,e,s,i,n){i();const o=t(1),_=t(64),h=t(48),l=o.__importStar(t(107)),r=o.__importStar(t(18)),a=t(143),c=t(11),x=t(59);class u extends _.XYGlyphView{_rotate_point(t,e,s,i,n){return[(t-s)*Math.cos(n)-(e-i)*Math.sin(n)+s,(t-s)*Math.sin(n)+(e-i)*Math.cos(n)+i]}_text_bounds(t,e,s,i){return[[t,t+s,t+s,t,t],[e,e,e-i,e-i,e]]}_render(t,e,s){const{sx:i,sy:n,x_offset:o,y_offset:_,angle:h,text:l}=null!=s?s:this;this._sys=[],this._sxs=[];for(const s of e){const e=this._sxs[s]=[],r=this._sys[s]=[],c=i[s],x=n[s],u=o.get(s),f=_.get(s),p=h.get(s),g=l.get(s);if(!isNaN(c+x+u+f+p)&&null!=g&&this.visuals.text.doit){const i=`${g}`;t.save(),t.translate(c+u,x+f),t.rotate(p),this.visuals.text.set_vectorize(t,s);const n=this.visuals.text.font_value(s),{height:o}=a.font_metrics(n),_=this.text_line_height.get(s)*o;if(-1==i.indexOf(\"\\n\")){t.fillText(i,0,0);const s=c+u,n=x+f,o=t.measureText(i).width,[h,l]=this._text_bounds(s,n,o,_);e.push(h),r.push(l)}else{const n=i.split(\"\\n\"),o=_*n.length,h=this.text_baseline.get(s);let l;switch(h){case\"top\":l=0;break;case\"middle\":l=-o/2+_/2;break;case\"bottom\":l=-o+_;break;default:l=0,console.warn(`'${h}' baseline not supported with multi line text`)}for(const s of n){t.fillText(s,0,l);const i=c+u,n=l+x+f,o=t.measureText(s).width,[h,a]=this._text_bounds(i,n,o,_);e.push(h),r.push(a),l+=_}}t.restore()}}}_hit_point(t){const{sx:e,sy:s}=t,i=[];for(let t=0;t({text:[r.NullStringSpec,{field:\"text\"}],angle:[r.AngleSpec,0],x_offset:[r.NumberSpec,0],y_offset:[r.NumberSpec,0]})))}}s.Text=f,f.__name__=\"Text\",f.init_Text()},\n", + " function _(t,s,e,i,r){i();const h=t(1),o=t(290),a=t(24),n=h.__importStar(t(18));class _ extends o.BoxView{scenterxy(t){return[this.sx[t],(this.stop[t]+this.sbottom[t])/2]}_lrtb(t){const s=this.width.get(t)/2,e=this._x[t],i=this._top[t],r=this._bottom[t];return[e-s,e+s,Math.max(i,r),Math.min(i,r)]}_map_data(){this.sx=this.renderer.xscale.v_compute(this._x),this.sw=this.sdist(this.renderer.xscale,this._x,this.width,\"center\"),this.stop=this.renderer.yscale.v_compute(this._top),this.sbottom=this.renderer.yscale.v_compute(this._bottom);const t=this.sx.length;this.sleft=new a.ScreenArray(t),this.sright=new a.ScreenArray(t);for(let s=0;s({x:[n.XCoordinateSpec,{field:\"x\"}],bottom:[n.YCoordinateSpec,{value:0}],width:[n.NumberSpec,{value:1}],top:[n.YCoordinateSpec,{field:\"top\"}]})))}}e.VBar=c,c.__name__=\"VBar\",c.init_VBar()},\n", + " function _(e,t,s,i,n){i();const r=e(1),a=e(64),l=e(106),c=e(48),d=e(24),h=e(20),o=r.__importStar(e(18)),_=e(10),u=e(59);class g extends a.XYGlyphView{_map_data(){\"data\"==this.model.properties.radius.units?this.sradius=this.sdist(this.renderer.xscale,this._x,this.radius):this.sradius=d.to_screen(this.radius)}_render(e,t,s){const{sx:i,sy:n,sradius:r,start_angle:a,end_angle:l}=null!=s?s:this,c=\"anticlock\"==this.model.direction;for(const s of t){const t=i[s],d=n[s],h=r[s],o=a.get(s),_=l.get(s);isNaN(t+d+h+o+_)||(e.beginPath(),e.arc(t,d,h,o,_,c),e.lineTo(t,d),e.closePath(),this.visuals.fill.doit&&(this.visuals.fill.set_vectorize(e,s),e.fill()),this.visuals.hatch.doit&&(this.visuals.hatch.set_vectorize(e,s),e.fill()),this.visuals.line.doit&&(this.visuals.line.set_vectorize(e,s),e.stroke()))}}_hit_point(e){let t,s,i,n,r,a,l,c,d;const{sx:h,sy:o}=e,g=this.renderer.xscale.invert(h),p=this.renderer.yscale.invert(o),x=2*this.max_radius;\"data\"===this.model.properties.radius.units?(a=g-x,l=g+x,c=p-x,d=p+x):(s=h-x,i=h+x,[a,l]=this.renderer.xscale.r_invert(s,i),n=o-x,r=o+x,[c,d]=this.renderer.yscale.r_invert(n,r));const f=[];for(const e of this.index.indices({x0:a,x1:l,y0:c,y1:d})){const a=this.sradius[e]**2;[s,i]=this.renderer.xscale.r_compute(g,this._x[e]),[n,r]=this.renderer.yscale.r_compute(p,this._y[e]),t=(s-i)**2+(n-r)**2,t<=a&&f.push(e)}const v=\"anticlock\"==this.model.direction,y=[];for(const e of f){const t=Math.atan2(o-this.sy[e],h-this.sx[e]);_.angle_between(-t,-this.start_angle.get(e),-this.end_angle.get(e),v)&&y.push(e)}return new u.Selection({indices:y})}draw_legend_for_index(e,t,s){l.generic_area_vector_legend(this.visuals,e,t,s)}scenterxy(e){const t=this.sradius[e]/2,s=(this.start_angle.get(e)+this.end_angle.get(e))/2;return[this.sx[e]+t*Math.cos(s),this.sy[e]+t*Math.sin(s)]}}s.WedgeView=g,g.__name__=\"WedgeView\";class p extends a.XYGlyph{constructor(e){super(e)}static init_Wedge(){this.prototype.default_view=g,this.mixins([c.LineVector,c.FillVector,c.HatchVector]),this.define((({})=>({direction:[h.Direction,\"anticlock\"],radius:[o.DistanceSpec,{field:\"radius\"}],start_angle:[o.AngleSpec,{field:\"start_angle\"}],end_angle:[o.AngleSpec,{field:\"end_angle\"}]})))}}s.Wedge=p,p.__name__=\"Wedge\",p.init_Wedge()},\n", + " function _(t,_,r,o,a){o();const e=t(1);e.__exportStar(t(126),r),e.__exportStar(t(125),r),e.__exportStar(t(314),r)},\n", + " function _(t,a,o,r,e){r();const n=t(125);class l extends n.LayoutProvider{constructor(t){super(t)}static init_StaticLayoutProvider(){this.define((({Number:t,Tuple:a,Dict:o})=>({graph_layout:[o(a(t,t)),{}]})))}get_node_coordinates(t){var a;const o=null!==(a=t.data.index)&&void 0!==a?a:[],r=o.length,e=new Float64Array(r),n=new Float64Array(r);for(let t=0;tthis.request_render()))}_draw_regions(i){if(!this.visuals.band_fill.doit&&!this.visuals.band_hatch.doit)return;const[e,t]=this.grid_coords(\"major\",!1);for(let s=0;st[1]&&(n=t[1]);else{[s,n]=t;for(const i of this.plot_view.axis_views)i.dimension==this.model.dimension&&i.model.x_range_name==this.model.x_range_name&&i.model.y_range_name==this.model.y_range_name&&([s,n]=i.computed_bounds)}return[s,n]}grid_coords(i,e=!0){const t=this.model.dimension,s=(t+1)%2,[n,r]=this.ranges();let[o,d]=this.computed_bounds();[o,d]=[Math.min(o,d),Math.max(o,d)];const l=[[],[]],_=this.model.get_ticker();if(null==_)return l;const a=_.get_ticks(o,d,n,r.min)[i],h=n.min,u=n.max,c=r.min,m=r.max;e||(a[0]!=h&&a.splice(0,0,h),a[a.length-1]!=u&&a.push(u));for(let i=0;i({bounds:[r(n(i,i),e),\"auto\"],dimension:[t(0,1),0],axis:[d(s(o.Axis)),null],ticker:[d(s(l.Ticker)),null]}))),this.override({level:\"underlay\",band_fill_color:null,band_fill_alpha:0,grid_line_color:\"#e5e5e5\",minor_grid_line_color:null})}get_ticker(){return null!=this.ticker?this.ticker:null!=this.axis?this.axis.ticker:null}}t.Grid=u,u.__name__=\"Grid\",u.init_Grid()},\n", + " function _(o,a,x,B,e){B(),e(\"Box\",o(318).Box),e(\"Column\",o(320).Column),e(\"GridBox\",o(321).GridBox),e(\"HTMLBox\",o(322).HTMLBox),e(\"LayoutDOM\",o(319).LayoutDOM),e(\"Panel\",o(323).Panel),e(\"Row\",o(324).Row),e(\"Spacer\",o(325).Spacer),e(\"Tabs\",o(326).Tabs),e(\"WidgetBox\",o(329).WidgetBox)},\n", + " function _(e,n,i,t,s){t();const o=e(319);class c extends o.LayoutDOMView{connect_signals(){super.connect_signals(),this.connect(this.model.properties.children.change,(()=>this.rebuild()))}get child_models(){return this.model.children}}i.BoxView=c,c.__name__=\"BoxView\";class r extends o.LayoutDOM{constructor(e){super(e)}static init_Box(){this.define((({Number:e,Array:n,Ref:i})=>({children:[n(i(o.LayoutDOM)),[]],spacing:[e,0]})))}}i.Box=r,r.__name__=\"Box\",r.init_Box()},\n", + " function _(t,i,e,s,o){s();const l=t(53),n=t(20),h=t(43),a=t(19),r=t(8),_=t(22),d=t(122),c=t(240),u=t(221),m=t(44),p=t(249);class g extends c.DOMView{constructor(){super(...arguments),this._idle_notified=!1,this._offset_parent=null,this._viewport={}}initialize(){super.initialize(),this.el.style.position=this.is_root?\"relative\":\"absolute\",this._child_views=new Map}async lazy_initialize(){await super.lazy_initialize(),await this.build_child_views()}remove(){for(const t of this.child_views)t.remove();this._child_views.clear(),super.remove()}connect_signals(){super.connect_signals(),this.is_root&&(this._on_resize=()=>this.resize_layout(),window.addEventListener(\"resize\",this._on_resize),this._parent_observer=setInterval((()=>{const t=this.el.offsetParent;this._offset_parent!=t&&(this._offset_parent=t,null!=t&&(this.compute_viewport(),this.invalidate_layout()))}),250));const t=this.model.properties;this.on_change([t.width,t.height,t.min_width,t.min_height,t.max_width,t.max_height,t.margin,t.width_policy,t.height_policy,t.sizing_mode,t.aspect_ratio,t.visible],(()=>this.invalidate_layout())),this.on_change([t.background,t.css_classes],(()=>this.invalidate_render()))}disconnect_signals(){null!=this._parent_observer&&clearTimeout(this._parent_observer),null!=this._on_resize&&window.removeEventListener(\"resize\",this._on_resize),super.disconnect_signals()}css_classes(){return super.css_classes().concat(this.model.css_classes)}get child_views(){return this.child_models.map((t=>this._child_views.get(t)))}async build_child_views(){await d.build_views(this._child_views,this.child_models,{parent:this})}render(){super.render(),h.empty(this.el);const{background:t}=this.model;this.el.style.backgroundColor=null!=t?_.color2css(t):\"\",h.classes(this.el).clear().add(...this.css_classes());for(const t of this.child_views)this.el.appendChild(t.el),t.render()}update_layout(){for(const t of this.child_views)t.update_layout();this._update_layout()}update_position(){this.el.style.display=this.model.visible?\"block\":\"none\";const t=this.is_root?this.layout.sizing.margin:void 0;h.position(this.el,this.layout.bbox,t);for(const t of this.child_views)t.update_position()}after_layout(){for(const t of this.child_views)t.after_layout();this._has_finished=!0}compute_viewport(){this._viewport=this._viewport_size()}renderTo(t){t.appendChild(this.el),this._offset_parent=this.el.offsetParent,this.compute_viewport(),this.build()}build(){return this.assert_root(),this.render(),this.update_layout(),this.compute_layout(),this}async rebuild(){await this.build_child_views(),this.invalidate_render()}compute_layout(){const t=Date.now();this.layout.compute(this._viewport),this.update_position(),this.after_layout(),a.logger.debug(`layout computed in ${Date.now()-t} ms`),this.notify_finished()}resize_layout(){this.root.compute_viewport(),this.root.compute_layout()}invalidate_layout(){this.root.update_layout(),this.root.compute_layout()}invalidate_render(){this.render(),this.invalidate_layout()}has_finished(){if(!super.has_finished())return!1;for(const t of this.child_views)if(!t.has_finished())return!1;return!0}notify_finished(){this.is_root?!this._idle_notified&&this.has_finished()&&null!=this.model.document&&(this._idle_notified=!0,this.model.document.notify_idle(this.model)):this.root.notify_finished()}_width_policy(){return null!=this.model.width?\"fixed\":\"fit\"}_height_policy(){return null!=this.model.height?\"fixed\":\"fit\"}box_sizing(){let{width_policy:t,height_policy:i,aspect_ratio:e}=this.model;\"auto\"==t&&(t=this._width_policy()),\"auto\"==i&&(i=this._height_policy());const{sizing_mode:s}=this.model;if(null!=s)if(\"fixed\"==s)t=i=\"fixed\";else if(\"stretch_both\"==s)t=i=\"max\";else if(\"stretch_width\"==s)t=\"max\";else if(\"stretch_height\"==s)i=\"max\";else switch(null==e&&(e=\"auto\"),s){case\"scale_width\":t=\"max\",i=\"min\";break;case\"scale_height\":t=\"min\",i=\"max\";break;case\"scale_both\":t=\"max\",i=\"max\"}const o={width_policy:t,height_policy:i},{min_width:l,min_height:n}=this.model;null!=l&&(o.min_width=l),null!=n&&(o.min_height=n);const{width:h,height:a}=this.model;null!=h&&(o.width=h),null!=a&&(o.height=a);const{max_width:_,max_height:d}=this.model;null!=_&&(o.max_width=_),null!=d&&(o.max_height=d),\"auto\"==e&&null!=h&&null!=a?o.aspect=h/a:r.isNumber(e)&&(o.aspect=e);const{margin:c}=this.model;if(null!=c)if(r.isNumber(c))o.margin={top:c,right:c,bottom:c,left:c};else if(2==c.length){const[t,i]=c;o.margin={top:t,right:i,bottom:t,left:i}}else{const[t,i,e,s]=c;o.margin={top:t,right:i,bottom:e,left:s}}o.visible=this.model.visible;const{align:u}=this.model;return r.isArray(u)?[o.halign,o.valign]=u:o.halign=o.valign=u,o}_viewport_size(){return h.undisplayed(this.el,(()=>{let t=this.el;for(;t=t.parentElement;){if(t.classList.contains(m.root))continue;if(t==document.body){const{margin:{left:t,right:i,top:e,bottom:s}}=h.extents(document.body);return{width:Math.ceil(document.documentElement.clientWidth-t-i),height:Math.ceil(document.documentElement.clientHeight-e-s)}}const{padding:{left:i,right:e,top:s,bottom:o}}=h.extents(t),{width:l,height:n}=t.getBoundingClientRect();let a=0;for(const i of t.children){const{height:t}=i.getBoundingClientRect(),{margin:{top:e,bottom:s}}=h.extents(i);a+=t+e+s}const r=Math.ceil(l-i-e),_=Math.ceil(n-s-o-a);if(r>0||_>0)return{width:r>0?r:void 0,height:_>0?_:void 0}}return{}}))}export(t,i=!0){const e=\"png\"==t?\"canvas\":\"svg\",s=new p.CanvasLayer(e,i),{width:o,height:l}=this.layout.bbox;s.resize(o,l);for(const e of this.child_views){const o=e.export(t,i),{x:l,y:n}=e.layout.bbox;s.ctx.drawImage(o.canvas,l,n)}return s}serializable_state(){return Object.assign(Object.assign({},super.serializable_state()),{bbox:this.layout.bbox.box,children:this.child_views.map((t=>t.serializable_state()))})}}e.LayoutDOMView=g,g.__name__=\"LayoutDOMView\";class f extends l.Model{constructor(t){super(t)}static init_LayoutDOM(){this.define((t=>{const{Boolean:i,Number:e,String:s,Auto:o,Color:l,Array:h,Tuple:a,Or:r,Null:_,Nullable:d}=t,c=a(e,e),m=a(e,e,e,e);return{width:[d(e),null],height:[d(e),null],min_width:[d(e),null],min_height:[d(e),null],max_width:[d(e),null],max_height:[d(e),null],margin:[d(r(e,c,m)),[0,0,0,0]],width_policy:[r(u.SizingPolicy,o),\"auto\"],height_policy:[r(u.SizingPolicy,o),\"auto\"],aspect_ratio:[r(e,o,_),null],sizing_mode:[d(n.SizingMode),null],visible:[i,!0],disabled:[i,!1],align:[r(n.Align,a(n.Align,n.Align)),\"start\"],background:[d(l),null],css_classes:[h(s),[]]}}))}}e.LayoutDOM=f,f.__name__=\"LayoutDOM\",f.init_LayoutDOM()},\n", + " function _(t,s,i,o,n){o();const e=t(318),l=t(223);class u extends e.BoxView{_update_layout(){const t=this.child_views.map((t=>t.layout));this.layout=new l.Column(t),this.layout.rows=this.model.rows,this.layout.spacing=[this.model.spacing,0],this.layout.set_sizing(this.box_sizing())}}i.ColumnView=u,u.__name__=\"ColumnView\";class a extends e.Box{constructor(t){super(t)}static init_Column(){this.prototype.default_view=u,this.define((({Any:t})=>({rows:[t,\"auto\"]})))}}i.Column=a,a.__name__=\"Column\",a.init_Column()},\n", + " function _(t,s,i,o,e){o();const n=t(319),l=t(223);class a extends n.LayoutDOMView{connect_signals(){super.connect_signals();const{children:t,rows:s,cols:i,spacing:o}=this.model.properties;this.on_change([t,s,i,o],(()=>this.rebuild()))}get child_models(){return this.model.children.map((([t])=>t))}_update_layout(){this.layout=new l.Grid,this.layout.rows=this.model.rows,this.layout.cols=this.model.cols,this.layout.spacing=this.model.spacing;for(const[t,s,i,o,e]of this.model.children){const n=this._child_views.get(t);this.layout.items.push({layout:n.layout,row:s,col:i,row_span:o,col_span:e})}this.layout.set_sizing(this.box_sizing())}}i.GridBoxView=a,a.__name__=\"GridBoxView\";class r extends n.LayoutDOM{constructor(t){super(t)}static init_GridBox(){this.prototype.default_view=a,this.define((({Any:t,Int:s,Number:i,Tuple:o,Array:e,Ref:l,Or:a,Opt:r})=>({children:[e(o(l(n.LayoutDOM),s,s,r(s),r(s))),[]],rows:[t,\"auto\"],cols:[t,\"auto\"],spacing:[a(i,o(i,i)),0]})))}}i.GridBox=r,r.__name__=\"GridBox\",r.init_GridBox()},\n", + " function _(t,e,o,s,n){s();const _=t(319),i=t(221);class a extends _.LayoutDOMView{get child_models(){return[]}_update_layout(){this.layout=new i.ContentBox(this.el),this.layout.set_sizing(this.box_sizing())}}o.HTMLBoxView=a,a.__name__=\"HTMLBoxView\";class u extends _.LayoutDOM{constructor(t){super(t)}}o.HTMLBox=u,u.__name__=\"HTMLBox\"},\n", + " function _(e,n,t,i,l){i();const a=e(53),o=e(319);class s extends a.Model{constructor(e){super(e)}static init_Panel(){this.define((({Boolean:e,String:n,Ref:t})=>({title:[n,\"\"],child:[t(o.LayoutDOM)],closable:[e,!1]})))}}t.Panel=s,s.__name__=\"Panel\",s.init_Panel()},\n", + " function _(t,s,i,o,e){o();const n=t(318),a=t(223);class _ extends n.BoxView{_update_layout(){const t=this.child_views.map((t=>t.layout));this.layout=new a.Row(t),this.layout.cols=this.model.cols,this.layout.spacing=[0,this.model.spacing],this.layout.set_sizing(this.box_sizing())}}i.RowView=_,_.__name__=\"RowView\";class l extends n.Box{constructor(t){super(t)}static init_Row(){this.prototype.default_view=_,this.define((({Any:t})=>({cols:[t,\"auto\"]})))}}i.Row=l,l.__name__=\"Row\",l.init_Row()},\n", + " function _(t,e,a,i,s){i();const _=t(319),c=t(221);class n extends _.LayoutDOMView{get child_models(){return[]}_update_layout(){this.layout=new c.LayoutItem,this.layout.set_sizing(this.box_sizing())}}a.SpacerView=n,n.__name__=\"SpacerView\";class o extends _.LayoutDOM{constructor(t){super(t)}static init_Spacer(){this.prototype.default_view=n}}a.Spacer=o,o.__name__=\"Spacer\",o.init_Spacer()},\n", + " function _(e,t,s,i,a){i();const l=e(1),h=e(221),o=e(43),c=e(9),d=e(20),r=e(319),n=e(323),_=l.__importStar(e(327)),p=_,b=l.__importStar(e(328)),u=b,m=l.__importStar(e(243)),v=m;class g extends r.LayoutDOMView{connect_signals(){super.connect_signals(),this.connect(this.model.properties.tabs.change,(()=>this.rebuild())),this.connect(this.model.properties.active.change,(()=>this.on_active_change()))}styles(){return[...super.styles(),b.default,m.default,_.default]}get child_models(){return this.model.tabs.map((e=>e.child))}_update_layout(){const e=this.model.tabs_location,t=\"above\"==e||\"below\"==e,{scroll_el:s,headers_el:i}=this;this.header=new class extends h.ContentBox{_measure(e){const a=o.size(s),l=o.children(i).slice(0,3).map((e=>o.size(e))),{width:h,height:d}=super._measure(e);if(t){const t=a.width+c.sum(l.map((e=>e.width)));return{width:e.width!=1/0?e.width:t,height:d}}{const t=a.height+c.sum(l.map((e=>e.height)));return{width:h,height:e.height!=1/0?e.height:t}}}}(this.header_el),t?this.header.set_sizing({width_policy:\"fit\",height_policy:\"fixed\"}):this.header.set_sizing({width_policy:\"fixed\",height_policy:\"fit\"});let a=1,l=1;switch(e){case\"above\":a-=1;break;case\"below\":a+=1;break;case\"left\":l-=1;break;case\"right\":l+=1}const d={layout:this.header,row:a,col:l},r=this.child_views.map((e=>({layout:e.layout,row:1,col:1})));this.layout=new h.Grid([d,...r]),this.layout.set_sizing(this.box_sizing())}update_position(){super.update_position(),this.header_el.style.position=\"absolute\",o.position(this.header_el,this.header.bbox);const e=this.model.tabs_location,t=\"above\"==e||\"below\"==e,s=o.size(this.scroll_el),i=o.scroll_size(this.headers_el);if(t){const{width:e}=this.header.bbox;i.width>e?(this.wrapper_el.style.maxWidth=e-s.width+\"px\",o.display(this.scroll_el)):(this.wrapper_el.style.maxWidth=\"\",o.undisplay(this.scroll_el))}else{const{height:e}=this.header.bbox;i.height>e?(this.wrapper_el.style.maxHeight=e-s.height+\"px\",o.display(this.scroll_el)):(this.wrapper_el.style.maxHeight=\"\",o.undisplay(this.scroll_el))}const{child_views:a}=this;for(const e of a)o.hide(e.el);const l=a[this.model.active];null!=l&&o.show(l.el)}render(){super.render();const{active:e}=this.model,t=this.model.tabs_location,s=\"above\"==t||\"below\"==t,i=this.model.tabs.map(((t,s)=>{const i=o.div({class:[p.tab,s==e?p.active:null]},t.title);if(i.addEventListener(\"click\",(e=>{e.target==e.currentTarget&&this.change_active(s)})),t.closable){const e=o.div({class:p.close});e.addEventListener(\"click\",(e=>{if(e.target==e.currentTarget){this.model.tabs=c.remove_at(this.model.tabs,s);const e=this.model.tabs.length;this.model.active>e-1&&(this.model.active=e-1)}})),i.appendChild(e)}return i}));this.headers_el=o.div({class:[p.headers]},i),this.wrapper_el=o.div({class:p.headers_wrapper},this.headers_el);const a=o.div({class:[u.btn,u.btn_default],disabled:\"\"},o.div({class:[v.caret,p.left]})),l=o.div({class:[u.btn,u.btn_default]},o.div({class:[v.caret,p.right]}));let h=0;const d=e=>()=>{const t=this.model.tabs.length;h=\"left\"==e?Math.max(h-1,0):Math.min(h+1,t-1),0==h?a.setAttribute(\"disabled\",\"\"):a.removeAttribute(\"disabled\"),h==t-1?l.setAttribute(\"disabled\",\"\"):l.removeAttribute(\"disabled\");const i=o.children(this.headers_el).slice(0,h).map((e=>e.getBoundingClientRect()));if(s){const e=-c.sum(i.map((e=>e.width)));this.headers_el.style.left=`${e}px`}else{const e=-c.sum(i.map((e=>e.height)));this.headers_el.style.top=`${e}px`}};a.addEventListener(\"click\",d(\"left\")),l.addEventListener(\"click\",d(\"right\")),this.scroll_el=o.div({class:u.btn_group},a,l),this.header_el=o.div({class:[p.tabs_header,p[t]]},this.scroll_el,this.wrapper_el),this.el.appendChild(this.header_el)}change_active(e){e!=this.model.active&&(this.model.active=e)}on_active_change(){const e=this.model.active,t=o.children(this.headers_el);for(const e of t)e.classList.remove(p.active);t[e].classList.add(p.active);const{child_views:s}=this;for(const e of s)o.hide(e.el);o.show(s[e].el)}}s.TabsView=g,g.__name__=\"TabsView\";class w extends r.LayoutDOM{constructor(e){super(e)}static init_Tabs(){this.prototype.default_view=g,this.define((({Int:e,Array:t,Ref:s})=>({tabs:[t(s(n.Panel)),[]],tabs_location:[d.Location,\"above\"],active:[e,0]})))}}s.Tabs=w,w.__name__=\"Tabs\",w.init_Tabs()},\n", + " function _(e,r,b,o,t){o(),b.root=\"bk-root\",b.tabs_header=\"bk-tabs-header\",b.btn_group=\"bk-btn-group\",b.btn=\"bk-btn\",b.headers_wrapper=\"bk-headers-wrapper\",b.above=\"bk-above\",b.right=\"bk-right\",b.below=\"bk-below\",b.left=\"bk-left\",b.headers=\"bk-headers\",b.tab=\"bk-tab\",b.active=\"bk-active\",b.close=\"bk-close\",b.default='.bk-root .bk-tabs-header{display:flex;display:-webkit-flex;flex-wrap:nowrap;-webkit-flex-wrap:nowrap;align-items:center;-webkit-align-items:center;overflow:hidden;user-select:none;-ms-user-select:none;-moz-user-select:none;-webkit-user-select:none;}.bk-root .bk-tabs-header .bk-btn-group{height:auto;margin-right:5px;}.bk-root .bk-tabs-header .bk-btn-group > .bk-btn{flex-grow:0;-webkit-flex-grow:0;height:auto;padding:4px 4px;}.bk-root .bk-tabs-header .bk-headers-wrapper{flex-grow:1;-webkit-flex-grow:1;overflow:hidden;color:#666666;}.bk-root .bk-tabs-header.bk-above .bk-headers-wrapper{border-bottom:1px solid #e6e6e6;}.bk-root .bk-tabs-header.bk-right .bk-headers-wrapper{border-left:1px solid #e6e6e6;}.bk-root .bk-tabs-header.bk-below .bk-headers-wrapper{border-top:1px solid #e6e6e6;}.bk-root .bk-tabs-header.bk-left .bk-headers-wrapper{border-right:1px solid #e6e6e6;}.bk-root .bk-tabs-header.bk-above,.bk-root .bk-tabs-header.bk-below{flex-direction:row;-webkit-flex-direction:row;}.bk-root .bk-tabs-header.bk-above .bk-headers,.bk-root .bk-tabs-header.bk-below .bk-headers{flex-direction:row;-webkit-flex-direction:row;}.bk-root .bk-tabs-header.bk-left,.bk-root .bk-tabs-header.bk-right{flex-direction:column;-webkit-flex-direction:column;}.bk-root .bk-tabs-header.bk-left .bk-headers,.bk-root .bk-tabs-header.bk-right .bk-headers{flex-direction:column;-webkit-flex-direction:column;}.bk-root .bk-tabs-header .bk-headers{position:relative;display:flex;display:-webkit-flex;flex-wrap:nowrap;-webkit-flex-wrap:nowrap;align-items:center;-webkit-align-items:center;}.bk-root .bk-tabs-header .bk-tab{padding:4px 8px;border:solid transparent;white-space:nowrap;cursor:pointer;}.bk-root .bk-tabs-header .bk-tab:hover{background-color:#f2f2f2;}.bk-root .bk-tabs-header .bk-tab.bk-active{color:#4d4d4d;background-color:white;border-color:#e6e6e6;}.bk-root .bk-tabs-header .bk-tab .bk-close{margin-left:10px;}.bk-root .bk-tabs-header.bk-above .bk-tab{border-width:3px 1px 0px 1px;border-radius:4px 4px 0 0;}.bk-root .bk-tabs-header.bk-right .bk-tab{border-width:1px 3px 1px 0px;border-radius:0 4px 4px 0;}.bk-root .bk-tabs-header.bk-below .bk-tab{border-width:0px 1px 3px 1px;border-radius:0 0 4px 4px;}.bk-root .bk-tabs-header.bk-left .bk-tab{border-width:1px 0px 1px 3px;border-radius:4px 0 0 4px;}.bk-root .bk-close{display:inline-block;width:10px;height:10px;vertical-align:middle;background-image:url(\\'data:image/svg+xml;utf8, \\');}.bk-root .bk-close:hover{background-image:url(\\'data:image/svg+xml;utf8, \\');}'},\n", + " function _(o,b,r,t,e){t(),r.root=\"bk-root\",r.btn=\"bk-btn\",r.active=\"bk-active\",r.btn_default=\"bk-btn-default\",r.btn_primary=\"bk-btn-primary\",r.btn_success=\"bk-btn-success\",r.btn_warning=\"bk-btn-warning\",r.btn_danger=\"bk-btn-danger\",r.btn_light=\"bk-btn-light\",r.btn_group=\"bk-btn-group\",r.dropdown_toggle=\"bk-dropdown-toggle\",r.default=\".bk-root .bk-btn{height:100%;display:inline-block;text-align:center;vertical-align:middle;white-space:nowrap;cursor:pointer;padding:6px 12px;font-size:12px;border:1px solid transparent;border-radius:4px;outline:0;user-select:none;-ms-user-select:none;-moz-user-select:none;-webkit-user-select:none;}.bk-root .bk-btn:hover,.bk-root .bk-btn:focus{text-decoration:none;}.bk-root .bk-btn:active,.bk-root .bk-btn.bk-active{background-image:none;box-shadow:inset 0 3px 5px rgba(0, 0, 0, 0.125);}.bk-root .bk-btn[disabled]{cursor:not-allowed;pointer-events:none;opacity:0.65;box-shadow:none;}.bk-root .bk-btn-default{color:#333;background-color:#fff;border-color:#ccc;}.bk-root .bk-btn-default:hover{background-color:#f5f5f5;border-color:#b8b8b8;}.bk-root .bk-btn-default.bk-active{background-color:#ebebeb;border-color:#adadad;}.bk-root .bk-btn-default[disabled],.bk-root .bk-btn-default[disabled]:hover,.bk-root .bk-btn-default[disabled]:focus,.bk-root .bk-btn-default[disabled]:active,.bk-root .bk-btn-default[disabled].bk-active{background-color:#e6e6e6;border-color:#ccc;}.bk-root .bk-btn-primary{color:#fff;background-color:#428bca;border-color:#357ebd;}.bk-root .bk-btn-primary:hover{background-color:#3681c1;border-color:#2c699e;}.bk-root .bk-btn-primary.bk-active{background-color:#3276b1;border-color:#285e8e;}.bk-root .bk-btn-primary[disabled],.bk-root .bk-btn-primary[disabled]:hover,.bk-root .bk-btn-primary[disabled]:focus,.bk-root .bk-btn-primary[disabled]:active,.bk-root .bk-btn-primary[disabled].bk-active{background-color:#506f89;border-color:#357ebd;}.bk-root .bk-btn-success{color:#fff;background-color:#5cb85c;border-color:#4cae4c;}.bk-root .bk-btn-success:hover{background-color:#4eb24e;border-color:#409240;}.bk-root .bk-btn-success.bk-active{background-color:#47a447;border-color:#398439;}.bk-root .bk-btn-success[disabled],.bk-root .bk-btn-success[disabled]:hover,.bk-root .bk-btn-success[disabled]:focus,.bk-root .bk-btn-success[disabled]:active,.bk-root .bk-btn-success[disabled].bk-active{background-color:#667b66;border-color:#4cae4c;}.bk-root .bk-btn-warning{color:#fff;background-color:#f0ad4e;border-color:#eea236;}.bk-root .bk-btn-warning:hover{background-color:#eea43b;border-color:#e89014;}.bk-root .bk-btn-warning.bk-active{background-color:#ed9c28;border-color:#d58512;}.bk-root .bk-btn-warning[disabled],.bk-root .bk-btn-warning[disabled]:hover,.bk-root .bk-btn-warning[disabled]:focus,.bk-root .bk-btn-warning[disabled]:active,.bk-root .bk-btn-warning[disabled].bk-active{background-color:#c89143;border-color:#eea236;}.bk-root .bk-btn-danger{color:#fff;background-color:#d9534f;border-color:#d43f3a;}.bk-root .bk-btn-danger:hover{background-color:#d5433e;border-color:#bd2d29;}.bk-root .bk-btn-danger.bk-active{background-color:#d2322d;border-color:#ac2925;}.bk-root .bk-btn-danger[disabled],.bk-root .bk-btn-danger[disabled]:hover,.bk-root .bk-btn-danger[disabled]:focus,.bk-root .bk-btn-danger[disabled]:active,.bk-root .bk-btn-danger[disabled].bk-active{background-color:#a55350;border-color:#d43f3a;}.bk-root .bk-btn-light{color:#333;background-color:#fff;border-color:#ccc;border-color:transparent;}.bk-root .bk-btn-light:hover{background-color:#f5f5f5;border-color:#b8b8b8;}.bk-root .bk-btn-light.bk-active{background-color:#ebebeb;border-color:#adadad;}.bk-root .bk-btn-light[disabled],.bk-root .bk-btn-light[disabled]:hover,.bk-root .bk-btn-light[disabled]:focus,.bk-root .bk-btn-light[disabled]:active,.bk-root .bk-btn-light[disabled].bk-active{background-color:#e6e6e6;border-color:#ccc;}.bk-root .bk-btn-group{height:100%;display:flex;display:-webkit-flex;flex-wrap:nowrap;-webkit-flex-wrap:nowrap;align-items:center;-webkit-align-items:center;flex-direction:row;-webkit-flex-direction:row;}.bk-root .bk-btn-group > .bk-btn{flex-grow:1;-webkit-flex-grow:1;}.bk-root .bk-btn-group > .bk-btn + .bk-btn{margin-left:-1px;}.bk-root .bk-btn-group > .bk-btn:first-child:not(:last-child){border-bottom-right-radius:0;border-top-right-radius:0;}.bk-root .bk-btn-group > .bk-btn:not(:first-child):last-child{border-bottom-left-radius:0;border-top-left-radius:0;}.bk-root .bk-btn-group > .bk-btn:not(:first-child):not(:last-child){border-radius:0;}.bk-root .bk-btn-group .bk-dropdown-toggle{flex:0 0 0;-webkit-flex:0 0 0;padding:6px 6px;}\"},\n", + " function _(t,e,i,o,n){o();const _=t(320);class s extends _.ColumnView{}i.WidgetBoxView=s,s.__name__=\"WidgetBoxView\";class d extends _.Column{constructor(t){super(t)}static init_WidgetBox(){this.prototype.default_view=s}}i.WidgetBox=d,d.__name__=\"WidgetBox\",d.init_WidgetBox()},\n", + " function _(p,o,t,a,n){a(),n(\"MapOptions\",p(331).MapOptions),n(\"GMapOptions\",p(331).GMapOptions),n(\"GMapPlot\",p(331).GMapPlot),n(\"Plot\",p(332).Plot)},\n", + " function _(t,i,n,e,a){e();const s=t(332),o=t(53),p=t(156),_=t(337);a(\"GMapPlotView\",_.GMapPlotView);class l extends o.Model{constructor(t){super(t)}static init_MapOptions(){this.define((({Int:t,Number:i})=>({lat:[i],lng:[i],zoom:[t,12]})))}}n.MapOptions=l,l.__name__=\"MapOptions\",l.init_MapOptions();class r extends l{constructor(t){super(t)}static init_GMapOptions(){this.define((({Boolean:t,Int:i,String:n})=>({map_type:[n,\"roadmap\"],scale_control:[t,!1],styles:[n],tilt:[i,45]})))}}n.GMapOptions=r,r.__name__=\"GMapOptions\",r.init_GMapOptions();class c extends s.Plot{constructor(t){super(t),this.use_map=!0}static init_GMapPlot(){this.prototype.default_view=_.GMapPlotView,this.define((({String:t,Ref:i})=>({map_options:[i(r)],api_key:[t],api_version:[t,\"3.43\"]}))),this.override({x_range:()=>new p.Range1d,y_range:()=>new p.Range1d})}}n.GMapPlot=c,c.__name__=\"GMapPlot\",c.init_GMapPlot()},\n", + " function _(e,t,i,n,r){n();const o=e(1),a=o.__importStar(e(48)),s=o.__importStar(e(18)),l=e(15),_=e(20),h=e(9),c=e(13),d=e(8),u=e(319),g=e(163),p=e(316),f=e(40),b=e(138),w=e(218),m=e(235),y=e(105),v=e(146),x=e(130),A=e(41),R=e(62),S=e(61),P=e(159),D=e(333);r(\"PlotView\",D.PlotView);class L extends u.LayoutDOM{constructor(e){super(e),this.use_map=!1}static init_Plot(){this.prototype.default_view=D.PlotView,this.mixins([[\"outline_\",a.Line],[\"background_\",a.Fill],[\"border_\",a.Fill]]),this.define((({Boolean:e,Number:t,String:i,Array:n,Dict:r,Or:o,Ref:a,Null:l,Nullable:h})=>({toolbar:[a(m.Toolbar),()=>new m.Toolbar],toolbar_location:[h(_.Location),\"right\"],toolbar_sticky:[e,!0],plot_width:[s.Alias(\"width\")],plot_height:[s.Alias(\"height\")],frame_width:[h(t),null],frame_height:[h(t),null],title:[o(a(b.Title),i,l),()=>new b.Title({text:\"\"})],title_location:[h(_.Location),\"above\"],above:[n(o(a(f.Annotation),a(g.Axis))),[]],below:[n(o(a(f.Annotation),a(g.Axis))),[]],left:[n(o(a(f.Annotation),a(g.Axis))),[]],right:[n(o(a(f.Annotation),a(g.Axis))),[]],center:[n(o(a(f.Annotation),a(p.Grid))),[]],renderers:[n(a(A.Renderer)),[]],x_range:[a(y.Range),()=>new P.DataRange1d],extra_x_ranges:[r(a(y.Range)),{}],y_range:[a(y.Range),()=>new P.DataRange1d],extra_y_ranges:[r(a(y.Range)),{}],x_scale:[a(v.Scale),()=>new w.LinearScale],y_scale:[a(v.Scale),()=>new w.LinearScale],lod_factor:[t,10],lod_interval:[t,300],lod_threshold:[h(t),2e3],lod_timeout:[t,500],hidpi:[e,!0],output_backend:[_.OutputBackend,\"canvas\"],min_border:[h(t),5],min_border_top:[h(t),null],min_border_left:[h(t),null],min_border_bottom:[h(t),null],min_border_right:[h(t),null],inner_width:[t,0],inner_height:[t,0],outer_width:[t,0],outer_height:[t,0],match_aspect:[e,!1],aspect_scale:[t,1],reset_policy:[_.ResetPolicy,\"standard\"]}))),this.override({width:600,height:600,outline_line_color:\"#e5e5e5\",border_fill_color:\"#ffffff\",background_fill_color:\"#ffffff\"})}_doc_attached(){super._doc_attached(),this._push_changes([[this.properties.inner_height,null,this.inner_height],[this.properties.inner_width,null,this.inner_width]])}initialize(){super.initialize(),this.reset=new l.Signal0(this,\"reset\");for(const e of c.values(this.extra_x_ranges).concat(this.x_range)){let t=e.plots;d.isArray(t)&&(t=t.concat(this),e.setv({plots:t},{silent:!0}))}for(const e of c.values(this.extra_y_ranges).concat(this.y_range)){let t=e.plots;d.isArray(t)&&(t=t.concat(this),e.setv({plots:t},{silent:!0}))}}add_layout(e,t=\"center\"){const i=this.properties[t].get_value();this.setv({[t]:[...i,e]})}remove_layout(e){const t=t=>{h.remove_by(t,(t=>t==e))};t(this.left),t(this.right),t(this.above),t(this.below),t(this.center)}get data_renderers(){return this.renderers.filter((e=>e instanceof R.DataRenderer))}add_renderers(...e){this.renderers=this.renderers.concat(e)}add_glyph(e,t=new x.ColumnDataSource,i={}){const n=new S.GlyphRenderer(Object.assign(Object.assign({},i),{data_source:t,glyph:e}));return this.add_renderers(n),n}add_tools(...e){this.toolbar.tools=this.toolbar.tools.concat(e)}get panels(){return[...this.side_panels,...this.center]}get side_panels(){const{above:e,below:t,left:i,right:n}=this;return h.concat([e,t,i,n])}}i.Plot=L,L.__name__=\"Plot\",L.init_Plot()},\n", + " function _(e,t,i,s,a){s();const n=e(1),o=e(144),l=e(262),r=e(319),_=e(40),h=e(138),d=e(163),u=e(234),c=e(264),p=e(122),v=e(45),b=e(19),g=e(334),m=e(8),w=e(9),y=e(249),f=e(222),x=e(225),z=e(223),k=e(140),q=e(99),M=e(335),V=e(336),P=e(28);class R extends r.LayoutDOMView{constructor(){super(...arguments),this._outer_bbox=new q.BBox,this._inner_bbox=new q.BBox,this._needs_paint=!0,this._needs_layout=!1,this._invalidated_painters=new Set,this._invalidate_all=!0}get canvas(){return this.canvas_view}get state(){return this._state_manager}set invalidate_dataranges(e){this._range_manager.invalidate_dataranges=e}renderer_view(e){const t=this.renderer_views.get(e);if(null==t)for(const[,t]of this.renderer_views){const i=t.renderer_view(e);if(null!=i)return i}return t}get is_paused(){return null!=this._is_paused&&0!==this._is_paused}get child_models(){return[]}pause(){null==this._is_paused?this._is_paused=1:this._is_paused+=1}unpause(e=!1){if(null==this._is_paused)throw new Error(\"wasn't paused\");this._is_paused-=1,0!=this._is_paused||e||this.request_paint(\"everything\")}request_render(){this.request_paint(\"everything\")}request_paint(e){this.invalidate_painters(e),this.schedule_paint()}invalidate_painters(e){if(\"everything\"==e)this._invalidate_all=!0;else if(m.isArray(e))for(const t of e)this._invalidated_painters.add(t);else this._invalidated_painters.add(e)}schedule_paint(){if(!this.is_paused){const e=this.throttled_paint();this._ready=this._ready.then((()=>e))}}request_layout(){this._needs_layout=!0,this.request_paint(\"everything\")}reset(){\"standard\"==this.model.reset_policy&&(this.state.clear(),this.reset_range(),this.reset_selection()),this.model.trigger_event(new c.Reset)}remove(){p.remove_views(this.renderer_views),p.remove_views(this.tool_views),this.canvas_view.remove(),super.remove()}render(){super.render(),this.el.appendChild(this.canvas_view.el),this.canvas_view.render()}initialize(){this.pause(),super.initialize(),this.lod_started=!1,this.visuals=new v.Visuals(this),this._initial_state={selection:new Map,dimensions:{width:0,height:0}},this.visibility_callbacks=[],this.renderer_views=new Map,this.tool_views=new Map,this.frame=new o.CartesianFrame(this.model.x_scale,this.model.y_scale,this.model.x_range,this.model.y_range,this.model.extra_x_ranges,this.model.extra_y_ranges),this._range_manager=new M.RangeManager(this),this._state_manager=new V.StateManager(this,this._initial_state),this.throttled_paint=g.throttle((()=>this.repaint()),1e3/60);const{title_location:e,title:t}=this.model;null!=e&&null!=t&&(this._title=t instanceof h.Title?t:new h.Title({text:t}));const{toolbar_location:i,toolbar:s}=this.model;null!=i&&null!=s&&(this._toolbar=new u.ToolbarPanel({toolbar:s}),s.toolbar_location=i)}async lazy_initialize(){await super.lazy_initialize();const{hidpi:e,output_backend:t}=this.model,i=new l.Canvas({hidpi:e,output_backend:t});this.canvas_view=await p.build_view(i,{parent:this}),this.canvas_view.plot_views=[this],await this.build_renderer_views(),await this.build_tool_views(),this._range_manager.update_dataranges(),this.unpause(!0),b.logger.debug(\"PlotView initialized\")}_width_policy(){return null==this.model.frame_width?super._width_policy():\"min\"}_height_policy(){return null==this.model.frame_height?super._height_policy():\"min\"}_update_layout(){var e,t,i,s,a;this.layout=new x.BorderLayout,this.layout.set_sizing(this.box_sizing());const n=w.copy(this.model.above),o=w.copy(this.model.below),l=w.copy(this.model.left),r=w.copy(this.model.right),d=e=>{switch(e){case\"above\":return n;case\"below\":return o;case\"left\":return l;case\"right\":return r}},{title_location:c,title:p}=this.model;null!=c&&null!=p&&d(c).push(this._title);const{toolbar_location:v,toolbar:b}=this.model;if(null!=v&&null!=b){const e=d(v);let t=!0;if(this.model.toolbar_sticky)for(let i=0;i{var i;const s=this.renderer_view(t);return s.panel=new k.Panel(e),null===(i=s.update_layout)||void 0===i||i.call(s),s.layout},y=(e,t)=>{const i=\"above\"==e||\"below\"==e,s=[];for(const a of t)if(m.isArray(a)){const t=a.map((t=>{const s=g(e,t);if(t instanceof u.ToolbarPanel){const e=i?\"width_policy\":\"height_policy\";s.set_sizing(Object.assign(Object.assign({},s.sizing),{[e]:\"min\"}))}return s}));let n;i?(n=new z.Row(t),n.set_sizing({width_policy:\"max\",height_policy:\"min\"})):(n=new z.Column(t),n.set_sizing({width_policy:\"min\",height_policy:\"max\"})),n.absolute=!0,s.push(n)}else s.push(g(e,a));return s},q=null!==(e=this.model.min_border)&&void 0!==e?e:0;this.layout.min_border={left:null!==(t=this.model.min_border_left)&&void 0!==t?t:q,top:null!==(i=this.model.min_border_top)&&void 0!==i?i:q,right:null!==(s=this.model.min_border_right)&&void 0!==s?s:q,bottom:null!==(a=this.model.min_border_bottom)&&void 0!==a?a:q};const M=new f.NodeLayout,V=new f.VStack,P=new f.VStack,R=new f.HStack,O=new f.HStack;M.absolute=!0,V.absolute=!0,P.absolute=!0,R.absolute=!0,O.absolute=!0,M.children=this.model.center.filter((e=>e instanceof _.Annotation)).map((e=>{var t;const i=this.renderer_view(e);return null===(t=i.update_layout)||void 0===t||t.call(i),i.layout})).filter((e=>null!=e));const{frame_width:S,frame_height:j}=this.model;M.set_sizing(Object.assign(Object.assign({},null!=S?{width_policy:\"fixed\",width:S}:{width_policy:\"fit\"}),null!=j?{height_policy:\"fixed\",height:j}:{height_policy:\"fit\"})),M.on_resize((e=>this.frame.set_geometry(e))),V.children=w.reversed(y(\"above\",n)),P.children=y(\"below\",o),R.children=w.reversed(y(\"left\",l)),O.children=y(\"right\",r),V.set_sizing({width_policy:\"fit\",height_policy:\"min\"}),P.set_sizing({width_policy:\"fit\",height_policy:\"min\"}),R.set_sizing({width_policy:\"min\",height_policy:\"fit\"}),O.set_sizing({width_policy:\"min\",height_policy:\"fit\"}),this.layout.center_panel=M,this.layout.top_panel=V,this.layout.bottom_panel=P,this.layout.left_panel=R,this.layout.right_panel=O}get axis_views(){const e=[];for(const[,t]of this.renderer_views)t instanceof d.AxisView&&e.push(t);return e}set_toolbar_visibility(e){for(const t of this.visibility_callbacks)t(e)}update_range(e,t){this.pause(),this._range_manager.update(e,t),this.unpause()}reset_range(){this.update_range(null)}get_selection(){const e=new Map;for(const t of this.model.data_renderers){const{selected:i}=t.selection_manager.source;e.set(t,i)}return e}update_selection(e){for(const t of this.model.data_renderers){const i=t.selection_manager.source;if(null!=e){const s=e.get(t);null!=s&&i.selected.update(s,!0)}else i.selection_manager.clear()}}reset_selection(){this.update_selection(null)}_invalidate_layout(){(()=>{var e;for(const t of this.model.side_panels){const i=this.renderer_views.get(t);if(null===(e=i.layout)||void 0===e?void 0:e.has_size_changed())return this.invalidate_painters(i),!0}return!1})()&&this.root.compute_layout()}get_renderer_views(){return this.computed_renderers.map((e=>this.renderer_views.get(e)))}*_compute_renderers(){const{above:e,below:t,left:i,right:s,center:a,renderers:n}=this.model;yield*n,yield*e,yield*t,yield*i,yield*s,yield*a,null!=this._title&&(yield this._title),null!=this._toolbar&&(yield this._toolbar);for(const e of this.model.toolbar.tools)null!=e.overlay&&(yield e.overlay),yield*e.synthetic_renderers}async build_renderer_views(){this.computed_renderers=[...this._compute_renderers()],await p.build_views(this.renderer_views,this.computed_renderers,{parent:this})}async build_tool_views(){const e=this.model.toolbar.tools;(await p.build_views(this.tool_views,e,{parent:this})).map((e=>this.canvas_view.ui_event_bus.register_tool(e)))}connect_signals(){super.connect_signals();const{x_ranges:e,y_ranges:t}=this.frame;for(const[,t]of e)this.connect(t.change,(()=>{this._needs_layout=!0,this.request_paint(\"everything\")}));for(const[,e]of t)this.connect(e.change,(()=>{this._needs_layout=!0,this.request_paint(\"everything\")}));const{above:i,below:s,left:a,right:n,center:o,renderers:l}=this.model.properties;this.on_change([i,s,a,n,o,l],(async()=>await this.build_renderer_views())),this.connect(this.model.toolbar.properties.tools.change,(async()=>{await this.build_renderer_views(),await this.build_tool_views()})),this.connect(this.model.change,(()=>this.request_paint(\"everything\"))),this.connect(this.model.reset,(()=>this.reset()))}has_finished(){if(!super.has_finished())return!1;if(this.model.visible)for(const[,e]of this.renderer_views)if(!e.has_finished())return!1;return!0}after_layout(){var e;super.after_layout();for(const[,t]of this.renderer_views)t instanceof _.AnnotationView&&(null===(e=t.after_layout)||void 0===e||e.call(t));if(this._needs_layout=!1,this.model.setv({inner_width:Math.round(this.frame.bbox.width),inner_height:Math.round(this.frame.bbox.height),outer_width:Math.round(this.layout.bbox.width),outer_height:Math.round(this.layout.bbox.height)},{no_change:!0}),!1!==this.model.match_aspect&&(this.pause(),this._range_manager.update_dataranges(),this.unpause(!0)),!this._outer_bbox.equals(this.layout.bbox)){const{width:e,height:t}=this.layout.bbox;this.canvas_view.resize(e,t),this._outer_bbox=this.layout.bbox,this._invalidate_all=!0,this._needs_paint=!0}const{inner_bbox:t}=this.layout;this._inner_bbox.equals(t)||(this._inner_bbox=t,this._needs_paint=!0),this._needs_paint&&this.paint()}repaint(){this._needs_layout&&this._invalidate_layout(),this.paint()}paint(){var e;if(this.is_paused||!this.model.visible)return;b.logger.trace(`PlotView.paint() for ${this.model.id}`);const{document:t}=this.model;if(null!=t){const e=t.interactive_duration();e>=0&&e{t.interactive_duration()>this.model.lod_timeout&&t.interactive_stop(),this.request_paint(\"everything\")}),this.model.lod_timeout):t.interactive_stop()}this._range_manager.invalidate_dataranges&&(this._range_manager.update_dataranges(),this._invalidate_layout());let i=!1,s=!1;if(this._invalidate_all)i=!0,s=!0;else for(const e of this._invalidated_painters){const{level:t}=e.model;if(\"overlay\"!=t?i=!0:s=!0,i&&s)break}this._invalidated_painters.clear(),this._invalidate_all=!1;const a=[this.frame.bbox.left,this.frame.bbox.top,this.frame.bbox.width,this.frame.bbox.height],{primary:n,overlays:o}=this.canvas_view;i&&(n.prepare(),this.canvas_view.prepare_webgl(a),this._map_hook(n.ctx,a),this._paint_empty(n.ctx,a),this._paint_outline(n.ctx,a),this._paint_levels(n.ctx,\"image\",a,!0),this._paint_levels(n.ctx,\"underlay\",a,!0),this._paint_levels(n.ctx,\"glyph\",a,!0),this._paint_levels(n.ctx,\"guide\",a,!1),this._paint_levels(n.ctx,\"annotation\",a,!1),n.finish()),(s||P.settings.wireframe)&&(o.prepare(),this._paint_levels(o.ctx,\"overlay\",a,!1),P.settings.wireframe&&this._paint_layout(o.ctx,this.layout),o.finish()),null==this._initial_state.range&&(this._initial_state.range=null!==(e=this._range_manager.compute_initial())&&void 0!==e?e:void 0),this._needs_paint=!1}_paint_levels(e,t,i,s){for(const a of this.computed_renderers){if(a.level!=t)continue;const n=this.renderer_views.get(a);e.save(),(s||n.needs_clip)&&(e.beginPath(),e.rect(...i),e.clip()),n.render(),e.restore(),n.has_webgl&&n.needs_webgl_blit&&this.canvas_view.blit_webgl(e)}}_paint_layout(e,t){const{x:i,y:s,width:a,height:n}=t.bbox;e.strokeStyle=\"blue\",e.strokeRect(i,s,a,n);for(const a of t)e.save(),t.absolute||e.translate(i,s),this._paint_layout(e,a),e.restore()}_map_hook(e,t){}_paint_empty(e,t){const[i,s,a,n]=[0,0,this.layout.bbox.width,this.layout.bbox.height],[o,l,r,_]=t;this.visuals.border_fill.doit&&(this.visuals.border_fill.set_value(e),e.fillRect(i,s,a,n),e.clearRect(o,l,r,_)),this.visuals.background_fill.doit&&(this.visuals.background_fill.set_value(e),e.fillRect(o,l,r,_))}_paint_outline(e,t){if(this.visuals.outline_line.doit){e.save(),this.visuals.outline_line.set_value(e);let[i,s,a,n]=t;i+a==this.layout.bbox.width&&(a-=1),s+n==this.layout.bbox.height&&(n-=1),e.strokeRect(i,s,a,n),e.restore()}}to_blob(){return this.canvas_view.to_blob()}export(e,t=!0){const i=\"png\"==e?\"canvas\":\"svg\",s=new y.CanvasLayer(i,t),{width:a,height:n}=this.layout.bbox;s.resize(a,n);const{canvas:o}=this.canvas_view.compose();return s.ctx.drawImage(o,0,0),s}serializable_state(){const e=super.serializable_state(),{children:t}=e,i=n.__rest(e,[\"children\"]),s=this.get_renderer_views().map((e=>e.serializable_state())).filter((e=>null!=e.bbox));return Object.assign(Object.assign({},i),{children:[...null!=t?t:[],...s]})}}i.PlotView=R,R.__name__=\"PlotView\"},\n", + " function _(t,n,e,o,u){o(),e.throttle=function(t,n){let e=null,o=0,u=!1;return function(){return new Promise(((r,i)=>{const l=function(){o=Date.now(),e=null,u=!1;try{t(),r()}catch(t){i(t)}},a=Date.now(),c=n-(a-o);c<=0&&!u?(null!=e&&clearTimeout(e),u=!0,requestAnimationFrame(l)):e||u?r():e=setTimeout((()=>requestAnimationFrame(l)),c)}))}}},\n", + " function _(t,n,e,s,a){s();const o=t(159),r=t(19);class l{constructor(t){this.parent=t,this.invalidate_dataranges=!0}get frame(){return this.parent.frame}update(t,n){const{x_ranges:e,y_ranges:s}=this.frame;if(null==t){for(const[,t]of e)t.reset();for(const[,t]of s)t.reset();this.update_dataranges()}else{const a=[];for(const[n,s]of e)a.push([s,t.xrs.get(n)]);for(const[n,e]of s)a.push([e,t.yrs.get(n)]);(null==n?void 0:n.scrolling)&&this._update_ranges_together(a),this._update_ranges_individually(a,n)}}reset(){this.update(null)}update_dataranges(){const t=new Map,n=new Map;let e=!1;for(const[,t]of this.frame.x_ranges)t instanceof o.DataRange1d&&\"log\"==t.scale_hint&&(e=!0);for(const[,t]of this.frame.y_ranges)t instanceof o.DataRange1d&&\"log\"==t.scale_hint&&(e=!0);for(const s of this.parent.model.data_renderers){const a=this.parent.renderer_view(s);if(null==a)continue;const o=a.glyph_view.bounds();if(null!=o&&t.set(s,o),e){const t=a.glyph_view.log_bounds();null!=t&&n.set(s,t)}}let s=!1,a=!1;const{width:l,height:i}=this.frame.bbox;let d;!1!==this.parent.model.match_aspect&&0!=l&&0!=i&&(d=1/this.parent.model.aspect_scale*(l/i));for(const[,e]of this.frame.x_ranges){if(e instanceof o.DataRange1d){const a=\"log\"==e.scale_hint?n:t;e.update(a,0,this.parent.model,d),e.follow&&(s=!0)}null!=e.bounds&&(a=!0)}for(const[,e]of this.frame.y_ranges){if(e instanceof o.DataRange1d){const a=\"log\"==e.scale_hint?n:t;e.update(a,1,this.parent.model,d),e.follow&&(s=!0)}null!=e.bounds&&(a=!0)}if(s&&a){r.logger.warn(\"Follow enabled so bounds are unset.\");for(const[,t]of this.frame.x_ranges)t.bounds=null;for(const[,t]of this.frame.y_ranges)t.bounds=null}this.invalidate_dataranges=!1}compute_initial(){let t=!0;const{x_ranges:n,y_ranges:e}=this.frame,s=new Map,a=new Map;for(const[e,a]of n){const{start:n,end:o}=a;if(null==n||null==o||isNaN(n+o)){t=!1;break}s.set(e,{start:n,end:o})}if(t)for(const[n,s]of e){const{start:e,end:o}=s;if(null==e||null==o||isNaN(e+o)){t=!1;break}a.set(n,{start:e,end:o})}return t?{xrs:s,yrs:a}:(r.logger.warn(\"could not set initial ranges\"),null)}_update_ranges_together(t){let n=1;for(const[e,s]of t)n=Math.min(n,this._get_weight_to_constrain_interval(e,s));if(n<1)for(const[e,s]of t)s.start=n*s.start+(1-n)*e.start,s.end=n*s.end+(1-n)*e.end}_update_ranges_individually(t,n){const e=!!(null==n?void 0:n.panning),s=!!(null==n?void 0:n.scrolling);let a=!1;for(const[n,o]of t){if(!s){const t=this._get_weight_to_constrain_interval(n,o);t<1&&(o.start=t*o.start+(1-t)*n.start,o.end=t*o.end+(1-t)*n.end)}if(null!=n.bounds&&\"auto\"!=n.bounds){const[t,r]=n.bounds,l=Math.abs(o.end-o.start);n.is_reversed?(null!=t&&t>=o.end&&(a=!0,o.end=t,(e||s)&&(o.start=t+l)),null!=r&&r<=o.start&&(a=!0,o.start=r,(e||s)&&(o.end=r-l))):(null!=t&&t>=o.start&&(a=!0,o.start=t,(e||s)&&(o.end=t+l)),null!=r&&r<=o.end&&(a=!0,o.end=r,(e||s)&&(o.start=r-l)))}}if(!(s&&a&&(null==n?void 0:n.maintain_focus)))for(const[n,e]of t)n.have_updated_interactively=!0,n.start==e.start&&n.end==e.end||n.setv(e)}_get_weight_to_constrain_interval(t,n){const{min_interval:e}=t;let{max_interval:s}=t;if(null!=t.bounds&&\"auto\"!=t.bounds){const[n,e]=t.bounds;if(null!=n&&null!=e){const t=Math.abs(e-n);s=null!=s?Math.min(s,t):t}}let a=1;if(null!=e||null!=s){const o=Math.abs(t.end-t.start),r=Math.abs(n.end-n.start);null!=e&&e>0&&r0&&r>s&&(a=(s-o)/(r-o)),a=Math.max(0,Math.min(1,a))}return a}}e.RangeManager=l,l.__name__=\"RangeManager\"},\n", + " function _(t,i,s,e,n){e();const h=t(15);class a{constructor(t,i){this.parent=t,this.initial_state=i,this.changed=new h.Signal0(this.parent,\"state_changed\"),this.history=[],this.index=-1}_do_state_change(t){const i=null!=this.history[t]?this.history[t].state:this.initial_state;null!=i.range&&this.parent.update_range(i.range),null!=i.selection&&this.parent.update_selection(i.selection)}push(t,i){const{history:s,index:e}=this,n=null!=s[e]?s[e].state:{},h=Object.assign(Object.assign(Object.assign({},this.initial_state),n),i);this.history=this.history.slice(0,this.index+1),this.history.push({type:t,state:h}),this.index=this.history.length-1,this.changed.emit()}clear(){this.history=[],this.index=-1,this.changed.emit()}undo(){this.can_undo&&(this.index-=1,this._do_state_change(this.index),this.changed.emit())}redo(){this.can_redo&&(this.index+=1,this._do_state_change(this.index),this.changed.emit())}get can_undo(){return this.index>=0}get can_redo(){return this.indexm.emit();const s=encodeURIComponent,o=document.createElement(\"script\");o.type=\"text/javascript\",o.src=`https://maps.googleapis.com/maps/api/js?v=${s(e)}&key=${s(t)}&callback=_bokeh_gmaps_callback`,document.body.appendChild(o)}(t,e)}m.connect((()=>this.request_paint(\"everything\")))}this.unpause()}remove(){p.remove(this.map_el),super.remove()}update_range(t,e){var s,o;if(null==t)this.map.setCenter({lat:this.initial_lat,lng:this.initial_lng}),this.map.setOptions({zoom:this.initial_zoom}),super.update_range(null,e);else if(null!=t.sdx||null!=t.sdy)this.map.panBy(null!==(s=t.sdx)&&void 0!==s?s:0,null!==(o=t.sdy)&&void 0!==o?o:0),super.update_range(t,e);else if(null!=t.factor){if(10!==this.zoom_count)return void(this.zoom_count+=1);this.zoom_count=0,this.pause(),super.update_range(t,e);const s=t.factor<0?-1:1,o=this.map.getZoom(),i=o+s;if(i>=2){this.map.setZoom(i);const[t,e,,]=this._get_projected_bounds();e-t<0&&this.map.setZoom(o)}this.unpause()}this._set_bokeh_ranges()}_build_map(){const{maps:t}=google;this.map_types={satellite:t.MapTypeId.SATELLITE,terrain:t.MapTypeId.TERRAIN,roadmap:t.MapTypeId.ROADMAP,hybrid:t.MapTypeId.HYBRID};const e=this.model.map_options,s={center:new t.LatLng(e.lat,e.lng),zoom:e.zoom,disableDefaultUI:!0,mapTypeId:this.map_types[e.map_type],scaleControl:e.scale_control,tilt:e.tilt};null!=e.styles&&(s.styles=JSON.parse(e.styles)),this.map_el=p.div({style:{position:\"absolute\"}}),this.canvas_view.add_underlay(this.map_el),this.map=new t.Map(this.map_el,s),t.event.addListener(this.map,\"idle\",(()=>this._set_bokeh_ranges())),t.event.addListener(this.map,\"bounds_changed\",(()=>this._set_bokeh_ranges())),t.event.addListenerOnce(this.map,\"tilesloaded\",(()=>this._render_finished())),this.connect(this.model.properties.map_options.change,(()=>this._update_options())),this.connect(this.model.map_options.properties.styles.change,(()=>this._update_styles())),this.connect(this.model.map_options.properties.lat.change,(()=>this._update_center(\"lat\"))),this.connect(this.model.map_options.properties.lng.change,(()=>this._update_center(\"lng\"))),this.connect(this.model.map_options.properties.zoom.change,(()=>this._update_zoom())),this.connect(this.model.map_options.properties.map_type.change,(()=>this._update_map_type())),this.connect(this.model.map_options.properties.scale_control.change,(()=>this._update_scale_control())),this.connect(this.model.map_options.properties.tilt.change,(()=>this._update_tilt()))}_render_finished(){this._tiles_loaded=!0,this.notify_finished()}has_finished(){return super.has_finished()&&!0===this._tiles_loaded}_get_latlon_bounds(){const t=this.map.getBounds(),e=t.getNorthEast(),s=t.getSouthWest();return[s.lng(),e.lng(),s.lat(),e.lat()]}_get_projected_bounds(){const[t,e,s,o]=this._get_latlon_bounds(),[i,a]=l.wgs84_mercator.compute(t,s),[n,p]=l.wgs84_mercator.compute(e,o);return[i,n,a,p]}_set_bokeh_ranges(){const[t,e,s,o]=this._get_projected_bounds();this.frame.x_range.setv({start:t,end:e}),this.frame.y_range.setv({start:s,end:o})}_update_center(t){const e=this.map.getCenter().toJSON();e[t]=this.model.map_options[t],this.map.setCenter(e),this._set_bokeh_ranges()}_update_map_type(){this.map.setOptions({mapTypeId:this.map_types[this.model.map_options.map_type]})}_update_scale_control(){this.map.setOptions({scaleControl:this.model.map_options.scale_control})}_update_tilt(){this.map.setOptions({tilt:this.model.map_options.tilt})}_update_options(){this._update_styles(),this._update_center(\"lat\"),this._update_center(\"lng\"),this._update_zoom(),this._update_map_type()}_update_styles(){this.map.setOptions({styles:JSON.parse(this.model.map_options.styles)})}_update_zoom(){this.map.setOptions({zoom:this.model.map_options.zoom}),this._set_bokeh_ranges()}_map_hook(t,e){if(null==this.map&&\"undefined\"!=typeof google&&null!=google.maps&&this._build_map(),null!=this.map_el){const[t,s,o,i]=e;this.map_el.style.top=`${s}px`,this.map_el.style.left=`${t}px`,this.map_el.style.width=`${o}px`,this.map_el.style.height=`${i}px`}}_paint_empty(t,e){const s=this.layout.bbox.width,o=this.layout.bbox.height,[i,a,n,p]=e;t.clearRect(0,0,s,o),t.beginPath(),t.moveTo(0,0),t.lineTo(0,o),t.lineTo(s,o),t.lineTo(s,0),t.lineTo(0,0),t.moveTo(i,a),t.lineTo(i+n,a),t.lineTo(i+n,a+p),t.lineTo(i,a+p),t.lineTo(i,a),t.closePath(),null!=this.model.border_fill_color&&(t.fillStyle=_.color2css(this.model.border_fill_color),t.fill())}}s.GMapPlotView=d,d.__name__=\"GMapPlotView\"},\n", + " function _(t,_,n,o,r){o();t(1).__exportStar(t(169),n)},\n", + " function _(e,r,d,n,R){n(),R(\"GlyphRenderer\",e(61).GlyphRenderer),R(\"GraphRenderer\",e(123).GraphRenderer),R(\"GuideRenderer\",e(164).GuideRenderer),R(\"Renderer\",e(41).Renderer)},\n", + " function _(e,t,n,o,c){o();e(1).__exportStar(e(129),n),c(\"Selection\",e(59).Selection)},\n", + " function _(a,e,S,o,r){o(),r(\"ServerSentDataSource\",a(342).ServerSentDataSource),r(\"AjaxDataSource\",a(344).AjaxDataSource),r(\"ColumnDataSource\",a(130).ColumnDataSource),r(\"ColumnarDataSource\",a(57).ColumnarDataSource),r(\"CDSView\",a(120).CDSView),r(\"DataSource\",a(58).DataSource),r(\"GeoJSONDataSource\",a(345).GeoJSONDataSource),r(\"WebDataSource\",a(343).WebDataSource)},\n", + " function _(e,t,i,a,s){a();const n=e(343);class r extends n.WebDataSource{constructor(e){super(e),this.initialized=!1}setup(){if(!this.initialized){this.initialized=!0;new EventSource(this.data_url).onmessage=e=>{var t;this.load_data(JSON.parse(e.data),this.mode,null!==(t=this.max_size)&&void 0!==t?t:void 0)}}}}i.ServerSentDataSource=r,r.__name__=\"ServerSentDataSource\"},\n", + " function _(t,e,a,n,s){n();const r=t(130),i=t(20);class l extends r.ColumnDataSource{constructor(t){super(t)}get_column(t){const e=this.data[t];return null!=e?e:[]}get_length(){var t;return null!==(t=super.get_length())&&void 0!==t?t:0}initialize(){super.initialize(),this.setup()}load_data(t,e,a){const{adapter:n}=this;let s;switch(s=null!=n?n.execute(this,{response:t}):t,e){case\"replace\":this.data=s;break;case\"append\":{const t=this.data;for(const e of this.columns()){const n=Array.from(t[e]),r=Array.from(s[e]),i=n.concat(r);s[e]=null!=a?i.slice(-a):i}this.data=s;break}}}static init_WebDataSource(){this.define((({Any:t,Int:e,String:a,Nullable:n})=>({max_size:[n(e),null],mode:[i.UpdateMode,\"replace\"],adapter:[n(t),null],data_url:[a]})))}}a.WebDataSource=l,l.__name__=\"WebDataSource\",l.init_WebDataSource()},\n", + " function _(t,e,i,s,a){s();const n=t(343),r=t(20),o=t(19),l=t(13);class d extends n.WebDataSource{constructor(t){super(t),this.interval=null,this.initialized=!1}static init_AjaxDataSource(){this.define((({Boolean:t,Int:e,String:i,Dict:s,Nullable:a})=>({polling_interval:[a(e),null],content_type:[i,\"application/json\"],http_headers:[s(i),{}],method:[r.HTTPMethod,\"POST\"],if_modified:[t,!1]})))}destroy(){null!=this.interval&&clearInterval(this.interval),super.destroy()}setup(){if(!this.initialized&&(this.initialized=!0,this.get_data(this.mode),null!=this.polling_interval)){const t=()=>this.get_data(this.mode,this.max_size,this.if_modified);this.interval=setInterval(t,this.polling_interval)}}get_data(t,e=null,i=!1){const s=this.prepare_request();s.addEventListener(\"load\",(()=>this.do_load(s,t,null!=e?e:void 0))),s.addEventListener(\"error\",(()=>this.do_error(s))),s.send()}prepare_request(){const t=new XMLHttpRequest;t.open(this.method,this.data_url,!0),t.withCredentials=!1,t.setRequestHeader(\"Content-Type\",this.content_type);const e=this.http_headers;for(const[i,s]of l.entries(e))t.setRequestHeader(i,s);return t}do_load(t,e,i){if(200===t.status){const s=JSON.parse(t.responseText);this.load_data(s,e,i)}}do_error(t){o.logger.error(`Failed to fetch JSON from ${this.data_url} with code ${t.status}`)}}i.AjaxDataSource=d,d.__name__=\"AjaxDataSource\",d.init_AjaxDataSource()},\n", + " function _(e,t,o,r,n){r();const s=e(57),a=e(19),i=e(9),l=e(13);function c(e){return null!=e?e:NaN}const{hasOwnProperty:_}=Object.prototype;class g extends s.ColumnarDataSource{constructor(e){super(e)}static init_GeoJSONDataSource(){this.define((({String:e})=>({geojson:[e]}))),this.internal((({Dict:e,Arrayable:t})=>({data:[e(t),{}]})))}initialize(){super.initialize(),this._update_data()}connect_signals(){super.connect_signals(),this.connect(this.properties.geojson.change,(()=>this._update_data()))}_update_data(){this.data=this.geojson_to_column_data()}_get_new_list_array(e){return i.range(0,e).map((e=>[]))}_get_new_nan_array(e){return i.range(0,e).map((e=>NaN))}_add_properties(e,t,o,r){var n;const s=null!==(n=e.properties)&&void 0!==n?n:{};for(const[e,n]of l.entries(s))_.call(t,e)||(t[e]=this._get_new_nan_array(r)),t[e][o]=c(n)}_add_geometry(e,t,o){function r(e,t){return e.concat([[NaN,NaN,NaN]]).concat(t)}switch(e.type){case\"Point\":{const[r,n,s]=e.coordinates;t.x[o]=r,t.y[o]=n,t.z[o]=c(s);break}case\"LineString\":{const{coordinates:r}=e;for(let e=0;e1&&a.logger.warn(\"Bokeh does not support Polygons with holes in, only exterior ring used.\");const r=e.coordinates[0];for(let e=0;e1&&a.logger.warn(\"Bokeh does not support Polygons with holes in, only exterior ring used.\"),n.push(t[0]);const s=n.reduce(r);for(let e=0;e({use_latlon:[e,!1]})))}get_image_url(e,t,r){const i=this.string_lookup_replace(this.url,this.extra_url_vars);let o,l,n,s;return this.use_latlon?[l,s,o,n]=this.get_tile_geographic_bounds(e,t,r):[l,s,o,n]=this.get_tile_meter_bounds(e,t,r),i.replace(\"{XMIN}\",l.toString()).replace(\"{YMIN}\",s.toString()).replace(\"{XMAX}\",o.toString()).replace(\"{YMAX}\",n.toString())}}r.BBoxTileSource=n,n.__name__=\"BBoxTileSource\",n.init_BBoxTileSource()},\n", + " function _(t,e,i,_,s){_();const r=t(349),o=t(9),n=t(350);class l extends r.TileSource{constructor(t){super(t)}static init_MercatorTileSource(){this.define((({Boolean:t})=>({snap_to_zoom:[t,!1],wrap_around:[t,!0]}))),this.override({x_origin_offset:20037508.34,y_origin_offset:20037508.34,initial_resolution:156543.03392804097})}initialize(){super.initialize(),this._resolutions=o.range(this.min_zoom,this.max_zoom+1).map((t=>this.get_resolution(t)))}_computed_initial_resolution(){return null!=this.initial_resolution?this.initial_resolution:2*Math.PI*6378137/this.tile_size}is_valid_tile(t,e,i){return!(!this.wrap_around&&(t<0||t>=2**i))&&!(e<0||e>=2**i)}parent_by_tile_xyz(t,e,i){const _=this.tile_xyz_to_quadkey(t,e,i),s=_.substring(0,_.length-1);return this.quadkey_to_tile_xyz(s)}get_resolution(t){return this._computed_initial_resolution()/2**t}get_resolution_by_extent(t,e,i){return[(t[2]-t[0])/i,(t[3]-t[1])/e]}get_level_by_extent(t,e,i){const _=(t[2]-t[0])/i,s=(t[3]-t[1])/e,r=Math.max(_,s);let o=0;for(const t of this._resolutions){if(r>t){if(0==o)return 0;if(o>0)return o-1}o+=1}return o-1}get_closest_level_by_extent(t,e,i){const _=(t[2]-t[0])/i,s=(t[3]-t[1])/e,r=Math.max(_,s),o=this._resolutions.reduce((function(t,e){return Math.abs(e-r)e?(u=o-s,a*=t):(u*=e,a=n-r)}const h=(u-(o-s))/2,c=(a-(n-r))/2;return[s-h,r-c,o+h,n+c]}tms_to_wmts(t,e,i){return[t,2**i-1-e,i]}wmts_to_tms(t,e,i){return[t,2**i-1-e,i]}pixels_to_meters(t,e,i){const _=this.get_resolution(i);return[t*_-this.x_origin_offset,e*_-this.y_origin_offset]}meters_to_pixels(t,e,i){const _=this.get_resolution(i);return[(t+this.x_origin_offset)/_,(e+this.y_origin_offset)/_]}pixels_to_tile(t,e){let i=Math.ceil(t/this.tile_size);i=0===i?i:i-1;return[i,Math.max(Math.ceil(e/this.tile_size)-1,0)]}pixels_to_raster(t,e,i){return[t,(this.tile_size<=l;t--)for(let i=n;i<=u;i++)this.is_valid_tile(i,t,e)&&h.push([i,t,e,this.get_tile_meter_bounds(i,t,e)]);return this.sort_tiles_from_center(h,[n,l,u,a]),h}quadkey_to_tile_xyz(t){let e=0,i=0;const _=t.length;for(let s=_;s>0;s--){const r=1<0;s--){const i=1<0;)if(s=s.substring(0,s.length-1),[t,e,i]=this.quadkey_to_tile_xyz(s),[t,e,i]=this.denormalize_xyz(t,e,i,_),this.tiles.has(this.tile_xyz_to_key(t,e,i)))return[t,e,i];return[0,0,0]}normalize_xyz(t,e,i){if(this.wrap_around){const _=2**i;return[(t%_+_)%_,e,i]}return[t,e,i]}denormalize_xyz(t,e,i,_){return[t+_*2**i,e,i]}denormalize_meters(t,e,i,_){return[t+2*_*Math.PI*6378137,e]}calculate_world_x_by_tile_xyz(t,e,i){return Math.floor(t/2**i)}}i.MercatorTileSource=l,l.__name__=\"MercatorTileSource\",l.init_MercatorTileSource()},\n", + " function _(e,t,r,i,n){i();const l=e(53),s=e(13);class a extends l.Model{constructor(e){super(e)}static init_TileSource(){this.define((({Number:e,String:t,Dict:r,Nullable:i})=>({url:[t,\"\"],tile_size:[e,256],max_zoom:[e,30],min_zoom:[e,0],extra_url_vars:[r(t),{}],attribution:[t,\"\"],x_origin_offset:[e],y_origin_offset:[e],initial_resolution:[i(e),null]})))}initialize(){super.initialize(),this.tiles=new Map,this._normalize_case()}connect_signals(){super.connect_signals(),this.connect(this.change,(()=>this._clear_cache()))}string_lookup_replace(e,t){let r=e;for(const[e,i]of s.entries(t))r=r.replace(`{${e}}`,i);return r}_normalize_case(){const e=this.url.replace(\"{x}\",\"{X}\").replace(\"{y}\",\"{Y}\").replace(\"{z}\",\"{Z}\").replace(\"{q}\",\"{Q}\").replace(\"{xmin}\",\"{XMIN}\").replace(\"{ymin}\",\"{YMIN}\").replace(\"{xmax}\",\"{XMAX}\").replace(\"{ymax}\",\"{YMAX}\");this.url=e}_clear_cache(){this.tiles=new Map}tile_xyz_to_key(e,t,r){return`${e}:${t}:${r}`}key_to_tile_xyz(e){const[t,r,i]=e.split(\":\").map((e=>parseInt(e)));return[t,r,i]}sort_tiles_from_center(e,t){const[r,i,n,l]=t,s=(n-r)/2+r,a=(l-i)/2+i;e.sort((function(e,t){return Math.sqrt((s-e[0])**2+(a-e[1])**2)-Math.sqrt((s-t[0])**2+(a-t[1])**2)}))}get_image_url(e,t,r){return this.string_lookup_replace(this.url,this.extra_url_vars).replace(\"{X}\",e.toString()).replace(\"{Y}\",t.toString()).replace(\"{Z}\",r.toString())}}r.TileSource=a,a.__name__=\"TileSource\",a.init_TileSource()},\n", + " function _(t,e,r,n,o){n();const c=t(65);function _(t,e){return c.wgs84_mercator.compute(t,e)}function g(t,e){return c.wgs84_mercator.invert(t,e)}r.geographic_to_meters=_,r.meters_to_geographic=g,r.geographic_extent_to_meters=function(t){const[e,r,n,o]=t,[c,g]=_(e,r),[i,u]=_(n,o);return[c,g,i,u]},r.meters_extent_to_geographic=function(t){const[e,r,n,o]=t,[c,_]=g(e,r),[i,u]=g(n,o);return[c,_,i,u]}},\n", + " function _(e,t,r,s,_){s();const o=e(348);class c extends o.MercatorTileSource{constructor(e){super(e)}get_image_url(e,t,r){const s=this.string_lookup_replace(this.url,this.extra_url_vars),[_,o,c]=this.tms_to_wmts(e,t,r),i=this.tile_xyz_to_quadkey(_,o,c);return s.replace(\"{Q}\",i)}}r.QUADKEYTileSource=c,c.__name__=\"QUADKEYTileSource\"},\n", + " function _(t,e,i,s,_){s();const n=t(1),a=t(349),h=t(353),r=t(41),o=t(156),l=t(43),d=t(296),m=t(9),c=t(8),p=n.__importStar(t(354));class g extends r.RendererView{initialize(){this._tiles=[],super.initialize()}connect_signals(){super.connect_signals(),this.connect(this.model.change,(()=>this.request_render())),this.connect(this.model.tile_source.change,(()=>this.request_render()))}styles(){return[...super.styles(),p.default]}get_extent(){return[this.x_range.start,this.y_range.start,this.x_range.end,this.y_range.end]}get map_plot(){return this.plot_model}get map_canvas(){return this.layer.ctx}get map_frame(){return this.plot_view.frame}get x_range(){return this.map_plot.x_range}get y_range(){return this.map_plot.y_range}_set_data(){this.extent=this.get_extent(),this._last_height=void 0,this._last_width=void 0}_update_attribution(){null!=this.attribution_el&&l.removeElement(this.attribution_el);const{attribution:t}=this.model.tile_source;if(c.isString(t)&&t.length>0){const{layout:e,frame:i}=this.plot_view,s=e.bbox.width-i.bbox.right,_=e.bbox.height-i.bbox.bottom,n=i.bbox.width;this.attribution_el=l.div({class:p.tile_attribution,style:{position:\"absolute\",right:`${s}px`,bottom:`${_}px`,\"max-width\":n-4+\"px\",padding:\"2px\",\"background-color\":\"rgba(255,255,255,0.5)\",\"font-size\":\"9px\",\"line-height\":\"1.05\",\"white-space\":\"nowrap\",overflow:\"hidden\",\"text-overflow\":\"ellipsis\"}}),this.plot_view.canvas_view.add_event(this.attribution_el),this.attribution_el.innerHTML=t,this.attribution_el.title=this.attribution_el.textContent.replace(/\\s*\\n\\s*/g,\" \")}}_map_data(){this.initial_extent=this.get_extent();const t=this.model.tile_source.get_level_by_extent(this.initial_extent,this.map_frame.bbox.height,this.map_frame.bbox.width),e=this.model.tile_source.snap_to_zoom_level(this.initial_extent,this.map_frame.bbox.height,this.map_frame.bbox.width,t);this.x_range.start=e[0],this.y_range.start=e[1],this.x_range.end=e[2],this.y_range.end=e[3],this.x_range instanceof o.Range1d&&(this.x_range.reset_start=e[0],this.x_range.reset_end=e[2]),this.y_range instanceof o.Range1d&&(this.y_range.reset_start=e[1],this.y_range.reset_end=e[3]),this._update_attribution()}_create_tile(t,e,i,s,_=!1){const[n,a,h]=this.model.tile_source.normalize_xyz(t,e,i),r={img:void 0,tile_coords:[t,e,i],normalized_coords:[n,a,h],quadkey:this.model.tile_source.tile_xyz_to_quadkey(t,e,i),cache_key:this.model.tile_source.tile_xyz_to_key(t,e,i),bounds:s,loaded:!1,finished:!1,x_coord:s[0],y_coord:s[3]},o=this.model.tile_source.get_image_url(n,a,h);new d.ImageLoader(o,{loaded:t=>{Object.assign(r,{img:t,loaded:!0}),_?(r.finished=!0,this.notify_finished()):this.request_render()},failed(){r.finished=!0}}),this.model.tile_source.tiles.set(r.cache_key,r),this._tiles.push(r)}_enforce_aspect_ratio(){if(this._last_height!==this.map_frame.bbox.height||this._last_width!==this.map_frame.bbox.width){const t=this.get_extent(),e=this.model.tile_source.get_level_by_extent(t,this.map_frame.bbox.height,this.map_frame.bbox.width),i=this.model.tile_source.snap_to_zoom_level(t,this.map_frame.bbox.height,this.map_frame.bbox.width,e);this.x_range.setv({start:i[0],end:i[2]}),this.y_range.setv({start:i[1],end:i[3]}),this.extent=i,this._last_height=this.map_frame.bbox.height,this._last_width=this.map_frame.bbox.width}}has_finished(){if(!super.has_finished())return!1;if(0===this._tiles.length)return!1;for(const t of this._tiles)if(!t.finished)return!1;return!0}_render(){null==this.map_initialized&&(this._set_data(),this._map_data(),this.map_initialized=!0),this._enforce_aspect_ratio(),this._update(),null!=this.prefetch_timer&&clearTimeout(this.prefetch_timer),this.prefetch_timer=setTimeout(this._prefetch_tiles.bind(this),500),this.has_finished()&&this.notify_finished()}_draw_tile(t){const e=this.model.tile_source.tiles.get(t);if(null!=e&&e.loaded){const[[t],[i]]=this.coordinates.map_to_screen([e.bounds[0]],[e.bounds[3]]),[[s],[_]]=this.coordinates.map_to_screen([e.bounds[2]],[e.bounds[1]]),n=s-t,a=_-i,h=t,r=i,o=this.map_canvas.getImageSmoothingEnabled();this.map_canvas.setImageSmoothingEnabled(this.model.smoothing),this.map_canvas.drawImage(e.img,h,r,n,a),this.map_canvas.setImageSmoothingEnabled(o),e.finished=!0}}_set_rect(){const t=this.plot_model.outline_line_width,e=this.map_frame.bbox.left+t/2,i=this.map_frame.bbox.top+t/2,s=this.map_frame.bbox.width-t,_=this.map_frame.bbox.height-t;this.map_canvas.rect(e,i,s,_),this.map_canvas.clip()}_render_tiles(t){this.map_canvas.save(),this._set_rect(),this.map_canvas.globalAlpha=this.model.alpha;for(const e of t)this._draw_tile(e);this.map_canvas.restore()}_prefetch_tiles(){const{tile_source:t}=this.model,e=this.get_extent(),i=this.map_frame.bbox.height,s=this.map_frame.bbox.width,_=this.model.tile_source.get_level_by_extent(e,i,s),n=this.model.tile_source.get_tiles_by_extent(e,_);for(let e=0,i=Math.min(10,n.length);ei&&(s=this.extent,h=i,r=!0),r&&(this.x_range.setv({start:s[0],end:s[2]}),this.y_range.setv({start:s[1],end:s[3]})),this.extent=s;const o=t.get_tiles_by_extent(s,h),l=[],d=[],c=[],p=[];for(const e of o){const[i,s,n]=e,a=t.tile_xyz_to_key(i,s,n),h=t.tiles.get(a);if(null!=h&&h.loaded)d.push(a);else if(this.model.render_parents){const[e,a,h]=t.get_closest_parent_by_tile_xyz(i,s,n),r=t.tile_xyz_to_key(e,a,h),o=t.tiles.get(r);if(null!=o&&o.loaded&&!m.includes(c,r)&&c.push(r),_){const e=t.children_by_tile_xyz(i,s,n);for(const[i,s,_]of e){const e=t.tile_xyz_to_key(i,s,_);t.tiles.has(e)&&p.push(e)}}}null==h&&l.push(e)}this._render_tiles(c),this._render_tiles(p),this._render_tiles(d),null!=this.render_timer&&clearTimeout(this.render_timer),this.render_timer=setTimeout((()=>this._fetch_tiles(l)),65)}}i.TileRendererView=g,g.__name__=\"TileRendererView\";class u extends r.Renderer{constructor(t){super(t)}static init_TileRenderer(){this.prototype.default_view=g,this.define((({Boolean:t,Number:e,Ref:i})=>({alpha:[e,1],smoothing:[t,!0],tile_source:[i(a.TileSource),()=>new h.WMTSTileSource],render_parents:[t,!0]}))),this.override({level:\"image\"})}}i.TileRenderer=u,u.__name__=\"TileRenderer\",u.init_TileRenderer()},\n", + " function _(t,e,r,o,s){o();const c=t(348);class i extends c.MercatorTileSource{constructor(t){super(t)}get_image_url(t,e,r){const o=this.string_lookup_replace(this.url,this.extra_url_vars),[s,c,i]=this.tms_to_wmts(t,e,r);return o.replace(\"{X}\",s.toString()).replace(\"{Y}\",c.toString()).replace(\"{Z}\",i.toString())}}r.WMTSTileSource=i,i.__name__=\"WMTSTileSource\"},\n", + " function _(t,o,i,b,r){b(),i.root=\"bk-root\",i.tile_attribution=\"bk-tile-attribution\",i.default=\".bk-root .bk-tile-attribution a{color:black;}\"},\n", + " function _(e,r,t,c,o){c();const i=e(348);class l extends i.MercatorTileSource{constructor(e){super(e)}get_image_url(e,r,t){return this.string_lookup_replace(this.url,this.extra_url_vars).replace(\"{X}\",e.toString()).replace(\"{Y}\",r.toString()).replace(\"{Z}\",t.toString())}}t.TMSTileSource=l,l.__name__=\"TMSTileSource\"},\n", + " function _(e,t,u,a,r){a(),r(\"CanvasTexture\",e(357).CanvasTexture),r(\"ImageURLTexture\",e(359).ImageURLTexture),r(\"Texture\",e(358).Texture)},\n", + " function _(t,e,n,c,s){c();const a=t(358),i=t(34);class r extends a.Texture{constructor(t){super(t)}static init_CanvasTexture(){this.define((({String:t})=>({code:[t]})))}get func(){const t=i.use_strict(this.code);return new Function(\"ctx\",\"color\",\"scale\",\"weight\",t)}get_pattern(t,e,n){const c=document.createElement(\"canvas\");c.width=e,c.height=e;const s=c.getContext(\"2d\");return this.func.call(this,s,t,e,n),c}}n.CanvasTexture=r,r.__name__=\"CanvasTexture\",r.init_CanvasTexture()},\n", + " function _(e,t,i,n,r){n();const s=e(53),u=e(20);class o extends s.Model{constructor(e){super(e)}static init_Texture(){this.define((()=>({repetition:[u.TextureRepetition,\"repeat\"]})))}}i.Texture=o,o.__name__=\"Texture\",o.init_Texture()},\n", + " function _(e,t,i,r,n){r();const a=e(358),s=e(296);class u extends a.Texture{constructor(e){super(e)}static init_ImageURLTexture(){this.define((({String:e})=>({url:[e]})))}initialize(){super.initialize(),this._loader=new s.ImageLoader(this.url)}get_pattern(e,t,i){const{_loader:r}=this;return this._loader.finished?r.image:r.promise}}i.ImageURLTexture=u,u.__name__=\"ImageURLTexture\",u.init_ImageURLTexture()},\n", + " function _(o,l,T,e,t){e(),t(\"ActionTool\",o(251).ActionTool),t(\"CustomAction\",o(361).CustomAction),t(\"HelpTool\",o(252).HelpTool),t(\"RedoTool\",o(362).RedoTool),t(\"ResetTool\",o(363).ResetTool),t(\"SaveTool\",o(364).SaveTool),t(\"UndoTool\",o(365).UndoTool),t(\"ZoomInTool\",o(366).ZoomInTool),t(\"ZoomOutTool\",o(369).ZoomOutTool),t(\"ButtonTool\",o(238).ButtonTool),t(\"EditTool\",o(370).EditTool),t(\"BoxEditTool\",o(371).BoxEditTool),t(\"FreehandDrawTool\",o(372).FreehandDrawTool),t(\"PointDrawTool\",o(373).PointDrawTool),t(\"PolyDrawTool\",o(374).PolyDrawTool),t(\"PolyTool\",o(375).PolyTool),t(\"PolyEditTool\",o(376).PolyEditTool),t(\"BoxSelectTool\",o(377).BoxSelectTool),t(\"BoxZoomTool\",o(379).BoxZoomTool),t(\"GestureTool\",o(237).GestureTool),t(\"LassoSelectTool\",o(380).LassoSelectTool),t(\"LineEditTool\",o(382).LineEditTool),t(\"PanTool\",o(384).PanTool),t(\"PolySelectTool\",o(381).PolySelectTool),t(\"RangeTool\",o(385).RangeTool),t(\"SelectTool\",o(378).SelectTool),t(\"TapTool\",o(386).TapTool),t(\"WheelPanTool\",o(387).WheelPanTool),t(\"WheelZoomTool\",o(388).WheelZoomTool),t(\"CrosshairTool\",o(389).CrosshairTool),t(\"CustomJSHover\",o(390).CustomJSHover),t(\"HoverTool\",o(391).HoverTool),t(\"InspectTool\",o(247).InspectTool),t(\"Tool\",o(236).Tool),t(\"ToolProxy\",o(392).ToolProxy),t(\"Toolbar\",o(235).Toolbar),t(\"ToolbarBase\",o(248).ToolbarBase),t(\"ProxyToolbar\",o(393).ProxyToolbar),t(\"ToolbarBox\",o(393).ToolbarBox)},\n", + " function _(t,o,i,s,n){s();const e=t(251);class c extends e.ActionToolButtonView{css_classes(){return super.css_classes().concat(\"bk-toolbar-button-custom-action\")}}i.CustomActionButtonView=c,c.__name__=\"CustomActionButtonView\";class u extends e.ActionToolView{doit(){var t;null===(t=this.model.callback)||void 0===t||t.execute(this.model)}}i.CustomActionView=u,u.__name__=\"CustomActionView\";class l extends e.ActionTool{constructor(t){super(t),this.tool_name=\"Custom Action\",this.button_view=c}static init_CustomAction(){this.prototype.default_view=u,this.define((({Any:t,String:o,Nullable:i})=>({callback:[i(t)],icon:[o]}))),this.override({description:\"Perform a Custom Action\"})}}i.CustomAction=l,l.__name__=\"CustomAction\",l.init_CustomAction()},\n", + " function _(o,e,t,i,s){i();const n=o(251),d=o(242);class l extends n.ActionToolView{connect_signals(){super.connect_signals(),this.connect(this.plot_view.state.changed,(()=>this.model.disabled=!this.plot_view.state.can_redo))}doit(){this.plot_view.state.redo()}}t.RedoToolView=l,l.__name__=\"RedoToolView\";class _ extends n.ActionTool{constructor(o){super(o),this.tool_name=\"Redo\",this.icon=d.tool_icon_redo}static init_RedoTool(){this.prototype.default_view=l,this.override({disabled:!0}),this.register_alias(\"redo\",(()=>new _))}}t.RedoTool=_,_.__name__=\"RedoTool\",_.init_RedoTool()},\n", + " function _(e,t,o,s,i){s();const _=e(251),n=e(242);class l extends _.ActionToolView{doit(){this.plot_view.reset()}}o.ResetToolView=l,l.__name__=\"ResetToolView\";class c extends _.ActionTool{constructor(e){super(e),this.tool_name=\"Reset\",this.icon=n.tool_icon_reset}static init_ResetTool(){this.prototype.default_view=l,this.register_alias(\"reset\",(()=>new c))}}o.ResetTool=c,c.__name__=\"ResetTool\",c.init_ResetTool()},\n", + " function _(o,e,t,a,i){a();const n=o(251),s=o(242);class c extends n.ActionToolView{async copy(){const o=await this.plot_view.to_blob(),e=new ClipboardItem({[o.type]:o});await navigator.clipboard.write([e])}async save(o){const e=await this.plot_view.to_blob(),t=document.createElement(\"a\");t.href=URL.createObjectURL(e),t.download=o,t.target=\"_blank\",t.dispatchEvent(new MouseEvent(\"click\"))}doit(o=\"save\"){switch(o){case\"save\":this.save(\"bokeh_plot\");break;case\"copy\":this.copy()}}}t.SaveToolView=c,c.__name__=\"SaveToolView\";class l extends n.ActionTool{constructor(o){super(o),this.tool_name=\"Save\",this.icon=s.tool_icon_save}static init_SaveTool(){this.prototype.default_view=c,this.register_alias(\"save\",(()=>new l))}get menu(){return[{icon:\"bk-tool-icon-copy-to-clipboard\",tooltip:\"Copy image to clipboard\",if:()=>\"undefined\"!=typeof ClipboardItem,handler:()=>{this.do.emit(\"copy\")}}]}}t.SaveTool=l,l.__name__=\"SaveTool\",l.init_SaveTool()},\n", + " function _(o,t,n,i,e){i();const s=o(251),d=o(242);class l extends s.ActionToolView{connect_signals(){super.connect_signals(),this.connect(this.plot_view.state.changed,(()=>this.model.disabled=!this.plot_view.state.can_undo))}doit(){this.plot_view.state.undo()}}n.UndoToolView=l,l.__name__=\"UndoToolView\";class _ extends s.ActionTool{constructor(o){super(o),this.tool_name=\"Undo\",this.icon=d.tool_icon_undo}static init_UndoTool(){this.prototype.default_view=l,this.override({disabled:!0}),this.register_alias(\"undo\",(()=>new _))}}n.UndoTool=_,_.__name__=\"UndoTool\",_.init_UndoTool()},\n", + " function _(o,i,n,s,e){s();const t=o(367),_=o(242);class m extends t.ZoomBaseToolView{}n.ZoomInToolView=m,m.__name__=\"ZoomInToolView\";class l extends t.ZoomBaseTool{constructor(o){super(o),this.sign=1,this.tool_name=\"Zoom In\",this.icon=_.tool_icon_zoom_in}static init_ZoomInTool(){this.prototype.default_view=m,this.register_alias(\"zoom_in\",(()=>new l({dimensions:\"both\"}))),this.register_alias(\"xzoom_in\",(()=>new l({dimensions:\"width\"}))),this.register_alias(\"yzoom_in\",(()=>new l({dimensions:\"height\"})))}}n.ZoomInTool=l,l.__name__=\"ZoomInTool\",l.init_ZoomInTool()},\n", + " function _(o,t,e,i,s){i();const n=o(251),l=o(20),a=o(368);class _ extends n.ActionToolView{doit(){var o;const t=this.plot_view.frame,e=this.model.dimensions,i=\"width\"==e||\"both\"==e,s=\"height\"==e||\"both\"==e,n=a.scale_range(t,this.model.sign*this.model.factor,i,s);this.plot_view.state.push(\"zoom_out\",{range:n}),this.plot_view.update_range(n,{scrolling:!0}),null===(o=this.model.document)||void 0===o||o.interactive_start(this.plot_model)}}e.ZoomBaseToolView=_,_.__name__=\"ZoomBaseToolView\";class m extends n.ActionTool{constructor(o){super(o)}static init_ZoomBaseTool(){this.define((({Percent:o})=>({factor:[o,.1],dimensions:[l.Dimensions,\"both\"]})))}get tooltip(){return this._get_dim_tooltip(this.dimensions)}}e.ZoomBaseTool=m,m.__name__=\"ZoomBaseTool\",m.init_ZoomBaseTool()},\n", + " function _(n,t,o,r,s){r();const c=n(10);function e(n,t,o){const[r,s]=[n.start,n.end],c=null!=o?o:(s+r)/2;return[r-(r-c)*t,s-(s-c)*t]}function a(n,[t,o]){const r=new Map;for(const[s,c]of n){const[n,e]=c.r_invert(t,o);r.set(s,{start:n,end:e})}return r}o.scale_highlow=e,o.get_info=a,o.scale_range=function(n,t,o=!0,r=!0,s){t=c.clamp(t,-.9,.9);const l=o?t:0,[u,i]=e(n.bbox.h_range,l,null!=s?s.x:void 0),_=a(n.x_scales,[u,i]),f=r?t:0,[g,x]=e(n.bbox.v_range,f,null!=s?s.y:void 0);return{xrs:_,yrs:a(n.y_scales,[g,x]),factor:t}}},\n", + " function _(o,t,i,s,e){s();const n=o(367),_=o(242);class m extends n.ZoomBaseToolView{}i.ZoomOutToolView=m,m.__name__=\"ZoomOutToolView\";class l extends n.ZoomBaseTool{constructor(o){super(o),this.sign=-1,this.tool_name=\"Zoom Out\",this.icon=_.tool_icon_zoom_out}static init_ZoomOutTool(){this.prototype.default_view=m,this.register_alias(\"zoom_out\",(()=>new l({dimensions:\"both\"}))),this.register_alias(\"xzoom_out\",(()=>new l({dimensions:\"width\"}))),this.register_alias(\"yzoom_out\",(()=>new l({dimensions:\"height\"})))}}i.ZoomOutTool=l,l.__name__=\"ZoomOutTool\",l.init_ZoomOutTool()},\n", + " function _(e,t,s,o,n){o();const i=e(9),r=e(8),c=e(11),a=e(61),_=e(237);class l extends _.GestureToolView{constructor(){super(...arguments),this._mouse_in_frame=!0}_select_mode(e){const{shiftKey:t,ctrlKey:s}=e;return t||s?t&&!s?\"append\":!t&&s?\"intersect\":t&&s?\"subtract\":void c.unreachable():\"replace\"}_move_enter(e){this._mouse_in_frame=!0}_move_exit(e){this._mouse_in_frame=!1}_map_drag(e,t,s){if(!this.plot_view.frame.bbox.contains(e,t))return null;const o=this.plot_view.renderer_view(s);if(null==o)return null;return[o.coordinates.x_scale.invert(e),o.coordinates.y_scale.invert(t)]}_delete_selected(e){const t=e.data_source,s=t.selected.indices;s.sort();for(const e of t.columns()){const o=t.get_array(e);for(let e=0;e({custom_icon:[n(t),null],empty_value:[e],renderers:[s(o(a.GlyphRenderer)),[]]})))}get computed_icon(){var e;return null!==(e=this.custom_icon)&&void 0!==e?e:this.icon}}s.EditTool=d,d.__name__=\"EditTool\",d.init_EditTool()},\n", + " function _(e,t,s,i,_){i();const o=e(43),n=e(20),a=e(370),d=e(242);class l extends a.EditToolView{_tap(e){null==this._draw_basepoint&&null==this._basepoint&&this._select_event(e,this._select_mode(e),this.model.renderers)}_keyup(e){if(this.model.active&&this._mouse_in_frame)for(const t of this.model.renderers)if(e.keyCode===o.Keys.Backspace)this._delete_selected(t);else if(e.keyCode==o.Keys.Esc){t.data_source.selection_manager.clear()}}_set_extent([e,t],[s,i],_,o=!1){const n=this.model.renderers[0],a=this.plot_view.renderer_view(n);if(null==a)return;const d=n.glyph,l=n.data_source,[r,h]=a.coordinates.x_scale.r_invert(e,t),[p,u]=a.coordinates.y_scale.r_invert(s,i),[c,m]=[(r+h)/2,(p+u)/2],[f,b]=[h-r,u-p],[x,y]=[d.x.field,d.y.field],[w,v]=[d.width.field,d.height.field];if(_)this._pop_glyphs(l,this.model.num_objects),x&&l.get_array(x).push(c),y&&l.get_array(y).push(m),w&&l.get_array(w).push(f),v&&l.get_array(v).push(b),this._pad_empty_columns(l,[x,y,w,v]);else{const e=l.data[x].length-1;x&&(l.data[x][e]=c),y&&(l.data[y][e]=m),w&&(l.data[w][e]=f),v&&(l.data[v][e]=b)}this._emit_cds_changes(l,!0,!1,o)}_update_box(e,t=!1,s=!1){if(null==this._draw_basepoint)return;const i=[e.sx,e.sy],_=this.plot_view.frame,o=this.model.dimensions,n=this.model._get_dim_limits(this._draw_basepoint,i,_,o);if(null!=n){const[e,i]=n;this._set_extent(e,i,t,s)}}_doubletap(e){this.model.active&&(null!=this._draw_basepoint?(this._update_box(e,!1,!0),this._draw_basepoint=null):(this._draw_basepoint=[e.sx,e.sy],this._select_event(e,\"append\",this.model.renderers),this._update_box(e,!0,!1)))}_move(e){this._update_box(e,!1,!1)}_pan_start(e){if(e.shiftKey){if(null!=this._draw_basepoint)return;this._draw_basepoint=[e.sx,e.sy],this._update_box(e,!0,!1)}else{if(null!=this._basepoint)return;this._select_event(e,\"append\",this.model.renderers),this._basepoint=[e.sx,e.sy]}}_pan(e,t=!1,s=!1){if(e.shiftKey){if(null==this._draw_basepoint)return;this._update_box(e,t,s)}else{if(null==this._basepoint)return;this._drag_points(e,this.model.renderers)}}_pan_end(e){if(this._pan(e,!1,!0),e.shiftKey)this._draw_basepoint=null;else{this._basepoint=null;for(const e of this.model.renderers)this._emit_cds_changes(e.data_source,!1,!0,!0)}}}s.BoxEditToolView=l,l.__name__=\"BoxEditToolView\";class r extends a.EditTool{constructor(e){super(e),this.tool_name=\"Box Edit Tool\",this.icon=d.tool_icon_box_edit,this.event_type=[\"tap\",\"pan\",\"move\"],this.default_order=1}static init_BoxEditTool(){this.prototype.default_view=l,this.define((({Int:e})=>({dimensions:[n.Dimensions,\"both\"],num_objects:[e,0]})))}}s.BoxEditTool=r,r.__name__=\"BoxEditTool\",r.init_BoxEditTool()},\n", + " function _(e,t,a,s,r){s();const _=e(43),i=e(8),o=e(370),d=e(242);class n extends o.EditToolView{_draw(e,t,a=!1){if(!this.model.active)return;const s=this.model.renderers[0],r=this._map_drag(e.sx,e.sy,s);if(null==r)return;const[_,o]=r,d=s.data_source,n=s.glyph,[h,l]=[n.xs.field,n.ys.field];if(\"new\"==t)this._pop_glyphs(d,this.model.num_objects),h&&d.get_array(h).push([_]),l&&d.get_array(l).push([o]),this._pad_empty_columns(d,[h,l]);else if(\"add\"==t){if(h){const e=d.data[h].length-1;let t=d.get_array(h)[e];i.isArray(t)||(t=Array.from(t),d.data[h][e]=t),t.push(_)}if(l){const e=d.data[l].length-1;let t=d.get_array(l)[e];i.isArray(t)||(t=Array.from(t),d.data[l][e]=t),t.push(o)}}this._emit_cds_changes(d,!0,!0,a)}_pan_start(e){this._draw(e,\"new\")}_pan(e){this._draw(e,\"add\")}_pan_end(e){this._draw(e,\"add\",!0)}_tap(e){this._select_event(e,this._select_mode(e),this.model.renderers)}_keyup(e){if(this.model.active&&this._mouse_in_frame)for(const t of this.model.renderers)e.keyCode===_.Keys.Esc?t.data_source.selection_manager.clear():e.keyCode===_.Keys.Backspace&&this._delete_selected(t)}}a.FreehandDrawToolView=n,n.__name__=\"FreehandDrawToolView\";class h extends o.EditTool{constructor(e){super(e),this.tool_name=\"Freehand Draw Tool\",this.icon=d.tool_icon_freehand_draw,this.event_type=[\"pan\",\"tap\"],this.default_order=3}static init_FreehandDrawTool(){this.prototype.default_view=n,this.define((({Int:e})=>({num_objects:[e,0]}))),this.register_alias(\"freehand_draw\",(()=>new h))}}a.FreehandDrawTool=h,h.__name__=\"FreehandDrawTool\",h.init_FreehandDrawTool()},\n", + " function _(e,t,s,o,i){o();const a=e(43),n=e(370),_=e(242);class r extends n.EditToolView{_tap(e){if(this._select_event(e,this._select_mode(e),this.model.renderers).length||!this.model.add)return;const t=this.model.renderers[0],s=this._map_drag(e.sx,e.sy,t);if(null==s)return;const o=t.glyph,i=t.data_source,[a,n]=[o.x.field,o.y.field],[_,r]=s;this._pop_glyphs(i,this.model.num_objects),a&&i.get_array(a).push(_),n&&i.get_array(n).push(r),this._pad_empty_columns(i,[a,n]),i.change.emit(),i.data=i.data,i.properties.data.change.emit()}_keyup(e){if(this.model.active&&this._mouse_in_frame)for(const t of this.model.renderers)e.keyCode===a.Keys.Backspace?this._delete_selected(t):e.keyCode==a.Keys.Esc&&t.data_source.selection_manager.clear()}_pan_start(e){this.model.drag&&(this._select_event(e,\"append\",this.model.renderers),this._basepoint=[e.sx,e.sy])}_pan(e){this.model.drag&&null!=this._basepoint&&this._drag_points(e,this.model.renderers)}_pan_end(e){if(this.model.drag){this._pan(e);for(const e of this.model.renderers)this._emit_cds_changes(e.data_source,!1,!0,!0);this._basepoint=null}}}s.PointDrawToolView=r,r.__name__=\"PointDrawToolView\";class d extends n.EditTool{constructor(e){super(e),this.tool_name=\"Point Draw Tool\",this.icon=_.tool_icon_point_draw,this.event_type=[\"tap\",\"pan\",\"move\"],this.default_order=2}static init_PointDrawTool(){this.prototype.default_view=r,this.define((({Boolean:e,Int:t})=>({add:[e,!0],drag:[e,!0],num_objects:[t,0]})))}}s.PointDrawTool=d,d.__name__=\"PointDrawTool\",d.init_PointDrawTool()},\n", + " function _(e,t,s,i,a){i();const o=e(43),r=e(8),n=e(375),_=e(242);class d extends n.PolyToolView{constructor(){super(...arguments),this._drawing=!1,this._initialized=!1}_tap(e){this._drawing?this._draw(e,\"add\",!0):this._select_event(e,this._select_mode(e),this.model.renderers)}_draw(e,t,s=!1){const i=this.model.renderers[0],a=this._map_drag(e.sx,e.sy,i);if(this._initialized||this.activate(),null==a)return;const[o,n]=this._snap_to_vertex(e,...a),_=i.data_source,d=i.glyph,[l,h]=[d.xs.field,d.ys.field];if(\"new\"==t)this._pop_glyphs(_,this.model.num_objects),l&&_.get_array(l).push([o,o]),h&&_.get_array(h).push([n,n]),this._pad_empty_columns(_,[l,h]);else if(\"edit\"==t){if(l){const e=_.data[l][_.data[l].length-1];e[e.length-1]=o}if(h){const e=_.data[h][_.data[h].length-1];e[e.length-1]=n}}else if(\"add\"==t){if(l){const e=_.data[l].length-1;let t=_.get_array(l)[e];const s=t[t.length-1];t[t.length-1]=o,r.isArray(t)||(t=Array.from(t),_.data[l][e]=t),t.push(s)}if(h){const e=_.data[h].length-1;let t=_.get_array(h)[e];const s=t[t.length-1];t[t.length-1]=n,r.isArray(t)||(t=Array.from(t),_.data[h][e]=t),t.push(s)}}this._emit_cds_changes(_,!0,!1,s)}_show_vertices(){if(!this.model.active)return;const e=[],t=[];for(let s=0;sthis._show_vertices()))}this._initialized=!0}}deactivate(){this._drawing&&(this._remove(),this._drawing=!1),this.model.vertex_renderer&&this._hide_vertices()}}s.PolyDrawToolView=d,d.__name__=\"PolyDrawToolView\";class l extends n.PolyTool{constructor(e){super(e),this.tool_name=\"Polygon Draw Tool\",this.icon=_.tool_icon_poly_draw,this.event_type=[\"pan\",\"tap\",\"move\"],this.default_order=3}static init_PolyDrawTool(){this.prototype.default_view=d,this.define((({Boolean:e,Int:t})=>({drag:[e,!0],num_objects:[t,0]})))}}s.PolyDrawTool=l,l.__name__=\"PolyDrawTool\",l.init_PolyDrawTool()},\n", + " function _(e,t,r,o,s){o();const i=e(8),l=e(370);class _ extends l.EditToolView{_set_vertices(e,t){const r=this.model.vertex_renderer.glyph,o=this.model.vertex_renderer.data_source,[s,l]=[r.x.field,r.y.field];s&&(i.isArray(e)?o.data[s]=e:r.x={value:e}),l&&(i.isArray(t)?o.data[l]=t:r.y={value:t}),this._emit_cds_changes(o,!0,!0,!1)}_hide_vertices(){this._set_vertices([],[])}_snap_to_vertex(e,t,r){if(this.model.vertex_renderer){const o=this._select_event(e,\"replace\",[this.model.vertex_renderer]),s=this.model.vertex_renderer.data_source,i=this.model.vertex_renderer.glyph,[l,_]=[i.x.field,i.y.field];if(o.length){const e=s.selected.indices[0];l&&(t=s.data[l][e]),_&&(r=s.data[_][e]),s.selection_manager.clear()}}return[t,r]}}r.PolyToolView=_,_.__name__=\"PolyToolView\";class d extends l.EditTool{constructor(e){super(e)}static init_PolyTool(){this.define((({AnyRef:e})=>({vertex_renderer:[e()]})))}}r.PolyTool=d,d.__name__=\"PolyTool\",d.init_PolyTool()},\n", + " function _(e,t,s,r,i){r();const _=e(43),d=e(8),n=e(375),l=e(242);class a extends n.PolyToolView{constructor(){super(...arguments),this._drawing=!1,this._cur_index=null}_doubletap(e){if(!this.model.active)return;const t=this._map_drag(e.sx,e.sy,this.model.vertex_renderer);if(null==t)return;const[s,r]=t,i=this._select_event(e,\"replace\",[this.model.vertex_renderer]),_=this.model.vertex_renderer.data_source,d=this.model.vertex_renderer.glyph,[n,l]=[d.x.field,d.y.field];if(i.length&&null!=this._selected_renderer){const e=_.selected.indices[0];this._drawing?(this._drawing=!1,_.selection_manager.clear()):(_.selected.indices=[e+1],n&&_.get_array(n).splice(e+1,0,s),l&&_.get_array(l).splice(e+1,0,r),this._drawing=!0),_.change.emit(),this._emit_cds_changes(this._selected_renderer.data_source)}else this._show_vertices(e)}_show_vertices(e){if(!this.model.active)return;const t=this.model.renderers[0],s=()=>this._update_vertices(t),r=null==t?void 0:t.data_source,i=this._select_event(e,\"replace\",this.model.renderers);if(!i.length)return this._set_vertices([],[]),this._selected_renderer=null,this._drawing=!1,this._cur_index=null,void(null!=r&&r.disconnect(r.properties.data.change,s));null!=r&&r.connect(r.properties.data.change,s),this._cur_index=i[0].data_source.selected.indices[0],this._update_vertices(i[0])}_update_vertices(e){const t=e.glyph,s=e.data_source,r=this._cur_index,[i,_]=[t.xs.field,t.ys.field];if(this._drawing)return;if(null==r&&(i||_))return;let n,l;i&&null!=r?(n=s.data[i][r],d.isArray(n)||(s.data[i][r]=n=Array.from(n))):n=t.xs.value,_&&null!=r?(l=s.data[_][r],d.isArray(l)||(s.data[_][r]=l=Array.from(l))):l=t.ys.value,this._selected_renderer=e,this._set_vertices(n,l)}_move(e){if(this._drawing&&null!=this._selected_renderer){const t=this.model.vertex_renderer,s=t.data_source,r=t.glyph,i=this._map_drag(e.sx,e.sy,t);if(null==i)return;let[_,d]=i;const n=s.selected.indices;[_,d]=this._snap_to_vertex(e,_,d),s.selected.indices=n;const[l,a]=[r.x.field,r.y.field],c=n[0];l&&(s.data[l][c]=_),a&&(s.data[a][c]=d),s.change.emit(),this._selected_renderer.data_source.change.emit()}}_tap(e){const t=this.model.vertex_renderer,s=this._map_drag(e.sx,e.sy,t);if(null==s)return;if(this._drawing&&this._selected_renderer){let[r,i]=s;const _=t.data_source,d=t.glyph,[n,l]=[d.x.field,d.y.field],a=_.selected.indices;[r,i]=this._snap_to_vertex(e,r,i);const c=a[0];if(_.selected.indices=[c+1],n){const e=_.get_array(n),t=e[c];e[c]=r,e.splice(c+1,0,t)}if(l){const e=_.get_array(l),t=e[c];e[c]=i,e.splice(c+1,0,t)}return _.change.emit(),void this._emit_cds_changes(this._selected_renderer.data_source,!0,!1,!0)}const r=this._select_mode(e);this._select_event(e,r,[t]),this._select_event(e,r,this.model.renderers)}_remove_vertex(){if(!this._drawing||!this._selected_renderer)return;const e=this.model.vertex_renderer,t=e.data_source,s=e.glyph,r=t.selected.indices[0],[i,_]=[s.x.field,s.y.field];i&&t.get_array(i).splice(r,1),_&&t.get_array(_).splice(r,1),t.change.emit(),this._emit_cds_changes(this._selected_renderer.data_source)}_pan_start(e){this._select_event(e,\"append\",[this.model.vertex_renderer]),this._basepoint=[e.sx,e.sy]}_pan(e){null!=this._basepoint&&(this._drag_points(e,[this.model.vertex_renderer]),this._selected_renderer&&this._selected_renderer.data_source.change.emit())}_pan_end(e){null!=this._basepoint&&(this._drag_points(e,[this.model.vertex_renderer]),this._emit_cds_changes(this.model.vertex_renderer.data_source,!1,!0,!0),this._selected_renderer&&this._emit_cds_changes(this._selected_renderer.data_source),this._basepoint=null)}_keyup(e){if(!this.model.active||!this._mouse_in_frame)return;let t;t=this._selected_renderer?[this.model.vertex_renderer]:this.model.renderers;for(const s of t)e.keyCode===_.Keys.Backspace?(this._delete_selected(s),this._selected_renderer&&this._emit_cds_changes(this._selected_renderer.data_source)):e.keyCode==_.Keys.Esc&&(this._drawing?(this._remove_vertex(),this._drawing=!1):this._selected_renderer&&this._hide_vertices(),s.data_source.selection_manager.clear())}deactivate(){this._selected_renderer&&(this._drawing&&(this._remove_vertex(),this._drawing=!1),this._hide_vertices())}}s.PolyEditToolView=a,a.__name__=\"PolyEditToolView\";class c extends n.PolyTool{constructor(e){super(e),this.tool_name=\"Poly Edit Tool\",this.icon=l.tool_icon_poly_edit,this.event_type=[\"tap\",\"pan\",\"move\"],this.default_order=4}static init_PolyEditTool(){this.prototype.default_view=a}}s.PolyEditTool=c,c.__name__=\"PolyEditTool\",c.init_PolyEditTool()},\n", + " function _(e,t,o,s,i){s();const l=e(378),n=e(136),_=e(20),c=e(242);class h extends l.SelectToolView{_compute_limits(e){const t=this.plot_view.frame,o=this.model.dimensions;let s=this._base_point;if(\"center\"==this.model.origin){const[t,o]=s,[i,l]=e;s=[t-(i-t),o-(l-o)]}return this.model._get_dim_limits(s,e,t,o)}_pan_start(e){const{sx:t,sy:o}=e;this._base_point=[t,o]}_pan(e){const{sx:t,sy:o}=e,s=[t,o],[i,l]=this._compute_limits(s);this.model.overlay.update({left:i[0],right:i[1],top:l[0],bottom:l[1]}),this.model.select_every_mousemove&&this._do_select(i,l,!1,this._select_mode(e))}_pan_end(e){const{sx:t,sy:o}=e,s=[t,o],[i,l]=this._compute_limits(s);this._do_select(i,l,!0,this._select_mode(e)),this.model.overlay.update({left:null,right:null,top:null,bottom:null}),this._base_point=null,this.plot_view.state.push(\"box_select\",{selection:this.plot_view.get_selection()})}_do_select([e,t],[o,s],i,l=\"replace\"){const n={type:\"rect\",sx0:e,sx1:t,sy0:o,sy1:s};this._select(n,i,l)}}o.BoxSelectToolView=h,h.__name__=\"BoxSelectToolView\";const r=()=>new n.BoxAnnotation({level:\"overlay\",top_units:\"screen\",left_units:\"screen\",bottom_units:\"screen\",right_units:\"screen\",fill_color:\"lightgrey\",fill_alpha:.5,line_color:\"black\",line_alpha:1,line_width:2,line_dash:[4,4]});class a extends l.SelectTool{constructor(e){super(e),this.tool_name=\"Box Select\",this.icon=c.tool_icon_box_select,this.event_type=\"pan\",this.default_order=30}static init_BoxSelectTool(){this.prototype.default_view=h,this.define((({Boolean:e,Ref:t})=>({dimensions:[_.Dimensions,\"both\"],select_every_mousemove:[e,!1],overlay:[t(n.BoxAnnotation),r],origin:[_.BoxOrigin,\"corner\"]}))),this.register_alias(\"box_select\",(()=>new a)),this.register_alias(\"xbox_select\",(()=>new a({dimensions:\"width\"}))),this.register_alias(\"ybox_select\",(()=>new a({dimensions:\"height\"})))}get tooltip(){return this._get_dim_tooltip(this.dimensions)}}o.BoxSelectTool=a,a.__name__=\"BoxSelectTool\",a.init_BoxSelectTool()},\n", + " function _(e,t,s,n,o){n();const r=e(237),c=e(61),i=e(123),l=e(62),a=e(161),_=e(20),d=e(43),h=e(264),p=e(15),u=e(11);class m extends r.GestureToolView{connect_signals(){super.connect_signals(),this.model.clear.connect((()=>this._clear()))}get computed_renderers(){const{renderers:e,names:t}=this.model,s=this.plot_model.data_renderers;return a.compute_renderers(e,s,t)}_computed_renderers_by_data_source(){var e;const t=new Map;for(const s of this.computed_renderers){let n;if(s instanceof c.GlyphRenderer)n=s.data_source;else{if(!(s instanceof i.GraphRenderer))continue;n=s.node_renderer.data_source}const o=null!==(e=t.get(n))&&void 0!==e?e:[];t.set(n,[...o,s])}return t}_select_mode(e){const{shiftKey:t,ctrlKey:s}=e;return t||s?t&&!s?\"append\":!t&&s?\"intersect\":t&&s?\"subtract\":void u.unreachable():this.model.mode}_keyup(e){e.keyCode==d.Keys.Esc&&this._clear()}_clear(){for(const e of this.computed_renderers)e.get_selection_manager().clear();const e=this.computed_renderers.map((e=>this.plot_view.renderer_view(e)));this.plot_view.request_paint(e)}_select(e,t,s){const n=this._computed_renderers_by_data_source();for(const[,o]of n){const n=o[0].get_selection_manager(),r=[];for(const e of o){const t=this.plot_view.renderer_view(e);null!=t&&r.push(t)}n.select(r,e,t,s)}null!=this.model.callback&&this._emit_callback(e),this._emit_selection_event(e,t)}_emit_selection_event(e,t=!0){const{x_scale:s,y_scale:n}=this.plot_view.frame;let o;switch(e.type){case\"point\":{const{sx:t,sy:r}=e,c=s.invert(t),i=n.invert(r);o=Object.assign(Object.assign({},e),{x:c,y:i});break}case\"span\":{const{sx:t,sy:r}=e,c=s.invert(t),i=n.invert(r);o=Object.assign(Object.assign({},e),{x:c,y:i});break}case\"rect\":{const{sx0:t,sx1:r,sy0:c,sy1:i}=e,[l,a]=s.r_invert(t,r),[_,d]=n.r_invert(c,i);o=Object.assign(Object.assign({},e),{x0:l,y0:_,x1:a,y1:d});break}case\"poly\":{const{sx:t,sy:r}=e,c=s.v_invert(t),i=n.v_invert(r);o=Object.assign(Object.assign({},e),{x:c,y:i});break}}this.plot_model.trigger_event(new h.SelectionGeometry(o,t))}}s.SelectToolView=m,m.__name__=\"SelectToolView\";class v extends r.GestureTool{constructor(e){super(e)}initialize(){super.initialize(),this.clear=new p.Signal0(this,\"clear\")}static init_SelectTool(){this.define((({String:e,Array:t,Ref:s,Or:n,Auto:o})=>({renderers:[n(t(s(l.DataRenderer)),o),\"auto\"],names:[t(e),[]],mode:[_.SelectionMode,\"replace\"]})))}get menu(){return[{icon:\"bk-tool-icon-replace-mode\",tooltip:\"Replace the current selection\",active:()=>\"replace\"==this.mode,handler:()=>{this.mode=\"replace\",this.active=!0}},{icon:\"bk-tool-icon-append-mode\",tooltip:\"Append to the current selection (Shift)\",active:()=>\"append\"==this.mode,handler:()=>{this.mode=\"append\",this.active=!0}},{icon:\"bk-tool-icon-intersect-mode\",tooltip:\"Intersect with the current selection (Ctrl)\",active:()=>\"intersect\"==this.mode,handler:()=>{this.mode=\"intersect\",this.active=!0}},{icon:\"bk-tool-icon-subtract-mode\",tooltip:\"Subtract from the current selection (Shift+Ctrl)\",active:()=>\"subtract\"==this.mode,handler:()=>{this.mode=\"subtract\",this.active=!0}},null,{icon:\"bk-tool-icon-clear-selection\",tooltip:\"Clear the current selection (Esc)\",handler:()=>{this.clear.emit()}}]}}s.SelectTool=v,v.__name__=\"SelectTool\",v.init_SelectTool()},\n", + " function _(t,o,e,s,i){s();const n=t(237),_=t(136),a=t(20),l=t(242);class r extends n.GestureToolView{_match_aspect(t,o,e){const s=e.bbox.aspect,i=e.bbox.h_range.end,n=e.bbox.h_range.start,_=e.bbox.v_range.end,a=e.bbox.v_range.start;let l=Math.abs(t[0]-o[0]),r=Math.abs(t[1]-o[1]);const h=0==r?0:l/r,[c]=h>=s?[1,h/s]:[s/h,1];let m,p,d,b;return t[0]<=o[0]?(m=t[0],p=t[0]+l*c,p>i&&(p=i)):(p=t[0],m=t[0]-l*c,m_&&(d=_)):(d=t[1],b=t[1]-l/s,bnew _.BoxAnnotation({level:\"overlay\",top_units:\"screen\",left_units:\"screen\",bottom_units:\"screen\",right_units:\"screen\",fill_color:\"lightgrey\",fill_alpha:.5,line_color:\"black\",line_alpha:1,line_width:2,line_dash:[4,4]});class c extends n.GestureTool{constructor(t){super(t),this.tool_name=\"Box Zoom\",this.icon=l.tool_icon_box_zoom,this.event_type=\"pan\",this.default_order=20}static init_BoxZoomTool(){this.prototype.default_view=r,this.define((({Boolean:t,Ref:o})=>({dimensions:[a.Dimensions,\"both\"],overlay:[o(_.BoxAnnotation),h],match_aspect:[t,!1],origin:[a.BoxOrigin,\"corner\"]}))),this.register_alias(\"box_zoom\",(()=>new c({dimensions:\"both\"}))),this.register_alias(\"xbox_zoom\",(()=>new c({dimensions:\"width\"}))),this.register_alias(\"ybox_zoom\",(()=>new c({dimensions:\"height\"})))}get tooltip(){return this._get_dim_tooltip(this.dimensions)}}e.BoxZoomTool=c,c.__name__=\"BoxZoomTool\",c.init_BoxZoomTool()},\n", + " function _(s,e,t,o,i){o();const l=s(378),_=s(231),a=s(381),c=s(43),n=s(242);class h extends l.SelectToolView{constructor(){super(...arguments),this.sxs=[],this.sys=[]}connect_signals(){super.connect_signals(),this.connect(this.model.properties.active.change,(()=>this._active_change()))}_active_change(){this.model.active||this._clear_overlay()}_keyup(s){s.keyCode==c.Keys.Enter&&this._clear_overlay()}_pan_start(s){this.sxs=[],this.sys=[];const{sx:e,sy:t}=s;this._append_overlay(e,t)}_pan(s){const[e,t]=this.plot_view.frame.bbox.clip(s.sx,s.sy);this._append_overlay(e,t),this.model.select_every_mousemove&&this._do_select(this.sxs,this.sys,!1,this._select_mode(s))}_pan_end(s){const{sxs:e,sys:t}=this;this._clear_overlay(),this._do_select(e,t,!0,this._select_mode(s)),this.plot_view.state.push(\"lasso_select\",{selection:this.plot_view.get_selection()})}_append_overlay(s,e){const{sxs:t,sys:o}=this;t.push(s),o.push(e),this.model.overlay.update({xs:t,ys:o})}_clear_overlay(){this.sxs=[],this.sys=[],this.model.overlay.update({xs:this.sxs,ys:this.sys})}_do_select(s,e,t,o){const i={type:\"poly\",sx:s,sy:e};this._select(i,t,o)}}t.LassoSelectToolView=h,h.__name__=\"LassoSelectToolView\";class r extends l.SelectTool{constructor(s){super(s),this.tool_name=\"Lasso Select\",this.icon=n.tool_icon_lasso_select,this.event_type=\"pan\",this.default_order=12}static init_LassoSelectTool(){this.prototype.default_view=h,this.define((({Boolean:s,Ref:e})=>({select_every_mousemove:[s,!0],overlay:[e(_.PolyAnnotation),a.DEFAULT_POLY_OVERLAY]}))),this.register_alias(\"lasso_select\",(()=>new r))}}t.LassoSelectTool=r,r.__name__=\"LassoSelectTool\",r.init_LassoSelectTool()},\n", + " function _(e,t,s,l,o){l();const i=e(378),a=e(231),_=e(43),c=e(9),n=e(242);class h extends i.SelectToolView{initialize(){super.initialize(),this.data={sx:[],sy:[]}}connect_signals(){super.connect_signals(),this.connect(this.model.properties.active.change,(()=>this._active_change()))}_active_change(){this.model.active||this._clear_data()}_keyup(e){e.keyCode==_.Keys.Enter&&this._clear_data()}_doubletap(e){this._do_select(this.data.sx,this.data.sy,!0,this._select_mode(e)),this.plot_view.state.push(\"poly_select\",{selection:this.plot_view.get_selection()}),this._clear_data()}_clear_data(){this.data={sx:[],sy:[]},this.model.overlay.update({xs:[],ys:[]})}_tap(e){const{sx:t,sy:s}=e;this.plot_view.frame.bbox.contains(t,s)&&(this.data.sx.push(t),this.data.sy.push(s),this.model.overlay.update({xs:c.copy(this.data.sx),ys:c.copy(this.data.sy)}))}_do_select(e,t,s,l){const o={type:\"poly\",sx:e,sy:t};this._select(o,s,l)}}s.PolySelectToolView=h,h.__name__=\"PolySelectToolView\";s.DEFAULT_POLY_OVERLAY=()=>new a.PolyAnnotation({level:\"overlay\",xs_units:\"screen\",ys_units:\"screen\",fill_color:\"lightgrey\",fill_alpha:.5,line_color:\"black\",line_alpha:1,line_width:2,line_dash:[4,4]});class y extends i.SelectTool{constructor(e){super(e),this.tool_name=\"Poly Select\",this.icon=n.tool_icon_polygon_select,this.event_type=\"tap\",this.default_order=11}static init_PolySelectTool(){this.prototype.default_view=h,this.define((({Ref:e})=>({overlay:[e(a.PolyAnnotation),s.DEFAULT_POLY_OVERLAY]}))),this.register_alias(\"poly_select\",(()=>new y))}}s.PolySelectTool=y,y.__name__=\"PolySelectTool\",y.init_PolySelectTool()},\n", + " function _(e,t,i,s,n){s();const r=e(20),_=e(383),d=e(242);class o extends _.LineToolView{constructor(){super(...arguments),this._drawing=!1}_doubletap(e){if(!this.model.active)return;const t=this.model.renderers;for(const i of t){1==this._select_event(e,\"replace\",[i]).length&&(this._selected_renderer=i)}this._show_intersections(),this._update_line_cds()}_show_intersections(){if(!this.model.active)return;if(null==this._selected_renderer)return;if(!this.model.renderers.length)return this._set_intersection([],[]),this._selected_renderer=null,void(this._drawing=!1);const e=this._selected_renderer.data_source,t=this._selected_renderer.glyph,[i,s]=[t.x.field,t.y.field],n=e.get_array(i),r=e.get_array(s);this._set_intersection(n,r)}_tap(e){const t=this.model.intersection_renderer;if(null==this._map_drag(e.sx,e.sy,t))return;if(this._drawing&&this._selected_renderer){const i=this._select_mode(e);if(0==this._select_event(e,i,[t]).length)return}const i=this._select_mode(e);this._select_event(e,i,[t]),this._select_event(e,i,this.model.renderers)}_update_line_cds(){if(null==this._selected_renderer)return;const e=this.model.intersection_renderer.glyph,t=this.model.intersection_renderer.data_source,[i,s]=[e.x.field,e.y.field];if(i&&s){const e=t.data[i],n=t.data[s];this._selected_renderer.data_source.data[i]=e,this._selected_renderer.data_source.data[s]=n}this._emit_cds_changes(this._selected_renderer.data_source,!0,!0,!1)}_pan_start(e){this._select_event(e,\"append\",[this.model.intersection_renderer]),this._basepoint=[e.sx,e.sy]}_pan(e){null!=this._basepoint&&(this._drag_points(e,[this.model.intersection_renderer],this.model.dimensions),this._selected_renderer&&this._selected_renderer.data_source.change.emit())}_pan_end(e){null!=this._basepoint&&(this._drag_points(e,[this.model.intersection_renderer]),this._emit_cds_changes(this.model.intersection_renderer.data_source,!1,!0,!0),this._selected_renderer&&this._emit_cds_changes(this._selected_renderer.data_source),this._basepoint=null)}activate(){this._drawing=!0}deactivate(){this._selected_renderer&&(this._drawing&&(this._drawing=!1),this._hide_intersections())}}i.LineEditToolView=o,o.__name__=\"LineEditToolView\";class l extends _.LineTool{constructor(e){super(e),this.tool_name=\"Line Edit Tool\",this.icon=d.tool_icon_line_edit,this.event_type=[\"tap\",\"pan\",\"move\"],this.default_order=4}static init_LineEditTool(){this.prototype.default_view=o,this.define((()=>({dimensions:[r.Dimensions,\"both\"]})))}get tooltip(){return this._get_dim_tooltip(this.dimensions)}}i.LineEditTool=l,l.__name__=\"LineEditTool\",l.init_LineEditTool()},\n", + " function _(e,i,t,n,o){n();const s=e(8),_=e(370);class r extends _.EditToolView{_set_intersection(e,i){const t=this.model.intersection_renderer.glyph,n=this.model.intersection_renderer.data_source,[o,_]=[t.x.field,t.y.field];o&&(s.isArray(e)?n.data[o]=e:t.x={value:e}),_&&(s.isArray(i)?n.data[_]=i:t.y={value:i}),this._emit_cds_changes(n,!0,!0,!1)}_hide_intersections(){this._set_intersection([],[])}}t.LineToolView=r,r.__name__=\"LineToolView\";class c extends _.EditTool{constructor(e){super(e)}static init_LineTool(){this.define((({AnyRef:e})=>({intersection_renderer:[e()]})))}}t.LineTool=c,c.__name__=\"LineTool\",c.init_LineTool()},\n", + " function _(t,s,i,n,e){n();const o=t(1),a=t(237),_=t(20),h=o.__importStar(t(242));function l(t,s,i){const n=new Map;for(const[e,o]of t){const[t,a]=o.r_invert(s,i);n.set(e,{start:t,end:a})}return n}i.update_ranges=l;class r extends a.GestureToolView{_pan_start(t){var s;this.last_dx=0,this.last_dy=0;const{sx:i,sy:n}=t,e=this.plot_view.frame.bbox;if(!e.contains(i,n)){const t=e.h_range,s=e.v_range;(it.end)&&(this.v_axis_only=!0),(ns.end)&&(this.h_axis_only=!0)}null===(s=this.model.document)||void 0===s||s.interactive_start(this.plot_model)}_pan(t){var s;this._update(t.deltaX,t.deltaY),null===(s=this.model.document)||void 0===s||s.interactive_start(this.plot_model)}_pan_end(t){this.h_axis_only=!1,this.v_axis_only=!1,null!=this.pan_info&&this.plot_view.state.push(\"pan\",{range:this.pan_info})}_update(t,s){const i=this.plot_view.frame,n=t-this.last_dx,e=s-this.last_dy,o=i.bbox.h_range,a=o.start-n,_=o.end-n,h=i.bbox.v_range,r=h.start-e,d=h.end-e,p=this.model.dimensions;let c,m,u,x,v,y;\"width\"!=p&&\"both\"!=p||this.v_axis_only?(c=o.start,m=o.end,u=0):(c=a,m=_,u=-n),\"height\"!=p&&\"both\"!=p||this.h_axis_only?(x=h.start,v=h.end,y=0):(x=r,v=d,y=-e),this.last_dx=t,this.last_dy=s;const{x_scales:g,y_scales:w}=i,f=l(g,c,m),b=l(w,x,v);this.pan_info={xrs:f,yrs:b,sdx:u,sdy:y},this.plot_view.update_range(this.pan_info,{panning:!0})}}i.PanToolView=r,r.__name__=\"PanToolView\";class d extends a.GestureTool{constructor(t){super(t),this.tool_name=\"Pan\",this.event_type=\"pan\",this.default_order=10}static init_PanTool(){this.prototype.default_view=r,this.define((()=>({dimensions:[_.Dimensions,\"both\",{on_update(t,s){switch(t){case\"both\":s.icon=h.tool_icon_pan;break;case\"width\":s.icon=h.tool_icon_xpan;break;case\"height\":s.icon=h.tool_icon_ypan}}}]}))),this.register_alias(\"pan\",(()=>new d({dimensions:\"both\"}))),this.register_alias(\"xpan\",(()=>new d({dimensions:\"width\"}))),this.register_alias(\"ypan\",(()=>new d({dimensions:\"height\"})))}get tooltip(){return this._get_dim_tooltip(this.dimensions)}}i.PanTool=d,d.__name__=\"PanTool\",d.init_PanTool()},\n", + " function _(t,e,i,s,n){s();const l=t(136),a=t(156),r=t(19),o=t(237),_=t(242);function h(t){switch(t){case 1:return 2;case 2:return 1;case 4:return 5;case 5:return 4;default:return t}}function d(t,e,i,s){if(null==e)return!1;const n=i.compute(e);return Math.abs(t-n)n.right)&&(l=!1)}if(null!=n.bottom&&null!=n.top){const t=s.invert(e);(tn.top)&&(l=!1)}return l}function c(t,e,i){let s=0;return t>=i.start&&t<=i.end&&(s+=1),e>=i.start&&e<=i.end&&(s+=1),s}function g(t,e,i,s){const n=e.compute(t),l=e.invert(n+i);return l>=s.start&&l<=s.end?l:t}function y(t,e,i){return t>e.start?(e.end=t,i):(e.end=e.start,e.start=t,h(i))}function f(t,e,i){return t=o&&(t.start=a,t.end=r)}i.flip_side=h,i.is_near=d,i.is_inside=u,i.sides_inside=c,i.compute_value=g,i.update_range_end_side=y,i.update_range_start_side=f,i.update_range=m;class v extends o.GestureToolView{initialize(){super.initialize(),this.side=0,this.model.update_overlay_from_ranges()}connect_signals(){super.connect_signals(),null!=this.model.x_range&&this.connect(this.model.x_range.change,(()=>this.model.update_overlay_from_ranges())),null!=this.model.y_range&&this.connect(this.model.y_range.change,(()=>this.model.update_overlay_from_ranges()))}_pan_start(t){this.last_dx=0,this.last_dy=0;const e=this.model.x_range,i=this.model.y_range,{frame:s}=this.plot_view,n=s.x_scale,a=s.y_scale,r=this.model.overlay,{left:o,right:_,top:h,bottom:c}=r,g=this.model.overlay.line_width+l.EDGE_TOLERANCE;null!=e&&this.model.x_interaction&&(d(t.sx,o,n,g)?this.side=1:d(t.sx,_,n,g)?this.side=2:u(t.sx,t.sy,n,a,r)&&(this.side=3)),null!=i&&this.model.y_interaction&&(0==this.side&&d(t.sy,c,a,g)&&(this.side=4),0==this.side&&d(t.sy,h,a,g)?this.side=5:u(t.sx,t.sy,n,a,this.model.overlay)&&(3==this.side?this.side=7:this.side=6))}_pan(t){const e=this.plot_view.frame,i=t.deltaX-this.last_dx,s=t.deltaY-this.last_dy,n=this.model.x_range,l=this.model.y_range,a=e.x_scale,r=e.y_scale;if(null!=n)if(3==this.side||7==this.side)m(n,a,i,e.x_range);else if(1==this.side){const t=g(n.start,a,i,e.x_range);this.side=f(t,n,this.side)}else if(2==this.side){const t=g(n.end,a,i,e.x_range);this.side=y(t,n,this.side)}if(null!=l)if(6==this.side||7==this.side)m(l,r,s,e.y_range);else if(4==this.side){const t=g(l.start,r,s,e.y_range);this.side=f(t,l,this.side)}else if(5==this.side){const t=g(l.end,r,s,e.y_range);this.side=y(t,l,this.side)}this.last_dx=t.deltaX,this.last_dy=t.deltaY}_pan_end(t){this.side=0}}i.RangeToolView=v,v.__name__=\"RangeToolView\";const p=()=>new l.BoxAnnotation({level:\"overlay\",fill_color:\"lightgrey\",fill_alpha:.5,line_color:\"black\",line_alpha:1,line_width:.5,line_dash:[2,2]});class x extends o.GestureTool{constructor(t){super(t),this.tool_name=\"Range Tool\",this.icon=_.tool_icon_range,this.event_type=\"pan\",this.default_order=1}static init_RangeTool(){this.prototype.default_view=v,this.define((({Boolean:t,Ref:e,Nullable:i})=>({x_range:[i(e(a.Range1d)),null],x_interaction:[t,!0],y_range:[i(e(a.Range1d)),null],y_interaction:[t,!0],overlay:[e(l.BoxAnnotation),p]})))}initialize(){super.initialize(),this.overlay.in_cursor=\"grab\",this.overlay.ew_cursor=null!=this.x_range&&this.x_interaction?\"ew-resize\":null,this.overlay.ns_cursor=null!=this.y_range&&this.y_interaction?\"ns-resize\":null}update_overlay_from_ranges(){null==this.x_range&&null==this.y_range&&(this.overlay.left=null,this.overlay.right=null,this.overlay.bottom=null,this.overlay.top=null,r.logger.warn(\"RangeTool not configured with any Ranges.\")),null==this.x_range?(this.overlay.left=null,this.overlay.right=null):(this.overlay.left=this.x_range.start,this.overlay.right=this.x_range.end),null==this.y_range?(this.overlay.bottom=null,this.overlay.top=null):(this.overlay.bottom=this.y_range.start,this.overlay.top=this.y_range.end)}}i.RangeTool=x,x.__name__=\"RangeTool\",x.init_RangeTool()},\n", + " function _(e,t,s,o,i){o();const l=e(378),a=e(20),n=e(242);class c extends l.SelectToolView{_tap(e){\"tap\"==this.model.gesture&&this._handle_tap(e)}_doubletap(e){\"doubletap\"==this.model.gesture&&this._handle_tap(e)}_handle_tap(e){const{sx:t,sy:s}=e,o={type:\"point\",sx:t,sy:s};this._select(o,!0,this._select_mode(e))}_select(e,t,s){const{callback:o}=this.model;if(\"select\"==this.model.behavior){const i=this._computed_renderers_by_data_source();for(const[,l]of i){const i=l[0].get_selection_manager(),a=l.map((e=>this.plot_view.renderer_view(e))).filter((e=>null!=e));if(i.select(a,e,t,s)&&null!=o){const t=a[0].coordinates.x_scale.invert(e.sx),s=a[0].coordinates.y_scale.invert(e.sy),l={geometries:Object.assign(Object.assign({},e),{x:t,y:s}),source:i.source};o.execute(this.model,l)}}this._emit_selection_event(e),this.plot_view.state.push(\"tap\",{selection:this.plot_view.get_selection()})}else for(const t of this.computed_renderers){const s=this.plot_view.renderer_view(t);if(null==s)continue;const i=t.get_selection_manager();if(i.inspect(s,e)&&null!=o){const t=s.coordinates.x_scale.invert(e.sx),l=s.coordinates.y_scale.invert(e.sy),a={geometries:Object.assign(Object.assign({},e),{x:t,y:l}),source:i.source};o.execute(this.model,a)}}}}s.TapToolView=c,c.__name__=\"TapToolView\";class _ extends l.SelectTool{constructor(e){super(e),this.tool_name=\"Tap\",this.icon=n.tool_icon_tap_select,this.event_type=\"tap\",this.default_order=10}static init_TapTool(){this.prototype.default_view=c,this.define((({Any:e,Enum:t,Nullable:s})=>({behavior:[a.TapBehavior,\"select\"],gesture:[t(\"tap\",\"doubletap\"),\"tap\"],callback:[s(e)]}))),this.register_alias(\"click\",(()=>new _({behavior:\"inspect\"}))),this.register_alias(\"tap\",(()=>new _)),this.register_alias(\"doubletap\",(()=>new _({gesture:\"doubletap\"})))}}s.TapTool=_,_.__name__=\"TapTool\",_.init_TapTool()},\n", + " function _(e,t,s,i,n){i();const o=e(237),a=e(20),l=e(242),_=e(384);class h extends o.GestureToolView{_scroll(e){let t=this.model.speed*e.delta;t>.9?t=.9:t<-.9&&(t=-.9),this._update_ranges(t)}_update_ranges(e){var t;const{frame:s}=this.plot_view,i=s.bbox.h_range,n=s.bbox.v_range,[o,a]=[i.start,i.end],[l,h]=[n.start,n.end];let r,d,c,p;switch(this.model.dimension){case\"height\":{const t=Math.abs(h-l);r=o,d=a,c=l-t*e,p=h-t*e;break}case\"width\":{const t=Math.abs(a-o);r=o-t*e,d=a-t*e,c=l,p=h;break}}const{x_scales:m,y_scales:u}=s,w={xrs:_.update_ranges(m,r,d),yrs:_.update_ranges(u,c,p),factor:e};this.plot_view.state.push(\"wheel_pan\",{range:w}),this.plot_view.update_range(w,{scrolling:!0}),null===(t=this.model.document)||void 0===t||t.interactive_start(this.plot_model)}}s.WheelPanToolView=h,h.__name__=\"WheelPanToolView\";class r extends o.GestureTool{constructor(e){super(e),this.tool_name=\"Wheel Pan\",this.icon=l.tool_icon_wheel_pan,this.event_type=\"scroll\",this.default_order=12}static init_WheelPanTool(){this.prototype.default_view=h,this.define((()=>({dimension:[a.Dimension,\"width\"]}))),this.internal((({Number:e})=>({speed:[e,.001]}))),this.register_alias(\"xwheel_pan\",(()=>new r({dimension:\"width\"}))),this.register_alias(\"ywheel_pan\",(()=>new r({dimension:\"height\"})))}get tooltip(){return this._get_dim_tooltip(this.dimension)}}s.WheelPanTool=r,r.__name__=\"WheelPanTool\",r.init_WheelPanTool()},\n", + " function _(e,o,t,s,i){s();const l=e(237),n=e(368),h=e(20),_=e(27),a=e(242);class m extends l.GestureToolView{_pinch(e){const{sx:o,sy:t,scale:s,ctrlKey:i,shiftKey:l}=e;let n;n=s>=1?20*(s-1):-20/s,this._scroll({type:\"wheel\",sx:o,sy:t,delta:n,ctrlKey:i,shiftKey:l})}_scroll(e){var o;const{frame:t}=this.plot_view,s=t.bbox.h_range,i=t.bbox.v_range,{sx:l,sy:h}=e,_=this.model.dimensions,a=(\"width\"==_||\"both\"==_)&&s.start({dimensions:[h.Dimensions,\"both\"],maintain_focus:[e,!0],zoom_on_axis:[e,!0],speed:[o,1/600]}))),this.register_alias(\"wheel_zoom\",(()=>new r({dimensions:\"both\"}))),this.register_alias(\"xwheel_zoom\",(()=>new r({dimensions:\"width\"}))),this.register_alias(\"ywheel_zoom\",(()=>new r({dimensions:\"height\"})))}get tooltip(){return this._get_dim_tooltip(this.dimensions)}}t.WheelZoomTool=r,r.__name__=\"WheelZoomTool\",r.init_WheelZoomTool()},\n", + " function _(i,s,t,o,e){o();const n=i(247),l=i(233),h=i(20),a=i(13),r=i(242);class _ extends n.InspectToolView{_move(i){if(!this.model.active)return;const{sx:s,sy:t}=i;this.plot_view.frame.bbox.contains(s,t)?this._update_spans(s,t):this._update_spans(null,null)}_move_exit(i){this._update_spans(null,null)}_update_spans(i,s){const t=this.model.dimensions;\"width\"!=t&&\"both\"!=t||(this.model.spans.width.location=s),\"height\"!=t&&\"both\"!=t||(this.model.spans.height.location=i)}}t.CrosshairToolView=_,_.__name__=\"CrosshairToolView\";class c extends n.InspectTool{constructor(i){super(i),this.tool_name=\"Crosshair\",this.icon=r.tool_icon_crosshair}static init_CrosshairTool(){function i(i,s){return new l.Span({for_hover:!0,dimension:s,location_units:\"screen\",level:\"overlay\",line_color:i.line_color,line_width:i.line_width,line_alpha:i.line_alpha})}this.prototype.default_view=_,this.define((({Alpha:i,Number:s,Color:t})=>({dimensions:[h.Dimensions,\"both\"],line_color:[t,\"black\"],line_width:[s,1],line_alpha:[i,1]}))),this.internal((({Struct:s,Ref:t})=>({spans:[s({width:t(l.Span),height:t(l.Span)}),s=>({width:i(s,\"width\"),height:i(s,\"height\")})]}))),this.register_alias(\"crosshair\",(()=>new c))}get tooltip(){return this._get_dim_tooltip(this.dimensions)}get synthetic_renderers(){return a.values(this.spans)}}t.CrosshairTool=c,c.__name__=\"CrosshairTool\",c.init_CrosshairTool()},\n", + " function _(t,e,s,o,r){o();const n=t(53),i=t(13),a=t(34);class u extends n.Model{constructor(t){super(t)}static init_CustomJSHover(){this.define((({Unknown:t,String:e,Dict:s})=>({args:[s(t),{}],code:[e,\"\"]})))}get values(){return i.values(this.args)}_make_code(t,e,s,o){return new Function(...i.keys(this.args),t,e,s,a.use_strict(o))}format(t,e,s){return this._make_code(\"value\",\"format\",\"special_vars\",this.code)(...this.values,t,e,s)}}s.CustomJSHover=u,u.__name__=\"CustomJSHover\",u.init_CustomJSHover()},\n", + " function _(e,t,n,s,o){s();const i=e(1),r=e(247),l=e(390),a=e(254),c=e(61),_=e(123),d=e(62),p=e(63),h=e(127),u=i.__importStar(e(107)),m=e(182),y=e(43),f=e(22),x=e(13),v=e(245),w=e(8),g=e(122),b=e(20),k=e(242),C=e(15),S=e(161),T=i.__importStar(e(255));function $(e,t,n,s,o,i){const r={x:o[e],y:i[e]},l={x:o[e+1],y:i[e+1]};let a,c;if(\"span\"==t.type)\"h\"==t.direction?(a=Math.abs(r.x-n),c=Math.abs(l.x-n)):(a=Math.abs(r.y-s),c=Math.abs(l.y-s));else{const e={x:n,y:s};a=u.dist_2_pts(r,e),c=u.dist_2_pts(l,e)}return adelete this._template_el)),this.on_change([e,t,n],(async()=>await this._update_ttmodels()))}async _update_ttmodels(){const{_ttmodels:e,computed_renderers:t}=this;e.clear();const{tooltips:n}=this.model;if(null!=n)for(const t of this.computed_renderers){const s=new a.Tooltip({custom:w.isString(n)||w.isFunction(n),attachment:this.model.attachment,show_arrow:this.model.show_arrow});t instanceof c.GlyphRenderer?e.set(t,s):t instanceof _.GraphRenderer&&(e.set(t.node_renderer,s),e.set(t.edge_renderer,s))}const s=await g.build_views(this._ttviews,[...e.values()],{parent:this.plot_view});for(const e of s)e.render();const o=[...function*(){for(const e of t)e instanceof c.GlyphRenderer?yield e:e instanceof _.GraphRenderer&&(yield e.node_renderer,yield e.edge_renderer)}()],i=this._slots.get(this._update);if(null!=i){const e=new Set(o.map((e=>e.data_source)));C.Signal.disconnect_receiver(this,i,e)}for(const e of o)this.connect(e.data_source.inspect,this._update)}get computed_renderers(){const{renderers:e,names:t}=this.model,n=this.plot_model.data_renderers;return S.compute_renderers(e,n,t)}get ttmodels(){return this._ttmodels}_clear(){this._inspect(1/0,1/0);for(const[,e]of this.ttmodels)e.clear()}_move(e){if(!this.model.active)return;const{sx:t,sy:n}=e;this.plot_view.frame.bbox.contains(t,n)?this._inspect(t,n):this._clear()}_move_exit(){this._clear()}_inspect(e,t){let n;if(\"mouse\"==this.model.mode)n={type:\"point\",sx:e,sy:t};else{n={type:\"span\",direction:\"vline\"==this.model.mode?\"h\":\"v\",sx:e,sy:t}}for(const e of this.computed_renderers){const t=e.get_selection_manager(),s=this.plot_view.renderer_view(e);null!=s&&t.inspect(s,n)}this._emit_callback(n)}_update([e,{geometry:t}]){var n,s;if(!this.model.active)return;if(\"point\"!=t.type&&\"span\"!=t.type)return;if(!(e instanceof c.GlyphRenderer))return;if(\"ignore\"==this.model.muted_policy&&e.muted)return;const o=this.ttmodels.get(e);if(null==o)return;const i=e.get_selection_manager();let r=i.inspectors.get(e);if(r=e.view.convert_selection_to_subset(r),r.is_empty())return void o.clear();const l=i.source,a=this.plot_view.renderer_view(e);if(null==a)return;const{sx:_,sy:d}=t,u=a.coordinates.x_scale,m=a.coordinates.y_scale,f=u.invert(_),v=m.invert(d),{glyph:w}=a,g=[];if(w instanceof p.LineView)for(const n of r.line_indices){let s,o,i=w._x[n+1],a=w._y[n+1],c=n;switch(this.model.line_policy){case\"interp\":[i,a]=w.get_interpolation_hit(n,t),s=u.compute(i),o=m.compute(a);break;case\"prev\":[[s,o],c]=R(w.sx,w.sy,n);break;case\"next\":[[s,o],c]=R(w.sx,w.sy,n+1);break;case\"nearest\":[[s,o],c]=$(n,t,_,d,w.sx,w.sy),i=w._x[c],a=w._y[c];break;default:[s,o]=[_,d]}const p={index:c,x:f,y:v,sx:_,sy:d,data_x:i,data_y:a,rx:s,ry:o,indices:r.line_indices,name:e.name};g.push([s,o,this._render_tooltips(l,c,p)])}for(const t of r.image_indices){const n={index:t.index,x:f,y:v,sx:_,sy:d,name:e.name},s=this._render_tooltips(l,t,n);g.push([_,d,s])}for(const o of r.indices)if(w instanceof h.MultiLineView&&!x.isEmpty(r.multiline_indices))for(const n of r.multiline_indices[o.toString()]){let s,i,a,p=w._xs.get(o)[n],h=w._ys.get(o)[n],y=n;switch(this.model.line_policy){case\"interp\":[p,h]=w.get_interpolation_hit(o,n,t),s=u.compute(p),i=m.compute(h);break;case\"prev\":[[s,i],y]=R(w.sxs.get(o),w.sys.get(o),n);break;case\"next\":[[s,i],y]=R(w.sxs.get(o),w.sys.get(o),n+1);break;case\"nearest\":[[s,i],y]=$(n,t,_,d,w.sxs.get(o),w.sys.get(o)),p=w._xs.get(o)[y],h=w._ys.get(o)[y];break;default:throw new Error(\"shouldn't have happened\")}a=e instanceof c.GlyphRenderer?e.view.convert_indices_from_subset([o])[0]:o;const x={index:a,x:f,y:v,sx:_,sy:d,data_x:p,data_y:h,segment_index:y,indices:r.multiline_indices,name:e.name};g.push([s,i,this._render_tooltips(l,a,x)])}else{const t=null===(n=w._x)||void 0===n?void 0:n[o],i=null===(s=w._y)||void 0===s?void 0:s[o];let a,p,h;if(\"snap_to_data\"==this.model.point_policy){let e=w.get_anchor_point(this.model.anchor,o,[_,d]);if(null==e&&(e=w.get_anchor_point(\"center\",o,[_,d]),null==e))continue;a=e.x,p=e.y}else[a,p]=[_,d];h=e instanceof c.GlyphRenderer?e.view.convert_indices_from_subset([o])[0]:o;const u={index:h,x:f,y:v,sx:_,sy:d,data_x:t,data_y:i,indices:r.indices,name:e.name};g.push([a,p,this._render_tooltips(l,h,u)])}if(0==g.length)o.clear();else{const{content:e}=o;y.empty(o.content);for(const[,,t]of g)null!=t&&e.appendChild(t);const[t,n]=g[g.length-1];o.setv({position:[t,n]},{check_eq:!1})}}_emit_callback(e){const{callback:t}=this.model;if(null!=t)for(const n of this.computed_renderers){if(!(n instanceof c.GlyphRenderer))continue;const s=this.plot_view.renderer_view(n);if(null==s)continue;const{x_scale:o,y_scale:i}=s.coordinates,r=o.invert(e.sx),l=i.invert(e.sy),a=n.data_source.inspected;t.execute(this.model,{geometry:Object.assign({x:r,y:l},e),renderer:n,index:a})}}_create_template(e){const t=y.div({style:{display:\"table\",borderSpacing:\"2px\"}});for(const[n]of e){const e=y.div({style:{display:\"table-row\"}});t.appendChild(e);const s=y.div({style:{display:\"table-cell\"},class:T.tooltip_row_label},0!=n.length?`${n}: `:\"\");e.appendChild(s);const o=y.span();o.dataset.value=\"\";const i=y.span({class:T.tooltip_color_block},\" \");i.dataset.swatch=\"\",y.undisplay(i);const r=y.div({style:{display:\"table-cell\"},class:T.tooltip_row_value},o,i);e.appendChild(r)}return t}_render_template(e,t,n,s,o){const i=e.cloneNode(!0),r=i.querySelectorAll(\"[data-value]\"),l=i.querySelectorAll(\"[data-swatch]\"),a=/\\$color(\\[.*\\])?:(\\w*)/,c=/\\$swatch:(\\w*)/;for(const[[,e],i]of v.enumerate(t)){const t=e.match(c),_=e.match(a);if(null!=t||null!=_){if(null!=t){const[,e]=t,o=n.get_column(e);if(null==o)r[i].textContent=`${e} unknown`;else{const e=w.isNumber(s)?o[s]:null;null!=e&&(l[i].style.backgroundColor=f.color2css(e),y.display(l[i]))}}if(null!=_){const[,e=\"\",t]=_,o=n.get_column(t);if(null==o){r[i].textContent=`${t} unknown`;continue}const a=e.indexOf(\"hex\")>=0,c=e.indexOf(\"swatch\")>=0,d=w.isNumber(s)?o[s]:null;if(null==d){r[i].textContent=\"(null)\";continue}r[i].textContent=a?f.color2hex(d):f.color2css(d),c&&(l[i].style.backgroundColor=f.color2css(d),y.display(l[i]))}}else{const t=m.replace_placeholders(e.replace(\"$~\",\"$data_\"),n,s,this.model.formatters,o);if(w.isString(t))r[i].textContent=t;else for(const e of t)r[i].appendChild(e)}}return i}_render_tooltips(e,t,n){var s;const{tooltips:o}=this.model;if(w.isString(o)){const s=m.replace_placeholders({html:o},e,t,this.model.formatters,n);return y.div({},s)}if(w.isFunction(o))return o(e,n);if(null!=o){const i=null!==(s=this._template_el)&&void 0!==s?s:this._template_el=this._create_template(o);return this._render_template(i,o,e,t,n)}return null}}n.HoverToolView=H,H.__name__=\"HoverToolView\";class M extends r.InspectTool{constructor(e){super(e),this.tool_name=\"Hover\",this.icon=k.tool_icon_hover}static init_HoverTool(){this.prototype.default_view=H,this.define((({Any:e,Boolean:t,String:n,Array:s,Tuple:o,Dict:i,Or:r,Ref:a,Function:c,Auto:_,Nullable:p})=>({tooltips:[p(r(n,s(o(n,n)),c())),[[\"index\",\"$index\"],[\"data (x, y)\",\"($x, $y)\"],[\"screen (x, y)\",\"($sx, $sy)\"]]],formatters:[i(r(a(l.CustomJSHover),m.FormatterType)),{}],renderers:[r(s(a(d.DataRenderer)),_),\"auto\"],names:[s(n),[]],mode:[b.HoverMode,\"mouse\"],muted_policy:[b.MutedPolicy,\"show\"],point_policy:[b.PointPolicy,\"snap_to_data\"],line_policy:[b.LinePolicy,\"nearest\"],show_arrow:[t,!0],anchor:[b.Anchor,\"center\"],attachment:[b.TooltipAttachment,\"horizontal\"],callback:[p(e)]}))),this.register_alias(\"hover\",(()=>new M))}}n.HoverTool=M,M.__name__=\"HoverTool\",M.init_HoverTool()},\n", + " function _(t,o,e,n,i){n();const s=t(15),l=t(53),c=t(238),r=t(247),a=t(245);class u extends l.Model{constructor(t){super(t)}static init_ToolProxy(){this.define((({Boolean:t,Array:o,Ref:e})=>({tools:[o(e(c.ButtonTool)),[]],active:[t,!1],disabled:[t,!1]})))}get button_view(){return this.tools[0].button_view}get event_type(){return this.tools[0].event_type}get tooltip(){return this.tools[0].tooltip}get tool_name(){return this.tools[0].tool_name}get icon(){return this.tools[0].computed_icon}get computed_icon(){return this.icon}get toggleable(){const t=this.tools[0];return t instanceof r.InspectTool&&t.toggleable}initialize(){super.initialize(),this.do=new s.Signal0(this,\"do\")}connect_signals(){super.connect_signals(),this.connect(this.do,(()=>this.doit())),this.connect(this.properties.active.change,(()=>this.set_active()));for(const t of this.tools)this.connect(t.properties.active.change,(()=>{this.active=t.active}))}doit(){for(const t of this.tools)t.do.emit()}set_active(){for(const t of this.tools)t.active=this.active}get menu(){const{menu:t}=this.tools[0];if(null==t)return null;const o=[];for(const[e,n]of a.enumerate(t))if(null==e)o.push(null);else{const t=()=>{var t,o;for(const e of this.tools)null===(o=null===(t=e.menu)||void 0===t?void 0:t[n])||void 0===o||o.handler()};o.push(Object.assign(Object.assign({},e),{handler:t}))}return o}}e.ToolProxy=u,u.__name__=\"ToolProxy\",u.init_ToolProxy()},\n", + " function _(o,t,s,i,e){i();const n=o(20),r=o(9),l=o(13),c=o(248),h=o(235),a=o(392),_=o(319),p=o(221);class f extends c.ToolbarBase{constructor(o){super(o)}static init_ProxyToolbar(){this.define((({Array:o,Ref:t})=>({toolbars:[o(t(h.Toolbar)),[]]})))}initialize(){super.initialize(),this._merge_tools()}_merge_tools(){this._proxied_tools=[];const o={},t={},s={},i=[],e=[];for(const o of this.help)r.includes(e,o.redirect)||(i.push(o),e.push(o.redirect));this._proxied_tools.push(...i),this.help=i;for(const[o,t]of l.entries(this.gestures)){o in s||(s[o]={});for(const i of t.tools)i.type in s[o]||(s[o][i.type]=[]),s[o][i.type].push(i)}for(const t of this.inspectors)t.type in o||(o[t.type]=[]),o[t.type].push(t);for(const o of this.actions)o.type in t||(t[o.type]=[]),t[o.type].push(o);const n=(o,t=!1)=>{const s=new a.ToolProxy({tools:o,active:t});return this._proxied_tools.push(s),s};for(const o of l.keys(s)){const t=this.gestures[o];t.tools=[];for(const i of l.keys(s[o])){const e=s[o][i];if(e.length>0)if(\"multi\"==o)for(const o of e){const s=n([o]);t.tools.push(s),this.connect(s.properties.active.change,(()=>this._active_change(s)))}else{const o=n(e);t.tools.push(o),this.connect(o.properties.active.change,(()=>this._active_change(o)))}}}this.actions=[];for(const[o,s]of l.entries(t))if(\"CustomAction\"==o)for(const o of s)this.actions.push(n([o]));else s.length>0&&this.actions.push(n(s));this.inspectors=[];for(const t of l.values(o))t.length>0&&this.inspectors.push(n(t,!0));for(const[o,t]of l.entries(this.gestures))0!=t.tools.length&&(t.tools=r.sort_by(t.tools,(o=>o.default_order)),\"pinch\"!=o&&\"scroll\"!=o&&\"multi\"!=o&&(t.tools[0].active=!0))}}s.ProxyToolbar=f,f.__name__=\"ProxyToolbar\",f.init_ProxyToolbar();class u extends _.LayoutDOMView{initialize(){this.model.toolbar.toolbar_location=this.model.toolbar_location,super.initialize()}get child_models(){return[this.model.toolbar]}_update_layout(){this.layout=new p.ContentBox(this.child_views[0].el);const{toolbar:o}=this.model;o.horizontal?this.layout.set_sizing({width_policy:\"fit\",min_width:100,height_policy:\"fixed\"}):this.layout.set_sizing({width_policy:\"fixed\",height_policy:\"fit\",min_height:100})}}s.ToolbarBoxView=u,u.__name__=\"ToolbarBoxView\";class y extends _.LayoutDOM{constructor(o){super(o)}static init_ToolbarBox(){this.prototype.default_view=u,this.define((({Ref:o})=>({toolbar:[o(c.ToolbarBase)],toolbar_location:[n.Location,\"right\"]})))}}s.ToolbarBox=y,y.__name__=\"ToolbarBox\",y.init_ToolbarBox()},\n", + " function _(e,n,r,t,o){t();const s=e(1),u=e(53),c=s.__importStar(e(21)),a=e(8),l=e(13);r.resolve_defs=function(e,n){var r,t,o,s;function i(e){return null!=e.module?`${e.module}.${e.name}`:e.name}function f(e){if(a.isString(e))switch(e){case\"Any\":return c.Any;case\"Unknown\":return c.Unknown;case\"Boolean\":return c.Boolean;case\"Number\":return c.Number;case\"Int\":return c.Int;case\"String\":return c.String;case\"Null\":return c.Null}else switch(e[0]){case\"Nullable\":{const[,n]=e;return c.Nullable(f(n))}case\"Or\":{const[,...n]=e;return c.Or(...n.map(f))}case\"Tuple\":{const[,n,...r]=e;return c.Tuple(f(n),...r.map(f))}case\"Array\":{const[,n]=e;return c.Array(f(n))}case\"Struct\":{const[,...n]=e,r=n.map((([e,n])=>[e,f(n)]));return c.Struct(l.to_object(r))}case\"Dict\":{const[,n]=e;return c.Dict(f(n))}case\"Map\":{const[,n,r]=e;return c.Map(f(n),f(r))}case\"Enum\":{const[,...n]=e;return c.Enum(...n)}case\"Ref\":{const[,r]=e,t=n.get(i(r));if(null!=t)return c.Ref(t);throw new Error(`${i(r)} wasn't defined before referencing it`)}case\"AnyRef\":return c.AnyRef()}}for(const c of e){const e=(()=>{if(null==c.extends)return u.Model;{const e=n.get(i(c.extends));if(null!=e)return e;throw new Error(`base model ${i(c.extends)} of ${i(c)} is not defined`)}})(),a=((s=class extends e{}).__name__=c.name,s.__module__=c.module,s);for(const e of null!==(r=c.properties)&&void 0!==r?r:[]){const n=f(null!==(t=e.kind)&&void 0!==t?t:\"Unknown\");a.define({[e.name]:[n,e.default]})}for(const e of null!==(o=c.overrides)&&void 0!==o?o:[])a.override({[e.name]:e.default});n.register(a)}}},\n", + " function _(n,e,t,o,i){o();const d=n(5),c=n(240),s=n(122),a=n(43),l=n(396);t.index={},t.add_document_standalone=async function(n,e,o=[],i=!1){const u=new Map;async function f(i){let d;const f=n.roots().indexOf(i),r=o[f];null!=r?d=r:e.classList.contains(l.BOKEH_ROOT)?d=e:(d=a.div({class:l.BOKEH_ROOT}),e.appendChild(d));const w=await s.build_view(i,{parent:null});return w instanceof c.DOMView&&w.renderTo(d),u.set(i,w),t.index[i.id]=w,w}for(const e of n.roots())await f(e);return i&&(window.document.title=n.title()),n.on_change((n=>{n instanceof d.RootAddedEvent?f(n.model):n instanceof d.RootRemovedEvent?function(n){const e=u.get(n);null!=e&&(e.remove(),u.delete(n),delete t.index[n.id])}(n.model):i&&n instanceof d.TitleChangedEvent&&(window.document.title=n.title)})),[...u.values()]}},\n", + " function _(o,e,n,t,r){t();const l=o(43),d=o(44);function u(o){let e=document.getElementById(o);if(null==e)throw new Error(`Error rendering Bokeh model: could not find #${o} HTML tag`);if(!document.body.contains(e))throw new Error(`Error rendering Bokeh model: element #${o} must be under `);if(\"SCRIPT\"==e.tagName){const o=l.div({class:n.BOKEH_ROOT});l.replaceWith(e,o),e=o}return e}n.BOKEH_ROOT=d.root,n._resolve_element=function(o){const{elementid:e}=o;return null!=e?u(e):document.body},n._resolve_root_elements=function(o){const e=[];if(null!=o.root_ids&&null!=o.roots)for(const n of o.root_ids)e.push(u(o.roots[n]));return e}},\n", + " function _(n,o,t,s,e){s();const c=n(398),r=n(19),a=n(395);t._get_ws_url=function(n,o){let t,s=\"ws:\";return\"https:\"==window.location.protocol&&(s=\"wss:\"),null!=o?(t=document.createElement(\"a\"),t.href=o):t=window.location,null!=n?\"/\"==n&&(n=\"\"):n=t.pathname.replace(/\\/+$/,\"\"),s+\"//\"+t.host+n+\"/ws\"};const i={};t.add_document_from_session=async function(n,o,t,s=[],e=!1){const l=window.location.search.substr(1);let d;try{d=await function(n,o,t){const s=c.parse_token(o).session_id;n in i||(i[n]={});const e=i[n];return s in e||(e[s]=c.pull_session(n,o,t)),e[s]}(n,o,l)}catch(n){const t=c.parse_token(o).session_id;throw r.logger.error(`Failed to load Bokeh session ${t}: ${n}`),n}return a.add_document_standalone(d.document,t,s,e)}},\n", + " function _(e,s,n,t,o){t();const r=e(19),i=e(5),c=e(399),l=e(400),_=e(401);n.DEFAULT_SERVER_WEBSOCKET_URL=\"ws://localhost:5006/ws\",n.DEFAULT_TOKEN=\"eyJzZXNzaW9uX2lkIjogImRlZmF1bHQifQ\";let h=0;function a(e){let s=e.split(\".\")[0];const n=s.length%4;return 0!=n&&(s+=\"=\".repeat(4-n)),JSON.parse(atob(s.replace(/_/g,\"/\").replace(/-/g,\"+\")))}n.parse_token=a;class d{constructor(e=n.DEFAULT_SERVER_WEBSOCKET_URL,s=n.DEFAULT_TOKEN,t=null){this.url=e,this.token=s,this.args_string=t,this._number=h++,this.socket=null,this.session=null,this.closed_permanently=!1,this._current_handler=null,this._pending_replies=new Map,this._pending_messages=[],this._receiver=new l.Receiver,this.id=a(s).session_id.split(\".\")[0],r.logger.debug(`Creating websocket ${this._number} to '${this.url}' session '${this.id}'`)}async connect(){if(this.closed_permanently)throw new Error(\"Cannot connect() a closed ClientConnection\");if(null!=this.socket)throw new Error(\"Already connected\");this._current_handler=null,this._pending_replies.clear(),this._pending_messages=[];try{let e=`${this.url}`;return null!=this.args_string&&this.args_string.length>0&&(e+=`?${this.args_string}`),this.socket=new WebSocket(e,[\"bokeh\",this.token]),new Promise(((e,s)=>{this.socket.binaryType=\"arraybuffer\",this.socket.onopen=()=>this._on_open(e,s),this.socket.onmessage=e=>this._on_message(e),this.socket.onclose=e=>this._on_close(e,s),this.socket.onerror=()=>this._on_error(s)}))}catch(e){throw r.logger.error(`websocket creation failed to url: ${this.url}`),r.logger.error(` - ${e}`),e}}close(){this.closed_permanently||(r.logger.debug(`Permanently closing websocket connection ${this._number}`),this.closed_permanently=!0,null!=this.socket&&this.socket.close(1e3,`close method called on ClientConnection ${this._number}`),this.session._connection_closed())}_schedule_reconnect(e){setTimeout((()=>{this.closed_permanently||r.logger.info(`Websocket connection ${this._number} disconnected, will not attempt to reconnect`)}),e)}send(e){if(null==this.socket)throw new Error(`not connected so cannot send ${e}`);e.send(this.socket)}async send_with_reply(e){const s=await new Promise(((s,n)=>{this._pending_replies.set(e.msgid(),{resolve:s,reject:n}),this.send(e)}));if(\"ERROR\"===s.msgtype())throw new Error(`Error reply ${s.content.text}`);return s}async _pull_doc_json(){const e=c.Message.create(\"PULL-DOC-REQ\",{}),s=await this.send_with_reply(e);if(!(\"doc\"in s.content))throw new Error(\"No 'doc' field in PULL-DOC-REPLY\");return s.content.doc}async _repull_session_doc(e,s){var n;r.logger.debug(this.session?\"Repulling session\":\"Pulling session for first time\");try{const n=await this._pull_doc_json();if(null==this.session)if(this.closed_permanently)r.logger.debug(\"Got new document after connection was already closed\"),s(new Error(\"The connection has been closed\"));else{const s=i.Document.from_json(n),t=i.Document._compute_patch_since_json(n,s);if(t.events.length>0){r.logger.debug(`Sending ${t.events.length} changes from model construction back to server`);const e=c.Message.create(\"PATCH-DOC\",{},t);this.send(e)}this.session=new _.ClientSession(this,s,this.id);for(const e of this._pending_messages)this.session.handle(e);this._pending_messages=[],r.logger.debug(\"Created a new session from new pulled doc\"),e(this.session)}else this.session.document.replace_with_json(n),r.logger.debug(\"Updated existing session with new pulled doc\")}catch(e){null===(n=console.trace)||void 0===n||n.call(console,e),r.logger.error(`Failed to repull session ${e}`),s(e instanceof Error?e:`${e}`)}}_on_open(e,s){r.logger.info(`Websocket connection ${this._number} is now open`),this._current_handler=n=>{this._awaiting_ack_handler(n,e,s)}}_on_message(e){null==this._current_handler&&r.logger.error(\"Got a message with no current handler set\");try{this._receiver.consume(e.data)}catch(e){this._close_bad_protocol(`${e}`)}const s=this._receiver.message;if(null!=s){const e=s.problem();null!=e&&this._close_bad_protocol(e),this._current_handler(s)}}_on_close(e,s){r.logger.info(`Lost websocket ${this._number} connection, ${e.code} (${e.reason})`),this.socket=null,this._pending_replies.forEach((e=>e.reject(\"Disconnected\"))),this._pending_replies.clear(),this.closed_permanently||this._schedule_reconnect(2e3),s(new Error(`Lost websocket connection, ${e.code} (${e.reason})`))}_on_error(e){r.logger.debug(`Websocket error on socket ${this._number}`);const s=\"Could not open websocket\";r.logger.error(`Failed to connect to Bokeh server: ${s}`),e(new Error(s))}_close_bad_protocol(e){r.logger.error(`Closing connection: ${e}`),null!=this.socket&&this.socket.close(1002,e)}_awaiting_ack_handler(e,s,n){\"ACK\"===e.msgtype()?(this._current_handler=e=>this._steady_state_handler(e),this._repull_session_doc(s,n)):this._close_bad_protocol(\"First message was not an ACK\")}_steady_state_handler(e){const s=e.reqid(),n=this._pending_replies.get(s);n?(this._pending_replies.delete(s),n.resolve(e)):this.session?this.session.handle(e):\"PATCH-DOC\"!=e.msgtype()&&this._pending_messages.push(e)}}n.ClientConnection=d,d.__name__=\"ClientConnection\",n.pull_session=function(e,s,n){return new d(e,s,n).connect()}},\n", + " function _(e,s,t,r,n){r();const i=e(34);class a{constructor(e,s,t){this.header=e,this.metadata=s,this.content=t,this.buffers=new Map}static assemble(e,s,t){const r=JSON.parse(e),n=JSON.parse(s),i=JSON.parse(t);return new a(r,n,i)}assemble_buffer(e,s){const t=null!=this.header.num_buffers?this.header.num_buffers:0;if(t<=this.buffers.size)throw new Error(`too many buffers received, expecting ${t}`);const{id:r}=JSON.parse(e);this.buffers.set(r,s)}static create(e,s,t={}){const r=a.create_header(e);return new a(r,s,t)}static create_header(e){return{msgid:i.uniqueId(),msgtype:e}}complete(){return null!=this.header&&null!=this.metadata&&null!=this.content&&(null==this.header.num_buffers||this.buffers.size==this.header.num_buffers)}send(e){if((null!=this.header.num_buffers?this.header.num_buffers:0)>0)throw new Error(\"BokehJS only supports receiving buffers, not sending\");const s=JSON.stringify(this.header),t=JSON.stringify(this.metadata),r=JSON.stringify(this.content);e.send(s),e.send(t),e.send(r)}msgid(){return this.header.msgid}msgtype(){return this.header.msgtype}reqid(){return this.header.reqid}problem(){return\"msgid\"in this.header?\"msgtype\"in this.header?null:\"No msgtype in header\":\"No msgid in header\"}}t.Message=a,a.__name__=\"Message\"},\n", + " function _(e,t,s,_,r){_();const i=e(399),h=e(8);class a{constructor(){this.message=null,this._partial=null,this._fragments=[],this._buf_header=null,this._current_consumer=this._HEADER}consume(e){this._current_consumer(e)}_HEADER(e){this._assume_text(e),this.message=null,this._partial=null,this._fragments=[e],this._buf_header=null,this._current_consumer=this._METADATA}_METADATA(e){this._assume_text(e),this._fragments.push(e),this._current_consumer=this._CONTENT}_CONTENT(e){this._assume_text(e),this._fragments.push(e);const[t,s,_]=this._fragments.slice(0,3);this._partial=i.Message.assemble(t,s,_),this._check_complete()}_BUFFER_HEADER(e){this._assume_text(e),this._buf_header=e,this._current_consumer=this._BUFFER_PAYLOAD}_BUFFER_PAYLOAD(e){this._assume_binary(e),this._partial.assemble_buffer(this._buf_header,e),this._check_complete()}_assume_text(e){if(!h.isString(e))throw new Error(\"Expected text fragment but received binary fragment\")}_assume_binary(e){if(!(e instanceof ArrayBuffer))throw new Error(\"Expected binary fragment but received text fragment\")}_check_complete(){this._partial.complete()?(this.message=this._partial,this._current_consumer=this._HEADER):this._current_consumer=this._BUFFER_HEADER}}s.Receiver=a,a.__name__=\"Receiver\"},\n", + " function _(e,t,n,s,o){s();const c=e(5),i=e(399),_=e(19);class r{constructor(e,t,n){this._connection=e,this.document=t,this.id=n,this._document_listener=e=>{this._document_changed(e)},this.document.on_change(this._document_listener,!0)}handle(e){const t=e.msgtype();\"PATCH-DOC\"===t?this._handle_patch(e):\"OK\"===t?this._handle_ok(e):\"ERROR\"===t?this._handle_error(e):_.logger.debug(`Doing nothing with message ${e.msgtype()}`)}close(){this._connection.close()}_connection_closed(){this.document.remove_on_change(this._document_listener)}async request_server_info(){const e=i.Message.create(\"SERVER-INFO-REQ\",{});return(await this._connection.send_with_reply(e)).content}async force_roundtrip(){await this.request_server_info()}_document_changed(e){if(e.setter_id===this.id)return;const t=e instanceof c.DocumentEventBatch?e.events:[e],n=this.document.create_json_patch(t),s=i.Message.create(\"PATCH-DOC\",{},n);this._connection.send(s)}_handle_patch(e){this.document.apply_json_patch(e.content,e.buffers,this.id)}_handle_ok(e){_.logger.trace(`Unhandled OK reply to ${e.reqid()}`)}_handle_error(e){_.logger.error(`Unhandled ERROR reply to ${e.reqid()}: ${e.content.text}`)}}n.ClientSession=r,r.__name__=\"ClientSession\"},\n", + " function _(e,o,t,n,r){n();const s=e(1),l=e(5),i=e(400),a=e(19),c=e(43),g=e(13),f=e(395),u=e(396),m=s.__importDefault(e(44)),p=s.__importDefault(e(253)),d=s.__importDefault(e(403));function _(e,o){o.buffers.length>0?e.consume(o.buffers[0].buffer):e.consume(o.content.data);const t=e.message;null!=t&&this.apply_json_patch(t.content,t.buffers)}function b(e,o){if(\"undefined\"!=typeof Jupyter&&null!=Jupyter.notebook.kernel){a.logger.info(`Registering Jupyter comms for target ${e}`);const t=Jupyter.notebook.kernel.comm_manager;try{t.register_target(e,(t=>{a.logger.info(`Registering Jupyter comms for target ${e}`);const n=new i.Receiver;t.on_msg(_.bind(o,n))}))}catch(e){a.logger.warn(`Jupyter comms failed to register. push_notebook() will not function. (exception reported: ${e})`)}}else if(o.roots()[0].id in t.kernels){a.logger.info(`Registering JupyterLab comms for target ${e}`);const n=t.kernels[o.roots()[0].id];try{n.registerCommTarget(e,(t=>{a.logger.info(`Registering JupyterLab comms for target ${e}`);const n=new i.Receiver;t.onMsg=_.bind(o,n)}))}catch(e){a.logger.warn(`Jupyter comms failed to register. push_notebook() will not function. (exception reported: ${e})`)}}else if(\"undefined\"!=typeof google&&null!=google.colab.kernel){a.logger.info(`Registering Google Colab comms for target ${e}`);const t=google.colab.kernel.comms;try{t.registerTarget(e,(async t=>{var n,r,l;a.logger.info(`Registering Google Colab comms for target ${e}`);const c=new i.Receiver;try{for(var g,f=s.__asyncValues(t.messages);!(g=await f.next()).done;){const e=g.value,t={data:e.data},n=[];for(const o of null!==(l=e.buffers)&&void 0!==l?l:[])n.push(new DataView(o));const r={content:t,buffers:n};_.bind(o)(c,r)}}catch(e){n={error:e}}finally{try{g&&!g.done&&(r=f.return)&&await r.call(f)}finally{if(n)throw n.error}}}))}catch(e){a.logger.warn(`Google Colab comms failed to register. push_notebook() will not function. (exception reported: ${e})`)}}else console.warn(\"Jupyter notebooks comms not available. push_notebook() will not function. If running JupyterLab ensure the latest @bokeh/jupyter_bokeh extension is installed. In an exported notebook this warning is expected.\")}c.stylesheet.append(m.default),c.stylesheet.append(p.default),c.stylesheet.append(d.default),t.kernels={},t.embed_items_notebook=function(e,o){if(1!=g.size(e))throw new Error(\"embed_items_notebook expects exactly one document in docs_json\");const t=l.Document.from_json(g.values(e)[0]);for(const e of o){null!=e.notebook_comms_target&&b(e.notebook_comms_target,t);const o=u._resolve_element(e),n=u._resolve_root_elements(e);f.add_document_standalone(t,o,n)}}},\n", + " function _(t,o,r,e,d){e(),r.root=\"bk-root\",r.tooltip=\"bk-tooltip\",r.default=\".rendered_html .bk-root .bk-tooltip table,.rendered_html .bk-root .bk-tooltip tr,.rendered_html .bk-root .bk-tooltip th,.rendered_html .bk-root .bk-tooltip td{border:none;padding:1px;}\"},\n", + " function _(t,_,o,r,n){r();const a=t(1);a.__exportStar(t(399),o),a.__exportStar(t(400),o)},\n", + " function _(e,t,n,s,o){function l(){const e=document.getElementsByTagName(\"body\")[0],t=document.getElementsByClassName(\"bokeh-test-div\");1==t.length&&(e.removeChild(t[0]),delete t[0]);const n=document.createElement(\"div\");n.classList.add(\"bokeh-test-div\"),n.style.display=\"none\",e.insertBefore(n,e.firstChild)}s(),n.results={},n.init=function(){l()},n.record0=function(e,t){n.results[e]=t},n.record=function(e,t){n.results[e]=t,l()},n.count=function(e){null==n.results[e]&&(n.results[e]=0),n.results[e]+=1,l()}},\n", + " function _(e,t,o,n,l){n(),o.safely=function(e,t=!1){try{return e()}catch(e){if(function(e){const t=document.createElement(\"div\");t.style.backgroundColor=\"#f2dede\",t.style.border=\"1px solid #a94442\",t.style.borderRadius=\"4px\",t.style.display=\"inline-block\",t.style.fontFamily=\"sans-serif\",t.style.marginTop=\"5px\",t.style.minWidth=\"200px\",t.style.padding=\"5px 5px 5px 10px\",t.classList.add(\"bokeh-error-box-into-flames\");const o=document.createElement(\"span\");o.style.backgroundColor=\"#a94442\",o.style.borderRadius=\"0px 4px 0px 0px\",o.style.color=\"white\",o.style.cursor=\"pointer\",o.style.cssFloat=\"right\",o.style.fontSize=\"0.8em\",o.style.margin=\"-6px -6px 0px 0px\",o.style.padding=\"2px 5px 4px 5px\",o.title=\"close\",o.setAttribute(\"aria-label\",\"close\"),o.appendChild(document.createTextNode(\"x\")),o.addEventListener(\"click\",(()=>s.removeChild(t)));const n=document.createElement(\"h3\");n.style.color=\"#a94442\",n.style.margin=\"8px 0px 0px 0px\",n.style.padding=\"0px\",n.appendChild(document.createTextNode(\"Bokeh Error\"));const l=document.createElement(\"pre\");l.style.whiteSpace=\"unset\",l.style.overflowX=\"auto\",l.appendChild(document.createTextNode(e)),t.appendChild(o),t.appendChild(n),t.appendChild(l);const s=document.getElementsByTagName(\"body\")[0];s.insertBefore(t,s.firstChild)}(e instanceof Error&&e.stack?e.stack:`${e}`),t)return;throw e}}},\n", + " ], 0, {\"main\":0,\"tslib\":1,\"index\":2,\"version\":3,\"embed/index\":4,\"document/index\":5,\"document/document\":6,\"base\":7,\"core/util/types\":8,\"core/util/array\":9,\"core/util/math\":10,\"core/util/assert\":11,\"core/util/arrayable\":12,\"core/util/object\":13,\"core/has_props\":14,\"core/signaling\":15,\"core/util/defer\":16,\"core/util/refs\":17,\"core/properties\":18,\"core/logging\":19,\"core/enums\":20,\"core/kinds\":21,\"core/util/color\":22,\"core/util/svg_colors\":23,\"core/types\":24,\"core/util/bitset\":25,\"core/util/eq\":26,\"core/util/platform\":27,\"core/settings\":28,\"core/util/ndarray\":29,\"core/serializer\":30,\"core/util/serialization\":31,\"core/util/buffer\":32,\"core/uniforms\":33,\"core/util/string\":34,\"document/events\":35,\"core/util/pretty\":36,\"core/util/cloneable\":37,\"models/index\":38,\"models/annotations/index\":39,\"models/annotations/annotation\":40,\"models/renderers/renderer\":41,\"core/view\":42,\"core/dom\":43,\"styles/root.css\":44,\"core/visuals/index\":45,\"core/visuals/line\":46,\"core/visuals/visual\":47,\"core/property_mixins\":48,\"core/visuals/fill\":49,\"core/visuals/text\":50,\"core/visuals/hatch\":51,\"core/visuals/patterns\":52,\"model\":53,\"models/canvas/coordinates\":54,\"models/annotations/arrow\":55,\"models/annotations/data_annotation\":56,\"models/sources/columnar_data_source\":57,\"models/sources/data_source\":58,\"models/selections/selection\":59,\"core/selection_manager\":60,\"models/renderers/glyph_renderer\":61,\"models/renderers/data_renderer\":62,\"models/glyphs/line\":63,\"models/glyphs/xy_glyph\":64,\"core/util/projections\":65,\"models/glyphs/glyph\":98,\"core/util/bbox\":99,\"core/util/ragged_array\":100,\"core/util/spatial\":101,\"models/ranges/factor_range\":104,\"models/ranges/range\":105,\"models/glyphs/utils\":106,\"core/hittest\":107,\"models/glyphs/webgl/line\":108,\"models/glyphs/webgl/utils/index\":109,\"models/glyphs/webgl/utils/program\":110,\"models/glyphs/webgl/utils/buffer\":111,\"models/glyphs/webgl/utils/texture\":112,\"models/glyphs/webgl/base\":113,\"models/glyphs/webgl/line.vert\":114,\"models/glyphs/webgl/line.frag\":115,\"models/glyphs/patch\":116,\"models/glyphs/harea\":117,\"models/glyphs/area\":118,\"models/glyphs/varea\":119,\"models/sources/cds_view\":120,\"models/filters/filter\":121,\"core/build_views\":122,\"models/renderers/graph_renderer\":123,\"models/expressions/expression\":124,\"models/graphs/layout_provider\":125,\"models/graphs/graph_hit_test_policy\":126,\"models/glyphs/multi_line\":127,\"models/glyphs/patches\":128,\"models/selections/interaction_policy\":129,\"models/sources/column_data_source\":130,\"core/util/typed_array\":131,\"core/util/set\":132,\"models/annotations/arrow_head\":133,\"models/annotations/band\":134,\"models/annotations/upper_lower\":135,\"models/annotations/box_annotation\":136,\"models/annotations/color_bar\":137,\"models/annotations/title\":138,\"models/annotations/text_annotation\":139,\"core/layout/side_panel\":140,\"core/layout/types\":141,\"core/layout/layoutable\":142,\"core/util/text\":143,\"models/canvas/cartesian_frame\":144,\"models/scales/categorical_scale\":145,\"models/scales/scale\":146,\"models/transforms/index\":147,\"models/transforms/customjs_transform\":148,\"models/transforms/transform\":149,\"models/transforms/dodge\":150,\"models/transforms/range_transform\":151,\"models/transforms/interpolator\":152,\"models/transforms/jitter\":153,\"models/transforms/linear_interpolator\":154,\"models/transforms/step_interpolator\":155,\"models/ranges/range1d\":156,\"models/scales/log_scale\":157,\"models/scales/continuous_scale\":158,\"models/ranges/data_range1d\":159,\"models/ranges/data_range\":160,\"models/util\":161,\"models/axes/index\":162,\"models/axes/axis\":163,\"models/renderers/guide_renderer\":164,\"models/tickers/ticker\":165,\"models/formatters/tick_formatter\":166,\"core/graphics\":167,\"core/util/affine\":168,\"models/policies/labeling\":169,\"models/axes/categorical_axis\":170,\"models/tickers/categorical_ticker\":171,\"models/formatters/categorical_tick_formatter\":172,\"models/axes/continuous_axis\":173,\"models/axes/datetime_axis\":174,\"models/axes/linear_axis\":175,\"models/formatters/basic_tick_formatter\":176,\"models/tickers/basic_ticker\":177,\"models/tickers/adaptive_ticker\":178,\"models/tickers/continuous_ticker\":179,\"models/formatters/datetime_tick_formatter\":180,\"core/util/templating\":182,\"models/tickers/datetime_ticker\":185,\"models/tickers/composite_ticker\":186,\"models/tickers/days_ticker\":187,\"models/tickers/single_interval_ticker\":188,\"models/tickers/util\":189,\"models/tickers/months_ticker\":190,\"models/tickers/years_ticker\":191,\"models/axes/log_axis\":192,\"models/formatters/log_tick_formatter\":193,\"models/tickers/log_ticker\":194,\"models/axes/mercator_axis\":195,\"models/formatters/mercator_tick_formatter\":196,\"models/tickers/mercator_ticker\":197,\"models/tickers/index\":198,\"models/tickers/fixed_ticker\":199,\"models/tickers/binned_ticker\":200,\"models/mappers/scanning_color_mapper\":201,\"models/mappers/continuous_color_mapper\":202,\"models/mappers/color_mapper\":203,\"models/mappers/mapper\":204,\"models/formatters/index\":205,\"models/formatters/func_tick_formatter\":206,\"models/formatters/numeral_tick_formatter\":207,\"models/formatters/printf_tick_formatter\":208,\"models/mappers/index\":209,\"models/mappers/categorical_color_mapper\":210,\"models/mappers/categorical_mapper\":211,\"models/mappers/categorical_marker_mapper\":212,\"models/mappers/categorical_pattern_mapper\":213,\"models/mappers/linear_color_mapper\":214,\"models/mappers/log_color_mapper\":215,\"models/mappers/eqhist_color_mapper\":216,\"models/scales/index\":217,\"models/scales/linear_scale\":218,\"models/scales/linear_interpolation_scale\":219,\"models/ranges/index\":220,\"core/layout/index\":221,\"core/layout/alignments\":222,\"core/layout/grid\":223,\"core/layout/html\":224,\"core/layout/border\":225,\"models/annotations/label\":226,\"models/annotations/label_set\":227,\"models/annotations/legend\":228,\"models/annotations/legend_item\":229,\"core/vectorization\":230,\"models/annotations/poly_annotation\":231,\"models/annotations/slope\":232,\"models/annotations/span\":233,\"models/annotations/toolbar_panel\":234,\"models/tools/toolbar\":235,\"models/tools/tool\":236,\"models/tools/gestures/gesture_tool\":237,\"models/tools/button_tool\":238,\"core/dom_view\":240,\"styles/toolbar.css\":241,\"styles/icons.css\":242,\"styles/menus.css\":243,\"core/util/menus\":244,\"core/util/iterator\":245,\"models/tools/on_off_button\":246,\"models/tools/inspectors/inspect_tool\":247,\"models/tools/toolbar_base\":248,\"core/util/canvas\":249,\"core/util/svg\":250,\"models/tools/actions/action_tool\":251,\"models/tools/actions/help_tool\":252,\"styles/logo.css\":253,\"models/annotations/tooltip\":254,\"styles/tooltips.css\":255,\"models/annotations/whisker\":256,\"models/callbacks/index\":257,\"models/callbacks/customjs\":258,\"models/callbacks/callback\":259,\"models/callbacks/open_url\":260,\"models/canvas/index\":261,\"models/canvas/canvas\":262,\"core/ui_events\":263,\"core/bokeh_events\":264,\"core/util/wheel\":265,\"models/expressions/index\":266,\"models/expressions/customjs_expr\":267,\"models/expressions/stack\":268,\"models/expressions/cumsum\":269,\"models/expressions/minimum\":270,\"models/expressions/maximum\":271,\"models/filters/index\":272,\"models/filters/boolean_filter\":273,\"models/filters/customjs_filter\":274,\"models/filters/group_filter\":275,\"models/filters/index_filter\":276,\"models/glyphs/index\":277,\"models/glyphs/annular_wedge\":278,\"models/glyphs/annulus\":279,\"models/glyphs/arc\":280,\"models/glyphs/bezier\":281,\"models/glyphs/circle\":282,\"models/glyphs/webgl/markers\":283,\"models/glyphs/webgl/markers.vert\":284,\"models/glyphs/webgl/markers.frag\":285,\"models/glyphs/ellipse\":286,\"models/glyphs/ellipse_oval\":287,\"models/glyphs/center_rotatable\":288,\"models/glyphs/hbar\":289,\"models/glyphs/box\":290,\"models/glyphs/hex_tile\":291,\"models/glyphs/image\":292,\"models/glyphs/image_base\":293,\"models/glyphs/image_rgba\":294,\"models/glyphs/image_url\":295,\"core/util/image\":296,\"models/glyphs/multi_polygons\":297,\"models/glyphs/oval\":298,\"models/glyphs/quad\":299,\"models/glyphs/quadratic\":300,\"models/glyphs/ray\":301,\"models/glyphs/rect\":302,\"models/glyphs/scatter\":303,\"models/glyphs/marker\":304,\"models/glyphs/defs\":305,\"models/glyphs/segment\":306,\"models/glyphs/spline\":307,\"core/util/interpolation\":308,\"models/glyphs/step\":309,\"models/glyphs/text\":310,\"models/glyphs/vbar\":311,\"models/glyphs/wedge\":312,\"models/graphs/index\":313,\"models/graphs/static_layout_provider\":314,\"models/grids/index\":315,\"models/grids/grid\":316,\"models/layouts/index\":317,\"models/layouts/box\":318,\"models/layouts/layout_dom\":319,\"models/layouts/column\":320,\"models/layouts/grid_box\":321,\"models/layouts/html_box\":322,\"models/layouts/panel\":323,\"models/layouts/row\":324,\"models/layouts/spacer\":325,\"models/layouts/tabs\":326,\"styles/tabs.css\":327,\"styles/buttons.css\":328,\"models/layouts/widget_box\":329,\"models/plots/index\":330,\"models/plots/gmap_plot\":331,\"models/plots/plot\":332,\"models/plots/plot_canvas\":333,\"core/util/throttle\":334,\"models/plots/range_manager\":335,\"models/plots/state_manager\":336,\"models/plots/gmap_plot_canvas\":337,\"models/policies/index\":338,\"models/renderers/index\":339,\"models/selections/index\":340,\"models/sources/index\":341,\"models/sources/server_sent_data_source\":342,\"models/sources/web_data_source\":343,\"models/sources/ajax_data_source\":344,\"models/sources/geojson_data_source\":345,\"models/tiles/index\":346,\"models/tiles/bbox_tile_source\":347,\"models/tiles/mercator_tile_source\":348,\"models/tiles/tile_source\":349,\"models/tiles/tile_utils\":350,\"models/tiles/quadkey_tile_source\":351,\"models/tiles/tile_renderer\":352,\"models/tiles/wmts_tile_source\":353,\"styles/tiles.css\":354,\"models/tiles/tms_tile_source\":355,\"models/textures/index\":356,\"models/textures/canvas_texture\":357,\"models/textures/texture\":358,\"models/textures/image_url_texture\":359,\"models/tools/index\":360,\"models/tools/actions/custom_action\":361,\"models/tools/actions/redo_tool\":362,\"models/tools/actions/reset_tool\":363,\"models/tools/actions/save_tool\":364,\"models/tools/actions/undo_tool\":365,\"models/tools/actions/zoom_in_tool\":366,\"models/tools/actions/zoom_base_tool\":367,\"core/util/zoom\":368,\"models/tools/actions/zoom_out_tool\":369,\"models/tools/edit/edit_tool\":370,\"models/tools/edit/box_edit_tool\":371,\"models/tools/edit/freehand_draw_tool\":372,\"models/tools/edit/point_draw_tool\":373,\"models/tools/edit/poly_draw_tool\":374,\"models/tools/edit/poly_tool\":375,\"models/tools/edit/poly_edit_tool\":376,\"models/tools/gestures/box_select_tool\":377,\"models/tools/gestures/select_tool\":378,\"models/tools/gestures/box_zoom_tool\":379,\"models/tools/gestures/lasso_select_tool\":380,\"models/tools/gestures/poly_select_tool\":381,\"models/tools/edit/line_edit_tool\":382,\"models/tools/edit/line_tool\":383,\"models/tools/gestures/pan_tool\":384,\"models/tools/gestures/range_tool\":385,\"models/tools/gestures/tap_tool\":386,\"models/tools/gestures/wheel_pan_tool\":387,\"models/tools/gestures/wheel_zoom_tool\":388,\"models/tools/inspectors/crosshair_tool\":389,\"models/tools/inspectors/customjs_hover\":390,\"models/tools/inspectors/hover_tool\":391,\"models/tools/tool_proxy\":392,\"models/tools/toolbar_box\":393,\"document/defs\":394,\"embed/standalone\":395,\"embed/dom\":396,\"embed/server\":397,\"client/connection\":398,\"protocol/message\":399,\"protocol/receiver\":400,\"client/session\":401,\"embed/notebook\":402,\"styles/notebook.css\":403,\"protocol/index\":404,\"testing\":405,\"safely\":406}, {});});\n", + "\n", + " /* END bokeh.min.js */\n", + " },\n", + " \n", + " function(Bokeh) {\n", + " /* BEGIN bokeh-widgets.min.js */\n", + " /*!\n", + " * Copyright (c) 2012 - 2021, Anaconda, Inc., and Bokeh Contributors\n", + " * All rights reserved.\n", + " * \n", + " * Redistribution and use in source and binary forms, with or without modification,\n", + " * are permitted provided that the following conditions are met:\n", + " * \n", + " * Redistributions of source code must retain the above copyright notice,\n", + " * this list of conditions and the following disclaimer.\n", + " * \n", + " * Redistributions in binary form must reproduce the above copyright notice,\n", + " * this list of conditions and the following disclaimer in the documentation\n", + " * and/or other materials provided with the distribution.\n", + " * \n", + " * Neither the name of Anaconda nor the names of any contributors\n", + " * may be used to endorse or promote products derived from this software\n", + " * without specific prior written permission.\n", + " * \n", + " * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS \"AS IS\"\n", + " * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE\n", + " * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE\n", + " * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE\n", + " * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR\n", + " * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF\n", + " * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS\n", + " * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN\n", + " * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)\n", + " * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF\n", + " * THE POSSIBILITY OF SUCH DAMAGE.\n", + " */\n", + " (function(root, factory) {\n", + " factory(root[\"Bokeh\"], \"2.3.1\");\n", + " })(this, function(Bokeh, version) {\n", + " var define;\n", + " return (function(modules, entry, aliases, externals) {\n", + " const bokeh = typeof Bokeh !== \"undefined\" && (version != null ? Bokeh[version] : Bokeh);\n", + " if (bokeh != null) {\n", + " return bokeh.register_plugin(modules, entry, aliases);\n", + " } else {\n", + " throw new Error(\"Cannot find Bokeh \" + version + \". You have to load it prior to loading plugins.\");\n", + " }\n", + " })\n", + " ({\n", + " 417: function _(t,e,i,o,r){o();const s=t(1).__importStar(t(418));i.Widgets=s;t(7).register_models(s)},\n", + " 418: function _(t,e,o,r,u){r(),u(\"AbstractButton\",t(419).AbstractButton),u(\"AbstractIcon\",t(422).AbstractIcon),u(\"AutocompleteInput\",t(423).AutocompleteInput),u(\"Button\",t(428).Button),u(\"CheckboxButtonGroup\",t(429).CheckboxButtonGroup),u(\"CheckboxGroup\",t(431).CheckboxGroup),u(\"ColorPicker\",t(433).ColorPicker),u(\"DatePicker\",t(434).DatePicker),u(\"DateRangeSlider\",t(437).DateRangeSlider),u(\"DateSlider\",t(442).DateSlider),u(\"Div\",t(443).Div),u(\"Dropdown\",t(446).Dropdown),u(\"FileInput\",t(447).FileInput),u(\"InputWidget\",t(426).InputWidget),u(\"Markup\",t(444).Markup),u(\"MultiSelect\",t(448).MultiSelect),u(\"Paragraph\",t(449).Paragraph),u(\"PasswordInput\",t(450).PasswordInput),u(\"MultiChoice\",t(451).MultiChoice),u(\"NumericInput\",t(454).NumericInput),u(\"PreText\",t(455).PreText),u(\"RadioButtonGroup\",t(456).RadioButtonGroup),u(\"RadioGroup\",t(457).RadioGroup),u(\"RangeSlider\",t(458).RangeSlider),u(\"Select\",t(459).Select),u(\"Slider\",t(460).Slider),u(\"Spinner\",t(461).Spinner),u(\"TextInput\",t(424).TextInput),u(\"TextAreaInput\",t(462).TextAreaInput),u(\"Toggle\",t(463).Toggle),u(\"Widget\",t(488).Widget)},\n", + " 419: function _(t,e,n,i,s){i();const l=t(1),o=t(20),r=t(43),c=t(122),u=t(420),_=t(422),a=l.__importStar(t(328)),b=a;class d extends u.ControlView{*controls(){yield this.button_el}async lazy_initialize(){await super.lazy_initialize();const{icon:t}=this.model;null!=t&&(this.icon_view=await c.build_view(t,{parent:this}))}connect_signals(){super.connect_signals(),this.connect(this.model.change,(()=>this.render()))}remove(){null!=this.icon_view&&this.icon_view.remove(),super.remove()}styles(){return[...super.styles(),a.default]}_render_button(...t){return r.button({type:\"button\",disabled:this.model.disabled,class:[b.btn,b[`btn_${this.model.button_type}`]]},...t)}render(){super.render(),this.button_el=this._render_button(this.model.label),this.button_el.addEventListener(\"click\",(()=>this.click())),null!=this.icon_view&&(\"\"!=this.model.label?r.prepend(this.button_el,this.icon_view.el,r.nbsp()):r.prepend(this.button_el,this.icon_view.el),this.icon_view.render()),this.group_el=r.div({class:b.btn_group},this.button_el),this.el.appendChild(this.group_el)}click(){}}n.AbstractButtonView=d,d.__name__=\"AbstractButtonView\";class h extends u.Control{constructor(t){super(t)}static init_AbstractButton(){this.define((({String:t,Ref:e,Nullable:n})=>({label:[t,\"Button\"],icon:[n(e(_.AbstractIcon)),null],button_type:[o.ButtonType,\"default\"]})))}}n.AbstractButton=h,h.__name__=\"AbstractButton\",h.init_AbstractButton()},\n", + " 420: function _(t,e,o,s,n){s();const i=t(488),l=t(43);class c extends i.WidgetView{connect_signals(){super.connect_signals();const t=this.model.properties;this.on_change(t.disabled,(()=>{for(const t of this.controls())l.toggle_attribute(t,\"disabled\",this.model.disabled)}))}}o.ControlView=c,c.__name__=\"ControlView\";class r extends i.Widget{constructor(t){super(t)}}o.Control=r,r.__name__=\"Control\"},\n", + " 488: function _(i,t,e,o,n){o();const s=i(322),r=i(20);class d extends s.HTMLBoxView{_width_policy(){return\"horizontal\"==this.model.orientation?super._width_policy():\"fixed\"}_height_policy(){return\"horizontal\"==this.model.orientation?\"fixed\":super._height_policy()}box_sizing(){const i=super.box_sizing();return\"horizontal\"==this.model.orientation?null==i.width&&(i.width=this.model.default_size):null==i.height&&(i.height=this.model.default_size),i}}e.WidgetView=d,d.__name__=\"WidgetView\";class _ extends s.HTMLBox{constructor(i){super(i)}static init_Widget(){this.define((({Number:i})=>({orientation:[r.Orientation,\"horizontal\"],default_size:[i,300]}))),this.override({margin:[5,5,5,5]})}}e.Widget=_,_.__name__=\"Widget\",_.init_Widget()},\n", + " 422: function _(c,t,s,n,e){n();const o=c(53),_=c(240);class a extends _.DOMView{}s.AbstractIconView=a,a.__name__=\"AbstractIconView\";class r extends o.Model{constructor(c){super(c)}}s.AbstractIcon=r,r.__name__=\"AbstractIcon\"},\n", + " 423: function _(e,t,n,i,s){i();const h=e(1),o=e(424),_=e(43),u=e(10),r=h.__importStar(e(243)),c=r;class l extends o.TextInputView{constructor(){super(...arguments),this._open=!1,this._last_value=\"\",this._hover_index=0}styles(){return[...super.styles(),r.default]}render(){super.render(),this.input_el.addEventListener(\"keydown\",(e=>this._keydown(e))),this.input_el.addEventListener(\"keyup\",(e=>this._keyup(e))),this.menu=_.div({class:[c.menu,c.below]}),this.menu.addEventListener(\"click\",(e=>this._menu_click(e))),this.menu.addEventListener(\"mouseover\",(e=>this._menu_hover(e))),this.el.appendChild(this.menu),_.undisplay(this.menu)}change_input(){this._open&&this.menu.children.length>0&&(this.model.value=this.menu.children[this._hover_index].textContent,this.input_el.focus(),this._hide_menu()),this.model.restrict||super.change_input()}_update_completions(e){_.empty(this.menu);for(const t of e){const e=_.div({},t);this.menu.appendChild(e)}e.length>0&&this.menu.children[0].classList.add(c.active)}_show_menu(){if(!this._open){this._open=!0,this._hover_index=0,this._last_value=this.model.value,_.display(this.menu);const e=t=>{const{target:n}=t;n instanceof HTMLElement&&!this.el.contains(n)&&(document.removeEventListener(\"click\",e),this._hide_menu())};document.addEventListener(\"click\",e)}}_hide_menu(){this._open&&(this._open=!1,_.undisplay(this.menu))}_menu_click(e){e.target!=e.currentTarget&&e.target instanceof Element&&(this.model.value=e.target.textContent,this.input_el.focus(),this._hide_menu())}_menu_hover(e){if(e.target!=e.currentTarget&&e.target instanceof Element){let t=0;for(t=0;t0&&(this.menu.children[this._hover_index].classList.remove(c.active),this._hover_index=u.clamp(e,0,t-1),this.menu.children[this._hover_index].classList.add(c.active))}_keydown(e){}_keyup(e){switch(e.keyCode){case _.Keys.Enter:this.change_input();break;case _.Keys.Esc:this._hide_menu();break;case _.Keys.Up:this._bump_hover(this._hover_index-1);break;case _.Keys.Down:this._bump_hover(this._hover_index+1);break;default:{const e=this.input_el.value;if(e.lengthe:e=>e.toLowerCase();for(const n of this.model.completions)i(n).startsWith(i(e))&&t.push(n);this._update_completions(t),0==t.length?this._hide_menu():this._show_menu()}}}}n.AutocompleteInputView=l,l.__name__=\"AutocompleteInputView\";class a extends o.TextInput{constructor(e){super(e)}static init_AutocompleteInput(){this.prototype.default_view=l,this.define((({Boolean:e,Int:t,String:n,Array:i})=>({completions:[i(n),[]],min_characters:[t,2],case_sensitive:[e,!0],restrict:[e,!0]})))}}n.AutocompleteInput=a,a.__name__=\"AutocompleteInput\",a.init_AutocompleteInput()},\n", + " 424: function _(t,e,n,i,p){i();const _=t(1),u=t(425),s=t(43),x=_.__importStar(t(427));class a extends u.TextLikeInputView{_render_input(){this.input_el=s.input({type:\"text\",class:x.input})}}n.TextInputView=a,a.__name__=\"TextInputView\";class c extends u.TextLikeInput{constructor(t){super(t)}static init_TextInput(){this.prototype.default_view=a}}n.TextInput=c,c.__name__=\"TextInput\",c.init_TextInput()},\n", + " 425: function _(e,t,n,i,l){i();const s=e(426);class h extends s.InputWidgetView{connect_signals(){super.connect_signals(),this.connect(this.model.properties.name.change,(()=>{var e;return this.input_el.name=null!==(e=this.model.name)&&void 0!==e?e:\"\"})),this.connect(this.model.properties.value.change,(()=>this.input_el.value=this.model.value)),this.connect(this.model.properties.value_input.change,(()=>this.input_el.value=this.model.value_input)),this.connect(this.model.properties.disabled.change,(()=>this.input_el.disabled=this.model.disabled)),this.connect(this.model.properties.placeholder.change,(()=>this.input_el.placeholder=this.model.placeholder)),this.connect(this.model.properties.max_length.change,(()=>{const{max_length:e}=this.model;null!=e?this.input_el.maxLength=e:this.input_el.removeAttribute(\"maxLength\")}))}render(){var e;super.render(),this._render_input();const{input_el:t}=this;t.name=null!==(e=this.model.name)&&void 0!==e?e:\"\",t.value=this.model.value,t.disabled=this.model.disabled,t.placeholder=this.model.placeholder,null!=this.model.max_length&&(t.maxLength=this.model.max_length),t.addEventListener(\"change\",(()=>this.change_input())),t.addEventListener(\"input\",(()=>this.change_input_value())),this.group_el.appendChild(t)}change_input(){this.model.value=this.input_el.value,super.change_input()}change_input_value(){this.model.value_input=this.input_el.value,super.change_input()}}n.TextLikeInputView=h,h.__name__=\"TextLikeInputView\";class a extends s.InputWidget{constructor(e){super(e)}static init_TextLikeInput(){this.define((({Int:e,String:t,Nullable:n})=>({value:[t,\"\"],value_input:[t,\"\"],placeholder:[t,\"\"],max_length:[n(e),null]})))}}n.TextLikeInput=a,a.__name__=\"TextLikeInput\",a.init_TextLikeInput()},\n", + " 426: function _(t,e,i,n,s){n();const l=t(1),o=t(420),r=t(43),_=l.__importStar(t(427)),p=_;class d extends o.ControlView{*controls(){yield this.input_el}connect_signals(){super.connect_signals(),this.connect(this.model.properties.title.change,(()=>{this.label_el.textContent=this.model.title}))}styles(){return[...super.styles(),_.default]}render(){super.render();const{title:t}=this.model;this.label_el=r.label({style:{display:0==t.length?\"none\":\"\"}},t),this.group_el=r.div({class:p.input_group},this.label_el),this.el.appendChild(this.group_el)}change_input(){}}i.InputWidgetView=d,d.__name__=\"InputWidgetView\";class u extends o.Control{constructor(t){super(t)}static init_InputWidget(){this.define((({String:t})=>({title:[t,\"\"]})))}}i.InputWidget=u,u.__name__=\"InputWidget\",u.init_InputWidget()},\n", + " 427: function _(o,i,t,n,p){n(),t.root=\"bk-root\",t.input=\"bk-input\",t.input_group=\"bk-input-group\",t.inline=\"bk-inline\",t.spin_wrapper=\"bk-spin-wrapper\",t.spin_btn=\"bk-spin-btn\",t.spin_btn_up=\"bk-spin-btn-up\",t.spin_btn_down=\"bk-spin-btn-down\",t.default='.bk-root .bk-input{display:inline-block;width:100%;flex-grow:1;-webkit-flex-grow:1;min-height:31px;padding:0 12px;background-color:#fff;border:1px solid #ccc;border-radius:4px;}.bk-root .bk-input:focus{border-color:#66afe9;outline:0;box-shadow:inset 0 1px 1px rgba(0, 0, 0, 0.075), 0 0 8px rgba(102, 175, 233, 0.6);}.bk-root .bk-input::placeholder,.bk-root .bk-input:-ms-input-placeholder,.bk-root .bk-input::-moz-placeholder,.bk-root .bk-input::-webkit-input-placeholder{color:#999;opacity:1;}.bk-root .bk-input[disabled]{cursor:not-allowed;background-color:#eee;opacity:1;}.bk-root select:not([multiple]).bk-input,.bk-root select:not([size]).bk-input{height:auto;appearance:none;-webkit-appearance:none;background-image:url(\\'data:image/svg+xml;utf8,\\');background-position:right 0.5em center;background-size:8px 6px;background-repeat:no-repeat;}.bk-root select[multiple].bk-input,.bk-root select[size].bk-input,.bk-root textarea.bk-input{height:auto;}.bk-root .bk-input-group{width:100%;height:100%;display:inline-flex;display:-webkit-inline-flex;flex-wrap:nowrap;-webkit-flex-wrap:nowrap;align-items:start;-webkit-align-items:start;flex-direction:column;-webkit-flex-direction:column;white-space:nowrap;}.bk-root .bk-input-group.bk-inline{flex-direction:row;-webkit-flex-direction:row;}.bk-root .bk-input-group.bk-inline > *:not(:first-child){margin-left:5px;}.bk-root .bk-input-group input[type=\"checkbox\"] + span,.bk-root .bk-input-group input[type=\"radio\"] + span{position:relative;top:-2px;margin-left:3px;}.bk-root .bk-input-group > .bk-spin-wrapper{display:inherit;width:inherit;height:inherit;position:relative;overflow:hidden;padding:0;vertical-align:middle;}.bk-root .bk-input-group > .bk-spin-wrapper input{padding-right:20px;}.bk-root .bk-input-group > .bk-spin-wrapper > .bk-spin-btn{position:absolute;display:block;height:50%;min-height:0;min-width:0;width:30px;padding:0;margin:0;right:0;border:none;background:none;cursor:pointer;}.bk-root .bk-input-group > .bk-spin-wrapper > .bk-spin-btn:before{content:\"\";display:inline-block;transform:translateY(-50%);border-left:5px solid transparent;border-right:5px solid transparent;}.bk-root .bk-input-group > .bk-spin-wrapper > .bk-spin-btn.bk-spin-btn-up{top:0;}.bk-root .bk-input-group > .bk-spin-wrapper > .bk-spin-btn.bk-spin-btn-up:before{border-bottom:5px solid black;}.bk-root .bk-input-group > .bk-spin-wrapper > .bk-spin-btn.bk-spin-btn-up:disabled:before{border-bottom-color:grey;}.bk-root .bk-input-group > .bk-spin-wrapper > .bk-spin-btn.bk-spin-btn-down{bottom:0;}.bk-root .bk-input-group > .bk-spin-wrapper > .bk-spin-btn.bk-spin-btn-down:before{border-top:5px solid black;}.bk-root .bk-input-group > .bk-spin-wrapper > .bk-spin-btn.bk-spin-btn-down:disabled:before{border-top-color:grey;}'},\n", + " 428: function _(t,e,n,i,o){i();const s=t(419),u=t(264);class c extends s.AbstractButtonView{click(){this.model.trigger_event(new u.ButtonClick),super.click()}}n.ButtonView=c,c.__name__=\"ButtonView\";class _ extends s.AbstractButton{constructor(t){super(t)}static init_Button(){this.prototype.default_view=c,this.override({label:\"Button\"})}}n.Button=_,_.__name__=\"Button\",_.init_Button()},\n", + " 429: function _(t,e,o,i,c){i();const n=t(1),s=t(430),a=t(43),u=n.__importStar(t(328));class r extends s.ButtonGroupView{get active(){return new Set(this.model.active)}change_active(t){const{active:e}=this;e.has(t)?e.delete(t):e.add(t),this.model.active=[...e].sort()}_update_active(){const{active:t}=this;this._buttons.forEach(((e,o)=>{a.classes(e).toggle(u.active,t.has(o))}))}}o.CheckboxButtonGroupView=r,r.__name__=\"CheckboxButtonGroupView\";class _ extends s.ButtonGroup{constructor(t){super(t)}static init_CheckboxButtonGroup(){this.prototype.default_view=r,this.define((({Int:t,Array:e})=>({active:[e(t),[]]})))}}o.CheckboxButtonGroup=_,_.__name__=\"CheckboxButtonGroup\",_.init_CheckboxButtonGroup()},\n", + " 430: function _(t,e,n,s,i){s();const o=t(1),r=t(420),u=t(20),a=t(43),_=o.__importStar(t(328)),l=_;class c extends r.ControlView{*controls(){yield*this._buttons}connect_signals(){super.connect_signals();const t=this.model.properties;this.on_change(t.button_type,(()=>this.render())),this.on_change(t.labels,(()=>this.render())),this.on_change(t.active,(()=>this._update_active()))}styles(){return[...super.styles(),_.default]}render(){super.render(),this._buttons=this.model.labels.map(((t,e)=>{const n=a.div({class:[l.btn,l[`btn_${this.model.button_type}`]],disabled:this.model.disabled},t);return n.addEventListener(\"click\",(()=>this.change_active(e))),n})),this._update_active();const t=a.div({class:l.btn_group},this._buttons);this.el.appendChild(t)}}n.ButtonGroupView=c,c.__name__=\"ButtonGroupView\";class d extends r.Control{constructor(t){super(t)}static init_ButtonGroup(){this.define((({String:t,Array:e})=>({labels:[e(t),[]],button_type:[u.ButtonType,\"default\"]})))}}n.ButtonGroup=d,d.__name__=\"ButtonGroup\",d.init_ButtonGroup()},\n", + " 431: function _(e,t,i,n,s){n();const o=e(1),c=e(432),a=e(43),l=e(9),d=o.__importStar(e(427));class h extends c.InputGroupView{render(){super.render();const e=a.div({class:[d.input_group,this.model.inline?d.inline:null]});this.el.appendChild(e);const{active:t,labels:i}=this.model;this._inputs=[];for(let n=0;nthis.change_active(n))),this._inputs.push(s),this.model.disabled&&(s.disabled=!0),l.includes(t,n)&&(s.checked=!0);const o=a.label({},s,a.span({},i[n]));e.appendChild(o)}}change_active(e){const t=new Set(this.model.active);t.has(e)?t.delete(e):t.add(e),this.model.active=[...t].sort()}}i.CheckboxGroupView=h,h.__name__=\"CheckboxGroupView\";class p extends c.InputGroup{constructor(e){super(e)}static init_CheckboxGroup(){this.prototype.default_view=h,this.define((({Boolean:e,Int:t,String:i,Array:n})=>({active:[n(t),[]],labels:[n(i),[]],inline:[e,!1]})))}}i.CheckboxGroup=p,p.__name__=\"CheckboxGroup\",p.init_CheckboxGroup()},\n", + " 432: function _(n,t,e,s,o){s();const r=n(1),u=n(420),c=r.__importDefault(n(427));class _ extends u.ControlView{*controls(){yield*this._inputs}connect_signals(){super.connect_signals(),this.connect(this.model.change,(()=>this.render()))}styles(){return[...super.styles(),c.default]}}e.InputGroupView=_,_.__name__=\"InputGroupView\";class i extends u.Control{constructor(n){super(n)}}e.InputGroup=i,i.__name__=\"InputGroup\"},\n", + " 433: function _(e,i,t,n,o){n();const s=e(1),l=e(426),r=e(43),c=e(22),a=s.__importStar(e(427));class d extends l.InputWidgetView{connect_signals(){super.connect_signals(),this.connect(this.model.properties.name.change,(()=>{var e;return this.input_el.name=null!==(e=this.model.name)&&void 0!==e?e:\"\"})),this.connect(this.model.properties.color.change,(()=>this.input_el.value=c.color2hexrgb(this.model.color))),this.connect(this.model.properties.disabled.change,(()=>this.input_el.disabled=this.model.disabled))}render(){super.render(),this.input_el=r.input({type:\"color\",class:a.input,name:this.model.name,value:this.model.color,disabled:this.model.disabled}),this.input_el.addEventListener(\"change\",(()=>this.change_input())),this.group_el.appendChild(this.input_el)}change_input(){this.model.color=this.input_el.value,super.change_input()}}t.ColorPickerView=d,d.__name__=\"ColorPickerView\";class h extends l.InputWidget{constructor(e){super(e)}static init_ColorPicker(){this.prototype.default_view=d,this.define((({Color:e})=>({color:[e,\"#000000\"]})))}}t.ColorPicker=h,h.__name__=\"ColorPicker\",h.init_ColorPicker()},\n", + " 434: function _(e,t,i,n,s){n();const a=e(1),l=a.__importDefault(e(435)),o=e(426),d=e(43),r=e(20),c=e(8),h=a.__importStar(e(427)),u=a.__importDefault(e(436));function _(e){const t=[];for(const i of e)if(c.isString(i))t.push(i);else{const[e,n]=i;t.push({from:e,to:n})}return t}class p extends o.InputWidgetView{connect_signals(){super.connect_signals();const{value:e,min_date:t,max_date:i,disabled_dates:n,enabled_dates:s,position:a,inline:l}=this.model.properties;this.connect(e.change,(()=>{var e;return null===(e=this._picker)||void 0===e?void 0:e.setDate(this.model.value)})),this.connect(t.change,(()=>{var e;return null===(e=this._picker)||void 0===e?void 0:e.set(\"minDate\",this.model.min_date)})),this.connect(i.change,(()=>{var e;return null===(e=this._picker)||void 0===e?void 0:e.set(\"maxDate\",this.model.max_date)})),this.connect(n.change,(()=>{var e;return null===(e=this._picker)||void 0===e?void 0:e.set(\"disable\",this.model.disabled_dates)})),this.connect(s.change,(()=>{var e;return null===(e=this._picker)||void 0===e?void 0:e.set(\"enable\",this.model.enabled_dates)})),this.connect(a.change,(()=>{var e;return null===(e=this._picker)||void 0===e?void 0:e.set(\"position\",this.model.position)})),this.connect(l.change,(()=>{var e;return null===(e=this._picker)||void 0===e?void 0:e.set(\"inline\",this.model.inline)}))}remove(){var e;null===(e=this._picker)||void 0===e||e.destroy(),super.remove()}styles(){return[...super.styles(),u.default]}render(){var e,t;null==this._picker&&(super.render(),this.input_el=d.input({type:\"text\",class:h.input,disabled:this.model.disabled}),this.group_el.appendChild(this.input_el),this._picker=l.default(this.input_el,{defaultDate:this.model.value,minDate:null!==(e=this.model.min_date)&&void 0!==e?e:void 0,maxDate:null!==(t=this.model.max_date)&&void 0!==t?t:void 0,inline:this.model.inline,position:this.model.position,disable:_(this.model.disabled_dates),enable:_(this.model.enabled_dates),onChange:(e,t,i)=>this._on_change(e,t,i)}))}_on_change(e,t,i){this.model.value=t,this.change_input()}}i.DatePickerView=p,p.__name__=\"DatePickerView\";class m extends o.InputWidget{constructor(e){super(e)}static init_DatePicker(){this.prototype.default_view=p,this.define((({Boolean:e,String:t,Array:i,Tuple:n,Or:s,Nullable:a})=>{const l=i(s(t,n(t,t)));return{value:[t],min_date:[a(t),null],max_date:[a(t),null],disabled_dates:[l,[]],enabled_dates:[l,[]],position:[r.CalendarPosition,\"auto\"],inline:[e,!1]}}))}}i.DatePicker=m,m.__name__=\"DatePicker\",m.init_DatePicker()},\n", + " 435: function _(e,n,t,a,i){\n", + " /* flatpickr v4.6.6, @license MIT */var o,r;o=this,r=function(){\"use strict\";\n", + " /*! *****************************************************************************\n", + " Copyright (c) Microsoft Corporation.\n", + " \n", + " Permission to use, copy, modify, and/or distribute this software for any\n", + " purpose with or without fee is hereby granted.\n", + " \n", + " THE SOFTWARE IS PROVIDED \"AS IS\" AND THE AUTHOR DISCLAIMS ALL WARRANTIES WITH\n", + " REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY\n", + " AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT,\n", + " INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM\n", + " LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR\n", + " OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR\n", + " PERFORMANCE OF THIS SOFTWARE.\n", + " ***************************************************************************** */var e=function(){return(e=Object.assign||function(e){for(var n,t=1,a=arguments.length;t\",noCalendar:!1,now:new Date,onChange:[],onClose:[],onDayCreate:[],onDestroy:[],onKeyDown:[],onMonthChange:[],onOpen:[],onParseConfig:[],onReady:[],onValueUpdate:[],onYearChange:[],onPreCalendarPosition:[],plugins:[],position:\"auto\",positionElement:void 0,prevArrow:\"\",shorthandCurrentMonth:!1,showMonths:1,static:!1,time_24hr:!1,weekNumbers:!1,wrap:!1},i={weekdays:{shorthand:[\"Sun\",\"Mon\",\"Tue\",\"Wed\",\"Thu\",\"Fri\",\"Sat\"],longhand:[\"Sunday\",\"Monday\",\"Tuesday\",\"Wednesday\",\"Thursday\",\"Friday\",\"Saturday\"]},months:{shorthand:[\"Jan\",\"Feb\",\"Mar\",\"Apr\",\"May\",\"Jun\",\"Jul\",\"Aug\",\"Sep\",\"Oct\",\"Nov\",\"Dec\"],longhand:[\"January\",\"February\",\"March\",\"April\",\"May\",\"June\",\"July\",\"August\",\"September\",\"October\",\"November\",\"December\"]},daysInMonth:[31,28,31,30,31,30,31,31,30,31,30,31],firstDayOfWeek:0,ordinal:function(e){var n=e%100;if(n>3&&n<21)return\"th\";switch(n%10){case 1:return\"st\";case 2:return\"nd\";case 3:return\"rd\";default:return\"th\"}},rangeSeparator:\" to \",weekAbbreviation:\"Wk\",scrollTitle:\"Scroll to increment\",toggleTitle:\"Click to toggle\",amPM:[\"AM\",\"PM\"],yearAriaLabel:\"Year\",monthAriaLabel:\"Month\",hourAriaLabel:\"Hour\",minuteAriaLabel:\"Minute\",time_24hr:!1},o=function(e,n){return void 0===n&&(n=2),(\"000\"+e).slice(-1*n)},r=function(e){return!0===e?1:0};function l(e,n,t){var a;return void 0===t&&(t=!1),function(){var i=this,o=arguments;null!==a&&clearTimeout(a),a=window.setTimeout((function(){a=null,t||e.apply(i,o)}),n),t&&!a&&e.apply(i,o)}}var c=function(e){return e instanceof Array?e:[e]};function d(e,n,t){if(!0===t)return e.classList.add(n);e.classList.remove(n)}function s(e,n,t){var a=window.document.createElement(e);return n=n||\"\",t=t||\"\",a.className=n,void 0!==t&&(a.textContent=t),a}function u(e){for(;e.firstChild;)e.removeChild(e.firstChild)}function f(e,n){return n(e)?e:e.parentNode?f(e.parentNode,n):void 0}function m(e,n){var t=s(\"div\",\"numInputWrapper\"),a=s(\"input\",\"numInput \"+e),i=s(\"span\",\"arrowUp\"),o=s(\"span\",\"arrowDown\");if(-1===navigator.userAgent.indexOf(\"MSIE 9.0\")?a.type=\"number\":(a.type=\"text\",a.pattern=\"\\\\d*\"),void 0!==n)for(var r in n)a.setAttribute(r,n[r]);return t.appendChild(a),t.appendChild(i),t.appendChild(o),t}function g(e){try{return\"function\"==typeof e.composedPath?e.composedPath()[0]:e.target}catch(n){return e.target}}var p=function(){},h=function(e,n,t){return t.months[n?\"shorthand\":\"longhand\"][e]},v={D:p,F:function(e,n,t){e.setMonth(t.months.longhand.indexOf(n))},G:function(e,n){e.setHours(parseFloat(n))},H:function(e,n){e.setHours(parseFloat(n))},J:function(e,n){e.setDate(parseFloat(n))},K:function(e,n,t){e.setHours(e.getHours()%12+12*r(new RegExp(t.amPM[1],\"i\").test(n)))},M:function(e,n,t){e.setMonth(t.months.shorthand.indexOf(n))},S:function(e,n){e.setSeconds(parseFloat(n))},U:function(e,n){return new Date(1e3*parseFloat(n))},W:function(e,n,t){var a=parseInt(n),i=new Date(e.getFullYear(),0,2+7*(a-1),0,0,0,0);return i.setDate(i.getDate()-i.getDay()+t.firstDayOfWeek),i},Y:function(e,n){e.setFullYear(parseFloat(n))},Z:function(e,n){return new Date(n)},d:function(e,n){e.setDate(parseFloat(n))},h:function(e,n){e.setHours(parseFloat(n))},i:function(e,n){e.setMinutes(parseFloat(n))},j:function(e,n){e.setDate(parseFloat(n))},l:p,m:function(e,n){e.setMonth(parseFloat(n)-1)},n:function(e,n){e.setMonth(parseFloat(n)-1)},s:function(e,n){e.setSeconds(parseFloat(n))},u:function(e,n){return new Date(parseFloat(n))},w:p,y:function(e,n){e.setFullYear(2e3+parseFloat(n))}},D={D:\"(\\\\w+)\",F:\"(\\\\w+)\",G:\"(\\\\d\\\\d|\\\\d)\",H:\"(\\\\d\\\\d|\\\\d)\",J:\"(\\\\d\\\\d|\\\\d)\\\\w+\",K:\"\",M:\"(\\\\w+)\",S:\"(\\\\d\\\\d|\\\\d)\",U:\"(.+)\",W:\"(\\\\d\\\\d|\\\\d)\",Y:\"(\\\\d{4})\",Z:\"(.+)\",d:\"(\\\\d\\\\d|\\\\d)\",h:\"(\\\\d\\\\d|\\\\d)\",i:\"(\\\\d\\\\d|\\\\d)\",j:\"(\\\\d\\\\d|\\\\d)\",l:\"(\\\\w+)\",m:\"(\\\\d\\\\d|\\\\d)\",n:\"(\\\\d\\\\d|\\\\d)\",s:\"(\\\\d\\\\d|\\\\d)\",u:\"(.+)\",w:\"(\\\\d\\\\d|\\\\d)\",y:\"(\\\\d{2})\"},w={Z:function(e){return e.toISOString()},D:function(e,n,t){return n.weekdays.shorthand[w.w(e,n,t)]},F:function(e,n,t){return h(w.n(e,n,t)-1,!1,n)},G:function(e,n,t){return o(w.h(e,n,t))},H:function(e){return o(e.getHours())},J:function(e,n){return void 0!==n.ordinal?e.getDate()+n.ordinal(e.getDate()):e.getDate()},K:function(e,n){return n.amPM[r(e.getHours()>11)]},M:function(e,n){return h(e.getMonth(),!0,n)},S:function(e){return o(e.getSeconds())},U:function(e){return e.getTime()/1e3},W:function(e,n,t){return t.getWeek(e)},Y:function(e){return o(e.getFullYear(),4)},d:function(e){return o(e.getDate())},h:function(e){return e.getHours()%12?e.getHours()%12:12},i:function(e){return o(e.getMinutes())},j:function(e){return e.getDate()},l:function(e,n){return n.weekdays.longhand[e.getDay()]},m:function(e){return o(e.getMonth()+1)},n:function(e){return e.getMonth()+1},s:function(e){return e.getSeconds()},u:function(e){return e.getTime()},w:function(e){return e.getDay()},y:function(e){return String(e.getFullYear()).substring(2)}},b=function(e){var n=e.config,t=void 0===n?a:n,o=e.l10n,r=void 0===o?i:o,l=e.isMobile,c=void 0!==l&&l;return function(e,n,a){var i=a||r;return void 0===t.formatDate||c?n.split(\"\").map((function(n,a,o){return w[n]&&\"\\\\\"!==o[a-1]?w[n](e,i,t):\"\\\\\"!==n?n:\"\"})).join(\"\"):t.formatDate(e,n,i)}},C=function(e){var n=e.config,t=void 0===n?a:n,o=e.l10n,r=void 0===o?i:o;return function(e,n,i,o){if(0===e||e){var l,c=o||r,d=e;if(e instanceof Date)l=new Date(e.getTime());else if(\"string\"!=typeof e&&void 0!==e.toFixed)l=new Date(e);else if(\"string\"==typeof e){var s=n||(t||a).dateFormat,u=String(e).trim();if(\"today\"===u)l=new Date,i=!0;else if(/Z$/.test(u)||/GMT$/.test(u))l=new Date(e);else if(t&&t.parseDate)l=t.parseDate(e,s);else{l=t&&t.noCalendar?new Date((new Date).setHours(0,0,0,0)):new Date((new Date).getFullYear(),0,1,0,0,0,0);for(var f=void 0,m=[],g=0,p=0,h=\"\";gl&&(u=a===w.hourElement?u-l-r(!w.amPM):i,m&&H(void 0,1,w.hourElement)),w.amPM&&f&&(1===c?u+d===23:Math.abs(u-d)>c)&&(w.amPM.textContent=w.l10n.amPM[r(w.amPM.textContent===w.l10n.amPM[0])]),a.value=o(u)}}(e);var c=w._input.value;I(),be(),w._input.value!==c&&w._debouncedChange()}function I(){if(void 0!==w.hourElement&&void 0!==w.minuteElement){var e,n,t=(parseInt(w.hourElement.value.slice(-2),10)||0)%24,a=(parseInt(w.minuteElement.value,10)||0)%60,i=void 0!==w.secondElement?(parseInt(w.secondElement.value,10)||0)%60:0;void 0!==w.amPM&&(e=t,n=w.amPM.textContent,t=e%12+12*r(n===w.l10n.amPM[1]));var o=void 0!==w.config.minTime||w.config.minDate&&w.minDateHasTime&&w.latestSelectedDateObj&&0===M(w.latestSelectedDateObj,w.config.minDate,!0);if(void 0!==w.config.maxTime||w.config.maxDate&&w.maxDateHasTime&&w.latestSelectedDateObj&&0===M(w.latestSelectedDateObj,w.config.maxDate,!0)){var l=void 0!==w.config.maxTime?w.config.maxTime:w.config.maxDate;(t=Math.min(t,l.getHours()))===l.getHours()&&(a=Math.min(a,l.getMinutes())),a===l.getMinutes()&&(i=Math.min(i,l.getSeconds()))}if(o){var c=void 0!==w.config.minTime?w.config.minTime:w.config.minDate;(t=Math.max(t,c.getHours()))===c.getHours()&&(a=Math.max(a,c.getMinutes())),a===c.getMinutes()&&(i=Math.max(i,c.getSeconds()))}O(t,a,i)}}function S(e){var n=e||w.latestSelectedDateObj;n&&O(n.getHours(),n.getMinutes(),n.getSeconds())}function _(){var e=w.config.defaultHour,n=w.config.defaultMinute,t=w.config.defaultSeconds;if(void 0!==w.config.minDate){var a=w.config.minDate.getHours(),i=w.config.minDate.getMinutes();(e=Math.max(e,a))===a&&(n=Math.max(i,n)),e===a&&n===i&&(t=w.config.minDate.getSeconds())}if(void 0!==w.config.maxDate){var o=w.config.maxDate.getHours(),r=w.config.maxDate.getMinutes();(e=Math.min(e,o))===o&&(n=Math.min(r,n)),e===o&&n===r&&(t=w.config.maxDate.getSeconds())}return{hours:e,minutes:n,seconds:t}}function O(e,n,t){void 0!==w.latestSelectedDateObj&&w.latestSelectedDateObj.setHours(e%24,n,t||0,0),w.hourElement&&w.minuteElement&&!w.isMobile&&(w.hourElement.value=o(w.config.time_24hr?e:(12+e)%12+12*r(e%12==0)),w.minuteElement.value=o(n),void 0!==w.amPM&&(w.amPM.textContent=w.l10n.amPM[r(e>=12)]),void 0!==w.secondElement&&(w.secondElement.value=o(t)))}function F(e){var n=g(e),t=parseInt(n.value)+(e.delta||0);(t/1e3>1||\"Enter\"===e.key&&!/[^\\d]/.test(t.toString()))&&Q(t)}function N(e,n,t,a){return n instanceof Array?n.forEach((function(n){return N(e,n,t,a)})):e instanceof Array?e.forEach((function(e){return N(e,n,t,a)})):(e.addEventListener(n,t,a),void w._handlers.push({element:e,event:n,handler:t,options:a}))}function A(){pe(\"onChange\")}function P(e,n){var t=void 0!==e?w.parseDate(e):w.latestSelectedDateObj||(w.config.minDate&&w.config.minDate>w.now?w.config.minDate:w.config.maxDate&&w.config.maxDate=0&&M(e,w.selectedDates[1])<=0}(n)&&!ve(n)&&o.classList.add(\"inRange\"),w.weekNumbers&&1===w.config.showMonths&&\"prevMonthDay\"!==e&&t%7==1&&w.weekNumbers.insertAdjacentHTML(\"beforeend\",\"\"+w.config.getWeek(n)+\"\"),pe(\"onDayCreate\",o),o}function L(e){e.focus(),\"range\"===w.config.mode&&ae(e)}function W(e){for(var n=e>0?0:w.config.showMonths-1,t=e>0?w.config.showMonths:-1,a=n;a!=t;a+=e)for(var i=w.daysContainer.children[a],o=e>0?0:i.children.length-1,r=e>0?i.children.length:-1,l=o;l!=r;l+=e){var c=i.children[l];if(-1===c.className.indexOf(\"hidden\")&&X(c.dateObj))return c}}function R(e,n){var t=ee(document.activeElement||document.body),a=void 0!==e?e:t?document.activeElement:void 0!==w.selectedDateElem&&ee(w.selectedDateElem)?w.selectedDateElem:void 0!==w.todayDateElem&&ee(w.todayDateElem)?w.todayDateElem:W(n>0?1:-1);void 0===a?w._input.focus():t?function(e,n){for(var t=-1===e.className.indexOf(\"Month\")?e.dateObj.getMonth():w.currentMonth,a=n>0?w.config.showMonths:-1,i=n>0?1:-1,o=t-w.currentMonth;o!=a;o+=i)for(var r=w.daysContainer.children[o],l=t-w.currentMonth===o?e.$i+n:n<0?r.children.length-1:0,c=r.children.length,d=l;d>=0&&d0?c:-1);d+=i){var s=r.children[d];if(-1===s.className.indexOf(\"hidden\")&&X(s.dateObj)&&Math.abs(e.$i-d)>=Math.abs(n))return L(s)}w.changeMonth(i),R(W(i),0)}(a,n):L(a)}function B(e,n){for(var t=(new Date(e,n,1).getDay()-w.l10n.firstDayOfWeek+7)%7,a=w.utils.getDaysInMonth((n-1+12)%12,e),i=w.utils.getDaysInMonth(n,e),o=window.document.createDocumentFragment(),r=w.config.showMonths>1,l=r?\"prevMonthDay hidden\":\"prevMonthDay\",c=r?\"nextMonthDay hidden\":\"nextMonthDay\",d=a+1-t,u=0;d<=a;d++,u++)o.appendChild(j(l,new Date(e,n-1,d),d,u));for(d=1;d<=i;d++,u++)o.appendChild(j(\"\",new Date(e,n,d),d,u));for(var f=i+1;f<=42-t&&(1===w.config.showMonths||u%7!=0);f++,u++)o.appendChild(j(c,new Date(e,n+1,f%i),f,u));var m=s(\"div\",\"dayContainer\");return m.appendChild(o),m}function J(){if(void 0!==w.daysContainer){u(w.daysContainer),w.weekNumbers&&u(w.weekNumbers);for(var e=document.createDocumentFragment(),n=0;n1||\"dropdown\"!==w.config.monthSelectorType)){var e=function(e){return!(void 0!==w.config.minDate&&w.currentYear===w.config.minDate.getFullYear()&&ew.config.maxDate.getMonth())};w.monthsDropdownContainer.tabIndex=-1,w.monthsDropdownContainer.innerHTML=\"\";for(var n=0;n<12;n++)if(e(n)){var t=s(\"option\",\"flatpickr-monthDropdown-month\");t.value=new Date(w.currentYear,n).getMonth().toString(),t.textContent=h(n,w.config.shorthandCurrentMonth,w.l10n),t.tabIndex=-1,w.currentMonth===n&&(t.selected=!0),w.monthsDropdownContainer.appendChild(t)}}}function U(){var e,n=s(\"div\",\"flatpickr-month\"),t=window.document.createDocumentFragment();w.config.showMonths>1||\"static\"===w.config.monthSelectorType?e=s(\"span\",\"cur-month\"):(w.monthsDropdownContainer=s(\"select\",\"flatpickr-monthDropdown-months\"),w.monthsDropdownContainer.setAttribute(\"aria-label\",w.l10n.monthAriaLabel),N(w.monthsDropdownContainer,\"change\",(function(e){var n=g(e),t=parseInt(n.value,10);w.changeMonth(t-w.currentMonth),pe(\"onMonthChange\")})),K(),e=w.monthsDropdownContainer);var a=m(\"cur-year\",{tabindex:\"-1\"}),i=a.getElementsByTagName(\"input\")[0];i.setAttribute(\"aria-label\",w.l10n.yearAriaLabel),w.config.minDate&&i.setAttribute(\"min\",w.config.minDate.getFullYear().toString()),w.config.maxDate&&(i.setAttribute(\"max\",w.config.maxDate.getFullYear().toString()),i.disabled=!!w.config.minDate&&w.config.minDate.getFullYear()===w.config.maxDate.getFullYear());var o=s(\"div\",\"flatpickr-current-month\");return o.appendChild(e),o.appendChild(a),t.appendChild(o),n.appendChild(t),{container:n,yearElement:i,monthElement:e}}function q(){u(w.monthNav),w.monthNav.appendChild(w.prevMonthNav),w.config.showMonths&&(w.yearElements=[],w.monthElements=[]);for(var e=w.config.showMonths;e--;){var n=U();w.yearElements.push(n.yearElement),w.monthElements.push(n.monthElement),w.monthNav.appendChild(n.container)}w.monthNav.appendChild(w.nextMonthNav)}function $(){w.weekdayContainer?u(w.weekdayContainer):w.weekdayContainer=s(\"div\",\"flatpickr-weekdays\");for(var e=w.config.showMonths;e--;){var n=s(\"div\",\"flatpickr-weekdaycontainer\");w.weekdayContainer.appendChild(n)}return z(),w.weekdayContainer}function z(){if(w.weekdayContainer){var e=w.l10n.firstDayOfWeek,t=n(w.l10n.weekdays.shorthand);e>0&&e\\n \"+t.join(\"\")+\"\\n \\n \"}}function G(e,n){void 0===n&&(n=!0);var t=n?e:e-w.currentMonth;t<0&&!0===w._hidePrevMonthArrow||t>0&&!0===w._hideNextMonthArrow||(w.currentMonth+=t,(w.currentMonth<0||w.currentMonth>11)&&(w.currentYear+=w.currentMonth>11?1:-1,w.currentMonth=(w.currentMonth+12)%12,pe(\"onYearChange\"),K()),J(),pe(\"onMonthChange\"),De())}function V(e){return!(!w.config.appendTo||!w.config.appendTo.contains(e))||w.calendarContainer.contains(e)}function Z(e){if(w.isOpen&&!w.config.inline){var n=g(e),t=V(n),a=n===w.input||n===w.altInput||w.element.contains(n)||e.path&&e.path.indexOf&&(~e.path.indexOf(w.input)||~e.path.indexOf(w.altInput)),i=\"blur\"===e.type?a&&e.relatedTarget&&!V(e.relatedTarget):!a&&!t&&!V(e.relatedTarget),o=!w.config.ignoredFocusElements.some((function(e){return e.contains(n)}));i&&o&&(void 0!==w.timeContainer&&void 0!==w.minuteElement&&void 0!==w.hourElement&&\"\"!==w.input.value&&void 0!==w.input.value&&T(),w.close(),w.config&&\"range\"===w.config.mode&&1===w.selectedDates.length&&(w.clear(!1),w.redraw()))}}function Q(e){if(!(!e||w.config.minDate&&ew.config.maxDate.getFullYear())){var n=e,t=w.currentYear!==n;w.currentYear=n||w.currentYear,w.config.maxDate&&w.currentYear===w.config.maxDate.getFullYear()?w.currentMonth=Math.min(w.config.maxDate.getMonth(),w.currentMonth):w.config.minDate&&w.currentYear===w.config.minDate.getFullYear()&&(w.currentMonth=Math.max(w.config.minDate.getMonth(),w.currentMonth)),t&&(w.redraw(),pe(\"onYearChange\"),K())}}function X(e,n){void 0===n&&(n=!0);var t=w.parseDate(e,void 0,n);if(w.config.minDate&&t&&M(t,w.config.minDate,void 0!==n?n:!w.minDateHasTime)<0||w.config.maxDate&&t&&M(t,w.config.maxDate,void 0!==n?n:!w.maxDateHasTime)>0)return!1;if(0===w.config.enable.length&&0===w.config.disable.length)return!0;if(void 0===t)return!1;for(var a=w.config.enable.length>0,i=a?w.config.enable:w.config.disable,o=0,r=void 0;o=r.from.getTime()&&t.getTime()<=r.to.getTime())return a}return!a}function ee(e){return void 0!==w.daysContainer&&-1===e.className.indexOf(\"hidden\")&&-1===e.className.indexOf(\"flatpickr-disabled\")&&w.daysContainer.contains(e)}function ne(e){e.target!==w._input||e.relatedTarget&&V(e.relatedTarget)||w.setDate(w._input.value,!0,e.target===w.altInput?w.config.altFormat:w.config.dateFormat)}function te(e){var n=g(e),t=w.config.wrap?p.contains(n):n===w._input,a=w.config.allowInput,i=w.isOpen&&(!a||!t),o=w.config.inline&&t&&!a;if(13===e.keyCode&&t){if(a)return w.setDate(w._input.value,!0,n===w.altInput?w.config.altFormat:w.config.dateFormat),n.blur();w.open()}else if(V(n)||i||o){var r=!!w.timeContainer&&w.timeContainer.contains(n);switch(e.keyCode){case 13:r?(e.preventDefault(),T(),se()):ue(e);break;case 27:e.preventDefault(),se();break;case 8:case 46:t&&!w.config.allowInput&&(e.preventDefault(),w.clear());break;case 37:case 39:if(r||t)w.hourElement&&w.hourElement.focus();else if(e.preventDefault(),void 0!==w.daysContainer&&(!1===a||document.activeElement&&ee(document.activeElement))){var l=39===e.keyCode?1:-1;e.ctrlKey?(e.stopPropagation(),G(l),R(W(1),0)):R(void 0,l)}break;case 38:case 40:e.preventDefault();var c=40===e.keyCode?1:-1;w.daysContainer&&void 0!==n.$i||n===w.input||n===w.altInput?e.ctrlKey?(e.stopPropagation(),Q(w.currentYear-c),R(W(1),0)):r||R(void 0,7*c):n===w.currentYearElement?Q(w.currentYear-c):w.config.enableTime&&(!r&&w.hourElement&&w.hourElement.focus(),T(e),w._debouncedChange());break;case 9:if(r){var d=[w.hourElement,w.minuteElement,w.secondElement,w.amPM].concat(w.pluginElements).filter((function(e){return e})),s=d.indexOf(n);if(-1!==s){var u=d[s+(e.shiftKey?-1:1)];e.preventDefault(),(u||w._input).focus()}}else!w.config.noCalendar&&w.daysContainer&&w.daysContainer.contains(n)&&e.shiftKey&&(e.preventDefault(),w._input.focus())}}if(void 0!==w.amPM&&n===w.amPM)switch(e.key){case w.l10n.amPM[0].charAt(0):case w.l10n.amPM[0].charAt(0).toLowerCase():w.amPM.textContent=w.l10n.amPM[0],I(),be();break;case w.l10n.amPM[1].charAt(0):case w.l10n.amPM[1].charAt(0).toLowerCase():w.amPM.textContent=w.l10n.amPM[1],I(),be()}(t||V(n))&&pe(\"onKeyDown\",e)}function ae(e){if(1===w.selectedDates.length&&(!e||e.classList.contains(\"flatpickr-day\")&&!e.classList.contains(\"flatpickr-disabled\"))){for(var n=e?e.dateObj.getTime():w.days.firstElementChild.dateObj.getTime(),t=w.parseDate(w.selectedDates[0],void 0,!0).getTime(),a=Math.min(n,w.selectedDates[0].getTime()),i=Math.max(n,w.selectedDates[0].getTime()),o=!1,r=0,l=0,c=a;ca&&cr)?r=c:c>t&&(!l||c0&&m0&&m>l;return g?(f.classList.add(\"notAllowed\"),[\"inRange\",\"startRange\",\"endRange\"].forEach((function(e){f.classList.remove(e)})),\"continue\"):o&&!g?\"continue\":([\"startRange\",\"inRange\",\"endRange\",\"notAllowed\"].forEach((function(e){f.classList.remove(e)})),void(void 0!==e&&(e.classList.add(n<=w.selectedDates[0].getTime()?\"startRange\":\"endRange\"),tn&&m===t&&f.classList.add(\"endRange\"),m>=r&&(0===l||m<=l)&&(d=t,u=n,(c=m)>Math.min(d,u)&&c0||t.getMinutes()>0||t.getSeconds()>0),w.selectedDates&&(w.selectedDates=w.selectedDates.filter((function(e){return X(e)})),w.selectedDates.length||\"min\"!==e||S(t),be()),w.daysContainer&&(de(),void 0!==t?w.currentYearElement[e]=t.getFullYear().toString():w.currentYearElement.removeAttribute(e),w.currentYearElement.disabled=!!a&&void 0!==t&&a.getFullYear()===t.getFullYear())}}function re(){return w.config.wrap?p.querySelector(\"[data-input]\"):p}function le(){\"object\"!=typeof w.config.locale&&void 0===k.l10ns[w.config.locale]&&w.config.errorHandler(new Error(\"flatpickr: invalid locale \"+w.config.locale)),w.l10n=e(e({},k.l10ns.default),\"object\"==typeof w.config.locale?w.config.locale:\"default\"!==w.config.locale?k.l10ns[w.config.locale]:void 0),D.K=\"(\"+w.l10n.amPM[0]+\"|\"+w.l10n.amPM[1]+\"|\"+w.l10n.amPM[0].toLowerCase()+\"|\"+w.l10n.amPM[1].toLowerCase()+\")\",void 0===e(e({},v),JSON.parse(JSON.stringify(p.dataset||{}))).time_24hr&&void 0===k.defaultConfig.time_24hr&&(w.config.time_24hr=w.l10n.time_24hr),w.formatDate=b(w),w.parseDate=C({config:w.config,l10n:w.l10n})}function ce(e){if(void 0!==w.calendarContainer){pe(\"onPreCalendarPosition\");var n=e||w._positionElement,t=Array.prototype.reduce.call(w.calendarContainer.children,(function(e,n){return e+n.offsetHeight}),0),a=w.calendarContainer.offsetWidth,i=w.config.position.split(\" \"),o=i[0],r=i.length>1?i[1]:null,l=n.getBoundingClientRect(),c=window.innerHeight-l.bottom,s=\"above\"===o||\"below\"!==o&&ct,u=window.pageYOffset+l.top+(s?-t-2:n.offsetHeight+2);if(d(w.calendarContainer,\"arrowTop\",!s),d(w.calendarContainer,\"arrowBottom\",s),!w.config.inline){var f=window.pageXOffset+l.left,m=!1,g=!1;\"center\"===r?(f-=(a-l.width)/2,m=!0):\"right\"===r&&(f-=a-l.width,g=!0),d(w.calendarContainer,\"arrowLeft\",!m&&!g),d(w.calendarContainer,\"arrowCenter\",m),d(w.calendarContainer,\"arrowRight\",g);var p=window.document.body.offsetWidth-(window.pageXOffset+l.right),h=f+a>window.document.body.offsetWidth,v=p+a>window.document.body.offsetWidth;if(d(w.calendarContainer,\"rightMost\",h),!w.config.static)if(w.calendarContainer.style.top=u+\"px\",h)if(v){var D=function(){for(var e=null,n=0;nw.currentMonth+w.config.showMonths-1)&&\"range\"!==w.config.mode;if(w.selectedDateElem=t,\"single\"===w.config.mode)w.selectedDates=[a];else if(\"multiple\"===w.config.mode){var o=ve(a);o?w.selectedDates.splice(parseInt(o),1):w.selectedDates.push(a)}else\"range\"===w.config.mode&&(2===w.selectedDates.length&&w.clear(!1,!1),w.latestSelectedDateObj=a,w.selectedDates.push(a),0!==M(a,w.selectedDates[0],!0)&&w.selectedDates.sort((function(e,n){return e.getTime()-n.getTime()})));if(I(),i){var r=w.currentYear!==a.getFullYear();w.currentYear=a.getFullYear(),w.currentMonth=a.getMonth(),r&&(pe(\"onYearChange\"),K()),pe(\"onMonthChange\")}if(De(),J(),be(),i||\"range\"===w.config.mode||1!==w.config.showMonths?void 0!==w.selectedDateElem&&void 0===w.hourElement&&w.selectedDateElem&&w.selectedDateElem.focus():L(t),void 0!==w.hourElement&&void 0!==w.hourElement&&w.hourElement.focus(),w.config.closeOnSelect){var l=\"single\"===w.config.mode&&!w.config.enableTime,c=\"range\"===w.config.mode&&2===w.selectedDates.length&&!w.config.enableTime;(l||c)&&se()}A()}}w.parseDate=C({config:w.config,l10n:w.l10n}),w._handlers=[],w.pluginElements=[],w.loadedPlugins=[],w._bind=N,w._setHoursFromDate=S,w._positionCalendar=ce,w.changeMonth=G,w.changeYear=Q,w.clear=function(e,n){if(void 0===e&&(e=!0),void 0===n&&(n=!0),w.input.value=\"\",void 0!==w.altInput&&(w.altInput.value=\"\"),void 0!==w.mobileInput&&(w.mobileInput.value=\"\"),w.selectedDates=[],w.latestSelectedDateObj=void 0,!0===n&&(w.currentYear=w._initialDate.getFullYear(),w.currentMonth=w._initialDate.getMonth()),!0===w.config.enableTime){var t=_(),a=t.hours,i=t.minutes,o=t.seconds;O(a,i,o)}w.redraw(),e&&pe(\"onChange\")},w.close=function(){w.isOpen=!1,w.isMobile||(void 0!==w.calendarContainer&&w.calendarContainer.classList.remove(\"open\"),void 0!==w._input&&w._input.classList.remove(\"active\")),pe(\"onClose\")},w._createElement=s,w.destroy=function(){void 0!==w.config&&pe(\"onDestroy\");for(var e=w._handlers.length;e--;){var n=w._handlers[e];n.element.removeEventListener(n.event,n.handler,n.options)}if(w._handlers=[],w.mobileInput)w.mobileInput.parentNode&&w.mobileInput.parentNode.removeChild(w.mobileInput),w.mobileInput=void 0;else if(w.calendarContainer&&w.calendarContainer.parentNode)if(w.config.static&&w.calendarContainer.parentNode){var t=w.calendarContainer.parentNode;if(t.lastChild&&t.removeChild(t.lastChild),t.parentNode){for(;t.firstChild;)t.parentNode.insertBefore(t.firstChild,t);t.parentNode.removeChild(t)}}else w.calendarContainer.parentNode.removeChild(w.calendarContainer);w.altInput&&(w.input.type=\"text\",w.altInput.parentNode&&w.altInput.parentNode.removeChild(w.altInput),delete w.altInput),w.input&&(w.input.type=w.input._type,w.input.classList.remove(\"flatpickr-input\"),w.input.removeAttribute(\"readonly\")),[\"_showTimeInput\",\"latestSelectedDateObj\",\"_hideNextMonthArrow\",\"_hidePrevMonthArrow\",\"__hideNextMonthArrow\",\"__hidePrevMonthArrow\",\"isMobile\",\"isOpen\",\"selectedDateElem\",\"minDateHasTime\",\"maxDateHasTime\",\"days\",\"daysContainer\",\"_input\",\"_positionElement\",\"innerContainer\",\"rContainer\",\"monthNav\",\"todayDateElem\",\"calendarContainer\",\"weekdayContainer\",\"prevMonthNav\",\"nextMonthNav\",\"monthsDropdownContainer\",\"currentMonthElement\",\"currentYearElement\",\"navigationCurrentMonth\",\"selectedDateElem\",\"config\"].forEach((function(e){try{delete w[e]}catch(e){}}))},w.isEnabled=X,w.jumpToDate=P,w.open=function(e,n){if(void 0===n&&(n=w._positionElement),!0===w.isMobile){if(e){e.preventDefault();var t=g(e);t&&t.blur()}return void 0!==w.mobileInput&&(w.mobileInput.focus(),w.mobileInput.click()),void pe(\"onOpen\")}if(!w._input.disabled&&!w.config.inline){var a=w.isOpen;w.isOpen=!0,a||(w.calendarContainer.classList.add(\"open\"),w._input.classList.add(\"active\"),pe(\"onOpen\"),ce(n)),!0===w.config.enableTime&&!0===w.config.noCalendar&&(!1!==w.config.allowInput||void 0!==e&&w.timeContainer.contains(e.relatedTarget)||setTimeout((function(){return w.hourElement.select()}),50))}},w.redraw=de,w.set=function(e,n){if(null!==e&&\"object\"==typeof e)for(var a in Object.assign(w.config,e),e)void 0!==fe[a]&&fe[a].forEach((function(e){return e()}));else w.config[e]=n,void 0!==fe[e]?fe[e].forEach((function(e){return e()})):t.indexOf(e)>-1&&(w.config[e]=c(n));w.redraw(),be(!0)},w.setDate=function(e,n,t){if(void 0===n&&(n=!1),void 0===t&&(t=w.config.dateFormat),0!==e&&!e||e instanceof Array&&0===e.length)return w.clear(n);me(e,t),w.latestSelectedDateObj=w.selectedDates[w.selectedDates.length-1],w.redraw(),P(void 0,n),S(),0===w.selectedDates.length&&w.clear(!1),be(n),n&&pe(\"onChange\")},w.toggle=function(e){if(!0===w.isOpen)return w.close();w.open(e)};var fe={locale:[le,z],showMonths:[q,E,$],minDate:[P],maxDate:[P]};function me(e,n){var t=[];if(e instanceof Array)t=e.map((function(e){return w.parseDate(e,n)}));else if(e instanceof Date||\"number\"==typeof e)t=[w.parseDate(e,n)];else if(\"string\"==typeof e)switch(w.config.mode){case\"single\":case\"time\":t=[w.parseDate(e,n)];break;case\"multiple\":t=e.split(w.config.conjunction).map((function(e){return w.parseDate(e,n)}));break;case\"range\":t=e.split(w.l10n.rangeSeparator).map((function(e){return w.parseDate(e,n)}))}else w.config.errorHandler(new Error(\"Invalid date supplied: \"+JSON.stringify(e)));w.selectedDates=w.config.allowInvalidPreload?t:t.filter((function(e){return e instanceof Date&&X(e,!1)})),\"range\"===w.config.mode&&w.selectedDates.sort((function(e,n){return e.getTime()-n.getTime()}))}function ge(e){return e.slice().map((function(e){return\"string\"==typeof e||\"number\"==typeof e||e instanceof Date?w.parseDate(e,void 0,!0):e&&\"object\"==typeof e&&e.from&&e.to?{from:w.parseDate(e.from,void 0),to:w.parseDate(e.to,void 0)}:e})).filter((function(e){return e}))}function pe(e,n){if(void 0!==w.config){var t=w.config[e];if(void 0!==t&&t.length>0)for(var a=0;t[a]&&a1||\"static\"===w.config.monthSelectorType?w.monthElements[n].textContent=h(t.getMonth(),w.config.shorthandCurrentMonth,w.l10n)+\" \":w.monthsDropdownContainer.value=t.getMonth().toString(),e.value=t.getFullYear().toString()})),w._hidePrevMonthArrow=void 0!==w.config.minDate&&(w.currentYear===w.config.minDate.getFullYear()?w.currentMonth<=w.config.minDate.getMonth():w.currentYearw.config.maxDate.getMonth():w.currentYear>w.config.maxDate.getFullYear()))}function we(e){return w.selectedDates.map((function(n){return w.formatDate(n,e)})).filter((function(e,n,t){return\"range\"!==w.config.mode||w.config.enableTime||t.indexOf(e)===n})).join(\"range\"!==w.config.mode?w.config.conjunction:w.l10n.rangeSeparator)}function be(e){void 0===e&&(e=!0),void 0!==w.mobileInput&&w.mobileFormatStr&&(w.mobileInput.value=void 0!==w.latestSelectedDateObj?w.formatDate(w.latestSelectedDateObj,w.mobileFormatStr):\"\"),w.input.value=we(w.config.dateFormat),void 0!==w.altInput&&(w.altInput.value=we(w.config.altFormat)),!1!==e&&pe(\"onValueUpdate\")}function Ce(e){var n=g(e),t=w.prevMonthNav.contains(n),a=w.nextMonthNav.contains(n);t||a?G(t?-1:1):w.yearElements.indexOf(n)>=0?n.select():n.classList.contains(\"arrowUp\")?w.changeYear(w.currentYear+1):n.classList.contains(\"arrowDown\")&&w.changeYear(w.currentYear-1)}return function(){w.element=w.input=p,w.isOpen=!1,function(){var n=[\"wrap\",\"weekNumbers\",\"allowInput\",\"allowInvalidPreload\",\"clickOpens\",\"time_24hr\",\"enableTime\",\"noCalendar\",\"altInput\",\"shorthandCurrentMonth\",\"inline\",\"static\",\"enableSeconds\",\"disableMobile\"],i=e(e({},JSON.parse(JSON.stringify(p.dataset||{}))),v),o={};w.config.parseDate=i.parseDate,w.config.formatDate=i.formatDate,Object.defineProperty(w.config,\"enable\",{get:function(){return w.config._enable},set:function(e){w.config._enable=ge(e)}}),Object.defineProperty(w.config,\"disable\",{get:function(){return w.config._disable},set:function(e){w.config._disable=ge(e)}});var r=\"time\"===i.mode;if(!i.dateFormat&&(i.enableTime||r)){var l=k.defaultConfig.dateFormat||a.dateFormat;o.dateFormat=i.noCalendar||r?\"H:i\"+(i.enableSeconds?\":S\":\"\"):l+\" H:i\"+(i.enableSeconds?\":S\":\"\")}if(i.altInput&&(i.enableTime||r)&&!i.altFormat){var d=k.defaultConfig.altFormat||a.altFormat;o.altFormat=i.noCalendar||r?\"h:i\"+(i.enableSeconds?\":S K\":\" K\"):d+\" h:i\"+(i.enableSeconds?\":S\":\"\")+\" K\"}Object.defineProperty(w.config,\"minDate\",{get:function(){return w.config._minDate},set:oe(\"min\")}),Object.defineProperty(w.config,\"maxDate\",{get:function(){return w.config._maxDate},set:oe(\"max\")});var s=function(e){return function(n){w.config[\"min\"===e?\"_minTime\":\"_maxTime\"]=w.parseDate(n,\"H:i:S\")}};Object.defineProperty(w.config,\"minTime\",{get:function(){return w.config._minTime},set:s(\"min\")}),Object.defineProperty(w.config,\"maxTime\",{get:function(){return w.config._maxTime},set:s(\"max\")}),\"time\"===i.mode&&(w.config.noCalendar=!0,w.config.enableTime=!0),Object.assign(w.config,o,i);for(var u=0;u-1?w.config[m]=c(f[m]).map(x).concat(w.config[m]):void 0===i[m]&&(w.config[m]=f[m])}i.altInputClass||(w.config.altInputClass=re().className+\" \"+w.config.altInputClass),pe(\"onParseConfig\")}(),le(),w.input=re(),w.input?(w.input._type=w.input.type,w.input.type=\"text\",w.input.classList.add(\"flatpickr-input\"),w._input=w.input,w.config.altInput&&(w.altInput=s(w.input.nodeName,w.config.altInputClass),w._input=w.altInput,w.altInput.placeholder=w.input.placeholder,w.altInput.disabled=w.input.disabled,w.altInput.required=w.input.required,w.altInput.tabIndex=w.input.tabIndex,w.altInput.type=\"text\",w.input.setAttribute(\"type\",\"hidden\"),!w.config.static&&w.input.parentNode&&w.input.parentNode.insertBefore(w.altInput,w.input.nextSibling)),w.config.allowInput||w._input.setAttribute(\"readonly\",\"readonly\"),w._positionElement=w.config.positionElement||w._input):w.config.errorHandler(new Error(\"Invalid input element specified\")),function(){w.selectedDates=[],w.now=w.parseDate(w.config.now)||new Date;var e=w.config.defaultDate||(\"INPUT\"!==w.input.nodeName&&\"TEXTAREA\"!==w.input.nodeName||!w.input.placeholder||w.input.value!==w.input.placeholder?w.input.value:null);e&&me(e,w.config.dateFormat),w._initialDate=w.selectedDates.length>0?w.selectedDates[0]:w.config.minDate&&w.config.minDate.getTime()>w.now.getTime()?w.config.minDate:w.config.maxDate&&w.config.maxDate.getTime()0&&(w.latestSelectedDateObj=w.selectedDates[0]),void 0!==w.config.minTime&&(w.config.minTime=w.parseDate(w.config.minTime,\"H:i\")),void 0!==w.config.maxTime&&(w.config.maxTime=w.parseDate(w.config.maxTime,\"H:i\")),w.minDateHasTime=!!w.config.minDate&&(w.config.minDate.getHours()>0||w.config.minDate.getMinutes()>0||w.config.minDate.getSeconds()>0),w.maxDateHasTime=!!w.config.maxDate&&(w.config.maxDate.getHours()>0||w.config.maxDate.getMinutes()>0||w.config.maxDate.getSeconds()>0)}(),w.utils={getDaysInMonth:function(e,n){return void 0===e&&(e=w.currentMonth),void 0===n&&(n=w.currentYear),1===e&&(n%4==0&&n%100!=0||n%400==0)?29:w.l10n.daysInMonth[e]}},w.isMobile||function(){var e=window.document.createDocumentFragment();if(w.calendarContainer=s(\"div\",\"flatpickr-calendar\"),w.calendarContainer.tabIndex=-1,!w.config.noCalendar){if(e.appendChild((w.monthNav=s(\"div\",\"flatpickr-months\"),w.yearElements=[],w.monthElements=[],w.prevMonthNav=s(\"span\",\"flatpickr-prev-month\"),w.prevMonthNav.innerHTML=w.config.prevArrow,w.nextMonthNav=s(\"span\",\"flatpickr-next-month\"),w.nextMonthNav.innerHTML=w.config.nextArrow,q(),Object.defineProperty(w,\"_hidePrevMonthArrow\",{get:function(){return w.__hidePrevMonthArrow},set:function(e){w.__hidePrevMonthArrow!==e&&(d(w.prevMonthNav,\"flatpickr-disabled\",e),w.__hidePrevMonthArrow=e)}}),Object.defineProperty(w,\"_hideNextMonthArrow\",{get:function(){return w.__hideNextMonthArrow},set:function(e){w.__hideNextMonthArrow!==e&&(d(w.nextMonthNav,\"flatpickr-disabled\",e),w.__hideNextMonthArrow=e)}}),w.currentYearElement=w.yearElements[0],De(),w.monthNav)),w.innerContainer=s(\"div\",\"flatpickr-innerContainer\"),w.config.weekNumbers){var n=function(){w.calendarContainer.classList.add(\"hasWeeks\");var e=s(\"div\",\"flatpickr-weekwrapper\");e.appendChild(s(\"span\",\"flatpickr-weekday\",w.l10n.weekAbbreviation));var n=s(\"div\",\"flatpickr-weeks\");return e.appendChild(n),{weekWrapper:e,weekNumbers:n}}(),t=n.weekWrapper,a=n.weekNumbers;w.innerContainer.appendChild(t),w.weekNumbers=a,w.weekWrapper=t}w.rContainer=s(\"div\",\"flatpickr-rContainer\"),w.rContainer.appendChild($()),w.daysContainer||(w.daysContainer=s(\"div\",\"flatpickr-days\"),w.daysContainer.tabIndex=-1),J(),w.rContainer.appendChild(w.daysContainer),w.innerContainer.appendChild(w.rContainer),e.appendChild(w.innerContainer)}w.config.enableTime&&e.appendChild(function(){w.calendarContainer.classList.add(\"hasTime\"),w.config.noCalendar&&w.calendarContainer.classList.add(\"noCalendar\"),w.timeContainer=s(\"div\",\"flatpickr-time\"),w.timeContainer.tabIndex=-1;var e=s(\"span\",\"flatpickr-time-separator\",\":\"),n=m(\"flatpickr-hour\",{\"aria-label\":w.l10n.hourAriaLabel});w.hourElement=n.getElementsByTagName(\"input\")[0];var t=m(\"flatpickr-minute\",{\"aria-label\":w.l10n.minuteAriaLabel});if(w.minuteElement=t.getElementsByTagName(\"input\")[0],w.hourElement.tabIndex=w.minuteElement.tabIndex=-1,w.hourElement.value=o(w.latestSelectedDateObj?w.latestSelectedDateObj.getHours():w.config.time_24hr?w.config.defaultHour:function(e){switch(e%24){case 0:case 12:return 12;default:return e%12}}(w.config.defaultHour)),w.minuteElement.value=o(w.latestSelectedDateObj?w.latestSelectedDateObj.getMinutes():w.config.defaultMinute),w.hourElement.setAttribute(\"step\",w.config.hourIncrement.toString()),w.minuteElement.setAttribute(\"step\",w.config.minuteIncrement.toString()),w.hourElement.setAttribute(\"min\",w.config.time_24hr?\"0\":\"1\"),w.hourElement.setAttribute(\"max\",w.config.time_24hr?\"23\":\"12\"),w.minuteElement.setAttribute(\"min\",\"0\"),w.minuteElement.setAttribute(\"max\",\"59\"),w.timeContainer.appendChild(n),w.timeContainer.appendChild(e),w.timeContainer.appendChild(t),w.config.time_24hr&&w.timeContainer.classList.add(\"time24hr\"),w.config.enableSeconds){w.timeContainer.classList.add(\"hasSeconds\");var a=m(\"flatpickr-second\");w.secondElement=a.getElementsByTagName(\"input\")[0],w.secondElement.value=o(w.latestSelectedDateObj?w.latestSelectedDateObj.getSeconds():w.config.defaultSeconds),w.secondElement.setAttribute(\"step\",w.minuteElement.getAttribute(\"step\")),w.secondElement.setAttribute(\"min\",\"0\"),w.secondElement.setAttribute(\"max\",\"59\"),w.timeContainer.appendChild(s(\"span\",\"flatpickr-time-separator\",\":\")),w.timeContainer.appendChild(a)}return w.config.time_24hr||(w.amPM=s(\"span\",\"flatpickr-am-pm\",w.l10n.amPM[r((w.latestSelectedDateObj?w.hourElement.value:w.config.defaultHour)>11)]),w.amPM.title=w.l10n.toggleTitle,w.amPM.tabIndex=-1,w.timeContainer.appendChild(w.amPM)),w.timeContainer}()),d(w.calendarContainer,\"rangeMode\",\"range\"===w.config.mode),d(w.calendarContainer,\"animate\",!0===w.config.animate),d(w.calendarContainer,\"multiMonth\",w.config.showMonths>1),w.calendarContainer.appendChild(e);var i=void 0!==w.config.appendTo&&void 0!==w.config.appendTo.nodeType;if((w.config.inline||w.config.static)&&(w.calendarContainer.classList.add(w.config.inline?\"inline\":\"static\"),w.config.inline&&(!i&&w.element.parentNode?w.element.parentNode.insertBefore(w.calendarContainer,w._input.nextSibling):void 0!==w.config.appendTo&&w.config.appendTo.appendChild(w.calendarContainer)),w.config.static)){var l=s(\"div\",\"flatpickr-wrapper\");w.element.parentNode&&w.element.parentNode.insertBefore(l,w.element),l.appendChild(w.element),w.altInput&&l.appendChild(w.altInput),l.appendChild(w.calendarContainer)}w.config.static||w.config.inline||(void 0!==w.config.appendTo?w.config.appendTo:window.document.body).appendChild(w.calendarContainer)}(),function(){if(w.config.wrap&&[\"open\",\"close\",\"toggle\",\"clear\"].forEach((function(e){Array.prototype.forEach.call(w.element.querySelectorAll(\"[data-\"+e+\"]\"),(function(n){return N(n,\"click\",w[e])}))})),w.isMobile)!function(){var e=w.config.enableTime?w.config.noCalendar?\"time\":\"datetime-local\":\"date\";w.mobileInput=s(\"input\",w.input.className+\" flatpickr-mobile\"),w.mobileInput.tabIndex=1,w.mobileInput.type=e,w.mobileInput.disabled=w.input.disabled,w.mobileInput.required=w.input.required,w.mobileInput.placeholder=w.input.placeholder,w.mobileFormatStr=\"datetime-local\"===e?\"Y-m-d\\\\TH:i:S\":\"date\"===e?\"Y-m-d\":\"H:i:S\",w.selectedDates.length>0&&(w.mobileInput.defaultValue=w.mobileInput.value=w.formatDate(w.selectedDates[0],w.mobileFormatStr)),w.config.minDate&&(w.mobileInput.min=w.formatDate(w.config.minDate,\"Y-m-d\")),w.config.maxDate&&(w.mobileInput.max=w.formatDate(w.config.maxDate,\"Y-m-d\")),w.input.getAttribute(\"step\")&&(w.mobileInput.step=String(w.input.getAttribute(\"step\"))),w.input.type=\"hidden\",void 0!==w.altInput&&(w.altInput.type=\"hidden\");try{w.input.parentNode&&w.input.parentNode.insertBefore(w.mobileInput,w.input.nextSibling)}catch(e){}N(w.mobileInput,\"change\",(function(e){w.setDate(g(e).value,!1,w.mobileFormatStr),pe(\"onChange\"),pe(\"onClose\")}))}();else{var e=l(ie,50);if(w._debouncedChange=l(A,300),w.daysContainer&&!/iPhone|iPad|iPod/i.test(navigator.userAgent)&&N(w.daysContainer,\"mouseover\",(function(e){\"range\"===w.config.mode&&ae(g(e))})),N(window.document.body,\"keydown\",te),w.config.inline||w.config.static||N(window,\"resize\",e),void 0!==window.ontouchstart?N(window.document,\"touchstart\",Z):N(window.document,\"click\",Z),N(window.document,\"focus\",Z,{capture:!0}),!0===w.config.clickOpens&&(N(w._input,\"focus\",w.open),N(w._input,\"click\",w.open)),void 0!==w.daysContainer&&(N(w.monthNav,\"click\",Ce),N(w.monthNav,[\"keyup\",\"increment\"],F),N(w.daysContainer,\"click\",ue)),void 0!==w.timeContainer&&void 0!==w.minuteElement&&void 0!==w.hourElement){var n=function(e){return g(e).select()};N(w.timeContainer,[\"increment\"],T),N(w.timeContainer,\"blur\",T,{capture:!0}),N(w.timeContainer,\"click\",Y),N([w.hourElement,w.minuteElement],[\"focus\",\"click\"],n),void 0!==w.secondElement&&N(w.secondElement,\"focus\",(function(){return w.secondElement&&w.secondElement.select()})),void 0!==w.amPM&&N(w.amPM,\"click\",(function(e){T(e),A()}))}w.config.allowInput&&N(w._input,\"blur\",ne)}}(),(w.selectedDates.length||w.config.noCalendar)&&(w.config.enableTime&&S(w.config.noCalendar?w.latestSelectedDateObj||w.config.minDate:void 0),be(!1)),E();var n=/^((?!chrome|android).)*safari/i.test(navigator.userAgent);!w.isMobile&&n&&ce(),pe(\"onReady\")}(),w}function E(e,n){for(var t=Array.prototype.slice.call(e).filter((function(e){return e instanceof HTMLElement})),a=[],i=0;ithis.render()));const{start:s,end:l,value:r,step:o,title:n}=this.model.properties;this.on_change([s,l,r,o],(()=>{const{start:t,end:e,value:i,step:s}=this._calc_to();this.noUiSlider.updateOptions({range:{min:t,max:e},start:i,step:s})}));const{bar_color:a}=this.model.properties;this.on_change(a,(()=>{this._set_bar_color()}));const{show_value:d}=this.model.properties;this.on_change([r,n,d],(()=>this._update_title()))}styles(){return[...super.styles(),u.default,c.default]}_update_title(){var t;n.empty(this.title_el);const e=null==this.model.title||0==this.model.title.length&&!this.model.show_value;if(this.title_el.style.display=e?\"none\":\"\",!e&&(0!=(null===(t=this.model.title)||void 0===t?void 0:t.length)&&(this.title_el.textContent=`${this.model.title}: `),this.model.show_value)){const{value:t}=this._calc_to(),e=t.map((t=>this.model.pretty(t))).join(\" .. \");this.title_el.appendChild(n.span({class:m.slider_value},e))}}_set_bar_color(){if(!this.model.disabled){this.slider_el.querySelector(\".noUi-connect\").style.backgroundColor=d.color2css(this.model.bar_color)}}render(){super.render();const{start:t,end:e,value:i,step:s}=this._calc_to();let l;if(this.model.tooltips){const t={to:t=>this.model.pretty(t)};l=a.repeat(t,i.length)}else l=!1;if(null==this.slider_el){this.slider_el=n.div(),o.create(this.slider_el,{range:{min:t,max:e},start:i,step:s,behaviour:this.model.behaviour,connect:this.model.connected,tooltips:l,orientation:this.model.orientation,direction:this.model.direction}),this.noUiSlider.on(\"slide\",((t,e,i)=>this._slide(i))),this.noUiSlider.on(\"change\",((t,e,i)=>this._change(i)));const r=(t,e)=>{if(!l)return;this.slider_el.querySelectorAll(\".noUi-handle\")[t].querySelector(\".noUi-tooltip\").style.display=e?\"block\":\"\"};this.noUiSlider.on(\"start\",((t,e)=>r(e,!0))),this.noUiSlider.on(\"end\",((t,e)=>r(e,!1)))}else this.noUiSlider.updateOptions({range:{min:t,max:e},start:i,step:s});this._set_bar_color(),this.model.disabled?this.slider_el.setAttribute(\"disabled\",\"true\"):this.slider_el.removeAttribute(\"disabled\"),this.title_el=n.div({class:m.slider_title}),this._update_title(),this.group_el=n.div({class:p.input_group},this.title_el,this.slider_el),this.el.appendChild(this.group_el)}_slide(t){this.model.value=this._calc_from(t)}_change(t){const e=this._calc_from(t);this.model.setv({value:e,value_throttled:e})}}b.__name__=\"AbstractBaseSliderView\";class v extends b{_calc_to(){return{start:this.model.start,end:this.model.end,value:[this.model.value],step:this.model.step}}_calc_from([t]){return Number.isInteger(this.model.start)&&Number.isInteger(this.model.end)&&Number.isInteger(this.model.step)?Math.round(t):t}}i.AbstractSliderView=v,v.__name__=\"AbstractSliderView\";class g extends b{_calc_to(){return{start:this.model.start,end:this.model.end,value:this.model.value,step:this.model.step}}_calc_from(t){return t}}i.AbstractRangeSliderView=g,g.__name__=\"AbstractRangeSliderView\";class S extends _.Control{constructor(t){super(t),this.connected=!1}static init_AbstractSlider(){this.define((({Any:t,Boolean:e,Number:i,String:s,Color:l,Or:r,Enum:o,Ref:n,Nullable:a})=>({title:[a(s),\"\"],show_value:[e,!0],start:[t],end:[t],value:[t],value_throttled:[t],step:[i,1],format:[r(s,n(h.TickFormatter))],direction:[o(\"ltr\",\"rtl\"),\"ltr\"],tooltips:[e,!0],bar_color:[l,\"#e6e6e6\"]})))}pretty(t){return this._formatter(t,this.format)}}i.AbstractSlider=S,S.__name__=\"AbstractSlider\",S.init_AbstractSlider()},\n", + " 439: function _(t,e,r,n,i){\n", + " /*! nouislider - 14.6.3 - 11/19/2020 */\n", + " var o;o=function(){\"use strict\";var t=\"14.6.3\";function e(t){t.parentElement.removeChild(t)}function r(t){return null!=t}function n(t){t.preventDefault()}function i(t){return\"number\"==typeof t&&!isNaN(t)&&isFinite(t)}function o(t,e,r){r>0&&(u(t,e),setTimeout((function(){c(t,e)}),r))}function s(t){return Math.max(Math.min(t,100),0)}function a(t){return Array.isArray(t)?t:[t]}function l(t){var e=(t=String(t)).split(\".\");return e.length>1?e[1].length:0}function u(t,e){t.classList&&!/\\s/.test(e)?t.classList.add(e):t.className+=\" \"+e}function c(t,e){t.classList&&!/\\s/.test(e)?t.classList.remove(e):t.className=t.className.replace(new RegExp(\"(^|\\\\b)\"+e.split(\" \").join(\"|\")+\"(\\\\b|$)\",\"gi\"),\" \")}function p(t){var e=void 0!==window.pageXOffset,r=\"CSS1Compat\"===(t.compatMode||\"\");return{x:e?window.pageXOffset:r?t.documentElement.scrollLeft:t.body.scrollLeft,y:e?window.pageYOffset:r?t.documentElement.scrollTop:t.body.scrollTop}}function f(t,e){return 100/(e-t)}function d(t,e,r){return 100*e/(t[r+1]-t[r])}function h(t,e){for(var r=1;t>=e[r];)r+=1;return r}function m(t,e,r){if(r>=t.slice(-1)[0])return 100;var n=h(r,t),i=t[n-1],o=t[n],s=e[n-1],a=e[n];return s+function(t,e){return d(t,t[0]<0?e+Math.abs(t[0]):e-t[0],0)}([i,o],r)/f(s,a)}function g(t,e,r,n){if(100===n)return n;var i=h(n,t),o=t[i-1],s=t[i];return r?n-o>(s-o)/2?s:o:e[i-1]?t[i-1]+function(t,e){return Math.round(t/e)*e}(n-t[i-1],e[i-1]):n}function v(t,e,r){var n;if(\"number\"==typeof e&&(e=[e]),!Array.isArray(e))throw new Error(\"noUiSlider (14.6.3): 'range' contains invalid value.\");if(!i(n=\"min\"===t?0:\"max\"===t?100:parseFloat(t))||!i(e[0]))throw new Error(\"noUiSlider (14.6.3): 'range' value isn't numeric.\");r.xPct.push(n),r.xVal.push(e[0]),n?r.xSteps.push(!isNaN(e[1])&&e[1]):isNaN(e[1])||(r.xSteps[0]=e[1]),r.xHighestCompleteStep.push(0)}function b(t,e,r){if(e)if(r.xVal[t]!==r.xVal[t+1]){r.xSteps[t]=d([r.xVal[t],r.xVal[t+1]],e,0)/f(r.xPct[t],r.xPct[t+1]);var n=(r.xVal[t+1]-r.xVal[t])/r.xNumSteps[t],i=Math.ceil(Number(n.toFixed(3))-1),o=r.xVal[t]+r.xNumSteps[t]*i;r.xHighestCompleteStep[t]=o}else r.xSteps[t]=r.xHighestCompleteStep[t]=r.xVal[t]}function x(t,e,r){var n;this.xPct=[],this.xVal=[],this.xSteps=[r||!1],this.xNumSteps=[!1],this.xHighestCompleteStep=[],this.snap=e;var i=[];for(n in t)t.hasOwnProperty(n)&&i.push([t[n],n]);for(i.length&&\"object\"==typeof i[0][0]?i.sort((function(t,e){return t[0][0]-e[0][0]})):i.sort((function(t,e){return t[0]-e[0]})),n=0;nthis.xPct[i+1];)i++;else t===this.xPct[this.xPct.length-1]&&(i=this.xPct.length-2);r||t!==this.xPct[i+1]||i++;var o=1,s=e[i],a=0,l=0,u=0,c=0;for(n=r?(t-this.xPct[i])/(this.xPct[i+1]-this.xPct[i]):(this.xPct[i+1]-t)/(this.xPct[i+1]-this.xPct[i]);s>0;)a=this.xPct[i+1+c]-this.xPct[i+c],e[i+c]*o+100-100*n>100?(l=a*n,o=(s-100*n)/e[i+c],n=1):(l=e[i+c]*a/100*o,o=0),r?(u-=l,this.xPct.length+c>=1&&c--):(u+=l,this.xPct.length-c>=1&&c++),s=e[i+c]*o;return t+u},x.prototype.toStepping=function(t){return t=m(this.xVal,this.xPct,t)},x.prototype.fromStepping=function(t){return function(t,e,r){if(r>=100)return t.slice(-1)[0];var n=h(r,e),i=t[n-1],o=t[n],s=e[n-1];return function(t,e){return e*(t[1]-t[0])/100+t[0]}([i,o],(r-s)*f(s,e[n]))}(this.xVal,this.xPct,t)},x.prototype.getStep=function(t){return t=g(this.xPct,this.xSteps,this.snap,t)},x.prototype.getDefaultStep=function(t,e,r){var n=h(t,this.xPct);return(100===t||e&&t===this.xPct[n-1])&&(n=Math.max(n-1,1)),(this.xVal[n]-this.xVal[n-1])/r},x.prototype.getNearbySteps=function(t){var e=h(t,this.xPct);return{stepBefore:{startValue:this.xVal[e-2],step:this.xNumSteps[e-2],highestStep:this.xHighestCompleteStep[e-2]},thisStep:{startValue:this.xVal[e-1],step:this.xNumSteps[e-1],highestStep:this.xHighestCompleteStep[e-1]},stepAfter:{startValue:this.xVal[e],step:this.xNumSteps[e],highestStep:this.xHighestCompleteStep[e]}}},x.prototype.countStepDecimals=function(){var t=this.xNumSteps.map(l);return Math.max.apply(null,t)},x.prototype.convert=function(t){return this.getStep(this.toStepping(t))};var S={to:function(t){return void 0!==t&&t.toFixed(2)},from:Number},w={target:\"target\",base:\"base\",origin:\"origin\",handle:\"handle\",handleLower:\"handle-lower\",handleUpper:\"handle-upper\",touchArea:\"touch-area\",horizontal:\"horizontal\",vertical:\"vertical\",background:\"background\",connect:\"connect\",connects:\"connects\",ltr:\"ltr\",rtl:\"rtl\",textDirectionLtr:\"txt-dir-ltr\",textDirectionRtl:\"txt-dir-rtl\",draggable:\"draggable\",drag:\"state-drag\",tap:\"state-tap\",active:\"active\",tooltip:\"tooltip\",pips:\"pips\",pipsHorizontal:\"pips-horizontal\",pipsVertical:\"pips-vertical\",marker:\"marker\",markerHorizontal:\"marker-horizontal\",markerVertical:\"marker-vertical\",markerNormal:\"marker-normal\",markerLarge:\"marker-large\",markerSub:\"marker-sub\",value:\"value\",valueHorizontal:\"value-horizontal\",valueVertical:\"value-vertical\",valueNormal:\"value-normal\",valueLarge:\"value-large\",valueSub:\"value-sub\"},y=\".__tooltips\",E=\".__aria\";function C(t){if(function(t){return\"object\"==typeof t&&\"function\"==typeof t.to&&\"function\"==typeof t.from}(t))return!0;throw new Error(\"noUiSlider (14.6.3): 'format' requires 'to' and 'from' methods.\")}function P(t,e){if(!i(e))throw new Error(\"noUiSlider (14.6.3): 'step' is not numeric.\");t.singleStep=e}function N(t,e){if(!i(e))throw new Error(\"noUiSlider (14.6.3): 'keyboardPageMultiplier' is not numeric.\");t.keyboardPageMultiplier=e}function k(t,e){if(!i(e))throw new Error(\"noUiSlider (14.6.3): 'keyboardDefaultStep' is not numeric.\");t.keyboardDefaultStep=e}function U(t,e){if(\"object\"!=typeof e||Array.isArray(e))throw new Error(\"noUiSlider (14.6.3): 'range' is not an object.\");if(void 0===e.min||void 0===e.max)throw new Error(\"noUiSlider (14.6.3): Missing 'min' or 'max' in 'range'.\");if(e.min===e.max)throw new Error(\"noUiSlider (14.6.3): 'range' 'min' and 'max' cannot be equal.\");t.spectrum=new x(e,t.snap,t.singleStep)}function A(t,e){if(e=a(e),!Array.isArray(e)||!e.length)throw new Error(\"noUiSlider (14.6.3): 'start' option is incorrect.\");t.handles=e.length,t.start=e}function V(t,e){if(t.snap=e,\"boolean\"!=typeof e)throw new Error(\"noUiSlider (14.6.3): 'snap' option must be a boolean.\")}function D(t,e){if(t.animate=e,\"boolean\"!=typeof e)throw new Error(\"noUiSlider (14.6.3): 'animate' option must be a boolean.\")}function M(t,e){if(t.animationDuration=e,\"number\"!=typeof e)throw new Error(\"noUiSlider (14.6.3): 'animationDuration' option must be a number.\")}function O(t,e){var r,n=[!1];if(\"lower\"===e?e=[!0,!1]:\"upper\"===e&&(e=[!1,!0]),!0===e||!1===e){for(r=1;r1)throw new Error(\"noUiSlider (14.6.3): 'padding' option must not exceed 100% of the range.\")}}function F(t,e){switch(e){case\"ltr\":t.dir=0;break;case\"rtl\":t.dir=1;break;default:throw new Error(\"noUiSlider (14.6.3): 'direction' option was not recognized.\")}}function R(t,e){if(\"string\"!=typeof e)throw new Error(\"noUiSlider (14.6.3): 'behaviour' must be a string containing options.\");var r=e.indexOf(\"tap\")>=0,n=e.indexOf(\"drag\")>=0,i=e.indexOf(\"fixed\")>=0,o=e.indexOf(\"snap\")>=0,s=e.indexOf(\"hover\")>=0,a=e.indexOf(\"unconstrained\")>=0;if(i){if(2!==t.handles)throw new Error(\"noUiSlider (14.6.3): 'fixed' behaviour must be used with 2 handles\");z(t,t.start[1]-t.start[0])}if(a&&(t.margin||t.limit))throw new Error(\"noUiSlider (14.6.3): 'unconstrained' behaviour cannot be used with margin or limit\");t.events={tap:r||o,drag:n,fixed:i,snap:o,hover:s,unconstrained:a}}function T(t,e){if(!1!==e)if(!0===e){t.tooltips=[];for(var r=0;r0&&((a=L(i,!1)).className=c(s,r.cssClasses.value),a.setAttribute(\"data-value\",o),a.style[r.style]=t+\"%\",a.innerHTML=n.to(o))}}(o,t[o][0],t[o][1])})),i}function q(){h&&(e(h),h=null)}function X(t){q();var e=t.mode,r=t.density||1,n=t.filter||!1,i=function(t,e,r){if(\"range\"===t||\"steps\"===t)return C.xVal;if(\"count\"===t){if(e<2)throw new Error(\"noUiSlider (14.6.3): 'values' (>= 2) required for mode 'count'.\");var n=e-1,i=100/n;for(e=[];n--;)e[n]=n*i;e.push(100),t=\"positions\"}return\"positions\"===t?e.map((function(t){return C.fromStepping(r?C.getStep(t):t)})):\"values\"===t?r?e.map((function(t){return C.fromStepping(C.getStep(C.toStepping(t)))})):e:void 0}(e,t.values||!1,t.stepped||!1),o=function(t,e,r){var n,i={},o=C.xVal[0],s=C.xVal[C.xVal.length-1],a=!1,l=!1,u=0;return n=r.slice().sort((function(t,e){return t-e})),(r=n.filter((function(t){return!this[t]&&(this[t]=!0)}),{}))[0]!==o&&(r.unshift(o),a=!0),r[r.length-1]!==s&&(r.push(s),l=!0),r.forEach((function(n,o){var s,c,p,f,d,h,m,g,v,b,x=n,S=r[o+1],w=\"steps\"===e;if(w&&(s=C.xNumSteps[o]),s||(s=S-x),!1!==x)for(void 0===S&&(S=x),s=Math.max(s,1e-7),c=x;c<=S;c=(c+s).toFixed(7)/1){for(g=(d=(f=C.toStepping(c))-u)/t,b=d/(v=Math.round(g)),p=1;p<=v;p+=1)i[(h=u+p*b).toFixed(5)]=[C.fromStepping(h),0];m=r.indexOf(c)>-1?1:w?2:0,!o&&a&&c!==S&&(m=0),c===S&&l||(i[f.toFixed(5)]=[c,m]),u=f}})),i}(r,e,i),s=t.format||{to:Math.round};return h=w.appendChild(B(o,n,s))}function Y(){var t=l.getBoundingClientRect(),e=\"offset\"+[\"Width\",\"Height\"][r.ort];return 0===r.ort?t.width||l[e]:t.height||l[e]}function I(t,e,n,i){var o=function(o){return!!(o=function(t,e,r){var n,i,o=0===t.type.indexOf(\"touch\"),s=0===t.type.indexOf(\"mouse\"),a=0===t.type.indexOf(\"pointer\");if(0===t.type.indexOf(\"MSPointer\")&&(a=!0),\"mousedown\"===t.type&&!t.buttons&&!t.touches)return!1;if(o){var l=function(t){return t.target===r||r.contains(t.target)||t.target.shadowRoot&&t.target.shadowRoot.contains(r)};if(\"touchstart\"===t.type){var u=Array.prototype.filter.call(t.touches,l);if(u.length>1)return!1;n=u[0].pageX,i=u[0].pageY}else{var c=Array.prototype.find.call(t.changedTouches,l);if(!c)return!1;n=c.pageX,i=c.pageY}}return e=e||p(V),(s||a)&&(n=t.clientX+e.x,i=t.clientY+e.y),t.pageOffset=e,t.points=[n,i],t.cursor=s||a,t}(o,i.pageOffset,i.target||e))&&!(F()&&!i.doNotReject)&&(s=w,a=r.cssClasses.tap,!((s.classList?s.classList.contains(a):new RegExp(\"\\\\b\"+a+\"\\\\b\").test(s.className))&&!i.doNotReject)&&!(t===x.start&&void 0!==o.buttons&&o.buttons>1)&&(!i.hover||!o.buttons)&&(S||o.preventDefault(),o.calcPoint=o.points[r.ort],void n(o,i)));var s,a},s=[];return t.split(\" \").forEach((function(t){e.addEventListener(t,o,!!S&&{passive:!0}),s.push([t,o])})),s}function $(t){var e,n,i,o,a,u,c=100*(t-(e=l,n=r.ort,i=e.getBoundingClientRect(),o=e.ownerDocument,a=o.documentElement,u=p(o),/webkit.*Chrome.*Mobile/i.test(navigator.userAgent)&&(u.x=0),n?i.top+u.y-a.clientTop:i.left+u.x-a.clientLeft))/Y();return c=s(c),r.dir?100-c:c}function G(t,e){\"mouseout\"===t.type&&\"HTML\"===t.target.nodeName&&null===t.relatedTarget&&K(t,e)}function J(t,e){if(-1===navigator.appVersion.indexOf(\"MSIE 9\")&&0===t.buttons&&0!==e.buttonsProperty)return K(t,e);var n=(r.dir?-1:1)*(t.calcPoint-e.startCalcPoint);st(n>0,100*n/e.baseSize,e.locations,e.handleNumbers)}function K(t,e){e.handle&&(c(e.handle,r.cssClasses.active),U-=1),e.listeners.forEach((function(t){D.removeEventListener(t[0],t[1])})),0===U&&(c(w,r.cssClasses.drag),lt(),t.cursor&&(M.style.cursor=\"\",M.removeEventListener(\"selectstart\",n))),e.handleNumbers.forEach((function(t){nt(\"change\",t),nt(\"set\",t),nt(\"end\",t)}))}function Q(t,e){if(e.handleNumbers.some(R))return!1;var i;1===e.handleNumbers.length&&(i=f[e.handleNumbers[0]].children[0],U+=1,u(i,r.cssClasses.active)),t.stopPropagation();var o=[],s=I(x.move,D,J,{target:t.target,handle:i,listeners:o,startCalcPoint:t.calcPoint,baseSize:Y(),pageOffset:t.pageOffset,handleNumbers:e.handleNumbers,buttonsProperty:t.buttons,locations:N.slice()}),a=I(x.end,D,K,{target:t.target,handle:i,listeners:o,doNotReject:!0,handleNumbers:e.handleNumbers}),l=I(\"mouseout\",D,G,{target:t.target,handle:i,listeners:o,doNotReject:!0,handleNumbers:e.handleNumbers});o.push.apply(o,s.concat(a,l)),t.cursor&&(M.style.cursor=getComputedStyle(t.target).cursor,f.length>1&&u(w,r.cssClasses.drag),M.addEventListener(\"selectstart\",n,!1)),e.handleNumbers.forEach((function(t){nt(\"start\",t)}))}function Z(t){t.stopPropagation();var e=$(t.calcPoint),n=function(t){var e=100,r=!1;return f.forEach((function(n,i){if(!R(i)){var o=N[i],s=Math.abs(o-t);(so||100===s&&100===e)&&(r=i,e=s)}})),r}(e);if(!1===n)return!1;r.events.snap||o(w,r.cssClasses.tap,r.animationDuration),ut(n,e,!0,!0),lt(),nt(\"slide\",n,!0),nt(\"update\",n,!0),nt(\"change\",n,!0),nt(\"set\",n,!0),r.events.snap&&Q(t,{handleNumbers:[n]})}function tt(t){var e=$(t.calcPoint),r=C.getStep(e),n=C.fromStepping(r);Object.keys(A).forEach((function(t){\"hover\"===t.split(\".\")[0]&&A[t].forEach((function(t){t.call(g,n)}))}))}function et(t,e){A[t]=A[t]||[],A[t].push(e),\"update\"===t.split(\".\")[0]&&f.forEach((function(t,e){nt(\"update\",e)}))}function rt(t){var e=t&&t.split(\".\")[0],r=e?t.substring(e.length):t;Object.keys(A).forEach((function(t){var n=t.split(\".\")[0],i=t.substring(n.length);e&&e!==n||r&&r!==i||function(t){return t===E||t===y}(i)&&r!==i||delete A[t]}))}function nt(t,e,n){Object.keys(A).forEach((function(i){var o=i.split(\".\")[0];t===o&&A[i].forEach((function(t){t.call(g,P.map(r.format.to),e,P.slice(),n||!1,N.slice(),g)}))}))}function it(t,e,n,i,o,a){var l;return f.length>1&&!r.events.unconstrained&&(i&&e>0&&(l=C.getAbsoluteDistance(t[e-1],r.margin,0),n=Math.max(n,l)),o&&e1&&r.limit&&(i&&e>0&&(l=C.getAbsoluteDistance(t[e-1],r.limit,0),n=Math.min(n,l)),o&&e1?n.forEach((function(t,r){var n=it(i,t,i[t]+e,o[r],s[r],!1);!1===n?e=0:(e=n-i[t],i[t]=n)})):o=s=[!0];var a=!1;n.forEach((function(t,n){a=ut(t,r[t]+e,o[n],s[n])||a})),a&&n.forEach((function(t){nt(\"update\",t),nt(\"slide\",t)}))}function at(t,e){return r.dir?100-t-e:t}function lt(){k.forEach((function(t){var e=N[t]>50?-1:1,r=3+(f.length+e*t);f[t].style.zIndex=r}))}function ut(t,e,n,i,o){return o||(e=it(N,t,e,n,i,!1)),!1!==e&&(function(t,e){N[t]=e,P[t]=C.fromStepping(e);var n=\"translate(\"+ot(10*(at(e,0)-O)+\"%\",\"0\")+\")\";f[t].style[r.transformRule]=n,ct(t),ct(t+1)}(t,e),!0)}function ct(t){if(d[t]){var e=0,n=100;0!==t&&(e=N[t-1]),t!==d.length-1&&(n=N[t]);var i=n-e,o=\"translate(\"+ot(at(e,i)+\"%\",\"0\")+\")\",s=\"scale(\"+ot(i/100,\"1\")+\")\";d[t].style[r.transformRule]=o+\" \"+s}}function pt(t,e){return null===t||!1===t||void 0===t?N[e]:(\"number\"==typeof t&&(t=String(t)),t=r.format.from(t),!1===(t=C.toStepping(t))||isNaN(t)?N[e]:t)}function ft(t,e,n){var i=a(t),s=void 0===N[0];e=void 0===e||!!e,r.animate&&!s&&o(w,r.cssClasses.tap,r.animationDuration),k.forEach((function(t){ut(t,pt(i[t],t),!0,!1,n)}));for(var l=1===k.length?0:1;ln.stepAfter.startValue&&(o=n.stepAfter.startValue-i),s=i>n.thisStep.startValue?n.thisStep.step:!1!==n.stepBefore.step&&i-n.stepBefore.highestStep,100===e?o=null:0===e&&(s=null);var a=C.countStepDecimals();return null!==o&&!1!==o&&(o=Number(o.toFixed(a))),null!==s&&!1!==s&&(s=Number(s.toFixed(a))),[s,o]}return u(v=w,r.cssClasses.target),0===r.dir?u(v,r.cssClasses.ltr):u(v,r.cssClasses.rtl),0===r.ort?u(v,r.cssClasses.horizontal):u(v,r.cssClasses.vertical),u(v,\"rtl\"===getComputedStyle(v).direction?r.cssClasses.textDirectionRtl:r.cssClasses.textDirectionLtr),l=L(v,r.cssClasses.base),function(t,e){var n=L(e,r.cssClasses.connects);f=[],(d=[]).push(H(n,t[0]));for(var i=0;i=0&&t .noUi-tooltip{-webkit-transform:translate(50%, 0);transform:translate(50%, 0);left:auto;bottom:10px;}.bk-root .noUi-vertical .noUi-origin > .noUi-tooltip{-webkit-transform:translate(0, -18px);transform:translate(0, -18px);top:auto;right:28px;}.bk-root .noUi-handle{cursor:grab;cursor:-webkit-grab;}.bk-root .noUi-handle.noUi-active{cursor:grabbing;cursor:-webkit-grabbing;}.bk-root .noUi-handle:after,.bk-root .noUi-handle:before{display:none;}.bk-root .noUi-tooltip{display:none;white-space:nowrap;}.bk-root .noUi-handle:hover .noUi-tooltip{display:block;}.bk-root .noUi-horizontal{width:100%;height:10px;}.bk-root .noUi-vertical{width:10px;height:100%;}.bk-root .noUi-horizontal .noUi-handle{width:14px;height:18px;right:-7px;top:-5px;}.bk-root .noUi-vertical .noUi-handle{width:18px;height:14px;right:-5px;top:-7px;}.bk-root .noUi-target.noUi-horizontal{margin:5px 0px;}.bk-root .noUi-target.noUi-vertical{margin:0px 5px;}'},\n", + " 442: function _(t,e,i,r,a){r();const s=t(1).__importDefault(t(181)),d=t(438),_=t(8);class n extends d.AbstractSliderView{}i.DateSliderView=n,n.__name__=\"DateSliderView\";class l extends d.AbstractSlider{constructor(t){super(t),this.behaviour=\"tap\",this.connected=[!0,!1]}static init_DateSlider(){this.prototype.default_view=n,this.override({format:\"%d %b %Y\"})}_formatter(t,e){return _.isString(e)?s.default(t,e):e.compute(t)}}i.DateSlider=l,l.__name__=\"DateSlider\",l.init_DateSlider()},\n", + " 443: function _(e,t,i,n,s){n();const r=e(444);class _ extends r.MarkupView{render(){super.render(),this.model.render_as_text?this.markup_el.textContent=this.model.text:this.markup_el.innerHTML=this.model.text}}i.DivView=_,_.__name__=\"DivView\";class a extends r.Markup{constructor(e){super(e)}static init_Div(){this.prototype.default_view=_,this.define((({Boolean:e})=>({render_as_text:[e,!1]})))}}i.Div=a,a.__name__=\"Div\",a.init_Div()},\n", + " 444: function _(t,e,s,i,a){i();const n=t(1),l=t(224),r=t(43),c=t(488),u=n.__importStar(t(445));class _ extends c.WidgetView{connect_signals(){super.connect_signals(),this.connect(this.model.change,(()=>{this.layout.invalidate_cache(),this.render(),this.root.compute_layout()}))}styles(){return[...super.styles(),u.default]}_update_layout(){this.layout=new l.CachedVariadicBox(this.el),this.layout.set_sizing(this.box_sizing())}render(){super.render();const t=Object.assign(Object.assign({},this.model.style),{display:\"inline-block\"});this.markup_el=r.div({class:u.clearfix,style:t}),this.el.appendChild(this.markup_el)}}s.MarkupView=_,_.__name__=\"MarkupView\";class o extends c.Widget{constructor(t){super(t)}static init_Markup(){this.define((({String:t,Dict:e})=>({text:[t,\"\"],style:[e(t),{}]})))}}s.Markup=o,o.__name__=\"Markup\",o.init_Markup()},\n", + " 445: function _(o,r,e,t,a){t(),e.root=\"bk-root\",e.clearfix=\"bk-clearfix\",e.default='.bk-root .bk-clearfix:before,.bk-root .bk-clearfix:after{content:\"\";display:table;}.bk-root .bk-clearfix:after{clear:both;}'},\n", + " 446: function _(e,t,i,n,s){n();const o=e(1),r=e(419),l=e(264),d=e(43),_=e(8),u=o.__importStar(e(328)),c=o.__importStar(e(243)),h=c;class p extends r.AbstractButtonView{constructor(){super(...arguments),this._open=!1}styles(){return[...super.styles(),c.default]}render(){super.render();const e=d.div({class:[h.caret,h.down]});if(this.model.is_split){const t=this._render_button(e);t.classList.add(u.dropdown_toggle),t.addEventListener(\"click\",(()=>this._toggle_menu())),this.group_el.appendChild(t)}else this.button_el.appendChild(e);const t=this.model.menu.map(((e,t)=>{if(null==e)return d.div({class:h.divider});{const i=_.isString(e)?e:e[0],n=d.div({},i);return n.addEventListener(\"click\",(()=>this._item_click(t))),n}}));this.menu=d.div({class:[h.menu,h.below]},t),this.el.appendChild(this.menu),d.undisplay(this.menu)}_show_menu(){if(!this._open){this._open=!0,d.display(this.menu);const e=t=>{const{target:i}=t;i instanceof HTMLElement&&!this.el.contains(i)&&(document.removeEventListener(\"click\",e),this._hide_menu())};document.addEventListener(\"click\",e)}}_hide_menu(){this._open&&(this._open=!1,d.undisplay(this.menu))}_toggle_menu(){this._open?this._hide_menu():this._show_menu()}click(){this.model.is_split?(this._hide_menu(),this.model.trigger_event(new l.ButtonClick),super.click()):this._toggle_menu()}_item_click(e){this._hide_menu();const t=this.model.menu[e];if(null!=t){const i=_.isString(t)?t:t[1];_.isString(i)?this.model.trigger_event(new l.MenuItemClick(i)):i.execute(this.model,{index:e})}}}i.DropdownView=p,p.__name__=\"DropdownView\";class m extends r.AbstractButton{constructor(e){super(e)}static init_Dropdown(){this.prototype.default_view=p,this.define((({Null:e,Boolean:t,String:i,Array:n,Tuple:s,Or:o})=>({split:[t,!1],menu:[n(o(i,s(i,o(i)),e)),[]]}))),this.override({label:\"Dropdown\"})}get is_split(){return this.split}}i.Dropdown=m,m.__name__=\"Dropdown\",m.init_Dropdown()},\n", + " 447: function _(e,i,l,t,s){t();const n=e(43),a=e(488);class o extends a.WidgetView{connect_signals(){super.connect_signals(),this.connect(this.model.change,(()=>this.render()))}render(){const{multiple:e,accept:i,disabled:l,width:t}=this.model;null==this.dialog_el&&(this.dialog_el=n.input({type:\"file\",multiple:e}),this.dialog_el.onchange=()=>{const{files:e}=this.dialog_el;null!=e&&this.load_files(e)},this.el.appendChild(this.dialog_el)),null!=i&&\"\"!=i&&(this.dialog_el.accept=i),this.dialog_el.style.width=`${t}px`,this.dialog_el.disabled=l}async load_files(e){const i=[],l=[],t=[];for(const s of e){const e=await this._read_file(s),[,n=\"\",,a=\"\"]=e.split(/[:;,]/,4);i.push(a),l.push(s.name),t.push(n)}this.model.multiple?(this.model.value=i,this.model.filename=l,this.model.mime_type=t):(this.model.value=i[0],this.model.filename=l[0],this.model.mime_type=t[0])}_read_file(e){return new Promise(((i,l)=>{const t=new FileReader;t.onload=()=>{var s;const{result:n}=t;null!=n?i(n):l(null!==(s=t.error)&&void 0!==s?s:new Error(`unable to read '${e.name}'`))},t.readAsDataURL(e)}))}}l.FileInputView=o,o.__name__=\"FileInputView\";class d extends a.Widget{constructor(e){super(e)}static init_FileInput(){this.prototype.default_view=o,this.define((({Boolean:e,String:i,Array:l,Or:t})=>({value:[t(i,l(i)),\"\"],mime_type:[t(i,l(i)),\"\"],filename:[t(i,l(i)),\"\"],accept:[i,\"\"],multiple:[e,!1]})))}}l.FileInput=d,d.__name__=\"FileInput\",d.init_FileInput()},\n", + " 448: function _(e,t,i,s,n){s();const l=e(1),o=e(43),r=e(8),c=e(426),h=l.__importStar(e(427));class p extends c.InputWidgetView{connect_signals(){super.connect_signals(),this.connect(this.model.properties.value.change,(()=>this.render_selection())),this.connect(this.model.properties.options.change,(()=>this.render())),this.connect(this.model.properties.name.change,(()=>this.render())),this.connect(this.model.properties.title.change,(()=>this.render())),this.connect(this.model.properties.size.change,(()=>this.render())),this.connect(this.model.properties.disabled.change,(()=>this.render()))}render(){super.render();const e=this.model.options.map((e=>{let t,i;return r.isString(e)?t=i=e:[t,i]=e,o.option({value:t},i)}));this.input_el=o.select({multiple:!0,class:h.input,name:this.model.name,disabled:this.model.disabled},e),this.input_el.addEventListener(\"change\",(()=>this.change_input())),this.group_el.appendChild(this.input_el),this.render_selection()}render_selection(){const e=new Set(this.model.value);for(const t of this.el.querySelectorAll(\"option\"))t.selected=e.has(t.value);this.input_el.size=this.model.size}change_input(){const e=null!=this.el.querySelector(\"select:focus\"),t=[];for(const e of this.el.querySelectorAll(\"option\"))e.selected&&t.push(e.value);this.model.value=t,super.change_input(),e&&this.input_el.focus()}}i.MultiSelectView=p,p.__name__=\"MultiSelectView\";class u extends c.InputWidget{constructor(e){super(e)}static init_MultiSelect(){this.prototype.default_view=p,this.define((({Int:e,String:t,Array:i,Tuple:s,Or:n})=>({value:[i(t),[]],options:[i(n(t,s(t,t))),[]],size:[e,4]})))}}i.MultiSelect=u,u.__name__=\"MultiSelect\",u.init_MultiSelect()},\n", + " 449: function _(a,r,e,t,p){t();const s=a(444),i=a(43);class n extends s.MarkupView{render(){super.render();const a=i.p({style:{margin:0}},this.model.text);this.markup_el.appendChild(a)}}e.ParagraphView=n,n.__name__=\"ParagraphView\";class _ extends s.Markup{constructor(a){super(a)}static init_Paragraph(){this.prototype.default_view=n}}e.Paragraph=_,_.__name__=\"Paragraph\",_.init_Paragraph()},\n", + " 450: function _(s,t,e,n,r){n();const p=s(424);class u extends p.TextInputView{render(){super.render(),this.input_el.type=\"password\"}}e.PasswordInputView=u,u.__name__=\"PasswordInputView\";class a extends p.TextInput{constructor(s){super(s)}static init_PasswordInput(){this.prototype.default_view=u}}e.PasswordInput=a,a.__name__=\"PasswordInput\",a.init_PasswordInput()},\n", + " 451: function _(e,t,i,l,s){l();const o=e(1),n=o.__importDefault(e(452)),h=e(43),a=e(8),u=e(224),c=o.__importStar(e(427)),d=o.__importDefault(e(453)),_=e(426);class r extends _.InputWidgetView{constructor(){super(...arguments),this._last_height=null}connect_signals(){super.connect_signals(),this.connect(this.model.properties.disabled.change,(()=>this.set_disabled()));const{value:e,max_items:t,option_limit:i,delete_button:l,placeholder:s,options:o,name:n,title:h}=this.model.properties;this.on_change([e,t,i,l,s,o,n,h],(()=>this.render()))}styles(){return[...super.styles(),d.default]}_update_layout(){this.layout=new u.CachedVariadicBox(this.el),this.layout.set_sizing(this.box_sizing())}render(){super.render(),this.input_el=h.select({multiple:!0,class:c.input,name:this.model.name,disabled:this.model.disabled}),this.group_el.appendChild(this.input_el);const e=new Set(this.model.value),t=this.model.options.map((t=>{let i,l;return a.isString(t)?i=l=t:[i,l]=t,{value:i,label:l,selected:e.has(i)}})),i=this.model.solid?\"solid\":\"light\",l=`choices__item ${i}`,s=`choices__button ${i}`,o={choices:t,duplicateItemsAllowed:!1,removeItemButton:this.model.delete_button,classNames:{item:l,button:s}};null!=this.model.placeholder&&(o.placeholderValue=this.model.placeholder),null!=this.model.max_items&&(o.maxItemCount=this.model.max_items),null!=this.model.option_limit&&(o.renderChoiceLimit=this.model.option_limit),this.choice_el=new n.default(this.input_el,o);const u=()=>this.choice_el.containerOuter.element.getBoundingClientRect().height;null!=this._last_height&&this._last_height!=u()&&this.root.invalidate_layout(),this._last_height=u(),this.input_el.addEventListener(\"change\",(()=>this.change_input()))}set_disabled(){this.model.disabled?this.choice_el.disable():this.choice_el.enable()}change_input(){const e=null!=this.el.querySelector(\"select:focus\"),t=[];for(const e of this.el.querySelectorAll(\"option\"))e.selected&&t.push(e.value);this.model.value=t,super.change_input(),e&&this.input_el.focus()}}i.MultiChoiceView=r,r.__name__=\"MultiChoiceView\";class m extends _.InputWidget{constructor(e){super(e)}static init_MultiChoice(){this.prototype.default_view=r,this.define((({Boolean:e,Int:t,String:i,Array:l,Tuple:s,Or:o,Nullable:n})=>({value:[l(i),[]],options:[l(o(i,s(i,i))),[]],max_items:[n(t),null],delete_button:[e,!0],placeholder:[n(i),null],option_limit:[n(t),null],solid:[e,!0]})))}}i.MultiChoice=m,m.__name__=\"MultiChoice\",m.init_MultiChoice()},\n", + " 452: function _(e,t,i,n,s){\n", + " /*! choices.js v9.0.1 | Β© 2019 Josh Johnson | https://github.com/jshjohnson/Choices#readme */\n", + " var r,o;r=window,o=function(){return function(e){var t={};function i(n){if(t[n])return t[n].exports;var s=t[n]={i:n,l:!1,exports:{}};return e[n].call(s.exports,s,s.exports,i),s.l=!0,s.exports}return i.m=e,i.c=t,i.d=function(e,t,n){i.o(e,t)||Object.defineProperty(e,t,{enumerable:!0,get:n})},i.r=function(e){\"undefined\"!=typeof Symbol&&Symbol.toStringTag&&Object.defineProperty(e,Symbol.toStringTag,{value:\"Module\"}),Object.defineProperty(e,\"__esModule\",{value:!0})},i.t=function(e,t){if(1&t&&(e=i(e)),8&t)return e;if(4&t&&\"object\"==typeof e&&e&&e.__esModule)return e;var n=Object.create(null);if(i.r(n),Object.defineProperty(n,\"default\",{enumerable:!0,value:e}),2&t&&\"string\"!=typeof e)for(var s in e)i.d(n,s,function(t){return e[t]}.bind(null,s));return n},i.n=function(e){var t=e&&e.__esModule?function(){return e.default}:function(){return e};return i.d(t,\"a\",t),t},i.o=function(e,t){return Object.prototype.hasOwnProperty.call(e,t)},i.p=\"/public/assets/scripts/\",i(i.s=4)}([function(e,t,i){\"use strict\";var n=function(e){return function(e){return!!e&&\"object\"==typeof e}(e)&&!function(e){var t=Object.prototype.toString.call(e);return\"[object RegExp]\"===t||\"[object Date]\"===t||function(e){return e.$$typeof===s}(e)}(e)},s=\"function\"==typeof Symbol&&Symbol.for?Symbol.for(\"react.element\"):60103;function r(e,t){return!1!==t.clone&&t.isMergeableObject(e)?l((i=e,Array.isArray(i)?[]:{}),e,t):e;var i}function o(e,t,i){return e.concat(t).map((function(e){return r(e,i)}))}function a(e){return Object.keys(e).concat(function(e){return Object.getOwnPropertySymbols?Object.getOwnPropertySymbols(e).filter((function(t){return e.propertyIsEnumerable(t)})):[]}(e))}function c(e,t,i){var n={};return i.isMergeableObject(e)&&a(e).forEach((function(t){n[t]=r(e[t],i)})),a(t).forEach((function(s){(function(e,t){try{return t in e&&!(Object.hasOwnProperty.call(e,t)&&Object.propertyIsEnumerable.call(e,t))}catch(e){return!1}})(e,s)||(i.isMergeableObject(t[s])&&e[s]?n[s]=function(e,t){if(!t.customMerge)return l;var i=t.customMerge(e);return\"function\"==typeof i?i:l}(s,i)(e[s],t[s],i):n[s]=r(t[s],i))})),n}function l(e,t,i){(i=i||{}).arrayMerge=i.arrayMerge||o,i.isMergeableObject=i.isMergeableObject||n,i.cloneUnlessOtherwiseSpecified=r;var s=Array.isArray(t);return s===Array.isArray(e)?s?i.arrayMerge(e,t,i):c(e,t,i):r(t,i)}l.all=function(e,t){if(!Array.isArray(e))throw new Error(\"first argument should be an array\");return e.reduce((function(e,i){return l(e,i,t)}),{})};var h=l;e.exports=h},function(e,t,i){\"use strict\";(function(e,n){var s,r=i(3);s=\"undefined\"!=typeof self?self:\"undefined\"!=typeof window?window:void 0!==e?e:n;var o=Object(r.a)(s);t.a=o}).call(this,i(5),i(6)(e))},function(e,t,i){\n", + " /*!\n", + " * Fuse.js v3.4.5 - Lightweight fuzzy-search (http://fusejs.io)\n", + " *\n", + " * Copyright (c) 2012-2017 Kirollos Risk (http://kiro.me)\n", + " * All Rights Reserved. Apache Software License 2.0\n", + " *\n", + " * http://www.apache.org/licenses/LICENSE-2.0\n", + " */\n", + " e.exports=function(e){var t={};function i(n){if(t[n])return t[n].exports;var s=t[n]={i:n,l:!1,exports:{}};return e[n].call(s.exports,s,s.exports,i),s.l=!0,s.exports}return i.m=e,i.c=t,i.d=function(e,t,n){i.o(e,t)||Object.defineProperty(e,t,{enumerable:!0,get:n})},i.r=function(e){\"undefined\"!=typeof Symbol&&Symbol.toStringTag&&Object.defineProperty(e,Symbol.toStringTag,{value:\"Module\"}),Object.defineProperty(e,\"__esModule\",{value:!0})},i.t=function(e,t){if(1&t&&(e=i(e)),8&t)return e;if(4&t&&\"object\"==typeof e&&e&&e.__esModule)return e;var n=Object.create(null);if(i.r(n),Object.defineProperty(n,\"default\",{enumerable:!0,value:e}),2&t&&\"string\"!=typeof e)for(var s in e)i.d(n,s,function(t){return e[t]}.bind(null,s));return n},i.n=function(e){var t=e&&e.__esModule?function(){return e.default}:function(){return e};return i.d(t,\"a\",t),t},i.o=function(e,t){return Object.prototype.hasOwnProperty.call(e,t)},i.p=\"\",i(i.s=1)}([function(e,t){e.exports=function(e){return Array.isArray?Array.isArray(e):\"[object Array]\"===Object.prototype.toString.call(e)}},function(e,t,i){function n(e){return(n=\"function\"==typeof Symbol&&\"symbol\"==typeof Symbol.iterator?function(e){return typeof e}:function(e){return e&&\"function\"==typeof Symbol&&e.constructor===Symbol&&e!==Symbol.prototype?\"symbol\":typeof e})(e)}function s(e,t){for(var i=0;i1&&void 0!==arguments[1]?arguments[1]:{limit:!1};this._log('---------\\nSearch pattern: \"'.concat(e,'\"'));var i=this._prepareSearchers(e),n=i.tokenSearchers,s=i.fullSearcher,r=this._search(n,s),o=r.weights,a=r.results;return this._computeScore(o,a),this.options.shouldSort&&this._sort(a),t.limit&&\"number\"==typeof t.limit&&(a=a.slice(0,t.limit)),this._format(a)}},{key:\"_prepareSearchers\",value:function(){var e=arguments.length>0&&void 0!==arguments[0]?arguments[0]:\"\",t=[];if(this.options.tokenize)for(var i=e.split(this.options.tokenSeparator),n=0,s=i.length;n0&&void 0!==arguments[0]?arguments[0]:[],t=arguments.length>1?arguments[1]:void 0,i=this.list,n={},s=[];if(\"string\"==typeof i[0]){for(var r=0,o=i.length;r1)throw new Error(\"Key weight has to be > 0 and <= 1\");p=p.name}else a[p]={weight:1};this._analyze({key:p,value:this.options.getFn(h,p),record:h,index:c},{resultMap:n,results:s,tokenSearchers:e,fullSearcher:t})}return{weights:a,results:s}}},{key:\"_analyze\",value:function(e,t){var i=e.key,n=e.arrayIndex,s=void 0===n?-1:n,r=e.value,o=e.record,c=e.index,l=t.tokenSearchers,h=void 0===l?[]:l,u=t.fullSearcher,d=void 0===u?[]:u,p=t.resultMap,m=void 0===p?{}:p,f=t.results,v=void 0===f?[]:f;if(null!=r){var g=!1,_=-1,b=0;if(\"string\"==typeof r){this._log(\"\\nKey: \".concat(\"\"===i?\"-\":i));var y=d.search(r);if(this._log('Full text: \"'.concat(r,'\", score: ').concat(y.score)),this.options.tokenize){for(var E=r.split(this.options.tokenSeparator),I=[],S=0;S-1&&(P=(P+_)/2),this._log(\"Score average:\",P);var D=!this.options.tokenize||!this.options.matchAllTokens||b>=h.length;if(this._log(\"\\nCheck Matches: \".concat(D)),(g||y.isMatch)&&D){var M=m[c];M?M.output.push({key:i,arrayIndex:s,value:r,score:P,matchedIndices:y.matchedIndices}):(m[c]={item:o,output:[{key:i,arrayIndex:s,value:r,score:P,matchedIndices:y.matchedIndices}]},v.push(m[c]))}}else if(a(r))for(var N=0,F=r.length;N-1&&(o.arrayIndex=r.arrayIndex),t.matches.push(o)}}})),this.options.includeScore&&s.push((function(e,t){t.score=e.score}));for(var r=0,o=e.length;ri)return s(e,this.pattern,n);var o=this.options,a=o.location,c=o.distance,l=o.threshold,h=o.findAllMatches,u=o.minMatchCharLength;return r(e,this.pattern,this.patternAlphabet,{location:a,distance:c,threshold:l,findAllMatches:h,minMatchCharLength:u})}}])&&n(t.prototype,i),a&&n(t,a),e}();e.exports=a},function(e,t){var i=/[\\-\\[\\]\\/\\{\\}\\(\\)\\*\\+\\?\\.\\\\\\^\\$\\|]/g;e.exports=function(e,t){var n=arguments.length>2&&void 0!==arguments[2]?arguments[2]:/ +/g,s=new RegExp(t.replace(i,\"\\\\$&\").replace(n,\"|\")),r=e.match(s),o=!!r,a=[];if(o)for(var c=0,l=r.length;c=P;N-=1){var F=N-1,j=i[e.charAt(F)];if(j&&(E[F]=1),M[N]=(M[N+1]<<1|1)&j,0!==T&&(M[N]|=(O[N+1]|O[N])<<1|1|O[N+1]),M[N]&L&&(C=n(t,{errors:T,currentLocation:F,expectedLocation:v,distance:l}))<=_){if(_=C,(b=F)<=v)break;P=Math.max(1,2*v-b)}}if(n(t,{errors:T+1,currentLocation:v,expectedLocation:v,distance:l})>_)break;O=M}return{isMatch:b>=0,score:0===C?.001:C,matchedIndices:s(E,f)}}},function(e,t){e.exports=function(e,t){var i=t.errors,n=void 0===i?0:i,s=t.currentLocation,r=void 0===s?0:s,o=t.expectedLocation,a=void 0===o?0:o,c=t.distance,l=void 0===c?100:c,h=n/e.length,u=Math.abs(a-r);return l?h+u/l:u?1:h}},function(e,t){e.exports=function(){for(var e=arguments.length>0&&void 0!==arguments[0]?arguments[0]:[],t=arguments.length>1&&void 0!==arguments[1]?arguments[1]:1,i=[],n=-1,s=-1,r=0,o=e.length;r=t&&i.push([n,s]),n=-1)}return e[r-1]&&r-n>=t&&i.push([n,r-1]),i}},function(e,t){e.exports=function(e){for(var t={},i=e.length,n=0;n/g,\"&rt;\").replace(/-1?e.map((function(e){var i=e;return i.id===parseInt(t.choiceId,10)&&(i.selected=!0),i})):e;case\"REMOVE_ITEM\":return t.choiceId>-1?e.map((function(e){var i=e;return i.id===parseInt(t.choiceId,10)&&(i.selected=!1),i})):e;case\"FILTER_CHOICES\":return e.map((function(e){var i=e;return i.active=t.results.some((function(e){var t=e.item,n=e.score;return t.id===i.id&&(i.score=n,!0)})),i}));case\"ACTIVATE_CHOICES\":return e.map((function(e){var i=e;return i.active=t.active,i}));case\"CLEAR_CHOICES\":return v;default:return e}},general:_}),A=function(e,t){var i=e;if(\"CLEAR_ALL\"===t.type)i=void 0;else if(\"RESET_TO\"===t.type)return O(t.state);return C(i,t)};function L(e,t){for(var i=0;i\"'+I(e)+'\"'},maxItemText:function(e){return\"Only \"+e+\" values can be added\"},valueComparer:function(e,t){return e===t},fuseOptions:{includeScore:!0},callbackOnInit:null,callbackOnCreateTemplates:null,classNames:{containerOuter:\"choices\",containerInner:\"choices__inner\",input:\"choices__input\",inputCloned:\"choices__input--cloned\",list:\"choices__list\",listItems:\"choices__list--multiple\",listSingle:\"choices__list--single\",listDropdown:\"choices__list--dropdown\",item:\"choices__item\",itemSelectable:\"choices__item--selectable\",itemDisabled:\"choices__item--disabled\",itemChoice:\"choices__item--choice\",placeholder:\"choices__placeholder\",group:\"choices__group\",groupHeading:\"choices__heading\",button:\"choices__button\",activeState:\"is-active\",focusState:\"is-focused\",openState:\"is-open\",disabledState:\"is-disabled\",highlightedState:\"is-highlighted\",selectedState:\"is-selected\",flippedState:\"is-flipped\",loadingState:\"is-loading\",noResults:\"has-no-results\",noChoices:\"has-no-choices\"}},D=\"showDropdown\",M=\"hideDropdown\",N=\"change\",F=\"choice\",j=\"search\",K=\"addItem\",R=\"removeItem\",H=\"highlightItem\",B=\"highlightChoice\",V=\"ADD_CHOICE\",G=\"FILTER_CHOICES\",q=\"ACTIVATE_CHOICES\",U=\"CLEAR_CHOICES\",z=\"ADD_GROUP\",W=\"ADD_ITEM\",X=\"REMOVE_ITEM\",$=\"HIGHLIGHT_ITEM\",J=46,Y=8,Z=13,Q=65,ee=27,te=38,ie=40,ne=33,se=34,re=\"text\",oe=\"select-one\",ae=\"select-multiple\",ce=function(){function e(e){var t=e.element,i=e.type,n=e.classNames,s=e.position;this.element=t,this.classNames=n,this.type=i,this.position=s,this.isOpen=!1,this.isFlipped=!1,this.isFocussed=!1,this.isDisabled=!1,this.isLoading=!1,this._onFocus=this._onFocus.bind(this),this._onBlur=this._onBlur.bind(this)}var t=e.prototype;return t.addEventListeners=function(){this.element.addEventListener(\"focus\",this._onFocus),this.element.addEventListener(\"blur\",this._onBlur)},t.removeEventListeners=function(){this.element.removeEventListener(\"focus\",this._onFocus),this.element.removeEventListener(\"blur\",this._onBlur)},t.shouldFlip=function(e){if(\"number\"!=typeof e)return!1;var t=!1;return\"auto\"===this.position?t=!window.matchMedia(\"(min-height: \"+(e+1)+\"px)\").matches:\"top\"===this.position&&(t=!0),t},t.setActiveDescendant=function(e){this.element.setAttribute(\"aria-activedescendant\",e)},t.removeActiveDescendant=function(){this.element.removeAttribute(\"aria-activedescendant\")},t.open=function(e){this.element.classList.add(this.classNames.openState),this.element.setAttribute(\"aria-expanded\",\"true\"),this.isOpen=!0,this.shouldFlip(e)&&(this.element.classList.add(this.classNames.flippedState),this.isFlipped=!0)},t.close=function(){this.element.classList.remove(this.classNames.openState),this.element.setAttribute(\"aria-expanded\",\"false\"),this.removeActiveDescendant(),this.isOpen=!1,this.isFlipped&&(this.element.classList.remove(this.classNames.flippedState),this.isFlipped=!1)},t.focus=function(){this.isFocussed||this.element.focus()},t.addFocusState=function(){this.element.classList.add(this.classNames.focusState)},t.removeFocusState=function(){this.element.classList.remove(this.classNames.focusState)},t.enable=function(){this.element.classList.remove(this.classNames.disabledState),this.element.removeAttribute(\"aria-disabled\"),this.type===oe&&this.element.setAttribute(\"tabindex\",\"0\"),this.isDisabled=!1},t.disable=function(){this.element.classList.add(this.classNames.disabledState),this.element.setAttribute(\"aria-disabled\",\"true\"),this.type===oe&&this.element.setAttribute(\"tabindex\",\"-1\"),this.isDisabled=!0},t.wrap=function(e){!function(e,t){void 0===t&&(t=document.createElement(\"div\")),e.nextSibling?e.parentNode.insertBefore(t,e.nextSibling):e.parentNode.appendChild(t),t.appendChild(e)}(e,this.element)},t.unwrap=function(e){this.element.parentNode.insertBefore(e,this.element),this.element.parentNode.removeChild(this.element)},t.addLoadingState=function(){this.element.classList.add(this.classNames.loadingState),this.element.setAttribute(\"aria-busy\",\"true\"),this.isLoading=!0},t.removeLoadingState=function(){this.element.classList.remove(this.classNames.loadingState),this.element.removeAttribute(\"aria-busy\"),this.isLoading=!1},t._onFocus=function(){this.isFocussed=!0},t._onBlur=function(){this.isFocussed=!1},e}();function le(e,t){for(var i=0;i0?this.element.scrollTop+o-s:e.offsetTop;requestAnimationFrame((function(){i._animateScroll(a,t)}))}},t._scrollDown=function(e,t,i){var n=(i-e)/t,s=n>1?n:1;this.element.scrollTop=e+s},t._scrollUp=function(e,t,i){var n=(e-i)/t,s=n>1?n:1;this.element.scrollTop=e-s},t._animateScroll=function(e,t){var i=this,n=this.element.scrollTop,s=!1;t>0?(this._scrollDown(n,4,e),ne&&(s=!0)),s&&requestAnimationFrame((function(){i._animateScroll(e,t)}))},e}();function de(e,t){for(var i=0;i0?\"treeitem\":\"option\"),Object.assign(g.dataset,{choice:\"\",id:l,value:h,selectText:i}),m?(g.classList.add(a),g.dataset.choiceDisabled=\"\",g.setAttribute(\"aria-disabled\",\"true\")):(g.classList.add(r),g.dataset.choiceSelectable=\"\"),g},input:function(e,t){var i=e.input,n=e.inputCloned,s=Object.assign(document.createElement(\"input\"),{type:\"text\",className:i+\" \"+n,autocomplete:\"off\",autocapitalize:\"off\",spellcheck:!1});return s.setAttribute(\"role\",\"textbox\"),s.setAttribute(\"aria-autocomplete\",\"list\"),s.setAttribute(\"aria-label\",t),s},dropdown:function(e){var t=e.list,i=e.listDropdown,n=document.createElement(\"div\");return n.classList.add(t,i),n.setAttribute(\"aria-expanded\",\"false\"),n},notice:function(e,t,i){var n=e.item,s=e.itemChoice,r=e.noResults,o=e.noChoices;void 0===i&&(i=\"\");var a=[n,s];return\"no-choices\"===i?a.push(o):\"no-results\"===i&&a.push(r),Object.assign(document.createElement(\"div\"),{innerHTML:t,className:a.join(\" \")})},option:function(e){var t=e.label,i=e.value,n=e.customProperties,s=e.active,r=e.disabled,o=new Option(t,i,!1,s);return n&&(o.dataset.customProperties=n),o.disabled=r,o}},be=function(e){return void 0===e&&(e=!0),{type:q,active:e}},ye=function(e,t){return{type:$,id:e,highlighted:t}},Ee=function(e){var t=e.value,i=e.id,n=e.active,s=e.disabled;return{type:z,value:t,id:i,active:n,disabled:s}},Ie=function(e){return{type:\"SET_IS_LOADING\",isLoading:e}};function Se(e,t){for(var i=0;i=0?this._store.getGroupById(s):null;return this._store.dispatch(ye(i,!0)),t&&this.passedElement.triggerEvent(H,{id:i,value:o,label:c,groupValue:l&&l.value?l.value:null}),this},r.unhighlightItem=function(e){if(!e)return this;var t=e.id,i=e.groupId,n=void 0===i?-1:i,s=e.value,r=void 0===s?\"\":s,o=e.label,a=void 0===o?\"\":o,c=n>=0?this._store.getGroupById(n):null;return this._store.dispatch(ye(t,!1)),this.passedElement.triggerEvent(H,{id:t,value:r,label:a,groupValue:c&&c.value?c.value:null}),this},r.highlightAll=function(){var e=this;return this._store.items.forEach((function(t){return e.highlightItem(t)})),this},r.unhighlightAll=function(){var e=this;return this._store.items.forEach((function(t){return e.unhighlightItem(t)})),this},r.removeActiveItemsByValue=function(e){var t=this;return this._store.activeItems.filter((function(t){return t.value===e})).forEach((function(e){return t._removeItem(e)})),this},r.removeActiveItems=function(e){var t=this;return this._store.activeItems.filter((function(t){return t.id!==e})).forEach((function(e){return t._removeItem(e)})),this},r.removeHighlightedItems=function(e){var t=this;return void 0===e&&(e=!1),this._store.highlightedActiveItems.forEach((function(i){t._removeItem(i),e&&t._triggerChange(i.value)})),this},r.showDropdown=function(e){var t=this;return this.dropdown.isActive||requestAnimationFrame((function(){t.dropdown.show(),t.containerOuter.open(t.dropdown.distanceFromTopWindow),!e&&t._canSearch&&t.input.focus(),t.passedElement.triggerEvent(D,{})})),this},r.hideDropdown=function(e){var t=this;return this.dropdown.isActive?(requestAnimationFrame((function(){t.dropdown.hide(),t.containerOuter.close(),!e&&t._canSearch&&(t.input.removeActiveDescendant(),t.input.blur()),t.passedElement.triggerEvent(M,{})})),this):this},r.getValue=function(e){void 0===e&&(e=!1);var t=this._store.activeItems.reduce((function(t,i){var n=e?i.value:i;return t.push(n),t}),[]);return this._isSelectOneElement?t[0]:t},r.setValue=function(e){var t=this;return this.initialised?(e.forEach((function(e){return t._setChoiceOrItem(e)})),this):this},r.setChoiceByValue=function(e){var t=this;return!this.initialised||this._isTextElement||(Array.isArray(e)?e:[e]).forEach((function(e){return t._findAndSelectChoiceByValue(e)})),this},r.setChoices=function(e,t,i,n){var s=this;if(void 0===e&&(e=[]),void 0===t&&(t=\"value\"),void 0===i&&(i=\"label\"),void 0===n&&(n=!1),!this.initialised)throw new ReferenceError(\"setChoices was called on a non-initialized instance of Choices\");if(!this._isSelectElement)throw new TypeError(\"setChoices can't be used with INPUT based Choices\");if(\"string\"!=typeof t||!t)throw new TypeError(\"value parameter must be a name of 'value' field in passed objects\");if(n&&this.clearChoices(),\"function\"==typeof e){var r=e(this);if(\"function\"==typeof Promise&&r instanceof Promise)return new Promise((function(e){return requestAnimationFrame(e)})).then((function(){return s._handleLoadingState(!0)})).then((function(){return r})).then((function(e){return s.setChoices(e,t,i,n)})).catch((function(e){s.config.silent||console.error(e)})).then((function(){return s._handleLoadingState(!1)})).then((function(){return s}));if(!Array.isArray(r))throw new TypeError(\".setChoices first argument function must return either array of choices or Promise, got: \"+typeof r);return this.setChoices(r,t,i,!1)}if(!Array.isArray(e))throw new TypeError(\".setChoices must be called either with array of choices with a function resulting into Promise of array of choices\");return this.containerOuter.removeLoadingState(),this._startLoading(),e.forEach((function(e){e.choices?s._addGroup({id:parseInt(e.id,10)||null,group:e,valueKey:t,labelKey:i}):s._addChoice({value:e[t],label:e[i],isSelected:e.selected,isDisabled:e.disabled,customProperties:e.customProperties,placeholder:e.placeholder})})),this._stopLoading(),this},r.clearChoices=function(){return this._store.dispatch({type:U}),this},r.clearStore=function(){return this._store.dispatch({type:\"CLEAR_ALL\"}),this},r.clearInput=function(){var e=!this._isSelectOneElement;return this.input.clear(e),!this._isTextElement&&this._canSearch&&(this._isSearching=!1,this._store.dispatch(be(!0))),this},r._render=function(){if(!this._store.isLoading()){this._currentState=this._store.state;var e=this._currentState.choices!==this._prevState.choices||this._currentState.groups!==this._prevState.groups||this._currentState.items!==this._prevState.items,t=this._isSelectElement,i=this._currentState.items!==this._prevState.items;e&&(t&&this._renderChoices(),i&&this._renderItems(),this._prevState=this._currentState)}},r._renderChoices=function(){var e=this,t=this._store,i=t.activeGroups,n=t.activeChoices,s=document.createDocumentFragment();if(this.choiceList.clear(),this.config.resetScrollPosition&&requestAnimationFrame((function(){return e.choiceList.scrollToTop()})),i.length>=1&&!this._isSearching){var r=n.filter((function(e){return!0===e.placeholder&&-1===e.groupId}));r.length>=1&&(s=this._createChoicesFragment(r,s)),s=this._createGroupsFragment(i,n,s)}else n.length>=1&&(s=this._createChoicesFragment(n,s));if(s.childNodes&&s.childNodes.length>0){var o=this._store.activeItems,a=this._canAddItem(o,this.input.value);a.response?(this.choiceList.append(s),this._highlightChoice()):this.choiceList.append(this._getTemplate(\"notice\",a.notice))}else{var c,l;this._isSearching?(l=\"function\"==typeof this.config.noResultsText?this.config.noResultsText():this.config.noResultsText,c=this._getTemplate(\"notice\",l,\"no-results\")):(l=\"function\"==typeof this.config.noChoicesText?this.config.noChoicesText():this.config.noChoicesText,c=this._getTemplate(\"notice\",l,\"no-choices\")),this.choiceList.append(c)}},r._renderItems=function(){var e=this._store.activeItems||[];this.itemList.clear();var t=this._createItemsFragment(e);t.childNodes&&this.itemList.append(t)},r._createGroupsFragment=function(e,t,i){var n=this;return void 0===i&&(i=document.createDocumentFragment()),this.config.shouldSort&&e.sort(this.config.sorter),e.forEach((function(e){var s=function(e){return t.filter((function(t){return n._isSelectOneElement?t.groupId===e.id:t.groupId===e.id&&(\"always\"===n.config.renderSelectedChoices||!t.selected)}))}(e);if(s.length>=1){var r=n._getTemplate(\"choiceGroup\",e);i.appendChild(r),n._createChoicesFragment(s,i,!0)}})),i},r._createChoicesFragment=function(e,t,i){var n=this;void 0===t&&(t=document.createDocumentFragment()),void 0===i&&(i=!1);var s=this.config,r=s.renderSelectedChoices,o=s.searchResultLimit,a=s.renderChoiceLimit,c=this._isSearching?w:this.config.sorter,l=function(e){if(\"auto\"!==r||n._isSelectOneElement||!e.selected){var i=n._getTemplate(\"choice\",e,n.config.itemSelectText);t.appendChild(i)}},h=e;\"auto\"!==r||this._isSelectOneElement||(h=e.filter((function(e){return!e.selected})));var u=h.reduce((function(e,t){return t.placeholder?e.placeholderChoices.push(t):e.normalChoices.push(t),e}),{placeholderChoices:[],normalChoices:[]}),d=u.placeholderChoices,p=u.normalChoices;(this.config.shouldSort||this._isSearching)&&p.sort(c);var m=h.length,f=this._isSelectOneElement?[].concat(d,p):p;this._isSearching?m=o:a&&a>0&&!i&&(m=a);for(var v=0;v=n){var o=s?this._searchChoices(e):0;this.passedElement.triggerEvent(j,{value:e,resultCount:o})}else r&&(this._isSearching=!1,this._store.dispatch(be(!0)))}},r._canAddItem=function(e,t){var i=!0,n=\"function\"==typeof this.config.addItemText?this.config.addItemText(t):this.config.addItemText;if(!this._isSelectOneElement){var s=function(e,t,i){return void 0===i&&(i=\"value\"),e.some((function(e){return\"string\"==typeof t?e[i]===t.trim():e[i]===t}))}(e,t);this.config.maxItemCount>0&&this.config.maxItemCount<=e.length&&(i=!1,n=\"function\"==typeof this.config.maxItemText?this.config.maxItemText(this.config.maxItemCount):this.config.maxItemText),!this.config.duplicateItemsAllowed&&s&&i&&(i=!1,n=\"function\"==typeof this.config.uniqueItemText?this.config.uniqueItemText(t):this.config.uniqueItemText),this._isTextElement&&this.config.addItems&&i&&\"function\"==typeof this.config.addItemFilter&&!this.config.addItemFilter(t)&&(i=!1,n=\"function\"==typeof this.config.customAddItemText?this.config.customAddItemText(t):this.config.customAddItemText)}return{response:i,notice:n}},r._searchChoices=function(e){var t=\"string\"==typeof e?e.trim():e,i=\"string\"==typeof this._currentValue?this._currentValue.trim():this._currentValue;if(t.length<1&&t===i+\" \")return 0;var n=this._store.searchableChoices,r=t,o=[].concat(this.config.searchFields),a=Object.assign(this.config.fuseOptions,{keys:o}),c=new s.a(n,a).search(r);return this._currentValue=t,this._highlightPosition=0,this._isSearching=!0,this._store.dispatch(function(e){return{type:G,results:e}}(c)),c.length},r._addEventListeners=function(){var e=document.documentElement;e.addEventListener(\"touchend\",this._onTouchEnd,!0),this.containerOuter.element.addEventListener(\"keydown\",this._onKeyDown,!0),this.containerOuter.element.addEventListener(\"mousedown\",this._onMouseDown,!0),e.addEventListener(\"click\",this._onClick,{passive:!0}),e.addEventListener(\"touchmove\",this._onTouchMove,{passive:!0}),this.dropdown.element.addEventListener(\"mouseover\",this._onMouseOver,{passive:!0}),this._isSelectOneElement&&(this.containerOuter.element.addEventListener(\"focus\",this._onFocus,{passive:!0}),this.containerOuter.element.addEventListener(\"blur\",this._onBlur,{passive:!0})),this.input.element.addEventListener(\"keyup\",this._onKeyUp,{passive:!0}),this.input.element.addEventListener(\"focus\",this._onFocus,{passive:!0}),this.input.element.addEventListener(\"blur\",this._onBlur,{passive:!0}),this.input.element.form&&this.input.element.form.addEventListener(\"reset\",this._onFormReset,{passive:!0}),this.input.addEventListeners()},r._removeEventListeners=function(){var e=document.documentElement;e.removeEventListener(\"touchend\",this._onTouchEnd,!0),this.containerOuter.element.removeEventListener(\"keydown\",this._onKeyDown,!0),this.containerOuter.element.removeEventListener(\"mousedown\",this._onMouseDown,!0),e.removeEventListener(\"click\",this._onClick),e.removeEventListener(\"touchmove\",this._onTouchMove),this.dropdown.element.removeEventListener(\"mouseover\",this._onMouseOver),this._isSelectOneElement&&(this.containerOuter.element.removeEventListener(\"focus\",this._onFocus),this.containerOuter.element.removeEventListener(\"blur\",this._onBlur)),this.input.element.removeEventListener(\"keyup\",this._onKeyUp),this.input.element.removeEventListener(\"focus\",this._onFocus),this.input.element.removeEventListener(\"blur\",this._onBlur),this.input.element.form&&this.input.element.form.removeEventListener(\"reset\",this._onFormReset),this.input.removeEventListeners()},r._onKeyDown=function(e){var t,i=e.target,n=e.keyCode,s=e.ctrlKey,r=e.metaKey,o=this._store.activeItems,a=this.input.isFocussed,c=this.dropdown.isActive,l=this.itemList.hasChildren(),h=String.fromCharCode(n),u=J,d=Y,p=Z,m=Q,f=ee,v=te,g=ie,_=ne,b=se,y=s||r;!this._isTextElement&&/[a-zA-Z0-9-_ ]/.test(h)&&this.showDropdown();var E=((t={})[m]=this._onAKey,t[p]=this._onEnterKey,t[f]=this._onEscapeKey,t[v]=this._onDirectionKey,t[_]=this._onDirectionKey,t[g]=this._onDirectionKey,t[b]=this._onDirectionKey,t[d]=this._onDeleteKey,t[u]=this._onDeleteKey,t);E[n]&&E[n]({event:e,target:i,keyCode:n,metaKey:r,activeItems:o,hasFocusedInput:a,hasActiveDropdown:c,hasItems:l,hasCtrlDownKeyPressed:y})},r._onKeyUp=function(e){var t=e.target,i=e.keyCode,n=this.input.value,s=this._store.activeItems,r=this._canAddItem(s,n),o=J,a=Y;if(this._isTextElement)if(r.notice&&n){var c=this._getTemplate(\"notice\",r.notice);this.dropdown.element.innerHTML=c.outerHTML,this.showDropdown(!0)}else this.hideDropdown(!0);else{var l=(i===o||i===a)&&!t.value,h=!this._isTextElement&&this._isSearching,u=this._canSearch&&r.response;l&&h?(this._isSearching=!1,this._store.dispatch(be(!0))):u&&this._handleSearch(this.input.value)}this._canSearch=this.config.searchEnabled},r._onAKey=function(e){var t=e.hasItems;e.hasCtrlDownKeyPressed&&t&&(this._canSearch=!1,this.config.removeItems&&!this.input.value&&this.input.element===document.activeElement&&this.highlightAll())},r._onEnterKey=function(e){var t=e.event,i=e.target,n=e.activeItems,s=e.hasActiveDropdown,r=Z,o=i.hasAttribute(\"data-button\");if(this._isTextElement&&i.value){var a=this.input.value;this._canAddItem(n,a).response&&(this.hideDropdown(!0),this._addItem({value:a}),this._triggerChange(a),this.clearInput())}if(o&&(this._handleButtonAction(n,i),t.preventDefault()),s){var c=this.dropdown.getChild(\".\"+this.config.classNames.highlightedState);c&&(n[0]&&(n[0].keyCode=r),this._handleChoiceAction(n,c)),t.preventDefault()}else this._isSelectOneElement&&(this.showDropdown(),t.preventDefault())},r._onEscapeKey=function(e){e.hasActiveDropdown&&(this.hideDropdown(!0),this.containerOuter.focus())},r._onDirectionKey=function(e){var t,i,n,s=e.event,r=e.hasActiveDropdown,o=e.keyCode,a=e.metaKey,c=ie,l=ne,h=se;if(r||this._isSelectOneElement){this.showDropdown(),this._canSearch=!1;var u,d=o===c||o===h?1:-1,p=\"[data-choice-selectable]\";if(a||o===h||o===l)u=d>0?this.dropdown.element.querySelector(\"[data-choice-selectable]:last-of-type\"):this.dropdown.element.querySelector(p);else{var m=this.dropdown.element.querySelector(\".\"+this.config.classNames.highlightedState);u=m?function(e,t,i){if(void 0===i&&(i=1),e instanceof Element&&\"string\"==typeof t){for(var n=(i>0?\"next\":\"previous\")+\"ElementSibling\",s=e[n];s;){if(s.matches(t))return s;s=s[n]}return s}}(m,p,d):this.dropdown.element.querySelector(p)}u&&(t=u,i=this.choiceList.element,void 0===(n=d)&&(n=1),t&&(n>0?i.scrollTop+i.offsetHeight>=t.offsetTop+t.offsetHeight:t.offsetTop>=i.scrollTop)||this.choiceList.scrollToChildElement(u,d),this._highlightChoice(u)),s.preventDefault()}},r._onDeleteKey=function(e){var t=e.event,i=e.target,n=e.hasFocusedInput,s=e.activeItems;!n||i.value||this._isSelectOneElement||(this._handleBackspace(s),t.preventDefault())},r._onTouchMove=function(){this._wasTap&&(this._wasTap=!1)},r._onTouchEnd=function(e){var t=(e||e.touches[0]).target;this._wasTap&&this.containerOuter.element.contains(t)&&((t===this.containerOuter.element||t===this.containerInner.element)&&(this._isTextElement?this.input.focus():this._isSelectMultipleElement&&this.showDropdown()),e.stopPropagation()),this._wasTap=!0},r._onMouseDown=function(e){var t=e.target;if(t instanceof HTMLElement){if(we&&this.choiceList.element.contains(t)){var i=this.choiceList.element.firstElementChild,n=\"ltr\"===this._direction?e.offsetX>=i.offsetWidth:e.offsetX0&&this.unhighlightAll(),this.containerOuter.removeFocusState(),this.hideDropdown(!0))},r._onFocus=function(e){var t,i=this,n=e.target;this.containerOuter.element.contains(n)&&((t={}).text=function(){n===i.input.element&&i.containerOuter.addFocusState()},t[\"select-one\"]=function(){i.containerOuter.addFocusState(),n===i.input.element&&i.showDropdown(!0)},t[\"select-multiple\"]=function(){n===i.input.element&&(i.showDropdown(!0),i.containerOuter.addFocusState())},t)[this.passedElement.element.type]()},r._onBlur=function(e){var t=this,i=e.target;if(this.containerOuter.element.contains(i)&&!this._isScrollingOnIe){var n,s=this._store.activeItems.some((function(e){return e.highlighted}));((n={}).text=function(){i===t.input.element&&(t.containerOuter.removeFocusState(),s&&t.unhighlightAll(),t.hideDropdown(!0))},n[\"select-one\"]=function(){t.containerOuter.removeFocusState(),(i===t.input.element||i===t.containerOuter.element&&!t._canSearch)&&t.hideDropdown(!0)},n[\"select-multiple\"]=function(){i===t.input.element&&(t.containerOuter.removeFocusState(),t.hideDropdown(!0),s&&t.unhighlightAll())},n)[this.passedElement.element.type]()}else this._isScrollingOnIe=!1,this.input.element.focus()},r._onFormReset=function(){this._store.dispatch({type:\"RESET_TO\",state:this._initialState})},r._highlightChoice=function(e){var t=this;void 0===e&&(e=null);var i=Array.from(this.dropdown.element.querySelectorAll(\"[data-choice-selectable]\"));if(i.length){var n=e;Array.from(this.dropdown.element.querySelectorAll(\".\"+this.config.classNames.highlightedState)).forEach((function(e){e.classList.remove(t.config.classNames.highlightedState),e.setAttribute(\"aria-selected\",\"false\")})),n?this._highlightPosition=i.indexOf(n):(n=i.length>this._highlightPosition?i[this._highlightPosition]:i[i.length-1])||(n=i[0]),n.classList.add(this.config.classNames.highlightedState),n.setAttribute(\"aria-selected\",\"true\"),this.passedElement.triggerEvent(B,{el:n}),this.dropdown.isActive&&(this.input.setActiveDescendant(n.id),this.containerOuter.setActiveDescendant(n.id))}},r._addItem=function(e){var t=e.value,i=e.label,n=void 0===i?null:i,s=e.choiceId,r=void 0===s?-1:s,o=e.groupId,a=void 0===o?-1:o,c=e.customProperties,l=void 0===c?null:c,h=e.placeholder,u=void 0!==h&&h,d=e.keyCode,p=void 0===d?null:d,m=\"string\"==typeof t?t.trim():t,f=p,v=l,g=this._store.items,_=n||m,b=r||-1,y=a>=0?this._store.getGroupById(a):null,E=g?g.length+1:1;return this.config.prependValue&&(m=this.config.prependValue+m.toString()),this.config.appendValue&&(m+=this.config.appendValue.toString()),this._store.dispatch(function(e){var t=e.value,i=e.label,n=e.id,s=e.choiceId,r=e.groupId,o=e.customProperties,a=e.placeholder,c=e.keyCode;return{type:W,value:t,label:i,id:n,choiceId:s,groupId:r,customProperties:o,placeholder:a,keyCode:c}}({value:m,label:_,id:E,choiceId:b,groupId:a,customProperties:l,placeholder:u,keyCode:f})),this._isSelectOneElement&&this.removeActiveItems(E),this.passedElement.triggerEvent(K,{id:E,value:m,label:_,customProperties:v,groupValue:y&&y.value?y.value:void 0,keyCode:f}),this},r._removeItem=function(e){if(!e||!E(\"Object\",e))return this;var t=e.id,i=e.value,n=e.label,s=e.choiceId,r=e.groupId,o=r>=0?this._store.getGroupById(r):null;return this._store.dispatch(function(e,t){return{type:X,id:e,choiceId:t}}(t,s)),o&&o.value?this.passedElement.triggerEvent(R,{id:t,value:i,label:n,groupValue:o.value}):this.passedElement.triggerEvent(R,{id:t,value:i,label:n}),this},r._addChoice=function(e){var t=e.value,i=e.label,n=void 0===i?null:i,s=e.isSelected,r=void 0!==s&&s,o=e.isDisabled,a=void 0!==o&&o,c=e.groupId,l=void 0===c?-1:c,h=e.customProperties,u=void 0===h?null:h,d=e.placeholder,p=void 0!==d&&d,m=e.keyCode,f=void 0===m?null:m;if(null!=t){var v=this._store.choices,g=n||t,_=v?v.length+1:1,b=this._baseId+\"-\"+this._idNames.itemChoice+\"-\"+_;this._store.dispatch(function(e){var t=e.value,i=e.label,n=e.id,s=e.groupId,r=e.disabled,o=e.elementId,a=e.customProperties,c=e.placeholder,l=e.keyCode;return{type:V,value:t,label:i,id:n,groupId:s,disabled:r,elementId:o,customProperties:a,placeholder:c,keyCode:l}}({id:_,groupId:l,elementId:b,value:t,label:g,disabled:a,customProperties:u,placeholder:p,keyCode:f})),r&&this._addItem({value:t,label:g,choiceId:_,customProperties:u,placeholder:p,keyCode:f})}},r._addGroup=function(e){var t=this,i=e.group,n=e.id,s=e.valueKey,r=void 0===s?\"value\":s,o=e.labelKey,a=void 0===o?\"label\":o,c=E(\"Object\",i)?i.choices:Array.from(i.getElementsByTagName(\"OPTION\")),l=n||Math.floor((new Date).valueOf()*Math.random()),h=!!i.disabled&&i.disabled;c?(this._store.dispatch(Ee({value:i.label,id:l,active:!0,disabled:h})),c.forEach((function(e){var i=e.disabled||e.parentNode&&e.parentNode.disabled;t._addChoice({value:e[r],label:E(\"Object\",e)?e[a]:e.innerHTML,isSelected:e.selected,isDisabled:i,groupId:l,customProperties:e.customProperties,placeholder:e.placeholder})}))):this._store.dispatch(Ee({value:i.label,id:i.id,active:!1,disabled:i.disabled}))},r._getTemplate=function(e){var t;if(!e)return null;for(var i=this.config.classNames,n=arguments.length,s=new Array(n>1?n-1:0),r=1;r{var e;return this.input_el.name=null!==(e=this.model.name)&&void 0!==e?e:\"\"})),this.connect(this.model.properties.value.change,(()=>{this.input_el.value=this.format_value,this.old_value=this.input_el.value})),this.connect(this.model.properties.low.change,(()=>{const{value:e,low:t,high:l}=this.model;null!=t&&null!=l&&d.assert(t<=l,\"Invalid bounds, low must be inferior to high\"),null!=e&&null!=t&&(this.model.value=Math.max(e,t))})),this.connect(this.model.properties.high.change,(()=>{const{value:e,low:t,high:l}=this.model;null!=t&&null!=l&&d.assert(l>=t,\"Invalid bounds, high must be superior to low\"),null!=e&&null!=l&&(this.model.value=Math.min(e,l))})),this.connect(this.model.properties.high.change,(()=>this.input_el.placeholder=this.model.placeholder)),this.connect(this.model.properties.disabled.change,(()=>this.input_el.disabled=this.model.disabled)),this.connect(this.model.properties.placeholder.change,(()=>this.input_el.placeholder=this.model.placeholder))}get format_value(){return null!=this.model.value?this.model.pretty(this.model.value):\"\"}_set_input_filter(e){this.input_el.addEventListener(\"input\",(()=>{const{selectionStart:t,selectionEnd:l}=this.input_el;if(e(this.input_el.value))this.old_value=this.input_el.value;else{const e=this.old_value.length-this.input_el.value.length;this.input_el.value=this.old_value,t&&l&&this.input_el.setSelectionRange(t-1,l+e)}}))}render(){super.render(),this.input_el=a.input({type:\"text\",class:p.input,name:this.model.name,value:this.format_value,disabled:this.model.disabled,placeholder:this.model.placeholder}),this.old_value=this.format_value,this.set_input_filter(),this.input_el.addEventListener(\"change\",(()=>this.change_input())),this.input_el.addEventListener(\"focusout\",(()=>this.input_el.value=this.format_value)),this.group_el.appendChild(this.input_el)}set_input_filter(){\"int\"==this.model.mode?this._set_input_filter((e=>_.test(e))):\"float\"==this.model.mode&&this._set_input_filter((e=>m.test(e)))}bound_value(e){let t=e;const{low:l,high:i}=this.model;return t=null!=l?Math.max(l,t):t,t=null!=i?Math.min(i,t):t,t}get value(){let e=\"\"!=this.input_el.value?Number(this.input_el.value):null;return null!=e&&(e=this.bound_value(e)),e}change_input(){null==this.value?this.model.value=null:Number.isNaN(this.value)||(this.model.value=this.value)}}l.NumericInputView=c,c.__name__=\"NumericInputView\";class v extends h.InputWidget{constructor(e){super(e)}static init_NumericInput(){this.prototype.default_view=c,this.define((({Number:e,String:t,Enum:l,Ref:i,Or:n,Nullable:s})=>({value:[s(e),null],placeholder:[t,\"\"],mode:[l(\"int\",\"float\"),\"int\"],format:[s(n(t,i(o.TickFormatter))),null],low:[s(e),null],high:[s(e),null]})))}_formatter(e,t){return r.isString(t)?u.format(e,t):t.doFormat([e],{loc:0})[0]}pretty(e){return null!=this.format?this._formatter(e,this.format):`${e}`}}l.NumericInput=v,v.__name__=\"NumericInput\",v.init_NumericInput()},\n", + " 455: function _(e,t,r,s,i){s();const n=e(444),_=e(43);class a extends n.MarkupView{render(){super.render();const e=_.pre({style:{overflow:\"auto\"}},this.model.text);this.markup_el.appendChild(e)}}r.PreTextView=a,a.__name__=\"PreTextView\";class o extends n.Markup{constructor(e){super(e)}static init_PreText(){this.prototype.default_view=a}}r.PreText=o,o.__name__=\"PreText\",o.init_PreText()},\n", + " 456: function _(t,o,i,e,a){e();const n=t(1),u=t(430),s=t(43),c=n.__importStar(t(328));class _ extends u.ButtonGroupView{change_active(t){this.model.active!==t&&(this.model.active=t)}_update_active(){const{active:t}=this.model;this._buttons.forEach(((o,i)=>{s.classes(o).toggle(c.active,t===i)}))}}i.RadioButtonGroupView=_,_.__name__=\"RadioButtonGroupView\";class r extends u.ButtonGroup{constructor(t){super(t)}static init_RadioButtonGroup(){this.prototype.default_view=_,this.define((({Int:t,Nullable:o})=>({active:[o(t),null]})))}}i.RadioButtonGroup=r,r.__name__=\"RadioButtonGroup\",r.init_RadioButtonGroup()},\n", + " 457: function _(e,i,t,n,a){n();const s=e(1),o=e(43),d=e(34),l=e(432),p=s.__importStar(e(427));class r extends l.InputGroupView{render(){super.render();const e=o.div({class:[p.input_group,this.model.inline?p.inline:null]});this.el.appendChild(e);const i=d.uniqueId(),{active:t,labels:n}=this.model;this._inputs=[];for(let a=0;athis.change_active(a))),this._inputs.push(s),this.model.disabled&&(s.disabled=!0),a==t&&(s.checked=!0);const d=o.label({},s,o.span({},n[a]));e.appendChild(d)}}change_active(e){this.model.active=e}}t.RadioGroupView=r,r.__name__=\"RadioGroupView\";class u extends l.InputGroup{constructor(e){super(e)}static init_RadioGroup(){this.prototype.default_view=r,this.define((({Boolean:e,Int:i,String:t,Array:n})=>({active:[i],labels:[n(t),[]],inline:[e,!1]})))}}t.RadioGroup=u,u.__name__=\"RadioGroup\",u.init_RadioGroup()},\n", + " 458: function _(e,t,i,r,a){r();const n=e(1).__importStar(e(183)),s=e(438),_=e(8);class d extends s.AbstractRangeSliderView{}i.RangeSliderView=d,d.__name__=\"RangeSliderView\";class o extends s.AbstractSlider{constructor(e){super(e),this.behaviour=\"drag\",this.connected=[!1,!0,!1]}static init_RangeSlider(){this.prototype.default_view=d,this.override({format:\"0[.]00\"})}_formatter(e,t){return _.isString(t)?n.format(e,t):t.compute(e)}}i.RangeSlider=o,o.__name__=\"RangeSlider\",o.init_RangeSlider()},\n", + " 459: function _(e,t,n,i,s){i();const l=e(1),u=e(43),a=e(8),o=e(13),_=e(426),p=l.__importStar(e(427));class r extends _.InputWidgetView{constructor(){super(...arguments),this._known_values=new Set}connect_signals(){super.connect_signals();const{value:e,options:t}=this.model.properties;this.on_change(e,(()=>{this._update_value()})),this.on_change(t,(()=>{u.empty(this.input_el),u.append(this.input_el,...this.options_el()),this._update_value()}))}options_el(){const{_known_values:e}=this;function t(t){return t.map((t=>{let n,i;return a.isString(t)?n=i=t:[n,i]=t,e.add(n),u.option({value:n},i)}))}e.clear();const{options:n}=this.model;return a.isArray(n)?t(n):o.entries(n).map((([e,n])=>u.optgroup({label:e},t(n))))}render(){super.render(),this.input_el=u.select({class:p.input,name:this.model.name,disabled:this.model.disabled},this.options_el()),this._update_value(),this.input_el.addEventListener(\"change\",(()=>this.change_input())),this.group_el.appendChild(this.input_el)}change_input(){const e=this.input_el.value;this.model.value=e,super.change_input()}_update_value(){const{value:e}=this.model;this._known_values.has(e)?this.input_el.value=e:this.input_el.removeAttribute(\"value\")}}n.SelectView=r,r.__name__=\"SelectView\";class c extends _.InputWidget{constructor(e){super(e)}static init_Select(){this.prototype.default_view=r,this.define((({String:e,Array:t,Tuple:n,Dict:i,Or:s})=>{const l=t(s(e,n(e,e)));return{value:[e,\"\"],options:[s(l,i(l)),[]]}}))}}n.Select=c,c.__name__=\"Select\",c.init_Select()},\n", + " 460: function _(t,e,i,r,s){r();const _=t(1).__importStar(t(183)),a=t(438),n=t(8);class o extends a.AbstractSliderView{}i.SliderView=o,o.__name__=\"SliderView\";class d extends a.AbstractSlider{constructor(t){super(t),this.behaviour=\"tap\",this.connected=[!0,!1]}static init_Slider(){this.prototype.default_view=o,this.override({format:\"0[.]00\"})}_formatter(t,e){return n.isString(e)?_.format(t,e):e.compute(t)}}i.Slider=d,d.__name__=\"Slider\",d.init_Slider()},\n", + " 461: function _(e,t,i,n,s){n();const l=e(454),o=e(43),{min:r,max:a,floor:h,abs:_}=Math;function u(e){return h(e)!==e?e.toFixed(16).replace(/0+$/,\"\").split(\".\")[1].length:0}class d extends l.NumericInputView{*buttons(){yield this.btn_up_el,yield this.btn_down_el}initialize(){super.initialize(),this._handles={interval:void 0,timeout:void 0},this._interval=200}connect_signals(){super.connect_signals();const e=this.model.properties;this.on_change(e.disabled,(()=>{for(const e of this.buttons())o.toggle_attribute(e,\"disabled\",this.model.disabled)}))}render(){super.render(),this.wrapper_el=o.div({class:\"bk-spin-wrapper\"}),this.group_el.replaceChild(this.wrapper_el,this.input_el),this.btn_up_el=o.button({class:\"bk-spin-btn bk-spin-btn-up\"}),this.btn_down_el=o.button({class:\"bk-spin-btn bk-spin-btn-down\"}),this.wrapper_el.appendChild(this.input_el),this.wrapper_el.appendChild(this.btn_up_el),this.wrapper_el.appendChild(this.btn_down_el);for(const e of this.buttons())o.toggle_attribute(e,\"disabled\",this.model.disabled),e.addEventListener(\"mousedown\",(e=>this._btn_mouse_down(e))),e.addEventListener(\"mouseup\",(()=>this._btn_mouse_up())),e.addEventListener(\"mouseleave\",(()=>this._btn_mouse_leave()));this.input_el.addEventListener(\"keydown\",(e=>this._input_key_down(e))),this.input_el.addEventListener(\"keyup\",(()=>this.model.value_throttled=this.model.value)),this.input_el.addEventListener(\"wheel\",(e=>this._input_mouse_wheel(e))),this.input_el.addEventListener(\"wheel\",function(e,t,i=!1){let n;return function(...s){const l=this,o=i&&void 0===n;void 0!==n&&clearTimeout(n),n=setTimeout((function(){n=void 0,i||e.apply(l,s)}),t),o&&e.apply(l,s)}}((()=>{this.model.value_throttled=this.model.value}),this.model.wheel_wait,!1))}get precision(){const{low:e,high:t,step:i}=this.model,n=u;return a(n(_(null!=e?e:0)),n(_(null!=t?t:0)),n(_(i)))}remove(){this._stop_incrementation(),super.remove()}_start_incrementation(e){clearInterval(this._handles.interval),this._counter=0;const{step:t}=this.model,i=e=>{if(this._counter+=1,this._counter%5==0){const t=Math.floor(this._counter/5);t<10?(clearInterval(this._handles.interval),this._handles.interval=setInterval((()=>i(e)),this._interval/(t+1))):t>=10&&t<=13&&(clearInterval(this._handles.interval),this._handles.interval=setInterval((()=>i(2*e)),this._interval/10))}this.increment(e)};this._handles.interval=setInterval((()=>i(e*t)),this._interval)}_stop_incrementation(){clearTimeout(this._handles.timeout),this._handles.timeout=void 0,clearInterval(this._handles.interval),this._handles.interval=void 0,this.model.value_throttled=this.model.value}_btn_mouse_down(e){e.preventDefault();const t=e.currentTarget===this.btn_up_el?1:-1;this.increment(t*this.model.step),this.input_el.focus(),this._handles.timeout=setTimeout((()=>this._start_incrementation(t)),this._interval)}_btn_mouse_up(){this._stop_incrementation()}_btn_mouse_leave(){this._stop_incrementation()}_input_mouse_wheel(e){if(document.activeElement===this.input_el){e.preventDefault();const t=e.deltaY>0?-1:1;this.increment(t*this.model.step)}}_input_key_down(e){switch(e.keyCode){case o.Keys.Up:return e.preventDefault(),this.increment(this.model.step);case o.Keys.Down:return e.preventDefault(),this.increment(-this.model.step);case o.Keys.PageUp:return e.preventDefault(),this.increment(this.model.page_step_multiplier*this.model.step);case o.Keys.PageDown:return e.preventDefault(),this.increment(-this.model.page_step_multiplier*this.model.step)}}adjust_to_precision(e){return this.bound_value(Number(e.toFixed(this.precision)))}increment(e){const{low:t,high:i}=this.model;null==this.model.value?e>0?this.model.value=null!=t?t:null!=i?r(0,i):0:e<0&&(this.model.value=null!=i?i:null!=t?a(t,0):0):this.model.value=this.adjust_to_precision(this.model.value+e)}change_input(){super.change_input(),this.model.value_throttled=this.model.value}}i.SpinnerView=d,d.__name__=\"SpinnerView\";class p extends l.NumericInput{constructor(e){super(e)}static init_Spinner(){this.prototype.default_view=d,this.define((({Number:e,Nullable:t})=>({value_throttled:[t(e),null],step:[e,1],page_step_multiplier:[e,10],wheel_wait:[e,100]}))),this.override({mode:\"float\"})}}i.Spinner=p,p.__name__=\"Spinner\",p.init_Spinner()},\n", + " 462: function _(e,t,s,n,i){n();const r=e(1),o=e(425),p=e(43),c=r.__importStar(e(427));class l extends o.TextLikeInputView{connect_signals(){super.connect_signals(),this.connect(this.model.properties.rows.change,(()=>this.input_el.rows=this.model.rows)),this.connect(this.model.properties.cols.change,(()=>this.input_el.cols=this.model.cols))}_render_input(){this.input_el=p.textarea({class:c.input})}render(){super.render(),this.input_el.cols=this.model.cols,this.input_el.rows=this.model.rows}}s.TextAreaInputView=l,l.__name__=\"TextAreaInputView\";class _ extends o.TextLikeInput{constructor(e){super(e)}static init_TextAreaInput(){this.prototype.default_view=l,this.define((({Int:e})=>({cols:[e,20],rows:[e,2]}))),this.override({max_length:500})}}s.TextAreaInput=_,_.__name__=\"TextAreaInput\",_.init_TextAreaInput()},\n", + " 463: function _(e,t,i,s,c){s();const o=e(1),a=e(419),n=e(43),l=o.__importStar(e(328));class _ extends a.AbstractButtonView{connect_signals(){super.connect_signals(),this.connect(this.model.properties.active.change,(()=>this._update_active()))}render(){super.render(),this._update_active()}click(){this.model.active=!this.model.active,super.click()}_update_active(){n.classes(this.button_el).toggle(l.active,this.model.active)}}i.ToggleView=_,_.__name__=\"ToggleView\";class g extends a.AbstractButton{constructor(e){super(e)}static init_Toggle(){this.prototype.default_view=_,this.define((({Boolean:e})=>({active:[e,!1]}))),this.override({label:\"Toggle\"})}}i.Toggle=g,g.__name__=\"Toggle\",g.init_Toggle()},\n", + " }, 417, {\"models/widgets/main\":417,\"models/widgets/index\":418,\"models/widgets/abstract_button\":419,\"models/widgets/control\":420,\"models/widgets/widget\":488,\"models/widgets/abstract_icon\":422,\"models/widgets/autocomplete_input\":423,\"models/widgets/text_input\":424,\"models/widgets/text_like_input\":425,\"models/widgets/input_widget\":426,\"styles/widgets/inputs.css\":427,\"models/widgets/button\":428,\"models/widgets/checkbox_button_group\":429,\"models/widgets/button_group\":430,\"models/widgets/checkbox_group\":431,\"models/widgets/input_group\":432,\"models/widgets/color_picker\":433,\"models/widgets/date_picker\":434,\"styles/widgets/flatpickr.css\":436,\"models/widgets/date_range_slider\":437,\"models/widgets/abstract_slider\":438,\"styles/widgets/sliders.css\":440,\"styles/widgets/nouislider.css\":441,\"models/widgets/date_slider\":442,\"models/widgets/div\":443,\"models/widgets/markup\":444,\"styles/clearfix.css\":445,\"models/widgets/dropdown\":446,\"models/widgets/file_input\":447,\"models/widgets/multiselect\":448,\"models/widgets/paragraph\":449,\"models/widgets/password_input\":450,\"models/widgets/multichoice\":451,\"styles/widgets/choices.css\":453,\"models/widgets/numeric_input\":454,\"models/widgets/pretext\":455,\"models/widgets/radio_button_group\":456,\"models/widgets/radio_group\":457,\"models/widgets/range_slider\":458,\"models/widgets/selectbox\":459,\"models/widgets/slider\":460,\"models/widgets/spinner\":461,\"models/widgets/textarea_input\":462,\"models/widgets/toggle\":463}, {});});\n", + "\n", + " /* END bokeh-widgets.min.js */\n", + " },\n", + " \n", + " function(Bokeh) {\n", + " /* BEGIN bokeh-tables.min.js */\n", + " /*!\n", + " * Copyright (c) 2012 - 2021, Anaconda, Inc., and Bokeh Contributors\n", + " * All rights reserved.\n", + " * \n", + " * Redistribution and use in source and binary forms, with or without modification,\n", + " * are permitted provided that the following conditions are met:\n", + " * \n", + " * Redistributions of source code must retain the above copyright notice,\n", + " * this list of conditions and the following disclaimer.\n", + " * \n", + " * Redistributions in binary form must reproduce the above copyright notice,\n", + " * this list of conditions and the following disclaimer in the documentation\n", + " * and/or other materials provided with the distribution.\n", + " * \n", + " * Neither the name of Anaconda nor the names of any contributors\n", + " * may be used to endorse or promote products derived from this software\n", + " * without specific prior written permission.\n", + " * \n", + " * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS \"AS IS\"\n", + " * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE\n", + " * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE\n", + " * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE\n", + " * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR\n", + " * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF\n", + " * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS\n", + " * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN\n", + " * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)\n", + " * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF\n", + " * THE POSSIBILITY OF SUCH DAMAGE.\n", + " */\n", + " (function(root, factory) {\n", + " factory(root[\"Bokeh\"], \"2.3.1\");\n", + " })(this, function(Bokeh, version) {\n", + " var define;\n", + " return (function(modules, entry, aliases, externals) {\n", + " const bokeh = typeof Bokeh !== \"undefined\" && (version != null ? Bokeh[version] : Bokeh);\n", + " if (bokeh != null) {\n", + " return bokeh.register_plugin(modules, entry, aliases);\n", + " } else {\n", + " throw new Error(\"Cannot find Bokeh \" + version + \". You have to load it prior to loading plugins.\");\n", + " }\n", + " })\n", + " ({\n", + " 464: function _(t,e,o,r,s){r();const _=t(1).__importStar(t(465));o.Tables=_;t(7).register_models(_)},\n", + " 465: function _(g,a,r,e,t){e();const o=g(1);o.__exportStar(g(466),r),o.__exportStar(g(469),r),t(\"DataTable\",g(472).DataTable),t(\"TableColumn\",g(490).TableColumn),t(\"TableWidget\",g(489).TableWidget);var n=g(492);t(\"AvgAggregator\",n.AvgAggregator),t(\"MinAggregator\",n.MinAggregator),t(\"MaxAggregator\",n.MaxAggregator),t(\"SumAggregator\",n.SumAggregator);var A=g(493);t(\"GroupingInfo\",A.GroupingInfo),t(\"DataCube\",A.DataCube)},\n", + " 466: function _(e,t,i,s,r){s();const a=e(1),n=e(43),l=e(240),u=e(53),d=e(467),o=a.__importStar(e(468));class _ extends l.DOMView{constructor(e){const{model:t,parent:i}=e.column;super(Object.assign({model:t,parent:i},e)),this.args=e,this.initialize(),this.render()}get emptyValue(){return null}initialize(){super.initialize(),this.inputEl=this._createInput(),this.defaultValue=null}async lazy_initialize(){throw new Error(\"unsupported\")}css_classes(){return super.css_classes().concat(o.cell_editor)}render(){super.render(),this.args.container.append(this.el),this.el.appendChild(this.inputEl),this.renderEditor(),this.disableNavigation()}renderEditor(){}disableNavigation(){this.inputEl.addEventListener(\"keydown\",(e=>{switch(e.keyCode){case n.Keys.Left:case n.Keys.Right:case n.Keys.Up:case n.Keys.Down:case n.Keys.PageUp:case n.Keys.PageDown:e.stopImmediatePropagation()}}))}destroy(){this.remove()}focus(){this.inputEl.focus()}show(){}hide(){}position(){}getValue(){return this.inputEl.value}setValue(e){this.inputEl.value=e}serializeValue(){return this.getValue()}isValueChanged(){return!(\"\"==this.getValue()&&null==this.defaultValue)&&this.getValue()!==this.defaultValue}applyValue(e,t){const i=this.args.grid.getData(),s=i.index.indexOf(e[d.DTINDEX_NAME]);i.setField(s,this.args.column.field,t)}loadValue(e){const t=e[this.args.column.field];this.defaultValue=null!=t?t:this.emptyValue,this.setValue(this.defaultValue)}validateValue(e){if(this.args.column.validator){const t=this.args.column.validator(e);if(!t.valid)return t}return{valid:!0,msg:null}}validate(){return this.validateValue(this.getValue())}}i.CellEditorView=_,_.__name__=\"CellEditorView\";class c extends u.Model{}i.CellEditor=c,c.__name__=\"CellEditor\";class p extends _{get emptyValue(){return\"\"}_createInput(){return n.input({type:\"text\"})}renderEditor(){this.inputEl.focus(),this.inputEl.select()}loadValue(e){super.loadValue(e),this.inputEl.defaultValue=this.defaultValue,this.inputEl.select()}}i.StringEditorView=p,p.__name__=\"StringEditorView\";class h extends c{static init_StringEditor(){this.prototype.default_view=p,this.define((({String:e,Array:t})=>({completions:[t(e),[]]})))}}i.StringEditor=h,h.__name__=\"StringEditor\",h.init_StringEditor();class E extends _{_createInput(){return n.textarea()}renderEditor(){this.inputEl.focus(),this.inputEl.select()}}i.TextEditorView=E,E.__name__=\"TextEditorView\";class V extends c{static init_TextEditor(){this.prototype.default_view=E}}i.TextEditor=V,V.__name__=\"TextEditor\",V.init_TextEditor();class m extends _{_createInput(){return n.select()}renderEditor(){for(const e of this.model.options)this.inputEl.appendChild(n.option({value:e},e));this.focus()}}i.SelectEditorView=m,m.__name__=\"SelectEditorView\";class f extends c{static init_SelectEditor(){this.prototype.default_view=m,this.define((({String:e,Array:t})=>({options:[t(e),[]]})))}}i.SelectEditor=f,f.__name__=\"SelectEditor\",f.init_SelectEditor();class x extends _{_createInput(){return n.input({type:\"text\"})}}i.PercentEditorView=x,x.__name__=\"PercentEditorView\";class g extends c{static init_PercentEditor(){this.prototype.default_view=x}}i.PercentEditor=g,g.__name__=\"PercentEditor\",g.init_PercentEditor();class w extends _{_createInput(){return n.input({type:\"checkbox\"})}renderEditor(){this.focus()}loadValue(e){this.defaultValue=!!e[this.args.column.field],this.inputEl.checked=this.defaultValue}serializeValue(){return this.inputEl.checked}}i.CheckboxEditorView=w,w.__name__=\"CheckboxEditorView\";class v extends c{static init_CheckboxEditor(){this.prototype.default_view=w}}i.CheckboxEditor=v,v.__name__=\"CheckboxEditor\",v.init_CheckboxEditor();class y extends _{_createInput(){return n.input({type:\"text\"})}renderEditor(){this.inputEl.focus(),this.inputEl.select()}remove(){super.remove()}serializeValue(){var e;return null!==(e=parseInt(this.getValue(),10))&&void 0!==e?e:0}loadValue(e){super.loadValue(e),this.inputEl.defaultValue=this.defaultValue,this.inputEl.select()}validateValue(e){return isNaN(e)?{valid:!1,msg:\"Please enter a valid integer\"}:super.validateValue(e)}}i.IntEditorView=y,y.__name__=\"IntEditorView\";class I extends c{static init_IntEditor(){this.prototype.default_view=y,this.define((({Int:e})=>({step:[e,1]})))}}i.IntEditor=I,I.__name__=\"IntEditor\",I.init_IntEditor();class b extends _{_createInput(){return n.input({type:\"text\"})}renderEditor(){this.inputEl.focus(),this.inputEl.select()}remove(){super.remove()}serializeValue(){var e;return null!==(e=parseFloat(this.getValue()))&&void 0!==e?e:0}loadValue(e){super.loadValue(e),this.inputEl.defaultValue=this.defaultValue,this.inputEl.select()}validateValue(e){return isNaN(e)?{valid:!1,msg:\"Please enter a valid number\"}:super.validateValue(e)}}i.NumberEditorView=b,b.__name__=\"NumberEditorView\";class N extends c{static init_NumberEditor(){this.prototype.default_view=b,this.define((({Number:e})=>({step:[e,.01]})))}}i.NumberEditor=N,N.__name__=\"NumberEditor\",N.init_NumberEditor();class S extends _{_createInput(){return n.input({type:\"text\"})}}i.TimeEditorView=S,S.__name__=\"TimeEditorView\";class C extends c{static init_TimeEditor(){this.prototype.default_view=S}}i.TimeEditor=C,C.__name__=\"TimeEditor\",C.init_TimeEditor();class D extends _{_createInput(){return n.input({type:\"text\"})}get emptyValue(){return new Date}renderEditor(){this.inputEl.focus(),this.inputEl.select()}destroy(){super.destroy()}show(){super.show()}hide(){super.hide()}position(){return super.position()}getValue(){}setValue(e){}}i.DateEditorView=D,D.__name__=\"DateEditorView\";class T extends c{static init_DateEditor(){this.prototype.default_view=D}}i.DateEditor=T,T.__name__=\"DateEditor\",T.init_DateEditor()},\n", + " 467: function _(_,n,i,t,d){t(),i.DTINDEX_NAME=\"__bkdt_internal_index__\"},\n", + " 468: function _(e,l,o,t,r){t(),o.root=\"bk-root\",o.data_table=\"bk-data-table\",o.cell_special_defaults=\"bk-cell-special-defaults\",o.cell_select=\"bk-cell-select\",o.cell_index=\"bk-cell-index\",o.header_index=\"bk-header-index\",o.cell_editor=\"bk-cell-editor\",o.cell_editor_completion=\"bk-cell-editor-completion\",o.default='.bk-root .bk-data-table{box-sizing:content-box;font-size:11px;}.bk-root .bk-data-table input[type=\"checkbox\"]{margin-left:4px;margin-right:4px;}.bk-root .bk-cell-special-defaults{border-right-color:silver;border-right-style:solid;background:#f5f5f5;}.bk-root .bk-cell-select{border-right-color:silver;border-right-style:solid;background:#f5f5f5;}.bk-root .slick-cell.bk-cell-index{border-right-color:silver;border-right-style:solid;background:#f5f5f5;text-align:right;background:#f0f0f0;color:#909090;}.bk-root .bk-header-index .slick-column-name{float:right;}.bk-root .slick-row.selected .bk-cell-index{background-color:transparent;}.bk-root .slick-row.odd{background:#f0f0f0;}.bk-root .slick-cell{padding-left:4px;padding-right:4px;border-right-color:transparent;border:0.25px solid transparent;}.bk-root .slick-cell .bk{line-height:inherit;}.bk-root .slick-cell.active{border-style:dashed;}.bk-root .slick-cell.selected{background-color:#F0F8FF;}.bk-root .slick-cell.editable{padding-left:0;padding-right:0;}.bk-root .bk-cell-editor{display:contents;}.bk-root .bk-cell-editor input,.bk-root .bk-cell-editor select{width:100%;height:100%;border:0;margin:0;padding:0;outline:0;background:transparent;vertical-align:baseline;}.bk-root .bk-cell-editor input{padding-left:4px;padding-right:4px;}.bk-root .bk-cell-editor-completion{font-size:11px;}'},\n", + " 469: function _(t,e,r,a,n){a();const i=t(1),o=i.__importDefault(t(181)),s=i.__importStar(t(183)),l=t(470),c=t(43),m=t(20),u=t(8),_=t(34),F=t(22),d=t(53);class f extends d.Model{constructor(t){super(t)}doFormat(t,e,r,a,n){return null==r?\"\":(r+\"\").replace(/&/g,\"&\").replace(//g,\">\")}}r.CellFormatter=f,f.__name__=\"CellFormatter\";class h extends f{constructor(t){super(t)}static init_StringFormatter(){this.define((({Color:t,Nullable:e})=>({font_style:[m.FontStyle,\"normal\"],text_align:[m.TextAlign,\"left\"],text_color:[e(t),null]})))}doFormat(t,e,r,a,n){const{font_style:i,text_align:o,text_color:s}=this,l=c.div({},null==r?\"\":`${r}`);switch(i){case\"bold\":l.style.fontWeight=\"bold\";break;case\"italic\":l.style.fontStyle=\"italic\"}return null!=o&&(l.style.textAlign=o),null!=s&&(l.style.color=F.color2css(s)),l.outerHTML}}r.StringFormatter=h,h.__name__=\"StringFormatter\",h.init_StringFormatter();class g extends h{constructor(t){super(t)}static init_ScientificFormatter(){this.define((({Number:t,String:e,Nullable:r})=>({nan_format:[r(e),null],precision:[t,10],power_limit_high:[t,5],power_limit_low:[t,-3]})))}get scientific_limit_low(){return 10**this.power_limit_low}get scientific_limit_high(){return 10**this.power_limit_high}doFormat(t,e,r,a,n){const i=Math.abs(r)<=this.scientific_limit_low||Math.abs(r)>=this.scientific_limit_high;let o=this.precision;return o<1&&(o=1),r=null!=r&&!isNaN(r)||null==this.nan_format?0==r?_.to_fixed(r,1):i?r.toExponential(o):_.to_fixed(r,o):this.nan_format,super.doFormat(t,e,r,a,n)}}r.ScientificFormatter=g,g.__name__=\"ScientificFormatter\",g.init_ScientificFormatter();class p extends h{constructor(t){super(t)}static init_NumberFormatter(){this.define((({String:t,Nullable:e})=>({format:[t,\"0,0\"],language:[t,\"en\"],rounding:[m.RoundingFunction,\"round\"],nan_format:[e(t),null]})))}doFormat(t,e,r,a,n){const{format:i,language:o,nan_format:l}=this,c=(()=>{switch(this.rounding){case\"round\":case\"nearest\":return Math.round;case\"floor\":case\"rounddown\":return Math.floor;case\"ceil\":case\"roundup\":return Math.ceil}})();return r=null!=r&&!isNaN(r)||null==l?s.format(r,i,o,c):l,super.doFormat(t,e,r,a,n)}}r.NumberFormatter=p,p.__name__=\"NumberFormatter\",p.init_NumberFormatter();class S extends f{constructor(t){super(t)}static init_BooleanFormatter(){this.define((({String:t})=>({icon:[t,\"check\"]})))}doFormat(t,e,r,a,n){return r?c.i({class:this.icon}).outerHTML:\"\"}}r.BooleanFormatter=S,S.__name__=\"BooleanFormatter\",S.init_BooleanFormatter();class b extends h{constructor(t){super(t)}static init_DateFormatter(){this.define((({String:t,Nullable:e})=>({format:[t,\"ISO-8601\"],nan_format:[e(t),null]})))}getFormat(){switch(this.format){case\"ATOM\":case\"W3C\":case\"RFC-3339\":case\"ISO-8601\":return\"%Y-%m-%d\";case\"COOKIE\":return\"%a, %d %b %Y\";case\"RFC-850\":return\"%A, %d-%b-%y\";case\"RFC-1123\":case\"RFC-2822\":return\"%a, %e %b %Y\";case\"RSS\":case\"RFC-822\":case\"RFC-1036\":return\"%a, %e %b %y\";case\"TIMESTAMP\":return;default:return this.format}}doFormat(t,e,r,a,n){const{nan_format:i}=this;let s;return s=null!=(r=u.isString(r)?parseInt(r,10):r)&&!isNaN(r)&&-9223372036854776!==r||null==i?null==r?\"\":o.default(r,this.getFormat()):i,super.doFormat(t,e,s,a,n)}}r.DateFormatter=b,b.__name__=\"DateFormatter\",b.init_DateFormatter();class x extends f{constructor(t){super(t)}static init_HTMLTemplateFormatter(){this.define((({String:t})=>({template:[t,\"<%= value %>\"]})))}doFormat(t,e,r,a,n){const{template:i}=this;if(null==r)return\"\";return l._.template(i)(Object.assign(Object.assign({},n),{value:r}))}}r.HTMLTemplateFormatter=x,x.__name__=\"HTMLTemplateFormatter\",x.init_HTMLTemplateFormatter()},\n", + " 470: function _(e,n,t,f,i){var o=e(471),d=o.template;function r(e,n,t){return d(e,n,t)}r._=o,n.exports=r,\"function\"==typeof define&&define.amd?define((function(){return r})):\"undefined\"==typeof window&&\"undefined\"==typeof navigator||(window.UnderscoreTemplate=r)},\n", + " 471: function _(r,e,n,t,a){\n", + " // (c) 2009-2013 Jeremy Ashkenas, DocumentCloud and Investigative Reporters & Editors\n", + " // Underscore may be freely distributed under the MIT license.\n", + " var u={},c=Array.prototype,o=Object.prototype,l=c.slice,i=o.toString,f=o.hasOwnProperty,s=c.forEach,p=Object.keys,_=Array.isArray,h=function(){},v=h.each=h.forEach=function(r,e,n){if(null!=r)if(s&&r.forEach===s)r.forEach(e,n);else if(r.length===+r.length){for(var t=0,a=r.length;t\":\">\",'\"':\""\",\"'\":\"'\"}},y={escape:new RegExp(\"[\"+h.keys(g.escape).join(\"\")+\"]\",\"g\")};h.each([\"escape\"],(function(r){h[r]=function(e){return null==e?\"\":(\"\"+e).replace(y[r],(function(e){return g[r][e]}))}})),h.templateSettings={evaluate:/<%([\\s\\S]+?)%>/g,interpolate:/<%=([\\s\\S]+?)%>/g,escape:/<%-([\\s\\S]+?)%>/g};var j=/(.)^/,b={\"'\":\"'\",\"\\\\\":\"\\\\\",\"\\r\":\"r\",\"\\n\":\"n\",\"\\t\":\"t\",\"\\u2028\":\"u2028\",\"\\u2029\":\"u2029\"},w=/\\\\|'|\\r|\\n|\\t|\\u2028|\\u2029/g;h.template=function(r,e,n){var t;n=h.defaults({},n,h.templateSettings);var a=new RegExp([(n.escape||j).source,(n.interpolate||j).source,(n.evaluate||j).source].join(\"|\")+\"|$\",\"g\"),u=0,c=\"__p+='\";r.replace(a,(function(e,n,t,a,o){return c+=r.slice(u,o).replace(w,(function(r){return\"\\\\\"+b[r]})),n&&(c+=\"'+\\n((__t=(\"+n+\"))==null?'':_.escape(__t))+\\n'\"),t&&(c+=\"'+\\n((__t=(\"+t+\"))==null?'':__t)+\\n'\"),a&&(c+=\"';\\n\"+a+\"\\n__p+='\"),u=o+e.length,e})),c+=\"';\\n\",n.variable||(c=\"with(obj||{}){\\n\"+c+\"}\\n\"),c=\"var __t,__p='',__j=Array.prototype.join,print=function(){__p+=__j.call(arguments,'');};\\n\"+c+\"return __p;\\n\";try{t=new Function(n.variable||\"obj\",\"_\",c)}catch(r){throw r.source=c,r}if(e)return t(e,h);var o=function(r){return t.call(this,r,h)};return o.source=\"function(\"+(n.variable||\"obj\")+\"){\\n\"+c+\"}\",o},e.exports=h},\n", + " 472: function _(e,t,i,s,o){s();const n=e(1),l=e(473),r=e(477),d=e(478),a=e(479),h=e(34),u=e(8),c=e(9),_=e(13),m=e(19),g=e(488),p=e(467),f=e(489),b=e(490),w=n.__importStar(e(468)),x=w,C=n.__importDefault(e(491));i.AutosizeModes={fit_columns:\"FCV\",fit_viewport:\"FVC\",force_fit:\"LFF\",none:\"NOA\"};let z=!1;class v{constructor(e,t){this.init(e,t)}init(e,t){if(p.DTINDEX_NAME in e.data)throw new Error(`special name ${p.DTINDEX_NAME} cannot be used as a data table column`);this.source=e,this.view=t,this.index=[...this.view.indices]}getLength(){return this.index.length}getItem(e){const t={};for(const i of _.keys(this.source.data))t[i]=this.source.data[i][this.index[e]];return t[p.DTINDEX_NAME]=this.index[e],t}getField(e,t){return t==p.DTINDEX_NAME?this.index[e]:this.source.data[t][this.index[e]]}setField(e,t,i){const s=this.index[e];this.source.patch({[t]:[[s,i]]})}getRecords(){return c.range(0,this.getLength()).map((e=>this.getItem(e)))}getItems(){return this.getRecords()}slice(e,t,i){return e=null!=e?e:0,t=null!=t?t:this.getLength(),i=null!=i?i:1,c.range(e,t,i).map((e=>this.getItem(e)))}sort(e){let t=e.map((e=>[e.sortCol.field,e.sortAsc?1:-1]));0==t.length&&(t=[[p.DTINDEX_NAME,1]]);const i=this.getRecords(),s=this.index.slice();this.index.sort(((e,o)=>{for(const[n,l]of t){const t=i[s.indexOf(e)][n],r=i[s.indexOf(o)][n];if(t!==r)return u.isNumber(t)&&u.isNumber(r)?l*(t-r||+isNaN(t)-+isNaN(r)):`${t}`>`${r}`?l:-l}return 0}))}}i.TableDataProvider=v,v.__name__=\"TableDataProvider\";class A extends g.WidgetView{constructor(){super(...arguments),this._in_selection_update=!1,this._width=null}connect_signals(){super.connect_signals(),this.connect(this.model.change,(()=>this.render())),this.connect(this.model.source.streaming,(()=>this.updateGrid())),this.connect(this.model.source.patching,(()=>this.updateGrid())),this.connect(this.model.source.change,(()=>this.updateGrid())),this.connect(this.model.source.properties.data.change,(()=>this.updateGrid())),this.connect(this.model.source.selected.change,(()=>this.updateSelection())),this.connect(this.model.source.selected.properties.indices.change,(()=>this.updateSelection()))}remove(){var e;null===(e=this.grid)||void 0===e||e.destroy(),super.remove()}styles(){return[...super.styles(),C.default,w.default]}update_position(){super.update_position(),this.grid.resizeCanvas()}after_layout(){super.after_layout(),this.updateLayout(!0,!1)}box_sizing(){const e=super.box_sizing();return\"fit_viewport\"===this.model.autosize_mode&&null!=this._width&&(e.width=this._width),e}updateLayout(e,t){const s=this.autosize;s===i.AutosizeModes.fit_columns||s===i.AutosizeModes.force_fit?(e||this.grid.resizeCanvas(),this.grid.autosizeColumns()):e&&t&&s===i.AutosizeModes.fit_viewport&&this.invalidate_layout()}updateGrid(){if(this.model.view.compute_indices(),this.data.init(this.model.source,this.model.view),this.model.sortable){const e=this.grid.getColumns(),t=this.grid.getSortColumns().map((t=>({sortCol:{field:e[this.grid.getColumnIndex(t.columnId)].field},sortAsc:t.sortAsc})));this.data.sort(t)}this.grid.invalidate(),this.updateLayout(!0,!0)}updateSelection(){if(this._in_selection_update)return;const{selected:e}=this.model.source,t=e.indices.map((e=>this.data.index.indexOf(e))).sort();this._in_selection_update=!0,this.grid.setSelectedRows(t),this._in_selection_update=!1;const i=this.grid.getViewport(),s=this.model.get_scroll_index(i,t);null!=s&&this.grid.scrollRowToTop(s)}newIndexColumn(){return{id:h.uniqueId(),name:this.model.index_header,field:p.DTINDEX_NAME,width:this.model.index_width,behavior:\"select\",cannotTriggerInsert:!0,resizable:!1,selectable:!1,sortable:!0,cssClass:x.cell_index,headerCssClass:x.header_index}}css_classes(){return super.css_classes().concat(x.data_table)}get autosize(){let e;return e=!0===this.model.fit_columns?i.AutosizeModes.force_fit:!1===this.model.fit_columns?i.AutosizeModes.none:i.AutosizeModes[this.model.autosize_mode],e}render(){var e;const t=this.model.columns.map((e=>Object.assign(Object.assign({},e.toColumn()),{parent:this})));let s=null;if(\"checkbox\"==this.model.selectable&&(s=new r.CheckboxSelectColumn({cssClass:x.cell_select}),t.unshift(s.getColumnDefinition())),null!=this.model.index_position){const e=this.model.index_position,i=this.newIndexColumn();-1==e?t.push(i):e<-1?t.splice(e+1,0,i):t.splice(e,0,i)}let{reorderable:o}=this.model;!o||\"undefined\"!=typeof $&&null!=$.fn&&null!=$.fn.sortable||(z||(m.logger.warn(\"jquery-ui is required to enable DataTable.reorderable\"),z=!0),o=!1);let n=-1,h=!1;const{frozen_rows:c,frozen_columns:_}=this.model,g=null==_?-1:_-1;null!=c&&(h=c<0,n=Math.abs(c));const p={enableCellNavigation:!1!==this.model.selectable,enableColumnReorder:o,autosizeColsMode:this.autosize,multiColumnSort:this.model.sortable,editable:this.model.editable,autoEdit:this.model.auto_edit,autoHeight:!1,rowHeight:this.model.row_height,frozenColumn:g,frozenRow:n,frozenBottom:h},f=null!=this.grid;if(this.data=new v(this.model.source,this.model.view),this.grid=new a.Grid(this.el,this.data,t,p),this.autosize==i.AutosizeModes.fit_viewport){this.grid.autosizeColumns();let i=0;for(const s of t)i+=null!==(e=s.width)&&void 0!==e?e:0;this._width=Math.ceil(i)}if(this.grid.onSort.subscribe(((e,t)=>{if(!this.model.sortable)return;const i=t.sortCols;null!=i&&(this.data.sort(i),this.grid.invalidate(),this.updateSelection(),this.grid.render(),this.model.header_row||this._hide_header(),this.model.update_sort_columns(i))})),!1!==this.model.selectable){this.grid.setSelectionModel(new l.RowSelectionModel({selectActiveRow:null==s})),null!=s&&this.grid.registerPlugin(s);const e={dataItemColumnValueExtractor(e,t){let i=e[t.field];return u.isString(i)&&(i=i.replace(/\\n/g,\"\\\\n\")),i},includeHeaderWhenCopying:!1};this.grid.registerPlugin(new d.CellExternalCopyManager(e)),this.grid.onSelectedRowsChanged.subscribe(((e,t)=>{this._in_selection_update||(this.model.source.selected.indices=t.rows.map((e=>this.data.index[e])))})),this.updateSelection(),this.model.header_row||this._hide_header()}f&&this.updateLayout(f,!1)}_hide_header(){for(const e of this.el.querySelectorAll(\".slick-header-columns\"))e.style.height=\"0px\";this.grid.resizeCanvas()}}i.DataTableView=A,A.__name__=\"DataTableView\";class D extends f.TableWidget{constructor(e){super(e),this._sort_columns=[]}get sort_columns(){return this._sort_columns}static init_DataTable(){this.prototype.default_view=A,this.define((({Array:e,Boolean:t,Int:i,Ref:s,String:o,Enum:n,Or:l,Nullable:r})=>({autosize_mode:[n(\"fit_columns\",\"fit_viewport\",\"none\",\"force_fit\"),\"force_fit\"],auto_edit:[t,!1],columns:[e(s(b.TableColumn)),[]],fit_columns:[r(t),null],frozen_columns:[r(i),null],frozen_rows:[r(i),null],sortable:[t,!0],reorderable:[t,!0],editable:[t,!1],selectable:[l(t,n(\"checkbox\")),!0],index_position:[r(i),0],index_header:[o,\"#\"],index_width:[i,40],scroll_to_selection:[t,!0],header_row:[t,!0],row_height:[i,25]}))),this.override({width:600,height:400})}update_sort_columns(e){this._sort_columns=e.map((({sortCol:e,sortAsc:t})=>({field:e.field,sortAsc:t})))}get_scroll_index(e,t){return this.scroll_to_selection&&0!=t.length?c.some(t,(t=>e.top<=t&&t<=e.bottom))?null:Math.max(0,Math.min(...t)-1):null}}i.DataTable=D,D.__name__=\"DataTable\",D.init_DataTable()},\n", + " 473: function _(e,t,n,o,r){var l=e(474),i=e(476);t.exports={RowSelectionModel:function(e){var t,n,o,r=[],c=this,u=new i.EventHandler,s={selectActiveRow:!0};function a(e){return function(){n||(n=!0,e.apply(this,arguments),n=!1)}}function f(e){for(var t=[],n=0;n=0&&r0&&t-1 in e)}w.fn=w.prototype={jquery:b,constructor:w,length:0,toArray:function(){return i.call(this)},get:function(e){return null==e?i.call(this):e<0?this[e+this.length]:this[e]},pushStack:function(e){var t=w.merge(this.constructor(),e);return t.prevObject=this,t},each:function(e){return w.each(this,e)},map:function(e){return this.pushStack(w.map(this,(function(t,n){return e.call(t,n,t)})))},slice:function(){return this.pushStack(i.apply(this,arguments))},first:function(){return this.eq(0)},last:function(){return this.eq(-1)},even:function(){return this.pushStack(w.grep(this,(function(e,t){return(t+1)%2})))},odd:function(){return this.pushStack(w.grep(this,(function(e,t){return t%2})))},eq:function(e){var t=this.length,n=+e+(e<0?t:0);return this.pushStack(n>=0&&n+~]|[\\\\x20\\\\t\\\\r\\\\n\\\\f])[\\\\x20\\\\t\\\\r\\\\n\\\\f]*\"),U=new RegExp(M+\"|>\"),X=new RegExp(F),V=new RegExp(\"^\"+I+\"$\"),G={ID:new RegExp(\"^#(\"+I+\")\"),CLASS:new RegExp(\"^\\\\.(\"+I+\")\"),TAG:new RegExp(\"^(\"+I+\"|[*])\"),ATTR:new RegExp(\"^\"+W),PSEUDO:new RegExp(\"^\"+F),CHILD:new RegExp(\"^:(only|first|last|nth|nth-last)-(child|of-type)(?:\\\\([\\\\x20\\\\t\\\\r\\\\n\\\\f]*(even|odd|(([+-]|)(\\\\d*)n|)[\\\\x20\\\\t\\\\r\\\\n\\\\f]*(?:([+-]|)[\\\\x20\\\\t\\\\r\\\\n\\\\f]*(\\\\d+)|))[\\\\x20\\\\t\\\\r\\\\n\\\\f]*\\\\)|)\",\"i\"),bool:new RegExp(\"^(?:\"+R+\")$\",\"i\"),needsContext:new RegExp(\"^[\\\\x20\\\\t\\\\r\\\\n\\\\f]*[>+~]|:(even|odd|eq|gt|lt|nth|first|last)(?:\\\\([\\\\x20\\\\t\\\\r\\\\n\\\\f]*((?:-\\\\d)?\\\\d*)[\\\\x20\\\\t\\\\r\\\\n\\\\f]*\\\\)|)(?=[^-]|$)\",\"i\")},Y=/HTML$/i,Q=/^(?:input|select|textarea|button)$/i,J=/^h\\d$/i,K=/^[^{]+\\{\\s*\\[native \\w/,Z=/^(?:#([\\w-]+)|(\\w+)|\\.([\\w-]+))$/,ee=/[+~]/,te=new RegExp(\"\\\\\\\\[\\\\da-fA-F]{1,6}[\\\\x20\\\\t\\\\r\\\\n\\\\f]?|\\\\\\\\([^\\\\r\\\\n\\\\f])\",\"g\"),ne=function(e,t){var n=\"0x\"+e.slice(1)-65536;return t||(n<0?String.fromCharCode(n+65536):String.fromCharCode(n>>10|55296,1023&n|56320))},re=/([\\0-\\x1f\\x7f]|^-?\\d)|^-$|[^\\0-\\x1f\\x7f-\\uFFFF\\w-]/g,ie=function(e,t){return t?\"\\0\"===e?\"οΏ½\":e.slice(0,-1)+\"\\\\\"+e.charCodeAt(e.length-1).toString(16)+\" \":\"\\\\\"+e},oe=function(){p()},ae=be((function(e){return!0===e.disabled&&\"fieldset\"===e.nodeName.toLowerCase()}),{dir:\"parentNode\",next:\"legend\"});try{H.apply(j=O.call(w.childNodes),w.childNodes),j[w.childNodes.length].nodeType}catch(e){H={apply:j.length?function(e,t){L.apply(e,O.call(t))}:function(e,t){for(var n=e.length,r=0;e[n++]=t[r++];);e.length=n-1}}}function se(e,t,r,i){var o,s,l,c,f,h,y,m=t&&t.ownerDocument,w=t?t.nodeType:9;if(r=r||[],\"string\"!=typeof e||!e||1!==w&&9!==w&&11!==w)return r;if(!i&&(p(t),t=t||d,g)){if(11!==w&&(f=Z.exec(e)))if(o=f[1]){if(9===w){if(!(l=t.getElementById(o)))return r;if(l.id===o)return r.push(l),r}else if(m&&(l=m.getElementById(o))&&x(t,l)&&l.id===o)return r.push(l),r}else{if(f[2])return H.apply(r,t.getElementsByTagName(e)),r;if((o=f[3])&&n.getElementsByClassName&&t.getElementsByClassName)return H.apply(r,t.getElementsByClassName(o)),r}if(n.qsa&&!A[e+\" \"]&&(!v||!v.test(e))&&(1!==w||\"object\"!==t.nodeName.toLowerCase())){if(y=e,m=t,1===w&&(U.test(e)||z.test(e))){for((m=ee.test(e)&&ye(t.parentNode)||t)===t&&n.scope||((c=t.getAttribute(\"id\"))?c=c.replace(re,ie):t.setAttribute(\"id\",c=b)),s=(h=a(e)).length;s--;)h[s]=(c?\"#\"+c:\":scope\")+\" \"+xe(h[s]);y=h.join(\",\")}try{return H.apply(r,m.querySelectorAll(y)),r}catch(t){A(e,!0)}finally{c===b&&t.removeAttribute(\"id\")}}}return u(e.replace($,\"$1\"),t,r,i)}function ue(){var e=[];return function t(n,i){return e.push(n+\" \")>r.cacheLength&&delete t[e.shift()],t[n+\" \"]=i}}function le(e){return e[b]=!0,e}function ce(e){var t=d.createElement(\"fieldset\");try{return!!e(t)}catch(e){return!1}finally{t.parentNode&&t.parentNode.removeChild(t),t=null}}function fe(e,t){for(var n=e.split(\"|\"),i=n.length;i--;)r.attrHandle[n[i]]=t}function pe(e,t){var n=t&&e,r=n&&1===e.nodeType&&1===t.nodeType&&e.sourceIndex-t.sourceIndex;if(r)return r;if(n)for(;n=n.nextSibling;)if(n===t)return-1;return e?1:-1}function de(e){return function(t){return\"input\"===t.nodeName.toLowerCase()&&t.type===e}}function he(e){return function(t){var n=t.nodeName.toLowerCase();return(\"input\"===n||\"button\"===n)&&t.type===e}}function ge(e){return function(t){return\"form\"in t?t.parentNode&&!1===t.disabled?\"label\"in t?\"label\"in t.parentNode?t.parentNode.disabled===e:t.disabled===e:t.isDisabled===e||t.isDisabled!==!e&&ae(t)===e:t.disabled===e:\"label\"in t&&t.disabled===e}}function ve(e){return le((function(t){return t=+t,le((function(n,r){for(var i,o=e([],n.length,t),a=o.length;a--;)n[i=o[a]]&&(n[i]=!(r[i]=n[i]))}))}))}function ye(e){return e&&void 0!==e.getElementsByTagName&&e}for(t in n=se.support={},o=se.isXML=function(e){var t=e.namespaceURI,n=(e.ownerDocument||e).documentElement;return!Y.test(t||n&&n.nodeName||\"HTML\")},p=se.setDocument=function(e){var t,i,a=e?e.ownerDocument||e:w;return a!=d&&9===a.nodeType&&a.documentElement?(h=(d=a).documentElement,g=!o(d),w!=d&&(i=d.defaultView)&&i.top!==i&&(i.addEventListener?i.addEventListener(\"unload\",oe,!1):i.attachEvent&&i.attachEvent(\"onunload\",oe)),n.scope=ce((function(e){return h.appendChild(e).appendChild(d.createElement(\"div\")),void 0!==e.querySelectorAll&&!e.querySelectorAll(\":scope fieldset div\").length})),n.attributes=ce((function(e){return e.className=\"i\",!e.getAttribute(\"className\")})),n.getElementsByTagName=ce((function(e){return e.appendChild(d.createComment(\"\")),!e.getElementsByTagName(\"*\").length})),n.getElementsByClassName=K.test(d.getElementsByClassName),n.getById=ce((function(e){return h.appendChild(e).id=b,!d.getElementsByName||!d.getElementsByName(b).length})),n.getById?(r.filter.ID=function(e){var t=e.replace(te,ne);return function(e){return e.getAttribute(\"id\")===t}},r.find.ID=function(e,t){if(void 0!==t.getElementById&&g){var n=t.getElementById(e);return n?[n]:[]}}):(r.filter.ID=function(e){var t=e.replace(te,ne);return function(e){var n=void 0!==e.getAttributeNode&&e.getAttributeNode(\"id\");return n&&n.value===t}},r.find.ID=function(e,t){if(void 0!==t.getElementById&&g){var n,r,i,o=t.getElementById(e);if(o){if((n=o.getAttributeNode(\"id\"))&&n.value===e)return[o];for(i=t.getElementsByName(e),r=0;o=i[r++];)if((n=o.getAttributeNode(\"id\"))&&n.value===e)return[o]}return[]}}),r.find.TAG=n.getElementsByTagName?function(e,t){return void 0!==t.getElementsByTagName?t.getElementsByTagName(e):n.qsa?t.querySelectorAll(e):void 0}:function(e,t){var n,r=[],i=0,o=t.getElementsByTagName(e);if(\"*\"===e){for(;n=o[i++];)1===n.nodeType&&r.push(n);return r}return o},r.find.CLASS=n.getElementsByClassName&&function(e,t){if(void 0!==t.getElementsByClassName&&g)return t.getElementsByClassName(e)},y=[],v=[],(n.qsa=K.test(d.querySelectorAll))&&(ce((function(e){var t;h.appendChild(e).innerHTML=\"\",e.querySelectorAll(\"[msallowcapture^='']\").length&&v.push(\"[*^$]=[\\\\x20\\\\t\\\\r\\\\n\\\\f]*(?:''|\\\"\\\")\"),e.querySelectorAll(\"[selected]\").length||v.push(\"\\\\[[\\\\x20\\\\t\\\\r\\\\n\\\\f]*(?:value|\"+R+\")\"),e.querySelectorAll(\"[id~=\"+b+\"-]\").length||v.push(\"~=\"),(t=d.createElement(\"input\")).setAttribute(\"name\",\"\"),e.appendChild(t),e.querySelectorAll(\"[name='']\").length||v.push(\"\\\\[[\\\\x20\\\\t\\\\r\\\\n\\\\f]*name[\\\\x20\\\\t\\\\r\\\\n\\\\f]*=[\\\\x20\\\\t\\\\r\\\\n\\\\f]*(?:''|\\\"\\\")\"),e.querySelectorAll(\":checked\").length||v.push(\":checked\"),e.querySelectorAll(\"a#\"+b+\"+*\").length||v.push(\".#.+[+~]\"),e.querySelectorAll(\"\\\\\\f\"),v.push(\"[\\\\r\\\\n\\\\f]\")})),ce((function(e){e.innerHTML=\"\";var t=d.createElement(\"input\");t.setAttribute(\"type\",\"hidden\"),e.appendChild(t).setAttribute(\"name\",\"D\"),e.querySelectorAll(\"[name=d]\").length&&v.push(\"name[\\\\x20\\\\t\\\\r\\\\n\\\\f]*[*^$|!~]?=\"),2!==e.querySelectorAll(\":enabled\").length&&v.push(\":enabled\",\":disabled\"),h.appendChild(e).disabled=!0,2!==e.querySelectorAll(\":disabled\").length&&v.push(\":enabled\",\":disabled\"),e.querySelectorAll(\"*,:x\"),v.push(\",.*:\")}))),(n.matchesSelector=K.test(m=h.matches||h.webkitMatchesSelector||h.mozMatchesSelector||h.oMatchesSelector||h.msMatchesSelector))&&ce((function(e){n.disconnectedMatch=m.call(e,\"*\"),m.call(e,\"[s!='']:x\"),y.push(\"!=\",F)})),v=v.length&&new RegExp(v.join(\"|\")),y=y.length&&new RegExp(y.join(\"|\")),t=K.test(h.compareDocumentPosition),x=t||K.test(h.contains)?function(e,t){var n=9===e.nodeType?e.documentElement:e,r=t&&t.parentNode;return e===r||!(!r||1!==r.nodeType||!(n.contains?n.contains(r):e.compareDocumentPosition&&16&e.compareDocumentPosition(r)))}:function(e,t){if(t)for(;t=t.parentNode;)if(t===e)return!0;return!1},N=t?function(e,t){if(e===t)return f=!0,0;var r=!e.compareDocumentPosition-!t.compareDocumentPosition;return r||(1&(r=(e.ownerDocument||e)==(t.ownerDocument||t)?e.compareDocumentPosition(t):1)||!n.sortDetached&&t.compareDocumentPosition(e)===r?e==d||e.ownerDocument==w&&x(w,e)?-1:t==d||t.ownerDocument==w&&x(w,t)?1:c?P(c,e)-P(c,t):0:4&r?-1:1)}:function(e,t){if(e===t)return f=!0,0;var n,r=0,i=e.parentNode,o=t.parentNode,a=[e],s=[t];if(!i||!o)return e==d?-1:t==d?1:i?-1:o?1:c?P(c,e)-P(c,t):0;if(i===o)return pe(e,t);for(n=e;n=n.parentNode;)a.unshift(n);for(n=t;n=n.parentNode;)s.unshift(n);for(;a[r]===s[r];)r++;return r?pe(a[r],s[r]):a[r]==w?-1:s[r]==w?1:0},d):d},se.matches=function(e,t){return se(e,null,null,t)},se.matchesSelector=function(e,t){if(p(e),n.matchesSelector&&g&&!A[t+\" \"]&&(!y||!y.test(t))&&(!v||!v.test(t)))try{var r=m.call(e,t);if(r||n.disconnectedMatch||e.document&&11!==e.document.nodeType)return r}catch(e){A(t,!0)}return se(t,d,null,[e]).length>0},se.contains=function(e,t){return(e.ownerDocument||e)!=d&&p(e),x(e,t)},se.attr=function(e,t){(e.ownerDocument||e)!=d&&p(e);var i=r.attrHandle[t.toLowerCase()],o=i&&D.call(r.attrHandle,t.toLowerCase())?i(e,t,!g):void 0;return void 0!==o?o:n.attributes||!g?e.getAttribute(t):(o=e.getAttributeNode(t))&&o.specified?o.value:null},se.escape=function(e){return(e+\"\").replace(re,ie)},se.error=function(e){throw new Error(\"Syntax error, unrecognized expression: \"+e)},se.uniqueSort=function(e){var t,r=[],i=0,o=0;if(f=!n.detectDuplicates,c=!n.sortStable&&e.slice(0),e.sort(N),f){for(;t=e[o++];)t===e[o]&&(i=r.push(o));for(;i--;)e.splice(r[i],1)}return c=null,e},i=se.getText=function(e){var t,n=\"\",r=0,o=e.nodeType;if(o){if(1===o||9===o||11===o){if(\"string\"==typeof e.textContent)return e.textContent;for(e=e.firstChild;e;e=e.nextSibling)n+=i(e)}else if(3===o||4===o)return e.nodeValue}else for(;t=e[r++];)n+=i(t);return n},(r=se.selectors={cacheLength:50,createPseudo:le,match:G,attrHandle:{},find:{},relative:{\">\":{dir:\"parentNode\",first:!0},\" \":{dir:\"parentNode\"},\"+\":{dir:\"previousSibling\",first:!0},\"~\":{dir:\"previousSibling\"}},preFilter:{ATTR:function(e){return e[1]=e[1].replace(te,ne),e[3]=(e[3]||e[4]||e[5]||\"\").replace(te,ne),\"~=\"===e[2]&&(e[3]=\" \"+e[3]+\" \"),e.slice(0,4)},CHILD:function(e){return e[1]=e[1].toLowerCase(),\"nth\"===e[1].slice(0,3)?(e[3]||se.error(e[0]),e[4]=+(e[4]?e[5]+(e[6]||1):2*(\"even\"===e[3]||\"odd\"===e[3])),e[5]=+(e[7]+e[8]||\"odd\"===e[3])):e[3]&&se.error(e[0]),e},PSEUDO:function(e){var t,n=!e[6]&&e[2];return G.CHILD.test(e[0])?null:(e[3]?e[2]=e[4]||e[5]||\"\":n&&X.test(n)&&(t=a(n,!0))&&(t=n.indexOf(\")\",n.length-t)-n.length)&&(e[0]=e[0].slice(0,t),e[2]=n.slice(0,t)),e.slice(0,3))}},filter:{TAG:function(e){var t=e.replace(te,ne).toLowerCase();return\"*\"===e?function(){return!0}:function(e){return e.nodeName&&e.nodeName.toLowerCase()===t}},CLASS:function(e){var t=E[e+\" \"];return t||(t=new RegExp(\"(^|[\\\\x20\\\\t\\\\r\\\\n\\\\f])\"+e+\"(\"+M+\"|$)\"))&&E(e,(function(e){return t.test(\"string\"==typeof e.className&&e.className||void 0!==e.getAttribute&&e.getAttribute(\"class\")||\"\")}))},ATTR:function(e,t,n){return function(r){var i=se.attr(r,e);return null==i?\"!=\"===t:!t||(i+=\"\",\"=\"===t?i===n:\"!=\"===t?i!==n:\"^=\"===t?n&&0===i.indexOf(n):\"*=\"===t?n&&i.indexOf(n)>-1:\"$=\"===t?n&&i.slice(-n.length)===n:\"~=\"===t?(\" \"+i.replace(B,\" \")+\" \").indexOf(n)>-1:\"|=\"===t&&(i===n||i.slice(0,n.length+1)===n+\"-\"))}},CHILD:function(e,t,n,r,i){var o=\"nth\"!==e.slice(0,3),a=\"last\"!==e.slice(-4),s=\"of-type\"===t;return 1===r&&0===i?function(e){return!!e.parentNode}:function(t,n,u){var l,c,f,p,d,h,g=o!==a?\"nextSibling\":\"previousSibling\",v=t.parentNode,y=s&&t.nodeName.toLowerCase(),m=!u&&!s,x=!1;if(v){if(o){for(;g;){for(p=t;p=p[g];)if(s?p.nodeName.toLowerCase()===y:1===p.nodeType)return!1;h=g=\"only\"===e&&!h&&\"nextSibling\"}return!0}if(h=[a?v.firstChild:v.lastChild],a&&m){for(x=(d=(l=(c=(f=(p=v)[b]||(p[b]={}))[p.uniqueID]||(f[p.uniqueID]={}))[e]||[])[0]===T&&l[1])&&l[2],p=d&&v.childNodes[d];p=++d&&p&&p[g]||(x=d=0)||h.pop();)if(1===p.nodeType&&++x&&p===t){c[e]=[T,d,x];break}}else if(m&&(x=d=(l=(c=(f=(p=t)[b]||(p[b]={}))[p.uniqueID]||(f[p.uniqueID]={}))[e]||[])[0]===T&&l[1]),!1===x)for(;(p=++d&&p&&p[g]||(x=d=0)||h.pop())&&((s?p.nodeName.toLowerCase()!==y:1!==p.nodeType)||!++x||(m&&((c=(f=p[b]||(p[b]={}))[p.uniqueID]||(f[p.uniqueID]={}))[e]=[T,x]),p!==t)););return(x-=i)===r||x%r==0&&x/r>=0}}},PSEUDO:function(e,t){var n,i=r.pseudos[e]||r.setFilters[e.toLowerCase()]||se.error(\"unsupported pseudo: \"+e);return i[b]?i(t):i.length>1?(n=[e,e,\"\",t],r.setFilters.hasOwnProperty(e.toLowerCase())?le((function(e,n){for(var r,o=i(e,t),a=o.length;a--;)e[r=P(e,o[a])]=!(n[r]=o[a])})):function(e){return i(e,0,n)}):i}},pseudos:{not:le((function(e){var t=[],n=[],r=s(e.replace($,\"$1\"));return r[b]?le((function(e,t,n,i){for(var o,a=r(e,null,i,[]),s=e.length;s--;)(o=a[s])&&(e[s]=!(t[s]=o))})):function(e,i,o){return t[0]=e,r(t,null,o,n),t[0]=null,!n.pop()}})),has:le((function(e){return function(t){return se(e,t).length>0}})),contains:le((function(e){return e=e.replace(te,ne),function(t){return(t.textContent||i(t)).indexOf(e)>-1}})),lang:le((function(e){return V.test(e||\"\")||se.error(\"unsupported lang: \"+e),e=e.replace(te,ne).toLowerCase(),function(t){var n;do{if(n=g?t.lang:t.getAttribute(\"xml:lang\")||t.getAttribute(\"lang\"))return(n=n.toLowerCase())===e||0===n.indexOf(e+\"-\")}while((t=t.parentNode)&&1===t.nodeType);return!1}})),target:function(t){var n=e.location&&e.location.hash;return n&&n.slice(1)===t.id},root:function(e){return e===h},focus:function(e){return e===d.activeElement&&(!d.hasFocus||d.hasFocus())&&!!(e.type||e.href||~e.tabIndex)},enabled:ge(!1),disabled:ge(!0),checked:function(e){var t=e.nodeName.toLowerCase();return\"input\"===t&&!!e.checked||\"option\"===t&&!!e.selected},selected:function(e){return e.parentNode&&e.parentNode.selectedIndex,!0===e.selected},empty:function(e){for(e=e.firstChild;e;e=e.nextSibling)if(e.nodeType<6)return!1;return!0},parent:function(e){return!r.pseudos.empty(e)},header:function(e){return J.test(e.nodeName)},input:function(e){return Q.test(e.nodeName)},button:function(e){var t=e.nodeName.toLowerCase();return\"input\"===t&&\"button\"===e.type||\"button\"===t},text:function(e){var t;return\"input\"===e.nodeName.toLowerCase()&&\"text\"===e.type&&(null==(t=e.getAttribute(\"type\"))||\"text\"===t.toLowerCase())},first:ve((function(){return[0]})),last:ve((function(e,t){return[t-1]})),eq:ve((function(e,t,n){return[n<0?n+t:n]})),even:ve((function(e,t){for(var n=0;nt?t:n;--r>=0;)e.push(r);return e})),gt:ve((function(e,t,n){for(var r=n<0?n+t:n;++r1?function(t,n,r){for(var i=e.length;i--;)if(!e[i](t,n,r))return!1;return!0}:e[0]}function Te(e,t,n,r,i){for(var o,a=[],s=0,u=e.length,l=null!=t;s-1&&(o[l]=!(a[l]=f))}}else y=Te(y===a?y.splice(h,y.length):y),i?i(null,a,y,u):H.apply(a,y)}))}function Ee(e){for(var t,n,i,o=e.length,a=r.relative[e[0].type],s=a||r.relative[\" \"],u=a?1:0,c=be((function(e){return e===t}),s,!0),f=be((function(e){return P(t,e)>-1}),s,!0),p=[function(e,n,r){var i=!a&&(r||n!==l)||((t=n).nodeType?c(e,n,r):f(e,n,r));return t=null,i}];u1&&we(p),u>1&&xe(e.slice(0,u-1).concat({value:\" \"===e[u-2].type?\"*\":\"\"})).replace($,\"$1\"),n,u0,i=e.length>0,o=function(o,a,s,u,c){var f,h,v,y=0,m=\"0\",x=o&&[],b=[],w=l,C=o||i&&r.find.TAG(\"*\",c),E=T+=null==w?1:Math.random()||.1,S=C.length;for(c&&(l=a==d||a||c);m!==S&&null!=(f=C[m]);m++){if(i&&f){for(h=0,a||f.ownerDocument==d||(p(f),s=!g);v=e[h++];)if(v(f,a||d,s)){u.push(f);break}c&&(T=E)}n&&((f=!v&&f)&&y--,o&&x.push(f))}if(y+=m,n&&m!==y){for(h=0;v=t[h++];)v(x,b,a,s);if(o){if(y>0)for(;m--;)x[m]||b[m]||(b[m]=q.call(u));b=Te(b)}H.apply(u,b),c&&!o&&b.length>0&&y+t.length>1&&se.uniqueSort(u)}return c&&(T=E,l=w),x};return n?le(o):o}(o,i))).selector=e}return s},u=se.select=function(e,t,n,i){var o,u,l,c,f,p=\"function\"==typeof e&&e,d=!i&&a(e=p.selector||e);if(n=n||[],1===d.length){if((u=d[0]=d[0].slice(0)).length>2&&\"ID\"===(l=u[0]).type&&9===t.nodeType&&g&&r.relative[u[1].type]){if(!(t=(r.find.ID(l.matches[0].replace(te,ne),t)||[])[0]))return n;p&&(t=t.parentNode),e=e.slice(u.shift().value.length)}for(o=G.needsContext.test(e)?0:u.length;o--&&(l=u[o],!r.relative[c=l.type]);)if((f=r.find[c])&&(i=f(l.matches[0].replace(te,ne),ee.test(u[0].type)&&ye(t.parentNode)||t))){if(u.splice(o,1),!(e=i.length&&xe(u)))return H.apply(n,i),n;break}}return(p||s(e,d))(i,t,!g,n,!t||ee.test(e)&&ye(t.parentNode)||t),n},n.sortStable=b.split(\"\").sort(N).join(\"\")===b,n.detectDuplicates=!!f,p(),n.sortDetached=ce((function(e){return 1&e.compareDocumentPosition(d.createElement(\"fieldset\"))})),ce((function(e){return e.innerHTML=\"\",\"#\"===e.firstChild.getAttribute(\"href\")}))||fe(\"type|href|height|width\",(function(e,t,n){if(!n)return e.getAttribute(t,\"type\"===t.toLowerCase()?1:2)})),n.attributes&&ce((function(e){return e.innerHTML=\"\",e.firstChild.setAttribute(\"value\",\"\"),\"\"===e.firstChild.getAttribute(\"value\")}))||fe(\"value\",(function(e,t,n){if(!n&&\"input\"===e.nodeName.toLowerCase())return e.defaultValue})),ce((function(e){return null==e.getAttribute(\"disabled\")}))||fe(R,(function(e,t,n){var r;if(!n)return!0===e[t]?t.toLowerCase():(r=e.getAttributeNode(t))&&r.specified?r.value:null})),se}(e);w.find=C,w.expr=C.selectors,w.expr[\":\"]=w.expr.pseudos,w.uniqueSort=w.unique=C.uniqueSort,w.text=C.getText,w.isXMLDoc=C.isXML,w.contains=C.contains,w.escapeSelector=C.escape;var E=function(e,t,n){for(var r=[],i=void 0!==n;(e=e[t])&&9!==e.nodeType;)if(1===e.nodeType){if(i&&w(e).is(n))break;r.push(e)}return r},S=function(e,t){for(var n=[];e;e=e.nextSibling)1===e.nodeType&&e!==t&&n.push(e);return n},k=w.expr.match.needsContext;function A(e,t){return e.nodeName&&e.nodeName.toLowerCase()===t.toLowerCase()}var N=/^<([a-z][^\\/\\0>:\\x20\\t\\r\\n\\f]*)[\\x20\\t\\r\\n\\f]*\\/?>(?:<\\/\\1>|)$/i;function D(e,t,n){return h(t)?w.grep(e,(function(e,r){return!!t.call(e,r,e)!==n})):t.nodeType?w.grep(e,(function(e){return e===t!==n})):\"string\"!=typeof t?w.grep(e,(function(e){return s.call(t,e)>-1!==n})):w.filter(t,e,n)}w.filter=function(e,t,n){var r=t[0];return n&&(e=\":not(\"+e+\")\"),1===t.length&&1===r.nodeType?w.find.matchesSelector(r,e)?[r]:[]:w.find.matches(e,w.grep(t,(function(e){return 1===e.nodeType})))},w.fn.extend({find:function(e){var t,n,r=this.length,i=this;if(\"string\"!=typeof e)return this.pushStack(w(e).filter((function(){for(t=0;t1?w.uniqueSort(n):n},filter:function(e){return this.pushStack(D(this,e||[],!1))},not:function(e){return this.pushStack(D(this,e||[],!0))},is:function(e){return!!D(this,\"string\"==typeof e&&k.test(e)?w(e):e||[],!1).length}});var j,q=/^(?:\\s*(<[\\w\\W]+>)[^>]*|#([\\w-]+))$/;(w.fn.init=function(e,t,n){var r,i;if(!e)return this;if(n=n||j,\"string\"==typeof e){if(!(r=\"<\"===e[0]&&\">\"===e[e.length-1]&&e.length>=3?[null,e,null]:q.exec(e))||!r[1]&&t)return!t||t.jquery?(t||n).find(e):this.constructor(t).find(e);if(r[1]){if(t=t instanceof w?t[0]:t,w.merge(this,w.parseHTML(r[1],t&&t.nodeType?t.ownerDocument||t:v,!0)),N.test(r[1])&&w.isPlainObject(t))for(r in t)h(this[r])?this[r](t[r]):this.attr(r,t[r]);return this}return(i=v.getElementById(r[2]))&&(this[0]=i,this.length=1),this}return e.nodeType?(this[0]=e,this.length=1,this):h(e)?void 0!==n.ready?n.ready(e):e(w):w.makeArray(e,this)}).prototype=w.fn,j=w(v);var L=/^(?:parents|prev(?:Until|All))/,H={children:!0,contents:!0,next:!0,prev:!0};function O(e,t){for(;(e=e[t])&&1!==e.nodeType;);return e}w.fn.extend({has:function(e){var t=w(e,this),n=t.length;return this.filter((function(){for(var e=0;e-1:1===n.nodeType&&w.find.matchesSelector(n,e))){o.push(n);break}return this.pushStack(o.length>1?w.uniqueSort(o):o)},index:function(e){return e?\"string\"==typeof e?s.call(w(e),this[0]):s.call(this,e.jquery?e[0]:e):this[0]&&this[0].parentNode?this.first().prevAll().length:-1},add:function(e,t){return this.pushStack(w.uniqueSort(w.merge(this.get(),w(e,t))))},addBack:function(e){return this.add(null==e?this.prevObject:this.prevObject.filter(e))}}),w.each({parent:function(e){var t=e.parentNode;return t&&11!==t.nodeType?t:null},parents:function(e){return E(e,\"parentNode\")},parentsUntil:function(e,t,n){return E(e,\"parentNode\",n)},next:function(e){return O(e,\"nextSibling\")},prev:function(e){return O(e,\"previousSibling\")},nextAll:function(e){return E(e,\"nextSibling\")},prevAll:function(e){return E(e,\"previousSibling\")},nextUntil:function(e,t,n){return E(e,\"nextSibling\",n)},prevUntil:function(e,t,n){return E(e,\"previousSibling\",n)},siblings:function(e){return S((e.parentNode||{}).firstChild,e)},children:function(e){return S(e.firstChild)},contents:function(e){return null!=e.contentDocument&&r(e.contentDocument)?e.contentDocument:(A(e,\"template\")&&(e=e.content||e),w.merge([],e.childNodes))}},(function(e,t){w.fn[e]=function(n,r){var i=w.map(this,t,n);return\"Until\"!==e.slice(-5)&&(r=n),r&&\"string\"==typeof r&&(i=w.filter(r,i)),this.length>1&&(H[e]||w.uniqueSort(i),L.test(e)&&i.reverse()),this.pushStack(i)}}));var P=/[^\\x20\\t\\r\\n\\f]+/g;function R(e){return e}function M(e){throw e}function I(e,t,n,r){var i;try{e&&h(i=e.promise)?i.call(e).done(t).fail(n):e&&h(i=e.then)?i.call(e,t,n):t.apply(void 0,[e].slice(r))}catch(e){n.apply(void 0,[e])}}w.Callbacks=function(e){e=\"string\"==typeof e?function(e){var t={};return w.each(e.match(P)||[],(function(e,n){t[n]=!0})),t}(e):w.extend({},e);var t,n,r,i,o=[],a=[],s=-1,u=function(){for(i=i||e.once,r=t=!0;a.length;s=-1)for(n=a.shift();++s-1;)o.splice(n,1),n<=s&&s--})),this},has:function(e){return e?w.inArray(e,o)>-1:o.length>0},empty:function(){return o&&(o=[]),this},disable:function(){return i=a=[],o=n=\"\",this},disabled:function(){return!o},lock:function(){return i=a=[],n||t||(o=n=\"\"),this},locked:function(){return!!i},fireWith:function(e,n){return i||(n=[e,(n=n||[]).slice?n.slice():n],a.push(n),t||u()),this},fire:function(){return l.fireWith(this,arguments),this},fired:function(){return!!r}};return l},w.extend({Deferred:function(t){var n=[[\"notify\",\"progress\",w.Callbacks(\"memory\"),w.Callbacks(\"memory\"),2],[\"resolve\",\"done\",w.Callbacks(\"once memory\"),w.Callbacks(\"once memory\"),0,\"resolved\"],[\"reject\",\"fail\",w.Callbacks(\"once memory\"),w.Callbacks(\"once memory\"),1,\"rejected\"]],r=\"pending\",i={state:function(){return r},always:function(){return o.done(arguments).fail(arguments),this},catch:function(e){return i.then(null,e)},pipe:function(){var e=arguments;return w.Deferred((function(t){w.each(n,(function(n,r){var i=h(e[r[4]])&&e[r[4]];o[r[1]]((function(){var e=i&&i.apply(this,arguments);e&&h(e.promise)?e.promise().progress(t.notify).done(t.resolve).fail(t.reject):t[r[0]+\"With\"](this,i?[e]:arguments)}))})),e=null})).promise()},then:function(t,r,i){var o=0;function a(t,n,r,i){return function(){var s=this,u=arguments,l=function(){var e,l;if(!(t=o&&(r!==M&&(s=void 0,u=[e]),n.rejectWith(s,u))}};t?c():(w.Deferred.getStackHook&&(c.stackTrace=w.Deferred.getStackHook()),e.setTimeout(c))}}return w.Deferred((function(e){n[0][3].add(a(0,e,h(i)?i:R,e.notifyWith)),n[1][3].add(a(0,e,h(t)?t:R)),n[2][3].add(a(0,e,h(r)?r:M))})).promise()},promise:function(e){return null!=e?w.extend(e,i):i}},o={};return w.each(n,(function(e,t){var a=t[2],s=t[5];i[t[1]]=a.add,s&&a.add((function(){r=s}),n[3-e][2].disable,n[3-e][3].disable,n[0][2].lock,n[0][3].lock),a.add(t[3].fire),o[t[0]]=function(){return o[t[0]+\"With\"](this===o?void 0:this,arguments),this},o[t[0]+\"With\"]=a.fireWith})),i.promise(o),t&&t.call(o,o),o},when:function(e){var t=arguments.length,n=t,r=Array(n),o=i.call(arguments),a=w.Deferred(),s=function(e){return function(n){r[e]=this,o[e]=arguments.length>1?i.call(arguments):n,--t||a.resolveWith(r,o)}};if(t<=1&&(I(e,a.done(s(n)).resolve,a.reject,!t),\"pending\"===a.state()||h(o[n]&&o[n].then)))return a.then();for(;n--;)I(o[n],s(n),a.reject);return a.promise()}});var W=/^(Eval|Internal|Range|Reference|Syntax|Type|URI)Error$/;w.Deferred.exceptionHook=function(t,n){e.console&&e.console.warn&&t&&W.test(t.name)&&e.console.warn(\"jQuery.Deferred exception: \"+t.message,t.stack,n)},w.readyException=function(t){e.setTimeout((function(){throw t}))};var F=w.Deferred();function B(){v.removeEventListener(\"DOMContentLoaded\",B),e.removeEventListener(\"load\",B),w.ready()}w.fn.ready=function(e){return F.then(e).catch((function(e){w.readyException(e)})),this},w.extend({isReady:!1,readyWait:1,ready:function(e){(!0===e?--w.readyWait:w.isReady)||(w.isReady=!0,!0!==e&&--w.readyWait>0||F.resolveWith(v,[w]))}}),w.ready.then=F.then,\"complete\"===v.readyState||\"loading\"!==v.readyState&&!v.documentElement.doScroll?e.setTimeout(w.ready):(v.addEventListener(\"DOMContentLoaded\",B),e.addEventListener(\"load\",B));var $=function(e,t,n,r,i,o,a){var s=0,u=e.length,l=null==n;if(\"object\"===x(n))for(s in i=!0,n)$(e,t,s,n[s],!0,o,a);else if(void 0!==r&&(i=!0,h(r)||(a=!0),l&&(a?(t.call(e,r),t=null):(l=t,t=function(e,t,n){return l.call(w(e),n)})),t))for(;s1,null,!0)},removeData:function(e){return this.each((function(){Q.remove(this,e)}))}}),w.extend({queue:function(e,t,n){var r;if(e)return t=(t||\"fx\")+\"queue\",r=Y.get(e,t),n&&(!r||Array.isArray(n)?r=Y.access(e,t,w.makeArray(n)):r.push(n)),r||[]},dequeue:function(e,t){t=t||\"fx\";var n=w.queue(e,t),r=n.length,i=n.shift(),o=w._queueHooks(e,t);\"inprogress\"===i&&(i=n.shift(),r--),i&&(\"fx\"===t&&n.unshift(\"inprogress\"),delete o.stop,i.call(e,(function(){w.dequeue(e,t)}),o)),!r&&o&&o.empty.fire()},_queueHooks:function(e,t){var n=t+\"queueHooks\";return Y.get(e,n)||Y.access(e,n,{empty:w.Callbacks(\"once memory\").add((function(){Y.remove(e,[t+\"queue\",n])}))})}}),w.fn.extend({queue:function(e,t){var n=2;return\"string\"!=typeof e&&(t=e,e=\"fx\",n--),arguments.length\\x20\\t\\r\\n\\f]*)/i,ge=/^$|^module$|\\/(?:java|ecma)script/i;fe=v.createDocumentFragment().appendChild(v.createElement(\"div\")),(pe=v.createElement(\"input\")).setAttribute(\"type\",\"radio\"),pe.setAttribute(\"checked\",\"checked\"),pe.setAttribute(\"name\",\"t\"),fe.appendChild(pe),d.checkClone=fe.cloneNode(!0).cloneNode(!0).lastChild.checked,fe.innerHTML=\"\",d.noCloneChecked=!!fe.cloneNode(!0).lastChild.defaultValue,fe.innerHTML=\"\",d.option=!!fe.lastChild;var ve={thead:[1,\"\",\"
\"],col:[2,\"\",\"
\"],tr:[2,\"\",\"
\"],td:[3,\"\",\"
\"],_default:[0,\"\",\"\"]};function ye(e,t){var n;return n=void 0!==e.getElementsByTagName?e.getElementsByTagName(t||\"*\"):void 0!==e.querySelectorAll?e.querySelectorAll(t||\"*\"):[],void 0===t||t&&A(e,t)?w.merge([e],n):n}function me(e,t){for(var n=0,r=e.length;n\",\"\"]);var xe=/<|&#?\\w+;/;function be(e,t,n,r,i){for(var o,a,s,u,l,c,f=t.createDocumentFragment(),p=[],d=0,h=e.length;d-1)i&&i.push(o);else if(l=ie(o),a=ye(f.appendChild(o),\"script\"),l&&me(a),n)for(c=0;o=a[c++];)ge.test(o.type||\"\")&&n.push(o);return f}var we=/^key/,Te=/^(?:mouse|pointer|contextmenu|drag|drop)|click/,Ce=/^([^.]*)(?:\\.(.+)|)/;function Ee(){return!0}function Se(){return!1}function ke(e,t){return e===function(){try{return v.activeElement}catch(e){}}()==(\"focus\"===t)}function Ae(e,t,n,r,i,o){var a,s;if(\"object\"==typeof t){for(s in\"string\"!=typeof n&&(r=r||n,n=void 0),t)Ae(e,s,n,r,t[s],o);return e}if(null==r&&null==i?(i=n,r=n=void 0):null==i&&(\"string\"==typeof n?(i=r,r=void 0):(i=r,r=n,n=void 0)),!1===i)i=Se;else if(!i)return e;return 1===o&&(a=i,(i=function(e){return w().off(e),a.apply(this,arguments)}).guid=a.guid||(a.guid=w.guid++)),e.each((function(){w.event.add(this,t,i,r,n)}))}function Ne(e,t,n){n?(Y.set(e,t,!1),w.event.add(e,t,{namespace:!1,handler:function(e){var r,o,a=Y.get(this,t);if(1&e.isTrigger&&this[t]){if(a.length)(w.event.special[t]||{}).delegateType&&e.stopPropagation();else if(a=i.call(arguments),Y.set(this,t,a),r=n(this,t),this[t](),a!==(o=Y.get(this,t))||r?Y.set(this,t,!1):o={},a!==o)return e.stopImmediatePropagation(),e.preventDefault(),o.value}else a.length&&(Y.set(this,t,{value:w.event.trigger(w.extend(a[0],w.Event.prototype),a.slice(1),this)}),e.stopImmediatePropagation())}})):void 0===Y.get(e,t)&&w.event.add(e,t,Ee)}w.event={global:{},add:function(e,t,n,r,i){var o,a,s,u,l,c,f,p,d,h,g,v=Y.get(e);if(V(e))for(n.handler&&(n=(o=n).handler,i=o.selector),i&&w.find.matchesSelector(re,i),n.guid||(n.guid=w.guid++),(u=v.events)||(u=v.events=Object.create(null)),(a=v.handle)||(a=v.handle=function(t){return void 0!==w&&w.event.triggered!==t.type?w.event.dispatch.apply(e,arguments):void 0}),l=(t=(t||\"\").match(P)||[\"\"]).length;l--;)d=g=(s=Ce.exec(t[l])||[])[1],h=(s[2]||\"\").split(\".\").sort(),d&&(f=w.event.special[d]||{},d=(i?f.delegateType:f.bindType)||d,f=w.event.special[d]||{},c=w.extend({type:d,origType:g,data:r,handler:n,guid:n.guid,selector:i,needsContext:i&&w.expr.match.needsContext.test(i),namespace:h.join(\".\")},o),(p=u[d])||((p=u[d]=[]).delegateCount=0,f.setup&&!1!==f.setup.call(e,r,h,a)||e.addEventListener&&e.addEventListener(d,a)),f.add&&(f.add.call(e,c),c.handler.guid||(c.handler.guid=n.guid)),i?p.splice(p.delegateCount++,0,c):p.push(c),w.event.global[d]=!0)},remove:function(e,t,n,r,i){var o,a,s,u,l,c,f,p,d,h,g,v=Y.hasData(e)&&Y.get(e);if(v&&(u=v.events)){for(l=(t=(t||\"\").match(P)||[\"\"]).length;l--;)if(d=g=(s=Ce.exec(t[l])||[])[1],h=(s[2]||\"\").split(\".\").sort(),d){for(f=w.event.special[d]||{},p=u[d=(r?f.delegateType:f.bindType)||d]||[],s=s[2]&&new RegExp(\"(^|\\\\.)\"+h.join(\"\\\\.(?:.*\\\\.|)\")+\"(\\\\.|$)\"),a=o=p.length;o--;)c=p[o],!i&&g!==c.origType||n&&n.guid!==c.guid||s&&!s.test(c.namespace)||r&&r!==c.selector&&(\"**\"!==r||!c.selector)||(p.splice(o,1),c.selector&&p.delegateCount--,f.remove&&f.remove.call(e,c));a&&!p.length&&(f.teardown&&!1!==f.teardown.call(e,h,v.handle)||w.removeEvent(e,d,v.handle),delete u[d])}else for(d in u)w.event.remove(e,d+t[l],n,r,!0);w.isEmptyObject(u)&&Y.remove(e,\"handle events\")}},dispatch:function(e){var t,n,r,i,o,a,s=new Array(arguments.length),u=w.event.fix(e),l=(Y.get(this,\"events\")||Object.create(null))[u.type]||[],c=w.event.special[u.type]||{};for(s[0]=u,t=1;t=1))for(;l!==this;l=l.parentNode||this)if(1===l.nodeType&&(\"click\"!==e.type||!0!==l.disabled)){for(o=[],a={},n=0;n-1:w.find(i,this,null,[l]).length),a[i]&&o.push(r);o.length&&s.push({elem:l,handlers:o})}return l=this,u\\s*$/g;function Le(e,t){return A(e,\"table\")&&A(11!==t.nodeType?t:t.firstChild,\"tr\")&&w(e).children(\"tbody\")[0]||e}function He(e){return e.type=(null!==e.getAttribute(\"type\"))+\"/\"+e.type,e}function Oe(e){return\"true/\"===(e.type||\"\").slice(0,5)?e.type=e.type.slice(5):e.removeAttribute(\"type\"),e}function Pe(e,t){var n,r,i,o,a,s;if(1===t.nodeType){if(Y.hasData(e)&&(s=Y.get(e).events))for(i in Y.remove(t,\"handle events\"),s)for(n=0,r=s[i].length;n1&&\"string\"==typeof v&&!d.checkClone&&je.test(v))return e.each((function(i){var o=e.eq(i);y&&(t[0]=v.call(this,i,o.html())),Me(o,t,n,r)}));if(p&&(a=(i=be(t,e[0].ownerDocument,!1,e,r)).firstChild,1===i.childNodes.length&&(i=a),a||r)){for(u=(s=w.map(ye(i,\"script\"),He)).length;f0&&me(a,!u&&ye(e,\"script\")),s},cleanData:function(e){for(var t,n,r,i=w.event.special,o=0;void 0!==(n=e[o]);o++)if(V(n)){if(t=n[Y.expando]){if(t.events)for(r in t.events)i[r]?w.event.remove(n,r):w.removeEvent(n,r,t.handle);n[Y.expando]=void 0}n[Q.expando]&&(n[Q.expando]=void 0)}}}),w.fn.extend({detach:function(e){return Ie(this,e,!0)},remove:function(e){return Ie(this,e)},text:function(e){return $(this,(function(e){return void 0===e?w.text(this):this.empty().each((function(){1!==this.nodeType&&11!==this.nodeType&&9!==this.nodeType||(this.textContent=e)}))}),null,e,arguments.length)},append:function(){return Me(this,arguments,(function(e){1!==this.nodeType&&11!==this.nodeType&&9!==this.nodeType||Le(this,e).appendChild(e)}))},prepend:function(){return Me(this,arguments,(function(e){if(1===this.nodeType||11===this.nodeType||9===this.nodeType){var t=Le(this,e);t.insertBefore(e,t.firstChild)}}))},before:function(){return Me(this,arguments,(function(e){this.parentNode&&this.parentNode.insertBefore(e,this)}))},after:function(){return Me(this,arguments,(function(e){this.parentNode&&this.parentNode.insertBefore(e,this.nextSibling)}))},empty:function(){for(var e,t=0;null!=(e=this[t]);t++)1===e.nodeType&&(w.cleanData(ye(e,!1)),e.textContent=\"\");return this},clone:function(e,t){return e=null!=e&&e,t=null==t?e:t,this.map((function(){return w.clone(this,e,t)}))},html:function(e){return $(this,(function(e){var t=this[0]||{},n=0,r=this.length;if(void 0===e&&1===t.nodeType)return t.innerHTML;if(\"string\"==typeof e&&!De.test(e)&&!ve[(he.exec(e)||[\"\",\"\"])[1].toLowerCase()]){e=w.htmlPrefilter(e);try{for(;n3,re.removeChild(t)),s}}))}();var Ue=[\"Webkit\",\"Moz\",\"ms\"],Xe=v.createElement(\"div\").style,Ve={};function Ge(e){var t=w.cssProps[e]||Ve[e];return t||(e in Xe?e:Ve[e]=function(e){for(var t=e[0].toUpperCase()+e.slice(1),n=Ue.length;n--;)if((e=Ue[n]+t)in Xe)return e}(e)||e)}var Ye=/^(none|table(?!-c[ea]).+)/,Qe=/^--/,Je={position:\"absolute\",visibility:\"hidden\",display:\"block\"},Ke={letterSpacing:\"0\",fontWeight:\"400\"};function Ze(e,t,n){var r=te.exec(t);return r?Math.max(0,r[2]-(n||0))+(r[3]||\"px\"):t}function et(e,t,n,r,i,o){var a=\"width\"===t?1:0,s=0,u=0;if(n===(r?\"border\":\"content\"))return 0;for(;a<4;a+=2)\"margin\"===n&&(u+=w.css(e,n+ne[a],!0,i)),r?(\"content\"===n&&(u-=w.css(e,\"padding\"+ne[a],!0,i)),\"margin\"!==n&&(u-=w.css(e,\"border\"+ne[a]+\"Width\",!0,i))):(u+=w.css(e,\"padding\"+ne[a],!0,i),\"padding\"!==n?u+=w.css(e,\"border\"+ne[a]+\"Width\",!0,i):s+=w.css(e,\"border\"+ne[a]+\"Width\",!0,i));return!r&&o>=0&&(u+=Math.max(0,Math.ceil(e[\"offset\"+t[0].toUpperCase()+t.slice(1)]-o-u-s-.5))||0),u}function tt(e,t,n){var r=Fe(e),i=(!d.boxSizingReliable()||n)&&\"border-box\"===w.css(e,\"boxSizing\",!1,r),o=i,a=_e(e,t,r),s=\"offset\"+t[0].toUpperCase()+t.slice(1);if(We.test(a)){if(!n)return a;a=\"auto\"}return(!d.boxSizingReliable()&&i||!d.reliableTrDimensions()&&A(e,\"tr\")||\"auto\"===a||!parseFloat(a)&&\"inline\"===w.css(e,\"display\",!1,r))&&e.getClientRects().length&&(i=\"border-box\"===w.css(e,\"boxSizing\",!1,r),(o=s in e)&&(a=e[s])),(a=parseFloat(a)||0)+et(e,t,n||(i?\"border\":\"content\"),o,r,a)+\"px\"}function nt(e,t,n,r,i){return new nt.prototype.init(e,t,n,r,i)}w.extend({cssHooks:{opacity:{get:function(e,t){if(t){var n=_e(e,\"opacity\");return\"\"===n?\"1\":n}}}},cssNumber:{animationIterationCount:!0,columnCount:!0,fillOpacity:!0,flexGrow:!0,flexShrink:!0,fontWeight:!0,gridArea:!0,gridColumn:!0,gridColumnEnd:!0,gridColumnStart:!0,gridRow:!0,gridRowEnd:!0,gridRowStart:!0,lineHeight:!0,opacity:!0,order:!0,orphans:!0,widows:!0,zIndex:!0,zoom:!0},cssProps:{},style:function(e,t,n,r){if(e&&3!==e.nodeType&&8!==e.nodeType&&e.style){var i,o,a,s=X(t),u=Qe.test(t),l=e.style;if(u||(t=Ge(s)),a=w.cssHooks[t]||w.cssHooks[s],void 0===n)return a&&\"get\"in a&&void 0!==(i=a.get(e,!1,r))?i:l[t];\"string\"===(o=typeof n)&&(i=te.exec(n))&&i[1]&&(n=se(e,t,i),o=\"number\"),null!=n&&n==n&&(\"number\"!==o||u||(n+=i&&i[3]||(w.cssNumber[s]?\"\":\"px\")),d.clearCloneStyle||\"\"!==n||0!==t.indexOf(\"background\")||(l[t]=\"inherit\"),a&&\"set\"in a&&void 0===(n=a.set(e,n,r))||(u?l.setProperty(t,n):l[t]=n))}},css:function(e,t,n,r){var i,o,a,s=X(t);return Qe.test(t)||(t=Ge(s)),(a=w.cssHooks[t]||w.cssHooks[s])&&\"get\"in a&&(i=a.get(e,!0,n)),void 0===i&&(i=_e(e,t,r)),\"normal\"===i&&t in Ke&&(i=Ke[t]),\"\"===n||n?(o=parseFloat(i),!0===n||isFinite(o)?o||0:i):i}}),w.each([\"height\",\"width\"],(function(e,t){w.cssHooks[t]={get:function(e,n,r){if(n)return!Ye.test(w.css(e,\"display\"))||e.getClientRects().length&&e.getBoundingClientRect().width?tt(e,t,r):Be(e,Je,(function(){return tt(e,t,r)}))},set:function(e,n,r){var i,o=Fe(e),a=!d.scrollboxSize()&&\"absolute\"===o.position,s=(a||r)&&\"border-box\"===w.css(e,\"boxSizing\",!1,o),u=r?et(e,t,r,s,o):0;return s&&a&&(u-=Math.ceil(e[\"offset\"+t[0].toUpperCase()+t.slice(1)]-parseFloat(o[t])-et(e,t,\"border\",!1,o)-.5)),u&&(i=te.exec(n))&&\"px\"!==(i[3]||\"px\")&&(e.style[t]=n,n=w.css(e,t)),Ze(0,n,u)}}})),w.cssHooks.marginLeft=ze(d.reliableMarginLeft,(function(e,t){if(t)return(parseFloat(_e(e,\"marginLeft\"))||e.getBoundingClientRect().left-Be(e,{marginLeft:0},(function(){return e.getBoundingClientRect().left})))+\"px\"})),w.each({margin:\"\",padding:\"\",border:\"Width\"},(function(e,t){w.cssHooks[e+t]={expand:function(n){for(var r=0,i={},o=\"string\"==typeof n?n.split(\" \"):[n];r<4;r++)i[e+ne[r]+t]=o[r]||o[r-2]||o[0];return i}},\"margin\"!==e&&(w.cssHooks[e+t].set=Ze)})),w.fn.extend({css:function(e,t){return $(this,(function(e,t,n){var r,i,o={},a=0;if(Array.isArray(t)){for(r=Fe(e),i=t.length;a1)}}),w.Tween=nt,nt.prototype={constructor:nt,init:function(e,t,n,r,i,o){this.elem=e,this.prop=n,this.easing=i||w.easing._default,this.options=t,this.start=this.now=this.cur(),this.end=r,this.unit=o||(w.cssNumber[n]?\"\":\"px\")},cur:function(){var e=nt.propHooks[this.prop];return e&&e.get?e.get(this):nt.propHooks._default.get(this)},run:function(e){var t,n=nt.propHooks[this.prop];return this.options.duration?this.pos=t=w.easing[this.easing](e,this.options.duration*e,0,1,this.options.duration):this.pos=t=e,this.now=(this.end-this.start)*t+this.start,this.options.step&&this.options.step.call(this.elem,this.now,this),n&&n.set?n.set(this):nt.propHooks._default.set(this),this}},nt.prototype.init.prototype=nt.prototype,nt.propHooks={_default:{get:function(e){var t;return 1!==e.elem.nodeType||null!=e.elem[e.prop]&&null==e.elem.style[e.prop]?e.elem[e.prop]:(t=w.css(e.elem,e.prop,\"\"))&&\"auto\"!==t?t:0},set:function(e){w.fx.step[e.prop]?w.fx.step[e.prop](e):1!==e.elem.nodeType||!w.cssHooks[e.prop]&&null==e.elem.style[Ge(e.prop)]?e.elem[e.prop]=e.now:w.style(e.elem,e.prop,e.now+e.unit)}}},nt.propHooks.scrollTop=nt.propHooks.scrollLeft={set:function(e){e.elem.nodeType&&e.elem.parentNode&&(e.elem[e.prop]=e.now)}},w.easing={linear:function(e){return e},swing:function(e){return.5-Math.cos(e*Math.PI)/2},_default:\"swing\"},w.fx=nt.prototype.init,w.fx.step={};var rt,it,ot=/^(?:toggle|show|hide)$/,at=/queueHooks$/;function st(){it&&(!1===v.hidden&&e.requestAnimationFrame?e.requestAnimationFrame(st):e.setTimeout(st,w.fx.interval),w.fx.tick())}function ut(){return e.setTimeout((function(){rt=void 0})),rt=Date.now()}function lt(e,t){var n,r=0,i={height:e};for(t=t?1:0;r<4;r+=2-t)i[\"margin\"+(n=ne[r])]=i[\"padding\"+n]=e;return t&&(i.opacity=i.width=e),i}function ct(e,t,n){for(var r,i=(ft.tweeners[t]||[]).concat(ft.tweeners[\"*\"]),o=0,a=i.length;o1)},removeAttr:function(e){return this.each((function(){w.removeAttr(this,e)}))}}),w.extend({attr:function(e,t,n){var r,i,o=e.nodeType;if(3!==o&&8!==o&&2!==o)return void 0===e.getAttribute?w.prop(e,t,n):(1===o&&w.isXMLDoc(e)||(i=w.attrHooks[t.toLowerCase()]||(w.expr.match.bool.test(t)?pt:void 0)),void 0!==n?null===n?void w.removeAttr(e,t):i&&\"set\"in i&&void 0!==(r=i.set(e,n,t))?r:(e.setAttribute(t,n+\"\"),n):i&&\"get\"in i&&null!==(r=i.get(e,t))?r:null==(r=w.find.attr(e,t))?void 0:r)},attrHooks:{type:{set:function(e,t){if(!d.radioValue&&\"radio\"===t&&A(e,\"input\")){var n=e.value;return e.setAttribute(\"type\",t),n&&(e.value=n),t}}}},removeAttr:function(e,t){var n,r=0,i=t&&t.match(P);if(i&&1===e.nodeType)for(;n=i[r++];)e.removeAttribute(n)}}),pt={set:function(e,t,n){return!1===t?w.removeAttr(e,n):e.setAttribute(n,n),n}},w.each(w.expr.match.bool.source.match(/\\w+/g),(function(e,t){var n=dt[t]||w.find.attr;dt[t]=function(e,t,r){var i,o,a=t.toLowerCase();return r||(o=dt[a],dt[a]=i,i=null!=n(e,t,r)?a:null,dt[a]=o),i}}));var ht=/^(?:input|select|textarea|button)$/i,gt=/^(?:a|area)$/i;function vt(e){return(e.match(P)||[]).join(\" \")}function yt(e){return e.getAttribute&&e.getAttribute(\"class\")||\"\"}function mt(e){return Array.isArray(e)?e:\"string\"==typeof e&&e.match(P)||[]}w.fn.extend({prop:function(e,t){return $(this,w.prop,e,t,arguments.length>1)},removeProp:function(e){return this.each((function(){delete this[w.propFix[e]||e]}))}}),w.extend({prop:function(e,t,n){var r,i,o=e.nodeType;if(3!==o&&8!==o&&2!==o)return 1===o&&w.isXMLDoc(e)||(t=w.propFix[t]||t,i=w.propHooks[t]),void 0!==n?i&&\"set\"in i&&void 0!==(r=i.set(e,n,t))?r:e[t]=n:i&&\"get\"in i&&null!==(r=i.get(e,t))?r:e[t]},propHooks:{tabIndex:{get:function(e){var t=w.find.attr(e,\"tabindex\");return t?parseInt(t,10):ht.test(e.nodeName)||gt.test(e.nodeName)&&e.href?0:-1}}},propFix:{for:\"htmlFor\",class:\"className\"}}),d.optSelected||(w.propHooks.selected={get:function(e){var t=e.parentNode;return t&&t.parentNode&&t.parentNode.selectedIndex,null},set:function(e){var t=e.parentNode;t&&(t.selectedIndex,t.parentNode&&t.parentNode.selectedIndex)}}),w.each([\"tabIndex\",\"readOnly\",\"maxLength\",\"cellSpacing\",\"cellPadding\",\"rowSpan\",\"colSpan\",\"useMap\",\"frameBorder\",\"contentEditable\"],(function(){w.propFix[this.toLowerCase()]=this})),w.fn.extend({addClass:function(e){var t,n,r,i,o,a,s,u=0;if(h(e))return this.each((function(t){w(this).addClass(e.call(this,t,yt(this)))}));if((t=mt(e)).length)for(;n=this[u++];)if(i=yt(n),r=1===n.nodeType&&\" \"+vt(i)+\" \"){for(a=0;o=t[a++];)r.indexOf(\" \"+o+\" \")<0&&(r+=o+\" \");i!==(s=vt(r))&&n.setAttribute(\"class\",s)}return this},removeClass:function(e){var t,n,r,i,o,a,s,u=0;if(h(e))return this.each((function(t){w(this).removeClass(e.call(this,t,yt(this)))}));if(!arguments.length)return this.attr(\"class\",\"\");if((t=mt(e)).length)for(;n=this[u++];)if(i=yt(n),r=1===n.nodeType&&\" \"+vt(i)+\" \"){for(a=0;o=t[a++];)for(;r.indexOf(\" \"+o+\" \")>-1;)r=r.replace(\" \"+o+\" \",\" \");i!==(s=vt(r))&&n.setAttribute(\"class\",s)}return this},toggleClass:function(e,t){var n=typeof e,r=\"string\"===n||Array.isArray(e);return\"boolean\"==typeof t&&r?t?this.addClass(e):this.removeClass(e):h(e)?this.each((function(n){w(this).toggleClass(e.call(this,n,yt(this),t),t)})):this.each((function(){var t,i,o,a;if(r)for(i=0,o=w(this),a=mt(e);t=a[i++];)o.hasClass(t)?o.removeClass(t):o.addClass(t);else void 0!==e&&\"boolean\"!==n||((t=yt(this))&&Y.set(this,\"__className__\",t),this.setAttribute&&this.setAttribute(\"class\",t||!1===e?\"\":Y.get(this,\"__className__\")||\"\"))}))},hasClass:function(e){var t,n,r=0;for(t=\" \"+e+\" \";n=this[r++];)if(1===n.nodeType&&(\" \"+vt(yt(n))+\" \").indexOf(t)>-1)return!0;return!1}});var xt=/\\r/g;w.fn.extend({val:function(e){var t,n,r,i=this[0];return arguments.length?(r=h(e),this.each((function(n){var i;1===this.nodeType&&(null==(i=r?e.call(this,n,w(this).val()):e)?i=\"\":\"number\"==typeof i?i+=\"\":Array.isArray(i)&&(i=w.map(i,(function(e){return null==e?\"\":e+\"\"}))),(t=w.valHooks[this.type]||w.valHooks[this.nodeName.toLowerCase()])&&\"set\"in t&&void 0!==t.set(this,i,\"value\")||(this.value=i))}))):i?(t=w.valHooks[i.type]||w.valHooks[i.nodeName.toLowerCase()])&&\"get\"in t&&void 0!==(n=t.get(i,\"value\"))?n:\"string\"==typeof(n=i.value)?n.replace(xt,\"\"):null==n?\"\":n:void 0}}),w.extend({valHooks:{option:{get:function(e){var t=w.find.attr(e,\"value\");return null!=t?t:vt(w.text(e))}},select:{get:function(e){var t,n,r,i=e.options,o=e.selectedIndex,a=\"select-one\"===e.type,s=a?null:[],u=a?o+1:i.length;for(r=o<0?u:a?o:0;r-1)&&(n=!0);return n||(e.selectedIndex=-1),o}}}}),w.each([\"radio\",\"checkbox\"],(function(){w.valHooks[this]={set:function(e,t){if(Array.isArray(t))return e.checked=w.inArray(w(e).val(),t)>-1}},d.checkOn||(w.valHooks[this].get=function(e){return null===e.getAttribute(\"value\")?\"on\":e.value})})),d.focusin=\"onfocusin\"in e;var bt=/^(?:focusinfocus|focusoutblur)$/,wt=function(e){e.stopPropagation()};w.extend(w.event,{trigger:function(t,n,r,i){var o,a,s,u,l,f,p,d,y=[r||v],m=c.call(t,\"type\")?t.type:t,x=c.call(t,\"namespace\")?t.namespace.split(\".\"):[];if(a=d=s=r=r||v,3!==r.nodeType&&8!==r.nodeType&&!bt.test(m+w.event.triggered)&&(m.indexOf(\".\")>-1&&(x=m.split(\".\"),m=x.shift(),x.sort()),l=m.indexOf(\":\")<0&&\"on\"+m,(t=t[w.expando]?t:new w.Event(m,\"object\"==typeof t&&t)).isTrigger=i?2:3,t.namespace=x.join(\".\"),t.rnamespace=t.namespace?new RegExp(\"(^|\\\\.)\"+x.join(\"\\\\.(?:.*\\\\.|)\")+\"(\\\\.|$)\"):null,t.result=void 0,t.target||(t.target=r),n=null==n?[t]:w.makeArray(n,[t]),p=w.event.special[m]||{},i||!p.trigger||!1!==p.trigger.apply(r,n))){if(!i&&!p.noBubble&&!g(r)){for(u=p.delegateType||m,bt.test(u+m)||(a=a.parentNode);a;a=a.parentNode)y.push(a),s=a;s===(r.ownerDocument||v)&&y.push(s.defaultView||s.parentWindow||e)}for(o=0;(a=y[o++])&&!t.isPropagationStopped();)d=a,t.type=o>1?u:p.bindType||m,(f=(Y.get(a,\"events\")||Object.create(null))[t.type]&&Y.get(a,\"handle\"))&&f.apply(a,n),(f=l&&a[l])&&f.apply&&V(a)&&(t.result=f.apply(a,n),!1===t.result&&t.preventDefault());return t.type=m,i||t.isDefaultPrevented()||p._default&&!1!==p._default.apply(y.pop(),n)||!V(r)||l&&h(r[m])&&!g(r)&&((s=r[l])&&(r[l]=null),w.event.triggered=m,t.isPropagationStopped()&&d.addEventListener(m,wt),r[m](),t.isPropagationStopped()&&d.removeEventListener(m,wt),w.event.triggered=void 0,s&&(r[l]=s)),t.result}},simulate:function(e,t,n){var r=w.extend(new w.Event,n,{type:e,isSimulated:!0});w.event.trigger(r,null,t)}}),w.fn.extend({trigger:function(e,t){return this.each((function(){w.event.trigger(e,t,this)}))},triggerHandler:function(e,t){var n=this[0];if(n)return w.event.trigger(e,t,n,!0)}}),d.focusin||w.each({focus:\"focusin\",blur:\"focusout\"},(function(e,t){var n=function(e){w.event.simulate(t,e.target,w.event.fix(e))};w.event.special[t]={setup:function(){var r=this.ownerDocument||this.document||this,i=Y.access(r,t);i||r.addEventListener(e,n,!0),Y.access(r,t,(i||0)+1)},teardown:function(){var r=this.ownerDocument||this.document||this,i=Y.access(r,t)-1;i?Y.access(r,t,i):(r.removeEventListener(e,n,!0),Y.remove(r,t))}}}));var Tt=e.location,Ct={guid:Date.now()},Et=/\\?/;w.parseXML=function(t){var n;if(!t||\"string\"!=typeof t)return null;try{n=(new e.DOMParser).parseFromString(t,\"text/xml\")}catch(e){n=void 0}return n&&!n.getElementsByTagName(\"parsererror\").length||w.error(\"Invalid XML: \"+t),n};var St=/\\[\\]$/,kt=/\\r?\\n/g,At=/^(?:submit|button|image|reset|file)$/i,Nt=/^(?:input|select|textarea|keygen)/i;function Dt(e,t,n,r){var i;if(Array.isArray(t))w.each(t,(function(t,i){n||St.test(e)?r(e,i):Dt(e+\"[\"+(\"object\"==typeof i&&null!=i?t:\"\")+\"]\",i,n,r)}));else if(n||\"object\"!==x(t))r(e,t);else for(i in t)Dt(e+\"[\"+i+\"]\",t[i],n,r)}w.param=function(e,t){var n,r=[],i=function(e,t){var n=h(t)?t():t;r[r.length]=encodeURIComponent(e)+\"=\"+encodeURIComponent(null==n?\"\":n)};if(null==e)return\"\";if(Array.isArray(e)||e.jquery&&!w.isPlainObject(e))w.each(e,(function(){i(this.name,this.value)}));else for(n in e)Dt(n,e[n],t,i);return r.join(\"&\")},w.fn.extend({serialize:function(){return w.param(this.serializeArray())},serializeArray:function(){return this.map((function(){var e=w.prop(this,\"elements\");return e?w.makeArray(e):this})).filter((function(){var e=this.type;return this.name&&!w(this).is(\":disabled\")&&Nt.test(this.nodeName)&&!At.test(e)&&(this.checked||!de.test(e))})).map((function(e,t){var n=w(this).val();return null==n?null:Array.isArray(n)?w.map(n,(function(e){return{name:t.name,value:e.replace(kt,\"\\r\\n\")}})):{name:t.name,value:n.replace(kt,\"\\r\\n\")}})).get()}});var jt=/%20/g,qt=/#.*$/,Lt=/([?&])_=[^&]*/,Ht=/^(.*?):[ \\t]*([^\\r\\n]*)$/gm,Ot=/^(?:GET|HEAD)$/,Pt=/^\\/\\//,Rt={},Mt={},It=\"*/\".concat(\"*\"),Wt=v.createElement(\"a\");function Ft(e){return function(t,n){\"string\"!=typeof t&&(n=t,t=\"*\");var r,i=0,o=t.toLowerCase().match(P)||[];if(h(n))for(;r=o[i++];)\"+\"===r[0]?(r=r.slice(1)||\"*\",(e[r]=e[r]||[]).unshift(n)):(e[r]=e[r]||[]).push(n)}}function Bt(e,t,n,r){var i={},o=e===Mt;function a(s){var u;return i[s]=!0,w.each(e[s]||[],(function(e,s){var l=s(t,n,r);return\"string\"!=typeof l||o||i[l]?o?!(u=l):void 0:(t.dataTypes.unshift(l),a(l),!1)})),u}return a(t.dataTypes[0])||!i[\"*\"]&&a(\"*\")}function $t(e,t){var n,r,i=w.ajaxSettings.flatOptions||{};for(n in t)void 0!==t[n]&&((i[n]?e:r||(r={}))[n]=t[n]);return r&&w.extend(!0,e,r),e}Wt.href=Tt.href,w.extend({active:0,lastModified:{},etag:{},ajaxSettings:{url:Tt.href,type:\"GET\",isLocal:/^(?:about|app|app-storage|.+-extension|file|res|widget):$/.test(Tt.protocol),global:!0,processData:!0,async:!0,contentType:\"application/x-www-form-urlencoded; charset=UTF-8\",accepts:{\"*\":It,text:\"text/plain\",html:\"text/html\",xml:\"application/xml, text/xml\",json:\"application/json, text/javascript\"},contents:{xml:/\\bxml\\b/,html:/\\bhtml/,json:/\\bjson\\b/},responseFields:{xml:\"responseXML\",text:\"responseText\",json:\"responseJSON\"},converters:{\"* text\":String,\"text html\":!0,\"text json\":JSON.parse,\"text xml\":w.parseXML},flatOptions:{url:!0,context:!0}},ajaxSetup:function(e,t){return t?$t($t(e,w.ajaxSettings),t):$t(w.ajaxSettings,e)},ajaxPrefilter:Ft(Rt),ajaxTransport:Ft(Mt),ajax:function(t,n){\"object\"==typeof t&&(n=t,t=void 0),n=n||{};var r,i,o,a,s,u,l,c,f,p,d=w.ajaxSetup({},n),h=d.context||d,g=d.context&&(h.nodeType||h.jquery)?w(h):w.event,y=w.Deferred(),m=w.Callbacks(\"once memory\"),x=d.statusCode||{},b={},T={},C=\"canceled\",E={readyState:0,getResponseHeader:function(e){var t;if(l){if(!a)for(a={};t=Ht.exec(o);)a[t[1].toLowerCase()+\" \"]=(a[t[1].toLowerCase()+\" \"]||[]).concat(t[2]);t=a[e.toLowerCase()+\" \"]}return null==t?null:t.join(\", \")},getAllResponseHeaders:function(){return l?o:null},setRequestHeader:function(e,t){return null==l&&(e=T[e.toLowerCase()]=T[e.toLowerCase()]||e,b[e]=t),this},overrideMimeType:function(e){return null==l&&(d.mimeType=e),this},statusCode:function(e){var t;if(e)if(l)E.always(e[E.status]);else for(t in e)x[t]=[x[t],e[t]];return this},abort:function(e){var t=e||C;return r&&r.abort(t),S(0,t),this}};if(y.promise(E),d.url=((t||d.url||Tt.href)+\"\").replace(Pt,Tt.protocol+\"//\"),d.type=n.method||n.type||d.method||d.type,d.dataTypes=(d.dataType||\"*\").toLowerCase().match(P)||[\"\"],null==d.crossDomain){u=v.createElement(\"a\");try{u.href=d.url,u.href=u.href,d.crossDomain=Wt.protocol+\"//\"+Wt.host!=u.protocol+\"//\"+u.host}catch(e){d.crossDomain=!0}}if(d.data&&d.processData&&\"string\"!=typeof d.data&&(d.data=w.param(d.data,d.traditional)),Bt(Rt,d,n,E),l)return E;for(f in(c=w.event&&d.global)&&0==w.active++&&w.event.trigger(\"ajaxStart\"),d.type=d.type.toUpperCase(),d.hasContent=!Ot.test(d.type),i=d.url.replace(qt,\"\"),d.hasContent?d.data&&d.processData&&0===(d.contentType||\"\").indexOf(\"application/x-www-form-urlencoded\")&&(d.data=d.data.replace(jt,\"+\")):(p=d.url.slice(i.length),d.data&&(d.processData||\"string\"==typeof d.data)&&(i+=(Et.test(i)?\"&\":\"?\")+d.data,delete d.data),!1===d.cache&&(i=i.replace(Lt,\"$1\"),p=(Et.test(i)?\"&\":\"?\")+\"_=\"+Ct.guid+++p),d.url=i+p),d.ifModified&&(w.lastModified[i]&&E.setRequestHeader(\"If-Modified-Since\",w.lastModified[i]),w.etag[i]&&E.setRequestHeader(\"If-None-Match\",w.etag[i])),(d.data&&d.hasContent&&!1!==d.contentType||n.contentType)&&E.setRequestHeader(\"Content-Type\",d.contentType),E.setRequestHeader(\"Accept\",d.dataTypes[0]&&d.accepts[d.dataTypes[0]]?d.accepts[d.dataTypes[0]]+(\"*\"!==d.dataTypes[0]?\", \"+It+\"; q=0.01\":\"\"):d.accepts[\"*\"]),d.headers)E.setRequestHeader(f,d.headers[f]);if(d.beforeSend&&(!1===d.beforeSend.call(h,E,d)||l))return E.abort();if(C=\"abort\",m.add(d.complete),E.done(d.success),E.fail(d.error),r=Bt(Mt,d,n,E)){if(E.readyState=1,c&&g.trigger(\"ajaxSend\",[E,d]),l)return E;d.async&&d.timeout>0&&(s=e.setTimeout((function(){E.abort(\"timeout\")}),d.timeout));try{l=!1,r.send(b,S)}catch(e){if(l)throw e;S(-1,e)}}else S(-1,\"No Transport\");function S(t,n,a,u){var f,p,v,b,T,C=n;l||(l=!0,s&&e.clearTimeout(s),r=void 0,o=u||\"\",E.readyState=t>0?4:0,f=t>=200&&t<300||304===t,a&&(b=function(e,t,n){for(var r,i,o,a,s=e.contents,u=e.dataTypes;\"*\"===u[0];)u.shift(),void 0===r&&(r=e.mimeType||t.getResponseHeader(\"Content-Type\"));if(r)for(i in s)if(s[i]&&s[i].test(r)){u.unshift(i);break}if(u[0]in n)o=u[0];else{for(i in n){if(!u[0]||e.converters[i+\" \"+u[0]]){o=i;break}a||(a=i)}o=o||a}if(o)return o!==u[0]&&u.unshift(o),n[o]}(d,E,a)),!f&&w.inArray(\"script\",d.dataTypes)>-1&&(d.converters[\"text script\"]=function(){}),b=function(e,t,n,r){var i,o,a,s,u,l={},c=e.dataTypes.slice();if(c[1])for(a in e.converters)l[a.toLowerCase()]=e.converters[a];for(o=c.shift();o;)if(e.responseFields[o]&&(n[e.responseFields[o]]=t),!u&&r&&e.dataFilter&&(t=e.dataFilter(t,e.dataType)),u=o,o=c.shift())if(\"*\"===o)o=u;else if(\"*\"!==u&&u!==o){if(!(a=l[u+\" \"+o]||l[\"* \"+o]))for(i in l)if((s=i.split(\" \"))[1]===o&&(a=l[u+\" \"+s[0]]||l[\"* \"+s[0]])){!0===a?a=l[i]:!0!==l[i]&&(o=s[0],c.unshift(s[1]));break}if(!0!==a)if(a&&e.throws)t=a(t);else try{t=a(t)}catch(e){return{state:\"parsererror\",error:a?e:\"No conversion from \"+u+\" to \"+o}}}return{state:\"success\",data:t}}(d,b,E,f),f?(d.ifModified&&((T=E.getResponseHeader(\"Last-Modified\"))&&(w.lastModified[i]=T),(T=E.getResponseHeader(\"etag\"))&&(w.etag[i]=T)),204===t||\"HEAD\"===d.type?C=\"nocontent\":304===t?C=\"notmodified\":(C=b.state,p=b.data,f=!(v=b.error))):(v=C,!t&&C||(C=\"error\",t<0&&(t=0))),E.status=t,E.statusText=(n||C)+\"\",f?y.resolveWith(h,[p,C,E]):y.rejectWith(h,[E,C,v]),E.statusCode(x),x=void 0,c&&g.trigger(f?\"ajaxSuccess\":\"ajaxError\",[E,d,f?p:v]),m.fireWith(h,[E,C]),c&&(g.trigger(\"ajaxComplete\",[E,d]),--w.active||w.event.trigger(\"ajaxStop\")))}return E},getJSON:function(e,t,n){return w.get(e,t,n,\"json\")},getScript:function(e,t){return w.get(e,void 0,t,\"script\")}}),w.each([\"get\",\"post\"],(function(e,t){w[t]=function(e,n,r,i){return h(n)&&(i=i||r,r=n,n=void 0),w.ajax(w.extend({url:e,type:t,dataType:i,data:n,success:r},w.isPlainObject(e)&&e))}})),w.ajaxPrefilter((function(e){var t;for(t in e.headers)\"content-type\"===t.toLowerCase()&&(e.contentType=e.headers[t]||\"\")})),w._evalUrl=function(e,t,n){return w.ajax({url:e,type:\"GET\",dataType:\"script\",cache:!0,async:!1,global:!1,converters:{\"text script\":function(){}},dataFilter:function(e){w.globalEval(e,t,n)}})},w.fn.extend({wrapAll:function(e){var t;return this[0]&&(h(e)&&(e=e.call(this[0])),t=w(e,this[0].ownerDocument).eq(0).clone(!0),this[0].parentNode&&t.insertBefore(this[0]),t.map((function(){for(var e=this;e.firstElementChild;)e=e.firstElementChild;return e})).append(this)),this},wrapInner:function(e){return h(e)?this.each((function(t){w(this).wrapInner(e.call(this,t))})):this.each((function(){var t=w(this),n=t.contents();n.length?n.wrapAll(e):t.append(e)}))},wrap:function(e){var t=h(e);return this.each((function(n){w(this).wrapAll(t?e.call(this,n):e)}))},unwrap:function(e){return this.parent(e).not(\"body\").each((function(){w(this).replaceWith(this.childNodes)})),this}}),w.expr.pseudos.hidden=function(e){return!w.expr.pseudos.visible(e)},w.expr.pseudos.visible=function(e){return!!(e.offsetWidth||e.offsetHeight||e.getClientRects().length)},w.ajaxSettings.xhr=function(){try{return new e.XMLHttpRequest}catch(e){}};var _t={0:200,1223:204},zt=w.ajaxSettings.xhr();d.cors=!!zt&&\"withCredentials\"in zt,d.ajax=zt=!!zt,w.ajaxTransport((function(t){var n,r;if(d.cors||zt&&!t.crossDomain)return{send:function(i,o){var a,s=t.xhr();if(s.open(t.type,t.url,t.async,t.username,t.password),t.xhrFields)for(a in t.xhrFields)s[a]=t.xhrFields[a];for(a in t.mimeType&&s.overrideMimeType&&s.overrideMimeType(t.mimeType),t.crossDomain||i[\"X-Requested-With\"]||(i[\"X-Requested-With\"]=\"XMLHttpRequest\"),i)s.setRequestHeader(a,i[a]);n=function(e){return function(){n&&(n=r=s.onload=s.onerror=s.onabort=s.ontimeout=s.onreadystatechange=null,\"abort\"===e?s.abort():\"error\"===e?\"number\"!=typeof s.status?o(0,\"error\"):o(s.status,s.statusText):o(_t[s.status]||s.status,s.statusText,\"text\"!==(s.responseType||\"text\")||\"string\"!=typeof s.responseText?{binary:s.response}:{text:s.responseText},s.getAllResponseHeaders()))}},s.onload=n(),r=s.onerror=s.ontimeout=n(\"error\"),void 0!==s.onabort?s.onabort=r:s.onreadystatechange=function(){4===s.readyState&&e.setTimeout((function(){n&&r()}))},n=n(\"abort\");try{s.send(t.hasContent&&t.data||null)}catch(e){if(n)throw e}},abort:function(){n&&n()}}})),w.ajaxPrefilter((function(e){e.crossDomain&&(e.contents.script=!1)})),w.ajaxSetup({accepts:{script:\"text/javascript, application/javascript, application/ecmascript, application/x-ecmascript\"},contents:{script:/\\b(?:java|ecma)script\\b/},converters:{\"text script\":function(e){return w.globalEval(e),e}}}),w.ajaxPrefilter(\"script\",(function(e){void 0===e.cache&&(e.cache=!1),e.crossDomain&&(e.type=\"GET\")})),w.ajaxTransport(\"script\",(function(e){var t,n;if(e.crossDomain||e.scriptAttrs)return{send:function(r,i){t=w(\"" + ], + "text/plain": [ + ":NdOverlay [Variable]\n", + " :Curve [distance] (value)" + ] + }, + "execution_count": 23, + "metadata": { + "application/vnd.holoviews_exec.v0+json": { + "id": "1002" + } + }, + "output_type": "execute_result" + } + ], + "source": [ + "single_profs.hvplot(width=850, height=450)" + ] + }, + { + "cell_type": "code", + "execution_count": 24, + "id": "cf998cd5-1c42-4b23-8199-297251b1e4a0", + "metadata": {}, + "outputs": [ + { + "data": {}, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "application/vnd.holoviews_exec.v0+json": "", + "text/html": [ + "
\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "
\n", + "
\n", + "" + ], + "text/plain": [ + ":NdOverlay [Variable]\n", + " :Curve [distance] (value)" + ] + }, + "execution_count": 24, + "metadata": { + "application/vnd.holoviews_exec.v0+json": { + "id": "1950" + } + }, + "output_type": "execute_result" + } + ], + "source": [ + "multi_profs.hvplot(width=850, height=550)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "bfc5e459-b00b-4bd5-a71a-9e14051d1400", + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "c21d99a8-2ebd-49f3-a5e3-1e88ac95856d", + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python [conda env:segregation]", + "language": "python", + "name": "conda-env-segregation-py" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.9.2" + }, + "widgets": { + "application/vnd.jupyter.widget-state+json": { + "state": {}, + "version_major": 2, + "version_minor": 0 + } + } + }, + "nbformat": 4, + "nbformat_minor": 5 +} diff --git a/_sources/notebooks/05_inference_example.ipynb.txt b/_sources/notebooks/05_inference_example.ipynb.txt new file mode 100644 index 00000000..ca0e5bbd --- /dev/null +++ b/_sources/notebooks/05_inference_example.ipynb.txt @@ -0,0 +1,1709 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Segregation Inference" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Table of Contents\n", + "* [Inference Wrappers use cases](#Inference-Wrappers-use-cases)\n", + "\t* [Single Value](#Single-Value)\n", + "\t\t* [Dissimilarity](#Dissimilarity)\n", + "\t\t* [Relative Concentration](#Relative-Concentration)\n", + "\t\t* [Relative Centralization](#Relative-Centralization)\n", + "\t* [Comparative Inference](#Comparative-Inference)\n", + "\t\t* [Comparative Dissimilarity](#Comparative-Dissimilarity)\n", + "\t\t* [Comparative Gini](#Comparative-Gini)\n", + "\t\t* [Comparative Spatial Dissimilarity](#Comparative-Spatial-Dissimilarity)\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "This is an example of the PySAL *segregation* framework to perform inference on a single value and comparative inference using simulations under the null hypothesis. Once the segregation classes are fitted, the user can perform inference to shed light for statistical significance in regional analysis. Currently, it is possible to make inference for a single measure or for two values of the same measure.\n", + "\n", + "The summary of the inference wrappers is presented in the following Table:\n", + "\n", + "| **Inference Type** | **Class/Function** | **Function main Inputs** | **Function Outputs** |\n", + "| :----------------- | :------------------- | :------------------------------------------------------: | :----------------------------------: |\n", + "| Single Value | SingleValueTest | seg\\_class, iterations\\_under\\_null, null\\_approach, two\\_tailed | p\\_value, est\\_sim, statistic |\n", + "| Two Value | TwoValueTest | seg\\_class\\_1, seg\\_class\\_2, iterations\\_under\\_null, null\\_approach | p\\_value, est\\_sim, est\\_point\\_diff |" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Firstly let's import the module/functions for the use case:" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "%matplotlib inline\n", + "\n", + "import geopandas as gpd\n", + "import segregation\n", + "import libpysal\n", + "import pandas as pd\n", + "import numpy as np\n", + "\n", + "from segregation.inference import SingleValueTest, TwoValueTest" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Then it's time to load some data to estimate segregation. We use the data of 2000 Census Tract Data for the metropolitan area of Sacramento, CA, USA. \n", + "\n", + "We use a geopandas dataframe available in PySAL examples repository.\n", + "\n", + "For more information about the data: https://github.com/pysal/libpysal/tree/master/libpysal/examples/sacramento2" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "Index(['FIPS', 'MSA', 'TOT_POP', 'POP_16', 'POP_65', 'WHITE', 'BLACK',\n", + " 'ASIAN', 'HISP', 'MULTI_RA', 'MALES', 'FEMALES', 'MALE1664',\n", + " 'FEM1664', 'EMPL16', 'EMP_AWAY', 'EMP_HOME', 'EMP_29', 'EMP_30',\n", + " 'EMP16_2', 'EMP_MALE', 'EMP_FEM', 'OCC_MAN', 'OCC_OFF1', 'OCC_INFO',\n", + " 'HH_INC', 'POV_POP', 'POV_TOT', 'HSG_VAL', 'FIPSNO', 'POLYID',\n", + " 'geometry'],\n", + " dtype='object')" + ] + }, + "execution_count": 2, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "s_map = gpd.read_file(libpysal.examples.get_path(\"sacramentot2.shp\"))\n", + "s_map.columns" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [], + "source": [ + "gdf = s_map[['geometry', 'HISP', 'TOT_POP']]" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We also can plot the spatial distribution of the composition of the Hispanic population over the tracts of Sacramento:" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 4, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABBIAAAIzCAYAAAC9eDpvAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAAgAElEQVR4nOzdeZgk6VXf+++JiFxq6+ru6Z5Vs0gaSQhLloCRQCy2JCxbFma5BgQWGIOuEXANxjbwmAcDvthgwMa+ljHXQpfVj7EFRhgJGAsJS4jNiJlhpNE2kkazMKPpWXp6qy2XiDj3jzeyMqu6lqyqyMzIrN/nefKpqlwi31wr3hPnPcfcHRERERERERGRYUSTHoCIiIiIiIiITA8FEkRERERERERkaAokiIiIiIiIiMjQFEgQERERERERkaEpkCAiIiIiIiIiQ0smPQARERERERGRWXG7ma+P6b7Owe+6+2vHdHebFEgQERERERERKck68KYx3dePwJkx3dUWWtogIiIiIiIiIkNTRoKIiIiIiIhISYzZP2I/649PREREREREREqkjAQRERERERGREtmkBzBiykgQERERERERkaEpI0FERERERESkRLN+xH7WH5+IiIiIiIiIlEgZCSIiIiIiIiIlUdcGEREREREREZEBykgQERERERERKZG6NoiIiIiIiIiIFJSRICIiIiIiIlKiWT9iP+uPT0RERERERERKpECCiIiIiIiIiAxNSxtERERERERESqRiiyIiIiIiIiIiBWUkiIiIiIiIiJTEmP0j9rP++ERERERERESkRMpIEBERERERESnRrB+xn/XHJyIiIiIiIiIlUkaCiIiIiIiISInUtUFEREREREREpKCMBBEREREREZGSqGuDiIiIiIiIiMgAZSSIiIiIiIiIlGjWj9jP+uMTERERERERkRIpI0FERERERESkROraICIiIiIiIiJSUEaCiIiIiIiISEnUtUFEREREREREZIACCSIiIiIiIiIyNC1tEBERERERESmRii2KiIiIiIiIiBSUkSAiIiIiIiJSolk/Yj/rj09ERERERERESqSMBBEREREREZGSqP2jiIiIiIiIiMgAZSSIiIiIiIiIlEhdG0RERERERERECspIEBERERERESnRrB+xn/XHJyIiIiIiIiIlUkaCiIiIiIiISEmOQ9eGSgYSzpw547fddtukhyEiIiIiIiIlu+eee867+9lJj0MOr5KBhNtuu42777570sMQERERERGRkpnZI5Mew6ipa4OIiIiIiIiISKGSGQkiIiIiIiIi0+g41EiY9ccnIiIiIiIiIiVSIEFEREREREREhqalDSIiIiIiIiIlmvUj9rP++ERERERERESkRMpIEBERERERESmR2j+KiIiIiIiIiBSUkSAiIiIiIiJSErV/FBEREREREREZoIwEERERERERkRKpRoKIiIiIiIiISEEZCSIiIiIiIiIlmvUj9rP++ERERERERESkRMpIEBERERERESmJujaIiIiIiIiIiAxQRoKIiIiIiIhIidS1QURERERERESkoIwEERERERERkRLN+hF7BRJEREREjjFPW9B+BhwgDz8tgto8pC3wDJI58ByyDuRdiitvZVE4EYWc3qzb3164p6uvH9WLi7LilIfr+Q7b32kb7sV9+M6Xhzva+fa920RxuI7nxf3vc587jmO3620bx+BQLL768toi5CnkHcjaO2xze7J0b5tWPPeE59Gi/vYHH5P7PuM0iGphm3m67fkwaF4DWQvS9asvC2+c4u/tz6MVp3zg74Hb9bZlEVtefys7OTyCuF48xhiyjfAe3xz7EPcXxdjpv1TyuESmjwIJIiIiIjPM3bFdJmTeXYeVh8PEdbvWaMdVGVk6pjvyrXP4nYIW7Qv7b2O3bXq2bduHfFx7PR8bTx5um8MafAywR0DpsHJId3t8+wVZeleb9ZXvIsNRIEFERERkBrnnsPY4dK7gzdPQuRKOwjZOhQnbxtM7BxBEZA9lBzdkFh2H9o8KJIiIiIjMAPc8pJyvPxkCBel6/8L1J/q/d1fGPzgREZkpCiSIiIiITCl3D2vpu6uw9tikhyMy+0pfbiGzatYXwSiQICIiIjKFfO1x6FwuivKJiIiMjwIJIiIiIlPEszasn4P2pUkPReQYUkaCDMeiMeUk5JN5TyqQICIiIlJx7t5vubf6F0ULRhEpi+cZrF+BzjokDVi/ENpPLl0Hc0u7dj4ROa4USBARERGpoM3iie3LYQmDOiyIjITnDk98AtbPX33hyjmYP4ufvg0aTcxsz5aqIj3je48oI0FEREREAM86cPlTyjwQGTFfuwwXHoL2ld2vtP50OF3/Ilg8rSCCCAokiIiIiFSGu0P7Aqx9JixjEJFSeZ4Xny2DbhvOfWjP69/75vfRXV2nfnKJF/ydLunpz2L5zEvHM1iZWmYQjatGQjaeu9lOgQQRERGRCnDPQwCh9cykhyIyu7odePqT0BquWOnis2/gYz/+nwA4967307z+Or70w182yhGKTAUFEkREREQmzDeegrVzqCK8yGhZo4nf9CI4/whcfnTf65/+rOs3f++cP0+2sTHK4ckMmfUlMNGkByAiIiJyXHme4Zc+BWuPoyCCyHiYRbB849DXr5082b9tHI9iSCJTRxkJIiIiIpPSuQzp2qRHISK7OH/fY2St1ubfCiTIcAwbV42ECVEgQURERGTMQj2Ec9B6etJDETlWPM9g/Qo8/Yl9r5unOdd+7i087z0/zrm7n+DjP/PrdC/v0d1B5BhRIEFERERkDNw9ZB94Du2L4SQiI+d5Bq11WHkinIZcRhQlEaeecwKAm77gRp6+6yU88d4/GeFIZZbMeo0EBRJERERExqFzBVYemvQoRGZXbZFQAs4hSvD2KjzxUVh76sjtVLvrKY+87Tdp3nBDKUMVmXYKJIiIiIiMmOcprD026WGITK+oDnln98sbp7G8A4SAgWcpPPgHkHdLufvzH38G8lw1EkQKCiSIiIiIjIi3L4WCip0V8HTSw5FxSeYh3QCLIa5B2qY3wZUDqp8kLEVwsMUQGMjaW4MKjVNFECHIW6vw0B9R5nN+6RPnABVblCEZKrYoIiIiIgfj7iGAsPLwpIcioxI3wQwoThYXf3uY7CbN/nVr8+Fyz6G7MqEBT6HaCWwwAOdFsCCu40kTLExlbFumgjUX4bmvxD/9+xw1mODuPPiuB3jgZ38lbDvR9EkEFEgQERERKZW3L0PrvCaMs6x+EvJ28UdxtNzz3Wv4eRZOvdt6Ct019iz6F9UgWQgBqSGLA84Ui/a+2PN+YGH7ZQD1Jrzwdfhj98DKuaHv1j0811kn56F3fZJH3/E+Vj7e7/CQb2wMvS05voxqFVs0s9cCbwZi4Ofc/Se2Xf5K4B1Ar5DPb7j7v9hrmwokiIiIiJTEs3aohVDSumypAgtF/HqBofryQBDhEHq3rS2ELIWsTUjbr0EUQZ6G+yQP160vQdaBrHXExzFlasuYH+1zZOTwrM/DP34nw2YmtC53+fBPv5uL936Y1rknrro8XV8/0phExs3MYuBngNcAjwF3mdk73f1j2676h+7+t4bdrgIJIiIiIiXwjadh/Yn+kWeZTnEjpMxbHI6KexYyCOonwH3vgn8H0ctS2FwekUHee+8MZCDk3XCd+nKRnTCjLOpnYXh25CDC5mbJ8VtfAY/88dC3OXfne3bfXrR3poRIT4VqJLwceMDdHwQws7cBXwlsDyQciAIJIiIiIofk7tC+ABvnIVPK80yI6iFwsH2pwqSzTPIO1JZmc8mMRZDMhyUJZQVqBjc/fxKPYpg/C6dvDWfmGaxfhAufDsGjrAvkXPzkhT23FTUapY9P5IjOmNndA3+/1d3fOvD3TcCjA38/Bnz+Dtt5hZl9CHgc+F53/+hed6pAgoiIiMgheJ7CxtOw8eSkhyLHhachMwEAm536CbUlbESZPG4JRDH2/L/OVcsbFq+B614QgkYYmHHdrW3+yotfwcW77uVTb/5PtB7furwhqtVGMk6ZMWbjrJFw3t3v2Gs0O5y3/Yvjz4Fb3X3VzF4H/CbwvL3uVLk5IiIiIkNyd7y7iq8/CVceUhBhFlnF2/vlneLUDt0gGifZeZ4wRUb5nFsE6Tq71kjwjDCnysEzkrmE05/zfJ77pq/jNfe+ly++878TL8xvXl0ZCTKFHgNuHvj7WYSsg03ufsXdV4vf7wRqZnZmr40qkCAiIiKyD88zfOM8rDwClx+A9XOQrk16WFK2uHG0Qorj5nko1lhbhHhu0qM5JBvtspEjZDrE9Ygzr3gxX3znr22ep4wEGVYU2VhOQ7gLeJ6ZPdvM6sDXA+8cvIKZXW9FCoWZvZwQJ3hmz8d3qGdFRERE5JjwzhW48kDoxtC5NOnhyMjY9E7GPQ1JCfWTTN3ufW0BK3F5hrvjUYJjuJUz6T/1l2/n1m/5xvBHhVr6iQzD3VPgO4HfBT4O/Jq7f9TMvt3Mvr242tcAHylqJPwH4Ou91wt1F6qRICIiIrID76yEpQvd1UkP5fiIaqHYYRSHbPNsYzxFDpMFiJLpykbYSd4ObSWnqSBjVNv2Gvcm6gcPLnjUCO+ZrHgdPT3y8Hpe+m9/iO7FS9TPnC1tmzK7DMZZI2FfxXKFO7ed95aB3/8j8B8Psk0FEkREREQGuHvIPNh4ulhbLaWLG+Hof94p2izGQF5MKHPIi/XscR2S+WJi6CGV/9CBBQtdD2zwiH2xTU9H0i1gIrKqB0MM4iYkcyGIENeL8yNC8KAIIGSdgy8fyjscJgAxDDPnZb/4U1hU3//KIseAAgkiIiIiBe9cCe0c21rCMBLJXNFqr90/+u/p7keOPQfvFOnkFoIAcQNsYBfWsyIQ4eE6nofrba6Nz6GXoevdmWhysCuLIK9QG1KLYf76gWKKvkdZyG3FEONmUVRyuMCRE4f3yghZcU8i+zKw4eoXTC0FEkRERORY86wdJratC7PTTq8q6stspqp7t18c8Cg8u7qA3vZAxHF9Ca1Cu/bNs5DMFfUPDvOC5FA7Ae096731WTSe133vZeMix0aFvm1ERERExse7a6GAYlqhI7hTxYpAQTGxMhsIEhRp6rOyXGBaVOW93DyLJU2OPLM/SI0DG1eRSQUSZDhVqpEwCvt+4sysaWZ/ZmYfMrOPmtmPFOe/xMz+t5l92Mx+y8xO7HDbm83sfWb28eK23z2KByEiIiJyEO4ZrDxcnYnXtLEY6ifC8oS8E05bMg1yNOEaM0vGU5hyGHFJdQSGCA6ELg21kPEyDspIEAGGy0hoA69291UzqwF/ZGb/E/hp4Hvd/f1m9kbg+4Af2nbbFPged/9zM1sC7jGz97j7x8p8ECIiIiLDcne4/OnqTLpKYaEooWehhgCECU/eCUXrtq8/P4r6cj94IBNm/a4HvYKUVbBZs6IEjWvCkqPdshPiJmTjLIpakedYKs5UI6HoH9nre1QrTg68APiD4vz3EPpS/tC2254DzhW/r5jZx4GbAAUSREREZCLMDPcSJ9ZVUF8Kk0mzrRN8M0gabCahpmtFx4QmZC3Iii4JO7E4BCcsIlQOox+ckGqI6qHDyEzLw/ubKARL0rXw3uwFFkps8TgcBRJEYMgaCWYWA/cAtwM/4+4fMLOPAF8BvAP4WuDmfbZxG/A5wAd2ufxNwJsAbrnlluFGLyIiInJA7g75uCcfIxI3IRompT0n1DQ4Ga6bd0KAIGmEyajn/cmZxcXzU7RF1LypurwbXtOsVdSo6FxdiHLc4kZRYLFsOcQ1iE+x2aEjbfW7f4yRu8/8+neR/QxVlcTdM3d/KfAs4OVm9iLgjcA/MLN7gCVg1/C0mS0Cbwf+kbtf2eU+3urud7j7HWfPnj3o4xARERHZl3sOa49P4ChmyaJaCADEjQNMHL2YdG3LQMg74fnI22FbeclLIWR0PA+vW29SmzRDYCGZn9yY8lG/d7z/M2kMtJYcJ0XXZH9mNpbTpByovKm7XwJ+H3itu9/v7n/d3T8P+G/Ap3e6TVFX4e3Ar7j7bxxxvCIiIiKHl3ehNWQ7uaqqL4cshCjWMgPZqhdYwIuOGhMQ18MSGHdwI6yJKaYcXmQSYKXMxR1CNsbYKZAgsu/SBjM7C3Td/ZKZzQF/DfhJM7vW3Z8yswj4QeAtO9zWgJ8HPu7u/67ksYuIiIgMzdefgPUnmfwkwA4/htqiggcynGz8Kf/Ul6E2v7WDwva3+pa/kyMVZjTAG6egfeFQtz8093DnIrswY+aLLQ6TkXAD8D4zuw+4C3iPu/828HfM7JPA/cDjwC8CmNmNZnZncdsvAv4u8Goz+2Bxel3pj0JERERkD562ikyECQcRLIbaQggIHPSIcbIw+fXvMj3i5ujvI5mD+Rtg4QaYvw5LmthBCpl6WtT3OMKEyyKIGoe/vYgcyjBdG+4jFEncfv6bgTfvcP7jwOuK3/8IxetERERk0toXJtvuMZkPKd9Ztx8M8CwEFDyHdI/2db3OCbPWaUJGK2+Hegmj6uoQN6G+jJEfMT6XF8U/62C7b8ixooZHG/IsnHq3H3uAbdJZTTINZr0g51BdG0RERESmiedpyC3trIYJeHd1/xuVJZkr5hl5CF7EjVAccadUc89CkKB+MrS1cy9u7+H2Ua0ohqhMBDmEUQYTGqdCEKEUW5cKOBZqH6Qb4Yy4Fjo0VGUC7xUZh8gEKZAgIiIiU8vdobsS0v7bz4AlA10ZjlCL4LAsCfdrDkRFerntXdfAc/B2KKAIWztKqB6CHFUvmNBdgfpS+EgcNbBQahChUATVHIfW+a2XpVXrsqJAguwvmvEaCQokiIiIyFTy9iVoXYDujp2lGdvOvkUQz4X762UQbBmDJh0yYXm7WFrTBuxoWQq1xbCtsnmKE0P7YvnbLp0+0yIKJIiIiMhU8awdui+Mu1L7dskiRBHkKfSOziqDQCrPi5oE8cGXzDTPQJRgJU+k3WLIOpCNcQnSUSiOIPsxU40EERERkUqxeEJ3HIWOC56HZQh5Z6Dgm8g08ZBV0KtBMIz6MkRx6UEEIAQR0rXytzsyiiSIKJAgIiIilefuoXZA2hp/8cSe+omQIg7KPJDpZvHBPkPJPCRzowkiQFgSJDJDDDDVSBARERGZDM+7sP5EqIUwqaOAyUKxtlxHIWVGeB4KgWat/a9rcWjzaMaW1gp5WmKT92n7bE3beEXKp0CCiIiIVFv7IhPZcbckFJbL26H9nLIQZGY4JHsEEmqL4ZR1Ia5hnu7yEYxDsdGrIgp+wPoLUzYxV/tHGYJqJIiIiIiMmXdXYeN8WDftJbeZ24/FUFsKE6HeUgaRWZN3dz4/qkNtEfMsFBPdKyDg2e6XWwJDtIh0m5ZODYMUSBBRIEFEREQqw7MObDwJnZXJZABE9aKQogIIMuM8h9qJre1TLYHmqRBEKIPtMNXwtJxti1SZFck6M0yBBBEREakEd4eVhw5WSb4sg1kImujIcWFAcqL4OQc4VlYG0K7LIQymPeVbSxtEFEgQERGRyXLPoX0J8MkEETYHoiCCHDeG1erF7+NYQmQhaGcR7ikQFZ/9aaNAgogCCSIiIjJZq49Odo10Mh9+Koggx02eQlzf/3qlCW1c3aOwdGmYrhEiU2rWiy3O+MoNERERqTLPU+hcnuwgojo6wijHUx6KHY6b2ZQHEfR9IaKMBBEREZkI767B+rnxd2XoiRshiKBMBDnOsg5EYw4meEYozDClE/IpHbaMl0XKSBAREREplXfXYOVh6K6O/86TufAznisKwpVUoV5kGmUbOOOe8FhxmlaKJIgoI0FERETGxvMMWudDJsIk1E+G4EEypxaPIgBWw8Y0MQ73EhEKO04oE6kUCiTI3gwjmvEaCQokiIiIyFj4YFHFZAHStQkNJAsNvie1pEKkSmrz48vKcYf0ynjuS0RGSoEEERERGbnQ4nGgM0PeDvUJ8s54B9I7QKQggkhoxTjOpT3ZjGQBuTISZB82+zUSFEgQERGRkfLuKmw8ve3MPFRux4r2i3nIFs42RjeQuBkKy4lIUAQRnDFVLEiak6mLUjoFEkQUSBAREZGR8TyFKw/ucmEWOidkG2DJ4bonJHPhqGqU9GdD7uHI52B7OYuLEzqaKDKouwpxE4+b2Mg7mBhYDbw74vsZMX2HyBBMNRJEREREDmnt8b0v7y1tiOqQHiBbIG6Go5tZOwQksm3p2VEC0Yki64Gib31bBxJFdpK1IGvh9ZMjDSYYjsc1SKc8kDDVhSJFyqFAgoiIiJTGVx8LSxV6E/fOpSFuZZCt73OVCGqLhIrvHrIX9lpv7RmQKXAgchBZKwThDsEhZBYNnjNQ2HTz2Ows1EnQ94oMQTUSRERERIZlBmuPHew28Ryk+6ybThYgn/ajmCIVFzcPt8Sop7uytXhj1AiFVYulE8EszMJn4TGIHI0CCSIiIlKe2hK0njnYbfZaL107ES4f+dptETnKBNkAT+a2FlPMi+yDYunE7FAgQfZmphoJIiIiIsOLage8ge2e6mxR2BvTPrvI6FhcLEeKsKO2gsyPScBPxRZFFEgQERGREh14IuGh9kF3LfzeS3+2aHNttYiMSG0ZI2OznsFR5celvaoCCbIfm/kaCdGkByAiIiKz5BAT/3Q91ECAMJnJOyENOl1HO+wiI1Ri6rVbcowCf/peElEgQURERMpz2IlEthGKLm4/KnpsJiYi08stgc7lSQ9jfBRHENHSBhERESlRd582jrvynbsyWKxCiyKjENWwEj5bbvGQbV5niSIJsr9ZL7aojAQREREpT36UHvE7ZB/k3dCbXsXNRMrVW050BCGIcIwyETbp+0hEGQkiIiJyZO55aPs22PqtDHknnCwJJ+3Ai5Qja+FxA9yxw9Q2Oc4U2JT9GFg028fsFUgQERGRI3HP4eL9o12C4Cl4VGpxOJFjLWuFE4bXloouKSn6hA1DgQQRBRJERETkSMwi/OTzYeXhotPCyO5phNsWOa4culfCr1EDT+aGr52wU10TEQGY+faPCiSIiIjIkXi6DhvnRxtEiGqEo4CzvWMmMlF5G9Ic4sa+V3UYceCwwrS0QUSBBBERETmi9sXRV23Pu/32kFreIDJxBqHGQnaUAqvTSoEE2Y/N/P8qBRJERETkUDzrwPq58aU3ZxsQ1cdzXyLHlTuOYcNMluPm0QMJlkB9ecomXbNdRE9kGAokiIiIyOGNs/WbJVM22RCZQp5CdwWvLfY7pXi+JbDgABaHDKGjihJMn2uZMWaqkSAiIiJyFW9dHH//eM8gakLWUUBBZNS2tXJ1iyGZD90duuvg3ZCRcCgx1OYBL4IV00ZLG0Sm8ZMrIiIik9ZdCae4mNiPpQ+9h8lNbQnyzhjuT0Q2eRY+85vs8MsakiY2REFHkWlm0WwvgZntRyciIiKj0ZtQZJ1whHKs970ajmK6shJEJiaqc+gj82UsiRCRiVJGgoiITBVvXYCVvwhp9bVF7NrPm/SQjhVvPQNpa6D9mYfWjNmQfefLGQWka6GLg1KMRabP1H9sp/4ByBjMeu0PBRJERGQqeHcVnvno1nX5WRtffwKaZ7BI/9JGyd3DcoK0De0Lkx5OQTvzIpOT92sk5N2DZRnM9vxK5FjQXpeIiFSWew55isV1WH9y5+J+5++DqIYv3QonbsPGnWZ/XKw+Gtovxs2QCZBt7H5dqxWFEeOQueAjylawJBR8E5Hxy7tA8fnb7zsBoHm2+KUXRRhHXZURclfRV9mdGahrg4iIyPh5+zKc/xBkLby+vHeHgLwLlx+AuA6LzxrfII8J97w/Scha4WdtqV8nIe8WywwIAYS8mFzkKWAQz4dgQtkFErXOWqQaso1920H220cqk0hkFiiQICIileJZB9afgEufBC+OWA3bZnDjmakPJHjWhqhWicwKz9ohcJC2drpw6+/ZbhMI72cylM2i/ntERCasOPqazIffbeA8EZk5CiSIiMjEedaBjafDqXX+8JPDjSfxJ/8MaotQX4bmKYgaWBSXO+ARcHfYeBKuPAi1Rfz0iyYaTHDPYeXhPa6Qbs1K2E/WKpYilLDMIW5ClOjApkiVeBo+m8n8MQkfOAqUyF5mvf2jAgkiIjI27jm0LoRJ5cJNgMPKI3D50+UdWW5fCice699v4xQsPzd0eYjr5dxPSTzrwNpnoHMJ0mL5QHcVnvxTvH4Smtdg89dNYGBDvB75AYMCUb2c7g4W9ZdPiEilaGotcjwokCAiImPhG+fh4idC2z6A1ceguzaede7ti/DU3RA38LlrQ6ZCbRGrLYaxuU+uTdPaZ2D93M6XdS6FMednxp9VMcxEPU7gIC9fGU9xsqgCizI67v0lM8eykJ4XB9q3P/YhnotkfjRLmCpLKVGyN7V/FBEROSK/9Em48vDWMztXxj+QrB26D6w+GsYVN8LE4cSz4cStYxuGu0O6HgIcrfN7X3njybBMY+7MeAbX013b/zpZ52B1CvLu0ZY3JAuhYOOM75zJhDjF+7n3/oxDAUGLCBPpYt1/b/5ohO8PvOhO4sVnYQqDEO5s6aJwkDlyPAfJwlQsISuVVjbIMadAgoiIjJS3L10dRKiKrB1+Xvoknq7D8nNCnYa1cyFTYvm52NzZvbdxAO4eAgdXHjxYJsbqI3hcw+rLpY1lN+4O7WfCaf9rh0lEOkTQIWw8dNbw2v6t4na8/RRO0GQ6RLXw/hrsLOLZ4TOmPCoCEMVssxeMsCIgsVmMsHd9wmW9wAQMtBfcXrjwiEfCe0uosBAoiSIgOvhnMp6D2gIQzfyR150pI0F2Zwam9o8iIiIH53kWui9ceWjSQxmCF5kKj7Fl5/DpD+LXvQxrnDzcVlvPhB31+omQfXDlwcOt7c/acPkBfOnZ0Dg12p32dA1awwQRCJOjYYMIECZlvUlMstCfKGWd8DzlO3SH6EkWyinUKLKdE96LpbYnzbdm6lRyzllkUBw0VmI1aCxjdswyEERkCwUSRESkdN5dgyc+MIUTv+17+w7n78Nv+EIsuvpfpucptC+EiX7jVEjvLSb53jofWlgCW/OhDylrw6X7IarhUR0aJ7Gl8S3H2JEdYTciXd/6t6dhgrJb/YO8q2wEGY24frgMmeMqqp0aymgAACAASURBVCmIILIvA2UkiIiIDM/XnwoFBKcuiLCLrAUX74drXoRnKZBBVA8Bg0ufgM7lcL3VR0NhxOXnhUnylQcHNlLi4ci8G07pBr54M4aFIEPShO56uKy+VKRS78/dIW9DnoXsgvbF4cfiabivrBuep6OKkrCtzb/rEDUG3ksldfYQGaQA1cFk63i+OPNp2/urZJqJyNgokCAiIkfmnsPa49C6uHsHgmm29nio9VCbDxPmqI5jV6dCZ2248JExDSqH1SJg43mYdPfG07kCzWsgmbtqkuSeQ9oipDVnoVXmYY/Gel7UmTCoLUF35UiPiKwV1l33xhMXj6lXWyGf4kCCe7/Q5JbXpFijrnaWk6P54MFla7gtHNPaCCLDsSED+tNq30CCmTWBPwAaxfV/3d3/uZm9BHgLsAg8DHyDu19VgtvMXgu8GYiBn3P3nyhv+CIiMkneWQnr6TeeChPSWZauF4XFKHkt9SFFTWxwHNt/Xz8HCzeGCXhR7M3zNGSLlJE9sEWR1RA3j7ZtiyEvsg+SxaJ2QlGgblon2m4QxUAefuYeAgdOsVwjR8d1JiiqVePzPG3SNYgbYTnSceWKQMnxNsx/rjbwandfNbMa8Edm9j+Bnwa+193fb2ZvBL4P+KHBG1pYQPUzwGuAx4C7zOyd7v6xUh+FiIiMjecpdFaBDJ7+0OwsYRhKhY6+NYbo4LD2ePhpUZgwZSOsMxA1jp6R4HnoRe/16W/zaEl43vO0H1yxKAQTsk7IBonq4XJLt2aUQBFUySr1lptNdsy+w0rUvoA3z878UVeRQzkGXRv2/eR7sFr8WStODryAkKkA8B7gq3e4+cuBB9z9QXfvAG8DvvLIoxYRkcm58DF46i64+KnpPUp8WJ2rEu8m5yDFzoolCEY+dO2EA8vb5WzHALan/1dJ1K/dEDV2qM/p4XLPQhbLlkyR4vPSq+afd4BieUjW3rrdrBNeq6MUtJT9+RQvl6mC7ur+1xGRmTTU3oSZxWb2QeAp4D3u/gHgI8BXFFf5WuDmHW56E/DowN+PFeftdB9vMrO7zezup59+etjxi4jI2HmYELUvhDX4yfykBzQ+WSu0IZxilnfDhLVMvYnvUdQWQ7HFKgennHD0Ol0Pqd299G73rUGFdH3nx7HZ/nKHlOhe4KG3XYp2hFmLIXfX5KDiRnkBsOMq2whZasdRuh6yhkR2YZGN5TQpQ/1ncvfM3V8KPAt4uZm9CHgj8A/M7B5gCdhpD2KnR7bjgiJ3f6u73+Hud5w9e3a40YuIyAQM/Ovoroaj9LWl47NWtnWRieebz9+A+RF2YMs+yn2UsUAIbIxy2cVROSEDJG5cfQQ7Xev/9PToz8VOqvq8TDOnCOrIkbUvhiKux41n0LkU3keqlyDH0IH2JNz9kpn9PvBad/8p4K8DmNnzgS/b4SaPsTVT4VnA44cbqoiIVFb7YphoNU5C+/LE59mjY6Hd4aSLs1l0pJRsyzv4ZuCnVwyw2G5vYjysqH649OZkIdw3ebFGvYI74k4oVpmuQ5YSykbtdL0RH5W0SPUSymaEDiHp+qRHMgPyEEyon8KiY5g901vCVFs82JIzmXE2uqWEFbHvozOzs2Z2svh9DvhrwP1mdm1xXgT8IKGDw3Z3Ac8zs2ebWR34euCdZQ1eREQqxLPQwSFKQobCrB2hSRaKIEKbiU96S0j/N7w45VjeDaesHSZXcXPIjSRFK8lDyLvgnWoXuouSakw0040wlv1EDcLOqyYzQ5mxr6iJ8hTSVXzWvveHlachiJ61Z+9/n8guhgmT3AC8z8zuIwQG3uPuvw38HTP7JHA/IcvgFwHM7EYzuxPA3VPgO4HfBT4O/Jq7f7T8hyEiImOzX5p11goZCrVFZuoQqmdARdJ3R7gmOQQVUoj3qX1hcREMOMBYLA7vi2S++m8N9xG0yTyCrBUCN1EjtJQc1KvRkK6F10TrtnfnHpaoYJBVIEg0S7KNagcGR85DdlZ3VUU85VjYN7zt7vcBn7PD+W8G3rzD+Y8Drxv4+07gzqMNU0REqmPIGWDnMtSXw07VLKzx9owDrggcnbwb2jmOkOUdvFeU8aqlHBaej4NkRvSKck56WciwzIB49MsWDqIX2Ihq/c4QloTndHBJSlyfnud53OJmNbJMZlX7Al4/DVGCzcL3/mHkHWh3Q9A0LrmwrUyPY9D+sSJ7RCIiMj0O8I+xczksB8gOeOS6ipImlcmF7q7hyfzID+qb5+ERx0UGQW8CFtUOVhfBkul7/aN6dYvx5d2BIM4OdRuyTrG8oUJBEDk+OhfAanhtPhTh7QUUPC1S/zNIFrFhlutMLYfuCuSNIgNrttfKy/E0y59gEREZhYPOXjsr4chMllGZifhB9dLxD1qIcGTyMJkfQ6tEg1CRvbfuN26E13RYUR3i8Yz1UKIGRVuGMMHxNDzWqT5qnRfBm0mPo2IsrtZylVnm3RBI3k3WwRtnZr44Y/b0OVofvo/4+ltovuRlkx6OjJGhjAQREZGj665C/WQ4QjNt6a5xszgaX5UgQiFrj+8ol0VhPbkl0DnE8+BeHCG3amUmRPWtr2vUKOoNJEXga0pF9Wo9z5XQ+6xo7Xo1OORt3JoztQQib7fpfOJ+WvfeQ+uDd9F9+IHNyxa/6g0sf/N3EjWGLGYrUnEKJIiIyAEdcqevcwkap6F7pdzhjFJUh8Zy9YIIAK3z+Nz12DgmRnk3dHPIuhx4IpZ3+uv1k8XSh3ZoztVHp/NimcA0BxGgWnUdqmCzMKhSNCqlewXM8KgxtcEEd6f7F39B60P30v7g3bQ/+kG8s3Ob2NXf/K+07vkTrvneH6X+/M8e80hlEqb1fT0sBRJEROSAjvCPsX1huoIJyVw1gwgAOEQR5GMIJHge6gVkGyEYkB2gdkBtoVg5YMXa/ZGN8mCiGLIZPmofNYqslUkPpAKiRMUnq6pzGYjwxklsxAVky+LudD75CdZ+711s/PkHyC+cH/q26aMP8+Q//nuceMPf58TXvRFLpuMxi+xEgQQRERmv9sVwlP8gxfomJa4fbNI8btva/Ln75nIHK2mBvIeN9QsPpqthucewNQ+yTggiFGUI9r2zuFHcrsgWGNURHc+KLIsKv76H1SvGmCwUr9MxTee3BMinvN7FcZCH/weNU5MeyJ6822H9j/+Ild/5H3QfuP/wG8ozrvyXnyX/zEMsf9N3EF1/a3mDlOowC8H+ijCz1xI6LsbAz7n7T+xyvZcBfwp8nbv/+l7bVCBBREQO5sgTOw/F+pL56k/iqp4i3r6A108UR1y7kLbozdg9mQuT+F7bRQBs6KUQ3qsV0F25+nnIu0UwIQ2/7/meiBi66l+8rWYBFqq+D31EOQqBlH3H1Nv8jB+uT9dG3ia0cnrBKCO8/1UrYjrE1a0b4J0OV/7Hr7P6rneQX7pQzjbdSZKU1n/4HpJXfQ21V38NFmtaJqNhZjHwM8BrgMeAu8zsne7+sR2u95PA7w6zXb1jRURk/DwLE0P3ak/mvOJHcvNOGGNn+1KRga4D25aReDwXJuyD68W3vwaeh9eos0vWiBcdODzd+fWLm2HyDyG9ftj8+qwT6lJsBg28X2Mhnuvf51Xj8XCfvSBE3CiKOxKCHZ5dPc6ocTzS3fNueE6jBLCQ6VHlz9xRxc0iQFnxz670JYuVDiRkly9z5W2/WOo247M3cOGuj3DyBTfD//pVsk/eS/yV30H9WbeVej8yWRXq2vBy4AF3fxDAzN4GfCXwsW3X+y7g7cBQLUYUSBARkQMq6R9j1g47j1U+Ypins7fGPNs4eiZI3AzZDztNSJOFYvJfTOQOMmk1ds8+6I15M0hgA4GebGsmQ7a92JkVgQjrB0kqW/tiBAYLXsbNkLXhWfUzbg6j97hmOVgyK6wG9WUsiic9kr2V3B3H5hfprrXoPv4oTz30aerPuR0eupfur30513zHP+Hk134TFlf8OZGqOWNmdw/8/VZ3f+vA3zcBjw78/Rjw+YMbMLObgP8DeDUKJIiIyEiUuYMe1Spe8G6Yhf0TNmytgjJE9WLdOdveBxEkjfB0jXoSd1WQYBgDGRpYvw7DcdSrPVHhI8CHExVZFxXPcpK+qFb9IAKU+i/AFpfpdjLSJ/tzus6D/RaR5//9v2L1fe/m+h/+SWo33VLeHctEjLFrw3l3v2Ovoexw3vY1h/8e+Kfung077upUgBARkemQlzjxn4adyEmL5wm1kXbRXelP7kc2hmZIP/bQ+32zTWJPba44up1R/ZRyv7rt43G0ueShAUTT3xoxqoXXNa143RXpm5KMmDIng/nKJeLTZ/a8TutDd/PI3/0KLr/j10KtGpGjewy4eeDvZwGPb7vOHcDbzOxh4GuA/9fMvmqvjSojQUREDqjMCHvV49kVOLLpeUjlj+eKSdIOO9+jyuyIm0XwoAsMZD7EcyEI5HlR3PAY1BqYCAuvbd5l6IKVw/JsazeDZCHcR572J+VRPby+U1FXIQ/vx6R5yKwVGTvPcPdxHrU9nGEq7zcazL3ohdSuv45osQk5XPrv77jqamaGrV4gPnUN2cVndt2cr6/x1I//M9b+4Pe49gd+jOSas0d5BDIJZlh1ujbcBTzPzJ4NfAb4euANg1dw92f3fjezXwJ+291/c6+NKpAgIiIHU2YWQdWLGWYdaA62JPOiQCTjO/JpUZjwZS3AoLZYTOqMzcnlKJ7H2iJ0N/qxlKgeijQCZN1+60kdMCtX3KRoORCeZy+CCJsBhREZrBnRCwz16lJYXLzv4/Dey7NKxNiI6mwOpBf4SNvVGJvsz9OikOqULTUyY/n1X0u+0aJ++7Op19eJ8tUtn0+Pm1za5ea+eoXmLc9h7dKFfTOB1v74fTzyhi/juu//lyy+6m+U+CDkOHH31My+k9CNIQZ+wd0/ambfXlz+lsNsV4EEERE5oBL30juXoHkNtC9V84hn3oH1J68+P25C6a26rFjG4GECFxfLBbqDRQE9LGXY6baNE4dIFY4gmQuBiO0FGLcEEWrhPnoTzKO+VBZvXY7heX/bVQ8ujVLcDMErKyYXvefZLEy6krnJpO733le9n8nC1ctbxs2teC6KAEfcCAG3Kn6PyO46l/Hm2WpnJRRHlaPlZeZe9jKWv/JvENVS3GJYXYVzn7n6Nvs8nuwvHmT+8z6f9bv/dM/r3fILv0Q0P0+8OIevPQ5z101HXQnBqFTXBtz9TuDObeftGEBw928eZpsKJIiIyMGUvcPXegYaJ6Gz1p9AVV3eDcUFezM9s6J2xCHH31u60GvjGNXCpGjoSbUX1x3IUhhGMh8CCL32ib3sh6jWX1KRzG2d3B6VJUVLxm0T0WQhdII4NvULrHjOi/eQZ2FyvtfHK2uF16w3gZ6UwWUPeadf1X4ca96d8P6MIkiLI8BxI7yPqzwZlZ1Z7zurmq+duxPNNbnpZ/8N1mt7S1hGZp7B0jX4uR1uaLV9t509+DEaz/ss2p+6f/f7z3OS5bnwR+cKdNfxhRuw2sLBH4xIyRRIEBGRgym5FRYQMhJqiyFl2sfYheCwPIP25a3nzZ09eFvFqBmWiuR5P4gAh0th76xAfZkdayjsJm0Vh00s3Kc71E6EIEIUFUsYOkfbx+8FKXoT390mwelaMbFuhEDDTNddsKLN5SGCJtlGkZmwvv91R8Wzq9/ryQKhaGOJBTctKZZR9JZVRIBd/dinpGifbJPMQ7yAjeJ/SlnWn4LVR3f/CszXQ12OdOtnOWvt/6Vp7lhng2h+kXx9dctl0eIi9efeTry4uPVGnsLqo/iJ52Lx/sEKkVFSIEFERA5m8Ra49ED567W7q+HIYjx38Al5FQx7NNQdakvh547LFI6gcxnmzuxyVN/6tRUsAuJisj4wbrP+RPAw6+Ddw+Qvivvb9XTr+vu9DI47ah5uol0Fm6n2La6aVCfzIcPDj1AcM90oMhMmGEzYrvcax83ivXOU6FMUnsNso6jPwO5LKXpZNTI9LIb6SSyagmnIMO/jpH5VICFJVph76YvZ+OCH97ypX7nA3As/m7V7/mzzvMYLX8SNP/oviObr2I6ZR71Wp1J5M54lpXdhSbzTpvPAx0OFzs2dNYr9qOJvi0huvBlLEvK11RB9TLt4mkKeY/U61pjD5uaIFk5gtWpEGj3L8I11vNPGux283YI0xdNu+LvbCY+5V5nUit/zgZ0nDwXKvNsBM7zb3aww7lkKadav/h3H/Sqn7vjAl6hFcbEu2Te3ueu40xTcsTju33eRJuwOHkV0r/QiwMXrled4nhfb9fC3h5+bvwMWJ0Tz80TzC+F1S2p4pw1RtPs6P7NdvlB674/Bqw7u8NuOt7Uo2jx/8/ct1y+uE8VYkux8+yTB4gRLEiypQRJjUYw1GlitXu01i3IofvnB4nPgxYQx2vre2PKZ2uX37sboir5l7bDt+nL5k+xR666FSXRc33liYzFEc2FCNJh9ULaN8zB33dZJ+faPsudAfvV3UjwXJriH/ez31qmXcUB62r5/4mKpS5723wO9zIFeYMG9nHX8RthO1YIJwKHSV6J6+Oz3lkt42v8M7ZZtENVCwEp1EaaIhYynuFG5/QvPi/3QKNk6tmGWl93wQnjoA9s3yIkv/fx9AwkA2YMfZ/6FL8TmFsFz0sce4vJ//RVO//1v3uUWOaz8Bb50S+WeRzleFEgogWcZK2//z6y+7edK3W587Q3YwhJmFibbWRYmxHkWJrbueHFeSAcuJuueh31+L9bM5g6RhQllHGPNuXBqNLFaHTzHc9/cjnfa+Poa3m5tnmbSdbdw8X/vXeTmWDOjfutzuOlf/hTzL71j0qORslx64GhHQsfBc2hfrHYRxp30iiJaDIs3bV3/DljexTsr42lNt/EUNE/v/lpHteJ/xLbLsw2oLRw8UOQeJoFlFkrMNkLxyaxiE+W42Q/S9F7jtLV1KUZvEtyrN5F3BzoglPR+NhsIVkz7EXnbebnElqsUBeY8K9qSZuGzNC3fDwL1E1jcnPQoruJZpx+4ThaL+je9y8KSr70m7Ban+LNfAa0VOPeR/vkHKLSXP/HY5u+Lr/mbnPx738SedVCyDVh5GJ+/AUuq95wKxQG92f5+UiChBJf+44+x8d7fKX272VPngJ0quByeA1y+WOo2p5Vr52Nv7nQe/jSf+YF/xK0/+yvUb7510iOSI/KdJo5V1ivC2F2ntDXX41BMdMzTq/cDs3HVfyjWlG9/vd3DUWwIE/Sdvge9yMraftn28ywJR4+zdj8ToWzZxra2hwcsJlm2Xhp9MsfmWv1tGWVb9LotjPL/TdYqsvma1chO6C1HiBr7dHawfnr2MPUw4qLVY9YuHrP+h0+dPA2N56pmMPstXcWjuL/sonMFWpfwxgmozWPbAsGOhff7iWuxUzfgc8vw4B/DjS8mvvb53PD/fREbH/gAl37uP7H8zW9i4+4P0PnIh3YdytLrv4Hlr/oyhvqey9qhXkLzNNRPgu2RFSsyAgokHFH61LmRBBFkHKakOvyEdR59hE+97ouxuTkMo/G8F3D6Dd/C4hf+1bCswox4+eSkhymzqn0ppNvHc8Ovs5+0uWtDEGEn89eGzIX2JUb+HZR3i+etmFxGjVC0rrsSCltazNUBmijs7Ee1fhDCGSgMWCzdcA+TP8/YsfhdaYrMuqg+UHSvPpnWg5b0MxF6Pyuz014smahKfRHPwnMUN4Gs6GjSu2ygjsZB3jeDWRcW7Rwok2pL1/BkvnrFFS3euoSmcxlvnC6WmRZLbVoXoHUBn7s2LMHNUzxqhPPzLrZ0U9jUqRvgRV8G9QbgxAt1Fl71V2i8+MXUzp5k8dV/lfanH2bt/e9j4/d/j1P/1z+i8aK/RDQ/h9Vi7KDdcTyDjafDKZnDF7XcoTqsv1R7RimQcERrv/Wrkx6CHJJlGfHpM5CleFqcshTS3VKBt9V9OGZ8YwMHNu67l8/cd++Wy5776++m+YIXTmZgMjSzncs2VV62EU6NUyGFvOpdHRond53gmKeQNPDajWFi1FkLO6pR1F8/X5b2RWicLnaEs61LBHqFLfOBLAN3qDWKdPFmf+c67/Qnzr7Td+SI31We9et59AIdY2EhoALhOYjiEMyoKrMQ7LG4OHpPeGkmFVjwbKAA4xyhJkdcdORoHy3JKG5WI2AiB5d3igBTlezwHda5gtcWob60dfnQxlMQ1fDGKVjtL0fwPA1ZDE4RROgzc2pnwwEXS4zmC55N8wXPxr/1/9wWODjid+lmRxwFEmQ8FEg4JO92uPTTP8bG+9816aHIYT39GU6crAP1LWe7eyhCGMV4HBOK0Tl++iYu/+H7JzLUKrrue38oFNqs1ak/57mTHo4MwfcoTjoV2hfDkcz6idCdYIijLr7WwhbGvNM6RCs68yxM9ua2ff80T4cjXGUEFOrLRcr4Xq/7wHOYDLZorFD2RzwXuhxYya0F973PjX7QyuLh0u8rIR8I/Ex2JJvKnPT3CkzqqOt06lzGG7VQPLsqkkXobiuA6yl0LmG1Ofyaz4aNC+F7cf2pkO218dTW63fWoLnMQb6fDpx9MIzWhdC5Ryph1rNDZjvfYkTcnfTRh9j4k/dOeigyAmaGZRl0O1hrA2utYRvr0z8JK9mT//ZH2bjvXurPupn06afwoqtFevEC2drq/huQCZiB97Cn0L4Qjmj11vrvdfWHPz2GQW1z+dNh3ewhmKfQWIb56482hs1Ci3u95lGRDVErOgrkkFZoshw3i2r+G0BWTOrHFETIt6/Bn9JsNCO8trbDpM2SovNBLfx+GFGt+ByOenfSwvuhl4kw4zvnM69q2ST7BDUsirGFs3v/zymz0OxRjLIjkMg2ykg4hCu/9NOs/eavTHoYIpPlzsr73s3K+94NENpH1hJ8Y4MbfujHOf36b5zwAGWm9Y6YN07h3XXI083qyP7kBfxTH4RuC26Z0JKby5/Gl2/HDjEBNTwUsV+6GVYe48ABoNri1Z0hegGD3oQyXS+KAEbh99piSDmvzAQt2tq+cmyK9rk7FZucVnmnn9WxuVSjTQjODFyv16Iy7w7RtaMIQnleTAqL4p5R0n+PZa1DTK6isI0oZjNbxvOiLewE6mLIaKRreFzHovr+1x0LC8UK07W93/t71XZI14FTpY/swPIUz7tYVI0W8seaEbrmzTAFEg4hO/fopIcgEzDr6UlHcer138j8S+9g4yMfgijixN/4skkPSXY0g+/h9kXIHM49TX75PNSb8OCH2JwhXXyK/JEa9qwbsXjMSXirj+KLNx8qmABFu8jFm7aswx3K9vXjFoeJ2eB5yRLgRbvHpTDZnMR3XFQv2hgOThItTGgnctSyqFPR684wK3qPZc8aD0VQwL2fxZC1ty7ViYu133kHGDjfLNx+y/IP6x/Bzbv9opmb77Oi7XTvZ68Whnev7m4yg19dx177It64pt8dYYJCUcUY39IhZgd7BcZqC+UP7FByWH8SFp816YHIMTD5T+8UOvldP8jaC97B2jv/G/mlC5MejoyJljbsLppf4OSXfzUnv/yrJz0U2UMotjjh9nlD8CsboaDfZs0o21oQsH/NcB13aDbBzsJH/5gtj+/pR8Lp+r8N4w4kZO3+UdtDMk/xxZtDEa3W+f1v0DyzdQIcN8LkcfvR/bTXM32hqD9w6CEOJ54rjvRnRdDAigJmvVoQvdTiYmI56Ul8uhGOjB/HrgBm/YCAewhM9epTHKhOxA6vY75PlokC9sdMdV5vz7Nda9O459BeKTLEdhDVoL44wtEdVHWe1+NOXRvkKtHSMktf/U3UnvN8Lvzf3z3p4YhMVHz6Gs5+63dNehgyBO8d/as4/+gH4YkHD37DWhOuuxkuDOzsLV8L19w43iDCllZiR3++zbsQJ/jis0LryM7KzhPcqLYtiDAP2T71StI1ICqWNoywPkLeCfez2XFje4eKqnVDcMJ4Z2iJw2GYaUmBjIjtvVRg3Dwvsrla285O4fLDoYjhbmoL1XksyQIs3DjpUcgxoUDCETRe8nLm/9pXsP5775z0UEQmZuHzv4j4xPKkhyFDqUgxqFHptthS9O32zyV63u1juGOD+evC8gH3MPEarEdQ1r30WkcmjVAcL10PR86zTriv2kLRprC47/2CCJvyULG8dmJ0wQSLhlh3XzGaQIuMTlyv1JJRi2t4lGwJJHjahmc+tv93V3e1Ol0X0zXoroTuRjJRhlXqPT4KCiQcgUURi6//FtofvpvsyccnPRyRsZv/nJdx/T/5wUkPQ4ZVlarS4/CXX0X03BcCvaNMneGWBhzUwg3hed2+rjvvAqFondeWQgHFkhiEjIS4DnG9WK4ShfOSudAakwNOgpOFodpWHt407kxVfxmQyPSagu+ElUeHC4Au3QqjaOV4WK1nwv+dGZ/EyuQpkHBEyXU3cvr7f5Jn/vl3kV+5NOnhyAi1H1ewqGfh5V/INX/v21j8klfpH9U0mfY6Hyevg1odLj8djnA35uHKtuBANxxNip772Wymy/eOMM2dKdJPexPEXd67US1Myntp7Xs9b/sdwfcMsg08ao4sQ95w3NPis5jj9RPQ2e//UVHQMKqHbg0jDSIQnqdkftc1yNU05Z8XkSrL2rh7ZfYhPOuEzIJB6RCdYxonobmMVWVpA4T6LjJ5xmY3qVmld1oJas95Po2XvIyNP3zPpIciI5SvT9MO8Gjd9JM/Te3MtZMehsysbRO4+RPYZ78MbjyLxWG5gHuOWYR3M8Cg1cG9hp26FksSdlxz7/lwWRkW949ClTGXzNohK2KEBnfGDceThX6LzJ3UloqWeiOsi7Bd1mGqjvLbLu8jESmBhyBvMjfpgQQ71RBavhWeuf/q8wfVl6oVRACYu64yARqZbQoklKT5RV9K+767yS9fnPRQZEQ8nbL1vSN08W3/mWu/83snPQw5sGmZwEXw/DuwxSVYWISTi1iydUett+NmtaIOQa2JAH0TigAAIABJREFULd1SZB9U8HF2VvD6EmHV5NbxuXtRT6F3fphsH2k5xH5HpNK1ENwYdSbC5nhqkOdU8rXZTVyffPcIkVnWvYJbjMX1SY+Enb6brL6En7wdLn3q6qvXFuHErVitIoEQCGOavw6LapMeiRwTCiSUZO4VryI+fYaVX/0F2vf8yaSHIyOQPjOC9dVT6vwvvYWlV72Gub/0kkkPRQ5iSpY22OfcgTUO+O/JkvKOro+klkRe1C4wvLZQrKyIAA/jzgZqGlgUCh8eSRRSbtuX2XHy7hljLb5pCTBlk/JpKw4pMo06F/HGNdik0/F3+95vLEPzdFgChoWiuskcNE9jSWOsQ9xXdxXWwWuLUFtQQKEKZjwzpGK5ONOt/oIXc80P/z8svv6Nkx6KlMzjZGomYePg7TYPf8vrufRbv0HeKaeyed5uFe0JZXSm4/k9cBABYP7a8gIAno3w8+5hZy9dDZ0Suitbgwj1ZUiOXpzRyLH9WhemG4xlN8DiYlnDFLFk5xabIlK+9gU8n/Ayol2+Ki2KsFO3Y9d8FnbNC8Lvy7dVL4jQ012F9Sdg/alJj0SOAQUSRmDhtX+b+dd9zcxHoY6VuYVJj6By8o11PvMD3839n/9CHvun34XnB5/EpZcvsvonf8ATP/Uv+cQrP5f1u/90BCOVY6HMNaqehRTRcQa2LIbGKYyS/3VYLRRV3E00ht2AqM7U1RrQ/2+RMXJoP4Pn3QkeUDjAZ77k1r4jcZy6NFWYRTaW06QokDAC0ekzJGevh3gKvmhkKDaOne0p5WmXK++5k2zlMud/8S1sfPS+oW/7zC/+LI982zfwzC+/lXx1hZX3/94IRyoznVVTdtHA7mo4Kp0sMPI2ZbUTUFvERrHjFzcgnguBlvqp8Pugcbwlshba3RCRvTm0L0DnMt5d7Z+qls0UNYbr5jBpc2cmPQI5BlQjYQR8Y4313/stSJUWOa3cHZZOYvNLeK1Bls3wBKwE3u3wwFe8muzCeeo338rJr34DK+99Fzf8sx9j7rNfvOW6nXOf4cl/92OkTz15VRbDM7/8VtoPPsDJr3o9J17zOlUdLt2Mvo83iyyWzFPIUrB6WBfbaziQrpV3xLq+PNIwRfgMOV47ETItonoIKuSdEFQYR7HFXsvNqTpCpu8ekYnI2+G0aW1MNRSG+MxHteoXYI3qMH8tVpVuGMeZMfP/ShRIGIFofpGlv/sdXPyJ75/0UOQQshtvZ+WuD+Dtc5MeylTJLoRilJ1HH+Gpf//jQAgM3Pgv/g3nfvyHufLu38HimOzypT2PjK/+4XtZ/cP3Mv85L2P+ji9g7sUvZemVr1FQoRQzGEiIm6MJIvR4WhRDHLzPuXDeUd+SUa0ounjE7QzB6NdLcOLwvI2r9WNcL+oxTBGzmfy4iEyldB3qRy1AW4YK74dYBI3ToQhk1dpRysxSIGFEml/wShb+1utZu/PtMOkCMjK8U9ey8oH/jXdVrbsM6fmnePQffxurf/jeA992/d67WL/3LgBu+4VfY+Flryh7eMfPLC5tmDsz2gnxTjtkUVIcMTvCTqVFo1vOsN9dm+FRYzxdCSyBtJyCrGOVtUMARJ0bRCYv28Dz+cl3dqjKBN2isOwubvT//zWvwfaqhyOTMeMHwRRIGBEzY/lbv4f6iz5XmQnTJO1izTkFEkqy9mfltEJt3f9RGs/7LJKTp0rZ3vE1g4GEUU7Ek/mrj6TXlo6+tMFiqJ24KojgVqPfktGBCPLuaLJxxhXAsHh6ux+4q3uDSFW0L4QlWnF9NEfcozrUotBJ5+oLQ2BxlNlvBzF3LdY4OelRiKj60ag1v+CVnPr+nyS+7sZJD0WGsXKR5nNun/QoZJsn/vWP8Nj3/YNJD0OqJlkY3STPizUHvRoClpQTRICwrGDLXTluSWgJma4Xp41wX54Wl0elVjM3T0OgZJSi+ra1zlMm7/brSojIhDl0L48wSyi/OsBqxTIwz8P3clXqvExD1wgBwu7COE6TokDCiJkZc694Jde+5e1c/1/ezdwr/+akhyT7msGjtlPuzJv+Ibf+7H+Z9DCm36wtbRjFzpR7CFBEydYjU1FcXpHFdA06F3Ei3C2kqaZru4wnD6mr6UapE1qH0RdanIWUTs/D8sRZ++yITKvOZXwUE/qss/V7OG5AnoYAAhUJIABgkDT3v5rIGCiQMCYWRURLyyx/2/ex8FVvIL7+puFu15wPbSSjmFM/8K+57pfvZO6Vrx3xaI+7Gdj5nTELd3yBWnCWIdJRjH3VFoodx23vt6xd/hH8bAPIhk+XTdfwI/zbdsCjBI/qYXKcjThbYNTbHxdPr26bKSIT4qPNDLAkZCGkG1TywFJcx6LapEchQzGIxnSaENVIGLNofoHlb/luTnzzP6T1J+9l5Vd/nvSRT191vRNv/G6SG26m/qLPJV9bwdfXqN36XABOfvc/x7tdWn/8v4iWT9H4y3fQuOOLWP3NXyF96FPjfkgzqIL/OI658z//Myy+4ksmPYwZMGPBmFEc8U43IJmD7upo7y9ZLI52HyRN18Gi0HUh7w49HIeQzZC1oLtL5sPIRFTraN4h5V1wA9P/B5GJK7lGgrsXGVoWMsDG1dHmMHLVbJHqUCBhQsyMuS/6Uppf+Go6H76H1bf/Mu0P/hnEMSf/4Q8zP5B1EM0vbL1tFHHq+34M//Z/ii2d2CzE1fzcLyR98jOkjz9KfPI08XU3cuFHv4f00YfG+tim3iyk486QhVd8Cbe99b9OehhSRWWnm8dzYWdypyBCmerLRzha7yEgkMwPtbPrFgO7FRAbg7hR/b7rw+hlJeQVKbYmclxZQtmZo/8/e+8dLsl5nXe+5/uqquONM3NnMBEzA4AAiUiACSRNUkwgJZKWtKJorShSwdo1rbirlSWvlRy0lJ5dS1pbokzLWiv4kWTJ4pppxSSSEoMIkgATQIoAEQfA5LmxU4Wzf5yvuqpzvt235/s9z33uvd3V1V93V3fXec857yEisJOXz9agNNZ9W65epu1fsBtYIWHKEJFUFNx6F4JnzoDLJbinbujrdrS41HCZWlyCt7gE7/pn1y/Lv/Y7sfl7/3bs655v5vxdv8dwDhwEM0/Gud6ytxmnR4KTn7yAAADe8vDO3+RJH6+BlQdwJMaJTTApeX6C8uS9ELoyR+/bsDpXD8di2ZNwAEQ1sPLGel5ASoMpL5+b0xJe+2HaIzAtlhRzVue6t3GuOdqXiDAI+Ve8DlQojnWf845y7Yf0LLHx3r/A+d9857SXYZlFxnUOySyeAZOENOAujSAiaAAh6q1X8XSHsAJWXsNEBwak/NXfnrKIgPlqBdC2L9limQlq60D1CtjfGavxItVt8GcsPNIZwFsE8tcACyemvRrLIMz52IYZe6dYxo0qLiJvJ0UMiE05zRoXf/93sP6+/zbtZex95q6qY1yPh9CXN8qwMbHOiO/CKKMQdabzdUEJ0BkZE8kMQE1wRNqABKYNQ2f3/hjFWQsuLJarGfZlZG7l4nhH4+qMtJ/NCgvXghZPggqHQZklkP0csswQ9mi8Csi+8OXTXoLFMjKX/ug/TXsJllljVGGEHAlySfVZKTDEyapTAKBHM8giDYQ9hIGgJG7eRIB2TB/xLMD1yglEte6TL5QLqC6CybSZo+IKi2V+GLD1kdlUoQXJaNdmIYL0+Kf0DIud0GCZYayQcBWQufUuLP3Y/z7tZewd5i1pOydEOzPcs2jZe+icTE3wt6Xntp/tBzXhcpdMa8GIpbfK628fYU38RMKaVDCM00NiXAQlQLc5QVeeVFFE1fbXT5t4fRaLZebgbkJtLBRwaFq+tgB/Ewh2pKLB3zT/l+uCggiy2V1afQ+ql6e9AssoqF36mRJWSLhKKLz6jci99NXTXsYewSoJs0jmumdNewmWmWPI96rOyUlkPwJCjFKDVUB4y6O1MqTpWxDgpBIhCmaoKqEZlsBcZ+W1IDf1GNX4nrdxQgriUWGxWGaO6iWwv9Xol8BsxGIjHPjb8rnfqbQoqsm28T5moRUwux/IrE57FRZLR2b1LMMyAXIvvwflv/3ItJdhsQwFuba8z9IEkXgP1AUFc4JICgiqnYWCQU8QlSvZqn5uRwpwF4Y3VWxLp5p6AnTKdyCsAlpLUk05cvI8a+iceW6aHlO9dSMCWJlyXiXbzcJMd9uXbLHMNkEJCMpgbxWkaMiJNanxuuMeLzwIpIHCNSDXmqXvdeZ94pgVEq4iMs+9G2r1AKLLF6a9lNlmml8elo6Uv3zftJdgmUU6Bew6BwSBeT9TY/FCdcPcjoDMcu9AVWeBsI+2BuVJS0G4Wxl189jCipww18c9juDHMGk4QG+zgQiI4qygIxUL3KatQGXkdSUFBDXYigGL5SrHKQBcA/wR2pAiX7wTptnKlF21IoJlT2CFhKsIUgreDc9B5e8+Me2lzDQc2pPRWYSDGQ6O9gx7QBknBRSONF4WVoHy+XYbd95PWAbcIlBdB/wSkNsn8SuHTTPC+5nW0G4bbbJdJCMOdUF+j/vkk3R3YSKsSPY+DKc/6rEfSAMY4DmKRRGdbxVzoqpUpAQVU+kwoIfFIERGlJrz7JLFMn1IBFnlyt9sDBG7vb/JAZwcKPJHNkWV8bm1XRSEm3AXbDvDvECY+++MnrV6RJQlonuJ6MtE9AAR/Yq5/HYi+jsi+hIRfYGInt/h9j9tbvc1IvoTIpoR95Krk8W3/zgoO4NGVjPEOGcSW8ZHuLE+1hFPVyd74PkjLQFi+ocAFI+22bbHF3SwAzgZoHBQqhDK54DKxeadJH82tEnEVysRJdLbRwyUzgHli6aVYRFAmPTWjgudNSX1PV63mTYB1MYDwZVy4WFbPsKScVFven2CsrRxhOXJTnyIarNjvmaxzCvuAqCzEn9FPiiqmc/gLiKCzgPKExFhRFh5Ilr429P5XHVyQOHQ3JfDW+aHfpr+qgC+jZlvA3A7gHuI6IUAfh3ArzDz7QB+0fzfABEdAfATAO5i5psBaABvGdfiLYPjXHMUhTfal6AroRUSZhH2awgunod/7hn4Fxuz09UnHkXl4b+f0sos46XD1xI3mwd2OtFquj1HErxml830g+b9mqqC4lFQZhkoHG68XmflrpgBOEDlClC5lLo+P7keflJ9ihOzfNLJ0pbA/uBTL5oJSqg/Vp03Ro3anPDHXgoT9DKwPgkWy+RwiiIedBJOlQdASfuCuyACrrsAEIFGnIzD5IChpicgAFKFUDwOmsVpO5ahIdqdn2nRs7WBJQW4bf51zQ+bn0Vz+RKAp7vcR46IfAD5LttZdomFN/8guLyDnff92bSXMpNwZIWEWeWh194N9iVoyz/3+XCPHof/zFMoff6zgFK47j0fRebU9VNepWUoFo53z1ZzBOTXJJirbkh7gurQO9+OyAfyB4Dtp9GQ4VcekNsHMm0BhAicWQEq65LpBgBoqW7wUwICaSC7AmAGWm60J34Qs4bOjtl0EmasJTqIEiyvGWXNqLcZnP5gsVg60GmaQgi4C6DIB2tPPqvH2MbFyhMBYZroLCi/Nt01WCxD0JdHAok89kUA1wH4bWb+HBH9FIAPEdH/CUkB3N18O2Z+ylz/BIAygA8z84c73MePAvhRADh+/Pgwj8XSJ+R6WHjLj6D00feByxPsKd2rWCFhZolFBAAo3XcvcN+9yZVRhEt//Pu45hd+1ZYFdmJWW0OKx/rL6nMg55puDsgsiQgQNgkJRJ07AcIKUDwMbD8DLBwD3KJkssxJaf1m/g5QvYK6mWHzDnUWcLJy8unk+n2UE2RGj/dJZPAb2kzaEPmoezA4OWl9GBcz3UKyi5AGwpoIWHvBl8My+xihoB2UMl8d9yfdTIgIAKAcMLM9d5lH1Hy/pn19yzNzaFoYjgJ4PhHdDOCfAPhpZj4G4KcB/Kfm2xHRCoA3ATgJ4DCAAhF9f4f7eDcz38XMdx04cGC4R2PpG1VcxP53vhtUWJj2UmYOW5Gwd7ny53+MR/7Rd8A/awuf9hREUnGQWQVya4Dqoxc9qkHK5mF+WASA2qYxyVKyH52VEnidN0E/i9+Ck2soh2UooHwZuPSg+B/UxYMmEcEtAtodf6Y9DSnjJ9BnRj2awWoEYPqWHOO+fzWPI2jNVIwWbxDjaxF7XDDM31pGq/o75jbmskm2lFjmF+XVWxp2m5kREQBZx/aT016FxTIwA01tYOZ1IvoEgHsAvA3AT5qr/hzA77W5yasAPMrMFwCAiP4SUrnwx8Mu2DI+3GuvR+F1343tv/jP017KbBHZDMteRmWycPZZMbIts5btWDghgTkpgJZNewGDnQxQ6yNQ50haDlouDoBoC2hnsq8zpmUhALuLIDIduZceQEPk6RZMsJQisyLBfYNvwQSiZZ0dzDF81l7XmGm3FoRlsMrISbrSAGi0jF9QRvuDai+i5XHUtgFE8r6om0kyUNtINo29RYLNxl1ULid/Z1ZlP5arE52Xz1WOpGqon0oVUoByQVMYV8vkzI6IAAAgIH9o2ouwTIJ5+LroQk8hgYgOAPCNiJCDiAO/BvE6eBmATwD4NgAPtbn5EwBeSER5SGvDKwF8YTxLt4yDwhvfgu2//CMbPKewFQl7G2ftIMidx8zhHOItGGOtqCkeH+2bN74111sT0lcaI6uwCoQXwJlVEyilFpBZlpu5a+bkWPYm7Q5N+xr3SECdG0xEUBOujhgFnRndYHFEKKqCy5fqghN7S4C3AOjMEC8bG1+OGa0AiWGqCyfJZZExLCU5ZqNKY6tGWG1z3JFUxtQ20VMwq67L3WWWZ//5sYwOaWN2qgAORQSO29OUC4ZnBFvTGsaR/E0q2Y6c6YgIwGy15CgXyB8C6TZmwBbLjNNPRcI1AP7A+CQoAP+Vmd9PROsAfouIHAAVGH8DIjoM4PeY+fXGS+EvANwHcaS6H8C7J/FALMOhigsofMebsfPeP5n2UmYHKyTsaTb/6n3Y+LbXYul1bxrL/nh7A/6n3gve3oS+4Xbom54Hcu0X/mTpM8LrEQm2zT5HgbQmxFQvA1BA8Qiw84wEWdqVICuqyW+dkUCpGQ7ltuOsSpinyQCz4smh3cQTs7YhP9n9QHZp8H1FwXA617gFp46QrLFNpQ6Ul/ga9Col1znxQUhXJnTFiIFRkEwbIQUzSB0zYUpq6Q2ZlrDQVN80XilTEjgSASD2rGm3G3D7Yyy9/bREBOjeXiu7Se4AyC1MexWWSUAjVsHtAfqZ2vAVAHe0ufxTAO5sc/nTAF6f+v+XAPzSaMu0TArSDhbf/mMof/pjiC6d732DqwD3wAGobGygxvUvPmajqkcMZmP+wywVDFEkv8PQGOYAHHH98vBy8+x6yyR5+pf/GXK33AHv6OjGreE374f/yfcAUYTg8x8B8gtwbroL6tC1oLUj0KduAXkTnF9/NTLJL9624xQjKcPPHZDsUGBKXuNxk+1EhPRtx1K7aLK/g1QX6Gz7gHEWoBnK3Memi+mMe3UdrF0J8JUDaK/3CV/dvLGP15shmXw2AZVyxSCUUtdP4jAnB4g6HBNRrbepKWkRzmqb3bfrRLvbKVcMUi2zh4r9MViOHeWY6QgZAMoco2SqryLQpEbd7hbkztZnppOX95vFskcZyCPBMp+QduDdeCsqn/7otJcyE7gXHkffhfHGawq6+cL4t2QX+ca74Vd96FwO/pUrUNksgo0NVB/+5phWbUkTlXZw4V2/gSP/5jdG3pe+9cVQ930c0UNflgtKWwi++PH69VRchvfmn4TzrBa9dfaYlQzxuAjKAzvziyDYxh2bGXDcpG/WyYtHQq82g8plILtvxKCQ5GRyEBFBebN1QlxHyWOJqrNT3eXkpOJk60wSSHMgFSgxmRUgt9p5Hzojx1m/IhdBsrfVK0kATwrwipK1r1w240zT7QddqhY4dX23JYxSsu0U5JgaVkToROQDZB53eqrKNBJ1zKZSYs4+C9tCiW9B+rjQWRENiJpMDpMqAnlpUi1ns9QKMCQzY67oFKQyKLMMsiLC/DPfBQlWSLAIuRe93AoJE4TOPgYPAK4YzaEMeADyt9wILK4CUQiuVkBa48rn75vqWueFyje/PtD2HEVAZQfIFRuCzMq7fh7RmYc73257HdU/+DfAD/w8nBtbirQsQ9HvST5LCXYfQoIICATULgMgcGENICWvNbMRDrbqWbkGI7mO0BhEBAxeiaDc3Z/UoLKAMiXrndaqc1IyPEtlw0haXNhbACqX2m/kb4OzK+2rEnS2v/GkzSgSgaJkBAt/Szwj4qCsti1+DQSguilBjrcEuHkJuKNQqmG8JWkxCKuSGc4fbD3m2Pg3+EN6Uuhsf14Iw1K5giSzHUAEJ9cYrWqTGZ9QsBo/N3H2PfLNa9Cn0KWzxhsjSjxWYqIACKfpA0JJRrv+vlRiYhvVTEGBFs8C03JC4K5tCXPLtMe3ekviIaKzc1/ubrl6sEKCBQCQfeHLAC8D1Kbssn21sbMpP5Dzwujo9dNdz5xAuRwO/exgHVW8vY7Ku38RCH04d7wc7ivfDCiF6KlHet84DFD9s9+E+unfglrsktW0jI7JpHHoSw/39lkgs2g85DjZprYpJ/3+NpBdlb93ziT7Wd8CoMCZJSC7CmIGdAGorXfPvpEDZFdMdQePLiKQ07+5Ylxu3K8rel8woDLy/MRlzObipP6e5T7rcZdCSxDm5KdurNiTzJIEU+ULjZeTBorHACQVK0lvqzGIgwKcjAT3dZ+EHpEYcyIi1C9LvW7+lvykqW3IxBAGUDov91E+33j78gUgtx+JP4c5JgaozGkhrIioMe5qhAY41e4StR73mRWMVUxgEgFAO2IIaGbFspkWIK8FAey3vp9IAU4RiPzGfv827zvWWXmXUDwec7tDC9UY0VmpSorXB4AdMwEn8ltaEEQ82PtVBaMxJf8ZcoDCIZBbnM79WywTxAoJFgAAuR7cE6fhP/TgtJdyVROUZtR9fQ+Rue4GHP+/fx/esRMdt+EoRO39/w/Uyhrcl74RAKAWV5H7X34L0ZlvIXzg7+B/8i+hT93c/wlhaQu19/wusm/75+N4GFctHJfhknH8JkhAxpE40VcuSRCwnhJ4vEVwWDNeBtSaPd5pCubqRFJ6TgrsFUGIJIgjZUrM498sAaRjDOjqAsLIKoKpLugj2z2RCQgsY9vSGVWd711RoJzGNTu5yYoIykkJLsOnUYlIqhL8ncb1Kk/2XdtMAntS4MIR8U6It2UNlM7Ktrk1CVABIyrFokNqfX1VtbRh5xl0fZyRL9u4RdnOySdtA3uZsGaC/mjAx5Iynki3h5C0MRAa9ycCUXIZUzblBWBex6jWtx9AvZmRQ4BDsMrKZ1WzSDQyxuwwCuQxNYsFV2OVwSAoNbGil454i0DuIEjp3tta5hJSe/xzuQdWSLDUydz2fCskTJnamSenvYQ9T+3Jx7H1qY9j9S1v61g+yFcuIPjsB4Eogjp6GuraZ4MvPo3wm/cjfPJhRDtb4PNPwv/onw103+GD9yL4xhdti0O/1LbNiEag3p9bXUfvs+Gm66vryYSFQSAHtHIDgKAxeObmcZSQsv3Ibx/g6Kwpee6w7uaLlTbO+WF/IoIsts/tBmDYKgJyAJh1OzkgmLQASlJZ4hTEe2GUPRGBC4eA0Ad2nkJ97v3OU40bcgRsy+cxZ1bEWX3nbJJFD6sicAQVM/kDcozkViQTTsa8DsOst49o0F2UwAjofFz2CykJwIOSEYl2qW0mt1+e5+q6/A52ZLgDKQnA0gJBFCTjBDlMvR20vAZu0ZT1BfLDoRFaekMIkf4YGhUJ8iOpEAAgokXsVeDLseMUTPVCKanSUB4SIZQb9ginAID3vtnhFKHIF5+E3XgOSctIR29h8vdlsUwRKyRY6uj9a9NewtVNvgj/EWu+OCpcreLsr/4CNt733+BdexpcreLwL/8a9MJifRu17xC87/lJbH7gL3DxF34W3r4VhKUSqmfPofLkGSCUbNW1b3jhwPcffPr9Vkjol2BnuKxdFACLx4HNJ+T/6hUJ5r1laU3oE9p3U/+BqXJSQoWZsBD/zeFgHgeU67+dIWbQ7XvRroqA3P78DaKKmSGfHkEQ79c8LxwAYYC++9C73p9JIwY7EhzGkxO6xM71NpewJpUGypOefGV6xZVjfDH6MF+rXoEEs6kAJB4j2bBOXwSK8gXphZ5kelhnJCgdy75yRqjJm2N8jEJCLLClK7uUJ6aT8XvGWzStNcavJAqlaqSTMKgzslaOZJvMQkpXcBvHu04RSk8t4fjYIbBTkFYLDgHlgCkDgOrbs84YPwcY8SFq3JdlKBjYHZ8EtygigrIhlgXWbNFy9eCeumHaS7i6WT4AwAoJ46L81S+h/NUvAQBqTzyKwgtfAu/YtVj5nv8RRAT3uS9D9b0fxPaXv9J+B8xAJgsEg2UveLvfueuWUSCdbQzTwgpQrgD5Q1JS3uvLe/n0YNltBkCeuG1HtcGEg1FR3hgMDJus8tu17CjHBP+9dhU1ricWFeK7qAsUlBgwDovyGgUPfxv1lhCl2wQGJJdDAdtPtwb7w1Jdlx7+bscMB4n/QteRoSOgMyKajSRSNLXUBDtyXHcz0hxojVnxJVEOiCNwWJXnLc7CR37jxBEO0DIq1MkAqoh47GC9aqL+EEjej6SAKJCWKO3JVTPuBdC8vpb/gekbA84lJMfIuEXZ+u4VkDsIeIvWTNFy1TAl5xHLLOKevmnaS7iqCSL7xTMpKt94AJf+838AohBEBP/s04hqVSy84tXdb+gNPvuc9l8z5CotDeQOAoUjxuiuHR0CqdJZMdXriAK8JdCgWUvtAQjHY3Q4qBHbOIIKnZcf+af9Yxi2pD0sS7AflpqqHIxJo5OXCgga8DnnTmsy1QFB2ZhvGkd+MlUjQQUUlEDZVRGWxsU0R7WRkioHd8GINiNkqHUcgEcAdMpsU5t2jCFxF4BN56bRAAAgAElEQVSF40BuP4gUKD7OnTzgLoFIS5CsPCCzDz3VvsgXYSMW7qJq8hNWkoqmsGwut1l7S2dis024RdNGMkacArB4EpRZsiKCJYFgRM9d+JkStiLBUoccB7lXvB7lj39w2ku5Kqk908kQzjIODv7ML2D1LW/D+Xf9Bi78zr+FKhThrB3E6mteBg4jIAix8bn7EFWSjBxrb+CqNH1shit79tIJDikpS+8UdHcLGnzJdsbl7RSXsuf2S7VC4eBgwbxT6H/bbsSB2qB9/uls/1AYc8igJEFjVAMis0PlGVGBTan8BI6RWFzQWQle+xFimPszmOyaQY9ATgZYvh4cVOqeB8PCkT+9KtXsPvN+GNEPAUgysp7p4eeovxaPdrhFqdQgEuGgzfuqNePOYA6RjIIckXhkq3JmvhrBMl2k2qMGJpLPo5ErcBSQXxNxei99v1osY8IKCZYGln74p1D5/KfA25McAWVpwc2i+tCj017F3FJ4wUuw/20/CgAIzp0FAEQ72zjyXd+DTHCuvt3ai74TIfKobVVRfuYSoAd0Ws7koW998djWPSp88SsSIMSjCqPJn2TzZgk49y2kvMwRTxCsR8PcHBWn/ucoWW9L2Mapi1MO63EPdnw7ZvChG1B74HE4t9wEXTTBTeWymOYNer4Xl1ePylAtCmSyxMNWJVCjH0JaxNA5cyKtzTi8CY//rZ+0a/S0TycyEzLGQFQDaW90x4LKJSCzuPuZ71hUG3egkhZpvKX+20B0Vqp+dNYE7tzmPd0ZrouEY3geda5uEGlFBEu/UGzzqzPDtzo4eaBwDUjNhieHZfaICxLmGSskWBpQC0s4+Pvvw4WfeivCp5+Y9nKuGnjfQeDvH+m94VXKs/7ZW8TErD7XHQBSQWQ9oGxGZsAHhSP1S/TyMpzVZRz/oe+C559t3Lq8AQcbcBwgf4zgh95A06Iy3/0OqOX9gz68yVHbnPBc+DaEIVAZ99izAXHzqHz0b6FP3QBVMLPiAQmW3XzXm7ZFOWMKaocQI3SmsZ+8X8hJDOzaZfUbsnHhrohMZmHoawYbs7xe/Xg29HW3Y+rkJBdjMSMcJIDJrI4n6O5GsCNCVztHe50B8gdNYUvqGB4icGeQtKSM7PlhCMuAWrDZYMvAEBhMLoaarJLdD2T32ePOctVjhQRLCyqTxcKbfxDrv/NOoDbhDJUFABBZRbsrFNYAf/gSRDcoY/P9fwr38FHsO1TC/rfeDTSJCG3v1+u/j9J53qvg3PaSodc4Ga7Ck5zMIsr3P4bwicfhveIljSd6+UMgUGN1hJNLHNJj1/gGzP96iJ5aBkCc/L0rM96VuNaHle6u/uMKrAeGTYVEj0BSZ4cTULrd71j2osbzrnKLMsIx9npoDuDdheSYG7uIQNKOoL3keK9PVwjFm4AhhoekzYSB0StymLQcl+MSEWL8bbCTA6AahQ6LpScDfi7oDJC/BuRkJ7Mcy/yh5vs8zAoJlrbkX/F6ZO98Mdbf9U5UPvPX017O3OOvW6f/rkQjnhz6FRQufAo4FwxUgts3uSK8b3/7+Pe7F5nidybn1rDzsc8Cm5ugfWtQS6ngP7sfVLnQeiN3Ach2M2eEBFPjCH70ENUQg5bd6oyYHvZiV0SNDgTl3v3J4870RUF/AkYvKheA3IHRRY7IFzGHTOsJLaTEndC06kyiSoQkEIoD7vrzHP+vGk0lh6k6oLgljGVqA4w55ACjWQe8R6m6MdND2AiFNlts6ckggmp2n3yP2OPKYqljhQRLR9TiEpbf8XO48M0HEF481/sGlqFgZlQf/da0lzHbjOOEOhyixzzsT8Bw7ngZKFccfP9zyRROspSDIFxC5f/9MMAMKi4i+8bXgJQ5ScztB/kdAr++TgqnEHXHLvoDCxh9rHUs4yRHJKxI4Ae0X8vYx98xqHAY7G8DpdG+z9jfBmlvtDXWNqU8OjBTLdifkHDQRP7g2LP2HPuVRL58zkYpw1pyu1fGjJOwDI7bM9wiGGR9EyxdoagGdosi3AVltP38VJ54ITiDT3GyWOZdd7JCgqUramEJiz/6v+LKr/7stJcyt9C+g4genZ+JDZkTR5E7fhTu6hK2v/oNlB95fPSdTqKKoB/c/lpOnGvyiO7/QyRBdHq9bb5FIh8IapJtrj82bvy7LQRoR0rxtZv8bvjbA/IrIC9rzKRyEqCENVO5H08ymNC3225/ayoX1cdLCM49Adp3EFzahveKV0Avm6xqfg202z4RnejnqVGe8TWoAOjky6DltY5MhU08ypLDPgQCNb33UzNhucu4wQkcRxyAnCx48QSwOcLnUlAGkxaTtV5iAmkRCsJa67SO6hV5zZQz2fdN9gAABpQ3AREBsvbq5Q4b7JKIEBO3iPjbgFME8/yfyFtGg+JjRrtgcqR6JvbEyawYg95ptYJZLLONFRIsPcm94GXYvv7Z8B96cNpLmUs416OsesbJ3XAKJ779ZoAUouwKVOlC3eG++vTq6EKC547HMX8IVK6/ufEUrgO1UcdI9QNLxi/0u5v4F9fAmaazZ9Jg5ZpSeZYTJmVECeUAKp4jr0y5Z0oUYUa93DoKu5+Y79pZO4FzBxBxBv4D70X+f3obVL7xK43yh3qXUzv9tBsoMzZxBM8YcsSIshs6a4wRewT62mtsXxjEkNDJjl7eP06Ubr/+sVckJBAUOLtPpjAMgvbMWmVcIufXQJEPQMllTiHx2+BIqi4iPxmt6C3L30on1RhmRTIWtGbGcY75sSsHBMZQZp9dYHLkMQZDjo4cFJWR5w5Ag9kuuDGbrLxEkItfG4ulD4gDMJS813MHQe6YRv9ark6I5l7JtEKCpS8W3/oOXPqlH5+dTNYcEVT3tqHl8gvvACIJTNROY8nwoVffBl3M4crHP9N7R1qj+JwbkTt9DO7yAna++Rg27r0f7tLiJJbdF9wr8AOA4sIYZlGPmZ2LQGYNjWMVw8ZAlgMJioZYO5MZF1j/giTAW5DReM4ykMkDtbL8+FXAr8kkh8qYKgOUg0jvk2rqcojs974Z5DVmjGj5tPzhGaEgHhvZ/BEWP45ehnYcmuBPJoG0DZ7i6yO/KRgk9DXyMKy1WeAYqQsVM3RiE4XiHRE2lxUr9DXdYbg7BXmLUtJcPmeqP7rgFCSgCHYS4U3nwVEg4kBtU0S4dtMx0sTjFcOw+xSQzArGG/xy22GqQ+8tHodavYSJt/0oTzwbmJuqKRrdSzkWBEmZdoZouj4glj0LuQVwZhWkBhz/bLFchVghwdIXmdueh4Xv+1Fs/Zf/MO2lzB3Vp5+e9hJGonB4GSi3z3CqnfM4eOsyDt7xJrByUNrJ4sl3/Zfk+lwOUa2G3HUncfy7XgAqXTHX7GDxrgO45vmvA7s5oLpLGa8Wep96qwMHd2EdA8IR4BaSTOjY9x+2ZtcLh0D+lgRWeU9+0KbahhzJLAYVEwukggE/kGqLakkEiFpJxIjqjvwtO0Ck9oFchbBCcG482NKmQcvX9e8BEFcZeMtdKg7MGtNZcicvgWNcmp8e56ezQJDaVmekDaEnEw7wOZr8fQxKLGgZozwxVo2G8zQZiEh0sPxBcBQB20+230xnQdptNFeMAiDalGcyfhuMU2QnB+BxjBs1lM4ChSMjezDI1IUqEEzKNLHtvZpjgsHKAaKgbYKP4veo9USwDAtpaQNy87P2KWnZw8x5QYIVEiz9k3vpa6yQMGbYy8B/5NFpL2MolOeh+NxboNFHwBb6oNBHwSvj+p//IZz90Bewdd9XcPqn/hFUVJLxYnURIUUUgqYmIqCvlgrK9Nf+sOvQ7o4UpX7TfxwAlK1XsTTsY2FFSpSL7UytCFAOGAqqxuDQh9YhyMsmmcewCkQ+OApA5JqgIjJBHnWPoWvrgLfUOoavE6FvytCj5L7rj7EpmOk3uNGueGdMAp2bvcqZNM3Cj5MDAp7A6MNWSClg+XrzH4M3HpOqk+yKjJ7t95gYF9XLQGbZVMqEUrUx6tlo6Sw4f2go80HjqiKeDrvZJqA8aWWIaonxKGkwnHpLDJEtO7CMAacg5qe2CsFiGQgrJFj6gsMAF37mB6e9jLmDMkOMg5sBsieP48SbXwyqbADlwbJTunQWR156FNE9t0NVLu1C5nF4oq2tntvoa64BMIPtKX1OnBgL3lJLIMjxHHooySL20/fdNavL4NCM8HPKIPIlwKia4Fh5Esz7OyDlJMF7PMqOGcgumxNF07dYb3dg+Tv0TfVAPy0G3Hm9pFv/7ysg7nPiQjSEILCX0iI6L6/BLogIdVJiAS2dBCqXJ1fR0wsOxb/BLcrIuSiU91LkSxvFIDX75BrxThtBYsClQMltOpkpThKdScSv+P3MoRFXAOgcmMgYye6h49syO5ASAcG1U5cslmGwQoKlL0g7yD73hSj/zYenvZS5gnc2AccBgl08YR6BlZfdjQMvvgF+hUCV0UaoqZ2LY1rVhMgUED74SNdNaHU/9BIm18o9CtXtHp/w6QkT7cwDBiC3r27+x8yS/a5tAKWN+iacOwBwBOKgczDTpQJEAhoCKua40Vn5IS2BRW0rVRWQuoN0pUBQ6hJQaxFEECZZqdh8MvKB6mZiSBlUxLSwbk6pAeLkKWwRGPp0/O5WAcNszP6qg3cnOHnjA6CTLHec7WVjwhf6mAlTuvp6plk9QYCbF9+P8oXdveviUSNEEeT1YECppK0mu1+C+nS7TBxcO3nj+aGT90W6AkGpgYxrExFhN1sZYqjxvduOWLzUOVOFNPlVWeYIJ2+qEGwoZJkgar4/mOy7x9I3mee9xAoJY4aiEJljJ1B99FvTXkpPVl52N9aefw1o5zxmtJh/rES5A0DURUhYWkb25S8A/BkZLdjMzmVgqfNEEFo6Cfi9Ky6abpX6M+WarnQipkQ16cluxgRk7C0CUdQaCyu3Ywm5mLtx43rjQDOzCuw83acHQRtIS1lrUBKDxHQ1QRyIMbdOf2j3uusMsHRKBAW9HO/ETMGIWzCMSRxHqexqiMSFvoMpo3KktDyzPNhEA5UxHgRGhIg1jqjaqhvEvg+7jmqsIJl2lRL7SZCaXQFAgL/TO7AdhtzBpErGicWBRiPBBqJakj1VqfalWDgAWgWEmD5FBBnp6Mgxv5tVIWmaq3q6EZYBEFjnbHWCpQ8oqUKwx4rFMhJWSLD0Tfa5dwOO22giZhkZ98CB2RYStMaJH/t+5OiSGN9dJfiPPtbxOnXwMDIvvn12RQTAZM0PdRz1x9vPgLJLA5qTpadAdAh0ghKQPyTBbrvxerVNE1g30/6EjpUnj6U5Q62zUhWwfaY1QOqnwEJnJMj2d1Il7J1OKvs82SQXFK8lff8dAjiZWR61ihTechLAxQ75seN/bcsYE7Z7gArQjvyOR3hyJK0Q/bzMQUme19DH7pTZKAmi/R3Up2HEr4VyBzw2R4VEbOEwea6B5LhTCvD2S2UKeLTxlE4eKBwyYlLq2BhWDAP6fK56j0Lk+DXYbV+IZuotRv3Ccvw6ebAVE64+4kqcBrhV/NM5IHfAViFYdo85/yyy7yRL36jiAnJ3v8JWJYwZJzub+X3v8DVYvP3ZWLn9BPTO2atrlNbyEfBD97W9yrnjLrgnlobI5k8BlQU6mWGGZbA+CEq70Q9L6tggono2l/MHgVKbFpigTXl+VAO8lQbhg1VGDDez+1OZURllB7cIMIN0tmlHJiBMB9rxn/4W4C6ICBKUWjPfHKLvNoR26P6zqJL1pQ5iyzrgLkpgXdtAo4ATyklwg+eEMpn8cjJWUHnDBbthRU7IVXZM7QXKZM5TWXaGPI6wCoT1fpDGYFhndqc6QmclmPc32o/0TBPsJK+xmwegjAFhH/fhFs0xTyIkjCIaDAMpdPoQl2PRVDRMwwuhBeogNvaBERNGEnoss43KJO1nQQUijpEcw5nlxBcnrAE7Z8yNSPxG3IW5D+wslt3ECgmWgXCuvR6wQsJ4maEs/6G3vBFL1y4gpAyc8jkJuHbalKnPOcF2m0yYdpB57Wuh9Gb3GfCzRK+RdFtPAMXDI5dsc+RL+XysDhBBTBYrgLuUusygPTCHTdtD9kGeqfJ3gagKclwAYcP4PcrtN6MC/fbBLhEaMurM0r6gcyb7PSHI67kJA+An/x4obwJ5E4yCgZWVxixqt2oXP1WVoLIisjRPPYgCdGyT6LlIM95z1FYH0rIOf8amReiMvBD+ZuNYx0GIagAIyO2X/zlKGXg2Be0cAWHqfpTT2JawG8SCSeoY4/j9529Nr4WhHWbM49BEPli5IkLOgu+HZXy4i8l7DpDPKn8b9dG28fsqbh0DjBfCvt1/z1ksNP+6lRUSLAMRPPbwtJcwd9CV8+YEdMopf62xeGoVtHP+6v5gyC8j+MoDDRfpm2+D96yjxjF9D1GrAAtHABBQOt9aKswRmNv4FQwMS8l9v2RWJAPcCXcRcEmMGYMA8FIBem5Nysy7Ebc2MEsmOArkZFN5JqBiwPFSG5vHAIV6YD9MAMKhGNRxVD95YPO+jkUC9mvgL7y/pd2Bbn4ZcPR43/cjWTfuMsEhMlnmwR9GnaBkTr6VeCp0XRNLX329ZDgC/BKGXkAwZj8ClZGX2t8eXjxogYfbl78l1Te7eYYZlACdl3oe0iIe9qrAmAbKNdU1I7z+kV+vSGCdAxAlLUeWvUt2P+AtNl5GsUluE0FJPmOLx6yAYLFMkKs6XrAMTvF73o7yZ/468UlQCojsF/RI+DV4R46hduYJ+d9xoBcWEV7ZnRLTo//4Lcjtz0NxBbRzflfuc5aJ9GKDqOO9/NugF/y9JyIAQGkdlM/J39kFIJ58AAAgCXKDsoxQi83+CAB5INW4bcNvarpsEGO09E3bkVkGypcAN5dc5m/LjfIHG2/bKRBjlhGCHCQ990SmDN1MqeBClzWsNAb6/cZ71cvi9B/VwE5egmp/B9AuWGdBYMD323om8Nc+CfDLQMf6FBP8LUD3OEEmNXpLUlwiTlqEmHTfMRkvhqAkJcZuEfDHVGHFoXl9B30ADMCR76bYJyIoAbVZKNk37Kr3g0FnjVdGBTPdp0bOeM8pwjKgMmAmUFtfEcvso4DsqrQl9Isd52iZFea8JMEKCZaBcI+fwtq7/hzBow+h/HefQPE7vx/VL9+Lzd/7jWkvbU+Td33kbzwJKAcUBuBaBTh2E0hpBPkVbN//RXB5/P3C3uGDKKxEoHYu+1cjykHt779e/5dW90MvRjN93t2VygagjkswyBGApsfCbcyoAECHAyXkyV3s/RQ5BUgAb/YdnxQSydSCYEcC+Pq4vVQJtnIAd6n1+7j5TnXGVCD47TPFFE8H4Lqe0BcMwMkZgYmbfjcZ5sU7TbcEhNWkb7fb3excAanr+jOZi2oiWnTzMRhU4Om6uLBN+0RNXjsyJn7D9rW3JQJ0ofU+OxG/PmFZBJZqG++JoSE5fpVjjiFjthhXX5ASb4+o2tFYs5XOngVjR2e6VwDtBulRqsmFxtzTvMZucTKTMaIq6lMdbLvD3iOz1FqJYLFYZgIrJFgGxlm7Bs7aNci+4B8AEHFB5QpY/3f/esor27sQEVCrAqgm/2/LiZ+zeRlLJw4CB46BAYRVH9tfvFd6mEfAu2YN1779dWOpQqiFRVz85Fdl3ekfAEQK0Arl7BKe+PSXGtRZ0gpkzMuICEdfeguuvbF3n/nEWDwI7DxV/9e9/Q6AZ6y/e1DIAzBh4zEnCyydBqobkplO6voTL4Ptp5Pt8wcay6oZ4tVQFxFSV5GWMnf/aWDxRNO1kZStugsSv4dVIKyAq9vSzuDlm9zbG30aEI9m7BW8xD3vcSVGs6Khs0A1nrzQJjhUbiJcuB2O731HoW68resYzBZ6mSFOOvNNGoBvKhXi9YwxQA52RCDo9vo4RmxICzfjetxx2XRYTXwj0jT/r3NJWX6vlofdTFJFoWT6d8UHwVQ2ORkAOjEHDasAWJ4fMqeeHMqadC5pt5gYxmAVCqw9AKZ1yjL7DFKJYLHMGGPV12cQKyRYxkLuld+B0sc/iNrX2jvdW0aDalXgqYdhLOywfHwNi69/DbxFjbDKuPDRe+FfvoLqmac77mPl5Xdj34tuBAAwE5xwc2ytDMyE8Hz3qoba6nGsf+VrXbdZfc4pAFMUEqKmwMCdg4/IYcqEnQEc+3NrgLcgtgRhDVjvMcrUKQBhKopilrJVvyxCQW0bqFyUq8gEILETOwCumXGNpIDMKohqEtin17v5uNyOtDGUM1UDyyeT+K2eBV0EHNOCMGxw19XfRFz6CSytJFeeabx67QToWc8DFXKmWqOXiGBc/2OXfeU2TXBIEVUhhouTyMCq5H7jM6WwYnrc8+MbH9ixqsJM52jX5z+OUlLlSYDbYXxqWzhKtneXZB3Noz1jKhcT5/lYgJgUHMjjYd3b62JgyDxXnoh3ccVPFAIwgXqYCtg5ArjZqyXYRbPHqP5ZIf4JDJpGq4mlfziEDVcsltnEvjMtY4GIsPgD/xQXf/aHp72Uq4L8bbcg714CShEcAEdfcQLACZTxapx9z0dRfeIpKM/D0kufj8WbTyPrlUC1HWBCLQxMCtnb7mq6NO5vlpP6sNI7mFF6ytJtpdEHITx7Dvp4l176PQBXSyCvS2CVNqqqbQC5A6CRRlsqU97NrQGdUwTKW0DOTRLXmRWZDLJ8HSisANoBL18vRn1BKclShhXwzlnJ/OscqHAoCSLDSlL9AKCuCHQMENpMR9D54YMspYH8mhj6NQfQ2gOYwRyAy5cAT4tfReiD7n4jKJvKzsaPBbpV1HAXIFnVcmO5f6/2Be2YzPkYg6U4exwHf0FJjqPahjG620paTEalrUhjRISOYteInyM6J/sYRQyJb+utALV2IyKjROSLfCDKAs7C5CoV4ikpTnG8JotOQd43La/FHugHi8fUOnk5zjiaSNsDM5vPAQDxGNT4/ua7fXo8lM8DhSPzn9q1zCdz/ia3QoJlbDhHTsiM7RFL7i3d0asrWHzWakvQCwA5XMDJ77odUf6VUNUt43x+AZjwtEJiRu1r93fdxr32xt776eXGP2lqJcB1xRAPQPjVLwEnX9l/dn4WKV0GvH1tryKievDMDCC3Buo2drAdqWwj5ZbBq88Gnvq8XLB4FPBNr7qzAJQ26pUCAAFeESidk9s6Sa80cQSuV0WY4J4jERGKR8W0MP2aRH5iBCgPrMei2wQ5o2Qlg7KMF+OgQdAQM8sqULuYMnoE6O7Xg7xM5yysk2sUC5RnMt1tgpxgW0SGTvsKqxIYj+tzWZkqgGYvgLAi6/C3ZJ3BTmJ4ORLNr1UvEaELTlGOOZCsP25Z4aYWl/ps+jEQVgBvuXNlQno7UvKcARM6+WSpGlDu8CKPziatCYgmUOEwBVJtMWwqnxD6ADiZtsJm2gWRCEAEUxUkYwaJSEZOcpQcWxwloyzbjlElmfISm5ZGDChlKySaiXz5nsitJVU8FotlJrBCgmUscK2Ki//iHVZEmDREWL3nRcBW5xYGMEPtXNy9NQGAImRuuCnJHjKDI04y0wD8XAH7b78ZYEalFqDsh0AUIes5yDgKHIbIrS6CM6YfMo4fWHpbd+vkSq0eQHTOPL9RhHBHQWd35a4nw/YFYOVAHyZwDOrX2C5Nt0Cisi6Zag6B7YvJGsIQyC5KpgkAFo+nWg0WgKAMcnLgdJ+5kwdl9yUZeBVPmkByQm8mTmDfTVJaXY0zwWa7cgUcm04eOAyiVOY/Lp6J10hu4xWZ1TYPMD5IzeSKOEBTDjioimdErY3JXbAB9g52Tj6TlvvXWYC4QxCSXkYcDLfbI43ee14PmCJTidDhWOLATG7Yltd8mKEL3RciRoqDigjKE6EnqjUG0Om1kTdYG8MghFU5fjiU+4x8IGx6TZ1i0t4Q+cY8cgKfeaSHF0bdBSCsATwH4kEnGt5rBFaefJbEfg4ApOqKkSj0BCa3/fu0a1ULm/2mXucQYJ2vfxZZUcEQls3zZIUEyx4idZoyCxDRPQB+C/JG+j1mfmfT9W8C8K8gSnoA4KeY+VPd9mmFBMt4cD24J69H8Og3p72SuSZz+iSYFXjhEKi2BVTHNQ99NEgp4NyTjZc1beNck8catgACnjx9I+5//4cAAP/DT7wdR0vSN+4dXUHtwW+07N+5+XbochfxZIzoaw4nQgKA2sc+guw/fAPIn6HxcYOisq2BSzNOvr8AQ2cBsAQUsXlamigCVDyRIQPsGANFnZesm5MFalvA5pPA6gkg3AF5i3Ki6C7Vy645vRZ3EaR0ShiAuHi3Ez6y+8TA0/HAm482Xrd+MRlPuHxUKqjSKK/986Sy3c3z4jGDJmjg6mbd56EBnTFBSSCVCs2tPE7RZDBrAEIg7PP9HWyL10M7r4TYS2FUwgrgFpJxmu3gqHFme+Rj5LOoejnzAJUIBCB7wGQvjdlnrzaFqCZtNtV1TKQsv1mkcBdELCKY4DxsDERrNbONSl6/QSaNtIVEmBoEdyERhPdyZdZQdJhq01KtwuPzBAEaPoPYyQNhrck09irEyRuDXIvFMgxEpAH8NoBXAzgD4PNE9F5mfjC12ccAvJeZmYhuBfBfAXQtJ7ZCgmUsEBGW/+k/R+1r9yE8/0zvG1iGovrwI6g+/Ej9f1Uowrv2KNy1A3CWi9BZDV27BNQmlFnrBPdxkpPapiER2NcJ0u712yq36b6iCJW//O/wXnMPdKa0q2sZG12XrIDMkvgT9PPY8ockQFMOUN00vfupQNXNAsU1Kee98JBprwGAdalCyNbEUBEANs8Bh28RQcBbNmXxMea4yK2BQK2BvL8tgflApfNDnox3u5mTR0s/fa2pPaRwBOQVUB/BqVxwFBlhJDKjMSHVHcOWihO1f/k4wEiTFMgxzz13FxFiwqo8nmAnKesf2Y1fGa+HPgPZKJKHPKjRaFQVgapdFcm4iQLUzQg70exV4hSMmDDkcazd1n12Q2XM6FibFZ8aQQnQOVDc0fAAACAASURBVHD8mof+vLdct0IKyO6f9iosloEh0CyJgM8H8DAzPwIARPSnAN4EoC4kMHP6S76APk4crJBgGRvkOFh8+4/jym/8MuBPuCnfAgCIdrZReeAbqDyQZPHXvu8e0G4LCeazZulH3gq1kAM5GtFOBaqQhcrLyXz16TI2/vaTsu7ULZVKjYPE9MN02joHZLJAtTFoqX34r6BvvBneTUd6l5rPGFxaBygOWkiqAuIxhsoBqua7g01mvQ6hPvIwpnQByO2XS9w8mk38KJsHDp2S3VW3gcuPyRWFfcDyAQmgcotJOb5fBhdbDR5Je5IhNgaQoGKyphilgaBTMNamt94vN/zb+zZdLlauVDC06zX3ikDlMpBZAeXXpFIgLXhEvtx9Zinxdgh9k3GvDZfdjIP1dictyhtOoIj9EAZ5V5JqfE6CnVRP/aCQVHDUxwf2SVQFdHHIADgylRezUe3VQLCTtAoNQ7+PSblmjGWtj5Yoy8RpqrxicgHlgKKrZHylk5fPAIvF0o39RPSF1P/vZuZ3p/4/AiBdOnwGwAuad0JE3wng/wCwBuDbe92pfWdaxkruxa+Ec+wkLv2LdyDaaOdUbZlHnCMHsPq//ROofAQyAYv4CpTrqgE5SRl32ojdc/rpedxFeSH0kbntNlTv/VzrVd/4GspPP4nsq16+t1odKluASgWnoyaIvUXJEPdi8aAICUuHgKwGapdat3EOg9plukM/EWw6jqPscuw0HzLaa7ww7cHRi5bpE4Wk173d5pkVEROiQKZCdDRDZAl6yU2y/qDEZ2AQwooEme1EiGEzItEQgaTKAkHqsz/yRXAaVBwhJc9DUB7OsHHYlo74NvEUipmCRgvsO1WtkCM/8Xs6rI6hisQyMSIfiHywkweNYzLKrEJaRITMyrRXYrEMj9q1ioSLzNw8Pi1Nu4W0fCMw83sAvIeI/gHEL+FV3e7UCgmWseMeP4WVn/nXuPJ//QKi9T0UbM0Nu5/TV/kcaH/Tlz0BfHkT/KQIoLpcw7Ef/h6Agf1MePZLbgCYsbK6hIxeE6+4wgKwcHvT3hkU7W4FAF15DN6dz0fti/e2Xrm5Ia0O3/Zq6OIeydjtXAYWzPjA3YQA7DsGOJEp5SYTuBtjwNUbxM+gLU1rVV6SvY+Df1KNggZDAqLQBxCClk/Xr2DSoKVrk03rAkLT/bgLTQ+AJEMbrxtIgk3ltQmQVavPQlgzzuzND5FlHw2O/qaFQOfkOWvne9AJf0vK0ZvvJyy3H03Zi0ErCXSu/WhBf1MC86DavU2ESNapPQlkRxlDOkqARc5w4sXEMQa2nYSh2L8EaC8EpP0WADn2dMaIdKE1S95rhFUw1Py2OuQOmuo5i8UyBs4AOJb6/yiAjuZjzPw3RHSaiPYzc0cHdyskWCZC5ta7sPbv/xSX3/lzqH3tPgCAWtmH6EqbjKRlvPSTYR03SrU1l+P1HfCDMgqQAMRWSR6ApXijy+fr29PSLaDS7pgq9kJtPg739rvgf+kLba+v/fVHoG+9A97JZRMkzzAcmiz3CIEZgKT5pM9jLJMHUAKCpu1JA6s3AMGOiWtMwB63URAB2TVQLjZy1MZxv+l5dnKtAZNq30tPqrFxhtDuYbRE+slPp8AyHvMWo72GkZgApOrAKUiZvtbyeDgUwaFTm0xYNln5AcrsOZL7H0QwICUBJUettxtkbruTbzUq1Fl5jeLX1yt2uDHXs6wj+USkMdMzhoIjYyY6g7Rtb4iNKFPHErlyef05MK9L5KfacmpXoYHiHMHS9iN1THtA0B6E7H4rIlgs4+XzAK4nopMAngLwFgDfl96AiK4D8C1jtvhcyOl618DNCgmWiaEWlrDvX/02gie+BX3wCMjLoPb1L6P04f+O8t9+RE6qLRNgCkJCECRO/WmoCiyakX1aS/88CIgCcGicwOOxdWGAsc1uHxN650ng1ufC/8p9ba8Pv3I/asEt8K4/0D0D6hWAA6daLw98409ggujY/Z+UPCdEkFFjUeoyoGGmkIrnkJt91s3Ykm1rlzZAWxW4WROYc4CGIDl+HbwFWevOudasp84Aa7cO5pxNyfjPOioDrJ4Egq1kvTHxcpSWE+M4sOWmyRDJHQywlgmYenIgAXS6DUGpZtsIIfYKqA1QXcORiAhOwQgOfayvo6jVFOAb8YBigYQU2IzelOPDVI/ovAnsU4aNpOVxQiXHGiDGiojMtpEZczilEnkOMfwpTiSv68y1NqRgI4yRqZhpnmASV7LE1TAw3hVO0YhyMyqUWAYjqgKkwcbTotnYjUknYicpOe+Kv0s49dnP4eyYwpEjwrfFMg/MyPuKmQMi+jEAH4L0hf4+Mz9ARP+zuf53AXw3gB8gIh9AGcD3MnfPTlohwTJRSCm4115f/z9z83ORufm5cA4fw9af/McprmyemYKQ8MhXwY98teViAkAZoB5ZpczuqPkPDWDzqfGt6dBpqDtfWm87BwCu+uCnHgG+/tm+d6MrzyA6fgrhE4+0vT588KvwvTvhHuticJtdRDJzPIWDxLG/+yqa/k9XBTSJL9S0GYCv/dxvYfG6Y7junhOd7yK7ABwiCYqVg3plgJMHSiagCiOQM8CXYvP3j5OTiQ5BSYLR5koEQILclqz6IMc0NbUnxBfrpoOuzSw9GmK6QVCS9SpPgv5urS4cJBMNBrqPHdk/qd4Z5MAID+1G1LmLkFah9uMQKfLBygHIA5nHwSoLoCCBub8lj4+D9mLJLOEUB2sLaWHatq9dSAscOoeeAmw8LYRoPNUeltkiHh2qXHB6/CpHfVScKDP9Zobe0NZY0WKZCMz8QQAfbLrsd1N//xqAXxtkn/bdapkKhe/8fmy//8/AW5u9N54ArB0gVwByZka2l4Ffi8BRBOU4iHwfpDUcT4PMBApSJHFRc0YYDLr0jGSXZ4FBR57NI/uOgG69Owkk4kSqB9DJ04ge/QpQ6b9c3N2XQ3hGdXxugy99EWr5ldALHbJ8wXSzf8955zvw9V98N4AuQkI66E9ntVVGstSFA0BYAUcuqN8TvXTVkVcA3BxQPt95ewAoHAY5zVUPWpLc9XVyklXTTdUKpICozcmzk5PH0Y24P7+FHkFlFMhP3NvfjbAsQsegbSZx4N9Pq4NyZHudlcfURTxoRlo+kuM8bebGTlE8EPaCL0gnY8GZxbQhKEfaEigldDWPE41x8uaPPfVALZMibg8aBJMtnZlqBEDEj/J5GTVssexlCLtptjgVrJBgmQoqk8XSD/801n/zV3b9vvnAEWx8/SGEVx4b2z4z155CYd8qaHMWzCXtSSWWD4AcjfaZOgbd9ELw/R/rf3/bF+Hdfidq932+4ya1T3wMmTe8AQrrDZeztwz/a48guvh56OueBffWmwDe3axgZrWA0uNnwMzDnzBuPCE/+f3gwgHAzYMKqw2bMBszuCiQVpWKce/PLAFa9c7Eu0Vpr2iGm0qxSXU2D+zU19+XwBYlrTbD0K7EvB3BznBiAiAiQrepDjoDQAFOEcThWEvYCQx2F5vMIWeUUd3sY1+ROMNbneQUIpLjvu7DESQf49TGjNRdMEJJCPt5bxkJDkUgJmdWKrDlMzy7b9qrsFgsfWCFBMvUUKsHdv0+o8Onsf6Zz4L98WaIq489gmB9BUtHVkG1aZeOzsrZwIS5/k7g4lPAlbPAyiFg5SDo6PWgYhGgsGtZMx0+Cv7WfmCzoxFtC6r0DGjfGvhS54x69QMfQOae10FlfLDyEDx2HsEX31e/Pjj3FIIvfAa5H/rhXRUTnv7A/ag89jgq21KEMxKli/KzcBgwQgIzA5tngO2zrdny3KoIAbF5nc6A9t0kWVcOwf4OQArkFcFMIL+PvvRJxU7DGpXqjKzJ75A5JmXM76J6P/JoYsK2lO63TGeoJaP7smuD77cPiEPwTI5GTNNorDkcpvIlqsr+hh0n2Q1yxFCOVGczTw6lVUXp1LJ8XDWf85bJozPJVJ1ZILs/EfAslj0NDWZavAexQoJlKtSeOoNnfvPX4K0eBF0+N/H7Y+3AXzmCrU9+cmL34azMgogAzH2Gav9RqOe9CiAfuP5GJCZw8eP2ez8FHEC9+DsQ/X9/iL4NHkMf3unjqHYREhBFqH7wA933U60gPHsZ+mA/3gjDwVEEVAKgUgPKFWx/4cty+dpJ4GAWdf+D9Jec0kAwQKY5qIJrFRm/uPEksPl46zb5/RKI6SxQOAiK/Q+AutBDbk7+j3yQ6mDk2FJKH4lnQFjtv3qgn375usFlHyhHqiI4kP5kJ2syxbH3A8s6oxDJMRafUJiT5FFOMNqNWUwz0fGFM35iNPbUqjEirY6xEkN5gGN603u1ilDT1JCZSR1b5gJS029tiA0hnXyfvkEWi2UWsEKCZSp4R45i/z/+CTz+Yz+E5Rc8H/TUwxP5ImNS4GtOYudbj6D2jU+Pff9pyHEAzIKQMMfkl6Be8KqmoHDIfm3yQS/9h+C//cv+b3LlSTg33YLg663GkoMQXTgPffDkSPtoB9dC4LEzwMNfavCAOHDTYZwBULuygfxKp2ocBXhtvhI6ZYbKl4Az9wL5FaDSbjqQAgoHQNqTQDt2infW0PE1i/xkYkCcHSOSzC1pJAoRA37JrK3ZXbKDisSRZN7CqmTznUISyIdlKdfvFtgrVwQRgmTvODBrc02vujEhHCSA52Cw8Y6DUL0Czu6rmyaOlVmPY53C+IWUyO/PZ6Nf6q75FsuUCcpgnYxapImKkClIAd6KiLDKlfeWk7dCmWW+mPPj2QoJlqlRfNFLkTl1Ha588pPInDyNQlGDKgOMRjMwM1BcAgpLgNZg0mAQgnIVlcceQfDNyVUhpPEvXgDfcAp0+eyu3N9Vx80vgTp6eqzlxbSQA19/J/DQF/u+jeNWEXgeUBu+PSZ66gng5vEJCRyEwGNPAQ/e29bYcdm5COU62PjqI1g+9Zz2O4lNRBloCNg7ZZ/dPOBmW0WE3CpQ2C+GWdo1YwsbVtvtkbRmZxnGbK7PoKvdxIb6rjQod0i8AxAl96VccO6gBHZhDfWRBKRk/CEI8Dygue1iLA74JGMTx+470GYqxZigKABnVmXNvYQKldndSQFOfkIO9CxC1NiEhDbeBxbLVODE20XnxrfbuGKr4f2Yms6TMSJCjGsrESyWvYYVEiy7TrB+Bevv/QtsfPgDqDwomd3qo9+Ces6t0MsrgFLwypdA5VZRgZmBfYfA2SIYhNAPUH7omwgefnC3H0YL4ZXLiDK3tgzq233mL8tFd70WtLYfwPgzJeqGmxE98wiw3aeZWnkD3m13oPb5zw19n9GTjwF42dC3j+EwAp44CzzwOaDWPcDhiHHxU5/HiTd1EBKYgSefaL18PwHlssnWm9L/3DKgddLfTw6wfBxQxlCxY99/XGkwoWOU4laN1n52ZgI2HwOWTgFOTsYcBnFVg0oy99oFw4xa5BDEARg04ijBbvDkeiir62BvYSJyAkV+d+NFJwfonGynveG8IAbBKSTTKibGEM8kOdLOQw7ktU6bJO6B6ReWq4uwDHbyAEdGcO0XJSKe0vKZ6uTl/Rh7woDNCN4Zb4uyWMaJndpgsYyfjQ+9H8+885dbLi8/8JX635lrT6F45ChQ3gHniwhCBX9rC9XHH0P08FO7uNrBKD/+OIod2rx3jfnTEUBrXcrhR4UDqJe8EdFf/UHfN1EbT0AdOoLo7JDHYuDLLEoeMuiJGLxRBh5/RDLoR0/J5dUaJKsvwWkEhYt/8yCq33oYzIyNL34NrNyGkX516rNNUwdQpgDsXGy8rLAPyLAE4d4KELEJ4MqtL5HOysQGpHahNADVPmvcMQjs46B2F2Tso78JeIsN++eIge0nAI7A208BKzckAXBUA7ylhlGVBK7fnpUr+5ylOeudYDYjH81Xe+SPNoWiF52CAm8JYG48zoY1luwHtyivz0RFBEC8EhY7j2Nsh3KM/hDUd2GxzDRBCSCVtDvUj1kGvGWQdoCgkrSsOXkgt9b+8yBuTbNYLHOJfXdbdp2Fl7xcsplhcmLuXnME2WfdhK1PfBSATEGoPvbIlFY4PNXHH0XhJS8CnXtyeouYB/HTy4LufDVoZR9A0eSDOBWAXvRG8Gff29/2HME7tIzKxhWgTeVMX7sIafDkDDNAWeDrnwOVTCB89Eagdglw8+CHvtGweelKFtVvSLWO9jyElQpC34WjfXDECLYjBOtVVB56BnA0Vm4qNPZtLx8CNlNiSeEgkPOk/NXfAK6cMdsdb79eUq2l4CEkW11rE1Q6C0lrQtxiwQBcD8mBnT7Azd/BTlvzQWYGgipQSrUbRX7rdIXaFthbBKJApJTYjyGqArUepobThCHl9sqRFoOwIiXK6beLckRcmARRAGRWZYJD/B7NrLYIVXV5qtvYylEgZ3eEnlio8IpAbQd9qQLam7DxpcUyAThq05YGQO0zhoh5IDT+Lm7BVhpYLJ2Y8/eGFRIsu4535BhUNodoZxvkejjyy+/E4ivvwfZn/qYuJOxV9PIKUCmBvQwoYjCRhDocmbiIUz8yCm7qbsmzxuk7oG682fRe9zGBYUzQygL45K3Ao1/pvTEA7FxG5pZno3rvF4a6P96pgBb6nTjAYhBY2wD8c0A2B5QaS8o5ioDVE0CtItl1N4Ptj3y8ZVelc1vQOyVsfPCTCJ4+k1zhOFi58Q3J/8vXAFtPJ/8XDwHrTwOXfWD/caDaRysIR+2zUVEnQ8Sg1XiQNBB2OQiUMVBsul+OICJGuWnKRmalzU4iU6FAUoEw8cz2kDBLMA5IEN9OOGjG3wHr7GTaG8BA5IPdoqxHZ9pXuwApgWYCrS276cEAACBjvNhDRBxnv7nFMm10Lql2AkTE1JnprcdisUwdKyRYpsLiK14D58Aall7zeuRvuxMAsHTPG3Do7NM4++v/csqrG55w/Qouf6HPXvsYIkBrUHyqrwhQCqTNSbdSZlKfkm2VAillLleyfTy+iQjbf/Tp5DIll5HWuPZ1pyYnWtz4AqhTN6U8+lKBQupvTpdIxtnm+H+WDSjjTbAfvTvq2XcgOv8EsNOf8R1deRLu7XfC/1L/Zo0xfOUysLCvx0YmcAzKJpNusrnHrgcuP2O2MduGEfDU3zfcXGW91K6k7+DyB/4O6uHWqRPOgYPJP6vHRCiIX7DiYeDSo6mtm44jUqaSgJN1A9J2UWsyKASA3IEOD7gdPY7ZdoGrvy2mk9XLyWU6a/p2u5348vRFBIYZkalS4yjNcxBWhmgPYAny1eS+7okjOQY6iAjp7TizYkSocYoJE/TdaHcf5ABhyYxwzKL++VV/bYzQANhqBMt84C6ACoenvQqLZY9B1iPBYpkEx37937W9fP9bfwTbn/oEtj/zN7u8oinCDARBy2nwWE+zXQ9Ep8e4x6b9F5YA+O2rz9Pb9d6T7GdaxH4JH/rDvm+iy88gOnEa4ePfGuiu/Pu/AH38tZ03UJ4cG6Vz8n9cThqUgGgbWFgFti4DpS2geQpi/fEkf5ISG9Dy+cto8cYmQvGFdyCoKTjHTibtDMzAwpEmEaFpxwDgZtr3jTuDZmTbPIhe4lc8XrL5ZpllEQ+impnEEAFOFrxzBrx07exVAjkFKc8PyiIYjJPaOji7fya6nijyZeJDtd3I0CGojwCdkJCgcyn/BS3HW1gFHCNIxUIBOcZ1nmBNFC1zR7aH6G2xWK5K5rtxw7LnIK2x+r1vnfYy5o+JK6KzEKKMCR2C7nxN/9tHIdxFAi0uD3Q3/MyTYOqQHVeuZNXT7QMcGaNCAIiAUzfLn1sXALUMUL5lN8sveW7q5lL/XnrmHFQ+B5XNyu98DiqTweaH/xrn//xTCC+eA0NJq0TxsPgg6IyMcox7/XjUoK3T8dJuvz2Oreb+Q2aAXGlp8DdNUB4BTh5cuSxBYa+RhbsBGxdzaKmc8LeMIDKhgHgWHrOB/n/27ju+sfM88P3vOQWdYOf00UgaybKsYimy3GLLUWyvS9zi3N1s4o2TeFPse2/KtrR7k3U2d1M2m5vycYpj79ppG8fJptqO7Y17r7LlImlGMyNN57AX1HPOu3+8BwRIgiRIAgSIeb6fD2YG4CkvQA6B9znP+zxRJQ4AtONgLu2duDs2eOCm7C2sNGSphHGbvA3OZ6I2j0WpHtGu/69KXW9qmYWdvnWJZiSonjP4opdxw+++g8m3/MaqTg5qFzr9S6aP4ggAcuAA5vBJuHS6tR1KiyRvvZHSF7+yrQmbmVpARtcEE2rdE8I1KfaJHCw3Fg1chJFDdonDlVOQGMCkB+2VUmMgKJGIZnGyWaLlZVt4EAhLBY68+P6NB3XqYdvxYfQE5vP/uP7rno/74lsQb6Cedu8nEC/+98rPmmD8bFyIi5XH7F9+Q3Cr4YfHz63vJS6ycYtBNwXl+tIJExlwfKQWgHGT4KYw1eXVQZkobAjK7DFx7fmD4t52gjBhbxV9chJbLoVoiZtqb40EibMbalksrTJBVz/MKdUx/oBdRqmUUmtsGUgQkRTwMSAZb/+XxphfEJGnA78PpLB9jd5kjPlck/2HgLcBd2AvtfygMebT7XsKqh/lX/Ai3MEhzrzuNW24+qn0Q8B2RTj3fCtREMDkudZ2mb9E4r5nUPn8Z1s+S/nv3k3q+9+ASMNEKDGwOmBQs+7/gcEcPcnsxx+h9MhpgmtT6/fx4qtIIpjATlpPfOeDwCaV812PaOAw5twjzb8eVFeK7NVFEK2fdAk0n+R5bvNCdX52/fZNr4RJHESoBweMMTaLI6xi/DTi5zClqdVLLtw0ZCbA3eMYujH1opPlebrSA7Ayj0mO9c5c142LZPZaDQETAgk0s0CpmHQp6KqU6nmtfJoqAw8aY5ZExAc+ISLvA34ReLMx5n0i8jLg14AXNNn/t4B/NMZ8l4gkgPX5t0o1kb3nGSRvvJnymRavCquNdXz20CuzkzYyVZxnPJ/o40uw0GSS3oQzdw7vqXcSfHN9McOmyiVKf/xOUv/q9TaY4HhQnMbWw08TzS0TXb5E9cJlymUXf3wUdziH+JA8PoCwSFgJCa5N4R8/SuaeO+0k2RjC+XmWPvTxlVNlTxxj+ewTjB3xYaNi816CKDuBuXAa5+7nIWOHCD/8P22xvm6JqraQY9xG0kQBVAsgxZUf65U2j8tXsIXujmAauzV4aft4aRrSo9i3sr0i9jmEPdBGMljEeLneqA8RBXFdiOrm3Q8cf/PMhXZndTg+XQn0KNWrul2AVqn9SgCnvy/kbRlIMDYftvYJyI9vccl18vHjg8CltfuKSB54PvD98bEqgP5GUi0b+74f4uJ//KluD0NtpRcmJp1gQuRbvh3z4Xe1vIvHPNGBw0RX1/1KbK6wROm//SHJ7/1+nIwDxlD51MOEj3xtZRMBlr5xBVO0Ey5naAT/4CEmfvSljL7uVch3fxsSLa879PArns3yV88z89//B6N3Po2J59yNFDboKpIdRB78XtxqBXJ5JGHf/Jybf4bo7GnCD/+V7YSw1wyweIGVK8Ti24BAIo/xswgRhCEsnrdfr7XlE8DNgBgoNXRvWLoIw50rPNr0CTiJ9hdQ3ImwHHfX6D6JP0YY8erZCc34eZtp0iyzxfHbm9HgJOJJUxcLvirVazQjQSm1gZbyO0XEBb4InATeYoz5rIj8BPB+Efl1bNHG5zTZ9SbgGvDfReTu+Bg/boxZ94lXRH4Y+GGA48eP7+S5qD40/F3fw+X/+v8RLTapCK9aZpqknbdVvwYSAEknMKkslNZP1JsKyiQODlFazEKhxX2qFcrveCty4DDiukSXzq/6cuSnMdX65Caam6E8N0Pp3PNJH9n4aq5Ey+TuGCH55n8Djz+Ot3TBrs9vtu2D34MMZFifNBbi3HgjcuLfE331U5j5GcCHxHCcsm8gNBg3YSf9ErfCE2w7T7ehPV4tBi1OnOpv4mPYbdct3zBA8Rqr0sxrSx0qCxCUMKkRWGjoKhEUbHtJEzTvDLDRhLWTemlpUViyy0J6hGAwXtZmKDTNLjC2U0KzJS9euj11FhpGo5Rq4CZ7Jvio1L7Ux5+PocWuDcaY0BjzdOAocL+I3AG8EfhJY8wx4CeBtzfZ1QPuBX7PGHMPsAz89AbneKsx5j5jzH3j49vpMa76mgiJw0e7PYo+0OFU3V6aKLVdBF5ie7sU5kjcdvu2z2SuXloXRADspClYP2Gaf+8HaWXy4+fK+HfdtmEQAUAG8ht+DUDE4By/CXcQmD4DU0/A9JMwdR6K8zDzOMw+DjNnYPaM/dsY2+3BTdjX0EuCl7JFFZNDkByG1AgkRyBzCLwMkhi09xP5WpGFhkF49ZR4iFs7Nlzp9wfAy8PiRdsJoZk9717gbVwsshuqS5gemzBLVIXE4PovOF5cGHPNUhSJ2zC2NYhAHKzQq69KAZAaQwZOIAkNJCilmttWxSljzJyIfAR4CfB64MfjL70bW1BxrQvABWNMrfrYX7JBIEGpZkSEY7/2O5z5/v+DcHaDiYHaWhRx7UzESr/1OELqZNKMfdfLGzasXUpm9WOm8W/smq+FaUhmIJGE1DZLnyTWtEo0kW3V16vKm6zh3oB47QveRH666eOVx05j3FciraTNyxLybS/HPPR5mJ20tRSO3YKMHwQMJqoiW63lG5qA2QOweHX7T2LTsXngJpB4ki8mBASTHAEcWL5ot3M8mHkMckfq+wZF8AZs0GL5Wv1xf5TmBfMMxpi9qRNggLDFrJS9FFXta9nr/DwSVeOMKodV389OFOFdWdqglMLZZgBdKbWGaI0EERkHqnEQIQ28EPhVbE2EB4CPAA8Cp9bua4y5IiLnReQpxphHgW8HvtHG8avrQOqW2xj556/j2h/8dreHsm+ZSoVrf/PedY/7h48y/gOv3dlBB45svc1GwuL6x8TrvQruAAhUt58OL4VtBr4yeWRoAhwPUyzgP+UmJOEQnD1LNL3J5MbUr6CawIFzpGftfQAAIABJREFUV2D2KkFyHMkP4IznkHSEOALBHHLHLeDdHVfMD1kpWzP3BGbsNmSTVnoigrnxXrj2OJTjq+ziQH4CSdaWpDW0dfSSzQ6znptomikgJrRp7ysF9+JAVy0F3klDpQCFWgBBIDNmsx6i4saJOMbsUbqh9ObEtLqASYz0VsZlVLUZKuU5Vpa/xEU+BTDJIft9N8b+/hC3vb8vxO3N75VSe6Z2ocGNW/Hmuj0gpVSPa+WSxCHgnXGdBAf4C2PMP4jIHPBbIuIBJeL6BiJyGHibMeZl8f7/N/CncceGM8APtPtJqP6Xf8GLNJDQAeJ1K403/sDSyM/1Vgp4jezwym15GefgEaIrF9d9ySA4o4cgnYcgIJqZxEzPwHRD8OHmI7h+AfdEnsQdE2T/2bMpnb7A0kc/TeVxWxPAGRxEghJkD0CwjJQdzMVTRNlRose+CkAIkEyTfPWrwHdtACEorF6PnhxCRk9iojJ4mTVV9B07kRcgLCPiYEwIYeOka207yJqIllLFg4ItqtdkYiiOg3FT9vi1ugpeGhI5mKzFpQXyRyEsAEFvdEgQDyobFLbsNhPRPPuoe+wqlgCTyK8ElaThd4Q0/HwZf6B5MHI34iwY7digrituyi4r8rNxMD8EcXujs4tS+53Q9zUSWuna8FXgniaPfwL4liaPXwJe1nD/IeC+3Q1TXe9Kpx/r9hD6U1dqGzg0/bDeo3UWzOLOJ6XuwYNEVy5ikhmckYPgJjHFZczVi4QXntx854Y3H0mm8FIlcneMkbvjFUSSJVysEi5H4ISweMkuDTh5H3LzU2GpgH/5POHDXyJ68jTuTSdh+XLjweHI3Yjr2Nc9WIblS0hyBKRsP1A6nt0uLNYL3dWCDGO3IOZmVr6Pjg/VJkGgZnMycZunpW9wddmYyFbtB4w4MHiDXQZTWzefHoOgtrSjxfoH1WVIdnDdr6G3l+qAzUrw8z03YZCWalh0aLLvNCnqqFS/SgxCehxp7Mqw08C5Uuq6pL8x1L4w9PJXcfEX/j10uvvA9aYbkwjXb/54UGTdOuiuczCPfmGb+wgcPI6MH0ZIYh49i5mZJJzb5sSycbI9cxFuuDl+jcAxyzg5IXHybpuO7SQpPnIWHj1H+raTOH4Vjk/gHn8JRnwol+1kfOGqnXSLgzjR+g4GUQWKC/Y5pEbtleEmPyPiAEHDvhutpW3cVTxWgkjNJmtBCRMU660a/Zz9Wakugp/FBCUoXFn9+mQOQGHS3k+PNB9DM4tPYrxbkY1+FtuhaQeCHhJV9++VkiiwbUBNm4st9mgwU6m2cpKQPYS4LS49U0rt3H59n22RBhLUvuCk0oy+7geZ/qNmNT3VTnXn99tG6cMRJAagMr/XA9pQ9OQ5uHpu842SGTh6EzI8DikPokK8tjvCdcHMTG77vM4NJ3H8hoDKgRtXT/qNgfRBzPI8JG09gCu/+XuEU9c48ks/Q+qmw2DiIj8mgmDavuyDQ7bjQWoUHNdeNa9dAU4OrVz5BwOlKUhPrJ4Q14IHbsa2BasFOxzPrm9f2+bRScSV9yv15RLeAPGCC8CxyxRKszZI0HguNwkmxIRVqEzVHrTjjir23OX5eLs44OHFa3pNuHnqu4lg9hRm+JbOBhN6XXUZ42V6LiuhJW7zTiZKqS2kxzSIoJRqCw0kqH1j+BWv1UBCuzndqJHgUJ9IriE91HpNHPjaJ9c/Pn4UOXAUBgbADe2yAAAKsCY7Pyrv7Aqne2gCceNJ++gx8KsNxQgF3EGYfnxle5PMc+iHv4ulLz9Cckxgrv41Bm+0AQEMVJZsLQX3oG2b6KbtRF4EWwuhvLrWQePEXlx73x+IH3frzz1seOJS+yNeFrH2W20CO/lHbPZB8RpU1mdrGGOgGC/HcNM2IFGasd0YogoQ2iyEYN4WXSSoF4BMj2+9ht6EGkwIi3Zt9L4jEHYgiLA2Q0epfpMYQrSIolJ7RLs2KNUzUrffSeLYDVTOP9HtofQPpwtXIkUaEhLEXrWOCzwRFPewov4WIhd8H47chIxOQCoJphhPYg2YhXWBg3apfuZTuC98Hu7IAGT9hsm9A6lxWJ5atb2UF0gOQvJVz4PyDKSHbRGtqAqVxdX1B7KHbRAB7PMICvVWgI5vlxSIB1EVUy3Zc1aKEEXIyNHVE3Q33cKEPa7AX1vnUC1Acaoh+wF7zuqaWhQSF1XEgdJ04wEbN2KlM0K5ofhjZSGuJejY5yZO3KUishPnWjaFODD7GGboFsS7TludBSXb5WI/cf01BUHbpQd+7yjVSV7zVsJKKbUTGkhQ+4aIMPDgi5l+5x92eyh9Q7qSkdDA8dZMEoHkYGuTBGPibgKunRCKYyfObWrhZgiRb7kHOyMtNUy+t2E385JMFobzq8+bHIb5uEhjagCSefs6FGbiAE3cIrEY1xnwhuDyGcgfgPQAeE5cq2BNmoCXgyCeyIdloHZl1sDZz6/UZjDpASSx8aTT1JY6VAs2gOGm4++HIIT2644LuLbL2Mrrs3qpi3ES9opzabbx4PW/jYlbk5UgaLJMJizbAFVYalhFEb/dlRuKQtYKShYmMekxxG/XhHofVf4PljBeat9MoQ1O82KdbdHjdS2U2g03bTPKlFJ7Q7s2KNVbhl76Kg0ktFO7fsE5flxwL57kYSAKG9rMmXqmQXwXaKir2Fg3YfWYjJOwxzFRfMzAth5MDiHrAg5irzhvs/K6nZeIPUdYsRPnyiK7nRBuuvbcdXGPn7BP13XsVVbPRVwbGHEOHgKzbD/8Sa3WwXL96n1QXJngAzB2G+IlMeUFWLpqJ9OL0za4MncB5rAtE53zmImbIZ2Lx8iGr5eIYIaOwtQp+8D0E5iDt9afl4lscCAK7FhKs6uDQF7JXvE2IcbP2aBCrW2km8KkRhFxAAfj5212Q3XZFlDMHraBExPZ51+atftLHAxZ1YWiibUBpahJ+kgUQGLI/gBMfwMzchuSyGx+3H5UWcD4Az1fK8HUfk+0u/XjihbaP4pX716yQacRpXqSCXv+/7hSan/RQILaVzJ33UPu2c9j6dMf7/ZQ+kO7PlMkh9avL3YFyrOrHzNgowcNRfpSIzYQUZ4DxKbTzzxuJ4z5oxAubKMCvomL+62fGJtaKruJgxxhxU5yq8s7yzZohb+mA0UqTeIZz8A9cQTHK22ePVHeoEhjcgjWLg93fNvKMVxGPBeGjmC8rO3SUMjCwhU7Ic+OwPwFuPAVOPIUKM9gkkOQipdCSJPgx/CEXUpRnLV1GUrzmOwYlJdgcCT+vq15nuLY5QNu0k7Uo4r9lrtJcIN4+YQgK/UlQPwcZuli/RhRAMUmr0FYWf9ztRtuIo6mGJh5BDNxd/czdfZaVImXF/XmRwLjJuPfL6Zzk3cnsfH/R/EgNQaVWRvccuJuIuLZDKrSDPsqC0X1P8eP69nEgdjkMOL05v9vpfqZdGMJ8R7S3ypq30nfdY8GEtol6uCH340KJzbWSFiboYCxDyXz8RXocNMggkGQtR/g47TnlSyDqAqVZTvhjfa2yvvK24cjpF79atx87fks7LzLZXkOcodgqX5FXg7cAWFjjQFjAySVafDAjExgvn4W8WbrY7r8OBy80R6vlu7veJj0mP0A6vqIgIiDOfRUeOKLdjK3PFWv0ZBN2aUK/lAcwAnsldqoYrcNy/a5JodtUCBzAEmkbWaF49kOElHFfl+qS5DINy282FGrghUmzqK5zgIJAJU5TGp8/f+nLjJgg09BgY5P1FeCXyn7MxhPvjAROB6SHLRBg5qhW+vjFNfuF1ageKXJwZueEA0+qLbwMvZWIw4kBuNsL6WU6hwNJKh9Z/DFL+faH/x2t4fRH7qS5thwzlogYe04UiM2kBBW7FU/x4doTTpzOb46GBRsyrPjAwbKC7YTQHWZnpBKkfnu1yBmoX3zhuoiKxORzCh4Lvgj9n5YhmoJlq/Wt48CuPAYZnkBTh5FJLSPXTkLB47VCx1GASxfAexkyPhZ+73wMnD0LnjiCzAwZjMb/IStyRBUoDLHpioLkL8Rqc7bln2JPKY0C8SZIF7aLo1IDu19IGGd/r56sKmoEv8/6hFusqErSoelxiBuhWniuiuSGm1pV0kO2394aUwibwuelqbAz0N6zAbKwor9/+Um4uwfB5Yv2WUaqTH7f7BTmVGqv6VGEe86XJKllOo6DSSofSf91DtIHD9B5clz3R7KvhcuLlJ68hqp4+PtP3izNemtqlXQX46v7rlJSOftvw31yvtuyq69xyAmAPEwi5d6JogQLUdkvuc1SNjmyXG1ANkJWL6KjN8ap6bHr7fjQSKLjD/FTtoxEBkM/wSzVzCXcnB4IK6NEEC0ydtAdbn+WooDN9xtJ0kUobqNdeomtMEGEXDTmPIcq6IqtVoPYUNqebPskdRIXLuik67jq8RRtWcCCbbgZofbMYoLqVFwU0hDNXtJ7/z3oYhAatTW/HA8e9/xV18xjpncMVbqx7RzuY66Pji+zTzQIIJSvavPM4M0kKD2pfSdT9dAQhtUL57nyh++ixve/CakhV63RjaYZARV6vX3wrgOQWCvvAGrrvIaEy97iJcdGGyFfjcBUYDUCis2tgQ0IfiD9RT44hQyeruthdAYsDBhT1XIdXJZe9WxE0Rg7Jbm67pF4haONoAhNHxvL54m9O+ByK6dNddO4996fOPzGANeBKYMi+chd2TrDIRmghLGzcSZJQJG4s4L8RoPx7VLWXDsY82uzoaVDhbai7UjjtBDP4PbssdLfzYldL6YYSJfzyZoM3G3DsjYeiRi/zvkb65/oXAlDgjmbZBNHKjMd6jlpdpz4kFiMP6+Lqyv6VMrrrsRL2OXnyUGtXiiUqqrNJCg9qXhV7yW+ff8TbeH0ReWPv1JFr/4IvLPeMrWG4trP+Su5ZcwiRzgQOHy5h+CNpM5CCaeGPtpezU8f8x+iF533g1mfDs9d7s5PhSubr3dTomLpEeADSZb0Sa1JRaXCE99beW+k8/gOpsEB5IDdmIjwPzjMHYQZJuTThOtD6pkXQjXTI68lF3q4KVh6cLqrzUWCxPfFokMW1haoVoTVVeaq3STcRJtnDRLXHtjvv6Qm7IZTR1rI7l9qyaE2UP1f7tJAIyXgcUntFPEfpIah8SAfd+Mgrg+joCbXPl+m+SQXYpXmbPBgWRc+NaEcaC9FpiP3xeTQ8hG9YeUUr1FBLTYolK9J/fcB/CPHqd64cluD6WnOflBosWFLT8wT//NP7YWSNho8l5djNft71J5DuP4gNhaBwOH41T6bYylV4RVO/ENO9CbPpGFzABGgMisuypljIGgSOnsNYpfO035/EXCySoEAYiQvnmJZGbMXgx1HKpffwy58yZbO8GsfdMTKEdAQ+bDtVkYz27zalgE6XH7oblm+QrkDkOwplDkRsX1QltfAXFskKk4aT94r3pt8vaD+45TxXv856rjQrpZbNKsFFdsEz8H6QPxkpg4yNjBTIROEcfDDNwAxav1TC3VO8S1t1q9F0BSI/Wvu4nmu4kDmQOY1NjqbjHirQ6cKqVUD9LfUmpfEtcleeJmDSRsIH33vRz9pd8gedNJCAKq1yYJrl3BGx2n9PhjVM6dIXv/czDVKqVTj7L02U8QRjlcv7r5uuROX+0PS7YNW2EKDj8bStM2ld3E5zaB/XA1cANkj8LS+fVX6HrlKqNgr+QX2rzOOzsByZS9whoFkB62Vy2jAMIKZnoSLn8DgjLRTIKpt70dgOStT6Vy+hEAvMFhio9+BYDBBx4gevwxcFMkKudbf3oveDkMbnM9fakKQRISSaBslzME25gUNSu8V5613R+8tP3ZjQKQLv8M9MrP4E6E5abr+fdWG14/cW2Gk5e195OD+74OgTgeZI9ggpINKNRaYqrucHzb3nalS0KcZWBWtSJqyXXXclap60W3U/w6TAMJal8yxlA+/Wi3h9ERTjZH5p77qF6+ROXJc5jqBr3N1+6XGyB1620kbzzJwX/7c3hD8RU33ydx+AiJw0cASBw9Dg/U98vcdQ8jr/1uoHYlu2BT8gtXmqTRdjiQ4A9AWEVOvhJxE8DJlS+ZKLBXs1Oj8deA9Bhm/vSaCUKffrDOHoD0IFTnV4I9khqy36/4Cq4RF6bOQGC/njpYnxA6uYH6sVa9r9k7wWNfx7v9ZpzCNVpy4SIMntjmk4hgrmG5QnoIsqOQSICsCQBs59sYLK8OMiQGIDMRt6Ms2mUeUXWbB92FHilYuCNBAeNlute7YpN2r9vmpupZM+kJTGrM/kzs8yu94qUwueP2taoub6PlpGqbxBCkJ5pmZa3UvlBKqT63v99N1XVLRLjlrz/IIy98JtFyf6V5Hv5//zPDr3wtAJXLF5l/799S+PIXKJ9/AlOt4A4MEs7NYqIQcV2yz3wuw6/4TjL3PANxd3dVQ0RsR4TBmzADx2DpYkNWQLTpuvtNJYdsAGDgOGbu1Jq1745dF58agcxBJHuo+Yczx1u9drhm4ISdWNfSoXvqanAbPkxmD9gMhLBkgwg1uSPrCg+KeJhifRunMkfi+FEqT14gWmq+9ETKyyvT62o1BcEwplwCE2EqNohV8QYoPXYKXBeiCCebxXz9Y0zccgwnsY2fOXfNW05xzt7AXkHOjdvuHP4ur85VFpt3d0gO2SUzmwXEdvstE7cHWljuUmUe4+f3RyG3Wr2DygKrAkUmtMHQ3NGVh0ScDVPM9xupFVRNDmK8lF3uUJ7pnRox/cTL2v/Xjgs4kBhA4toVSim1qRYKme9nGkhQ+1bp7Om+CSJIOk36qXcy/MrXMvSK71x5PHHoCONveFN3xuT4kD9hb8QZAaUZm61QnLI1EdxkXAxMbGp5VLVXyGoV98VBDtyPZCbqB06PY5Yu2FTQkadCenxXExZxPMzgrbD0hD1vTxUja0NQI5mDcO3PuSBNuhqYqauQi4MtIhBFDL/oeVx9+/+gcu5x8H2oVlcHWxqCQ+Hpb+KMjmLmplcfN5kgWqgXNIzmbQZIMFsmcWAbafCbfZ9NCItX7A3shG9gApJpm61gyrtPESzPYYvvDdpU9+qy/Zlmh5kQa4kH5Xk6nrnTaVE1blm1t0E546YgkbPfk2bdSJpJjSJ+zmYbBAUISlCJM5QS+c4NtodI/HvYJIbs7+WoagMrPfW7sEd52XoHBce3r1l5Nl42NmFbeO7nDCOllOogDSSofStz5z2k776X4le+1O2h7JiTznD0l3+TwRe/vNtD2ZI4ng0IxEEBYyJA1hf6i0JYOo+ZP2M7CzQGEQAZOGZ7t3vptl3xFNeHQbsMwlz9SluO2RbtyI6YeRzGbo2zEQxxX7yGv2unMnDxESivvhKfOTrExCtfbgsrxhkFkZfCce8BgSA9ghyK15EbkNFhUnc/ddUxEl6S/P231c8Vn91JJaEQrX+etfurhwjuNiLzYWX1MohkDrJjdhkEJWxRwJ0wtr5EegzJjGIyI3GBSWP/dpO0PIE2xBPuKA4izLW+b68Liw3tW/eGJIfAz9rfLcXJLTZ27fjieg4St0s0XgaIwMsiiYHNj9FnxHFt1g1gUqM2I6MdRXD7Shz0dhI2+85bWzQ20QM1QpRSfWM/ZPbtggYS1L4lrsvxX/9dHnv5A5hKmwvadZLnMfyaf8Ghf/tzOAP7JH24CZHmk0JxXJvFMHDDxvv6HfygtlmxyD3Xpknl1GMwcVtccDICx8MEgb1qhtglA5Uq+ClIpAHH9qaPDG65ijN3CUr1ZRDu0VtZ+poNwDn33I859836uRJJUg8+DYd6e0fnwE3IUpN12MUczG8jjT83sfU2Gykv2RsAYoMKmUHbYMAUd7AkwcRHknjf+G/HbeFKrtiJrIkzcPzcvi/kt051CeOm2rvS203azBNx7VVgx7VLTdykrWtRq13g5zYOJNSuDqfGkCYZB+J4tsjidU7EwWQOwVKlx34n7gEnYYMFti1NPdvATYLjb/jepZRSans0kKD2tcSRY9z4tj/j3Btfv+NlDs5A3rZI3Asi3PjWPyX3rG/dm/N1UTcCJKan6iOw+4wE8SA1YDszBAV7v7IAkob5NR1LKkmYvbR698GjmNMPkbjlJJWHH155PKxUGzZac85KmfJSmnSuyta6FQQzsHzN3gC8pK2vkEyDhGBKnbkKYEz8PZhb/fja+/3CmI1fR/FsXRNx7M/mVnUh/IGVbKZVml39Fc+mlUfV+lKRzGGbxbTPCyXuJRHBJEfsz2cYFxttZzHLXiNe3O5zXIMFSqnuE9GMBKV6Xfa+Z3Hw3/0/XHrzT688NvaDb6T06DcIFxdwB4cpfu0holIRUyziZLJk7r6X9NPuIn3H3Qy84IVc+Ll/w/x7/qaj4xz57u9j8CWvIHf/czp6nutarxUa28548kchO444Yj/sR/aquBHXpigDuGl7IX1hTZtGY2Du6oaH9gZTNK44d5ObF5wrPvQwqefeiEht/Bu8EW47TtKhN9SgvGYZxEC9G8SulkGs5fRv0KCZyjymoa3dKl7KZhGATREX12ZlJIfsZM6EtmMGYq8G+9mWTysikLRdZ4yXs4EKP7dvs7e6SRL5VbUijIns96UyZws07nsSF/Md0+CBUkrtMQ0kqL4w8tp/ydB3vIaosEwwPUX6tqet28YYQ1Qo4GQy6z6QHvuV3yZx5BjX/tvvQdD+AlX5F76UIz//y20/rlqj1wIJLc20XeT4M+rF5cSHar2QoriJ+lGiOC187XElB4UnNjyDs3jFXjleeX02H5dZWqBcyZNKbjFp3u68bq/mgeXF1bUiMqN2GYTnglTj13qz18BhpcCDiN00WI5bSF5HTNDkako8yV9bfyA1Yh9v3L4Na83Fz0Anl0JdZ0QcW4fCS9vAT3muS0UZ43ok4sUddzb73S31ZS/isNLpx0lAIq8BBKVU79KuDUr1PvE8XC+Hm83hjx9ovo0Ibrb5VTFxXQ7+xE8z8Pxv58kf/yGC6WttG5s7NEz+217UtuOpzfRYIKGVD7iH715dod71oHG+GhTthCwo2BT+ZuudF+bXPwasTJYrBfybb6Z6+pS9f/ksg3fcQvbZdyKFGbj9vrh7g4l3MZB14NZ7bQ0BgMNDrLy+tZT3stjCha3yutQyrTBtbzV+BpIlyG1QjT0sXX/ryjdSXVqpXg8OpIbiYFYTmjGwb4g4kBrFJIft758osMtTgkJnlz+4KZudkhhaWaZijLHBjLAad5upxh0UjP25c3zNRlFKqR7U32ESpbYpe+8zuPU9HyX/opft/mAi5F/8Mm77X59j+DX/YvfHU1vrtRoJWwUSvBSytpNBULRdLVYYJD1e+6fNKhg6AkMn4gldFmYu0Fz99fAPDDecowqFJQpf+CYmPQSVgl0eEFRst4SwCgvXoOjYD/grt7jYI8b+vd0P9wsXt7d9p1QL9nk2EwUry0oUEJYw6TFIj0N6dOMggtqXRBzETSF+DskehvzNkD1ii2G25QSuXZKVHIGBm5CBG5DU2KpaFyKCOD7iZxAvjSTy9m8/g7gJDSIopfavWp2ETt+6RDMSlFrDzQ9y5Od/mcWPfQhTLm29QxOSSnHg//x3jL/hjW0endpUzy1t2CKQkDvUfMzBsk0Tr3UCqF0hDBYhMw7FKaACg4fgyiZt8hoCK055Zv2X5+dY/uRDZL/1XmS+yST/wjnMTUcgTEI1zlgIQliYsW9c+fz2VivsJPiw17Rd3mpuSoMH1xERsTUu/Jwt1BiW7BICx7MtQU0EXg4qszZOWauH4Xj25ySqxB1N4qCjl9alB0op1ac0kKBUE97oGId/5s1c/I8/ta390nffy7Ff/R38iQM4qXSHRqc21GuBhK3mzOmNr/qZqAo4CBFmoyvkUTlektCC5VncY8cJz6/p9lAus/zRz5N94JnI/JoijvNX4eowTH+9+TFzA80f34g4tK0l5m71yDB6nol0InidEjcBbkNhVqfh/3tqrPlO2lVDKaWuG/obX6kNjPzz1+Fkc1z8Tz9LtOEa9LrEiZs4/l/eQuLo8T0YnWqq1wIJW1magsEJu0ZYXDu5japQmLR/i4tJDIBjbGpwtD4d3zg+ZMexPdPjBx3Xdn/w0piJmzDVAIzBPzyKe9MJxPPAdaBqAxQiEIqDd8PdUFkGP1GvlZDMIJnb4gPXTmBstkN+BGSonvngeRuk2cX3J0+365VrA40ktGS//Z9SSimleoEATo9nYe6SBhKU2sTQy19N7rnPZ+Zdf8LChz9A8atfXrdN9hnPZvxHfozst9yPk0x1YZRqRc9NerZ4A1m8gMmOQ2UmrlyOTSNODtl/lxdsVXWA5KC9DzaduNa6bX4aJs/Wj5kbBUr1yfzAIaIvfsqOZqJE8t4b69tmjsKVxsl9BQ7fCNWGwoSUgQwsNmkv6Q5DsWHbzDEIZjd+vn5qVUeKruq1eho9q9f+TymllFKqF2ggQakteEMjTPzIjzHxIz9G4atfZubP/4jiNx8mmJpi7PU/xNgP/Cji6hri3rAPJz1XvwLDDVksUQVKU7ZAWa0tm3j25ni2EKCbqgcS1i5tcH0kqnccaCxUZibPY4KTiBfvU7gK2RFYbqifMHUWxm6EylQ9GJHYoNvC2syD4jx4ZpM6CP0dme9LGnBRSimldkBa6961j2kgQaltyNx1D5m77un2MNRGvAwMHIPF81tv2ytMZCfgfoKVQIg/EC9t8CCRt1kJpYYr/+XZeClECIk1WTCJJJSWGo6/eiIYLQS4Iw0T+oE1gQSwwYTREzYzQQTKM5AZXd1CsZnyAqQPQrC0+XZ7KZGG5AAsblKUUm1MCy0qpZRSqgkNJCil+oZ4KdsXfT8FEgCKs5C+2U56TWRrJAAM3mhbMbq+ndCFFRs8KM/ZFpGlacisKXjo+pueyly+AiOH6g+UZjB4YKqr26xNn4ORGyCIOzRkBrYOJACYTSaeexmZFxeO3oEkE7by/IHjmEoAC5PI2BGy6xk2AAAgAElEQVRbe0LrJLTAYLTgolJKKbV9WiNBKaX2k/01OawuBCx+c5Jg5lHSd9xO/pl3YAaOIl7KtltzACcODrgpjJMAPwO4IHMwNITc8nRWnrcI5E/a+wbEGLwHHmTV61JyIAygXIDKDJWrAZVTZ0k/9+lEhYDg/JV4w0mc0VGSdwwhpWkYOQYSH8cAmUFIpRqOHRdadJp1ozBw0+0IhlVFG9eR+HGp141ohQHz+Gfr9zPDSDIN4bK9H5btxfXhUQhLCPkNzq9W0SCCUkoppZrQQIJSSu2RsBhQulKkdHGW8rnLlM6co3zuLETxkoa/+luO/Nx/YPDZt4NJ2KUaUWCzFMQB8ZBKrYNIAANHwEzB4qVNz7suHp6ZgGvnVu76hw5R/twUhX/4X+t3PgXR/J2kn30cqc6t+eIQVNY+BiRHbf2FtePIHazXfdiKeBBuI5DgZuzfiQwcug3xnHoQQSmllFJqr21YM6o/aCBBKaXaxEQRYSkkKoQEy1XCpTmEKnMfeYjS42eoXt58wk8QcPHN/5n55zyX1G234mYzuLk0TiaFk05hghCMwUknSR4cwRsCUtnNj+knITMMyaytw+A4gEAub4MTUYAjLqkHH0DCeuFGY8RmD8TvgdGM4I5mYCAPK8VFPUiN1/aon9NNwMDhhhfGntKYqLPlFl0fOXYnRIUW6m5qNkJr9HVSSiml1HoaSFBKqSaiICIsBITLAeFylXC5RLBUIlwsEi0sEywVCOcXCRcWVm7R0uK640g6gylu48o6sPSpT7L0qU9uuV3qaXdy9GffhO8mbNbC8GFIZuKJfghB0d6IwCxCZc0BTP3vxOERuPRo/Wu5UVhqKMK4MAMLwA1Pg+TaA62RP2S7TzR0jwBs28qWIwnbncBGyI33tJ7FUJ633S/8TFzYsr+vGuyGMWZ1/QyllFJKbU4kvnjTvzSQoJS67pWvFpn54FconX2ScG6OcG6OqNCetPjtBhG2o/T1h7n8O3/Ese97gGi+gkMRqZaguoODZROr7y9Nw9gJmDq3+vGLp+HGG0HWtJ1sZAwk81C8tvrxTs5Fw9L2to8q9lZdAC8NiSF7fycTZmPiQpJ69V4ppZRS1wcNJCilrmvX3vsNpv703fU6BftM8Wtfo/zxPGZuisRL/hlufgeT2fxhqJYgu6YV5NJ0vc1kTVAGsjCwpluEYCfTxtisgGqTcYQBBgFnbWcHA6y+6m1MZ+MOq9QyN/ycbb1pthmJcVM2COEkbUCj767eNxbIVEoppVRL+u7zwGoaSFBKXbdmPnaWqT9+V7eHsSvR0iImsAUMo8uzuPmh1nbMjkEiB6YM1SXbHeKWO6CwDMsLMHkeSoswfhNcO7N630unwT+2vnBiagSiOJMjKkFiEKoNyz0KV+OlFg28QZi/BI6HSeZtcclqvM34sdaeS7tUl+wtMWTrPGxVaMEIuB6UZurbemlw0tsPRiillFJK7SMaSFBK9ZnWor8LX5nk6u+9o7ND2SNReghnaY7wzGN4tz5j/Xr29DCkB7E9EiMggsoiVGZWb+cKVKbAB44chOQgkIChYYhCCKo2cyEykBqF4prODI63eu7tpVYHEpp+b+LMhSiAYsN4nC6+PVXmbMcMP0u9raZH/fWzrTVXlkY0qmU3JEdsJocJ+/6KhFJKKaWa6PP3fw0kKKX6Swu/tJcfn+fSf/3DPRjM3ijPFUkDZnEOU3CRbMNsPjEAngPlmQ33X+H6DXcMlOPWjgdvtVfqSQN5+5gjMHi0vpxhaXL9koXy3NZZ8eFyvEGP1RcIChCW44BCBsqz9r54kB61gY7q+uKaK8ozgGNrRdSCD/tWf38QUkoppdT2aSBBKdVfzOYTttKlZS78ylsx1S06D+wjS2fOkT6WBiCaL+HUCic6PmRyUG21cOSaAoqOZzMRWFvTANuRwU/VCyomU+AlwT9k79cCCOLEE2ls2n/8b6lNTgVMcql+3Nq3TxrvdIkJbbCgMWBgArtEIzXawgEiG0xxk+BldbmDUkopdT0R7dqglFL7yMbr2itTJZ78pbcRLS1tuM1+VJm8BseOAxBNz8LhA/YLg0fWL1/YTFiBgYPg+RAs2OUGbsq2RzRmfbZH0BCMiQIorenSsIZkDzXtriDePrta7+fW13rYTFi2r21qtE+LMSqllFLqetPfYRKl1HWo+SQtWKzy5K/8CeHsNibW+4Sby678O7p6uf6FqLzNI0XgiQ0+RHEhxbAExenmm4dFSI1t8xz7lJuG5Kh9vo63upNFSwyUpmxGhvhbb66UUkop1cM0kKCU6ntROeT8b/wV1Yvnuz2Ujhi47daVf5uZSUwgkBmxE/3tcBK24GL+GKsCMuvaNTbYYilJa3r8Cn1qFIggWLLLHLaTjbBWULD1E5xE24anlFJKqR4je3jrEl3aoJTqayaMuPgHH6T0yDe7PZSOcPN5soMuzNUfM8kJRErbn+R7SaiUbNeCVA4ba45sG0fxmxdsrCzYr1fmd/M0ek96wmYPmCguNNlmlUXb1aL2CUC7OyillFJqH9FAglKqbxljuPynn2Hp05/u9lDaz3MZef63kj+QgbnJ1V+rlCC1g0wBiTMPxLMFAoNCfLx5QGw7RD8PwZrijW66pcMbY3o996CuumwLK3ZKVIFKQ42J5IgWY1RKKaX6hvT9BQINJCil+tbUP3yd+fe9v9vD2JWDr30FqYyAiTCOj72CHSELU1Begrn1V8vDy1dw8gd2cDYHvByUpu0VcycByUGb0o+xV+b9bD3AUFMt2MrETQopruKlNvhCj7V/dJP1ThOKrXt4KqWUUup6o4EEpVRfmvvcRab+7N3dHsauZG69hVThEsTz9lancuFjj+I/ZQeBhPLc6laHUQXKs5AeZ2UEzeb7gg04FLYIJOyXyWgib5ds7CkNXCillFJ9RTMSlFJqPzEsPTrL5d9+e7cHsmuFx05hnvVq5Nr2ikSaqUm73MBPxx0GGmf/Yts5lmfX7CXNawFEASw3dILIHWl+0vKCXRKx6XKAHso6aEYcSA53IYhAj2dA9PcHIaWUUkptnwYSlFJ9pXRuigu/8gcQbrc9X2+6/MHPcPjZT4Hi9gr+mdBFzAYFEI2B1IgNMpTiVo9+xj5eq5Ow6gq5NPztgpOCsAxi6sdzHFt0MVhuOMaa3d2UXTawejB2aUQ3eNl4GUNogwgm7ExhxVbUzr8t8T5uMv5+6IRfKaWU6hl9/r6sgQSlVF9Z+PgXMKVdtOfrMZXLV5ifPslgZnv7RbNLuKMbtG0UqXdZ8AfskgY/hzQU+zNhtWFi25BJEFVh/rytn5AagjCC4pwtTuhnIeVtPCH2s80zFmSDJROdUss8CCvrC0d2zTY/bNS6aIhngx9eGsLALsvQoIJSSimlOszp9gCUUqqdTGMl/D4x+9FPEI7duK19wgsXWtvQiePJbmLVw5Ieh8wBSA6t2SGeoEYVKEzC0qQNIoD9Ozm8rXF2mnGSNljiJuNuFGk76a4u2efQM7Yx8Re/HgiqBWaCog3ylKZt5of4gGOfs5Ow/97JEgU3iWhQQimllNoB2aNbd2ggQSnVX5z+/LV28a/eAyMHW94+fOQbEDoQyua3whwY317NblSZQyrz8SS0QeOk0k3YyWujwmb1Bfb2zc4AFKYxYYAxBhwXiOxSjl6z2Uvj+OAk7RISg61vsdkyiNKUzVaozNttS9P235W4joXUun+0oKdrNyillFKqW3Rpg1Kqr4jvd3sIHREVilz55MMcvOcElFpIx19agLDaeup+ZrT54+taOjZMQMOK3a8wXX+sMAOjx+1EttucJFSvwPwSpEcxyTzSq90RzKaRBBscaIdakU1x7TIIcW2wIKo0Xw4R9UetEaWUUmrP9XlC35aBBBFJAR8DkvH2f2mM+QUReTrw+0AKCIA3GWM+t8ExXOALwEVjzHe0a/BKKXU9KZ17ksVbTzKwQemDtaKqg9Nyz8gyRuK3hNo+xtir95JipYhBUIJsLTPC2I2TmcadbDHGQ8+sT9prNRnL85ioSTEEU2n7e61BoNIQRClOQ3kekz8OJui9dH0xzetEuEk79nYz4erOHYm8zXwIK2s++EQYY3rv9VJKKaVUV7WSkVAGHjTGLImID3xCRN4H/CLwZmPM+0TkZcCvAS/Y4Bg/DnwTyLdhzEoptTHT4y0Gd2n6Ax9i4Hu/A2Yub7mtmV2EkRYPvNBiTYUWyeCReleH2hy0stg8UyE91rbzGjxb9yEoQ3HNVfwogLkzkDmASWR6LDuh2URd4o4We/AzXWt56STigo0Ve16NHyillFLbJ/R94eMtFxMbq9YPy49vJr7VAgODwKVm+4vIUeDlwNt2PVqllFIsz5Rb2q7lgosdYC59ceM2kOu08Y3W8WD+HCxvEmgpXIXFSzbo0CuCYrzEILT1KsKKDbwEe9waM6rYZRTV+NxOkr1tqaGUUkqp/aClqmQi4orIQ8Ak8EFjzGeBnwD+i4icB34d+JkNdv9N4D/A5pd+ROSHReQLIvKFa9eutfwElFKqkYl66SpzZ0x//JMtRbnDU4/RtUvKYRmzsHXWRDsZJwml+dY2Dssw9zimWrXLILotKNiuF0EBwqIdX1cn8MYuf+jzDB+llFKqM8R+VtuLW5e0FEgwxoTGmKcDR4H7ReQO4I3ATxpjjgE/Cbx97X4i8h3ApDHmiy2c463GmPuMMfeNj49v60kopdT1JFoqgJ/cesNKGeNlOz+gjcw+vqaI4AZvdu16EyxMrV7334rlS7B0pbeyE3pJeVqDCUoppZRaZ1t90owxc8BHgJcArwf+Z/yldwP3N9nlucArReQc8OfAgyLyJzsdrFJKKXByGais7abQnGlts44xFz9vWw7ae507D05cT2AHgpLNTtBgQnN9vsZTKaWU6nci8hIReVRETovITzf5+veKyFfj26dE5O6tjrllIEFExkVkKP53Gngh8Ai2JsID8WYPAqfW7muM+RljzFFjzAngu4EPGWNet9U5lVJqx66DpQ2Zm0+2vG00M9fBkbQygCpm8htxvYQOTkjFY9eBivJCW4ailFJKKdUrSxviDopvAV4K3A78SxG5fc1mZ4EHjDF3Af8JeOtWx23l8ssh4J3xABzgL4wx/yAic8BviYgHlIAfjgd6GHibMeZlLRxbKaXa6zpIwx6+61aYOtvStuHZc3gTrQceOqI4jZk6Dcl0585RaENtHRPu/hj7koCfA3Hsv8WJYz5ib0a7NyillFL72P3AaWPMGQAR+XPgVcA3ahsYYz7VsP1nsCUNNrVlIMEY81XgniaPfwL4liaPXwLWBRGMMR/BLotQSqnO6eNAgpNJc/g7X47bYhABIDp3Bp51G5iggyNrwfIViIbB8SGq7vpwxmA7NIgDQcV2Pdi163C2nBq1L6YJWGnIZKLVyR26tEEppZTagT17/xwTkS803H+rMaYxo+AIcL7h/gXgmZsc7w3A+7Y6qS4IVUr1FWP6c2lD7u67GLtlDKZbDyIAEIUYJ4OEPZC2X5yF9Eg9mOAkID0GwXJLk1VjjN0nqEBhEm1LuBsCmQN7315SKaWUUu02ZYy5b5OvN/uQ1fRDlIh8GzaQ8K1bnVQDCUqp/tKnGQmDTzsJs0/saF9TCJAWmjzsieIMpIbsJJYACQutX/F2UzC/s9egJdfLhXc3BYm8BhGUUkqpTuqdzxUXgGMN949i6x2uIiJ3AW8DXmqMmd7qoNvq2qCUUj2vP+MIFC5O7njfaGqmjSNpg9IcLG+vraCRFCxc6OCgoJfe8TsmOQxeGsIut/NQSiml1F75PHCLiNwoIglsE4S/a9xARI5jOzL+K2PMY60cVAMJSqm+YsIu1wLokNmPfgKGJna0b3juXHsH0w7lOSgs2LaNrajM70ExxD4PJKQP2Nfwui0qqZRSSu2hHunaYIwJgP8LeD/wTWzzhK+LyI+KyI/Gm/08MAr8rog8tKbmQlO6tEEp1V/C/p0kBU5mR7+0oyfPwvPubEuRw7YqzwEGkxlC2OL75iT2ZEh9yfEhOQJhOwpSKqWUUmq/Mca8F3jvmsd+v+Hf/xr419s5pgYSlFL9pU9rJABUC+Ud/9I2kkbosUACQHkeoiomN4FQzyYx4oL49vsZVqBwpYuD3Me8TLyUQYMISiml1J4R+r7rkQYSlFJ9xUT92bUBwPF2vhrNLFeQVBsH007VAixcxuQPAiFIAhYvdaFlZZ8FoRKDtj1mr2WiKKWUUmrf00CCUqqviNN/pV8Shw5y6EXPQWZ2XmwwvHIN58RAG0fVZmGZaG4S4+VwTbeyD/rkyoGbskGEsKT1EJRSSqmuEPrmc8UG+u8Tt1LquuZkc90eQls5uQyHX/hM5NoTu6r/ED5+uo2jar8oiHj8t/+ey3/x4S6OYj9nJAikRm1BRTcRL2XYz89HKaWUUr1MMxKUUn2ln5Y2uAMDHHv1gzC1+7aHZvKKvVLdo23/Zr50lZn3/xOSTDH+7U8lOZLs9pC6RxxIDIPrAwZMZJcnuCm7DKS6UN/WTUMib78eVaEX62AopZRS16M+r5GgGQlKqf5i+iOQkLvzDo698vltCSLUmKg3Ox+YMOLq333U/rtc4vyffrzLI+oSx4fMQfDzYKoQFCAoQli2P9dBwWZJpschPQGpMRtsCItdqCehlFJKqeuZZiQopfpLtP/SuSWRJPu0O/CHBu0Dy/M4mQxmbqqtq+uihSJuD5ZJmPz4kyw99JWV+9PveT8HX3E/uRP5PR5JF392UqO2nkFQ2HrbsNz58SillFJqd/o8I0EDCUqpvmL2S0aCCEPPez5SKRJcOg9XnyC4unqT+YlDDNxyBHfpWltOGV6+gjsw2pZjtVP52ty6xy6962Pc+lPfsbcD6VYcITUGUaVLJ1dKKaWU2j5d2qCU6i/7oUaC5zHywAOEp79O8OQZCJqvaw8nLzP3mS9TSh/BtCE3ITz12K6P0W4mjJj9xBfWPT774Y9SvNLC1fn9ToMISimllNqHNJCglOovPR5IcHIDDD/rfqqPfa21HcKQ5c98iqI3gTG7vGS+MAduZnfHaKPiZIlT///7KT3+eNOvX/6bz+3xiPaAOLY4YmLI1kPYF0GE/bdcSCmllOo62aNbl2ggQSnVV3Y92e4gb2KC/C03EpzZfmZA8YufIxg8uusxmKA3VrRNf/EqD7/xV5j9yMc23GbqPR+gMreHE+2OrGV0bNZB5qAtkujX2pNGrdVDUEoppZTqQRpIUEr1l6BHqtc7DkNPv5Ph5zwbZyCPkxsgd/gA4dVLOz5kWN19kCSaW9r1MXZr/pFZzv7GOzDlzYsGmmqVK+97eI9GBW0P66fGIDVssw6Cwv4tkti7sTmllFKqd4nsza1LNJCglFIdII5LODNFcO4U+ZuOM3jn7YSTl3d1zKi8+6vz4YX2tZPciepilVO/+PuE8+sLLDYz+Vf/QFDco+BQu96ME0M2+yCqQNS8/oVSSiml1H6mgQSllGo31yV3770rRRTDa1cInmheB2A7ig99ichP7+oY4alH6eaCumufOEO4sNDy9uHSEpMfOt3BETXY7bIYLwuZA0C0f7MPlFJKKdUm/V0kQQMJSqn+0gM9e4ee93y4sPvAwTrGEKUGd3eMcgnj5bbergOufeYi59/yjm3vd+Vdf08U7EURzR0GEpyErYHguBAU2zuknqBrG5RSSim1mgYSlFL9pQcCCdLBMQSBu+tjmHJ3JoYLXz61o/2qk5PMPTzZ5tE0s83vmziQPgBeRgsnKqWUUqpur+ojdPFzb2+U71ZKqTZJnnwKqafcjglDiCJMFEEUguPiDgwgqTSVJ89BGGKi0KazG2O3NQYTVDHFnV9V9sbGCc9tvytDq6LS7lPmzcwCjO9tHPnqR59g+v3/tOP9r733M4zc8+o2jqiZbQRY0uP25yrsxwwEpZRSSqnNaSBBKdVXxt/wJsbf8KZdHcNEEaZcJioWiMolxPMQP4EkEjh+AoNBaIgCi2CqVRb//l0svvudRPOzbXgmzZXPnSX5tJO4S1d3fIzwySdxx0+0b1BbiCoR1/7xk4jvY3bYVWPuk5+mPPNSkiPJNo+uQSuFERND4PhaA0EppZRSm+uBLNlO0qUNSim1hjgOTjqNNzJK4tAR/PEDeEPDuJks4vs4fgLxfRtg8DzEdTGlAgt//PsdDSIARHMzzH3yc5SzR3d8jPD0YyB7F0e+8k+nWX74YaJdZHoQRVz78KPtG1Qz1U2WJ/hZu4yBCCINIiillFLq+qaBBKWUaoPi5z+JKZf27HzV2fmd7xyFGCfTvsFsYumJRS6+/c/bcqzJv/sAJuxg0cWoSbZErZCiuLqMQSmllFKt6++mDRpIUEqpdih9+bN7er6dLhFY2b/QQhr/LoXlkMd+8e1EpfZMwKtXrzL71WttOVZzBlNrAblSSDGthRS1a4NSSiml1tBAglJK7YIxhrl3voXCP71nb89b3l16fTQ916aRbExEcDPtzXy4/O6dF2zckuPbjhvpcVsLISyik2ggrHR7BEoppdT+0+ddGzSQoJRSu1D+8mdZ+LO37fl5g8krGNn5r/DwySfaOJrmnIRD7o7b2nrMpS99mYVTnQmCGDKQGreFFM3uMj56k8DACRi/F0bvgvQEuBsUr/SykDsGo3chfnZPR6mUUkqp3qeBBKWU2gX/xMmunNeUihSd0R0HE6InzuxJwcWBp51o+zEv/vEH6ksQGhhj4lutq6dgjIOJan+79hb6mCC+hQlM1cdcWYRT3+jfQoqOD8O3IZkJxPEQL4XkT8DIHbb+QyPxYOSpSPYQ4qW6MlyllFJq/+vvIgna/lEppXbBGRpB0hlMce/X0Re/9AXkGc8iXbm8/Z0jg3EySLjQ/oE1SI4N7Gi/+37x9UgQ11aoBQ1cn/KTUwCE35zEjWYgisBE8Ta7XIaQn9jd/r3ITdpikelxpEnQSRwXkzkIyxfrD26wrVJKKaVUjQYSlFJqF0pf/mxXggg15SfOkTqYsGv7t8kUAmSDzPZ2MFHEtQ89tKN9JSgh5eXVD3pJqNjOGNVHvolz8gDSrNPCTu3Xfs+1zBITAA74GVskMjkEiaGtfzayh8BNQGUB3BRkD3Z8yEoppZTa3zSQoJRSu5C84x5S938rpc99oivnDyevUL7pOSQLF7YdTIimZnCOdC51vXStzPR7P7CznZs9lSgALwFBBQqLBJWb8L12FgLcZ4EEcWy2QfYQ4NjaDq6PrF2qsNVhxLEFJtPjnRmnUkopdT3arxcoWqS5i0optQtOMsXYz/4q+ImujWH5M5+inD6y7f3C0491YDQNxy8FiLfDeHWz1PooxLvxpvrxT30d47Txdd8vb/hOAgZugPF7kNxRRFxExNY92GYQQSmllFJqJzQjQSmldqsHJqCVq5OkBre3T3TpIrj3Q1hq61iMMUx99hLn/+AvMMEOlx40KaYI4DklAs+HoAphQCRDuEzuYrT7gDjgD0AiD34O/NyOlrIopZRSao90uTXjXtBAglJK7dLiX/8ZVNuZYr8DG0y8txIVBKfNdRKe+JPPc/Vdf727g2xU7G9pGv+2p1H9mq29EFy6hHugTW9lPfeGL5A7CpkDWvxQKaWUUj1FP5kopdQuLf39u7o9BKpPnCHyM9vf78tfaftY3HQ7IhMbT+rdqF6E0Vy7RORtMxVjPxAXhp9iWzBqEEEppZTaf2pZCZ2+dYl+OlFKqV1K3fecbg8BZyCPhNVt7xedfRzj7qxFYzPTX7zCpXf8+e4PtNn74vwVnIlDK3ejap8l1/lZGLkdSeS7PRKllFJKqaY0kKCUUruUe+l3dnsI4HoEuYkd7Rpent316aNqxIW//Tqn3/w7uz5WK7zD9UBCcPYURvw9OW9HJAZt94XMIcjfBMO3I16626NSSimllNqQBhKUUmqXEjc/BZzu/jr93+3deZRcd3Xg8e+t6kWt1tJaWrKsxZL33TIWJthJTDw2GCWGQCDDFjgJEw8kTAJnJjNkMmECCckMk5MMnDghjsNJOIQQQhJjYhOHMOAEsMGS8SYvWPKCZEnWbi2tXuvOH122tbSk6u7qet3V3885haree7/3u4/z8+vuW793f5V9eziw/iGyNPpv5wfu+Q7E+L7Vf/7/beK5P/scVCrjOs/LTj5Vr9Sz6+UPPQcZHKrfrIrGKUHXecS884jZK4jZy4mOhRZSlCRJk16TzQeVpMaLtnZazzyPgY2PFRrHzEsvhcPbjtseXQtpu+HnKJ+7GlrbyJ6DVDY/ycDd/0Blz/NwaD+VoQ5KpQMAZKVC784++l/oI8olZizsoG3uib/xz0qFvfc8VOerOUXxyEN7Ka88i6FnNgEw9NiDlFdfRmlgT53jmEBzzyTam7C+gyRJmoRFnOvLRIIkjVNmkocOFhrDzCt/hBmHnztue8xdQPu7P0x52dkvb2vvoDSvm5ZLryIP7qP/n79AZd8Q5VeuBYID9z/M7m98jb5tWyl3dLD7H7/Mae98C3MuWkFWklJ7Cy0zW5m5tJPeXX3s37CNA+vW1feCaliEomV+F6W2i176QZ1DZTKnyM/tuWcRM+YXHYUkSdKYmEiQpHHqvf+7DG7bXGgMlcN9Iz6sFgtOOyqJcNz+WV20v/l9R22b+5plzH3N64Hh2QZZGWL7X32J7ce2bWkhBwfHG/oJ1JBJ2LOZUk8PVIZe3rbqEjh8bKRA+yzijNUwZzG55WHY+QwMHbNk5xgeC3lJ25zhGgetM4GAoV7ICvTvh54dkNX/n0ptMPsMYsa8sfclSZImvynxzcbYmUiQpHHK3p6iQ2Bw9y7oPj6TUHlqA5V9Oyl1dY/pvFEqcd6ffZb1ay6mf9vWo/ZNXBLhxc6rP4Dzpf85ymDbfKJ9IeXdT7+88dlHyRVnEgM9xBVvIOYtg/7DxLKLXj7mgmvIyhA89yiV+78M+3cMby/X+CMxyhAlKM8YTl5lSc8AABoVSURBVBa0z4POJUfXNijNGv63bQ45cwn07YWWDmiZaQ0ESZI05ZlIkKRxKs0ufpm+wa2bGTrjcso9R9cIKJ97OdE5vvgqAwMMHTwwrnOM1n2/9fmjPkdrC1nJ4T/cKy8nFZa95fUsWXbEgZUhojyL0o2/Rsw4cQHGKJVh+SWUl19C5fG7yR98B+adDrNXDM8uIIb7guEZBb27oGUmzF4+6mUZo1SGjoWjaiNJkqa4Jv/iwESCJI1TZf8LRYdQXTXi6B9YLVdeT/tbfrkup+/6ievYffs/1OVcY5EDI89+2HrnN1nyS9fDYN/whrYOSlf/7EmTCMcqnX8NnH/NiQ+Yu4qcs9KZBJIkSVUu/yhJ49T/gw3FBtDSwpyrX025Z/dLm9re/P66JRFKra2s/K2P03H2OXU5Xz1Veg7T21Z9bKPcSumnPkAsXln3fkwiSJKk2kUDX8VwRoIkjdPgrh2F9t9+7gW07t9y9MbB/pEPHqO2xadx/uf+lu1/cSs7/+bzDO4tZpnFlq55tHTNI9payYFBhg4eoKfzbDp/+heheznR1lFIXJIkSdOJiQRJGqfWZWcU1veMSy9nZhz9R33r2vfQctXa+ve1fAUrf/NjLPmFm9h2yx/zwne+Rc+jjxx3XPe/fwcH1t1H9vXSt2V8q1nMuuKVdF50CUMH9jN/7Y3Mv+EniZKT6SRJkopkIkGSxmnCVy8YQWneAmZfeDYtB49f6rB89iXDBf4mSPvSZaz86O8C8MI93yYHBnjsnW+h86JLOOMjv83cq36UzCQiOPjg9xnYsYPKQD+HNjzMgtf/FD9433uZf8Na5rzqKlpPO43BPbvZ8qk/4MC932H2q15NpaeHxe/+eeZd9zpauxf5WIEkSZpaAostSpJOYXCg4V1WDh4YXoIQiIWn0/a6d5D9fUTnHEqnn9mwOOa++moAVn/zXkodHbSfvnQ4puoPz1mXXf7SsQvW3jh87L9977jkwNwfvYbBfXtpmb/AxIEkSdIkZyJBksapZdnKxnc60M/+9Q9y2sf/kJbzryDKEzcDoRYdZ51d87EjJQqiXKZ1gUskSpKkJhHN/Shmc1+dJDVAZV8xhQfJpOXcywtPIkiSJGl6MZEgSeMwuG0LL3zuTwvpO3sP0/vQukL6liRJ0ok0//KPJhIkaYwqvYfZ+ZFfJft6C4vh4B1fKqxvSZIkTU/WSJCkMTrw5b9m4IdPFRdAqUTrGWcV178kSZJG1uTFo085IyEiZkTE9yLiwYjYEBEfrW5fHRH3RsQDEbEuIq4coe3yiPhGRDxWbfurE3ERktRold7DHPjiXxYaQ+d1N9L1nl8qNAZJkiRNP7XMSOgDrs3MgxHRCnwrIr4KfAz4aGZ+NSLWAp8AXnNM20HgP2fm/RExG1gfEV/LzEfreA2S1HCDm5+mcnB/Yf3HzFnM/pl3Fda/JEmSTqLJV204ZSIhMxM4WP3YWn1l9TWnun0usHWEttuAbdX3ByLiMWApYCJB0pQ2tHtXYztsbaX7f/4hravOYWjX85QXLKKle3FjY5AkSZKosUZCRJSB9cDZwM2Z+d2I+CBwV0T8PsOPSFx1inOsBC4HvnuC/TcBNwGsWLGixvAlqfEyk/1//7mG9rng136HjldeDUDLwkUN7VuSJEmjNc1rJABk5lBmrgaWAVdGxMXA+4EPZeZy4EPAn5+ofUTMAv4O+GBmjjgXODNvycw1mbmmu7t7tNchSRMihwZffp9J3+MPs/v3Pkzfg/c1JoBSicWf+hyd17y2Mf1JkiRJpzCqVRsyc19EfBO4AXgP8GLxxL8Fbh2pTbWuwt8Bf5WZfz/2UCWpMXJoiJ5vfZ39f3ULAz98inL3YloWn87Qrp0Mbtvc8HhKs2Y3vE9JkiSNVbhqQ0R0R0RX9X0HcB3wOMM1Ea6pHnYt8OQIbYPhmQqPZeYf1CtoSZooPf/2Nba+6wZ2/+5/Y+DZTZDJ0I7t9D18fyFJBCoVdn/ifzS+X0mSJOkEapmRsAT4y2qdhBLwxcz8x4jYB3wyIlqAXqr1DSLidODWzFwLXA38HPBwRDxQPd9/z8w7630hkjQeQ/v2cOiuL7PvL/4IKpWiwzlK/+MP0/vQOmZcuqboUCRJklQTV214iOEiicdu/xZwxQjbtwJrjzimued0SJqS+jc9Qf8TGxjcvoXeh9bR//gjkFl0WCOa8cqraVlqEVpJkiRNDqOqkSBJzeDAbZ9n75/8n6LDqFmpo5OWBa7UIEmSpMnBRIKkaaXSu5+W9r10vfUNDO7cTe+GHzC4c2fRYZ3U4e/+K5UD+ynNnlN0KJIkSTqVoOmLLZpIkDRtZM8uePwrtM/po33OXLhgLvz4mWRLJ4MHoX/bbrJ/gGhrpf/pzRz6zvcmRb2E7Ovl4NduZ86b31V0KJIkSZKJBEnTQ/YdIB/5Egz0HLcvBg/ROgNaV80AZgDQueocul57GYceeZ59X7ytwdEeGVwwa+3PMPPHX1tcDJIkSRqdJp+R0NylJCUJyKEB8vGvjJhEOJkY7GHW+bPp/k+/AKWT3y5nv+5a5r3zLZRmdY4n1OPMWHMV83/lN2hZaI0ESZIkTQ7OSJDU1HKwbziJcHD7mM/RPm+AZR/5eYYqMxjcd5iB7bup9PQSba20LppP25LZlIb2AzDz195O37Z+9nzxK1T27B1X7NHWTud1N47rHJIkSWq0oNkXLzSRIKkpZSY8/zD5w3tg4ND4T1jpp0w/5S5o75oDvFj4MKGaRACIoT5mLILTf+VNbP2j26js2jPmLue8/b10vuZ144tbkiRJqjMTCZKaUw6Rm/6lkK6HmMPgrp5xJRFalq1ktsUVJUmSpqZo7ioCJhIkNaehgUK6zZZOtn3k5nGfZ3DLMwzt3klp6Yo6RCVJkiTVj4kESc1p95MN73KIOZRIFn3oF9n1Z5+ncnD0j1SUT1vKrBveRPb30moSQZIkaWpq8lUbTCRIakp5eHyFDkdroLeT5z9xM6VZnSz5r+9iwXvfzs5P3lpz+2ifQds5F9B+0eXMfft7JzBSSZIkaXxMJEhqOpkV2PdMQ/vceevfAFA5eIgdn/knhvbvP0ULKM3pov2SV9C67Aw6rrqW9vMvnugwJUmS1BDOSJCkqWXPU9Czu6FdLvqPb2f77/0xAAPPPFtTm+6PfZL2Cy6dyLAkSZKkumvuUpKSpqXcs7Hhfba0HmDum9aOqs2u3/t1cqCYopCSJEmaKDG8akMjXgVxRoKk5rN/WyHdzlq9hP5nL+Pw/Q+e9LjyaUuZtfbNtC5bCS3ehiVJkjS1+BuspKaSfQegt7GFFl8UQ/0suPEVHFixlBduu/O4/S3LzqDrPb9Mx9XXEuVyARFKkiRpwgWEqzZI0tSRz60rOIBBZl+6kPazboJMyrPaqPTBwNAiOq9dS5S97UqSJGlq8zdaSU0j+3vg+YeLDgNI2joPD79tSVpW/yztnd3FhiRJkqQGckaCJE0J+ey/QmWw6DBeVm4jLn0H0TGv6EgkSZKkunHVBklNIfc+AzseLTqMo8SyK00iSJIkqek4I0HSlJeHdpFP3FF0GMdrm1V0BJIkSWq4KHRpxkZo7quT1PSyZxe54Usw1Fd0KMfJF7aQmUWHIUmSJNWVMxIkTWn59N0w0FN0GCPb8Qg5cBBOWw1dK4iSt1xJkqTpobmLLTojQdLUdvD5oiM4ub3PkI/dRn7v01Q2fZ08vLfoiCRJkjSNRMQNEfFERGyMiA+PsP/8iLgnIvoi4r/Uck6/HpM0ZeXQAAz2Fh1GbYb6YfuD5PYH4dyfJLrPKzoiSZIkTZSYHDMSIqIM3AxcD2wB7ouI2zPzyCrle4BfAX661vM6I0HS1DU4+eoi1CK3P1B0CJIkSZoergQ2ZuZTmdkPfAF445EHZOaOzLwPGKj1pM5IkDR15WBj+ll0ETF7CXTMh7ZOKLVUX+Xhiry9+6FnF3loBxzaAT27oe/AyOdqm00sXdOYuCVJklSMxq3asDAi1h3x+ZbMvOWIz0uBzUd83gK8arydmkiQNHUN1Zw0HVZqhVmLoHMRMWMuuWcTvLD55G1mLiTOfi1xsulpM+fDzPnEwnNf2pSD/bBnI7n9IWLeKpi3EmZ0ES3to4tZkiRJOrFdmXmyb6lG+iV23MuKmUiQNHXVWh+h1EKsvAZOu4Q4Ijscp7+C7NkzXLfg+UegcnxiIhZffPIkwglESxssupBYdOGo20qSJGkqCybRqg1bgOVHfF4GbB3vSa2RIGnKyr3PnPqgKBOrf45YctlRSYSXds+cT+nMnyCu+AWYs/TonW2zYNFF9QlWkiRJarz7gHMiYlVEtAFvA24f70mdkSBpUshM2P0k+ey3oaWNWP5qmLdqxNkALx7L1vtPfeL5ZxId8055WLR1wsU/C30vwMEdkAnzVvoogiRJkkZvkqzakJmDEfEB4C6gDHwmMzdExPuq+z8dEacB64A5QCUiPghcmJn7T3ReEwmSCpWZ8MJm8offhgPbXt7+2G3DMwQWnAutM2HgENm7Dw7vHf5Df/BwTeePhbUvsxgRMKNr+CVJkiQ1gcy8E7jzmG2fPuL9doYfeaiZiQRJhcjKEOx6gtz6fTj0/MgH7X+O3P/c+Doa6Blfe0mSJGk0gkau2lAIEwmSXpKDffD8w1Bug+4LiHJr/fsYOExu+z5sf6ghf+Tnrh8QS1ZPeD+SJEnSdGEiQZrmsvqoQO59GvZshKH+4R1b74fz30DMnF+ffgZ7yefWD593hNURJkz/gcb1JUmSJAGTaNWGCWEiQZqmcqCHfOIOeGHzyAcc3kM+8jdw8VuJmQvH3s9gP2x/gHzuPhjsG/N5xqzWJSIlSZIk1cREgjRd7X8Oevac/JiBw+SDfw1n/sTwow6lcs2nz6F+2PYA+dy6Yv+Yz+K6liRJkpqRiQRpmooF5xALziGHBoZXTdj0Neg/dPyBlQFy4z/DM3eT888mFpwDXSuI0si3j6wMwvaHyC3fhYHaVlaYUHV6NEOSJEmqTUya5R8niokEaZqLcivMPxNmv3s4YbBn08gHDvbBjg3kjg1QaiW7VhBzV8CsxdDWCZVB2PMUue3+kRMSRSiViTN+tOgoJEmSpKZiIkESANHaAeeuJR/4LPS+cPKDKwOwZxN5oqTDZDBzIXHODcSsRUVHIkmSpGmnuZd/bO6rkzQqUW4lzrq+6DDGb+ka4rJ3mESQJEmSJoAzEiQdJbpWkF1nwL5niw5lTGLlNcTSK4oOQ5IkSdNZk9dIcEaCpON1dhcdwZiYRJAkSZImnjMSJB0nZi2eWqsmllqJlT9GLFlddCSSJElS089IMJEg6Xjzz4KWDhicBMs3nkyUoPtCYsWrifbZRUcjSZIkTQsmEiQdJ0otsHQN+ey/FR3KCALmLie6zoDu800gSJIkaZIJmr2KgIkESSNbugYO74YdjxYdybByGyy+hDj9cqJ9TtHRSJIkSdOWiQRJI4oIWHUtufcZGOgpNpiF5xFn/TuiZUaxcUiSJEm1sEaCpOkqWtrg4reST9wBPbsmqJMSzF4y/G/LjOF/ieGbb5SIeSuJhedNTN+SJEmSRs1EgqSTipkL4LJ3wvYHyS33wcChOp24DKddQix9pXUOJEmS1GSckSBpmotSGU5/BSy+mHz6bnj+4bGfrG0WdF9ALLmcaJ9VvyAlSZIkNYSJBEk1i3Ibcfb15NJXwsHtUBmAGfOgYz6QsPdpcudjcGgnDPUPP6ZQaoG2Tpi9hOi+AOYsG66/IEmSJDWjwBoJknSs6OiCjq7jdyy+mFh8ceMDkiRJktQwzb24pSRJkiRJqitnJEiSJEmSVDdBsxdbPOWMhIiYERHfi4gHI2JDRHy0un11RNwbEQ9ExLqIuPIE7W+IiCciYmNEfLjeFyBJkiRJkhqnlhkJfcC1mXkwIlqBb0XEV4GPAR/NzK9GxFrgE8BrjmwYEWXgZuB6YAtwX0TcnpmP1vMiJEmSJEmaNJq82OIpZyTksIPVj63VV1Zfc6rb5wJbR2h+JbAxM5/KzH7gC8Abxx21JEmSJEkqRE01EqozC9YDZwM3Z+Z3I+KDwF0R8fsMJySuGqHpUmDzEZ+3AK86QR83ATcBrFixouYLkCRJkiRpcmnudQ1qurrMHMrM1cAy4MqIuBh4P/ChzFwOfAj48xGajjSfI0/Qxy2ZuSYz13R3d9cWvSRJkiRJaqhRpUkycx/wTeAG4D3A31d3/S3DjzEcawuw/IjPyxj5EQhJkiRJkppDRGNeBall1YbuiOiqvu8ArgMeZzghcE31sGuBJ0dofh9wTkSsiog24G3A7fUIXJIkSZIkNV4tNRKWAH9ZrZNQAr6Ymf8YEfuAT0ZEC9BLtb5BRJwO3JqZazNzMCI+ANwFlIHPZOaGCbkSSZIkSZIKF4z8lH/zOGUiITMfAi4fYfu3gCtG2L4VWHvE5zuBO8cXpiRJkiRJmgxqWrVBkiRJkiTVqMD6BY3Q3GtSSJIkSZKkunJGgiRJkiRJdeWMBEmSJEmSJMAZCZIkSZIk1Zc1EiRJkiRJkoaZSJAkSZIkSTXz0QZJkiRJkurKRxskSZIkSZKASTojYf369bsi4tkxNl8I7KpnPNIoOP5UFMeeiuT4U1EceyqS42/szig6gAkV0fTFFidlIiEzu8faNiLWZeaaesYj1crxp6I49lQkx5+K4thTkRx/ms4mZSJBkiRJkqSpq7mrCDT31UmSJEmSpLpqxhkJtxQdgKY1x5+K4thTkRx/KopjT0Vy/OnEmrxGQmRm0TFIkiRJktQU1lx+cd73jb9rSF+leeevL6JWRzPOSJAkSZIkqUDNPSPBGgmSJEmSJKlmUyaREBFvjYgNEVGJiDVHbL8+ItZHxMPVf6+tbp8ZEXdExOPVdv/rBOddGRGHI+KB6uvTjbomTQ0TNfaqx/56RGyMiCci4nWNuB5NLaMdf9V9H4+IzRFx8CTn9d6nk5qosVc9znufTmqM4++K6vaNEfGpiOMfUPbep1OZqLFXPc5737QRDXwVYyo92vAI8GbgT4/Zvgu4MTO3RsTFwF3A0uq+38/Mb0REG/D1iHh9Zn51hHNvyszVExa5proJGXsRcSHwNuAi4HTgXyLi3MwcmsiL0ZQzlvH3FeCPgCdPcW7vfTqZCRl73vtUo7GMvz8BbgLuBe4EbgD8vU+jNSFjz3ufms2USSRk5mMAxyb4MvP7R3zcAMyIiPbM7AG+UT2mPyLuB5Y1KFw1kQkce28EvpCZfcDTEbERuBK4p/5XoalqDOOvLzPvHamNNBoTOPa89+mURjv+gPnAnMy8p9rus8BPM3IiQTqhCRx73vummWb/PWzKPNpQo58Bvl/9D/QlEdEF3Ah8/QTtVkXE9yPi7oj4sYkOUk1pLGNvKbD5iM9beDmzLY3GiOOvBt77NF5jGXve+1QvR46/pQyPpRedbFx579N4jWXsee9TU5lUMxIi4l+A00bY9RuZ+eVTtL0I+N/Aa4/Z3gL8NfCpzHxqhKbbgBWZuTsirgBui4iLMnP/mC5CU1JBY2+kNKXrsU5DEzH+auC9T0WNPe99Auo+/modV977VNTY89437TT3jIRJlUjIzOvG0i4ilgH/ALw7Mzcds/sW4MnM/L8n6LMP6Ku+Xx8Rm4BzgXVjiUVTUxFjj+FM9PIjPi8Dto4lDk1tEzT+TtWn9z4VMvbw3qeqOo+/LRz9GOGI48p7n6CYsYf3PjWZKf9oQ3Xq+B3Ar2fmt4/Z9zvAXOCDJ2nfHRHl6vszgXOAkb49lo4y3rEH3A68LSLaI2IVw2PvexMVr5rLycZfje2992lMxjv28N6ncTjR+MvMbcCBiPiRasX8dwPHfbPsvU9jNd6xh/c+NZkpk0iIiDdFxBbg1cAdEXFXddcHgLOB34yXl/JZVM0Y/gZwIXB/dft/qJ7rDRHxsWr7HwceiogHgS8B78vMPY28Nk1uEzX2MnMD8EXgUeCfgF+2cq+ONdrxV23ziWqbmRGxJSJ+q7rde59qNlFjz3ufajGW8Qe8H7gV2AhsolrsznufRmOixp73vmkoojGvoi4v00dzJEmSJEmqhzWXX5Lr7j5puY26iblnrc/MNQ3p7AiTqkaCJEmSJElTX3MXW5wyjzZIkiRJkqTiOSNBkiRJkqR6iYBo7u/sm/vqJEmSJElSXTkjQZIkSZKkurJGgiRJkiRJEuCMBEmSJEmS6iuckSBJkiRJkgQ4I0GSJEmSpDpzRoIkSZIkSRLgjARJkiRJkuoorJEgSZIkSZL0ImckSJIkSZJUV85IkCRJkiRJAkwkSJIkSZKkUfDRBkmSJEmS6slii5IkSZIkScOckSBJkiRJUl05I0GSJEmSJAlwRoIkSZIkSXUUEM39nX1zX50kSZIkSaorZyRIkiRJklRX1kiQJEmSJEkCnJEgSZIkSVL9BBDOSJAkSZIkSVNQRNwQEU9ExMaI+PAI+yMiPlXd/1BEvOJU5zSRIEmSJElSXUWDXqeIIqIM3Ay8HrgQeHtEXHjMYa8Hzqm+bgL+5FTnNZEgSZIkSVJzuhLYmJlPZWY/8AXgjccc80bgsznsXqArIpac7KTWSJAkSZIkqU7W3//gXdGxcGGDupsREeuO+HxLZt5yxOelwOYjPm8BXnXMOUY6Zimw7USdmkiQJEmSJKlOMvOGomM4wkjPP+QYjjmKjzZIkiRJktSctgDLj/i8DNg6hmOOYiJBkiRJkqTmdB9wTkSsiog24G3A7cccczvw7urqDT8CvJCZJ3ysAXy0QZIkSZKkppSZgxHxAeAuoAx8JjM3RMT7qvs/DdwJrAU2Aj3Az5/qvJF50kcfJEmSJEmSXuKjDZIkSZIkqWYmEiRJkiRJUs1MJEiSJEmSpJqZSJAkSZIkSTUzkSBJkiRJkmpmIkGSJEmSJNXMRIIkSZIkSarZ/we1Nht7d+1b9gAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "gdf['composition'] = gdf['HISP'] / gdf['TOT_POP']\n", + "\n", + "gdf.plot(column = 'composition',\n", + " cmap = 'OrRd', \n", + " figsize=(20,10),\n", + " legend = True)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Single Value" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Dissimilarity" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The **SingleValueTest** function expect to receive a pre-fitted segregation class and then it uses the underlying data to iterate over the null hypothesis and comparing the results with point estimation of the index. Thus, we need to firstly estimate some measure. We can fit the classic Dissimilarity index:" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "0.32184656076566864" + ] + }, + "execution_count": 5, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "from segregation.aspatial import Dissim\n", + "D = Dissim(gdf, 'HISP', 'TOT_POP')\n", + "D.statistic" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The question that may rise is \"Is this value of 0.32 statistically significant under some pre-specified circumstance?\". To answer this, it is possible to rely on the **Infer_Segregation** function to generate several values of the same index (in this case the Dissimilarity Index) under the hypothesis and compare them with the one estimated by the dataset of Sacramento. To generate 1000 values assuming *evenness*, you can run:" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [ + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "fd0bcddf3b4441a0b83286bde09b23f1", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(IntProgress(value=0, max=1000), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n" + ] + } + ], + "source": [ + "infer_D_eve = SingleValueTest(D, iterations_under_null = 1000, null_approach = \"evenness\", two_tailed = True)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "This class has a quick plotting method to inspect the generated distribution with the estimated value from the sample (vertical red line):" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 7, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXcAAAEICAYAAACktLTqAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAAaJElEQVR4nO3df5Rc5X3f8ffHEhY2PwIUiSgStUSsYAvXGCpkahwHRyTIBlfkJDRKGlsnIVU5xWl86rQW9klsx1FLTnJct6elOTKkluMfOooJRv5FUOVQo2IsVkGABZKRAaO1ZLS2EfoBCO3ut3/cZ9C9s7O7s9qZ3ZlnPq9z9sy9zzz3zvPMSJ999rl37lVEYGZmeXnVdDfAzMxaz+FuZpYhh7uZWYYc7mZmGXK4m5llyOFuZpYhh7tNmKS/kvTHk9j+w5Jua2F7Fkvqa9G+FkgKSTNbsb+cSPo7Scunux3WHIe7VUh6WtKLkg5LOijpfkk3Snrl30pE3BgRnzjZ14iI/xwRv9+aFgPwCeAvAST9vaQ/ra8gaYWkH3VjaKdfOP8g6QVJuyRdNUbdD0h6UtIhSfsk/ddanyXNkfTFVP68pP8n6a2lba+RtDV97j+S9GlJZ5R2fwuwtn09tVZyuFsj74mIM4DXUfyH/hBw+/Q2qTFJc4F3Al9ORZ8B3itJdVXfC3w+IgansHmt8kXgIeCfAB8BviRp9ih1vwJcGhFnAm8CLgb+fXrudOBB4J8D5wDrga9JOj09/zPAnwE/B7wRmA/8RW3HEbENOFPSktZ1zdrF4W6jiojnI2IT8JvAKklvApD0GUl/lpbPlfTVNNr7qaT7aqN8SR+S9MP0V8BuSctS+cckfS4t16ZBflfSXknPpb8ULpP0SNrv/xijmb8C/GNEvJTWv0wRXL9YqyDpbOBa4LNp/RpJD6XR7V5JHxtt5+kvmatK66+0Pa1fnv66OSjpYUlXNvn2NkXSLwCXAh+NiBcj4g7gUeDXG9WPiO9HxMHa5sAw8Pr03JMR8cmI2B8RQxGxDng1cGF6/gsRcXdEvBARzwGfBq6oe4l7gWta2Udrj677E9WmXkRsk9RPEZjfrXv6g0A/UBtJXg6EpAuB9wOXRcQ+SQuAGWO8zFuBRcA7gE3A3cBVwCnAQ5L+NiL+b4Pt/hmwu9TWFyVtBN4HfCsV/ytgV0Q8nNaPpud3UoxuN0vaERFfZgIkzQO+RvFXwd3AMuAOSW+IiIEG9b8KvH2U3W2NiGsblF8EPBkRh0tlD6fy0dr128BfAWcAP6b4jBrVewtFuO8ZZVfvoHiPyh5n9D5YB/HI3Zq1j2JEXO84MBd4XUQcj4j7orhg0RAwC1gs6ZSIeDoivj/G/j8RES9FxD0U4fvFiDgQET8E7gMuGWW7s4DDdWXrgeslvSatvy+VARAR90bEoxExHBGPUEx7/NJYnR/F7wBfj4ivp31tBvqAdzeqHBHXRsRZo/w0CnYoplKeryt7niK4G0oj8DOBX6AI+Wfr60g6E/gb4OMRUb9/JP0KsAr4k7qnDlO859bhHO7WrHnATxuU/wXFyO+edCBvDUBE7AE+AHwMOCBpg6SfG2P/5QB6scH66TT2HHVBFxFbgQFghaQLgMuAL9Sel/TWdIByQNLzwI3AuWO0bTSvo/glcrD2QzGqnXsS+xrNEeDMurIzGfkLbYSIeIJi5H1ruTz90vsK8EBE/Jf67SRdTvF+/UZEfK/u6TOAg/XbWOdxuNu4JF1GEe5b65+LiMMR8cGIuAB4D/AfanPraQT5dooQDODP29C8RyhGqPU+SzFify9wT0SUf1l8gWLq5/yI+BmK0W39Adiao8BrS+s/W1reC/xN3Qj8tIi4pdGOJH1D0pFRfr4xyuvvBC6oO2vlYkZOl4xmJvDzpTbMojgu8UPg3zZo4yUU783vRcSWBvt7I8W0kHU4h7uNStKZkq4FNgCfi4hHG9S5VtLr09kphyimY4YkXSjpl1OYvEQx+h5qQzM3A5dKOrWu/LMUc/b/htKUTHIG8NOIeEnSUuC3x9j/DmClpFPSWSK/UXruc8B7JF0taYakUyVdKWl+ox1FxLsi4vRRft41yjbfS234aNr/rwFvBu5oVF/S70uak5YXAzcDW9L6KcCXKD6L90XEcN22b6I4dvAHEfGVUd6PXwJG+0VkHcThbo18RdJhipHpR4BPAr87St1FwP+hmD74NnBrRNxLMd9+C8UBvR8Bc4APt7qhaUT+TWBFXfnTwP3AaRQj0bJ/B/xp6uOfABvHeIk/phj5Pgd8nNL0TkTsTa/7YYppoL3Af6T1/69WAktSG26hmC4ZAJD0i5KOlOpeATwq6Sjw9fRTe9/fRnHW0K8CB0t/NdTOLPogxYHx20vPvfIXQvoL7mg6JdI6nHyzDut2aYS6Hlga/gfdNpLuAG6PiK9Pd1tsfA53M7MMeVrGzCxDDnczsww53M3MMtQRlx8499xzY8GCBdPdDDOzqbU7XTnjwgtPavPt27f/OCIaXkSuI8J9wYIF9PW15HLcZmbd48ori8d77z2pzSX9YLTnPC1jZpYhh7uZWYYc7mZmGXK4m5llyOFuZpYhh7uZWYaaCndJZ0n6koo7rz8u6V9IOkfSZklPpMezS/VvlrQn3Tfz6vY138zMGml25P7fgLsj4g0UNwp4HFgDbImIRRTXi14Dr1yhbyXFPR6XA7dKGuvemWZm1mLjhnu61+I7gNsBIuLldHf1FZy4CcJ64Lq0vALYEBHHIuIpiluwLW11w83MbHTNjNwvoLgRwf+W9JCk2ySdBpwXEfsB0uOcVH8exU0LavpTWYWk1ZL6JPUNDIy4UfxJ2b59e0v2Y2bW7ZoJ95nApcD/iohLKO4puWaM+o3uRTniovERsS4ilkTEktmzG14aYcIc7mZmhWbCvR/oj4jvpPUvUYT9s5LmAqTHA6X655e2nw/sa01zx/bAAw9MxcuYmXW8ccM9In4E7JVUu2zZMuAxivtSrkplq4C70vImihsKz5K0kOIem1Nyz8WdO5u9IbyZWd6avSrkHwCfl/Rq4EmKmyW/Ctgo6QbgGeB6gIjYKWkjxS+AQeCmiGjHXe/NzGwUTYV7ROyguPt6vWWj1F8LrJ1Eu8zMbBKy+Ybqvn1HOHSoNQdmzcy6XTbhvnDhp9m160ruu69/uptiZjbtsgn3l18upvW3bds/zS0xM5t+2YR7zcyZ2XXJzGzCskvCU07JrktmZhOWXRK+9rWnTHcTzMymXRbhHnHi6gaveU2zp+6bmeUri3B/8cXBV5bV6Mo2ZmY9JotwP3r0+CvLw8PT2BAzsw6RRbgPD0fDZTOzXuVwNzPLkMPdzCxDWYR76WQZh7uZGZmEu0fuZmZVDnczswxlEe7lLzGFs93MLI9wL5/b7pG7mVk24e5pGTOzMoe7mVmGsgj38py7w93MLJNw98jdzKzK4W5mlqEswt3fUDUzq8oi3D1yNzOryi7ct259cBpbYmbWGZoKd0lPS3pU0g5JfansHEmbJT2RHs8u1b9Z0h5JuyVd3a7G15SnZQ4deqHdL2dm1vEmMnJ/Z0S8JSKWpPU1wJaIWARsSetIWgysBC4ClgO3SprRwjaPUB65+/IDZmaTm5ZZAaxPy+uB60rlGyLiWEQ8BewBlk7idcblcDczq2o23AO4R9J2SatT2XkRsR8gPc5J5fOAvaVt+1NZhaTVkvok9Q0MDJxc62uNc6CbmVXMbLLeFRGxT9IcYLOkXWPUVYOyEfEbEeuAdQBLliyZVDx75G5mVtXUyD0i9qXHA8CdFNMsz0qaC5AeD6Tq/cD5pc3nA/ta1eBGHO5mZlXjhruk0ySdUVsGfhX4LrAJWJWqrQLuSsubgJWSZklaCCwCtrW64WW+nruZWVUz0zLnAXdKqtX/QkTcLelBYKOkG4BngOsBImKnpI3AY8AgcFNEDLWl9Ym/uGRmVjVuuEfEk8DFDcp/AiwbZZu1wNpJt65JnpYxM6vK5Buq090CM7POkkW4e87dzKwqi3D3tIyZWZXD3cwsQ1mEuwPdzKwqi3D3yN3MrMrhbmaWoSzCvRzoDnczs0zC3d9QNTOryi7cPXI3M8sk3P0lJjOzqizC3SN3M7Oq7MLdzMwyCXefLWNmVpVFuHvkbmZWlV24e+RuZuZwNzPLUhbh7jl3M7OqLMLdc+5mZlXZhbtH7mZmmYS7p2XMzKqyCHeP3M3MqrILdzMzyyTcfeEwM7OqLMLd0zJmZlUOdzOzDDUd7pJmSHpI0lfT+jmSNkt6Ij2eXap7s6Q9knZLurodDS9zoJuZVU1k5P6HwOOl9TXAlohYBGxJ60haDKwELgKWA7dKmtGa5jbmkbuZWVVT4S5pPnANcFupeAWwPi2vB64rlW+IiGMR8RSwB1jamuY25rNlzMyqmh25fwr4T8Bwqey8iNgPkB7npPJ5wN5Svf5UViFptaQ+SX0DAwMTbniZv8RkZlY1brhLuhY4EBHbm9ynGpSNiNyIWBcRSyJiyezZs5vcdWOeljEzq5rZRJ0rgH8p6d3AqcCZkj4HPCtpbkTslzQXOJDq9wPnl7afD+xrZaPrOdzNzKrGHblHxM0RMT8iFlAcKP1mRPwOsAlYlaqtAu5Ky5uAlZJmSVoILAK2tbzlJQ53M7OqZkbuo7kF2CjpBuAZ4HqAiNgpaSPwGDAI3BQRQ5Nu6RjKgX7s2EvtfCkzs64woXCPiHuBe9PyT4Blo9RbC6ydZNuaVh65v/TSsal6WTOzjpXdN1TNzCyTcI/KRHujk3XMzHpLFuHuA6pmZlXZhbuZmWUS7tVvqHpaxswsi3D3yN3MrMrhbmaWoSzC3dMyZmZVWYS7R+5mZlXZhbtPhTQzyyTcy19iGhpq62VszMy6QhbhPly6hcjgoMPdzCyTcPflB8zMyjIMdzMzyyLcfeEwM7OqLMLdZ8uYmVVlEu7lNY/czcyyCPfwcN3MrCKLcPfZMmZmVdmFuwfxZmaZhHv1wmFOdzOzLMK9PHKvHlw1M+tN2YW7mZllEu7VmRgfUDUzyyLcPXI3M6saN9wlnSppm6SHJe2U9PFUfo6kzZKeSI9nl7a5WdIeSbslXd3ODoBPhTQzq9fMyP0Y8MsRcTHwFmC5pMuBNcCWiFgEbEnrSFoMrAQuApYDt0qa0Y7G15TPkPFt9szMmgj3KBxJq6eknwBWAOtT+XrgurS8AtgQEcci4ilgD7C0pa2u45G7mVlVU3PukmZI2gEcADZHxHeA8yJiP0B6nJOqzwP2ljbvT2X1+1wtqU9S38DAwGT64Dl3M7M6TYV7RAxFxFuA+cBSSW8ao3qjofOI9I2IdRGxJCKWzJ49u7nWjsIXDjMzq5rQ2TIRcRC4l2Iu/VlJcwHS44FUrR84v7TZfGDfpFs6drvauXszs67TzNkysyWdlZZfA1wF7AI2AatStVXAXWl5E7BS0ixJC4FFwLZWN7zMc+5mZlUzm6gzF1ifznh5FbAxIr4q6dvARkk3AM8A1wNExE5JG4HHgEHgpoho612rHe5mZlXjhntEPAJc0qD8J8CyUbZZC6yddOuaVL1w2FS9qplZ58rwG6oeuZuZOdzNzDKURbh7KsbMrCqLcPfI3cysKsNwNzOzLMLdFw4zM6vKItw9LWNmVpVJuJfXHO5mZlmEu68tY2ZWlUW4e1rGzKwqw3A3M7MMwz2LLpmZTUoWSVg/5e45eDPrdVmEe/20jLPdzHpdpuHudDez3pZFuNdnuQ+wmlmvyyLcPS1jZlaVZbh75G5mvS6LcK+fY/ecu5n1uizC3SN3M7OqTMK9uu6Bu5n1uizCvX4axiN3M+t1WYS7z5YxM6vKMtw9cjezXpdFuPvaMmZmVVmEu0fuZmZV44a7pPMl/YOkxyXtlPSHqfwcSZslPZEezy5tc7OkPZJ2S7q6nR0Az7mbmdVrZuQ+CHwwIt4IXA7cJGkxsAbYEhGLgC1pnfTcSuAiYDlwq6QZ7Wh8jUfuZmZV44Z7ROyPiH9My4eBx4F5wApgfaq2HrguLa8ANkTEsYh4CtgDLG11w6ttHHvdzKzXTGjOXdIC4BLgO8B5EbEfil8AwJxUbR6wt7RZfyqr39dqSX2S+gYGBibe8hKP3M3MqpoOd0mnA3cAH4iIQ2NVbVA2Im0jYl1ELImIJbNnz262GQ2dCPPh2r4ntT8zs27XVLhLOoUi2D8fEX+Xip+VNDc9Pxc4kMr7gfNLm88H9rWmuY2dCPPi0SN3M+t1zZwtI+B24PGI+GTpqU3AqrS8CrirVL5S0ixJC4FFwLbWNXmkE9eWqY3c2/lqZmadb2YTda4A3gs8KmlHKvswcAuwUdINwDPA9QARsVPSRuAxijNtboqIoZa3vOTESN0jdzMzaCLcI2IrjefRAZaNss1aYO0k2jUhJ6ZlPOduZgbZfUO1NnKfvraYmXWCzMLdI3czM8gk3E9kuefczcwgk3AfOXKfvraYmXWCzMLdI3czM8gk3E+M1D3nbmYGmYS7R+5mZlVZhrsH7mbW67II9/ovMXnkbma9ruvDPSJGnArpkbuZ9boMwv2VJTznbmZW6Ppwr86310buDncz623ZhLs0sszMrFdlE+7Vkfu0NcfMrCNkGe4euZtZr8sm3ItpGY/czcwgo3Av34PbI3cz63VdH+5DQ+Ug99kyZmaQQbhXL/frOXczM8gq3E8EugfuZtbrMgt3j9zNzCCzcJd8toyZGWQW7iPLzMx6U0bhDj5bxsyskE24F1MynnM3M4Mmwl3SX0s6IOm7pbJzJG2W9ER6PLv03M2S9kjaLenqdjW8xteWMTMbqZmR+2eA5XVla4AtEbEI2JLWkbQYWAlclLa5VdKMlrW2geHh2pLn3M3MasYN94j4FvDTuuIVwPq0vB64rlS+ISKORcRTwB5gaYva2pDn3M3MRjrZOffzImI/QHqck8rnAXtL9fpT2QiSVkvqk9Q3MDBwks1oPC1TvSSBmVnvafUBVTUoa5i0EbEuIpZExJLZs2ef9As63M3MRjrZcH9W0lyA9HgglfcD55fqzQf2nXzzxlc9W6aYgB8aGh5jCzOz/J1suG8CVqXlVcBdpfKVkmZJWggsArZNroljazTnPjjokbuZ9baZ41WQ9EXgSuBcSf3AR4FbgI2SbgCeAa4HiIidkjYCjwGDwE0RMdSmtgP10zIeuZuZQRPhHhG/NcpTy0apvxZYO5lGTUSjcB8cdLibWW/L5huqPqBqZnZCNuFePqDqkbuZ9boMwr2yBnjkbmaWQbiPnJbxyN3Mel1m4e6Ru5kZZBfuHrmbmUFG4R4xTG3kvnVrW783ZWbW8bIM94MHX5jGFpmZTb9swr08LTPsWRkz63EZhTtIw6lsulpjZtYZuj7cawdPi2Avln2vDjPrdRmEey3Jh/G0jJlZoevD/fjx2kUnPXI3M6vp+nCvTst45G5mBlmE+8hvqDrczazXdX24N5qWcbibWa/r+nBvdEDVc+5m1usyCPeRp0J65G5mva7rw706LTMIwODgtDXHzKwjdH24HztWhHtxH26Hu5kZZBDuR48eByDiGA53M7NCNuEOx6mF+/Hjo1Y3M+sJXR/uR44USS4dR/LI3cwMMgj3w4dfTksnRu4vvuihu5n1tq4P9/7+wwBIR6iF+8svD42xhZlZ/ro+3H/wg0MADA09RzF6h+PHNY0tMjObfm0Ld0nLJe2WtEfSmna8xtDQMHv3Hk5rh4AXgGGOH59VOv/dzKz3tCXcJc0A/ifwLmAx8FuSFrf6dfbtO8Lx48PMmHEMaTB9S/UIIPbsOdjqlzMz6xrtGrkvBfZExJMR8TKwAVjR6hf51Ke2A3DqqYdeKZOeBeD979/S6pczM+saM9u033nA3tJ6P/DWcgVJq4HVafWIpN3AucCPJ/piR4+W19YB8M1vgvSbE91Vq5xUPzqM+9A5cuiH+zAWnfRxwteN9kS7wr1RSyvXaoyIddSSuLaR1BcRS9rUpimTQz/ch86RQz/ch6nXrmmZfuD80vp8YF+bXsvMzOq0K9wfBBZJWijp1cBKYFObXsvMzOq0ZVomIgYlvR/4e2AG8NcRsbOJTdeNX6Ur5NAP96Fz5NAP92GKKXzbIjOz7HT9N1TNzGwkh7uZWYamLNzHuxyBCv89Pf+IpEub3XaqTLIPT0t6VNIOSX1T2/JKG8frwxskfVvSMUl/NJFtp9Ik+9Etn8W/Tv+OHpF0v6SLm912qkyyDx3xOaS2jNePFakPOyT1SXp7s9tOm4ho+w/FQdXvAxcArwYeBhbX1Xk38A2Kc+QvB77T7Lad3of03NPAuVPd7pPowxzgMmAt8EcT2bYb+tFln8XbgLPT8ru69P9Ewz50yucwgX6czoljlG8GdnXSZ9HoZ6pG7s1cjmAF8NkoPACcJWluk9tOhcn0oVOM24eIOBARD1K7xOYEtp1Ck+lHp2imD/dHxHNp9QGK74s0te0UmUwfOkkz/TgSKc2B0zjxpcxO+SxGmKpwb3Q5gnlN1mlm26kwmT5A8Y/hHknb06UXpsNk3stO+Rxa0ZZu/CxuoPir8GS2bZfJ9AE643OAJvsh6dck7QK+BvzeRLadDu26/EC9cS9HMEadZradCpPpA8AVEbFP0hxgs6RdEfGtlrZwfJN5Lzvlc4DJt6WrPgtJ76QIxto8b6d8FpPpA3TG5wBN9iMi7gTulPQO4BPAVc1uOx2mauTezOUIRqvTKZcymEwfiIja4wHgToo/56baZN7LTvkcJt2WbvosJL0ZuA1YERE/mci2U2AyfeiUzwEm+H6mX0A/L+nciW47pabogMVM4ElgIScOOlxUV+caqgcjtzW7bRf04TTgjNLy/cDyTuxDqe7HqB5Q7YjPoQX96JrPAvinwB7gbSfb/w7uQ0d8DhPox+s5cUD1UuCH6f95R3wWDfs1hW/gu4HvURxZ/kgquxG4MS2L4gYf3wceBZaMte00/SM4qT5QHEl/OP3s7PA+/CzFaOQQcDAtn9lJn8Nk+tFln8VtwHPAjvTTN9a23dSHTvocmuzHh1I7dwDfBt7eaZ9F/Y8vP2BmliF/Q9XMLEMOdzOzDDnczcwy5HA3M8uQw93MLEMOdzOzDDnczcwy9P8Bf8ETh5sWT3wAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "infer_D_eve.plot()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "It is possible to see that clearly the value of 0.3218 is far-right in the distribution indicating that the hispanic group is, indeed, significantly segregated in terms of the Dissimilarity index under evenness. You can also check the mean value of the distribution using the **est_sim** attribute which represents all the D draw from the simulations:" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "0.016109671121956267" + ] + }, + "execution_count": 8, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "infer_D_eve.est_sim.mean()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The two-tailed p-value of the following hypothesis test:\n", + "\n", + "$$H_0: under \\ evenness, \\ Sacramento \\ IS \\ NOT \\ segregated \\ in \\ terms \\ of \\ the \\ Dissimilarity \\ index \\ (D)$$\n", + "$$H_1: under \\ evenness, \\ Sacramento \\ IS \\ segregated \\ in \\ terms \\ of \\ the \\ Dissimilarity \\ index \\ (D)$$\n", + "\n", + "can be accessed with the **p_value** attribute:" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "0.0" + ] + }, + "execution_count": 9, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "infer_D_eve.p_value" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Therefore, we can conclude that Sacramento is statistically segregated at 5% of significance level (p.value < 5%) in terms of D.\n", + "\n", + "You can also test under different approaches for the null hypothesis:" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [ + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "116d6e27ddb6443c9a7f6233c6205053", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(IntProgress(value=0, max=5000), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n" + ] + } + ], + "source": [ + "infer_D_sys = SingleValueTest(D, iterations_under_null = 5000, null_approach = \"systematic\", two_tailed = True)" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 11, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXcAAAEICAYAAACktLTqAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAAZ6UlEQVR4nO3df5Rc5X3f8ffHEsYpoACVRBRJtSBWsIVrDF1kamwHRyTIBlfkNCTKD1vHIVU5JXF86qQG+yQ2cZTSkx67ySk0RwHbcvxDRzXByD8gKHIopmDLixHIAmRkQdEigdYYYQkLwa6+/eM+o7kzO7M7uzuzO/vM53XOnrn3mefeeZ650meffe6dO4oIzMwsL6+a7gaYmVn7OdzNzDLkcDczy5DD3cwsQw53M7MMOdzNzDLkcLdxk/S3kv50Ett/RNLNbWzPMkn9bdrXEkkhaXY79pcTSf8gaeV0t8Na43C3GpKelHRE0iFJByXdJ+lqScf/rUTE1RHxiYm+RkT8ZUT8fntaDMAngP8OIOkfJf15fQVJqyQ9MxNDO/3C+WdJP5X0mKRLRqn7QUl7JP1E0j5Jn6r0WdJ8SV9K5S9I+r+S3lLa9jJJ96bj/oykv5N0Smn3NwDrOtdTayeHuzXynog4BXgtxX/oDwO3TG+TGpO0AHgn8JVU9FngvZJUV/W9wBciYmgKm9cuXwIeBP4l8FHgy5LmNan7VeD8iJgDvBE4F/hAeu5k4LvAvwFOBzYAX5d0cnr+Z4G/AH4eeAOwCPiryo4jYhswR1Jf+7pmneJwt6Yi4oWI2Az8JrBG0hsBJH1W0l+k5bmSvpZGez+W9K3KKF/ShyU9nf4K2CVpRSr/uKTPp+XKNMj7Je2V9Hz6S+ECSQ+n/f7PUZr5K8D3IuKltP4ViuB6e6WCpNOAy4HPpfXLJD2YRrd7JX282c7TXzKXlNaPtz2tX5j+ujko6SFJF7f49rZE0i8C5wMfi4gjEXErsAP4943qR8QPI+JgZXPgGPC69NyeiPhkROyPiOGIWA+8Gjg7Pf/FiLgzIn4aEc8DfwdcVPcSdwOXtbOP1hkz7k9Um3oRsU3SAEVgfr/u6Q8BA0BlJHkhEJLOBv4AuCAi9klaAswa5WXeAiwF3gFsBu4ELgFOAB6U9L8j4v802O5fA7tKbT0iaRPwPuCeVPwbwGMR8VBafzE9v5NidLtF0vaI+ArjIGkh8HWKvwruBFYAt0p6fUQMNqj/NeBtTXZ3b0Rc3qD8HGBPRBwqlT2Uypu167eBvwVOAX5EcYwa1XszRbjvbrKrd1C8R2WP0rwP1kU8crdW7aMYEdd7BVgAvDYiXomIb0Vxw6Jh4ERgmaQTIuLJiPjhKPv/RES8FBF3UYTvlyLiQEQ8DXwLOK/JdqcCh+rKNgBXSvqZtP6+VAZARNwdETsi4lhEPEwx7fFLo3W+id8FvhER30j72gL0A+9uVDkiLo+IU5v8NAp2KKZSXqgre4EiuBtKI/A5wC9ShPyz9XUkzQH+Hrg+Iur3j6RfAdYAf1b31CGK99y6nMPdWrUQ+HGD8r+iGPndlU7kXQsQEbuBDwIfBw5I2ijp50fZfzmAjjRYP5nGnqcu6CLiXmAQWCXpLOAC4IuV5yW9JZ2gHJT0AnA1MHeUtjXzWopfIgcrPxSj2gUT2Fczh4E5dWVzGPkLbYSIeJxi5H1TuTz90vsq8O2I+K/120m6kOL9+vWI+EHd06cAB+u3se7jcLcxSbqAItzvrX8uIg5FxIci4izgPcB/rsytpxHk2yhCMID/1oHmPUwxQq33OYoR+3uBuyKi/MviixRTP4sj4mcpRrf1J2ArXgT+RWn950rLe4G/rxuBnxQRNzTakaQ7JB1u8nNHk9ffCZxVd9XKuYycLmlmNvALpTacSHFe4mngPzZo43kU783vRcTWBvt7A8W0kHU5h7s1JWmOpMuBjcDnI2JHgzqXS3pdujrlJxTTMcOSzpb0yylMXqIYfQ93oJlbgPMlvaau/HMUc/b/gdKUTHIK8OOIeEnScuC3R9n/dmC1pBPSVSK/Xnru88B7JF0qaZak10i6WNKiRjuKiHdFxMlNft7VZJsfpDZ8LO3/14A3Abc2qi/p9yXNT8vLgOuArWn9BODLFMfifRFxrG7bN1KcO/jDiPhqk/fjl4Bmv4isizjcrZGvSjpEMTL9KPBJ4P1N6i4F/oli+uB+4KaIuJtivv0GihN6zwDzgY+0u6FpRP5NYFVd+ZPAfcBJFCPRsv8E/Hnq458Bm0Z5iT+lGPk+D1xPaXonIvam1/0IxTTQXuBPaP//q9VAX2rDDRTTJYMAkt4u6XCp7kXADkkvAt9IP5X3/a0UVw39KnCw9FdD5cqiD1GcGL+l9NzxvxDSX3AvpksircvJX9ZhM10aoW4Alof/QXeMpFuBWyLiG9PdFhubw93MLEOeljEzy5DD3cwsQw53M7MMdcXtB+bOnRtLliyZ7maYmU2tXenOGWefPaHNH3jggR9FRMObyHVFuC9ZsoT+/rbcjtvMbOa4+OLi8e67J7S5pP/X7DlPy5iZZcjhbmaWIYe7mVmGHO5mZhlyuJuZZcjhbmaWIYe7mVmGHO5mZhlyuJuZZSircL/xxk9z442fnu5mmJlNu664/UC77Nv33HQ3wcysK2Q1cjczs4LD3cwsQw53M7MMOdzNzDLkcDczy5DD3cwsQw53M7MMOdzNzDKUXbjv2PG96W6Cmdm0yy7c9+zZNd1NMDObdtmFu5mZOdzNzLKUzY3Dnn76EJ/5DMyatXi6m2JmNu2yCffrr7+f/fsFvH26m2JmNu2ymZZ55pkXp7sJZmZdo6Vwl3SqpC9LekzSo5L+raTTJW2R9Hh6PK1U/zpJuyXtknRp55pf9apXaSpexsxsRmh15P7XwJ0R8XrgXOBR4Fpga0QsBbamdSQtA1YD5wArgZskzWp3w+vJ2W5mdtyY4S5pDvAO4BaAiHg5Ig4Cq4ANqdoG4Iq0vArYGBFHI+IJYDewvN0NNzOz5loZuZ8FDAKfkfSgpJslnQScERH7AdLj/FR/IbC3tP1AKqshaa2kfkn9g4ODk+oEwPBwTHofZma5aCXcZwPnA/8rIs4DXiRNwTTRaIJkRPJGxPqI6IuIvnnz5rXU2NEcO+ZwNzOraCXcB4CBiPhOWv8yRdg/K2kBQHo8UKpfvth8EbCvPc1tbnj4WKdfwsxsxhgz3CPiGWCvpLNT0QrgEWAzsCaVrQFuT8ubgdWSTpR0JrAU2NbWVjfgaRkzs6pWP8T0h8AXJL0a2AO8n+IXwyZJVwFPAVcCRMROSZsofgEMAddExHDbW17H4W5mVtVSuEfEdqCvwVMrmtRfB6ybRLvGzdMyZmZV2XxC9Ziz3czsuGzC3SN3M7OqbMLdl0KamVVlE+4+oWpmVuVwNzPLUDbh7mkZM7OqbMLdJ1TNzKqyCffwwN3M7Lhswt3MzKoc7mZmGcom3P1NTGZmVdmEu5mZVTnczcwy5HA3M8uQw93MLEMOdzOzDDnczcwy5HA3M8uQw93MLEMOdzOzDDnczcwylE24y/cfMDM7rqVwl/SkpB2StkvqT2WnS9oi6fH0eFqp/nWSdkvaJenSTjW+LHzPXzOz48Yzcn9nRLw5IvrS+rXA1ohYCmxN60haBqwGzgFWAjdJmtXGNjdUznZ/K5OZ9brJTMusAjak5Q3AFaXyjRFxNCKeAHYDyyfxOi0pB7pH8WbW61oN9wDukvSApLWp7IyI2A+QHuen8oXA3tK2A6mshqS1kvol9Q8ODk6s9SXlcPfI3cx63ewW610UEfskzQe2SHpslLqNzmyOSNuIWA+sB+jr65t0GntaxsysqqWRe0TsS48HgNsoplmelbQAID0eSNUHgMWlzRcB+9rV4GZqp2U6/WpmZt1tzHCXdJKkUyrLwK8C3wc2A2tStTXA7Wl5M7Ba0omSzgSWAtva3fB6npYxM6tqZVrmDOC2dB35bOCLEXGnpO8CmyRdBTwFXAkQETslbQIeAYaAayJiuCOtL/EJVTOzqjHDPSL2AOc2KH8OWNFkm3XAukm3bhxqR+5T+cpmZt0nm0+olkfrnpYxs16XTbiXR+ueljGzXpdRuHvkbmZW4XA3M8tQluHuWRkz63VZhrtH7mbW67IJd99+wMysKptw97SMmVlVluHukbuZ9TqHu5lZhrIMd3+Iycx6XTbh7tsPmJlVZRPu5dsP+MZhZtbrMgp3T8uYmVVkGe6eljGzXudwNzPLUDbhXp6K8ayMmfW6LMI9Inz7ATOzkkzCvXbd4W5mvS6LcK8Pc0/LmFmvyzLcPXI3s16XRbjXX9fu69zNrNe1HO6SZkl6UNLX0vrpkrZIejw9nlaqe52k3ZJ2Sbq0Ew0v88jdzKzWeEbufwQ8Wlq/FtgaEUuBrWkdScuA1cA5wErgJkmz2tPcxhzuZma1Wgp3SYuAy4CbS8WrgA1peQNwRal8Y0QcjYgngN3A8vY0t7H6e8l4VsbMel2rI/f/AfwXoByjZ0TEfoD0OD+VLwT2luoNpLIaktZK6pfUPzg4OO6Gl3nkbmZWa8xwl3Q5cCAiHmhxn2pQNiJtI2J9RPRFRN+8efNa3HVjDnczs1qzW6hzEfDvJL0beA0wR9LngWclLYiI/ZIWAAdS/QFgcWn7RcC+dja63sirZTr5amZm3W/MkXtEXBcRiyJiCcWJ0m9GxO8Cm4E1qdoa4Pa0vBlYLelESWcCS4FtbW95TRtr1z1yN7Ne18rIvZkbgE2SrgKeAq4EiIidkjYBjwBDwDURMTzplo6ifuTucDezXjeucI+Iu4G70/JzwIom9dYB6ybZtpaNvP2Aw93Melsmn1CtXffX7JlZr8s03D1yN7Pelkm4e1rGzKwsi3D3de5mZrWyCHdPy5iZ1cok3P0hJjOzskzCvXbdI3cz63VZhLvn3M3MamUR7p6WMTOrlUm416575G5mvc7hbmaWoSzC3feWMTOrlUW4+66QZma1Mgn30dfNzHpNJuHukbuZWVkW4e7r3M3MamUR7p6WMTOrlUm4e+RuZlaWSbjXrjvczazXZRHuvs7dzKxWFuHu71A1M6uVSbh7zt3MrGzMcJf0GknbJD0kaaek61P56ZK2SHo8PZ5W2uY6Sbsl7ZJ0aSc7AI2ulnG4m1lva2XkfhT45Yg4F3gzsFLShcC1wNaIWApsTetIWgasBs4BVgI3SZrVicZX+Dp3M7NaY4Z7FA6n1RPSTwCrgA2pfANwRVpeBWyMiKMR8QSwG1je1laPbGPNusPdzHpdS3PukmZJ2g4cALZExHeAMyJiP0B6nJ+qLwT2ljYfSGUd4w8xmZnVaincI2I4It4MLAKWS3rjKNXVaBcjKklrJfVL6h8cHGyttU3bV7vukbuZ9bpxXS0TEQeBuynm0p+VtAAgPR5I1QaAxaXNFgH7GuxrfUT0RUTfvHnzJtD0Ks+5m5nVauVqmXmSTk3LPwNcAjwGbAbWpGprgNvT8mZgtaQTJZ0JLAW2tbvhZf4OVTOzWrNbqLMA2JCueHkVsCkivibpfmCTpKuAp4ArASJip6RNwCPAEHBNRAx3pvkFT8uYmdUaM9wj4mHgvAblzwErmmyzDlg36da1yFfLmJnVyuITqr63jJlZrSzC3dMyZma1Mgn3+mmZaWqImVmXyCTc69c9cjez3pZFuPs6dzOzWlmEu28/YGZWK5Nw98jdzKwsk3CvXXe4m1mvyyLcfZ27mVmtLMK9Psy3bds+TS0xM+sOmYR77fqhQ0empyFmZl0ik3D3XSHNzMqyCPf6T6Q63M2s12UR7h65m5nVyiTcp7sFZmbdJZNw98jdzKwsi3AfeZ37NDXEzKxLZBHuvreMmVmtTMLdI3czs7Iswt3TMmZmtbIId4e5mVmtLMPdYW9mvW7McJe0WNI/S3pU0k5Jf5TKT5e0RdLj6fG00jbXSdotaZekSzvZAfCcu5lZvVZG7kPAhyLiDcCFwDWSlgHXAlsjYimwNa2TnlsNnAOsBG6SNKsTja/w/dvNzGqNGe4RsT8ivpeWDwGPAguBVcCGVG0DcEVaXgVsjIijEfEEsBtY3u6G17Zx9HUzs14zrjl3SUuA84DvAGdExH4ofgEA81O1hcDe0mYDqaxjPC1jZlar5XCXdDJwK/DBiPjJaFUblI2IW0lrJfVL6h8cHGy1GQ155G5mVqulcJd0AkWwfyEi/iEVPytpQXp+AXAglQ8Ai0ubLwL21e8zItZHRF9E9M2bN2+i7Qd8nbuZWb1WrpYRcAvwaER8svTUZmBNWl4D3F4qXy3pRElnAkuBbe1r8kjVaZljo9YzM+sVs1uocxHwXmCHpMqXk34EuAHYJOkq4CngSoCI2ClpE/AIxZU210TEcNtbXlIdqUfduplZbxoz3CPiXhrPowOsaLLNOmDdJNo1LtUwPwbMcribWc/L4hOq1Tl3j9zNzCCTcK+fc3e4m1mvyyTcjy/VrZuZ9aZMwr12WsbMrNdlEe7VOXdPy5iZQSbh7mkZM7NaWYR7/cjdzKzXZRHuw8OeljEzK8si3OtH7keOvDR9jTEz6wJZhvvRow53M+ttWYT78HBlrr3y2OxuCWZmvSGLcD92/Dyq59zNzCCTcB85cjcz621ZhPvIDzF5WsbMelsW4V5/KaSZWa/LItw9cjczq5VFuHvkbmZWK4twr/+yDjOzXpdZuBdf1eppGTPrdVmEe/2lkL7O3cx6XRbhXv8hJjOzXpdFuNeP3IeGhqevMWZmXSCLcK+/FLIa9mZmvWnMcJf0aUkHJH2/VHa6pC2SHk+Pp5Weu07Sbkm7JF3aqYaXVS+F9GS7mRm0NnL/LLCyruxaYGtELAW2pnUkLQNWA+ekbW6SNKttrW2i/moZ3xXSzHrdmOEeEfcAP64rXgVsSMsbgCtK5Rsj4mhEPAHsBpa3qa1N1V/nXl03M+tNE51zPyMi9gOkx/mpfCGwt1RvIJWNIGmtpH5J/YODgxNsRqH+E6rHjnnO3cx6W7tPqDaaD2k4jI6I9RHRFxF98+bNm9SLelrGzKzWRMP9WUkLANLjgVQ+ACwu1VsE7Jt481oz8guyHe5m1tsmGu6bgTVpeQ1we6l8taQTJZ0JLAW2Ta6JY/O9ZczMas0eq4KkLwEXA3MlDQAfA24ANkm6CngKuBIgInZK2gQ8AgwB10RExz9RVL2uvfJSWVy+b2Y2YWOGe0T8VpOnVjSpvw5YN5lGjdfIOXeHu5n1tixSsDrnPgRARBbdMjObsCxSsBruHrmbmUEmKXj06FBaehnwyN3MLIsUfPnlygnVV9JjFt0yM5uwLFLw6NHKdIxH7mZmkE24107LZNItM7MJyyIFqyP36rSMbx5mZr0ss3AfpnLFzNCQbx5mZr0ri3B/+eWR4f7KK/6qPTPrXVmEe+3IvRixv/KKR+5m1rsyC/chHO5mZtmFu0fuZmaQXbgP4Tl3M7MMwv3YsShdGXOMysh9aMiXQppZ75rx4V69UqbyQSaP3M3MZny41863g+fczcyyCPfaEbvD3cwsi3CvH7kXtyA4cmSoYX0zs16QYbgXNw87fPjlhvXNzHpBhuFejNwPH36lYX0zs14w48N95NUyHrmbmc34cH/pJY/czczqdSzcJa2UtEvSbknXdup1KiN0qTJSLx5feOFop17SzKzrdSTcJc0CbgTeBSwDfkvSsna/TkRwxx1PpOVKuL8AwO237/Q93c2sZ3Vq5L4c2B0Re6JI3Y3Aqna/yAc+8E0+9akH0tpP0+OTwDG2bXuee+4ZaPdLmpnNCLM7tN+FwN7S+gDwlnIFSWuBtWn1sKRdaXku8KOJv/RB4MMArFjxJxPfzeRMsg9dIYc+QB79cB+6Q+f6IE10y9c2e6JT4d6opTV38oqI9cD6ERtK/RHR16F2TQn3oXvk0A/3oTvMtD50alpmAFhcWl8E7OvQa5mZWZ1Ohft3gaWSzpT0amA1sLlDr2VmZnU6Mi0TEUOS/gD4R2AW8OmI2Nni5iOmamYg96F75NAP96E7zKg+KMJfamFmlpsZ/wlVMzMbyeFuZpahKQv3sW5HoMLfpOcflnR+q9tOlUn24UlJOyRtl9Q/tS0f0c6x+vF6SfdLOirpj8ez7VSZZB+64li00IffSf+OHpZ0n6RzW912Kk2yHzPlWKxK7d8uqV/S21rddtpERMd/KE6q/hA4C3g18BCwrK7Ou4E7KK6RvxD4Tqvbdnsf0nNPAnOnut0T7Md84AJgHfDH49m22/vQLceixT68FTgtLb+r2/5PTLYfM+xYnEz1HOWbgMe67VjU/0zVyL2V2xGsAj4XhW8Dp0pa0OK2U2EyfegmY/YjIg5ExHep3GJzHNtOkcn0oVu00of7IuL5tPptis+LtLTtFJpMP7pFK304HCnNgZOofiizm45FjakK90a3I1jYYp1Wtp0Kk+kDFP8Y7pL0QLr1wnSZzPs5k47FaLrhWIy3D1dR/FU4kW07aTL9gBl0LCT9mqTHgK8DvzeebadDp24/UG/M2xGMUqeVbafCZPoAcFFE7JM0H9gi6bGIuKetLWzNZN7PmXQsRtMNx6LlPkh6J0UoVuZ5u+U4wOT6ATPoWETEbcBtkt4BfAK4pNVtp8NUjdxbuR1BszrdciuDyfSBiKg8HgBuo/hzbjpM5v2cSceiqS45Fi31QdKbgJuBVRHx3Hi2nSKT6ceMOhYV6ZfPL0iaO95tp9QUnbCYDewBzqR60uGcujqXUXsyclur286APpwEnFJavg9YOdV9GO/7CXyc2hOqM+ZYjNKHrjgWLf57+lfAbuCtE+1/l/djJh2L11E9oXo+8HT6f941x2JEv6bwDXw38AOKM8sfTWVXA1enZVF8wccPgR1A32jbTsubNcE+UJxJfyj97JzOPrTYj5+jGJH8hOIeygPAnBl2LBr2oZuORQt9uBl4HtiefvpH23am9WOGHYsPpzZuB+4H3taNx6L849sPmJllyJ9QNTPLkMPdzCxDDnczsww53M3MMuRwNzPLkMPdzCxDDnczswz9f/tfl8TMnTfNAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "infer_D_sys.plot()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The conclusions are analogous as the *evenness* approach." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Relative Concentration" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The **Infer_Segregation** wrapper can handle any class of the PySAL segregation module. It is possible to use it in the Relative Concentration (RCO) segregation index:" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": {}, + "outputs": [], + "source": [ + "from segregation.spatial import RelativeConcentration\n", + "RCO = RelativeConcentration(gdf, 'HISP', 'TOT_POP')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Since RCO is an spatial index (i.e. depends on the spatial context), it makes sense to use the *permutation* null approach. This approach relies on randomly allocating the sample values over the spatial units and recalculating the chosen index to all iterations." + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": {}, + "outputs": [ + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "24b830ffe15f4024997e61c73212589f", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(IntProgress(value=0, max=1000), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n" + ] + } + ], + "source": [ + "infer_RCO_per = SingleValueTest(RCO, iterations_under_null = 1000, null_approach = \"permutation\", two_tailed = True)" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 14, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXQAAAEICAYAAABPgw/pAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAAgAElEQVR4nO3deXxU1f3/8dcne0iAhBAIISHsEHYQBBERFRRXKrWVirsWrdiqtcuvYv2q3ay1trQg4oLiUm21VlBQ2WQVhBD2xbAmhEBIQiAkJIQk5/fHvcExJGQIk7kzk8/z8ZhHZubeufO+k5nPnDn33nPFGINSSin/F+R0AKWUUp6hBV0ppQKEFnSllAoQWtCVUipAaEFXSqkAoQVdKaUChBZ0HyAio0Qk+wIe/7KI/NaTmZo6ESkWkc6NtOw/icijHlrW0yLyjieWFUhEpK2I7BCRcKezeJMWdA8Rkf0iUmoXgsMi8qaIRDfC89wtIitd7zPGPGiM+Z2Hln+NiCwXkRMikiciy0TkJk8suzGIiBGRrhe4jKUicr/rfcaYaGPM3gtLV+tzxQN3AjNFpL2IVIhIl1rm+5+IvODp5/cGEblNRDJFpEREPhaRVueY93cissV+HZ6uMe16EVkpIsfsz9SrItLcZfo2+/NWfakQkU8AjDG5wJfApEZaTZ+kBd2zbjTGRAMDgIHAbxzOc15E5BbgA+AtIAloCzwF3OhkrgshIiFOZ6jhbmC+MabUGHMQWAzc4TqDXQCvA2Z7P96FEZHewEysdWoLnAReOsdDdgO/AubVMq0l8HsgEUjFek/+pXqiMaa3/cUbDTQHsrDev9XeBR5o8Mr4I2OMXjxwAfYDo11uPw/Mc7kdDryA9abLBV4GIu1po4Bsl3n/H7AHOAFsB262708FyoBKoBg4Zt//JvB7+/oO4AaXZYUA+cAg+/Yw4CvgGLAJGGXfL3a2X55jHYOAJ4FM4AhW4W9pT+sIGOAuezn5wBSXxwYDT7is13og2Z7WE1gIHAW+AX7o8rg3gelYH/gTwNdAF3vacvs5S+zX49bq1xL4NXAYeBuIBT4F8oBC+3qSvYw/2K9nmb2Mafb9BuhqX29pr2ueve5PAkH2tLuBlfb/thDYB1x7jtdwCXC7y+3bgD015nkISHe5PRU4ABTZr9tlLtOeBt6p7X1U831p//+q31sFwH+AVh7+HPwR+JfL7S5AOdC8nse9AzxdzzzjgS11TLvc/v9F1XjvnwRSnK4P3rpoC70RiEgScC1W66Pan4HuWK33rkB7rNZvbfYAl2EVkmeAd0SknTFmB/AgsNpYLZOYWh77HvAjl9vXAPnGmHQRaY9VGH8PtAJ+AfzX7gboASQDH55j1e62L1cAnYFoYFqNeUbYy7oKeEpEUu37f27nug5oAdwLnBSRKKxi/i+gjT3PS3ZLr9qP7NchFus1/QOAMWakPb2//Xr8276dYK9fCtZP7iDgDft2B6C0OrcxZgqwAnjYXsbDtaz3P7H+F52xCsedwD0u04difRG1xvoif11EpJblAPS15632P6C1iIxwue8OrC+Qauuw3jetsF6nD0Qkoo7ln8vPgO/Z65CI9QU0vbYZRaSD3dVR1+W2Op6jN1ZDAQBjzB6sgt69AXlrGglsq2PaXcCHxpgSl+euwHq/9PfAc/sHp79RAuWC1RIqxmpFGqyf0jH2NMFqRXZxmf8SYJ99fRQ1WlY1lr0RGGdfvxtYWWP6m3zbQu9qZ2hm334XeMq+/mvg7RqP/QLrw3CpnTviHDkWAw+53O4BnMZqCXW0H5/kMn0tMMG+/k31OtRY5q3Aihr3zQT+z2XdXnOZdh2w0+X2mZa0y2tZXs96DAAKXW4vBe6vMY+xX8tg4BTQy2XaA8BSl//HbpdpzezHJtTx3KeBnjXuew14xb7ezc7f5hz5C7G+xOD8Wug7gKtcprWr/v958HOwGHiwxn0HsX8JnuNx52yhA2Ps9e5ey7RmWL9eznoOYBVwp6fWz9cv2kL3rO8ZY5pjfbB6YrXYAOKx3nTrq1s4wOf2/WcRkTtFZKPLvH1clnVOxpjdWB/cG0WkGXATVqsOrBbqD1xbWlgt6nZYP8Gxr9clEavLoVomVjFv63LfYZfrJ7Fa8WC1/vfUsswUYGiNTBOxWtn1LbMuecaYsuobItJMRGbaG+qKsLpqYkQkuJ7lgPW6h3H2erevLZ8x5qR9ta6MhVj9va5mAz+0W913AJ8bY4645H/c3mPjuP36tMTN90MNKcD/XF7nHVjdTW3P/bDzUoz1C8xVC6xGRoOIyDCs9/AtxpiMWmYZj9Vdt6yWac2xuhebBC3ojcAYswyrZVm9l0I+1s/83saYGPvS0lgbc75DRFKAV4GHgThjdatsxWrlg9X6q091t8s4YLtd5MHqh33bJUOMMSbKGPMcVgv6APD9cyw3B6soVOsAVGBtE6jPAaz+1NruX1YjU7Qx5iduLLMuNV+jx7F+TQw1xrTA+ukO7r2m+Vit2JrrfbCB2TZTo/vBGLMC6wt1HHA7Lt0tInIZ1i+rHwKx9vvhuEt2VyVYDYfqxwbz3UbDAaz+fdfXOsJYG2e/w+5yKT7HZWId67cNly4Oe9fPcKC2QlwvERkIzAXuNcYsrmO2u4C3jN0kd3lsCNavrE21PioAaUFvPH8HxojIAGNMFVaR/puItAGwd1m7ppbHRWEVmDx7vnuwWujVcoEkEQk7x3O/D1wN/IRvW+dg/ay90d41MVhEIsTaBz7J/jD8HPitiNwjIi1EJEhERojIK/bj3wMeE5FO9i6ZfwT+bay+yvq8BvxORLqJpZ+IxGFtoOwuIneISKh9GeLS916fXKy+7XNpjvWFeszeg+T/3F2GMaYSa+PhH0Skuf2F+3Os17Ih5mP1Ydf0FtZ2lhjgkxrZK7DeDyEi8hRnt4CrZQAR9u5+oVgbb133w37ZXo8UsHahFJFxtS3IGJNlf7HWdXm3jgzvYr3HLrO3jzwLfGSMqbWFbv+/I7BqUYj9ngy2p/XB+iX7U2PMJ3U8Pglrm05tewRdDOw3xmTWMi0gaUFvJMaYPKwPafUBP7/G2kCzxv7Zvwir1VjzcduBvwKrsQpNX6x+wGpLsFpBh0Ukv47nPmQ/fjjwb5f7D2C1Ap/AKhAHgF9ivw+MMR9i9Wnfi9Uaz8XagDrHXsQsrL1GlmPtzVEG/NS9V4QXsQrjAqz+ztex9vI5gfXlM8F+zsNYhc3dA0KeBmbb3Qg/rGOevwORWK3tNVhFwtVU4BYRKRSRf9Ty+J9itX73Yu3R8i+s16Ih3gKuE5HIWu7vgPUFecrl/i+Az7CKdSbWa36gtgUbY45j7SHzGtYviBKsPX6qTcVq7S4QkRNYr8XQBq5HrYwx27A23L+LtSdUczsTcOYguJddHvIq1pftj4Ap9vXq3Tgfx/qF8brLL4OaG0XvwNpJoLbuvIlYX2JNhtT4laKUamQi8kfgiDHm705nCVT2L+FlwEDX7SmBTgu6UkoFCO1yUUqpAKEFXSmlAoQWdKWUChCODVzUunVr07FjR6eeXinljm/sUQp6nLVDlnLI+vXr840xtR6U6FhB79ixI2lpaU49vVLKHaNGWX+XLnUyhXIhInXuV69dLkopFSC0oCulVIDQgq6UUgFCC7pSSgUILehKKRUgtKArpVSA0IKulFIBQgu6UkoFCC3oSikVIOo9UlREkrEG308AqrBOZju1xjyjsE6CsM++6yNjzLOejaqUApg+fRY5OQX1zwgkJsYxefK9jZxI+Qp3Dv2vAB43xqSLSHOsEx0vtM+s42qFMeYGz0dUSrnKySkgJeVqt+bNzFzQyGmUL6m3y8UYc8gYk25fP4F1pvD2536UUkopbzuvPnQR6QgMBL6uZfIlIrJJRD4Tkd51PH6SiKSJSFpeXt55h1VKKVU3twu6fZb3/wKPGmOKakxOB1KMMf2BfwIf17YMY8wrxpjBxpjB8fG1jv6olFKqgdwq6CISilXM3zXGfFRzujGmyBhTbF+fD4SKSGuPJlVKKXVO9RZ0ERHgdWCHMebFOuZJsOdDRC62l+veZnillFIe4c5eLpcCdwBbRGSjfd8TQAcAY8zLwC3AT0SkAigFJhhjTCPkVUopVYd6C7oxZiUg9cwzDZjmqVBKKaXOn2OnoFNKNb60tA1MmfIXt+fXA5H8mxZ0pQJMVZVh165Cjh8/xZ49LenceQB9+rQmNLT+fSD0QCT/pgVdqQBx+nQlq1cfYuHCTI4cOWnf24U9ezYRFRXKsGHtGDu2Ey1ahDmaUzUeLehKBYDCwjJeemkjWVknAIiLi6Bz55ZkZm4hPLwLBw6cYPHiLNLTjzB58gCSk5s7nFg1Bi3oSvm5ffuO89JLGykqKqd160i+972uDBrUhuDgIGbP/pi77ppIZmYR7723k337jvP882u5776+DBjQxunoysN0+Fyl/Ni+fcf561/TKCoqp0ePWH7zm4sZMiSB4ODvfrRTUlrw+OMXMWxYO8rLq3jllc3s3n3ModSqsWhBV8pP5eWdZPr0jZw+XcXQoe145JFBREfX3T8eGhrM3Xf35oorkqmsNMycuYnCwjIvJlaNTQu6Un6opOQ0//znBk6cKCc1tRV33dXrrFZ5bUSEH/ygOz16tKKoqJyXX97E6dOVXkisvEELulJ+xhiYPXsbubknSUqK5oEH+rtVzKsFBwcxaVJf4uIi2L+/iM8+21f/g5Rf0IKulJ/ZsAE2bcojMjKEhx4aQGTk+e/bEB0dxr339gXg88/3c/hwiadjKgdoQVfKj2zfns+iRdb1iRNTiYuLbPCyunaNYcSI9lRWGt59dwc6/JL/04KulJ+oqKji9tvnU1EhXHJJIkOGJFzwMseP70Z0dCgZGYWsWXPIAymVk7SgK+UnXnppIxs2HKFFC8OECT08ssyoqFBuuaU7AB9/vJuKCo8sVjlEC7pSfuDQoWKefHIlAFdfDRERnjsmcOjQdiQlRXPs2CnS0z22WOUALehK+YGf/3wpJ06Uc9NNXeje3bPLDgoSbrqpKwBffQUlJeWefQLlNVrQlfJxixZl8v77O4mMDGHq1Csb5Tn69WtNx44tOHlSmDZtQ6M8h2p8OpaLUj7s1KkKJk+2dmv57W8voWPHlo3yPCLCuHFdmTo1naefXk5e3nLCw+G+fQcAeL2WMdV17HTfowVdKR/2wgtpZGQU0rNnKx5/fHCjPldqaiuaNy/ixIkWHDjQg6uu6kBExL8BSEm5+qz5dex036NdLkr5qH37jvH7368BYPr00YSFBTfq84kI7dvnALB4cSaVlVWN+nzK87SgK+WDjDH89KdLKCurYOLEVK68soNXnjc2tpA2bZpRUFBGevoRrzyn8hwt6Er5oDlzdjNv3l5atAjjhRdGee15RWDMmBQAFi7MBD141K9oQVfKx5SUlPOzny0B4A9/GEFCQpRXn3/YsHZER4eSmVlEaakeaeRPtKAr5WN+97s1HDhwgoED2/CTnwzw+vOHhQVz+eXJABQeO+X151cNpwVdKR+yfXs+f/1rGiIwY8aY8xoW15NGjmxPUJBQXFxOxWndOOovtKAr5SOMMTz00CIqKqqYNKk/Q4e2cyxLTEwEAwbEA3D8uB456i+0oCvlI955ZzvLlmUTHx/Jn/50mdNxznS7HD9+Sndh9BNa0JXyAYWFZfziF8sA+MtfLic2NsLhRNCjRyxhocFUVFaxaVOe03GUG/RIUaUayfTps8jJKXBr3mXLIjhy5BSXXZbEnXf2buRk7hERWsaEk5d3kmXLshk0qK3TkVQ9tKAr1UhycgpqPWS+poyMo6xatZ7Q0CBmzBiNiHghnXtatggjP7+UnTuPkpd3kvj4Zk5HUuegXS5KOai8vJK3394OwJQpw+jdu7XDib4rKFhoHh0KwOrVOQ6nUfXRgq6Ug+bN28uRI6W0bm34zW+GOh2nVi1ahgPw1VeHqKrSQ0d9mXa5KOWQrKwiFizIRAQ6d/6GZ5550a3HpaVtcqsrx1OaRYbQunUk+fml7NhR4HO/ItS36i3oIpIMvAUkAFXAK8aYqTXmEWAqcB1wErjbGKMns1KqDpWVVbz99naqqgxXXplMWdlqt4v00qVrGjldDQLDhycyd+4eVq3K0YLuw9zpcqkAHjfGpALDgMki0qvGPNcC3ezLJGCGR1MqFWAWLcoiK+sEcXERjBvX1ek49Ro+PBER2LTpCMXFeqCRr6q3oBtjDlW3to0xJ4AdQPsas40D3jKWNUCMiDh3mJtSPiw3t4RPPtkDwG23pXr0hM+NJTY2gl694qioMKxbl+t0HFWH89ooKiIdgYHA1zUmtQcOuNzO5uyij4hMEpE0EUnLy9MDFVTTU1lZxaxZWzl9uophw9rRp4//dF8MG2a10dauPeRwElUXtwu6iEQD/wUeNcYU1Zxcy0PO2hxujHnFGDPYGDM4Pj7+/JIqFQA+/3w/+/cXERsbzq239nA6znnp378N4eHB7N17nLy8k07HUbVwq6CLSChWMX/XGPNRLbNkA8kut5MA3WlVKReZmUV8+uleAO66qzfNmoU6nOj8hIcHM2BAGwDWrj3scBpVm3oLur0Hy+vADmNMXftVzQXuFMsw4LgxRn+XKWUrL69k1qyt9l4tHUhNjXM6UoNcfHECAF9/fQiju6T7HHe2xlwK3AFsEZGN9n1PAB0AjDEvA/OxdlncjbXb4j2ej6qU//rf/3Zz+HAJCQlR3Hyz7+/VUpfU1FY0bx5Gbu5JDmsj3efUW9CNMSupvY/cdR4DTPZUKKUCyc6dR1myJIugIOGee3oTFhbsdKQGCw4OYsiQtixZcoCtW51Oo2rSQ/+VakSlpad5881tAFx/fSc6dmzpcKILV33ije3boaJCx0n3JVrQlWpEH3yQQWFhGR07tuDaazs5HccjUlJa0KZNM0pKhMWLM52Oo1xoQVeqkezZA6tW5RASEsTdd/d27PygniYiDB1qbRx9990dDqdRrgLjHaaUjzl2rIz5863rN93UhXbtop0N5GEXX2x1u3z00S5KSnQoAF+hBV2pRvDYY19y4oTQqVNLxoxJcTqOx7Vp04z27Q0lJaeZO3eP03GUTQu6Uh42b94e3nxzGyEhhrvv7k1QkO+cgciTettnynvnne3OBlFnaEFXyoMKC8v48Y8XAHD55ZCQEOVwosaTmgrBwcIXX+zXoQB8hBZ0pTzosce+5NChEoYPT2TIEKfTNK6oKBg9OoXKSsOcObudjqPQgq6UxyxbdoDZs7cRHh7MG2+MJagJfLpuuaU7AB9+mOFwEgVa0JXyiNOnK3nooUUAPPHEULp3b+VwIu/43ve6EhwsLF6cxdGjpU7HafK0oCvlAX//+3q2by+ga9cYfvWri52O4zWtWzdj1KhkKiqqdG8XH6AFXakLdPDgCZ55ZjUA06Zd5RdnIPIk7XbxHVrQlbpATz65kpKS04wf341rrgmMw/vPx803dyMoSFiwYD/Hj59yOk6T1rSaEkp52MaNR5g9exuhoUH8+c8jnY7jVWlpG5gy5S8AJCVBVpZw553/oE+fs+dNTIxj8uR7vZyw6dGCrlQDGWP4xS+WYgxMnjyQrl1jnY7kVcXFp0hJuRqA4cMPkJW1k8zMNlx//YCz5s3MXODteE2Sdrko1UCff76PxYuziIkJ58knhzkdx1EDB8YjAtu2FVBWVuF0nCZLC7pSDVBVZfjNb1YAMGXKMOLiIh1O5KyYmAi6dImhoqKKLVvynY7TZGlBV6oBPv54F5s25ZGYGM3kyWd3MTRFgwa1BSA9PdfhJE2XFnSlzlNVleHpp78CrIOIIiNDHU7kGwYObAPAli35nDpV6XCapkkLulLn6aOPMtiyJZ+kpObcf39fp+P4jFatIujUqSWnT1exdat2uzhBC7pS58G1dT5lylDCw3VHMVcXXWS10tev124XJ+i7USk3TZ8+i6VLC9i2TWjRwrB//0KmTFlY5/xpaZvO7NbXVAwc2JYPP9zF1q35nD5dRWiothm9SQu6Um46eLCA9PQY4Dhjx/akc+cO55x/6dI13gnmQ1q3jiQpKZrs7GIyMo7Su3drpyM1Kfr1qZSbDhyAvXuPExUVyogR7Z2O47P69o0HYPNm7Uf3Ni3oSrlpjd3gHjUqmfDwYGfD+LD+/asLeh7GGIfTNC1a0JVyw5YteezeLYSGBnHllclOx/FpKSktaNEijKNHyzh4sNjpOE2KFnSl3PC3v60H4NJL2xMdHeZwGt8WFCT07Wv1nW/enOdwmqZFC7pS9ThypIR//WsHYLjqqnNvCFWWfv20H90JWtCVqsfMmZs5daqSbt2gTZtmTsfxC6mpcYSEBLF//3GKinSMdG/Rgq7UOZSXV/LSSxsBGDzY4TB+JDw8mJ49W2EMOliXF2lBV+oc/vOfbzh8uIQ+fVrTsaPTafxLv35WP/qmTdqP7i31FnQRmSUiR0Rkax3TR4nIcRHZaF+e8nxMpZwxdaq1MfSRRwYh4nAYP1Pdj75jRwEVOkS6V7jTQn8TGFvPPCuMMQPsy7MXHksp561bd4i0tFxiYyOYODHV6Th+JzY2guTk5pSXV7F/v9NpmoZ6C7oxZjlw1AtZlPIpM2ZsAuCee3rrELkNVN1K37XL4SBNhKf60C8RkU0i8pmI9PbQMpVyzNGjpbz33k4AHnxQT2DRUNVHje7ejR416gWeKOjpQIoxpj/wT+DjumYUkUkikiYiaXl5uqFE+a4339xGWVkFV1/dkW7dmtbJnz2pQ4fmxMSEc+KEsHHjEafjBLwLLujGmCJjTLF9fT4QKiK1DrFmjHnFGDPYGDM4Pj7+Qp9aqUZRVWWYMcPaVfGhh7R1fiFEvj1q9JNP9jicJvBdcEEXkQQRa/u/iFxsL7PgQperlFMWL85k9+5jJCc35/rrOzsdx+9V96PPn7/P4SSBr97x0EXkPWAU0FpEsoH/A0IBjDEvA7cAPxGRCqAUmGC0s0z5seoDiSZN6kdIiB6qcaG6d48lONiwbt1hCgpKiYuLdDpSwKq3oBtjflTP9GnANI8lUspBBw4UMXfuHkJCgrj//n5OxwkIEREhJCVBZqZh0aJMbr21p9ORApY2P5Ry8corm6mqMnz/+91ISIhyOk7A6Gz3XH3xxX5HcwQ6PQWdatKmT59FTo61yaeyEqZNAxBCQ3cyZcrO78zbFM8R6ildusCXX1oF3RiD6GG3jUILumrScnIKzhTptLTDlJRsITExihEjLjmr6DTFc4R6Snw8tGsXRU5OMVu35p85TZ3yLO1yUcq2dOkBAEaOTNYWpIeJwNVXdwS026UxaUFXCjh48AS7dh0jPDyYYcPaOR0nII0d2wnQgt6YtKArBSxdmg3AsGHtiIzUnsjGMGZMCiKwfHk2JSXlTscJSFrQVZNXWlrB118fAmDUKD0BdGOJi4tkyJAEyssrWbYs2+k4AUkLumry1qzJ4dSpSrp3jyUxMdrpOAHtmms6Atrt0li0oKsmzRjOtBa1dd74rrnG6kf//HMdBqAxaEFXTVpmJhw6VEJMTDgDBuiudI1t6NB2tGwZTkZGIfv3H3c6TsDRgq6atPXWGeYYMaI9wcH6cWhsISFBjB7dAdBul8ag72DVZGVnnyAjA4KChJEjk5yO02Rot0vj0YKumqyZMzdhjDBwYBtatgx3Ok6TUb1hdPHiLE6frnQ2TIDRgq6apPLySl59dTOgG0O9rUOHFqSmtuLEiXLWrDnkdJyAogVdNUn//W8GubkniY83dOsW43ScJqe620X70T1LC7pqcowxvPhiGgCDB6Pjtjjg6qtTAFi4cL+zQQKMFnTV5KxceZC0tFzi4iLp08fpNE3TyJFJhIUFk5aWy9GjpU7HCRg6aIVqcqpb5w891J/KytUOp2ka0tI2MGXKX75zX0ICZGUJ998/jdTU786fmBjH5Mn3ejFhYNCCrpqU3bsLmTNnN2FhwUyePJB//EMLujcUF5866+QgAwfuIytrN/n5SaSk9PrOtMzMBd6MFzC0y0U1KVOnpmMM3H57Km3b6inmnNSrVysAduw46nCSwKEFXTUZeXknef31LQA89thFDqdRHTq0ICoqlPz8UvLyTjodJyBoQVdNxtSp6ZSWVnDDDZ3p00fHbXFaUJDQs6fVSt++vcDhNIFBC7pqEo4fP8W0aRsAeOKJYQ6nUdVSU6sLuna7eIIWdNUkzJixkePHTzFqVDKXXJLodBxlS02NA+Cbb45SWVnlcBr/pwVdBbzS0tP87W/WsIpPPDHU4TTKVevWkbRpE0lpaQWZmUVOx/F7WtBVwJsxYxNHjpxk8OC2jB6d4nQcVUN1K133drlwWtBVQCspKee5574G4Omnh+th/j6oVy+roOuG0QunBV0FtGnTNpCXV8rQoe247rrOTsdRtejRI5agIGHv3uOUlVU4HcevaUFXAauo6BTPP78OgGefvVRb5z4qMjKUjh1bUFVl+OabQqfj+DUt6CpgTZ2aztGjZYwY0Z4xY7Tv3Jd924+u3S4XQsdyUQFn+vRZ7NpVwIwZAEJKSjZPPvlCrfOmpW06a4wR5X29erVi3ry9umH0AmlBVwEnJ6eAjRuTKS/Ppm/f1owcObDOeZcuXePFZKounTq1JCIimMOHSzh6tMzpOH6r3i4XEZklIkdEZGsd00VE/iEiu0Vks4gM8nxMpdxXUAArVhxEBMaP7+Z0HOWG4OAgevSoHqxLu10ayp0+9DeBseeYfi3Qzb5MAmZceCylGu7LL6GqynDppe1JTIx2Oo5yU/UwAFrQG67egm6MWQ6cq2NrHPCWsawBYkSknacCKnU+vvwyi4wMISwsiBtv1N0U/YnrAUbGOBzGT3liL5f2wAGX29n2fWcRkUkikiYiaXl5eR54aqW+VVFRxc9+tgSAsWM7ERMT4XAidT7atm1GbGwExcWnyc11Oo1/8kRBr23n3lq/X40xrxhjBhtjBsfH6/ClyrNmztzE1q35xMSYMychVv5DRM6c9GLfPofD+ClPFPRsINnldhKQ44HlKuW2/PyT/Pa3qwC46ioIDQ12OJFqiOpuFy3oDeOJgj4XuNPe22UYcNwYc8gDy1XKbb/61XIKC8sYPTqF7vsshzUAABZCSURBVN2dTqMaKjW1FSJw4IA1SqY6P+7stvgesBroISLZInKfiDwoIg/as8wH9gK7gVeBhxotrVK1WLo0izfe2EpYWDDTpl2FHuHvv6Kjw0hObk5lpbBixUGn4/ideg8sMsb8qJ7pBpjssURKnYeysgoeeGAhAFOmDD2zL7PyX6mpcWRlnWDhwv1cfXVHp+P4FR3LRfm15577moyMQnr2bMWvf32x03GUB1Tvj75wYabDSfyPFnTlt3buLOBPf1oLwMyZYwgP15EsAkHXrjGEhBg2bcojN7fE6Th+RQu68ktVVYYHHlhIeXkl993Xl5Ejk+t/kPILoaHBdOhgXV+0SFvp50MLuvJLb7yxleXLs2nTphnPPz/S6TjKwzp1sv5qt8v50YKu/E5ubgm//OUyAP72tyto1SrS4UTK01wLutFxANymBV35FWMMDz64kMLCMq65piM/+lFPpyOpRhAfbw0FkJNTrIN1nQct6MqvvP/+Tj7+eDfNm4fxyitX62nlApQIjB5tDd+wYIF2u7hLdwtQPm/69Fnk5BRQXAyvvgogjBhxipkzZ9Y6v56FKDCMGZPCu+/uYOHC/Tz66EVOx/ELWtCVz8vJKaBDhzG8/PImSkvz6NUrjnHjBtbZOtezEAWGMWM6ArBsWTbl5ZWEhen4PPXRLhflF9atO8zGjXlERARzxx2p2tXSBCQmRtO7dxwlJadZvVrH+3OHFnTl84qL4f33vwHgllu6614tTUh1K113X3SPFnTl04wxfP45lJScplevOEaMqPXcKSpAjRlTvWF0v7NB/IQWdOXTZs/eRkaGaFdLE3X55UmEhgaRlnaYo0dLnY7j87SgK5+1b9+xM6eUmzChp3a1NEFRUWEMH56IMbBkSZbTcXyeFnTlkyorq7jjjs84caKcHj0Mw4bpecebquohdLUfvX5a0JVPev75daxadZB27aK49lq0q6UJc+1H12EAzk0LuvI56em5PPWUdX7QN94YS7NmDgdSjho0qC2xsRHs31/Enj3HnI7j07SgK59SWnqa22+fR0VFFQ8/PJBrrunkdCTlsODgIK66yhpPV/d2OTct6Mqn/PrXy9mx4yg9e7biz3/WYXGV5dprrS/2+fP3OZzEt2lBVz5jwYL9/POfGwgJCeKdd66jWbNQpyMpH3HddZ0BWLw4i5MnTzucxndpQVc+oaCglLvv/gyAp58ezkUXJTicSPmShIQoBg9uS1lZhe6+eA5a0JXjqsc4P3SohOHDE/Vkz6pWN9zQBYB58/Y6nMR3aUFXjps1aysffphBdHQob799HSEh+rZUZ7vhBqvb5dNP9+rui3XQ4XOVI6rHOM/LgzfeABBGjSrn9ddfPWteHd9cAQwc2JZ27aLIzj7B5s159O/fxulIPkcLunJETk4B7dpdxezZa6moKGbYsHbceGOfWufV8c0VQFCQcP31nXnttS18+uleLei10IKuHPPhhxkcPFhMmzbN9Nyg6jvS0jYwZcpfzrr/2DEA4aWXVnDy5AoAEhPjmDz5Xu8G9FFa0JUjdu60zkQTEiL8+Md9iYjQt6L6VnHxqVq72RISKpkzZyk5OVW0bHkZMTERZGYucCChb9KtT8rr9u8/zrx51vXvf787HTq0cDaQ8hvh4cH06hUHwKZNeQ6n8T1a0JVXlZdXcttt8zh1SujXrzVXXJHsdCTlZwYOtPrON2w44nAS36MFXXnVr361jNWrc2je3HDXXb11FEV13vr1iycoSPjmm0JKSvSoUVda0JXX/Oc/O5k6NZ3Q0CDGj4fo6DCnIyk/FBUVSvfusVRVGTZv1m4XV1rQlVfs3FnAffd9AcBf/zqK9npqUHUBtNuldm7tWiAiY4GpQDDwmjHmuRrTRwFzgOqh0D4yxjzrwZzKD1QfLFRTeTm8+SYUFwu9ehkOHVrM+vV6sJBquP7943nvvZ1s317AmDFOp/Ed9RZ0EQkGpgNjgGxgnYjMNcZsrzHrCmPMDY2QUfmJnJyCs4q0MYZZs7aSn3+YhIQoHnjgYiIiQli2TA8WUg0XGxtBp04t2bfvOLt3O53Gd7jT5XIxsNsYs9cYUw68D4xr3FgqUCxbls3atYcJDw/mgQf66f7mymMGD24LwPaaTcsmzJ2C3h444HI7276vpktEZJOIfCYivWtbkIhMEpE0EUnLy9ONGYEuI+Mo//73NwDcfnsqiYnRDidSgWTw4LaIwJ49cOxYmdNxfII7Bb22/cpqDnWWDqQYY/oD/wQ+rm1BxphXjDGDjTGD4+Pjzy+p8iv5+aXMnLmZqirDmDEpXHxxO6cjqQATExNB9+6xVFYK//vfLqfj+AR3Cno24Hr0RxKQ4zqDMabIGFNsX58PhIpIa4+lVH6lrKyCGTM2Ulx8mt694xg/vpvTkVSAGjLEOhHKe+/tdDiJb3CnoK8DuolIJxEJAyYAc11nEJEEsY8QEZGL7eWevbuDCnhVVYbZs7eRnV1M27bNuP/+vgQF6cFDqnEMGtSWoCDD4sVZ5OaWOB3HcfUWdGNMBfAw8AWwA/iPMWabiDwoIg/as90CbBWRTcA/gAlGR6BvkubN20t6+hEiI0N46KEBel5Q1aiiokLp3NlqSHzwwTdOx3GcW7sc2N0o82vc97LL9WnANM9GU/5mxw7rbDIicP/9fUlIiHI6kmoCeveG3bvhrbe28/DDg5yO4yg9UlR5xPLlB5hrd8SNH9+NPn10E4ryju7doWXLcNatO8yWLU177zkt6OqCbdmSx003fUxlpTBqVDJjxqQ4HUk1IaGhcNtt1glSZs3a6nAaZ2lBVxfkwIEirr32vxw/fooePQy33tpDR1BUXnfvvX0BePvt7Zw6VeFwGudoQVcNdvRoKWPH/peDB4u57LIkxo1D92hRjrjoorb06xdPQUEpc+fucTqOY7SgqwYpLT3NuHEfs317Ab17xzFnzvcI0aP6lUNEhPvus1rpr7++xeE0ztGCrs5bWVkFN988h5UrD9K+fTSfffZ9YmMjnI6lmriJE1MJCwtmwYL97N17zOk4jtCCrs7LqVMV3HLLXL74Yj/x8ZEsWHALycl6TlDlvLi4SCZM6IExMG3aBqfjOEILunJbWZlVzOfN20tcXCSLF/+QXr1090TlOx555CIAXnttC0VFpxxO431a0JVbiovLuf76j/j00720ahXBokU/oG9fHWBN+ZZBg9py2WVJnDhRzptvbnM6jtdpQVf1ys8/yZgxH7BkSRYJCVEsW3YrAwa0cTqWUrV69FHraNF//COdqqqmNQKJFnR1ThkZRxk27F+sWXOIDh2as2LFBPr00Za58l3jxnWlY8cW7NlzjE8+aVq7MGpBV3VasiSLSy75F3v2HGPgwDasXj2Rrl1jnY6l1DkFBwed6Uv//e9X05TGCdSCrs5SVWX405++ZsyYDzh6tIwbb+zC8uUT9IxDym9MmtSPtm2bkZaWy7x5e52O4zV6KIj6jkOHirn//i+YP38fAJdeaujdezd/+tPUeh+blrbprJNEK9XY0tI2MGXKX866v29fyM0Vfvzjj7jnHhCBxMQ4Jk++14GU3qEFXQFgjOH993cyefJiCgvLiI2NYMyYUq66yv0CvXTpmkZMqFTtiotP1dqQaNeukrVrV3L4cDlFRQPo1y+ezMwFDiT0Hu1yUWzdmseYMR9w223zKCwsY+zYjmzZchdduzqdTKmGCwsL5pprOgIwd+6eJrHHixb0JmzXrkLuu+9z+vd/i8WLs4iNjeDVV69m/vzv0759c6fjKXXBRo5MIjY2ggMHTrBy5UGn4zQ6LehNTFWVYdGiTH7wg7n07DmLWbO2IgIPPzyQXbvu4/77++nwtypghIUF8/3vWycpnzNnN6WlDgdqZNqH3gRUVlaxenUOc+bs5o030ikoqAIgKMgwYAAMG2Zo0SKdF19M/87jdCOnCgSDB7dl2bID7Np1jBUrnE7TuLSgB6CTJ0+zdu0hVq48yMqVB1m9OoeiovIz0+PiIhg+PJFLL21/zlESdSOnCgQiwq239uQPf1jD+vWQnp7LoEFtnY7VKLSgB4DCwjKWLTvA8uXZrFp1kPT0I1RUVH1nni5dYrjppi4cOZLGiBEj9EQUqklJTm7OFVcks2TJAe64Yz5pabcTGRnqdCyP04Luh8rKKli16iCLFmWyeHEW69fnfmcLflCQMHBgG0aMaM+ll1qXpCRrI+eUKWlazFWTdPPN3di4MYvt2wt44omV/O1vVzgdyeO0oPuo6dNnkZNTcOZ2VRXs2QM7dkBGBpSXf1uURQzJyZCSAsnJkJhoCA/PBXLZvDmdzZu/Xa72i6umKiwsmHHj4O23g/j739dz3XWdGDOmo9OxPEoLuo/KySkgJeVq8vNLWbEim6+++m4/eFJSNKmpcfTs2Yq1a1/m3nufdGu52i+umrJ27eCppy7hqadWMWHCp6xZM5Fu3QJnfCIt6D4qJwe++GIz6em5VI8tlJAQxdCh7Rg8uC1t2jQ7M+/69VV1LEUpVdMTTwxl3brDfPLJHm644SNWr76NVq0inY7lEVrQfUhVleHTT/fw17+msXy5ALkEBQkXX5zAyJFJdOnSUvcRV+oCBQcH8a9/Xc+IEe+xaVMe48fPYd688URFhTkd7YJpQfcBpaWneeut7bz4YhoZGYUAhIcbLr+8E1demawnYFbKw6Kjw/jkk5sZOvRdli3L5ppr/su8eeNp2TLc6WgXRAu6g/LyTvLSSxuZNm0D+fnWIWwdOjTn0Ucv4uDBL+nevZvDCZUKXMnJLVi69FZGj/6AVasOcuWV/2HevPEkJEQ5Ha3B9NB/LzPGsHRpFhMnziM5eSZPP/0V+fmlDBrUlvfeu4E9e37MY48NJty/GwpK+YXu3VuxYsUEunSJIT09lwEDZrNkSZbTsRpMW+he8sc/vsaiRYVs3AiFhdX94IauXWHoUOjQ4TBbtnzCli3WFN29UCnvSElpycqVP2LChE9Ytiyb0aP/wy9/OYQnn7yE5s39q19dC3ojqaoybN2az4IF+/nf/3bx1VeFgFXIY2LCufTSRIYPb0/r1rVvXdfdC5XynoSEKBYt+iHPPvsVv//9Gp5/fh1vvbWdP/xhBLff3ouwsGCnI7pFC7oHVFZWkZVVxDffFJKensvatYdZtergmX5xgOBg6Ns3nhEj2tO7d2s9WlMpHxMSEsSzz47g+uu78MgjS/j660Pcd98XTJmykgce6Mftt/fy+XPqulXQRWQsMBUIBl4zxjxXY7rY068DTgJ3G2PSz1qQHyorqyA3t4QjR06Sm2tdrOsl7N9fREbGUfbsOU55eeVZj01Kas6VVyZzww1d+PrruXTvPsCBNVBKnY+hQ9vx1Ve38d57O3juubVs3ZrPM8+s5plnVtOrVxzXXtuJYcPaMWRIAh06tPCpXYnrLegiEgxMB8YA2cA6EZlrjNnuMtu1QDf7MhSYYf/1uL17j3H4cAlVVcblQo3bhspK1+tVlJVVUlZWQVlZBaWlFWdul5ZWUFRUTlHRKY4fr/57iqKico4fP0Vx8Wm3ckVHG1q1gjZtIDHRusTGFiGyjY0bt7Flyya6d9c+caX8QVCQMHFiL267LZVlyw7w6qtbmDdvL9u3F7B9+7dDcjRrFkLXrrG0bx9N69aRxMVF2n8jiIgIISwsmNDQIMLCggkLCyI01PobExNBv37xHs/tTgv9YmC3MWYvgIi8D4wDXAv6OOAtY4wB1ohIjIi0M8Yc8nTgF15Yx4wZmzy92DqFhATRpk0z2ra1Ltb1KNq2bcbKlUvp0+cS4uMjiYg490upfeJK+R8RYdSoDowa1YHy8kpWrMhm+fJsvv76EOnpueTllbJ5cx6bN+ed13KHDElg7drbPZ/XmHOfZ09EbgHGGmPut2/fAQw1xjzsMs+nwHPGmJX27cXAr40xaTWWNQmYZN/sARQA+R5aF6e1JjDWRdfD9wTKuuh6eEaKMabW5r07LfTaOohqfgu4Mw/GmFeAV848SCTNGDPYjQw+L1DWRdfD9wTKuuh6ND53DizKBpJdbicBOQ2YRymlVCNyp6CvA7qJSCcRCQMmAHNrzDMXuFMsw4DjjdF/rpRSqm71drkYYypE5GHgC6zdFmcZY7aJyIP29JeB+Vi7LO7G2m3xHjef/5X6Z/EbgbIuuh6+J1DWRdejkdW7UVQppZR/0MG5lFIqQGhBV0qpAOHVgi4irURkoYjssv/WOjCCiDwmIttEZKuIvCciPnWGh/NYjxgR+VBEdorIDhG5xNtZ6+PuutjzBovIBvu4A5/iznqISLKIfGn/L7aJyCNOZK2NiIwVkW9EZLeI/L9apouI/MOevllEBjmR0x1urMtEex02i8hXItLfiZz1qW89XOYbIiKV9jE7jvJ2C/3/AYuNMd2Axfbt7xCR9sDPgMHGmD5YG2IneDVl/epdD9tU4HNjTE+gP7DDS/nOh7vrAvAIvrkO4N56VACPG2NSgWHAZBHp5cWMtXIZXuNaoBfwo1pyuQ6vMQlreA2f4+a67AMuN8b0A36HD25kdHM9quf7M9ZOI47zdkEfB8y2r88GvlfHfCFApIiEAM3wvX3a610PEWkBjAReBzDGlBtjjnktofvc+p+ISBJwPfCal3Kdr3rXwxhzqHrQOGPMCawvp/ZeS1i3M8NrGGPKgerhNVydGV7DGLMGiBGRdt4O6oZ618UY85UxptC+uQbruBVf487/BOCnwH+BI94MVxdvF/S21fun23/b1JzBGHMQeAHIAg5h7dO+wKsp61fvegCdgTzgDbub4jUR8cVzW7mzLgB/B34FVHkr2Hlydz0AEJGOwEDg60ZPVr/2wAGX29mc/UXjzjy+4Hxz3gd81qiJGqbe9bB7E24GXvZirnPy+HjoIrIISKhl0hQ3Hx+L9U3YCTgGfCAitxtj3vFcSrdyXNB6YL22g4CfGmO+FpGpWN0Av/VQRLd54H9yA3DEGLNeREZ5Mtv58MD/pHo50VitqkeNMUWeyHaBPDa8hg9wO6eIXIFV0Ec0aqKGcWc9/o41ZlWlrwyh6/GCbowZXdc0EcmtHoXR/rlY28+U0cA+Y0ye/ZiPgOGAVwu6B9YjG8g2xlS3AD/k3P3TjcYD63IpcJOIXAdEAC1E5B1jjOeHizsHD6wHIhKKVczfNcZ81EhRz1cgDa/hVk4R6YfVfXetMaag5nQf4M56DAbet4t5a+A6EakwxnzsnYhn83aXy1zgLvv6XcCcWubJAoaJSDOxXqmr8L0NcfWuhzHmMHBARHrYd13Fd4cc9hXurMtvjDFJxpiOWBuol3i7mLuh3vWw30+vAzuMMS96MVt9Aml4jXrXRUQ6AB8BdxhjMhzI6I5618MY08kY09H+XHwIPORkMa8O5bULEIe1B8Iu+28r+/5EYL7LfM8AO4GtwNtAuDdzenA9BgBpwGbgYyDW6ewNXReX+UcBnzqduyHrgfXT3tj/j4325Tqns9vZrgMygD3AFPu+B4EH7euCtdfFHmAL1l5gjudu4Lq8BhS6/A/SnM7ckPWoMe+bwC1OZ9ZD/5VSKkDokaJKKRUgtKArpVSA0IKulFIBQgu6UkoFCC3oSikVILSgK6VUgNCCrpRSAeL/AyFtYy3aK9rRAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "infer_RCO_per.plot()" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "0.452" + ] + }, + "execution_count": 15, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "infer_RCO_per.p_value" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Analogously, the conclusion for the Relative Concentration index is that Sacramento is not significantly (under 5% of significance, because p-value > 5%) concentrated for the hispanic people." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Additionaly, it is possible to combine the null approaches establishing, for example, a permutation along with evenness of the frequency of the Sacramento hispanic group. With this, the conclusion of the Relative Concentration changes." + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": {}, + "outputs": [ + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "93c551d12b524fb0ba904c2ad6339854", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(IntProgress(value=0, max=1000), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n" + ] + }, + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 16, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXAAAAEICAYAAABGaK+TAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAAgAElEQVR4nO3deXxddZ3/8dcnS5O0Sds03be0hdIFlKIFXNAfslTEBUYd1HEpw/hgdNBxRJ1B6w/l5zgygzroTB1EYCyKDg4goOKCRRCULSxlK933JU3SNemSpvn8/vie015C0twk995z7837+Xjcx13O9rk3N+/7vd/zPfeYuyMiIoWnJOkCRESkfxTgIiIFSgEuIlKgFOAiIgVKAS4iUqAU4CIiBUoBnhAzO9vMNg9g+RvM7P9msqbBzsxazWxGltb9DTP7hwyt66tm9uNMrKuYmNk4M1tuZhVJ15IrCvABMLP1ZnYg+sffbmY/NLPqLGznUjN7JPUxd/+Eu38tQ+t/u5n90cz2mVmTmT1kZu/JxLqzwczczE4c4DoeNLOPpz7m7tXuvnZg1XW7rTHAx4Dvm9kkM+swsxO6me/nZvbNTG8/F8zsr8xsg5m1mdndZjbqOPN+zcyej16Hr3aZ9k4ze8TMdkf/Uz8ws5qU6S9G/2/xpcPMfgHg7o3AH4DLs/Q0844CfODe7e7VwDzgNOCLCdfTJ2b2fuB/gVuBycA44Grg3UnWNRBmVpZ0DV1cCtzn7gfcfQuwFPho6gxR4F0ILMl9eQNjZicD3yc8p3HAfuB7x1lkNfCPwK+6mTYC+GdgIjCH8J68Lp7o7idHH7TVQA2wkfD+jd0G/G2/n0yhcXdd+nkB1gPnpdz/N+BXKfcrgG8S3mSNwA1AVTTtbGBzyrxXAWuAfcBLwF9Ej88BDgJHgFZgd/T4D4F/jm4vB96Vsq4yoBl4XXT/DcCfgd3AMuDs6HGLavvCcZ5jCfBlYAOwgxD0I6Jp0wAHFkbraQYWpSxbCnwp5Xk9BUyJps0G7gd2AiuAS1KW+yGwmPAPvg94HDghmvbHaJtt0evxgfi1BP4J2A78CKgFfgk0Abui25OjdXw9ej0PRuv4z+hxB06Mbo+InmtT9Ny/DJRE0y4FHon+truAdcA7jvMaPgB8JOX+XwFruszzd8DTKfe/A2wC9kav21tSpn0V+HF376Ou78vo7xe/t1qAnwGjMvx/8C/AT1LunwC0AzW9LPdj4Ku9zPNe4Pkepv2f6O83rMt7fz9Qn3Q+5OKiFniGmNlk4B2E1kXsX4GTCK3zE4FJhNZtd9YAbyEExzXAj81sgrsvBz4BPOqh5TGym2V/Cnwo5f7bgWZ3f9rMJhGC8J+BUcDngTujr/WzgCnAHcd5apdGl7cBM4Bq4D+7zHNWtK5zgavNbE70+JVRXRcCw4HLgP1mNowQ3j8BxkbzfC9qycU+FL0OtYTX9OsA7v7WaPqp0etxe3R/fPT86glfoUuA/47uTwUOxHW7+yLgYeBT0To+1c3z/g/C32IGISg+Bvx1yvQzCR88owkf3DebmXWzHoDXRPPGfg6MNrOzUh77KOEDI/Yk4X0zivA6/a+ZVfaw/uP5e+Di6DlMJHzgLO5uRjObGnVd9HT5qx62cTKhYQCAu68hBPhJ/ai3q7cCL/YwbSFwh7u3pWy7g/B+OTUD285/SX+CFPKF0NJpJbQSnfDVeGQ0zQitxBNS5n8jsC66fTZdWk5d1v0scFF0+1LgkS7Tf8ixFviJUQ1Do/u3AVdHt/8J+FGXZX9LePO/Oaq78jh1LAX+LuX+LOAwoaUzLVp+csr0J4APRrdXxM+hyzo/ADzc5bHvA19JeW43pUy7EHg55f7RlnLKa9ney/OYB+xKuf8g8PEu83j0WpYCh4C5KdP+Fngw5e+xOmXa0GjZ8T1s+zAwu8tjNwE3RrdnRvWPPU79uwgfWtC3Fvhy4NyUaRPiv18G/w+WAp/o8tgWom96x1nuuC1w4PzoeZ/UzbShhG8nr9oG8CfgY5l6fvl8UQt84C529xrCP9JsQosMYAzhTfZU3IIBfhM9/ipm9jEzezZl3lNS1nVc7r6a8I/6bjMbCryH0GqD0AL9y9SWFKHFPIHwlZrodk8mEroQYhsI4T0u5bHtKbf3E1rpEFr3a7pZZz1wZpeaPkxoRfe2zp40ufvB+I6ZDTWz70c71vYSul5GmllpL+uB8LoP4dXPe1J39bn7/uhmTzXuIvTXploCXBK1qj8K/Mbdd6TU/7loRMWe6PUZQZrvhy7qgZ+nvM7LCd1H446/WJ+0Er5hpRpOaFT0i5m9gfAefr+7r+xmlvcSut8e6mZaDaG7sOgpwDPE3R8itBzjUQTNhK/tJ7v7yOgywsPOl1cws3rgB8CngDoP3SQvEFrxEFp3vYm7US4CXopCHUI/6o9Sahjp7sPc/VpCC3kT8L7jrHcrIQRiU4EOQp9+bzYR+kO7e/yhLjVVu/sn01hnT7q+Rp8jfFs4092HE76KQ3qvaTOhldr1eW/pZ23P0aU7wd0fJnyAXgR8hJTuEzN7C+Gb0yVAbfR+2JNSe6o2QkMhXraUVzYSNhH651Nf60oPO1NfIepCaT3O5cM9PL8XSemyiIZiVgDdBW+vzOw04F7gMndf2sNsC4FbPWpypyxbRvgWtazbpYqMAjyzrgfON7N57t5JCOV/N7OxANEQsrd3s9wwQqA0RfP9NaEFHmsEJpvZkONs+3+ABcAnOdb6hvA19d3RUMFSM6u0MAZ9cvTmvxL4v2b212Y23MxKzOwsM7sxWv6nwGfNbHo0RPJfgNs99DX25ibga2Y204LXmlkdYYfiSWb2UTMrjy6np/Sd96aR0Dd9PDWED9Dd0QiPr6S7Dnc/QtjZ93Uzq4k+YK8kvJb9cR+hD7qrWwn7SUYCv+hSewfh/VBmZlfz6hZubCVQGQ2/KyfsbE0dB31D9DzqIQxpNLOLuluRu2+MPkh7utzWQw23Ed5jb4n2b/w/4C5377YFHv29Kwn5Uxa9J0ujaacQvql+2t1/0cPykwn7ZLobsXMGsN7dN3QzregowDPI3ZsI/5TxATb/RNih8lj0Nf73hFZh1+VeAr4FPEoIltcQ+vFiDxBaOdvNrLmHbW+Lln8TcHvK45sIrbwvEQJhE/AFor+9u99B6JO+jNDabiTs8LwnWsUthFEdfySMtjgIfDq9V4RvE4Lwd4T+ypsJo3D2ET5sPhhtczshyNI9AOOrwJKoW+CSHua5HqgitKYfI4RCqu8A7zezXWb23W6W/zShdbuWMOLkJ4TXoj9uBS40s6puHp9K+EA8lPL4b4FfE8J5A+E139Tdit19D2EEy02EbwhthBE5se8QWrO/M7N9hNfizH4+j265+4uEHe23EUYq1UQ1AUcPOrshZZEfED5cPwQsim7Hwyo/R/gGcXNKy7/rTsyPEnbqd9c992HCh9agYF2+gYhIFpjZvwA73P36pGspVtE33YeA01L3hxQzBbiISIFSF4qISIFSgIuIFCgFuIhIgcrpj/6MHj3ap02blstNiogkb0X0SwqzXjUILS1PPfVUs7u/6iDAnAb4tGnTaGhoyOUmRUSSd/bZ4frBB/u1uJl1O65dXSgiIgVKAS4iUqAU4CIiBUoBLiJSoBTgIiIFSgEuIlKgFOAiIgVKAS4iUqAU4CIiBSqnR2JK3y1efAtbt7YcvT9xYh1XXHFZ2tNFpHilFeBmtp5wgtIjQIe7z49OU3U74czk64FL3H1XdsocvLZubaG+fsHR+xs2/K5P00WkePWlC+Vt7j7P3edH968Clrr7TGBpdF9ERHJkIH3gF3HspKJLgIsHXo6IiKQr3QB3wklRnzKzy6PHxkUn0o1PqDu2uwXN7HIzazCzhqampoFXLCIiQPo7Md/s7lujk4beb2Yvp7sBd78RuBFg/vz5OgGniEiGpNUCd/et0fUO4OfAGUCjmU0AiK53ZKtIERF5tV4D3MyGmVlNfBtYALwA3AssjGZbCNyTrSJFROTV0ulCGQf83Mzi+X/i7r8xsyeBn5nZ3wAbgb/MXpkSc4cnn9zG9u37eetbJyddjogkqNcAd/e1wKndPN4CnJuNoqR7+/cf5gc/2Ms3vnEbAFVVzty5a7j88l4WFJGipEPpC0Rnp3PLLS/Q3DyCysoyJkwYxoEDxrJl02huPpB0eSKSAAV4gXj00a08/3wzZWUdfPnLZ3L11W/kNa8ZTUdHGffcszrp8kQkAQrwAnDkSCe/+tVaAKZPX8eYMUMpKTE++MHZgNPQ0MiuXQeTLVJEck4BXgCeeqqRlpaDjBs3lNGjm48+Pnp0FXV1LXR2Og8/vCXBCkUkCQrwAvDYY9sAOOecqYTBQMeMHRuObl22TMPwRQYbBXiea22Fl15qoaTEmD9/3Kumjxixh4qKUjZvbtXOTJFBRgGe51atCmO/Tz65jurqIa+aXlLinHxyHQDPP6/fmhEZTBTgeW5t2HfJa187psd55s4NAb5q1e5clCQieUIBnsc6OjrZsCHcjkO6OyecMBKANWt24/q5MJFBQwGexxoatnPwoDFmTBWjR1f1ON/48cMYOrSM3bsPsXdvDgsUkUQpwPPYn/4UhgbOmjXquPOVlNjRVvjmzVkvS0TyhAI8jz3+eBg+OGPGiF7nnT49zLNtW1ZLEpE8ogDPY/H47zicj2fq1BoAGhuzWpKI5BEFeJ7asmUfmzbto6LCGT9+WK/zT558LMBdezJFBgUFeJ568sntAEyYEPq4ezNyZAXV1eUcPGhs2rQv2+WJSB5I95yYkiOLF9/C1q0tPPwwgOGe3sE5ZsaUKTUsX76TZ5/dwdSpw7Nap4gkTy3wPLN1awv19QtobQ2HzQ8ZsiftZeNulOee0xGZIoOBAjxPbd4cukGGDt2f9jJxX/nLL+/MSk0ikl8U4Hno4MEOmpoOUFZmVFWl/wNVEyaEAF++XAEuMhioDzwPbdnSCoQWdUlJ+iNK4hb4889v50tfug4zmDixjiuuuCwrdYpIshTgeWj79jYAJk6s7tNyw4aVU17ezuHDQ6ipOYu6uio2bPhdNkoUkTygLpQ81NgY+r3Hjh3a52XjLpf4Q0BEipcCPA/FAZ7OATxdxQG+bZsCXKTYKcDzUGNjCN9x4/reAh86VC1wkcFCAZ5nOjuhqWngXShqgYsUPwV4ntmzBzo6nJEjK6is7Ps+ZvWBiwweCvA8szMawt2f7hOAIUPaqagopbX1MK2t7RmsTETyjQI8z7S0hOtx4/q+AxPA7NjOT7XCRYqbAjzPDLQFDseOyFQ/uEhxU4DnmUwEeLxsPBxRRIqTAjzPHAvw/nWhpC67Y4cCXKSYpR3gZlZqZs+Y2S+j+6PM7H4zWxVd12avzMGhra2dvXuN0lKjrq6y3+uJhx+qBS5S3PrSAv8MsDzl/lXAUnefCSyN7ssArF69G4AxY4ZSWtr/L0dxF0pT0346OzNSmojkobRSwswmA+8Ebkp5+CJgSXR7CXBxZksbfNasiQO8akDrGTKklNraSo4ccXbvzkRlIpKP0m3mXQ/8I5Danhvn7tsAouux3S1oZpebWYOZNTQ16Uwxx7NuXTj7zkADHI61wnfqp8FFilavAW5m7wJ2uPtT/dmAu9/o7vPdff6YMWP6s4pBY+3aEOB1dQpwEeldOsdqvxl4j5ldCFQCw83sx0CjmU1w921mNgHYkc1CB4O1azPThQLHRqLEBwaJSPHptQXu7l9098nuPg34IPCAu38EuBdYGM22ELgna1UOEnELfPTo/o8Bj6kFLlL8BjIO/FrgfDNbBZwf3Zd+6ux01q/fCzCgIYQxBbhI8evTz925+4PAg9HtFuDczJc0OG3d2kp7+xGGDvV+/QphV3V1VZSVGfv2QWtrO9XVQzJQpYjkEx2JmSfi/u/aDB0OVVJijBkTWuGrVu3KzEpFJK8owPNEPIRwxIjMrTPuRlm5UgEuUowU4Hki3oE5cmTm1jl2bBiJogAXKU4K8DwRB3imulAAxo8PLfAVK7QnU6QYKcDzhLpQRKSvFOB5ItM7MeHYwTwrVuzE3TO3YhHJCwrwPLB//2G2bWujrKyEmprMrbe6upzKSmfv3nb9NrhIEVKA54H160P3SX39cEoy+BcxM0aNCrfVjSJSfBTgeSDu/54xI4Md4JE4wLUjU6T4KMDzQDwCZcaMDI4hjKgFLlK8FOB5IA7w6dOHZ3zdCnCR4qUAzwPHulAy3wKvqwvX6kIRKT4K8DwQDyHMRh/4unXLAFi5soUvfvE6Fi++JePbEJFkKMAT5u5Z7QM/ePAAtbWVdHYa1dVnsXWrzvAgUiwU4AlratpPW9thRoyooLZ24L8D3p34iMzt29uysn4RSYYCPGHHWt+Z7z6JxQHe2KiDeUSKiQI8YWvWhP7vE07IfPdJLD6kXgEuUlwU4AnLTYCrBS5SjBTgCctlgO/YoT5wkWKiAE/YmjWhDzybAV5XV0VpqbFr1yHa27O2GRHJsYGfPVcG5PnntwJw1123s3QpNDQso75+QUa3UVJijB07lG3b2tilAzJFioZa4Alqa2tn716ntNQ45ZTzqa9fQGvrgaxsK+5GadEwcJGioQBPUDyEcPToKkpKLKvbis+PuVNH1IsUDQV4guIdmGPGDM36tuIWuAJcpHgowBN0LMCrsr6t+ATH6kIRKR4K8ATlsgWe2oWi82OKFAcFeILiIYS5aIHX1JRTVVXGoUNGU5MO6BEpBgrwBOWyC8XMjvaD6+QOIsVBAZ6Qjo5ONmzYCzijR2c/wIGj21m/fm9Otici2aUAT8iGDXvp6OikpgbKy0tzss04wOMzAIlIYdORmAmJT3EWn/IsF+rqQoDfeecjHDz4CBMn1nHFFZflrgARySi1wBMSB3h80uFcqKsLJ4w4eLCO+voFOjuPSIHrNcDNrNLMnjCzZWb2opldEz0+yszuN7NV0XVt9sstHitWhB2JSbTAW1qyc7i+iORWOi3wQ8A57n4qMA+4wMzeAFwFLHX3mcDS6L6kaeXK3LfAR40KLfCdOw/S2amx4CKFrtcA96A1ulseXRy4CFgSPb4EuDgrFRapJFrgQ4aUUl7eTmens3v3odxtWESyIq0+cDMrNbNngR3A/e7+ODDO3bcBRNdje1j2cjNrMLOGpqamTNVd0Pbta2fr1lYqKkoZPjy3266sDMGtbhSRwpdWgLv7EXefB0wGzjCzU9LdgLvf6O7z3X3+mDFj+ltnUYm7T2bOrKUkx7uRKypCgDc3K8BFCl2f4sPddwMPAhcAjWY2ASC63pHx6opU3H1y0km53+9bUXEQUAtcpBikMwpljJmNjG5XAecBLwP3Aguj2RYC92SryGITt8BnzcrhHsxI3AJvaTmY822LSGalcyDPBGCJmZUSAv9n7v5LM3sU+JmZ/Q2wEfjLLNZZVOIW+KxZtaxcmdttqw9cpHj0GuDu/hxwWjePtwDnZqOoYhcfxDNr1qicB7ha4CLFQ0di5pi7H/01wGT6wEOAh7HgOd+8iGSQAjzHtmxppa3tMKNHVzFqVG5+hTBVSYkzcmQFnZ3Ovn0537yIZJACPMfi7pPZs3O/AzMWH5G5Rz9KKFLQFOA59vLLyQd4bW0I8L36WXCRgqYAz7E4wJMYQhiLW+AKcJHCpgDPsXzqQlGAixQ2BXiOqQtFRDJFAZ5DbW3tbNq0j/LyEqZNG5FYHbW1FYACXKTQ6ZRqObB48S1s3drC9u0ARlXVAb7ylW8B0NCwjPr6BTmtJx6+qGGEIoVNLfAc2Lq1hfr6BZi9BoCyslbq6xdQX7+A1tbcH9JeU1NOWVkJBw4YbW3tOd++iGSGAjyHtm/fD0BVVbK/Q2JmR7tRNm1SM1ykUCnAc6ixsQ1IPsDh2EgUBbhI4VKA59D27XGAJ/9DUvFIFAW4SOFSgOdIZ6fT2JgfXShwLMA3btRQFJFCpQDPkV27DnL4cCfDhw+hrOxI0uWoC0WkCCjAcyTuPhk/fljClQQKcJHCpwDPkXgEyvjxQxOuJDjWhaIAFylUCvAciUegjBuXLy3weBjhXtw94WpEpD8U4DmSb10oVVXlVFQ4+/d3sGtX8qNiRKTvFOA5km8BDlBTE67VDy5SmBTgOXDoEOzZ0055ecnRnYf5YPjwcK1+cJHCpADPgZaWcD1u3FBKSizZYlLEAb5pk8aCixQiBXgOHAvw/Ok+gdQAVwtcpBApwHMgDvB8GUIYUxeKSGFTgOfAsQBXC1xEMkcBngP534WiPnCRQqQAz7IjRzrZtSvcHjcuP7tQtmxp5ciRzmSLEZE+U4Bn2fr1ezlyJJxAobIyv85gV1YGY8ZUcfhw59FfShSRwqEAz7KXXw79J/nWfRKbOjU0w9UPLlJ4FOBZtmJF6D/Jtx2YsSlTwuGY6gcXKTwK8Cx7+eWdQP4NIYzFAa6hhCKFp9cAN7MpZvYHM1tuZi+a2Weix0eZ2f1mtiq6rs1+uYUnDvB87UI51gJXgIsUmnRa4B3A59x9DvAG4AozmwtcBSx195nA0ui+dLFiRdwCz88AP9YHri4UkULTa4C7+zZ3fzq6vQ9YDkwCLgKWRLMtAS7OVpGFaufOA+zYsZ/ycmfkyIqky+mWWuAihatPfeBmNg04DXgcGOfu2yCEPDA208UVungH5qhR5NWPWKVSH7hI4Uo7wM2sGrgT+Ad3T/v7tpldbmYNZtbQ1NTUnxoLVtx9UleXcCHHMWFCNaWlRmNjG+3tyZ9sWUTSl1aAm1k5Ibxvc/e7oocbzWxCNH0CsKO7Zd39Rnef7+7zx4wZk4maC0a8AzOfA7ysrISJE6txhy1b1AoXKSTpjEIx4GZgubt/O2XSvcDC6PZC4J7Ml1fYCiHAQf3gIoUqnRb4m4GPAueY2bPR5ULgWuB8M1sFnB/dlxT53oXS0PAMixZdx65dWwC4+eZfJlyRiPRFrz/O4e6PAD3tgTs3s+UUj8OHj7B69W7Mwk7MfNTaeoj6+gVMmbKS5cs3sHFja9IliUgf6EjMLFm7dg8dHZ1MnTqc8vKkqzm+2tpwns69GgouUlAU4FkSd5/Mnp2nze8U8YmWFeAihUUBniXxDkwFuIhkiwI8S+IAnzUr/wNcXSgihUkBniWF1IVSXV1OeXkJBw8ara3tSZcjImlSgGeBu7N8eeEEuFk4YxBoLLhIIVGAZ0Fz8wF27TpITc2QvP0Vwq5qa6sABbhIIVGAZ0Fq90k4kDX/jRqlFrhIoVGAZ0EhjUCJxTsyN27UnkyRQqEAz4JCGoESi4cSqgUuUjgU4FlQSCNQYnELXAEuUjh6/S0U6bvHHlsPwG9+cw9PPw0NDcuor1+QbFG9UAtcpPCoBZ5h+/cfprn5CCUlxmmnnUd9/QJaWw8kXVavUvvA3T3hakQkHQrwDFu+vAUwxo0bSllZ4by8VVVlVFY6Bw500Nyc/x84IqIAz7gXXmgGYNKk6oQr6buRI8P16tW7ky1ERNKiAM+wOMAnTiy8AK+tDderV+9KthARSYsCPMMKuQV+LMDVAhcpBArwDHvhhRagMFvg8ZmDVq1SC1ykECjAM2j37oNs3ryPsjJn9OiqpMvpM7XARQqLAjyDXnwxtL5Hj4aSksL4DZRUCnCRwqIAz6C4/3vMmIQL6adhw6CmZgi7dh2kqWl/0uWISC8U4BlU6AFuduzw/zCeXUTymQI8g55/vgko3AAHmDMnDvCdCVciIr1RgGdIZ6fz7LMhwMeOTbiYAZgzpw5QC1ykECjAM2T16l3s2XOIiROrqalJupr+OxbgaoGL5DsFeIY8+eR2AE4/fXzClQzM3LkhwF96SS1wkXynAM+QhoZGAObPH5dwJQMzffoIKipK2bx5H3v2HEq6HBE5DgV4hjzxxDag8FvgZWUlnHzyaACee64p4WpE5HgU4Blw8GDH0Rb4GWdMSLiagZs3LwyjefbZHQlXIiLHowDPgKeeaqS9/QinnDL66IkRCtm8eWEYzbJlaoGL5DMFeAY88shmAN785kkJV5IZp56qFrhIIVCAZ8Ajj2wB4KyziiXAQwv8hReaaW8/knA1ItKTXgPczG4xsx1m9kLKY6PM7H4zWxVd12a3zPzV0dHJQw+FFvhb3zo54WoyY8SICmbNGsWhQ0fUChfJY+m0wH8IXNDlsauApe4+E1ga3R+UnnhiG/v2tXPSSbVMnTo86XIGpKHhGRYtuo5Fi66joiKMA//zn7cmXJWI9KTXAHf3PwJdD8u7CFgS3V4CXJzhugrG/fdvAOC88+oTrmTgWlsPUV+/gPr6BZx66lwAHn1UAS6Sr/rbBz7O3bcBRNc9/vqHmV1uZg1m1tDUVHyjGn7/+xDg559f+AGeasaMcIZjtcBF8lfWd2K6+43uPt/d548p5J/p68a+fe089tg2SkqMt71tatLlZNT48cOorHQ2b97Hpk17ky5HRLpR1s/lGs1sgrtvM7MJwKDa07V48S1s3drCqlXQ0WFMm1bKiBEVSZeVUSUlxsSJsHZt6EaZMqWw+/dFilF/W+D3Aguj2wuBezJTTmHYurWF+voFtLSEVvekSR0JV5Qdk6NBNepGEclP6Qwj/CnwKDDLzDab2d8A1wLnm9kq4Pzo/qATnwNz+vSEC8mSSdGwdgW4SH7qtQvF3T/Uw6RzM1xLQWlq2k9j436qqsqYPPlw0uVkxcSJUFpqPP10I3v3HmL48OLqJhIpdDoSs59eeCG0vufOraOkSF/Fiorw41xHjvjRg5VEJH8UafRkX3wC45NPrku4kuyKh0fGwyVFJH/0dxTKoHb4MKxYEY5tOuWU0fz+9+EIxlhDwzLq6xckVV7GNDQ8E53f0/jJT57ipJPWc8UVlyVdlohE1ALvh40b4fDhTqZMqWHEiIpXHMFYX7+A1tYDSZeYEa2th3jjG8+joqKU5mZjxQqdZk0knyjA+2HNmnB9yimjky0kB8rKSjjppPBbZevXJ1uLiLySArwfBlOAA8yePQqAdesSLkREXkEB3kerVu1i1y5j6NAypk8fHEcnxmeqX7cOOjs94WpEJKYA76Nf/zo0Q+fOraO0dHC8fBMmDKO2toK2NtPvg4vkkcGRQBn061+vBQZP9wmAmR19vvfdtzbharCJzxYAAAp6SURBVEQkpgDvg/37D/OHP2wCin/8d1dxgP/qVwpwkXyhAO+DBx/cxKFDR5gwwQfdYeWzZ4+itNR5/PFtNDfvT7ocEUEB3idx63PGjIQLSUBlZRlTp4I7/Pa365MuR0RQgKets9O5557VAMycmXAxCTnhhHB9330aTyiSDxTgaXriiW1s2dLKlCk1TJiQdDXJOPHEcH3ffWtpbz+SbDEiogBP1113rQLgve+diVnCxSRk1KiwM3P37kM88MDGpMsRGfQU4Glwd+68cyUA73vfSQlXk5yGhmeorQ0npr7qqjtYvPiWhCsSGdwU4Gl47rkm1q7dw9ixQ3nTmyYmXU5iWlsPcc45bwJg9eohbNqkH7cSSZICPA133BFa33/xFzMHzdGXPZkwYRjjxw+jre0wG9WLIpKowZ1GaejsdG699UUALrlkVsLVJM/MeN3rxgKwfHnCxYgMcgrwXjzwwEY2btzHtGnDOfvsKUmXkxde//pxAKxYAQcPdiRcjcjgpQDvxX/917MAXHrpKZSUDNLhJ11MnlzDlCk1HDhg3H336qTLERm0FODHsW7dbu6+ezWlpbBz559YtOg6Fi26joaGZUmXlrizzpoEwA03PJtwJSKDlwL8OL797afo7HTmzHFOPrn4Tpk2EGeeOZ4hQ8LZ6hsatiddjsigpADvwcaNe7nxxucwgze8Ielq8k9VVTmnnRZuf+MbjydbjMggpQDvwZe//Ajt7Uf4wAdmR2dml67OOCP8yNVdd63i0Ue3Jl2OyKCjAO/GZz/7fX70o5coLXVqa5erz7sHNTVw5ZWvB+BTn1rK4cP6fRSRXFKAd9Ha2s6SJXsBuOCCE5g3T33ex3PVVWdSXz+cp59u5Ctf+XPS5YgMKgrwFO7OFVf8nl27jMmTq3nHO6YnXVJea2h4hmuv/Q5nnbUHM+cb33icH/7whaTLEhk0ypIuIJ9861sN3HrrS5SXO5dddgrl5fp8O57W1kPRyBzo6NjI7bev4LLLfkNz8wGuvHK+xs2LZJkSKvK97z3DF77wEADvfCdMmlSTcEWF5ZxzpjJz5hbc4QtfeIgTT/wmX/vaD5IuS6SoDfoA37//MH//90u54oqlAFx//duYOzfhogrUmDEb+eQnT2XYsHLWrTOuuWY3n/nMA2zatDfp0kSK0qAMcHfnpZea+eY3n2T27Fv4j/94hvLyEm666e185jOvT7q8gjZv3liuvvoNnH76OI4cMb773aepr/8+s2ZdxxVX3EBnpyddokjRGFAfuJldAHwHKAVucvdrM1LVAOzb1866dXtYu3Y369fvZfv2NpqbD7zisn17G3v2HDq6zLx5Y7nxxvM5/fRBeq60DBs5spKPf/y1tLd/kyFDFvD00ztYudJZubKV3/72Zj7ykTlccsks5sypwwbr6Y1EMqDfAW5mpcBi4HxgM/Ckmd3r7i9lqrjY8883sW9fO+3tR2hv76S9/Qh79hxi+/Y2tm9vY+PGfVFo76GlJb0hf5WVHcyYURp1lzzM3Xc3cvfdYVpDwzLq6xdk+mkMOsOG7Wfhwteyd+8hHnlkK3/4wyrWrNnNNdc8yjXXPMqkSdWcddYkZs8exbRpIxgxooLq6nKGDSuntLSEOXNGMXx4RdJPQyRvDaQFfgaw2t3XApjZ/wAXARkP8Esu+QUvv7wzrXkrK8uYNm04hw+3MHnyFEaOrKS6upyGhrt517s+THV1OTU1Q7jzzmu59NKrAViy5DHOP/9YYD/44GOZfgqD2vDhFVx44XTmzFnF2We/j9tvX8G9965hy5ZWbr99RY/LLV16CeecMzWHlYoUFnPvX5+kmb0fuMDdPx7d/yhwprt/qst8lwOXR3dnAT39x44GmvtVTHblY12qKX35WJdqSl8+1pVETfXuPqbrgwNpgXfXefmqTwN3vxG4sdeVmTW4+/wB1JMV+ViXakpfPtalmtKXj3XlU00DGYWyGUg9Rc1kQL9oJCKSIwMJ8CeBmWY23cyGAB8E7s1MWSIi0pt+d6G4e4eZfQr4LWEY4S3u/uIAaum1myUh+ViXakpfPtalmtKXj3XlTU393okpIiLJGpRHYoqIFAMFuIhIgcppgJvZKDO738xWRde1Pcx3gZmtMLPVZnZVN9M/b2ZuZqOTrsnMrjOzl83sOTP7uZmNHEAtvT1vM7PvRtOfM7PXpbvsQPS3LjObYmZ/MLPlZvaimX0m6ZpSppea2TNm9st8qMnMRprZHdF7abmZvTFP6vps9Ld7wcx+amaVOapptpk9amaHzOzzfVk21zVl833eK3fP2QX4N+Cq6PZVwL92M08psAaYAQwBlgFzU6ZPIew43QCMTromYAFQFt3+1+6WT7OO4z7vaJ4LgV8TxuC/AXg83WUH8PoMpK4JwOui2zXAykzUNZCaUqZfCfwE+GXSr1M0bQnw8ej2EGBk0nUBk4B1QFV0/2fApTmqaSxwOvB14PN9WTaBmrLyPk/nkusulIsIb1Si64u7mefoIfru3g7Eh+jH/h34R7o5aCiJmtz9d+7eEc33GGE8fH/09rzjWm/14DFgpJlNSHPZ/up3Xe6+zd2fBnD3fcByQigkVhOAmU0G3gnclIFaBlyTmQ0H3grcDODu7e6+O+m6omllQJWZlQFDycyxHr3W5O473P1J4HA/nk9Oa8ri+7xXuQ7wce6+DcKTJnyidTUJ2JRyf3P0GGb2HmCLu2fyLMMDqqmLywgtmf5IZxs9zZNufbmu6ygzmwacBjyeBzVdT2gEdGaglkzUNANoAv476ta5ycyGJV2Xu28BvglsBLYBe9z9dzmqKRvLZn29GX6f9yrjAW5mv4/6y7pe0v2U7PYQfTMbCiwCrs6XmrpsYxHQAdzW1/rS3cZx5knrZw36aSB1hYlm1cCdwD+4eybO7tDvmszsXcAOd38qA3VkpCZCK/d1wH+5+2lAG6E7L9G6LOwPugiYDkwEhpnZR3JUUzaWzep6s/A+71XGz4np7uf1NM3MGuOv1tFXtB3dzNbTIfonEN5Iyyz8hvRk4GkzO8PdtydUU7yOhcC7gHM96gjrh3R+mqCneYaksWx/DaQuzKyc8Ka+zd3vyoOa3g+8x8wuBCqB4Wb2Y3cfaDANpCYHNrt73Gq7g8wF+EDqOg9Y5+5NAGZ2F/Am4Mc5qCkby2ZtvVl6n/cuFx3t8QW4jlfuMPy3buYpA9YSwjremXByN/OtJzM7MQdUE3AB4Sd0xwywjl6fN6HfNnVn0xN9ec0SqMuAW4HrM/w+6ndNXeY5m8ztxBxQTcDDwKzo9leB65KuCzgTeJHQ922EfUSfzkVNKfN+lVfuMMzKe32ANWXlfZ5W3TndGNQBS4FV0fWo6PGJwH0p811I2JO7BljUw7rWk5kAH1BNwGpC39mz0eWGAdTyqm0AnwA+kfJGWRxNfx6Y35fXLNd1AWcRWpfPpbw+FyZZU5d1nE2GAjwDf795QEP0Wt0N1OZJXdcALwMvAD8CKnJU03hCq3gvsDu6PTyb7/X+1pTN93lvFx1KLyJSoHQkpohIgVKAi4gUKAW4iEiBUoCLiBQoBbiISIFSgIuIFCgFuIhIgfr/qs7JL4HccCMAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "infer_RCO_eve_per = SingleValueTest(RCO, iterations_under_null = 1000, null_approach = \"even_permutation\", two_tailed = True)\n", + "infer_RCO_eve_per.plot()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Relative Centralization" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Using the same *permutation* approach for the Relative Centralization (RCE) segregation index:" + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Processed 1000 iterations out of 1000.\r" + ] + } + ], + "source": [ + "from segregation.spatial import RelativeCentralization\n", + "RCE = RelativeCentralization(gdf, 'HISP', 'TOT_POP')\n", + "infer_RCE_per = SingleValueTest(RCE, iterations_under_null = 1000, null_approach = \"permutation\", two_tailed = True)" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXoAAAEICAYAAABRSj9aAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAAgAElEQVR4nO3deXgUZbb48e/JRhLWACGsBhXCKptsCqKogCiiuNzrho46gws6c2d1Rh3vXMfx53Ucl6uMygijqOMuIyouDCMiCkgg7Mi+B5IQIBAIWc/vj6rENnQW0ulUd+d8nqefrq56q+p0defk7bfeektUFWOMMZEryusAjDHGBJclemOMiXCW6I0xJsJZojfGmAhnid4YYyKcJXpjjIlwluhDlIhcICJ7Alj/BRH5fX3GFIpEpKuIqIjEuK8/EZFbgrCfdSJyQX1v1932HSLydD1t60cisqg+thXpRORJEbnT6zgagiX6IBKRHSJSICL5IrJfRF4WkWZB2M9Jf9yqeqeq/rGetj9ORBaKyFERyRGRL0VkYj1st96TkqqOV9VXAtmG+zk9Umm7fVR1QUDB+d9XHPAg8GcRiReRwyJyoZ9yT4nIu/W9fy+ISGsRmS0ix0Rkp4jcUE3ZviLymYgcEJGTLvoRkXtEJF1ECkXk5UrLhovIPBE56H5v3xGRDj5F/gw84H4GEc0SffBdrqrNgAHAQOB3HsdzSkTkGuAdYBbQGUgBHgIub6D9RzfEfjx0BfCdqu5V1RPAW8DNvgXcY3A9ENA/sBAyDSjC+S7dCDwvIn2qKFsMvA3cXsXyTOARYKafZUnAdKArkAocBf5evlBV9wHfAQFXWkKeqtojSA9gB3Cxz+vHgY99XjcBngB2AVnAC0CCu+wCYI9P2d8CW3G+rOuBSe78XsAJoBTIBw67818GHnGnNwATfLYVAxwABrmvhwPfAIeBVcAF7nxxY/t1De/zNncfh4DPgFSfZQrcCWx2l09zt1td3M8Dc4FjwMXAZUAGcATYDfzBZ/td3X3EuK8XAD92p1e52y5/qM97ewfYD+QBC4E+7vwpOMmlyF3nw8qfpfu5PY2TZDLd6Sa+nxvwSyAb2AfcWs2xmwk86PP6XPczTvSZd6m7rfL36Pe74C77EbDI37GpfHxq+uyC9DfR1D22aT7zXgUeq2G9boBWs/wR4OUatjEIOFpp3gPA3xsiH3j5sBp9AxGRzsB4YIvP7P8F0nBq+92ATji1ZX+2AucBLYH/AV4TkQ6qugEnkS5W1Waq2srPum/g1AjLjQMOqOoKEekEfIzzh9Ia+BXwnogkAz2ALkCVTQYiciVwP3AVkAx85e7P1wRgCNAf+A9gXA1x3wD8CWgOLMJJ+DcDrXCS/l3ufqulqv3dbTcDfgFsBFa4iz8BugPt3Hmvu+tMd6cfd9f198vlAZx/jgPc9zQUp/mlXHucz6kTTk10mogkVRHmWW5c5TF/g/PP4SqfMpOBf6hqifva73eh+qNxslp+dr7lD1fz+G0td5sGlKrqJp95q4CqavT1aRSwrtK8DTifYUSzRB98/xSRozg10WzgvwFERICfAD9X1YOqehR4FLjO30ZU9R1VzVTVMlV9C6eGPLSWMfwDmCgiie7rG9x5ADcBc1V1rrvteUA6Ti2yjVtmXzXbvgP4f6q6wU1EjwIDRCTVp8xjqnpYVXcBX+AkyOp8oKpfu/GcUNUFqrrGfb0aJxmdX8v3joiMxPlHNlFVjwCo6kxVPaqqhcAfgP4i0rKWm7wReFhVs1U1ByfZTvZZXuwuL1bVuTi/DHpUsa1WODVzX7Nwm29EpAVO805Fs02A3wVftfnsKqhqq2oej9Vyn81wfkX5ysP5px40ItIPpxL160qLjuJ8BhHNEn3wXamqzXF+0vcE2rrzk4FEYHl5rQj41J1/EhG5WURW+pTt67OtaqnqFpyay+Vusp/I94k+FbjWt3YGjAQ6ALlumepqi6nAMz7rHsRpmunkU2a/z/RxnD/26uz2fSEiw0TkC/eEWh7OL4FavXcR6YLTxntLeS1SRKJF5DER2SoiR3CaZajtNoGOwE6f1zvdeeVyfWrfUP17PsTJSW4WMNr9tXUNsEVVM3zeU52/C5XU5rMLiNsLKt993IjzT69FpWItOPmfXb0RkW44v+B+pqpfVVrcHKfJMqLFeB1AY6GqX7q9Ap4ArsRpIy/AaRveW926bg3rb8BFOE0dpSKyEuePEpx22JqUN99EAevd5A9OUn1VVX/iZ7/iLr/ajduf3cCfVPX1WsRQWVVxV57/D+A5YLyqnnC7ItaY2EQkAfgn8LSqfuKz6AacWvLFOEm+JU7Cre3xzMRJkuXNAKe58+piNU5zRgVV3SUiX+H8chiPk/iBWn0XfB1znxNxzm+A06xU7pQ+OxHJr2bxo6r6aOWZqjq+0jaaAjEi0l1VN7uz+3Nyk0q9cI/Xv4A/quqrfor0wmk6imhWo29YTwNjRGSAqpbh/ME+JSLtAESkk4iM87NeU5zkk+OWuxWnFlcuC+hcQzexN4GxwF18X5sHeA2npj/OrenGi9OHv7OqKk7b9u9F5FYRaSEiUSIyUkSmu+u/APyuvNeEiLQUkWtreTxqEzc4ta6DbpIfipOoa2MmTo+Wx/1srxDnF0siTpNF5bjOqGa7bwAPikiyiLTFaRJ4rZYxVTYX/81QrwD3ACNwzx+4avouVHCblfYCN7mf7W3AmT5FTumzKz/fUcXjpCRfxTaOAe8DD4tIUxEZgfNP118SRhzxQJz7Ol5Emvgsj3GXRwPl39/yayo6Af8GpqnqC1WEdD5ObT+iWaJvQO4f3iyg/EKm+3BOzi5xmxD+hZ+2XFVdD/wFWIyThM4CvvYp8m+cGtF+ETlQxb73ueufi9OFr3z+bpw/tPtxksdunHbMKHf5u8B/4vTOyHT3/wjwgbt8Ns5J5Tfd97AWpxZaGzXG7bobJzEcxUmqb9dy+9cBk3yaDvJF5Dycz2AnThJcDyyptN4MoLfbpPFPP9t9BOc8xmpgDc7J3Ef8lKuND4GeItKx0vx3cboHznc/O6BW34XKfoLzeebinPD8xmdbgXx2gbgbSMA5Z/UGcJeqrgMQkdPcz+k0t2wqzi/f8hp/AT4nr3FOghfg9ES6yZ0uPzH+Y5x/2P/t+x0oX1GcE9i9cX71RTRxKm3GGK+IyBSgt6r+l9exNCYi8hdgq6r+1etYgs0SvTHGRDhrujHGmAhnid4YYyKcJXpjjIlwIdmPvm3bttq1a9eG2dlG9wR+j6ouXDTGmNC3fPnyA6rq94LLkEz0Xbt2JT09vWF2dsEFzvOCBQ2zP2OMCQIR2VnVMmu6McaYCGeJ3hhjIpwlemOMiXCW6I0xJsJZojfGmAhnid4YYyKcJXpjjIlwluiNMSbCWaI3xpgIV+OVsSIyE5gAZKtqX3feW3x/g4xWwGFVPemGzyKyA+dekKVAiaoOrqe4jQkJ06bNJDMzt9oyHTu2YerU2xooImNOVpshEF7GuV9nxX0rVfU/y6fdwfsr39Xd12hVre7uQcaErczMXFJTx1ZbZufOzxsoGmP8qzHRq+pCEenqb5l78+j/AC6s37CMMcbUl0Db6M8Dsnzu5l6ZAp+LyHL3dmlVEpEpIpIuIuk5OTkBhmWMMaZcoIn+epyb+1ZlhKoOwrnh8FQRGVVVQVWdrqqDVXVwcrLfkTaNMcbUQZ0TvYjEAFcBb1VVRlUz3edsYDYwtK77M8YYUzeB1OgvBr5T1T3+FopIUxFpXj4NjAXWBrA/Y4wxdVBjoheRN4DFQA8R2SMit7uLrqNSs42IdBSRue7LFGCRiKwCvgU+VtVP6y90Y4wxtVGbXjfXVzH/R37mZQKXutPbgP4BxmeMMSZAdmWsMcZEOEv0xhgT4SzRG2NMhLNEb4wxEc4SvTHGRDhL9MYYE+Es0RtjTISzRG+MMRHOEr0xxkQ4S/TGGBPhLNEbY0yEq82tBI0x1SgoKCYjI4f09P1kZR2nf/9kzj+/MykpTb0OzRjAEr0xAcnOhmef/YajR4sq5s2fv4v583dx0UWnce21aR5GZ4zDEr0xdbRiRRavvw4FBUWcdlpzzjuvMx07NmXx4n0sWZLJ/Pm7SE5O5IwzvI7UNHaW6I2pg9Wrc7jwwrcpKBD69WvLlCn9iY11Tnl165ZEjx5JzJixlrff3sh113kcrGn07GSsMafoxIkSbrzxY/LyCklLU+644/skX27o0A6MG9eVsjJl9mzIyTnuUbTGWKI35pQ99NDXrF17gO7dk5g4EWJi/P8ZXXllN3r0aE1BgfDEE8saOEpjvmeJ3phT8NVXe3jiiWVERQmzZo0nLq7qslFRwlVXdQPguecyyM4+1kBRGvNDluiNqaWiolJuv/0zVOH++4cxfHjHGtfp2rUl3bopx4+X8MQT6Q0QpTEns0RvTC09//xKNm8+RFpaEr///Tm1Xu+885znadOsVm+8UWOvGxGZCUwAslW1rzvvD8BPgBy32P2qOtfPupcAzwDRwEuq+lg9xW1Mg5g2bSaZmbkUFMDzzwMI/fsf5H/+50kA0tNXkZo6ttpt7N2bQffuA9m8uYRJk/7KBRecXKZjxzZMnXpbvcdvDNSuRv8ycImf+U+p6gD34S/JRwPTgPFAb+B6EekdSLDGNLTMzFxSU8eyenUqJ04IPXokcdFFY0hNHUtq6ljy8wtq3EZ+fiFXXDEEgPXr4+nc+eKK9csfmZm5wX4rphGrMdGr6kLgYB22PRTYoqrbVLUIeBO4og7bMcZTOTnHWbBgNyJwzTVpiMgpb6Nbt1a0a5fI4cOFrF9vSd00rEDa6O8RkdUiMlNEkvws7wTs9nm9x53nl4hMEZF0EUnPycmpqpgxDe7jj7dTWqoMG9aB005rUadtiAjnnuucvP3mm8z6DM+YGtU10T8PnAkMAPYBf/FTxl+1R6vaoKpOV9XBqjo4OTm5jmEZU78OHoSlS/cRFSVMmBDYWAbDh3dABFatyiE/v6jmFYypJ3VK9KqapaqlqloG/A2nmaayPUAXn9edAavKmLDy9ddQVqYMH96B5OTEgLaVlBRPnz5tKC1Vvv12fz1FaEzN6pToRaSDz8tJwFo/xZYB3UXkdBGJA64D5tRlf8Z4YdOmg6xd61z4dOmlp9fLNs8912m9tOYb05BqTPQi8gawGOghIntE5HbgcRFZIyKrgdHAz92yHUVkLoCqlgD3AJ8BG4C3VXVdkN6HMfXu0UeXouq0rQdamy/Xr18yiYkx7N59lKws61NvGkaN/ehV9Xo/s2dUUTYTuNTn9VzgpK6XxoS6nTvzeP31DYgo48fXT20eIDY2in79klmyZB8rVmTX67aNqYpdGWuMH088kU5JSRm9e0Pbtgn1uu1Bg9oBznj2xjQES/TGVJKVdYyXXloDwDm1H+mg1nr3bkOTJtHs2nWUAwdqvuDKmEBZojemkmeeWcGJEyVMnHgm7drV//ZjY6Pp168tYLV60zAs0Rvj48iRQv7615UA/O53w4K2n4EDUwBYsSI7aPswppwlemN8zJixhry8QkaN6lyrYYjrqm/ftsTGRrF9ex4HD54I2n6MAUv0xlQoKSnjmWdWAPDLXw4O6r6aNImmb1+n+WblSqvVm+CyRG+M6733NrFz5xHS0pKYMOHMoO9vwABnqI/Vq21sJxNcluiNAVSVv/zFuQPUz39+NlFRpz5C5anq27ctIrBx4yFOWOuNCSJL9MYAixbtZdmy/bRpk8DNN/dpkH02axZHt26tKCtTtm5tkF2aRsoSvTHAs886bfN33dWfxMTYBttv//5O/83Nmxtsl6YRskRvGr29e48ye/YWoqOFO+/s36D7Lu9Pv3UrFBeXNui+TeNhid40etOnr6akpIxJk7rTqVPzBt13SkpTOnRoSmGhsHDhngbdt2k8LNGbRq2oqJTp01cDMHXqAE9i6N/f6X0zZ4411JvgsERvGrXZszezf/8x+vRpw/nnd6l5hSDo16880W9BtcqbsBlTZ5boTaNWPtzB1KkD63TT7/pw+uktSUxUduw4wpo1BzyJwUQ2S/Sm0dq06SALF+6hadNYbrqpt2dxREUJ3bs703PmbPEsDhO5arzxiDGR6t57/wHAmWcW8dhjz/gtk56+itTUsUGPpXt3WLXKaad/8MEgjI1sGjVL9CYiTZs2k8zM3CqXl5XBl18WA3GMHTuE1NQkv+UWLFgSpAh/6PTTISEhhmXL9pOZmU/Hjs0aZL+mcbBEbyJSZmZutTXxtWsPUFiYQbt2CXTr1qoBI/MvNhbGjEllzpytfPjhVu64o2H785vIZm30plH6+uu9AJxzTifPTsJWNnFiN8Da6U39qzHRi8hMEckWkbU+8/4sIt+JyGoRmS0ifqtEIrJDRNaIyEoRSa/PwI2pq/z8IlatygGUc87p4HU4FSZMOAMRmD9/F/n5RV6HYyJIbWr0LwOXVJo3D+irqv2ATcDvqll/tKoOUNXgDvBtTC2tWJFNaanSqlUeSUnxXodTISWlKcOHd6SwsJTPP9/hdTgmgtSY6FV1IXCw0rzPVbXEfbkE6ByE2IwJimXL9gPQtm3o9VmfONEZB9+ukjX1qT7a6G8DPqlimQKfi8hyEZlS3UZEZIqIpItIek6O3YjBBMfhwyfYvPkQMTFC69YHa16hgZUn+o8+2kZpaZnH0ZhIEVCiF5EHgBLg9SqKjFDVQcB4YKqIjKpqW6o6XVUHq+rg5OTkQMIypkorVmSjCn36tCUmJvRGi+zVqw3durUiN7eAxYszvQ7HRIg6J3oRuQWYANyoVQzQoaqZ7nM2MBsYWtf9GVMfyptthgxp73Ek/olIRa3+gw+s942pH3VK9CJyCXAfMFFVj1dRpqmINC+fBsYCa/2VNaYh5OYWsG1bHnFxURUDiYWi77tZWju9qR+16V75BrAY6CEie0TkduA5oDkwz+06+YJbtqOIzHVXTQEWicgq4FvgY1X9NCjvwphaSE/PApzRIps0ifY4mqqNGNGJ1q3j2bTpEBs3ht55BBN+arwyVlWv9zN7RhVlM4FL3eltgF3eZ0JGRkY2AGefneJxJCdLT8/ggQf+XPG6Y0c4eFC4664ZnHMOdOzYhqlTb/MwQhPO7MpY0yjk5RWyY0ceMTFR9O7dxutwTpKfX0hq6tiKx4gRTh1p+/aWpKaOrXbcHmNqYoneNAqrV+egCr16tSY+PvSHeOrbty1NmkSzY8cRDhwo8DocE+Ys0ZtGwRny4Pvb9oW6uLhozjrLuXH48uVZHkdjwp0lehPxTpwoYcOGg4gQ0r1tKis/l7BihSV6ExhL9CbirV+fS0lJGV27tqRlyyZeh1Nrffu2JS4uih07jnD4sNfRmHBmid5EvPJmmwEDwqc2D+XNN07M333ncTAmrFmiNxGtrEwrbrgdLu3zvgYPdppvLNGbQFiiNxFtx448jh0rpm3bBNq3b+p1OKesvPkmM1PYuTPP63BMmLJEbyLaunVO//O+fduGzJ2kToVv8827727yOBoTrizRm4hWnuj79Am9i6Rqq7z3zTvvWKI3dWOJ3kSs/PwiduzIIzpaSEtL8jqcOjvrrLbExipLl+5j164jXodjwpAlehOxNmw4iCp065YUFlfDViUuLpoznZGLrfnG1IklehOxIqHZplyvXs7zO+9s9DYQE5Ys0ZuIpArr1zvdKvv2Df9Ef+aZkJAQw5Il1nxjTp0lehORcnIgL6+IVq2a0LFjM6/DCVhcHEyYcAYAb79ttXpzasK34dKYamx1b87Uu3ebsOxWWVl6egbNnfu18cQTCzh0aMFJZWzMelMVS/QmIm3b5jxHQvs8OOPVT5x4MXPnfklWVglxcefQocMPf6ns3Pm5R9GZUGdNNybi5OcXsXs3iECvXpGR6AFiY6MYNKgdAN9+u9/jaEw4sURvIs4XX+ymrEzo2rUlTZvGeh1OvRo6tAPgJHpV9TgaEy4s0ZuI8+mn24HIabbxlZaWRMuWcRw4UMCOHdb7xtROjYleRGaKSLaIrPWZ11pE5onIZvfZ72WHInKJiGwUkS0i8tv6DNwYf1SVTz5xEn3fvm09jqb+RUUJQ4a0B2Dp0n0eR2PCRW1q9C8Dl1Sa91tgvqp2B+a7r39ARKKBacB4oDdwvYj0DihaY2qwZcthtm/PIyFBSU1t4XU4QVHefJOenkVpaZnH0ZhwUGOiV9WFwMFKs68AXnGnXwGu9LPqUGCLqm5T1SLgTXc9Y4Lms8+c2nzXrk7tNxKddlpzUlISOXq0iI0bD3kdjgkDdW2jT1HVfQDuczs/ZToBu31e73Hn+SUiU0QkXUTSc3Jy6hiWaew+/XQHQMXYMJFI5Pvmm2+/teYbU7Ngnoz1V52qspuAqk5X1cGqOjg5OfzuBGS8d+JECV98sQuA00/3OJggGzrUSfQZGdkUFZV6HI0JdXVN9Fki0gHAfc72U2YP0MXndWcgs477M6ZGixbt5fjxEvr3T3avIo1cKSlN6dq1BSdOlFbcKtGYqtQ10c8BbnGnbwE+8FNmGdBdRE4XkTjgOnc9Y4KivFvlJZdEeHXeZc03prZq073yDWAx0ENE9ojI7cBjwBgR2QyMcV8jIh1FZC6AqpYA9wCfARuAt1V1XXDehjG+ib6rt4E0kCFD2iMCa9ce4NixYq/DMSGsxrFuVPX6KhZd5KdsJnCpz+u5wNw6R2dMLe3efYR163Jp1iyWc8/txLx5XkcUfC1bNqFnz9Zs2HCQjIwsunSpeR3TONmVsSYifPbZDgAuuiiVuLhob4NpQN8339jYN6ZqluhNRGhszTblBg1qR0xMFJs2HeLoUa+jMaHKEr0Je8XFpcybtxOAceO6ehtMA0tIiKVfv7buHbW8jsaEKkv0JuwtXbqPI0eK6NGjNaef3srrcBpcefPNOuvqYKpgid6EvfKrYRtbs025s85qS3x8DPv3C999l+t1OCYEWaI3Ya+x9Z+vLDY2uuKGJK+/vsHjaEwoskRvwlpW1jGWL88iPj6G88/v7HU4nhk2zBnR8vXXN9gNScxJLNGbsPb55zsAOP/8ziQkRNbdpE5FWloSzZsr27fn8fXXe70Ox4QYS/QmrH3fPt84m23KRUUJffo406++at1vzA9Zojdhq7S0rOJCqcZ6ItZX377O89tvb+TEiRJvgzEhxRK9CVsrVmSRm1tAamoLevRo7XU4nmvXDgYMaMfhw4V8/PE2r8MxIcQSvQlbvs02IpF5N6lTNXmyc7dOa74xvizRm7D14YdbARg/vnG3z/u6/vqeREUJc+duIze3wOtwTIiwRG/CUmZmPsuW7Sc+PoYxY1K9DidkdOjQjDFjUikuLuOtt77zOhwTIizRm7BUXpsfMyaVxMTG263SH2u+MZVZojdhac6cLQBMnBjBdwGvoyuv7EbTprEsWbKPzZsPeR2OCQGW6E3Yyc8vYv78XYjA5Zdboq+sadM4rr66OwCvvWa1emOJ3oShefN2UlhYyrBhHUhJaep1OCFp8mTn6qnXXltvQyIYS/Qm/HzwgdNsc8UV3TyOJHSNHt2Fjh2bsW2bDYlganHPWGNCSUlJGR995FwMtG3bQh54YKHfcunpq0hNHduQoYWU6OgoJk/uzf/+77fMnLmWkSMb74BvJoAavYj0EJGVPo8jIvJflcpcICJ5PmUeCjxk05h9+eVucnMLaN1aOfvsMaSmjvX7yM+3PuS3334WAG+99R1HjhR6HI3xUp0TvapuVNUBqjoAOBs4Dsz2U/Sr8nKq+nBd92cMwLvvbgKgZ0/satgadO+exKhRnTl+vIS33trodTjGQ/XVRn8RsFVVd9bT9ow5SWlpGe+/vxmAXr08DiZM/PjHTq1+xow1HkdivFRfif464I0qlp0jIqtE5BMR6VNP+zON0MKFe8jOPk63bq1o187raMLD1Ven0aJFHEuX7mPNmhyvwzEeCTjRi0gcMBF4x8/iFUCqqvYHngX+Wc12pohIuoik5+TYF9KcrLzZ5tpre2CtNrWTmBjLjTc6P3+sVt941UeNfjywQlWzKi9Q1SOqmu9OzwViRaStv42o6nRVHayqg5OTk+shLBNJSkvLeO89J9Ffc02ax9GEl/KTsq++up7CQhunvjGqj+6V11NFs42ItAeyVFVFZCjOPxa7Tb05ZYsW7SUr6zhnnNGSgQPb8d57XkcUetLTM3jggT+fNF8VUlIgK+sEd931N2bOvMuD6IyXAkr0IpIIjAHu8Jl3J4CqvgBcA9wlIiVAAXCd2mV6pgbTps0kM/OH9YFPPgEQUlIO8+CDTzT6fvL+5OcXVnlMRo/exZtvbmTBgvwGjsqEgoASvaoeB9pUmveCz/RzwHOB7MM0PpmZuT9IWCUlZWzc+CVQwpgx59CpU3MWLFjiXYBhaOjQDrz77ma2by9jx448unZt6XVIpgHZEAgm5K1de4Djx0vo1KkZnTo19zqcsNS0aSyDBjldlf7+97UeR2MamiV6E/K+/XY/AEOHtvc4kvA2cmQnAGbOXEtpaZnH0ZiGZInehLSCghJWr3a62w4d2sHjaMJb9+5JJCUpe/YctZuHNzKW6E1Iy8jIpri4jLS0JFq3jvc6nLAWFSUMGuRMT5u20ttgTIOyRG9C2tKl+wBrtqkv/fpBQkIMn3++g02bDnodjmkgluhNyMrNLWDjxoPExEQxaFCK1+FEhIQEuOEG50rZv/7VavWNhSV6E7IWL85EFQYObEfTpnYD8PoydeoAwOl9k59f5HE0piHYjUdMSCorUxYvdpptzj23o8fRRI709AwAOneGPXuKuPbaZyra7ct17NiGqVNv8yA6EyyW6E1I2rz5EAcOFNC6dTw9e7b2OpyIUX717Lhx+5gxYy2rVzfnyiuH/2Bs/507P/cwQhMM1nRjQtI332QCcM45HYiKsqEq69ugQSm0aBFHZmY+mzcf9jocE2SW6E3IOXECli93BkM95xxrtgmGmJgozjvPuYBqwYLdHkdjgs0SvQk569ZR0Xc+OTnR63Ai1nnndSYqSsjIyObQoRNeh2OCyBK9CSmqyooVzvSoUZ29DSbCJSXFM2BAMmVlyldf7fU6HBNEluhNSFm8OJOcHKF581gGDrT7BRE/xVEAABTKSURBVAbb6NFdAPjqqz0UF9v4N5HKEr0JKS++uAqAESM6ERNjX89g6949ic6dm3HkSBHp6fu9DscEif0lmZBx8GABb721EdCKkRZNcIkIF12UCsC//rUTuy9QZLJEb0LGyy+vo7CwlDPOwE7CNqAhQ9rTokUce/bks2nTIa/DMUFgid6EhNLSMp57zrlqs/KVmia4YmOjOP9858T3v/610+NoTDBYojch4cMPt7J9ex5nntmKbt28jqbxGTWqCzExUaxZc4CDNqhlxLFEb0LC008vB+DeewcSZd/KBteiRRzDhrVHFZYt8zoaU98C+pMSkR0iskZEVopIup/lIiL/JyJbRGS1iNiPcnOSjIwsvvxyD82bx3HrrX29DqfRKj8pu3o1dgFVhKmPutNoVR2gqoP9LBsPdHcfU4Dn62F/JsI884xzhdRtt/WlRYsmHkfTeHXq1IxevVpTXCxMn77K63BMPQr2j+QrgFnqWAK0EhG78aepsHfvUd544ztE4N577Qef1y6+2KnVP/tsBsXFpR5HY+pLoIlegc9FZLmITPGzvBPgO2LSHneeMQA8+WQ6RUWlXH11Gmee2crrcBq93r3b0KaNsndvPu++u8nrcEw9CTTRj1DVQThNNFNFZFSl5f7Gl/V7RYaITBGRdBFJz8nJCTAsEw5ycwt48cXVAPzud8M8jsaAcwPxoUOd6aeeWm4XUEWIgBK9qma6z9nAbGBopSJ7gC4+rzsDmVVsa7qqDlbVwcnJyYGEZcLEs8+u4NixYsaN62r3hA0hfftCmzYJLFu2v+K+ACa81TnRi0hTEWlePg2MBdZWKjYHuNntfTMcyFPVfXWO1kSMo0eL+L//cy6Quv9+q82HkthYuPPO/gA89dRJnelMGAqkRp8CLBKRVcC3wMeq+qmI3Ckid7pl5gLbgC3A34C7A4rWRIxp0zI4dOgE557bkfPOs+GIQ83UqQOIjY1i9uwtbN9ud6AKd3VO9Kq6TVX7u48+qvond/4LqvqCO62qOlVVz1TVs1TVqgeGw4dP8PjjzlU5f/jDuT+4X6kJDR06NOO663pSVqY8+2yG1+GYANk1iKbBPflkOocOneD88ztXdOczoefnPz8bgJdeWkNeXqHH0ZhAWKI3DSon5zhPPeUMd/CnP51ntfkQNnBgCqNHd+Ho0SKef36l1+GYAFiiNw3qsceWkp9fzKWXns6IEXZJRaj77W+dE+VPPbWcgoJij6MxdWWJ3jSYLVsOVbT3PvLISI+jMbUxZkwqgwalkJ19nL//vXKnOhMuLNGbBvOb3yykuLiMW27pw8CB1m8+HIgIv/udc3nMn/+8jJISu69sOLJEbxrEF1/sYvbszSQmxvDoo+d5HY45BZMmdSctLYkdO47w5pvfeR2OqQNL9CboSkvL+MUvFgDOUAcdOzbzNiBzSqKjo7jvPqdW/9hjSykrs2ERwo0lehN0L764ipUrs+nSpTm//KW/0axNqLvppt507tycdety+eijrV6HY05RjNcBmMiWlXWM++9fBMDTT49m5sxXyczMrXad9PRVpKaObYjwjB/p6Rk88MCfT5rfsyfs2SP87Gcfcvnl/2VdY8OIJXoTVL/61Zfk5RUyfvzpTJrUnQcf/KDGJL5gwZIGis74k59f6Pczat++lMWLv2LHjmK+/HI3F1xwmgfRmbqwphsTNAsW7OK119YTHx/Dc89dZDXAMNekSTQXXugMRvvoo0s9jsacCkv0JigKCoqZMmUe4IxOecYZdlORSDB69GnExSnz5u3k66/3eh2OqSVL9CYo/vjHJWzefIjevdvwm98M8TocU0+aNo1liPtxPvTQ194GY2rN2uhNvZk2bSaZmblkZcHMmc68wYMP8PDDT1WUsROt4W/YMFi3rgn//vcuFizYZW31YcBq9KbeZGbm0rnzxcyb1wJVYfTo0xgxYiypqd8/8vMLvA7TBCg+nopusr///dd2u8EwYIne1Kv583exa9dRkpLiufLKbl6HY4LkZz87mzZtEli0aC+ffrrd63BMDSzRm3pz6BDMmeNcTHPTTb2Ij7eWwUjVvHlcxRg4v/nNQkpLbQycUGaJ3tQLVWXuXCguLmPo0Pb07dvW65BMkE2dOpDU1BasXXuAWbPWeR2OqYZVuUy9eOmlNezcKTRtGst//EcPr8MxQeR75Wz//rBzp/DTn37Khg2fEhvrlOnYsQ1Tp97mYZTGlyV6E7AdO/L4xS++AOC663rQvHmcxxGZYPK9crZLF2XlyqXs2nWUjRvP5LLLzgBg587PvQzRVGJNNyYgZWXKrbd+Sn5+MT17KkOGtPc6JNOAoqKEa65JA+DTT7dz8KD1qgpFdU70ItJFRL4QkQ0isk5EfuanzAUikiciK93HQ4GFa0LNtGkZLFiwm+TkBMaNw4Y5aIR69GjNoEHtKCoq4913N3sdjvEjkBp9CfBLVe0FDAemikhvP+W+UtUB7uPhAPZnQsymTQe5776FAEyfPpamTT0OyHjm2mvTiIuLYvnyLDZsqH50UtPw6pzoVXWfqq5wp48CGwC723MjUVpaxi23fEJBQQmTJ/fmyiu7ex2S8VDr1gmMH++0z7/55kZKSjwOyPxAvbTRi0hXYCDgb0i7c0RklYh8IiJ9qtnGFBFJF5H0nJyc+gjLBNETTyxjyZJ9dOrUjGeeudDrcEwIGDMmlZSURPbvP8bXNgxOSAk40YtIM+A94L9U9UilxSuAVFXtDzwL/LOq7ajqdFUdrKqDk5OTAw3LBNGKFVk89NA3AMyYMY6kpHiPIzKhIDY2ismTndbbxYth5cpsjyMy5QJK9CISi5PkX1fV9ysvV9UjqprvTs8FYkXErqQJY3l5hVx77RyKikq5++4BjBt3utchmRDSvXsSF1zQhbIy4dZbP6W4uNTrkAwB9KMXp3vFDGCDqj5ZRZn2QJaqqogMxfnHYmdqwtRzz81g2rSDbNsmpKQozZpl8MADGRXLbWRKAzBpUjcyMnaxcmU2f/zjYh5+eKTXITV6gVwwNQKYDKwRkZXuvPuB0wBU9QXgGuAuESkBCoDr1Ia6C1sffHCQ774T4uOjueee4bRrl/iD5XYLQAMQHx/DZZfBG2/AI48sYfTo0xg92oYy9lKdE72qLgKq7TStqs8Bz9V1HyZ0zJ27jfnznembb+5zUpI3xlfXrvDAA8N55JEl3Hjjx6xadQvJyfad8YpdGWtqtGZNDtdd9xGqwoQJZ3D22Sleh2TCwH//97mMHNmJffuOMXnyXBvh0kOW6E21du7M47LL3ufo0SJ691YmTDjD65BMmIiJieIf/7iMNm0S+OyzHfz61196HVKjZYneVCkzM58LL3yb3buPMmJEJy67zIY4MKemS5cWvP/+RGJjo3jqqeW89NJqr0NqlCzRG7/27z/GxRe/zbZteZx9dgoff3xVxRC0xpyKUaO68MILYwC4665/MXfuNo8janws0ZuTbN9+mJEj32DDhoP07duWzz67hpYtm3gdlgljt912Fr/5zRBKSsq46qoPmD9/p9chNSo2Hr0BYNq0mWRm5pKdDW++Cfn5Qvv2ykUX5fDkk07HKesnb2rL9+Yk5aKjYeBAyMgoZfz4t7n77hY8/fQdHkXYuFiiNwBkZuZy+PAAXn11LYWFpaSlJXH33QNISPj+K2L95E1t+d6cxNeUKcqsWetZvDiT5547wqhRm7jqqjQPImxcrOnGoKp8/TU8//wqCgtLGTIkhZ/+dOAPkrwx9SEqSrj55t6MGtWZ0lLhmmvm8NxzK7DrKIPLEn0jd/x4Mddf/xFffun0ppk0qRu3334WsbHRHkdmIlVUlHDDDT0ZNUpRhXvv/Tc/+tEnHDtW5HVoEcsSfSO2c2ceI0e+wVtvbSQuTrn77gFccsnp1oXSBJ2IMHIkvPbapSQmxjBr1nqGDXudVatsxMtgsETfSL333iYGDJhFRkY23bq14pZboF8/Gx7aNKwbb+zNt9/eRM+erVm3LpfBg1/jwQcXceKE3bmkPlmib2QKCoq5++55XHPNHA4fLmTixDNZuvRG7BYApqGV98z5xz/+zoQJuQwerJSUlPKnPy2hY8en+PGPX7C2+3piZ9sakQ0bcvnP//yQNWsOEBcXzRNPnM899wy0phrjico9c7p3h9GjD/Paa+vZt+8YM2bks379Gzz44HDGj7cmxUBYjb4RKCkp48kn0zn77FdZs+YAaWlJLFlyA/feO8j+eExI6datFb///XBuuKEniYnK4sWZXHbZ+/Tv/wqvvbbebmRSR5boI9zy5fs555zX+eUvF1BQUMLNN/dm+fLJDBxoI1Ca0BQdHcX553fhrrvg8cdH0aFDU9asOcDkyXPp1u0lnnoqnYMHC7wOM6xYoo9QW7ce5vrrP2Lw4NdIT8+iS5fmfPTRJF555VKaNYvzOjxjatSkCfz610PZvv0nzJgxjh49WrNr11F+8YsFdOr0IjffPJevv95r7fi1YG30EcS58Gkvzzyzgvff30xZmdKkSTQjR8YyYMARvvnmfb75xv+6NryBCTWVh1G46irYvBmWL4ft20t49dX1vPrqevr0acMdd/Tnppt6243qq2CJPsydOFHCt9/u46OPtvHee5vYti0PcMYCnzy5Nw8/PIIXX3yxxiRuwxuYUONvGIWuXWHMGMjJOc6iRXtZuHA769bl8tOf/pv77lvItdemceONvbnwwtOIibEGi3KW6MOAqnLkSBHbt+exefMhNm06xObNh/juu4NkZGRTVPT9Car27Zty++1ncddd/enUqbmHURsTPMnJiUya1J2Sktk0bz6AjAzYsaOEWbPWM2vWehITlV69oE8fGDKkNffcc7vXIXvKEr0HVJX8/GIOHDjOgQMF5OQUcODA94+cnONkZx8nK+s4mzdnceRIKSUlVfWOUVq2LCQtrQk9ekDnzvmoLuavf11cUcKaZUykOn78BNdeO5ZLLoHs7OMsWbKPZcv2k519nOXLnWae998/yPLlnzB2bFfOPbcjp53WotH1Ngso0YvIJcAzQDTwkqo+Vmm5uMsvBY4DP1LVFYHs02tFRaUcPVr0g0d+frHPdBFHjxb7TDuPvLwicnKOVyTzwsJT6SYmxMVF0bp1AikpibRr5zxSUhLp0qU577zz/7jlloeqXNuaZUxj0K5dIhMnnsnll5/Brl1HWbZsP+np+zl0qJCXX17Hyy+vAyAlJZF+/ZJJS0vi9NNb0qZNAm3aJNC6dTxt2sTTokUTEhJiSEiIoUmT6Ij4p1DnRC8i0cA0YAywB1gmInNUdb1PsfFAd/cxDHjefa53+flFrF+fS2mpUlpa5j77TjvPZWVKcXEZx48Xc+xYMZfvPkppqfL8fV9y7Jgzz0nOxT9I1OXJ27eZJBCxsUpsbAktWsSQmAgJCZCYyA+mmzWDbds2cO21U4mPtx9fxtSGiJCa2oLU1BZcfXV30tPnkZZ2Pl98sZulS/eRlXWcefN2Mm9ebW5+osTGQlxcFElJzSr+Afg+EhNjSEiIrZhOTIz1+xwTE0V0dBTR0UJUlBAdLRWvfafPOqstCQn1ezu3QLLHUGCLqm4DEJE3gSsA30R/BTBLnf5PS0SklYh0UNV9AezXr/Xrcxk27PVTXq83hwF4/PFltSofExNF8+ZxlJYW0KxZM5o0iSE+PtrnOZr4+Bg2bFjI8OFjKuYlJMTQvHkczZrF0qxZHHFx0bzyysPV1sQBtmxZYknemDoSEdq1c7pp/vrXQ1FVtm3LY8OGXDZtOsTOnUf497+XA8kVFb0TJ0ooLi6juLiUkhIoLobiYuXYsaMNEvP69bfSq1ebet2m1LUPqohcA1yiqj92X08GhqnqPT5lPgIeU9VF7uv5wH2qmu5ne1OAKe7LHsDGOgXmjbbAAa+D8JgdAzsGYMcAvDsGqarqd9SqQKqK/hquKv/XqE0ZZ6bqdGB6APF4RkTSVXWw13F4yY6BHQOwYwCheQwC6Wi6B+ji87ozkFmHMsYYY4IokES/DOguIqeLSBxwHTCnUpk5wM3iGA7kBaN93hhjTNXq3HSjqiUicg/wGU73ypmquk5E7nSXvwDMxelauQWne+WtgYccksKyyame2TGwYwB2DCAEj0GdT8YaY4wJDzYYhDHGRDhL9MYYE+Es0deCiLQWkXkistl9Tqqi3EwRyRaRtXVZP9SdwnG4REQ2isgWEfmtz/w/iMheEVnpPi5tuOjrrqr347NcROT/3OWrRWRQbdcNFwEegx0issb9zE+6hiZc1OIY9BSRxSJSKCK/OpV1g05V7VHDA3gc+K07/Vvgf6soNwoYBKyty/qh/qjN+8A5Mb8VOAOIA1YBvd1lfwB+5fX7OMX3XOX78SlzKfAJznUjw4GltV03HB6BHAN32Q6grdfvowGOQTtgCPAn3+95KHwPrEZfO1cAr7jTrwBX+iukqguBg3VdPwzU5n1UDI2hqkVA+dAY4ao276diqA9VXQK0EpEOtVw3HARyDCJFjcdAVbNVdRlQfKrrBpsl+tpJUbf/v/vcroHXDxW1eR+dgN0+r/e488rd4/60nxkmTVg1vZ/qytRm3XAQyDEA52r4z0VkuTvUSTgK5LP0/Htgo2W5RORfQHs/ix5o6Fi8VA/HobphL54H/ui+/iPwF+C2U42xgQUy1EethwAJcYEOdzJCVTNFpB0wT0S+c3/9hpNAPkvPvweW6F2qenFVy0Qkq3zUTffnaPYpbj7Q9RtMPRyHKoe9UNUsn239DfiofqIOqkCG+oirxbrhIKDhTlS1/DlbRGbjNGWEW6IPZDgXz4eCsaab2pkD3OJO3wJ80MDrh4ravI8qh8ao1GY7CVjrZ/1QE8hQH7VZNxzU+RiISFMRaQ4gIk2BsYTH515ZIJ+l998Dr89mh8MDaAPMBza7z63d+R2BuT7l3gD24ZyM2QPcXt364fY4heNwKbAJp6fBAz7zXwXWAKtxvugdvH5PtXzfJ70f4E7gTndacG7Cs9V9f4NrOhbh9qjrMcDpabLKfayL8GPQ3v27PwIcdqdbhML3wIZAMMaYCGdNN8YYE+Es0RtjTISzRG+MMRHOEr0xxkQ4S/TGGBPhLNEbY0yEs0RvjDER7v8DlyyHcZdnPSgAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "infer_RCE_per.plot()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The conclusion is that the hispanic group is negatively significantly (as the point estimation is in the left side of the distribution) in terms of centralization. This behavior can be, somehow, inspected in the map as the composition tends to be more concentraded outside of the center of the overall region.\n", + "\n", + "---" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Comparative Inference" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "To compare two different values, the user can rely on the **TwoValueTest** function. Similar to the previous function, the user needs to pass two segregation SM classes to be compared, establish the number of iterations under null hypothesis with *iterations_under_null*, specify which type of null hypothesis the inference will iterate with *null_approach* argument and, also, can pass additional parameters for each segregation estimation.\n", + "\n", + "Obs.: in this case, each measure has to be the same class as it would not make much sense to compare, for example, a Gini index with a Delta index" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "This example uses all census data that the user must provide your own copy of the external database.\n", + "A step-by-step procedure for downloading the data can be found here: https://github.com/spatialucr/geosnap/blob/master/examples/01_getting_started.ipynb.\n", + "After the user download the zip files, you must provide the path to these files." + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "metadata": {}, + "outputs": [], + "source": [ + "import os\n", + "#os.chdir('path_to_zipfiles')" + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "C:\\Users\\renan\\AppData\\Local\\Continuum\\anaconda3\\lib\\site-packages\\pysal\\__init__.py:65: VisibleDeprecationWarning: PySAL's API will be changed on 2018-12-31. The last release made with this API is version 1.14.4. A preview of the next API version is provided in the `pysal` 2.0 prelease candidate. The API changes and a guide on how to change imports is provided at https://pysal.org/about\n", + " ), VisibleDeprecationWarning)\n" + ] + } + ], + "source": [ + "import geosnap\n", + "from geosnap.data.data import read_ltdb\n", + "\n", + "sample = \"LTDB_Std_All_Sample.zip\"\n", + "full = \"LTDB_Std_All_fullcount.zip\"\n", + "\n", + "read_ltdb(sample = sample, fullcount = full)\n", + "\n", + "df_pre = geosnap.data.db.ltdb" + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
n_asian_under_15n_black_under_15n_hispanic_under_15n_native_under_15n_white_under_15n_persons_under_18n_asian_over_60n_black_over_60n_hispanic_over_60n_native_over_60...n_white_personsyearn_total_housing_units_samplep_nonhisp_white_personsp_white_over_60p_black_over_60p_hispanic_over_60p_native_over_60p_asian_over_60p_disabled
geoid
01001020500NaN1.121662NaNNaN1.8027403.284181NaN0.301098NaNNaN...5.79493419702.166366NaN6.4331423.514090NaNNaNNaN4.737847
01003010100NaN609.000000NaNNaN639.0000001407.000000NaN221.000000NaNNaN...2003.99998119701106.000000NaN8.2997126.368876NaNNaNNaN5.821326
01003010200NaN37.567365NaNNaN564.014945686.748041NaN27.861793NaNNaN...1757.9107521970619.433984NaN13.3132811.480888NaNNaNNaN6.248800
01003010300NaN374.853457NaNNaN981.5431991523.971872NaN103.848314NaNNaN...2835.40442719701025.805309NaN8.0233812.788906NaNNaNNaN7.214156
01003010400NaN113.203816NaNNaN796.9447631029.919527NaN37.127235NaNNaN...2323.1333711970780.370269NaN11.0720731.427952NaNNaNNaN11.205555
\n", + "

5 rows Γ— 192 columns

\n", + "
" + ], + "text/plain": [ + " n_asian_under_15 n_black_under_15 n_hispanic_under_15 \\\n", + "geoid \n", + "01001020500 NaN 1.121662 NaN \n", + "01003010100 NaN 609.000000 NaN \n", + "01003010200 NaN 37.567365 NaN \n", + "01003010300 NaN 374.853457 NaN \n", + "01003010400 NaN 113.203816 NaN \n", + "\n", + " n_native_under_15 n_white_under_15 n_persons_under_18 \\\n", + "geoid \n", + "01001020500 NaN 1.802740 3.284181 \n", + "01003010100 NaN 639.000000 1407.000000 \n", + "01003010200 NaN 564.014945 686.748041 \n", + "01003010300 NaN 981.543199 1523.971872 \n", + "01003010400 NaN 796.944763 1029.919527 \n", + "\n", + " n_asian_over_60 n_black_over_60 n_hispanic_over_60 \\\n", + "geoid \n", + "01001020500 NaN 0.301098 NaN \n", + "01003010100 NaN 221.000000 NaN \n", + "01003010200 NaN 27.861793 NaN \n", + "01003010300 NaN 103.848314 NaN \n", + "01003010400 NaN 37.127235 NaN \n", + "\n", + " n_native_over_60 ... n_white_persons year \\\n", + "geoid ... \n", + "01001020500 NaN ... 5.794934 1970 \n", + "01003010100 NaN ... 2003.999981 1970 \n", + "01003010200 NaN ... 1757.910752 1970 \n", + "01003010300 NaN ... 2835.404427 1970 \n", + "01003010400 NaN ... 2323.133371 1970 \n", + "\n", + " n_total_housing_units_sample p_nonhisp_white_persons \\\n", + "geoid \n", + "01001020500 2.166366 NaN \n", + "01003010100 1106.000000 NaN \n", + "01003010200 619.433984 NaN \n", + "01003010300 1025.805309 NaN \n", + "01003010400 780.370269 NaN \n", + "\n", + " p_white_over_60 p_black_over_60 p_hispanic_over_60 \\\n", + "geoid \n", + "01001020500 6.433142 3.514090 NaN \n", + "01003010100 8.299712 6.368876 NaN \n", + "01003010200 13.313281 1.480888 NaN \n", + "01003010300 8.023381 2.788906 NaN \n", + "01003010400 11.072073 1.427952 NaN \n", + "\n", + " p_native_over_60 p_asian_over_60 p_disabled \n", + "geoid \n", + "01001020500 NaN NaN 4.737847 \n", + "01003010100 NaN NaN 5.821326 \n", + "01003010200 NaN NaN 6.248800 \n", + "01003010300 NaN NaN 7.214156 \n", + "01003010400 NaN NaN 11.205555 \n", + "\n", + "[5 rows x 192 columns]" + ] + }, + "execution_count": 21, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df_pre.head()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "In this example, we are interested to assess the comparative segregation of the non-hispanic black people in the census tracts of the Riverside, CA, county between 2000 and 2010. Therefore, we extract the desired columns and add some auxiliary variables:" + ] + }, + { + "cell_type": "code", + "execution_count": 22, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
n_nonhisp_black_personsn_total_popyeargeoidstatecounty
geoid
01001020500NaN8.56830619700100102050001001
01003010100NaN3469.99996819700100301010001003
01003010200NaN1881.42475919700100301020001003
01003010300NaN3723.62203119700100301030001003
01003010400NaN2600.03304519700100301040001003
\n", + "
" + ], + "text/plain": [ + " n_nonhisp_black_persons n_total_pop year geoid state \\\n", + "geoid \n", + "01001020500 NaN 8.568306 1970 01001020500 01 \n", + "01003010100 NaN 3469.999968 1970 01003010100 01 \n", + "01003010200 NaN 1881.424759 1970 01003010200 01 \n", + "01003010300 NaN 3723.622031 1970 01003010300 01 \n", + "01003010400 NaN 2600.033045 1970 01003010400 01 \n", + "\n", + " county \n", + "geoid \n", + "01001020500 001 \n", + "01003010100 003 \n", + "01003010200 003 \n", + "01003010300 003 \n", + "01003010400 003 " + ] + }, + "execution_count": 22, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df = df_pre[['n_nonhisp_black_persons', 'n_total_pop', 'year']]\n", + "\n", + "df['geoid'] = df.index\n", + "df['state'] = df['geoid'].str[0:2]\n", + "df['county'] = df['geoid'].str[2:5]\n", + "df.head()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Filtering Riverside County and desired years of the analysis:" + ] + }, + { + "cell_type": "code", + "execution_count": 23, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
n_nonhisp_black_personsn_total_popyeargeoidstatecounty
geoid
0606503010158.832932851.99997620000606503010106065
06065030103120.1517641739.99997320000606503010306065
06065030104367.0152895314.99981520000606503010406065
06065030200348.0011054682.00789620000606503020006065
06065030300677.9989014844.99220320000606503030006065
\n", + "
" + ], + "text/plain": [ + " n_nonhisp_black_persons n_total_pop year geoid state \\\n", + "geoid \n", + "06065030101 58.832932 851.999976 2000 06065030101 06 \n", + "06065030103 120.151764 1739.999973 2000 06065030103 06 \n", + "06065030104 367.015289 5314.999815 2000 06065030104 06 \n", + "06065030200 348.001105 4682.007896 2000 06065030200 06 \n", + "06065030300 677.998901 4844.992203 2000 06065030300 06 \n", + "\n", + " county \n", + "geoid \n", + "06065030101 065 \n", + "06065030103 065 \n", + "06065030104 065 \n", + "06065030200 065 \n", + "06065030300 065 " + ] + }, + "execution_count": 23, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df_riv = df[(df['state'] == '06') & (df['county'] == '065') & (df['year'].isin(['2000', '2010']))]\n", + "df_riv.head()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Merging it with desired map." + ] + }, + { + "cell_type": "code", + "execution_count": 24, + "metadata": {}, + "outputs": [], + "source": [ + "map_url = 'https://raw.githubusercontent.com/renanxcortes/inequality-segregation-supplementary-files/master/Tracts_grouped_by_County/06065.json'\n", + "map_gpd = gpd.read_file(map_url)\n", + "gdf = map_gpd.merge(df_riv, \n", + " left_on = 'GEOID10', \n", + " right_on = 'geoid')[['geometry', 'n_nonhisp_black_persons', 'n_total_pop', 'year']]\n", + "\n", + "gdf['composition'] = np.where(gdf['n_total_pop'] == 0, 0, gdf['n_nonhisp_black_persons'] / gdf['n_total_pop'])" + ] + }, + { + "cell_type": "code", + "execution_count": 25, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
geometryn_nonhisp_black_personsn_total_popyearcomposition
0POLYGON ((-117.319414 33.902109, -117.322528 3...233.8248792537.09678420000.092162
1POLYGON ((-117.319414 33.902109, -117.322528 3...568.0000006556.00000020100.086638
2POLYGON ((-117.504056 33.800257, -117.502758 3...283.4395453510.68101020000.080736
3POLYGON ((-117.504056 33.800257, -117.502758 3...754.00000010921.00000020100.069041
4POLYGON ((-117.472451 33.762031, -117.475661 3...273.5604553388.31899020000.080736
\n", + "
" + ], + "text/plain": [ + " geometry n_nonhisp_black_persons \\\n", + "0 POLYGON ((-117.319414 33.902109, -117.322528 3... 233.824879 \n", + "1 POLYGON ((-117.319414 33.902109, -117.322528 3... 568.000000 \n", + "2 POLYGON ((-117.504056 33.800257, -117.502758 3... 283.439545 \n", + "3 POLYGON ((-117.504056 33.800257, -117.502758 3... 754.000000 \n", + "4 POLYGON ((-117.472451 33.762031, -117.475661 3... 273.560455 \n", + "\n", + " n_total_pop year composition \n", + "0 2537.096784 2000 0.092162 \n", + "1 6556.000000 2010 0.086638 \n", + "2 3510.681010 2000 0.080736 \n", + "3 10921.000000 2010 0.069041 \n", + "4 3388.318990 2000 0.080736 " + ] + }, + "execution_count": 25, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "gdf.head()" + ] + }, + { + "cell_type": "code", + "execution_count": 26, + "metadata": {}, + "outputs": [], + "source": [ + "gdf_2000 = gdf[gdf.year == 2000]\n", + "gdf_2010 = gdf[gdf.year == 2010]" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Map of 2000:" + ] + }, + { + "cell_type": "code", + "execution_count": 27, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 27, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABeUAAAEuCAYAAAAAxnmXAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAAgAElEQVR4nOzdaZBsd3nn+e9zzsm19u3qLtLVlXSFBBICJCHABmywocVijBvbGBs87aUBxzg8fuFxz4RnmolwuMe0I8bjmPCMG7sd4xfjcTMO6MEGY/C0QcZsWgBtSGi/uvtadWvJ9ZxnXvxPZp7Myj2z6tbyfCLqVmXm2fLUycy6v/Oc5y+qijHGGGOMMcYYY4wxxhhjtp53rTfAGGOMMcYYY4wxxhhjjNkvLJQ3xhhjjDHGGGOMMcYYY7aJhfLGGGOMMcYYY4wxxhhjzDaxUN4YY4wxxhhjjDHGGGOM2SYWyhtjjDHGGGOMMcYYY4wx28RCeWOMMcYYY4wxxhhjjDFmmwTXegOMMcYYY4wxxhhjjDHGmF6Oi+jGEPOdgb9X1fu7TSMi9wN/BPjAn6nq77c8/pPA7wIRUAV+U1W/Fj/2IrAKhEBVVe/tui5VHeJpbK3FxUU9duzYtd4MY4wxxhhjjDHGGGOMGcnDDz98UVWXrvV27AVHRPRjQ8z3CXi4W1AuIj7wA+AdwEngQeBDqvpkYppJYF1VVUTuAj6tqrfHj70I3KuqF/vZnp6V8iKSBR4AMvH0f62qn0g8/lvAHwBL7VYqIn8OvBc4r6p39rNRx44d46GHHupnUmOMMcYYY4wxxhhjjNmxROSla70Ne4lszWLvA55V1ecBROSvgJ8E6qG8qq4lpp8Ahq5276enfAl4u6q+BngtcL+IvDHeuBtwZw9OdJn//wS6XhpgjDHGGGOMMcYYY4wxxvTiDfHVhyPAy4nbJ+P7mojIT4nIU8DngV9OPKTAl0TkYRH5aD/PoSt1amcBUvFX7SzAHwK/TZezAqr6AHC513qMMcYYY4wxxhhjjDHGmC2wKCIPJb5ag/N2BfibMm9V/Wzcsub9uP7yNT+sqncD7wL+axF5a7eN6Wug17inzsPAceCPVfVbIvI+4JSqfk9k9IsG4h3xUYCjR4+OvDxjjDHGGGOMMcYYY4wxe4fQd+V7q4s9Bl89CdyQuH09cLrTxKr6gIjcIiKLqnpRVU/H958Xkc/i2uE80Gn+vp6Dqoaq+tp4Y+6LG9n/DvBv+5m/z3V8SlXvVdV7l5Zs3ANjjDHGGGOMMcYYY4wxzWSIrz48CNwqIjeJSBr4OeBzTesVOS5xdbqI3A2kgUsiMiEiU/H9E8A7gce7rayvSvkaVV0Wka/gmtzfBNSq5K8HHhGR+1T17CDLNMYYY4wxxhhjjDHGGGP6MWSlfFeqWhWRXwf+HvCBP1fVJ0Tk4/HjfwJ8APhFEakABeCDqqoich3w2TgnD4C/VNUvdltfz1BeRJaAShzI54AfBz6pqgcS07wI3KuqFwd/ysYYY4wxxhhjjDHGGGNMb6M3Um9PVb8AfKHlvj9J/PxJ4JNt5nseeM0g6+rnxMIh4B9F5FFcGf+XVfVvO00sIodF5AuJ2/838A3gNhE5KSK/MsgGGmOMMcYYY4wxxhhjjDG1nvKDfu00PSvlVfVR4HU9pjmW+Pk08O7E7Q+NsH3GGGOMMcYYY4wxxhhjDLAzQ/ZBDdRT3hhjjDHGGGOMMcYYY4y5Vraqfc12slDeGGOMMcYYY4wxXakqaAQKoKC1r/g+jeIJa7cVTd43CnE1kW4APQGROJGp/Vy7v+W+NvfHg/DFzyf+ano+tdtj2O5rRRJxlWr8vfF7qU9T2y/pLOL7TYvQKIqf/4DRV23y2v7z/KbtEdkLUVpv9ddLFEEUuu9huHnCUfbHVu3KSNEopP46gMZx4260/bG+TVEIXgCeB9k84nuJB4lfij7GDKvWvma3s1DeGGOMMcYYY4wZkYZVqo880GOiDsHWppuNG9pPGJYMliEOXD3E8+o/U/u5How1vle+/Q+Ezz6WCKXZHFibPUvmD5B+xwcJXnkv4Q++S/X7D1N9+hHYWNuClUnjmKyfOKFxjHoe4vmNY088Np1waTo2I/djFLnbAyfVLce3eG4R2uax1tdD6+ulHmLbawYguPvNZN7zE/WTanXpWZg4eG02yuwZFsobY4wxxhhjjDEGKmWKf/mH13orjBmYXj5P6T/9b5S2ZWW1wLrzVQgWZ+9+wavfQObd70VaA3mA1OT2b5DZc/bCNTcWyhtjjDHGGGOMMcYYY0bmv+oeMu/7KXfFwyYCqfy2b5PZW6x9jTHGGGOMMcYYYxxrV2GM2ef8V9xF9v0/vWmMgsYEmfbV88YMyCrljTHGGGOMMcYYgzXdMMbsZ/4td5D9wM8hQZeo0U9v3waZPW0vnNqxUN4YY4wxxhhjjBmVZfLGmH3KO3Yb2Z/5eSSV6jFhj8eN6YO1rzHGGGOMMcYYY4xj7WuMMfuQd/0t5H72I0i6jyp46dDWxpgBWfsaY4wxxhhjjDHGYKXyxpj9xjt0I7mf/1dINtPnDFYpb8ZjL1TK74XnYIwxxhhjjDHGGGOM2SZy4Hpyv/ArSDY7wEwWQxpTY5XyxhhjjDHGGGPMiNTa1xhj9glZPEjuw7+K5HODzrkl22P2l73SU34vPAdjjDHGGGOMMcYYY8wWk7kD5D78UbzJicFnDkvj3yCzL8kQXzuNhfLGGGOMMcYYY8yorFLeGLPHycw8uV/8GN701HALKF+1q4rMyGqV8oN+7TTWvsYYY4wxxhhjjBmZBU3GmL1LpmbJfeTjeDPTwy8kLEBYhGDQtjfGNNuJIfug9sJzMMYYY4wxxhhjri3L5I0xe9XENLmP/Bre/NzoyyqvjL4Ms+/thfY1VilvjDHGGGOMMcaMyloyGGP2otykq5BfnB/P8qrWV96MZq8M9GqhvDHGGGOMMcYYMzIL5Y0xe0w2T+4jH8c/sDS+ZWp1fMsy+9ZOrHwflIXyxsSiKEJEENkLL21jjDG7kZZLuFBHwIvrP8Rzf3Uq7p9aJWYU0QiABCT+Ss4D48uIBMTzx7SwnUc13req1Pdzu9tJtf2dvF+j5AQggm6sEZ58ttvKW25vmqDztOMUH39ae87JVdfX23I/xMeagOcuDnZ/S7X8PdX3n1e1Y7jNDNLhMVW0VOyyvjbzbVp88x2D/D24aX8lf0ci9f1T3y+1/dVYQuKbohollqObX/tNz0USi0o8z5b7JDl90+o77NPk+0nr/cn5PB88D/G8+LHk+xAttxPHRWK/NP9ekvvIPS6t29JuPybX0bSedtsQf48it+3iufdbid93xT2nto95fvz+Ku45G2PMXpbOkvuFj+EfvG7MC7b3TzO6vXAUWShvBqbVDVg7TX//y3d/+GpYhuLFxn8qkmZudn/wtswT/2+k/Ty1KQpX4PIzrffG/3GOwwqNEv+piRK3o+bbkwfRtTOo1P7Yjv8o9wMaHai0ZfviLV66EzlwVx/7w5jtpVEVLj3W59RdgpCaYMK9NmrTt5u03WtWpOtreXC9lqNtfmydp+U/7K33Q/yf8BRUC7QPUvrYZ/Xpau8frfut3bw9licepCbouB+a9rV0ng42P9Y18Ot3v3fYnwMvz6k89E20uNHmkV77qcvjIomwxQPf3xz0tAaM7QKgpKYALbEN9aAnEVj5fvxZRSPEVaX0n/8MXb3S/XldIzJ/AG/+usbzhKbgUFuDw6Ywu9Njiftbgu16SF47+dCyr9oF5tpyu3PIzubHjDFmULXPkNp3K+4xxuwVQZrsL3wU/8jh8S/bsyjSjEawUN7sV2EFysuDz7N2qv1j+YONasBBlVdh4/xw8ybl5mHtrPtZQ/dV08eVVbp+fk9cOmP2qOTx3Nf0PZa11y437PZ8xYOoAgiEhe3aov6ULveeJshDtV2YvbuU/8tn0OWL13oz9j29fJ7w8hg+c40xZq+IIiCCAf/UMsaYHc0PyP78RwluuGGLlp/emuWafWUvZHAWypvBDXXkb1EFWjSGcNDLQKXA0NvopZAjbxp9O4wxO5AHYbH3ZDtVdcNd8QODn5zZSaKo9zTGGGOMMcaY0Xg+2Z/7VYJjN27dOvzM1i3b7Bt7oVJ+LzwHs+2GSOU75d3JnrfDGEcon52OW1MMuw0VWHlh9O0wxuwwAlGZeiut3UrD3X+J6Dje640xxhhjjDGdiUfmp3+J4JZbtnIlkJrawuWb/aDWvmbQr51ml/8v3VwbY7xIJLvQ0k9+QKn8aOvPHxhP+5uwMvoyjDE7jLoTh7u5wrxGdvfgnBrugd+BMcYYY4wxO1jm/R8mdfttW7ySWcTb3f83MTuDta8x+9M4BzAqXUGjG5B+esp76c393vMLkFuEwpC9hjfOw8RBWD873PwxXT8HFx5HvRQEKTesoirSWt0pEod8tdvJ591mEMr6vpbm6ZKD7Hm+C9ziL61W3dR+2j2GNnq2RWFjkLxBeD6SnRl8PrMDjPB6DSYgyMbHm4DEAy1G5XFt3M7mZ6Cydq23YjyqRfCyEO3SVjwWyhtjjDHGGLNl0u/9EKlXv3prV+JlILe0tesw+4Z4Q2Qd0c66At5CebM9OlXDR9V40Mh+BvqIQOOKdPFBAkR8dPE2OF+B0lWGajGxPoZK+ZUX0JUXYO4m0LLbCi+Dlq+OvuxBrZfQlQ6D6g5r4gDy+l8a7zLNzlddBy/lTg7tlyC+yV44914T7e4BeiML5Y0xxhhjjNkK6Xd+gPTdd2/tSvwMTN4wWqcEYxJkqIJhC+XNrjf4gS9+gM4eh8pGXJWeqNb2Un0soeWFk6iYl8wUHLkH1ci1kamU3eCGlYKrDq2s9wjsIwhyo/WVB5i5ATQRXIal0ZY3LLsUzCSNmiuXVyC9X6+S2Fkf2CPTanySJYBwxPe77WYDvRpjjDHGGDN2qR99L+k3vnEL1+BBdh6y8xbIm7ERAW+YSvkdVutlobwZwnBBlYhAegJN3eIC8PUzLlgvraCZmTZnudRd3lSr0u1RqSviQZBxXzQPHKIaQbXsgvriFVh5ubkNTnpqtFB+/haIWkL4sP326loVfe4FyE8gxw4iqTF/ME3OwdoFXD/sAMp7pP2GuTYys24w431pL1XKx6IKO+4vkX7oHjtBYowxxhhjzDUmkzOk3/LW8SwsPe0GcI0qLgvRKqQmIT2F7PLxrYzZKj1DeRHJAg8AmXj6v1bVTyQe/y3gD4AlVd3U2FtE7gf+CPCBP1PV3x/TtptdSgRI5dCZm101+eqLUFlAJ4643vJ+BlD3Rj6m/sf1wD4qwdRByE2BpNHSKlw9A4VLwy4Zlm6Dymrz3V4K2Fwpr5ESPfRtuHzG3X4ygCCNHDwGiwfg0nnk+G3IbKY5CPVzbsdpHLS7ud2XhhAm9lO4CgeOuN7xqxsWypvhiT/cGAR7xV4Y4LWt3RVwq+r+Pg6NMcYYY4zZAlouDdkCpIX4kD80nmUZ06etOt565dgi8pPA7+JagFSB31TVr/Uzb6t+KuVLwNtVdU1EUsDXROTvVPWbInID8A7gRIcn4gN/HE9zEnhQRD6nqk/2sV6zU42pYlEECDLo7CsaQbyXHn9bBVVXlZ+ZBcRVxGsEWkRSKXThRsTPoOUiXH05bnWzaWvdYKniuT74UQUmD0J20rXH2bTOyA1gUrjQfPcL5+qBPABhFcIq+tKT8JJ7WchUBi4pHHkFpFJw8RQsX3CteDq5860gFffcUtNw4YTbhsLy4PvL7DGjfFDp/q1Q9rOup/5e5Gd3V/ua/XoMGmOMMcYYs5XKRaKVq3gz06Mtx89YIG+2mQw30GuvpfaXY/9/wOdUVUXkLuDTwO3DZOA9Q3lVVaBWapuKv2r/Q/5D4LeB/7fD7PcBz6rq8/GT+yvgJwEL5fc7P+tCci+NABKVUcSF3loZrEI1qrowHxotbmohTnkNynEwXYyr4TPzUG1UjwsKYRHxgbkbwEujeK7/ffGyq64Py+AF7pKsqOouy6qsQvmqex7ltfgsQ0xDqFyFzIx7roUL6GoJffTrvZ+PRlBcg+ce7n8fvPR9kGI8oO4WBFiFK0Tf/as43xX3XIMscvhVo2W+4rv92fQBrolvtecSHxvixYP8xlcNdHyurWGyNLadxHdpuV2bzs8iXqqlOre2XbUrFFq+1+b3/Hg8AWlefusfKcn5mpahTd+aNk9xJ7B6DtiZmHmUSwU1csf9fhzkNars3ers3fYHs4XyxhhjjDHGbInwpRfx7rprtIVUN9DSMqTbtSU2Zmts0bHWM8dW1WQ7igkaAczAGXhfPeXjtP9h4Djwx6r6LRF5H3BKVb/XZUccAV5O3D4JvKGfdZo9KDXpQm0JkPpAr1E9NJS4FYt6GXdfWOgQPsbhbFhxoXhpGVCYuck9rEDhYnNLl6TysgsaO4nKIClYfal5nbmlRjgpQn2w2tKye6y0yqZezWHRfaXc61Te9E70hWfgzPPt1x2k3EmJQa1egIUbgZIb5Hbcogosv7Tpbo3KyHU3M9KJgNTkzmuxk12Mr94YlIJK46TSuLLEpuVEAy1YNERzB6BwfvD1eum9G0z3spefd4fxLoamGg8w7bv3inH/bWShvDHGGGOMMVsifO4HpEYN5QE2zkLxEppbQtIjVt4b04swbKX8oog8lLj9KVX9VOJ2Xzm2iPwU8D8DB4D3DDJvUl+hvKqGwGtFZBb4bFye/zvAO3vM2m4Ptf3ftYh8FPgowNGjR/vZLHOtDBJW+RnXDz3IuMpjoB5mdyBx4K1eGqTWZkFc9XFxxVWgt1PZcGF78XL3yl4/uznsl8AN9hpVXcX+8rOJx3zILzXC7swclFp60BcuuCBX4lCqtcd8ehKZLYNMomdfiLcjBTOLEEXguxMT3qFDSDhky5lLL8HEAqSC+He0DaHixefQIIMsHGHoBLqyBkF+a04mDKv2x0T9mO1BgsZAv1vdh3yI3Sx+Cs0fdH8o9av22u1Zlb9XjXkA5p3Cy2welHpg0hjbQkM39kd1w72Oo6r7PszJxU6q+/UYNMYYY4wxZmtFl4co3uq4sAqsn0b9LOKnx7dcY1oIQ1fKX1TVe3ssutWmFEZVP4vLx9+K6y//4/3Om9RXKJ9Y6bKIfAVXfn8TUKuSvx54RETuU9Vk6nMSuCFx+3rgdIdlfwr4FMC9995rZXG7WZCPq4zFVb8DRGE8+Gn/3LGlqJ+DS4/3nqG00l8QFOSaQ/Mgj25cBC+FeD6iVXT6qNvm1ZMubNq4ALlF9yFT7VDVXbwI2QW37GDCDSxbvOKq5IuXITWFbqw1qj6n5/HC+ATDgePIRA7WL7Rfdr/WL8HcEUhloHyJbRnQ8eyTqHjI/KHh1xeW3cmSKA7frnkQrFBaQXMHEld19JplmyqrRYbbzX7KVb7324omyDcPNrzf7NWrLj2/8/k68XEnIxS3A9SNUwHx1UHxfWGHUF98iDagXHZXwIg3lpNUGu7hqxaMMcYYY4y5hrQ45uK4WstZY7bYVvSUZ4AcG0BVHxCRW0RkcdB5oY9SQBFZiivkEZEcLv3/jqoeUNVjqnosXvHdLYE8wIPArSJyk4ikgZ8DPtdrnWYXy8whfsadtRpTICwozL6i94Rhsb83/+IlVwEMLigvXHLzrp1CVV0/cREkSMPMjTB73AXy1YJrv9MpkIJG4F5dd0F8kHcBfXYeUpmOOZ9MToweyNdcOQUXngdvajzL68eZx9GLJxrVs4PSqvsdaNV9pSbHu33DiEpQWUWlj4rpra6Ob1rXCAFlv4G8n9nfgTwMfBJx1wi7/F41jE+MSTxmxoo7ZqKye98Li53f/7xU82OVNSivuveEUT8KrH2NMcYYY4wxW0ILYwjl09MwcQgmDsPUMcSzUN5sMRGX2w341YeeObaIHJd4YSJyN5AGLvUzb6t+ErRDwF/EfeU94NOq+redJhaRw8Cfqeq7VbUqIr8O/D3gA3+uqk/0sU6zk3U9kONKyrYPjfDG3G9/7yC/uXVMq/QseB740xBWG5WgAKsvu62fOgqlqyAekplGxQfUVcO33b4p93gywPUykJlGtFK/XzvsG40EufWNcPppWL/S33PtZfk0HDjmfo6qjQFvt8q5p9Fzz8DRe5CphfhQGLLivVqIw7xrXDFfXobyMjpxQ4+KeXcyx7VZKnSZbkReygWnw1ymNUiuaZUNezMI7udKCVF3xVGQc6/B8gpdDx7xu7zvqpvfS7kTbWFpyGN3D/4ujDHGGGOM2QmK66jq8INmemnIH7IBXs2287agUr5Tji0iH48f/xPgA8AvikgFKAAfVFUFBs7Ae4byqvoo8Loe0xxL/HwaeHfi9heAL/Raj9n5NKq4FjGdguleOg286nXpNRaHMUKIZhdc9XnXdLFHVXMwAeEG+DMuLAom2k+3eqKxCaVl1/c9O9u+77mfgWcehmoRphbhyO2QSruMvls7nWSA/+x34ZY7kNteD5GCJ+6M9YuPun1Q7HGioR2N4Fw8oGx6ArL+NrTkiODEg43fkPgwuQSTC5CdQXJTcXeMHpXlGgKe+/1Ui2waQHe7bZxD8wc6X/1RC7G3soVNreJ42D92qh1ef+3Uwv/9bC/+TekF/V8tQRzOp2c6n9CTwL0/9ToRGlWgdMWF9+IN/jqxUN4YY4wxxpitEUVQqUB6iB7w4sOEBfJm+43QU76ndjl2HMbXfv4k8Ml+5+1myF4TZr/QsASlZffVK3hxc4y+UvEavcWjKrUGyJKdRXPzcOWZzvNW1js/lpoGPw2k4+pP0GofVc1R6NrPdDoZcWW5EXiuXkSf+me47S14E7keC25+A9F/+E/w4x9E/ApEIBkPbnsteFn0kS/13s5uyuswdSNUV9iWAWBrNITVs+6LxNExdR3M34hMzIInHQLgyLUBEh/8SXe7ts+2O6jXsgsWvZa3zFq7nq2sjgd34kojV8U8rPiY70tY2vxc95u9GAQP05JIK50HYhbPvTb6Vd1wrcP8tNuWfv+IiqynvDHGGGOMMVtFS2Vk0FA+mHCB/H7/f6O5NmTLespvK3v1mCaq6oLQ0rKrit/qsLEtGaCas0VUcv3Mqi3hfHYJCKFytXFfMAGrL/deZrdA3puAs4/Wb6oCMgVf/SzR9bfh3XUPilcP7TVKtGMR4K43NAVTevY5OHo7EiYDsBC5+1+gzz/mWtIM69JLMH0QpMC2DADbzeo5WD3X2IrpgzB/I+RmXAgognjxlQQabh5cVzwX1Cfv3+p2N4UL6MThRrW8BNvz+vAz7uTUqGeBBwmZoyoEiYF3ze7npYYfJ6DjWBFDvI+EBfdVa3vjBU0nX8e1GmOMMcYYY0yfSmXod0g6Lw3565BUh64DxmyTvXCFhoXyBtXIDchXcv2zd/0Aj+q50NZLQ5BDEQiLiMYDGKLgZ9DVU30sCyhfbbkv6+5P+fDMd5ofk2k4+ZT7+dyLwD0Qlt2+heaQUwQJ2gyaeOq76MwNyMQ8RIX491GBqYXRQnmAq2dh6Wh//eX9jAuCB2l7Msp2XY3HiZ5bAECnrofJxfZvtBq5QF6C+MqKsgvkJQDP7z4Y79Ai97vws2792xXID9tDftOy0lDt87WtVfeeEEyAn9qi/bnT7bEkeJRQfito2Hz1lZ91J4JUN1fR78WrFowxxhhjjNkhtDTA//mnjlp1vNkBxCrlze7lgvirLngrXtjaXtjjpOraH9QCUS8NqQkX4lQ33POorEBm0gXgURXxAnT9DBrkXXibPxi3Yuj2nMVV3Gvo2n6kJhsDH66cgQtnYO1C86alpuCFp5L3ALDx5EtUz50DVVISUr8orFvQuvIyunISOXhr477cZJ87qYc+37cqqwGp6WvQVzw14Y7LqyegtILO39yomm+l1ebsVKsQhi5MFnGPabXzeAaDKpxD84eQbei3rrCpUn3YM8Huao027Ue6zhRfWVIBMnM7K9DdDlF15wXZo4hGOGY7HXbjDMvDYuN1Wq+i9912WyZvjDHGGGPMtZeesUDe7BhWKW92lXprmuJl145FIxdwE7he1SK1/iv1gvJ6GhJkmyumpfaPJG4TV/Y2paSN77W+wJKcARe6hOV4WqFrAiOeq9qtDawZld2lVs3P1J1jKF1tDjVroeTayfbLrgX85RUXxFWuQmYW0tNIVAYEXT8NXgVy05tCeVo3Y+F6AK5+8StsfONrAEy/9S2kZzs/vU3PNWm9j+r2Plz+8ncov3yShQ++By8Q8ATPryKVdWr7vlqepvDNB0m9/baxrLNv4jUfZ6UVuPISOndsgLOgurl9kZdxAWtSa0ucfm2cQTML4Ke3PpxPtk3ys2iQA/EH+vBRgLVTjJRs7stKZXXV23shlJfAtfYauy06Llqq6GUqQ+YDHyZ8/nnCZ55A11aQA0fQC2d2zwllY4wxxhhjdqD0uz+If+Rw7wkzc5Bb2voNMqYPYj3lzW6i66ehcGFzwCTSGKhPE4H4pqwl43p91xfYaUXau6+3goofD1zp1bfJ9eruHvKIhujsLbDcZbBXcKFOv/2wU5NuO0pXXAV+MOE+cMqrSKUR3GrhUmP/TQWQfzWcewmKV9H0PDz/eNNiN54/w8X/8G+IVvoM0/1sc0W3hs33ZXoNHNunapXyCyc48/v/R9PdwdIih3/tPYQ6xcpf/CWZ++4Zz/oGMXMIopaK7uJlOL+Gzt8KqcxwZ0Oj0uZQ0ku5r0EryAFKlwDQ3HWNHvNbrVZJnF0ccEZh5MF9w6Jrf7PvAtA9cjLCT0N1hPEBOu6GIf8Iqp1/7ZNIROr4jaSO34i+40eJLi7jTeapvnCKyoNfIzrbx9ggxhhjjDHGmCbeTa8kdU8f/+/PHUCy81u/QcYMwCrlze5RvLwjKj5VfPTqS+4EQetjs8fxUnkXzYdxUB/3NU9WJAsROncbVDZgrUMYU9nYPPCn+HF/bg/8PKRycciojV7hfhrCElK52hwapWeglFiXCAQVOHwELd0Ajz+0+flUQ8IL55vv9H1YOAQIMtVSMh8JpPJu2wGyM41A3kvBS48yFh3euKJCgWp1itVP/w0AlR88C689uL1BbAC0yw7DMlx4AnIL6Mz1iD+Gt66o0vi9w3AtbgrnXNW8F2xfOMpZRMsAACAASURBVD8gQUffsrDoriLZl73l94BRr+jo9LdOrUVUfT1AkKFxxVO7GdW1TvMzw22KCP7SHACp19yFTE1R+ptPo6vjuZLIGGOMMcaYfcHzyNz/vh7BpkD+IJKZ2bbNMqZfnlXKG9Mf19q7DJef6DzR8rNEyX7xJJrf5K9DJg+7exQ3aGuQRiePwtoJ15pHAtdP3Ivb70jGDfpaW1K56AIjAdESlFsCRsG1w2n9UPIz6NqZ9tssCmG1fWuZdi0/sln8u25uv6xqAVJzwEZ9vY3HcOsZB9/v8IDHyl/8P/XBQKPlFaqVSYLgaofpx2zhGFRXuk9TuASFS+jkIcgvQRCMfna0FsYHk8O1tKluQFRBswvghhXeQrInzgabbSTBGE6m9HFax4sHBC5e6j1tdmFMJ3g8gpuP4X/sNyg98ADVb39lDMs0xhhjjDFm70v/iw/gL3W7CtuDqeuRIL9t22TMfmOh/H7RV7XzgPW0Xjrue56Yr7SCitfoG5+aABRdft61h+klEcg32TiHbpyLb/hoZspVlYcRrK+4QLvSZxuS/BKam0D6bOmhUdS+JY944E3AlMDtb4Knvt483zDlyVdPw+xRCHzXt762rNYTCFvAn52DSnMoXfjus0y96Vj/+3YUg1Tkr51xX7kFdOIgpNKdB4PtV3XNtTKqDBjMa9V9Fc5BahINJrauar51nIHttB/7yu+Fpzxq65peNO69X7rMtu8wz4MoRLJZsu98J+Gdd1H6/GeIznUYN8QYY4wxxhhD+l0/Q/r193WZQiyQNzub7I2CRQvl94t++6t3JC6wbNUrwExNuoFc+wnk+xZCadl9eWn33AYJjTcuQFhCp5eQHi191EtDpQzBdOLOOHgqrkD5ZWTuOLzyHjh0zIWmmSx64gdkrmxw4Lfvwp+Zxp+bofDoE2hhDbJLja4OigujoyqU4lY3yyfAC2DmCJqdjKcRNMgh1Q4nLQYw+apbmDwyT1gK3QkHEfy0j6azBEeuq08XXV4m5S2DZKlX72+llXMwOxsP+tunuHIeL0AXb0dSw7XEqKusQZAfsM+8NOaprEG1hOaWkBECdIUO7XQG/9AZW0xaugLpqb3fVz45uGs0wLG4U0Vj+H1J4K4kkTYtaby0a4+TXWiZqTGtauRa1tTmLS43jqP0ZPNJrNqA29D9c8MLNn2u+YcPkvvlj1J58BHKX/l8/aofY4wxxhhjjJN+74dI33135wlSk5BdRILs9m2UMQMSbKBXs6uMGszo4BXE4oMIut6h9cs4RGXITUBuFpZf6n++ahkKl9H8da46X2uDRGjcviZ+cUcCKye6Lys/jwQBLDYCbXnVPWSAZEScufEwUakEz361d/AcVeFK/HzyC5DOw+KN6PnTsHYJ/ABmD8LGuU4t4jtKeUW4+hKp5J1l4MD1SCbxO56KoACcfQ6O3OKCtFqv6GGDWS8Az4+XI418rxZgBzMQbh5voKeoCucfR5fuQNIj/vFQ3XDBrIb9jcMQlV3rjhqtwMZpNDMPXmrgqnkVD8qrOzAQ1kaLkr1umPEFdiLxIRrDc4mqw7V2qlFgtUP1uncU9dPuZxEklWhh5mfaH29Bzr2XtHkfEj8g/cb7CG6/ndIX/4bw2S4t04wxxhhjjNkvRMi87xdIveY18W0Pggn3/86wZGG82XWsUt7sCtq17cSY2w1kFyA1RVNv7dnj6MZ5IGqEKWF58HAvO4/46Tjsd21ztLLhBrElhKVXwKUX+h/QNqrAmguKZO64a4HTSrtUO3tpuO7VSDrX91PwMhn0+FuRsIxWCvDSw9RPmIgHM4dc0FS4CulJmJwBXQciJOOhHIRL8UmCjRW4/nZYP9v3+gFkZq6/33riDa769CnCZx5zN+YWSL/+9Uh42d2uVbVGld4nGw7cDMUuoXtpiEA+6cIT6IFXI6n0aMsJi+4487N9BrRtPgxKl0FSrmq+XfujNhSB8nqXQH7YDx0fGHGwT3BXvewLEg9iquzqHjZ+ZsCrPrZKl+N2NXHSc+JwPFBsbbY241948WdAjxOD3uw02Q/+PNWnfkDpi5+F9W0aG8MYY4wxxpidRjwyP/WLpO68AxDILUF6BvHc39uquicCTrOPyLXt7jsuFsqbLhI9VrrlUn4G8m4QVlcV3DyxiMCRH3YBeDKc9DPolWc3Ly8zC+npOCRXKFyE7DxkFqB8BbQlJK21DimvwPwxuPhM76fmj3joiw8HXon4XnPrHD8X9xiP90GQpfUqBUnnoFxG/By88m1oYT2ujD8Rl9Z7MHvcDZiYTru+9aUViEow7cOh43Am3m+nnkYn5iAzAZk8hOtIuXNFq/uwVTcPuL71YQVKG5DKNUdnyZM5yQ/oK5cof+mLpN/9LqR8BX3ie419cvgmSGeRHFC9RtXGl55GD9wxeo95Dd2YBf20s6luuLCQlvYeIrBxxg0CK37vqvmo2r2y+Vr/nRSV98YnXzdh0Z04BBcQD3qF0E4ytlZD23RiIjvTfHvTSQVxJ3b7PMklIqReeRvBsd+k9NWvUH3ogfFtqzHGGGOMMbtE5gP/FalXvcrdmDiMpKeaHrdA3uxGe+G4tVDeJMStSeoSP3drXZA/GA+aKq73sLC5h73q5iAlLMHMzbDyAuQPxFWRCqkJ9+KKKyY1PQPiuVzYzzQGLRQfqRZQDV1oX7wMldX+nmp+HsqXW557G9IhjJo6gkRFKLcEqNlUc4jnBW4wwqZl+pCaxoX1imQqqKZh/qAL4gFqJzdqPZVzS1C4gIigB65rhPKqsHbZfQEcuAlNT0F5fdNAthpkITWDrpdgJV5P7bvnQ34KaDNuQCfass80hFPPIne+EcoX+1/OuIVlWH4ZnTs6hjdpdaFgMNmjfUfUvd1M8SL4OTQzi2j7anMVHyo9xl5QHaKKwWMsVfIQ9w/fwkFDd5pdPbit7Pw2PF7Kvad3OvERlSEz5064agSZmf6vhEqQXJbs/fcT3vkail/4DHr+1IgbbowxxhhjzO6Q+uF3NgL53NKmQN6Y3cp6ypt9zof8AUTiHuFadf20N7V8EQjbVxqLVtD52+vtPVTZ1CPdVTzHd2qU6D+eh8qGC6oHqd7NTDd6FvfSGjzX1pvJ01f1aHnF9WnzU+6JScoNeKgaV9F7rvKzUnAnFfp5HtkIbr8Pnn8Myi3P4/wL7vvcEXRjBSbnYO0KTMzC8kWonCXKLEJTyx3X210RvET/OCUCSQOSbEbkrjLITlCvWm2hV5eRmbgCP7mPtnOA0MJFN/jr9OHxvFFX19zvsbo+/DLCAmwU0PwhREO3T+u/b3HHiqTj46TTNnuu8t5LNwJN8d1JFVWar8qQuHA/Hoi2dt+m5zbAcyovE6k79usD2daCaxFI+ZtOBu0KfusAwbv/wx0/Pcb+/13e67wUm64Oqc1Tm001Hig8fizIQm4RPHED0YbxFRit738autdNkAMv634e4USbf/0h8r/yMSoPfYfyP37ejS1ijDHGGGPMHuUduYn0j7zN3QgmIDN/bTfImDERBM8q5c3e0iNkzi25cMXPuCBGfEQrmytnxXNhSnK5wSRkaRTjl5frlcVSXXN96CVorgDWaiNUrFV8pieAicY0U0caq80toOIh+aV4/s3PR710XHUJyFR9Gi2ttvSQjp+nhjB9qLGAzBwQIZ0q6GvPOzUVB33qBu0M8kDk1g0ulGqqDhUXUhXinur1ivnNRARmA/S1r3UDsZbKUNyAq5dg+YJb55W4ErS01vwd+IfPPcS3/uoLm5Y7d+Qg//rDb2y7Tu+WOxo/H76JgEvw+DfaHzEnnnK793VvhVTLSYNu/eTHbf0sVAvo3E2I36Y39aCq640QfJQ+3RvnXDub0uX2VeeZ+Y6RcP3kSFR2X1ptBK9BfrhWK352oPA2OvEc63/6v7d9bPK3/yf8hZm2j+1o1eLeuwJAAmBcoXynI1LigZs7PBbPJl4WZo+1n8z3ercT0xCIRgrk61vlB6Tf8HqC22+j9KW/I3z6eyMv0xhjjDHGmB1HPLLv/xASxH9r5xb3RLsPY4C4p/zuP54tlN/3+jyIs0ugkZtao+4D7bVpzyHJ6l8BTc/GAW0c60Zl8PsIO4Ocq15vqbyXeL2iUddlSFhE/UwjHG/HS0Mq76qt6zP6kF+CaqHzB1l6xm1JZj4+kRAH0qnJOCxN7C9Vd2Kj3oqhywmRIA/F5c3PxRN3fmJiCk6dhakUzByFzBTldeHSf3mE7EKO3BSkU5Web1i5yQnUD6gNcqlhFW+U6vad8IFfWoHLz6GLt47nD5BaeC2eq9yNBxx2VcGhGwhVQ5p/n7VjP/7SsMfJiZa+9N00Dbw65POLxljZvhN+58No7dy1F3RokzTkwkabfSzHxXh/Qd7MNNmf/lko/0tKX/4i4QtPoyuXe89ojDHGGGPMLuBdfzPeQjyWXJBzxVjG7CF74SSThfKmu8wceOl6exnAhfE6eF/fJBFBk+0VJOUqhzNz3fsgVwvusqvUVHNvYXX92XsHk3Gw46Xb9AD33CCzxcvNwX52HrJzSPFS53DJS7k++ulpNyBrUlR2/fGjqPFYVHIfirXnEFWg2KGfeFh221C+2n7faAnSk1Bec9tQuILnzXDq//pMfRJJZ/AnXb/4N37kft7x9o9DFFLJHCY6e6F+lYBeONnY7OwC4foq3nWH0JIgS8dBI6qaoVyaqe/LzNJ0ywa5faSrJbyJfP1eVcXL5/Cyqc19ivr61ak7XkpdTqi0U15t3xdpFBp1bMnUZuLBepOrdNkXieVs6nM/RGgp/siv5ebl7dZBYHf/h/kmY2tdA10r5fuhoXvfdjdGu9JkjEQEMimy7/0J4CeIVtcJX3yR6g+ewj98lPDEc4TPPHqtN9MYY4wxxpiBedc1ugqQO7AnAkxjkqxS3uw92cW4/UwUt6epbm7roFXQ9Eghp9YC1pqw6NZb7dAzWHz35achihDCpgAwWn7WBdsSIH4qUZ3eIjUJa+dcywXxqFevZ2ZdqF0435g2yMPkEfDTrm9+qtRhmVNxZXzJDTTrp1ufrds2P98c2Nda5yiwegLo0AZCq267UlPtQ3kRmFyAy4ltax2DtVyiejled7WCVNxywtUCG999DABvfp5sS4t43VgjfOGZpmFCo8XrufrNb7obQUCQbv82kr7zdZQf/07TfdMf/ACTr11q/zz75QfxALopmL8VyhtQuOSOnSh038GdyMjFPfN21R8g/VbK165Yqf12hniOfr7HALaDqV8aaa4tL7P55OC1VGu3BO4E7DC2YdBdb2oC79V3kLr7jUiQpfqDJymeO4letQp6Y4wxxhizu3gHDrof0jNIm7HgjNnNXDOO3ZTztGcJyr4XH8RexoXJ4iG1kK9bj+VBDv6WVjeqCsXzzdNo1VWOVzdctTm4nsjVdVf9DXEf+6C+alV1y61sNKYBVNKwcR7JH4TKVXdnkEdLa7D+fGOduaW4H7I0t6rxUjB5PaRyjcEsiSC7iFYK7oQAuO0N8s0DZaamOodhUYl6nwzVRi/mSm3+EUKnTP+XoiWzLekS5ObecAel77sP7/Txo/i6BqoUVgS+WVtYtzVtXnbxO0+Su/0t+NlRKqrjkxxRxf1+shPxwLO1Y6K2f7098SbdUXVj9MFnO42N0HWeLvvU362V8nuM57M94+0Oc/x4w73VbUMoX+e5P42CV7yKid/6d4TPPk35218hfPq727sdxhhjjDHGDMlbjIvhsja4q9mLxCrlzS5XqyaXADIzLoyPA3nFRzeSg3Qq0eoa/oED8aCZXpdwruX+1uryTn3KpVYp7rmK81aJdjUalmDtlFuWl3IhSlRx21R2/dd14yxMHIJKAVZe3Ly8wgXIH4RKrR2KuMr4zHQijI/XVynD6UehuIoeuRnJzrowPRmIZhcbfeTb0RDSU64in9C1o3EPNL6nJlzYr1HcdiV5YqRLGOS1tOLp871JksX5UfPyveoaucPxBBunGg+EeYZV/sH3Of+/nGLxYz9DamHIitkEvfIMMv8Kaglk09gFu5HnBpJV0fa/7k0tl0akuFZOm+7s0mS948CenWfZ8cRr6bFYO1kZtH8v2um2Kzge5rU29OtzC84y5A82Po80dANsB7n4NRG/p/g+wW2vIrjtVUTLl6k8/A0qD30Vvdqh3ZgxxhhjjDE7gLewEP8w+v+7jdmJ9kIRpoXy+1UtkE/PgJ9pVMcDKgHhuZe5+N/9t5tmm/8ffo/08Vu6h8/iN1Wub9IrWKx0qfwtr7hBYqNqI0yJKkhmDi2vuBMMeI02L8XLUO2yvo2zkL/OXSWQP4C0BI4ahnDhJTjxiOvtDpCbhqWWl056pvs+qaluQBD3kq8WXGV37aRFds61Xylecrf9nMuFasG8+B164QNE7jnE29jtrSkMfXTCDfiipRT+UnxZW34CmWo8fw1ySD4+q14puK9WXQeCbR8M6upVKufXSNUGnRlFeQ0tXEFysx3Xt6v4GYi6jKmw6XU12oeQhuXm11v9Q611udq4P91lnbu1irjjoNW7tPK/27gcw+j4ex3m+BvyGFHdgtb/isTbo14AuQMASIcTAN7sPJkfew/pH72f6jPfp/LQPxE+9d0e74PGGGOMMcZcS7s/uDRmEwHxdun/1xMslN+votAN9pGsjvfScb/4Cvjtq2G12iVs71frmVo/7wbNrKwD4tafmmo/GGCQd4GTn2/0vgcor7iPGq2imWnYiEOpsBT3oW8E1k3S0+ClkImDTRWcqgrL5+HFB6F4tXmeU4+h2UlkatKdBBDPVdSGfe6bqAyIO7mweqIRihZb+hYLbtnZA66nfHnFBfOpSRfeiu8C/NoJlT4H2dx46SLVR14CIHvX3fglVwksKaHw9IX6dF4mjV4+43bTG34Iqbzc5rlEqGr7M5RdsrfMja2Dw45g5QW0OIPM39q95dJOl6jO7ah2YoZ4MNha2ydwx4SXiaeLp1el/ouo/azqjsGw6L5WTwy2maluV0rs0lC+k9145r3jibstMMz+GfgQkfpA1N0HnB1kwT4E6aZZZIBgXXyf1O13krr9TqKrK1S+9yCVB7+CXjo3wDYYY4wxxhizdUpf/BzZ9/8sUi1A1//DGbM7Wfsasy10+VkXyDbuGcdSIYpcBo7EbRoa65CgfcBbfOjbZG6/rceye7wwpCXwF1xv7LDsAvTKKlRLEEy6xyprbqLURKOqPKq0r070UrDR0q/ez7iQf/UE9X3np11VZHUdCTdg/TRMHI7DnwjWL8IL34JSh0Ewn/82+sq3ItMLjXBzIIpERTS3ELfBaXMCojZgafL3raHbB5U1wHP94YpxP/xElb8nJe7600+ACCJQeORJCCuAoJqleOmlTYvudlhVnvkB3tQMAFGxeb8H1x9DkuFvbZ6TL3ZcnqTG/OZZWkHPPOTaMO32cL4bDTsHrkHLQMLdeAF4k65lURTQFGqKUA/9N60fKG2Q/5fvJjG4g/vZB8nn2HPB/G7jBeMP5UXce+im323iOGn7a29zZ1Sl+58eifeSZOjf6S0jM990hVNjjQJ41MegqG403qcz04gXMI6WON70DJm3/DjpH3474UsvUHn4a1Qf+xZUK71nNsYYY4wxZouE3/8OhfU1cj/7EZicdsV9mTnEb21fasxutMtbF8cslN81xhl0+S60qSyj6TlXmV5pCYU79I2uPP9M78X308IiOUBlZSMemLASV30LGpWgVEL8wE0bVZt700cVyMxBqUtfXz/jgsraNFNHYO206yMclV0YX3sRVwtQuAR+yvWaj4DJxc6hvIaNqv0RiOej08dg5fnOy9LIrSs12aiMz8w3TtTkltw2e42Xs4RF0kFjeX6+CCUX8heDKRqPdPldJd7f9PJFwssu/NeJQ02TVU++uHN6edXD+Vlk/vjuCuejSu9+f2MOW0UEXT0z2DxAMA/tzui4M9X7LJTPzrsTiq1jZ1wzW7H/N590q98/6OqktryeEw2ywDa3atscuc+X9BTKNI2rTMbbckY8j+CmWwhuugV9z89QeewRKg//E9HJ53vPbIwxxhhjzBaITjxD6UufJ/v+n3a5SOkKmp5xXRO6jRVmzA4nYpXyZruMM/D0sy4Mj2o95MUF0TFVpfL8CcJL7cPu8NQJKidPkbr+SNy/Hdc2pRYW9uonTxwEBrlGKC/xdkUV134GD6484wa8zC1CsOFaMsQfGo3BPINGb/yaqALZeECT+EOnseIA5m5HCmfbb1h52bWt2SjD6adctX7X59H14b6JJy6Yv/ID2lZu1nrMVzfciQZ/Iq7oD12VfDpuBZOdguLK5vndStpveLIIXyMkm2vcDlKQm3A/RxFovN89H29quj6/l89sXp7E//h+nIG1DJy71bltaTkRzt/qTjzteNo8cDDgKn37DA+77dOmQUwTE0chXHdXh4XFx0mtcr72c6UAF5/qb5t2Cz9Dc7jbdCB3lltCNERr8++EQWG7jaGxF3X9FTW/KKQW1G/x+4/k8qTvezPp+95MeOY0le98g8ojX4PCTjlxY4wxxhhj9gvvyI3Nd5RXoLqOThxBglz7mYwx28JC+X0lDs8Tg7q6gD7lwm2U6PIKG1/9J0rffACZnCZ9x11QrSKZLJnXvQ7/wCL+gUO4avta0CmNljR9p60em/oAeyk0rDQqwDWEjZYevdkFNzhlkIUg58J6P49EJTd9egZKK81V56lJyM03ApnsQiPoprbZCmWFs8/BRpfq+yZDpPJBvrn1Ttz2RYIMStwvvr4Ptfnn2vdqGV1dQ599yrUfCatQKMTdGiQuEI1cu5oohGoIpTbtcVpVq/g0jo3UgWn8A+45Fq9OUX74QQD8G/Ic/uEb6lt17oHnei56U9OLQUKx1BR4nvu9Dqq0jJ55EDl4N+NoVbGtJDXgyYQuO7XLFR0yfd0A6wDw0b0Wyodl997oZSDTMt5B0HpCI6ZRfYBsQcFPof5C4wRYtRyH9Nt43PnZ8Q/yakbiHzqMf+gDZN7xPqJLFyj/4xeIrlwgunQOil0GNTfGGGOMMWYM/BuObr4zqsLqCXTiEJIe43hvxmwjG+jVbJNxlGR7rso1LLR5KONC6uwC/sIss7/8Yco/8lbwhPRNN7Rsio/40tIWRIdrE1IbvC8enFKjMK4WbyMz64LmQjwQabLHfmYO1Qj8oDnE9zOQP4Drmp8ILIOMC/Tjnu1aBS6chuVTg2//wLR9/3hwz6+1Hz7xOZSKxP2/FcohXL4MLz87xPpbNKXj/SXlza1qhnsT1KjDurLzNPUGq6w3qo/zB2Gjw1UOvdZ39hHk0H2gu6iKODWRuKqlj2B391+5dQ3FOy/I1oP24ZaijZOevo/6s+6EZbXkqlFOf9/1M59ahHR67C1U7CDYuSSVwj94mNyHfhWA8te/QunvP229540xxhhjzJbStTWgXSGWwvppNAqR7Nx2b5YxI9sxbZRHYKH8bjDqgealXPLcroIymITSZfdzaaVeJZq+pc3Z1NqyxiGsNKrAo1JjgErxmyv509Ou7Yx4UNwcWBPkoBRXzkt8YkA8N2irJ3FE1bL/NITcInr1NFy5BOc6nAjYCgNUiGuksByiT34X1pfHtgmpqQxTb3kTAN7kJN5BN4CrKpQe+U4f2zWGIDGYgXxiBPhEt5R2Jybc/Wdd//zKWmIQ3P7p+UeRA6/eHa1sUjNxj/l0y3kPaXyXxG3P38ZW7hFMLMH6he1a4TaQlu9jXKqGqB+gJ5+Fc08D8a8qlUVu+zHoMKj2wLxU+5Oue550/lxKvq803T/kieQxSv/QjxLcdQ+Vb3+N8je+DBs7oPWRMcYYY4zZc8IXnyM4fkvnCQrnUD+FpCa3b6OMGZWI6xSxy/UM5UUkCzwAZOLp/1pVPyEivwv8JK6E8zzwr1T1dJv5/xvgX+P+a/ynqvq/jnH7TS/BBJSXaZvYBRONQB5caB/mXY95L2hfoSuDDwai1QoE6aZqdV0+A1EJmZppmTgO5FOTrhVD8WJ8P25w09r2SgD+FJx7tjHP0ddBOgeZGXcew8/Fz71lFVEEF0/Ay99zbSt2qish+tBXxr5Y//Lz1H+Lid2jeHTsot/UbnsMoXx5BTaG6K9cuOCC6iDf+YqDTsIiuvwiMnvDFlQoj5GX6rJ9ydZGibvDbtXd4x58VZEj96Avfh3yi3D1Zbe9Go55PdtIBLKLbFWrGb1yGs483nxnpYg+/nm48T5k7iAj7zsJgF1wwmnsJNFKrY12u9VL7YhD1ZucIvP2d5F+89upfPdByl/7InrpXO8ZjTHGGGOM6VP1iYdJv+3tiN8l/ts4h07nEdn97UDM/rFV7WtE5H7gjwAf+DNV/f2Wx38B+DfxzTXg11T1e/FjLwKrQAhUVfXebuvqp1K+BLxdVddEJAV8TUT+DvgDVf0f45X+BvBvgY+3bOiduED+PqAMfFFEPq+qz/SxXlM3xNkfPwu5RRfWeX5cWZxonRJMNA+CWltP8bL7HhZdSJVuHfjDo580Q+N/9OxT8OK34PZ3wNyR+EGF0prrE55cu4Cmp13bmcKF5gFcBdfKJDUBkoGLL0M5cQ5o/ibIziGZiUYFZFhwVwJUG8vRSgQ/+GcojK/yfGyGOck3Peu+Xx3D89m0/sQd2RRr5906AvKsnDvdYZ5h1zWAqOza3AwaygMULqAaInM3X/NK2Y5SUxB2H2R4IOI1X30yDhoiN77B/bx0CxC3osIDxryu7RDkka0K5MsFePrLnSd46dvoxUXkxnshkx3ud+Wl92eVfHomvpJsByTsI5B0hvR9byZ1z5uoPvU45X/6ItE42pMZY4wxxph9T1cuU3noIdJveGPniaIKlFchM9N5GmN2mK1oXyMiPvDHwDuAk8CDIvI5VX0yMdkLwI+o6hUReRfwKeANicffpqoX+1lfz1BeVRWX/AOk4i9V1auJySZo/7/iVwLfVNWN+Ml9Ffgp4N/3s3EmZ2CLaAAAIABJREFUNsiBJoFr6ZKZQTRyl3N4k/FArnHf9sI5N7CHn4cwGWyqC8SjOKwsXgT/kOvV3lgBoGi1AF4K8TYfQrq+gj7+t43lADz15c0HyA2vwx2CiekmDsFyh3M2qTysXIG1F9zt9BQcuBWZmIt7hccfJKkJ6hWvWnUnKGotDqQAuZnxhPKRujAM4jMKNAKi2pNNthiB7hXaqcm4XYkPCDJXhte8CT13Cs6eaEw3t4TcegeIhyzkgRTRFz47+vMBJt56X/3nqyfWKJ13J26CqWq9GlujML6Kwkm/8q7G+ADgQmABLZWoPPt9ALzZeYJDN9R3Rcee8n0bYf7iZbS44E7g7Dgy+tUbXqq5cnjcgXxbGv9ud2EgD1DdQEXYdLbIT4/0Qa+Rot/9TO8J1y+iT34R8ODwHcjCMTSdQ2onjhTce5rE7byksamq/V35oXEvl9rzTH7XRDskVXf8DDQa85hkFtyVWm6De0+vUfN4If3qVlnfiQRbfiJPfJ/UHa8heNVdhCdeoPLP/0D1yYcGGEDdGGOMMcaYzcpf/s/4N9yIf/jQ5pbBNcP8jWzMNSICsjXta+4DnlXV59165K9wXWLqobyqfj0x/TeB64ddWV895eMzBQ8Dx4E/VtVvxff/HvCLwArwtjazPg78nogsAAXg3cBDHdbxUeCjAEePduhnvm8NcKDlD7qKzw4hjXg+mj8ERC7zKK80WsQA+GkoJ863FC7BZLK1ggvkdfk5ZOpovQe9alS/1Em///fNgXwqBxOLsHwSZg65ZZWuwrkn0eWX4ab7EC+Kt0/Q2ePNA74GE25w01NPQ3YaueUtECQCkuTgnRrGHzK151+r3o1cuxzPQ29+HRSvwkbrlQID8mgMQgquwrkyREuWmsKl5tDHAzk4AbOvRmuh/OQM3pveDGG83rCYCLFGIyhy8bnG5jyzyurD3wNg6ofe0nG+8lOPtQ2N0ne+rrHsXJ7y979Xv+39zBs2Tb+trjyDLt6BBGMaI2FcMrM7u6XSXqXVDm1OgqFadkE8vPRjn2t+L+wpgtOPoacfAy+Fzh2FmesgF/d3rFYglUK8NtvkpeJt1fj1WAvrE7ehr6wbcCdtwV2Zsl08f6SBdvcKESG48WaCGz9KdPH9lL/+j1QefgCqjd+FTM2hqyN+hhljjDHGmP0hCqk88m38Gz4IUze6zKd4sRHEpyYhY4O9mt1ky3rKHwFeTtw+SXMVfKtfAf4ucVuBL4mIAv9BVT/VbWV9hfKqGgKvFZFZ4LMicqeqPq6qvwP8joj898CvA59ome/7IvJJ4Mu4avvv0VQW3TTtp3Al/9x7771WFjYo8SF/qK8WDK7y03dZf3YeDXJuEE0/59rGJEVlNyhrkEWjClx6AqrrAOjV52DulVAtoFdfQNeqEKRh8jq4Grc3yc5AOgsbFyE/7YJncOH/zPWwcQme+kd41Y8DFfc80lMweQQ2zrkPjCALxQ1k8WZcJa66qvnkyYOmba64aeoVrs37RPwAvfWH4Il/gOoIbUI2vf63pvpb5ueQ+9/ZCNbCbRoQsFN1ZutAr8kq+ab5288++Z534WVH7P01jp7wF5+Ag/ewo6q7BwpwzU6lgD77ABRGCE2jClx6zn0leT56+DXuiplkz8eowlh7ytfaQ6Um3Pvk7h9DZ1fyFg+Qfd8HSf/Ye6h8+58of90NCjvxG5+g+HefofrIA9d6E40xxhhjzC4Qvvx83CZVkcyMax0cFkF8xE9f680zZmBDjoGwKCLJYvFPtQTn7f7n2zbdEpG34UL5Nyfu/mFVPS0iB4Avi8hTqtrxP219hfL1rVBdFpGvAPfjquBr/hL4PC2hfDzPfwT+Y7zB/w53lsEMpEMaIqm4Vc00qA7dE1mCHDp1zK0nNQGrpyC/5FrZrJ2E9TPo1FFYP18P5AGIquilx9zPfhbOPup+nr2hEXavnXfLXbgR1s660H36kAurVhqHgp78Htz4eiSqIGEBzcxCZrbROiKbd0F+bf2VVXc2t7UyvdbKwYsrRjs952wOPfZ6OP0kbFzuOF1XcTeIusqaaz8z9hYHvdpTjCkt89OgybYn7fefioc3t1hvdxFdjk/kBAHp215NeHUZyiWqF8/hHzjk5im742H2lz5E/hVj6FM3poFa9cpzyNyxsSxrPCz53BMqZbj4/NYsOwrh5CNwZQm9/k4k8/+z9+ZBkuRZfefnuXuceVRmVdbVVV1dfdRUz3RPd88wF4M0wBzMDBKS0EhCQqDVSiywK8SuZKbVgS06kIS0IGnX1tBigKTFVga6GIRAsAzaZWHFNYxomLN7+u6uqu7qqsqqrDzidH/7x889wyMy7vA4Mut9zDwj0sP957/wM/P73u/7itPZTkJj12Xhe3mIMqx10JUjEI+XnLuMMx7+6y0tU/jaj5P/qg/S+J3fgnye4h/44zQvvY3af/xJZP0k0dWX2qzFDMMwDMMwDCNBb1xDK3tIeQsK605rCTprCBrGIWF8+5qbA4qvXgHuT/1+HrjWuZCIPAH8GPBxVb2VzFfVa/HrmyLy0zg7nPFFeRE5CTRiQb4EfBj4hyJyKVWw9Q8Bz/RY/1TcmQvAHwW+ctA2jQ46PY3zxyC33PLSzUCg3Be/8yvoiUcBQVD0+KOoKtx+Dmp9xOtaSgi48xqs3tfKlkfh1itw6mFnG5MS4wmKcO4xoAZ7b6DFdSTdH8D5uKjLIvYKLWGoWXHBgLAaL5Zz2Z2712D5fF99UzWCmy+PL8j3ws9DFEBUzbbdvmQlZHW0kzoGiu7vThEIb7csj2TtOLnzD9C48jL1LzzddwvhnV0gi+IxGX3n2h105wayet/8PfSCcjb+723fY994fPJ2jaFQBX3pN6e/od0b8Owvo6cuw8YDSDCezc5QRA03BSUXWI0zbIZGYmudQffFsOaCwYeZfUHej0cRZRuklXyB/Ps+AIA2Gkh5GfIFKwxrGIZhGIZhDCS8cZOgVEb9AhKU590dw5iIKXnK/zZwSUQeBK4CfxL45rbtOn37k8C3quqXU/OXAE9Vt+P3Xwf8nX4bGyZT/izw47GvvAf8G1X9ORH5KRG5jPMGeQX4zrgT9wE/pqpfH6//U7GnfAP4C6pqJqgdaNTobcUCTnxOkxbkp4A7rXX/vYigaw+hm7Xunun+CrzQIUI1KrB8EnYSOxyFzdeg5DzoWTkNJy9AWMGVG8AJ6o0CGpSQpABhc8/tm6AE+VXn8axeHIiIJ4kzvNPWO7uvw/LZA11VVXjzVZchX9898PnENHbiwrJj0Cu4MuhQZ3Ufiproysn9DHhttgIW4ucIzl8EFCmvgHh4q05cb772Eo3XXka3Bl/a2z/9H6j+3iNs/LkPIf6CZIXvXEV3rrrzq3QcKW/E4viMhWy/GIudWWJi/MwJmy4wOSvefBY2X0bvezscOzHuEL7h2H8WpbJqhvGczy8jXoCy6gpBa+hqJzT22kfn1LfRUmExx4to6AK/A5dL7uNhPJoqwI12yi6DPbx2hdp/+hnC5z8PuTz+2QcIN9/MrH3DMAzDMAzjaKK3b8OF+2H7CrpyP2KZ8sahRdz/lhmjqk0R+S7gFwEf+Oeq+gUR+c748x8Gvhc4AfzTOKG4GWffn8ZZvoPT239CVf+vftsbKMqr6meBd3SZ/4key1/DFXRNfu9dIdIAQLwcKh5svZCe6QqHwkHBvrk382FG4gVw4nEnLGiEVm7B9svOh/6NLjYNldsuM9LPtwpXNmuw8TCUitC8C2EXUbx222VKhtX2AECz4lJQg3KcwS1xYUMPatcPCtoawu71eHnPWd2IByiydhrWziQRh+QbJiu67URxgcQDaGu273UXWsKq2263dSVotwDq/LwbOztEv/abUFpy31M8yBcgDJ0AWM9IyPXzPPdDP929Z2GT5pWXAQguPkL4xhXCN1ojHvIXH6E+hCgP0HjxeeBDk/U1c/Ead53V76JbL8PyWWTl3BSsiPowTT95v0T380viwNgc8QuxcJmQFCYlFnyldc0nrxr2Htngl9zl3PZ1k1+k7WVgRGucIq9Bbva1AZo1ePUzUD7hLG2K08560ZbnfLAUf9/BorOkxWk/D34+HoMj8b1NphpwngwdbzRNcg8R3927JxyR03zxOSr/8n+DWnzdhk3Cl740UZuGYRiGYRjGvUHjN3+Z4G1vRXI52H4VXT6H5Jbn3S3DGJ3x7WsGoqo/D/x8x7wfTr3/NuDbuqz3IvDkKNsayVPemB5SWEeXzsHuVWdPA+wXKC0cc8J2c8/5+krg7Fc0cv/wJ0Ktl3f/+GvUYf+SUR9F9sUzWT6Llk6gePDGVSifgHzJ2dH4Offez8P6/UhQcAVgcwUED63dQW/3GBmQX3VifNjF5iCstuZLMFgwjRpQ33Lvm1XIlZwENyiYJoCv3T3r02gfcSURrDpJAi2jUtlx05xoE8o6NDPv2DqN114aqb3GZoP8yQmKyTR2oXQKKlPKDt15Ha1uIaceHy4TeGJ6BHiyopfwPo7onDV+obcQ63d/RKnm+4jyuQUWdqfM3i348q+gJx6G0w8hwQwe8c1dwIsLwu4dtFsD+gU/3LHSeJEjfNw0jK9xcSO+oibDfl8NQ8IXvkz9t36Z8Jn+FmGGYRiGYRiG0Yvo+hV0dw9ZOwYo7FxBS6eR4vq8u2YYIyFMT5SfJSbKLxLlM7B3Pf4llfmtoStcmj8W/2PfcBnSzT0nTInXGrYhAQRFFD8udurFvraJ8OG5LHBtOKE/SqamE+jyx5BcuX09jQWT5DVG/LzTFB56HyyfQrwBanfk+iwCrD6E7rzWEta8POSXobY1XEBh1AzmsAL5FYa3ERAn/AbLcRZ+vP/CusvaTwuCpVMQ9hDhO9tse43fx3YxzktZUvMAPLSeTVHTieiadezwN07ReOHZkZrb/NGfovz+97LygYuDz5teNLbdaIlpecE399Brv42cfsrVNJgm86h2L4ETB8NDWBhy2sfjsHPrBbj9irO0WRvi3jwxUXw9FtxzpzOQ5ecyK858+Ell3EsOiHo+k1SV8LkvUfvUJ4lef2V2XTQMwzAMwzCOLtrxv1TlOqpNKG5MJbnTMKbFUThfTZRfJHavxUJ6LF4kgjgSW6KU3D/znfYn+xl4AA0nQPvF2P+2m3jlsZ+ZmxTwg1jo1pQ1iDqxvE1gkTi71onbAlBaBlE0Cp04HTaccC0elM+0LhQ/v59BLkEBVh9EK2+65ZoVpH63R5ZlRlRuwNLZ0UTIsObE+Z6WM7jRDcNS7VNY9pnPd5+fOzF8+xPRW+iMz8L4l9ZyuUtvpfHc6NYJ0fYWO7/4KbzVb2T5nadHXh9w51j5DOy9Md76Q6Ho9afh5NsRf4pZ5V5+upny4K4zv9A6mM2qC+7NnTEEdpXeo046gof3LFETrjwNm8fR+59CCjMooBrV3OMrbWlTOIGYIN+dZLRVF2ub5isvUv+lf2/WNIZhGIZhGEa2dBtNW73l6jst3YcEY9bIM4xZIgJTTz6bPibKLwga1py4mD/GfoG42la7fUrxBAd8eyVw4nunPUVYZd/DvFPo9gJ30/XyuIJ9Sy3Ruc3OokvGI9olS935CzsbZw/upqxMJECL667IXxRCbgVpbMerRU6Mn7YYmVDa6G6L0w9tQq7sLIT2rmcrnHpF9Nb1uPBhH9FqVknBnRHzIZBgiMKHfah9+eXxRXkY/XiOy43PoSvnkeUz0/GZl2AGorx/sGj0ItAW8RkOWehM+QXr294mPPcr6P1fAavHZ5NN0Nx197Wg7J43mCjfl5S1jUZK9Wd/guanf3nevTIMwzAMwzCOGHLyPmR5qfuHUR22X0GPPexqChrGgmP2NUZ2eHknXniBy16t3DxYzFK6+E77uVho852fe9RoCeniO8E+XWiuWYPKphOZE9/zCDeM3nPZeipeLNA6r/rOLEf1OoTYqJGqm9hxUey8CjuvoisXnKgd1tDyGdd+5frhSGjV0GXXl06695UbGTUs8OIQ/sALsZNaQmPzjavkLj8OYUi012cEQR+Cc/dTuPwWyu++OFm3anegsOZep832FbR2F9m4nK1ljtfHHz1TFuJEurd58KuQY/e59z0PR/sHevtVePk3J9tuFMIrn4YTD6JnLyHeDGoJaOSCyhqhhXXEhPkhUMT3KX7Dn0B/39dR+6Wfpvm5T8+7U4ZhGIZhGMYRofDBPzAgSWfBEowM44hjovyiUN9yfrzVzVhgHPJm2Ky0CpIm2e7BUpyFvgde01lWSJwdH9WhsN5eiLRZbRVE7YyI+iXUCxBtosSFXjuLa+ZWUC/vRJdeGd/br7beT9VupA9+frJM4STYkRTkPYx4Ppx+ILYvacKbr7Z/Ngz1Go1nP0/+8Xei9drg5WNkaZny+95L6fEL5E7ns8vYnWWx0vpd9PpnkVNPtOyeJiG36l5nNVpkIRkjVf6QIqunkWJ5tJVWz2T3p/Gtl2DnFnrxnUih1Nk7dy2FobOe2bdPUzSK9gOu4gcuGOzJcOdtc8/VZyie6F/U13BEzhZO1tco/Yn/Gv0j30LtV36Bxq/+wrx7ZhiGYRiGYRxivAuX8N9yaYgl7e9143BgnvJGJmjUhBu/O1jgqG7GdgB+u4bVKYSn/c+jemxhE7n3fqFdkMdrCfJBF7EorDg3naDk2vW6+BI3tkFyaH4lLjjrc8BmZ94U1rOz7ggrzpu+cnNGGc4ZEoV4K2XYvQU5iM5chDdedp/1G6LW47nsrRzrvz3Px984Sf6Rh1n94Nvwl6YgoFdvZd9mP9YvQW4JkLjGww5xJeTB60rghHjBZS9PwwrnsHHvaPLumI9Mxjundhe+/Cvomcfh+FnEL6A3XoTrzwzVv7az/IF3IxsPumfAIKq3AB8tn2qvZW20UA7cEySfo/iRP0T+93+M2s/9K5q/9xvz6ZthGIZhGIZxqMk99Z7hRMxmFfKT2dQaxtQRQcxT3sgE8ft7iido6MSP4lpr3gGRvQth/HlQcgVgm3u4Qq8RVFNWLLke3mLQEp8Tkb9TTNSm88CvbrJwgjy4756l/3hYc3Y2u9eya7MXWkEefUf8nljNSqQxhXwZ0YZ7H2e2ttbV1Ku6oEnpmBPlAW99nejmNWjWIWqwcvkhtFqLiwBHrfVf+3LXIrzN119rn+F5LH3N15C/eIbm1h7lx07il6adyT6kID4py/chxy/H/s/x9Soe5I657Xs5d330EyjzqwdtqWZKcgwXKPvhyKmzvb+QxlnQozU3hR2kCq9/Dm48hy5twNZVxjon6hVcMdd1qN8dInM+hL3XwS+ixRNmadOJ+D0DdV4xT+mP/Rmij/5RKp/8P4ie/8KMO2cYhmEYhmEcWjyf4PJbBi8XLPXXhQxjQRDMU97ICBFBvWCErGuP0QvniYt4ivONJ2xC7Xb7IkHBLecF8XLiftcoVUhWncC9X6xV3bKVW05M8Istj+zCmmurfnfOQiRjZqgOIKxC+czU7XikuQf0CbzkAtgZwee+vgtBDpoNuPsG3uWniL7waYgicqtLNHZTxYUH+M1FmzehVIbKHvg+x775Eyy97Xj8+erwfVpk/BJy5p1uhEpX0TEWM6MGIFDYgNomXa/ReWrhif2SX5xdgdyhOPwP0qGJxhgZMc0hec0qbF2B/DKU1mDrGiM9WxLLq6jm/ngP68OdW2EVdq+ihXUIyibOJwxxqL2VZcr/1XcR3bxJ9V//CNEbrw1eyTAMwzAMw7in8S8/iZT62GgGZaff5FaOhCWIcY9wBM5VE+UXhVFEefFxFjFApK5I636GdJwtrVH8PnL+vyjkj4EfQKMKNOOs3QYaVp3Pb9KHRLzb317H0KWwBl5cVLZ+p12ECavO4758BpKhJEHZzd+7PupeyY6oMR3tT8PuIwcWmWYNTjwA1593v995LfaZ9ylePs7Su58i3NrBXy7jFfPuRufFAZp0M9sNotv34y0VoRmy+g1fTf5MF3ujuePB6gVk9bwbWZKgClETvf0c7L7efdWTTyLFdUYSKqO6u9b2rW0SBPSQ2R0Z43Hmcfbvv/v3ZEXyI/rJA+RK8OD7XTA1PYFrv+sfIjp6AKhyx01+3hUDT3PuKQjy7r207gVSTo3a0qYT6f0VqG+DX4r72rGdKBXkrd2G2h20dMo9L8Tr2W+RMYYmHqb7MgwdPBbA39ig/Bf+BuGV16j85P8Od28PXM8wDMMwDMO4Nwkej0fe54+1au014v9ViyeguGFivHG4EMuUN7LkxOMQNmJrjLjQ3tYL3TNzKyNkRSPgHYuFkRCaoRMGPQ/wnGD/2nNoswqbrzsBaOUsFJaQoBD713ugaYsQz2W/J170nTR23I19vwvisnOTgrRTRWDpTCojVdz2Vacj0GgIhVU3OqDnQ6yHZUi1ffSA/L5vSi0j6DO/BTdfHtyHcR6e9fbj4AUuELNyToA9WPGAajz14Dgsf81F9/7Ug3BqgQR5vwgbjyGl4+AFfYpL5uH0kxA+ht74LOzFRYxXziPrl+Lrb4wsXg1b1jaN+DoR39Vk2L+UdE4Z63N4cHlBqx5F5/kqM7IfmhGCIhe/Irv2fB853aMgUxSS1b7T8Ax69XchKEJpHSotkVdOXez+LArKHfdVdcvlVwEP6WJlpn6QGnkVr1O57u6hiMu6P4AHpRNd5vfDawWGDwNd/OQHIUBw/n6W/8r303z2i1T/7Y9AbZFGwRiGYRiGYRiLgH/hAizfj6SsaTS2ZRXP/OONw4h5yhsZIvmDVh+aW3YFYCcZ2p+I6kQuoztst0HRKHKF/wAqdSfEhA3Yu9Uh9XiwvAGrp53IOTAi1VG9UQQKx6cvyhfWDlrlzELv6xxdMAy5HDz+IbjyRbjzeizItDorj74bffMcfPnXsutnwu4tWD8Ht69m3/bMSR3g45eR1Qvg+amzr/8JIOBGkJx5pxs5svUKsnLfEP7YQ5IEo7Tppih1PfvFOAg3gwx68d00j+LEXr79genlU9fM0RHkDzVJ/YhmNb5fr7aeDSO31XTHuOuh7fHs6HcPHSuOdMjOK893tnJjICi5y28l+J5/QuPpT1P7mR9vv88YhmEYhmEY9y7FMlIuORviFJL8f2gYh5SjMLrDRPkFRorr6MbjcPNzjC0wRE2XFV083t3XPezyj3u9m3AeuWzXzS9D0pvSBrJypsOiY7/3XWYJrFxsWS7Ut2Pv7Ywon3Htztu/fmgayLFjaOV+2L7JgYKlGiInT8PxT6C3rsHVZ2AvQ4uCXD67trw5PsyLG8iJR6Gw0icjfjBOnM/B8UvQ2M2ocwp4kF+H+u2DBZ2jhhNDg7IbQpiFkOjl2L/+RFKDL9R5fi8CUd3dT5D5BAmODFkKz6m2GhXI+5BfcjUoxsKje9Hvcfp8+P/Y6o9kcm2KQP6d7yH35Lup/9p/ov5Ln8ygb4ZhGIZhGMZhxts448TLqOmsawzjKCDENsuHGxPlFxwpnUSPvxU2vzh+I1HdFSMtnnA2NJISRTqFAD/vPOe7RZyijmKjlZto5SbkV2D1HCLaEsS7XRtJm4k3cJYPhKWzh0iMb0fOnIcz5+k5IsJX5NRZtLKdrSh/5yosrcHuncnb6hSbZ4KHXPhqZ7PkOpFRu1O4sWvo7FsadyG/1r6/kkCSBE6obrP2GGdbuoDe9d3uJ0lWsOcyNBauz/cY2nH91HeguApLp9AoGt0lq6cr0eH/wylzxCPLAIv4QuEDHyH/vq+l+gv/luZnfjWztg3DMAzDMIzDhXfitHsTNUyUN44UZl9jzARZOotGDbjz3GQNVW+5Qpf5lVZ2audw+fwK1La6i6zS43Spb8PNZ5yksPYgkisO1x8/Iw/ywvqhFeRHws86G11haT0bUX7W+AXkwtdMabjSlGwvcssQ5WJbnG79jlwAzS+6628cS6RDSeS+r5ezrPlFo3oXuOsCtfku9+v0SIxpMk6R134dU+gdHOhVPHeKTGkfSj6g8NFPoHs76J1NomsvT2dDhmEYhmEYxsIiJ066N41tSHnKG8ZhRhCzrzFmh6xccML83ZcnayisgS67pMjGLoS34dQlZ2PjeyARcAzu3gEUqqlirkEZcnFhv72b3YWLOy85fSG3iuRLBz9v+1KSTfHXoDx5dvEhQM5fhlMX0d/+mewavfs6FJahNsExOHG/Ky54tQaos7JZPgbLHkhGvuxpls8jp94+kVVNf6Z0Y48aOEuPZBs9+p+2tAlrY3jbL6CX9jC7NGp0eM0bMyVXQN7zLe59FKGf+YnWZ+IDXYKCKnGB1vS8+DVsdD/u2owLwe43nnofOU/7Trwx/1SJmnS91rx875EZXj67ehLDMsW/Jb1invKf+m9QILzyGpUf/QfmN28YhmEYhnEP4R3fcG9qW2jxJDJP61nDyAphiFqXi8/hz/W/l1h9CJbOTdZG8UQrG3Vf6KiB33Cv2nCiycoyrJ9pz1BUhd03nCBfPA5LZ3pHWq/9FoOVBs3Gu7u6eVAYOpI0oZDR6IKEKITihNFyLwd3rrmisbevwa3X4JXPw3PPQzTmcVGFKIBGHnY8uB261/IF5ORjUxTkE6Z9cx9w600sbVScOD8MfgnwZy8opsmvutE2+dX298MWEIrqblkvN91+HgU67WYmRND9ic5hgNqMnw0dE4po2D4RTz0uIRFp25YQ7U/Oeql5cIrGK4Aad36CdWfF9PsoQHD+fpb++j9BkiHMhmEYhmEYxpHHW1+P3ynUD+EoecPohcjo04JhovwhQkRg/TKUTo3fSHMvbgtEI2T5/j7L7sKZR9MdaL2vbsLO6853OLfiBPq0kHn8LQwUGpQDFcDHIsyoQOZhpas4Jy6gIr7LXPeC1uTnIFd0RRyLK1Bem2zv3XgRTj50cH59D55/ZjRhXhX2AnjhNfji78GzT8PLn3NFbt94CSkWYOsFdO8m2qigUQPNXJyMkFwJgiU3kmOeAZ+kToOXd7Y2fVG6F9acIaoIaYHqbbfaAAAgAElEQVS39X74NsLYPmvxHpj3LLO6vYrvzvUD0ywH9c3hWaJRdnZuA/CKeZb++79F8NT7Z7I9wzAMwzAMY75462utX6q30bnUgzOM7BFPRp4WDbOvOWSICHriMbgZOo/4UWlWwGs6MTxqQFRHls+ju9e6+8g3UxmKvXzb63fdVDzuXjVEjp0fXPxTBEonYfuV0b/HYUQC9PYmNGpu34RNNAxdFmiYmmq7UN2FZt19Vj4BtT2o7Lrfq3tufVU33diMf4/GzJ59AS68DbZfH/+7NXtYjtQr8NwzcOlR8AbYkqgHN3bgzS5FjfMl5N0fgSg+B6s3oHYbls9DMJ3bmIgCino++MvQ2KNnMd5po/F54pfizOEF9V7P6hmnoRNoxY/P60kypY2JmdnfLr1qKXhw5AdPzC4YIALFT3wrjYffSu2n/tnMtmsYhmEYhmHMmPIyUkwld2kTqjcnS/Q0jEVAOBJ5fCbKH0JEPPTE2+HG01DfGrxCJ1ED6ilRr7GDlM+glRsHxb6wCqunXJbu3hv9261uQjEuujrr6Kv4wAyESgmgsBZnbqa9imNBXDz32thxovvd2+jzT8PubdjbGs/LN78K157P8Et0YffuhA30EZQaQwjzUQ5efQ12ugWaBHnPx0A7gkLL51xG+5RxxUMiNFeESOdXv0DECZaJ33yzSluQIOMRA2OhZCvMJ1Y8Xs5ZLc0rKGLMiF4nzyzP7Tn8ZSf+zIuVC5B/6l349z/I3j/9u1Dv4uVvGIZhGIZhHGq8413E99odtLiBiBlnGIecBbSjGRUT5Q8p4vnoySfhzf+SjS97cw8pnkDrWy6bPqGx57Lfh6V6G5bvG375UfyvJYjF/ggK6266+xJTF2zEc9vycxA1nWTTK3M3+T65MuF/+Vl4/bnJt68RrJ4ExL3fvjl5m53cuoKefwTZ7TH6orwO5dU48JC2MdqFnZvQqMKJB9y8bjdGBW7twPGluH5BikYBXvyia6ML8u6PA10Eq+1X0eX7kfxsKsgLgCeot+yukXl5tyd+8+I5y4v963UBRPlpETU4EmHww4oE7fYq+8EXjWNB6WhM8l7i0SbtqBJba+FGx6T96zVyllEHjrX2OLsl/pnhuZ8Et8Rz7SejNmA61/wcBPk0/okTLP+1H2TvX/wTotdemFs/DMMwDMMwjCkQdvn7VSOn8RTWDn5mGIeII6DJmyh/mBEvh248BW9+Jpt/6sMqkltGvRzUtsArQ/3G6O3s3QAuj7BCOuMcJ/4UNyBXdp9FDQiKsSAiEDYgKCAawvolSNaWY+5zVTeCIBwz888rgJ932bl+AbThpJ9Riw3ujTGKoRu3r7TeF49l02Y3qnVUNc4M72DlONx57eD88nH3unOrR5Z7B5sleOitENQAgV2Bl5+mp6B8+X3Q02pZ3HkxY4QITQTKuEbD6GQhIiqEdXe+er57f6RJxN4jHHxYVMJdqHc5v4IlNyqoG6WN7vNFoH47fu/HBYqHOKbaI/gcLA9ed2SE/ZI74rsRKlnXllB1I67mKMgnSM6n/O1/hdov/SyNX/2P8+6OYRiGYRiGkRHR9dfQarXdwgZMlDeMBcFE+UOOBEX05DucMD+qaNyNqOHE/vxxuPXseG14gRMI1XlyO7uNQpx52IFfgNWLLts/KEJuyXnSty2TS2UoKvjBgYxFl7SZmpdfRvdF+shlYyouq7ib5Y8EznpHfCSdBa/jW+J4H/hmok/9qPOIz4raNpy6P/bZBmq17DLnb74KDzwGd68Nv87eJhw/D5tXBi8Lzsrm2d+JbX4GWJGcfAA5tdF7ufJpxPOH72uGJHELzS25IFFXH+wZoXEtAi8HKovrN58FXm6++3qhmGFagI6zrSECKBrG94JBGeiz/K7x9TPNOgbJaIEFEOQTBKXwkT+I/+Blqj/+j+fdHcMwDMMwDCMLoojmy6+Qe7QjaXLcBEbDWBgEFrBw66iYidQRQHJLsPFkd9F7HDQET2HtQSeCjYpfgMoNV0Ckegtqm+0BA3ECud69gl7/DPrm76B3X4GghHQK8hMgGiLaRIiQqOnEdj8HhePtC5ZOQnENQdsF+Um3H3jwwBOZtQc4gXp3E/buQOWOC1Bkyesvot3Oo37a2jgHbJAgX1xG3vqO/svtvYHWtsfY+BB4+ZZlRR8EdVnquVGzdUfI9h6iH0BcuDl0fvPDrnPYyCLwaMyZjnO/cdfVLPEK/Sc/NaXnHzp8XEHbxQueCZB75BJL/+MPwPIUR2UZhmEYhmEYMyN87ksHZ/qzH3FuGFkiMt60aJgof0SQwhqceDy79gDJ5eD4g7D+yPA2IScuw8rJg/Ort2DvTdi7iW5fRW88DdWUNU5YRfduoFPOiBRwwnxCsATT3Gp+yg+7rIuz1CtQPjHaOtvX48K32SHv+shwGdETF3rttf+Gr1ja1e5nEP4IYmJiozRMgCzxm1ecOH/kfNgjwB8vWGjMlp5xpy7nZFiBqNZ/ClNTev44dkZRHWQO55D4rs+zLoQ+It7KMst/5fvxLz81764YhmEYhmEYExI+9zm08+/PUhfNxjAOG0dAlTdR/gghpZOw/mi2bUqc8b12AY6/pXtGcG4J1h+GE28B6SFSapwZGNUQIli+cHCZrRdaRfamiGgI5TNuypWnKlt6j7xziq1z8Kbi+VBahUJ5/Da7CZ79bl5Z39je+RG6FnbtpHwKGTUY4OVcFnwykfxxInF2uQ/EVkejiH2jnrdhdfjsBI2QqO6uHy83XHawEBeDzTlxPiiDX26975yyDu5Mlbi2hDE7pr27m3vM9s+R2NZs1ufRDJ5vWSGeUPqW7yD/8W+ad1cMwzAMwzCMCdCdu0TX44RIvwgrDyDBpMlthrEAeGNMC4Z5yh8xZPkcGtbh7ovZtiuAD3rsPqdVbr8O+eW48GiYEuKHEx0kqqLlUy57fh8v9n6ffhZhljY1/Tc05fZ9gdMPALE/8d4doAknH4ArXYapDcPt66jfUfA1LSaV19zvyTxVqA1R5HUYHnknUh4yg3XvTTRsQGljOG95L98n+17bfa01JdZ7QWybkrGgFlZjj/QIJzT3IGq2gl3aRFVdccywMsxGIBzk102cNRxm4KM9/AgDY1Kmt58Fhfd8S/ybunOu2zXgF+IRGV3winQ9rzX5rIOo4dqK4vNa8tBs1eOQohvBo6l70VijVMBd0+I5u6dZopHbZ2Gdw1CwWIDC+78G/+JbqPzI97vaFYZhGIZhGMahI3zhOfwzp2HlAnKoErIMozdj/z+4QNjVeBRZvQhL56bStEicVLt6BimtIBKNfSFIZ6ZwYQ1Z8GH9o6NM9TLbuw07N2HnTahstYbkTFJAcPsmrJ5tn5c+xOK5bVXvxlNGvu4b9yNnRzlv9WC9gp54Y3o4a7yeTsfuImqAaJy136cPKUQEieLCPBJk4weoTXdcD4sXfVTnnhf/p/z1BY0nkKRod5elRHpPXYcLehL7o/WYeny/ZOtt7U/w7ZyFTeCmYYga7Z0aJ+tdiIvb+rGF1eH4Eyy47z6W/vo/xjt5dvDChmEYhmEYxsLR/PIX3Jvanfl2xDCyQrg37GtEpCginxaR3xORL4jI347nf5+IfFZEfldEPiUi9/VY/y/F631eRH5SRKyixJQREVi/PFWfsEwiUmG1PXhwVIdQeXMQXu6+CcvHBy/Xi9s3Ogq+elBac9MBH/cMsqPzJeRt72rPVs8SL8fEfdRm7zYmaVojJxCOKK6LCEKIRDUn8A0rLvbsR1osHJOZPuQWP9P4yOAFcZHVfHvB1X5ZNr1OhUU6bNp0k5dj8J9DGi8fTn6f2hfnZfB+XBC8Qo7yX/xegq/4/fPuimEYhmEYhjEi0ZUX0L0KVG44ZwXDOAIcAU1+qDStGvBBVX0SeAr4mIi8D/gBVX1CVZ8Cfg743s4VReQc8N3Au1T1cZxh85/MrPdGT0QETjwGhbV5d6Uv4nnsqzdhda59mQoqQ2ZyZ75hOLYx/urbN2H5TKq5CCp33HTnavuyIhBMlkUu7/5oXLRxRPzCkEVm4zTcicQv7bOtjIJUYwriEtWdyDdR1nzssx2GXeoKLOLT614v9jq7YyLixdnpyavs/z46i6TKx0QNIBowYgW6p/RPgEgs8Cfi/GKPVBGB4h/5Zorf9B3z7ophGIZhGIYxCqqEV68CCtWMrGcNY954Mvo0BCLyMRF5VkSeF5G/1uXzPx0nqX9WRH5dRJ4cdt0DX2HQAurYiX/NxZOq6t3UYkv0/k87AEoiEgBl4NqgbRrZIOLDxhOuEOuiEtZg+bx7X71FtHcjNkw4IuzeHbzMtLhzFY5PYGP0xoutbPlphhTf8RGQMaP1YQ3q22h9G6117GvxnXe1XwSiWEsLmEhQixpDCHdj4hcnsh0SIc6aH2PESW4JyZXclC85gTC3ArllJL/i3i8aUTNVsNc4PCzw/T2qO5uqbsE3LxdbPCVTht9jX5xn4cV5AXKPP8XSX/4HUJygoLhhGIZhGIYxU7Qa126qb6FzSRw0jIzpZ4s6yC61V5MiPvBDwMeBtwF/SkTe1rHYS8BXq+oTwPcBPzLCum0M5XcQN/xfgEeAH1LV34rn/z3gzwBbwNd2rqeqV0XkB4FXgQrwKVX91DDbNLJBvBy68RS8+ZnJfMYnwcuhErggQVRviRmJf7yIEyE0hK0XoXTiUAznHwbdnHMMqjSGmLpxH3LqHNGtLSfKhxF6t0FUXU051aQsa1QhShV+xX3knTxF8MD57tuIzwHxAyj2OdZLZ2m/cybvFZpVaGzD3utuVvEEsBov5rtltdEeLtQwLvg6p2thFoRVYn+M4ZbPr7hluxbQjF9FnTAvuNEfqcOQXgx6iJXi9SmyOy46hTaNrvhJ4CM5r1LXfo8gkGoU3+NHyIyXAPLrqe2mRd+oe0viI73sZPxC9+0P8oOPmrSKH8+wzonEo1U0Ga2icxppNRhv/RjLf/UH2PlHfwN2tubdHcMwDMMwDGMQ6T+Bq5tQPjW3rhjGxExcZ6wn7wGeV9UX3WbkXwF/GPhisoCq/npq+d8Ezg+7bidDifKqGgJPicga8NMi8riqfl5Vvwf4HhH568B3AX8zvZ6IrMcdeBC4A/xbEfkWVf2XndsQkW8Hvh3gwoULw3TLGBIJiujJdzhhfqb/4AsEZbS+BdXN/tJM6SRUbgCgb/w2nHnvQvo9jYqsn52zWcPoW5eT54Btojtb6JXn3cz7HqX+2d8dqZ3CH/xGZHkCf3KAwnpfiwxVjUWsWDhLsqY1pOd31yZ4hfGF+aRAJJrylp5iEEkj1MtD1BjqoSMC6hWGtoPqKWiml9n/gRPo2z5IE/bY7VPO/PXyLYHey0EUfyfx2fcCTy+rzdmKrYedXteT5Ho/U8I6hJWRN9XrfNTqze4rFPvYdGnUfuxHQePC0Olza5YkhaklcBf1WIWqp4sEHsVP/HmqP/6P590VwzAMwzAMYxBBSv6r3UaL68g9bwlqHGqmoxmeA15L/X4FeG+f5f888AtjrjuakqSqd4D/F/hYx0c/AXyiyyofBl5S1Ruq2gA+Cby/R9s/oqrvUtV3nTw5vQKl9yqSW4KT75jRsHiBYAnVEN19w0VhB1G5BUErK7KnAHPY8OZtQzDGXWo/i3SycILMoMCtiCCej/g5xM8NX4Rx0uBUUvDRC9wkUwy9iDiBXbyBCb6t/k2pYO6isi+a+i1/cKJ4pEQzFjZzsYhcj+1HfPOlXzQWMRAb1XF/Ks1q9FbHRa5Nd04v6PkaPHyp/R88wzAMwzAMYyGRQjphTqFmox2Nw414MvIEbIjIZ1LTt3c222VT3Qdti3wtTpT/q6OumzDwPykROQk0VPWOiJRwQvs/FJFLqvpcvNgfAp7psvqrwPtEpIyzr/kQ8JlB2zSmg+RX0ZNPwY2np5olquLD3ZdGXCuKBYfYHqFyC0oTFCpdFJJL0gvgsa8Gz4Nnfh1qu7PZfthffJYnvwr8xDc+nqlNqKZnALs3Kbz9MerXrqObtwbbP4D7rhMzJZVOAMkgAzYR92cR7GrugVdwVlD0v35Fm3F2/eDvlzIjOQL0CEZ0ZktHTXfMFjD7eHgWoWDqIvShn1VTVmd25EbWJKL4PEZZaLiQtm4iUPjoH6f2H39y3l0xDMMwDMMw+hC98To8/FBrxhijWg1joRjv372bqvquPp9fAe5P/X6eLrVRReQJ4MeAj6vqrVHWTTNMetNZ4MdjX3kP+Deq+nMi8lMichmXkvgK8J1xx+4DfkxVv15Vf0tE/h3wO0ATeJrYAN+YD1JYQzeegBu/R+aCinjOR3h3TB/1+hYU1qB2B2p3UARZCNFnAsrLeB/9DigtI3E2tT70BPr8r6PP/A40puxt7g+4xAP2bYP6snUTtm6SF+CRB6g99/LgdTIZJXC0JOOxSTLfoxpoEw1Kg21nFlDAWwi8fDyiwuxrJifja3PRL/ckiOMX5uT1vpg7J/fO95sobxiGYRiGseBEmx3/9zcrqOq0fLkNY7oI3evZTc5vA5dE5EHgKvAngW9u27TIBZwTzLeq6pdHWbeTgaK8qn4WeEeX+d3salDVa8DXp37/m3R4zRvzRYon0BOPw63Pk6kwr1HPon9DkfKVB9DaFhRWF1SGGA5BobxE+34WqN9CLl0CfwXCCOo1tLrnRPRXetaAGKMDg/ZeP+G2x7kx7I1vBvY1ExE1nXC96OKs0t5HDaFRQQmd5dN+lr62C/Vh1dm2pLPExY+LX96jJMWmjRGR+HYQxedUmCr43GsVL669kF5OW+30W0+TdVxRYY00th9K9Sfdt54BKBliFEvn/WyIZ2JYc+12Xl9TZzGD1JIPCN7xVTSf/rV5d8UwDMMwDMPoQXj1FaKdHbzlZTdDI2hWIFfuv6JhLCDT0uRVtSki3wX8Iq443j9X1S+IyHfGn/8w8L3ACeCfxkGtZmzH3nXdftszI9B7FCmfQvWtsJmlAOwN5x/fjcL6wYztzS+h5dOw9hCy6MLpKIRxtmVYhzAe5eKDLOG8eS+/ywlRW5tw4wo0JxARN1+FlWPIw2+JC38m4pW6qV+WfBehK/jGb0VWSuSDTqFrGmKR17fI68RILNjpgou0ftBbw2zupZYr7B8zVU1ZbaSWzy0hMxURF4yhTfkPAzMMVyZFg8VLWf4IeL37IEm9hQ5UgUYf/8q2e70T8QXt/c9CUkuie8e7z/Zyqe/ReU4Mec9J6lckwYKj9Iwag8IHv8FEecMwDMMwjAVG37xCdGuzJcoD1DZNlDcOL33+H50EVf154Oc75v1w6v23Ad827Lr9MFH+HkaWzqIawu1ns2kwKEF9TK/0XuLr3nW0chMtrrus4KCEFI8P9NReZPSl/9z7w2YVqDohajWA1QehcAy9uwu3Xoed26MJi4LLCNdmKxjQq19RQPjCdRIhTDevH1zI95DAYzYZm4dJQM2irz0eKF2PW5ftqaKJeIq2hNTcMkQh5FfmKMgvyrGMnH3NUciWn8cw007BfBGYdze04frgF9x1NtUOLe64MVk7hnfqHNGbV+fdFcMwDMMwDKMHks+3z2jsoM0KEkzgeGAYxtiYKH+PI8vn0SiErecnb6yxi+RKUDqJ3n1xtHX7FVzUECo3W7+WNpC1h8fs5PyRh78awga6+TLsvAnV232WVqjdQQrAfRsgpyG3hr72gtN+du8MmUk/WMzRmo9e63/cdPMOURThrS0Nsc0xyB+DpXMz0p686RX6TGWtuyBKXIyyr5AqLrAVNWkX9lo2Hvttt2Ub+xAU4u10ORcaO1BYu7cz5NNEdZfdnAT2BnnzG/NHpLfW3a/O6ywJa+6a93LT85tf4JEeAhS+4U9T+Wf/87y7YhiGYRiGYfQgfOUl/LNn2mdWbsLK/d1XMIwF5iiUQ1hw02djFsjqA7B6MbsGm7suG3WkTowQH2rsLYQGMy4iIEEO79QlvIe+qqvFQ080dH70p9eQM2tw7pFht9q/WVXC554b2Er4//wM4a/+35lss9c64jnbmqla17hNkZma19mMeEhYdVNUQ6L4NawhUb3H5D6jse2GEe5Pt6F5FxrxJL4T54KSm/x8S6zz43lBGWdhFlO7g0ahs7WZB4t2wWojZT/ij3b/MWbPQF/4BUEjJ87jTafPC/5Xp//Ag5Ab8dlvGIZhGIZhzIzG0795cGZzF21WD843jEVGZLxpwTBR3nCsPgTLGURHxUP9MewhRrk4mnuLJ/KNieJNllU55H7TN2+iWzV0qwblU+2fqRLd9uB2F7uabm312/fBkrPcSaZR6fJ1VHWRE0R7MOUOC64oT7MCYcfUrLhrRAS8Ymud+hZEzTkJ8wt8AMWfcbFOYyS8PNmfP/3ay2Bb2ohHZASMHJzsKebL9Eb2ZIQIFD7+TfPuhmEYhmEYhtED7/S57h/U+o3eN4zF5Aho8mZfYzhEBF275DJHd6+N3oBfQhvb4xd6HRHdeuFQW9gk6O7NwQv1QVZX0Y1zcHOAj+/dlP3PyjpSPuWKYuxdh6gI0sB74r1OcY8iyAUQaVzSOuUhryAr6923kVuB0omWwCkBrFwc7Qt5LUFKUWjsufbER4MSiJ+hs02WMUmNRzzEvQsn8CzPr7p9Xnlzwi413fUclJxQDy4LPyijfnHGD6QFFuUXXOjsSRS5a2yuAYVxjqs6myqg5T0jqfepNve/n8ajP+J1knN3rABTn0BoYj2TFEmG7l+xbZRN+juk+iUCUZw17+WdUD8Mvfom/Qra9tgPXjDz+gm5J99D7T/8nzPdpmEYhmEYhjEc/oOXun9Qv+tsgtN/BxvGojOlQq+zxER5Yx8RQdcfdQUiRxTXtXrLeVePy6jiSnQ0fKBlaWMyubJ2Czl+Gh0kyqd57dmWnHT57Uj1Dn6bzi5Aev92FtW9ie5sIKvrLcEnfwyKa+2i0ThioQqqiog4YTtpQ0N3fuVXyc5wPjuh2Gl02ZyToiE60LpHXRAked/z2lMnMOYCJ8iDy6KPQjRXdvv5Xkb8w+spLwp48413RM2R0w3azzltvXaOWPBy7b+3ve9owsvFQcQhdoZ4HQVrU0RhHMwa0MYw+1yTaziCqOoCDOINPt969U04FOeq5AP8t76D8EtPz7srhmEYhmEYRgfi9xqVqa7WXceoesNYaI6AnmH2NUYbIgInnoCNJ2H5vCsquf9hxw08+SwoTybIw8HhUuJDYc1N3fp5BLLkHbGwNi8alfHWu/4M+uJnIAqgcNwdp15i0ihoSuTrFqjRLG+6GaqZY/tHJxnCnedA/76JyP40cNvNqhMD82vsBzSimsuGOHy+QNmiITOqKmz0o1OA9/KjBfWiBnhZ3EeneD1oM7a08el7z08/cw8phQ/94Xl3wTAMwzAMw+hC+PILRHe2un9Yv2P/HxqHh6NhKW+Z8sZBxPOhtAGlDXTtLVDbgtptdO9NJ2I1d6G+C9EmsnwWzSJ7r7ThxEMvFixqm1C748SZbtmsXo6DGdyHkEaNib9HLzHKzyGPv4uW9UwqKzVhewL7nLCBVnaRtQuxVUNGNgmNHVT8GdiKzEPg77C5kJS9RFByo1RGaQ5cMCS32r8/GrmRMPnVOFM+LnRau43m15BMBM1BJDYfhtFJ6prw8+Nd+1kEBbNEpPvpnlzvXh430iG259n//JDaKaXwTp+GQhFqVjDMMAzDMAxjkWj+7q8Tbd6g/Ge//eCHGjmtJ7c8+44Zxjgsoso+IibKG30REWdLUlxDjj3oIqfNPajcQqs30dodqEzmiw5A5Ub3+VG95bEdNZ2Q4flofRsKq8ghGM7fiQI0G+itF+DW85M36FWRx550LWvkvKaJ3PvqrWF6Mx7n34FsXHReyQr4xdhLfUJxTMNDYdPQxiQe8vuMdyy6W9B0fzgJivpF8MvO6iOqx5Yf8fL3ZNFTCxTMn/gYjCvIQzzKZtJg7QzPhXQQU3Jx7Y7IvYaH7P7XgQCFr/vj1H7WvOUNwzAMwzAWjejV54i2tvCOHTvwmdZ2EBPljUPCQNffQ4CJ8sZIiAjkliC3hKxeAEA1clntsVBP9TbUewyJGof63YPzKjdcScClc8jqBeQwZc0r6Jd/Mbv2xhGEy6egUYfq6+Nt88H3I8dO0SZihVXAi8X5KWVIZhUIzdRL3INoOBsgVW0rZotGrZqVYR2aNfb9taeFeHHZgEYsgArqi+vHNLe7qJnykhu+CKfRjtftTwiJs9ZHuCdHDRdwnThLPHSjTzpHpLR1r0cGOwBenG3RZ/1hkdiaat+OK5mfWqbNGz9qzUwKzk56vSR++70+68zSz5DgyXebKG8YhmEYhrGg1H/j1/AvPoze2SS6dZNo8wZ66zrefRcpf8ffnnf3DGM4LFPeMEDEg+JxKB5HuIRqhH75X89m47tX0d2r6PG3IoVjyCKKfh2IgJ5+O1z/3Pw6sfdm3JkxxOlLX4Msdff6h8gJ8hK4tqPaRN2cHpKdKD/qgyApuAoQrLTe17dh5zX3PrcE+dRnHQKhcyI6eK73LdyaFtwbqUBXVHd1Ifb91VPh5nR7h230wrBoIxZBTZgfmV6WVX4xHrEzAn3F8iHRCLQee9L3OF/7ncdRs/tIES/f+7v2OnckGG/UiRe0BPqkOOy4hc1FIexxDxYfiGLRvjPFJIqDAuPjFXJ4jzxG9PwXJmrHMAzDMAzDyJ7mp3+Z5qd/+cB8LS3NoTeGMQZJeb5DjonyRuaIeKgXTPxP/UhsfgktnYK1hw6HMH/8AXSeovx+RxhBCPOQt30M8vnBi2osbvnFln95FmSQwOpYkJEVPfe/QNDjD6LGtlPlu4xG0PwxEP9AnEC9PLIvKnYZ49XcQ/0Skg6i+MWORo6oKA8Hiwp7Ac7vO7oH7XzmRYb37agRZ8yPep2P0YdMi2EJbd742mx1SUmNJsh4X/XqS79gxBAUPvJHqZgobxiGYRiGcXjwpjly2jCyQ5D+SYmHBBPljekQlEYhc4sAACAASURBVLvbzkyTyptoYRVKJxY/YCa4TOj69sBFp4sHDCG2FlaQRz8c+4+PQCIc+yUIh7N4mTqq2QqtIxSYFOkIGdXuomFsWdNM7Z9xhb76FuRXUb/UakNkcHtRHTREc6tIt32jCl4h+RbxCIjFD34NjYZxhrIcLFos8WPSxPnpkunpFF/jYwnzI5JFhv8wpGttePkZBIx04uLd/tn7IJd3VmmGYRiGYRjGwiMrvUbEG8YC4i288jeQI2CLbywkfmHwMtPgzvPo3g10wSs+CCAXv2re3RjOeuXs48hbPzK6IJ8mrDiBzBsiy37aiPT2WR4LhdzK4MWIPeXTRA0XuIhF8ZEIyqlpqTWpQu021O+4qXabdtWwxzHXEOq30X2bm9Q6+z7bCkTu+vYKU/agnyGJh7c2DgqRJsYfUjSuFSDuPJXg6MSRonocdPB731NVRwoY9mjEtT/mdS4CuQ98/YR9MAzDMAzDMGZF8Ph7590FwxgekdGnBcMy5Y3pME+xbutFdOtldP0SUjqBLKjthlZuz7sLvctVn307sn4e8mVcJn0G2aaJFYNfjEWleVrIZHwzTgSykYX1vJsAwhCae8OtJ0m2enpeXOByoPDYuUDHvqhvuYz5fvto/9h5sdVLdLg92QdlBIt3dATde420BQwCkncBmK6n97zta0bddpI978XnaCqAJH4212Ryn/FycZ2A0e7b/vFTHOI7g2EYhmEYxr1DkCN46vfNuxeGMRzCkciUN1HemA5z9yKL4Paz6G3Q5fPI0pk4O1oXxnNeVk6jxTWo3sm24cKxlNXIALauHOzX278B/OT4TRjQ8It0Vb+k0GWcTnJcPHoKP+LFzXW7+XY7rl4fAW4A4s6X4YR2jUWxQcv264hC/hiUNtxrfWv4vibrD4F4weDM/mFHmuxn0Mf+08mx0yjeF4txrU2EBBPbeBhDoFF71nfafimz/a+xyCzx9S2tbRORabBu3z6nSx+8oEMwT/rRWTRj2OsnQqPQfQ/xnLfiwEDSiN9136c/KT475DFZwGwUwzAMwzAM4yC593wYz+xrjEODDK9bLDAmyhvTYZFsLXauoDuJ+OzBxuMQlOauFQgRPPQB9MufgubBop3jNRrA7la7P/koXPzKlCCfSYdG95L3i12LmLrPChCNESiQPE6Qi9eVtPglKaE/EbMS64uRNjJ6v8AFi/wyFAJEzgAudEThuBO29ws7Ju0nIvixLl3o8lASwYnlqUBNOMCSZeyLI0r1Q1qvROMdt3kjgdnXzApt9j4vxWP0AI+4+0VY52CQr8MvXaM4eOfjRn947hWdrGB5r3NHe42qGaL+Qy+alf1AnvolKJxAvEI8UiC9Lc8FzcUDjb+jjpABn4w8ED/eX9o/I3+eIwkMwzAMwzCM4Sgtkf/on5p3LwxjNOYt6mWAifLGdFgkUT5NaQMa29DYRgvr4AVzrdgsRHDpw+iXfi6bBovHofLK8MuXT8DZx6BZg9o2snaWbAsjLogg05nV2fZ7h+XL2F0eZUVx/u/iI1Hd9ccLUp86/3YVLxXUkFQmsRPmpS2TP8laT2/G7yK4DRFN1mjya7jNhz6ZFxwUWDVeTpsszPkCsSB/CAMJi8AiHEa/ACj4+d5BPnDneRjfDzQEwoMDhCLfZdYn53Q04bma8TNHVdtH1oQVdz2lAmFKIsTHGfVIl6LOqXtMpz3WgY12FJ610SSGYRiGYRiHlsLXfyve6vq8u2EY9xwmyhvTYUFFeSkeb4kNtdvg5dHCKiBzE+dFQC/+fnj5/5usodwy3H19uGU9H3nLh6BYTs3MWpCHzL3bF5ohvqufj7P9G67WQYfomxSC7XouenkXxEkI98AvTdLh3mgIUsxWlBbahbyuxFm8i+BP3+nRbQyPDFPbYKQGGalB8eLAksS2OHFh5+S5FDU6glld8AsQxs8KrXUpxZAI9UOeJ16udV73CxKMwzDXqQjUb7V+L2x0LhC/xvUhRhHaR13eMAzDMAzDWAi8cw+R+4r3Erznw/PuimGMhnnKG0Yf5u4p34Wlswez/6I6VG4CoBK0RBwRZ6MSONFz2oK9lNfQtAg0Krky1PZaGZ+DuPTBDkF+WixCyuyckWBfkJM+YrNqCLU7IJ47F/f3Xfyq0WxjHM1dl80/02zxOAt5EQS+qL4Y/TiUZHyiDq3Jx5neklpBJB5Ykprn5VxhZRi+uHInSYDJLzmB3gvcudv3epnS/XAY+zMN3fXc3O3fl2T2SOe/ppZvkn1w1zAMwzAMw5gGwdueIPfYW6ByFfXPI35+8EqGsSiYp7xh9GARM+Vzy/0zGhOvXHCv0Q40dkB8NCi5zEnx2r10tZmd/JQrjifKq0LkQX138LIJ1z4LD3/liBsSJzwpOH+H+Aa47xsOB31gDv9NchxUJfZtjsX1xA6m33WhsdVLr2zyQesPyygi81yEeeLM29xiZMwbC8AQd1nxYuuVDssk6GIXo3Htio77rZcq/opHW+HZ/X50tp00GVvaeIV4sY7CscMWjD6wzdRGhC7FYIHoVucKtNehiPHyQPyc0F7bokOYzw1v15PcW7y8+/7aPBI+j4ZhGIZhGEcVObbq3tQ2oXYbXbmIlE7Mt1OGMRRimfKG0QsR/+jkSGvoxPk2y4MED82VWxn144qXjSpUtwYv15MmLK27jPk7V/suKY9+HRSXGTmb0S86/3PXCq0M7rCHWCzoPSTIOK0sB0TO0zka8Qrwi4O2EIv8MZIUpvVTgZFOwdBrL7QY1Q8uM4hmpeXPPREjngsa4YI6c8q6Fd+y5A8T+4L8kCS2NmlhXpV9Q/mhrYs6r8kkuJtcm8TPjiHbS8TsUehWTLW5hwZLrVFeIlC/nVogckE3v9i/0GvUYD9AMbSdTSLO5/BOnwM/GFxc2jAMwzAMw5g53tqx1G8K2y+h+WXEL8ytT4YxNEdAb7o301iN6bOA9jUyaZ/CWpfMwsgJ9pUbULmBKugYl5W+9unx+yXiPIrD6hCZxR7kywwtdHo5t44EbUUDR+jcGOscViJo7sR2GOMI2AP2lXjuWCcTgMZiX1R31kxJ0dhkCqvx/Hgaq1+R286sj2WSaZz4gRv3MH183/1CHNAa85pLBxS7idvjIp67bpJ7spd3VjdBKc6m7/Gc0HD0c77b7mlsu7oTgwir7l4hQe9nlzdmgCpq4J86ydJf+0dw7Pjo6xuGYRiGYRhTw3/kMbyNLsVdd6/NvjOGMSoCeN7o04JhmfLGdOg1LH5eLJ0d3m+9LwOEydomeAW0sDp01rwCVLcn7pljkHAaoZ/998hTn2A/I7QXwZJrzROX+d1vea+QilJqyzlhWJHLy7WywPtFO8Ma2lnwdFHQKfYpv8Zc/fmjpjsP2rzuZ7JhiCJ3fqm632dRfFUCK/I6EVM6R7x8u2itGt/yxtmeB1p3xZcTYb6L40uXCq8dHw973UdxFnzSjOfswMR388NkFIuOXjjVL4EXHuxbW8BhQBtx8VmNR8VI+ntFDXcNRnX2ffvbtkNf6zWvmGf5u/8WO9/33QM6YRiGYRiGYcyC4Mn3Ufjwh7rXzqveQsWDpXOIZ5KhscAcgUx5u8KM6eAvVnar5DLyxW7uQm7VZUP3uv6jGtS30dwSMoxYJD5cfB/UduH6F2L/3jEZ5p6UW2KgQhMstQQq8QaLlJ0FdBN6BmcSS4W4QGJYBeKM0n42LmHVCfP5Y9n6+WfCpL3pc0wEZN7fNmq4sVUzF+ZpFye9fJx9PMU+aNSyQzFf+9HRjM9VLw+ajBRJnX+TbEYUiO9ryb1NvDGCaxNkW2jU2p4XxDU7IuIhV7FgP8RzK6x0f24kBcvdxobrU8N5zmv8nNgX56NaqpBrR5+GON6Sz+E98hjR818Yrh+GYRiGYRhG9uQLFL7+jxE8+nB3QT6hcgMae+j6o/2XM4y5IQuZ+T4qh/8bGIvJImXKl05lW6iycTf22O6X0V0dqhK04kFty+nepSW478nB2y+uw6lHezQ4YJsrZ5HHPkZf+xrxQTWV+B46sShYHty3ZBUE3c/S9N3kF1PnRVLUtLmfoTk8CvU7EDZQySauqItQmLhZg6DspkXoTzeiRmx1McdHR9oOBJ/p2OpE7nsq2GNyARCmkwWRtjSTYHqjXcRn8HmkrbolfgGC/Aj3gR77pllB098pfd1Gimr71FYHo7ELjQoq6QC79L72k0LU6amD8rf8d5AfVDvDMAzDMAzDmAbe2QuU/9x/S+6tjwwntDd33WQYi0jyP+Ko04JhmfLGdFgkUbFwLHsriuYu5OOM+V5U76CFlZ6SoQI0qx1ZwH0uyZX7kOP3Q1QFL4eefcLdVKp7rkisykBRSc5/hSsG637r1iPAQw7sLxlNPPdyrSKCSVZlmGFgBOIRCbXYbgGXXRo1UoVPoVWMFrev4oK8NHZi8duLbRea/ff9MAx7f/fj/Z94we+vr619rIoTnJN251jwtBMN3XkflKdr2TOIRJzfz26eQub8PLz0DxNejq7757BY/0RpwVoGn0Jezp1r+/cYhTA1kiIZ+ZMUXk4sl9pI/hhM7TdNfmh8Poet9iaxUtLQDT/Or8RtpkT1xtbB51eh0/ddobGNJoXMO/udXq7rH7i+s70hhKiJ+LD0l/4ulX/zo0QvPTvedzIMwzAMwzBGJvferyX/gfcjwYj/8zZ2ITd8cp5hzJQFFNlHxUR5Yzrkl6F00t3E+wnXM0C8AMIJRSK/CM2Ks35p7jlxd/tVKJ/unYWvjQGCirjCoG2zOm4qK2dh6ThSXI4L8sWibdRAgnjZ5XX02meH+hpKlMrX7KVAxR7eaUsa8UErvdv1Cm69qMm+uASxT7L02VY3RryxdnoZa7P75hSop0TwRsrHv59lTtakiy/6BcCLPftTSMc+G0YwnDXNPXde+MVsR6KMSrog7H6QQOI+ZRA08HLjFbm8FxD/cNv7CCC5+Dt08UrfJxbgiVpifHLOewH7AbSEvsEq7V9rI30thVXXr0HCfN/2kvth5zIj3FCaFfCLqOpod+ckGyWx4vFyeMeKlP/sX2bnB/8qbN8ZpTXDMAzDMAyjB7JxhuBtTxE8/DAEPrq7B56HFArIUglvqTRewyOPajeMWXE07GsGivIiUgR+FSjEy/87Vf2bIvJ9wB/GqR5vAn9WVa91rHsZ+NepWQ8B36uq/0tG/TcWFAlKyIUPA6BRGA+F34bGLtrYiX+PX6cp6njFbB4klRtOLKlvwdJ9UL0Vz7/pgg+9BJMwlcmdFqeblXZRmNQiK2chV0JWjrf2Tb/voDV46Cvhxd/o/x0uvAdZPtF/mf02O77PoAhkc5c2kWf/mEZOtO0UnQeRFD+clRI9bEHafoxTSDgJKIgXZ5RGfQsmLhwapkZEzLUjPe4jvrMo0SgWO4c8zpJrnfOLLMjPOzPgMAvy+0irgGzPRYTeAZ5p3aO8lqe8NuP7Q7K9jm0GRYiyCoz1CKKGVRcc8MY851KBRsnlWPof/h6VH/n7RNevjt1TwzAMwzCMex7xyH/0G8k99Vi7Jc3Gejbtz3NktGH0Y1oWpzNmmEz5GvBBVd0RkRzwn0XkF4AfUNX/CUBEvhv4XuA70yuq6rPAU/EyPnAV+OkM+28cAsTzobDqJtrzoJ2Pbb0l0Nd30LDmhMmw5oTO5P1I4pjA6gNIUGoXtHMr6a275TTOfmzudRdmghLUUhl9u6nYk4aw9waUTnOg+B04EX+UXnseeuoS1O+OJHiJn+svDd3/buT05RGyHDuWnES0DisHM+/7sS+gwkLZtvRBk/No7AaiVuDCC0Dysad5EhxZ8IdNItj5hT7i5hxS/SW2EEkKhPa7phIrFo3c8ossxifMdfTEgp+To5BFUC5zInc9NfeA/uejBP0Lmat4w40Wq206W6r9QHLnhpIRA5PjlUqU/+LfofE7v0Htkz+WSZuGYRiGYRj3ErK2QeEPfCPBhfumuBEz1zAWFxk3YWhQuyIfA/5X3JDoH1PVf9Dx+aPAvwDeCXyPqv5g6rOXgW2cQNhU1Xf129bAK0xVFUg8NnLxpKp6N7XYEoP/U/sQ8IKqvjJom8a9g4g4AcAvQNFlcff0YNfIiWo7V9Drn+krgsrxR51QmBbkg3L37PQ0wZIT5MJaSqwfItNeG2RS/FJ8JKwxsvAxyEt+7fzwEprisiHTXUhEzX5WPD37LHEW55A2NsOK95kyvtCkxAGdrIIHUROI97NfSI0aWHC0Cc2mu4bmaWcjQSyqN1rn64HDm4iL2rIsSQv22mxlT8/zuwxirrr4ERHlRVrHODl3Di40n2vwMFz3EyCekHvX+4nubtL4T5+cd3cMwzAMwzAWElleRTbO4K0cw7vvfqRUwls7hnf6BDJt+478yuBlDGNeZKHBdTbpEsp/CPgIcAX4bRH5D6r6xdRi/z97dx4tTV7WCf77/GLJ7a7vVlVvLVQBZRUUWItlscpSbMUiaOMCyOooouI2o3N0cDmt40z30Kd7tMeRZmindY64HB2mPTSC2DMKeBABFwQpsKCA2t961/veLTMj4pk/fhGZkXlz3yIy8vs5J9/73lwif5k3MzLyG088v/MAfhzAd/RZzAtV9ewo9zfSbq94UJ8F8GQAv6Gqn4rP/1UAbwZwCcALhyzmdQB+b5T7I+pFxNiQcvNJgL8JfejjR9u6lLYhtSuOni8ORgqRumcXFweoXxhhcC6mDmXFsW1tJmkJYRS46hbgkS/0vjwao6d+Emh23L4ZV3CXO4Oi5CkN9ofk2uHobWyMn6oKNXHLhPj5bVW09vhbypH/pGif89u3UaQmh01fvftxCdrV1OIC9Ut2p8w8JK1sfG8+y5+HYD9uZ5NR9XHSQzuZjLNjIuW4Gr41SWy/6vnkOhr3lC9Cm5YJidtnY0cmn4A0T7Tj2K3e68q+vebnbUY7PsQDjkzqFaWOHEvfj0n1Zpz/e1gAlO9+Ffy7XoC9X/95YHdn6G2IiIiIVoE5fT28u54D98brx5+gdVbcajb3SzSMyOStNQe7C8B9qvpVezfy+7Ct21uhvKqeAXBGRF457Z2N9M5W1RDAbSKyBeADIvI0Vf28qr4LwLtE5OcAvBPAL/W6vYj4AF4N4Of63YeIvB3A2wHguuuuG+9R0MqRygngCS+DPvxx4PC8PbN6JcRfs0GmOPYDJGragD7pfT2uYVWyThkobdpK8FHXB07FhlnpoE/cyQP5eJyytg7c9DwABlo/gHh+HK6oXVmlK4j7EW9wpXp3CDdOZjNqG5uOAFDtfU47Ue8oRi2Idkq21dIStNXJRjwhZtaV1BrGO0+8dhubqKuv/NAqeLEhbceOohVjnPF26i2boTsWMtz5MKtMHhj99Wv8/nOYePPbOWjW1lD78f+RwTwRERGtNjFwbrkD/rd8K8xVJzv7xC+aU4mL44hyaj7vj6sBPJD6/UEAzxjj9grgz0REAfwHVX3voCuP9Q5T1Ysi8hcA7gHw+dRF7wfwX9AnlAfwcgB/q6qPDVj2ewG8FwDuvPPOPDZ4pZwRrwpc+yLoo38DBPsQr2JDNuPaAHpYq5pRRKFtq5NM7AoBvJrtgQ8A/oa9z77rAumq2I1D8fp524c+PLD9w5uXZxP8xMGLeAKg2c6No0Nbza2I29D0CyMnbNVhvLgXfDRggtZR29h0Va5mzXj279ea/2AGr6uiC+vZt7EB0NqpM+3LKGqsbjCvGe9cmSsHtlVU/Bh7vV7FxcTrxXGJAcLUjqO8ta8ZdsDRlMzaGtZ+5t9g990/zWCeiIiIVopsHIN317fBveVmmGo528H4W0DlBOBvZrtTgGiYydo3nRCRz6R+f29XcN6v9cKonqOqD4vIKQAfFZF7VfVj/a48NJQXkZMAmnEgXwHwYgD/WkRuVNV/jq/2agD3DljM68HWNTQHYlzgqmcBlx8A9uMJWMXtX+k39h3AVolWTgEHj9uAvblrK777fUA5FTtRq3Hsz0T1Sjuuw7i11P4jQPWquNJ/zuFLkG4b0z3u9GSqE37oJkcjtO7CAeDEe9Yl1Qom7uEd7A9Y1pgTw85LcmTBJEdYzNqcw7C5CA/jdjFFEE+0ueqtbAonnldgkBGnwpiaOECja4dfJpVJ2e4IFc9F7Sd+FXv/6qcWc4QUERERUZZcD6Vv/17bosZxshmDOLbw0K3adsBeLZtxEI1rsp1GZ4dMvvoggGtTv18D4OFRF66qD8c/z4jIB2Db4UweygO4CsBvx33lDYA/VNUPisgfi8hNsGne1wG8AwBE5DTs7LSviH+vwjbI/6FRHwTROEQE2LgOWt4C9h4ZrQf8eHdgA7nyMRvINXbagbFsdk2I6tqwvZf9R3uc9whQOg4051wV6FahqvGe7njA6cpf48VnJ21HpgxmNAQQAmGPyuIQgFPNPnTvR5y4v//u8OsuyrIF8kDcPsa0j6JYevFRLuLNbw4BWrBUWy/Vo0criZnz0R4OWjtEe04onsUbP/uVjanVUPvpd2Pv3/wMg3kiIiIqJOebvhnOk78JzhVXwLnyRDaDcKu2+LC8DRv3ERGATwO4UURuAPAQ7PyobxjlhiJSA2BU9XL8/5cC+OVBtxkayqvq5wDc3uP81/a5/sMAXpH6fR/A8WH3QzQt8Tegbg24/A3goG+npAkX7tqWHN2tS5q7dq9yEjo6E1QG18/NN5h3ykD5eBzIG7Ra6rRC8TBuKxObexCFwdXGxs8usDd+XBk/i2rRQRPOCvoeHTGHGcQXRpy43UdKFLeUKkRf8ri/uHhotcbJhLHP6SLaA4lmXTw9H+K2/36t+aOduNoiaWfTrxXXrGg8P0U/owbk2Qfpsx6D2dxE9Z2/jP1f+x9mulwiIiKizFRrKL3s2+FefxpS2c7uu4RTBtauBvwttqeh5SUyl57yqhqIyDsBfAS2iuq3VPULIvKO+PL3iMiVAD4DYANAJCI/CeCpAE7AzsMK2Lz9/ar64UH3x1kbqFDEOMDmDdDyNnDpK7NtNdGrl3hzD/DW2r8HB0D1ChtAtvrQj6B+Dihtt3vVz1L1CkjSa0tMO3QamDU5o63gkgDfqYxfDS19JpBU2PY1gK1ebd8A8w9CpwnhDOCW0WoH1DOEjkPdYM9er9XWJ/mnz327tXlNYjJb6aAzrWjVrsljNB7s3zRa7Ea1uPFRLo7dqB6Z9miFNGBdkBw0Y/zRlt26nbE7MfOs5w4N7VrnzFtkPz8E9j0yads1rzZ83G7yOhnh8Wmp/f/kKAIgbqczYD3fq3XcFO8L54orUf2J/wn7v/nLQGNGLemIiIiIFsxceTVKL3slnGPxHHjayK7opbQNbFzPyngqhsl6yg+lqh8C8KGu896T+v+jsG1tuu0AuHWc+2IoT4UkpS3oiVuBnfvHC8d7UUXfif7Kx20w71Zt6KHaDqn9LRtO1c+Pdj/1S3bi2Fn2MPfWbfitGk9YGgcsgvj85HHF1fMAbOgSAXCGByrJxkQUjh++OKb/bfqGhHNeZUXBZP3s3Zq97dBqcE2F61ExK5BXScffO65eX8RksIJ4AtYJX0Oj3ka7fo5q5kd7zPiN0m/nUSbiv+FUz5nYIxoGGuM57N4BmPwuQ3bmagA4pc4dMhrGR5ZM1sLKueJKrL3r17H/n/4tovsHTV1ERERElD/+y78D/k3XwhZ/pI9Ox+K/C/qbwMYTWR1PxVGA1zJDeSosMS6wdSP0YNuG85O2ejBe72C9tGXDBxE7OakAiOJAO6kW1MiG88YF6heHBEGRrcb31gZPhDqO8rH2h26vowbEAIjDcU1N9mrc8SrfF9FGY2HE7mQJD49O6NtdjSoSVwUPCGKNj450s3Fx1gPOj2GhXaGpfY+l52qY212t2JM884e7Ys/fzKR33nZJPgM0PDohsja75i0Z8149F9Uf+O+x/+9/CdGjD4x9eyIiIqJFc59+O/xvex6MHyIf254SV8gvf4hJBMDmb2b5X89L3LyYaDRSOQGcuNXuGZ6EBraCvbRll+Fv2gr0KGwHtqY0IHCIbEjn1YDSMQzsvashAGPvbxY9epu70EEBXrrtRtKKIwkXxwnaC/XhHreeEc8+B0kFfBTEhxumTlEwOJAH4udRbYui+vmCTHpKfUWNEdu9TMhwotnpSL52IiY7Rnu2WhvxC9zCVr96dB2oYec6TZzejyX5TJnwUGkRoPTy1084biIiIqLFMleejgP5nPDWIGaC+e+IcisukBz3lDP5GxHRHIjjA9s3Axs3TPdGlLhSUJx2EGI8wIzQ6iXph17asqe+9xEHNN6a7flmpjig5fAcUL8IPTgL3X8c2tyHbbPhHz1FASbei5+Hnf8zN6MHlYT3bi37sdACyByD+SS8LdJOsAXLS/9McezburFr5xJJgmzj2XW/vwa4JfvTX7PnudVMh3yEuLCbkcn6adhcAvEO6gnbkDk33gz/FW+Y6LZEREREi2Q2hhUELnh73q0s9v6IFsHI+KecYfsaWhkiAlSvgPqbwKX7Jp9U1S2nJn01dqLFcSboS6o0yyeAxk5nqwu3GocW8YSgYVyxXVq39zm0Z3kP6dY7wT7UX4fMsL2GJu1uJAlnpOPSoxsc8XlixpykEpM9/rxwypPPF1C/CHUr6P1cAnBKkBzu9V1dEoesrv3gn9WE08ad7eTVS6OAO6WCOLzu3nnjxJOp9nrIgs6JxVuyfH66Jvh1kklikwlie30GTHa0kAAoPffFcK65AQfv/dWJlkFERES0CLLWa5stQ84cj+QlykoBOjYwlKeVI24ZeuwWYO9hYPdBjBVoOKVUIA/AX5+8/3vUiPdYV4DGJXteEsp3DBg29Hdr7etNau2ambdPESg0CjB20NI9IeBId7aiqywNOl93R4jdWZS5AoanUwnt2yJ53eZmctEVpkHXJNcZiYLeE0o7w6qq4vVs+q2W1Q45DeJJc5N1vx59XmX2O5Kc658E79teiebH/8tMl0tEREQ0FWPgfNNT2ahCuwAAIABJREFU4d70VJjtNQCDCuEW/L2pfhFauYI95ak4RACz/IWJK5pw0aoTEWDtamhpy1bNBwej3TCs20rFsAl4FaDZo/K5fCLeYxefJO7TfnCuRyintpqwcgKo7wwOzKOGbWdTv4S+AbhXsz3Oe4UgpW2gcQEwHtTfhkxYrZitJQ59oybgVOykwLPWvAx1yjnYUZz5APKpFVTG64LCy/lj1DDeUdIjRF4UrwrUx9wpmcjTRL8awLaw6VPdr0F8hMfsdkgJAO+O5zCUJyIiotwwV5xG5Q2vg2gSxM/uyPSZaO4CO1+Frl8PMTlp50g0rewDkKkxlKeVJl4NevzpwOUHgP1HRrtRcIBW4N59ZL63AUmC9kT8Xy0fB+oXelTCiw3SnfLwgCg8bFfnl4/FE5K6tuLS8e1OA+PGLRHiADDZQZC02ImawOEZu6d8VoHUqmSN03Jr8wnlofZvWj7J6oc8m7b9zNJMErwEr8HWDtI4UKb5ieYQzG8OmJeFiIiIaIHk+ImuQD6n6heAxmWon8xVJIBXg/gbWY+MaDIFyD4YytPKEzHAxhOg/oatmh8pqFbbD974dmK+JGj1Kn2DB9HAVubXL/VuWyDxcoeJGnFFfByyJ+FSuhXMKD3jw0OoU4Fk1VIjT9WeixJO2OpoZMv/oUQDiMm+7UrRiMlmZ0dYT/Vfn0DHuBf0vu+7zh5y/yLxDuTZtQ2Sctn23w/ZEoqIiIgyVFtH9U1vzn8gn9AAqF+0JwCAQE98M8R4mQ6LaCIFmFdv+R8B0ax41aPniWv7sPebkDRq2HCldjXgbwLR4MBBNARKm4CZIowB4kBnihnU3SpEQ0iwa5cV1m1gQvM15PUxvRXc0bFMoqaduHkSxl/RSV6B+b2uMzzEJ9hvr3vTp1EYt3NHgiT/COxmXY+TdJ16ndd9+ZGTANrjhFHu30ldb3oCwH/Ja2eyLCIiIqKJuB5q3/8DkIla1eTke1v5+OrO20bLTSY85QzffUQAVCPgwpePVvHVroIgglZPAZe/0fvGa6dt2O7VbPAwZOJX0RBa2oxb2UwRsk3VCiC9Noo3CII9G/Qn4cncK+jH2BDJuv/zrBi391ESsxLsQ90qW9jklkw20ehKB/Kw7b1aVdqp9YZTnmLDKgmfNZuJX51y+2inRGkbQ1vpqB6t7O/4LOizXj1y9gSPud8RBRm1VfK/7WUI7vsCovs+n8n9ExER0Wqr/sAPQ5wl2UYXB6icBPyNdsGhCCvkaYkl8zcuN1bK08pTVWDnfhtKuxWgcgpYuxZYv649GapqnwpX6QyLNLD92Yw/8D5txfyx6fZKB3tD76f/APpUxYcHQLBrT0ll5Cjm3YomCTKXnXj9j7qYhaDHxMOUP6oY+ePX+KO1o8oTVduaxZTiFl+p00TLi2BT5VmuZ1KtX7LY2ed0PRdOGSP1tpcZbXwu//YrRIDq2/5beC98TdZDISIiohVTeds7YMpTFCYsulB++ybI2jUQfwPi+PbEQJ6WXfLdaJxTzrBSnmj/UeDgcRvCt8KZqOODUhABtVNQMTZwigJ7O2irOhmI4rbwgQ083NrAkFQ0gFaOA/uPY+KJBicKqkcMA8N9W9ntlAFI9pW6USO7/s8zEwHu2tEK2VnSkIcg5l5SnT0kaBY3DuTzt/EwkAYDHlYeJlZ14qc0susTcRdwZFAXcexO4GQ8Tnw00EgiO5dJ1uvkHBABSi95DZzTT8Dh7/561sMhIiKiFVB+/VvhbE77fWvBqfw0rW+J8iqHIfu4WClPK00bO8DlrwPl46lAvj/RCAIFnNRe5cNzwN7DAAw0CcnFjYP58sAPQIkCoHoKE4dujcvjT27hr7ePABgmCoDmrm0fQdMRYwPW+tn53s8qTqC7jDSMd6oNeO/LGEerLItcPByFrZBPfs1istDIVss7PuA4WHy5VC7+EDMhALxbboP3vFdmPRQiIiIquNJrvgfuFWtZD2N8B49lPQKiOVj+pvIM5WlladgALv4zUD5hw/OxdL2Z166GIGoH+xrYKkaNAIS2ar5PVbtETaB6xYRtTSLAjHE7pwxEE1SpRvUh1dcMgkcyzwr5xJA5DShHNETnJJgphe0jn4cNoSgO4rOu2J/CUh8xNB/+c1+W9RCIiIiowLxnvwDeDadmtLQFf3/efRBav7jY+ySiodjjgFaSagRc/LINvbzqSFXyaaIhtHaVrVQvbQ++fWvi1P7XkagJ9dZt8B3sjjUWNC4Bbmm0kEYMREbcADB+VxV+3FdfNA72tf3YJjkcTqQz6O+V1Y0y1B5z1g4XAeEcJ1xNE8eeFhWwRnUoFJKL8JOGi1tliQdo8hoRIFrySY37muB16Vb7H5o4VT/4VCud9Lqj467m8D4SmT5UX/ZJr+dA1tbg3Hw7wnv/LuuhEBERUcE4N90C/xm3ze4Iy/jAzYW6dB+0dhpSO73gOyaakwJEHgzlaTXtfM22ZQEmDjdEDFDaxPBqSzPSBJyCCOqWARP3TW+OGs7HYbkOC5mTEHyU8N4Za3LJidaFE1UCC2ZVVaCt1iEat3wZMyQzvp0Y1/g9Kp1TW1mNi4tvjxGFdj4AWh4axG2v4jZHy1zFPWuC+YTQGmUzia47ZU9PVfv+jkLwKKU2AVB504+h8fGPoPHhP4jPTE/GTkRERDQ+5ylPR/meF0Fm+p0uo+2TvYeh5RMQx8/m/olmRVCInvJMbWjl6P4Z4OCM/WXt2tH7q09q3PWEcWwlevk40NwbreXJsJWRvwUYDxI1hn/+Gx82qC5uJaaqAuGefYxJxaq3jpH/WOKkesMP3+GycFGTofwy0gDQfPa6y9Q8vrOIY3eqLSNO8tqXCFB63svgf1vcykYAvXQRB3/wHxB97UvZDo6IiIiWjnPTLXMI5IFsSuVjjR2gciKb+yaaGSlEKM+e8rRStLEL7Nxvfxm1anxaUdw32q0BXnxySu3L49YvqgpA22FLVAcc14bzxjuy2A6Ob0Pl5FQ6Fp+OA6VjEDG2xY7x49C933LKtnK0wIFPx/PsVtsXNC8Pfm6MbwN8DYHGhbmPcyrNy3MoDhX7OjQl+zpxyn3nSaBJLf9GxdJY5uppDcHXymASb6MLALO5her3/3TWQyIiIqIlY657IsqveOkcAnkMKToRtOadEscWWxlvyBxvYxiWLRAti9ZG/xinnGEpJa0MDZu2j3zyCehWFxRrRHHP92bnh69XsxXxYscCDWwwfOTmddvuQGpAr8lZysePVtM7PiQJn9MGVYea0mImIs2aiO3DDwDNrklRGxcAf7uzpUVSldqqjF8WU1RfOGX7mMXE4WX8OtIIrR7owOTLJ8raUr90NX5vxnN70HAudyASERHR6Mypq1B57XdAdMpWhxvXo/1dKtluS/3Urt8HcUu2yn0a5eOQ0uZ0yyDKjaX+UgeAlfK0ItoTu6Y+VN3yAgfQoxVM1AQQxi1U4r3v/hZ6r1gie53ysc7q7tK2De2P6LUMsZPIinN077hT7rOcvJlupasitsd7+5yuK4Q2fG9eBhDZAL9+DmhOufGzVEz79crQj2ZugvfwWDcZsf2PLvsGXITW0SsF2BidNwHgPevFWQ+DiIiIlsHGNipveP30gTxgv1dFTXvSID4lGUBc8IQexXSzZnzgxK2QjRvmez9EiyQTnHKGlfK0Gi5/42gVupOvw7YEADSE+htAFPSeHDZq2IlgS9txK5V+bWZSH+pigLDePi/ZCICxgY5G86+Qd8qZV+ErpMeRBv0mjtUxJtrNq0nCz7iaVEdt66S2FVMY79BZ5pYgtCChXScBaG0ZCeKjePrsGAwbXa/J5NDD9ETNXa89tzzkdVyAiXRF2xMEIyr0PCCzUPr2NyB89CFE938x66EQERFRXlWqqL3tbRDMIJDPE8eHsG0NFU0O29GMi5XyVHh68Diw/+jRCw7PL34wIxCNIGJsGxXp88GpTYwcKqn2mfQzstXxfYP94lBIvFMmFdy5NRQimOtrgoBOJvhIiAJbeSFOIT4UaZEUNkyOBu/QOXKRtud3GOtoDgPAAcJm/x0Ay0jAPvMjEACV7/2hrIdBREREeeV6qP3AD0FkloH8DLfPpql/Cg6gQZ82tkTLSFCInvIM5anQtLkHXLq/94WlbWiOJ6oUDWwveb9fz7dRP5XVVlKO/Vglnhi2R6ub9ES13VqTpUo8KegMe9U73uDJWHtQBRDut1sEAYC31vtIhCJpTvD4Rq6Q775dvAOgwBME05wtZPtI4zk1CnhEhwhg8vt5lhdmYwOlV70x62EQERFR3hiD6g/+MMSZ8feZmW7jTrENqyGw+8DshkKUuUl61+QvlGf7GiosjZKJXfsEjY3LQHlroWMal8StGdTfspWdRyZpTVYq3R/QXW1ZNIwnch0jkDJuuwe/U44rot1UwG5w5LntaFOjs+9TH9YxzopUNW7v0F0VuwptVsJDqG4M2Rnc9TpJJrUlWrSZvyW7XvjiAEWvDooCe3TVChz9NA3v2XcjOncGzU/+WdZDISIiopyofP87YEpzOIo6iuxcRsn3z6TtYvfPclyI17O7anLGlIFiYwd6cBZSOTHdcojyIoeV7+NiKE+FpKrAxfsGtygob0OWpAevaAg1LuBsA41LaIXhpmSDc6fcI7DvklTeB/vD77C7B3zy/zBVbW48GwIh6U/vLqhv/GjpnWrcGqNXRXxYR8+dCoWj6BlOGi/V+gPtoygYyFMuTZLYd90mXIHXtogN5LlzbSABUHrV6wBEaH7yz7MeDhEREWWs8uYfhLM2nyYS+ugXgJ2Hh15PbnwRhn43nUVP+MtfgzYvA+tPsC1ziZYZQ3minNp9IA6vUyqnbFBRv5DNmKZkJ4INoN46gCjuixwH8cG+DdI1tO1iovDICkrFjfvLl1tzK/YUHo7Wbzmq21YyagCE7ar6RUhPLtqPiD0aohcNbAubpZ/MdZD48Czjt3vFq9rXSHdgtyQ7p6jAknVXL0ULmPtW7Ev7p/Q4D0it15PrSGfbKZF48tchczz0m2tENduN21YVGeyk5q2jmtI7WfqNL3XbITtyRIDSK98AGBfNv/rwxMMlIiKi5VZ+3VvgHBvQmnVaZsTgW2SEOpQZHVp6eM5mI15tNssjysryZ/IM5al49PAcsNe1N7q0DTg+4JaA+g6wfvXSVMl3E0Q2YJeosyIyPAQggFMDpPOxqThAc6cdvnprA4KunsfMDbhuNGEv8ik2KsIGBo1TYYDGkIl8J+m5vkycEsQ4cUX8cr7WaZXobMP3jgzXAXSBOw0nlgqg+60ee53vlHucGQ1fxY5zH4smAOCg94TVQwY44sa5OAalV34v9PAAwWf/crzxERER0dIrfef3wr1yfa73EZ0/hD64G7ex0dQpBCK136OjCHjkT+0NwgDaqAONQyAM40K8wJ4q6/Be/b3TDcitArWr7E+iZbcKlfIiUgbwMQCl+Pp/pKq/JCK/AuA1sMfYnAHwVlU9clyOiGwBeB+Ap8F+k/p+Vf3k7B4CUZs294FLX2mfUb0KcLw4gFcb1tauXNpAvkUjtFqTdFR8K9C8CDhlqFOBaGAfc7DfGcw2d6HeOqRndfsYiYwGkwe+U/V1177V8goBGqMcDZGH5GmOvPluYBLlWrLPTjG8tdfSK+i6bNKJp8cgIii/9q0InvgU1D/0fujeztzvk4iIiLLn3/MaeE84Of87unAWet/nhl/vkfuHXycIhl9nkNIxYON6tq2hAln+UH6Ud2MdwN2qeiuA2wDcIyLPBPBuVf1mVb0NwAcB/GKf2/8agA+r6s0AbgXwxRmMm+gIjQLg4j/DHtbvAOvXQYzpCOBFwyLsTLPrHqcEQG0w7VY7qyXDQ6BxwQbU2uzdWqZ5GdqvXcQokr7kk5rDZKsKsUcEFDWkGpVTafeJJ1pFySrArML7oAgfar0sZue5iMC745mo/cy/hrn6iQu5TyIiIsqO9/yXwL/5usXcmTPD5hTRFKG8t8ZAnopFZLJTzgx9R6qVlOF68UlVNV1OVEOPFExENgA8D8B/jJfVUNWLU4+aqJsqUL8IVI5DalcWoxp+IAdopvqlR00bkHtrnWFscwcIDvu0N4Cdgd1MGsxP8YEuLqaeZLVrjaMKINyfbkdBUXjrkBx+4BAtlhSvH/2qWeDORSlVUHnrT8GcvmFh90lERESL5d7xDJRufwoWVsTlzjCUDyf8nisG2LiBgTwVz5xCeRG5R0S+JCL3icjP9rj8ZhH5pIjUReSnx7ltt5HWECLiAPgsgCcD+A1V/VR8/q8CeDOASwBe2OOmTwTwOID/U0RujZfxE6p6pJmziLwdwNsB4LrrFrTXkooj2IOkWhQUOY5UcTsD+bSwbifvkzIQJG+zyFbOuxUb0HdvgDR3Wq1stFW93v0Mpvu3i72PsN46b5QAWBW2alUVYjwg7J7AL1lGetJCN15xGnu9jvsR2J7DsOPWug3gjH/0MbRup53nh4dDx72UGMjTVHq9/5Mf3e/B5L/xhKN52SkmAqjYCamLQEy8MxM42nu+yEcGLXZdZtbWUXnLT2Lvf30XcHB0InDnptvj9WvquVeFXjyL6MxDCx0rERERjcd9+u0oP/+Zi91eHXWi11GEE1bKr10LmeYIeaIVEuffvwHgJQAeBPBpEfkTVf2n1NXOA/hxAN8xwW07jBTKq2oI4La4P/wHRORpqvp5VX0XgHeJyM8BeCeAX+qx/DsA/JiqfkpEfg3AzwL4hR738V4A7wWAO++8s8jfMGnWwoatkl8BKo7tDz8ohNHITmro1mzbmqRSNDgAxLOBQnc7m+Yu1K0Cwa7tEz8Oce1tO4IKibOUZPKaMA7AFSgd7xOGx49JjB0novgIgMF3b3ckaPt5WYoJHYnywKD3ESvdbzrtfXb3VYyfn1A+OLAttopCnFQ+Le2fyXq2qMb9PJoBs7GJ8qvfhMM/+M0jl1Xe+CMQ9+jrKvjqvTj4P/7VIoZHREREE3BufhrKL37ewrdVZabta0Ko6nhHRJe2gPKJ2Y2BKE/mU79zF4D7VPWrACAivw87n2orWFfVMwDOiMgrx71tt7F228WtZ/4CwD1dF70fwGt73ORBAA8mlfUA/gg2pCeaDY2Aw7ModCgRUzE2aBp1QyIJ3t01tNZWSX/59GzrCtufvrlrA/GxBxbYU+MS0NixQXrzUvv35m480aIC/nafyWXTy4tsdesIbSdsHh+wj3w3PhU0koK/UOYwbwUtWjZ/Q/fWu+De8q1HL4j6tV3j0UlERER5Za5/Esovf3E2xSOzrJQHxtu+NT6w9gS2NaXimqx9zQkR+Uzq9PaupV4N4IHU7w/G541i7NsOXUOIyMm4Qh4iUgHwYgD3isiNqau9GsC93bdV1UcBPCAiN8VnvQgD9hAQjUUVODyXn8rMOVIIEDYne6xR3faUT/eVD/ZtEC+ubSkT7AGI7HPaav8yArdmq9qDffu7OHEA34uZ6d9KASA6SLXpoZYMqkuJckUcvg9oYiKC8vf8ANzbnt15Qb8vwvyyS0RElEvmitOofOdrIFltFzozPnKzb4FADxvXQ2Z9/0S5IhOccFZV70yd3ttjod1G3Rs29m1HOZbmKgC/HffGMQD+UFU/KCJ/HIftEYCvA3gHAIjIaQDvU9VXxLf/MQC/KyI+gK8CeNtID4VomOZOcXuCp9i2tdHRljNjLSTeCPHWbYCuoe0J71TtaqO17NC+o91qO2jvpSPMT3HK/UNyrwaZUdWj7SHfjPva0xGNi9DyCU7mQ0MUuJJcZrsTMHPaPacGzZv4JZS/5wfROHUNGn/+x7YNW79QvsBvJSIioqW1tY3K618HybC9qVxxJZyXfpfdNnUMIAZi7M/o3HlbSW8MIGK/uxmJ27km15fW5a3/j2qEI8+Jltp8vh89CODa1O/XAHh4XrcdGsqr6ucA3N7j/F7taqCqDwN4Rer3vwdw57D7IRpLcGBboxSc/Z5vgHBG1eDhYedEsEl/eW8z7icf2pA+OLBV8L361zsVG4b3nGhmQDIhTs+QzLagNxAdY6+/AGgO2Gmw6jQEDs5AKydh96cSFYXYdUmiV9WT8fglpEj6fHYs5K5FUHrhK+A/50XQnYuAN8aRZERERJSdShW1t7wNgmznGxMvgJza7HmZc+oWQOa4Z19m2M+eKG/a7Whm7dMAbhSRGwA8BOB1AN4wr9vyXUrLJwqAw/NZj2IxxLE92WcpmQjW22i3mkla3GhkzxOxP52SDUOSgMut2cDe8XpXqQf9Wtf0GYo4aIVsOlrVu8IA0aEdS68JKTX1f0iP60j7sr6tdopAgeAQ8GpZD4RWxpy+VIjTDmY17ArixX7hEGlfXsRAXgMgGlQZ1WuDVOa5sbo4OTjiQfwS5MQVfS93rr4W1R/7lR49KwX1D/wnhF870uGRiIiI5qj6th+ESLaB/FDz3kQzLM6igpvD9xxVDUTknQA+AsAB8Fuq+gUReUd8+XtE5EoAnwGwASASkZ8E8FRV3el120H3x1CelotqPLHrGFXVS0rFBZqX57NwcY8G0hraED59ftQAIIBbsYF7WAcQ2f72Tvlo+yCnFLfaaWJYQKdJNatGgBj7eOOWEzIohInqg1vrjKVXaF8gzR2oW+XkPrQ8TNL3UgEYuxM2Cdt7iltZFfht3DLO0UQJKUIfUbWPI8dzBEipAuf0tb0vnPUEb0RERDRQ6V+8HsbPfqf+cHP+LhrUAW9tfssnKihV/RCAD3Wd957U/x+FbU0z0m0H4TcFWh6qQP18Masgu6h48wvkgVTw1SVs2H7ynaOxFdfuWioUiWxA333d8DCu7DedLSY6lmagTtneVxIyJT3zw8O+twPiXvIzrW5fgbC6uWOfN6K5m+T9ZGzgKg4Ax67fo6YN46MGVmEHLI0gx4E8ERER5Yf79DvgXXci62HkQ/1C1iMgmq/uo1RHOeUMQ3laHs3dGVZI55caz05iOy9OeUCwrTYgd7v2qIsA4b7tJ9/qTaf275EE80nQDtjla2Svn1668eIWOXVMVBVgnMmqRftxy7NbVl4F+/boAqKeMtowESfeORjFle4hgGWoaKJs6PL2RXV46DgREdFCbGyj9OIXYGkOoZx3QNi4CGUwT0VWgFB+Sb/h0MoJDoHGxaxHMXcqLtCYY4V8r5YzPQcSAN760Wr9qA7AxJO9xsF+sG9D/O7e92Hdnrx1AGqrXw/PtS8vH+9z5wNWlLMM5IF47HFv+ihoz3RftJ0/9QvQ0nHbGsitDL8+0Tx0TNA6qCUNUQ/atMH8sr1u2M+ViIhoIapvegtEc95HftEal4HSdtajIJqPHIbs42IoT/kXBZ1hbkHZHvJ7mN9kie5ogXwiagL+JtC41H2BXY6XCuI1jFtN9NC8DNuXvqvVzeE5oHKyR9Cu8QSwQCugl/ifWU96CwDB3tHzkrEObPvS9QEQNfLdYqF+DjC+nR+AVoM4aB390v9KmNk6J5mDIlmmSNwa3rE/tfitx2jONFiaYD66vIPg7z+F6OwjWQ+FiIhyTNa3gFI1bt0XQS9fBMIcf6fIqfJ3fR+Mx+ftiMYlqEYQYZMMKprke+dyYyhP+aYRcPg4it5X2PaQn2PLGqAdkI0jrPcO5kVsNbkTt38ZGpb3u+MeK9F+Ow50wGWzNkmlvFPO/wZ01IBGTUi/OQVouUncDibZ6E7m3zBeXJm+iPWotn8mO7WiYq+/acE0hO2+mO/XlVnfgHvbMxB+/csILp7r+HyQ2gZQXYM4LrR+ALN9EvB86MEedO8y9OLZ/H+eEBHRTFR/6F0wx0+2ftcwhF48h+jsY4gef9Sezj6C6PJFiF+G+CXAL7V/eiXAdYFGA82/+a8ZPpLsuLd+K9xrjmFp2ta0LCBQDOvAztegGzdAClBVTNQiYKU80VypAofnbdVAQdnNBjP/QB6wAZ2441dzh3XA2wSa3RXzsJWxTtUG0r0qzocJDgCnhJE2oJKqX5pO/SK0fJzVEktnhIp2ESDq0RamI5zHAirW+T7NDRFAk41VTX33G9ImLNcbuBqfZniUx5yY9Q1U3vij0GYD0WMPI7p8CebYSZhTVw38YhydP4uD3/k1RI89sMDREhFRFhp/9VG4T7sD7hNvBgCI40COn4I5fgq46ekjL0ejaDVD+a1tlO5+Lo/IHKR+HgivPHrkOtGyK0CmsfyPgIqreXnAhKTLTyWetHSSMHtSZsL9cFHSGz4Rt6MRx04Ai3CyXnXNyxg5VJF8V0UuDQ2Aw7PQhVRN54xx7Ws2OSE+GT/rkfVnPNhxqv2/DOhPPexvGjXbX1jEi5ed71CTphQ27Po7qtudqGFyqvc/LYUIy3S4qng+nGuuh/eUW+FccXpopZo5dgLVH/l5uN/yvAWNkIiIstL85J8huPcfp16OGAO4q3c0bO2Nb4EwkB9u75HV/P5HBSYTnvKFoTzlU1jv0cu8OGz/+N3FBiDiAOGEGyzG65z01bi2xUu6Ijc8AEpbg0PDI8stxcHgEKrFm3w1SxoCB2egA3vmF1BSRd6aZDQ55fB5EMe+z6Im7BgRh+ph/J6R1PV8G7KP02dbm/Gyc/jYiUYSjvd5s2TEL6H82rfBffozsx4KERHNme7PaN4svzyb5SyJ8ne/EeIW96j6mapfAM7/E7TAXQhoBYmMf8oZhvKUP1EIHJ7NehTzlcVeanHRCvdGvk0ceKQDeafUfwLU8NBOJOqtHb1M1ba5SU4wQHnbBoPGTe2gMHas6bBFTLsFR27lbwU/mAL186sXzM/VDPa+i2n3gO+30Zy8F5IJL6NGXAHPvyWtGA2KHcyLoPydb4bzlG8B3Bwf0UNERFPRg+mOnFZVaLMBWaFKefeOZ8C9eoIjtVdZeAjsPpj1KIhmR8z4p5xhT3nKF1Xg8Fw2ofWCKMxiW9YANuSLJqjK18iG8Ma3fe/d6vCK9aRnfWnLBu1B0oIotP3sWiT+W4f9J4p1q0D5JAZ2DxwyAAAgAElEQVQGneICbtnuzEFyVQNAgaCOsXdEjMut2ZB0GVstRQ379/RqWY9kyUjcAicO4TWKX/czCMU1GnH9p+PPD0E0kiXbwZgE8wXdbpBKFdU3/xg0DBE99jCCL38euncZwRc/Cz33WNbDIyKiGdALjyP4ypeAKII260CjDm3UgWYTGjThP+dFaHz8owi/8k/QxiHQrEMbDaBxCG02gEa9sJ+DPW2fQOn5z2Yf+UkcnrXzi/nrw69LRHPHUJ7ypbkzWXi8TLLYOycOgEk2WrRdwe5vjtdSKDy0P0tbQHDYo7pehy8v2Ad2vw5UTqbOFMDx48r/yIb+/UJ9wO6QMP4cdoTEffUXvYNl1qIGgFUP5UcIIY0LwMQ7f0IbBLIwnSgnlmxHwgTEceCcvhbO6WsBAHr3q3Dwf/17hPd/MeORERHRtKJHvo6D9/3PfS/3n/VC6MWzCL/y+QWOKqeMQe2Nb2If+Un4W0BpkwVZVCDL/x0gf7X7tLrCJtDYyXoU85eE1Ys0i8qJsA54mxh7xRce2pu4ldH6x3eT7tvEOwqCvVQV/gBRE3NZWTvzCPozENbZwqYniSdWjV9/URDvwJjzkRdERCOQShWlb/8+mNM3ZD0UIiKaNxFItUd70BVUft1bIA4D+bGVT0C2ngypnITksIUH0fgm6CfPnvJEfah2tTYpJhV38b3RxYnDxBmI6oC3jolWHdEhUDo2/Hom7psrjq3O96rjj98p27YyEAAOEMxo8qTWGL3FTtI7V7qcrXdmKt4p0Zo01bXnRU0eFku0FPK3gb0IzlXXoPrOX0Tp1W/O5ZcMIiKajf33vRvNz34s62FkznvOC+GeYpX3WLwasHUTZOP6rEdCNAdmglO+sH0N5UP9wuyC4zzLotef8WcbukYN++Ee7Nt+8OMQteNJ/63Fs8F7cGDD9OauDf7Dhm1vUzk1vKWRU7G970XsDp7GxdSFc6hsNt4STDw7BlPKegTZikIAxr6ex31NE1EOrO7RPiIC/1l3Q/f30fjzP8p6OERENAfRN/456yFkzlx9Hfy7bi3WnErz3HxxysDaNYC/CeGOeyoiQSGKUhjKU/aau8VoAzKEQoZPkjqne565qGmD8KjeGU475cHteTQCqieB3YcAf8PeVpx2b/kkrG9eTt1G7XLFiZ8/he0rX7YtZGAAjWydpKptXe8nbXZG6Fs/LrdWvNfrMh7C2N0KadDLPPms7rsjZYUmxiIqpOXfIJ+W//x7EPzjXyN67MGsh0JERDRbrofKd30XRAtWxCc6h6/qBqidBqqn2KaGiq8AoTzfpZStsGGr5FeBiVtiLNyc7lMDW/VuSjbU9TdscO5tDL5dWLcbCo0dADJ8ktaoaV8nwQEAB/C3AW8D4pQgEAi0Y++/COLzgdmu4qSYgTyApawyjQL72khOOuCUXIeIqKDEdeE9+6VZD4OIiGjmKm/6byBSsEAemP1XMH8LOH4LpHYlA3laATLhKV9YKU/Z0Qg4PJf1KBYnyGCCVwBzXfFoCLhlIPIgGsV7KiOotwk0+1Sou2s2xHdKQ44cMHbDIn2IYnkbEjVH3yM6q1Yk4tkxFzGQFwd5/HAiIhoZ204BALzbnoHooa+h+Q+fBOqrPlcIEREVgX/3PXA2GVsNZHxg/VpIaTvrkRAtVgF2Pi3/I6DlpWGxesINYCd4zWjvvs6xCloMoHokIxeEgLd59PpOxU6Sjcj2uBu03MrxzteH316eigsVByrO4PEdeX2Z8Vfcbi3OrJewmnwUbo19BoloyUXxun2112Xil1D+zjej+sO/ABhu4hMR0XIz194A/9absh5GvpWPA8duYSBPq0lk/FPOcJcj0SLMMxiH2NY4/dpzDJskdRqmBNHe9ysIbcV8eGDDcW/NVtMnl2sIrV4F7D/SeUO3Zqu3u5+yuDe8wqDVA7x0DCqmY7kJVQBuBZC4bVCrkt+Ort3Lvs/fptXHPq6Odyr9noXl1tyBOh4AJ25J5PFwRyJaPkm1vLgrXznvXHEazk23I/ziZ7MeChER0cTKr3hVwT/TZzCv1dq1EDOkUI2osPIXso+LoTxlaPnfQKOwE7zOse2J8W3wLm7ctx7tnQBRA3Or8HbKtq/3gD+jIIQ6Zfv/HsE53IptYxPGOw78LdtrXgTwakAY2DA82LePTUN0bLw0dmwv+9R5Kq69fdRoLxfo2iuqNoB2y3Gv+tR4YOxktd0T1oZxT3sUcMMw3UaqckV24yCifBi0IzmHFSYdNEBrx2uhv8gPVv4Xb0X45W9FdPYRRGceRnjmIei5R4GIE1sTEdFykLIHoIC95BOK6SIR40IMIz1aVVKI9jV8BxPN2zwneHXK7fBYAxtiL4QAUTBSNiMDKgAEEXTtWmDna4BbBZqX24FPMgFwY8dO+Co9KtU1sBXwya/GB8JBfeq7hE0Ajg3jw4POgL4XxwXCAoc87C9PRENbrSWHfqYmSxLpCvLH/MybeYVXvOM13aVRzEqF9GZtHeaOZ3acp0GA6MJZRI8/Gp8eQfT4w4gee5A96ImIKH+MFraDqDXlg/PWZjMMomUkKEQbXobylJ3Wl/pCf9IC4Rz37s9z2QPN7m8mGkBrVwJ7XW1s0u14oiYgGzZkcXxbAe9v2LA+atrqeGOGTBybMPa1FybLD4Fgd8TBugDm2A4oa261EB9sRDRPerSSftqPBI3D85mvf1I7hZXrNnFdOCevhHPyyo7zVRV6+RKis4+lwvpHEJ15CHrxLOD5MMevQPT4I4BfhnP9TZByBWg2IGubkEoVUIUeHiB85BuIvv6ljB4hEREVhnEgKzL/3MR6HYlOtFKWf/ueoTxlR5z2ZJ/1C0BzxGB0iag4owe+k3D8o21WFkVSvd2nZfzONja91OMWK8YDaqcBjSBRE2pc+xwMGopqa1JaBDuTj7PoGz4M5IkoC1HTHvk1q88UGouIQDa2YDa2gCd2Tqin9UMACilVoKpDd9xqFKHxsY+g+Yk/he5N8XlLREQrzVzzBBS+eG/a/jVFf3qIBmL7GqLZmetEqFma8ENWHBs+JzSyh90fOfQ+qxBV4olTZ7W0CFo7DezcP/zKUdOufMWBhg10tCfos3SEB0Bzzwb/4mDy4Keor9NYcxfqsFqeiDIQNez6eV7rnxU4MG8epFRu/3+Ev40Yg9ILXg7/mS9A4xMfReOvPgwcjtFWjoiICIBzzXVZD2H+pu0pX9qc1UiIltTy5xYM5SknCvpNedwqduPbn1FjQO9yE4fSJrv2NU5p5ocTigbQ8gng8Gy/awBrp+0OnDDufSte7/7HSWV8c6+zpU1YB0rb7duPK6ujEhZFI0y/dbgAxh+h7zURLRWN4p3Rc9oeKOzO/3yScgWlF78a/nNfguC+exGdeQjRI99A+OBXoBfPDV8AERGtNHPyVNZDmL+Jv3IZYP06SOXELEdDtHwKUEzIUJ7yoYBtQVRcIBoj/HUqI4bFUVw5P/HQpmPc+U2W56/3DuXLx+xkrN33qwE6nghVAMZOGNuvFU5wMPkGkCkBUYF7ygNA4xLU38pvtbzpsyOGiJZfWLdt2eYiAjDNkVI0CSlX4D3tdgC3A7D966MHvobg/i9BD/agly9BL523V3Y9iOcBrgvxSoAxiC5dQPjVLwCNgn/2EhFRB7O9nfUQ8kkcYPPJEH8965EQZW8V2teISBnAxwCU4uv/kar+koj8CoDXwH67OQPgrar6cI/bfw3AZQAhgEBV75zd8GnpHTxuf2Y2YekcjRNcO+XJq7fnxfhxqxekKtMNAAOZU6ghGkD9LaBxsfuSdksf1bh1TrwCTgJahQ10mpcH34k76s6PHoxX/FA+z0cDiNM5ATARFdAc+8yIFPbAvGUhInCuuwHOdTeMfBuNIujORej+Hhqf+AiCv/vEHEdIRER5ILUKAE702mI8wN8CqldA3PLw6xPRUhilUr4O4G5V3RURD8AnRORPAbxbVX8BAETkxwH8IoB39FnGC1W1X08KWmVJcG0c2Aq2YlAI0Lg02pVNhpO19uNWIVGjdQSDOmUgCgDHg8w7FC1vt0N5cYDqqThs7zVhromf5yEpi7dul9Xcne65XpVAWKP2DhkioqIo4FF5q0CMgWwdA7aOwX/BqxjKExGtAPHNCuxIH3RksgDl40DlBOBUIIbfzYg6CXLfdncEQ0N5VVUASRrmxSdV1Z3U1WpYgVUmzUH1yqxHMB+7D7X/L267stu4naGwKeUv6HVKNgRPtS8RDez6bhFj1QBwq/a5csr929AAACLbI75+AT1XQU457i1/2QbzGgChAo539LpDSfGr5AHkdhZzcebXNomIVoMYrkeWHdvYEBEVn1+CaAGPpB9VaRuoXc2KeKJh8tpydwwjJS8i4ojI38O2qfmoqn4qPv9XReQBAN8HWynfiwL4MxH5rIi8fRaDJsozDRtAsNc+QwxsH/jABvLi2glKgTjkzV/lXpb9xAUAalcCbg1wy3HbGh9w12zffadq/++t2/DerQCVk+3Kbm8N8DfiQP+wc6JXwAYyzgQbOHkMquehfDwn/eQF9iMq3pnF3b5ERCsvevyRrIdARERz5jz5pqyHkJ3a1ZDNJzGQJxpGYDOacU+jLFrkHhH5kojcJyI/2+NyEZFfjy//nIjckbrsayLyjyLy9yLymWH3NdKIVDVU1dsAXAPgLhF5Wnz+u1T1WgC/C+CdfW7+HFW9A8DLAfyoiDyv15VE5O0i8hkR+czjjz8+yrCI8ql+ofP3XpOTas6q4xPGy0X4LFHTBvJRYI8mgJOa1DXewRE17REISfV+6RjgbdoWNY2do21q0m0LdIKENwfPy9yVjkHMJEcRzJLY12Hyt0ZkXwdgdSvRSgib9j0fxifFZOvsXjTpTasowuGuK8kZpfMmEREtM+eqa7IewmJ05wTl45DaVdmMhWgpyQSnIUsUcQD8BmyG/VQArxeRp3Zd7eUAboxPbwfwm12Xv1BVbxtlTtWxUiZVvQjgLwDc03XR+wG8ts9tHo5/ngHwAQB39bnee1X1TlW98+TJk+MMiyg3NApsILyMjA8A8+8ZPyoN4zFFgIwQyIgAjm+r53tenurD17hkMxlT6rzcrcYT3MZHM7RObhwUF5RTtjs14tfA4kn7eYfmr6UTES1QFO9ETXbKNWa8U5SH3Swz5/onZz0EIiKaM3P8RNZDWDxxgdrVWY+CaImIzYDGPQ13F4D7VPWrqtoA8PsAXtN1ndcA+B21/hrAlohMtEdt6LccETkpIlvx/ysAXgzgXhG5MXW1VwO4t8dtayKynvwfwEsBfH6SgRIthfpFdHzhN36+J8wUA7sycwFxIDkKKwQ6fiGjiG1f01PXYwsP4wps2L+RuMDhebtTpblr+9C3Trvt6xaRvwlxStm0rREHgLHBmxb4OSaiyYV1sLKdAMBsbMG54SlZD4OIiObIbG1kPYQFSW3brF8LcbIqkCJaVmaCE04kXVriU3eb9asBPJD6/cH4vFGvM1YL91GOAb0KwG/HJfwGwB+q6gdF5I9F5CbYUqavA3gHAIjIaQDvU9VXALgCwAfioMcF8H5V/fAI90m0nJyy7YUe7NvK6ijHE9Q4JYiGUNsbAJLDljqiITSZeHZUinY/+WGCPdt/vnEZrdBeXNs6BwCCQ/s3LG0BYaOYmZC/BcmqNY/x8/0eIaL8iELArEAbMRrKve1ZCO//YtbDICKiOZGKD2CFviO4FXvUMhGNZ7KiwrND2sr0Wmh39eqg6zxHVR8WkVMAPioi96rqx/rd2dBQXlU/B+D2HucPalfzivj/XwVw67D7ICoK8dcAfw0ahTbwbe4CzT3k8nB5cQANczKp5wDjHmkgsJPA+hu2yj04sL/3a4nSuGwnkDWODfLDQ6DRtROgfsFex63Z38ND5PJvOi7jTTbp7dTE/l0ZyBPRqHL+UUWL4916Fxr/9f+B7pzPeihERDQPJirEV62h6hdsIF+7Jv/fyYnyaD7vmwcBXJv6/RoAD496nXQLdxFJWrj3DeVZckQ0B2IciL8BqZ0GNp8E1E4D/ma+WtnMauK8eYvqGHtVlayc3XUbyDcvtyvnFXbjx1uzgbSGtmd94+Lg6vrwADg8a09RM6Mwe8a8jQVuAEqqN7+yVQ0RZcBpzxWyEt/2i0lKZZS+/U1ZD4OIiOahtg5Zpe8JYQMos0qeaHyCCdvXDPNpADeKyA0i4gN4HYA/6brOnwB4s1jPBHBJVR+ZpIX7KO1riGgKIsYGwN4aVE/ZcLe5m32fcpHcZxKqaif8m7jNidoNnaQSPgpta6HmbufVwqYNjEfdAAzr9lQ+EbfWiSYY24pIJm/V0D6/OX/NEVFOKaavlhfDHYIF4d5yG5yb70B4799mPRQiIpoh5wk3ZD2ExREDHHsqe8kTTWoOBYaqGojIOwF8BIAD4LdU9Qsi8o748vcA+BBsh5j7AOwDeFt887FbuDOUJ1ogEQHcKuBWoeWTNmhuJBOJFr+Vhw3ZFRAZvUJ7/zEAavu6j1KdHi8fGtqe8MYFmjtHr+dt2gr54NBW4xsPcKo2tB/V4Vm7MeVv2vscp/d9Lsw5ITde/7ZBRETjmMU2t3IHalGICMqveSP2vv5l4GB3+A2IiGgpOFd2z6dYYCfvgFSOZz0KoiU2n6P+VfVDsMF7+rz3pP6vAH60x+3GbuHO9jVEGRERiFOCVE5ANq4H1q+3ldcLa4uSUcny/sM2MB+ViSut6xeA/Uds8J2E+xql/h9XwR8+bq93cMaG8c0dwJRsG5uEvwk0LwGNHXu0glub/KgFjezYDs/bqnCnNNlyFs7YIxDmtngG8kQ0S7PY6A7z1UaOpmK2jqHyhnfaI+GIiKgQzPEVCam3bmQgTzQNgS2MHPeUM6yUJ8oJcXzAOQaUj0Gjpq2eb+zadjez5lZsW5dFr5SS4PvwHLRyqm+1vCb97ntVNdbjid28TSC4PFrlY1S3J28dgACNS+kL7TK8Ndt7fhrJct14Uth5/O1mZZ4hhrgM5IlotpKjoKZeDqvli8R98s0ov+5Hcfh7/xv/tkREBSCbG1kPYf42rgc2VqhND9FcCOZVKb9IDOWJckiMB5S2gdI2NAptWNy8DAQThrxOCYDYUNz4kGjxgbxqBBw8Zn+JmkBwABXHVribZAJQ2H6/hxeGt/NpXrLhr1sBgr3hAxDXVtL3qtKPmrMN0IMDe/I3Ace39zmv1jbixo9pzCMf5hqas3E8Ec3YzD6zoni9GYHrqmLwnn4HEL0Dh7//v2c9FCIimpKplAAUuLhn+2bIxhOyHgVRMeSw8n1cDOWJck6MY/upl7bigD6eJHaUINopw4bxDVuVLgB0tN71qlEc4nuj938fJDjs/D2peG+JDycap9JNAyAIbPjdUf3eveh4st3GxV4X2mA/ath8JppheJ4ek/HsGMSg/VgB+088g2EUADriRqhbBeqXgGjP3tar2bYMGtnfHT+eWFXROhrgiAh27pIZEjNeeyIiolHMqlIeaE/22iucF3fAetiAQX4+uU+/E+bjT0T00FezHgoREU3DleJ+1FZOMpAnmqnl78jOUJ5oidiAfhMobdqAPtiLQ/o9dGy9OGUACmkFD+MFGapxD/fgAPC3AH9tqnGr6gitYeLe8JNoXIr7wjeOVoB7G7ZCPjiAXWnH4bRbs89Lc7c9NjH2+r0mhp1W1LTP6TBOyQbuyVEEkDjIhx1vFMVHTjyeupHax5GWfhrE2NY9muqbb3zM5UOstWOAiGiG5lEIo4FdsLid60daOmIMKm/9KRz8x/8F0aMPZD0cIiKahHEgoxYoLRvjA9s3Zz0KomJhpTwRZUWMA/gbgL9hq9qbcUCvoW1PMwZVtVXawYGtEAzr7WDVjLea0Oaera53uiYRnXeP8WAvbmdTax9F4K23A3YN7ISvjmur9nsdaaCRDcJbgXgGwvrsW91oBMAATiVe/iEAL57wcIYBujiTT5hLRDRIfEDRXBaszXi9P4/l06KYtXVUf+QX0Pz0J9D4//4zdHfAEXRERJQ75prrUMwPYwOcuh3iVbMeCFGBsKc8EeWEiAH8dXtSjSvD94DmPoaFrqoKHJ7tHwRHAVQVItKagHXgBK1xNbiWjsWV3eForXZmId3ORvVoxXsy4Wu3pGoeMv1kr3nV6KrSjy4Cly5C164D3DKgCpl6I1hQzA1pIiq8ZEfspEdsUS6I58N/9t3w7nwOGn/9F2j85QeB/YJ+rhMRFYxz9XVZD2E+jt0EKW1lPQoiyiGG8kRFI3F/ca8GlNVOYNrci1vc9AjoNRpcmd24aENbcW21+8EZaPkEWn3LYUN6jcLOPvFHesYvUNLORrzRerSHjdF7uRfN7jda/9Xa1YBbnTycZ9saIlp6XI8VgfgllJ73Mvh3PQ+NT/0lgr/7K0SPsa0NEVGemVOnsh7C7FWvANauzXoURMXE9jVElGsitj+5WwXKJ+KAPq6ib7VnGWFFJl2TgR6e7bhM/Y3R+qUvUmDb6MCp9a/U9zbj6voFVfLn3d5DQOWUbYs0CfaTJ6KiEC/1S9w7h33nl46UKyg9/x6Unn8PovPnEHzliwjv+wLCr3weuscKeiKiPDFb21kPYfY2n9T3KHMimtbyv7cYyhOtinRAr8dtdXywB9QvDr+tRjZwlR4Tg2qYv0A+ETXtyd8AGqlWNsazk+FqI54AlloOzkD9Lcgk1aLsXkNEhRFxJ2PBmGPH4R97LvCtz4VGEaJHH0L48DcQ/MNfI7zvH7MeHhHRypNaBUBG83rNS3BgW8wS0ewVYIdXj4SNiApPxLakKR8HNp4InLjdHlbnVnpfv7kLjSLg4Gzvy/OusWP7zCecsu0dz0C+t8Oz0En2OnOSVyIqDG4iF5kYA+f0tfDvfA4qb/xRmCd8U9ZDIiJaeeI7w6+0bJq7WY+AqMBkglO+8BsH0YoTEYi/Dtm4Adh4Uu8rBfvA/iNLfui+Ak7VnsJG1oPJt/p54NJXoWEdOtbHhIIfK0RUDDzsZ1VIqYzqW38Kzk23ZT0UIqKVJlKwKnkimh+RyU45w/SEiNr6raQ0RCECCjG2r340YGJbioXA7gPApS9Dg30oDBQSnwwUaP3eYnxwkkQimotFb0Mrg4FVIuUKKm/+cfgv+W7AYXdPIqJFk+MnivnZWz6R9QiICsxMcMoXbnUSUUr+9hzOTNJTXtwlr/jPwN7DAy4UaOWUbX0URRCTvw86IiqAeK7Vxd6hA+5oXB1iDEp3vxLeHc9C89MfQ/NT/y90b2f4DYmIaGrONTdkPYTZc6vsJ080TzmsfB8XQ3kiaus1kWvReNXOSV9pSgocPNb+TVy7AVo+BjH8iCGiGclko7u7Ys+gEEeN0UBm6xhKL/kO+C94BYLP/y3qf/5/Q8+fyXpYRESFZq68KushzF7tKkgBQkOi/Fr+99cKJHBENLJVCOXDZtYjKDYNgOYOcPkbUGWFKRERLSfxfHi3PxPVH3oXZH076+EQERWaOX4s6yHMXu101iMgKrBJJnnNX4jPMkYiWi3sJ78gEaAKjRpA1IB4a1kPiIiIaGxmYxOVt/13OPidfwe9eC7r4RARZcK99TmQ9a0B1xgQdvW8qPNMc+I6YL3P9wUxgNoZrQDtOmhN2z+1+7z0xI6S+jFqMJcsU7v+n34M8e8axfcXX+SUIV51xPshokkU4UgUhvJE1OaUgePfbP8v6b2J3Rs2yXn9VoLJ+T02iNLLFQFgWhX6/Vaqqmo3dDRsn6ImEAXtnxoe/alhfLsIEMfen4b2PjuquJMNLe3z2JONre62BanfVdmrvtvl+1v/1fJxwN+ErMLRGEREVCjOVdeg9s5fxsHv/SbCr3w+6+EQ0aoQE38lMfb7Setk2pcbib9DSdf1k58m9ZUmaofbUfzdR6PUd63+3+/8F383nGuetIAHTUQ0KobyRFQgYlygNKgCIhsiYkN1OFkPpS8NDoAznx7vRhLPAJ5saLcqOJLgunvnRur/Ryo1tL2RfWQHgUktM7UxvkiH5+zf0N9Y7P0SDTXqxlyf6w2t/krvkBwmtSOz3x10V3z1JV3/7b5+r3Glb9Pnflrrj6hznTPoZ2H6sKd3UtOqkVoNldf/MA7/8+8guPfvgCj9HgA6du5TX94zXwq4Xtdzh6PPZeu8uDgD8fmavk1k/w44epsjf4v0MpIfGkGjqKtQA+isqE3/LvGPHuvfXuvSjqv1Wr/2uH2vdW+PcYjnA54P8UqAMfHRianHkiqCEBF7neT8jnA3VSiT+l1M1/lJBXBrmzX5PzquJ+kwGDh6vwAQNKHNBhA0oM0mEDTa5zUb0KDR/jsnj0e7t3PTf+fU66ZUgdk4Bnh++znT9PwgXc+zCOB6EMe1r0vXg3T9bP3fcQHjtJ8TkxQV9QjMW89Bcl17vnRfnn5+Tfo5E4gxICKiAVgpT0REAACnBJy6a6zrz/NwK22FYdLzfjQ58qA7+O/+0pr8vyNwiDp/JlU4qnaZyREQvY6wcEozeHTdIeWAy47oFZhM+3dY0MbAKK+XoYHQKIGR9vzvxMsAMDBk7nnWKM/pCNcpwIZaIXQHaul1Sc8QH+gI5gC01yMjGum6va4zYP2ivZZb1NeYHA0C0fV7z509szJJuN1vLD2W1Wv/V8/ldF5BysdR+f6fHzgK7QgP4zvT1KnX+VEEjUIgCm3InPzsXqcvcp027POkeywdwW0qWE6HthDIxjbDRiIiIpqB5d8OZyhPRDQDIgZwy1kPo6V1GGvfy9PV81QYQwObMTdcln87h/LgSEBHlLE5vg6lVfk65u3mMBYiIiKiQkq38lpiDOWJiIiIiIiIiIiIaEksf0kDQ3kiIiIiIiIiIiIiWg4FaFW6/LX+RERERERERERERERLgpXyRERERERERERERLQklr9SnqE8ERERERERERERES0BWY32NSJSFpG/EZF/EJEviMi/jM//FRH5nIj8vYj8mYicHrAMRwOuMskAAAfuSURBVET+TkQ+OMvBExEREREREREREdEqkQlO+TJKT/k6gLtV9VYAtwG4R0SeCeDdqvrNqnobgA8C+MUBy/gJAF+cerREREREREREREREtLpExj/lzNBQXq3d+FcvPqmq7qSuVgOgvW4vItcAeCWA9005ViIiIvr/27v70DvLOo7j74+bKyFDarPUmTOchQpZDisqkJJ8QJSUYLIKLBD/8I8aEcmwIOmPoEB6QBtRZGWm2MOUQhJaT/S0ny1RU5um+QRugqVZltu3P84t/XY853cedp72O+8XHHbu+7qu+74OfPhydv1uriNJkiRJ0lybjyflX9x+ZifwJPDTqvpdc/6zSR4BNtH9SfmrgU8A+3rc49IkO5Ls2L17d98fQJIkSZIkSZI0DwI5ZPBXP1dOzk5yX5JdST7ZoT1Jvti035nkLf2ObdfXjKpqb7NNzVrg9CSnNOe3VNWxwHeAyztM9Dzgyapa6OMeW6tqQ1VtWLNmTT/TkiRJkiRJkiTNldE/KZ9kBfAV4BzgJODiJCe1dTsHWN+8LgWuGWDsfvr7M0Gjqp4GtgNntzVdD1zUYcg7gPOTPATcALw7ybcHuackSZIkSZIkSa019rHsKX86sKuqHqyq/9Bay76grc8FwHXNdu+/BY5IclSfY/ezsufnTNYA/62qp5McBpwJfC7J+qr6S9PtfODe9rFVdQVwRXOdM4CPV9UHet1zYWFhT5KHe/XTsrQa2DPtSUgTYNY1T8y75ol51zwx75on5l3zwqyPx3HTnsDyMpY94o8BHll0/Cjw1j76HNPn2P30XJQHjgK+2TyGfwhwY1XdmuTmJG+gtVf8w8BlAEmOBr5WVef2ce2Oqsr9a+ZUkh1VtWHa85DGzaxrnph3zRPzrnli3jVPzLvmhVnXrFu440+35bDVq4cY+vIkOxYdb62qrYuOO630V9txtz79jN1Pz0X5qroTeHOH8522q6GqHgdesiBfVdtpbX0jSZIkSZIkSdJAqqp9W/VReRQ4dtHxWuDxPvus6mPsfgbaU16SJEmSJEmSpGXmD8D6JMcnWQVsBLa19dkGfCgtbwP+XlVP9Dl2P/1sXyNN0tbeXaRlwaxrnph3zRPzrnli3jVPzLvmhVnXXKqqF5JcDtwGrAC+XlV3J7msab8W+DGtHWJ2Ac8Blyw1dqn7pWrJ7W0kSZIkSZIkSdKIuH2NJEmSJEmSJEkT4qK8xi7J+5PcnWRfkg2Lzr86yc+SPJvky4vOH55k56LXniRXd7juuiT/WtTv2kl9JqmbceW96XtFkl1J7kty1iQ+j7SUQfPetK1KsjXJ/UnuTfKSH463vmsWjSvvTT/ru2bGkFnf3uT3xbp9ZIfrWts1c8aV96aftV0zZZi8L+qzLcldXdqs79IQ3FNek3AXcCHw1bbz/wauBE5pXgBU1TPAqS8eJ1kAvt/l2g9U1ald2qRpGEvek5xE64dCTgaOBm5PcmJV7R31B5AGMFDeG1uAJ6vqxCSHAK/qcm3ru2bNWPJufdcMGibrAJuqakePa1vbNWvGkndru2bUUHlPciHwbI9rW9+lAbkor7Grqj8DJGk//0/gV0lO6DY2yXrgSOCX45yjNCpjzPsFwA1V9Tzw1yS7gNOB34xo6tLAhsz7h4E3Nv32AXvGPE1pJMaYd+u7ZsqBfJeRDjZjzLu1XTNnmLwneQWwGbgUuHEC05TmhtvXaNZdDHyvuv8i8fFJ/pjk50neNcmJSWOwVN6PAR5ZdPxoc046aCQ5onl7VZI7ktyU5DVdulvfdVAbIO/Wdy0X32i2Lbgy7Ss+/2dt13LRK+/Wdi0XVwFfAJ7r0c/6Lg3IJ+U1EkluB17boWlLVf3oAC69Efhgl7YngNdV1VNJTgN+mOTkqvrHAdxP6mlKee/0Zb/bH6ukkRlx3lcCa4FfV9XmJJuBz/PS3FvfNRVTyrv1XRM3hu8ym6rqsSSHAzfTyvl1bX2s7ZqKKeXd2q6pGGXek5wKnFBVH0uybomu1ndpCC7KaySq6sxRXzPJm4CVVbXQ5Z7PA8837xeSPACcCPTay1I6INPIO62na45ddLwWeHzU85DajTjvT9F6yuYHzfFNwEc63NP6rqmYRt6xvmsKRv1dpqoea/59Jsn1tLbpuK6tj7VdUzGNvGNt15SMOO9vB05L8hCt9cMjk2yvqjPa7ml9l4bg9jWaZRcD3+3WmGRNkhXN+9cD64EHJzQ3adSWzDuwDdiY5GVJjqeV999PZGbSiDRbM90CnNGceg9wT3s/67uWg37zjvVdB7kkK5Osbt4fCpxH68cE2/tZ23XQ6zfvWNu1DFTVNVV1dFWtA94J3N++IA/Wd2lY6b5VtzQaSd4HfAlYAzwN7Kyqs5q2h4BXAquatvdW1T1N24PAuVV176JrnQ9sqKpPJbkI+AzwArAX+HRV3TKxDyZ1MK68N8dbaP1o4AvAR6vqJ5P6XFInw+Q9yXHAt4AjgN3AJVX1N+u7Zt248t6Mt75rZgyadeBh4BfAocAK4HZgc1XttbZr1o0r7814a7tmyrD/V23a1wG3VtUpzbH1XTpALspLkiRJkiRJkjQhbl8jSZIkSZIkSdKEuCgvSZIkSZIkSdKEuCgvSZIkSZIkSdKEuCgvSZIkSZIkSdKEuCgvSZIkSZIkSdKEuCgvSZIkSZIkSdKEuCgvSZIkSZIkSdKEuCgvSZIkSZIkSdKE/A86SpCOO3DDiQAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "gdf_2000.plot(column = 'composition',\n", + " cmap = 'OrRd',\n", + " figsize = (30,5),\n", + " legend = True)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Map of 2010:" + ] + }, + { + "cell_type": "code", + "execution_count": 28, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 28, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABeUAAAEuCAYAAAAAxnmXAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAAgAElEQVR4nOzdd7As+XXY9+/pnnxzejmHzdhdLJcLLEECIAyAC1AkTKpKpMgSTVtFGCrClqssyVLRJqtEyhTMUsn8AxYJUSzTsplMGRRMggFMBkESEHaRF9i8L+f7br53UvfxH7+eOz1zJ4cbz6dq3pvQ4dc9PT1zz+/0+YmqYowxxhhjjDHGGGOMMcaY4fN2ugHGGGOMMcYYY4wxxhhjzEFhQXljjDHGGGOMMcYYY4wxZptYUN4YY4wxxhhjjDHGGGOM2SYWlDfGGGOMMcYYY4wxxhhjtokF5Y0xxhhjjDHGGGOMMcaYbWJBeWOMMcYYY4wxxhhjjDFmmyR2ugHGGGOMMcYYY4wxxhhjTDsXRHS9h/luwh+p6nMDb1CPdmVQfnZ2Vs+cObPTzTDGGGOMMcYYY4wxxpi+vPDCC/dUdW6n27EfbAAf6WG+n4HZQbelH22D8iKSAT4LpKPpf0dVfyb2+j8CfgGYU9V7Deb/VeBvAXdU9bFOGnXmzBmef/75zrbAGGOMMcYYY4wxxhhjdikRubzTbdhPZKcbMACd1JQvAO9R1SeAJ4HnROTtACJyEngfcKXF/P87sGsuDTDGGGOMMcYYY4wxxhizN3k93Habtm1SZzV6mIxuGj3+18A/iT1uNP9ngft9ttMYY4wxxhhjjDHGGGOMGQoReU5EXhaR10TknzZ4/UMi8jUR+YqIPC8i3xl77ZKIfL3yWrt1dVRTXkR84AXgAvBxVf2CiHw/cF1VvyrS/0UDIvJh4MMAp06d6nt5xhhjjDHGGGOMMcYYY/YPYTiZ71H8++O4qjDXgC+KyKdU9Zuxyf4U+JSqqog8Dvw28FDs9e9uVN69kY62QVUDVX0SOAE8E630p4Cf7mT+DtfxCVV9WlWfnpuzcQ+MMcYYY4wxxhhjjDHG1JIebh14BnhNVd9Q1SLwm8CH4hOo6qqqVirGjNCiekw7XXUsqOoi8BdRg84CXxWRS7hg/ZdE5EivDTHGGGOMMcYYY4wxxhhjWhlSTfnjwNXY42vRczVE5AdE5CXg94H/KvaSAn8sIi9EFWHabkNLIjInIpPR/SzwXuDLqnpIVc+o6pmokU+p6q12yzPGGGOMMcYYY4wxxhhjetFjpvxsVAe+cqsPnDdKqN+SCa+qn1TVh4D/HPjZ2EvvUNWngA8APyki72y1DZ10FBwF/lxEvgZ8EfiMqv5es4lF5JiIfDr2+DeAvwEeFJFrIvL3O1inMcYYY4wxxhhjjDHGGLOpUlO+h0z5e5XS6dHtE3WLvgacjD0+Adxo1g5V/SxwXkRmo8c3ov/vAJ/ElcNpqu1Ar6r6NeCtbaY5E7t/A/hg7PHfbbcOY4wxxhhjjDHGGGOMMaadYQz0iktGvygiZ4HrwA8DPxKfQEQuAK9HA70+BaSAeREZATxVXYnuvx/4561W1jYob4wxxhhjjDHGGGOMMcbsBh0O3NoVVS2LyEeBPwJ84FdV9UUR+Uj0+i8Bfxv4MREpARvAD0UB+sPAJ0UEXLz911X1D1utz4LyxhhjjDHGGGOMaUlV2Syt2+i+VsruavSS1t3vh0QRGGn8WGLPbz5u/FoUMIm2p9Ledvf3GImFqxq+L1CzD/0kIrV5p6oKGtYuq1uqULdc6Wd5e8jm50VDtx80dLct+tgfw9qVlfa6BzX/NXjQeH7x3LGTSG85ttyxdzCOAzMclfI1w6CqnwY+XffcL8Xufwz4WIP53gCe6GZdFpQ3xhhjjDHGGGP6pGEAd1+qe7JV8KrFa03na/J8PPAKVINedf/Hg9Wb04He+gYsXtm6nHjwfZ/YX1szIJkJOPUsTJ+Dxcvo/OuwcAnK+YGvyu3/+uMz9px4USA/6kSoeT2+oEadQkr3ker6IyJaz5bOJI09jK+7xeODbu4h5Ox3bA3A+2lIju5Mm8y+Mayg/HayoLwxxhhjjDHGGNOvsIy+9Ps73QpjupdfQl9pWWVhwGJXIVj8en+avYicfbbxlRFeavvbY/ad/XCthQXljTHGGGOMMcYYY4wx/Zs+h5z9zgZlayJecnvbY/adYZav2U4WlDfGGGOMMcYYY4wxxvRn8jRy/p2I1yRkKgmrJ28GYj8cRRaUN8YYY4wxxhhj+mZ1OIwxB9jESeTCuxHPbz5Ns+x5Y7q0H44kC8obY4wxxhhjjDH9spi8MeagGj+GXPxuxG8TZpQWAXtjOmTla4wxxhhjjDHGGBOxqLwx5gAaPYxcfC/id1Ar3krXmAHZD0eSBeWNMcYYY4wxxhhjjDHdGZlDHnwfkuhw8FYrX2MGZD8cSfthG4wxxhhjjDHGGGOMMdslO408+H4kke5iJgtDGlNhmfLGGGOMMcYYY0zfrHyNMeaAyEwiDz2HJDPdzbcfao6YHWc15Y0xxhhjjDHGGONYTN4YcxCkx5GHPoCkst3PGwbgdVjqxpgW9kP/jgXljTHGGGOMMcaYvllU3hizz6VGkYc/gKRzvc0fFMBP24Cvpi+WKW+MMcYYY4wxxhhjjNn/UiNRQH6092VoGTQAsXCk6c9+CMrvh20wxhhjjDHGGGN2mGXKG2P2qWQWeeiDSGa8/2UF+f6XYQ486eG221jXlDHGGGOMMcYY0y+LyRtj9qNExtWQzw4gIA+urrwxfbDyNcYYY4wxxhhjjIlYVN4Ys8/4KeSh55Dc1AAXGg5wWeag2o2Z792yoLwxEQ1DEEFswBFjjDE7RINS9YFEF1rGv5e0EvDR2P349GydZ4BE9kNOSmPacN82ux+p7Oea5+P3o9fLeVi53Wrt7VrX+aQ9UwjLtdtb83L9ihtsp0jd/V7Uzdd2OeLaEhRbL6ftsvr9zMTfo9j9+Oey0eOG82rdcnTLZLXNbbXP2u3PTve31PxXfezVnavq1i3xmWTr/M3a22wbtuzP+mnq19niOUIgav/mNsQfV+57tdsqHmB/MxhjDgAv6TLkR2YGvGA7f5r+7Ye/Siwob7qmG/PorRdo/8cHbJ5skyNQWqPhX5ITp6I/8pWaH+sKaFg3T9399BTiJZs0tNF88T9q6p5buoLeexEVP/rRHd0qyxfZbGJ9U2T2YWT2scbtMGYHaRjA8usdTt3ij/iKZA7xEs1f39qCLqbtZFl9zFc/e6PAQKMJas4xjYI8rZbRTJ/7RKSuXfXUbW9QrDsnt9qH9QG4Nq93rNG2drcsvfc6lOsDbp2suk0ATqAm6NIweNYikNY2IFtZT/3yKkGdeODN3dfX/wyKax1s3A7ITKDpymXL9UHieOC67jE0CS42m4fqPtkSoGx0v/JPkwB6swB7/XKMMaYL7swR//6Qvr/ejTFm1/ASyIPPIaOzg1/2Pk7yMNvDyteYg6u8AcuXu5tn5Ais3Wr8Wnai92yq5GBqmml+Gb33zehB4G6bNtrPv37XfoOb3UsHeHlgGILskxqAHcXhBIIAvFTzGXYqnhcUOpuusMxeDzrq1f8EhZWdbobJL7mbMcaYiEZ/O+x0O4wxZoDERx78HmT80NCWb0y/9kMMzoLyZpsM6eMygB5WDUro7S/T869pL4kcfabvdhhjdiEv5To1NBxaOZChS01AaRW0vNMt6d0gO5aMMcYYY4wxjYmHPPA+ZPzIENdhQXnTv/2QKb8ftsFsu14CU00C3v2ejPsMkqmqy5Avr/e+kLAES11eOWCM2RtUY7Vl9yoFb4/3wVtQ3hhjjDHGmCET5MJ/hkweH+5q/NRwl2/2vUr5mm5vu81ubJPZ7QZZ/ys7298gSWGp/TStrM/D6o3+ljGIdhgzLHs5lrwb7Jf956d3ugX9saC8McYYY4wxQyXn341MnxruSvyM1ZQ3AyE93HabPZ46Z3ZETyfQJod//j46dqizwLyfcTUbg1J1ceu30bFTSK8Bm9wMcvitUfma3un6HZj/pit1kYiCX4k0W/q9tgwI2Wa7mw0guWVg3dhAhYU1F8Dyk9UrESoDQmrQW3DL85H0YOr3mz3Ez0Iyu/V53Sc15dtpOZDqHuRnIWg/RsauFFpQ3hhjjDHGmGGRs9+FzJ4b8kp8SOSGuw5zYIjXQ5g93F2DwFhQ3nSvl8x2bXLghyX3ofA7WGZYhvKau++l3M1PQmkDTeZAg657vkQEzc11OVcDy5fR5cswdR6RaFtzR4DtDyTp3Tfg/puDXWhuFnniRwe7TLNN+ugPDjbcZ8zze+/42tN2Y196H/z03g3KH8jjzxhjjDHGmOGTU29HDj0w5JX4kBrf42VBzW7SW9UNC8qbPa+HA3/9lhtsMJGBjbu1AZZOerdUQWIfnrDobmUgKG4GmtRLu/pkXrL2ZN8qYC/iemv7qSsPMH66GpDfbHN/i+yJ2MfaDFBxBdKTO92KHaLsr8C8Qmoy6uBc3enGdGl3/XgyxhhjjDFmXzjxNHL00SGuQFwcyM9aQN4MjAh4vWTK77KL/i16Z7rXLOu9neKSu/kZyEzC+l1XBqOUR5OZrb1cijt5gwuYdxI0DwvutoWgfgaSo+57IFYDXsRDszOw0kdQfvoiQkht4CikUUBP11bg+iuQHoXj55HEYD+GMnkMXY7q5Hs+FJYHunxzwKTHo2P7INqPPxrVnRf2ml6/d4wxxhhjjDGNJXPIsccHsywv5RIkNayWza08ZzXkjWmobTRQRDLAZ4F0NP3vqOrPxF7/R8AvAHOqeq/B/M8Bvwj4wK+o6r8cUNvNjukzOBLkYe2WO0Hn5mDxEuRm0ZFZBIFE1p3Ay2suiD8I4kUDHYZRAruAlwAFDQp9DPYqyNwjW0tC1GfqRzQM4eW/gdXoo3L1K6iXhKnjMHEIlu/CsQeRianaqwlaZr9rbY3vRAI59yyg6K1XLChveic+LjB9UAOi+3nb9862qSp7pa3GGGOMMcbsGUGpxxIg9QSSo5YJb7bVYI7dndVJim4BeI+qropIEviciPyBqn5eRE4C7wOuNJpRRHzg49E014AvisinVPWbA2q/2REDCo6ERRecT01AZhrUg2QaiouDWX6FF9VRFg/KeZcln8xVs+U9Dzn7PnTjPiy8CvmFBguRatZ+WHLlH8aOI7mZxhn8GmXJa1j7xXTttWpAHiAM3O3u6+4GkEuia57Lvk+k0OVrsH7Plelp5sR3IL4f9UgLev1rQABr813sKGPqHOTsZC+9cyWohs7DgtzGGGOMMcYccGEJLawh6ZH+luMlLCBvtpn0NtDrLtM2KK8uRa1SfDYZ3Sp/zf9r4J8A/7HJ7M8Ar6nqGwAi8pvAhwALyu9lg4jlZGdh5kEkNwcb96BwHwhcZq6XrCkv01ZQcCVx/JQL9IMLpvlp19jK4LAbd9z/mdma2QVAxAXYczNoJZgelFybVNksReMl0JWrLkBfzruAfHIUinXZ6BrA+m3XhtQkoK5szaUXOtgghdIa3P5K57v67ovo4i1csG0IpUbyS4Qv/ofoi1aiOvxZ5NTbkD4uRVMNYemN+mejYyy+9eJKbkjlJrHp6uZtOH+0DIn+r2zD5vOx+wikxpDUWPTex5dTv3zdGrgWD8obLdaxufHVZW/ej49JUPlHqoFhBRLp+o1usA/i+rlUMHTbo7us8Np22fvf8Y3tuffTOhCMMcYYY4wZipVbkD7f3zLCkouP+GkLzpttc1Ay5SsZ7y8AF4CPq+oXROT7geuq+tUWO+I4cDX2+Brwtj7aa3aFHgMkY6eQ6QuQnqj58OhmfePQlatRIDnhytw0qg8vCUiOuBO+lwBVRASVRBSUjwKgzWrQ5+9DdrppMwV1baoE8+PrXb8TxXV9NvdDaRXSU25ATC3XzhMUYOO2K9UjGeSR96I3X4KFqzTkJXCj13apsATTp2D1PhSHMIBjWILla1ueVoCTT/ccuxRAM9Ow8HIfjRuC8bPgJ3ucOVZOaCCxxLrOhy6zt4UQTU9CoYcrULx4H6zZN8ob7afpgqqChmhYRvxkXx11TVYw2OUZY4wxxhhjANCl68hsn0F5cPGTYAMSuShB0pghEoaWKd+uDLuIfAj4WVxGbBn471T1c53MW6+joLyqBsCTIjIJfFJEHgd+Cnh/u21ptLiGE4p8GPgwwKlTpzppltkp3WRZpidh9BgyfgJJjTaZSLY+LK+6QExqwgWQkiOunEQUzK/pCIpnI/tRBnt9cDyuUoYmRt0n2s3rpeoC+lGAv3jbPUyOQakuM764BOlpVxanuLw1ADp2Cs9LoIu3YSEKbnsJyE1GA6BEHRMzc0CPA85u3IXsOJQL1cFVhu3eS2giDUff0ntScWoMxs/A8qXBtatfy5dR8ZHMZIczeFvHFRgW1a6zD8RLoOnp6IqUDnlpN/CPHtRBXvcrD7SLK5Ea0DBwJbzKebS05s55QR5Sk6gojB5H/NSA2guEdgwaY4wxxhgzFPkBjeMHLg5RWnUJjZvJl8YMnjCcTPkOy7D/KfApVdUoPv7bwEO9lHDvKChfoaqLIvIXuBI0Z4FKlvwJ4Esi8oyq3orNcg04GXt8Amg4oqaqfgL4BMDTTz9taXG7WbusxdwcMnIEsjNIpdSG9HBCFnEn9NQ4+Jn2HzgN3PTtpMZqAtYqHqxcdevxklGGvIKfdRniWna9vRpCad0Fnxop3Hc9wskR15kQlmHtpsui9xJuH6zeZ7NfKjsBiSg4NnkE0qnespnjisswcdita+Fq7WCxw3Lrq24fHnm0p8C8AJqdcx0ipRXAi/7fSSGs30Qzk51v03YFr6XHeuBewv04atVhFZcaQfZcmRPTXvPjVIMyWlyOxsKIxqjIV85ZXrWUUbOrkLwElJbRxdfQzDSSnUMG8mPcfhIYY4wxxhgzFOUG1Qn60qB0qzFDMKRM+bZl2FU1HngcofoHa9cl3NsG5UVkDihFAfks8F7gY6p6KDbNJeBpVb1XN/sXgYsicha4Dvww8CPt1ml2uRYnWDn0BDJ6ZLDrKy5DJtU+sK9BFDRqExxdv43mDiMaoHiwciUqM5OH3BGXKR+WooFVQ/BzLpBZWnVZ8sUWPcnlDUhm3fQCjJ2ExIgr51AJ9jeSTkOh0QCzPchHg7tOHm9eJmfQbn4ZDUtw9Mmevn8FhbETm4+1uLLzJW1Ka7B2yx0rbTdqG4OG/XzvdBqQ99IWkN+vgeAWpWvET7irm4or6Oq17sb28NPVMT0A8vfR/CI6egxJjfWXxbBP3wpjjDHGGGN2XLnYfpp2vJQb4w9cItigy1kaU0+k178xZ0Xk+djjT0RJ4hUdlWEXkR8Afh44BHxvN/PGdZIpfxT4tSgN3wN+W1V/r9nEInIMVzfng6paFpGPAn+Eq6fzq6r6YgfrNLtaqwO/yWuqEDYJ8nXyQSouo+nJlh86EUH9TPMszor0JKi6kjWFRReQr1iPLvTIHXUlasR3XypB3mXRNw3IR19ANaVxPPBTSNBBOZpyCOPHYf3+4Oo95+dh/Ji7HxRgbX4wy23m9jfQ299ET38HMnF8syZ7T6fJ1HhUJmiHM+ZXr8HqNfTQt7U54SskohHr68ciGCQvFWUxDznzwH5E9VQmaPfzagPnDYjnQWYCUmNoYQlW21xx4yXc1UCFpQZXEYXu8+NnYPQY+OkefzhZVN4YY4wxxpihKOfRaJy+nogPydF9+LeT2e283jLl76nq0y1e76gMu6p+Elfe/Z24+vLv7XTeuLZBeVX9GvDWNtOcid2/AXww9vjTwKfbrcfsflrOu1rb91/tbQH1ddg3dRAADIudle3w2gzOmRhx9bU1hI07rkRNI+s3q/cr5RxSY7UB/Ng69cW/hNIGTBxFzj8L6RyU8q1LN8S/tOYvQe4xyE6CNxsFwTxYu+Neb7TethRKUfa9nyEqFNPDcroRwuXPVdfiJdCRQzB6CLLTSG4Gkum2gXpB0ekHISjBwivbV6+9mflvobOPNG935QqNYQ5IWck46PW3TptgbA2vq8pmZs/ovMSSeB6SnUKTOfT+txpP5KXcsVJcan1cBnl06Q3XIZo73H1JGxvo1RhjjDHGmCFRV3rXbxNLaUhc+V4LyJttNqya8nRRhh1AVT8rIudFZLbbeaHLmvLm4NHCsgvEL12GtVu0D+oOIHiSO+KCNxGpWaa0LvPSKqMzNQ6JLFpar2a8hx0EuzV08zbJktc711xAHmDpJvqlT8LjfwtvbKr9suOufRNOPFItPwOQ8F0W6vL17pZVL8jD9ElYuL49A8BWhGVYueFuVI8OHTsGMxeQ0UOQzDSM5wmAn0RnH3X15ovL1U6X1RvbG6gP1qG44jpmahrpuYBhaYjZ8VAdvb6f75xiB+MtVARF8LYOiHywKP3t8F2oh6twJJFuPkiw+J2XRAIoLLpBYkePgvhd/IiyoLwxxhhjjDFDE5S6D8p7yShD3q6yNjtAhlZTvm0ZdhG5ALweDfT6FK50xjyw2G7eehaUNzVUFTbuuiD88mXId1nnvGlGYxdBFS9VF4jvnBC6UgnxMgqqkJmuDrxa4Wchf6f9QlsE5AkTcCOWRaoKUyfhG39AOHse7+Lb3D6NspQ1HsASgdnTtcvbWIFcXQCsvO5K2xRWoNDsaoMObNx1g8Au3dq+QUmbiQL1m0H68eMwfQEZmYOkC0BXAnYCrixQrDSQZqZckH7hlegZz/XQl9boJhu4K4uvoYeeih2b3vCD8RBd5bDNpVQ0QMVDdvo4MQMk3V0tEVfpFNqih/N0aQVdWHFXGKUnkeSoK2vj2Y95Y4wxxhhjdkTQRaKN+K50a0+Z9cYMzjAy5ZuVYReRj0Sv/xLwt4EfE5ESsAH8kKoq0HUJdwvKG5e5uHoDXb4ES1fa12TvyTYGFL2Uy6z2ElFmdehqk4dlNku4eCnI322/LGXL/tCSgiqSyaLf+mzt9FOnYOGKu78YjekQlqrLCOuCnOUGQfblZcjNuQFj8/dc6ZqgAImx/oLy4K4yyE7Begf15SuBuJ5K53Rp+TosX3e5yQ8/BwiayIGfaXiiFYDUOHr426NnNHpnBZYvuQ6IQdPA7f/MhBsfIdiGgHwiy8Aytr1E5z+2tAz5JTSZcwP2aLDfcsY7sN+ys/vYnqZvfh/LDEuuAzj6rGpyFNITSCIHXmJYlyIaY4wxxhhj6gVdJO+kxi073uwCMqxM+YZl2KNgfOX+x4CPdTpvKxaUP6A0LMPaDXT1Jtz7lguQDHeNg1uOJEGj9koSkrmojEhUlkUVSqtRVqi6Wtz5eRdkDsuQno4y6Vu0SYHUqMsoL61CIucCpH4GWVtA33weXanLss9NVwPylXYAunAX1pfc40I8wN/iBLJ+172ejtW8b1cvv1OdfoEGKfCHfVw0IL57L8trEBbR5HjTAF39FRWCouOnYfSEe6+17K72qAzg26/Fl9GZx3q+kqMbCrWDIwtIjz9+FGkwCGc70bFfwl1psp1lj3YDDd2xuF+Uh9C5pjq4/tbSKpRW3XEvCTQziSTH3HnbasobY4wxxhiz8/y0BeTNrrEfErksKH+AuNI0d9ClN2HxVRe0zM7BzMVoCnE1h+PHtUb/eClYvhZ7wauMrFCdF2D0SE2ZkeoycBm3m2Ir8RKQnqCzwL3nMsjJxRauNQFDEUH9FOSXawOJlYzvZhnyknRtL60BZfd/ahJy4665fgaCEjI6jY7MQn1QPjUCa7EM9PEj7v/LL8LNl9z9wxc62MbNDaFmcNYBZayXXnyN8NZNUs++HTwBUURKUFqvrsubQF/7FnLu2EDW2THxa0vrhCVX7iI52nFAWgA8391IQ3IEHTvpgn6q7odEUHCfgV4CzfPfQMdOQ3p8+OVdVi9X7ydyLps4kevqy0cBNu71144DGRSNzi374hoBgbDbTpm6+Rsa0v7RMmzcQyvHrZeFY49Cfg1WbrsxPLJTsLHI/ruiwRhjjDHGmO0jZ74TGZ1tP6GfccmKxuwCMrya8tvKgvIHhN79Knr/pQalaaSuVHXQOMYhHtpJWRvxOqtXHguwViuHdxJcCV0HQbvayIlc5wFXP+vaU1qBYsE9Ts265+L7Jiwj4tooZ5+EqaPom89DfgnGjtRmyQNsrBH+6a9BocMyJ4ls7UCMGkZ10qMBOr0BfVyDEL1zi8J//N3a58cnybznafDH0b/8Qzj7yGDW1425B9hyHIRFKC6iyfEuB4esEtTtywo/iR56ygWrl9/svp0rl2EFdOpBZFDvSzvldXcbO9PDzH0GLkvraDK7LVcImN2o2fve44+gytUwnQo33K+V0RyMnAFNgIQgF+He652V4zLGGGOMMcbUGj8Ohx5oP12lcoAxu4hlyps9Q5feaFIrfsBBtnYZteK7eu/h6tbXkuNQGexvMwGzEryPBfq1HAWopXnZHT+1NfCz2WHgRb28Wfe6+NWRwyudA/Ufbj+LhNVMdREPpo7C6HPo/DW4/rWtbdAQNuoGiPU8qPRCZ0ao2f+5KcgnoLgS7Y9cNSDvZ2DtduNt7Vaz3sRiHvXG4YtRnfzbV+DIY9s6KKzMnKXhQK0aQnER/DSaGOm5jEvNulDIzqDZGVi+Chs97N+Fl9HxM5Ac3bUB6067u1oKCyAjB6+EzX7RdemiOk1j8vVHl8Do8dZlf7wk4nno5iDNXRIBccehTJ2A9Ah66QvRlT7GGGOMMcaYzghy5tn2gc3kaHW8OWN2Ec8y5c3eMeBMx6ZaBXA9KC41f7m03DyD0s/GBr2kGij2khCWXGmeoOSC2OlJN11iDDTKqFdxwfxExn2hVIL/xOu015Xi2Xzad+VOGuwqSSbR3JgrlbP11a1PJRIwNRo9aJARnpuuBuW9JK6gN+6LcP1+g3X0oGlA24O//pNoQFxgfRW8cQgWB7Pedo49Revjh81Bb9XPRmWSvL57RwXQ8ZNuANdeAoWZGaQS+u43+NlW/9trurAvqtf0Mp5AvVbfH9Fr6Wkkd8idZ9strdMBhztol4zOwEPvR++8Are/OaDlGmOMMcYYs7/J6WeR7ESrKSA1Nrix7YwxW1hQ/qAIO8lwbZVP2+C15CjcX6id6j9NcoUAACAASURBVBufQRMZQMBPIA+/G8FzQaF2JWegeSZusOFuFV4KvIQL7qzfcsuu1Fxfu958+aVVl5GfHt+aDd+MJBG2tl1V3X5NZ+D4W+D61ztbXiuFBZg8A4VVSKRcdrhbWf/LbkPGxiGs7VzQGzeQE7Pbk4XazWDDlePBS6OJbM9lbSoEIDWOzrwF5rt8H8VjM3rrZ6PjcEhXF+xkQP5A1pU3HZm84D5DHQTknQEdS2EAno8kEsixR9DJ4+jVFwbXgWmMMcYYY8w+JKe/AznycOuJLCBvdjORfZGwaEH5gyJeq7wHqgLJ6dongwAWbrae8aF3uXIpnQTkuxEW3U08FyzsZhDU0rILHmUPA+2CSB4EG41DSMUVCPJIagI9dBLGZ13QNJGAhTsQKsydhmQKUmlYnHftnJxusLAQCtFVBIX7brsSo5A4HMV7KwHf/t5HAP/4cfxsGg00uuJAEN8jDKFwM+pkUUg9eR6Z9CA1BfevtFzmQMy/DlMn6SqgHRbcOAAImppEvBZlMzogibSrNX/3q52Xall6DR0/574QBFdiJyzF3qvY0SN+Zx1kIo2n6+FLZ2Ch9MIimp7YtWV6BsZL0WC0671rEANEJ9KQmXH364/BqCRZ670krqNRovuldQiiORIp0FiHnCTcse+nWw9OG3XM1qwlNwEX3w3zl9HrX7FyS8YYY4wxxtSRs9+FtKoj7yVdDfntGjvNmB4INtCr2UuaBifq6gE3IcU8+vpXultnKgdB2Dqw0ifREM3NQjAGa206COLCMhC6Wu1BHg0DNksxqEa7RUE8pNBuEEFFfA9GYgOJHj6xdbLcCTQMYeVqtURM00WGkI+yPROjgA+pcZBRl+0vvuu5Xu1imyMSbsDSla3vtjdG8WvV9zj19ovuJFdagOw05GNlbHqtM+8lXb1/iEoIRa2olNQpbrgOjK4pFBeiwHx/pzURDz30Vlh4rXqlQiv5BciuuvcD3CZ5CSDjOli6DQxKstrptPXF7pY1UBp1gu33QOdAqvDvEjKQjjyCYuvPQv5e6/m9DCw0GVB54nTUERIpr0MhWtfo0cZX0KTGkZGjiLe1FJd4HsydhfEj6PWvwtK11m0zxhhjjDHmgJBz70LmLlQeub/PNXA3L+VKBlsw3uwRlilv9gTtuOzEAAJR596GHH8UJBpIk6ILMlbaoYELeot0Hzz1sy5js9JUEbS4gmgZ/BQ6cQ6Wr3RRQiGs1lr+0h/D/atbJzl0Fh54ovHs4kNqtKt6zeJ56ORFJCyjWoalS1T3u0B21j0urkFyBJbuw5VYZ8jRB112OLjg1cjhrgeAlalZ9HInU0YlWURgfBqS0X71UqBZWIr2VzLn/g/LLnjXat3n3+WuJBiW4iKamuo/Yx7QqQuwcs2VR2qn7jMmIu6YzB6C4jKU1zpcs+eyhgd9ZcmgAs1hsA9qrHdAK8XkGwz6fCD1e+y0mH8pdjIaOQKlePC/wfgXfgYZOdYwIB8n6SycfRssnUWvPt/31WLGGGOMMcbsXYKcfzcye849TOTclamV5Di1v3vMHiMthkvcQywob2KaDHSKtg7sj84hT31fNKeydQDTEipJ9NbnawLYOnYKGTuxtXfLS8XqdOPKL3gpF/TVVPV5BdbvorlZRANEA3T8NCy93n5T++79jc4AheXqYxTGTtTWXSsuQ2mldk7Pg3Le7eXJc9XOiuIykojmnXrABeVnSuihR+CNz8HaPbj5Mpx6xGVgA2zcc/Xx/ZRbb2EZSm0CwEnPldoBGJlwA+RurCLlunpxzb6UwyJoAUYPuTZt1psXyM64fVtYgvKwBz1toriEpieRPs/QAujYCdcRtNymF2PlCprPQRi6/SYeELoOqcIS5KLSH+2Cm54PpVbBwx3+oRQUXbmR/SyMlXuRPV5DsU0nWce2azyBLV899VfkeMjYqbYB+c3FicDkYRh9P3rrZbj70kCaaYwxxhhjzF4iF96DzJxxD5Jj1avXNyewgLzZeyxT3uw7+rXPdT2PPPb+KBgvrscV2ZIZrGFxa0b5yhVIZNDsLJLIVp8P8tREZ7xUVF87CnhGASJFoLwKi4vo5AVEg86z5DP1dd2bfJibBXYTOVhvUDpGTrt2RDQ1viUo72rFj7hll1aQ4rKL1Wbn3PbEW5RIIpNH0Qffh37pN9wL62uwmQiurpxNpcJDds79X97YGtDyM5Cdgo0NZKJSIibvzgKZESh2EYAUIdaIals25mHs+M4F5AEIobyGJkb7PkkLQHYOTeTg/reaTxjkW18xsXrDDYycnWmeBe9n25bLcR04YZcdDgMsx+InK5/0A2KPb+0gStcMk5dynV7F6BxZXxopfx9yh6LPliLjpxG/+58tkkgiJx5Dp0+iV16ADRsI1hhjjDHGHBBHn6wG5BO5rQF5Y/Yoqylv9pkuD+hkFh58N5IZjbLbiYLmtZMpUq2PXkcXXnFrzh2KnonVGa8IS9HzXu2yy+vVwTCLq649HbV7xGVzxwNAzTa9Ue10L9lZrXFw2fsjx2HtunsiPQ1+IqpbH7pAbWUbSsuxhtQPphh7fO8yHHsIdH1rgHfjrvs/M+UC88mcy2RP5lzga/02YTmD1HwRu2UrHjIyFtt2D8IGwV/xoo4SHxKZWKZ8JCi67P2w7Er8VN60dnX0BykoAB6ayPadMQ8gyRF09gm493W6Gog2rrTqrmIYPxW9b+IuGYTqALCp6MqFRkF0ESgX0Rf/HzQ14mrYjx9BkllIjaF+pi7BIXYsNcv4Ftz6Ov3oF5dRybiM/gafdRL+3gxhS7LJPohdsbPnDLLtLZbjZ2P7Tqg+iM+TqI65AK6D0PfcVSSpEXe+ACgs1C47KLgxOLyUu3ookelrKyQ3AQ+8G+avoDe+sr3nJGOMMcYYY7bb6CHkxJPuvpd0v8ON2QcEwbNMebPnlUvoV/48etAmgPPUDyKTh6EcAGWoBDzrPwhBoeahoJA74oLzRIOorlxxQXWAhVcIywVk6oGoLEGUDa9l97+fqt6PZSOL+DD9UKzlngsYT5yrrqdeUIT8vKvDvhmUVzh7EU6fj02oLsivAZpfqC4vMwmFJVfHviG3jRoUXQDWS7je6NyxKIgZuCk0gLUb1dn8DGTmYp0T9YutCyzfeMk9N3MKpo8DAeSXqkGtyv+V/RXbb5/5N7/HF37lt7asYvr0MT76sR+uPvHG16v3H39H9X5qEu5earL9wHrUMXDmO5HsaPPphi3YAC2jybHBBOb9JHr4Kbd9K1dpHZz3mryu7tibvAB+unEmfxhGHTQNhKCEroOluAJ+iBajaacfqo650I3kaHeDt85fIfzLrccPgPeB/wbGJrpvw45r2iu3ra0YrB47j7ohHt7hb2s7mW4soCuxElBBCSpja3fSwRkWkWR2IJcnuoFgz8DEEfT612GxowE2jDHGGGOM2WMEOf+u6nhriayVqTH7h1imvNkvOqk7/OSHkMnDmyVVUN8FhRsGFRssT7xoUnEx9/FTsPBKNRO9sBDFs+PZ69Ego5sBcKnWa69bh2tF6JYXlmjK81yQv5JRXm0eVD7QXhL1M7BxJzaBD5kZV/e92RfZ2CkICmhYcFnPlQFCx06Cl6wpa1PNNo+2IyhBpnGmvyroN/7fBi+EcO8SFAvIsTOQm4TcNPgpNu6tcOk3P8X4ucOMn5pk5FC2dR1mEbITY+BXMoY9NCghlfenl9jkbvjCD0tQXEFT44MJ6AHk5tDcnHtjwlL0OYgyx6NOmUa5wtUlaOts8pbtjL0mfm0H2LbFj1u0bze85z0ZYImf3SJocR7cdgPoIBjwsSWpDJx5GsK3ojdehOWb7oorY4wxxhhj9oOxw0gmuiJVEu5mzD5iNeXN/nfxncixhxA/Vj9cpHYw0x6ICJocqdYSzh1GyhtR1m6TLHQBtOSC2X6mJoCvm2VmOvhQZqZd8GVLvWXPlQHZuOcGaN2cfgZS48j6reaBIT8L6UlXomTlau1rK9dc7fzx8whBtP0emp2rlrVJZl2d+SbbLQ9/D/rKn8Pa3a2vL9+EExejzogQgjxewucbP/9vqluWTpMcHwOEt/3Kv+J7fv6fARAuLUDhLlIpna3VsQCCP38BXVtG5o4hr11BRjKQ8GBkDS8X1a5X0HypcThzcQkZix030VgAUilztPn8ljvR3cpjiapieJDJIF6XwVMtDbw0uOtfkgb1+HTrdC1eb6zFNPEFTp6AfOx4kB6CyuJFZYa62Tmt2rdXvxT3WUAetqmefIfvt5+qXsEUBu5KqV1ARMBPICefAJ5ASwVYvY8uXYfsBKzNw9K1nW6mMcYYY4wx3cvGxtFL5vbw32rGNGaZ8mb/eeL7kVQWLawh08cbZ1drVHegm5N63aSqWg3IA6xcRbNzSFBw9aobLUC8qHdXoyBtbLr8YtQub2sWepyXgsKiC8yv36xm6qcm0OJSNbsdXNmZ0ePgp1ypnNJ647IiuSOuU4HQZdhvoa6+e/4+ZOKlPaKdkhiB4hKMHG0wbzTV6Ayam2wclAdX/71mptodHhYKFO66rGoNytHAvJD/0kus/ta/d804cZzpn/hg7XLya+jVV9Grr24+5T36FByKOmXEY/XX/7RhkxIPP45399Wa57yzj8C1lxpvQ6dSGciOQHaM1I/+Y5DQZYyHZVwvQdRZ46ViNdv7W+WuVC7VHue9xJWTo62vLOlWD4Nw7gr77vgYdC38PgdMTo0hs48CoKV1tKegfP8lqNqRZBqmjsL0SQg23Dl3YwGKa+1nNsYYY4wxZheRXBSU99N9J1Uas9u4whp7/w/5PRpBMQOzEdUanzwO44ddIF5AxqZbz9dF0EclUTOgnqrC/brAbJB3gVXPcyVUEBeADwMgjD5x0TorHzxVEA8NS7VlbzSEwrwbVLUScPSSLjBeiNUvHjkO+ftovNRMZdrRE5CMDxIawuhRdGEdIdqW1ASMn44C3GF1O5rJ30XTrr651tXHd3o/oejaIpKLlb9ptagw9r61OIn5b387wYuurrx//gKSiPZlahxWbzSdr1UjdH0V0jmksN5g+g4V8+62NI/evoZ37PTmjwzVyra51Pj9cJJuauUGTJ2uzZbvlvaSXd+qfM3wA6emE9uV+d/DesIuxi+I285jKzrGZWQSfeg9sLYE85dgcXdk+BtjjDHGGNNWNkoItMFdzb4klilv9jgdhatfh8w48tbvr60ooh7hWjw7UAmWl0keOepK2WwGyRss1kvXDqK6frN2gmaZucGGK+NCIiphU67UCYkWFbrMYEL3XJB3y69kx2voJi1F7S7ch/SMW99Gg8BlsIGmxmD5zegJcZnx6fEtA4NqGLgyNOU8msohkxfA8zczzgG0sAhrddtav90b91Etu/0T30eVe0ER8vcgPQVeunUd+Lhbr8C5JzYftgpGaywo72WrX9BaF6AV8iTOzUYvLkLlbUs1KbPTAb19BTIjyNQRWLjVfoY2Sn/8f5L68Z/aDP9Xt3tvnpwVcZ1HGtIo4KkL9YNSapP7na4wgELl6g+t+7/JIsutyqLs0TIwYYnNY2bz0JHaq3H2kkFe/QA0f197+Jx1M6hwzaoG/5nWSvkmcAMvhyVU/JrOKhEPRqdgdAo9+ggs3YR7r1n2vDHGGGOM2d0268nv0b9pjGljPyRhWlD+QGgQUPEm4PWvwNlnkLNP1waXxaN8/U1ufvQfbJnt8L/8RdIPPeSC5s3iNH4Klt9o3pxS4yxpzS8imWkor0Mi3XjesBiVsKkGLYUQTU24OvHigZeGMBoAs7TcMhtYtIzmjrnl5uaqI5NX2hSGsDEPC69VgzfpB7ZOV863DshX5O+6sjh+1HGhVMuPrN10+7W06ga+9VKuDn0UmJcHvhtdm4f1+1uXW1x3X7ZRwKtVj2F5ZQ1w7ZdchuQDFwDBn5qorWvvFyAdfZGXC7WDim5ueKsgbJPX8mtw+ORAgvLcuUr5rz5N4h0f3KNh+CoF15FUbnEVQbzk00BWqpCIDzCsjd/T+Dio6RaDdvaSeb8rKJsbWLMJzTsfd7WWHScD1NO+6fGTOowfXBordxUGqJd0nb3a+BiXVBrmzqCzp1z2/P3LsHCFPdsZZYwxxhhj9i/7iWr2M6HzJNZdzILyB9XKEvLtfwcZm6FytlbxXeA5KEKicW+qlgaQgZnI1T4ePw3Ll2H9Njp22nXkSq5xRqWXhLASkK9GCiUsQ8Jlfaufgo07bvqwVB1pvNEAsn4aNI9kD9cEfVzN+1W4/2o1875i4RVXhiY364L2aG1ZnHbK6y5olp4GT1wQHqDYYBlLr7pa+5lp1xHwbT/kAknlIrq+AC/9cSxjs7OgVelrX6R8568BSD7zTqZ++Luq++LKy9UJ/RE30CHA8YdgrVEQvbdvel24ObAgevhXn6L45oskv/e/RKZm93BwXloH5AEmjsLIZGW0XHcsjB5z97MzdZ8tjQ2YG900+j8oueCjAEF3pYQknT5Av+/24tHksVlOa1Cadbb0EpTvap7KWCIerd+LeK9Re6q4sUvi3zFhoePdtiV7fvmOy57PL3XcBmOMMcYYY4ZJL38eLrwT0TKI1ZQ3+4+VrzHbIrzyJ7B6nc3Ag8ayOnt16BiMzgLqSmbgQaEaUJAmQfn1v/kcmbe8pc3C27TNT9U94cHMoy7oXOnpKm9AMsrajteFr9wXv+F6FA826oLHfhoyI1FQWWPzC6xec6Ge8hqMHHPBTg1h4z4sXmqacaq3vwzHvsNl4jcKprelru59arz5oLSV52L1+F01H0ETKWT8EHr6bfDqn0UvyubmJTIe3/vC74HnIZ6w+H//Byi5TPfRk0egMtBip4fR/A23DwHC2hNf8sK5unIrUVBwpUUmfKlB1n0/brxO6d/+j3D8AskP/vgeD863oGVX5qkBER9pdBw14idRP+lOJ/nl2phmJeDfKDNZFS0X4fG31608uqWaXOFittHgu0xk9CiMHo0tu1JSjOjqjW7Wqcjx79zyXGxtm2XLOrocMTnWvJRaad0tu3JeD8tumX6yfQdYhySZgpkT6PRxyK/A/asw/2bvZXqMMcYYY4wZhIU30ZfycPE9SCrn4g5+xiWnGLPnNYlZ7DEWlN8TpOnl9D1JjiJzb0FEohrW+S1BYfEbHxrFV19q+HyNfIPyKjUUsnPVOu/Ll5DZx1zAvbSMJidchnZwG5k66Xp1NaytkxyWmwezK7wUpCeRsARhCc0dhvXbLkhfKRVTUd5wZWo2s+w9FzBvVgZCQ1f7vcss4y2Ky66diXTzOtBadoPZFlcgNeku0Qk2YPkyMnMS5T1RYL56QhICcnPVevHeWAnWXVu9kRRsVkHpMJiWX3Y3iAbirZLFDsr2bJfrr7ng/ImLJD/wX+yx4LzCyInaZ+5/q/az36T00+b8XWytACrA6rVuGunW0Cz2vnd29mBotM9303aHDa4I6lP9GBvVF6DbrHzX5zPIywxb7Hwt135HiO8GHh9CwFxEIDsOxx9FDz8IK/dg/g1Y62MgZmOMMcYYY/qxchO98p+Q8+90V0oHeRcPSeT2ZplOYyJumMvd9Id4bywovxcMsvdn6iFk4rSrIa/lqA55NYijqhReeZ3g7nzD2UtXLlG8fJnU6dNRhj2g4WZGoyJQbH0Jv4ig6cnY4KuVTEYgLKOrd+D68y6AsnoT0hNIehRSo5AeQbxENfNxS1ma0JWFiQZ+lXigW3xITcDSq40bVlyMyhqkYOVGB4MlDuh9CYsgI0CZhkHywoK7AeTvufI8lQFvVy4jmUo5kRZfqjW94fERfWN3VaN6/RW+uzphc7bK8gWplApShdzo1vVVsq09Lzpb1u2r4mCyVJu69qoLzp98gNT3/QQyOjbc9Q1A5RMUp4WFwQQQ/UzdE5X66SHMvqXuuco/1Yzlml7o8gYsvNJ/m3YTScaO0fh74NG040oVCKOxFsTV5lfd+d76IL+z699urXZ3/VunAQTDz2CXRAKmjsDUETS/Dks34N7rrgPcGGOMMcaYbSSjh2qfCAqunGlqDDwLCRqzk+wTuCcMqAfTz1UD8hHRAE3m0MIaIkpw7z5rf/InrP/ln+ONTZB+/Cm0XMLLZMg+8wyJw4dITGfR9XkoR+nW4qOVWtadBhA9v2ZgUrecBFoqVDMLNYDFy+5uZZqxY+jUSSSZdT28XhL8VLRNinhRVn18uV4SxEPCMppIQ+4IrNeWVlFV8DKQn+98MM1eYm9eBl25A2E0wKCGEAbgL0ImBekJt7WV7OjNUkWxskWqhPfXCb/5dVfTvlyClWX0ld+CRNJNEwQQlKFUcl+4ax1sU1CG67Gs6YnDsBJ1zsyeg9tRZ4Y/AhfPu/thSGruxa53Q3ned30QHZAjJyGZRK+2GDy4mauvUPzf/jHJH/9pvEPHup9/B2m52F1AXrX5MdmoYwQQfGTseHftAnTfBeVjwfewXK2h3izAvjlAaOXMpFE5FK96bhNv+4P04jUeO+PA2vnRDySTg8wFdO4cFPNw9zUorLorjxoNnm2MMcYYY8wgjc41eDJ0yZTJURdXMWYPsoFezfYYRFDHzyEnv6smIL+pnIc7z6Ozj5OYm2HmJz/C6PveDyKkL56ta4vnAtfxuI8GUOowkF2/LA0gO4uGZVh4HZaaXOo/cggmjiK+B1qEYqwkQXIETY0j4tdmt4vnMsqDIogLcgug2Tk3eGvUZpWUe7xxqftt6JKWCrDYpFxI4nDD/aglRfNRUL4cooUSeuce4evdB8OBusCtNrlfP0/stZrjscdjs0l5JO/8w3hzU5vLleKKC2AB4VPPEnzpb3paXenXfo7UR/8Vks32NP+2U3XHQmLUBe60/QDLldEhGtuuwPDev3ys5hzSdUw3jAaiji3DS4GXcHH+4oLrJExkQRKNz8f9CAYwEPeeszeOOfE8yOTg5OMA6P0bcO1LVnveGGOMMcYMV6nF1ZqlVZcQmNgjfycbE9PRGGS7nAXl94Q+D7TsIeTwWxsGgLS0jt74a/fg/rfQaMDV9APnmjRlUIOCeNVs8I177obnLp+K10TOTLog1tRpRBpkgHpJdGMBygEyMl1ppOvtDYouwFb3QRUUnTjn6nUHZVi+PKBtGiwNlfD2BsGXn4eVhcEtOFD0yEV3f7VIsPmeSvNrMmpi9/2Pb+BdeBgJY8GoKKNYRrLIyo3G8xRuI29/B+VXXoH7XdZp1pDir/0cqQ//3N6oO6Yh4vnIxJnqU5v3pPZ/id1vGuDrrt58W5lZN6bCsNez3YaRWB0W0bDoMumLy9XnxUdHTw3wh4RAeXVAy9pDwqD5YFV+CjS6eqimbFe59Xgk20Cmj6Hjc7B4A26/ZKVtjDHGGGPMUOjyTWSyxdXR5XUX5/FT29coY/olAnshttNG26C8iGSAz+KG9ksAv6OqPyMiPwt8CDfK2x3gx1V1SzRNRP4h8BO4v4j/rar+rwNs/8HQzwAcM48iY8e3BOQVXDD7zgvVJ0urLjg+csSdkIMiA4lS+ZmoTEs8CKKQPQzrsUNGw2pAPj0OyRysRmVm1u/B6bdBGF3uLx6qArdf3CzXoKffhSRH3XrK6+BnG5Zy0DBwA70ud1I3fsC62J3hrQ2Cv/zMwJsQXmkyWK+XwDs92/i1eOBwADWZPW8NCeoG0VVgtXXng6zcJHlyjpIIzN/pbqXL85R/95dJ/MBHdrzsd0uq7sqNOtUma+3/bY+pwY5KLgBHn0av/RVkZ2D1uguMEu7hmHxUMmpY9dg1rA3Ig+tAWXkTzR6G5Ej/uy08oBnXYbFp9k+zfare7viDQxJJmD2NTp2A5btw5yXItx6TxRhjjDHGmK7Mv46eeCvSLJEFoLwWlf3dk3/MmQPqoJSvKQDvUdVVEUkCnxORPwB+QVX/JwAR+W+BnwY+Ep9RRB7DBeSfAYrAH4rI76tqk5E2TUO9nBgzM8iRb3dBCS8Rq1EeBbDX5+Hul+vW4yHZ2aj+eskFLsK6mrcdZ0kLeCm0tAZLL8PEWWQzECJQXGVLNFFwmfGJLKzehEI8iKXo9a/C8ccRBJ1/1XUiVIwehcIiilQ/mMFGbWBeFQ2K6K0v1c67nVq+lT28z2OT7v+VxV5a01r8uMtk4PQpd39kuhoE0x47bXqdD6CcJ3H2AuVug/JA+NpXKP32L5L8O/9w9/7eCAq4vs4BGcKGCiAn3gGAzjzkngwDN7DvXhQOL3Naxd8yhkWNjdtQzKC5w32UtPGgfACDuV6qx7rs9ftYWrw2fOL7blDYyUOuY/LOK7Da/fnNGGOMMcaYLYqrcPtlOPpI82kqSZRWX97sIQeifI2qKlCJYCajm6pqPGI6QuO/ZB8GPq+q6wAi8v8BPwD8L/00+uDp4kDzs5CbQ2YeqQZ3auqsJ4AQyc2iI0ddxniFhuj8N5CZR93gqVpC/awLbldEy1LcwIgNA0iSRBdfp+aQWHqzdkpVSE9BZsbVqK/IjMDSTRpKjcL9N9BKxmkiCxPRoK/BhrttlNDc4eqHM8jHvlhCtytTo4MJyksCEiPV8iFhQFS1vn7C6t1Ci+B5yQOSm+O6SiqN//CThPO30TuxfTI1R+KBh8Dz8CYS4KUpfvrTA9geRd7y7OZDXVx2VzkAeD4SVAa/hHi29uLdVOUuoEgygXgeuaNjJKJgpKbHWLpeDXqOjQck+qmE1EfwVy9/i+CFvyDx9Lv7aMCQqPY/+KOXcFkO22Tz6G6VebEXNPwBKn1lz6v4sNa4HFONIA8r0aDW6RlIjbvOlMqxsDnIM9H76wNe1OEiUF5v+y2hmx1hUp2v8n/leTclhOWd6bTyUt2Vx+r1vQmKbgySDqlqVBJto/3EfRDxYGwGHX075Ffh7huwcGmo6zTGGGOMMfufXv0CjB1GRmdoHLPAxjoye4oIe6M0cRsd1ZQX99frC8AF4OOq+oXo+X8B/BiwBHx3g1m/AfwLEZkBNoAPAs83WceHgQ8DnDp1sVSn0QAAIABJREFUqrut2O+6KF8jJ98VBcqbZPtFJ1oRH2Yec9nwK9Wa6jJ2GonXEguL1Jy0g4ILyK/fgVx1FO+oJLi7v3Spdv2SgEQGiitudO/imrvlo9G+R0/AajT4abACk8dgITYYamoMMqMueO+Puwzd0nI1iz8eKNGyC+psBlwqQU6NttuDqYsug7/Yw+C0cWMnEL8a/AwXr8Glz/a+vDe+XjNQoweQBDlznnIlKD86QerZb3cDRgKUi5AaUG+2KhRidcLXN+D2JXc/93jDviER4eb/9bsNM99P/eTfI1E5lPwUN/6P39h87cGf/nvQV1C+v5Nv8Ge/iYxO4D/01r6WM3AaMJBM3X3QY7y9wsa7XXrv3FCJzpPdvp+FeXfDg+SI62DRSmkggbI2/CyqJKLvCq0G8SuB/PrvhA6apF4aEKSDQYYHR7al1nu3GRUiAx+St+36yI7BqSfQIw/C/BW492rteCvJkYZlrowxxhhjjNlCQ/Tuy8jYd0Fqolryt5IQ4yWrCXnG7AnDqykvIs8Bv4iLWv2Kqv7Lutd/FPgfooerwD9Q1a9Gr10CVoAAKKvq063W1VFQXlUD4EkRmQQ+KSKPqeo3VPWngJ8SkX8GfBT4mbr5viUiHwM+EzX0q0CD0TpBVT8BfALg6aef3v7rx3e1Dg40P42ceGfnpQ80cD1L0w+gmWk36OnYCSQ7XTOZoKifAS2jQRFWb7iTN8DqTXT0mDuRr91EJ84i4iNTF2D9tluNn4b8Mixfd3XqK/VyvSSMn4XMmHucnYONu+ClITMFEx6s3ITpM+5jkJpEjr7VZWyjaCpX05lQo7yOJkdjgZfafSK+D3OPoTef77OmfN0AsrnpoQRuvEMzpN7nSoW42tQDHPQ1bkvjm3Xs1JcdkoZBeS0H0KB08+wPfh+JZL97qv/yLuVP/TIy98/xZg71vayBqXy2zJ6mAIUl6CugHUKpUcehQGoy6nysG7x0kCegKEtf/SyERevn2SGSysDRB9BD5+D+dVd3vpyHB98Nt15xwXpjjDHGGGPaWblVzYb309FVqmXA2/tXPZsDSfoZf7PpMsUHPg68D7gGfFFEPqWq34xN9ibwLlVdEJEP4GLZb4u9/t2qGst4ba6joHyFqi6KyF8Az+Gy4Ct+Hfh96oLy0Tz/Dvh3ACLyP+M2ynSjWTQkOQbZGWTyAni91iIGyc1C9h1RVmgI5Q2X2Y7ngoRB3mXHxwPy4E7gK1fcfT/jsvZEIJHbrOMu5TIkfHTqPCy85jLYJ89CMldzqYnmDkNmGimtghbQTAYy5xCJtqm0BP4xpJLpD2juyJZazapuwMZ28SNJpGHmYZfVXz8AY8fqgv2pHJqdgY35JtO3W1yT9y8Muyvp0KtMXc94vDlazc4t3Jzn8j/9ZdfpIeLaB5BIknviKcoL99FCnjuf+Rvmsy4qHxbc+evEf/13mTgxgC/8fmrSx5T+6N+T+pH/fheNTbp7WmL6IL4bLGko1HXM+ZnoXDvkc0OwAZJAJbHNWfO7TKfnHD/r/h9wqRvxEzB3Gp0+AUu33bn3yAMwdgiufRnSo7B2b3u+K4wxxhhjzN6zsYCWCkii4OI9In1dGWzMjhpe+ZpngNdU9Q0AEflN4EPAZlBeVf86Nv3ngRO9rqxtUF5E5oBSFJDPAu8FPiYiF2MDtn4/8FKT+Q+p6h0ROQX8IPBso+lMK3UH2sR5ZOpiXRC+vyCl62GKek0TmWidYXTfh4WXoHC/+QKys0gle7m8DplZyFc7hkQL6PQDkMjUfXA891xx2WXSlyRqT3Wb1M9AWEIWX0cnz28G5vEz7tKrosu+Vy/tOhRWr8NElmrtlK1UQ3TtVh8B+cbk3LvRm1+D+3swe7HV2IdxQUj5drUzxJ+eJX32PPk3XmPt+c+3XEVxKQ8nRvprJ/TcAbXFtVcp/9Gvk3jvD7krKHaS6mDq+IXl2jIXSPVHlxk6Fb/12BGDEuTdLTkelesa4gVmWoag7K58Ei+qyd7NAjxA3HJazrgPAsoCEhSj8j9sHSy938X7PkwfA0DLZfCTbpwBGxjWGGOMMca0k1+EZNplxm/jOGTGDEOPQflZEYmXVf9EVLml4jhwNfb4GrVZ8PX+PvAHsccK/LG4DONfrlv2Fp1kyh8Ffi1K4feA31bV/5+9N42VJMvu+34nInJ/e21de1XvPT3T08MZDocz5FAkJYqkDMmkSJGmFgsQIVCwQMAwYMuQTcEWBBiQP3iBBIoWBBg2ZMlaCBAjUiQNiqQoidSQHM7SM90zvVV3dXXt9eptuUXE8Ycbub5cIvfMV+cHRNXLyIgbNyJuLPm/5/7PF0TkX4jIC7hf0TeAnwEQkQs4z50fTtb/F4mnfB34L1R1Rt4bq4uGZReF3o9EdG4gG5enJ0r2r1Vre0SweR2Nqr0TpLYL8g08H3JbHeKUaB38NSc8elkn7tQPoNbwhq9CYQeO7rqgxOy68zqrPYagiMYRcvABWjqPJElmNb+DRqETPsr3WrXfewe2nkW6hmGpKhzeRXffmSiBYz8kk4PL346OI8r3jXAcdq6n1BbqNZdgEnDezi3rDI0UTb6LOCS4eAXZ2CSqRxx+85vE0beId4ePELj7T36RvRde5On/7JOIvxwicfzl36b25d+Gp67jXX8Z/5XPIps7849Zn8hKaRDmBjZ35mlDVN9zonxm47ilzbRpS0KsXh5QRHs60nXiBcn91kte/hPv+zikQ4iPZu8nPzYag19Mtxw0j4s7TvFUvfK1egS334DHH7hnbek0VKfbwWwYhmEYhmGcQKoHsH7OBSdmN917umGsJDJS/s027g/xee/1g7qnqCIi34sT5b+rbfbnVPWWiJwFfl1EXlfVvsknh16BqvoV4Fg2RFX9s32Wv4VL6Nr4/N3DtvGkI0EB9QL0/d9ozfRzsPm0+4HfJdjrwYfI5rX51tEL4NTLTlDXGC0/hP13nX2Cn4gO7URV3EUSNK1s0NAN7dewj1cyzg+++JRL6toWaU94BH4BjUOoPHS+80nEJuW7xyOMNUIfv4NmSk6wEj8RLRTCKuQ2gQ2OJUXEg6AAm9eQTLsAo23/JX/7fXqWBeSVnzg+E9Dd9+G9f9d7vT72CPpoj/offQWKJYgVPEGyWYhi1yFRm1Ikph+gf/R7Pb+q3LjNrV9wiVq9q8+y9/o3O74PPvZRailEeYDKG68Dn5yoqoSVvl72Y3P7HeLb7xD/hy/gfexzBD/4F0ZOCDkRM+gkapFEKrfTtCRasGjf7O8l8aVqT0gaJ3Vs1L0tT0S/UQUy6Ytl+3Ea99jM+ZhqlFja5MAvMZeI86S9upwj0fGO2Z7EHcI+4M6/F+COu0zd9mVaCBHEo49kaVj+qJ8DvIn3T4/24O1/1+rAiCLYG9CpbxiGYRiGYRgJ+uFXYfuqs0asPXaWyH5/hwHDWFpmZ19zE7jc9vkScOwHl4i8AvxD4IdUtSmGJZo4iWPML+LscMYX5Y35IBtX4ey3oXf/EHZeRApnaAorpbMusvvgJuR2kOJZVOPE7iJMhCuvFX2u8UzEROch7pqMrD2FFnZQPKS26+rgBYkA7rX+X7uUiC5OGBdAawf9Rfmg4ET3XhH5UdlN1Ufo0d3hkYdxDarJMpKBgw9JLZYd3ILrf9I9rEZEoG+iFM2Oad1SPnRTo5zxShmbjvbUJYQHp04R3nh7pPIqhz6FjQmEw8pj/Jc/SfS13x++7BjEX/131G6+RfYv/Q0kN4cs9EkuhJnRz99cfAhys9tuGlQhHlGo9Aeck7g+HRugsVlgJ0dUdVNmPblXz6EuUQUQNMhDVB392aORE5ZPOJJYSqlk3GiBuJL6mleN4WgP7r8Du+/NspqGYRiGYRjGSebogQtw89fc5/o+aCmxLTaM1UGYmSj/ReA5EbkOfAD8JPBTHdt29uz/EviLqvrNtvklwFPV/eTvHwD+x0EbM1F+mTj9MXjwGlI4TUeko8bI5lXYvJaI317iG11z/0sSBRvVmt5gGotbDi+JKAbQVmLOuOaE76jibspx3YnqhTNI8RxJyGqSZDSx1WhL9gkgftaVm92AoIR4Q4aORFUIj1zJhXMuGr4RRe8FTuvdT5kHeFQrAK3DxmU4uJ1y3Rh999fQK9+HZAotv++o5o5Zu2d38ayz0qF51AbUI24bYpMMt5EkQjRXTOZJa554zqN64bRHL3fuYenqFWrf/DqjcOP/+CW2Pv9Zzn1ye+wbqZetExXX4KhHB840eHSb2v/+X5H5838D7/zl4cuvGhIkgvyi7W1OgI94O4s+nJB0eoobktq4Mc0Udfk8vAwqfmdC2Fl3OK0YQgxx1d1G/SQpep9nkqrC0WO49Roc3e+5jGEYhmEYhmGMRtcPlvDQva8HBctDZqwUswhGVtVQRP468KuAD/wjVX1NRH4m+f7ngZ8DTgF/P6lDmFjinAN+MZkXAP9YVf/1oO2ZKL9E6L0vJ57ebVYpQa51z9SIpvjRsWJblGEUOvHby0KcJGs9tqGG8Os5Mb4hCMT1JNI+KU/VebV32A1IYjcBaJhoPeLsYqLI3dCjGlo/AvGQ9cutC8XPN72WRQQtnIbaPhpWobI3e9uCsAzZNReJnwaN4IN/i+68NDgJ6OGt1ikaUqR4wLPf03tzp9/tPf+dJUjg1+dmV/r4J0YW5AGi3V0e/NIvE2z8GKdfGLNXvrpP8PKrhF/8nfHWT0McUf+//g7Bj/0s3tMfmaG2OQclV7xWhHnT+mcZFOQxjmoc9vc/nHJizdFZhmMKoFDbTSxtisylXnEdqHda2vi5GVszrSYikojz2rou246Tlvfh9jdg78MF1dAwDMMwDMM4mfTQNqKy04Uya+Yzb6wG0ghEnj6q+svAL3fN+/m2v38a+Oke670NfHyUbc1mD4yR0doB3P8KFM8mczx3MwzLLduWuH48GaT4va0c4hotv/Qu/IwTx+OaE++zm63vvHY/MTnu/0vDMifsnBceIOEBIOjut+DwAzh4Hz38EI0ST10N0cxGa7Wwih5+COU78/ERbljjjEJYgftfQ8uPnHgyTbwMGtXROGweo97Mqbd6jP0LipMNczv85mRWDCLzSQwZ/vP/jfDX/+n020CDeditiN+07XajZma/yXSM8RjS0AmYvaaFi+KL3n4XUdWJ8+JNNwfDwG260UTqZdExfNifJEQEietIXAfJoH4evfUGfPM3TJA3DMMwDMMwpkthG7KF3t9p5HzmbZSrsSKIJyNPy4Z1gS0LGZcwVfLbTjzT+PiQdi/jIuE75mWdeN8Q0xviPTgRGprR6c2kq5UHLnqxbb56OfB8JLPW5kUcJ3XpElUa3vUN2qMguyOq995B996BjafRw1sQVdDSRVf+4Yokp4vrsPsWZNfRjasQ5KY0TEZc58VQFi/yte9vfOcDdj73WWoHZXRM65jc1WuUXn6BnVfOMZF9yeF95PIz6PtvjV9GSuIv/Rtqt94m+xf+68EjJ0ZFFepH0ytv1XiShkjmT4HXx8Nf+nwIy1AdsTPxGOrKyKyBBnPqkElGdUkG9bLIqJZjTyBCjPgl9Oon4fzL6M0vwcPR8nUYhmEYhmEYRj/k8rfPxPLDMIzxMFF+WTi8i5z7pBPY+w31lx4RpVEZvPWmrqV+HoKiWxx1fuSNpKu1PSfK+7mORKpa3YXyfcCD7edpiqQiLmFgeAhxHUVcx0FU7RTSvHzSgRD37VXVvTZhIZUQPQMGRqOnoLYP978Gm0+jhe3VfJj5GbzrzwKg9Tp6482271IKzbUq8ZuvkXn+FcLd9GKht7bO1vd8js0Xz1DYbCQjnrwXPrhwjvocRHkA7tyg9g/+OzI//rPIqTPIJEP7NBnJEh4yn46XZW2vy1qvGeDlnKVLL/o0AfWnmIi3fuA6dzNrPaLmk2EUUejsgTSmMdqqOUJExLV5P5Mks05x/WodouTZpCGy0CS8q4C6KyKbR57+TvTaZ9APvwYffmXRFTMMwzAMwzBWmfWnYOtSigUXHxRoGGlYSU2uCxPllwDVGOp7QHw8Er6dqOq8gaMyHTdK8ZqfXaNsfScaoUHiJ6yhi4JvF+SjMBHkgdzmcXlMBDJraL3cspjpbvja8KJPvusVXb9o/DzsvT+dsh6/DZVtdPs60qujZJmJ6gTPXITqYwDC4AXit95w3w0SmHve6wRvfWvw9nyfzNlzFF98nnOfu0Imlwh90xRiD24n7W8+w+z8F1+Cm7+F3vLh6T+GrJ9B4zCdQK/JdRhHifA54Hp/YjhpL32D2vYS7Gtch+qjxLbMCfF6/y24/83OBNZ96NiDC59ETj2dzn4sqrhtBXmIKk9SV8wIyLFnp3iCXPwYev5l9MZ/hAdz6oA0DMMwDMMwThRy5vl0ImYcpQ/YM4xFIYLMyFN+npgovxSkjRhOEq82kzSSRF4OFnokEf40KCXCZRnw0LAMh22etYVTAzadiDVhBfUDpEsAVY2gfuQ84pdNkIfpa2HVR/DYRzevzrx3zju3g/zQjySfJNHRpPmRXAlvazv53KhLm/Dd8BBv/BfG8O7vAhA8e43a+zegVoGwzrv/7Kvo0RFxGCURs4MOnHL01lv4qq1j4Hns/Mk/TvHqaep7FbaeKRFkG2XMSDSfkyAvV58heOk5d+6TZMv6+hdQL3D+2aWzyOVPIevn+hcS11u2UYugcSpMEV0Q49yIZnSyao9BfLR8APfeGO++HZYRIjRTgnqZ4dd4w9ImQL0AWXhS3iUj6J+jQzwPuf4Z9PIn0bd/B/ZWxP7NMAzDMAzDWDziwdaV4ct5GTcZxpIjsJQe8aNiovwSICLOZia1KDJ6w1NIIuQFxENrh3B0p3OhZsJXLxF33XZUtS3BbIzL1h23vouqriwNkUwBFYGwCvkdZ3NQedTfkmdezEI4L9+H4hnIlqZfdhtSDJDiWv8FsusIA6x5unXAjO8sMaIqVB+S+fwfo/7//WuII4JCnuqD9JY09Tu3yZzdQY8OIQi48J//GNvXktvKxWKPja8gxTWC7/xuJH7kBPluGtHFh3fR138ZPfcycvETiN/rZWaBD4245iY/39sKy5g9qsvloa8Rki/As9+Nlvfh1pdTRcs38VwEjcR1NMglI0BSeMdrCFHo7kMaNzuOn3gaeV8GLpKB578Xqkfom78F5UnzDRiGYRiGYRgnnu1rSGaALaYXuN+JXna5fq8YxiBOQFs1UX5ZEC+9KO/naYmdHoqXRM435iV/N+Z5AQJo8QJEZbT8CBAnmkdVN8Uhkikm68edWmq393BUdv7AYRnKdzsF96jqksVuPIMELvmsFs+h5QdwMCX7mLGYkTi8+zZ65uUF29iMuG8awcWX4b0/BEDCB3jXnyOOhVJwhs0f/j7C+48IttfxikXEl8SWqPOGd3DjAeVbtyhcPA31Gud+4JMUt5ZQhPd8vI99Fv8jn4bSRksXj2Kolol+71eJ3/xyz1X9T3833qYH4QjC153X0N334frnkfUzrfmqzQh744ST3XD/a/s9GWftNeqIERGXILbZcNuuQ5nesFLJbkBhHb37Jjy+2fnl2RdaETPNDltF2kZXiUauQzYouHbuZWmO7GlHtSXcRy5SXoOC+9vL0K/jqv+IpH52WNos/6QhALkivPxDcPQY/dZvPNnJog3DMAzDMIyByKmn3R9+zv2GiOutwEu/4N7hT4DAaTxBiEXKG9OkdNFFyGmc+E5Hidd7DwGnO+p8mJYvfiKqKkR1F2kXbDe/1oNbENXRB685sb30FJJdc1F7np9Yg7R51avC0YcucWwvwsNmBCXgBOv8KbT2uP8600KBqOasFBrikXig+7PZXlSF219Csxsd++zq0kqO2DkvmZ/f7ly+XnPnXRX8rIvAT2Xv0JlHIA2SL3asEVx13vA715PREs8Vj6/URen8ac595keTD+fgvW+MVIeZsraN//k/g3/1BSiVBsany3/6V9D9PcJf/cfou193864/T/D8dajtwjhBvNU99PUvwHN/AkmS6SgkbcRv6ogST5h8eBwW8bIlnrufNNpqe0ffCYuSFrSZbPs4o9ssiUb9h5BOMQmskofqQ+TsMy7PSZs9imyc7R0Bn+vcT0GdlVlQdPfhXvevXnUOy66NxPU+VlQCwaB97XH/01V7QfNGvhYEoLgJH/9RdO82vPlbbaPaDMMwDMMwDCNh/Sxk1p3OAEAh+U0WTzXQxzDmh3nKG1NEenjJqp+Dg5tMFOUtXkuEC6vHRBJtj96tH7jJz0L59vGygiJ6sAeBjwRDmo42bG4a1fCgdAGdtSgf5OHo3my3cQx1/syjIgLZ9STxZw3qh63REuGRm0pPQTSDCMi4CmeehXtvTr/sedPs/PDwPvOD+B//LmRtLbVRjACyvkHmx34GffyY8Iu/QrAdOUF+0qq99W/g+R9A1s85m6qo2mGBo5kNCPJOeJ014rkICLfl2W+vY9uN+0WbIJ8mOagxfzRCzj2HxnU4GHIv7XGRuRQWYf8W1u+LOSVqXloyxbHzsQiKbJxDv+0n0Ac34J3f4URYhxmGYRiGYRiT4+ecTtId6CNCu2ZjGKvGrPM7zgMT5ZcYyZTQ0gU4/GD8QjR2yVkzJQh7RYv3aMR9ovX08DHcdJYnCrB5Hjl9HeIe4lqv3taggJz6mIvkEx8t34XylAR0TaJTqzMW/adJ5ZGbNq6A1pMEvm3fRzXYew9K5503f1Rl+LCI9Mj2eXRqovwCb4Y7l8n81I8g569MFAQugGxuEnznD8DrvzKdusUh+vqvwPXvRk4/A7mtTl/6+h7U99HCGeetPQ0hzWtEpLcdDL9hC7IEwmfjJAXFxIP8ZFqMrDQaIedfRm9+GcqP6C/wDrjgPK9PcxujjY91Ya+QKC3BVDolBEVOXUF3fgq98wbc/P0pVM4wDMMwDMNYaQpbTrxUi4o3ThACmH2NMWsku47qeWcXMy4aOduYTAFqIR1iRbcQIIFbvpcIcueNzs+PP0QffwiFbTjzNJIJBib5ExEnDiYJMNU/PjpgbPyiE7BXkWH1PkzO/cbl6UYXxxVYOzM8GjYVCxDAxEO++y8jpY3pFqvxlPdG0Xf+Layfg9wa5La7Esaqy83gZdH8zuSWNn6O4+dDe8xbAsRLxPkwXYJQY4Z0tQ8NkUuvog/HzQWy+i9IcyMoTNXGSQTkqRfQc8+j7/0B3Htj+EqGYRiGYRjGyaSQWNR2uRkYxqpzEuxrVn8PngAktwmFs5MXFFWdABaUWvO6h8tnivQVU/r5F5cfwXt/gL71e2i5miSiHY5kpySm+nnYX2QS2TkxA01VLrw4/ULnQbaEfP9fm7ogD7jo7amj6Fu/Cfv3UOlzfcQ1OLqNRjXUe0L6Sxudf+IniUGNpULryPZTLP5VYdqR8pLkWukxnSBEBLn8bbB9DYqnhi5vGIZhGIZhnEByiShvI5SNE4Qg7vfOiNOy8YQoP6uP5HdcAr3Kg8kK0hD8HIoH5QdQuQ+5nSShawRhBWoHaOmM2267aH/lVaReRvfuwf0+tie3v+6kkOfWYP304ASbQQ7NrEN9wiSs9TJLGQU8bcKy6xjRKT5M4yrkN6Eyhid+gsYluHsHgkQg93yXALLyEKnPwDf8wkvIK39y9ZLDH95zyV8Bffa7+vfq1vedpU3+lBsNcCK8tockIxZJEksHLpeCsRjWr7X+3n+39XeuPSm1tjRyCdC4V4S39u/cimuJ+H38Ataju+651CjDbQT8HHL6pRQ70IZI0tHT1vYaNw0/19+/PY6OJ1NfYcTzkGc+547A0WP06/+KJ+J5aRiGYRiGYQAg+eR3eiNIUxYdcGMYU0BAzL7GmCv5004wmCQBpZdzVjYK5NadKF99eHy5gw8hs45mCq1gVhHQKrK+AVufgzB0nuSHPToKvvXr8PEfB79/E9M4collJyXIQmZtOmUtM+X77iGaK06xUHXD2SYQ5aVQRN9/vZXAs0GuhG7uIOVHvVccRmkb1rYhm0/89hVyG8iz3zFbQV48lwRnUhuZQaTRxCoPQDw0f8ZZiQxbPlNyBWs8pgf3FPD6jKZR0gc7+0nCS4vkmCvu9Gjy7/GT1WpSre8UGe866SuIh30E8TFF5Gall/xlLa7P/JoVgOImfNtPoq/9q9XKv2IYhmEYhmGMT2699XdUddaJhnESWLlIzeOYKL9CiAhaPOcEjbGjy+OkLCCzAadfQe9/pfei9f3EzqYhiLQJI1HZ9UydvQr+82ilAh98pSW2nP84MkCQb5IpTS6mRzWemMi/kW46vZaVZLaXlCVw+io8ep+xj2H1HvLiJ9FvdCUVrB7CrqJbp0YT5i+95JIS148g3IVGIG6mgFx+HvbeQbObroPCc9HV0xyGJOtnkE/8ObRehYN76J2vw+GUEhKPisZQvgN+Ac1tpvObX+SDSbVvs0uNgPM6HBJdbywBU25rfh4y68eLPel2TlHF7fcUfeX7IZ4HH/vT6Lu/23/Em2EYhmEYhnFyyK+1/g4r7p37BIiZhmGR8sbcERG0dAEObkJ4OHoBcb0lZiZitpx5Fb3/1d7Ri+LTVEWjPoJgVEUyAs98B/rOH7jP519mmKAmng/rV9CHXx99P1aRTAkKp3CCePuxkSSSOJmnCsTJ/+p6sqNacvw1eYBqcngVavtoY9lxOff88US+oyB9tl07SoT508OF+SALF56BwzvHv/NzyNOfbkVPVx6A7MLaRWZ1G5NMDrYvwdZFeHgDff+LyTUzDUY8V1EZjspodgv8bKet1ElEAL+Aa+fhbEctGD1YzMuNbD2NcK3XNyfKUqYnc4iWbyAoXPsOdOMCvP3bc9mmYRiGYRiGsQCCPBK0j2aOnV1optR3FcNYCZIY01XHRPkVRETQtYsuuWk0hme3RhC1iXoaIqc/hj78hhvO1I7ngzpPX6pDRNWoglz/JHrzNfejPw1eZrS690LECdf1MTopRsUvwM6zSHY9SQwryXSyAAAgAElEQVTYuAtoEiXsobVD2L/pRJbMmhOsNQKNEK01Fz9Gn0OmXgDV3aHLTURxwofyoDrVyrB7f7Awv7YDG5u9BXlAnv3McTuT0gUkSJdUeBJEBE5dg42n0Jtfgodvz3ybfantAoIWToNq+utsFZHkH8m4+0RYoTHSx5g1i2pX/bZ7gts5zC1Kvh0BZOcyWvpR9LVfctZBhmEYhmEYxskiv3l8XtNb/gQomsaTzQlowybKrygiHrp2Cfbfm473sobIzkvo7lsd1jjS8PhNm3wxqiDnP5J+u6MI6RIk0eMR5Hdc8sHHb9OMJp8Vfg62nkUKO3SKgvFxrUgjJJOHnWehfK/l3w8T3DDUPTQbdh6zSIQZHsLWJdi92fv7/KbzntckUr/hEV7Zh/Ij0Bpy/aM9Vmzznw4yaCaD7N3tXOTMNZAKVHv72sszn+3dxg9uomsXkDn18ksmj1z/TnTnafS934XaonIYqGtbkkELOxCn8Js/Cfi58TohjcmJa2iPhMNK1dlMJZ86CApuNFQ34kF2ozXSpz3RVJ8EsK48r2sTjZFFsUseOy0ao1D8HOC5NpfdcJ2s4QzaX1CcuyDfjuQK8ImfQN/4dTi4O3wFwzAMwzAMY3Xo8Q4Pmgjzsw9wM4xZcgI0eRPlVxnxfHT9EuzdmM6Peg2RrafR/ZvOHmTt0ngCsIxQl4avebva4uegcAbJOCFa4xDxc8k+dn3efs5VHZCt6279sII+esvtwzjktiC3AZk1pHAqKT2xlBmFfnY/IyK1VkI+9fsk0pwG2+f6i/JrZyDf445XXIMPHqVKFCt1IJ+DwtNw5x1nV3P+GTi63X+lCx8Fr99xF+eHN2dk8xx85E+ht78Ot7869+030TocNfzmt13dFlebOeFh0fIL4Oheb7s0vwCHt3qvs/MRN9KqGwmagyDc+fRaDXeQLVO/Z5xMYbRVZ4GuA9jP0szBoVEyqmvKonxmbfA+zwkR4MUfQD/4Knz45UVXxzAMwzAMw5gWh/fRsIYE2c75cRUwUd4wFo2J8iuOeBl0/TLs3+jTCzoiGiFrF10keuX+mJXyE4/zZqEgfm+rjdwmnHkVKg8BcUK8RrQnlxXPbxNkuj8nm0zqDoCfQU6/mERdgtYOXbki6P4HsPvW8XoEBdh5Ecmtd4kkExzTjauw++Z0oyDDahJlmnQUaDy9yPnwAC69Ajf7JP7thdRh4wLs9RHmuomqQBVO7QA6WJDfOI+UNuh7Dopne0fizgHxA+TiK+j2VfS931tcIlho+s2T20Fz68g07gPLiIhFy3ewql0wXc8Gz59QmJ6ytY2fiPyN66gZyT/N4y2JIL88ljGCwsWPohtPwRu/uujqGIZhGIZhGFNBYe827FzpnB0vPjDEMCZD4AQkevWGL2IsO+LnXFT71ESD2EUJFs42he2R8AIXVdmcjjo6DBRBxUfDClQeILVdJ3IG+USkmJLI0vBxz+TdPmmErD0Fp17qXO7sJ5Cnvg3JFqcbtRjXIX9qeuXhdEmJykhcQeJqp/XDNPAiFyV6bMMD1lnfGmNDQ85xpoCcf46BnSJHd9AZWMioqptSXE9S3ERe+BPIs398xK2McK32Oh+9qD6EvRtoVE9V99XkpO7XqjLG+ei+9OMaqqBR5fgUtk/l1lRvm6aWfHnUio9JUIDMYi1r+iGAt34aefXPzdYSzjAMwzAMw5gbuvv+8ZkLCm4zjGkhMt60bJgof0KQoAilC1MsUFzEYPEpKJ5Ln5C1dMHZv3QTHiWCSsV51Ffud0a8apw8GGZ/lUjxDM2mXzrvxPiZbWzWl9iUj5eGsHV+xJVq43XeDECe/nQ6n+gJffBU20T49tEdcehskHS4ECcikB2xHke7qcoGnJVSbie9Vc/RbTj4IOlYOGkk+RW87PBFjTkwoIWN8sYjuPwb3VO9Me07P/fGFLVN43SkRtX0nV0dlZyQzJr7f8lHs0iQQV79s7B1ZfjChmEYhmEYxnKze+P4b89ghhqIYcyLE6DKmyh/gpDsuhPRp1ooLvK9cBaK55Pkd134OSfcF8+7FXo2dE0i10MXQR6sHV8kPOpd/rTRCLn8XcjFzyHbz8x2W9mN2ZZ/jMTiI20nSi/WdnqX23eTU765Xf9MuuTFhTOIl15YU1U0jtA4bonw9YNkOoLIRewikhy/RjbbNIy4/x9+De6/j8YpxLmwAkRu9EpuG4IUiW01goObcHS3bZ/jjg6I1sQUI+tn3A3QaGcz7+wy0jFOuzneRkSjOXe0SCLmz/ulbPleAvshKPLs5+HKdyy6KoZhGIZhGMYk1Mtw9Mj9Lb7TKCbRCwxjWfDGmJYM85Q/YUhuC43D8f3g+xaME8LySeLTyiMXpdzoYR1VlI2rLklgtz90PKch/Ro1jOhnvKEZR0SKOF9+cL5wUcXtW24LymO2Ab9Pp0pDUPKycLTb9pVO77ydezF9AGv5HhrXIb+T0lteBvjvxy4yvzs6P47QbMmlRZi2nvboXageoOdfRPwBT4eo6katiLh6ej5kN6E2PLkuUbV/Is52gjW0cApZmSSqqyNuzo7ZHQNB0fWrnTN7RKSL+LDWe2SN+gU673/S+r/efR0m95eg5KLiUchstkbCqCJaT/5s3bNl3IvSz7kfJGk6/zrqOCHhodvHjrwpy4ugyNln0fVz6GtfwJIsG4ZhGIZhrCiPP4DSjvsduYTRwoYxDmP/HlwilrCfwJiY/CnIjuPznQKRRJzfgUxpsijp7vW8zFL67E7EjG0KJCoj4ZGb4ioi4m5Mk4jkURnOPjtoq1A/7Jymwfo5ZHMUD36F6qNU+6rgIuJHJobaPtT3Ses2MxJH9+G9P0Drg6x6ujYs4vTN7IaLnM9MYTRGeADl+1OImJ/nQ3H1H8ATMePdl45Juz43Jmnec7onT7yuee2PC+2akhcqkeZnN+gqWddrvaq0lzn+znluO14uvY2Nxu6aa0zjoHHLikcCVqUNS2Ed+bafgMKM3isMwzAMwzCMmaK777k/ospiK2IY00J4MuxrRCQvIv9RRL4sIq+JyP+QzP/bIvIVEfkjEfk1EelpaC4i/2Wy3tdE5P8RkclMoI2hiIizk8n0sIiZ3kYmLyOud1pxTNmXfHlYwIVfP5wsUV9xrfN8KC5C3svO5jz5OeTCC9NNtNuOyuSWJ+HhbIT5ehne/SJ6NGKnQTNyXpzn/KT2H+FhIsyvQl9tm3j7xDK/+4riueTc3dNAT/m+hQ3a0JxJIvS9PMNfhxoWbNEU7lPaJs77Kba9eMTzkJf/Ezjz/KKrYhiGYRiGYYzK/m20XnEjx+MZ/eY2jDlzAjT5VL8Eq8D3qerHgVeBHxSRzwB/V1VfUdVXgS8AP9e9oohcBH4W+JSqfhTwgZ+cWu2NvoiIS7o6iTA7F9oiyWclyC4SCViEeCjCZMlbojJc+mjrcxy6IW+PP4DdG8c35k/mSSfPfCZdYtduvKzLeTCs/CCfDNWboENBY4jr6RO0jlR2BDf/EK2Uhy/bk8id7+zmeJtveMvXD9H9mx3CfCuWeYkQLNnrPKk+dAmEu6dpjZJZJI3OLQlc5PzghdumaZDktQgPAX/pcyUIilz9dnjmjy26KoZhGIZhGMaoHCT2tt0Wwoaxqngy+rRkDFWz1ClQjRDOTDKpqu61LVaiv24TAAURqQNFIIXBsTENRDy0dAn23xvRO3eOxKFL+hoeJJHzxcSOZOlkwDFZnAev1PfQzHri0TxOAaETsZv++zPi2qdBx2yfcQ3qB6j4znc6t976TvyWcKuKiKCZDajtMnb7iirg9RqBMoX2evZFyE0wkEiSOuS2na3PqDx+u/mn7r6Jell3TRLD5nVk48r4dZsF4oNfBNReLFeKlNfKvB8BTVudIBmI0WWLJT7U9o6vNy3C5DUrKDlxfkmt3ASQ7Yvox38M/eovjdeZahiGYRiGYcyfKHlvi6pOd1nygBDDGMryaewjk8pMVUR84A+AZ4G/p6q/l8z/O8BfAh4D39u9nqp+ICL/M/AeUAZ+TVV/bUp1N1Igno+uX4K9G4v7kS8eGoWIn6W30hLTtKMIjyCzfnK8zsIF74efG12UDwrg510E+uVXnSgfK7TvSvdpLK3R4e0iQG4NSu3ey8fvmOL54A9Q34ptSSTbV1d1LxP1Azi64+bltoFElJeg1aHQsT0PzW6kS5LaD3WmHVNPKpIt9i5zVHFS40TUS9chpOWH7lh2b7S9I+/oPnFmPZkftjrONEpGECgQOSueZlbctsSemSLezgsj7sgQGsdKk22cmI68JSS33XUtNY597BKLd5CcCxWXCFY7VxmIn4XgXLK81+H3HoePaRbWfqvJFPoXHaz13q5C/w5TdfdtvxE131huTm98YRmy685SR6OkY2z5kEwOPvHj6Jf/pauzYRiGYRiGseS0vUSHZZcj0DBWlUnzjA0sWn4Q+F9xbi//UFX/p67v/zzw3yQfD4C/pqpfTrNuN6lEeVWNgFdFZAv4RRH5qKp+TVX/JvA3ReS/Bf468Le6KroN/BngOrAL/DMR+Quq+n/32Om/CvxVgCtXliwic8URL4OuX4b9GzNPPHp84wFavpt4VQ9g8xmksUR9/+QI8/6iUyiMIVT6eajcRwpnwKs25+l7b41WzuVXkcwwu5gh9ctvIwN68FXVtelGu24IaRr3LVu8AM2sjZn4FWc14edQL4tIUodp+Oz3tcWJwS+kjwYXXD6JFFG9qgrV3eFl1vfh/lfSbb8X8RSS0fZDxLXZxvHxcuAl50MBrXcKm37efV55u6z5hQUc35Jrq+oF/UdlZDZa0Thpt9Nh9Kfu3DV4+Dq9hHTdeQnpZ9MmjP/Mi6qugCCfdGjPq9On0amlrmPCzycdX8sXkS4C+szn4Y1fXXRVDMMwDMMwjGG0/2aNKu4998Tm9TOeCGbwkzgJSv97wJ8AbgJfFJFfUtWvty32DvA9qvpIRH4I+AXgO1Ku28FI41VUdRf4TeAHu776x8Cf7bHKHwfeUdV7qloH/iXw2T5l/4KqfkpVP3XmzJlRqmWkQPwcrF1hbgnlJEAru+jeu1C+P3z5vXc7oiJXXzBLWHgmiQVufw7D4UQE8XzEzyB+plOgH4SXZaJjE1Whvo9GNSfwTsObbFC948gJ82nrvHQvVzMWNEXc8QmKLUEeEu/5jJvvJxPiOm8kaIuGNpYCHdS++10fA9aZuNmpiyKKdfB2pkp3pbXV8eRNlrtjFsj6GRv6bBiGYRiGsQoEXTm5jo2WNozVQjwZeUrBp4E3VfVtVa0B/wQXbN5EVf+9qjai034XuJR23W6G/pISkTNJhDwiUsAJ7a+LyHNti/1p4PUeq78HfEZEiuLGFXw/8I1h2zRmgwR5WL/ErMUFrR+hD78O5bvOjibVShFaaYvYXdIh++MjULwApYudnQ+zZphAnduG3FYybbpEob0ezj7I85+F0ukRNj6Ndjaz4UjTSYIcVef3MhNVk86ENIJ7nCrR76yGex1jHkHGw/almaMzWc7L2ovosjHt5ji1fKyhE+f9wnzv352VWMLONpf8lSufXnQ1DMMwDMMwjGEcPuj8fMyG0jBWDBljGs5F4P22zzeTef34K8CvjLluKvua88D/mYThe8D/q6pfEJF/ISIv4MLXbgA/AyAiF3C+OT+sqr8nIv8c+EMgBL6EC+s3FoQERXTtEhzcZPpKmaC1x3B4e7zVK/egsOOG6cd1F8U6b7udWbD1PCAtT/+tZ51n8cH7sx8RMCyCMa6lS16YWAnJUxfBfxb95u+m2PY0FLEZRqj6ufSdRnNhwPXYuA7ieuK1nR1uZ+HnU+7fPPzYl8jvXdUdu5NwbzlxjHO9z3E0kEZue0Ex8VGfUbtWndL9cz7I6afRGymeCYZhGIZhGMbC0Mpe55tzHK7ce6dhNGkPuBuN0yLy+22ff0FV23XqvlnJjlVB5Htxovx3jbpug6GivKp+BfhEj/m97GpQ1VvAD7d9/lt0ec0bi0UyJbR0AQ4/mHLJCsH4yUJk85lOodHLrH4kaz/RPa5A6ZwTV4ndAzGqu5tK+e70tj/sHjXLyMulf7iLi3pdVALktIhHh3WHxs7OZv+GG+mQKdE80V5bJ4yGLhq87ZrS5j9PKErSwfQkH4RxSdqhl01GMg0/htq8v7QnaNVW/pCe9HCwV20b+dEZ4iDi9bmPSVsS4K6yVQfcG4fsl4i7X3tZ9/dJyH0yISKCnn4O7n9r0VUxDMMwDMMw+nFwF60dIdnGe7W634yyfBaJhjGM8TV57qvqpwZ8fxO43Pb5EnDr2PZFXgH+IfBDqvpglHXbWdQ4bGPBSHYd1fNw9OE0S4Wje+OtWjzPMc/g+oFL2ije8guno9CIXtcYtE3Q8X0nLq0ldlT1I6jtThbRW90FP/GOa4j+0Eoq2i9JYz9ypyCqIi9+V9cXsxA5vYFJXidFRFA/B+GStK1+hzB3qn/7rz5qncOgBMXEXkjVjQTwMlB50JxF/QCOptjpk5plEsGXqS4TMO9OLxEgcB2NzetywPVZ7zcCx2vdk45vpOd+CSBbz/ZeJbNOX7957WODJsGAkSZpj6sm11khSRy8JPeRBSEXP46aKG8YhmEYhrG8lB9CdQ+ybTanYRmyJsobK8o0cvsd54vAcyJyHfgA+Engp9oXEJEruJypf1FVvznKut2YKP8EI7lNlBiO7kypQJ+xBS+vj7gTVwFx4qL4LTFomHXHMlN73P+79sj6IAvBWdcxEVXcAzQqj7Qp5xmuaJz0gg86PX4OyW7QXCjsta1GhOk8hM25GJHPYRtp6bO/lXsuIn4Ynt/mC6itzobsJlrdhdp+uqTLs0CXSAj3CyNfR0aDJTqPy0LD0sYvJu3qCT1GmRwUtqE8YkevYRiGYRiGMT+8LgE+rrupe75hPKGoaigifx34VVxCv3+kqq+JyM8k3/888HPAKeDvJ3n6QlX9VL91B23PRPknHMltoxpDecwI93Y0RNbOg1x2iV5HIawMiJ7ULlubfsutCJlNpwVH1ZZ//iDiqosezW8CW+44lR84oTMqp4ukT6M9Zzegvj94Gc8HcklnyQzIbLiRAjJDL/kEVYVoRp7yGxch17ByahPpJPGjbkQEN200BIpbkFuH+hHaHnWrQL3SPBwSFDrPuV9wVkjQu7NK65Bdg8fvTG33RmdJhMrGsQ6KECXH6gmPcF4J5joqYIy2KknOEC+X3NsntLRZeuuv4wigVz8Dr//K0GUNwzAMwzCMBbH3IZROdc6zaHljRZnVzyZV/WXgl7vm/Xzb3z8N/HTadQdhoryB5E85Yb7yYPjCadDQWWeM4gfv50Yov90+YQVpF7S9bBLdnFYIUndcs2tJWaWUHvTD71aSJvt6+Z4TNFMd/zESiIog/UZNTJswZYfGOBTWIWiU3XbsxUe2rwxYUdHD24M7RzafhrAKpfOtspvnrnHsBGfpocknhdMfRe9/bdQ9mQ7LFCnfoNEJqFnXcTGsc8xYHEvYfHoTu7r6BfccfMLalKydQr2g7X5kGIZhGIZhLBN675vI+Y92zozrSc4kkweNFUJ6W5+uGiusbBpTJX86nUXGUASN6qMnaB3lYtII/Pxo5S8rEjCZ4pTyuPlZyG65Kb9zvJTiU9Ox9PBykNtyyUdzW5OXh4to11mJ53NnSuqi4DoVwiM31Q+6pn0XCS5Bxzpy5uMsxrJH3ciEpUSfOPF05Zh6MtUBbXEa7VSjRJwvMvJrVr+RYMrSJz4XFK58etHVMAzDMAzDMPpRPNV7/tTftw1j9jR0+VGmZcO6wgwgSXpZOOsihwd5nvctIEDLdyfwrB7x6lhycSI1k94VMgWINqDWL6lispk2WxP11qFxriv3IbOGApJtiejHZamGnYwifs4Jwd34BbdI/aA1b9SOHq81YkLrR1C+4861l0VzW5DdQKbVg+9np+YtrgAXXuqeMxay/Syoovf+aLJKxXWohZDdBG2c/wg5+yp6/7X55mWIqq69iT+/baZBWd0XUI1cNMsiO6zCwzFWitFj7UCTnCF+55NApeXTHhTGrmYnXv9OGC/bSpI8DeoHST4UL/29pu9+ep2dbANJ7j/izT3/ipy6hr777+e6TcMwDMMwDCMdsnG+9xdRdYQR8YaxJMwm0etcMVHeaCIiaPEpN3RpRLFF998f7kc+aNuZ0ojiwbJG3Y7IpIJaVIHM+lBRvh0J3XlSVcisNaOrRzDQgcI5xPNb5ywoODGr3bYgqo7eeeLXUD3lEtRWd1vrxzVn0+MXpjesboovHAKoREOXS4VGw8U3jSHYaG283u96TeyO/MSiBUDryOmPoI/e7OxAmTnLes0ua72GoDELT1Q8bvvp9Xwpnkfouh+2J07tO5qhnkSXS7rDITLglCtNC5qJaVRGk9FdBff/uCK5MMbzYv7tQ0TQ7avw6Mbct20YhmEYhmEMwRsQJBWW3Yh3w1gVljH0fUSsG8zoQERg7SKULjn7kQ5xsKvBN76TYCJBHqSHUCFOaOk3lP+k2NdMI8p1zPuQiIw/4qB8Bz267XrTMyW3H9NImBlVWwk4uwU6mK7GNE0tdmyBX3C3YY/Rdk6h+shNtWHCaJyI9m3b0BDZfhrWL49R5zFZWvua1X+QL44pHbvMRqcgr7gfBWkv0rg2narMsolqlEThFwePGDkBfuxy8dVFV8EwDMMwDMPoge59iFb7/H6Mqkv8m80wuhjDumYZNXyLlDeOIeK5RKLZNbSgzqqkto8e3XHiY/3QRUhGNWT7eTSc1AJE0ThGghwgaHUPjj50XwV5pHSBY2rJSfEY97MwsQbT787iwUZbUlHV47lXd98cf7Mao2EZyay5zpMpWcFweBP1sr0tcpY0+Yym7dzofsep7bvkuQCb18fbeFxPRL62wlVbnxudHOERBCVneaQhaIzkN9FMCR6+Pt62R2IJX/AE18E3rbZrjEemSLN9KOOdD42XbLhtj/uySNJ56SWJhjW5PtueZ0t6jxuJ/Lqz7bFcDYZhGIZhGMvFvTfQyh7ykR/u8WWSa8vvExhpGMvGMqrsI3ICfv0Zs0REXCR0poSUnnKWJ2EZqo/Q6iO0fA8qDybf0P6N3pJdWEGrj5HCaRq+5hpVIawgfnY60dlzRxI/8ypUH06hvBjWLuGOj3YJsjP0yy4+5WSnhnie3XB/64Q2LnF99cScsXMptNGw7R9r3ZTHPDx058gvQOkpEHEe/UnEvO6+BY/fHrMSw+q4hKI8YJHykzDlczquIA/JD4g8k9VpTm1UpHXNiu9yaQgQ1SGO3LDiFX7BFBS9/Cm48R8WXRXDMAzDMAyjm/0P0coBkl879pVGVaezGMYKsFQxWWNiorwxEk6kL0KmiKxdBEA1dp7mFSfUU308oZ1NF5UHaA/h33mbn0GKZ1ZryL+XmZIYn6AxPa1eBq4SQX0CAb10CdEu4by25wSmzPp0z387UxJ2NY4hnJKfunjORibdlt35dyt2jPjQ6j6ENbePs4yWDYqQP+UEeY1c00levLRZN8NIQZB4TkrzH/d/VBmtY+3oNprdOu4pPypxrc1fvlvUbvR6DRK7+41pHCaQ97gvqXTarw0U2ZO6BT4a1qBahuxaMnpsAsRL7HJ6bDGuQRwhM+qIkFPXUBPlDcMwDMMwlhK9/RpsnIfqHlrZh8pjN5XOIK/8+KKrZxjpWOFApgYmyhsTI+I5//ncFsJ1VGP0nS/MZ+Pley5af/1aImAsazRuG3FttsJ1CsTzIbfuOlFGtQJau4LEfexaNHLivJ9zwnIvC5plQKMpRuOP6AXffkzaHyL7d+DeG+7vwjasrbXKlpbg6eS7fuJiv3Mprc6A7Driea0OGY1wfvOxS9ibP53MD5NjlHge9U0mm5ZlvTbVRSr3a9NGXyRT7DlfvSxUpzCCalQ0dh0CXn68UVRRtfd6QaF/GEZY7R3d7+UgSBtl5K5lVdB3f7N5rWnxLLJxEdaeQnIbKctqLza5zntdetUD0DoalJJOwPYOCZecdpJXXPE8dOMC7N2aoBTDMAzDMAxjJtz5Gnrna8fnTxoUYhjzYli81YpgorwxdUQ8VIL5Wsvsv4vmtpHiOUaNGl8IK+kbLMjGtXRCe1R1U3bd/b9sdjTdUf4LQ3r+iXjIzvP9V/PWettG5bahdgTSpcLltloCqp8/PkIiqoCfwyuegeIZINHxEr97jSO4/9VUe9SfJRXlRYCuxJteNrEYiZev7RrDiatJlPqoz4IFt1GNOju/ju6iR3fdV7ktZPs6rF9AUov9KQj7dLaJj2bX3WiaMZHLn0Jf+6Wx1zcMwzAMwzDmzEnwAzGeCARxTh4rzioqg8YqEORdMth5Un2EZkp9ozeXiihJzjmp//rEpLyJeVmXcHfUyPfavnuwL3hkQDsuL8IUo6InsNTRw12oJMe02na9jFtm9RHkTrljHodA7MTJ7FrbiIheVhuRE+aDQu+REyJw6qNuXY3h0TfHaLtL/sD0siCB69BQkvTsvhthENVWNH/FKjFNQTxJUuVlWIlO2gaDDkF1F739JbjzFXTrKrJ1DXIb47+IigzenkZQ3YNsabzyAQobrgN6lezlDMMwDMMwnmRWQUsxjAbekmsMKbBuMGM2LCo5yMFNtH7oxLSlRiG7uehKkEooLZx1IxDGTcDYyDng5Zyf+YIREddpNDViZOel8VaN6q6DIKx1RWSnECizmz2mraTcshsNoFFy3lKcZ42TKN3jjwURD/EDxM84m6iNq7B2ueUpvsqoOiFegpY3erfQacmO5sC0o9RjFzGvCnhJJ+iUNwHzjybSCB69jb7zG+i7v4U+vulGsvReeEBBaV5gYxRBx9xHQeH8K2OtaxiGYRiGYcwfOf3coqtgGOkRGX1aMixS3pgNixTFDz5AuQXrl5HM2vJGuC48Sp7+0ZKFs0im5CIc45qbJiWqQARkNhLReIHnRaZ961MXZR4O67joFLPCCAcAACAASURBVLdk5xJwyZWwdw9ufSnd5kSOHz8v487XpMc1PEKDAoMEvYa/tRZ2XMdC+T6U70623UXReDAPzMO5pNY7xnC0/ZqQJH9A1Od8j3GeR83JMbiw0RavPEJvfdHdey5/Dsmvt74Tb0jdUm6rtueWDkouOfSoL7LtdTIMwzAMwzCWF/HhzAuLroVhpEM4EZHyJsobs2HhkeoK++852aFwFsnvJJGSIQv3DW6gOpOh/arSGXXdISgmf4skWQWPdwzIxnVnUzONJK1eDq11lRPutupAYhVCnNRHkeJ2f8uENGK6Nv6RljDVfa9OE/np5xNf6oEbals+hSg/TNAqnYGN81AcYxRFWuFYvFbS137EIVQfDi9KxCWzXL+Als65/Q/LLuK+tr8cHU+ToNqW8NaYKVEdbR/B0mjOwsRJRzsKjSquUMm2dUoqzuZmii91cQ0i6XFdav+RF56PvPQjyYcR66Kg4RH4OZd8XQIGPutGFdfDQ9cJID7ktyEopBToV/9F2TAMwzAM44ngqY8hk1gXGsZckRORA8FEeWM2LNPFUb6LNqJ4FWddUnoKWbQlhUYQrEF9b2rRlqrAwQfjR7aXLk5HjG/Up3oAvbK6D1rn4rcj2T42N8JoAmlT2EvOdcdxbgxfSibBddxIkHQq6RDdqvPLdBYPxwtUVaiXIVdAzj2dzI1AArRyCI8/bBMOaYl8Z650liYe5He6Svdcexevte1GAtMpI57vvOuza8AZt18aQViB2gGKt4LynJggPxZjdHxG5f4WWdnNMcoU17EWVTnuK6/O2qZBUAT1XCdp86KPXUT92Oe/0QHQAy/oUSeXrKj17Bxtf7Vyr5n8WYMSrF1E/DzJTbNjK0gyYoDkXqBR+g60+r6bgoLbTqYEQX6AQL8kneCGYRiGYRhGf4Iccu2zi66FYYzGEtrRjIqJ8sZsWHikfB+CAhzdhqO76MY1yO8g3gI7EOI6ZLagNjwqOV150WiCvF+AwmknyMR1F2E5TQ1lrM6ZGdxYu46JAGSH2SqMWo80B84to6rO9qX6CCrJuS8+BX5yvDSC2i4SKXr7626en4HiTqte8XkX0d4Q/iSATKFzc17W+Tp3CG5DouSnhIi4OjWEes9PRi00HjvJaIbG36ru/2V5sCrj51EwpkwyqmYUgkSQ9nODz2OjPYp0XfKeux695Ps4TP72krpMcqOcrlCtUdgU5AEX1R7V20ZhNZIWt6LnxQs6hnuqNkYXictz0fOYtdW7MSqmch/Wr1hSMMMwDMMwjBVGrn0eya4tuhqG8cRhorwxG5YpUr6dZhS4wt47cHQH3bgKQXFx4nxchew21B5NVIwCHH6YcmlB1q86QbchWIs3He/4J5YhYrIqZIpoZReO7h6PTB2mRRdPIeevtz5HFcis9Y/GdRsdUmhvRATNrLuI2GkyNCJXQDIsR3TtpMLrk8yUj9uomnwjqWvjmmrYUHlB4lRTbbXDflZOUc2J2323kYEgjyajbWRYBYNia4SKxtPtfIp6jW7q6vTy/M7RAX6+45g2It1VPCfI+/kh95Y2Dm6i61eQqSbQNgzDMAzDMGZO8RQUNtGnPrqCo5qNJxrzlDeMASxjpHxQPC5ah0fw8BsAqN82nF88yG64KPJMwUWQz5I4ZKxo0ARV4PB2+iSf61fmEwU89ajnFRRJ/YLzkK7tdUazHkPAL7q217h+Mop87E8BOC/nyr3Z17eBl3HXzBTtjIajrmPIy7Lwcy3izp1Fy68QSWR8+/1aBPA7E/p6uUTIlgH3qCHtT+tQryfXaoT6BYgjpO89uD0Sf8r3xfrB8GWiWtIp4erXLtn3Xr6SXpjXGPbeRfOnktFnS/j8NwzDMAzDMI6TX4fKXbjxm+ilz5qnvLFaLGsw8AiYKG/MhqX8UT7kgo2qnZ/LFSjfBS+D5rYhv42sXcRZbcTOemZqftPaloh2xDVVofo4fVQjQPl+4v09AuK1Ik7jsHWOpc2HWduji/XJEjTbxT0JICgliWajJEp+PZm6LGYaHvFBEYj6RpP3FLq074feeNnUfvIigvp5t/wobWsaxLXE83r63vepSZs415gDKURs8ZyI3PO7rvWFpMOls11rx3ZkSKLnxkqxm5KoevXzzU416Sgvpb2VFxybdbzyXR/DHtdno3O5Y9k2e7I4RvGOH9q47d4TVRL7nzqprsXKA6g8RAunIbuB+Jnj9TUMwzAMwzCWiOQd7+G30EdvwbXvRU69sNgqGUYqxCLlDaMfIt6i41x7MGaN4roT56MKsnbezRMBP4t62UT4UCfqjyvS+1kIU0Q79iO/BbktQJwtzwBk/ZqL8oxH7ADIbUMfix/pYwGhuoydMzNCcXYyClQeQb2X9YUgxT4vOX5+cMRrs/yG97PnfObjglvXzx8XEcXvHLWiMaNcByKCBkXXVsboMJoIrQMByILuJCJzHiVgTISfm3yd6oPjnbPDCLqiiZo5Hjw0t+MkaR0hYWwcjXGt9bhGao/d9psjBKTDnkwEVEMgcPedfvWLqkmHsfQW/3vVpXwPyvfQ7CbiadLZsXxvBIZhGIZhGE887e+AGqPv/AasnUdyG4urk2GkZVny0U2AifLGbFhG+5o0Q/wHUdtD62WkLdLZ3QNc77J6GSeMhoepo5Hbyx4XabNlGB7cm9g1RClFHz/XSnAoPv2Elb5WCNO+SS67rlMeZE8zIV6AFK8cn188N0Ihox9AEUGzG1DdZa6R6xoDYeIxP+eIedUpjoIxZoZfSNTlMdZtJCJuH5USD8p3MCJeDmkv28u2nosaJZ2iPdq1Rkm9JuwEqz12HXe57b6LuA6DEA3yIGtQ2++93TiEw1vj1QGQ5z6HvvP7KUV9wzAMwzAMYy6snXM6hHSO7tRbX0Suf//CqmUYqRD6Bo2uEibKG7OhX/K8RREUnef6hOjeu8ipl3p+58Tx2EUWR5URItFljlHIiu69g6xfGR4RmlmDyn0nyBd2GKx8+WjHszyJyI5SCpvrF9xLgQiSG+BjF1VQP48s0takH6k6YsbsVSicO25rMUdEBM1tQW139A6niYhdckovR4ct0qyReV6TxnCSm0uzk7DRHqTj65HL1Mj93xDLc9sca1/dPZ3dHY2phWbtbFOeD2QSS5k4iWLX1nJeNn3i7dIlegr87R1aA0zkm+J8dtNtu37YWVcRKD4FR7ddfTeShNONY6MR7N/oX7+ojFz/FPqt30m3P4ZhGIZhGMZs2bwE0X7vILoHbxB7AXLxO5Cgjz2kYSwDFilvGH1YJlFeNYlgnoKYd3SHOLOGrF9A+owGENT5CseH6bbpBZA/44SZ6iMmigpOc0/ysj09yzvIrCV1aSyf7Ee/m17lbp+CeuyL34gYVchvItvXQBvikw6+sUZlJ8xnt4D4yXErFq81ImJRVRBxol1tb3j7mTZxWwdSsz0OaSuToLiOPI1GtzMxmLqPuJfDCdgCfuO+O+k2Gnk8ErsYVXeNDRPhu0vpm1woTf3iVieXl0nqk3RoKq36DUH8PvkXJGjzzVe3bwP2R8RtU7Prrh7t4rznQ3YL6vvHfpxpmg7oqAylM3A4x2TVhmEYhmEYRideAFsXXfDdoPfce6+hR/fhxR9d+O9Qw+iNWKS8YfRlmUT5oDiRPcwxHr+F1g9h+7neyTdJhPlMabhljnjg55BEINL8KagMFi00dtYaEvRIQjjMvyazhuR3BguNXsYl7Gt0KIRHcHDkbFL8lNsUzwlKUd353SOwdgYp7nQKrNAmyKdFofYIvByaKXVaRIyJij95OSlfVrQh/nUTVl1nCOqib+ctfKdAxHPCfP0gfRTvtGls18+5tqc6/VySzfL8ViSzsTik+c8sCk7+9EbPszGQtvuieHQmwe6zfFMAz7rPkQIT3Ac06oq4d/urjeum+96t6lx9RFrifBxCfT+pl9f7GQBJour2fUnyrLTts1x4Hn3z4VLe2wzDMAzDME48hW3IZl0epTS/XQ/vwOFdN6LdMJYNwSLlDaMvy9Rj1Uc4n4ij22jxLFLYGbBQiij5oJTaikXjCA7uwNFdCIroxmX3hZdxWaeVoZYbUrrgblyZNouYRjXb72fdnQniHU8iOggvi+7dgOI55PT11vxuQb4nKUc0xFWoVt2oBEgsIOouOrSRfLdZpLp5QcH9X9tLjoEkkaTSX2xKTcoHQnXP5R8I8kj7dSLaFtVKYj2RFCsBy2KoLyJoZs21tdo+C6tXo2NJPFBvNg9kwUVpR+Xpl30CUPGOJzRuirErQMf9MuWoJk0i7JsJvtssurycu494mZbdVKNDp9k+pRGSPqBebaJ1ymj5PgW5JKsat52TZD/j/ePteu0S0LoniQj4GdTbgupjKD7Vs0NRvAA2rx+brxo7n/7anht5FVWQZ74T/fAbcDjD/BuGYRiGYRhGJ9tXXGBbOGLerMPbJsoby4uJ8obRh6AE+VNOsIkWnNxtGsnltl9wgm75ARy8D4WzEORRvL6iugDq5/oLVJm1gYK8qkKsLsqx/ACO2iLowyN4+Ib7u3jWCdQpbkgquG32ivxt16SKZ+HoTutzUOqvIYmgfsGVG9c7oy+ru0kE5SjC7Yg31u72pfXem1Og1nYukiSEgEsYOS8OP2xVKbft/Pq9oFPsEqEz0rbr84JxkbQZV/+wvFjRumH3IQFOUEzMs1WB+EQ8qJeWOJw8gfaiEd/tx8COx0a7ilvXYkMoz5Qg46LEO1pa39EVPSLU+xGVk3plhgjz/csTYhTv+DK9Los+vvMinsspMeKIEREPskXIFNHiOfcsqx0gVz7h/OUt8athGIZhGMZ0yG1AcRsI3XujZHDvnbH7vVx7OFaxWnn85FjGGivGE2JfIyJ54LeBXLL8P1fVvyUifxv4Mzgj07vAX1bVW13rvgD807ZZTwM/p6r/y5TqbywpEuSRC58Dkgjv8MhN9UM0PIJ64/PR0OjuySriJ1YsE5LdQDwPXTsPxFA674TJ8AgNSkg/i4GGyNOIdG4IK17GWdb0Iiihlcfw+J3jUai9OLrrIhyjIeLY2uX0D9TuqvlD7Ij230d7iUZRFc2fQsKjtFt2kadBdr6WIWlFskFUd8dY55GbvAxaOAPZNZfsdkWEZBFxgpufSzo5FtVx4CydjiOtEQc6gkDfECdVLUq+DwrTubcuHElE7wHPIdG+96O+9/GJ8dxzQ0PXsevnaSnmndtUhnTaaY9ro2fHZR2NfRf53oWIoGSA8Z7XLuo+B4UcFE7Bxy+gX/8ClMf7gWgYhmEYhmEACOxcdRa4tRm8my/KstQwhvEE2ddUge9T1QMRyQC/IyK/AvxdVf3vAUTkZ4GfA36mfUVVfQN4NVnGBz4AfnGK9TdWAPF8yK67ic5APBcNXm8J9OEhGtUgqrkHQMf/Iwy1UoXMuovibWf9amJBkAzn9zIuyjEsw+Ett51uiueaNiMigq5dbBNNFcKDRJg/LtoIccvGAEnE+WS9HogIsQrcf63vMr33d4i9wdolJJNPX2b3zc3Lpa9LN4e3oHTBneM0xHX0jX/t/s6uI9e+c/xtp2YyYU2RySw74ro7Toc4a6LCacgUVkec9/wkav5o8SNj2mn3gxefwUmU26KJRdO314WyGu1j6RnWAbiQvqbYidhhIoIPuq7icHCnQlrrsaM7bmRT4XTPr10i3HRFDUOCDHzsR9AHb8FbvzmdQg3DMAzDMJ4ksmtQ2obqkKStkxDMcUS5YYyIeKv/e3ioKK+qCjRCcDPJpKranjmzxPCfat8PvKWqN8apqHEycdFzWTfltty8Pss2BfzD2+j9r9BXYFN15R1+0Dm/cAZyG21C53rrOz/TSmpXfeyil+PQifalTg+1nkKpxlPRxzSqwb2vMrLyMeQhLNm10XyJuwXJuA7+gNvFELFGKw+RTDFd9HtcndBHeRzGV5oUQR+8Plqn0SDCI9h/z5Wd23adRrkKMrHn/WwRETQounMXphjhMbOKBK3Emh2XRVvbU2l9blw77fkOVJ0gGodLnpRykZZGq/8CBCT3rkbbWLJ9OuEJhkWA08+g1UO4+cVFV8cwDMMwDGM5CQr/P3t3HitZfhV4/nvujT3e/vLlvldmbS67yoWXMtV4wUDbNRqMxPTItDSomZE8ltrN9H8zjNWNNC0kRt3/8Ic1bosB0RIGMSC3EO0BWjDI3TON8YIxtinjclVWVVZmZWVWZr79xXLvmT9+N96LiBf7euPG+UiR+V4sN34RL+LGjfM7v3Mgu+BWk/u1sjRVt1K7/GCsdy2L58e6fWOGInNQvgYOs9y/AVwDPqeqX43O/xXg54FN4CNdNvNJ4HcGH6qZd4cB/KWLkFlA73zteHayl4tqsN9rPN/PQP5Ex8zjWlM7CifcCSCz1FuwVTw6Z+F2p9USevuvjmf392LvHhRPQmW7dYC+n/Ispa3jWZkH9+BAXK15SbtMYqiLCXYJZgUHaHYF6SWL2svW1WsuuMeWWXDZnvWPrfkhSXSm9lp/va6AcniAhtWj87X+/7Du+kSrKxaiYJ6ib33LPe/jEJW3keLpETSiHT8RifooHEwvmK3V6E/rA7XgfF2TTQCNVsTU6ok3OwzUins99tSgOJmU2T/Q6ah+39gu43ySPSfGwc+5viCH6ialDn+vnR2i7Vb9SGbkSVgCyLl3oaceR//m9wf7/DPGGGOMSaL8GuQXoXQf2HfHSfWHqpNYVV1YG/99GDMIERhTpryIfAz4NcAHfl1Vf7Xp8seB3wSeBT6rqv+m7rIbwDYQAFVVfU+n++opKK+uWPQzIrICfElEnlLV76jqZ4HPisgvAZ8BfrnNA8oAPw38Urv7EJFPAZ8CuHjxYi/DMnNMcmtw7oMuMF+r5Z0quIaoYdkFcBcvQCp3OHs2UCmQbjNvknIZtRr0/KGoiKsbXpcFqZUD9M43Bg9IhGXYvumaDqby7nFrANWSq+te2kFWLrvGepWt9ttR7VAmQRubv/Zr782eytjoXt1sf3XfjWc/RiVR0gvove+OLjM+YUQEzSxF78spZnJrEK1g8d37OAyigKs2XqcTiYKXXg7CGL0GJyksu8mhpOra06Q5gD1BozrG9HxcbkXDmS2vqgKU20wyZlZHOKhGksrA0/+NBeaNMcYYM+cEls6A70UJWlOs6Z5fczEWY+JqDBNTUVL654CfBG4CXxORP1TV79Vd7T7wi8DPtNnMR1T1XpvLGvSVAqeqD4G/AD7WdNEXgZ/tcNOPA99U1bYRPVX9gqq+R1Xfs7Gx0c+wzJySVB458zwsnHOB6N3bLoDk52D1OpIpIp6PDNM4s7R5vJ66V9f01M8ghG23r7hMU42C+wou4LB14zADVcs76O2v9tbUtZvKrlslsH0Tdm7DwX133sF9xEu5Mjb5U+1vP2gwJFV0Jz8XZSi3pqUH3Sc6MgtHPwcxCHz7eReI9wtoUEW3XrOAfBcinpsgmjo9apTZHJDvazPV4foqzLSYlXQZKXH7mDA6tcySn+AKFfEgDN0EUu00RySVQd79Satdaowxxpj5ky7C2mVYXIVgC8oPp9fEcuUKcu0F5Mn/1vUHNCauPK//U3fvA15S1ZdVtQz8LvCJ+iuo6luq+jVg6MBQ10x5EdkAKqr6UETywE8A/7uIXFfVH0RX+2ngxQ6b+TmsdI0ZA/F82HgWffhD2I3mfFauHTZmHZ66D8TDMjYelLeOGueF4bElM4rA/l3X4LUuw1QXL7syJwdRV/StHxLmz8Ctr46/1EdtNUE0wgb19ds7BNQ7kfzq0da1VhZGXaayqtt+WIGgjKYKSGWn/ba8EF25Ag9fGWgsI+Nn3WPZeaP7dc1xXobD18GsE3GvYS/jJv5MMmgVCDu/RCfV30K84xnqc/glSDzPZcx/47eZ2goFY4wxxphJER9Wz7sSNaWeEmtHz8+6UriFE8jqI0jx5HTGYUy/xjNxdQ54ve73m8D7+7i9An8qIgr8W1X9Qqcr91K+5gzwW1EKvwf8nqr+kYj8gYg8hvvW9CrwaQAROYurufNC9HsBl/b/P/bxIIzpmYggq9fQ7CK6c2uEAfk65S3XiLZWf7gWmJOFhqspHmz9sPU2tm8cO0v2b6NLF2Dz+GUjlV1FVV1Gvx6d50rvREFzosBjZaf/IFRdeXapr999GORPAVGmsaqryd4hMI/XU2Wt8fDSqKRg5xaJCChPiYig2RX3d07CyoJanXk/16HEk5kpkgLfx+37wuMTLpIac0C+1otEXGmxlpdPWAwWRkgqA8/+HPrN38EC88YYY4xJpMXTkM6BVqD09nTGUDiBnHwnrF5D/HT36xuTDCdE5Ot1v3+hKXDe6htRP4Gh51X1loicBP6jiLyoql9pd+WukS9V/Tbw7hbntyxXo6q3gBfqft8D1nsZuTHDkMIpyJ9wZWwORvzBJmlXAqO5vEt1F00Vj/WR7IufgsXzruTMOGQWkVPPuCCpBq6mvJcBP+cC6AKufwVAGvUyEIyxpq+ImwxoF5T3s3D/r8d3/52kiujOrdEE4sSj8QWhUdNRzz0HrRqMItGERH2GuczQ3IDXMFst4rsJobDMDD2I9g4z5nNAMMXJBi8qqzKJCGoC/m6tSKquXE3UDNjPQdTzA21q8DwWOpqyZSOiqv01BW8gaP1zptFni+pAr1JJ5+Dpn0X/5v8acDzGGGOMMTHjZ+H8M0hhCX3wGmxPaUV2bgU595wrUzOtEjnGDEtk0Ez5e12ar94ELtT9fh641evGo5g4qvqWiHwJVw5n8KC8MbNExIeF867R5M7rbQKfA/AzUG0RPAlKUfMTtzMQDdHla64MwX5vTVFFBE3noHgadt8czXjrt3/y2aOZb8XVxJdU+w/g5augIXr32y7o2O56XtodWFR3QUOEplILHecXFdIFqLYoBRJWkQs/El1NG+9fQ/ecj4sGgwfkJeWa4Xiuz0DrbGqBxYuIn0bDkMYlBu6fln+XWWmwI9KyvIt7REkK7kavkcM68+FkA/R+xu3bPIXm911HTa+5XsKlXgry7Zaw1k0cNTTQVTiY0vLbXrV8n7suIJN7qSqkF93TF1RGsAKjzd+z9BBtniBs+XNNXYa+yFGgXrzOq5hUYefVxvNSBTR/crDAfG4Jnv5H6N9+aXSf5cYYY4wxk5ZfQc49DWk/Ku9a6bW29eitXkUuf9Qy400yjOd99DXguohcAd4APgn8415uKCJFwFPV7ejnnwL+t063saC8SSTJLKErj7l64OWH3W/QVZsl9JllF5gWzwWyw6qrJ59dcdn1qbzLTO82XhE0uwDhCdeodVTyG5ApRgG8DOL7Lks+ymA8ely1WUZBfFdSQcNK7ysOCmfB6zNoogrBXn+3GXezzeAAssuuwW8/CqcRrUZNRTs9D0eTDGMps2QmrG6/IBnXX2Kck0b1DrO5x1veY5Bgqo687MqIexM0ZMlPW1TTvlsD7J50eo76eP6aJwZrv3fJRBERtHAO9uqyvqp7UN5CM0uDB+Z/5L9Dv/8nsNVzgooxxhhjTDycfxZZWOaw31rNSI79+rR8Ebn6Dy073iTHGF7LqloVkc8Af4LLgPsNVf2uiHw6uvzzInIa+DqwBIQi8s+BJ4ETwJei91gK+KKq/nGn+7OgvEks8VKwdAktLbng/KAZ0F66db3f9AKk8tGHmrog9tYr7sO21li1XHZ11dMLUUZ5+zGICJpfdbc/uD/YWJu3uf7E0YduqwaV4kfZzS7LVzWAIHCZuP0ErRL0uS5+Fi2ccn+D7DJH5SyiLNrGa0Mqi1Q7TC5kliFdPLr+QAdgCWmYmmQSlf6YRM35uL8URr4/GPUDjvsTGFf1fUKaRJ9t4qfR3HrjhG7pPoiPpheQAZ578Tx44uPot/897E+p5qoxxhhjTD9WLyGnrgNVWh57TjooLx5y+aMWkDfJIbikuDFQ1S8DX2467/N1P7+JK2vTbAt4up/7sqC8STzJrqKpBVfOprLd/waay1Kk8u5zNb1w+KGmYRW2X2uc/a7RAMqbUXB+KRpD68CECOjKJdjORqVshgse6fbrkHmi/YevBod3oQeb6J2vJaMp5zC06mKK2SUOs5A7/Rk6BeTBBWjTRSQ9IyVozHDCqlvREY4pY96LJszsgHpAMubmrX0Sz03mDLPfndSc3WFT8FYDiIYQtFlhdXAXypto8dxggXlALz8Hf/cf+r6tMcYYY8zEFVZwAfk22iU6jMvCaSSdn+x9GjNWgyY8xosF5c1cED+NLl1xwYLd2wxV8qFagvzJuoB84ALy3YIqteC8l4FUru0EgYQBZIto9hpUK268g5bE2HwF1agUTRgghZNQPAl7b0VBPS96DGV48NIQJR3q61QnxYiiXEEJdm+hS5fd6g2TbIfNYMcQmI/KZMU/IB/j8Ykfj9I14kEYHP8c8DJRSbTaGTn3n+JeV616m0zr+ZZUFKSP9pVBGfY6lJgJy7D9CrpwwfV/6ffulk6jl34UXv3/BhuvMcYYY8ykdAuAT7qUaf7EZO/PmEkYU6b8JFmEyMwNEYH8CTSz6ILo3TKc28mvIdGbXzWE3Tf6C5qHZVfWJr3ognb1wXw/fzguQSGVQpfOu5jH9s3BgvNbR4339OAebL8KlZ3+t9OOl4LiWfe4gkrdbGWnoLage/cRiWrEa7egvjb9P4OqB5BZGOy2wb4ro3TsOao1YEwx089N0ogAoQuwQuvSUQNtN824a8ibCalG+/Laa6TGj/7Grd7OIm61VfOFI+mbMoimcfgZKF44bFrteC127YOl9gsgp59AF06g3/3Dvm9vjDHGGDMpkurWC22yQXnJFLtfyZhZE/tkte4sKG/mjvhZdPka7L8Fe3foKzjgZ6MAKKiqu32lVeZiDyrbUUmbxaNsSe94F3QRcRUXli/B/b8f7L5qli7Dzs3httEsrCJ4SHoB+mjirj/8Knrvpb7uSt7x4f7GFifl7cGD8hp2npDxk7F0Hfv3MAAAIABJREFUK3mifYuXjUpFDZmhLTIjcy8xHqRWj1YcTFNYbb2Swl/pdkP3X8NTPKGD0WNzgkGULR8C2hiLP3zt+y1K3gz5+ljYgLPPwK1vDbcdY4wxxphRWzkHy2chnQHtsJJ+wt/d9OENOPWM1ZQ3ySEy+RUnYzD7j8CYAYgIUjgFK9ddY8ZeBSUobboM+YP7Rw1d6+XWotN640lazIFpAOUtF5j30h0Dr0IIq9c715/Lrbma960snIPqjlu6ttCqJ8UwBgmyxDhwNw7VXVfqaByCA2JdMmTuhUR5vkNuZ1beMzF/LWro9sfTnMhKD5GtpOrK2NRO03y+NWpeptXWk05heeQ1UwWQjesj3aYxxhhjzFDyK8gTP4mcvo7ki50D8jD5DN+d2+jLf4IGI1rBa0wciPR/ihnLlDdzTVJ5dOW6a6p6cLe3GwX7sHcQBfObluGnF9uXxckUobLfupRFecttq8tOQkTRlUdg6zVYOu+C+F7WBWbSBVeWJpWG1OmjsYnnfq6VrNGqK5lTPAu7Her/jpvOSoBxhMo7kFsez7aru5CyZrKxJYBkhqszHwaxPJCYSYcBZI+ZLwkU99dEWI4aFI9wUtIaZxtjjDEmLjKLyOX3dg/E15tGcsiDl9Ht2+jCGaRwwo2heBJZGnXCnjETEvfvQT2woLyZeyIeLJxFMwuu3npPZQ3UBefzJ1wZgtIDd7afcc1ZWwlKrsFr4EWZzS222UOgWiREl69A+b47oxbkr68T361evggsnHXj2Xzl6P4nKRyklMeMB/IHLV/Ts8FqNZsZ4aVGG9icGWN8TU+plI0GpeP15CM9HVpKqm5iYUIHo8P08w7LbjXYqJ5rP0UiJlSMMcYYM9v8HPLIc/0F5GF6Kzar+/DwZfThy0fjeNfPI5bwYGZRAkr4WlDemJrDzPc64kPhNBzca11aJqy44MjqE7D3ZvdgeFiOGvnpYE1ba8OigmZXjyYD+pVbxyueguIpdPVRd97ubfTut5lYUDcYsr62OU419pVD5poGLjAZ9nnQDm7/NDMB+VmZGJriJFZlq+XZPX8hqi8VI9JUIqbFTkCazu+pt3bTc1NbddVq420vq99m7U6Hf84F0Ivvhde+OvS2jDHGGGMGIj7y6I/1H5CHmGT4Cqw/5hL1jJk1o6gOGwMWlDcGXI347RvHg17FM+7Lf/4k7Lze+sbFMwiKLpyD6gHsdmmkGlZcw1gNBwvO1XhDvH3rZhTFi4I5i+fBy6Jbr7jn4eD+4NvvRT8ZkytnkXPXh3u+4mDcJXu0CvgxOcgzx9QatTZkOffAz85QQH4M9t9G0eg5qHsPZZaRdj00uvKi/aC6gPakn99U4fgkbu4EXQPWenxCV1TbZt23lS4OeBDbany9ptCPdv8nZ55CN9+AzRE3LzfGGGOM6YE89uHBAvIw+QxfPwsb70CWLkBuCZdU4SPpQY+ljZm2eNaI75cF5c3cU1XYecMt5fLzkF5wZWjEQ+qDCJLu+KErAKkcunwd9t+C8mb7Ow3LriZueWfwYFB13wVWKrv937ZNIEuKG0hxAwDdu4ve+WZvwcNB9oX93ObhLTS3iKyuD3BHMbJzE128iIyrS3hYhlSR2clUnkMCruxGj2VTvOwM1pIXyK7hSnLB0etRoDzA6p5Bv+x0VNd8t58JklHxMkBdUD5VaPy8aUfErZqo7jHv73MBePwfojf/Gt745rSHY4wxxpg5Itc/DAyT1DHZY3t57BOujrwxSTJT35Fbm/0CPMYM6+AelO7DwgUkv46ksohIQ4BEUKR4ChYuQPEc5E8e3b6yg9ZdW1DIb8Di5c73G5QgszTwLLmIRAHYfm/oI7nuwW0pbCAXPoisPwUL3Zq/TGBn+Ob3XYbxLNOqa8g61vuY70DdbFA3ydftfSNpN2k3YwcbooHbh4qHeB7i+dHJG/F7eNDnxT/KktdqU+mXCfHSblI1XXQNwvtp0iy4bKdhzNZLqi0B5Py74dGfmvZQjDHGGDMvrj4PQx4+yqSP7/MzntxmTCsi/Z9ixoLyZq5pZQd2b0F2tacsRUHdB2h9QKT0AHZuue3VIh3VfUBg+TrkT7ffYLAP2RUGjpAEB32XsZHFi4if7u26qTyyfAlZeYTOY4zfzi12vDQsXUEyi2O+IwvKz4bQrcjp9N7xkliKKA6PJ8StVIh+nUJpICFE/Fx0yvSWJd+wgSEP3xK0mxDAW70AZ5+Z9lCMMcYYk3SX3otkevsu3dGkj/HvfGuy92fMRMgAp3ixoLyZWxpUYOtVyK67bMVhLJyN3uIu0iGpvMsMRZHMAixfa5/ZWN1zgXm//wYrgkZlInqUWYJcH9ev3U9mAQqnOlwhfju32CmcPqrfP06zXnd/nmjoJmtaZWontY78SOtnDrrfiTLk6aOvRezYPreZnHnntIdgjDHGmCQ7+TiSHzJucGiyoTi9+ZfowxsTvU9jTHczXgvCmMEcNXatQrrHWr51BEULp6G8DdmVjrdXxAXXgnL7DQb7UVZssf/yJtX93htHeqneA8P1gUIFWb6KZpbc7dNFl2lZ3Ue1ijuo6DNIlFsD9TneJLCu/nTD8ypoZjUqgdHivmpNNFudX0/VPcflrf7GOyg/5zraT2riQqtAn00fzRQp4IHn1U2oSHLLEA0SlM9tuP3j8Y0xXMp3fbaENp3f5WbD6qfRdesNjGAQCZPKwOolePDqtEdijDHGmKRZPoesnxtd0szE8ysUfenLcPZ9yNn3TPrOjRmPBOQpWVDezKfdW1GjPBg0uCFeCnKr3a8YlmG7hyCBBoAHmUXXBPDg7d7GIaCpHFR2ulzTQ4pne9omeMcayEo6j6QvNF1v2e0HB6mT/tZr8OBmXzeR6x9A0iMIOKeyaPGse87277pGmn01exS36iC75ppQVnZcENWLljJ6KRdgVYXcCjLS7OAeNM9zmHgTjl4/4kNYJblB1wFemF6qzcTnCJ6jQZrIDnu33pD7MNVoks9j8Gz/5O0kBODRn0Bvfwde++q0h2OMMcaYpFg5j5x5bMSrWKdzHKa3/gpOPO5Wwhszy4REVGywoLyZO3rw9lHAu3hu/B+HXh815/wM5E8gGqK5Vdi9A5Xt7rfrFvQtnI5K5PTQHFB8CCZQAmWgHejoApWCQqqALpxHRNCg6lZP9GLhHJKqlRvyXSZ8rAQM3X3ITJbUsuNnr7HrTBLfTZjOqsqYG0bPKAHkzFPomaeOzizvoy/9OWy/ObVxGWOMMWZGLZ8bQ0Ce6R7vb92EE49P7/6NGYl4Nm7tlwXlzVzRyh7svOF+kdSE3sQCkoaFs+4+AUr3XYNYPMifhP033fXyG0j0gS8aooUN0BMusz8otb+H5avUz7ZrdR9Km7XfEK3CwT2o7KD5jQ6NXmU+gj2pogvI+VkkOHDneT5kV6O/Swu5dbeKQQXxYx7wDkrgF4YouR1NfhwGigHElVip32gYgiQ1o3sKEnBQYSZAxE3EDl0CJ7ka3kmZPDzxAvpXvzGt4RhjjDFmFi1sIGcfn3yfJ/Hd9y7xOSxzKb4bR7nb6vgepPPDb8OYOEjA92cLypu5oWElyoSOgoh+biKLxgRFly43ll/IraPZVRcAzyy6U1BGmkopCIAIunAeqgew+8bxO1i6Gm27bvteqnVZhnTRXdZOdb+fhzZ5o6iznSocZcjWTXSIiFudAI2B+cwSZFc7TGTE1DAvbi/lniP1oP61FTYfkApoMmaozbyZ8ckkP+96kVhgvje2jzLGGGNMP3IryIVnBit1WM9LR8drWvddViEsI+efjc6Pzut2fOpl0df/aojBCKxfR5YvDbENY+Jk9o/xLShv5oKqwtardY0UgdTkZohb1UMWierHH04SpIFsVJ+98fqu1EoWXbnuaqCXHroLFi70HmsQDzJL7n7Fa5rx9+pq7I+etgymT2EH6ucaXwNNRDzIr7vgvIYuCO1nkJkM6AzYBFOpq6/fQ8BvJp8bMzUDvV76eS23atza6XozSnCBeUI3YTvrkwxjJoCeegrufGfaQzHGGGNM3KULyJX3Dh+QBwjKffYuG5PMAvLEP0IsS94kyYx/pQMLypt5sXvreDPSWGY+hy6TWwOolVWpIxqguTVIL7rgctvHUBegyZ86rDkvQfnoMvFcw0ENIDx+XyNV3YOtV5qGOMAywGEy5WuPtQeHExedVhXEneoAH1IC9HPQqEeNSS04b3ogqRykctFeqPaaEffj/t3WNworNE4Q1VZnRMF6bZFZ5Gc7Z5GPYtXNtAmA51ZABQdRg2DTjlx+P7p/H7ZuTXsoxhhjjIkrP4Nce340AXmIyoGOZlNDySxaQN4kTwJiEF26Qxoz+/Tggaun3uygTe3wqVMXEE4vRHXkGgm4YHy60FvMNXrsLtu77ohAwyiQM4Gmrq2CRZMsuyApjkWovQzxOEIak4ESkge4UViuC5Aa0xv3itHoFNL59dP8PlW3/9DgaDlwT2r1OMPRfdGKA5Hos8Leg50IINd+fNrDMMYYY0xciY88+qERHyfG5Phs/z66H9f4hzEDEKLvQX2eYsaC8ibRtLoPO6+3vjC7HO+QrIYu2zNVPHZR1xBofRaoBnDwdpsSMh02EVTRg020vItGAXRVJdx8hfDBD9rcbYgGJfd/GKLVfXT3zdZ/g0EyVR/cQTff7vNGtYz3ukkALwNh+8a5iTDIZMug2cMauGWZtVr9xsRVWLdaKElEwM9MexSxJ+ksXH5+2sMwxhhjTAzJYx8ZfeJGXIKAQQl9/T9PexTGjJAMeIqXGa7NYExnGlZh6wZtAzDlHcittr88NhRSCy6YdCzo2a5+ctPvYRnKD9HMSs/10fXt78BBFABfedTVWj+4D5svg3jo8mXEOyqfo6qwfw/23+rtYXnHVwF0HdO3vgxeCvmpT/V+o1TnOvKJFVZcY6FOak2FRFxA3vPi/3YwpidN+znx52PSyM+1LH1mjsipx9H9Lbjzt9MeijHGGGNiQh79CP2V8eyRn2vznazpWDVdbDyv9p1d684Oh1xpvvU6eu9F5MTjw23HmLiIy6TXECwobxJJVWH71c5BmNxqywas8RS6bG8v09QIVtxjTOUbA8+tMp6r+4CHZpa6BubDrdehVLe87eHfow/rrqAh+uAHsPwIksqiGsDOLShv9v6QBt2BhgGq2tvkQqrY+jWgVQZuhDpL6g/iDs8T8CSqr187sPPd32MeJy9MQjW9twfpYTFrapNrqXy0vzetCMDl96GoNX41xhhjDHLtQ+CN6Xth9QCqO92vlyoAdcer9cM5/Orff1JbM73x5+j2G8ilDyMDJMkZEysWlDcmpvZuQ6Xpwy+34YKO5YetbzMTao1gQ/dYas1rKzvg5yGKybSsoZ8qQGYBxCPcvHHY/PWQuH+keBY2f9i95vvubVfWZvUx2Hq5/4DuwI0WFd58Bc5c7Xy1VKH9pIyG81HCRjUq3aNHv1Nt7JkJ8xGwNPGmIeRPtrpgsv0nJqHtZLE0/iytzq8/r5ZBVbcvrfUOSeXpPPEoHFUw7LQvbnXfo/jS2m6VV/19eF3uq8Nl2vk6AnDxvajnwe1vd7gPY4wxxiTa1echNcbAXq9Bw57yxUY0cfD29+HkO6HY6tjbmBky+zF5C8qb5NHSQ9i/23hmZhlSWSAL5S1YODdDWfLNokCr+BCUj+reBftRbKZFAMvPQv4U4kVBmOwS+tY3W2/94Q97D9KKDzuvDZZhXR28lIR+7y/gxDlXH7gVP999TEkvZeGlQMLkP06TCIKOb3JoZkrXNKVE9foRJa0O5ZTOGwjiPxkn3ljHKAKcfxYNKvDW343tfowxxhgTU5feh2S6lPsckm4/hIdvuiQTjY7PVI9+r/2cu+1uEAYQVNz3/DBoPKXzkB9yQIUN5MyPQGFj2IdmzPTNQ6a8iOSArwDZ6Pq/r6q/LCL/CvgELgL4FvBPVPVWi9uvAL8OPIX7hvjfq+p/Gd1DMOaIVg9gu66paP4U+JnDALwiUDg5wwH5mmgqPbPgPsij7H+3T/LQ/AZUdqG65wI2hdNHAXlAFs66Zi9vf/f4prWPWnriDV4mIRiiVErlAB68BScvHL/My/T3GJJK0rScoDFmrsiMBOTNMRNYISEicOn9sHgKfe2rULGyP8YYY8xcOP9uJF8Y//3s3oe3ftD9er1UgQ0DyC8MPpa168jlH7eyNSZBZj8o73W/CiXgx1X1aeAZ4GMi8hzwr1X1Xar6DPBHwL9sc/tfA/5YVR8HngYsHcmMhYYBbN/ALfv3YeEC4qcbAvCCIl4CFohocFR+RgSy6+AfHVRIrXxB7gQUz7Z+zEuXYeX64GPILCPDdKevDlc6Ru/eOH6mpOhvxzz7O/GWvHT8s2CNGafD2pu9HOaYeJrMPkxEkPUryLt+1pZxG2OMMfPg9DuQheXJ3NcI6sAfGub73cJpLCBvEkVksFPMdP22qk6tOHc6OqmqbtVdrUiLddIisgR8EPg/o22VVXWWC3qbuFJ19dXzG8jCGSieSUA2fAfiN2WDh648T3bt8INfRNx+Jyy3DEyJCLL6KCxeGmQAkFsZbOyAVkIoD5mRWGq+vUT10y073JWuid8HjjGTJXMyOZXg9/oov8h2vas08uhHoWjLuY0xxpjEOnEVWZngJPwog+CDriL00siVn7SAvEmeBATle0oZFhEf+AZwDficqn41Ov9XgJ/HLbb5SIubXgXuAr8pIk9H2/ifVHW3xX18CvgUwMWLF/t/JGa+BSWkroZ4/N5qI3QsIF9PXf38sAKV7eisKpQeuPObNyUCJ96BhmXYjerYiUfDMyi1hoAhh80F00Uk6LMkhPiQW3Ol9O58DwrLbtsa1ZIW3/1e2j/Kol87A5mcW6YXhuBH1xEPvKyrBRw9bHLLEFbrJiB6eBWE1Tjul4eX4PkoMwltGou2bDxa//MY68L3S6J9VWJK10iLALU2/Z9Ek91BSzoH1z+KfuffQ/Xg+BVWL9HQiU2jf0o7sH9/cgM1xhhjTP9WLyEblydSIu/QKFdthoMdZ8uF55Hs4ujGYUzCicjHcFVffODXVfVXmy5/HPhN4Fngs6r6b3q9bbOegvKqGgDPRPXhvyQiT6nqd1T1s8BnReSXgM8Av9xi+88C/0xVvyoivwb8L8C/aHEfXwC+APCe97wnyd8wzaiFVZclPxd6aXwXNYLNrrvAfC0oVd509dbTxYYDEREPNp5G0wtIcNBHECvahpeBzBKHTWvQKHCePsrY1tDVsA+rrtb9Iu0z9L0seDkggOpO3QW1gJS6y9hD3/yqewxrT0Dp7ei56WP3sVgLsCSN7UJNLzwaXis9z1Bp658lFZ+gfHDgyjglRcfJ2ASbwmOWTB4u/yj60p8fv+yRD7XMMtPtt9C/+w+TGJ4xxhhjBrFyDjl9bfLHqt4Ig/K15rD9ZJWtXIETT4xuDMbEyRhCOVFS+ueAnwRuAl8TkT9U1e/VXe0+8IvAzwxw2wZ97SGi0jN/AXys6aIvAj/b4iY3gZu1zHrg93FBemNGQ8OjjPDEE/orzRK6AHx2te6sssuar9t7qSqEZSS7HJV/6VNYhlQO0gXIFCEbZeRrBYJ912w2OOAwi3bnjS7bK0F1sykg34aXQdafcPejVfoPRic1eJ3EiQYzerUJtHgu5TNmavvo1YuwdvX4+ZrUzwxjjDEmwRZOImcen07yyMhL8fVxzJ5ZQi59yK2ONyaJxlO+5n3AS6r6sqqWgd8FPlF/BVV9S1W/BjQ3Wex622Zdg/IishFlyCMieeAngBdFpL5D5E8DLzbfVlXfBF4Xkceisz4KtJ0hMKYvqlDZmezys6mJSjEMKrsGqeLR7+WHEJRRxP1c3nKbz627QH6vYyqchoULRzs38aHcepJEAbZeG/wxNPOyyMoVqA5Tm94OUIxJJPHdKqrEsGDwJIkIcuV5ONHcDL3d38E+S4wxxphYyq8gF941vdWco8yUh77K4cjlDyPpwmjv35hYkQFOnBCRr9edPtW00XPA63W/34zO60Xft+0lLfYM8FtRGr4H/J6q/pGI/EEUbA+BV4FPA4jIWVzdnBei2/8z4LdFJAO8DPxCjw/GmM6CfVc7fS54uJItg1LwM+BnXRkbDdzzJ54L1gdRDXfBZdb7eTi4135zfhYKLRrkeGnaBi1UR/j3EmTlqnsMQ1ESGUwJDsDPYU1vTWcJff1DlJVkgWwzOPFTcOV5yK+iN78eLRmf9qiMMcYY07NMEbn8XreCe0pkYR197ENHfdFEXPlYEfTejdblaKR2wFHXxwZ1P1a3ej98rwz7XdmYmBtsFcg9VX1Pp622OK/XbwF937ZrUF5Vvw28u8X5rcrVoKq3gBfqfv8W0OkBG9O/oDxkhvQMkdQI6+rWGsFWobKFeK4GtOZPuSC8Bm7HlsrBwjnYuc2xwG5mBTIDNIpp25hG3IRBbWKgB7L2+AgC8kmmFpg3CSWNzahb7Ru9tJsAtKW6yTDSz8A+71oEzrwDTj7mvtj6o16Cbowxxpix8DPIIz861YA8AF6AFNutRN/tP2mtn8PbVLa/bRszS8ZXgvUmcKHu9/PArXHddoAC0sZMWRi4sjXzYCzBCAXPdyVtoqauQojm1l3998pOtHMTF5jfvxvVhAdya1DZA6LGrs36CKwDkMrD6nXYfwA7r3e/PkDhNFobX62xbK3OryouCF3/e93/h2V23P+imthEYfccWEDedNFvs6hpED9qdBrWNXOu7X88tz8Dd14YHE0uJokG9NUGSKJ/4tJ4dxgxeAzip8DvMBldWEGe+hncpBHUl5zTV/8LbPV6HG+MMcaYUZDrH5x+QL4bSXO8JPUI+ZnxbduYOBjPd76vAddF5ArwBvBJ4B+P67YWlDezRTVq7DoHa8jHmh0ohwH5o3MUTRUbJzwEKJyA8q5rEFs9cGPavwOFUxz7O/gZ0DxUS3QNCGdXYOUq4vnowgbk11wT2Oo+VHbb306rcP9YC4vBLD8ymu3EVVCKsuXn4P1ikqFWAktxGfEaAuHRvvDY8l4ag7ZJC8Y36GOSLVFv+dB9aZ1StnwvxE9DYbXlZZrcmV9jjDEmni69H4jvccMhPzXeYZY2YeH0GO/AmORR1aqIfAb4E8AHfkNVvysin44u/7yInAa+jstWDUXknwNPqupWq9t2uj8LypvZoeqCtTHImhu7cS/Xb9sgJoTMkmv8enRl1/w1vQC7t4+CYLu3oXCmruYdLqAfHLia9GG19d/Ky8DSRcguI1HjGxEfUj6sXEHLu/B2u37Q0jQ205UGuOxNCwyZVqb9uogy3Q9XtdTtM+aiibfpSYwD8sYYY4yJkdVLSL7ATGQoyHjDcfrgZWT9sbHehzFTNaYYh6p+Gfhy03mfr/v5TVxpmp5u28mIW0EbM0bBAYR9lkeZReKPOSDvH5Wjab4IXBPX7ErTBdGS/IWz7nIAFPZuHR3v+Nmj7dY3ka2X34CzzyGFjcOAfF8ySy7YPyrzUAYprHSYhDFmSsR3E3QQBeKjjHhjWlLwZjSPxPa/xhhjzGSkC8jp68xEQB7G36vm4Svog1fGex/GTFOtrnw/p5ixbwpmNgRlV+886cQf70qADgH5w6uAKyGRXW9xqbq68pnlo7P2brss1+YM9rAE1W1IFVzAPr+BrD6KpyFQC9i32Cl2yo5N5TuOvV9699uED19GS1to9QCt7LmfdUYO5HoVHOB29/H7EDLTNsHXhPguI0hSUX34qr0kTe/CytgzysbCgvLGGGPMRLjGrjO0um4CxzW6/cbY78OYqUlAUH4Gv92YuTMvjV3HHZDH6xqQPxwKgOeh+Q3X6LVZKg+pHOzdcb+H1WM16g9VdwBBMkuH8TcRgbCKpgpQbaof76VdIF/EjbnW1FWO18EfnsLOTXTnZuPZhdNQPNMUTNGmn5t26H7W1RWOq2A/yk623f7ckFpZmA4TXaM8LgkruNJ5tfsTGjKcw+qxZsvG9EWjwPwMlLHTygHcvwEHD6c9FGOMMTGmqXzdMZsiwYGV8BvE5eeYiTry9bwxZ8oDbN5Aww8gk7gvYyYqihPNOIvOmHibl8au464hDwPtrwTQ/EnYf6vpgmgHWDwL5e0eguXt/n7HByXpHGy84/gWVOHOt3oZ9vD23kT33uzvNrl15MTxcceKBkAGKxOSUBI1Sa0FvGulnryM27+M+wueREF4rQXeo39qAVQLxJtR0AC38ife+zFJ59C1y7B9B0rbje+/dDSxLZ5bCZhdcpNXQQkq+1DamYmJB2OMMcO7+ztfofT9Hxyd4ftkr18l+8hlMmdPklpbwM/7iFRBPddAPBQ0VDRQtBqioSIpj3R6e3oPZJrWriC53LRH0b9JBMpLW+iNP4MrP+kS44xJCiER3y8tKG/iS9VlyCf9i+m4a8jXaDhQNr6gaP4U7N9pvU0/77apA9T715DDbNpuggqxDsLMSkZLWAIvS6yfS9NCD+8TiQLgWvc7RAF5jYLzYSwnAM24tPpjNJ/X/HvcP3OVo9VK8Z6wl3QOufYhNHwe9regcgDZIuSWOn4x1tIO+oM/h723JzhaY4wx07DyX3+E3fNn2Pmzr7gzgoDSiz+g9OIPOt+wmedx4X/95OgHGHeZInLqkdkqW1MzqRJ391+C089C4cRk7s+YSUlAmcjZfwQmuYKDMZQriRPPnSY56TBg6RIhPF5jPlTYf9sF6w/uuUBvn7XYRYPjzWDbqex2v47pTkOXjTmPu38vfVTTvP5UazgaR15tnBKNv0NGTad9iUj0ZSWaCPPS7pS0/gmmibY4hU2noOk0C8KZOggXL4UU15CVs0h+uWummmQXkCc+DhuPT2iExhhjpiWT26H49GPDbygMOx8nJpRcnbE68vUm+PfS299Awxl9noxpSQY8xcvsfKMx8yWsJLuxq9TqLk8yW1mims/9UUDDEEr1GXsCe282Tprs38PVk+59t6I9TkqoKuxoXb4vAAAgAElEQVS2yNQ3Awqj/gLx+1Aaq7A5GFk7xTAwLX4UNK/bT2jgfvfSHP7txHOTCl6694dxmFEfzN1LwCSIVhMdfBA/jVx+DtavTXsoxhhjxszLjubzTOetd9SVHwX6/34bG5Os8/7gh+j3fh+t9tZjzpiZkIBGrxaUN/GjoatTnmhT2hn0WWJF8VyGenNAfv8eLSOA5U2oHkTlUZpUD9DyDlrZRYMyGip4EjUgTUO1FG3Sc7/Xd6PX8HhD2LiZuYNgdZM0linN6N6PI5h9rwXZNWw9YVULqNey3VWj8jQBiP0tzZzRauNnRcKICHLp/bB6ZQY/Y4wxxvRKUiMIy+RyM7WKbGgnriLZGK927cWkA4QH99GbfznZ+zRmnMTr/xQzdoRv4kU1CsgnObhUKyMxSZ6rJd63EDKLkMpHgXhg9zYd/z5BCfZLkFl2QQSNsumDfdirbxgrkF2BMIDKVuttpRegcKrzZEJ6EZbOI4cBCwEN0dI27N8d/4qLxUtI8XSUvTxjNLBAD9D//kZchm6t4XEtgH54YN3nAXbzxIhWux+kC033acyc0qo7wJ6Vvh59klQGuf5hVEPY34StW2ilBA9uwMHmtIdnjDFmBLxUyOJPfBg8wcvn8HIZJJvBy6SRdIq7v/G7bPwPP0dmowiiiCjgVj1KGEBYBRSq+1N+JBOSWUA2rs5u2ZqaaQQI730PXX8MWTwz+fs2xhxj0RgTL8H+7H+4djOpxq4N9zlY4E4gahDroYWTcPdver9xOQoWZFfA81rEPRVKDzpvo7IDmztI8QysPcphsLO+fEdYcsHJoDGrWNJZSJ+Pruuh9/6297H3Qnxk/R1IbmW02500DRJdAqI3Pbw/JHUU+NMACBtf08MExy2wbswQak1fk03Eg8IqFFbdnNyZp9CX/h/YujXtoRljjBmSVLZYee5sm0ureJk0/mIeL3g40XHFlTzyAdAZLltTM+mg/MoVZPkSFDcme7/GjM3sfweIX+6+mV9hdT5m9yfZ2HWE9ykAJ56m791G6SHsP4gaVQ6wxDCVr/slalQYll0wvpfs/7AyhqY2gpx8dvYD8hBl1pjj6pqh4uGC8FGjVAuiGxMz8/eelFQGufh++2JtjDFzQKsBYSkBQehReOQfJCMgD5MNyp94Eu/ax5GNJ+tWmBszywaoJx/D7/H2bjTxoOqyopNO/CkE5aWxIeswWxLQjXfB29/ts2msuvI32VU4uNf5qqmiqx/vZ2HpistMbqhp3wMv65rYbL3qyrOMuoRNKo+k892vNzOEZJeM6pH40aoBdZMVtfdq/D67jTEGKazAk/8V3P0BeuP/nfZwjDHGjMnZ//kXEMow77k0p55A0gkKYU0iKF88jZx/DllstxLDmFk2+3nmCdqjmZlW3Z1OBvk8GPGHvaDo+jvg/osQ9Nm9vbLtmrjWZzf4eSiedvXmFy9ETV33XD35w9dEl6Cxn3cZ9eLBwcPGUjUjmpBokE1AhnyDOQ/KH5bw0aPSUjGcRTfGmGYiAicfRatluPm1aQ/HGGPMGHhV6yFCcR1ZO5uwmMEYv2/kVpHzH4DlS+5YwZikERLxnd2C8mb6qgeuOWjiyZRK14y++Z2g6Nrj8PClxhUO6UUXeG8nrEJmydWSX7jobls45QKhC3UHWan84c/64AZUdpGVS1EwP6ofnMqDlz1sVFo72NDsMiw/4nbQYQBbr4z2wS9eQBYvjXab06Y6e9ngx0ohdZpUqPUfqND6gc7xhIQxJhHk9BPo2z+E/fvTHooxxhgzWuIjF59NTtmamnEEFL0Ucva9cPJdiDfvfcNM4llQ3pghhVWXJT8PptHgdYwERVeuweYNF4hfjJqqVhZht0PjufIWLF4GPw3pYpfnxIMHrwABunMbUgXk0gcBbTvjL56PLLhu8rp/f3ThVvGQtSdd1kECdv4NZvHhhNX+x520v5sxxpnzxT7gPvs4/Q70lf807aEYY4wxIyXXfix5AflxWLmMXPgxJLs47ZEYMwHCbAYyGllQ3kzPvNSRrxlDxvq0ucD8FShtIV5UJidTROUC7Lze+kb5DUjn3d+/Y0Be0PsvAUerC+Tc+6K4am87Xx1VLfn0IrL+BJLKjWZ7sWLRLGPMjAuTtJR9CGuXYfdtePslCMZQus0YY4yZtDPvhMQmfI8ooJhZcMH41Suj2Z4xs2KSzZLHxILyZno0SFhNuA6m0uC1ZpwBV0GqB+A17gwlnUMXL8H2a433n12B7JIL5vsZqO633a5uvQEPXz466/SzEAXFtbyHBmUkv4bQYbKj3DTpI35U1qaPFQtrTyLFUwiSqJUOh/zmMjDGGDNrQpBUNPk9v5OM4qeQy+9HTz2O/u2XmOfnwhhjTAIUTyArG4lMbgNXfnXoT+r1R5GLH0L89CiGZMxsScBKeAvKmyma/TdQ78b8WMVrf7DSTwC6Xxq2DVRLKoMuXXYNXIMDV4u97mBBwjLq5443i/UyaFCGzVcbz3/zmyigfvaoB8G1F1CE1oczgqw9Hm0zBZ6PRDOpGlSgvIXe/Zv2kyWLl5Cli+42GrrSPEmMbwQl1yj3UDIPeo0xCXfYpDmdzAnUPkh+GV29BA9uTHsoxhhjzMDk/NPJTuIbQZavXPgHFpA3c2z2Y4oWlDdm7MadYS0usCoplwnuQtfuorDK2CLJkoJq5/JD4qfQwikQWjea0aBxFYGfheqeK6iydB7e/ntYOg+L5+DO37jM+rqmwPraf4JT72qsm+dlXPa3atssevHTkF9Hc2uwfzc614flq0jxlGuQ0/y8HTYJTWBkPqhbseDnSORjNMb0aMb3cxrtq6e6Qm365PIHYO0yerAF+w9h/4H7f5b/tsYYY+aL5yX7s3zYoHwqn9Dyqsb0Qqx8jTFDmf1Jrd6Ms8Gr+EeZ5lqdbHZgZZtevtyL374IoBC6MjZByT2W+hrwC6dg4RTi+WgYtC51U96Gyj7UgvKpghtTrwdv5e3DevGkCnWB+DaPK2HNeo+LVgUkYBmYMWZQ3fbrUVOlrvuJXoO/4nqMjHSVTq1nSW2iOjpoT/T+u5Gkc7B+peFQS8MAyrtwsAUHW+j+Jhw8hL37VoPeGGNMDNlEckcLp6c9AmOmR1wJqFlnQXkzRbP/BuqJjvFgIpz9L9ESllEvA9XdxvPrM+vFg9PvdhnwD15xJXFOvhNZOg+oKy3jZ3sMxkcBJQ2QMx8AwuiV2MPfKelBeS89Q2/LGc/mNWZmRauxRvn2O6wHP2p1nwm2u3Cfq7kld+Jod6+qUDmA0rYL1h9sHmXXl7ZdCbjcsvvdz8Di6egztwqpPKQy7vkNyrD3NmzfntpjNMYYkxQJ7edVb9jvXdbo3sy9mQletGVBeTM94kFu3f1c2T1eWzwRPBqCAqMmKdApBeZlhMsJm8vYNN+VCORX3FU3Hgd9HMlEme1eBrzOZQpUFaoH4GeRuoO7/nfhCY/qzP5nmjFmFmk1+jxL+JfvmBIRyOTdafFkY3Z9UHHX8dOoateMJFWFO99Db/+tW8lmjDHGDGLhxLRHMAFDR+VHMgpjZpOVrzFmhBIa7OzUgLXzDZt2MBpl3Dc9T1NbriMjzWoUQjSVh0rnGvUQZfplltwhTFB2AfkOtHoAu29CeRNSi+jShTaNYY17PtNWvsYYM3ljyZSvY4trBtLQoL2HzwYRgdPvgI1H0Tsvwu1vW2kcY4wx/SusT3sEsSfLl6c9BGOmbPbjFhaUN/EwzhIv09RvJnktiN+xLI3ngqbiRc1Hp0A8Rh3dkLCM+vnGpqPN0kugVaT2uL00bjVCYzDHLcXfdU1cy1tHF1S33YoMPzvYIJPc7BUAjZoFxzzrwktHTYxn/0PYGFMTgqSjRq1jkNTjjJgSP42cfSd66nHYugMHD9G9+7B9B8rdJ+CNMcbMufzitEcQX14KufhB5MTj0x6JMdOVgGRCC8qbmEjgl+UO5VjaXr+nEj5hVNJ3SjXkxDtW/31kPK91tZ9UAcRDmoM1GlIfQHZlavZg543WjWEB9t+GhbODjU9S4wsYxYVWOJz4iSMv5QLycR2fMWZwOs6JzzD6XI75pGPCiJ+G1fPAefeXVYXd+7BzB62WobLnms+CW/kmKXcsUFu1Vd6FzTeml4RgjDFmKiRTmPYQ4snPINdeQBYH/D5rTJLMQ/kaEckBXwGy0fV/X1V/WUT+FfAJXETsLeCfqOqtFre/AWzjQm1VVX3P6IZvZl4tizmc8zqyPQfkJ0h8l1koUjcBIC7YPaaghoQV1M9CUGq8QBVEXZgmKENQgVTWZVVWS26M1RKUHrhTJ7m1IQboJXL+qEFYHXwlwbiJ7xoaWUDemAQbZy8W23dMm4jAwjosrPf811ANXSPaagl983tw7+/HOkZjjDEx4GcAm5A9lC7CyiXk1LuR3PK0R2OMGZFeMuVLwI+r6o6IpIH/LCL/N/CvVfVfAIjILwL/Evh0m218RFXvjWTEJllqwd0EzHA1EOl9oiGOAXmAyvbRz17GHRhpOP4MfS99FJRXdc/N9uu0jIb7OdfAtVukPLsG2SVI5V3WXjDgAd60VidM3PGSQLEwhrJJxpg5YlnyM0nEg0zBnc68E7WgvDHGJF+SK4bWdCqtJx6sP4aceALya4ifmdy4jJkJQhISbroG5VVVgVrxx3R0UlWtK9RMkeTvMs04ZFemPYLxqK9jjudqxEu0HLs+sCt+/Bqgid8YkAc3/o517kcojJqNAuzcPJ41Xy84gMwSlLdpGUROFSCzAOrKnYjnQzhoUEbcdhJPopUJ0x5HE/GtbI0xZjjiz8l+PMHCeZkcN8aYOebNQcnQTlavIuc+YBnxxnSTgNhATzXlRcQHvgFcAz6nql+Nzv8V4OeBTeAjbW6uwJ+KiAL/VlW/MPSojYmzMGisfSoA6oLxQRA10qwFeOf4YKMNAdfw1UvB0hXYfNkF6RfORWVV1AVnq3tQ2Yd0Hopn4OFL7jnOLrvMfnAHc4cBGDn6T9ID1Ked/R1+T/wc8ciSr5v5rq2kScCHrjHGmCGUNqc9AmOMMeO2dGbaI5iMFl9t5NxzyJlnJz8WY2aNMLaKGyLyMeDXAB/4dVX91abLJbr8BWAPV879m9FlN+ijhHtPj0BVA1V9BjgPvE9EnorO/6yqXgB+G/hMm5s/r6rPAh8H/qmIfLDVlUTkUyLydRH5+t27d3sZljHxFDQ1GG1elqZBfDP1xItFiRYJDxAESeVh9TFYvoaki4iXQrw0ksojuXVk8bz7P11w11s87xrEUXWn+iBufbbFIDvveQgI+3mmH5CXo0mVw7h8Y0NfY0yShRy9+cVNoo5KQ9ZdwsrmzQvxpz0CY4wx41ZYnfYIJqP5O+n6oxaQN6YvMsCpyxZdUvrncDHsJ4GfE5Enm672ceB6dPoU8H80Xf4RVX2ml56qfX0jUdWHwF8AH2u66IvAz7a5za3o/7eALwHva3O9L6jqe1T1PRsbG/0My5j40LBzuZU4E99ln1f3pj0Sp+qqZrlAfPddlaSykDvhSta04tXV4dOqy76XusVC4oGXddn4fsb97GXd7bwM+CMMDMWNl3IB+anVWxb396iVLVIrU2PM/NLGk1ZGG5g/3LaZScUT0x6BMcaYccsuTHsEk5fKIeeem/YojJkh4mIG/Z66ex/wkqq+rKpl4HeBTzRd5xPAv1PnL4EVERloiU/XSJeIbIjISvRzHvgJ4EURuV53tZ8GXmxx26KILNZ+Bn4K+M4gAzVmJlSbGraKT7y//NcyET1XEiZWTfDUTRB0aoDTREQg06ZPgdcc1AmjrHo4DApTdQFhDahl2ysBECS7jq2kgHA6FXrEi+o8B+5kwXhjTDOtNE6imrklmTwsnZ32MIwxxoyRZPLTHsJk1H3NlQvPI5k5nIwwZijeAKeuzgGv1/1+Mzqv1+vUSrh/Q0Q+1e3OevmGcwb4rSiF3wN+T1X/SET+QEQew60zfhX4NICInMXV3HkBOAV8yZXbIQV8UVX/uIf7NGY2eSnQunrlwUHn609Tq4aucTNIKR0v5bLdm1csBGV3WfP2/az7e0UlhRTvqIxPUIKwgqYXISwns6q8n2NqE0dexj33EqfJIGNMPMV5gttMkqxfQ7duTXsYxhhjxsWLR0nV8YuObfLrsPbodIdizCwaLKHvhIh8ve73LzT1Pm210eYvIp2u87yq3hKRk8B/FJEXVfUr7QbTNSivqt8G3t3i/E7lal6Ifn4ZeLrbfRiTGH7GncIQwpILygdlYhlMmJUDHa32VbpAxEPzp93tDu67Gv/Z1ahJ7HFhUAYvjaBREL58/EqVbfDSaG0bYSUZAXrx3UqEiT8YiSawrEyNMWZaYvi5bHqzdhHeWIDyzrRHYowxZizmJGFHK8ilD0BqGbHvRMb0b7D3zb0utd5vAhfqfj8PNGeDtL1OfQl3EamVcG8blLcuV8aMg+dBKu+CwfmTkF2JmmjG6C3XR1mYqQpKfcdORATx0pBbh/wG+DkkaqSjGqKVPcLdO4T3vw93vgb7d13gvVVAviasQGXHnTRAj5XDmUFeZoIBeXHlJ7yM+3lWJoWMMckhqcb+FWYmiZ92QQxjjDHJ4+fm63uCBrB8ofv1jDFNhDGVr/kacF1ErohIBvgk8IdN1/lD4OfFeQ7YVNXbg5RwtwKdxoybiDu48HMuEB5Wogz60nQPOJq7vceQaq3RX4CroNUfER/1MlDZQyvbaGkTSg+O187fuYkuXzkM3HcVViHcQdMLEFZdlr1prVYHWgMgdM+9JYIYY6ZBxO2/zexbOQerl+HBjWmPxBhjzCgtbkx7BBPkweJll0xmjOnfGFaYqGpVRD4D/AngA7+hqt8VkU9Hl38e+DKuQsxLwB7wC9HN+y7hbkF5YyZJ5KjEjaor31GtBegnHCiYwhI5F2QXQHtboicCe3eBe2h2BTLLiNc5OK+1iY/qXpT9HqDbr3Ms3X79HYiXRjdvQPkhPHwJXbqC+H0cFFV2AEFTeUCQSf8N485LuwBY753OjTFmfGLVzNwMQ0Tg0vvR7TfdcZQxxphkKKxMewSTs3IdyS5PexTGzLDxxBhU9cu4wHv9eZ+v+1mBf9ridn2XcLegvDHTIuJqpWfSwKILXgZRHfpao9hxmlZwYv8tyJ+gpx2oqqs9HlZchnvpAZpdg1QRCKMmoZ7bVq28THnr2ASHFE6hhLD3ljtj/Z14qag+/Oo1dPcO7Lwx4ANSNwEAqJ8H8WYkOC/jrSdfH5A3xpg40MB97s7EPtp0I5kCXPtx9Pt/bBMuxhiTFNnFaY9gMhbOW0DemGEIiYg1WFDemLjwUu6ULkIYRCVuxhSgF99lkU9arY79wUM0v9Y2HnyUUd9C6b47+Tkob/ZWAigsufz8hQtI/gTUZdsLQPEM6mf7y5JvJdh34/fcagiZxOTKoMTDNVEawweZpCwgb4yJp3mqUzsHZOmUC8z/4M+w5r3GGDP7JJ0j8Y1eC6ehcGbaozBmxglJqItrQXlj4sjzwSu6AL2GLjhfPejciLQT8XE7rNAFxqcQkFcFDu5Fv1ShWkbFcwESLxWNUd0Vy5vdJyOCA0gV3G0qO90H4OeQ4um29d8llevn4XQWliEsu8x5L+X+hlod+UeGgguua9j/tjU4qvc+DhaQN8aM1Kj2KaHb92mIBXGTQVYvwLWPoC/9+bSHYowxZli+n+zVT4sXkcLpaY/CmGRIQMzBgvLGxJ14LvicKtQF6EsQlnq4re8ylqv9B+Fdj9XAlWMZxc6ueUKh/LDpClHd8X4OwjRwA82uuez5dsSDhXMtA/Ja+9eLunGPMosy2Ifa5sRH/Wz0wVE7NY1HQ6SH+1cAL+PK5mgACOpn3Phr2/Tqgk6qrScjDrPlR2kc2zTGmBEG0Gvla7y0W5lWv+1aybSWPCyQH1OrF6B4EnbfmvZIjDHGmNayKxaQN2akvGkPYGgWlDdmlhwL0Ec16IOmAL2kXEA43BvoblQVyttu25klGDKLXLWXbHY9Km/TDxE3zuyqu4/mYEp2zTXWDSuolzkMTqsXlVip7tZvDPyC296oZ101OKw93/FqkgI/e5gB74ZVG4scTcw0/M31+GugIbYvqJ9D6oPlkoomXUb8OD2vv4kVY4yZlrCCmxBOWZ35GSfiwaMfRb//p7D39rSHY4wxZiACGuPyn8OQFCxcnPYojEkWy5Q3xkyNeJDKu9NhgD4K0le2+tqUahQQDw6ihrNlDrOdxe9422PbqpbASyF1ddsRcdsdp6Dkgtl+7qg8T+H0UcWDKFNfvXS02qBVRroCQZRBPqVsSK1CddTPlYIIKlHz1bDiJpX9Qk+Z+T0Tf7CJFWOMmRp1AQDxLQl+xkk6B0++APdeRt/4a6gMlphgjDFmShZOTHsEYyKw8uhoy6UaM/esprwxJi4aAvTqMrKru9EX0s5Zy6oKpc329erDAPVSiMhhvLXdhKSCqwcPaHYFEFcaoIcM8ZHQ8KicjZc+vo+Oar0f4+c4LJ9TLSVixvWY5r9BEEBQQjPLdXXph4xIyYjL/xhjzKTU9l2hReZnmXgpOPkorF+Buy+ht77levIYY4yJv8LatEcwHosXkczCtEdhjIkhC8obkzQirkFsugg5dWVsKrvu1C5A36mBbGUL/BNRvfcADt5Gs6uAuNq7aBSwj4L7NaXmmvETUitnIz6Qpqf65mF4dL0kBuQ7KR/9zTS96HoIDBqctyx5Y8zM6/SZ0aIXiIkl8dNw+gnYuAZ3f4Dee8nK2hhjTNzll6Y9gtHLrkL+5LRHYUwyJSB2Y0F5Y5JM5KgGfe5EFKCPsuj7yWiWpgYapQd1l/loeqEhuBsL1V0IUpBdbP9YU0UXkA/LidihD62y7Z4Tr7+SRYdELF5ljEkGSTf9TtQU1swSF5x/Ejn9JFrahe076OYbsPkGVPenPTxjjDF1JF2Y9hBGr3gOse+ZxozJ7L+3LChvzLyoD9DruqvBXt2Fci/155XD8i7HLgriF5Cv0SocPHDlbKir0y4+eBk3dq1aQL5edRfNro621rwxxswcbZzQtQnHmSfZImSvIieuutV9+5uwdx99+2XYfH3awzPGGJNK0/CdLQnCEpDAyQZj4iABcRyv+1WMMYkjAqkc5NZh8TKsPwXFs1Ft9RYqe64yycGUStIMq3QfVI7Kq3gZ1+x03M1nZ1X1AB1k1jmsWgkbY0wyJOAg37QnIkhhBTlxFbn2IVg8M+0hGWOMSeJnr63KMmaMZIBTvFhQ3pg5JyJIegFZvAhLl1pfKdiH/bsuq3xWiecmHfy8awhr2gv2obyFAtrXx4QeL3VkjDGzyCYY54b4aeTRj8JKm2MgY4wxE2IrdY0xPRIZ7BQzFj0xxtRps0vQkJlfu6/qTkGlv3r6c0tdaaPyQ1QVFR9F3En8o1P9bLOXYeZfJ8YYA/Y5MWfETyPXP4xceJ9NLhtjzDRkFpOZOJVZnvYIjEkwb4BTvFhNeWPMkRjOHI5M+f9v795j5SjLOI7/fntOD6dSDKEtWijaqkVtG6naIEaNRI1cJCVKTCCoiZoQ/yBRG2MkDRgl/mHUxHiJ2hiNeIfgBYgGIRFRI2qPFgJyq4VKxaStkVvR0tPz+MfMOZ0zO7O3s7uzl+8n2ezOzDvvvHP69N2ZZ999N516Z3qlSBy36ejTDTfH5IkLUwLxQ0YARkMkvz8yigkCFLJr0ppN0sr1ioMPSwful44y7QAA9MWKVVW3oPsmppPfcwPQGyOQeyApDyBj+Ds1VGD2sKTDkqRwLUnQT5xAgh5AF1XQn9SNlq+JD3VHn6eeJ59+lmLNJuk/+xX7Z6QjT1XdLAAYbctHcET59Eruh4CeGv7/X4M3dh9AdcbhK9tHn626BaMt5qRj/0vmpGdOZgDAkHJtUl65Tn7lhdLUiVU3BwBG2wkrqm5B902vrLoFwAjr5EdeBy+Jz0h5AONl7ogU0yPxVafBliTkI0KKObk2UXF7AGCpLEbKjx9PLZfOfLvioduk556pujkAUI3VL5eWNZqKpcG9VeGmxSt94mppcqqkWPr+WzjgJ7Nu0fZI9lu458s3oqy9DY5RVP/C6+yypNqUPDldcgwA3TAK30QhKQ/guIlp6ZSN6ULawdnHr00WXdTkLjyy5stFZC6k0me74LmW7lZc33xiN3kcSx5zs1LMJs9zs5n12e3pPppL5gaWkuWJggs+RXqe+Qu47LZc+br9mXt4keeeXHiZzDs/ORJvnACA8eLnnSxt2qbYe6f05P6qmwNgbGTuxxbdP81vK1sn1d1vRZo4XkgsR27d/HPxtbrPOEc+6QW9OU0A6Mjw5xZIygNY4NqENPX8qptRx3aaVJ+QtKzq5hSKY0elpx9pc6/MxXLDkRx1RytYFZn1+Q8IMnUvKtdHs4elyRXSBG87GFSdXtQV7OeibR3Uv+hDzQZ1Nq26pB119edeL6o3P0otcxNfdGOfLwsMOS87QXrpmxX77pL+s684wYXmXvgqaeHbc9lBD9Fg3fxi7m8d+eudon1K1s//27V0XZTva4s63XzfWlauqL6SehZWFbwP1CaTa6raZDL95MK5zKnuK/r5pG1an/PXns7sV7e+6LVy5RuVna87/Tc7djQZSJMOronMa83NpvsVveekrxeecnEzOZVMN1WbXDjHyMZI7m/p+b9lrSZ5MonN+Ycn0m3zryeSv3VRIrzoXEvXFSTN6/6GZiALADQzAv0k2REA6IbapHTS+tbKWpJ7O2o8O5970XEWvn0wv6nwpjVyLzM3rtnEm5y5IZxbfOOVtOD4c1vT2JT8fepWV/FmXMExW4mXlufxX0K5wl1bra8sEdHO37ONsiNwoTYSGibyi9an6+oUfcupTAv/9gsfVup4gqSV+krjqpvxVmWCt+zDmbIPhNo57y6dV1E1df8uZcnZEi18mGZb3nxJ46YVJY7nl8u2LXwbcO74e2nZt++a9WtV/J5LflCBi+I4YnMAAAhTSURBVGIlfZ5aQbIRdXoZEUQbAIyq4e/hScoDQBfYliYGZxR/sxve498+mF/R4wahP1pOdCzhH5xYQbvqRlYCS9RJHPUp9lyXoO7PcQEAAMaG04GBQ46kPAAAAAAAAABgSAz/yAeS8gAAAAAAAACA4TAC0+EN/1h/AAAAAAAAAACGBCPlAQAAAAAAAABDYvhHypOUBwAAAAAAAAAMAY/H9DW2p23/yfbdtu+z/al0/bW277G92/avbJ/WoI4J23+1fUs3Gw8AAAAAAAAAGCfu4DFYWplT/oikt0TEWZK2SDrf9jmSPhcRr4qILZJukXRNgzo+LOn+JbcWAAAAAAAAADC+7PYfA6ZpUj4Sz6SLy9JHRMRTmWInSoqi/W2vlfQOSd9cYlsBAAAAAAAAAGNtPEbKz08/s1vSAUm3RcQf0/Wfsf2YpMtVPlL+i5I+LmmuyTGusL3L9q6DBw+2fAIAAAAAAAAAgHFgybX2H63UbJ9v+0Hbe2x/omC7bX8p3X6P7de0um9eSy2KiGPpNDVrJZ1te3O6fkdEnCHp+5KuLGjoRZIORMRMC8fYGRFbI2Lr6tWrW2kWAAAAAAAAAGCsdH+kvO0JSV+VdIGkjZIus70xV+wCSRvSxxWSvtbGvou09jFBKiKekHSHpPNzm34g6ZKCXd4gaZvtRyX9SNJbbH+vnWMCAAAAAAAAAJDk2Hsyp/zZkvZExN6IeE5JLvviXJmLJV2XTvd+l6STba9pcd9FJpuep71a0tGIeML2cklvk/RZ2xsi4uG02DZJD+T3jYirJF2V1nOupI9FxHuaHXNmZuaQ7X3NymEkrZJ0qOpGAH1ArGOcEO8YJ8Q7xgnxjnFCvGNcEOu98eKqGzBaejJH/OmSHsss75f0uhbKnN7ivos0TcpLWiPpO+kw/Jqk6yPiFts32n65krni90n6kCTZPk3SNyPiwhbqLhQRzF8zpmzvioitVbcD6DViHeOEeMc4Id4xToh3jBPiHeOCWMegm/nL3bd6+apVHew6bXtXZnlnROzMLBdl+iO3XFamlX0XaZqUj4h7JL26YH3RdDWKiMcl1SXkI+IOJVPfAAAAAAAAAADQlojIT6veLfslnZFZXivp8RbLTLWw7yJtzSkPAAAAAAAAAMCI+bOkDbbX256SdKmkm3JlbpL0PifOkfRkRPyrxX0XaWX6GqCfdjYvAowEYh3jhHjHOCHeMU6Id4wT4h3jgljHWIqIWdtXSrpV0oSkb0XEfbY/lG7/uqRfKJkhZo+kZyW9v9G+jY7niIbT2wAAAAAAAAAAgC5h+hoAAAAAAAAAAPqEpDx6zva7bd9ne8721sz6lbZ/bfsZ21/JrD/J9u7M45DtLxbUu872fzPlvt6vcwLK9Cre07JX2d5j+0Hb5/XjfIBG2o33dNuU7Z22H7L9gO26H46nf8cg6lW8p+Xo3zEwOoz1O9L4ne+3Ty2ol74dA6dX8Z6Wo2/HQOkk3jNlbrJ9b8k2+negA8wpj364V9K7JH0jt/5/kq6WtDl9SJIi4mlJW+aXbc9I+klJ3X+PiC0l24Aq9CTebW9U8kMhmySdJul222dGxLFunwDQhrbiPbVD0oGIONN2TdIpJXXTv2PQ9CTe6d8xgDqJdUm6PCJ2Nambvh2DpifxTt+OAdVRvNt+l6RnmtRN/w60iaQ8ei4i7pck2/n1hyX9zvbLyva1vUHSqZJ+28s2At3Sw3i/WNKPIuKIpEds75F0tqQ/dKnpQNs6jPcPSHpFWm5O0qEeNxPoih7GO/07BspSrmWAYdPDeKdvx8DpJN5tr5C0XdIVkq7vQzOBscH0NRh0l0n6cZT/IvF623+1/Rvbb+pnw4AeaBTvp0t6LLO8P10HDA3bJ6cvr7X9F9s32H5BSXH6dwy1NuKd/h2j4tvptAVXO5/xOY6+HaOiWbzTt2NUXCvpC5KebVKO/h1oEyPl0RW2b5f0woJNOyLi50uo+lJJ7y3Z9i9JL4qIf9t+raSf2d4UEU8t4XhAUxXFe9HFftmHVUDXdDneJyWtlfT7iNhue7ukz6s+7unfUYmK4p3+HX3Xg2uZyyPin7ZPknSjkji/LleGvh2VqCje6dtRiW7Gu+0tkl4WER+1va5BUfp3oAMk5dEVEfG2btdp+yxJkxExU3LMI5KOpK9nbP9d0pmSms1lCSxJFfGuZHTNGZnltZIe73Y7gLwux/u/lYyy+Wm6fIOkDxYck/4dlagi3kX/jgp0+1omIv6ZPj9t+wdKpum4LleGvh2VqCLeRd+OinQ53l8v6bW2H1WSPzzV9h0RcW7umPTvQAeYvgaD7DJJPyzbaHu17Yn09UskbZC0t09tA7qtYbxLuknSpbZPsL1eSbz/qS8tA7oknZrpZknnpqveKulv+XL07xgFrca76N8x5GxP2l6Vvl4m6SIlPyaYL0ffjqHXaryLvh0jICK+FhGnRcQ6SW+U9FA+IS/RvwOdcvlU3UB32H6npC9LWi3pCUm7I+K8dNujkp4vaSrd9vaI+Fu6ba+kCyPigUxd2yRtjYhrbF8i6dOSZiUdk/TJiLi5bycGFOhVvKfLO5T8aOCspI9ExC/7dV5AkU7i3faLJX1X0smSDkp6f0T8g/4dg65X8Z7uT/+OgdFurEvaJ+lOScskTUi6XdL2iDhG345B16t4T/enb8dA6fReNd2+TtItEbE5XaZ/B5aIpDwAAAAAAAAAAH3C9DUAAAAAAAAAAPQJSXkAAAAAAAAAAPqEpDwAAAAAAAAAAH1CUh4AAAAAAAAAgD4hKQ8AAAAAAAAAQJ+QlAcAAAAAAAAAoE9IygMAAAAAAAAA0Cck5QEAAAAAAAAA6JP/AxN3iz7FJ58iAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "gdf_2010.plot(column = 'composition',\n", + " cmap = 'OrRd',\n", + " figsize = (30,5),\n", + " legend = True)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "A question that may rise is \"Was it more or less segregated than 2000?\". To answer this, we rely on simulations to test the following hypothesis:\n", + "\n", + "$$H_0: Segregation\\ Measure_{2000} - Segregation\\ Measure_{2010} = 0$$" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Comparative Dissimilarity" + ] + }, + { + "cell_type": "code", + "execution_count": 29, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "0.023696202305264924" + ] + }, + "execution_count": 29, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "D_2000 = Dissim(gdf_2000, 'n_nonhisp_black_persons', 'n_total_pop')\n", + "D_2010 = Dissim(gdf_2010, 'n_nonhisp_black_persons', 'n_total_pop')\n", + "D_2000.statistic - D_2010.statistic" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We can see that Riverside was more segregated in 2000 than in 2010. But, was this point difference statistically significant? We use the *random_label* approach which consists in random labelling the data between the two periods and recalculating the Dissimilarity statistic (D) in each iteration and comparing it to the original value." + ] + }, + { + "cell_type": "code", + "execution_count": 30, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Processed 1000 iterations out of 1000.\r" + ] + } + ], + "source": [ + "compare_D_fit = TwoValueTest(D_2000, D_2010, iterations_under_null = 1000, null_approach = \"random_label\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The **TwoValueTest** class also has a plotting method:" + ] + }, + { + "cell_type": "code", + "execution_count": 31, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXAAAAEICAYAAABGaK+TAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAAgAElEQVR4nO3deXhU5d3/8fc3e0hCQ0gICSEJEED2HQUEUZYi4lJ9rFuVVltri/j0qn0q/WGXp619tNZai7QuVUsrWHcp1gXZoYIY9iVA2AIhEEIgZCXr/fvjzKQhZCOznJnJ93Vdc83MmXNmPnNm8s0997nPOWKMQSmllP8JsjuAUkqp9tECrpRSfkoLuFJK+Skt4Eop5ae0gCullJ/SAq6UUn5KC3gHICIviMhPXVj+/4nIX9yYZ6CIZF7mMhe9BxH5nojki0ipiHQVkQkiku24f4u7sjaR4xci8rqnnt9fiUiiiGSJSLjdWToSLeB+TkSOikiFiJSISJGIfC4iD4lI/WdrjHnIGPOr9r6GMeY3xphvuycxAL8Cfue8c7nvQURCgd8D040x0caYQuCXwPOO+x+4MavPE5G7RSRHRMpE5AMRiWth3nQRWS0i5SKyT0SmNnjsBhHZ4PgMTonIyyIS08RzxIlIgYhscE4zxuQDq4EH3f3+VPO0gAeGG40xMUAa8CTwGPCKvZGaJiJJwLVA4yJ7Oe8hEYgA9jSYltbofocgIoOAF4F7sdZLOfCnFhZ5A9gGdAXmA++ISILjsa8AvwaSgQFACvB0E8/xFJDVxPTFwHcv/12odjPG6MWPL8BRYGqjaWOBOmCw4/5fgV87bscDHwJFwFlgPRDkeOwx4ARQAuwHpjim/wJ43XE7HTDAt4DjwDngIWAMsNPxvM+3kPc+YEV73wPQDyhzZCgFVgGHHPNWOKaFt7LOPgEebjRtB3Cr4/ZzjvdWDGwBJjaYr+G6mAzkNvdesBpI8xz5CoG3gDg3f/6/AZY0uN8HqAJimpi3H1DZ8DHH5/9QM899K7Cr0bRxwEbH57+h0WMhWP9A0uz+u+goF22BByBjzGYgF5jYxMOPOh5LwGqx/T/AiEh/4GFgjLFawl/FKkbNuRLoC9wB/AGrNTcVGAR8XUSuaWa5IVj/HNr1HowxBxyvARBrjLnOGNMHOIbVio82xlS28vRLgLucd0RkIFYL/l+OSV8Cw4E4x7xvi0hEa5mb8AhwC3ANVqv2HLCwqRlFJNXRddHc5e5mXmMQ1j8fAIwxh7AKeL9m5j1sjClpMG0H/1mfjU2iwa8aEQl25H8Y6x/oRYwxNcBBYFgzz6fcTAt44MrDKkCNVQNJWK2kamPMemM1n2qBcGCgiIQaY446ikFzfmWMuWCMWY7VIn7DGHPaGHMCq1U3opnlYrFa+K68B1e9DwwXkTTH/XuA95yF3xjzujGm0BhTY4x5Bmu99G/H63wXmG+MyXU89y+A/xKRkMYzGmOOGWNiW7gsaeY1ooHzjaadBy7pu76ceUVkGjAb+FmDyY8AXxhjtjSTBazPNraFx5UbaQEPXD2wukgaexqrlbRcRA6LyDwAY8xB4AdYRea0iPxDRJJbeP78Brcrmrgf3cxy52i6uDSluffgEkcL9F/AnY5Jd2L13wIgIo86RlScF5EirL7h+Ha8VBrwvrMVjdVvXIv1y8ddSoHOjaZ1pul/km2aV0Suwvrl8V+OXzw4vguPYP3SakkMVjea8gIt4AFIRMZgFb8NjR8zxpQYYx41xvQGbgR+KCJTHI8tMcZcjVV4DNbGKnfbSdM/7y/S0ntwkzeAu0RkHBCJNYICEZmItS3g60AXY0wsVitVmniOMqBTg8zBWF1TTseB6xu1pCMcv1Iu4uhCKW3hck8z72MPDbosRKQ31i+GA83M27vRyJJhXNxNMgL4J3C/MWZlg/nGYv1y2ysip7C2E4x1jFYJdiwbAmTQoEtHeZYW8AAiIp1FZBbwD6wNbbuamGeWiGSIiGBtpKsFakWkv4hc5xjHewGrFV3rgZifASOb61Nuy3twk4+w/lH9EnjTGFPnmB4D1AAFQIiI/IxLW61OB4AIx/C7UOBxrOLp9ALwhLOrRkQSROTmpp7I0YUS3cJlcVPLYf1yuFFEJopIlOP9vNeon9v5GgeA7cDPRSRCRL4GDAXedeQbjLWBd64xZlmjxT/G2oA93HH5GdZoluHGGOf3ZCxw1BiT00xW5WZawAPDMhEpwWrxzccaI/2tZubtC6zA+jm9EfiTMWYNVuF5EjgDnAK6YW3gdCtjjRdeBTQuZJfzHlol1o4/L7SQoxJ4D2vDa8P+5U+xitUBIAfrn9nxZp7jPPB94C9Yo3fKsDa8Oj2H1Zpd7nhvm7A2/rqNMWYP1iigxcBprH9A33c+3sR6uBMYjdWV9SRWN0mB47FHsX5BvNKg5b/H8TqVxphTzgvWr5Jqx22ne7D+aSkvEWv7lVLe4xj1sQgYa/QLGBBEpBuwFhhhjLlgd56OQgu4Ukr5Ke1CUUopP6UFXCml/JQWcKWU8lOX7BHmSfHx8SY9Pd2bL6mU79vvOLJA//bs7Kk6gi1btpwxxiQ0nu7VAp6enk5m5mUdBlqpwDd5snW9Zo2dKZQPE5Emx9ZrF4pSSvkpLeBKKeWntIArpZSf0gKulFJ+Sgu4Ukr5KS3gSinlp7SAK6WUn9ICrpRSfkoLuFJK+Smv7omplDcsXPgqeXmFLc6TnNyVOXPu91IipTxDC7gKOHl5haSlTW9xnpyc5V5Ko5TnaBeKUkr5KS3gSinlp7SAK6WUn9ICrpRSfkoLuFJK+Skt4Eop5ae0gCullJ/SAq6UUn5KC7hSSvkpLeBKKeWntIArpZSf0gKulFJ+Sgu4Ukr5KS3gSinlp7SAK6WUn9ICrgJabW0dZ85UcOFCjd1RlHI7PaGDCkhbt+bzwQcHKSiooK7OEBYWxIQJPZg6NY34+Ei74ynlFlrAld9oy6nSamvhH/8oICdnJwAi0LlzGMXFVaxefZy1a3O5996B9OjhjcRKeZYWcOU3WjtVmjGGP/95Bzk5QlCQcNttfZk8uSchIUGcOFHCJ58cZfPmUyxatIcZM7wYXCkP0T5wFTDWrDnOjh0FhITU8Oijo5k6NY2QEOsr3qNHDA88MITbbusLwCefCC+8sN3OuEq5TAu4CginTpXx7rvZAPTpc4iMjNgm55s+PZ077+wPwCOPrGL79tNey6iUu7VawEWkp4isFpEsEdkjIv/tmB4nIp+JSLbjuovn4yp1qdraOl55ZRfV1XWMG5dE165nW5z/2mtTGTnSUF1dxze+8S8qKqq9lFQp92pLH3gN8KgxZquIxABbROQz4JvASmPMkyIyD5gHPOa5qEo1bePGPI4dK6Fr1wjuuKM/b73V+jJTpkBZWRx79hTyk5+s5w9/uO6Sedqy0TQ5uStz5tzf3uhKuaTVAm6MOQmcdNwuEZEsoAdwMzDZMdsiYA1awJWX1dbW8fHHRwG45ZYMIiND27RcaCi8/vpMxo1bwnPPbeXuuwcwdmzSRfO0ttEUICdnebtyK+UOl9UHLiLpwAjgCyDRUdydRb5bM8s8KCKZIpJZUFDgWlqlGvnii1OcOVNBYmInRo/uflnLjh7dnR/+cBQAP/nJeowxnoiolMe0uYCLSDTwLvADY0xxW5czxrxkjBltjBmdkJDQnoxKNclqfR8GYObMXgQFyWU/x7x5VxIbG86qVcdYsSLH3RGV8qg2FXARCcUq3ouNMe85JueLSJLj8SRAN+crr/ryy3xOn64gISGSMWMur/Xt1KVLBPPmjQVg3rz11NVpK1z5j7aMQhHgFSDLGPP7Bg/9E5jtuD0bWOr+eEo1b+VKq8U8Y0YvgoPbPyJ27tyRJCdHs3VrPu+8s99d8ZTyuLZ86ycA9wLXich2x2Um8CQwTUSygWmO+0p5RU5OMceOldCpUwhjx7av9e3UqVMojz9+FQDPPJPpjnhKeUWrBdwYs8EYI8aYocaY4Y7LR8aYQmPMFGNMX8d1y4NvlXKj9etzARg3LpmwsGCXn2/27EF06RLB5s2n2Lz5pMvPp5Q36LFQlN+5cKGGzZtPATBxYvuOSpWZuY3585++aFq/fvDFF8IDD7zOTTdBZuaOVocRKmUnLeDK72zefIrKyloyMmJJSopu13OUllZeUpxvuqmCzZs3sG9fELNnT6K0dJM74irlMXosFOV3nN0nEyemuPV54+MjGTo0gZoaw4YNuW59bqU8QQu48isnTpTWb7wcNarJfcdcMnlyTwDWrctF9+tRvk4LuPIrzg2Mo0YlEhrq+sbLxgYMiCM+PpJz5yopLu7s9udXyp20gCu/YQx8+aW18dLVoYPNEZH6nYLOnIn3yGso5S5awJXfyM2FwsILdOkSTkaG545e7CzghYVdqamp89jrKOUqLeDKb+zZY12PGdO9Xcc9aasePaLp0SOampoQ9u5t+XCyStlJC7jyC9XVtWRlWbcbH/bVE5ytcOd4c6V8kRZw5ReWLz9KRYWQlBRFSkr7xn5fDmcB37HjNJWVtR5/PaXaQwu48guLF1vN77Fjk7COr+ZZ8fGRxMSUUFVVx86dehx75Zu0gCufV1paxdKlBwHPjT5pSlyc1f+9a9cZr72mUpdDC7jyeUuXHqS8vIaUFEN8fKTXXjcu7hwAu3ef0eOEK5+kBVz5vCVLrO6TgQO9+7oRERfo1i2SsrJqDh8u8u6LK9UGWsCVTysoKOfTT48SHCwMGODd1xaBIUOs0wDu3KndKMr3aAFXPu3tt/dTW2uYPj2dqCjvv/7QoVYB37VLN2Qq36MFXPk05+iTe+7xcvPboW/fWCIiQsjLK+PMmQpbMijVHC3gymcdOVLE55/n0alTCDffnGFLhuDgIAYN6gqgwwmVz9ECrnzWG2/sA+DmmzOIjg6zLcd/ulG0H1z5Fi3gyicZY+q7T+6+257uE6eBA60WeHb2Oaqrda9M5Tu0gCuftHNnAXv3FtK1ayRf/Wq6rVk6dw4jJSWa6uo6Dh06b2sWpRrSAq58krP1ffvt/Txy4obLNWCA1QrPytKjEyrfoQVc+Zy6OlPf/23X6JPGBgyIA2DfvrM2J1HqP7SAK5+zbt1xcnNLSE2NYfz4HnbHASAjowshIUJOTjFlZdV2x1EK0AKufNCiRdaZG77xjYEePXHD5QgPD6Z371iMgf37tRWufIMWcOVTysqqeOedAwDMnj3I5jQX+08/uBZw5Ru0gCuf8t572ZSWVjNuXDL9+sXZHecizn5w3ZCpfIUWcOVTnN0nvtb6BkhL60ynTiEUFFTobvXKJ2gBVz7j2LFiVq06Rnh4MHfc0d/uOJcIChL69esCwIED52xOo5QWcOVD/v73vRgDt9ySQWxshN1xmuTs1tENmcoXaAFXPqGuzvDKK7sA+OY3B9ucpnn9+/+nBW6MnqVH2UsLuPIJq1Yd48iR86SmxjBtWprdcZqVnBxNVFQoZ89e0H5wZTst4MonvPTSDgC+/e2hBAf77teyYT/4/v3aD67s5bt/KarDOH26jA8+OEhQkPCtb/lu94mTbshUvkILuLLdokV7qK6u44YbepOSEmN3nFb17/+fDZnaDa7spAVc2aquzvDyy9bGy+98Z6jNadomKSmK6OhQiooqOaeNcGWjVgu4iLwqIqdFZHeDab8QkRMist1xmenZmCpQrVyZQ3b2OXr0iOb663vZHadNGvaD5+TYHEZ1aG1pgf8VmNHE9GeNMcMdl4/cG0t1FAsXbgfgoYeGERLiPz8InePBjx2zOYjq0Fr9izHGrAN0rwXldjk551m27BChoUF+033i5BwPnpODjgdXtnGlyfOwiOx0dLF0cVsi1WG88MIO6uoMt9/en8TEKLvjXJakpChiYsIoLRWys7UjXNkjpJ3L/Rn4FWAc188A9zc1o4g8CDwIkJqa2s6XU/5s4cJXycu7+Ah+NTWwYAGAEBKyl4UL85kzp8mvkE8SsfrBt2zJZ/Xq4z535ETVMbSrBW6MyTfG1Bpj6oCXgbEtzPuSMWa0MWZ0QkJCe3MqP5aXV0ha2vSLLqdPD6aiQujZM4bx46ddUuD9gbMbZc2a4zYnUR1Vu1rgIpJkjDnpuPs1YHdL8yvVkDGGlSutrX/XXtsTESEzcxvz5z/d4nKZmTtIS5vujYht4hwPvnr1MYwxiPjG2YNUx9FqAReRN4DJQLyI5AI/ByaLyHCsLpSjwHc9mFEFmOzscxw/XkJMTBhjx3YHoLS0stXivGbNJm/Ea7PExE5ERRny88vZv/8sV1zR1e5IqoNptYAbY+5qYvIrHsiiOogVK6zW9zXXpBAaGmxzmvYTEdLSYO9eWL36uBZw5XX+M/BWBYTTp8vZubOAkBDhmmtS7I7jsjTHgRNXr9YB4cr7tIArr7L6i2HMmCQ6dw63O47LnAOr1qw5Tl2djgdX3qUFXHlNRUU1//53HgBTpgTGkNK4OEhJiaGgoIJduwrsjqM6GC3gyms2bMijsrKW/v270LOn7x91sC1EYOpU65/RihV6YBTlXVrAlVfU1tbV9xNPmeK7Z9xpj2nT0gEt4Mr7tIArr9ixo4DCwgt06xbJkCHxdsdxK2d30Nq1uVRW1ticRnUkWsCVVziHDl53XSpBQYG1w0tiYhRDhyZQUVHDxo15dsdRHYgWcOVxeXlw6FARkZEhjBuXbHccj/hPP7gOJ1TeowVcedyXX1rXV1/dg4iI9h4/zbdNnWr163/22VF7g6gORQu48qgTJ0rIyrJGa1x7bU+743jMpEkphIYGkZmZz7lzF+yOozoILeDKoxYu3E5dnTByZCJdu0baHcdjoqLCGD8+mbo6w6pV2o2ivEMLuPKY8vJqXnxxBxA4O+60xHlOzw8/PGRzEtVRaAFXHvP3v+/l7NkLJCcbevf+it1xPG7WrD4A/Otfh3W3euUVWsCVRxhjeO65LQCMGUOHOFb2wIFd6dXrKxQUVPDll6fsjqM6AC3gyiNWrjxGVtZZkpOjueIKu9N4h4gwa1ZvAJYt024U5XlawJVHLFiwFYDvfW8Ywf57yO/L5uxG0X5w5Q1awJXbHT5cxLJlhwgLC+bBB4faHcerrrkmhejoUHbsKOD48WK746gApwVcud3ChdswBu666wq6dYuyO45XhYeHMH16OgAffnjY3jAq4GkBV25VWlrFK69Y57ieO3eEzWns4ewHX7r0oM1JVKDTAq7c6vXX93L+fCXjxyczalR3u+PY4sYb+xASEsSKFTkUFJTbHUcFMC3gym2MMfzxj9bGy0ceGWlzGvvEx3di2rQ0amsN7757wO44KoBpAVdu03Do4K239rU7jq3uussaO/nGG/tsTqICmRZw5TbO1vf3vz+c0NAONHawCTffnEFERAjr1+eSm1tidxwVoLSAK7c4fLiIDz88RHh4xxs62JTOncO54YZeGANvvqmtcOUZWsCVW7zwwg6MgTvvvIKEhE52x/EJd901ANBuFOU5gXl0feU1Cxe+yrFjhTz/PIAAu5k/f/dF82Rm7iAtbbod8Ww1c2YvYmLC2LIln717zzBwYGCdC1TZT1vgyiV5eYUUFg6hokLo2TOGceOmkZY2/aJLaWmF3TFtERkZyt13W63wF17YYXMaFYi0gCuXrVuXC8DEiT06xFEHL8f3vjcMgEWL9lBaWmVzGhVotIArlxQUQHZ2EeHhwVx5ZZLdcXzOsGHdGD8+meLiKu0LV26nfeDKJdu3W9dXXtk9YE9Y7KqMjPN8/jn89KefcuTIpzT+kfLAkeMAfLzwVebMud+GhMpf6V+carfy8mp27bJuT5yYYm8YH9a9eynR0WHk51dTWzuGPn1iL3o8IuJNwNqeoNTl0C4U1W5vvbWfCxeE9PTOpKZ2tjuOzwoJgQkTegCwYkWOzWlUINECrtrNecLiSZO09d2a667rSUhIEFu3niYvr9TuOCpAaAFX7bJ9+2k2bTpJeLhh9OiOedTByxEbG8GECckAfPTREZvTqEChBVy1i7P1PWQIhId37OOetNWMGekEBwuZmafIzy+zO44KAFrA1WUrLa1i8eIsAEZ0zHM2tEtcXCTjxiVjDHz8sbbCletaLeAi8qqInBaR3Q2mxYnIZyKS7bju4tmYype8/fZ+SkqqmDChBwkJdqfxLzNmpBMUJGzadJITJ7QvXLmmLS3wvwIzGk2bB6w0xvQFVjruqw7itdf2AHD//YNtTuJ/EhI6MWlSCsagJ3tQLmt1HLgxZp2IpDeafDMw2XF7EbAGeMyNuZTNFi58tclxyWfPwvr1QmioYe/eT9i1q2MeqMoVs2b1ZtOmk+zZU8jevYXMsjuQ8lvt3ZEn0RhzEsAYc1JEurkxk/IBeXmFTRbmbdsOAkcYNSqZfv0Gs3HjJu+H83MxMWFcf306779/kHfeOcCPO2EdyFGpy+TxjZgi8qCIZIpIZkFBgadfTnlQXZ1h06Y8AMaPT7Y5jX+bMiWVrl0jOHGilKLzlXbHUX6qvQU8X0SSABzXp5ub0RjzkjFmtDFmdIJu8fJr+/ad5dy5SuLjI+nbV7dbuyI0NJjbbusHwJkzFdTWGpsTKX/U3gL+T2C24/ZsYKl74ihf9vnnVuv7qquSCArS3/yuGjmyGwMGxFFXZzhT0DGPma5c05ZhhG8AG4H+IpIrIg8ATwLTRCQbmOa4rwJYeXk127dbP7TGjdPuE3cQEe688woEOF9cyYkTdidS/qYto1DuauahKW7OonxYZmY+1dV19O8fR3x8pN1xAkb37lF06RLB2XMX+PRTqK2tIzhY969TbaOHk1Vt4uw+0Y2X7hfXNZLikipOnRJuuOEZRo1qft7k5K56zHBVTwu4atXJk6UcOXKeiIhgRo7UEaPuFhQE3RI6wUlYvz6UadMmEBMT1uS8OTnLvZxO+TIt4KpVztb36NHdCQvTA1c1lJm5jfnzn25lntZ3doqODiU2toiioljefz+b++4b5M6YKkBpAVctqq2tY9Omk4B2nzSltLSy1eK8Zk0bdnYS6NXrCLt2jeTf/85jwoQel5y5R6nGdGuJatHevYUUF1eRmNiJ3r2/YnecgBYZeYFp09IBeOONfdTV6dhw1TIt4KpFzu6TceOSkcZn41VuN3NmL+LiIjh+vIS1a3PtjqN8nBZw1azS0ip27ChAxNp5R3leWFgwd9zRH4ClSw9SXFxlcyLly7SAq2Zt3nyK2lrDwIFd6dIlwu44HcawYQkMHtyViooaPvgg2+44yodpAVfN0rHf9hARvv71/gQFCZ9/nsfx4yV2R1I+Sgu4alJ+Phw/XkKnTiEMG6YHIfO2xMQoJk/uiTHw9tsHMEY3aKpLaQFXTdq507oeM6Y7oaE69tsOs2b1plOnEPbvP8vOnWfsjqN8kBZwdYmqqlp2O86Aqt0n9omKCmXWrD6Adfq12to6mxMpX6MFXF3iX/86TEWFkJwcTVpaZ7vjdGiTJ6eQkBBJfn55/Q5VSjlpAVeXeO01q/k9fryO/bZbcHAQN95otcI//PAwNTU2B1I+RQu4usipU2V89NFhRAxXXtnd7jgKaztEcnI0Z89eYNs2u9MoX6IFXF1k8eK91NYaMjKgc+dwu+MoIChIuPlmqxX++edQVqY79yiLFnBVzxjDq69a3SdDh9ocRl1k2LAE0tM7U1YmLFigzXBl0QKu6m3cmMfevYUkJnYiI8PuNKohEeGWW6wP5amnNlNUdMHmRMoXaAFX9V5+2Rr8/c1vDiZYh377nCuuiCM11VBUVMkzz2TaHUf5AC3gCoDz5yt58839ADzwwBCb06imiAiTJ1u3n312C6dPl9maR9lPC7gCYMmSLCoqapg8uSd9+3axO45qRkoK3HBDb8rKqnnyyc12x1E20wKuAPjLX3YB8J3v6NZLX/frX18NwJ//vINTp7QV3pFpAVds3ZrP1q35xMVFcOutfe2Oo1oxfHg3brklgwsXanj6aW2Fd2RawFX9xst77x1IRISeJtUf/Oxn4wCrFZ6fr63wjkoLeAdXVlbF4sVZAHz727rx0l+MGJHITTf1oaKiht/97ku74yibaAHv4N5++wAlJVVcdVUSgwfrcb/9ibMV/qc/bdcRKR2UFvAOztl9ohsv/c+oUd2ZNas35eU1Oi68g9IC3oHt2XOGzz/PIyYmrP5Eusq//Pzn4wFYuHA7BQXlNqdR3qYFvANztr7vvnsAUVFhNqdR7TF6dHdmzuxFWVm1tsI7IC3gHVRpaVX9cb8femiYzWmUK5yt8Oef38aZM9oK70i0gHdQf/vbHoqLq7j66h4MH97N7jjKBWPHJjFjRjplZdX8/vdb7I6jvEgLeAdkjOH5561Dks6dO8LmNModnK3wBQu2UlhYYXMa5S2610YHtHLlMbKyzpKcHM3XvqZ7XvqTzMxtzJ//dJOP9eoFR45Uc889r/DJJw97OZmygxbwDuiHP/wAgIyMEn7xi983OU9m5g7S0qZ7M5Zqg9LSymY/l9tvL+K3v/2S1asrOHu2gri4SC+nU96mBbyDyc4+x65dVYSEBHHjjZOaPW3amjWbvJxMuapPn1gGDIgjK+ssf/jDFn75y6vtjqQ8TPvAO5hnn80EhCuvTNJzXgagWbOsc2c+99xWzp3Ts/YEOi3gHUhBQTmvvbYHgKlT02xOozwhIyOW9HRDcXEVzz2nI1ICnUsFXESOisguEdkuIroXgY/785+3c+FCDRkZhuTkaLvjKA+52tFz8oc/bNVzZwY4d7TArzXGDDfGjHbDcykPqaiorh86eOWVNodRHpWaCtde25Pz5yv54x+32h1HeZB2oXQQr722m4KCCkaPTiQ11e40ytOc48KffXYL589X2pxGeYqrBdwAy0Vki4g82NQMIvKgiGSKSGZBQYGLL6fao6qqlqeess7c8thjYxGxOZDyuGuu6ck116RQVFTJggXaCg9Urg4jnGCMyRORbsBnIrLPGLOu4QzGmJeAlwBGjx5tXHw91Q6vv76XY8dKGDAgjltv7ce2bXYnUp7k3NmnRw8A4YknNlBUtIHwBoOOkpO7MmfO/XZFVG7iUgE3xuQ5rk+LyPvAWGBdy0spb6qpqeP//u8LAObPv4qgIG1+Bzrnzj6pqTqe7zYAABAoSURBVIbNmzM5eLCIgwczmDmzV/08OTnLbUyo3KXdXSgiEiUiMc7bwHRgt7uCKfd48819HDxYREZGLHfccYXdcZQXiQizZvUGYMWKHC5cqLE5kXI3V1rgicD7YnWohgBLjDGfuCWVareFC18lL68QgLo6eOklAKFfv3P8/OfPALqbfEdyxRVx9OkTy6FDRaxefZzrr+/V+kLKb7S7BW6MOWyMGea4DDLGPOHOYKp98vIKSUubTlradPLyBnH2rJCQEMmsWVPrp5eW6tHqOoqGrfDPPtNWeKDRYYQBqrq6jg8/PAzAjTf2IThYP+qOasCAOPr0+QplZdWsWXPc7jjKjfSvOkCtX5/L2bMXSE6OZsyY7nbHUTayWuHWMVK0FR5YtIAHoAsXavj44yMA3HxzHx15ohgwII5evb5CaWk1a9fm2h1HuYkW8AD06adHKS6uIj29M8OGJdgdR/mAi/vCj1JVZXMg5RZawAPM+fPWz2SA22/vj+hul8ph0KCupKd3pqSkWnfmChBawAPMmjXWBsxRoxLJyIi1O47yIQ1b4Rs3Qnl5tc2JlKu0gAeQTZvy2LNHCAkJ4tZb9VyX6lKDB8eTltaZ8nLhxRd32B1HuUgLeICoqanj+99fAcDUqanEx+v5ENWlGrbCf/vbL6mo0Fa4P9MCHiCef34b27adpnNnw8yZve2Oo3zYkCHxdO9uOHWqjD/9abvdcZQLtIAHgOPHi/npTzcA8NWvQnh4sM2JlC8TESZNsm4/8cQXnD2re+b6Ky3gfs4Yw9y5qygtrebWW/vSV7u+VRv06QNTpqRy7twFnnhik91xVDtpAfdzf/vbHpYuPUhMTBjPPXed3XGUnxCB3/1uMiKwYME2Dh8usjuSagct4H7syJEi5s5dBcCCBdeRkhJjcyLlT4YP78Z99w2iurqOefP0MP7+SAu4n6qtrePeez+mpKSK227ry333DbI7kvJDv/711URGhvD22wdYuTLH7jjqMmkB91OPP76Bf//7BElJUbz44nTd41K1S0pKDI8/fhUADz+8kqqqWpsTqcuhBdwPvfFGFk8+uZngYGHx4hvo2lXHfKv2e/TR0fTr14V9+87y+99n2h1HXQYt4H5m69Z8HnjgUwCeffZarr021eZEyt+Fh4fw/PNTAPjVrzZy5Ihu0PQXWsD9SFZWIddf/y4VFTU88MAQHn54hN2RVICYNi2dO+7oT3l5Dd/61ifU1Rm7I6k20ALuJ7KzzzFlylucPl3O1KlpLFw4Rfu9lVstWDCFbt06sXZtLn/841a746g2cOWkxspLtm8/zaxZ73HyZBnXXtuTpUtvITxcPzrVfpmZ25g//+lLpk+aBO+8I/zP/6wiK2sVQ4d2Zc6c+21IqNpCq4CPe/fdA9x330eUl9cwaVIKy5Z9jU6dQu2OpfxcaWklaWnTL5melgYnTuxh48Y8Pvwwms6dC21Ip9pKC7iPKi+v5vHHN/Dss1sAuO++gYwYcZLf/Oa5FpfLzNzR5B+mUm11xx39OXy4iLy8UpYtg6eeMnpaPh+lfeA+aNWqYwwbtohnn91CcLDw1FOT+Otfr6eg4CxpadNbvJSW6oGJlGsiI0P4/veHExERwv79wq9/vdHuSKoZWsB9yJYtp5gx4x2mTHmLgweLGDw4nk2b7uHHPx6rGyyVV3XvHsW3vz0YMPz855/z/PO6UdMXaReKzaqra/ngg4MsXLit/mzhnTuH8eMfj+V//mcMYWF6aFhljyFDEvjqV+HTT2Hu3FUYA3PnjrQ7lmpAC7hNTp4s5eWXd/LiizvJyysFIDo6lO9+dxjz5o0lPr6TzQmVglGj4MYbp/Dwwyt55JFV5OeX87//O57gYP3x7gu0gHvYwoWvkpdnbcmvqYEDB2DXLjh8GIyxukUSE4N4/PHJ3HffIDp3DrczrlKXmDNnBMHBwpw5K3niiU1s3nySJUtuqG9kNPyONyc5WYcjeoIWcA87caKQmpqxbNyYx5Yt+VRU1AAQFCQMH57A5Mk9iYjI5OGH9aep8l0PPTScvn27cNddH/LZZzkMHPgaTz01idmzB5OXV9jqyKecnOVeStqxaAH3kCNHivjb3/bywgtw7tyX9dPT0jpz1VVJjB3bnejoMADefbfpnSoa0yGCyk5TpqSxdet9fOMb/2Lt2lzuv/9TXnppJ+npkJpqdEO7DbSAu1FBQTnvvZfN4sVZrF+f65gqxMaGc+WVSVx1VRLJydGXLNfcThWNrVmjp75S9kpJiWH16jtYsiSLH/1oLZs2nWTTJmHjxs1MnZrKiBGJhIZq/7i3aAF30Zkz5bz//kHeems/q1cfo7bWOghQZGQIt93Wj9raPUyaNFF3hFABQ0S4556B3HRTBn/60zZ++ct15OQU88oru4mO3s/48T2YNKkHCQm6Id7TtIC3Q3b2OZYtO8SyZYdYvz63vmiHhAQxc2Y6X/96f269tR8xMWHMn79Hi7cKSDExYTz22JUUFq4jL28Aa9ceJze3lOXLj7J8+VEGDuzKNdekMGRIvN1RA5YW8GY03LJeVwe5uXDwIGRnQ2HhfwqyiKF3bxgwAPr1qyUy8jAHDhzmySc/BrTfWgW+0FCYNCmFiRN7cOTIedatyyUzM5+9ewvZu7eQ2NhwBg+GEydK6NFDz9vqTlrAm3HkSCElJcPYsaOA3bvPUFZWXf9Yp04hDBoUz/nz6/je9x5s8eBS2m+t/FlzRy28eB6rkSIi9O4dS+/esdx+e382bsxj3bpc8vPL2bBBSEt7iVmz+vDNbw5i5szeupOaG2gBdzDGcODAOT799CjLlh1i1Sqoq9tZ/3i3bpEMHZrA0KEJZGTEEhwcxKJF7+uRAVVAa8sG9qYaKVFRoUydmsaUKakcOHCOjz/OJDs7iKVLD7J06UHi4yO5664rmD17ECNHJuoIlnbq0AX81KkyVq06xooVOaxYkcPx4yX1j4lARkYsQ4cmMGxYAomJnfRLptRlEhH6948jIgLmzv0ur7++l0WL9rB79xkWLNjGggXb6NevCzfc0JsZM3px1VVJujPbZXCpgIvIDOA5IBj4izHmSbekcrOamjry8krZvfsMW7bks2VLPpmZpzhxovSi+eLjI5kyJZUbbujN1q0fMWDAGJsSKxV4uneP4kc/GsOjj45m27bTLFq0hyVLsjhw4BwHDmzh2We3IAJXXBHHoEHx9OkTS2pqDDExYRddwsKCcbUtFRkZQkxMGNHRYURFhfrtQIN2F3ARCQYWAtOAXOBLEfmnMWavu8I57dxZQGlpFTU1ddTWGmpq6hwXQ21tHZWVtZSUVFFcXEVxcSXFxVUUFFSQk1PMsWPF5OaW1I8UaSg6OpQJE3owdWoaU6emMXRoQv0HuW/fR+5+G0oprFb5yJGJjByZyO9+dw2bNp3ko48Os3LlMXbsKCAr6yxZWWe9mikqKrT+H0R0dGj9dXR009dRUaGEhgYREhJUf93w4pwWFCSIWO85KSmK1NTObs3tSgt8LHDQGHMYQET+AdwMuL2A33HHMvbtc+0D7d49in79ujBqVGL9pV+/OL/9z6tUIAgNDWbixBQmTkwBoLKyhp07Czhw4ByHDhVx4kQppaXVlJRUUVpaRUlJFceOnSIsrOXRLGfP5hMXl9jkY8ZYRwEtKysHwigrq66/nDpV5u63WO+xx8by5JOT3PqcYkz7zj4tIv8FzDDGfNtx/17gSmPMw43mexB40HG3P7C//XEvEQ+ccePzeYM/Zgb/zK2Zvccfc/tT5jRjTELjia60wJtqul7y38AY8xLwkguv03wAkUxjzGhPPLen+GNm8M/cmtl7/DG3P2ZuzJWDFuQCPRvcTwHyXIujlFKqrVwp4F8CfUWkl4iEAXcC/3RPLKWUUq1pdxeKMaZGRB4GPsUaRviqMWaP25K1jUe6ZjzMHzODf+bWzN7jj7n9MfNF2r0RUymllL30wL1KKeWntIArpZSf8skCLiJxIvKZiGQ7rrs0M98MEdkvIgdFZF6D6W+KyHbH5aiIbHdMTxeRigaPveBDmX8hIicaZJvZ4LGfOObfLyJf9aHMT4vIPhHZKSLvi0isY7rb13NzGRo8LiLyR8fjO0VkZGvLtvX925FbRHqKyGoRyRKRPSLy3w2Wafa7Ymdmx2NHRWSXI1dmg+keXdcurOf+DdbjdhEpFpEfOB7z6Hp2C2OMz12A3wLzHLfnAU81MU8wcAjoDYQBO4CBTcz3DPAzx+10YLcvZgZ+AfyoiWUGOuYLB3o5lg/2kczTgRDH7aecy7t7PbflswZmAh9j7Z9wFfBFG/K3+v5tzJ0EjHTcjgEOtPZdsTuz47GjQHx7vmt2ZW70PKewdprx6Hp218UnW+BYu+QvctxeBNzSxDz1u/IbY6oA56789UREgK8Db3gwq5NbMjfzvP8wxlQaY44ABx3PY3tmY8xyY0yNY75NWPsCeEJb1tvNwN+MZRMQKyJJrSzblvdvS25jzEljzFYAY0wJkAX0cHM+t2Zu5Xk9ua7dlXkKcMgYk+PGbB7lqwU80RhzEsBx3a2JeXoAxxvcz+XSL/hEIN8Yk91gWi8R2SYia0Vkoo9lftjx8+7VBj8x2/I+7czsdD9WC8fJneu5LRmam6elZdvy/l3hSu56IpIOjAC+aDC5qe+KO7ia2QDLRWSLWIfRcPLkunbLesbal6VxY89T69ktbCvgIrJCRHY3cWmtRVr/FE1Mazwm8i4u/kBOAqnGmBHAD4ElItLmw4N5OPOfgT7AcEfOZ9qwjN2Zna8xH6gBFjsmubSe25OhhXlcWn8uciW39aBINPAu8ANjTLFjcnPfFXdwNfMEY8xI4Hpgjoi49+hNTXPHeg4DbgLebvC4J9ezW9h2QgdjzNTmHhORfOfPSMfPnNNNzNbirvwiEgLcCoxq8JqVQKXj9hYROQT0AzJpA09mNsbkN3iul4EPW1vG7syO55gNzAKmGEfHoavr+XIztDJPWAvLtuX9u8KV3IhIKFbxXmyMec85QwvfFdszG2Oc16dF5H2s7o11eHZdu5TZ4Xpga8N16+H17Ba+2oXyT2C24/ZsYGkT87S2K/9UYJ8xJtc5QUQSxDqOOSLSG+gLHPaFzI36474G7G7wvHeKSLiI9HJk3uwjmWcAjwE3GWPKnQt4YD235bAN/wTuc4w2uAo47/ip3tKybXn/rmh3bsf2m1eALGPM7xsu0MJ3xe7MUSIS48gYhbWRu+H32FPr2pXvh1PjX+ueXs/uYfdW1KYuQFdgJZDtuI5zTE8GPmow30ysrfOHgPmNnuOvwEONpt0G7MHaSr0VuNFXMgN/B3YBO7G+bEkNHpvvmH8/cL0PZT6I1a+43XF5wVPruakMwEPOzxjrJ/JCx+O7gNFtyN/k+3fzd7lduYGrsX7i72ywfme29l2xOXNvx2e+w/H5e21du/j96AQUAl9p9JweXc/uuOiu9Eop5ad8tQtFKaVUK7SAK6WUn9ICrpRSfkoLuFJK+Skt4Eop5ae0gCullJ/SAq6UUn7q/wMFfwL7FKYYQwAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "compare_D_fit.plot()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "To access the two-tailed p-value of the test:" + ] + }, + { + "cell_type": "code", + "execution_count": 32, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "0.26" + ] + }, + "execution_count": 32, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "compare_D_fit.p_value" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The conclusion is that, for the Dissimilarity index and 5% of significance, segregation in Riverside was not different between 2000 and 2010 (since p-value > 5%)." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Comparative Gini" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Analogously, the same steps can be made for the Gini segregation index." + ] + }, + { + "cell_type": "code", + "execution_count": 33, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Processed 1000 iterations out of 1000.\r" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXoAAAEICAYAAABRSj9aAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAAgAElEQVR4nO3dd3xUdb7/8dcnPYFQQgs1AaSDFEOTIjakWBesd13rRXdx79Xd3971Lruueve3RX+ulQXrdVUUu1IVdcFGDSV0kBZKAoRQUihpn98fZ4IjTuokOVM+z8djHpk55ztz3jOET858z/d8j6gqxhhjQleE2wGMMcbULyv0xhgT4qzQG2NMiLNCb4wxIc4KvTHGhDgr9MYYE+Ks0JuzRGSmiPyhrtvWNRH5i4jcX8PnFIhIF8/9eBGZKyInRORdz7I/icgRETlYH5m9cuwRkcvqcxuBSETaiMgWEYl1O0s4skIfRkTkJhFZISKFInLYc/8XIiIAqnqvqv5PdV7r3LYi8jsR2e0pqPtF5O16eg+tgJ8Bz3sejxGRMs92y7f9jogMPidvY1Xd5Xk4GWgDtFDV60WkI/BroLeqJtdH7kAlIrEi8oqI5InIQRH5VRXtbxGRTM/v0EcikuS17gYRWSoiJ0VkiffzVPUQsBiYUi9vxFTKCn2YEJFfA08DjwPJOIXuXmAEEOPna98G3ApcpqqNgTTgC78CV+x2YIGqnvJaluXZbiIwDNgKfC0il1bwGinAdlUt8Xqcq6qH6ylzIHsY6IbzGVwM/JeIjPPVUET64PyBvRXn9+ck8A+vJkeBp4C/VrCtWcA9dZLa1Iyq2i3Eb0BToBCYVEW7V4E/ee6PAfbj7OkeBrKBOypo+xzwVBXbf9nzGgeAPwGRnnWRwBPAEWA3cB+gQFQFr/Uv4Kdej8cA+320ew5I93qswHnAI0ARUAwU4BSeU0CZ5/GrVXxG7Tztk7yWDfTkjwa6ejLmepbNApp5td2D8wfxB5+hr/fi2db7QI7ns/mPevjdOACM9Xr8P8DsCtr+GXjT63FXz2eZeE67u4ElPp4fhfPHIcXt/xPhdrM9+vAwHIgFPq7h85JxinR74C5guog099FuOfAzEfmNiKSJSOQ56/8JlOAU2oHAWJxiAPDvwHhgADAIuLaKTP2AbdXI/gEwSEQaeS9U1T/iFKy31enOed6z/SzP49sre1FVzQKWAZO8Ft8CvKeqxYAAf8Ep0r2Ajjh7zTUiIhHAXCAD5/O/FLhfRK6ooP2DInK8olsFz2nuyZnhtTgD6FNBrD7ebVV1J06h716d96TON6gdQP/qtDd1xwp9eGgJHNHvuyrw9KUeF5FTIjK6gucVA4+qarGqLsDZ4+1xbiNVfQP4JXAF8CVwWEQe9GynDU4hvV9VC9XpHnkSuMnz9BuAp1V1v6oeo+Kv/eWaAfnVeM9ZOEW3WTXa1tSbwM0AnuMbN3mWoao7VPUzVT2jqjnA34GLarGNwUArVX1UVYvUOb7wIt9/bj+gqn9V1WYV3SrYRmPPzxNey07gdIFV1P7EOcsqa+9LPvXzb2IqEeV2ANMgcoGWIhJVXuxV9UIAEdlPxX/wc73/OOB87W7sq6GqzgJmiUg0zl75LBFZCxzD6dLI9hzzxbO9fZ777bzuc859X45RvcLSHqe7xuferJ/eA54VkXY4/dsKfA0gIq2BZ4BRnpwRnsw1lQK0O2dvPLJ8O3WkwPOzCXDa635Ff0gLPOu9Vdbel0Tq59/EVML26MPDMuAMcE19b8iz9/8usB7oi1O4zwAtvfYwm6hqefdANtDB6yU6VrGJ9VSvq+A6YI2qFtbsHVRNVY8Di3C+jdwCvKWq5dPA/gWn8J+vqk2An+J8s/ClEEjweuw94mcfsPucPfNEVZ3g64U8o54KKrpV8D6O4Xz+3l0p/YFNFeTd5N3WM1w1FtheQftzM0bhdN9lVNXW1C0r9GHAU5geAf4hIpNFpLGIRIjIAKBRFU+vkojcLiITRSTR87rjcfpzV6hqNk5RfEJEmnjWdxWR8u6Md4D/FJH2ItIM+G0Vm1tABV0h4mgvIn/EOQbwO3/fWyXexBnmOclzv1wizp7vcRFpD/ymktdYB0wQkSQRSQa8zw1YCeSJyG894/4jRaTvucNGy6nqnz3HGHzeKsnwGvB7EWkuIj1xjpm8WkHbWcBVIjLKc+zjUeADVc0H8GSMw+kpiBCROM83vHJDgD2qmllJHlMPrNCHCVV9DPgV8F84o2gO4QyV+y2w1M+Xz8MpqntxvpY/BvxcVb/xrP8ZzhDOzTjdGO8BbT3rXsT5Q7AeWItTyEuA0gq29RpOcYz3WtbOs9daAKzCOWA7RlUX1fYNefaER1XSZA5Ot80hVfXeQ30E56DyCWA+zkHhiryOs3e7B+czOHvugaqWAlfhHKTejTOC5yWcg+N16Y/ATiAT5/jK46r6SflK789BVTfhDMmdhfM7lAj8wuu1bsUZkTQDp+vqFM6/b7l/A2bWcX5TDfL9N05j3Of5NjBTVVMqafNn4LCqPtVwyYw/PMcuvgQGqurpqtqbumWF3rjKs2d+Mc4ebRuccePLVbVGUxwYYypmhd64SkQScPb0euJ81Z8P/Keq5rkazJgQYoXeGGNCnB2MNcaYEBeQJ0y1bNlSU1NT3Y5hTP3Y5pnBocePTjI2ptZWr159RFVb+VoXkIU+NTWV9PR0t2MYUz/GjHF+LlniZgoTYkSkwvMTrOvGGGNCnBV6Y4wJcVbojTEmxFmhN8aYEGeF3hhjQpwVemOMCXFW6I0xJsRZoTfGmBBX5QlTIvIKcCXOtLB9Pcve5vtrhzYDjqvqAB/P3YNzmbFSoERV0+ootzHGmGqqzpmxrwLP4VzwAQBVvbH8vog8wY8vGOztYlU9UtuAxtTG9OmvkJWVW6227dq1YOrUO+s5kTHuqbLQq+pXIpLqa504V3u+AbikbmMZ45+srFxSUsZWq21mZq0vRGVMUPC3j34UzqXUvqtgvQKLRGS1iEyp7IVEZIqIpItIek5Ojp+xjDHGlPO30N8MvFXJ+hGqOggYD0wVkdEVNVTVF1Q1TVXTWrXyOQGbMcaYWqh1oReRKOAneF3Q+FyqmuX5eRj4EOcq8MYYYxqQP3v0lwFbVXW/r5Ui0khEEsvvA2OBjX5szxhjTC1UWehF5C1gGdBDRPaLyF2eVTdxTreNiLQTkQWeh22Ab0QkA1gJzFfVT+ouujHGmOqozqibmytYfruPZVnABM/9XUB/P/MZY4zxk50Za4wxIc4KvTHGhDgr9MYYE+Ks0BtjTIizQm+MMSHOCr0xxoQ4K/TGGBPirNAbY0yIs0JvjDEhrjoXHjEmrB05cpLVqw+xdetRduw4zsGDhRQVlVJaqnTsmEiPHkkMG9aWoUPb4lyiwZjAYoXeGC+qyu7dJ1iyZB9Lluzjm28OsHt3ZRdQ+16PHknccUcfpk4dSOPGMfWc1Jjqs0Jvwt6ZM/DOO1uZN28XS5bsY9++/B+sj4+PYtCgNvTt25Ju3ZrRoUMicXHOf509e06wZctRPv54B9u2HeXBB79mxowMZs68nHHjOrvxdoz5ESv0JiypKlu3HmXJkv2sXw9lZfPOrktKimP06A6MGdOR0aM70K9fK6KiKj+c9dxzl7Jo0R5+//tvWLv2MOPHv8/Pf96fZ5+9lMhIOxRm3GWF3oSdjRuP8N5728nOLjy7bOTI9lxzzXmMHZtK374tiYioWV97VFQEEyZ0YezYVJ58Mp2HHlrKjBkZHDp0klmzJp79BmCMG+y3z4SNY8dOM3v2Vtatc65J3KxZLKNHdyA1dQdPP+1zNu4ai4qK4De/GcLw4e248soP+eCD75g48QPmzbuO+PjoOtmGMTVlhd6Ehb1785g+fR3Hj58hNjaSiRO7cOmlnYiKiiAzc0edb2/kyA784hexPPPMaf71r70MHvwUV18NInDX7n0AvDzt8bPt27VrwdSpd9Z5DmPACr0JA+vX5/DSSxs4c6aUbt2acddd/WjePK7etytygl/9ajiPPbaKTZtKOe+885gwoTNxcc5lllNSxp5tm5m5qN7zmPBlhd6EtO3bjzJjRgZlZcrQoW259dbeREfX/uDo9OmvkJWVW6226ekZTJo0lrvu6suMGRl8/PEO2rdvzJW13roxtWOF3oSsw4dPMnPmesrKlIsv7siNN/bw+4SmrKzcH+yJV2bJkuUA9O/fmmuvPY8PP9zB669v4sFWSmSUnVhlGo4VehOSTp+Gl19eS2FhMf36teSGGyou8unpa5nm1V9emfT0jGoXem9jx6ayeXMu27Yd45CepF3bRjV+DWNqq8pCLyKvAFcCh1W1r2fZw8C/AzmeZr9T1QU+njsOeBqIBF5S1b/WUW5jKvX553Do0Enat2/M3Xf3q3S4ZEHBmRrvpddURITws5/14dFHl1FQUER+vo3AMQ2nOp2VrwLjfCx/UlUHeG6+inwkMB0YD/QGbhaR3v6ENaY6PvtsD+vXC1FREdxzz/kBM4a9Zct4rr++O+B0KxUWFrucyISLKgu9qn4FHK3Faw8BdqjqLlUtAmYD19TidYyptsLCIqZMcUawXHllF9q0CawukpEj2xMfH0VpmTJv3i6345gw4c+52feJyHoReUVEmvtY3x7Y5/V4v2eZTyIyRUTSRSQ9JyenombGVOqPf1zKnj15tGmjjB2b4nacHxERWrdKAGDJkn0cPFhYxTOM8V9tC/0MoCswAMgGnvDRxlenqFb0gqr6gqqmqWpaq1atahnLhLM9e07wzDNrEIEJEwjYOWZi4yJp2jSWsjLl3Xe3uR3HhIFa/U9Q1UOqWqqqZcCLON0059oPdPR63AHIqs32jKmORx9dRnFxGbfc0ou2bd1OU7mWLeKJj49i48ZcNm+u3rh8Y2qrVoVeRLz/G10HbPTRbBXQTUQ6i0gMcBMwpzbbM6Yq27Yd5Z//3ERUVAQPP3yh23GqFBkljB/vTGM8Z85OtMLvusb4r8pCLyJvAcuAHiKyX0TuAh4TkQ0ish64GHjA07adiCwAUNUS4D7gU2AL8I6qbqqn92HC3EMPfUtZmXLnnX057zxfh4wCz5gxHUlMjGb37hPssuOyph5VOe5MVX1N6/dyBW2zgAlejxcAPxp6aUxd2rTpCO+8s43Y2Ej+8IfhbsepttjYSMaOTeX997/jq6+cOfLtUoSmPgTm0SpjauDJJ1cDcNdd/ejQIdHlNDVz0UUdSUyMITtbWLhwt9txTIgKjDNJjKkGXxOKFRbCq68698vK1jJt2lqg9lMVNLTY2EiuuCKV997bzqOPLmP8+M62V2/qnBV6EzR8TSg2b95OSkt3cf75LRk4cODZ5bWdqsANo0d3YP78baxYkc3SpVmMGFHh6SbG1Ip13ZigVVxcxpdf7gfgsssC7+So6oqNjaT8b9QTT6S7G8aEJCv0Jmilpx8kL6+IDh0a0717cIy0qUhaGsTERPLRR9/x3XfH3I5jQox13ZigVb43f8klnYK+X3vr1rX06jWQjAzhppteYpyvaQQ97LKDpqas0JugdOBAPrt3nyA+PorBg5PdjuO3goIzXHvthWRkLGPDhkj+7d9G0bhxjM+2dtlBU1PWdWOC0jffOLNpDBmSTExMpMtp6ka7do3p3bsFxcVlLFtms4WYumOF3gSd4uJSVqzIBpxpf0PJRRd1AOCrr/ZTVmbzIpi6YYXeBJ21aw9TWFhMp06JdOrUxO04dapfv5Y0bx7L4cOn2Lq1NpeBMObHrNCboFPebRNqe/PgTK08apSzV//ll/uqaG1M9VihN0ElN/cU27YdJTo6giFDgv8grC8jR7YnIkLIyMjh2LHTbscxIcAKvQkqK1YcBGDAgFbEx4fmBbabNo1l4MDWqMI33xxwO44JAVboTdBQ5exB2KFDA/zKIn4aPdrpvlm6NMsOyhq/WaE3QePgQTh4sJDExGh6927hdpx61b17c1q0iOPo0dNs22YHZY1/rNCboLHRcx2ztLTkgL0ebF2JiBCGD28HwLff2ph645/Q/t9iQkZJSRmbNzv3Q73bptyFF7ZD5PvhpMbUlhV6ExS++CKTwkKhTZsEUlNDa+x8RVq0iKdnzyRKSspITz/odhwTxKzQm6Awe/ZWAAYPTg76Ccxq4sILrfvG+M8KvQl4Z86U8OGHOwBCYgKzmhgwoDVxcVFkZuZx8GCh23FMkKqy0IvIKyJyWEQ2ei17XES2ish6EflQRJpV8Nw9IrJBRNaJiF1RwdTKokWZnDhxhtatleTkRm7HaVAxMZEMGtQagJUrs11OY4JVdfboXwXOnR37M6Cvqp4PbAf+u5LnX6yqA1Q1rXYRTbh7551tAPTq5XIQl5SfAbxy5UFUbUy9qbkqC72qfgUcPWfZIlUt8TxcDnSoh2zGcPp0CR9/7HTbhGuh79EjiSZNYsjJOcWePXluxzFBqC766O8EFlawToFFIrJaRKZU9iIiMkVE0kUkPScnpw5imVCwcOFu8vOLGDSoDUlJbqdxR0SEnD02Yd03pjb8KvQiMg0oAWZV0GSEqg4CxgNTRWR0Ra+lqi+oapqqprVq1cqfWCaElHfb3HhjD5eTuKu8+yY9/RBlZS6HMUGn1oVeRG4DrgT+TSvoOFTVLM/Pw8CHwJDabs+En5Mni5k7dycAN9wQ3oU+JaUJrVsnkJdXxJ49bqcxwaZWhV5ExgG/Ba5W1ZMVtGkkIonl94GxwEZfbY3xZf78XRQWFjNkSDKpqU3djuMqETm7V79pk8thTNCpzvDKt4BlQA8R2S8idwHPAYnAZ56hkzM9bduJyALPU9sA34hIBrASmK+qn9TLuzAh6ftum54uJwkM5YV+2zY4dcqmRDDVF1VVA1W92cfilytomwVM8NzfBfT3K50JWwUFRcyfvwuA66/v7nKawNCmTSNSUpqQmZnHvHm7uP768O7OMtVnZ8aagDR37k5OnSphxIj2dOwYHnPbVEf5Xv2bb25xOYkJJlboTUAq77YJ94Ow53Lm+lEWLNhtlxk01WaF3gScvLwzLFy4GxGYPNm6bbw1bRpLSgoUFZXy/vvb3Y5jgkSVffTG1Kfp018hKyv3B8s2bIAzZ4ROnZTp02ecXZ6enkFKytiGjhhw+vSBPXuc7pu77z7f7TgmCFihN67Kysr9UfGeO3ctcISRI3uRktLx7PIlS5Y3cLrA1KMHfPZZJEuW7CM7u4C2bRu7HckEOOu6MQGlsLCYzZtzEYGBA1u7HScgxcXBuHGpqMJ771n3jamaFXoTUNatO0xpqXom8op1O07AKj+34O23t7mcxAQDK/QmoKxefQiAtLQ2LicJbFdd1ZW4uCi+/fYA+/bZjJamclboTcAoKChiy5ajRESIddtUITExhokTOwPw7rvWfWMqZ4XeBIy1aw9TVqb07JlE48YxbscJeN9332x1OYkJdFboTcBYtcq6bWpi4sQuNGoUzcqVB9m9+7jbcUwAs0JvAsKxY6fZvv0oUVERZ6+RaiqXkBDN1Vd3BeygrKmcjaM3ASE9/RCqcP75LYmPj3Y7TkBLT1/LtGmPA1BcDCA89dRX5Od/9YN27dq1YOrUOxs+oAk4VuhNQCi/RF75JfNMxQoKzpw9yaxduzLmzfuSQ4dKiIu7kDZtGp1tl5m5yK2IJsBY141x3cGDhezdm09cXBT9+rV0O05QiY6OYMAA59Kb6emHXE5jApUVeuO6lSsPAjBoUGuioyNdThN8yr8FpacfdDmJCVRW6I2rVGHVKqfbpnyudVMzvXol0ahRNFlZhRw4UOB2HBOArNAbV2Vnw+HDp2jSJIYePZLcjhOUIiMjzp5gZnv1xhcr9MZV5Re6Hjw4mYgIcTdMECs/98AZvaQupzGBxgq9cU1paRmbNzv3rdvGP927NycxMZrDh0+yb1++23FMgLFCb1yzePE+CguF1q3jSUmx68L6IzIygkGDvt+rN8ZblYVeRF4RkcMistFrWZKIfCYi33l+Nq/gueNEZJuI7BCRB+syuAl+5Re4Hjy4LSLWbeOvtLTvR99Y943xVp09+leBcecsexD4QlW7AV94Hv+AiEQC04HxQG/gZhHp7VdaEzJOny45e81T67apG+ed14xmzWLJzT3Nnj02dbH5XpWFXlW/Ao6es/ga4J+e+/8ErvXx1CHADlXdpapFwGzP84xh3ryd5OUVkZysJCc3qvoJpkoREXK2+2bVKht9Y75X2z76NqqaDeD56WsWqvbAPq/H+z3LfBKRKSKSLiLpOTk5tYxlgsWrrzrDbfr2dTlIiCkffbN69SHKylwOYwJGfR6M9dXpWmHHoaq+oKppqprWqlWreoxl3JadXcDChbuJioqgTx+304SWLl2a0rJlPMePn2HvXrfTmEBR20J/SETaAnh+HvbRZj/Q0etxByCrltszIeT11zdTVqZcdVVXGlmvTZ0SkbPHPMrPUTCmtoV+DnCb5/5twMc+2qwCuolIZxGJAW7yPM+EMVXlf//XGcB1++22O18fhg5tC8DWrc5Bb2OqM7zyLWAZ0ENE9ovIXcBfgctF5Dvgcs9jRKSdiCwAUNUS4D7gU2AL8I6q2j5GmFuxIputW4/SunUC48d3djtOSEpObkSnTomcOSPMm7fT7TgmAFQ5H72q3lzBqkt9tM0CJng9XgAsqHU6E3LK9+ZvvbW3zVRZj4YObcvevfm88cYWJk/u4XYc4zI7M9Y0mIKCIt56y7mQ9R132HCb+jR4cDIiyoIFuzh69JTbcYzLrNCbBvP229vIzy/iwgvb0aePXWCkPjVtGkvnzlBcXMbs2VvdjmNcZoXeNJgXXsgAYMqU811OEh769XN+lneXmfBlhd40iIyMw6xceZCmTWO5/nrrM24I3bs7e/bp6YfYsMFOQgxnVuhNg3jxxfWAcxA2ISHa5TThIToabr65J2B79eHOCr2pd4WFRbz+ujPxvHXbNKw773QOer/xxmaKi0tdTmPcYoXe1LtZs7aQl1fEsGFt6dfPprdoSGlpyfTp04KcnFPMn7/L7TjGJVboTb1SVZ59di0Av/zlIJfThB8ROTuU9eWXN7icxrjFCr2pV19+uY+NG4+QnNyIyZO7ux0nLP3sZ32Ijo5gwYLd7N1r89SHIyv0pl6V783fc8/5xMTYmbBuaNUqgcmTu1NWpmcPipvwYoXe1Ju9e/P46KMdREVFcM89/d2OE9buvdf5/F96aYMdlA1DVuhNvZkxYx1lZcr113enbdvGbscJa6NGdaB37xYcPFjInDk20Vm4sUJv6sWpU8W8+KJz8M8OwrpPRM7u1c+Ysc7lNKahVTl7pTG18e///hK5uadITlbmzp3FvHm+26WnZ5CSMrZhw4WpW2/tzYMPfsUXX+xly5ZcevVq4XYk00Cs0Js6p6p8/nkBIIwb15fU1HYVtl2yZHnDBQtzzZrFceutfXj++QyefnoNM2de7nYk00Cs68bUuaVLszh0SGjcOPrsxapNYLj/fqcb7bXXNnHkyEmX05iGYoXe1Llnn10DOAcA7eIigaVnzxZMmNCZU6dKeP55G2oZLqzQmzqVlVXA++9/h4hy0UUd3I5jfHjggTQApk9fS1GRDbUMB1boTZ2aOXMdJSVl9OgBzZvHuR3H+HDppZ3o168l2dmFdlGSMGEHY021TZ/+CllZuRWuLymB554DEBo33gHYaJpAJCL86ldp3HHHJ/ztbyv56U97ExEhbscy9ajWhV5EegBvey3qAjykqk95tRkDfAzs9iz6QFUfre02jbuysnIrHQq5fHk2J09upH37xkRHH2nAZKambrmlFw899C2bN+cyZ84Orr22m9uRTD2qdaFX1W3AAAARiQQOAB/6aPq1ql5Z2+2Y4LF48V4ALr64I7tsRlzXpaevZdq0xytc37Mn7Nsn/OIXH7F/fxL33XdXA6YzDamuum4uBXaqamYdvZ4JMrt3n2DPnjwSEqIYOrStFfoAUFBwptJvYG3blrJ8+TdkZxexdOlR7ruvAcOZBlVXB2NvAt6qYN1wEckQkYUi0qeiFxCRKSKSLiLpOTl2fctgs2TJPgBGjGhvs1QGiZiYSC67rBMA337rchhTr/wu9CISA1wNvOtj9RogRVX7A88CH1X0Oqr6gqqmqWpaq1Z2FaJgkp9fRHr6QUSwIZVB5qKLOpCQEMXevcIXX9gX8lBVF3v044E1qnro3BWqmqeqBZ77C4BoEWlZB9s0AeTbbw9QUqL07duSVq0S3I5jaiA+PprLL08F4Pe//wZVdTeQqRd1UehvpoJuGxFJFhHx3B/i2V7F4/NM0CkrU776aj8AY8Z0dDmNqY1LLulIQoKyfHm2XVc2RPlV6EUkAbgc+MBr2b0icq/n4WRgo4hkAM8AN6ntMoSUDRtyyM09TatW8fTubbMhBqO4uCguvNC5/4c/fEtZmf0XDTV+FXpVPamqLVT1hNeymao603P/OVXto6r9VXWYqi71N7AJLEuWOHvzF13UwU66CWKDBkH79o1Zt+4w77+/3e04po7ZFAim1g4dKmTz5lyioyO48ML2bscxfoiKgj/8YTgADz30LaWlZS4nMnXJCr2ptS+/dPbmhwxJplGjaJfTGH/dcUdfOnduytatR5k1a4vbcUwdskJvauXMmVKWLs0C7CBsqIiJieThh53O+ocfXmozW4YQm9TM1MqKFdmcOlVC585N6dSpidtxjJ/Kp0soK4MWLZwzna+55u8M8nG533btWjB16p0NH9LUmhV6U2OqypdfOmfCXnyx7c2HAu/pEiZNOsQLL6xn+fI4Jk4c8aMznTMzF7kR0fjBum5Mje3ceZz9+wtITIxm0CC7VGCoGTiwNR07JnL8+BkWL97ndhxTB6zQmxorn9dm5MgOREfbr1CoiYgQrrvuPAA++WQ3J08Wu5zI+Mv+l5oaOXHiDGvWHEYERo+2IZWhqnfvFnTv3pyTJ0tYtMjmwAl2VuhNjXzzzQFKS5X+/VuRlBTvdhxTT0SEa6919uq/+CKTvLwzLicy/rBCb6qtrAyb1yaMdO3ajPPPb0lRURnz5++u+gkmYFmhN9W2fTscP36GNm0S6Nkzye04pgFce+15iMDXX+/nyJFTbscxtWSF3gBFnO8AABYtSURBVFRberrzc8yYjngmJTUhrn37RIYMaUtpqTJ37k6345haskJvqmXTpiPs3SvExkYyfHhbt+OYBnTVVV2IiBBWrMjmwIECt+OYWrBCb6rlH/9YB8DQoW2Jj7d5bcJJq1YJjBrVHlWYN8/26oORFXpTpby8M7z22ibADsKGq/HjOxMVJaxZc5jDh91OY2rKCr2p0uuvb6agoJiOHZX27Ru7Hce4oHnzOEaOdK4HbBcSDz5W6E2lVJXp09cCcMEFLocxrho3LpWoKGHLFti8+YjbcUwNWKE3lVqyZB9bthylbdtG9OjhdhrjpubN4xgxoj0g/M//LHc7jqkBK/SmUs895+zN33NPfyIjq2hsQt64calERChvv72VLVty3Y5jqskKvanQ/v35fPzxDqKiIpgy5Xy345gAkJQUT//+oAp/+pPt1QcLvwq9iOwRkQ0isk5E0n2sFxF5RkR2iMh6EfFxGQMTqJ5/PoPSUuUnP+lG27Z2ENY4LrwQoqMjmD17K9u2HXU7jqmGutijv1hVB6hqmo9144FuntsUYEYdbM80gKKiUl58cT0AU6cOcDmNCSRNmzrXly0rU9urDxL13XVzDfCaOpYDzUTETqsMAu+9t51Dh07St29LRo3q4HYcE2D++7+HEhUVwZtvbuG77465HcdUwd9Cr8AiEVktIlN8rG8PeF+iZr9n2Y+IyBQRSReR9JycHD9jGX+oKk89tRqAX/5yoM1rY34kNbUpt93Wh7Iy5W9/W+l2HFMFf68ZO0JVs0SkNfCZiGxV1a+81vuqEOrrhVT1BeAFgLS0NJ9tTMNYvjybVasOkpQUx09/2tvtOCbAlF9IPDoaROB//3c98fHraeLjGvF2IfHA4FehV9Usz8/DIvIhMATwLvT7Ae9z5jsAWf5s09S/p5929uanTDmfhASb18b8UPmFxFNSIC1tPatWHWLLlk7ccMOPT7SwC4kHhlp33YhIIxFJLL8PjAU2ntNsDvAzz+ibYcAJVc2udVpT7/bty+O997YTGSlMnTrQ7TgmwF1xRWfAma8+P7/I5TSmIv700bcBvhGRDGAlMF9VPxGRe0XkXk+bBcAuYAfwIvALv9KaevePf6yjtFSZPLk7HTokuh3HBLiOHRPp18+5CtW//rXX7TimArXuulHVXUB/H8tnet1XYGptt2Ea1smTxTz/vDOk8v77bWIbUz3jx3dmw4YjLF68j7FjU4mP9/fQn6lrdmasOeuNNzZz7NhphgxJZtiwdm7HMUGia9dmdO/enFOnSvjyy31VP8E0OCv0BnCGVD799BrA9uZNzY0blwrAF1/spaio1N0w5kes0BsAPv88k82bc2nXrjGTJ3d3O44JMr17t6BTp0Ty8opYutQG1gUaK/QG4OwJUlOnDiA62qapNDUjIowf74zAWbRoD6WlZS4nMt6s0Bu2bMllwYLdxMVF2SyVptYGDGhNcnIjcnNPs3LlQbfjGC9W6A2PPeacwn7bbX1o2TLB5TQmWEVECFdckQrAp5/uoazMTnAPFFbow9zevXm88cYWIiKE3/xmsNtxTJAbOjSZpKQ4srMLyciwOasChRX6MPfEE+mUlJRx44096Nq1mdtxTJCLjIxg7NgUABYu3I3aTn1AsEIfxo4cOXl2zvkHHxzqchoTKkaMaE9iYgyZmXns2eN2GgNW6MPaU0+t4dSpEiZO7ML557dyO44JETExkVx6aScAli51OYwBrNCHrdzcU2dnqZw2bZjLaUyoGTOmA3FxUWRmCsuW2bh6t1mhD1NPPJFOQUExV1yRyvDhNt2BqVvx8dFcfLEzQ/lf/rLC5TTGCn0Yysk5yTPPONMdPPLICJfTmFB1ySWdiIpS5s7dyfr1NgLHTVbow9D/+3+rKCwsZsKEzgwdapfwNfWjSZMYBniuK2979e6y+URD0PTpr5CVletzXX4+zJgBILRuvYvp01+xS72ZejN0KGRkRPD221uZNm0offvaQX832B59CMrKyvVc6u3Ht7VrO1BSIgwY0Jrhw8dW+AfBmLrQtCncc09/VOGhh2wIjltsjz6MZGcX8O23B4iIEK677jzg+ws9V0d6egYpKWPrM6IJQdOmDePllzfw4YffsWpVNoMHW3dhQ7NCH0Y++mgHqjBqVDuSkxsB31/ouTqWLFlen/FMiEpObsR//Mcg/va3lUyb9g2LFl3vdqSwY103YWLHjmOsW5dDTEwEV17Z1e04Jsz8138NpkmTGD77LJMvvsh0O07YsUIfBsrKlNmztwFw+eWpNG0a63IiE26SkuLPTrPxwAOLKSmx+eobUq0LvYh0FJHFIrJFRDaJyH/6aDNGRE6IyDrP7SH/4pra+PbbA+zbl0/z5rFnp5E1pqE98MAFpKY2YcOGI7z88ga344QVf/boS4Bfq2ovYBgwVUR6+2j3taoO8Nwe9WN7phZOnizmo492ADBpUndiY+3qUcYdcXFRPP74RQD8/vffcPz4aZcThY9aF3pVzVbVNZ77+cAWoH1dBTN1Y+7cXRQUFNOtWzPS0tq4HceEuUmTujNqVAeOHDnFww/bcMuGUid99CKSCgwEfJ3+NlxEMkRkoYj0qYvtmerJzMxj8eK9iMCNN/ZERNyOZMKciPD00xcTESE8++xaVq7MdjtSWPC70ItIY+B94H5VzTtn9RogRVX7A88CH1XyOlNEJF1E0nNybF4Mf5WWlvHGG5tRhUsv7UTHjoluRzIGgIED2/CrX11AWZly992fUlxc6nakkOdXoReRaJwiP0tVPzh3varmqWqB5/4CIFpEWvp6LVV9QVXTVDWtVSs7TdpfixfvY+/efJKS4rjqKhtOaQLLI4+MoEuXpmzYcITHHlvldpyQ58+oGwFeBrao6t8raJPsaYeIDPFsz865r2fHj8OcOTsBuPnmnsTF2XlxJrAkJETzwgvOiXqPPrqMdesOu5wotPmzRz8CuBW4xGv45AQRuVdE7vW0mQxsFJEM4BngJlW7imR9KitT5s2DM2dKueCCNnblKBOwLr00hXvv7U9RUSk33jiXgoIityOFrFrv6qnqN0ClR/dU9Tngudpuw9Tcs8+uYe9eITExhltu6el2HBPmqppLKTERWrWC7duPcdllM1m+/D8aMF34sO/0IWTbtqM8+ODXANx6ay8aN45xOZEJd9WZS+kXvyjgz39ewYoVRbz00nruvvv8BkoXPmwKhBBx+nQJN944l9OnS+jXT+nfv7XbkYyplnbtGnPzzc63z5///HObC6ceWKEPEQ88sJiMjBy6dm3GWJtJ2ASZESPaM3SoUlJSxqRJc9iyxcZs1CUr9CHg7be3MnNmBjExkbz77lXE2pxlJghdcgn85CfdOHHiDFdc8R47dx53O1LIsEIf5NatO8xdd30KwJNPjmHgQJvmwAQnEXj99QmMGNGeffvyGTPmbSv2dcQKfRDLzi7g6qs/pLCwmJ/+tDc///kAtyMZ45eEhGgWLpzEyJHt2b8/n4sums2GDXamvL+s0AepkyeLufbaj9i3L58LL2zHiy+OtblsTEhITIxh4cJJjB7dgQMHChgx4i0WLNjldqygZoU+CJ0+XcK1137EypUHSU1twocfXmNnv5qQ0rhxDJ98MombbupJfn4RV131IY89tpKyMjvfsjas0AeZoqJSJk+ew2efZdK6dQILF06idetGbscyps7Fx0fz5psT+eMfh1NWpvz2t18xYcL7HDpU6Ha0oGOFPojk5xdxzTUfMn/+Llq0iOeLL66nZ88Wbscypt6ICA8/PIK5c6+jRYt4Pv10D/36vcpbb23BZlOpPvu+HyT278/nyis/ICMjhxYt4vnss8n07Wvz2JjQUdV0CbfcAnPmQGbmKW65ZT4PPTSPyy+H5s0rf9127VowdeqddZw2uFihDwKLFu3h9tsXkp1dSPfuzVmwYBJduzZzO5Yxdao60yX07q0sXXqAN9/cwI4dUezZI1x8cScmTOhMQkK0z+dkZi6qj7hBxbpuAtjJk8Xcf/+/uOKK98jOLmTMmI4sW3aLFXkTtiIihJEjOzBw4DqGD29LSYny2WeZ/P7337J48T5KS8vcjhiQrNAHoLIy5dVXN9Kt28s8/fQaoqIi+L//dySff349SUnxbsczxnUxMcXcfntffve7oXTr1ozCwmJmz97KI48sY9WqgzY65xzWdRNATp8uYdasLfz97+ls3uzM9XHBBW2YOfNy0tKSXU5nTOBJSWnCr3+dxrp1Obz//nYOHTrJSy9tYN68XUyc2Nn+33hYoXeZqrJmzSFef30zs2Zt4ciRUwB07JjIn/88iltu6UVEhJ0IZUxFRISBA1vTr19Lli/PYsGC3Rw8WMjLL29k/vzdDBkCxcWlREdHuh3VNVboXVBcXMqyZVk88sjHrF17imPHvi/kbdooQ4dCr155bNkynz/8YT5gIweMqUpUVAQjR3Zg2LB2Pyj4c+YInTu/yC9/OZApU/rTvHmc21EbnBX6BrJr13E+/XQPn366h3/9ay/5+eWXTRMSE6MZPDiZoUPbkpLSxOdUBjZywJjqKS/4w4e3Y/nybObP38SBAwU8+ODXPProMu64oy9Tpw6kV6/wOQfFCn0dmz79FbKycjl9Gvbuhd27YdcufrDXDtCihdK4cQ433DCBLl2aVdk9U9UY4x+2zahymJoxoS4yMoIRI9rTvv0mRo+exJNPrmbRoj1Mn76O6dPXMXhwMrfd1oebbupJixahPcjBCn0dyc8v4uuv9/PGG7lkZzdl7948vE/cS0iIomfPJPr0aUHv3i1ISornn/98lPPOq+JsD4/qjDEut2TJ8tq8BWNCkgiMG9eZceM6s2FDDs8+u5bZs7eyatVBVq06yAMPLGbixC5cd103xo5NJTk59KYUsUJfC6rK3r15rF59iJUrD7JkyT7S0w9SWqo410vPIyJC6NKlKb16JdG7dwtSU5sQGWmjWY1xU79+rXjhhbE89dTFfPzxDl57bROLFmXy0Uc7+OijHQD079+KK65IZezYVNLSkmnaNPiv5ONXoReRccDTQCTwkqr+9Zz14lk/ATgJ3K6qa/zZZkMqLS1j//58du48wc6dx9mx4xjr1uWwevUhcnNP/aBtZKQwbFhbIiKyGDz4Arp2bUZsbPge5TcmkCUkRHPzzb24+eZeZGcX8O672/nkk90sWbKPjIwcMjJyeOyxVQB07tyUgQNbM2CAM7InJaUJnTo1ISkpLmimBq91oReRSGA6cDmwH1glInNUdbNXs/FAN89tKDDD87POFRQUsWlTLqWlZZSWKmVlSmmpnn3svby4uIxTp0ooLCzm5MliTp4s4cSJMxw5coojR06Rk3OSnJxTHDhQQFFRqc/ttWgRzwUXtOGCC9owalR7Ro7sQGJiDNOmPU5KSvgc5DEm0FX3+NbAgTB2bBJ9+17Gp586RX/DhiPs3n2C3btP8MEH3/2gfUJCFJ06NSE5uRHNm8fRvHms52ccCQlRxMZGEhtb/vP7W1RUBBERggien0JEhJxd1r9/K+LjfU/nUFv+7NEPAXao6i4AEZkNXAN4F/prgNfUmWZuuYg0E5G2qprtx3Z92rw5l2HDZtX1y5Kc3IiuXZvRtWtTunZtRt++LbnggjZ06uR7dIwxJrDU5PhWZuYiLrsshcsuSwGgpKSMrVtzWbcuh7VrD7F161H27s0nMzOP/Pwitm49ytatR+s07+bNd9T5iCCp7VSfIjIZGKeqd3se3woMVdX7vNrMA/6qqt94Hn8B/FZV03283hRgiudhD2BbrYLVnZbAEZcz1ESw5YXgyxxseSH4MgdbXgiczCmq6nNKW3/26H3tzp77V6M6bZyFqi8AL/iRp06JSLqqprmdo7qCLS8EX+ZgywvBlznY8kJwZPZnGMh+oKPX4w5AVi3aGGOMqUf+FPpVQDcR6SwiMcBNwJxz2swBfiaOYcCJ+uifN8YYU7Fad92oaomI3Ad8ijO88hVV3SQi93rWzwQW4Ayt3IEzvPIO/yM3mIDpRqqmYMsLwZc52PJC8GUOtrwQBJlrfTDWGGNMcLBTNY0xJsRZoTfGmBAXVoVeRJJE5DMR+c7z0+eMYiIyTkS2icgOEXnQa/nbIrLOc9sjIus8y1NF5JTXupkBlPlhETnglW2C17r/9rTfJiJXBEjex0Vkq4isF5EPRaSZZ3mdf8YVZfBaLyLyjGf9ehEZVI381Xr/DZlXRDqKyGIR2SIim0TkP72eU+Hvh5uZPev2iMgGT650r+WB+Bn38PoM14lInojc71lXr59xtahq2NyAx4AHPfcfBP7mo00ksBPoAsQAGUBvH+2eAB7y3E8FNgZiZuBh4P/4eE5vT7tYoLPn+ZEBkHcsEOW5/7fy59f1Z1ydf2ecgQQLcc4HGQasqEb+Kt+/C3nbAoM89xOB7VX9frid2bNuD9CyNr9jbuQ953UO4pzAVK+fcXVvYbVHjzMlwz899/8JXOujzdmpHVS1CCif2uEsERHgBuCtesxark4yV/C6s1X1jKruxhkZNcTtvKq6SFVLPO2W45x7UR+q85mdncJDVZcDzUSkbRXPrc77b9C8qpqtnskEVTUf2AK0r6Nc9ZK5itcNuM/4nDaXAjtVNbOOcvkt3Ap9G/WM4/f8bO2jTXtgn9fj/fz4P8Uo4JCqes9y1FlE1orIlyIyKsAy3+f5mvmK19fc6rxPt/KWuxNn76lcXX7G1clQUZvKnlud99/Qec8SkVRgILDCa7Gv34+64G9mBRaJyGpxpkgpF9CfMc45RefuBNbXZ1wtIVfoReRzEdno41bVHu7Zl/Cx7NwxqDfzw3/IbKCTqg4EfgW8KSJNAiTzDKArMMCT84lqPMfNvOXbmAaUAOUz1fn1GdcmQyVtav3Z+cHvKUdEpDHwPnC/quZ5Flf0+1EX/M08QlUH4cyCO1VERtdhNl/q4jOOAa4G3vVaX5+fcbWE3IVHVPWyitaJyKHyr7Ker1uHfTSrdNoGEYkCfgJc4LXNM8AZz/3VIrIT6A78aPK2hs6sqoe8XutFYF5Vz3Ezr+c1bgOuBC5VTyenv59xTTNU0SamkudW5/03dF5EJBqnyM9S1Q/KG1Ty++F6ZlUt/3lYRD7E6Vr5igD9jD3GA2u8P9d6/oyrJeT26KswB7jNc/824GMfbaqa2uEyYKuq7i9fICKtxJmfHxHpgjP//q5AyHxO/+F1wEav171JRGJFpLMn88oAyDsO+C1wtaqeLH9CPXzG/kzhUdlzq/P+GzSv55jSy8AWVf279xMq+f1wO3MjEUn0ZGyEc5De+3c3oD5jr/Xnftuv78+4etw8EtzQN6AF8AXwnednkmd5O2CBV7sJOCMTdgLTznmNV4F7z1k2CdiEc5R+DXBVoGQGXgc2AOtxfknbeq2b5mm/DRgfIHl34PSBrvPcZtbXZ+wrA3Bv+b8vztf06Z71G4C0auT3+f7r6LOtVV5gJE73wnqvz3VCVb8fLmfu4vm3zvD8uwf0Z+xZlwDkAk3Pec16/Yyrc7MpEIwxJsSFW9eNMcaEHSv0xhgT4qzQG2NMiLNCb4wxIc4KvTHGhDgr9MYYE+Ks0BtjTIj7/357kfGLrESSAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "from segregation.aspatial import GiniSeg\n", + "G_2000 = GiniSeg(gdf_2000, 'n_nonhisp_black_persons', 'n_total_pop')\n", + "G_2010 = GiniSeg(gdf_2010, 'n_nonhisp_black_persons', 'n_total_pop')\n", + "compare_G_fit = TwoValueTest(G_2000, G_2010, iterations_under_null = 1000, null_approach = \"random_label\")\n", + "compare_G_fit.plot()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The absence of significance is also present as the point estimation of the difference (vertical red line) is located in the middle of the distribution of the null hypothesis simulated." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Comparative Spatial Dissimilarity" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "As an example of a spatial index, comparative inference can be performed for the Spatial Dissimilarity Index (SD). For this, we use the *counterfactual_composition* approach as an example. \n", + "\n", + "In this framework, the population of the group of interest in each unit is randomized with a constraint that depends on both cumulative density functions (cdf) of the group of interest composition to the group of interest frequency of each unit. In each unit of each iteration, there is a probability of 50\\% of keeping its original value or swapping to its corresponding value according of the other composition distribution cdf that it is been compared against." + ] + }, + { + "cell_type": "code", + "execution_count": 34, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Processed 500 iterations out of 500.\r" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXcAAAEICAYAAACktLTqAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAAgAElEQVR4nO3deXhU5dn48e+dhSRAWLIQSIAECJsB2SKCrYqyWZfXrbZa69ZWW6vVttoWyu/t4ttFS1ttrRsqVSvuaKGu4IKgFiXshjUISBJCQlgDBLLcvz/OCQ4xIcvM5MxM7s91zTUzZ72fOck9zzznOc8RVcUYY0xkifI6AGOMMYFnyd0YYyKQJXdjjIlAltyNMSYCWXI3xpgIZMndGGMikCX3dkZEfikijzVz2SdE5Hct3H6FiPRvXXQgIvkiMqG16zewvT+KyI9buM7xMohIgoj8R0T2i8iL7rTfichuESkJVJyNxLFNRCYFcx/hSERuE5G7vY4j1FlyDwEi8lUR+chNIHtE5EMROS0A250gIoW+01T1D6r6vVZuq9ZNfBUiUigiL9SPU1U7q+pnrY1ZVXNUdVFr1/clIqnAtcAj7vvWlOHrQBqQrKpXiEgf4A7gFFXtGYg4w4WIxInIbBE5ICIlIvLTJpb/lohsF5FDIvJvEUnymfcnEdnhbmu7iMyot66669UdK98KySzg2yLSI7AljCyW3D0mIl2AV4H7gSQgA/gtcNTLuBpRrKqdgURgHLABWCIiE70Nq1HXA6+r6hGfaS0tQyawSVWrfd6Xq2ppkGIOZb8BBuJ8BucAPxeR8xpaUERycL5Ur8H5cjwMPOizyOPAEFXtApwBfEtELqu3mRHuF21n3wqJqlYCb+B8cZvGqKo9PHwAucC+k8y/HvgQJ/nvx0lGE33m3wCsBw4CnwHfd6d3Ao4AtUCF+0jH+Qd92mf9F4ESd9uLgRyfeU8Av3NfTwAKG4jvH0Cez3sFst3X5wPr3NiKgDvd6Sk4X2j7gD3AEiDKnbcNmOS+/o0b39PuNtYCg4DpQCmwA5hyks/uXeDbPu9bVAacL9ljQJX7+X2/3mf6RBPHNt1dPsln2ihgNxALDHBjLHenzQG6+Szr+1kcPxYNlcXd11ygDNgK3BaEv9Ui388b+D/guUaW/QPwjM/7Ae5nmdjAshnusf15Q39HjWz/auA9r/9/Q/lhNXfvbQJqRORJEfmaiHRvYJnTcRJ3CvBr4GWfn7ilwIVAF5xEf6+IjFbVQ8DXcGuq7qO4gW2/gVMb6wGswEkwLfEyMFpEOjUw73GcL5tEYBhOIgOnWaMQSMWp1f0S55+5IRcB/wK6AyuBt3B+cWYAd+E2uTRiOLCxtWVQ1V/jJKnn3c/vEU78TK8/2Ubdz/u/wOU+k78FvKSqVYAAf8RJzEOBPjhfaC0iIlHAf4DVOJ/LRODHIjK1keWnici+xh6NrNPdjXO1z+TVQE4jYeX4LquqW3CS+6B6cVTg/C10Ap6pt43FbvPPyyKSVW/eemBEI/s2WLOM51T1APBVnOT2KFAmIvNFJM1nsVLgPlWtUtXncRLWBe76r6nqFnW8DywAzmzB/mer6kFVPYqTWEaISNcWFKEYJ0l1a2BeFXCKiHRR1b2qusJnei8g0y3TEnWrYw1YoqpvqdMs8iLOF8LdbnJ8DsgSkYb2jRvTQT/L4K9ngKsARESAK91pqGqBqi5U1aOqWgb8FTi7Ffs4DUhV1btU9Zg65wsedff1Jap6t6p2a+zRyD46u8/7fabtx2neamz5/fWmnbC8qt7tvh+N8wXuu/zZQBYwBOf4vCoiMT7zDwIt+Tttdyy5hwBVXa+q16tqb5wabjpwn88iRfWS33Z3Gdza/lL3ROw+nKaQlObsV0SiReRuEdkiIgdwmgFo7vquDJwvpoZqfJe78WwXkfdFZLw7fSZQACwQkc9EZNpJtr/L5/URYLeq1vi8hy8ST317aTz5NLcM/noJGC8i6cBZ7n6WAIhIDxF5TkSK3M//aVr22dfJBNLr1b5/ifOrKFAq3OcuPtO60PiXZ0W9ZRtc3q2UrMQ5lr/1mb7Y/aLaB9wO9MP5dVMnkS9/eRgfltxDjKpuwGlfHeYzOcOt9dXpCxSLSBxOO+ufgTS31vU6Ti0UGm/qqPMt4GJgEk4tKMudLo2t0IBLgRVuM1D9sixT1Ytxmnz+DbzgTj+oqneoan+cZpefBumk7Bp8mgFOotEy+MtNTguAb+B83s/6fFH/EecYnarOicVv0/hnfwjo6PPet6fODmBrvRp4oqqe39CGxOkOW9HYo5Fy7AV2cmJTyAggv5F4832XFadraRxOM2RDYnDa5RujnPjZDOXEJiJTjyV3j4nIEBG5Q0R6u+/74PyMX+qzWA/gNhGJFZErcP6wXwc64PzDlAHVIvI1YIrPeruA5JM0syTi9Mopx0kcf2hmzCIiGSLya+B7OLXE+st0EJGrRaSr24RyAKhx510oItnuF1bd9Jr62wiA12mkmaM5ZQigZ3B6dlzOie3KiTg13H0ikgH87CTbWAWcLyJJItIT8O27/wlwQER+IU6//GgRGSaNdKdVpzts58YeJ4nhKeD/iUh3ERkC3IhTEWnIHOAiETnTPZdxF/Cyqh4UkSgR+b67HRGRscAtwDvg9LQRkZFuOToDf8E5mbveZ/tn45wvMo2w5O69gzgnTD8WkUM4Sf1TnJOOdT7GOem5G/g98HVVLVfVg8BtODXivTg1w/l1K7m/Ap4FPnN/rqfX2/dTOE08RTi9WpZyculuza4CWIZzwnKCqi5oZPlrgG1uk8MPcGqmuGV5293Of4EHNUB92+t5CichJvhMa2kZmuTWeE92nmM+Tpl3qapvbfO3OO3N+4HXcE7sNuZfODXVbTi/BJ6vm+E2U10EjMTpKbMbeIzAt0n/GtiC8zfzPjBTVd+sm+n7OahqPs4xn4NzzigR+KHPti51t3UQpznqfvcBTnPS8zhf/J/h/KK80K0kICLxOM19Twa4fBFFGj+PZUKBiFwPfE9Vv+p1LOFIRP4AlKrqfU0ubMKCiPwI6KOqP/c6llAW0/QixoQvVQ1mc4vxgKre3/RSxppljDEmAlmzjDHGRKAma+7iDBRUKiKfNjDvTnEG+EnxmTZdRApEZKM0coWcMcaY4GpOm/sTOGNvPOU70e2yNxn43GfaKThXxeXgXGTztogM8rnopEEpKSmalZXVosCNMSbsbXRHxxg8uFWrL1++fLeqpjY0r8nkrqqLGxjXAeBe4OfAPJ9pF+MMJHQU2CoiBcBYnO5ujcrKyiIvL6+pUIwxJrJMmOA8L1rUqtVFZHtj81p1QlVE/gfnkvj6V4hl4FwtV6fQndbQNm4SkTwRySsrK2tNGMYYYxrR4uQuIh2BGcCvGprdwLQGz9iq6ixVzVXV3NTUBn9VGGOMaaXW9HMfgDOIz2p3uJPewAr3EuJCnGFL6/TGGdHNGGNMG2pxzV1V16pqD1XNUtUsnIQ+WlVLcC6zvlKc23H1w7nk+pOARmyMMaZJzekK+SzOCdHB4txz8ruNLeuOJ/ECzjglbwK3NNVTxhhjTOA1p7fMVU3Mz6r3/vc4g1sZY4zxiA0/YIwxEciSuzHGRCBL7sYYE4FsyF8Tlh54YDbFxeXNXj49PZlbbvlOECMyJrRYcjdhqbi4nMzMKU0v6Nq+vdU3WjImLFmzjDHGRCBL7sYYE4EsuRtjTASy5G6MMRHIkrsxxkQgS+7GGBOBLLkbY0wEsuRujDERyJK7McZEIEvuxhgTgSy5G2NMBLLkbowxEciSuzHGRCBL7sYYE4EsuRtjTASy5G6MMRHIkrsxxkSgJpO7iMwWkVIR+dRn2kwR2SAia0TkFRHp5jNvuogUiMhGEZkarMCNMcY0rjk19yeA8+pNWwgMU9VTgU3AdAAROQW4Eshx13lQRKIDFq0xxphmaTK5q+piYE+9aQtUtdp9uxTo7b6+GHhOVY+q6lagABgbwHiNMcY0QyDa3L8DvOG+zgB2+MwrdKd9iYjcJCJ5IpJXVlYWgDCMMcbU8Su5i8gMoBqYUzepgcW0oXVVdZaq5qpqbmpqqj9hGGOMqSemtSuKyHXAhcBEVa1L4IVAH5/FegPFrQ/PGGNMa7Sq5i4i5wG/AP5HVQ/7zJoPXCkicSLSDxgIfOJ/mMYYY1qiyZq7iDwLTABSRKQQ+DVO75g4YKGIACxV1R+oar6IvACsw2muuUVVa4IVvDHGmIY1mdxV9aoGJj9+kuV/D/zen6CMaUxNTS1z527ixRfh4MGPKC8/Qvfu8WRldeHUU1MZMyaNqKiGTv0Y0760us3dmLb2n/9s4c47F7Fp016cc/eHACgtPUxp6WE++aSEt9/ezje+MZgBA7qddFvGRDpL7ibkqSq/+91SfvWrDwHo168rgwbtY+zY8SQlxbN79xE2bdrLggXb2LbtADNnLuOqq4Zw9tl9mtiyMZHLxpYxIa2mppZrrnmdX/3qQ0Tg7rvPZNOm7zJmDPTunUjHjrH07duFSZMyueuurzBlSiaq8MwzG3jttc/4oiOXMe2L1dxNSJs+fQlz5qwnMbEDzz57ARdcMKDRZePjY7j88kH06NGROXPWM3/+FqKjhfPO69eGERsTGiy5m5D1z3+uZebMZcTERDF//iVMmNC3WeudeWZvEhJiePTRtfz73wX07p1IYmKQgzUmxFizjAlJK1bs4vvfXwjAgw9OanZir5Ob25OLLuqPKjz++Fr27Gl6HWMiidXcTUh44IHZFBeXA1BbC088AVVVwujRyrZtbzFjxlsnLJ+Xt5rMzCkn3eb55/fn888Psnp1GfPmwf331xITY/UZ0z7YX7oJCcXF5WRmTiEzcwqffTaEkhKhe/d4rrvu3OPTfR8VFUea3GZUlHDDDTl07x7Pzp3Cffctb4OSGBMaLLmbkLJnTyXz5hUAcNVVQ4iP9+/HZUJCLFdfPQSA//3fDyko2Ot3jMaEA0vuJqTMn1/A0aM1jBrVgxEjAjNa6PDhqQwbplRWVnPjjQuse6RpFyy5m5BRVnaYjz8uISpKuPzygQHd9qRJkJKSwKJFO3j55c0B3bYxochOqJqg8T1J2pS8vNUcPtyb2lpl/PhepKZ2DGgsHTvCXXd9hR/+8G1+/vP3ufDC/sTF2Z+/iVz2122Cpu4kaXO8+eYKVq0qRgS+9rXgXHR0442n8sADK8nPL+fvf1/Bz35md4A0kcuaZUxIKCrKoLZWOe20nqSldQrKPmJiovjLXyYA8LvfLaWs7PDJVzAmjFlyN547cqSasjLn5Gmwau11pk7tx9SpWRw4cIw//3lZUPdljJcsuRvPffLJTmproxk0qDvp6Z2Dvr//+7+vAPCPf6yktPRQ0PdnjBcsuRtPqSqLFxcCcOaZGW2yz9NO68VFFw3g8OFq/vQnq72byGTJ3Xhq27YDFBZWEBNTxahRaW2239/85gwAHnxwFSUlVns3kceSu/HUkiVOrb1HjzJiY9vuz3H06DQuuSSbI0equeceu4e7iTyW3I1nKiurWbasBIC0tF1tvv+62vtDD62iuLiizfdvTDBZcjeeWbOmjGPHaunfvysJCZVtvv8RI3pw2WUDOXq0hrvv/rjN929MMDWZ3EVktoiUisinPtOSRGShiGx2n7v7zJsuIgUislFEpgYrcBP+8vKc2npubk/PYqirvT/yyBoKCw96FocxgdacmvsTwHn1pk0D3lHVgcA77ntE5BTgSiDHXedBEYkOWLQmYhw5Uk1+/m5EYMyYHp7FMXx4KldcMYhjx2r44x+t9m4iR5PJXVUXA/XvY3Mx8KT7+kngEp/pz6nqUVXdChQAdo23+ZLVq0uprlays7vRrVu8p7H8+tdO7f3xx9eyc6e1vZvI0No29zRV3QngPtdVvTKAHT7LFbrTjDlBKDTJ1MnJSeHSS52293vvtRt6mMgQ6BOq0sC0BgfPFpGbRCRPRPLKysoCHIYJZYcOVbFuXTkiMHq0d00yvqZPd35gPvTQKvbsafouT8aEutaOCrlLRHqp6k4R6QWUutMLgT4+y/UGihvagKrOAmYB5Obm2t0T2pG1a8uoqVEGD06iS5e4NtlnXt5KZsyYedJl+vWDrVuruOaa2bz22i1tEpcxwdLa5D4fuA64232e5zP9GRH5K5AODATsChFzgjVrdgMwcmRg7rTUHBUVR5scfviyy/bwl78s5913D3Pw4DESEzu0UXTGBF5zukI+C/wXGCwihSLyXZykPllENgOT3feoaj7wArAOeBO4RVVrghW8CT/V1bXk5zs38Dj11LZL7s0xcGB3BgzoSmWlMGvWaq/DMcYvzektc5Wq9lLVWFXtraqPq2q5qk5U1YHu8x6f5X+vqgNUdbCqvhHc8E242bx5L5WV1aSndyIlJcHrcE4gIseHHP7zn/OorKz2OCJjWs+uUDVtqq5JJtRq7XWGDUuhRw+lpOQQTzzxadMrGBOi7DZ7ps2oKmvWOD2jQjW5iwg9e26ltLQ/06YtZPv2hUQ1UQVKT0/mllu+0zYBGtNMltxNmykpOcTu3Ufo3DmWfv26eh1Oozp12kVa2jB27TrMrl05jBuXftLlt29f0EaRGdN81ixj2kxdk8ywYSlERTV0SURoEIGpU7MAePPNbdTWWk9dE34suZs2s36900tm2LAUjyNp2umn96J793h27jzEqlWlTa9gTIix5G7axLFjNWzevA8RGDo0yetwmhQTE8XUqZkAvPHGVlSt9m7CiyV30yYKCvZRXV1Lnz6JdO4cHhcHfeUrGSQmduDzzw+yfn39sfOMCW2W3E2bqGuSGTIk2eNImq9Dh2gmTeoLwOuvf+ZxNMa0jCV30ybqar6nnBL6TTK+zj67DwkJMWzevI+Cgr1eh2NMs1lyN0F38OAxduw4SGxsFNnZ3bwOp0USEmI45xxnLLw33tjmbTDGtIAldxN0GzY4tfbs7G7ExobfjbkmTuxLhw5RfPrpbj7//IDX4RjTLJbcTdDVtbcPHRo+7e2+OnfuwJln9gacfu/GhANL7iaoVJV165yaezh0gWzM5MmZREcLK1bsoqzssNfhGNMkS+4mqEpLD7N3byWJibH07p3odTit1r17PGPH9kQV3n77c6/DMaZJltxNUNXV2ocMSQrpIQeaY/LkLAA+/LCIiopj3gZjTBMsuZugCsf+7Y3JyOjMsGHJVFXVsmjRjqZXMMZDltxN0NTWwsaNTt/wcOvf3pgpU7IAeO+9HRw7ZjcZM6HLkrsJmuJiqKysJi2tI0lJoXXXpdYaNKg7mZldqKio4r//bfDe78aEBEvuJmi2bnWew7ULZENEhClTnAHFFi7cbsMBm5Blyd0EzRfJPTKaZOqMGtWDlJQEysqO2HDAJmRZcjdBcfDgMYqLISpKGDy4u9fhBFR0dNTxAcUWLNiOjQZsQpEldxMUixbtoLZWyMrqQkJCrNfhBNwZZ2TQqVMsW7fup7DQ62iM+TK/kruI/ERE8kXkUxF5VkTiRSRJRBaKyGb3ObKqbaZZ3n57OxBZ7e2+4uKiOessZ0iCvDyPgzGmAa1O7iKSAdwG5KrqMCAauBKYBryjqgOBd9z3pp1ZuHAbEHnt7b7OPrs3UVHChg1QWHjQ63CMOYG/zTIxQIKIxAAdgWLgYuBJd/6TwCV+7sOEmcJC585FHToo/ft39TqcoOnePZ5Ro3qgKjz88GqvwzHmBK1O7qpaBPwZ+BzYCexX1QVAmqrudJfZCfRoaH0RuUlE8kQkr6ysrLVhmBBU1yTTt69z8jGSnXuuM9b7rFmrqays9jgaY77gT7NMd5xaej8gHegkIt9u7vqqOktVc1U1NzU1tbVhmBC0cKGT3Pv18ziQNjBgQDfS0pSysiM8//wGr8Mx5jh/qlWTgK2qWqaqVcDLwBnALhHpBeA+W0fgdkRVj9fcs7K8jaUtiAi5uc7r++9fiVq/SBMi/EnunwPjRKSjiAgwEVgPzAeuc5e5DpjnX4gmnKxdu5vS0sOkp3cmJcXraNpGTg6kpCSwfPkuG5LAhAx/2tw/Bl4CVgBr3W3NAu4GJovIZmCy+960E2+95VyWOnlyJhLeI/w2W0wM3HjjqQD8/e8rPI7GGIdfZ7tU9deqOkRVh6nqNap6VFXLVXWiqg50n/cEKlgT+upuQ/e1r7WDBncfN988guhoYe7czRQVWbdI473I7spg2lRFxTGWLCkkKkqYNCnT63DaVJ8+Xbj00oFUV9dat0gTEiy5m4B5770dVFXVMnZsT5KTI2OI35b40Y9GAfD442upqrKx3o23LLmbgHnzTae9/bzz2leTTJ0zz+zNkCFJ7Nx5iNde+8zrcEw7Z8ndBMxbb20D2m9yFxFuusk5sTpr1hqPozHtnSV3ExAFBXvZsmUfSUnx5OameR2OZ669NocOHaJ5882tbN++3+twTDtmyd0ExBtvfNEFMtKHHDiZ5OQEvv71Qag6be/GeKX9/heagPrPf7YAcP75/T2OxHs33jgcgNmzP6W6utbjaEx7Zcnd+G3fvkree28H0dHCBRdYcj/77D4MHNidoqKK479ojGlrltyN315/fSvV1bWceWbvdtkFsr4TT6xan3fjDUvuxm/z5hUAcMkl2R5HEjquuy6H2NgoXn99Kzt2HPA6HNMOWXI3fjl6tJrXX3f6dF98sSX3OqmpHbnssoHU1iqzZ3/qdTimHbLkbvzy7rufU1FRxYgRqWRlRe5dl1rjpptGAE6vmZoaO7Fq2pYld+OXefOcXjJWa/+yCRP6kJ3djR07DrJgwTavwzHtTIzXAZjwVVVVw9y5mwC49NKBHkfjnby8lcyYMbPBeRkZUFAg3HHHXD74ANLTk7nllu+0cYSmPbLkblrtrbe2sXv3EU45JZkRI9rvrRIrKo6SmTmlwXmJiUdYvPgDNm+OJjX1LIqL32vj6Ex7Zc0yptX+9a91AHz726cg7eXOHC2UlJTA4MFJVFfXkpe3y+twTDtiyd20yv79R5k/32lvv/rqoR5HE9rGj08H4KOP7BZ8pu1YcjetMnfuJiorq5kwoQ99+3bxOpyQNmpUD+Ljo9m6dT+7d3sdjWkvLLmbVnn66S+aZMzJxcVFM2aMM1LmWhtLzLQRO6FqWmzz5r28994O4uKi+frXB3kdTlgYPz6dDz8sZsWKKqZPn0lUM6tV1rvGtJYld9Nif//7CsCptXftGudxNOEhO7sbKSkJ7N4NR46M5pRTkpu13vbtC4IcmYlU1ixjWmTfvkr++U/ncvrbbx/tcTThQ0Q44ww7sWrajl/JXUS6ichLIrJBRNaLyHgRSRKRhSKy2X3uHqhgjfcef3wthw5VMXFiX4YPb79921tj3LheAKxaVcrhw1UeR2Minb81978Bb6rqEGAEsB6YBryjqgOBd9z3JgJUV9dy//0rAfjxj8d4HE34SU5OoEuX/VRVWZ93E3ytTu4i0gU4C3gcQFWPqeo+4GLgSXexJ4FL/A3ShIZnn13P9u0HyM7uZndcaqUePUoBWLp0p8eRmEjnT829P1AG/FNEVorIYyLSCUhT1Z0A7nOPhlYWkZtEJE9E8srKyvwIw7SFyspqZsz4AIAZM8YRFWVXpLZGcvIeYmOj2LJlH7t3H/E6HBPB/EnuMcBo4CFVHQUcogVNMKo6S1VzVTU3NdXabkPd/fevYMeOg5x6airXXGN921srOrqWkSOdv/dly0o8jsZEMn+SeyFQqKofu+9fwkn2u0SkF4D7XOpfiMZr5eVH+P3vncP8pz+dRXS0dbLyx2mnOSdWP/lkJ6rqcTQmUrX6v1RVS4AdIjLYnTQRWAfMB65zp10HzPMrQuO56dOXsH//USZNymTKlCyvwwl7OTnJdOoUS3HxIYqKKrwOx0Qof6tgPwLmiMgaYCTwB+BuYLKIbAYmu+9NmHr99c949NE1dOgQzX33nWOjPwZATEwUY8Y4p6I+/tiaZkxw+HWFqqquAnIbmDXRn+2atvPAA7MpLi5vcN7hw/DYYwDCV79azaJF88nJsUvhA2Hs2F4sXlzEsmUlXHpptp2gNgFnww+0c8XF5Q3eaKK2VnnkkdVUVJSRnd2NK67IZceOhR5EGJkGDOhGUlI8e/ZUUlCwj0GD7Fo/E1h2Zsw0aP78LaxaVUZ8fAzXX59jNcsAi4oSTjutJwDLllmfdxN4ltzNlyxdWswbb2wlKkr4/vdPJTW1o9chRaTTT3eS+/LlpVRX13ocjYk0ltzNCQoK9h6/fd43vzm42aMXmpbLyEgkPb0zhw5VkZ9vd/EwgWXJ3RxXVnaYhx5aTXW1cs45fZgwoY/XIUW8utr7J59YrxkTWHZCNcKcrPdLQ/LyVpOZOYUjR6p44IFVVFRUkZOTzBVX2E042sJpp/XklVcKWL26jMrKauLj7V/SBIb9JUWYxnq/NGbRoqXU1NTy6KNr2bnzEL16deLGG4fbVahtJDk5gezsbhQU7GPVqlLGjUv3OiQTIew/2PDii5vIzy+nc+dYbr11FAkJsV6H1K6MHes0zdgFTSaQLLm3c7t29eC993YQEyPcfPNIUlISvA6p3RkzJo2oKGHDhj0cOHDU63BMhLDk3o4VF1ewdWsW4NwPNTu7m7cBtVOdO3cgJyeZ2lq1m3iYgLHk3k5VVdXw2GNrqa2NZvz4Xowfb229Xjr99LqRIq1pxgSGJfd26pVXCigqqiA+/ghXXjnE63DavVNPTSUuLpqtW/dTVnbY63BMBLDk3g5t336Ad9/9nKgoYdCgzdb9LgTExUUzcqQzUqTV3k0gWHJvZ2prlWeeWY8qnHtuHzp3PuR1SMZV12vmk09K7CYexm+W3NuZDz4oYtu2A3TrFsdFFw3wOhzjY+jQJBITYykpOURhod3Ew/jHkns7cvhwFa+8shmAb3xjsDXHhJjo6CjGjKmrvdtIkcY/ltzbkYULt3P4cDWDBnVn9OgeXodjGlDXNLNsWQm1tdY0Y1rPkns7cfDgMd5553MALrkk226XF6L69+9KcnI8e/cepaBgn9fhmDBmyb2deOutbRw9WsOwYSkMGGAXK4UqEbuJhwkMS+7twP79R1m0aAcAF19sJ1FD3dixzgVNy5eXUlPjcTAmbFlyb3Hb2RcAABPASURBVAfefvtzqqpqGTmyB337dvE6HNOEjIzOZGQ4N/H47DOvozHhypJ7hDtypJrFiwsBOO+8LG+DMc1Wd2I1P9/jQEzY8rsvnIhEA3lAkapeKCJJwPNAFrAN+Iaq7vV3P6Z1PvigiMrKarKzu9GvX1e/tpWXt5IZM2a2YPnVLRpb3nwhN9e5icfmzVBRcYzOnTt4HZIJM4Ho6Hw7sB6o+70/DXhHVe8WkWnu+18EYD+mhWpqao/3kJkyJcvv7VVUHG3xjUBM66SkJDBgQDe2bNnH/Plb+Na3hnodkgkzfjXLiEhv4ALgMZ/JFwNPuq+fBC7xZx+m9fLydrF3byU9e3Zi+PAUr8MxLVTXa2bOnHUeR2LCkb9t7vcBPwdqfaalqepOAPe5watlROQmEckTkbyysjI/wzANef99p4fMxIl9iYqyfu3hJjc3DRFlwYLtlJbaGECmZVqd3EXkQqBUVZe3Zn1VnaWquaqam5qa2towTCOKiirYsmU/8fHRx0/OmfCSmNiBAQOgurqW557b6HU4Jsz4U3P/CvA/IrINeA44V0SeBnaJSC8A97nU7yhNi9X1kDn99F42hkwYGz7ceX7qKes2Y1qm1cldVaeram9VzQKuBN5V1W8D84Hr3MWuA+b5HaVpkaNHa1i61Lm68cwze3scjfHHwIHQtWscy5fvIj9/t9fhmDASjH7udwOTRWQzMNl9b9pQXl4JlZXV9OvXlT59Er0Ox/ghJga++c3BAPzrX3Zi1TRfQJK7qi5S1Qvd1+WqOlFVB7rPewKxD9N8dU0yZ51ltfZIcO21OQA8/fQ6ampqm1jaGIddoRphSkpg27YDdOwYQ25umtfhmAA444x0BgzoRlFRBQsXbvc6HBMmLLlHmJUrnedx43rRoUO0t8GYgBARbrhhGACPP77W42hMuLDkHkEOHjx2fCwSO5EaWa6/PoeoKGHevALKyg57HY4JA5bcI8izz67n2DEhO7sb6emdvQ7HBFBGRiJf+1o/qqpq7cSqaRZL7hFCVXn44dWAnUiNVN/7ntPp/bHH1qBqt+AzJ2fJPULk5ZWwcmUpCQlq90eNUBdc0J+0tI6sX7+Hjz4q9jocE+IsuUeIRx5ZAzhXNMbG2onUSBQbG8311zsnVh96aJXH0ZhQZ8k9Auzff5Rnn10PwKhRHgdjguoHPxhBVJTwwgsbKSmxwcRM4yy5R4Cnn17H4cPVnHNOH5KTvY7GBFNWVlcuumgAVVW1PProGq/DMSHMknuYU1UeecQ5kfr974/wOBrTFm691fl59vDDq6mqsjtom4ZZcg9zS5fuZO3a3aSmJnDppQO9Dse0gYkT+zJkSBLFxRW88spmr8MxIcqSe5irq7V/5zvD7YrUdkJEjtfe//rX5dYt0jTIknsY27u3kuefd27icOONp3ocjWlL11+fQ3JyAh9/vJNFi3Z4HY4JQZbcw9hTT+VTWVnNlClZDBjQzetwTBvq1KkDt93m1N7/+MePPY7GhCJL7mHqxBOpVmtvj269dRSdO8eycOF2li8v8TocE2IsuYepDz4oYv36PfTs2YmLLhrgdTjGA0lJCcd7SFnt3dRnyT1M/eMfzti+3/3ucLsitR376U9ziYuLZu7czaxcucvrcEwIseQehgoLDzJ37iaio4Wbb7a+7e1Zenrn4z1npk1b4nE0JpRYcg9DDz64ipoa5etfH0RGht0jtb2bPv10unTpwIIF23jnHbtTk3FYcg8zR45UMWuWc9n5bbeN9jgaEwqSkxOYNu10AH7xi8XU1lq/d2PJPew888wGysuPkJubxvjx6V6HY0LE7bePJj29M8uX7+KJJz71OhwTAiy5h5HaWuXee/MAp9YuIh5HZEJFx46xzJx5NgA/+9n7dis+0/rkLiJ9ROQ9EVkvIvkicrs7PUlEForIZve5e+DCbd9efXUL+fnl9O6dyDe/OcTrcEyIueqqIUyalMmePZX87Gfvex2O8Zg/Nfdq4A5VHQqMA24RkVOAacA7qjoQeMd9b/ykqsf7Mt9xR66NI2O+RER48MFJxMVF8+ST+XZytZ1rdXJX1Z2qusJ9fRBYD2QAFwNPuos9CVzib5AGFi8uZOnSnSQnJ3DjjcO9DseEqIEDu/P//t84AK677g3Ky494HJHxSkDa3EUkCxgFfAykqepOcL4AgAZv6CkiN4lInojklZWVBSKMiFZXa7/ttlF06tTB42hMKJs27XTGj0+nqKiCG29cYKNGtlN+J3cR6QzMBX6sqgeau56qzlLVXFXNTU1N9TeMiPbhh0W89dY2OnWKPX7BijGNiYmJYs6c8+nSpQOvvLKZhx9e7XVIxgMx/qwsIrE4iX2Oqr7sTt4lIr1UdaeI9AJK/Q2yPVNVfvlL58rDn/50DElJCR5HZNpSXt5KZsyY2axl09OTueWW7wDQr183Hn54Mt/61mvcfvu75OQkc9ZZfYIZqgkxrU7u4vTDexxYr6p/9Zk1H7gOuNt9nudXhO3cggXbWLy4kKSkeO644zSvwzFtrKLiKJmZU5q17PbtC054f9VVQ1m2rIR7713O5ZfP55NPrqZfPxsaur3wp1nmK8A1wLkissp9nI+T1CeLyGZgsvvetEJtrfLLX34AwLRpY+naNc7jiEy4+dOfzmbq1Cx27z7ChRe+YidY25FW19xV9QOgsatoJrZ2u+YLzzyznhUrdtGrVyduucXa2s3JNdaEk5MDy5fDunXlnHrqP7jqKoiLO7EZx0Qev9rcTfAcOHD0+IUof/jDmXTsGOtxRCbUnawJ5847K5k5cxnFxZW8+mp3br11FMXF77RxhKYt2fADIeq3v/2IkpJDjB+fzrXX5ngdjglz3bvH85OfjKFr1w5s3LiX++9fydGjXkdlgslq7iEoP383f/vbCkTgrLMq+N///XOz183LW93sE3CmfUlN7chPf5rLvfcuZ9OmvTz3HMyYUUn37vFeh2aCwJJ7iKmuruWGG96kpka5+eYRREevalGyXrRoaRCjM+GuZ89O3Hmnk+CLiioZP/4ZXn31UrKzbQioSGPNMiHmj3/8mGXLSujbN5G77z7L63BMBEpN7cidd55Gjx7Kxo17GDfuGZYsKfQ6LBNgltxDyIoVu7jrrv8CMHv2eXTpYl0fTXAkJcVzzTVwwQX9KS8/wqRJL/L00+u8DssEkCX3ELF//1GuuupVqqtrufXWUUycmOl1SCbCxcXBvHmXcPvtozl2rIZrrnmdGTOWUFNT63VoJgAsuYeA2lrl+uvfYNOmvQwblsI991hzjGkb0dFR3HffufzjHxOJihL+8IePmTLlJUpKDnkdmvGTnVANAffc8wn//ncBXbvG8corF1ufdtMm6l/0dOWVMG8evPvu52RnP8gFF0B29hfL20VP4cWSu8eee24DM2Y4A4M9/fT51mvBtJn6Fz1lZsLIkUd57LG1bNq0lxdegDPPzODyyweRkBDzpbFrTGizZhkPLVy4jWuvfR1VuOees7jwwgFeh2Taua5d4/jJT8Zw2WUDiYkRliwp4je/+Yjly3dhw8KHF6u5e+CBB2azdGk5L7wAVVXC2LHKvn3vM2PGl+97aRclmbYWFSVMnZrFsGHJPPXUOrZtO8CsWWvIzITLLy9hzJieXodomsGSuwc++KCcuXOjqaqqZdy4Xlx3XQ5RUQ2PwWYXJRmvZGQk8otfjGXJkkL+/e8Ctm+vJjf3aS6/fCDTpp1Obq4l+VBmyb2NzZmzjhdegNraWr761Qyuvnpoo4ndGK9FRQlnn92H3NyevPDCe6xcGcPcuZuZO3czEyb04eabR3DJJQO/dMP2Bx6YTXFxebP3YydrA8+Sexupqall+vQlzJy5DBAmTuzLFVcMwrnniTGhrVOnWM49F1566Xvcd99yHnlkDYsW7WDRoh2kpCRw2WUDufzyQZxzTh9iY6MpLi5vUXOinawNPDuh2gYKCw8yZcpLzJy5jOhoYcoUtcRuwlJGRiIzZ07g889v4v77z2X48BR27z7CrFlrmDr1JdLSHuL6699g40aorKz2Otx2zWruQaSqPPPMem699R327TtKamoCzz9/EW+//bwldhPWunWL59ZbR3PLLaNYs6aMuXM3MXfuZtatK+fJJ/MB4ZVXFpGd3Y2cnGSGDUshI6Oz/d23IUvuQbJ2bRk/+tE7vP++MyDThRf257HHppKW1om33/Y4OGMCREQYMaIHI0b04K67vsr69eW8/PJmHn54CUVFsGnTXjZt2ssrrxTQtWsHcnJSyMlJZujQZDp1sov1gsmSe4Bt2FDO7363lGef3UBtrZKSksA995zFDTcMs1qLiXhDhyYzY0Yyhw8vISVlAhs27CE/fzf5+eXs23eUjz4q5qOPihGB/v27Hk/2JvAsuQdAba2ycOE2HnhgFa++ugVViImJ4oc/HMldd33FboZgIkJj92hteNnVXH75FMaMSWPMmDRUlaKiCvLzy8nP301BwT62bNnPli37mT9/CwkJ8Pnnr3Heef2YMiWTHj06Bbk0kc+SeyvV1ip5eSW8+OJGnn9+Izt2HASgQ4dobrhhGNOnjyUzs6vHURoTOCe7R2t99a/PEBF6906kd+9Epk7NorKy2q3VO8m+vLySOXPWM2fOegBOOSWZM85IZ/x45zF4cJJ1GW4hS+7NdOxYDatXl/Lxxzv57393snDhNsrKjhyfn5nZhZtuOpXvfW+41TqMaUJ8fAwjR/Zg5MgeqCorVy5kyJBzefPNrSxatIN168pZt66cxx5bC0CXLh0YNiyF4cNTGT48hWHDUsjO7kavXp0t6TciaMldRM4D/gZEA4+p6t3B2lcgVVZW89ln+9i8eR+bNzsngz79dDcrVuzi6NGaE5bNzOzCRRcNIDa2gPj4/Rw6tIS//W1Jk/uwIQWM+YKIsHXrSpKTYcwYGDECdu2CoiIoLHQeBw4cO95e7ysuLprMzC7069f1+CMrqws9e3YiLa0TaWkd6do1rl2e7wpKcheRaOABYDJQCCwTkfmqGtBbvRQXV7Bt235qapSamlr3+cuvq6trOXy4moqKYxw6VEVFhfM4dKiKffsq2bXrMLt2Haak5BD79zd+S/jBg5M4/fSenH56LyZM6MPQocmICDNmrLD7nBrjh/pNPgPqjaF34MBRiooqKCqqYNOmjcTHp/PZZ/soKztyvEdOY+LiounRoyNpaR1JSUkgMbHDCY8uXZzn+PgYYmKiiI2NIiYmqsHXUVFC3ffEmDFpxMWFbuNHsCIbCxSo6mcAIvIccDEQ0OT+9NPr+MUvFgdyk8TERJGZ2YWBA7sxcGB3Bg7szuDBSZx2Wk87MWqMR7p0iaNLlziGDk1m4MCN/P73VwNQUXGMbdv2s3XrAbZu3c/WrfvZvv0Au3Ydcitth6ioqGLHjoPHz4sFyvbtN9G3b5eAbjOQRIMwjqeIfB04T1W/576/BjhdVW/1WeYm4Cb37WBgY8AD8UYKsNvrIALMyhQ+IrFcVqbGZapqakMzglVzb6iB64RvEVWdBcwK0v49IyJ5qprrdRyBZGUKH5FYLitT6wRrbJlCoI/P+95AcSPLGmOMCbBgJfdlwEAR6SciHYArgflB2pcxxph6gtIso6rVInIr8BZOV8jZqpofjH2FoIhrasLKFE4isVxWplYIyglVY4wx3rLx3I0xJgJZcjfGmAhkyf0kROQ8EdkoIgUiMq2B+SIif3fnrxGR0T7zZotIqYh8Wm+dJBFZKCKb3efubVEWn/0Ho0y/EZEiEVnlPs5vi7LUi6FV5RKRPiLynoisF5F8EbndZ52wPFZNlMnTY+VHmeJF5BMRWe2W6bc+63h6nNwYglEu/46VqtqjgQfOieAtQH+gA7AaOKXeMucDb+D06x8HfOwz7yxgNPBpvXX+BExzX08D7omAMv0GuDMcjxXQCxjtvk4ENtWtG67HqokyeXas/CyTAJ3d17HAx8A4r49TkMvl17Gymnvjjg+hoKrHgLohFHxdDDyljqVANxHpBaCqi4E9DWz3YuBJ9/WTwCVBib5hwSqT11pdLlXdqaorAFT1ILAeyPBZJ+yOVRNl8pI/ZVJVrXCXiXUf6rOOV8cJglcuv1hyb1wGsMPnfSFf/gdpzjL1panqTgD3uYefcbZEsMoEcKv7c3O2Bz+LA1IuEckCRuHUniACjlUDZQLvjpVfZRKRaBFZBZQCC1U1FI4TBK9c4MexsuTeuCaHUGjmMqEkWGV6CBgAjAR2An9peWh+8btcItIZmAv8WFUPBDC21gpWmbw8Vn6VSVVrVHUkzhXvY0VkWIDja61glcuvY2XJvXHNGUKhNcMs7Kpr5nCfS/2MsyWCUiZV3eX+gdYCj+L8TG1LfpVLRGJxkuAcVX3ZZ5mwPVaNlcnjYxWQvz9V3QcsAs5zJ3l5nCBI5fL3WFlyb1xzhlCYD1zrngkfB+yv+3l4EvOB69zX1wHzAhl0E4JSprp/LNelwKeNLRskrS6XiAjwOLBeVf/awDphd6xOViaPj5U/ZUoVkW4AIpIATAI2+Kzj1XGCIJXL72PV2jOx7eGBc4Z7E86Z8BnutB8AP9AvznQ/4M5fC+T6rPsszk+pKpxv7e+605OBd4DN7nNSBJTpX+6ya9w/4l7hcqyAr+L8PF4DrHIf54fzsWqiTJ4eKz/KdCqw0o37U+BXPtv09DgFsVx+HSsbfsAYYyKQNcsYY0wEsuRujDERyJK7McZEIEvuxhgTgSy5G2NMBLLkbowxEciSuzHGRKD/D0i2/gm88lUUAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "from segregation.spatial import SpatialDissim\n", + "SD_2000 = SpatialDissim(gdf_2000, 'n_nonhisp_black_persons', 'n_total_pop')\n", + "SD_2010 = SpatialDissim(gdf_2010, 'n_nonhisp_black_persons', 'n_total_pop')\n", + "compare_SD_fit = TwoValueTest(SD_2000, SD_2010, iterations_under_null = 500, null_approach = \"counterfactual_composition\")\n", + "compare_SD_fit.plot()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The conclusion is that for the Spatial Dissimilarity index under this null approach, the year of 2000 was more segregated than 2010 for the non-hispanic black people in the region under study." + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.8.8" + }, + "widgets": { + "application/vnd.jupyter.widget-state+json": { + "state": {}, + "version_major": 2, + "version_minor": 0 + } + } + }, + "nbformat": 4, + "nbformat_minor": 4 +} diff --git a/_sources/notebooks/06_decomposition_example.ipynb.txt b/_sources/notebooks/06_decomposition_example.ipynb.txt new file mode 100644 index 00000000..4a5ef6ad --- /dev/null +++ b/_sources/notebooks/06_decomposition_example.ipynb.txt @@ -0,0 +1,845 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Segregation Index Decomposition" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Table of Contents\n", + "* [Decomposition framework of the PySAL *segregation* module](#Decomposition-framework-of-the-PySAL-*segregation*-module)\n", + "\t* [Map of the composition of the Metropolitan area of Los Angeles](#Map-of-the-composition-of-the-Metropolitan-area-of-Los-Angeles)\n", + "\t* [Map of the composition of the Metropolitan area of New York](#Map-of-the-composition-of-the-Metropolitan-area-of-New-York)\n", + "\t* [Composition Approach (default)](#Composition-Approach-%28default%29)\n", + "\t* [Share Approach](#Share-Approach)\n", + "\t* [Dual Composition Approach](#Dual-Composition-Approach)\n", + "\t* [Inspecting a different index: Relative Concentration](#Inspecting-a-different-index:-Relative-Concentration)\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "This is a notebook that explains a step-by-step procedure to perform decomposition on comparative segregation measures.\n", + "\n", + "First, let's import all the needed libraries." + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "import pandas as pd\n", + "import pickle\n", + "import numpy as np\n", + "import matplotlib.pyplot as plt\n", + "\n", + "import segregation\n", + "from segregation.decomposition import DecomposeSegregation" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "In this example, we are going to use census data that the user must download its own copy, following similar guidelines explained in https://github.com/spatialucr/geosnap/blob/master/examples/01_getting_started.ipynb where you should download the full type file of 2010. The zipped file download will have a name that looks like `LTDB_Std_All_fullcount.zip`. After extracting the zipped content, the filepath of the data should looks like this:" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "#filepath = '~/LTDB_Std_2010_fullcount.csv'" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Then, we read the data:" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [], + "source": [ + "df = pd.read_csv(filepath, encoding = \"ISO-8859-1\", sep = \",\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We are going to work with the variable of the nonhispanic black people (`nhblk10`) and the total population of each unit (`pop10`). So, let's read the map of all census tracts of US and select some specific columns for the analysis:" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [], + "source": [ + "# This file can be download here: https://drive.google.com/open?id=1gWF0OCn6xuR_WrEj7Ot2jY6KI2t6taIm\n", + "with open('data/tracts_US.pkl', 'rb') as input:\n", + " map_gpd = pickle.load(input)\n", + " \n", + "map_gpd['INTGEOID10'] = pd.to_numeric(map_gpd[\"GEOID10\"])\n", + "gdf_pre = map_gpd.merge(df, left_on = 'INTGEOID10', right_on = 'tractid')\n", + "gdf = gdf_pre[['GEOID10', 'geometry', 'pop10', 'nhblk10']]" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "In this notebook, we use the Metropolitan Statistical Area (MSA) of US (we're also using the word 'cities' here to refer them). So, let's read the correspondence table that relates the tract id with the corresponding Metropolitan area..." + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [], + "source": [ + "# You can download this file here: https://drive.google.com/open?id=10HUUJSy9dkZS6m4vCVZ-8GiwH0EXqIau\n", + "with open('data/tract_metro_corresp.pkl', 'rb') as input:\n", + " tract_metro_corresp = pickle.load(input).drop_duplicates()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "..and merge them with the previous data." + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [], + "source": [ + "merged_gdf = gdf.merge(tract_metro_corresp, left_on = 'GEOID10', right_on = 'geoid10')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We now build the composition variable (`compo`) which is the division of the frequency of the chosen group and total population. Let's inspect the first rows of the data." + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
GEOID10geometrypop10nhblk10geoid10metro_idnumeric_idgeoidnamecompo
001001020801POLYGON ((-86.456273 32.405837, -86.4570349999...308129301001020801338603386033860Montgomery, AL0.095099
101001020802POLYGON ((-86.412497 32.589422, -86.412442 32....10435142001001020802338603386033860Montgomery, AL0.136080
201001020200POLYGON ((-86.467354 32.459308, -86.46764 32.4...2170122601001020200338603386033860Montgomery, AL0.564977
301001020700POLYGON ((-86.46106999999999 32.42709, -86.461...289145201001020700338603386033860Montgomery, AL0.156347
401001020600POLYGON ((-86.470524 32.456117, -86.4700469999...366877601001020600338603386033860Montgomery, AL0.211559
\n", + "
" + ], + "text/plain": [ + " GEOID10 geometry pop10 \\\n", + "0 01001020801 POLYGON ((-86.456273 32.405837, -86.4570349999... 3081 \n", + "1 01001020802 POLYGON ((-86.412497 32.589422, -86.412442 32.... 10435 \n", + "2 01001020200 POLYGON ((-86.467354 32.459308, -86.46764 32.4... 2170 \n", + "3 01001020700 POLYGON ((-86.46106999999999 32.42709, -86.461... 2891 \n", + "4 01001020600 POLYGON ((-86.470524 32.456117, -86.4700469999... 3668 \n", + "\n", + " nhblk10 geoid10 metro_id numeric_id geoid name compo \n", + "0 293 01001020801 33860 33860 33860 Montgomery, AL 0.095099 \n", + "1 1420 01001020802 33860 33860 33860 Montgomery, AL 0.136080 \n", + "2 1226 01001020200 33860 33860 33860 Montgomery, AL 0.564977 \n", + "3 452 01001020700 33860 33860 33860 Montgomery, AL 0.156347 \n", + "4 776 01001020600 33860 33860 33860 Montgomery, AL 0.211559 " + ] + }, + "execution_count": 8, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "merged_gdf['compo'] = np.where(merged_gdf['pop10'] == 0, 0, merged_gdf['nhblk10'] / merged_gdf['pop10'])\n", + "merged_gdf.head()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Now, we chose two different metropolitan areas to compare the degree of segregation." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Map of the composition of the Metropolitan area of Los Angeles" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "(-119.02865769999998, -117.3360503, 32.6463769, 34.9269651)" + ] + }, + "execution_count": 9, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAe8AAAIzCAYAAAApnZEEAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAAgAElEQVR4nOy9eZAcWXrY9/teZh194z6nMcAAc2AuYO7FzGCGuyuKR4RDCvsPMyyHQ7QdCoXFYFg+ZCsoWha5XK5FytRaNElRDIqHKInrIEOUQ5KXFI8GBnNhMDOYwWAu3A0M7qvvqsp8n/94Wd1V1dXdVd1VXUe/X0RGV2W+fPmyuiq/973vElXF4/F4PB5P52BaPQCPx+PxeDz14YW3x+PxeDwdhhfeHo/H4/F0GF54ezwej8fTYXjh7fF4PB5PhxG2egAej8fj8TSafSI6tUrXugrfV9UfXqXLAV54ezwej6cLmQL+xipd6x/AplW61Cx+2dzj8Xg8ng7Da94ej8fj6TqE7tZOu/nePB6Px+PpSrzm7fF4PJ6uRFo9gCbiNW+Px+PxeDoMr3l7PB6PpyvpZu20m+/N4/F4PJ6uxGveHo/H4+k6vLe5x+PxeDyetsJr3h6Px+PpSry3ucfj8Xg8nrbBa94ej8fj6Uq6WTvt5nvzeDwej6cr8cLb4/F4PJ4Owy+bezwej6cr8Q5rHo/H4/F42gaveXs8Ho+n6/BJWjwej8fj8bQVXvP2eDweT1fSzdppN9+bx+PxeDxdide8PR6Px9OVeG9zj8fj8Xg8bYPXvD0eT/swc1uYcxQ2QJD8lZLNVLQxmrsHGpf2pCVbUQGzQJxstuRvQdY9ok29L8+q0+3e5l54exrLxGjpb6b0IRtWbMWHcuWDWRbYX9yXAlIa54RouifpKwWkS6671GpZtePF62iV46XvSwVK8V6kZH/x3oJkfzg7rt7tKiIAPcmYi+Ot9rmU9hOU9FN6PFXl+tU2U9FPSOm4qlMpzBZ6r0vsIxlf6f+7UjCXbsvlDLBvuSfrvS8UJ8hLhXpcse/fybpH/voKxujxNIz2Ft4To98CDgOXgf+a/uFclTYHgV9J3kXAdPK3lNKHR4B76JUeSzP/QSIlx1nidSWW+RpDNYKK/mzF++I4bcmmJfviin3gBEMe978dqrh+lLQvlGwRcxqKpVxj0WQMGdxnVHzgF4VH6b1mk2uX3lPzUD0GvLIq12oclu5WBjqZ4jOi8vlQSu/qDcfTCLr5x9bewhv+BPgp4JeqCm7HRuDQ6g3J0yZ0oi+KF96dTb7VA/B4irT7g+QI8CHwV5kY3bpAm4VmyZ6uRjpVeHuagqyGzdoL7w6j0h7XrK0VtLfm3T+sTIz+I+B3gbeZGP07wARuubfonfJcq4bnaSHS9hPPanjh3TxWQ3j7/5+nbWhv4e34PeBv4Gzf32vxWDyeFaDamav9noRKXxpPG9Pt3ubtf2/9wwp8q9XD8LQdnSgFvebW2Xjh7Wkb2l94O/4EON7qQXjaik4T3rdB+lo9CM+KiJdu4vGsDp0hvL327ZmHdMZ3d44Z6Ugfu45hNWze3jm2w+hmh7VOegD+v8BHrR6Ep21YnXjyxuEld+eTafUAPJ4ineCw5nCe5z8H/H6rh+JpA0Q6TXg3FNX4U5SYYjIdERUXLlWyKZQn8Skm4ili5/bPJpaTkralLJR1boFJifQicqCOW1opq6F5e+HdYXSSdlovnSO8HX8AfAY81uqBeFpOp313G6t53z2zC+ycDT3IjtC39fWGXmMlSPA+warKutUQ3tlVuIbHUxOdNTHpH46Bb7d6GJ52oOMMyM32NG+3z2O1V0a88PaUUVa5pslbK+gs4e34V8D5Vg/C03I67bvbaOG9VOGQVtO0yYo6Cqo6rarjqnqH1VmJ6bTVHk8X03lfxv7hiInRnwd+vdVD8bSUzhHeat8nLkzq1PVR9x4BrUVTlkQmG9QaUEE1ADVgn6i4SHtp3ho/SjR9XlXvYHNbKo4WnXSD5LOoLOBTLOqD+6ulSk6auaI9pd7fG5p0J54Opr1+FI2l84S343eA/w14oGE9qp7CpV09gHRcGNIaRDrou6sF4pnDxDOtHshq0gu6ByyoHW71YBpEN8sCT4fRmULKVRj7hyvuR/VUsr0Dug/0GdC7qI6sfJCeJtNBMbdmY/Ov0bZypZuyyrXth+ypjrd5tye/AVxf9tmqN0EfBn0S9CXmnFE2gj7YiAF6moh0kubNLpouxNrN5O3xeJpJJz0Ay+kfnmZi9BeBX1hmDxeAFxY4thu1AGOIGaypN9VLwKXkXcyc3S7E2ekyybarwwRPu5Ju9QBqRiSNmEuo3dXqoXg8a4VuL0zS6ULk14C/y/KcVaZqaCOJUM4Cm1k8v+VF0MM19DmO6icgMbAfEe9osyykp9UjqAsJrq9R4d1NSwLddC+eDqezJyb9wxPALy3vZK1FcxsA3QW6Bfh4qQ5rvPAA8DXQV0DXo/YUqiOoflnj+R5Hlk6yp5qwlsniSmhXe2w3CbzO+b55gO7Obd7pmjfALwP/M1Db8vYcW+tsfw/Vj5l7GBmcxr99CY18MQR4crZL5QQiz80eVbU4D/hiiksFMn7ZHUQEhWmgMyp1SdDkpCVtKyPbdVKxHHxJUE/b0PlCoH/4HhOj/wT4qZrPUY2BOp3S9LUFDlhUrwMP19df1Wv0ofpuyY71Vfo9DrKQrX6t0TmakJgmm0ekXaV3u45rOXT2SuUaw9u8O4N/DPxtoLfG9rk62i6FAbY1qK9acrbnG3Qtz+rSuJwEHo9nzdMdwrt/+BYTo78K/I81tRfpRTWiI+/fJ5Apoe20OlXNgV4FDEiAUwBCIMLGV0RkPahFS80hWgBUERAxqApYVwFMUVCLST2xhHWmXZen23Vcy8H/9jxtQwcKrwX5R8BPUHvZvjtAZdrGdkdBt6L6Gc7+FoGM4cLSiqtEgtPOBxA52LqhrlHUXuDmyUfL9sXRBNBPdt0NUtmFV2mi3BGm7rxGkD5Jz1B5Oc3MkqvubTeRSWjXcS2HNV2GthPp5tlW9wjv/uGrTIz+BvC3ajxjlM4T3gI8VL5roWejjKD6Kc6Rb4fz8NIpYDxpMIBIo0wHrSJu9QDmUT21rrPNx/lxUosUphJT/D12k7baTayp/Lae9qbbJib/kJo9QqVznJ2Whb4Ouh90J2iE2iugGdCtbuN4q0fYANrxf1jtN+VmWLawuBYqkmh2Wq2PJSYqbeuw1k34SVWH4UPFOoX+4UtMjP428N8s2VbkBVQvALubPKp2IAXsLN+lG1COsPj3T5Nj1QRD6bEAF7JlEHkaOJns24JLhrN7pTdQlTg6CbYYr18cY7V7qdxXtaqXWrWcf8fMtlEVtj8ySSrbx0JLHCK3QTfMfhTWTtC7+UZZm+vnZlCbQcyk3r/35uz1Nfns09lbZHs2o/ZucsbCE4CF8YKl+fhlc0/b0F3C2/Ed4MepaVVBLoLubvJ42pWnmmCOvAHyARKUV2ZTewLVaVyJqQeYt/S/TLTwJGobZ/pQG5OfKn9A58cvQGH3ImcdAQ6VvL8kQbosk5ra+AawBRvdwMYG1U1lPeTsCGJfAN4mlYLqgniJf5ZXvFeBblup7Gp8qFin0T98honRfwX8tRpaPwPcB4aaO6g1Q4iY/Dy7r5jnZsWR6i3QN1GbBp6lrX5f1dy5td6l+WramSbdbyGbvYHIXebuW5hb/nfX16q1udvRRLDW8Jq3p23oPuHt+Da1CG+RQbd0vGACFk99hKjmF13AFdkEsgkxoPa9JN/3MrXnhtt5DSKlaWoVMYt4mAFOqJ6bba86rraQL1q5AUHkPqoTOCF+zX0Gs+YKRZlB5AusHSOfP02gN1GbT9rHKEpurKCzNnGUdB9i0sz2EWTaaBJURruOazl06/Oya+lmW1J3fhn7h08zMfqHwH9aQ+tXgfeA55s7qDXBIBo/TRyPATeTfS58zaQMIuWFOcQ8DzKJ2uVOoBoqvEUEHd5fb6a8QEw4awZQtXeYvl0e1zU4dBXYDkAU3cDGlcl4rmHMI8TxPe7eeRz4glTwSMXoJhGZTQUrPU+8J/3bOuE7203Pz266F0+H002z4kp+rqZWIgbkCeDT5g5nzTCEC0/bm2x7gN2g1cNsRPoQ8xTIG8CtOq/VjKXkeicElQ/0amOa22eksEgfiwmH8n419kbu1af9QhM9i2JWaWsF3Su8+4ffB/59TW1FekAy+NSjzWThED6R9ZjgVSTIgRzFeavX8qBsBwFWizY2dy9iqiURqhTe1X6XFfvqtsV7PJ4uojuXzef4FvCjNbUUeQjlU9A7wJN4J7bGYqN7ICOYYAgx1TO/iexEAhfSpnoJtedBn8AVaFkdZ6H04DvuWiIIgknfQ4J1ibBU8mO3KExuLo4YMfcQc4KiDVt1CpO5mBx3k4vxO+PY6GZyPEf/wIdlx12Y3YcEYciWbR+heh/YVzGy8smPajtMXGpAhgkyF1CdwOafbPVoVkj3KjtdiPc272T6h99iYvTPgG/U1F5kvwvB1dugl/HFJBrJyy4OOh4hqCWKT3YhwS5U7wCTyf9jDLVfK2nV8O+vhD0H3EpMEXMKkVmhoxK8AcxVdVN9EzFzZVwNtxHZWNZpoXCBeDbcrIBzjKs+GREpTlwmmSsFC3CPuedRVtVWdUlvN0QkBbJb0WngBm78mxY/q23phI/cs0bobuHt+N+BHdRWscshshHlA9CNQM+S7T3NQyRx/pLHE430GLBfVYdA04udukxWqtEuNTNJEccXCMPdC7ZwE5fKvZX16jtE83aISA9hTw+ARtMzwFJe/O2IDxXrMLp5trUWhPcbOG/yuzib9us1nSXyDMol0BRFT2FPY3BLvlIaVp1U45pJQqoAAsRsllINVWQICV/R/OSfUZgQkCFcaddai9HUQqUtuVxIBqlpwp7P3H5RxIwTpE/NnmvjGeDFsnOkwn4fRTcrhPd1TOpycq3i9TR59OhcjHzSG0CQ6WSbd0dNPErwwtvTNnS/8O4fViZG/yVzzmvFlKCP4myN7+Fs3BvnnSuyC2UE1AvvhqGvYwuAHCFIzYWHRVPHiaZfpdzXYEpnnQjlEmLcUrLGr2KCNCYA1TPEMxa1+2iMiavSsa5MSEp6qIeezaWrOI+XtY4Lt5kqz44KUim8p8rehz1nZONjr9Q1yiD7Zl3t24tOnXh0swm1K+nmf1j3C2/H/wecAJ4DKuOJXweOApupvrTuZ9urgVb1nu5NNkDXoVUc0EX2EfaA6lk0vkyce4mVLclWCu/K90sUF6myUicV58RRI353naq9QueOvZtXYT0dRjdPTOboH1bgZxdpcRh4EBgBSjNsxUAOXwpwFbAre6CL7MWEr5PqyxL2XkGCEywvLndRzdtVaFtsqNVSrFb2aNfVParuwmveHs8KWSuaN8C/xcUPH1jgeA9OC38PeB+YAJ5G5JuovoHLxOZpGLqNuHBk7q2ML9K4PkR2EmZ3ohqBnqDMjlxMSyoVsdWqIIIJJxG5xqz9WQxwEo2voPoqIl9Ho5soV0rOn9tUlcFdxWOO9LrbKDa5vCJY0r2fIeLGEcxlaKuZeGavxjNnZt9bewEtFPsJk62YQ0KAaZyne2kVudKJhiLBl4jZV7G/WDmu+HczztxUtL2PSKq/Nj+SIoXJ86BZ5tn4Ez8C93YuB4YEdwl7XqrrGs2hxnLDnnbAh4p1C872/TPAHyzRskrKSXkM9CwuY5inMTwC6lKAijlFkI6xucZeQSQEeW7phjArr8RcR2TrvMPKNCJFj+/NyVblkgLp/vKdJvgCteXpToNM9evUzrbyt/YGK67Wplfq72PxlQZ15pDrOPOHBXJo/DBobx0XObN0k1WhnjF7PE1l7Qhvx78BPgKerusskU0oG0DfwGkd63BpPz0rQs4RZG4i5iV0+kSrR5PQjN9EtXX2r4CVCO9KVm6P1aoW+yVPWoI7TF/3Dp+eltDNTgprS3j3D1smRn8W+H/qPtflQJ9bOlf9FHQrsGHhkzwLcA+TPokEhxBxmp6YXpDTgEmWTMFNkFKrOjLVizhNUSu2ldhpq5UaHW/DR0v9q4y2kNJo+i1MapuYsNqEtjI+fRm0TT6a6VYPwNOZiMgPA9/FOUD/hqp+p+L4EPAvgF04ufyLqvrPF+tzbQlvxx8CnwBPrKgXkf0oX4COAbsbMK5uR5HwbUyqF3gckTI7qQSZ/fSWK6I6dW31TRUa7UWrpcaVt2rxRav9OjYxp3c4ag8RTYFJj5AeqCa8GxGt0S7C29NhiFmlr84i/rZJror/G/hB4DJwXET+raqeLmn2t4DTqvqfiMhm4HMR+T1VXbDextoT3k77/jbweyvuS+QRlLHEVrhzxf11L3cJei4hcqius8K+q2h0GXD+ZDb/NC7PeTP5kGqJfOL8HdCReftNmMaES93X/CeI2oFljm8hWht+ZQvrNT9WdEBUUEHVoJoCVups1i6hZe0yDk9n8SJwRlXPAYjIvwb+ClAqvBUYEBEB+oE7LOEgufaEt+N7wN8HHlmq4ZKIDKJ8AuqFdzWctr0HkYW8/Bc+NT1Q5uGvU9fO0GThrWoHpZpGHE0PotHhefvDnmOYJX9G1YR3o+3ALRYs+rRLvtMMxAtNz7KQRq6WLYpuEpH3Snb8uqr+evJ6JzBacuwy8ye0v4yLiPoKGAD+c62e+2KWtSm8+4cjJkb/AY3Qvh2HcLOox5dquDaQc4i5j0kHiHxt6fY1kt0oqP0YV82rj2h6lGiqMunOyoimxzU/NkJhcj1B9i49m3YRZPZIkIqwvImNHmKep/cSaNVl322oTiDSX+VYq2i8kFTNY+MrOJ+B4lbqS1AaikbFXxftI9xmfpU1j6eduKWqVSKVgOpmn8rf2g/hVv2+gTMV/omIHFXVsYUuuDaFt+P3gZ+mnoIlCyECyv2WKz+tZQYJ38ektiDSlAetmFSZ/VtNfB+mFmo+D1W9SDxziSD7sIjMCmC18UmEFIXpm0zf2oPN7wIgmoLxS4B8rpmBGUn1fR0TTqI6gsavJJ0udsHEwWnBNqPA/ppvYHEaoWI0Q025xcojM9oly6G3vXcQImBWy+a9eDqoy8BwyfsHcBp2KT8OfEdd3YczInIeJ5veXajTtSu8+4djJkZ/DvjdBvW4lmNALUHPV4i8vMqXrXOd1k4wPnoYQE14FdUewp5zFCYOuvzjusDKiT5KbuxRjXIjZIYeExO8jso1RLYhkkL1fNKw+KRwy135sQ2g65BwgXBovbsG5EEjEpt0/Yfk6WqOAw+LyB7gCvBjwH9R0eYS8E3gqLj8D48C5xbrdO0Kb8e/xpUMbYRHcyNjdjsLCU4g8sLSDRuNySDBOxRVW7W9oIvE8JcYs23kbM6FiWfdDl3a9TvOvc7UjUjTA29Jut85qWmUojA2p1m6mfP7ybskkYvGVeWPjacQfdeNXxU3f7dz6nxlFrh5mc/mXqttVyHZgNTCNfxvVocGZxHyNJvVs3kvjKpGIvITwPdxq0i/qaqfiMjfTI7/Gi5992+JiDMLwv+iqrcW63dtC29n+/454Dcb0NvarfstQe1r1428bJh9mnCuBolG0++Rv7/oKQ24bEh+/HENUp9JkHmM+Uu6eVwBnFKqL6ppPAD2xarHWkMznnSNmNS2/gnsaJZHnqfLUdV/z1xly+K+Xyt5/RXwl+vpc20Lb8e/wNm+V2qXuwnV4oO7HXNGMbvQ+C5qx1HNE01dwYRpbJQHZFaTTA3uFxNsacUoNc69ydTNRoVnDTF9p0ezG96TMDNZcaxaUpmFjN4t+SwWRpthW77Nyn8X7WLzXkm1Os+qI6sX590CvPDuHy4kcd//bIU9LRhM382o2h5mbl4GO4TLDgSwr6quGc/EKsE7hH1K2PO4iGlA9q1FB/epFsZvkBvbSDTVaHt8mnhmgjDzA2V7RUwVJ7aFQj6GUY1xSRzagWaMY+V9atvUl/CFSTxtgxfejt8B/h6uLOhyeRhXQGFthbQUxq6B1pqEI0DjfWA/A238EmSQeYLspmuJ+3+OmTs3mLxWX8WreihMvazIUckMHlZVpTD1DoUJkcy6AVRLqndpCHwBoNaeJZ7ZjUsDK9y5fhe1W8gOXpKND+xOzpnCxXoWKa/+BRCkzyFmftz5ymhGuEQjyn+2i/q0uql6PSumHWzezcILb4D+4Xyiff/TZfchkkLZDvomsMpe16uPqsZEk8dA68uaBhuRIEOcv6BBdmMjf1wipgcxs74Hmhm62bDOq5OmMHlYC5PjOMH3NWAGtQsvr4pcBtkCmgIyFKbvEkd7CMJx0AcBVHUC7ARKRHlcNCCIiKB2CuQc7jcc4ARLWlVNIuqKFREDkBAIRaToUGdxdvjSnO2CmGasHjVgQtA2DmseT9vghfccvwX8FHNLv/Uj0ofyclJ9rLvrf2v0GRovL0FK/r5LZhBkRjS9/jVp1vRYwtVKgFKqJWdVVRe6JzFBSO+mjcX3mrk1w9Q9sLZ0eTlFbqx6IhiTfosgfQgbza0S2cIbaOy+b2rPEOerrv5oqu+0mPBxnLAvX85ODx3BBI1NeJP03IA+2sXW3IhVBI+nIXjhXcRp398Cfn3JtovhEra8CnwIOo3LvtZVqOok0fTiaQlqIS4M0twl0cb3HfZeAizR1O5FWk1QLtDnUFVsdAKIQZWBzWMUZt4mzIwDYxS1bBfVJklq0CSMTAxBegITjqB2PWqTsDgp/R0voqUuklEmzqUI2nZVuF2EZtUa7p42RVaxMEkL8MK7nN/G2b6Xr31DMTz3oHO0tiNUK3TRgajae9joPHFuGnTlpgETjjdgWIvRwDX5cEw2PnkysW+P6a0PvyA/Xi03/jkW/f5oiM3PhpJJT9+nPPhsWZY1UYVMpYO2OYXIk7NvbTzCXOrjUqG8yDL1Yisc2qxnQSOcvNolRGtNOqV62hMvvEtx2vd3gF9pXKdyCPQc8FDj+lw9VDWHzZ0gzvclCVCeaVjnNv8aMzff0eymp0TMbIY6VTuD6oSYYNO88cS5UyAhIlnUTiPh5mI7VTuNjS47e7AqqhM4QZqpcvUx3NJxX9WxSTBJduNnhJkZyW60hH1bxQSHAURkkE0HC3rj/fNEk+UhhmHPDSnWKK9O5VgeRDmNcJPiUvbc6k0pXwHjFCckqnMJQ8RESOoNAGw0RfWkQxYWyaMuQbMSkDTCXt1Im/c9YBL37EvjfAVqNa944d1BCN5hba3xmzjbd2OqhImkUbaAHsFVkqkmSNoOVZ0imnwPjQ/STAc8jV9i+vqXGvZeJZraBTIOug/YoDCKhJcAQeN+IAP65LwukE+BKDn2cMmhs7L95Qwztz8kmpnSaLqACUR6Nu8g1f8QtnBHb5y4gtoKDVoKsu2lS2LCymQrcy1ENrLl2UhvvDdKNF2St1iW+k1VLqdPY0y1tKylxTrA5UOeaycyMqtjizGY4JXk9QWi6fm9hdnjYoKFogLyhD0PLDHu5dKIJe967eYWN9m5DjKJGEFkEMxOYJOIrCttrGovYAvXWbp0qRfenrZBdLHCCmuVidGfBL7b8H5VL4H2AvM0ynZBVRVbOEE8vYFOWy1ID53EpB5IbLsKGJFg42KnqNqC3nj/A+Lc8/QPvy2ZdRHp/vViUk/VcklVvaITo9dQ6xzMJFARU/xRVf4tVtWaFcoKcP98Do17mPUOJ4tLxRmRHpwQY5I19BJZHhdOg02EuZwmSD3mhqNxspyuuBcWUDHhowvehARv078zKbUqhjlP9aXUltnpwwLvS3YVX4up0j5Jb6tfYIJHAE32JJ+VSkXZ1eL4FCRTMU4B1olI3Y5yqnqtIoSx4uEoVkQs8D8w8OAf1du/Z3V5NDD6q/2r4+v4zbHpE4tUFWsKXvOuzj8D/i71ln5cCpFdqB4BmuHVuyJU4ytE02fR+DFgVb+EDUPCLSJmUWE97xQxKTY/O4kJJ2UZhVVEZCf9wwWmr2dQW/ekTAA14TnieHeVw6PYwlYIP0VMFvQAIolXmZ5lbnXoHEnVIhGB+nK+jNOzKbuocF89RpFgd6su7irN1bTM2qhMfR7PsvHxk9XoH54GfqE5ncsrwFvN6Xt5qOoMhYm7SehXm6XsrAMx65ZuNO+k42LC50Rk2Q9kEdlNz9Z7YO4tq4P+7bcXODKMxlfQ+FVs4XlsoUBcOImNjzYoyU1E3/bLkuo72IC+1hLda0jtJkSQVdpagRfeC/NPcbWIG4tIgJhDwNGG970M1EafURizwDxbcoeRY1nFYWSds4euDBHZR++Wq85mX+e5JvUCPZuOVD2oOlf0RYIpgkyaIL2BsDdPmD3ttt5JgswnsxtmrKYLh73HJOxpVD3xRtApQrFd0tl61jB+2Xwh+ocnmRj9ReA7TelfzGHUHsElc2nJJErV3iKa7KMjapHLRwTZuyQpxih70IuL6BSpM6Ze3mxkDXIRs197t37M1PW9iW9D7WTWvUR+/AxxrjzBiphJBh44hkk/isgm5vwlnihpVe7wpnqDmTtniKaeXfB6qb4Rera0WwhjpzjgeKWnQzA+znvN8ivA3wE2NKV3Ma+h9ihOgK/qt0zV3qcwniOxlbY9JnVX0gMNFjY6jOo7iNSam31JRMxT2rvlQ6au76eOyAIRyejAA8K9c9OgbgVBwjFZt9dggufr6QuRLfRs3ELUd4Tpm4eozMlt0m9I79Z2E9ydRPdKBE/H4GeQi9E/PA78UlOv4YpLvN3Ua1QjmjpJo8LhVgNpyld1GOwQqncb2alIcJCerR9TZ3IREbOXwQdPgRQw4X3Zcegr6d3ydTLr8wSZI9QbqhRmX6N/51nE3CnZe5e+be3gnFaNThGKnTLONU0xztvbvNcu/wS439xLyKo6iaktfITGjfWkbzxXgPPAReAiEjYiR3Y1HiOp+NVIxATP07PlfSgTnEufF6ReYN3eSdY/elJM8BiAiBmQVP9rpNfdIdX/IamBk6T630eCN6Bq8dXSgTxG75bi/UUMPChiQp/mc2V0yvK+p4vxy+ZL0T98n4nR/wv46aZdQ2QvqseBF5p2jVJs4S7tnrI1s6EgJizNXraScq1LoDPNUKbEhC9p79YLzNy6jS08vPQZyfjqr+8AACAASURBVHkigwSZeU5RYoJtEMxNuoIMauMr5MeugH1xwQ5N6mtk1o+QH+8XEzyBKzlaUa2s6t/SmOyFs9GtPbzm3Ql0eW5zr3nXxj/GFZtoIvII8GZzr5FgC9tX5TorQlexGIW+jto3ylKONggR2U12Uy8SXqjthOArere+J5nBV2pqboKdkl3/Iumhi5jwCM7rfj7p/tfp3zENZgIJepGgHwkGkGAw2YaSbV2yrU/eF4/3gTmFSyu71vGat6fleOFdC/3Dd3DL581DZAgxLwPVQ4YaRJJRrxOc1Fb5Aamvgr7flK7j3Bk02r14I5mhd+u79G7dLiZcWIte6GwTPijpoddID13B5e+evXrJ62lWoj2LPAnmHO1TKMTjWRRv8/YA/CKronXIizhbb3OwhQ9YVjx0k5HgbcK+Y6T63yY1cBwJtq7+IPRQkgGvsQSZJwkyH7HghETGyG54R0z44kprm4sJHwLzJXABk76CyRhMZgaTuYVJfwORlf3vRQ6CHF9RH53PTKsH4PF4m3et9A/fYWL0uzTT9g24alnEoJM0w8YY59rzwWPCnKT6Vt8Or3oeV7ZyLyIG7Cuo+RiRmnKb14KIbCS7caNqfJJo+j6qhmhqDxrvBKbIbnhPwuw3GnU9V2pVnhGZLZKSTbbGIOZlVD8ArTUhTWmRFS3fXdbx6iSiXjne9t8RSFfbvL3wro/vAn+b2ksILg+RfSgfgzZMgECSBhXbuJKejSMi7GuiQ1oVXO2SEdDihGEC5QuXIc0KhJOINPQhLRIcIOW+Oprqj1F7DI02S5BpXK5s1SkR8wM0e1VN5Jk17LflM6x5Wo4X3vXQP3ybidFfBv7Xpl9L5ClU3wa+1rA+be4EUJMj1BIkmpRM4bTW4u4s9ZdvvAHETXdQc7b+z0BvgcbAeso97vuBZ2e1QS3EqHkLCXYh0vB4eIEc2I242t9Ti7XVaPp9cneHWFxaVluSlyr7XUWuIHtDgkzdtnUP4IW3pw3wwrt+/k/gJ2l8StEPcNWK9uAeDjdBNoNextVyXjlxrjF25PS6t7H5GdLrnhKXshMALUyNkL9b39J3dlNGpFjysgmoTjpHNN2Oi+mulQDsIdTmUHMMCXqAg4gYVMeBS6D3k5KU64GbQIjIgjXAS8Y0jsafgz4PzCyZW11tHthbx9iXRvVyQ/tbW3jh3SG0yplsNfDCu176h28yMforwP/UoB6ncBOBceAZnKY0AmQReUlVv2Dy1p9jY0Ox9nqYNtK74fAyrrWyCYdJn0DjzYgMSnpwgBLB7ViWg3iTf132PLCcz6pIxtnBLcAYygyu8toTFe1c7XOVM0h4C5H5Kyaqb6LRetB9zJZdlfPAUsVBuvcJ1Jn4/4en5XjhvTx+EfgJGuME9DEuNveR5L1QspwrYh6x49evc+tLJ4B6N34mOw8uN53nNC50aHmaQ6p/i4gMg7yNBFWW83UZDzWtPeWn6kXUXkIkg5ill3xVI6Dm5Cg1MJhsi110H1rYh8pZxMxpt6qDYOcXQZHgJksLb0974YV3ByBdnqTFC+/l0D98nYnRXwP++0XbOeFxb76GWsYTLOEAJ5sfPaC3vnSvh3bckMzAa/UNOOknvS6n6C1s4RJqk2QeEiASAJYguw+YAL2dHLfFG8Gp1QeTU6qn5Ax712FSxVArSZ5x1X49zhar0RSqQ2BP4xystiVJzHcDhuKSl+ooGo/iViYeRDmyuPVXR0G/SiYTLbLr6l40XnqpWyS1ZJvm4BONeDwdjBfey+cXUP0x1F5EzAsuzChB9RZqv0DjPcB24B0kADF7KwT5GWAfSxHnx4FB2f70EdY/uLj9W3UK7Htg1gPbECnmsT4LPC5iIMhUs31b4Boiu0F2L14IpCKkRzUpfG+eJqi9+BU2GEGj8opeamPQm0APyimQCPQAUKK1anWBp/oZ2DGcwO6ERDQtxMvuFeCfmx2Ct3l75tM//BX3z34P+Ek0PgcyCpjEMWofc3WXAV5CY9DYIuYoJjyMaoTN7wS5hAQXKD5NZ79rJsA5KfUx9tVFYKde/eg1rn6EmnCcdP91MgP3JTswRXbQkhnIEmaGELkm8AOJ0nwKNYrIFpAbiCylCa5b8r5VzxCN9wCfJnsGgY3AOcTcR1J5wuwBRBbvS/U4GlWrvz0JFCcXLy/gRD231K56CfRS4un+/JLjbzdsYU8NEx4vadsLn9zK03K88F4ZvwD8TeAh0IdqaG9Qewgbn0DMI8AA6C402jXbYvYxLUcQsx1AJ26U24VtNMDMvQFm7qGl9c7WDR+XHQcOMzfbfBLsRVT+A5jn5pah4zdRLYAYhCDxmO5BggkWW2ZWPU+cz1J9teBx1ILmThDF65DwOEHmMUQGKvo4g8ZX0Xi+E5mqgn4CVBPqpQ0NqjdBPwX9GrBr8fatJ0lLG+P+w0FJJrVtqJ5dfGLVBNlt889rPj+XRjXVPykSdE6J2Nbin5sdgvE2b09VhvZe5v7Z38QJ8FoJ0fg5NH4LeI4F46J1F6r3ERmS3g1pnbixZMeS6Z8RZ79OutDPgQzCE2ANKs6LQ+0+YAtopVw4hlT5Sqh9h7iwHvSR+QcrBxG4ZXqNXsDyDkHWLYtrPIKNtyd9LGQqeJclBTcAT6DxhhKTQNuiqlPk7hS9/Gf/NzrrTwC4yUeB8opepdvS4Wf100N5mlxfcKR2ulcieDoGL7xXzneA/5b6P8tDwGfAdSDD/KX23cAFYIhU76LrqrJl/1E27tmOGBe+pHo28eLeD+YoSKLl6vdBspi0Rcw5bGESjftml6GlpNyk6sfADGieOP9SbfcnbwCvzr610UsYjdD4HTRePP5b9TPQWmOZr+OW6zvg+6vFUMBKzAKvW4OiXiR5uooWFg1ZDTrg4dfmDO29yP2zv4UT4HUijzGbOEQj4BxwGVgPcheR1wA0PzG9YBe9Gz9l095XKwpafIWLbT5LqTBF9oKsw4RukmBSI6gphnzdLNNkbUFQW0998ZOIeZXyH8u02ujP0fg5nLL5FpgBKc0b7hzZjyTjreWXdh3oRaotEbQhqu2ZS34+q1iCtePxSVo8LaczHoDtz88DP86KftQS4hJ9PAScBtk468W9fveMjn11gfzUTtSWe1pP3d5PYfo46d5SQZs8iOW6s6WatxHJg+wDJkE/ByxqSx/Yc0uoqldQW0eucVUw94B3sFEGkTEwm1Q1Ir7/I0AMchX0ZUA17L8nIutcKJ2+CdQT+mYRWd086IuguXvH0PhxXLKdaZBpkBlECiAxaECjMuR52gX/3OwABB/n7VmKob3nuH/2d4G/3qAeH0/Mn6dRjITpvyR7f+Cownqm7pwEham7ht71lsKMotbZzZ2W9z5okphEAjBvY5KEKqrXgDxz+c3/A3CMYs1n1QFExhB5hDB7kzh/DLW7cSUQp924GAItAG8DLyX7A7Cvz6YnV0U1/gKNe4H7zvNcdyRD+hh4MmlYr+AGl4Z0e53nNBENcOlR1yfvqeJL0Al03ohbx4ZWD8Dj8cK7cXwb+K9orP3ycVwRDYDDgvwFvRs3IDxNX9W8L++CFoXhNGgP2AJq/hRhGJHrwBjWPoAxPYjZhtpHccvQbwB9iHFVx9S+iZi/jJi5+7HxiKu4xT7mUo7Oc7hTVZsMezdwlNL0pBKMA9Oo3mZ5jljt9uDskql9kwvDdBdbWj0AT214m7dnaYb2fsn9s/8S+C8b3HMAKBIcBXkZkTSqJyDeQaUGKvIayidJEpOduOxtn4M+CPIZRSEqvA8868o6mg+AMUTmHMpUr2GjpyidiKheAfsoMOfUthBqjzEnsMuzx9n8K5jwDTBC/SFeMXAFeEDV3kN1GsEQ588STa0nyN7EpDchGDADJeMXRELU3sdGtzDhZiAECcUEO+ocQyXdIfSi6bMqch1VC2pRxOXBU7eMIEYkPbiszH5dSNtHOXi6Hy+8G8vPAX+Nhmpj8jESDBSd19wueQ4NboL9FLQ8L7bIEyiTwNuIfBM0k2R1m7OVq04gnMQtae/ApR2dQ+NLxd6APuBesi1anlStnQT9ALRUo56saJYDsxf4zHmn60ZqyO2tqvcpjH+BxiFzldbSuO+wy74Wz+wnXtQ/bBPl1bnGyG5c6tJLINHSbToAm+/BRouVi71Geom07msHL7w7AWHxRJEdjhfejWRo72fcP/v7wI81oDcL5i3EPI/I/FAxkc2oGQD7Puizyd4Z4MukxOQ3EXMUtfuSePEklzk3kgQx1TVo1S9Qux7YW/bVFwFSBdCjaDQvwYqqvo8WFAlKvNv5kMqlcTFXEfkK5Osu5lwB/VCjmWuo7Z2b9ogiQYCYAZBBIIdGld7vKy3LunKvYTE6Z9noYFTTuNrqCy0Jb9KpGx/jbOMWkQLZTc+W5RVYO3jh7Wk5Xng3nm+xPOGtwBiYzxLP8EcRWUwTApEsarZB/BlwC+cx7oSlmCNI8BoSFNN7PQd6EwmuIfL0gn1a+zmYAUTuAoLqNOgGxASJM9YUhB+j9h7YTcB+VfsWNnqEsP842DdQO0VhPI2EY2TXT4EppkodEJHdOFt48R4AOYhGI8Qzq70sW7OTltroAtH0RZfSlj04R70ZKlctOhUTPofVz1G7kPAOQctD/PJjI1rtI0z17wGgMHHemUesW3oP+7Zgwq0l9vXSFSpXrGaOpf43Mvd3bsaHLVwlzt9Kjhf7FBCtuF7ppRa/VpBeJ0HmqZI9Gxm/aBh4sDtMJp6OxAvvRjO09xPun/0D4D+rqb2Yo2C2I7IPGMJ5cNeOyA7UnAL7PHAJVwt8N5iekjbJ8rccBfpRPZNcbx5qzCBqH0XtDdROuYxp5qqIfAO4hOoPIcYp5WpPqs3/GWp3kh4qiMgPq+o9Ji5NYgs7Sa87IhLMK4OphcljRJNP4+zFcfL3YF333Rh6NHf3HYoPeJ194AuuIlnx9QDOSW93ybn9LFENrsMIULtY9bv5xDPVE+/EuWuIGUVt+fG49uqvK2B9w3u0hSMV+ecNznHyVsOv5Wko3mHNUy8/y9LC2zmhiWmAtinPJZW+SgXgaZwgX4cLzQpAd6D2aUDBHEVkbvlb9QPUCraQwha2Ubasbq6r9Fyo/Bmoso0414+YKdAbmhv7gJlbr4LuxGQ+IshU2ruTE20MDFQ9troEqK1vstStiBinnTYkYmwbapd2bOxsNuOFt6eFdLE5v4UM7T0J/NEiLa4g4ceNEdyAyEaQ98p3ap/LeGYOgEwCbwFF5ypB7WFsfBpr38XGZ1H7DHAQqk1V7Q8QTaHoeea8q++Rv3+aaHovhcmnGLtwj5mbPwKSI7vpTbIbnkbMj6iNL1YZb/dOhzsZE3zZ6iG0J1rt++rt3h2AGFmVrRV4zbt5/AzwV5LX08AYYk6B2QDsR6TBFZzkAUSOu5dmCgleT9KOvuYc2OQQqiMVJz1eqWmJCfIqmWOodYJegn4gg9rbqO4msc0rXEVjkGAEJCbbnwZzHDGPI1Jae3t8/liN/961IxI8CVGEfy6UUz3ruxfenpbif6TNYmjv+9w/9yvADwIPI9IDcsbFVjcBkYcQcxcxpd7drwHFYiGW2tZEAxHzyrwYi8SpWFUVjT8kmnqJMLMfuIqkriBSvZa22qkqY/Xfu3ZEZAPI2ToKxKwRbI/GuVPJG4OYrJiUF95tjiCYLl7k8w/RZiLy28B/N7dDv4bqlcZr3cXubUVgowD6Iq7gyR5guIZeFszDraoXiKYm0Pg1YAIJ3wZ5CZGF05XGuXVqUpMi0lcyrlaHFy3iedxyRkFuE2QnwFri3AO4/1tqqRNXjOot0DZKPdsmqH2O3L2SHXKK3i1eeHtaihfezWRwz7uMnf8+8EPJngBsDjUncNnR1uGEyB1czu4J14anEFnMk9ninGUqw3oOoDqDSNa9VYD3mUuuUoO7r+wG/RJ4GEBVJ7HRe9j8ZjR+DDCu0Emwpywr28I8Qpx/gzAzF/8tq+ZrMQlyAXQfcBfoJew9TZB5nGj6I+KZp3GlRduBPGHfSYLMCyIyN8lK9aO5u2+jdtEEOQ1B7WnqzzW/BtGNmrsv0g4ul56FEV+YxLMyfoY54Q3wUJWMmjuTrcgMymmQm4h5mXKtywJHnYe5jgDPA32o3gH9BCRGTDFpSwC8AHwEPI3ITVSvA48Ai6UFvTP7Kp75FFtIhLR8jIQBIvUJEuddXranrvPr4womfYYgsxGTekxEnlC1t0XMNtX4GqpbRMwgqb5XNchcIH8/T3kd9VZwhVT/VQky80qwahy9j9o9TR+B2mPYghfctbGdeGbJrIAeTzPxwrvZDO55k7Hzfwp8s46zshSdydT+OWLSSclQgKeA15PkJq8nuadHQPtADycCvVKbHAP+FAm+CToJ9jqq94AzuBSjiks4kgXuk2joqnoKW3gemERSHyFyaFmfgcblGeKqZvZYNtcI+y6icQ7EEKQ2iUmVrQiImI3ub7CtdLFcTLhbkZOgrRTeZ8msGxAJynwGVPUuMM3MrW2Y8DoiW5s6Cht3r4rSHPyyeQfQzYEtXnivDj9DfcK7BP06GscgpxFzB6SnLJpLRFD6Z/OJa/wIajT51k4AH+Byh0+5nObSjxoQm8Zp7VUuqTHwBjavzoM82Lpswe067Kt4v9LMVBaTOurs+2IkzM5L11ozYsZbmN70JpkNwyIyW5lNVUeZuX2POPcYSAa0l9hOEaSOgGzAhfu5OHmRRxo2EhM+SBxP4nLZe5bGC29PS/HCezUY3HOEsfMjQC024moEoE85IWPeAcmBPDzrKKZRqe17O+gbIM/iYrsfBL5CNQf2FEo/zlp3DbUFkGFEHiq/nOTVxoqNC5iwUjDOIOZdVDOgw7iHveC0/RxOky/OLqaR4F1MkELtO6o2RzQ1QZxb/jKwSY0Q9j0qJljuZzmLquYxYUwcF5gzTXyFG/92oFgApZLbBJlPUFVsYSPokxXHLwF5JLiBxgeYE4g3EXOGsH8IAJu/LaWJcgARGVYTXiHOpZLqcIDuI85Xy4h3DTFXMeEkYl6tcrx2RHaCXJs/0fIsgBfeHUA327xFl0jr62kQY+e/CfzHBvd6HrfkXSl8rxGk+8uc3lTfQeMHmLOtf4y1V8D+IFAAuYoJ7yWhbLfVxheI8zNAKnmgP4iYDwjS+0XMvGXmue+RXsLGo6AWE+4WMcPl7ex9cndD6tfwLCZ9lFT/q40qhqGFySPEMw/gXFvuEPbkCbKH0PgM8cxXhL3PYgtniGbGCLN9xPkJwuwWJNwtIj3J/YyTu3sX2IUExwAIe/okyBwE0GjmHeJpC2JJD71QqmVXHZPqFaau9aC2nrrlMWI+QHUdQXpLUpimdmx0BBvvBq23ROtapgBkZOuL/gHapjzRk9bv7WuutanIk6cun1DV6iuZTcIL79Vi7LzgYq7n5fpuCiY8Ok9rtvFJ0ANl+1SvovYCaLIsLh9hwh5EHp5rohaYkHqFwgJo7t6baFzP53CW1MCUBOmnlm66jPGoWpHlFw9U1Rni3EnE9K50jDpz9zjR1DzHtZox4RuY8NVkYAVEykPMVCcpDdtT/YA41x3FVVaf9bL1xXtLN/O0gid70/q9fauTpfeJj0dXXXj79KirxeAexdm+VwcbHUb1RNk+MfM1VpHtmOAQErwPfIIJo1LB7ZqIaZTgBiDVt4na8kJbgswImQ17myW4wd3fCs/PSph9acWCO5oeWZHgBrDRAVQ/JcqNYgufJ/4LoHobG48Q5wzRzF1s9EbyfrGoA8/i+KVzT8vwNu/V5Y+B47jwreYT53Zi0n8BmkakgOpC5R5B5FkkdQSRpocLiUk9opn1kxQmR7D5A0ABCT5H4+3AXuA2JvyEsHd7ped4t6KqV5i504h7HSDO7U86HcYWPgYi1D7MnM9FDzZamY3cA054+3zwbUvr8o6vBl54ryaDe5Sx838P+GlcytJmsw2NLyPy/FIlixNW0YYifYQ9D0LPmJhwF4kWo9HUMYLsY9Kooi2dQu7eV5TH+jcGtU1bsfB4zdvTOvyy+erzJziP7GOrcjWN985bPl+YVfM0FhHEhLsTwT23P+x9pRiXvaawhcbXofY0Gy+8PS3Da96rjdO+vwP8IS5JyiQuE1qRPDCFC73aCaxUkK1H44Ng3gBZj8gTi7T134dWoXE93uWe9sAL7zbHJ2nxNJo/Aj7GZUtbjBg4mfx9dom2ixGgNvFA5iwS3EPkuYo2xbSpnlYgwZ06w8M8rccLb0/L8MK7FQzusYyd/1nge0u0DIADOFv0W8AKspzNsheNIzAjIFuB3UkhE0WktwH9e5aDjRZ2JvS0K/5/1s4IiOley3D33ln78wfApzW2FZwQfxeXHGKlXEK1F9UpIEJ1BNWsWntMVS82oP/FUf2w6dfoNMKs91ruPFpd0MazhvHCu1UM7rHAt+o4oxd4EbgK3F7Zxc01xLyAyLNAPy6EKMLmxylM7NC4MKKq0yu7xgKoPQo61ZS+OxBVtVqYHCHyVao6EL9s3uaIkVXZWoFfNm8tvw/8feqzNe/C1eg+AzwO1FhVWE6A7sClOw1h3hduE2L2ACnimdeJ5Ss1qQ8QiZkLIVMkmBIT9KJqsflk8jevL0uQLk4M16O6A+wn7kj0AiY8Xvvtdi+q9jPyE7cpjK+JWPYuxAtvT8vwwruVDO6JGTv/beC36jyz6Lw2g0v6kgbGgYM4TbqSz4CDSFD0aq+63CcSPKpijqD2NdAd2Pz87Fth9iQEBxABtdeBasmDr6C607XRPwXySVIQd31VM1/ery00P3GE/P21FcvefWzW6++Kz2/ergh0sbe5XzZvPb8HnFvmuVlctrYDuKQvJ4F7wEjy+mjyejvo27V0KEH2NUz6A5xmP59oxqjaawAE2UGC7JRK8H1VvZS0OEOQCRLBfQ0bD2Hz6ykNh1OtcbWgO1FbeMsL7q4giy+h6mkRXni3msE9EfDzDertFWAdzoZ9ADicvB6ijv+1mBCymx4E816Vw08R50+BfIhIj9roI2z0dWBI4Y8JslsQsw3VL7ExYCdxKU+LzCBmbLk32OloYWqEqZsHWz0OT8PwS+dtioi3eXuaz+/gUqY2sSSjebDGhjFhz0YRSWlm/T7i6XfROMbGeTR6niD9HmHfXwKsavx9bOEHAYOE74E8oxq/A+EmQQZA7uAM4pr8PQHBBA2oxd2JqOoVcncP4yfN3cRmXGlej2dV8cK7HRjck2fs/M8Dv9q8i+gZkBoqSMl7iHkJQIxZh/T0Ywu7CehVtWfFpIYTO5IRCX9I0wPHiQvjEma+oWo/ID+eJpAYCbZgAouyBbXHgQhkJyaImneP7Yeq/RRkC9H0KfL3n8IL7m7Da95tjI/z9qwG/xy4sozzruAc15ZA1y1yMJ7bFFQ/mT0i5nEk/BzIi5i9aLwV1bdmD4sZlzDzMPCFiHlG0oN7RCRA4xvADBKsR4IIMS8jcheRl5Zxj43mBK62enPC4RJUdYypm/1MfrWR3N3XfQa1rsQLb09L8MK7XRjckwP+jzrPOgeyE6SAE0YnS47dBa6VvH+6TCiDBY6BnEDMnyPmBmLuIgaiqUdR/WC2pQmeQcKPcAli+tD4EGr/AtU3cGFu53Fe7n+ByF1M5gASXEcjBS4hZjeufvcmVI8CqGpeVe9X3pDa6ITmx0fq/Bxq4Suc1/0R4EmQV3ETlhGgoasBqqoudnv6A3o23Whk3562wwvvNkZEVmVrBX7ZvL34DeCnqB5+VY1RRB4CBhJhBGqPgBhM+CLQj43/BGEIZC9iLrvwLlkP7EPkFXeOfgoMIpJGdQYIiWeyBNl7iDiN3QTPYzmORs+g9hiqecRsAhMmNcA/BnaCfIVgCNKvYOUIqjNo/BxzBVYuqOoVoslxNH5MTfotguwOoumL5O8NUpg8CASa6j0tEjzegM80B5wAeRnYATw2d0iSBDX6FW6ik2N5KWi/ACaAvNr4HoXJNIWJQ6A9Kx28p+3xwtvTErzwbicG90wzdv67wLeX2UMOk9qGSJL0RY4TmAzoDGojxGSRYDMa76I8HnwA7GWUGBccCWr3E+dOEmSySe5zMMELxHoMLbwC8iGwGzQHwb9DZBvIHkQeRvUI8Bom9ZraaJTc3c9JDfSLCfoU9hNN3kFjJ0TzY2nylwUoD52K87cJlyn7bOEDFIPIBBIaRF5e/ATZgRPsgJ7EVXOrJfVlAbfaMajKA2h8nqlrP7y8QXs6FC+82xURaJEn+Grgl83bj/drbyqVk68Mbnka4BNgJvkG70bCLSBPIPI4Epym1N4r8gBO83wcV4p0EriKxn3E+VOJNu4wwVNI8CHoHjS+CvIuYg6D5IFRVO8lmvgx1fgGuds3wL5MYSxSW7iIzX+Cxg+j9iaqio2mKfOyN/fp3f4WrizqwqhGqE4n21T5Zg+CPYDGrwB7av88AeRA8hm8DVxepOEt4HOQ5zUu3GTyapqpa+1gz/esLo2oNeDx1I3XvNuP07U3VVslNWmxMlgKOJxkNh1B7V3EjKP0IPIimBHUloRsiSRtI+A9XLy4RaPnIX0R1R1EU2+CCiZ8DYL7qL2PCQ8gMojq14BjQBrVPBr3Ek1/itqXgauIuUY8/aOoQmHqCHHuEDAOmi8bff+OayLmEGKc3Vv1Di6XezHkLLn1+Doav1rDh7SM77ikga+B3sbZxF9PPpOHceYB3FjkcPLSggZVOvJ0P83wz/B4lsQL7/aj6D2erXIsjxPKicSWwSptitJ8zhlM9QDoOjQG5EunsEsadBSnrRf7uYfTyF9OrvMlqheJZr5EC9PA65jQPaxEhsAMYeNLmKCAyIPAq6j9Y+K8oPYHwRQIsn+M6nOI/Chq/yPCIM5ZTlD9COISG7NMiphH3ZjtMHH+CDAJOkT5LEWS8b0DCBIKJpwCMdhCFjQGY9DoIeAqzjEuhc1HoMV4d53316TeRoKS5XvZCPoqrhzri66tzJswSJA501elYgAAIABJREFUrH07bqHx5+Tu9hHnfJGRtcNftHoAnoXp5lAxL7zbDVfr+ywwDHwIEoAM4JzYtgJ3QE+BTiLyzYqzLWrvIQGA+f/Ze7MYuc4sz+93vnsjInfuO8VFC5ciKWrfRVaXuqp7umfG44e2jXnxwE8Dw8AAxsCADWNgGDDG436wyxiP2+NGG/DLGANjjPFS3VWqUim5SxQlbpIoivu+L7lnxL3f3w/n3oyIzKS4qKpIqeIPJDLzxl2+uHHjO98553/+x7t3WQ8QkL7ErA5cJGZ3Qc/Rmtc121bYx3fxjmJ7gFcg7kNxCVNEL1vdcsxzkI8RMUJyFDRE3uhG8V1JN4iNy2B/inEEdAbYgrJjEN/BkoQkXUCl7wD1IYiTc6nOuYTLvQ4AT4Oevv8Ns9skteCLCSAkB4CtYFWyscPEyecf4u7PolFtCQ9AYjOzhVi6UF0LL9IY3kV96A0636/vO762Ja89SnlnBx18a3QmlycTH0D4syJ3PB3zYWr7Dsy2IcVChGUdsJ2YjwJLQHvAloDWATliM8bW4tijwDncYDW9T+mmX4MuvOlJH5433gNMYvYHOElruDhuLugC6C2kIZQL7FPQLdAfAjmhdguzbsZvnED5yww8fQpsPrDCzDbSs7h8b5t9FIJY/wgsgHKUT6I89Vz2dC1pzSvex5xiwyjeqAVC9Tb5xGXQsge879+a3WJmK6gOrFCl/xTZ+HkaI0uI9XIRUv225+/gicKvH/cAOvhmPK4yrt8FOsb7SYQlQ8DS++x1jZLoZRZQm+HpLX7ugjYV2zbjOem3i/9HgdkIVvvwEHE5ln0oHqIMrTdrxReCirY9uRHj/wNJTlJbC2GjGZ8oT3+O4gqU9zFyYTXKR6jOPWAW7i2PKgEcIlQSIHFSXmwACYq7ycbWAWvajjG+pF2i8kPgh4R0O3TtIDauomymnrglO5qcTQnCb4x8ZGZPU+l5mkqPi7VAQNkBJu92E7P5KFsBJKQ9+8nGXqTzXfwuomO8O3hs6EwYTybOzrpV2oMahRdnX5BUf3Sf89xo/1fV0rlUNj4JynDrFXEvOmJJbqE6Vmy7jNkbRRgepPMof6p5PruFMb94DUJ6Fws38B7jiSW1RYqNu9w986pfm4XU73QpLj5loTIzJC4BcRfeIa3c2HK5AGnPFbKxi3g5V4GwqWDMg3QC5ecpiUQWFpJ0PUU+fmyqPG3qsOpCQtqsJY/Z4KyR828Js4KbYJU36V5YDFNniI0LKM9Je3ajCJO3fi8137/D2Pm4B9DBvVE2Jvm+omO8n0zMtCDSx6ixEBiV5K2/FE+WL5sb6jDtmAmgKbQCd5G81adiInTSLIzTDBcb2ChNxvo1vBQmtBxflo0FzErhFcDugF7xfLwdA1uJsdiSylXNefYgd09sxWyc/lXnDD1NzHZAeJoQCqMbIz4Zzm7ApLvE7CqQYdUhgp0tuABCWUTcKO7bJeBPW44cxMImkq7Pga8AIxvrBa3AFyiPBWa2hqS6pvxf0iR5z35iYxGKNSyMERtr6ZRzPqk42cl3d/A40THeTyAUswks7APbbGZ9SIdQthWsVuxyBGXbyAtVz1A9i1k7qUq6g/JnwHZgybYiH/0CJUlt+MpNsrGbzH9muoDJSMvfhtd+lzgNsaVueqq1510sVIFzYHMwy5BuIatgpJZUpLnrvkR5v5m9hjPIU0wrUX4L7DRoIa09v2fclPwo6O2pUUmnMZvXsjCZGhQx/znIWeuWBshPgi0vGPGAnS3WR4/NeE+HmdXomv8qgKQJM1smaRL0FcpHaIxBNr4KZSsf91g7AOCDxz2ADu6H77dIS8d4P4lQ3ofyN4BrCpVPiFmOl0WVOwxh6e2WI+rMCLVrAvgJMIriIGhc0I3yHJEoSUeYbMxB/A0WmlJm0m3fH6Q4AvzSQlLx/zWOdL4ggQgkRI4li7BkAs+L38Zz5u9DvIhYCLbCQrIIhS9RdgDCwhbVs/mgsmHHAuAE8Gz7W9ERFN+mHWtB74OtxYlgPcBpsFcJ6VYUj6C8GyeyPYOL1gBcpdIzByGglYm+G0veKMY/CUyg/CxoRiRAMb8Qf/m/jdqcxXfD63/3temvf1tYoWhnZjWw57EAtTmoOjBEbOymMdxNPrkaxQX3O1cHvzV0jHcHjxUd4/1kogybLyY2Fs/yegML5811zWc5WiMoFsxm9QDbJQ2heAjF7VK8QKicBiVY6LaQthgo7Yb4tqR6Eco+RdQPivMeAG3FUn9uFAH2obzuwi2A4jGwBhb+CLETNAwaRaoD17FkMc2w/HT0AVeRAsqvIdWALtDsddPSD4C+qTIx994dFrYU2QBXi0MXwDbhOvA903jlJ4ClmNXwuvfidHZu1hx4jBNcP79e4yOX7vE+fiswswGS6tskC4qFVLaHyaFu8olnQLPV/Hfw20PHeH8HYPb9zTp1jPfjwPDZVUCrcLfRJI0F0u6AJU6einmFfGJ6aLtCzK4ppEvMbFrpFOB533VtW2J2GeSKYBc/Tsgm3qVv6b5Zji2slfYyM/+cAUL5gWK/K1hYAmESxV8Xxu+HRV7cZVPFIOgUTmIrS9zOFWOc2V9cWktsLAAeoMabFSi/CuEQ2ABm7YxyjxCUzPslSKcwW4Lf69ZvdZU2iVbA26OOznpVyfMVWb026+u/A5hZN1Z5i+4FSPEIo5e2PK6x/B7ic1vyWqdbXAePFR3j/Tgg/RSzv4fipzhJbAtp926PRBc2x9JXMetR0NeEdBCzQDYxh9jwUK/iy9Tv3BWcw5IbhIoR0gVY+qxN+1wlXYa8SrOcqnhdxr1qm6XleDi+UbjYJSs9B172nWwX8CrYYWKjl1Dpx2wSbD/wJtK+Qh3tuu83de6MmF0jpHXM1ky78A1mM+r3xpJCRAZku7GwBZtVeS6AhgoNdvDFR+nRHwOW4aptJT7DIwTHwK4V+yeglKEbk8AGYmzd/zHCltOz9COysQZ5vZ98YhMW7lIuChUfpMlKBw+Ojtf9XUCHbd7Bbx4xRRzBc7sDoC9pC103YWbPkVSfQ/GqiA1i9iHEl0h6usgxYCPKIc/drKa9HxMqc7BkZ6G/MlrUTq+hNNQrXs1B+yzmb+D9rVshAEu6yhahRpx0L9WCsOQ8qOb7aRVJdRAxgIWzuKLbc5i9i3uuE3gtuQH/L7ABxcvExivA08T6DUL1a1dqm3rH9zPcN8DKfH/APfpISI+DCeIniEkspMBSrGhwIk0Ui5D5wNbife4AXsRJeReAoeI1gEVY6AcyLGwDBrFCGrV/4WcsX3eEG+ene+uPBWa2AEsXUC1L8XUaWGNmJukm9aHdNEa2dELrvzF09Mw7eOzoGO/HgyVAa5hzA7FxlFDZ3LaXNAnUMIPGsAxWyuwUooqXcF1gZuergNl6YL2zLSuDhi1RvbEL5QGzSbPQjXQLsz2gESnfixtYA0bMwngRXoaWpK+hiNl1FHt834BiFCFJzfgDCIb0AYp9mG54bjlM4kpti8CehTBBqJ6EeJOYbSLWFxOqhzEryWMLwX6FFbKuftm1lK0XQ/ULQov+uDRUeNqFqM09COvlAlzxc7wk7QU8jH8VOInZ9uJ8H+Ha8gNYeLHlDHOmTtXd92J47x/U4//5T+/MfrHHCzNb2/L3AlUHXqPaf5b63S9ojL7xOMf2PUHHeH9H0PG8O/hNI5/2f/MJi/kZYv08ikLZJO65ngW2SGqgfBswZiH0qjq3TpxcT7OxCITKgRlXMwuYLURsxNJdFipvSvFjlDtTWm0VUzux9CBNPe8WxpYCsbGOpLoQOI6FqzTGeqF6W5a+byH5CcrnAl9D+CHGTaTzhSdeNjTZDBwnsoB88iyV/sXAYvL6L0DdWFrD7FUsuYSZi6r4+/5rFNdj1h6qnj1E/g0witz/CZxVvgQQ0ifAMsxeL8h1rd3OrtHOTAc0TK1nRNJAyQ5/UmFmFbBnVZ27lsrAp+TjI0zemU16t4P744gtee3G/XfroIPfLjrG+3EgVG8jfYLRQ8yvg2pkYzXPFWsx3noyx432LTz3ehw3NqHI2wYzS2WVHShzA4RF0C3EHrCMEALSKMQdWDJKsGtgdxSzQbAhLB2EwruHBopVLNwmpH1gg0DAiLgMZAULt7Akw7NJdbBu0u5JxDBm8/Bythz4IfA12BXM3kW6DkxQ6gyLBWSjVSApPGyI9blAFxZ3knSfBYaRPoSYoPgMVukhWA1UR/ku2oRlpmDt220I95it5ackCj4LXMa7uH2Nk/MmkEqvqjWNsRg4Q4ssq1lYEP7OP6py8+LH8diemr34hylptZek8rSZPZEa5maWYMlLhD6U9hwlG7/J5O3yfWZMnw9C5SSx8czvfKBPNjqSqN8ZmKsyfk/RMd6PAxYWYbwCQNIS5lU8AriQiPQlxLeKv8+DngLqVPqPAxCSrQCGDSFeleTGXUoxXiEku7FQ1EYLS2qDxMZ2Ke5C+TtY5WNLu15D8SixsRl0FktWAzcISTvBKberoCWSPsToAxrm3vRXllQjMW9M1W1b+LTw5LMWUZmvUP4O4tPCtI6CzQG11HPbESBFsQKMYvYW4iYqCGxmp8Guo5hNhbjvC50ALjPVd3sGluHM92W4Qt0JvAXoB3g+fB1YqTFfGuS7FCF0M+tXd1+3rp9drg/+1yuYQUhOMm/FWFi+YYR5y2vUugcIaQ9YDbM5Vi5WHjvsOZLqELX5g4Q0IVTWAw2ysa+xxAhplWwso94x3tPQMd4dPBHoGO/Hg2yWbSNupBnH7DXMNiL7xCVHW7zLydubgYlSIxsLb6JwCNVrwBYsnRk29x37i9/fPDKpSjaxg7SrGVYNla+I9R6UJdRHXyJUP5OFS1hym6Q2goVxxHUzK/LafIRHCza1nLkXYgK2FekilsyF+DHupUOlF5x8Nlz84PKr6SmUf0RsrAGGsORVHhzPAldBxzwq0aYWV2IVHtWo4Yz4PTiJrbjB2gFswQXeJ3FP/QiF/rr1zn01/L1/HOMv/nKIq6c2kIRzxHyFbp2fLZx/W6ue328btq21kDxWspuZ1bDKW4RphPlK73JJQ4xdGUX5g3Zj+31BSXLsoIPHjo7xfizQZSAvDMId3Bg8j1kfsfEyJB66lUYxBnFjfxIzYYn5sSFBeQ4SZsOEah/55HnUQNgg0h0sDGI2DnQjDZulwxDvYMkgFupIg0gjYDeLa5wBchRfJmafENJXkI5iRdOS9vewHGVnyfIKviJYJML7FipzZXYFMAtpScoruqHEaygOIiYh1oBIXvf3Gqo5ZmPFOBI8ZRBw6dVNKJ7ELAJPIQ0Xf8/h/ngb76b2Fj7xvs1MVts6vM3pFrxc7EZx7gpeI14DDiM9g1m5ANhZ3JPFZrYxbHzrWrx6aiOaYsBPh7dfPXd4u84fzXjxb/01i5552x46Z//bh5kNqNJ3iPrdjvFux2Fb8tqtxz2IDh4QnVKxDn4LeAr4BNQPNJphXXsDSFDeDAvLjjrJyzCpQdrlYeWQ9pLnt4BxLJw0Y5tyHQaed3GXetH+Mwxith0LBwnpC2ahpWuXAI5ioYXlriGUDZA3GoQUFG+R1+8Rpg4yC9ulvPBGYhVlrxLjTpI2DlcPir8EAnn9HeA6ZkuBcVCZg/ZFBlzEbD6YbzeeIq//DCfuzS9q0yeQncI4xuxtTadD+AJiG75QWowT1VqxFRgE217cl1/7vcSAMTwHHpH2AgsKEh7AQQBbtWl7+Pv/9Ym4618Pc/P0Sbpq0+/Z5amx9vTtk028ZUOn6up7ap8l1SeKAS6pjiVPjO77E4ROyLyDJwYd4/144CFuD8M2Vbqc6NSgTSxEY0SdwqyG1EuonQcgn4SyLabiOIoHCVVwDxLgLpYcgjgCdrjwrimo5UeZ8qR1o8g3l2OoI14GvYmUCeXk9aO+K0NYehTlNxFHCbUhsC8gGS1C06OE9Jh783GAvH4M7JJrFGolsAE4ACyH8CmeP+4GlqO4yAMRdhEYBq0vJdJAKwqdmA/A+oAA+RxIcowDFC1Ikea2dzprvquWv7fgnvUhmjXdJbYDnwIrcUPbA3wFVnIAAiULX/oMt/LLMNsh6SUA7lyeS1dtSNKnZvZScdxZWnukr9640CrVOSiH4TML1bVwJ7V5b9h0Jv1jgplVVb8zW4rh9x0dcZbvEIyO593Bbx4l+SkAHxWM7yqKt7FkIR7mXgWcAm3BuIXyFfKOXy5oIoHyvZhlJuWgpWZT5CrARjDbCsltYC2+UAB/plvzrRnElcBVLNkgaRjpLgAxToIiSdccQMSsB+JKlI8AKzG7ibEMuIJYApwHW2JmlzF7GzQI9EArSctG8XrxRcDGZlOUeIUYvyLGu4RkEktSLDxb2O8ALEDxPaQ9oA2+rZESKpewZCPwBcoXFyprr2PW+mxP/wYvLM45RGuZnWMr8Cu8qQvAG6DdYNMbo5Q14McV40jc8a++5urpNXQlh627bzsSxPgFWX6dGKEkIgIkaXtp2cSNd2mMHFfac53qQLCk2t4h7tExjJe8aZYf7vF3FECl/yvqdzdSSvb6PQwtP/P5/WpXmtPJd3fwBKFjvB8PSuNdoT3s6yFyr40eAHWBdSMVOWN1k08kSA3ysQrwB1T6L2C2EqgXeuQJbpBGkM7hLcD6gRVIXwDjWJvB6gLmUZLEAOKk55JjfZCQvge48QrJebN0rqQx4BJoQNIJFAXMwyrV4lwGfAFELKxEuln8fI4vQC4gpXgHr1KqteH3Jf6AGFdAtoOQLAFOIQpvnKWYvYm4BroAjBMb72D5qYLN3Q96G8W/gfA0ZqW++2wh4PnAx/hiaF7L9gQn2pWs8gBs8YXIrCz3dUj9nDu6jFrtFPMW1qikn5Jlo2TZBiqVRfT0fk6W7WBoaB15vpS0MrMuPJ9YRz6xjrTrA8x2EBsv4mUCX5HUHoak1wI7htnDH6t4B7MfU5vebbUFk3dO44vC3xccsCWv3X3cg+jg4WDW8bw7+M3iXh5LadTbapglWSEikgFvABWkgwA0xpDhIXFLcpKuO2ZscO80B9lBLOwAFoJ+ANyCUOp2ry+usQ9sHLiEWYYFJ3RZOkJI94LdBfai6MIlUgNUTmSx8Kb3gu4WOeEhoIZUweLhgpj3R8CX7qmHF/GenOPkk5/5Ham+4GVU+gAnd9XxRcdWjG4I64DD+OLjGt7qdAzFD0E9YGtR/iGEgPHHKG9A8rOi3/cyPBxehrFLvIbXeM+lzTu3FaCDuAob+GLoWdBRsM1Mx50rp0irc2g0FpMmDczWU6lAmoq08ku6un4MQH8/xPglaVVgk3htfuHxxpVAlXwyKeRYS3ybUPojzlwPNOM1Hu3c31l0VNU6eKLQMd6PB5/hzO4yBNmFG6o67iW2l5KZGY2xseI/D91J2zADZS0aaBmkXfshdOHh+Eh7N68SZch3DLMeLAELb0Ax29/L44rZ5+SN6xaSRVh4CWwX2EqIOcrfBAYhvgnshORN0EdIfwIcdvtdXFvagdk2Dy3X3QiEKV2T9Xguf3/LlcvnNC9EXbYg3QROufyqPYWym8APIX4E6YceNrdXwBYX9/QqLiVbp71j2XM4G316WHx6R7HTBaFwECf8Tb0hm7/87fBn//mvdOT/MupjA8CXOKktFnbwIp7bn08IG6n155i1M96lL8kmatTvrlHSNTZVD67Yj3RwRse0B8Ojuh0Pctxs5Y7fZ3z4uAfQwUPCDML3N7PTMd6PBy/QotbVhF10NrX14sznXDE7hbJuQsWfwrw+gamL2hw34vlEnwuzWEaoDkOYWxDfXi/m4HG8jlmqj5wi1gNJ7SNLqvPwhcNVPGz8BdhdKj33zreGdBMx+zWKz6B4Ds/jBlwL/CKwCPQRcBNCq+b6JGgXaATYCHoOaS9SfcrLl/ZjlmBhAum0dyfjpJ9fXwNeAy9Kx3ABrj73HIqfIq0sSukamK3E0iuYfeljIvj743mcrDYdW/x+s4mp+u62UPsgvgAynNR2BqijeAbl81FcZsZ76pu/gzG90nbmatdX9A6sIFR3kjWqjN6uWKiMY9aabzZi4xUq3V3EfCfZ2BkltW4L6WugZ8jHbxCqg8WzMe6iL22YZmxtHLMeRI7LwD7Lw6GXpLa3+NvHmE9upC29YI025dwHhh2n2n8FDJSLxsg7JF27SbuS4m1Yi+dvM5cRBpN3Kih/+REu/qiIwK7f4fU66OC+6BjvxwLLgAy0j6myLcClTw1jEfCcYvZTlP0zf6X4qIq6bUsKTzVpV+KU4n5JNzC7Yx7aNCARpBADKMXDyCVprcFUa0wdu+/Qk+oWsok2BTbF/CjE61hyzZLqT5B2+rUYatntHdwjBYigN0HNUrHY2I+sSqisJYQVuGUo8uD0UTYmgQNIi5FOAa7+pTxCrGLV97HwE+CXoIVFuP8z3CC/gzP7Z3uPA7hRvlzsP1Jcs8TWaaHkNUiTxMYiWg3a4g29XPj4OFmjvZc6gJlZz5zX6Zl7B7iNuIDLw0ZC+g6WnkLxAkE5inehzTNfSJwq1/uMpPLijPO3IRxzXXjtBs3/5n1nwswSklrbIk755AXauQGP5nlbGLLuhdsAFLObNEaGrHfZQ+msqzE2SD7+SJd/RBywJa8N3X+3Dp40dNjmHdwfIxcCnp8MuDMpnKGa07OsnTDlTOgUMcEUg9X6Cub2v0L5PwWuEBsrgH9WvP4VIblClCF1IS0FnsLbPgLxGHnjGsRNYOdJewYIycapa8ZsB0ntj0hqIA5i6RcQe137nFJ4QmTjvyTtfpr20PIUJGDyzkXSrpZWnlYDe6Fgl5dYjufVD+Besvtpef2ih7xzA+qEqq8+GsPz5PuDh7cD3QsumyUvIx1HGgdOF6mAl4GnitEcLgjS/cQMQuUKFhaAnkf5Tl8MhZOeX+AK7oX/GlgDze5bBZb5j07RTsb6nJlh9RmwtFpR//yc8aFfkmdzyLIVeJj+avH7Ema3gDmg1X5L7EvgVBE1WAEYllywkM4vSHztOe+060GEacoywBpOzPtNYFozHcsfyPO25FN6lzdr6lv7t3uEqF9Dp68D0L+62yz0cT/87vWqP/xdX7CDDu6H31/jPXI+Af5jQuXPsKTs7zxVLjP1t3QbxeMQX257XfEAHobtxlnJpeG5gTRAa3OKscvCPZW8+OkFwOwPcTlOAwbAlgFrsfRzepZG7ny9HPiMULkDtt1gveengdgAqEvZITwsuqH4AUuOWkhecIU260VqYMmbVHr3kTdyzEYIlaeIjcWg6xBba3pHcA91EPd2hWJhDGwlcfIw6FmQUOl92STGWWBC0lnQpCk2QF8CrwDjBSEON8Jq4MZ9AoqOXNnE5yDzmnAgdF2iMT5OpXcQ975XMhUt0Af4s7veP4NwFOJuiNtQ3I+FXtxIbwcdRvkoFi7ghnCF32vmgX6GcwK68ZaifYhPQPOARZh9jhvdmQbQrIalgyj7SetWLGyk2nUN5c7yDunXVHq+sqRWI6ksByZJa0/53uFjrPI20DWtxvtppCPMRlaTToAutl2TohrBkpIXUX6eDxjX1ghOEjRAEkJ52chFKI5Rqt2V50zS2ygeRmUJmSo0vzfFGgvDktsWkqK6wZ5tD2CELrDjQE5Ib3BvDfryvV8E7hCSMbDPi40DuOhRK0bBToOew9Ljpb5f+z2xcjESkCqgACTFs1zuVdyD2BFn+Y6iwzb/vmHk/KvAXwAvQbjOzFpfhxRRdhr427O8epXZvdOFHg63VtUswyfi2ZjDbxW/D4IOIdaST/4Rd0/+HbPw7wGTYBsxC0g57dKeVVwtrAxn1gnVj8GeIWYfYuE110sPQ2ZkYN0k1etAHbNNhMoYyg4S43RBjgqtXbVidhn3Sq+RN0RSW+V16OU8aGfBVqO4mnwCsHOE1KMQzfd92sw2UulBipfIpvHBGmM5yrroXZpjtopQG7OQZkibXXhFe4E3JWWghpn9aOrYkGxG9gGEg97FLAeSPUWzFFecUxwBewWzCnn9fWfjhypJpWkwFD9F+SpgHYT9WPLGTO6WvoSS3W/vITtB2WAl7XYjn1TXkY2Xqm4lir+tydKWTUDsB3KJK1hgqlbfLCLbDZiUx+JeC+lpM90jhx2OYiSU4j33gnQFL7srt5ygyax3HmRjbPpR52k1kmnPdIGbEl+RdC0F5hQT5zIUT4AmCZW2cZtZhTlr13kAhYuznGvauLNTxOxdS3s2UaT9VR/eSTY6zXjbRXqW9DF+7TrVvi2znOlhMIYvsDvo4InC75fxHjk/D/hvgH+IT6a3aOZSZ8IsIJbP2O4h3HtPClL9EXi+i5GOkDfqKP9Zy/YGLsH5ajHmI7hBH8VCBTSBdBazHEs3mtk7wA2wrbhAysGpjl8+uF3AJqR9wCSW1CG7AngDEp9x75WDXExIU3yyb6B4pshZz5qAlJgww7ugKbsN4Thetz6JpSeApoGr9b+AVCVmJzC7RKiB8u3Kx3+JJd2EygR5fTfKNgN/pKTrC3Od8VGgl7R7BdhcYrYDLKBcEG5iVneOgX4AMq8RJ/N7SB3FQkc+zgE9x5QuueY2ba8m8JrwCv65ezrCu4hdJmbPAljatUIWviTmhi92hqn2j1LtC+7RhUEIY+T1K4Cwym1COjh1jbxeFfrCKn0VzN7FQNIYylpFbgbBRvASs0jT24149KC1D3n5QXikSHnAozNLseRTLDyP5/i/ZdmX7SOpLkfxGpZsMbMaMAx2hKS2AbP7kcu+phQfmg2KHyFNoDjbd7X1m3aetOcUIU0JYQtpz0d4xObb4Kc2d12nvvu7CDOswzb/jmPsihEb/z7wU2Ax2BdYuA0sgfw8wttt+uo/4iHwuThLuz3XKR0DjTGzZrgV21D8DAv3IRaR4cZ4AngNC8tJqlfJ8kugctFQQXkvJFcxW4JVn8astzyBTWmc5IfxyRuwz5lqm2mzhU6L3C5A2EPSPa9oPuJjd5QM2/U2t1+AAAAgAElEQVRgx4qc8VNYWIGZe1CWXANLUKMXZReAFKt8DdaQsmEIXVg6g7xlcImQti2KFKo/IzaWIF0hqQ3hRnkcqBAbLxAbvW0nUbxC2tsDtgJleyC8hRkkVc+vKgUpI4S0KEkbxJIlYGsxzUfxGdBFFN/CNcsD8CVocyHnuqRY6FSL+3qPBY2tafu3e+F1Rq9uI6SD9K982pLKe8AI2FFC+jzSeepDTwGjVOccpxR+kb5A2Xqwm5gtbjnjZUpiHkBIFhMqG7kndGrqzzy7BfEwHp1pF2tRHIdwdcb2JibwEsbWcZzDF7szP1MLq7DQotxnB0m7vjkM3sQ3G8eYtev9t6P5fFu4ad0LpvZTbc4WGtMr/h4af/FtT9BBB78NfP+N99iVjcC/wNJ3gMNuVG1TS3eoVixt+0+6QFM4pcQI8ArfDEEYwglSt/Cc6SSucV28TjewEazdwJstIe2+QT55GOXPT43L7AjeTONe4fqBlnOUpJ/xWcbaGnav4zKnhb663sW7Zb2LLyxeALtMUn0TxRso7vZuZckYikVJmr2JVd9H+TkUGwVbvgvoLRKfg8V7bcU4TkoTUwpz8V1C4l6vhf0Wkh9DmXRlB4pN45nU9pH2vuqKaoBVWiILU/egJAaC2TLQW8AIZksgOUVIjZiFon/4l1hax9hKbAwilmB2AakXeGGKvyB9ATGFcJnmdyfDDVoXgPWtXKexa5DUtpON/ZyYLgcWYEmNvmXzkG6Rp/OAeU6km8KkfzbWSm4cw1XojgN3CdUMcRfpTvG68BxB9PHYAC49W7wYE7LRhcVtvIHnphO/TqiTh4VY2Ena845NTw5W+qrAORojpUEutdmP0Box8Ss9J6k9v2izLhrvhfUzN2mkuFb6jan7tPtZQrqXkNYI6RQbXhJkE8eZ/p1+OBy1uevOfYvjO3iM6Gibf1cxdqUH+C+BfwxUigltLZbWMFvpxB9u4PegBw+Xlkzeq8BlyIQbs3nA07hG9/2ehlt4OdKb+KzzFbAIbDWt+tbfBLOFpF3HwUq3oQfYTsx3oDzDS5+axlqapI1UZWV48STWogjm/cJbwv32GWYt8qwWQC/hYczLYNvwJibrsbASCyvN7BhUNkg6Yx6d+BzoQ1kDxZcldgDzIB7E0gHcc99HklaI2QBSHyE5S2z0AJtBJwAItdtIdVCDGBsKmjAryGzYU8WYLmFpF2nvBisN94PjMspGIAhYijgLYZiQfIp/TjfB9rvx1AJEjsVNgBDDeFRmI05ganqeMe6i9FClnFA5bgs2foVkWFIln/g5+cQASeU2luwGRqnOvQIYyu+gvCAsmgjVfcC48smzxbZh0tpaS3qfRrqG4mKMQxBb883H8UXiloK8dQFRpgJGUF4uEIzJu5NAhVAJhOo4lZ4aiu9SHz6jtHYdS1cBwkiLFHsX0gTEM1iyAX+un2Lmd2ABofIxyhYDa1DcgeI6YnYW7DRJ9Vl8sVY+/yMtterG7Iz4O8X+y/GKhVlhIV1GUrmAJS8Bd5BuASKvf4byTcWYF9Ks338Y/PUjHNNBB78TfD+N99jVPwb+MzzUGYDjYJdxL2oTQBH6vZd4xUDhdS2ivcPXKF7iM4h7p60JldN4WPFFLESMSTz0W3SqkrNqXd3sCJ6LW0FT/OFNmGKoR7DXpjXXgJA8j/gcqQrsKfLNL+Le3w3coF+kWcP9DMpP4R52hhvkHxevnWPWdprWi+cfyxxkbdoOywGsteRHcQ+WbIOQW7A/8W0aA32Ge4QLsLCxpSb9KWAXsXEQZ6Evx8IVjH6yseUoX0fXvN2EytvADUMjaoxOEuvbqQ6cNpc8fThYuI3idqQPMStKspRiYT5uQMYRr2LJr1H+pWuoaxfSsmL/5ThRLStU3srF01oU38cN+AYjQqW3GbpNKoPE6jtYst8seRXjDCFd47eNwSJsD0l1h5dACV/AZO+AIJv8WCG9YqGyrriveYvpHMU9y9Ywdgry61vyPtI8wBdwsXEWWE1sgE0cIFTPEUJCPhnJJ8rw+R6aJMoSG7Cwg6T2FCE9TMw2UZT/EdLPSLoi8BKWfkFs5DTZ+4Cu4M/6EFOpGu7gC78SM/P0vgguI0/3SVxaHXSCmE99n83CH5J0IWkZxKPExqMY75/df5cOOng8+H4Z7/FrTwE/xezfxdk+O3AhjLeZJU/3jTBbDsngtFxbb5Fv3o50Dp/M5wNzMFuL1wbXcePZzxT5aUZ+vJwcyz7R4OHRffhn8jQuEjK95nUUWI57pG8V7/EiZicQAeLTPp4ptns3zRD7EM1yNoDxB5Owbgmzq2we0gLpAGWbzHbJzwmmaqW1EmmCKU8aCOkAysrJGUsqq4GLCgMnQafJx7cRJ3eR9r2OhYVY2Oenilew5OEbYli6DNUBdSPG8NB9A+MkMMdJiDHHeA3CKdAk6B3Qh0hrKb1rC3vA3ioiBhcLdvqPp64jHSkY6eWFR7Hkcyy5i7deHWK6ul7StZekOmQwAApSHCZmN4CFhHTSkuq7SLeLvVvD6p/QWhXgaH6nzaqE2maU70ZZP63Pk+LLTN7YQ3XOdENtfl9C0VrWRKV/klifR3UgtZBs08TtI6AFEC6QdMksvFy891H8mZ6Zk5ciyKMcHinqYioeHnKM0Pwf8OfnQTCEhadQfppZFuNmhmRdMw+z3ViSo6zXeSH6Ae3fj2u4bG4H32U8IaViZvbHOOcqAf5S0n87yz4/BP4H3GG8IelePA/g+2K8x69VgH8E/FeUNdSOzbiH+fCQBHZvQQyzVbS31ixxvC1U/c0oJ4vrEMYx87yuYjbD6wZQfovpLHf3ClcUXRsPonwUxTCLkMVXYC/gi4R5tOe+S2Q0n4mIT8SrcEbyi6DDuEAKOEP5M8waiF+A3sS9pQXACdANmkatgvJPIXljqo7b7HlCZRCpgvLFeLnVGTPbNhWVVXyHxtCXssol8on3AKjf3SwLZ6j0XTBLXgHSWe/VDNg6fEJ+3Y2rbQUGUexGMQOsWHyM4wIkhbE2rx7wyMpNFG8Xx6VYshxLLqK8dTExBzRlvCyk1wm1Tbj0qi+2PGV8lVAdIakNEqrPmlmjbEhikrBwQ9nkICEp2dIJoGI8V3HuxRhwrngWS7Tei9xz/+nbWO1j7M4kysvF3FlC5QYWdhYj9c/UteL3Wc+iNrKZ1NPMaVf6L2OMgxUF5uyDOA6qgu0FraLUHGg5RZGSAXSK2GjyNkJVjzbL2leEJAGNI73xDTvOoganFYTKmik6QzZ2klZiIPyVzV33+9Z8pYPfAsznlf8Jnw8vAPvN7P+Wd3ks95kL/AvgjyWds3bS6qz47hvv8Wtv4YzQmaVbZvN5GIUpxUEUlxcT91xaal8fHHbn/vtM4VJBbFuFWUsZjNWRLtAemj5A03DOclkD7IXCaH8IdgPiBTxUuQTPoX6ME49O4HW7F3EPpwc31ouA63g4fz7uuQ/RLJ+6hpet9XtePWwghAEkkIYwW4OygvBmAGdR3sor+BXSm1OEupAWTOt0nHxiAggQ9jubXytwT2ojsT7OFPtZ/SjvR/EssfE1oXILkm33VWPw+3MctJhmaVtacAh8ESBOFkSrzRDO+f2zdRhf4g1VTqP4JooJ2D7IzxUdVb7ASVc5Fp4rBEqmPrlp41hB6PoMsxcN/rTllVst+xiEo5bWuiGcBo1ithgLVeCap28A96QPgw0Dd/EacsPCYmAFSfIGSe0cUCGbXERSO0c2BqEySKX/DdKuuxbSzZRh6aS2h6T2I2ZB6+21kCzGCXblvauheBmzZZjtQSzC88U9EEbaTiTdKp6j0nifBF0oxF5KeRQD5iI9QwjTddz9XoXkCyy4tHCMO5mZ3mm7aMs/V8DO+CKF1ZQrxVC5inQBZU/jYf7/5d7n6+A7AXtiCGuvASfkks6Y2f8B/Dv4vFHi7wP/Rh7RRdK1+530u2u8x68txKVD/6Pf2DmVr+fbsVOHaebpHuB6+hxTL9h6FD/FQ+41FOcDqxAfYcmiYtu8bz7ZFC4V+fIeSBYiDeHh/S1NVjnT8/0ncQ/7I2aGYdf4WONfA3+rmOtOALcwXQTeLpjdA0U41JnlPtmvxtLVSGD2Eeg9sI+QXsSsqyDQLQHGCdWDxHyjM8MBxV9B9Ppps5dEsgvlb1A+s42R9QqVhYYdJE0f7Bsa0jnExj4sXQba4cpxNl6Ec+eBIuJ6sfdd32YXfUEWd2BhnFC5QN4Yx8rSMV3DklXeQ5zNkB+mmS4RxEkiuwhJi4a9RmfhPbYvMkNlA6iC4rVCAW8IJw8CoQLMBbuL2XQBocnycy6usKr4PE4p6ZogZoOkPesxu4xVRqn0ZSg/A9QJ6UzW/uyo0FzYHsGfkWF8oSiwBaBeYBvEPcR8Hyh6OodR4L2Wcw0gvYXNImCUjRzy90kdS49iwSNaFo5g4RtDiu0IG4DjWHKFUH17SginBRa8YkFZdhA4bHPXnXnw83fQAQvN7JOW//+lpH9Z/L0Cd5ZKXGAm32gdUDGzD/H546eS/vdvuuB3z3iPXwvAPwD+O0rSzLeFNAn6GCehfRscw+xedbOzYT2Kq/Dw52x14697JdDDwC54vr7812ZXj2tiNz4RV3CS2ueUId4S0kc0DTd4qHoNTBm68lo1Vw2bVtpj1gBW4GEBbxkqRZxQOATMB9uC2XDLURtwpr+QagapsP1FeB6InwM/wqxOzHdioQ+bVnYn5d79TLdQHMfS57HKdcxWI13FGIawGOIYcBWpq2CSH8S9susQ+yA0ICzGkjohvAv2PsoOgT0DOoNU9Z7jDCEtxmxaeV4E2ftY8gPQCmI2Z3pDGWA50nnMSrWw0zg3ogbBO4P5eY/T5G/snX4SvNd7qeEegNR5CVpOqHRT7fdFR6gMWrXvRcyqs9XizwrpU9yYti78tgDnijEmWByF8DVoFMVjYGMQ/7DY9wQzQ9guwetNa66D1Xwf5TgpsKjSUFPlTDEh6iuksyifixMgz7SOFLgpxdvEej8udxsI1dSIpwsvH2ZZQRGqA6D/4oHuRwdPOH6nIi03JN2rhHg252J6/WOKR1bfwx2gvWa2T9Lxe13wu2W8x69tAf5nHqBJxENB+SHQveQeHwI2+eDX1DmaOfPZQoOPgo8xe+3+u7VhCU2ewBJK6c82zFhBlFKfMzQ0sVCbZcHxKbSWpLUuktSLh7FrtJGx7AKeg1yO9yZP8RDtRdA54EfATWLjLcgzQuUjQjqGdBjySRSXgvqI+V3gZaTrMLmHSm8/6CrG68jqEPdA+AOMIYxDRF0F/rgY22U8X/8UMBdLfoB0BWWuQ2/W7aVU+tz3i0N+a2wHEDHLwQqZWIuE6gq81n+WRacaxWsLgUNQ1HJ7iqGVn3AdX2Rdwj+rA35+evAVvpfCTZ1WZyB/mZDMpdp/FsX9JLU1WHj7wbgCbagBfaC7lCFuEYBeN7pagDdfeQ5xGWwDXgVxkqbRb+DeeoWp594SXAK4SXRrjO2gnfg2TtN7EeI5LIwS0pdAXxGzKyiupfmdWgs6DmpdmFSYtRVvE2Z2Eez9h7wvHXTwTbhAu/7+Svz7O32fG3LS56iZ7QC2At9x4z1+rQ/4J8B/yuxEq0eHVJCxrIKzd+u4utkafKLZ6/ld3fH9qDH7SmqseP1BcYvZCW+PijGwR5GCnN7q8Ae419dKwpq+fC0/g1men1lDBdNlLXdiIUF5BX+oj2D8GHEQX0CAU8PLCMLzwE1nDsdDwBIs7Ae6FbPDFqo/QtkW8sz7mmPv4Pn85UgHULwMcR7wAvWhO1R6r4PtBr0IvAfxELIhnODYzD2LUIR7BXRB3IVYB3Yb1EA6TcznQxxDTAI5lqR4SOwmIbkC5FBGY+I+LHkD6ZJL6FoV78T2Jr5wGcdzyW8A+1F+DXcfjheG0Ip8dxHJ4AZmMxedau1GprMUBsuS2ryHjAy1oyyzFIOg14BulH/sf6uGG+g47ahAOxGsB9c8aD3vlLBM61ba89hdTE2AdqogPk4UXIb1hMp68okz+GR3WYqrZ/maztZbYDr+iv7Vj9butIMnDk9IY5L9wHPmFUkXgf8Az3G34t8C/9x8QV3F55D//ptO+mQb7/Frhif2/0dmdg76dvA+mp9CXEWzo5OHPcQN3KOZN8UAL4Smgf0+ofM87jl8gU+O5zGbRSnqnpg+yX1L2CfNsT4UpquflaS21nMvBY237Fsqss1Buou1sPLdcLTiKlirItwZLHke9/av4cI4hVZ42Ia0C/QO7feni+ZMvBbYiDSIGq/5+QzKumtpJWbXkDKIO5zwFHqBlJh/AeohGx/GkiWEys6ifegkaCkWDmOVjcRG3UPPsV6852eAhJjNxZKrwDakD1HcjLIKMA9LynKkUXwRuB5pK2ZlHT8orkT6APQ6cASFBKO/IKKV77O1/rlknB7DbEHx/ubhBmqo+NlabB+iZKBLZ7BS4rfsCMcQylZAenPqXM3P7BpNxTta7r0KAl9Oe+33S8RsF6iXGIcw9hVj+cR/234Uh5H24zXdI8Xrt/FoQXu6JTZiQdJLpqoRQnVyWs/uVkW31NvahuZCUfEITdLqOupDg+QTKwi1nxMSjywl3XUX52kjxkWaKQYw6xDVOviNQlJmZv8J8HPc8fkrSZ+b2T8sXv8LSV+a2d8Ah/Fn8i8lHf2m8z65xnv43Brgz0mqS7Ew03BLQ4Wed+65SjKSysOE0zO84cTMZgdmsysy+TLutWKKy/BJdBHwFeg6s8o83hObcA/qQbyB++EEj55KmF5LPtNzNltT1MyXiwMrSGibITaQ7cdC4dFpenndgBt+68YJeXXM5hTGpvSsT+IyrQBvEeMJxGrQTbAjkjLiZBXpILGxHuIhCBNgHxPSYbku+UksyEJIsWQ1cAsL64CjYGtASzA70PSCtZPY+BNC+gGW/MgJbJqL8RWepN4OtgrFvUV+PwG96CIv2uu7ZH2K2Sli/aJV+st8Vy++mLtdPEfl/TgANEBbcEMxCnE9YgHSR+6F04BkNyhHugtWKKVJEN/HF7Bz8LI3gDr+BV8GLEDxs2Lcd6DMuwc8X2y3CkGa2fJyJ5gpzALYlWLh1v5MmPUXpV7uUbdm7xQHQa3e/R40pVnQqmc/jFctNI8PleuU6oAGOMeheS4njY9CTF2bnm5yDmPJbY9+aOO0VMCzqHGTGF8vjr+ITeu4priHUqcA/g0Dz9y/u1kH3w0Y8GSwzZH0M6aJ/kj6i2n//znw5w96zifPeA+fq+Lh8X8CdJM3zpFULxb1zK246ipULch1AKxOSBdRNs+YDvcGxkCGCzM8PNzIpDSJQ4vAztz3OOkunu+LuKf4CKVosw5oYppAysPgDO1RjXvVtrZ66IYb+QSogDb6pG1vYukAynbTXEx044p0W7FwHsXSQ73GbK1YvYvWLaa8f5tvZreFeosw+7MQvvDrq4+Y9WDJGdACkp7bWNKAuNpft6/xHtGhEBBZ1nKlQgA8JsAglvQUxnkQbAXSKdAlYA3SXmA7ZkOQr0asRcqVT/4a5c9CuAa2B6a0xhPcA76CWR0nBd4CzS9SA4b3cj8BnPIFUME+Vb4TbxZyB0vneNUAADtwEt8xnAl/qfg9VPyeg4uNQCub3WxdMbY/wS35MNKhlvD5IL6oGsTD9i38C00UYzRaF4cx/xjCTb8/GsXZsXeBNXg7uEFgDLNeRB3ijmJs5teyCl5WVz6z5Qzb/n00G2up8qoBF1E8CfEtmnPX8y1rizGkQ8BIUfnQjtg4oVDpszJS5Pu0lpj+8xnHdNDBE4ony3gPn9uGE9JavsRaRT55hXS6SJJK4k7Lpuh10HkOSe0z0AhYF8rHcH3zeThp5kHLrh4G83CDNHtxvTN1VwLvzPr6I8N2YvZtWfKtuMczYQtaXCyvJ26izz0+dmPhbUjnoWwSD5Gex0PJx8B+ABwixlWQe2mUK4fV3EDGgOIEFrYj/QLUB1HulYZLWEyR7bLawDtSfh3CDUuq2wrhk4LMFCfAfuESoNoEtq+QHS3z9ifBlmJhAukTzLa7zeXfYvYhaCUWvibtmkPMjNhwMZ5Q/QXKGxC9NtvsNsq3AEuo9N4krfliI+Z7i7D4DixkeGTlTaTToGdA+3EZ3F8AP8HsWWR/jYX/DwuvY/auGyzdBH5FWes+tVC08SJNURqgHTQNa9FRzOpgh4HboJegLZ3SDyRIZUnZVkq5WVfLa9USaF2EQcx2obynOOYC2DNFieNLuMzvDzD2FgZ8DLNt/pQUt94N8T48p5+BncCsVczlBm0IE4SwF0ueQUqBpRDugu3GrAfFMRRXAPMk1Yj1A4TqO2aWYMn7wGf+fMXPAKN+Z4DavM9EUn7/VaQMlgLXijKdDr5H6LQE/W1j+NwiPFzwH95jj6UoumGQzhGzi8XEeW/kk63ksTuE5AjiThuj9TeLOTS9lNn6Difcy7A/OmYqrj08ptcs3SPOZBdxgZM+fLLbSzPcWEDrnN3MErBfAwOUvcRl5zAbwFJfaMT4KxR7UCw6i+kwzsK+BIxjIfv/2XvzGDnuLM/v834RkUfdZFXxvg+RIilKpESJl0i1pJZa3YOdtQ3YWBsLj70wDCxmYazHhrG+1sDCY8BY+y/bsNc7Hu8Yaxtjt3dmdvpQqyV1Fe/7vu+jeNZ95RXxe/7jRVZmFYukpNbd9QVKKlZGRkZGRsb7vfe+7/tFXEU1TaskCEE/IAgqQBe4gpXO6cL8zUugmXTbAPEV4Cr4AuobceEi6727LqrSs8JGqqpyzq3A+rOrMDe5Vlw4jK+MgbuOC94jSbrq3mw/2VnL8fFZgmwZ2Gt9dhqR8ByS+mYDqD8IKEgvEozg3LuovwzsR1yAcx9ggboH404oxuTPA3lUf5NGvgEmf2fPYdnyHntdmQvBp1j7ZgSzvz2ItYBeoVYxiepm/g9iZiL9WPZ8DbtWBRjAJx8TF2eBFnFRAZGtPPu+UbYFEX3ABRM+SaqVndnAAqxIFKbHWI+b2ALEetBB9H7tIZ0DDCOsm4bcBmMPu/Hl3YQN+1R9iEgjuE2URy+gccqpCHuoFIYJswsR10GQP0yQeS/dw39E29rP44Q2gxl8o/hmg/fIbQf8HUxs5dnZcFLejjFxF/P5Wdpt+ORNoA8XHsfKtcsnlZpNqq6cPtY+iYT12bEKK29ODt6qI1/gmD8D5AKm2/7bYB0T/UfgaT14kRUo96i1CqZTtOpMWd3nUhJgtY/qJ82eA7jwx/ikC/WLgSPgPGi/BeUJhKBlfGUbuG5cZi+qHtVAoAlxCrIbYR9IBQleRZMTuOAdxN1Ek1smxEIryCWsD10V97gCch67JhSbGXeoHgaWGUtbOgnzp/Fe8OUu8M0gx4FBRGKBJQTRQ8Q12vvVWUaAYx7or7Bg3AAuRvxOi4dyOK3CLLR+slRHQSKQlzEhk6rUZxewzEhcqQSqag/wS2AuqismGOD2WC/GUm3ArsNXEHmMqcN1pZ/xQ0Q+qDvHjVg5/nL6u2BBNAvsQNwsgkw3SSmHJhkI9kwwve27WAEGMJvSK6DjqLf5fAvCFSZLpd6t+12xmXqHEfWebrVbT0qcAk3K1/Blqy7E47Xvg/qTaFxtTQ0AnWiyEPVnEddRLQVgkyL/21NfewbfSQjybWGbfyX45oL3yO2XsRL5tudtmmLq6MgXQTs+NqatyGEIzKs5qezFV+rL2QniLuCiR4h7vvQmkIqOnAKGESlNHKsN2U/trU2H28CgZVwKtRv403BqmsC9D8vWRrEbZjXTr+qZT4dmLHPbTrVXOwli4hkiu1DppjY3uwHVC9NUMm5g2WAHNW9wh1UlpoqBFLBMcDfoJeA+IqvT97AIkY0iAarJUVzQIuJ2onoRrRQBgWQQ5RTICOIixJn/s4/PojqEL7eDjOGih8Zk9x+jSRZkGHGSjhnNw2aMq2zj17EM9AxGyFqH8Cu83w1yDnHjRojzt/HJVZR3IBkjyB5Pn9dj519eZIJLoNeBo9b3xYOOYCNxwzyptlaf/W3CMuEEa8kU02urJX3sNqr7LePmFWwkZT62INsF9KO6BVPAm4tdE2dqr6RJ+nmn+uYsxgRzVoB+wsRIoBTBHD5w8oN02yvAEOLSXn1lFsh90AbMF76KA2m1o4o4fU+AFlHNWltENk6bUU86MzoA/hYSvJLG3QdAJ+IawZ0GP1nd0CR3U8hpXLAOF95Ne+71+FOZtXaAGczgO4SvP3iP3G4B/hHwhzzX6u8rhDIbYQT1l/GVqQEoQP2LJKUXsVJqCDJuhCUSxA3gQg9SM9oAiIsdoJ1EDeYVbiSp9Tzf0WwIU5fagEgW5Rhm7PE0G8MKTOtnHWM38XL6sw+LDFuoBdLp8CaWqe3CbvxV0tU9bJbYshpxr6LJ+XSbDFBA9TEinVYe9RdxwXast1/Axh5S6IMJlrRqBXQ/vhJiVYpeYzazLX0PY+kxlJHwMlHmFXzlAOo9IsNoSmZTBkE3WAB0AaoNFpB0SO3YNiFyT0zguAt4D9N3d9gCJ4+4oUmfoY+7kGADFiAXWSyVZiTsAn0PCW4isgyvd6labZreeACynJq86w0syxwFHUoDdAyMgLTY8YhQ01lXTEughC10VgEnrV/9xLVQncFvBpkFshn0N4j7ID2/MXAR9DYi72FBfUs61jcIdKHaliqxvV8XND/EFo13QF6wiQB/GHQrQabFPsMJVD266+AXYGNgB9P3uhNwz5UyVbomsYKt538ZKKN+yP6WzMMWUw0QnwW8qm4kKXZRHtnBtLLGzsiXUdMx8h05kvI4kmrU2/hdG758Adx//8zjm8F3E98ebfOvBN9E5n2Mp/tof43QVSTxOUhKII8wdajpkM7dahOqlsmqBx+DC/cRZHZgMo23gBdw4WWQXahexURTzoA2M71BiseIO6bQVe1DiryKUgHOp8S8ZibLp36SspDHMPnIajlxN1bOvIJl+vWZ+UJqQRDn1ucAACAASURBVHk6VK+FDuxmL+A6AUHZg/AmIo2qrhVNukUkQH0JTV5GXBfqO4FtaFBOCVD5lM1/GtgIut0Y6cy3MXndbaNbFEHmoxqABmhyDVirvuKADGFjKC4IMYa2Q32CBTjAb8YaqNvRylG8H8D65gUzLyk3ILkmVZ8HqYDsEWEHuEGEznTccA9OHqaZabrbylVclMey0hOIeCQM8Mmv0/N3Fxe1YGQ8Qf0t1O9S9aeJx64iQVGips3UlNQSC+4A8jPEVRn99Vl2tXS8DbiPEcCKoFX70uvURFAKWHvjHpZNp+NO6oEHCLdRxoAM6g+DJOn+xoBqH3kslYI9isoyRC6mj90DvYMSWMvBv5tmuYPALUyMJe2Ja5yeI5deWyuofbd7sZ78VBGgqThlpD1NsDLLY3z5HtX59SeRBTaoT3opD3+EryxEguuo7wCt/471k2ntJ7Pwtoi8mp7ss8Ag6m+i8WZ7D/y1tG+4/pxjnMEMvnX4eoP3yO1mvhWBO4WwPnVavI7G9XKlnw0+3oG4Lnw8G/W7gLO4TJXZuyTtX3Yw2Zv4DFbGBmQbFoh/9OSxSQSss3uk34OVo++AZBF5f8rW97Fyrfl9W+DuYrLJyApq2fV0mJXuYyGwBdxBYC4iS9NUyDS1k8JVfGW2ho0viFUAPkT9y+nzroD0YlleALQiCBCj6tIxpuVU++riRlHamBhTUgdyL2VatwB78JWCqj6GeEhwx1FfYaJ9IntQbYNUyxqfGItaK6iOIcERoJ+k2AzaStiwDtw+xWfwXBURAb8QX25Agn1I0EBSWQXagU/uEuayIDtALLA4ulJW/SShE1VuEY//kqS4G2hEkkNUA7fqWdAiyBAQ1sr1gAW8KumujAU8B7IME8XZCdy0fwMmCFSdxOhBxKRBqWbavIypylXSv63EhFPasRJzrVxsSnXbgddAb6OEiBzBKhZj+FgwZ7fb+OQW+DeZZKYg5xA3d2KUzYUyUf5XvYLZwr6LTYSMI/IQk1G9lprsLMAC+1xjjXMYkoqx46cP3KoKSek45VEQaSfb9sP0OrooIrPVHMt6SCr3EPcO4tqk3i5VZACYB5JBJ+bv/+cnX2kGM/j24+vOvJc+f5NvBJatfREk5boA6Yaw8RNJ+3ipP7fexGZfA5D1iNT3v1/Bgu9dLIt5ssQorlruXv7EY4b51GaYu7Eb5m7Mh7sXU+7KYNn/08rxL2I3+BS+o041zJPOeWv/gwE9+WmL2/WvHfdnDySyfgeSyV4C7UCCW4gsRP0n6U24I80tP0md0hYBd1B/B+tpFxDXA+QRQRP/C+BNcC2o/xU+ToiLDnSEINOGi6aYt2gGeE1VP0o9uRvQuIhIgoRj4jJvq+o+cCO4oIxqBScRxYFGXFjGRStwmWtATzprnQPtALKI62VC1tP3a1weoDw8jgR7iJpGJci8hYjNvieFAknxxxOHFTW3WuVFB0C3gDuMC1MnLf0lterHGuByep1cZbKO8Vj6mdQrzS3A9M8HsOvmAjblsIx6PojIOLhRVIvYfPl9LCBeRXU/VrnIgDuDketaEbmFagFow8cj4HeBNKNJt/1eDzmKuA2I1M9vjlj7ggaE1cD9ut5yBrt2u218bKL4U09AW4G6cdBTmlRa04VD3o5VB9DkBj6OSEox6Cuob0FVjY+iD0DmiEgFZJa6cAQ0BG1JKWnjItIAshB0GFwTLnsOuI0v7WUG31/MENa+NKx4/ibfAERaIexB4wSmKDB9LvgdxOMV7OZ4h6gxHVGRZXXZ01TMw8hIW5jIyL80bAJOIEFtbE71NvipWXkV15noHcpdalWSAOhF6ZEgu1JvX1in5/Yf0GsnluvNM7H7G394V6JcBthgvUqZD1pVYbsIbhX4FmqLhiFgJchdvF+MJqF6f53ywCwz/WAUu9mP6nj/PUYeNdK2ZFTD3ClJSgVybeO2OCLGZX6OCzOpIhe4rNoIGgnIzxEc6h1JeTbOPVIXVDCv6AIwTyujPRT6HkvjPKcuU9Q7pz8iqcyShS8NST5zAXS2lgbOUB7eCbwAMkq2bRy0C6VBfaUCromwaa/1rKUdCZ310R2gey3r1i6s7F3tzQrwECOtnaFmXnDPggwxVnYewrJzSc9LhAXq40A+3ffVdL9VS9Y20ASh0baVnWYUojmM/Z1BXAM2G98EshjVN9D4NOrXAj5l1e9W3Cq0clQkSJngsgdxCZrsR+vuHxLEiJykxr570rQGVqLaiynPPQmRCCQgzN2nPPhiuq8M1jZagshRwsb5RMEA6BVERm0TSawSIIqLdiFJkXj0ELUxyAa1okMLSBtCydoo+r9I+8aZ8bAZfCfxdQfvtc/f5BuCyDoI95n+82+FKP35PEIwVVZ4KzYf+9tYnU69GU3WLhdZgrpFJjFKGbv7VUd0qlJVNq9shLfElq+6HJFFMnten7zzt3+tH/8fE6V7/8k/H3Dv/cEVERmEMMTJQhJ/HHQWOJuh1vAivtIPPDC2twynmek+8G+jlX7ErUMyt3Tg/jmS0nxmzd/E0L05JOWFPL54jkxmvSJ3mffKgKisB84gYS8S5AWNVb0XCRtUtIiLIoQG8cmoknQicg/XsIDKWELYOEJSTtTHH2vv+YDKyE4tDvya7Ly5XD9s/tidK/eQb33R2hZ6A6teQH7OcTFrzizwprjoLi66hnESLgEb62ao09PLvvScrkpHqkwe1WRXB4DVqVjNSpAha+dwCcvM03aOHrdtpTqX3GfnkkUgj7Ge9BgWxM+mVYkN2KJgCPQs5hNQfzFsAt2DaisaX0f9GuCqma/oPoURkmIvmrym+C6CLOJS8pnXG2kLJN1VsB9kO6pHUT8GeJ4UyFiI9eerwXsc5Aji5tnCxy1SWEap31FbBAAcgaADceMY436eiHt18q4VlE9s5FNHmOyXXCFseGTPkwC778XA/zX1AGfw/cIMYe3Lw8rnb/KNYu7zN/mMkOAS0zJgn4l+avacXxT1OtQ3MT/nyWYUIg6CoQkWuY/3YIFiFXAQpAEzWamVNZWieWjLJbf8pTl+29/8VA/8xQ8AZNmGISzrm4Um91Eugd8CtKLJLTzHEPcqyIegb0zMRavvVvUrKA1f0MLwA5LKGPmW2dw+8zLFsflkzx8jE42SydzA+xLlci+zF5VE3Ht2k5ZHqH+L8d6T6sIM+TlLEDcsLmpFK4JkRtUJ+KQoLgg0GX+E+haSUhYUvHYya00Lj47vpdD7LoWhX7N0Yx/l4hjNnYFltLKKXHuJsOEkPr5PmJ+T9nmrAeYG8Hqayc+nVuYuYQF4hCpxUPUXQHXG+jz2/XsrPcEB6vPADjPGcQ9wbo1to12YEc5wuk/FAnWM8RQ6sUy3OsbVgbVI/hL4GxjZbwWqF9J91PeudyDSBaFDy9dBloA/C/wI9b9Ckx8g4QlcKOJcXflcJxMffTKEJAdRnQ+pr7F3J5Cgei1Vn9eE8jESRIi01DPRVbWfUl8zk7UGjkOwHBeOyjONd6Qbgq2oBqiMIOEnaPw2En4sUdOK9FxdSsfjEuAIjQt6n76/Gczg242ZsvlkTGdn+cWgyW58fAoXfh6f8A6sTDrV6etzwAWYstgAuDWgJxBZZb0+TkLVTUlGUY0RCXHhm/i4C8iAbEtH4s6gSTEttc7FPrv1CCtRjsuLWwvS0NTlb13ISefCURHpBO6Dzkd1FAtuXcBraDKM6keg72FCKYfSbL6IVq6h8W7GBopcPbIJuIO4hYicRf2rlEqgeo4gWE+SFCiM7dHRBwdw4QhBtBIZOY1PluAyV0Q1lxK9AkDRZCU+voiWx5GGBoJsJ0npIeVh8MUdCsOMPjqMuEaKo9eIpFkWvrydMH9AXLANOAZ6TVRKhPkGTJnNofqLSeNlpjYXYIH4NlY5uY8FXIM1X5el/zpLbcysCsH6u6mkqp+XTlIuoGbosYSnf4eO1f0+AtID/L6V7cliymfVRcRerKXSAOxBJIMEO5DcTXxyDtEN+MoeceEKdU33gNXiolHgHr58g1p1yac/Cfg2dIo2gfpNqF4giAax/nwnyAAuCOy9aIjqIFV5Vguw1cB9DIJ5oMsQdxh4Z2K3peFTiBsizC9CpBnVkrigyZzUFBGy6rLbIfMAZDM+noW1KOoX53/8lPM4g+8LhMn1m+8Zvu7g/duWpJ+GMcQdRX0Dlu1+UfvQ31YEZjLUT5V//Cy4Q82J6gvAz0WCVXUTYfPSEaJz1Jjm50F3AadRFmHOWzswJbQxLADtwHyr72Dn5SJm/LAUTTICq1i6/mqwaHUD6A7UH0fc2wCIHEL1IOaTfgJxOxB5CaUbTbaCrEZkLhJB/5XDqpWfURioqPcJIv2gSOBu4X0fqo5CoYk5c48wMlzk8e236es5TkfHu8xZdwb1JQavP2LupoB49DxhfjESvYiE90GuShAVFQmBITTJUXz8GkHuJEGui/HH3g/1+vLeI5Xs6+vLiC8LgPqqwM5yxJ1E4wZwdxA3CytXvw98gnEEKhhrewgrXV9L1fqasLJ2B6bffRXrWX8ItCLSjZXi12K92G1IkBhBTLeB9qCawTyAwYiG9cYq9eimpmZ2J32tHxr/AIcx1Kuqa1sQ2WkSsNKV9sW3AvsR2YgLFE1OY5rx3YLfhukenMCFb2KVoVYkOAB+GarDauzylfVaRqpaEBdewQX9SLgIkW3pAmYVVeU42/A3iLyVPq26IPIQzErJj3vw5R8BiUrUhQs2g25EE6EyWn25RJFbBLlDBGEZXAZzK1FM5z0AKUCVYKcxyK+eci5nMIPvBL6+4F3sCwgbFoAeQbWIuE4gQJN7JJUl4J/GpP4saERcniBjTkmqBdBbqO/HJwnoDj6LIIzIMgi60GQbT2p+fw7IEVwU48JNz9/2CfR98dcFYO0U5bMh7GZer2TXn/5/o40asRWRENX9qWGFlV9FZqFyBbQZZDE+OY/GJxHXAlwH/QAXfYKRrN5C9VNEWoA3UpZnFxLUEeOkyY5HL4HM1ULvfkjKFHpbtDySMDJm5daGfDe57BqaWx7S31dAtczYWF7jeJBy+TDiBonjfTJ8v4ALSySi3DuJhrmYfOcNmbO2H7SMZXGJiMzGhe8x2nMMnxwkDDYj0kHD3PPSMtoevbb5cuEvPlzhFi7uyy/dAklplVYK10RYSdgwBxc+tvIyl7CJiZuYb/WdlGF9GJHXQIaBH6B6EXyN36HajbgxLNt9CRvfqi6kFBMMeYj346DVsvrbaAwqB5FgLSKnQBqo5RJlaj7U1X39CtiBmbB8xFSBINWtoL8BWWQcD66B7E774UvTfnGCBLtQfwihHYJr6WtUCWjGqRD3Gt7vB20EHwKtqhwAiQFBXJYwV28NWsf81QjVvvTa24ZP9iNOUC0SNeVJSgN4vwkfH6Om1haglYCksg+YPFqp+hiSmPJAM9m2dYirCRhJ+BjonGiBGP6clmVDzOD7jxm2+ZeChcbqli2TShkSrsaFpPrfCpRBr+LjClYGzYHmUW3ARBim2osZfLwECYqI5GyER9YiDiQokpTu8plnuOU1JOhGXCvqm1NThc/ah45BThA1bHnGNtWbYQc1PfF6PK9kPmBBI2UNG2moCeQk4oZAlmNl270WWKQZ5AHoI2x86ybGbK/bX9WHXCNgI8oxE4rRLlABaSMp78dXViFBQTV+jAQ7ReQMIu9gfd9RVOdiZdSUoKUhyGXEvYBqT2oQkdfSwCkkPEixdztBNC5tK45Qzqi2DOwhLjUwf44QRauoVMDrKlQP0tu7hnL5KP0D8xBpo6X5vhZv5xkZLXLvgSOXHZE1L8zWpDxMS4fNHId5AURcpl3j4j7CXAPlkUUU+xrItHRTGUNE1gVzO+fm/92/dSu58ahqI9kCej+Nk42IPAA5hf1hBLQhPce70/c6F2QkPbfzmfy9OoN5iIfU3NjqHxcs+16LSAXCE6h/BOJSnfSNCOewzPk5UsIqmETv69Qy2wQ4jYm9vAS8B+pRPqzpBciGtK0yjgX/Lst6KSMyAnSiPsZPGLM4RDK4YAjvt2N996wd3wRf8lzt9fWWsfCrVpx0ot6BVkDO2PXn221gIECD/B2S4THM+7yKvYiYhHGQuYiPx1D/Kqp38SWw+XsoDVwkO6vDtMuBmsZCuW5f//LZ53EGM/j24+sM3sue+ajUy31KB8E0ia/diM6hSS8+bgFtRv0cjFg1Dx/vIYgmS4CK5AiyS1B/Gl/JYSX2YVTDlJH7GrVs5jpB9AAJXk8zSPDJfuLiIvDPDv5B9iwSbKDmkzzNewy6JklFqo5j5dAR7Pw8wAhFR7DPpkoYG8NurIKxmet7qQmmCT7VG3zO5IaPkDKde8AvptYiCNL9nML6sHnwa1H5K9SvQH2Cj3+JJmuUYJzK2Ci+/D4ue0gzzQtFANUm1B8BvxHlFEoDYoosEN/UuPiQMF8SF7yrSeUOpcHVqN5Fwt8QZFcjbrYseKGfBS+08vjMKlT7ybQ8oDR4i2y2l8L4Vr3b083gcI6W5gvk853cuPU60Ezi91OptBEERaLI43yjDt8tSvOCHHFxABeiyG00eQ1xrWRbwcf7tTg0SmlgYjZbgmBpuG7Nzdp59Y+RYLGdL3kXW5QcSlsQYPyIvVgpfBz4IbYgOwYMgbuJtW96sAVnCQvAzh7nI2yOu0p624nIVeBxOl/fAROmI1tAD4HeSBdnNZiU6Bk0GQAJjRio+6kFrWoLxmMCQanqnbw/5fpoQeQtVPeArzqHBVivehnilqGVHsQtBO4iwSJ7ef05Wn6bJyBlklIX6rcDK3CZM0hQDcYDVs1hNybIc9YqAOkz0TsqgVoLR/L4yj3QGrtcZC1BBD7pxse7cJm9+NKi9NG1lAZuk2nrwQULqQZtF/YiwV2Q0M7lDH4X8D1OvL9FwfuzwMY81iMhuPTQVSuo30tSWjyFRFT/PJBgo3G5piCpdKNJGy5yiFuGyGRCkAu2EzUcQP0NXJC10q9kQMfQZASf2OXhQo8xiD3i+u0mgQMtpb3LMshk1yRjLdcvClZiY2PTZeTPOidP64VO3bYN+CHqxoA94NdjfezjaZYTYfrVA/hkti2MtEeTcqNlOKMZ1KejQqWtlJKLmmn5C0Fng7wArhORd8F3o8mrlu2zEq0cZrSvUdX3E2ROIIH1vF10m6gxQNxLOtZ7WHsvZgiCAQmiqwThG6CbKYw/1Eo8wOM+Kw1X4i7pbHxd58w5QxgsQCQW517EbtIRPhFGHw3SstiBNmGBdSe4/aguQWQlQbZFmhfN18b5Fxi9W6I8/Er6WdeuH40FgixIEcuYu4F3LODpASxod6StgKrAzxiwAZFrmMb3fGxePYPplleJWY+ozXyHGBekG8uM8yDLJn9w2otVSN6Y/GctoZUz1Eb9foHJ6T6DlU3JPudpSXMg8ibqrqDJffCLUXmMEckGqJnljFYFUkTcbHWZYdQfwleWg+9Hwj5MBre2UPXlFWh0DBdkU6ev6uq8HdiajuP1kZRng24XV7s1qUgfxiG4klaRAmAd4vJAAeQNXKZ7wlkMllAefECm9SZBUE6ZSw2IWwSUQW484/zMYAbfCXy3gvd0EImQYCeSV9CbKVHlafrdTyKIdj3FBXMMu9HdQ4INuHBKQBUQB256B83J233mowEL3P1Mr4X+5UCkEXgTdUXrDfsXgQjVs6gfBK2oaoQmRZLCMHFhOcWBcYJcL1EDIANETWdw0RsisgbkGJZl3geuIsE20P1oslRVh3GREET3UX2AT1px4U2yrRuRYCJjK52/NjLyp//7y0BWRBYCw9mNK8427dzwJknyuDJQ6HLZ0KmrjISqwxIEOQsE3pEkw1iAWQ7cxMcv6v2TfbJ4exPoORF5qJo4TCTkMJnmLHHhtqBZbV4SovFxKuMjuLB23fh4PkE2QX07uP1YAL+Y9r3fAo5Y2XeC0/qJkaMIseD5CFNMG0vbERWszH4Eu65WofpLrLoyB9iByDksG0+hx7Dr4A7wdu1CUgUSNDnMZLOZpolRqHq728nIAtvR5ABKl2XSsiQVvaleH6shWIhyFvwuE/bRIhbAU3cyP4RyCRc2ivqLaLJbfWU/Pt6O6FmCYCppdBSNB1Fdg1UFTmKBt4gtShaQlNqYoo+g3pvlKGGPHRer01OQIMwnDAOQCr4SovoztFJ11FtFeSgiM+s8UcNjxFXH1S7QMD9+yrmZwfcKAjNz3l8KvlppVBEB2W2kG9/M52ecXwB5jEk6LkZkEdbr/uqC6NPx8Gt5XZEcyA9BzuArj9FkJ5BR9YeojKwEjlAZm0t5pAVYQlIcJWr6GdnW10XqZ35ZDXyYBuPLoKgGr6OVT1HfSVKej8tuxpdOEWQekpu9CXGXtTw2Qt/ZYY1LC3r/6Z/kK4/6+/C6AGucNqrzIo8eXrrffbGjY+OKRnGuaejO4+KjC/+ipX3Lmu55P946Ena2jkXtzT2IDJMkD1AdxblHwCiVUQ8sUReq9l/K0TjvFPk5BUHX4sITJKWiaDIXcQmZlhwau9qYtl+hyi0R2ZT2cQuAojILIYMFoCaqEVW1GZFNGNeA9O+PQVpARjH292msZL4ZW+jMxgL5KPAY1QeIDKbBWVBdjlVzmoDDCCMY6W0OqqfBT7lG9M30tROUWyC3QVZgi6Gp2Ah6A01WAcdRN44Lara4Ig3gSqgHkSUgS1B/HGsBjANzEFdEgi34+Cg+HkHcIBKcMDEVvw+ClFgme5HgFeNH6K9A3sGsV8HkXm/g40fUTFPSU6og/gi4TUwlkNriZFF6+jMEme0EmYPStvr3APTBfgcsJh5do9nW9SLyArZwmXEQm8H3At/9zHsqRNahbtT6frr9MzxjHNx1RDYwKev5RjH4tb6ayEu4qFcTf5GkNEBSsHKn6o+IS11AE0F2Dw1zXxQX/gT0U2qCIAAPweUQKaC6W33yIfHIKuBNJOwjyFxDZYCocbm4qAmRecA8HX94gKS0TQQW/sO/s+jOP/ifjiaDowuwO3Kg3odhLlNoWT7v4u1953JxKV7rvX+EQunGg5ahv9y7OVrQfqn9b/1gDVAhjl/ABSEtLREBL+jj1JE0bDiHJm9Q6L1JvkNJKqdx4XbE7Ud1Bep/Db4VccNItC89Jwmi4+YWV81iZTlCAZVZmARpAzZT/QJwCfUnsGBcTMlV1zC2d9obl4dpFr4PaKV+AWSGK8sxDkQF84fPYwGtC5HdWOabYO2YBGOTT4cAWAq6FPQB6g4hMrnkLtKIsgT0IrAZkV9hVqIPsIC6xTT1o0NoZSkwD5w5mpnt6TDIQtPzdzH4x+KCV9LWlANEffLXuDArLvwhqntR7xC3FlsINWEjiSOoduDj1U++DT2AjeEB2g2yKyWTzsbHTaDLpjxhImuXedt9+j5uYSz8GfyOwWzsv+mj+Orw/QveACJNmFTjPmxO9RljYu7EhHjFtwfl52/yJUOkgyDbRGX0Qd3fhPzsBgh+kxpxgLiulD3dBSxFgvuI24bIC/jkIzTuFOF9DXJHSYoNIJeQYLs4aQa5lvb5b6jqMkZ7NjM8uBfVCPDR7JbxZHBidpfuT86NZ9saQilWRmfHyepsGFBKfGm0HHcND4+PNyX+WlSJVXv7ulEtEEW9Mnu2p1CAbP4auQZFcbioiMv10jR/XHwCjrdI4iEqo63AHcLcD0AaCDInxUWTiX++Uv+vUaqCKS6qIEFKHNRjWH+7OpZ1DdU9iPtJ+m+HpfRZmFAJe5D+HAPNpHeZN7AqxkNEYpRxO88TDO6AmpDQZ9EC8OlrlKZ9VKTF9Mn1L1F9AWEMK+832PNkiQX9qAIcQvwwqpIuHC7bmJgqQbQN19yDOZrVxuTKI20kxXVK/orJkopplMMJVIdtvI4l+Eq17TIBVX8CfN2opRvBhV0gO0QkVBeewlemSgn/FvoIM5jBdwtfT/Au9gV8ceGULw6RHajbB/5pwTnhmziu5+P5M+lfAUQkp7n2iPLQcZLiC0hwCgl2mPiG/hIJ56YZ4AOUAGE+IkNAP+rPI/IOKntRXxAJ+tVl14m4RiQ8j1ZewkUJIotU/QMdvLaHSmkWSTJRqpXQddUfz72Hg2v0weBCgGtwf3V708e3hwv0V5LdPB5h7oL2vfnOlg6GR3alb+ACs2e/SLkMcfKQxrYcQbaVML9HMs1vov4UvjRA4o01rjoO+iLeH8cFO1GdPsjV0DTxm6/sRPwRJCiDbKbqMGboB6mf8a9WgLZhwfQRxvoOsUVtLzWjmCuongN5P91nGWRVSkQ7BbyL6lU0mc74ox5HMcJFyj6fkoLYez1o2+gOSDrQ4CjCAEama0f9SZBKOkHxhpniAb5yn2rlRZPbqO/GFiYl0Nr8tPpGkDERWQ1yP61uHQbmpC0GUI1RP1mnXNxhXKaVZLymeOii16TOc11EXlYXVUD34ONq3/953uEz+F3D9zj1/roy7/k8hRX2lcMC+FRbw1vgqraUy76R43o2mp6/yVcDEVlItm2h+rhbKiO7gF4kvIELf6RJ5SZJ4a+Jmt4ScTuB4XQmuSlV7aqgXtH4OLBTRK4iLoNIrBL9Gvg9kvKnSLhemheO68D9MjK+Ck3yAI0bVzQWLt8FYKxQ7lEln4Wzsd2U113vG30HKL+4pOPDzo7WjoZ8Jq+qPThnbO8o7KcwbiNSzo0xOhDR0JpFGQJOk5tdAXai/hqwFGQfcANNEryewyVFPjsiNNliSSgPcZljiFsPch4jn03/HGOY38C+e0exbP0+VflO63OPgZZRPQyUELcKpNMyXY4hshYNEkj2pvtchGWdNzCy46Ipkw3rbDRPFk38RSSL+qiutXTbMmE1FTY7hiLoQ1RuIm4ZQFpar9fsXwKaTkwo2Hf9EtBHmBuykTt5BDIGnKvrdVePI8TG8RKQfsQ9xAXvC6BBwz00PoqPVWoqbHVPlX9TVf8Cq0hMNTOZwQy+1/i6gvc3a0gisqsumtHJ6gAAIABJREFUgHtwQxOCD99OLHj+Jl8txIW7CBs/xMfbgI1aHvmIyvAyfLyJ0kCf5jqOStgwF5Efov4Yyh60kkN9GZxT5CyaPEYTwbkWxP0eSaEbX27ARe2IvCtLt4SqWuLih+Pl/qHLbu6spFhJPioXymE+n1mUE7njVLd62KO1MavMrNamcO2LizsBwpaGCs5ZFufcBazkOwSEVEovAQ1oMgRsxFd6ERdS7A+AHJnWdoKwYoGD9XUiJE9DjAWKyUFCtYmk5IHHiEtw0RkIXnrqql99AnokHa07CfIuaILqz7AMvFq63w0cTeeSG9P39R4mkjKcTgtUZ7LBRs2mQ1s6I75o8p8lTgPuCAT3sJJ2df6/Kpu6D/V9+DLgbqU2Tc8aRcuTiv5IkBmivpRti6bqOQObiR8nyFaAtzFW/YSGuYgsgLCDwPVgPIFl1CSWPwJ+Ki3LFftcZjCD3yl8XcF7IdZL+2ayb6gG8JtAdpLIybcTc7HS6pznbfiVIsi8D/pLkuJrBJmdVORyqr8d4cItaNwLwa9UtVHMEGQECRrA5UHnorSBH8YXX0XCo7hMDvXLSUf51McXuX9uBJ9sOfAH/3iNL1byAI9Lle7hSrLapWNBIbxZMYnXVR/sXld2QdA6/migB4VgdHykZfPStPzLEE3NrYAiUiSTuUhppBWXKajIBVR7xQUNRM0VzJDlHhI2gg6jugf1VoqW4Agu6iQptjJpdEkOEeQywAJMe3yEpKTAq1QDmvoXSEoADxB3GZfpMKvTukCu3pvrWnIXdR5xfRir/B0mKwjuo+pIZtfD/XQe2vy9xb2Lag/oddCVTLvo04vpcxX1P0v7zo3AWMpW35eWxt/Cyv1vpKXvAWyxsCY9B/fB70b9aZ46hTbpdYs82YO+h43recyPvFod8FgAXomV1euJpgcwAZdUnEYfY0TAv0fz0hkv7hk8G99IA/LrwdcTvHPt/yfFvj/Hym2tGJu6gmUK87CsqhN4GVv9L6Hm+fvl4dtZIn8abvH5g7emz1vEl/XZuswOfPmx4Ds0115A4wjVKyLBbVWWg1+CL4cqYQK6Bvwx8PeQYDUu7ETjQ2gSo34c9QEic1T9A+6fvc3AnYkSatTSOFQqDlr5PHCzhivW7nQi50MnIw7GSolvcM71i5BV7zMCSCYskMlYwHMui3MZnIMkhiS2DFUkBimgieAVxBVAepEsSBBZY0wjxCVIcARxDwBHkLMgZmN0xta2ca154AJEb+LyIT4+T1J+ncmL03mon4dV4nuQ4Cou6rRAHuwyRTq2gF+E6id2HJMCdxeQR+QyVlq/gKm4nccWKuvseGQhyEI0+Rm2wFkMuggL2FexOfBUZ12PYgHTA66ugFBBk2PgHiLyY5DWVPnsZYw5vxeCZmzx8Bgj7sXUmHQtqC4CcnVKifeYzgHNlPyEWuAGK/V32HllHtCF6hvYLP3uyTuQTuBPaV5y6Yl9z2AGv0P4+tjmufYYuJv+VPHxU7cv9jVjAb0ZG5f5m9h87Jfr/PXN4xHwUyybqCpugd2s/xPshj4XW/QoxhzuwchGc7BZ4QJ2Q71Hrn0kJQi2YGS8/4d6c4rPC5FmwqYBKsMHRGQbEu1DwtcU2tH4F/i4EZiDxiMgV4BXQV9F9SwuXCYu2q1e/hrkJyIi6pOzolrSwXsT1Y/y0Nip0qPBCevUfOA2pO9x4YLWhuGO5txWgKgpd2n2i4uHfeJjPLjQuWjF3KK0NNcY4tnsYUQWMFZeRLFYpinKEEYj4txm68/rHOJUEC3In8AFmwhyP5Mw34HIAlxmCeq7sAXQGaBi5icJqbjNDsxRrEJV/tRFMcgl1A+aytgT7nkL0WSh7cN9hAsz1ErPD8FVxWrOUWOT76Jq01ULeONY0NwAfErNmATse1LdZzXgTz2O1zBv8N1TKv+RfW6cqftbC/BXWOl8NxPihXoYdHLf2rAPdFvaW2/FArJi12YJKKAMM1lUBmwhcR/T0G9P3+9c0PvTbAt2Xfyjaf4+gxk8AZkhrH0DyLWPYJrfYCzb/5ZiXwb4r4B/8E0dVh3K2I3peeMpU9sF9zEryV8A/y+59t8mg+id9q+59gQrew5Q7NsO/H88u0/5bIgsIWopE4+dQdwOVb2HrxxCkx/XbRWD7gNJ53V1A77yoWqco9j/HmH+qKqGSFDEZUpkm+5QHFqtqv70f/HPGgGa5rZeXrlr/TVNvFvvvdcV88+EgYu8ZH4VzpuXjQIphTeuz6VUGlTvBc9OHRzbV77T24VXUC1noihPc9NJ4uQquRwEYQZkQL0/QJgtishZVK3u6yKHBLexsvBtYDGq1XOqmOHLAOJKBPmzmFvXp9gCUrCFaB50yDyqg1XATXxlkKfNYKt/G/VH6u4qV6mxqNdT0/q+QS1zDbBFwx5snMwBPwD9NbAaZClmNXoCMxh5FsdkN3ASNACp75E/BAbT2eoyJgYzl2r1R5N92EKyH8voq8fVAGQQBlG5hMgN0PeBZSCTq2cSnEDowsc7gAQJrgMvIPISvtJrrQjOYHa1DU85/j+iecnoUx6bwQx+Z/DtDd7TIddeptj3n2FqS3/0Nb96jGXHl7Be5J9hN7z5mHrcXKz0l8Oy4MvYoqOYPuaAPnLthSf2/FUi195Hse8n6TF/8V6/yCrChsPEY12i/g2t3cCrCDGjiX0oK4nHrxCP1RSz4uI6guwlMi1rRWQWq37QRWV8YODP/+xBUCotX7Bp+f62JR1xeXDMhZlMawANrcvmxmFn63qV4Lxbs2ETQCEKPhz86Ud5HycDwIFsc+Nw5uHwBwDB7KbzmXkt6wiCA4ThCvL5NkSyiHSBbiOIHiGuCGLs6DB7HJEliNxFggziVgPdNual91KGdCNQStXobmE94BjrBz/CssOztq3mcVEBF/Sh/g6qLWjiUV9Pjgzw8Wu48BAiL0OwrPaQgjHGd6eiJPdQ7cSqKwEmy3rVftdHGMnrFsY3aMIC7l6savAspJUKPYWJx7wEzLX+uNQ7l7UwUWJnARN9Z65ii9bO9N9lkE6ci4GXjCXvt4EOgjxA3COQJbh0PEyC4ySlpVRta1WLQAbVYayc/rTA/Snw5895bzOYgcE8Bb/po/jK8N0K3gC5dqXY9x9jN7R/52t61QfAdnLt0xka3Et/noXnPf7VItc+SrHv9zFd7S/OJRD3Oi7bRVLIicguxXWjk0bwjHik8WnisfcAcNF5opa7RA0/EE1CUgKYCCGZhtdn/1v/Pq2b3zhe/viv2hkdXvPw0JUrcRQ9ys5q3lg5e+N6LDJOJhPmVq8buP3Xe0/f/LOfBUtbs7tcEHRL4LY9vn93X++txxcAzXc0P3q5PYcGD1sll7kdbW8dJI4hbBxHgstUxtDRR/3GiMfRtmxI8rMPEkVzQK8BV0HnI7Iv/dbnsZJvBqtyzMIWZ21YNeVR+r5bsSDfgBBA0GGLBLaiQTc++RD1IeqzqcJaBz5+BRd9jJP66sXe9PPpA3k9db47iZmcXE8z7FU2t80WLKguxxYcu4AuEA++C+tzz+XpGAMZArcDYRzkdEoB/xBbCJh+ui1S8iCjoLcxUZQ1TK4mHUNcNeifBEYh6EllWdvSn6upq90coB2JSiD70WQr6o9hlYWTPLtC9CHNS2ZIajOYAd/F4A3VAP7vYcf/t7/iVzsN/Ihc+/2v+HW+WuTab1Ls+1exfu0X/9xd9Ca+cgaNXwLZii1s5mE38ILAeoJMhwa5Y7hwjLBhF4iISITKUJ1a2EqwnlSw9uXR3JqXXoovnf21P/hfrqn0D+8o9g97SHoaF7Q3PL76sP/623+3/1FP726ARTvWjl6+/iC5fbe/Lxe6eHFjbjFAqX+0GA+OLgHwnruRcwMAVMZK+HI/6lsRmlGaAE9SjokLFYJcVpMwIswuMmKb3hFx8zFiZQkbzxrF+q0XgSWoXgYtINKNeXynlQeyWJB/DOxBgg6CYAM+7gLdCPSgWtUkX4Qm+5BgR3pe5gArQH6GyMuov8Okvq+eRIkw1t0BRGbb9uxA5ES6UQTBq6jfBxP+6lM5t9fBlerkWQObwJA0C9YTTPUOrzfss0z5IugAaAVcvazwK4iUqfXuoUZEq8E5MEW2X4D/gOlRAfZjC6MmYD6jd94HbtK0eIawNoPn4nuceH9HgzdYX7fY9wdYRvT3v4JX+BD4Z8BPybV//XKlXwVy7Xso9v1d4J984X2IOIJsP3GMiGQUd4I06Ig5sVlmn2lZhuqF6rPsv26riZpoifRmrur3g+4SEcKVa1c2vbyiZ9ZbLz8sHzxbTMaK7vbec/fHH4/s9uOFPdVDOLrvYlPRysjtqkTZfKbJ9qWZE//0UxO4cdK2/V9524J3Rh0RDvV9xOVxoA8ATWZRGnqN0hDAYrKzf062ZSsuE5BpeZiSqMYQ7QZWgfQCO1H9DXh7n8qLiNzHZpC7UATRFstqdQdw1vrFuhvLrHcauV0vo/FaFMG54whljBx2GZHft33rVazP3ZQqkg1jWWwa7OUUSAPoh1iQT7NeHoN7A/wecKsguYplyy3gzoFsomafW+1x704/3xzK1nTEbO1TroEc1ms/jRHjZmMz22PpebiNtWjy0z6/CtWbaFLvBb4O4xHMT8/VhlTRr4q1wH8A/A/A33vmvmcwg+85vrvBGyDX7oH/kGLfHuB/5LP6Wj8bD4C/T679//4S9vXtQ679f6XY1wH88Rfeh3rFbvodIu6D9G97gDdV9SZViUyhEfWfgDhVX8RmjdNybEoaKxf7FH+cwtAgN49s7vz97csBkmx4MWhsm+2RoUU71nQl1x4O3zt45SAgCkkCIwqHHPSXCuXD2AJhMIyCQpCNmoNsNIqqA5RSAUoFywSzuRCRCFCSykMVtx9NHA1zxyRq+hHgEDcG2oERyAZBFmLchQVAb2pOoliwzaK+B4hNHpQdKHkEB3yMaiuqg6h+hMgP0zNYxLRGD4LuwpdW4jJHLE2QR1SnA8Q1oollwKonrXRNdaEA6oeQoADyDhMiJuqxBcA2CNKsPbyBOZH1IDJZihTKUwKklUNUKzwdB4HNMEktLd2vMsEpeBZUz+LLTdRPj4h0oHoM6H/imCbjezy9O4MvFTOWoN9y5Nr/BcW+j4F/CPwhU+0DPxvKwH8H/DG59u83mzXX/t9Q7LsI/HOelx1NBxdtx5evo8mEE5TCUny8Bx9v8z3Xr8qs2dslk2nwD++dk4754xJlXgFQ1VERaVLVot66eoixnrxUxjYTBA8RaZMF6/eSbUqyjW3zSEpzVsyZfcz1PPjg9pX7Pw8zYSlGnXodiWP/EwDn/YHCaPH12qEFV374X/8bq8lk7hFGJlqiaoQ16Mb7gKrxS3m0gpMYEHw8QlLaB+pQzRM1LsGyScGCbWiBnDGgDZFtael8JC019yAuAGkEDgEhqstT5vlP0uM4ARIikir8BSvRpNuCtn8XlX1IHYFNfb1M7iugk01TII/6wyDtaX/5btoXfxcr25/AytfVrHrq6NizlMme9R2IQJ7yHfsMN0v1e/Dl6cbAmGZxMR1mgvcMfufx/QjeALn2YeCPKPb9Y6yk9m/z2WRGbwB/AvwJufYHz9v4ewNb8PzrwL/83M8VyRA2NlMZGQJt1bhyXYcHHsZ7f6F6+/JVvC4jiQOcu4X36xGp0NzWw9hwJ0nSRNvsO5RLecbHdgcbVu+RlkYKBy6c1nKczf/BW/OCWR0vqMjPKQ4/zCweq9DR0q0/PZKfGwW7AVT17njgu5yIE9WB0Ek3FjU0asqNEwQPieMVWOkV4soQpdJeRAaJolmUywneB4wXsyxs3kVfz2XCR8MqkifXOi6zlufJd9xO9zmK6iXMBrMNWIVNGYBIG6pX0CR1D9NrGLEsRt0wGr/AZKGSTeATlC5wp4CXccFWNC3jozvQuAfCI6BjoG8941M4BrwMmgG9hbprmDteDHRjZfReLIgfYyIznsAFIJw2w7V2x9SFQj1mWb9bZj1jm+mh2oMvv/b8DZ+JDxi9s4WmxUd+y/3M4PuO72/i/T0K3lUYsew/pdj3n2OM3DcxUYvl2AjKKBawT2E3uZP8/+y9aZBcV5bf9zv3vZdr7QtQqMJOEAABkAQIgk2CWHqb6UWzyDPSKCTLE9YHy5rQhMJqOySHw3KMI2RJ1lhhOyZGH+xQODwRHssKeWRpZnrhkN1dWAkCIAgQxErsQC2ofcn9vXv84b5XmVUosACQPdONzn9ERlZm3nffklnv3HPO//xPpvvnk8Ga6f4TyhP/O/CfPfW2IgMELR9Qm3uDSnm69n/+T289MsbaDQCoBsxO1b2+6cl6JzfjKCXh0OR2VNfp/Pw1unowHWvXgOxh7O4JUuyXTOpIfdeyNu97STnUSRrIVZt/7a336WjfRxRdpFjsxNoaYVimWjmAMccx5m3K5WtYu5VyueC20o1E1VFEdlOceUdzc5tQnXRtLPkWLu+c5JzB5fVvAtdBvokzkikW6qt1MxoOulA3eYQUyK542z9zc9nVwLW4NvqXG67aABreBLMB9/vcjSvZasRNnDph7P2aB4h8NX6/imof2O+BeR1jknKsd3BM+Rdxse0X46Ygi6F6F7SLx0dkxtxn0olT8yvgFiiZx4xvnDvC1kZxgjKTICUcoS6+xepSj1oaHslnBnff+iPm7/+PiPmX5PvtivtuoonnDM+f8U7g8uGn4kcTj8d3cPXDL64w7lGIeUOr0Q9q//7/eObGM9Hlmzsiz9xPdadDrN6U9rYh1SgA2sH8SLYd3kRYu73z918o21LxdjQ+ctXMDG87+0fHr53//rmtebSwyveO5lP+wXRb9nTf+rY+bt+7j4hqGDnFrsCPJJ9TQFFVRJKb/Tyzkx9jreKZObzgA2pRG7PDN+h+aQ/i9eI0uGepE7tmcQS9NiDA9al+AJomMbKq42i0x72WUyCvxUzxcYRv4hjsg8AA6H6UK8AcIvtQHUe8lxHTAWxStRPU5o/iZ3tFTEIgK7I4NRSLjauiOgXWAt+GqIq1R8G0Y8xrJGRCt6i4gerriGRRVTRSnJFc2iI3UWtLcBnxDuCiGvtxC5sdgIJ+iFvkOK6Be9RwC4rRWMxmb3y4Sxckz4LfA36d4shvkuu79wXM18TzBJGmwloTzzFcDfjfwJXkPH3jmHznmzo7/eyeTy3sokaX8QQ8weQ6h/FzPnHtlAR5D9DchnKKsLRBV7fc4X64QVpzt0LVIAQ/tJr30v7Rbd942RaHpq+3buxVyaTQkYe9gNLTNS+9PUI6s4Vy6QjG7MYYC0wzNfomQXCaIPdt0i1HaEkfAvOpEN0Dz8NJ8g6i+iIiPcDdOiFLY09c1+NKyEC1SFR9CDqPmFnES6IPa9FoLcr7iNcXh6sHQbbgaqeTcPVd1OZxLVcBiQgLBwkLaJKrN6lI0kmTNQAtoXockf2IvICac2AfkCwO0I9Rex1kEpGtiOxGbQWooXo8Jqc13uU83L1BcQb/Ic4g94D48d9LS9BciqH+XuIxp50eunbiUg5fNL4MXKA48lvk+p5PkmkTTSyDpvFuAjLdZyhP/H1cCc5TQUTag1/7raO1/+t3lycgPS08v0dEnPcXlUdIPEE/c5uwKGSyQt8aacvm/H6n3X23EtnXHs6UPuw++elr2d7Way3re0rS2dEj1aoL1Wczowvzd3RuwBgnaTs/N8LU9CgteUfOmhiKMN4xOvoKGlXaxYmcjKraCrXCCHA7bmpyA/E8jKkg3lkwe8TVNgOMgXVNQzQCja4g/jH3gsNADxqpqr6DBOuXOAYKfBk0jdqziNkLep96g5rY29Yliyz9MvBdlPuI3ERkD2oM2GMgESLrcbXoo84DllbgJVzt9NuIRCStwtTGRlmP4gz0nAtvyy7gT0GewWPWGySkuZ8MOoD/m+LIXwL+Lrm+2ZU2aOLnBM+v49003k0s4F/imr98/Wk3lIEX3pbV62/o6N2F8Ln3xtdPSG9/DRGnlFCtlkllMqDo1ENDrZz8WwkI0YdH9lCr5nTs3m16V41RmS3r7N3XqMy/i59Nke+ZAj2m1y9NU5g+1r+udW5u58Dg8CcPisCxdCaYzQx0H0v1tpWkvTXC88ZJGnMIBaLoKLVaFRHFmHsIUAtLVCqHCYJzqBaw1hCGB6gUj1KZLWm2Z1pEVqO8jkbXANDQoLoRMZucDIlcwc+dQLxZPP8y0Kbi/1g/+aGRLfs2Sbo1DzqK41+8ixN4WUtUBS1sV5P6AD/XIdCG2jkcuQyIQkzqGFrbQNDmGOnVmdex0RRIp4bFI/i5soiXQW0B2A56HSWFSJtjsHtZVPfiQttucaU6AfYGqkdAepBFNd9Q96iTFqODIDtdZzF2g4zhQuZT8XNfPO9lNBKwJwBF/L1xPTjUZVV/0vibwFsUR/46ub4mma2J5xpN492Eg1Ot+0c8i/EWMcFf+e2Z6u//g4X3vFf3e9Le3diX+TiI602tOktUXuTBmdf2XUCjDcBBanM5LY5+iIZdRNUsYfltRI+Q63mbix/NA62tEp6ZvzayKx8TpVKBf27Lf/3X9iTzabU2yv0hZ3Bz2QKVyloqlWktlipYa1GFMMxIS0uWcnk/9x9ANiv4Xo3ibEjhwQEKDwL181doXTsB2g7swkY3CUvrQM4T5PrwMgXR8AAwiKRf0tnRY0wNwf1LB2nvO8PaHR5O8vMoiLu2Gh2Jc+Rgq29QraJ+y4/F9dSOT0A/wJYrYvwcXuqQO6fCMWx1H6m2EWrzhwhaPkbkZZCTwGaUcTR6AzXfxZhNqG4GvUkUzqH2GGIUkYMkYXqnZf4Aq8MLdfcLX6pfwLHq2xC5jyOZlamz0I8AjZrtU9AglavhJVTGQNYj9ODU6jr+HFyhF4ATFEd+B/hn5PqiFcY30cTPJJrGu4k6Mt3vU574A+A3n3ZTaWl/zex664y9ePJ1gPD9d6z/9d8YFM8LcLnaMk6TGyepuTiMKmJSYNsBtDo3SFjyUXuSIDsJ9n3QaWqFU3zzl3qJauHN3/3DeVuLFhjOtlLTyT/54CMEFd+PTODNZUyUASR4IW3F9yfdOWZM+dSVqlZqKVSxIe97XS2V7CsbkuMJqJTXa1Q7gUia2vwmmbq6HZN+Fz8zgfEjYDPoq4TVH+FlvuxOwBhVLevdCwF3zx9gw6tHZO2OraCXcd6rG6f2BNhDiBlDUtdQO4xG22iUQVV9APZllCxq30O8rwHQsraD2ZtpYEl1hCmBPckCCUzzqK7C1s6h9qsk5Wpq30X8xs5jW3D3gNUsvReovYAkLTq5BaxDZJR6x7JXgSHUXgR9GdUNYMaBWSffSg50wC1STA6XRx8HvYYjsRlc2H4u1mX/IuED/xj4xZjMducLnr+JnxFIU6SliZ8j/EOcqEj3027of+M/7qle+iDERr79+P23olzrcf/gL+3HMbRvU+9q9mhpnp8dozb3IuAR5NdhZkrY2k784Bgib6J6hLD0pvgG/DSqsrisKLJSvjG8UJssvhn21/euAUi1tdzDmHUAkkoRThRvYO0Lam0lqkUjYmSucvne971tm6v+C+s+INVmCFraqM7swvOPYNLXQS1R5TBRpYzIEUx6gEybkZjOqmqrIpKRl3/hS7rjKzfRSBQ7JPAV3MJlUJUubG0DLuRscF257iM8BNKqCqq3RDSrqjmgRFQdEC/jFh6qfWDGVJmjVh4RtVVFStgoC7qLKDwlnjcQ59dB/Fcg+hEa7gIZRkxnLLN6Lt7/aPxdlKiTFZO7nWsyA04sRkzZNRbRW07kLhmrBlhTF5HWT8DUF2aqd1hgw9PDo41xvuhqkIu4VsLtwBvAJxRH/hvg95teeBPPE5rGu4nFyHSPUJ74dVx+9ql+H+IHG1Pf+b0fYcwhVCcRtsV64ODyzxMkxiGqdNIQQxU/16leZgINxwTpR7wRVZ2mOF6lPDHNzHTI1Pg0LW3nWdV/ONuS1raulgViUvdX9pbX/NPfnolfqlYqszI3ngEY+1//3yJhNJ2MTXe0AMyXJ2cvz9wa3rHlO7/ab3xvF1H5DJncy6QypyTIHtLqzE00SuGl30DDk055lAyqiq2sJazMqHhHEfMac7fWabr9BLk1PRjvRTAR0zdymuv9kXjpN1X1TaLyXbBLVc6+CowRlRLBk7sE+ZdQvURUcsS3qNTlDHs0Tq63V6BXp8eO6v0zibfu6tzb1wcy8HoHqj4adaP2DBp9BeRIEnqPkbT4jC++6DItHHwSzgAW1G4AtoE5gizylO/W/9T7PNLQRO7gWuY+Ds9aqRDG+67GjxJukfA6rgxvFU7PQYDfAPZSHPln5PouLz9dE88lnl/Hu2m8m1gGme7BZ21gIp63C6eX3bvC0JBFvz/pFOOvwmoV6FQkLUKHen4V5ArWlgijYZ2dm1d9eMlUKhVjpM1vb5nObeof7tizvSYijkWutiSi0wRp5yFGth3HSAagOle8NHX9vkF1H8DYe+ePrP7Ga4eoVV+nVhvBlHZokL+PeCNo1EVtNgXSrXMPL+KlirSu3i7inUF4m7AIfuZH+BmhMrNFJ6/VCFpu0r7pU/FSObx0C+KVsJUjYLejeoJ6GVVDBELHENnR8HoK8c4jZhy1e4F2kEugB4Ez0rE+TaplUIc/2knszUq6dSkLPWHAL72FLX1d41FJ4Tk3hV7GMdMBroGt1h3ppZC7oCFOvGUVMBuT8JKmMk5qVkzSr3sa+Paj83AD16AkEWd5FSewVInfj1jowPYIktatS738Vlwu/HeBf06u77OkYZto4qceTePdxPJwDUx2AX/vKbfsxXk+h1G9DoSIvLRohKryeAuwGGJaCLJvUikfoVR6qFNzQfjgwkwuLEQAq3/54KWNf/c39pMYGGtnKM2ep1LcTFd/osK2qJ3r1PV7a9A6A3rm/O2DmXU977fv256nOv+QtjVrBd2mQctNqrNpd8h2J2FZUHtDRK5ggnlUxzCDjEeaAAAgAElEQVT+NYLW/XjpcaauDeBnTlGba6UyvY5UyxbUfqDiZYA+MNshPMKyPav1SGzT54CPRcw+vHQqvl4PxVbnEe+Qqj0G8paIeJppH3fNUOI1gGv60gCzG2yJlY33cv7JQ1wXr20gR0DXgXQishV0EqRryfjrwFuxB7+x4f3juF7d4NIn50H2g5ZxC7gzTuKVVxoOY4LlS8tyLBaMSTAUfzYCsimuKW/EFRzjvRX4H4Bfozjyt8j1fbzMXE08LxCWCSg9P2ga7yY+C/8lzij+wkoDF0H1FTR8B3ez9MAfjPOwzmBbG7kmHouwWKVNzEPQI1g7hUZHaV81id+SxoxUJLTpls3bK1sPf2swu2mgRKr1x1QLaUqzVWq1ImHpW8CC4lZ+c89FovAaQDhXqbT7/b548sALPE80UGNMPtXfP8faAdeydPz6xwpX8QJL26oJLc8knnIvaluBw2CvYSsPJNOxHg3fV2Q7gPiZL6mXhqhynGo0TXVmGzBDujPCBGeQ4ABwzTV2CbOolrFhBhNMEeQHEW8K51mejA+/DBjESwGIeNiJG9+jc2MaP+vJxoMB1cKnOnT2sI5d/pJO3/lAul+clM5NR+Pr/QouNH0iubI4idP5eO5c/F5jhzBwHcqmEekAOYTqEWRh0XEX1wYUnAf8UTzXcip97fHzdTBdMdsdnOFuwYW5AS6AFoEvNeTUV8KHIC/hUgCnQPaCvs9iFjy4zmWtDa/3AmcpjvwT4J+Q63s+Wv428XOFpvFu4vHIdIeUJ/4argXkch7P8hDpBD8N+haaqGRyEacxbxE5gZ9ZfIO10TCAanQVjYYw3mZgG8Y7itqD9G8/IkH+kFk3OmiGLx4OejYfaWlfcwjVC0TlQK3OM3blLTzvMtm6LLdGei3dnt4HTpIs3ZUfzNOVNDihdH/+Q5AdVCoFDaOyGkEMbSDdElV9JEipDd2NP8g8kCA35BYn+hAhUNVAUI+oOq6qVRJZUPEU8coLr6PqPCZIAZNADhWDjWpEFaE6dxgvc1QyXQdxJViNnvk5jLdnUaBibviOTt3sljV7ztLa/xqZTmX2/gXmR1+hVnxDS9OD0snBuNb7Gug0qr/iXus8znD3AbEK2yLM4Azu+vqxaBlZ9P03hpxfwv0+1uPamVrgHmgG1RdRBPQCakfxTBp0Lr4mRVyIe0M83xbcQuIuaiM3R6LWJqOIvMajmEcki1s8vA7ixSIzS5Fe5r0A14Xw1ykM/y3ya84sM6aJn2E8545303g3sQIy3VOUJ34FxwpuX2l4A94GbiKS5CVzwI9xecqlnhGgnwLDmFQXKNhI0RDSbQW89DmC1nlM8BFtA220rPkIG87iyUeEpVHUfgM/dZp1r3yErY1jCyOIN0+mO5JyqZuGfLeGtrU2Wz0SFWqrUbYF2zbOZb99MAgvXTeVP3ovIyn/ZLCl700REYUW+KQYHztAB3sP5InKEwT5A6iWKD4c19yq9TpzK4dG9RxrtmsG09DeM6qNEBb2YdJH0KgNjdKE5Sy1QmnxZdAIW7lEEkMWfwo/fQUw1OYtqCfrvxSgOqb3P1jLyIUS6daHlKYavN4G+yVmK+gY2NOoWY1wB9UB1E7gvNECIIhfQySLyCVUXwE9gzOwH+A89b/UeJQNfw+CHF5yl+xDKYN9Bw33AgMgn+AWBAmqIDsbppyKr/N6XHi9QWNdR1GO4mrOX43fPNpQYja3oBDn0jaNmKEeJXgUqt2g/5bC0L8D/lvy/YXHjm2iiZ8iNI13Eysj03019sC/x5PyN0V8lPmG+3wRJ/2ZULWSRhgJNgDrXeWVoMiHAOKl8njpVzHeHCK7Rfy47YU/C9FuxJwAEOPN077qsKotUxxXETODSL/6wWLjaOTFaL7Wkuw7GnpotFw+Zzb0e6mM92544UqnFqvfk4HVvRiBublZamE7YOnuVqLKvNaMgckpkClJ5XuoTM/hBaBenTAW1WZw/b9RW6tibUFEBgkLVcRrQ8yM2nAMtVl3ziqOUW49VLeISNlNpHM4L1nBVlU1L2JaEFAv8xFhuYPy7CqMP49VD7UpF+14BPvATmEJEUZZSvYSKSKSwpEN89DQKtTVnde/L6U//usKYg7joipraCgvVCigNkDtTeAGGF+i8DLGjCJmM844D8bDEwGYrNv0kV7ir7m35R2clw/ITKz6lsGF+O8Bl8HsAHuGejh+msex3VVPgL4UH/t/AfxlCkP/Ofn+d5Yd38TPHpp13k383CPT/QPKE78D/PdPvI3IK6geA30d5wH9KY5dLMsEtPSRl6rOoRIxy6wZFPEuke4qkO56D1v5GoCoZpEJWWBa+35WIz0CKu5jPL8jNStGusWTvEnLwehPvgeg3pZ1pDatdjtav66MMRl9MHSCsTFnCPr7z+LZr1ErQK0A4h1X45eIqh4m2CsiLfVz5zxqnZdYnj6Bn8ngpQ8Q1QapTW1SEzygMtuDF1QQH0y6RmVqHjiAmBOkWpPGJCk07ABQa48TFt5QL3MTkX5Z87KraxfvtIjZp6qjTN26prXyUuv9JVwIPADdh/LJMt9WkmtYzEVQ+yHodhYMtx5xOWl9ADKH2ocgfYhcJCGZqd4kqtwmqnwrnqWGSVVB89hoO8YUEK4ujEc/wXUjS77ki8scn0XMBkS2xa+XKryN49qcrkXNKrAf4prKdLgfEtdwjVW641ROXTK2jo3ADygM/QHwHfL9E8scRxNN/FSgabybeBr8Y1wbyG88+SayA3QGF0a3uD7quxcNUS2g3AOd1Dp1egw4gyNvASiqFvgYdAbjV8RL7QB2qNoT2PAo2BxIjVRLDVXFBL4gRsXbR1hbSIT7+eC0GEk8M2TD2g8kk66S9kNEDCKalJGRz9UYA4x3TTSYxvjfJaq5HLjnTREWfwnEYIIPVSRi/mEBtS0EecV4Z2ntL2CjPK4OGUxQJt1xXqBV/RyEpSK2OoosKI4BiKodRflUjFdA7UlFLbV5BT2D6kCDbri7NoCIrKZr82owP15yfe+jkaK2hPHPIeYgqp9S7/JVJxPWrzeofhqH10+D1BACxwzX11F5H+Fr8cijIKuBo6gWQF8G8vWfgHdBjBcA06gKsJ+Y4BdjAscIj9y5yDiOsKdgIxa6mGkJFox3H6p346YrZ4C9IC5tIZJCTaf7uWka5T3QAaCKMIzImvi39Dj8JvBNCkN/D/g35PuflEDXxE8ZmjnvJpoA1yO9PPE3cT2ul/Z9Xh4iXVh+CNGnKNMYz+K88IZSIL0P6ryoqHIZ7EvAhxjvNeAI4p1Doxk0mgSZxviHXfnSAjzE7I/j6bVYwjTjPEQRgmCi0XgjcTONGObllwbEmKXErfics47sFATTdK35GpXZo4SVg0xNnaJvYz+u9jiLrTlCVVR1RrES68XUCn9KkFWKD0tqw/v4GQiyvdjoErXSTtJtY2Q68yD1XKvavdSKd0i3tyDmbbXhGWrzAnavO3699dmXfEmYQu0oGrnrbcMbOOJ6Fvghqm/gIgYRqoJGaVxdtsEt1BIDf8ktxDiKW4g0Gj8P1e2oHQVtQcwAjgwXX2C/sCDs4u6m7+IU5OLWo1JCZL0L17M4yGL1Iugudx76QcNnW0E/wrVnfZ3GBYhqBDqD6vdxHdi24nLpV1CNnNa6ZOI1zzCu1Gwex+mwuO+0ilMb/FUKQ79Jvr9ZF97ETxWaxruJp0Ome5zyxF/F3cSfrP+3mFewtXaQUyj7cZ7cIDaqgKZdGZmMoGERSIF5iAlqoEcQX0VkjyoPnd62iUAGEZlmIWdqqoj3A6KK80a9XATWQ7wIxJP27lVaKnYDqGq5cHvqnkZ2WK16YiQy//5oDbhvq6HXsX9r0Yh0ouohEqIqZNI3QTdy4fh/wDN5CoWrBKmN9L/QA2YEkS5AMKl7tG/YgEiIDS+A7qZW6kZrb6LRUWAtam8AA6i9ga31Y8NPEWlBTKMcbQZkRpAKqkeJqiFiAsQ7jkZJBKMOjSbUdfMCENRMY6Ok1MwCEcL3REwXqGJrk26cZkFbXNTDDiPePMhXH/Mtun2KdxCNjoEeRvUacBPkRZyxPgwcRe09xOvHzz3A5T+Iv6s00AV2M0g95672EqohyC3EPEDMWheWR1FdXTfYmkf1HiLrUL0AbHUlbALKi2h0C+wmoBe0g7pB7olXBNuBY6hexC1eZhFZAySe+HEcv+Cl+FhPxuf0v1Ec/jvk1jRLyn6WIMtl554fNI13E0+PTPcpyhPfAX7vicaL9IAcd961PY6YdSDrMd5FbG0dMB7fgK+JyAZc96kqrn73uJtCsphUO8672gmywDYWATX+acKCC3V76Sk0GkG8TkT6pKXtnAIEwRxBMFwcurN/0fGNXlr4s2NH32VS/oKojCQ7ACgVe3DeKGzddRKR1YjMi8gA8BCRPGJSAKrhCDY6iq1ast1/inh5osoxTDCFnzmOmCm8zAmMB7XCOGLKi45JI0OckxXfrUkUPUpYAiVq8EAVpyj2ZsPGR1gqU6qgGp1BTItgk5D1XPy8Dqs1CFfjBQmJLGkNug1oBa2gzIKO44ziRWA6vkI13ELuDs5rjUTEujl0CiWNauLNDsc580TaNB1vPw76EhodQKOk5G4SkQYWve5EwzHwjsXH54G+hjKMRtZ9N3oK5GLsWYc4HflBIMm/J3nyy8A1VPPx9evl0Rz42zjm+9uoDuDkVpto4qcCTePdxLPi93G63P/RE402QTe2Chq1gRkCexUxLYh8iGveAV7qPrAF1VnUPsDWZoFEMlRxMpngbvSKcgp4GZEcoIh/I/48hXgeIn2qiqxeNRa8vPUULS1vAKv4cd1YL4XWwgKpx/xbiDjuU67lNOlcXOakc3FF6VXE1G/+YaWPqOxC6X5uUFItLmwtZhATvI0jXLmFgEndxFarLE7DKuhNnAF1FHwvXUW8+4g/iZgh3P9vDxpa1IZgjwOvgNF65dQivI5aVDmJmAGRRSppfYjkEBMzs3UK6ET1HNAX57rbgE+Ab8bRj+VU0BYzu60mdes1kCuITKJaAz2ESEP9tYDq8fhcq/jZTcAmVKugQ44YZ0uoBmi0GvEfonoUNAvROuqh7wzI67h6+saysRML19vhJeoLlM9CGxCS728a7p9BPMeOd9N4N/GMcP2/fwsXVnx8HW0CMdvB/AD0NYh6gZq7MZuzDVHgEJhx4S5vI3ABDXuAKZAQd0MGd8N9GbfhFKpniaoTVGfrZWGC4OeHKI6VvBfWJV4Xqio2siV1YVJrPNMaNwZDVQlL1YqXb+SCLcJuNr30fdo61+OlA9BhwlJF0RmyPavE+LOVY8ePR/fu5TSsVnK/csh5sZWpqvq574mfzSNSdfl6nYwZz9td2N3cAjuE80QVtEtrxbv42RdB50XMNuAOImsR7opQxXm582qZA3saF5GYAinjPEtgUUmejf9uRe2o4l0C3S0iq0i+BNUzSKxB7vTOE7LW0o5cT1oyOA/mHK4cax7UILwM8qhwipfqQPUGNqyRNE4RSYFsRMzGRWOjyiToXtxiogbsA86DWY+Ih2ovLrWTnLNTtnO/sRyOWX6F+uLws9BBYciQ73/WJipNNPGFo2m8m3h2ZLpHKU/8NvCHTzTe+Bk0dN6QKmAHUZtFo5uIuY4Yx2J3nboOYjiIRp/EAiJf+4yZB4gqp4lK+xa9K/5FgjzU5sapN6lo/fT9K2hkE4+rcKlYuR0pLwDpndVa+PXf+ubye/GDG/QO5AhLhrD4aWzXfKAdYQaRNjs51R5ev7kZkWp468G0v2ngFSozkF9zBOPVldOUo6AHMf6giHcYL/01VS1hyz4uBN0D2oKtnAP5RYWPEL83tqEtLNIPj4aAtzApN1dSwy3eSbygHj5XvRr3Dm+8SHfjMPYJVFtBB1BSLDC8uYzLZ8/hZFGLwHDM/H7A4l7gcah8YWFhEPm6K3fTY2CXEedZdCw5jLcT47uVFPZjbDQNmgGp4QyvxPsr4sR3DgA3gROO+xCLuDi9gIOojuG0zg1Orz0ZfxwXLn8SGKBMYaiIE7X5O+T7//gJt22iiZ8IVgoZNdHESvjXwP/3ZENlANX3UXsctIQNW13LSjbTqD2t0WtxjhSgGw1fRe1g3NDksZM/8k5tbpcYU6F1w3nE+whARExmYFVjo5K8VdI4sQ+Zn1yqD9KA7r4p8YJDkm7bLkFOxM+0VT/8ZKr8x+8OaqlSVBuezHzjYGfr7/x3I22/8zvr/a3bpla8JNrQFtVJfTbWYK/Ghltw/6e70Vri/SYeYFlt7fvx1keBAugZ0GuPuSaPXiOJPVXYiZgQ1X4caWtV/PwVnIRqHsfY/hqwBhNkMcEA4h9DfEX844hvEN9H/Bx4w0AG5QRqL4Hd/8i+AVSrqJ5H9ShKFdUaNjyGrQ5jw1dAdwCdzgCrD2ocwVFbG87HwzU7+TJqT6Da+P2mcSHzKeq17Jtx+eyn6Vkf4Mhv/cC/oTC0THOZJn7qYOTP5/EXgKbn3cTngwuffwf4y08wugt0M8miUeTFBTUw1RIiF0huyGExBPER5oFRTLAZ8T4GM41jITdMq2BrdavrZS6ThHvFF/FTaTq37tbiyBHKU/vX/Y1vnL/3h9+/a8tVX9J57RF/vlIqTaDQ9sKWAun82fiY4mlUQJTV6xs9NaOqFVQjb21finCmSrn0FmovYKMHGJkn3TFFqsW1wxRvGvQ0jsRVRZiMiVfzQELAChBvFhsOxTseIgp7EP92fJIzwKfAlCJXRcwdMakN7vhQd30F4AZICXQO1Q/rF0lnUJ2FhjC6kEQrcrh2ow9Qrrkcd7IditppxDSUs2kxFo/uiL+PtWg0GM8da5fLDtAtwFo0rs93KZYKMAvaDqRAZkEstjqLyCmcd1wDjiPeHkd4XAKNjjZwBCap59r3x3yIHyHsdjr7cgi1Z3ENSRrxrHfdDPDHFIa+TL7/3DPO0UQTnwtN493E50em+xbliVM4Ja/HQ6QL8Y+iYULs6gR+GD+HiLwCgOoIGq0GRC1/hlBFPBExr7jmZICtlXE30Ri23lgi17cG6EDtDaLyHKq+GEHyaw6plzm99q9/q23tX/3yWwCy/hdGD4isXu5w1daOUZ6oh3oLIw+ACJP6SOEelbmvpvbs2Bqf2ztUC2Wi6hvkVltgt6TbLmA8d04mOALaENaX42L8t+svzVmMvxcTWCrTt9FoMzAAeofarDNMldly7IlvoW3DEbx0BsyLiMT/xwsksp3xdfwYG77ccErXWb7zF9Rz2gOgA9jwONg8iaCOeKdhwdA/xIYXcI3hdsektlWoXeNahgJwOeHqx693gDay6C6DCeMe5kep1/0/BPkhyC6MSa6PxZVtefFxRo6UZ67gogNlNLqP6/VdA9YiMQkSvYFy8zHnPY2LMDwL2nBqbAfI919bcXQTfzF4jhlrTePdxBeF86xkvAHEO4DqD9CwFai5kK3sAWaxehatTbucq8Q1tdEalE7QpVKVS2qdl+5IJwkLm4EexEtY6Eimc58a/3tMXg1l7aGPccQ3tDx1lLBoY6EXQFCRzoX/fWsnSLXeRPw0IntR7aE02QaM4AWfEpbzRNWkrWbs9Zv+xjNfcnyh2vDYws6MP+scWTEa5EcoTw7Hrn+RxKtMtd92pVoC4gWgb0F0A/VKiOxCbRVkELVlVDOgFcRMNuyzjHgvutx67TQgRLXYV1YAg/ihOBZ4P+JtQvUs2Fac/OhNXK59FejXseEPUNuGC0OvBt7FlYJlHQufcZyXPYbIapQ18aU4A7IXWbi6bfHzFOKVcKV3kzhjPYTLVXfHczmD7pj/V4HzYDtxC7Ckf3vDKWvS6GTjI5+5UPrnQS/wZxSG3ibff/9zztVEE0+FpvFu4vOjPPG3gb/9RGNFBJEMqkkO9Gj83IYxXUjWhTY1HAd6Gize0m5Pi9jPkmoR9YIRosoQtcIcaA7nbXWg0QYAjWqn0LAmXhp6dp3R2dsR4r2vAHP3dmFrjWHxe/S8vK5uc/UmJlgoBRORDZpq+y5R+auIHCCuR08GA3PLhnvr8GjU5latRw5M8AYa1nA52gdITE1Jt60TMbuAcRdqBuAFsIPgHQU1qD2M6kln2GEhUuFwOy4hc6VayaEuWvjYcZAekJvxie5FjYJcxRnSHhJja6MMIo315N2Ityc+n0ugO2LiWHLVZtBoMC5HS94cw/UcB+QsIr3USwLB5ZlbQTbGx/spynWwHaBbcXXoj0K1gGOXp3C66cvhi7j/rQfeoTB0iHz/+BcwXxNfFJ5vjZam8W7ic6A84QP/KH48BURxpUhVFmlp22HEbIpf3aHOEAe4hdM7T+ao4W7MEs/TLsbvw/h9Wiu4GmUXFgXo1lrpXbCJTOag+Nk3QU/o+MX9LJf7THddFy+Td6xqHdMonMCGx0S83SQNSHK9b1Aau0lU2YGffRk/647PhoLxWwnLw3jpi6Q7XkblRYQRFnLIbEFkHPQCyCvARseM5hMR2ayZnkuotoHOEuTvAhBVpxEpOplYVgP1PK7IQZREMnabEyrRYZw3OobzXOfQqIJqFfGygEGjEFcXP4uYHtS6e4J4BcS4BYKgoD044ZcRnEe9CTSIiXI+sAHxltTYJZ3RkkiEXMQ1CpnGiby0AVdxixRBjLDYcAOcBDmIK+sai3kQWfDixYlOu880BLszll19H1cC9jijnSC/wudPipeA/4fS2K+S7f0MxmMTTXxxaBrvJp4N5Yn1uBKxt1ca+ghEPMRkcIIagiNtzcUqY642V5lGwwpIgJhWXG5yz8JSWmSChC2s+omqVrHR6XgPm5JatAZuVop6P2mXjPWz++l99YwWH1ZQVfyMc3FtzUhudQR2VFVh/FaZ0cv9dK+b19buD1Bbz9362VlSrfVFhY0K0rYhS1Q9RpC3IpLFRsWkO3dcttTRwDGPy8IAV4q1C+iRoGUI47+p1t4AXSeuXed50FeJotM4w3Rs6ZWNr00X0IFSwrW8BJGXcCVfAyJSYoF5Hf8t5gEi/c7oU8bpl4+TiLfUCYJ9wATIFYzZCVwDKYKMO66CnUdtETTEBItrw23tRcSrxdrnMXSKusEebBg9juslvhNIcvlOGU71+/Uzlg7gTRCwWNBPEMmiehnsNVx9+eL2p3Us7f397BDjA/+W0tgvk+2tfWHzNvH58By73k3j3cTTozzxa8C/wtXZPgsWy385T7YFJ8SSNDw5jg33g5zDC9xN20aDuBDqHCKKyHacMdkCegSNfsFtquMkhszEpGnxfYKskwMNK6FWJ5Ow8zZJt0bk1l4Xz3eELFW0Ontea3NbqcydoL13N0MXFLXXsdF+CqMfgXVErs5tZ8QLFjqUoXYQL9MhQb7uQZoGCXgbDmJrjcpkyd1lCtB6qN1W4mszQGUyVOSKM/xyEvE8ly42IeIVWPBsPeI5BDDY0IvD5sk+ktLQxjtatOhZTI+7pnY9akH8pLXmFK7kSkFCxORAqoiJZUppA+3AhskC6RNsbSeLcSX+zpKLNc5CyBxAyyCxJru0I/Lt+IO6apuqa/25HIxJxHviM/SSbWZAr6G2hOsu9kK8xRxPVy62FA9ACi4qIeC67f0rSmP/KdnepqBLEz9RNI13E0+O8oQA/xz4rz7nTI0eWRXHJH5t4R3VELU1xDsGalH7IarzuO5ReWerzBWQPjQ6j/MUnWKb81AT+Ih8EE86I7Z2GQhUqzXqJCnIrj4inl+v23UNDUrUyie5f+4g6147yeotBt9/SFSxpFstUeUDQAkLo0j+GGDI9k4TtG4Xkcd5euA82pMNrw3Og64C2bhGWVEtOe6cpkBO4KzDDOIV47rsk/F5P8CJl8ThbfmEhSYiZhKNzoJM4wxVCczduE46MeA1EA8xRcTcBSkjXMdGESIGdNZdezGI1IAqqopGYPVDvMBDTICNroLN4BZ0bUA3aKMnLeCFJN6zw2UW6YlLhromu9tWdQ70HO5LD+NIxfI144+DSDvIvgXugOpDNLoSX4ONTzXXonnNp4h32CkFkrD6/xNcp7J/+MzzNvGFQZ5jJZOm8W7iyeAM978A/v7nnks1dPrmzAKvgKx2Ye7oHpaLaLgH+HLcrOQsqj00GvfF6AA2IOYCRGXUnFIb5cR4sQcrMQNcz6JRTIZrMCqp9uPiZx8R3BDjVzSqOZKc2j3StiqjYflIvflJvEbQ8BjYV8j0fETQ+raItK9w9tklJC9QPYLTiW988wMAEbGY4ADIR4jZgEgnak8CbyHeIEgK1/LyHrArDpm7si4xxGpln4LdgssZ9wJRvAAAG80A7Rj/JiKb4y5pfSDXQV+s10fHxDbVo9jQgsYtRqv3CPIG9A66SIilL34kCONOcCx6D2bBXMXljas4zXcFnY+/Jw+njQ4wB3oPZAa4RMIfcAIqNRa1mf0MiKxCTQdEI080/nFQUnGtewrHv0jwDyiNDZPt/V8+1/xNNPEZaBrvJlZG3eP+/IYbALvB5VdZg+vLPRbnXndjJIfKCWw4Bpp4M+sfnUOTfHaSBPeBNrAHuXXiE/Uzt+nZfE3a1v5isgGqU0AVtc4z9dKXSXXse3RuwKRWkWkbZ8O+hOVexAQWk17MehdfaVl/kdnbhtnbgUIZL/0huTVZyXQ+SpiyYRkNT4M8REwvzlApcGrhOB1mGnbyEWK24RTYcIIvnHAEL6n3zXabx2RAqS9QhDJKotQGrv92YsAXh80bJnLbmjGQD1i4zrbK4vvGOmqFIbzM0u2X4hQiS/gREofbqcWpkxR1Q+36otdxNt5vAXQ2JrEtxQOcGtwTwCbtPp8dIp/V4/t/pjQ2Qrb3X3+ufTTx+dDMeTfxcwtnuP8pnz9U7qCatPS6AnLHeXsISVmUYx334qX6UT1BVJ0l6XC1eJ5roFXE2+Veh7NIMAmMozZLtbCRsU9HaVso/fVishiY4Bwip0l3hbI4zF6HmH4pzd/VwLstIs6Q2VqBqFLvLtc+rQsAACAASURBVGUCK6oFqvNeXGaWAxnG1jqozj5QP3OdsHQfyGP8EkHLbkEzOLGTQSCpC3/0/FAnk6rRx4jZvmC4AcTrQuQxNfXL3KyUT5f5sOKOd6FeXpc8J5v0IlJXJtPEM16EfqJyGhNcWBDacaz0WzjCWQviL2dUG0L3jxxfY8DzLC7cPoQjt51dZi5wJLeVjbdqAfTNFcd9NmZBliq2LcUfUBobI9v73ufcVxNNPIKm8W5iJWzli8jfqUZxKPithnaV2z9jg5tADs/vR1Wx4XkWlRFpJ9gXUX4MshkoItKlql1x+RB46WrDhAu/dUm1diJmG0oRG911RCmtohpigt2IoLXCeXv8P+yUr/6VtQurd40mKY7vWpgxv+o86DeZu3MLEVfiZoLrGO8QUWk1c3e6SXdOIawnClPYakpNKpJHE3FXWdSPG4BMLM/agwlqQI2wdBF0A1TXAsOY1BW81B7qDUHiMLJeQqPk2iqqo3E+2SJyBiQ5h2lMMOveZxbMONhEJGcOMe8Ce13O3F4B3kSMxUt/CWf8oc5wvwJmN1pLlNimQd5y+XUu4vp6VxsU2JZDCHyXJNyu+gFqRzH+L8enkpSerVtuY5YSIR8Le5EnERT6jAkQf5zP5jaAC+f/O0pjh8n2NmVU/7zRKDHwHKJpvJtYCVtWHrICVBX0BvAWqrdxN98xl1ttGCMiLhouFaAf1zbyDiIbMX47NnKduBzWAHlU+9DaZpS7qN4QKGvXpmFm7+WICkaLk9+TtoENIDOY4AGutrcEtFGbvUciJQqADGKCQfzcPirzLcxPrdWzPxxkz1dUPE9QpvDSP8RWPcSvglY0LE8jxoqYB4g5gDOWFaAdkU+IytNE5VdBPiRozaNSwk9/7FjKXAR6QN5E9UegO3EktAIis6BV4KWFxUOQb43VxxKsWeZa33E1z5Spa8grdfWxm4hE1PPFrSCrQMYR6UGpAN0Iw7gSMhcRUOZweeYCYm6wICyuNm6uUsCYPDbYgq2+x0KvbvGAV+rDeeh6kcvLDceQhDddf3J4DVXQaBDVxohEEppfBXoc2BQT2IZxYi67cBGNL7FIOnfR9bmJ2meVRAWnAvcxdWLdSmgFvkdp7BDZ3qaMahNfGJ5jLl4TXxAep4X9NLiK2ntodAqiFER3IOpDo+OoPYVG74MN0WgO9EcQd/kSBsDsAzmOiIfnH0TMj3B14QvSZ/FTHxq+gIa9tPdvIQj24fuvM/bxSyBbxHirEBlApM2xsnmAeEM4D7KGk+PcjIaHqc1d01sfu9z2gxv7ELMf8Q5Luq2LbNcuxBwm3dIPrEOjw6jNgh5AowuE5Q1E5YCo8gBVn7C0052PWMLCK9hqC8Z/GWO+jcgunNcNkEGjVWi0Ho1ewkZxSZZ3D/HOIaaRuf0oVO+gegJ0jbt2ZqPrGGbWg9Q7tiEeJliHCdZjgg0giQe9NPetOGOYbJcFdiBeC8bbhXhTcYi8CPoqartQewy1H6DRV1D7uHvLKlTLoB7oIcf4XojCH8Ll42vYcBC1bRh/A6oPl5lnL/AxLvT/Co6wdwcwqB5zkZ5F1+emmzNcD2xaOtmTQyYQcwiRYOWxC1gNvEdpbMOKI5v4wiBILOj4k3/8RaDpeTexEp7d81YtouE10N0sGyLXt105kTQ2pVgcVhUJQN7GRu+BDRCzD2Rea/OfxkpjMdlLZ6nOjwM1Um1v0v3iR1Rn9yF+TrFXxdVdlXAa7FlgAD/XG3v6ATa6j63E+VrdLQNbvy9t3RfUT6ukWlwATrVI2o7gpUZAxrBVBb2ADac1rF0g2/tAwtKIy9OjWpkO8TLXJdczgQvpjqNRCRsOKgSozWOjCsYfRO38opuAn5tCYvER1YwjuD2q4N6A2wsMcLcYOVr/SOZB45SDRtiw4TMKuIYeJVzuvYjLVVdAH6JqgRToUkGT5GCTUHUAvI5wHTCo3Y/yLsZrXzIenPLd6Yb3Zp2GOgI6ho3+DNRFZWxtHGQKL9gDTOC+v3g++UbDnJtxvIENoEdArztGOavQ6ChOLnalMPfKEPMA1Q1PabzBRT7eozR2kGzv8Iqjm2hiBTSNdxMr4dmMt1Pb+hR0JSGXloa/PVfSpSOI2YvqPdAiakfikPIdUA+hRpDfBFojqs4QlQ8AV8l0rqM8dYKweIrq7JfdcYSrRKPb4G9HNYtSVZEU6H3QAhChtoStzDdaF2np+AYtHSel7n0aFTMhxttGkBdVK9RqNZTtwDzidZLpWq9h+TRRpRMRZep6l6tTToRJdALxQO1hATSqXgX9RaIQkBML5WfI6AIzW6MjqF0L7AT5fhzGXo6UVWTBYJtSg8AJYM81mP0AjRq6mfnXluShl7C87fs8mo+HJ8om2q+BOYZ4yzDD5XgD+3wQNCF/ncZ4SysALuDkUb8Wv57FedyNaMEx9LMup69dYG8A74F+/cmOd0UMIebzMNRfAN6hNPZlsr1LG+008ZPAX1Cv7T8PNI13Eyth41NvoapgHyIcQM01512rB/ShOgH0xMIWw3HJ2IwT0mA1sAXVUbR2AhcajXB50G4ckekqMC4ib4OgXvoaUbmE6gOqs3OqUYbSVHrx8diCI6bZzU46k05q840dqG4g3quLykpEkjxqXczFz3gY85BaMaAwPklt/jBe5gz5PiPGv6eFYQs2jfjtVOfGSbeP4mX2UJ1LrPIaqvN9ml01SJA/qMOf3GNudEa2fnUVxm9biEIE2RuI7Ed1GrXr69+BrMcxqu/hjFFDaFozOMGT2yCJtGhCYmsoO8OCvE9izFRnEEk+F5xXPMMC3UcmQc6DPgBdBzqPE4KZj4Vy2jFcQxd05Nvj/RrEnEe8t3GLiuVKu5ZDyGKZVHDRgWQxMovrV95YhncK51UnHIqPcWVgL7iHHAM9wOfDLcSfB/pXHPnZ2IXLgX+dbO/siqObaOIxaBrvJlZC8ek30WMkN2uRrSBbnbG2p3E32BeAm2C/iqLAOdR7iDFrcTe3NTijk8aVlMWhUA7hukglnaSKqL2H+GNg23R+6HWWQ1TNAbsQ/11U0ziCU+Jd3kW8tCz0xAbgTPz54ht1rTCnGt7AVg02nAVOY8NJokqkai02UkQQ4SR+ugvHSh5FSCFehJ91xjYq5xDzA1pWRSAZxLsprvRrDmQYzIuofQ+NXsUtaAoaVW+B147nr6KeJBbAA/HFCb2cBtOHsA1FUI0TcmYKooQF7iGmwZOWyziBlOT1JVxTj+R1EZFXY+P8MsgUykuxwV8dL3gUdBrXrnQOZ7xbMUHaqbRxMBZcaQzrP+535fFo/fWF+HkUKC0x3KPxNYrD+lquk+kWsAPHaeh6zD5XgDmOmL2ILE+Ce3rsA/6Y0ti3yPY+w/9XE000jXcTK2M5stBKsDi1rHoNtUgKvLfR8Gb8TsIiFpAyoutRbYuNQQbHxDYg612NsxxC9SNnJADHGt8t4GP8t9XWPnzcwWhxTMl238XaLMb04udeAGYQ8xHIayILhK4IJ1W6fGi0PNXG9K0DeP41xFOMtw8NoTxx5f9n783D47yv+97P+c0AeMFdnAFJiRJFSqJWihQlypIoLpatWLKcJnGcNI5vkpumTpo+dbbbLI2bNmndZrm+2Z0mddre2mma1LXz5Ca25MibuO/iLlLivlMCwBUkBsDMe+4f5/diFgz2ZbD8Ps8zD4CZd/nNAHjPe7bvAa7g6gpSP1NJR2uRabdxqd2kIjuWq98q6aisPUkaZl1h7r2ddHuMIqQb70T1G0ADkj6FyNOqepXrR+9F45n0gs59eJrgbkPhHm/at4EsBveOhXrrTgEtvv3sGnaDcgfodFRv22dtg8JBCiSevfictsh6P+ZzHTaPezWw1UcIDiEyHcgiZHEzIM6/gfD+5JOzVjV9zWui3w+aBU2qrxcAR1E9hRWTHbVzpi4gbqlVnMs5zOhX9MNzmvK2r/2g5flokbko233qpdfPsDqyC3HPdivSjRzrgK/Q3vx9NDZ19Lt1YGgEkZbAFKa5/00qELcejXeCvq/Kq16HW+5A2Yu4TpRO4FGIcyibgFsgs4FnKG+KvgszsD3FMbpuXcEKrxSkgMhtEOvz7rha0I4rizCltuvUz94sMxZGUp6/TEZd9prT1FRDPbMWnvMtbIsROYvGzXaDkTpNun46rv4GdTNsMpqFmM/63duxcHdEcZrVXCxEvACbqpb0pb8fK86aiepJbE734t7WZUgdLrWOuLDZirOkHpE7gWP+805h6Yfzvg5huq8gd7aN+hGrchOhPXnLWBj9Tf99q29xa8VC1a2+wr0dy0Fv9XvdQvggFu42JTORZ0BugHQg0oTSAvqg78k/krwJSgsbRc4hcsX30Fvhm+p+f9wk7XGfX5uAHgQeADlPZW2fSFL814L9ntuworyH6XM4iS4aBcOd8DLwl7Q3/wmwOUwjCwyGYLwD/TF4422YAVA9C7wL2o7GoIX7LAcpc8EtRNw80A7QnO+Pdoibh0g1LfMuernQSjS3URqb7q58XttbdmjbuVJZztl0Xl+PLthhXUnaTP7WEVLRPeLSyyr3LztHXWMncUeFQIicIT3tLVJ1dyNuGbAL56eTubrtImLSrpI6i7jZdqMSH6A4TasOqd+PSy1HxKRBRepMj5w1QBrV8/Rfe+CnqKXWoPE+700Xny//ugeoA30UuIy4B7HZ25Vh4QuUzsQWl8we9+hmKoeEqB6AeBV2UzDd0iXSDnobG+P6NvDhkj0uU+yZrhhxKvdgxrx0bvl1VJdgNwXPAYf9e3oe86ozoEfoDZvaVpwTr7yFzT1/rOQzKmU+qpVFfSPJx/zjCu3Nr2M3RTuAvTQ25frcM9A3QihYC0xpBho2VyyEeQmb/jSbQu4C5u1WaJPr3Wj8bVy6gGozaCsa51FdATwPugdSR7AZ1EVEFqLc8AIdZTrZGhcehMIWkBwutQyop+PaSW07V1VJS6+fukdFTlPoWASsI9WwVe54sO/+3/rZK0E20XH1eYoCKEtJ1d9ExPfDu8RoXiUJ50pqC5J6DuhEOADuOqQ6rdo9XgaFI5DyBWTxSeL8eVz6GshGRfN03uhLQ9sodF7Apa/a+ZxDC63euF5BdZOPAmwEbUPcK6hesAI5CphBjSmO3VqNtX4dhlJpVbmBeeK3sbTFFcoN7i2QaeB2Yp0DbaAfAk0Dh3F1S1BtQOOvo4V6YIudl6TyOlc8nrRR/B1bEZtqByIv+mjMc36gyzpEHKo7gfu8Zz7wqWMij3qP/AIWgVhLT6W2KwM+3tCZC3zcPwC6aG/eR9GY76Cx6dgYrCMwQQjGO9Af7/by/GlMazrJQ96H5SvNAIqAq99I3NmzrUm1HVhNnK+nmlCQ6lNoHiS1EefKJ36JzLIit8qW5/gMmreLvclzHNK2c430RtzZXYwm0+/aQTS33wu+iEynYfZaTUebaW9eQhynqZ89p0wpTlLT7as7Ksn0MHHiQ6+NwHIkvQ9xVlyn8Rk0fzdx1wZcKkNcuIGrm4PIOlVt5erb7RQ6ekQUeqCFeygVVRG3AeI1oDsg9jcwCnDY7LCkoCxtUBynqnoDqAN5BJHSSMNeYCWqvn1Mvg7iW7T0MaANYTFJcZhyBLvGvIukmr1a2jlc6mVi2YkWcqD3U2x9a0bEpxRkDyIzfTRmBXASmIPqdkRW+19I6RjX96H6pkVxhiA+JbIQtAXlvF9z8e9W4wKjFjnvlTqssO1p4FPY/+GCPvcIVCDF+9FJSDDegf74CvBrWIvOdSw0+QAWxl3c556SWorNkbYiIVWT4BRp7Paa+kIL96KiZRJGqoegVDKz24jHSHoDkqqnkLtG3PU8UfYYwk5uN88F7bVfXTtv5lxjH2nPHm+rYQ0z7kbz7d8m7rJRnq7+bTQ/10LQgLiSimcpqXJ2+xB5wnu9WayCbBbEiyB9llR90aC2nT9BoaNa3UBPCp23Kp5JPrPKymsF2YV5l++WbBsDT/gfj2E3GoIVj9VhHQKVw0tm2HsBy313e7xJzjxROWtD5P1+t3PdNw+SWmez2wvJviUxTl1B3HUDmInyFpK6B5FZwFmqodqF/Y32NyykL1KI3Gu9+ZzFxs0egHgN6kr70mtBlvbmNI1N/UdhAlOCYLwDfRNlbpBr/efAPwx6X5E7wb2GFuZiBj+L6hHsJqC34RJFXPoCVqg0x3rHOUGcF8Rli1Wk0g5sEEm3kar7CIB23TwLzJK6aQ2k6pYp7OJ2H9H/rpuPq8YdIq6h942qknjZLTTOmw9MR+N9xF23bXKmtmD51UQW86r3uKdRLIw7gKQOg37A2sQMzbdvIdc6cGMRd3ZWPNPblDCHSFEERTXZJo9qjIj63vtZ/vkY1WNYGiCHhbhzWDolB3oZ5bQXWWnDCgk60HwnSCeu7pAfxXq/P+MzaKyYF6mIpCH1IFrIAw2oHsN00VN+fQf9vgexMPozqG5AvCqfVc/vsfkndFAmBTsYNEdST2HdB8kN5/PAQTTfBOmjiPQxTGdUSfk1Xa3R+Scmodo8MKWJMq+Ta/1vwE8Met9U/Wzy7U9TDGU+0tfmZcT5ZUAn4jai8VLvmHViRmK+baR3IO4ZVd1FXDiC5ltwDe2IZCC+QceNC+Q7Kg1bJXNpb9nCtHmD86xSDULcBeLaRGQxAJJ6GpcCIjMsGl9Gu/LA3SAHuo1OgqSuI/JhU5OL64h1syL1XDu2ovJ0g0JEId0MdHrj+Y6FzzUmzsdQNnNJgDokpdjvqQG7MUnU1hqw1Eg9ZuDqEZnnf14Aehw4QbE/PGWvSZ0V8WkMXPaFZHnMk58Besg+KGLgJqqLER6wvDkQx0esCl6ykF+Auh2m1y4z0cI2NM5g4e2nsFx5qVzqYNlBtU4Di/r4ufK6GaU8EjS2NBKMd8ATjHdgoPxLrLVlcApT4laTijZRyD1FT0nL/jB1M419eL3bS9xNtycnt4EORFrRQgeqtxGJEZmOygzQM2j+Zn8n0vbmuTQ2DfK6LCtBrhHnF6qqSuXOIiCpBcS63ULqqeUVB7jlk3IdlluWe1QLB7lxMo/GMxgW4qwlSyNry9PZmNhJKxYSvgolU73s6wrMsCah2bji67vARuC2F11px1rd7vYFcBeBg6jOAznt28oarG2Pd+3zIsJy4ouxmom7vJpeBLoc5BQan7Nzxk8Aj4AeRV0DFFai+R24dBvoyxRvPjYDa6oXi/eFtmA3IF2UVqD3SrwGaEFTZ3vphhhtRkokZmoQqs0DASDKXCPX+lPAVwe9r0utRabliLu2EndVFIbJJaALdFHVfSsRt7HMexV3GxAReRlA48Im8vk7bbJU3EZ62st03e57Ipft+Ahdtw5TP+OxfrdNTi1Sp6n6gxQ61mJtVdU0x0FSzwKvWTGbNvoQswPOWh5Vj2Ih0YXiUo9rY9MbdN3q/XjV118RHte0N2ZJVfzD5hDrcXqvV8hhxjsx1knOOvk5S8852DeAWf5c+0HrEXcTS2ynsVawDiziklxvTmA9+f6zdjHoTZBNmCGtB54AuY3G261HO74OHABZS5wHcdt9CHs/sH4IhnsDpgLosN/dQLXGs1DIohyF1GzfSz9W9F6AGZhyBOMdGDhR5mvkWr8I/Nig9xWJSNWvxqU2W5W5dOLqFiGyCFVF443dqpbisBnYzO5xHI0XgdsI1CFSQORFcLsVfVa6Q/PxA1i4dz+phtNoPKAiH7118brUD7Kd19XNptABxM2Q6sV4C0ja9zYLqF7C1MXywCMgD5vxYitwnzTMfkQzj6a5cXYj+dtZNLZwtKQOkGq4XjRU2olNXYP0tCuYF5wo211F4w1Ah/eSO1Gtt3PqBYvpS2noHCRVwK4J7cA7lLdxbcc85l1ooRmb+iUgF5HURxC5H+Qyxfau90DuwG4GjmPtgs32PB/EvGUrPHSpNdZZpjFxR6LO9yYaF0DXW3GjpBFXvPHT+F6QneA+NPi8pl7CiiWTHRcymBsl42GIt0JqLI138LwHS6g2DwS6+XmsKrkyBDwwJLWGVEXbjYggqXVl7bXSuJV8e7X2rbmgJxFX2ia0mnzHXtV4JchyUhHkbx8DF2vuykXytz9Y5Tg9KXSs0rirVVzdgEvPRdxyFXeGuNDW4331vtOdIHdiIejkyZnAatDdQE5c3UPMuX+dxvEt2pu/RldbxKz77hPnip+7xqX97ol2+CZE1qK6FS2UGru3um8C/LtFXOWCvRfNeYoKZqVsB54G3QT4sLFcx8LfitUhHPI/L/E57sVAs/fCFTPM1UebamEnNsEsDcRIahqav4ikpyNuAVrYR3dFPO8AH4L4LCqnQdZann9AbWLvYPr5w0RXoHrLS8OOBcHzDnQTjHdgcESZq+RaV2E58F9ntLwBcatJT9tHoUPRwhMUvaQUFKulVfUscdd5VGdYb7PEIjh1dTcpdKQodFRqYfdFvd66fEhm3lPe/4zsI1XfhdTdjSDgx6mYESqQnuFAHvY9ycnzCQ19JNKrfHZSMlxF94lzC5k+/yNo0yZM3GYzyEozGBKj8SbQ6UCX9zKK59bCAZLCNI1bKC9QA0mlis/pRYo3ZAWqU1nBfsXrfifvw4yr6hVgKSZjei8Wjl/st2nGCg7byo8cv43mk2LGG+DuwskDqIt99TuQWogWXsU89uTGZJGlXPQA6nJWvU4BE5JJJq/NpbuYTvfRX4viwJlOqfrb6DPESvqpioScdyBQRpTpAn6bXOuXgT+jOGd5ZBF5gnSEjQiN36bQsRg4n4h0qOpB8u0PAYsQt6FMq9zVbaTQOYdCx+CqczuuPaAz7m4TSR0iVa+4+scR6dlrLVW/HSzz+n5ZnvAh3ncQtxbV3aArQd7E8rV3gp4FfRIkyesny3F0V0mTt/ihLsFC4cmoULv5QGJE5mDqeG2ovovpfhdA1KrFBcwzPwjSBnoZ3DFESkd9tvkK+wUgJxCuWG6YFiys4rC+/9n+57OAQ+OraNc9FNMksyCOUNkIJUIs6GZsTvkxTCRoacm5l0Pchso+kDXloXRtA17Hii2XMaxfWSVxV09BthHnbSyVMWe0TxSYOATjHRg6UeY4udbvAn4U+D36HPAwDETmI6n5uGmgepm44z1VvUW+/R4svxtDD+1pu6IWOnvmzatznfS0AzL9rjR1s1bgSsdmjgpd9JCNrYbcCTob2OlVxA5AnELdBaARXNraqXge8zjXeAU0h6QEjfcDKxCpx9WVe/qaLwApSPmpX3QACyHOAQ+g8ZvAkyA7/Q1MouD2OMqbSJwm1m1+5vhcYCY2KvROYCYqV5HUwzYNrlApkrPY1qBvm0BNj/qGetB1oPtR12TetybGa6n//ErHjIK1nz0C7ttYeH0u6A0sDfCh/j/roaD3jc5xuzmKfVa7CWHzwRP6vAOBXogyCnyRXOtrwO9ihnz0EHkfruEacdc+xD2OxnNAdopIubHVQgddbY3Uz0jR1b4ZzS+luze8m2vUTT8k0xc2EmUeF5day9hxlqJwST/INFSfBr4D8oI95yPXwkLvSBaAnVho9VnsYg9Iym9bfhUzcZbEZUwK+irD4tWFXlTbQTMo91ZJX79H0SNOqtSVuLABkbryojM9CvGdVCtMLLIC4puobKXceNVhc92/Cbzo3+sGJLUSkQ/Y9LB4C3ZD+SijxzxU9yAyGqHzNuwaHfmvn6a9+RVMKjZ5nALO0NjUn5ZBYJIRjHdgZIgyzcCPkWv9CyyUPnoeicgcSdV/iFQ9qvE+Cl3XiDuvlXhmoFoH+qSkGiDVgKrG5HPfotCRpa7xhkxfOJMos1xE1ozaOvummQEbbxKxkBdQNoAm3uZtrF/7OPAQiZY6gGpp+Lwafowm0LM1rDLnXSmxuhsL21fSYp87t+z42loc1KLrUT1ZnH2i70C8gL4Nd8JMbFjKtpJ1XwbpRORFNN4FxLh0qRdeT1y4A5FmkHsRGUWvNdaS0HkOu4mai0VWZg3jwHsoRhaexYz5x6psp7Q3n8cM+VmsQ6D0cZrGph3DWEdgHBKMd2BkiTLfINf6OPDTwA8Dq/rZY1iIuCdIN4DWd0G8jUJHA3H+ycS1xNWfJd14WQodd1A/a67MWDg85bKRo6P/Taogsh5lG2geuAdTdqvW5nQX4jajhaRgL4VVtyfG3ArvrHetE/xQEjgG7g6EvViV+DZr2fKovglxBgvnvleRk85QrAYH1W1o50UklWjT5v3zhyC+i8HncK/5dV8C6SIZt4ooGjdQ6NqESz8F5Im7LgCPevnU0+Dae0ypGz4FYBfobVTfshsFnqS8IO4dLBqRxgz6cEaL9ibcI5jccO+Sw+3NnwV+lcam3ooRJx8CuNAqFggMnChzG8uB/x651vuBH/KPobWXDQSROkg9R3oaaLyHuhmziTKnRdxiBpRbHlUUOIeJkxz3j/lUk+McCOZh76Cv95W0ozk5ZBXpElFqVERA5TYwDaQZ8NO8OIxziVDNDuAZkK3+5xzEMygaoOugu/z3HZjHvdG/3+Sm7QG0cK37vKoXIJ6HGbL+uIV5ko+YgIs8BPEl73GfxULWyev7QdcSd522dZbJ8C4mLpxH5DuIW+sr0ntiVfI3sQlrS6tuU85mun+HhTdRaQKXr8izPkjx82rz+zzHGFS5VfBLwDLam3+YxqbrY3zuwCgQjHdgdIkyJ4DfBH6TXOvDmBH/ODB6Ax7EPTXEMpWYgc8vB6sAvl3xtR1T7DrhH8eAU0SZXNmeudYIeIUhfw7yDDavu7+wf4S43nL5HZhkbak3Vhoir8x570DST9nNQHwnPdXWSmnDCtxuYII51xFpgzhiIIIoqrsRdxfIA8A+X9V+GXVvIazAwvbHMeP+ICJrLCpAT9lS1TzE11BeQOOjuHQDIkvKzhXnp4E+SnJTIW4XkrrPNPKrsgMo7ULI2bnjq6h7B+lRQAnmOa/xn8l+TDNe/dcnqmxf19vHM0Q+DOygvfl7aWx6e4SPPT6ZE/a3fAAAIABJREFUxAVrolpdLyEQGDVyrcmwhx8C/k8Gr241Glg+Mcq8PmZntKlhmxhW61Kfo1VvWFEYCzCj7HvU1aaFEd8EpoNcQ9wMzJC8i0UFxNrQuNtrjc/zHm8DINYSVjhjBYOASAzUlRTCOZIec1tnHrgB8oxvS+vjLcVbibueA9mNq48Q9yAi10ByfmRnC8QnbFt9CtiCRXWOoPEKkmlvxeNttMr1bnK49E7ErUPjTcT53m5uWnB1p8qmsBkHKbbhgXnrdT66AdBl0QpZD3ocZB4wqw9DkqM7ykHkfz6Mac2PhoPVDvwK8Cc0NlXWM0waVi1u0h3/plqJwMiT/uR/3qOqo5oirCQY70BtybVmgL+jKLpRCy4DrxBl9o75mXOtfwT8zPAOopUtUx3AXkwlLVFKuwwsQPUsWkjC7d5Qu3M2GIW3KKvMLpvRXdFzDcT5TWjBDJ+ktiHynBn1fOl+YEVT17Eixg5gN8i8qqFp1R1ooRO7EZhpRYh6jdS06Ti32G/TCbrH3xA8BRRQPYvIY6huQuO1JcfbBvFzPc5ji34HtL8c9Blc+gR283INm2E+A4smJGyGHoWPR9C4i2KqaCeurr/Z7JeBM1g6ZCxkV78J/ASNTefG4FxjzqrF83THr//AmJwr/RN/OubGO4TNA7UlyrSSa30R+DzwIzVYwVHgw0SZ0zU4N8Cnge+hOPN7CMj6Eg/8sD9WZZ96omhW6vVWVJnraawKvpJbmCxqAcvZih1HS1XS8sBNRBykl6H5RHnsBibS8pDfrgF43orRdS9IHnjacvB6iLgrwtWvQuQokLGqeb3p28XyQKv1cvOcDyQcAWJELE8vstbEXeJ1JhATVwtHe/o13C1IygEf8NvjxXAqj1lFg1/fo/yGaiCdBQv8Y6x4EThIe/OngL+ksSl4chOIyVuKF5g4RJl2osyPYmHCL1GleXiUeB14voaGG6JMG/BTwz+QrMPCxy30rEo+R7FHurRYqXLk512YwUkeSVHVAZBGf/z12E3CckrlOsWlETcTcdNxqVm4+ocw7/8cRcNdyUrQp0FPWWibS6SiZYi7irjHQDoQziFyN/AsWpiOFi5ZC5rmzahToHs6WYIqsAniPEMXNrmFpFp8RKL02OvRuLLtqkoVuFbmyjOonhjiWkaT2cBfAF+ivXkAY1EnEILlvMfiUQOC8Q6MH6LMAaLMD2EX47+kZ3/xSHEW+AHgZaLMlVE6x8CxPPt/H4EjPYcpj93qfkb1NKrtqF70z6TB7QK308LGsgvrD96NhdH3AF/HDK+N4dT4Blo4RNzVRqHjqH+0mCNePFHFWs75dQxkxOoSYB1oHVo4hMZvEcdvW/80gCSh/wLwfX7741iIeVnZkeJC0gc/kwHN6K5KAUkd8CNHqyCtqF4ueeJC2cuqu3usy15o6/ncuOEHMC/8I7VeSGBgBOMdGH9EmSNEmR/BKrH/X4oKYMOlA/j3wCNEma94dbjxwi9gxmgYiAN5kUQ6VHUfNsTjQeBJVL8O5BF5GpH3IW4J4p5G5G5EVoE0gTwFMgdkJcgslGXYTcEyNJ6P/U4eBrKIi3F1O3DpTT78bai+iRYWg3sGC7MPlDSwAvRRa+dy10HaQbeBfs2vE6xArEBPw72xRMDmCUyBbPAk+fvqf3cHQV8CnYfGu1Ddjeoy65UHP+71rqrHVb3Z6zlVFdX9Pe+BxpQFwFdpb/487c2TYwjKJPa8Q847MH6JMseAnyDX+u+Bj2Kym0nfbG+CFNexdq/3ME/yvZLHq0SZU6O97CERZa6Ra/0E1ic9zB5gmYOFt1uwwSazsWrml7EhF/jzJEamUmGttEXsMOWV1aXnSSHyDAjEha/7HPYlxK1D3E6I10BqjSmg6RL69oRPknjp4g4j4o1wcmHUDr/NRSR9C3QaGp8AtVyyGe6Kqnt5AvRteg/bJ1y0XnddAXIQU927gf0e3vWfy3tYO+CzFH8/T6PxLaAF3A7QRqy/fVr102jPSJIZ6/esf51HgBzqziNSqQU/lvwk8CLtzT9CY9PWfrcO1IRgvAPjH8tJ/37Zc7nWaVjF7wIsz/se0EyUGZpy2Xggymwl1/obwGdG5HgiWZQG0P1YXvYK5olvxPqk38CM1DVUc1hV+F7QK1gYvdN/74+XfgqNv4EwG6SAuJL8uc4EBHEvmBSprAfZjBbmI+5p396VtENVcs3O7dpB3wXaQc9ghrMTmAlyxeaPu4WImMGWFKjupJC7Btpz8IjINJRZoNfpS4ZV3HGQFFo4jbjkpvCIX2vSdtaJ/b15JTrZgBbyaPxBII3G7SDnENeJSC/G29+JaH4TSgdCF9Ymucy3k3niy5CqpfEGS018h/bmByZuNboEhbVAYNxhKm4H/GMy8VvYhLCXR+RoIjNRHsHmWDdjeejEQ11AuRLZTkRWonob8yA3gCbKa4pIF5Ku933PeTTeSZw/hxmlGSD3g+5EeR6R93xYfiFxfiNCFml4BM2/ihZeoui9Xga3x/LLcp9puGsLVjFfUoGvl8DNrmIYc7j690O8kTh/P2i5ZoApze0El0fzy+lRXCZbQJ4EGpHUG15udg49Q+YX6W4Pk12IqwO5G+08hEu3Im49qvd7NbtO7CZpGWU95xqh+X9A9Tms3/4wSAaRvZTPBF+Dxpv6ENcZK35r4hruyc/kvS0JBCYiUaYAfDfwc1iYdviI1IOsAjmPVfQnVCZYK6aHEYFcN4/YgaTqKYqvbEdcIy59D7ibIIt9/3MdsANEEVmICLj0aiRdh8heXPohJPU6uL3gDoKbg8hHsKjAJlRv+PO+Bu5bmAcMcCfEe8rXpwdB1yFSj6TWkWpYiGu4iqQ2gtuIzT3vBN4H2oWrK7nRk6NI6iAu9TwiMxBJIfJBrKXrOBYNSHgLM66+SE1ugy5DOI+rewS7kdkKvIG4xYi8bOkEGrGxpWDzxxuBl4BToO9hfe+n0e4bpIR2kFoLF/09Vh8ycZnk1ebB8w4ExhtmwP+IXOtXgf8CvDDsY4o44IPW+6xpzItsr9iqXA5ViMGVC5wUL1QNmBTpMZy7E9iHxg7kQcTlEVmI6iZs3vWdCEt9SPwuxDVDvLLi3E9bCxizgFUgexHXjsrDwHEo3I3GdyHeYVc9BjqPSkTuQHkUkSwIPoqwD9QBDld/CYsiPOyHrCSKcqXcD9IK+h0sx/0oVlG+EOvzxo7Jeqw/PQJWW8RAsqh+B7uJuQ+rPdgPLEFkMRpvQnUJyBFEvgtY4D31hIvg0oiM9pzwvjgG/OhkVl+bDATPOxAYr0SZk5iQxk9jFdbDx8LT93ojVNkDnVwPEiN+2wq+9FuYN3oC1dtofBqN260NLb4IEoMsRNxqRJpAfaua3ovldB2wAWQNSCPINKpPVSv2RqtO9+sVK95KHURS7/rXOkDn0tPoJlzs/k5kmq+sX4uFsXOI3OVfexJcA8h2oNM8dbfRFOfcMz5hmkiezge3HXF1CE9iKYfSdrF2iiH55GbrLsxwP4LG+4kLZ1Bdap9J943HYcS9AbIZ5Ci4DMJMX6BXC9qAj06W4SXiZEwe/a5D5GUReVtEjovIv+pju6dFpCAi/UrDBeMdCIxnokxMlPnPWLj7zRE5pkidVXPLdGxGdkLiaaWgezLYQ3ZuzWAh5enAYqDJe/Dr0cJ+4JoPU28DLqHxAYpTz1oon2iWQ9wBrFiuOi59k1KpVsuzJ+1Lxyg19D3f4LVeXpgBKqgWzysyB3HPgtuCuCcRWYdIBOz1n9Gr4LaDO4npt6+G1JuQmgapiyBbkPRj3gBH3cdVXY7q19C4BY23Y3UM5zGjr1hb30Yk/RAijyGyBpGHERqwMaK1mr/94zQ2Ha7RuSclIpIC/gQbDPMo8MMi8mgv2/0O8A8DOW4ImwcCE4Eoc8oPMvlDRkSRDRC5F+ReG16ibUAW1S2YoTlKceJZFkhaodqwwRyKeaXbrLJcBRuykhjpU3SHmpmNDdtIPP3HEdcIctkb/oewYR4nMalTodimBtZ6dQ3Ie7nUfsRXtC9VtcWge1Eetqr47s/iBaz63mEX2JXAZsR9yL+v6Zhe+6HuNjbVhSDbEJmDupegkMeuqUcRdxotVAqemF65uNeR1CLE+c9K78QK5JLr8QrKb6rGit+msekrNTjvZOd9wHFVPQkgIn8NfC9WS1HKzwBfASoH4VQlGO9AYKJgY0X/GbnWrcCfMnTpz3IslA4anzbZUcAMbytmyCFp8RJZDtKM6iFsBvjj3thupXy62RKsJW0hFsYund/dDCxCZAGSPo/yNpBBRP35Sq9Lh7BitkeABQNTzpXbfWx3GuQG6Bso6xBJqsGPgtxn71tn+LUn7+cDwElUNyDSBSwDjRE2gLzgP5c8pL4JLEPkYeJ8ZVThCshJXDqHuIpOAnGg2ykf5tI1gDc6krwO/NoYn3P0kTELLmdFZHfJz59X1c/77xdiioMJ56lomRSRhZiWxQcIxjsQmKREmS+Qa90L/A0DG3gxMMQtBhaj8UGfk30c8w6aMVGcpIjqLVzqBVRPYUZmD/SYqLQdM343MMP4UslrZ+gOqcsiXEmPs83kvo/iAJUqMqP9vY/U82h+F1UvgnLWh8PBJGAXgRwGnsfCltNQP+RF9QzEXVjuehrwPIoDdwLhGpbbfg27MZmFyCv+PbSgZQV5V5HUbcRFiOsRLvWUas2eq772UeM08Akamwr9bRjolZY+popVS4pX3l3+AfArqlqQAVavB+MdCExEoswBcq1PA1/EWstGDnGmqKa6FeIlWBhZMUN+tbidLPHfLULZADofE8tJYR70DeCCN9wbKE7ZSi5c71GpuibypA/dx5h3Uj/49Usade29SOOXXhlXYrnlNb4a/ygwG3EfskEp8T0UR38ewXLtatEJ+QB24/ISPWuHBKs2B8ghqbOIu14Mk1cl6V+/BOSssG9MaMcK1FrH6HxjhwgMoJhsDDhPuSLk3ZQWVRqrgL/2hjsLvCIieVX9294OGox3IDBRiTJXybV+D/Cj2J37HSN6fJHVZgQ1kR5NvMbLqG5GpAG76AhWTHYSK2Z7FOuvPg/dhTnrgY2g0zCtdIB5lOfWk/MuBhaiPeaUD4K4HvMo52NG9rAPoVb2zj8DusWmfcpTQGSGW58FOeHTCFsQV7qOpPf8FCbVa962Pb8U9AR286JI6jAit/ox3GBpgTxwDqS/ud8jySdpbNo3huebiuwClord7F4APg58onQDVU1uhBGR/w58tS/DDaHaPBCY2EQZJcp8EdMF7/OffUiINJrh6e5vBss9KxbavUhRiOQVzHC/CbxquWVKe5gd5unVFZ/Sah5fUlW+CptyNjhUTwOzQGZbD3WqGVf3HJJ6DtxSrJp7r39P3/TN6/VAl70tvQuoR+QRxH0HVz+Lsla9eLofYRr7870DmgNdC1xGY//+5CAiK8H1og1fxn7MmcoN+v0OnT+gsel/juH5xp5xINKiqnngU1gV+RHgS6p6WER+WkR+eqhvLXjegcBkIMpcItf6/cD3A79NMdw7Mohb7z3SdVjF+SKrUuc9oN6MF6+ZwcRhHm8dlr8t+J+X+eKszZgYi0LVsZvXsBzydOAp79Ve8M+vokxytAoa38JkR+/w57iJ6lsQn0HcXFQagZx509qBSew+jeX2d/mjJJ/feuA8kj4G8W1wadBO3+d+EXgX9Amsov4ScDca282HyFXgbURKJWh7IwmTDz5NMDQ2AL88Ruea8qjqq8CrFc/9WS/b/vhAjhmMdyAwWbARp18h1/p32GSof0vvQiaDR9w6b8CdCa4A3SHvbu9jG7AQkXv8zOt5mIf6OvBhq0zv3nczlkefhU2DAysOm1V+XslibWybME/8iR7blHMGkce6v0djr/TWDDxT9JR0D8hTXn0NVN8GXYYZ0k1Y9Xc9mm/G1T1TlGMXrKite4pZAUsRnLABJbyMFek9ixXu9WO89bh/T21Y2mG0OQ/8YxqbxrqifewJg0kCgcCEIcp0Af+JXOsXsTnhv8BI5cPFrUP1LOCLynQ+5qUmV0nLZ9vs6itYT/h3AdMROYRVkd/j91/D4Fjs9z1Ir2NKwdTXvIFWzYFmvPBKE6rbEXnWb7gUdAMW6t9n74d5ft+1oJexEapp4q7N4BSR2SgPUpzZfQZchMjdqM5CC5YmkFRrdwteOZeBNKpdEJ/wimrvYZ/h23YzMarcBn6Qxqb3Rvk8gVEmGO9AYLISZdqAz5Br/X1M2OXnKKqeDR2RRcXjCKjewiqxr3sltsewvPWjWEHXtxH5gN/7Fpb7e4nBk9wgPIyFuudQ9f1ISd5Y24AHUN0D0gbaDnIA1WuAIm4eIu+APA9srujgmY8Z1DbQJRA/6F/eCi7lFeruLfHkW7A2tyS8j+8ZT9iCVbjvxlr81oBuRTUN0oXIrSF8Jr1xGysGXESxoj8G/hWNTdtH8DzjmxoNDRkLgvEOBCY7ZsR/j1zrHwAfw1Ta7hyx41tu+gn/Q0nltTYCy7EhJglpinrhA0f1PNZiA5ZLX977elxkQQHdgYXt08BT3YZZSwx03PUGUnefbyl62HviczEv/wSwHvQsuPMQP+hP0IW4UkEVf6zCOeA+xB1AJAmpr/Cz0iNgLjbSdD52E4NVtdOJhd6Hcj1OigWTiW5tWJTlIWxwzA1MQCeP1Q38yRDOERiHBOMdCEwVokwM/G9yra8D/wH4F1QXkBgelqNeW+KVgymlLcMq0Qfe/qUaY/nnx/rbtGQnE44RaUdZgkUFroDeBBpQfRj0mIWuNUbik6jMhPhc99oktcHP6O5AZBEav1t0yiWN5c/PY6M97wLaIH4IZE9FW1ga4m22jUtumN4FTYruHDZHfR2DU1U74Lfv77OcheXujwPfO6UmhdVwXOdYEIx3IDDViDLXgZ8h1/oXwOcpn/E9sphX7iVWdT/FyVsDpZVB93prG0k+XWQPVrF+CbiJ6hI03gV6B1ZI1kXcdRqnO5FEBU6OgCSfSYNvH4uxlp/dULiJuCafImgG5qPxJiR1i/I54AlrQTYikqjh3QF6teT1pB7hHvqngFXEP0ClwE3vtAMfo7Gpt4EtgQnI5C3FCwQCfRNldmK52V+kp3jJKCArQB7HjM+xAe50pP9NSrCQ+NNYREGwMDJeOOVBYBciq0GW+j7vG8AVtPCSyb26rUhqsQ0b0UOWx9ZbxPE10GYLc2tS8LYZmO/PWY/I/YgsrbKqDl95njAbpDS5nui+l+pfV3IDC5E3YzPGB2q4wYRYDgxi+8mDc2PzqMVbq8lZA4HA+CDK5Ikyv4uFpb8zNieVpzHPcStwtuomqu1eYW1l1dd75yzlhs1HF6UBS3qbfrdI2mucH0LED11xpxHXALobjTeALvTHmm4ztkvrBPQk3YpzugGTci3RbC+jwUcdkvdWB7qg5PUL/mtvY04vYh79emyk6GD47KQXYpmihLB5IBCAKHOaXOuLWB78dxipiWW9IgKsBi1gOe3lmNBJwgWGJo3aUfFzYqyfRuPXsOKwDZa3VkWSHLfbDHSB9taqVeopnwBsO9U9wFr//F1YLrpaMV0Hqm2gR3xOvrTgLbkOz7DT9MjTnqEoKTsYvg786hD2mzxM4px38LwDgYARZWKizB9jleNjNE9aUiBrgQuobkP1iK8SH6K4jF6peCJV8v1DCOsRmYfI8yAlY0rdCqABjTeUVaN3H1ZLJ24t9c+dAH2Q4nW0jl4LAHU5xDu9CExlpXq7/9pCz2lTpxia4T5OmBQ2qQnGOxAIlBNl3sG8yV+hXJt8FJFHMeOXwkLQM/vevgLVU2jhgC8iKyVf/FYuURw1CsXoQjsiM7Ee7fWg1Qx4DLLRjiHX0MIWND5TXKe2eCW3q5U7emZhs5qvY/3epSS66asw9bNS+sqD90YyKay3tQQmASFsHggEehJlCsD/Ta71VWzs6GBzz4NH3CpvNPeC3g00DXznuJVuYZQyFpYc/3m0sBd4CPQQ6DVgCcgxLNR9DOslXw96CNVWoN6Gm5BH5MXuY9ks8wUoryKsxYzzAco9/Wos8I88Ft1QijcqMeV573aG9rn/NI1Nh4aw3+RCGC8jQUeF4HkHAoHeiTKHME/431HmxY4S1pu7koFXo2NV4WVGroCFoMEK40q8V7mJzc6+gaQ7cPXv4dJtfp9p5l1zDOSajQPV5yBe7+VVk/O1YBXfj4LOxoxvPZZuGOhnlMaiG+sohtpzFOd649/D4CIQ8Kc0Nn1xkPsEJiDBeAcCgb6JMl1Emd/ADNaOsTmpJMNBqnEDCz1fRuOdEC+l6PGeNk9aTpdsXzJ2VFYBG81exu2W/3arQbb7KviHQZZgXvAHS45RGkc/TFE1rjKn3MDgWYGqYob7nZLnB9sTfwz4l0M4/yRFbIjdWDxqQDDegUBgYESZPVjx1Ifo3bCODCIrzdDKfqylrJTTmPBLkxdkacDUxjaBNCLyEBZCT0RJ/BATLSA0Im4Rlnv+bh8aB5HnETmIyHxE0hBXtmTV9/L9OlS3oPomqp1eM32wRFgFO0C65D7hevXNq1IA/gmNTe39bhmYFATjHQgEBk6UUaLMN4gy64D3A98atXOJNCKyAuQJTKBkIzZCNCmiS4FbCfIqSDPinkPkONbrfQFICrZyFgLnNHAV1QZMyAXfr51gIWtlE7jKqVs2RcyqzueAbC557XlMR7weeNlmhw+KFOh9qO7CiuaSG6O5fexTyS/Q2FRZCBdwMjaPWry1mpw1EAhMfKLMBqLMi5jxem3UziMyDXHrTTNcHgW5G2QHcBphDiKzELkL2GLTweRexC2k2PM9HdiLTfKai4mtXAJAtbQvvA7YgMhaxK0BSdrlbpFIl4rbgKQX49Jr6Fk17um14rwvHOiTaHwNVT+qVPcNcN//DXxuCOcMTGBCtfl4J9ciWM/rw5gG8jTs91bApB93E2Ur20uqHWMaVhE7A0v4XSbK3hi9hQemDFFmK/AKudZVwL8BvmfUzmWiG1axrZwF3YQVfRUoFXmxqnWvtKZvYUNRSpnnvyY565vAZZRnQY+DtvpBJmBx7DxwAtwLiFf+kPRqNL/Hr2dhyfFikE2giXjLQEkBc/zQFAXXNsCxMb9OY1OV5vTAZBZpCcZ7PJJrqQM+AvwQdmG6q5/tN2EhxQcwI10A3sVkFddhalBzqux3DgvR/T3wVaJs20i9hcAUJMrsBr6XXOsK4New8aOjd/UUWYS66RBvBu7w4fWEmxRlUpdgnncijpLDQtwx4pLX7gN5DvK7sJD6A9j/FNgN725whW7DbecXcHlwC9F4I6hDUgsRMaOthWMkgi6DYyl2MxAMcqBXgvEeT+Ra5gOfAn6SwSlMraUo0TgY7gE+4R+3ybV8GfgMUfb4EI4VCBhRZj/wg+RaHwX+NfBxRitFJ5JB3SrQt7uf0+4e7jV+o0bQhpJ9IlTTwEn/mA0yC40PYxGuy+Degbj0+rgKkxutOH/K66Kn1vV4zcLwCTED/wyugjuMyJoBbl/X/yZTEJGaDQ0ZCybvO5tI5FqEXMsvYAU1v8aQpSGHxTTgx4C3yLX8nA+1BwJDJ8q8RZT5PzCD+AXMgI08IhHI/cARVG9AvBi0UoJ0WsU+aUQug3wI5BnQb4NeAHkTXMrma0syX/sYuFdBXqC3QSrlnER1J7gz4E6BuwauFWQPPVvLKukC9+4gDDfAp2lv/oVBbB+YBATPu9aYkfws46c/sw74A2AtuZY92EWvHbuxeIMoe7GGawtMRKLMMeDHybX+DvAZLJw+sojMQLkTCsdIhoZ0o4ex3nCwlrIOYAY4V5ITTSOutK/7BMg84JtI6kVELmGzvU9TfXIYmLTpWWA1IvdVWWSTbyU7CPEcLDQ+Fxvz2QHkwV1DysL/A+GHMGW43x/kfpOfkPMOjAq5lhTwZ8Ana72UKnyMahfZXMtu4M+BvyDKhp7SwMCJMkeAHyDX+hTwH4CXR/T4InNQ1w5xF1Y0tgO0HVgBdILbBbLCz/ZOFdU19DImj7oRuybmgVWITAOp9wYg0UF/1m83D4sodAHbsZqSxzEj2vcaYa11h2kB6ERkEDKwvRLqVaYYwXjXlt9mfBruvljlH79KruVTRNmv1XpBgQmGib18mFzrOuA3sVazkcGl1qByDriFyDpUC2hhC+hcoAuRejPggOW7wfTE20F83lqPYMZwGrAQ1QuI3Atg+2PbWT/3OeARevfGe0ckRf9a6APhk4zZLPYJxiT2vEPOu1bkWp4BfrHWyxgGi4Gvkmv5fXItQ5GEDEx1osxGrNDyI8D+ETuuuHu8kb2JSAqXXgepLMitii19NbpsA5lV8vxciupmO7Dw9jx6Kr0txdrTFmHe9xbKpFjHjJM0Np3sf7PAZCIY71pgrWD/o9bLGCF+HthMriXb75aBQCWm2PYqplD2UeCvGZEQsNyHedZmsJ1bgJQZaDBZ0l0knnSRpMVrq4nDCEBS/2HtW6onsTqQZ/0+z2IRhLnYdLGNjB0j4b1PToK2eWCE+UGsj3SysAr4NrmWkcjdBaYiUSYmyvwtUeaHMQW0/8aw+5xlBXAK6+sG+597t/i6bgOtMHwaUxwukkwI24wVwT0BXEP1ABZqr9bDLVj+fB028nMsmNb/JoHJRjDeteEf1XoBo8DjwHfItTziIwuBwNCIMm1EmX+KGcFhhoNlGckkNJHZlI8aTQGdoO+CXgLdgOrfoVo6U3sLSb+4amwtYN3h8kpaMa+7GXgPUzQcC6GVkLaaggTjXRtW9L/JhOQxbHBEK7mWz5NrqQxTBgIDx2aJf2YEjrQSC3GDGeIkpN2ISZtmMG9/PegC0E6QI6ahznJvtHdjnvQDFCvPK7mE3XA0YTnyafTMk48Go9M/P9GRMXzUgGC8a8Nk/2ebianEbSXX8mFyLcvItUyv9aICE5IvYIM3hoHMwgos3/P560WgrwP3Amco77opIC5G5BFEzmF/yzt9GhtbAAAYI0lEQVSxsHk9NtykGkcpDkJ5D8uRL6GaLPHI05/wS2ASElrFakNLrRcwRjwGvNr9U67lJHYh/P+ArxFlb/ayXyBgRBkl1/px4Ajwb4d+IAE0i+px0AI2kxzsb3Qj8IgfFaqoNntvqg7VTsxwJwNQqrEReB9WAHcDmI5IIhTzGKo7gGeGvvZ+Cca7KhJaxQIjzlTVDr8P07n+K+AyuZYvkGv5aCh0C/SJFbP9OlbNfXjoBxKHuAdASm+es8A6VFu8eEtTSZq6C0sDKd066T24gBn1yP98BZHpqO5C422ovg1cG/qaB0Qw3lOQ4HnXhmFcgCYNiZb6jwGQa3kHmwn9JWAbUTZMVAqUE2W2kmtdCfxH4JeGfiB5HDSZHuafklZwiYF+CNUtvle8HQuXv4Wpp13CesATdcF7Sw78DtCB6lnQLmC1vxF4CNgDUiHbOiKcJUwf653geQdGmDdqvYBxyIPAz2HVvfvJtXySXEv4+wyUE2W6gD8Z1jFEZoF7EPOsEyrbrQTVLqw9DEwKdR9W2PY+YL1/LMY83+3Ag4g8Dmr65uWMdEX4Fiz0v5jGptdG+NiBCUC4ONaGfVhLSaA6j2P66V8m1zKz1osJjDOizBngy8M8SiPWx/0OlrN+suL11dj1Maksd1h4/BZmqEu93S2IPFv08mSlP2bpzcEy0DeHuWaw3P9LwFoam75BY1PwuvtCZGweNSAY71pgIeH/WutlTAA+Cmwi1/JyGFEaqOCTmCEbGhYS3w7SBPIgSLVRn/OqPHcnVnG+C9jby9GnYy1llXoHDaDfAT0GOhgVOQUOAp8AHqex6fVgtAMh5107Pg/8LL23ngSMFVgu/C1yLf8XUfYfar2gwDggylwn1/oRzAuuZmT7R1IvlP2s+i5wwuerZyDuKStk4zDoQ1hPOMBbiKz3+7xDaUGa6knQc1hIPeEq8DYmofpYyQnfBXaA/B2mnz4f00m/H7gIfAO7QdhOY9MNAkNg8t7zB+NdK6JsjlzLpzDDFOifR4Gvk2v5K+BnibJTpd0u0BtR5hS51peAb2Ga4sNDZD4wv+yCL5IF1qN0ABtBl9vPehRoRGQB1su9HdUm0HrKDTfAIWwASyXzgbdpbApRuMCgCWHzWhJlvw58rtbLmGD8MLCPXEu1i2FgqhFl9gEvUtQvHx1EGhBZBxKBbMDC4hlUD3it82eBe+gp55pMTuuN10dnwQEgKKwFRpWfBX6j1ouYYCzEdNR/otYLCYwDosxe7P9o9BGJLGQub2Hh8AbgBf9aPeLWg2wHDoBsNm11OYLlyCtHkuawoSeBwKAJxrvWRFklyv474J8z+WVTR5IU8F/JtYzNRTswvokyfw78pzE7n8hykHpE2pEeMyHvwmaH1yEy16RW3dMgOeCE32YD8D9onDe6EYOpjBCqzQNjQJT9MywknO9v00AZf0iu5btqvYjAuODnGcswtMh8kHWY6NIpVDvR+FXQa8BzwKOonijZowGbOPYGlhd/Z8zWGph0BOM9noiyXwK+h57htUDf/DG5lvpaLyJQY0zA5XuBvx/bE8syYCHIN4FXgPtBt4DuB52J6jnbTt/EcuPv9zt+c2zXOdUYI687eN4BAKLsa9hdeRjaMXAeAn6w1osIjAOiTA74GGOuoyD1iLwCshHr834eWA5yzaRXAZtultAK7B/bNQYmE8F4j0ei7B7g12u9jAnGh/rfJDAlMA/8JzG53bEVMxG3DmQLcATkACIPYhKrW/zXJFT+LRrnhRqXwJAJxnv88jl6tp0EeucDtV5AYBwRZZQo80fUpI5EngN3E5HSSWSPYbnxxGBvHNs1TVFC2Dww5kTZLiwUHMLnA+Nuci1313oRgXFGlPlfWB3JlTE7p4hDWE65gZ6DTSR72P+8ZczWE5iUBOM9nomybwLfBwxGB3kq8+FaLyAwDokyr2ECKp8Afso/PoqNBF0K/N3In1QibJBJaR/3k9j/8g1MdS0w6kxelZYgjzreibLfJteyHPgLrAgm0DufJdfSSpT9m1ovJDDOiDK3gb+q+lqu9fswkZfP0nOYyDAQQNcAO4BnEJmLsgG0mcZ5oSU0MCyC5z0RiLKnsAr0X2Ysw38Tj9nAV8i1fIVcy9CGVQSmHpYf/0NsDOgI15kI2Kz6d/0TK4C/HdlzBHpl8jrewXhPGKJsgSj7WWzq0M8Ap2u7oHHN9wPbybU8VOuFBCYQUWY3Ftr+0sgeWO4g+X8VmYO4XSN7/MBUJBjviUaUvUWU/RyWq/s4oWq1N5YA28i1PFvrhQQmEFHmOvZ/9c8Y2WEnz2DjPa8Bx0fwuIG+CNXmgXFHlM0TZf8XUXY98Dim6xwK28q5A3jN1wwEAgPDwuifB57CBoqMAAJWNPcVomzo7w4Mm2C8JwNR9hBR9l8AdwLfDfwu8HVgGzDV517PAV4n17Ks1gsJTDCizFtYHvzTQOfwDyhZYOvwjxMYEELwvAMThCjbRpT9GlH2F4myHybKrsZy5H9a66XVmPnALnItP0+uJXRYBAZOlMkTZX4L88L3DP+A8o3hHyMQCMZ78hNl24EgXgIR8PvAziDmEhg0UeYQNlTkc8M4yhGizLkRWlGgX8aq1Dx43oHR48VaL2AcsRKrRL+z1gsJTDDMC/8ZrNujMIQjfG2EVxSYwgTjPTWoUSfiuGUh8OUQQg8MiSjzOUxL/28YnO5CMN5jTch5ByY4QR+9J6uBf1rrRQQmKFFmI1HmY8ALwK0B7HGDoGceGEGC8Z4anKn1AkaQQ1i/7EjwGXItc0foWIGpSJQ5APxj+h89+rofVRoYS4LnHZjgnK71AkaQef6xgaHlHUtpwiRnA4GhE2VeBf6wn61CyDwwogTjPTWYLBOMuoCLWM56PXAEuDDMY/4Tci3RcBcWmPL8EvD/UJzXXcnXx3AtgSlAMN5Tg8mipbwbeKLk52XATOCtYRxzHiaHGQgMHatE/yVgDXCq4tXdRJnLNVhVYPJ2igXjPUXYysSXTj0IzKjy/NvY1Kbh8HPD3D8QMKLMNuym8l9TLBQNIfPAiBOM91Qgyl7DBEomMo8D92K57qQ95wCwnOHPpX+CXMviYR4jEDCizG2izG8C9wN/DHy1xiuauoSCtcAk4HeZ+C1js7Bct2BGfDHQMELHfv8IHScQMKJMM1HmZ/2o0UBgRAnGe6oQZa8Dk0VX+Q7MiM8awWO+fwSPFQgExgWTN+kdjPfU4o9qvYBxzHO1XkAgEAgMlGC8pxJRdgPwl7VexjhlZq0XEAgERpCxyneHnHdgjPhFht8bPRkZqdx5IBAIjDrBeE81ouxl4CXgaq2XMs4IfbiBwGQjeN6BSUWUPQx8N9Be66WMIw7XegGBQCAwUILxnqpE2a3ADzJ8ffDJwkgNOwkEAuOFyVtsHoz3lCbKfo0wFjPhm7VeQCAQCAyU4SpTBSY6UfYL5Fq6gC8wdf8ergJv1noRgUBghKlRPnosCJ53AKLs/wReYeoWbX2ZKBvSB4FAYMIQjHfAiLLfAB7FtJhzNV7NWKLA79V6EYFAYDSYvEnvYLwDRaLsVaLszwL3AX8IdNR4RWPB7xJlj9Z6EYFAIDAYgvEO9CTKXiLK/jxmxH8LywdrbRc1KvwZ8Mu1XkQgEAgMlqlaoBQYCFH2IvBp4NPkWjLAC/6xBhvROZGrQf4c+BRRdjLelAQCAZjUBWvBeAcGRpRtBb7sH5BrmQOshv+/vfuP9au+6zj+/PR29QPKxPERqQUGjoZBXGcYMjJQYMZJtyUw3MZ+6DJiZZtlpkGHCJO4TMNQJ8sErB3WOYMyt5Wt1UJpZmREbITiwNGN0cEmDQtyiGuFcga1xz/O1+y23Nv785zPOec+H8lJ773n3HNe36Tpu+/P53PO4RRg2Wg7nrpbP3qCMzwP7AB2AacDxzSeeWJPAe8jptsyXV+S5szirdmJ6XvA5tF2oLJYAiTqofYXqAv3XmLaN9ofqN/F/QrgJ6nfNZ4aTrwfuBn4MDE91fC1JOWW8dGlbbB4a/7F9DzwxCH2V8Bjow3K4ovAu4BfB05rINFW4EPE9EAD55ak1rlgTfnFtIeY1hLTa6iH1P+Cub/5bC+wDlhBTG+wcEsL0IBfTGLnrW6JaTuwfTS0fhL1ArlfAM6inicfm+Q3n6F+uci/A/8I/BMx7W0+sCS1z+KtbqqH1h8ZbesAKIvDgRXU8+Q/TN1d7wEeBb7tU9IkLRQWb/VH3Ulvyx1DknKzeEuShmnAq81dsCZJUs/YeUuShsnOW5IkdYWdtyRpmOy8JUlSV9h5S5IGKNDvFx8emp23JEk9Y/GWJKlnHDaXJA1PwAVrkiSpO+y8JUnDFIbbnw73k0mSNFB23pKkAfJWMUmS1CF23pKkYXK1uSRJ6go7b0nSMLnaXJIkdYWdtyRpoJzzliRJHWHxliQNUKhXm7exTZUkhPNDCA+HEHaGEK6cYP+7QwgPjrZ7QgivnuqcFm9JkhoSQhgDbgRWAqcC7wwhnHrQYY8B51RVtQL4KLBuqvM65y1JGqhO9KdnADurqnoUIIRwK3ABsOP/D6iq6p5xx28Djp3qpJ34ZJIk9VgKIdw3brt03L5lwOPjvt81+tlkfg24faoL2nlLkjQ3RVVVp0+yb6JJ8WrCA0M4j7p4nz3VBS3ekqThCXTl8ai7gOPGfX8s8MTBB4UQVgA3Ayurqnp6qpM6bC5JUnPuBZaHEE4MISwB3gFsHH9ACOF4YAPwq1VVfXM6J7XzliQNUwc676qq9oUQLgO2AGPA+qqqHgohvH+0fy1wDXAUcFOoM+87xDA8YPGWJKlRVVVtBjYf9LO1475eBayayTkt3pKkAQr4eFRJktQZdt6SpGHylaCSJKkr7LwlScPUgdXmTbHzliSpZ+y8u6wsFlE/mWcx8BywF3gWOBz4ceBo4AWgAP6LmJ7NlFSSOmi4nbfFu0vK4nDgF4E3AacBp1AX6unYT1ncA2wCNhLTN5oJKUnKzeLdBXXR/iBwJXDkLM+yiPph9mcD11EWD1O/mWYz8GVi2j8fUSWpH4KrzdWgsngvsBP4GLMv3BM5GVgD3AnsoCxWURY/NI/nlyRlYvHOpSwWUxZ/BvwVsLThq50MfArYRlksb/hakpRfgBBCK1sOFu8cymIJcBtwWctX/hlgO2Xx9pavK0maRxbvPP4YeHOmax8BfJayuJGyiJkySFILQktb+yzebSuLi4HfzB0D+A1gK2VxWO4gkqSZsXi3qSyOAD6RO8Y4ZwN/PbqfXJLUE94q1q7fBo7JHeIgbwMepb5NTZIGwlvFNH/elTvAJH6HsjgvdwhJ0vRYvNtSFicAJ+WOcQifdv5b0rC4YE1z98rcAaZwPLA6dwhJ0tQs3u1ZkjvANFxHWfxy7hCSNC9CaGfLwOLdnj48mnQR8HeUxSW5g0iSJudq8/bsyR1gml4CrKcsFhHTX+YOI0mz5mpzzYNtQJU7xAx8dPS2M0lSx1i82xLTbuCB3DFmYCngM9Al9VRbK82d814INuQOMENn5w4gSXoxi3e7rgd25Q4xA++mLCzgkvrJ1eaaFzE9A/RpEVgE/payWJY7iCTpB1xt3r5NTDxJcgLwnnajTMtxwAbK4kxi6tOCO0kLWWDQq80t3m2LaTuw/UU/L4uX083iDXAG9erz37OAS1J+Fu/u+E/gu9SrvLvo6tGfH86aQpKmLc98dBuGO6bQN3VHuzV3jClcTVlcmjuEJC10Fu9u2ZQ7wDTcQFm8LncISVrILN7dshV4PneIKbwE+DxlcUzuIJI0uZZuE/NWMY2ewnZL7hjTsJT6BSb+/ZGkDPzHt3v+NXeAaToXuCJ3CEma3KKWtvZZvLvnrtwBZuBayuJ9uUNI0kJj8e6amL4J3J47xgyspSxWOYQuqXOc81bLrs0dYIY+BdxNWazIHUSSFgKLdxfFdDewOXeMGXodcD9l8XHK4sjcYSTJzls5rAH25Q4xQ2PA5cC3KIvVDqVLUjP8x7WrYnoE+NPcMWbpZcAN1C80ibnDSFqIAq42Vy6/D+zIHWIOLgDu9JWikjS/LN5dFtNzwFuB7+WOMgc/B3yVsjgrdxBJC4xz3sompq8DvwT8d+4oc5CAOyiLC3MHkaQhsHj3QUz/BpwF7ModZQ5+BPgCZXFx7iCSForQ0tY+i3df1B34jbljzNEi4BbK4m25g0hSn1m8+2VD7gDzYAy4lbK4ylvJJDUm4Jy3OqJ+dGqZO8Y8WAT8IfBlymJ57jCS1DcW7/75fu4A8+hc4EHK4kOUxZLcYSSpLyze/fON3AHmWQT+CNhBWbw5dxhJQ9HWYjWHzTU9n80doCGvADZRFp+jLI7OHUaSuszi3T/rgT25QzTorcBDlMXP5w4iqedcsKbOiGk38PHcMRqWgC2UxVtyB5GkLrJ499P19PuBLdMRqV9s8hFvKZM0O76YRF0S0/8AK4HduaO04BrgHyiLl+UOIkldYfHuq5i+Brw3d4yWrAS2Uxan5w4iqUec81YnxfRF4DO5Y7TkBOBfKIvrKIsfyx1GknKyePffKmBL7hAtWQJcAXydsnhV7jCSusz7vNVlMb1AfXvVptxRWvQT1F34mbmDSFIOFu8hiOkZ4CJga+4oLTqC+nayc3IHkdRRznmr82LaB6wGXsgdpUUvpX65yfWUxUtzh5Gktli8hySmR4DLc8do2RiwBvgKZfGjucNI6hLnvNUXMd0A/EHuGBm8GvgSZRFzB5Gkplm8h+ka4PO5Q2RwDnALZTGWO4ikDnDOW70SUwVcBezPHSWDi4CP5Q4hSU2yeA9VPf99R+4YmayhLE7OHUKSmmLxHrb1uQNkspiFOe8v6QAuWFM/bQS+nTtEJhdSFkflDiFJTbB4D1n99LXfyh0jk8XA63OHkJRJW4vVXLCmRsS0AfiT3DEyOTF3AElqwuLcAdSKK4HjgItzB2lZyh1AUk7D7U+H+8n0AzH9L/ArwM25o7Rsd+4AktQEi/dCUT/7/FLq55/vyZymLf+RO4CkjJzz1iDEVBHTTcBPAdcz7Ie4PMnCec+5pAXG4r0QxfQ0MV0OnAHcmztOQz5BTN/PHUJSTt7nrSGKaTvwWuCNwKcZznD648Anc4eQpKZYvBe6eij9dmK6BPhp4Cu5I81RBawipr25g0jKqa2u285bucX0OHAe/b4v/GpiujN3CElqkvd560Ax7acsrgD2Ud8f3hf7gA8S09rcQSR1Q8i0ErwNdt56sXoo/XeBtwNF7jjT8CTwegu3pIXC4q3JxfQ54JXAY7mjHMJtwKuI6e7cQSR1jXPeWqhiepq6A382d5SD3AVcSEwXEdNTucNIUpss3ppaTPcBbwKeaegKXwU+APw98AgTPzxmP/DPwBrg5cR0LjF9qaE8ktRpLljT9MR0F2VxFvAF4KR5PPPXgDeMuud6zrosDgNOAZZS3/r1HeA7xNTUfx4kDdGAF6xZvDV9MT1IWbwGuBZYBSyZ4xlvAq4gpgOH5GN6Drh/jueWpMFy2FwzE9MeYloNHE9dxGf6VLaKunv/WWJa/aLCLUnzZrgL1uy8NTsxPQlcRVl8hPrBLm8BLgSOnuDop4Ad1HPWf0NM32orpiQNkcVbc1O//OMO4A7K4gPAURw4olMSk+/VltSuECAMd3DZ4q35E9N+6i5bktQgi7ckaaCGu9p8uGMKkiQNlJ23JGmYBnyft523JEk9Y+ctSRooO29JktQRdt6SpAEKznlLkqTusPOWJA2UnbckSeoIi7ckST3jsLkkaZhcsCZJkrrCzluSNFB23pIkqSPsvCVJAxQgDLc/He4nkyRpoOy8JUkD5Zy3JEnqCDtvSdLwBLzPW5IkzU4I4fwQwsMhhJ0hhCsn2B9CCJ8c7X8whHDaVOe0eEuSBiq0tB0iQQhjwI3ASuBU4J0hhFMPOmwlsHy0XQr8+VSfzOItSVJzzgB2VlX1aFVVzwO3AhccdMwFwGeq2jbgyBDC0kOd1DlvSdLgbL//gS3hsJRaulwMIdw37vt1VVWtG329DHh83L5dwGsP+v2JjlkGfHeyC1q8JUmDU1XV+bkzjEw0rl7N4pgDOGwuSVJzdgHHjfv+WOCJWRxzAIu3JEnNuRdYHkI4MYSwBHgHsPGgYzYC7xmtOj8T2F1V1aRD5uCwuSRJjamqal8I4TJgCzAGrK+q6qEQwvtH+9cCm4E3AjuBvcAlU503VNUhh9UlSVLHOGwuSVLPWLwlSeoZi7ckST1j8ZYkqWcs3pIk9YzFW5KknrF4S5LUM/8HJwF/kvh3Ga8AAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "la_2010 = merged_gdf.loc[(merged_gdf.name == \"Los Angeles-Long Beach-Anaheim, CA\")]\n", + "la_2010.plot(column = 'compo', figsize = (10, 10), cmap = 'OrRd', legend = True)\n", + "plt.axis('off')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Map of the composition of the Metropolitan area of New York" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "(-75.5381038, -71.59841419999998, 39.36886419999999, 41.70820779999999)" + ] + }, + "execution_count": 10, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA/UAAAI3CAYAAADa7HvyAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAAgAElEQVR4nOzdeZzc51Xn+8/5VVWv2pe2NsuLZFuW7XiTNzm2MtlwMkMCTCBASHixDHcguZeZC+Sy3BnWsIQQtkAIA4GEMEkI11wYtoQEItmS5U3eJdmWZbWk1lKttbdqdVf9zvzxVKu3qq69evH3/XrVS91V9fs9v251V9d5nvOcY+6OiIiIiIiIiMw/0WxfgIiIiIiIiIhUR0G9iIiIiIiIyDyloF5ERERERERknlJQLyIiIiIiIjJPKagXERERERERmacU1IuIiIiIiIjMUwrqRURERERERBrMzD5rZmkze7HI42Zmv2dmh8zseTO7o5zzKqgXERERERERabw/Bx6a4fF3Adflbz8CfLqckyqoFxEREREREWkwd98FnJvhKe8FPu/BXmCZma0tdd5kvS5QREREREREZC7ZbOZDTRrrJLwEDE+464/d/Y8rOMV64NiEz4/n7zs500EK6kVERERERGRBGiLksTfDL8Kwu2+r4RRW4D4vdZDS70VERERERERm33HgygmfbwBOlDpIQb2IiIiIiIgsSEYIeptxq4O/Az6Ur4J/L3DR3WdMvQel34uIiIiIiIg0nJl9EXgLsMrMjgM/D6QA3P2PgH8E3g0cIuwc+IFyzqugXkRERERERBasQhvVZ4O7f0+Jxx34cKXnVfq9iIiIiIiIyDyllXoRERERERFZsBb6SvZC//pEREREREREFiyt1IuIiIiIiMiCNFb9fiFb6F+fiIiIiIiIyIKllXoRERERERFZsOZK9ftG0Uq9iIiIiIiIyDyllXoRERERERFZsBb6SvZC//pEREREREREFiwF9SIiIiIiIiLzlNLvRUREREREZMFSoTwRERERERERmZO0Ui8iIiIiIiILkrHwV7IX+tcnIiIiIiIismBppV5EREREREQWrIW+kr3Qvz4RERERERGRBUsr9SIiIiIiIrJgqfq9iIiIiIiIiMxJWqkXERERERGRBUnV70VERERERERkztJKvYiIiIiIiCxYC30le6F/fSIiIiIiIiILllbqRUREREREZMFS9XsRERERERERmZO0Ui8iIiIiIiILkqrfy9w32LOewZ5/YLBn8WxfioiIiIiIiDSXgvr5bLCnBfgK8G7gUwz2LPTtIiIiIiIiIjKBgvr57beA+/Iff4gQ2C+dxesRERERERGZU6xJt9mioH6+Guz5APCRKff+GHCCwZ6P5VfxRUREREREZAFTobz5aLDnFuB/FHm0A/hZYCPwwaZdk4iIiIiIyBy00FeyF/rXt/CE9PqHgfYSz/xOBnsWNeGKREREREREZJYoqJ9PBnsi4HPA5jKe3YpW6kVERERE5A1srKVdM26zRUH9/PJR4L0VPP8TDPa8s1EXIyIiIiIiIrNLe+rnixCcf6zCozqArzLY81Xg34BP0Lk+V/drExERERERmaMWet9vBfXzwWDPZuDLVJ9Z8S35Wwz8Zr0uS0RERERERGaX0u/nusGeJcD/Dyyrw9l+jcGet9fhPCIiIiIiIvOC9tTL7BnsMeALwE11OmMC+BKDPR11Op+IiIiIiIjMIgX1c9tHgG+t8zlXAt9d53OKiIiIiIjMOW+E6vfaUz9XDfZso/773/uBvwAeq/N5RUREREREZBYoqJ+LBnu6gIcJvebr6bfpXP/zdT6niIiIiIjInLXQq98r/X6uGexpAf4auLIBZ3+IwZ53M9izvgHnFhERERERkSZTUD/3fBx4oEHnvhv4B+Aogz2fYbBnZYPGERFZePq7I/q72+nvTsz2pYiIiEh5tKdemmuw57uBH2/CSBHwI8C3MNjzLjrXH2jCmCIis6O/24BVwFXAemBt/rYu//kGYAmhQ8jYLTnl47EbwF3AU837AkRERESKU1A/Vwz23AT8aZNHvQr4InBbk8cVEamv/u5W4Jr87Tpgc/7fq4GNQD1beabreC4RERGRmiionwsGe5YCf0N933SW6+wsjCkiUrnBE4sIk5GbgU3Atfl/N0PUA/GOJl2JgnoREZF5ZKHvOVdQP9sGeyLgc4QVpdnQ7OwAEZHJBk8kCenxaxhPjR/7eB2hcOjVwOriJ/GeBl/lmIssvmq4SWOJiIiIlKSgfvb9NPDeWRz/Iwz2vBvYBrQAf0bn+l+exesRkYVi8ESCsGf9akJwPhasj318Rf62ivnTbeb0bF+AiIiIVGa+vMmoloL62TTY8xDwK7N8Ffflb2N+hsGeT9K5fnC2LkhE5rDBEwYsJqyaryEE7evyn68GuvL/XkFYYW9p0pU1K7NOQb2IiIjMKQrqZ8tgzwbg88y9iaN2whvxg7N9ISLSZJn0EkKQHm5xbgn4jYyvqI+tsrfP3kUCOMAI2IQJA2/G5MHzwNNNGEdERETqZKyl3UKmoH42DPa0Al9hxv2hs+Yo8OpsX4SI1EkmvZxQWG5sf/rEdm6rCavui4Gl+X/HmT2K+5ubebllehTIARML43U2aKzngQywBXgTsLdB44iIiIhURUH97PgkcO9sX0QRX6RzfW62L0JEKpBJrya8pqybctsI3MTcywiqgQ8TgusW8GfBxlpyLqnjIDFhRX5xfqyJ1DFERERknllAb4QKUlDfbIM9HwJ+bBZGPgKMAK2EllBj911JeAP7LCEIKF1BOpNeSVjVO0V711D9L1VEypZJrwO+yex10Gi2xxlfoX8T+M7854uLH1KRncBW4K4ijyuoFxERkTlloW8vmFsGe24HPlPDGc4Ce6o47gJhgup6QuD+InCMUJF6DyHd/i7CPtqfZrDn2xnsuZLBnsmTWpl0RCb97cDLwGvAIJn0k2TSW6v7ckSkJpn0GuAbzG5A3+z2bpkJH0fADtx3AcvqOMZMW6Mu1HEcERERaYKoSbfZopX6Zsn0rgH7eeCJy/dFyWtwT+PZ9VjiNTzXCdw25cgB4BAh4E4AyyscuR/oBm7Nf54Cbp7w+HXAiQmfrwMezn98nMGerxGlxs7zdkIq70TbgOfIpP8FuAS8Anyc9i6tZok0Uia9AvgaYa93s4XsHosyYPcCR/DcMeCBxg9tV05YnR9zHfXLrOso8fiZOo0jIiIiUhcK6pth+EwSs8+SaHnXtMeMK0OszhpyuUIV5w8wOQ30BeDGKY9ngfPAg1OOPUjYU3srxa3J3wrZALaJyW+eC0kCE7+224F3ljhGRKqVSS8FvgrcMgujD2HRS1g08XXpaohO4nEjx70EPAfcnf/4KOH1beyxermL8Lp6Y5HHT9ZxLBEREWkwVb+X2g2fSQJ/zuSgt7CopQvP7cVzq4FN+XunvkteBzxC2Bs/Slh1X8r0vfCvE9JRS606zcyiFVUcdXdNY4pIcZn0YuCfCVkyjeYTPn4Oi4bANmM2fb+5+2iDr6Wby68t1gp+hstZSD5Q57HOE6rrJwo8ppV6ERERmVMW+qTF7Mr0Rrh/EPhAWc83W4F7OyFAH3uTOjLlWdcRUlzvBu4nBPQQ0vMfn/C8YxRfgS/XRbCp6fblWJov3iUi9ZRJdwL/QPO7ZzyKJW7CovswK7bf3IvcXy+pyZ/aHRM+yVBf2yne2vNcnccSERGRBrMm3WaLVuobJdO7g1AU78rKDow3AYsIxZgOU9ke1XsIbZhGqD2gB9iP2X1VHruPTHonsB/4Cu1d++twPSJvXJl0O/C3NGXf+iSXsMR9mBVatZ7AG/237BhwzZT7riS0smtElsAWYDehjshYEb4scLEBY4mIiIhUTSv1jbMeuIEQmJfH/SghoIfwJvLaKsa9E7iPUOm+NhbVsvJ2BfBdwC8QCuldNfPTRaSoTLoV+GvgbU0cdRj3DBa9UDqgB6atpNfVCxTOTgir5u65Bo17P5MzEPpZfFWjMxJERESkzlT9Xqr13vy/lazqnGC88NNsc4huqNO5nmf6NgIRKUcmnQK+BLy7SSNeAp4E7idKVFLwsrVB1wMwCLRMvstHCUU5YXrtkWqNAr2ETKl+sBHMMkAHWFv+YxEREZE5RUF943yWsFJd/gqSx/Ws4Fyr/VhV++mnOgI8QHvX0LRHMun1wFbCG+inaO/SCpjIRJl0EvgC8G1NGG0/oUDczcCbqzi+tqKcxfUyuQ3nmGFCdkBbGefIEQrcnQf6wC5hFgMJsFbMloBlgZswW0coSFrIvsovX0RERKSxFNQ3QqZ3A/Df8p/dgftL5QXI8aLSz2kWq1eF51eBLJm0EVLybySkEL+VsE1gzH4y6f9Ke9fXpp0hBDYfAX6UUCvgE8CvaBJAFrSB4xHwh0SpW7Bp29VHmLZyXbYzwAomZ4k9Qu179dtrPL6YRRTcM2+LwR8jBOCDwN78yroDUX5lfTHYSmAVZlcQXoNm0kPYOlXMsWq+ABEREZk9amknlcn0rgb+nrCqNLZqdZwCbyTdvQcYMLPxFHeP50rqPVhUrMJ1pd5B2IKQAZbP8LytwD+TSf8C8Bu0d4WshUw6AfwdoSXgLkKtgF8CXgIertM1isxFDqwnHl1DlDqF2cTil88AawmtKzcBGyo4737C5NoBoDN/Xz2K7830+10Bv0hYUe8HhggTGEOEa20jBPmLgJWMTQxGydOY1aOVZqkWnqfqMIaIiIhIXSmor4dM782ECsnvZHqP9j7Mtky8w91jRvqH8NwNnmzfRaKl07CNQL0C6VqdAdtax/O1UV6KrAG/CLyHTPpngKOELQzvyj++hbDft5XQo7v8oD5MDmwDemjvOl72cSKzZdEGZ+D4h4GX8NxBLDkW1D8N3JNvnLIR/GyFZ44IrzX1e71xzxKq0E8VE7bX9BHadOaDdAvbksxSeHwefBOhOOgqQpvOpQXONZNyXl9KOUbpbiU9dRhHREREmmw22801g4L6amR619C++lT+43cDnyO8GZ1qN6F68mSefRTPPQhANvMg2eE+T7Y9gcdtWHSlmc12pfiXMSv09TTLncD0NHzoIqzWPwj8KJn0x2nvunD50RC43wAcp72rL3+fAf8X8FFCmu4FMunraO+q1/YCkcZZtOEIA8d/AY8/jvs+zO4AFk/507SSECyXu6d95kr27qOAYVbJ3wfHoieBFrB2wkr6EtzPYb4aWAHRHsy2Fzj2FTxXa7eOal+vTgDdhGyqcop5HqlyHBEREZGGUVBfjkyvEd4IO/B14AYyvecIqzY7mFz1+QnCO+4hYMfUvbDufpaRwdsmD+BLyGbefvkzi17AEueJEhHYcuBqM+ukWSyay9tOrifsr10GfI5M+hcJK48PAR8m7LnvI5P+W0Jq8tuYPLGyLH8OBfUyX/w+8B3Eo2uJWp7EuHHywwb4BcoP6ku97j+B2fTJyJmYpcDumnSf+0nMc4S99oNFAvp6cMLvfTVep9DE68zPFxERkXnGoiat1cezU/JLQX0pmd5NwN8A1xECwTWE79taQsr9mCNAb8l9nbnhA+AzV5b2+BY8hvhybajYo+ReLDEKOJ5rweNluKew6DyJlqSZ3TbDGSsRQ1SPqveNsobxol7vyd+mWgJ8sMjxvcBTjbk0kQZYtGGYgePvAJ7FY7BEvqCmZ4HThPT2TRWcsXiquvsgnt0KyUcxq6YCfv488S7w7Yz/jTkNXFvk2bW2oztbRWbREUK6faW1BI5U+HwRERGRhlNQX9q9wGbCG+FCxahGCKvz92B29Uwncvf9ZIereaMcEWfvhWyBk+Ygm8Et8QxRog9LLAZuNbOZU2yLexGzN1V5bLNcS/hmVPPz+3Hau8pJsxWZOxZtGGDg+K/i2Y8Ss5soaiEs0d/JzNXaC56t+EP+NPAgnt2Mpaq7Vo/3gD845d6B4gdYO/AsMARRDuL1FJ8AKOQcocvG9YTWda8D98zw/F3AXcDVFYwBIUPoZIXHiIiIyBxg0zsJNYhW6ueq/8D0Vk0OPE54k9dSzoqWuzsjA437afLc7eRyY58NuSVeIZEaBrvTrJJ353a+EZdXZ+uBR6m8l/ajwG/V/3JEmuJzwM/j2fuJEzuJEjuqPE+hgnbgPoLn8lk6dhz3E4S95ssoZ/uPO+BPgBeoCTLD64rZVVhq/Jg4fpTKgvohsAntMf2VKY/vJRTY7CBU6J864VCubjrW5ko/TURERKS5FNSX9l8J++bH2kcdB67F7N6KzuK53Xi2+nTWynTgudvI5gD6PNH6GBatIc6ewsyxxEYzu6bgkRatbdI1VusFQiXtO6o4dgX5Dch1vSKRZli0IcfA8ZPARjy3A7edWFRNYF+k9Zw/RnitA3xbyO4HLLmPUr9v7g7xU0zv/jH2hNtxP4xZOcF64UmH4oanfD61tsAlwr75Wv/eHa7xeBEREZkFZhA1a0/9LE3/K6ifSab3FuAngBRhH/Y2igXDM3D3fkYGbiz9zIZYQu7S2MrU5QrTHiX3EqWumBLcnwKrtQp1I5wh9KW/CrilhvNsBX4U+IN6XJTILPhp4JPAFuLsm4hSGcymZhLNpI9CQbP7qfFV+mmuKOO8zxFS2otJU3j70lShbkhlpu5LuoPQeeROIENoZXkm/3HFr98THKvhWBEREZGGUVBfTKh4/3eEfZcvYrat6nPlRvaBV5sq2xhx9l7ibOxRcjdRMgl2i1n0KmbVVpGutxjYR5jvupPLK4g1+10y6euAvyQUvTpPe1eBYgUic9CiDd8E7mDgeAL4OJ57CyRuwqx15gMvO0fBoD7XQ/g9m85zQ5TsbudDMz8epTHbXOIke4HrsNRy4DSefbVkUdFgypy4AdyfnxtoA54kTDhcBHYSVu5bCV/vDPUFpklX8FwRERGZQ5q3p352zOXWZXPBl/L/3ox7VYGfux8lO9SoVk61ioiz95MdvodsZsjjbMbdJxeCcq+1MnWleghvvNOEFbZ7qO/kUwL4cUJxwzTQSyb90/l+9iLzw6INOeACHm8mBKnl6p92j/tu8OLp9WanyzhvqdfHUo/vBLsXbCVmGzG7AkveD+wvPXSxX10be2wxsAc4RKjHcQ/YDkL2T1/p8192toLnioiIiDSNVuqLaV/tZHontn7aTTWrxdlM2AM7960id+md5C7hFh0Gy2LR6xYldxClzmPW2L327s+DnwG7BbNmZjUsA34NeBr4lyaOK1K9gePLgI8Ci4izrxElL2C28fLko01ZWnc/BCzD4yMQrwY7hiXC3nrPztyn3YnAz2K2csZnzWymCeQcYQJvMjOD1Ho8u+ty4G6WxOMYvB1LDONxlpIt8WxLkfvvAT9BmDi4mfFV+x7gBOFrMmAIWI2CehERkXnKmtenfpYoqC8k07sc+D3g+/L39BDa2lXEPX6e3KWZWivNTR6HYlZRMgm0hdTcxChm9Z2ccAd4BjwCbs3feQZnH2bVFMKrxQ+joF7mj7dxOQj1TcSjQ8AgWC9RohtsRz7AfwXP9ePxPYQgdWXYYuNr8oXwMqWHirfj8XlInsasyP56n+kv5TmKFtC7bGpxu8BsKZaaXK1+YrdOS4DHe6uvfWnrgHWhNyiHgKVg6yncJnB6loOIiIjIHKCgvrC7CQH9M4Q+9J2Y3VzxWUYGq2z0PJvsCSzKYJYCC9sGPN6Gx8NYtBuLsmBrsRoK6oVg/mnwFuD2KY+uAl+FsxO4f9qKY+O8j6HTb6Xjin9t0ngitfjuKZ/ng2LvJM62ESV3E2dvJBSHHGNMT4Mvt8hejhDUFiuaN9PvaR9mK4o+6p4GHLN1+deGUKa2fHV4jbAEpSduL9Q+joiIiMyGhb6nfmEF9Zn0jcCngN+gvetrkx/rXQq8H/gs7auL7+8MBfIeyH82gNkDRZ87A3c/jGcL9Guek7JgT5JILTdLFFtRa8Pj+xnfYt+DRd1YwrCJPaJnEN6wPwneSbGiXONP3gEcwOmse4ZAYRHE/42hk28HPkbH2sEmjClSuYHjDwDvm+EZa4izxQpeVrekbclDJdp4thW53yHqJhQcnXCvZ/Op9H3grwIPhmwAYkikqKitnTdr8lSF8kRERGROWhhBfSadAn6F0K5sMXAHmfR/BP6N9i4nk14GfArsA8C3kOn9XkKbuncA3wXcR9gzOUxYuWonVEqu6g2wx9lHGOm/m1BheW6zaBdRy1YrNzAftx6P1+MxWPQ0lrgSs66CzwzB/BPgS5i57dVUN4IP4OzBrBnFBg34GeD7GTr543Ss/esmjClSqf9Yw7HVTFOfLBHQA9YHvpuwor+UkNZ/L9i/AO14/BhwJWH/+yhwJR4/Q9hrP5Zev5yQGdVS4fUVm1Cot9ebNI6IiIhIRRZGUB+KLP0Xxt8MLgO+ATxGJr2WsEp0CrwP7DuAo8BKQiX0iSbu6zyE2YNUwxKrwEbAiwX1/VjiMGZDWGIEi9rBloEPEGcH8Xg5nttKw7sT2GOWaK3ua5zI4zvxeAhLPIJFV1xOzQ/B/F7wFZTeU1vMIvDtuO8BuxWzzpqvtxD3DDBWDHAd8BWGTn4rHWv/viHjiVTvoRqOreI1JTrK+O9GMVtgajtMfwX8HRScSPBdwJuZvh1gbxWvu/Veqe8j9LW/CGTARoEhOq4YqPM4IiIi0gyGCuXNE3sJ1cunrjZP/HwNMAC+E7ghv4fyAGFlaC3wCqHwVIrQIuq2Gq5nJYmWp8mNjO3Dd7B+osQpomQEdruZ3Tr9MINEmJdw9wvg+4mzEGdvAJ+p8nSV/FaPs09alKxk9byYDjz3QKg3ZQex6BSQxeztdTg3wHbwbpxjWLFq1jUwa8ejjRCHvfwhS2PuZ1rIG8vA8Rag+noW1QT1Fs38exAm7wq8PhWru+GPMb46PzYR68CjkCixLWfa2L1MTe0v7nz+1sd4sO6E1/xFhMnglZgtYXr6/zMVXZeIiIhIEy2MoD6k2P8U8BVmXlFaRGhLlwV/BOwKxoPrrnxP9lwoElc9ww8SJd9CNOnbuxq4tuxzmC0D206iBRItuPtx8GPEudH8ExyLWkKFa3fA8XwFaosMsw48HiA3chP4qiLDdBBns1Ousw58C54LgbfTh0XPgt1QvHJ22a4CH8XZ2ZC2d2ZtkNiBx8/iuX8Evl73MURqs4LqUujHVPrL3o9ZqQnOQaCSDJpC++UNEtdXnonjRwmr/efCddglQop/gjApt5gQrK/CbDkhxb8aJ6s8TkRERGaZoUJ580d7124y6R8C/obSK6xJ4AFwcN8XcjLsDswi6pPyPjWtv2ZmtgFsA4kplzfTz6dFuCX68dxOPNeCewvQiserwNcAGaLk9AmMMLmxH3wIrJXwhn0RsByzSlevl+Dxg0AWop1gHcBVRfffl5YC34H702BXYVZswqIy7ocgPoXHGwlZGrcBP8Zgzx8Cv0/n+lN1GUekNsWryJenstd8S74ElNhPzxBlBfUO8CywocjjPTA28ecAffmV+L78GNl8+8s2QrBuYMuwaC2ltwfUqqfB5xcRERGp2sIJ6gHau/6JTPr3gZ+s4Kg78sH9QbDzwD354L4GVvegvlpmthhL7pj6X+1x7pt4LjKL8l87y8BPhECeG4H81oEptQKdQeAsoRL0EFgb2G2YlSpulcTj8dV1Jwe8hkUnwZZj9qYKv7Q78z3tn8Zs5pRd9/OE6Y8EoRhiG2GSogc4iucWg9/C9JZWy4CfBX6SwZ7PA5+kc/2BCq9TpJ4+VOPxFRaVi0fKmKPsJ2QilfIScBvuo0AP+HncB4AR3J1Eyyj4c4TV9NXAEvBnCNlVUw1BtBvjHeV/LTXRSr2IiMg8pj3180kmvRW4pcqjt+QD2B6c14A7ayjKNre/rx4/Z8Rrwt70kLmfV6wN1kSd+Vu+zZwD3ofzBFh7fqWtHegM6exFJYDr8ThfVI8jYD1YtBazcrcpjPW03wXcN23bhPsInnsR/I4J9y6e8PEGiq4aTtIC/DDwwwz2/CPwCeCbdK6vrj2YSDUGjr8T+Kkaz7KogudmISpnK1IoIOfuhAm/c1g0tm99LBW+HXyI3KVzhGyD9flbnh0t0rqy2F/gp/IB/dOUbI9ZF6ebMIaIiIhIVeZ28Fm5f+JysMlZ4IPAzxEKn5VrPfh6oA9nJ3BjFanizWqxVDmP9+O5AkX6arIEePOUCYKdkKhk3/vV4FfjuRxEu8BuxqzMVGN/EDiI04bZ1eP3x0+Av7mCayjHu/O3pxns+QTw13Sun1rBW6S+Bo7fCvw1tW8PWlr2My3ai9mb8yU7zoaMl7gPbJCwb93AWwhdQ44TJgVXAa9jBYpvOgMUm1Qw62X8tXviA2/K75uf+NgrEN0U4n3vmH5MQ3Q3aRwRERGpNzPtqZ9n3kV407oMsHw6/teBfwQqrcK+BHwHMIrzKLCughXkxrRdqwfPDTVnoGhqKnu5Evk9+DHOENgLRIl7yjhuS76nfTdmV+E+isf1nryY6E7gi2DfzdDJbwB/SsfaJn1v5Q1l4Ph64B+YnGVSDWdKkTp3H8LjU3h8HsiYkQsFN72V8Fp6FLiCUN0+VLiPWnoxm5pufxBsJ3ArUHgS1GwR2AnwddOvLN5U5JhluB9hPKh/HqItE7b7rCAUymv037KjDT6/iIiISNUWVlDf3rW/wH2jZNLvBH4J+H+rOGvq8mqv+5NgrWXs/15WxTiN5/EBYFsTRtqNWSXZEYVEQAf4jbgPTtkKcYSwN35qa7vXuNzuy/dQeC9uPe3B7L3Ae4FfYOjknwB/QMdaBQBSHwPHFwN/z6RU9dLcfRDPnQYfxOMMnruEx6MQtYTVbV9FWFnvYKwrR5R8BaJS7fJGmNwX/jWw48B2wt+TVcAK3C8VLKpp0Qk8Nz2oh2W4ny7SISOX/3cfRBun1O84SON/z0GF8kREROa1SHvqF4DQ8u5wHc50V76o3n6wfuDuIrkc5ae4NpPnBpowynMQlaqWXYkl4Ltw7sHsFCEN9l5C0L8TeACIcB8mbJ14NuwAiBv9Rv8VsNsnfL4C+CjwEwyd/BLwCTrWPtvga5CFrP9oCxZ9mdCJAQB3j8F78dw5PHeROB7Bcw5xEvcO8KWEInOLmd5CM8aSxfPP3CWOnCsAACAASURBVM9gzBTUXyRqOTS5MKVdvNxe0n0s+I7AXwebOukGFg1y+WnTHCdkBYzpBo6ALQc7Btxe4Nqb8Rd6hNDfXkRERGROemME9Zl0O/BddTzj1vze8W6co4TgfnxVKlTPb0ZKaPk8PghM3+daf1sIq+j124IQ0vH7cBYDa7DEAcxuxf1KiJ8irM4vI9QyqE+Lu5mdBVuEWXuBxxLAB4APMHRyF/DbwP+iY23RSEZkmv7umz3O/hy5S4vw+EnwxYT091WEwLfQinYpEXCA0N1iOo9HZ6x0H7UcLtBpYnTCx+NFJ8MEwXQWJcBOkWg5hMc5PLccj/OZTz4I1ktYfV8PXJNvW1nqa2q0Ptq7VBRTRERknlKf+oXjvwAPNeC8V4FfBZzB2QvcitlY6v0QU/avzirP9TVppNdDVf26G/tersBzMUS7cB8Cf6jEm/4GsFcxKycb4cH87TWGTn4S+DM61mYae20yr/V3G/BjwG/huafx3Pb6DuC9YAWCegd8pkyeUSi0iu8X8gVFW4D7JtxfJAi2u0i0jmD2Zix6Ek/0Ac8Qfr83Aqth2n79Ql/HBcLKfr0LYRbSjAwnERERkao1Y5VjLvg0YfW4UVaFonreivsu3I8zl94IhlX6u2f7MuooCqv3/hBhVa+ZLlB5XYJNwB8A3Qyd/FmGTs7Nmgsyu/q71xM6eHwKaCVq2U6U3EnI+qkPj6cU2/NLEO8K6fJ+8wxHpvDcvgL3LyXsab9v8t1eeAuSWStmY9cwFIJ7ux2zTaFzRTkTdO7Ai8BM11uJUn8bLtVpHBEREZkNFvrUN+M2W94oK/X/gea0mWvPt1eLsWgvHvcxvZhbc7mD55r4ptTSNOdrPkrYc1trQb5KHAQ7g1m1q4OrgY8BP83QyT8CfoeOtSfqd3kyb/V3vwf4LGMV5smniSU7dng8+izZzLWUmfnj7iN4bj8WdYJtsrAdaOzRm3E/GLJpPA3eT8gmyR/qw2ZW6LXSwQoFv1cXuYwyVtupth3dbkqt0LtngV7CXvgBwr744XyRvVZCa71lhO0Mh4GtM5xNW2dEROa6gWMpwmTv3YTtpncRsma/nr/tZdGVmqSVBWvhB/WZ9D3AnzZ51AiLtuf7KD+LxzlCC7RZ4E/S+L30h0KrKgB7cOan1uw88BJwH2YF+lo3zAiWXARxmpCKnCp1wAwWAz8F/DhDJz8P/CYda1+px0XKPNPfvYhQd+GHiz3FotRtnuRZspmbmeE12+PcAYbS57l0/npyo1sY7DtOlOzzRVccYMm6BMnWO80sBX4aWA6eIWSRXB4qX+BuYnr+CJZ4AktcSeFgf01IhbcJ2Sf2OHAjcXyBKJopK6XyDAT3AfCtwCtAH5ABj3FPEiZVl4SvjZXA2vwtf1mJ40zc9z9uFHgBuEgI4Mem2dvyxw9WfJ0iItI4A8ciYDOTA/jbKbyAdy+h+9UQA8e+SqL9v9O+6sWmXavMGdpTP19l0m3Ah4CfIOz3bD4zwG7DInA/FFpMcQ/N+r67x3hueR3OlAGeJlz3euDK/P2HwXqx6B7Ci2ujnQH6algpr0H0IhbdAdEGPH4c4rWM986uVgshmPshhk7+f8Bv0LH2qZovVeaH/u5twP8Eriv1VItSt3mCZ8hlljNhddzj7LNY4mbi7HOcOzA+cTgyvAt4kDgLfT330dcDidRZX3X9i9axYgdEL2N2w7SBPHeWsLDfhyWfwaKtE37fRqc9P1zdbmARWD6w5vawIm7PMqFy/xQHqapyfbwvXzhzRYUHjgBdRR67tcSxT1Y4loiI1NPAsfWMB/B3E7ZBVtppqgOi1Zh9neGzO2hb+XK9L1NkNi3coD6shv4hM5ZzbiKzzVhyM+6nwLuBLO4xEBNWyCLC/0cLYaaxg1BBvpNq01Q93kN9Ckm1h2uKNhDSas8z1t/abGrbrEY4Qki3v61J4xUyHtBYdE/o2pV9jGl7iatiwPuA9zF08hvArwPfoGOtKm4vRP3dCeAngV+hgtdgS6Ru9ygZE4/sIXdphbsvoe9oL9nMq2BXAWEiD+9ndKQr3+ZxPxYto33ZWXIjSxgZSNCxIl+d3m4grEyPv0Z6nA37+KM7LreqG3cVYXV9GDhNWNkeArsXs5VM430F4vZ+4HnK3Tbj7njuVfAUFvXkA/pqpAgF+e6o4tgikxkiIlJ3YRX+TcDbCG2L72Zi1lUtotQKQveYf2X47IO0rXytLueVeWB297s3w8IN6tu7esmkPw18ZLYvZRKzNWBrwsdlHhOC/wFCGugQ+DCheNMIkMv3h84HgB4BCdxT4EZIU+0k7CFdTPXFEbdB3A88CtEmzOqRAVCOPcC2UERrFpkVeGMfLQlzMnX1tvztaYZO/jrwN2qHt4D0d19NWJ2vajLIzCISrdtJtMKlC087/g6SbeDeTS4+TRwfI9O/HGwzydRpOlcO0L4cS7TcQNuKV8ANi46AXU/Yc76c8DrST3hF6sASxYpqpsD+FYveSng9KcELvdYcppI6GGaG+3qgE4+vKfu4cPBuzLJAhPtyPM5gVc3xvp9M+l9o72r2Ni4RkTeGgWMtwHcC7wHeSiPaE1u0iygxNjG8jvHAvrvuY4nMgoUb1GfS7wG+fbYvoy5CoaslXC6UNWU2oOjkwJRt36HL1GC+ONZQviVcmBxwz4HnwMEx8AR4ipA1MDYpsAzYATE4eyC6ArNNNM4jwAPNb1lXUIHo3c80cLw7ga8ArzJ08jdx/zyd61TgZT7r734/8BkqTxksLNmxnvBzGWF2FYm2HpJ2E21Ln7e2ZSsJ+8rDCn6q4xGixAMznG1spf02dx8Ne+8LKl1w1B3wvUAfltg54ZFWwt7GyljyNJ4bBL+lzCOGgfNYtP7yZGDtLyGfJpN+hfauR2o+k4iIBAPHlgE/Avw4IdBulANErVNbxG5kPLDvaeDYIk2xMIP6THopIYV5/WxfypwSguNOsM7w+QzP9XgPHk9fsXO/RGjrdgUeD+E8kV/FHit6ZeBj2wg68rclhAmBSrIEjgB3zJGAHrACqfBF2nbV13W4/zHwIwye+CvgM3Su62vCuFIv/d2dwO8BP1ivU3o2c8TPvRwx8XfKLLzeee4qdz9s41tVMkTJclNKWvB4P5YoUg2+UMbK2EU5wHMQXyIE76O4R1h1y+MTDJcI6GNCZ4pewmvNVmAAfF09ovm8FPAwmfTdtHe9Xq+Tioi8IQ0cu4oQyP8nysr8qkkfibbFmBWKea4lBPY7aFt5qsHXIbNMhfLmp7cDN5Z8lhTm3oPHhd9Em7US9iNdUTyVtcgvjXs/oWJ1yBQIWwiyXK4rQATeAmSJWlogPoZFMVgXocr1EHgO9wi8A4+b2VGgwIRElIJ4mMa3S9xLCJK2AT/H4Ik/BH6XznWnGzyu1Kq/+3bgi8D0onRV8tGhfX7+5WsJE2XTJdtfIPyODpJof5qOrruIR8GzZ5nQMm+K57HoAkRglqNoi7f4Cjx6HbPJqfDuQPw4oRDomBShFkb1BSXdM+C9BR45AnaMMHl4I2ZTr/c64F8JaZz1sgr4ezLp7bR3XazjeUVE3hgGjt1BqCnzXTSr5lWU2o9FM2WJXQ98g+Gzb6FtZaG/NyLzwkIN6s/P9gXMW6Fi/jkakeVgtpiwr3+mJ4FFjxJF26bH0TbpH+LcLjx7PbCmvhda8Lqm//Gx6CbceiC3luprFczM/SUmB4RLgZ8B/m8GT3wW+ASd6w43ZGypXn+3EVYhfoO6dt+wx6xl8TZW33qRbOZFz/SeZfjCNeCXA2drWTxE++phkm1JsyjsH4wSO9xzr5PNnCdUzx977T9L1HKQKLXdLk9h+0wp5lvy229OQDSA2fW4H4P4BJMD+jGnqTaodx/Cs8PADkJK/Qtgl4BN+bT6q0ucoRGrP1uBvyKT/ve0d1Xekk9E5I0mFL57iBDM/7smjDgE9hKWyBAlN5YI6MdsBb7G8Nm30rZSMcQCZMaCL5Rn7gukwHYmnSKsZK4Bfo06roy9ocS5neBTq14300Gi1HUVpey6P0E8uh68cdstLPUUZtsKj599ivCzV1/ujxGqdbfO8KwY+DLwcTrXPVv3a5DK9Xd3AX8GvLuu57XoUbArsXyl+zzPjZzx86+8CFESzyVs5U23WpQo2jHD3QcBIx59Hos6LUpOycrx5wmVh0v5R0JgfR3TCniMXXNiJ5ao7PXE/QWgH+J+PG4HWwTclM8SquhMYEenfr/q5A+Bj9DetUD+gIqI1Nnw2Vbcv4dc5gcJVewb6SAWncaSy7DEVorXhSllL/AO2lYO1PPiZPbd2JL0z65e0pSxtp84/7S7zxgXmNlDwO8SMlb+xN1/fcrjS4EvEBZGksAn3P3PZjrnQlqp/yRzrdL9fOPxAfBZ6AE/fgVESSreg2t2N1HqEsQ7ibP30Jh0+BkCisRtED8aigtyK9W2IJzOZh4XCBkC3wN8D4Mnvg58AvganesUbMyG/u53AJ+n7tkj9jKWuBc4DH6c0A1jC4AlWlbZqptbwcqqqG+Wr6mRaCm2elHuyvodlPo6PV5RecV5v0A8sgXoI0rVUojTwI9dbvdXD+6Ph70GdhP4DwP/o27nFhFZCIbPrgD+M/B/YraGRPtFcsN7wKcWqqtFDuwpomQOS96A2RbyfxNrdC/wtwyf/fe0rRyuw/lkDpkre+otxDl/ALwDOA48aWZ/5+77Jzztw8B+d/9WM1sNvGxmf+nuI8XOuzCC+lAY79tm+zLmtTgewnOjwEuhZZ6tbHBl+0IcrPA+4VLMWiGxgyg6iedew3P3Ubf9WtEzhGC92NhJSITJEPeLofV3XVRa7f7t+duLDJ74LeCLqpjfJP3dLcAvAx9tyPmjZH++yM/1ODlgN/jENzD3ufsTZlasHV0FbBl4Gugq8cSif1jG+Q24Xyp7ld09Qzy6GlgNLMK9D7Naptbvxv00ZldMGWcIOEMo+jkIPlYAMEXo9nGBsa0Ll4+Jn+byFgMHeIChU0fpWPPVGq5PRGT+Gj7bAtxCyFbcBtwF3MzE919mS0m2bycefZx4dDPFa7uU4xSWeJkotQWLCm35qoe3Al9m+Oz7aFtZvDisSPXuBg65+2EAM/sS8F5gYlDvwOL81shFwDnGi5IXtDCC+lC06Eoy6d8k7NmRSnl23+RVes/gthvsViCJWaOLwUE9mr6brcWSa/HEUTx3PB/c1zI114Mlrs63FSzHUuAgtcwYhy0xj9ZwjpsJ6d/fSSb9TeAztHepYn6j9HdvIfSev72Bo2y+/JFZIt+7vY9Q7b0X7GU8O+ok3OozFd1N6aB+sIzztACvElL0C3M/AFwD9BKP9oHflH+knfAHrpaCmC3gL+L+GuGP4nLCG8oOQkZCsawEx30PZtsnXOP1U54TAV9m6NQ9dKx5uYZrFBGZ+4bPpgh7z7dNuL2JcuvGRKl7sORZcsOPg1cakD9DlBrBktswa0IdJd4D/DnDZz9E28q6rdTI7Iqat6d+lZk9NeHzP/bQyWrMeuDYhM+PM70u0aeAvwNOEOqRvd/dZ4yTFkZQD5BJR8Bspo4XMkx4490HXJzwcf+Uz8dudwD/telXGeeeLJB23w5+P3ioTO8cIaxsLctXyN487TzV6wV7FYsSmNVn5tVsI5bciCdew7Pn8PiuKs5yCUv1X24VVt644NFI1fMT7lngWar7We4GToBlAceiawn7un+OTPqPgN+nvUu9WOslFMP7T8DvEALQRjrPxGr3ZptwToIfALsGszcTJSHOfQ1LvLMO4w2VePxJwopMOYoXHXJ/lXhkMXAGfCVw5ZQnDE6ak3Mf9Ivpb9Laud7aF91W5vgPEGa4K3kjaOD34OwDbgcfoHCRz6XA3+cD+3MVnF9EZO4KK/A3EN6XjgXwt1Hr9kazlSTaVuLZ3cSj95d4di8WHSBq2YhFjZw0L+Z7gRaGz34fbSuV9SiVOFNiT32h2YWp22a/hRAPvBXYBPyLmT3i7kUX6RZGUJ9JtwN/RNgLUw+XmB6MDxCC9CHCm9QL+X/HPr7A1MC9vauM9NQJMuk6pM5WyP0Mnr12hmeMrVBfzeVq0/GTuD063o/eBsCuxqy6KtdR8hQW1XOv1TizTVhqE+57iUeuo5K0L0s9fXmlrrJB3wT0UF0HgQNUVXTPdmHRm4sUBVsK/D/AT5BJfx74GO1dqphfi/7ulYT91N9e5zO/FH6fSIHfcflez52DRBtmay/fZ7YWxj83M9yiuz038k+WaHlXjdcx08rLYSZmDpTkmSmBeQZ4BR8dxeOZf9Y9Xgk8Gorl+UUfybTF3/jLm6KHfuDV8se/nC1Q6epOAvw6wh/Vm2d43mbgSwydejcda1QRX0Tml+GzVxC2GL4pf7uV0Ba62mJzMzMDS92PRQfJjfZCfBvjk6ZHsKgbS63EopsJe4ln0/uAJMNnv0up+POc2ZzZU09YmZ+4iLGBsCI/0Q8Av+6hov0hM3udkMH7RLGTzv+gPpPeDvweIUUzx+RAvNx/J3/c3jVbM3Jva+po7hCPdFN5eutdkyeUHPALeFTF/ld7FIsan2Fhdi9Ryzk891g+Jb/E8xM7MauuC4AZOK9TaVDvPkDI4qjEESy6OG3/b2FJ4AeB7yeT/gtCcH+owvHe8Pz8yzss2faX1L/t4ysQXYdZS6jNwGOho0M0hLMMzw0SJfZiVnDy0uPsLnKjy/HcIrdoj0XJWibKZkq9PwfMNBE49cI6CLtXzuD+IvGlbcxUo2LywTfhufxp4tPx//r0Jbvx3iPWvuhtuO8BtmFWTurnPUA5dQKmWgxcQfj7MFM2xjsI7Qt/osLzi4g0x/DZVkJQMBbAj/1b6etifVhiC8nEFtwzeHYvlugCuzbfsnQu+Tbg8/kVe6XiSz08CVxnZtcQFgG/m5AZMtFRQlz4iIW6QDcQFlWKmt8t7UIbu+sZXykfmrcthjLpNcDJpo4ZZ3fhuXKCwXI9A9YP1gVcXdY+fEvsJkqUSsGqL/cniEeuBVYVuaZdWKL274tn91JJ9oj7WSoqIGOPECVqaROTI7TL+GXau16r4TxvCPGhh8eK4X2Y1mVP2ZKr75qpdVyFzgCrwHZiUfHJJCs8CebZ4SeJs3cRZ5/GRzcCS2ld8ZpZdGN1l+NjK86FJn5PE+pGtBNWcwqlpU90AUs9h9mNQBe5S4+AV/xz60cP7Iz3fWNj9N4PLzOz5QBY8jnMypwgYBdQ7e/1YcLv5tISz/sQHWv+osoxRERqN3zWCJlJU1fft7AQFvNmz58DP0TbytrrP0nTbW1N+efXLW/KWHcd6S2npd27Cds3E8Bn3f1jZvafAdz9j8xsHeFnbi0h3fHX3f0LM55zXgf1C0km/b3AXzZtPI9fJx5dS2Pav40ZIKzqnQEGIdo4JT38KaLUNmYjHcb9PJ47OG3V3hKPYDUFyhPGiPdCXElQ74T0m1IrwM9iiRVVb3eYLg18Dvg07V2v1+mcC0p86OGbCK3q7phwd5rOta9Y59r7ayxO1wf2IrgB1+ZrVlxR5LnPYdG1mC0GcPdRPH6cbOYW3EeIh1cxlusetT5lLYu3uftpRvtPE49eS5Q8SmpJh5W1EuKvEfZxzeQocITwRykibB2ZmrK5E0uuw6JQLM/9FPGl5ZRu1zj9itxHbPLK/HEs2YbZ2ATdENh54PX893PNhK9hCMhQfeXl5ymdknoJeJCONUXT40RE6mb4bBvhdWlqAF940UJq9Wngw7StVPA0z8y1oL4RFNTPFZn0nwA/1JSx3LPEI68RUjma6RGIbsJsBQCW2EeUuKPEMY3l/jjxyCZgBZZ4tC4r9OPnPge5FkLV7XKeH4oSlqrWb9GLWDTTHt9KnMmPt5Kwcj+2514r90B86GED/g/gdym6z9xeJbXoJKkOI3N2McSttC5P25KrHqwg2H8Si+7CfRRsD8YSsGKFgXqxqNuhnWwmgcdbcAfPPoZnxyapLgApLNGL5zYQgtnFwGGwFVjiDC1LBsyiGYrN+WNA6a0qk72YH/tOQtC+F7gLoseJkuMZBrmRXRDX53fNErsmbD/ZM6k+h/sF4DnwseyHnUB122qC3UCpzKITwDY61jQ380pEFrbhsysJxepuz/97G2H1vU7te6VMnwR+UoH9/LK1NeV/sX5FU8ba9npaQf0bWib9OpcL0TVYbnQnxLW8sa3FObAXwLZido4o1V7HFefquB/APYlZ8bZbVZ87t3NCQFHOtZQqsHcAS9xYh+yGVwjbPW4ntEWbKEfIGvkY7V2v1DrQfBUfengl8MfAd1R1Aks+Y0s2mrUtL1Wl/UWwTZhN3bO9G6xgAOlxPERu+GXMbsfjHuKRE+D5avT2FC2LN5gl1gC4x6FSau7SCyTatuPxUXKZI1gCSy2a4WfTawmARwg/R/mvyfYQpSYH2/GliAk/e+6eNbPKU0MtMbZlIQ5dNGzyZKX7SfCxgoIZQiu+Wlaxyvm+PA68hY41wzWMIyJvRCF9/irGg/exf6+c6TBpql+mbeV/n+2LkPIpqJfmyKSvoUTxg7rx3HPE2TdRW+/2ulwJ8DhYH1HLO4nKbQNf76vwk4TVxbfTiO+Jx89CfGvJc7ungZcJBWsKZVDkwgqubQd7DbOpPbPLdYAQcJWzDzkGvgT8Eu1db6g+3PGhh3cQes+vq/FUw6QWPUGq08CMeCQHBh2rF1uU7MeiAaKWdcDNZjY1rXsU2OPO/XjuIJne8z462MHo0Cpyw+sxy7B006NmvAVoB3uaVGe7Ramt5X6ZYPvAEsAAZlO2nfg+Jm83qEUPUcvkyap4ZCce73D3r5IbaSPRut6Ms0zv1TpdlHoUyIGDk8PsLcDjWDQ9s8D9KDBhW4lngIdq+Foc2EfpAqOfA36AjjX6IysihYXe7zcyfQV+2UyHyZzws7St/LXZvggpz9a2lH9hQ3OC+jtfm52gXgUz5obmVL137yPOrmb2A3oI13AvFu2clYDe/RIhNXgboXL1bmA7df/e2Drc/xm8A+z6SS3JJjtC6Kdd7Dy7McunGPspyAf17s8zfs39wL2YFfuGjhLaMpbb7zUiVON8P5n0/wR+ZaGv3E8ohvdT1OdnoY3RgQcZHRi/xxL7yA4OsvTqHTgQjwCMuiUOYIkjWGIJlugiO3TaRwcvMTq4j0zv9HaX7ou5ePhull7zFKnFyyyRqrSLRQS+CotOULiye6H2iNVaj/tZzMb3s7vFwAtgN2GJw2bWBV7OPvthsDvHMxv8KLAHs8JdNEIm0Hg2kDMIfg6o9q+7AdcRfmevnuF53w88Dfx+leOIyEIyfHYxYc/7xBX4m5m5hejc5PFreC6NJe+imgyrheFXGT6boW3l78z2hYiAgvq54q2NHsDdoa97Ly2drSQ70ljiBpue7ttk9iRRqrnbAEJmyl5CGtvEse8H9hCq1ddvlsFHTwP5nuHenV9VnLz/LVzT1GqqA8BLQDbsgbaJ+49Xh73X7AOfuqr5FM7VEwqHjTlCaNlYbkA/UQL4IPABMukvsEDT8uNDD18LfJkw0dM4SzauIpG6acq9KeLsDcSZFLDZ3bNcPHwtpfZKem6l9x/fYKtuKVWBfqo+LPEiZtvzWz4KfM22ErwXqKZPcB9wCrgAdgksBsYzCDzeD/EOd5x45HHc2yB1jkTr1WFl3Y/hcQ6PrwDfxKS/VXZqUsujqUF7KWaduD9FbXvrlwBnCb+nxWpm9ADqWy/yRjR8dg3jgftYEL+ZubGoUh33GM89RTySInxNm2D0FJZ4majl9spbGi8Iv50P7D8z2xcioqB+tmXSRhOCegZPPsqlc+/k0rmxe3Ke7DhIy5I0LYtSRC0bzazefbdnkibRen1TK9+7v0LYU1usIv12Lhf2qlfhGesL2bpAqL5d6LyHmfAkYD/YKsyKpSHfCL4fmL56C9vAj+I8g9nthP7a3YTVgVpFwIeA7yOT/ivgV2nveqEO551V+WJ4HwQ+Ren2bLUzzCwaX5F2BzPw3B7gzR5nn6Tv6E3A9HZ5FvWRaHudVMdFEu0RidRqsGsZ6X/NWxa3Wr4qfgmXsEQ6H9APM3PhtyNMDuqdEMz2EX6eLxIC15b89S4l1IRYArRiqc0FM0fibK+7ryA3fArPbSfZeRDsGKEV5kawjYwdFgpIHg1jxedwwP3KaZNjFbHbwYco9D0u3zWEvfNTf0/3EgorPkzHmpEazi8ic93w2YjQYWPq/vc1s3lZdeV+nnjkeTy3menvO9bguaV47gUsWeg9yRvBp/OB/edn+0JkZrU1Kpr7tKd+tmXSNxH2dDeMjw4d5vzBtRROsR0XpU7RsvgILYsvkWhfjUXXV1W4qhxRah9RsjmV790HgGeAN1PeLPljhDfqta/Yu+cgfhbI4T6I8e+mPA4hqL823GE7gQdmSKGfyYtgF4E7MDtASLXfXuKY2rh/BuK/Av6NjrXz7sUkPvTwckKLmvc3fLAo9QLJtgu0LYss1TkeSLufIs6+DH4f0OJx7ln6j15LsuNZEi2dwCjJjvMkWq83s+It5hJteyzVUcb/tz1DlLg9P/be/83emwbJkab3fb/nzTq7Gw00gO5pHIMBMLhnBjM45sLMAFwur12LtB0K2yNaYVk2FQorLEXoixSy9UHUJ4uiKNKkxTBNixYpLodkWOIR6yV3uaQa5+Bo3MDgGgCDs4E+0VdVV2W+jz+8VV1H19ldjWvyF9EBdHVWZlZVVmY+1/8PfAD6GLiBG9Eopx0XpC/DuSQ0GkyfxMTerfiXIHNErW8JUm7kJNI+JCZybVa5/mlceNUeoubIS8P05dbzh8AvhXZ2ISEvKenhOK5dvjh4f5tGHW5eBNw9y5fY4DFqFexKXIdBNSvP+3jxKcSbr87Py4IFPiWx4g+f9Y6EVGZHIqq/++p8HW2bY/eNR+FM/deURa3Sqw1mGL02zGzQWAOb7SU90ks6X82XtEbbLxPrHCXa0YaJbBKRFpg830gaTgAAIABJREFUyjFMpFmrrPmhegR4i+Zu3j+kVa34Ih54btZZALX9YJdR6v99F9gIchCRZluCnwDnQFYjUmxzZ1n8gP4Q2L+Ds3w7zfTDfwH8B9pWvRAtxzkxvN/h6SgKK7GO5SLyFtbvI8jeAJvGxLYh0osX7UV1GpsNxHhLdOmGk8w82Ski3Yg5TqzzW6jtR2u8tUF6n0YSF6Wu3aGuRnUakTZgNWr/EnjLiTC2lEoJgjxWjPeJSvsV1A4BH6I2iwZ3MJEJkPLxhEVAVpU2yMyLFHAW+O9o672z8H0KCQl5LkgPd+EC9uIK/HZehvtmDa6CtCHmVVT9nIDyNNgVuHuTLbmfepzHS67h6XZ5Pq8Y4Dukh2dIrPiTZ70zIZURE1bqQxaT1OM/Av7zxVq9HTh1iMz4XrzYOby4FeMt7Mbdi98i1nmf2BJ1atWmfrKglAAvfh8xi29jp3oQWIgX9jFcq1lrPWBVMxCcwHUOjLn9lGXAO03MpN0CcX7YIuXiYldw3rWLg6oFPQxa/t5OAn8B8kPgt2jrnVq0fVgIk/diwM+r6s+BjqPBBDZIY/0MNmMJMqJBJoLNJAkybdjsEmy2C7XNa1CIGcCL3cKfeZPEsqyILMe1refbvicR7zyxJSsw0fXACCJZ0mO3UL84wXOV2FILMgxaWRAOwETPSGxJfd0EMc4GTvUQGnwCzIAcB7Yg0qq20QuY2FtzHrX+YTT4iGpdM2IOYSKtqKBXRnUUuAqaxSXuqlWgajGK6/D4Fdp6H7dy90JCQp4izj5uLXPn39c/w71aHFRHCNKXi64h93BdWM3Owl9HvAeY2EdfY5G8amSAnyax4vvPekdCStmRiOp3XluIm23j7Lo2EFrafe1IPfZw86lLF2P1OnHvuI5eK533jHUcFBNZSKBbinhPiHZcJ945RaRtGeJtk7lBZjGniSQXt+1eNcCp2bfidR7HWVe19sKlegWCbcBB3EzzGZBGTgATuMr8vhot+oeBBI0Jvs3g7LmyOPu2TXX2exL0Csw5WZ0B1oD05H4fAf4N8Gu09T5qYD+eDpP3tgK/S307sjmomz8fRe04aqdQP43N+gRZxWZEg0yMYCZBdqoX6y8HFRJdX4rINrXB52K8D/IrAr0H8pBIIo2JGkx8KV6sF+hG5DbRjvUEMzfJjN/Dn4pj/W1AB5H2PkxkH+7zrUy867qIbK75YsQ7i8g7qO1DbXHyIAtyDNhRQWyxEXxmvytyEBMt/Q5a/y/R4B0KyvMKcgi0G9fmP42JgJjWJaXc53YZdAI351rJMrJR7gO/BPwGbb2T9RYOCQl5jkgPR3AV6PL596fTk/usULXY7FHUf5PmrfIC4ApihpBIG+JtQWRR7llfIlLAt0is6HvWOxJS4I1ETH9v/dMJ6t+++jAM6r92pB6/CyzK/KVmUw/04bF25iYMpokvvSmlrdotRLJEkjeIdQwTbQcvvgLM6yLiLFtM5AgmWkuYa2E4MbwA2J5TiFfy254//bgW/tbZzqh/GFep78OpcKeBayC1BO0ugyxBpF67+CXXvqzHce8FuG6DbkrHMC4BEZBckKPk9ucNYO6ZT/Uh2EmcnVcxh4F9UDHJMINrcf9F2nqfndf95D2DGxP4RRYmjlYZ18J4FPV3k5uv1KmBvyQ7tQUnKjcFkgGN4kQLE8SWHCS5cm7iSbyDEm3bX7p6taQGD5N5sptI+2FMpIrPupwj1vlYjPfj1XdWLiFmBNihNhsnO3EOtYHEu4q3OQnSD2xqrrXSHETMapAksKZkNl7twdnuDtUpYAB0GjFvoToOzCDmFiILFVtS4AtgEOhEdQlo7WRVfc7ijp0/oK231lhBSEjI80B6uA13ri0O3t259+uC2pvYzF3UbgNeafBZM8AVxBtDvCWIty03qhXSHJPARyRWnH/WOxLi+DoE9WHbzLOlxo33/FG1gQ6cHMFVXstpI5gZJbJY1zWN4k9vx58uekx8jSSvkFx5S5LdVYKRhW5W76N6w/nBkwIdxVXkJlAjiCzEc3sPcAp3Q7DwwN4l0t7J/ZZXK08AG0C/ANle9gwfOALSSKvbJLPWYcXq+foVbnZ/ADdvv33u3LIAHADtx2XzC9tSvQK2i7kB/UGQWh0RceDngP+R6YH/APxT2nqv1HkNrWXy3jLgO8xaC7YY1Qk0ex21pe9Ddno1rq0zv2Dp87xYlS+hzkmOiIihrWe/xpfeZvL+cmzkMF58FQXhvBtE20cxsXdz6q6nqNypMYSYNCKuvX3q4X2wH2GiR0pfkkZQvw3xOgX5HKQTkR0V1le2o+ZVxGyY+5L0PGihpV6kHXh9tgN/duxE21G+avL7qsBV4BEuYbOFYvs8yCUQ5qVG/QPgF4Af0tYbZsBDQp5H0sPdlAbvu3DngdbZ075I2OAidkZwCfpGRiS/RMx9JNKBeG8g8vYi7+HXgQ7csRgG9c8L8vLP1IdB/bNlUYIMHbpwuGwetwwp90RfZDRCMJMlsWJ/y/0kVIfQ4AtcR8I+5s7HrgB7GLyFBPXgAqRTOOGc+czgFhABZRhXnS9OGy4B1oGegNlq5XV3JmpYQO8WyNw5ZuQ1oMH3QPaA3gQeAn5ODfdD5ronnKZxAUIB/jrwXzI98O+Bn6et92aDz50/E3feB34TGAGZygWTrUM1jc2MglYaKamtxWCilfdF7QZVOyBi5gSh4sXXs3TjerXBGDNjl1B7GS/eRST5kZR+t3pws31FSSi5iJjliOxRtZeYeTIG1nXNePF8RweqOo7NnkHtAcT2KWIwke2CnAXxkErHFwBHoYLYnuoo2B4ac55oAx3MHa+1uI47PpO45N02qulIOF/6MzQe1Ac4Jft/SVvv6QafExISsti4+ffXKMy+7879W6mA8fVEdRo7E6G+ro5FvMOY6GbEvE6peG9Ia3i5I8iQ544wqH9WpB534VTWW4pOPz5DarhW5TTAiz1dpdJo+yG6tr5X4s29UFSnUHsKdA/1A8vmBc4qkw/sW1Cxl7ug+UxuMe3Ae6B97nog+xBpJokwUn+RhvZvI7ARtX1gKzk0jAFr5+E9lve6/1mmB34H+GXaelufyZ64I8A/BP4Fs+c5vYiyY552gXNR7cfObAYqiz4mugZJj6zGfaZzEa+ap/wa/FQfkbYuXKeDLd9nMd4yEsvfy3vbV1jHOqDYss1XMasIZi4zMzJJMFPapZGd3KHZqYuAEl/uIcYlkdQewESO5RIG74CC6nGQOCLFx+4gEt0353BQBewNoLK1XWX2onoGkWLBv1u4TpMErgK3mbldI7UI6i/CFPB/4Y7Jr5pYd0hISKtx8+9bKQTw+Sp8Cxx4XlKsfw6bWUEjQrkm+vkczZOQVvP17BR5jnnZferDoP7Z8aO0WFVdg5khHbq4hlrZQS/WLwufWW2USTrXX5HkytYqWas9gdrXcLPojdCNahqRVswc7KUVM/ZKD1LTMuZALrBvtiugNX65qj7o52Arvcd3gAzIQuaUI8DfBv420wN/Bfwy8F3aehsJvmozcWcl8P8A/1nZX94Ecr7sC0TtMWxmNy7orowYg5gbqK3cyiim+pyiREFtHNda7oPxS+YaVe+DBiA7atiyrVXVNEHqCpmJCWx2d0kLfPHLST+5RLxzn0TafgB05ObfBVVfIolvlC0+g8j7wEXc/OUenF7DOHNUlOfrQKEW5CjuxSVxFbm5bf0NI4ka79ND4FeB/5O23hYlxUJCQhomPZzAXVOLA/idtC4h/2KiOoH6l9Agg2oEiOVGDNtw59oOnK3tE5w4W2Nt82L6MNFm7XNDmufljiBDnjvCoP7Z8c1WrkxV0YGTX1FP1Vu1tfZstYh39UtyZesuHKr30eArmvdfT9ACQ+oi9gAnUY3hEjORsn+joJITjjNFf4u4v+EuztY/CmYFIlurFLwPgO1DzYEmCuIL78JQHQP7VQ3rtHXAuQVvp8A3gG+gep2pB/8a+F3aV4/Pa00Tdz4Bfo+q74POLPg6q/Y4ajNI5DhoDA0qJwmykxnUVksgWMRbPvubRI5joq/hqsUzFBTaBRhA9TZSrF2gX+KC5VqjNBvwp48xM7KLKuJQqprCnznN+P0D9PYcxot9G/VH8JJXCdIxkBRwIbcrWVd6l3zVPS+2eRmYQG0b4r1VtPLzoM1+V61Tw5dPCsKL2t/kOipRKfnSD/wa8Hu09c60YBshISH1SA87+9bSAH47rbaOfRFRBfQWNnsXDTpx59h6Seju3E8lUsBtnKtNrkAg/Zh4WKF/OoSV+ueMcKY+ZLGo1NI8b3TkykGCTP0TdSSeauV2azDOklfrC2vVw9l/nUKt4ILp+QStdxFp2sKszn7Fwe6g0ndINYP6MxRE8CqxLvfcDmAc1QuIVHIFOAD2IGr2NxDY+1RSrW8G1a9yncr1Mv5rQZ9AS61tXgP+KfALTD34t8Cv0r76RkPPnLwXQfUfAT9D9WNkGqRWd0R9VMdB2jCR93O/30GrNBeIVyuRNFJiGafBKoh2S7FHvOp9xHyJMfuBdTlrtjQiy8gfWyIGVUuVmweJtn+oJnqb1KOH6qcVP5PFT0fwU534M69g/R7gI6Lt5zCRBHCf2NKEiPlwrpimplDuIlJePct9z4ObqBwB+QC4BnYDzV1j7oJ5UkE/ohUBd/Ex8Z9w4nd/ForfhYQsEm7+fRWlwfsuFtRx8xKiChqcxvqTuXNm/mchnMbEQLw3EdmO6iQanEWkA8w7L30P8vND+D6HPFXCoP5ZkHq8hoV5JZeg6dEvmHrYWEVMvDfqL7Rg0izdcF282PwDadU7qL0Fupnm5nHLue2sxFqE6gjYq9TWQzhH/X02wCgieXX0raiOIlJpXnB/g4H9A5DK892NoHoWgvU05mN7ERoW72tk2wp6FsiPhvwD4O8z9eC7wK8AP6R9deUAbPLeq8AfIPIBygDoDVxlophBkPtlc+DN41Tai4XiYsAoTc95yhNKEjC6Lifo6LojVC1oGqxibR/i5artetdZC7KqaGWTzGl7L9qSF1uv7Wte5cHxY8yM5z4zmSYSu6cmftMOj456G17fJRpcxWs/J8i3AbDB5wjtIDHEbAVO1BFs3Ij6G7H6A4xnkGaORTkGsqWKXePCqx0iy1H9TeDXQ/G7kJAWkx42OKG18gC+51nu1nOPapogfXoeHU3VuIWJjSDenpJ7BZEOJLKQ+6iQ+REG9c8RIuFMfcjiIMA/wlUmi3+q3phXQ212Qh+f7aDxz3KAxRWamWbp69ck0dV8QG+tdXPc2oVrx5t/gAoPgHtg3kZk/QLWU0DtaRd81RE4VNtoEmE7qnlFdp/an0sjgf0t5vueqR6E4GMaC6AU9/m0BtVrORu3cq0HAf5a7ucSUw/+FfDvaV9d8AmfvPdfAP834FrZRXpR1OkR4AEBSAx4Z8EBvepl3CzjHdz7lERkD2LOoLZLNZjA2nFMZLWICOLN/aDaeo+AiqvKMIFriYwDMYJMl3rxx4JkcUKEb6C6ATiBkEAkhuo0ULAqVM3SgI6CiPFY/cFHOnbjB4jsFJFXgC2ojvjHzn3prdsyhWpaxPs2NnMSiXiovxslA7S78QDTgWv3r36MqJ4Fuw9rB/Di2dzn8EmN54yA+RKRKt8pLbJonBdjuOPjf6et984C1hMSEgKQHo7ivpPlAna1OtO+vmjwBQo5TZ8kSDvQAfqQID1B8+OE1TiDl9yKSNgJ8fwQtt+HPFVENew+fG5IPV7G3EB/PfAqrn20l6K5M1VFHx4/hj/duIp+tL1PvEUTSBlh2eb7El9azfKqOs5yahrV112lVaM4j9V5Cr/JIcS0RqBP1YI9hJthrp3mU82i/hSNVbsBOYmYfAbdqZXXziQeAlNtmYsgb1b6Q1VcRfjPwHbi+u4FlyCK40SK/NzjFhfMK/AIpLvo9zhOyKw5XEB6FPQNGh8buAf8Gqr/DvSf4Cr6i4/qoQoicydAAuzMDmCpqp3iya0MLjkzjnvPlmkQZLE2K9FYTHp2RQDU+kclSFe4mTOPEekBsuRnIE3kzmzVW+1lioNc1ZugjfgQu8WzU+eZHthZ8Y/xru9JrLOazWYaE72NSIxqvsdqP0f1PdyNzDhefAIxa1C9A3oLdAcls59yEmRDyRjC3JXOU2iP28C/An6LZM/UPJ4fEhKSHm7HjWIVB/BvsmD3l68BqtME6TOglcbqoF6CtCnkJF7i7dz5OeT54e+RWPHrz3onQhxvtsX1D7c06my7MHacu9OvqnufysaKCCv1zxPJnjFcZamyCFnqsQe8ggvwXyU1tBp/+lea2kZ26oDS1iderNWB/SNW7vTEizUX0KsOAzdw1cejiPRCbq5Y1QfOgn0CrKVxH9WjTmirBag+BvuAxpX2+2lKXV2Lhc4+AY4A1W4CcsvYw6j5uEJg35waveqkGyXQbzfxrD6Qv1b22BjOs34HVQTZqnAWtNnjcC3wv+Fm708DN6kWZLYCdwweqbKf76F2NvgWMe0abT9FduoARV032T/5oxNmzRob+eibXagdAVlHeiSrmckz0t5TbNs2QSHoLbgeqP0K8fIdGGU3bXof2OjU8AGR2poTkbadwBCVkihestZoTgKbXZEL7EvfbyfudArV4uO+E/RBbp/WgaxDNeOCdF0H5h4i1YQYi1lef5ESjgK/CPwxyZ5aIoIhISHFpIdXMLd9fithC3HzaHCNYCZG7Wt5q6q4t/ESuxAJ7+efP8JKfchTJTwJvEgkewJcW/kD4KQke9ChC6/gApzGyU4fUGhdYC/eBbq2tIsXm09wlQ/owbVfF2yx3EXqndnmBNWHRVX8HcwdV/gSZCjn7T6PXSmj0G7feNu2E/RrAhHQHwKpXJW9kVa8j8EeQc2+ogGhgOJAsO5+6gMIpqnnllD0DOBwlTn6Zbibv6s0aqkD44g8yVXrm7XtczOCyH4XUHLWqdqzlzIFZbXBjD4687l0rltGW/fbIoIGmSfY7CSR5CoRU++iq7i50IsU1N6LmSHSdhRUUOuRWDmF6g386UKCJZn0g6tXVqjGRyLvJSKSbBsO7p4ITNKLSHvxyKk5g/EUMKgucdvWNlA3zuHaqgoz56qgGmCzV4BukEt40dKgXnUQdACYQjUjoNq+NoIQAQyIBxiCmRu4lvxadGP983hzPq6zVMpIW/8RxvQCbYjEXBVJ9gPHgEYCenB6AY3wH4FfINnzeYPLh4R8PXECdmspBO67c/9W0rMIaRYX0L9GLbvTlmLutmzEMKTVhAmxkKdKGNS/+Pxz4McpnrNthGxql5roZRGZ77zqJJG2s7T3thPv2rUA8Qm/6P8RKnpd5xBZBeIEwlQD4DzYUVxQOQbmA0QareZXp5l2+9LnTYOt3NpcETmGmHU5YbfOJi/MH5UF9sdBGpvNU/0CgpU0XtnPAGdqdD9M4ZIzjQb0gJxF5MdQew2YvyK9O+7eAUGz059jIjOItzWvIq8Pjp8kM35AU0OA3NOO3i+ZerQGtZuAQJF7mMiQdG2ekaXr5n6HRKK5OfbKyQ8veomi5JhEktC2Es1M/hVTDz0y4/uls1P0/r037cWTZC6eBCD609/sRxNvaZAdFy/qjncTSSI5u7jSo24o9+9Z3M23I5jpxyUyciMq+j7WP4h4Bd0FDYYpFfZDjHeS8vGQSLLBDhstdTtQHUNtpRGZEcRT1L+EiZZXq5qpXrTV+NsM8NvAL5HsudLEOkNCvh6khyO482vx7Ps7wIpnuVsvNUFmjIVc05pDMdHF1EhyYn7qn8Z1TY1goq3SAPg6EFbqnzNCobyQ5xqz9dOsvfrZz+Ju+JsQqtFOgswQkXkkkzvWHqOte5eI12i1rcLmdRK3z+UXiJu4KkJtRDxgZ1FhdgjX+q64C2o139Z6+/UY7EMab7cvptLrqYBcRIwg8iGqKWAHyJfz2N5HYI+ipqNhETjVYxDspvEqwjRwFaRW0qidRj6zAteYrdRKxn1kC0PV9qP+BwQ+gFWJnNTU8DCZ8Z8oWmotkw+L99MDXYsNsnSsWoLaL0C2V+jyqOJZB5hovh3+BhBXtUPMjK9Dg6hG29ak/+A7f2GGH3xTrd5B6Ja8HVw81g2gYzfOyIrtBxDvKGXBd44UTmviJuiEe606gD99XZwifnFAHUftfuAQEvkE1SFg25w1ijcB2odqBHQFTrejkbGJIUykXCsigZjVqPZhPINqFOMBsgs4gNqD2Ox3kciPF817phvYVp5KA3BPgF8HfoVkz0AT6woJeXlJD7fhziH54H1X7vdyC8qQxUKDa6Dlgq+LRQrxTmC8xdJIygf0X1C4r7m0aNt6OXm5I8iQ544wqH8JMFs/vWmvfvZ3ge809USbXd50h5iJnqKt5z0R49VfuAqqD3BBUCUBrPlW2ldSOid8DXiIyy7voKwtu/J+2TOgr9JUxbn4+UG979MQ4t1GpKhVWU/gEgjj89om7AM9hkq87uVDbR/YZm4AxoG7uQCtHhdpOBEiM4i4DLbx3kRtXy4Ynf8F0E8Vz5ob1H9XEkvRVXseMPbVdVJD2ym3V5LIBB2rLsjS11Sw72DtduAULojPYmJ5ccBa+5U/5iZBNqF6kWhyhiCbEs0+irz9QTbzJ7+fBlZL1Bzz4t4nABJb8iU2M8DUwBYr3kFZ8cYOESlOymVwVnkPgR8HvQcEqvamPupfheoHrHzLr5B1nkC8d1C1OVG98u9YgJhPECma2dec+KEOojoBmkFtFJcw6AG5DijGew0xpd0dTtEZZ3WnQ4i5hphCYktmbziLBe8+oPo4Qzk3KHxuD3Hid79BsmeigeeGhLycpIeX4QL33RTa57cRVgafDWrvEMw8Aq03wtQK7iCR25jo23UsRluA3qW4Owy2YbNDOJG/MTADiNntxuFCKhAG9c8TAvUnLl9swqD+JcFs/fT37NXPfhL4Ww0/yfpvqup1Edlcd1nxzrLs9YTEOhem5qh6Ddf6W03Reg2N3/DXYguFFrgZp/DOUmDTrBBfYZ/m125fygBorWrnl4iXKA3oAaeUrjRX6S5DPwR7EjU7EZmbpVHNgj3ZpCjdGDAAUi6eNoSr3pdb5x0A+qgb2MshpKyNX8wBkM/RoAmBwQKq9iwaVOxUkEhyNSu3rVa1AZMPj/HkzlI02AEgq3ZflGh7eWfFXuA8EnkTtL3Oaxko8lW3AAKvIGY3XiyrQfyU5z38prQlziS+ubfTPh6eCm7ePyrLlvvStf4bqjbDyI0zTN7fr5nJw7Lmw3zny6ncfryS+wFkLei4Tg18idqcdoW9Cd7Wsp06h9og5yhQ4TsmtxApD8zFbUdeqXL0NyoX24GYYnG6QeBLXJJEne6BxHGZxGYU6W/ixBF/m2TPTBPPCwl58UkPv0Jh9j0fwC+eOGhIc1j/HDbzGguz4G2Ea5joCBJ5f9YNZdGRzTgL1/z2PAqJ7B6wW1A7icpBxFsXzvaHhDxbwqD+5eLv49RWG1dB12AAiVQK6rOY6HnEmyHRBe2rP5SFDqOojuEuCPUUrUcXtJ25Gz4BfJPZFmO9ibNGS6K6MtfWvJCM93lgNRLZgQZ9oHtxLek55DJi1lXJZi8D7i78Iq3vgj2Pmg0UV3xVR8HeBW12Du46yLtlj10EmQDdiaviX8UlSvLJk3pCS0NU64IQ+QC8I2hQSy24Mn6q7nlMxHgsWfOhdqyG9NhFRm9M6ciNNnp2BiJyBKcqPwNsQMw4Iidx89wdON2HuVoJXvQaLuA9DmwHUH9mhqmxg9K5cj9qEc+LJb/94ftMTR3yovJT3u43D8s738gF2xIjkpxmJqNknnysmYmvJLaku+K23PI7sP5w0e8JddoSozJrCydR0OpjMSKPac4lYRC4jvveVp4TVQXkMCbyepmi/eUKwop3gK9wwor1OAn8CvAfSfZkm9jnkJAXDydgt45C4J7/d/Wz3K2QGgSZw6j/AWX30jmraK18zyQHQSO4xG0jFnSXMLEU4u1tiQBwM4iAco/aCYsO0P2oD8ppxAtA9r70w8shLyRiXu7DMgzqXyLM1k8n7NXP/gbO1qkxRXE/vYJYWawZaTvEsk3bxYs1qoxeH1WLq7jNnfGdy3Za5uGqJ3BWccVsxNmAnQddAmxYwAYO49qJI4iARA6g9gYaWApBUKokoHcWYFdBfFwgGdCSLL/uhOAK6vUgstz5gwdK1SCxJqmi/1vgHJjc69FpkCtOOM/eKlruATUrSHIVkepBu8hHYPpQ+wkNfvZulj5o+DgVEUh2vUnyXdSfGQDtU2SXiOTEhswpTORj0NO4z2VHbkNpYBiXzPCALZqZmEYihyAYJ9I+IV6sk8zEqD302RuybV8fUyOBTk1dEniVIHBz5KnxXv3q8mGeDFkmhncA32DjxrNEIht09MYX0vPOLUR+pPoLDvICBIFO3BvCnxaCzGq6Nh/BRNvERGt3uIhpNDi2QL57ZYpK4pWqk6BngZVujlRPEGSHMNEMECAVdRiGmft9LOf7wL8EfkiyZ+GCCyEhzxvpYQ/YTCFwzwfxiyt6FtIaVH3szBG0MM6mQfYaJvIa/tRJ/Om1IGmNdkziJfYWxbfHZ4VMVUdQewHsazhdk3LOYWIW8XY99WAeXIefBp9T/3xdzG40ALiHyk3EexuRpfWeFBIS0hrCoP4lw2z99JS9+tk/wXk118eLD5Y+IF+xfPtHkp95bh2PcDOAjax3Ja6Vu6ziPS9S1f+kHVTy624MH2fNNfeCJ2YTSJCr2n8IWilpkAXNB2B989yHSmyD4DbqXYFgG837fOfZD/o5yBMwbyO5uXrVO2B6EfkEtSdwNoTgxM9qjRCcrRnQ53Gt+FdQm0JkArXrqHzD4/BTtdTRa28qEu9Fg16MdxCJGFSnkXzigvU4XYbcwpLAjYasQbUP2IJEXsefSuCnbmEfGYUB4Nvy8bcn9Ae/7973N3adY/TBGxjj3htrN3HvammlvOuNMelavUT4+jycAAAgAElEQVTE/BTqH4UIlW7iNDXUz/TjfPeEx8zobDJDR699hIk9lJVv1BsZMLjZdItLWljcyEkcV0HP4DpaPOCA+5NOUv4ZqF4EfY1iazqbdf+3GZDIESRSaRylmuigBT4DfoFk97naryEk5AUiPRwD3qC0+v4OtZ0dQp5HXEL+OEF6GUXdfap2mszo67gE6CvAelDITkB2ql8Ty7eLmNtIZMfsuV1kOeIdQA2g59BgCtgJcgETW4Lx5qft0wpUB1B/hOYC+mLWgq5F/TR4/YhpXYEoJGTeSMV7q5eJMKh/OfnXwE/irO5qI6a0or/s9Sci8lpL90a1H3iN5irvBygV12p2o1PAZaq11TubskYUvysxAtyl1gVPxHNVe72J+jOoThZa7LVs9lx6Kq5j/gxAsIcF++TKUjDvl7TRlYwJyE7gcE5LYAL4Ro11NS6kI7IN8XJaANyttpiqPYkG5SMCTWAeEolfw8TeQGRl7obtDGpHcZ0u1RT/ewBFpBsTPUdUDqBJUHsLmzlEkDFs3jkj7Z0e3WveZfWWEaCLUz94Iq+/d47u9UkeXp3Rr87txJ/plFhbTArqLfvAHgPvw7nvixellpK1mFsazNzDxDYU2vHnLLRh1hZyLhVm53WaiuKVOkJB92JuV41IteRCpXbTo8DfJNl9q8LfQkJeHNLD7bgRo+IA/k0a7ZwLeT5x7fT9oHHgfUz8NHYmoxqMY4MhgtQjYANe8jbGi5KdLBpptHvIPPkLEt0fVBzBEwHkbcS4EUUx2VkB0meBKqh/n2o2rs2RQO0kLa8RvTD8OOnhf0diRYtHSkNCKhMG9S8hZuun1l797G8B56hr7aaFypmJnZD4smI7ltM4m7z6QnpVV6/HqR4c1WMhyYUzFFcRyxFpQ7kDuormxPGu4yosjWXRRTZCxOLa9Nehehune1BMK2cmF5AIKcEHE6k5FyeSgNwMtdpDNazp+hGZzw3CcWp9hn5q/m19JtZHtG25uNluFwC7m6tdiAEbXAb7Oa4TodQ5QWS7Zqf/HPW/QT45IwLibcAkNyDmiPT2/CgSuYaf6keMRf0YH/2NFRJrc5/Nxr2wYU+WzPQpYslSMUK1UaSCWUMkWdtbOjtldPDcuwDqJe4RX3ZHEl0+kbaViNksIllEGhRkVHBiiQ/IjyDM/kkfaHoygp+5S7x9VOIdXWhwE7UJ52xgAFHQM8D47Fy96glEKtk9vU2o2h3yopEe7qK0dX437nzycpeCXmbcMPxjXOJ+3Il7orj7qOJr2BrEXEB1D8HkJcQzJFa0i3j71Z/+vGSd4p0gsfIj8namtRBZ5ubTA9DgEpjRnLr80+vqEAEiu1zXWCMWvfXQBRYXFgGXpBlBZL6djI3ybeAL0sP/NYkVBxd5WyF1EAln6kNeUMzWTx/aq5/9HPDHNRe0wX1MZArkZ1i+/fdzj94C/g6JlT8kPbQM+FNqBVeVcAJeh1mYAN1rFJTAG91wBjhBI/srsg3laJMicgbXht04Igb0AyRyEM1YCq3Mbm65NbY0FjhCawL6DHjnKyj110Berx7Uz7PfSW3VmyBVexwN5pcsEnNMYh35QPNz0LkVauPtAO8YynU0eAT2LYpHGUQSaBWRo4l7Tolf/S34/qy4nATTJ4o7bkUkSrytGyc2WEy5F3x+v6tXb1RTYAuJpiC9lumBtTqdt3GXrCZXnjJLN0YRyYJRRDwgAdKBSLnWxVRuP0r2RQdunNUz32vD+h8Ahvbl9+RHf24nYiqJJB4hX80PsmcIUm9gYsfw4qvKVJLbge+SGvwxkt33qr7GkJBnRXp4FaXV993UGgsKebFQzYAeY47rSMVlh7AzncAeEYHY0tLrtxffjJ9ybi5evI/4igPz1Ix7AyyonUDlEGK6EdOIJlErGKUxMdNGePY6EaqjqP0StVNgO3BiscuBC4g3jnh7FrE74hXgf8EVXEJCFpUwqH+JMVs//RN79bNPgf8e+KmyP38H+B7o7wKr5ZU9D4F/jJtB/y6Jlc43PbFyjPTQt4D/F/iJhjaseh+X6W5FsNpsBa+fZhIQIvtyM9KN7Ot55ic6B+IdQ+QAJpbF+n1g3wW51KKAfgbXVTHf+bcy5AvczGczJHGt8mtxCudDucdjiOye326Yd9BghDJdAFVV/On5aiEAUjzX/T7w/dx4QBR3vCVwgeYejMTAbEN1Bg0OocFaYAMaVD93iplGgznt55qdSklyzm53ABdy287fsK1FNVviJQ+IF1uhYq6itnCzFUnelnjXPeLLrE7c2Yj6j7DBJDbbifVfA829dxpFgyTqv1sh9zKDeKcx0Yw6C6OHQEykVO1e/WxaT393eU7nwDE1ukknhu/IkhWVhB4DkBVY/zpBagvQjs18iJg+vNj6smW3An9OavA9kt3N2N2FhLSW9HA37hqyh0IQ36itY8iLhKvYnsT5yzd2LRZZiYkdB01js9tx41hFf/ZWaHx5Fxr0SSTZiuv7EtBPctX7K0hkJVXHq1qE+jeYf4dlOUO0LkFQH5eguYEGQ6hGQNfihIgrFSneyr2v4yAnMJHVThOJ/LEx5zo8T36M9HA7iRXhte0ZE/rUh7zQmK2f/r69+tl3gd/JPfTLuMDrmNn66c3cY/dz//7biitJrJwkPfTTwG8D/03VjbkZ6KO4luXmqtnV2Y3zuq4w11uy8aO4MujcWeS6yAHQQ9QPiud7Qr4JOZE4kShe9ADWXgUbq9Gy3ii3wfjAErCPqFVhaBh9G+xZlCyYZYjUH78Q6UJNEniA02TIjU7oyQXsiIAMFALTPPYYauffFiheIagXkZx3eu31icTBexOkzc3y15iRbe+9wuT9uWMvFa33ZAWwwrkh4OPOyQnUHka80uSUKrJs82386cfEu6KYyKSI+THyFcPYklNknuzFM+BFc0/RAdCvsH5aoh3VRCPjaLBbfX8Sd4P7DSBQzFmwU4gZ18Bu5MhnY6gtu9HTbj3021fl2/+wfJ1pYDWqFn86QrHgpYlWs9TbAfwGqcG/SbI7VL0PeTqkh1fjOpwO5H62P9sdCnl66PzG1cS8n3NEqXQdCMR4J5BYKwL6crZRQ2emJTgB3FYF9Ivf76yaQYNTqPVBV+LGRXfUe1oZnaD7sVlwRYkYrpgQQUwfJrrQz9LDuSGdWeB6QkJqEgb1XwPM1k8n7dXP/gEwbbZ+Olz3CZVIrMyQHvpvcZZUf2/O31XP4NqsFuNC9oCqQb36uETCJ8x/lrEfDXaDuYDIW1WWeQTMT5RNvDE3W1+EMVvBgOph1F9GQXSsGc6C2TBrGaNmFOwJXEZ6gelIzVfqr9VcrJiCQnx+Hf3M9z1zPM45FBTWqBrgp5rRIPAR7yvAQ4P1QIpIsjxJsRV3ITfAJO442kR+lt7NWR4GLCIHRLx3SXSh1r9OdvJRTqyvMDcopsJAPGAzKzGRwyCBG8mQWG5bAegkah8VLZ0FOZTbJ3E/Ni3xpT9JfGluvEUflqw/2R1gIkdJD3+Qex4i0gvSixcDMUeKF1fVceA8auOg3cB6kJ6c3VKGzFgC9d9RP3OWi30ryU4P4EZzSt0cEktGKrzaBPAEDa5R6EAYQ8x50AjKANA9K7yoej2XPPpZ4HPgVyu+hyEhCyU9/BqlQXy1JFPIy4zqKebb3aY6lKtmf1D2Fx8x/UgFodPWsXiii6pTaFBplGoBmPlrMjWCzX4O2oqxwzylXWdqD2D9w87qdkFsJwzqnznzHIV5YQiD+q8JZuunC8/uJlYGpIf+Z5yQzD8DQPUxrpK+mBexd3EzXmWzWXoc13Uw/xO66lXU3w60gV2NmvuIVOoyuMK8EhZyEpHKga2qBTpcBVj7wSZw1keNcBDMPkQK32FXLX8P7G1aNu9pR8t14hpDfarZ6bnXrUC6hko6iPQiEVB7ELXuM1Z7DLWNXFyzRJccw0Q+xAWhg8yMjRFJXBbj5avyt928v3Yxt712AncBXguMgs65+RMT2Ux82WZVO0R26nNsZoeqZpgaqHxTpHajSmSTSCUVPB1ATPUWX7V9aIm7wCPKLATFi71P2ytosucxU/fvkRkvHXsQUXXdNKdxH8EuSkdVHgD55JOH+i4YH304jgYrSCYOoJrF6l2sHUY1SzabZdN71a4je7D+/0chqFfE24/N5HfoJhLpAxtBg914uZFG1V9k+vEJ2nqOV30/QkIaIT0suITwAQqBfGvdXUJePFRvgG5j/oWAW6hOIN7l3O+55Ku0I9K6KndlFjGoD07R2sLM9YY6/eaLDfpbHNBXRoMPUXMBMdWKPo3w7LUFQl56wqA+pDkSKxX4eVKDQ8B/hWuPX8yAHlzVbwSnxJ87ZrUP1yJWSdzkLKoPCdI9ID7ipTGRj0oCYADVe7kqeV69bAXY66iZLlObDZjvTJjIdMXHVQdwVfD9OdX1PagAetq15Vet3GdBTiCm2oVMcXPaLUL3orYPZBUiW+ovP8tRSpMtimo/GvTgxNeywFLwjuZ0DR6g9i7Gq3BDJDsAVDWDP11nDANAnhBfNiMixdt/ReNL/5OI+ZGix+4i8gnKZIUxiCXAflRvgmZrbk3MSmJLDqjKeZkeGFLrV7mJ0SjoLWcrN4f7VJvbtcFBNCj/vHsptOuX7Y/0aPuabtp6z4NmUOuj1scGw2gwSdXWSrmFyOrcSgoigCtf3UR66nOG7nzgxkfkVbycMF4sClM3r9q7T65Le+8jYksC2l/ZKiK92OwZbGYbgKq9JmK2APeYTUboRjRb6GAJ0gO4Nv0liPlfSQ3+TyS77xMS0iguiN9GoQq/n9a6i4S86Kjez3WAzf86KfIuJvoErACdLdu3xlic0SS1VyslrxeGPGQh7km1UB1G/UpaLouBhwYjX2NrvpcDEQjV70NCKpDs/j9IDQ5SmNVfbFbjRPD2uDk4MbiL22HQTcAkyANgKyLvoME01s9Z0GTBRr5HJPHurMCM6knUf5W5M+ibQU+i7KZQUe3H6QQ0j9oDqL2GeI9xtjjjOLXzLZQHcS64310juB8HcxORcku84nUIyg3yNm0LxwN7AMwhaDSo1yGc0N5d4CbuPd6GExQqvwjn59u/BNpQvYz7DPOt75POQ15Oof503ay8iV4g2uGJyJyZulxA34e7mZvMJwtyv18DKrw+HWFui2UlLogxO+lYDe2rlNRgv058JdjsLkx0hEhyEC8xgWpnrjZ0x/2oj3tfbMlWVSGYuYTNfCVe4ttztiZiXLWp0j6DiAgSKRF11CB7FM0+BAZwFap8a38E181Q8Y5FxKzWtdtX4WdOMzYwV/RQtIuZsR6dGXM3b9Hlfbz6AeKnXwc6NZg5xsSdbRpt76fjVV/Eq2arV/g+qH0F+CNSg/tJdlfTAgj5upMeNrhzZHEQX8fGNeRri+ogzsZ34Zo/IktR0+euj0+V1lfqVRUNLK22FhVTvRNvodjsJVrj9vO0aHyUMSRknoRBfcj8SXb/AanBYZxt3uKdvGdRH/guSHeR3/XHKAEivRTPRqotqq7KYTT4CfzUIyLJc6idBluju0DfBQ7PerAXz0vPjy1oMIN4jVX7Kwf3K8FMIlJdlV7tQdAdNBaENksz1YGTuBbXHUBxK/o6kD7QnLe7dxD4xN1Q2CWg77j7LTkBkgYEtR+jchF4hIltI2r68Kc3obbSTZkSba8Y0BexClcxLiACSjvoBK5C79alepOGtQ7MrIiiiAhtPXukrQdVe1PE3MdVx/PV7zHgNu6G5B7u+Crzgg8GSQ9uBN5Qb6aPaOfHFdr2h6gS1FdETBLM3PfGqfzeo7jjxolAFbpgNHjAms0BNnMc1GCMj+8nmHyyi0zmAZGIU4C2doab55bqV18kePevPxAv0klqMIkGXWQm3sLZRjWASeGCtN8MhfNCZkkPR4C3KQTxnxC2tYbUQ9Ul8oVVzE0sL4TduPN5ZRvSxaH1vu9qD9H6APkRyHy0ghpl8cYQ5jKOeD31F6vKF8BftGpnQkKqEQb1IQsj2f1DUoPfBL7H4t5cXQHprDivVhzsqE4SzJwlmMlnzweAnW4ZXY0/3Yl4V6iiZVZAP0b1YC5Z8HadhetxDky5F3l9ZoN7rgAGkTqCTvo2cz3PW4QmUB1BpPKcfGG5GdzNQaUkz+Pc/DogF4ENrrNAj4IWqc/re7lAM//7myDDYszrEHtdTdSi9jj+dAKbLXw20Y6DIqZe1eQRlQJhkTWo/jkuqG8DtoGsAznaQCXGp4rarojZiJtTHwYu4pIEV5m9gZK1uVGSkm2IiXRrovsy6cEdBOkDBOnrGl9uxESLxw9Kqvt1EemumJpxwjGF6rnqGC5hUDjexCzDZm7wypo95NtWVSf5cmKKzMw4bW2Qydzm4UMPeAebhsnh8yx9ZRvxrnGyk249QXYaL9aP2p25/RcKyY7CLlg/jYkiIj+Le7/+eVOvNeTlID0cxVnL5YP4jykk3kJCaqP6GA2+AF0H7EE5BKanZLxoIYgsecrVeqXyyOEC1qj3we5q6ToBMNcRWai4nEPtHax/F/GiiNkFREEXy1e+nBFMdBAxC3HF+GUSK8LE9HNAaGkXElKPZPdxUoP7ge8Dq1q89ls4m7TqLeel3CXIFs0sy42yC0sHGmxEzVBVr1fVFOgJNNiLiRyZU9ltGOnPCecsICmgx3PPb+QCVqtbIosbI8iCMaAWdC/OX76R/XgP7FHw6lnJnaXazLYGo0CuJVzfBO1DeYTaeomIccTMtpKLiEG894ktQVVvEqTvozaCidY7RiZqjxDIOkrsrHQAKnQEqOYD4Tz3EFlfZ9srcEHJDO6zuAFsAr1Htc/Ni67GWcMlgM3MjIxrrOuaeLHca5AdVRoobuCEJV+lZMRD1uLa/mtXqvyp6wSZEnFHEdOusSWbc/Z0+Qc7WNn7Q8R3wmMTE3coqvZoelA1FvlTyYzlW/Z9/JTVSNIXL34BNIvNvgpaMvOsqpAdX0H2CRpb1i+R5D8jNXiGZPef1tzvkBef9HACJ4yaD+L3UdA8CQmpj+ojNx9ul1Do6shzAOyXqFmOyNwixNxzeyO8h0uCLq53vGMKkdZp5qgq6o/QOgviPDcRM3/b2WLU3sJm24CPUB+UJ7jOskVIRMxhEBMdR8z8NJUcl4DfatUOhYTUIgzqQ1pDsvsiqcFPgB9Qbnk1P4ZxJ8MPkYrCYpUR2Y4XO0SQzl+kylvVrmGibYhUnutVvYDabmZvBGS+vu/nQN7I2bzNk7kV3OqLai5ILOFLkJzQmNmKSGlbvgaHQZvIpOsHqH6V86HPb3cM9DzIcmApUqV67OzTVpQ+1mh1Q84gUnFZEdlIJHkPJ2R4BPceVLtBaQM9hxKt0nGQb6E8CigiWbRMwd+pJk+hpHNdIw/A3MbdZCRxVUWAh7gZOoOb8c0rwMcpfKancZ0D3yrfEbXBCNMPH1LqhtBJZnRIEz3qZuZlOapFwnOzdOTeBz/3nqwGNji5BXMb7Dqcuv8UkAIZBF2GeA8RA15ymiDDHMRbTbT9IEEGzaZ6ENPG2Jjw6P4gyhBLO82sXUyy/ToR2UQkvox0NtcmqW1M3fsWyZVnEdmNzZ4pD+jdYv7FXMIJMmPd6sVGRbzfJTX4Lsnuq3N3LOSFJT3chhv7yCvTf8BitBeHvNyoDoG9htoELtirdd1+HewkSj+Yrlm7WdXbYKdRE6vfFVeESBI1J8E+jfnuFKoxIJrrckvhEr8Gp09jqxYrKqHBQRbDhli8oTk2vvNB7WVstofShMlSFq0jsYSHmGgGMQ2I89bk75JYUVNsN+TpEVrahYQ0SrL7y1xg/32qtCPXYQw4B/QispX5znh50U6CNG5+u8Sy6wQmurNqoK16GbWbKK1ez2P+Tk6CvD7/gF4tLhhr4mJrBygE9VMgZ8B8jEjlC5LquGtx1zOINJrxNhAEqDkIKGh7LvjKf05jqNlVsdKh9kzV16N6CSeOV+l8NIKYPRUez9MHswH/AVBF+aucuvGusnV6wMdu17UPpAfYlPNlP4NLOhxDpKjC4I2D/hlO0T6Nu1ncBOqjehHkDkbyQnY3cJ0Kmtt2oWtF9RrwBFeFzLMbZAD4Euc5v5fZjgwNEEmjmsG1p9/ExO5jM5/gTx0m2pE/riu5K9zEVegjwEe5/TkCBHjJaYxBRJZQaGPOJ822AKiXGAeOknmyDy/xBUF6O+QuhvFl+/X+zT7OHswnKQrfj2z2C2K5rtbOrgHELEHMGrz4IYKZTwCla/sR8WKfoDqD2spdExJZT6TtJP70u8A6Mk/6iC8/APxxTjjvccXnhTz/pIeX4I7JvKjduzzd2diQlwm1V1F/HNgE0kxluAPYA3YClVNAAPoWztr2c/AaD+od7+NG/arbklbnEZCiERta1SmCqbwQZAp3r1LebfcEE72EibXV0eC5AtpoB2QzXACZn7BwMdY/ggbvUmE8a5G5g5hbSOSNkmv4/PhNEiuOtGSvQkIaIAzqQ1pLsvt+rhX/z3BBSqOcAVZXq8g2ySgSOYFAbl47CZLK2dpVHqhRvYHaXuZeIGeqbMMCV0EeA+ICXN7K+dLbXOV6HmgauIATgGqU2xRsde6AGUJM9Qq86jAaDM5W6VUPAtsQaUQIZiPYKhl4uVh1hk7MKjQ4SWlQm9+hYZAnlFfy3RMvVDkmxnEJoFLBQ+Uu2O24m6tRlAu42f1y7/gDudZ1H9UjiDmAqj8nCSLSibIK53VdTAR4E3QrNnsBZBQT2Y+zpntUIbEhaLAezDlE3nYexzKMGy3ZB/J6ruvhOLBNTOQV2td0O195OwZmI0FqhPTIBfypDYp8X6LtHyJeb04g8WNctWaAQkJtALiPmGnEvIHIcoFL9ayZRaRT48v2ElvST5CZJJUumSXUqSeR3IJ3icaGSbRPkkhOY9OuRTEau8fynvWodbMBiZVbmXp4hERXRGJLcse1PU6VpJ2IdKiJbgTpR4xLbKgGuUTfH5Ea/FGS3emaLyLk+aAQxP9I7mcvLrkWEjJ/VDOofyx33vOAE25ErOkq3BLQfNI4/+Tmxd1E4qi5DrbRoP4Ld+8geWcYwB6mtAhRieIkbrXRuaXY7D5sFiRyEi++dk5wqppCgwSLEQOIN58RBodqGvQ21n/M0/CfLzANcgbjLQGzE5FWiCkOAv+4BesJaREiIC+5pZ1oiSBVSEiLSA124lTxf6SBpY8h0jqve5fhbTwDrXoeta9SSejPRAdyYnnFXEC87jmPOwXZfDB+BBrWAcivYBQXFDZzU3Eb6EH1K2AKMdUTKaoKegQNtjLX9ulWU2MOFTFnq1YGXFfAUdTuK3rsNugdNPgEEMQ7iJjiC/ljxOus0vFwHqTEsg3VAbCV7IoCkGPAvspJHemrmUxSPYnNVkhGlPAFJpoPfg8CH5UIOFr/CoUW/GHAIl4GkcK+unPxQdAPgRM4q7tij9/SEQtrH4PeQngftVewwSSQAd7M3aAcqHBzda1Ra0JVHWVm9BxBuh1MFvGyiGQ0k+7Ai7YxM7ZDPG+2yqrZ9BCpidO0L91OdrINtZ14bd+XaDyOzf4Y0c4jsnTDR6hew86spZlZaRN/hMyOwnwHCBXxn0fSwx0UgvhvEAbxIa1G7UXUb2fumF8/SK2urkZJg/Gbnl1XTYHNUL01/AFwA4xXUSNIdQrsOLV0iVRPYzNzbUVrk8LETmKiS3GjWBOofw34qSbX0wj9mGj9z8Ddi9xF9SHYdG5s4hWca87TjLouIN4TxNuFSCsdnI4D/wOJFZdbuM6QBbKzM6l/srfZJpz5seGvLvarajOFzZYQVupDFodk9zipwW8Bvw/8TL2lW7ptbThbDqqnUPs21VtAO8t+9xHvNUTKHwd3MbqPCyqb9ErWe7gZ6GYC+mlgGGQ9IrWVWVXPokFbjRn6EdxN0gROuK1ZidAHNVv9RMDqh6j9HmBQXQJ2HyUth+UXVbmCSLVsfWkCRnUC7BRzK+oAXu51X0YZojzgrnv8aYUB8zkUJx72A+O5lvssrquj+CZuBXC/JKB3TAIbQaJueQXXwWJxs/r3KQ7qjelBtRvsOcS87TpTgj5MhBpJimqdJ3PR4AIm8iOY4ntbPSzJqEvA+ZFRZt0MQKLxy0RjP4FqWjN+H3cv/yRtSzey4e3txLv+ikhir6ZHDiEyhXijmOg7ItLg/LQdAS8f1P8sbpzg3zT8WkIWh/Twclwi80NcS/1ewvuKkMVA/3/23jTGrnNLz3vWt89UVaziUAOLpDiIoiRSuhIpkRIlSiR1+06d2w3EMAwbTgzkhwH/CJJ2EMBAEMRAAqQ7sBEHCJAgcOK47fR1O3F3B3bc3bfvLI4aOM/zzCKLxSqyWNOZ9v5Wfqx96gx1Tp2ayCvpnhcokFVnD9/eZw/fWutd76tTaHgc1JLAM7ET9CA0fGfMFRMsRPROpA2VYzUV5lIg3wO8gchy7Jleb/0Os2/VWSjfOvfndxlt+MI+yzcANjfZhEseXTIxuxIkmD0wVh3Ah9fBv4m1bi2lvWAzxAK1Mow4QdwGxL21xPvIAv8N8D+T6Y6WeNstLBoC3/BKfevl28LzQ1tvjuzjvwH8c+Dv1FnChLyWhnJvUB0HnZtAi+pT1G+icUAfIlJbTXyGBdN1gnrZCnoRC+rn0Vun5+Pl5zuRON50AqN6E41GQGerNB/FegJPgNsJDINeAH2dOR+HXMOqAI3hnEDqP0B1mChXc6xyFpGdWD/4ZmAQcR/U2UoB+AKkC7gDrEd1Ofghmnu2x2rxUqI53sfs0hoHlqq38WEtdb8WHkuGVKKLUvuJ6g2sev8SdmwAaVSfxZM8g8gy69MvCd8JTCv86k1M2K7aP15EUNcBvohzSWhq6TfrpFBVQ9QPIO4lony967E8UUktO0tx8g3U9yLBQ9p7uph4mCXKXyPT/m1Wrvkly1YE6n1B0ATQiYZ7LVdRhCg3pC51lSD9cR3xmgnKCv6nwVV/B6r/mMmHn4VNM7sAACAASURBVNOx5mST421hqWDK9G9iiuK7sUTVm7Ou00ILSwH1p9Cwl9l1dk5Rt71r3igsmD6ObI4T9DfBdQNvIlL5XuzA1PIb9N/LbtCTQINq/JwSzHOBQ72jQTfiAvF5g3c2GhXOoL4gIrtYeqX9evCYUPAjxCniekC2NC1+LA7/DvgvyXTffI77aKGFWdEK6lt4vmjrLZJ9/J9gleDfq/jkGVatXGLlVT1PbZ913cV0EPWjlCnR9TBKdaD9xKhadVRdVZ+BTlCedHSBXgFpYoWih7EJ8kLEohonL1Qfg78S092bJTlCq1zLZDyZ6QHZj6oHf4KyovssmFF1ng3LiaPr8uruGXAg7m0fBrmEyLdr1hsDboJU6A3oPbPa4/tz2O81kAfWZiCnMB2BtcAQqj/Fqv+vYQJyR4EU6ieA35p1qxKcn9EKUPW5vALBKzG9/gH4yyDLsaRW2f7PPm/gwS2x371eAoaAt2Bamf8Bdp2uqL9uGRoVp4jyX5Y2iqklF01R2ecxC7GNSPApibZv4cMvQEOiYhr0FSqv00RmP0F6gtzoddp7RUR2aHrlv2Xq4e+Kcwn6NnTigl3gJ/HR4TrD6cMX+hD5jCBdumdPI0EOCXYgst48lNlGZUVf9RwatoH+OyYH3qdj3cNmx93CPGEV+J1YcLE9/nmdFpW+hRcJ1TE0PDsLwwzsXXIQ2LfwZu4qrEW1HpOqGQ4i0oO6Nxq66xhKwm8PqE2Ei4C69eCrLfIs2XoEDZeuz1zcUiUIABRJzNDkUV+8SmF8DHQXkjhAIvO8y6QXkWAECd5C5FWq29eeFy4Df59M909fwL5aWCQayWp9U9AK6lt4/mjr9WQf/xeYyuvvY3ZfQyzKv70OVC/gi42Dq+plb2P2SbNAxrHAvs9s1dybDQL6a5hifW0Ar6DDUMdiRtUDv0D43pzGWx83mWlnZr39Gm2nuehOCR+C/ATkk6q/ijjUbQZ/AOt/3k59Jdrr87QASgKVyQKPuDzId+PPeyr2M4EFsQkghEqKv05g6vg/RPUIZo9WRxdAPjfKt9tH+SVfov1tsx99QjlIvsv0uZN7uMRZ1D9D/TbqsSnUP0WaxTqaR7gEkoUgiFkJZ8sfa4gJ/zVLoDzFaM454BDqJ0E/oZr+3xi+iAlKVY1/BKsgHacUtLlESsT1EKTseIM0Wpz6czT83ap1RSboWH1D0B8g7iBtPX+N3PAXSFCgc8N7qH9iIlK6iihbO5oIlzqOSxaxZ8IaXGpzVWuLMRnOAztRncQXLiJSWY3735gc+E/pWPdgTsffwkzkRlZgwfuuip+lsCVtoYWFQ6NjaLSe5u+xgxUOKEu189vzTFQfppTQn1teoR84Rj12m0gvKidA7dmreh1f9KBLfIwyU0No4ThSKZKrvniZ4sQo6stzLA33apQ/hEt9KPWdbhaKIZBLuMR6xC3EdWmhGAP+W+B/aVnWtfBVQSuob+HFwESt/oDs47vAv1gCq5BqqF7HF17CgpNmy94GbRLQAyI5JOgEBhsyClQ/j6nt9aK6rRi9u6dmnTE0vAZ0sLh3W8qSCXHqUfURGg3EPYfzQRKkn3r9zSIrIbBjV3/EysluJego6Aos0B7CXnDjWH9t81RokO4hKhxEHEjwBhIH9NPQ19DoZ+D2xomUiKrIWQvALSzRgAkPiWkHmINAubdXXBKR72DU8zPxBsoJJdVzWOW7hHKfn8hNRPYjDlQn8MX7WPtFBdVf94P/Obh2Ox8sw7QCVgCf29jZBtJbU/3JxPu/gfXLN6nC6KWKcWeAvSAKHAdNA80TWhpVuDLoM+wc7ojHWArkruNSlfoIqqpH0LC2//IiiWXrBN2ODw/h0ntEBFZuzaMeNMogLgOM4YJ+jfKfQzzJc8ljBG19IhIzFeQg4gbr2Cu2UxaeUlCpIHhEmMbAPwN+SAvNkRvpwlo6KgP4F6Mc1EILc4HqE7R4hbkw7gwfgX4O0vydPo9BzGPhSoHc+eA9LBnwAbVzcXE70ehTNBJ8uIfnY/u4caErqvpjoEWRYA8wiCTeBlAf3qQ4PlQVzJfh8MW9+OJDdclruNT7smDbX/IgJ5Egibh3l57xOSsU+EPgvybT/egF7reFxeI3QP2+FdS38GLR1vsjcsNZTMF6afxHVe/jC100Vp2tXf4Bc/GERR6gUQJxvShKbeOv6hjoa8xOSX1EZQVf9S6+GIGuxSUX86L+AuivCOjPo2E/DXvxmqJ5IC6uQuxt+lQMYEJzpSD3PsYemMDohQ28yN1GgtQjrL+wBnob63P/ngkfuX1UnWPNU6reztiu7IiD+yHgEug7lCntaSwoDrFguzTx6AX5Ashh/vZrsYDxJdDlqBxEMCGkILUa1R58saYnUtox6nol8jV/O05lP6H62xgTJA2snl30VwexlpV2TBn/XSBh12RcuVa9BP4ZNlmccU2qsUMqA7g7WEBPvLyNLdHhRCTE+hIdcAx0KxKcA1zsVjBAomONiCxHOU+Q/tjGoo8Q3kXcMrx+hvoPQW4hsp1kR0hxYohE+2Ux+7/K0e1D5CwzUdGmoRew7w5VHUfDw0jiOyJyps56LZgS/Q6qA/gm7UAttPBrguoAGt4A3c7cA3qweez7oJ/BkrnozFXALab9Lxgfx9vYgOmwWNLV5gk9qJ+/vd7cMNZA7Lcp1IcHCaf2AqIueZxE2yQarqYwcQn1u2ne7rcGX1yDLz7QIP0QSWyRSm2Z2XEBCZ4gwfYldUyaGwYwfag/JNN96wXvu4UW5oRWUN/Ci0em58/IDf8Q+LdYVbM+VO9hQWKIBTMrgTWItFUsM4z6KzSl0k8vPwDajKI1iUuctuqugkYAIyhXzdpL+s0WTE9hVOjZ8LYFoZJG9Ry+sA5YhbgvmK5SzguTwA1gJcim+JiOoOH7LC6bv5BGo2EsMMxjFPmPMUr5BBY8rsEq428CCbOxwZeV52UyrrhXJHe0gAWTMZND96G+QqVXI+ACzWjqIn1AX+xTX/ucS2Be7ta3KNJvavxcLFsi6cP48zgIqrjmhKe4ZBa4CppFdQpjKhyLj7UkrljLfKiN2rdSnjweBH11OkljGMau/1cxenrpGn8fU3+vtkUS2QYB+PAgFgzvqrLpUX8f9BGm0KvUEywSd0hc4DHGSzb+WSHiekh27AfQ4tSnuGS/iFsH3EHczoqE12VK94S4DaifQmTUfk1s1lTXZ1J/EnwG6rbjBPE9ex317agW8YUT+HAY/H7IP9FE++9/s3Pvc0BupNQeUxnAb+PF2kO10ML84aOTEIVYMnKhImoO2A16FGQpFN03oFrPzrYSB2j+/p8LKp+HJ1B9nSi7kuerDN+F6t35+LGrahFf/IwoVx6vL+6iUMwzm9hsY6wlyq+F/IAGbQ/FBY30jQbBXcEFGxH3ooU5I+DfY2ywn5DpDl/w/ltYYrQq9S208DyQ6fkFueHfAv6SEj1d9TrwALQNCwrXxz/VUH2KVcDHgF4LvhO30FCplyVWvQV6zyq4/l1mSyQgV3FBqo6PbDfwIXgLh6arpnIApA2RN6lP/V+B9T57fPFDygFsEtU7iMyHAnebsg95XKGPDqJ+KcRz5hvUnwbZjMQTKNUL8Yl5n3K7QRHVLtDTlB0BHqI8AML4e/6FWdlpGzapSzKDweHfReUywlaMoTD3SZtIOhYtOkZZGdljegQPUU1iwXJ7+XN9SpVXcC21U1ZaW8L051fBV1YNHmGaAR3YZCcF5DXKDRMVJkh1fUiUPxRbupXW2QecBX0rPsYQ6K7QEKhV189gAXT1REj1GRbsB8AoqgeBDxBJxW0JpXMwgks/wCWGQa/hwxANV5Jo3061s8MYtU4PQUZEJN6vjJSvYR2g0pJRZB0ucSZO5tifkHUzEzl8jku+27AXtWRr6KMrqB9E/U6QYuweMCbL1v9meQHnRpJY8uid+Gcfdt5bInYtfD2gehP8PXMW0ZdBxmYw4eYPB3wIeqhaTHXBg7wBDYP6pQrowZ73eWxesgORAJc6gC88b0p5XaE8DadO4KNXgAiRp+AmCFLjRLk1DeYaCwnoK7GOKJtX0ifFJUtMw1xMr88g7p0myZXngSzwT4D/lUz34AvedwstLBitoL6FXx8yPcfIDe9F9R/FPe5bmFt/50pqfcpFXobEFOqPxv7nlRhGdV8pGm8IcYcQt9sCoKZYDmwAuYLI+5gH6mks2F/DTNr5x4g7jPpSf/q7wHEI6veyz8QARhOvrLwemN7e4jGfKv9tkK1U98Pl4n9LFW7zg7eJSqXo1kugFeJ+ctgEdgQLQPUjZlYXMxB1ou7mdBJh7shhAfsu4CdY8BNhtOQd2GTqOtXWXFPARSwAToG+h/rDgMc85NfVVDie1OwzgfVYlmj/l4F38eERotxb5PUzfH4HmZ5au8RXgUtYkuEEVNnv1F68JabCUSwBEDsK6BPKav0rsIBPUc2ivnKcXYg8EpEekB6CFJA6BTMomdW/q56R8ndwrCxap8+wc1ldabNklwc5DtqByDa0yrLpDi65MxZPbAzVZyBjqFeNCmcJJyOj6cplHTom0vfefHpgvz7IjQjwCpYsK/28w1yFEVto4asAVXMu0egZGm3CbGcrEvA6gTIci6QuBgJsiROMaxenhq+N5sdLGdCDzR2qg2UJ9oC7Cr6ZTeuCob5wBV90uOQDXGqtiGxW9V/gw0pHlm7wED73AnWaKL9FJfhUXDIRu58sBeNiPvDAZ8CfAv+61S//TYTUkCG/eWgF9S38epHpuUx26D/DAq4Zlijzgkg7EuxB5RAafUA5UG1m3TKOS1xA5pzdV3AmcCPTPvFJyv3JAI+BaxgV/ftmVVOTLFBdgZtTQA/muVp+8aseRaOlmljcmYd6/QMQz0yBm1KVsCQ4N4z1rT8Bfqfx5vQ1lCeIrEJkHxr8ApHtaFjZ834UpKjh1CTIIIm23SJN5eZLKEmuC/AD7KVd+T2lmFHhlHXAfdDjwB5UjyElBWYt/TMO3AJ5ClLr/X6JasVmm6gm2j8iyh/F5+17yw1f12TnGGgRl1wjLrEBawsYo5wkKWEnpiNQ22NZO/E5WHsC4mNvQ6PKcSZBJyt+z4O8NOscWHUSWG3rMgnBKHAAfJ+tH59X1cq5dIDIEMguFI9ZOJbuy8e4hM4a0Bvz4DzqE4jsVpeaIsp+CboFcJjV1UeY4NTXH7mR1VQH8O9Rm8BsoYWvIixwHwGegU6iPgS/DPUlltaOWdZeD3oJpaOqvW5hKLGsDoF2Ys9TBV6DeQn0bkc1WzOepQ7oodxXvxYbewciSYK0I8rWspqWDlFhOehmovxmorxXl/wCjbqfy74aowDuNIl0kSDzloj75AXtdxD4FdY+eBNraTxDpnvkBe2/hRaeC1pBfQu/frT13SM7tBej4tcRTpsnxO0FuYiG1oNvldlGC1/FBRlkXsq5T+eQAOgFLuKjlYgzUTWNqsVgRIZRHcGE5dYCt0AHUY1QvwpoQ9y9WL29fF5Uz6DhrnmMtxkU1ZlCgDPhY7r1W3U+exsTcItiNsG3TMhGPwM9YpZtupuZFUaHTbpMIMjo8j2QcGg4CAwgQR/ituDDg/jCHsLJhxpkrpHseFfEzdJKAXUC7g+xyvlyTJ9BrEWAz7BgcxfGuNiNOPD+MGE2RSJzF3GV1flOO2Ylro5XCLpV0REvYb3Ntqv0im+RGxnAKtpbKMasekkdIrN8A9Yr/z7Utn/IMtDmVSfVxoJDPqpMXkwgiUpruGOVlkTlzSmov4oPR4Cngq4AfYIEtwgSr1syyIHqCdR/SjS1CthGkL6DuAfAZog9m0UcyMeo/gJ0CgluIa7e/X4O2IJqEY1GqNAOEOfaSa/8RFMrQP1P8IUULlGbAPl6wITs3gV2Uw7ib7H0QUMLLcwPqjfUFx4S5RUfeTQEHwo+DPDFBD5MoWEGH2bwYTuZVZelo38/tcye+WEb6DGUnUtkJl37jj5EVVtVU2RqWq8O8vzuzX0AGhVO4PNTSCJDlJtC/W1JtH232cpLAIcvLkTjZyHIIe40QUYJ0m9J/XfAUmMQ+DnwKZaYuUGm+5vJ7mrhNxqtoL6Frwba+kbIDn0X+DNYlHe7QeQNSIyg0Wka2dOIHECCD+ZIf6/ESlQfIbJ6lmUOorofjR6j/jIuUcSqsGWo/8Ds7QGjftVQEgGNNqNRhEscNhV4PYxGH7K09+4m4B719AvKGAYuVjATqmEB28yXs0gKZCcCqD5A/XXAxed8EgvqK7f5ZrzeKkhkq3rp0it2kx26CWwmyq0hyo2pSx4kSKWQxDLEdYsEPTWV35mTQ9XHWL+gx6j0a4G1qP4ce+HvBB2gMHkv7vXfSZgdINF2GHEab7MbC943YjT3EEsKXMYSAyWMVvz/CxG3UTM9j/DRTbQIUX4Vvvgq6a6eeN+TIL5inSdYhX45yErQcUyUcAJLBD0FlqGaBr2Aqf03gK+ws6MNYwNkVH0W9UV88Utwo+IS7ViSZRlR4S7ox4gcEHEl27i7uFQXwhrQkyDvIrKTKH+Qkq2eD+8TpD+pPw4RXPA54jZhCZQAu/43Al1xmf82Gg0C365Y0Si8yJiItCHu+wRJAX7F1ODfpb3/3zQ+9l8zyn3wlVX4N5l5fd5+sQP7GkE1xJ5DKxfwzG6hEcwV4yrwCDSDtQG9QpjN8/Ty3MQWpwZXa2bVMQlS7zVddna8x8It4pphAS0r0y/oxarczw0+PxUry1eMoHhaXHI2lsPCIBLNz7lvUZhE3FmCjBBk3pb5FVEWiuPAv8S+u3OtIL6FlqVdCy28SLT1jZMd+l3gXwB/e9HbE+mGYCXIzyqCZ4A8LnECSewHfxj0XcqK5c3gwR1q4ot6CJsAPAW5Avo+vniV2YPm2SoTAT58x/b73CYWsz0LhkHaGwb0s6McYIusRYK1FZ+NoZrDgjX7vVKtvYaGKSJpTa8MyY+eBX0b6MIX9+GL08uoBIdJdb0i4iIs8G1Djb4fL+Li6rDGInI9cYBwO/5Ok6gfpDiZodJRQdxNVLstWQSYxsE6VJ+hxWvgphAXAJNMi8hxkjJL5GCpfUJE+gmcnZpEO6p6X0S2EVf0MXX/l7CK9UaqJ5O3sR7rEnqxRMIN1Ddsc1D1QxqFm5l4co3i1CPSiTFpW9Wr6vux6/LbSHCP1MqNGMW+dOC3VP2QiHtFVUMRd4Kg7WUk2A5yBvwmSzTpe2hUYd3o619PqucQOnGJmZN/u0efIPItE83U3UhwCI1eszHJmQYMmWXA/8PU4EfAP6C9v1m7zfOF9cG/THUA/y6WSGmGb3bDXz3YM+ARpkcyCVrE7s9EnFTrBO3GEk39gEe5C/IYJIeIYgwhhyXalmGJtt6mWg3zH6sHCnXaj5YeJjD5APWPrOfcA9qOHWshboMSIGnjkWUgy4FuGrUnqY5iScFRIAvagTl8bKVGdFNSXW9oqusghbG5PfefXn5DV21bggBU96IcXOD7ZjbsMlFTmU+f+rdQ/RSRT5Z4LPWh3s/4W5RbrZIYF5HOOmssAq7dcqnPDaWKPASZHfJiLOgeAz/CbOfOvYD9tdDCVwqtoL6Frxba+gpkh/4OVpH5zxe9PRGHBD9A5AuiwptADpcaxAVxL3LwMap3IJqktpI+E4/A3WkS0Jcz+iIrCZIfExWOU129nS/OgfQ+x4AeGitnK8i1RXjCztYPOFojONeFBcINe4glSL2mQeoAUS2rPoZGH5N/+lBTXVPikhWT1IokvepQbHn3feAeqoOY5/smvH9CmD2H0fNvYzR7T9D2QU2AYLx5keUQTKLR/jgozUFwCOQDRF5B/Zfgfo7wDtbfPyOwE1PnHwfuYpX5nVhwN4MOHy+zqeZvW0GH65+Q+JAvH77I7ZN7gVfp7hlk295u1FcH1qkVE3FyofJcQW7klGaHO/HRiKz9cBfijiNuN7AHdUfAv4UvfE4VNVVXUQvVL0B3YGKK1fuAwyC7gBWov40P7+CSHpG9RP4ycIXZe3IBfg/YzdTg36S9/26TZZcOuZE1WIWx9LMLY3IsBL+BCvZ6HI3qXeuN4IANoBtAv0TlfSN31CnEKaNYn/cNkFJSVSp+Stur/FsQ/+umP9MoxLQxMkDG9CEYx1w11mLimnmQEBBEApQ0InGCQVy8TM6W0wImkBbZwFWn9+mjqVhIbj3WplPH5k3j1Sp+rcYz7FkyjiTGY8ZTv42FFbOc22os37KDxycH43Vnh/oORi5u1e43T4tLLDaw34fy2SLeO/UgmPDpFMhckvgaJxI/WcIxzA6X6iCa0U20hnDqKMmOpRWOE1nWTDt4AShaj3ymSJDeLuJeREU+Av4C+EPgL8l0/3qTui18ZSG0KvUttPDi0dbnyQ79fawP6veXZJvidhOkDgPrkKBabExkIxpE4A/EwlsNJtbOV/W2VyPChOGqA2/1V5mbon8jHATZg8jzvlcbBROfLVKFdraK1kMqvXhVx7HJ6OdAsV5VVn04QJRv5GdbwhoKY0kyDeIq1RtAXxwIpICdIKdRvYmGzwiS36tYtgj6RcwaKNkP3qdK0d9trJBtyKDRXsQdwksBoncQtwwkgyV8voVd14pNugWrjL+ECUWuxpgLE/HnCey7SWOB4sxpmOoY6ut5vJdx71x/vJ0Cq9cvJ9kl+JzZ1bn057hEHqQOdTYsSKqjG1/YiUt+aRXACjs/kY9Qd7FyXKrRRXz0iKBtm5hmAaCV9NV1RPlf4SOHSy7HJRyqHwOnwE8AvbhECokrahKkwb/B3Pp1dwOnmBr8j2nv/6s5LD8/5EaWY0F7ScTuPey7Wyr8Br6T5dVFrPw+6AFomGgtBbHrQC9TtoicLzzVLAqHJf4yVCWDS0KaCqoHUN0FTGEtLXOEnmZx7wzisS0HvmSmPeucIS7RpZ2bzjF+e46WYprhycVXtfutYVm0kr3uQjmFyCwtRfPGJuAo6J4mXQUFkJOmz/MCEaTfoEiRGW40fo9Ghc8kSC0iySF3cKnb4B2+uBdJ3EH0MQAavoIlbhaSVIxATpPI5GKxu8W2YMwVl4H/E/hRy3auhRYMv4ETiBa+FmjrU+APyA4NAf+UxdJSVY8A74FcoNpizSASQLAf9RfBd1AO4ADGQC5iFZlGOEptH6D6O/iwn4WJB9k+l56C2Aj1aKqHYNGVktl6X6tLEiKdqAaUaO+qJUVzwai32/DFQcp2brOhR1ULUs+eUIt5lAMEqQ8wKuoT0F6UB0iQR6O7GFsgY9V5WY9qOyIl5WPB6MIb4nFvQuV0XIWO9+HtWhD3aUyRXQ2sMK0AVsWq7iNUXzON6NlGRVUtYkHkQczWLKZj6ilmEXDSZ0M3iYqWCHHBFdpXFCVI7gQ9jC/sINH2hoh0ASeoOLcahYfRaC0SvEl6xa9o692hUeFLXPL1yhyT+kKOqPCJ/RIeiquub6DRLSTxsgVdVeNLEhUc6vfji0dJdoAlcj4AQsQdodLpwbmX8f4IJReB5lgF/CVTg/898N/R3j+LUOYsyI1kgO3YOS/R6F+fdZ3FI4X5VteW60oRSBJLXHxzaPoiq1G5ArrQc7sP1ROIzPZcyACvx4F9s6RgNUzMtDZDaNT42fnLpe9oirm3d8Gswq7zhARNhETrQ1Vvo/4BUbaDIPkBQeYQUW5uAW6i46bUF1OdL5Kgr6Jcn4c7y1ywBzgCuhvqJssnwF2fp3juoqAaPSYq3CHKTVIhDFoFn39DXeKRiJtNy6cxJBjABftRN0GQGBCR3y7l3FX9MPCEwtj92XVZykMGOUOQnrD3h5vLO3kpkAf+BJsTHmn1ybcwXzTXg/56oxXUt/DVRlvfPyM79Aj4v5nfxMhgldbPKQdPE7MuL+4NVLIQxWI9cgRxH1HZX23bHQZ/EdV+63N0BVxtkls24hJn8eHb8xz1g7hX9IVNKoBzsQp86Ymnca/553EfaalfNY0FHqn4/51A5yxPytn6iOtR8yuXr6XknpUgrZpo/xW+EOB9B9APvg49FUDHoF61SJahUYDqgwol/wGEENy+Kh9TcwUoJXhKk6l+rN/9FhYEL0MSWWsFrt1VkAP2VmkFGCPhOnMXXrLntCUYklgQMwx6FtV21M9aidNrR+9hAoxF1m+AzKoRqyT6SFVyhf/jH+VlVe/N1N/4e5unv3zVAj7nQLKgAyQ6BAmWM/VoNTCq7WtOiQvWKbKewuhLIIdAN1KZpPDhIOLuUptwsH2vxij1ewinQBI/J0gdQgJmtLeoDjN/VwwB/iGwh6nB/4j2/qFZl86NOKynuFSBfx8L6Je2J7s5UhhTY7YWn8vY/fjcPKxfOMQNVmkyzHPtOPi7W9POU4s2LIqZrxDbdaqD+jFwE4issySknxn0q47FOgAAnahOIXOifIMEG9HoDHb9LQY5mPV8TENVJ0GvARDlJ4lyH1HZ5rNs3W6e3bwEuq3+FiqQXPZsQaOtj2WgbSgjppGzZPgIuGTvCN6n5MGpOozIOdB1putBUP6Riv+zYrEK/ao+S3HiS6Lsy1iCuLfJKssJp65romP1ggITl7T3l7WEVCV7RFwPgKaW91IcP4RGDe4PuUCQHiGR2SYSLL14X2NcBP534I/IdD95gfttoYWvFVpBfQtffbT1/XuyQ59gfVPNXnxlqD4EfUrVBE7X1Phoz4RIGyT2ov4kRomut/FLcTAVR/J+BSoXEVemYoqAj+Y7wbkKshyRzc0XXTKMo371jGqI9ToPIEGDoHkaA6jeBGr7zsFE3xoFnfW+y1mqVPom4CXZkUTbwRcPga5T5FOifJIo/yZouV9UdWoWhuUGjJ76GWZzVxLiqkb17GkrZjmXoVzRfgycwQLBp0zrAbijiCua7zIRqucwOv3KeF/dWD9ugVJfrXoFUiAp7Loy6r1IOv4uTFRQpM9s/6QH/DmUB1S2MVSeMfXK8B0L/jKZL1nevU40fIvi+AGC9pUQfuE2vdYJ5ASyqH6AcN8vawAAIABJREFUiBDlDiGSkCCzB0C9zzI5eA5YQ1tvJMInaHQZ3AFwa8DXsFT0MOZu8IOZg4pKVfkfIxIHcppGgr2YGn7t8rdZuCbFdzA6/t+ivb/sZZ8bWUe1ldwuppkPSwjVy9h1sR6RudD00zRnA2zFrpkD2L31DXiPL5aqTRfoEEqT4FkGQWJfcH2NufSKozUCHhWCjSL9qLsLfgBrrSkFeh2U7dPSmBL33K5hkR4IMqg/CLqOamHM5qO1JOwFNHqCFlKgHfhwA+BwiZtxj71HVdCwA416Ud/HbJoV4lJ0buhi/M4ozXrypx5+rKnOw5Jsn49OwmxYZwlMli9xG1opQTECehFlPRo6tMpxowHkCC61pYkDzuzIPz2BhvO0yNOd+MJhgnSjcxtS/TwoIMEZkHAu+gQigiY7d1MYvYa5IAA8xSXOkuh4SVzizfmNd1F4hlXl/yWtqnwLSwERcN8ckls9fAMmAy38RqCt7xjZoY+Bn1JNja8P1VMmpDRD/O5V0KMwhz5xce/G1OGZPZ82caoszS9Do+SMKq/6+fSLngLZwpKr3M6KCORqY+qq3KOuUFMVSmJOg6hexYL7VFytirAecsGEpR4grlSh3kRsqza9JdXVwHidc3DThK70NPBenJRRICfiXiHZvl4TbTmKE2fwxbjC5afqtwjqFMhNxL2H+pIt3AWQ18F/CdKBTY40Dup9vK8Qq3hXJiN6MZXtS6g8Af0oXjaFuNI1dg+opqOqPxBnTTqwQMCj0SrKE/hTIG8hAhqcihW+Mxg1u5xoEvcWLjmML45TJyj1ty6d8U/Hn0kmdVtW9YTS3jsAbMKHIZJ9IkFqder7fz0ONiKAQZTzEiTbIbEK9HP1xTxhthv8dhLtB8QlA+AGsFyEH2iQ+rJK3El1EliPhrchZS4B5c8m8MVNwBkIPkDcj3HJ9XFAD2UnhNJ5OsXiRCbB2mZ+QvbxH9g9zW6aX9MLh1X4BkBfplJR3AQZb2FODP3Aq3UYLhns+71Ayd6xPgKsmn8auyYX4w/+VcAbWDtKvWrsI6zK3uwYs6j/FNxbwEuoP4K4tTUJ0nx8zvehHAedPahXLYBOgF4CNsYCa9U6ISIbINiARpUiqQHKWVAL2tRnwEUNVelrIbIMCfah/jPUzymoV/Vf4IseX3yD2udNCb64w/T5FoAgtY721SeYetScal14JiTnT6ybBW/zPKzu7Fl1G9Sjvp2GSfwZK36ELx4gSC0oqNfi5FE0XFjSwxfeUZe8L+IqkoTuEkF6CkvMTAK3QMdBNiP1tFIaQ0RSmuwUihMnSLQVCDK7ZHZx4KVEESve/Aj4CzLdM1QDW2ihhcZoBfUtfH3Q1neV7NBHwE9oNOE1Ua4D2Mu/QUpOd6DajKpZQnkSZoH8QzR8iGpbnWp/LZ38CciNmOLXjCp7FOT9FyCIV4kQ5PjsNP96nPKGKCksP0L9GawSUkkxL4nAlZDAPNgrKkT6AI0GIBEzJliOidpttj50maQkRhWk9qHRdAVMRDKaXLaRwtgtNHqZMH9LE+TArUSki6h4CR+GuMCJuG2E2WFMYdqBFHHBKqppz0eQZA3LQMeBKyC11NhtSEIx8b8eLEAp4Q4WRNr1qOpB06Al7YArWMW/FNB4kHzF9dVDuS3iZVSrxaM0ukADunZ4+K/G/MDgfgAXukPJlTd7dVnPr+jsR+ATxB2uWkH1MWgXktqOc2lACdK/xAX3KU4FRIWUws6SVoGqPibKfati/adYa8I+1I+BrMGqovvisV4CikjivZjV0YcEayuO1VVsS1G/oJ7gGhxDEn2I/IcYo+L5QXU0DhS3YMmsEhMEpu+P6YLTuCXBZAKj826n3GI0q5tBBXZgbSCPmWdF9ysFEUHdZfAfYcd+BaMIp7GAPor/9jYzdTouAqNIkEKLP0SjaxgL5mM0eghBBXVbK98bXSAHQfuosXNDNQR/NK7m/7D0Vwvu9QEqF+PxeSwxB0gO07eYjMcbgJyKx6uonoir/j6mcrdhVe/+qvac6hMzdwZDVEii4btzXn4hSHXtpDh1gOL4iwryKqB7UQ7VE1Cd+ybUA+dBn6LaA7qVuWm01IHfTVQ4gEu8hrg1zZcvDUFzhBNzTB7URZEof4NEW0VQ77fhi58jcgRJ7EDkW02EABthCOSSuORmMqteVJ88WMLmR8Cftuj1LTxPtNTvW2jhq4S2vgGyQ/uAP6c8WTaojscVlWYTjnbwd1C3YVYaPvoFVX3d+hm+uAeQuLe5FldikTVFJQUquKADH443GY+pNy9cwOM6llCYU/9kjGwsxNesb39r3Fc+n8GtBvk+6C2qKOkAhDGVfAwTmhquOm71EbAP9BTiqgV7RJabd3UVUtWLyApNdU2SH32MFlcSRuWEQXYE8s8+YNUbHqu2LQNQ1UGiXESyw0t1JW07qlmEyfLkWjpBl4H+zMYp6cqdU6bcVgYPH2P02zD25H41DvzyTIvu6T7KgZyCFuJJ2QDVdNcNwAZUv8R6dR/GbIMZUFX02RA4uYHXXkmIUJga4+l9YVlvJyRAo04tTv0Cl4hwiaSYiNRNtHAWTb9OkDwluFdItG0g0eZUNScWRNl5LU7cAXbF1elBTMDPAnhffEvhiYjsQ/kS9Fvg3kMSVyraNHYS5b8kSL9u9oAV1Vj1R6hv6zdX3EWCIcpqzM/VlDnGGez5cxUL2j7EElfPsOChssrbaX+bVkz/MmbqwNxFAcGEP7PAYRZ3vn69ECeoH8GOvd7xr8X81dPAJcTlQVYBbxijRceQ4HCNPd4a1B9AgtI7oQdVs0ozd4XXzPZOK+nGlyAaYabmhWCJysexG0Mtvl+9dL1Hpg7bsdUwiZUnwCDIlCX8yABpVNuZSamuD5Hsc7Aom4n21fsZz32GLzamc2cfv63t/QMissSMGN2DchqZh4uB6hPgEupHMXeb+WrcNEIG/H58QXHJS0jQVG9ANXpCbniMxbkbDBNkZrKXNPwABYLEVaAL1WvInJwlFDgB4oGdMzRNnh8uYYH8H5Ppvv2C9tlCC99otIL6Fr5+aOt7Qnbou8C/AX4HiKud2sbcBbX2gj+Eunp94IDeoUTdVzUqttEaBVNMr63UfgZ8D/UlwZ3bQISynsZe7QocRtxCXqKjwFmsir0V1QGMpjoXOuAxkLYmatEl3MWC39kE7xpAXgY9T1mgCsyCKop/3wq8Ok1XVpZb4AdolG/grrO85vcZ6voisk7TK54S5vL4QoEoewHcMPnR/UCKcOqgjo9v0HTqrqTSBc2P7hTR71IcO0LH2o+wPve7wBY0+jkSfDdmf0g87jexAHYY9B7wQU1V5CRQWTG7hAUMy9HiTeA+4tpANtnHPqVR4Sgu+QHKJDAOfhLxF3GpxxXUxwnQC5iLw/vxwW6DRIiGM3tdxx5dSu18fR9YgE8imSJIdDP6dILJsRzLe8EXt5Nov1DqlVTVA9P78/lRIE+Q6sJo/x+KSMboyIL66EvCySw+PI7qGInMb838uvQuyCpE3kF5inOXUAK0Mr7W94lyEchnBOmeOECbAl2o1dmkMVCCPRVsHI+xMp4frN2klIh6SDm5WGIy5DCV/ygezzqMOl+If38f9Baqo4jbhrWrzLUVpw0L6E9gYqBd8bZr75evKPQedn4aVKwBS5SUGE+vovo5zlUGdwWoJ16mW1DNx8KfV2y5CoisQHmERp+CdBhdObgJUVxtn4HFVFkbaYaYK0ZtVG73QuVxN4YE4YKp9fOBCHRufI/xO7WBvYIMgUyifjPPbtzX5a/0Sd3364IRgG5EGWC2hIHqAOh1vO+O2RklxtVh4H3quaIsHIIvvozoUST4sFECXFUh//QyljhdDLYQTh0h2dFAJb/4FJe8A/qkSbV+EOQK1ga02BanueIhJnr8R8DpVp98Cy8a33T1e1Ft3VMtfE2RHUqi+k9BX8GEtxbyoj6KBNUvWaPwf4oFZtfRsGDVHP/b8RI/A9mOSB8W/A1Rr+9X+SXoJ9RvAyiCnERkd91RWf/t8piCXuo7z2HUZg+8OyMZoXrMtkuAVboq6LhyEgmyQBKNOhCZq+DNOLhsfKwLhH6JnZ/ZFUp8dGC6BxUu45JprB9dsQRkN6Z0XRYSM2bEDIaCqg4TTo5qcfKB+KIFtg+v/gWdy7+rQ4/O8Nkv3+aHf82Jc4M8HXrE6i3d5CeH6H/XuyD5ju1TT4KMWX+/vIpIZf/tWcoVnzNAB0wLDX6B9W2DBf/WfqF6Fy12gnwJ8hoiL6vqFMWxu5jX+TKQY5jNkgWHqa6fi7hO7Pt/GXQACwySpgEAqD+GRjNo5aryKWF+mz6+eYaHJ0M6Onrp25plclDw0et0rjlHW09WEu0vicgO9eGPifIv4xJDEqRLyQCvT6/9lbT3dtC+uguXXCsiVxC3T1Wvkn86QmHsQyBHor1Y0kLQMD/M4KULtHcX3dodH4DcBRKo3gVtwxdT1KfC3yHRttJ66XUhya6jSOKVOgJWda+TJYVq5fV7jLlR/Z9glHvFkkE7gHGQe3Gld+HtAqqPQDuw50VU8+Nr/u+xc5QB2cqiPcabDg4s2TWEJTfs3vHRF6D1n4nwJdVJ2yzIL0Ed6tdjybYpjBXjsPdBAbt3BMjGbhQd2PM3AaqoX4fpH4AEB6c1P9QfmiEAafDxvmdLQDQ67kNYtf8Rs2smVKyitcfdYDH1aHSYKPdibFCjwh2mhm4gsiJmMq1BJInqZcJJa2do6ztKe18HErxuCcElwwWQN6pm6PZsuYX3fcyu0n8Je7fOZlG7UJzBpbdVJg3UF28T5u7hc2nUz9fFozFc6qgE6ToJArlFkMkiUo9N4oHjMY1k52IV/OeIceDPgH8F/IpM99JZNrbQwjywfeUy/cl3FmsqMjes+bOjJ1T1RSXLptGq1Lfw9UVbX5Gpwb8L/A/M3R6sFnVU5vUSPvbdLldcD2KTxSnblyrKjxH5NtXBwiQ2OX8J4duoHKwTnPhZA3rDLdBtqB5F3CsYVX120Zvqz06BHEb9DsSdBLcXOAR+R+P+zbpYhqnb9y48xSnrUP9jLHDdFNOsq2EBfeV3aL2mRi2ugB6hrA5+EVwOuA1+LRb0G9U/yl/XkRtK9pHXla/cZ3Tgst6/8sPowchfydORPZJwV+TsyVFNJCa1d+V33YOLKdq7H7hEqoK6Kx9jCuN7LcbXa5jd4AqgC5GS1d92wGPWiTlgU0WF5Aqliq1Gt1F9lyi7F5c+j7jQLBfZwnRCStZiPfggwU0R992KY89jiZoUNqDDwGtoVPc5LkFyLYnUalIdaW1fFtLV95QguRX1fXS99IV0rO5Agu+Aori/kETb76jqeaJiWsOxnyvSzpPLGTTs09zILp5cBnF57VjTJu3rD5FZtglJlEqDGfXFE+QmVvLwfJaosAPYT1g4wNp3BqYnmCKvoXoVCQI0Kp2/SmxE9XPQ+QazV5CgUCFOWIshljqoN4bJA9AkJvpYus+fUErKNEel48JHwDVgLeh7KD9ZREsOoFeZn7BYAthszzY9CzwFeWWOqv1zGU8RS4ZNYcyVbZQVyA3inBF56uIdkJ+A9GPMhJcQ+Z14xYNoJFjA3jgZpOEgdn9JvL3qQFOjfeVnruzGkgK1yWKH3dcL6F+XFRj9/tI8Vso3XwRExCnBh7jUIXxhaQXlSlCFqHCewrNxNHofF9QTrS2zG7JDe8gO2ZqJjssk20ZJryxKsmOx43sTOIDqetB7eL8G0z+Yyz2+DXgyQ5tkabAdjT5DEh9CnGjJP50AXfrvwxfeUQkuzFCkD9KP6rTVDYBcB15HZOkSC41RBH6M0ev/nEx39gXss4UWZocI0lK/b6GFrzDa+xX4r5gaHAL+yYK3o3oLovvACpQxxB1AfeXksE7SQF9HNYe4yonhGagU8tF9zKRjn60b0KuOAVOgVzAqbYAxEEBk0zyO5gEEfYisMz0m9qH+aE3QPFcI+BV2DMFchXMKWLU6A7xiNEnXiYbWL61cBx5apUxeRqQfs20rUKbTdzewHiyxD86AvIxz8TZLD2odUvWfa/5ZmtG7rxIVeuHaCPDd8O7jH0d3B7+XXJH61dDh66J6Pex6dbUm0imHk7OJFZ1pWfnGbe1c1Sep9DPU30Dc1opcxqv2owCTKCcraIuO0ndl4/gS+/6iigBfUX8C2I/P28RK9RZW1U1iPddr8cXzqB7BJSaoTjpdptz2IcDHpt4sY3HANM3c0DB7R59deogLHjI5MkmmM0HbqjzITZZvvEfQtgXcCnCnwL+GBK+p6iXw2yA8or6Q4fbZMZYl+gnSQfj5sS+DN16L6Fz2BqN32vVnf/qmfPLXz0pH5w5VikThHX0yMC4Td8uU0ETyF3S0bVPV22JWfKV++WW4xH2i6HH1OZse/CTi5iqd/RTcecR93CTpNDXH7c0Oo7Z9AdqFtefU6429zYICPqDc1/2IxVPn5ys/fh+73oRpFoqW6N8PY9HD1+aXaNAxTFPAYYHY7M8Q9eGMP6lOEk4eBxdJqnOmRSIQV9d/gUbfmWXjBzEmROnZe5O6SV2/B/XDSOIRFlDX+46b6aTUQyWDp7nf+xygqoPgr+PDAB/1g9/IUivEl5AfPUCYfZNyO0mDQYUPmOkYI4STWwkn0anHeV217ZGon8KHOVBPqvM1EVfFPFPVURF3DmQdZbaFUJ63bkejyzXv6bliFbDC2DUsRs9mJtQXARPEyz2+SamlbOnRRpRdr7RdEpcoX09R7k2Ctrtxe8LxmPn17qztCkuHQ1hF/k9agncttPDi0QrqW/hmoL3/f2Jq8DHwh9T2QZot0SlUC4hbhkbjSLAOkVdABQ3PYMFSTMGEuIB4EPUzA2HVYUx4pwOzzTuNS7SDdMYK1mWICMoG0CHKvZgzvetVj4Gux3riK2neHUYDddsQuYJFlFuwil4Ku4dfZVpgTA6A2zGzGi7vghwEv4P521/1A6tNGZ120OOgm4BhcD2IVFZrxoC7dRSKK/tYt9iP2uEoA5S8lc2KKRn/1Jt0X8EqiFtqGAe3Qe8Cu1C/UbKPX9fujVlUDpNZ8V544P/7aTQytirZ23FXfPS94lR4OsikguzQxPDyV3uzwCPy2e+Ff/yPASL3g7895F7e9jEudVTROwSZt0XcOUSyJpKoBVTHUL2MyFZmolQNOVj+kwZoVKVNIOLuK+7teCL8SxH5nkb5j4BloLdrtjk6Yy8iHUiw36j90QNKQXJ25DJhdgO+2EtSewg6B1F/WoLUJ4hAkDmASwqC4v0lovwkGvai/hbqP+b+1aM8vvch6Q1HSLof+vsPJ6Lb99YSuLHU2lVvsvblk9LR+UHuT/7VYX048CHebyGZ6Ev/9kdjItJFW/vnpDOdwFodOX+NzMoTtPdvkSC5Pqa9riVI3SUq1BMBm8t7yYMcRoLti1LDngEdw3q3c8AOEFPfV80Cpeu+mbjkO9jk9m0WFpj/HHtWNNsPwFFMnLGa0aL+HNaHfY+5aQkMUM+602CCcna/nrVWJLeJhu4h+hB7PnVi9/PceohVs9M0+Ok/qWfq4U3C7H5gSJMdxXLwp6NY8qNE4f92LJT3NjOecXqYUmJWNYdIBh/dQ9zDmI1Qa23Xg0anQbKI1gvq5/u93qfKXlV6qBbnmw1VugqqOoJG5/GFtbFl6uy2fEuF1PIPiPLnUd+wNUNVc0TFbqGU/wIgD3oVH41j1+p6hs+trmn8nFKXPIMLCvgohS++JMvW3dBlL+2dPVcXvA9yCI0W8gxwGKvjOKrb5slgmwV+h0bhLQpPxkCfN9e3iyiL0nZZXCJ+D8ko5tDS1oQNuFS4gAXyf0ym+84L2F8LLSwIAi31+xZa+Nqgvf+PmBocAf6UkrCb6jN84Qoa1bzc5CZB+ijIZqSR0rS8R+WkWDUCPYz6jylXQyYRN47dS3djymbNZqQH5QRmnQTEFUvVrFGRmaAs5FMPe1F/E4IIkVKSoWIipxexSeYkuLfr0tutn3Ef6u6Dno7pzfXF71SfoNE5osIWEm3jmGL0MZz0xEFNqTKy0Vjn8lMTfsMDG8xOZwZmU3Bah8g6VB9ik9+7wGo0HIdEEpHKoKQHpBeRjriyfzzuG96OUaAhNzIOmhGRDMInEF2Ql14N029t26HXrh7n2tXNL/2Pv9cvYaFLI7+Mu3cu+kfDwmhcfBM3KOteHgWO4QsWkCQ7jlWoqGOt/eFnaLQV3EFwHyESoDqKRheQYFNcGWkDPYTyKug7KsFJfPhF6UybtoGeBtkPFFX1HqXvNtF+b/qYDI0DCZENSGID6s+ojwKClJPOtY9UKeCLV1CNmBrcqiI/kWTHTpybRNwWccG4SlAkyu8H9xnFqaTmstf00Z1QhNPR5Std4fmbYz70mx4fu5EhkEzbmpWnu//BD8cAgtVrJ3y67bDrSubc6pWbCYIBgkBIZ/ZjlckCuZH9mntyXzLd1wmS5e9S3AaQQzOoqarSxI3pDBK0T/c+zw31BefUDyNyHUs6mXd8WR9jHNVfYDYBbzP3CqjEyx5h9vu6Hq4AccuF3kb1Dsh6qr3WS7Aqo91bB7AqcAb0JFZNTWLHfY5GvuVl3GBuLUyjtpzPoxwA1wf6enwOH2Ln8HXKLhBzh0gbBKNoNA50quojso/vEGZLCbI+ciOHaOvdG1fd34v39Xq8PsDHEDxEo0GmxeX0CFU96XocH3nUt+GL8d/dFVwwqBL0iUhc9dQdoKdRJusEfK+DRjBH33lrn7I2Bkte3AO9FScnm80y+201HUPDU0T5PTR3eFkMxqhIiqhqSP7ZaYqTkyTSHh8N4IvXifLdqJo+QSLzEFUhyq8F2lX9NdDN2DshTfPrrx1f3IUvvyZ0YqCfyUdn6d3+kgTJVXXXEnFIsBfPATRa6DnZBTxE9SaWzHtvkZX7LopPz2JK+y8CXUTZrAbLfyVBZkXsGvN8RUEtCfjHWDB/tiV410ILXw20hPJa+OZh/M4/BP1bqF+JTS5ne0MPE2RuNuwzUz2MD98HvkCjelWRE4ibQFwv4h7HwVl9qB4G3Q2iQDYWeXsLU6P3mApt/clLCRIcwQLn9TYJ0fsg6xBGwIWz9BTXjmUQ9AZobNEHqD7FF8/ji+9hglmHCZIZ1G8COnCphw2Ci4u4RD1Rnor9+ato1FzBuTy+Wxh9uBvkKBK8hdCJUdBDzPppZoUSUNUnZB+fZPJhP6ll4yCOoK1bw+xVkZT48TtvkEhflnTXCvJTD7h45Lc1LA5N/ercyqAjeS7YuHk09Tf/nvXqSvCXSKIXcU6SbdXUYV88ifqYZi3XkSCL+idouB/IK3JRp4aeURhfBXKTrg2/xbMbp4kKSZa/8oGITCLuBBqtBfp18Nanxcvnk27NhnYXjBfEF9rwUTu+2IG4Ai/vK7rla5v2gGqYP0GU24nqMBqdwYcFRFRHriRId7RLsiNFW+9qXHpAEunXEOnRwsRx0F2aHfk093/9c4kGH20Jdr52Y+TohadTl+4lEl1tbujyg3RQDFMdL63Ob/t/f9QpPv8KyHVccrfmn53n6fVvoRwhSKwnkbmG+j2x0GNe+t65J6muoRnXp+ogUX4llS4GEhzEBfUCzIeIuw3uwwVMuh9glmil5Nxx/n/23uzHritL8/utfc65Q8wjGQzOpDhJ4iCS4iBRZGYqlcqsbFdX224bhoHqAroNGJ4eugDDBgz4oZ8M+w+w0a62C+2hGl2oNqo6qzqVyqyM4DxTJEVxnoeIYMzDHc/Zyw/73LhD3AgGKaUqlbgfQATjxhn2Ge9ea33ft1AfmF20+4STw8DrM1tK6+eBR7jWactFKVCvRcnPYVOc5DrOwiTDszjB9xHVrfNw3QS4zOJJhlO8sqKuwzivi9qOE2cQsxxWwfKgehONtmtu7DPyk29TCoYdQto2TYrxXuASXoska3QajW7FspTae+4SUW4vcLxaKhUHzlEmg5e+g59qBrNbRM4iUntussBkLEl4FZ6hugKNLriuD3qQspfENOJdxXiLBoCq+pyocBNb2Etth4tvFpeBVc6zQCdxz4zV2eej5Ce/9xvc7+IQc1tWvv+WLMfQTe0gNvy6JoHTwMzXpaprcW4ADddTnZT9BiG38dNDqCpeqh0v+bZ8s47+9TCFK5j8X8Agqe5vo0VoAw18Y9jT1aqf/eibttGoj5X/6njDKK+BBr4Wpu/vBP4J8N+8xlo9RLkevNQX89R51ac4DW6GKF+abC1WpduH2jnEm6EePboau4AroGnUdlGuXrzvqK1ynmrjrIXQ6EOg6KpkHMXR069AsB/zGg4gIn0g42h0g5ILc1S4i4al4zyN8Y5UtR6zhU2YxCVEavTCspSb7SCuWtOMq1wexE2I7wHrcUyIZiqd+h3VOY8z6fNBj6LhNHi/QOQnbhE7olP3H4COSPvmtyV2XUf1nKCbSHXv0qD5ErbQRZR/F+SyBOk9indL0l1P8BM9ImYfrSte6IE/eGFP/80dlE+j2eKH0c17993sSO4gXruIuOuj9hxiyskf8d8CO4iGh0HfwhYLcVXwJLBXZ57MkB09QmH6Imr/gNxoHKzKA9AQpMXpQQUt5of00mdbihfvbkQ1GTU3n2j50b7D5clsBC9v/FqTqZMk2jeL8fpipoJBpPo9HuVL16MZW1xD0DREmMsyNbQWtds01XGN9vCRtK6aUz/ZhbUTwBSqZ8NHj6YnLtxIPj13+/7zf/5ZIpcP169IBV4Ic+OzuUOdSf/S7Fy4+51UZ2t8HYZ16sEpvESRRMsgibYIzE2i7PeJco4WLd49SbQ5/bnqCUTKAYxIH2Lqy1zKKICcRrwDiCzeG7sSqiG2eBYT7Iq7RPQ7d2z7AHe/lxg1I6i9inPSrj6PIm0uEcce3L24PKheBc2A7sS1+HqdoH6xLhNlPwfVv3LJtQWJjdW4RFjJ8b0MkSZUP2BRHfmyDMZuUj/h0BTfiwVEln+e6sPMzeJaAAAgAElEQVQiMozFkGhvItGxmih/h+zwHGr3AD7T91G/eRw/OSSp7k8W2c5dkE5comOO6lZ5vfHPD1xiU+bfPSLSpmrnCOc+IpwDMUMqwUuCptOY4F0RaUV1BBiP358P0LBNVYvYwjBoK0iEhr2AIP4IJpgUMd8D6t27bYtV6lX1IWH2EYWp9/FS/Rj/mw7oFXc/vIj//258zogN/dz+CtPXv+H9LhdD0rm1uKyAHpyvgvFPYsPDvKrTyuJoAzKoPkBkQcJ4OVDVacQI+sZjWAxZxL9Eoq0Dk3hHXi9Z+KYoAD/DVeR/Rqo79y3ss4EGfnP4HW9p1wjqG/jdwPT9fwT8CYs0N68HVVVxE6pLuEn/HVSfodGHzpXcvsoM6SGwHjEXY1q8cZpcqV/ZE2lzAZTuocLUrDQcUIsNT4GEGP+om2cxiHtOk/G/NpCXVE+u90D0SzCrcb3fl4OzwG7EmwMdQLULPzlJMZzBBTAhqrMLJukaRi7Ojq5hfJeUELPYOb9BidIrBpAnOGr9JjdmMojswkYnwK7GuVJvQyQdVzl7K7bVBhUyCQ2HyY5uluZVN+OJ9ijoXeZ1yPa0eIkfY4Jn6jVFaDRBmEOi7Lsk22bcZDy6DtIrIhnv4KcktHWg8KvPjpm+1U/x0nMi5ABF9SawnTDXjQnOIabJtW6TTkcBN+dR+z6uVdL31YY3iAq/Ijf2CVH+ImoPgowi5iDwhJbVwyJmfsKoUVjUX/3LFxoWtqCaACg8GFoXvpw6FazoeI9E4iLFsJm+t/ejUQv58ZyaxACJViuwHmWq5OKsaodhPjs8AXYNJpjDzjbhng1DbnI3uUl0+Dp4iSn69w6Y5p5mzWZSuT//i6Pp1uYLPZv6bNba0ZGn430jc1GhqGwL4LG1+nLzf//Hz5HYoBCjhLm3KEwXaF71UoLmzRTnHmiU/RXwaXyAWzXMjYifWgG6H+UuImWdsgneIcpnqG/sdg7x08gSDJhaqCph9jzoh9hiBvEG8IKV8T1XG7yuiO+rl6iO4VgwJR09QB/oWWATLGOSr/oF2O3MV7P1CKpnX0PbunmRz1/inqce4IeofgV6HDE1yUbpjKnp9ZIkwuKGgWviffQu8neoFyipTjgaOgZoQeUrx1jiIK4v/OvCAILIfcH8WItzV8iOdABvId4lEu1j+KmViNeHCUqt+MrjcuO5AdrvgjJ5C2uHwN6qSEauBkLAV8dgmJlPCgIgz2MWEKjtI5zupDDh3MwTnQMSNB3D3TflPva2eAINf0wtNNyO1QG81GJsjwjKPcJVdRpbvEphpgObf5dSpVej8a8xXZvBfcc14aQa6fJP2cni9xxqwwnULs3C+s2hTyfvDrFib7HWRG9RiPkQE5zDFnezkFGy7P3i3geu9R30LycQUBs+Ico9QKN9vHk3nnq4g9/8gqBlj4h5XTnPm2IQV5H/c1LdE9/SPhtooIGviUZQ38B3G9P3O4H/GfhDXiugtydA1uEm+TlsNAsaV8MAkQA1c27OuAiMXwQZxjnVg5voDYJuiLddDWtfgm5mYUCPq/7YNM6I7i3UXkZklurJwTjOFGqhg7TaA7Fb/F0cTS6DG/y7uFZvlRgEPoorRCmQY3HRbydBy0WKmVGMqXaZVnsNteOgnZB3+lAzH+/Xp8DCaNVv1dp4KAVxYt4DeYZGY8ApVH2qK2vxGKL3UbmAmC4QQ9PK25qf7EbXWgETm+3diNunpeJxPxRYgZhPCZqm1EteozC1CfHeI9F5A1vIYQv7xXhjwaEPthV+9RkU8r4YU6EBtWfiAG8ztviSavdnC2QwHqCTqqpE2Q4Ncy0gp7Ghu4GCpptxhfohmZdb1SRO4iUPAr4O/tkFCtnDWgjPAgdV9b5GduPU/3eyp+u//g/vm2TiKF09A+IFpROeQqMNqLquAa56exWkSJidwZktgkhI0HKSqPARInnU1lZZRmXFO/dIdfRbPCn+m/99mkLmVJgrNOfGp+lqTq6YMzIWWV1phKSIdJpEcsW6/+yPCiUnexHQltU/J5z7kYg3QpR9jC20Y4uVHgq+jn15W1buW+GuixqUbEzNB5HuOt0m7iPeZMyMqDAbfAVUIcqdoKzTb0KjLgj2LLGWAV0Zn7dBlDZXaWcr86aOnKeO1KNiv3mYb8VXE0zY/ai5g8irTNEeAw9w9+5OqpMcN6sSG6ozwLGYZbCixuitXmD+EJd02oaj2u+ltprvKvF11lVwrejWx/sOgXNx1mMrVe37dAca7QAuoMwi3q5XSoqqcR84gJhraAR+egcuKB2nZe1eMd4g4u2q2F9ZNqD2FGqbEfkQJ2Nw18uYPmxkUD0Nssvp4+UJ6HpgDbZwU01iX7kiLPn4mONfjRe32YvQYmVio+L7Rhf/ohB/sfcj6pKRwxRmp4lyfdjiesrfJ5WbX8qTZCkMAAeWlIUthdzEDV7fF+Kbgw33UJy7TaJ1+VVpkQOY4DK2+HV4tr2Un4UZVC9VPn9x8uUKtpB2zAybxBb6EKMgM9+A6V4O8S9WVOWXY6j4dfElLpD/fxuGdw38TkIaRnkNNPDbjj8A/vFyFlRHEb0Bdga1hxH/oqo2i4hBbavLxstNjDcFpNFoEqtjuP63lZO5USAH0o/INHAOR1NTYB/UoaCqKkRPUBs47bvUPnszzLeRQlH7AsyWigrBQ7f9uk7rNxBvHDf5qp1AnsdN1sEFG5kKs73aMb5EQ4uf+BTV62iUQNWg0TOcK3Wl2dENXE/4UVzlqxYhy3VldpPszSBtiPTGYwEbnmCB2ZDuRO0FEW+ztG94R1WL8fUbxxb7cBXHczF7YBKX0HgL9zq/IX7y++r1zhDl/1bE+6ka31K0X6DFFGKavHf3XvDXrAvt1Phx094VB4ZyANdmcCo+rkoYVe3BFgcQL0DDS8A+CnN3ReRoeO3Gz2XDup+ZrrafAs/B9KPhSmYerUS8Cc0Wj5OfWw9oOOIk3DYfPgE2YTVAsYjMLJA4JNpGpbrrwC5VCzZ8VvHZrCBJxV5W1X0s5Gu36ovL77tj4LlMDz3JvpyW2eeja2Ym5p7lZ3NjyeZkFEVWwlwxaVKp/CdPvnwhNbRUSXX2MZfNgz2I8VE4g0bVE+ri7IeaG78uqa53cUyNE1QGLyZ4jyjvToB4IeKvr/BvOIhLZi1GTS8jytcmB2Dp6nMtDoDWBruwZHYPcBr9xQInD6fVfRWezgcOTgKklJNbtdrtD3DP9S4X2FYF9bUyoOu4iuP7uEr/JlyipPY9sA8njakw0NQhXAVfKbMcnuK8OBZDHpeQ2I9GU+A9qZPQq4fBeAwpXMu3UMQkNb3iJsWZSTRqRmUHGEuZkr0G1YfYcALsB4g5E9/m7Y41xSOc+VkaOAz6FUobYsbQaD0gaPg+KieQxBFVjcBuKB++gi26ayDeeUm015dhmcSHROE96lW9xZtnpaiqJcqdI8pZ1LaC9lF+7y8OtcurVFfj7BsH8yXkJ/9umzqLdw1bfH3ttmMuLbfzw6vQCryrqiHYS4RZJcrvoV41Xm3M8OAp4j2u48XwKtzDb3pG0PptVeUbhncNNPA7hEZQ38B3E9P3u4DvAf/dqxZV1+5rBnQ7joIb/yFcjfijwCGIQBnCJJ4i4tynxQfjg+oz0CclDjkuAP9BvJVmluP0rHawHGzYx6h5UDGB/xJsZSLgJujvoRGoXENMAZEiC9ofyWmM34WYpeiRJcf2AnBp0YAewBbvUtJ9irwLHtjcdRzV/yVwBWQW41nw5kBzQBsa+ihNiHc6Tjp0IzLMUpXNeigF9O7/ICYVV8hKmEXMbVeR1zsgfeL00ueJChHlFmAH4sLZEC6gc8GsmB1u09Lq9hWdFSSnfjqA9CYj0tb0H//R/njZk7E2egLIYbwfAh42Ol8ajKpmwd7CRo8g+j5IFrVXNCqcIj9+IBp+9m/19q2jevtWm/wH//CGBIlq2YSXuGbaW3+fo3+AfTl8Mrr8px8C2OYmm96x6ZS/oqto0sljtK29JKmOt4kKJzHBh/ip81LlxD9//c452QhJRHpAXqhGGZA+MuO/BH6vZo35irIdm/hq6taL/MjVe+l8tvjIJH2bauno9cdn53q3rJrE8wZJJST/b/60LbHn4FNvw9ZukqmtIuKL8XZrc/8l5p6/DZpCreCCwGFc4icBiI5e62LV4QnxEp2Ols7peY28SCsm+BtMcAiRH9QZ501eFdRHheOLOGCvRXW6xC54BeoF9OAC1fpwBpivcrp+VaX1Rk0A0I+r2peCxBGq+6WXAmeADagWKBtlFXDVeIsL0p3uXARUH+Io3UdZqK9vYqFR3x3KfiI3US21ydtQM/4sYs6hNsKxAErvpHY0+hK8tUtQmE/E23uXUhJDpAUxl1H7ngTNuwmqCp8XgP2oXodoLNZQu/Go5uOnvfSeLyUiT8c/d8TB/k1VncMWHgEd2OIRtcW88/MQA1wEWtHiPeAnbtt2UU27iHgq5hlqa4P6EBtlVAvXiPLiumUsq1VhDWzna64QUWLsvCFUNcIW3vk62/ja0GinTt2/TJg9RXPfPhFv+ZR6Mc9R+7WDelV9SJR/SJTdBVrfUHch1qD2UU0CajFMYIJrBK29mMQOEVlUDvENYRpnePd/AwOkupfyxGmggd8hCPIa1lPfRTSC+ga+e5i+/78A/yWLT8DnoaqhqxZpTUsdcxYxO0Sk0lm5z1HoUiOIlAMIkdVQ4Yar81r35enmVM/EjuglrAO7DmUU5XKsJ58AeYibnI6WJ8C6E/QXIJ8AY6ADQDfiT2P8hU7izrW4iHN9zjqqrBaBAiZY3GTMRhdj6nDF9iI3eYYcJtFbEXSfid1G9tYsXzrGEfDHqoL0N4GYvagdwLUTu494PYjsRQC1n6P6FSI5YLciJ9BwAMwhKWt5K6uXThdf3njBVVb1rojcAeZwjuIesBLVWbC7Y331dcBDdUajwgjYASd1MB8CvSDtIE9B31b4hJdfnsdPnTVtTSvlxx+HOjT61xIEvwc6RdByijDzPl7yvHjJo+Du0fDunXlqfBAVv5/at+2saW3+AOS+pDrcebbFPmzxJsmOBQGiqoaEGVeFVc2h+hmYHoiaVPwpCrNoa98vpTDrU8im0agPkeeoHgKY/MvThRenbm+cnczczmUKK/f9t78fTJy8NTWWKx6L8uGllhUtcy39XVCYeCapl+/ZFyNFQr6QlpVTtK5SSXX009x/g7nn20m0HiQ/fV5WvNehM49vkhku3Rf9Onz+C1YdbnEaWX3XVbRkAkwSz6tNOlTiEC5Js5D94aqpJ7DF2sB6DBcMZ9BoCvFrkwWl9W8AeUTei5MiZ3Ha+koJTX1naefBsWoZmttahkcJJ3FJp3LA6ALvdqqrvgdQVUQEVUX1klvHOrq+6mWw/Yg3gwkq3jWao/pd9YhyQF7tYeD05a3AQi8Nh03A34KmQU7FnwWgnYh5hphjqD3OQof2D0BvgLwddxS4XpHAyOASb1dwjJ9bzCcWzXRdVruGPeCfxRZ6KtgRGVz7yEVmbFKooNS3Id5etHgKjSqN9pLUvjtsseK66RZVmxMx9b93VPNodJaomAcNUJvChim8xA6+fi/5tbG8arG/D+IOsMSyEFxL1jdHYfoqVdKKvyPY8D2deYJ4yYukexZKzxZiEuQLlK9ddVbVHIXJLlwr19dd+0PUnovbzNbeM0XEu4zfDH7TXlkq2f7NoAj8NS6Q/7ekurO/4f010EADfwdoBPUNfLcwfX8d8MevscadhQE9M4jZL7JYj2F7C7zFq4JuYnU0nlhvxFUj60P1HrawWI/eHtAm5qta83OQ584MXwBuqw1bEe+MiLGgeSQYAk2g9iZitqP2ARpO4apT1ZNH1Vs4k7lVRPkicA7xChj/7Xmtq+oYGr5F5fvABUplDTd6C2Rb/PtaYDWq5Y4B1ViBhi/Az/F12uyIGIy/AbgPmkb1K9Q+BEkj5ofloaoS5d8D7QS5rSZI1lDTRxGvvWpCbLxuLL/G+N9DdTMaHscFPmdiWUUv6BeoGpBV2LzTI2u4CtgLMuDOl9xHo1YkrgzODZ/HFg9SKAI8kfaVl6VjpQ/cpHnVuATNH6jqDLaY1cLMZZAEGo4Fe9/92N/z9rAdGrltnz0qmNbmjwFIdz6lupq6HSepqIJO3TtBfiog3TOB39Qroj1qw1kkAZnnc5pub576Z//TOorhGn/d6tMt/+gf3iM3NcXcxOd2erYp83CoEKSTE9mnE11+wsvc+ue/7O9a3Z3t27XxWqIlnU52Nm0Wka5g6/pBMcYlwjw2UhyF8VF354o/TbL1GlFxDI1Wam7iJWGuOsiy4W4dvnCale8fFpFZRB6D+aAiiTUDUk+DnABus/D+zhJmL9WvlMsNvKBUZf6iZr3raBS3RrQHQW6CDMaGh3sRv5Yufwj0S5RO1N5Bo26w64E5TLAcvW9ldDqAe2e441xI0W2hOsjP4XrPF1BN4hgLu+aXUZ0BK0ALGn2B+lp2VJcUag2uGh45Izl7HBf0+biquxdLDnpx9/YvQD4GHaHUA94hgcjHMfHlXPyclJKiMYtALPViKacdL4LeBpribWRxQXwOR+0v0dAvuu3VTQo+B14QFZohnMWxh4YQ78egFmQbNvosDqLcQJTI3VelwFd8RacRacc5v9dnWtnoLmXGAYBHVLiBn9qp1qrOjF2TpJnAFppj2vVCJ34xAzgpwddFM+hzkP6az18Cj+A3EBTmxl9lFPutQnPjs5LuWWqRGeAymD2IHMN4F51J4psnVEQkpV7yElHudWn0MfQA6GD5+shV/KZpgpadUtlJ5TeH47hA/l+T6h7/FvbXQAO/1Vik2cjvDBpBfQPfNbzAVeBqzd/qQ6M6FTK5JSKL94+0UQveMjz3RPaiulhfaTeRtcWAeqZvDkXEZEEH4klhKTg4DPorzU9FRIVVpHuMiByI56gnEXVaOw0tyl1cYmHhgFVP4qrpaVwluhk4gEYQRUXgIuJNg3rUsg40Oku57RfYYoag5QSqEVEOXOU8jfEXa/2zG41+jfjfW+TYl4ZqyTTsELA+DgJmUetDtBeVm4iXQ2QPcBdncgjoVmxhSE3ioojsAyLEnMdd73O4CfZ1lBCRKGZdiKr2g95AbQbjX0RFRGSnqp6H6Bmq27FW4nM5DLITZBDoR0MF7xwiByjMTFBy5PbT9yXZ+nF8REWi/DBByykRrNoiFKarqmBizEqvv2+lt+6tX5AbH8Qk5qRlxU+qzkuqa0CMX3W/aZh7RmbkEJBi9hnAsAYtM+QmPTRKke6ezf7lLwsUwy2ATf/4h0Ux/m5t6nqKRsP21IVs64YeX6NouE+19eXjl5nMVOZxIVv4eGNPx5VkR1pEpAtjQrOq910Wg4Zt5CbK98zEzTGQO4g5QWXlO8zuJTf6c5r6PkIkAo67hAzrgVbQr3AV9vUgGyr2cJjKIEztQ8JsyOJGXuVAWnUDtjgYV6Aj0F7EPAHTC6aIyDuoXgS9iZjpum77aoexxW2U+t0DIJcpP7dLQFtQTsTJi8r+1SN1Fh4HetQWH2HtPfH8fSzdQ/4y5ed3NzZ/HhMEcXBTOg+lvz+M9x2BPsZ10pgBkwFbCj5bcY7/IYu38twJegvlHrC/whhskRmThk4yw35ccuJszLIpnefKJMo+XMvLjTjPjh6c3OAMzlW/H5s/i+v3Dsige1+LwSU8VlNq0+n2fRskj0hFctVcBbsLk7iBhs9Qu4taNobNvyBOVqgqjA7dtF/85RAjzxOEhQ0ECc/7T/7zpTTrOcRfTmV5OYhw7eYGcUlacDKLjbDEd9kbQlUhzLz16iW/NizwAiSHmDnEy5TvIBMhJkI8RQAxkUaFEyLiI/7BeHY+A1wFmQO+77qRlFb39yFeERser2jV+vowCY2/894Mqj5+eoCg5S0x/qv9E74+blA2vHv4LeyvgQYa+C1BI6hv4LuGTThq6iuhqmdAF+oXxcwtuaIN12OCDCL1WmzV4hguG36QykmhaoQtDoHWCYJkADdRTTv9vpxGTB+qj+JKZS/wA4KW2yQDEZHyNqrleYZqnW1p35OoXnRVtfkVr4Kupmx2FQD70Ki6b7hqDoiwxVqmQj9IEyJezC4ADb/AMoLIJMavR9OUV1BG68P1qfepTZaIHADvgaPk6nYXJ8glwvws1X4DfdhCnyIP8BJXRMyhWArQizNLXA+2H0CxnxPl+0BngT2othMW76OR1aD1KzHexxqGf4vNhiBfYPw9qF5B4uqPRs9BOtHoHST4G+nd9SmFmfs6fvMJvbvfxRaukhmawCVdsohxxxS0jtWN58Sbks4tO0RkjapOUZg6TnH2o3id0/jNNckXBRgi3XOX7OhHuHsiRaJtjtx4MyIvEUk0/eSTrujp8wfBzrev+mvXCca7iBfsYOJJvzQlzzet7yUshIkVhzb7feNzrU9O3M7MDU3ks5OzL1tWd3aIAQJ/jmVIXirQDdo974ugPMVvuiEr978jQdOnOOfyepPtHcxXN/Ue8BRYGfs13AVWERVPYwu7qEiYqepzNLoLFsewMHNizCBRcV1Mn30f5CLGL2CCDYhU71tkH5X+lc7l/UvQGcQciY+98jszj3jLdOXWvcAZlAM1GtsNcQLrIbAF1Tk0uqPFuTuEcz8F1muyY0C85BLBY4Wxm8P72CLqNPM3xCT+XtX+MGeBvXEyrpyQU3MSrAdyCGe21xGPSyg535fxEKSkW3+Gqiz9vpQE5ap3AnQ9ypcV74Y2XBW+lDDZjMgoYm7ETIPN1YkWrai+6jZUJ5BSj/WKyqxqyTiythrvksIibyMBqM4BX6A2i4Zb1RYhPzNLVDiF2k7Q1fbBl+M8f1iuxqebX2F+KBeq3q1fDz5OolW/Ii/mLsYfIipuBX21oeSrEGbvsMDD5WujCPII44+RaM1Lsr2boHmziKlntFofGoJyD8/7FZg2YHfc7QBc0ra6+i0S4AUfEYaXqJWLLR9vQuOfwCSuk2jrwEt98C1UB5/iDO/+HxqGdw00UB8CNNzvG2jgtwqzuPZKS35Bq+oTNFykZ7vUp8u7ynYa5yh9FmSxCmDFpgTgI5Cfo3YH80GzPcFCN+w8yAPg/YoJ8C0cxbXNGXmVXzjiJbpxk+rKHS6tU1d9gC16bhzer8D4iCiuotOPO3d5IOciQg1RbuAm1d1Akij3hFqTOy95F5EPK4y2AHbHk6z7qB1ETBrx9pf5TdqMRsfBtIC8BwxR2XrLGd4dR7UbkXGQ7bGXQdqNry5qKKG6Fy+wWAaw4TaqqZZt4gX/AKfFduMWSWDDR0C/qhaxxVXAOyBgi+fJjb2PeDcxid1Ye1rTvefBfh/xB+YdqE1QBG6i1kPDAwQtVzGJULBNqDUkWlukb/9uoAsv6NX0iotkR/ah0RnwzoAtCpFVk9iMLaymdNG95GPp3DZdSuKIyDWSHR+pl/yM4lwnQdOYqD53Hg+lw7dnROSQtK1Hg5YLaDRKureoUw98NHovej52Lbx1Zi75+/9R2PJP/vCyRDOB5iYSeOkCEw960ajVdHf0mK6ObGdPOzqdiZqDoHXHP/6hStq/OfKLq91zL8YnWtf2orn81Nxf/Op58x98f614rzERL2ONdG2/J0HTatA8C83W6mEz89pyfQZEhPnP0OhHlQupaoTae0RZF/TY4gAmaCIylUFQGvQItngfG17FS7ZivPoUWFVA7wNOXqL2CmpnEP8kGvbjnqezvFY/aj0Eeh01OcpMoZKZmXtvaDQI9qf4KXcMtnCM/OQxDVp+IUHzQno3AGYU7EogqaojaHiLYqYDG/aB/VSb+q6IeC4Ad49mHvccPcF1dBCgHZE1qHkcL9MBegMXiEfxOqdBVoCOUd2WczVwGtV3qB8AXaGaxg4uOfNxzWfPqGJB0IN4Hmj1e9glsiYoJxpWYvM3MckUrk1iN6ozuN7zdyklB91nzcA9VO+o6pdMP25CwwQ26sRJInrcOdH1lAzyYsiadao3b5R/7+op1DlWi3vPf0XQ4mP8M4gpAoIN09jiCjR6M/M2tWOI6UX8K2DbUbsak7iAl2gVx0J4S01CCXNfoGE9WdTykZ94zhsF9XKbRMsLSbQ34ac6MV4a8VqcDMukRaTUIvJ1MQPmGl4QIP4e6pvJrQHNgqQX/MUERd60K6BGyzWSm0P8L0i0BfhN70lt0vCbxwzwr3BV+eOkul+/S0ADDTTwO4VGUN/Adw3jwH+Fc3deCgXqO1Y/EJFqCpzqRdxktDR5fIgNFW9ZcvBRMPcQ+RRkBnQAG+ImiXIBN2GedZpVUURqmQPbcEFnjZEbl3CTqkr6ZsRSgZDaU9jiTkpaXQ23IOYSkqhMgJSP3WlNTwIzoNtw1eTHeMlp1J5Eowi1XYg3hkm8H+/jaZ0xbEKjTa4iG57BSx6KA4P9oMSV2idgHiBeXOHWIdQOzyc+3ER9Fsyv40rhbSrp/+VBT9V+IiLjeMku9ZKdRPlBbLgXNIMJ7uCuaR/OMXsDqhdQezheL1Dxxhx9HsHaKeAq4vv4TY/IT/wQW7hCqusMSALDBGo/J2juRXmLMHuVIHFZ/PQhVPPYsAXVCPQlFe3/JNG6TwvTg0S5oxRnTkiy4wMI7kjnltUKX5F9Oa7Z8e3S9XaflM3ZzgJHUJ0WMR+SaA3ADKPhLJEMYvzdCj5RvoAYKyJG0t0d1kbPmLybJDN8GBOclFRzMfGTTxMUJp5LlE0h6QId644y/ewCGrUCyMbNOVJNgZfLrKB/z3YJM79G/KTaYlP/x7+3vTA0ejb/53/5eTSV2cr9p13Rwyc3vU3rVsSdByoR4oKaUmaq9u9Kurek0T7DYrKVxbEaWI3xrhBFqOok2C+xRc8ldLQ8iRYvoDjXpWHuBMn27eKlHiOyEifH2IRj/FhUJxGp52peW9nbgxicR4XkQe8hMoczoHqddmPv4pg99SGmHbXODy/Repjs6PF8D7gAACAASURBVDOwz8mPf6RhdoBU97HKqp+qZrAF1bnh44QZkVTHx5S6BCTaBzBBiig/hZf+HCGJS94FIF3Awv7xIvcqfpuIf3ogJxD5XrwQqNYew2FgGpFcbLjXBIyCfAl8VMcBPFrA4FGdxSUaIpzxXQY0QvVcvL3+eMxzVHYxcdiORmcQv/R+fYprb5nDnW/FBUEfAVvEmC2SaMV6iesUcotLSipRKFQFdzr+svoLwksNkOreJsbvY5Gks9roPLmXbxLUW4x3n6BFRWSPuuTqnNT4MYiIqDEzfF0/88LMa7jty32S7U+kacUm8VNbWZYcZdkoIt4pTHIzxrxK197Pwu4N8RC9/VB8yeu1tyRO/C7F2Mu6QL4F/OY9Iq8c4zeBQeBPgD8n1Z35FvbXQAO/M2i43zfQwG8X/gL48asWEuhV8U+jNuUCal0P9CHmGbAR1TzOcGwd1YEzwAw23IsJcnVca2tghhBxwadIK0ofYvowwTAaNjNfZVyS8tOHexavUp5I72XeSMsMgqjThfKjBWs7h/+zaLSQWSD+YlKDZ86kzEsgchDX9m8dYh5W6RLjPYANXQ1OD+KlHsaBqwXxsGEeDT9wB6kHXYVTKs3dQpD7lDoKqJ5Ao92UqqBltKB2G8jluhIJ1QtoWEvzfwwiiOwUQL3kUWzxHrABL1FZ7X8LyKuNRlAdFZEe4KT4KVW4TZjNg12D37Id8f4aL2lJtF8lzKr4TW1EuYSqLYAcozD3XJKtnSSaVwCbUS1gC18C+6DKYyECRlE7Q7rHozB9HC8x6VgcbES9C2LM+zSthKZVvxCRUiV2CJfgGQI9j3itzhBR77tt6zZscRpbPIXaT9BoVDHHQZN4qYDsy/UU7QCrd3Ubc3OO/IwL/odfQHtbC00dvyLV6TnLAqBjdR5bzBBqEdX7SBA6iYVMYO1MkChmtLe1PRQ76qX9vdGZi1sl8Ae8dasrJs/yWPoPd4gJ5tvGqUYF8lO3NDMyTm6imXRPwQUhOsrCZ275MP4ejcK/wmZasWFr/GyXgxCNThHmtjnqfwi58S9oWbO3Joiccf/0HtRU1FQvgy5sf+d6x4+D7kfMabzkT1A9hUavO5FfyrCjVTMj5zU7nqE4kyTR/lKSLf8eAFH2GHPP7mqiYxwTGJ19UmTuxR7UunMp3hekKvMTghj/oHu12PMw3wYxAr0GMotLfiZwwfLamrFVvvsqDfMAjuASM3spy47aQD4G8+9APZAuhA9xkpBalEw67wIv4mtoqNtXXK/ikiHgZAFX8JIhaICW2lWiYHKI/BWqffF4W12ydR7XKOvRQfUJfmqCwitY9KXFR4aq50uZufLJFu886RVH5VU86/pdBZZCFpM4T7Jjk5hgvjuEiGxYfB/e1wrp1YbTaPSqVnZPCVrvSfOKVfhNW0Wq3vffFK7hpZpjydJpVFO49/ZSqJ9gE/FiKceSiUTHdInuYAtCVNgMtpdyW9gScoh3haAVgubdIuYNWhS+Nl4A/yfwf5DqvvMt7K+BBhr4DqIR1Dfw3cH0/Y04o6X6UI1wLtcZYJ/Ap5UadNevHlG1fxtX6+vpHe9QrrI+pqxBXwR2K2qOz+tzNRoFtjlnZd8CJ9FwM0s78A6BuQMaxFTT0nM5jgkeYPyj8QGcQmt8/1SHsOEI2HpSgQlY4E6fpRTQiBx2jkiAyDpUBhcEOA5CabLkqrMbqgzMvADUv0KU2wakifLr8ZJ3EFOibz5HvGPAqOvzvmRP7xxIC84BvOZYI6o/l0GcprK9Ypky46E4a9VvOiHGO4LTB5/CFtahUYeK/7l4yQ+A8yKyTf30BIXpTkTu4qf2gRYI0g/wkqOIV1Av1Y6NLFF2FuM/xVWFtgIn43GVuiFUTBrNr50W234hEn1IsqOk/74GPMaY0nkYEeO/jZjnwAyq98AeAa5gvAOod4cofwNUQE6B9KtqArXuvhDvK4yXEMWKF7RF+Y67TN9HODWFAommWR0bTWKjgmBCVFfx4srYfJ6pMBdJuruV1ds8gqYCyidkhicoZAuMPo6kc9Nc8g//GP7XfzZffQwvXt1u1vZbiSuw0rV9VExQ9ayIeAlSXTslFReEvWSJXfMVixuw1VxzfYiTplRVlcVP/gBjpom10qp2jMLMDWwhQ1RYgXMFj800dYfCScEYkD5c4HgXmAZbLfNQnQBdRf3ndQ6NElQxgPQNOL12E2rqto3TzMiEjt/aTykLGObQRPOclIzoTDAJ2k5+YoTMyA7UlqnGJnDRqfgPSLa/QPxKHfzbqOZxLds83DugNhkRMk+fV6g2jqutCF5iYb/1EeARIn/PDV8vsngCYwq1T3DJthId+8GCpVRDkOe4tpbgEp1diDcMJDFygMqkgepxhG04uU2tKdnq+H33FfASdI+ke5OaqedVuBCyZXtzTL931zwsrit1GcRvyr4yoHdb2Y6XvEKUr2Ua1GIEL/0VyfadIt7rOduLefOOIwD5yS8ptRUsYwwvcYdEe1FSHWvwUhtr2sF+k5hG/KuY4EhFIu6wY33paZA1wJo6NtZLu9mZYDNRNXlPVTOg8XsjvxqNNlNiulSj4AL5loigZde3FMiHwF/hqvI/J9W9WFvMBhpoYBkQpOF+30ADf+eYebQftf8FsAXxbwN30DAFCOLngShu6XaIJbT2MbX5FUE6cc94OtHoAeJXLm+BeyDDuFlrEkcFddVjtdep7OvrAp4PwS+ADqLRwXidEm5gEiFids1rzdU+RHUKUMRswzm4l3Zf/aWu9gy2uJ2Fk1dATmOClTFFuBcXpIzhKvS7KE1cym+4GcRsfuM3nsgevORJovyHwHQcgRdAbiMmBzqK2nUsrHqAq2ifRiniJkvu2jrmQi+wyvkdaAI3cUuBHKemt6/a6DZhNg7GdAjwCOeOqHg38Jsi0CxiQLzTmGBv7GvgkhUa3cIEBYKmFpAHiHcEW7yKMd1o2C/iv8T31qmXeIENX6I67TwQOIp4o8CvQZNON6+HgBFMYqMzrfZ+hKRnQM+iUR5bfAt338TnznyFmBJF+TbIhyjHEe0HLBpOgL4HFFDb5H6Gt0G7EP8pJugRtRYTtGoUphj5Yk462iwPH0S0tzfR35VnatKnu7ONXCbSR5dG8GiTIC5qFYserak5TBCJqo+YX2qys5MHp1aBrJW+d57qzOQYAD2rHnh968akd1WG+XvIv0a691UmVDMge0HvsrhbfXzp9EqsjS2AbgaexnTxMkSaEe8rNFrlfjXdJNvnEwWaGToZa2if0NQ3JSaIO0boLI4BkY2lHzY2SQP0AvXaQpb32Y0Ew6APYyo/IIt1tlgKfVS1uao49Nz4LKWAXswE4k2ADCF+iJeeFi+xFmGKRGsPPTvTFKYHdPLu0XidDJnRk3jJOaJ8isL0kMIQyY6Qpr59IpKl/P7xcG3uLM7DYgUu2VGqdF6jnNy8yzzjCOJe8xkco6QPVz2/hqumVz7fOVx2oN47ZXO83crKfJ2Kvp4Ejd/BMuC2pSsR/wNEmtFoIGZVlN67K0HacMaIVym/G6eBL0E6wJZd8E2wk2T7FfJT9YJsBZ4jZhikKE0dOfn7f3SbrpVbRQQtco50y0rQMcRbQ1QcwPgHYl1/XYiIaKJjA7mxh2i4wY1L7mCCWYyfBpPBT/VhEpukXgeGZaFuS8jlIz+pQIT4X5Bsm5FU1yr89FYRWV7Hma8FOYuX3BQbU9bD4TjhdAmkCZe8W42T0zyl/vdLvGmzBrioqjuwxfPYfAe2+DaLFwqKcSBf/BZb0IFLOv0J8C9JdS8v49RAAw00QCOob+C7ABP8D8Dfr/pMParotOqBRuexxV6WZ8C1GJpw+uujRIU9mMRpXMUvAfQisoV6BkKqj1G7GTdBroZIwk3g5S5qx8D2YYIhxDu4QFcqZsOiTH2NKcGqWTS6VJduD1OIfwPjV1ZaxoFfAzuo9RMo4yJi2uLK44ZFllkaYt7BJH4GdILvgbkQb+sK8GOQc47uzH6qK3jnsdaCFRQDXMIktsVjvQjai7Ae8dfEbIxr2Gi28jyptSGFmRGMtxV0GpcYKDnUtxIVU4jMiUn0UU1dbXFD9w+R6hpAZC9qB9SGN9DwU7zkgJNwhP3gzwmkEX6KRvfAa0HEINKD+GmQg6iGrnWaSWHMAVQyaHQc4SOQg3FS4QRRrpK6Owd6wl1fkwF9gehPcUGJh/F3gzdBlOkDulWjEVS3I9KHhruw/DXid6kXrNeLf3ZDAj/HXCaitc3Q0ZnVJ7d8mlKCtRkNgjzjEx5rN/aSn/sSkS4SSdRPJKQw1axB2yzFqZQaP4cJOjDeUxFVWtu6Ev/pP/3cW78lAI6palEffy4A0rk1fGUuyCQuOfdynaZe8OYCxSto1A+SwdH0HRMlyk8T1JG1Gm8/UXSahVVFSHTO4AV3MYnNIrLWVfxtf3y9W3B6a9xY9AYuefSKIEq+wlRUTa2dQJij1MJwIRb7HNAdqEZxN4kcjmEUSks/KgwBPeLc3Dvxkl2IdKBFq5I6J8Y7BCCqOdK9XRrmTzD75COMvxGNthJmIKworGdGINnxGUFzpXRnj0u8VTrWKxUv1VFcL/osEDiRv07hgv81lJkW07iAvpZ5EcZ/uxGfh9n4sw9wfigfUJ0YgFqNv+rxmI1SBPkc8d5G7X2c/8czoBnxjqH2TEX3wtjlXtpAd+L0x+8Dzx0LSUNcEtEDEJE0bRt36ei1STQqPZNFgpZTpDo/FGdKWTaFrEjhSLrZivEqmAa6CY0GEX/JyrqIdGiqe5b85Of46SNSlbiVh3jJDUutvwy8iqK+FMZItGUk3TMhXvCmbvFvgiFM4jHGr+OjUhdxkrDkQ6PjwCZY4N1QDROERIUk4dw+0HpSiNAF8s15gtadImbxJME3i1ngz4B/AZxpuNc30MBvAALScL9voIG/c/yPwO9TWfFZEAwLiP8+Yu4T5e9RWVl6fRzGUUlXgPqIqWf8k8Np8tc4E/mo1MN8cYi8hXhvxfPJJ7gv8tfQWOoaVJ9hi7PUOkKXYIIniFcb5HQB3wO+pOy2/RjkGUgR1w3gCBL381K9A/oc7GqW51R8x1FkzQo8/6d1xv0QMM4kUIhbeD3GaXvbUKZAV+KqpKeATdhCAbyfY7x3Ec5QkkqIeKgVsKmqvICGD12Ls+BvMJ7iqPHtgCDBsIjsBg45J2NzHGRHrM+saOmlYKPbik4R5Y644zIfg+ZQew4trEX1GiJNiNmMRg9RmUHMjPu2AER8vER5Ui/SBN5HrtpOJzCHCQ4CZ9DoKU6f+QkuuDwN0QYcDfksTu88BfIRUfYRscmT5qauIfJ98YLziD+MzXZpujfLzMhNinMrEPOCFWtzZGdTrD3Wolf/xEp+Niv//j/dy+PTZ3VVU06wd0m3W9A75CfX6NPZx/bhM6Nz00XvB/+gTZIJ0f63z5GdDRXvsHjel2b91nUxAwI3XnIEzRdJ9yxVeQ8xwS8Q6Y+ZLLNAkXomexrF503fQnUAMcdQexdbOIKm7+Kcs6thgvXYYp5qBgzip5owfuXyndSvGMNS1b0q6BFsNIhIF2r7QG6gtIGcwEXEHmjsjI+4z/U9HGXc4gLR+L5H3Jh0CldNdsFMoi2UzAuvPFbJkmx/ALICW7hHceZdTbQ/EZG1sd/HTmlZdV1nn1gqItsFyI52EVSRCpLAX4O24kLVXmB1LPGYA0kC+9zzpudiI8sM5WRICVO4NmJ3cS3pvPj43sK5x9/HVVEr0QfyFJHNqL1FOajfTCkRonocjeJEgSQQ04yIS/goN1FtdskYeRukTJcWaUX1gbsGIsBR0AGIq94iPiqnQQ+XVxFD99uPdPSah5e6TLprixj/1VVyjXILplBqN6FaV1pRCRFZQ7JjCFuo9WxZym9huVjJkgmluniJS8B0mZZVP/wGxrAcFBH/NMZfD9KFyHIr4U/A1Gj+a5g8i0G8/SIypomOCYrTHhq9hTPPvILfkiXRslPEW1zi983jJK4q/69Jdc9+i/ttoIEGfgfRCOob+C6gA+eGXmvWtBBiNuGlICoMgn09LaLDFK7NnNOjRsUCflW8MA1cxlUIPsI1xR7g9ZMIR9DoGZj7iFmsel6G6ohrV1fYQWXlaAHqOnkDchIxEXAd6EbkAbAF1+auZlHZArLFxZl6AqL3qKpRzeMWyBCYD2IGwyJjj1JgBoBdiHRSJYMQwA6guhZHSf8AJxP4EqIe8EaoDCTU3sSG7yJy2pkd6nVV9chPpYA2bNhcUU3NgJwS45cmqTNAK2o/QvxBkCJCydV/AI2OxSPaqibxFbY4jGqT8xuwR4HjaLgNpR0xA0hwCGFDrKm/icoAYkr91J3Tcjn5NIMLLJ0m20vUVjYVRFB6QG8BW0G6wX6J6i/AfgJgozDHs4s+xjuhTV1C58ZWhm7OSt/7zfrweDtNzQWa24qk2uD5owK//BezEs34uv2wkWd3n2ASRmZGNpBsGaG5rZuZ4XFSSU8yky1KJme2v5MWCiG5bFGIfkJb7zC2eF2Nv1dcgBagOojaFll9tFnEqKOS04N7Bioflmm85D3c/Vp5jz+JEzu7K4KfYVzFF1zFfAuq19y5Sg1SnOshUSdOcoHer3FGa1PALEgEoqjeQORtp6PWKziK9us41S/YG+jROMAF9ChiLiLGfVa61jYaBO0FsfG5eRcXuK6lim6uPwP5PSqSDSLiK/IANE42aRJko4h04CVXq0ncwT0na3FB9gsxfk6bVvyMML9IyzssUXFWw/y0iMxggseIHMbdj7UJwD7cs94KzKJ6HRcgrqP+O24mHk8H9dv7VXoOPMb1tz+CiInPY3vF31PAbVQFjaqrxBrlQE86jT0rIFwbq/+L8Xivgcw4hgdD8ed5wMQSiUFcwLwWlywrb1p1GBtO0roGqTUJFW8QMZ2AoppBrRNli0kjpt67dg22GH+HyBBiWh0bQ3bNS5tUC6DnXMvBBfCq7qU3gIiIIkM4b4ilEAKlzi/7gGOIDL7xjpcNOYl4ivHX1zFlXQoRcArMTup3rFjGrsVDvK+E6AP1m34BvCBofUeM9+bGna+PIeBPcaZ3t77F/TbQQAO/4xDVBsungd9SZIZagP8NtZtYaMq0NFRz2OJlNFpIzV0cd1hIrZ8maEkjMoSroO6jfoBbouA/iOmhSxnjVa0F5grGlLX4qjdwyYPNuInpczSaJMql4n3ncAm5EpV0C452ehuTCNwkkjGgE2QDAOKdpeTSX4bFVca3wxKuwqqPwM6BVvaaPg3e/joV19p1CxCN485HDuSiG7e85zSxnHaBMa24Sf1l1ObRaCMmmECYwVXpjwNJbDSGRqX+0UWFIoWZm9iCCwLUXsRLrkZMHyJZTHJExJQMwy4C+0Bu4yXXI5JEdRyNzmKLP6JOlUzxfi2GJmy0Hcii0S3Q0kT0CRIMYxZUdl7ggtwZkGuI9y7oSzTaDlxFvB015y3rxiZH4nP22JEY5CroT8GeJsx+AGDH7g0wdrc7rvD261z2up201l69sC/45MgaUql/R77Qrs+fTQGejo0nxPemSCZ7mZ2D9/aOS3Z2DenmF6TSMDGaZMXaCOPlaOnvFVscR7x30OI0SJ6gZTdi5kh0nBU/uRKR9CLMFVCNnMmfPgEBL7mRklt8feRwCTIfeAf+f/beK0iSdLvv+50vs0xXV/vumR7vZ8ftrJ0ds7M71+z1BEEGSQkBBhSUiFCQiJCgCEovIhkK6YnUAyRIAkiQCiqEJ0BUEAJxPe7u3h5vdnbHez89Pe192cz8jh6+rK7q7uru2XvXXJD1j+iYrukyWVmZWd855280ASRQ2wfSMScVUR0mmE2RbHmCmJcXPYvTxM+w+Jw7H0tWKkaSn8UUdCFO487JEuIdiGnqgB6fMzKcTzGvgRxf6AsBoDNP+whz1Ulxy8arIl6tvr3fNd1YN1f8qR5XG71BeeoawWwRGxrUenjJgMzqreKlarXrBUziCk6O08z8/TKIMxNcGA02DVxzOideA6mYsT3GFfxLVKH6CNdImQJGYifzyjaPuOZH7d31GRoZ5mj0FIArTipAmvqeKQM4Y7wpnInaLqrNmz5qteluvXPfRXNqAmjVqDxIMFNvOj2Kl16Gyi73xEu+aOb6UxVvEHQWG7aJyFLU9geIvx73vmcRcw8xq2Jm0Qu+FGiQv4lGu5f48zWcb8w+alMjAPzM+2K8XYBgw0fYwAN9lQVMmBVwEcfIAccWsLhjLAU0YdIvYcynaa45aQ5mu2vi/cJ4AvII1SQi+1ZiU3zGiIDv4+j1PyLd9QsYbDbQQAO/DF7radMP/+YXkToJHf/6xxdVl1z7fG5oFPUN/OoiP/gHwO+gerymkFoZYk6CbHeaY72LRgMAaOQRld9ivqtzLW4Aexb8310SzSOIOczS9N0qVBWN7lFPd78YT4DYmM0kQSfiBsZiV2G1J7HlpcyDnNEcEuElaxfiJ5yOVC4jZs8yBfhFkOUnFaoR2NgEzpwFeXvFRabqNESG+hKDIZDboBvAzC4s1jQKRhEpifHALQYz8Q+onsGGWVW7B1s+STAbZ93bUQ1yoTjTwSES2YuYRAqNulCF8vSItGw8iJe66kzuJH5NPY3adUTBIGht4yPCS00h0omN3scGX3XsgKjI/MXwBUxyFdXmwUIUgfPufcp36+y3PlQ3xQ2YMho+QGSXoyBrG1GxA3SDqkY6dv0DSrNQyic0XzBcvVIeu9Y/+/CHn6x5/U//J99rSrWVHz+94muYtQPDobeq8yhRdJGWlhLZrJVUk8UzSWwE2Z6QoJhgcjhC1cPPFmht90gms4RlpZwrI77IhkPipt/ag3ij4qc7cIXcEOi0K+ZtErUdoGsRM4zf3I5IN2pvAksVF7WYAL1FPX286hTBTBYv/SFeKgm8GpsUVv5+yrnW201gAmoLJtUTYF/Mab/6oD7cMfsKyKdgs8lxxLwBXEZtK2glhu0U9c0BP0bMouJObTBMWOxHI0FthJ8JHSNCMqA5FmSTuwdpAbhFrVFnFXFRhMFdwyL3uxjEBBivcs0IcBn2E7jCz+D8RLa5/9ePgL3x/a7hCrX1MTtoqUZnEVfg5XHF93gsG0jiMuhDIBUX2EnUTuKOrSzQjnPrr+yYh1g7hEhsYSzF+L18FRFiZ/sy8wvQs072szTURmcozxxwkiOddE0iDUA8jL+ctGRUvNSK+nVV7SfMPyCY2QSaxySHSWTLmMTbIpJRjU6gWjEHBZPKiMiC7yHpw0u8kHGe2ugUYb52u0dwTY8CTgpR+/0yHv/0AlmSrdNSe265N1BGo+vYcAa11p1nbAQeghkGu535jvHx905djOM3vQhV/hbOkDYLspcVo2XrIvZ0kADYwufn1r8c7uDo9X9MumtwpTs30EADnx/+YyjqG/T7Bn41kR98lSqdc4nOk1xCZAq1u3GLigeIN4VItfgV2YH4cYHtg0kOYst3icqHWXz811JBH+OlBjCJw8tSyxejQvt8EWwE+kHfiCncS+EZ6ATOvKreItIDjoLOYIMLiMmDaVWkLMIDZ763ZEF/AmQ/jkLbjJMeTONoqtXpoogH3ttO6/yCrswirah8tMSkdjVORw/YaVSe4Uyp3No819+P2ldVvBGQvIpcET/jke58Q0QOuxg9fa5DFw2Z1QNc+eAZqzaPYaSD1Zt6gQg/8xJRwVGGg5kT2GAtJnEdkXjBq/dxi92vIwaMP4oNr8bjvP2xVnovGvWhYRbjXwR6ifQ22NrJ3gFsuYB4JzGJeo2XNPCui0/znlGVT3yCMo4GPnOGgvIc1KIEwEY0vI7IFHgJff7xGdLNzWSzPsnpbHT6R8PkC4EdK2SiYrApKpZ9k05Of/zf/NG6N//gd8a9HZtTUiydoFxeT2vLCD3bZ7ClLp0dmer/vT9pLg2MtWaPHBnrPdDdQrH4MiIDtLffo7UlwPeTqL4CUiDMb9bC1C0mnszSuq4snZsT7vOb82eYD5O4gsh2VAd4sYIeXJNkL85ronaqbBFpI9FylWBmBya5HpELzGfuhMD3gBmwraicjOnOrSx57QANixewwYgks6uB5lg2Aa6IXQ+UY/r8AVja0bz2KYGLVW8AwBWyS21D3f0nJrGKhD+BRgvkRnoPpE6OOyDyCaob49capVrECbC3HiMAVYtGJ4miMxi/GSSLmK24z6K2KAtBfwx8HTcBb2JeHJ5OEIUnIFqHko7PnxGMlwLzZk1B5iQ3S38iIHKS+TT/AlWvkiLoIVQtkjCuOaZna/aBxBGItfutttgs4lgTFclAAFiQgvMTiWVBLz4Q71LVSVzaxzRqc6gto9a6hkyUwIZZbGkftYW0Le+mNPEx6e5LimmP/QFqmzuX6uybHcT5eepMJYdQOw2adztO1e1XFWwQAWeBVtw1vCf+WYhHJLKdIrLd9UP0togslriJJBH/NYwPcBpkSywRcCaBrpF9DRuOg1V0QUrLfPSz0BCxPrpAmpEljvel8RDkCU4Osm+lhs7nhBzw/+CK+dMN07sGGvjVQcMor4EGvmjkB9tx5niVSVf9s1DMakRexUUz3ZrTai4HkV68VC8m2U9UHMCGFXOeCzjDrHFM8jpe8ggiS01el3v+JHj70OgSzvhtJYxTXfDlgQfxpAzclGwTIutQO4FJdKP2ZGzuU4/e34LaA6jFhqVnghY02TIoxl9oVFXBvfjfANfQmMUZXFXouMdxi/vK/j+DyE5cwVDCTcUCqjKACEe1dIsYVes0weSpTNnroxWiQdRcAFlLeboftW5irlGPqpYoTRTVhjsx/gTt2/tIth0imLlPmD/M4/ODeIQ8vfFtNu09B0CyrR+0gOpWyjPHiYpHad9xEWwPKhdADqD2IWJei6d8Fo3WIKKo3EG82xhzDLiPagvGry66vWSGqBhH682hCY2OYjmOSSzFKkmj0TDir8NNOtfjTNUqTaBXcRTiWVSnUDsFfBfxSDEGiwAAIABJREFU0PzweSTYyujDPGC1kBgoPR5cO3Tm7pCXTqmKXNJCaffYpTtXX/sXv9vl965qYWoiSTa7j+b2Kxhf0aCFwqQVzzvYcmjf+ebm7cnswSMvk7s2zuzIIxL+TkAolUYwJg30YMx9AGlq26W5pj5K062K9AvyPHaT3+I+vxqoxt8reh/4FHRZaQV9jnP9n4iL7IeAxQaTwFtodA3xS6j2xa+7DacFBiXv/k+Pgj5DzWNcUXePqkN5AJyz43ctuWfv4qWGWXMo7eTOehw35a181klcY/EKaHtc9C2FS4jZgTPDq+AE7vxZuA8e4Cj0Hu4crzeF3Bq/981Uz78h6htXhsB2ZM4wbqkirgrH0DuBS6J4iA2fAQFeasG1Qks408ZvL/NsHRBtQG2tednOOIHzNuKNId7hOU35ok2xZaLyI8Q8FS/RgytIA9z6ZD9OCtCD6nNck2i2hqlxgDlTU8A1NGoL0w2ono9p2+vn5Ei1EHOn5lYUP8cUTj5TRCQEIS78U06yIJ0gXeSfPwPdu+g5V4TuxQYTGK/OddxO1SoiVDVAowcEs4PYYBtoG5VzThIn6/hzvAim8DNamcq7j0bKKzwGKmaMtR+liCD+vrjoh2D25pKPNckXNe/rAduPmueILOcNEFLxU4DNiGyBGvPTLw45XMLM/wf8KemumS9hGxpooIH/yNEo6hv41UJ+sAk4w1xUDQCvsHiCN83cpEveXmrBuCREnmGSszXR79MYvw8v/TqyJHXwRTHMyvT7UdzifjKmkTojLZF9i+7pimM3vRJzFCQETqNRJ+iueXe14U1seZip/pSW85Nk2jfTtbcg9bOTpxfQJBfS5N/FNUx24TT6r1G/AKnd1jyuiEqDLTmKuw7jGgDtuMnlKhZfe3a6yHB7l+LY/ElOMHsJG7oi34YdOn7rGCb5hPL0a7i4q0Gam/eq77/P2Q+7OfLtv5RNvd/Q8sx5KY4+AI7RvKZvztHasSJOoPpVNMrhdN0Wp7fvw/NeBvEQARsNgB5F9SzIBkTWIdIFpr4Ro0aHUe8ZYpYyM5zExZdtA8m6jTGnwcaxW+zHRgnQa6C9bpfqqCaaM7RsGMf4b+nI8w/1k9NtkzefP7HFsKM4kWvpWtvZKkH5Tvf+jW+QavoESWwglX5ApnmKVDaB8ctMP98E7MDas+1H9n4HZATv6R12vtdK/+khtDRJVO5FyRCUR0Fh46HK+3guPS/tRmQVYf65Jlo6RLx0THkeAXvXUXPZArYib1l+uq2aR2RBs0deAkapRi+uRvUkJnEQL9mFO++7cOdYE/MbCrW/rwNrcefY/vgYvIVLRTgqHdtHad96S0evWh25LPS8slnqTbMd9uOOkaWK+gLidSOyFtXRmv/vwDFfRt05K224Jt1W5hzh9TLu+rZgN0gCvNVAgNr3wWZZmvVwhgWRcqoagM6CpEQkg+oQah+BLYApIKaLqmZ+X/xzZfFTS2ru2rMcVJfKRn8JjdCo+FOQVXjJXtQWUA3RMIcN85SnBRscxiR9WtYvbEBaXDJAHtVKZnfcvAHXGNGbVIv6hVPiBC5xo4zIVdBcTMe2uGZJEmgi0fIQkUcgXxWR1djoFmgCte3LFe3qp0cJCyvunjpIYUsPMJnFRb0tH1NJnEC8t9DoI4LZzWDrS6+M/+kbz1DETz8S48077tSGZfGSfbj9vdR1fumEBYCoXD9i0mEE4y3+flsa68HeQ83kAmO8MVwT38OxUOpJTj5vOFYO/DT+OUO660WaIg000MCXBeFFRLR/pdEo6hv41UF+cAPwY+YX9CDSFlN5K/9x1rkPyyvx3z/NaRpH0ck7zpCLxy4fN/EOxiyltf90cJr6Cj21BNzHLUQUpAU3uVuNLGNONx8PqJ3Quei5I4gPqndAB9Eo3hfGYsNdYPqZevYOYvM6dv0RnbuNGG8etVLVTjlPvWVxFFfQKCsV9O5ZP2FR3J6sAi3jJnC7gY9xk7gMrkgDN6X2KY4PgM7R+1Wji4SFxdnFYf4hGm1EBCbH29TaZ1MX7hZaOxN7THNPRkTQ0mSg4k2LSVzR/KglLL0vTV0Zp00WD9B44pejGpmXBrpBp7D2h3ExBXAItIxyGpEjeImtRKV6sVEJbPAUL7WwqA+BIcTfjTMiq+AsIu+h5rqLuNMxpy/Wd4BYwlq6KGJ6SHccVT91gqHJfHl0tpxd093pJRP5YLaU79jbO+VrOU267Qo9m5ooTg9io3aCsiU/VCRhDlORlxhzCMs51B4kN9zL6PU+2XDwJR043Ysx59HoGL4/SyHXjw2SGC8DrHEFqKwCXQPqfBjcudcDXo+rrxQwN7DRBUSqPgmqo6i9HstAFLWCah4vkWBxPvz8yb+T07jUhmo82nrcotrpwFUXNv1GQUqIHEPtCK7R9G71KaUb8brp3ndLB85sAPsMvOVMz15zjZZFTTcFOR9PLh/icq7PAJ2o3YMYw/KpHZNL/qXa8EiDcUW7axrMoPYGattVw1GcIeY5xGQADxuOoOHrVJoKJmFx+61yHp1GTL34sE9dnarqGDAq6DKJHEBYyFCeXp65ZIP1ivxcXPOjE5cekcFdd9IQVOQKY/G/0zh2UQ7kOO58ngV+ALIN10TsQuQtNKoY/1XYE3Nw8nwPnHmcQ8VnQO1J7DKeZiaV+QV2W/x+o6WfOCq2YoO7i6+lC+9XGMNvXomiPgHyAPFmMX4G4+0QMYsbSYXRItm1e1k+IWJpKrnaMWx5uXjIdiedWIFNNx/bwd5CTT9ixnDysz1VCdUXimngJ8APcGZ3wyvcv4EGGmjgC0WjqG/gy0V+MIHrnfUCv8dio7oY0go6gnjPfgmd3DWgZW46LV6ZRHbjL0SzXwrWThJHqeGYBFtYZHr0qTHIUnnxIjtBdlJZJ5UmrwF7mR64A7QwNfgYtE0Hz63Xpp6PxG8q4iUiorKnM/1HNbP6nLRtWStilloYDuMaISunCKieAF0ink+SuML4OPWjr6bUhgWC3PypS3lm8QJTNSQqu+lZEAyhuqM8MvV49Afnvx792jff7+lZ76jCpakNJFvyiq5n5mmnZtc+kVTbYcTrAzkM9ipW1wIZVftj1DaTyHpxi2jWGa55vait5FonQQ+i6mQCyDlq8q6rb9VUUgV6gAxID8IjMFOIVBe9qh+BPQT8FLQL9FsuY7vGYMGW/xJoc/RSvSQaTQW3byWLAzMp4/mz2fXdWdOSnk42yR575+ETWbf2a5If+5ggGCGT9YmCdhJmB+4YqnpGiBwE6UP1EFOPDmhp7Bmmhs2hdhTYzLNPrmpz9x26tr0t4k/gN51G/AAxkyA9oPOn1yIgphPsS6i5N8c8cUX0MdS6WDIXH/gx8HK8bQO4iXVEDfdYVXPizKbqTcHewJnQpd1Ueq6oP4Uz19oefx6Ojq72I9D11EhXxPi7WHv4JphNGoUPmR7ul461SzF1upnLRgeQC3F+erUpMa+/aJ6w9HTfUfBVZ4ApRNqWuB8xG6KSXpFAbT9qvweADepP+qsIcV4FtU9YV9OsasuEhetoVESjMjYM0FCxUYTaJ2CbUG0CbaI8K6hO4Kf2Y5LD2tTj1fZWVbWERg8oz4xgEqEGhV5sNI5Ik4ipz+Aw3piI+Ur1Pet91A6hGiFeCS+5A2QaN52F6ucY6+4F4CnoBhxlv6Y5LN5y9WiMOjFpC5kktftLI8qTHUv9fUXY8kv12SqADXKgL+Lo9CpqHyFmc3x7yhXwZhrjpzDeOjAzIssbobrdHe0A6QY9hzsv6733+gW/KoSFe1QbR/WQIirexUuGiLeS10ZscmdCxDjT2y8Ht3Cu9T8ATjVc6xto4K84fom40L8KaBT1DXx5yA/+PeAf4/SLy7uvi6wDcx6RehOmlRDiFv/vVs9oLWLMET4rMo4zTLqPUADz9c/seYGYRrzCy2sJW76GRm6C0b6hjdF7/aRbS2RWPUT0PoWRt3Xhoiw/eFDFnJG2LUsV9c9ZqaBXfQR6B7XffIEL5lI03TaKE30EuRR+UzNiXlYbniUquwaO2gmKk09BVyHeXcrlIunMe+Wnz+74QdheejY6LOn0g87f/odvA2hpso+oeAzbdJ788DXgkDT1PHEvJW0x7fkAcB30daJiHzZ4By/1CabpPG48F79vraUzeO5x2oeXWE20oNYUr29BAkEFO3Gu6pWddh90M/B+LAN4iKMCD+Gqj7za6B4adMRu3M1anOzX4kSPHXg6kurOGIvxkjs3lv2OljQJb1BnZpN64/YH0fh0i3f0wHfEhsmaz6NNI/uxTkzlpKNthxjpdUW23sNGowSFIqnMDrzEehJdH0u6fQYv/YhEs4+fCkhkfg70SrVAPIeYjag+xEYP0KgNaELMeFW+Yjeh5iYi1QW8mDWgMyijQAbVBCIFHH36FIBqJCjNaFSkNFPSdGeHiAQ4KUgnTjN7CTjszPy0NmbwE5AjzK8wr6B2AhtsB23C+CcQ8051k/zdqjqlZ/5ECctbOfpbt8VPvOQeqiFh+Q5+sl2cDn4cYT3i3Yq3eynteoUdsLCon3HbyDuOhi9PiEqCmI/j+D2DyDDi9yKyGdWca4DIOTBnseFu5k2aZWaFYrXetSON6k3csdw5xxgKZiHMvZg+XKNHqDrKuy3vZvrR++o3tcS3W7Uw+pwg/1XmJANyy1Hfyaif7iOz6g0RU5X7iDeI1/RIbXhHnGZ8e80PoCdqCteFaMJN77vcjwC6UEpUWess5+1Rz7hw6aI9zF8EPtX3kZYLwww/vcP0KASlJlpXXZPd786P07N2CrVl0E9QzcfGcz5oM8YfI9N7CMRDwyFsOIZGeSTxHM9fC2aTLKajf7JoO3IDp7HhVrz0bZKtPYhJM3dtloOgz3Dn2AGq3xn3oU7yQgUmAbY8jWPalMB8hPEsNqhtku0gKj/DS4cx46wWzvFeTCfIni/J5K4MfIgr4n9AuuvBl7ANDTTQQAO/EBpFfQNfPPKDgluA/ZcsNYGuC30D1Ss4I7k1sWlbPZRxU8CIitkcixzbL7P8VKGCEm4hnmQhLXhus/QUzuF9+cbELwrVlWn6NrgNpgm4CeyWTFeeje0ttdukiebLRGGRYLabsLAWtU0A0rxmqevAXFa1qkKY60NtCqSMeGC8FOJ1C7YZ+CbwAKUfRKnGSiVxzuEpXGFWtwJR1TFmn70FtomoiKoMoLY6USznrszR8jXqZWbyOMODHw/873+WCUenIuDV7t/++xe8bLZFVad1dtB9VrY8gp9uJSzdwm+qMDIyCgYbnkVMAdXt2GAPMIuXcJRfNVM4hsJdsDnQWhfuMsimuMj4BHgNzEm30NbtROEPMd47iNQ2MM5BJaNbp4HnjoYqgtqfIt421B4H2wvsVNWnaDiJJDzEptQG04zfX1M4+clM6f7oXxffPMq+s+cT77XXkpLOeFh9Ls8fZ8Obd7t0Yupg+P33n5o33rzjbdmwiyC3TlXD8NwlsU8H3wGQ7o5b3s7NQ6a3Z434/iHaNv9UunffQLxdInKhJk/8Mu574jXgOnP05RpTLWNeR+UKcykH5hRoGvQNsGtQ86N4Ep0CXkPtJziqejsiV3Dn2AHc9LqD3GCBYPr1muf/EenOVpxEYwi4jOokGl3DTWNrz7uZuJExiitoW7FBPmYGONjwHZArGL+LOHEBtTMgSn5qnf7sX5Z07a4LdG8aZnqoSTrWdtOzpdOZrcmPEW9gQXPxJ7ip8RSuMNrpWAwYnPHfc1xj8eX4mKhhqshGYBq1tTF8W9HyECZxCncNexf0CDa8zvyEDhDPQ8NKcgU1zwHoY2z0DJOYFxcJutn5BQIwC/5xkGwci7cYqjOgl1GbcNp5bUHtOLAHVccyMP4RylOjVNgSfmYXUfmE29dArfdHWNxPafqsJrJW2jZ3IN7mOIayd+kGxYrZuwO4a30Gp7lfGLFXacxVm5qqI4DUyKCagem4uTKDc7SfQe0l3DEaohoBCirYML/CNrmXKRdHGX58i9H+LGHwCq6BNU06ewO1Vi0nxPOaQTpQO0M4sx+1HvXiCW04AtLsJAOJTZjEi7DM5rZTNZoS8dqosOOiYi+Fovujo7fHkHXAOpxR4hXcsZ1kfjJBzd0FvORBjD+ERrexYcHto6AeU2UdNjyJl9gH3HTMJvMSIrtYKL37YjBApYiH90l3zX4J29BAAw18AfgPfFDfKOob+IKQH0xSnWr8G14sx30hPJzplbul+gzkHuBRjbFzcT+s2OWvN8G6FL9GM25x2BL/nsIV9ouprqr5mHKeYmWMAk/cdI0M6HL6w8rzR7yAUZV4yf0AatMniMon8VNH0egyUWGSmFYqYl6hddOIGL/HPbWOotEQyLhqdA5nrmXjiCLFBklHNcdRbt0i0xXLGlX24MckMpXtiw3AFq6/9Rrib41d5vvq7vri2PV5xnMa3ZubvqqCLVebP6XSPXK5bqzdvf4/+9oHj3//z4ck3ZTr+E//kyOqOq39Z8YI8gXSLffxUgfET68i2TpCMJNWP/Nzl9Sd8whm3wGeYJInEe9rJNvPi0kcBGpj+15BEjijseAyLkotCdqM8gCTFGx5FBcLmAJ9hobfJbI/xUuswqUzAByE6Drq7UHI4bT4/aj2gE6ATqhGk6juEBEEvaaS6ISojOJLYbwYTJt86dyN9wAy7735yN//siGZ9hkbVMpBq67Z1M2th5XjZoO9+zCR+Nrf71UbPWBy8IFkh7vwx0qEQUpHJ3aFoxO7ABLf+tvve9v3vSdVresBVO8j0okrKivnku+kK/oI6Eb1Ns7Mr83tk8rBaNx56j7D7WDfRs2TOSq+8d4Aj9gA8gTOY+ImxEZ16c6TBNNUIYpGgnjNEJvMaXTGSRbEV9UcGl4ChKhcItlyTcS8PHfseKltRMUbqK2Rweh+bJCrTO3FeOt5+zfH9S//cJawnOXZjdWy8eUOWbNjftPReJ1x8VHZzxEQxFN7xenbm0EvIbwNkkD1LtBNPbNKt8K4z+ICbjU2WDg5XlREikkc1sj2uRg9vYuNBlHr42QRm4B1qhrK4qloBVk0jM87e2LRX609jg0O4Sb6NfvPPAabxhkBvoJIE15qmKi0wb0tQVPtb1McP4ONMiCjeIkEqmC8dwkL7xEWUDE/M+3bbuDiLZcu6FSbV+A+5Wp+H6eWSq/6BNXx+PE1rBsdwTUmruHOxyxhcQJ0H+7a30I1frIO7On6m2otM+M3GR0YZWq4iyjcS8WzA6bo2nCJra+/Ln7yEF7qohi/2njFRDj5VtcSDY4eCiN92tRz7FNYyYQAasNhcs9n1EtdoqlnB6qPyQ+uotqsrPOEksIZRdaH2hGQBDa4hYYBigd2G/VZDwHIdYw/hSS6Ea8NkZVlXZ89FOfvUinkLzdi5xpooIH/ENAo6hv4/JEffBn4H4G/+Rk/8zqcQVMJ5Sfxonk9rJQrrwXq61BnWGCiVIOh+O/z4Zyl6+laI+Aiztm+A3gpngi5qZBqJQpu+XNQ5CF4o2j0YlREr8mZ8YmA+K8gzc+xwQ3UBohfBt1KTBkWkW7Fa6E8vXpuu5aCSVzGS/VjvFaQZkqTMUtCVtIYDiCeqWmPZrHRScS8ikgWQFUHmXk6x5pQR+evLvbCwmlqc7GTyVWUSleJ7MdaKByYGJ2+1ftf/K0RrO3S8TtPKM8eJAyLlCfu4yf3KPIJzWtGROSbBDMpwhJ4yVWIfwLxDwIBXvrnkmg+FhtqKbUGgqp5NHjO/GiyHtAbiraCuS6VJoCaDOhJsF8hCh7i1VK9zWRMC18DXAU1QA6NLGgGjfah9rbinxOTyIqNCghtanmsJrM6/+9/0gOk/R17LicPf3Mcys1MD/Ty4O4qDaOh8MMTO6kY93Wsepz8e/+kBPSK8bZK57qtyb/9D9Bi/lr5L/64qENP1mhupl26Vj/33vjqmzLfvMqA9oP0M39xnkLkHspDUB93/FaKJw/kDOgexzAwp3HH9nagFWwKNdfmpTuIGNDdOEp9EBf4O/DShzCJQWzgdLSFoaMa5i9Lpvek6yaJxIwGD/QqNnhKcey7c8/rN53CS1ZeA6LgJlonqQCaseE7iLmo4q3Rm31PCJ3cQ/Z+bUjaVi9uutngJUzCxWypTmODB5jEWqoxeD8EHcSxPCpTYQXaUA1io8D5EDONrqiwgaUc2SSxlzA/iHP2X8he8rHhR3iJN1/kBeZBdQQR16wUGUK8AFf4NSOm5LZZZ6u1oHlDg/IJchM+NpqgqWkrNjoIGMScoTx7GLAkW4aJ4/ekqacHL/lK/HozoEOoTrtrtIaoCm4/FnEspG3UNpCqqL0OTVFrTiiyERsNoPIRIqW4uRhRZT3UHJNmCI2WdA919gY80mfXbzP2qIkoOkEU+IRBChulUZuNZQkLZQy1xfyx+LVOIN48OruIeGr8R0TBVuA8mCJi1CkKYpaUWiHMfUAi+7V621en2E+5l/NXafMayA1sJ/e8TKLlKe7Y3Fx5+aXed50dEaHhx0Sl/bjPZ6nvp3uI9wyTzGL8PTVNzi8ak1RN7n5MumvkS9qOBhpo4EuDwK9QTr2IfBv4fVyz+f9U1X9W5z5fAf5X3HV2VLVqJF0PjaK+gc8HjmJ/CPhbwO/ijrXjuMXvQr3jL4N+MKOIfOtTPOYj6hfvC/OkK3FnHbhF2mKpgFvllXELyRpqrFxZVv8vknBa9LkF1VIYxPhHUenDhsuezMA5Mf5RNdlZwtwdYCdiVuOlpvDSg3ip92Thii8qnmfpRoaDSVwk0bxV4rQBtdG5FbajBnK3hsoNanPAu6gdBvMI6GB24DZodYEalm5hvBHEHEDtNGFhoeN4E2G0b/La4yc3/+gn4zaIui/99/9s07l/8s97Nv/6kcs7f+u9M9mOpjaBb9LecxNjXsNPPdQo+ITppylJZl4nYFzVu4OfuSWpzH7SnTNAH+hekAFUS3MFjUYfUcfcT1WPUJy4ipdM4sdSXZFe1N4BHgOd2MhipIjIddRGqD2BSBLEAnauOLZRSSBCzEZMwiLyJp55jrUPxPNWTf2LPypFQ8PbJdM81fI7/+2gSfqtmhsq6OCTJyCrNQhnJJW8r6XyDlpb7iZ/879+DiVR63eKMXMNG0ln9qX+zj84R3UCuR3Vm2g4Ra3+W20CtYJ4g7iiG0SeAN9w1HK5BPYI8BHIsbiSOIxGHwBfc5FgTFebOWYkLuhvU1twqV6JC919KK9rVPqI/ECe2q6K2lbKU+9oU8+AiKxdMMFcBTqJK3idnjcqR3NFPYCGy+Vcg9o3CIrTRMEE2946yYML2+ndsdTUuA0bngZ9Hueyv4o79ysM8ZYaLfBlVDfhiqV1OCbQ4qJGjPeCRX3d1YgY063iH1/yfUblAG9JQ/MCTis9hnjTRMGF+HUSqKZAD8bv7Q2ExBzbwJgBQg2IytPAcVRL+MnXQFYzPrATuE9qXSWG8wF+uoOwEBsH6mNwRT3J5mrTSKTFNSSX2QNq76BRAWQSZ76ZjLd3BhhwEglyID42+Blqm3ERoLtBu+MGbEX3vXgKL1KsPbzURXTeAZ3CTbS3ApuZeJZjeuxF/Acm6dl0mc2vvSF+ovb6/RyT7JF68SNqOxFJg7yFlzyBSR5d5BivERrm+8TPOHlUMHuB0mQStesUGcZLjuIlBRvZOOijD5PMEBXyiMmi9iWCmc0vsP31odF1olI9ptkoYu5gEopJbEdMjS/CF44bVE3uTpPuWhh32EADDTTwpSC+9v8B8A2gH7ggIv9eVW/U3Kcd+EPg26r6ROJm+HJoFPUNfF7owH2Z1hoNvYtzur6J09D+MlCQUyCvIrL+Uz62HjUQHD1+CNd0mMZRYuvnA1fgxI0HUH0AGuJ0nVCNalsOw6xc1LslpnjHMOYCtryThbpah1NgDiJiBFrVb86i9h5iNoijC69G7SkwRyuFllobEJVXXnAlmrMiUv0cNYpFmJTxEitcQ/QYGp1DvIOonkajyv5chdq8qn1MYXiuYFYbniKYde71iUwfYakAvIWSR8igqjo98+HQ/3s6nH04uK+rtz03PjR130IbVqef/tmpt/r/7FTnvv/qb3x/629/z5filCHd/iFiDhDm7uGnWkDukcjcZXq0g5HLO7W5+5K81DuKmK+CN4INBhW2iOfFU0pvu9rwFqrrxHhVnXx5+izoO0Qlq17TExHZiOoE8BbIVYw3iPHeif+vyU01yaJMOGq7ThOFEURJRF5VS5rcsw/J9K7Bz3wiYBCShb4PRqOnj/86QOvv/uPzJpmYBeuTalPZ+voh3by/V25dvOy1Pu1Sww/Nus1ZUlkFG6DhFdRzCRNKCTFpFsZBiewGP4/av0RDD1U/Nr4bRuxhRLKollCbJpE57uQD8h3UPABbqRYdNdxR70fA9qO2B+QnIO24CWsr7jvnNKr7gEugR1AZAL0GVjDeHrIbBOhk6n4BNAkYUu1nQdtBahtvBeAaxi/QvHZKxGQUruDczy/hNNA51K4YfyV+slX2HPsOyGXbtemJJFKLGnKqGhCVfopGrZhUTvzkORAQeTc2M7wC2Lj2PgEcipt3lWvd9riJsR/VJ46FwxrEW704Xn3Ri99nueab8YRoqeewr6nacRHTieokIndB8i4VQHZUEwq8PtQudV1uVdUPRUwzSAHxJzHROaAdte3us6Zbmlq6NZE+Q1A8TBQOkkj346cdS0DMedRuxEZ5PIPbVytb0s+DmJ0uilSP1XnoaZQimAnEgNp6ciDDAm8UVb0FrBWRVkWKsedDCnedXUu9RkxT2wyTg8tt6TCrttxi0ysLi/l4K/x7YrxFn6eq3kFtlW0RlX3UlhBzF/EmnKGdbEOkGxsc0yDfh990jOJEG2j8OO0mKkFUWm77FkM1papWXiRyzoaV+L9STKmfwSTWIN5OXjyq9bNGCWdy5wr5dNejL2k7GmiggV9BiPxKaerfAu6p6gMAEfkT4NdxzchbqfOpAAAgAElEQVQKfhP4d6r6BEBVV4zRbBT1DXw+yPSOxzr6hYgNkTiNm9h11bnPCpAzIL01OvpPAZ0/KZyPFzHOW2KTZCuqZ5l7P3oU5dSiAmr+g1Irr2mlun9EDmCSz9DoBhq9SZXeewnMIWqmPiJikHm52x1um+xxMO8igmjQp2K6UTuJo+3mcKyDWlPAkBpKr6q9QliMJ1xyXoy/8megdgtqj6O6cNq9meL4k3hajaq9SnGyWkwF+WOo3gBJk5u57qK1NKFTM3770ZfTfjLZYovl5M2rT70QMh74Ajd8Izz81z/4a80bV/f1fuvAMdIdt7FcpjTVQ7I5UmQjyghBoYzxrez4elpE3gN7QovTE+SfryLZcpmWje+67YoyjN+0QItibtKxc4MYL4vayuLXYEuP8NIbEelAzSAuuu58/GF0AB2ITMYmclmghI08sEmnJdcJytM/IyxkmbyzC2RAO/dc08A2FX7wZ18BaPobv9Hnb9ycjzXKHeKnp9V0faLPrq3h7pXD5tv/+Uk1Gkl2jRExOcRfBYzEtO+vgj0PEtWXzkoG8b6BmgnCQgRMI6anIpFA7Vn8poru+RzoY0QKqEmA/jR+luNAAdXVYL6BmDIiFcOya7hmWiae/n4INuNuz0UItIsrCETVPgTdSKb3JInsVmCLLIq1ksuIORQf9pcQeVVgDc58rnLwVWQALwR9fk/0/J+vt/u+eoZtbx4W9BEajWHDHLa0HnBRchqdIpF+G7gWG6l14tISKjprizs/H+O+pJvj97/aeYHwkNiEMp4kV867pfCcpUzKAGc9Xuf9qD4lKj6RKBgl3fEqsAklgecvy/pRaxWiu0TlIWxg0Gg9fsYj3eHOT/GO46XcuW+jE0TF3ajmEGlm7c41PL5imZ29TFdL1bAumZ2K/QViqYJE+vxcWlPtx6Vn/2GR+u9hEcR7Gw3vsXgCHAJbwW5F7S1cg3brgvuMI95xtdEsttwCotjyK/hN91TZGTNEFhvULUSmrTb2IsSYR6Sah8l2BrStaqZz/V7x/HqSDwCLSdSXiNnyc2olFOJtAZpQu7+GzRGBPAIMmj9EcfQ8n9KFvz404557RdxBTAHT9DHG34vI6ys/5HNDxeTu+ziTu9wK92+ggQYa+CLQLSIf1dz+V6r6r2purwOe1tzuZ3ENshNIiMjPcR4vv6+qf7zcizaK+gY+e+QHm4H/jnmmRItwBKdzO8lK0/A5yPF4SvHLmOuMsHRR/4tD7UnmR795rDR+E3nFFa0sl2O/MAd8HeKvQ71R0LvOZVjeph6Ns/6GvovqDxDJgBgR2YV4aYXjYF4RcVTtuHs4BFoiKqMm8QZR8RpRqeY96qYlNJwLXlJD6pgtqeo4+eevx79PU5zsYWHknsgeVIcplw5oGPaJte1Aa/ql9TtSO9eVhz64fMaE0TpgnYUbBnaIMZdE5MK1f/pvjiW72z7o/N5rq5gZGJJUy9uaGz5LMnuaUq6JyYG3ZdtXfi6e/3XQWxoW1jL7+DDgUxyLtDj2DK/pEbbUyVw0l91NfvA42XXv4qWgYoAdFt5Qk5oUkXZEetVG0+L7tT4LT0BcA0NtDtUEaluJndvVhk/RcDPpzj3Y4A7Jjusgqyf/h3/Uqvlcq7dp272m9743g2onzrrcqGpKhz4BCqvNr/3DD0k3t4qYWfE8D6zFdXcNiA/mQ9DtaNit6itR4TKFkTEdvr1Junc/o23DURHx1FX8eRGzNW5pj4M5i5a+iw1+ADqD+BbsLcTvBRSR9XGhKiDNYCdRO4zaJxgvg5t4Rk4fTA7oR3gPzAmUq2CfgfbgzDPFfexmi7ZtHxJZlFpRe3BU9PzXcN4V4NzXq0kFTju9LFQVBu9ftpd/FlLMvcHqVcd18PqEtJhT2rZxp5jE5sUPig6q2jER04UryIs4qc4ULjWiBXgEMoKLI6st8K5Q6xHhTOxusbzz9/LvwyQ2aJi3lEu37ED/SHT3ZloLUzOJo2+8Li3rQ21q24ZqryMWyaJOooblGS1MTouN+lDbika9hLn5Gn0vUTualkW/h8XToD1iJKuJ9GmKuV0Yr+rOnmpvkfZtMxjfwyVkoFMP75AfelcHzl6UdUdeLD1ExAcvcF4U1E6Va9/XdoyXwtofgnbgPqMtiFmtyDrCfOSYHzHCQqUwXcm75BnIAM2d42zaf4bWnm4ybVvEeJ+GZm5QO4CYxdnrYbGWdRZSP5/dw8VhurGTSfS6BM5fGrauHMB9Z96JZ1w7ENmJn14qeebzhuKapZVC/lLD5K6BBhp4YXxxo/pRVV3Oy6behiy8lvm4NeLXcWuaMyJyVlXvLPWkjaK+gc8W+cFvAv+WpeLf5qMdV9Bfxi38Ny99VzkLslhb+Kmgymet73PRUXPRb58eMr3MtL6iEa3zMOkG6cZLguoscBeYAFV0brFaBsqIhDi5ggBbgO8Cp/BSRxG5QFQ6IPAu2DFU7iGyXUS2AgXFtGLDB0TFadQubKYMichS+fa127o2dtGfT+0tTVxFbWwwZ2+htv60aXbmaTRTMAO//++2pLatufXk++cPdx7c9fHq77w5e+UPf7C3BLPATAIiD7o9IRQjawS5FT4cmGVmEmlqT2owewmNDmLDEwTFBE1tl2hZLaieVfQ5k492Ur0mesA6osJi3W1YiO8zL2arGRv2qfGPAar33r/B6r0J6dxcKVSmgFmUJDb8CnAVeNO99WiSqJzGb96JRleQxBB+UzciE+3/9J+ncn/xb083fe07U2JoBm1G7VOgRYcuFvDTvdK+/QJesktgEpPMxAVuEGuOcZNgs9WxVHSAYGYK9BW1oSU3Gujgjzxs8gM98nd38ezsFH4qz+pXPBH/Pu50+yqaeB+1sWGZdiOMgzoKrjKFM7CLAEHMRTR6D402oPIIMavVhsPY8H28RBLxsyJyPD42XkbNLtD3wfZTk4ohIhWZzCjuelI7ye6jWhjnEDkUH2MFoIQ7LoOlvsC1ODuqdz+6qf23MgTFtXS251i/Wkkkr+vz5zlu3/t1fdr/QI59fYbs6vuS7lxY7FWc6NupuocDjKE8R6QV12DYjKMEVxoNT4BNiw3zZGwF1s6i80ytHdKp8Uf28d1SeO9GLrp7o4sw2ANE/oH955Lf+LtN+E3ZmsbIKeBtVbUUZ/qZ7H+iU89C8uO92GgHzR2trN5aue/iiadJdtbcqm7s3C7WFipU9WzHMBPPNxGUnpBIucakDdaJl5z/Ptq27FQbfozxcxoFz8VLLO9/MPeaZrdjHc01SyKgCOY4SAuwB5EtGJ1Eg9rJ+z0RaVE/fZywsNQk/SxiQsREYDzENAHDiLwjEke9da6Hls40yDRqL4BGiLGIKFHQDlrPiLWKqLRNxQuk5jhQ1cdotC2+AehpVF+Nj6XlsBZHPX+RBJZlIDlcM2oWuB3fXoPIDmJz1S8JMziTu+8DPyLdtSIFtYEGGmjgVxz9zP9eX49jHi28z6iq5oBcvG56BWgU9Q18AcgPrgX+N16soK/FK7gCtA94m0XHpTn5i1HtF0IEdAy3+OlY6d4rwkXAXeAXLugBR7ep554PjnJbv6ivhaNIx2ZyUr//Nx8RrrgHG9XGZHVBVES9McRcA9z0VnmA2gUGHXIKP71HrT0unp9BtS2efLUA6TqvuQUXNdUJoKoz5AZei3+3lGezgCWRvYuGw5iEAbUUc3nKpW8N/OnPf6iRfX3o+LWWoBzOjJ29mRw5dWNbcTp/PYR1HpgATDrhnVDVvxYF0em27b25nt2rvoGUb2ITliicIYx+TG6oBS85Ibu+s0vErAcui5ge7dq1DhucY+L28jKMqHRYx299QrpzEzU9Jp1+ahi6+TFhuQf0VX128aF0bP5L3DTRgoLayqSpqqeNChfQMAkMgWnGT6FBYcYk0s2SSY9n/85vBHipIkqAECKmw049LOClt0r7thEdvpfQiYc5Nh82km0qgnQhFFEiDWYjSTQfQrxB1GTBeuKlQtBrmmgt09zeTMmGeIkSj9+/TTn3Cmp7aF7VR/uWY1qafB+NLmhhvCwtG9KCbQa9D5JCbRGX9/dVRG6AjqHRpDtW5LqKEcSbEZHNqD4lzH2PUPL4mYskmt91DA77F4jZB/JtVJ5CdJH5ufOADCDeGNXryiRQBr3k9q0EsQHaS/Gxd5Hq1PuHgFVr0UdXLuijyyG5yVV0rsmZHQdUdryRtKPXB6U4cQTVB0xNWXxvnQIE5QyDA7dZl8iSnqtni3ipm0iiX8R04ia7x6kaKXaBTaByHaSIyE6noedCfAysR2SxJ4YYy3KkAtWNGga37dCz4ej2Jd/eubpZp8bXEPuD2ND2oaRVNTS9q44nXn7pa/hNLspOtQjcgWhWVc7q2MMizy6/gVtEVOEliotfuAa2PB6bBLrmjnh9uCZp5YpTFXG397ax7pWnlKYeUBx3RX1U2qCqOalKMhCRDuncGV+LrSUq9+ElX+x6Kt5aNPwpLk1iJ5g0YhYW6vXlXSb5MhScxwVccNsuXcBO8ZvaMV5tbOEM2C3UGLyKeAdIztlr1CRcgKoWKI7dQXUr6DhIgnmeJDqKhrddIy9VPdZt+BjYhOo90Iqh6AXEW95/RqMzrGR2uiykTCJ7iVR7ALIZ17h4MdbE54e7uCL++8BJ0l3lFe7fQAMNNPBXCReAHSKyBXgG/AZOQ1+LPwf+jziSNomrF/6X5Z60UdQ38MsjP5gCfgv4n/nFi+Ukrjg+w3wa+/3PpqCvQPaC3uGXLepVh0BnqKXRLsbKrAIRQekGfQQyDsy4Qsm2UCeX+jPCeYglDBpWJzBiTuCl16HSjwZHqMgnxFSkEpX7lkBfJiwIsE1J3sdLdYnxe+JYqnOoHnL3owSU42X/GK4TWQKN6NoLaiMJi6MgGzF+UfODwxRGqgvUptZAn/WfzG7sbH5y7WE+Pzp9GKCYL1+dGp/tHoNVAURpeLomm24ijNJRORzCl9Lr/+jX15NsOh/dvV8s33vS2fRr322nJSWEz1W6tgfi6K/vx/TnLhFp15knL+LxIHipWcTMTQA1N3aVgSsHqDY0AlmzP09UfB04gSQMxusCXY14NzD+aVQDDfN5sN9xxl46DPYsttzB44+xyeacbDyYRDUUjVoRz4Ks1+L4Ewqjb0n2pcv2yc3ArN2aYM2eBG6itRfsJVRadXYw0OJEVrp3D6B2FpE3UQkx3mkglESTaNeuGbqjNvxMM+VpUL3P0PUefX7xCM2rL+j4XZVUi0jzmoSgefBmnNRDWkCyaPQE+ACMIlIErxcNSzr7fJTiyFdo2fQjMqvu4qW+jel4QFR+Tph7R8X7ibjC6R2QosIwNnyAyMugH4DuEPEexC7gOZz+LItzl5/CufBXPxHVS7gJo2OnOMnHM1Q7NDf5F/Zn/9erpDKebH8zkg0vP5FUOoktvQsgUfkRqneZyZXIdkyyqgXZtq9fjFkHkiPRfJ9k+3GM3wXykoi8Fg+qX8NNNN/FxfG9jZPcRMBh18TR90F2g+4FbiFSnykkXuu8ot4Z791zfheaAXaU/u/fS+noYP3iTbWrODR7Ra2ubfnGu2uLN5/9tGn1m2nUduMo9Pvdj0LF66EWxrtB787XCOun5vH/s/fmQXKd2ZXf737vvdyqsvYqFAp7AQRAgCABbuAOkt3spro1ksbySGOP5ImYsSY88tiKGC9hx8SM/7JszfzhsEOKkMNj2bLl8EgzasmSusWlSTYWYiMBEACxFbbCVgtqy6rc3/Jd//FloQqFAkCyyW51d56IChJZLzNfvnzv1XfuPfccZFpgt7MKANx9eaPLUPNuIeZMI4P+NsYvinhVxGzXdEev5NccwvitaFJHKOIKlQVcAXDx6JEBXYXOi4qW/ZxV4DjOo2AnmDmwO+6z0+DOh7s+KbhigqbaTqPJqMTVb9z9HnZuyeTYCZZJv1iExUoNRCSr4l0hLg0AfSzEmyaga3GFmBfR8hH8Rc11jU2jQx8wX+TVpB01ceMeNX8MLOgQqgXQOmo//0y7mBmC/AVSbRYTPC4PSmr50SDGFcfmTe7u24lqookmmvjC+CG0vl8mVDUWkX+CUyF5wB+o6hkR+U8av/99VT0nIm/hRvYsLvbu0we9bpPUN/HDoTLWBfwBzrXxy8DzuEXnVqANZIwHGkR9Iazh4cZUD4Ge5+Ed+gf1zK8wL7URWQlmI4vHD9ScAvuZcq6+ABZktCY9h62PgYzgtzjCIAyiqdPYcFVjW8EEp7FxFj+dQbydaHIZG09g4w6ScDvIOYy/oRFLtQfsfu7tHt2RsgsCDXN5TLCXpP6Eqg2pTtxtIFWtHJXC1Eudj62l87G1RMXqienT12ZO/9G+FTU4LxC3wNMWzkxX6tU2ZxilBrk08YMzw20DnUGq/3p3dHZiczIycrzlV9/ISfe6DbStPA3mB4gqTrkxo6oxcW39ZzqCspCZptYmTF4uskDoazLwxMfSPlBCk2mQDoymUVtEzAqQS8BjGK8NGx6485qanMOk+4AJ2fBCFi/oFZFxjN8H0o54VzQu+zpz8Wk6Hzml1cpqoviiZNpfQeQo4ilwEUwnYnpo6S9JS98c4l0HulA7CVxFbYBISvy0lbbVGbXxFCKQ7U2jNtDy1AlKY7v04l89Qyp/lY7Ba+IFazWpX0WMFUm3AHOIH2P8NbgZ3wJgEKmjWiPb1UJ+9YgYvx0oinAMCZ5WPCUuX0aTDLh5a7XRQaJiFzbagwnOonYjqnVNd6r4qflItY9wnfiaql5B7QxqQzQRxK+I8QxQRpMYtd3APkReB9aR77lsfv4/75RUdn6+exi89djwGOhTTmotCasGH8P405LpuiS5/mH8zKR4qZ1o0gFeK/MRh+h1FszUbrv9kpdB9+HGXBbfFzaADrjHl1XjNM4nswFNDqMaNvwFtizd3vSvvpRMjq1f/JiqopG9ElejAsrTNkqOFP71n+8B1qef/XrN5HJjIPNmgeuBy40xisUIWbszJ8brQ8zd7usL+zfOovuGqrZQL74r+dV5vPQaxFslxvsEL9UH9Kkq1KaKItKKl97ooniWLDdUP1xm5KAPR/D8xjYWOINT+eRx9+wF81ExT7pUD16kYbi55E3GuM/IlYjZAbIKR7oXRyguKBZUS2Af0gWXO/dpVVtD7TRxpZeFzr4HPHXPZ1W7JLVF1InJmAGdP1c3o8le8J5DkyONlIE1PNh/Ybl9rBHkzhK0FfEzKxrFqYf5B3zVGMcpab4LvEum+7MkxjTRRBNN/FRAVb+Huwcufuz3l/z7XwH/6rO+ZpPUN/HFURnzgP+NL4/Qz+NZ3OzpLZDswzb+/JAs6A3cYm79l//696CKm4Ep4Lo6m0AacUv3ReBmob90DLPYKNBLPdcwzj5711YiOzCp69jotgirMalu/PQCyRB/G8YHOI/46XvVFPLSZ/YaEOPIcFg8ByxkP6tWsZUe1q59i9HRrUTR+iCf3bXiha2cPHrpxMThoa3q5uhP5WBOra6sGdnXnk2tESN25uzNZHZoJD34H7wYpvpbrpGUbfgn/99WPC+T+Se/HZFLZcAYXGxaQQSjQe48UflBxoUOUfFp4vIx1HajuhpZZIrYvek92le/qJocc9+hWOJ6RYLckzjX8xjsDRcFFs8v3q+i4pHUxtGkHb8lKyY3DZJGZA7xphGzGr8lon3wiPhZT9rbbtHe/SKaXEWyjyNyuxFZFqLJDTFmBfgJQi+QQzmN2qRxXvk4vwUjXuCjmkK8REGoFhbmmsPiBp08NySrXyhjUgHViYyKPyNepqsxa3sBNAuyyo1g2KuYlBURaRQZukGKqJZIqlcE3agm2E9c3qNiDiDeSzp2tEJYbqFz41FJtW7Hzx3Ay7wqIjdQPeci99hFY3xDVF/WuHoMG70MePjZQ4jfUJ7IXtwoyt47p5eYUVLZxYXB9QrH8DIR0dxH5Lon6HqkV/IDZ0XMNhacxCuonsOZN84xP7LivsN5A8snQUsgrQ2CuLQAOchCLvokiyTcd0GkrTHict97ghlYW0k+XTDTVVVqo8UjmuhuYFBVp9Xaedl0pvhv/t8j7f/wN/awQAAvgaQl3zep6dZh6qX1AOQ6Dkum1XWivdQocW0zrkB1Gz97Hj+XIqpMali6jXiQ1H3qs7uBN2hbd1SM74p1agdRHUOk3wmQGMH4Vtz3txRjQAiy3xn3SQBEQAE0g5JpHKuNwOJO/DLu5t42SKZYWqRVnUbj+e8pBLncKHDdOcYKgk2+j/N0UcT0QWyoVfYTVwM0acH5RFQJWiKC1mfkbj+EaH7/NIluUBmfbRDyh49NwYCqhiIN7wuZLw7o7N2fw65H7RUerBZYCouXPUcqP4mfa0fMNvnxutQDd0zu5heyx8l0f1WF6yaaaKKJe/BQY+efcDRJfRNfDE5y/38D/95X9A5rcY7SR1A9i0gdR8A7cQupOo4gf0bX93vwVRL6CdeNlRA4B2wGebBx0lK4hfBX0bmo3iMgcDe5PtxsfwHIATsRWYsJxsG+A2zC6YMXH+9hkHGW6xo5m+09qN2P6zg+wGfBzZtKuv0JUturWrj6IeUxiOubgC1k0mOsGmglSY5pHFcqpy6kp49e3NABJ+dgVxr6PegxkO/qyH1iw+SVlrZsPZ4raa0eVa9//7S/4e+/3k6xMhZfGcmQJCmN6hmh5SXgIGKeAdCkfoC41ttwTC+5Y0X3vaZmAHhog0CpVonquTu/ybR1gf0I1cCNaMha4uq42ug86faSCBuAmloreJkrJNEENprEzype0CZQ1yQqq9oYMTmSKMSXdaLxYyT1d8TPdIifeUFt/A5qj5CEARLO4GU6RbwQY+qI8bF2EqEfGwc40zsfMR5qM6BVkIyjhmIR9UFVjC/ase4yUxfmXbenZWB3GrVTgtTI9f08qjcRCkAMuhZFESxQVLVrQdPY5KJIEqOSwfi7cSTvLZJwDBtnAbQ+O0jh0j7i2g5Z9YIzkTN+TURWuq64poC+Rqb7WlRPg76ASF78zHq1wWXi6hw2CiGDm0W+c3LP/21ToKI2OURciYhKHmFxBXHtMdA0gGTy+6Rj/TPYZO+ibuolxBRxxYSTYCfAu96QR9dxOfTgZvpnELpxZogTjcd7WOgQ326c/w++nsWMNbLVl4XpX3OXcFBEyKxo3VwdKQ4D620Unwb2qBs9iOpHj2xKfuVXb3v59gtAr4hsBdAgfYDBZ9cRVY8wcq6dzlULM/7i7cIZ8hQ0v7ZFjItl07C0n+rUvbnqY0efZeVzJ8RL7QLaSMJxvFQApBD/RkPrOIfrvs8XkwZANiDShXjeneQOVVz0pX0J5CBiliOhLfc84mIkD81/nzjifx1hGAnaQOrAICKPonqnqKKqc5RvlrHxN5e84gaWijQ1gXAOwrmSmuAIftbD+BmMP4lJvYHaMpWx+S76Z4WQ1E/jZ9x9RLz5+0wON2N5BXe/3cUSif+yMKmrpPI3CFoyiL9VRLY/9DlfPS4A7zd+fkCme/LHvD9NNNFEEz+1aJL6Jj4/KmMG+B3g73zF7+Q6uCLzndMKboE8H302hjPUAedCfZeZ0UMwypdB6t0i/zJqRxtm6Bm89OM/ZOxeDWei8VVgnSMu91QrizhyPl98mAQmEFkH3te54y7NGbAhSILaaZA1jceXM8cDMS+7bqde5P7mS+uB8yATIt4T0rlpj810nWX8ZBlNrmsYPkVibzA5VbZXr28+8X/t/1itFoDdnpPgj2eFIOfJC109+a0j16d+IHPVciaXTmG1der45aQ+VxlOZVJIrX5o/X/5q+jtSyXad3ssGhImCS1qu0A9XOeuHRhFkeWipdQmJ4lrBcozMWgbfnAA8UJynbtQPeqMsriKUCe3Ig1aA4lwxO9VQQ9iUnswKVTkXVQjEWNVySJRSJLkSYpt1KfXgK5QL3OBVFsLiGhcexcbrdSoWiIshhQuvSy9j79Hrs9ivQRjetH4MWx0FOjC0ANmBtfNVJB1iIyBVFBt1cLV56iW99K1Jk2uO8Vc7ihR5VmQEuK9CvGwJvULIH+t1bkapYlu6V5XxEsZMUEJJdC4Vqc88gzoNmCl5te2iJgUNv4uNl6F6ssgp/BSquXxD5gdzmKjF2kZ+AiX6foYrrC0HbVH3bw03aC3GteWumOnK4GqGO9R9VIfkdT3aFh+V7xgN1AB2YfxLMgZYAMi30DMEFNXlo/hCotPqo3nRLxdaHIOZAIxLyLiqU2UqNwlqZZtzhiTIdCdS86EM+AtJVDHFv3/PJn3UJ1GpAvV46gt4i5EAySIx6Is8nsgnT0d9zzmmc5Mf2ulMjJ3OirXAPZF5VpQny09D6yK/vt/+cHq3/nt1+5+kngiIqRyu3XTK4cl1daNJodJ6nWSeg68KYw3eKcDD+Cll3NWjxBzWSvjI2R7bouXzgNtxFUD5MVLfR0XN/jYfT5SwxySFaiOoEnMnW603o8cn8fNpIe44m4NuOhUEmJxI01XnHJoWYWAe3XVOtWJi9h4uXvSg6YuW7HRS4R3IuQinFdImaXxo58FUalfxbsgXrAFWI/q+7jCwCoWjSstD6kTtJwm1V7FS88bLm148HO+clwD3sOR+A/IdC91c26iiSaa+PFAuL9fy08JmqS+ic8HR+j/APj7P4J3u8LdC6Vc42ce/Y2fxbiB63JEuHis5XJ+4cHz7svDEfhbqL2BTeqgx3HduI3My26Nf4B5OeUXx3FEXkb5QWNMIMOXFymUwx2jpYvm+SLEAVzMYE/jBxyhv45bND6LmpGFIkbyNEoEHMX4GcS7J4/eqQ6EBrmf5N5Z+wuIPwP2FZTjoE+IMePat+0l6sWzev7sVXvs0G7xzdTZD86evXF8+NkUfCpwMoEnfGhNKRNJokevDI11KqyNo/iaX6igcVKpxNZMHbsc9Pe2fS0z0H3E7+t6Hlv4UK3di1DC6jGiYom54T1q4+MN9+kExMf4W0TkHtL6MRwAACAASURBVMNCjcO3iEqvAyPk2m6Sa1tJ0DJMqq0sQe6EVsar+LmrRJUa5RGf3Io5076+EzEV1GxopLFXMN45VBMRE2MkhbV9IjqJ35pDo4x6rSN4qTnqM9MktUehrS5+dhDjn1DN7JC4flILl7YD6PSFx7VeuCRdW4ui8QyQQfwAYQoxdWfUBSCN+XBtR20ocX3QDp3aK+09Hj2besS3Re17rMato4DmERSC9djyOGp3Uxw/zo2TIW3dzyFtRzGp10BPImYQtAXxjhHkK7iCyR5snAM1IuYIXtrXuFxE2E372lkKV+tonBLxboHdhCYp8GsIjyJcQvUQwg5csW6tc3KXA8AcyG1MEOClhkB2IqYNkfnz7zCLRjlEvM0atJ4jKt1L9LzMKUR2IZJF/DZgYZvK9CU98z3Dtm8OS2vfBGLWomaIBaf3AKduWYrNLFTP5hngIDCL6l5sNAi4TrTqLHCz4bVwf6QzgxgvxiaL/25Pe6vWDNcuHU8qI5P3jLqUj5/YpKqz4qTdzhxUzHzhsyZ+S0XEbEJMF8YfI2iZ1HTXk2h8kfrsADQ626m2QSddl5sYL0K8NmALIlup3N6K+PtpWbGMaaiUlvkkl0FGGr97wx0De4m75eXLOfYdxLn/LlVnjSz63sGNTeh9dJa9wKeojYjLX4bDe4Bz2P8sBpvLYRXhbKLIKdBNwOsP3Fq8SVJt50nlU4j/mIg8KAf5R4ExFjrx75Ppvvpj3p8mmmiiiZ9ZNEl9E58Xv8mPhtCrU7bK5+08rOFuwjqE68o/w90FgXtlnPfsgQJcwcY3UJsG3cCDOijiHUb8H9Z86ENEnBGUyKsNMlwBDjbkyF/GIm6Y+8tEX8TNI2/GRUXN79PCglvVYKM+ROYXxQHwLDZWSPZjgt3LFjZEHkWpgjqTQlck2Qu8hPE+xFoQeVKVYTR5VMQEmm7bZC+eLQAZje1L7a2Zv+z0zJBN7NYSXMz45kAmtr6FNVa5aWHOwu0o0ddrk3Pvd7XnMgNrutpqtWhMlHDjf/1315Lrfk/Wv7xN0DOquobq5AjVybTWit/DmO3A6juSYBtfI9WybvHHUNUh4uqbYCZAr2HjnU65oFN46VUktSkx3lYtjUyS68mSytepTnTRvn6368TaWVQOAl0ovTiVRApVH5FrJNZDYkcW1XZhgu2SW3FGYS+aFPHSWTQJReQQLSt9Vjx1WW+fzJDUt0jbuiHxUt8gCQ8A5yDZjpqPMZ5xRmKSR7UbtBu4iAJekPGefDNGTD/GjCHpugStxrat/oC5m6/pzYNv0butG4gR/wBRvYYXZACLjWfQZD9IKMYvaH5dVsTznSpBVzaczANwpEsrU/t07pqhpWtIgtY5XbHTYu2c2npJjH8a6EDtRcSfQ6QXkluoHMPJ1/tALiKy3Um7eVLuP31z9y9UYzLdN5Yl9UntBQqX99G5+Z6ZZZ2+Nk7/VpXW3pcbBanVy5QDh1kgoWXc6AY4x1rnZ+Ac1C0w6BztzadochV0B45st6O6jgdARHJm49ZP7NWhVrPukVv+Uy93m/VbttcvXVpZ+3c/6G3/pV861P33/p7nd3c3zCY1wcYiJqgi0o/qCFDCD0YI8usQMyxe+vXG8amj0Xpgu6PCntFM50dAl6p61K5OkOl4DRuPYOPnWTK/rpqYhcMitzH+MMavoXcSPC6CKeFk8AtFUPgU54Gw1DGvvuTfIS6Cb7kvfOlzA9yxvrOtqg2Ja0OYoJOkfgtNvgKvli8MD/TeYuid36YvkWq/RZDrBrNdvtQ0mM+NaeADFoj8BTLd97gdNtFEE038TcRPeaO+Seqb+IyojD0P/Bbw7/+I3jHh8+fdL4fNjZ9x3HzfvGv17D1bulnqIdAJ3MJwAzCIJpMsmGctB4uX3oeYtfzw11Rfw+n7mTt3H5Ec8ALK0WXcor8IHnRbE5y5XQ0ndd0KpFHdT1yL8PxeogqgA3iZj11Mmt7CSVDXI7yMDU9jUr2oHUGTKk5anEOkB/DR5CSKaeQhN7qLMgCgqgm16YtaGk0TtN7Gy3RSLq4AKI0W9k0cvfJs7+qu8VqlfsYrVdM2oS3BRjHUy/BKBo4J2LRv3i7F9sl0PnPGNzL3+H/8aof6wSfpwUfGWP9SXkROICYvMKrZ3p1UyxcYP/EtWtoPk8ldI0h3IWY7fnoYuJts1YsXnTme9ILswdq9xGGZQFczd62srf2xtKzqROWy+DmffEuvRtWrOFKSBVpR+0jDtGt+3ng7cBkbidrQIiYH3irCwjnC8keaak2T7tgikvoEZAXiX0OIUa2Q7Wkn8m5SmupnQz4HZj8mvcrNodsfOIJNm4tJs8WGrH3GPRbXEBnDS/tofBvV1WgyhnixWflkmzWpwxSuvKFB64em99FXNCp/n2xK6FtTpDp9SNpav6mqF6jPjJNqVREDGj+h8ANsXNHq7Pv22jAkyVvSrr6EMzk616+nXj5HEvniZc6Tzr8JvKdqp1GdET/rI6RxHfNtoJ+A7ATmELPdHXdmHniGq67ljlmedgKbSXe8QPH6FdB759aj8kLxUK0FmQSmqUyXpWfQNgzzVqP2OMb04EhmHUfg53DGni04dcv6xitdwEm5Y1xGvQ8cR8wvuivQA9VR0P3YSBDZpNZeFjH39d9I/cJ/VJAgvZNFju7BqtXXNv31W6tF5HnUHkS1s3EM5jCmB00OIX4/4q4xEa+ASBvGX3QM7cfAiyCnEDMKNiuavAZyRIy3Wzs2obePX8H4z4GcwEaPs5hgV8Zf0FTr+9K6+klE+nAeHWCThsO9FBBZLm+9B9U6YrajySkcwTdLTUI1rr2Hl37+PiZHS0cD1gEXtDIxTlTqaRzo9sZrw0Nl7T92KH7uNOmOAl5mg7gYxOWjEL96lHDX0TyJP9U0t2uiiSaa+JuJJqlv4uGojP0C8IeodgAlRD7r3PoPAx9sC2quIPIgl/jPihW4jtgBXDST35C9DoFWcDP5m3FE4u5unpjwQbOugCGp78TLRIgcZ15W+8XwCI4EXOFeJ+ylmctfFJ+lWJLBjT58hJO8gq1fx9YXxiGSWjfITdA+YBVe5lzjtXdoXLlIXKnj5frE8x9B48X1iNXAAXBS/Znv/tXHs2+/UzEZ71LHa7tyLdsG3rCV2slkami2PnRzNLoweisq1tpmr03U2wY6a6MXRiSsRxuq1bgmEPiwKYRDFg4Xob0/HZRasoE/kM/cbmnP5Tpe3J7yV/XPeU/uDiTf9UvMXChox5Zb4nlFxOykOH5chw/+HADl2ecoN+o9YuZYtfUurwBNosOEc98G5ghy1xFvrY7frOHxrWT/h++YrdtM/eyhFi1HF7K/+GaPdDBKKj8r2e4e7iITeglbfwToARnFS59FpIaXMiSxYu0scWlMw0ogSS1LeW4n5dGadm3rEE1OI8aitogieu67PrW5NwD08g9uyOY3XnbRWLoPYS3IeZAa4vXizq/jja7zFkwKkvp1jPcs4l1Ckync7LdFZFx6tuZ0djhheugVzffvx89W6dy0lTiE2kRJbbyXwpkVoK/QuuaUNaYm1cJxDWdjouoqZkYuy1xhS7j/+Kz3xKM3/LUrYyavXMVIi2Y7psOh0Zbg+dc/FY3aJciV8VJteP5O0Ek3BmFHge2gh0ECRJ5aZFZ3HkBVK5RvpcmuGBEvGMBdy6tw1zxqrTJ25bzeujxNRyaW9vxd15UmyTlqlevU5y5KqmUHbo7/GsgzZsvXnQmkK4i0QBKj0tW4B+4DWdrd34cjlbcbipSl3hoh6EGQdmDSFexkHeJdA+3XkY+uKFyTlhU3aOnz8bPbROTO9Sq+tx3VcJES5lMvn1+YmRfzJJq8C7zhPgM7gGdRPU/DKI87ZNy0g4JyEygj/tWGjN1HtWFopu6eE5WHMH4RG4HxdmHjA6CLO8aicT0rIkvn/hv72Sg0LKCKK3D1AJ8g8jTi9zQKq7dwRdXDQKhhsUpt8k0wRW1Z+aF4qTuRdqpawUYVxBwnrpSIKx0kUS9ChI0/j1v8jxsJQctJUh1lvPSjcvc4wY8SNdzfSDcTD8fIdEcPfkoTTTTRxE8IzE93q75J6pt4MCpjKeD/QPUm6ChIhfsbnn3ZyILNoKaMyMPl8g9HCjcvjmtI67lG1+7B85Di7UTtfCzV/dAOfILqY4gsl9H+eXAYWG5R9wyOZC/X8fosSBrP/6zt/jnUToEewM0F71y6gaoGYIdAtmGTQDwftcl1opICO7DhIUimcURiMzCESQ0i0oHq+erZE8XCd/6onNu6NghHJrPX/8X/8gpGxvxcerrzmS1t4fD4bhKbqlfqB0cujLwBDCfWFsqVMA1s9GBfBOMliH3IpDwzZjxpi+rxzroffbz5v/i5an7npl3Su+44ubZXNLFjWqvcjkdOXI+nS6nw0vkLpj6Sa3licM5kUnd/v2rbiGp1fGdKrWHtIJPDHtnsVTxvg4blQM8O/WVy8+ZjU2dHvheNzLSmj16Zy2aDnwdCae3Zi58zKHniaqx++i2RoBXIIaaM8XtQvYDaq8AjGlXOYdJpSbVmNK4W0CCDxilN6hvwgmNkV9aNSDtQAJt15FYytK8uUjtnQQ2zt7ZrEn0gaBZNujDeLcQX0DLIFkTOoOoD1nVlJYuf3QHMYsN2jD8J4lznk2hSRALWvPiB3jz8jM4Oz5Lp8EW5iEYrUUaZu9aJyFVy/dNauBwxe2tOk2QbIm3U6heoVYyk0xdSL+7sJwof03L5YlKpt9WOX7oVj0wOaLn2dMvUtU9Sa/ue4PFfPIotzamN99E+0AbaD2YdSXSWenlWcu2t2PhDxDM48lEFWkEg0zOO8V+l4RKuqmVKE0d06mJGL56wOnTRXfe51iPet38ZtfYaxZlhJm+up159lFxHmv5tg2rTl8X4vcBg4343P4JSxXXiN6DJUcR/1l1HWgaugrTiyGgNaOSmSxfoHMgJ9xLziwkFGEXk642LCFAnB890xRRvrNPClXUUrgCSxGXznukcrHsDa1rc59MQ5QVEDGIsToV0Edex3oGYr6P2uCtEAOChSQm8IiJ57kjbdbLh3L8azOLM9DU4o0yA51D9FDG5Rrxb4xVTz5KEh0DvFC0k23Uv+ROpNcaYNqF6oRGD+CFujMipIRaPFLmxl1XAKlWF6uQ+omLDnd62Ub71ogatH5NqqxNXlPrsU6D3zqErK+957G8cJCRoPUm6PcSktv+YIuci4AgLnfjDZLqXjj400UQTTTTxE4AmqW/iXpRHfMDQMhCi+o9AP8V1nALQvSiTuEVuDHThiMaXjWGQW7j84p6HbfyFIOZRNNnHw/J/XVfuMPCgeXkhqa3Gy0zgCP0+3Hz6543cc/uznMxUJI2S/pwS/Bj4BLeQ3w4y/xmmeFgxQ5MzwJt3/u3nTmDjTxpmaDVMsBJ4hNpkDRjChms0ZhhnTij42ffEpH4OG+0HnT/GT2PDKu78SdIrsuG6//bXXgWw9bBS/vTKxz3ffCppf3rLU15Lpk1VS6X3T7xbOHkl27Wx/9jcyHR+fHy2C2gTGKq6Qd3OEIoeCInNxpVwdlUmGA3DOOt1tdv6jekj5b88LvXL1wrEcRqngHgciFEOAy8V954KvbbcUfG9JKnUW1b8xs+tN9l0G1M3N+rAlotM3yxRnXNGYKVirGLer757tJJKxa+d/j/3n0qqkd+3aeWGjhc2X6MWveOt7t0gfionqfyLQE5t9F1UVyHzzunyXVQP4iLv2jSuniMs9pEORjWuWOJKK1G5UzKdIfnVNwlLdcm05xCZBQJs0qNupl9l4IlIveAdRk6+CepRmayS7cyBjKG6G+wHriOsZ1HJAzO4OLs2UEG81ajeQrwh1KYgaUf8abzUCmyiBC1lWfnEMWy0Chs+gpe9gDJBujtNVCppWEgRlQuUJkKM10Ymvx9jckk0vWry33x3ol4oh2EtulAemUnCqbn1nSvaH8dIt59v+aSlt71QPndtMrWmJ9CTf9bwkjCRrHnyiF4/toJ83xB+2siaJzajSR7IgMkg4uNkwa+I6CX10gOoPaVhraTnD+Z0+JPH8GQVq1fl8eQKqeAoYbSVJJlO3nvrrM5Oz3hbB/cAqKoyNz2N2g0SlUdIt28EulF9F0d6boPtAvJAGvRZVA8gMm9MN4Vz7l/PwnUPsBPVI4hZQjoF0Eu4uW+DS0PoBZB0e0aLN+5saSvVQvWP39kg7V3p1n/6z/tFxEOTQ4BFGQcxGO884nUh4vLcRUClC7SAGwuYcue6PeAi67SGchqn2ljcQU9ws/+LfTsCsKH4mSI9T+zQmQsHiCsvIZLCSz1PEh4EdddF0JpnKdQuNvjswPlzzBc85zv19z4trg1RHjWL7hsLiEpPEy3nv/eTAKmSyp8k1a6YYIcsP5LwVeM28O+AvwAOkOkuP2T7JppooomfDvx0N+qbpL6JZfGPgf+Z8sgV3EJ1MTHds4RU7oU7i9svC58i3vwi+SuG8NlIsoQP3c6kzi5a6L+Cc2texhH6vtgL7HmIk0cOZD/og5QAdVw0WATsgGUdkm9wP1KvWgN7lTuqhgbE9OGl64jc8RcQQE1wDT/Xh5jb1Gc2gMyRyl8QMd8CwAQvosk+NNmGW8RngWdU7XGyXYPE5YMUR581SXRy82//g7vkylqqTnvl6re7N62ka/PAWOHMTbNeVcN6dLNSqpUuD92iNluZVej1oeBDjyciKzYPXBfV9un/5/ttnu8/1TgWi/PmI1yXcP4zppK5yvznSib+6L2jrc9u9XLb1+2Sm2c+dKaFDRjvlkwX4vTTWzum/3T/Vd/3o1Sbn/T/yovDqXUrlHTmeVm3+wT5gfUNP4SCoI+hDLgYOWZIatuADVh7CLUzgrSon/WoTfSS68sCedBZkurTJPWDpLtitXEEYvG9GkiFcDZDecSSavOlc812rRf2km5J1NYA1onIp4h8CpoDUeBrjfnm86DrQU8BBk2+B7yEyLdQPQxmFld0GVeNq2iyglT7OOFMBkmfRKSdJNpCVPxUa3Mwcy0g1/EkvncO9SokcS4cm06d+e/+9c3KhZtRWAulVA1NSz7b6oNfr9bftmHSnlj7RJDyC17g926uhqfyT20aCzpbMgR+nRvHWkFPURxP4fsFlSfGsHHame55NRGzHqirEoJeJyz4aLIbQCvTx4jqFdq6p4Bx6eryyGYLqraqxz59gVJ5RlqzI3r1+jF8bwLf34QxTzNze4iu/qfUfR8FnIS9AqxtnOm3cbPiMRq3QnAQYSWwuWEICAs3CbetmFSDwHfgOummcdmswmXd3+XVYYN8u07PXknGJm/GV0ZJRicfBwZ1ehJ76/oBb/W6l3Cxk1PAStCV2PkIeA4hXha0C3QFwvrGCqYTPBpdelDtb+xmiCP9t3CEfru7V2gRdPG18iQoIuyna8tOnTxzBBvudp930XZilkv9WNH47yVE8osI/X2hce0C5ZFB7r5ef5JhCVqPke5MMMFOEflhzVS/CCZwRP7fAvvIdCc/hn1oookmmmjiK0ST1DfhUJ1IAb8O/GKjiycsOBTPY5J7OytbnNGRLJdj/EUwCubejs9XBtntZPjcN9PYbSYNmewDoHH7ksb8wxZOMXAa534eA68/1Jpz3jRJ2beki1XCuW0bHJF/kLEfLGRnL9p/HQN7AdfBW+54XGqkEcx3GB1SbbtETF6T6DwmdQQ/u/GuDpSIh/ivaKIHSOoJxt+AJldJwi7QXox/gTA6QL3+6qLnzNDZPSzd0mV6h4fsxMzmYHXP5UyxFtduTq1LZ1JPaZwcMrOVV7qhVoX9FfjG6nW9H27Y0PuM53nbgaOe788fh6UEIWCBcCyFl8yUnp99+2Nm3/64kF6/gq6/+1pRRPIYb4zugRTdA89FBw8fu/LByWmT2FJre/bbUyduvjXw5FNb5bFfnBHjLf5uOkA6GhXifo3DDj2z72Oy+RuSaS3KysEBICUi00prkSSqIV6E3+Kh9iDoS8QlMMEHBG2xeKkdKJfUBHWQHi2Mz0pv27T0bKjj5zyMj6CXUWqgMeKFzvHefh8kRMxGlDJYHzEFwEfZ76552YAJ1iGSQ1WBv8JG0yD9EAxBPQ+UFBmmOplFtQ1yPpo5Nvf9d1ZMv/NxKqmG9c5ffrlz5sTlR+LEfjhXizSEqDBTLqeFYotnCNLBpE1sT93qlJ/YqH517CUvrhfad6x6hcENZ0mntzWO3SS57KNUJz8iSD0DcopUer5QNohGHxCWNgIF8E6oalHWbJjUdJyI570Qnr/+dnjuup97Y+daHb5xQZNkBVZHRO02Eh0gSUD1AOn0Jh29PC5d/ZuJyocJWrsa75HDXZ/HcSabEWCRYLsrMICT6etelK7GrPspnFS/D3dd3sZFfymOkJvGz9M46XOA+MPAALc+CcO3D3Sr6stYPbD4Oiv/we/tzP+z374unr/W+Q3QMIEjQvz38DNvoMmHJLUlYzLm+KJiI27/vaMgZZCvcVdsqIIbaVjOv+NlgQv0PGa0PLaXuCp41S7i2ihiIufqvwiqp3D3wFYwrSxkzD8Y1Unn9/CTDpO6TKb7Jn720R9TR34S+FPgT3BEPn7I9k000UQTP70QuU/S6U8PmqS+CahObMH94Xdz3CJHUD2PW+HVQOZA887IKF4qQ+8H/fg+3eAvAFNwueY/MvgszI8+ALJ8BJLxD7g4s6QXEyzVhC7nrjeJm3+1ODfmXaiC2g/wPsflKPIKqntxi/4s8DjI51EFmLv+5cjjCzjp/FKcdIt82Y07J8aAgTu7gpzGxjMIz0iQ27rM81GbHCEsPA94hNFBNAYvs0LECK0rX9Zc32UKNz5g7nYnUVXJ5wcQ2SWA6e36EDHjwabVUfe6vterw7dPzh66cCTjmdza7Wv3z4zNdGVr0dZnvvX0n/nTs3+78ZY1LxV8GXO1HdnX31Rp6zhO8fYjeN6sVksz9b2HC+UjF3Z1rey6Wk38pzb/8R8eC7q63lSTfl+Mt1zW9CROGSF4/hkZfHqDTt8a1yQui5NAx2BiEEu94Nup0Wr81ndy/otf86R34DrpbLukeE2jyl+LF5zT6RFPq+M5KqVxLRdTdK0dl1SbRZMWxA81qk6jseCnI0EEE9QxXgxswsY3gVnQ1WjyLCZ9HCNPuuKcV1dNDqDaSn1uGmQ1cW0ajdPE5RWo3aqYIWySpzrbqWFN6H5yqvDXb7ff/sO367ViLa5VwhfHf+ff7p0K/Ju1crlNoGId+UxVlTCM7ZpUXK+U4GoAnQb8bUBYqHrVyfJ3sztadjeO2U1NBXWSpF2M7wO3SLVvFJHjIKo2HicqdyCyDtUqGkfM3fSojD4tra2zdnJ6orr/9HNAvvJXh94N2lNfT4rRJeC1TGtm0sbJhzZMYi+byQvA5C33194mW1W1JsIBnPfAE8AeXLxkAhxFyOFI/jWQaVyRaALV9sb/jyKyElgN0nBd1znctb/Yk6QVMU+7e6jeliCtpFPXpB724MnLXotMJtX4oCb6gtRrrZX//Xdv5n7jt0IRebxx/a/CzwnGexPYC94OxFxC7VK39CnEv4DxtOGtcD83dVewE5FlhElXEW9OICv51cuR1JWoPY7zFegHHkcMqEY4Qr9tmecsswfh/eI2/+ZDTIF052lSbd0iZhv3Fsa/akwB38H9Pf9Bk8g30UQTTfzsoEnqfxZRndiF02VO4hYdfwEsONqLtxu53yi4H6BxadH2RxvS3i8LP+LMW3uYz2JqJ+Zp4Bhqy4goiO/M+4zFeHvucyl1AGdxZO48rrO2ncVqB1Ulqe8H24XxCrjoqzlUY4y3qbHNNM5NO2YhSitC6UXksy2U78UiHwSd/z734uTA8wWMWZBPQJ5HJIXqDKrHgKcbyoUq6EfzigFBPmrs48DiN1KbHKY+/QzzMgbjv0BYGSMJe8EcQUxdNN5JS8dGWjrQJLpJ8eZ8R+/D4NnHN4rv96OqVMqfZlOpcnZ93wtqVYO/OHqgZ6aU6f4Pv1FIb1nz4o3/6ndBQYw5Isb80GMhLV//2uGWPXteA9AkKjJycpjJsUyqM7Mh9e0nJ1qS7HT2b/2DrWLMUwBi668TxafxcwaR7Yteav47j0RMJ/nuVZLvdm74qqDJWZJ6HTF5gtayyWdbgl1bOqNj+y5EV8eLmZ9/pW5yLTlS7b6ufaotOvRXt5PbNyt2fEo1Tkyw7mOR/pVt/o6dk6B9SFAgrvbipyZp2xDj2bIEOR9hCnQ7zohM66PjH9swvpVbv2YMG69U1Q0klRRJNIVa0GQMTfpBrmETX218gOpMSHkmo+VyyR79pOPan/8Pj9swKUe16GIcJVFxunT4dhh3Vaw+GcA7nvuEuRA8A5GFWxZ8gSiCatY3KS8dHEsqYZhMlJ6p/vm+Tm9d/9HUtg0+VgeiizcOpja8/CjiDYmYR4G1iPSQVD8FElQvo9FKTcKIuRtrEOkgSfaX3z1WAF72WoJ9qY70N+NSdBDYEHRnjyDsjufqZ2w12hMXqvWgv3OvmGJk/Ja9GH+zCIM474VjoAnIZdARsL3Ai2h0wvkJcg03ahPiDOvquCjMA7gu//qFU0DaQKsL/6aKS4KgEQ15AlVj8rk5Ww8bD0uPRnYE5bB6bEuuXRnUMD4h2ZZO1KYwqXGMmZ/hfx6RK3iZKnFlDvHOIH4R428AOYPc5dT/Puh2VMdx0uwZXKGvYaQn60HOgm7DqacuI2btfWLp5hGwXPKHUzS8Cnod1f0gmxF5UMf+8/qQ/LiREOSPO3m9/5R8hhGDLxnT3E3km271TTTRRBPL4ae7Ud8k9T9TqE78CvDPcR1i5Yuc3iIrwRxE7TacrDhBZGls02eGqoKNLhFXR0jqGVQHaFl5S1yG+VcL1ZjPIgcFEBHEe2rZ9abq+H0WqfN50we4k8d+z5OHwbrFdlxJcG/QBZzD3DGbnkOTQZx7fwzMgfkUkR/GLWoQdAI4hzPmGEuW5AAAIABJREFUe9x1Iu0+HLE/AmYnIntQte5x+wTwdTCfoJoHm2XeZNBJmp5BqYLuwxVKRG18mPrMAqEHiKt7538P9jHUTnAnWcCcwUuV8bPnUZtFkxdlXlNgvCotrY+xcs0hrl3G1qNbmcc2xr1fe3pQPGMIWk52/PK3Pi382du7jO8tJtR3we/tuJ4aHBitfnLxMa1H901VSG3deq79135N5+tM4gV57VrfIvXSJnKZi9Kzdja7881viyzJSNFkB1ERxD+Bn/WA2iIfgoMsPRdEULxBqhNFgtZJxMsqUtAgVfW7833+QM+sZFNpblyNk2q00Y6OX6pdGMqWjl6oVYuVIE60be5PDtYyuUypZ88T+fYNvWPpwZWBkEzR3hFp38yAWfdqD5q0Okd2SCqVoRN/59eNlzXBxv/mt1QH8ivwsjE2/gjxM4g12BjiWoQXzKq1LVQmp4lrWSrl2N4cyYTHzobhZMX6uezxydHRKK7HSRxFmUo9CnNI76u//vKZ9lWda77zL/9yGKtBGloiSELwfSimoU0hBOn2An+bF/iE05Vbqc7cQb06sjsZHg0I/KLp7Y3Ez/ThpYvYqIp4V1BNY+OtuC/nDOLd4vaZFPCcWsvM4XO59Iq1RTtxumBSJqtWR7HaZ3LBkN+W2QNgwzgblWoXitcmxuXsLcQzQf+b/zjyWtLXQYcbzvKAOQvJSyiDwLD7ju0uNHkb8dYCI8BKRCKQTaiONGbxG0oareMKfBncLP0k7rozwPO4iLtWYA3iXQu+9qrR0DsX/vl3OjSxKZAu09tTDHbsOBU8/dQO8akjstkVXpMxVC4jMtE4m0Igg58tsxCn9zHCi6DHQOZVAmkW7n1L711lYAIT9GHjtxDzEiIv8cNjrftRUJ3DjQBVcJ19V6h0cv0vI8L0q4eXvkS661YjdvBHLa+fAf4MR+TfbxL5JppoookmmqT+ZwHViTbgf8QZ4M3ji9erxHsBjAU9g9oy95qQ3ReqqthoiLg6TlJPo8kjwKbGj0NS24uf/epJPRRw87I/LM6j2veAYZ37d57EbMDN1e9Ysl0vSXQYMWHD36ATSIEcRLxXcGT6cKPzt/xowH2hn+AW1M9yr/N/AnIMaXS5VcdBL9wpPABgp3DzwgMshUgW5BVUL6mNr1Cf+RpLP7+NNuHI3C1aVpRQLEntJqqWVGufVCamaF//prqs8OsUrmRJ5W/Qvn4F9dlDZIsv4mU+8Ihybdvj1xr7OUe+v6/9b618Iv/Nr30aTVYKXi7jMzsUSMpvkSDoaUim0yKyFljbumfX0cnf+9NHbLm2NEMbr7t7vPef/YsuMeZRVT2HjebQeDeZjinGxotm68uBrNn+YCWAxruIioC5gZ/eq6ptgMEEKovOFdXkFOXb1zBeGj9rUE0RJiprn/BpXzGaDA+JHbqmPnWPkdtj5R+czhevT0Sztyaj8nSxfXps1rS252r12arO/fFeL92Wzfc9vq64cs+WVUl5eDz15voaceWq+rlnUK2M/cl3jlz73d9LDf7Wr832vv6Cj5fJEIUtJPYGGldBZzF+N5rMqY0NUalGVK1jE4/yXIfOziGF6TAs1eK54fFHolL1iKAp44kviSde4IdBR+5qx+quTSfePV1Qq224e8Q6C6NTsMPCeBbmusE3aufan990xdajUn1sdqY+WhgUkdnstrXH/L6unFm9IQS+L+I1IuCS1aq64Osg8qLOjR4iqT8XTs5OnP7N/2nE71kR7nzne68QV/fbuZsbtFKZjX//d8dtGJNUwtNxOZrRehJ5qWCNWpWoWNkMoNXaR+TbGwRNriOy1ilUcIU9zDhq1wOCjdbheVsbBa1bIION/RnAkeZ5I8pTuNGmIu66u4rr5mdwRYknneqFTul95CzXPlxhVm3dkvnN/2zWTs1ey67of1xEFiLnorkdGrRURCQAGQG92XhvJ/MXQyPVozF+YlvA83BkfR7ruH+iRwtwBejCeI+xWMX15aGN+0eETn8F7/flwPgjpDsvErT2i5gtLP679dXjNC527i0ckV/O96CJJppooomfUYg+zPyriZ9cVCd6gT/HEcavznxOdUY1ugBmt9xLbFVVrxKVbxJXUmiyFde1egCkRKb7mPiZL9tV/16oVsH6/PBOywUwZ5H7zrU7Z/vlEFfmF/n3wgRDiNk8v7eIHzXMuBqP2IdH8t2DhjGgarnhgB7jZmlzoM8At8DrBD6GZBd3nzsXcdL9voe+iyrEtbeJK9vReIGU2PgcJjUp2e5lZaoalo8TFlZjgksYP1BkUNQqlYlLaPzcotefo3x7nCR8hMnJA/QPFsm1tZHt9IlrKSqTo9QK33rIPs6U3j92pvjexy/ND35IkKr3/+7vfeq15p+6a1ubvENcyWqtVjPtK9542Oe/51hExWOgT2GCYdJdtzDBFqLieSrjOZJwVto3lhGxqrpdh48MM3e9k7W75uz0TCk+fkiD7pRfPnI2nDo8NFidmJ0qz1a9KIzDeiWsh7UwThLbn0oHaVW9YYxJcu251OZv7pT2v/2NwOx64WUKN07Ek5PTpZEZOnZtQU06wU8b8QNfUvkiXjrdGCupAWkQ0fJ4C7VpD00MyjT1kk0OH01ssZyKZqrRre9/mo5q9aQ6V6uVCpVsVI9eqIbxcGh1pRE+iZVMCF0CU4HrUq8J4ZMaTEWQycKrHSn/nV/4X//RnehEtWpLn1zfb/2U6fiHv+DOES99Gy89K3276uKnjaqGaFwPx8ZrF/7Tf/r/s/fmQXKk6Xnf7/0ys66uqr6BbjSOxg0MjhnMAIOZwTV7cHaX9yHSoimS4qGVFbZs/eEIM0K2ZEXYshWWqaAdS1PUmlJQEikFueKS5u5yd3aXg2NwDM4Z3DfQQKPRF/qquzK/13981SfQOGYAzKF6IirQqMrjq8wvs/J5j+eJiteudHrxWLE6mlsLxDd9809vNmzYECPXW9WwtDzquXmu9B//aGb1xlQ1kFrtGTx5rRFobPrFX97X8iu/tqsWoNuHmN2o9qLhdJDRRntB9wDX8BKNiLQCl0DWTG9e+5nOgL+H66OfDG7tw90DN0+tp3oSdIsWhg/o+W+/RvcWdaSdAlDAi19AzBuI14MJ+og3DYqJfcG1AMk+RFbgsvSdwFFUl4Ltnh6POe084Ge165wETeBIdDfTmfKw9u8CnpWd6EOg4zcKuNaFTwbEGyLedI5YpkWcK8vzwhWm/eP/mkTrwHPcdx111FHHZwovdzbru7/+ueeyr9Q//bPjqvqUtMYeH/VM/WcNxcElwH+LU7K3TGVrnj5UFaLScao5BfsaYo4Qb9kOXAHpxWV4VosxKzSWbkOjU4SFxxDu0TSloT0ab94rQcMzJvb2HLOFqz4smsAueUhSfg/396yDyzjOX5Vgq02Y2CgiTbjqin5gCarvglpcRvAJMCOIJ9JQa6NonLNQF0QhM4IFqjpOcegkydZFIuaRhB64JuL1EqSXapBeSFT+NiJpxBiiSlK8YN6+U4k1vKzl0b8kLDZhqwWx4UVsuJbZWcVxEclqovkDxu/kGBzcSTJ5gEq+Sqp9I2M3ykRhjke0mYhIc+YLW3c2vL7x9PAffCtZ7R1cteB/+V+Pe+n0RtC9wMsgGVU9hy1XEJOSRGKhVnIf4CcmEO8VEUk88mjY6nugr9b+7qbY3137ZKc9/s63JRFv0o0tVhqalqA6Kl3rV2vHyqtSmUh47Qsq5uW1PrmxoGFxUyr54y95N79xrFjMlf1yoZxUxYunYiVjzC3PN+mwGpWi0CZzo/loovdeMnb8ZCqZ8X9gPGKe0XTji2sz2nO1j97eFwmCIV2+7gZL1zSKn9pGou0ypaEUYqp4iVZJNF7TWDJNVBmgMKJ4ZXTRkrQe+yDyAw+J+yUtlLPVcpgJK9VlqpoOPNN310bdorS3QWsA1yNYVXQ2inELfQ2wzoKJwfdjvreEjgXHACgU89LQXMq+sjthh/pzWqmel6ZFwyCKSFX8+OdxJzRC9d2r/+M/acifPbcVwBZd4rL5c2/uTW/cuEejyiFs5fXo8qVTpW9+Y1oR3jMFgUtYnbzurrdtXr5HVa1fHW0CPYJSASzYE64Xfgo3cf0g+xFpZvramR0UVL2Ju87HcAT5fVyJeQhMOF0ODgBF0Dwua39bh68bUB/VKzUxuxSQIshGmEAQ6Qa6iaojamLWTWzdiEoG4TDufvAaYmKoPYvT8MDtQ5LAqdo2szhxzdoNSw/hyuMn5+XHglqS4Qkrj54BxBsk3nSBIJNFzGaZrUfwrNAL/IBpEt/zHPZZRx111FHHZwR1Uv9ZQnHwN4Hf5Rn7+6pGQ1RzZ4lK3cwkxGqXuT+kNMdCCRGTJdG8W6vxk5RHHi/7Ux55Xf1UvzxcVOmj4mkqLS9B9RQicyylUJwY1Q7cw/30MRMxICdA5/MuXgD2FHhumxpdQ/wlTryLOI4k7K0tO38ARDUC/T4uOzkz2zSvIqJbTZVc734dvboT2EMse4EFL5VlfgvDCLxDtR7cFVBj1H4ii8hOVM/W+o0P44JOYW1fUxUOGpZuUB7ZBdxDvBHUNgENePGDmKCKCCQXLNXc7SPYiuLFDMbc1VK5wHs/3MOLw+/KgvbPY7wF2GiyteGhMKnEprb/+mejqJL6pt/V9ZO40u49wIha+za2vBjkxzHGHTLVMaLSB1h7Rv14ARNbOZ8OhKqWiIrzBm7k5c+/ya3LZ3ViwBCPDYnaCmqLYoIkyQUDiCRZ2l7k1vlipXSuUDh3tyqeF1Wq1YoYMY2tmdSdgXEbt1FRytVIRALPMxk8byRIxPO5929mPGWzemY0f6kv6aW94XhjKlXsnRhverX73t3/9K/TkfUaFv5P/+RQYmWDJ0FDBngB5Dsab26R0uAm/ISoMd/GSKu/Ykln1NF6Vw8dK7RvXJoYOnXDD6tRJQqj9wvjxTueyJcX+d7B3jBqHoBU1s2xK0BMoV9gfRUqLZn4tUVt2YXNuzZdk1RDM57ZRjYbJ9N+RFoXbffaF6ES7BXjuXkdazwEgA1PYKvNwO6OX/z5vWMHDoHISOPrr53OX7iQXfV//LNaubhaUgv/2iyRSmLX5gOmsWEV0KqqyfLe94s2V9wLCIInnrxNxBejG5dWq2okUis5Vw6CdoEcB10ILENk2YyzexykFVdWvw+1udp8e7k2r7O463+GbRwnccr5w7j++rXuIhEwxhG5KLqFF2tEw3Y3SUx8dnuPNmPDH+L5TeDlgJ24AEMXU1VBZqxmwGFBPZQmhBljnzULX6/1/u/F3Z+eRcn94+CxW7meOu4n8s9D8K4X+CPg3wMfkGitl07WUUcddTwr1IXy6vjEozi4B/hp4Ks8owciVbVEpeOEOUXtK8wlkKrX0WhQC/29JFqbxYs9eEN+cguVsZOo3fIYu41RGbumQaZPjDeXKD9okBOg1wCLmIdvX7XqlNt5Ehu4R+3/Ctg7teSX4npYl+AUrhfU3ptdFRCV98KjSnQkgXv4v4l47qFczOzMker4VFn99HtVsAfdXUxXAytRVjK7Q6KX+TyhVW9RHrmso1enLdoq4+uY6P0rTS9qEJHNuMyfhyMvS4A0cl+rR8i0tdMLYM6CzggsqNa285Kq5lDtJ7t8GSJ3EFME2YLag+LFl1HrLVaNxsSPrVPT3EJY2U9bq6FY8Egm3qMp66NadTZ9Dwl0zIEEyWP+kq0LqOYOqQl8TLAYJYlWloDJY/xD7ruoOBV03YVnwIY3iCqX1fgX8eLtImZ2ECEsHHnYOCSIpXT5Cy9LNX+I0Z4ijUsXYMsjiLmHmIR46UD8xJus3hGMfufYu5f+7D8WFyxrq6z71R+pBguzlTBXqjZ953jqXt9oW2k0nwgS/lAsHoxHkW22lWqgnqnkrw1cFyOJYv/I4OiJ4UJzd4egti+4eiesjBZsuqO1fOWXf61rwzs/jEsyOYbqe4gpikmoVsb2a1ReS6yhkSBZJqoOmatHwygRj7yGZCOwpqG54VphLA9unp+OGfEXeqanHNlIXXAnBG5EEBpo9I2MdbZnP+f7Xja1sOldrN2BtXlE3iM/WqF1KcCYiJkmw8avAEex1TiuJ7zUvHtHh9eQyi/++3/v6KLf/OpbtfkEcEpMbBwTfMHE5JC0tW4kLDcBaKHcZ3PF2W0ZAuLLe1qpLLV3eq54XctqwnCaRcxCkIVo1Icj75dA8ohpApmsPJoAdoMcBJ0ZKFRctn4cd2/uB1mHE8obmDEvrgO3yA36AJJZFpdUc7uq9hKVrlMtjCD+MUSKiCeIySHyJTdy+wGYc6iWatd2LQgq60D2gln3CNX6yYMQd+PRQdz1uIPn/QjkNFoe0Z71FCHeQI3INyFm03Mi8uPAn+CI/D4SrdFz2GcdddRRRx2fcdRJ/acZxcEXgD/nGYr1qI3uUp24iC2vBR72YNiP6mugUJnYS7J1fgVjLz5OWJz341mo5l6nmrPqJU8Sy+QwwSZxpehzBqoWol6c4ryiMlIrj50H9mkT+sOgr4B2osaVtt+P+x+QxV+ARg9WYBezD/G6QJbjMlhl5iuPFcmiFFF7ASiBXYR7ON4zq+QeDjGtig2YVmz4NkIMZIvbjlrgIBpt18LQjclvSLLtIMnWhYj5MmH+AEE6wTQpOQr4iH8GkbkBlRNT6u8igvGr2JlizSLAS1rNHwNeAtYg5l1gh7iMflHFbNLi6Akt5oelqa1KWJxAgixaWoIXLAUZlkR8B9veOEfu3ssYc5t0ZjPzahfed6wvSeerm8T4KbwmVKNjlMcmiMqXMfEyscwriExXmIgHqgOgFyBqci4BFsLiSUV/gAk8TMwpzms4dbzV1ReXcP3PRcLSdfKDSn5wAzbcScdL3xYTFFWkgngZTODhJzbWbMFIrFo5mm1ukHhjumKrFkmlKxG+N3J3dKx/cKwyPl70O5oaMuVidbwaRvmWSpRMtSQZutQ7JmE1CMuhLU0UUqM9A6NRubx56NLttBd4lwv9Ix0Siy2wxeI5k0xm8eIDGL8V4TXSS87Tc/QMhWFBo4jShMjCjpj/wg5N7E5Iau37FwtXrpbSi674nDt/r3y3fzWqjY0Q+YF3XkQWjeeK386Xws8J+LGYf7a1KZWpFKoDFarni2OlUYLYftR6hOEGlEFAQfKo7QEzhh/vx09+EREPP3mPsHgA2I2wNrV6+Q8X/tSOz+vo5eskWvqIN28V5EXQZUBMWpbu0YEFRxi91YaYCXy/L/b65ksmlSC6fis0RptNKt4mmVQT2cYbohMzJ2catZdAVru+dPMWIltxwbBrOLHNg0AS1dO1a+0ojsBngRBkXe38zaga0XZcAO4dYCtOU2M5zjkCEpn22uXShZ/swosfQ6OZwb8Kzi5zA+hmV+Ev3wK5XAsagEgLeB+ifUnagXbQSzjbvRcfscJThC3wrEn9/UT+cdqJPiqqwLeAfwd8i0Rr6Tnss4466qijjkkIPPYz4acUdVL/aYVTtP8jngGhV1UlKp0gzEWo3Qp0PMZqL+GeLD2i0h4tDu0j0fKKiPNlU7XjVMZPUc0v4QmypzUYouIWikWAUP2G94hlRIy/rTZgIDqIK0EF13J7BfXWIjKPwrJJ4ZjlR69sUO0Ffam2rQC1+xHv8TI+InP72WeOsQExkxnuOPAGag8g3mx7KY2OoFoGXYErv32IKKK2TMUWVM9gK63Aj9R4/zXwBtEoxuSxDIsW8cZoXjUkMuWHDWFxi3qJPjF+d+2dbU4YLzcgsbm7V0VRoIhICtgE8jZq46AdIIPAIqJoQEv5H0ql6FMY83R88LAdG0gxce8KpXwZaw1hNKqNCyPZ9RM7xATHRSqHNWgosmJbCza6LJmFTaraz70bF7h3o5WGhpPAC4g8bA4PSef2tBh/SpxLxNuqJvhzbNROkOqcReinF1oAssCpjes9RC+gVsG+gA0DjSpnuXMij0aNqK2imgD1cD3DSVy59NS4pGv7Pkm2eKp2GAlCNDLiROtGcTaHVI4dqqSa0/GBS7dbes/2qIpEscCLylHkjYwWUiUo9d7LTWQMyVgQhMM3B9KD1/sL5YlCKp1NVFW10Ua6UKvVaHSkcGn4Xq4tnQjGutZ0LV74m79x2Gtp7cRPeojsAq0CA2K89dL92jjI9rmHIAZ0LZ+tHWbL5ertf/2Hh3p/719OhMPDb6mqrVaitAcXEPKtTQ1xgQrCENAxfrG3SFvHrtpUqUL8MLHsQmz1FFE1iy034rf6IrX+b5EWl1VWxBg2/MFve9jKbVChNLyC0vCAYkYJUiXEC7Wai0iylsSiNgAThqGpVrYCeNnkXsLwXu06XIWI4c6JQe164Yi4a68b1z+/AIiD9oAsxfnT7wL2waQ4pt5zyzAjSCcnJwMyOBuyyffbQMeBN4G7TJa7N7QJuQFAHvXbHANWo3qgJs552tkVyupHrPcEmBT+0yO4YMSzF69TLT+LreIlzhPLDuKnmp8jkQfYjyPyf0qi9ZOr6l9HHXXUUcenHnVS/2lDcXAB8DXgK8x6ePzoUI0GqebOEZVW8uTicSPMFOWLyrvJ9xVUzEkwJTR8iSdWaX8gfML8q4R51IufI96cQyjK/YGCJcy1TFLtARYgkkDkJdQMgb2DU6H+CNCrzBK7sy0Pc7GbBTGLEPM2altxfbgzNhva+7djDWp0qr9WtYDapTy+IOJaVPehkaLRDmbfA1a4Vv0ZiMoBGjUyerWomSXvip+YJPYNlEfuaqKtLCJxVYX8nf1E5S9pKX6A9JLNYrws6DAu6+eOkbXfQW0TGn2eqS+na9Tau3rtRFIvHdlU7R+9YIuVrBYrCzSMGuOdaVAdUkvZ+GYV+Wvo4e/tZeePr5JYelCiYK1TbJdORH4gJubTsqRJfZNjpCdFELv+EFJflfZNRyVoaAbtxZFtqza8i/E6iGUCjP/g9oSZcETzjZqImhNKs9VxxKwlKs9fMSLeBdId/dKysirxbISJb5+qRFF7kLA0TlS+gJ9YoaoTflOjlnKlcGxwYiLbnokkFkuMlCp2dKwYqiFWsXhxsBWLp2Gkt27098UCP2hMJzaVi9XzwHYTeAfyVsuFiWJbYyLYJCKM3Ln3wcrPfWFC/OQ2Z0sIIAHoZVxJ/WP/Vph4PFj6X/2d15d89Tfo/fofHLrxz3871xTZl8JKdK5YLG8YvzdxtyGT3CaRnDaeGc5f6llpo8gazzOIBKQas4hpwk81EXiOMIv5K2zUh1Njn2BG+Ykk2wQx3TOGcAHxliuMglyhNCJoNH0v8IMiQfwC4JPKdAEeuYmL5Ccmt9GOjXrxTBHow2VZbwJ7QPbh+uMnL8wOp28hHiItrmJnlqDj3FL8mbiKi7BNtRZJc3eHDl8/dd98dWXp1MZyHRgCqdbU78cQ8wyz6bK9Jhr57N1IHvvG+QiYoIdY5iZ+Oobx14nMUv1/1jgP/Fvgj0m03niO+62jjjrqqGMe/GeQqK+T+k8VioNNuBK+p2aTUMvKHyPMgdqX+fAPbhmMfw0bLmBaZCnleuft425jFBgEsaApHiViZ8MWwuIdCZJfvP9DuTTrwVh1AKIUUELlPTArEelCOfe4g3sI2uf8fw2qN2cLaj0EXrwBtVmisqt0gBPuK5g8qvtrStnNuN73JWj01yANIAaNkswWvns0bFVxllwPhRYGTxAWHamyYYfY6BJ+w1miEmi0AVhJmN+vfsMu8ncOEJVdtjUqb2fsyj01sbMkWkoSz056yY9gq4uABlTfcwEKqgiBYNewalu3Pfjd06ZcTBLZkUjVH7/Sf6lw4MIOlCUm5o0v/omXTpum7AhZ72VuHr3I4i1jxJvHtDzSQnn0ljStbhbjvaw2foqGMMtQT4nS+MukM4fwvNfv+5JNK49IetFX5r4tqoKX2KRq333gsVFVLp84rFdPWawVVEU2bBmR1raWyUWk5YUNrPxShrGbe/XuqR2gc++3Suuaq6apuyZCbjpwpfm1QZg3VMN95AfLNK4YspePHS0d3WcKo3kvtLY6MpxPjhVHKuPOhNz6kPfBLwFlKDe2t/uLuhao9N76MnC9sT27JtGe+d6CrStaYun4uiO/+7Ypj7k2mEq+tPnI53981Z7LZ4ZNECyeMcbJn8ANU+T1MSHGsPirv/l65y//Uvnyb/3Dw/1/8o2X/Zgn1IJtqiz2WltLi/7mT10RP3UTLe/ES7yPl5iYs+8RjL8VNMBdG1swQYiY7yOSQa2i9jhIHheUiWH8HkHWI9IlLWux6F0KAxdr+hLjRBWD+/1rwYv3SHvzl7Vh4jQDPa48fvhGmY71k/efTlTvOYFHba8Na7LXPz/7mIjO4e53gDbQIZyuQKmmkQEuYDCrBUjS7avlxZ9X4AiOvCuuJMEHuYYT6lsDrOH54vk8K4j34QLV4g0QpK8RpKt48RUispTZ4oTPGn1MC96dqgve1VFHHXXU8bxRJ/WfBhQH1wP/DfALTPoGq14EuhD5UCrFqnaMau59omI3D++Vfzy4cQzjrJnAZdMeUgY+teI4fuIyJiggfkX8+B4mldejyiXC0jW8II6qB2oQE7l+5WAxaJ+gX5jnGzagOohIO6ohRANMkV/dDVER5bsgX/poXxyYnV0awwQjOHJxgrnZ9wdDELMKLzEOVBF58Dqq/bhjE68FYJ6sdUAVdMpj+9GLF4cnyRXSvGafxBtdpYWfRNUeISpPEJWFwtBZsDsx/mEaOpchfgdR6R6FAR80jtrvOrG76AJT1RpaqdnpTXMg42XMj/9G2X7z9z3PC1d7CWje1Plu/s49L6pGvfl85UznmjUveY0Nq0k1XqBt2XrKIw1UJo6Jn7ituTtfUdWjJFu/p2r3iDFxXbq1RM+xbzMx0Yxn3sUPUrYSNkkq2SHptmOmedVUm4TaKMfopV7QJqBDE+3HKOfGKAzupTiSwYYNxBt/j4mBv4Padi0UI0YHdwIVjGfJNPRgqzPIlgyLSAMlMeFPAAAgAElEQVRN3XvILrmufcdGmbjj9AYyXe9J84phiWcF8SwizajtwVZymOAqyFrUnsVGOVBjT35jf+n85UZbqFrr+s2lUKwEIYQF2GphtBlu+KAxY7xtX/+abSjm0yP/z+8kqw3xb0ZR+NqVK3dP+reGzYKXV7TZcjS65Vd3jx3+v747FfiKcrnUvb37j7Z98fMzSf1kYCoBXMCVl+d5gkCSl0zG1/3Ob+/p/C//5oX3f/4X0xqGSxf9ys8fWPE//P3XTCzYpmrL5PqOEGv7FsmFTRLLfIXS8HuIP4EX34sJVou77+VAI8ScRGQ7IrVgnjmIqMFdcwr0IGYFjlAD9EqivUhNRV/VTjBxO4FqANqLjSziHSKWmlSuL5BsnH3vcln4A8BOVPfhLM6Ozzg+k7OoAacgnwEKoGO4KqbNwBeAwy44MmU3en//uIjg/G2nf58nK0A+PjyX/IYYr1XFO4FGD7tvKl78CkH6Ln7KwwTLas4Tz6ukfhITwDdw5fXv1AXv6qijjjo+4TCf7VR9ndR/0lEc/DXgDwBQrQAnQa0TZZOjqA1AqiAFXBane75NqSrY8vtUc/naQ9PT9N61JNo7webApEUko8WhvUTluQQyxE+ewk/mMbFMrb9xpi3elJCbeLE1eLE1IHuZ6xOs9gRONX6+K/QViPaD317rt5/7XZPANpd9k4/YKyp5V54q4xi/syakBbAQ1X04b/qHeZk7g+15+/8ndzNl7deJcgl0OY9L7B2h3/c4hN5WyhdH/u9/cbd6/XKi8Re+fDzx2ldUvNic4yfbEbkL0kEstY+w8i7prtdFpAcYwk+uJ7sM4DaqAVLz56bmG686PHt4WgJ7RFoX7jG/+ltl+xd/cIChOzu9dKI5vuul713/f7/zFqpdN//w+z9Y/Vt/26Nt2SsyKUao4VatTAwTy7xLvm+H5vvASxxQAQZ6K+RzPz1jP9XK3lMBQLBlXcDdmxfw4+PEUiViiVGqYwuIQg80CReXoYzgebun2h1KI/8C50TQRjLRTFfHOwQBsvaVN8SY2dlTMYnpP73l0rUdDcun9PahuDQuzUui2YIoQiPIKKqNLggSDqMcQS2YIEKjdlm0dDCebVjWfudGNNo7dHlscDwWM1IOrXqt8L4Pi+LQXoBx3/Nk4Uubef9nfsF4xQnTuCAbN2Xea29OmWo5bD3+b965+vKv7F5SKZQqM4eb3vDC9dSqlSFwDGfB+DKuj3oE91uxkun5dhan4r2Nx/wdadz+6rrXTx0bO7j55f6m17dmTCxwSu9i7mq2WyVILUf8ZYI9SLw5QuQt4DZOrO02sAAExLTWxhgAGxHxEdOGI9JpXPChBCyq7XoRQXwvk982quYIw+8TlV8Fuoj7tzHBdmI+eMFxGlrz0rjoAfdGWVRLnL+B8m7NHjIDeh5kPejp2nsz23nmlq3PZ105F2U+Wb/Pz4+wpha2kL8zWbUEYsbxktcIGsbwk2nEWy0iq4GnqB/w2AiB7+CI/P9HovUxFV/rqKOOOuqo49nik/TQUMckSkPtuJ72LTiCW/M/1l2192rQWoZday/KqDlQ8wifXspG/YS5C0SlFTwTJWM5jQnuicgemOFlF8s2onYv4vloFDnl89hamSa9D9rWWtDDwAaQE7hM1gMehLWJRxNagyufflDwIgTOgDydPn90McjEfR71IrtRvYUTw5qvIuJ+EbZHQWQNqgd5HAV/1QgNj/CQII6qWsLSIR0801i9dNZWz77/gq1G7SNf/1PSdyvvZn7m5wbEmBmZMHucSd0F8XcST+4HPQlmJZAG3Q+0gLROBSPELAK+h9rFiCRQSoh3RI0/DmYD1YkubHRCRCe8n/nqy/bE3rclVVnZFfPfWviV7adv//H3B7v/3i+kaO58VbBFlA9wQZ1AIEMsvUnFHKU8tpyotJOhwb0UC5+f/U0J8b0CYdRoB+6VvQXN66iEUMmP0thymqj6KmBQvUq12qXWriXd+rYk4nHSHXnSHS8BMfqvf5fjb69n6ZIOCeJDjPbvV7UBTFVfC+2vjInLbGdxGd1W8YKqdG3vQa2HmIWI3EUZQ0ghUkAlRLxWxJTRqIiNAmLZCZDIlO71+F0LO1ONyXgqk8yNj+WTRiirElWhoQIdEXygRCv+7OUdfQkhyhjGi7mSNi9sTKSzSY2lU7nh3nvZkQv9ubsXbgGQeXHT1Y2/97WB1KoVr4nI8hnHat9Dro8NtX/vAhdxfeEPEX10CFqaG+MdC84Xr910PTl+6gB+aqcRWYZqDg3voawG6QG5jHgrkRlpaqtNiCwF2VybuBMIW5i+F0yS6L0zdntES6MjDF95D1tdClzGzV2ng1EtdQKImEu6/LWc6H1aJb2AIrIC1feBF0GX1ATzYFpPIwm0PuoYPCaKPGXNlI+I51VOfle8+IA2dF3GeE2I3yUii5ihO/Ax4SCOyP8Jidahj3ksddRRRx11fAh81nvqxTks1fGxozQkwOeBf8aDROpUL6DRCpzq8cOgYPar6lZs+XxNwf4VnpYA0YPgHsw3gwQyJbIFODuyx81MzcZk6fy8n0ePKG2XvWAWQ9TJg1WbFWdJtdT9LdPH1anZ38KR9SSYDfPeCZwXPDhSEWFiESIPPkeqx3G98XPs/vQeNXXzJ4K7dq+A9uFI1v3bUA3R8DgwV7l8P/CKqlqquRM63hMx3vsialvszVvv2TMXNlXGSu9NXB3eopHNJrsXHGz8ta9WZenarSLmhIq3jqh0Dg1nZiFLBJmL4sXmCxydB1aiGkPtEUS6MMFFVJOIibQ8WiLM72A6O1xQtXnunumnMGJJNHk0Ldwh8vDbstpoWJILjmvEci7tvUc5d59qe+nQ6R94S7tywSsbFrgMYBwS2S8Bt7HRIH0Xc1i7WsPoEi0dWUmmthBvOiLpju2oPabjt5eq2max1beRYD39l5fP2UXVbPklC8RRvQv0AAVsOAGaAUqgccSfQEwDaK5WMaIgpVqv+Dhqd1Cd6FFbjTTXd1sL1vT943/kt29bvvTWX5zou3PmVrx/JO97SksFriikMnE/tMl4xYwXUqHVTt83V9o7mlLxVKwYRkrnxu4tIrKYhkxf8z/8364nl3c/LDC0H6fy/ijkceXob/CQYLHa6IOxvd+9k1rVvTxobesjns2ImJdAPFdNEp4APFd5JEXEewNj5la5zAg2aBnIAWdwQYWXan+vxV2T+4DdOtZzVAdOTQbVbuPI9xlccG8DTd0iIkrb5syc+eVK7h2uoXoVdCFQQcx6HPHeiwsuPSgA8uEE5lwg8OGaIs8Vz0QobxjkOk6XIIWrNHveJfQPw0Uckf8jEq3XPu7B1FFHHXXU8eHxyqJmPfh35+nYfcpI/M/fOK6uje65op6p/zhRGsoA/whX1rqBh4kfiawDbxj0Bqp50Bd4cIZXwO4GLVLNAfbVZzH0WQgLOxGzH79hlSPBABT4KNmVhxF6h9zDPzadEI3hju0D91D7rOL+1iPTll02yXQwQkGPg8wNtNzGBUoiHFEPav9/n/mCDSKv1Dzg9+N6kidV0ZuBKzypPaHjHqtAVqF6BnQ2qVetoOEH3E/oHdGpTHxHJ25tIt4UUhxdhNoWVVW9djMUkWS8Ld2UeH3Theji1arnyQ77vX+HrHv1sPfm39glgBI0E4Yzt5ugOrFJo9hegvQUuauRpEu4cugYIiDeS4h/Cvcg34JIiySa0bLs08rE6yIyCDSI8eNq4oof84iZxVQLhzRIvSYyf5Ox+ImSNCx4SwC2/jw61ndeL+4tUC1OnUNR3SKJ2Dl8/3ViyStEldvkB84SNNyW7OK0Lk0vAB2QysQaTHBKmlYexHgeUeWIeP52mtcoY9feoXTvy5SK+3E+46O4gESMaS/6XkT6a397NUX5RsQoaheiWETztazv3Vq/dRrVUZBGkPfxkgEmPiSNKzxSeb/tzVcirzF7b+mvL6m0nD5Xbnr7AzN8c3DCuiBP1TOi6/67n+zMrl+i57/+g7E7Pzze2N8/lm9qTHUbkU29p67dWPF3/tb+1n/wW6vF8x5V6bETJ9p2X2BkDhpwpLavdq43UQsyqeoQ1fxZigPLiMqbG19cvhmwGP+uiFkHFFF7DI18XOn6RdDXQcfBfIBrX5nEBWYHNs/irreA6ftNP46sL2WSaIuZOV9yuOz6JMnfh2oakS1Uc+eJZQZx/e79zA5orEBkxYyOnwFcG0CGx9POeBLkH73IpwrjwFWQ8ZpQ4OJaq8LTqmx4WugH/hgneHe8LnhXRx111PEZgchnPlVfJ/UfL34M+O8fe2mRVlfODKj2oNG8PusiktR48xaq4/uw1S1Mi9aVcSXBTw+xxr3iJ/egWgDZV8uevcAsm7enDaOg+0A38sAsd/S4/eaTBCEFegllDc6+anKbAjrnAVuOgyzDlZlXwZaYLJW11QWYYPyB/fFqD7gxSXftjXeAN91dRmO4yoEV9603axtaAE65cWsRV3HQiiONIZPXtGoRDc9zv1PCRVXdQHn0rzXXmyKWHhE/uVXbX8jo6N0f2v/0bxaaDasXaxRdJfBzXL1Z9DwnSCaLVp4ze35u2hpK/FUgR0BnEj6DreyhfK8HZBC0VU3sosQyrzFdnl1G/AvItO+5qirV3GEdPL0IMce1afnLIhJDFVLZC8RMgrBcopp/g2rhjCZbWsR4i3gQgvQtZsw9aexcz7b/Ar1xbD93zrwOcif2y7+0FBttRPQCyJBkl44RyxgtjiCJltUkYw1izHFVXUhxyMNPvCJIDLVOPLAyvo/ymKfl0jvcuB7J6tVXtWNruxTunaecy4FiK7mYiaVfQTWDy/JGCB6WuwgW8S7U+sM9XJ9+4M4rVSALWkRYiBfkBPHVVo2EBYn/7K+1kFxYlntXvMbNb6hEv6/Nl/uztz+4PtLS1eqFhbJ4pUo+seFFtvz+7l2bC6VL13/n3/cP/PkPN4nvh6u+9rs3mz//5u5HVTxMHj7cPeNx0Vl7VYDTGpbuMX59J/dneQ3VfJpY2l03Im+COYjaCUxsPWqPIWYrIq/iSHgPcA94DefhfhEXJLrHtDXcJJLMDShmul5hvOcAxaGdwDocycyC9NLxckwyi1+gMrYPMUXgy7W1HqUwv4BnJ8722JYhD0EIXHHXIRY0jjs3j+fKMRtP8iRkgcsg/bVz1VVzAtnyiPU+LtwG/hL4JvADEq3hI5avo4466qijjk8c6qT+eaM0lAR+CfhbPEj5+HEhshSVhyqZi4gh1rhbnUhaDxAh3nKi4ruEhR3zrfdE8BsOip/cU9thCthdE4d7hoQep0aN2fQQNfcnU4aHTagOgp7m/ofPXajdC7IDkTJItwuwACIJLFPifqCL0egA4k/rGqgyu3xVK7js53rglMuwy1LQcVRP1EqxPaZN4wVHYNpxwZn5squuz111HA0PAG/h+oHv4TJ/FVXboeM3P2DiVjexTK+gm6iMDUose0MrhcCsX9lHIr5Chu6dYTC3Q4XDte+p5q1fjmRGsEJEUuonmwkLyv0P/UtBlwI38VMrXcbVbgdiiHcYkalzpmHxmPYdbaYyNmk5t4p71fPavLpDyiOnxTNfwsuiMYVq4SBROSIsjhJLP5jUV3Pdc98SEWT5tl3atWGYKDyLls9SGc1gQyt+MiKz5HNivKzEG7+NrU6IMQuBjIh0kGrvAC5hwx5V3aOlkb9ioudV1J7h2vU0vb3dOjZ2jvahS/LGT3yZzEJ3LKJSj9rkOyISoGpAh4EWiOIo/YjXAkSI+M6hgSW4HvUGYBwRi0rkgkbqIUaIZVsk3jQKBsm0R5JI+tkvvhGmd0yU0t9/vwlsAYHEK1uHJdv2Bs3rDvno2Orf2fPiqn9evRGOjV+Mtbc9DceHR8HDzTuPOa0/Win2ohpSKS4kSP9AYg1xYCWYEOw4UMJ4W3HBtTLIGlyQcCbWAhHIF0BDXCAEXJBr4ZxlEZGTLN6xgvLYAc31CRO9gheLZNGr68VPuKqceNPz8GF/XHwUYnkeZAjY7Cq8WOferl2iqjncfWfnPOs/KfIgF0EmcPoRqxFZiztHn0REOGeS7wF/Crxfz8jXUUcddXz28RlP1NdJ/ceAfwD806eyJTGvotF0dna+xURA/GnPXj+1Q8U/h9o8GpWJiu18mAewILNPgoY5qvR6nmcixncfRtw/Zi1Ed5hWuv5wcMT7ClPkfBbEBQ70CmouY2SOr7mpzkqsqZ3rj3yD2ZnKGNNlvQuBoqs6YBdoLdP5oZ4xK6gOo+EI8KO197pqLzSqHNN7F+5QGnmZIHWKeKOz+ArLlv5j4xKWdunChZZbtw/rxMRrtlTtjXKVhInC9/3tP5KXROr+YIJTHX8Q+ggyFzDBayLeOUR2oWYCOArTfbMaFvbq2I0CQbyE13Kb0tg6NFpoB3qT4be+ezH2Mz+3eTKhLCIQa3jjkfphYgrzfhQkzxPwFSGDJlrOkr/TSENnSYx3EQDjp8AMo7pgKnDjgitJxKQQ+R5BfD0tq0cIyx79f1XB82JIrMHs+NlVoPtm6AwspZq7RNBQAFEwKWxlQAvDvqQXtWG8LOhNVOOgAtyoldyHrutD06i9A5pETCBiChivWJurnRJk85jYqLz+052etbeSLVsay3/xb6OgNVWNtScayS4fxE9WBXkLEV9iMWLtbd0wMwj1WJhRuq7HgaXw8PYYVR2jUmzGhhMa2Zx4Jq1hZYieU7eIwnUYX2XptmPEMttwJ9RipHMG//8hLpP+sJ602sISoLbXaRHQzWzBvhzIKUR2CkCiaZEkmqBt/RN8/Y8FT0LqFbgAMoDLij/8yzn70Z0o+0B38Hh6KxbXblAEKi5oIFXc/Wv1vDacnwxUcUHUvbXXIRKtj2jfqqOOOuqoo45PF+qk/nmiNLQB+NWnt0F9UL/0Y0G82FTmS/0UaHiBsDCArb6Ey7Y8agsT+KlND/igGeQqqMezJfc7QMcR6UC9GzXbum3AGE+qJq96B/Q2jyY6KxGvet+7YjrQmdWyuhQbHsT4kyT4YXZ24MqFd+OEuz684rXqWjQc4gFlwxqWD2r/sQS2+iYA1fweSmOXbD68Kbcuv0w6HdPm5svFAx/0hNd6NZooK7WAQKwlsS+29YuL527TQVrwU2eIyiOoenixEPF8/OR6QXYBA0xaFopkcOfIAGhl7By2ukdgP158p5rYXRoSA9Hlk1fCd46sB7orf/aNq7Gf/tmSGNPx4P0/AH5qkAe1MShnML6iuhc0JbBGG7pAzG1Uq4jsqo3zIlG5F1VfJfghnu8L+AhJvHhCxFzCVpZqftwHtiNSMG/97Xbxgg/Uhl9CzQdgN6N6j2rOUxOLxI8v1qia0MGzt8jdzZJaUBXjbQTKiAyhWqqJhVVcSwcWmEBMHLUFoA1MGpEyGgXY6qh4McHzrSj3MCaReK29ECxs86Kzh7LmpR9dJUH6iitrny1YqaqZx6u8n0Kt6kWPMu1X/0BSr6pReO79A5Xv/CHxFm+XiBhE7pQblhwW30QShFGw+ZU+Wbx9j8y2qZxLLD8PjDmtC7LwEKLqSpESQAFME+gNXK99EmTxXDeQTwkqD/lMcWX1d3HnZm2NyD9ZpEJkN8r7OC0IcNdlUHslcPoQGSCLmDfnrP1x2Mk9Lgo4rYN9wDs4Ej9voK+OOuqoo446Pguok/rnhdLQm8C/4knF0B6OecXCngQukx+sI9a4TqPKaarj63nU3Ig1npAZJdQzNtYBdKCcr5GA+WzcPioiJutJRbrB70Z1CGgCfb/W5z5FIOeFagg6xmwxrvkgYAfAm/PwLGuY6tGd3G70BpaDiNddy8YOAksReZjt10aQPLAP9FXcOXi8a1R1AA0nmK8P2Iu9Sjx7luIwRFGOi+cHtFpNMjzSqr531o4XFo//h30Gq1/A2TdNkaxqyVuJ56cftNlaFchGjJ/DxIcQ6VbVCjCocAdsDqtXUWvRyEejUUFWqEYJNHSBJVttV9USfec9onCThJV3mRRZGxpaGe7fdzTY8+bjk3rxHpTlvIvxFyCysaZJYUEPiZhOYDsavY21H+CqKAqobQMW6fjVAWlYFJFofgNqE84EoMkeskHAzr+xFzE5STcbRF4V47+r0ER1Yh9qXwU+R2X8gB2608PY9R3Urn+9+p2LrPmpogi9qAquFUdxbRIKWgJSrljMNqC8Dvq2E3rB4AURGDQqLceL3RBXan3Z636h6C1bW9Xx26e0qekLNer+mqrmgTKV3GW9vq+V1V+6JJ7/qJ5xcOSyRuBlG+g55un31nL5Uu5r/7sNr17cA+Bp47dMzEsjUD17NOOtWmYTX9qxHc3ntTLRL/Hsw/UjXMZ9O9DnRPMepFOh19w1yUqQWkBMuoFuXAvDYwQonymeVrHfFZA7OD2UdTwtn3aR51FV9SwxhtMYOVP79zBwnkRr9NC16qijjjrq+M8P5rNdf18n9c8DpaE9wF8/9e2K2VbLOj61XlDxYpvUJg8QFXcw3wOpeD148UdltbM8O5/lAeAO3OcJX8vQy4tgQLUP7CXQh3ho60EebEWVA87hVLxriv7mBJgN9y0pAsoAcyscNHoDjRTkImJeBy6hVKfH+QCIOBVxZQQnUHYLR/aK855n1R409Jhf6R8R8TW5OMH5o3s1l1vN2PgtiqVXgSVaiq5NvNfTgNXJXuSZpFi1WIhrbuK0ZLJNOJJXrb0iQFTxsNEE0cQaVMdAG4EuUMO0nzm43tthpwehHwBgwzug66Lj771rb13Lemu7L9u+ockH8jsIt8yihYOq2itOLRvgCmJGUDsZMAoR7wBqY6BvUBrepsnWCzVl9doB8C4BGxBvL6o+RIsQM0NXQt4COQaMY8NlwGJAJNEyrhqpcJ9swKh4fqeseHFUw1JCNYpE/BZF0kTlMdROz6nUgkbT0IG2rp7QofOnKAyliCoLsJXTmKCxdpyqaDQOJobQgJuvY6hNgDHAgVozWBzEiSKKKsbrI6oEeLGjGO9NPK8FAsguHtUb+/ZqfriFsNSKyEJs1MJkZc/Auf10bn4cUn+MKQ0HvYILGnVOTQ4b3bXDgzeKx49O3PtXX3shvaCpaUpovhq2gL6uqsTbEpeMX74l/X0HybSMk7u1QoN1o2K8x9EV6WS2tdwM2NvAbpCTiMzUwjiMyIez03y6+LC92jmQ/bjf6NWIrOLpBoQ/rejBuYccqL3OkWh9GqKCddRRRx111PGpRp3UP2uUhn4d+LvPbPti9jzas/0JNxk07FQvfo3KaAxHbmYj3twnInP7xueigrMHUhwp/igq0YojkT04y6wt9xH6B0GkE7xOVItg94Ou4D4BP0k8+LlbziJmO6rjoCeAMcR7syYG+KDle3H+1Zm5HwCTWe41oIMo15w11kPHPml3N52hVu1jBqGqvXcTDeOzlpv1sZ7DVge1WvQ4+B9atFjs4t7ICKovALfVDwYLfZWSv2K5Z1qbL5psa85buKhNmluOm0yy0WSz3eL7bRjfgmy8b/tR9TZR6RzGX4BTcB/AZRO3IP77iHcJER8kgS3nZFpbYB3IAar5sqq2RieP7wAIh0ZQ1TzCOUQCScZVTPHHuXPlhq547bQY0454K1DNUR55DzFLQNoReRONLhKVnQ98NddPLLtuxkB34yXPO4E+PYpG91tpiXQCXZjgfSR+HTASpL8oIlN+5zOWjjBBVtXGqIy3oWGn+qkfSCwTVy+eIyq5pWLZd8UFDw5LLLNYFr0643rSZlRPASPYKAVkEZtDTREhBmJACzgbwCxubt1FbQAaIr4nxg/Db/7LuNn0WqusfuWAiPlJEMRPNLFs5y4986fXULti7hTX/jNb6dg0Lg/PZNfEHfVg7Zy+ABwDR5aja2e+l/vd//NzUaFYyfUOLU22N10QY6aur8pYueTFg/22aotaid7yJTbm3b2zjfGJg9K5Zh3oyEP2PRcPcLhwXwU4PDmmGiyf7PLwmcgD13EaIYqzt+xGTCPPrsrp04QB4DvA94F9JFp7Pubx1FFHHXXU8WnFZ1wpr07qnxVKQy/h+kL/MY/Vo/4hIQJ4q9H5SOuH3KzxV2is6RqV0dvMJfZi5hLXB41rOchyAFTzHzJhVcWVU74EZOBDZqtEkuDtqpVcHwcbw6ndh6APyprvB9lQWzcLsgONjmArE4icBBO5424agY2IeJhgT60E/hBqG3BkPsR98dyMJG87aAplH7N7ih1Ue4C2qeCBI30FXFY8CUyX2Ku9hEYtzKMhoLb6NmHxc8ALYgR97WdHOfmD05RKOxERYnHP7PqxrowY63q1bYZk+yEJUq+q2h6i0nTgRsP72hi0Mn6Qyugm4GUS7TPHcNodO29xrW8c1B7EBCk0uobaFSISA9mp8eYT2n/7bRLJpdLSNma6lhlJJwpiR3aJ5yWYJGfNXbfEj017hmt0CBNsrAkLUtvfWrxEPyY4SJD53KzBevEDM3qrm8EcBVsTKWQbbq6NAmmM3/mAsuQO0CKKB3oKZydYRqMEXqyXWOsw7nq/jvFX4iWOYCtriTVOtmo8YN5K1vU1axXhbTSMo3Qgthk1l3T8DvhxKw2taVAFGXGHMvQxni/ITtQOm21fPE5Tel2N2NYqdwTxghSbfmGdXvjLg5TGZosc2jDJxN33yHbOV+VzgOkAzCrcPL6lylqGevbZc3ubuHPpraAtdcj2Vl4AKN4bv+InYgNRGElYqkTiibS9sHSXnwmOmSA+JunA9TUrgvGPoHYc1+6QcOeETu4PilFbJ1CNDumddy1RNYaGSdQmUF1OQ8cF075xCOUOJrYGGKkFaD5pmAxKlnDfuRNkKXBfsIzHE6/7LMLi7vnfqb1O1jPxddRRRx111PFo1En9s8PXgVeey55EMoi3C9USGvXyNIl9vLVS87rfDVSINR4SMU9a7j+Ke4h9kgfVUeA2yK5HLvm4EDEgrzihcT0C0TDTxGUI5DxI45Rg2iTUuk7vuPMAACAASURBVCytCKguhPAAOlUKPIp4ZxE/ADYjXhKN5toFXpzz/wbQ3a4EXUZrooINtdcioIpyAFgNmmG257YC+1GbQqOVzLFFVNUJsGcIS0k0XAWYKemBeLKJ7T+2Xr/99RxhJUO14vq4g9QR4tka6ZNY7d9FOMKbBELElFV1QpzYHVoc3EtUnDx2qZrQ3KSNYE3kSyf9ze/ixTcg0uh0D/QDkJiqZggLE2bJxhXxr654AUArpT4u7fVwhH4aiexMe4ErGO8LxNJKWDqGrU4qpFvEZEl3rXNBgxpMbC/iTc9ZVQ/CVSA3EG83ar8L6tZFbiLyo9yPNcAtteULlMeTJFp2CrpfRN4kPqOzQ9UT4aYGDZvxWo7J9Fxqw/mp398iIRKAaUWlGzEXQfKINGP8IfxYJxoNYyMwXoCYBaBjqK2gdj+qVens9ghzfdhQ8II9wAHQ10E8MZ7P+v+fvTeLketK8/x+37k31twXkinuFMVFokRxkyiRUlLVparqrvYMDAxgw2PDHsA2DNtPhscYwE+GDdswDNgYYwz7xfBgPH6YgffprqruKlVXciclkhJJkSLFnUwyydzX2O49nx/ODWZkZuTKpBbW+QEBkhF3OXHjZjD/3/L//vYRvfW744w/mRFE0ofntsmef7nOW+UqMyp/ZK2qPqP/1mP75a9HGOzvJp1+RnPztdSuxrHyk9EWoFIYHGsvjEzUBg9KHW9uUhQVIy1UKpvknZ+fk20HFmjd0Qqu9WUKFxzagVLGllpQ+zpx5SKgmHAq8Z9AmjauTa7vkAvaUYLvVdSP4cbxDSePq8DWRMAvVuFU5Y/p/+Z+pkX8X5PtGPqe1+PxeDyeVw155RP1f1S/OHx3FAf+Xb4rQV+LSBbMQ9Su2ox4EUlrqrmbyvhnZNreqGuOt/hBNiSz6+v1rtejDDwA2bvscy1tPYAcdtXNOoXGJ4HsHDEPoNoL+vGMfZUU6AiuR/w2ahUtHQIqSJAGcw3sDqZdw+eWejv2zl/B8HyG9OyZ2wJ8DDKGm2n+tSJQmUi5z92uo9bFPyqfJggbkOBd1F7XC799SlT+JHlvBtUHxOW1qKpzvdO31NozECtwBOQRJnUX5E+wlRME6W5VhbhQW+4coNEZJB0ipoTL/J8GhlB7EWQIkU+T69cJ0qlxdJPKRBGRY2h0IlnPOCYYAvZggmuoZlDrRHCYCZNtlOLQI7KtHYhpwwST2ArAGBIMY9KPROQooEh4GhNm5gaG9CE23otJCegJRD5GUtefu/SrrTvqS1XvURxpoDz6IfBbcu1ZVJ9R21oisg2lT8LsFcTMvp96mSXqVVVRexobjWLC3c8d4VXPS2PHayC7QM+7TD1TqC1JkGoEDNgQIUtcGEPtdmzlK4JUb3KP9JEE90QE2fGzbvvg7HEGbk7/DJbGNmt56gtJ56tBkS9d0MV2ArdVUaaeKBptRe1aHXt4l0DfZ+/ezyTf8FNgrSlXkJ6rAE9NGGSSazBi8vnHqbVrR2TnvkLq3f1WH16/FOw5IrJtzyLTOiSFy9q3Abfc9dIxoFnEIJuPzS1Jd0G3b3H321FgAFkVD9HFiHDjKp/hKj2qQbn1INXJID3Uz8Qvxqv8f7PiRsz9GvgVcNFn4z0ej8fjeTFe5V8cvh+KAx3A//RSz6G6QLhJtjDbif0FEROcINO2F1l4NvUiKHAvydSWQNrnmadcBr4EWYob/YsjkndGZDrfPOzXcJn2GtM16cSkW3FZchdAUX2CrdxOsvSiNjpNebwINkeQLZNujkQ1jcYgJufmu8tG12++BFQvJeJGENONUISggshR1I6i8UPQDTXbxxSHTlKZ/JAg+y1B6gxR8TVpzDdoEE7QsfamrHltnFSDEKQ2EhUuIGYSCTJIvB7lBkH6NMgHiLj2C422qqZi4uJ16ggVSTfMNCaz9jgaHwAtEVeO4+7cgKhQwpa6kGASArCVba4VgluIeYeu3WdJZbI8/Gr6/iiORVqe7CGdGRON/haFgXtk28ddfzkA1xE5TJi9h0kdR4L8TCO82msZO7d5W+kGc4Ewe++5oAcQ043aL2ruiV7ga8Hu01xHlnTLHySV/bl7yRRBj6Px20A7yCOCTBGpe/9mZn6kWqA82o/ao2ptn/3f/utQNr95UXYfHpHXNr+GsEbE3MQEWSQcQ22ASISErbiZ5AFoSKoxA1JBgnUg8wYTzeYPujXdcFofXzpMErDQ3osq2z46j+vtfg+Rjah8g9rDEhe/0TA/RHnkXQBZu/UwWvo1ga1e1zHJNQ/n/73/pCddKOYlm28O128cDVtbqz8b0+zvBrWXcKPmJnE/55a5Ua0A9/9SBpet/8Zta6qVG83M9Y9Yi2vTqN4LnaiOILIUE77loLjvgqfJOt5acUvQ4rxq/zcPAL/Bifi/Jtsx+D2vx+PxeDx/bLziqfpX7ReHHwLjwBnqOjXX5RkumzOGy+LtYq4Z2igaVw3aBFAIHiOyZdZ2MRoPztn/RRDTw/LL7esd5xiqfRBvxPUnj6LmNCIVXF9tE66Edt13JuiBJMjw1ryvixhUnoLurnl2O2pnXheR1zCpALVX0KhIaWwHtjJMPNUMY12o7SHMHgVOoOzBlbVbnGDsB5lATIyYlCJZgRi1RdQK2AwSbkZkPxJ+nhiM9SNJ3z/SNMcbQKOnVCY/BgxxcQ9x8WswD+ja3Cbrt+RExJVXB+HFxLTvddSCPk+YtWNLd5HgJCYMkKAFiAikHzFKkOvBVjJotAXoQszc7xJBE8mWQeNuVb1LXCij8S63RnsStccTF/tzwFExBjo2f6D9d05Razf/6PIxWro+Z92Oj1A5jS1vpTjUCeYOJtWPmAoA2fY0JrXwZAa1eWCYIHsFMUfqB1YkBO3BZWP3IubnII+F6CFh+ojLDstbSeVBN8g48GskeP95EGQum2b9O4PazQBiTJd0rf0VpacpvfariIetOXYcPktjRxvp5gjKOUyqgGpK0qlt2PgR6BagU8QklSC6qImYdL1zRKeGeph4uofOHTeka+9GYAvwOS7bfAtkNyJFMMOY1GH33rQJKLBudzuVwgXJr+si27ZLxBytDjdfFDFvMF/P/IL7AaamaEK1DPoYdMj5dVAGHcJFzMZxPevDybmkeoRkb5M8ZNaf8z1i4DEu2LAbZDe1Ab6XR3rxTX7QKHCe6Wz8BZ+N93g8Ho/n5eFF/WqT7SxTHPgZ8P8Av1hgyyLwnwL/I9nO8sxXBgLcL9q/BP4uTugbasuBNR6AYMuMqJPa5QQTloBccIJlFVAto9EQzkEboAVkY9JnuuSDrHqYTeNbi4++knWJ2p2u6VXNgfYnhnZudJ+tGGCvKqgtP0NtnqAhLxqdQwJw9f7HgFM4wbEXl+nfAOo0icagelzVuhJrkyqKGEFkHdWZ4ap3ajPLImJUzF3UdqGqlEZPUZnIgX7rSs/lIkgekW4JAkCvAy4LHpfHCWe2rye49WkMcTJhLsj9TkxwhKAhT2p6WqHaaBDngdDjZLxtAjJJ9h21cR/R5Ldo1AYyiASvuz7ypMVAgl+j8aeE2eOYVBbVGDGDpHNnqZTWoXYzjR1X6dq5V0QCSB/BpCLi4mk0/gRbukzY8BFixjCpxadAmFQfktkxbVSoFje+cAikDehCZB9qxsGOAAHW/g3YjpqWkG7QSTdSUt5BzDWQT2t8BeoxhivPnv7cgsw54tLbQANvvxdTKRhy+SbS2a1Q2KoTj2YvviivvV9AJIMygUg/SIzzTqidzV2dFtGPG40oOO2dl23dDSLSAVQz7or7vEdw2foANWNAKCKDmmm9gkl1ETa8bUQWKZ+fl3FWIujr4UwWtwJbV20K/MIsPKliYVa6wiXFSX5gDAB/hRPyf0W2Y+B7Xo/H4/F4PM/5bjrzvj+8qH8ZZDuLFAf+HPjXgb8HfMzMa30J+DfIdl6bZ/8YuAP8I+AfURx4DeXfBP5zpjM4B4BpZ3pVQFfSuzkPcgExO1yf9Quiqmj0OdMiIiF+iso9kDRiFhHWehvIgN7BCaM3Vv77cvWQ8Rmwa1E5DrIHJ3TmIrIbpQcxAiaDq6jYjRtVd4LnZnvy1GXMNWbk9iToNqBfg2yR8kSg6aZfS6b1MCY8KsKpBVb2UfI+D6DxcSSMksxwCq2MYcK5wSIJy0STD5l8MlrTjw/IZ4j56ayt+6mK+qiwbR5RP/sE10g1foqNehIztulXTNiB64E+PKuaerOiv6My+joumNPhghfRdQgCxOxMDvApYe53YoI/A1A0kjXbyqzZlgdQay8jJhSNz2Era4HdiISYVJsLOJgJRCDT/pXU80UA551QnShggjU8b0/RUdzP4yfAA9B7OHO2r9AoBlFUd4A2JO0nx4H3ccaPDUB3Us3yyRIuYnHOVU01HNYwH4FeNpvey2ArGUxonR9AECImCyaLSANIo1u3ZJHgZ8nt/zR5jOMqP87jfBg24e7T2cZ8QyJyI3kf1c+xms3uwmXstyDyLWFuLbBR5q88WA7PWC1R/8fBjyFTr7j7pWpy9wXZjnjhXTwej8fj8bwMvKh/WThh/k+Af0JxoAHXd2lwv9jfINu59FLEbOcT4L9hqu8L4C9x/aanakZ0gRNqq5C3ksuIiWb0GL8Iqr1Jhr5ef/N7iQg8vshBKjjBspHp8XpfJj3mBxKxs4w12VtoVOC5oZxuB41QzjqjLjlQE8zoA7mLhK11xpwBGFUdJypcJC7nwT5F9T6Z1oDS8DZgDXHxmDTsOI3aJooDV7U8kaFla75exTokGVwCi8ZjaNytVr/CjdibAJ5IMJ3EU1Uoj52nOJChPD4IbAcZBSJEYuBNkL/GjU/rcs/TjvtlvAGkguqmRYI3MZm2vNtEP0B1wJWdz7wOyeJBeQqsc+MAg624TOcp3D0wBFJC442gp5DgKCZ1GtivNnYl4BpPAZ8mV+O2hJnN0/3RObDRNSpTMRLsJszdA+PaNTItMz0fVO+h0X3iaBPYCVL5CNUCYBBR4CvciLF9uKx21Z28B7Qb5CRqN2ErvcBuxFxCgvcQmcCJ551I2IvIJwtcu1rK9Z4UkRBkL+mm+Ywhi8n6HuKy7imgAyfc1+F+iIaTv9cL7EW46+8CIu6+f4Yz06v2p78B/B5oAdYAr61yUczoah7sR8RKL+IPWdT/BfDPcNn4/u97MR6Px+PxLAnfU+95YbKdkzgB8WLkuz5jqu9nwP8NNKH2FGBQ20F1dvnKuAOmF5EKIn/ywuusojqARhZ4Z7EtF3n9DHOd86tj3npdtlWW5viv9ioadTHX3CoEPnBL0T6UG2C6ELMWkXl7tFVVKI8Novou6Fc4MbuO5i3KSPkGYow0bbormZYcqjHppl3SoIt6HojITiXoReNxbJzDRmfQuBm1FRW5iARrmOx9go024jLHkGroxYRXkfAgtSPdakq+63B80W85kz4pJqxmdTOo/QoJZov6Wqf4qsAE1eo6jmLCqg9Bu4tG0AZcANkHtKDxBPAGtnIuuQrfYsLWOYZnJnyLdONNlJNonMLGQwTpEWxkVIJeEbMdmCKaqjCdjb6G6js4o7ZkcgHjuEBDiBPMoHoeV2I+7iozpATRIOhu1B5D7TPE3ECCjZjU5DKDX5VFXu/DBRkmcDdiY3IdNzD/z3cFV3WwkO9FiGvhqTWYW4ubRT+YPPYAP1tkfS/C1Es89qvIyxD1ZVxVx2xvh6VQAf4p8N+S7bi+qqvyeDwej8fzwnhR/2Mj33WCqb6jwG9QWy9zvFRKIF+AtCHyFi6balG9Po8r/fJQHUGj6TLvhTc+iNqriJmvfWAh0bkBeAZ6Gdi74KY2Og72I2p74+vT5R72NEgf1B/jp2oHKI93AFvBnqFGWImI0LZzF6mGSyLm58m7OI4GFpuMbzeZr5Js/AbQen27nWj8GXF5HWoP4cz1oDRqiQoX0Wi2oeAGbLRBy6MnSTe+LmF2ITFfpdsZws07qvAm6ZYZfdRqK6Ngb6C2CDIiJhScYOgBcmrjQSoTz4iLedTuQYJ+RNZg4xSBeX6BeO6vYE9BcBTMANg3EFMAjiPm0POS+WliMKeQcD9GpoWuSfUgZp+ItKD2IcQ7MOE4NroJ5Amz7bhs9UfAcVS/xgmVr3CZ7EbgC2ATqhcRWYOyEWGcMPsRtnIGGx0C1qL2CSbThkjbEq7vrLVjcVn3Z0AB9x3chhNayX23LO6ytIDeN8BQ8ohx73cnteP4Xi5L6fF4FVlpWuBFr9cYLmhzGrgKXAfukO2IKA62APtxLVw7cN/923E+LrN/JxgH/mfgH5Lt6H3BNXk8Ho/H8/1QbTR8hfGi/sdIvusGU31HgN8xbTy3VO6BuQ+8i5vnXYsz41ONEQnm7rpEVJ8k5e1LDQ40OkOyebX2YiJ8bfL4FvQJ8E5ieFazJnttiYK+ymngCBoDehzMW8BdjcsD2HI+cS3fjHPsB6RSt+BA7ViNM4dBZAMmcxMYReQ9JATCB6j+Clv6M0BU7S1spS9x5f8lQQpXNq6nsXEGtfsJ0mWiaOap4vJDxnofY6OPgIfatOG85DuWMkngoKpeFZHZQZVJwvw9NKqo1SLYImojNApwmV8wqUuYxv3T10zepzTyNba8p+YafIW119H4XcScxASzzBzVeRmIfIDl18BWTFDn3pEbEGSmDe6eP3+ZMH/seQeByCZUziJ8gAknkfAKyH5cdUYP7oOqBipu4QTvIVzP93FXOSDNyZwJBe3BpN5HzF1s9JAge2zJowhnEuEE9dbksRpsw81Krx7vKS7bP5b8uxEXKPhklc63Ek7gfEX+GFmsCmk+lvurRz+ujan6uDJvf3u2YxT4Q/KYpjgY4r5Ha889QrZjcplr8Xg8Ho/H8x3jRf2PlXzXkyRj/1/hzPhyC2wdgZxPHND3sbCg2IkTPisbY6f6NCm5X65j9FHUfoGYmnnxCk4QLGKi95wdyaMCehbYCLIRtQ/QKMvSBf25GedU2+0SrHQSF+9Q971JR93f320cMt07X/1leQtwBScgtyKyGXSTqg6j0ddofJDZ7QEiOZAjBMa1NUTFAdwJRdUWGO87T2XyQ6ZLazcx3rtJw8w3km6cdwSXRqVeRu89JI72arb5C8L8FGEWgkyeMFMQjX4+O3gAnHkeqLCV/WrjM2KCD4EWVY2T9oaak8RF1H4CQGXyIOmmO8kYveR1HQF7Co3yqH0TE2zFxs/Q6ClBpqZ1IxhHZFedd/GmG2km7dPPmVbQUxizG5E/Q/U4TlTvx2XGT+A+jyM8r/bgK5CDOCO5A8l1F5BjqH6LBI8Jwp++QE9WjtV3Na8e7xrTPfbrVvkcL4LyYu7xP3ZWKuoXowR8hutv/xvgBtmOFztXtiPCje/zeDwej+eVQpBV8f7+IeNF/Y+ZfNcI8B8w1fd/4H7Bm80TMDeBPYgcWcaRP0b1MiLzGXfVxwn6Ei6DvVwE7B6UpAxfx3FloyvJ8KVwovwR6GU0HmZpQYoYuIDLbM4JAKjqAsEKXbhnWDUxgYs+R+3biJnCZLpV7QUqk89A09jKLpb2fgfR+CM14QnGei2lsd3M9/5GHxRYU7+YQ9VWGL49gMYugFEcOeTazQHopevghmQm+LeI2VOz60xPgMr4Dk23nhDhoIgEmmo5RzTZhsataPwmYj5B9SLoHoLMNZB+rH3kJgWwEfggGeVXRKPLrnS/PAn6DtmOx2g8io1GSTXvoz4p4tJZwly1974VkTcQM44zlKv28oPaEeBfAG8iUp1FnkP1IWI+wk2dmN1z/ASRAizZEG8+lluuv1S2vqTjrgYXgdUx3fQ8xYn4fwH8zmfQPR6Px+PxVPGi/tWgB8wfcKW2eZwoeQzsQGRRU7Y6GKAJ1WjJZcaqo2g0hsuUr5Qc2LdR2w9yFTE/eYFjAWx0fd+61DaAb6maztVnGCcS61Ga84wJLxCkq6XpW52LuhQx6W8Rs1dVh6iMd6Dx1iWuD1SvUZnYCDSLBN3auP4y5alJdE423WGj/RoVH0iY3ZzMjb8FPNHKZImRu+8A9X0ZwuwtsdGdZEziLkzqgasoYBQxvcAYJjUCkgEJiUsVTHhdMQL2p4S5TLLeW0SFQdINk5hwWMQcdE/rJeJiO6gbLVeZPAn2KNXrb4JvsFEnxcEirr/4TVJNXydTAOYipq3G0PAczmisATiLM0D8HCggsh0XOCniMvVf4kzxPk6uTRszP+NzOMf45QW46rM0M8dXi7k/F9MoLpAWM92aUH1YFs9yLyXkLjgjwcwStn0ZrDR7/gjXB38dV4VxEbhAtmPpU1M8Ho/H4/FMY3ym3vNDJ98VU+hvZ6bwqFOmvCy2sdQyfCfon+DEz2qwhppG9BWjatG4wtJLnicWOeAY84v6mf2rJnWGIPOeVIMiIk8w6SHEdCMSquo9KqMGtVsXXZVqGZE0qlepTGyhZt63BOFe7dgxyGTfrymMdIM2zNl/9MFNGtcNE5d3I2GWXPs+0o1NpJtPUR5rwwWCZpJuKqH20ySbDTa6S6rhHkHuoKBZtVFZhDaeTzawaFwaIZoqgDzEBE+QMAApEOY+TAzvTpHMQheRQIPMBHERVMfAfshzkWYGybQPUOh7hMvkO9OwuDxIOI9/mGrt9U8nzzUDtxGpAO/N2uOyW4sUmK6OGGXaOK6Aq9qY1f+/YgaZ/955FXiM86E4i+vxf5o8Rqgv2uPvTKAWBwV3j3fgPDAWe3TgxvqtdqtEPQq48YjncJMZrgPfkO0Y/w7O7fF4PB6P5xXBi/pXh2usTjaxlsOoPkJk47xbqA6h0TNWT9CD+0V3/6JbLYbGJ1ieN0Bh4ePpAuWuOi0AJLgqYbZ2DF4ZzDBCBjiNWqEy3o7a+lnnmefsozJVJgjvE5cP4LLPMxATdGgqn0fkAVND25k5DqtC8+ZthJkR0EtIsBaRNkGgbdsxtdEwY48+pzT6ATBOquFrGtZ2EeZ+DvY2aiqY1CCZ1ncEaULjM6Ddycx6cCZz/WrjCWxpO+hOULD2DahAVLpOcfApJvWUMF/SdNMFwvxBccGCgWSNTZjUBVJNISZVBJ0UMT9VMRdRO33vRVON84r6uNRIKgeqAGtB/4Abg5hHmUKkcdYee5kbtDqIG213GTcGcLUEPbhxda+KqI+BS7hRk6eTx8MX7ul+Wbh1TSaPB0vaxwUCGnEifyPO9POt5M83WdlYOHDeDcdx1+wUcIlsx2KjDj0ej8fj8XgWxIv6V4fZomU1yOJcleuLeifoB1ldQQ+uDL8fNddxmdOty3a3UH0AenjxDWfwMS5rNk8JvtYX/aoFnHu6I8gMz9oiDXZ2cOHGklYUFx+BPURcntenQEsjPcSlY4iBbMtxiqMHqYr/IH1B0vl5jQbFhG20bj2m5fHPMOn3xAQ165Re0i2tEmaPonovGVFY4zwvALvVVorExV3UjkeLilcoj49iK4eBFLayjfIolEcBJlSCm2Ra+0jlf4mIEDaWQN4GCcSkjqvGf0BtjUkeEBd3kG55ho2uE01+zAzfA92hNvpMXBn9BqZL3dtBL6FM4Xrta2feHwM9DXIEV6XxJa5UezXFfJXRF9z3fs0x2nBmi304oTqf18BqcgH4v3BC9ItXvp/bBQLGk8ddnLHiNMXBJtz33pu4qqZ1uPt/Xc2jGTfq8a+A3yaPq76E3uPxeDye7wFvlOf5kbDyEXQLsx/VE4jMNHBTLaD2c+AXKz6y2hOAgjQBaxGp7TneDLYqZBWVxAhQ0rgs2XpEajPStWsjCTYsZNh3HvdL9zDQghsBpizUU69arvPcQ9A7uHaHLiS4gpjFTQnDBsGWjxOXXwc7X9CkL5mNXuclO0lcvk1lagRbnhbiQaqbptd+w/iTd4EG2t/YuuA6VGPUnpQw9xOmRfIYQe4SqeaPRCRA45OorTDr2qjqBHHhAhp3Uy2djyv3KQ71ofFCAZVGND5AXDxOKg8wgQnT2NLXqDGqYRuVyRISWOApGq/DpHtp3vpERA4RpNaqaYlB/wpbUcTkkeCgiPx0nvPtT6oKekBqgysKhKCnQA7wcsR8laVkY8u40vWBZPtGXHCii/pVONU2jPNUg1+rSz/wT4F/TLbj8iof+8eNK4//PHnUpziYBZRsx0K+Ah6Px+PxeDwvjBf1rw5DL/HY+1DtQ8SNKlOdAG4h5hduVJh2L7x7HVTL2Hg6UGCC4yCzjcRKuAzhCOgvkx2r+/ehXEHMGpC9z3u/AbCngKOLrKDItEgtM7NkfZ412zpudNoLWiOq00MismiARUR2EmR2qkkXqIwPg9ZxRtf7OEE389lK4QvKo/XN26wt8ORmExveGSGVmpAgvYBxoQwCn4P+afJEBZM+Q6b1HZHgmKodVo3OicifIkJitHdKVdei8RM0Ao03EJdvURweQeMduAzylsXePwBxpTpY/hnIIUzmDBor0XgXYfYBqU0dImJU9SJhfrdMB30GROQmyC8I0p8zt19+Pg6hOoLICC7zvRNkIWPE1WT2d+0j3Dz5Kdy9tw533XYmj+XwPq5n/TjunmhdePMFiYG/BP5X4FdkO+YGsjxLI9tR/L6X4PF4PB6PB5d68kZ5nh8Jgy/x2E04A6cuZ2rGI6olvypbwF7FCYl1iCzVXGqIWsGqKjVe1neSc7zrSqP1izl7i3Shehe1+4ALSHgwOc4gauvPcJvJPtx853U4x/7zyfP7qTHIUo37QEIR0wlaz7xvOgMr5hYSLGdG+C1E+hOH+blExZbZT6mNHlIe3Uq9dos4nuLJneuoPcr9CxOE6RuabjhOS5eRztcNqgEaN6DxZtAc6ZZHIH9KXPyCqDBBpu11MWG3O0/lS+JiF8hbGmRiIHBl7LYBd712EBX/muLgM2xUY3K3VMwYqfw4yFlMOC4ir4McQQxqg8vYaANiT6iErYT5URHJ4UYcDuE+uyM4IdsO9LK4s/wYrle+BeQdvrsxcNUAwjhwkunS+Y3M19ayMkJc06qJ5wAAIABJREFUa8QITtwfYfnf758B/z7Zjm9XcV0ej8fj8Xg8npeMF/WvDvPMNFs13ke1B2ccNW3wJpJBtZqZVVQf4VyvJ4AApAE3TmoCtIIzCxvCjazqpHoPqjbhzKOaEtGVzIPXKZ47rM/hQ5xB4EFsdAIJXkfja7jM5TlcNr4j+bOFmeP2isA2kK3P35873whwBWhTZZComEKCimpUwUbtLjPPJC67HwNZMCdJN3eIyFJG551ETFqVNqKJx8Tl9QrBHMsAtRfR+MDsncWEmzS/doyo9AVxcZK45KoE4nicRzfvYa0lCECkUcdGm3j4dTtNLbfNn+/59PmhVWPQkyKyBwTC3CHCXEkrk7/TyuQISAUTFggzXaCg8a9xn9PPkrWVmeg9RVz6Cct1CDfhY3Jr7hCk30Mkqb6wBVX9RkScN4PIOAQjqM2j5R1I4wAuaLAZF0S5hPN7eBsx21F7lvqiXoGLIGWQA4i8zPJ6cMGFR7h7qwEn2rtwAa/6owNXn1acuL+HM2VbSiXCAPAfAf/7D9bszuPxeDwej2fFyKoM1voh40X9q8OZl3z8UZxgmO3Y3oUTBZ044TUrA7mARhA5jpIC7QBdD7K2zla3mU/Uu5Lwaqb8Y9xUsw1J0nhWT7cO4kr5DW5k3jxZUmklGXEmAqQavyUJBqjG54mm+rGVmcZkYfYzERnCZUg7k+3nil0JLiDGCUuN7+vN3x5C4wYADbOPybf3km+fItuco1JUgqCuP6CIaSaVO0Qqh473/56nt0KKhS2g7jrF8QMtFB/T+/gtoJmxkW3xH/5Zj/n47xzBmMsge0TMMbWVk0i4UcRsBRUUA7oXtIiYr0GuIUEJ+DOcKdsUNo4Yv38XtT+pf/0WIMx9RX7ttjriOgc6nHxuX4nI0eqXr6oqIk8Ai8hW6k9FmN2zfAfkIcguRA4ue52LoKoF0HuCDCCiOG+GLcw06Pu+2Zo8vsSNc6tX0v8XwP8C9JDtmG3u6PF4PB6Px+P5keBF/avDyxT1Y7g51HOzjSKgcm1FffViup8Xbas+ReNTYNqZmfFeuD9Y5F1Ul9BXLR2sbKRYH4moFwne17DhKuWRmsOGVzCZfcnxE9TighGPcEo1ALKoHalGCUVMp3bu/oL+r12mPSquZ+zxesYe1557SE14n0zDGC0bN0mm4fXpM9iIvpunGep9j5q59QA6MHifkdEPqA0sPL37jv3iL35r3vvzX6J6XitT/Uw9+SVB9qY2b7slwgZSuU+JC/fRuECYnUBMrSDuIi6fZPxhF+hKss4x+bWtiDTPfUmeIKYZuIir4jgDvAaEInIHmEKknvHeM6AXpAicAGkBNiHyOs8rPVaOqk6B3kfjIeJyhC03EJe70Gg9YcMUqcY2JKzfOvHDYR8usnYSJ+yrgbPfAH/H98x7PB6Px+P5o8C733t+JIy9pONO4GY7zy9eJGhBX7D6XyQZA2XPzTLy34AT1nMM42pYgyuFfxkTAGb9jMg20m13XGaZAGRMRGZVEogBtiePWvqw0Te4Pv42WbNrjw7eHMNW6ghdANqxUTuFUSiMomJukG/vI9fayt0v2+oFUnR84hIjox/hggmWhoaLtDZHhOFBacwbVC9i40kK/e2AuFF09iaYnIigmdYBHX8wRqG/AZM6RboJwoYOEZNm4tEbLPw5zE9+zUlkhvP8NCZ1x2Xn6zJCXCoQZI8jKO4zbgU2JZUda1/0S/q5eLfRELYSY0t54vJraLwBN7JsJkGmR8QcQ+35uUf7QSI4Z/9JoAdXWfCvekHv8Xg8Ho/H82ogqr6F8pWg0N+KG8+2mpRxBnmLZ2ZtZWUu+HWRi4ip6SfXkyw8bkxR/T0w30izF6E6C3y2QK/yDW5e9YrQ4Xs9+vhCfbE7704KcXyFUmmESqWEagYRRaRDH/cNEQQ5GvNTZLO7xAU8rlCJysTxLg7+S+clm/8UtIeogBaGLCIhmdYAEaU0toG4WGC2P4AEPZJu7kBMTHls6Zl6MSPk110hzHw8zxZ9mEyHzDFYlIsgBpF9qmoJc79Hgm6Zb4zhElDVyRrxbolLDdhyVyLel/h+gmsEuZ0iEhI23MEEy68IUFtETHbZ+60OI8ABsh13v6fzezwej8fj8XynHNrSqef+wd/6Ts4V/of/+IKq1h1J/VLP+12f0PPSyK3y8aaAm1Rd7hdDwm6gjEZnZox4WxG6F7VnEPNh8kRnzYuDwNdJ/3UmmXG/DuEQGo/hspCrSTUzfRM3t9vgPAM24dzYX6z8unXLPh5fjEGXXmUgAmH4DmEIqkocf0u5/JRKZVS61r4ObED1NpXoDnGcoxqU2fTm78lk0zp8q4eGdUKq4T1gGFtZT6G/evQ+IEe+6xRTT98HTSFmQtp2pyXMvq1q7zF4tbptBfcd4lLlqfwlTHoSjUPUhqQaJglzexGZT9CDSd2Q5xl8+QIkAJoQOaCqZdSewEZbKJc/BRnWVP4zMZk3k/76uqjqBOiDGvGex5bXo/F6YCmTEeZjlCDXIiIhmNOY4Miyj6D2Aug61A6BjAMHEfkuBX4TL6+qx+PxeDwej8fzPeBF/avDC/cQ11ACblDflKw+rgQ6jaSOofYyaIzGFliJUVkIegjV60nGeAfwW5AcyH5E6lcEqPS8eEBhXmbPD5/AmQe+ECLSog1rrjL5bGXBAREhDHcShtNrK5d7GBg8zHR1gWXzW2fYsOtthm9dR8w6Rm5vJ8ydIEh/gpgSIkUI+giCflKNsWnccEwb1vej8WMk2CMiH7rTma3atKWHyrgl3XIQW/maiUcu+JJb8xYimUUW/AD0Ga6CYCM2ek2N6RUJJhA5BKCqA2jcg43eJDEtdGgflamfI4UAk7pMkJtQaMFWhokKlmiqgaiwhlRuMy8m3usTNtwUkfeACVL5N5a9v9pTrsxCEjNJBRhD+RxYQ9X9/+US4PwnfvMdnMvj8Xg8Ho/nh4F3v/f84Cn0dwH/eJWOVsFloFfuGi5mr/uLAa3cYWUBhxTYNtT0InIf5CeILHy/inkfjZ/ietZfNkXgg9U4kLRtG9TJZ8qyZ73XPdo1xic34ka+gUiFrXvPy/odggRtdO4+BlUHdz4REYMbOXgd2AKmkXRL0e0qa5BwzZxTpJsPEWa/wlaaiYuuLzvIfoP7PqkVu2WQPiBAgidICLZSAE2Eug6ANqL2skrwJwKojU6i8QfA7ODMJEheRFxFg63sxVZgsu8mM1sz4tUvWgFM0kcPYFIXEbP0VhNVQHtAs8yZykDz8+uhehMkvVAVwirxFl7Uezwej8fj8bwyeFH/arCdmWJqpUS4GeBLmW29OG4m3Bqwp9E4YK6gWYwu0N+C+dmSzNBEcqi48uaVU8KN6BvF9dKXcCZ8glOLzagOo/EgEqwFtiHSOe/RlkJDZxOIXVYJfj3EfEXra9to35BiZLCHJ/f38fbHtyWTb0CCLDV96yJSq3yPA0eBAGFcRLar2rMgnSJS577Sb7AVV3qeanqDsOFLxIwgEmNSt5BgI9ApIl242fKoaiNx6cq0oJfbmNRdyuNlwuAQNrqhQhG1h6n7vSRf1jXTM+EzbFRbQbH6YVgJrmFS1XPfJsjOZ+o3F9UY7BncKEizSNxmJ+hXqxLbWZiVTIHweDwej8fj+ZEiYLz7veeHz2qYXinwOfDhYhsuC5EmCI64rH10YlrULYkhJHhrWe7mYo6g8UqrA8AJ+sXmjT9Dox1olIgjeYyYh0gAYpYcuFDVMfqvX9aBG++/oKCfJNt4gXzrx88H27d1rmXddiPGHEBjKI0ATCDhQ4LUY4JMNpmx/gbQDXKKVOMkEm5R1Uni4lbEPFaTsUk2H1QtUER16vmZRTa4NvjEe8FWCgRBSpKqClV7i7g8kIzB24sEX2LCMTAfEpd6QdOUx4RU4yQmmK/y4TQu6DCXIKPYGZMXVvsbu0SQy1ffD0HmFvObJs5EdQLsDVwlwTmoO5ZvNu+ieor5pwGsBl7Uezwej8fj8bxCeFH/avCvvOD+ykLCaTUQAcJDaOUJbgb5UriFyPKqBkQMmAHUrkTUL834TmQtEvagUVIirs6ETWMSgX8fMWUwbcBb9doGdGrohA5cC5kc3I3aFTu6I8GXtKy1BOHMcvB0U1qMaQJQ1QqVqa8pj48S5qakZcufkW0/jhhDabSExpcJ0vux5bwbeCADoF1o3EVcuKCYKeCAiDSojc4ipgn4iumpCLV99DnQs6oqoGWUYYLMayAjIvIaifhXG10G+zEmvIKtrKEyvgYTXiZsyCJSzbw/A66DHJL5AjtBupPK5Iov36IEubM1Rn4nEPkFWrnt2kKCdxFpqbuf6jOwI7g2ltMgyzDV0zdRhhFpe+H118eLeo/H4/F4PH9c+Dn1nh8B//YL7GuBs7xMQV9FJAfhAzRaTNSXQM4jwYFFtpvvRO8Dl4G9y9xxZMlbBmkgfYG4DBrV+A/UCnwACmCuI2YYMaEi6ymN3NfyYLu0bnhHW9YXGLp3ganh5XsYBOnTdGw6BCLY6BQaJ5+hnEXtOp0aPE5lMo/Gb1HNpOfaz7gy+fQBEWnUbIfigjoxcek4caEbtKadQA8m3QfHIehGgkO4aob7TAdBOoETQBo4rKWx3fTfuUIqOyGdO7YRBLtnjax7jEgZ5Ayq09+wNtpLebRIuvk8YnaADMp8s+2rmPR2XCRiOjCiqsyOAgSZHoJsG+XR9cycpjA/EnyNBNXKkvsE6ep4ku1gt6O2jHIOCYvM+C7VCFduv9P1yfP2Mv8jaQcWG+P4IrS/pON6PB6Px+PxeL4HvKh/Nfh/WdloNQucA5Y/mmvFyHZcv3r9DCfcQ0JdcAzaoqcQwKRQu5y9nuFcwZdCEeQgIo2EWVC9SzTZiRsXNpsc2HdQi1qtUBw8h60cExMmS5UcHdsOatumq4z1jTPe/x7oYj+XIzSt+Ubyrc8/NzXhEaz0UB6vEJd2UxzeCGybsZdJfU5+bbW9oh9oFCd+BTBqAqff66PJeptV7YPkuXFVheL4PSb6QyaHikwOXiQq7SVxrdfeyxCkxrRp3dfSsW2U5q5OMWFeJDhEmEMnHv+BINWDSb2LSCuQpTz2NunmE2LCXyxyHcBFT3qZ6SlhcS7vDgnOkGo+JiJouvU65ZEJYGvy6nxjECcIck1J64FiUuOIbJm1TRrIgNYvq1ftA7sOeIxyA+S9pYt7/QjlMiLLDUwthdUe++jxeDwej8fj+R7xov7V4H8A/mOqjudLQ4HzrHYP/WKnFG6h8hD0Z3U2OIeEbyLy4qJDzJuoPcPS398tlhzckEskI97cP2UbYf4MUbEL7LbZW6uN+qhM3CAqrgOtm30VE75N60a0ZcMzBm59RXH8A+oHCcZo2/hU0rkZ/eciEmkQCk5ozvUDSDcdp+2Nj0QEcl0PgKfAE+AQ1Sy3mAXG0bkyc1V7GuyHQFnRUzy89BuGHx5mWiTPJa40M/Jon448mmLb4Vu0bXkiEmxTGw1hS93YkgGmCBt6CNL7naHfEs0H49J1XFa8llpRHxPkxnDhikCC9JuaXRMTF84RFSuIWEw6RONR1Oax5Z1IMESQLUgyYg8xxzFBvYqBIpj6WW9VwD4GDgAtbklcQoMWRJbYGqKNKNGiUx+Wz8QqH8/j8Xg8Ho/nh4sAxo+08/zQya15RqH/IkvPuL/8Hnp3mnHgIk5gteKE327ElNB4HLiMBHnUjiMSgDm6qv0uEryGxjG1Wds6iwS+ZDnVCiKVuc+ZDwlzCnqaqLgB7BYALY+doDJ5mLkj2uajiYCfkW+colI+SaXczvTM9Qe0brgj6Vw1e1stOx/AhE9ETDeN69C4fIfi6EOiwjHEXKZp44TkO7uBMqmmc8C7IrI5efs91bUJpkXDhgegT1E7lSTnScr7h1VjUBuBngPdIPAnbN6Hrtl2l5sniqALtVWMsfX9+9K0Zi9x8VvCBohLz5guBc8TTR4jLp0j11EEOaaqPcDHz436ElRtpAPXT2GCkmRb9zCzpx+mFw5Ij2v74Pl9ICIBYf4wYb52n6+BPWqjS2Ir7+C+GyPgJiY1j4GfOce87QF6HJg99m4/xEOofAbmJ8iiA1NfB55/PqvI6Cofz+PxeDwej8fzPeJF/avDX7E0Yfrd9dC7vvY6gkT2ImH5ucP3otpmhYhsRWf0Jl8DhnAisAlnGNYJ7F/WcVVb6nqsiwjIEcKcBXtSSyMVKpMfs4yfMxHJaZC9SVzcSTrzEekMxPE3pFsf0PXuFik8a6U8Pgx6BWQf6N9gUnsReef5MYL06zSseV3jygMJUnsJ8+fJrv0ckSYRM7ut4WOgNxm91isiPwXZPOczEXNCo+Ik2Dnz2SXXsk2b1vQw/mw+UT/E6x8+k8YOt0a1OzSaukxU6AU24kYFGqBAts2QaqzeM8eAO6o6KiL7AVRV9fEX54mmjgFoVDpLw9p2qQp3N1LvEdgQZANi3ibMXRF3L1ZwI/YqwBRuXGGEK8FvA4ZFgt1QeQzkEfM5JvUpM/0AqlxJrt1c3Fz6fXVeKQMPgZ+CvYqaFkQ2zXPNqgc7jPIMkbULb7csvKj3eDwej8fzx4U3yvP8SLi0hG2qgv4l99BrBJxivgyj6+NeoNR7FZHgDTQew12fj1mVOeb6Lqp9uDnsdc4pBoKPyLRDaeQyapfXF51ueEahuBMYIttxhdbXc5JqPCYiGRo3olHxJBMP9qH2OhJ2M3Pm/PQygtRmkDKNmxATzOMXIAa1V9BoN86pfdZb1WegN1GLSBApHEcrVWEfA8NAJ127NzH+rMjsFpBs8ym2HX5TUpndM48b7yXTPCrZtkZVhbj0ABvdIMzObst43S1Dj6vqBzz78izR1HRgoTj8AVHxprZuK0q+MxYJ9gO71FbOoFEXJnwkYn5a/73Pea89oN2YVC9iJhFpwI153Aqsr9myCKZl/kx73Sw97ljPR9W9DXYSlRMgHy/wH00W+AZYTVG/dENIj8fj8Xg8Hs8PHi/qXx3+Gpd1nO8z/S5N8eYX9N81Il0ovwM+Xd0D6w2YR9QDGpd7meh9jNqlmu9Nk22tEOZP0bThkEjSy63xGSR0ffxB5iMy7X9JaeiXc1zea0k1XaFpS5csNBZQ9TEaHcZlqkdx98m0WFX7DFfpMIAJOsXSo2gPmJyIvK+qIRpdJNOoBOkx4rLLUIs8YNOBQWl9bYGKEPOG21QgzG5WGz1d4Kp0U5nsoTT+ARJMEKSHiAobAUOYLZHrmBQJnvsciEl9qJZTBLkpXCb+HVxFwALoHkQECRuY4cWgirund7vrY27OO0de9QFovc/8JMhsP4UG0I9BL6HmtXmDRK6qYDXxmXqPx+PxeDx/RIjvqff8SMitKVHoH6P+uKoYl3H8Dkzx9BzOfA1VWyAu3iXIbBIJZpi+1Zs69tKQYD8aL+S4v3zUrl+wbWDyyT00Wk6LQy9B5hapxjUiwV5mzxLX+EO1nAR2Mv7gHhr9OXAbtb2IqZcVhmz7kNSU5c99D1pGo1Gms9AtwHS2XbUPSGbGSyfoN4g5JgQngfcBRKQVSR2gXHykcfk1oExz1xk27/9ATLB5gfdbTObWJ6eyZ4BGkLOAgO7C+TA8R1L5lHYduEBciiTb2q2qMTb6EmOsCB+q6jkRqTrRKyZdJMj8BPc9V8ZlvEdxZffg/Ahage1AChgEvk22qamukFKypltgxhGpn/lXHQTbydzgQS8Lt3jsBzuImi8RqVe2Hy2w70rwot7j8Xg8Ho/nFcKL+leL/w/4e7Oeqwr6ecy+VhdVLVEZv0ZxSNHoXeAtcuu+IN106Pk2Nhpg6uk1zXVuxKQ2ipj0AodcChbXq3wfuJc87j//U+Qhyt8H/ssXPE8tO1C9iYgTvaoWOKNRoQi6FluePzs+TYyY84QNjYS5YUkc1lX1DGrnBmCi4hamnoyBVo+9BWr7vaUMKpjsTVq2FpFwkaoMe85ligFnyLYLd80+QHXEmeVRmz1+ishuCI6i8VmSe0onBm7ok6+fkm2+x+b9myXbtIQqDenFiWlU9Z6Y1A5k2vFeVStofB4bx0l/eg5QSeVCUrkjkBjeBal9uAoUEAKC7A3cyLZ2ETmM2ksgBZCtbu1zuImbCd8M8jYiu1Dbg7t/1uLEfhY4AvI5EnwK3AbbMOvaAPYq9StUHoPMnUgwkw6Im1E5iQSzM/pad4+VU17l43k8Ho/H4/H8cBF8T73nR8XfxwmQvw3kcWL3OxP0AFTGMhT6Z5Yfx8VCdTqbxsU7TDzKA91MPIRUYw/5ruWU6l8H/jnT4v0e0Etu7VxH+lomH/93wL/D7NntL4LaCEw/MAl6H7XHKA6cIC7Nnx2v2Zt0Sy8mKalHz1RfEJEPVbmCKxl3VCa/pDiwFag1VjuNCd4hyH5FunmUIPsBbkzdblF7Fq2cw4QpkPfnlEWoXkXjI7gpCG1Mi9FvUf0DakcQWQcyQSKSUdvoxhKKQPCeE796TCuFSTq2FKWl6+fLuHgDWpl6QlzcSrajH5Gtta+KSAoJ38eEqOoUGp8mLo8BP8UFIN5I1p2nWmmg8R4FK64XHtwM+fdc9TwKwZfuPXEb12KwC1eJsDM5KaiO4toN5k5MkLAdEbB2CnQ7MARaBgZwWf569/Gpmj76xbjsjPHsl4ipydhrSF1nRo/H4/F4PB6Px4v6V4vcmkHgX6PQb4B3cSL/735Xp1cbDVDonyua47JTVbbyhIlHIbUZTo2Xq1Yek1v7ny17cQ3ri0w+/ge4gMAqoW+h8R+AT4CtWh47R1xaagBFENNW8++Z1QoiQ6i6du7S8HEq40epFZpixmjYYDApIyLv1uzpSt5txQlJWwYx1wlyb8xwcde4DydsZ2bzVQ+j9gqwH2Rw5kx104bG1fUFSHAMG/+ltHSFaLye5RCXStioG2QCMQuNwkNE8kh4RG3Ug8ZppsXzOPAr4JfJv3OgX4BUq0JiXAVHP8gkzpzx2+S1NK4MvYGZ5n69uKz9bUSyKJVkETngIBqfA7s7OTdAF2gJN1VhAmgEQPV08voo6BeIOcTiTAIpsNtRma4C+a5MJT0ej8fj8XheVXym3vOjI7fGApco9P9bwO+B/55qqnyaAVzZ8nXgHybP/QL4L4AFRda8TD25Tr0xX3HhgI7dO49GdczKZLmlxQcpPBNya1dSkvx/4t7vm3VeK+EyuMO4HubqT34jLkAymjzamNnrbZLq6AeUx4u4cu2lEM2a5WdVVeV5Rl26EXqYfBJgy3N75hs2XJUgPbtMuz5q3ySa6iPM3UsE7wM0/pDpjHayncao/Qp4L9nvHpjaL8EI5Li7NHYXyDeItIpJvamknoAM44TpE2AEW2lFo/3U+55Rlz5HzISINNY8PwHcxTm0C2g7UAEZAS3iSsfTbi1cRuRPgQdUgxn/P3t3HlxXnh32/Xt+921YSRBcAO7NvZtNsrvZbLK5zoyksWbkxLFjRZFSUdlJlFLFVpWjkpLyolJZUVKW5SSSylZsl6zYiqWMJcVRtExLGlkjcGt2c1+6uTT3BSAJEiRAbG+59+SP333Aw8N7wMPCDX0+VagB7rv3d+8DyTd9fr/zO8evnIcg30WCD+MMgNUT/XKAj4ElQLOf+HCBb4cn60b+FqiChodBy37nWvx7OPbPSCMB/bDk5w4k2IbI/HisQ4CCNiNBHmQ+MvL3sgnCYTS4h8gyihMFxhhjjDHGVGBB/VxWt6gA/CuGuv8M+EF8e7DzwHeBy9QtKg+M/xVD3X8M/Azwo0xaLXyUZnuOEg5XCzIb0ULlPeaFwc06/Pgw6QV7ayycNx+fLn251mcb0bA0YqDz54HfxAeCd/E9y5vwlc3fqnJlf3zfYhHCp/H1T/D/hi4Bm8i0ZhnsGls9vroIv0rs+Sr5x5Vgk4g0AY8ZfLCAKDc+lT8175gEqSl2MdA2CoNtIPdBQoiGcMksIv49qSoalXdH2Ibqd+P3OB/YgrilQCPqIqAOjSIgIy4ZodGFeI/+cuAMQXqTks6CnkWjfrSQIQqXgxb3l99Hgs9RvRy3QVyPD84rbF/QjyXIbFf0CYWhAFgIhEjiqASpvarah4bXccleJMgBX8Pvla9cRHCEOODDODg/Opoqr30opxGJC9zp5+MDeohz9scG3aqPKjz/AbRwDxJ9aKGL0skvn/3Qj8pZxN0GNiCyCMJLaJBDZP748YwxxhhjTG2s+r2ZC+oW3QL+SY3n3gN+nKHun8a3gfuvgL880SWae3aa4cc7md7G34Vkn+wl13tGG5bNlyC9uoZrdjGdoN77d8Bfi78mqs5eqnyldD4jq/V6jbjgmyTS67V+yXEGH9aDbp54SHcWkbG1BzTageoNFXeBgXuriAoVglvpIdWUH7uqPxXa5r+AKH+MILXLrxxHR/B7yUvvdQaRr5YN0ImfVPmMKLcWv6cdoA0XbEH1ULxXfw0ipwUW+SJ1rhES6eIGAg3qF4tzbfj09eK4lVq6hSCHEfEp94Xh04wGxGtxySEAEWlGEu8AfXGqPMB+VM/E41ZtPxi/V2FsL/pm0Hf99fIMDQtUnPTRY/hJnMeohkA3Gu6kcqeJZX7uouLfu0bQPWgI4ort7zZB1AFB3eTPb4wxxhhjvqzm9pSFmb66Rc+oW/T/4ovufVTpFI0KPdp/9yBD9zdTqbDYVGj0Dv13Vuiz20c013tcNRqe4Oxa9idX1rA0xAf2s7WxJsQXmzsGdEii7j3SLc8muQZcMFT5BX1AVEgRFSrvUU/P/4wot4/C4DGNChc1yp9QnXZx9F1E4TE0Osy4gB5A21A9W3LgKLASjQ4R5d5iNKAHvxcdRPapBMdUNUKj9SADiGtFXNpnCEgfcE+cK6+9sBSfBl/6Zh4hwXcQSeAzTB4iiQQ+U+IpQfoxvnDgxdKHHjOqbxEXAd2T/C6ywKoKx9/x2Qfuq+DOA2dKbnUZv93iA2ADGvai4X5mugdeo72ofhL/0Agy0b8lfm3VAAAgAElEQVQFY4wxxhgzkWL1+xfx9ZLYSr2ZWN0iZaj7l4BvlB7W/MB5BjuXMWl685QERLk9DHXDcM9pmt+o1tt7op7ftfhdfBA+3a4Aig9AvwPSjt+DvpXixEayfhXZnupp+C7VQbKxUqX0DpADOAfJxk/I9+8c82qi7mOCZLxKHX1IGM8LBHXnkMRWpkOjYcR9pcqrA6BPUc4jkiNOzdeokJFxkzj6DARVPUuYXQfapyQiIWxD5UhcPmAesAJkAWim/GaMSf2XzxG3wO+ZL/mADFIZguQNNOoFmSciafyzxHvttULVelkar9gvpPpkzhUqpv2PjAGqq4BT/r0Cvnp+qajq9VOlYSsEJxEZBq236vfGGGOMMaYaC+pNLf4MH8R+iCo61P0n5Hu/l5muzk9Ew02q0bCIKw/+BoDGGRTLg4alykDnTwOHpvJEwJ8AvwV8RMPSsfumBzob8BkEH4pLfqgumSHKV2jxJudJNu4rm8kbBDk/kmIOkG55l8LwXbSwHIBU00GCzPgihABRtg83nX/KchCkdHLhJH7luQG4jbivAmtRvYPqs9FnVlENH4FcAmkRkc0aRXlEO4hy+yhOZmihT0l8IcKekar5UEDcQfye93IPgSWIOwSya0y1/uITizSDbBupMah6C7gPehX4vupvVd5B9Qg+EF9Y4YyJ60dodAiiffhOBy/COjQE5XOChH1OG2OMMcbMgLi5vUBi/7FoJle3KGKo+78GTgN3yLRsJN83DNow2aVTEAH38Wnc94C7ZJ9eJLOgL/7Zv1a3uG9W7taw9DADnb+P315Qqgtf+O4GcAq4CtwEbtKwNDvBeAP4/ukdAPTdSAF/ABQD+xCX+HOSzc2IfIZPXW/AB/QhImNX5UVS1C+5Rv7ZNYLUPMRVz4jQ6C1VjURkCttp3EFESsc8CuwumWzoQfU0aB/oLiAPwUcqwUKC1ACFoYW+cJyiylWIEqiWP2MzWtiu6o4ibp2ILAYSvijguBSlg8BaJDiMSOXJi0pEVgGrfKF8vRGn91c7d09cdf8K/s95EaP75JfH/xsCZ/EdEkoCffkA5DRo5SwR1SvA2zU/t3cTcbeRRD3ilgF5NHoUV/B34Orwk0ktEw9jjDHGGGO+zCyoN7WpW3SRwQe/CNH3ichObVh6lIF7U6zAPsY14H9gNIi/L227C7PyrLX7+/iq938KHMEHll00LJ32JvUiad+T064jvwzswyWPk2xahwuqryRX4oIVpOf3AhDlD6LhWmBZhTMXoNEVJNhQ4bVyCvLHyJgV5+P4rQg5VB8DadBBRvvBA6wB6RaX2AEJVIKD5PuLQfw60HXVbxntRqNnSnAQZE9c3b8bH1QDnAAECXoRqa1NXyUib6DhcjRQqhUR9Mc3xF+geg0f4G/HZ6S0IvIeqnn872UJsBKRNOrehGh8YK+cRcOlQHMNT3kOSfTigjWIGwJ2g4x+DosbW0RPFdAnNYxrjDHGGGO+pCyoN1MQ/Vt8IIwEqd2aaDhFYeC9aQ62Bjgjbbuvz9rjTVXD0gsMdG6ajSC+onTLjyABZSvitTqOJDaKyBoAXNIvMmt0hSjXhRbaKQamABo+rmE3RAjyKSLfAB6DfgpSh68HcA90HtAODDM2oC+5PibBfIK6Q4RDta6qN8VF5G4piXsIGUEW4ScZHiJBGkGBPmoLjqtwFxGpvb6AyFpUM0BH3PO+eDwJ7EA1h5/wGUbEQbAKDTuAFEgOaMHJNtSdIMo/An2z4n3grM9OcAO4RHH7xTKgA3QD0F5x37zfy59D9SE+02E2PJ+/78YYY4wxr6qpJLS+hub2uzOzq779MvB7Iz/XLVqKBBV6ctdEgJ+YjceakecU0OvTKytwib9S0l6t5ktBOpDEDr9/fJSIIC7YIIm6A5Js2kCi4R4ueRDkDJqvJcvhCCLFVmutwAHQTaCf4Lc3FO9XqYgdoKnRZ3FbCdJvIMHNKb6/VWhhNxr6YnMSHESCbyDyPSCb42d4gN/qcRBfQ6F2QvUtEtU9Ar4f1XPjx5MUInvi//0qImuQ4EPEpRA5MDKBIPI+LrkIpLQSfw9IB8gdxG1DZBvobqL8EUZbFhwAUsA54n53FfRQ7C4wO8LJTzHGGGOMMa8LC+rNVP1i8RsRaaNx+QMk0TXNsX5M7x+dP0vP9erouy5I8DsgJ/Et0CYLNG/i9/E/QoJT4hIHamlBL+KWSZDZL8nGdwjqJ2vzdwxkT4XjzfjgfsekN9TIp/77leNeEVlOou72pNdVHEsVSRxH3IGxqfICyBKQd0H24/e3909h3CVTfhaRbcAQ0IJqtdZ380rOT4GkgLFBuMhCXHIVql2odoAk48B/RdlD7okD++KBVny2xFGfaq8doFdAL4GexGdUzebWFAvqjTHGGPPlIQLuBX29JBbUm6k6BlxX1SHND3Qw9CiLFqabFtwA/M1ZfLZXRbuI7BQXHBCXeMen4Ltzvto8h4ELwBN8oPYxEiwRCQSkS5AhVK+iOqXe5DJxRsAnINsRCVQ10jD3iRaGp1L5P6btFAaPkO+LyPc1k+//nDA3tZV0AHFXSdSvQWTyiQRkNz6oPwnka3jGlUSFg1N+Jj+xsgJfV+BMhdebxj6WbAG5yfgJhxRwHdgeV+Sv9pxrQcu3nuzHdx84gN9asQnVjcB6ZrNdngX1xhhjjDFziu2pN1NT367ae+1baGEvw48r7bueqr+t94/+irTtnkuBxph95r6Xumyt0mr8Q99qTbeLSGY0dpMjVVbWp+oUyAfF1XARcQSpnRrmPtFc3wWQQUk1fVDxStXHaPRZ8Ye4B/w2iun5Gr41wcp2ZS51hCCVFKh8z4qkDWgDPQO8M+npGn6IBhcRqba/vZKe+H+XActQvQg8BrbHWyjGZ5SIrEP5DNVHhNkEaAZfqd7/ualuAu1EZGnJVVcQ14Uk3kWkvcJzNI6+Dx3CZ3rsYXYnYOfSvzVjjDHGmMnVkAX7OrOg3kzd0INB/KribFgDfBPf/m2u+IGazlItgH5M2SQAyGGQqbZHq6QfZEl5JXhV7SccbgNWgfZolD8DEiBuhYgrDV4zEO2hSgU+VT0Pur3GZymQqD8qLrE/vrgHuA46gF8FX0/5avh4tabWJ9HCIOPb3E+kPNAtTgjcQnUeIo+o1FpOZLNq4SxhTiRIlhfoqwMugnuEC56CZBH5PkoLHFaieh14Fj9DsRvAbH5WW1BvjDHGGDOHWFBvpuPODK7N4luI3Y+/HjCX/h72XRf8JMXEVB+AdjMuoAcgzYwqwI84GgeRY4XZM4wGi48Ic8/QcA9B+lOC9K6R80QaUG4BqyoPrxGlK8tVSTfJxvtS2gVAZAGwYKTiu28hdzTOBthZZaBatiT0gtwC9xDVa4isreEaqF4RfhVwEtUBRNaPu0j1id49tJgw26KJ+uuyaNsVSWTmA/VADy69CefaSq44zOjvvpIz8T3vxt8Xn23qtQKqs6DeGGOMMV8ubm7vOp87wZR5kf4//Mr6LkZ7jffgg/QuRoP28u/vA73Stnsut9QK8IXPqlM9B9oOVFmN1x2gT1H3OSK7p/kcx8B9HRgEruH38DsgIsiEJOoOIi5BVNgGbEAL50DGBuiqIbC0fOASk++nl+ACifp6EZk4kPQt5HaDgOrVeMKgfEX7NvBGhauvI8EdkDcQWYkvOrcVtAOlJZ5AmMyyCV7bDjxD9TCwCZGFAKo6iEZPiAoL0ChDvn8N+YE7JOt3gVzBJdsQaSsbaytwkdFMgFJHgR3x76I8E6avhvdQq8ezOJYxxhhjjHnJLKg3UyZtu3uB/1jvHxV8UN8rbbun00ps7mleU6Dv+j8Afn7ca6qAHsTvkQ78IR0GHoD2g2ZRIsStFN+TfDhukdYDuhDYWOWunUjQhd+Qr/HXEHACeB/YUnqyiFwkSLyJ6i1EGvzBcanj4IvHTbTSPfHnR5A+iEvtFpFE/GzfBr5G1ZZ5Iw+4DtWPGB/Ulwbn94HLIM1IsBqRNRVGmg90oXoFkV0VXi+1epLXm/Ar7J8DCwHI9Z3SnssRQfIRyfqsNCyNEEE1+kiCzI5i8F/25prjpIAz+HT+4gSXA6pN4ETMTuZG0d1ZHMsYY4wx5tVne+qNqSxecX/4sp/jldO85n+m7/p84KeKh1R1GA0PgjYAh4gKOcL826BLgVUUBr/AB5YN1C06A7IYoREXvBkPEALHQYdQbQTdgq+UDhJcpTS1ffSmJyo+n4yssC/Dr+TXV7gWNLrHhEG9RHFv9RC/ZaBomETDSXFB8Zl6QS4i8k1Ub4H24lesKzkD+giRb6B6CT8BkAQ68ZkBh0BagM2jq+DaAVKpaOM20Asgu1A9G1+/GJF1Fc6tNXvkLVW9RPbpAxJ1SUlm9pDMCPCEhrYWX75AIRwawKU6kOBdRMoCcmmmWPBPiwG+9kG81cFnG5Ry8fufKGtiKmaz570xxhhjjHnJLKg35vkYSU1X1TtoYQj4+sirLgESRKCfEoVZEg05VCEcXEGxMJ3qPFQLiCQQCYAdIH4bumovcAv0Kb4i/YTPMIYEvsS+SAJxp4nCd/Dp3VnAodFViJYySTFEEdmlyjA+ID4Iuh/cXZINgyIjlfvvg6RGVspFVsUp9gdB32d0QuGL+Bm2A4+AbkQ2ldxuGVXaB4BUSskvKqb9F39Hh1FtRaS86N0UNlppNwOd76JhabDegka9SFDsZ99AlDsA9BHU3URk9fhhtA/0GvDuyKHhnm8j0kVq3luIa4prHN5n9gL6AaB3lsYyxhhjjHn1idhKvTFmWv49MKCqabTwV4H3xp0h4kA+IHAQJAHpxM37hCi/WCX4U5FgDz51fTyRecDW6oEugAz7VWzSwGJ8JoBjbHG7AbSQZGwdgPJ94NXvIJIBUFVwiZMEdWtFZHnZWGcops6r9iHSjMh+lD8BfROf5l8ygSALQU/j09xr+QSeN8Fr2/xYUgyc98bP0YOfPGgBrjAa/C+h0jYH1W40vAgC2SdP0XB8pf4w24mrL3+WZsLsA4L0LURWqUZPBXkMPAGdT0lAD4AEDQzc28lAV0iquUNTTY2kmrPg2mbp/4vukmmdyzUtjDHGGGO+dCyoN+Z5aF5zDjgngD69/L/g082/S6V+50US3BSXPKCS6JOp9VivMh5rwY2mmqvmEPfn+KD+IGP3qE+bqmZJZIaRxD4Z0z5PO/Ft6yKUc/gidxmUs+A64xT7h1RsZSfvxhMSldLqy91n4sA+qnAsrr4PjBZ7LDqKD/ab8VsUOojyeaLc9wKQ7TlEpcmGKP+s0s1Vw2XknhwhP5ABTWh64T1JZCpnQYT5YQ1zxyRI7SLXd4BcH3AP5q29RqKu1kr+E7HUe2OMMcZ8+Vj1e2PMTMj8jRFwRp9e/hHgvwXywDcobwcnLg8g4/ZgT8sjYPmYIyIpROoRGW2ppnpwhvfpk2TDZcTFWwu0A1iBzw5Yxvi08Ry4HopbDMQtRnUx6CF8YbzS1m27GC32N5H+SV7fDnpjkjT9UruBbny7xSfAAdBjI68GGQgr1IVMZNo0zHdKkBx5z1oY7iDftxfwrQVd+iLigko31Si8pg/ObiTXt1obFh2irmWVjOyvr5KxMXVWJM8YY4wxZo6xoN6YF0Tmb/wI+AhAn15O4leERwPWKsHeNAwA3T6NfZyyvvI6/aRucVcJ6lKI7IjH6sdX2q+UAZAD92lcANBRmuIuAsg+NDrIaFCfAzkBugs4jN97/zaQqjB2Lf3r71K5HV41iyhdwXepZqJ8BDhS894m15unWKiwqDDUqYMPResWXRLCzSgOotFMgyD9udQteav8RqpaoO/OEb1/ah+oQ/U2d68kmdd2kyWrfVDvkrOSVQHcmaVxjDHGGGNeH6/QnnoR+X7gl/GLXL+mqv+oynk7gGPAD6nq70405tzOQzDmFSXzN+aBX8QXpysenSiFvFYF4BJUTd8v7xc/zU849zEus7isUvt5xgf0BXCHIehC3N44oN8L1I05y1eBH4x/OopfKd8DEoDsBXkP36bvSIWHKdTwwO/HRQWnR+QtEvXHgLy4oAUJzo0+enRBw/wR7b+fZODBevpuN2oULoCoZFIgeZPM4tbyYVU1Itd/XLsvbKJuwTmaVxwlz2VClpLIDJOo7yDV/BfiggpbFKblzCyNY4wxxhhjpkh88et/hs/afQv4YREZt+gTn/cLwJ/UMq6t1Bvzksj8jb+tTy+fAf4L4O8CDTMeVKO/QMMWkCPgCog4NIoQlwLNE+XrgNOgGZACGq2a+oO7Q0iwD81fIkpcR1wf6BJwDxH3CX4PezHQXj+a7q8K5PCzks34qvnFSYVzwPfjtw1U6dcu84A9car+vpI37WqYm6gDPqW2PfpVbu92E6Q7CLMHCDL9mu9/ioZXCHPPUF0GrAG6yD79gGR9B5l5o/eKCksIhz8lUbcE1WtABvQqUfgWmh+U5TuXAEtQDXXeqmtE2bSMbGmQS9N+5vEqtzk0xhhjjDEvwgfAVVW9DiAi3wL+CvB52Xk/Afw/wI5aBrWg3piXSOZvvAL8rD69/CvAfwn8NDNpX6aaRKPt/odwtPv6bNU7Lwb0XhZ4CzROidcHiOyc4OpDjFa5z+BX3ePWd1rcF19py0C5vcBxRj/kan13G0FDv/o/RaoPiPJfEOX889a1vkeu9xxh/HMxpStZf4dc/yr6O/dquumSiIvb8mkd+b5WdclTIlLshLBMnEOTTQcYfngSjVYDOUE3AIfA+a0I4ioW4JuGx8CtWRrLGGOMMeb1IIB7Yen3C0WkdBHlX6rqvyz5eRljt0PeBcb897OILAP+KvA1LKg35vUh8zc+Bn6J/ju/AvwO8Nfil7rxe7sfAL+KT9P5oeoDiZu1AH7c2O5wSUAPsA0tnIMgD7IdQiXiBC5RobCdduJ70JfaCtzVMBeQ68ui0UEKw2k0XADajAS3ccEw6QUiQXorIwUERXxmAH6PO1LrOy6213tnSu8bgOgqUW6kwKBI0KSJ+gJhDiAkCo8RZlPg6knU3aMw3E7fHWVenAgh7gEknqC6s3xPlziX0KCun0J/HmgnSB9F9RmSOIJLQJAemvrzVnTC2tkZY4wxxjxXj1R1oiLPlWYXyv/77JeA/1FVQ6mxFoAF9ca8ShpXRPTf+ev4VO5BfFD/U8Dv07jCp+X034mAH648gKx/Pg/mPkaCvRVe2IqG4Hu9r0Jzq4lylxD3EJd+D5HG+HOqi/EZCE2q4SX6780D/eq4kTVcQhgW0OgRUT6NuI+RIAG86/fy68fAh9ReG0SB6a16azRu375kFr5BqvmcuqTQe7NJFm6JJEi9A6CqQ6DNIL1Ak4gsAbmEc+ML/anelFTjAg2S19DwlkgwdvtBkDo37prpOT5L4xhjjDHGvEYE5JUpJXcX3ymqaDnQWXbO+8C34oB+IfBNESmo6u9VG9SCemNeNY0rFLhWcqS8IuZ/h0/T3w/8Gr4yfFH6uTyTSG6SMzaUfL8JjTYRDl0lyGQQuYMPvsdQVejvLODTzavcNzghLrHLXxB9iEYAj5Hgc8SFoBEy4efYTXyKUwrYDrJvgnMnMDpLqqpZIC2J9EpIr0Q1YuHbWREZKf7nv5dlY8fQDWh0AqWAkPXPpEuBVfj0g/+ABEuAi0Cx0GE/ktg8vWcex/bTG2OMMca8XMeB9SLyBnAP+M+BHyk9QVVHOjaJyL8G/nCigB4sqDfm9dO44inwFPi/6b/zKfA38FXnP6S0VdzsmSygr2Yd4XAPLpWiUre+4Z5DRPmJg+xkU6X9761ouM9nCMhBnGsoSWm/hw/kAdaCrAZWVxpaC9k+vfKn58n2z6eh9TEDjxciEpJq7JWWlULblj0jKU8+2A41Ci8SZfPASkWuAXnQ+bhEBLJlwvcC7WjUDpwH2VXh9fXASv86p4GFIA8QmSiFayosqDfGGGPMl9OL21M/IVUtiMjfxle1D4BfV9XPROTH49f/+XTGFVXbYmnMnNB/R1B9iyj3s/jiGjOdtOtCgisgbyMyrh3bFJ3CpRzi3kEELQx9zkDXesp7vY/1iPr2lrilR3Uu8REu0QSsBlley8NoVMjphd87R36wesCcavxE3vzmJklk5mmYH9I7n/65LFm/F6jQelAekWy8LeLeG/8aAFdBnoGuAc4hsg/ox09A9AEFwuw6xm5ROIxL5UjUfa2W9zSJ+8BS21NvjDHGmC+b99cv1U9/+cdeyL2CH/i5k5PsqX8ubKXemLnCp+1/Bvxn9F79OeBnpjeQnEWCYSCLyPRbwI31HlEO4HNFHjLQtZGqAb18TpDqxqWE0Wr5EzxusBFkzWSnaW6gW7svX6a3E4afrkCjiT9wc/079exv92nj4oMM9zZTyH5TW5Z1Saq+QlCvC8n1PdRcfwe5vtWgaZB+XPIRUX4xC7e0isg6VAv41oVngC2g84G340HOMzao34tLXp30/dfmDyygN8YYY8yXVo0F515XFtQbMzctmuL5Q4g7Aa4dkW0lx08yvmr9tKnqJgbv+yrvowrAaSR4gkvVEaTfwAVvxVfcBlk5ybCN1e8XRXRfOa73Lzjyg+/h2+FNRTP9D/3EQqrhY0nVj6sNMCL79BH5gZJJEIUoty7+/gpICyIJ4L2SU26AxtkFrscX9C9yxyjWE5i535ylcYwxxhhjzCvGgnpj5qbVNZ53Fwmug2yNU8LLrQNuAG9UeG3qsk8OgZav/t8hSL+DSBKRz1Xztxnuu8rgg3ZpXNZP3cKJg3pFi3XsVBWyz+7x9PYtfXonZODRGtCdE15fqxXvLpvw9fzg/LIjD5DgC4JUmijME7hKBQHXU2zN5xLNaNSBRkmINpCsr2krQQ3uAIdmaSxjjDHGmNeLCLhXpvr9c2FBvTFz08RBuASncck8ynsQPgHKA9Kiefg930+Alpk8kEZhFxouI1F3CpccwCUiXCIJLk2u7x7oaly6h+HHWfpufQ+AZp98m0zrFRGpUiFfDkK4nyjsAbnHk1u92tcVkn0m5AYyiBtAwz6geSbPDsCNY/264as5cUGltnSQrB8GLiCSBmlCXBsiSwAIhw8SVNhtINKG6lVgHRLkCdIH4vE+RoLqWQFT81tkWqPJTzPGGGOMMa8jC+qNmWsGOr+CJB6A9oOmUOpAG0GbcMlTSGIpIu8CvlObko97zVezAjgLNDGDzwxxiS+oX1J5j3yquQMtLAeWE2Q+VxgCHlO38F3CoXaFASS4iEttE5E4OpYOXFBc9V8AukBaViIt4xf2tZDrI/vsAdm+Ph18Mki2PyL7LEV+qIkovxi/XaH6Zitx15nX/giosndfuwmSH1S9vjA4n2RjD/As/nrqZwJEKG5vkGB0j7+4Cf9ApshS740xxhjz5WZ76o0xr5lGgtR2fEG2UarZcSn2qp1ouLCGMbfh+2rumMFzVSgwB8BFxDVpxBHQRaSaWln8XjdRAXFBMQW9AQ3fBz0Wt4P7GHE1F/GTRKqZRGszDa3IgvFJDKpRSG7woRb6L6FRPdmBYXq78gz31rNwTZrm9u0iExTj06gTcXdJNg0hIqhG+uxOH/mBxUSFegrDy1m+v0VEFpRdeQwJ+oEeZExf+9nZ7gCnybSen6WxjDHGGGPMK8iCemPmmoalf8hA598FfmXMcZH0mJ9Vb6CFDL43ei2WA7encH6p68DWsmMD+EJ8+xARgtR1CoPzgQUCVOxtHw5vU5f+Y3HJXbM54yriAtKN7UjhCfAWqXpoXHgMqK1QnUs9k/rFY4rw6cCDQ+TujxYZzPdfI9W0tuxKBfcFLthdcuwmIqun8z4q+OVZGscYY4wx5vU1x1fq53bFAGO+bAY6Wxno/AfAP5z0XA3vMrYK/WTa8Sn4HcAU08PlPjLm0/Qk8BTfsk4ARGQNifp+cNcnGCiLc5sRfYrq2ak9Q02qtNmbRJAc1y5OGpeOnfzIPXs8+oM7hwTHgCGIyjIA5M60nmG8h8C3ZmksY4wxxhjzirKg3pi5YKBzKwOdvw7cBf4naipqp9P5998CHABO4Yvn1eIuo2n7j4Gj+H3k46rJi8hKEpneKuOEBOmbIm4Fvrp/YQrPXavSbIZszVdJkB53KNW4CnHXRg4k6kZb77lEPy65C5eehwSXyy4dX4hvev4pmdba34MxxhhjzFwl7sV8vSSWfm/M62qgU4C/BPwU8D1TH0AKMG6BuVY78CvBNfSxl9uILMcH828Cuyc+n434BxubJ+WSn4hLxNfKMURmq4f7mLuUfF9fywVayF/iyL9ZrQ0LLsqStd0sXBlQ37JSgmAF6fn3GO5ZC0SkmkdT76P8G7hER9TX20p/T0Ia3DGCdJp0c4ukmjfNwvsYBv75LIxjjDHGGGNecRbUG/O6GeicD/ww8BP4IHl6JNiEFmrfNz7eYqCViQP7O/g9+CeZPJj3jyVSr+Iuo9HGkmftkCBVWhhvNqvDF10FGkt+HprsAs0OnuTMdxaSHVysfb3Xwwun67RvYAuqGeqbHg/1ZAclk+hIrFmRTLe8uzxonLdShwb78oc++qJw6vAqwnB18oO3vx0sb1tBOr0FkWFZ/59kZuG9/AaZ1u5ZGMcYY4wxxrziLKg35nXgV+V3An8L+OvAzAM/kSVIcgmqfWjhCyZdca8ooHorOAW5gMh+fJG9chE+hT4B5IFc/HOeIPOEwmAX0A7yyUj/9tGhF03jWSdSnJh4WsvJqvqIQ99KUciN/s40CrW3f2SCRPv7mgr3nu4H6vPX7jHwJ0dv3Lv6+Kpmh1i4tEnrFjc/y7Q297q6xB56Hs8Desg0ngG+Ngvv55dmYQxjjDHGmNefMFHj4jnBgnpjXmUDnfXAjwDfB7Th/82eAN4H7gP9+BXld5n+v+fmeOzpegO4x9g98tdBriMyHziND+CLuf5pYC2+N3yq5NjIvnQRWUyyAdXoBMjbMr5i6eoZPG+5AqMr9KMl90X2o3oQn2Ew9ndbyHVSyFQemZsAACAASURBVI2t5p9OrcC5Z0RRU3wkomTyxTn3xrzmoKPrbPf+/jC7rv/Oo0PJlsbBNd+zfSeQQ6RfVu5oZOY+ItN6cRbGMcYYY4wxrwEL6o15VQ121QN/DryPyNj+bqo6pu2Z6nV8Qbp2fEr8eeADoG7S+4gAwTN02hntLfiicr34fehHQXYzUV/32kQiLgM0lB1/AjhUI0RmI1X9CL74H5R/JvrA/iz+vW3DB+otDA88Kx9ERFYGq9qPhDfu7fEHyOB/LyOTFU1LWrY/TN3pCQvRVVDXuOWtLlmz6zitq7ZKIuVINX8wC+/nf52FMYwxxhhj5giZ8y3tLKg35tX1w4jsrPhK+dK1D6BLg+gDqH4OvFXbrWQBlYrT1a4N+AhkAyIHJj27NocYDbZLyEWQD5id7h0Hi/dQVag0CSKyDX9CHh+knyBTP8jyTYfoewRhwRGFjkKuTsQtIRHcohCu0oI+AJaUjNTlksHDNT+w/a40phrTbYtIfuUHF8ritTuAqwR1nVTepjAV5/ATQcYYY4wx5kvCgnpjXkWDXV8FfnGGo2wABqmpint0HV/4bjr6gVMg3z9usmGaVKOTqDYhrhuN7olIL76HfB5kEJGTKFmQDMgHNc2+qg4DN/Bt9TYhchvYX3LGxL8rkWT8DO9LMvMJ63cMo+EaYAEl2QTJA6C57ED4sPtCw/0HnwVti1e7xroUXddu8vCO0N/7JlG4RrZ97aBbt2EvqvcRN0CQ3F/t1lPwv5FpnXZLA2OMMcaYOclW6o0xL9Rg1/cCv08tqfMTEUmgeh6/336yk+dP8y6nQNrjYnizJwqH0HBv/FO9umQgI6n2Cqoj3wLXUbkL2gAMI4m1iFSoEaCfgMYr/+6PgG+WvZ6lxjZ2iOxEAiAA1fugJ4nChaBvAUgq3ZBYuzWR2JDeS5Q7Sq6vmXkte9n0vr/T0EC3NLW1xmO14ZJXarrvxO4D35qFcYwxxhhjzGvEgnpjXiWDXQ3Av2GmAf2ovprO0ugBMJX+6MPApyD7n8vMp7imkj3+DWh0DAmqtd5bAzq69UALT1HpQIIDY59NtoJeBdaBNqJEZbUK8tN7VmkDaSNwEIUdoPWobiJIrxORgCC9T1PzDhPVd5B9ug2i+dIwb4BEZgA4h0ieINU8rXuP9U/JtGZnYRxjjDHGmLnFVuqNMS/QjwFLZ3G8ebWdpgumMOZlkOSsr86XElk45mcNXWlh+knMBz2AhoeQxL6SMVtQF0J0IS4dULYnX2ceELtgHS71BYnGU1JSW0CC1F6CFJqou0ph8CwulZdE5ntLruyY4Z0LwL+Y4RjGGGOMMeY1ZEG9MS/CYJcAW4BH1Ld3lhxfhG9PdxP4G8B/P8t33sBoL/iJ5GoYS4GDcWX75IyfbELShq80Xwy831HVPhGZwoq27iPKH0cCHdl3L7IQdRcQ+cr402cY1EtwlFTLThFZBtoHHER1M747gFIYPCdBKk+y8QDIKVRLAnmpm2H/1D8k0/poRiMYY4wxxsxZtlJvjJmuwa51+ED9PwJWAP8X8KP03fgR4O/gEgO4xFee2/1F6uN99VsmOXFgtI18RZ0g3bNY2X7ipxEJ1O8RL+6NTxHlT6hL7hKRqVS93xGn8X+KyjASfIBIla0NOr30+5HLNU3uyXFNzd8s4pqB/aD3CbPfRcNFwLtEhYOofJsg+XVGP3+fMfPP4l+f4fXGGGOMMeY1NRstoYwx1T0Gfhgf0INGK+m70QH8JrANcTXnlM9Az6RnSPAW1fffHwVpHGnt9uJ0l/28m6hwaJpjfQC6Hw0/AVZXOacwzbFj0XY0HDu2uDYSdd8D4gsEaLSfKL+ZqHAEX+H/EXCq+kRDTe4DH83gemOMMcaYuU1e0NdLYkG9Mc9TffsT4OdGfo7CFL6NmuISx1CNXsBTNE16hshCJLiDT3kv6gX5GHG7mVLa+2yR3vHHdIeqPpj+mLqWsb3jS18LKx+fkjbC7Ofjjibq2nCpYyqJDtXCDS0MpTQ/sJ7CwAJg3Qzv+RtkWmc4IWGMMcYYY15Xln5vzPP3z4AfBd4lSH7oW50jjO2R/jxtwu+ZT014lrjNaHQYdC9wCl+wbzuqPcBQ/DUcj5UHQnzOfukXjM3jF/zkoZR8H/eCw5X8nCr53gEJxA1ViLPrifJnCVJVAnMA7oPcBX2/wmu3geUVr1JqmWC5T1B3BcQh4kACRBIgibh4YAoJBsddJa6dINWORmcJh7aB9CGJLnBPEFetqn+t/s8ZXm+MMcYYM3cJVv3eGDND9e15Brv+JnCSKZRwnzV+X/0Z4J3JT3ab0fwfgnyjZGvAVCrjT41qD0TDVKj4LyJLleAEGpYH5x+qRsdF3I6y47eR4C7wIRBUmBCIkET1zgIiIX7ionoqvATXJNk42WRMZ5XjT4GbpFsikM0CrXFBvZk4Sqb10gzHMMYYY4wxrzFLvzfmRahvPwv86kt8ggqp7GU0uoLmHoH+ZYguojrw3J5GtYDqQYgSTNzCbyvQVfJziEscEXFLgGw81n1UP0KCZYjsRkQQWQSUP/9RRFZXu5EEmZDM4jTpBVdJ1B8Cro47yaUm/z1CQ8n3R4BPgQdAs7hghYh7V0RSfsuD21DDeBOxVXpjjDHGmAkJcRek5//1klhQb8yL87P4wnkvw+Kqr6gqUf4gUe4NYH189G0Izz6XJ1H9BKJ7EO0HJtur34W424j7GAkO4pJXRNweYCWqR9CoA3Q+6DdAj6ClK9/yWck4eSSxdpJ7RSLixCXXSbJpH5nF60g2Hwe5MHJGULcVmOz38h6+RSFAHSIfILIEEWHs/vkbwLxJxprIIPDbM7jeGGOMMcbMAZZ+b8yLUt/+hMGun+bltB/bgA8C68cc1aiTKNdN5f39u9HCEQi2IdI44ydQvRyn2u+s9RIRWQJuISINFV7eAzwCMgBEhf1I0IEEvu2euNIU/OOI7J7k+cbcQ0QgUbdDgwxEuXMUBp9IkDyA6pNJ2v8JPgV/EXEBhdhVkPUlP3cCb0z4TBP7DTKtM03fN8YYY4wxrzlbqTfmxfoN4PwLv6tIQGk6uSpEhaNEuUZgolZ1eyA8NaN7q3ai0R9B1D7JvSpJgR5Do/LV8Rwip4Cy1XjXFt/zPhqNTlpKMHYyo6KordJREUGC9FZJt8STBbKFyf8MBb+HfkvJsfKq/TPpfBAB/2QG1xtjjDHGfHlY+r0xZtbUt4fAT76kuz8BQPUpUe4TtLCbydPfwa84T53qfTQ8BNEi0B/AF6A7ARzGB7yT6QYOAbuBLagWA/iTIP2I+xBxo+36XOIoIhtRVTTsBy1OINwCqaFIIEtQ7a/tzcmzSU5YiO8QUFoPoPyTfqIK/pP5HTKt12ZwvTHGGGOMmSMsqDfmRatv/zPg117GnYnC00TZLGjNKfDAejT6bPLTxkni89SDkp/fB/YCTcBpfNDeU36hqg5oOHRTVd/GTwY40HgiQNKI+Ir8ynzgE+AwSCOqg8BxxuxddzenMHN6t8bztlOcJBnvBL42wWqgEdXbKB/j3/NBfPG888ysP/0vzOBaY4wxxpgvGXlBXy+H7ak35uX4e8B/CrS8kLup5gizg6AHpnF1AqLNaHQGpA/cGkQq93ovJdIKwf64eF0PREPAm/GrAfBu/H0EnMFXs/eTDZo/ARwgGr6kLpMUkWZgF6oXEHmj5B6rwWUAiffP9wOrSp4ii7gppPxrT+UPZD2J37ufAVmLSBrlWJXfZ6rk+ybgHCJ7ys45z/QnVb9DpvX0NK81xhhjjDFzjK3UG/My1Ld3A//whdxLw88Ih+9OM6Av9Q7ofgiXo4WraNiBam7Sq0SaffAt1Va2nR+bncAxjQrfQcNi4b5NRNmzAKoaqIY9qN4vGbsOuFUyViNj09pPIjK/xvcHqvkKB4/Gz7cZ6AZ9EBfKe5/xbe8uMDpx0YFPv49Ah8rOq/a7qMU/msG1xhhjjDFfPnN7od6CemNeov8D+OI5jp8FOiBIAmtmeex1fpIgvIBqtrZLZDdwsurLqqfRSIC9SHAciPeM6weq4Xk0/IQouxHnylrTye3qtwwqVc0vvSmgF0APgp5BC6OfiRrhW+axm9EtBLvw2wgiX5FfGhlbAC8bv34YOIBIe1yksLxc/nQ/e08C353mtcYYY4wxZg6y9HtjXpb69hyDXT8J/MFzGP0zoB7kgJ85dBfQ6O3ncJ/3IDyKBrsn3bcuAureAu0A3YP//LkDch1kKeTXAs2+nXvwgeIiNDwM0QainK8iL+4Q4wvMLa5yx5sgVVLv9SFwEZ+qX/J70VuohoAjzB0GHEFK4x7zRY8h3tMv0oZyGbQR36JuO6qXEFke/z6ywFrgnl+tl634AoDT/bP4ZTKtE/bTM8YYY4wxZV5iZfoXwVbqjXmZ6tv/kNkN6ofxxdjegtK958lxxehm0W4ID6HVYk0FdBj0IUInIi0gfwbuAhKsQNwBfKA7phK/iDhxib0kGp8RZDqAfnDhuOFFNgH3xx1Hbo39ANc86Cegx/HV6Q/gi9mVWkk41Es4dBSifRDtI8yeiAvwFa0FvVRy/41+YoJbqPah+Sai3FKifAcaHcRPQqwHtoKeBj0B1L4lYFQf8LvTuM4YY4wxxsxhtlJvzMv3d4CvA+kZjnMeaALZP+4VcStnOHYlV8B1xZnlDqI/AtcOhMCQP8ZC/Gp4Hb7QnF9VF3kKUrJaHVXYyx4/OmRxyQMqiT78qvdfAG3AppLT+uNJhVugt32FfBegegNIqEaLEbpF3MRV/1WHUY4hfHP0ULSdwtCfkajbLiKt8ft6OOb+IluIwoE4fX+ZvzA6gEYgiZO4YHt8ZlwcUDtAplrj4PfItJbvzTfGGGOMMRMR5vxKvQX1xrxs9e3XGez6x8DPTHOEIXwbt31VP7F8obpu0On1nB9LQQ6D7ERkwzSrgpStVLvdEN0EXV3h3AJAXAG/GVgRH7+BLzjXgEYO6MVPIKzyQbMPqlW1l4GuixQGlmqysYP0vHm4RAO4lCQyo5XyVXvQ6AawFwRVvUSUf0iYfRP067iggyBdDMTHpiWoDqCF+fhCfWNpYQHqwnhvfdEBv4+/wgRMdeencK4xxhhjjPmSsKDemFfDLwD/DdA+xevOA/NrCg4luIoWphPU3wS5BxIC84A1iOybxjilto5ZrRZJQqIHza9i/CxB8XMqhOC7oO0QbQbe8F9yJT5nXnzejbgoH6qap/9ON2H2HQDy/YvJ9xfH7dd5a+9JkFqGahcaDQL9SvQZ+aElaLSJ0tX4MOdwqVPAMKiCu4LIBlQjouxl4L2y5+5DEqdBFqF6GF9s78OS4H4/6BHgQ5BatkI9j2wLY4wxxpg57iWXpn8BLKg35lVQ3z7AYNffAv59jVfEq/NTWOl1CSUs1HLmVZAukASwzq/yj9t7Pht2g34Bsh4Akfcg+Qmaf5exvd7vIUE3yEZEvhekAw0/RcMPgCeIe4QEvajeRqQejdJ+kgBAr/qV9ooa6bt1gXlrr4OuB/oVnU9+oFJxvX5cYgkabhg9FN1D5QhaWMD4gP4xkqxDxqXY30b1KiJp/HaLecB/AN0S/74nUjfJ68YYY4wx5kvIgnpjXh2/B/wpfn/9RM4CLVNM3QZkM36/e2kaeARcAXkAUgdsQGQdsG5qY09JiG/5tm0koB95RNkJyTNofjHIQ58d4IK4mF5MD4DrwLlvg1uGyG4k6EDDA2h4BGQHgEaFE/TfWTrhk2i4UDVaJyIgiUtI0EYqeYh8fwotJEAiiN4kSJ8Sl4x/36rAp/55gyXgnqJRyaDuIC7hgO3ltwMeI+5rZcdqrYT/PIsdGmOMMcbMXban3hjzQtS3K4NdPwFcwPc6L/cUOA/TTH0XmYcEJ9EwBdIT91jfGFeP3zTZ5bMoANpAKleAF3kHSQHEAbkeHn8OcZAf9aPSAZJG9QkavQmgYe4Yg/cXEhUmDurRdeSfnSTVvB2XWCUib4DbhJt/AqLtAKrRMxFXDOj7gWvATpCTiKxDkqD6GVEhh0tkkXiyRfUB41fXByZ+ngldm8G1xhhjjDFmjrKWdsa8SurbrwD/e9nRy8ARIDPtgL7IJQeQYAviDiCyHZHxhd1eDKF6D7wy2jrBi42gBzQqLNNc7wmNwsuqmmf4cZIwW0u2wQDJho0ARPnHo08n74M75L91TfFzZIEvAJ+eL66/5PzNBMl3EcmWjH2Z8oJ6yHQnTwaAfzfNa40xxhhjvtxEXszXS2Ir9ca8en4e+CGgE9+i7m1g4+wMLWtmZ5wZq6/1k0+hHVWk7HT1cwIDRGE3uSeP0Oj7fGc86UEST5DgFhquqjRmiQYK2T8i1bgAjZQwdwyXXITIWkT2+SyAaD/wCbCIkZZ0ALIMnxJ/A+jH75EvfcgP8FkXW+KfryPT/v3/azKtvdO81hhjjDHGzGEW1Bvzqqlvf8Zg198H+bezPrbIcpCroM9zz3wtFoNer2WSQWC+FgY7NFG/jyh/nHC4GVgALCDMnUDDHYwW8hsGPiORfodkZiFReIp8f57C0A4qZSbN33ABcTsRWYgIqB4kHF6DJI7iEstAkiAH/T5+BkDOIq43/r4OeMb4vfMfAx8Cn+G3URzC1yi4BUwnqM/iuyMYY4wxxhgzjgX1xryS5LeAHwf2zv7QwT208LKD+hSQBY1qauem4fvkn3UBO8ccF1ePuPNo+ASN2oBnODe6RcEF75GeB6nmB4TZS+SerUPDZSXXrxSR5pIR9wFXIGoBQkR2o64LuIbIIkSKlfE/B/pA3gXtBK7jJw2agYX4VoO9QGlRvOnuif8OmdY707zWGGOMMcbM7Tp5FtQb80qqb1MG7/8kxSrrs0lcS/lO75fkTeAa6D3gvbhwXxXyGHR8n3aX2AFAFJ1AgneqXy5LSGSWEKQVjY6T7a0nKrxRFtDjc/zdQyTZPpIqL9Iev9oBxQJ9LPDPrzdBVjNS1G+MQdDjwI548Lbq729Ch6Z5nTHGGGOM+RKwQnnGvKrq244Ds5+C71uovSr7s9cC+wH1Ve71PGP7w3ki3ZOM0z7J68VxBBfsINPyJnWtByuc0Y1IhPC0uGm/xDZUi9Xr6/FzvvWgh/xWgnH3qse37wNf6G5tTc84ngX1xhhjjDEzYYXyjDEv0d8DfhBfhG12iDgk+AwNd8/amDPXxOhWg8egnwE7QOpQ7fUr9SiVkqd8oL1s3PGJiDiSTfUlR4bw7efugBxAQ4B7qFxDgj2IBMAj4Baqibhq335gcfwV+uCeJUA3SgiaBzbH418tSd2fimHg1DSuM8YYY4wxXxK2Um/Mq6y+7Q7wq7M+rrhX+d9+q+9hL99FC1cgnCciX0eCHsQdAc6MPV1v1zSqah7Vm+A+JdnYgUs+QRJnkOR9JFkHwXGgUHLFMtD9/P/t3XmUnFda3/Hv81ZVd6lbai0lyS3JliXZ1siSN40kW5K1hAxkmBCYk4SEZAjZIHMGQhIIwxxIGHIIGWYSQgIkTMgkh7CFQxLIQpiZMwcIo9WLJC/yosW2rF1tS21ZW6u7q+p98setVldX1/pWqzf9PufU6a773nvfW32OS37ee+9zvXgA9+vAAGYfAzbgvras3wLuZ3Bfgns37o+BR8CzwPxSrQ8T/i1eJJsbalxNRERERGqzSXpNDc3Ui0x/Pwt8HyEBWxKngbOEme5NwFywJdSa+Z46V7DoTbAHMHsCeALnKHHhfWCpmeXAnsUi3P0UHp8DXwP+wZ0e3GPgPMSXwW6EJHzeTZhNXwGWI5szM3sQ2AdWtg8/KuLx1vHD8l144QakrxIS5D0KGO4XCNnvVzI+q/3IqoPb4YfNS/g30dJ7EREREalLQb3IdNfVe5WBvs8Cv95CqyuEAHQpsI7RI98uAjfDOezRS3j80TZHdxNLvYxFo98lHufBHDzC4/ugbFZ7vOtgr2HRHOApzHaNuWqpJzA/iBeXUPYAwszWYKk17n4IS1+hcOtrDF5djRceIQTZK8nmBjC6xvSXXXTUzJ4tvRu7dz8s43+VsBVgEbCg7Oo8whn15Yn1Gi35P0742xcIDwKS2J+wnYiIiIjAlO93nwwK6kVmht8CfpDKI93GO0TYVrORsOe70miWdkvPxYdjWt+GU8BSL2KpLPA4ZjvHXK08oc79BbwQ4XEpCzyDYK9gkQEbGQ2yq4vS2ykWjzD2PPgXIVpkkW0h6jhMpmuzZxcNMPThYW73p/HCUszGZstPZY9YlCm/V8W3e5wGyve9DwF9wHvATcLZ8wcJs/LNZLJ/nxDUH8fssSbqV3LCmfciIiIiIjUpqBeZCbp6Ywb6fhD4CiEYjUuvIcJ/xyPvqwXy1ZmtxVL78GJ5UD4E9j7wIWYDEA1h5kAGrIswg70cs+aT7Jk9g2UgLv4pRgpsE5Arne9+AVhdt31IQp8rvTsCURdmT5fVWBZuk+oim9tKNocX8xco3NxDnH8SWAB2m475lRnyKx9mVD7C7QQeLL2K4P8Pop1ACtgL3uhvPXJEX3+DerW8SjY3XU4pEBEREZm5NFMvItNCV+/LDPS9S8iGPzEs9SSWOgQsBBZjtgB4oPSaWFHqW8AHCEvcV4GFM9/dT4OfAdYDS8aP0fDY38Ci6xZFmyquDmI2bhm8pTIrSC1c4e5DFAYOYtFVM/uOimpF8FfCT4qE2fizhOX7lVJ48dvADxFltuC+HWwP+O4qdUeUTiywuXXq1KOl9yIiIiLSkIJ6kZnlS0xoUG89wJaG9Sbuhl3g2wh7/kfGsApsFe43wfcSthh0AnicP0Z+4Db4dxB1PA8dlR124t6HWdXl8GbWSaZ7O9hR4BJwkjCzP7LPfzRRXpQqJdrzF/C4C3i8Spde6jgN7MY5RViiX8qa7ylC1vuXgfsJDwu0n15ERERkKs3uiXoF9SIzSlfvSwz0fR34xFQPpZx7fIU4fwKPC2BGlF6MpUKWeLhlZt1l1U8zmrhvlNlcsF24X/Y4f5T8wDyIR5fZx8Ob3aLXLEqXB9sG8QlINdrjvpxwesDIEvy3gQHgMuWrA8wisGewCOLifvAdY7uJBivGvIYxme+tH/fDmG0ubRt4A7MNJKOgXkREREQaUlAvMvN8gWkQ1Lv7AHH+FYrDneAbCTPUQZwHuI4XXyV/a653zM9jUQfpOU+ZcZFqQT3gceEM+ZsX8fjPMv6Zapri4HK3rqtm0cLRexUfIpWqN9TbmFUeB/hw6VUAni8dhbeYMBOfBxwzcPYTlukvBR7FonpL6d8CujHbDIzs3Uq6n/41srkLCduKiIiISDntqReRaaWr9wADfXtpJSneBHH3InHhZYrDwxA/BdRLmNcDNg8vPsXQyFHydtw75n1Ix7wbZtGds9s9Lpwmf+s8XtxOSExXS47i8B5Pde62O1/Ofj/uL2O2sUabQ4Rg3QiJ/hwYJiQZHDnW7hb4+M8ycg9nAHw/7ptr/KNwiLDMvjLoz9T5LPV8JWE7EREREbnHKKgXmZm+yCQF9e7uePEoxaHrePwYsLn51laecT4mSg+QH1jD8PUrnsruJUqtISTpi4EngJNg18HyGI57R2mWfBVwA+jGC7uJo+dIdWwbHWRxEKv6dXYGovUwbqa+8lP+8fihR3tw7wLfglkX2A4oXiKO38YsA9E6zAqEGfpt49oH9R5Q1PM/ErYTERERkXE0Uy8i0883gMqz2yeUx8V3KQ6dxYsfYez57a2Yi6VfB9Jk5qYx+2jo3PPAArx4hHTnHLAFYHPNbN24cbiDxyfwwhUsKlAcmks8PJdUWdI8L27CU1cxG1mWXwA7CPZUKRlgPWew6HHgMB4Pgy/FUh8Cu4giw/15vLi1VHcZ+LKwXz4+CukhzIaBd4CHKvrtI+zlb9VRsrn3ErQTERERkXuQgnqRmair1xno+yLwexPZrXvcT3H4DeL8YsIRc/XPkG/ErJvM3EcxS1WUZ4CFWHo3cfw8UfphM4tKgwDoA7+A+03DM8BiLPU0kPGoE7x4yOPiuxalRsbXAf482C7gAkS3MWu0kuEUIRj/s6Xx3YelwL0IDAL9uH/I+PPsAd7G0g9iNr+s7ANCAr4hwuqDq0CjBH7V/EmCNiIiIiJyj1JQLzJz/S/C0Wm19pK3xN1vkL/VzUQv668M6MfKgO8kzucd249FRQtJ93qpERCb2QUsPYBFq8Zc8GI3FhUhGsDskTr3fImwr34TIXP9c7hvwmxk6n9/6fz5bmBxeMhgZ4EL4HmwApZ6qiKgh7Bf/+my93vrjKGebyRsJyIiIiLVKFGeiExLXb0xA30/BXx1Irozs3kORwl72ydbBnwHXowdngdbbmarCNnjT4PdLO1rX43ZCmAF8ALhTHuAfjy+5nFxL5Ftsdr7pvYAu8cWeQ5w3K8TsuGPvR7+EVgZXgZExzFb1MRnWtVEnUq3gG8maCciIiIi9ygF9SIz29eBA5QfJ9eOKHOtdBzdVImA7eDHnNTrZvYYZrkadTsJeQVWACcddjB8tR+Y43CFzkU3LMqUbx94ieqrEAaBwzT/N2zme/Mc4UFAq/6IbG4oQTsRERERqcZs1s/UV9srKiIzRVevAz81Yf2lOh5l9Ji3qWHpvWR6Vlp6ziUsOl2n5lOEJfT3AbtwPwYsA1LAYopDFygMHsTjc4Qj7JYyLvWpx4Rz6R8lJLZrRr3tBCPqjbueP0zYTkRERETuUQrqRWa6rt5vMkHJ1cyixWCvTkRfCdwklX3OOubusijqJoo2kurMkep8AaJjddqFQN2L18rKhiHaDr6d4lAej/8UuL9K0wi4TdgP/z7NPdCodvb8TcIe+pFX0lVQX0vYTkRERERqGZmtv9uvKaKgXmR2+KcT1lMqMzBhfTUvT6b7rKWzZee922LMPsCiPKmO1USZ+onnLPUIUCy9O3knmz6sweOFeLwX95dwj8Gvgx8AP8nosYBPAPuaGOsNQqb7fuBK6XWMsLR/5JXkfPrXyOYuJWgnIiIigKsK7QAAIABJREFUIvcw7akXmQ26el9goO//AJ9su6+o4ymKw7cI2d9bdRrsfcyGcU+FSfR4HeGIt3KDwAWwm+DzSc85YVFmPiFR303CkvgusHXAgxgHsfQusL3Ew9uoMltuZss8yjxHnN9G1PFhxeWV4L0h6T0f4LwMNhcYwP1USMJHFyHAfwWzpxp8zspEeYvLfv+QZOfTH07QRkRERETucQrqRWaPn2YCgnoz63aL9uPxjhaaDZHpeg+iVaWs9Xe4+zXyN2PCyqA3SXcNE6UfAx4ys7OODZrZx6v26n4N2As2BH6IKLUey54nHr6Bx+Oz9Ecdc4jzeaLOTWWl5wjJ9EYsAj5WCvCBeB/uG8quL8M6ThEeHNwulRUJ588Pl8oerfO3OAssqHO9FgX1IiIiItIyBfUis0VX71EG+v4b8D1t9xV1dFEcbKVFJ0QrrdpeIo9fIEp3kurIWZR5rOzKYbC1ZtZTo89hzD4E0rinwdJeHHyVwu0tmEEq+1Xi4g4be178BlLZV/CiAR1AHuw2sZ8i6tiA2eIq96ncR38fXjhClNlUpS6EY/EqPqOHBwdhyf/1Gu0aOZKwnYiIiIjUM8uz3yuoF5ld/hnw3TSXob22KP0kcbQfLMYiSGVW4X6L4lA/Hm9l9LvjFkRHsWjYzHZX6ekli9I7SGW6xhbbN4H7MHsPuExYp58iZKAvAItwX06Y9c4Bne6+isLAcaAH9x4KA6uByx51HjKzLQBmUQZ8A2EpfYmDF6F4Ow92kKhjPhZtGP1y9/Hf8h5vwuN9WLRz/DWPwfcTticsKo3vAcJS/pNgtxP8w1EkbD0QEREREWmJgnqR2aSr9wQDfb8B/N12ujGzFJnuscvvDYjSeLHwCvHQdTx+HIvetEx3vfPdb5b2q4+4BnYSsz9Ttbb7DaCHsK++ExgbVFt0PZxCd8cS4qElbqmDWCoN5AweAq4CZwh73SNgALgNniHO9xOl90LkYD3Uyh3gcQarmku0B9iE+yni/BlSHSNJ8boIx+w9X+NvUc8bZHO3G1cTERERkZZppl5EZpifBb6P6kevtc2iaIBozi73uB+/k9Su/F5lSfass6z8ANhDlGbVx3A/Tvg+2sC4s+RLPZnhmZ6PUBjYQ1zIQvwg0BvaF7fjRcCOuqUO+80Lw9a9LCaVzViU2lCtv9KNr5Pq7KGY/yZeXEPYLz8IDOOFPHFxH2YxllqCRetL/yCsAa4T588TD+3CbA8WZcCyYB0Y82p8hHq09F5EREREElFQLzLbdPWeZqDvPwI/POF9u++jNHtuFuUwPo7765h1hKCW+zDrxj1PyAK/kZCR7k/BMsAJ3C8CyzHrxd0J57rvoolI2CxaRGbunWX+nh/Y79fenkvHvGuksx3cvJQjShcZvrHdB68O2qJ1e+iY+wHYJsJMepGwxH85YETpl4HdROktkD4PfpViPgf+ZOkO4E5pdcAVsLexaBhLDRBl1hMPOcXB8m0HBTI9hQR/WQX1IiIiIneLZupFZAb6OeD7gTkT1qP7cfBnqlx4DGwvZrvuFJllgCWEWe8/AfvWKv1dJyyTr7YXvznpOc8CJ7h5cewRdJ0LX7GFj8yzEJwXwY+AdRGlB4CYuHAduIX7bfDbmHUDHwGDKL2XOP9ItbsBBp6ncOth8AcY/yDiLczqZcavRUG9iIiIiCSioF5kNurqvcRA378DPjch/bl/AN5DyChf5Xq8BewsZivLSt8H6yfM7O8t/SwPgntKr3bcoDC0CHA6eo5THOqx7t53rHvZLvC3cX8D+BhwiyizHLO5AESZAnABL6zC4zxEhyBaBVwjzm8r9X0W7BwWOWFlwRrgGdyHwDvHDwWwqD/BZygCryZoJyIiIiINGQm2Rs4oCupFZq9/CXyGdgNn90Hws4QkcLXMwYs5SO0FtmF2Amxp2az1LtxfA+YDK2t30xoz62HJE89hqSdt9F4rwC8A88CeCbP0rMCLr0JUxONe4DpmA4Rl/+DxLojfwsliqbeAxZidA6olAaz+YAMgylTNrNeAkuSJiIiISGJJ/gdURGaCrt4PgF9oqw/3m+AnqB/Qj+jGi7uAvWAfwWzpmKtmjxMS2+0hLMtvn/tNi9KbzKy3rPA5Qub8+zC7DfQDvXjxWeK84fFD4JtDIH/HKSCP2SOYrS+NvdZDz9M1xxNlHqx5rTYtvRcRERGRxDRTLzK7/SLwDwlnqbfG/Sp4H/Bkky2GidIvYtHHatYw6wB2434euASMz4TfCrO5eHQG4nmEQB5gPWFFwA3gGNiz4P2Ev8FO8NdxYsyeAAqEoPpaKVP//lIfTs18BN4HrK5y4QKWWpHgUyioFxEREblbDCXKE5EZrKv3OgN9XwJ+vqV27u+B3wKaTfrWR5T5ALMdjasCZvcD9+N+mJBQL8kM90hfG3B7Dnwb+CAhoB8E3gV2YQbuRxhZag+PlbLaHwEbwKKdLd3P4+Hq44jOAArqRURERGRSafm9yOz3K4RZ8ea4nwMfJpzH3phFh4kyEWbrWx6Z2WbCrHh7e8ot2kZY1v8aMAC8DjxRVuFp4EpFq02l5H+t8WJ39TGkiy33pSR5IiIiInefRZPzmiIK6kVmu67e28AXmqrr/g54B/BAU/Wj9B6i9OZx++dbYbYK+IAQlJ9J3A+WI5xFnwY2V9wjC7xZpVFrDxPc83ix+sOLKL2gpb4CJckTERERkbZo+b3IveE/AZ8FVtWs4X4MvBdY2ER/w0SZI5glP2O+nNkKRpauu58GLhP2u2+iXrb5sZ0AbKhzfRv4ZcJy/xHDYCeB/tLqhBRQewuB2QVScy6HNx7jPowXHY87sFS1s+0b0dJ7ERERkbtKR9qJyGzQ1TvMQN8/B36t6nX3V8EfAuY20dv7RJn3MdvWuGoCYeZ+VWlceUaX1BdKrxHbGBvwZxv0m8H9JGOCenPM1pZ+B/ez4CcJq5iMEOSnCN+VKeAaqY5qyf0GCKsEWqWgXkRERETaoqBe5N7xW8DngHVjSt1fAt/AaPb4OuwYUXoRZo/djQGOv51lgMerXnO/ChwGtpdKClXrjRWX/X4ZS22quN/KBk9yu3AvYFb53dlHszkIxlJQLyIiInK3zfLs99pTL3Kv6OotAJ8fU+b+AvhjNBPQW3SQKL0Gs/vuzgBbZLaQcCTeXmAYuNlEKy/r4E3MmlmZUG4uYeVApast9gNKkiciIiIiE0Az9SL3lt8HXgY24n4gHAPX8OFeTJTej0W7GtSbfGEmfxful4F8Cy1vYamNyW4a3wwr8ccYSNCRkuSJiIiITIYpzEw/GRTUi9xLunqdW5d+CvgceDNJ7q4RZd7BbPoF9OXMlgDDkNpLOIQ+AhyPtwGZspqlmXo70sZnWot75TKuuFblOrT0XkRERETapqBe5J7jXyfsrW/AThGlU5h99K4PaSKYrQBbUVG4F48Xg489hs5SD7Vxp/uA44zNTZCpUbceBfUiIiIik0J76kVkNule7sA/rlvHokNE6V7MHpycQd0lFu3CUmux1L6y0vdLR+i1wa9UFMxL0In204uIiIhI2zRTL3Iv6l7+Ercu/g7wqXHXLLUnBMOzJE2oWRpsJ9hVKMZ48STwAdBPyJg/cnSdMXqUXVQqWwqsYPzj3WLF+8UJRnYqQRsRERERaYnN+uz3CupF7l3/BPjLjGa+HyTKvIxZM3vtZx6zhZB6BqJ3wNY1bsCLmN2P+xBwFugHHwIy4INl9YqEJfmtGCYcgyciIiIi0hYF9SL3qu7lZ7h18ZcI++vPEWVuYbZtqoeVwFFCUH2CsAz+Caqkp8fdgTcw29Jkv+H70awTeCS87jzlPVBWr48wm9+KM2RzSZLriYiIiEjLZveu89n96USkkS9h0R6iTA/W1Oz1dHSDENTvAjYSjuwby71QKm82oL9JOJO+lvLl9/1N9lnuTII2IiIiIiLjKKgXuZd1L79KlP7fmM2f6qG0obfi/WZgb0XZAaCZLP7DwB7gPczW1qm3qOz3m030W+lCgjYiIiIiIuMoqBeRLzOzk7Z1VynbCrwNgPurwM6ya0cJwfuIPDCSzf45zHZj1ujIuwUV7Vul/fQiIiIik8EIifIm4zVFFNSL3Ouyi4cJSfNmqmq5QToAw70PWAg8R5i930PYc98BXATOEc6YXwycB9ZX6avSIGMT443fv9+YgnoRERERmRBKlCciAP8d+FHgmakeSAK1zoh/CHgReBpYWeX68or3cwgPABq5Abak7H1XE20qKagXERERmSyz/Eg7zdSLCGQXO/BjUz2MBK4weiTfWO5/THNBOoRkd+cxa+Y7cQm4l71fVLNmbQrqRURERGRCKKgXkSC7+ADwPyekL/ch3PtwvzA2/p1w79Qofx6zbyUsq99P/WR2Z4AhzJ5s8p79FY97KxP1NeO9BG1EREREpGU2ia8mRmP27WZ2wszeNrOfqHL9e83saOl10Jr4f1QtvxeRcj8JfBeQxr0IXANugN8k7CUfKpXHgIGnCXvSs4SEdd1AD0Qny4Lkt3G/AKzHxixbnwiFKmU3gA0AmC0EduA+DLwOfFCq48B8wndgF2YPtnDP00Cu9Ht/2e+tOJugjYiIiIjMYGaWAn4F+DZCPqdDZvYH7v5mWbV3gd3uftXMPgF8hQZbZBXUi8io7OKTDPT9G+AfEPaYLyLR8vI4Kssf93DpFeN+hJB5/qOYVV8235pqAfWHwANjSsw6gMcm4H4At8p+v1xjDPVcJpu71biaiIiIiEyIpnZYToqngbfd/RSAmf0u8EngTlDv7gfL6j8P3N+o02nz6URk2vgFoNhmH4/jfqiiLAI2AdsIM/77cH+9jeX5MeOT3UFYcn89aadNKD+//lqC9qcnaBwiIiIiMr0sNrPDZa9PV1xfQTh9acT5Ulkt3w98vdFNNVMvImN19b7PQN/PAz/TXkc+WGdvUQ+jZ8efwf008Ahm1YL0Wg4TnnZW3NZjwlPNdcDKMdvf3W8DN9vYBnAU7Imy90MJ+jid8N4iIiIiksTkZb+/4u6b642kSlnVGS4z+xZCUL+j0U0V1ItINb8AfAZY1kYfcZP1Hiy9HPeXCXv3N2KWbdBu8M5v7vsJX5IrCGfI/7nSlSu4F4CrpetrgCW4XyIE18OE5fNrS0v0G5mIFQBnJqAPEREREZl5zjN2m+j9wMXKSmb2BPCfgU+4e3+jThXUi8h4Xb23GOj7POHLJCHfjvsbmG1osoEBG0u/3ygt388REuyVuvT3gEvAACGo3wM8Dmyn+naixaWflRnqlzH2gUWekKDkCiHx3wOYVe5fGi7dq1wzDwIq1crYLyIiIiJ3xbQ5p/4Q8IiZrQYuAH8N+FR5BTNbSTiR6vvc/WQznSqoF5Fafh34UUYyybcuA/ECPLqOWU+Lbecxujz/PO7vEL6NdxBm4idaBlg/+tbOEAL8U8Btwnn3V8F2V7Sbm+BebyUbooiIiIjMZO5eMLMfBr5ByCr9a+7+hpl9pnT9V4GfJkxsfdnCxFahwZJ+BfUiUkNXb5GBvs8BX22jlxXgB8G2t9HH/TSR9XMC3QAeLD3RXdygbqPr1SioFxEREZk0Np2y3+PuXwO+VlH2q2W//wDwA630OX0+nYhMR18H/qS9Lnw77vsmZDST450mk6kUaH3VwBBhL5WIiIiIyIRQUC8itXX1OvDj1MjK2bx4K+7nGtebFi43We84rW/QeodsrtkEgiIiIiLSLgMzm5TXVFFQLyL1dfW+DPxWm71kwC9MxHDusleB3eDPg7/XoG7DTKRVHE/QRkRERESkJu2pF5FmfB74HqAzeRe+FffjmK1rvok70EfIdh+y0gMQv4jHeaAIlsJSD2NWmeG+VSeB1aWj7bYCN8D3ATtrTMgvTHCPE22MT0REREQSmTbZ7+8KBfUi0lhX71kG+v4t8K3AWqDVbPYl8TqcU2AXS1+uywhJ8PoJR8ZdBQbAC8A88KcYOXrOPYb4GOGs+WdG+3TwuIDbASz9AOEYkFY4sBfYiln5Q4uRDPyvg3eBrSm7dosx2fKbppl6EREREZlQCupFpEnRHIgfJgS7Jwkz6B2EIHtpCx2tAV9TsU1/eennqtrNfD+wq8bFNPizeH4Qj/ZhqZ1NJrsD2IeNO6qu3GNAHnwPsLv0MOJNYEuzNyjzRoI2IiIiIiI1KagXkeaYZfHoKMS7CLP1a8uu9gFnCNndFwMfIZy9OTHcHfzRJmpmId6JsxfHgQhLrccsV6dNM8voM8Bu4EhpFcHNBMu4hoHXWm0kIiIiIu2YXkfa3Q0K6kWkWU5Y9n6R0Zn1Eb2l14gBwv7x68B8wgOAruS3js/j/h7Qgdn8JuqPzuh77DjHwd7HogxEqyv23zfR3x2bSj+TJP3bRzY3nKCdiIiIiEhNCupFpFmOWScenYa4Mqiv1AVsLHsfE/aTXwDmEJbrP0Sz091x8Szx8LPhjb2LpS4SpWKwpcAjWN3HrwasA1+HF4EiOBeBMxAViNKt7sE/CvZEi20Avp6gjYiIiIi0TYnyRERgZBO82XacY0Azy+FHRMC68LI9WPQw7tfBj4MPE7LaP1j9rh4TDy8rK1iNF1ZTLJTe2ylSHRfA7sNsbdU+xlseXjHAsRY+B4RVCEl8NWE7EREREZGaFNSLSLPKMttFw6WAOEk3O3F/BbOnwJ4eLfb3wN8FzxNm8zcBRjx8ENhRp781FIfWAFeI0vuwVArIgPUQD98GKxKlbkHUBSwAlmHWXdb+fbBmH1DsgbpJ9Wo5QDanzPciIiIiU6H5BMozkoJ6EWnW6BJ3sydxewH8mTr16/QTP4BHlzAbnYE3uw9nCbAP/EnCfvyTODcICfg6q3d3x2Liwk4ojL9SLFaWXIXoPcyuEce3ycxpZtz7CMnykvhywnYiIiIiInUpqBeRZlXsW7flpVn1TIK+chAfw6McZh24XwB/G3wlo4HzfLAiHd2fIC5eoHDrHB5vbe8j3LEQ4oU44MUYz36A2aI69Q8BOxPux7oM/H6ShiIiIiIyAWZ59vvZ/elEZCKN/b4wewDsuTb6exTiF/F4D8QrwHcDq8uun8OisCw+Sq2go2crme7XCGfET6QIj+vtqy8CS9pIsPJlsrmhpI1FREREROrRTL2INKtKVGtPgV+lubPeq9lRmu2v0nWqPzw4KBNlHqdjPhSHDlAcfIixx+glVxxKhS33VT0HVmdPf11DaOm9iIiIyBQyZnv2e83Ui0hyZj0QvdZmL1WW79vBkEiv6j0hnX2WjvkLiTr2EPbeVxrJ4ncSeBPs9bojiIcfx73aGfLDhKP3kvovZHPvt9FeRERERKQuBfUi0q5ngdMT1529hEWbG1ezTjJdu+noKWLpvZRnyIvS++iYf5uO+Q/RuWA9HT1riTJ7gFM1eusGP1ql/HkoS+bXmhPA5xK2FREREZGJYjY5rymi5fci0qzqDwHNUnj0HsQxsKbNe5zDoocx62i6hUUL6Zi7i7h4lvzNK6Q6bpHq3IDZaEp7sw4y3SEBX1w4RXHoHHF+NbDyTp04P0BqTIL9m8BjCT/HbeC7yeZuJGwvIiIiItIUBfUi0qxUzStmz+DRYeAcxM8A2QT9X8BSb2L28USji1Ir6Zy/smE9S60h1TmMF8/j8Wh9H1fzSMIz6QF+kGyu/pJ/EREREbn7DGW/FxEpqb+myKwHs90QXQY70mLf1yGKgT+He6ttWxcX+vF47KoCs/Kw/n2g8RaA6n6XbO43kg5NRERERKQVCupFpFmNNgqtBQ5i9gAWbYLoOeBKE/0WwI6VMt0bsAH3g+0OtqbxifZuYKmTRJmNZbVOgnUn6H0Y+ImJGaiIiIiITAybpNfUUFAvIhNpDWE/OZhtg6gDbF+d+oNgR7HombKyLLAd9314jePuJsJoor2bZObmQiZ/ICS4ezZhr/+ebO7MBI1QRERERKQhBfUi0qxmHj/2Ai+OtrAeLNoJ0evA21W6fA2LPlqjr53AHwMXWx5p8z7Eorcwy5WVDSZMX3od+LkJGpeIiIiISFMU1ItIs5oNdDdTueze7DGIVkO0F7hVKt2HRVvq9PM6Zp8A5gCHWx1sA4PAIWA+sKus/ADYkwn7/Bdkc/1tj0xEREREJtAkHWc3hUfaKagXkWY1+03VDRwb39pSmO2C6AbYAYjW1emjQAjmARYSHhS8CJxsYbz1vABsYexnehfYWL16Q28Bv9TuoEREREREWqUj7UTkbtgOnKLaufVmvWC9hJnyPLC8ooYDz2O2o6L86dLP54ElwEMJx3YQqDyqbiiMxboS9vmjZHPDCduKiIiIyF01u+eyZ/enE5GJ1MqaohTQaCn6FmABsBcolsqGqB7Ql9tKeFhwEDjdwpgAYsJDg7ii/AWwtS32NeJrZHNfTdhWRERERKQtmqkXkWa1+hBwC/AK8FSdOl2EPe1vEQL6q5jtbKJvI6wGiAkPBZ4BOptoF+H+NPBHwDxgG2YvMnZffSvywI8mbCsiIiIik2EK97tPBs3Ui0izknxfdBFmxht5BHgMcNyvtTimXYQM+S/UvZe7434AeB/4OOGhwCs469o4V/RfkM1N1D5/EREREZGWKagXkbtpLWGZfLN2AXncD+LNPAu4YzVhtv4csA+4Peaq+1nCHv9ngRUjpWARZvNbuVGZI8AXE7YVERERkcmi7PciIm15GBhoof5iwiz6y6VgvBUrCefb3wT2AH2l8o7StXJ7scTH1w0Df5tsLp+wvYiIiIjIhFBQLyLNavx94d6PF/dXlN5HyHTfqo3Afbjvwb3QYtslhAz3S3H/GpADMmXXD4FVZsBvxT8jm3u9jfYiIiIiMimM8L+xk/GaGgrqRaRZtb8v3MHjA1DMgO/A/VxFjS2Eveyt6iQE56dxfzNB+wiYy9iA/gzYR9pYIrUX+NdJG4uIiIiITCRlvxeRZo0P6t0BPwJxJ2G/ekl8ClIPlNXsAl4Clia898OEJHr7gXWYfVAqq/eg4RzhyLsnykoHwAqY9SQcx3ngr5DNtbpyQERERESmyizPfq+gXkSScf8Qim8RZuErL+aqtHiWkKxuTcI7GrABrD+cKe99wNuMnnEP8ABwEb+zzmorY2bp7ShmWxPefwj4i2RzSVYciIiIiIjcFQrqRaRZ4RGnex/EJ8Afp2pAD8DVGu37SR7UA/YmZqUVAdYL9FaptCaM1MD9PeA4+CPAW1hb++g/TTZ3uI32IiIiIjIlZvdMvfbUi0hz3It4cQ8UF4LvBhbVrhxlalzYAryccAQfAk+31MLsvhDI2/tgOxPeF+CXyeZ+s432IiIiIiJ3hWbqRaRJxQIhaV0T7P46F7sBp/VHph9itqDFNgAfYNZL8oeY+4DPJmwrIiIiIlPJmPV76jVTLyLNSrVQt9659GuBymPvmmDnW28DwLtUX6bfjHOExHg6j15EREREpiUF9SJyF/i1ioIiYXZ+xHrgdvP92V7GZNdv2l5gU4J2EMb3SbK59xK2FxERERG567T8XkSaVe0h4OvAILCSscfVXQaOA/cDHwBXgDzwTOl6DjhGOLt+ESHIr7US4BBmuxKM9xQh+31SnyabS7r/X0RERESmBWO2J8pTUC8izar2bRgBm0u/XwR7FawLbDWwrlQ+lxD0A+xhdF/+o6UXwHXgNarPxherlDUSE46g60jQFuC3yeZ+O2FbEREREZFJo6BeRJpVGdTvA8ozyi8H74HoCmaravRRKyt+D2FW/SXgoxXXlo6v3tA+mk7qN867wN9P2FZEREREphslyhMRAcYH9V3jq6RerRPQAxTqXEsBjwAnK8r7Gw9tjGPA9hbbjCgC30s2dz1hexERERGRSaWgXkQaG7iUAZZXlA6Pr+iNlsovAo7WuT4PWABcKL2/Btbd3CBH6tND7RUBjfxzsrnnErYVERERkWkpmqTX1FBQLyLN+LuMzyL/UeDM2KJ4B+4H6/TTDzzR4F5LCTP6p8BuYLa+hXGeBFa0UL/cfuDnErYVEREREZkSCupFpL6BSyngs1WudAKnK8oiKD6D+6Eq9Qdp/qz7B8HOYHZ/8wNlL7ClhfrlrgF/g2yu3vYAEREREZmJzCbnNUUU1ItIIxuBh2tce6hKWQp8qKLsAGFJ/I4W770HaOac+HcZPS4vic+QzZ1pXE1EREREZHpRUC8ijWysc+1K9eJ4LR7vwf3NUsGDhCPmhgjn1cdN3DciZLDPAQcJCfCq3gy4TVg5kMRvks39bsK2IiIiIjKt2SS+poaOtBOR2sLS+89UlOYJs+55YKBGy6UQLwUGcduPpR7DovHZ8t0BvPQa+T0mZKHfTDiabgOj2eyPEfblbwaypbJ2jq87BfxwwrYiIiIiIlNOQb2IjBq4NBf4PHA/8E3gHxGC6pLoBbDNwHEo9gF/pkGPWSzVjUULql4Ne48qH22mGM1evxO4DFwFFgKPlsqvAC8QjtXb1sQnq2bk+LobCduLiIiIyEwwy8+pV1AvIuWGgb8KrAI+VVYeA9fBHsUsBazDU+vAD0P8MOEYuhGXwN4CA4vmYVG95fvNWAKcIAT1IxYDW4FzQEfCfn+GbO75NscmIiIiIjKlFNSLyKiuZcMMXPp7wB8Rlte/AKQgtRYYxmzZnbpmgG3G/ZuEmfY0+H0QXcBST2M2Z4JGdYzRGfpyLxJm8pM4AHwx8YhEREREZAbRTL2I3Fu+P/yw57DUrgZ1T2Hp5ZitBcDdgTWYTWQSzmrL458jeUB/HR1fJyIiIiKzhIJ6EamUDz8s16DeRbBBYP2dErOJTv15kNEkeSNeADa10ecPkc2dbqO9iIiIiMwk2lMvIveYnwbegPg7G5x6uRx8AdgVwh73iTYEPFRRto9w1n3Sb+bfIZv7r22NSkRERERkGtE59SIyVtey03Qt+5dgv91E7auEc+TvhheB+8reHyAsuU8a0J8BfqjdQYmIiIiITCcK6kWkuq7eXwV+vMbVV4F9YNnSkvuJ1g98pOzYEdveAAAFVElEQVT9W7S35D4m7KO/1taoRERERGQGskl6TQ0F9SJSzy8B75R+Pw7sAevDoiexaCfWcN99EhcJQf3S0vsbhGPrsm30+QWyuf3tDkxEREREZLpRUC8itc1Zkgc+C/YuFq3Dot2Y9d6lu90g7JnPAmvLyt8AHmyj3z8EfqaN9iIiIiIyU5lN3muKKKgXkfos+gPMPryLdxgi7JfPEvbMLyq7tgfY2kbfrwKfIpsrttGHiIiIiMi0paBeROrL5mLgn9zFO7wAPAtkKsr3A7vb6PcS8J1kc9XOuRcRERGRe0Y0Sa+poaBeRJrxDWDvXep7fpWyw4w/n74VA4SA/lwbfYiIiIiITHsK6kWksWzOgZ+8Cz3nGb9f/hiwnuTfTw58L9nckXYGJiIiIiKzhPbUi4gA2dxB4P82UfM2cAI4QgjQLwLvAYUqdV8BFpR+zxP20K8AutoY6efI5v53G+1FRERERGaM9FQPQERmlH8K/AXGHsR5G/hN4EuEo+hulfbhjxrsfwD4MeA7gDlAkRDkzwdOEY6s66G9PfQA/wn4hTb7EBEREZFZZepm0SeDgnoRaV429xqD/T9BCMKPAm8C7zbMLh/2tv8Ig/2/CDxHmI2faF8Afqa0VUBERERE5J6goF5EWpPN/as22p5msP/vA78/cQMC4LeBzyugFxEREZGxjNk+U6899SIyubK5/wn83gT2+DrwGQX0IiIiInIv0ky9iEyFfwB8DFjYZj/Xgb9ENner/SGJiIiIyGxkU5iZfjJopl5EJl821wf8yAT09LfI5t6agH5ERERERGYkzdSLyFT5LeC7gW9psr5VvH5JR9eJiIiISGOze6ZeQb2ITI2wB/67pnoYIiIiIiIzmZbfi4iIiIiIiMxQmqkXERERERGR2UuJ8kRERERERERkOtJMvYiIiIiIiMximqkXERERERERkWlIM/UiIiIiIiIyO5mBze657Nn96URERERERERmMc3Ui4iIiIiIyCymPfUiIiIiIiIiMg1ppl5ERERERERmL51TLyIiIiIiIiLTkWbqRUREREREZBbTTL2IiIiIiIiITEOaqRcREREREZFZyrSnXkRERERERESmJ83Ui4iIiIiIyCymmXoRERERERERmYYU1IuIiIiIiIjMUFp+LyIiIiIiIrOXEuWJiIiIiIiIyHSkmXoRERERERGZxTRTLyIiIiIiIiLTkGbqRUREREREZJYysNk9lz27P52IiIiIiIjILKaZehEREREREZnFtKdeRERERERERKYhzdSLiIiIiIjI7GTonHoRERERERERaZ+ZfbuZnTCzt83sJ6pcNzP75dL1o2b20UZ9KqgXERERERGRWcwm6dVgFGYp4FeATwDrgb9uZusrqn0CeKT0+jTwHxr1q6BeRERERERE5O57Gnjb3U+5+zDwu8AnK+p8EvhND54HFpjZsnqdak+9iIiIiIiIzEpHXnr1GzZn8eJJul3WzA6Xvf+Ku3+l7P0K4FzZ+/PAMxV9VKuzArhU66YK6kVERERERGRWcvdvn+oxlKm2Rt8T1BlDy+9FRERERERE7r7zwANl7+8HLiaoM4aCehEREREREZG77xDwiJmtNrMO4K8Bf1BR5w+Av1nKgr8VuObuNZfeg5bfi4iIiIiIiNx17l4wsx8GvgGkgF9z9zfM7DOl678KfA3488DbwADwdxr1a+51l+eLiIiIiIiIyDSl5fciIiIiIiIiM5SCehEREREREZEZSkG9iIiIiIiIyAyloF5ERERERERkhlJQLyIiIiIiIjJDKagXERERERERmaEU1IuIiIiIiIjMUP8fFlAdVeaLj4oAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "ny_2010 = merged_gdf.loc[(merged_gdf.name == 'New York-Newark-Jersey City, NY-NJ-PA')]\n", + "ny_2010.plot(column = 'compo', figsize = (20, 10), cmap = 'OrRd', legend = True)\n", + "plt.axis('off')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We first compare the Gini index of both cities. Let's import the `Gini_Seg` class from `segregation`, fit both indexes and check the difference in point estimation." + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "-0.10652888790131243" + ] + }, + "execution_count": 11, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "from segregation.aspatial import GiniSeg\n", + "\n", + "G_la = GiniSeg(la_2010, 'nhblk10', 'pop10')\n", + "G_ny = GiniSeg(ny_2010, 'nhblk10', 'pop10')\n", + "\n", + "G_la.statistic - G_ny.statistic" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Let's decompose these difference according to *Rey, S. et al \"Comparative Spatial Segregation Analytics\". Forthcoming*. You can check the options available in this decomposition below:" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Help on class DecomposeSegregation in module segregation.decomposition.decompose_segregation:\n", + "\n", + "class DecomposeSegregation(builtins.object)\n", + " | Decompose segregation differences into spatial and attribute components.\n", + " | \n", + " | Given two segregation indices of the same type, use Shapley decomposition\n", + " | to measure whether the differences between index measures arise from\n", + " | differences in spatial structure or population structure\n", + " | \n", + " | Parameters\n", + " | ----------\n", + " | index1 : segregation.SegIndex class\n", + " | First SegIndex class to compare.\n", + " | index2 : segregation.SegIndex class\n", + " | Second SegIndex class to compare.\n", + " | counterfactual_approach : str, one of\n", + " | [\"composition\", \"share\", \"dual_composition\"]\n", + " | The technique used to generate the counterfactual population\n", + " | distributions.\n", + " | \n", + " | Attributes\n", + " | ----------\n", + " | \n", + " | c_s : float\n", + " | Shapley's Spatial Component of the decomposition\n", + " | \n", + " | c_a : float\n", + " | Shapley's Attribute Component of the decomposition\n", + " | \n", + " | Methods\n", + " | ----------\n", + " | \n", + " | plot : Visualize features of the Decomposition performed\n", + " | plot_type : str, one of ['cdfs', 'maps']\n", + " | \n", + " | 'cdfs' : visualize the cumulative distribution functions of the compositions/shares\n", + " | 'maps' : visualize the spatial distributions for original data and counterfactuals generated and Shapley's components (only available for GeoDataFrames)\n", + " | \n", + " | Examples\n", + " | --------\n", + " | Several examples can be found at https://github.com/pysal/segregation/blob/master/notebooks/decomposition_wrapper_example.ipynb.\n", + " | \n", + " | Methods defined here:\n", + " | \n", + " | __init__(self, index1, index2, counterfactual_approach='composition')\n", + " | Initialize self. See help(type(self)) for accurate signature.\n", + " | \n", + " | plot(self, plot_type='cdfs')\n", + " | Plot the Segregation Decomposition Profile\n", + " | \n", + " | ----------------------------------------------------------------------\n", + " | Data descriptors defined here:\n", + " | \n", + " | __dict__\n", + " | dictionary for instance variables (if defined)\n", + " | \n", + " | __weakref__\n", + " | list of weak references to the object (if defined)\n", + "\n" + ] + } + ], + "source": [ + "help(DecomposeSegregation)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Composition Approach (default)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The difference of -0.10653 fitted previously, can be decomposed into two components. The Spatial component and the attribute component. Let's estimate both, respectively." + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "0.029575766160051364" + ] + }, + "execution_count": 13, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "DS_composition = DecomposeSegregation(G_la, G_ny)\n", + "DS_composition.c_s" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "-0.1361046540613638" + ] + }, + "execution_count": 14, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "DS_composition.c_a" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "So, the first thing to notice is that attribute component, i.e., given by a difference in the population structure (in this case, the composition) plays a more important role in the difference, since it has a higher absolute value.\n", + "\n", + "The difference in the composition can be inspected in the plotting method with the type `cdfs`:" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkYAAAEVCAYAAAAFLyqoAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAAgAElEQVR4nOzdd5xU5d338c9vtrGFvvS2FAHpKKJgATS2xNiiiWgUYoy3SYzxyZNEH1PE9HYb79yaGDV2E000GmOPBRVRKYoKKEqVzlK2993r+eM6s8wOM9uY3dmF7/v12tfsnPqbOWV+57qucx1zziEiIiIiEEp2ACIiIiIdhRIjERERkYASIxEREZGAEiMRERGRgBIjERERkYASIxEREZHAIZsYmdl8M3NmNv8gl7MgWM7sxEQmIh1ZvGM+GLYwOVGJSHtpVmJkZilm9jUze9XM9ppZtZntMrP3zewuMzu7rQONEdPs4ES1oL3X3Rxmlm5mXzWzp81su5lVmlmxma0ws1vMbFKyYxTPzDaa2cZkxxGLmZ1lZgvNrNDMSszsbTOb19bLMrNzzewRM/vIzPaZWbmZfWJmfzOzaQf3qeLGd2dwTJeZWY9Gprs3mC4vzviFZtYpO2hLxoWYmfU2sx+Z2WIz2x2c3/eY2etmdoOZ9WuvWCQ+M8sL9o1723m9mWZ2k5mtMbOK4Lf/72Z2ZAuXM93Mfmlmz5rZjuCzbGlinl+b2Utmtjk4B+01s3fN7EYz693IfGZm84Jzwd5g3g1B3KObijW1GR8mBXgKOAMoAJ4GtgC9gJHAxcBY4MmmltXOHgfeAra394qDL/4J4EhgN/Af4FMgHRgHXAVcY2bnOuc62vcmHYSZXQ38L7AHeBCoAi4A7jWzic6577bhss4BjgGWAtuC6UcB5wFfMrMrnXN3Hczni4qvK3AR4IBM4MvArYlafgvdCjyMP2YPaWZ2Fn5/6A6sxZ83dwXvjwV+BtxgZqOcczuSFqgkhZll4H+/jgeWAf8DDAEuBD5nZic7595u5uIuBr4NVAMfAs1JuP8P8E4Qwy4gGzgOWABcaWbHOec2R8XcBfgHcBawBvgrUAwMBE4ERgMfN7pW51yjf/gTlANWAN1jjM8C5jS1nET/AbODuBa08XoWBOuZ3czp+wGbg3l+D2TGmKYvcBswr72/N/3F3GYbgY3JjiMqpjygAp/I5EUM74n/AXPAjLZaFtAlzrImBssqANIT+Hn/K4jjZqASeK+Rae8Nps2LM36hP7UlfJs4YGEbb/cWnW8Ocl2z8AlvOTAfsDjb++V437X+2u8vOI4dcG87rvP/Bev8BxCKGH5OMHxV5PAmljUFmBo+bwTzb2linnjnoZ8H8/8xxrjbgnG/iBUbkNZkrM34MH8MVnJtC77M+cE884HPAYuBUmAf8ChwRIx5RgO/wmel+cHJcRNwBzA4atrwiTHW3+zoGKLmnRMsczVQFJwUVgI3xtoILT1RAXcG0/+1GdNmRL0fEGzUjcEJKx/4J3B0E9/xqcDrQEkwzz1Aj2C6qfgSv33B+CdjneQIfkyADPxV4oZgG6wLvpuYP4LAKcBzwF78D+bHwXaMlUSH15EK3AB8EqxjM/DrRtYxNtjmm4Ppd+KvAsbEmDa8b+Thf2w/COLaGWz37hHTzm5kP2q3k0+cz/yTII6bYoy7PBh3X3svK5jn3WCeQQn8vMuAWvzV6GPB8o+NMV287bWR/T8csf4WRixjY/DXDZ+IbcRfxS4Ixi8gxjEfXg7+yvMB/BVsObAcuLixYzTOZ44VV8z4o+bLwv9grcCfV0uAN4G5Lfi+Q/irdgdc2Yxp06KGHR1sp13sP1f/ERjQyDE5HLgaf+6tCD7vDQQJGb4UYknwmXbhS+5inZNbtB0iPsNV+BLQkmAdS4GvE/vHM7yOXPx5Y3vwOVcBX2nkuzodeAZfUxA+f/6W4HwcNW14P8wKpvk0mGctcB0RiWrEPhnrL+b+lYBj0oLt6oDhMca/FoxrVcEIzUiMGpl3cjD/f6KGj8SfR5YQI9Fv7l+TVWn4q0zwiUtLnQ+ciS+eXYjPGL8AzDGzmc65NVHTXgW8gk+kqoDxwBXA581smnNuazDtE8HrPODVYNlhG5uI6Tr8D+1ifLVgF3wx4QJgtpl9xjlX28LPCfi6WODS4O1NTU3vnKuMmHc4sAh/sL8M/I2GRZZfcM49FWMxZ+OLDJ8Cbgdm4k/Iw83seuAlfNL0F/zV3+eBkUH1SV2M5f0dX4XyKP7H4hz8dzPNzM52wd4XxPxfwJ/wJ5l/4E9Qs/Hf8efN7HjnXEGMdfwVX6T5LD45/SzwfXxJ2lciJzSzM/DJYRrwb/xJYzB+f/mcmc1xzr0TYx2/wZ+k/g28gE+Iv4avDjo5mGYjfjtdG7y/JWL+FTGW2Z7CMT4XY9yzUdO027KCauIx+BN/QqqpzWwq/of2P865zUEbivOBK4HoYvqbgHPxJ8b/wZdcEbwWBOPnA8NoeAxujFpOOv4464XfP4rwFwNN6Yk/dxQQXIAAXwQeMrNBzrnfNmMZ8dyC/2yzgPtixEzQ9upl/AXPO8Dd+B/904G/mtl459wPm7GuWfjz4Fb8uSGu4DxRf64Iqt8ew/9wPor/8Twan2ScExz3B8QO/A5/fggfk2fjr/zTzWwv/oLqCfz56lTgm0BKsNxoLd0OD+CrcjYDd+F/VM/DJ3MnAJfEWEcP4A38b9Gj+N+KC4C7zazOOXdf5MRm9mP8PrcXfz7eBUwCvgt81sxmOOeKotaRFnwXA/HHYg1+H/hVsL7wPrwwiOfbwHvs/w2EiHOV+ZsDZuGTlYUxPlNLjASGAh8752IdG8/iz+Mn43+329Png9f3o4bPxR8P9wHdzOzz+N/RPcDLzrm1zVp6MzKzqfgdow6/c50PDGtinvnsz2bPihr37WD4S1HDBxFVghIMPw2fAf4pavhsGqlKI36J0QhiFxn/NJj+S1HDF9DMEiP8TtKqLBh4Ppj3B1HDZ+IPlj1ATozPVwPMihgewtfHOvwBeknU8v4SjDsnavjCYPjHQM+I4V3wV6MOuDRi+DD81U0RMDZqWeFSxjvirGM50CtieDY+4akF+kcM74kv6doNjIta1nj8ld87UcPvDdbxKTA0Yngq+69wpkfNs5FWVKXhE/0FLfw74MoxzrLzg1h7xxlfEozPastlAZ8J4v4FPlkvAcqi95+D+cMn9I6gxCPYVjuCdXWLMX14G+fFWd5CGqlKY3/JzItAdozxC4hfYuTwFw+R1QrD8cdaFTAixjE6P04cDUqMGlt3jM/+/ajhXfCJbx0wpRnf+Y+C5TzYwm2Vgz8ea4ETo8ZdFyzzhTgxbySilBH/Q78bf2GVDxwZMS4DX7JUCfQ9yO0wN5j+HRqeQ7PxJZWOqJKmiHXcBaREDB+HP+eujpp+TjD9YqKO8Yj94Pdx9sNniGhygb9ADCf6aRHD82iiNJv959iY+08Lt/XngmX9O874C4Lxj7Ry+c3+rcQnlwvwzVNeD+Z9D+gTNd2/gnE3BPuWi/irw9fIpDS5vmYG9UX81WHkSvbgS4I+H2P68I7wUoxxKexv1zCsmet/H1gfNWw2rUiMGllH72D6u6OGL2jujhZ8Tw54q4U7yOBgvk3EqP/EJ6QOuCzG53sgxvSXBeNeizFuVjDuxqjh4QPq0hjzhL/rVyKG/SAY9osY0/dkfzVlRox1fCbGPDcRlUizP4n+Zpzv7ffB+HERw+4Nhl0RY/qvBOOujhq+kdYlRuFt0JK/vGYuuyqYPjXO+K3B+AOqLhK5LPyVa2T824HTW/pdNRJbNlCI/xHoEjH8v4P1XRVjnvA2jvld0vzEaHKc8QuInxjVELtaITzPjRHDwvvH/DjrcbQgMcKfo2qApXGWF65e+E0zvvfwxcuvWri9LgnmO6CpAD6h3RCMj7woCW+vr8aY5+5g3E9ijLsxGDfrILdD+ELxtBjTnxKMeznGOkqJnZi/GozvGjHs8WDY+Djf27vArjj74agY098XjJsQMSyPphOjofiSwCYvmJqxrS+mkeQZX6rngOdbuXxH8xOjHTQ8Dz0L9IsxXfgivgZ/oTABn8yfjG+64WhGu+TmVKXhnPu7mT2Oz4pPwJcinYAv8jvXzO7HH/wuatZXYyyr1swW4YvppuKTAczM8AfdfPwB3hOfRIVVNSfWpphZNv4H9zx89WBXfJFw2KCDWXzwGv09NGVq8Pq6c646xviX8Y3gpwL3R41bFmP6bcHr8hjjwtWRg+PEcsA2w2foNRFxAhwVEVsDzrl9ZvYucBL+IH2vGTGH7yzoGTFsRvA62WJ3yxCu3j0Sf3XZmnW0mnPuXvxJPxlau6+1aFnOueuB64PjZjT+yu1ZM/uRc+7nCVj3Rfi2Pn92zlVEDL8H+A6+Ou32BKwnWgUHFsM3x6cudrXCQvwP+dQY4xLlGPw5MV43JWnBa3Nuo27t/tPYcV9jZq/hf8CncuBdfYk8V7VkOxyFLy1YGGP6V/GlX7G22yfuwKov2H8e6YG/2wn8uaoauNDMLowxTzrQx8x6O+f2RAwvdLGrd1p1rnLOtehOyjj70b0udlXoAbOHV9uSdbaGc64/QNB1xEz8Bdu7ZnaWa9iUIpwzbAfOc86VB+9fNrML8KWG3zGzXzjn4uYUzUqMgsCq8XWhLwQBpuDbC92NL6F4nIb1nuAbvMYSvu2ze8Swm/FtPbbjq5W24kscYH+bgYNiZmn4A3o6vsH1I/gi3HAyciO+CLe1wgd5vKQjnvD3EK/NRnh4rL5dCmMMq2nGuLQY4yDGNguS2T34It6wVsfsYrc7CscVmQyH+6n4Wpx1hOXEGNbcdXRUhfiGn93Z384vUrfgNdaJO+HLcs6V4q96LzGzXsBPzewF59zSZqy/MVcGr/dGrW+lmS0Hjg7aF8b6UT0Yu2JcyDVHS85piRY+Ho4J/uKJdTxE6+znqpZsh+7A3lg/hEEyt5uG57awWOeQyLiiz1Wp+N+QxuTQ8BhsyTraQqx4F+JLs8LbJN4+HT5vxNp2bcI5txN43MzewTf7uB9fKhS2L3h9LiIpCs/7npltwBfKHMmBF+z1mp0YxQiwFvi7mU0EfogvqopOjOL1U9A/eC0EMLO+wDX4ZGWmc644cmIzm9vaOKOcg0+K7nPOzY9axwCa3qmbsgxfJz7YzMa4ho3LGxPesfrHGT8garq21I+oK70gCe5Nwx/OyJhXxVhOImIOzzvZOdeaq/s2ZWZT8KWmLXFLnMQw2hp8MjMaXzwcud4B+CqoLc65snZeFvgi6jPw1bKtTozMd3I6PXj7pi80julKYpc2HIzWXuU265wWCDdYPuA8a410YNmI8LJ/75z7Tivmj7QoeJ1tZimu+TecdJRzVUu2QyHQy8zSokvkzSwVf2w05wKjMYX49k69DnI57co5F/egw583IP6NV0cEr433CdQGnHObzGw1MMXMcp1zu4NRa/DtkuOdY8OJU2Zjy291YhQhnMTE+oJnRQ8IfmRPCN6+G7yOwDcafiFGUjQ4GB8tfCC3JKMeFbw+1pxYW8o5V25mD+DvpPsRvvorLjPLcP7OtPD3cIKZpTrnaqImnRO8xrr7KtFm4ds0RToRv6+8GzHsXXxD/Nn4O9/qBSf9Kfjqig8PIpa38KWSJ9K6ao/mqsUXdbfUFFqeTN9L/IM20sv4uyXPICqZwd/pGZ6mORK5LNhf3Ry9n7ZUuLRoIf625lguBuaa2XeccyXBsKaO/Vrw55oW/OA311Azy4tR1TA7eI08RsIn4SExlhOv9/DGPtsSfLJ1YtNhNulV4CN8VfdX8I2MYzKzEL7BajX7P99sou5mC5KM8Lm9rc9VLdkO7+LbEp1E1LkqGJbCwcf7Fv4u2fHOuVgXionQmt+8g7EOf5E82syGx6i6bM25I5EGBq+Rx/hLwLdoWIoE1HdWGU7mNja24CYfCWJmc83s1ODgiB7Xn/3VHK/FmP3k4NbOSFfji7Jecc5tigryhCBxCi8/B98vUKwELlwcObSpzxAhvJ7ZkQPNbAS+H51E+CG+Z/BLzOy3wS38DZhZrpn9Ad++AufcFnwDwTz23zoenvZY/I/DPnx1ZVv7kZnV12sHvYj+Mnh7T8R0D+KrIL9lZqNo6Kf4YtYHXUSXBK1wDz6JuNHMpkePNLOQJebRCXvw9f+NXkVEc87d65yzFv5tbObi78GXPl5tEY++CLbNDcHbBm1vgv1qrJnlHsyyzCzDzGbGCsrMjsF3q1FH1O3/tv9xFgua+nDBd30J/qR2iXPuilh/+IuYHPydRWFNHfutOTc0Vwrw68jzYdDVxjX4RPHBiGmX4b+ni80sK2L6XvjuJGKJG7tzbhfwEL7rjB8FiUgDZjYyiKdRzt+Cf1UQ8x/M7MsWo8jOzMbhm0+Ek+En8Hd+zTWz46ImvxZ/EftiS9u6tEJLtsPdwesvo7ZDFr6tCjTRZUEz/D54vdPMBkaPNLPsGN9XS+0jaNgebwIzGxqcA7LiTdNcQVVz+Lzwm6jv+hx8gr6aqHapwT44Nmi60mrBMg4omQzO+z/HV38uds7tixj9LLAeON3MTo2a9Uf4asFXXRO9uDenxOhYfGPlHUGj6XDWOBx/O18m/ha5R2PM+298feDj+DvRJuP7rNkLfCM8kXNuh5k9jE8UVpjZC8EHOBVf6rACf3UeaQ2+HdJFZlaFz2wd/i6tTcQW7gfnO0EV4Lv4newsfJ9GB30idc7tNLNT8CeQ7wLzzCzykSBH4hOzDBpWw1yF7zPjt2Z2Gv6kGu7HqA7fqViD0rQ28iGwyswi+zEaif9+6kuSnHMbzexa/O2P75jZ3/HttWbhGyJ+hL99t9Wcc3uCBnOPA2+Z2Uv4ars6/Laaga/i63Iw68FfZRwDPGe+8Wi45+V/H+RyW805t8HMvgf8AVhmZo+w/zEeg4H/ds5Fl/5cjS/Bugl/d05rl5UJvGFmH+GvpLfgO6E7kv39HX3POfdR1PrDJ87mlCR9Cd8O5d/OuW2NTHcXvuT1SvxFEvjt9T38j9Cj+Nv6C5xzt0aMvxD4p5k9g2+ruMk5F10S2hrv48+JyyPOU+HP8n3nXH3Jl3Nuu5k9hO/bbIWZPY2/YPgs/kIyVoPfV/D79y/NbAJBqZNz7mfB+KvxV70/AS4Nzsk78VfPR+L347k0o08m59yrZnY+/rh+AH9RtBB/HHfHl2odi787qzyYp8TMLsf3W/aqmf0Df247Gl+FsQPfsWpba8l2+GvwQ/5F/LntCfxvxbn437G/O+ceOphgnHMvme837pfAJ8F+twGf1A/DnxcX4UttW7uOEjN7Gzgx2K8+xl9YPBnR1OD+YF1ziN3YvKVuxv8+XgC8HZyDh+KPrzLgcndgf3gv4T/zcCJKZsxsLHB91LQ9reGz374bUS12Bv738DV86dUefBXqLHwCvoOo9qfOuSrzz398AX+TyOP4G7yOwZcO5rO/pDq+eLeruf23vw3Bd7T1OD4ZKcKfVLfj+1/4MlE9h9KwV+az8MX3pfir/8eA0THWk4Xv7GstPhnajP/R7U2c22+DD/sSvn63jojbXIlzq2zweR5if+PuVfjOBVNp4e2zTXxv6cBXg+9oe/CdFeN7Yv4DMDHGPIPwHSZuCqbfjU+wjokxbczPF4ybTZzbEolzyyf7b6WP7vl6PUGj9Dif8zT8TriP/b22/obYPb3G3I7N+Dx5+F5wPwn2jSJ84vUAcG7UtPcS51bueN8Lvo3Nn/AJQE2s7ydZf/iOzF4N9p1wb73z4ky7INbna+my8I1df4Tv52dL8J2XB9v2fmL0SB3M9zj+RH3A8R1j2jeCWM9uxrRrgmmnRgz7Dj6JrwzGbYwYl4Lvd2k9PrlvcFzTRPcMNH67/kJ8EvIgvgO/CnzyGK/H5Qx8r8Zb8Mf0Wnyv1THPN8E8X8ZfDJYH07io8en4BGkx/txXiU9OXsKX2sTsr6qRz9s72N6L8T8+1fiL18X4EvC+MeY5Jtje+cHn+jQ4hgbGmPZe4h+TMb/rYNx8Yp/DW7MdQviL8WX4H/Qy/J1w36SRnq/jLKuxz3MCvn+l8PMF84NteTMwLWrauPthI/vgKPwF/h72/+bNjxi/MN732do//IXSTex/UkE+PjEeF2f6jbG+Hxp/0oCLngdfHXZb8P3txp+bC/HnrQVE9IUXI4Zx+JurdgXbYTPwZ6KeohHvL9wVe0KZ2Xx88f1XnL+lWTq44Epxlmu8MZ5ITEE1TD6+P5gvJjseOXSZmcNXh8xOdixyaGqyjZGISDNMwJc8/LKpCUVEOrJE3JUmIoc559wHxL4zVUSkU1GJkYiIiEigTdoYiYiIiHRGKjESERERCSgxEhEREQkoMRIREREJKDESERERCSgxEhEREQkoMRIREREJKDESERERCSgxEhEREQnokSBCbm6uy8vLS3YYIiKdyvLly3c75/okOw5JLCVGQl5eHsuWLUt2GCIinYqZbUp2DJJ4qkoTERERCSgxEhEREQkoMRIREREJKDESERERCSgxEhEREQkoMepkzOxuM9tlZivjjDcz+4OZrTWz983sqPaOUUREpLNSYtT53Auc0cj4M4Ejgr8rgT+1Q0wiIiKHBPVj1Mk4514zs7xGJjkHuN8554C3zKyHmQ1wzm1vlwBF5LDlnKPOQZ1z1NQ69pVVUVvnqK6tY19ZNdW1ddTUOmrq6thRWEEoZNTV+XlqnaOuzlFZU8vmveX0zEqrX+6w3tl84ejB+1dUUwW7VkN1GZTshMpiqK2GuhqoLofCzZDZq3lBdxsI076S4G9COjMlRoeeQcDmiPdbgmENEiMzuxJfosTQoUPbLTgRSayK6lqKKqqprXNB0uHYXVIJQE2to7bOsaOoInhfx46iCvaWVmH4ZKS2zic0xZU17CisoEdmGnVBguPw41yQ7NQF/5dW1bByaxEAqSGrnz7RzPzr6SMz+ULWCtjxPqx8DPasbe4Smp5k8DQlRtKAEqNDT6wzwQGnLOfcHcAdANOmTWuDU5rIocU5n3TU1vnXgrIqyqtq2VNaRWVNHXXBuHDJx+Z9ZaSnhCgor2ZHYQVZ6an1yUVtnX/9cHsxfbtm+CQkGBcucXEOyqtr2bSnlF7Z6X54sPyqmjq2F1Yc1Ofp1iWV1JQQITNSgkYVZZW1dM9Ko1d2OgaYGWYQMiNkYPj3XTPSOG5ELwzjqGE9CJlhwTT105pRXlVLXm42qSEjFDJSQ0ZuTgapKf7/zLQUsjNSSQn55aaYkRIyMlJTyExPgXWvwBv/A+sXwiMRp6kBk2HUqTBsBqRlQ0YOZPeBUBqkpEJqF0jNOKjvRw5fSowOPVuAIRHvBwPbkhSLSFJV1/oqm3AyUxuUpmwvrGBXcQX5xZXsLa2iS2oKNUGysrOogtKqWvaVVlFWVUvIoKCsmqrauoOOp1uXVEIhIyVIJGrr6vhkZzHDemcTChEzwejXrQuZaSn07ZYRJDF+/qraOrLSU+jXrQtmxsDuXUgJGakpRnlVHYN7ZpKWEiI1xQiZkZWeQvfMNFJTjG5d0uiSlpKAb7iNbF0Oz3wfti4DDI65AkaeDH2PhJ55+4uSRNqAEqNDz5PA1Wb2MHAsUKj2RdJZhauBNuSXUlJZTXWtY9OeUlJTQmzaUwoYNbV1fLC1kNycDPaWVrGtsJystBS2taBEpXtmGjlByUXIoKC8mlF9ciivrmVM/65kpqVQWlnDoJ6Z5GSkkRoyyqtrGdQjk5wuqYTMyM1JJzUUIhQiWI7RMyudzPQUMlJDpKXoXpdG1VbD0r/4qrItSyAlA07+IUz/L+jSLdnRyWFEiVEnY2Z/A2YDuWa2BbgRSANwzt0OPAN8FlgLlAGqPJd2UVfnqKqto6q2jsKyarYWlFNaWVNfbVRb59u0bN5bxorNBWSlp0SM89VKJZU11DlfZVJT6yiprGlyvf27dcEMCsuryeudTVpqiD456cwa04fyqlqG9spieJ9sUkIhUoJSmG6ZaRzRN4fcnAxCIZU+JE3pHnj3Afjoadj+HtT6tlEcNQ+O/zb0Hpnc+OSwpMSok3HOzW1ivAO+2U7hyGGgts7xya5ithWU88KqndTUOSpr6li5tZDe2enU1DnW5ZdQXNF0EhOpa0Yqfbpm1FctZWekYga9s9OZMKg7qSFfDQQwsk82Q3pm0bdbBqmhEL1y0slKSyFVpTCdi3NQvAPefRDeuAWqSvaPy+wJn/kNTL0UQh24mk8OeUqMRA5j5VW15BdXUl3nb6PeWVTBRzuKeP2T3WwtKGdXUWXMUpu83lmEzNhRVMHw3GyOyetFcUU1EwZ1Z1CPTFKChrX9unehT05E25gQpKWEGNorC1M7kcNDXS1sWwGL/wCrn9g/3EIweDocfw0ccZoaS0uHocRI5DBSWlnD65/s5tHlW3jtk3yqauI3KO6Rlca0vJ6MH9gN52DykB4M6pHJuAHdVP0ksTkH+zbA6id9/0IfPAqlu/aP7z8RhhwLR34ehs9SI2rpkJQYiRxCwreJv71+Lx9sLQT8Ld+vfpxPfnHlAdNPHdqDk8f0ZWjvLFJDIRyOgUHy06HvWpKOo3ArvPdX2LwUPnm+4biMbtB1IEyZ66vIeg1PTowiLaDESKSTcc6xensROworWL5pHxt2l/Lh9iL2lFbFbOfTt2sGPbPSGNUnh7zcLMYN6MaMkbmM7JOt6ixpnX0bfYPp1f+CzW/vH37E6b5UaNRnYOBUSOuStBBFWkuJkUgHtquogkVrd7NhdynPr9rBtoKKuHdq9euWwWeO7Ed2RgonjOrDhEHdGNQjU8mPHBznYMcHsPJRfzt9ZIPpboNg2uUw6Uu+ikz7mhwClBiJdBA7iypYunEvq7YV8fT72/l0b9kB06SEjJNG92Fg9y6cNWkgvXPSGdu/q5IfSay6Wlh6l+9TKLJEaOBU6DoAco+AEbNhxBwlQ3LIUWIkkgS1dY784kpe/HAnj72zhXc/LThgmv7dunDciF4cPyqX40flMqB7FyVA0rb2rIPn/l/DtkL9J8HIOTD2LBgyPXmxibQTJUYi7WDJhr28+vEulm/ax4rNBVRUN7wbrFuXVI7J68UXjxnC2P5ddTu7tL3KEv9Q1i/lV94AACAASURBVPyP4MN/w7qX94/LyoUZ3/TVZJk9khejSBIoMRJpI9W1dby4eic3PP4B+8qqAV8K1Ds7g6G9spg0pDvjBnQL2gXpUJQ2tG8TfPICFG6GVU9AaT5UR1TVpnbxD2bNHQPHfBWGHpe8WEWSTGdjkQT7z+qdLHhyFVsLyuuHHTeiFz86axzjB3ZPYmRyWKiphB0rYe862LwENr0Bu1bvH5/dF9IyYcyZ0G8CDDveJ0W6g0wEUGIkctCqa+tYs6OYx9/dyl8WbagfPiI3mzMn9ufCo4eQl5udxAjlkFVTCZ++CUXbYNeH8PFzsPvjhtPk9PcPYh0xC/JOgC5KzkUao8RIpJUWr93NbQvX8sbaPQ2GHzmgG3dedjSDe2YlKTI5ZO3+xN8plv+R70to27sNx+f0h5GnwOBp/nEbg4/2zyATkWZTYiTSDKWVNTz09ib2lFbx5IptbC+sqB83PDebMyf057gRvTnxiFw1mpaDV1vjE599G/xjNbYs9VVjkXqNgGOugG4D/a3zPfIgu3f7xypyiFFiJNKIoopqXvpwJz98fCWlVbWAb0A9ok82s0f35b9mjaBfN7XNkBZyDsr2wM5VsH4hFHzqO07ctNhXj9VGPb4lLQsGTfO9Sh95lu8/SE+gF2kTSoxEYli7q4TL713aoJPFsycP5LcXTiIjVT9I0oSSfCja6u8C27fJd5JYtNXfIr97Tfz5+k+E7D4w+BiwlP0dKWb1aq/IRQ57SoxEIny4vYg/LlzHv9/bBkDv7HSuPXU0Z4zvT5+uGUmOTjqcyhLY+Dp88A9fArR+IVgIXF3s6XNHw9AZkJ3rS4DSs2HYTOgzViVAIh2EEiMR/OM4/uuB5azY7HugHtwzk998YRIzR+UmOTJJGud8Xz8Fn/pnha151rf5CaXC9vcPrO4C3zt0aoa//b37YOg+xP917a9HZ4h0EkqM5LD3zqf7+OZD77C9sIIB3btwx6XTmDhYtzQfNmprgkbO//BtfAo2+WQonh7D4IhTobbaJz95J6i6S+QQosRIDksfbCnkrkXr+deKbfXDbvz8OL5y/PAkRiVtqniHT3w2L/FVXjUVPgFytQ2n6z4Uxp0DadmQOwowX9U1+BjI6ZOMyEWkHSkxksNKVU0dv3nuI+4KOmLMTk9hTP+uLDh7PJMG65lQh4S6Ot/T89r/wNZ3fDXYvg0HTtelB4w+A7oNgL7joN94n/yorY/IYU2JkRw2bntlLb97YQ3OQdeMVB77xkxG9+ua7LDkYNTWwKeLYe1L/kGopflQWdRwGkuBvuNh0FEw6jMw8mTI6Ko2PyISkxIjOaQ55/j1c2t4csVWtgWdMl53xlguPyFPt913Js75Up91L0P+Gv/Yi7K9/unwYWnZvvRn0hchoxuMOxv6T4ZQKHlxi0ino8RIDll/WbSBnz61/+GZn5s0gP++cDJd0pQQdVgl+f7298ItsHe97/Rww+tQsuPAabsOgGmX+wbQE74APfPaPVwROfQoMZJD0i+e+ZA7XlsPwHlTB/HfF04mFFLVSYdSUwUlO+Gjp+HjZ30iFOtusKEzoO+Rvg3QsJn+ve4AE5E2osRIDillVTWc9b+LWJ9fypBembxw7Swy01VClHSVxbD6X/4J8JsW+7ZAhVsAt3+a9K4w5cswbAYMO96XCKVmqC2QiLQrJUZyyHjmg+1c9+j7FFfWMKhHJq/839mkpqh9SbsqyYdt70Dpbl8ltu4Vn9gUb98/TXYfyOkHR57tq7+yc2HMZyFNz5wTkeRTYiSHhLteX8/Pnv4QgD9dchRnThyQ5IgOA87B9vd8g+j3/+6Tn4qChtOE0nyD6BP+Dww5DoYeB5nqFkFEOi4lRtLp/fSp1fwl6JfoyauPV39EbaGmCra9Cysegu0rYNdHUFtFg6qwHkPhuG9AjyHQbwL0HumfBSYi0okoMZJOq7SyhivuW8ab6/fQNSOVN284hZwM7dIJs2mxbxe0+l8Nq8LA9w496Cj/KIwh0yF3DKTouxeRzk9nMumUXvloF1+5dykAuTnpLPzeHCVFreEc5H/k+wbausw3iF77UsNOEgdMgT5jYNDRMOUSXxIkInKI0i+JdDoL1+xPir53+hi+MXskpjuXmlZT5XuJ3rIMtiyFfRt9UhRt4FH+OWKjT4fjvqnng4nIYUWJUSdjZmcA/wOkAHc5534VNb478CAwFL99f+ecu6fdA20jL67eyRX3LwPgH1fN4Jg89WfTpD3rYPEfYPm9+4eldvENowcfA8NPgqEzoddwlQaJyGFPiVEnYmYpwG3AqcAWYKmZPemcWx0x2TeB1c65z5tZH2CNmT3knKtKQsgJtXjdbq57zD8C4ulrTmD8wO5JjqiDcs63CVrxV9j0hr9rDGDsWTByjn9WWK8RyY1RRKSDUmLUuUwH1jrn1gOY2cPAOUBkYuSArubrlnKAvUBNeweaaMs37ePiO98G4LGvz1RSFMveDfDST2DVPxsOH3kKnPZT33O0iIg0SolR5zII2BzxfgtwbNQ0twJPAtuArsCXnHN10QsysyuBKwGGDh3aJsEmylvr93DRHW8B8Py1JzGmf9ckR9QB1NXBnrX+YapL7oAdH0D53v3jjzwbjvkqDDtBd4uJiLSAzpidS6wWxi7q/enACuBkYCTwHzN73TlX1GAm5+4A7gCYNm1a9DI6jMXrdnPxnW+TkRrili9NObyToro6WP0ErHkWPvh7w3FdB8Dx1/qEaPDRyYlPROQQoMSoc9kCDIl4PxhfMhTpK8CvnHMOWGtmG4CxwJL2CTFxthWUc8ldb5OeGuLpa05kVN+cZIfUvurqfBuhzW/BxkWwfuH+cXknQt4J/rXPWMjunbQwRUQOJUqMOpelwBFmNhzYClwEXBw1zafAKcDrZtYPGAOsb9coE+TvyzbjHNx12bTDJynasw4+/Dcs+0vDJ813HwKTvuSToKPn6+nyIiJtRIlRJ+KcqzGzq4Hn8bfr3+2cW2VmVwXjbwd+CtxrZh/gq96uc87tTlrQrVRQVsXtr67jqKE9OGn0Id6PTlUpfPw8vPAjKNrih6Wk+96lJ30Rxp/rH7GhvppERNqcEqNOxjn3DPBM1LDbI/7fBpzW3nEl2q0vr6Wiuo7vnzE22aG0ne3vwYs3wbqX/Psu3WHUZ2DODb6XaRERaXdKjKTDWZ9fwt1vbGDOmD4cN+IQaztTUwVrnobFt/pHcAAMnOp7mB53NqRmJDc+EZHDnBIj6XD+tuRT6hz8+POHUL87FYXwnx837H26/yQ490/Qf0LSwhIRkYaUGEmHsre0ivsWb+KYvJ4Mz81OdjgHb+96ePU38N7f/PtQKpzyY5jyZd1JJiLSASkxkg7lnjc2UFVbxw8/Ny7ZoRyc6nJ48ALYtMi/73Okbzs09iwIhZIbm4iIxKXESDqMsqoa7lu8kbH9uzJ5SI9kh9N6H78Aj10BlYXQczhc8Bc1phYR6SSUGEmHccdr6ymqqOF/OuOdaBVFsGs1rH4SlvzZP73+vD/D5IuSHZmIiLSAEiPpMB56+1OmDevJnLF9kx1K8739Z3j2+w2HDZ8FX7gLcjrR5xAREUCJkXQQC9fsIr+4kqvnjEp2KE0r2wtL/wJv3Qbl+/ywgVNh6pdh6Ezo18nbR4mIHMaUGEmH8J/VOwkZXDhtcLJDadyqJ+Bf34SqEv9+/Plwzm2QnpXcuEREJCGUGEnSOed4YfVOTjyiD1npHXCXrK2BpXfCW3+Cgk3QbbBvPzTqM5DWJdnRiYhIAnXAXyE53Dy7cgf5xZWceWr/ZIfSkHOw8jHfD9HuNX7YUZfBGb+C9EOgjyURETmAEiNJuudW7qBLWogLpw1Jdij77foQnvkebHzdvz/9l3DsVeqDSETkEKfESJLKOcdrn+Rz4hF9SAl1gKfHF26F//zIlxQBHP9tOOE7kNmJ+1USEZFmU2IkSfXcyh0UlFUzdWgHSDze/jM8fwPU1cCoU+HkH8LAKcmOSkRE2pESI0mqpRv97e6XHjcseUEUboG/XQQ7PoABk+H8u6DP6OTFIyIiSaPESJKmuraOJ1ZsZebI3nTtktb+AdTVwvJ74On/69+PPQsuvA9SdFiIiByu9AsgSbN0w172llZx7pRB7b/y0j1wz5n+brOs3vDF+yHvhPaPQ0REOhQlRpI0i9buBuC08f3ad8XrX4XH/wuKt8O0y+HM30BKEkqsRESkw1FiJEmzZkcxR/TNoUdWevussLYGXv0VvPZbSO8Klz0JI2a1z7pFRKRTUGIkSbMuv4RxA7u1z8pqquCvX4T1r8CwE+BLD0BWr/ZZt4iIdBrqrU6Soqqmji37ysnr3Q49SDsHT3zdJ0Wz/x/Mf0pJkYiIxKQSI0mKj3cWU1PnGNO/a9uuaNsKeOGHvgfrY78Os69v2/WJiEinpsRIkmLxOt/w+uhhPdtmBc7Bs9+HJXf493N+CCd9t23WJSIihwwlRpIUq7YVMaB7Fwb3zEr8wje96Z9ztvMDGDAFzv0j9Buf+PWIiMghR4mRJMWH24sYm+hqtMIt8J8bYeWj/v1x34DTfq4Hv4qISLMpMZJ2l19cySe7Sjhr0sAELvRjuOcMKN8HEy+Ez9wE3ZPQcaSIiHRqSoyk3b32cT7OwazRfRKzwLduh5du8g9/nf80DJuZmOWKiMhhR3UM0u4+2lFEasgYn4g+jN68DZ67DiwF5j+jpEhERA6KSoyk3b25fg9ThvQgNeUg8/J3H4Tnb4ChM2Hev/XwVxEROWgqMZJ2VVlTy+ptRUwe0uPgFvTeI/Dkt2DQNPjSg0qKREQkIZQYdTJmdoaZrTGztWYWs7dCM5ttZivMbJWZvdreMTZmw+5S6hxMGHQQ1WhblsOTV0P/ifDlRyG7d+ICFBGRw5ouszsRM0sBbgNOBbYAS83sSefc6ohpegB/BM5wzn1qZn2TE21s72wqAGDioFaWGO1cBfefDRndfElRZht1ECkiIocllRh1LtOBtc659c65KuBh4JyoaS4G/umc+xTAObernWNs1AdbC+nWJZWRfVrxjLR1L8OdJ0NKur/7rMfQxAcoIiKHNSVGncsgYHPE+y3BsEijgZ5mttDMlpvZZe0WXTOs3l7EuIHdMLOWzfjxC/DgBdClh0+K+o5tmwBFROSwpqq0ziVWNuGi3qcCRwOnAJnAm2b2lnPu4wYLMrsSuBJg6ND2KXlxzrEhv4Szp7SwY8d9m+DRr0CX7nDV65DToWoHRUTkEKISo85lCzAk4v1gYFuMaZ5zzpU653YDrwGToxfknLvDOTfNOTetT58EdbTYhPySSooqahiem9P8mZyDv18GtVUw92ElRSIi0qaUGHUuS4EjzGy4maUDFwFPRk3zL+BEM0s1syzgWODDdo4zpo93lAAwpl8LnpH25NWwfQWc8UsYemwbRSYiIuKpKq0Tcc7VmNnVwPNACnC3c26VmV0VjL/dOfehmT0HvA/UAXc551YmL+r9Nu4pBWB4cxtef/S078Rx4oUw7attGJmIiIinxKiTcc49AzwTNez2qPe/BX7bnnE1x9pdJWSlpzCwe5emJ3YOXvkldBsMZ98KLW2sLSIi0gqqSpN28/HOYobnZjfvjrQXF8DOD+D4b0NaMxIpERGRBFBiJO1m5dbC5j0KZPWT8MYtMOazMP1rbR+YiIhIQImRtItdxRUUVdQwsk8Td6RVlsDT34Gew+H8O1WFJiIi7UptjKRdrN3p70gb27+JO9IW/hJK8+Gc2yCjBbf1i4iIJIBKjKRdbN5XBsCQnlnxJ9q5Ct68DcafD6NPb6fIRERE9lNiJO1iW0EFZjCgRyMNqV+8CVIzfJ9FIiIiSaDESNrFtoJyemenk5YSZ5fb9SGsfRGOuQK69m/f4ERERAJKjKRdbNpTxoh4jwKpq4PHr4K0LJj5rfYNTEREJIISI2kXWwvKGdQzM/bITW/4x36c/AOVFomISFIpMZI2V1vn2FlUQf94PV6/+wCk58Dkue0bmIiISBQlRtLmtheWU1PnYj8KpGg7rHocxp0Dmc3o/FFERKQNKTGSNre9sAIgdlXaKz+D2iqYcXU7RyUiInIgJUbS5jbt8X0YDe2V3XBEdYV//Meki6DfuCREJiIi0pASI2lzH24vIj01xLDeUZ07rnsJKotg/LnJCUxERCSKEiNpc+vySxjVJ+fAPoyW/gUyusPIU5ITmIiISBQlRtLmNu8tY2ivqNKisr2w/hWYfBGkpicnMBERkShKjKRN1dU5Nu8rZ0ivqIbX7z8Crg6m6BZ9ERHpOJQYSZvaWVxBVU0dQ3tHNbz+4FHIHQ0DpyYnMBERkRiUGEmb2rqvHIDBkbfq71wNW5fBhAuSFJWIiEhsSoykTW0t8InRoB4RidHye8BCcNRlSYpKREQkNiVG0qa2FfjOHQeGEyPnYPW/4IjToNuAJEYmIiJyICVG0qa2FpTRPTONnIxUP2DdS1CyE8Z+LrmBiYiIxKDESNrUpj1lDTt2/ORFSMlQ+yIREemQlBhJm9pZVMGAyIfH7loN/SdAelb8mURERJJEiZG0Gecc2wsq6NctSIzqamHHB5A7JrmBiYiIxKHESNpMYXk1xZU1+3u93vEBlO+FvBOSG5iIiEgcSoykzewuqQKgT9cMP2D9Qv86YnYywhEREWmSEiNpM/vKfGLUIyt4FtqGV6HXSOg+KIlRiYiIxKfESNrMnpJKAHJz0qGmEjYvheEnJjkqERGR+JQYSZvJL/aJUZ+cDNjwOlQVwxGnJzkqERGR+JQYSZvZVlhBasjomZ0O61+BUCqMmJXssEREROJSYtTJmNkZZrbGzNaa2fWNTHeMmdWaWdJ6Uvx0bxmDemaSlhLyDa+HHAvp2ckKR0REpElKjDoRM0sBbgPOBMYBc81sXJzpfg08374RNrRuVwnDemfD3vWwcyWMPiOZ4YiIiDRJiVHnMh1Y65xb75yrAh4Gzokx3beAx4Bd7RlcJOccG/eUMqpPDnz8gh847uxkhSMiItIsSow6l0HA5oj3W4Jh9cxsEHAecHtjCzKzK81smZkty8/PT3igBWXVVFTXMahnpi8tyuoNPfMSvh4REZFEUmLUuViMYS7q/S3Adc652sYW5Jy7wzk3zTk3rU+fPgkLMGxrQTmAf05a/kd6DIiIiHQKqckOQFpkCzAk4v1gYFvUNNOAh80MIBf4rJnVOOeeaJ8QvU/3lgEwtGcX2Lkapl7SnqsXERFpFSVGnctS4AgzGw5sBS4CLo6cwDk3PPy/md0LPNXeSRHAtqDEaKDbAdWl0G98e4cgIiLSYkqMOhHnXI2ZXY2/2ywFuNs5t8rMrgrGN9quqD2tyy+la0YqPfe86wcMnp7cgERERJpBiVEn45x7BngmaljMhMg5N789Yopla0E5w/tkY7teh5R0yB2drFBERESaTY2vpU0UlVfTPTMNdn8CvUdBinJwERHp+JQYSZtokBjpNn0REekklBhJwjnnyC+uZECXati7DgZMTnZIIiIizaLESBJud0kVxZU1TE0P+qIcMCW5AYmIiDSTEiNJuJ1FFQAMq/3UD+g/IYnRiIiINJ8SI0m4cB9GfSs/hfQc6DaoiTlEREQ6BiVGknDhx4F0L1kLuUeAxXqSiYiISMejxEgSLr+4kpSQkbb3E+hzZLLDERERaTYlRpJw+8qq6JtpWMkO6DW86RlEREQ6CCVGknCF5dUM61Li3+T0S24wIiIiLaDESBJuT0kVIzOK/RslRiIi0okoMZKEKyir5ojQVv+m14jkBiMiItICSowk4YoqqhnuPoWUDCVGIiLSqSgxkoQrKKtmQM02nxTp4bEiItKJKDGShCqprKG8upbc6m0qLRIRkU5HiZEk1NZ95Rh19Cjf7Dt3FBER6USUGElC5RdX0ptiQq5ajwIREZFOR4mRJNTesir62j7/pqtu1RcRkc5FiZEk1O7iyojEaEBygxEREWkhJUaSUPkllQwL7fZvVJUmIiKdjBIjSaiCsiqGp+2DUJpKjEREpNNRYiQJlV9cydDUfdBtAIS0e4mISOeiXy5JqPySKnJTSiC7b7JDERERaTElRpJQu4sr6eP26uGxIiLSKSkxkoTKL6mgV/VO6D442aGIiIi0mBIjSZjyqlpSa8rJqCuDbgOTHY6IiEiLKTGShCmqqN7fh5Gq0kREpBNSYiQJU1hezWAL+jBSVZqIiHRCSowkYYrKqxlge/wbJUYiItIJKTGShCmuqKE3Rf5Njm7XFxGRzkeJkSRMSWUNfa2AurRsSM9OdjgiIiItpsSokzGzM8xsjZmtNbPrY4y/xMzeD/4Wm9nk9oqtoLya3lZEXVZue61SREQkoZQYdSJmlgLcBpwJjAPmmtm4qMk2ALOcc5OAnwJ3tFd8+UUV5FohKTl92muVIiIiCaXEqHOZDqx1zq13zlUBDwPnRE7gnFvsnAvumectoN1aQRdX1tAvVIh17d9eqxQREUkoJUadyyBgc8T7LcGweL4KPBtrhJldaWbLzGxZfn5+QoIrrqghl0I1vBYRkU5LiVHnYjGGuZgTms3BJ0bXxRrvnLvDOTfNOTetT5/EVH3tKy6jB8V6gKyIiHRaqckOQFpkCzAk4v1gYFv0RGY2CbgLONM5t6edYqOqNKjBy+rVXqsUERFJKJUYdS5LgSPMbLiZpQMXAU9GTmBmQ4F/Apc65z5uz+CsLOj1Oqt3e65WREQkYVRi1Ik452rM7GrgeSAFuNs5t8rMrgrG3w78GOgN/NHMAGqcc9PaIz6rLPb/dOneHqsTERFJOCVGnYxz7hngmahht0f8fwVwRRLiIqd6t0/XsnW7voiIdE6qSpOEKK+uJacuKDFSVZqIiHRSSowkIfaWVvlb9UElRiIi0mkpMZKEKCirpr/tpSq9B6R1SXY4IiIiraLESBIiv7iSfraP2iz1YSQiIp2XEiNJiL2lVfS0YkzPSRMRkU5Md6VJQhSWV9ONMkKZPZIdigDV1dVs2bKFioqKZIci0ul16dKFwYMHk5aWluxQpB0oMZKEKCiroruVkpqjXq87gi1bttC1a1fy8vII+rMSkVZwzrFnzx62bNnC8OHDkx2OtANVpUlCFJRX091KVWLUQVRUVNC7d28lRSIHyczo3bu3Sl8PI0qMJCEqy4rJpEp9GHUgSopEEkPH0uFFiZEkRG1Jvv8nKze5gUiHkZKSwpQpU+r/Nm7cyLJly7jmmmuavYyCggL++Mc/xh2/Y8cOLrroIkaOHMm4ceP47Gc/y8cft+4RgbfccgtlZWWtmhfgF7/4RdxxJSUlfP3rX2fkyJFMnTqVo48+mjvvvLPV62qtJUuWcNJJJzFmzBjGjh3LFVdccVCfOZEi942FCxeyePHi+nG33347999/f7JCk8OM2hhJQlQU7fX/ZPZMbiDSYWRmZrJixYoGw/Ly8pg27cBH99XU1JCaeuDpKJwYfeMb3zhgnHOO8847j3nz5vHwww8DsGLFCnbu3Mno0aNbHO8tt9zCl7/8ZbKyslo8L/jE6IYbbog57oorrmDEiBF88sknhEIh8vPzufvuuw+Yrra2lpSUlFatvyk7d+7kwgsv5OGHH2bGjBk453jssccoLi5u9WdOpGnTptXvGwsXLiQnJ4eZM2cCcNVVVyUzNDnMqMRIEqNst3/NUuNriW/hwoWcddZZACxYsIArr7yS0047jcsuu4xVq1Yxffp0pkyZwqRJk/jkk0+4/vrrWbduHVOmTOF73/teg2W98sorpKWlNfjRnDJlCieeeCLOOb73ve8xYcIEJk6cyCOPPFK//tmzZ3PBBRcwduxYLrnkEpxz/OEPf2Dbtm3MmTOHOXPmAPDCCy8wY8YMjjrqKC688EJKSkooLCxkzJgxrFmzBoC5c+dy5513cv3111NeXs6UKVO45JJLGsS5bt06lixZws9+9jNCIX/K7dOnD9ddd119THPmzOHiiy9m4sSJANx8881MmDCBCRMmcMsttwCwceNGJkyYUL/c3/3udyxYsACA2bNnc+211zJz5kwmTJjAkiVLDvjub7vtNubNm8eMGTMAXz10wQUX0K9fP/bu3cu5557LpEmTOO6443j//ffrt9G8efM47bTTyMvL45///Cff//73mThxImeccQbV1dWAT3ivu+46pk+fzvTp01m7di0AmzZt4pRTTmHSpEmccsopfPrppwD84x//YMKECUyePJmTTjqpwb6xceNGbr/9dn7/+98zZcoUXn/9dRYsWMDvfvc7wCe/xx13HJMmTeK8885j37599d9BOIbRo0fz+uuvN7InisSnEiM5aM45Mir3+L1JVWkdzk3/XsXqbUUJXea4gd248fPjG50mnCgADB8+nMcff/yAaZYvX86iRYvIzMzkW9/6Ft/+9re55JJLqKqqora2ll/96lesXLnygJIngJUrV3L00UfHXPc///lPVqxYwXvvvcfu3bs55phj6n+A3333XVatWsXAgQM5/vjjeeONN7jmmmu4+eabeeWVV8jNzWX37t387Gc/48UXXyQ7O5tf//rX3Hzzzfz4xz/m1ltvZf78+Xz7299m3759fO1rXwPg1ltvjRnnqlWrmDx5cn1SFMuSJUtYuXIlw4cPZ/ny5dxzzz28/fbbOOc49thjmTVrFj17Nl4aW1payuLFi3nttde4/PLLWbly5QHf17x582LOe+ONNzJ16lSeeOIJXn75ZS677LL6z7Ju3TpeeeUVVq9ezYwZM3jsscf4zW9+w3nnncfTTz/NueeeC0C3bt1YsmQJ999/P9deey1PPfUUV199NZdddhnz5s3j7rvv5pprruGJJ57gJz/5Cc8//zyDBg2ioKCgQSx5eXlcddVV5OTk8N3vfheAl156qX78ZZddxv/+7/8ya9YsfvzjH3PTTTfVJ481NTUsWbKEZ555hptuuokXX3yx0e9MJBaVGMlBK62qpYcLnpPWtV9yUGcGxAAAFvFJREFUg5EOI1yVtmLFiphJEcDZZ59NZmYmADNmzOAXv/gFv/71r9m0aVP98NZYtGgRc+fOJSUlhX79+jFr1iyWLl0KwPTp0xk8eDChUKi+7VO0t956i9WrV3P88cczZcoU7rvvPjZt2gTAqaeeysSJE/nmN7/JXXfd1eLYfv7znzNlyhQGDhxYP2z69On1t4IvWrSI8847j+zsbHJycjj//PObVfoxd+5cAE466SSKiooOSDgas2jRIi699FIATj75ZPbs2UNhoT+mzzzzTNLS0pg4cSK1tbWcccYZAEycOLHBdxde/9y5c3nzzTcBePPNN7n44osBuPTSS1m0aBEAxx9/PPPnz+fOO++ktra22XEWFhZSUFDArFmzAJg3bx6vvfZa/fjzzz8fgKOPPjrmdhVpDpUYyUHbUVhBTyuhzlIJZXRLdjgSpamSnWTKzs6u///iiy/m2GOP5emnn+b000/nrrvuYsSIEXHnHT9+PI8++mjMcc65uPNlZGTU/5+SkkJNTU3M+U899VT+9re/HTCurq6ODz/8kMzMTPbu3cvgwYPjrgtg3LhxvPfee9TV1REKhfjBD37AD37wA3Jycuqnifwe4sWemppKXV1d/fvo28ej75yKfj9+/HiWL1/OOeecc8CyY60zPH/4+wqFQqSlpdUPD4VCDb67yPXFu4srPPz222/n7bff5umnn2bKlCkxS9paIxxrvO0q0hwqMZKDll9cSXdKqU3vCrqtVVpp/fr1jBgxgmuuuYazzz6b999/n65du1JcXBxz+pNPPpnKysoGd3ctXbqUV199lZNOOolHHnmE2tpa8vPzee2115g+fXqj649c13HHHccbb7xR31amrKys/m633//+9xx55JH87W9/4/LLL69vZ5OWllb/f6RRo0Yxbdo0fvjDH9aXjlRUVMRNgE466SSeeOIJysrKKC0t5fHHH+fEE0+kX79+7Nq1iz179lBZWclTTz3VYL5wO6pFixbRvXt3unfv3mD81VdfzX333cfbb79dP+zBBx9kx44dnHTSSTz00EOAb+uTm5tLt24tu8gJr/+RRx6pb8c0c+bM+obxDz30ECeccALgq+eOPfZYfvKTn5Cbm8vmzZsbLCvedu/evTs9e/asL0F74IEH6kuPRBJFJUZy0IoqqullRdR1UcNrab1H/n97dx9VVZkvcPz7ICgS6qAQOkECiaLAAcES0xDLxhQnB69Ok6aCV5Eam3QSs1ujtnKmF1wrlr3crsulYqa08qp5u2U2iqYzzgi0HEdDUtPru6AGioDx8rt/cDwjCniUl+OB32etvWSf/ey9f7+9D9uHZz97P598wurVq3Fzc6N79+7Mnz+frl27MnjwYMLCwhg5ciRpaWm28sYYNmzYwKxZs3jzzTdxd3cnICCA9PR0YmNj2b17NxERERhjePvtt+nevTsHDx6sd//JycmMHDmSHj16kJWVxcqVK3n66ae5evUqAIsWLQJg2bJl7Nmzh06dOhEbG8uiRYt47bXXSE5OxmKxEBUVZatkXLNs2TJSU1Pp1asXXbt2pWPHjrz11lt1xhEVFUViYqKtIjdt2jT69+8PwPz58xk4cCCBgYGEhITUWs/Ly4uHH36YS5cu1fnEm6+vL5mZmcyZM4eCggJcXFyIjY1l7NixLFy4kKSkJCwWCx4eHmRkZNzqdN3k6tWrDBw4kOrqaltL25IlS5g6dSppaWn4+PiwYsUKAFJTUzl06BAiwmOPPUZERAQ7duywbeuXv/wl48aN47PPPuPdd9+ttZ+MjAxSUlIoLS0lKCjItk2lmoppqMlZtQ0DBgyQnJycO15/zd+PE/S/v6a/fxc6TP+qCSNTdyovL4++ffs6OgzVQuLi4li8eHGdr0JoCQEBAeTk5ODt3Xofvqjrd8oYkysijjnoqtnorTTVaKeLyvDiMm6erfeiqJRSqm3QW2mq0Qoul+PjcgkXTx9Hh6JUm7R9+3aH7l+fAFOtibYYqUYrKy+jK5egU3dHh6KUUko1ilaMVKNVF5+t+UErRkoppZycVoxUo7W7cq7mh04/b7igUkopdZfTipFqFBGBkmstRvrWa6WUUs5NK0aqUQovX+XnVadrZrwCHBqLurv88Y9/JDQ0FIvFQmRkZK0XC7aU6wetvdGePXuIjY2lT58+hISEMG3aNEpLS297H0VFRXzwwQd3HOOxY8dYs2ZNvcsPHTrE6NGjeeCBB4iOjmbYsGG1hsFoKatWrSIsLIzQ0FD69etnG9T1bvDhhx+yatUqAFauXMnp06dty6ZNm8Z3333nqNCUE9KKkWqUo+ev4GcKqXDrDO5dbr2CahN2797N559/zrfffsu+ffv485//jL+/v6PDsjl37hzjx4/nrbfeIj8/n7y8PJ544ol637LdkOasGJWXlxMfH09ycjJHjhwhNzeXd999lx9++OGmss05BMaXX35Jeno6W7Zs4cCBA3z77bc3vVnbkVJSUpg8eTJwc8Vo2bJl9OvXz1GhKSekFSPVKKeLywgyZ6j0esDRoai7yJkzZ/D29raNXeXt7W0bNDU3N5ehQ4cSHR3NiBEjOHPmDACHDx9m+PDhREREEBUVxZEjRxARUlNTCQsLIzw83DbsxPbt24mLi2PcuHGEhIQwceJE2xAbmzdvJiQkhCFDhrB+/fo643v//feZMmWKbegKYwzjxo3D19eXixcv8qtf/QqLxUJMTAz79u0DYOHChUydOpW4uDiCgoJYsmQJAPPmzePIkSNERkaSmpoKQFpaGg8++CAWi4UFCxYANcOVWCwWysvLuXLlCqGhoezfv5958+axc+dOIiMjeeedd2rF+fHHHzNo0CCefPJJ22dhYWEkJibaYkpOTuYXv/gFkydPpry8nKSkJMLDw+nfvz9ZWVlATWVh5syZtm2MHj3a9oi/p6cnL774IlFRUTz22GMUFhbedLzeeOMNFi9ebDuH7u7uTJ8+HYC9e/cSExODxWIhISGBH3/8Eah56eTs2bOJjY2lb9++ZGdnM3bsWIKDg3n11VeBmkphSEgIU6ZMwWKxMG7cOFur3datW+nfvz/h4eFMnTrV9gbyefPm0a9fPywWC3PmzLEdh8WLF7Nu3TpycnKYOHEikZGRlJWVERcXx7UX2K5du5bw8HDCwsJ46aWXbPl5enryyiuvEBERQUxMDOfOnavze6PaCBHRqY1P0dHRcqeW7jgiZ+ffL1c/nXHH21BN77vvvvvXzBcviSwf1bTTFy81uP/Lly9LRESEBAcHy7PPPivbt28XEZGffvpJBg0aJAUFBSIikpmZKUlJSSIi8tBDD8n69etFRKSsrEyuXLki69atk+HDh0tlZaWcPXtW/P395fTp05KVlSWdO3eWEydOSFVVlcTExMjOnTulrKxM/Pz85Pvvv5fq6moZP368xMfH3xRfQkKCbNy4sc7YZ86cKQsXLhQRka1bt0pERISIiCxYsEAGDRok5eXlUlhYKF27dpWffvpJjh49KqGhobb1v/rqK5k+fbpUV1dLVVWVxMfHy44dO0RE5JVXXpEXX3xRnnvuOfnTn/4kIiJZWVl1xigiMnv2bElPT6/3OC9YsECioqKktLRUREQWL14siYmJIiKSl5cn/v7+UlZWJitWrJDf/va3tvXi4+MlKytLREQAWb16tYiIvPbaa7XKXePl5SVFRUV1xhAeHm47v3/4wx/khRdeEBGRoUOHyty5c0VEJD09XXr06CGnT5+W8vJyue++++T8+fNy9OhRAWTXrl0iIpKUlCRpaWm285ifny8iIpMmTZJ33nlHLly4IL1795bq6moREfnxxx9txyEtLc223+zsbFt81+ZPnTol/v7+UlBQIBUVFTJs2DDZsGGD7Rhs2rRJRERSU1Pl9ddfvynPWr9TVkCO3AXXcJ2adtIWI9UoJUWF+Joi3O4NdnQo6i7i6elJbm4uS5cuxcfHh6eeeoqVK1eSn5/P/v37efzxx4mMjGTRokWcPHmSy5cvc+rUKRISEoCaFgkPDw927drF008/Tbt27fD19WXo0KFkZ2cD8NBDD+Hn54eLiwuRkZEcO3aMgwcPEhgYSHBwMMYYnnnmmduOfdeuXUyaNAmoGaj2woULFBcXAxAfH0+HDh3w9vbm3nvvrbNlYcuWLWzZsoX+/fsTFRXFwYMHOXToEFAz1tnXX39NTk4Oc+fOve3YEhISCAsLY+zYsbbPnnzySTp27HhT7CEhIfTs2dM2+G19XFxceOqppwB45pln2LVrl93xFBcXU1RUZBvIdcqUKbX6P11r6QoPDyc0NJQePXrQoUMHgoKCbAPH+vv7M3jw4Fr7z8/PJzAwkN69e9fabufOnXF3d2fatGmsX78eDw8Pu2PNzs4mLi4OHx8fXF1dmThxoi3W9u3b2/qiRUdH6wsr2zh987VqFPezNf9JmZ9HOjgSVa+Rbzpkt+3atSMuLo64uDjCw8PJyMggOjqa0NBQdu/eXavspUuX6txGzR/ldbt2m+7avq71sTHG3DK20NBQcnNzGTNmjF37vLbN+vZ54/ovv/wyM2bMuGnZxYsXKSkpoaKigvLycu65555bxnl9RWPDhg3k5OTYbiEBtbZR3/FydXWlurraNl9eXl7vPus6fteO16OPPtpgvDe6drxcXFxqHTsXF5d6z5cxpsE89uzZw9atW8nMzOS9995j27ZtdsXS0HfJzc3NFkd951W1Hdpi5GSMMU8YY/KNMYeNMfPqWG6MMUusy/cZY6KaLRgRHinMpBJX8B/YbLtRzic/P9/WSgI1/VB69uxJnz59KCwstFWMKioqOHDgAJ07d8bPz4+NGzcCNSO1l5aWEhsbyyeffEJVVRWFhYV88803tlHn6xISEsLRo0c5cuQIgG2U9xvNnDmTjIyMWk/KrV69mrNnzxIbG8vHH38M1PRl8vb2pnPnzvXus1OnTrU6bY8YMYLly5dTUlICwKlTpygoKAAgOTmZ119/nYkTJ9r6uNy4/vUmTJjAX/7yFzZt2mT7rKEn566P/fvvv+f48eP06dOHgIAA9u7dS3V1NSdOnGDPnj22daqrq1m3bh0Aa9asYciQITdt9+WXX2bu3LmcPVvzao6rV6+yZMkSunTpgpeXFzt37gTgo48+srUe2ev48eO278PatWsZMmQIISEhHDt2jMOHD9fabklJCcXFxYwaNYr09HT27t170/bqO54DBw5kx44dnD9/nqqqKtauXXvbsaq2QVuMnIgxph3wPvA4cBLINsZsEpHrn0UdCQRbp4HAf1r/bXqlFwmr+CeHPfrTq4Nns+xCOaeSkhKef/55ioqKcHV1pVevXixdupT27duzbt06fve731FcXExlZSWzZs0iNDSUjz76iBkzZjB//nzc3Nz49NNPSUhIYPfu3URERGCM4e2336Z79+4cPHiwzv26u7uzdOlS4uPj8fb2ZsiQIezfv/+mcr6+vmRmZjJnzhwKCgpwcXEhNjaWsWPHsnDhQpKSkrBYLHh4eJCRkdFgrt26dWPw4MGEhYUxcuRI0tLSyMvLs3Xs9vT0ZPXq1WzevBlXV1cmTJhAVVUVDz/8MNu2beORRx7B1dWViIgIEhMTmT17tm3bHTt25PPPP+f3v/89s2bNwtfXl06dOtk6L9/oueeeIyUlhfDwcFxdXVm5ciUdOnRg8ODBBAYG2joeR0X96++le+65hwMHDhAdHU2XLl1sHdyvN2rUKM6dO8fw4cMREYwxTJ06FYCMjAxSUlIoLS0lKCiIFStWNHi8btS3b18yMjKYMWMGwcHBPPvss7i7u7NixQrGjx9PZWUlDz74ICkpKVy8eJExY8ZQXl6OiNzUWR0gMTGRlJQUOnbsWKtlskePHrzxxhsMGzYMEWHUqFF1thgqZRpqXlR3F2PMIGChiIywzr8MICJvXFfmv4DtIrLWOp8PxInImfq2O2DAALn21MbtKLl4Bs8lIWx/YC5xk1657fVV88nLy6Nv376ODkM5AU9PT1vrVks7duwYo0ePrrPyerep63fKGJMrIgMcFJJqJnorzbncB5y4bv6k9bPbLdMkKty6sKjnctpH/ro5Nq+UUkq1OL2V5lzq6lV6Y5OfPWUwxiQDyQD333//HQXj1cmDV5P+7Y7WVUrdHRzVWgQQEBDgFK1Fqm3RFiPnchK4/vXBfsDpOyiDiCwVkQEiMsDHx6fJA1VKKaWckVaMnEs2EGyMCTTGtAd+A2y6ocwmYLL16bQYoLih/kWq9dL+g0o1Df1dalv0VpoTEZFKY8xM4CugHbBcRA4YY1Ksyz8EvgBGAYeBUiDJUfEqx3F3d+fChQt069bNrvf6KKXqJiJcuHABd3d3R4eiWog+labu+Kk0dfeqqKjg5MmTDb7ITyllH3d3d/z8/HBzc6v1uT6V1jppi5FSrZCbmxuBgYGODkMppZyO9jFSSimllLLSipFSSimllJVWjJRSSimlrLTztcIYUwj8XyM24Q2cb6JwnEVby7mt5Quac1vRmJx7ioi+CK6V0YqRajRjTE5bezKjreXc1vIFzbmtaIs5q4bprTSllFJKKSutGCmllFJKWWnFSDWFpY4OwAHaWs5tLV/QnNuKtpizaoD2MVJKKaWUstIWI6WUUkopK60YKbsYY54wxuQbYw4bY+bVsdwYY5ZYl+8zxkQ5Is6mZEfOE6257jPG/NUYE+GIOJvSrXK+rtyDxpgqY8y4loyvOdiTszEmzhiz1xhzwBizo6VjbGp2fLe7GGP+xxjzD2vOTj0YtTFmuTGmwBizv57lre76pRpBRHTSqcEJaAccAYKA9sA/gH43lBkFfAkYIAb4u6PjboGcHwa8rD+PbAs5X1duG/AFMM7RcbfAef4Z8B1wv3X+XkfH3QI5/wfwlvVnH+Ai0N7RsTci51ggCthfz/JWdf3SqXGTthgpezwEHBaRH0TkJyATGHNDmTHAKqnxN+BnxpgeLR1oE7plziLyVxH50Tr7N8CvhWNsavacZ4Dngf8GCloyuGZiT84TgPUichxARJw9b3tyFqCTMcYAntRUjCpbNsymIyLfUJNDfVrb9Us1glaMlD3uA05cN3/S+tntlnEmt5vPv1PzF6czu2XOxpj7gATgwxaMqznZc557A17GmO3GmFxjzOQWi6552JPze0Bf4DTwT+AFEalumfAcorVdv1QjuDo6AOUUTB2f3fg4oz1lnInd+RhjhlFTMRrSrBE1P3tyTgdeEpGqmsYEp2dPzq5ANPAY0BHYbYz5m4h839zBNRN7ch4B7AUeBR4AvjbG7BSRS80dnIO0tuuXagStGCl7nAT8r5v3o+Yvydst40zsyscYYwGWASNF5EILxdZc7Ml5AJBprRR5A6OMMZUisrFlQmxy9n63z4vIFeCKMeYbIAJw1oqRPTknAW+KiACHjTFHgRBgT8uE2OJa2/VLNYLeSlP2yAaCjTGBxpj2wG+ATTeU2QRMtj7dEQMUi8iZlg60Cd0yZ2PM/cB6YJITtx5c75Y5i0igiASISACwDnjOiStFYN93+zPgEWOMqzHGAxgI5LVwnE3JnpyPU9NChjHGF+gD/NCiUbas1nb9Uo2gLUbqlkSk0hgzE/iKmidalovIAWNMinX5h9Q8oTQKOAyUUvMXp9OyM+f5QDfgA2sLSqU48WCUdubcqtiTs4jkGWM2A/uAamCZiNT52LczsPM8vw6sNMb8k5rbTC+JyJ2OQO9wxpi1QBzgbYw5CSwA3KB1Xr9U4+ibr5VSSimlrPRWmlJKKaWUlVaMlFJKKaWstGKklFJKKWWlFSOllFJKKSutGCmllFJKWWnFSCmllFLKSitGSimllFJWWjFSSimllLL6f37lRWMZMzn+AAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "DS_composition.plot(plot_type = 'cdfs')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "If your data is a GeoDataFrame, it is also possible to visualize the counterfactual compositions with the argument `plot_type = 'maps'`\n", + "\n", + "The first and second contexts are Los Angeles and New York, respectively." + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAApEAAAK6CAYAAABhQAc+AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAAgAElEQVR4nOydd5hcR5W33193T5JGyZIlWbaCbVnOEZxtZLIJBnZhSQYsWGDZD8Oy5LjY5AxLhmUdwGRYWAw2a7CRnHPE2ZYlS1ay8ow0qbvP90dVa3pat3u6J/fMeZ/nqjVVdSvccO6pU1WnZGY4juM4juM4Ti2kRrsCjuM4juM4Tv3hSqTjOI7jOI5TM65EOo7jOI7jODXjSqTjOI7jOI5TM65EOo7jOI7jODXjSqTjOI7jOI5TM65EDhJJyySZpGWDzOeCmM9ZQ1Mzx3HGMuXe+Ri2fHRq5TiOUz1jSomUlJb0NkkrJG2V1CNpk6R7Jf1I0stGoU5nRaF+wUiXXQ2SGiX9s6Q/SVovqUtSm6S7JX1D0jGjXUcnIGmVpFWjXY8kJL1U0nJJOyS1S7pF0nnDnZekV0j6paSHJG2T1CHpUUk/l/TMwbWqbP3+K77TuyVNr5DukphuUZn45ZLq0tHuaHRaJc2U9AlJN0raHOX7FknXSfqopDkjVRenPJIWxWfjkhEut0XShZIeltQZv/2/knR4jfmcJOnzkq6UtCG2ZW0/53xR0tWS1kQZtFXSXZI+KWlmhfMk6bwoC7bGc5+I9V5SS73rlcxoV6CApDTwR+BsYDvwJ2AtsA9wMPB64DDgD6NVxzL8DrgZWD/SBceH9PfA4cBm4C/Ak0AjcATwDuDdkl5hZmPtujljBEnnA98CtgCXAd3Aq4BLJB1tZu8fxrxeDpwI3Aasi+kXA/8AvEbS283sR4NpX0n9pgCvBQxoAd4AfHuo8q+RbwO/ILyz4xpJLyU8D9OAxwhyc1P8+2TgM8BHJS02sw2jVlFnVJDURPh+nQ7cDvwnMB/4J+Alkp5jZrdUmd3rgX8DeoAHgWo6J/8O3BnrsAmYDJwCXAC8XdIpZrampM7NwK+BlwIPAz8D2oB5wJnAEuCRKutcv5jZmDgIwtyAu4FpCfGTgGePQr3OivW6YJjLuSCWc1aV6ecAa+I5XwdaEtLMBr4DnDfa99cPA1gFrBrtepTUaRHQSVD6FhWFzyB87A04dbjyAprL5HV0zGs70DiE7f2XWI+vAV3APRXSXhLTLioTvzyI0CG/JwYsH+b7XpO8GWRZSwmdgw5gGaAy9/uactfaj5E74ntswCUjWOZHYpm/BlJF4S+P4fcXh/eT13HA8QW5Ec9f28855eTQZ+P5302I+06M+1xS3YCG0b6XI3LvRrsCRRf8u/GGvKeGc5bFc5YBLwFuBHYB24DfAIcknLME+AKht/N0/JCsBn4IHFCStvARSTrOKq1DybnPjnk+AOyMAvTvwCeTHthahTrwXzH9z6pI21Ty937xBVgVhfvTwP8Az+jnGj8fuA5oj+dcDEyP6Y4nWJK3xfg/JH0QiB9eoIlgfXgi3oPH47VJVBiA5wJ/BrYSlItH4n1M6nAUysgAHwUejWWsAb5YoYzD4j1fE9NvJPQuD01IW3g2FhEUk/tivTbG+z6tKO1ZFZ6jS0b5vftUrMeFCXFviXGXjnRe8Zy74jn7D2F7bwdyBCvHb2P+JyekK3e/VtH7kU06lhflsSoeUwlK6yqCdeSCGH8BCe98IR+CReMnBMtIB3AH8PpK72iZNifVK7H+JedNInzc7ybI1XbgJuB1NVzvFMEaZMDbq0jbUBL2jHifNtErq78L7FfhnTwQOJ8geztjez9KVF4J1q1bY5s2ESzCSTK5pvtQ1IZ3ECzr7bGM24B/JVnRKJQxiyA31sd23g+8ucK1eiFwBWEEqiA/v0yUxyVpC8/hpJjmyXjOY8CHKFLqi57JpCPx+RqCd1LxvhpwYEL8tTFuQEYkqlAiK5x7bDz/LyXhBxPkyK0kdIom0jFmhrMJ1gsISl6t/CPwIsIQyXJCT+SVwLMlnWZmD5ekfQfwN4LS2Q0cCbwVOEfSM83sqZj29/H3PGBFzLvAqn7q9CGCUnIjYWi+mWCqvwA4S9LzzCxXYzuBMHcEeGP888L+0ptZV9G5BwLXEwTjNcDP6Tts8Eoz+2NCNi8jmO3/CHwfOI3w8TpQ0oeBqwkK5n8TrArnAAfHIcx8Qn6/Igxj/obwYX054do8U9LLLL6psc7/AnyPIJB/TRDmZxGu8TmSTjez7Qll/IwwrHAlQZF/MfBBgoX2zcUJJZ1NUKQbgMsJAvYAwvPyEknPNrM7E8r4EkGgXw5cReg8vI0wJPucmGYV4T69J/79jaLz707IcyQp1PHPCXFXlqQZsbziVI1DCR/JIZkqIul4glLyFzNbE+d8/SPwdqB0qOxC4BWEj8h/EiyixN/tMX4ZsJC+7+CqknwaCe/ZPoTnYyeh49QfMwiyYzuxswa8GvippP3N7MtV5FGObxDathS4NKHOxLmi1xA6h3cCFxEUpBcCP5N0pJl9vIqylhLk4FME2VCWKCf2yIo4BP5bgpLxG4Ki8QyCQvby+N7vVXfgKwT5UHgnX0awKDVK2krofP6eIK+eD7wTSMd8S6n1PvyEMJy6BvgRQQH5B4LiewZwbkIZ04EbCN+i3xC+Fa8CLpKUN7NLixNL+g/CM7eVII83AccA7wdeLOlUM9tZUkZDvBbzCO9ilvAMfCGWV3iGl8f6/BtwD73fQCiSVQoLv5YSFLvlCW2qhYOBBcAjZpb0blxJkOPPIXy3R5Jz4u+9JeGvI7wPlwJTJZ1D+I5uAa4xs8dGroqjzGhrsUWa/fGElyhPeBH/EVjYzznL6O0lvbQk7t9i+NUl4ftTYpmL4S8g9Cy+VxJ+FhWGsylviTyI5GGbT8f0rykJv4AqLZGEF2pAvSvg/+K5HysJP40gWLYArQntywJLi8JThPkjRhBm55bk998x7uUl4ctj+CPAjKLwZoKVw4A3FoUvJPSadwKHleRVsF7/sEwZdwD7FIVPJiiHOWBuUfgMggV1M3BESV5HEiwKd5aEXxLLeBJYUBSeobfnfFLJOasYwHA2oVN0QY3HXhaJMnk/Hes6s0x8e4yfNJx5Ac+L9f4coWPTDuwufX4GcxA6P0a0pMV7tSGWNTUhfeEeLyqT33IqDGfTa/H7KzA5If4CylsijdDRKh7aO5DwrnUDByW8o8vK1KOPJbJS2Qlt/2BJeDOhk5AHjqvimn8i5nNZjfeqlfA+5oAzS+I+FPO8qkydV1FkvSYoRZsJndCngcOL4poIFssuYPYg78PrYvo76StDJxMs4EaJBbOojB8B6aLwIwgy94GS9M+O6W+k5B0veg6+XuY5vIKiaU+EznShU9RQFL6IfkZJ6JWxic9Pjff6JTGvy8vEvyrG/3KA+Vf9rSQo4hcQpohdF8+9B9i3JN3/xriPxmfLio48YaQvPZD61tsx6hUouTGvJlgdim/IFoKF8ZyE9IWX5uqEuDS987AWVln+vcDKkrCzGIASWaGMmTH9RSXhF1T7UsbrZMDNNV7fA+J5q0mYr0FQ3g14U0L7fpKQ/k0x7tqEuKUx7pMl4QXh88aEcwrX+m9FYR+LYZ9LSD+D3qkCTQllPC/hnAsp6XTQ2+F4Z5nr9vUYf0RR2CUx7K0J6d8c484vCV/FwJTIwj2o5VhUZd7dMX2mTPxTMX6v4cOhzItgESmu/3rghbVeqwp1mwzsIHwwm4vCvxrLe0fCOYV7nHgtqV6JPLZM/AWUVyKzJA/tFc75ZFFY4flYVqYcowYlkiCjssBtZfIrDPF9qYrrXujofaHG+3VuPG+v6ToE5f+JGF/cgSvcr39OOOeiGPephLhPxrilg7wPhU71CxLSPzfGXZNQxi6SOzErYvyUorDfxbAjy1y3u4BNZZ7DxQnpL41xRxWFLaJ/JXIBwcLcb+eyinv9eip0NAjWYgP+b4D5G9UrkRvoK4euBOYkpCsYPLKETtVRhI7PcwjTp4xhXkcxVo6xNJyNmf1K0u8Iva0zCNbJMwhm91dI+jFBUFrJqSsS8spJup5gKj+eoDghSQQBtYwgDGcQFM4C3UPRFkmTCcrJPxCG6KcQhmUK7D+Y7ONv6XXoj+Pj73Vm1pMQfw1hgdPxwI9L4m5PSL8u/t6REFeYEnBAmbrsdc8IPb9sUT0BTiiqWx/MbJuku4BnEQTaPVXUubDCbkZR2Knx91glu3IqTLE4nGC1GEgZA8bMLiF8IEeDgT5rNeVlZh8GPhzfmyUEi8CVkj5hZp8dgrJfS5ib+AMz6ywKvxh4L2FI+/tDUE4pnew9FFYNT1ry0N5ygtJzfELcUHEiQSaWc23WEH+rcb0y0Oen0nuflXQtQdk5nr1Xtw+lrKrlPpxAsEItT0i/gmBVTbpvj9rew8/QK0emE1b9QpBVPcA/SfqnhHMagX0lzTSzLUXhOyx5iHVAssrMavIoUOY5usSSpyPsdXqh2FrKHAhmNhcgups6jdC5vUvSS63vdKaCzrAe+Acz64h/XyPpVQRr9Hslfc7MhkSnGKuMKSUSICo3V8Wj4PrnlYSe5JsIPbHfl5y2sUx2BVcR04rCvkaYm7aeMLT7FMGSBb1znAaFpAaC8DuJsJjml4RhlILi9knCMMpAKQjEcgpaOQrXodwcs0J4ku+8HQlh2SriGhLiIOGeRcV/C2GYpcCA62zJ8yQL9SruOBT8gL2tTBkFWhPCqi1jrLKDMKl/Gr3zkouZGn+TPnJDnpeZ7SJYU86VtA/waUlXmdltVZRfibfH30tKyvu7pDuAZ8T50EkKyGDYlNDprYZaZNpQU3gfToxHOZLeh1LqXVbVch+mAVuTlIao+G6mr2wrkCRDiutVKqsyhG9IJVrp+w7WUsZwkFTf5QQraeGelHumC3Ij6d4NC2a2EfidpDsJU69+TLA2FtgWf/9cpEAWzr1H0hMEA9bh7G3cGFeMOSWyFAuLT34l6Wjg4wRzcakSWc4P1Nz4uwNA0mzg3QTF7jQzaytOLOl1Q1TtlxMUyEvNbFlJGfvRvwDoj9sJc3gOkHSo9V04VInCSzi3TPx+JemGkzmUWBBih2EmfZWM4jrfn5DPUNS5cO6xZjYQq9GwIuk4gjW+Fr5RRoku5WGC4reEMERTXO5+hGHgtWa2e4TzgjBMdDZhasSAlUgFh/snxT9vCoMRibydZCvWYBio9aQqmRYpLEbZS56rgjP1ChTy/rqZvXcA5xdzffw9S1Laql9MOFZkVS33YQewj6SG0pEeSRnCu1FNZ6wSOwjzM/cZZD4jipmVfekIcgPKL6o9JP6OuM9FM1st6QHgOEmzzGxzjHqYsI6inIwtKJktw13H0WbMK5FFFBS+pIdxaWlAVEjOiH/eFX8PIiwIuSpBgTwgxpdSEHq19NQWx9/fVlPXWjGzDkk/Iawo/wRhCLoskposrNAuXIczJGXMLFuS9NnxN2kV8lCzlDAHs5gzCc/kXUVhdxEWWZ1FWAG+h/iBPI4wZPjgIOpyM8HafSYDG3qslhxhuKlWjqP2jscllBdwxVxD8BpwNiWKH8HjQSFNNQxlXtA75aP0Oa2VghVyOcEVShKvB14n6b1m1h7D+nv3cxBkTQ3KUbUskLQoYbjvrPhb/I4UPljzE/Ipt+tPpbbdSlBMz+y/mv2yAniIMN3kzYQFJIlIShEWI/TQ276zKFnVHRWygmwfbllVy324izD38VmUyKoYlmbw9b2Z4C3iSDNL6lQPBQP55g2GxwkGhSWSDkyYPjAQ2TGUzIu/xe/41cC76GudBPY4Ti8ovquGtWZjgDGz7aGk10l6fhQkpXFz6R1qvDbh9OdEdxDFnE8wJ//NzFbHsFXx94yoZBbybyX4XUxSqgtDAguqakjfcs4qDpR0EMFP4VDwccKOPudK+nJ0+9MHSbMkfZMwHwwzW0uY/L2IXnczhbQnEz6k2whTBoabT0jaMw8nev//fPzz4qJ0lxGmAbxL0mL68mnCUMdlVuTGaABcTFC4PinppNJISSkNzfZwWwjzlWrqnZrZJWamGo9VVWZ/McGqfb6KtveL9+aj8c8+cwXjc3WYpFmDyUtSk6TTkiol6USCK648JS6D1Ltl3wX9NS5e63MJH4BzzeytSQehw9dKWGFboL93fyCyoVrSwBeL5WF0z/VuglJ9WVHa2wnX6fWSJhWl34fggiqJsnU3s03ATwnutj4RlbY+SDo41qciFtz2vCPW+ZuS3qAEU7CkIwhTmAodh98TVkC/TtIpJcnfQ+jw/7XWuXkDoJb7cFH8/XzJfZhEmFsH/bg5qoKvx9//kjSvNFLS5ITrVSvbiIuWyiWQtCDKgEnl0lRLnO5RkAtfKrnWLyd0Zh6gZB59fAYPi9PHBkzMYy+Ld5T7nyVMQbjRzLYVRV8JrAReKOn5Jad+gjA0v8ImwO5LY8kSeTJhIcqGuCCm0Bs5kOACoIWwrP43CedeTpi/8DvCiuxjCT4BtwL/r5DIzDZI+gVBqbpb0lWEm/18gjXrboLVp5iHCfMmXyupm9BjMsJq5dUkU/Az+N44DH8X4YV8KcFn5KA/Oma2UdJzCcL2/cB5koq3PTycoMQ20Xco9B0En2RflvQCwgeo4CcyT3Bw28dKO0w8CNwvqdhP5MGE67PHQmlmqyS9h+Ay4U5JvyLML11KmGT+EMHlx4Axsy1xMvTvgJslXU0YOs8T7tWphGH25sGUQ+i9ngj8WWFhQGHHlMsHme+AMbMnJH0A+CZwu6Rf0rtV4QHAV82s1Kp4PsEyeiFhlepA82oBbpD0EMFCs5bgEPlwev1JfsDMHiopv/CRqcZC+RrCvLnLzWxdhXQ/Ilj0307oUEK4Xx8gfLB/Q3AFtN3Mvl0U/0/A/0i6gjC3erWZlVrYB8K9BJl4R5GcKrTlg2a2x6JqZusl/ZTgO/ZuSX8idK5eTOh0Jy3m+Bvh+f68pKOI1kwz+0yMP59gTfkU8MYokzcSrDKHE57j11GFz0szWyHpHwnv9U8IHcjlhPd4GsFaejJhlXJHPKdd0lsIfmFXSPo1QbY9gzCMuIHg5H+4qeU+/CwqPa8myLbfE74VryB8x35lZj8dTGXM7GoFv7yfBx6Nz90ThA7QQoJcvJ4wGjDQMtol3QKcGZ+rRwidsD8UTff5cSzr2SQvJKqVrxG+j68CbokyeAHh/doNvMX29jd8NaHNB1Jk8ZN0GPDhkrQz1Hcv8PcXDU2fTfgeXkuwim4hTGNYSuisbKBkvryZdUs6j9DxuTLqHqsJ78WzCM/225kIlFu2PdIHQZF5J+FD/jBh7kg3YQL1FQQBnyo5ZxnRtQXhAbyJIIi2EywLSxLKmURwPPsYQXFcQ1BQZlLGZQfhwbiaMB8lT5FrDMq414jt+Sm9C3fuJzi6zlCjy41+rlsj8M/xGq2P16yNsIPKN4GjE87Zn+C8e3VMv5mgjJ6YkDaxfTHuLMq4MqCMmwh63e+U7lizkrjgqEw7X0B4YbfRu9vCl0jeoSHxPlbRnkWE3Ssejc/GToKS+hPgFSVpL6GM+5dy14UwJ/B7BGUpm3R9RvH9O4fQ02+jd5eN88qkvSCpfbXmRVjI8AmCH8W18Zp3xHv7YxJ2konn/Y7wUdvr/U5Ie0Os68uqSPtwTHt8Udh7CR2erhi3qiguTfBruZLQEerzXtOPSycqu/hZTlDYLiM4k+4kKNrldkppIuxGspbwTj9G2G0mUd7Ec95A6Dh3xDRWEt9IUCZvJMi+LoIidzXBGpjoD7RCe2fG+30j4UPdQ+jo30gYWZmdcM6J8X4/Hdv1ZHyH5iWkvYTy72TitY5xy0iW4QO5DymC4eJ2gvKzm7Ai/J1U2LGmTF6V2nMGwX9lYb/5p+O9/BrwzJK0ZZ/DCs/gYoIxZAu937xlRfHLy13PgR6ETuWF9O4w9jShE3FEmfSrkq4PlXcIs9JzCEPS34nXbzNBNu8gyK0LKPI1nFCHIwgLZzfF+7AG+AElu9+N56OwDVRdImkZYQjtzRbcoDhjnGiBWGqVJ1o7TiJxKPRpgr+9V492fZzxiyQjDEmeNdp1cZyxypiZE+k4jlMFRxEsWp/vL6HjOI4zvIylOZGO4zgVMbP7SPbQ4DiO44wwbol0HMdxHMdxaqau50Q6juM4juM4o4NbIh3HcRzHcZyacSXScRzHcRzHqRlXIh3HcRzHcZyacSXScRzHcRzHqRlXIh3HcRzHcZyacSXScRzHcRzHqRlXIh3HcRzHcZyacSXScRzHcRzHqRlXIh3HcRzHcZyacSXScRzHcRzHqRlXIh3HcRzHcZyacSXScRzHcRzHqRlXIh3HcRzHcZyacSXScRzHcRzHqRlXIh3HcRzHcZyacSXScRzHcRzHqRlXIh3HcRzHcZyacSXScRzHcRzHqRlXIh3HcRzHcZyaqSslUtJHJf1oqNNWkZdJWjyA89olHTQUdXDGNpLul3RWhfgrJZ03glVyHMdxnGFl1JRIScsk3Sdpt6QNkr4naXqlc8zsc2b21mryryXtYJC0XFJnVBgLx6mxDq1mtnIAeZ4laW0V6U6SdIWk7ZK2SrpV0psH0o6SfJdJun6w+cS8FkUlPNNPuiWSfi1ps6Qdku6V9F5J6aGox3BjZkea2XIASRdIuqwk/kVmdumoVM5xHMdxhoFRUSIlvQ/4IvABYBpwCrAQ+IukxjLnVFRCRpnzo8JYOG7q74TBKkdRUb0GWAEsBmYC/wq8aDD5jgaSDgZuAdYAR5vZNOCfgGcCU0azbo7jOI7jlMHMRvQApgLtwKtLwluBTcBb4t8XAL8BLgN2Am+NYZcVnfMmYDWwBfgEsAp4XtH5l8X/LwIMOA94EtgMfKwon5OAm4DtwHrg20BjUbwBi8u0Zznw1jJxe84DLgG+B1wB7AKeB7wYeABoA54C3g9MBjqAfLxO7cC8hLyvB77Tz7V+G/AYsBX4Q3E+sW7vAB4FtgHfAQQcDnQCuVj29pi+CfhKvH4bge8DLTHuQ8DNQCb+/a/A/UBzTG9FbTk1oZ6XAX/qpy0vi3luj9f88KK4VYQOyb3x2v43MAe4Ml7bvwIzSp6FtwPr4v1+X1FeTcA3Yty6+P+mGDcL+GOsw1bgOiBVVIfnAWcD3UBPbO89pc8JofP2ccKzuwn4MTCtmmfVDz/88MMPP8bKMRqWyNMIysX/FAeaWTvho//8ouCXExTJ6cBPi9NLOgL4LnAusB/Borl/P2WfARwKPBf4D0mHx/Ac8O8EJeHUGP//amxXNbwe+CzBunY9Qdn5FzObAhwFXGNmuwjWxHXWa9lcV5yJpEmxnr8pV5Ck5wCfB15NuD6rgV+UJHspcCJwbEz3QjN7kKBc3hTLLkwx+CKwBDiOYPncH/iPGPdlguL0cUmHAJ8D3mBmncCzYprpVt5K+7x+2rIE+DnwHmBfgiJ+eYnV+pWEZ2cJcA7hWfoo4Z6mgHeXZPts4BDgBcCHJT0vhn+MYBk/Ll6XkwgKH8D7gLWxDnNi/lacqZn9Obb/l7G9xyY0aVk8ng0cROhAfbskTbln1XEcx3HGBKOhRM4CNptZNiFufYwvcJOZ/d7M8mbWUZL2VcDlZna9mXUTFBqjMheaWYeZ3QPcQ1ASMLM7zOxmM8ua2SrgB8DSGtr0zTgvcbukOyuk+18zuyG2p5NgrTpC0lQz22Zmlc4tZgbh3q2vkOZc4CIzu9PMuoCPAKdKWlSU5gtmtt3MngT+RlCc9kKSCFbNfzezrWbWRlCUXgtgZnmCVfjdBIvnl8zsrirbAmEovlJbXkOwVP7FzHoIFtEWQoekwLfMbKOZPUWwEN5iZnfFtv8OOL4kzwvNbJeZ3QdcDLwuhp8LfMrMNpnZ08CFwBtjXA9BIV9oZj1mdp2Z9ffMJXEu8DUzWxk7Tx8BXlsyZSPxWXUcx3GcscJoKJGbgVll5jjuF+MLrKmQz7zieDPbTRjWrsSGov/vJliACos6/hgX+OwkKEizkjIow7vNbHo8TqiQrrQ9ryQMaa+WtKKwIKcKthGGu/erkGYewfoI7LH0bqGvtTbxeiSwLzAJuKOgLAN/juGF/FcRFNFFhKHxWthCbW3JE65lcVs2Fv2/I+Hv0rYV34vVsYy9yiqJ+zJhesBVklZK+nCFOlciqYwMwbpZoNp74ziO4zijwmgokTcBXcA/FgdKmkwYxr26KLiSlWc9cEDR+S0Ei9ZA+B7wEHCImU0lDFNqgHlVonTo8zYzezkwG/g98KukdHtlEhTmmwhKaDnWERYrAXuu70zC3Mua6klQ7DuAI4uU5WlmtkexkfRiwhD71QRlq1xeSfyV2toiYD7VtaUc84v+vyCWsVdZxXFm1mZm7zOzgwhD5u+V9NyEvPtrc1IZWfoqvo7jOI4zphlxJdLMdhCGCL8l6WxJDXGI9deE+WY/qTKr3wDnSDotzo27kIErflMIi3faJR1GWBgyrEhqlHSupGlxiHYnYW4mBGVipqRpFbL4ILBM0gckzYx5HiupMO/xZ8CbJR0nqYlgXb0lWgz7YyNwQGHOYbT8/RfwdUmzY1n7S3ph/P8swvzOtxIWhJwTlUqApwlW00r+Mj8JnCbpy5LmxjwXS7osun36FfASSc+V1ECYm9gF3FhFW8rxCUmTJB0JvBn4ZQz/OWFu576xXf9BWPiDpJfGeone+5VLyHsjsEhSuffr58C/SzpQUiu9cyiTpng4juM4zphkVFz8mNmXCNa+rxA+xgX3Ls+Nc9iqyeN+4F2ExSLrCatwNxGUi1p5P2HRSxtBWfpl5eRDxhuBVXEI/R3AGwDM7CGCorEyDh/PKz3RzG4EnhOPlZK2Aj8kLDrBzK4mrFj/LeH6HEycw1gF1xBWQm+QVJhe8CHCUO7Nsb5/JSz8IJb7v2Z2hZltAf4Z+JGkmdFq+lnghtiWUxLa8jjBirkIuF/Sjljv24E2M3s4XptvEayi5wDnxLmwA2VFbM/VwFfM7KoY/plY7r3AfcCdMQzCQpy/ElZd3wR816JvyBJ+HX+3lJkjexGhs3Qt8ARhNfy7BtEWx3EcxxlxNLB1AWOPaNHZThiSfmK06+OMTaLV+yldws8AACAASURBVAmgwS1/juM4jjNw6mrbw1IknROHJCcTrJr3Efz1OY7jOI7jOMNIXSuRBD+SBafQhwCvHaDLFcdxHMdxHKcGxs1wtuM4juM4jjNy1Lsl0nEcx3EcxxkFkhx+O44zgVgs2e4Bnrse/s/Mzh7SCjmO40xA6lEWuxLpOBOc3cDbB3juhbXt7OQ4juOUoR5lsSuRjjPBET6vxXEcZ7SpR1nsSqTjOMOyx6fjOI5TG/Umi12JdByn7nq/juM445F6k8X1Vl/HcRzHcRxnDOCWSMeZ4NTjPBzHcZzxRj3KYlciHcepu3k4juM445F6k8WuRDqOU3e9X8dxnPFIvcliVyIdx6m73q/jOM54pN5ksSuRjjPBqcd5OI7jOOONepTFrkQ6jlN3gstxHGc8Um+y2JVIx3HqbgjFcRxnPFJvstiVSGd46dySAtKEZy0dj3KdLSv5LQ0vWPsLeRQfSvrbLC+6tikh7zyQi7/Zkr/zQI+mL2mrvcGO4ziOMzEY20pk+5oFwCuAi2md3xbDpgPLCB/8HoJSUKxcFP6foVehKKCSX+L5qZIwFR1WkiZfFJaLv+l4XktRmkL9ciXnpIBGepWqQjlNQENJW4oVr+I6FStNGetu24jlFsXzC+0ttMfYu22lFK5T4ZoVK3tpMi1/V9OMY2K9FctJJxyFPPpTFkcQ7QCmDeDEu4AThrgyY5J6nIfjOI4z3qhHWTy2lUjYCLwXuLQobD/g66NTnbGK3QCcPnzZ22bg8GHLf2zSM9oVGEnqTXA5juOMR+pNFo9tJbJ1fhfta74LXE/7misJVr1Zo1wrp74Y6BST7JDWYoxTb/NwHMdxxiP1JovHthIZ+BbBGvmB0a7I2EWlcwidwTNhlMh6HEJxHMcZb9SjLB779W2d3wF8ZbSrMaFRut46R0PBhGqzBng4juM4Q0e9yeJ6sEQCfB/4CLDPaFdkjJIf7QoAmFkXln8YzFDKFCyk8TDorWdhoRH0Ll4q/n+hQ9YbrtSJA6zWQN+vpgGeV5eM/d6k4zjO+KfeZHF9KJGt89tpX/N14NOjXZWxyZixCW1k+yPHANC8z200Thmo4rc3mUlDllWVNI90gY7jOI5TT9SHEhn4NmFe5NTRrsiEwmwr+Wyb5Xpuo9dKWDQH0+I/lief7QEWFEcMXT1y15nlc/S6N7K+pVifv/b810zAswZQYj29G4OiHufhOI7jjDfqURbXz4eydf522td8C/hYv2nNOoFbCffkOKQpw1y70UXYEKtsxWyiY9NL6Ng0bAVURa7rTLIdq4GFI1TimDHvjgQTqrGO4zhjlHqTxfWm9H4D2FUxhdm1YD1gzwI7E7gTs9UV0o+Dlc3D+tjNH87Ma6Te3q+6oXT7n2oPx3EcZ+ioN1lcX9+B1vmbge9VTmQNQJHl0ZaCrcXsob2T5u8Ay2H5Hiy/Hcuvx/IPYLYiMf2YZRh1K2kyaMMAzqx35bze6181pftF1oPgchzHGW/Uoyyun+HsXr4KvIvyq2dnJ4SdDvYwxl3x72ZgX0L7C9dgejz2K5pPtwG0EelYzHYDmwgri2chjZ25mdLwWuhSmXXke+bWdM7wWHhH0hI5Jla8jxRu4nUcxxl96k0W158S2Tp/A+1r/gs4v0yK/cqEH5pgXOpv95u5YLPiHMsGYFEI1gpgaTXVHSGGWYlMt5OvcRfAensTJjD1OJnbcRxnvFGPsrj+lMjAl4B/ISh2pewChtIfTLG1soAwuyGWMwNIAz1IBw1huaOKdWxdgWUF2kW2s1up1LXsUQ1Nlu3pJJXqAaaQajA1TD6zbw7DbB0dfurtXR4UE6qxjuM4Y5R6k8X1qUS2zl9D+5pLgbcmxK4mDFUPI5bkMmYdxgqCQmmE4dBjkaYPb12GiV3rDyLXNZ9c7lpgHlPmHNsnvnP7QzRN3kYqcyp5uxkmj0StRnKe4oTZ9tBxHMdxBkJ9KpGBLwBvYS/FXRqlNRHzwOaVhN2E0Z2QtnhnlkJlM0gNQBdhvudCYBrVOL1WKkeu66aEMvb6v+XzeVbekgYTsw/eTvPk6b11UDtY0AYbp7SjqevYtn47XbtkbW23hHxMTJmexXLT+nEs5JbIOqLeb5bjOM54oN5kcf0qka3zH6d9zc+AN5TEnAA8Dhw88pXai1NrUGgfRZkZSL3zNM0ewXIbQz6V7pXS5LOnVlVKPt9DT0eYBtC18x7SVmxhfBQ4BIBUZqWUOsjCSvUzaczcjhTq0LX7MDKZNfTdrrCUel/dnB7tCowU9TgPx3EcZ7xRj7K4fpXIwOeAcylWYiRh7AbrBhpHq2IDYC75nvtAwbVQKrMQaQnKLMHsISzXzJ6FPXtRW+dl9sIHAWhsLlW0hVL3A9CxdYtZvpOGdDuZyQ+Qy+8EKyxaepS2nW1kc520TFqJ1G67t6wGTAecmQJBKn10TXUae0wYJRLqr/frOI4zHqk3WVzfSmTr/AdpX/Nb4FV9wqWjMa4HO2N0KjYgpgCn9Rrw7D5QcPQtHQbpTiy/AmwBcOCAS5HSNE8+vExsWkodCWCWewRYQjr1NKSOgOw28rnDYx7bgLVke3ZguYMwNqNU2Ekm1TCcHodG0ro5oVz81Fvv13EcZzxSb7K4vpXIwGcpVSIBpDMw7gMTcNSI12qw5LNTUep6UpmgCEvNKL0UM8DuxWwbWDNwci3ZSkpZy6yNIJHKPApaTLbjXjq3HAO0ofRmQKSb2zHbRNfubtq2bSaT6aB1ypaYTYp9Zs3H8tv3LsFyoOGx4qWb9yfXeTvwDIa/w1Zv7/KAqcchFMdxnPFGPcrieqvv3rTOvxv4AcEReF+ko0GzgIdHulpDwEIgt1eoBEodQyq9FKWPNuOvZDu7aslYSs9RKj1bqFnSHJRqAuYAYU6mNANoRZoNasRsFrncNKSZ8ZiE1EgqfQKpdDup9OFIbUjbLZ/fu85DhKSMMi3PhNR1w1VGERNuOHsgh+M4jjN01JssHg+WSIBLCH4jbwTmAmuB4IZHmouxtS7XeVj+BHI9K0g3LLV8zyN07ZhDuGfbgS5IbYX8ImAxmZZbyXU3YLnjq8g5G/MJF6VhkqnlMOjdJztFx3b6XLN8fs6e/886crvSjb1/F5NK16TQDojiNe3DR/13sBzHcRxnGBkfSmTr/JtpX3MV8IIYchCwEtgKPBPYTFC86s1n4xQgg5mRz7UDS2J4dMqY73VurtRJZJrB7Eks9wS5nvlgha0Z8xRNtgR1gZqCSx/WiNQuzJ4kOG8PaVPpHeSzT6FUJ+hJII+xEikFKtqbvATLrTajATMLyp5lY55ptGeYO7g3Miz6JO91eWT5DiCLUjOUyiwoU0p3rG/h3EJHLEewpg7FlpQTytA2nBqzpLOB/yRYd39kZl8oiZ8GXAYsIMikr5jZxcNYJcdxnDHJcMni4ZLD40OJDHyKXiUSgiI5F9iC9CzMrifMH0za5WYMY6eT7+lGmaerSi4tQJkFpCrc2lRDF1ITMJd89lrgxVhf39raZ8kBAOSzjzG7Kyhz6abH+t2Vp6ctKLq57hvBTqtc19R1KH1mclzmWpqm9VEizewRsDy5rlayu5MVzEzr9Sg9FAuqJowlcjjn4Sh0HL4DPJ8wQnCbpD+Y2QNFyd4JPGBm50jaF3hY0k/NLMnHquM4zrhkuGTxcMrh8fOhbJ1/A3B1SegkYCYASp0B2gK6FXhshGs3UAxlbiHd8jSphuOARwh13zW4XO3x4DbIHiJp3mX5EzfXUkoVacpb+yzfYvls3/vUtS1Lx6bDyO4+pYZ6DJQJtTp7GOfhnAQ8ZmYrozD6BfDykjQGTFFY1t9KGEHwHYMcx5lwDJMsHjY5PJ4skQCfBp5bNlaaC8zF2A52D3Bs2bSjTarxWpQ+BulkCJ55mDR3DoB1bVtBrns62ByCtbU2LDsFi/MfLb8ape4iPEANKFXev6NZVw2DvP2nNFQ+Vf5Eunf+3Rom3xHLzmL5KvZEH7LJkhNLiUwNcPQ+3+/13h9YU/T3Wvb2KPBt4A/AOsIUjteY2YS6/o7jODBssnjY5PB4UyKvjUfS3ta9SNMxdhDGcMfYNUg9RrqpDalsG9Q0YymA9bTfSLZjNWBYrmrrnGW77iff/TQNk49WtlPkOg8CpqH0KppnVDgx31jDouX+3wT1p/HZUfS09/6Zz/4ZrL1C3gZyC9YAGLhvT5sl6faigB+a2Q+Ls046qeTvFwJ3A88h7DT1F0nXmdnOAVbKcRynLhkmWTxscniMKVCDpHW+0b7mk8Df+k0rLcTsVoKZd7TpJNV4S7Q8Lq72JDW0nkZDK2b5djr29nAEYLmeW7FsF6mGSViui57dWTq2nAn5yUC7ZZqhcVqPsOtQqpviXXEsfy/5bGfR3xU0zL2LriFtlTnml4BVnpOJXT9EpU2YhTUSpAba+82x2cyeWSHFWnpX/QMcQOjpFvNm4AtmZsBjkp4ADgNuHVilHMdx6o9hlMXDJofHlxIZWAFcD1SzuKKz/yQjQKrhdlKZpYPIwUg1XgsY+e5nEOYzBHKdHexaXy7vVrKdLyDb+ZRNmrVQSrfQvXMjYBgPQH4uqLl3kY4tJNdzbVSvLK6nTkJgs6uodYXh7ESqmcM7VMprzxDlUxcM4y5DtwGHSDoQeAp4LfD6kjRPEqahXCdpDnAowbuC4zjOhGKYZPGwyeHxp0QGa+SngKuqSD0WrE15M8uS63qQfPdWzAwsD6kUDZOPk1Kt/WUgpabQvM+zAGz3hnVEJdIs/whdO2ZWUYf92b15nU2a/YBS6ahw2hbgCIJSXqAFyy0GzdsTMjiVrdbrX0VpQ2YAHT+LzkYRM8tKOh/4P8JciIvM7H5J74jx3yfMZb5E0n2EZ+JDZjUt4nIcx3HKMJxyePwpkYG/AjcBp/aTbtQn75vl1tO94xDCxNe+ZNsft+Z9t1bwl7g3Da1PYPnHbOfqJrq21bIl4jy6tj9mzTPayXY+CNqoVMNmzLrIda8wy3WSzzbT3b2TTNN9apnSTFgl3lfJVfoZSJOrLLNWJXIkLZETCA18MncVmNkVwBUlYd8v+v86+rrnchzHmYAMnyweLjk8PpXIYI28EPhz5YRaCtb/Qpxhwsygp72H4nmIfdmXrq33W/PMVim9TzV5qqH1dADLtNxM17baKpTrfha7NgKcSMPkv1O857hSV5BpEZtWtZBpmkHTQc+wbOefyXWnCMpgVg2TM6QydwG7sVyL5XrayHX1KplN0029A9h5MpPLOy1Ppn8FcehUyLFgpR4xhnE423Ecx6mSepPF41OJDFxFf9ZICdCzMHsMbDdwzAjVDTPrIddxI1BpLuRULHcq+dyjpKtTIvegVJXqlLKafsgN1vH0TLq2HVU2FWZYLm37LtpNtqcZpW9EmS7STAPaITWVVEOKXNdiLL+FfPdicj3XYrleBT3b0YPU6+w9M3ksD1m2jHYFRgwNwq2E4ziOMzTUoSwev0pksEZ+mhLzbSLSYoynwJ4kbPkzLJiZke+5jVynwI6jsgLZS9cWWfOsleSzO7HsLpRpRulWLLebXOdOEKTSGZSZRK6rDfKG0jtQ6kEsP51U4zqkPLmuE/fk2XrAjWqZlaehdZ6UWsqkOTtt8z0P0b3zMGAtyvRVKM2mIE5XpuFOmqdnASmdnwSZU4G/o3Q3wXrXDcqRbryNfG43tseX+UrgwN4MtZPSofCRYSuwNpafB1Jgc4HSVfETZrcUUX+9X8dxnPFGPcri8atEBv4M3E7YP7sy0v4YPWA3AKcPZSXMzLDsPWQ7BDYQl0KL6ezHaBd0tSdpnN4IZmptPUpTDigsqtnPzLAdj/9V6eZmWmaqMOxdQNJUZh2bs7YnrybfM0uZ5i2F6sffVuAuy+e20/bkPgTj5BzSDZcrM2k2qVSw3OW6VoN2kW7Yh0zTHPKZ4Mg8lZmn4rcj3XwbmUnTAVVco128AjzVCLANlOqtl8U/499Kt5JK38UeR/4qzKPMgPaTtA/Qx6obXBrY3ynSeEF52lZ/mSkLP1C2buOIeuv9Oo7jjEfqTRaPbyWyd6X2H6pKLzVgHA72MGF5+6Axy2+hp209cNxQ5FcZbVO6MXEXHklZTV8yG6nskL2kGUxZcAwdT+/GsgsTE6XURSqzjlx3sCrmenaR6j4BS90HagOOBVsHHCGlIZ3gnFype5k853Qp1VxT81Lltj1PxakJAyMot0oayh/Lw+1Dh1R3vV/HcZxxRx3K4vGtRAb+SPDCXp0SJ+2DMWkotkU0y++kp20nxQtUhhKlb0Sp3h1aUg0VVi/rLqQTy8fHVNK+1rLvejo2PYXl9loxLqnJpszvYfvKHrAGYCot+95IQ8skSM0g+JoCcS9Gjs6tGXKdRVspaiWt+8+uWYEcHarensdxHMdxJhrjX4nsnRv526rPkZoxDgF7BFgy4LJ72lcynBbIpumHSOl9q0tsJ2D2WDU74kjaz1pmP0nHpo1Ybs7e8aklNuWA62lbe4r2PW4DqVSGfPfh7OXuB2iZlSe7ewWdW5cC3bTOk1INte/37QwrA94lwXEcxxky6k0Wj38lMvB7oK/Lmv6QJmFsG6jPGMt13wk2HBbIJ0k3rwIMUrXM3UyHYebqtlWUtMBaZj9J5+bHyPfsdY4yzWfYjCWPqXnacyFaXc2ewrJP07MrBXZMzChFw+Sl5HtugFRe6aYza6jzaFNfb/MAqcfJ3I7jOOONepTFE2NXjtb5eeAzAzjzZODaAZWZ724HGgd0bkW0TY1Tn6XGqUsl1dgJsNMwu67qkqQFNM/MA10lUTkaptygyXOn9KZNTVUqvb/STcfRNOMYGqbcC/r7njOapp9O04xdkNoFqQ5IdZYcHZDaQph6UCvuYHwwRLcSAzkcx3GcIaIOZfFEsUQC/Aa4Hziy6jP2+JHMV7sXNxCdiCfMJxwkT5CZvJ5UptrdYJLIQP4MLHUn0gnVnaKZZFruJdtRmE9pNM/8mzLNzyt7hgTpxmOM1vvpab+WVMP+BNc/z+3jJ3JvWrBUA+QfIGwQL/quz44rrkkBDfR2gobrDcr2n2R8UG+9X8dxnPFIvcniiaNEts7P0b7mM8DPaz9ZJwUXMFUOh1vuMfb2Ozg4lFmrhskDGwo2I+zMYwuA9ZDfBZlq50fOpGnGTGuc3gP2ILmuLUo39dnhJwxl59vptQgGZc9sE6mGwir3Fsg/baZGKTWrQoFTIX3EgNo59DSNdgVGBrcqOo7jjD71J4snjhIZ+DVwAdW779kFrEY6GGMt2MFUs5NJrnM91SiR6ZbraGgVSjWS7eimZ2eytTOVuY6GKbVZNs12gd0BNpvgQL2g+C0CA+sBS92C0g3AwcB6oJ2gOKWQ+lhsBZ1Yvo1Uw3SkvsP0XdvuIteV5Dh9v72DdA+NU8srkWOLCbM6u956v47jOOORepPFE0uJ7LVG/qSK1I8D64AzgQ1Iz7e2jTfaxgf2Y/K+mzTniGMlJQ8tm/U/17Rx+i2kGrqVbgwLU9KN19JTJq0aTKmGgxLK2Q62FqUSLKT52+l3R5z8yVi+8Me0vnnrXpRpB9KQ78FypwOno8zA5ojWJ/X1NjuO4zjOCDKxlMjALzD7CLAorMA2wB7E8ptQ+kBgQXRcvZZeJSy4pJk065n0dLZr1uJdfRRIszzwBLAQKaPGqc1Gfn2wBiqDUo+j1IkE59VZIC/pZFLp+/bkkWo8gkn7PUTvvD+FSZmWJ9vVgOUfBAyzDUhTMNsNdgKQ3rMpS2jL7WDdwDMGd5nsGCxBq5USFOSadK16Uszqqa4DRnW4X6sz9Eg6FPgFYRTlY2b2zVGuEgCSlgOXmdmPRrsuA0GSAYeY2WOjXRenMpLagWPMbGWZ+PuBd5rZ8uEpv/5k8cRTIlvnZ9nx+BeBrxIW2iwEDgcOj1a5O1DmWKxnCUrdAWRBWZTqoX1jJ9nOs+3hq1qtcfITNE/Zpubpu5gxf5fSDWcDt2PKovTJItWOaACmIW0Ic/2YuqceZg/R3dZC2FN6suBp0pPWkW44BmluTNON2U2kUkvj39vBFmJWbAHtxqwb7Ka4B3T/WzwOhnyulXSpHlnL4mibarnOGyHVpHTjIBXdYceHs52akPR64L3AYUAbwdvAZ83s+mEudygUlQ8Cy83s+EHW5RJgrZl9fDD5VFnWdOBrwIuByYRpOf9tZl8c7rKHCkkvBD4GHA90Ag8AXzWz6nZaK5/vBcBiM3vDENTxLIIif0A/6U4iTBk7DcgDjwHfM7OLB1uHkcDM9vg6TnqOzaz6hbkDpN5k8cRTIgM/Az4JJO3g8gws+zDQhOV7lRzL30S6YV74f66Frp0H0rXzQOtqW6l9FmQx2wLsRswEux3Lt0VLYQOmOaQa8kgpzHaRz96H5Y4Dindt2UW+6wysZwuZSbuw3J1Y7igK1tBgZXyY4HaomIOx3G6kfoauB4Z171xBvufA+GeeMOxd3Esz4Oi9TizPInJdi4AHSA+DB6ShZWK4wKL+HNyORSS9F/gw8A7g/4Bu4Gzg5cCwKpGDQVLGzLKEDvUvRrs+NfJ1gvJ4OLCDsDnE8OwQNgxIehVwEaHjcQ6h43Em8Aaq3a53jCDpVOAvwKeBNwFbgBOADwF1oUSOBepNFk+Yj2Qfph2cBT5XIcWhoEWE4eebgRWgeVAya7FlxiOpg5cepFRmCdiaEKgjgRzpximkWx5CmW5SDWuRUuSz15PrymK5U+irQAKpbkBg8y3f9TfLZ6eb5YNVwawd7Bb2ViAB7iD0xgeNWX6n5bOPWz63ziy/M7oqaiIszFkALAIOBA4qOg4G9hlAcfXw7NXX2zxQ4n6tAzmcgKRpwKcIQ13/Y2a7zKzHzC43sw/ENE2SviFpXTy+Iakpxi2TdH1JnqboQUHSJZK+I+lPktok3SLp4BhXmKd8j6R2Sa+J4S+VdLek7ZJulHRMUd6rJH1I0r3ALknXAM8Gvh3zWCLpJZLukrRT0ppo2Squ3xkx3+0xfpmktwPnAh+M+Vxe2pai9nwm/n+GpD9KelrStvj/ihavIk4EfmZm28wsb2YPmdlviso5TNJfJG2V9LCkVxfFtUj6qqTVknZIul5SS4x7maT7Y9uWSzq85Nq9X9K98bxfSmouiv+ApPXxHr+lXMUVXqCvAZ82sx+Z2Y7YhhVm9raYJiXp47GOmyT9OD5rSFoUr+t5kp6UtFnSx2Lc2cBHgdfE+3BPDJ8m6b9j/Z6S9BlJ6Rj3PUnF1+6Lkq5WmLp1JTAv5tUuaV5Ck74MXGpmXzSzzRa4w8yKr/nbJD0W78cfivOJbfl/kh6Nz/inJR0s6ab4DP5KcVGnpLMkrZX00djuVZLOLcprWrxWT8dr93HFqViSFktaEe/dZkm/LKnD4grP8SpJz4v/r/Q+F+r3vnjf1kt6c7lnoeihqDtZXA8f8uHiJ8Dqykk0C3QK6DSwNbRM36qDl16heces0L6HXq+pczea2U7M/g7sC2pAmcch1R3nLHYg3Qq2A7iOYJl4FLgN2AW2EuyGoCDmM1i20bJdf6S77Syy7UeT7+mJTiefIFmBhOAvcWjIdT9M946D6d4+j65tU+naCpY/Zcjy70s9aCCD8clZN4j6c3A7BjmV0DH8XYU0HwNOIWyFeixwElDLkO/rgAuBGYRhws8CmFnB88KxZtZqZr9U8AN7EfAvwEzgB8AfCh+5ovxeAkw3s+cQZNT5MY9HCN4p3gRMj+n+VdIrIG5EEBSLbwH7xjbdbWY/BH4KfCnmc04V7UoRLFULCZ3VDuDbVV6Tm4HPSnqzpEOKI6Ly8xfCyNPs2N7vqtfzxFcIc8dPI3SEP0iYr76E4AruPbFtVwCXq69XilcTrMwHAscAy2KZZwPvB54PHAKU9adL8BIyn+DDuBzL4vFsQqe9lb2vzRkxr+cC/yHpcDP7M8FQ8st4H46NaS8lzMtfTBg+fwHw1hj3PuAYhc7AmcA/A+eZ2S7gRcC6mFerma0rroCkSYR3oGxbJD0H+Dzh2u1H+P6WWr7PJtyTUwj344cEZW4+wcL8uqK0c4FZwP7AecAPFeb1Qngup8VrtpTwHBeUuE8DVxHeowNi2j5U+Rz39z7PjXXYn3AtvyNpRuLFidSjLJ64SuS0g7uBL1SZugE4Q3CGmqdN1oyDGjR7yWLNWnymwlzH7cBksMPAnkCaQnhRT4ZUFqWORKkzUWoSqcwzUfpQsAcID/jpIZ0tDpN58y8G7gEgn51r2G2UHy7OGqTM8pstn1tnPbuus3z2CcvnnjLLbTDLbQqWxeyTZvnNA79Yw8Ik6+m4w7J7jtss1zPWJp5XuS95/VNvvd8xyExgcxwWLse5wKfMbJOZPU1QCN9YQxn/Y2a3xjJ+Svh4leNtwA/M7BYzy5nZpYSdp4o7hd80szVm1pGUgZktN7P7onXsXoJiVZg2cy7wVzP7ebS4bjGzgew2RTz3t2a228zaCMpxtdNz3kW4FucDD0Qr14ti3EuBVWZ2sZllzexO4LfAq6JV6i3Av5nZU/Ea3WhmXcBrgD+Z2V/MrIegbLYQlM0C3zSzdWa2Fbic3nvxauBiM/t7VL4uqFD3mfF3fYU05wJfM7OVZtYOfAR4rfruVnahmXWY2T2Eb8exSRlJmkNQBt8TLeWbCNMBXgtgZrsJw+hfAy4D3mVmayvUrZgZBH2iv7ZcZGZ3xuv8EeBUSYuK0nzRzHaa2f2ErYqvim3fQei0lM7X/YSZdZnZCuBPwKujZfU1wEfMrM3MVhHWQBTetR5Ch2WemXUOYr5yf+9zT4zvMbMrCC70+nUvWG+yeKLOiSxwMaHnUI0PxnUo07Zn7qGlN0HuYeBQpOMw7iD0YOeBLYHU35DuRzoNaCSfvxPLdwPbQKtRugPL7cnc8rlrwI4AdlMQLlKbSO1G3GL5nIEFH46oFZhHruN2cp3H0OueZx65ztJ6zw4/+jvN+1T2z1jzNoqDwKyJ7M6j6OPQaLJdPgAAIABJREFUO3WnNbTcgDItyjRXuaPOsLIPbavTTFmY6z9pHSNIWnPv1MQWYJZ65xcmMY++ox+rY1i1bCj6/26CVaocC4HzJL2rKKyxpLw1lQqTdDKho31UPLeJ4GsXgmXo8eqqXZloxfo6wQpVsNRMkZQ2s4rvXlSAPwd8LnboPwz8OlpKFwInS9pedEqGMAo1i2A5TmpDn/tkZnlJa+j7nSi9F/OKzr2jKK7SaNeW+LsfwbtHEknPTAaYU6Eu5Z6LhQSDyPoipSNF0XNgZrdKWkn4bvyqQt1L2UaYM78f8FCZNPOAO4vKape0hXBdV8XgjUXpOxL+nltcZlTUCxTep1mE57X0uhXu3wcJ1shbJW0jLGK6qJ/2lWtPpfd5S4ks6O+drUtZPLGVyGkHd7Hj8S+QYM4GuiB1F1JXVNqOpXgeiDQbS++C3BXAfig1m1RmP8xmATchnQ5M6s3ONhjp+WCPKUUnpk7Qg2bZneTzO8lMaiDXdSfd28Xk/RcRXqojLNtxO1iWfDZLvqt0aLmGHWys2XLd9xEWwlhcqZMn191GvnseQWgsqj6/QSLNRumbsNypvYH5E+jZBbDTetpuoTDknZmUI9sR3B4p1UWvrlvYErHc8vDebRMtKyyfBvW/lDzdmFfjlDPj+TOBTbU30Jlg3ERYWfsKyg/prSN8yO+Pfy+IYRCGjvfICxU8NAycNYRV4Z+tkKa/d+FnhKHTF5lZp6RvED7QhfxPqiHf3fSRh8wluFGDMIx6KHCymW2QdBxwFzVOeTGznZI+R7BwHRjruMLMnl+aNloiOwlzuu8piV5H0eiPgsY1H3iqimqsj2kLLKiQ9uFYx1cSrJ1JFJ6Z4vyyBOWqv3mjpfdhDcEaPatcR0fSOwmdhXUEZevzZfLqW5DZbkk3EdrytzLJ+rQlTjeYSXXXNYkZkiYXKZILCNbLzfRaGx8oinsq1nUDwVKPpDOAv0q61vb2bNDf+1HpfZ4wTGwlMvAjwgTk4t1VnkaZjUiV5wNKB2KpdWDHg90NXEt4MQzL5yB1MzATbL3lulNY9gigx9JN/5+99w6z68zrPD/f95wb6lZUzsG2JMtBluVsty253d3upmFgwg7Lw+4yzLIzyxJ2Bphld9mhmRmY3W4yTWaAeaCHMAwwwDTY7e62LclBlhxkW5Zk2VaOJZVUqnDjOe9v/3jPVQVVSbKtslWl+3meeqruSfWecH/n9/7is5JrB3cLSfIMvpFiDaPWv558zx5glbIe05YM3UKISfqwrKIxeBUOc1WZ7EvahfmRGNDG0Kg9UsbnN111UtsGnc1P87gOlMiWa/rDYWbnJX2BEPeUEGKuGoSYuE+a2Y8T3MH/WtIOwrP/BYLbEIIic1umQO3l0m7QiThFCI9pvgj/A/BfJX0D2E5Q4B4FtmQu4yuhEzibKZD3Ad+dnRcEF/JPKCSq/CXBG7Isc2k3xzKancB3K9TZ+wzBXf3yqP9TAfolzSZUzrgiJP0k8CTh+jngXxDCi94G9gFflPQ/MRJ7dycwZGZ7JP0+8IvZ+lMEpfhVggXu/5L0KWBLdswa8MIVDOnPgP8o6Q8JhoBJz8XMTCGj//cyi9xfEFyeDwHfY2b/nPDM/J+SngBOMxLnmFzBd/YU8BlJLgtJOCHpKeAXsus2RFC2l5rZ5iwW9GcIz0mZYKl7YtQ9nSOpO3MtT8SPA09JOkRwW/dJWk9wK38XYVLyp5L+GNiTnctLmbv5g/JvJf0EIWfg24CfMrNU0p8RYmW/hxDv+qNkirqkfwy8mLnqzxG+ixNZvCd6jkdzqe/zB2a6yeJpZjidArpvqhJcNoeAHSh6FsU5pCssE6EFKNqKKyTgHHJ3Z9auTsw/gPnVmG3ExQ6Xf46o8DJYycw6DJ4nrdbxaQoqUZzXQZT/NOZHu5ku8k/PGFzcdfmNPg5s9Lf4uoiLnG7B3NciZvaLhJfVvya88I8QYvX+KtvkZwiK0xvAmwSF5WeyffcRsru/QUi+e79xWv8G+AOFbOLvNLOXCdaWXyO8KN8lS/54H/wA8O8kDRJekBfcm2Z2mFCb8ceAswQlsRmL93vArdlYmuf+LwglbPoJsWTN5QC/TIg5bFbDePJ9jNEIYUlnCFagzwDfamZDmbL8OCHm7zjB7fslRkJo/hXhPuzIzuFLgDOztwmxgb+aHffvAX/PzOqXHYzZE9n5PE245k9fZvs/J8Tv/c/ZGE8Rnom/zjb5fYL7fQvB5V0lxIFeCc3Qgz5JTTfy9xBcvbsJz8WfA4uyGMv/RIhJfN3M3iEYV74iqWBmewlK0/7svl4UhmFmLwCPZT/7JZ0lJMb8Xbb+m8BPEpTlEwQr8Hdd4blMxMnsHI4TJjXfn40TwjUaJpSje46gwDZd1vcCLykUFv8bQlzsROEEEz3Ho5n0+/xhmG6yWGbvp1D0DGXgQInwBZ0PbishM+3KkXsdufVgCfBM8BQzzoViW8ncz2aWYH4byfDNKNoN7m6kkVgJl9usuLgJwCq9hxjrzni/NAi1xz5IGZ5LcRhFhwGHpesYZbq7Ysz2kdbWXOVxXQ0GgROgmkrzf5rOFf/lsntMY24r5u1PVn6wdubr3z7xiplNbYH7Fi1atBiFrrD4+XRjOsriljsboOuGMgMHfg74OfAPYtpBKMeTA+sCnQVZliQjwgxoH3ATZp3gDyCdJ1h2lyCdJMzUR8fDLAcwS1+gMXwnuBjlKkxUJNw3VowqI+kvWn9pTuHit3GFAuYbSI6oeD/J8BbS2sbL734FuHgLua6Nkpab2TlqZ48At76vY5g18I0Js0KvATrDj2Hl3lnq/DA6/DRgGrbaatGiRYsZxzSUxS0lcoTfJFTWnws2rpNNMxdFzyNXBR5FbmGWm7IVszsgupHgqtkJuhXpPcz3EAJ9uwDM2E6j0oFyey4Tb7nEzJqxEVcQcqA3iPLniIrLkOuS3EXKosXtD5DWUj5sK7+ouEW59o1mNmBJ9TWScgc+HULuDCFuaMEVZnknmF9w+c0+bmzR5beZ/ky3OJwWLVq0mIlMN1ncUiKbdN0wzMCBX2AkG20C7BMhsUO7COUZHFhwfZs9QahP5bD0dVAJs2cQPSCP3B34xl/h4nsJZQDewOWGMN+4EINnvovQ7cZhadWSynlCAdnJOE6+uywX33GJbQK+sYdQFqKMyx3Bp+1gESE+qEZUDBluaeUeoA+5o7h8jbS6CnSSXLtHrgPFzYSXTqrn1oPvYSRLGmAQuX24nCdktE/W2/BoiB21D5uFOtVcNzGRLVq0aDEdMLNnuXx2+rRkusnilhI5ll8H/g8uGz9otzO+fJlP7iDK92TZ2Zsx/0goMGM7sGQ2ip5UlPsOopzM/GnJXVbxs6g4RFKpcnFXmhRFL5Lvul1yV1ZnzuXWU5hdBuZLuhGgGQ87euZjUX4/EKHoHkkRuXbMbPFFs6OkvAV80xU/emUn5u8mrYHLbQY3G7gJqYTZboJ7voe0tpQQTH+tc10okS1atGjRosX7paVEjqbrhkEGDvw8oWPC+5wO2BJ88k1clMdsJOtYuheik8g93jym5K5IMZFch+W736M+sA+5Cua7QVVyJaeo8PD7GV2mBJYmWDZ2OxdfVNJg/HZm6evU+i/fUcI37gFKyL0BOMxP1nnnWmbGK5HS9HOhtGjRosVMYzrK4pYSeTG/Qajt1iykm2NMV5VLYOkDePYhjW3NJJ3jAxYPlotvssIsJDUth6aP+ylrlK+0zlzoPW1+wjZc04QZr0SGGu7TS3C1aNGixcxj+snilhI5nq4bzjNw4DlCrasmhwgZ2cbY3rPjacfSDZheRy5Bujtbfu7DDKmpM2a/r4En7LoqC3UdKJHTb/bbokWLFjOR6SaLW8XGJ+ZXCLUCm6wgVMR/ANjMZbUoW4+lq/D+bzHbipEzs/evSJqVMZvi9iwfhOn1kH9I5tqp7TP7eyKQcx/op0WLFi1aXCWmoSxuWSInouuGswwc+DVCD9bxbCK02FpJaPU1HgMaoLeQvhXAzO8hqTYsLm5B0WzCdZckh3kYXXYn2LLnY3YaS4+g6H3FPk415tOXqQ9Nx9jGD0pEaDt59uMeyFQy3VwoLVq0aDETmW6yuGVKmJxfIvQPnYj1hHi/VwiWySFCn9QB4GugOuiu5saSbkHRXpLK/TSGbqcxtJbG8JCZrcY3TlhaS0hrN5LWBoAbMP80vr4QSx/hGurbbNVzOyifvAf8RMrzTGaGu7TVjOh+/z8tWrRo0eIqMf1kcUuJnIyuG04TkmwmIwbuJlgmqwTLZBdwD6iKVBy9saL8PeS7dxMaz9fB7sDsCXO5hZjFhv6bucIqzH8D35gDFEF7eP8da6YEq/VvIynfe/ktZyQzWomUpl+/1hYtWrSYaUxHWdxSIi/NzwNX0ppvdLNLz0RubrlXFOU3qDC7Qq4zIdf+TcWFb8HlC0TFfcSlHix5FtxqiAy0BZfrQ/rYOqaY2aBZ+rrVB7fSGL5UQtFMZ0YrkS1mKOUTHZRPfLgOVS1atGhxCVoxkZei64ZTDBz4beBfTrLFFkIM5C0E93YVmA9sJ5QI2gscQS4PNojZa7joLsE2LHkcn26T3ABxoQNooPZZpNXjuHg+ls4D3jOzYUJZnw4zO4elh+TiO6/wDM4BR7K/hwj9u6+oyr+ZncM33qLWvxjfmM4leq4GM16JbCXJzDDKJwR8BThP+cSPUlo0o2N6W7SYKUw3WdxSIi/PzwE/yMVdYwBtRAJjM3I3gQ6B5ZA7j/ldSLdjtgjzrwAxSWUBcdtxXPQAqX8eX49QtAIXn0TqRhokKq61pLwNtBJRIxk6TZp4841d1AfuJMp30Ll88tGanQd7E5SVGNK4zji2j9DjeqLkmD4z3sU3+qn23Yyl11RSz8fIzFciW/GNM40fB/5+9ned8on/ldKi66o2V4sW05HpJotbSuTl6LrhOAMH3gFuHbdmgBADCVKMc4NAD0TngIXItWNpP1IP5tsIbu6DpNUCUXExWBymHHYcuTXAfmCl+cYOGgMPoGg7ilbTGDqCTwZJq5/H5Q5RnNsHrAJG+hZi28Dq4U+EJRtRbjNynRefkNZk+7wCzCJYTivAKWA5jcEG9YHPXp2LN2MY+rgHMKVI0IpvnDmUTzwO/L+jlvwz4CbKJ76F0qL6xzSqFi1aXI5pKItbSuSVsQ+4gZCB3U/oYGOjiokD1EHrMf8i+HUo3gq8BdZDUDgNWINPd+GHvo40GxffDewA3gMWkNbewqd34gqvAKuw5DBJtQAWlNBC90G56GHS2ksE1/kIiipEhdlYOgi5Z/G1dozN+GQxWDfN2paK38HFD4PuBjsFDANzQMHaluu8h7i0g0rvTZi/TA/x64ZnP+4BTDXTzYXSYhLKJ5YDf8LF8e63EkJZ9n/kY2rRosUVM91kcUuJvCL0AujTSLdcWGT+JGgvQbFchU+rwFfBVoPegOQR4GtAjNwszM4CR8E82HwU9RLKA0X4hkeugdlsfPIeLjcXX9+HTxcza00R3AqwBPOrwPZiPsXSBJ90gmXtGbUDuXuR2wbch0U78I3R/a3T8GOj7rkWXHSmUhHF91pp0TC+voXGcBs+6cbXMwsmdSB/lS7sdKAPePPjHsRUM91cKC0moHyiCPwlMNHkbzbws5RPfB+lRec/2oFdBwwddcASQpWOJcACgrEhBvbRsfTPP77BtZhOTDdZ3FIirwS580AHAGaHsPQEUj/S5zA7RdO9jJ0HbgbbCsKSShdYHmQoNrk4h9xCYB7mT2F+OXLBjWzsJC7miAoNkuEhKr3fQdT2jHB3IBVClxidB9+F3GyIu1BumLT6DPi7kRKMoWB1tC24XB7Fz5JW14F14/IvERU+gaXKCpxf+pSldqLCRqJCdtp2CEuO4ZMGvhFRH7he4iW3asF910SZpamiWVaixbTn1whlxyYiD/wj4BuUT/wNpUXHP7phTXNCklIPoXPZwlE/iwlK440ET8/tkxzhd4CWEtniskxHWdxSIq8AMz8MOigoYI1TQMG878EnLyjKdwKvYYAldVwM3tfNktds8ORpdS5YBeaDIsgGYBfSabxvgD8PmoskpBuAY5LrtFzHEB1LnyAqPoA1tkLcBpYQBNmybFA1LC3j4k8i9xzSw5AmGMfBp6DzyMXk2ueQVF4YqUaqOsGF3cb7KPEkaQXKrcDlMCsacftrgMeSMmlNNMorsGTZVbvo1w7PfNwDaNHispRPfB/wfVew5W8SEuv+49QOaJpQ6Z1DcPOvARYR4sQXYWkXwTiwgKAwTux9MTtMMDBMVAouIVTq2HfVx92ixTVCS4m8EnyjDVhmoWRPsEi63OCFOMKw0SHgVrN0D+Yb+AbUB9tgcR/SYsw3zGwHltalaJFZGqHIifQcRL04PYDZMLJBQTu5jpsw24r07aNade/BbB/YKcznwELtRvO3QrQFESN9CnNDYNtpxk3GbUtBy4EzyK0PST92FksuuL38jr/dpuW31rXgho2XuxyShKIN4VMEUQHLdXrMv0ZSHqIxeAvm5176KNOGpz/uAUw90y+Yu8UoKqc2AP8LoR3rekLc43mgWQqsAbxMmDR64EHKJ08h9wBhUvpfgCdpmz+jLe4XUen9vxmbgDSak4T6v68QZP5k8eFvATcTFM3x7AQeIlzfFi2ugOkni1tK5EQMHPxpQv8hI4qr5NoX4nJvklTL+MY8LF1NWt8Cds5cbiGKVgpOA2BWweod1n/oHLX+pcilkm4CO2rmG0AP2BrgLPh2TCeBBmZvIr8UXEKo7+iQvh3zTyL3uezYa/CNBmHWPJrZWHozuLeBIaQO0GPZPtuRyoQaka8Dn8r2eRO4DRg2yFOv5kgatQ96ySQ5FG0g34nlOvqontlFWl8J1kHQgqfXNyNwmvCSmPFI0yuYu0VG5fRaFH0VRYsxMyx5gqY1LUx6ewly/hOj9noIdB9B4QT4XuC/o9L717TNTz7C0X98VHp/hMkVSICDEJWR7seSXUysRCbAJzF7i+DSHk+eMJE/82GH2+L6YbrJ4pYSOSH+HwCrkNtGVNx0QfvJlbDG0BYatcOgBF/9LGkVFG0m1zkbaS9BIVxDz/JZ+MX7MOsw8GDgCnmghq/1o7gXMQhEuLwjtELswWw/0kbgWcy/ik/WI7cVRQ8jRYQZ8iKarmgXPwdKwRyKHGavgYToAapgZ0G3E2bUAC8QYnnmoLiCdFDSJtY+9C7Vwaty9STNoW3eHDMbIFhEGtTPv0tj6D6mV5ekzVpw38yvrTcN43BaXOCHMVs0qnfuRkLjgya3XLwLA1wcv/cnwJ1Ues8C3bTNf5tKr4D5tM0/dbUH/bFSPvX9SL84ydrjwLsQ3YrU9KZ0TLLtdqSHMKsRJsp9BIVxEBjOQoi2IfVezeG3mMFMQ1ncUiInxgPnML8Yn+wlrZ3C0gqwSNhGw5/EFU8j9yr421AspHUQd+NydZLKKrniYVyah/RmjAooUbAgHgJSkXZD7iaDl/H1Eq6wUub3IdsA0TmkWcg9BPoGAOafJE2E4hjneoA3sHQARTeCZmVj9kgGZqDwGc0HKxGysx3BtbUAqYcQY3kOgHnL7+Lwrq3m/Uk5N5Fr5n0jqevCh0LPXMt3vUN9sJfG0Dqwrkvseq1w3cRDTjfBdV1TOR0Bc4AvAI8DtayhQQ2zB7h8dudupPFtTHPAU4TMYqj0/hrBnbuCyulvI1jUqsDngW/SNu9K2sFem5i/B6JtiAQYnSD4FrA0NJEYs8cpwuS9SvCo1AmKeh54F2hDkWVK51yCrH1x1LF/bArPpsUMY7rJ4pYSORFR8UbM2sEgre0CloGOgEXAIaLCHpSbj+I+fPIWMIDZS7joDiwdIioOYomI2yP5ZDt4j1FAbhFSG54ekyvj3BEUdQmlSGvwPgHtBtbjk/0o2o5vRESFEjCEpW1EhR5gD9ZYh8vvwXzPqBnzKOxJ0MOMzKLvJpQcagd7gVB+4i7QaeCwpOW2/PYH/HN/sgNff1MLbnSatzJPsb0NF+fJFddIKn6Yyyq51RS6V1uu9CI+rePiImmtiq8XaQzf/2GOPUVcJ0qkYJq5UK5bKqe/D/hJwoTwKKFZwHnS2p0ExaaGsQd0Foiy+7oGaZQ7VukkR18y6u8fyn7vBtsZJqPUCZPVlUycSDJNsH8H/rfBjZ7I1kG3YZaA34LcqNjwaBn4BNSHtAFLNwNrabq4nXsVtB24n2DJPMJY5fTg1J5Pi5nD9JPFLSVyQuxYyJbWPszqYCeRahhngH6SSp5CoVeoaHLHSOvOHGcwtwMQimrBIkhKEE4xmGHpdhTPR9FRkvJ8VG9Hik3xCVz8d+A8okPBNbIeS3aD1bCkjHJGruRAB4GlEL+CT2rIzWd095wRNoK9k2Vj3wtEhHjIdwjWx7XA8+F0bTbSVklF99B3rvL/+afn22DvKd57qRnn8zxtXWe47x8dUFvXIx/26srlHsSFLpKmqEb5/LXYEeYUIaZs5jMNXSjXMZ8gNDxYjxSqIaSNXYQEDgiTw1suJONZCtDA9AZSf2in6sbHVE9EQgiBiUDNbl0FgpK0lMrpQdrmTaaMXtu0Lz7M8PFvgL5zlNX2LLAQ7AUs3Qh6HukToSuYLxIUxn4AFN2CpW8Aj2b71kA3gz1HsFSuHvXfhmh6e1q0uBzTUBa3lMiJmQ32ddDnkduJr4csR+MVpBuV63wVlIAVhMwUCfNDpPUKUhsuf5sUvQnWhlwV1A5+GN+ITO4ovpFiDIKPUK6BeU9ar6MoQm4Q6WUs9aT1OaAhzEcozUOUy5Jm7sLSrwPtmK+Cex5UAruR4KrOAyWCteABQlHzjYSXwFxC2Ypm552NQD9mHpiLi7z7+z+21z/55bMUCisJMY0baFTescrxB/FDr1FatEwTWj8/ENVwLa85nr0u4iHJKpBOM8F1XVI5fQMhE3jdBeXHbDeWPHSp3YAc2B1c6JLqt6NoN3LrxloogTAhfS38qU1czGJCUt4fAv/kA53HtcEfYOn3Q7SFkOx4HKML/L0AQeZGEORf8xoFS63ZIYgeBdtBCA86jzQb4xFC+aRhsM0ElWCQ0oLrQo60+PBMR1ncUiInZjbwMNjL4PtQ9DJmHeBXY2mX4YykEiPXJ6lDzi0BzkG0AOkgMIiZBUFvXWCY1E1SPxcsg1FMpAifpqAomAuc5GIHfjEeh1kfqD+sVxFokNYqmBlRbgvm6/j0fuBNsG4UFZB7G2wIomJWd7IpvDYBWwgK40JC3bIl4W/bnVkaNgE1O7n/67b5K7ezaH6NJDmB8TJJ8gnifFnOxTSGNjCw/4wV52xRvivCLMVFlyoLNAi8Om7Z6G9JHZeLsOjt7LPh60u4UMD9Y+M6KO3T4pql0vsHBEt4ARgIli7WElzTI/4u32i6lQ+DTmUtTiezNNZBr4XMbBOWgml3mOiyEulN4C6CLCA0TeA+UOGiI5k9TvnkHwLfS2nhdCwN9L3AKiwdLWfuuPCX1KxUcS50IKMOFDE7D3Yv6BxyQeEMCmOzFG8h/OguQpLNa1N6Fi1afMy0lMiJOUmIL7qHUF8tj3BmCPPfwJJbSCr7keYaElFxj6LcfEgHIeoEWx4UQGqZsOkEnxLl8rhcjGT4+mzkzoCBSQhh3jCdhVTIPYbYDLbJfOO/AbFCPKMnTR7BuRdw0VFgGWZ7wHqxpA10ALgV4mcQjhAMXiQokNuAB0BrwHYRMjT7gD2ELM6Ciu09NnfuXhUKG8nnI9pKd+HcHNpm7SDKbwaBpUUag+1E+buBBmrzl6hLMIzcRBaNjPQwcXH5mEX15IXQ4vFj5TqJhwxMt1Zb1wG7gJ/N/t5N8BzcmiXEjUIRik4hLSeU8QKz04QEPhFCasB8A6wNNA+xC2wYKIItwmwB0BfCLPUOsBapBDwCvAsm0E3ZsT1hcnoCs/lg/5jh439B++Jr0ZtwKdaP+9wY+zFrCSuGQWGSbLYP83cCL+I0D+wtgtu/DLxEeGd0EZKeOrOf8RPoFi0uyXSTxS0lcmKOEmbzHlQF2sx4D0uP4tMivr6HfGeKWS+YCO0MQ7FweNcaw09jSHF+MWgAbI7i0lpyuVGJKfm3SWtFcBj+Pczy4KvILQC7I0t+WYvZ17AUPFVcLqyXezp7CVRAnwEOY7YBS/fj4gZoJ2IBqEFwPWUzZlYBWwkKYx04lv09G7OdWNqvzlkrtWzVQcp9QTi295TJFZ+i0F0hKuUAYT7CGlVLqs8oLn6StLYPF/Xi4lpmNW1+CwZBHYQZ+SQtwdxcosKLAKS11cDcLLN8cuLSZqJCTO18F4XuwcwEoDH2zWp/O/h1l7nPk3GCkHV5fSCBm17B3NcBrxKUyO8Cbs2cCkcx3gDuRWoDQHReUHiaSPOAeWOW4WpgJwhJMeOwt4EY883JXg3cc6CFSKvCZ3sJsyqWNrfJmg3wWeAgw8f/PXJ/SmnhtRjfPJbh448B//2YZd5XkY5h1od0HktSpIOIPPBXKLoTOAZ+DYryhELubxDiHbsISTUT0Wov2eLKmYayeGYqkeVTNyPXRsgkNMw8lvpMEHvMp4RZYwfI41xEmLEnQIrcfZh/EtSGXBHSXyKt7wN7lij/As4R3McsAzuLb8hc7klFhXXArOCBpg/cCfAN0HnSxjeI85sIs1NMbgVJeQsu6gkxk66Ai+djaQLaifku843tWJJHkfAp1hgqIDdMYVabJMOsAPYE2H0hPsffADoJ3IfZLkSzftlXgQdBc4FHwE4TlOR+QpkfB9yMpXWgmznLD2GV7aRJN5GrUOw0FbpisB4UnSTKd0Ixj2ILx/dr8L4Nl5t74eVm+GDxcAvB5k92qySViAoPmhmktUOEmM2JY4iKs19ELiIurZOLZ1vt3GHS+lmV5l9k6bT60HP4+vt6bEZx3cRDNplucTgznrb53wS+SaW3DfjhbOlSsKXAOYztwG2g8mRfl7HYSwRKAJgJAAAgAElEQVRvxESUaLZTDRQw/zCwH3NPIuqYzb7QIetiHOgXgJ+nfPK3gV+ltPDoFQzqo2fo6Gcw/2PZ9WgDugmWwxjTEuAYuEfA+sHVQW8CD2D0hFAk9wxGLXiJWEyYhO++xH88OdWn1GJmMd1k8cxSIoeOLAN+GZe7mdCNJcPeAJsDLCEUwC5x4dxtByOWuhHkPgUcxqhhFoP9E1zuGcl9Cm9nsHSuWfoC2EMo2oFcP9ghcEPkO3OY9SPdTFrrBduE2EYoRP4qvlHCp+9hNh+f5lFURTbXfP205G4GW46iPUSFG0kaKdggPhmkMVwj3+FI64MWFe7BrJSNv1vS57Doq5jfgNy7YJ/BLCjCPjmPtA0Xb8DbbkjaUXwuFDVXDLYfcQxFdSz9FC4XUWjP4+v3kmt7WlF+DliZuLAG5QyoIHeXoA+0zSw1oCxs2YXgfdwOFFUzV1l2qW0AGEZaBLYN6DazQRpDHQRFdgCokeuYD+wFq2X/yyPXQVxK5XK3XHDptS8aQtHowsoB39hKvmsO5ndTO7uUYCnox+V2EZd6snsvRgqfJ4Q3sQMMS7965Q/dzGC6uVCuCyq9zTCU8cwC20RI4niL4LpeMelxgodkoqLjEMJZ9oMm6nt/I/g6hggJPRMeHbk9BIskwI8DP0L55H8CfpbSwmujwsHwsTbgS0g/jPEcIctdZn4b5g+gaJHEZtBKggdqDyNVLc6B9SO3FsUngdBBDIHZ18B6gC1Zfd5KZgmuEmpvtjKzrxWGj4nQWeje7Gcp6Emiwh9QnHPNxPVON1k8M5TI4RMxlvwQ8K+Qew84haVnCIqCZR0FsqBpe40LgeMA3JF1iRnftuo8wd07G0t+VNIazL8NqqJoD3JLsHgp2JOSPofcC8BypKXBr+r3Ax243HHgKeQ2ZOM5B8xF7j7i4jzM/ha8Yel5UNWwvVJ0EjOT6DZXPA22GMcArtADzgu/0JLK2+BXAo8Stz2BohK54jpQAfPzgeeDZdGqoE7Me3xyDrMi2IPgn0bRa2CzCK7mG5E7h6WofcFaGzx0Dtf2DdrnzQN3HJRQPb+TYvcyjEP49DD5zpVIK0iTMnAa5V4hKGKO4E47mrVi24L5Ngu1Ko/j4kOS5hBKYZwhtGmLCK72zqBkAq6wC7l7JVWJCqeQGwl8BxQVi4x/uaW1NzB/j1zcBmAhMH4f7Qs7kbuDxnBMmERMxhkU/8Ul1s88JDSFLhRJnwN+hXCPf9fMvjjBNo8Cv0x48Z4xs0vE0V43/O9cHLs3mgJym0IZGt4BymB1QnxfNjEyMmtlF3CAkPhRJBTKzuKnJ8zChlDV4YFsn8noA/dZ8K8x4uLOAf8U+F7KJ/8K7IuUFm2/khOeEoaPrQf+iKZhwUUPY7bfkuq7+MRwziO3P6sbeQRjkMg9CDxJSGZaHqp1cIbRbmvzm8F/Bpqx53qZYJ0cLafeotL7W7TNv648G9cMYfLwPwDfTpg4jK1GoGgZcB/Vvh+gOOfjv0dTKIunSg5PfyWyfPIhpN+CeAnSdoK7OEcQpIZZBH42oQ1VOyGWZTRnQMOETMjlhFi4EmgVEDoXRMUy5p/FTMBhsHlIN4bk6/RQOIxuBO0DlmJ2jDDj2YuiTaHkjr0AJMiVcPkFWLo5uNx9jFkVn7Rh5IB+5PqR8pifLZGCTplUI4pn4+JB5G4Bex5jiLjtSaK2z42ZvigK5Xe8PY/5QZwzjDpwFEUJ1tiCeTB50FnwB0GnMRsEHpHLdVpp4U5cVFFaTyh0Q1wC8y5cL6pIp8z8AGgQlyuC82BZPKSdAXow+g1OUD/fhpnh6ztxsScq3mPKbSPKr0KaS9xepjEUAw8hvURo6wjYUUk3Y/Y6vpFAdAQpdN5xkSNkfmfKvx0BHOYXEdxUgeK8PcT524W6LK0+C9xHCHOY7Jv6pHrWfOAe4tORqSwrodCq89eBzxBijXdI+hsz2z1qmx7gN4DPmdlhSZOGP1w3VHpjQgbx5Qnf/aw24QT3URDeGxnmt4BtBG7AfOjOFbwAWZw1NdBZXDwPeBVLY8xf7K0JDCHNxTQwgVtdYP8AmE35hAFfBJ6itOijeVkHy9MPAT/HOEXYsHeBWbioQJQ/L0WNECqgY8iVs826CddlP6iN0QXEQ5a2gbaCuoFbgRhpzESXoEzvBL48FafYYhKGj88F+0HC/Z+oHN3bKDqJizcBDwJVqn0/+nErklMli6dSDk9fJbLSOwez/wfYBDqL1EHQtMdhg5jP2lRZPyF+pUBwBaUE19CiTBDsIigm/WDHCLE+hjQHl3s0HM5SLH0Ls51gZUK9yKHs+Oux9ABB6CwJmdnKh3GoWcttM1JBuALSIxCR1W3bgJTD/HPAw7jcAFIXPj1OWsvh4hJyQ6RJg3xpJy5eSO3sYqK2ZZrM/i23EkuGMI6Bq+AiCy+NqAp2Cz7dDRQR+5BrBz8L869gtsB1r/g0gCXlA7hcQy5XM7SOtNpJlP8mLjLSRgnzC4nbIpmdBruLoITfl41gi8QGQ5ux9E7qA0Eo57ufRm41jQtvvBxwlKj4Ni7fhq+Dy+0gKt6PpTvAL8EnK3BuELPDmM1Dbg5mz6FssgC9BEtn35hLEOUb+PQQsA6iR3FRDV87TaiVeZJgleliRKn8u8kfuhYfgPuAd81sP4CkPwW+g7FxZN8N/KWZHQYws1avYfgKk7ugPzjevwM+JXhZ5iGXJ3gCZo3ZTvFxpMXZ32D2Jj4BbGyymtxRYGWWwfxi8HKM4QjBAhQTinO/Qfnkz6Dor2ibNy4j+ioyfGwe8PvAt128UjukeCG5aJGZ9cq50Q0UVhEssBCsjiFpDytf2MLsMJacR9EnkHKj9m0nZGk3O/s4Qim1/41K7zu0zX/iqp1fi7FU+5oGoruBB3D5b8U3XgM/+rk+iKLDKL4V6WbGerH+JeHd/4WPbtAfKVMmh6efElnpdYQZ+s8izcE4AmyYMJDAbA9QzqTgHKAHaVxhXm1BamYObxi14gzwVhCONjjqoC8RLGYE2cIg2E5Ckspnge6Qkc1OghA5S1NgB4Eq4BWwhJCB2R/qtNlLBMETXFHmt6HoceTuIiq8Kt9YidxRXPwoadnh3TeBm6if32/5rrNCyxk/c5BbQnBZlUL+S9oI7mstATubjWEWnoPIx1lttI1AhPmDwFJynQmhVtyzyL1KVMjLxR3IPWiu/iy+Niy5HvCnMgX4HNCB3FyCRWMHcakTs1eonb0DdAKo4nJHgL1EhQ7yXY9IusHMloIdxBeeQq5b2Asgw4iAWZgJWQx2nrQ6PxQDjgYBId097u57FD0H1gasgwuxJgULSitAv+LSWvONbfjGbYRJxV9f9BxdD0xdHM4SwnPf5CgXZ7KuAXKSniV4En7FzP5wqgZ0zVPp7SGE0/wlwRI2kH0+T3jRDRHkTXPZQLY8JnRamvhmmtXBC/hktuQMZgez7e++8Awo2ok01mMjrSPKgdk2fGM1MCfEDbq7s/UCPYilb5J93zLLZIOR98zLEC0E/jNwlMrpLwG/R9u86ge4SpNiAwcew+X+SNLCcavKYQxWBd0MKgl/ALMF41rHZhN/dhDKvEVgKzDbjqUO/D0AZumLJLUBxaW7s/3XEepCjn6+v06w/vwpld77aZt/bcSITleqfWIkZGD9qN9rGe1dkiDKb8L8Xiw5Fbxz7jaklZc4+k9S7fMU5/ybqRr+FTE1snjK5PD0UiIrvbcDv8lot4ImDAgHs/1YcrmZfJ3w8E2wP9uRFgbFyHKYN+RizN8wZjvnOoFVhFI2p4FTYDehC31ZtxBuyDxCoW8wewJ4CPQ6cjnkHsNsIJSViGdhdjK4s20rsAG5blz+ID5ZERQ/fwqffgp4DUs30BjaT1wqo3gC83P0LtAGaWXE3cwBoBHqV3IO52J8QnB56/nsRVMHDsvSOopWIy1WlG9eq93h0sdriZzAnwflQ9tGubCvHKHXdo9y7R6fDFjU9jJxcR2FntNycR6Xuw25Oc2RCkImu4sfJ7jRcgSrcScwCLYvc6kXuOC+sxCq4P0pkvIx0AAufhS5b4Ctwfy+7EWJmc1D1IFXcIU2pKWYHZbiRebcG/jac+pZM2JxuF74cK225kp6edTn3zGz3xl79IsY7zKKCRaETxFCEV6UtM3M9n3QQU1r2ub3A9//vver9P5DJlMgAcxvY2yizlxGXH0JZm8RQlUmj8OUHsDl+vDpU8jdd6Eaw8gG1XG3t3n8ZyF6dNQLchnwg8B3Ujn9Z1wFZdL63ykA/x/wI/hkt8m9i4sLKLoXM5NzLwMNMx4Dvw3z+4Sfj9kOsDwuMuQ+zUh5pPsJyvoeoAG2BPyZLGmyR9iD5nJ18NsgMqCZIDiaTxNqDd8D/HWmSPZ/mPO8bqj25Qjv5w0EK+OdBKVxzqV2G4PcWpSf+B0/MT9Fta9Ccc6X3s9QrxpTJ4unTA5PDyWy0tsO/BTwI1zJmM2OY8n4L2rKmMAgAHYh3TXB/mXg8ZCVPXr5ZAlcOoj0AEGILB53v1YTYvw2M9IJ4t7MfT5yE6UujD3ArMwFfk84nvUBIcNYmpVZ5eqCVw0tAn8A887SqoniZnBFLCljaQWfLkNxgzgXY5oFdIXaln4ucBrzNXAJUjtyAyAXllFDbjaojlRC0VdxcQ9maeY+LmH+XcRBTHdClOK4kTCDfx3US7CW1IHVmO0DW0Lb3PdwuRPEbY9NMtt6JzvnvRilLFk6RdF8zM/F0neQugmzqK2Y70dRSIpKa2+CPZBlfT+HmUc6BJTA94HdCUSk1XZwKyVWh8tv2eVnBVHhn01yg2c4HyqY+4yZ3XOJ9aEg/ghLubh23tHsOMPAsKQtBOvC9alEfnAem3SNT17FfB50Co2rKxmICdf8CGb1bAJ4MaHCwlu4aBnNQuZj1jMb/OaswcAWQpz5a6AF4DeHTG/dgdzrBHl4C0Gx/Qkqp78I/C5t8yoXHfcyWP87twB/zEjM+62Yh7QO0MDljpL62YYdwjcOgd2K4m243Fpcc8Kv5zHbg7SGEO7kCVbeImFinILrB/8SuCJYu1w0DAq1dkfeTW8wklzTzGw/QLCgfT4bZ4vRVPs6CM/fnYwojbdz6aSuEcwfxyfvIEW43MOX3+GSfJFqX5ninF/9kMf5AEyZLJ4yOXztK5GV3u8AfpWxF2ByzPrBThLaTp0PrmYVgVvAXifMjG8K6zQ8yVHO0eyTenleyRTIyWg+EaOv9TEuzNDNRsri0LRe7spijHZDVIJ0Yaj5qD2Y3UgwO58ElmK8i/kqlhTNag/JuZ3AHHx6CHEMX4MkPYfL9WRJKSkwjDE3xHKmt2PaAaSW1juFVUCfQG4XUhtyS0GLM/f2tsza+AjwHnAz+Lko2gusDi5yioTZzJlwnrYV/BDSRuW7Bi8o7SHeoo9mLU/JI63DrIb5bfi0Aj7CENJ+zHqRbsQsCVZPZiOGsbQKbi/YQHbtRLBUPw0kRLlNJOlLwACNgReBWbhcJZsoMGqffXSt3HOZez1jmcKyEjuA1QptOI8Rimd/97ht/hr4NUkxYSJyP/BLUzWgGcynJlpo5s+QlPt1QcnUMRQdxkUJuHmMbqWo6AzOTebdeYVQSqhpzWwW5B+xDEk3YVEhk7UDwALQSsKkshe0AqmPkQoZRvj+LcbsC+C/i/KpP0X6Y9rmj4lvnpDh4zLz/xSX+x+DbPC7MesktH/sAk6D9sq8R2oAVVx0EpwkfT6r95iNRUWwg5jlCa7wdoISvBz0XPhtA0hCbs4krtGzBOvlmFESnuevtKyQQLVvIWOVxQ2EWNQrF0KWvo6l/aFJhy0mxLh3ofyVWykvzZczi+TvXqXjXTFTJIunTA5fu0rk4OEVwJdxue5s1hsCmtN6SJKJcu+B1mWWKbL1+4CTYBszS1c3Y8pX6JFsuxohLm6CmbQdJVzkRUyewdukCpfNYGq2Axv1ZGgos4AJ2Aj+BUw3E5JDlhBK0OwFziKBUSQUGH4Q808QanpUSav78UkFKKCoiss9Sa7kgRIuijDm4OgGW4Ovn8fldyJ1BgOc786Sh9ohqQFLSKsVUyRF+XNADCoD+8ASzIrBEpqexuwFcOfB5qDoPOaFdAp0G8EMvj0o8/4W5JaDToJeAuKsIwQEF89CwoU4nv1dAyLSRhX8PKCOMYT5HqCW1buLCQr4AcwtQTqGiz+D3FqC8u8xO4I1ZgPrSdkb7hP7SarzkCLML7Sobbak7pCpykbg31/mPs5cBExRdraZJZJ+CPgawRPw+2b2lqTvz9b/lpntkfQkwYLjCeUndk3JgGYqld4lTBCaY2ZQHzwM9pihnZLuBFuCJUtIL3QqHEbRu7j4GC73+YuObXYW8y+BlcDlR3kRVgH7Cd/hMCmWCGEi6TugdYTuT4OgeUibgD3ZpP75bL97gW2YdYBfCEqQvgx8kUrv7wJfpG3+iQnPefjYHOAXJfc9RPmx68zeNUtP4xuHMFsGdgyX+7RwW5Fbj288R6gi4QiT2X5C44hucGeR2490P1IXaAvoHrA3UdSs/nA++09DBFldzq7BMkaU7LcJmeF/RNv8qxr3OS2o9jmCwWYDYxXGiSzhV4b5ffh6hWAhexe5YygeALcIacPldn+f/A7Vvq9TnHPoKh93cqZIFk+lHL72lMjBw3mC2/oLQCk0fHFvASswfwCyukVpfRHoKC56M7hZ1ZklyKy57P+QCozUS2vOhMHseUJdtKVXNli9lAnGS3GUoBiOfjKaimfTvf4Qshew6HZI3yQkA5VD6Yz0RIiX9P2YH0AsxtxxiU5DVaK2FOdSRcUSwaTZwKcV5HPInQtC2T0bfPH+Ycg9iZQjivtJq59FuW9CssHMHNh75EolFPVjPkLqAMqYT0MPWcqZm/s0cp8kCN4d2flUCRbFpZgdDAqndoN6kYwRV9vLhOduNthxguB1mNXwfhukK5B6MFcGyyFuhGgIqZGFE5Qz62RPVnvzVWAP0hAu7zNrwgGU6wLbbt5XSYY9UaGAiw/TqHhU78MYtrgwC8VV5P5Wcv/1yu75zGQq60Sa2d8xLuvdzH5r3OefI7xwW3wwHp9waVLZfEFmTi7X2jHfICp+ekyYiVkV89vBNgDfki3dw4jHBEKJrf2ErM9ciKdWhPkywTc3FyhfyPQOceOhvNDI/+kAv4Ygi5vuuBKhTuY/p3zqK+C/TGnRyAtt+NhDhASdsxedjdlJ8FWF98ExxGrQcUIsdwq2E5e7G/wbwKcw22K+UcL8SrD9Ur6BfAxuO0YOueVIOxixniYEy85+glwb7ULcTfDC/ALwVdrmXzNFrKeUEL94K3AXI0rjerIObR8I80exdH8Iw7BmeMVKwjv1NVxhLaEt51QhRpeL+4iYKlk8VXL42lIiBw9vJCTO3DpmeVpbQoivG6ew2VJ8EgSjMYyLXgQtAlZmQeQg1wHclimO43a3+wmBqPdiViUIx/Fxkw3CrHN8ran9QDPT+wjBcjnR9WzWHGxK54PIncDSWcD9mA1lytqDyHaHmBs2gjuAdANoNT59ESwHqoOq5jQb3zCiYgp2SnI5UCkojYCL52LJGXC50EmH1cgdRdHTSN8akmeoEBVfwddj0D7JDZDvmoWiQeQGkG4DTgchyrrsfAeRqyHXTYhfXA+aRwjKvwPpKcw8IfszRa4BFyyBzwI1pM8SkmSOEtw+w8AyzNpIK8dxufey7bswf4Yg9C0Ybu0GUCe4NwDD7JnMpRReSC5q3teRDDer76cxtILGUITZHJLhucDLpPX7sY4ucp19YL9Bz+qpKzfSosXUc4xQB245weW81HzjBL7ejA8bJNQ9nIh3s8YBTXPeCcy/ltWGHJ2Is4XxGZ3B43CG0Gr1DPg5NN3TqBdsGWgFZruySX40bv9vgu8kKKdNa97to9Yb2FrgTconnsbsFwjhMj9AsPQtZuwBTyHexlTFUpn5DuT2ovisoIIoAS6TP0FeSxuB58O54HHqASUYdyJ6sORpiBOkE0AFVAM+B7aHEW9VCvw58PO0zX+ZmUyIX7yDEWVxA+Ge5S+122UxA0u3gTUwL7CHGTvx2Y/LDyB3+2SHmAKmV/uYj4FrQ4kcPDyXMHP7nkm26LmCo7Tj003IbQE7Tlp/dGSVjiB3llDsu4yLFyKtxvxzpH6YKPcM4QvwiXHHPAZqEJSeAS4UtqYOGhxVI+xYWMZRQr21WxgpI7ORMGuNCe7WfUiPY3oO7OHM+nk/5nfgonVciBO0IxgrwF7ItCLA6mZWBiuT61hJWkvlk2HwRSzJQ5wDGmbpGXyjpFxbAzMHvI2cQ25d5s5tA+UQRRSdBjoRebxfhCXnzeWWgZ0J9SetBnqTECuZJwj6NoLrfS9Bya4gnSUEl9eB00iHMdYQygitJQTnVoGt+LQf+DzSYWA2RhXzNaLCJrBezMpBOdTzWBoTFPEbwXVlWe/Zi812gUKrRfM7wKqYN7DVoIPm60b1fIkLLy7rIy6doTjrHOb3gvWFnur8+hU8XzMWoamMiWzxUdA2/yngqTHL+vc9zEjNw06wbTAmfnsARTvJta/PJoYQvqMK3aHUAbYD85WQda3Hx1kqd2WNHJp1YXczonT2EpS8G7P/fQPGa0jZpN/STLY14zj3AKvAShi9o8qVbQFrtlR8DOkxzA5i7DbfKOHrx4HjRMV5cvGtBJm0CUVfw8VHaFRKVHqN4uw8hc55QQG0ATNbqlC6bQuoQ4qNKPIEg8Py7P+9ApYH1mL2OqgLqRuplMWxFwiT4N8Ffom2+R+d2/Ojoto3j7Gu6A0Eb9/VFxi+sRn85J49lxtE7uLKAWGi8RwaU+/zajF1LpoJmI6y+NpQIkNV/8kUyPeH+Y2Y9YHeBctM3bYMS7O4yhR84wxRfgtp/VbiUpHgEjlAcKfsJyiFgO7NZudRlsS7G2wY1CAUK91JCB4vZb8fJCijzTi7JpXwWV8DfRrYYuYXk9SeJMqXZMlhYBkW9RMsCc+AvxHzL2N2J7htQARpDGkbPi2QxmdD9rjdBLSHMjaJmRFhaQUMa5TbiNvqmKUy68Qa+3HxfpLaDbjc/8/emwbZcWX5fb9zb+bbaq8CCvu+kQTBDc0NBIkmm2z2IrfGmhmFx6EPYytkRStCXj5YCuuDwrI0kuxQWGFLEYpQjCS3ZulRyDOasZpsdpMgiR3cQCwEiH0Hqgq1b2/LzHv84WQBBbDIbrLZJKsb/4gKgvVevSVfvpvnnvNf3se5Bi5ei2adiDtHJOs1a56nMVRAonEKHY+CHgA84mfUP1WsUFyIdRLbsKLyA6yAFkQOAwsRBlGtAVftIsT6/Av/APCKiXu4RkhLaEjQ9DAIiFwHGQEZQ3zJnlOuA9cQGUHpxPJqR1F9GU2WMiv/XLPkAslkiq8UKHb2I/I2WWMYpFWi4tOqWoJQIGt2gO6R7vsGPuvp9iuBX8xW4i6+opDOjXt17PQ/xJwtAL6mqqMiUgQ5QdzSiotmr1MTmGBvI7DbCj55lFxzg+oF0NOodmPm29u51VmcgJCrqt0u4BGEG3BzAtQCugmVU6DdoGdAZy76Z7GO0wC3NuO9wHkrGv0+yGZv8Kto9hxIA3Hv5o4SY2j2F4jrAmqILyhaAzcAwSPapVljVOJKAeVJsvoH6uKNIvIBsBSROuJXY6ldJ7EN/5PABBIfz7n3g/nr24jIEKr/Cvi3lHs/OlKfbzD/xRXcGkfP/PfnFZh+dqimZI0DmIOG5h3fFqxz3gR5CxevnLOANAyDPm3RwRwD15sr7D8PfLEL4zxci78qReSan32XTwGRHnDH0ezj+BILyJrPABNk9cNIFOHjHagOAj2IrMvv9zbWaXsq34Hfd8c5NaMEewf7wiUgJ4Gi7bJvjrufwAjYZUQ8aEaanAhv/HApzUbBPftfXZRKRwmYRsP3gPOgMaqrQTtQXa8aTtMcC2hWVs2qjJ9IaF+2Gh8N4uLzuNjZuBsFdfhChZBW0RBIprrVF58krb5EobPIxMBZ2haBxNNUr42i2qRl2RS4N0lrINEV4pYMkb2oJDgXY+fKbHL4GLZLKwIh79iOmTWIBmaSf8R1oEzZ3+tlVGNTh0o3IRtBUw9yv2r2AaoPicg+VDtAM1Nsuw6MuzrT7TiGyJabFzZAKR4kmfopGlpB24Ab9vqjBuJSETeoErUR6kFDcw9Egrj78KUi3OZp+OuLebb7vYufG/8IU21vx77DU0QtV/DxFm63T2li3cCZcfVGrKiczX+8ggUqHGPWpg3bgDvEv4jq+9hk4wwf5cNV8s5lP1akzKAL5CLIKtCj3CpcJvKJyVOo/wCylUC7OTKAiBSRwlPACVw0bO9Hn0H1LbKahyBoUqDcDSIFXNyCaoQJ6taQNRari99D/DQiAwIJIik2+YhUw3mUREi6bMoj/Tj3BBbf+A8p985PT1kTvKzHPoPZRWP3J/3Z5wrLe78BXEbTITRbhGYngUBUWQaUIOwFD+Ke/uT1KZzCaBAdwHYb5MmMzdTPeh1ghevHPcH9WIPki8M8W4u/KkXkhs/9EcU9g4bToJ+0I2lHw3bIdkEMIgvvuP0xrNv48yIB6ULkHuMG6k6seOrCunUpcBjVB6RQels2b+/TV37/v9APDwzJ176VoKwDPQISEH8DTcYQ36ua9mkyFaPZai4cvorTjFDbyPi1Pl10byLlLkGd4ADf4nA+IDJFyJSQCBJXNW2+wuCxxUhhnEtnW+SJ/7oAbgP405S6LoixeR2FdgFSRL4NDCJ8iGqSv/7E1N2himqMOHJh0T4jPstKoA/kfuAiM3xGoYjqFLA4V9DVUV5B03ZUi4oeJqs/jC++jLhvo9nbxsdyu0CmCWkvLjqAyJNYKsQBQJBoKdBCVm+i2TeBAfAncNEyYIWItOQnwx7E3Qc6Ba6PuNIj4prAOW43Z/21xXzb/d7Fzwfp3Jjq2Onfwcjy53D+z/FxCbuAv4Z1n85im+XZfMfFzGmdNHIAACAASURBVHjbGs95D5a3DfYdfINbyTdNZiLkRB4GZ7Zet0bVM5jhR9+ehmMF5PpcCb0ddDem4p6tFN8ITKN6DNXbvX19oTOPX1yA6hk0HULkWdRdwhfuRdwuiUr3A8dAU5NSRsdx7iRZUoDkGi6aQvwyxJ0HMtXQQbU/whWu07p0Oxp2EporkVJA5C8xn9wc6sOLsMnYdqxYfAjzNP5yoHoUS5BbBiwC9w7OP4K69xC/ipvpQT7n84aLqOu28+Mjj1VnTvu/T4jA1vAhGm5AqDDTwDIRKIh/lNsN9P858Cef/k1+dsy3tfirUkSu/dl3uQ1DWLv7ZymnGj/jdsPMqHtuzG26ezsqJvbQCGEj6B5rWDoPbEazE7ngZzg3QRdUd7il638avve3/kJKlQKqXZB5LPGmguq4deEkkNWmmezr1WNvdou4HuJoAO/PUS4X6T/b1O7FSlzKKPVE4iuISKwoiG8g0klzNCarFbOBoX7XXlrhHv3eUolL3SivUVmUWmqOOCAxrhIe1YPA6px0/tP8OKwHNlm3NVxH0wiigMhTwBGM+3gP1qVsAFMgPaBXECmjugrYC1JHpBtfWkFIB0WzoHFLRSReiSavEvBAP5qlaLALUUim8cVXQYqIZIhsAaYQ6SGrLwf2gOtCJACdNCdPq/hJRBRXrOILiqs4VEsS0n4sM/EvaF/1CavNrwnyBM+7+NWEdG68CvzOR26oD23DuOi/yUcFhQD3GU1GzwO9aHgVZDnW8bsfeBekDGye9TdDNgb3V1G9AqEfGwu/BfIwcPWjF3jdinET8yJVngH2o/o6aASyFFgJ/iihMcPdHMAXB01I44ogMegKRE7h4++i0ThZ8xzQii94fLGOhgzVbWh4Q6KCuUWIr6PhPdA6MIqGhYCSNRo5j3xUQ7IbVRX0HKHZCi4F/j71ob9LacFXb/2oDy/DRKg7sOLx0yS2/HKheg50FbeLvDqR6BTCvYhU5vir1cylwgfM+P1OwS2YAHOu5w8X0HQtH8ml12dsiMcuJJr9eAupDztKPV+Myn4ersVffhFZH/ZElSboOyBlNB1GQwnVFjS7l7kXt3588T4Tn4R+QtrJXN1M8TU0rfHJxeYR/Cea4m/COI2f8BhSwEa5VYxc/jSwC/TrwE6QTcAhRF5E5aeoriZrvqbiKq5neYx1KKexL8sY4h4HuY4qGpp1neprZ/zaMBNTrbqg51Upl2MmJ52mWY3pgVZiqSJxQvVkiYXrp+m9p4z4DB9XmLresM5Dqea6F6xs7H5rtLxq2yOa1I5KXC6D70IYxhToRRMLSbu1+cNiVHciznOr25B7qokDfRDN9tpjSAOz76lhuzsFjTEPyO2mfNRDIK15xzegHEfcWkSGBC6j0g8sxfleDdlpNGwG9gNC3PagiLwAgOpxQnbUTNjdbqJKTFKto+kSNFsH6ftAN5o+TAgHSaYqFNpTnF+BRClICrIW+PNP+uB/rTDPRih38TmgtOAq9aHvY2ruO3N0wfjhi/JY1hFCUgCWIP4KIgtzT93hO86dPlTbEMlHkH6dFZ+8gAhomMK6niexdS/39tMHsACCHuAwItuMj60FE/VpApTwhW40exPxrYh8DcQj/l7zsZRLxrvUCUQGJSq9SFSaBhwazgP3gI6Q1Vfh4j5EphBZiPjlOb/8IfMQ1gOIe4y47TShqUz1eYqdk4isxvsrSHgMDf2o/5+B/+Nz/1w+LerDq7FicaZwXPeJ9/+iYSPjYxBM/W6f8ZQJtwCRDZiOYNMnPMpc7iqn+KgYFuAi3BHdqZqg6f5cKPVx9LlriL/zth9+YQXkDObZWvzlF5GwDJF7bpbfNwXPkI9RRoEp0P48xaRESB9Cw/s4vxVxKxA/aMouewQ0bAIyXFRHiuOIXCCtllBtR2QKDYuAMr74AeLX5B9aCqRIdIlbZrIzHMNhkG77NwnWhu/FuD2l/EsAqg1EiqiezBe/gGoFOA/hOQJ/hmYlTZv70aSNrL5Ei10NQaqEdAzLcC2qpj9GETRtpT7akLiS6tItrVJue4O06mg2Em02Ojl/sU53Z5UTxxch9FGuNOjoquh0XybFTsVFEVHxIc3So9SGO6Rcerj0rW+8ZYcpNHOBUJR3BlowjqPDvuhj4N7AzpFWrLP4ErAIkUWIP4X6E9ap1MH8WGyx45AdQsMg4rvzHf5OTHxUxmYGM1/wFYg7h4b7gATRCNz9IKcQnUQbgvFKa2SNd0GX4EtdwDTofcAYGp4Q5JKKq0J8EU0nEJ4lKkBI95KFCMLDNMcGKXRcxPsmEg0jfiety8989tP2VwvzbN26i88LpQUj1Ieex9IqZrxc38PWt8dnnRgdIO8gMojIU/la9TDIGWAY5AMsfGHzTQU2mgEHuLX5Ow+Mg5sAVkE4wi3FeCeEa8AkuFygE5qo3gOcQqTF3BmkE4kXgo4Be4FVNulxYwjPouyCbBvKKPgrVowyhq0914AJXKFktkQuYIELBZAU8TWEMrBQNJxUuEaWtCNuGg0RvnwNcUtseWQZIX2O+tB5Sgv+31/OhzMHTACzBvh6/rMDE2N+NaHhbRN6ytPITSL7EJDatWFmdM292PU2xsyuJ/J/P4GqEuoJMA0ygYvPmIJePXPWMNKPyOqcUnYWdAjN2pmzYwnAWXDXEP8AIl2zfn8F+Du/2AH49Jhva/FXoYhc/bG32EnXZT+yAp+fg64wmO9oZ+63EF+4dYKojgKtiCzBSN8JcVsx51osyO8zkT/2NCJLct7fjOr6zhfyFrcTyWdw+xh+xotypihWPQ9hCM22oWGnavCk0yVqQwm+sJiopYpqyXiDbh0whCZKCItojp9Hwyhxa5f60vPJ1QsHJv/gT7w2s3px/aJa1FoI0Xi1ECptzq9YVvXFguKcJ2t4xq8WWLLAqVISuCrFjqrGLZDWXiU0zQ9Rs2l7z3oaiBAsFca+3FWEGPtSz5iyj6LajnGaGkAP4h4F3Y1qDZHHQM+jYRjNHgUuoWECeNSETjc/nGuEzDiKIgtsEdHX0WwFGozzIkyJj4IKEzSnLuILNbGubkrWeBXnV2I8rgnQQbLm0yJug2oYR+Rt8FcAwTmHRI6U/0xoOJrjvRS6h4jK9yHubi7zXdwFQGnBFPWh7wI/xLpBq/ioL+4HOG9WO6rHrICc8Vl0J2+OoK17udy6gZzBeHgGkQlUngb2QbYZeBrkFZD3QcvY2LXGze6kexLSD4AquJcR+SawB5vaPIOJft7O/19QDqOZwzbEXcD9+Sa2klNoliOuF3GXMX5lAQ3bcrHjydxYPbcs810SlTfhCxdBqpo1AhrWEZIIcZcRP4K4Iqrfp9p38jYj9M8TZrGzlVs2O9v4ucMwvkSoDqPpaYzKcBgTls5wGmfOrUu3/i1NbFNwP/b+Gvk5cQO7huedcm0hNJcA4OJjc1RcJ4GHSBu7EXowv+M7dRE3QE4irgxuFWZYPluEmwL/F/C/UeqZ4C4+EV+FInLVp/4LG0HsMI/F8BC2aMy+fRTcBWATInPzLY2k2z7r/2NueTveic8WWSWyFvFrCezUrFEhmXqW5uTrZM1VFDprErcmWJb0MXCpEibI6hWQGlFLBz4WfHEzV/dcZnRk7cShU03SbLWrju2eGJgYnR6aWjDZP9rZtW7J6JLfedaVNiwTVIW2KNP+97pwcVEriy5Ja+syEb1GVIyhVMe5d1FqoK1oWInIAEoBa0mWQUZA83gzqYP2YQu1gmzBTHYDGt7EFJhN4BSqT+Q2C2CdBvuXypv5TtQDy0DPoekE+CbIsHGl3Fkbf8s+oIqLWiVkxzUqdQKtqvpTJFogIp1Yms8DqL5H1lwIudhPwmlwrabo9GfQ7GnEQyE+Lp0b7gfQyUsx4tYClz/TZ/orCfmlxR7exTxBaUGd+tBvYWEPfyMXwl3GphAZms5svhPQInbtuIDINSzGbjfW6bmI6iUIJ8G9OOsZLtsaE45zy9oHzLHi4XzTfRk4jFAA7URkNUTTmOn0flTfs8QsnsSKkp8gblsu1EhAJxBfg/ByviG9AVTyTLII1aOIfB3kPKgDtiDyho2xww3rmLEd5/ciUYOQXcUVHNAtvuDRMAiyAXHncP5Z4DWyZgP0t/g8FLz14S4s/WbmZyuf5fr4ZSKEsbzDvAX7nMD4jzNhHrNxFXt/1wEQee7mLapnQfoI6QSaPcvc6MmnleatHNKLwDiadQLPmCuI7ML5J7HUtEOIL4B7OOf634lx4A+Bf0Gp59RnePefA+bfWvxVKCJXf+a/FHkKdecgdHGbPYEby4uzzwu/2Kfq/Ddw8S5Epih2dlBeeFV8oQwsAPmxdfR4X9Ct6uKD4Lx4uRcXxdqcPMTESEscZRt9qdCXTdVW//kP9/tGmm1a01Ye6as2Rnq9o/dKX1l9sojly8fERdDVOkixq0KhkpBMDKCZ4AoFfKFVoorFdIXmzCvcAnIeVxjJxwSPAUdRXYXIIMhloBORVaDHcjJ9ZlwXWY19+UawkfYcyT66BOQGluoD1iU4h2qKaAZuGPFb7AKgQ2i2HA2j+FJRfHEd6AptTLyF92WQZZgVScMuZnoPoIj/MZp9B+RNXOxE5GlV2U1Ib7MykbZVCWaCfBc5LO74y34Vd/Glo7Qgoz70N/Ox8+9xW3KYPwnZVVDzSUT25UKZNTZxkCYiR1D6rRuo60CqWIEwDbIIshY+UhTNOvNELoF8D3QPVgDeg8iDIGfNC1ILhGQYiYqIlLC0mtPY6H0KuIEGh7gOxE0AD4OOoFmRLI3wcQv4XRh/fjEiJ/MJVAuEBkgZFx1G5FuEbBTn30Wcolq2tcrFwERuat1AQ2R2Qzr5qY91fbiMxQI+gbmAPMrt3bCvLlRHMIpALe/0Nuw4hjY0bDHGksy2C1pjUyo9DfLALJW1w64ZGSJ3ilt7rZupH58kFpJTIBfRbBvWALkzk7sEtIA7gEQPY+4es5FhPP53sG7pf/yyO4/zcS2e30UkgMg61J2EEAGD4LLPuYCEOzudnwESlXao7z0izYlUceu1PnwUX4olbm1FwxFUS2hyAKQErqouOkHWcOqiEou3JHr1/Y7CmsVHqkfP3whpNhUaaXK2Mfl0S6W4e8O6pQ0RGji3jmbjApNjQmtHTNR0opRIJlIk9kQuQ9zHkIR1LaGxFuUkzr+DxE/gXAe2i1yfm/D252PuDEvCeRD0IJaLex0Rh8pR0Bnj9h7g/rwG383NIlKroE9iO8hOCFMo+0EXgityUzkXyB/nMoWWCaCJ6nVEvoFqE5jERW+CK4nId1SjD9C0JnnahYj7B4rszrsOd/FJmG8r1138cmBq439KbbCJKbcNIvegPjdz5jJmg5IraeVw3tk5AboMszRbZpRI1mPODXXrLH4EM+rm/SBP5NOPp4EzOdXnAEgZ8Q8j0kta30WoDYCcwRdTEJ+PQicIaYqGFlyhC3QyT8hRnO9BfCe23jTy53wrN01/Cihrc6KJr9REQxkfjWlI38TFXsRFhMYaxCeIXM27W6+iWgW68cUHEfkGtRtDlHt/MOcxrQ9H2Jr2KFYwPobFBjZuHcNfAKq7cn5gCVtsB/ON/syX2uXvOef0a8zNqZNWrPWlDSDJi3UwQWtqDyFqvjMaASvQLCKZWpy/9hRfOoK4bbNe0A6UfZhrxwzW2o/OUuGzAGhyKyHoFkTa0SxCk2+CvI+4h++4h33Wt/yDZ95rBvI+Lmrg4i0mvvoI9gL/DvhTSj3jc9z+5WKercVfhSLyQ+DH2Eh0EZaEkttI/JwQuQd1A0D3HcTYzwufy0hBxD1Ioe0NmpOdaNZCVh8jKmNmjqSKK+JcC6FRIdNJNLsHDYHa2ODQwQ8PnvjBzheu15q7NAsvxjCSwORTD69ZVkrTydq14b7yyp4RSqU2ymVI6700p66pj1skKqV4P4WQoZmC9OELFwhJBxo24wqvIA6ytAHJRkL6XUgTMnkHFyW4+AEgRZMIxUFUQ3gR60CWgHtR7QOOIf45VI/n3eHVJs3TvaARKjtNOaUtIG/axUYKwFHQbWh6CphC/FVsjNaJLQ4rRVwRWARhd94pKYO8iPjr2AUnExhG/LdBR4Ef0Lbq9fn1dfwScbfMvovZKC/8P6kN3sAutjPXibrxvt0T9jvdhxVCT6NhF8jCfMM2O+VkH8aL/phcZa2hvIlIEyvsYqxD54Ei4rpQfQi4hOo7iBtHs/OgX0OzY0j0GJq9ZHY8UTdCAZGLIN1oci/qDiC+iTCA6tJ8unIK2+BeBjZryIZI6z1ElUHVbFqCnBfBmaAjxcQ34TLqvotmrwI1XPw4hHPc8ij8f6jd2A78bcQv5lax+Bg2ls6LxZyvbxZjFcyLsw0LZ5hJPPuU0BbQ2cXSpXxtbcdEjY9g0x/Q8K4VjC5BeAzNPkRm292Ed5jN/9dQQ9welF77TPQKGmLEn0WzZ4CIkCb4O1+2Po5yGJE7PEHZZucKHZjApgKuirjbbYiy5j5CkntZ6pJccd+OCVvH8cUU1YchvE/WvAc4i4vHcfHmjykcbwD/Hvj9L29U/XNinq3FX34RWer5Z8A/u+139WGPjSpWYN2rbwPfxQxw54bIna3sXwQBW/x+AjmjxgjjEcbraABnsC9CDSMIt2I8ln/BJy0E4p+VqPIyIl2Ka9eQXYCsXZEa8DQi7+HiiBA2InKKc/vW05h8YvjgyXfiluLQ8gXt6cWrw0fvXdS+xbWW31v04JpBzQItj22M6OlYQ7n8DhqKNGrXaFlQICTtJOk6aNtPoatBVLkHXxwBMlzhOlljCnFFRCaI4gIanSNLbqDpA6CPEhIISQOJduHkKWAIYSvoLiBC3JOo/iQ/FsuAN2wXyQ3MX+5BzPII0EOga0HyLHTZj9EQ6og0IFoD4QQzxHHV/aDTeadzEriAyiTmMzYOvAvaRNkE+i431XcSc+c5dRefiPmW13oXXwDKC/+Q2uAg8GeonoGwDHgUdCYN5HGU8xDeBH0B9GWUItZ9LDBjVn7r3LqMdZ9mum9Hc75jK8o7iMwUL0PYmLoH1SaqQ6BHEL8aF/cgrobqFULSRwg/UlglwjmcXwx+EEvMug8XX0J1K3AUDRDS84gEJO41oQ2CAvXRo8AIGtrFFQoIl5EoIK6FEBxmaVYwRbqsAkmxNuudYsvN4F7mlgn77bDiSYFe0KYJjUhnTc4+wK4vn1JtLeO2USfKj/1FNJw1Xnu0EGTA+Jx6KV87TyJ0YN66BTT8KC84AVFQs7RTbaCZy4Mc7nhKDxr2YHGD61Gt5xSDGUSgq1Cu3BxVq54GLkFYhHVmTYOg2TTi9+Mi62aG9H1CMruLudjen9yDL14EHkHEITICbgLx/YjbMseBqQL/CeM5vkapJ/10x/XLwXxbi7/8InIulHoyTF5/Jf/Nn+YGqvv47F3BKjZSfRfbna3ECtQCtrj1YV/gfuBDSj3Dn+E5DlEfvgi8zNz+lgZf+A7oK6R1gWwH0AY6jHKY+kiBrL4VVzhJqXuFrH36fOP0oTMMjXZs+MaWAy7Rzsf/9ncH4o1rB/09935j5F/90X9uXriuyc6jBee9dH3noWW6qBdZ2N4PWsQX+hS3lLjiRaQkPr7MTfsECUTlUUyNVgIVRMDHKer3ENIONNsELEbTF9DoMOI9t+yA4rzQWw2yFPQkxk+axBZLn///DB6x2/RVkJXGp5EEW4w7INwAvgb6HtBifEzXBWEEi8ep4t0m0ANkSQNxzxKSC1jm7myfu9+jbeW1z/D5/XpCmHcjlLv4glBe+BOqAztAX+Im31l3oOEw6FU0LLXxqLxszhZ6FVsbdmHK7LdQHcltfzYD58BdQMiDBGaytbWej1EVpAdYgIb9IMst1k7XIj6gZCApwg3Nmk2a46LN6kmikqdlyZh4plHXCjKJaD/CCJq5fNTdg+oQLuoCGctFGVDsqNKcbiIyjWpVs2ZA0wxfrAFdpI0aIjUpdi5H037Ivo7KG8YRB+A0uEbOuTvx0YOop7HryyJuGX/X8unN2VmU+/vt7uEgNv7NMLubMkgH6BYsWQzQAXteKqDLgU25cOgESgBdAXhCehoQhEdyselG7BpnI2URUF63Nfxm8XoG1fXAeVuf9YE5zowRkCwvTC+RNXpV/HWc32D8V0ZF5ALomG1AdGP+3IuwBsxsEWsLmm0j031oSNF0jk6irkFV0ayKi45gjZytIDvuWLsy4FXgj4A/p9Qz9dHH+gpjHq7FX80ici6Ueq5RH34eeJNPHwo/BPwGpZ59n/vruhOlnp9SH/6fgP/7E+/nCttEmpOKP4ZmD4G8i7AEDYHSwiv4Yq8QOokKo8V7H3/qnj/8g9cm/vjf+Rt/+uOeuL3UN33+RvLe3/03p9zQaHvi3JRW66HFyfQmbTYry3qy9r/6rSaF5gTTNwJJ9X3KvXU6VrRrVFmIi2Jxvo51US0T2/hHdUSaiKxB/AjO1wjhDJqdto6fFnPl5CQ3C26tYIrr/WbUy2pENiDuMqophF3cPqY5Dv5xGynpVoyf8gg21ugFzoBOgU6DPIZIL+r3IDKj6DwDsh4XL0STN7ACdMby4jDWoZxi6soyWlfcLSTv4i5+UVQWvcv09d8A/jEa1lmB5mrAd/JUmXabMLjziHw95+g54Kcg38YKjvdAhhEpIu6b+XjyACHbaqkjIiBHchVthMhmS83S+0AngMOELFJkDGgRZDHipvDlMYqxalp1Uhu4SmVxwEcvENK3QYKGbJwsSXDSgup1kponbVyi0PGgiGwlsA/NmvhIkCjTECrJ8OUJpobwbd3q2hcPg2b4eLmG7Jq46AE0bWCTl1GQD0C2IyK23tGORUKWEHoxAcpWrIBqMNOdNd/KBZjLxS4Qh8gCNFzEmhs3sKLyArANQhU4i4ZzObf0Xm4JSSZQfZN0ei2+NIiLt6J+EE3PofoUhAOonENC0Qp46SZkVzD+4ITxKfUU4lbmApmTaKjwkVQXGlhRW9WQpGgoYdfWdsgcmj1LuFkRT2jc+oSIkFtCzYhpOrCJ3VuYbdGtqZ2mFTQ8xEeFrAGkD+dHkWiTNSA+gnewjuN/oNQzMNdpfBe/HMyfIhKg1HOW+vA24I+Z26n+TowDfw/4AaWe6V/qa7sd/xIbK/z3H3sPkXZc9D5ZRq4k3ISqp9g5kJuWo0HPQkgJ2RuUS8tatj94Y82K0mT9yJm2gV0nWsdOX26kaVhSg8udxThpby3Vzv3kaBq3lOLHfuPZmPHBBogn8hGaep3uK5M1+6XY0UWp27qRQtNGGToKdOcL4UnAIxKhOg20I+55CC8Rmk+b0twtQtyLhGwv6PF8S/sgcB2VNoRORC6gbhPIKOgJoBNxT2CKzSWI60D1RcgVeBZ59SDILsy4vIJZfszuPufJRHoQDd+wp9Xd9tg3+Tc7sG7IJxfyd3ET82zzexdfJKauPoZNVzpRHTaOoE5gorXVQDdmRJ6nemkrqpswoc1PQdogtAPrITqaU2HaQBYg/goh1CAsQbMRpCA42QYcRHyuptXzaKhB+A7ITlQ7gDMSlcq4uFU0q2rc4kinY4SY0NwHBM1Ck+ZkHRd1o15oDKPVoYJ0rKpJaIzgC4OQTYr4goZqN6HxkGbhZRk+q8mhI23xf/n9MuUuIanWQR+C7AT4CZBTmHflOCI2ug7pW2i6FokX5F3X4yjXgEa+Rg3n3cMHgUbegT2OFVFFoB10BPPUXYHqXoy3OYO92Bh8PapjwP6bYhaRq6hkiL+I+IWonkXDMLiFkB1GdSEaihB6QS/iCpsxJftq4ADi7kHDByD70HQzSDvOz27U7MI26l3Ao6o6hIY7XTjuxDLMFq4FkS25+HW2xc/jwFlUrwOSi7Ca3F5A9iHRaXxhE+Lm4jmexTqOf0Sp51cmOGK+rcXzq4gEKPVcpj78DPDXgP+FuXNBJzFC+D+i1DP4Rb48AEo9Sn34f8TGrL/3sffzpeUSmktV0TBw+e1w5EABLxXq9TF3/9Yi9WqgUHJ64XAdl/VRXuijr//Vycqqg51re7saFz+40kyybDRrpEviNLs4PVGtlRe0jW37X397KVG8kDSJgXGSBoTBhErbCFmaaJaolLqL2A52KUIrIttR3U9IlyJyDVxGyFogfB3L1P4RyDOI/wANz4C8A3rZOgV0cysP9xKEa6hLEGnLydD7Qb6HFXYZ3GZCPIKJc2aPN1bBTYHU1o8cN812E5JbPl9ze3599Q15v0qYZ95kd/EFYerqd4H/iHHkBk3EIQ3gRUT2IG49qlUsyGErqn2orgLqoFO2KZVBxKXgUlPcag3IEN8BOoWIxQhCFc3usyAI5xCXc+xkK+LqhPQlMYpMFc0qwGM4fxiVIOLBF6po8KgKEMia7aAJIhMInritRFuxji/eg/iLGsKjZI3zaJigMdmg2PYmU9fEE9Q//7xqRCxpvWwcSNlPWrtHY39UJC7h3H3YutUgpO/ZCFYOosGBK2Hr3EJEFA178sbA8/lRPYZtpO83kaDWgfxYUQJ3EcEBh7ACcy/WNNltqmstAF8zn16pIHIDcSV8YSua/QQNLYhrAmPG+9TLCH8Z5UMNYRPZ9El8YVJgAHQClUXcZo+jgtmg9WMb+duTXkJ6ktkm8rdDse5rg7R6nKjyFCIDiLuBhiamSs/vqetyT8fZBenr4Ir4uIJED2GBIbMxCPwJVjy+Tannq5dd/otinq3F86+IBPIsy39PffgPsJPyCWwEMIV9QXdT6ql9ia9wppD8J9go9y/NeR+RdRq17Asn9qfpS3/0vdk3hTPHb91tQeehrJr1ZzpK9Ni3i27T8404SQvty9/IQrVaLo5PT2eNJMTebVn2+IYrqF7mel+FyAXiuBPVViYme+kN40yPLMcPn9LOdQ1xvhXbLU5jC2IJdBmqayF4NBwB2Y+wAYix+McbQALhaZQPQC6ohnViu++jwNdBDiI8goa9EI4hfjPI6/lj1BD3cVqVCwAAIABJREFULVT70XAODeM530fzPdgYIm0Y36clJ7DP8EtdTvYG8bv4eAjo40xf/yeI+8dUFn96H7dfN8yvdesuvjj0YKNXsM7ZM5hVy9toGDOHHakAbShv5AViB7AJxCNyD9Ztuw76mHGoUUQ60XQMswt7G2gDH0MYR+nDnBmO5BOOMZAaLvouIdtnzg86Am43SC+wFg2jkF2HKGChBhG+qLjCY6Lpeyou4EutUmgvCuEDoBPN9qNMk6WCL00gbhGlBVMsbfNk1YBmGZo+DlwESrjCBVyhZdam9RxZchBNlxKyE8AEzlfA13HR86DvmjlFWkH87RQskW+ielpDUwhZAxc/B7oXDZmIv4rzbbnCooaNyPeCqFna6YdYNOVToMdQYtAFwGEzWdcNqA4gMgSCqgihcQBoR8NFagMbaVlWQNxBJI4hvIWGWZxyAfEDICUIDfQOVzgNs4WjRxE/ZukvUkbcOjGHlLqJdOQSyGpT9ccVNKnNOp8GYCYZTQ7j4gwXP5GfT7PRBP4MU1e/Rqnn470jfxUwz9bi+VlEzsB2IUfyn68erJD86xhX784dFQDioqfC2ZPvf9LD6NDYIw7w99+3D1+cxBXH3Nbfatn26oMd2ndm4j/8zj+oN8/1lVcsaH2pe0m718mphtYbsaxankilktJs1gmhyfTUUto6rlJpfUBDcsJ2yVmMuCriF8pMhrjIMrLmLlQzXLScEM4BZUVGxbnvgCSovorQi7gd1G6Mq/hz+OKQxC2AdqMcwSLUBtEsAteaj7sEDR+gehFLvmiBmR24FnJuVIItNE9hm4I8k1sPgX4N8R+XLHQnngF+m2r/X6Oy+ODP+Te/fhCZd4rAu/gCMH39YZsg6G7M23UbxoNWkMdAd6O8a84KEpDgQLZiY8ariCugegXxGwnpAtA9WN723vxvVqIMIPoMM5Gx6jLjVBKseAzfsThCn+HkUF7QdOSdS4fIOZBefMGTJZEVLhE41yuaDaMcQXybaHBINIZIjUBAs1GBoLiUrNmEEJElXoodiogQmkn+XEeIWh8UEdTFR8U8aoewdakFF71ICOdxjBGSLqRYtfei+4AHEHXg38ktjGbS07agekJD8KQ1h3hB3WtkzeWg/bioDVdegfG/vXHEJQUiVC9gVKnzWBE2ANqO6mLgEC4STGk+jnkwn8a5tQQspUvcAHHbEBIFXHQfIktR14c23wKZxkWtiH/65oKgbv/N5DFAVetAHRftR/w6ETeX6OZ9U9HLE5iYdRBYn7t2vGnd4rAUZARXSHI/x8fmeJzDwL8B/phSz8inPHvnJ+bhWjy/i8j5gFLPDerDv4vZBc2J6Lu/29Y8/X5Ag4ue+83dFEqqabMpUVzQscFAFEU62FekEKckUwWdvNaq9fFMCy3TXLqY3b95qZ4419dsep80U/F0djppNh8ghIOkmaOltaQTE3WZnBrGuYzJiROy4L4Eaf8ayeSh3AttRMU3iFou4IsDVCcmmR7ukIVrBoAqqivJmv3qooP4YqugFUI2iUSvEbcKydRSkmqPRuVXRLyAtoJcA7cVuIpqF6pZviCWsQ5HK+gihBLIIcRNG3+KGxgvqM/UkDKOuO05d/LnLSBnsA7YS7X/7wP/O5XF2Wf4FH/1Mb/Wrbv4IiDueUR/E8BEc2E/6OPYiHMEKCOMIS5GtQcYN6s1WQRcAGlDXBW4bJ1DeoC9OLce5ByWZ70ZS586CGEz4s8gsh0rVjOQtxA3gqVjNbDO5TELOwg1Ap34eALVCOc2Ajcga6KaIa4FwYM2kXgD6BkINaBV02pDG/UaXhBtOlQ8jgHSKUfcIkQVR1SqodmQiOxEoobAkzZdYQK0QAhVfFRA/Cjimrg4IHI/Mw0D1RSRCGELVhC9hYYBYDPIZXHyLcQdxRcVGFZfuEHWbEMzj2ZXwWP2OHIV82jcYHxM6cA236bcVi1DOJ2vrwvs2JHOfAYi0lRXOAC6QkRa8d3B+KZ6MS/YQaJeoM26l/Rzq+kx49d8Hrgi4hxR2WFWQTMj8HN23JnERetAHkZkCptMPQIyY803Dr5po/d4ISLr5jjrxrBR9b+l1HPoU56xvxqYZ2vx3SLyi8GrwCvAt+a6UeLCer/jN/Zkb/7Z07J83bTrXVbBlHAF0noH8IiGZA/J5A6t3dhJdbBJUvP4GArF8sTpgbYKbCvF0ettD6zzjaEpoqmJD6PeBUWtTmfJwaONMN0ouq721sKm5UKpeJ+Onj6Oiyak2FnDRUVgOcWOn4qmG1QLoode6pQHnh/F+KXPgb6NyAJCI0NcgrhnbQFqtogr3Kuu+D7N0QjtLONiB9pCSBcj/h2ypgd9APH7bZulHcA4lq9ag+hdQFBaEB4FWlC9iIZJoAihy2wv3ATCPmxrHDBC/1z+YHfCY9zUZ6j2/00qiy/9Qp/mryBknvFw7uKXjNqN3wb5K0Zxc7sRqeDkWVQzNLyKJh0WU+q3g5Rs6izTkI1iAgwPegPLTK5hhecmVAc0S9+XqPjbWGFyCqQAsgSVw5gp+V5UJ/OCdTHwLqExoWlQfFQmrY+SVIViuwhSRRHAIe4cEHIhyTZUd+HcdqyYOWvNzaAa0kiT5iTjZ5RKb0ELrU2Ji17TeiwuDoRGjPPLyOpXxMXdqMY4SVDtBLYjTAPvINRQfQlxK0CXoBxHdVBDegjnywIPoHyYO0tsxugAJawAt81s3KpoJsBzIv4UUlqE6hiqBcguoeEMPv7LaNiNje0H0GwKS5jZABKh4UNcVLJjHpqIb8dSaSasgxkNi4QC6HXrbOII6U7QXlCzcMO9jrjnTEmdHiXoZesu04Ul/SxHolHrHroXgAylikiVrHEZeBZxuxE3Uxh+CDwOcjEXSnYDm/HxRz0nrXB8DfN0/E9fOhXtS8Z8W4vvFpFfBGys/X3Mo7Jnrrv4x17YLAuW7tR6o4SL4eYOsJGAgotL+OIrggvaurjE9ADSd05Yt26TlErvForRrrb1KyfcijVdWq+pRBnju0/EhFBiotqSjE9HhdXNvmhRZ+wefeAoUdkT0ouaNsoijRcQ9xMKHZGGbBCfITv+mw00xk+p6qOgb5LV24Bp0IysUVWRV/DFIlkjQdL3QGsatZTo/yBVkZi03u+WPz6EZiUbhblDiPsGwqvAEKqjIAeAFNQbmV4jVF7GODWC8HVTgMpmzOdzxkJjBu/OcSgDtzz/+7Fi/Bq2vysBv0+1/4+BH1BZ/DERkL+GmF/r1l38slC7sQT4H4C/AzTAv4rIC/mt/WbN5SpIccstNTYYJUXfBdeJjZlXMuM7qGE3Is8QQgp6gbRW1pC+gsgCosoiETYCBxDuNVGMngS+idKHMEEIqiFtIWQ9ZPVz2hwvkCYqcYuqw4smCao1XMEh2glSRLOToM7G2W4IQQk6QcjagBGak0qpR4mKKlFhCWgmcamERGO4ouCia+KiCiJVwOXCwbfQbAqJUqPeeGxyoteBJujjaHgPcV8jJGfUeIVecLssblaW2Rgfh2oht/bpxorKM4S0CRSNe+53WMRiKJA09+Viof8PtKLiL6CZEpJr4NdKVPCgHiRAtARb76YQ9yKqbyDyLL5wAA1PotkIaC238OlSVSUkx1CdlrjlFCG5DLSDm8ZJA/Fprv7ejqZVxDdA9oD24Nx9qHqs0O9DQxuqU4icyLvGfXlROVfH8TjwI+Al4MB8MQL/QjDP1uK7ReQXhVLPRerDv4ntuD5y3EVct1+3JUJ1O2YLMUMufhtAkCqFjnbNGt1oWEV18DCjI5PJyXNvtcS6YOHvftev/O/+yrq4rbKR6vgbFMqu+cPXHwHapgdGfppM1b7pLg9EbQ+sXkHIjuEL42T1FrJqt06Pvi+dK4S0tpVi+wUdPObIGpekY81CojKkVY9m0xhhPgIa4JaB9OOLjpDFiHSIi8foWNqpl/Y9gi8cx4zGl4Cew7kIkcjG3GxDZFa8lg5hdiBdwBTIk5ix/BTmr/ZWfnFpA66CDCBSx/wpyb91B/LXd5+9PqrY4hby3x/Ako/Aism/TrX/v6Wy+PTn8fHexV3Ma1T714D8DeD7SJ4oZQkkL4AewVJbdgCLEdkPOmE/XMC+c1eR3JrHLMIazBhaIxY+4FxECF58qQORIXWFewnNvEsoHufPEhJB/HNAP7gM1ZNo0kRDFbSuqssY6zuJ74woN1IoFTU0EnzBi7h2RCsQHkL5EbAS9AqoJ+iY2amRkkxnoD1S6RmjObGaYs8o4jppjDUodq0SU06vQdxp0GDdV12ASA38GlQHyOoODRFRSXIT7CF8sQtNvykwrhrGaE4GKXU9g8hPrHMoU1haVxciXyekU0BXvq6tBnkbwkwnF9D1ZqGWdQJ1NHhAyOoTIC1ADXHX8cVuK6KJUBkFHEiMhgO2OecDVD2aDQLXNW1cIZnqgBCjWiSq1IgqHZj/4jgwiUiCRFvRcAFToL+Fpr14EaMbCGg4S9acAALibiCRFfDi5uI31jH/zB8BL1Pqufg5nLV38RXA3SLyi0SpZxf14b8F/Os5b1d9BM125uISgDI+HssVjVXV0GkKPfceIiVWPVhx6bF0/T/9e6Px0mVR5KaHGe27CmGjVjrWdWxevEfTkBQWljtQ9pO4Ltauvsj0cJPq6AZae06T1NqAIUSKOP+2uEInzq1TKTVIJpRkIqPYU8TF9xIa+8kaBYIGyj2XRKQbJODFoz4N41enpNSVyLoX3tMLr98bzrxywm148QrIOBoEkZl0nJe53ZrpOCI7UPcewqb8d+uBnTm/qhdoomEp4k4j7lnQncyY96oqpgCdxArwItbJ3QOyCusSzKgj3+eWPcWRnCv5z6ks/vXdCc/DlIS7+BxR7W8D/iXod4BjKCOIrMU2YHuAr+VFC1ja1VaQIhYI8IT9Wldj4+kA8ng+ym4CBUQ2QXwcza7jZCMStQNlCewELYE0EKmiYTHIDGd5MYSLqC7VrDmOZk9qSF+jNvqhDvYHPb8zuEd2FGT5g3VCKkRlJZmMrdPnDiLygOIyNDTFccOmHVkFdErr4z10rB4krTnitlN5Tvakxm09aFDVEETkAhoSnE9AFWXEjoEeBm3FxZuwkfQCxF/CRX2gF4ENGtKUtNZCltzQtPmGiKzEl/oQHQcZBi2ajRpjWMF4HVitaCtZYxDxozjGQDaaQjyMgZZFXDtQA1dEM4cvBcRPa0gXiC/kG/LwDhp2AAdRHUZV0DCBrbsp4HBOcVEDX/C4wsMm5HADwEnMwulRNLtAlh2G/5+9Nw+y60zP+37Pd5Z7b+8r9p0gCRIguJPgiuFoNDOckWxVJbKlKikpx8kftqKUIy9lR+VylNiqlCuLknJVnJKXSuLYsuxKooxGnOEMF4AACRIkQQAkAQIgQKwNoLvRe9/tnO/NH99pdGMlMMMh0aP7VDXQfe93zz33nHu+837v+7zPw5XlZ2N3sb/HAUdUvv/youNanCVkGr8HvEq5f/b2vph/DrEI5+JWEPllo9z/h9RGt3A9IXKpE6J2sGeAl4GBgq/4OD4PGUwXDePix2lf/hGDSyrRyvviimXDymZia8YJXdaA7CBRl49K8XOUsGSm8rqv5Wvb/rO/OJO9f+CCarPEK/vLyPVhfhnLVo+pZ7XRnBk0RcPmM6GoRrk/iHA1q4OKks/MZyWql8qK0lRakpLXY8CTdEXk1UtqH1hrYyemqU+3YSRk1Q3AElxM6OS0C4EEbhuBk7hEwCjB8uyVUL5mjq/4CegvEJwgPOTfw/K1SBOYBf0z9GjIktgy5ongezCWBJkPrQqlFZZjlx0TForOlzH7q2AvMnPud2hf8cEXeKYXDRbhvNXCF4XZ8yuAf8v8wuoBsCbGbqS8yD4uRBehOvLEfGBpECxq7yV0DHvQpVDepgN4EqmE4i0LttOHswSvCVwyic/6Q9OLxlC0h5C5SpB9hitN4uuObGY2Gzndfuh//j8mN/zCVtcu1WlMeyp9sZyLyO0xzMrgz5tFNbLJjKhyFspN5NoQHWY25rpXDZn3FRRDlDgzn8slGc3GaXJ/DrK7TPFncqUcWWzeDPMzUi7kSma+LjiASxzCYxiQm/mY5uzLRCl4byRtEXKXiNIaolRUYTzSDGgd6GUs32k+qzF5csTyWo7PR+i5x0lWpzG2DJc6XNIJyMwyXDROXKmA1XFJh4IU0lLMT4XMqSaBHSjajKweRMajJnn9AVxaB58pjn+ZuLID70v4xntBn9KqReJiFdi+Inu8rjhX07jkEC6pouhu0HJgRaBXXgEjZKK/T8g4Hvi51HH8GWIxzsWtIPKrwd8EHuJyuWcBpGcw/xZhlTsBGi+68Lykx434kOBjyr0l0EbiUg+kPyDtMDVnB2gfnGDq7P3m4iWW+x2AXOpmonJ0we98Y328vP+C+vse5u6NE1y4WGVsrMlA98M2eSoi7dpBXu8l6RBmWN6AvH4ARSupjV8M7jlNiCtNq4+3E5dH5ZKlWBZb1qiDP0f3mlWybAiXRjZx+jzw9eKTRZgXgWB/D6Fksj78rcewfEcYYyeA00hNgsjucwa7aM7+IvCp0HacXgVtAJsgBI8RoUPwLuBJ5A4DbcX2e4EPwa0Hf4wgpPsesAXjA4L14r3Au8yc+8fAf0P7itoXfsbvdCwyMncLXwBmzy8FXuFaw4YE7BlMLyHeIGQkK4Trq5/QKDMPs0tgU5i9jIsGCQHgJtAmgh1dxnyX7+VXIW0kLu8DyqALIcgyQ+4+YBbsDOhxXPw9fPO44kT+0uxUu88tHeg2P3YyJ6vF0fqnYzP1Fp3Gq4F1WGMfipooysxyk5SChqQIvG9DTjjn8D5THKVYXldSkjWqOd5PELuS+WYu5xB5jOTMfI2sFuHiEi6ugaWYhM88chU5VyIq5/j6Q1bqPiwXd5hvDhNsZaeRW0W4584WjTJ14JsomsayDrzfR1btYPKzKfXevdWS7tdwcYplk/isG8v6MTcqJwduFkVLMbuAc1NF6PEYsBvcJLAHtBZFM+SNIOWWV9sJVZ0Pwnh7mMv8cTtUZFKHgQdRdAqXDuHiBnAf0uM3+BZ9Arxa/LxGuX/08794LdwUi2wubgWRXwXK/Rm10V8jlFaXXvO8qRuyHNwQsAy0FbNhs/wV8kYJuV4UZVj+LkY/SVuv5J4070fBZil1lZ2ishFtI89KcWe6T04Pu4fu36HB/i0ygyhaax3tp5mtHyeqiMnhAXo6IhpTd5E1P6E2thaYpn1wmrx+1KJyA5dEuNI0Lo7AvkZW32vlSo28PkFzcjMuOaUofQDSKbnkfvVtmNfGzOsdoBW4JMZsT9CotPOYPwz2KUEK4gOw8J00ex7caSz/AYE7mROlI4GgThbKS4wgZ4gKwTXnZSzfDDaM3POYvYS0FvRsUV47XLhCrCNYefUAZ4AhQuntceDfMHPud2lf8fHP5NzfoVhsq98WfkrMDm0G/nkR6F0PTUJwuX7BYwa8BTZN4CwbPp8B/y2gD8U/AD181XZqhADyM+YzWxCSLkcI9nfHESJvOiCC/FQYr7LB9232ggMaNGeSpL3RWPurz0WX9nyS9bzQRbJuDRDXrDY+I/k2XCLMXresIbLqlNJIlNrawWZxseEzM8uRojz8Yh0orc91LStOc7NkhGxmAEWXyH1sZob5nLyZm+UNkvYcEOYjyaVEiYDIvK+RzTRQVMI3R01xBfMxRoRzafGZz+ItRYZZ7rH8TXAb6Fr3vhSBixqCDoya4nKGXAPzFhb01QtY9k2LOj4Izj3qxCkr6Dwj5M3XcPHDwH58FpE3poMwOxtY6FEND8E1CcJ7UFwjSqdRNFmIxF/vu3GSsPB4jRA0nr3B96eFnxCLbS5uBZFfFcr9Q0Ug+Qrz3cQBzt1P7vcHbp9SfPYmUi8+v4Bzy1C5Qy5aa7gfB26SGwfO4pKPaE6vJOn6EBevp6M7oTbdMbrvZHs+U29o76lHMJLlv/HclKQIs6cEEQf2nqNv8CIDcYdctIRyZdLK3Sl5/Rh5vQTOh5V71CQuJ8GuDMAvEyoZApccCh2C4QmzbBKzKk0fUeiEIF2Ut4eAExjrML8XF89piGXFxLaUIEL+CvgHgeWCGkl7tSi7vFLooQG40P2tDkIwmCJWBp9dvQO2NchuZAnBtzYiZFQ2F9plh4FTxfuvJ3STngJ+j5lzv077ij8fPElp8c1cLfxkqA63YfmvA/8xwa95x3VK1oD2Mi+OfflBggMXzAWFcqcWOJpUCBzK54AGZvuR7keKg2UiqwiWpxcJ19s4Zo2QceRpXPJ9zK/BZ2eQVoGN472IS6I+sQ6fnaDUlY6dGmt+dvB09Oh/9KspzcmlNvwuwEZzyXE6Vh3FRf2MfHKSrhUxSceAJFnevCTNKZETg6pgIsuqRGkDogSnDBengtR8OoLlkeVZ02pjvnn4HT9z/LhvX7U0idfen2hgTUpUmqbUU8K8t+ZsTnXY8E0QO4k7ErWlhosd5AZultDsZzjloZPalZg+PUNWG6JnYy7RDW4YvBCnQFXkesA8UdxJHo8ifwj0ANhboBOgX0SCxtQesG2FcNCKW/4+KN5PVJpCbjO6ZgEwh70EysP/Q7n/+C1vu4XbxyKci1tB5FeJcv/r1Eb/EfD3r3lO8SyWTyC1IVcD/7Ti8tuY3Ytv7gZbK/QoUjdYjulY4DL5DOizrD6cfPsXI5XSVfrkn0wzXUutkYXVqPfniKLBUOIBym2fsOouw6iZ+ZfNq5x/enzC9biK61s+Rs/q5XLJBaQmZi/gm28HN0LaLG+O46IO4koO5lE8hXmw5ntgDxSOhQLWYmZm+bvIzUruEujuQheuDbPpIngcAzWQ5jqpw4QYXCIqyBlmKaLoANQhjPO4pLcog42An8b8WCCUmwNmwS0rAs8+QhayDfgaoRmnc8GRXwPYn5sAssAim7dauF1Uh7cCvwm8CG41MBUWVt4WKByA2QSWH8ElCbosEn01GgSuI8Aq5IKGa1BVOEcIJB8Otob6CIt6EZcIZdTHgPuK134C9iYhS/YWc8oPLurELMI3HpD5I0SlnHL/Uaw5QLlnfODXV7r+3/xPneqXlqK4HRc7stklmG9T0vmu5TPn6d+0wrX1bSJKj2L0ESdPYs1XqE2MUZ/Cm8TYZzmdS3LL+1BbXxu12Q6LyucdeR3fzGnWZNNnlZ/+KJ/c84k78Ucvx5nR3Ppf//Wk7fFOU6U3wUgtr5WtMVHCN86rORsZEs16Q21LEoRhvo9ATQq2r5CAhFwdn5eRncI3HXFbIWPmGijqDZQeq4BGhEtJO14o7Ew86Btg7xQlfAd2vY7oG8CdJi4dR/FdSA/eYNBe4I+Bf9/qpP5ysdjm4lYQ+dXjHwK/wpy13xwUPYLl45gdxXyC+R/hoq+j+A1cPIjTTnBPIAkVgtvTZ3fSGHsQMFz5TZXLFcxz5tMLExP7Pll6spHtnGzmj//yg2unNjy6QLpr49YKaXnMT17K8HS4pd3LGu9+cCbZssG79sq36bnrCIq+ifmdRPE7istfs6y2E9nzWH0CHzugDmqX6DSfNUC9ikrdoISoNBKEyvO3iqahdzCrI53DbK7rs0EooUVBSsO9SsjQhkym/DSwGawbsbAbcBKXPg22F994i3Bzmw6vtWcJlIEqsAK5jZjtAXuEwJX8iNAh+cxV52QtM+dGCdZmf4H2FZM/+eltoYWvENXhJ4HfBb7DnAd9uEt1YXTi832YvUqUxvg8x9efAh7HZyPEbWeRVl5nq9GCbTmIQoe2sQN4GriAWQfYcsy2BIOAuIPQ1DZdNJgcwdhYWOo5MxvDfE3ObQM3jXN7cdFZ8qwk5zaT1d8zogkXlZdYVD6jvJ5T6RujkAmzrPqG4sqk4qSC6y7JRTHmB8hqy7DsPSk6aVnNE6Ux5a6csU+djZ0xf/FTF/UtxQY2TYEfJ6k4q/QlSBXyWoPZS5lNTbWf238o3/jsJl81F5U33iNVehvEbRXzzYpd/HCW+mTO6mdLTH1WVjbTsKyWGoqFasA0ZitxmsCoB21Fq+JcmbYlsaKkguJKSBZYJ2Gh+xmwAbOzwIPILcwuzlWuQuBot9K7orNEpU9xyQDS/QTu6EIME/ypf0yL29jCbaAVRH7VKPc3qI3+La62RQyl7Ivgn8X8boKrwH7MVy1vDOFpU1w5DRrC+yCwbfk0uEnKvR/IbNrKd4uZoR1r/+qvTJ/94x+fLy1Z1xwfn9xX2fRojcG+cfK64VxGe/c3sPw1jKYfGWm47s687Td+bQYXG9gOzGaRHwoSPWoDfkiUZuS1XZh3iDP4LAObtqTz/1NU7gbGg56cVJSXy5iNg+1AmkbRarBvYv7NYKlmKVAPVmXKcdFKzPqw/CPCpPkLwFHMPiLYJWagLHSINn8ILEGuVGQ3RzGrYfkJQqbxm2AfYXyIWI6xr9jeZkLzzvXQB2wH/oSZcy/+3DfbLDIydwufg+pwL/A/AH/lisfNwPzH+MZYsZjajvm9eJcV3OJLwAqwAbLZEaJ0J4pWgk2Cc8BWxHtc1ni9vN1J8D1YVEeaaxhMgUaR+bwAugv8W8DdBD7yUCE/YzRnFAKc9ChmH+Pct1B8EGejZtk7WDPHZ96yxlnS9iYkDrOZubSNks6GorQDy6ty0dfAPgZeNt+sYn4AmjNAibhSV9S1xC59dr46g5t47V2WfuNxlOeeZjWmZ2W7ula3Y9bAJf2kXZ1xednUlt8anKwd+qjauWlj7HoH24gq03LJDJLRu94r7aiZoiblnnZ8R0M+A1/3RGVDUS/OBbpN4F4KkWC2kbTjLHIJ2Brwx0G94DYT7BMhaHCeJdgmPnSDs10jaN9eCUVHcMlQEThuBq5eEMwSXGL+L+DHlPubN9h+C18mFtlc3Aoi7wwc5EqnlQCXdJPXdgJToHsx3gt2siZ8LrC7Mbsb36wDJRS9hotOErevIZv5VJKnY+XzA9968U8Hf/lXY9qWPc9ffAJIAAAgAElEQVTM+TcLr+oZxHfIm+9j2V7D3eXap8x1rj1EbXwz5b5xxWXh4qeRjhF0G3+AWdnEtOLydy2bfYm83ob5J1D0aqGj9iTYbnBrMc5iuaE8KcplvWbWifkmMAK8rihOMHsK7D3kHNCPz1ZgNlQck2qQPuLN8LeVgA5wdyMdAR5F7lXk6sVRe5lQAu9H0XhwZrCRYhLdjNk+4IUFR/nayfdKfA34I2bO/Yc/1yXuxVZDaeHGqF58EeO3CTSNE0jrMZvCNz/AsmWEwGQeikbwjWXAJhQdwsVHCyWFaVA75oeRtoHtBNuHYcjlXHH/sBHQCNIl4FmkBJKzQb6LjtCMY3UguN+YP4DlG4BO35g+AIxKrg3f/Bhow+evosSwPMbbEurj4zZ1vka5t6lS5xJcMotvZmS1H+OzOmlPl2Wzo5gloB/QnI5IuzYSt00gy2g2xknK43Jxj9Unz9r4WX/if//3zi7NqPOZx6xcnVbcs6ydsQsPs1Yn5FydtNMp7VxL++CArXyQyooP3qA+mdO+ZJykDeTKoBmVe4PUGa4bV0lxDUHZY/lA4dhyoDgXM4gGwaUmkaINOJ3EbDOwJDQBXhcrCaLuN0IZOIKiDJeMBFk4bUS6h6CEsRA5wYb3XwF/Qrl/+ibbbeGrwCKbi1tB5FeN2uhGwmrQXfOctAZsNnBjZDitgZJEvIngPb2jGJgDkdIuWdLWTTazBjhN3six/ITSzi6yKnbqRwkhuwZty19Sx7Jd5uvjkrtL0hprX7qD2qVtlLp2Y3mOz1PitldxaYK4gKmCNIWiLsxeIulogCrE7XvA55LGMdtPcJ6ZBb8d/M5CR61GsMK6hKyEESE5zD+Pi98CUow2YAzYUNxwLoLbUATQu0OQqXGwMcKkOgTsAH2tOH4HgIdBpwldhF3ITWH+PGbHCd/3h6461rey+v6LwP9Edfi/oDL486d7tvi43C1cjdpISuBW/xpoTcj42QNAGe9fwjefJTS8XI1RolIJmCDYGD4CgNkUUmfRxHYxDLVeAu3mLGZvXW6ocdGDwBFQF9LTmN9PEP2PQFuL7Q2AHQRisAtYfo95v4O8Uac2kuIzo3PtiUIGx6HII01D0iR2GZUlIunK5NxSYc8ZTBCVPyGvVTD7BGwKRULKUFzG57Pk9SZx+bxcmpG6JooFTBCV0IoHdfdv/yfk505YunRN4jSZaPnWEnctWapQwj9AmCuawE7BEpbcm5PXJ5W0l8A7iB7FubcJPtVlQcVoRMByoso5pR1NoF5QdmYJjlk7CR3pc0iRllx1TsaYEzKfx0KL1rw43iOAkJaRdG4M1IIb4m3gXwP/lnL/hZuMa+GrxCKci1tB5FeJ2uhvAP8r8yT1ayHXB4wjNwiuCkRktY9wyXAhENtJ0G673yz/HlnjFNgp0CVwbcTpGcyPkVT66L3nZbUt68LFXTQmMpsdneb428tt9f0Vapc+o9RldK6uAavUvuwMLl0tGALLyZtd4O8jTIL3ATVF6QWSzketOfkKptQgklRF8SjwEERvoMjhm/cCI4hpoRxTiqwbRR3A2yGgdHch2w/0I/c+cikox7KjeD8ILgFFmO/HxU8QOnuCN6+0CzRLsDfcgLSaUKZ+JFyVDsyawHnwb4ffbRWh+zTn5vDASRQ9APw+8Pdu/0QvAiy2mauFedRGlhAEwEMmSwJF2/H5TrDnkXsRlxrYIXx+sVA9CLziuHIkNLvYlbzfkP0PnEfjNNg4gf4BsBLzQ2CBf232OriHIF+GucMEvuQWsAOYf59wnQ4Az2D++2B3mc9305iKLG9CnjWIkkhR8m3MDmB+FmMCqRunmMbkKLXxSGnHOtA6M0OSIy49YdHSDwKPULPCMsPKmGr4ekrafUpmHZbVxlBcUawqgKIEda9Qel8frNvs1bUmJUqfAMqXmw1hBuxD0BYzv4rqyIfk9YRyf0GZiU8jTQHfxThCyPga5cFNmDe56LEFx3LNTc7e3PxzFDREyFg+VJgs7AZTkSSYZV6W7B6k+26wPQidUocJc+DrwOuU+8/dZHwLdxIW2VzcCiK/CtRGBfx3wN+56TgzD/qw+FbtwnweytnRcsw3gCfA+lF0DvwhwBnWxOx5uWgHLlktF3daVj1EXnte7SveVJRuAzB0nJFPB1izdTnNqYy4lOBzJ8su0rm2JhfPNZusLJZHOzA6CDeEk8BSzBQ0a32MorDqxjULLcfDoDLgkZ0O2UNl4aO4CGyGKE1R1IFvOvCHQQOYncE31oMNEZVzzD8E9IHvwPDgzhf7dQgYKjhGq8A+DcfJjmN2BvRIMWYauAupD1gN0erLBvc+/wj8Qh2862EWl6zHbA2wnerwEJXB/+WWzvMiwk1zGC3cuaiNbCFUMq4thcotx/LzBL9rge4jcvdh/hN8s4HcCHJBssc4VPCSF2bFDgBjSM+CiwLFxB/BbCvYBuBgWKySErQg9+CbXUHkW6eAbUW27JNCOeIzsG9jdpisVqcx6TCf4GKvpL0CvIv5IeRiyHN8Poz3K2hMibzaoKkLlLpnFBaQhtljcun5MBf6DeBOIlcS2mBtSz+ReUPqwSXloBhhZ81MmOVCKE6k7vV3m6/NMHupnVLvfuLyduAIWJ95f8Fmhr7H5IkUl3qVe2uYT3GuDXgKY7/l9XGws3JpF9ITksrXcXK5GmcJXeyzBIeZS0h3E7iiC86fnrncNX9zeIJTzA8Ji/y9lPtnbv6SFu5ULLa5uBVEftkIAeTv83kBZMBh5L4O2gksQaxH8UGMEXy+iZCBBLPDiBy5hLwRc3LPuK14KFX7wBIs/wB8RtrzhqL0cjnLFKcs2XiPAPONDIiRSyn1XmT04JMmd5i+LWvxzcNE6Qb5LCN4XLeBDRA8dJuYebk0Qvo26EfILS2CXgNysJwoFZYvBZsFGaKEWS9SBWl1EVjuAUpYXsLyLcAWsupOXLysWJmtAVSUuwA1gLXIrSPcxGpgWwkZmRTsGGjOym0Hc2X8K2AjzGdXbgCdAB4IpTkA/oDq8Hkqg398C+dv8WCRrX5bAGojJQK/bU6KJ3hVm9XAToDuQ+5Q8KReALl7caW3cdGq+cf0JN6/BgwjdRG8kbdfEcRIyyFajvlpZLtB3wqNd/kyAq+7kBjTdLAedZ8BHZj1EjjQ0/j8YywbxiUl4krFlbpnQDVQBZ+PY9k3INmL3DhSJ+K8Sj0dFpr81oX3cR24eIaodAC5b5NnP8QlM0CnoJu88aFcvCQEfMlGSR9htsma1UvBVy5qmFxTxCloUkn7t8zsTRqTyywqvSyfVy2v95FNTQAQt4tyfzflvgklbX3FsfkYfDXMhwLyahE8BoWJecrMRYI2pidkETMCx3FlcUx3EZr4bhcXgR8Afwb8iHL/pZ9gGy3ciVhkc3EriPzy8QTwdz93lNkezG8ClwNPIYwQmN0N8Rs4rcBnR8Pfvj80sZjHWEXenCareeBTXNKppGMan0+Tze7EaBBXnuTcsQw1ztC/bBVT5zwYdKwYtIkTJuc8Lr2XiaMjpJ1C0TmL27ukqAa2mXBDuAeYxPwuXLIa3/wTLC/h4ou4ZAOhCQbM+0KfcSgEkG45wdbQg2J81kDRZ8C6IHsRgcpzAuAJ0ntY/mDx2Y+CTWKsRzJC9iMiTKTL8Pn/i4t+hbAaj8GminL/SkLZaD5FEITL133OWaihqP2qxwT8n1SHh6kMvva553ExQNxiwqOFOwrlgTq1kd8CfpXAefsnQBvY05j/AxQdx/zVUi0e9D7O3VcEiwFB9LsM9GCaQNoeFln2EbABNC8JIzuEWQlpFORQfAGzHJ/NWj6bo2QWFzclrSsacU4hFyFtM998G/MpsFRpxyxmTyL6wE7iSqfCetCqmO8ir+fgekAXSNoTfOMjYAC8Jy53gJZifk/RfXweM/D5OC5egtwsip4KKhc4oJ047S3cXTIU1XASkIPeV9o5Y0mHhYStqyguD5K0PScJOi/H2u8zxxmF8NFdPHf8uPIisrl/lsAVnMedV52P27ny3gP+hDDf7aPc7z9nfAuLDYtwLm4FkV8+7v3cEWaHsWyGoBWWgs5i1gPUAjdSdyH3GYq2YPlOM1sCvoTPnOLklPUsy5k6lVj/PalcYogJrC581gWM0Gye5cLxdhs+dVEv/KUeOpaepD45jTVX4T1m0R5R6zKlkzSnN0rRNMSzpO2bgYOYpVh2CrhIVE5RfBa5QaSnF3yGvZh1EtxkDBVZU5e0hZuILQOVkFYA3cgNYPmuwOdyR7E8Da93l/DZRyi6G7mHCzL/6+CWAmeRm8WsC8unMOvFonPFRbiNsFJ/DDiF+Y9BzwD94N/BfOAW3QyK3g2lvGuQAt+jOvwNKoN7Pvd8ttDCzwrlgf+boO83h0ngB8yefxbL/4ggZQVwHrlPQPde1omcg1kzVCzm3Gj86WK99TEhgz9bNPFtxucfgwUJH8sPg2uCF5b1gK3GlSdwUbukacy/itGJ+U4sl1nejuXtQEUueSi8tf0Iswel6CN8lqHoNaQGvtFHyLZ9HenHMjVxpReR24W0EsNjzQ9xUbO463qgEynGfIaLv7PgmFSRDkrxSoI+YqV4fE7ofApIJPUAT+Ouq7EyzrUOPvO4Jnuky/9c74kFWFi8fJ9QNdlNyF6uIZS4OwjajTeSI2uhha8MrSDyy8fGmz5rthtrrgF+AbMZIEMaBj0OvIH5CJRg5hAHUbQVn31I1liBb14kr1Vp611NVt4s8RnmzxqKidIyiuv4+ibBKvfwN6aAboNptQ0OWKl7nMZUjbzRpHN5YvXxcaojjra+i0QlwMvyxhHL609Ibq+iZA1x2xFgPZZfAl3V8WfDiEmIHgUMyyYAh290gBIU9RK6EKfBUiz/EHgc3FuEFXxS/DwFVLD8bRR1Au3AemAElGK+Eo6T7glkdP8ecvcTHDCeJ9wwyqAt4GuYfR/su7dwnsbgpuT1duAlqsNfozK4/xa2d8dCqDDCaOHnBm3LRpg9/00UfR8YBB5e4EDjmHNqMsuxfB9zwtUB27D8FeS+Nrc1YDtmR5h3RhknLMg2Yfn7wMPASTk3DUxjtGF+S/HeVWAvZvuw7H6gZD56HWwWy74J7CVKSxAZlkeBFeYuYNZEfA/Le4ou8YPIPUHoaP4AxR6plxA4r0WuE7kpFmYL5/f/Ka7F09d57GpcIri3fMB8OTonBK1XKzWI0Nw3UHzufoLc2MJqxtxrRgnUm13A/wa8TLl/6KrtHbiF/Wvh5wiLcS5uBZFfPnpv+IzZfvBPgvNg74B5zHqwvA3cS7ioD/PnwLYTmls2A4lc/JTF5R9Tm81seuh+sBCoZtUTuNIMeJHXX0BuhwKncDjouHGPAC+9QnOmRn3iIh0r6lRHHVESk3bU5X0nyo36RJOk4yzDR3ezYmsPaDeK+rH8olm+AZ9nuGiI4EsbAd3CGeEGkgeCvRVd1nNONBaDipKMErD3QUGIV8k6zIaKclxOlBqoUhy/MmgWqQysK0j8bcVR7CPcIO8hCKPPefnO8SL7CT7b83ywa6DDKGr7nK5KCDeVl6kOP0dl8MjnjL2zscgEblu4BbQt89RG1jJvMziHJYTr4mnM/wj49uVnzM4Ao0iPYfYyQeNxHWg1llcJmoQHCUHkXLDWhtkxIENuO5BjtpdANwHycxaacfZj0Xnwo4rcC2B1s2RnGBc1QGswfwHzg5jvBjZiegPFYzjqmHUTlfZgeRWz1UjfxezNgic9RVigX9mcEtBJCAZPEQJOR5gnLgGbuFJKB0Lw9i+Bl4AjlPt/clmvwIFfSahALS8e/evAxz/Vdlv4+cUim4tbQeSXj+GbPNcLzCB1g57A/F7CBNgAG8D8LKGj722k7UFmg33AIzLrNqMBtpTAWWzYxPGame+hsnRGpa6DkrYX41dTuB+YWZXRoxFxUsHFZWpjGXHFK+1McZHHJWtJOg4qZAAe0erHdgMPEpVPAcdQVCFvHGX86JVl3777O4OWGkdRBEo6g16aP0HIPh4klLEjwqr+DEYCvhOiHmASMYOiLtR2EryA0xifIvcI+FHMrwf2E9wzDMXDhI7Qj5j/bg+CjRadpyCVsTm5DIsJmYIrO7RDd+nnBZBzWAK8QnX4l4ADi1ZHcpGtflu4ZdzIvm4bIRO2CvP7CCoGEErXEeYcog14LpSy7RNCULiDkE17BPgA7FIQ+LYIxY5wPXxmaAyfvYtkmD0OjOPzJll1GGuYmX1faUdTWAfYWJASyiewfDOXgy0dQXEfUg6UiEunA23GJYQS7y7QKmDewzVIeZ0CLgR9XToJC8Y+rt/AMl18pm3Ap8DvAf/uCwvwwnbOFD8ttPD5WGRzcSuI/PJxoyDSkHK87cJ8J/gy5lcA74P7BmInlpdR1IFUiNWqHayNMFFKpe5E5d4LyG30M+d2MXvhRQBmzk4Qlz7y9fE3VO7boChduPJO1LNuCXntfsxGKPUcwUXbcKU6UfKu5KoomgTtBt8NGseVZkErwY4DAzRr13NTqKOoLwS+FmPmgAlCxmADaCwQ81lNKBetRjoLrkJwuTCgN3jH+l7MJkJjjjJgb1EU2k+4QRwChHMPF4/NBBs2DhE4Tx8QnG6Kwzbn5CCCFSM7wDYBS4tTcek22c2rwntwgurwLkKTw9uEoLJxOxv6SiAW3eq3hVvG1SVSCOXY94CnkMuLcvQCIXIRAkfFhAVpG7D0OgurZ0Bv4NQLnEea418mYEvIqx1gPYTM5BF85iGvh4a6Wt3yVLiI8LhLFUrTg8A50DCKe4P0jY4hhvC+RhSniMcwHNAEu4jPzmC+jM8Hwa8Fd5q48ihhXgTz08DHBc3lanQQKhTHgO2U+0du/xC30MIXhEU4F7eCyC8fx4v/TxFWp01CBvIuYD2KavjGfPnJ7DPIPca3wt8ZKNqBc9uRujCyOZqN+aaHvG7efkh1eBnhCWF5t40ffZq4sou2pVfIfUiKrW3pfWSzO8jrHhe9ABwJgZbuQdEnl+V7XGkVZsIahyC5hNzD1pg8wszpazmGvrmEuLwWdAYsAf80oRGmApohlMUigr5ZRhD57Q9yIFpGCMpGkB4HnQRzWN4P0WmCRdh5zJYCW4HjyNUwe4vgI9sOrCxEx8EuC6Rfi0Cm347xDtgRoA3z/QRNy9u9PtYXP79Z/L2Pa/lZdyC0+MTJWrhVXN0YZoQFTuADShEueRzsKD5rMC95tR2zP0OuB7nHMb8H7Oog8kPCPWSUUNKeDZI3dErqNJe8h288CkRIjxElQLqDvCnSrhy5AbBR4konwXXqAD57D7hYiJ2fwewgTgbcD/kK8upqzO/EfC9yj3ENx1x7CueaIoC0C2AHQL+I+WOgHqSry9cU26nd7sFtoYUvFotvLm4FkV8+Xgb+DfDrzDmuLIR0H+gHmF9DyFq2cyUxm1BusvPAeczXQ0ezxnGJodI65ZOr6Fp31qZOv4lvPnP5ZVl1HdexV5Qkkvbthh0n6dhF0jlA3nxVvtGGXAZMoejJYj/eRU7I3W3mLzF54npWauCbUyFOVAOsSgieS0C10MMwgtduExjE7ENCI804cCpwJU1gZ/D56bCjUQ2xFTgPrgR6GMtPASfA+sJ7unJwv9G7mC3F/GnwE6D+G58SqyNWgVaEP20/2BugF278mlvC1XZmdy4WWQmlhVtAbWSAeR4ehADyTeCZK8ZJgO7GJdP45iVC2Xcvcl+bX0hpG9jHzPtunwa2FL+Pg/ZjeRPT+4hxy5uuoIs0Cdf1JIrehygljmv4ZkVpVxWsgs+eJnQkZ4b14hsJME1cGZDZKHljPS4+htzDQAmzCpfnMe0Ee4zQQDeCXBlpNT5/CamtUHPYWny/N4K9CdcNIik+d8tLuoWvFotsLm4FkV82yv1GbfTvAN9loczGQkTltWTVDrDrlV/A/LPF5LgMuTndsdBs4rOPiNL1ZNUM81fzelZRH99Luffx679v6TQ4J7lNxKVNUALL9+Gz94NuHKDIUPRt8/l7jB3p5Hqe38VehvEuBZeEuNEfw3wHocPRUNRHaLypEhpeOgmyHnWwHPN9YOfBUhTN4uJ2gtPDMsymwT7EsguIDLNRzG8EfxbTQVw0XXSSDgHfuXb3IKR1OUIoIsxLL0kPgp/F2AF65HJW4/ZR/glf10ILPz3KAyPURg4QsvXXDyDnYPYWWAdyM0AJ9PgVNzMJzDWDsxQXCNfr6uK5cyjajrnD+MYwefNZQXu47PUKljVwaV2izcw2Yhwn6aij6DGwD3B8CDaJzx1YD9nseoLO6wFcCbA6Rh/iuOWN45ivysUN0A9xaQewDzSONWMUrUFqB3sUsy6wKeAUlh8D9wzS05gdRHrgOkfhzqeetNDCHYZWEPlVoNx/htro3wT+8LrPS/cRV2r4bCfmK0RJhvkGPm8DhGWPLRhtmL2PohinJzD2k9XPm+IM7Jog1WbPO5Vv0CCueAO+caVUj6KHkS6A3iVErtuB9+SiHutcdYGpU5P47BFwx3DROEHMWMiNAZNgE4TvmQcZWK0Q/IXgGJMTMhVVYCxkGbwHVUFPA3tRvIXg4T0M6gI+nesux6WdWOMMZlmwVVOO9DzeDLk/BX0H3bA+sIdQ7jvDtcFwG/jtwCks6vgJdRcWRxC5CHk4LdwydgEPECSvrh9Aen8S38hxyV2YnSsy+QtHjBC8oU9i9AFfv2oL92N2FrMI31xNqFjMAm8TpQ0ovSD8DizvkVxM0i5c9IuYncDyzqDaQAfSEEYTxW+TtN0vRdtAr6PSCKIMrEfaj+IIxYaL6khpMC4ASOuBQ61PEduLxsSHCN3Ry8DvxtxjSGM3OFZTt394W2jhC8QinItbQeRXh39OsCv7+4TmjyshlYmS5+f/duBiMDO8duGbQS8Ni5B7xMxOkTc+QzIUTZNNZZjfes12ffaoZbVTistrgFlwB5Crh7c0mUrN4OZyGTHOLQWWgs4SSPaPgk0r7Rymf3NsjZndxJVccluAQ4UjxZLAfbQKPi9jfgp8O5CjuBmCQFsCqhH0HAEOAytC8Ks3Ak9SwW4xlMVKBIHwowSifxn8DMZTyO0OjUa6D2wXWDvYL4F9jLnzhXPFHDVgI9inzGvj3UTuhzWEZp0HbzLmRmijOqxF0bG9yHg4LdwyfocgVfPfEpxO3gX+Axbafea1z7BsO775JtjTRJUjKJoT4v+nVJb8tctjZ4ceJLiunCA0yiVADH4UX3fAN4uR+1DcK9SJb74H9jCuNIG0DMv6MHZgNkUQLj8CdCBXheiA0q524NPAg848Lu0NAuT+qBSvA04j10SuTKjm1MI+MBmULejD7BBmj4C9R7jmjwLTiPcx2Q1KhvlPeaxbaOGnxyKbi1tB5FeFIP3wD6mN/juC2Ox1vJ2vA0lE6bO4ZBrzb+ObJTM7SFa9F0WnJX3TXPoOzdkbdYFP0pw5SKlnCJc+iLTtis3f/N3PM+f5GpxotoF5pe27MFsCth/0INi7BbEjx6xeyPNA0I0kZA5cAzFe2CK+VLx1iVDOroL6wN7AfBWog2bD1aUdmKXAGNgPsOxpQulrG9LbRcd6X/ifT4H7wRd6c+4ZsIuEG+kDXC94vy5s4ja7tQHOEnigHdzxGQ4tutVvC7eI8kAd+NPiJ6A28nvAX8P7/5G89haWFXOPhWabvLocH+8gLm8nOD7No235fmaHvk/gdM/hInAEl/aT14KIOc4BK8DvBXsRRTsDR1J3Ayk+206YT04irQM+wCjL6TnQh0EhIdpfmBL0ARHOHcPsNJDjoh4UPUxw9XqUUKr/Zcw+AjsX5gC/n/kFavER/ZshWG2hhTsRi28ubgWRXzXK/Z9QG30B+CvAf8/NxMgXQupA0XPIzeCzd1DkmZvwzXtcvI4o3UHe2ASkJO0fqW1FhcrAA3LRrTi2XA8z19kRR5ioXwO/DUgLweF3gZXIncFcBVk3LgnZDctGgYugCfANzARWQe4xzHwg8GdbClblqSAtoh0YDt/wRSnsY/CrmZPxCATO58H2EYLDewj6bzloCEXPgN+FWXvo+L4d+Hsx1YtsZpV527QbISeIGq8B/ozq8FFCQHmi+BkidLRO3TFZykVG5m7hp0B5wFMb+afgn8Hy56969hPgD7DsLGa/E2S3rsE/IHyP3yvGH6Ztec7skEB/F/TtQsvRQNtwyctgy8E2YjanejBFUGCIMBsC7kbxCcyPgW0FIvCFpagOAU+DvrHge/oaUjtmdxf7MQzsQkow34XRBNYVYz8AdxEXrwH6MW5Uzm6hha8ei2wubgWRdwJCVvJfUBv9PvA3gL/M1QLYN4LUrih5gagbzI7hG+ewqqnUk9K+zFncdkxR+Sld3wP6dnHjgEd6AXN7Ct7kVqTQtW2Wg46BVQguGSKIp9dBCbgKstGCAA/wesHlnAz8R8sxq2J5o+j0XlMEkKuYDyAX4l4C/2sU9DzwCuZLyJ3E54XosHuThT7fN4cHPgGrYvQjbSZ4Cg8TLM4eus5rppiXFFrLtTIrc6hRHf5tKoP/7Bb35WcDUSSOWvhzg/JAzszQj3DJCnxj5YJn1gB/TNeGSzd8bdvyo8DvXvO4z8HFTxH4xe0EGkgHKDjimI0xx482O0IoqVeC5I5Ngx1G0cdY/q1ii88h92Pkfqmg2My5ToFZ6DoP0mCPElQdeoAZiDeDP41xGPLDoK+j6G3kSsD5sKPXhf+co9ZCCz9bLMK5uBVE3kko918A/h610f+KkFX8y8BfYq4L8vMgbSQqbVRUglJPeOjaUTME/cLroU4gxFcJmbJPCVyiY4TMwwvcrOweSuN7WChJJN2Ni6Yg2rJg4FnQJWANznUHv3DfBjYUsgso7IdlBL7iKNBVyF6eDtaQV3W2m70fsh+KCF2Wd4H9CHgY9CE+m+++9plD2oOiTUA32Bv4fADwuFhFoDiHN8Jn9jtAbZibQFrYNf8ugZOVAIUIPFOEG9rnoQz8IWCFb3UAACAASURBVNXhB4G/RWWwfguv+dlgka1+W/gCkFd3Af+IcJ1fIGTIzxOuuRsHkTfGOtAvh19tN2GumPeVD2LiAC8hrcL8x0BfIbkzgWUvErQnAcZwyUHQVrC3EJ2YPUPgRs+CLmG2E2kukxoTJIdeR3jzfgTfqCtKMxS/GRQXGA88TEU3OiI/wWduoYUvFotsLm4FkXciQmZyL7C3kAP6BeBfc63H6+3iPPAi5f4PfsLX/xm10X8F/MaNh2hbaGzhWYKUz/uEzMQOIMF8maDFVieICa8sOrg7QQeRViFn5I1ppBOY1kF+nqC5OAK2AeND0P1IgwCY7cXyDN+s4pJxXPIdsOBiY3YBaXWR+bgHs51gz2MG5i8i9y7m50t6vulx8cugEuAKaSNPyCwuAX8U7z8NHzV+FGkhZ+wAMEbIPt4O/nPga1SHf5PK4E96blpo4fbQteEowfbzi8JJzP4MrByaYuyHyFWQjhF4k02k7ZilSJtR4rHMB01W5ioDE2EeiMqgbqTjGBWwk0hjmLWBq+Oipwll7LcIFYkQAJo9j89/QHN2A1E8CBoGHsfsJNh5fNaPS66nBXmRcn8riGyhhdtEK4i801Hu98CPqI0+Qeiw/HVurM14M3wI/BLl/pM/5R79l8C3CPZkN4CeBdtJSIQ+FzTmbCewpShVfwaMF00uJSAtyPVrCQ0pK4AqRoKLzmMuw5qzwAaCePImsCZmu0HdoElcWg6i4qzC8h8WvMdBpGlgPaYPMb8b/MLS8hLMXykILvcG8M2icr+7yOUeAW0CCA4Yc+VpOwZa6JhxbTf8rWML8A7V4X8A/GMqg1/iDU2LroTSwh2IjlUe+C5Tp54H/Q2kbcgtLSS25q4TQ+onzAEpVztJyRm4KaQMzBe2pE3QYwRprwdBc5WURzE7jIprM/Azz5LXeiXbZGY/xjcSzN4lKj9o2DSNiSFF5XbSa5gwLW/rFu4ALL65eHHt7Z9nlPtPUO7/DWAT8C+59dLLNPC3gUe/gACSwlv2tz5/oJ4nLFKOYbaDIA00DO4E6CJBHgTgJCCMvfj8OHm9n7xeQjqCXB3pOaS+ovy90LIxAZ4pCPv3YHaJUEKeZT4LWgSQdgZ8P8GT+ybfee0pmoLm0MBsJ2aDYGcwq4ItlAO6kqBvNvv5x+WmSIDfB3ZSHd74eYO/MAgK16Pb/2mhhavRuWYngYrzt5HOEOaqcQD+f/buPE6Ouk74+Odb1TNTM7nTHcgNISRACBDkCkeIy6EcKos+67m66308rrq6q/v4rD4e4LG7Kh4gi4p4sCIqiyLXikIIJIRwnyHkgNyQnlyTTHpmuuv7/PGrSXo6c/Z0TU/1fN+vV71murvqV7/qnvn1t36n6sOoFtziAIWSPoiyBDcgbQd4deC1IV4a1Q7CwgaU2SDPghbPqtBc9PsxwMlIaqJq+GfCXEoLHeMQfw/C0+RzL+HVt+Gluus28nTFrt+YciWwLLaayKQJ0i8C7yPX/BVcH8W5wBzgcNxgj1ejn69Evy8lSG+tcB5+Q675p7gR5b2QM6NfNoO2A02IbHDT9+DjAroQCKLO7hNwXzgNSGo26EuEhf9BvKMQ30PDpyCcRNcmuGeAxYhMQkRRWhF5AvELoEKYL6CFJmAKIlNQfZiD80N25vMh0KmINw/XRDYeV6vxOjTcADyDshtkPiJHHThMdT+E21Hd5Go89WiUZxC/JP0BOwt4kv3bP0zjpF8OMq3+ibEQEpGLgO/iPvMfq+o3etjvNFyf2rep6m9jy5CJ35iZHcCN7Nv8a9xsBuOAfwDmuflbD/EUnatiEebQ8DEkNQ0NCxT2nwA04aWegJQHsh6hc/WqMRoWsuRbVyN+gB+MQcO9ePUFvNRpwChEGggL28XzR6FegKRGdXP+R2J4F4wZuJjK4rjKYQsikypIv4SrkayWT+AC2O5XwSgmshjlftCngQuA53FNvw+C4gbSaAMiWaRuC+JNISxsBa2LOt3n8PwAla2o34p2vARMBVkHniKyBzeFzkkI+5DU0W5SY92KpLaDbEULu0FngxyLeHcfHAEqyxDvBOBhRI7ANa/V4wbHvIL4LxPm83jefFyT18u4Jd9OdCO2w1dB97gJjL0pwBQ0fBTxThnk+9uEq1UdAvE1oYiID1wNXIh7/1aKyB9U9blu9vsmcHcsGTHVMWpaHve/1AJ8jr0bPdyNX2cz9qMgIcWD8dyAs7MIO7YStueAVYpsRTlFRCeDtqjqEYTt+2nfs5uwo8DBPpXrqB83U8Q7hULuz6DjSI1qAMaDdCCMjab6KXVPHJdvzMDEUxbHWQ5bc7YpT5Deixt9+Y+40dy9EzkXZDquL1SIa7r1AA9hDOJNR/zp4AWo7sXz5+ClGl2TtpcC2YZ44/C8dry6MYh/JOKdhzALdIOrCfRXgawGfRHVPaDbETkRL7UI8V8Fr4D4LwCKV7cCr/5pvJQiMgaR86P8/DnK4w7wnkHw8fzjXX7lSNzIbwGWoIUZaLgNZUx0TfuAv7gRpYP2NRon3VKBdPoWbxPK6cAaVV2nqu3ATcBl3ez3D8DvcLXnplZ5qRTirUW8JYi3BvHcvK0iE3HdT4qtwquvx6vf6AbC6XbXkiBT0Hw7hKNJNTaSanoRv34JfsODSGoTB5YbFVFkr2p+PbATz9+NH2zBzfda7BGC9KrYr92YvsRXFsdWDlsQacoXpAsE6atwtYp9NweJzIsCye0c/MJQ3B/sKNAGCBtAGw5MGCzS6tbY1mNwzWKLQPYUne8oYD5IOyLHgHcGLkB9guKBLiKN0XYa4l0UPXuCW8XGexC8F8DLgzcJ5GXwOhAy4Psgq8B7CpiJ6lw0fBkNo2mIOCEKYBtBmhBvKsLzg3pf4S7gi4NMY0DEk7K2fpgGbCx6vIkDqx5F5xaZBlwOXFuxCzLDT+vWY4DvIt6Fru+x7MH18QbX3/lV3JRiAAVERiGyA5HLxK8bJyLzQAtARkRGiVc3S1LBKVI/+hypH3e2pJoWSP2Yc0W8Maq6Xf36tEJI2DFeVUXDfKOqdje37A/iv3hj+iemsji2ctias83gBek15JrPAb4DfLTXfd162Oe5gTC6HxfoPY1bHnANSIDr6+QhTMGtOjEa11cxBeIh5ME/G/RuIA/e7Gi/PyFSANKgpx568i5mgd4BcgkirwG5F3Qe0IByGLABvBBhPvg7XayrSxDaCfNvwD1xF5KqQ7xzEUJcJ/9jcdOOlGsd8M6hHZ0Ng1ivNSMixTcQ16nqdcUpd3NM6aT1VwGfU9WC2GCd2tO69XW49boX4JYw7PzbPhm3DnfnFFtH4eaq3AM8gJu6Zz+wJGqKvg/x/oruBxXeDywEnlPVo2jLhuRzLbTvTWmYT9G+bxsTjh4ro6cdU1J3sg34VUWv15jBiKcsjq0ctiDSVEaQbgM+Rq55GfAjDjQp9cCNuH49GmaBRtAXgG2IBCCX4yY7fhK0M4Cch5uHcT9Q54JF7yxExqC6BjdS+vU9nA3wTo/W0j0pysAqRC7BNV8fi8gcVLe4EdbhCYCg+hySmoGwFmQuyGLCwgPucO8vSGo2InM7TwC6Hjfq/KQBvnudWoHLaZyUpGXZsqq9Buyb6DpZ/nTcTUKxU4GbooIrA1wiInlVvbWiOTVDr3XbeSB34DrzR3QZcBYiglJX8l22C9d/8pKSlJ4DNqL6Z9di4Y3D/Z+txi2EcAquH/E84AXqx6/Hb28iNSpLoX0Uo2eK15TpwEtNLEn3+wTp9spdsDFV01tZHFs5bEGkqawg/UtyzQ8DP6Hn5f4OEi8DLHKTgYfH4kaZ3xUFh9NwXxAZ3DKG5+NWkEnjvpSiwTRyNKpP4jrsz+/2PG7Kn33AfeD5CDlc/8ZjQB4FzgfdBjoN5E+IXAy0oAoip6P6DLANDaci3lLEH18UQHbaD2wDmd3v96ur99M46akyjy2fCPSvabocK4E5IjILNwfo24F3Fu+gqgeW+BSRG4A/WgCZUK3b6oBFhPkXEf8cRL5FlwAScDWOEe0M4ELc//Y53ewPriblZNDxIPVudVVWgIxHZCru/9vtKHIMUncMXv39Uj9hPKIpxM+5VpAuOoDrMGa4iK8sjq0ctiDSVF6QXk2ueTHwAeDLdJ3fsXsic1FvPYRZ0NHRiO0NQA6kEfcl8QDQBLIb9F7c5OR5YB0io1CdgVtmrYXSAFZ1C8gxiLfGHaMBSOeyaUei+gSwD5FFIK+6ScfFRwvrUE0Di4A/gr4GvB0gJaOvtR1XC7K9zHft2zROuqnMYwcvpmZkVc2LyMdxo/184HpVfVZEPhK9bv0ga4ui+g3Ea8E1LzcduotMjv63Z4IcB/ocbtaDsbgvOw/3t+I2VR+3tOgY3NQj5+KavI8D3YV4x6C6oegEq0B2Il4rvn8RYf5+wnwKv650wNvvo3lvjRk+YiiL4yyHLYg08XAr7VxHrvm/gE/iRnGnez1GZBbqbQZCUB/keNwKNatwne5d52CRGSA7ccFpiJtqqPOf76ToC2U9rp9k53/kakQuQMOVwOmIty4KIO/AfdHVAxcBj4HuQ8NRIKNAZ4HsBW8tYcdYkIcQmRidaw/QjIabcEskzqV0BY7+uQP4XBnHVU6MqySo6h24ayx+rttCS1X/PraMmPg1Tc7Tuu0zIPf3secGVGe6Fgg9HFiAyJQue6hmcf/7Z+P+j28HSQN3gYxxzeCSB2YCIX7wHIW2nfj1LXj+RdHk/3fjpRoQbzqHrrJ1/eAv2JgKi6ksjqsctiDSxMtNBXQlueargPcAX6G3NcDdCLFpB2I/1c3Aq9FyiS8jch7g+lR1R3UPLrjsnOuxczTmNLdkoU4GxqKFKShbUB2HpI5CeAa4H6QNdCLoBFBBUnOj5dfyoHWInwOOilbIWYtIm2tiowFlA+L1tBzkOlwflEZcs/pEXL/PFuDDNE7K93Dc0LABLaZSmiYvpXXbTbgms+6phtENXWeLwaOoTnB9ogHVtUAWN4hmE6opYAxCOy563Accj4ir6RQ5HM9vxGvqAN0JB7qrjMetkFXa7/E5bE5SMxwlrCy2INIMjSC9D/ghuebfAP9Gn6vdRIqDStVm4E/Aad3u616vwwWQcDCABGE7SAgyDg1fRHUHWtiDW9P3GZAzEO9lvNQJqOYJO54EdoJmERS0BfHCaDAOEO4C78RoBZzpwCZEugsEC8CDuHm6jip5LQQuoHHS5n69F3GxJQxN5f0T8Ca6bc5mBRpOpGv/5VOAXLRE6mJEZqPaAcx2a9TrHtyNWrursdQFwDJEzjrQ8lAoTMLzdiCioIr73/MROZpD56D8j6i1xJjhI4Flsc0TaYZWkM4SpN+HW7JxzYCOFUmDXIj7crif4toF1TZc7cLY7g9WgOM5uBykglwEsh4tnOwGy3g+Gt7vmtJVQS9wc1bqacA0xCse2bk9mrS4MdpGc2hz2YO42pRz6X60+mdpnHTvgN6DuHheeZsx3WmavBm4ouTZHbjpr85AvOaS1/K4Sf59YAmwEhEPeAJEEHkd4mlU87g92mc3+dwfCQu7Qeej7Vso5FpRPZxQzyTsaCLsOBzVcRy6+tPNlb1gYyokYWWx1USa6gjS95FrXgB8HTdL/gBIGjgXdKtromY28DgH55vrTl3nwdH+zyDeExA2gbcJNyBgXtFdoGt2Vl2AsAw3sKa4n9cRaOEvuKbzADcyexLRcG7cF+KZ9Hyj9kvg2wO6bGOS5du4Foc5uOBxLu5/ApDxuAUBduPW1T4WkWMPSUFkG3AGylJEWsA7HngOLXSghVFoYbGbfzy4F8/rQMMmwo79iH8HyCS8VBuCj+s+shJ3N1ng0OZtY0wZrCrBVE+Q3keQ/gRwPm505gDJFFxAuBI3EvRQqqCFB4BjomfaQdIIc6Jul/WIt9ulo/ejugvV/SCbQTZC+Ec36ltXgrYVpTwZ1+F/O7AB199xEq7mEdzqAD39fz0JfIjGSaWTvVZPfMsempGqabKbO9b9b59J14F1JyByJCKLEVlwoC/kodx0PyKLgPFouJkw76OFDBrmgfUgzXheHeIJXt1OxNuJeIJfvxfYHPWvPAHXDeZ0YCNBuiOWazZmsBJWFlsQaaovSP8Ft3LNjwd8rHhjEO88XE1HN0GZrsB13k/hVqcYg0gjyFagFfFbEK8D5GWgDsIVEBYQORGY5Y7VTbgvoNL+XQ249cPHA1Oj50ZFP6f3kOM9wFtonNT3euNDRXBzk5WzGdObpsn3QDfLgIp4IM/1I4WzgSdQXY6qQngaqAsGxTsfr24WXt2jiMwBDRHvVDxfEWbguph4biR3F78f7GUZE4sElsXWnG2GhyC9B/ggueYbcOtGv25gCchiYDnodNzM/Pej2gg6H3gEZEI0N91fga4DjgB5yk3jI+cisgElBI2a2+gAngVeA4xH9VGgtYc7vrHALFS3IbIa16ze03/1p2ictHZg1xY3YRBLbRnTl38CLsTVKu7ELXNaH833WrxfO8jjuJHVPuiJ0f673fRfuh5oBVkC2oSGPpIai1/fBLoXdCKa34DUTcatgjUD9z98ZEl+Hoj1ao0pW/LK4mTl1tS+IP0gQfr1wBnAbf0+zlXpn+n6WslzQAcih4M8gngNiIwFaYj2Xu3mmmQsaEPUgX+1i/tkJa6JegIiryLeg7gBOacAF6L6Yg85aAQtuImR9ZEe9rmexkk/7fc1DaWE3f2aBGma/Czw77hmbR93k7XQrQrlPQLe8+C9Al4K8c4AOQvkHPBaQZrdpP+EaNiG0oyXmkKq8WL8YA5+3XZE2sHrTPsslF24LiYv4RYQmFqUm40E6Q0YM1wlrCy2msj+yGVTuNHE5+I6h3c2Wa4F7sI1m3TgRgCeChyGm2ZmM24wxjKCTGGIc51sQfph4E3R4JsvAG/u13EiY4B5IPPQcKsLHmkHmQTa2aw2s3NvXFXIo6hOh3AzboDMscC94F+ECChLIawH8uA1RH0jGzjUNNDJbpoS75Ruai1/2P83YIhZ/0YTr/8E/pnSJQ1F3Fq/qi0QLicMG4EFqD6NFnYjqVZEAjR8Bbfs4QsQzke9djx/Aq4s9hB2gl+P6oOg7ajMRKTDzePaxZ2xX6kxg5GwstiCyN7ksnXAp4BP0HMft0/0I6Ut5LLfBH5AkLG5yQYiSD8BvIVc83zg/wJvo+em4q7Em4LqKDeKO3wMtHMKns7pRU4HuQcYBbobxAe8aEnEHCJunjnPX3Tgu081B/oMyP6oua10SqFt4E1Fui0JjmP/9idpnDS8OvWL2HQ9Jl5Nk1+iddsvgb/r8rwqaH4ZrtvI2UWvHI/4u0DHoTyASItb3YY2wlDwCvciqQUgZ+OWQpwA5BAKoPUgo3GD20pHYfe/dcOYoZbAstiCyJ7ksqOA3+KWwhusqcB3gcvIZdcDu3A1lHcRZGyqif4I0s8A7yDXfAXwVeDyfh0nMpZQO0AbgSmg63FB6MNu3kn/VGAj4s0F1qK6H/FWIt4cVJdzcEWNVUAzImeB79bNdsuqLQcNozQLINO6narE+Tlu2anSOfKqL2F3vyaRvgy8i+LvHVfT30jpPKqui0nnvKxngb8EUR/hfOA5wnwDGj6C39CIyHloeCdwcbT/EteVhSyuVahTGzA85mU1picJK4stiOxOLusBtzDgwR19Oq/o98/gaig/RZD5TYXPU7uC9LPAm8k1nwZ8Dbigz2M8L42yB3jCTR5eaAP/tOiLSkCfwDWLtSOyEGQFsBWRRdH0IM/gphDqGhy6iY/P7G/FKG7A0K7+7mxMTWmavJ7WbT8CPtrlefFa3X3YgSeWIF4dWmhCvB14dQXEG4VqM2H+NrSwGPGywGTCQoDnrUBDD+Q2xBsbDdhZD0wBKV4gYGW0cpYxpkKSVW86dN5P5QPI7kwFbiaXvYZc1u9zb3NQkF5JkL4QN8fkzbhahp6JNwuRNOJNxas7H5FXcOvvbnFNYuLh+kOuBBbgliQEV5vxV7gajWh97bItp3HS8Owbm7C5yUxiXYkbfV3EOxVJbUK8P4F3O17dTLyU4DcEeA0zEO8wII/IaWg4VjXcoKot6pYufYUwvxfVAloY69ax1wwabkT18ZJzPzpE12hM+RJWFlsQ2b1/HOLzfRS4gVw2M8TnTb4g/ReC9Ntwgd/S3neWo4CsW1aXl3Cjs58E3Y2Gy1AdC+xH5ElUz0H1Ttwo8bG46sY9UUJ9nKdH3Q3GGR7EK28zZiDccohXd3lOpAEhQLwT8LxLcdP6CMhOhFHAPNygxsNINSzGb9gN4XjE34f4uxC/A89vAq+NsLCLML+HQvtpFNpL/98siDTDX8LKYvsWKJXLCm6ZrqH2t8B2ctlfkcvOsJrJAQrSq4D34JZR64Uci8gSXF/HP+NWvJmKq2ncAyKoBrgax/OLDnwFN6p7PAdrKQdq+KxQU0wGsRkzcN8E9h58qNuAFtwqUBotb7gQ8c7ETdXT5X9axJsuflAnwngI56CFRsJCHmE0IouBMUAjnl/6/dbT1FvGDA8JLIstiCwVZJTqDnx4O67g3Ecuu5xc9rPksjOqmJ/kCNIv4fouPtbHnouBraCnA7NRXRpNRA4iivuCOxE3TRO4FTdG4aZxmooLPJeXkcNhOjK/zOYTa8425WiavB34jnugG3BrWc8CdiN1TyL+4oN/W7IQyONu6h4BnkNkOtCCeK8FacX1S64DDge2g+xCvCWIXzyoZh+wOvZrM2ZQklcW28Ca7j2LK5CqqQEXEC0EvhmN6r4TuJ4gY80yPQnSq8g1nwFci+vb2g0BkWlouBR0ETANvKOAjaiuwjWNPxHtnMKtgPMqsCNaAvEc3MoZA8nZ/+BuDoYnCwjN0PoW6CW4/63DQNYhqRQiCw7dVSbjaikj2hkMtgETQB7G8xcf3J2xSN0i3Ly9nR4nSA/P/sjGFEtYWWw1kd37XbUz0I1ZwMeAR8hlf0QuW9/XASNWkM4D/8EhHfhLyYnASkRaoru5GbigcRyutjKFq3XMAJloYuTO6Xzmgi7rR27uBU6ncdLraZzUn7WCqyNhd78m4Zom7wZ+BRwG3kokdRgiM/s6zJG5eKnzkVQL4r+EeAXgOeBF3EC46bh+lcVr3T/RTULGDD8JK4utJrJ7vwT+FZhS7Yz04APA68hlvwb8yCYw74arkXwP8Gt6qjIUGYd6aVyw+SBoAWjCrc17AgfX3H0AOA7VZtykxuC+lA6PakV2AMtxyypOj9JbBjxA4ySrNTamez9A/HPAu6yHyfl7oM8BOxFOBWkC6ZzL9XncDd8OXB/mCUUHratQno0xRSyI7E6Q2UMu+zFcjeRwra2diWuy/Vty2XcSZDZWO0PDTpD+Dbnm8cB1Pe4jclTRg4O/KjuANaBHAoLIKDR8BDf100vANKBzBZwQuITGSTsrmf2hZbWKZog1TWkj1/wb4K8HeORO3Oo2dwONuGm5crj1uME1Y5dO+bVlcJk1ZqgkqywergFS9QWZW4G30GeTaNWdA6wklz2h2hkZloL0j3DB9sCITHQjPWUf7mZrIuK9Drg9aj9oB1mKW1btVhoPS3AASeJGBJqacRMa/h4tPERYWEqYX0KYX4KGfwJdDtpd+ZvHzXQwCxFFJIfIBETqotdzHBpEbo3zIoypmISVxRZE9sYFkhfjpp8Yzg4H/kgu29TnniPTJ4A/lnWkyDxEzgWWoOHdwGTQZ4G0W2ObZ3D9sZJLSFw/HFMjgnSIFq5Cw4UQLgJdHG31wJlAB+gDbr16JZolqx54ENiM+w4T3EDEzim0Qg6dTuvlobgcYwYlgWWxBZF9CTL3Aa/F1TgNZzOBv6t2JoalIN0BvBn4cXkJiA+yGLzxwAkgo4AVuNqO1wD3VCinVZK8aSVMDWmafB+lN3kaLkB1K27Ox3OA+bjZDZpxweU5uJWkFkW/z8ENYnscOIWuE/u3A5vivARjKiN5ZbEFkf0RZB4DvlXtbPRD3+tIj1QukPwQbsBUeUTOAG8FyNlR7WQr7gvqocpksooSVnCZmvM5ut6oj0PDLahmAVBtQXUPYbiFsLAc1dJFBbbiAsfx0QC34rl119r0PiYxElYW28Ca/vsicBTwtmpnpBeLyGVHEWT2VTsjw1KQVuBKcs0rcLUZOWAb8Elc7UXfRBaBrgBOAxkDupLGw3pftzsRLCA0VdQ0+TlaX/0L6GTQ3cBo0DloYSzKfmAMGh6B6l5ETkALO92E4t5YkLmItOAG23SA3g3y+qLUn6rKNRlTlmSVxRZE9leQyZPLvgPXdPk1Do7MHU4mAQ+Ry76XIGNLfPUkSN9DcRN0rvlm3FJsn+xfAnIG6BLcer79PGaYS1a5ZWqRyCxgBojr260a4pYmrQcVVNsgPB9lHXgb0UIKCjlgPX69F9XG1OFWlyp22xBehTGDk7Cy2JqzByLIKEHmx8ARwEeBF6qco+7MB5aSy15e7YwkRpBuI0h/CjfVSH9HWS9CZC3iPR1jzowZOUQOA1lZ9NhD5BRE6hFvHl7dHMRfAmQgXAzh2RCeCeF8NNweHbWMg/NGgltpajguHmFMTbAgshxBZj9B5lrgOOA84Be4Tt/DZfBNANxMLvuGamckUYL074ETcMtL9kE83Oe9It5MDZGE9cMxNUmAM+ja/Dwe13VkNZ43E79+MX6QR7wl+PWr8eqfAh5D82nc2vZHlKT5aYL0cJ+mzZiDElYWWxA5GK5m8l6CzHsIMkfgJr79dbWzFUkBt5LLfp1ctqHPvY0TpDcDl+LW3W7tfWfZQJDZPwS5ilcCp5UwNclDJADZi1slqnPwzDLAR3UvACIT8RsWI/5cPP9E/IbxiL8Zt2rUtKL0biVI3zikV2DMYCSwLLYgspLc8oNzqp2NIj7wL8Bt5LLW/7W/grQSpK/HTR3S20pAdwxRjmImg9iMqRj3ByVyFsgkXM3i7VHz9ESQbbjVaUqO8jbhpY4DTi56tgM34tuYBEleBSecxAAAIABJREFUWWxBZOXlq52BblwIfLramUicIP047qbgEz3scfsQ5iZeCbv7NTUvB5IBuRS3Tv0eRI4GOQ03wf/zAKi+hGobSgvImKLjv0OQXj302TZmkBJWFlsQWXkbhvh8S+jfFBZfIJdNx52ZmuMG3XyfQ5dOXEWQXleNLMUiYQWXqUnuD0rDR4FjOFjruACYj4ZLUO0AmQ8ch+rj0esNiBxflM7zwJeGJsvGVFjCymILIitvKOckeww3N9p8XDDZm9G4fn6mPJ/ATVTeWdNcI03ZkWS1oJhapLqOMP8IGp4CrAcyQOck4XXAYuB+4FGQlSA7gbUg5xalsgd4M0E6+X2VzciUsLLYgsjKu3UIz5XDFZohLkjsy0fIZe2rvxxBuoMgfSUuYL+VWmrKNmY40MIs4NTo0QREpuHWyO70Kq7f4ynAaYjMRryFJbUwf0uQXjUk+TXGWBBZcUHmaYZuctuzcCPCX6B/K67MijZTriD9AkH6ctw6vbUjYU0opib5uBHWf8INjHkJt7zoC0AWZBUiE6N9Q6CFrhOL/xtB2iYWN8mWsLLYgsh4XDOE52oEju9zr4POiCsjI4pbQrGGJKwNxdSW1m0nAU1AAfQYYJz7nTwix+DWxp5edMRSXKtAp0eBLwxRbo2JUbLKYpv2JQ5B5i5y2RuBd1U7K91oqnYGzDBjtYqmmlq3zQH+ATcgJg/MRMPHwduJSDOgiCjQjJtyK8AtOXogBeCdBOnhstiDMeVJYFlsQWR83g9Mwa1oM5wM9ehxkwQJK7hMTfk04h2Lmyj8VVSXIt7xiJxcst8S3EjtPXStevmkTedjakbCymJrzo5LkGkDLseNoB4uQuCRamfCDEPJakExteUqkKmI1CEieP6ior6PnbK4ZWZfAWYUPX8L8JOhyqgxsUtYWWxBZJyCzB7gAvqefmeorCDI7Kx2JswwlLDO3KaGNE1+AZFPAWHJdD2dVgB7gXXA3KLnXwQ+WHv9k82IlrCy2ILIuLmg7XzgQ8DLVc7Nd6p8fmOM6Yb8EeSF6EEzsArYAuzCDbLZCCwsOmAHcClBeseQZtMY04UFkUMhyBQIMj/C3UW/F/gdrhAcSl8myPxmiM9pEiNhbSimtgTpEHgHcDpwGEH6ONzo663AscCior33AxcRpF8c8nwaE7tklcU2sGYoBZl24AbgBnJZD5iHW3FmFjAT19dnAm6E4k5gE64j+ZH0bzLx7uzCjXy8cRA5N7XOmqZNtZUOjgnSO8k1v59D+zxeSZBeiTG1KGFlsQWR1RJkQuCZaOtdLlsPfBT4MK5zeX+0A9cDXyTIbC8zl2YksP6NZrgK0stxN9vG1L4ElsUWRCaBq8H8Lrns93CThb8ON3XQycDYoj2zwJO4dZ1/YcGj6beEFVzGGFOTElYWWxCZJEFGgYei7SvROthTcavW7AKao32MMcYYY2JlQWSSuYBxc7WzYWpAwu5+jTGmJiWsLLYg0hiTuILLGGNqUsLKYpvixxhjjDHGDJjVRBpjEnf3a4wxNSlhZbEFkcaMeDZxuDHGVF/yymILIo0Z6YTE3f0aY0zNSWBZbEGkMQbEukcbY0zVJawstiDSmBEveU0oxhhTe5JXFlsQaYxJXBOKMcbUpISVxcmqNzXGJI6IXCQiL4jIGhH5l25ef5eIPBVty0TkpGrk0xhjalVc5bDVRBpjYuuHIyI+cDVwIbAJWCkif1DV54p2Ww8sVtWdInIxcB1ujXhjjBlZYiiL4yyHrSbSGMPBvjgD3fp0OrBGVdepajtwE3BZ8Q6qukxVd0YPHwKmD/ZqjDEmmWIpi2Mrhy2INGbEE9cPp5ytb9OAjUWPN0XP9eT9wJ2DuBhjjEmo2Mri2Mpha842xjCI+8mMiDxS9Pg6Vb2u6HF3pZt2l5CI/BWu8Dqn3MwYY0yyxVIWx1YOWxBpzEg3uAlus6p6ai+vbwJmFD2eDmw5JAsiJwI/Bi5W1eZyM2OMMYkVX1kcWzlszdnGmDibs1cCc0RklojUA28H/tD11DITuAV4t6qurvi1GWNMUsRTFsdWDltNpDEjXnwT3KpqXkQ+DtwN+MD1qvqsiHwkev1a4ItAGrhGXGGY76N20xhjalA8ZXGc5bAFkcaYWKnqHcAdJc9dW/T7B4APDHW+jDFmpIirHLYg0hiTuPVajTGmJiWsLLYg0hiTuKW2jDGmJiWsLLYgsje5rADnA28BXgPMBNqibTwQAK8C9+I6qf6ZILO/Opk1ZjCSVXAZY0xtSlZZbEFkT3LZE4FrgLP72HMscDTwQSBHLvsb4EqCzAsx59CYCpHENaEYY0ztSV5ZnKzcDpVc9vXAMvoOIEsFwLuBx8ll31vxfBkTBwERKWszxhhTIQksiy2ILJXLzgV+A4waRCqNwPXksj8ml/UrkzFj4hTb2tnGGGP6LVllsQWRh/oBMKZCab0f+PcKpWWMMcYYM2xYEFkslz0CuLDCqf4juexlFU7TmAqK+uGUsxljjKmQ5JXF9i3Q1YKY0v0OueyEmNI2pgKS1YRijDG1KVllsQWRXQUxpTsLuJtcdnJM6RszOPGtnW2MMaa/ElYWWxDZ1foY0z4NuC7G9I0pX8KaUIwxpiYlrCy2b4GuHgeaY0z/jeSymRjTN6YM5TafWE2kMcZUTvLKYgsiiwWZDuCbMZ/lqmglHGOGj4Q1oRhjTE1KWFlsK9Yc6hd0bdb+MTCugum/C1gBfL+CaRpTPsGapo0xptoSWBZbEFkqyGwDfnvgcS77ISo/7c9V5LLbCDK/qXC6xhhjjDFDIlkhb3XcGUOaHvBzctmTY0jbmDIkqx+OMcbUpmSVxRZE9u3mmNINgFvIZcfHlL4x/VRmHxzrE2mMMRWUvLLYgsi+BJnNwKqYUj8SuJFctiGm9I3pJ6/MzRhjTOUkqyy2b4H++WGMaV8C3EYuOzvGcxjTu4Td/RpjTE1KWFlsQWT/XAe8FGP6FwLPkMt+hVx2dIznMaZ7CSu4jDGmJiWsLLYgsj+CTA74VNxnAb4APE4ue1TM5zKmiJC0JhRjjKk9ySuL7Vugv4LM7xmauR2PBh4ll71gCM5ljDHGGFMWCyIH5lPA1UNwnvHAneSyfzME5zImcU0oxhhTkxJWFlsQORBBJsQ1ObcPwdlSwK/IZd83BOcyI95A5iMr3owxxlROsspiCyIHKsjsBF4ZorP5wE/IZW8hl506ROc0I42QuLtfY4ypOQksiy2ILM9zQ3y+y4HV5LKfI5e1pSpNhZV752tBpDHGVE7yymILIstzTRXOOQr4BrCUXHZSFc5valnC7n6NMaYmJawstiCyPLcB91bp3AuBFeSyJ1Xp/KYmJWtaCWOMqU3JKovtW6AcQUaB/wVsqlIOZgEPkcv+PbmsVQcZY4wxZshZEFmuILMDeCuwv1o5AH4K3EMue1iV8mBqRcKaUIwxpiYlrCy2IHIwgsxy4HVUL5AEOA/XT3JaFfNgEi15nbmNMab2JK8stiBysILMA8BXq5yLucBT5LJvqXI+TFIl7O7XGGNqUsLKYgsiK+ObwM+qnIeJwK/JZS+pcj5MIiXr7tcYY2pTsspiCyIrwa1k8w/AzirnxAd+Sy47r8r5MEmTsLtfY4ypSQkriy2IrJQg0wL8strZABqBr1U7EyZpknX3a4wxtSlZZbEFkZX1HWBftTMBvJFcdly1M2ESotw7X6uJNMaYyklgWWxBZCUFmfXAe4CwyjnxgCOrnAdjjDHG1DALIistyNwCvAXYU+WctFT5/CZRkrVKgjHG1KZklcX2LRCHIHMrcDRwXZVy8DiwvkrnNkmUsCYUY4ypSQkriy2IjEuQ2U6Q+TBwCnA1kB/Cs38+WprRmH5KVmduY4ypTckqiy2IjFuQeYwg83HgLCA7BGf8FkHmriE4j6kZ5RZaFkQaY0zlJK8stiByqASZlcAi4ImYzpAHPgX8c0zpmxomImVtxhhjKidpZbEFkUMpyKwCFgKPVTjl+4GFBJnvWjO2KU+y7n6NMaY2JassTlXtzCNVkGkjl70I+CNwej+P2ge8G5gAnIibvmcXrlbzVoLMS5XPqDHGGGNMzyyIrIYgs51c9lzg07gm6MN62ft+4CMEmeeHJG9mZLKmaWOMqb6ElcUWRFZLkGkDvk4uexXweuByDk4Qvg94FriFILO8Ohk0I0uyCi5jjKlNySqLLYistiCzH7g12owZeiIg1j3aGGOqKoFlsQWRxhiSdvdrjDG1KVllsQWRxpjE9cMxxpialLCy2IJIYwxJu/s1xpjalKyy2IJIY0Y8WwfbGGOqL3llcbJ6cBpjjDHGmGHBaiKNMSStCcUYY2pTsspiCyKNMYlrQjHGmJqUsLLYgkhjDEm7+zXGmNqUrLLY+kQaM+JFE9yWs/UndZGLROQFEVkjIv/SzesiIt+LXn9KRF5T8Us0xphhL76yOK5y2IJIYwzu7recrY9URXzgauBiYB7wDhGZV7LbxcCcaPsQ8MNBX44xxiRS5cviOMthCyKNGemEaLmtMra+nQ6sUdV1qtoO3ARcVrLPZcDP1XkIGC8iUyp6jcYYM9zFVxbHVg5bEGmMidM0YGPR403RcwPdxxhjTHliK4dtYI0xI9yjjz15tzROypR5eCAijxQ9vk5Vryt63N0tspY87s8+xhhT02Isi2Mrhy2INGaEU9WLYkx+EzCj6PF0YEsZ+xhjTE2LsSyOrRy25mxjTJxWAnNEZJaI1ANvB/5Qss8fgPdEowMXArtVdetQZ9QYY2pUbOWw1UQaY2KjqnkR+ThwN+AD16vqsyLykej1a4E7gEuANUAr8N5q5dcYY2pNnOWwqFrXI2OMMcYYMzDWnG2MMcYYYwbMgkhjjDHGGDNgFkQaY4wxxpgBsyDSGGOMMcYMmAWRxhhjjDFmwCyINMYYY4wxA2ZBpDHGGGOMGTALIo0xxhhjzIBZEGmMMcYYYwbMgkhjjDHGGDNgFkQaY4wxxpgBq/kgUkSOEZHHRaRFRD5R7fx0EpH7ROQDZRx3p4j8XRx5MsOLiFwrIl/o5fXPi8iPhzJPxhhjTKd+BZEi8k4ReURE9orI1iiQOSfuzImIisjRg0zms8B9qjpGVb83iLzcICJXDDIv/T3Xl0SkI3q/O7fPAqjqxar6szLT7fP9FJEpIvKT6HNuEZFVIvJlERlVzjmL0j0yOn9qMOkUpfeSiFzQxz5jReQqEdkQvYdroseZSuQhbqr6EVX9KoCIvFZENpW8/jVVHfCNiDHGGFMJfQaRIvJp4Crga8DhwEzgGuCyeLM2OEXByhHAs9XMS5l+raqji7Z/6+uAwQZoIjIRWA40Ameq6hjgQmA8MHswaQ81EakH/gwcD1wEjAXOApqB06uYNWOMMaY2qGqPGzAO2Av8TS/7NOCCzC3RdhXQEL3298ADJfsrcHT0+w3A1cDtQAuwApgdvXZ/tO++KA9vi55/A/AEsAtYBpxYlPZLwOeAp4A24C9AAchFacwFLgUeB/YAG4EvleTvnCjdXdHrfw98COgA2qN0biu9lqLruSL6fQLwR2A7sDP6fXrRvvcBH+jhPf0S8MseXjtwXJS3B4HvADuAK4CjgSXAbiCLC0Z7fD9L0r4CeBrwevm8zwJWRumvBM4qydtXozy1AP8DZKLXNkTn3xttZ0bPvw94PnqP7gaOKDpPFpgRPT4p+kyOBX4BhMD+KK3PdpPPDwCvAKN7uZbjojzvwt1ovKnks7wGuDM6x4PAZNzf905gFXByyd/e/wGei17/KRAUvf5BYE30Of0BmBo9L9Hn92r0nj4FzC/+ewJGRdcaFr1/U0v/ToA3RdexK7qu40ry909R+ruBXxfnzzbbbLPNNtsGuvVVE3kmEAD/3cs+/xdYCCzAfdGfDvxrH+kWewfwZVzQtQa4EkBVz41eP0ldTdyvReQ1wPXAh4E08J/AH0SkoSS9S4HxqnoesBT4eJTGalwQ9R5c7dqlwEdF5K8BRGQmLmj4PjApuqYnVPU64Ebg36J03tiP6/JwgcQRuNrb/cAPBvC+9NcZwDrgMNx791Vc8DYBmI67lm7fz27SugC4RVXD7k4U1VTeDnwP9/5/G7hdRNJFu70TeG+Un3pc4ALQef7x0fmXR+/754E3497vpcCvovwuw32+PxORRlzg+K+qukpV340LSt+oPdfSXgDcpap7e7iWOuC26L06DPgH4EYROaZot7fi/pYzuJuS5cBj0ePfRtdf7F3A63G1tnOjYxGR84CvR+lNAV4GboqOeV303szF/U2+DVdbeoCq7gMuBrbowZrpLSXXMzd67z4VvZd3ALdFNbLF13MRMAs4EXcTYowxxpSlryAyDWRVNd/LPu8CvqKqr6rqdlxA+O4B5OEWVX04OseNuMCtJx8E/lNVV6hqQV3fwDZcENvpe6q6UVX3d5eAqt6nqk+raqiqT+G+eBcXXcs9qvorVe1Q1WZVfWIA11J8nmZV/Z2qtqpqCy7AW9zXcUXeKiK7irapPey3RVW/r6r56Jo7cIHrVFXNqeoDAzhnGtjay+uXAi+q6i+i8/0KVyNXHFT/VFVXR3m5md4/zw8DX1fV56PP/2vAAhE5Inr9S7ja8IdxtdxXV/BaFgKjgW+oaruq/gVXW/yOon3+W1UfVdUc7kYqp6o/V9UCribv5JI0fxD97e3Afd6dab0LuF5VH1PVNlyN5ZkiciTu8xqDq2GV6L3oLd89eRtwu6r+SVU7gP/AdUs4q2if76nqlih/t9H7Z2OMMcb0qq8gshnI9NHXbiquZqXTy9Fz/bWt6PdW3Bd7T44APlMcXAEzSs63sbeTicgZInKviGwXkd3AR3A1S0RprR1A3ns7T5OI/KeIvCwie3DNyeNFxO9nEjer6viibUsP+5Ve72dxTaQPi8izIvK+AWS7GVdT1pPSz5ro8bSixwP9PL9b9FnuwOV9GkAUDN0AzAe+paraj2vo1J9r2VhS61p6La8U/b6/m8el11b8WRT/H3R536La0WZgWhS8/gAXIL8iIteJyNhe8t2T0nOEUX7K/WyMMcaYXvUVRC7H9Sf861722YILBjrNjJ4D13Tc1PmCiEwuI4/FNgJXlgRXTVGNWKe+Ao3/wvVJm6Gq44BrcYFLZ/o9DSDpLt1Wiq4P12eu02eAY4AzVHUsB5tzhcrqki9V3aaqH1TVqbiavmsGMML9HuByEenp76L0swb3eW8eaD4jG4EPl3yejVFTNiIyDfh/uG4B3yrpttDX53wP8PpeRpVvAWaUXGt/r6UnM0rS6vw/6PK+RXlKd55LVb+nqqfgBgHNBf65m7T7ut7Sc0iUn8FcjzHGGNOjXoNIVd0NfBG4WkT+OqpdqxORi0Wksx/ar4B/FZFJ0dQpXwR+Gb32JHC8iCwQkQDXPDkQrwBHFT3+EfCRqDZRRGSUiFwqImMGkOYYYIeq5kTkdFwfvk43AheIyFtFJCUiaRHpbPIrzQu4AT7vFBFfRC6ia3P1GFxt1a6oL+H/G0AeyyYifyMi06OHO3HBRyF63N01FPs2bhTzzzqblEVkmoh8W0ROxPWzmxtN+ZQSkbcB83DNwH3ZjhsYUnz+a4H/IyLHR+caJyJ/E/0uuFrInwDvxzVNf7Xo2L6u5Re4IPV3InKsiHjR5/l5EbkEN4hrH/DZ6G/6tbhm+Zt6TrJP/1tEpkef9+dxTd7gblzeG/0fNOCa7Veo6ksiclr091wX5SfHwc+r2CtAWkTG9XDum4FLReT8KK3P4Lp6LBvE9RhjjDE96nOKH1X9NvBp3CCB7bgv5o8Dt0a7XAE8ghv1+TRu4MEV0bGrga/gaoVeBAbSPw9c0PmzqLnzrar6CK5f5A9wAdIaBj444GPAV0SkBRfw3tz5gqpuAC7BfQHvwAWJJ0Uv/wSYF+Wl89o/iQs8duH6vXU+D24UbyNuhPFDwF0DzGe5TgNWiMheXI3rJ1V1ffTalyh6P0sPjPrKnYXrp7cieo/+jBvNu0ZVm3Gj4z+Da479LPAGVc32lSlVbcX1E3wwOv9CVf1v4JvATVGT/zO4ASQAn8BNKfWFqBn7vbhAbFH0+tdxNy+7ROSfKBH1PbwA12fzT7jR+A/jui6sUNV23Gjmi3Gf0TXAe1R1VV/X0ov/wg3UWRdtnf8Hfwa+APwOFwzPBt4eHTMWd3O0E9cc3Yzrz1h6PatwN2zruusjq6ovAH+LG0iVxf1dvjG6TmOMMabiZGDdzIwx3RGRl3BTL91T7bwYY4wxQ6Hmlz00xhhjjDGVZ0GkMSY2InK9iLwqIs/08LqIyPfELUn5lLi5YI0xxlRQXGWxBZHGVICqHmlN2d26ATfBeU8uBuZE24eAHw5BnowxZqS5gRjKYgsijTGxUdX7cYPUenIZ8HN1HsLNpdrb/J7GGGMGKK6y2IJIY0w1TaPrJO2b6DpBujHGmPiVVRb3thKNMWYEOFpEW8s8dis8i5vbstN16taa76/uJt+3KSOMMSNOEstiCyKNGeFacR1gyvFlt574qYM4/Sa6rvQznYMr/RhjzIiRxLLYmrONGeEEVxCUs1XAH4D3RCMDFwK7VXVrZZI2xpjkSGJZbDWRxpiKL+h+IF2RXwGvBTIisgm3/GcdgKpei1tK8xLc6lOtuJWJjDFmREpaWWxBpDEmtiYJVX1HH68r8L9jOr0xxiRK0spiCyKNGeE6m1CMMcZUTxLLYgsijTGxNaEYY4zpv6SVxRZEGmMSd/drjDG1KGllcdLya4wxxhhjhgGriTTGJK4JxRhjalHSymILIo0Z4ZLYmdsYY2pNEstiCyKNMYkruIwxphYlrSy2INIYk7gmFGOMqUVJK4stiBzOdq8VwI824WBtd/HvqXDDyjr2vlKHm32+87WeSMlPOLhykl/00z/w+PD5BW/qgjqgvvOcJfv4RcfWFf1enFaqZL/eaA8/O6+5OP3OTYqeP/D+aFjI68a/1JekA1AAwuhnPvo9LHpum3fM22/oI581IYlNKMYYU2uSWBYP7yBy99o5wE3Aaxk3uyV67kjc8jwFoAMXGBwIqDgYQKQ4GHCUKg2ySgMvKdo6A4/O4KQQPae4gEOjcyjQGO0X4gKTDg4GJp3HCNDAocFhUJT/4kCpb+37lgFn9WvfcrTtWQIsji39OIm3GxhXxpGPATdUNjPDV9IKLmOMqUVJK4uHdxA5bvaL7F67F1iECxwBRgHHVS9Tw5CI9r3TIGi8yQ9T7dXOgDHGGDOcDe8g0vkCcB+717bgave6q1kc4eLuRZHoILLcN6dQ0VwMc0nrh2OMMbUoaWXx8K85HTf7fuA+YCwwkfKaJmubxBzl+fV971N78tXOwFDp7D9RzmaMMaYyklgWJ+V74IpqZ2BYEy/mILIuaTdHlVBX7QwMJSlzM8YYUzlJK4uT0JwNcC+wHDiz2hkZlsSPuU9kP3fTMBsu/8NqFOToE/fIxMPHRwcf/FtXLf27Vw7ezBSPxlaI+noKSN3o08rMfbn/Xw1lHpdISbmbNMaYWpa0sjgZQeS42crutVcAt1c7K8OSxHwf0t/0w7BVH7vHjRIf1fiwjBt3esXyUDe63CMtiOxDEqeVMMaYWpPEsjgZQaRzJ27aldf0Z2dVDUUkaZ9HmeIbna2Fwov62LJ6feGFlWjoAjLVaKqiqJYxDIVC3qOt9WDgVeEcadvuVbprzS7C/MTo3IIioNFnrF70WEB9VD3QFBqW2yw9Qv52HGuaNsaY6ktaWZycIPJgbeQtve2mqltB11FoP1yhHb8hJSJzhyiX1RFnrCzSwIbVC6s+Plvzx5LbuQF05hCdMWn/y4MyoiJmY4wZppJWFicniHR+DzwLHN/jHlp4kbD93AOPC22r1K9/SMRbeMiuqo9B2BrFCymgDmSsiMypeM7j5MU465HIdETaUR3gEO2RObmkMcYYM1IkK4gcNztk99orgf/qcR8tlHSeC4+l0LZevbol4qW6rroStnto4ZxDkkC24aVeRPwA5EQRGd794/xUbLVmIuLpqKYN7N139IAO1DCW7MSRaA9GTBCcxH44xhhTa5JYFicriHRuBr4MdF9bqOG0bp6cRdg+VjV8CACRPEgBDY/s/hQ6mbBjMnSAV7dU8T3QEA2j0cKpMSJy8uAvpULEjze4GjMmO+AgMkx8TWQsUfBwNaLa7o0xZphKWlmcvCBy3OwCu9d+Hbi++x10VA9HptF82u0ygPOFHYvcEthFfP/B4fVRx5sXGTO6Tbe6392YmgNrgHf+rocMYvLiHjIeu6Tnv9+SePdrjDG1JollcfKCSOeXwJeAbgZZyA7QsueD6ZdC++EqPAPeXkTa3ehoQTx/cd8HxyCGcGfdl366oWP77skdYfiA73kNUxbMyeEm4PYB2bhi1brxMye9UhfUn+kHqYfSp0zvOodnPIN9kl67OWwlreAyxphalLSyOJlB5LjZHexe+w3gmkNe8+rWE7bHPII3PNqFM2FxWNOuoWRBsoAH2oQf5EXkyHjzAuCpqra483ZO1N1l4u4w2lBV6di1T1HV1JjG0KtLlf7NeoCK7+8VT/aG+9o1r4zqyLW3ooSqGqaCulA82Y8eOEc3YWziayKtOdsYY8yQSlpZnMwg0vkp8AVgSpdnxT+Krs2tQ6UeNOO2SGF/u8Kekv2KV2vp/NmG+OukblQ74mVQbUELe9FwAnBiXyeWuvGiz68a059Mhh359mX/fGM9wKwzj31q3OSJxemvkZR/NMBhx01r8U6YMfHFu59I7d3UfNzzd67coG4Cbm1orJ/o+/6OcdPS/TllUsU45H14SWITijHG1JoklsXJDSLHzc6xe+2/A98uflpEZqikHkTzZ1cpZ8Xqo60vo9BwlyKjQA5HJEQ8T0RAw9UU2tuB+T0eLQMKmMXzvdWA+im/NG8KvAjQvqc1K550CNoqnrzc0NCwS0TGAqKq6wv5ws6OXEerX596mg52tbycfQLQMcfMFAAZNbbrsu4qAAAgAElEQVRxAHkajkZMEGmMMcaUI7lBpHMd8Hkg0+VZr+5ECuFqCBM0ybgeRfvuzgcedWOewa+bj3hz8Rsg7FiChgvpdjm+/seQXsqXE9+0sKf3xasb1zAbYMv9z6iGOqcetmSmTpi7f2/u0Xx74djofHtaW/d721dvSo0a23gCwn7veW8BwLyv/ABJfEv2yGOfmDHGVF/SyuJkB5HjZu9j99rvAFcWPy0iY9RvyFLIrQM9qkq5G5ywY5d6/nYRbxIi4NcvRsMthIU1aGE6cPC6BlYT6Utj/UoAPz029BrqvPzOFgrNLYhIC7ADQf2G+j1hvrA7357fE+bzDwOv1DWk8lEa7U3SuF9EDq1lDUPFj2nKofox62nf0wAcHkv6I1jSmlCMMaYWJa0sTnYQ6Vytqh8TkS7zQ4rILFKNaFhYQthWnVHTg1HInYOGS6gffTDv4k3F96aiKUA3o+EmwvzpnfPu9IeIyLg3nHqaiEBDw6OInNK+ufn+lv959FyFDX6QmgngB/Wr/VDntrXtXZLdtPP0VH3qgczU8Wd0phOMakBDXRaG4VJgn4gsBUTz+YXi+7H8XcmEoxdry+altL66BzTuVYWS9r9ctiT2wzHGmFqTxLI4+UHkuNm72fXid1R5I3AqsA6YLiITAMTzFyv1SwjbkxdIaqFOw/xa8VKzNd+2i10bVqGhUtfYgFdXRzD2CG3Zfr9ufLSDhoaXaGs7sr8pU1Rr7o8f09543hkPSCrVlhpd/zLiIQ+vPVzRA03ThXxhbOf+DTMOe8BvrC8gIoiA0BiN1A7xJNZRzTJm2iLt2Hc/HXvjDiJHVJ/IpDWhGGNMLUpaWZz8IBIAvQH0S0ATcAKw5f+z995xelzlof/3mZm3b29aaaXVqlpWseUq27Jkg3HokBASQggBchN+uQnkctNuLklIIEDKLyGQACkkuSGQQCAhCXApNthWsWRZzerFsrQqq7K9v21mnvvHmZVerbZJ2tXq3Z3v5/N+dt+ZM2fOmXLe5zznKarWGRG5GwCxm6ataTeDeo+QH9hKrHwJmZ4Lev6la/J/A/XigC5u6iGXf4HW1jj9AytQjY9Rcx7j8OMD2NUV0eTK1Venf7Tt43hX5EH1df7Q/w3vf+PySGVp3Yg123Z2wv27vSm2d/mmKLbZb0hISMhMpNjG4hkhRErF8g7tPv5Z4LeCTfPAr1eVbSA26ieAw8DK6WvlDaJ+heYHt2husAe4c7RiIlJOLPoQC+ajqmcYHGzG9fSy0tH4TJvCFVUeltjYdpZ87rs4dhmD3ZsQuRxdsnTDXa7X03/B7u7vshuqNgGUza/Ji2NH7WT8gVHb2/zCDhULMrkBsukUvieomrCRlm1qH1p9T6YGsCV1Jdamgu/a+J5F5QJf6leM7GHvWwN0dWxG5OplfFWhrKIG2y6++zyNFOMSSkhISMhMoxjH4hkhRAb8GfBBYCjtoQX6CGhwZyJn8PM7gCUM9+a+rdHVIDtJ1ozglT0yItJIKjV6wPXS0jwiEQAsNuP76/GuTu1Y+cZA6dnfv4kLF40pwNz6A1jWmjFPPti5EYCu7m143iNjls3GtxCPbRhxX1/rZupXXLVJW09tIt1n03pqBQNdi0Y8LpHcij0p0YUik1FJsTCr1K4hISEhtynFNhbPGCFSKpa3a/fxzwO/MXIBqxE71ogqqLsJ9W93G0kXJ7kLJxURy34AL9+vtXduBh/aX56P+jfudZ5Jbw+MHQXfz0/4qXXdHqITCXsJTChFoY5+5sHOJj27d7MsuGfj5W0XjtfQdWHV2FVOWmbE/PhFQkJCQkJCZi8zRogMGNJGjm4PKAISeSyIu3h7CpLinCRerSJy2QZS7EiJNNy7EUBL5x4g07NN245FyA+OvrQ8CpoeSIpl3w/gX2r7HgODLwCQiOespgUbry5c8H8+71+HEDm+aKpjlFFtpKM5pn2tLwKK70UY6LmV2sFZladbrBuc//qz6jKFhISETCnFNhbPKCFSKpZfCrSRvzp+YedhNNcCNIxb9tbg4iR3Y8ezWJGHZWi5eQSkrGENZQ1Q1nCGwc7d4KueeeH+kcqqqisiTsF3v+fp3V3po2dfSK1d6qXmliJdna6mc49SkjxN04LhNVz5N5tLkUoxMcbQMl7uyLiC2hxyg5djQmpf33Nksy9xdW5wU5MpYeH7XrEtB9wO3HiA+FCIDAkJCZksim0snlFCZMD/D/wSY2kjAUSiIKdBp1+IFKeZeHVSRNaNX7jgsHh5I/HyRnWzPaOVyRw983zf9sNzIrUVvV7vYDx7+tISzeWfBOh9di+9Imcr7114Kb6g8pg4Tpdmc20I5nlsa+uipwcZ0j7m8yN7ZI/cuvGf6LE0kSN2JrOYfH50W08A3996XXWOzqyRRUXAutHZrze5bQkJCQmZrRTjWDzjhEipWH5Ru4//LfArEyjujl/kFhBJnRaRG19atyOlcscbTgGix76TBAqEPSF3pnVF7kzryMeqLuja3bwg1T24ueKu+avZ+1IVAJ63DdV1xKJ7Ly9hu+582juOYgT0KOb58SGIEXn137EdcG4ES3LjlrmOwOvjMP65ZhBhqsqQkJCQ6afYxuIZJ0QG/DHw/zFinumruB0CSvt68WBaB9q2ku0vR/0Iqg5i5ahZ1iF1K1dLJF45VgUilkWichGAIudB8bP5fQO7jvX2PLN3bA/pgIFXWjcm5pU/E6tKvTrYVAaUDdOQC6o2Ik3X3csR0euLZqA6vk3k5DnW3A7Pxi1CbtwOJyQkJCRkkii+sXhGCpFSsfy8dh//AvCBMQtaTgV+vp1pDPmj7Se303Hyddfu8KDt2MtUL+lnHCGyELnrHbWg2c6Pf8TK7Nk9cvicUWjf+vLyZGPV5sylvmTpohqJlsS7YGANZ7u6c73Zl9yezNoT2w9fKF1Q1b7stXfdrervwOcBQFUVsQR7xeJ+oE5EJiKEXZ/EN7HSkyVFFtebfJMU2+w3JCQkZCZSbGPxjBQiA/4I+AXG0kaKtQorcho/fxFYfasaNoTmM210nBwpC01QwFumR77lsezJo1IyZ8Wo5QoQy44AROYv7M/s2XWdDWL+4OnO+aZt/n6Uy8JrvLHSsSqSTvL0hbw7mE2gqv0nOjTXnTZOLkJ3+Yr6uLfr2Bw/5x3Ld2dXpDt7N+V6B9djrDW86vuasiJWHNTCsjLx1zyw5rpeF5HxrT78Scu6OJPfjZCQkJCQkJtmxv5QSsXyFu0+/nfAL49d0FqIHeNWhvzRXPoCPS2v0HW2Bqgdp7hNtr+PkjnjFBuGZY2vkYtEcon71h2u+fUP12SPHDrZ+ru/MRTeJ+PEI9VXtbk/rf5gpmT5j6xJOPWVTcBAWTwi5N1S4JBE7Qogm2tPt2G8wdvUVx8TtNssQ3saxfLN/74XB9qB0ol3agLL35M3i5s9y9lyE2ElQkJCQkImhyIci2esEBnwx8D7mUj2EXE2gLsJ9e/nStabSUXTPSc4v78HN3svMHfCx53Zfr92ntxMfjCCmynFjg3gxHN42QjZ/iZEcojdRzTZje+C5yZSD96ZFvsnt7qtl7zYqjUJiUSszs99Zj6+Xy+xWGbeF758zCotu1NE1gLE19w9v+bDH93U/scfbbIiTqtTU1YLNKMmC5NErDToWR/N5bP+AIDXncla4p1yEtFOfE0A+HmvE9HBxIKSSN7NuvmB9FkUK1Iaf0UsuRyDUspLDolIJUgLY/uVDfmKg+W0I57F5VyO15QTlAxwJtjkF9TtYjnd2LEMkUQEJ1GJWBFUXXK9rWS6GzAZp4J65YK275svNXefm+h9KlaE4ltCCQkJCZlpFONYLJPnzHp7ot3H/xrjZDMxfHc76j08qW3obz9A6/H+IDD41AnulnPUuuvtoy5755qbn3LmzJ0vieSdMsqTqu0nNumpraNqZNX1Tp/52JcXDn13UvEfVK5siIotS0SkId+V7QHOO+XRUfN8A37kVU/ujKy977pCGo2KMylpDkfiaam5+0emqvLbhTtsS/+qZOyIWKPxRG96t6qOGKM0JCQkJGTiFONYXGy5vm+EP+J6QvmI/TBibZ6sk2vn6e20vNREfvBhplrzazkDY+ztiTYtechKplaOJkACSM3Sx6Rx3aj9F8deWPHkvVuGvnuZXLXXn9/ouXbUiyb3WXWVZ6z66k6pKn9FykvPjFSHvWLVlkkTIGEyPbKHMxveDxBBbvATEhISEjJJFOFYPNOXs5GK5c3affxLwPsmdoCARDbiu1tRbz034aWrPed30vbylGkfpXHdLmJl5YjYIOBExwicLq8AaydU75w7N+Llt2rLnkdH2l/26Or7Bw82n8xd6FzsLKjXkl9+x2mxrYWMYN/pd3Q/n/3upntw3SSAtWDh5ujr3jS5tqdT9wLNGinphgPchoSEhIRMGsU2Fs8OTQt8EhMEe+JYzqMgz9/oCdXL9XDxSANTKaiXzVsmqeplkqxaLMnKxRJN1Y/RonuBFyZc99w166lfs22kXSKSqH//G5yyVz2wZd7nvrTQanp1jGjZVuzoHpDmwrJWdcX6+DvfdIlopJdY7EDsrW9/cNJnTVOniSyut/kGGbLDKabZb0hISMhMoxjH4hmviQSQiuUntPv4PwPvvq4DLacRP9+LCbx9fbSf2ge6cfyC14kd3S8r37wU8LGc8us72E+iVgaRcY0uRERkwX2PaOmcTXrimUdQ/yrnJLHtxsqffsc5y7arIYE0rK+HIGBkz8lt2n2iHvUXB2UXxd/65C4/E22XSLSvoJrhDjIO6APMEuHttqEIPQJDQkJCZhxFOBbPCiEy4BPAu7ge7atYjVjRi/g5D5hwwG8ABjun4toOYjlZsSPJGztc14J/ALXuDMLwjE9JbfVwAZJYWYuselOXOLFrsuGIiFCx5BHKF6PtBzbR37IOsV+WVKrEntfk4cTHtoX08ltQ97qCpDOyt/ZkMGlBJ0NCQkJCQmYas0aIlIrlx7T7+L8AP3N9B0o94uxE3fuYoACqvpcjN3DXDTRzdCLJndaqtzwAPHBDx6umQY+DLEZkO8iEBDVxYqu56+07tf3lHD0tc/Dytqx6S7fYzj1jHieCli8px46dkmjJxPNo25ENeGwFf6SwP1cERb1KaLxeoXOiFNeU8CYIl6ZDQkJCpp9iG4tnjRAZMKSNvL67ZNkP4PnPgf/4hMp3n9sNTCBMkPjYkV4sO4/nJvDzJaMU7CFZNTjB1l5BFdCjqHaifhVwN6Dg1mNFNiP2ckTGsKMMWhkreUAa7oF5a0+ql+0ZLkBqZ/Ne7TzVe9k2cegl8PJZ1I0ptF4uHCuxpXbJiA47l7EjY++/dYwfX3RGMLX5WkXkdcBnMAHc/05V/2jY/nLgy0AjZkz6U1X9P1PWoJCQkJDbkqkbi6dqHJ5VQqRULD+q3ce/Brxjgof0AvuBCJZT5fX3bFfXLUVRu6xkhYiMLGR0nxv/KYgkWmXRxv2kah8UkVrtu7RZX35qZBvK2uX7rIZ7r8+jWf0D+F4KGB43UoBl+PllkM8h9g7EzoBvoxoDyQOK5cxFZLGpSztR/yB+fpmI1XHNqTpO9tJzbmLtS/fso3bJdXVlGpktjmdTNvsNcqh/DngSOAfsFJFvqurhgmK/DBxW1TeLSC1wTET+WVVzU9KokJCQkNuUqRiLp3IcnlVCZMAfMJIQqTo8VMwOoALEaMVEyFzsOrPndW9vXPzbH9o872d/YvQ7XVbfQc/53fheHBGXWMUgiXIh15/C9yzUt2XxY4uxIykRMU47TswhVXcUQUE0aIuiKtixPlSPAorInUF7M/juTlAfO3q1AKc6iO8NAuMtI0dRbx06wsqx5ypi7QPxUK8JMAKuZR8fp86xUS0mXX0xtfWGkak15n4QOKGqJ8255KvAW4HCwUuB0iB+aQnQyfXEdg0JCQmZAUzhWDxl4/CsEyKlYvkhbXvpL1H/PpzEMrxMM+5gFj+/FDt2jEjpXOzoctxsO3asEbQLsBEpc8pKktE5tW3JZYtwe3oP2yWparHtuYJ2kx88iBOvx3KWSt2ddzNn1fwrJ7W3ieVcs7ytbjqnbuYA6mZx4nWy7MklMjxIlGovXrYO9WsAFy+/H8hiYjJuAI4E5QA9gu/1Y+wmbzaYt6D+3RMrOWNlrVATefM0AGcLvp/j2mfzs8A3gfOYXOrvUNXQqekmEJEPA4tV9ecns+wE6lJgmaqeuNm6bjUi8jjwZVWdP17ZkOlFRDZglmTvGGV/I0ZAKlcdSUty+zJFY/GUjcOzTogEINf998AHyfdCYYBsL1uPl+0lVvUS/WffWHCET6L+eM+2bS25S22vOvje/3H5GIk47v3f/vtD8Xl1G8kP9GInvkU09hrc9G68TD9iCVZsQKNlvohYAKraTq73MOnWqzWI8crtmqz3xI4+imo/6H68/DygCQD192PsGu2Coyx87/kgnM5YqQZvCE13N5Mb6DaaWstCVYgk9pvOi8lXne2b+HPku4v0+Kb9RJO90vTA7WL7OBr2+EVmBjcR4LZGRHYVfP9bVf3bgu8jVTw8sOdrgZeAVwNLgKdFZIuq9t5oo2YSIvJe4Ncw16YX+A/gf6tq92jHqOonJ1r/9ZS9GURkFfDnmEmuAK8Av6uq37kV579ZAg3NB4H3A4uALmA78DFVPXCTdT+HEWD/bhLa+fvAUlUd04lURH4a+FWMyVMf5h38hKpuvdk2TDWqugW4LECKSDPw86r6g2D/GYw2reiYorF4ysbhWSlESsPj+7Tluf8EfnSE3WVkO9dixzejbhzfvQMox+27lFq2aFFhQTuVGFj5F7+3O1ZfezfqP496ipN8EnWfxY65iFVKrjeGOCIilqp3CC/fTf+5B66JIWk5WxB7A+k2X1Pz9ouXXQhcCaGjegb16rhWsCnD95ZP1fRFT794nmzvNaF8boJSfPcucgNHJrHOqWLGqlgnkfZx8rWeAxYUfJ+PmekW8j7gj1RVgRMicgrzw/bipLa0CBGRXwN+E3gP8EOMRuHzmAF+/Uj2SiLiqOrtaA7wLeCvgDcF34stJuxngDcCvwA8jxmLfyzYdlNC5K1GRH4V+C3gF4HvAzngdZglztteiAwZkbHG4ikbh2fNct0I/MGYey17I3bsQSKpcpzkMzgly+1U7GJ0Xt2FoeXb2JzajvIH7lovlpTj50twkj525ARiV4iTTBCryJKoXU+0zMR1HLyUof/setDo5fOY0DuXiKQSeNnN6nsntXVv1u9pPqS9Z8zLrP4e1K3A3PhhyCuTJUDqQMfL/onnNvunnt/kn921yb9wYCv5warJqPvakxXFj8fs0ERObb7WncAyEVkkIlHgpzBLJoWcAZ4wTZE5GA3DyUnsYVES2Et/FPigqn5PVfOq2gz8JLCQIFyZiPy+iPybiHxZRHqB9wbbvlxQ18+KyGkR6RCR3xWRZhF5TcHxXw7+bxIRFZH3iMgZEWkXkd8uqOdBEdkuIt0ickFEPhvc1/H6UoPR3n1BVXPB5/lCrZeIvElEXgrq3iYidxXsWyAi3xCRtqAPnw22WyLyO0HfWkXknwIv04n0JSEi/ygiXSJymDHCp4nIMozjwTtV9RlVzarqoKr+85CXq4iUB+dvC9rzO0OrTyLyXhHZKiJ/GpzvlIi8Ptj3CYxp0mdFpL+gbytE5GkR6RSRYyLyk8H2aHCdPhh8t0XkeRH5iBgP3A8D7wjq2jdCX8qBjwG/rKrfUNWB4Nn6lqr+RlAmJiKfFpHzwefTIhIL9j0uIudE5DeDa35BRH5URN4gIseD9n644HxDz+e/ikifiOwRkbsL9t8pIs8F9/2QiLylYN8bRORwcFyLiPx6YRuC/7+E8Sj+VtDn3yy4905QZp6IfDNo2wkR+YVh7ftacO/6gjaMNTGeOqZuLJ6ycXhWaiIBpOHxPdry3Le5Miseo7C8Gre/N15XWrPue//wipdxW9XzImJbDpDDd19EvUcR6ymcZBXIIOqnECeGWAcRqx+xjpOa6zBwYRtIhHy/h+/lgsDaCQZb56iqMth+CNupQqwllDVtQfUi6i3D2CiMxORNBDI9XQy0T36WnRHRYpjAXF+A+SJFmDrHGlV1ReQDGG2HDfyDqh4SkV8M9v81ZkL3jyJyIGjO/1LV9ilpUHHxCBAHvlG4UVX7ReS7GE/Lfwg2vxX4CeBngRjwv4bKi8hKjPbydRitwicxGs2xeBTzI7IceFFEvqGqRwAP+J/ALsyk9rvALwGfHqe+DuAE8GUR+Ttgu6peKmjjvUFf3hzU/TPAN0XkDoxx/7eBZzBZxzxg6Ef+vcHnVZhQYv+Ese0qzE42Wl9+D7NstwRIBX0ZjSeAc6o6llbmL4FyYDFQDTwFXAD+Pti/DvgiUINZEv97EWlQ1d8WkfUULGeLSAp4GvgI8HrgLuApETkUvD8/A2wRkR8Ab8O8W59QVU9EPsnYy9kPY56r/xijL78NPASsxSx7/hfwO8DvBvvrgzoaMNf/C0F778MIdLtF5KtDjhyY5/OdmPv6P4D/FJHlwb5vYe79j2Du1X+JyP2qeiy4dj+pqltEpBIzEbkKVX23GBvJy8vZItI0rNhXgEPAPIx27WkROamqPwz2vwVzHd8HfBzzDD00xvWZEqZqLJ7KcXjWCpEBf8BEhEhDGVbkDNHyOXac+XjZXbjpIMi1fTfibEa9DfjuWXHiT4JsFmEBdmw/Im9Q1QFyfc1EUjZeDrzsfRTEIVRVyPVtBn0M39+CbS3RgQvLSc17Wcwgd40QqV5+r/ac76e/bRO+C32tDaSqzmM5iliAgJsRLFtJVNrW3NVj2yCKdesEO/WrdNt/bsXzIqCCqsXcJRlZdu/tZCdZO36RmcEEZrI3TGDz9p1h2/664P/zmB+QkKupwSxRjbQ0fQHzgz3EdlX9z+D/9LD7+XbgW0NaPxH5CPAr45z7o6qaBvYF2qy7gSOqurugTLOI/A3wGOMIkaqqIvIqzBLqnwGLRGQr8N9U9WXMEvHfqOqO4JAvBtqshzBLrfOA3yi4FkMazHcBnyrwOv3fwEERed94fcFodH9JVTuBThH5C4zQNhLVmGs+ImJCqLwDuEdV+4A+EfkzjDA7JESeVtUvBOW/iBHs5wAXR6jyTUBzQZy+PSLy75h7eUhVD4rIxzGC4BzgwetwIKlm9OdqiHdhNOCtQXs/CvwNV4TIPFeE1q8Cfwt8Juj7IRE5hBF8h4TI3ar6b0Fdn8LY+A4JaSWYZVQfeEZEvo0ROH8/OM9KEdmnql0YO9TrQkQWYITTN6lqBngpmMi8G2MiArB1yDY30Gx+6HrPM1lM1Vg8VePwrBYipeHxF7Xlue9hZuhjFLRacFInsGMbCJYncOIbENlEfnA9IgeJJJcRKdkNLFTVF8SyU8AcRJ4EwMtvC3JdN2BFcpQ1baL3dCPoQlXtYrB7r4o+gu/vl1RNBXZ0n6Tq28SO3AOUaH/r97WzuRyxVKLJPPFS9OLhega7rs4c09+2dMQ+DHQeZO7qazarKvS3HiLT26fprux1XsIbR9UhNziPfH7x5W3NB1v13LEDJEp7uOeJOxmKXh6NV5PP9QCKZcfEuf60j+q5OYbSI5qXdOhNFczgKwylORRxxLIdIKXt+xJSc3f6xjtaBAhIMeiFZx/tGGP5kWwc5wb7hzjL6Mwr3K+qgyJyTbzXYRQKNoMETgqB9uhTGE1gEvMbsvuao0dAVc8BHwjqWYARPP4JoxlbCLxHgiXagGjQdg8jgI0k9MwDThd8Px20ac54fWHYdRlWz3A6MNd8NGqC9g5vS6HG93I7gnsAozt/LATWiUih85QDfKng+xcxCTT+PRDEJ0oHoz9XQ4x0XecV1lEgtA6Nj5cK9qe5um+Fz58fLEUP1Xd2mBdw4XX7cYwG9I9EZD/wW6q6fczejdyXzkDALTxH4ZL18GckPs71mRqKcCye1UJkwMcYSYi0ovuJlnogtYjMZ6TlHyv6EDbbEBXEPoAdfRJwUO842KnLcopqBj+f0XR7AqRZSuYnUTdKWeNyzXQ/S9+lhCzcuFZ3fP+AHtmRtH/uY/cOncI/8B+78b0Yqgvx3RVwrUvVhPDzc/1jTz1vbBGVy9q/3OAC0FU3UuVNIVJBLHrsKiESrcPN1dHXAZu/dmVzJPYS+eza4FuXijX041l4KUabvpky6s/BLL+MxNXvQaL0BR5929AsuRZjKzKjmUpNZMgNsx0TzuttwOUXIljqfD3G9m2IsYaFC1ztyZrAaKNuhL8C9mJsA/tE5EMY7dh1oapnReRzmGVGMELGJ1T1E8PLisjDQOMoP+rnMQLXEI2Y5e9LjGhDfhUXMM4GhwqOHY0fAp8Llll3jbC/HaM1W8iV2HuNQMs4bRhi+P07C2xS1SfHOObzmGX+14rIowX2peP9RGwHMhjH0n8bpczQdS28NsMdMa6Hy04dYhQxhY4dC0TEKhAkG4HjAKq6E3irmMQeH8C8B4UOIkOM1efzQJWIlBYIktdzb24pxTYWF5nMO/lIw+PbgR8UbMoTSW0mWrYcse4JBMhRDpYYTgTE2oA4C5BoK+LsABx8dz2+uwff24Kf79OBi0n6zj1K37l12n5I1c8PAK9wZFdOD+6Oev/4sT7yHSqvf2OjerkrGoZ8pgkvv3pIgLwJqsn0rifb+wjZvkfI9j9MbmAd6LzxD50iYrHMhMpdESABKlG/MfgsLPg0jvIx+0cXIEfgqvFoVixpiyU39AmZOlS1B+NY85ci8joRiQS2Xl/HeFt+aYzDC/k34M0i8khgVP9RbtwruhQTZqhfRFYA/30iB4lIpYh8VESWinGGqQF+DnghKPIF4BdFZJ0YUiLyRhEpxdhxXsBoo1IiEg9sCMEIof8zcBgowdh7/usENUhfA/530Lb5mPA9IxJo+j4PfEWMU0c0aMdPichvBVq5rwGfEJFSEVmICZ/z5dHqHIPDQoUAACAASURBVMYljC3lEN8GlovIu4P7HhGRByRINiEi78aYM7wXY5rwxaD/Q3U1iYys0wqeq49ghOIfFZFkUP/rReRPgmJfAX5HRGqDe/WR6+jLSNwnIm8T4+jyIczk6AVMUo8B4DeDNjyOsYv9anCN3yUi5aqaxzx3oy3ZD79+hf09C2wD/jC4Z3cB/w3455voz5RRbGPxrBciDfJ7iLMZO7qTeM0ZnORGRCYodMg9xKr2EitfKJZ9XixntYg9pP26F/U2ALVSUm9Td08rdWuhcsmdIK/VTM85UtZyVq7psd7wpuWyfMUGEanByxYsU8nMXUpNJK4xkr4tcHNJ7bxwWLsuHQXqprs5IbMXVf0TjMbxTzE/ojswWqonVHVC5ieqeggjIH0VI4z1YZxQbsR85deBnw7q+ALwrxM8LoeJd/sDTD8OBud/b9DGXRi7yM9i7N5OFOzzMILFUsyqwDmuZB37B4wwvRk4hdGwjSoMDuOjmGXNUxgnmPGE8l8J2vc5oBsT5/LHMI4hBOcdwNgBbgX+hSuOT+PxGeDtYjy3/yLQmP0Ixov2PGa59Y+BmJhA2p8GflZV+1X1XzDOSH8e1PX14G+HiOwZ6WSq+imMkPs7QBvmmfoAMGRX+/Ggzv2Y8EV7gm03yn9h7lkXxhbxbYFHeA7j1PJ6jDb380G/jgbHvRtje9uLCUc0mrPQH2KE3m4JPLiH8U7M83ceY0f6e6r69E30JyRAVG9ocXTGoa07nwUeR+wXsaILgSqgB/Ngz2MoPeEVshgvSLBiW8WJP4r6GaAD1fPgXxUuQtXfjXr3qWqGXP9uOl+uwM2kSVbUYmatV7CjO6zatesA/L3/egr1b0TY6gSSiHWRktrT9F1ahbHbmQwGqGraJRWNtfiuq6d3JAIP8usjn9/OxUvXZPK5jciw5rH3WKvf+rXxixYvq+JR/UrTjT0adx+7sFvHjhMZcpsRaKy6MZllTk13e0JmNjLB4OchxTkWhzaRV/gD4HHUexDvsvKvJvhkEesgdrwXJIZY/djxe/CyL+Dnk/jZNMSyiERQPYhll+Dr90DLMR5qF0GMvUfXyd30tcwlVdVDLDHyDfdyTQXfJqinlnPYThexsm6Zf08D8fLFqJ/Hy5dJJP6YprtP6fEfTIIQKRdl8YZOKa17DEBz6f0j5t4eD9VeLrWOl9t7uolzYNMCVr91utsxtUxt7uyQ2wAReTPGrk8wWs0DQPN0tikkJGQYRTgWh0LkFZ7FZCFYP8K+GOqvxh3MYMeO4JTNE5EytWMP4A60ov6dGil1xaj87wY5gxVdqn4+IpBCZImgi3038zTZboeSmnpEFgP9jOidJ1n1/U6yfW2oDteAXo0dOSC1d/RRUlMtqZqrhTKxI1i2CRYeL2/CLGGNtjzbjtGsFoYS8rgccFsuYNk9suSxqCQrV6pqr279Siv9XUux5QylpZtQHyLRCBFnAcb7cnREyojF9pPJ3DVmuelndthEFpkxd8h181bMcq1glil/SsNlqJCQ245iG4tDITJA6h5Qbd35MUwwztGI42XvwWtDxW5B7E7UM4Kbm/4BTmoNkMfPJlB/Duq/qPl0J3YkjZOqAcuiZI6Nlz0giRqPRN1D+LkLqJ9H1SXf34pYQrx6nainmu46AyMnmAegpHazLN64QSby1PWe30+8vJ9U9VGpWdrEQMclfNdTN+eKE3WobFyB2I4e/e4eIolBqVkWp3zeSj23Z6ekquNUL1kHzL18Ks+9SF9HE74XxWMFHR2Fjj8eyeQuqirrMPY719I/sIls9r4R991ezA4hsshmvyHXh6r+PPDz092OkNmHqv7+dLehmCi2sTgUIq/maYzh+rpxS6rXgHpXwv7ke1+lkdRRQe5AIqfwsqUi1hMaSWbx8y+gfpcVTT5BdFgYRzt2JfZYJFnoXSaUzVtLJLGLfPp+CrWCYjXLokcHpbRuwtllpLzhbikviFIUL2s0JxlWbtWb71X1fQkCj8vCdY9d03XVjO75v1l8b7R0ZzaDg/cDu3Dss5SW1iDi0Nt3AVRwHJeurmvqvU2Z8UKkSPHNfkNCQkJmGsU4FodCZAGBNvIjmMj8Tdd5uE26PaeRVL4g/AQiEsOOLsWyx0szdm17RODON9xPx8kdRFMp0p09OPEIlQvvDYJhTwkyXuaajnMv0to8vgBrBEnovRzjdclNNm06mCxnpNuYMFxPSEhIyPRTfGNxKERegzwNepqrA0yXYYKjji1QaP4evPQLaifmylUe19LB+LlqR26NCNQsMZrRsvobqWLS0faz9nS34RYy4zWRUHyz35CQkJCZSLGNxaEQOQypu1+1ddefcyVeVgG6B6OhrBq1Ai/7EF4WtWI7cBJLRKQGsbpHLV+UaHE95TfHrBAiQ0JCQkJCrpcw2PjIfBPYd+1muRcT9PXguDWoG8PLnlYvd1y9vKe5vk3X6w2pqs0TDSh8q1BVxcvPpuem3P/Kr45m+zkzEBDLuqFPSEhISMgkUYRjcaiJHIFAG/lxrkT+L9y7ErQHkyGhkWtsJ+UslnMaLA+Rx0BRP9vE+Rc7iJW/rPHqNhFLiST6JTUnpX1ns/huNHh6PClrtIA7ND9wjGz3UlINt43WT938cT28qZszBx8av/SMopbbNM/qZFFsdjghISEhM5FiG4tDIXJ0voFJPr/q2l1SDmwEzXIlhZeLSbqcRJw7Eam+XFqsqNbdnafjSA89J9cbdaScJloC8apB7T9/Cj/3qMRr9qnqHWS7XyTf+yZztL4CMu0OKer7LfrMP9SQSy+f7rZMAzXMaCFSjFtgSEhISMg0UnxjcbgeNQpSd7/PuLlCJQZSBvIIyEaQx4BKjCPO1SUjiSxNr1tLedN3iJVvwXK6sRMAp8j3P06s6hkS1RHUewm3vwYYJFrxHRiWEnEaUNUefeqvy8ilR7cFndnMaLtICbIk3MgnJCQkJGRyKMaxONREjs3Xgd8HRgv43QOUD9u2KNheKHB5WJFTIrJYau9+BD/brqq+iC0aiT8k9Q8+h9iPaqbrJYkkq0jO68cdyBIpWykik3GPXsZkqhne1jFR1U49+vxRzh5ciZsrHf+IGcuMFiKB0L5xJjLQ8ghwnlRD83Q3JSQkZGIU21gcCpFjIHX3e9q665PAF0cuYGeBs6h3FrFssLOoFwE6QGoRO4/llIK90DjaZLbiJB7DirniZ3tV3QuC04tY9SBbiVeux00fRiSN2Bbqn1U3ewnfzRMpWaYtrxzTjovYazdMNMj4FkyA8gcwS+2bMALRyjGOOa6qSn9Xix7ZUkO6dx65TMVEr9kMZeYLkUW2hBIyDgMtc4F/B2wGWn6SVMNz09yikJCQCVBsY3EoRI7PvwCfxixTF5IF6hABu6RZIsmHEev/AiWI1KBeDt/doKou3sAeUJd87tVqOc+LFVmvRHxyrYMaKUXs+BmgSkS6fDu+ilOb91FW/7ykakr1/Atrta39lLd9dwW+v5HGpS/ZazeM2lhVPUO6dZBY+SlxEq8ftvuxoNDzmLiXhUvlHvC85jMxPbLV4szBV9/UVZtZzNZl/JBiZKAlAnwNGAos+xcMtLyHVMPeaWxVSEjIDCQUIsdB6u53tXXXEeCRYbsGgJgpJIDsQORNqvp9fNfBiiwSvFdEWKJIzigC5QDZrpRGK8+S6TxBpPQh1HsOsV4H7FT1zkim/awOdtbgDZz3Lx2o1S3bTityGt9fYa28Z4e9/jUrVL1OPPcwgvHRyfWW4eVrsJxO/Pwc1GtE/UsA6nv7QHNXOmSViFjrUc1hNJNRIAfYiGykp20zbWdmo/PMWBye7gZMKSIQ2jfOJP4ceLTg+xpgMwMtq0k1nJ6mNoWEhIxHEY7FoRA5MY6C+Fg2iFWCahb127DsRSiKemlVN4ZGTqGejZu1sPVl9d00aC9iJ1BJotKOl86SP5/BSdoikgDnftR/XhGbTGe9uukOquZUqHqX6O9rYf5iR2LVPhfPbJXld/Ui0kq6bR7wAKoe4AM+sfKXiFc9DPoCSISek3dotqcZP38nRlA0REp2kKgGkShDmskCpLZxI0/8nE/zS5v10OZHUD98RuC56W7AVFNsdjghozDQ8tPAL4+wpx2I3OLWhISEXCfFNhaHAsJEcOIHEevnLn9X7QESiHMH8Dzoj+BlIde3CfzXIM4WhFepl30epQ4QRA6KyF3Y0Z34bgSx2lW9Z1GpEk1HEKeLSGlUxOmhJHJCt3wrRXV9n/OWDz1RcF5U/b3AEdTvJ983QLZrA1CG+gkR2QGSBUq1tPE4/efmMSRAir0XO9qHE+9jHETEYtE9G2la20+m/wjpvoy+squUjnOLiSb6GOi+oRSORcoh652fap3uRkw1xWaHEzICAy13AX83yt4m4AADLWtINZy4dY2awQycF2AOsAQ/34ixNW/CpLitx4y9DvBtShd+YLqaGVJcFNtYHAqRE0Gsnsv/u5lnGLi4TCOpS8QrK0QiWYbybKsLYoF6nvr+Gb20r14saxAQyhZaxCvqsaLVYseq1Mu2k+1fQqQsC3K32NGtWE4nTjyieSJ67sRaa+HKF/Dd7Yi9BtUU+JsFNdpDASKpFxS2on4CO5LD9xJADrRNRPJauuA07uBJ0h1LiZYNSqJmI767A3Un1m2REhKlD5AoRaregqq6+F47vndYt3ylFPUtMv11+N5M1nBsnu4GTDVDYSVCipiBlgpMbNvEGKXiwOcYaPkzUg1P3ZqGFSHpVhvfrcUIgoWfxoL/5wZ/48FRJ4Clo9SYG2V7SMhVFONYHAqRE0D7WvJESzZhxz3SHfOwIoPk+urJp1spndcIDKLqkutbQKTkqGb7bNyBwTN//Z/NC//7j81DRFAvi/p71U2X4cTT6mZ83PSgOCWdKs5pwcoDC0FPS2lFj/3+P24W/PmonweNAd0Y0TFolDbj5+8TOxoB2Y5lPwC+BxzEyx9FLMSOOETLHlPf+x52vAkAkW5UNgM26Pqh6jJtHS9FSlKldiI+amBzEXGwncXYDvLq9wbN0Cxe/ijtZy/p4S2LGehaMOk3YHp5ZrobMPUUnx1OSAEDLRYmgsRYSQnOYkJ8rWBoWTvdmgBiJOq6p7qJtyXp1mrg/Rgnw+UYwbASEw6tnSuOSWOgLwT/jCRAvogR6ttvvrEhs4PiG4tDIXIiqC9k+xbhtVehXgkAJQ3bxIldcbbx85uAMnXTNWTaB3Mt5/r9/r5SKpdZYkdW46Y7NdPhku21iZWtxs32EEn2k+3I4pTkNZJcIuqfA1mMyDkROYtacxEaMIN+JaprUO9Z1J8PWs9lGyddB7IDdA1irceJgeog0Ixqn8QrV4A0ge5ArFdjRyOonsa/MkE+/MlPZRve/LreOa/ecF3ZcUQkhhNdQf2SFVK/BPXyL3P2yAU98MOJhiG63XluuhtwKxApLjuckAKsyK+hOgd0G+otB45ioi3MAUoxWbVqMUkQ0sD/YfDCNxD7dcAc0q1PAe+ZVcJkurUC+D5w3xil9iKWj/rljK5lHED1XkZIMAHkgQeBz99UW0NmFcU2FodC5Aho6+4foK6Pk3KJV8ekdm1MLKdR3exOsl1d2n6ojPZXurXz/AHipV1UL0RSVWnAx8sdZLCrPNPSeiHRUHX102BF2olVgJcdxI51oFoFVj+W46LeacSJAr2oAroSNIGXO4gVvQORuUAZ6m3ExH68qmb8/MPARazIXqAKkThQDezB2OYI0AF0YWbaJ0BaEOlVJdH38skqL5vN3Oy1EzuyTBeumS+Vc5/n0knVXNpBfaF537qbrXsa2G+981MzX4tQhEsoIQHptp9FrD+5vEbheTswmrWmYMshIIVJ3QlGsASsNwBDqwZvAb5AuvXDJOpevgWtnl7SraXAdxldgBwEOYhlvwYA9Y+NUq4F5FWg24H1I+xfCzQDbTfX4JBZQxGOxaEQORJe5iEgRb5/j6Tm3gugXvYMQi35nnlk+8+SnBNH6CXbZ9Pf3kv53Ndjx08i4tN2vLPsntV22eplA6Tbz6sd6USsrJQtXIj6ObpPrJVo6X/hJPpUIiqRVESQdfjeXkT6ESkHjiESUSwl338KJ3UJWClYP0SkBDSB+vfgJPeBzAH6gcUYAfHKdEZ9HzgCVIO4oDawGZEm7NgSYJvAIxu+9fULl55+qnMyLp+IJCivXU957eXfNl3+0F7d+32HtuY1k3GOW8Rz092AkJBRSbfVAu9BdUDNRDEvRvNV+Cu0aoQjTyGyaNi2twBfJd36U0AFJuVrLfBG4NMk6nTyOzBNqP4FIquAi1y9ZH082LbysgBpKBmhkgxmXO02H9kKeGbclTgiGZA7UG3EsrqmqishIdNNKESORLRsO74bwc+j/ee/gztQg/qDCNWAh1hKSZ2wuLyTTEcdsYo8yvM40axIxNWS+iTRhItlC6o26mURZwCx21F/ENiE2BaR0oiI5DXbI8Qrd4mfX4UV7QZrESLPIdbjpC89S7xG8bM9DLYf0NIFMYEc6lo4iU2gFhB4XOvFoAeKiseV+7sR2A3qcHlWfPlHJApgOc7c0uV3HG7f9uLTZXcur49UlC8WkdRkXVKJJe+Rh34MzWUO6K5vOnRdXEok3kN2oIbS6tP0dUx7jvAReHa6G3CrKLbZ76wl3VaOiVm7FngH0I1IivzATnzfUsseRKw6TPrVAREZniQBkLPB/kKiwL8VfP+Z4O8R4BLp1jJMOtefBn6eRN2lSezVrcV3D2BFmhBquFqIXAYsR7WLQg9Zsc6h+hKIg8gq1O0A7gaMoCliYUXuLKjnHGacrQvqOTel/QmZURTbWBwKkSMg8aqHMUtArnrZHxBJ3om6e3Ezjfj5ciS5TRI1jYik1c93osSwrKTYMbOkUdHQrt2n0jLn/nbyvf14OR/VOsRajZO0sRPd2nnmKCWDOeKVKvFyC7EeQawXjbaQGnx3Dpa9DzueRiwbKzJIas4AIjEzw+UivptF7LuRa7LpALot6M2Q3eY6YDuQBHzQY5gZdBcm6PjK1OLFD3fu3Pv85te+PRuJRC5W3ne3W7JsSW+0piq78H3vclKLGh+66Wsbja/h4Z/owNhpVeF7J3Xb1yfmLn5rGUoTOQsQE1UgpBj4EPBe4DSwDJGkqr8LL/cAAN5Vr1JUxX4Jy+lFrAVAnYikEKt0AuepC/52Af9csP04Rb88q5/Gzz2OFVlWICz2AmWotqBeB9iDiAyFMssivBFkLyLzwe5CvVNcEcR7MWPrKmAvcD/GpADMOBIGeA+ZIMU3FhdXa28V6m9D9TBwErFLyfd34WZLgFNYkUNEo1FVjqLeeZJzS+hpnqut+zv9S3t3aM/JI0QrTkrtXS1AHCs+QCRVBwwyePElfPcY+DHS3ZX0nWmi++UyvbQ7phdefNHvO6uqXkohoaqqfeeyZHuS5AfS4udVnLgjYmUROYnltIB4oPuCNIbDeQQTfmInZpAD5GHgFMZJ5yxKF3AHZjKRE5H9C97x4+vu+PCvZ/18vrXrhV13nP3Svz7wyp//VfyZux69s+2vPvW0uvlXbvbyikh18LGw7PmBNvV2Y5/1zk/NjmWowA7nRj4ht5wNQBMijxkBUl1yfTWjllZvLV52I256EW46r767SZWYqo4uCKq6qG7H2FMPz161FPg06db7J6Ev00PJfB/4VdD9l7epdqLai/otoHeBvhJsz4EOOQmalRmx+hD7EtCKMSPKAg9jBOxBYHfB2U6QnJud4h6FzBSKcCwONZEj8zjobpQmlEuIdQb1fdQfwMskpW5VFaLlqr4r+T7VmhUpVDtxSmyEOGJVgJ5H3ThoBnHaiZbZDJyfQ7SiTfO5PUQjZaQHcpQvchFcPNcnXhXDzXTjxLfiZeL4OQvL6Qtmy576ro84d4plL8HPb1EvFwPpxbK6xYrtBLpA6xBZG/RjaHA7B2Qw2oXHULYGA+NekCWY0CAXgbQ7mH7RjkZjluChbMekdrw/UZncUZ5reTL/N7+bcd7+S1ulem69OJHRPBavB4/+rjmTUM9kMwtC+xiE4ltCmfGkWxuBVpAU0ImZEL4B41SnDNk9qrcd9TdMsNYKvNwd+O4xrGgldmQTyFxEjKComg9C1iwBoiiNI0Q+toAPorqBwQtvIDn3ws12dZqoxXdfD3ICkVbUTyEyD2NTCuqXG42QdmGckfqA+ajfA/SCtQHLTqEa2Ir6YDSQAdqB8dieObakIVNOMY7FoRA5MhHgIVAE/4zaiTheJo769Xi5Mu0+8TIXXmmjtsnTeKlg2UdFLAc/5+IkEqh3HBUHkYVorgp8H9WEdrxSy2B7FCfeSdWiCNnes2Q747h5n2RNRMRyxJKoInNQ9zTiZBArhokhqbhpQb1SnGQzaJeIlKhqEjcjSqYKK96BUCKW8yxi3YfIQNCf+cA+IAZSjuh9KB2gD6P+JsR6jCCI7sXvPrXp6Mf+sDKViOZ9z++PxqPdwKZYecrMpt183P3qZx611jy42b7/oQy+G5eKJWMJk62IHcH8+Ay9HRJ8LLzBFlbdNQ90wKTkwefowaPkcg9O9k29TmaNPSQUX5aEWcA3gFQgjLSBVGLeoYevullu1kWcnVh2GrGSqKbx3RjqNWIkm6j5q3VADjvuiIhJWOC7cwEQawdi9WJWJYYE0nmgbSh7EblnhPYtAr7E4IXXkpzrTcUFmGJ+3PzRpaguxSxDX0kPK1ZgZy49oJVAO/gLMDaiSxkKryYiqK8YB5shM500WEN2BTPf2z1kUim2sTgUIkdmyBbORrUfc50WqO8rzft+iPo2Xn4uZw8aY+r6Fc9Qs7ACP9+Fn0tpNnsH2B0SjR0DqwcrulKt6HxZ+npLlTIRWcDgpWfVjpfjxAfI53y8wSzZXtFYSRPZ7vk4iUWoexK1k9pz+qAmayISSZbgZXy14rViSRViV4plrVKxdqL+y+R75iBOM9FSF7EVSIIeAFmDMQTfAmwASYBcAm3ACHNbgIWoVte/9glqljedzJ67UCWWxOKpmA/MnfeqNRfsFYtaAMH1LvitpyOaW7VKRFR97wBirQLyBS+AH/xNI1LNtWGJAiSBbXlBO4ytlmWPZyPpY+LgOZi4dx5mxu8XlElx47mCfWDrDR5bfIhAkeVrnQV8HCNIBi+UvgTiIXLVmC12ZClXQvUEU7OrXzU12rLD+O5J8FMoMUwQ7AyQQ7UOvDWI9IO8gFh5YA0itaC1KJswIWzaQE8ElUbAXw88xUDLnwLfI9VQHFq3/nMO14bkyRf8ryDLzH/aD1xEpA/1v4f6pYh1Fos21FOgBKTMrD5RMcLZQnvIkIlThGNxKESOiCRAa4DFiPWCiKxQj2/Sd/ptzJn/BNneM8x9KIvIBVSz+DlUvYjY8UqgmwtHzyO5GNWNT6C6BVgilcsviETnDslYmqx7lO5X+sj1WWR7X0TEp7RB8fIvA3NBE6o4ZDovkutOke8b1NKmbokkLER2AQ5oA763X9TPqPp3kE+fJVW/DLEOAkOZFBYbbYZUY7QMx4CLoLXAYRBj76OaxR0YjMTlsflves1TZ//xq48CVDVUXZzzwLKWyMqF/VJZcYRIJIHjRK10ekDPnfmmLFj4VrqOrgFyVN7RhhWbzxX2IfYd4B8HCr0Xr1zpSHK+LAgUI2c3nwFtxLJG0WxIO+DLI+9opW7Rav3B326TDe+6U2KpaxyL/B9+YRt97Y+MUMlE2Gu981OzJ/ByyO3ISxjN4B9gvLDXgoLqCTMBZJ0RKGVgvBVTERFUUwhvYEQ7eL8frC6gAbQO9QB6wd5s4tPqKuB51C8BHb50/mrzka8zeOG7wL/c1jaAfacFrM8o3A9+C+p3od4AqhcxyoNBsex6yJZhRY4hVgKkGXE2ggziuw8h1maMo+IPwKpCxsxI03JL+hUSMk3MPCGy55VGnMT7sJw5GI2Souri57tBK1H1US+LSQGWArmEHZkLuMHHQ+RBVHYiVgtOZAOwQtv2J3FSSymbX8nAxRyDFzOof4JMVzV+boNULNsjqbrVgMP8Vb3qZl0SVc+S7RXQNPn+E9hVJ1W1BnVVPc/h4KYL1M+dj2U5xEpFVS3J9ti46R0kal36zmfovjSfZJmv6d4cR/5DNJncY614lU9Fg4v6beajDr7bjZ918dL7kJLHEf8gPq1YVjPQh4lgXg00oHoa1QQi54M+O0AUrBPgV6aqy+LV86uectO5qkgydiFSGrMjpQmfZKqU8rm9ROKWiFQQK1uMN+gBNsgZsaIXUW3G2AG4YGUw9kTXCpCqnUC7okquT8y90kFggNLyfizrKL5vVCquq7ieyGt/KSexVBMiqwE03Vule76zRx7+iSeurlrPkKroY7D7KJ67HPPD6YG0U1LSDeIb/c7/Y+/Ng+y4svPO37k38+31ai8U1sJKcAEJkARIEFxAstndbLY0lmwpokfqsDTjkRweh7YJ/+GxNbJlTYzlUYykDkluWZLlGY1iLGk8WloWu9nNJokdIEACIBZi3wpLofbl7Zl5z/xxXwEFoACySYIkSHwRFQ94ubx8mflunnvO931HHCA4F/jkg3GgkCQvf0R34x2DO42H85lHtucMANVBd92S5aDLgQGUY0xn798LGl8AbmajNYjI0uve840NlH5gLyJfvMXedyHy48CPA/+WyqXfBf49ubkfie/sR4aps52q+jtE46vxY9785h8ghzF2BfB9sA8D44hZBvJ3wPOoDoHci02/CpLzy+2XQE/j/Xk9VGNEhvHtE9N4dftdfNpQ6jdAkcLCT12y4E4biz87QeTEyRD4JeBfgQxytWMDaLIV9Knm/04x80ePnkB1OdfzEIR14GJ1+hql878umdYvkmrdg9j7EPMuYDSuTgA52pbvI0g30DiNCS9LrneNoLsU2kjqY7h4lCDrgKdBJ4lKReLaDuYuUqLaECkbEFe+wMjht7VlQbuoa6ExuVfaly3WWvUyYbqhlclIhvhc5wAAIABJREFUo9jZ9q4QKos0aVRxyUWtjQSS7XpYjGnRwoKXgTloshM1G8Ftx2ldk1oZBAkyvbh4L5q8gEltR+xGX57Siwi9BJkGcYXsAw/kg9TfZFwjXlVY0nPZ5lIWp2iQQlJBDxqViG1Zii1lKI7r5NkqkAi6DF9admDPYWwOVQFQTQaIa8cQY8RmHgIO4EU+Azq4b9qr7SzQx/wFPui0me0E6Ujalj8tYg4QZnyv3ybMD/+zlXCtvZGqO0xjIpA1z34ZQL/zR2NAQL7tkCy4P9GCPtrs5nMr/N17LP/M4U7j4XwuUB18Avh7N1naC9qLmEnUbWpWTvJ4Y+wCXojjoe44XmA3EzU8T7oOZgGzYwrv5vCFmyz3+xEbg44CHfhJ468B/5zKpf8A/Ba5uZ+8T+LU2S8C/6eIzNOwMEBU3q8uhsn+iNJwg45lNcl3XkLkaUX2iAktPjNrQd5CNY8xq0AyeOcLnxXW5AzQ3pwAdyL2KLAez7F0eAX3XXzSKPXPxV+3x4B1+G5FRUrn/4Ig+8/JdJ7+RI9vBu60sfizEUSWLz6FCX8OdfMw4UXQLC6ebvFXRJOrJRxNrufbLQdeAWkq6XQuUAYZAekTI89rtnszpf48jcmHsJkBWhZlRcxigQc1Km9C440E2YMgB68oo1UfFejQTFc/Qlp8FuBMkyM5jkk6ybbcQ77te0SxpTS4l44FFWpjrbQuPgd0gqtL58IYFz1sJDhEeTig0FkBxnX0iCOpb0RshZZF+7CpewT5AiIZVPEZV22AmS8mPYWLYpLGEBhF9QzqKqg7isjKJu+nmZmlnt/w5GqbTV/uWjn31bZVC1qku3NC8hmnhw5OycPB4zj3NpV6L11L56mqQ2NHWNiFSWWa59CBrAb2q2qok6dfQWwOMKirqrqtpnXJS83zX5Bi31adPPsU3sx4O81BWvK9oeS6NgAjpFtXz3Lld3NFTak10EPURxc1S/UeueK7FDojs/7vb9QkGufynvcinOwzK35s13us89mCCHKH8XA+J/iHeF/Xm0Ok6CeD10E1wdvPlMCA2IOgddAI1TLqQnwAaREG8YKQHD6z2Yq3qhlCZC23toIbR+yTaLwHH0ROIw/8T8DPUb74O8Afkp935H1+748OU2fTwP/WPBYAREyvBtkswwemSJJROpemJdedRuRRX6UwbYgsB3kbMS+iuh/0DP55+dTVnbuLoC8AZ0HONTOQy5oLp8VIv0x18G/J9ox8DN/2Lmai1B8CP4ZPLq2bZY1JvLfz96mNbCTT2f+xHt9suAPH4js7iKxc6gJ+A5Gfxob7wPQCw/jBs4BX253AxQ7YjM9i9czYQxXYhdg00ACWefWyLPEBGGUACfOrtW3lOSBEkzrOHQUnoH3gQiBBgiWI7Ef1HVSH8VyhzSLytFfwqQIDYmScVMtGgtxW5rYnqFuEJueJylOoi8AdwoTrSBXPkDQixNapj48QZkq0dEC9ntA9p5W4Vmf81GaZ93hGgsy13D8R30XBmU5c4zxiM9hwHDF1EIjqJZzNQ9yByAl89wtQHVDVQSz9C7/5m7EROpLDO+pmwXxruhcKqZYsI4f3EKRqtBUO6Pjpc9iwTOdDD4pGWUg6uSpK2YDSAI5yfm9WXRIk298SaWtV+/TGl9zY2e8SFLOIgKKUxreQzgWEqWZWRGLSreNgTmlS6ad8cT6ZrqqITAItSJDniv8lAKdAH21e/6un4tmvGyQoalzfqqXzkwTZFuLqGm5eBvz8lbK580oon3lUB38EXx7+YBCx+GCw9ZoqiyqQvIWYm/WNbm5vDmCCx5vb7MFFraArZlmx5F9tHpILXCkPX/m8EG9N9EuUL/4V8L+Tn/fxTNKmzt4D/GfgkeuWjCH2bSkuLmhUKUlx4TpgFBdvwaQeFB9ULwddhiZbgKfAlICrLVs12erPpVxApA+fJNjkxUjT6yiILEP1t6kM/CNyvY3b+4XvAoDaSCua/CTw83he8TVLQd5BbB0TLEPM9P36fWojz5DpHOATxJ04Ft+ZQWR10AD/CMyvAUeA8zO8EXuvW3sRYvairjkzNCXQXV48wzLEpEBnBmGXmwHfFOBQ3sZz05/3i+0wVpaB7UP1ADY3QVwaR5MRVDagDjC7m4Fc6kpu2g8u3XgldFk89zIL5gE0MYS5BwA0aWwCNxexkYS5RWrTe4lr95DNzGVB+zvEDSVpRFJYsFLHT3Yj5rCqlmdtUSj2AaCCuoOICX03HJchyE6iyeNo9CrOdanYE5iwBxddwtW+impr2FY4COrMw09EpAtGwmygYu7DhimZ/+T3xaba3OS5YWrD88WGLcTR9J2/G99mESAtwhPaOmeAiaGjVKobtVIl2bb5e3bpwufgYghMUujZT25OQqE9ktZFNR1854J0rTomYf4RTWoHULcGr3ycQt02da4KURoxZTHhZv9RV8QFM6dxMSZMiKtzgV7J9UCuBx0+OAy0IOYwYcsQcbmIi6czB39zk7vus407rITyOcCP4DnM10PxWcJmz2aavoVMNV//O26VOXTxpqZVzSaQFMgSoPe6638IsVd5zCJrMaGCbsdFS4C5V5cFw8ByRO5D7TgkVbzyexqbuToe/H1gCZWBQ4j5C+DvyPZcz/n88Jg6K8B/D3yDaYPwq4gQc1SMXU+uZw+qKiJFoIi1i/0qOl2tqnLF8kj9c8V3tDmBxuuRYFSTeFCCcDoQWYW6nUAX/toNo3oe30KyRmXgZ8n13hkK9jsFtZEiPrh/BF+iXgvch1iDzZwhqR0G7geOI8ElTPgQIrPZx60Avktt5AUynZ8sBeEOG4vlilfqnYLq4Grgm0xzfFSdb3p/HVTLaLIX1RBNVjK7/QKI3YHI9XwhgJ0gXYgsR/UCYBHpbc5Mr1EoqroyyDZB21HXg9jjiORBSohMW89k8eWiBNWqF/dICglaQbNoXMc51EUJru6wmcsSZNYCc1V1gsbkAaLSJOpa0ORpdfEOSpeeAJA5j36bVLFDpjMHMxFX3gLGwARoMh+xpxFZj7r9eMHNS5rUd6EaE2SGiaaWA+2UB8rACnLzTmLMMsRu9p13ZLmI7EXMOly8T+P6iBgbKiqCTOJ7i+cRSYGMgpmnSS3GJVPRN//FCunt7jePP2+kpX0xqeIxyXY9LGH2Kq9R9ThwCZiHiy+oJlkaE3U0caS7HhWSC5pEg2jyNDb9XbFh2m+mGVw0n6icQehCgkMEuQyuMUDSuMbOQ4cPDiNmmFTxsmlbtlEbpWM6eXaYpJYFHjUrfuwO+1F8OKzpbNHvvXjrxNTN0PP/bHpLVe/c7iWfRlQH2/E8xOnAcBIfLE4AJbI9s9+f1cH7gUM33a+6k7hoATN4xU3s8hNM6UZkHiaMEZl9vFQtock+NHkKCaY9Zmcsj68Gjf7ZMoHPiA4h5jRiZj7A3wH+JfDyRxVMuhN/2YEJ/q20LnuWMLcUJJjBMTve9E8RjB1U6KExcYyw0IGiiFkjImnQt/AByUH8NVgBWAjeQRsP0eRh+25B1UOSKUaITFe4znA1aAavsn8Abzf2c+R6f/ej+J6fO9RGDJ4q8NCMv9Xc2AP+Wvh7cBiRm3d1uhbvAM+R6fxERGF34lh852Qiq4MtwK/iU9RXjdBmCyAB0L24+KnZl13B0E0CSEBbQIdREnx206LswVs7XAMRcxgxX5rx1kwV5Gb8gHSZaUGPuq0gz/llWsLYR1FTQ+slsakubApE3m5uv01EjIYtoPoEaJ5o6jsidp6GhZdpTL2k5QEjNj2B2FOILMW5RHEXcNEIJpwUZR3qXsOEiroOXLITcD7QszsJi3mS2gmBjAb5QaLqGGIXAueoDYZke/aB3AfSLt6nbr4v1dhOCbJr0Pg1QVKI+QIib16xDfLfvSY2A9TVPvnYFGGwUBY8qhJkFojItYR+1RN4IvozeF7qIZRJbDZLUg1pTMVqTJorogHN4Af0MdA648cXIHYn+TntYM6S1CEqGS88QBSUiX6QcELal7UCaFTehIhIcWGkleFvmkVf+FwFkB53Hg/nM41szxjwXz7Als/fdIlqhIsSbgwgAR73CU6to+xEg/tumg0RKXj1svlbRH74xs8xCyEZbwahZ/BCmwpi3gT5Iqq1prBtOkD+K+Aw1cF/A/zVhwkm3Ym/3Aj8KS5eoGNHwVci9mi2s0aqmEiqEIEuwCUT1EYqihyWIJXDxZ2eKyo7MKmFyJW+16uar3VgDKEVNW+pJkZEnheRgHS+FTgEEgAPgB7DZzCns7Fr8PSep4DfpjJwiFzv56qRwQ+M2kgGH3g/jD9/D+MDxhurbTOhGuOTPVdvXv/P9xtAgg9OX2lmJCd+oOP+SHDnjcWf/iCyOij4Msg3uJ5vczOo7iKJErxX4mP4ln5nm/+eEYCaI/gS8/U7GMLfxNdjtii/CjLvFkezEmS688S0Kvyh6Q9CZLrzQQbfe7ULPyg94veNQV0DoY4wjBKDPguuH2OfR93roCG10ToZKWHsy6jeR1Q+R2OiTlxLa+vSnWJsByAQVCB6BHVjODeJJJcFqWOs78Mb1Sq4RkS2M8SkB7DpBYiMIeEqAYfqXmAS4SCQBj2FmBq+hLYDP+Dubr6W8HyobRj7ZbPmx09ImLnVzDELNFD3hlc7OhE0ULGrgW6MHRORxQoXQVRUBW+kDqWL0wbxgliLSEHEopnOdVSHX8NFHZokD0llME+qcLSZnZ6JkuS6fvQWx3YXd/Fpx01V1DpxahtokVRxE2GugAT3iMj1vOA0SDgjq3bdThRgG7ACkZfw4+v6a9YRTLNd6lfwgpOzwL3ABnwLwZMolaal0PQk/yF80HyAysC/Av1bcnPfq+HAFbgTfxkC/xr4n7lizg5AgIvWUhk6Qaq4iKh0VBtTF6lNpEjlDUGug6C9V6btjcRONkWG4/ixeHpCmQIZA3lK0ctAAwn7ERkAAkS+OuMEvIC6mSV8mt/zNXxQffn9fq/PBWoj7fhAcTpYXIO3hHt/sYnqJJqcQpMJNHkAMYewmRuFZj8Y1gJ/R23ky2Q6y++59uccn+ogUkcPLSHT+W9EzNcB1Pd2PQpaF7Gz53xVz6DJSoxta/7/ItCOyDxUG6jb0RwbnE9OzYoQZvSnvSXkTabbiM2OaauN6oz39gJ+G3WtIGeARXilOMBIcwZ1AAnm42pzBBnWsKWFaGocpKFOJ6mV99OoxQyeqGhLt6gmQxLmHSb1rhgLmc652pgcp3o5q6nWCJttE2MGwezCxS1oEqC8hNhvKeq0OjwHF49LuvgjqNuGmIVypTSdeN9JCBCzHuwhf4pcK8gJxCTN85YDbaDUwDnEHAUXA69JkG6dcZ32gNb8OZZxRNoReQTVZzWa+jZJo4jgUMq45AgaHQUiVbWewmBeVo3zxJVXJFXMkW6LaUxcvZ5JraouUsKWs8SVlQjL+e6f7dSW7ITMWSR0qVdLumQSFxVBvie9j0+99/X+bOJOs5W4i+tQHbTAs7Mt0tKlPVq60E6Y75PG5HSZWjXIHidVHCAsWGxqHsh8CTIrZs1CqpZR3YfITGrIOq4PJMX0IaYPTTaDTs7IVu7E9+l+CB+g5fDCxX34LFMB1UnQbwI/S2Xg28Afk+st3fJ7l86vkDlr/wB1XWiyGxc3cFFC0kCjihCXa4gJpTp8kkyHSFisYIICEoSI2UBc2UKYXwqgUMFFGTFBHXhyRpXrLGJCVE8LFBET4xMAMxW/iuoR0EGuFW9OAL8PfINc753aZ/zDozYi+Pa7M7OLD3Nz79KbQ90ZkvpFL2xlLtACZgoTnkCCDxtATuNJ4FvURl4i0/mxmuffaWPxpzKI1NFDaeCfAb9MY+qIpoo1EcmAHqU24o2mTXiQsDCJ2HXAEDAgaAnVIjM9ImVGllAkhdiZJe7N133yGJ4T0cKNir7ZcJIb22ddj348J+jquRbJcpWL+gCaDCBmPyao4OIn8QHlNpAE9BywSNVNosklGqUhkqgLY4cY7e+hHreQzpQJi0IwWqaYj4mmejQsNhC5hDGLIGgnqdcxwSU0lQNBRaZw8WII9ktS71HnHuLinhN03DNOtvN1X64OBhEpoFTRKIMEnrvooiEkGQOyiJ2L8Diqg4gZARIfHGoPaB+qZxFjEbMUaEP1AGCbAeQk0Nm0BEqhGqPJQW+zIROoM4jtwehlyHbgIguIz4xqgs2lEamBPi1BBsUcJMiO4eJ+aqPzQOfSmOxS1UsisgsXGxpRN5MjizWOBiQI7yepb8JFG4CffR/X+7MJAe4wReBd3IC1zML71rh2WUffXQp0gL4DV7iOQlxdQVxd0UyOReTn7STMXduRRjVB3XbQVmA1avoRmW6zaPHVnR3c4EOpZUS+BPpGU8CzoRmc7gZZB9p0UZAnUT0JbgfoM8AxkBeBF4FfoTLwG8Dvk+u9sbQ4de7rwE+JmGcRAwRgm9V6l2ySdPEZnTq/haT+NMhmgswziH1VMu0Patyo4Wp/Q5D7MvCOumiQeCJHVC5pqr2KTe0QE0SIbECCCsgCxIVI0LQxkm34asslfAVlJT6DVsRXzPqB3wb+kFzv52tyWhuxwD1cDRSnA8fZhGLvDT+58KbgrnEadRuBxYjdhAlDbwp/xVrpo8Tz+Fji6G3Y9+y4A8fiT10QqaOHngP+Pb4EAq6xhqS+SU0QEE1d5Ta4aBX1sQifyQoI8yVM+MysO7057gHO4YM2mDbAft+Q8vW9bGfB9OA3g+hgDCSea+ltIHpRV/G8GnkFkS+DrSByr6rbTBJ9Bxel0DgkyGQ1zI9Rn4Aw3UH30sPkukTy3QZ1MagBO040Kdg0BHmDScWouyzQgdhxIMRma6gbw2bTxOU5IuYSc9cquZ5AxE547pM+7R88rh1Jq/eTMymQEsb4bK1zp0Cn8A+UxxHpRxlCpAGyE6QHz38awvenLQKCMgDO0cz6alQeJGkMEuaeFzGTKiZBNYdICpP5ErCfpN4AzWNSihgRY+8HdqO6FTRN69I1wBLQIWkpPKiqjsrEIX3lP3Zo34pYc4Xu+oFTiTZO9Qf7jk6FfT1VHrhvuYSp75sHfvrmgoTPAe40Hs5d3IAbOsqoqurA7gF8pq8Kcu9Nt8727JDCvGdmbFwFfRt1PVwVEjaafzNhUJ0LbisQ4OIGviVrFswujHkWdPOMok7FvzSFDqo1cEOgX8SPE/fM2Hcn8Ouo/mPKF/8W+F3y845TOl9A3b/Al6933PBdVC/7cdB/kD9Kq0iwCxP0oe5dCVIp1LYDGXVxh071X6ZRLqsEJZPubAfTwGe5RlF33k9Wr3g/HgRZCFxkZtlaBFR3AH8N/AW53pn9uD+b8PzFVVwbMD7Ee/mbvhdUh3H1Q6ibj6/QFf0CGcKE2wCLCT+qrOOt8LFHdHfaWPypCSJ19FAv8Bt4O4RrEU3d7GYJm1v3EJV6VMw5wsIlMMsonRsHBJsZJtNhkKAbX1ruFu+hhqqrgJ4QsYuairzreZCjeAshHyBdA9mKyHRWcxPek/IxPPdyZguxjmaQ1ZixXSuaHMVbD0xbEPSB7r7SN1oQRIxg1iu6GTF92PxJNLaCWaJB4zTLnq9IYwKSegY0J0FuVCFB6pbaCKRaAY6iSYuYsIgJ64g8oaoDApcI8w/RKB3FpBCxYxjbA+owVlANmgP9PYicxNeu5yBSBrH4bO1qRF5p/s7mAHtQreMJ0A6ko3nOexCZwj9A1jezka5JRu8FjbCZLJXBMYLsRZAMEvThqodIqBGXlwIrCfK7ENPAd9tQdckuTPicoAHQtON0deLKiAa5TpJ6vw5fqBDV7+XEwbkk7rBWG/dLIfOq6WrNgFZIkjo2+f2b3F+fC/hb7c6a/d7FDfgG3p5q2rNwgY4emYuLfqq5PIXPqNx/w5bp9k20LLw6xqpuQp1t0n6aD2/GwAwgcm0LU5+lXA0sRvUw6PT+Y2A/qlVEngG3GTXP+Mnplc8ZBHcINA/sAS43M6X3MW1crnoCtA0vqPx5She+hVcf/LC6ZBB47JpbV3U36CJgUqujm7RWWqxJ5tuSbasLulD8YGVBO5quG2MidgG5eWW46ITwghi7FpIymElUc2i0AJMaR3ijmSZ6BkG49vn5d8BvIub1m6rn73R4O501+CrddMB4PzN1Bh8G6i6Q1AbxAWgnNyR0zBZs+umP2QLnY43o7sSx+FMRROrooY34AbD1vda99Y7cIhqlhKT+Fkn9ywAk9WU0rqmExJqbu4mw8CC1kQFM0EK6/V18gDMz3V7CC1zuB4yfTdOC/+Gcx9v2nMVnMQv4EXcQH0D2A9Mln/vw6rzFeF5QHZE5KkEV13gTF19C42GSRkqyXetRHQB3Hk0qKG/hog6QBDGniMuJRmVHfeKs6Xn4SzQmq6qun6SWJ6qoJrFgAqtRtUJ1TCTTncHYAiaogkrzOCGpH1ebzgnsJ8w71JURE2Eyk7hEtTTQRVKbkta+Pd4zUxeCHAWj+GA4g8+wvtIUBMVMq6RVLdDdNDsW75OmBqWMH2wiNJkCmdMcDPai2oaLu8nPaQXqemUWawLiqfuBUZAj2PRKjOnkikpPdwAlTeqjVIdGUVfEd6t5VOOBkvYf7+f8qV5SmXEatU5y+ZHsT/z4Nulo62Xswji16l6qlRLVyl99oPvtswLhjjO4vYvrkO2ZwldSDlx5r/xaG54n2QdYGlMF0sWr25hgH20rChLmZwaQ+4Anmq1dVzdpN8eBfkQ6QBtN6kkN3B6u7eAybfQ/0ty+5L1wAXgG3BuofRQBVI9B0gI811y+GeSr+BLxVQ6amDE0ueo7KfLfqBIRV97S8uXLjBy9T41NSc/D70imrRsxVWAOQbZAcXHVDQ69Gf357z0QfvWFc/beF0YJsktRd0TjmgXWCRxAbCI2eJSWvj3NgPYcIKBpkEHEnvXfQx5AxHElO6UTwPeA3yDb89mqZNRG5nJjOfp2lIw91A2S1Ea4mu29HvuwqZU34etOovEAYkbBPMCNgrEPg483LXgHjsWfiiASryr8cAHkFbgl2HAJNv02SX02XmNA5dJGTHgeF82n7Z5FitYEKYG+iS/7zMdn1pY3FXgPgDyD6gh+xnyPn10DPitWxpeM3gFG8KXbhTM+sxdoB3MGkS8Am7QyGpaP7JpyhcW22NcTNdNo3wGXw5tqp9RFBo1L2JRFSbQ+FWucFGRyqORGX/lrepbMEVd7AsyARpVRkvE6tXEl1aJkWtt14nSF9hUNLh8KaF+UEORiTPhfSaovImYbNmzVysQopZEOupc0xAYb3Ojxlxk5sp7Wvq1SXBShSYAEdURiPIcxje+jZkBT+NliBGz3GUSxoBfxZPtx0BqKIBigx3OkyAOXUFfHxQ7XWEVc3U9ceQZICFp2Yex8guwpCQvHVB3NchdgNmOC1mZ2V0APElWMumgVEBLXzzPUv0MP7F3LUy8sl0Ur+sWmF2vceE1qo/cTZDqBU+RbHWEaGrVXzNp/knzIm+7Oxx02+72L94ZZ+bVxd/TPfgLP/baoW6Sq58SmhijMc2S61l2T9VA9hB/HBF9anr4vVvg/HQfOo+4s6AKuCSDZhW8dewqxFaBwVdx8Bc+C246aAJIHuGrZcshXLWQTaCd+nNlwtdpjB9DkON4TMECTnWjytOS60Ex7hfrETtIFAS6AzgHe1rgyRq2MROMSPr7qvMRJqKNHatK7dgoxP6TDh/ZLYf5eTRcjEfMCyEFs2IWvboXAKKorQLdjbADSglDCJxLKwB8Cv0W259yHvU6fKLzgZTFXs4vTr9c37bh9cMk7mlSzxNUpTHBQbHocxIE+CHIMm2pF7Jqb70DPAA/5Rh+ujMoWxC7hegu5OwV32Fj8aQkiP/oZTtjSTdKYAp19VuJNd2H8mGIzeyj2PT0L/SHDTEsGkU5uJAdn8MTqVuBpsFVgFeg+cAvwWbV5/lVLIOeAMulisOsXf7OnfPbc4tW//qtbFv+3Px6DqhcGmQwuUdSlQAsk0YBOXZzQA6+ny0dO5TMt6e59/+5bWnxwxfm5X3l0a8s9c/uYf98AqZQl1xljQiNhvqS1caEyGBGVnJYv9fX/2jeGun7mZwp7/+n/cmjtn/+JSfd0p3XzHz9Bz9JT0rM00rhxUHI9hlz335AuPowYQcxJ/IlZAwwiMgLEnvPEgub5KQOVplouhTc83gmkEZNCCLyHlwqwEjGnUV1DXD2vnrg/rOWhKjY4ItmeyzQmK8TlPaRaJjTV2oYm41wRSrpVQEHEpIC9IJFmOqcYPjxJVFkAMkU+m5Iv/OgIJhUh0olJ7aGl2zJ2sgqEtK84KoX5rYiIjp/8IH58d3EXdwTMyq9td0f/7F8Dv4ZXFB+k4/4OseG1Zsqq7+AnvtOD4FN4Kk+TR6kVfIXlQfxvfKZnn7e0EQNIBPpd0DUzRDwzPyiBZD3XZHjEgFmBSOBLzK4TX/Hwny3SC7YVTWqqGnox0PSWNkd+boJNrwd9G1xGXZImrqxViQdoa62YnhcmJD+3jyDVA+4k2EVoPEenzq6mknmVTPtmMh3jYsJFwDyEMtCt5w5sItsaSU9fFmMVF7+LBF9B5BfIdv/OD341PmF4wctKrg0WH+ZmjThuF3x2+y3/PCQProyLU6hLiKvDBPlnm/zSOiIJSL2pHbjJ/pKZPN086NNoshkJbh1Eqg6i7gygiHnkit3etfhF4H/4AN/yc4NPSxC5/L1X+QEhshATHMRnqG65JmJuZfXzfqDACfwMejEQg3SCmQIZg+QoSBEl5wdRbTPWTGx8+f8bffWZr3Yk9UYedTmUEXCLIHlTxYRo3IbNWq2MhbVdr3YMbN4Xn/5/t8xxU5Wz1ppS+Y232uf90COdWq0e4+DuDIVuNY99xSLWgAiZnjpRyWptIuDUuxei8xcqJ/7JL6T6fuS5dKqjLUKkII997TitXedFTBZrArIdgucjzQV24Xmip/G2FROoPoG6vWiyCjHpGNUPAAAgAElEQVSnMcEKvGWRwysVI/ygtBCflQ3xD4xy8wFTZDrLYMIYFzmSqCzG5sh2nxZjnlDYiTpolIW42kNSfwqb3Uemc6U3Mda/RoIMJngREaP9W48QVTKI2UyuC8l2vKDl8XfJpVaJiCHIvQISku08QabzEK0Ls82g9JBZ8Q+u6bX9ecWdVkK5i/cPs/Jr/6s7+mfbgNOm78UzANSGLfA7qH4d//t9ihtLd81AUw/hJ8rek1VkAaovo/pF/5Bn9ZUtRCIkeNRXbZIaV50yHL7lKzd+jnbgPRSXIzIfNQPAFoQvoKqIiHe0kHfQeLyp4gaxJ4A6YfYBQbYj0u253HEJsaMYVxRJ1mJ4XdItY6ieRghBNkn3wwFiEurjgZYvLhCbqqgYBd2N0qpjFy5x6PX5tHSWpHf5RpLoZZLaQsKWt1H9eSqDb5Lr+Xh6gH9QeNHLY/hq0TPABj6s4OUjgV7no2kOik01sGnFBM9eeVskDWxAE5rtNW80DVd3HJ/guA43CzgVXLQFdDn+GeftmJRRYBwT1hAzkzf8dWojP0Om82Pjud5pY/GnI4g0qQiNBxEziYvfR0ApexE7hSYtzbLKLIbh4Msq70Mgl9Q6brF0znvvgEVginjO4WlwS4ExxOSBC6g8BnIa4RHfrUatuqQQpKX04q6XD2t9Io26ufiBdicmmAuyEBefQezSaMurR4df3uoO/qfXskbkeBAYnJGw0Jab2vXz37RLv7S6o+P+BSPS1WOK9zyUMx1Lux30k86LDlxMM3ixpXLg2OTFQ+dMkEuFD7702P0SmNOo2ycdvQaxig/2hvBZhgj4nucYyiAiw/jMouCzjosR2eq92XQP8GjTU623eS124XlFDVT78NzR9ajuBwSR7yEswKQSMeGImnROUoUcJswSlQYIc1lN6u00pgawwTxgWFItE4S5C4iZg+o8fPniDTDPY4IqNjyGokxcuk8JNnFm32pgSpGS5juqMq8vQyqTIpVKpDFZw9g0XhB1F8InoEG8i48TZuXXru2SkulKqA3/U/zv9N/eZLMNoC83y9TjxNVBxI4hJgvuJZBtvl2gzCxrK+jbiCyB4FHUHYSm84SYjajbNkuZe45XaDf1GdLsqqPu+6ibB3YYMIiM42JPe7LpnRLm16vqIREzAJpDmQNaE2NXkW6rEzfOaabnNcn3CiYwoD3q4uVEpXfEZjaCTpJpf5Z0WxnXOIomk/jGEJZ0uIq588aJG4k7+frrMnd1Fm30i029BKDKr0h16GfIdl/8EJflo0VtJIe3WpoOGtcze4eiTwaqNdRtReSF65bchwkvcLUJx2y4MVZRxbcPnmWZmBv9J1Vj1O0DffqGZT5x0uEzmNfMccZucUwfPe7AsfiTDyJrI3nJdEx7Lfao6jlwQ6irkdQdmqRQTeEa85t2E4CuINVSEzFdqgrR1CZcdOMPJizMI8i+TtLoJi7PkpGUY6TbLpPtnnFTyUG8UKSIb6vX5NqQaq7QBnIYpOxL5dJATKXp7zAJ5FG5hA8Il+EVhwOePyjnUS1rXJqv1ZERTDaQTEveZDtCdfEZxAQCGVTbQY9pXF+rW771sh7f9UC6p/VwYWGXpOpRNUmSbHm8zNjgVFxTbfRvPVI6telQ5CKXXvj6gcq9//KnL9O9wFLoTenlQ+L6L6UotGSXrFr0zKTK90garVoeLEphXgfG+sDQC196QYcRSVCKoPci8g7Qhcgoqg8BIcb2ouY8moziOUKvA4+CtIJGIE/g3JuIBkAPShp0ry93y1uIec6fT/0+Sl6MGQeToAwiJo9Nh0TVYaLSDxHhbYDa770XF12UILMc6CFp7PQG5aYic9Y8qAN7X2W8/0FExihdeJz2jt2Mj6/SiYkTnDjxoo4N7pFly58iyJ9EwvNNBed3P8Sd+9nCbeThiMiLePWwBf5IVX99lnWexfvqhcCwqn4c9h2fb2S6FPh1qkNV/LmfCd92VcxLAKiO4aITSPIoJih5zppziM3NeOpFYPaCvHRlLyIdYDNcqTZpL7DDi/S0irrn/ARUV6G6DZ+lnEB4EdXNQDsu7kKkG2STpApPqbrvgxhUS+KFOyFQRuQsjgTcZTA1CbNt0r48AObgO80UgYhocrWi28VmUkCriFxSE1ichIjERJWS2GC1di88paffjTl1YBmF9kMSpO/RTNcbQvIscSmj8NtSHfopst0zG0l8fKiNtOB9ijc2/9by/qtnHw9UQd1ucBE+k/0IKlvxvPrHEbGIWNT0+yrcFTTwN5b/PuoONQepNMjDiBhvaH9NZ6BpbEdkw7XH4Q7ionlw017bEcgOJLh+f7/6cWYhgds2Ft+ucfiTDyJnGoMDIrII7CLEgrn296Cqp1E3SlyOcFEKm+4SEUgVN6qLpwnOSlQ+ixglzK8SMc+pao2o9G3E5DCBENfB1QOy3SlBcohswvudGcQ+wfX9uFXfaXZamMZqZkXz4osB1bfB7Uc1AldEXUWT6LBGlawOvHtaRvsXElXXsWzDt7XYk+CiLlw8rrVx0cnhSXfwwIgE9ls6cbkYblh/vC1VmDdvx7GJwJpMZXhcokayeHSquiRnze5auUoQBiadDqLS/qP5gb95tdL7D55XtN5mWjJzWLtu0F4YMbbl4FRHyvqsa1S5BFIByYE+gLAXZdLzmEQRykg4DPo4fvAdxtsRPYPqJiDC2GebPplH8cr0VpQGrv4WUEACadpoACzzpX1SqLYg0nxA6c5mT18L2okJnxKx71JccFGrmTeYON9Ftn2I6tCDwL3qWraJTSVo8jzKlEowQDR5gUzLE8x9oJXRUwcReZe0zdPevg+XdDA6NszZM09pvb5J1s3rIVVISapYIT/v1t0wPke4XTFk007r9/A+hueB3SLyLVU9PGOdNrw37Iuqek5u1nbvLm4Pst3foDo0DvwxPojbgsj12RrBpFY0/Ue6Ud0F+jQiR4B3ENsBehhfImxCj+PHDh9Aqm4G0wWyHtiOJmvw1YBlwCJImskEc7CZksmhyWHQEGwaMQ8DxwXzMLijgEHpB92AmAYiqxDZhPI0OIeak4g00CRCTBl4XEzwNoWFaU0aBTCX0GQEY/qEIE1glgBokBuibnfQmoplaeZ+jWv7qEwoc+4/gWvMwVgI8o8DO1H9IyoDXyfXe/sDDd8i8Al84PQsPmj8aOx1bgdUL6HRBfwzPoRp1bQ2M9cywFUBzxN42tQwyBDIRq8r0CdRbeCqV5t6iDmBhBdAF88ycCVIsECdU0HfQpMq3ij/Pm4MsAeBM4itIfbBGWJZvx/4P4A/+JBn4QfG7RiLb+c4/GkIIt932yMRWYLYJaSK3opC48s0y81igquzmHRrH3AezFFEYhEJSLe/eMWAKSzMtvubp5G9x+EPBpFH/O9bt+Pic5pE83XsrHNHdmq0ffcas2jhsfCrP7mNTPErqO7AZioEdpXWS4eIK2clLzmdrCby3I+GE6+9kT/9X/7zuUNbDhVUSYcwKobDMQzi3GTBhsXAWrEiRoT08KaDnR1f/XKuse3to+lWOzdcv7GWCQ6Ynl/+mbe13ohwFaiOOdq1z2cTZR8iBiFGtYJiEBRvpnsGyHlLD02AV5geuMTsQ7WC54Aq6i6hcRX4MlDCJfsRqYB4rhMsQHUKTbajEiNmPSLrMeFbJI1H8JypKTRZQqpNRJOqjvaXiKIGqq2IOYwmrbj4MmKPAP3EZaiNfFGMQRuVvWSLUwTZK4OBtC9A5yz9Ptte/ccMXFqpQyMt0r7iGeDPf+Br+pmF3M4uCY8BJ1T1FICI/Bnw9/ATkmn8BPCXvgoBqjp4uw7mLm6CbPf/RXVoDPgFRJ6/Ybm6/Rgz3ap1EzQzFCL9iL0Xb8szzZ8G1Z0IDzJTgCPSgSJeaa1PNt+rgVkEuqUpglSm6UnGrCXW7/t12NfcywrgLXwFxCFSAgZBz6Na9ybp9OPbzNY93ckcw7e43Uuzs47Y1Pd8cwb5MhCoi/cRTe0DGUKsISxYMfYxMvdsF02sNioFhDyukVbJfFts+hGgFY0B/VngP3zoazATtZEu4FF8oLiWD9oi8JOALzNvAfcw/ti3wjWUh2kMMR1EimxDzRpPgwBgO8qToJvQON/cT3P/bjlaX45Jnbz2Y3UAkeMk9RRxuaESVLDp9SKSmrHaRTDHMXYxSB+zB0qvAr9IpvMTsG26bWPxbRuHPw1B5OIPtJXIGgjG0GQ36Lprl5nNiH0Grx7+KBB/4C1FNmDSZ/TCW5eZPP/DRI0dds1jp4Innn1EUvm3gEFsKkYl0XjqBJcO9FHoOC73rV0tLQv3AGv6f+tPL1OpiSBZRVc14BV1VBXWRsrOcqmubak4zAc2cs4lmYmJsTM//2vpdHtxQc/P/sjxcOJkgcmpCZOxIdl2R/ejbyImS1SuqLEGTB4T1MQEK4HToAtRTuN7jlfwg3oFzHmENm+lIAtQ3QvaDpLyghltqtIBb/HxZFOJtxVsJyIZRFpQ5oO+C+zA+/c8h03tRpMaasqInBQsKuG4zF2VAc1o6fJ3pGVhBmPTiKQQGVXVhVSHFgKoiy9RH5uHmDNk2reQKvYwea4PISPF1j7zP/6nl4GXP/B1/AxD5EPNfrtEZM+M//+Bqs6cvU+3gJvGeW4w7uceIBSRN/DBwTdU9U8+8BHdxQdDtvtb1IYnUO0BRkEtSNM1IvEtT1V3oPoI4DB2iy9Dx6fBjCLiO5eo+w6aFJBgOoBUYDNKiMbruCYjJDl/88nTeGHiXmCw2ZAgh03FoF2gsS+J2uMIX/TWvfo2YnqbXOss6DDGgtpxcMNNW7EJ1biCSk6MdXjP3gbeJSJBk22oCi4qISZCTBs2WwTykN0tJuhARCRVrKu6ANWHxQS7EZmD6lGNKiVclJP8/A9+3msjrVwNGNc1Xxd/8B1+QlC9gCYnwLVztcsReG7tzmYGeuYGo83MzVbgehPxlYi8RRK3om5Wex+FcVQvovFxAOLqE3j1eVMsEy8nji+qzQyKCSsYmwOzhpmtkK+iAvwJ8PtkOvf/4F/+o8FtHItv2zh85waRACLtYB9BkzdBH2u+eRjMzXgPHxQf7jyJLJYFj0d6wX7XdPatten2PRoWjmNTOZAxIYhVdLVosl/n3Nsv6dY2xLxFqmVDadf2LeOXRlegrDPCm06h7IO6koXXGhBaaGQbSU0byUKQifGhKdv3yPIznU/ek860BsK7+6qaJDHFokiqJSVh1p8rjSFpxscJDTWpfQTZooiZh7/JHmZaWS1yGc8neRcxj6A6CliQeU1V5Ha8GnvaeF2BU/hs5uN4w+ImL1XPoO5hMO8iVIDXUHoxwTqfYU42QDIi6eJhoAFa1LGTgRLPE0kNg2SAB0nqW0DvxaTelfz8qjbKLdhUTdJtGwG0uOi7lC4cw8XlD3X97uJWGFbVtbdYPtuQeH3pL8A/RL+AVwHvEJGdqnrsIzrGu3i/yHRtojr4D4Hv4H1d/ftiHegmXGMJUMUEpxCZ5kspPtMRoO5vcUkR9D7UbUZVECmDaUXjx7lBmX3lkVkGOY7IRlS3IhKhTkALIAUwNVDV2liFILMbk+oRMTVUV+Mn+SVUDUm9jk15NaVqGyIWjCUuOTXpCQnSvXhbtpNAF0oIbEDdZnUaizUV1KVx0aCIicA2SKoJJpUVzGIML2PsvcA2NJmHScXYcBmVgYBc73snG2ojabyAZB1eVfw0V2yUPgT8ZHwIz8Xv5r3b8d5qXwDRDZY3qjXgiLrGEPWxNC42IA2yXR3iBa7zm3/vglS5ajRvgPVNukMapGnppz3ANjyv83p0atJ4m7ismHQks9nvRFMpfLAzk7c3nVmcQuwBbCbAplc3ld4zMQV8C3gNeBM4Qaaz9j7OzqcZtxqLb9s4/GkIIpe+9yq3gIgFuwZ12729hLkdhPxbqbffF8QEK1jw+BwqQ7t18rLR7/xeTQsdar74kxdUkjr10k5cNcDYutZGp6R1yVzt37Yr1xdsWP/t3+zf9qVfOhgGZqzeSL5roUM9M/0LGfhe2vOOakCnJsmlRqmupYExmzl+yYQLe/LRyYGSXdCdSxXyAaXxHBAh5gLqFvujM28jpoWkvoqkvk/hHd93OzskYucAeVTb0eRNxKaAAbxq7Sv4bOJFoIrIF8F+G01OAS2ILAeWN8nVDTCTgPUDnozgg9JBVAugEVH9TYwdRswavJ1DsywtmLmPnwSW4OJ+0HWoexMTGFoWX0Bdi4jcR9eDg5rUJvyslzYR85PS9+JdC5/3g9snrDnPtcb7C/ATi+vXGVbVMlAWkc143vHdIPKTQLZnL9XBJ/HUFT8+ixiQjZjUtxGztpkZ9Dxon4Wch/eLfNAL6BBc/AwQoewAeWL2e0zVl5rlANLMVHm190nELgO2e9Nv3gBZhQneJSqtA8qaao3EBClU8hgZwDUK+O5eeVQzaJRHzX4xtoNUaw0fPA7hs5YG1Tzog6qKbvq/0zz21ZKm21RUHtH6xLc0O6coqMPFfWBjMfY06kKUowgxYiclMF8BngcepDLwNXK9l658tdqIwWfG1jX/HsMHjtPl1ah5POfxiYEPpqR28RHQlVx1EtkE5iE8j70fZC4+iDBNo/hleMeMAsowxhTxsUCIiwv4LmwZfKA1hphDiF2F57uuAXuJybPjoPc1r9cmMh0zs4X3ge5BeeQ6fcH9wNtN8eW0G8hswphmo7SkDRetQ90mgty1z3UJdmHcKC4q4ANJgApi9mOzFpteI9eLazzeAP4j8JdkOivvcWY/Gdyesfi2jcOfhiDyV4A/xZcY5uB/TH34AGMRfmYxu4XPNERSiJ3thvmo4C17rhqLJ/iZ7HTwdhbP/VnMbF5WVw5TiprrXiHxZKCPPHOQbGtFo3KGymBAmJ+Pi86S6XyU8qVTOnG6omHYd/m/bt1/8rf+/LFKnOyebPz/7L15lF3Xdd752+cO776pplcTCvMMgiRIghMIkiAlURRFeYgly1as9qTYjpN46hXbnbbTvTqO0/Gyu5047URJuiNPcdvxEMsyJYqkRIogBoIACGKep0IVqlBzvao33nvP7j/OAwGQkC2pSYmQ6luLi6i679167w777rP3t78v/VDqAvUmgd0KuzPOblAB68FgthjhiXhz47PZ4nSt3Dh0PvS78oHpLNRp624SFBP87EuY0KB2kHhuC0FhUDy/oGl6lmQug00eIq0LaR1FDuFlZvGza0TtStRmEf8YwvtB3sBxj5bhuEovuGEZSSF9HtWWMLu2gd7l2k+yEuF9wGHQo2CednwoQoxXR2ki6qR3lGzreGdb37GMEoObymtRXCcQ01S1e9Gk6HxvAfjH0rF+IYH8WvHumXvtBdaK4zoNA5/AcW+ux18DvyuuehLiKtf/5l37RAv4u5HtPUNtbCvwLHCPq07pKwiP42wN70VlpkVfuQ0bjyHGB5nnWtWjDHL+LQMLN0I1AesqV5jjXOMyCsgoIj2IGKztQaRCkPcwwWdJG0uxcazirUGTi2L9EJPpdNPgegroBam2PlMKOu/8wAmcPR6bQM8Bq/TKxWOabxsT4yV65XJeFi39vAQ5H1troB7YZj/iv4KaR0mbX0FMBxJsA7v/um+yDThAbfwXEXM7LmG8j2ve4zivcHbj7rbFiKzCPTsewt0b07zZrfk6IDKO6lKc/Fov8CBqD4AsQUwG16q9F9Um2GGQYZA2p7Zhj6Ky2E2/A2L2ojZyH1ezqH0DbRYRGQa5hE3a0GQjxWUxcxfLQBuNmQ6it9VZ7uOqCP2N2IzqHtTOge2H+BCYGUyw7WrypKqW+viRN2lqmm5TmxwWEyzC+CfcQsHbJl4oqtoknnsZLxPgRfeIyEM3OUKDwP8L/B5R6b2/MH13YvG7Foe/9UlkVDrGjeTOG+FWc/cCP8U7pxx/Gpf4XF351XCTWkVcle0I8Dc4X9QUFxQniEpKfdIH0puO/dcne3Al8i1v29aCiCzT4sqDxsu3q/E6mTrVh21WiGvDGPPdGjdekfFpsIlPoe10ZaiST6t1M1FrrjOw24fZEJ7Lt+UKbd3F5siF8dha6xnwVEjSxMZ4xmR8Uw2iwBNDw87V2gxene7FgSy6r1NMoKB1xJ9SP/s8xghQF+PFZDpitenrNKa7gJWgm0jroHaXOpLyDoQPAcdAJxHzAVS/ggtUT4M+j7ClVSgfB/3ItW+vtzkepTyIyJ04m7KdgEXMg6huRzREdRUuIA7irBMfBqkj0obxfaxdAnYfJlBNm3NuAjPexjUh3QN8C6bqbmXIu1SJVNVERH6GawNZn3HafvLTre3/UVWPi8gXcbahFic/ceRd+UAL+NqR7b1CbexxVP+0NeHa4rnZKdSUgFkgi42PAqvBKso5HLdqCqQC3I6qReQCjpNVwA3gDINcxtnAAszgJmiv4hDoClQPo3oJTTNIUBDxFC/oVuPfqc35F5gd/BttSE6y4bzpWKaojCAm77pS/nKQVdh0N9ispg03eBMU2kQYbg3bYKdHz2mSVL1mJW96+8EmXXiZKbxMjni+rmk6STofSKbzFcR7AJueQby3JkinEa+KmJ/DVR1vAnXdFDesOILqYKvtC64N3Au8jOpV60UBDXCe3V/lWa2XQWZbr/dx080n0bQCnEOxiOkG+wwuMXgSZz270qX65m6wz6E85N5LN+5Z2AsY0vpanCzTjfDCZWT79lGf8ImrqE0OifHfovOo21B24p6HB1FbQW0NePLGapsF2ziIyQwomqExfYg3J7gBEGw8hfHvBEkx/mPAJMgREVlOi770FswAfwH8EbCDqGRvfvzee3g3YvG7GYdF9ZsrgfQNw3l8/me+8UTyFVxW/TpR6WJrf+24RHKSqPSND8/c+Dk7cRyLv1U0XdPmdi1f2EJt4gRJfRPQ0Ng+w4tfeJru3tNy9wdG6OraKvB65fJox46f/JXhif1HowTSEJrtHXlZf/fKxXtfPVlt1mNrYUah0A61XDakp6+dpQ9uSIhMc350qrPzyS2zHd/3USN992RFvBj06tV6lb9YwCXLMdCtqlOgq2nOHcMm3aBtmHBI/NwGjBlA9XlEItzFZnAPjsPAg85Czc45eSPdwjWeCu5vyZcRLwW1IAPAPGiMWour+i7F8S1fQCSHMo6YTqCJyGJUx7FxVUVuI57L4qrA14/cf1w61i/YGX6N2Nzfods/+Y2xQIq//bn9fwcncgG3OqqjGVy36PvdIpA8wllUi2h6B6ojoOcQvwjcCzqGMuM4dVoHym54TwRoc+FCxsA+jKO3VFt8SEASRNqAKTSdBi2izIIuQ/w7EJ5DWaGanNYrB+N43864cfRUmunpCPwHnsqZ27fkRLyrXa1OkCNo7Glc7QM7RJoYyfU8BVRQPak26dTZC4dozjVpW5YV4yc6fITk4rGEIBeY0nJPGldCKRbrsnzbRjH+RTT9ICbYh8h9wCyYQ4h5uNW6vQCsAB0FRlHagSHQ23HdtoAbrXM/D/J0KxafRO0SXFHlaiL6Mo6bfgT38H8QkVM4d7B+YD2qF9Qmy4nnXyQs3iGYU2gagb2zNXQ04Rbu5ijCY9CiFzio27fGOCtEVPUQamNsUsPGy0Gvb4O6N9l4hNrEPKoFbHKItLYUzGX8XIAfGfHCGrlF3SIi2KQOen2FcA+wpKXYcW2fqi8Sl5fgniVv+5OYzG4JCrOYoAO4722cTacQ8Azwx8AXiEqNm+znPY1bMRZ/6yuRXytcFfCncYnOP/g63jkD/D7wP99AnHWVxJl38iO29jtNffK7cTdK21d7mXjhNsLi6wodzI/sJMxVTGg/pg89/nm6uj5Cx4r1ksxNojbK9Ze6P/inv9Z76o++8MYbv/6ZtthqY6JcXXHpK0eW49rqVQHj4cYbq42YjkaskycvJpoqcb3ZyB08Ta3+50Vv47k43LwB03NnipJB6ANmUTuLqo+YOhAKhIgZImzrQRMfWIxqjMYn0GAW2AzmJGqruMB2GLUZkFdA2sEoom2o7m1N690FXGqt1h8C9oPZ1ko4HwLMm04BquOt49cOrHb8I7l2Z4mgJohplq/aMY7hguoErq3+0zpzak461j33jp3Xb3O8i1rjC7jVkVSbOE7iw6D3qKoVL3MJMR7WHgS7BVCEMUTyWJ0DW0OpuZYq3WBPYqWAeBZjNgIbwLyMtRmSqkG8VZjwrOs2BGuBw6hMu/3qWpQJNDmheBFpYwov0yFdqyeCx/oleKjspSePSjI4mIYb7lN8byVqL6tNzuvsBaE5m9K2sqCXz6bNg3vTzNq+Xdz2YStBvhu1cxKVIq1MQGVcNFPS4U//XvP8l/frsh/5UVn2U0+kTJsGtnEPIqOI9z40vegOjLyMeJsQeRTVmLS5C+OnoDMgHuha4Fxr8hw3ca6XEfOh1pG9CHwE9DSqR0CeclI3+gFc8vgYLuNua+2rB/iiU7dg25slK5EVqP0rauPrsfGrZLufBnMGa18EfUSTxgGgA9vswMs8ixf5aPICaSODmDlxx7tNTTCPJodoVssY89R1V0AZ1xUqA4GqLmH6tOAW/B5vaoOmG2nOQnMWhSuSH+hFRDB+HU33ovZqYvwgLol/A7gDEV+tbZLWPVz8vh4WMfsJimAyazDeWyV51F2b/DHwl0Sld/6Z/k3GrRaLb50kEiAqpdQnfxJXVfwt/i6upEsef5moNP5uf7QbEJVOUJ98GvgsfwtHEj93RRpT/eRKD2lzbp+dnX5W0qRgJ8eeMWlY1LiWqk1s+eTF12YPngjH/uCZBwfWLjtWGRoNpiqNqQYMqhtVDhWa1lXkbAjGqhYmL09b3/eaYSaQ+uh0GnDB63js7oiZSxV67mjiVPov41bs3Qglp+FmZhDpwtpay6s2AlkCCmljAOQsJnStKGUvaOS4TdwN9hKYlYjZiWoPgkG8ntbE32JEirik76pO3CaUea6vJIoXI/JdwNVJwRvaKao6QVK9CE0sfusAACAASURBVPZet6bQBFgBcjUAfQBHR1hIIr9W3GJ+rQv4JqF8rh34l8DPgqJqt4Matc12MZkpjBeA2QHGIFfjsZ1ANQKdQ+1pjJdHzCqQEXDSOMBJRJ7CmFFMOIFtvk5a8/ByU6jO4CSEXCKjOgfqo0knai9igjbSRlW8aIBcVCXbMevf05fa6WkrRsoaV4dA65pUrR08mkh3T4nq6GB6Yr8Xnz/vh/fdOWfURgIbNW08gzEx1akiM4P3VM+MvjS954jVqfl835OPBxK292q+L2D+UkGnT6fSfcdO56/srcB4DaATVUtS2w96L4hgTITaGJhFpNz6Dq+DvQu4E9VZRPI4Tc0LgI/qnWB3gWlH5Euo+sDraKuVLBxqTZs8iOO31Z1cjfGBF8QLejS/KBI/34NNXgGNEMmjDIONSZNXsY0mzZkV5AY2AHPYuA7s16Q2gk06wC4BtiLedkwOHKWoxVGVa1zNpHqcG6kHN0M39ckDZLs3u46Vt6rVabrK+Mur6l3Y+Iuk9dVosg5YjnhXEOkHBvGi8wTF9WL8m9EDDuGq439CVBr6Oz7LrYVbLBbfWkkkXK0g/gH1yb8CPgX8fVwZ/up3GcQlEP+JqHT4W/Mhgai0k/rkYzhh3OimrwnbnqCRO9OcvDK175/9dn34+Z2rsdbYJO3pXLd4rDFTKYTFbLVx4cqIQK340N2vbfu9X19+8T/92cTJ3/kjr95IHlG3EjusbpLON5DmIRDEb9Zi29CmVLRGtRrnikNTevG132gu+677ou5/8ZQRkTqqBpEmIm2oulYNdh8qgM3jEjJQ+wIQ4WVDhI+g8WWs/3nQJ3EtmvfjbB9DZ1spGUQMqh4wjBNs34xztwmhJfKqdi83cojKXC9HcLNlWVI9j21e9x65GXXg4zpz6s+kY93ITbYt4K24teLWAr55+CHgZwFU9QCabkP8/QL3gv0yxn8fbuMu4DbU7kLTx4G9qFpVbWATERNMY+iFJIfVYeA2kL0InWBT0DWYzCFICo6fZ7Yjb5qxZJ1erdcUtaLoOGnjLjXhETG+o2R5vjHd3YmmcYptzoJRGrO+6VskZEuziBd4991/f+Heh/eSb9+Ily1rUj+sU8c71HoXK7tOSP7x+79Y2fOciu97m/7elmIYjS7TyxNrMf4QEpyiPmk0bZTFz3YgMgragdqDJHXUyQm9JDaJwe9ptfJzqLZhk1OIsYi5+oV2AstR7dK0PojxMyKmE9UR1SQCk4p4GdAJXHflKMjdLiE1x9E0j4uZ+1CddEmaNMXLjJLU5iAFE0YtKsG8KhZtGpI6lCdG7TN/Nm4+8vHVIrIY8Xsx3r03nHFVAV7BuZctBr1RBLM+OcaNSaTFcWBn8DJX8IIEMRBXYqLOV5wjjLkH8Xag6TUjCBHRpHo32KsuRx2YYDdh21JMeIdzr7sBg8CfAP+VqPTty5m+xWLxrZdEXkVUKuM8Hv8t9ckQV/Gbb/3+vYGodIz65C8Cv3uzzSISaHF5/o1/+usjg5976YYptqkTQ+0AldFpjJBFGepoy42JJBeX/dQn6n5Xb3bp7i8durjjZOPy5Hwzdf2TVRHY2GrzypWZZmjEhKEvaaqena14viezfiYIp/ads92NWjtRro5L6KYAHzG9IJdAN6vaY6T1xSLBaRU5h+paEbmEGAuyHViB6sOIzOrspYPke/tAR8UPnwDZhbACtafR9FGUfeBNYcwYcBJ0o2vfWHAJ9uFWwMuCXGrdRMdxnrdDONK5otpUdAovsxQvM8g1y6+rvM7r/z0AvEB19FfJ9f/1O3NCF7CA7zg4wXDVqpPykgSIUd2PTRJM6xEikkXZhdoyyBFEHkR4RcCCZBDTjeoANjkFFPHCtaiddfe7KeBlLiBeHk1DktpreNH9WF7B2aHeAeYMYr4XTVNBZ9UEhzEmVREFLQANmnPzBEXBZHy8wBh/iU9h8VqtTx0mLFqi0h4TFjKaJq9jky40rZNfOsPIEZt/8LayaLyi+1OfHCz9g0gar7820dx9wGYevX8p2Z5z2ESlsLgmQW41V3UdVVO16T5sPEFS6yGp9mtuUVmwE+B9D7AD1S3AdjDXtWHt46gJVFW1fGGcIBsQdh7QypWQINOUXF8OMa0FtAC6DGSwdS7uB/kCrhv3KOjzrcptN+hcy96xG+WKoxHIpGCtlge3Aqgkp5gaXY7qKLlFZ915SHZQn7w6yDKKn2sSFFcDS9F0J0ntxgnr5nwfMI8Jjku2FBOV7hTjdbvPcHUWQPbihVOI/1BrKOgYJthGml5U1QHQo9h4FuztmGAnQTHEz90jIh9+y/VXxw3I/Bdg+600IPOdgls3ibweUanJ2zWP3iv4D7hq3vfdbKOIWdb/5HedP/dfv3qeY5UBYCDqXb7b9Nydt5ND55f8yMf6G42LVXOlHI/NniVJbB44mEAphCRROnNhIJlc2DSeKTVqzeHqXC3ICsXGdKWhcT3C96xOHK9imyFBIZUgV6a4KC/iRVRGsqSNjEY9p7H1XkTaVM00UfsHxbUidohYBe82vbDzfmzaRufyhqzYCug9qN0JRCAHQBNE82i6H0yIsAZ0D1BAtRv0IEjTtXikiJuIN7gpTss1kfKXBT74dZJGPkt19P8G/kdy/Qui4zeDyLs2nb2AWxjzQ09iwp8FLmCTC0L6BHjXtAzVvgzyHMgiNxxjSxj/UbdA1M9jgqdxLdECNn4V2wTwMJkB4BmMtwrMBKICuhWIEH8CzF7w9rVoKhls+hKkESZ4zs2C6lMktWcwph+JLuEFbXhhoVXxCjF+IsbvRk0GzKzk+tZj4/PiR01U50XEs43ZecSvMTfpaXkqBnxsMKJBp1BoT6PHn/Yk15tSu7jbdK57HzCKl9nT0qzch9op0ES84GnI7lYvupegcEC8UEAfBz0CPIJIAwk80EGceoSP67YMQ5pB0wJ+fhQvKEqYa2jlyhJqk33ac9eEILNuOpuLuG5PAfgiYvpBx3FC2THQj2qKowAE4NfBOs0dpR0/dy9B2w4EJJvJyY/9T5cI23rF+IeBVSr+wwTFLyBmJX5+vbh2cuvt5nrtSquqr1JclpdMW1ZEbtZmPowJKoi/xcVp/QpIH7ARERRzjniqDqZKWMyS6WwTkZuJje/HJY5/8u3Ac/yacQvG4ltnOvtWRn2yHzcAk7vZZlWtfW79PbPVS0P9H734xuGgkO9KG/EpL4rWNIaOnfEz3sD8yVPn9OzhXHFRyb/wb//7psmhqXjDD2w598LvPBs1UntpHlZm4HxP4K1Ua6drqTbznpn2jPhqJExTWxGllImCGT8KMvf9yj+MMo++H5GRmlSn+hmfnGXdbUXTviixxQ3NU//qN2exDdnwKz9XdG1pW9GJExmalTsZuH+3eP7jqI7hZS9gZKXd/dfHaUz2mvu+d1o6lnpouhqbjqgYQW0JG5/HC3xxIqcnUbFgs4DB+B5IjIgFHgF2gTyM6gXS+gAwjAmqboJQ7r7OCeHrwQngk+T6X/8Gz+K3LTYv6tQdP/b4N/Te/G98dmE6+9sR1dEsqp8B/QSupVoBOYumPmlzkxseoeDcY4J7HHdPX0ft5tYeKiC7cTGvQlrrxZkcjKgEeTH+ypY24RRIAdVZSM+B9zAikZsqTgdAToAYTRsNoIwJ8tRn6jo3IlLoiTE+kunMoWlTbXIf4r8m2swDOUw4gPPdPol4j4PuRG3NNmsRI/srs59/rmlWLA5z1GPp6k3qI5N+dvkioXuRL8VFQr4vY4JsO6oV/MgHnsTJlu1HdQNqz2P8xahOopoiUgH7IVUdESHEScltAskB5x3/XD1gC8h2RLZp9cqzBEUP4xXUar8k8ydR9QjbQhEzjXh9GM+8SRVy/PEB3FBoBcFHrYfajGtDaxMRBfIgdWA16CmtT/mAjwkeRdXiZcaBCpqOktZm8LI9CGVMZjlixlt+6FNoeo6k1o6rCGYx4YR4wQpscgW1IagPOg90gbmCH10dGmoVDOTO1s/nQIZQzSlsEmOu97O+ikkcz/EzRKVD78BVfMvhVozF757E8AKuISqN4sjpN4WIZB/77J+eAzj57z8zZYIgDQq5jPE9jUrtRT+fXd9++9pSx5LOxxqDI7FN0itdS0q16TcuFDdvWbvRZoIuAxsSyE/HafdsqpkmrAkCb5nne2ummok/mdgNk6kNG0mKHwWZ2Zdfrs38zm/WGn/5jCS7DkzZ8cnlEuSbatOCCYL1+TVrMmt/+WezYEVVB7Q2sYRM4QGi4iHULlNra5o25rQ5sw6lQ+54rKRzc1VNEx8I1eqpFpdmLfH8CEntHlTbcKr474e0hNotqN3kKpfpOlTbUGtRfQBN9qDJbRh/HvEmUFtHtQs0RO0p1A6jdsfXdgIUV9XQ36I68ktUR95uofUdDjHyDf23gG9DVEd9HPfsbuCcU1Tw+jDe+/HCLQT5XYh3kiCfYoIPA/2IgLIOOAq8CuzFaUuuBDoQvwvxqprG3Tp2eEbVNtSmh1RZBHQhchLxH3H70T2Q1ty+1FNNPSojfTpzuqRjB9bqpT2Zxo4v10ibilpD2qyo2lBMcEQMIV5YAH0A25jDUWQ6QK5gkwY2DknrGg+NxOVX3lBf08RbuQrT3bEuu3FVl5T6MlIZz2G8TaSNPGo7UCuodqM6jOpx4H7EVJ33ts4CJURvB5uAfom0Pqg2GVbVB4FTbjpQLiMyA8yA7EMdFUeyvQ+Il6kJpi7Yo/i5EkFWRBNpxcWmqt6nNunUNFmmGmdJa5s1qW7SylBB54byWp1QkCYu2Y+dwoYZw0miHUW8PGF7lbADvGgCPwu10Tlqo6uoj28lnn+aZL6J2g+QNk7RmBqgdqWT5iwktfcDnYgxBIV1GF8x/nr86DGC/Fb8/P0g/W5x7+Wvu4oWA7OO+iRDiFmFyDaMue8tCeQJ4LdxCfpiotIvfKcmkFdxq8Xib4929q2B38KJ9T59s40dGzds/cH5KwdF5I5WPbtlKWVG0RTJdjR068dfym283Ll69aLCuX/95/GZ3edzA2sHznpobGB21YqeeMWynqBRbYTj56/kz0/O9wIFhQmF6QykSSN5cNldq8rFNT3l6qWZSU3TZmO83BU24qqMD0X4HWcaX/mjkf4nnsjra8/VePCDdWoj55g+fz+udXIP8esnMN6ELNpS0iv72zTqtFTHVe7adNeZf/6/Hph4/rWtXi534sGDrxnRtFNtYwOZrooYfzOavgJkERMiFHA6nQHoAdLGYxjvJcS8D/BbD5Q3EHkQ1bOAovYkSNriC11HvNZLuNXyKG5x5Ld+vqoH6oSPnRzFHVRHfofcooWq5FUs5IMLqI52AT8C/CrQ3brHtuO4eJ042a2liBQIco8A+3AdlrtRnUKYatntTeIG/VYAoPYUIktVWYpNXiLMeTp3cQjxcpJftENN0IGNc9hkN+LXxUiE0/uqAY+TNl7V5twwjdklVCenyi/trZi1D3Vn5obLUhxATeCRNqxme2JBfbCLQV7Guefc22qrHlLVlCTx1TbKjdfeyPb8xPdV/PJ0XpuZnJ2vTzI9UvAe+HAsi+8HL3MJL1BUR1DtAFsFOYXaecTbp7VJxc9UxM/XVNMU9JQYP0dSXypeOKqV6ZTpy89p/9qChPkvtTotGZCa+156O2lzEDFD2KQEPEja2I2mBWAcP/ogNnlVk0qFpOqjtkzSGAOz3GpymPnL8yAphYG6tK/Mgt2EMYcR7zFgL0IF1a1gd6JaFBPMYGOD2sOKTVX1CZJ4hpkrp5gamadryYws3fQSjRkL2iAq7cELS4gfi8icps3FVEePErYFeMEpYALVR8BeAGmAjqBJNxq8jPHyOIH06wXDr6IJvAR8Hvg8UencO38h3+K4xWLxQhL5zYKTJ/ohnO3VTeURjDExbnq5CLoK56iQ4jxBU8nkMxpGkRhDVGoLmpbDRw5dbGomaLv3/jX727Phtrgen5sZmaouvWtF2/kXj9QBT91lOdCA2VIhOlyZmatkZgpdNrbJ3IXp/PiZS4X1f//hU5Jq3tyx9e74D35ep/7yz04t+tRTBXvhVINivETEe5VG9V5VDVCqkiuCal16N0cktQOKrtdq7bXlP/cTA+VDFy/Hk1OZyvETo/kN60JHCldt6fXUcNIWtdbXDlA9BtKLeM8hZuDN38OriHykxfdZhKbLgNcxfgcw6KqS2kBkRev1S7lRZ2wM5/s51fq5D3csngB+iOrIbwC/Tm7RLSdK+45CuPXEyRbwzqI6+gngl3C8u+tlyR4EXgVJ4apWqzZx91SCu+8i3LOk6IbqZCuqF0BXALiKnT0pwmoNCjkphAYTVPDCe4jnDNQ68bPb8bNOM5JwG+goeGdUk706e66D+vQsSXXQ1prepb98pTmXPTy9+Z9/QsI1XTB3JaVrbVNsnFc0Qm1EUk/xs3eITd7ABA3QBmkjQ1qv1Z57MeM/8bE4I1Nhan1r7nhixvhhF6kdwPeRtDmDmASkiiBAFTQEaUO8SFVroDma5UX40R1ouou0mRIUmqBrsclaTZr7MGGHeMEGjWsvSpCNnGWrO9qIHAVdiqZbcULiASYYIK6vAdrVhofFSBMxVpPmAWyCGN+SNs4xNRQSmDxCQrPcgx9tBolB16D2C0AOZB6bvAoq6hLyxaSNGSCjU8PzHHsxRswMvSvq3PbYQxIWLiGmBMzjZ0+RNjPY5CLxXFnFVFGrqN2MpvtAWoNF8SukTR8TpHihRcwGrg4d3YjLXE0a4UtEpQVu+lfDLRiLF5LIbyai0mxLiPw14G1mo4jch01fx6n5HwPNSdsKD8hhU7XNOajPXtLOjqVxtTH31Mu/vfrEb/y3qRUfvnM+yof+5FcObj/2V/uCKJ8phl35N0I3kDILPKBwoNCRCzzPpGOnR/yZC+P5ntuXzFSHpqKw1HaCOPWp26adGTshnpdtW7koIG6KXtwXyZIlR+jsvl3Ls9ub+49nk7ItFv7Jzxs0LYHOSNS1lkxHOvHsHyt+OHLPs581r3/wu7oPfu/Hc1tPHuzGzw+iWkO1HWUp2BPuO5pW20KriLkXkQLXKBa3uaEcOYDonGoSYJMLGL8mbjU7AywBNajuaflsX0ZkMSJ9uB72GZACyJ3OMxZwMhFXeSP/HPgo88M/RmHx3nf8fN8iuAXj1gLeSVRHHwb+TxzXLsUJXW8BLrZ0C6+z0NBZHK/5rcnmCLAad3+Bc1kZBJaBbMQL+1E9JGgdLwAooLyqxtsA5ghq52mWH8cLX2+9L4smQtpIiKuj2Li/fv7y4PhffLlStsLYl/bE50o5Wf8vVyESGvFCZfrEI6AW8c4TlW7X+cmjiHjSuaKhNlmMbU5pYhtm5do4e9tGa6cuBv7arfOotdhEtTI6wcyop13LMhLmy+KHMeIbVQuaNIEmJhQRfM20bwU5D7JXTBDgZapq04SJoaOaNC/p+NGmTkykphgFkulcRpAtg86B5HHP3YdA9oGu0Lg5o9X519KLp2fTc0fPBY88YaQjG+uFfTmwSlvHDDbtJtt1GTEBbaUlNBtD0r3WI9PRRXPuOTLtH3ZyPJKgyTBIFjFlVW13trVpGQwYb4aOgSJbfuB5EdOOxmsdd9LWsfY4UEXTJ9EUbPKySxzfHIiOMcG8q/LSgwkfwcvcLHIo7hl3NXE8cFOb4AW8DbdiLF5IIr/ZiEpnqU9+HOfL/XZOqphO0AKqdVzl7ApwDk1S44dbdWDTCTNzaWjlb/2jgN4V3Rv/zT9bpbWZPekru2qd965rPvDA7WF976l6dqC4mb8gBHpiR/C+rb+nff/MRLk5PjnvFwuZePylY4G1lpV3+JnJw5ekrdbwwuGRhhdJjkxozfKlSdpMEqancnZs/AK+ieonh3x/0YDq/GQF4pr4YUJXKdbZ82O9H7przeyeN04e++FPaqa3czqenOoAEC/cjNrjpMnLkPYDHwbewM/eDTIGmgJn3UpajwOLEHMapA+RDapUtDn7Ikm9XTKdWRXPiEiESAPVUyg50PW4aW/Ae67Viotwgr/Pt5LMZTiPbwfVBmongD3MD/0u8CsUlsy/S2d+AQt476E6+j8Av8e1Z4GHc0o52DIdeIuDiLSDXnVTcVAFdFPrvU1gJyKKSj9wBnS1e6tsuq5Xp6AzYjKvYIJ1mjbn8aOzqJ1VCfpFeA14RLwQuu/cpWMHMmFbhvyGgezx3//ybMkT314ebdY+/8Ug+7GfisUPci2pH4OmK7Q+dYDhw+t19WO7SJtgvCls0oGxteymuy1pLSNRt0gmC0maiJiG5noSyZZ8HdqzRtuXnKR9uSfGhGiaYBOLCY3G5YI25uckW/qC+NmlijawcSzGz4Dt1rZuFUOTjMRm45J29aMRMWGIYlr0nRzgtWRv5rDxBcQuaXz611Y0pmvbG9NV07Zkw3R0Vzdan1lE75oCks7imQtany5IYSnSvmoMGyfiZ5cDh/GzBax9oWUXmW1VjW9DzGERnVeTb6cx66ONKqnNSFhYjuQuUJuw2KbTaNT0EF4E6DrS5vO4btmjmPAsYdswQS6L+LeJyPVONtdjCvgyLml8lqg09vVfjAu4FbGQRH4rEJVepD75K8BvvG2byEpUv+gCr5ZbDi+rFM6i9ghpfRLVNjzvHuCK2vQEHasmvI/f9zAje4+ZarUpI+N1ryPag3AHSuTDpMDaoYvjy7OeHMv5pqvU07Zhrlw7NDNT7cuEpj59ZDBIy/W5wlhlqcl6k1NHRujoP5oGvkd2oGNNOjF7PJ4o+2SCetCbDTnz6uMsWrdHOwZ8krrH+YNNMnao/c6Bp9p/5xd2SnHg4aRc2U/LVUjj6jRiAvHCekvSMW19Yw/EoOkgMN1yengBdCOYSTCvYJM8M2e+m6BtF5lOC1oFecrpo8kVBEXZi1pnM2lMPyJrUR1HpAFEiLcMTXe2HnhfAlnSsle8qoH2s8D3Mj/0Dyks+eK7derfs1gYkvnOQ3X0ozhXL+8mW2/HVQQtMI2TmZkH1r/5CtUYtUfRdBa1ESaYwXgfenO7u6ReaU0lb+ZGf3tBJMYLHwTOi58pYNMUSUtg92LlIUT2onalmGBC21dPcPGCXPibPeUCKFaTkYPnjUQZue37f8yjNoXG1ZfxsxFQojpepm/tLpK6qhdkTaZdNdMxKmmSEM8XMGETO5XRuaYx+d52VKeMCUM7d8XSvvQYaT2v4ydjSqsSkkpAUOihUR6nenlGCos9xCjYy4IkiulTpENM0E06d4b5ie+R4rIdBIVNMnNpN51LE1ftMz244RdDmnyuVeFbgfEs7V1vmI5oWhZnovrETBx5YUnWf+gkXmhJm2j1iqF8MdX54aKEbUUxYR3xpkECp3KhsSpdIlICMw5cVHiQND5EYyokbWx688gnVXDc8GsDhja+D5ucAekjyI8Ttl/AywQishpXYX4r5oDtOJmhF4FDCxqO7xBusVi8kER+6/CbwFbge962RXkI2zyKBC1h33Q/Nk20Pj3I7MWI9p4aXct3UZ5qEHpKUDAi5pxmu0IwSbh2IE8mKoSFrDTnajmFssLOYjGaLeQynUa1mcTJIayWo0xQma800umhqVznmiXYup1Nmkk9Llez43/+Mp6RntpE2RYWlXpVtRZ0RdnivSvdVT5+YTmL7jijY6dnmRq+jY72y0QRqLXarLzqRdLU6virCGhzbk5MkNdsj4+NP4uYCOO/KGLW4kj7T4KcQmQGtW0op8AKmnYCs1Jctp2gMCPG3wB6zsls0HSSFl4BkZXAGTR9ArXbwQSg51AyQAH0PNbOg4LIR0Cfxz0gt+M8ziu4KuXPMD+0jsKSf/fuXwLvHdxqLZQF/P9A5bIP8kPAzwENRG4mPZbiqDAerm19tXVddhxlfQPYiNoUta2qpDyLS5Kub3MrIttQ3cc1GokFDuI4lfc71QX7EkmlV5FJUAv6ORG/zVrdPfuX/4/EIyOpV5lj9vRl34AtI+mKO1b4q37+k37t+GlNLx7JRn3RUv/2e69oeez0/I59zXSirG0/+OPGG+i1aKpYVWwiWp9KJL80xeTqTF9aRnHxEMb4qKamrS9Ck9hOno4Jo4bOD/nMTcT140eHq4OXUlNTL//Ek5lgyVpDmEslKoYYM0vaTO3U8CW75wtqNm58UZsyK4vaX5W2RRkgaR3jSVAByWI81SQJ7NjBg3h9w9mf/lXNGt9rUwy22QMmIMgaxCzFeFNku0VrY30k1QHCQgI6hWJdkcHbpGnzdapjqUYdh0kaIWm9C9sscm2R/FZcp1AhFcK2Q4RtggnsV9F/THA0hy/jksb9RKXkq11iC/jGcavF4oUk8luFqKTUJ38UeB0ng3ENxrRjTYqmivF8VC+LF7ThRTMUB/LkY0uQfYT+DacRcxkTRCJmM7m+LzM9GLBxo8XzNnWu6NvflQnmjx06vzFuJksuT87D5DydMCotP2qFdPj45cqa+9ceEKHd+N5d2b5ipbCkwx/ff+F8sHpgqPeeNQMmjKa9nq7U72rrlrGRCQCSOBGxhtJApy7beJi0JuT7d2CTMo3Zh0jTQypsaX0rVTGvYuMBMb7ihe2INAgKg45ETxm1Dd40npEuoAFMC+KR7VFs0obaGVRiRCeBDucnG9+LmB2Il4K8ho2XYPyXQRaBvYhNs07DDYB2VM8h8iTCBMo8It3cWCVZQWX4P5Bf/J0RJEVuvci1gK8ftXEBngTz42DX4AZiBlE2vP38m4OIPHCTvbQh5v1oegIIEbMSTVvOM9KFk/i5HTiJ2knEuEWysgx0R+vv3AZyD7AdtcdBDbCEoHAJTZe3bAK/S9P6lyWpSPv7H7NMnu2Mzw7N3fXJODO063jcENG2yO+Y/PR/e7OtXob50o/7R4PurM4eHrb9P/8Lkbf8jqcFQp0Y/BztXejcRDMtzxRM0DOTjJxRv2/pBducQ4KcADnEA/Fyku2c0tqkn4yN2cH/+Pvm5DOvzqgyaAAAIABJREFU6sRYOQ0M3PX8rmT9L/1Ah/QvnzXrnoCk2dTJk1P1557xTaMae0PnrFm2sk36N86LGOMmuk0WkJayRAPwVM1844//lLjcXFb85V+7YnIFH/FriHRjgllEYpyyxLQE2dvovnM/SX0U57Vdc7xHcUliZXg90Edt/GaDLTeDEuQPkOmqY4LNIvLQTV6T4JLGPwf+iqg0dZPXLOCdxC0YixeSyG8lotIM9clP4SQPboQJ+7DNELWRYs6C9knUVSXqQpPKNEntZfy8bXFrPEWes5fOzaV79vchYtOevudu37DkSUBOn7n8pVozuahgWuPenX4riRTw+jcufql7bX9nUqmPV6dn9mTv7Mt/8V99Nulty84OeF5bz6c+fsUUCjmS+hReOEeuS5m49BWwolMXPcJQaGsrosW65Pus1qZTqlMXyPeDZ17GhBYRg02bqD2vfnZWTKYMLAGZA5JW+74GzCCmiZgtNxwP1eN4mSZqp1C7AdRxtUSO4WUPIt5qx4HUaZAcaZJH40mwSxAzjZgngAtOikLnnJgxOVxVpMCNGAD+HpXh0+QXH3ynTvd7GbdY3FrA14Pa+ADwy8CPA0WMJ85NUKdV0z3AIoGCpvEpksoYaSNP2FaR4K23RQuqMS2aCiJdeCE4/cNOXJv0GPAwaf0IcBETnkGMD+LDde4kqlU3bMIo0AZWRWQRxu9WGz9HPP80ce0lKfQEGuYmg541ua577k/bPzbURqZ9unH2QtlvD3Zglak/fPa2YNW6oeh9H2u3l4+OLf31//2DksmVSGvHFD1Dz7KNNObewMaJHT4+PfWHn9Hzn9tlvfY2s/qTH7AdP/QzPZNf+lK57eGtzTAbGJ0bITn8anrp03/N2R0nktzy7iAZK0cVS1PykVd98cB89nuXGaMEcwf256Y++6fS/9EfnEtf/CsvqczbmX277OIP/5MsqKLJYtTPIBIiDOOSM8TPZIL3vb/hVeKLeEbxsg2EIvg+eCmQAR0DM49IUYLgIwR5Wt0UAIvaYVwX5cZCxFeDlzlFpnMEP7deRDbf5BWTuOfRF4HPEpUmv6b9LuAdw60WixeSyG81otJXqE9+GvhHN/zemHVYvoRN+pzbg0wQ5O9U5Dhhew9BoSheFCNy99W36Nj4dmZmHwXwPXk5+/DmL9R2vv5YmM30pjOVTTFsV9jWgNevO/HJhg/fs0UsB8dOVtvHL0/OtN+51Dz4M9+dNE5dyjRPX36EKHcKz1+H9baT6VDp6HxaQ/9lalOPMT80SKYwgOpOMm0FbLyaeP4g2c5JyXdHiHmUbO+YiPRq2tiNTR4C2Sl+Jq/WTqDpYiALeKiOAisQcxi8FxDJOCcMfCStoXoFm2xDJI9qGTiJMI5KH9ocAoq4IJgg1FH7ITCvgNyPE0B+2FUCGEN1G461tYPreV4OnbjVd4PK8FPkF3/lHTvf71XcYjycBXwNqI0vA/4X4CfeuknVlokrR0irq0B2aqa0DS9YQb2WB5bRmEFNsB0TbhURH9VTOI3ILHCBG6W0AJaj9lnEOw+o4x63htk0vYh4EWIS1B4CLOgIcD9qLbBR50f2gDSl0H8ExIiX3aL53BukTQNqRQIfL0g06sp7yKieP0Ju40A7zuGKvl/50RPSe/8QaVw1Axvbgd2qtgtr15HM9dCY7rGTI2ektDQNHvyoz+7TzaivS8cPnZfhP3zBa5wdmiaNmTx1MrPo539RyCeRdnbVwv7e1PPPZK+cuJz6EC8qRv7A923zC499ICBfypM2p2Z37tXs5veZzKb7vLR6cqD+yhtj7Uu9msa1VRJGg4g/h0gNdBpFcBXgGLTordw47xd7E7xMQVFfMAaXVC91CbcOOpkhyfN2GGCxqlr+NuOQa4njchFZB6x7yysGgT/GxbyDC9zGbzFusVi8kES+N/B/8NYkEkBMiCZ3gvcF0AgxS0hq53XuUhtqr0jXhveh1IkrdSBPUlfaOof9j//kPFfOzBUK+a7slvsnNvOfR6qSayz6tX+9FpFRieM+jeMTnH8h0vnKVHB+cLFmM3W779ySnrZcYfTFo/WB739IMj+4LaGrs4zWyzSbE4TtMdmue/EyO+ja2M/ZF/cR15czMnI8HppspFOV5dEPf+qwdKxegZh5vEw3MEg8N6HQdJVGGXa6bRQF+35N00ma5QPY+C7CIuJlJlATI94jwAU0acNVDAdAO8C+jrVLMP4g4rWj+hQa70SMB7LGBWvKqPqYYAdQQe0RR2KXC4hMoFrg2pjo3+balAE+R2X4feQX73/HzvZ7Ebfa8ncBfztq4x8F/j2tjgPgmB+2eYx4fhpNNuPMD8AmV6hdOYOrkN3bevlFauOPgpnWqMvZnGIOo1rEcSWXA9ecR5wu5PtQU0Gk5Npy5hxqLeLlHIfPZsEuAbpQvRP0K2j6qKpO6dxgOx1rOokrNZpzs2Q6jkiQb6Ca2LgWpy/+d1s/d04zpaz6H/lhkTs/4DE3Mk5jcgaRwPTfe4EgSjRtrEF1FcPnztDRMYYfvMT4scdAR6Xv7jnJ9y0jrk/NnBxqDB48b8bLDdKhSWpfeM0LOwo+A7Z9INP+gETth8MHVj6y9MEfZvH/1UyG/stndp3/d5+e9JJGJB29HWS7x8UvVMR4uuQf/4TnJH2tMctWpLlPLI6Zm/OZvniBvg0pYgqIeI77KQmCxflcb5W2xc9KmA9RGyAmBHkAud6vWpYBy942EX8DNMbFqtZbzDRB4RRBsYmX+WqJ4wzwZzibwZ0LieN7CLdYLF5IIt8buAdHBrzx6vHCbSTVEyK0Id4janUH+FUKSzMSz10N4FHr/4GsWp+K1g8xdiJHZbyNaFnstYVTff/0x+v1oWQ2KE/XRv+3X70dET+zeuBE/489sU2r1cssau8FniocuLBd4qR34vjgHarslTDMA1FLv7GDuCLMXVKNutUUl6xMK3yF4YsloszqYMvWiSBbrIkmT9Gc2U2mo0Z9ejnNWQ/MCgQICqE2y2dozD7gBND/P/bePEqOK7vP/O6LiMzIzNqz9irsOwgQIAhuIEiQ7JXd6kVqSTNyyz2SxlvbrZHOHFnjaXlkLfbRSBqPWh7r2Eea8bQ0tjZLLXer2Vx6IbGRBAmAbBIEiH2tAlD7mmvEu/PHy0IVCoWNBEAUld85eYCqjIiMiMp47767/K4ckboFizHBw3iJXsQMgS7HllfhKkLXgWxHzJMIJ1AGEZNHzAGM/xlUdyJSxgQlnO7mflxBQLribfSBp9zgDKieRa3H9EQJMyfCuakFnmOy5zEyXe++p7/u3c78S8OpMheFAQGeQPXzqL0PdAjksKreS5w7QJRvdaoHlzFBoj4A2weEeOFrLjVET4GcB10r6MNABmwJF672QRIVGbICIg2gMeJ9D5ENuEruTXjJNFMeS9UC2AM4A1LR+GXQrWrj4/nn/vKIVd/PfHzdZuJiD8mGEbxEAhv7aByJH4i3dE1KJyZy8YoVsV+ebKU0WmZsNK9DveXyyYvbEw/7Fi0nNIrOSnbxKR0+UhRtbKdjY0mWfvxNLeX6TDKtRKXj8eQFE2SsTowVJQnq+wmiYrmYXdCZTH/+xxOq+oaINIvICeCsSSQ2L/zyP3m8+RMfP1k6e7i39qGHI/GTgvhNICOSTFpEAqBFk40DTF7waF2WlNr2RYg3hut7bd29096KaLsV4/kka7PAFqcHfk2utkFBxBzTVGsPXiKDCbpEzBKcSPxsSsDf4gzHZwmzf7ebLNyNzMOxuGpEfpAUBj3gq8CvMduAvITpQSSHeNtFKOCHaaJcA2ET2PgMIgHiF4CMtLTEXmpdM30nHgB2MnAmQxyt9zMN45l7OxZc/Nq/n/DbWvrB8xo+8zGN/GzP+We+Ndy+vOH7NNTW1z25oRid6SsuWNn9tr/oniJ1WU9WPnxaEmFLRQzuqekVsW43m55Osf7jgYbhoERFoTg0SFzcgVKLJBYg+TYStXlK4/144QBYJVmvmOAtiQr1ZNpqseUJkk0KrBAt5wAL5kWQBG7grMOWX0P8dick7k3iBsmXK50z3kTkIzjvyF6Xd0UGCBBvG6qDqL4L8Qioa3k4669wA3+pZjC/R77/H5Bq6bn+5lWq3GEKA58F/ghodbOQGUTjXtBtaPkYcYkpQUdmjjUmOEuQTorLqZsRoq4IjCsW9BXgUVw3kgagAbUHKx6wCPUAM4LGqxHTDXoG+I7bTt/kUhQCg+o+NOpT1WbN9T2j+TGTKPWiwyNp+OwwJhgnzn8EjXZpUJshyKQpTcTamh2refKpkDjfAPZRSdYXWP1gKGd/uDNoy5WlfQmaqCkaL0xrXBJ6jsZKalIkKItIjiCMKyLnxmQ6ZeGv/htt2LxJz/3xX7P0t34lNXqoP+z4+19cZ4LE4soN2IUbK5YCwxqXdoT1xfvChhWTJkhFFTFvRaQNpR8lhbCBsPEHlCdqaFmDJOtCd08FYKhSeHSRy+fdmMs5C1JpBairmPYkT1UcngLpwbk+W4FliKyTRO3scW2KMeAl4JvANwizI1fZrkqV90TViPygKAy2A38GPHHN7Yx3L3AM421EvAnQZkpjB0nUxWqLvWjcipfuFTRBYTQiN9CBtRDWTNDQBs3r99F7sCjH9nW1f/ETR2Xjjy0UY9L2zO5jg9/4xrHhF1/1mkqrai/sPlys2bhMWn90S4L6zoJZ+3SXBMnp9oxR/gVs1AxMgH4faBAxw9TUdevpF/arUkdNx5AE6Ziw2aLWJ5nNI6KUJopAGaQsiEUMiExi/BgTGEpjliBzSsU7B1ysGJCeiEkQ5wuo3QrldwEf8QN8fwWqjZVBeQI4AnIWF+45i2qEyHKASmjt0UsLeTePHkPjXtQ2cX1P5CTi7wNpBp4j3/8YqZYP30A835a/VaYpDPw08CfMNA5FsqgcAEVMsJxkw3IAtXEvpdFesJuBIsmmeoHFoG/NeWyRCDWdoLtAk0AWVQEdwXm7LCKvgzyKxkk03gliEfkU7tncB9oKPOh0JaO9wNM62fc93fcdv3z2QpR763RNYt0mGwTJBrU2h8Yv4CUD0EmiyYJePBBGu7/neWs2eKaza4O4zxwA2mXhprxBk6i1RrWkanMSNjTTsiZP+5K8lCcbdPT0mBo/KfWLJhGM+Eb95k4afurLUvvEp1NeY20qszFTh5EZjQY0DexWq2uKr+3ex1vPlk1n+w7/qS8uwQQP4Batb4E8BPZVpwQhb5vsyqfJzo4cA3N1KHMUgT0gJaATp8u4wJ0CA8CbOAHxpcBYpcXr4mt8G47i8r/34QzhNwmzsw3VKncz82wsrhqRHwTOgHyJKws6Lkd1zLWZog54F7W9RIVuCTIbNM4dYMoAFWnA2hzJxvPxxKGzpfND58Il9Rnj+fcyea5ey2M7CMJx2fhjTWJMGkBNxsZnz8frf/rR+uG9p6PGVd2e0ViwTWPxiBfRe7reLFiOGFM5FetXBtaFbk2sScSWBZDsGsGvacGWhxBP8YKCuPzDLlSFxpUZjfJjiEmISKw0JdG4Tvx0BuN3ExVQWz6Psoq41MNk75NAj9YtOSXYrZWbsbpyrcOVu3MWzCHELAAuorZQ0a7bADwPJuNEjkniDMUNlf1xuZNmOdYeR8vX/htAjJiZWmvfJN//CVItN+LBnDdcP5pW5a6kMPBV4NeZK5Ih5mFn1FVyHwExXqcmG9spje4kSKtMScQ4CZ4DTHvqx3A9nVdUPP+u+lf1NMQnQVtA9rjqYzuKyKsgOWxUi3iLXEEbBtdMoA+1F1WjBKotxKVntDDZweBgynv4Y/n6zyzwTJhsVmtT5C9OkGxcSlw8h0kWiW0ivjA4KalUQsoT7SRbeojzeZAhwMdLLhJbfgsxacRrFWSJxqVXpXtViCoEzUhtV6uo3aKqf0McRaiNEFEt531/4dIUpdw9+u4zQuuac9J1v6rq99A4pefeGRz9kz96uf/FN2y6s8m2fiIVVu7Ldlxl9KQdOvJtCdJFqenqwQRfuMZfyuIKkkYq+6eBLkQSzhCdAyc91jzne9OMAM8DzwIvEGbPX2f7Knc5820srhqRd5rCYANOrPV6BqQF3eNEak0OIQ00EGQm0eg5SuUaNy4BtvSaSmKxCKOlSWr3f/nfbVv1W7/wRstH24XSxDnq2kel+8G3xJinpg5fHCv6tRuXhzTVRJMDbymx2sY1XVo6fWZSTx55SuuSrwVPfWGXtgSGVGssYX0tXqIfTAsaO4NOGcDaswT1OeLCINgSXtglxje4SW3UiesiiD8CWqyUnhVAikDgus6A+KkY6FTxThLUvAkohYFYk42HRGQNsBNIYAI34Lrk9AWIdOMEkc8676TZX+nyA5XKTZyg+BxEFysr/6sj3htcntD+OPBfyPf/JKmWD88Kf56tfqsAhYEk8I9w4/go8KdAI6qr0XgC8e5FTGpG72MARMRo2KQyc3Ek0oHVoxC/gHhJoANkS8V1P3PnRahx7fZEtqB2Jxo/AL4F3Wfzg8MSZAbEeHWI+IqJEcmLeAkwqykNhkxcOCFq+3lgW9pv6u5GZAAb9xOXTyDSjJeOwHrEuYi4VOuv2VjQ1gYYPBNSHjuJUCbTlRQ/nUGkHeQcJugGPYnqHkRCMX4t4pUR8wSwU5Eztv9YPaXxEalrS5DKFky6vhbxWiXV6LHuC2cYOZNT1WdE40Dz/UVSXqLun/1Ka+ZnbUfQ0dGJ6rNiTBYwoAXED03Tqhh0EiRmepwRpo36GKf2sLriTTzH5QLgJ97DX34/zmh8FthTFf3+kDHPxuKqEXnneRjXl/TaqL7qtBBNCZGVTv5GSyA5xBsjqF1LnN+OLT2GtQ9gxw9raVy9mlScaKh5fnj7/lLL5350grA5IcavYexMScdPHMf4Z6lbXHf+uz/wRl/eV9z4lR9J5gbHy/FEQWs7s4G+c6Dsp4ILXk0ya1//tkhjUx8NDXld/8SEaehSRLpR+T4aZ4E82HEJwscVuwO13SD1IIvcNdi3sHEMIMZrBRTjxQJ9SLIbTIjGXXjBAcTbgo1eEC8RU7sgX5n4iip+u5aGXxST3IpIQFw8gxccq+QElRHyuC4Z92KjV/CTn8QN5p2gx53HQluBAyDTeUNOamQj18S8AWYuwWVX+Zrv/zKpFp3j/fnFzCmvyvwhbC5SGLgHeBA4TNjcC0DuogF+E7UxaOeMPSzIPsSUL3kgp1B7BOLVQAtqdyHeykqIuw30XWAbCKiOQnQYaEVlO0gJE9Soxi9TmhRKIxk1/giSbBTMfWjciy3tVSQmyh/W4ugEfhiK8TzCuhKQBt0Kulv8pK+Jrk2ovoKN6ohyQxhvDD9UaV4KLcuKaNyEjccIamI0fgUlh/GMy8PUPLYsAhHipxG5b+rqRKTZtK4YBQ1AEJEQ17qvE+iUIHWKllUlIIn4ayXT0SUZ11baa7x0lxYBlcKkygMjNz2FXqHqPsc2g8AxYCGukAmc9ubvA98izF642Q+tMk+Yh2Nx1Yi88yy/5ruqkRsc4/uYEsFWXqqsqF/FVUquFuQEXmjV+C9r38FxohxazMf+2EB+wY89LpOvvdugXmPJeMkCSF7TrWmCdB+lMZ/Jcxv9TPhsZu2agKZ2Fv7IJp04cn5SLZnyWN5KU+ObuWNDNVbisfRKP+3F5YwM9Y9R19apheGD4iUEdCNeuBMx21DplSBTA9w740p2gWzGeE6s20YBIGDyuNX56Uqu+BlUS6C7gcWIdxG0hI3SaLQET/opjT+kAS+LH9aDgo2KGL8dGEe1hNpR4uJeRDxs9BrGn8QVzAjwALDPdXjQl0EWoeULXF6hPTfilSu6eHPxj4Fx8v2/PN8NSXGT6gd9GlXeC2HzJLObFaTbLPAr5C78DPAfgB6QYyArcS3tLvfMqz2Mxm24ohlAF6N6prJAa6u8zqD2FBqlcUarBT0NulrLud2u9aE9K5nOsvgpo3BBbfwt7GQnqp8C3a35wYCxswswwQTNq7aojScZO/cqqYYjkmwKtTRSxkscws9AYbgDjScx6RAbRdhiGS9I4aU68UUQcxz0fCXfJgZyIKsxiYugS5DKQtYRAzUismHWDH0c5xks4hb315oPD3HJgLylCK7d6ndxnsXtwGHCrBtTCoM1uELB/qoMz4ef+TgWV43IO8/Vw6dO+uJNNLZAL6p9qC06DUSNcaK/L6BxCNoGbBDxDtC67mOM9+zWyXeS5QlRv2/o3rqW2hZsab/Gfg82Us1dDNFyUeARwCz80Y93onYCIHx4QE2YjMf3nSoHbQ1xsHoBXl+iPPzGaS8xOBHY8YL1Oi56prnDu/jn/19b+xc+MyCZ1j7C5hpU96PRZpDjiOzmUhWhCsJrOPHcqafCQ6MIRBE/AVpEJAIMGo8DxYqIOIgpgDcI8lRlv6TTl9SHgI0gJxFpBLsYYQg/WWmvIaPA07him5XOG0kd0AG2A9VXcD3Lr4N5FZGHr7PRL+FypH7z+se7y5lnArdVboB0+9fJ9f1Kpcisa8Y7j6F6EJG1qD2Kxi1cMiABWADxIdRsnhFaWwj2LNP9rydwC7Q0aodRDYAMfmoUJMSWi8S5z7lNdQ9RfglBOsBLniLK36Nx+TlstIjyRBrPGyPRkMOkLTBCcdSAvE1cUkwiB9YgfkxheAWZzEHQtYgeqRTgPYDIAWA5yGGER5mWPZti9kKwDJxkqrp5bkq4ApWXgdeAszhjNKr8a5mumJ7C4NoUNuM6+mRxns7VuPSljsq+L+OMxT24NpGnrhqSDrMTlXtd5e8K82wsrhqRd55r5a+8DPooYkC1D+wwaANxYQ3iPYeXfAjUA826b5o9ALSJyB7r+ePRuNSN/fkzl8JUduiUSLqxjsBYyfe1k2wAkSSwEzEPYrwkwLm/2LHLDA4XC72DNfX1qcF4xxvUrWyL6+9bJqa5IWFWPDRmGtvqVJMD9U9+viz1XQH4exBjwWbs4MUXy9//G0+Sycg5Gz38j/34iAnDWjBlAIw/gNokxgtwOUUxbhB2q2uRVlx4qQ2kHgn6wRtDeRk/E5NsWIHQ6oxAAzCCagLoxXkhkojYyuc9C/J0ZYzP44oFnsdVP26pGJJz9Yp1iL8dMVcR9r2C3yDfP06q5Ws3uH2VKncOkbkKwARIovou1p4BDXFGpAV9w4WITSfYZ1GWopwB2VTpt21xRtAEsEXVXqzkb+/ES04X6hj/ILH0oraB8uQ9GhfPUBhOE1tfy2Y3JrHQ+JkizWsm8FIBXqKItVAYmKQ03o3aJwCIizuo6ZoELZFY8A2C2mbQvxXkM+5S9LsgKdxC8SNzXGsPblzZjiuwa8VVN6/EFaXswC0qp+bCc8D/DvzZLe8VXRgUwKvmMFb5MFE1Iu88/Vd9R+RRlHNAN05TbQhlAcZ/FUydajQKclEwyxCpQ00A1gNWifF3o/5IYu09O0gkFJG4/6u/sRzV+xJrV73Y+E9+ZhkwDvIKYi5Va6rqWEOGBaamqUsXNo5pMvQSqxYnvHtWTPrp+jHC+kgal0biJWtAN2TqG15EvICgZiPwDnh1msuN2OMHnph5KcGnv3jaye5oiHgxIs2otlQmrEM4b0EOMQGQr4S0S25CkFJFzq5eBCVsTLtwtIxi/BVAAtUDoAGqk8CngRiT3IVLWp8AXq4UBowDe5mpgSfmEVR7cZNIP+gsg1GuJ/szm98j378S+BvgFVIt889zMM9CKFVumDNcqY0K7gFrRkwGjRfgvHMRqt3AYVRrKgVqa92manDC+z047cM297yaA3iJMjay4iXSwHaQSaK86pk9a/DDNxBiMi2dXDhzXMeGFnC2J8NY/jD3PGpI1Kc0P1ggyHRL7kIOW57urZ3KbidRuw0x30FMFi81IiJ1IAVgB8giRD4GoKrDYN/CRqNolBMvbEDMapwHdqYXdiYNuPHiFNAHvAD8DmF2/H3e87lxIeqqAVnl2syzsbhqRN55+mb9rLhB7DxQRhknmqjDhUSeVuV5/GQGGxWJyzUYv15NckygDpF21OwA2wIQLG5rr//SZ/s0Wdc+8Ku/FaO6EKB0+NhjI3/4x28Xj52sbf7n/1O339Z66cNFpK7mf/gf34q+9RePkg5P+JvuWSgiPplMDY2L3pAg4+GnFiPyjstnVMELm1G9CDqscVyK3txZM/sidWLssNQ3JdG4H40FvAIwCPIx0IOuQEgsLuxzFpEQTKlyPzxUcyBpYAzxBOxxNF6P+EdRcs6RSR0QAC+AiXFh7F3OcJSngTdw4bcdYCOccPDUhXfiQk2g9Lhz4knAB1t2Bd83xZcrL0u+/x1cqOp5Ui1/dbMHuuMI8y6EUuWGmatw4wTOgGp2E5a3F40TwL2VHOAO0ANOQFu2IyaJ2lGQR5jSMARAEiJ04iXO4CVSzOiSIkEaFe8Yk/3OKBzvA43yeP5x2lozkkp6Whguk7vQSLL+osAQNd0euQsH8FND+GGACdYAhxEvhUiZON+l0Ifxs9jyOBqdJi4OY0vdqG3GVUHn8Gt+iJfazNRDrHYvThGiAZG5DOrFOA/lI9W8wyofKPNwLK4akXeenbhcmyJuIF+G02BzOmzGH3WiGnoUl0MTEuW2XtrblttAduElu1VVcRYagBCXhlEJObl3MrmsZSz/xkgvVjuJY7944N17/a6O3X5b6/RKv4Jpbd8a/NzPn9fje3PiBXXUNO9Foq2Itw4vfEVENiD+OYxfxMZKXBzCD+sU+Uzpv/5fB+2Jg1cOzBOjS6hvWgGy3VVE6hagBzG7wEx977pwBnRtZfW10HkraUc8UPss6EpcpaKHy2NqR2QQPA/UoPZhkL2IJrHllxCTQ8zWiuzGfc6Johbhgav+RUS6UCZAjwATaNwM5oKTD7lpDLC+8nocuPuNSGT+iZNVuT75/gTwsVm/PYMr2JvWHxRvM5gIjXeAnUqHWQeyH/EqXno5g8YRl88Zu4EMqnVoNIl4u0CWINKlNj6KyHRENrbyAAAgAElEQVTOoAgEQZ10d3QR1PQT1gaSbkmiOoyfTmH8FGonSLenEdOPSRjU7kVjS5QPMP6TiLwice7jOjm8HY3rCNKbrrhmL71f/OQ4U/mKaneBNoJsBgVlPyJX7ud0GxtxldFVqnxAzL+xuGpE3mnC7HEKg38F/B9zvi9Sj5fYSZx/DNd94EqJGY2b1Ja3O++BGIwPXkJJt1jK+ZTU1RVqH1odlU/2HomGJi5JfEQ95zfH4xPDXm1N4+xDijEd1DT2SMuag9Ky/GNq4yGi3ClcgvlRxDwKCsb7AWo8VM/Gh/ZdtCcOzpWHhBZylVwsU0AYdcakXY7GU985Ae88IjGuylpxVYojQA+oBdsO2o2NziG+4CWXofZtIEDMGGizMzRtGyrrsdF3EPMgXnAAJEIjKhNIA8jVXYuqF4All4WxNX4TvPprVGffCHXvY987yzwLoVS5IVK4xWq68vNpXBpJ6xVbCiBeN9YeAOoQrw8xm6ffl4UoO5jWONyDa4UIIscwYTNxYVxt1Ep58rtaGn+MpgXH6C++TCn3MMbbR3bRSuLoDYqDGxF7isZVecRsoDSqxOULqOQ1P3yAU3tbgG5aVx+U7MJaikMxQe1zkqj5rKqdyqUWYJBE4xDl8YugFvHA+IKYp9H4RZA1aFwGGcR1yjJuzKBYyQ2fTQ1VI7LKB808G4vnl8n74eFrOG/k3PjpBwhqt+PCLCmQCZyB5dB4LXFhG7b8CFLx6nnJQQmzzeKHo3hejGcCWyjPNoCSE998Zu72ZgBNXWXNjwQAYrwmSdRukiBzHyY4gojrGS2mBuO1qNrHyt/9y/qrHsta5wkQCRHTjKuoPu6qtU3CvZiqCq0BsqDdrupc66dyIoGdiAdihhE5ivGWYrwsxqtDvE5AXX9s+4zaqBlb6qOct8QFQNeCFCqyJlei+i6qu3DG+qwFlW5EoyGn1/memV0lencyFUJ5L68qdy+pllFc5AOcAZnEyfXMQhXXXm8p4q9G/IWXGZBTiLcWJyfUw+USWTVAF35qDVHuRcrjHxMhFOOvo7F7jNbVz7L0yUnxEj+UsPbzNK3ISccjy8T4T4vatyXIdIqXHgKNSTW2ExXbEemlrvkBNI7xkiX81CdVdZ9eeGu7jp5JkKgfxYSvipcYkDCbkrA5kqB2xMmPyWuIPInqOPCkuz59B9UzOO3FfVe5Y7cnF7JKlRtlHo7FVU/kB0GYjSkM/ixuMEvPfltEQrzkNjWJo2BHRbzNqnoe7EEUS2l4M1MLAFsWlWCPSPCk2slXVG2ZQsGPJWVsodQ9+9j51/Yvr/t7P6Fi5vjWJVIbGe05cPnJmGa85KcrnsI9OM9oQYy3M/zKb22If7h7T3n7NwNv7eYR07mkjnLpIslUh+lYNAByDlRR7ULtfmy5GRDEKwIhxu8BL8IZyz7Qh2oTGmdAjmK8AngFRJx8iJPTKVf+34DIMrzkMqL8KYUTxLka9VPHRPRJNE6hZifidTAXlZwBprvazEUXGrWDP+zkhG6a9+PFvLPMsxBKlRvmj3ELtcXMaUCCxoU3mOgNqek+Q77vFJmOjYI35UX/IfBt4CQip1E+gssdnkk78H0tjhYpjU15Kg+TaDgpqbY0trScyd5xgpqTJGq3S7KhKLANtdvBprD2GdAa8ZLNWpocZ9HmPqlrncqvLJJqTSPSSxxN0HpPhEgOL4wwQRcwhMg4qlmMVwm3m0HU7nBeR30b5DEEA/Fh1DuESPkq9yr/nu5wlSq3knk2FleNyA+KMPsuhcF1ODHgT8y1iYismMoNF5EO8DoQ0GTTQaL8MHF+E+LHIrJFC8PbtTicJpHJ0LJiON71p2D1yqpEa7vyr+59Lb3lwaV44SHCpgxeshlAwNKwvENVp9r5KeCLCBUF1Ea3GSmQj4sv1r9/23F/0+OL0bjsCmBoRm0RyCKSw2oZW06rjcfRcgoQEnVWnNxGHS7cVungIzGu2KUOMSMg9+A02kJcmLsW5GHQl3AV2k4CBB4X5Kwmm5aIMWux0Q8q5/A0Gisq30NMCyI5XAVqCpjk8naGV8PDabldy9i8GjH5/oBUy9UmrbuEqlfxQ0uq5c/I9/834GdwclivAz8B/DywTNXmmOhJga5h4kwOWEh+YLumWreKiAccJdX6Ly8db7J3D7AJV6ndglNCKKNRTFwwTDVIEL8P460He4zJ3gReelQy7Z8EXN2ajU8BJYxpBt3ovIdejwSpFE1LSqh+G+IkUT6PSFmgSY1nRU0DYvowfixeYhB4ymnSyvdRusAMQvxR0B2o5tF4DfA6SiMwjKgPQfkqIcN53TSgyoeB+TcWV43ID5Iwe5LC4NPAT+FC3C03spuIWUuQQf30BDYq6+T5l3Sy5wkybQdFzFoNwtdK/aNXSgkZcz6x6p7DwarNDTSsyorIY3Mc/lrMyhcSA2xBOISaCLV9iGnETST1wBhiCojpwZMMEoYIgsYlxB9BKKBRhOpLqIYYcz/OSP0uamux0ZGKF7IeMQOogNoxRDaiqtjoB6CVfuD6mGh8BBUP1SUgi1F9EZEnQR8EfQVkmdPfZBM3k8qhNrhWSuVV2I0zQDeQ73+bVEvxZg9QpcotIdWSxy1Wp/h98v3fV1v+C8ZPNTLdhtVFRcrjj1OeeFPrlkYicvk4kukcZ7L3BVxO9wBwEae1uE/Cpo1aGmsBuggyLcBJ1LbgJc6SyCzW8vjbEtSudweyi4FxVFLAa6AlhRi1NQgCtgbxPQlqm4AGxJwTkc1q/F5gTIwXIfIRVHfielKHiKxAta0Sut6Kxicr1/QQzstYROMxxCtVM7mqVLk1VI3IDxqnHfanFAafB34X+Nkb3VVEavCCp7R2wZCEjS8RTTYTF6BQ0ExT8OnUAwv6xy/Eb0hTRzLzqc+3JNbeu1aMmTu8e2OUrnImaxDTA7YTNIXIMZCwYsDtRCQlqnUY0w1Y1CZc4YwUme7+IECAag8aLwWWggjK90HzqE4g0uh6Z4frsNGOaQPyEiuxURHnbelATANOT85DvE9gyzsAi3g3OYPYB1EzgMgQbtJsw4kVX40cMNW393VAyff34KRVTgIXmJ6A//KuMDDnWTJ3lfdJquWA5M7v1kT9PZRGZ44J+4GHpf2Ra3nP/wCnOnCGTOdM791fUxgB4//SDGWDl0l3LkXj49iSqOqEiNQAb4HkQM/jpLeW46WOonEeW3YdpbTUo+IfFJPoq2hWirjOL6twqTUwtRBWfR0wiOwHz4IWnI6sPQRyEZNoxpgicA/K7vd386pUuY3Ms7G4akTeLYTZQeDnKAz+JvCTwH/HtCFyTUSkiUTtEyRqUbXHxBsd8376X+3xUnWNTcasFs9f+D7O7CJOYuc4LgR9tZPoQs0IaA8iM0O/WzD+C6jN4QS/jet0I4CsxQSNqO5CrbiGGfY4rgL05Up3nkp3jTiFtTkggY22XykQDrgCmTxQQMwuRNahOoEttWBlJ9jHAFGi72ESa0SkC0BVbeX6RFyLuJn0AXk0PgSmeYZQey+uWGERU3qT08S4cN+lu4MTkO9murp1in9Mvv8LpFouXvXe3m6ESnfKKn+X0PLkn2FLvz/r15uAe7l68QlkOgu47/7ljJ0I8cNfBE6hdgAoggnEmHbw2vEuDR8nFBYRF9/GC1aLeAux8U6x4/WqOnDpeGLyeEmDyCNAA+gJpsLlategOohItrJ1I86w9BDzcdX4e1ibFHQM49UgKLAR1WOAD3NO1PFcv6xS5Y4xD8fiqhF5txFmTwK/Dfw2hcGVOIPyp3Gr7+siYpaTbpxtCM3kBeA/X+W9As4IywFDwPHLujcUBjuAT3J5n92ZH96A68gwVQUJIh5KDWKWovRWKiUHKoLggupo5TNj4CVM0I7GL2CjGiBQyKLWA7oRAeWkqP3EzNWaqsaUx1/CT2XxUktEpOR0IvUAIhlMcAJb+mRl2wHi/DrIZTSo3Y14CyiPxWi8AkC91C688D4RyVTuxySwBLQP7H0ufGbWA/WVyc0CByvXMKX7+RZT8ifX51FgL/n+L5FqefEG97n1zLPVb5VbQL5vP/AN3HhwAdfw4ALOW/5eyIqIqrVN7nmhEaxBzX6EVUCMmB/ivJH16odD2KjNpSLaVUAr2KMAmMTLeMkJEfk4qjHo88BTwDsgvYjXhuo5YFPF6ym4Z+mCqr7B5PkyyiQ1Xd0YWQG8ieoLwEOu4O8KSlS7yVS5G5hnY3HViLybCbNHgH9NYfB3gf8E/L33ecSvA/+IMPveCj3C7HkKg/9z5VyugjSD9uAmoyEgj8hjKCdAW0FrgLhiQPbgvHOKyDbwjrj/+/XExUUY/5gYf6uW89vRaBvIDhHzKeACKocRbyMi9US5Fwgyddh4hDj/A/z0Y4g5iGoH6AWETyDBdrWlrdjSOZfID5THHsUZitNSPHHhHkzwNshCMCcReRQXer4P8FDbhEYJIMAkpqq211b2tri2ljdqQE7RDfyAfP/XgK9WctjuIDLvVr9V3j/SvmUU+LVbdsC6pT06evwrEH8J1a2gP8QkBzDeU7goxgUXftZngViM344tD6CR5dIiWRrxUy8iXreIEeBbSKWIR1FE7gEZQ+ReoM2FrNmNe44Pogq5i2coDn2Omu53Nc43QeJNxItR/SSjx18k3VKW5BViCz2V1KIqVT5A5t9YPL/O9u8qYbZImP0irpr4e+/hCJPALwE/954NyGm+Dnz32ptIF84zNwTc7/Ta9Cxupf8WzlPZ53rv2gLYCNXtau2ARsVRjYqxOkMTMBF++hHEe0bETIWC20G3oZELbQc1jWIS94iXLItJPI3Ge1Fb8XjyJIioRoLGz6HxxlknO1PLMSKo7RGRh4FONG6q/D7PpT6IOohL1g/Anpl1LMMNFkddhV8E9pHvv/+6W95KBLf6fS+vKlVmIPXL/gT4DCI/gfgJ8YJPOa1YMYh0uoWjLKpowDYCjzAdZRkUP31IxCuKIEAeJIVTZZhE5C3gAOjUM9sGHMIt2j6OW8w1Y/xmtfacTvQc0sLgBFEOVNczeeE7OnJ+nHJuLmPx1O27K1Wq3CDzcCyuGpHziTC7gzD7MWAL8B2uWuhyiVHgT4FVhNl/e0tW2u4Y/7By7GsgS7jUt1qPAl0I+xCzDvE6ELKIqUO8McQ4Y02jGuLCg8SFLXiJo07mh9MifF+8xD24nMeZpEAXiZYfRuQAxgsR813nRUSAxwCjcXEntvw4qouZ+565MFZQ87qAoHoA1QgYx0anUHsSFw7bg+ojl/ZSnbjsKGpfRfXw9W/iNVkDvEq+/1fJ99+5SME8G7iq3L1Iw6q8NKz6W4y/DfhXuHD5f8FpvJ7HFtdii/cS5VbM2G0M8UfQKOk8kyaDSELRlZof6NOJHqPlySEUAzLTUz87T3sML/kAIofBS4oJ3gUzJhrX4ScjaV+bINkwV7eaq+eAVqlyJ5lnY3E1nD0fCbOvAJ+mMOgBC3CVwq24sGsfLqTaR5i9PVW/YfY0hcF/APzXa28oIfA4mGNgLzLdLWIYV0UzdX4BaBfircQknkdMynkgVND4GMZ/GhN8B2Qztvxd1H4UZyROIuYdxJzHeQrLiNRiggGQrcBpjQsHsOXPuNORe8Dfhcb3gk63JAxqXsdGJTCP4+5fG/AS8ISKeY7iaDdeogcvWQ/iyaUHVqOKJmUBkRpEHgcuot4oIlfv5nN9fODXgSacd7JKlXmH1C0ZA37j0i8mzv4b0MdxBXYzn48exDteeX6WoRbiwjDiK8WRk5QnPgX0o1LClrtAnsdP7gC6NC6v1YsHd9H3bj1+clI6N1r1/R7JtDdjkmVsFGK8UdTuFz8M0LgbL5mZ43Rfv423okqVDy1VI3I+E2ZjXBjm1Afw2X9V6brzNS6fEK5EZDlqUmBP4LyDh3Aetx0AKFmQQRF5Gz8sIhKj1kdtzmm/2W8j5iOY4BAm8LDl76E2CdKOSBIxWeAILsy9AeRtRAyqfeIlPqMmOIotHcVGddhoJV7ydeLCcmASP10UMY/geQOuaIZOXEV6AuR1EdOsybpegUSlj2M/8C4uTA8a14OtB2+4oiXZCPouyL3v8w6fB37nfR7jBpl/eThV5iE1Cw4Bhxg99s+BesR7E2QQeNLJgl1Go8aFVjQaxU/9rUb5mLjUjPE7RES0lLN64Z3DDBwBtVsAQ1xCT+6MWfnkKNDExNnnUE2RXN0MsgL8HyKmB/GenvVZeeDZ238DqlS5HvNvLK4akVXeO2H26xQGvwv8R+BHrrmtkwDqALaDzV7+po4BEWJyqLWoGpc876+GOAGyGThYSaZ/CxNksOVVOG/kStQCZhIvWIXqW6BFlENg17mPlhWIfx7PbMVLoKoLxEtOIHIPqm+j8RmQEYwBa08jfATkO4hJAA2CWQU2J2LWoPo9YDOqR3ENuhOItxgxvThNykmQj77PO1sGfpxUS+/7PM6NMZWHU6XK7Waytwkv5eOiEc1o1I1Lq9qG8wZe6nMvJugjbGpT1RLiFxG2otEzSHKb+Ika6b4Puu9D1VpKEz0aF/oo5WrFTy4HlNoFzTp6aoCRE71Sv6geExSQZGaO7/pfXaZCUaXKB8U8HIurRmSV90eY7aEw+FngnwK/BwRX3VbETRZqesHuxj0yPhCDPuUEg7WE6zm9APQCmAmc3M4y4CDI/QjbEW8UjTtxfbTPYLzzoAFCHdALOlp5r/LZJKeamonIStA+lPOIrAdvlKnOHEY6Qb4DNCFSAlmP8DIQoBFAHbZ8AuioVIkq4p1DzFbQRmASdC/IdO7kzfMLpFpefh/73zQyz1ptVZlnTPYuA74M/ENEXCqJ2kEun4MeALbjDMoLuFzlZSKykiCzg7hwGhPcj8hleZAixmiiFinFi0nVNwLo+NAuPX9uLBocLGumNikTh94Iumph6ZZl5spo9u/djkuuUuW9MN/G4qoRWeX944pt/oDC4Ou4ThYLrrm9SCd4nag9D3oE9z08APZ+nFdiO8hZ0CIiH8F5LXpx/bMdxnsINTuBFkRiwEn/wMTcQuSmBewEU2LF0AsygpMXOgt0AW+DrK5UYI+AZBDZi2qL07U0J8DmgW0gZzD+GCb4dMU4BtV3gdWVXND3yn/CeXbvLDK/QihV5gm58wbV/xfYgCtqexP3DG5CzHKXQmLbZ+zxMPAiSBqRZlx+dwoxa/FTw+Jyn2cXCJZAzyOyGdVdaq3P/mebdSKXL7x+NF0eK3aMF8sHFv7KL6ZNIrVm1r4vEWbfuD0XX6XKe2CejcVVI7LKrSPMvkZh8H7gj4HZeUdXIqYD6HA5hLaMquuOI9IOsgr0dVyBSzswBmwEfRvnwYwR2VwpwFGc9NG2yrZzfJYsRdmLqxgvggwg8lHQkyBLQQ6iuhKN3gTdBPIOMI6YT4GeA9YhAjbuAwZd9bj3yUsGpPuQAdBdXN6x52Z4HfhnpFrurF6dCMyz1W+VecO/ReRLl/1G9YdX2TYP7AV58oqQntr92GgcL9iIRj0oFxG/EzcuXAScdJfIVvE82PbFY57aRO3n6qE0dqEpigJT2xrM4eb5P9//JVapcouYh2Nx1YiscmsJs/0UBj8N/H1c0c0Vqr5XILIaNYroK6CP4brqTADjwHpcP9+KXhyjOE+nBxwAHqgkkWRBX8FVgC++4jNUx9wxzQ8Q8whoEy6HMcb13F2ARn3AVsTfDvokcB7VPe6Y+gbKKBpvwku8hXjrEJkVutfk+1hG9gNfINVSeI/7vz/mWR5OlbuU3PkUqv+RuHgYL7kVkU/OsdUqXN5vgGAqfsVDICmmemHPRqQJ9F5Ve1LErACWotEoyCnEe9BFCi7bfjle2Gv8ZINSO0QqGWC8mllH7cFJpVWpcvcwz8biqhFZ5dbjwtt/QmHw28BXga8Ac2mzTSMiKA/jdCU3gLbgPAwVcWIugB4CakBaQL+PMyR34cJbG6CSa4VuB9YB0wU8qu+CPI6wG+wxYKUrgjEgnELtKZAEwiDYJiQoI7IEjU7icisD1I6BTIDUItI249gAZ4H1IEM3f8O0CPKTpFrO3vy+VarcRaQ78kz25vCS/5RKb/orEAldARz3ovIwqt9CzGpgHNU3cJ2f4sqrgMbgnvUSNhrABIsQswe0HbQJkTpUhnA6siswiZfwwkbE+IhZjBcOgVWQh2adydcrChdVqlR5j1SNyCq3jzA7BPwShcHfZ6pjznRO4pWIGJDHUZ3EdbYZBa0FXYbTwnwB5FFgN8gmrt4dZj1uIhplWn6ojIjBxnnEKHAWtM3lUnktIAmQLcAwaA9abkV5E4wi5jQi67GFCBMcdaFxBZFXAQHrOeNRS4gsu/6NUQucwLU7TAD/glTLS9ff7zYyz2QlqtzFiPxL4L+/zlbDqD2DlsaAz6K84iIEFVRLoDtBNwP1Aqjxvw08DLodkSRKf0VBARGTINW2WOPi24hnRMyGypG+LZ5XD36Wy5trWOD/uUVXXKXKrWOejcXz62yrzE/C7FnC7C/gwtDXLxoRySCyEZFtiNkEpgBmTyX0nMAZhnMYkGrdxEMT0MxM/UqROpfELwnUBqhdqjZq1yifUGuzoGXQEcQ7gPituCKeeoz3EDCMjfeB1CDmfncduhPVBlyxQF3F0L1KFx8dd95RPQT6GpADluP6/f458O9u5DbeVuZZl4QqdzHpjkFcBOLq2HIJW2rGRQwAuwiNd6E6VTx3AbQG90xtV1t+CRu1o/IaGB+1BnQRyFSL0A6sLYiXCES8Ntwi7RDQjZLGpcfM5C8JsydvxeVWqXJLmWdjcdWIrHLnCLMjhNkv43rdHrjh/URqEXkEMZ92xSvEXFmhCW7SmDunCh1AzGMYL4MYFyqz0Uk02kx5cgQb34t47yCyBhFF9Txqc1gV0CXAOF7iJCIVT6rWgKxGNcDlYXogs1oqqq0YjedwRT9rgAeZ9sYOAV8h1Wpv+F7cDt7roHWDA5eIfFJEDovIMRH5F9fY7gERiUXkx2/ZtVX5oPgjXDRhNudxXasacT3op+gE3QrxRVT7EdIgAci7wATIfU7yK0oisgzVrageQzhXWaBdxJZ/oHH5AkIRxKD2GGovIkyCts46j6qsT5W7j9s4Ft+ucbhqRFa584TZl4FNwK8x1bf6RhHpQsyjICeBPdNv6AVc8c3VmCqCsagmUNsrIosRb68ImxCzExHFeQcfA+1256j7QCOEBxBpuOx47sGd8o4WgbWoVoxbBTeJPogzHmczCXyeVOvwTV3/7cKY9/a6DiLiAX+Aq9ZfC/yUiKy9yna/DTx/i6+sygdBuiPC5ULPZBcup/l+jJ+b8fszILvB7ASzBKEFaEZkEyL1YNaLiIpJJsQLEyjnQHcr2qrDR3I6esLXOD6scd6nOLxY1fahcS8aPYraGlQjnH7rMVxb0z6c1FCVKncft2Esvp3jcNWIrPLBEGbLhNlfBx7iZrySU4gsRcxDwHbQXbi+4Uvn3FZ1iMuEx00HsALxQ0HqMIldCClUV+K8iuAS+Y9VBM1NZf+Zz8syNHp+hrZlCWdITlVX72FKdmRuvkSq9e2buubbye3zRD4IHFPVE6pawoXvPzfHdj8P/DVugq/yYSDdsRP4zziD7U2QrSC17k2zDMwrYC4i3kLEPIrIY8wSEgeKiCxEghgxHsbfqiZIq9ohJnpiNF5FXHwULUFQ20airiAah4hJYoKdGF+BRpBHQJYDrbh8yPKduxFVqtwEt2csvm3jcLWwpsoHS5jdT2FwM84r+cvc7MJGzDZUj4Atzfm+ahHUAPdVflNAZIHzfGgJ8CqFNimwBZQfgPhgsghrgRcrx+gH+mYo+KSAT+AEzg/jNO7W43K4Ujjv5NX4XVKt37ip67ydCO9Hm6xZRPbO+PkPVfUPZ/zchatcn+IcbuEw/fGuivdHgaeY0fauyoeCXwY5ysxFHExFFPKuuO2atIKeQmSxqk1TGjuCjRQb1ZOoa0NTO4hKIV64RbT8LCbRhEgI0o9ITUXaKz/rmP93RUGiSpW7i9s3Ft+2cbhqRFb54AmzReB/pTD4TVwu1bqb2l9kpUu4136mC27OoRpXwtwPAa/gQtqrgAmM14S15/DDGsR4IElgCOxC0OUI53E6ck9WinU2c1n4/BLtlVdP5ec8rqCnfo5tAV7lekUHdxzhfXRJGFDVzdc++BXMnsC/BvwvqhpLtVjnw0W64zy5C7+LWyTOZAjxzqHR8uscYTUuBeU51FrAIqYRY+5DtRdJ1JJp6hExO0HXo/FJxB8G7UK5CChI86xjvnhrLq5KlVvNbRuLb9s4XDUiq9w9hNlXKQxuAD4P/G9cOxx8OWIedB5Dux3oxGlMPoir0pwy/i4Cm1HdB0xgxILmgceBg7j2iuud8UkWmFrVbQFeAwqoxri8kdl0urC6zYDXztwP7SgujH1zeaDzm3Nc3gazG9fCciabgT+vDFzNwKdEJFLV/3ZnTrHKbeZ3gI/imgWM/f/t3XuYXHWd5/H391R3Uic3CJUKzS0QMBhQQG4BJCQygz4wC6I7uoM6KMM6rruj684zOsOzy/CsI+swq+OooyODjuswyrqPjBeG+9WEBAIBAggxQLgnIXASQgj06XSq6rd//Kqh0umkuyt1qup3+vN6nvNAVZ3Lr9Ld3/M9vyu+VmQuFh3iEz17DbNtYClWmArsD7yOq76Cn8ngSCI722qVFbiegqvZ87jqa9R2DDB53x7rnTqbmpsG1a3gDMd0jOPxf4NL8YnokCojPwyK5FlmcVhJ5HikiQEzeLtpZhNxeeRmVGlOsVQDfs7A5l8A/w6fTC4Y07Fmk6Hg1812bibUloErgu3AooW42j3+4as2CT9aeglvjxB9EexMnC0BNx/YD3pmY9aD27GhoQx3AWeOdHVgoV/ZpnIzRAtG6KfyJ8Sznxrjv0R7ZbfU1kpgnpnNxdfWXgB8vHEH59zcof83sx8B1yuBzJEpfSn9G68GrtrpfSnRYdUAABrqSURBVLMjKEwGnzQC4FxtHdXBZ8B6sWi+FXpecrXaAVS330QlPYhC0aynd3+i0gl+f1YAWzA3A6KtuNrhmG0EngXWgHOYNQ64e5Bi6c2sv7JI07KJxZnFYSWRo0mTAvB7wCfxiUfj/IRvkCa345+wd+Cfmk/Ed96ehP9hLQV+BtxIXJ5INVB7x/dZup6BzTcAH8Ank6eP+XizWRD9Do7bgFNxrubnggSw1+o1+RGQQHQnrnYAVCr49oSDIbqOKPqg37/3Bag9CFYEW+xrPHbbXH082DLM9hvhsyfHXP52y6gZ2TlXMbPP4Uf7FYAfOuceN7PP1j8ffd5QyYOr8U3aBw7/wLnaFqqDj1HbMRPfleVgnNtIdWCtK0zegkXroTYdKyRUB2uOaLFZz3oset7MjgR6/Mhutx8WvYKr1LCe1Zi9B+zpYZfrnr7IIiPJIBZnGYeVRO5JmpwIXINfLWUk0/BNr7szB/jD+vYoafIf8EtzOeKyOnaPhU8mb2Fg863A+4Avs9u5IIcxAyu8n1p1CdQi3moeN6snkWdA4WGMHmAD9Eytz+24CqIyfoTabMzmQGEOuE04lkFUAGaC2wzuXfjJzYcuuhy/qs5ILiF95SLi2dt283lnmGW6SoJz7kaGrVG8u6DlnLsos4JI50zp207/xq8C32l82zkHO94cZPjftFkfPXFf/dUmiO63KJqORZFzrHHV7U9RmHy6RT2vAkXMAVbGMRPsAczOrR87vMnu5tZ/OZEWyTAWZxWHlUTuTpqcAVyPb75uhWPxk2EbsI00uRv4AfBLJZRj4JPJuxjY/Gv8qOj/hZ9rcnQWLcbVVgJP49zLUDsCK6zEuRSzdwEPY1HRr6/NByB6GIsmAy8Ar4CL8ZMkH4ux6O3ujlYf/c1j+GlDJgGnsfteyb/b1HdvBw1okez9APgScOjQG2aGs+hJXK1xlLbDT5dVrL/eTO/0+Ri/pbp9gRllVx3ciquuo3fay2D7gzscs1n1FoAe4BF8/8vjG867gZEnQBfpHoHFYs0TOZI0mQ38itYlkEOGfjum45vIfw7cSpr07f4Q2Umx5CiWbsZPQfBR/PQ6e2YG1nMyVujHCouwwitg84gKJ2FWwtcoL8KPsk7BpgFvYHYSZu8GnsZ3yE9GOPdkzN6N2bGYzcf2OLTuw11XCzkksKW2JEBT+rYDf7XL+4XJs8AeAp4DNtEzZS290/opTF7KpBl3M3nfjRYVEqxQdY4VztWWE/VMxqyf6sBUapX5uEqFWvVJsI1gNVytvz7J+LSGK92nqX2k6wUWi5VEjuwK/LJc7XAW8CBp8s42XS8fiqUaxdK1+D5UZwG37nF/M8BOw+w3WLQQs/X41XLu5K35slw/sKo++noSzm31I7ntA74vpB3B0I2uOXuaO7KzLGpuExmfqxnWN9iinqNs0rQT6Jn6HD3xby0qrDOLnrCeYr9ZNMX8w/cJwAcp9M6jOviGG3h1k9vRvwkrAG41Ue9ruFpKdfBZapVBKmkv1e3D54d8sE3fUaR5gcVi3QWG8yOwR5rJPUsHAneRJv+dNDmszdcOW7FUoVi6Azgb2O16oAA+ObR349ff7scnddOAX+Nqd4F7E6yGn95gOv5md2LDGe4Dmw2sarK0vaPvIpJjU/oqwGW7vO/cvWa8zyw6A+fMr1xjJXxsXET9b8ei3vlMmjHD4tmzrLjfNMxSLHK4ag8WFbBoDrgDcZWTcNWpw66iJFKkxZREDuf7J04Zdb/WOwDfz28VafIV0uRi0uTYelIro/HNVH+L74awe2bTwN7Aj6a/Bz/K+j1gh0E0A4si4Df42sahWfsr+FH2h+MTyJOBV5soZbWJY7Jne7GJjN/PaOyb6NwycKf6F/YEUc8RWHQiZifj/z6X4/sc+z2ssMAKvRvN7BBgOtT6cO49mC3C7CCc81P4RL3Th11XSaR0twBjsQbWjOx5/MomnbAvcGnD66dJk/+Ln9NwOXF5eBONDCmWKgxs/vfAfwK+iv+33JXZYbjoMKg9AbwT59aDW4Pv0D+tvg0N2hnErzKzCHgY3AH4TvspvvZzPLr07039G6WNpvTV6N94KXAdzi0FtwgAi1ZgheN2mtfRbApwOs5tww9MHMRsBs72A3cU2GpwBawwCO5BwBH1DFCYtBGssa/5ixRLu/ZpFukq4cVi1USO7P5OF6DBEfik8jYgIU2uIk0O6nCZupfvK/k94C/2uJ8ZEE2q//8GrHAOVjgLX8N4ArAMeBzf5L0IGJqEfBA/X+jp+NGfY/EQ8BHg9vF+nbYJrDO3BO96nPvntxLIqGcJUc+pwyYGf5vZdMwWYLYQOAaLdkBUX8o0egazmVi0CIsWY7YfFpWxnZLIB0Y8r0i3CSwWK4kc2Y86XYDdmAr8MfAAaXIuaaKf3+79mNGbr/qAm4CYnftIVoGF+KUP7+Stpm0r8vYI7en4ZrbV+OUMh6vhk8ePAScRz/5X4tndW4scWOCSwE3pc+C+D7xB1Hs/Fi0e87Fm2zE7kahwGtbTj0UV/EPfkvq2DdjIzve31S0svUh2AovFXdq81nF34ZOLczpdkN3oA/4NP6r7M8TlhzpdoK5TLPUzsPk8/M3l8BH3MYuh4H/GfjqQ5/EjvTcCT4Gbi08wXwDe9BORv7We91J2/v14P35y8kOAAeA+4tlvtPhbZUgJobTZ1AOXkybXYnbROI98BDgO557EbBDsGHzCuBqzM/AD4jbh1+ge8kJLyiySubBisWqyRuIH1/wx3f/0eiKwgjT5k04XpCsVSy/hJ/h+bdR9zXowO7T+VNfnb0Zm+NrfLfgVNcr45u7beXv9dOrnv4t49qPEs28gnn1HWAkkwXXmlpww+yp+4NrO3B6ncxzET0S+Fj/FVxl4vp5AArwBDF8fe+PeFlWkLQKLxUoidycur8cnDvd2uiij6AW+Q5rseXqbiapYeg74AxpGd46Z2UFgR4H14m9KEbAebCYWnQj2JM6twtWuJp7dnSOvx8IIrglFcqI46ylq1cupVVZRq6yhVllPrfI6zq3EuUdwbvlbo63fFgE1zM7C1/o/ARzV8PnQ7AuNXszuS4i0SICxWEnknsTlV/HNlCGst3o5afKuTheiKxVLt+ITyeE3ltGZ9WK2CGwrvsaxAO51nHsSV3sJ3DH4UaMi0hT3PeAdwHx8E/QMcDuA4/AD2KJ6MrkK5+7DudT//bmX8c3WNWAlzt2Nb7Yus+u97bk2fRmRCUVJ5Gji8pvAh4CnOl2UURSAT3S6EF3Lr25zJrC5qePNDoRoHv6GtT9QwWwmvl/xHa0qZmc0+eSrmkhphSl9rwB/s/Ob7r04t6L+IsYnk8fjV5c6C59wHgLMw9dCLgIGweb41oOdljt8lWJpS5ZfQaQ1wovFSiLHIi5vBz7LSH13usuiThegqxVLy/H/Ro0PBANjPt6sBNHcevP20Ti3EXgZ3zcrbIEFLsmdv8PPhNAwAKZ2OM4twbl7cG4Jtepyajtupzb4MLXKsmH9Ju8GWwRuCbht+CRzyJp2fAGRlggsFiuJHKu4fCdwHn4Ebrc6hTQ5q9OF6GrF0mp8zUUffjLyKcDn8Z31R2d2INhM4AWwecCdfrqS0AXWm1vyZUpfP0Q7gDn4wWv3A2ugNhNqC6C2GKoHUqv04lwBagtxOzZQG1xBrbIUmIPRi5/D9VF87eWQFbtcT6RrhRWLlUSOR1y+GT8a8G/xnbe7TQ9wG2nyLdJE0zftTrFUpVh6mWJpK8WSo1j6DnAqY61RNJsF9gZmh0F0fYYlbZ+w4pbk04n46Xn2AxbgWw22gq0DbqVWe5Ta4MlUB46hMvAi1e1bqG4vUtsegRsaff0qcPCw817Ttm8gsrcCi8VKIscrLifE5S/i++P8Gd3ZlPlfgZ+RJr2dLkgwiqVV+JVqfjym/c2OBu7GLB9zdAbWhCI5ZFaAaPhI7DPA9YHtT298PpNmvI4VloM7GFdzuNoMapWFVAeHBs09DnZow/G/pljSmtkSjsBisZLIZsXl14jL38CvsX0G8D+A79LswI3W+xDwE9Jk2qh7ilcsbaNYuhD4MGPqtmAH4acXCZsRXOCSXIowOx7sBnyN4pCNWOSn0LKoj0nTT6d3+gYm7XM0k/Y5nKh3CbVKCT+Nz2kNx20FLmpX4UX2WoCxWEnk3orLNeLyMuLyV4nLnwNu6XSRGnwUWE2anNrpggSlWPol8C5GG3Vtdmd9YnoR2Xv+TmjR0RBVwZYBL0PUC7wD5+57a8+ocBBmEWbQM+VIeqemwAawxm48f02x9Hw7v4DIRKMksvXe3ekCDHMIcDNpMvLSfzKyYmkTflnDrwDrd7PXDe0rUJaa7YSjmkhpqaFfqLmYrcGihRC9jNl2YBVmpwAr8f0mG72M2QDYKQ3vPQN8qw1lFmmh8GKxksjWa3dz9ljmr9wH+GbWBcmdYmkHxdJl+BGfw3+ugwQ/P2SDwJpQJJcaf6GOBrZhdix+xDY4NwCcjJ+YfBnwbH2C8R4cxw0713+hWBr79F0i3SKwWKwksvWebuO1avh+P8vZda3Y4c4jTU7Ovkg5VCw9DXySnf+Nf02x1I0j9JsTWOCSXDKcewFXua+eMA4NWuvBP8glOLcc31/5SJx7FTgerIhZ41r2f0+x1E3dikTGLrBYrCSy9e5v47WWYXYSZqcDj4xh/89nXaDcKpZuBI7h7drHGztYmtYLqwVF8shV7oXqbPyqNJX6f19q2OMQsBlgfWCzwY4EexizdzTsczd+1gyRMAUWi5VEtt5P8eu5tsNxOLcU59Ywtr6YHyVNJmddqNwqlp7Fr6V+DvDLDpemtQJ7+pVcOg0/wvop/FrXD+OTyNX1zx/ED3jzzB7FbGHD8euBj1As7UAkVIHFYk1I3WpxeRtp8i/An7bhavswvqUOi/g+RcuyKc4EUCw54OZOF6P1lBBKB/W/1AsUgBRsALPFwAZgdv39FWDbMRuq+FiHbxkY4oALKZa6eUUxkTEIKxarJjIbX6c7V7QBmNfpAkiXafbJVzWR0jofxj/kbgF3Es49hq+R7MHfVY+of+6AKrANmNFw/P+mWLqrvUUWabEAY7GSyCzE5Q3Ap/ABr9uoqUdEukf/SxcDfw62FBgAalB9HViARdQ7fc0CtuObrG8Hjmo4w4PAZe0ttIiAksjsxOWfA/+508UYwerRd5EJJ7CnX8mVg6EwHyssgsIUrLdCNOm9WBQDQ79rhlmM7yP5/oZj+4FPUCwNdqDcIq0XWCxWn8gsxeV/JE32Ba7odFHqtjK2Udwy0SgflM65HDgSOBSLypgVR9jnXnzz9TvZufLjCxRL4S89KjIksFisJDJrcflvSJP1wN8D+3a4NL8gLlc7XAbpRqpVlE6ZckCNgc3/E1iDH0Qz3D3AYfj7VeM96x+Af8q6eCJtFVgsVhLZDnH5x6TJ9cAX8KO29+lAKV7BP/GLjCCswCU5UyytZWDzd4EzgFvw8eoQ4HjeHkxzYMMRN+JrIbux37nIXggrFiuJbJe4/BrwZdLka8BC4Hfw0/OcBPRmfPUNwLnE5XaupiMhCezpV3KoWPrCLu8NbP4+8Olh7z4I/D7FUqUdxRJpq8BisZLIdovL/cCt9Y365N8H4Z+65wAz8as1bMFPvHs8fq3Yz+CnuBgPB/wf4IvE5S0tKL3kkQbJSPf6IvBYw2sDfqF1sSWXAozFSiI7LS5vB56pbyPxE4OnyV8BFwIXs/MkuyOpANcCXyMuPzTKviIi3alY2gp8q9PFEJGRKYkMRVzeDHwT+CZpcgBwJnACMB+YArwG/BY/+vo21TzKuAT29CsikkuBxWIlkSGKyy8B19Q3ERERkbZTEikiwT39iojkUmCxWEmkiAQXuEREcimwWKwkUkSCC1wiIrkUWCxWEiky4RmhTXArIpI/4cXiaPRdRERERER2pppIkYnOCK4JRUQkdwKMxUoiRQRMjRIiIh0XWCxWEiky4YXXD0dEJH/Ci8VKIkUkuCYUEZFcCiwWK4kUkeCaUEREcimwWKwkUkQIrQlFRCSfworFSiJFJjwLrglFRCR/wovFYdWbioiIiEhXUE2kiKDnSRGRbhBWLA6rtCLSekMT3DazjeX0Zmeb2RNmttbMLhnh80+Y2aP17R4zO67VX1FEpOtlGIuzisOqiRSRzPrhmFkB+C7wfmAdsNLMrnPOrW7Y7VlgsXNui5mdA1wFnJJJgUREulkGsTjLOKyaSJEJz/ZiG9UCYK1z7hnn3CDwU+D8xh2cc/c457bUX64ADt7LLyQiEqDMYnFmcVg1kSKS5dxkBwEvNrxex56fbv8jcFNWhRER6WrZxOLM4rCSSBHZmyaUWWb2QMPrq5xzVzWeeYRj3MhFsDPxwWths4UREQlaNrE4szisJHIs0mQyMB+YA2yvb/sCReAV4D7icn/nCijSMZuccyft4fN1wCENrw8GNgzfycyOBX4AnOOc29zaIoqI5N6eYnFmcVhJ5J6kybHAXwLn4hPG3RkgTW4DbgCuJS7rJiiByWyC25XAPDObC6wHLgA+vtOVzeYAPwcudM49mVVBRES6XyaxOLM4rCRyJGkSAX8NfImx/USLwHn17RukyTeALxOXK9kVUqRVLLM+kc65ipl9DrgFKAA/dM49bmafrX9+JXAZUAL+wXxTTmWU2k0RkRzKJhZnGYeVRA6XJgZ8H7i4yTNMAS4F3keaXEBcXt+ysolkwcAyXGrLOXcjcOOw965s+P9PA5/OrAAiIiHIMBZnFYc1xc+uPknzCWSjhcADpMncFpxLJGOZTfEjIiJjFlYsVhLZKE16gStaeMY+4AbSZGoLzynSYvUmlGY2ERFpkfBise4COzsJn/i10lHAV1p8TpEWC+vpV0Qkn8KKxUoid3ZgRuf9PGlydkbnFtl7Ga6dLSIiYxRYLFYSubMRJ99sgR7gOtLk/FH3FBEREQmAksidrczw3L3At+vTB4l0l8D64YiI5FJgsVh3gUZx+UVgeYZXmAO8N8PzizSh2T44as4WEWmd8GKxkshdfR3Y0rC12k9Ik6z6Xoo0J7B+OCIiuRRYLFYSOVxc/iVxeb+3Nni6xVeYA/wTabKnZRRF2scIrglFRCR3AozFuguMbmkG5zwb+Jf66jgiXSCsJhQRkXwKKxYriRzdv2V03o8Al2R0bpFxaLL5RM3ZIiItFF4sVhI5uuuBNKNzX06anJHRuUVEREQyoyRyNHF5B3BHRmePgF+RJsdldH6RMYqa3EREpHXCisW6C4xNK9fTHm4mcD9p8mUNtpGOCawJRUQklwKLxUoixyIuLwf+NcMrTAIuA9aQJh/M8DoiIwsscImI5FJgsVhJ5Nj9N7KZN7LRofjm7b/QyjbSPkZoTSgiIvkTXizWXWCs4vI64MPAm2242hXA1aTJ5DZcSyS4p18RkVwKLBYriRyPuLwEPzVPO3wC+H+kyaQ2XU8mtPHMR9a4iYhI64QVi5VEjt9tZN+sPeR84A7S5LA2XU8mIiO4p18RkdwJMBYriRyvuFwFNrfxiguBx0iTL6pWUkRERLqFksjm3NTm600FvgY8Qpqc2uZrS+4123yimkgRkdYJLxYriWzON4AdHbjufGApafKxDlxb8iywJhQRkVwKLBYriWxGXH4O+PMOXb0XuIY0+Tpp0tOhMkjuhDWthIhIPoUVi3UXaN63gGs7eP0/A+4kTY7qYBkkLwJ7+hURyaXAYrGSyGbFZQd8CljWwVKcATxKmlzQwTJI8MLrhyMikj/hxWIlkXsjLvcDHwAe72ApeoCfkCaf1yo30rTAnn5FRHIpsFispGNvxeUUuBhIO1iKCPg2fsnE3g6WQ0RERCYIJZGtEJfvBz7e6WIA5wLfJ01URSTjFFYTiohIPoUVi5VEts6vgFWdLgS+n+anOl0ICUxgTSgiIrkUWCxWEtkqfqDNlZ0uRt2lqo2U8Qnr6VdEJJ/CisVKIlvrR8B9nS4EcAQwp9OFkEA0++SrmkgRkdYJMBYriWyluDwIfAhY3emiAPt1ugASkrAmuBURyaewYrHuAq0WlzcCC4F/BlyHSrEDeKZD15YQBfb0KyKSS4HFYiWRWYjLW4jLFwGnASs7UIIfE5e3duC6Eqyw+uGIiORTWLFYSWSW4vJ9wCnAscC9bbrqZuDSNl1LREREJiglkVmLy464/BtgMfCzjK+WAOcRlzdkfB3JlWaffFUTKSLSOuHFYiWR7RKXdwAXAH+a0RWWAycTl9tV4yk5YmZNbSIi0jqhxWIlke0Ul2vE5W8Cf9nE0S8A24e9VwFuBf4QWExcfn4vSygTVlhPvyIi+RRWLO7p2JUnsrh8OWmyCfg7oDiGI24Cfh+fNM4DDgNeAx7XABppCdUqioh0XmCxWElkp8TlK0mT64EvABcC+4+w12PAFcA19RVxwM9B2Q3zUEquhBW4RETyKaxYrCSyk+LyOuBLpMkl+FHcc+ufvIFPFNc2JI8i2TADU88WEZGOCjAWK4nsBnG5CtxT30RERES6npJIESG0JhQRkXwKKxYriRSR4Dpzi4jkUmCxWEmkiBDa06+ISD6FFYuVRIpMeBbc06+ISP6EF4uVRIoIoT39iojkU1ixWEmkiAT39CsikkuBxeKwJiQSERERka6gmkgRIbQmFBGRfAorFqsmUmTCq6+S0Mw2lrObnW1mT5jZWjO7ZITPzcy+Xf/8UTM7oeVfUUSk62UXi7OKw0oiRQT/9NvMNspZzQrAd4FzgKOBj5nZ0cN2OweYV98+A3xvr7+OiEiQWh+Ls4zDSiJFJjqjvmZrE9voFgBrnXPPOOcGgZ8C5w/b53zgauetAPY1swNa+h1FRLpddrE4szisJFJEyKomEjgIeLHh9br6e+PdR0RkAsgkFmcWhzWwRmSCe/ChR26xeNasJg8vmtkDDa+vcs5d1fB6pOjmhr0eyz4iIrmWYSzOLA4riRSZ4JxzZ2d4+nXAIQ2vDwY2NLGPiEiuZRiLM4vDas4WkSytBOaZ2VwzmwRcAFw3bJ/rgE/WRweeCmx1zr3U7oKKiORUZnFYNZEikhnnXMXMPgfcAhSAHzrnHjezz9Y/vxK4Efg9YC3QD/xRp8orIpI3WcZhc05dj0RERERkfNScLSIiIiLjpiRSRERERMZNSaSIiIiIjJuSSBEREREZNyWRIiIiIjJuSiJFREREZNyURIqIiIjIuCmJFBEREZFx+/84qM2GKsmn7wAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "DS_composition.plot(plot_type = 'maps')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "*Note that in all plotting methods, the title presents each component of the decomposition performed.*" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Share Approach" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The share approach takes into consideration the share of each group in each city. Since this approach takes into consideration the focus group and the complementary group share to build the \"counterfactual\" total population of each unit, it is of interest to inspect all these four cdf's.\n", + "\n", + "*ps.: The share is the population frequency of each group in each unit over the total population of that respectively group.*" + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAloAAAEVCAYAAAA4vUvOAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAAgAElEQVR4nOzdd3gc1bn48e+7Rb1Zcu+yDbgX3EK1TYcQE0y5GFIMAS4JBHJ5bhJ+gSTmhvRACCHlBkKcSxJCJyQQQgk2oQUMtsEFd7nKsnovW87vjzMr765m1SytJPN+HutZ75kzZ87OzM68e+bMGTHGoJRSSimlep6nryuglFJKKXWs0kBLKaWUUqqXaKCllFJKKdVLNNBSSimllOolGmgppZRSSvUSDbSUUkoppXrJMRtoicgKETEisuIoy1nplLO4Z2qmlPo4SXQMcdJW902tlFLJ0qlAS0S8InKdiKwRkQoRCYjIYRH5QEQeFJGlvV1Rlzotdg5UK5O97M4QkRQR+YKIPCcixSLSLCK1IrJeRO4VkZl9XUdliUiRiBT1dT26SkSmishjznexSUS2isidIpKezLLEesn5PhoR8bnkWRk13e3vvK7WuRP1esApu0FE8trJt8rJNz7B9NUiMiAHHOyLH4oiUiAi3xSRN0WkzDlflIvIv0TkGyIyLFl1UYmJyHhn31iV5OWmO8eWrc6x5rBz7JmSrLJE5DQReTLq3FwsIi+KyAVx+Y4Tka+LyD9FZJ+ItIhIiYj8RUSWdLaebQ6ILhXyAn8DzgOqgOeA/UA+MBG4EpgMPNvZhSbJ08DbQHGyFywixwPPAFOAMuAlYC+QAkwFbgBuFpFPG2P623pTA4CILAT+CfiBJ4B9wBnAt4AzReRMY0xzksq6CVgCNAFpHSzu90CRS/qOztS1s0QkG7gCMEA68Bng/p5cRhfcD/wZeww4ponIhcAfgFzsNn0aOOy8XwjcBXxDRCYZYw71WUVVnxCRVOz58BRgLfAzYAxwGfBJETnDGPPv3ixLRO4AvoM9N/8NGyMMBuYAi4Hno7J/B/gPYLOTXgGcACwFlorILcaY+zqsrDGm3T/sAcoA64Fcl+kZwJKOyunpP2eFGGBlLy9npbOcxZ3MPwx7ojLAT4F0lzxDgV8An0/2etM/121WBBT1dT26UF+v88U3wNKodA82UDLAbckoyznoNAA/cNajAXwu+br0PeqBdfSfzvLuAZqBDe3kXeXkHZ9g+mp7qOzxOhpgdS+vh6Std2AR0AI0AisAcckzAxvUu65r/UveHzDe2TdWJXGZ/89Z5uOAJyr9Iid9U3R6T5eFDcIMNkDLdinTH/d+BTDHJV9kX28GRnRY1058mF86FftKF1bmCmeeFcAngTeBeqDSOXgf5zLP8c7Bei1Q6nyAPcBvgNFxeSMHRre/xfF1iJt3iVPmZqDGOShsBL4NpLnUq0sHKuABJ/+fOpE3Ne79CGwAVuRsxFLgKWBuB+v4bOBfQJ0zz++APCffHGzUXulMfxaXgxzOyQRIxf7q3O1sg53OuklJ8BnOBF7ARvpNwDZnO7oF5ZFl+IBvANudZewDftjOMiY723yfk78E+BNwgkveyL4xHnuy/dCpV4mz3XOj8i5uZz9K2sGnq3/Y1iYDrHGZNsGZVoTLia4ny3K24zvYA1oq/SvQWguEsL9wn3SWvdAlX6LtX8SRE5Hb3+qoMoqcvxxsYFcEBHB+BCb67JFygJHAw9iWn0bgPeDK9r7zCT6zW71c6x83Xwb2pLUee5yuA94ClndhfXuALU7513cib/wJba6znQ5z5Nj/S1xOYhz5jhdiW1M3Y7/jRdjjijj5LnP2z3qn3PtxP8Z3aTtEfYYbgHed9VXv/P+LuAQKUcsYjD0OFTufcxNwdTvr6lxsS0oZR47HP8Y5vsfljeyHGU6evc48O4CvE/Udjton3f5c968e+E6Ks10NUOgy/TVnWocNN90py9lmu5xtNaQHPs+LzjIu6Shvh5cOgXLn9fhO5I23DDgf23y8GpgNXAIsEZGTjTFb4/LeALyKDcxagGnAtcCnRGSeMeaAk/cZ5/XzwBqn7IiiDur0deyJ+03sZdA0bNPjSmCxiJxljAl18XMC9nox8Fnn7Z0d5TdRl2NEpBB4Hftl/yfwCLHNoJcYY/7mUsxS4EJsMPVr4GTsAblQRG4DXsEGYb/F/pr8FDBRRGYYY8Iu5T0GzMcGxAHsr4OVwDwRWWqcPcyp838Cv8LuuI9jD1CLsev4UyJyijGmymUZfwJOA/6ODXYvAL6Gbem7Ojqj03fnKexlrb9iDxqjsfvLJ0VkiTHmfZdl/Ah7kPor9guxBLgOmIQNLsDuK3cCX3He3xs1/3qXMvuLSP1fiJ9gjNklItuw39cJ2ANzb5V1BzaQP8kY0ywinan7qSIyFxukFQGvGGPKOjNjZ4nIHOyJ+yVjzD6nD8oy4Hog/lLCncCngVnYSw+R/bXK+bsT+30aR+x3uiiunBTs9zYfu7/VYH+sdGQQ9lhUhfMDCbgc+KOIjDLG/LgTZSRyL/azLSLBJVun79o/sdvxfeAh7AnpXOBPIjLNGHNHJ5a1CHtcPYA91iTkHHdajz3O5cYnsSfPJ7An0LnYoOUi5zjSpu7AT7DHm8h3fCnwXSBFRCqwP/iewR7/zgZuxLbgftGlrK5uh4ex3Wb2AQ9iT7gXY4PDU4GrXJaRB7yBPbc9gT33XAo8JCJhY8zvozOLyLew+1wF9vh+GJgJ/DdwgYicZIypiVuG31kXI7HH1yB2H/iBs7zIPrzaqc8twAaOnFMh6tgn9maNRdiAZbXLZ+qKicBYYJsxxu278XfseeEMbBzQ02WdjA3OnwAqReSTwHRskP6OMeatrn0cAs5rsMOcnYja5mB3jDB251oGjOtgnhUciY4vjJt2i5P+Slz6KOJaeJz0c7C/TH8Vl76Ydi4dkrhFawLuv86/4+T/j7j0lXTylzh2wxpgfzei4384894el36ysyHLgSyXzxcEFsVF7S850yqAq+LK+60z7aK49NVO+jZgUFR6GvbXrQE+G5U+DvtrqQaYHFdWpBX0NwmW8R6QH5WeiQ2gQsDwqPRB2Ja4MmBqXFnTsL8k349LX+UsYy8wNirdx5FfOQvi5imiG5cOsT8cVnbxr80v0W4s93Ha+SWFPSgb4PzeKgsbjAeA78StR0P7LVrxf03Y716HrW9dWD+/dspeHrXtDzn7S45L/sg+Mz5Beatp59Jh1Od+Gchs57MvjkuPrIPHiL30UYj97rYAE6LSV9CFFq32lu3y2b8Wl56GDb7DwOxOrPNvOuX8oYvbKgv7/Q4Bp8VN+7pT5osJ6lwEjIpKz3PKqse27E+JmpaKbflqBoYe5XZY7uR/n9hjcia2JdUQ1xIWtYwHAW9U+lTsMXxzXP4lTv43iTtmRO0HP02wHz5PVJcV7A/YyA8Hf1T6eDpovefIMdt1/+nitv6kU9ZfE0y/1Jn+aG+UBfyXk3Y/8EHUNon8raGTLV3Y81+Ts68N6jB/Jwu9HNvUGV2pcmxL1adc8kd2hFdcpnmxJ1VDBwFb1DwfALvi0hbTjUCrnWUUOPkfiktf2dkdzVlPBni7izvgaGe+PcQ1qTvTH3amf87l8z3skv9zzrTXXKYtcqZ9Oy498oX6rMs8kXX9alTa7U7a91zyD+LIZdlUl2Wc5TLPncQF5hwJym9MsN5+6kyfGpW2ykm71iX/1c60m+LSi+heoBXZBl35G9/V5bgsN9Jk3WY9OtP/SFSg0dNlYTuXf4T9JRx94C4icaB1sbP+C7En8bHY1upDifajbq6bTKAae1JJi0q/21nODS7zRPYZ121D5wOtWQmmryRxoBXE/dJHZJ5vu+xvKxIsx9CFQAt7zAsC7yYob5Yz7486sd4jP65+0MXtdZUzX5uuFtgAebczPfpHU2R7fcFlnoecaf/jMu3bzrRFR7kdIj9kz3HJf6Yz7Z8uy6jHPdBf40zPjkp72kmblmC9rQMOJ9gPJ7nk/70zbXpU2ng6DrTGYlsqM7qyXROUdSXtBOPYVkcD/KM3ygK+H7WttzvbKgv7o/0Ft+9PgrJTsVefDPDVznz2zlw6xBjzmIg8jY2yT8W2cp2KbZL8tIj8H/bLb+JmXeNSVkhEXsc2/c3BBheIve5wFfZgMgt7svZGzdrSmbp2REQysSfwi7GXRLKxTdYRo46meOc1fj10ZI7z+i9jTMBl+j+xNyXMAf4vbtpal/wHndf3XKZFLr+OTlCXNtsM2/QejKonwIlRdYthjKkUkXXA6dgv6YZO1Hmf8zooKu0k53WWuA/jEbmcPQX7a7U7y+g2Y8wq7EG/R4nIbOx3K1qVMeZet/xuRTivXd0PO1vWj7AtwwsS7K9tGGOejkvaCzwoIu9j7w7+bxG5xxz9ZcQrsH2l/tcY0xSV/jvgVuzlw18f5TLcNGF/EHbVXuN+6WM1NjCY4zKtp8zHHmMTDZPjd147c9t9d/e59o4jQRF5DRsQzKHtXZs9eezrynY4EdvSt9ol/xps65zbdttu2l7qgyPHpTyg1vn/SdgW48tE5DKXeVKAISJSYIwpj0qvNsa43cHbrWOfMaZLd8om2I9WGfdLv21mjyy2K8vsQlneqGmXGmMi56VNInIx9mrOIueSrOtlRGcUhoex3Y0exV6+7lCnAi0A54D6ovMXWeAl2F8Qn8NG4M/EzVaSoLjIbb25UWn3YPvKFGMvox3AtojAkT4SR0VE/Ngv9AJsB/hHsU3MkZPFt7HRandFvuSJgphEIush0VAUkXS3sYCqXdKCnZjmd5kGLtvMCY7LsU3QEd2us3HvtxWpV3RwXeC8XpdgGRFZLmmdXUZ/NBu7L0bbw5E+ZJHtmou7nLh87elSWSKyCNvXZaUx5qj7sRlj3heRd7AHrpOw/W2OxvXO66q45WwUkfeAuU5/T7eT9NE47PJDszO6cozsaZHv13znLxG371e8gX7s68p2yAUqjDFtfvw7wWEZscfKCLdjUnS94o99PtoeB+JlcaQfdVeX0Rvc6rsa29rWZ8ctR6XzuisqyALAGNMoIv8AvoCND9oEWk7M8wdsv+nHgM909jvf6UArnrEdxh8TkRnYTrFn0DbQSjQw3XDnNXLwHgrcjA1+TjbG1EZnFpHl3a1nnIuwK/H3xpgVccsYQcc7dUfWYvsAjBaRE0xsZ//2RHaG4Qmmj4jL15uGEffL0dnBCrCXAyOi67zJpZyeqHNk3lnGmO60FvSqBC1PHbk3QaDZqhMtZZH9KtENKsc5r9s6UZ+uljUH+4vwThFJdMNHwOkYP6eTwVip85rZibwJiR0EeIHz9q12Oudfj3tryNHo7q/wTh0jHZEO5G4DwiYckLUdkbJ/aoy5tRvzR3vdeV0sIl7T+RuK+suxryvboRrIFxF/fIuu2MF6BxN7rOyOamx/sfyjLCepjDHt3RHTl8et6HkSHX8jgVibQZqd7fonbJD1J2w3nk7fNNftQCtKJChyW8GL4hOck/apztt1zusEbCfuF12CrNHO9HiRD9mVCH2S8/pkZ+raVU5U/DC278k3sZf7EhKRVGPvPIysh1NFxGeMib+LITICrdvddT1tEbZpNNpp2H1lXVTaOuyNEYuxdza2cg76s7GXU7YcRV3exraankb3Lst0VgjbFN9Vbi1PHVlF4i96Z/0T20fuPGy/g1YiMgF78NmDvZW5p8vaSOK7yv4D+ws70k+mPEG+6GX4OXL5qDP1bU+kNWs1ie+2vBJYLiK3GmPqnLSOjiUhsMeurhxcO2msiIx3ubSy2HmN/s5FTgRjXMqZl6D89j7bO9jg7bSOq9mhNdh+e5OxffEeTJRRRDzYDuEBjny+xcTtV87JLXKu6O1jX1e2wzps/57TiTv2OWlejr6+b2Pvqp5mjHH7IdsTunMOPRo7sT/ijxeRQpdLtec7r20uI/dQWa9hW/aOE5EUlxbJ6c5rUXSiiKRgW7Auwnbdudq437GfWCc6fi3HdixzGxtkOLZTmQEui0pfwZHOv4nuOvxnXDkGe+t19B0ZWdjbNA1xnVGxd2sYbOuUW70jdVgRlRYZKfruuLwTODImx+q4aSvpwl0XxA5Y+mPcBywdDNxH1IClHOmU/N9xeRdid44KYjtLtvl8UdMWk+BGARJ0gKRzdx1+Lq6cFmzQMCmurJ87+R9wW0YXtlcB9uRymLg7BZ3pnvjtQjsdmxOtF+wJp8ltW/XHP9ofZDRyF+FtcfNkYE+CY4+2rHbqVYRLZ3hsP8g2d65hg9tfOPNsoe3ggisT7ccuZaU7+0oQGNlOvsiNJddFpf3ISXMdvwd7kDW4dJaO+txF7Swz8jni99XIMfJR3O92CwATo9JHYE+O24nqnIwdUuJ93I9fX3LSXcdqwp44DPaHodtNDBMTfW6XvIucOjdgf2S63d09FXt35njnfeTSVxD4RFze/3bq9lJc+ioSf8dd17UzbQUux8xubIdIR+x34rZDhpNmaHu3d5tt097n4Uin+jfd9mds62/8+kq4H7qtF2fdh3EZQy8qT491hnfK684goxOdOsSPvdadsv7gTLsrLv1sZ11UEXWXJ7Yr0XPOPA/Gl9fZv860aC3EBkeHnE7su530QuwtlunAX7BjU8T7K/C005F+B7aT+wXYnfdLkUzGmEMi8mdsILReRF7EXns9G3sCXI9tPYi2FduP6woRacFGtwZ7F96eBJ8lMg7Trc4lz3XYHelC7Moc24n10S5jTImInIm9jPrfwOdFJPoRPFOwJ/xUYi873YAdY+XHInIO9tJGZBytMPZAGdPa10u2YDsHRo+jNRG7flpbuowxRSLyFeyJ8n0ReQx7CWgRtq/NR9jbs7vNGFMuIpfiPE5JRF7BfnnC2G11EjYY6+ixLx15BdtH5QWn821kJPGj7S/UK4ztM3c19tfaE8622os9OM/D7kc/jZttAXY8mTUc+ZXe3bK6qgBYJyLrsS2TxcAQbEttIfaW/OWm7a/EyLNYOx6nxram5WFv9z7YTr4HsUHA9djBhcFu/68CDzifvw5788H9UdMvA54SkeexfUf3GGPiW3674wPsMfa9qONe5LN8zRjT2jJnjCkWkT9ix+pbLyLPYfuiXID9te7WAftV7Pfl+yIyHadVzBhzlzP9Juxllv8BPusc40uw4zBNwX4vltOJMcGMMWtEZBn2OPEw8E1nHKZS53PNcz5rPU7/W2NMnYhcgz1ZrhGRx7H731zs0D6HsAMP97aubIc/ichF2LvMN4nIM9hzz6ex+/Njxpg/Hk1ljDGvOOMgfh/Y7ux3u7HB0TjscfZ1bEt0d5dRJyL/Bk5z9qtt2ED+WXOkq8b/Octagnvn/666B3u+vRT4t3NMH4v9fjUA17gcB17BfuZCYlubulPWrdjtfLuInI4NjMdhb44LYX+ARV9x+DX2+1WGjTe+5dIlYbXpaIyxTkSgY7CdX5/GBjc12JaMYux4HZ+hbdS4AueXg7Mi3sJ+uaqwl+2Od1lOBnawuR3Y4Gof9iReQIKWEOxB4BXs9ewwURE7iX+9jMHesh7pbL8JO1imjx5o0YqaLwXbse55Z121YC+zfohtzZrhMs8o7ACge5z8ZdiAbb5LXtfP50xbTPdbtOJHht+Fc5NAgs95DrY1rpIjoxD/CPeRi123Yyc+z3js2CfbnX2jBhvIPQx8Oi7vKrreopXprPf92JN6m/XTH/+wrQOPc2TU6G3YYTLcWlEjn3310ZbVTn2KcG/RynH2+bexJ84WbDCzATuQ4tAE5T2NPfi1OV645H2DuFa5dvJudfLOiUq7Ffsjo9mZVhQ1zQt8z/kuBOLXI0fXorUaG9T8Adty24RtnUo0InkqtqV8v7Med2B/2bsev5x5PoP9sdqI+9WBFGzA9Sb2WNqMDXZewd6gVNDF/bIA20L2Jra1KoD9cf0mtj9vm+2NPZY/jQ3KIj+cf4V7a84qer5Fq6vbwYNtLFiLPak3YO90vJF2RoZPUFZ7n+dUbIvqQY48LWQ9NsiY5/L9c90P29kHJ2EbIMo5cg5dETV9daL12d0/bOPMnRx5Mkgp9tgzNUH+onbWT5fKcubJd9bfbmedlmMbiz7hkjfy+dv7W9nRZ448qqBHicgK7O3UVxvbsVf1c5ERgE37nRmVSgpnuJdSbBeDy/u6PurYJSIGe/lscV/XRR2bPB1nUUqppJuObRn5fkcZlVKqP+uJuw6VUqpHGWM+xP1OZqWUGlC0RUsppZRSqpf0Sh8tpZRSSimlLVpKKaWUUr1GAy2llFJKqV6igZZSSimlVC/RQEsppZRSqpdooKWUUkop1Us00FJKKaWU6iUaaCmllFJK9RINtJRSSimleok+gkd12uDBg8348eP7uhpKKTWgvPfee2XGmCF9XQ/VNzTQUp02fvx41q5d29fVUEqpAUVE9vR1HVTf0UuHSimllFK9RAMtpZRSSqleooGWUkoppVQv0UBLKaWUUqqXaKCllFJKKdVLNNA6RonIQyJyWEQ2JpguInKfiOwQkQ9E5MRk11EppZQ61mmgdexaBZzXzvTzgeOcv+uBXyWhTkoppdTHio6jdYwyxrwmIuPbyXIR8H/GGAO8LSJ5IjLCGFOclAommTEG09hI4MABgqWlmGCQUHU14fp68HoxoRBNLQ20BJogHMaEgoT2H4TcHABk+FC8S8/BYGxZGGpaagiGg4RNmJAJETZhwibMjqodlDeWk+5L75XPMjZnLEsnLoVwCAKNEA5AKAihFmistK+1h0AEwkEIBWze2oPgSwPEbQ0lWnEJaqH5u7+MhAW5pgZDYQwG51/Mck3UfCYqPb4oE1VPEzXRJpmYjJF3tbnHUz3hkxgDYWNaP2bre+z3KuyUYQyU1TUjIrYKTp7IvGGngMj7A5WNpKd4Y+sZUxXjkta5fEfK614Z8esZYHhuOlcuHNt2IUp1QAOtj69RwL6o9/udtJhAS0Sux7Z4MXbswDjItOzZQ93rr9OyZw/BQyU0bdlCYN++jmdMIAx8NAZWhn/e5XnFNahx086JPC7Lyc0Blj52EzRXd7k+auBJxkE6bNrup6+ET+KWQE4Slt7/icDsMXkaaKlu0UDr46tTzRrGmN8AvwGYN29eJ6KBvtO0eTPF315J04cfxqR78/LwTZvCB4Pred+zn8O5UJ4jBLwwMm8s40ZMptkEGZUzmtSUdHIz8hGPB7xeSEtFREhB+L4IHjyISGsA5fV4yUvNwytePOJpfR2XM46slCxoqIDNz8ChD6FsO1Tvh8rdnf9Qqbk2oBoyBXwp0FAJI+ZCeh0Mm27z5IwCjw+8Pgg2w6Dx4E2xrVdpOXaaxw8eL/hSwZvqvizpbFDYUf4E6Z3I3xQMUdcUIhAKU9UYoCEQYm95Ax4RSmubqW5qYVdpI5mpHjYeqKEgM5WwMQSNIRSGQ9VNBMNhUry2V0TYaaGJtLDY97ZFpaY51OXP63H+RMDrEcLG0BwIMyY/w5lm020e4XBtC1NGZCPONI84e454Wt+X1DYxZUQ2XmceaV0OeDxCeV0LhUOyWpcrR6qDDeWlzaoVjycun51PnDfRaZE30fkFoa45wM9y0kj1eexynGW31kNwvgtHXgHS/F6yUn2IHMnrcerqcebxOMvITPXi93niln/kw8R/hsgnjk8jLl/0D5yYzxq3jNi0tstXqidooPXxtR8YE/V+NHCwj+py1Fr27GHv1dcQqq4m+7zzGHT5ZaRNm4YnJ4fN5Zv5zN8/QzAcZNaQOQxOH8zF487h3PHn4vV4Oy68K8p2wAd/hg8ehaq9badnDYORJ0LeWBgxC0wICibZoCh/AqTlgddv36dk9GzdjlJTIERJTRPVjQGCYUMwZDhU04Qxhj3lDTbwCBs7LRzmo+Ja8jJS2FFaR5rPQ9gYyutaKKtrJjPVHnpCYRv8hI0hFDZUNwY6VZfMFC9Dc9LZVROmcHAWqR7BK5CXm0tpbTOThmaT4hOOnNyPBDnSevIXqhoCTBmRTVaqj6E5qQzNTiM33Y/HI3hF8HhsvkEZKXg9egJWSnWdBlofX88CN4nIn4GFQPVA7Z8Vqq1lz9VXE25pYezvf0/mwgUAlDWW8aW//QdbKrYAcO2Ma7nlxFt6duH1ZVD0uv3b92849IFNFw9MWALDZ8C4U6DwNEjJ7Nll96DS2mY+2F9FczBMSzDMtpJaMlK81DYF+cv6g9S3BKltCna5XL9XGJWXzq76FqaPzGV0fga5GX6G56SRneazLTcepyXIaUkoyEplaHYqHo+Q7vcyOCuVYTmppPm95Kb7W4M0pZQaCPSIdYwSkUeAxcBgEdkPfBvwAxhjfg08D1wA7AAagKv7pqZHr+T7PyB4sJjR9/+8NcgKmzBfevlLbKnYQnZKNncvupuTRp7Ucwvd/x68ehfs/Gds+ozLYOENMGpu1y/F9ZK65iD/2lZKbXOQnaV1+DzC1kN1HK5tImwMGw/UtDt/mt+D3+Nh0fFDmDtuEIOzUhmZl4bP48HjgcwUH/mZKeRl+En3e/F6RC+/KKWUQwOtY5QxZnkH0w1wY5Kq02saN2yg+qmnyP30p8k+66zW9F+s/wVbKraw7Lhl3HnynT2zsEATrH0I1j0MhzfbtClLYdYVMGSyvfTXRwFGKGz4+8Zi3thRzqHqRvZXNlLfHORgdZNr/hSfh5ZgmOE5aXxy5ggEOHPKUCYMziIn3U+qz8PgrFT8Xg2alFLqaGigpQa00p/dB34/Q7/21da0QCjAw5sfZkr+FFaetPLoF9JUA09cDbtW2+ESAMaeBJ+6D4Ycf/Tld0I4bNhdXs97RZXsrWigviXIgcpGDtc2U1zdSElNc0z+T0zIZ9rIHAyQm+5nVF46px8/hMFZqeRnan8jpZRKFg201IDVuGED9W++yeCbbsKXn9+a/vSOp2kMNnL19KuPrjUmHIK//Re8/3v7PncsnHE7zLgcPL031q8xhuLqJp5ed4DapiCvbStlc3Hby3vZqT4aAiEmDslk5ug85ozN48oFY8nLSOm1uimllOoaDbTUgHX4xz/Bk5HBoOVXxKSv2b+GdF86Z487u/uFtzTAHy+FPW/A0Klwzndg0lkdz9cN4bDhxZgSe6IAACAASURBVM0l/Ht3Ob97o6jN9OE5acwcncv88fnMH5/P9FE5DM9Jw+fVBzsopVR/p4GWGpCad++mYe1aBt94I76Cgtb0hkADbx18i3PGn4PP083de/e/4LHP2lHWF94A5/2gx/teFVc38uC/drP1UC2v7yiLmZad6uPqU8YzY3QeZ04eikcv8yml1IClgZYakCoffhj8fvIuuzQm/c2DbxIIBzh33LldL7S5Dp68Frb93b4/+ctwzl09UFurvK6Zv244yN0vbqO2+chQCROHZDJ33CC+tHgS4woytPO5UkodQzTQUgOOMYaaF/5B9pln4h8+PGbaS3teIs2bxqmjTu1aoYc+hD9cAnUlUHg6XPRLyBvT8XwJbDxQzdu7ylmzrZSwMbyxozxm+oLCfL5waiGLTxhCqq+HB01VSinVb2igpQacwN69hCoqWsfMimgONbNm/xqWjF2C3+vvfIG1JfDwxdBSD5c/DFOXdqte20pq+cv6Azz67n7K6uxdgH6vfUTK1BE5ZKX5WDZnFBfOGkmWDrqplFIfC3q0VwNOw7p1AKSfODcmfVfVLuoD9SwZs6Tzhe1aA09dZ59JuOI5GNf5QU0DoTCr3iji1a2HebeogkDoyKMgZ4/J42vnncDJEwd3vi5KKaWOORpoqQGn8b33kYwMUidNjEnfUbUDgAm5EzoupKkaHllu7yoE+MxTnQqyjDGs3VPJ8x8Wx9whmJ3q4xMT8rhpySQWFOZrPyullFKABlpqAGrcsIGMuXMRb2zfpnWH15HmTWNi3sQEczqaauD+BVB3CAoXwdKfw6Bx7c4SChuefH8/331uS8yDj689tZDbzp+sQy0opZRypYGWGlDCDQ0079xJ9llnxqSHwiFe2fsKs4fObn9Yh6Ya+P2nbJB1/o9h4fXtLy9seGztPn7zr13sKq0H4KqFY7lq4TimjMjWliullFLt0kBLDShNmzZBKETajBkx6UU1RVQ0VXDm2DMTzAnUHIT/+zSUbbVjY7UTZLUEw9z510388d97W9P+c9EEbjh9IoMydeR1pZRSnaOBlhpQmrZtAyBt6tSY9O2V2wGYOWSm+4zhEPzhUhtkLXsAZl6ecBmHa5v4/EPvsqW4hjS/hysXjOPmMyfpo22UUkp1mQZaakBp3r4dT3Y2vqFDY9I3l2/GK97EHeFfvAMOb7LjYyUIssJhw49f3MqvVu8E4BsXTObaUyfoyOxKKaW6TQMtNaA0f7SV1OOPb9M3amf1TgpzC0nzpbWdac2P4e1fwvRLYfaVruXuq2hg+QNvs7+yEYBfXnUiF8wY0eP1V0op9fGigZYaMEw4TNO2beQtW9Zm2taKre6XDd9/GF69C0bMhot+0eaZhcFQmB/8/SMefH03YMe/+t2K+doPSymlVI/QQEsNGC27dmEaGkibMjkmfV/NPkoaSpg1ZFbsDHvfhuduhZzR8PlnwR/b2vWr1Tv54Qsftb7/07ULOXmSDjCqlFKq52igpQaM5t221Sn1+ONj0jeUbQCIDbRKNsMfL4eULPjCi5CW2zppS3ENt/x5HdtK6gD4ylnHceOSSfh1LCyllFI9TAMtNWA0bd4MHg+pkybFpG8p34Lf42f64Ok24fV74eVvQ0o2XPUU5I5qzfs/f93MQ2/YgO204wbzuxXzdbBRpZRSvUYDLTVgNG/bTsq4cXjS02PSN5RuYFLeJDtQaflOG2RlDYNrXoD8CQRDYb72xAes3lZKRX0LAI/fcBLzx+f3xcdQSin1MaKBlhowmndsJ+34E2LSAuEAG0o38Nmpn7UJ//gGIK1B1g/+/hG/XrOzNf8tZx7HNacWkpvuT2LNlVJKfVxpoKUGBBMOEzxYTMrZZ8ek76raBUBhbiHsfw+2vQALrqclZzy3Pbaep94/ANhnEt7+ySn6yByllFJJpYGWGhBCFRWYQADf0GEx6TuqdgAwNX8qPHUj+NJgye3c+Kf3eWlzCacdN5i7L5/F0GyX8bWUUkqpXqaBlhoQmnfalquU8eNi0vfU7AHguJJtcHAdZtJZ/M/LB3hpcwmXnDiauy+f1aYspZRSKlk00FIDQstuG2jF33FYXF9MQVoBKS/fCUMmc97B69i6sYjTjhvMTy5L8NxDpZRSKkn0vnY1IDRv244nIwPf8OEx6buqdjHRnwOVu3nOfw5bK0IArLp6gfbHUkop1ec00FIDQtNHH5E6ZQriid1l99fuZWTJdnaGR/Bfu+YyLCeVD1eeg1cfBK2UUqof0EBLDQiBfftIGRfbP6sh0EBFcxWjmuu4NfBFvnTWVN7+f2eSnaZDNyillOoftI+W6vfCLS0ES0vxjxgRk/7P1x4AYHfzFK75j0u5aPYot9mVUkqpPqMtWqrfCx46BIAnK6s1raqmlqr37gfg5HO/qUGWUkqpfkkDLdXvBQ7YQUfTJh8ZFf75P9xNk78JgLOmndgn9VJKKaU6ooHWMUpEzhORrSKyQ0Ruc5meKyJ/FZENIrJJRK7ui3p2RsseO1ZWyvjxAGzeX86ph/7ALl8O2f5sMv2ZfVg7pZRSKjENtI5BIuIFfgGcD0wFlovI1LhsNwKbjTGzgMXA3SKSktSKdlJL0R4kNRXf0KE0BUI8+6tvMNZTSsWIKQzOGNzX1VNKKaUS0kDr2LQA2GGM2WWMaQH+DFwUl8cA2WIHm8oCKoBgcqvZOS1FRaSMG4d4vTz94qvc6nucndnzqUzzMixjWMcFKKWUUn1EA61j0yhgX9T7/U5atPuBKcBB4EPgFmNMOL4gEbleRNaKyNrS0tLeqm+7mnftIqWwkOZgiCFv30VI/Iz/wu85WHeQ0dmj+6ROSimlVGdooHVschut08S9PxdYD4wEZgP3i0hOm5mM+Y0xZp4xZt6QIUN6vqYdMOEwgeJiUsaO4YUX/spZ3nXsmvhZGjNyqWquYmTmyKTXSSmllOosDbSOTfuBMVHvR2NbrqJdDTxlrB3AbmBykurXaYF9+yAQwD96NIXvfY8Gk8rkS27nQJ29E3FMzpgOSlBKKaX6jgZax6Z3geNEpNDp4H4F8Gxcnr3AmQAiMgw4AdiV1Fp2Qsu+/QC8v2sDM81WVo/4At6MQRyqt2Nrjcgc0d7sSimlVJ/SkeGPQcaYoIjcBPwD8AIPGWM2icgNzvRfA98BVonIh9hLjV83xpT1WaUTCJXbKo2reI7d6cM4+cpvALQGWnrpUCmlVH+mgdYxyhjzPPB8XNqvo/5/EDgn2fXqqkDJYQAmpOzhfzOv5Ys52QAcqD+A3+MnPy2/L6unlFJKtUsvHap+LXioGEkVyny5FJ57U2v6hsMbGJE5Aq/H24e1U0oppdqngZbq14L7duJPbeHh0NmcOWNsa3rYhLFDgCmllFL9lwZaql9r2rYBX0aYuilX4Pce2V2L64uZMXhGH9ZMKaWU6pgGWqr/+uh5TE0DH6WNZflZC1uTwyZMRVMFQ9KTP66XUkop1RUaaKl+y7z2Y4LNHtb6j+f4Ydmt6aUNpQTCAUZlxQ92r5RSSvUvGmip/qn2EMFdGyAseEfEDkpa0VQBoA+UVkop1e9poKX6pzd/TrjZdnafPDk20NpdvRuAgrSCpFdLKaWU6goNtFT/E2iC937PDqYCMH1KbKBV21ILwLCMYUmvmlJKKdUVGmip/mfDI9BSy1v1NtAaPSE20CppKMEnPoZmDO2L2imllFKdpoGW6n82PUUovYCtZZkApIyO7fR+uOEwBekFOlipUkqpfk8DLdW/VO6BPW+xLm0huc31mNRUPJmZMVnKm8r10TtKKaUGBA20VP+y6WkIB/jf4IXkttTjz28bUBXXFetlQ6WUUgOCBlqqf/nwCRg+k5dK8xjtacY3aFDMZGMMe2r3UJhb2EcVVEoppTpPAy3Vf+x5C0o+pOqEywAYZFrw5ObEZKlpqSEYDjI4XcfQUkop1f9poKX6jw1/Al86b2SdA8CgYCPenNyYLOWN5QAaaCmllBoQNNBS/UfRG1B4Ov/Y0QhASlU5vmGxfbEONRwCdAwtpZRSA4MGWqp/qCmGip1QeBobD1bjDYegoQFvXl5MtuK6YgCGZw7vi1oqpZRSXaKBluoftr0AgBl7MrtK6zmpwO6a8YHWh2UfAhpoKaWUGhg00FL9w4ZHIHMom5gIwPwCHwC++Bat+mI84sHn8SW9ikoppVRXaaCl+l44DGXbYehk/l1UCcBJzqgO3sGxnd4F0YdJK6WUGjA00FJ9r/QjaKyAGZfx/h4baBWK7RDvGzIkJmtRTRFzh81NehWVUkqp7tBAS/W9on/Z18LT2Vlahwh4Km3A5Ytq0QqEAxTXFzM2Z2xf1FIppZTqMg20VN/b+Spkj4S8cWw/XMe0kTmEqqrA58OTldWarbKpkrAJ69AOSimlBgwNtFTfCrbA7jVw3NkEwoZQ2HD80GxCVVV4c3MRkdaspQ2lgA5WqpRSauDQQEv1rQNrIdAAx53NpoM1AEwekU2oqhJffuxzDsub7KjwBenaGV4ppdTAoIGW6lv719rXMQtZv9f2y5o1Oo9gWTne/NiAqrq5GoDclNjH8iillFL9lQZaqm8d3gKZQyFraGuL1qwxeQQryvEVxAZakecc5qfnJ72aSimlVHdooKX61qEPYfh0AIrK6wFI83sJV1W3GRW+srkSn8dHtj876dVUSimlukMDLdV3gi1Qtg2GTgWgqLyBUXnpmHCYUE0N3rzYS4TbK7eTk5IT00FeKaWU6s800FJ9p+RDCDXD6HkYYyitbWbi0CzCtbVgDJ6cnJjsPo+PkAn1UWWVUkqprtNA6xglIueJyFYR2SEityXIs1hE1ovIJhFZk+w6UrzBvo6YzcHqJgCmDLdDOwD4BsXedVjaUMrU/KlJraJSSil1NDTQOgaJiBf4BXA+MBVYLiJT4/LkAb8ElhpjpgGXJb2im5+FtDwYNJ4P9tngatqo3NZAy5Mbe+mwrKmMIRlD2hSjlFJK9VcaaB2bFgA7jDG7jDEtwJ+Bi+LyXAk8ZYzZC2CMOZzkOkL5TkjNARH++ZFd/Nxxg1xbtMImTEVjBflpesehUkqpgUMDrWPTKGBf1Pv9Tlq044FBIrJaRN4Tkc8lrXYRwSYomAhAeX0LAKPy0gk6zzmMvuuwtqWWlnALQ9K1RUsppdTA4evrCqhe4XZbnol77wPmAmcC6cBbIvK2MWZbTEEi1wPXA4wd24MPc26qgfrDMP4/ATu0w4TBmQCEysoA8BYcedROTYsdYysnNQellFJqoNAWrWPTfmBM1PvRwEGXPC8YY+qNMWXAa8Cs+IKMMb8xxswzxswbMqQHW5OqnQa3NNsPa095A6MGpQMQKD6EJysLb1Zma/balloAclI00FJKKTVwaKB1bHoXOE5ECkUkBbgCeDYuz1+A00TEJyIZwEJgS9JqGLnjcPR8jLEPk85KtQ2swYpyfHFBXV1LHQBZ/qykVVEppZQ6Wnrp8BhkjAmKyE3APwAv8JAxZpOI3OBM/7UxZouIvAB8AISBB40xG5NWyfKd9nXw8ZTWNQMwrsC5dFhVhTfujsOKpgoABqXFDvmglFJK9WcaaB2jjDHPA8/Hpf067v2PgR8ns16tSj8Cjw9SMjhwyHZ+nzrSXhYMlVfgHz06Jvuh+kMADMscltx6KqWUUkdBLx2qvmHCkG5bpyob7B2HWaleAIIlJfiGxl463Fa5Db/Hr885VEopNaBooKX6RvlOGLMQgM0H7R2FY/MzMIEAoepqfEOHxmQ3GALhgD7nUCml1ICigZbqG7XFkGOH9vrokL2jcGx+JsEKexkx/vE7NS01TM6fnNw6KqWUUkdJAy2VfM110FwDOSMAKK9rQQRSfB5C1XZU+OjBSgGqmqoYlKod4ZVSSg0sGmip5Ksttq/ZIwHYfriO6SPtXYbhGnsZ0ZMdO15WeVM5+en6+B2llFIDiwZaKvkqdtvX9EgLlSHVZ3fFUHU1AN5BsS1a1c3V5KXGpimllFL9nQZaKvnqnedX540hHDaU1bVw3DB7N2GwrBwAX/6R1qtgOEhdoI7clNw2RSmllFL9mQZaKvkabDBF7pjWh0kPyU4FIFThBFoFBa3Zq5ttK5frExyVUkqpfkwDLZV81QfAmwIpmZTUNAEwNBJoVVXjychAUlJas5c2lgIwOmt027KUUkqpfkwDLZV85dshNRtE2F1WD9gxtABCNTV4cmI7wkeec5jhy0huPZVSSqmjpIGWSr6qfeDcQbin3AZa453nHIbr6vBmxz44urje3qWodx0qpZQaaPRZhyr5/GlgDADVjQEAhuemAfaB0p64B0pHRoPXcbSUUkoNNNqipZLv8BYYYkd5L662fbRSooZ3iB+stDHYCEC6Lz2JlVRKKaWOngZaKrmMgXDQ/gE1TUGG56S1Tg5VVbmOCg+Qm6rDOyillBpYNNBSyeV0bCfbPn6npLqJVL/dDY0xhCor8cZdOqxsriTdl06aLw2llFJqINFASyVXQ4V9HTQegKLyekYPspcEw/UNmECgzQOlK5sqyU/TjvBKKaUGHg20VHI5lwFJP3J5MNXnBexlQwCvS6Clj99RSik1EGmgpZKrzg4+SmoOTYEQzcEwxw21wzmEa+wI8PHjaFU2V5KXpoGWUkqpgUcDLZVcrY/fGUVVgx3aYVCmHQU+0qLly2v7QGkd2kEppdRApIGWSq6AHaCUlCwOVDUAkJ9hA61gZSXQ9tJhVXOVXjpUSik1IGmgpZKrYrd9zRxMUZkNtCYMcUaFr60FwJN95NJh2ISpD9STlRI7WrxSSik1EGigpZLL67evqTnUt9ixtIZmO6PCV9fYLDnZrdkrm2wrl7ZoKaWUGog00FLJVboVUuwDpbeV2BasoTmpgB0VXlJT8aQfGQG+oskOB1GQVpD8uiqllFJHSQMtlVz+DAjax+4cqLSP1knzO8M71FTjjbvjsN7p05Wdko1SSik10GigpZLr8BYYfBwAPq+HFO+RXTBcXY03L3ZU+NoW2+qV6c9MXh2VUkqpHqKBlkqu1CwItQC2RWvaqCMtWMHSMrwFg2OyR1q0svzaGV4ppdTAo4GWSq7DW6BgEgA1TQEaW0Ktk4KlpfiGDInJXhuwLVp616FSSqmBSAMtlVxpOdBc2/q2cLC9JGiMIXj4MP5hQ2Oyl9SX4BEPBenaGV4ppdTAo4GWSq5gc2uL1v7KRnLT7XAPpsE+UDrRcw79Hn/Sq6qUUkodLQ20VHLVlYA3hUAoDICITQ6W2mcgevNjW66qW6rJSYm9E1EppZQaKDTQUsljjH0NtVBa2wzAiFw7ZlYk0PINje2jVdNco4GWUkqpAUsDrWOUiJwnIltFZIeI3NZOvvkiEhKRS3u9Us7dhgwaR02TfaD02PwMAILldmBSX0Fsi1ZVcxW5qbFDPiillFIDhQZaxyAR8QK/AM4HpgLLRWRqgnw/BP6RlIpFOsG3NLCvwg5Wmp7iDFZaFXmgdH7MLDUtNeSkaouWUkqpgUkDrWPTAmCHMWaXMaYF+DNwkUu+LwNPAoeTUquADa7IG0sobPtojcqzlw5DNTYIi37OIdgBS/XSoVJKqYFKA61j0yhgX9T7/U5aKxEZBVwM/Lq9gkTkehFZKyJrS51+VN0WtP2y8Gews9QZiDTVB0CougpJSYl5zqExhpqWGtK8aUe3XKWUUqqPaKB1bBKXNBP3/l7g68aYkEveIzMZ8xtjzDxjzLwhcYOJdlmjvTxIOIjHud1wWI4NokKVVXjz8mKyN4dsYBZqv4pKKaVUv+Xr6wqoXrEfGBP1fjRwMC7PPODPYgOewcAFIhI0xjzTa7UK2w7wZA1ly5YaANL8NtYPVVa2GUOryXn49Miskb1WJaWUUqo3aaB1bHoXOE5ECoEDwBXAldEZjDGFkf+LyCrgb70aZAE0lNvXlKzWAMsJ9GyglR8baNW02GAsGA72arWUUkqp3qKXDo9BxpggcBP2bsItwGPGmE0icoOI3NBnFYv00fL42HighgnO43cAgpUV+OLuOKxstpcax+WMS1oVlVJKqZ6kLVrHKGPM88DzcWmuHd+NMSuSUSeMvdOQ9DyyUluobGhpnRQqr8CbHxtolTbYzvfDM4cnpXpKKaVUT9MWLZU8Tp8rvCnsLK1jygg7bIMJBAjX1bW5dBhp0cpLje0kr5RSSg0UGmip5Knaa199qYSNodYZHT5U64yhlR07XlZ1czWAjgyvlFJqwNJASyVPiu2TZVIyqWwIMGu0bakKVdjH77h1hk/xpJDuS0cppZQaiDTQUsnjdIavDdmugcGwHdoreNgOTO8bHDtOV11LHVkpWUmsoFJKKdWzNNBSyVOxCxCqGuwApMcPs4/bCZaVAeCLGxB1U/km8tNiO8grpZRSA4kGWip5UnMAQ1WjvdvQGUKLUJXti+UdFNvp3StewpE7FZVSSqkBSAMtlTyBRsgeSX2zbdEal58BQPBwCfj9eHNiO8NXNVdxQv4JSa+mUkop1VM00FLJU7YNPF72VtgHSqf47O4XKD6Ef/hwxOuNyV5cV0xOSk6bYpRSSqmBQgMtlTzpgyAcRIh9oHSwohxf3GClxhiCJkgg8nxEpZRSagDSQEslT6AB8saxs7QOgIwU24IVKivHO2RwTNb6gG31GpM9BqWUUmqg0kBLJU/5ThAPfq/d7QZlpAAQqq7GmxfbEb66xXaQL0grSG4dlVJKqR6kgZZKnowCCDWzt6KBNL8Hj0cwxhCqqsKbGzv6e0l9iZ3Fn9EXNVVKKaV6hAZaKnnCAcgdTUswTFPADtsQqqrCtLTgHzYsJmtdwF5eHJQ6qE0xSiml1EChgZZKnlALeFMwGCYNtSO+B0tsy5VvaGygVdFkH8szImtEcuuolFJK9SANtFTyVB8Aj58DVY1kOh3hg2XlAPiGxo4KX9VUBegDpZVSSg1svr6ugPoY8fqhoYzGlhDGPuaQUIUNtLx5sZcISxtLSfel99txtAKBAPv376epqamvq6KU6ifS0tIYPXo0fr+/r6ui+hENtFQSCeRPoHl/mGkjbQAVcC4d+ocNjclZ2VTZr/tn7d+/n+zsbMaPH49EniWklPrYMsZQXl7O/v37KSws7OvqqH5ELx2q5AkHwetnf2Vj6xAPobJyJD0dT2ZmTNaK5goGpfXfQKupqYmCggINspRSAIgIBQUF2sqt2tBASyVPOIDx2LGzctNt03qgpAT/0KFtspbUl/T7/lkaZCmloukxQbnRQEslhzEQDhIS2wl+ZF46AMHSUnxugVZDSVKrNxB5vV5mz57d+ldUVMTatWu5+eabO11GVVUVv/zlLxNOP3ToEFdccQUTJ05k6tSpXHDBBWzbtq1b9b333ntpaGjo1rwA3/ve9xJOq6ur44tf/CITJ05kzpw5zJ07lwceeKDby+qOhoYGrrrqKmbMmMH06dM59dRTqauro6ioiOnTpye1Lkqp/kMDLZUcgUYAmmrtsA3NQWccrcpKvINcLhEaGJw+uG26apWens769etb/8aPH8+8efO477772uQNBoOuZbQXaBljuPjii1m8eDE7d+5k8+bNfO9736OkpHtBcG8GWtdeey2DBg1i+/btrFu3jhdeeIGKioo2+UKhULeX35Gf/exnDBs2jA8//JCNGzfy29/+tkc6RSfadkqpgUEDLZUcoRYAmjNHATBhsO2TFSovxzc49jE7jcFGagO1jM8Zn9QqHgtWr17NhRdeCMDKlSu5/vrrOeecc/jc5z7Hpk2bWLBgAbNnz2bmzJls376d2267jZ07dzJ79my++tWvxpT16quv4vf7ueGGG1rTZs+ezWmnnYYxhq9+9atMnz6dGTNm8Oijj7Yuf/HixVx66aVMnjyZq666CmMM9913HwcPHmTJkiUsWbIEgBdffJGTTjqJE088kcsuu4y6ujqqq6s54YQT2Lp1KwDLly/ngQce4LbbbqOxsZHZs2dz1VVXxdRz586dvPPOO9x11114PPaQNmTIEL7+9a+31mnJkiVceeWVzJgxA4B77rmH6dOnM336dO69916ANi1PP/nJT1i5ciUAixcv5itf+Qonn3wy06dP55133mmz7ouLixk1alTr+xNOOIHU1FTABnjXXXcd06ZN45xzzqGx0f7weOCBB5g/fz6zZs3ikksuaQ1EV6xYwa233sqSJUv4+te/Tn19Pddccw3z589nzpw5/OUvf+nE3qCU6g/0rkOVHGH7q7wuaE+EaX4P4eZm+5zDwbEtV5HBSgdKi9adf93E5oM1PVrm1JE5fPtT09rNEwk8AAoLC3n66afb5Hnvvfd4/fXXSU9P58tf/jK33HILV111FS0tLYRCIX7wgx+wceNG1q9f32bejRs3MnfuXNdlP/XUU6xfv54NGzZQVlbG/PnzOf300wFYt24dmzZtYuTIkZxyyim88cYb3Hzzzdxzzz28+uqrDB48mLKyMu666y5efvllMjMz+eEPf8g999zDt771Le6//35WrFjBLbfcQmVlJddddx0A999/v2s9N23axKxZs1qDLDfvvPMOGzdupLCwkPfee4/f/e53/Pvf/8YYw8KFC1m0aBGD3FpWo9TX1/Pmm2/y2muvcc0117Bx48aY6ddccw3nnHMOTzzxBGeeeSaf//znOe644wDYvn07jzzyCA888ACXX345Tz75JJ/5zGdYtmxZ6+e74447+O1vf8uXv/xlALZt28bLL7+M1+vlG9/4BmeccQYPPfQQVVVVLFiwgLPOOovMuJtIlFL9jwZaKjmcFq0WY/to+TwegocOAeAfMTIma2lDKQBejzeJFRx4IpcO27N06VLS021/uJNOOonvfve77N+/n2XLlrUGAd3x+uuvs3z5crxeL8OGDWPRokW8++675OTksGDBAkaPHg3Q2nfs1FNPjZn/7bffZvPmzZxyyikAtLS0cNJJJwFw9tln8/jjj3PjjTeyYcOGLtftu9/9Lo8//jiHVOLZJwAAIABJREFUDx/m4MGDACxYsKD1lvvXX3+diy++uDVIWbZsGf/6179YunRpu+UuX74cgNNPP52amhqqqqrIi3oY+uzZs9m1axcvvvgiL7/8MvPnz+ett94iPT2dwsLC1qB47ty5FBUVATaYveOOO6iqqqKuro5zzz23tbzLLrsMr9d+B1588UWeffZZfvKTnwD2rte9e/cyZcqULq8fpVRyaaClksPpo9Uctq0Ow3PTCJbYk2D8pcPDDYcBGJU1ioGgo5anvhTd4nHllVeycOFCnnvuOc4991wefPBBJkyYkHDeadOm8cQTT7hOM5ERZ11ELpeB7bDv1sfIGMPZZ5/NI4880mZaOBxmy5YtpKenU1FR0Rq0JTJ16lQ2bNhAOBzG4/Fw++23c/vtt5OVldWaJ3o9JKq7z+cjHA63vo+/TT/+jjK3O8yysrJYtmwZy5Ytw+Px8Pzzz3PJJZe0WSeRS4crVqzgmWeeYdasWaxatYrVq1cnrPOTTz7JCSec0N6qUEr1Q9pHSyWHc+mwssZeYkv1eQiW2pYrX0FsoFXaaNOzU7KTWMFj365du5gwYQI333wzS5cu5YMPPiA7O5va2lrX/GeccQbNzc0xd++9++67rFmzhtNPP51HH32UUChEaWkpr732GgsWLGh3+dHL+sQnPsEbb7zBjh07AHvHXuRuxp/+9KdMmTKFRx55hGuuuYZAIACA3+9v/X+0SZMmMW/ePO64447Wzu5NTU0JA6rTTz+dZ555hoaGBurr63n66ac57bTTGDZsGIcPH6a8vJzm5mb+9re/xcwX6Yf2+uuvk5ubS25u7PAjb7zxBpWVlYBtodu8eTPjxo1rd53U1tYyYsQIAoEAf/zjHxPmO/fcc/n5z3/e+pnWrVvXbrlKqf5DAy2VHCF7gmxJs880HJyVeiTQihveoTFof+2PzIy9pKiOzqOPPsr06dOZPXs2H330EZ/73OcoKCjglFNOYfr06W06w4sITz/9NC+99BITJ05k2rRprFy5kpEjR3LxxRczc+ZMZs2axRlnnMGPfvQjhg8f3u7yr7/+es4//3yWLFnCkCFDWLVqFcuXL2fmzJl84hOf4KOPPmLbtm08+OCD3H333Zx22mmcfvrp3HXXXa3zz5w5s01neIAHH3yQ8vJyJk2axNy5cznrrLP44Q9/6FqPE088kRUrVrBgwQIWLlzItddey5w5c/D7/XzrW99i4cKFXHjhhUyePDlmvkGDBnHyySdzww038Nvf/rZNuTt37mTRokXMmDGDOXPmMG/ePC655JJ218l3vvMdFi5cyNlnn91medG++c1vEggEmDlzJtOnT+eb3/xmu+UqpfoPae8SgFLR5s2bZ9auXdu9mQ+ug98s5i9T7uaWdSP46DvnUXPfvZSv+j2TN6xHojoyf//f/7+9O4+rqtofPv5ZDAKBOIuapjiBcpgHFZTBASxMQ7NSSpHHHEpNG+1q5q3sp2lWZt2icniuaF7N6bGueb1iipkohQaiIklOqIgCgqJwznr+OLB/IAdU8kDYer9e5yXn7LX3/p7FEb6svfb6/g9bMrewb/S+exT5vZeenq7mx/yFhIaGsmjRIvz8/Oo7FOVPztTPBiFEspRSfXj+otSIllI39MZLhxeKjHNgGllaGFeFb9WqUpIFkFuc22DuOFQURVGUmqjJ8ErdKM4HwMraGksLgYWFoOTMWazbVb08eDL/pJqfpfypVJykriiKcjfUiNZ9SggxWAhxTAhxQggx08T2aCHE4bLHj0IIz7qIq7S0lFYOxjuwSk6fxrpDhyptBEKbp6UoiqIoDZlKtO5DQghL4BPgYaAnMEoI0fOWZieBECmlB/A2EGfWoKTxbrAjlwWWFgJZWkppbi7WbatOoC4sKcS1efUTgxVFURSloVCJ1v0pADghpfxNSnkT+BoYVrGBlPJHKeWVsqc/ATUvVvRHlS3vYGdrCxiLSWMwYNXaqUrTs4VnaWrTtMrriqIoitLQqETr/vQgcLrC8zNlr1Xn/wD/NmtEZcs7nC8swbmlPSVnzgBg3a5tpWbFpcVVdlUURVGUhkolWvenqktWg8l1PIQQYRgTrdeq2T5BCHFQCHEwp2zdq1opG9EquCm4eqNUW0PLum3lRKt8VfjuzbrX/lx/EfPmzcPNzQ0PDw+8vLzYv39/ncdQsYj1rZKSkggODsbFxQVXV1fGjx+vFU2+G3l5eXz66ae1jjErK4vVq1dXuz0jI4MhQ4bQpUsXfH19CQsLY/fu3bU+X20cO3aM0NBQvLy86NGjBxMmTABgxYoVTJkypU5jURTl3lKJ1v3pDFBxlnl74NytjYQQHsCXwDApZa6pA0kp46SUflJKv1atWtU+osILAOiFFV1bOXDztHFEy+qWRCvvRh4ALewqrxavVLZv3z62bt3Kzz//zOHDh9mxYwcdTNxYUF8uXLjAyJEjWbBgAceOHSM9PZ3BgwdXuwp9TcyZaBUXFxMZGcmECRPIzMwkOTmZjz/+mN9++61KW1OlhO6VadOmMWPGDFJSUkhPT9cKS/9R5SvlK4pSf1SidX86AHQTQjgLIRoBTwFbKjYQQjwEbACekVIeN3tEjYx12y4VldLY1orSnBwsHB2xrFCPDuBKsXHaWDObZmYPqSHLzs6mZcuWWg29li1b0q5sqYzk5GRCQkLw9fUlIiKC7OxsAE6cOMHAgQPx9PTEx8eHzMxMpJS88sor6HQ63N3dtTIzu3btIjQ0lMcffxxXV1eio6O18i/btm3D1dWVvn37smHDBpPxffLJJ4wdO1YrFC2E4PHHH8fJyYnLly/z2GOPaSvCHz58GIC5c+cSGxtLaGgonTt3ZsmSJQDMnDmTzMxMvLy8tNXrFy5ciL+/Px4eHrz55puAsTyQh4cHxcXFFBUV4ebmRmpqKjNnzmTPnj14eXnxwQcfVIozPj6ePn36VCoordPpiImJ0WKaMGEC4eHhjBkzhuLiYsaNG6et/p6QkABUHXkaMmSItiSEg4MDL730Ej4+PgwYMABTI8PZ2dmVajq6u7trX587d47BgwfTrVs3Xn31Ve31yZMn4+fnh5ubm9YHAJ06deKtt96ib9++rFu3jszMTAYPHoyvry/9+vXj6NGjJr9niqKYh1pH6z4kpSwVQkwBvgcsgWVSyjQhxKSy7Z8Bc4AWwKdlxXFLzbpyscH4l/UNac2NUj36vDwsHR2rNCuvc9jqgT8welbX/j0Tzv96b4/Zxh0enl/t5vDwcN566y26d+/OwIEDefLJJwkJCaGkpISpU6eyefNmWrVqxdq1a5k1axbLli0jOjqamTNnEhUVRXFxMQaDgQ0bNpCSksKhQ4e4dOkS/v7+BAcHA8Z6emlpabRr146goCD27t2Ln58fzz77LDt37qRr1648+eSTJuNLTU1l7NixJre9+eabeHt7s2nTJnbu3MmYMWNISUkB4OjRoyQkJHD16lVcXFyYPHky8+fPJzU1VWuzfft2MjIySEpKQkrJ0KFD2b17N8HBwQwdOpTZs2dz/fp1nn76aXQ6HfPnz2fRokVVahcCpKWl4ePjU+O3Ijk5mcTEROzs7Hj//fcB+PXXXzl69Cjh4eFajcbqFBUV4ePjw/vvv89bb73F3//+d5YuXVqpzYwZM+jfvz+BgYGEh4czbtw4mjY13hCSkpLCL7/8go2NDS4uLkydOpUOHTowb948mjdvjl6vZ8CAARw+fBgPDw8AbG1tSUxMBGDAgAF89tlndOvWjf379/Pcc8+xc+fOGmNWFOXeUYnWfUpK+R3w3S2vfVbh6/HA+DoLqCzRKsUCF6fGlGRnY22iNl7udeMVzOa2zesstIbIwcGB5ORk9uzZQ0JCAk8++STz58/Hz8+P1NRUBg0aBBgvHbVt25arV69y9uxZoqKiAOMvYjAWSB41ahSWlpY4OTkREhLCgQMHcHR0JCAgQBtl8fLyIisrCwcHB5ydnenWrRsATz/9NHFxd7cySGJiIt988w1gLFydm5tLfr5xQdvIyEhsbGywsbGhdevWXLhwocr+27dvZ/v27Xh7ewNQWFhIRkYGwcHBzJkzB39/f2xtbbURsbsRFRVFRkYG3bt310brhg4dip2dnRZ7+WU9V1dXOnbseNtEy8LCQktIn376aYYPH16lzbhx44iIiGDbtm1s3ryZzz//nEOHDgHGRKm8gHXPnj35/fff6dChA//617+Ii4ujtLSU7Oxsjhw5oiVa5ecrLCzkxx9/ZOTIkdq5bty4cdf9oihK7alES6kbZZPh9VgiMS5Wah8YWKXZ5eLL2Fvb08iyUR0H+AfUMPJkTpaWloSGhhIaGoq7uzsrV67E19cXNzc39u2rXCeyoKDA5DFqqnVaflmy/Fzlc5TKRkBr5ObmRnJyMsOGDauyzdQ5y49Z3Tlv3f/1119n4sSJVbZdvnyZwsJCSkpKKC4uxt7e/rZxVpz4vnHjRg4ePMjLL7+svVbxGNX1l5WVFQaDQXteXFz93bPV9V+7du2IjY0lNjYWnU5HamoqYLpPTp48yaJFizhw4ADNmjUjJiam0jnLYzYYDDRt2lQbDVQUpe6pOVpK3ShLtEqxpFNj4xwt6w5Vl+66cO0Crewa0GXDenLs2DEyMjK05ykpKXTs2BEXFxdycnK0RKukpIS0tDQcHR1p3749mzZtAoyjGteuXSM4OJi1a9ei1+vJyclh9+7dBAQEVHteV1dXTp48SWZmJgBr1qwx2W7KlCmsXLmy0p2Qq1at4vz58wQHBxMfHw8Y54K1bNkSRxOXkcs1bty40iT6iIgIli1bRmFhIQBnz57l4kXj3aoTJkzg7bffJjo6mtdee83k/hWNHj2avXv3smXL/05hrOnOyIqxHz9+nFOnTuHi4kKnTp1ISUnBYDBw+vRpkpKStH0MBgPr168HYPXq1fTt27fKcbdt20ZJSdkSKOfPk5uby4MPVr8iS0FBAfb29jRp0oQLFy7w73+bXp3F0dERZ2dn1q1bBxgTxfKRMkVR6oYa0VLqhjaiZYFdwRWQ0uSlwyvFV1RB6TtQWFjI1KlTycvLw8rKiq5duxIXF0ejRo1Yv34906ZNIz8/n9LSUqZPn46bmxv//Oc/mThxInPmzMHa2pp169YRFRXFvn378PT0RAjBe++9R5s2baqdMG1ra0tcXByRkZG0bNmSvn37aiMvFTk5OfH111/z8ssvc/HiRSwsLAgODmb48OHMnTuXcePG4eHhwQMPPMDKlStrfK8tWrQgKCgInU7Hww8/zMKFC0lPT9cm2js4OLBq1Sq2bduGlZUVo0ePRq/XExgYyM6dO+nXrx9WVlZ4enoSExPDjBkztGPb2dmxdetWXnzxRaZPn46TkxONGzdm9uzZJmN57rnnmDRpEu7u7lhZWbFixQpsbGwICgrC2dkZd3d3dDpdpXlf9vb2pKWl4evrS5MmTbQbDiravn07L7zwgnZJd+HChbQx8f+jnKenJ97e3ri5udG5c2eCgoKqbRsfH8/kyZN55513KCkp4amnnsLTs04qbimKAoiaLh0oSkV+fn7y4MGDtdt56ww4uIwuxf/kmz522Lw2jYdWLMe+d+9KzQLXBBLQJoAPwz68BxGbT3p6Oj169KjvMJQGwMHBQRt9U+5/pn42CCGSzXqzkfKnpi4dKnXDzji5XY8l9jnGJb0adexYpZm1hTU39TfrNDRFURRFMReVaCl1w1CKXlgDYHHmNMLWFiunynUOSwwl5N/IVwWllfuKGs1SlL82lWgpdcNQil5YAiDOnaFRx44Ii8ofv/NF59FLPR0a/3lWOFcURVGUP0IlWkrdkAZkWaLFhfNYtXGq0uR80XkA2thXPwlYURRFURoSlWgpdcNQih4LrIXkZlYWNs6dqzTJzDMuGdC+cdVlHxRFURSlIVKJllI3DHr0WNKi8DLyxg0adXau0uRk/knsre1p76ASLUVRFOX+oBItpW5cOYlE4F1qLLFjU1bCpaLfC37nocYP3dHK44pxlXAvLy/tkZWVxcGDB5k2bdodHyMvL49PP/202u3nz5/nqaeeokuXLvTs2ZNHHnnktiVnqvPhhx/WuBjo7bz77rvVbissLGTixIl06dIFNzc3goODKy2Weq9lZWWh0+nMdvya3O579kcVFhYyefJkunTpgre3N76+vnzxxRdmO58p165dIzo6WluXrG/fvhQWFtZrvytKbalES6kb9q1x1F+h29VsEALb7t2rNPnl4i/qsuFdsLOzIyUlRXt06tQJPz8/kzX+TJWygZp/aUspiYqKIjQ0lMzMTI4cOcK7775rsv7gnTBnojV+/HiaN29ORkYGaWlprFixgkuXLtX6XH9mtUm0pJSVSgTVZPz48TRr1oyMjAx++eUXtm3bxuXLl6u00+v1dxXD3fjoo49wcnLi119/JTU1la+++gpra+s/fNzq/h8oijmpREupG1LPGdGWdrlnsH6oAxa31KDTG/TcNNzExtKmmgMod2LXrl0MGTIEgLlz5zJhwgTCw8MZM2YMaWlpBAQE4OXlhYeHBxkZGcycOZPMzEy8vLx45ZVXKh0rISEBa2trJk2apL3m5eVFv379kFLyyiuvoNPpcHd311Y737VrF6GhoTz++OO4uroSHR2NlJIlS5Zw7tw5wsLCCAsLA4yroffp0wcfHx9GjhxJYWEh+fn5uLi4cOzYMQBGjRrFF198wcyZM7l+/TpeXl5ER0dXijMzM5P9+/fzzjvvYFF2J2vnzp2JjIwEYPHixeh0OnQ6HR9+aFwINysrC1dXV8aPH49OpyM6OpodO3YQFBREt27dtBI6c+fO5ZlnnqF///5069bN5MiOXq/nlVdewd/fHw8PDz7//HOtL0JCQnjiiSfo3r07M2fOJD4+noCAANzd3bUyRjk5OYwYMQJ/f3/8/f3Zu3evdu7Y2FhCQ0Pp3LmzlkDf+j0rLCxkwIAB+Pj44O7uzubNm7X32KNHD5577jl8fHx4++23K62K/8UXX/Diiy9W6cukpKRKfdmqVSutnNGuXbsICwtj9OjRuLu719i/FUeeFi1axNy5cwEIDQ1l+vTpBAYGotPpKpUrKpednV2pBJGLi4tW81Gv1/Pss8/i5uZGeHg4169f196Pv78/np6ejBgxQkvqY2JiePHFFwkLC+O1116jqKiI2NhY/P398fb21vpLUcxFleBR6oahFIOwpNXVSzRyqzo/61zROUoNpfg5NbzFkxckLeDoZdMla2rLtbkrrwW8VmOb8sQDwNnZmY0bN1Zpk5ycTGJiInZ2dkydOpUXXniB6Ohobt68iV6vZ/78+aSmpposOpyamoqvr6/Jc2/YsIGUlBQOHTrEpUuX8Pf3Jzg4GIBffvmFtLQ02rVrR1BQEHv37mXatGksXryYhIQEWrZsyaVLl3jnnXfYsWMH9vb2LFiwgMWLFzNnzhyWLl1KTEwML7zwAleuXOHZZ58FYOnSpSbjTEtLw8vLC0tLS5Pvf/ny5ezfvx8pJb169SIkJIRmzZpx4sQJ1q1bR1xcHP7+/qxevZrExES2bNnCu+++q9WFPHz4MD/99BNFRUV4e3trCVy5r776iiZNmnDgwAFu3LhBUFAQ4eHhABw6dIj09HSaN29O586dGT9+PElJSXz00Ud8/PHHfPjhh7zwwgvMmDGDvn37curUKSIiIkhPTwfg6NGjJCQkcPXqVVxcXJg8eXKV71lpaSkbN27E0dGRS5cu0bt3b4YOHQoYa2IuX76cTz/9lKKiIjw8PHjvvfewtrZm+fLlWlJYsS89PT21JMuUpKQkUlNTcXZ2rrF/a1JUVMSPP/7I7t27iY2NrVLGKTY2lvDwcNavX8+AAQMYO3Ys3cqmG2RkZLBmzRq++OILnnjiCb755huefvpphg8frn1WZs+ezVdffcXUqVMBY13KHTt2YGlpyd/+9jf69+/PsmXLyMvLIyAggIEDB962ALmi1JZKtJS6YSilqARaXM3Ful3VumwZV4wFkjs3rXo3omJa+aXDmgwdOhQ7OzsA+vTpw7x58zhz5gzDhw/XfnHVRmJiIqNGjcLS0hInJydCQkI4cOAAjo6OBAQE0L698RJw+dyxWwsp//TTTxw5ckSr0Xfz5k2tduGgQYNYt24dzz///B8ugJyYmEhUVJT2S3T48OHs2bOHoUOHarUJAdzc3BgwYABCCNzd3cnKytKOMWzYMOzs7LCzsyMsLIykpCQtwQXjyNzhw4e1wtH5+flkZGTQqFEj/P39adu2LQBdunTREjB3d3cSEhIA2LFjB0eOHNGOV1BQoBXBjoyMxMbGBhsbG1q3bm3ysq2Ukr/97W/s3r0bCwsLzp49q7Xr2LEjvcvKXNnb29O/f3+2bt1Kjx49KCkp0d5/debNm8e6deu4ePEi584ZKzoEBATg7Ox82/6tyahRowBjke6CggLy8vJo2rSptt3Ly4vffvuN7du3s2PHDvz9/dm3bx92dnY4Oztr/e/r66t9r1JTU5k9ezZ5eXkUFhYSERGhHW/kyJFaIr59+3a2bNnCokWLACguLubUqVOqpJZiNirRUuqGQY+8aYnNjWvYdOpUZfPpq6cB6ORYdduf3e1GnupTxb/SR48eTa9evfj222+JiIjgyy+/pHPn6hNbNzc3LXm4VU01Ussv8YBxwr6peTFSSgYNGsSaNWuqbDMYDKSnp2NnZ8fly5e1pK2mOA8dOoTBYKgyEnOncVpYWGjPLSwsKsV8680Ztz6XUvLxxx9X+sUOxstsd3IOg8GgJRE1xVhdX8bHx5OTk0NycjLW1tZ06tSJ4uJigCqjNOPHj+fdd9/F1dWVcePGVTlWz549K/XlrFmzmDVrFg4ODlqbisesrn+trKwqzQkrj6fc7foUjDUihw8fzvDhw7GwsOC7775jxIgRVfqk/NJhTEwMmzZtwtPTkxUrVrBr165qY/7mm29wcXExGbui3GtqjpZSJ6ShFH1ZJRJrE784T+SdoIVtC5rZ1nzJQam93377jc6dOzNt2jSGDh3K4cOHady4sTZ6cqv+/ftz48aNSvOSDhw4wA8//EBwcDBr165Fr9eTk5PD7t27CQgIqPH8Fc/Vu3dv9u7dy4kTJwDjXWbldzN+8MEH9OjRgzVr1hAbG0tJSQkA1tbW2tcVdenSBT8/P958803tF39GRgabN28mODiYTZs2ce3aNYqKiti4cSP9+vW7q37bvHkzxcXF5ObmsmvXLvz9/Sttj4iI4B//+IcW2/HjxykqKrrj44eHh7N06VLt+e1GKW/9nuXn59O6dWusra1JSEjg999/r3bfXr16cfr0aVavXq2NKlXUtWtX/Pz8mD17tjbZvbi4uNqEqrr+dXJy4uLFi+Tm5nLjxg22bt1aab/yOX2JiYk0adKEJk2aVNq+d+9erly5AhhHO48cOUJHE7VRK7p69Spt27alpKSE+Pj4attFRETw8ccfa+/pl19+qfG4ivJHqURLqROG3JPIskSr0UMPVdmelZ9Fpyad6jaov5i1a9ei0+nw8vLi6NGjjBkzhhYtWhAUFIROp6syGV4IwcaNG/nPf/6jLZswd+5c2rVrR1RUFB4eHnh6etK/f3/ee+892rSpeUX/CRMm8PDDDxMWFkarVq1YsWIFo0aNwsPDg969e3P06FGOHz/Ol19+yfvvv0+/fv0IDg7mnXfe0fb38PCoMhke4Msvv+T8+fN07doVd3d3nn32Wdq1a4ePjw8xMTEEBATQq1cvxo8fj7e39131W0BAAJGRkfTu3Zs33niDdu3aVdo+fvx4evbsiY+PDzqdjokTJ97V3W1Llizh4MGDeHh40LNnTz777LMa29/6PYuOjubgwYP4+fkRHx+Pq2vNtUKfeOIJgoKCqp1H9eWXX5Kbm0vXrl3x9fVl4MCBLFiwwGTb6vrX2tqaOXPm0KtXL4YMGVIlpmbNmhEYGMikSZP46quvqhw3MzOTkJAQ3N3d8fb2xs/PjxEjRtT4vt5++2169erFoEGDauyDN954g5KSEjw8PNDpdLzxxhs1HldR/ihR09C6olTk5+cnDx48WKt9i78YzNntmdz81QqXlF+wsLXVtukNegLXBDK0y1Bm9Z51r8I1q/T0dDWn4y9g7ty5ODg48PLLL9d3KPfMkCFDmDFjBgMGDKiX84eGhrJo0SL8/BrejS93wtTPBiFEspTy/nzDym2pES2lTpTcvEnB1QcoadKsUpIFcKbwDNdKr9GjhUpcFMVc8vLy6N69O3Z2dvWWZCnKX5GaDK/UDUMpFoUS0b7qZcNDOcY7y1yaq8mpyp9L+dpP94OmTZvWelX/e6niJHVF+StQI1pKnTDoS7C4bkC0bl1l2+4zu2ncqDGuzWqeW6IoiqIoDY1KtJQ6oS+5geU1PVZlawqVu1B0ge+zviekfQiWFlUXnFQURVGUhkwlWkqdeCD3DEKCY4fKSzt8+euXAIzoVvMdRYqiKIrSEKlES6kThXrjqs/2bVppr0kp2Xl6Jz2a98CvjbohR1EURbn/qERLqRP6a8ZVoq2aN9de2/rbVi5eu8gTLk/UV1gN2rx583Bzc8PDwwMvLy/2799f5zFULGJ9q6SkJIKDg3FxcdEKOJcX+r0beXl5fPrpp7WOMSsri9WrV1e7/fjx4zzyyCN07dqVHj168MQTT5gsdXOvrFixgilTppjt+DVJSUnhu+++M9vxMzIyGDJkCF26dMHX15ewsDB2795ttvOZcuzYMUJDQ/Hy8qJHjx5MmDABqN9+V/7aVKKl1AlDUVmi1do4oqU36Ik7HEdru9YM7za8PkNrkPbt28fWrVv5+eefOXz4MDt27KBDhw71HZbmwoULjBw5kgULFnDs2DHS09MZPHhwtavQ18SciVZxcTGRkZFMnjyZEydOkJ6ezuTJk8nJyan1+f7MapNo3eniq+V9OWHCBDIzM0lOTubjjz/mt99+q/WM9NGIAAASZ0lEQVQxa2PatGnMmDGDlJQU0tPTtcLSf1T5SvmKcrdUoqXUCUORcWFc6wcfBGDW3llkFWQxyWsSFkJ9DO9WdnY2LVu21Oq+tWzZUluxPDk5mZCQEHx9fYmIiCA7OxuAEydOMHDgQDw9PfHx8SEzMxMpJa+88go6nQ53d3etNMquXbsIDQ3l8ccfx9XVlejoaK1kybZt23B1daVv375s2LDBZHyffPIJY8eO1QpFCyF4/PHHcXJy4vLlyzz22GPaivCHDx8GjEspxMbGEhoaSufOnVmyZAkAM2fOJDMzEy8vL231+oULF+Lv74+HhwdvvvkmYCwP5OHhQXFxMUVFRbi5uZGamsrMmTPZs2cPXl5efPDBB5XiXL16NX369OHRRx/VXgsLC0On01FcXMy4ceO01cnLi0CvWLGCxx57jEcffRRnZ2eWLl3K4sWL8fb2pnfv3ly+fBkwLsw5ffp0AgMD0el0JCUlVemnnJwcRowYgb+/P/7+/uzdu1fri7FjxxIeHk6nTp3YsGEDr776Ku7u7gwePFgr91Pd9zo0NJTXXnuNgIAAunfvzp49e7h58yZz5sxh7dq1eHl5sXbtWpKSkggMDMTb25vAwECOHTumvceRI0fy6KOPEh4ezjPPPMPmzZu1uKOjo9myZUul9xIfH0+fPn0qFZTW6XTExMRo72nChAmEh4czZsyYGvu34sjTkCFDtCUhHBwceOmll/Dx8WHAgAEmE+Ls7OxK9TErFs4+d+4cgwcPplu3brz66qva65MnT8bPzw83Nzft8wTQqVMn3nrrLfr27cu6devIzMxk8ODB+Pr60q9fP44ePVrl/IpShZRSPdTjjh6+vr6yts5FdpC/euiklFK+f/B9qVuhkxO3T5R6g77Wx6xPR44c0b7OnjdPZj39zD19ZM+bV+P5r169Kj09PWW3bt3k5MmT5a5du6SUUt68eVP26dNHXrx4UUop5ddffy3HjRsnpZQyICBAbtiwQUop5fXr12VRUZFcv369HDhwoCwtLZXnz5+XHTp0kOfOnZMJCQnS0dFRnj59Wur1etm7d2+5Z88eef36ddm+fXt5/PhxaTAY5MiRI2VkZGSV+KKiouSmTZtMxj5lyhQ5d+5cKaWU//3vf6Wnp6eUUso333xT9unTRxYXF8ucnBzZvHlzefPmTXny5Enp5uam7f/999/LZ599VhoMBqnX62VkZKT84YcfpJRSzpo1S7700kvyueeek++++66UUsqEhASTMUop5YwZM+SHH35octuiRYtkTEyMlFLK9PR02aFDB3n9+nW5fPly2aVLF1lQUCAvXrwoHR0d5T/+8Q8ppZTTp0+XH3zwgZRSypCQEDl+/HgppZQ//PCD9h6WL18un3/+eSmllKNGjZJ79uyRUkr5+++/S1dXV60vgoKC5M2bN2VKSoq0s7OT3333nZRSyscee0xu3Lixxu91SEiIfPHFF6WUUn777bdywIABVc4tpZT5+fmypKRESinlf/7zHzl8+HCt3YMPPihzc3OllFLu2rVLDhs2TEopZV5enuzUqZO23530Zfl78vHxkdeuXbtt/1aMMTIyUiYkJEgppQTkqlWrpJRS/v3vf6/UrtyyZcuko6OjHDx4sFy8eLG8cuWK9p6cnZ1lXl6evH79unzooYfkqVOnpJRSe5+lpaUyJCREHjp0SEopZceOHeWCBQu0Y/fv318eP35cSinlTz/9JMPCwqqcv+LPhnLAQfkn+BmuHvXzUAuWKuYnJfpiC6SdJZ+kfMLy1OVYCSuW9F+iRrNqycHBgeTkZPbs2UNCQgJPPvkk8+fPx8/Pj9TUVAYNGgQYL3e0bduWq1evcvbsWaKiogCwLVudPzExkVGjRmFpaYmTkxMhISEcOHAAR0dHAgICtJEBLy8vsrKycHBwwNnZmW7dugHw9NNPExcXd1exJyYm8s033wDGwtW5ubnk5+cDEBkZiY2NDTY2NrRu3drkXKnt27ezfft2rWZhYWEhGRkZBAcHM2fOHPz9/bG1tdVGxGorMTFRu+zk6upKx44dtQU/w8LCaNy4MY0bN6ZJkybaiJi7u7s2QgdohZuDg4MpKCggLy+v0jl27NjBkSNHtOcFBQXa5dWHH34Ya2tr3N3d0ev1DB48WDtHVlYWx44dM/m9Ljd8uPGSvK+vL1lZWSbfY35+PmPHjiUjIwMhRKWi3YMGDaJ52ZzKkJAQnn/+eS5evMiGDRsYMWIEVlY1//qIiooiIyOD7t27ayOfQ4cOxc7O7rb9Wx0LCwuefPJJwPjZK3+PFY0bN46IiAi2bdvG5s2b+fzzzzl0yLgo8oABA7QC1j179uT333+nQ4cO/Otf/yIuLo7S0lKys7M5cuQIHh4eANr5CgsL+fHHHxk5cqR2rhs3btQYr6KAWhleqQsGPaXFlhTaN+KzQ5/h3MSZVY+sopFlo/qO7J5o87e/1ct5LS0tCQ0NJTQ0FHd3d1auXImvry9ubm7s27evUtuCggKTxzD+sW1a+WXJ8nOVz6sRQtw2Njc3N5KTkxk2bNgdnbP8mNWd89b9X3/9dSZOnFhl2+XLlyksLKSkpITi4mLs7e1vG+cPP/xgctud9o2FhYX23MLColLMt/bVrc8NBgP79u3Tkg9T57CwsMDa2lrbt/wcUkqT3+tb96+uH8FYYDksLIyNGzeSlZVFaGiotu3WvnvmmWeIj4/n66+/ZtmyZVWO5ebmVmni+8aNGzl48GClOpEVj1ld/1pZWWEwGLTnxcXFJttB9Z/Fdu3aERsbS2xsLDqdjtTUVMD05+vkyZMsWrSIAwcO0KxZM2JiYiqdszxmg8FA06ZNSUlJqTYeRTFFDSfcp4QQg4UQx4QQJ4QQM01sF0KIJWXbDwshfMwVi/7mda7lWXOgdSEAyyOW49jI0Vyn+0s4duwYGRkZ2vOUlBQ6duyIi4sLOTk52i/fkpIS0tLScHR0pH379mzatAkw/iV+7do1goODWbt2LXq9npycHHbv3k1AQEC153V1deXkyZNkZmYCsGbNGpPtpkyZwsqVKyvdCblq1SrOnz9PcHAw8fHxgHEuWMuWLXF0rP7z0Lhx40qT6CMiIli2bBmFhcbP09mzZ7l48SIAEyZM4O233yY6OprXXnvN5P4VjR49mh9//JFvv/1We23btm38+uuvleI8fvw4p06dwsXl7spElc95S0xMpEmTJtpoSrnw8HCWLl2qPb+bX+LVfa9rcmtf5Ofn82DZvMkVK1bUuG9MTAwffvghYEyqbjV69Gj27t1bae5WTXeZVte/nTp1IiUlBYPBwOnTpyvNbTMYDKxfvx4wzq/r27dvleNu27ZNG5k7f/48ubm52ns0paCgAHt7e5o0acKFCxf497//bbKdo6Mjzs7OrFu3DjAmiuUjZYpSEzWidR8SQlgCnwCDgDPAASHEFinlkQrNHga6lT16Af8o+/eeu56fhygVXG5iyfpH19PCroU5TvOXUlhYyNSpU8nLy8PKyoquXbsSFxdHo0aNWL9+PdOmTSM/P5/S0lKmT5+Om5sb//znP5k4cSJz5szB2tqadevWERUVxb59+/D09EQIwXvvvUebNm2qneRra2tLXFwckZGRtGzZkr59+2qjBRU5OTnx9ddf8/LLL3Px4kUsLCwIDg5m+PDhzJ07l3HjxuHh4cEDDzzAypUra3yvLVq0ICgoCJ1Ox8MPP8zChQtJT0/XJto7ODiwatUqtm3bhpWVFaNHj0av1xMYGMjOnTvp168fVlZWeHp6EhMTw4wZM7Rj29nZsXXrVqZPn8706dOxtrbGw8ODjz76iOeee45Jkybh7u6OlZUVK1asqDQicieaNWtGYGAgBQUFJkeBlixZwvPPP4+HhwelpaUEBwfz2Wef3dGxa/peVycsLIz58+fj5eXF66+/zquvvsrYsWNZvHgx/fv3r/F8Tk5O9OjRg8cee8zk9vK+fPHFF5k+fTpOTk40btyY2bNnm2xfXf8GBQXh7OyMu7s7Op0OH5///RvQ3t6etLQ0fH19adKkiZbIVrR9+3ZeeOEF7fL4woULadOmTbXvy9PTE29vb9zc3OjcuTNBQUHVto2Pj2fy5Mm88847lJSU8NRTT+Hp6Vlte0UBEDUNjysNkxCiDzBXShlR9vx1ACnl/1Ro8zmwS0q5puz5MSBUSpld3XH9/PzkwYMH7zqeU2kHKBoxhv0PdyTmg213vf+fUXp6Oj169KjvMJQ/sdDQUBYtWoSf3/2xGO+1a9dwd3fn559/rjIyV1ccHBy0kcw/K1M/G4QQyVLK++ODoNw1denw/vQgcLrC8zNlr91tG4QQE4QQB4UQB2u7tpBVm/asHO+F47DYWu2vKEr92rFjB66urkydOrXekixFaajUpcP7k6kZorcOXd5JG6SUcUAcGEe0ahNMuxZtmf+y6bk8inK/Kl/76X4wcOBATp06Vd9h/OlHsxTFFDWidX86A1RcJrw9cK4WbRRFURRF+QNUonV/OgB0E0I4CyEaAU8BW25pswUYU3b3YW8gv6b5WUpVan6joigVqZ8Jiinq0uF9SEpZKoSYAnwPWALLpJRpQohJZds/A74DHgFOANeAcfUVb0Nka2tLbm4uLVq0uKN1pRRFub9JKcnNzdXudlSUcuquQ+WO1fauw/tRSUkJZ86cqXExRUVR/lpsbW1p37491tbWlV5Xdx3+takRLUWpBWtra5ydnes7DEVRFOVPTs3RUhRFURRFMROVaCmKoiiKopiJSrQURVEURVHMRE2GV+6YECIH+P0PHKIlcOkehVPXVOz1Q8Vefxpy/H+22DtKKVvVdxBK/VCJllJnhBAHG+qdNyr2+qFirz8NOf6GHLty/1GXDhVFURRFUcxEJVqKoiiKoihmohItpS7F1XcAf4CKvX6o2OtPQ46/Iceu3GfUHC1FURRFURQzUSNaiqIoiqIoZqISLaVWhBCDhRDHhBAnhBAzTWwXQoglZdsPCyF8brevEKK5EOI/QoiMsn+bNaDYRwoh0oQQBiGE2e52MlPsC4UQR8vabxRCNG1g8b9d1jZFCLFdCNGuocReYfvLQggphGjZUGIXQswVQpwt6/cUIcQjDSX2sm1Ty7alCSHeM0fsigIYK46rh3rczQOwBDKBzkAj4BDQ85Y2jwD/BgTQG9h/u32B94CZZV/PBBY0oNh7AC7ALsCvgfV7OGBV9vUCc/S7meN3rLD/NOCzhhJ72fYOwPcY16hr2VBiB+YCL5vjs1IHsYcBOwCbsuetzfk+1OOv/VAjWkptBAAnpJS/SSlvAl8Dw25pMwz4v9LoJ6CpEKLtbfYdBqws+3ol8FhDiV1KmS6lPGaGeOsi9u1SytKy/X8C2jew+Asq7G8PmGPiqbk+8wAfAK+aKW5zx25u5op9MjBfSnkDQEp5sS7ejPLXpBItpTYeBE5XeH6m7LU7aVPTvk5SymyAsn9b38OYbxfXnbS5k33NqS5ij8U4OmAOZotfCDFPCHEaiAbm3MOYbxfXnbSpdl8hxFDgrJTy0L0O+A7iupM2t9t3StnlumXCPJf6zRV7d6CfEGK/EOIHIYT/PY1aUSpQiZZSG8LEa7f+NV5dmzvZ15xU7NXsK4SYBZQC8bWK7vbMFr+UcpaUsgPG2KfUOsLq3fPYhRAPALMwT2JYkbn6/R9AF8ALyAber22ANTBX7FZAM4yXGl8B/iWEMNVeUf4wlWgptXEG47yScu2Bc3fYpqZ9L5QN+VP2rzmG880Ve10wW+xCiLHAECBaSmmu5LEu+n41MOIPR1qVOWLvAjgDh4QQWWWv/yyEaHNPIzdTv0spL0gp9VJKA/AFxkt195q5PjNngA1llxuTAAPG+oiKcu/V9yQx9Wh4D4x/Df6G8ZdE+SRTt1vaRFJ5gmrS7fYFFlJ5Mvx7DSX2CvvuwnyT4c3V74OBI0CrBvq56VZh/6nA+oYS+y37Z2GeyfDm6ve2FfafAXzdgGKfBLxV9nV3jJcYhTk//+rx133UewDq0TAfGO/0OY7xrp5ZZa9NAiaVfS2AT8q2/0qF5MPUvmWvtwD+C2SU/du8AcUehfGv5BvABeD7BhT7ibJfNCllj3t+156Z4/8GSAUOA/8PeLChxH7L8bMwQ6Jlxn7/Z1nbw8AWKiReDSD2RsCqss/Nz0B/c33m1UM91MrwiqIoiqIoZqLmaCmKoiiKopiJSrQURVEURVHMRCVaiqIoiqIoZqISLUVRFEVRFDNRiZaiKIqiKIqZqERLURRFURTFTFSipSiKoiiKYiYq0VIURVEURTGT/w/kOXJ5hukKPAAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "DS_share = DecomposeSegregation(G_la, G_ny, counterfactual_approach = 'share')\n", + "DS_share.plot(plot_type = 'cdfs')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We can see that curve between the contexts are closer to each other which represent a drop in the importance of the population structure (attribute component) to -0.062. However, this attribute still overcomes the spatial component (-0.045) in terms of importance due to both absolute magnitudes." + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAApEAAAK6CAYAAABhQAc+AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAAgAElEQVR4nOydd7ycVZ3/35+ZW5MbkpDQAgkhhFClC1ITxIIFcdeGYgmuuuyqu2vvCvauP8WVVRZBsSGWFUUFwYQSeu8QQkJCQkIayU1yy8x8f3+cM7lP5j4zd+b2ufm+X6/nPndOP+c5z3m+53uazAzHcRzHcRzHqYXMSCfAcRzHcRzHqT9ciHQcx3Ecx3FqxoVIx3Ecx3Ecp2ZciHQcx3Ecx3FqxoVIx3Ecx3Ecp2ZciHQcx3Ecx3FqxoXIMkiaL8kkzR9gOOfHcOYNTsocx9mZKNeGRLMFI5Mqx3GcYRIiJWUlvVvSQknrJXVLWiPpfkkXS3rNcKSjJE3zYiN8/nDHXQ2SmiT9i6Q/S1olqVPSZkn3SvqupMNHOo1OQNJSSUtHOh21IukQSVfEd7FD0mOSLpDUOpxhKXBtfB9NUkOKm/MT9mnXGbWmuYp0/TiGvVXSpAruLo3uZpaxXyCpLjfkHYlOsKQpkj4jaZGktfF7sU7SjZI+KWmP4UqLUx5JM2PduHSY422Nbctjsa1ZE9ueg4crLEmnSPpt4tu8StI1kl5Z4u4ASR+TdL2k5ZK6JK2W9H+STqs1vaORXo31YCMpC/wJOAPYCPwZWAHsCuwPvAU4CPjjUKelRn4P3AqsGu6IJc0B/gAcDKwFrgWeBpqAQ4DzgP+Q9FozG23l5tQBko4HrgcagSuB5cCLgc8Cp0s63cw6hyms9wGnAR1ASx/RXQYsTTFfXE1aq0XSBOBswIBW4K3AhYMZRw1cCPyK0AaMaSS9GrgcmEh4pr8H1sTfxwNfBD4pabaZPTtiCXVGBEnNhO/hScCdwP8DpgNvAF4l6cVmdttQhiXp08AXCN/mPxFkhKnAUcA84OqE8y8AbwIejubrgQOB1wCvkfSfZva9Gopg9GFmQ3oRGl8D7gUmptiPA04b6nSkxDsvpuv8IY7n/BjPvCrd70H4CBvwHaA1xc3uwA+Adwx3ufmV+syWAktHOh01pDdLaNQMeE3CPEMQAg34+HCERWhQtwJfjeVoQEOKu5reo0Eoo3+N8X0b6ATuq+D20uh2Zhn7BaGpHfQ0GrBgiMth2ModmAt0AduA+YBS3LyA0GFJLWu/hu8CZsa6cekwxvmJGOdvgEzC/Kxo/lDSfLDDIgiYRhA+J6SE2Vjyez5wVIq7Yl3vBPYa6Wc5oGcyDA/9v2Oh/1cNfuZHP/OBVwGLgC3AhvhhOiDFz5z4IboTeC4+nGXAj4B9StwWG/20a15pGkr8nhbDfBjYFBu8B4HPAS0p6aqpEQZ+HN3/ogq3zSW/9yIIl0tjBX0O+B1wTB9l/FLgRqA9+vkJMCm6O4rQ29oQ7f9ISgNO/FACzQRtwVPxGTwZy6apTB5OB/5K6KF1AI/H55jW4SjG0QB8EngixrEc+FqFOA6Kz3x5dL8a+AVwYIrbYt2YSRAkHojpWh2f+8SE23kV6tGlI/VSV1FvXhzTuDDFbla0W0rKR3www4rP8XZCY93M6BIi7wTyBM3Eb2Pcx6e4K/f8l9LzkU27FiTCWBqvXQhC61Kgm9jBLZf3YjjANOBnBI3dNuAu4C2V3vkyeU5LV2r6S/yNI3yQ7yW00+3ALcCbayjvDPBIDP89Vbgt/VgfE5/TGnra/v8m5QNNzzu+H0EL/jDhHV9KaFcU3b0h1s8tMdwLSW/ja3oOiTycB9wRy2tL/P/fSBGCEnFMJbRDq2I+HwLOrVBWLydowNbS0x5/g9i+l7gt1sNx0c3T0c9i4GMk3uFEnUy7UuvXILyTis/VgP1S7G+Idn0qpfoTVnxmS+Kz2m0Q8nNNjON1Q1Few3UN+XA2sC7e5/TD7z8DryAMaSwAjgReB5wm6UQze6zE7XnAPwhCZxdwKPAu4ExJx5rZM9HtH+L9HcDCGHaRpX2k6WMEoWQRYWi+haAOPx+YJ+klZpavMZ9AmJ8BvC3+vKAv95YYIpS0H3AToSG7HvglO6rmX2dmf0oJ5jXAqwmC4kXAiYSPzX6SPg5cRxAw/5egBTgT2F/SC8yskBLeFcALCcJ+N6FXdz5wrKTXWHx7Ypr/Ffgh4aX8DaHxnUco4zMlnWRmG1Pi+AVwCvAXgiD/SuCjBA3tuUmHca7c7whDrVcRGsR9CPXlVZJOM7O7U+L4OqEBvorwsp8GvBuYTRCcINSVC4D/ir+/m/B/b0qYo4Vi+v9aamFmSyQ9TnhfZxE+OkMV1qcJnZQTzKxTUjVpP1nSMQQBdClwnZmtrcZjtUg6iiCUXGtmy+Ocr38G3gOUDm9dALwWOIIwHFasrxvjdQHhfdqXHd/ppSXhNBHe210J9W0ToSPWF5MJbdFGYucPeCPwc0l7m9k3qgijHN8l5G0uZaYRxLmi1xOe493AJYSP7cuBX0g61Mw+XUVccwnt6jOEtqYssd3Z3vbEIfDfEgSDKwnCwTEEgeys2I70SjvwTUJ7U3zHXwN8CWiStJ7Qmf0Dof17KfBegub931LCqvU5/IwwlWs5cDFBmPgnguB7MnBOShyTgJsJ37YrCd+e1wOXSCqY2WVJx5I+S6hz6wnt+xrgcODDwCslnWBmm0riaIxlMY3QvuYIdeCrMb5iHV4Q0/OfwH30fFMh0fYpLPyaSxDGFqTkqRb2B2YAj5tZ2rvxF8J34cUEOWCwwzqR0PG4Etgg6VXAYYQOyO1mdktt2aE73nM1+htdDLWUSmhcuggv/c8IjfG+ffiZT0+v5tUldv8Zza8rMd+bEs1cNH8ZQaPwwxLzeVQYzqa8JnIW6VqVL0T3byoxP58qNSiESmvAin6U89+i30+VmJ9IqKTrgLaU/OWAuQnzDEFVb4TG55yS8P432p1VYr4gmj8OTE6YtxC0Ega8LWG+L6GXuwk4qCSsovb6R2XiuAvYNWE+niAc5oE9E+aTCRrUtcAhJWEdStAA3F1ifmmM42lgRsK8gZ7e6XElfpbSj+FsQqfo/BqvXhqEfsT7Gyr0gAkfHANeMVRhEToa3cAXSsrRqKyJLL06CO9en1rTGsrnohj2mxPP/tlYX3ZJcV+sMzPLhLeACsPZiXz/HRhfIe/zSsyLZXAFOw7H7Ud4d7uAWQnz+dSgiawUd0reP1pi3kLoWBSAI6so88/EcC6v8Vm1Ed7vPHBKid3HYpjXlEnzUmDvhPmkGNYWwojMwQm7ZoLGshPYfYDP4c3R/d3s2CaPJ2jAjRINZiKOi4FswvwQQhv+cIn706L7RZS0GYl68J0y9fBqEtOoCJ3zYqeoMWE+kz5GXehps1PrT43P+lUxrKvK2L8+2v96KMICPhDNLgTuTzyT4rWQKjWUhO9fR6xrk6vxM1qv4Ykk9MhWlRT4OoKG8cwU98VKfl2KXZYgMBh9CKMJP/cDS0rM5tEPIbJCHFOi+0tKzM+v9iWK5WTArTWW7z7R3zJKhnmi/c+i/dtT8vezFPdvj3Y3pNjNjXafKzEvNhZvS/FTLOt/JMw+Fc2+nOJ+Mj1TBZpT4nhJip8LKOl00NPheG+ZcvtOtD8kYXZpNHtXivtzo937SsyX0j8hsvgMarlm1hpPSrzFYZRe5Rjtf05CiBrssAgLVR4laDCSH6WllBci/ymW/34EAWUGYZTh2XL1qJ9lMx54nvDBbEmYfyvGc16Kn2KdSX02VC9EHlHG/nzKC5E50ofjin4+l1Lf5peJx6hBiCS0eTngjjLhHRH9fr2Kci92HL9a4/M6J/rrNf2HIPw/Fe2THcLi8/qXFD+XRLvPp9h9LtrNHeBzKHbSX5bi/vRod31KHFtI78QsjPYTEma/j2aHlim3e4A1Zerh7BT3l0W7wxJmM+lbiJxB0DCPq+W5lgnrLVToaBC0xQb8bSjCAr6SeNZPxGfVRlBI/DXt/SkTdjNh1NCAjwy0XEb6Go7hbMzsCkm/J/SOTiZoJ08mqMlfK+mnhIbNSrwuTAkrL+kmgjr6KILghMJY2DmEhvIIgiCSTXjtGoy8SBpPEE7+iTBMN4EwjFJk74EEH++l5dAXR8X7jWbWnWJ/PWGB01HAT0vs7kxxvzLe70qxK04J2KdMWno9M8JwUC6RToCjE2nbATPbIOke4FRCA3RfFWleHu+TE2YnxPsRSt/KqTjF4mCClqE/cfQbM7uU8EEbVCQdSXi3kmw0s++muU8LIt5rrYfVhvV1gkb/uDL1tRdm9vsSo6eBiyXdTdhF4cOSvm0DH9o+mzA38X/MrCNh/hPgg4Qh7YsGGEcaHYTObq08benDcQsIQs9RKXaDxQsJbWy5rdIa472arVf6W+cqtSM5STcQhJ2j6L26fTDbvlqew9EEDe2CFPcLCVrVtOf2hPUefoaedmkSsDn+fwJB0/8GSW9I8dME7CZpipmtS5g/b2ZpOx30q+0zs5p2FChTjy619OkIvbwXo60lzhrCyibsXm9mxe/SQ5L+iTAKNzdOE0gd2o671fyMMAXu14QpFXXNsAiRAPFjcU28ioX5OkLP7+2EntMfSrytLhNccWuHiQmzbxPmpq0iDO0+Q9BkQc+cpAEhqZHQWB1HWEzza8KwR/FD+DlCL6O/FBuwcgJaOYrlUG47oqJ52l53z6eY5aqwa0yxg5RnFgX/dYRhkSL9TrOlz5MspivZcZgS7+8uE0eRthSzauMYjRxJqItJltEzZ7P4XCeSzi4l7ipRU1iS5hLmlp1vZgOeN2pmd0u6ndAon0CY3zYQ3hPvl5bE86Cku4Bj4vzqNAFkIKxJ6URXQy1t5GBTfL9eGK9ypL1fpdR721fLc5gIrDezXoqNKPiuZce2skham5RMV2nb10DvdqCUNnrWLdQax1CQlt4FBC3piLVbkQ3xviQhQAJgZtsk/Q34F4J80EuIjDLP5YR1ClcAb+3nOz+qGDYhshQLi0+ukPQCwgT7F9NbiCy3qeye8V78MO0O/AdBsDvRzDYnHUt68yAl+yxCBbnMzOaXxLEXfb+wfXEnYc7NPpIOtB0XDlWiWNH3LGO/V4m7oWQPSnr88eWZQhiiLpJM80Mp4QxGmot+jzCz/mh5hpQyGsO++G4ZIXo7VWg4i/Wq3GK3A+L98SrSU2tYRxF68hdIKrd4rDsusjmqSkHzuXgfX4Xbsihs4H9c/HlLhYU+7yFdizUQ+vsxqaqNjBQXo6Rt5l52M/UKFMP+jpl9sB/+k9wU7/MkZa36xYmjpe2r5Tk8D+wqqbFUE6+w0f5Udmwr+8PzhPmZuw4wnGHFzCqtrhvJdivpp1z7WxQyex2wEJ/rLwgC5C8IU8v6tQB3tDFiQmSCosCXVnnmlhpEgeTk+POeeJ9FWBByTYoAuU+0L6X4AGvpWc2O999Wk9Zaib2ZnxHmen2GMARdFknNFlZoF8vhZEkNZla62qu4M37aKuTBZi5BXZ/kFEJduydhdg9hkdU8wgrw7cQP2pGEIb5HBpCWWwna7lPo31BhteQJw0O1kqYx7ItLKd+IVcv1hDmpZxDm+WxH0ixCw7qMsJ3FYIf1IOVX376JoBkpzktbV8ZdMo5GeoY0q0lvJYpayAWUX5X+FuDNkj5oZu3RrK+2JA+h7RqCD8cMSTNThvvmxXvynSt+5KanhHNsmfAr5e12gmB6St/J7JOFhHmyBxHmvl5czqGkDGFxSTc9+ZtHSb2KH+7it2Ko275ansM9hPl0p1LS9kWzLANP762E3ScONbO0Tvpg0J9v6EB4kqCgmCNpv5TpA6+I915TGwYprBsIGtkDJDWlaJIPi/elSUNJTQTN41mE6WTnWvrOJvXJUE+6JKxEeynpe1/tSZigasAbEubz6VlIUG519vUl4Rhh+43kyrU2wlJ9o2RiO2FVmxG0imnpLqZhfsKseILFt0rczqJnz6kFJXbnU8PqNHbcbPwbpG82PhX4HonNxulZ4PDhErfHEyr+enaceN0rfwm7eZRZdESZydRUtzr77SXhdBEEotklYX0/uv9xWhw1PK8phA/nGkpWVEf7TOlzocIiiXLlQviYdqQ9q9F4UXmD8OJq64+X+BlH+MDPGGhYFdK1lJSFNYR5x71W+BIE9x9EP4/Qe2Pg88vV45SwWmNdyQHTKrgrLlJ7d8Ls69EsdX86wgfESFl4kcj30gpxFvNRWleLbeSvSV8V3A3snzDfi/Dhf4LEQgfCtkJ3k95+/Xs0T92LkPBRNEKnN21B1P7l8p3idm5M81ZCBzptF4xDCKvYZ8bfxeHYHPCiErcfjmm7tsT8Usq/46llHe3mk9Jm9uM5FBd13F7yHMZFM6P3rhi9nk2l/NCzQGdRWn0maO1Ly6tsPUwrl1j2BVL2iE24GbSFNTG8/mwQvn9MQ+neov0J6/Jo98US85fGsthIYjU8YXrbn6Ofi0vDGwvXcGgijycIfs/GBTFPRfP9CMvsW4H/I+y9VMpVwO/jopzFhAUzryS8mP9edGRmz0r6FUHIu1fSNYS5Di8lfNzvJWh9kjxGmDd5tqQuQq/ECKuVl5XJS3GfwQ/GYfh7CC/JqwkVZUY1BVIJM1st6XTC0P6HgXdISh57eDBBmGlmx6HQ8wh7iH1D0ssIw23FfSILhI/ADlraIeIRwkTj5D6R+xPKZ7uG0syWSvovghBwt6QrCMOScwlz2x4lbNHRb8xsnaTXE4+wlHQdoWEoEJ7VCQRBs6+j9vriOsKcsL/GifzFE04GOj9vSLAwR/VcQi/7yvisniZ8eI4l1KPvlHg7jrBf2kJ6tCv9DatWpgD3SLqXoFFeBexG0LDvR9iW5c3Wu3efifdq9mF7E2He3FVmtrKCu4sJAs57CAcDQHj+HwF+HPPfTljIdGHC/g3A7yRdTZirvczMSjX2/eF+Qht7V6LdK+blo2a2XaNqZqsk/ZywF+29kv5MmPv1SoKWJW0xxz8I78tXJB1G1Gaa2Rej/fsIQ3+fB94W2/jVhH0GDya8F2+mij0vzWyhpH8mtBM/Az4T9xl8Lubr2JjXLcT57mbWLumdBEFgoaTfEOrfMYTt3Z4lHBow1NTyHH4h6SzCbhwPSfoD4dvzWkJ9vsLMfj6QxJjZdXGf368AT8R69xRB8NuX0M7eRBhB6G8c7ZJuA06J9epxQiflj9YzfeinMa7TSF9IVCvfJnxvXw/cFtv0GYT3ayvwzpR24DpCnvdjRy1hf8L6IOE5f0rSqQShf1/CQts8oXOZHCm6iPB+rSXIG59NmSazwAa+h+bIMdRSKkGQeS/hQ/4YYa5HF+FDcDWhQS6V9ucTe3yEh3wLoeHYSBhKnpMSzzjCRrGLCYLjcoKAMoUyGixCA3cdYf5IgURPi/K9zumEbUuKC3ceImx03cAgaCIT/poIk3SvjmXVRRj6f4CghXxBip+9CZt3L4vu1xKE0RemuE3NX7SbR/81kaUn1iwhLjgqk8+XEbSoG+g5HeHrpJ+okPocq8jPTMLeXk/EurGJIKT+DHhtidtLqV0TOT6W+wqCwNKrfEbjRdDq/Iae0yweJ2yVlKb9LuZ9wUDDqpCepaRrIneJdf5WglDQRRDU7iNsgrx7mfB+T2jYe7UXKW5vpkSbWsHtY9HtUQmzDxI6UJ3RbmnCLgt8Ob4L3aXlyMA0kQsIAtvlBI17B0GrWO6klGbCCMeKWI6LCRqZ1PYr+nkroSO+jfRRnSaCMLmI0JZ2EgS56wiLHafUWC+nEDSbiwhaxm6C4mARYf58r+dNaMt/TxA4i0qBH5KuhbuUwddE1vocMgRFyJ0EgWUrYUX4e6lwYk2ZsCrl52SCJnwlPaeY3UsQoI5Nef9S62GFOjiboFxZR883dH7CfkG58uzvRVA8XUDPiWXPEdqeQ8q4X1qhfGoKK/rZNZbfU7FM1xEUYS9KcVvMf6Xr/MEqm5G4isc7jSokzSdsqXGuhUUCziineDKBVZ4Y7TjDQtzy6znCtJc3jnR6nLGLJCMM6c4b6bQ4znCT6duJ4zhO3XEYQaP1lb4cOo7jOP1jNKzOdhzHGVTM7AHSd3xwHMdxBgnXRDqO4ziO4zg1MyrnRDqO4ziO4zijG9dEOo7jOI7jODXjQqTjOI7jOI5TMy5EOo7jOI7jODXjQqTjOI7jOI5TMy5EOo7jOI7jODXjQqTjOI7jOI5TMy5EOo7jOI7jODXjQqTjOI7jOI5TMy5EOo7jOI7jODXjQqTjOI7jOI5TMy5EOo7jOI7jODXjQqTjOI7jOI5TMy5EOo7jOI7jODXjQqTjOI7jOI5TMy5EOo7jOI7jODXjQqTjOI7jOI5TMy5EOo7jOI7jODXjQqTjOI7jOI5TMy5EOo7jOI7jODVTV0KkpE9Kuniw3VYRlkma3Q9/7ZJmDUYanNGNpIckzatg/xdJ7xjGJDmO4zjOkDJiQqSk+ZIekLRV0rOSfihpUiU/ZvZlM3tXNeHX4nYgSFogqSMKjMXrhJiGNjNb0o8w50laUYW74yRdLWmjpPWSbpd0bn/yURLufEk3DTScGNbMKIQ39OFujqTfSFor6XlJ90v6oKTsYKRjqDGzQ81sAYCk8yVdXmL/CjO7bEQS5ziO4zhDwIgIkZI+BHwN+AgwEXgRsC9wraSmMn4qCiEjzPuiwFi8bunLw0CFoyioXg8sBGYDU4B/A14xkHBHAkn7A7cBy4EXmNlE4A3AscCEkUyb4ziO4zhlMLNhvYBdgHbgjSXmbcAa4J3x9/nAlcDlwCbgXdHs8oSftwPLgHXAZ4ClwEsS/i+P/88EDHgH8DSwFvhUIpzjgFuAjcAq4EKgKWFvwOwy+VkAvKuM3XZ/wKXAD4GrgS3AS4BXAg8Dm4FngA8D44FtQCGWUzswLSXsm4Af9FHW7wYWA+uBPybDiWk7D3gC2AD8ABBwMNAB5GPcG6P7ZuCbsfxWAxcBrdHuY8CtQEP8/W/AQ0BLdG+JvJyQks7LgT/3kZfXxDA3xjI/OGG3lNAhuT+W7f8CewB/iWX7d2BySV14D7AyPu8PJcJqBr4b7VbG/5uj3VTgTzEN64EbgUwiDS8BzgC6gO6Y3/tK6wmh8/ZpQt1dA/wUmFhNXfXLL7/88suv0XKNhCbyRIJw8bukoZm1Ez76L00Yn0UQJCcBP0+6l3QI8N/AOcBeBI3m3n3EfTJwIHA68FlJB0fzPPABgpBwQrT/9xrzVQ1vAb5E0K7dRBB2/tXMJgCHAdeb2RaCNnGl9Wg2VyYDkTQupvPKchFJejHwFeCNhPJZBvyqxNmrgRcCR0R3LzezRwjC5S0x7uIUg68Bc4AjCZrPvYHPRrtvEASnT0s6APgy8FYz6wBOjW4mWXkt7Uv6yMsc4JfAfwG7EQTxq0q01q8j1J05wJmEuvRJwjPNAP9REuxpwAHAy4CPS3pJNP8UQTN+ZCyX4wgCH8CHgBUxDXvE8C0ZqJn9Neb/1zG/R6RkaX68TgNmETpQF5a4KVdXHcdxHGdUMBJC5FRgrZnlUuxWRfsit5jZH8ysYGbbSty+HrjKzG4ysy6CQGNU5gIz22Zm9wH3EYQEzOwuM7vVzHJmthT4H2BuDXn6XpyXuFHS3RXc/Z+Z3Rzz00HQVh0iaRcz22BmlfwmmUx4dqsquDkHuMTM7jazTuATwAmSZibcfNXMNprZ08A/CIJTLySJoNX8gJmtN7PNBEHpbAAzKxC0wv9B0Hh+3czuqTIvEIbiK+XlTQRN5bVm1k3QiLYSOiRFvm9mq83sGYKG8DYzuyfm/ffAUSVhXmBmW8zsAeAnwJuj+TnA581sjZk9B1wAvC3adRME8n3NrNvMbjSzvupcGucA3zazJbHz9Ang7JIpG6l11XEcx3FGCyMhRK4FppaZ47hXtC+yvEI405L2ZraVMKxdiWcT/28laICKizr+FBf4bCIISFPTAijDf5jZpHgdXcFdaX5eRxjSXiZpYXFBThVsIAx371XBzTSC9hHYruldx47a2tTySGE3YBxwV1FYBv4azYvhLyUIojMJQ+O1sI7a8lIglGUyL6sT/29L+V2at+SzWBbj6BVXid03CNMDrpG0RNLHK6S5EmlxNBC0m0WqfTaO4ziOMyKMhBB5C9AJ/HPSUNJ4wjDudQnjSlqeVcA+Cf+tBI1Wf/gh8ChwgJntQhimVD/DqkTp0OcdZnYWsDvwB+CKNHe9AgkC8y0EIbQcKwmLlYDt5TuFMPeypnQSBPttwKEJYXmimW0XbCS9kjDEfh1B2CoXVhp/p7a8CJhOdXkpx/TE/zNiHL3iStqZ2WYz+5CZzSIMmX9Q0ukpYfeV57Q4cuwo+DqO4zjOqGbYhUgze54wRPh9SWdIaoxDrL8hzDf7WZVBXQmcKenEODfuAvov+E0gLN5pl3QQYWHIkCKpSdI5kibGIdpNhLmZEISJKZImVgjio8B8SR+RNCWGeYSk4rzHXwDnSjpSUjNBu3pb1Bj2xWpgn+Kcw6j5+zHwHUm7x7j2lvTy+P9UwvzOdxEWhJwZhUqA5wha00r7ZX4OOFHSNyTtGcOcLenyuO3TFcCrJJ0uqZEwN7ETWFRFXsrxGUnjJB0KnAv8Opr/kjC3c7eYr88SFv4g6dUxXaLneeVTwl4NzJRU7v36JfABSftJaqNnDmXaFA/HcRzHGZWMyBY/ZvZ1grbvm4SPcXF7l9PjHLZqwngIeD9hscgqwircNQTholY+TFj0spkgLP26svNB423A0jiEfh7wVgAze5QgaCyJw8fTSj2a2SLgxfFaImk98CPCohPM7DrCivXfEspnf+Icxiq4nrAS+llJxekFHyMM5d4a0/t3wsIPYrz/Z2ZXm9k64F+AiyVNiVrTLwE3x7y8KCUvTxK0mDOBhyQ9H9N9J7DZzB6LZfN9glb0TODMOBe2vyyM+bkO+KaZXRPNvxjjvR94ALg7mkFYiPN3wqrrW4D/trg3ZAm/ifd1ZebIXkLoLN0APEVYDf/+AeTFcRzHcYYd9W9dwOgjanQ2Eoaknxrp9Dijk6j1fgpodM2f4ziO4/Sfujr2sBRJZ8YhyfEEreYDhP36HMdxHMdxnCGkro/L5yUAACAASURBVIVIwj6SxU2hDwDO7ueWK47jOI7jOE4NjJnhbMdxHMdxHGf4qHdNpOM4juM4jjMCpG347TjOTsRsybb20+8q+JuZnTGoCXIcx9kJqce22IVIx9nJ2Qq8p59+L6jtZCfHcRynDPXYFrsQ6Tg7OcLntTiO44w09dgWuxDpOM6QnPHpOI7j1Ea9tcUuRDqOU3e9X8dxnLFIvbXF9ZZex3Ecx3EcZxTgmkjH2cmpx3k4juM4Y416bItdiHQcp+7m4TiO44xF6q0tdiHScZy66/06juOMReqtLXYh0nGcuuv9Oo7jjEXqrS12IdJxdnLqcR6O4zjOWKMe22IXIh3HqbuGy3EcZyxSb22xC5GO49TdEIrjOM5YpN7aYhcinaGlY10GyBLqWjZe5TpbVnIvNS9q+4thJC+l/TYriM4NSgm7AOTjPVfyuwB0a9KczbVn2HEcx3F2Dka3ENm+fAbwWuAntE3fHM0mAfMJH/xuglCQFC6K/zfQI1AUUcmd6D9TYqbEZSVuCgmzfLxno7/WhJti+vIlfjJAEz1CVTGeZqCxJC9JwSuZpqTQ1GBdm1dj+ZnRfzG/xfwYvfNWSrGcimWWFPayNLQ+qObJh8d0K8aTTbmKYfQlLA4jeh6Y2A+P9wBHD3JiRiX1OA/HcRxnrFGPbfHoFiJhNfBB4LKE2V7Ad0YmOaMVuxk4aeiCt7XAwUMW/uike6QTMJzUW8PlOI4zFqm3tnh0C5Ft0ztpX/7fwE20L/8LQas3dYRT5dQX/Z1ikhvUVIxy6m0ejuM4zlik3tri0S1EBr5P0EZ+ZKQTMnpR6RxCZ+DsNEJkPQ6hOI7jjDXqsS0e/eltm74N+OZIJ2OnRtl66xwNBjtVntXPy3Ecxxk86q0trgdNJMBFwCeAXUc6IaOUwkgnAMDMOrHCY2CGMqagIY2XQU86iwuNoGfxUvL/Yoesx1yZF/YzWf19v5r76a8uGf29ScdxnLFPvbXF9SFEtk1vp335d4AvjHRSRiejRie0mo2PHw5Ay6530DShv4JfbxrGDVpQVdIy3BE6juM4zlAg6Qzg/xF2TrnYzL5aYj8RuByYQZANv2lmP+kr3PoQIgMXEuZF7jLSCdmpMFtPIbfZ8t130KMlTMzBtPjHChRy3YQKCL33ehxgOvI3mhXy9GxvZDvGYjv82v6vmYBT+xFjPb0bA6Ie5+E4juOMNYaqLZaUBX4AvBRYAdwh6Y9m9nDC2XuBh83sTEm7AY9J+rmZdVUKu34+lG3TN9K+/PvAp/p0a9YB3E54JkciTRji1I0swgZZZEuyhm1rXsW2NUMWQVXkO08ht20ZsO8wxThq1LvDwU6VWcdxnFHKELXFxwGLzWwJgKRfAWcBSSHSgAmSBLQB66ligWm9KSC+C2yp6MLsBrBusFPBTgHuxmxZBfdjYGXzkIoA04cy8BpxWWeIKD3+p9rLcRzHGTyGqC3eG1ie+L0imiW5kLAf9ErgAeA/zazP9Rb19R1om74W+GFlR9YIJDSPNhdsBWaP9nZauAssjxW6scJGrLAKKzyM2cJU96OWIZStpPGgZ/vhs96F83pPf9WUnhfpQqTjOM7wM8C2eKqkOxPXe0qCLqX0G/dy4F5gGnAkcKGkPqcP1s9wdg/fAt5P+dWzu6eYnQT2GMY98XcLsBsh/8UymBSvvRLz6Z4FrUY6ArOtwBrCyuKpVFG4w0ZQPw8dmYaVFLr3rMnP0Gh4h1MTOSpWvA8XruJ1HMcZeQbQFq81s2PL2K1gx1HFfQgaxyTnAl+18O1eLOkp4CDC1MCy1J8yoW36s8CPK7jYq4z5gWBHxetgsKnAEX3EtifYoVihI2g4bSbYLNgujI4WhliIzLbX7MelkrrBNZGO4zgjzxC2xXcAB0jaT1ITcDbwxxI3TwOnA0jaAzgQWNJXwPWoiQT4OvCvQGOK3RZgMPeDSWoriwizm2M8kwlL5ruRZg1ivCOKbVu/EMsJtIVcR5cymRvYLhqaLNfdQSbTDUwg02hqHH/KjiEMsXZ06NmpZKSdKrOO4zijlKFoi80sJ+l9wN8I8solZvaQpPOi/UWELRQvlfQA4Vv/MTNb21fY9SlEtk1fTvvyy4B3pdguIwxVDyGWtmXMSoyFhAdkhOHQI5AmDW1ahogtq2aR75xOPn8DMI0Je+yote3Y+CjN4zeQaTiBgt0K44cjVcM5T3GnOfbQcRzHGduY2dXA1SVmFyX+Xwm8rNZw61OIDHwVeCe9BHdphNZETAObVmJ2C0baHkvJk1mKiW1AagQ6CfM99wUmUs2m18rkyXfekhJHr/+tUCiw5LYsmNh9/420jJ/Ukwa1gwVpsGlCO9plJRtWbaRzi2zz5ttCOCYmTMph+Yl9bCzkmsg6ot4fluM4zlig3tri+hUi26Y/SfvyXwBvLbE5GngS2H/4E9WLE2oQaJ9ADZORpm43MXscy68O4VR6VspSyJ1QVSyFQjfd28I0gM5N95G1pIbxCeAAADINS6TMLAsr1U+hqeFOpJCGzq0H0dCwnB2PKyyl3lc3Z0c6AcOFbzbuOI4z8tRjW1y/QmTgy8A5JIUYSRhbwbqAppFKWD/Yk0L3A6CwtVCmYV+kOahhDmaPYvkWYGYZv7V1Xnbf9xEAmlpKBW2hzEMAbFu/zqzQQWO2nYbxD5MvbAIrLlp6gs2bNpPLd9A6bglSu21dtwww7XNKBgSZ7AtqStPoY6cRIqH+er+O4zhjkXpri+tbiGyb/gjty38LvH4Hc+kFGDeBnTwyCesXE4ATexR49gAoLMmXDoJsB1ZYCDYD2K/fsUhZWsYfXMY2K2UOBTDLPw7MIZt5DjKHQG4DhfzBMYwNwApy3c9j+VkYa1EmnCSTaRzKHYeGU7u5U23xU2+9X8dxnLFIvbXF9S1EBr5EqRAJIJ2M8QCYgMOGPVUDpZDbBWVuItMQBGGpBWXnYgbY/ZhtAGsBjq8lWEkZa526GiQyDU+AZpPbdj8d6w4HNqPsWkBkW9oxW0Pn1i42b1hLQ8M22iasi8Fk2HXqdKywsXcMlgcNjRYv27I3+Y47gWMY+g5bvb3L/aYeh1Acx3HGGvXYFtdbenvTNv1e4H8IG4HviPQC0FTgseFO1iCwL5DvZSqBMoeTyc5F2ReY8XdyHZ21BCxl91Amu7tQi6Q9UKYZ2AMIczKlyUAb0u6gJsymks9PRJoSr3FITWSyR5PJtpPJHoy0GWmjFQq90zxISGpQQ+uxkLlxqOJIsNMNZ/fnchzHcQaPemuLx4ImEuBSwr6Ri4A9Cbuzh214pD0x1tflOg8rHE2+eyHZxrlW6H6czuf3IDyzjUAnZNZDYSYwm4bW28l3NWL5o6oIORfDCYXSOM7UehD07GifYdtGdiizQmGP7f9PPXSjsk09v5NksjUJtP0iuaZ96Kj/DpbjOI7jDCFjQ4hsm34r7cuvoWePo1mEndbXA8cCawmCV73t2TgBaMDMKOTbgTnRPG7KWOjZ3FyZ42hoAbOnsfxT5LungxWPZiyQmGwJ6gQ1hy19WC4yWzB7mrB5e3CbyT5PIfcMynSAngYKGEuQMqDE2eQlWH6ZGY2YWRD2LBfDzKLtw9xheyPD4p7kPVseWWEbkEOZyco0zCgTS1dMb9FvsSOWJ2hTB+NIyp1K0TaUErOkM4D/R9DuXmxmXy2xnwhcDswgtEnfNLOfDGGSHMdxRiX1pr0YG0Jk4PPsuFHmLIJWch3SqZjdRJg/mHbKzSjGTqLQ3YUanqvKuTQDNcwgU+HRZho7kZqBPSnkbgBeie24t7Z2nbMPAIXcYnbvDMJctnlxn6fydG8Ogm6+axHYiZXTmrkRZU9Jt2u4geaJOwiRZvY4WIF8Zxu5rekCZkPbTSg7GAuq6u1d7jdDOQ9HoePwA+ClhBGCOyT90cweTjh7L/CwmZ0paTfgMUk/N7O0PVYdx3HGJD4nciRpm34zcF2J6ThgCgDKnAxaB7odWDzMqesvhhpuI9v6HJnGI4HHCWnfMrBQ7cmwbZA9Stq8y/Ie+zwCKem4CjfltX1WaLVCbsfn1Lkhx7Y1B5Hb+qIa0tFfdqrV2UM4D+c4YLGZLYlC4a+As0rcGDBBYVl/G2EEwU8Mchxnp8PnRI4sXyAeIJ6KtCewJ8ZGsPuAI8q6HWkyTTeg7OFIx0PYmYdxe+4BYJ0bFpLvmgS2B0HbWhuWm4DF+Y9WWIYy9xA+5I0oU35/R7POGmpr3y4NlXdVeCFdmx60xvF3xbhzWKGKM9EHbbLkziVEZvrZDBX6LO+9geWJ3yvovaPAhcAfgZWEKRxvMrOdqvwdx3FgSNviIWGsCZE3xCvtbOsepEkYzxPGcEdZGWQWk23ejFQ2D2qePBfAutsXkdu2DDAsX7V2znKdD1Hoeo7G8S9QrkPkO2YBE1F2KS2TK3gsNNWwaLnvN0F9SXx2GN3tPT8Lub+CtVcI20CuweoH/d/b06ZKujNh8CMz+1Ey6DRPJb9fDtwLvJhw0tS1km40s039TJTjOE5dMoC2eFDTUS2jTIAaIG3TjfblnwP+0adbaV/MbicMt400HWSabouax9nVelJj24k0tmFWaGdb7x2OACzffTuW6yTTOA7Ld9K9Nce2dadAYTzQbg0t0DSxW9iNKNNF8lQcK9xPIdeR+F1BwuwddQ1uqwyxMAes8pxM7KZBim2nWVgjQaa/vd88a83s2AouVtCz6h9gH4LGMcm5wFfNzIDFkp4CDgJu71+iHMdx6o8BtsUjwtgSIgMLgZuAahZXdPTtZBjINN5JpmHuAEIwMk03AEah6xjCvLJAvmMbW1aVC7uNXMfLyHU8Y+Om7itlW+natBowjIehsCeopWeRju1LvvuGKF5ZXE+dhsB2ryLVFYazU6lmDu9gCa/dgxROXTCEpwzdARwgaT/gGeBs4C0lbp4mTEO5UdIewIGE3RUcx3F2KoawLR4Sxp4QGbSRnweuqcL1aHhaBTPLke98hELXeswMrACZDI3jj5QybX0FIGUm0LLrqQC29dmVRCHSrPA4nc9PqSINe7N17Uobt/vDymSjwGnrgEMIQnmRViw/GzRtu8nARLZay7+K2AZNATp2Fp2NIGaWk/Q+4G+EuRCXmNlDks6L9hcR5jJfKukBQp34mFlNi7gcx3GcEWDsCZGBvwO3ACf04W7EJ++b5VfR9fwBhAUIO5Jrf9JadltfYb/E3jS2PYUVFtumZc10bqjlSMRpdG5cbC2T28l1PAJarUzjWsw6yXctNMt3UMi10NW1iYbmB9Q6oYWwSnxHIVfZY5DGVxlnrULkcGoidyLU/8ncVWBmVwNXl5hdlPh/JTtuz+U4jrMTMrRt8VAwNoXIoI28APhrZYeaC9b3Qpwhwsygu72b5DzEHdmNzvUPWcuUNim7azVhqrHtJABraL2Vzg21JSjfdSpbVgO8kMbxD5I8c1yZq2loFWuWttLQPJnmWcdYruOv5LsyBGEwp8bxDWQa7gG2YvlWy3dvJt/ZI2Q2TzL1DGAXaBhfftPydPoWEAdPhKyvN3mA1NsQiuM4zlik3trisSlEBq6hL22kBOhUzBaDbQUOH6a0YWbd5LctAirNhdwFy59AIf8E2eqEyO0oU6U4pZwmHXCzbXtuCp0bDivrCjMsn7XdZm4l192CsotQQydZJgLtkNmFTGOGfOdsrLCOQtds8t03YPkeAT23rRupZ7P3hvGjeciydaQTMGxoANtKOI7jOINDHbbFY1eIDNrIL1AyjJaKNBvjGbCnCUevDQlmZhS67yDfIbAjqSxA9tC5TtYydQmF3CYstwU1tKBsG5bfSr5jEwgy2QbUMI5852YoGMo+jzKPYIVJZJpWIhXId75we5ht+yxS69QCjW3TpMxcxu2xydbe9yhdmw4CVqCGHQVKswmIk9TQeDctk3KAlC2Mg4YTgAdRtougvesC5ck23UEhvxXbvmRsCbBfT4DaROlQ+PCwHlgR4y8AGbA9gdJV8TvNaSmi/nq/juM4Y416bIvHrhAZ+CtwJ+H87MpIe2N0g90MnDSYiTAzw3L3kdsmsP5sKTSbjj6UdkFWe5qmSU1gpra2wzRhn+Kimr3MDHv+yb8r29JC6xQVh72LSNqFqUfkbfPT11HonqqGlnXF5Md7G3CPFfIb2fz0rgTl5B5kG69Sw7jdyWSC5i7fuQy0hWzjrjQ070GhIWxknmmYpuTbkW25g4ZxkwBVXKOdXAGeaQLYAMr0pMviz/hb2TYy2XvYvpG/ivMoG0B7SdoV2EGrG7aWsQdJSLygApuXfYMJ+36kbNrGEPXW+3UcxxmL1FtbPLaFyJ6V2n+syr3UiHEw2GOEbUYGjFlhHd2bVwFHDkZ4ldEGZZtST+GRlNOkObsjlR2ylzSZCTMOZ9tzW7HcvqmOMuok07CSfFfQKua7t5DpOhrLPADaDBwBthI4RMpCNmVzcmXuZ/weJ0mZlpqylyl37HkmTk3oH0G4VdpQ/mgebh88pLrr/TqO44w56rAtHttCZOBPhNMwqhPipF0xxg3GsYhmhU10b95EcoHKYKLsIpTpOaEl01hh9bLuQXphefvoStrNWndbxbY1z2D5XivGJTXbhOndbFzSDdYI7ELrbotobB0HmcmEPf9A3I+Rp2N9A/mOxFGKWkLb3rvXLECODFUfz+M4juM4OxtjX4jsmRv526r9SC0YB4A9Dszpd9zd7UsYSg1k86QDpOxu1Tm2ozFbXM2JOJL2stbdn2bbmtVYfo/e9pk5NmGfm9i84kXa7chnyWQaKHQdTK/tfoDWqQVyWxfSsX4u0EXbNCnTWPt5386Q0u9TEhzHcZxBo97a4rEvRAb+AOy4ZU1fSOMwNvR3zxjLd90NNhQayKfJtiwFDDK1zN3MhmHm6o5VlDTDWnd/mo61iyl09/KjhpaTbfKcxWqZeDpEravZM1juObq3ZMAOjwFlaBw/l0L3zZApKNt8Sg1pHmnq623uJ/U4mdtxHGesUY9t8c5xKkfb9ALwxX74PB64oV9xFrragaZ++a2INqhpl1PVtMtcSTV2AuxEzG6sOiZpBi1TCkBniVWexgk3a/yeE3rcZnZRJru3ss1H0jz5cBon3A96cLuP5kkn0Tx5C2S2QGYbZDpKrm2QWUeYelArvsH4QIjbSvTnchzHcQaJOmyLdw4hMnAl8FBNPiRQ5lTCWdxVExb79p5POECeomH8Ipp2GUgYDVA4GbO7q/eiKTS03p8wMFqm/EPNu5wUzznu7UNC2abDaWwT6AYyTU+SaXqETMPpSOORWpFaSq5WpCmQmQU8DGwCNifum4F2wik524AcYYueoTx1KNe3k7GB4oTuWi/HcRxn8BiqtljSGZIek7RY0sdT7D8i6d54PSgpH3czqcjOMpwNbdPztC//IvDL2j3ruLAFTJXD4ZZfTO99BweGGlaocXz/hoLNCCfz2AxgFRS2QEO18yOn0Dx5ijVN6gZ7hHznOmWbdzjhJwxlF9rp0QiG7XXM1pBpLK5yb4XCc2ZqkjJTK0S4C2QP6Vc+B5/mkU7A8OBaRcdxnJFnaNpiSVngB8BLgRXAHZL+aGYPF92Y2TeAb0T3ZwIfMLP1fYW98wiRgd8A51P99j1bgGVI+2OsANufak4yyXesohohMtt6I41tQpkmctu66N50cqq7TMONNE6oTbNptgXsLrDdCRuoFwW/mWBg3WCZ21C2EdgfWEXQ9DUDGaRDk8EJOrDCZjKNk5B2HKbv3HAP+c60jdP36m2k+2japbwQObrYaVZnu1bRcRxn5Bmitvg4YLGZLYlx/Ao4izDql8abqVLhtnMJkT3ayJ9V4fpJYCVwCvAs0ktt8+pFtvrhvRi/2xrtccgRksan+jTre5pA06TbyDR2KdsUFqZkm26gu4xbNZoyjbNS4tkItgJlUjSkhTvp80ScwvHY9tHgiTuGrftRQzuQhUI3lj8JOAk19G+OaH3ikpXjOI5T7+wNLE/8XkFY89ELSeOAM4D3VRPwziVEBn6F2SeAmWEFtgH2CFZYg7L7ATPixtUr6BHCwpY046YeS3dHu6bO3rKDAGlWAJ4C9kVqUNMuLUZhVdAGqgFlnkSZFxI2r84BBUnHk8k+sD2MTNMhjNvrUbaftILCpEwrkOtsxAqPAIbZs0gTMNsKdjSQ3X4oS8jLnWBdwDEDKyY7HEuRaqUUAbkmWaueBLN6Smu/UR2e1+oMPpIOBH5FGEX5lJl9b4STBICkBcDlZnbxSKelP0gy4AAzWzzSaXEqI6kdOLyosUuxfwh4r5ktGJr4B9QWT5V0Z+L3j8zsR8WgU9yXW5B6JnBzNUPZsDMKkW3Tczz/5NeAbxEW2uwLHAwcHLVyd6GGI7DuOShzF5AD5VCmm/bVHeQ6zrDHrmmzpvFP0TJhg1ombWHy9C3KNp4B3Ikph7LHi0w7ohGYiPRsmOtHz6oYs0fp2txKOFN6vOA5suNWkm08HGnP6KYLs1vIZObG3xvB9sUsqQHtwqwL7JZ4BnTfRzwOhEK+jWypHFnL4mjbxfIdiyDTrGzTAAXdIceHs52akPQW4IPAQYTFYPcCXzKzmhbn9SPewRBUPgosMLOjBpiWS4EVZvbpgYRTZVyTgG8DrwTGE6bl/K+ZfW2o4x4sJL0c+BRwFNBBGGL8lplVd9Ja+XDPB2ab2VsHIY3zCIL8Pn24O44wZexEwqLHxcAPzewnA03DcGBm2/c6TqvHZnZomr/BZABt8VozK/f9XwFMT/zehzDSmsbZ1LB2ZOcTIgO/AD4HpJ3gcgyWewxoxgo9Qo4VbiHbOC38n2+lc9N+dG7azzo3L9GuM3KYrQO2IqaA3YkVNkdNYSOmPcg0FpAymG2hkHsAyx8JJE9t2UKh82Ssex0N47Zg+bux/GEUtaFBy/gYvVXQ+2P5rUh9DF33D+vatJBC937xZ4Ew7J3spRnwgl4eyzOTfOdM4GGyQ7AD0uCy0+xeUG8b3I5GJH0Q+DhwHvA3oIswLHQWNe7wMJxIajCzHKFD/auRTk+NfIcgPB4MPE84HGJoTggbAiS9HriE0PE4k9DxOAV4K9Ue1ztKkHQCcC3wBeDtwDrgaOBjQF0IkaOBIWqL7wAOkLQf8AxBUHxLqSNJEwkyR9Udj53mI7kDE/fPAV+u4OJA0EzC8POtwELQNCiZtdg6+fHM/nNnKdMwByzON9ChQJ5s0wSyrY+ihi4yjSuQMhRyN5HvzGH5F7GjAAlkugCBTbdC5z+skJtkVghaBbN2sNtIn8NwF6E3PmDMCpuskHvSCvmVZoVNcauiZsLCnBnATGA/YFbi2h/ocxuAFOqh7u0cklU/t5Rw7WUPsfH9PGGo63dmtsXMus3sKjP7SHTTLOm7klbG67uSmqPdfEk3lYRpijsoSLpU0g8k/VnSZkm3Sdo/2hXnKd8nqV3Sm6L5q+N2HRslLZJ0eCLspZI+Jul+YIuk64HTgAtjGHMkvUrSPZI2SVoeNVvJ9J0cw90Y7edLeg9wDvDRGM5VpXlJ5OeL8f/Jkv4k6TlJG+L/FTVeCV4I/MLMNphZwcweNbMrE/EcJOlaSevj9iZvTNi1SvqWpGWSnpd0k6TWaPcaSQ/FvC2QdHBJ2X1Y0v3R368ltSTsPyJpVXzG7yyXcIUX6NvAF8zsYjN7PuZhoZm9O7rJSPp0TOMaST+NdQ1JM2O5vkPS05LWSvpUtDsD+CTwpvgc7ovmEyX9b0zfM5K+qLByF0k/lJQsu69Juk5h6tZfgGkxrHZJ01Ky9A3gMjP7mpmttcBdZpYs83crbDGzXtIfk+HEvPy7pCdiHf+CpP0l3RLr4BWKizolzZO0QtInY76XSjonEdbEWFbPxbL7tOJULEmzJS2Mz26tpF+XpGF2hXq8VNJL4v+V3udi+j4Un9sqSeeWqwuJSjEkbXHsJL6P0Ll9BLjCzB6SdJ6k8xJO/wm4xsy29JnWyM6qiYSwuOYzhN53GTQVmAp0g91G6yTT/nOvZtuG8XR3ZslkzMz2VDgvejfQNtTwJGGI2ZAVkG4Hex50YwiHJwjau0PAVhOGXxqgMAWzJssX/gTb5iG1kWlaRKbJwJ6izCRYoHGwCoR812PktpRqZ180aOHvSD1IIOkLp8YYwudEDgInEDqGv6/g5lOE9+lIQhvwf8CnCe1QNbyZoNm8G7gM+BJwtpmdqjCcfURxOFvS0QQN15nAnUTNlqQDzawzEd6rCMNg21Qy9zB+4N9OmPZzGHCtpHvN7A+SZhAEi/cQ9uDdBZhuZvdKOpHahrMzBE3VGwlTSC4BLgReW4XfW4EvSZoM3GRmTxQtovBzLfBZ4BXA4cA1kh4ys4eAbwKHEoZenyW0sQVJcwjDea8FFgAfAK6SdIiZdcXg30h4Fh3AzcB84KIovH0YOJ0wT/7HFdJ+IGGI8coKbubH6zRgDfBTQtm8LeHm5BjWHOB2Sb8zs79K+jK9h7MvA1YT5r2OB/5EWHDxP8CHgHslzScsLP0X4Egz2yLpFVQYzlZYjHECFeqypBcDXwFeRqhT3yRovpNbxp1BmM8/nVDPTyQIc+uAWwh19rLodk/C93lvwnt1taQ7zewx4PuEUbNZwBTgGuJUB4Km9JpYpk2kTAEzsx9VUY/7ep/3jGnYm7C1zpWS/mBmG8qWEUPXFpvZ1cDVJWYXlfy+FLi0lnDrQRs0NEzcvwv4apWuG4GTBSerZeJ4TZ7VqN3nzNbU2acozHXcCIwHOwjsKaQJhAU0x0MmhzKHoswpKDOOTMOxKHsg2MOECn5ScGezw2TewiuB+wAo5PY07A7KDxfnDDJmhbVWyK+07i03WiH3lBXyz5jlnzXLrwmaxdzTZoW1/S+sIWGcdW+7y3Lbrzss3z3aJp5XeS55/TMUvd+djCkEYazSBvXnAJ83szVm9hxwATsKA33xOzO7Pcbxc8LHqxzvBv7HzG4zs7yZXUY4eSrZKfyemS03s21pAZjZUzQ6bwAAIABJREFUAjN7IGrH7icIVsVpM+cAfzezX0aN6zoz689pU0S/vzWzrWa2mSAcVzs95/2Esngf8HDUcr0i2r0aWGpmPzGznIVDFn4LvD5qpd4J/KeZPRPLaFEUsN8E/NnMrjWzboKw00oQaIp8z8xWxsUHV9HzLN4I/MTMHozanPMrpH1KvK+q4OYc4NtmtsTM2oFPAGdrx9PKLjCzbWZ2H+HbcURaQAqHQ7wC+K+oKV9DmA5wNoCZbSV0Nr4NXA6838xWVEhbkskEeaKvvFxiZnfHcv4EcIKkmQk3XzOzTVHIf5CgFVtiZs8TOi2l83U/Y2adZrYQ+DPwxqhZfRPwCTPbbGZLCWsgiu9aN0F5NM3MOgYwX7mv97k72ndHAa6dKrYXrLe2eGfWRELo/X6a0FPoi5WoYfP2uYeWXQP5x4ADkY7EuIvQg50GNgcy/0B6iNCbaaJQuBsrdAEbQMtQdhuW3x64FfLXgx0CbKXYuEibRWYr4jYr5A0s7OGI2oBp5LfdSb7jcHq255lGvqM03buHmx6kZdfK+zPWfIziADBrJrfpMHbY0DtztzW23owaWtXQcvSwpaU8u7J5WZYJ++b7dlrHCNLW3Ds1sY6wOrI4vzCNacCyxO9l0axank38vxVoK+eQ8JF8h6T3J8yaSuJbTgUkHU/oaB8W/TYT9tqFoCl6srpkVyZqsb5D0EJNjsYTJGXNrOK7FwXgLwNfjh36jwO/iZrSfYHjJW1MeGkgjEJNJWiO0/Kww3Mys4Kk5ez4nSh9FtMSfu9K2CWfdynr4n0vgtYyjbQ60wAkTwurtl7sS1CIrEoIHRkS9cDMbpe0hPDduKJC2kvZQJgzvxfwaBk30wjaxWJc7ZLWEcp1aTRenXC/LeX3nsk4S4Zdi+/TVEJ9LS234vP7KEEbebukDYRFTJf0kb9y+an0Pq8raQv6emfrsi3euYXIift38vyTXyWovkvphMw9SJ1RaDuC5DwQaXcsuwXyVwN7oczuZBr2wmwqcAvSScC4nuDsWSM7HWyxMnRg6gA9YpbbRKGwiYZxjeQ776Zroxi/90zCS3WI5bbdCZajkMtR6CwdWv7/7L13lB1Xft/5+d6qFzo3ck5EIAgGECTBNCTIGQ5nRjNaSbZsrY7Xq5VXa69WkteW5NWutdbItiR7RqMcrLAj+UhjRUuyRh6JnBkOSQAkCAIMIAkiETmnBjr3C1X3t3/ceuiAbqBBoAl0433Oeaffq7p1+1a9erd+9xevoYKNFS2tvEdQu1sWqeNJKz34ynzCpLF0/P1dJ9JsFL2GpY8NbvQPUO0D6LZqz+vUTN5xY0oyENIeyZUZlHUtazNWeLgutbFEmI9AVw8lj/Je+ZYns+NnEMxIdepcidcIps3vYmzz5EnCg7xWfnUxgxGSfQyZL1TL0PDhOUaICv+5K7S52m/hjwmm028zs5KkXyE8oGv9P3wN/fYzbD5kLiFiFIIZ9U7gETM7Lel+4G2u0eXFzLozE+6/JvhuHwM2mtmzI9tmmsgSwaf7nRG7TzLE+qMgcS0iBCRcjVMMj4JdfIW2e7MxfjdB2zkatXtmaH8JQbi6mt/oyO/hGEEbPXOshY6kHyYsFk4ShK3/OEZfw/+RWb+k1wjn8tIYzYadS+ZuMIPxXdfRmCapaYgguZigvTzPoLZx15B9J7KxniZo6pH0BPCCpE12eWaDq/0+rvR7vm24vYXIwJcJDshDq6ucQ/EZpCv7A0rLMHcSbB3YDmAT4YdhmE/BbQVmgJ2ytOKwZA1QtajwsuSawN1FkryEr6ZY1Sh3riXfvhtYISkHYEnvXcCNCJxZQbXnBnRzQxnrR9qK+UEf0GrvkCNSRsY33XBS2wottU+zuA2EyLpp+vowsy5Jnwd+U1JC8LmqAp8EPm5mP0EwB/8bSdsJ9/7nCWZDCILM3ZkAtYcrm0FH4wzBPab2IPz/gP8m6QVgG0GAexrYlJmMx0MLcCETIB8mRHN+I9v3R8BPKgSq/BXBGrIoM2nXxjKUHcA/Usiz9yzBXF3LaddC0DJ1KtTq/enxnrSknwKeJ1w/B/wLgnvRXmAf8AVJ/zODUef3A71mtlvS7wO/lO0/QxCK3yJo4P4fSc8Am7I+y8CWcQzpz4H/LOkPCYqAMc/FzEwhov/3Mo3cXxJMno8D32dm/4xwz/zfkp4DzhG0rn9mZsk4frNngGclucwl4ZSkbwC/mF23XoKwvdDMNma+oD9LuE/6CZq654Z8pzMktWWm5dH4CYLP6RGC2bpD0lqCWfl7CYuSP5X0x4Tgjv8AvJ6Zmz8s/07STxL8Wb8d+GkzSyX9OcFX9vsIgZ8/RiaoS/qHwGuZqf4i4bc4msZ7tPt4KFf6PX9oJttcPMkUpxNA2/ISwWRzBNiOopdRnEMaZ5oIzUHRZlwhAeeQezDTdrVg/lHMr8RsAy52uPwrRIU3wBrNrNngVdJSBZ+moEaKs5qJ8p/E/FAz02X26SmDi1uv3uhmYEN/xbeFX6ScPtSrziBm9kuEh9W/ITzwjxF89f46a/KzBMHpXeA9gsDys9mx+wjR3S8Qgu+u1U/r3wJ/oBBN/D1m9gZB2/IbhAflfkKAxrXwQ8C/l9RDeEBeMm+a2VFCbsYfBy4QhMSaL97vAWuysdTO/V8Qgnw6Cb5kte0Av0LwOaxlw3j+GsZoBLek8wQt0LPA58ysNxOWP0Xw+TtJMPt+kUEXmn9F+B62Z+fwRcBlgRn/mGChOp+N+38YElQz9mDMnsvO50XCNX/xKu3/guC/979mYzxDuCe+mjX5fYL5fRPB5F0i+IGOh5rrQYekmhn5+wim3l2E++IvgHmZj+V/IfgkvpMFKP0k8BVJBTPbQxCaDmbf62VuGGa2BfhE9joo6QLwu2TBHGb2LULQyV8SNLbLyfwxPySns3M4SVjU/GA2TgjXqI+Qju4VggBbM1mvB15XSCz+NwS/2NHcCUa7j4cy5u/5ephsc7HMriVR9BSl+1Aj4Qc6G9xmpGswEwNy7yC3FiwBXgqWYkaYUGwzmfnZzBLMbyXpuxNFu8A9iDToK+FyGxUXnwKwgbNHuGIE+VWpEnKPfZg0PFfiKIqOAg5L72WI6m7cmO0jLa+6weO6EfQAp0BlNc7+GVqW/NerHjGJubuYtz9Z+uHKma/de+pNGzvBbZ06derccDTO5OeTjck4F9fN2QCty/rpPvQl4EvgH8O0nZAoOAfWCroAsixIRoQV0D5gOWYt4A8hdRE0uwuQThNW6kP9YRYDmKVbqPbdDy5GuQFGSxLuq0uGpJH0l+2/Mmdw8V5coYD5KpIjKj5C0reJtLzh6oePAxdvIte6QdJiM7tI+cIxYM019WFWxVdHjQq9BWgJL8P6z05Ty/XI8JOAetnDOnXq1Ln5TMK5uC5EDvJbhMz6M8FG5EqsxaLoVeRKwNPIzc1iUzZjdh9EdxBMNTtAa5AOYL6d4OjbCmDGNqoDzSi3+yr+lgvMrOYbMQ6XA71LlL9IVFyEXKvkLhMWLW56lLSccr2l/KLiJuWaNphZtyWlt0n6m/FpL3LnCX5Dc8YZ5Z1gfs7Vm91sbN7V20x+JpsfTp06depMRSbbXFwXImu0Luuj+9AvMhiNNgr2sRDYoZ2E9AwOLJi+zZ4j5KdyWPoOqBGzlxDtII/cffjqX+Pi9YQ0AO/icr2Yr17ywTPfSqh247C0ZMlAFyFp7VicJN/WLxffd4U2AV/dTUgL0Y/LHcOnTWARwT+oTFQMEW7pwENAB3LHcfkyaWkF6DS5Jo9cM4prAS8tlC6uBd/OYJQ0QA9y+3A5T4hoH6u24fHgO2rXG4U60dw2PpF16tSpMxkws5e5enT6pGSyzcV1IXI4vwn8X1zVf9DuYWT6Mp/cR5Rvz6KzN2L+yZBgxrZjyXQUPa8o951EOZn5c5K7quBnUbGXZKDE5VVpUhS9Rr71HsmNL8+cy62lML0fmC3pDoCaP+zQlY9F+YNAhKKHJEXkmjCz+ZetjpL+TeBrpvihO1sw/yBpGVxuI7jpwHKkRsx2Eczz7aTlhQRn+lud20KIrFOnTp06da6VuhA5lNZlPXQf+gVCxYRrXA7YAnzyLVyUx2ww6lhaD9Fp5D5V61Ny4xJMJNds+bYDVLr3ITeA+TZQiVyjU1R44lpGlwmBjaNsG97OxZelNBjZzix9h3Ln1StK+OpDQCNy7wIO82NV3rmVmfJCpDT5TCh16tSpM9WYjHNxXYi8nP9EyO1WS6SbY1hVlStg6aN49iENL80kXeRDJg+Wi5dbYRqSappD082+y6r9480zF2pPmx+1DNckYcoLkSGH++SauOrUqVNn6jH55uK6EDmS1mVddB96hZDrqsYRQkS2Mbz27EiasHQdpneQS5AezLaPWXB9PNRkxuzvLXCH3VZpoW4DIXLyrX7r1KlTZyoy2ebierLx0flVQq7AGksIGfEfBTZyVSnK1mLpCrz/W8w2Y+TM7NoFSbN+zCa4PMuHYXLd5NfJTDuzbWr/TgRy7kO96tSpU6fODWISzsV1TeRotC67QPeh3yDUYB3JU4QSW0sJpb5GYkAV9D7S5wDM/G6SUtXi4iYUTSdcd0lymIehaXeCLns2Zuew9BiKrsn3caIxn75BpXcy+jZ+WCJC2ckLN3sgE8lkM6HUqVOnzlRkss3FdVXC2PwyoX7oaKwl+Pu9SdBM9hLqpHYDXwdVQA/UGku6C0V7SAYeodp7D9Xe1VT7es1sJb56ytJyQlq+g7TcDSzD/Iv4ylwsfZJbqG6zlS5up//0Q+BHE56nMlPcpK2aR/e1v+rUqVOnzg1i8s3FdSFyLFqXnSME2YxFDDxI0EyWCJrJVuAhUAmpOLSxovxD5Nt2EQrPV8Duw+w5c7m5mMWG/ru5wgrMv4CvzgCKoN1ce8WaCcHKnVtJ+tdfveWUZEoLkdLkq9dap06dOlONyTgX14XIK/MLwHhK8w0tdukZzcwt96ai/DoVpg+Qa0nINX1LceHbcPkCUXEfcWM7lrwMbiVEBtqEy3Ug3bSKKWbWY5a+Y5WezVT7rhRQNNWZ0kJknSlK14Fmug5cX4WqOnXq1LkCdZ/IK9G67Azdh34H+JdjtNhE8IG8i2DeLgGzgW2EFEF7gGPI5cF6MHsbFz0g2Ioln8KnWyXXTVxoBqqoaRpp6SQuno2ls4ADZtZHSOvTbGYXsfSIXHz/OM/gInAse99LqN89riz/ZnYRX32fcud8fHUyp+i5EUx5IbIeJDPF6Dog4CtAF10Hfoy25VPap7dOnanCZJuL60Lk1fkS8MNcXjUG0AYkMDYitxx0BCyHXBfmdyLdg9k8zL8JxCQDc4gbTuKiR0n9q/hKhKIluPg0UhtSD1FxtSX9W0FLEWWS3nOkiTdf3Uml+36ifDMti8cerVkX2HugLMWQRlTGsX2EGtejBcd0mLEfX+2k1HEnlt5SQT03kakvRNb9G6caPwF8V/a+QteB/5225bdVbq46dSYjk20urguRV6N12Um6D30ArBmxp5vgAwlSjHM9QDtEF4G5yDVhaSdSO+YbCGbuw6SlAlFxPlgclhx2ErlVwEFgqfnqdqrdj6JoG4pWUu09hk96SEufxeWOUJzZAawABusWYlvBKuEtwpINKLcRuZbLT0irsmPeBKYRNKcDwBlgMdWeKpXuT9+Yizdl6L3ZA5hQJKj7N04dug58CvgPQ7b8U2A5XQe+jbbllZs0qjp16lyNSTgX14XI8bEPWEaIwO4kVLCxIcnEASqgtZh/Dfy9KN4MvA/WThA4DViFT3fie7+JNB0XPwhsBw4Ac0jL7+PT+3GFN4EVWHKUpFQAC0Jooe2wXPQEafl1gul8EEUDRIXpWNoDuZfx5SaMjfhkPlgbtdyWij/AxU+AHgQ7A/QBM0BB25ZreYi4cTsDZ5dj/io1xG8bXr7ZA5hoJpsJpc4YdB1YDPwJl/u7ryG4shz8yMdUp06dcTPZ5uK6EDkutAX0SaS7Lm0yfxq0hyBYrsCnJeBrYCtB70LyJPB1IEZuGmYXgONgHmw2is4S0gNF+KpHrorZdHxyAJebia/sw6fzmbaqCG4JWIL5FWB7MJ9iaYJPWsCy8ozajtx65LYCD2PRdnx1aH3rNLxsyHeuOZedqVRE8XprnNeHr2yi2teAT9rwlUyDSQXI36ALOxnoAN672YOYaCabCaXOKHQdKAJ/BYy2+JsO/DxdB36AtuVdH+3Apj7Wuc8BCwhZOhYAcwjKhhjYp/ZVf3HzRldnMjHZ5uK6EDke5LqAZgDMjmDpKaROpM9gdoaaeRnrAu4E2wzCkoFWsDzIUGxycQ65ucAszJ/B/GLkghnZ2EFczBEVqiR9vQyc/U6ihpeEuw+pEKrEqAt8K3LTIW5FuT7S0kvgH0RKMHqD1tE24XJ5FL9MWroXrA2Xf52o8DEsVZbg/MqnLDURFTYQFbLTtiNYcgKfVPHViEr37eIvuVlzHr4l0ixNFLW0EnUmPb9BSDs2Gnngu4EX6DrwN7QtP/nRDWuS031IhIIDS4C5Q17zCULjHQRLzz1j9PC7QF2IrHNVJuNcXBcix4GZ7wMdFhSw6hmgYN6345MtivItwNsYYEkFF4P3FbPkbes5fU4tc1aA+SAIsg7YiXQO76vgu0AzkYS0DDghuRbLNffSvPA5ouKjWHUzxA1gCWEiW5QNqoyl/bj448i9gvQEpAnGSfApqAu5mFzTDJKBLYPZSFUhmLAbuIYUT5KWoNwSXA6zohE3vQ14LOknLYtq/xIsWXTDLvqtw0s3ewB16lyVrgM/APzAOFr+FiGw7j9P7IAmCb3HZxDM/KuAeQQ/8Xn4aitBOTCHIDCObn0xO0pQMFyeCs4sAbZlwYx16kxJ6kLkePDVBmCRhZQ9QSPpcj2X/AhDoyPAGrN0N+ar+CpUehpgfgfSfMxXzWw7llakaJ5ZGqHIifQiRGdxehSzPmQ9giZyzcsx24z0HUNKde/GbB/YGcznwELuRvNrINqEiJGewVwv2DZqfpNxw0LQYuA8cmtD0I9dwJJLZi+//W+3avGaiuYs23C1yyFJKFoXPkUQFbBci8f82yT9vVR77sL8zCv3Mml48WYPYOKZfM7cdYbQe2wd6H8D3gFbS/B77AJqqcCqKHqDsGj0yD1G77EzyD1KWJT+V+B5mhZMaY37ZfQe/9cMD0AaymlC/t83CXP+GP7h9j5wJ0HQHLlvB/A44frWqTMOJm4ulvQZ4FcJpXy/bGZfGKXN08CvELLRnDezp0a2GUldiByN7sM/Q6g/ZERxiVzTXFzuPZJSP746C0tXklY2gV00l5uLoqWCcwCYDWCVZus8cpFy50LkUknLwY6b+SrQDrYKuAC+CdNpoIrZe8gvBJcQ8js6pO/A/PPIfSbrexW+WiWsmocyHUvvBLcX6EVqBn0iO2YbUj8hR+Q7wDPZMe8BdwN9BnkqpRxJtfxhL5kkh6J15FuwXHMHpfM7SStLwZoJUvBklFLOAe/f7EF8FEiTy5m7TsbAudVEha8RFeZjZiQDzwHTsiIFe/DpWeRiXPSxIUc9DnqYUL4V4PuBf0Dfia/StCD5iM/g5tB7/EcZW4AEOIyL+5F7hLSyk9GFyAT0cTP/PsGkPQLlwUrA+Rsx5Dq3BxMxF0uKgN8EngWOA9sl/Y2Z7RrSpp1Qpe8zZnZU0uzx9F0XIkfF/z1gBXJbiYpPXZJ+co1YtXcT1fJRUIIvfZq0BIo2kmuZjrSHIBCuon3xNPz8fZg1G3gwcIU8UMaXO1F8FtEDRLi8I5RCbMfsINIG4GXMv4VP1iK3GUVPEG6E0wSzS7jTXPwKKAVzKHKYvQ0Soh0ogV0A3UNYUQNsIfjyzEDxANJhSU+x+vH9lHpuyNWTNIOGWTPMrJugEalS6dpPtfdhJleVpI2a8/DUz603Cf1w6lzinxPmg4CLNhAKHwQid9flh9DN5f57fwLcT9+JC0AbTQv20ndCoNk0zT9zw0d9M+k59oNIvzTG3pPAflxuDVLNmtI8RtttSI9jlAkL5Q6CwNgD6sM5YWxFOntjT6DOlGXi5uKHgf1mdhBA0p8C3wnsGtLmHwF/ZcFFAzMb131bFyJHxwMXMT8fn+whLZ/B0gFgnrANhj+NK55D7i3wd6NYSPdC3IbLVUgGVsgVj+LSPKR3YgyAEgUN4hEgFWkb5JYbvIGvNOIKS2V+H7J1EF1Emobc46AXADD/PGkiFMc41w68i6XdKLoDNC0bs0cyMAOFz2g2WCMhOtsBVWAOYdXRTtB6wqzFD3B052bz/rScG8U0c+1Iar30odA+0/KtH1DpOUu1916w1isceqtw2/hD1oXISUTpfATMAD4PfAoom0/eBCtj9ug4ojt3IY0sY5oDvkGILIa+E79BMOcuof/UtxNcY0rAZ4Fv0ThvPOVgb00seQjltoISsKEBgu8DC7NF/FDOEBbvpeBb7isEQT0P7AcacHlTEDpnEuba14Ba3z8+kadTZ2oxQXPxAgar10HQRj4yos0qICfpZaAF+FUz+8OrdVwXIkcjKt6BWRMYpOWdwCLQMbAIOEJU2I1ys1HcgU/eB7oxex0X3YelvUTFHiwRcVMkn2wD7zEKyM1DasDTbnL9OHcMRa1CKdIqvE9Au4C1+OQgirbhqxFRoRHoxdIGokI7sBur3ovL78Z8+5AV8xDsedATDK6iHySkHGoC20JIP/EA6BxwVNJiW3zPo/6VP9mOr7ynOXc4zVqap9jUgIvz5IqrJBWv57JKbiWFtpWWa3wNn1ZwcZG0XMJXilT7Rt7QtwK3iRApqJuzJwel8z8A/BRmDuw4MNvMuqh03Q/WBJRN0W4UXQCLcHlAqyQNMccqHaP3BUPe/0j4Y7swdhBMWxXCYnUpowWSTBYs/feY+x0UDV3IVpDuxizB/CbkBgVJl1uEpQm4DqR1+OpGsNVkJm459xbSNsJD+SThYT1UOD084edUZ4pwXXPxTElvDPn8u2b2u4MdX8ZIK1tMkBOeIQTeviZpq9mVA8PqQuSo2IkQLa19mFXATiOVMc4DnSQDeQqFs0JFkztBWnHmOI+57YBQVA4aQVJCEvIYzLB0G4pno+g4Sf9sVGlCik3xKVz8d+A8olnhy12LJbuCdiHpRzkj1+hAh4GFEL+JT8rIzWZo9ZxBNoB9kEVjryc40z4DfEDQPq4GXg2na9ORNksquse/Z4X/s5+ZbT1nz3Dg9Zqfz6s0tJ7n4e8+pIbWJ6/36srlHsOFKpKmqEx/161YEeYMIZBq6lM3Z08ezD4G1knwZwzZEJL+nWCPZy0KWHoXlsmJvgpQNUXvorgTl1sqaaRP9WgkwJugCKlWratAEJIW0n+qh8Z5YwmjtzZtK47Stf8FnPseBrW2F4C5YFvw1Q243KvIfQwzw9IiQWDsBMDl7sJX3wV7Oju2DLoT7BXCw3rlkP/WS83aU6fO1bi+ufi8mT00xr7j1OaLwELCb3lkm/Nm1gf0SdpEmGeuKETW1Q+jMx3sm8AG5OZj6VOY/xxmLaC7lWsxoQQoCDWjqAnzRloZwFcNRXfL5UxYA3IexU0oEr4amfnj5qsdGKcwfwjcKcx70koFXzXM94C9gaVvkJQaMIswn4e0BVRAmoXcA1mZwybMlzB7FWMjZseC0AtAI0FbsJ6Q1NwID4GZBAGyVnnnWSDBzGM2Exd5910/vodK5QA1sz6sozrQYQMnH7O+k2+b2Y10FC8Fs9Itx8u3hT8kWQZSpw/1qvMRUjq/jBAJfKnuvZnfRTrw+NgHAZDD0vvw5Q0kvYst6T9kaXVjVgBhJN3ARtCryD2CNPKhNJ8QlPf713MqtwB/gK9Mx/wmzN7FJzvwyRZ8dT0A5qOsXReDQTVBU2t2BJd7GsXbUbQFxZ1I00FPgtaDcoQ5dxNoIy1Lbot5pM71M4Fz8XZgpaRlkvLA9wJ/M6LNV4EnJcWSGgma9d1X67iuiRyd6cATYG+A70DRG5g1g1+Jpa2GM5KBGLkOSc1ybgFwEaI5SIeBHswsrHKtFQyT2kgqF4NmMIqJFOHTFBSBpeAkFzvw8/E4zDpAnWG/ikCVtDyAmRHlNmG+gk8fAd4Da0NRAbm9YL0QFbO8k7XJ6ylgE7CBkIpiH2FCnAu2C7Qma1O20we/aRu/cg/zZpdJklMYb5AkHyPO98u5mGrvOroPnrfijE3Kt0aYpZkz/1j0AG+N2Db0jq/gchEW7c0+G76ygEsJ3G8at0Fqnzq3LL3H/gDYg8sVUNRNEB5XZ5kdBhf/1b7MrKyjyJ3BfFvWZjQqKHob9LAsEWkCcrtw+RKwFOk9gotLSOththl4OMtxOxyzT9Fz9A+B76dl8WRMDfT9YCvwlSHzjLtv8L1qmSougns3W7QXsbQL8+tR7iIuygRO2whWS8VbCC89QAiyefsjOJc6da6ImSWSfoTg0hYBv29m70v6wWz/b5vZbknPA+8SFEhfNrOdV+u7LkSOzmmC4/RDwBtAHuHMEOZfwJK7SAYOIs00JKLibkW52ZD2QNQCtjgIgJRBF5FrAZ8S5fK4XIxk+Mp05M6DgUkIYd4wXYBUyH0CsRHsKfPV/w7ECv6MnjR5Eue24KKgojbbDXYWSxpAh4A1EL+EcARn+CJBgNwKPApaBbaTEKHZQVht3AUUVGxqt5kz96hQ2EA+H9HQ+ADOzaBh2nai/EYQWFqk2tNElH8QqKIGf4W8BH3IXSHXVHqUuLh42KZKsiWUeLyp3Cb+kIHJVmrrNmAn8PPBHJ3swsWdoDVZQNwgchGucEbSYkIaL8zsHCGATwSXGrCkivmGLLftzqyAQhFL58lKc4AOXB4UfQC2mqCJeBLYj5mQlod+zBMWp6cwPxtL/yFdB/6StuW3ojXhSqwd8bk67JNcrSRsXwi0EZjfZz69H/SapFmYvQ8kYP3A64RnRish6Kkle41cQNepc0Umai42s78D/m7Ett++j+3MAAAgAElEQVQe8flLwJeupd+6EDk6xwmRSh5UAhrMOIClx/FpEV/ZTb4lxewsmAjlDEOycNhv1b4XMaQ4Px/UDTZDceNqcrkhgSn5vaTlIjgMfwCzPPhSmLzsviz4ZTVmX8dS8JRwubBf7kWwPmAA9CxwFLN1WHoQF1dBOxBzQFWC6Wl99k9XAJsJAmMFOJG9n47ZDiztVMu0pVq04jD9HQnQT1N7P7niNyi0DRA15gBhPsKqJUtKLykufpy0vA8XncXF5UxrWvsV9ICaCSvyMUqCuZlEhdcASMsrgZlZZPnYxI0biQox5a5WCm09mQpAw/Sbpc4m8PeO1cVVOEWIurw9kMDVPVtuMd4Cfh74XrA1QZjUcVz8Lmg9UgOAUAvSnKEHSpoFzBq6zYjLkJwCWzpooAh/zdgLLpav1BZ7ZVzuFRTPRVoBlDF7HfMl0nKtTVZsgE8Dh+k68HPI/Smty25F/+bhdO3/BPA/Dt1k3pdwnMCsA9FFWk6RO6wQgf3XRIX7DTuBVVcRFfKERO7vEtx9Wrk80rVGvbxknfEzCefiqSlE9p+5E7kGgkrWgr9f6rNJ02M+Jawam0Ee5yLCij0BUuQexvzzoAbkipD+MmllH9jLRPktOEcwH7MI7AK+KnO55xUV7gWmBQs0HeBOBc92dZFWXyDOP0VYnWJyS0j6N+GidlATuAIunh2iALUD863mq9uwJB/8KVOs2ltAro/CtAZJhlkB7Dmwh8G2g18GOg08jNlOdCl/2deAx0AzgSfBzhGE5E5Cmh8H3ImlFaCNGYuPYAPbSJM2IjdAscVUaI3B2lF0mijfAsU8ii3071fhfQMuN7P2cMPwiJ3g5oKNmbRUUiNR4TEzg7R8hOCzOboPUXH6a8hFxI33ysXTrXzxKGnlghpnX6bptErvKyETx4fitvGHrFH3b7zFaF70LeBb9B5rIOSCBGwhvroQuIjibcjdjdQ/xq9lOOZfJ1gjRqOR4U73BXz1CUgOEuWfB1XwyXQsHZkWqIYD/SLwC3Qf+h3g12lddnwco/rIsYu7nyWt/Dj41zFrAGsDZoCLcdECzE4QF58E3wlxBUXvgX8UaEdRBZd/iVA2ciPBP/QuhufaG8npiT+rOlOJyTYXTy0hsvfYIuBXcLk7CdVYMuxdsBnAAkIC7EYunbttZ1BTN4jcM8BRjDJmMdj/gsu9JLln8HYeS2eapVvAHkfRduQ6wY6A6yXfksOsE+lO0vJZsKcQWwmJyN/CVxvx6QHMZuPTPIpKyGaar5yT3J1gi1G0m6hwB0k1BevBJz1U+8rkmx1ppceiwkOYNWbjb5P0GSz6GubXIbcf7FnMgiDsky6krbh4Hd52QdKE4ouZmSYGO4g4gaIKlj6Dy0UUmvL4ynpyDS8qys8A6ycurEI5AwaQe0DQAdpqlhrQL2wRVnuiue0oKmE2qCUJ174vVNOwrUCbmfVQ7W0mCLLdQJlc82xgD1g5+18euWbixlQud9clk17TvF4UDSZWruGrm8m3zsD8LsoXFhI0BZ243E7ixvbsuxeDvmUJQXB1gGHp18Z/000N6ubsW5DeYzU3lJFMw5KnQpJre59gul4yVjch2tKPlnQcwm/4oKRR6t7bHaTlCiFm9M6xukduN0EjCfATwI/Sfei/AD9P67JbIsOBde5tAL6I3D9HegXvPwbIfLKVSv8h8k3zJLeRkL7Ig3YD68FHwEXMOuXcaqLCaSBUEJPA0q9j1g5sAjNwA4hZBDeiHPXI7FsG69wnQmWh9dlrIXLPqzDtDyjOuGX8eifbXDw1hMi+UzGW/Ajwr5A7AJzB0vMEQcEwKwOZ07S9TQgiqXFfViVmZNmqLoK5dzqW/JikVZjfCyqhaDdyC7B4Idjzkj6D3BZgMdLCYFf1B4FmXO4k8A3k1mXjuQjMRO5h4uIszP4WvGFpF6hk2B4pOo2ZSbSZK54Dm4+jG1doB+eFn2vJwF7wS4GniRueQ1EjueK9oALmZwOvBs2ilUAtmPf45CJmRbDHwL8YnOxtGsHUfAdyF7EUNc1ZbT1HLuIaXqBp1ixwJ0EJpa4dFNsWYRzBp0fJtyxFWkKa9APnUO5NgiDmCOa04yFFRrIJ8w0WclCdxMVHJM0gpMI4D0wjOPtuBlqykm3gCjuRWy+pRFQ4g4Y6voOiYpEQcDBIWn4X8w/JxQ0ABhdB+2ia24LcfVT7YsIiYizOo/gvr7B/6iGhCTShTFTN1tuA/5PLffeGUkDRU+AspPOin1D5qoqRcGlFZ/2gVuAQWIHgI50Pn90aSWNd640EH+rLA2sG6cDlP42vvM2giTsH/BPg++k+9NdgX6D1jm3jPOcbjnXuXQv8ETXFQlR4AhcftN7T+6n0GjhPlD9IlG8FHcOrR1H0GHLPg1sNLMb8NzGdZ6jZ2qcbseRZqPmeuzcQ80FD56n36T3+2zQvvK0sG7cK1rmvAfifgO8APsbI8pVRcRHwMKWOH6I44+Z/RxM8F08Ek1+I7D/9ONJvQ7wgS/jaQpjEqgQBMgI/HegLZmPuH9HDeVAfISfgYoIvXCNoBbABAVGxH/MvYybgKNgspDtC8HV6JHSjO0D7gIWYnSCsePag6CmkfObjmCDXiMvPwdKNweTuY8xK+KQBIwd0IteJlMf8dIkUdMakMlE8HRf3IHcX2KsYvcQNzxM1fGbY8kVRSD7u7VXM9+CcYVSA4yhKsOomzIPJgy6APww6h1kP8KRcrsUa5+7ARQNKKwmFNogbwbwL14sS0hkz3w3qweWK4DxY5g9p54F2jE6DU1S6GjAzfGUHLvZExYdMua1E+RVIM4mb+qn2xsDjSK9zqYybHZd0J2bv4KsJRMeQQuUdFzlC5Hcm/NsxwGF+HiFRaqA4azdx/h6hVktLLxPKP3nGTm/1vNpXfega4pORWlqJCel7Amu2Tml6j8WEmtZXRxJo5fBto74N+HQT+A3AMvPegy4SrACZnzVlFF0gbpgF9hZpJb6U+ubyf96LNBO5buwyZY7A/h4wne6DBnwB+Aatd3wkD2vr3CtC0vQvEaKmh+y0/TKbRtxQoHFmF1G+iqULUXwCp/7QhjZk3UEhoAaGJhA334V5Q24zqA1YA4rRMAESgjC9A/i1CTvROpdhXQdmYukPE77/UYpxsJeocFpxw1PAY0CJUseP3WxBciLn4oli8gqRA2dnYPb/Ak+BLiA1EzQeI7AerFamyjoJ/isFgl9LCkwDm5dNBDsJgkkn2AmCr48hzcDlng7dWYql72O2I1vhJ2C9Wf9rsfQQcBC0IERmKx/GoVout41IBeEKSE9CBOa3oWgdUg7zrwBP4HLdSK349CRpOYeLG5HrJU2q5Bt34OK5lC/MJ2pYpLH033JLsaQX4wS4AVxkmPcQlcDuwqe7gCJiH3JN4Kdh/k3M5ri2JZ8EsKT/EC5XlcuVDd1LWmohyn8LFxlptRHzc4kbIpmdA3uAIIQ/nI1gk8Q6Qxux9H4q3W1AN/m2F5FbSfXS8y0HHCcq7sXlG/AVcLntRMVHsHQ7+AX4ZAnO9WB2FLNZyM3A7BWULRbgLEHT2THsEkT5Kj49AtwL0dO4qIwvnwPmEPyVigRzd02oHBa9Vue6mbCarVOcrxD87W4o5tMP8EmKdAKYJefyBEvAtGEN44aTyM3P3oMV3yMZAEuGB6uFDBFLUbwB0tew9LER//IYQQMUA08D79J9+GeJ8n9N0/wqE4R17p1FyGX57ZfvddsVN8ylfdk88/6snBtaQGFFSNkD4B/BEJIw3z/YuR0lLXfhch9Dyg05tgnsdQYr+zhCKrX/g95jH9C86Lkbe5Z1LlHqqCmIHgQeJd/2Oaq9b+MrQ+/rw0SFo8SNa4Lb2DAr1r8kPPs//9ENemow+YTIgbOOsEL/eaQZGMeAdaM6EpjtBvozv78ZQDvSiMS82oRUixxeN2THeeB90AawniGdvk7QmBEW2vSA7SAEqXwaaAsR2ewgTCIXCGbxWYQJVcCbYAkhArMTuVLWrydoUBPMb0XRp5B7gKjwlnx1KXLHcfHTpP0O774FLKfSddDyrReEFjNSgyO3ADgENIb4l7QazNdaAHYhG8M0PIeRj5HKBB+sCPOHgYXkWhLgYdDLyL1FVMjLxc3IPWau8jK+3Ce5dvBnMgH4ItCM3ExCiqPtxI0tmL1J+cJ9oFNACZc7BuwhKjSTb31S0jIzWwh2GF/4BnJtwraADCMCpoVUIxaDdZGWZqMIiHoAIT044tv3KHoFrIEsOXN2ixQsCK0AnYobV5uvbsVX7yYsKr562X10OzBxfjgTVrN1ytJ7rJ3gTvNXBA1hd/a5i/Cg6yXMN7Vt3dn2mFBpadQv08wq+KqAj2eW7vNmHM40mQ9emkKj4g7khltspHvJNYKlW6n2rwzzqduN4gez/ULxY6Tpe1xKhm4Q5rPac+YNXH4u6M+A4/Sd/CLwezTNL13P5brsPE9t+QTF6X+ENHfErn7QG2AlM+6U1Iilh8w0R8NLx2YLf7YT0rxF4Jdgtg1fcVj6EID55DWqvd0qtD+YlZ69l5AXcuj9/U2CFv5P6T32CM2Lbgkf0UlLqUOEgKb7CK4etb+rGWJdkgT5lqfMV/eQlM4QFWbicndLWnqF3n+KUoenOOPfTtj4x0PdJ3ICGTh7D/BbDDUrjOoQDpgdxJKrreQrhJtvlOPZhjQ3CEaWy0wXMeaXDWvnXAuwIktlcw44A7YcuVoZwk2EB+MsQqJvMHsOeBz0DnI55D6BWTeWpCiehtnpYM62zcA65Npw+cP4ZEkQ/PwZfPoM8DaWrqPae5C4sR/Fo5gBo/1AA6QDg+ZmDgHVkL+SizgX4xOCyVuvgld2bY7K0gqKViLNV5SvXatd4dLHq4mcwHeB8qFso1w4Vo5Qa7tduSaPT7otaniDuHgvhfZzcnEel7sbuRm1kQpCJLuLPwW8haU5gta4BegB25eZ1AtcKi1mwVXB+zMk/SdA3bj4aeReAFuF+X2YHQ6X3WYhKsCbuEID0kLMjkrxPHPuXXz5FbWvGtQ43C5cX6mtK9VrzXq/jBtSs3XK0ryoE/jBaz6u99jfZwwBEgBf3crwQJ2ZwMwgUFpixvvIlaR4bD9MRY+Sa+4gLX8DuYcvZWO4tD8uhbXpsP8B6GVc/unBB6QtAn4Y+B76Tvw58Hs0LbguYdKOfL0A/EfgR6n07iLK7SffUiDXvB4zw0VvAFWMT0C61Uz7qPbOJipuN5/kyTWaXPRJBtMjPQJ0ZsqIKpYuwPx5M+uU1C78YxY3VLB0a5apohYgOJRPEnINPwR8NRMkO6/nPG8bSh05wvN5HUHLeD9BaJxxpcOGIpdbTT43+jN+dH6aUscAxRlfvKax3igmYQnaySFEDpxtAn4a+FHGM2azk1gy8oeaEhz7h7IT6YFRju8HPhWisoduHyuAS4eRHiVMIvNHzOMrCT5+G7kU0GPrM/P54MNUasXYDUzLTOAPhf6sg1DnshVpWqaVqwjeMjQP/CHMO0tLJoobwRWxpB9LB/DpIhRXiXMxpmlAa8ht6WcC5zBfBpcgNSHXDXJhG2XkpoMqSI0o+houbscszczHjZjfjziM6X6IUhx3EFbw74DOErQlFWAlZvvAFtAw8wAud4q44RNjrLY+yM55D0ZjFiydomg25mdi6QdIbQRt1mbMd6IoBEWl5ffAHs2ivl/BzCMdARrBd4DdD0SkpSZwSyVWhstv2eVnCVHhn47xBU9xrsuZ+0r1WmECa7bWuYxPjLXDqn1vYT6P4jMj80pmxMBazB8zs4rCAnCUjqwb/Pu4aBG1RObDmc7gXLcJWAzubeTmYH5j8Ct39+H0TtbmLoJg+5P0nfgC8GWaFgxcy0kD2JGv3wX8MZd83m0NaQUGOmCgo0rDzOMono4lRyhdOIKvriHfupXirNU410qUB7lXzWy3gma8TLAMdRNcXipIqaHOYDXKFZFvklwfikKuXVTL+PEulwI5EcFseoigQftsNs46Qyl1NBN+8/czKDTew0hf1jEwn54k6fsARZFyTU9c/Ygr8gVKHf0UZ/z6dfbzIagH1tx4Bs5+J/DrDH8QjY1ZJ9hpQtmprmBqVhG4C+wdwsp4edinvjF6uUitTurVeTMTIMeidkcMvdYnuLRCNxtMi0NNe7kzmNHZBVEjpHNDzkftxuwOwiR3GliIsT/Uz06KZuXH5dwOYAY+PYI4gS9Dkl7E5dqzoJQU6MOYGXw503swbQdSSystwgZAH0NuJ1IDcgtB8zPz9tZM2/gkcAC4E/xMFO0BVgYTOUWCVul8OE/bDL4XaYPyrT2XhPbg99ZBLZen5JHuxayM+a34dAB8lPkkHcTsLNIdmCVB68l0RB+WlsDtAevOrp0ImuoXgYQo9xRJ+jrQTbX7NWAaLjeQLRQYcsw+WpdetU7oVGUC00pcqtlKuO+/l+ADOZSvAr8hKSYsRB4BfnmiBjSFeWa0jZZWzlvv8U7JBSFT0QnixqPEDQkuNwu06lLFqbjxvJwbw7rj3wS/BNgQ0ttYLSH/oGZIbjnkClj1neDW4+YQTIi9YGdBS0IO3UsZMozw+5uP2efxyffSc+RPkftjmhcN828ela79srT6TyhO+8ek1QRLd+GTFnzaBr4VdI64uAdf9YgqvloibjhN1C7EZyHZCPmnsutSxCeHDfIKpvAmQrDl4uAao8Xgu8EJ52ageOkoF+kCwdVgKH2E+/krdS0kUOqYy3BhcR2hEMa4JyFLK++QVjqxah7z84E5oFbyjePWUl6FX8s0kl++Qf2Nm3qKnxtFz9ElwK/hcm3ZqjdzaK6EIJkodwB0b6aZItu/DzgNtiHTdLXB0PQVejJrVyb4xV2+kjY7TnjYzWPsCN4aJbhqJGnNtjM0XrI304AJ2AB+C6Y7CcEhCwgpaPYAF8JkTRG4iPEY5p8DM4MSaekgPhkgpPoo4XLPk2v0QCMuijBm4Ai1dH2lC5ffgdQSFHC+LQseaoKkDCwgLQ2YIinKXwRiUD+wDyzBrBg0oek5zLaA6wKbgaIuzAvpDOhugjlyWxDm/V3ILQadBr0OxKEihCCYeOYSLsTJ7H0ZiEirJfCzgApGL+bbCVUz+sK4mAkcwtwCpBO4+FnkVhOEf4/ZMaw6HVhLyp7wPXGQpDQLKcL8XIsapktqw3ytpvjPXeV7nLoImCATykTWbK0zhN5jCxjFNcfMsIt7j+KTT1iuaYek+7F0AdWeBVRrrt7qIyrsJ996gnzbZy/r2+wCPnkdfCNy+UtWBGkFIWDKqC2KJZAWkuoD4F7EKULlqlmEVEK7MzeXV7Pj1gNbMWvGV+cilyD3a8AX6D32ZeALNC86NdopW+e+GaBfUpT7PqLhmVvMbD8+OUep4wiWLMInJyg0fhLXtJmosJZy1ytYcj64x1gHuE58coGkrw1XuGByB5F7RFIrijah6CHMvyeXm5dFanfVrjxhru4Hm0lQdtRcBvYSIsP/iOZFN9Tvc1JQ6nAEhc06hguMo2nCx4X56j4qPQNga4H9uPwJ4kI3LjdP0rqrdnBt/C6ljm9SnHHkBvc7NhM4F08Ut54Q2XM0TzBbfx5oDAVf3PvAEswfgix/XFqZBzqOi94LZla1ZAEyq676P6QCQU1eZHAlDGavAo8STG7jQK8zdo61GscJguHQO6MmeNbM648j24JF90D6HsEBvB9pJpaeCv6SvhPz3Yj5mDsp0WKoRNSQ4lyqqNhIUGlW8ekA8jnkLoIS5F4Otnj/BOSeR8oRxZ2kpU+j3LcgWWdmDuwAucZGFHViPkJqBvoxnyL6gP7MzH0OuY8Toti3Z+dTImgUF2J2OAic2gU6i2QMmtreINx308FOEh4+DrMy3m+FdAlSO+b6wXKIOyDqRapm7gT9mXayPcu9+RbhwdSLy/ugdbZDKNcKts28L5H0eaJCARcfpTrgUaUDo8/iwjQUl5D7W8n9t/F951OTiTShTFTN1jrD+NRoG63n6EZ8UpujxpjXrAlLqjTM+uQwLYhZCUu2YX4d8G3Z1t0MWkzIrAMHM2EyZ5aKEJjXD1IWsNKPND874hxByFo25P8046urAAPVXCMaCXky/xk9R7+Cpb9G67JLCwvr3Pc48GdB8zf8oWtmpzFfQroHuRMYK5FOIrcLuRTzO1Rof9B89V2wZ/DpJqtebMQnSzF/UPn2Ki4fI9sGyqFoMWJ7UEgIIAFtBw4S5rVszAJsF8EK84vA12hedMsksZ5Qgv/iGuABBoXGtWQV2j4M5tPjQVFSyYf8xgC2FHQc9DaFaasVynJOFGJouriPiLo5+3roObqBEDizZtj2tLyA4F83QmCzhfgkTIxGHy56DTQPWIr5rQDINQN3Z4LjiMPtEUJQwHrMSoTJcaTfZJWw6hyZa+ogUIv0PkbQXI52PWs5B2sz3WHkTmHpNOARzHozYe0xZLvAdQIbwB1CWgZaiU9fA8uBKqCSOU3HV42omIKdkVwO1BiERsDFM7HkPLhcqKTDSuSOo+hFpM+F4BkGiIpv4isxaJ/kusm3TkNRD3LdSHcD5zByiHuz8+1BroxcG8F/cS1oFpBgdh/SNzDzwMcJ5SOrcEkT+DJQRvo0IUjmOMHs0wcswqyBdOAkLncga9+K+fNAGkz+ALYM1ALuXcAweykzlYUHkotq3+tghJtVDlLtXUK1N8JsBknfTOAN0sojWHMruZYOsP9E+8oJSzdSp85HwAlCPs7FhOo1C63SfYrShZp/WA/QNvqh2k/biqWSC1HJZqew9G0sXc/wQJxNjIysN+vMCjs8bGbnSUszqJmnFZ3FtAixJJRh1T2MnF/NfwuftBCE037CPHvPkP4NbDXwHt2HXsTsF8E/CPohsL1wSTitNT8D7EUqkZRkSaXZzO1RvuX/Z+/NY+y68ju/z++ce+/bai+yuBX3VaRIiWKLkiiSaqkXtbudthEvsAeTeIAkmDiIBwmQZJAAGWQWzxI4M8hMJg4GHnvauzFjj+1xy+pWqyXupKiFmyiuxZ1VxdpfVb3t3nN++eO8IotUaW1t7OYXIEjWe+++V+/dd+7v/H7fZVSUKqE4Nai7zsx6bexuMAdwjXEk8oH6QwbyKNChrvZDbD6T0FWtIrYOfAP173BnWuWA/wD8Bi1LZwvNfvwQ+ItbuFMsbiV8Zsn7PeyDEKJva4dRn+JTQd1O7t749JG0l8VED7/XMT4F3F9twc8BX4wicvLqPMLO7b98j3t0fIijlPDuGcTsBb2Ja3z5zk1yDTGjBLPvCiZaiMha1O/H+Wls/ArhC/D0Pce8AZISip4yt42taYBMzvIIuxF+xnWC39pD3LGR2U3ghUWEces5RL6Oyn7Qnc3u5xOoP4qxm7nNE9RrKMtBDzarIkAbqloBrRC3rMDVnfhsGnwezRKIYiBVdcP4tChxIUXVAGcRYxCzuTnOLYQdNnnEDgGtCAneL0KzCTXxUtDh4D+pdZCTBK5kQljoC4TR+xlCkV1FZJRAqm8AQ4hcRVlHkGpuIIgkasA+vBsHvonIVaALpYb6Ojb3DOgtVCuhOJQDqIsIhfgqMG1N1XvzwqanQELUovqjoDXUK+hakMvqG0ptosjtC5eOEBWHyXeOof4M6EjIVOdff4jz68cW0rTCe4D7GC1Lvw98f/aPtO8vdxJELgCtuMZhotxs/naZqHiM1uWPiIlCgalaAycIW8C2gB5FfRWkhsjX7xLEqT+F+i5u+8L609z+bsotMGcJa2Yr+JWoeQuR5qZfHehB1H+FQMd8h8CLKzb5z81pjexF3Uyk4nOIPIeay5CdJq0WyaZuqupNch3zJcpvJKxJz2CS75Ek19LrfcWhf/kdnferv5zk1jwyH4nqqJZVfS+kkyB7EdMicYticz7kkbOsKbp7Q5UEZAPqj6vYNhHTjkixyWPPETbBvwX8C1p6P7ux52eF2sh87h5FbyVM+z75BSOd2oNvvPdkL26dFDOHc4Cq4tP92GTXHI/6UfGZtgXvx7X4i1FEBlf/9yogPxrU70Z1BOQCaLPVrUtR1+RVOvDpMDbZi2tsJCrmCV6OlwgrRx+hKATk8aZS2jZFvKdBp0FSRNYTvCBnsrjLBOf7hLBjn72Dr4b/y/dAvgrsVfWLyeovYpOiaHYVWIracUIn4RXwq1D/OqqPgjkMWHARuALe5XDRaFCP62qgFGxsMlXFoq4KiqaVAlGhgaoT1VY07cNEfWT1lZj4LYypY+JVqOtAzEUiWaOu0Ud9OEGiCZL2x0EPARaxM+qfZrQa8wmdxFZCUXmKUEALIseA+QhDqFaB6yA1gpGvgm4BXgziHm7gszzqUzQ7BgIiN0FGQcYRmw/PKTeBG4iMonSAdhAybV9A08XMyj9Xl14incywxYRcxwAir+HqIyAtEuV2qWoefIJrtIPuk66Ngx/3dPuxwH1oK/EAHwyz6tv7fd9f/kOCswX49EuqyZiI5DDRaVqWtUhcurNOqZbBDRCKhL2h4JPHm0UeoJeAc6h2hXG17mRmg6ZaDmI4wMR7QB4TkVvcUdeWwK8He7b5+POgMxf9C0AvyCB3NuM9QB8izyHRAXx2e4OvUCGrPtfc4L4e/tZxdY2/wMSdQBWTJPi0Kl4Gc51qRbNOnbw5ZjpWJsBTOt1/ikL3OoRTwGKMqYktrVDVSdAzhLjUp4AyUe5tCdOXoebrW4fIMMpvAr9NS+/oJ/ahfV4I/otLuTOOnvn7wwpMPzZUNaM+cQjNHiVQovoJoqZ2oIFER4hLy+YsIANG0GwXWTYB5iQ27kHsB9PaPhw+24XxPlyLvyhF5MoPvstHgEg3mLdR9158iXm4xm6gjKsdQ6IIGz+D6hDQjcjq5v1eI3Tanm7uwDfec07NKMGOEr5wKcgZIBc6iLfH3U8SCNgFRCyoI0tP+1f+aDGNemKe/aXLUmzPA9Oo/zbQBxqjugK0HdU1qv4cjXGPuoKqqzBxOqVtyQpsNOHSn9UAACAASURBVISJ+zCxCeNuFNRgkyI+q6Dek051qc09RVb5LklHjvLgBVoXgMTTVG6ModqgtGQKzKtkVZDoGnHJIbIflRRjYsK5MpscPk7YpeUA3+zYjgfSvHpmkn/EtKNMhcfrVVRjkBuIdOHdKJpZkIdV3SlUHxWRA6i2g7qg2DbtBO7qTArOSUQ237mwgZI7TDr1fdS3gLYCt8Lrj+qIyUTMkErUiq959Y19EAliNmLzObjL0/AnF/fZ7vcBPjT+EUG1vZPwHZ6idfk1Sdo2M9s+RbUB/h3ujKvXhemLtM061jXgedCToI/PeuwlwIiJn1c1b4G0ish53s2HK6Kui+AsMdtarRPsZUSWo/4EaLNwkXKY9sjTmPgUPl0GtOGqYR0SyRGXngY5jS2OgM8Bu1E9QnXQaloTy2TS9TPfhPHxhBUbS6o+EjHtZNWVTF5fqPmuN0happFoUMSmIpoBddRH3rs+0FSyWqfaQozIgBh5khDf+A9p6b0/PWWD4GUN4TOYXTR2vd/DPlGohpQx9Vdx1WFcdQFZ7QyCp9CzBCSPZvuxecTEu953fXK1swQaRDv4nbg6iN0TJlsf+DogFK7v9QQPExoknx3us7X4i1JErv3gu3xEiNmN+nOg77cjaUP9TnB7IAaR+ffcvp3QbfywSEE6EdkQuIH6MqF46iR06zLgGKpbJMm/Jpt29uuLv/Wf6TuHhuVL30hRVoMeB/GBT5SOI7ZHNevXdCpG3QouHbuOUYevrmPiRr8ueCiVQqegRjCALRmM9YhM4Z3iU0HiimaNFxk6uRBJJrhyoSRP/o0EzFqw58h3XpLA5jUkbQJkiPwUMITwDqpp8/WnQd3tK6jGiKEpLDoAmgdZBvSDPAxcZobPKORQnQIWEhR0NZQX0awN1Zyix3C1rdjcC4j5KdS9hvrHwewBmcZnPZjoECJPEVIhDgGCRIuBEq7WQN3XgUGwpzHREmCpiJSaJ8M+xGwEnQLTT1zsFjEN4CJ3G2X/xOJ+2/0+wIeDWfXtzPf95S8TREsXJSr8uSRteQId5QcEPvIFcCl38x0XctvvUT2wjzuj6s3AKwTuM4Tu3HoAEbsVE+9D3RTq7rUcmuFH352GE3x21xCU0DuDY4K+g8hspfg6YFpVT+Kzu719cx0dInIdmKfqz+Pqw4g8K3Huisxb8BALC3soLngY9CTqMhDItb+NTc5Qn0iojdwg3zWlccsSTNQHOHVpOzePRCStN2XJUztV/cuk08s0afci8tPcT24OtZEFhM9uJ6FYfJTgafz5QN0JfNZN6HIuQOxRbPIYJnoDk18uIe0MJN6JOnDuMjbfhdy1oWkeS2sE4/p7b3jv5/fZO/jGLXxWDDx7QKLTiAGbf5y7DfT/BfDHH/t3/Ri439biL0oRueqD73IXhgnt7g9STtU/4PaAmVH33JjbdPduFIPYQyOEdaD7QsPSWGAT6k43BT8jTRN0QfUZs3jN9/23/7u/kHwxQbUTnCUk3hRRnQhdOPG46jST/T168tUuEdNNHA1i7UUKhRwDFxratVCJ8458dyS2iIjEioLYOiIdNMZiXDXnBocHTFt+qXn824slzneh/IDigiyk5ogB0sBVwqJ6GFiByG4C1ypP2L2uD91WfxPNIog8Ik8Dxwncxw2ELmUdmALpBr2GSAHV5cD+Jr+qC5tfis+GRJ3XuFQUiZeh6Ut4LDCAugz14ULk02ls7iWQHCIOkc3AFCLduFovsA9MJyIe6KAxeU7FTiKimFwFmyimaFDNi88GCJmJf0Hb8vdZbX5C0EzwfIAfT5hV374O/PK7bqgO7UD9/wX+53i3oBBgI+hlAsWnR136EibqFcjh04eR6HXCGrxp1mOGEdOLmOt4uYZmAwSazxEwW4HrwcVpNnQb+L1gQ5EqshvkIKo/RH3UzPBeholOUC83xUFmkFz7EOigmCjXnNwsFbFniYrfUpufoD5xEaSFpM1K0lrDe6fqd6jPXiHf/Rx4JCrWcPU3Ap86G8Nl8wGlOlZHxGDsmDam9iIo3l0krbSomAyRvyeV/r9LcdEXb/2ojSwhiFCfIRSPHyWx5dOF+osheW22yEs6sPmzIA+JSHGOR60gUM7eDV8/wrsEt4BEc6vCvbtENr2Ke3PpNdvdFG/uISrOPt58aiOGfPdno7K/D9fiz7+IrI1YomID9ChIAc1GUJ9HtYS6h5h7cRvA5jYG8YkfwGcdzNXNFFtFsyrvX2wex76vKf56AqfxfY4hCWGUWyFEAu4C9oB+GXgZZD3wJiLPo/J9VFfgGj9QMUXT3RsTOpTThC/LOGKeALmJKuobNZ3qb2PixgjlqRad1/2SFAoxk5NGM1dlerCFWCpInFI5k2f+mml6NhQQ67BxkambdWych3zVdM1bVt97ZKywfMdjmlZPSFwogO1smv9OALnm+KgttPn9QlRfRozlTrdhBBgHMaCPoG5/OIbUCfY9VQI9QYOinJvAzqYJ/JsgLc2OryfErK1CZFjgKioDwGKM7VHvzqF+E3AQEOLWR0TkawCovo13J4IJu9lLVIxJKzU0W4S61ZC9BXSh2Va8P0w6VSRpyzB2KRJlIBnIKuDP3++D/4nCfTZCeYBPAIX516n0/ypBzX1vnjkgfSALEHlOVUdJJxNgkdrcNREzX316HbEjIrO1B9KPz1oRCSNIiVfj/UugX0ME1E0RKEJnCOte8PZTvwXMLQJF6BjCDtQfAk2CF66mQJ6krQtXfRWbbxExIdfaxA/h/RHEXUH9elTLImaIQvfzFLqnAYP3faAbUDdK7dZyko5+hClE5hPle1EXof7RYDWWHRKbbNdSzzmtTaq++ntWtj43KUluBaVF11C3HdcYUBP9zwL/56f3AX1I1EZWEIrFmcJx9fve/7OGKqg7iU/HUe8R201oALQAiMhasHtB17/PUeZwV3FnUX+vGBbgMmLv5k+qpmSVg6hPeG/63A1s7t7b/ugzKyBncJ+txZ9/EQlLENlwu/y+LXiGpl3MGCHtYKCZYpLHZ4+i/i2M3YaYpYgdwqczKkRB/XrAYaIakptA5BJZJY9qGyJTqF8AFLC5U4hd2fzQMiBDoiuEgnGCUDgp6AhIV/g3KaEN30Pg9uQRWdt8vXVEcqieAU1APapFoA/8c3j+DHV5zRoH0bQVV1ukuc66IBV8No7qUdCcavbXKIJmLdTG6hIXM128uUUKra+QVQyNeqqNegd9l2t0dVQ4/fYChH4KxTrtnUWd7neS61BMFBHlHlWXnaA60i6F/Nb8N75yJLxNvtEUCEXN1n+JwHE0hFbBOJhXCOdIC6Gz+F1gASILEHsWtadD10CHmu/F5vA+uDdRP4TYLtAa8DJBfFQgUIdnvuBLEXMR9RuBFNEIzMMgZxGdROtC4JVWcfXXQRdh853ANOhGYBz1TwpyRcVUIL6MZmWEZ4kS8Nl+nI/Ab6UxPkTSfhlrG0g0gtiXaek9//FP2x8v3Gfr1gN8UiguGqXS/1VCalDTy1XeAOlBZHZh2Y7Yo4gZEjFPq+pR1G1FovPACMgpoBbUzbMV2BxC+BoITS/JCSQqA8vR7DiqhwmJXx1odgOYRGw1DGt8A/UbQM+KmBJi20Skg6g0H3QcdD+wHFc/jYnHwT4L7MHXd6CMYZJrSLQD3DhQQMwNkDJJex6fDhPlPepugEmQKMNGzWaBzscPnaHODc6fayPOTWN8RK79BiKLmjkRS8iqz1Hp76O46D98Bp9UQBDArAS+3PzzDEGM+cWET1/D1avALmaI7MESKgNbI/iIQugMNgiuJidAys0mxJOqqtTHUmAakTJRy3nELsPXrcxVw5h4AJEVqHrUXUCzYVy9jbk6lgHBtNzmtiCmc9bPrwH/yyfwLnwk3G9r8RehiFzxnreELW5n+CNLsc0dr0mGUD81637zscmdE0R1DGhBZBFBdZ0St+aaJ+y85n3KzWNPh4VBUwLnb47dkBxhlvp3Fu4ew894Uc4Uxap94IdRtwP1L6t6SzadpzqcYpOFRKVKMFFVDXFhDKOp4v0CGhN9qB8jbulUm/9qev3Socnf+2OrDVfLrVlQjVoSH01UEl9sNXbpkorNJYoxFle3TFxPWDTPqJIXuC659orGJciqL+EbwQ9R3XT4nfUcECGEVBjIQCsIMeFLPWPKPoZqG4HTVAe6EfM46F5Uq4hsB+1D/UjTX+4K6svA40HodPvDuYF3gaMoMg9kHugPUbcU9YHzIkyJjbwKZRpTl7FJVUJXN8PVX8LYZQRFZxl0CNfYJWLWqvoJRF4Dew0QjDFIZMj4T/i6oTHRQ9I1TFTYiJgHucwP8AAAxUVTVPq/BfwRga6yfNbFHQCBU9jkeQBVPYm6rcxcP8SeQczuppiwD+gN66ueJ/DwmgcxZTC7QA/gG5uAXWBeBPMW+AJh7Fplpjsp9ilc/RRiKoh9ATFfB9lH2ETuJvj6vgZmOrxEjuEzQ9gQdwIPo1kNtIixNTC9EkkPJroKfhrVRNXvEBGr6s/gqk0hpVSx+U6Z17teOhdcBipaH/f4dDWNiYiodBWbH8VEOVX/q1LuO0Pbqk9HfBEsdrZxx2ZnBx86DONzhPoRsuo50KcIuoIp7pjUz5xbV7iTdNQgUJ0ebm5C6igF1N0KrgAaNjSqJdLyIgBs/uQcFdcZxTxKbWwvQreI2cS7A0huIdEZTFzARMsRs4ZA1ZpBBvzfwD8g313mAd4XX4QicvlHfoTIfMQ+EzwW/aOERWP27WNgLgHrEZmbbxlIurOTF2LueDvei48XWSWyCrGr8Lysrl4knXqWxuQPcY3lJB1ViVtSQpb0STCZ4su4WhGkSlRqx8aCzW3i+r6rjI2uKr95tkHmVpjK+N7yYHlsenhq3uTAWEfn6kVji375WZNfu0RQFVojpwNvdGLinBYXXJGWliUieoMoF0O+hjGvo1RBW1C/DJFBlITQkiyAjII2482kBtpPGLdrINXrO4BH/asEBWYDOIvqk6ibiQNbfpv7pPIqyK6gTGcJ6EU0K4NtgIyAbAVzIew85QBQwUQt4t3bGuU7gBZV/T4SzRORDkKazxZU38A15kNT7Cf+HJgWQsrEedTtQiwk8dvSsfZhAJ28EiNmFXD1Y32mP5aQ+y5q6wE+YRQX1aj0/zyY30Tkv2kK4a4SphCOrDIPQFVT1OUIsaiXELmBsAB0L6HTcxnVK/jsDMY+P+sZrjZH02+Dv+PnJ1IIYjsLqlcJBUeCaoeIrNCoMI3qToSDwBshMcs/hcoU8D1ssgOvJ1BN0ayMTap49wI+bQO9BRQVECUCdwKRLyPSh4pBZLPAK6CP4tNbuEYVY3Zi8vuJS3Wy6evk2g1EXZLvsLh0CBOtxdiLYnPPKvyAtFJX9T8vn4SCtzbSSUi/mfmzjY9zffw84f04vnEczTYTuLAQ+I8zYR6zoNdBlhMoTzCT7R5wAaFfXVbGN55lbnRrmFYGb+WschlkAjfaQRjvT6lEe4jyT4mIgnkTm0sw8dYm1/9eTAC/D/wr8t1nP86v/6Pj/luLvwhF5IqP/UiRp1FzEXwnd9kTmPFmcfZJ4Uf7VI39Cibeg8gUuY52CvOvi00KwDyQvw4dPd4SdJua+DAYK1YewkSxNibfpDxaiiO3zuaTfjdVXfHnf3TQ1jO3fmVrYbS/Uh/tsYaea/0FtekCenvHxUTQ2TJErrNIUkxJy4OoE0ySYJMWiYohpss3Zl7hZpA+TDKKyDLQ7cAJVJcjMgRyFehAZHmw95AC4AJvUlYQvnyjhJH2HMk+ugjkFiHVB0KX4CKqGaIOzAhiN4cxlg6jrhf1Y9h8TmxuNehSrZePYG0BZAnBmLgOmiOkWShi/xp13wR5FRMbEdmlKnvx2V1WJtK6PCVk2j5AEyHu+PN+FQ/wuaO4yFG99bfxrg/8rzM7OczEZ/DpdTRr+iTaA4jdKuhKfFZGogYix1EdwKcG9atDdCk3CdOeBfi0BHpPUTTrzBO5gthvo34fcAv8BhF5BJELqNZRl6irj2BzORHJgyxG9Rz4HtApxNxSlxoxUTtRvoy6raiO4uo5zSoRcUtJbG4PgT+/EDiDSIpSwmd1xBaICsdE7DfUuTGiwuticqqaFlCbibUxuDIm2QXU8S7C1Wv42yHkHx61kQIhFvBJggvI49zdDfvCQlVHQceDB7DWBKmjLsWnrfg02K+JmW0XtJJwHTgHbGHGNkq9QcwA4BC5V9zao+pHmhPCuZFOnUXsZVxtB6EBcm8mdx58CRMdIipuRcxT99zuCDz+o4TNy7//vDuP9+NafH8XkQAiq1FzBnwEDIFxn3ABCfd2Oj8GJMo/o7bnuDTKmWLWaG3kBDYfS9zSgvrjqObR9BBIHkxFTXQaVzdqojwLN6d6/a32ZOXC45UTfbd85qZ8PUsv1Cd3lYq5vWtXL66LUMeY1TTql5gcF1raY6KGESVPWs6Q2BIZh5j3IAnrKnx9FcoZjD2KxE9iTDthF7kG1UlgoDnmds0knEdADxNycW8iYlA5EcYPKIEk/3CzBt/L7SJSK80xxwjQAX4K5SDofDA5bivnPM3jXCUplYEGqjcR+UrwtWMSE70KJi8i31SNTqFZVZppFyLm7yuyF/T+CiP9PHC/rVwP8Omg0KPAP2X6RoOQIhYgsgETT6B6EpGriClI4DmDmGNNbvRp8Euaka5LmpvUNcDx4Mgw51o/o24+iNgnw1XU7gLOoyaP6iGEAsJWxPSQVfeQTQ+qmPPErZmItwS7rrJmtQyflTQudYrqJOreQqyKzXerzXcEbjv15nMeAe0ieAAXtP+dBl2Lq+IbBY2L46TVV8l1WDU2ol5eiS2kiLmu5KdEzEsoFYEukrZHEPkKU9eGaVn6nTnf09pIRFjTHicUjNsJsYF1Zt7DHwU+2wNqUZ8HBDFDYArc8T40zd9Zm0VZjHpFpIDXIsY0k8lI8Vk9BKZhEQl2SGIVYyWEW/iluEbE+PmFzdeeaUvvcTHRjtuvR/0zIAearh0zWNX8MzuIYx7QCI2Ld6ENV4tojH8dm38LE2+95/YMn5UgnfEPnvldHWLeIm6pE7dsboqv7sV+4HeAPyXfPTHH7Z8v7rO1+ItQRL4D/DVhJLqAkITSy1xqrPeCyAbUDAJdiHR+4P0/Oj6RkYKIeYSk9RUakx2oK+Fq40QFgpkjmWJyGFPC14s4nUTdBtR7quNDw4ffOXz6Oy9/7Wa1sUedfz6G0RQmn966ckk+yyarN0b6C8u6R8nnWykUIKv10Ji6oTYuSZTPsHYKwaFOQfqxySV82o76TZjkRcSAy+qQrsNn34IsxclRTJRi4i1AhqYRioGoivA8oQOZBx5CtR84idjnUH272R1e0ZTm7QeNUHk5KKe0BPIqaGdT2X4CdAeanQWmEHudMEbrICwOy0RMDlgAfm+ToF8AeR6xN4HzqDqBEcT+FOgY8B1al//w/vo6fo54UGY/wGyUlvxzpm/cIlxsZ64TNbFJDjFPAhHqDwB1kF14twdhfnNzOTvl5ADwOPIeucohUvHVZiF4JIQR8AjBlSOHMZ0htUuvhGjYeALv+lD3JXx6Emu2q0u/K8YasUkXNpcgchmkC1d/COEQNmkIDKJ+cXO6chZMN/iroJs0rQ4zfq2beb1DCtPisj5EDK6heAc+u4FkV9XYb+EqLymFqkTFJ/B6EfxMB+3fMXVtJ8ivERUWcqdY3E4YS4di8Q5f34af6R4CJWgSeKq5Hn40qCuh7kuz/n+F4FfcBvIywRsyXBe9Cwk/oQO7HZ++A8lDsx57lBn+v4KqVhG3D6IewKL+Gr4RE5cukE7vBiIaEyn5WbT3cJwnwB5D5B5PUHaA7lGlHXQY3ygitiImusuGSBuTB0ingpelqy1ConKTgpaCTJC0Z8S6FV9/i/rYBpALxC0TxC2bxNi5CsdbwO8Cv/X5jao/JO6ztfjzLyLz3b8B/MZdP6uNWGAxIYZpEfBTwLcII4i5IXJvK/tHgScsft8j7OCEQBiPCLyOOnCe0KWrEgjCLQQey7/i/YLoxT4rUfEFRDoV06beXQLXpkhQsIm8gYkjvF+HyFkuHlhDffLJkcNnjsal3HDvvLbs8vWREw8taNtsWgpvLHhk5ZA6T2n7uoju9pUUCkdRn6NevUFpXoJP20iz1dB6kKSzTlTcgM2NAg6T3MTVpxCTC6q3OEGji7j0FpptAX0cn4JP60i0ByNPA8MI25qLX4SYp1D9XvO9WAK8gkgbyi3QPsIFocmB0jdBV4E0s9DlIIGGUAsWQdHKZv7ujLrzIOh0s9M5CVxCZbI5EpsAXgdtoKwHfZ3b6juJufeceoD3xf2W1/oAnwFKS36f6RtDwJ+hep7w/X4c1T0Y8wyYJxT68Omrou5rqLxA2PyvIayBwaz8zrl1ldB9mum+nQDZCRoyuu+k4Aw3R5/dqGmgOoy649hkhUSFbjVxFdVrpFP9mtX+Sk2ynEwvSpQsxMRDKB6RjUT5K6huAz2BOtSlfSLisbkeRGoggiq1I/tPUJ0aza3M2iRpS1B/lajVY6ISrm4ItmsJylEkWo5EWVCe+3vElrIJm3uBOybsd8P7PWimiOlBaSC2DJrNmpydAm2DOTtz7w2xE8FqjQhYg9jL+OwC3ifY3HxMPIhrDIXi0i8Hcwax7ajfh4kTVP+K23xFUdAqUFDVOtm0Ab7+rueMW8A19uHTXaSVNZrrqgWKwW1EqFsO9trMqFoD9eAK3i8A/xB3NAjTanMHxSY7ADSrvkU6ObuLuRDf2I/NbyBpu0yI1DSIjGKKZbW5ATHR5jnemQrwHwk8xx+Q784+0vv6OeHTWotF5BsEwZAFfktV/+k9t3+Z4NJwqfmjP1PVf/BBx/38i8i5kO92BHn9teZP/rRpoHqAj98VrBBa6a8TLGeWEQrUhLC49RO+SAPAO+S7Rz7Gc7xJbeQy8AJz+1sG2OSboC+S1QTcM0Ar6AjKMWqjCa62DZOcId+1VFbt6qufe/M8w2Pta7+y+ZBJteOJX/vWYLxu1ZDd8NBXRn/zD/5T49JNTV8+kRhrpfObjy7RBT3I/LYB0Bw26VfMYuKiFZG82PgqIec7BvFEhTGCGi0PKoiAjTPU7sNn7ahbDyxEs6+h0THEWu7YAcXNQm8FyGJC5mwPoeDT5nvQM+s3fyzcpi+FhVJrhLjExwmRVbeAL4G+AZQCH9N0gh8N9hBSwZr1oIdwaR0xz+LTS8Agd/vc/Tqty258jM/vJxPCfTdCeYDPCKUl32Pq+jMEe68m31mfwftjqtl1fLYYdbFiXhCR9SDXCWvDHoIy+wiqo4jtJZiSX0TMJUQyvP/KbUcL9bXmRFKbbg7zUH8QfC/qz6J+FUQecCI2U9wtrY40/IVjopqd8UPjNtr1i+Om1DotYlpAAv0GRtU1DK6eoWm3ej9MPu4UkfGmhRy5rY9VdKK7gZhpXFbRWtlr9YqT0rwqxnTq2LWqCFWzZFuvOj+Aq31ZhVfkzrXoHCZXx9inCD7Bd0P1XBAn+gUEr0qAKur6EXMBuX0ZfhgAVz9MGP064ARiCqHoYzPGNG1ydDAksvkiqr3AelU9ISKnUe+bARoWVz+Hawj4xzDJJdSvAx1AZHfIWwBc9sOwht+2CjqvqmuAPsSmqNvy7hNDR7E5h5grqL9CZaDHx6WbYnNrMfECkDERe0lVx1F/HnXrCOlxCwgNmNki1hKuvkPVH8BVM7LquzuJvrESEyu+URGbPw5SB7Yh8ozIXWWMA14C/gD4c/LdU+861hcZn9JaLKHz/a+BrxGy6Y+KyF+q6r3n6z5V/emPcuwvZhE5F/LdN6iNfBV4lY8eCj8M/Cz57gOf+Ou6F/nu71Mb+R+Bf/m+9zPJDpHGpGJPou5RkNcRFqHek59/DZvrEXwHUTKWe+iJpzf8/u/9oPyHv2Nv/elfd8dt+f7pvlvpG3/33541w2NtqTFTWqn5kpHp9dpoFJd0u7Zf/EaDpFFm+pYnrbxFoadG+9I2jYrzMVEsxtYIXdSQiR2shmqINBBZidhRjK3i/XnUnQsdP82FsZROcrvg1iJBcX0Q1Toh5WYtYq6imoHfQ1DpzXRn3wb7RBgp6TYCP+UxQupPD3AedAp0GmQ7Ij2o3YfIjKLzPMgaTDwfTV8hFKAzlhfHCB3KKaauLaFl6YNC8gEe4EdFS+/rWr78s8A/xjdWIzKJxFXgm6j/YbD+ylapJH0i8mWUParegH5fQnzqKPAGyAhictjo66iWMXJIvduGT48gIhiOBxWtjRCzCe8Og25s2rEdw6WRih0HXwJZiE2mpGf5OK6mjePnTfVPfvd6+6/8116T1q+Jq7+miFdXnaA6nkpSKPlG7Wbj0nmba89f0eWPP2LEblPvDog2GlLqFJI2h3PFxttHyhPffZVky1Ytrl07YuJJZxcs6dWseoOosAVXr6PajsgYEp3CxDsREVXNBNrQ7BUweYQeQnrXNmBdc31sRkkShJXqPS7dg4kMIvPw7jLIoqay/GHgEugOfFoBLuDNRYKO4CHuCEnKqv5VKoOrNNcxJHFpGyYewjcuqvqncbVDSHQRn+YwySWELlx6DXAoZbRhUc6KTZYF9X16Btcogt6d6hImcCeAik4PZOGa4Yfxrg11htros3qbmyhl5m15UkSallDZjDK7nTCxO0KwLboztcuqRVz1Ud4tZPWI7cfYMWxh/XtwKI8SOo5/Qr578MOc1j9h2A5c0EAFQ0T+GPgZ5tr0fETcP0UkQL77ArWRHcAfAnM51d+LCeB/A75Dvnv6U31td+P/IYx0/s573kOkDRO9hXME/zTWo2rJdQw2TctRrxfAZ3j3CoX8ktLOR26tXJqfrB0/3zq453TL+Lmr9Szzi6pwtSMXp20t+erF753I4lI+3v6zz8ZMDNVBLJGN0MzqdH8B1xiQXHsn+a7QjRQaQS2nY0BXKPw4A1hEIlSngTbEJPGKxAAAIABJREFUfBX8d/GNXUFpbhYg5nm82w/6dtg+6SPATVRaEToQuYSa9SBjgXRPR5NPdRNYhJh2VJ+HpgIvRF49ArKHYFxeJKRXzO4+N5OJ9DDqvxKeVveGY9/m3zxD6Ia8fyH/ALfxoBH5AO8FHT+7nTBd6UB1BOUG+DJi9qJ+RRCo2KPSTPVS1RbUr0c4req/D6YVTdtEzBpM7gTa5AGaaB4SXcM3qvh0Ea4+qnGriLADOIyJgppWfR/qq8F9gZdR347qeSnOK0iuswVXrRR+dompHz8dIxKTTh9Q8Lh6Q2+dqUk+36WmR9K9f8nZX/+95OHf+d+rtj4+qrnOIbLqJFE+Ic53IfpoNjzwwsgf/4XePHShddOv/FohWbVMdHqwRlp+FJ+eFimWVcxZRCrYwgQizwJoVj1CNr1Ko9I8EekF9zYqN4A6JiK8b9lgWCNNvdmBfRtImv9uCx1b0w26FNX9BGHizKewH6UHTdcQgiAOYmwQs4hcR2KHzV3GFuar6gV8NoKa+Wh6DPXz0TSHq/bgGpfJd28CvYWrrwA5hIk34LNT6uoHyKY3IbaNKD+7UbOHsFHvRORx9dkwWfVeF457z5olqJ9GbElENqvJncHXZ1v8PAFcQPUm6gSXgmYN5K4Csp+oeI5c13ox0Vw8xwuEjuMfkO/+sQmO+JTW4iXcmexC6EbOkVLFUyJynHCN/p9U9e0POvD9VUQC5LuvUhvZDfxN4H9l7lzQSQIh/B+R7x76LF8eAPlupTbyPxDGrL/+nvez+V7xjcWqqB+8+po/fijBSpFabdw8vC1HreJJ8kYvHathXD+F+Tb68i9OFpcf7ljV01m/fOpaI3VuzNWzRXHmLk+XK9XCvNbxHf/HLywmiueTpTEwQVoHP5RSbB3FZam6VCXflQPKqC5GaEFkJ6oH8dliRG6AcXhXAv9lQqb2X4HsRuwp1O8GOQp6lZAc03VHZMkV8DdQkyLS2iRDHwT5NqGwc4RxxowJ8ShBnDN7vLEcbguktr3rfVO3F5/e8fma2/Pri2/I+0XCfeZN9gCfDXT87LeAfw8UUB1CXQkxdUSex0T7RMwaVV+RMOrepqr9aH05UEOZQsnADWHiDIkyXBo1OXcOm2sXzaZUZDveD0BcwWcbwZdDZ84Ejp3YbWBrOL4rqlZVKvhaETHbsdExpOBtW47i7t0VvLP4VBDxWh1pA59icmVxNcuqTfk1/+zv1MzCdRuIipfx7nGyap82psvunVN1u/GRV6tvHJTRWxNaaitq0tkaI1GBfEeGuoNavryBrodOEJXyYqKNBA5gXbPKG2SVL4E5jPcGY/KgDmQ+IorP9qGuDny1+baeBG6CPKzq+/BZTSSbQn2gFUlyOThK6JtADmU/8DToXsQWUJeA/xKeVxFTROSWGJsnadumPv0ePi1hogbKOEFefRX8z4B9R122nhsXzjB/waSoHwQtI7UFzLbHUS8EG7QBwkb+mbsqm/rEGWabyN9zyhC6r3WduPA2HeueFpFBEXNLg3j2zmhcdTXpZAfonYJU5YfYJEfSUSQqPiohMGQ2hoA/JhSPr5Hv/uJll/+o+Phr8TwReX3W//+Nqv6b5r/nOui9792bwHJVnRKRbxJigd8dJ30P7r8iEmhmWf4utZHfI5yUTxL4jVOEL+he8t3Vz/EVzhSS/4Qwyp2bYyCyWqPSAX/6YJZ99w++Pfsmf/7OBkDmdbzpKm7A6RjR9p/KmfVfrcdplrT1vuJ8pVLITUxPu3rqY2s2L3li7TVUr3Kzv0hkPHHcgWoL5ckeevwE06O92JGz2rG6Lsa2EEzEpwmFXD7sIHUVeIv64yAHEdYCcbDIkFtACn4XyimQS6p+ddh9cwL4MshhhMdQvx/8ScRuAvlh8xhVxHwD1QHUX0T9BEh7UHGLEDLIW4FzQCksxrf5pabpFwdi9/DeENAnmL75TxDzjyku/Og+bj9peFBDPsDc6KbZYQwTB3aDrEL1NXw2jk0QMUVUWxV9BU2r4fts1gMW0Q1NxfFNNNuuqgfBq0jUoVltnKB4eQ0xrZg4xlcnlLhfoAMTHQ/iFz+OmCo2/hYuPYCmnaCjIHsR2wPpKnw2hqvdxBY8xliwEcUFKvmu7ZJOvoHN+Vzvspbcuu05fOMUmA6y2kH1Ok2jLNLdWcZVFxTXL55a9l/8gi2/ethn01UXzTNPSNxymbglr8gl4lJJhN1NG5yLmlYP4yqLcY3ToGWsLyq5mtj4q6i+jnpwjSImXnKnEFMQ83VUz2ljQnBpnaT9OXx9v7qGk6hwXaJ8a9M1sAquDcx+xGiwtJN3Am/cPw3mJEqMunnAMXzahqZrUTsowjAI3mfC1M1DqGvTtHGZgy+uk5/+lQSbO0xcivHpEVztTldKBKL8IBLl8Wl9lp9wQGPyzghazAnilnFsroCJCkT51RKiA2uIVeAKyApEckTFIlmleud8YhCayWgSHSNpcyRtT4qYe22PGsCfEdTVPyDf/d7ekT8O+Phr8bCqztWxhdB5nO3F2cuMyXsTGmgjM/9+QUT+XxGZp6rD7/ek92cROYOwCzne/PPFQygk/ysCV+/eHRUAYqKn/YUzb73fYXR4/DED2Ic3HsDmJjG5cbPt50s7XnqkXfvPl//kl/9+rXGxv7B0Xst3uxa1WZ2cqmutHsvy3lSKxYxGo4b3DaanFtPafp1iyxb16WlEFHVxM1ZsvsxkiIsswTX2oOowUS/eXwQKioyJMd8ESVF9CaEHMc9QvTWhYi9ic8MSlwDtQjkOrAeGUBeBaUEkZGerP4XqZdAcoVCcEfYkzYUzJSw0TxM2Bc1Mbn0T9EuIfa9koXuxG/gFKgN/k+LCwx/yMT95EHmgzn6Ad0EnLmwF821CtGkFZQeYAVQVke2o26vK6yJSR4wXdUYl3gb+AvjrQfnrr2Hidbh0nqrfB35rKIikLmKWKTqImt3SFNioyTs026OKF9Vx1H1TvX8NY5yIfRPvEEy7umwAcQbkIhL1kOQsqY0Qq9gETNQjvjGCTY4T5VvxDUOuc1yMrSricfUx8F4znzEx3BCtR0yqNYs2aGvvFml9+uk07EX1OPhHACRuPYHwFVSHQU8qlCTKP6+a9QHjZLVOomJFIBfS1HQLYLDJUZBGcKYA0M2onlbvLFPXDUmbaBb9gMpAL9gBklKr2oVLxZjzgAUzBSYDjVC9hNg1qOsDBlE3SBiFLwR9U2xOVPKj4t1EUyxzTuLiKsWvAq5KnB/U1VuGSdo8cWmjiCxWzfXj0yNgpomLLUTFXdJcENREB2cXkep9DbE18m0HSVpWS7B/uwfyFlGhW8Q+CewNAknWiEibIq/iahbfWAwySq4jJWnbLGK3v/s4HAP+LfCH5LtHP4lz+guPT28tPgqsFZGVwA3gl4C/cfdTy0JgUFVVRLYTJocfKDC+v4vI+wH57lvURv4WwS5oTkTf+lutjXNvedSb6Lmf20uSV80aDYniRMeHPFEU6VB/jiTOSKcSnbzRorUJp0lpmiuX3cObFuvpi/2NhrVpIxNLR4eRRmML3h8mc4ZSS17L5ZpMTo1gjGOyfFrmbUyRti+RTr6JzwAdVbF1otIlbG6QSnmS6ZF2mb9yEKigugzXGFATHcbmWgQt4t0kEv2AuEVIpxaTVro1KrwoYiXYdsgNMNuA66h2BlsMnSIk3nQDLaALEPIgbyJmGqSV4Om1FNV+NBsAmUDMziZ38sMWkDNYDeynMvD3gH9GcaH7GJ/ijz8e1JAPcA9Eoq8i/ucAVLWO+oPB/48igYZSAB1HbIxqN+iEiCxA7AKwl8C2YqKKwlVwo6DdIPvF2DWIvYhITZBNIHXUH0azTWKi80huJzAA3iHmCIZRVFHRughOXXoSVzWYuIrYDuJSGe8ijFkH5ha+0QDnxMQlEIuahkaFtaieR30V0RYdPFWfvjJYTYoWGR8yZvEyK5oNNs6fNNHyNWJaFxnJtVcVNwy8TFSoi7qnUNkPWkZdgncV4mIiNj+GiRvEbR78w8AigsliRpAObwaOgT0Sij7dhLqrIvIN4tYT5DoUZESLi25RHW4lq1pc/TokYOxSMNdBLehaMGcRaQdTQvUEaAHVApqdU1UH2TxRGQDJQC4h0ipoQ4sLDyEsFRO3yCO9nij/FOouqxImOlFLD2grJhoGHQjiHgDJhWQy+lB/TcQY2pabYN9zewR+EbgFMklUWA1mq4hMEZTljxGKE4AJbKGBRHmS0nwRu3qO026cMKr+bfLdb37Cp/T9gU9hLVbVTET+e0IdYoHfVtW3ReS/bd7+/wE/D/yqiGQE0e0vqeoH0gUeFJGfDV4CXgS+MdeNEidr7DM/u8+9+me7pHf1tOlZUiQo4RKyWjvwmPp0H+nkM1q99TKVoQZp1WJjSHKF8rnB1iLsyMfRD1u3rLb14SmiqfI7Uc+8nFamXXr4RN1P13Oms60lWd8r5HMbdezc25ioLLmOKibKAb3k2r8vmq1VTUTf/G6HbPnqGIFf+hzoa0E9WHeISRHzbCDIN0pikofU5N6iMRahHQVMbEBL+GwhYo/iGhZ0C2IPhm2WtgMToJuBKkSvA4JSQngcKKF6GfWTQA58J+oPgykjHCD4eHqgC2Quf7B7YQnc1N1UBv42xYVXfqRP88cQ8oAT+QCzMXXtFxDzn6MeTLxXkCIiz6qqw2cv4WrtmKiKiXYikg8Ct3gan44RjK0tuFtgZlwgisB61A/6+tRbptD1C0AfyFlEEsQuQs0xRBJgP+onUX0CdKHA61ofLeMaqnGxoNO3xvj/2XvzIDuu7Mzvd+7NzLfXXoXCvoMAAYIEwX0D2WqyN222PLIUlsIaKzQRI4et8GiskD3hCMshKfSPY5ZQhD1jT2hszYxmNI7R0uomm91cAHABCS5YCJIAiB2oBbVXvT3z3uM/7isABMGlWz1kV3d9ES+Al5kv671cTp57z/m+rzYl9G0WMa4u6kVRg4nPgHjUDOLTh1T9fjHxI8AxQT5A26hX1dZC5BbmFkb+xb/Rnm88mvTftq4txdjOX5iNy1rz0hyPKQ+s1trYJSlU+pA4FkyK+h7QR4Aa2MOINtS7b4mJ1uL9StATqE5o1ngLmyuIyG6U94KyhO4M7QCaJyTgDkDKazpeE/olMfaklleuQHUWNFHXuoCPTkuc/7kOeXCTajZO2qoSng9bgQifvSdRPh8SZt/GJl2oj0O/o80QOyVxMbQUgAUxpPXnUDeE+tvADyPx8xj7JUSO49JjIfHHo74X/BSwhqg4g4mnxdgnAafYOqJ1WvMXQZ9AogM3JIbvIeZ+xJxH7H7E9gE7xcpT16vZ1zALfI+g6fgXX3gr2heM/1SxWFW/TSDI3bjs/7zh/39MIAV/X1hOIj8PhLL23ydoVPbfahN735M7ZWDVc9ps5TExXHPsaaWgYOI8NveMYLyWh/PUxpHRM8LmzbdJPv9Gkov2V7asmzdrN/Zqs6ESOeYOvBvjfZ75eimdq0XJhvZotKInNvfuPkZUsPjsvGatgkjrScR8h6Q7Uu8msA7Z93e30po7qar3gr6Ia1aAGqjDteoq8gw2l8O1UiR7E7ShUSnP2DuZisRkzTGz5v5J1OVB62DeQsxPIXwXmAzODfIqkIHaIOOhESrf7rgOCcLjIAdAdhJ0PjOuieJC53jeDM91zf8xQrC9Qhjf5YH/m/rYvwX+H4rDH2MB+ROI5RxyGQDVSyuB3wJ+B2hh4u8i5snO2jEROakmLmKiOyS0pwSoZqi+gZgeENORYQlSLOoPgDyGaoZLz1G9XPBZ/RlBB6isXSHINoVXEd2BIoJ/H9WnUB1FZF69U7JGSdNaP/NXzvixy4lqXm2lqqqZxZgU7xrEXUbwPSrkcLyPqlHkqIidBFSVeXy7gjHT9VNXdPV/9rAWtq1X6V+9Mr064kpDubzp3zRLUhHi8hUpFIoiWgdMaM2W13DtKlEuU9UEEyFCBXUjQFvV349mb2Jz95A1T6uNxxFjReL9iPWIrEalBWJQErS9H0yfItOgp0lrbdAcyhRxYR9IFddINJ17GfWC6l+DKaqx52hOK82ZKxQGNkm+14JaTOwxxZWBPZ9WEb6C+hcQ84TE5VdV9UFcaxq0gW8VgV5Vr0yNHafZqMn6nSdJaxdBuzC5GmJb2DhDossY+4hAHWNbiDmIar8Yc7uqWtBhYBTNKqpxVcS8i4laSDSKMZsJ1aCbcQL4G4L+6KtLRQj8c8ESi8XLSeTnhXz/eZpTv0AYcX3kuIuYPrv5jgjVR4BWR+4G4HUAQeok3V3qWn2oX0994ggz0wvp+2deK8U6MPhr37Dr/t5/vjmuFLdRn3uBpGDaf/b83UClNj79bFptPGUujkeV3RvW4t1xbDKHa5Zw9T6tzbwtPWuFrLGXXNc5nThucK0L0r1xkKgAWd2irkbQ+IqAFpjVIGPYnMG7GJFuMfEs3at69MLLd2OTEwSh8ZWgZzAmCqUdLQMPIXLdXgudBN4F7QWqIA8ShOWrwDaCYLGAVoDLIOPBcYLVXDMU4tXO97s9fD/qBIcj31n+KsH5CEIy+evUx/4bisOnfhindxnLWNJYuLgR+A3g7yMdR6nAPn4yEOzMLCL7gGERfQVkHsw86LmOQsNlhIfAHiJIhLVAF1UTgvmAmAgTWymv7MbEkyTdO8gaxxT9AIzFJh+QNQQbfwkYg8ih7n1a021Na3XaC01tL6zOjh59329/MDK1iUy6Vue0NpVS6LHGRF3gi+LTu1TM34CuQ90lRKyqzpK1QEwmvu0qjz3c3zpydFYzu8EM7ZmR/I6eib/5Vmv4l59cL9aMgGzERKdQ51EcygBGGthko6qO05w0+CyiMCTqU8W1J8l19ZI2ngLm8O1ZrV72pmfzY4j5Tjgepto5tr0Ij5NmVaAX1QroBkz8eujV7FgUolvQ7CVcuwf1TVzbIkaYH5/HmhJGGuLbI5Lr7kN9Q0QixMwgavAS47NXUT+P6Duq3uJaE8CITl2+xOnD3bSbMVk7x/qdDdbf0Y3NrcOncyALiKTEpb0icq5zLl8jxHNB7CMIqM8+oL0wD+Ix8VWifA8S5zDmVv2NTeAFQuL4bfL953/IV/AyviAsJ5GfJ/L9+2lO/SbwL265XvVu1D3XIZcAFLDxbHCFoa7qe0AUMW8ikmf9nUWTHc+2/NH/PBOvWh1FpjbFzOhl8Nu02L25e+fwQc18mgwWulFeITW9bNpwntpUm/rMVsr9p0gbFWASkRzGvi4m6cGYzSr5Fum8ks47cv05TLwD33oF10rw6in0XxCRPhCPFYvazM9drkq+N5XNT76p557f4U8/867Z+pVLIHOoF0QW3XG+zYelmU4gsg81byLc1lm2BXgOZAUheLVRvwoxpxDzBOhzhGRxP6FvIyE8rBY12HLAQZD1QBt0Uffsba7LUxzt9Er+Y4rDP7kj4WXHmp9sLFysEMpYXweOB71C2QR4MAeBexAphY11niC7lQNfIyhjQBDAPgt4RO5H9SqBVZuIRLdpFJ3ApyNItE2iXBdIQdU/h6Z5kBY2qYf2F7PYszyMZudV/SptTs/RmntQ283vLRw5+d7CO6P+9O/9D37Df/WVZP1v/2ZTmvMixUHVhfMxmBY2PkRc3o3iENdW7FU0s/i0iGtU8Vm/dG+dSHbnjeZKJwVv4u7SwvAv/Xw/RhTvPJhzaJZioxS8qrppwZRQf0TQsiY9twEOdEBscoG4MKrKeWCrtusZs5dL7uroVSkMvIAx6yTXPwo6h0RT4HJgr4DMdgbOI8AGVSkzPz1BLj8jEs2q89tozDpsNkvWLEi+rwvNGkRJjnbd0LPWE+VrmjUGJKmEAblvH0bdPpBDoFNhYrc9H+SDfAYY4rxS6mmxdtgytHaPiECcGyc4jpUQcy8+PYdrHSHKfdjyUHk5fF85C8aQ77tdxPR8zJV1hTDT+E3gefL99R/4Gv1JwRKMxctJ5OeNfP//RXNqF7cSIhepgC2BPgw8Cwx0+hXvxbswg2nsBCa6l9LKEwwOFezqHVFBswnJapGmUUyXtiE7ju3yNhc9Sg6Na4UXfdOtL/7Gz9Wyt46NS7NOtLo/j5g+1A8zvHZGetYqaW1QxU6ozyQw8PqDCFfaGBQbn1ef5WhM58UmichQgmtFgCfusrjGtJQG1uvMuSqtahElJmtsAoYwER2G5ziqBdAtwAVMLMAUaBP0uVC+ZrFf8STIzxIsDzy4b6JuPSJzqM4GUVrZC3q0U05ZZL8fQhlCxIKsQeRdYGVw1QCCnNG1s4Hqr4N+jdrIP6C06sgP8UwvGSzBuLWMHxYWLq4C/j3XB1Z3EHRhX0as68w+3gDpAn2d4IAREktVQC8R1BjGCYnkNMobQBm4X0Ry2GTXDTvqQzXGmTmiwjyu3R9IL2ZGJTkkaBMhRt15CkPzeGfc6Hh96rnXS2f/4uX5lVtWmqF1XS2dHvEyvCsiylka7h7I8vj2GCbfpDWVEVeuEJdSTFxE07KaeEZy/aNaHy+ojTGFbqPeO4kk06x+iXZ7JJBD9DxRweFNpNpWXFrTuCDgc7isBXpMoqJR1IOqqDq8i3Tq8rNU+kDbagbXWZBpku5mp0xdBucRU0Nkg4o8i2sfIG009YOXJptnzrvqwXcn+/7H3zUmSVuc+M4w/WsNPf0VxIr6NMPEs9KzvqBoS+JyWaAHWIH3CxhzCjHzqNuPiXai0hLvcmoKKen8HUSllqCZ9BV+hr41+xXJgX8zaHn6BlkTfHsNtvg2UXEBm2zonKsqEr0XiExmK0G7cZVYw01Q4BAhcfwb4NiPpY7jf0IsxVj8katgGZ8Lfpvg4/1RiDwM+iqoA50DmSboL3oRuReJBgXelXxvTpAdEuXulbhoKK5QKQ72y+DWouS77iaK1qrz+9X5gyYxtbgnGfcHDg5GlchEq/v2snVLi0q5gXMpA917dP7iXq2NX9HGRIm4LNg86trQXjgGmqc5W6c9n+FTEJtqazZWn00H9l6W16zdAj9C97ouGdw2Khv3naN/6zs3/DIbRGy1SChRdwV7RVmLmK8QBjQW1XMdR4s2wRIRhZc0rT+prn0G7/Z1HmLrwvFhZeezZzp/537EtILGrmwkzJQsgOkHPgAV0DdBW6i+BroZeAJ4g9rIH1Ibyf9Qz/RSgZEf7LWMpYuFiyuA5/iocHRMELeuAQcJjiWvc13u40PEB1WdVp8tqMue7agrNEG2I+brwfdZbjXLryKyRXLdRmySl6gwLlGpJSZRMXYHJroNkURM9JjEJSUunTXlkiQ9XQsu9Tq4e4NSq7rqN5+xZFmESi8+24/qu6rapfXR9xQ5hboM5xQ0wRZHxebBtYrkuowtliLxmRAliarPJNclruYdPpsjyuV0fiqnZBbXzGPzBc1aTepXU7J6BJqFThmErKHqsoIYW5aeFSLpwh6G7ijaVTuGMDkrYprAFCJl0D5Qg88OoL6FusfUxg+RNQealybHmhfHy5P/6l87MfFubnv8BVl7d0J+IOj3zZzrx7UMNjZiCy0xcS8muYotnETkbYIVokeieeAQEvUFHU+UqBQTiIh3gjmCGBGRPSJ2rxh7PxKtwCQN4u4Jct3bJS6skCg/SlR6h6hUIMrfi7GP8VHx75PA/wH8HWCQfP9D5Pv/gHz/0eUE8gfEEovFyzORXwTy/RnNqV8ilFZXfGS9SjdkDswoMAyyG9UJVfccrp1DTC9iM9S9gdJPXOwVMfer91OgdXJdeSM2r9gHcFkuqiRvi5E95q7b98tg/y5RBWvXa7l0iXrrLLYgzE8M0FO2tBc2k6Unac6sB6qUBqu41mm1+TYmtphcFRNZ0MfJWoc1X2jiWnOk8zsx8UWxyR2QLIiJb5e+TdcDjmuVQVZh4gjVQ0GjUsdQ/z7oGeBukCOg4ZpUfQzMJdQ9Q+iddNhkEjEeyFCmgckgwEuB4JrzLOp2gk4g5jFUn0ZkPcgjBC/a9zu2jhsID8YeggjrKCFpvRf4M2oj/4jSqr+1p+hSwlIb/S7jb4n5CzuBf4nIrRy/AFKQ7cDGG5Ypobe4SuhZVnXtGj79CtBHVH4GYc9N+2mC5EDPE+67RQjBUOB+4KwiQjZvUGNx7YvAeYzNo3xr+rkXjM35dvvw4fjiX77UvuNn9tqJt89k3lh6f+HrkMs3/eW3a6KNIj2rBNd60U+PC7XGglmxSaSvVML7OjanpE1FW0iu29FsOpWsbExXC7DqvYn6+h24SbLmAK46TU0jJVJas85Xx51vu3a0Yp0TWxJVZ0VsonFRQKxvt5rtd462k82rctKcmdLyygL4CMViJAkDWLmC+gT14DOvrv0KJt7Elsff6trwU/T8Rr4tljLQlO51mYhpE1cUm0PVjdNeeIqeLUcAi5hKSNBFUZ3EuxcQsweRo6haNKt2yuWbJLDeF3EXN0FEthEXm5ikipj5znVxq2vjAmHg8QLwAvn+Kx9z/SzjB8RSi8XLSeQXhXz/aCeRfI6bZ4SNuR3nj4bePknw2SuI9OLdOMYMI/myGLteMd8LAdrMAlcw8QnS6mrirncw0UbK3THNannq7QslV2u15fDFu1Hilb/y6IKIWFQfFLAcOzxC3+BVBqKyGDtEvjCv+e4E1/oA18qB8YgRjE2J8jFiu8MX9cOC5BQBE78XtMzCCtVsHtUGqbeEh49B5Kp4vQs4h7IB9Ycx0aKGWBY2YwVBhPy5jsjvSoEmcakREkB9rqM3CYE1mQcpE5LBBGE16hsgr4PuRjmBZjHoOEHqpwDsBBkmEAAudv7+RgKb9CLwe9RGfpnSqp+MPkmRpRe5lvGDoTZSxLV/GfS/BrpQ2Y+YfR/dUA4Dm25eSHDgAjgPbMBEF/Hp4toCYg+i7lGgrapHRcztiEQoE6BrCJanVwn32yyqbdRfBn2IqPgtvFtH1riMSdbg27PqMune3i2NAy9sSKR9btuv7Eve+cvX0trHlgZTAAAgAElEQVTVebv6F1YmccWs8Ee+iZSLW4Cz1OZO+yztn/mPL1yofOmRKLl94wBRXvDNaXxbVFyEmkhUGooIrfmG5rrbYpNYRDKiQqJoQrs6KXFsNWumzdPv+Om/eNbbRs03zo3F3fdsjXu+dF8iQxuqbHogh4jX2RFXO/S0ytgk5hQH7F33xGbboEqcN6hTMHUwdUQUMQ5Vr2JzY//0n9am3jg9evuf/nNnC1E3YifwmQAXQRoY2yPqvCblCrm+KdKF9xB7h6h/FTHnMFFgzqf1Q6APBBY5qz7z9SD2KDZZALMTkZsHAIs4TGh5+Avy/Wc/876X8f1jCcbi5STyi0S+/0WaU38A/C8fWSdRHXVziBQR0wT/kET511C9DZ++DLpekL1BeFYdKh+Aph3/1T7NWhPxV5+0kkvWyMk/rlJtJtrOwmjU+xGsHbw2Os0XT7Jms6I0Vf2z6iXvzpydMz2mYPpWztCzdqWYeByRFNUn8OlrnWBVVJfOYmyZqOBAPRIthDah9M2gA2khPHzWo6qq7g3E1EXMNMjWji5cEdVqJ3mcAWkjssikDgExWC8VEKOoJggdBqC8hzKGiXsRswOYBF9F/Qzq50ENUAcz3Ek8+wizkEXgcQIZp3LDkV8H6E9MAtnBEotby/h+URvZDfwq8DVMvBZYQP04mul1x1FQ9XO41iniYizXRaJvRpvQ6wjIGkxyCBvPY+IHgRHUHQT24JqzKvYEJu6VYFN4BJF7CGVXQE8G0qAmgnkVNEJMi6hQUfWWtH6HpLVTtnelKz3106d9Y2GAcx/MPrRrk9HSgImKdoXkcyXJ5wxZewhji6y56w25eGSs6xd+eVVy+93bScqnwfZB7n6yxnNMnZ5xk+fJZhoyf/BlV7hrrytsnyRad08RKJPVx0hrLW3MOhqTMvfmW+KOvOPwmLf++vVoaLgnzV48Hs9P1rTnyS/HPZsfTrQ5nW9cfDc3eej8WHl21LYilbgatSvbnojDLKHrg9wcxsaoNoAYMSLYVnr+cn74y3ddTCcmTW7txjpKhtg2NtcrIinqCphoUkQS6d3yxPUecb5MaDHYDxjQWzGiPwZyCZs7i9jNiNz5MRsdBv4c+P+WmdSfL5ZaLF5OIr94/D7w8yxa+y1C7N2om+24LMSo/24Qg40OYqJBjBwAcx8ignQEt6tXDtCeuRNQTP4VyecLqOfymfG5ubdPrrjQzg7Mp+7en7lz/cKmvTdId23ZXSDJz/j56QxP2azoHm6/ceRyvGuTN6XCV+nZfAqxT6H+ADZ6XaL845o1DyD6GNqaw0cGaIGURKioz9ogvWJz3SAxNjcZhMrdqx3S0OuothAZQbXD+qQNpIBFpAHmecIMbZjJFF8FdoJ2I9zIBpzHJA+BHsa3XyU83Krhs/oIoWWgAaxCzBZUD4HeTZDROEEQun34pnOyntrIFMFy8WcprZpnGctYiqiN3A/8IwLzOlQKwlOqS5EKWfttVJ+XuBSpazvS2QeBe3H1Sc0PXRGR1bfYq13cl4gYbBwY2ur3I+YhTDSuLi2jfiXqd4G+jM2XCTqzVVTLwKkgYeMAMeqbM6hviokfwNgqxIcxfVeISjmx8U6i0pu20DNH3+ohU5u6rOOjTlYMzrAoE5a1D9K9cV6ScoGN9+aSuBShboDW3DBp9U1s7oIbv+JNT08kvetd+9n/1ywcOqFXnz1surevZ/g3f3WByfHZadtvVuy9N8ZIgdZ8uySt7Pn/cKhUbaZuZSHx5UrRrvrZ+8Xetrud23t3gXatcOx3/qA+d/R998i3/zS38M9+P3/lmTfaXSPzSeXXiIijJp4qymqQOfAtVC3QwMb5tf/rP4yka6BAVCwgtilQAd+HcB50E8H1605sdH12UWSxchUSx083FQHkCjY5g0QDiNzOh32UASYI/tTfI5SpP9XubhnLgOUk8otHvr9Nc+ofcrMtYihlXwX/COpfBobBHEV9Q117FE9RosIlkFG8DwLb6qpg5sn3HhHVqua3CrXR/et//eerV/78e2O5oQ3p7Oz824Xte5sM9s3iWooxGaXuL6PuBZTUT062TXfFFX/ll2qYSEH3o1pH/GiQ6JEi8B1skuGaL6HeIFzGZxloVePKX4vNdwOziLwCIp3ycr7jxLAfkSpi14I+FazUtAWaAC3ElBBxGLsa1T7UnSAkkz8FnEb1BMEuMSNYe5Ug/Q4whJhcZ3ZzCtUm6s4RZhqfAj2B8g7CSpS3O/vbSYe8cwv0AfuAv6I28jVKq5o/7FP/I4VlksyPF2ojvcD/DvzdGxerKvj0XdLqDJrdDexD/WEVyRBTILiprEL9AM2rkxpXDmDyqwU3j1gDshvhTa5pvF7b8Tyu1oPJtRBZ1IdMgDZi1iIyjpjNuParoFuBHkVG8dk8iOrMGaHYP0Cu+zTOv0tc/Aq2eByY0rT+uk6OOm01PfOTV2Tz9lSGI0NWr7HIEC4NtSVfKZO2GmKTx/Hpu6g+q1mjgW8N0J6vma5CTor9LduzYWg+6x0r7N5k3v9X32NDZLF//C99ttCMqvmh0orHfrokhf625nv7Jd5S2fEPBhcu/smfzjfGRxqai6N01Zpi8c47qpLrqmFEN//mr/ryxvVNbD7t+vpjpdyj97WlMY8ujHvpXa2YuBdjLqNZghgbYiIx3m+RrjVXKHTFqFsnPj2LSXoxuZ2ILDLZbwd3BeUIYj7Sy9hBk6B9+2GIOYWJRzuJ407g5gFBneAS82+A75HvTz/tslrG54AlFouXk8gfDRznw04rASbuxjUPAAsgt6G8iToQFbwT0K2obsWnLSCH2Bcw9gJRaR1Z7YyIeMqrHxv4ytf+ZvBn/k5EcfgxamOvdLyqawhfx6VvodlhxWw2pQU1lfXv0ZzdSb5vVqK8YKKHEPmAoNv4DKp5FaoS5b+hWf1pXKuI+vsQ+3xI6PR+0JfBrEe5gjpFXNzRvexV1QrqU2ASeFFsFKP6IOibiDFAPz5bhepo55g0gvQRr4T3mgPKYLYicgrYi5jnAyMbCNJIq4B+xM6ivgg62QmiO1F9m8DGXsSnsbEfB/4dtZH/4se6xL3UaijL+HhUr3wN+O8IbRrnENmo6hfI6kfI6sMEQf7rMNFkWK7bsbn3sPnTYASfVYNHczqBmAeC9Z57G0UxkePG54f6SbCTGDuN+kdEJNYofwXVJkgZny5a9T0ZNnfH8OkmoNI6d+6YjZtTtqtYpF17F/VFfPa8xEVV14oUhvT88dnp/Yeb+b2709KW7UPkinWETNPa99zJs61ozwNdOvbuFHESY8wzeuGklU13bqGyZk7QTFvVWSkOzBKXevzUmSsTL73o3dUZs2K4V3ofv0fzrTlRG5UGb1u9B7HnxNqWVNYYU1mzfv3f2zWw7jd+g9f+tz86ODZy1m2677FZ6VoDNpdHTK287Y4I1GOibjbeleTqVwUnXtoLA5hoM+ixcC6khmobMX0IsSSFTcTxBVR3QjQUSIC3xGrUn0M+VkwlD5wKFofRJMbmQLYgso2ghHEjHMGG918Df0W+v/pZL6tlfE5YYrF4OYn8otGc2kIYDX40QoisA60jkoIoRtZBToRoO8F7en9nQwdYSbpE42I3WW0dcAnXdqg7J0mli6yBXvxuTJhdg+LKp6U8/JL61qyI2Swi67S0Yj/N6QfIdb2MOod3CVHxeUwSI4yjUkBkAbFdqD5NXG6DFIhKh8A7EZlF9WiHEVgHvw/8ARQlsDRbwDSiORSLiEH9Y5joVSBBKQIzwCbQFnAVzKZOAv1ySDJlFnQGOEdgVe8Hebxz/I4Be0AuEViEXYhZQP0YqmcJ1/tdNx3rzzL6/jngH9OY+O8pDP74yVYsvV7uZdyM+lhC6K3+JUTWof5V1N8B5NWlT5MuPAI8eotPTpHrz4HOSSCd3d1ZvoBNKoHE5q+GRb6X0HZzBdVXg3Y1YOM7QU8hpgsxD6EcRX1LxFiE3QCoDqB6HDRS9eP4dJv6bL82Zlr66l8n7STSws+sPUcUrQFriHJexVSJS6mIzdj7Zem77Y5MrFkh6h5VdI7yypOycKEgvZWTuNYChR4hzmfkKnlWp3WtjqRSHByTwlCGLabYSETdnJQH2PH7vyu1p59Bx8fU9fXEpZ6+2O752Vy0Y8+KTgn/GCFWpMAB0KG9v/VrzjcX5pO+4RzeG0yyV4x5LfhUkwcKWp+0oCvpXjMi3etToIVSAq0THLMOEBjpi0gQGbrpnMwQkr2BG5bdaNHqCMz2SUAQGSYubeETskzgNeDfAv+efP/4J2y3jC8SSzAWLyeRXySaU79C0Ngqf+w2YvqAWcQMgmkAlqx5AhNPgDY6umz9wO2q7ptk7YugF4O+pCkSJZdRP0Nc6KN327NSHO7CRF205zKtT1U5+9pKXXt7geb0eXJdSmVtE1gjpeHLmGStwCiow6Vd4HcQguAOoCk2GSeu7NV0/jlUEgUrIo3gysBdYA8i1uDT24BJhKogDpUE0W7EloHXQkJpNiN6FOhHzFuISUAcmp3G+0EwMYhFfT8mui/oaHa8eUVeAqkT7A03IbKWUKa+O9yVBlRTYAz8a+H/uobAPnV8MjxwAbF3AH8I/E/f/4leAlhqkWsZ11EfGyKQLMJMlhgQsw+XHgB9TEz8NU16Fc3ewzWv4tM7odNXXBg6JWLvwac39/0GspmIQe0lcLOE9g+A1fh0FPWh/1qjFzHRXWTNYTR5H00tsAvlGKpvEe7TAeBh1H0L7zbjWi/ryAnrx66QNRptokErudJXUXcM7+qoziG2G2MjnTk5lR151Ubbdm8giTeoKiLGkOu6T3N3HLF9t1dEpA4mA80r2pz4s+8mvb/4X15MbFzW9uwMNl8QGzXwiomL5Lc/KMn6HejkGW/X3p2QVO4D8jdI4dRQfQeRXb7VWpNdPvpOeulMXNi7Lwd2Kza6JCILwDcICd05xKisemC7uraaKHfPtSMZfMQ/Dp34I6cRMwqmAtwVCDT+5Y7Tl+vEt0VZsm0gOz5hn0pQnngJeBF4kXz/yCdsv4wfJSyxWLycRH4RaE4J8EfA73zidqoe5J3OVfUS6l0oZ9uVqG8D94H2I3YE/HuAUTRF9TExdj8mXismqmjWeA/XfExKq14RmzwAoMhZJs8MsG73StKFjCgX450Rza5SWd8UEy2STVZ3hkf7g+MC6wizfCtQFURAfYTYMOrGpB0tx/dB8oBH9FKYPZQs/BRjQWvYJEFsGZ8a8O+DDKB6Gd/eCDqKzTvU3wX0gS+jeDBjne/1HjAKYoE1QWtSBPQsqpdB7u5sUwU2I9IHrAW79prBvXcnwN+og3cr1DHxRlTXAftoTIxSGPxnn+k8LyF84hzGMn50UR/bRahkfLQUauxKfDYGDIuIIPEOTLxDfXqSdKGNSSbFREGyR+x7qEsIFqOLOAbMIPIIEltUR1F3CvW7Ub8JOA5mWpEkSI1xiPZCFzZJReQiQeh/kiBInaLuPOq+Cvq+H7/Qaj/ztNFyf6yFFd6sWFcA3sC7UYQI13RoOoFLVzF6XpiZavtzJ8bNrgdrot6BKqr3SFIZE99uq882IfYCYnNGzKYVv/XbJ8ErJurBFvJoBk6vaJDPcWDAGbEbHtyKb9eojZTI9x0lKuwDTqHap2lzvPr0X33z6p/8SVLsz3mK3c38znsTU+gtAg8qelTrU7OCXpF8Xxci94lIXqLcp521KwTrwHoQBpdpRLYCWz+0lZiHP+ON6QlOMd8hDPIPk++vffJHlvGjiqUWi5eTyM8bIYH8Qz4tgQx4HzFfAjkADCFsRKLjKJN4t50wAwmq7yM4xMS4dsSFQ7O66q5ESgNDqDsCPiPpOSg2uVbOUokShrZsE0B9OwMixCTkeq8ydfx+FfM+fbvW49P3sckm8VlG8Lgugg4A8wR7NC8msYh8FeS7iFnRSXqV4C3rsImgbkUo6Ygi5FDtRaQQHGsEMIeAHOpyqNsF7CJrHMBEw52R2TpAELMm/AJpA+sRs4HQwN8E3U2YkUlAPwgi40AYwd9CC08nuT678jGQc8AdwUYRgH9CY2KMwuCff4bzt3SwxEa/ywDqYzlCf9uiFE8bSEIfop4D2YGJ3sNnH5LqERPfprm+17C5NdcWGns/zr+A+glEuoCzIPs+dF2IrESilXhfReRlkK+gbj+uOQzmOEiKb2eIqSoMYex5kDLqewWZVNUqWeNd2rUJ6e3PJXffVTB3PFILEmamQNaaxdW/TNR1GGNnsXEFZUzW31GOsqaSNjegehwTlYnLNXLdx8REX9Ws8R3iSk3UV8B3a7v2jkS5IYWEqLhFRE6oJtvd3Oi0+AxK3W0xcWoq3QnovMTlryj6Cq35YbX5Z3Gthjan+3TsnTnTFbHyF39e4i3buqVvaM72r+sLx4Z3ca6BiYoYC941sDEsKkxcb5m5CpwOWrvSEyR8zGqukVzkJQKJ7/vFVeAZ4NvAd8n3T/8A+1jGjyKWWCxeTiI/f9wH/O6nbqV6CPXbwTjgQQQlJGZbITqIkVX47HR47/sDiUU9yhpcWiVreuAMJq5IXK7iXZWsfgClTVS4n5EPMqR9mf7hNSyMeFAorxrUuXMqxnhMchtzpydJKoLYEY1KXSK2CbqTMLuwDZhH/UuYeC0+/SvU5TDRVUy8iUCCAfW+o884GhJIsxK4hIgHifBZG7HngQ2gDYwFyS8KgMeIvIm6Ozu//TToPMpGRBTIEQL2t4FhvPtLjP15wmg8Al3olPtXE8pGi4kgHeHyDZ9yFpqILd20TIA/pTExQWHwhU89j0sB0nktY2mhONyiPvbfEiznXgP+GCiCPoTP/gkmOot3N0u1eMS8JSbe0UkWA4Lodx60B2QOMftQnUT9CZDFFpHOtu498DnETiHWiInGVXG4Rl2rlx1Jd52knIo3GwKRTS+qJBYjD9Cafw3fTgRWyPa76sD9oH3gLhB3XSSpINBQzbpoTjlM1IPYcdbuipm7egIxA/jMUxgsI3aFeneIqDQg6BgiqGvPEuWGsEldJHowqFxggJIp9fbiU8XYDBs3RSIBdQhvSVKpaVxREVATF6TQPyibn3y0tOVDN8ZbXO8ZDV0DcWHx+H344R9kdxQY+lDPo3zE7vb7ufPeBP6KEO/eJt/vP2X7ZSw1LMFYvJxEfv647VO3UH0fzWoEV4gE5AqqPUAz9EbKZsScR+wu1B1Q1SHwOXxmJIovas+wY+FirP3bEjGxIsyhLcFnXcAkaXqF8bMlnbh4VZ74xR7KKy7Qmq+i6Rq8R9UeEppdKsk8aXWLiK1CVCcp7QSOo5qg2UXgKjafINEVxAwi8tANv+EwqhWCm4winVlTExdRn4AOg+QQWQV0I2YAdS8FxX5zGnVJ+LyZxmcnELsVMXtQD/AimBXAFcTUUe1C3QKqvagd6dyEDxBG6vcAF1H/LsjDQD/411Hf6S36BIh9A7k2m3kjEuCbNCa+TGHw0Keez2Us4z8VisP/kaDvt4h54BkWLj6Cz/4dQcoKYAyxJxG5DbHclECmuNYRFt1o1F8KNTV9F9gHWg9+9rIzSOe4IOGj7n0kStV7wTV6ULeW0vCc2EIJoYrX59FWBZ9W0LpoWivRni9hcgXJd98VdtH+Lja5U0x8grSWYaMX1MRtmjN9oFfBfAn4nsT5lP51XyPOv4SY1ajzpK13MFEaZBPFg60gcYR3GSb++g3HpCEix4kLq6GwlkAgAvQVkIQgAxaLSA/wkBgrN443O5jlow4+13Hz7FF4f6t04OZlNxYv3yJUTV4mOPusI5S4ywTtxo+TI1vGMr4wLCeRnz+2fOJa1ZfRdB3wU6jWgAyRCZB7gYOotyAxqgbhOGJ347N3yNqr8OlVXLNBsXctWX6nCOdRf0WRCJvkkaiFb20XWGP2fHkB6FaoSnFwQHPds7QXmrh2SmVlrK3ZWRqThmLfVWwO8KKufUpd6z4Rc1hsvI6oeArYiLppkJsYfzqBMA92L6BoNgcYfLsMEiO2l8BCrIImqHsHuBfMq4QRfNx5PQgUUPcaYitAiWCZNgmSoL4QjpNs6zSjv4mY2wkev48RHhh5kF3gm6h+C/Qbn+E8zXxK83oJeJrGxOMUBo9+hv39yEIQZImVUJbxKaism2Th4lMY+y2QQWAP1xxovEHNAiKBfe1ab7MoXB3wAD57DjGPd94XgX2hH9J1ttNZoB/NtuOabwF7gAti4ipoFaRIVtsFOhhcWuQwEr1Nq3o7zOc0Kb9Iu15n+sxTmPgww7tymJzi2hZVg4nGUVLQb+JaPfjMof44cfE+kAQxR8QmPsQRmQdZjzEVMXaBG2YLb/j+D/IR3DDo/XhME9xbjhBILRmhquHplFhu3CGB3DcADBLajVYRYsUiFj8zRWi9eQn458Cz5PtHb9rfsc/w/ZbxY4SlGIuXk8jPH70fu0b1KPj7wXjQ10E9qj2oK4J5GmP7UD8Cuo9AbtkJxGKiBzXKf49mPdPq6O2gIVHNGucwuRp4wbWeQMx+CT2FE4jEwDYBvMhzpLUmrbmrlFe1aEwZbByRlFvifQVxSmsuJS5fYeL0y6za3QPyMmL7UXdV1W0Ko387CkQdsku3YJTgFuNAJkE7LOtFJxqNwgwCgMSgb4EIQozEG0Ijv58CHDZRkELn+OVDU7rkgQ2EJv5i5yj2EWYWthGE0Q8SpE0W+yL7CT7b1/vBPgJ5H7HFT2FVQnioPEtj4lEKg6c+ZdsfbSwxgdtlfAZU1nnqo+u5ZjN4DUOgB1EewqffBb66uEJVLwNTInIPqs8CZVQ3ILIWnzaAPOhxwszcYrJWRPUDMJmYaB/gVP3hjqYr4EZQv1tc66jmusZw7SmJCk9g8y0dyh3A5nPYfBuRdfh0nNbMIFmjG9iCiQ6S9M4gSQtcN3H5EJo1UL8WkW+g/hVMtAZkgTBA/zA5pXMkCMngRcJMrSHEiWlgOx+W0oGQvP0J8DRwinz/Dy7rFXrgVxMqUCs7S38TePdvtd9l/PhiicXi5STy88fEJ6zrBWrBD1vuQ/1hQgBsgw6gvg7UQV5DZB/qRwm2fneLarcqbdAVhJ7Fts6dbar6HgorapLrOi4i+zrbryVooKGqDaZOW6K4gInyNGcyooKXpJJgrMfE64nLx0XMfcDdsvael4E7sfmLwAeILeDap5k9/eGyb9/tFfAGOB3KZ3ElWBz6c4TZx+OEMrYljOovo8TgK2B7gHmEGmK7kOIF8AJcQjmDmLvBT6F+I3CU4J6hSDQBPAByguvX9iDoFMERB0TyKB25DI0IMwUfZmiLTT9DArmIIeA5GhM/DRxbsjqSS2z0u4zPjI+xr9MHwkBV1qDZ2wQVA1DqqLeY2CAUgUfB7Uc5SehB3g+ihATyiKpOhwGgt9i8IdwP53F+RievvEGhrETRvRLZWa3PpjpxcaL11imNdj/0rXjXnankesr41gx4Q9qYI63uZDHZMtEpkq4+rHUoOZLeS2KTQTSKwZfBvITYNYi55uGqQcrrIjAuIikhfq4hJI23IrBUw2/iAeAM8HvAf/ihJXhhP5c7r2Us49OxxGLxchL5+ePjkkhFxOH1JQLLMI/6VcBbYL6McAB1ecSWEemI1UoJtEgIlCK57ljyveOI2eJrIy9RH/8aALUrc0S5E741e1DyfZvEJjeOvGPp2TCEa96O6iS5nlMY+wAm18LGb4iYBmLnQV4G3w0yi8nVQVaDngUGSJvnbvF7WojtC4mvRqgaYI4wS7gJZAaRKUJCexhYi8gVMAXQJqHs04vqFfC9qM4FYo5kwOFOUego4QHxHiAYs6ezrIbqfGd5Ahy5PisC150chGDFyH7Q7cCKzqmY/j67m9eEv8E5GhMvEUgOrxGSyvb3s6MvBMKSG/0u4zPj5hIphHLsmyAPIsaBvAX6KHSeX2IAvx9sBEyCKYJbcYuB1cMiclCl0AuMichi/2VMZIb02IEy7WYP4DTJn6K77P1Cs2W7C5GJ5lramhWxEbiWhyhB6AUGETOCRBMklV5EtqJ8gJhRXNbUyCQi9h4FA5qi7ipp4zKulcc1B/Hpekz+EsWhvR1SHXhfBd7FmNv5KMqECsUHwD7y/ZN/u8O9jGX8LbAEY/FyEvn542zn34uE0WlKmIHcDGxEbBPfvl5+Uj0PzqN8JbzPQOx+jNmHSBdKtthmoz714Frq9Ts0JoYJKwR13Tp7+iGiwksUV3xY7kMk0uKKHWT1/biWx9gngFMh0ZJtnWb8IN9jcmtQFbT9HsTTiNmj7flT1C59tMfQp0NE+fUgl0Fj8A8RiDAFkBrB4cES9M0ygshvP6q9IMOEpGwSkXtBLoAa1PWDvURgPI6hugLYDZxFTBPVVwk+siVg9TVGqV4TSP8oQjP9PpTXQU8BRdT3EzQtv9/7Y2Pn9aud92/z0f6sH0HI0hMnW8Znxc3EMAVeu9YPKGKx+XvBn8a12lyTvNJ9qP82Ynsw5l6UQ6i7OYl8h6CCMAVSVNW6iBSBiohUZGjDm3r5/b2Apd28h4kmptK939y9R2Rgs8PYAZApin0VxD4Oeox0/k3EXkWiCuovgx5HRFF/O66+ikZzrWatA7hWL1FyDzf3mEt0iKggIiYkkOrH0ewYxj6Jug/A9CByc/mazn6aP/hhXsYyfhhYerF4OYn8/PEs8GfAL7PouHIjRHaAPIP6dYRZyxIfbswG1KI6BoyhvhUYzTKLiRXJbRA3v4auDVd04dIr+PThax/LGhu4hb2iiAhxaZ+iZ4nLLxFXBnDp8+LbRcRkwAJi7+98jzcQI4jZquqnmT93Kys18OlCyBOlDdogJM85oNHRv1CQyWDpyCCq7xCINLPAxdArqQJ6Ge8uhS9qmx0btTEwOZA9qLsInAPtC3/T5IP7jbyB6grUXwI/B9L/8adEWwhrQFaFt3oU9CDIEx//mc+Em+3MfnSxxEooy/gMqI8OcL0PD0IC+UpHpeA6RAguLIUqrr0aQ60AACAASURBVDFNKPseRuzj1wdS5gFw73Ldd/sSsKvz/1lEjuLbqap5C2RWG9OGJI4Qk3ZsAedly663GF6TkDWaLFwpyIo9DZACWfUhkJdRzdT7XmqTMUqV7pUDgp2iXd1IlP8AE+0Jkj2+wGIcM/EBfHoPUACZxObywFqyxtOILeIzMPHuzvfc0mFk3yqJpPO7l72kl/HFYonF4uUk8vNGvl9pTv0OwS6r65bb2Px6skYZ9FblF1D/SEfqZhgxi7pjgWzisxPYZCNZI+P/Z+/e4+M6y0Pf/553zYyWJMu3GSW+J05ix3Fs5+JcnIvtkpCQBGh2yjmbS4G9KS2FHkopbTecvTfdp6WwS3dbYLdATqApp4VdSlpOgJBLIQTbiR3HTuIkjmM7vsd3j3yTLY00s9az/3hH9kiWbEnWaLTk5/v5zCfWzJq13lE07zzzXp5H457reqbRcXQN4YQbe79u3VvgnIibQ6puDtSBRi8Tl17Cr6cECRQJ7tE4epEjm5voreZ3uZX+eJcBl/ZxY7wFjcfgdzgqEkzEb7xpx294acIn0e0AjdB4Iuh+0AwStOFSjcBeYBKqJ0DXo6UDCCVUW9D4Coj3oPIaLjgBehN+Ou++M5sHfliXzfhJhNOpl0SugbgNZRnI9Uh5WmzgwkE+z5jz1zA5T9u+V/Gj9b0HkF18re0xSHASqAN3Y49E40CqiJY2Agfw79fp/iG3F5deqpLaSLH1EJ3HbxehkcvnoxdPfpo3X+uUS67ukLFjGlTjK4g7t0n26g5S9TcQR+tINaxH4+NEHQ7V8RzaPBNIoaVXGTsFiic7CNITIbVN2w9vo9TRLpkxnYh7isz4McDLoEcptadw6Rki0ojqQrQ0FrSVuHMXGmzBpW5DuBXV1xCZ38tvYeQvPTFmhLEgshbC7G4KLX8AfKvXx0WuIlVfIC4tR+N6gnQJjTuJowZA0NINFUcrqi8hQQonN6G8Qqljv0qqBHpGkKpt+52EfWwQl9RlxJ3dU/VIcB0iB0DW4iPXpcCL4oLx2jTtAK27jhOXrge3BRccBWK/w9odAY6DHsP/ncV+Qb4WUC0Ht5rHr89K4wPJI6jWQxyDtJen3NYgqXn4Gt6HQMYCW7t2l+MyTWjnblRLaLwDJEJkCbEq4h4DuQ/pc37gefx0327ODIYbIF4K7EKDMYPMu5CMIDKB63BMvz0LzAdW9RVAahztpONIRGbs5cSlvbjM5T3+3PP42tA7USYCd/Q4w1xU96BxQGfrdPyMRRviVsu4KZ3cOONtUioso3RyvLh0iuZrRFLhXahuJ+5sUqW5HMDuw6WL1I9fTe7yuZKuX4QEv6RhUr68RnwmLvUKmXRApkkJ6joEyfjCBUC6sQPVPUiwFeKlqK7BbyCcikaTiKLnCOpuQDjSx++qdfC/ZmOGQAL7Ygsia+fv8OXKPo/f/NGdSEiQXnL6ZwcuBapKLM8SF2/yz9MAcder6i6izh2IKBKcoNRaQuMFZ5w3Li3UUmGXpMIZQBu4VxHX4S+polJX9NVcTknh3MXAxSB78Kl0FoKekEzTIbJXp7Tz5HOk6iMRNw94wycT5yK/9lHriaMQjVshbgQiJFX0QaBeBFLA53ME2AhM8cGvrPDrJMWXW/RrR+vwCcLfBC72KX7ikyi3IO45v9FIrgJ9FrQR9F2gG1C3v1y5omtpwBWgWzmdG+8s6X6Ygd+sc81ZjulLA+2HJBE7thO2Dsf022eAJ0C+gK90shZ4D5XlPtsP7qDUtpRS20ri4q00TNpMUNeViP9Bxkz7xKljj2+7Bl8RajvIMfwXwBRaaqHjqAO9GwBxL5NumCBKEx1HXwS9joZJxxCZRNQxUSVY5gsExEuAzUgwBqSdIPOqTL2uEdWtaOSIOmIydRMg6CSO35R0w6WovuWTjKdD/GxOAUhBcBwn49DSRFTfUNXr0dKL4BpB3wQ5AR0vSRAqckYycfBfaI2prSr1xSJyD/A1/F6Eb6vqn/dx3I34AZb3quq/nOu8FkTWik/98GcUWh7BJ5vtpbZzL0SEIHM7Ln0CjVcTF+tU9TVK7VciwVsicre6zAsU2/raBX6c4snXqBu/D5e5BpFF3U5/9qvv53TN1zHAItBYMo3PonoR6Csg14CuLc9/Rah2lNPzgM8biR85cJ0IR8tlEZ8oX7oOP53dDjLR57KL24EOkDb/7pJlqGaAI6BPoqVb8Yv7FyGyurxjfaL/L1uBuRBfgcoKxN3mq2CwFj86c2bw3is9NsDd2gB78OtAxzDiRzgkcd9+TT81TO4AHivfvLb9fwJ8QuPor2k/uIpSm+974uKt5ccna6phmdQ3L8VXfDpt7GWvcHzHTxF5f8W9B0E2E07McnJfK9CESzlgCnHnGjS6l3TTcjRKIalZQKZ8zf3gdiJyKX4jXSiii5HMejQ6jGRegfoJ+LWKAanMFuLgLSAiqBuPS12Hr+q1EFgJvBuNXkd1b3mN9CugS3wGsbJYV6qL2+XMijTGjADV6YtFJAC+DtyFn3lbIyI/VtUNvRz3ZeCp/p7bgshaC7ObKLS8DfgI8JecLRl5JZExSLAYcSeJSy8gQUxXh69xjEtdSpBZRtQ5B8iQbnxdGqbUU5+bLy7oT8WW3pzspSEOP5L4DMSLgAziluIDtamI2426ekTH4dJ+dENLLfgPnmMQd6IqoPWIuwHVGHQDlOaVV1Xu8qlFZBmKI+6M/U5L3QDxdPw6SvALOJeAvowPDmfj879FIPuQ4DaIn0W10e/4Hoj4SlQ6yqOZ7Zwqm9anCJ/UeAbwOO2H3sQHlNvLt334/H2tI2aUMmGLuc15aJgU07b/QeLO24g6lvR4dBPwVUpte1Tjz4i4PWc8X+S/4f+OXywfv5GmGZG07hSV4HO44B6CTBpQXGYRdRP+DXQyGl2BBl1ZD1rBrcN/aO1DglkEme0US0fQzgVAgOrzvnsJ3sAFt4rI2wn8KI0iz+DXPs4qt+OQzxtJGo3HKhRBLy23eB0uc5AgMwORLLi+prONqb3q9MU3AVtUdZu/hHwfuB/Y0OO43wX+FZ97uV8siBwJ/KjkwxRafgp8GngvPRNg90WkUYL02wjGgeoW4s69aLtK3fgMjZOcphq2SBDeIr3XgB6ovgMekbeh7vnyuskFiPhd26oRyBbQenz1GMEnT+8ASYOrR7QFtGu07pfltZzH/fpHjVBtR6PO8k7vGeUAchqnA8hKV+JLHraALAGeRuM6xO0kjspJh93KbnW+zy4GNoG2o2QRuRr/xjuEL3F2bS/PaeV0SqFLODPNSpcC7Yd+l/rmb/ezLdUhgLPp7AtKw6SIY9t+RrppCp1Hp1Y8MgP4gUy+7XCfz2265E3gv/S8W0snId1wC6jDLxt5BXFjcClfEUf1CF3royXYjMjVqNSLczlVPQFsxNVtIC74dGbEi3F1PxeXepdfYqNdVacQjf2uc58abCFwFNx4cCcJUlcTF9/CxRuJSxtF3B241Gpcqg4/m9LXtHXcx/3GDI/q9cVT8RkVuuwGbu52aZGpwAP4Nc8WRCZSmD0A/N8UWv4zflTxvcC/p7wL8pxEriCou0KCOqgb7+8686iT+PyFvekA2vCjbS346eA38Yl4twNv42zT7n5q/HkqUxKJzMIFrRDMqzhwD8hhYAbOjfP1wuMG0H1+dAHx7dASfr1iCzC2nPbyLV8assfOdtWXEJfGL3bqBC4H/RlwHch64tLp3ddxySHyPBLMAcaBriCOckCMS0k5UOyywr/meBlIA+qOIVK5a34tfk1WmtNvylZ8ScRzCYFv0X7oGuAPqW/u6MdzqsNGIi88bfueBb6If58fwI+Q78e/5/oOIvt2KSLvxifxfw7fV5yuKy9SnmWRJxA3jaiwAUlNhEwOLR0jKt1LXFxfPuYI6cbXBLcAWIXQhHIbaBFoQ+QwqssR6RpJTUE0D+SX4GKizrx2HuuQcEKJoH6lz7jAUfx7s6+5bFsTaWpv8H1xTkTWVvz8kKo+1HXWXo7vOSj0VeCzqhoNZB+pBZEjkR+ZXAOsKacDuhP4X5xZ43Wg9gP3EmbXDfL5j1No+S7wwb4PkUV+Ywu341P5vITf+bwMSKNxiM/F1gHsRnVqeQd3E8hriExDnBJ1nkBkOyqXQrQfn3MxD3oZynqQuYg0A6C6Bo1KxMV2XPooLn0fqK9io3oAkemobgZmo7ocdAmqoPFBxK0tL+734mKMS/0bSB3gyqmNYvzI4kUQv0kcb/UvNbUQkco1Y68CR/CjjwPxSeBXaD/0IeqbB/v/xpgBkcm3vYkv+zlUdqL6OBqHqDri0lO4VD1B3Rb8WueiL9eqGbR0NakxMVqKNY5WAOXk58Ex0NcIGkLBjUPY5jM2sBORIygNiOvABbeCvgiyCj8jEQGoxkuICk9q277LyIxrBndI4UbReKdqaT9RR5Z004lePiIPEmYtiDRJllfVG/p4bDfdB6Om4dPlVboB+H45gMwB94lISVUfPdtFLYgc6cJsDPyMQstNwBfwScoHM969HngXYXbnebbo94F3AM19HyK3gy7Hf/tZjAg+eGNeeap6B3C0vMmlDsiUF9dfgt+QMgVoR0njgv2oK6HFNuAyfPLkOb7kmT4HMg7kOC4T+qTiTEOjp8rrHpsROQHMRGU9Gj8HceXU8kVo3D0huLgVwN3lL2nPlb/AbQaZA4DqAU5NT+sWkMqKGWfuhu+/ecALtB/6b8BfUN88jB9oYtPZ5rzJhLkx8E5teW0JIp8mSC/CZS4up9jqep8o4rL4PiCDRt0rSbm0IqlWEUqgMcpRfGaGG/Cpva7h9EzKQlQ3IuX3pl92soeOwxNES3M0KvycTk2julbDCdcQF09oy8Z90pBrZNzl9GC1rc0IULW+eA0wS0Rm4j9j3wd8oPIAVT21hE5EvgM8dq4AEgYXjJhaCLPbCbMfBOYAf0//p15OAH8ELByCAJJybdn/69wHyhL8l5QtqC7DpwY6BG47yEF8HW2AnYCgrCGOthF1ZIk66hDZjLgORBYjMrE8/V1ZsjEN3AY6GXQ2qofxU8htnB4FLQeQuhviLL4m91n+5uX58qagLp2oLke1GXQ3qu2glemAui/QV2079+/lrNLAl4DltB+64lwHDxmBctWjgd+M6UGy85cD7wX3R4jsxvdVR8sPvwAagbYQd3ZfgyhuGeKOC3IYSaXL7/+sxlFRS4VdqvHlIK/TLauCtlSc4UqQ60g1TKRh0tNExZQWj48jSB8X9DUKR3dQn+sg3dTbspHXhvJ3YMygVKkvVp+275P4XddvAD9Q1ddF5OMi8vHzabKNRCZNmH0T+A0KLX+KX6M4G5gFXIzf7HGw/N8D5X+vIMzuG+I2PEKh5e/xO8rPQm4p/2MPaCfQgMgun76HAB/QxUAIcYTfmR4BdUjqctAdxNG/Ie4yJHBo/CrEzXSfglsPLEWkGRFFaUNkHRJEoEJcitCoAZiMyGRUX+B0fsiudj4POgVxc/E7Pcfjd53ejca7gPUox0DmIXLZqaeptkN8CNXdfsRTr0BZjwQ9zj9gtwKv0H7ot6lv/u55nqt/qhgQVis/mRm5JDu/CHxPj27+Z3w2g3H4nZ9zgXf5oyqXZMmrIm6pv69UII5eQoKpGhcj2g/MBxrIjFtHUO8Qtx2CRpC9QJNGxTyFI5sJMiGZsU1ofEI1jqQ+eyPQKCJ1RKVDpBoaRYsh6TE9ysgCfm2zMbVXpb5YVR/H54qtvO/BPo79j/09rwWRSRVmd+BHJGvlU/gAtvcyapVElqIsB30NeDv+m9AC4DlQ/EYarUMkj6T3Im4ycbQPNI2vc1vABSEq+9CgDS3uAKaAbAOniBzHp9C5BuEkkroCkUmo7kNSh0D2odEx0MtB5iDuKTQq7wCVlYibD7yAyCX4tY8Z/AL8A0iwk7hUwrl5+CmvnfiSbwv8ju34IOhxVBRxk4HJaPwi4hae5++3AT+qOgyqN51dzfxkZuST8bNL+PdSK/BZPbrZ4b/4dU1jvwjEiKsM7ELQWzXu3Ef7wQKwUSW9T9QthHgSqq2qqUsonmin7cAxSu0RXWsqkW2MmTRDXGohbfufJi6N07Ez6wQZj0sViUtjSdXP6KWpP6/Sr8CYAUje0iILIs3ghNkTFFqW4kcXvsS5cieKLEHZALoDP/qYpmtqWWgCNxFEUT2M6glcMAs4gGoH4pqA/Ygb5xOUpyei8aXApcA20F2IOwFuI8RHfFogGkAPIbIASUHMMjS+FGETqOLSq0Ea8DtsmvCbl7YBT+M/4A6DO4BQjwuu9FNwcik+ABZgGRpNB/aBTEA4it/5vhrK6Y3Oz5eob/7hEJzn3LqmUKqjavnJTPKIS6VU463AQZSp5SpWc9BovxKcEJExpw7WeCN12dmgb1FoSWnUcYggtUvETSbq6ETjMdSN6yQVvknUuRFIERcjxF0HQFAnKu6EFE/u1VT9OIJMJHVNJxCZ1aNZawmzG4frd2BMn6rbF1dFskJeM7KE2Ygw+1X8qOK5p4NE5oJMw0+3nyjfq/hp90bQOojrQOvQeCxKEZE20DzolfhAdTHI8YrrXQbMA+lE5EpwN+MD1HVUbnQRqS/fbkTcPeV75/sqNu45cJvAlcA1g+wEV0TIQRCAbAT3KjAD1dlovBONy2mImO+nsoN6kAbETUF447x+r/Ak8MfneY4BESeDuvVDb/nJKvMSVuYn63VqxYwSx7ddCXxNxN0l4pYiHMev8QaYhEYHVfVNAFWNgEbEHRaXul/qJowTJ3OJS5FCTsQ1SiqcKZmxC6W++XYap9xG3dhrabx4CeKaVPUQmXFZjeJYO46M1zgWLZ6sV+01t+zfDtNvwJhzqmJfXBU2EmnOX5jdQqHlduArwCfOeqyvh32H3wij7fhA7zV8ecAtICE+9YBDmIwfbRyDn/ZKgTiEEgS3gT4FlMBdXj7uZ4hEQBb6THXQZSbo4yD3IXI9yDOgc4E6lIuAXeBihHkQHPGxri5D6CQuvQt/x5PlDQBLEGJ8Pss5+GTng7UN+MDw7s6G86jXerbcZFDF/GQmIY7vuBv0PSDX+pKkXZsC5ToQn3LLuwyN9inBcTR+FqRJRNqBZUiqiOOXuNTb6H1T4XJgERpvUOUytj0Xx9u3tnau35qKSkHKTRq/v27BnLEsfO+V4rqlidwP/FPVXrsxA1Wl2tnVYkGkGRphtgP4HQotK4Fv4RNp983vuH4HGueBetBNwH5EQpAH8MmOXwHtCiDn4vMwtgNpHyy6WxFpQnULfqf0O/q+oLsJ4leAa8oN2IjIffjp6zmIzEJ1r99hHc/H55jcgKSmI2wFmQ2ylDh61j/d/QJJXY7I7K4LgG7H7zq/ZoC/vS5twAPUNyepLNvZcpNBFfOTmQRo3XkHIo/jiwB4qishvlVERJE02u07xVE0bhX/3qygGxB5C+KnUeoUNw7kGhHZDGwHXQg0oPFcVDcxdf52GTu1ITXxynzQcaJRZswQd8k1RUmHE3u08G8Is53VefHGjH4WRJqhFWa/S6HlBeDv6Lvc32nicsBinww8noPfZf5kOTiciq+Uk8OXMbwTX0Emi9/pW95MI1eg+gp+wf68Xq/jU/6cBH4JLkAo4CvbXAnyInAn6H7QqSA/Q+ReoBVVELkJ1fXAfjSegrgVSDC+IoDs0g7sBzkjCV0/fZT65lcH+dzBE4HqTYdULT+ZGYFad6aBxRoV3sTV3S4if8WZFWIqMxx0BXAxsALk9vImq+5EhDi+DmQ8Emd8dVVWK6nxIm4K/v3ddeiV1I25knDc8tTk+ePRUopUWEDSmR5nLQIPYcxIUd2+uCosiDRDL8xuLm+6+U3gT+ie37F3IrNRtx3iPOiY8o7tXUABpB7/IfEs0AByDPQZfHLyErDNl0vU6fgya630DGBV94Jcibgt/jkagnSVTbsU1XXASUQWgxz0ScclQKNtqGaBxcBjoNeDOwzSY/e1duJHSw8N8rf219Q3f3+Qzz1/1UsrURKRrvxkAfBwV36y8uO2DnJ0UVX9c1y6FViEzzLQncgklF3ADMRdhUYbQHaKyFj8lw6H/1sJgEBVA5AC0ITGzyPBEuA4cBVaOopkriz3FV02IsERJNUmQeoeLUXLKbWnSGd6FgP4UTnvrTEjR8KW9FgQaarDV9p5iELL/wJ+D1/pJnvW54jMRN0eIAYNQK7GV6jZiN984zdpiEwHOYIPTmN8qqGuN981qO7Cj2Beyuk1eZsReTsarwFuQty2cgD5OP6DLgPcA7wEehKNG0EaQWeCnAC3lbg4FuR5RCaWr3UcaEHj3fgSibM5nbpkIB4HPjuI5w2dKqaVqFZ+MjMCNV1SktadfwDB8rMfKLtU4xlotBmNL0aCa/Hv9VNUNY9/798GCBL8FMii8ZNIqskvrZUSMANSMWF2Ax3HjpAe0ypB+h6/NEWfknRjHS6YBtKzytbDQ/WyjRkyluLHmAph9gTwRQotXwU+DPwpZ6sB7nfqTj0V+6nuAQ6WyyXuROQOYCWn8sL1oHocH1x25Xrs2o051Zcs1EnAWDSajLIX1XFI6jKE9cBykA6/+F8ngAqSmu3Lr2kJNI0EBeCycoWcrYh0gI7Hb8jZhbi+ykFuw68FrMdPq0/Er/tsBX6b+uZSH88bHgn79mtGsKZLVtC68/v4pQu9UiUmLq6ha8ZAoxeVYIKIhP7xeCtayoNEEOxG4xTETYjrxEePJ0GvRlINACJ6MUFdPfXNReAIWuparjIecQfL/660ActJakaihPXFFkSa4RFmTwLfpNDyCPAXnLPaTVllUKnaAvyMvnIJ+sfTnC6Ldjqdh3AIJAYZh8Zv+nyU0XF8Td/1IDcjbicuNR/VEnHxFeAIaB5BQVsRF3NqwX98FNyCcgWcacBuRHoLBCPgOXy+xMt6PBYDb6e+eU+/fhfVYiUMzdD7Q+BX6W06G1YTd06k+/rlhWhUUJVliFsq4i5XUkW0dDlEW9D4OFqqw6U6canJEF8LrBSRW8tT2ds1KjUjHBYJFAkULUblFF1X+NmEbv6yPFtizMiRwL44WeOmJvnCbJ4w+xv4ko1bBvRckSzIXfjAbDmVowuqHfjRhbG9P1kBruZ0OUgFuQdkOxpd5zfLuACNl/updFXQt/uclXojMBVxlTs7DyFShx9ZrMenIeo5CvkckAeW0Ptu9f9EffMzA/odVItzg7sZ05umS/YAf9bj3sMgqxB3M0G6pcdjJWCHf+/Fy1SjNaAOUusgEFxwN6l6xWUaQA6BW4akj2lby2NabDumqvPoPLaXjqNtqnoxyi2UOhoonbwYjcfBGXXtf1Ctl27MeUlYX2yfAqY2wuwvgWuBvxn4kyULsgRoQXUdqq3Aavzml76ku54MXA6cQNw6hAbE7QYU1bn4gE/omnZWvRZ0NTCf7lNil6DRLyBuwAeI7UATp/OV7ABuwe827813gb8e2Os2JlH+Gniz/O9VIIrILQBIajy+IMCy8n9LiMxB5HZgKX62YTZCBpGbwa1AUq2SapgsLuxAgpOU2hsoHnsXbQfmExdfRYIiGtdRamsnLj2OBBGp+g6I2oCJoGuAF3xbzpjeNsYMgk1nm9rxU9yfotDyKH6R+yUDO4FMLueRPL22qidVIH4Wv3MaoBMki+gs4DhKBnHHgMtBl6MsAOpA9gABxJtQuQZhDdBRkTt7EjABeB7YhV/v2LU7uxlfpeXSPhr+CvAx6pt7Jt2unYRNoZgEaLqkg9advwPy7VPB42nzyzXvx5/9JBqAgMhiNFqhUcceos6AqJAlLrYiwXZgLC6VRlIdkqo7AqK4lBCkTqB6DHAglTlkf0CYLQ7pazVmqCSsL7aRSFN7YfYX+Mo13x7wc8U1Ie4O/OhCL0GZrsYHmCl8dYomROpB9gFtSNCKuKIvdUga4tUQR4gsAGb65+pu/MhIz/VddfhRk/HAlPJ9jeX/TuujxceB91Df3D7g11otgs9NNpibMWfTdMnPETmjDKiIOCTVs356b26DeB2qq1BV4o4bQW9E5CaCzJ2EE2YSZl8UcbNAYyS4AZdWYDrIGF/hKuhZ6vBHQ/LajBlqCeyLbSTSjAxh9jjwWxRavoOvG333wE4gS4FVoNPwFVKWo1oPOg9YCzKhvAD/baDbgEtAXvVpfGQJIrtQYtCuEZMi8DpwPTAe1ReBtj6+JY4FZqK6H19Bo2tKvDefpr5568BeW7VJ4kptmUT5Q+AufN7HI8BrIBlc+hhRt71onbj0y0hQQOOAuHOBP94d8+m/StvLaxuXoXEDcSkgyIylbnwDygmhOJGoYxep+kmg9SjTwb3OmTMCzw7DazZmEJLXF1sQaUaWMPsc8A4KLTcB/xV4d7+e54O7W1BagQ2gRUQuRWWtL7HIWJS68mDlZkTuQXUHaAoRB2wu7+JcA3op0IzIapDn0PhWuoJC1TcRmdVLC+pBD6MECGtBektj9DD1zX8/gN/G8LFRRVMtY6a/zok9/wN4PzChnJ8VEYdK41r/RY6JQLOI3KyqRYQ0kt6PRi2icaAaxUSlDly6hSA9WTJNt2rUuR0J1otIIyI7iaUJWIS4VcAhVBvwBQSmVLTmLcLsrp5NNGbESFhfbEFkfxTyKfxu4iX4xNZdU5ZbgSfxO3OL+NrHNwAX4dPM7MHvIl5JmIuGudXJFmZfAH6VQsu1wOeBX+vX80SagLkgc9F4H74KRqdPNKxd02ozuo7GR5UvojoN4j34DTJzgGcguAcRUFZAnAFK4OpAO/BT2T1NBZ2E6jJwC3sZtfxm/38Bwyxh63BMwoj8v8Af0aMEooi7AUA1biXqWKVRoR70WlRfo9RxjHRjmyIhUeEA6HVEpU04N0811SlBZgK4Rh+NxkdwqQyqzxFHnbjUDJwr+ryv3TwxTK/YmMFJWF9sQeTZFPJp4NPAp+h7jdun+nGmvRTyXwb+ljBnuckGIsyuA95DoWUe8F+Ay+CZPwAAIABJREFU99L3VHF34iaj2gi6D41fAu1KwdOVXuQmkJ8DjaDHQALAlUsiFhCJgAAXLD712adaAF0P0g66gDNTCu0HNwXptSe4ivZDr5QTIo8cIpaux1RX45QdnNz7XeA/VN6tqlA8thKNr8dXpulyNam6o2hpHCLPEqRbgc2gHcSRIPEzBOlrEbkNeB6XngBxAY0jtJSB9BiQtzhzF/ZPqvo6jTkfCeyLLYjsSyHfCPwLvhTe+ZoCfA24n0J+O3AUP0L5JGHOUk30R5hdD7yfQsufAV8AHujX80TGEmsRtB6YDLodH4S+4PNOBjcAbyFuNrAV1XbErUHcLFRXcXrX90agBZFbIfB1s1Xb8Osw4/I5I5CpiMzpozX/gC//1zNHXu0l7NuvSaQ/AX6dis8dEUFV6+mZR9UvMenKy3orrm4ZEEB0J7CB0ok6jVJrqWuqF3F3EJeeAL3XPzdYhsjF+BytF1WctQMYGXlZjelLwvpiCyJ7U8g74IcMeHPHOd1R8e8/wI9Qfpow98gQX2f0CrOvA79GoeVG4EvA28/5HOeyKMeBdT55eNQBwY3lDyoBXYdfotCJyCKQ1cA+n1ZEtwLrgUX4ae7TRBqAW/o7MIrfMHS0vwcbM6o0TtnOyb3fAj7R7f4gbCOqSFYgqWW4IE3U2YBLHyY9JhIJGkFbtFT4CVFhKc7lQScRlUKcW01cckjqJ7jUWCQ4hup2YHJ5PXSXNeW0YsaYIZKscdPh81GGPoDszRTgBxTy36CQD855tDktzK4hzN4F3ImvPtFz7VN34mYikkXcFFz6TkQO4GtY7wW5rbwlrh2fc/JafElC8KMZb8OPaJTraw/aKuqbR+ba2K5yWwO9GTMwXwQK3e4JwhtIj9tN0PAzXPqnpBpmSBCKZMaHUjd+urjURUAJ9Eaiwliizl2othJHh4kLBzQqngAXEXeOhXg8aE7j4luq0cs9rv3icL1IYwYtYX2xBZG9+/1hvt4ngO9QyPe2o9ecTZj9BWH2vfjAb8XZD5bLgHy5qMwOYCzoK6DH0HglqmOBdkReQfV2VJ8AbvbHIfgcj5z7On3qbTPOyCBucDdjBqJxyh7g65V3iUidiAtFZL64zDsFOQIiiDuCRo1oNBfiJcBFUjduKXXjjlFsH0+q4aQE9UclqCsSZBpw6Q6i4lEttR2n89iNdLb2fL9ZEGlGvoT1xfYp0FMhL0BvKVyq7YPAIQr5f6KQn24jkwMUZjcCHwaOnf1AmYPIMvxax6fxJRCn4Ecaj4MIqiF+xPHOiicewO/qHs/pUcqBGjkVairJedyMGbgvAydO/aS6n7jYiq8CpYhrxaUX4YJbwO2ix3taXHqaNFycFmQ8cXEWUUc9UWcJZAziloI0AfUEmZ6fb2ur/LqMOT8J7IstiOwpzCm13fjwPnwZvZMU8qso5P8Thfz0GrYnOcLsDvzaxZfOceRSYB/oTcDlqK4oJyIHEcV/wC3Ap2kCeAO/ZrKIDzgvx1fIGagRujN/kNMnNp1tBqNxyiHgKwCo7iLujEBnAsdINbxCkF566m9LZBG4ErjlIGuBDYhMA21F+BWQNl8gQNKgFwOHEHcUl1lGEFZuqjkJbB7Ol2nMwCWvL7aNNb17Hbi4xm2owwdEi4Avl3d1PwE8TJizaZm+hNmNFFpuBh7Er23thYDIVDReAboYmAruMuAtVDfip8bXlQ9O4SvgHAQOl0sg3g60DfDr37/hvxyMTBYQmuH1V6jeR9w5HbgI3DZSYQqRa884UmQSMOnU+011c/nfHcAEkBcIUktPHY6MJd24GJ+3t8vLhNmRuR7ZmEoJ64ttJLJ3/1rrBvRiJvA7wFoK+W9RyGfO9YQLVpgtAX9JzwX8Z5AFwBpEWsvf5qbjg8Zx+NHKFH7UMQfkELkBP5oowGzQlf1ozTPATdQ3v4P65v7UCq6NhH37NQnXOOUYcec/ARchqTWkwosQmXHO5wGIzCZVdyephlaC9A5cKgLdAPomkC+XPj1C91r363o/mTEjTJX6YhG5R0Q2icgWEflcL4/fLyKvisg6EVkrIrf3dp6ebCSyd9/Fl9ybXOuG9OE3gbsp5L8EfMsSmPfCj0h+GPhn+hoyFBmHuiw+2HwONAIaQJaBzud0zd1ngatQbQEmlO9bB1wMuhk4DKwCqcMnpS8AK4FnqW+2UWNjeve3BJnbkdT99J6cv3eqG0CPgNyApBqQuOvD7g0kyOHfjwc4/V4F2DZ0zTYmWUQkwG9ouwvYDawRkR+rauXAxtPAj1VVRWQBPutJXzmPT7Egsjdh7jiF/O/gRyRH6mjtDPyU7Qcp5D9AmHur1g0accLsIxRaxgMP9XmMyGUVP5z+p3IY2FKuoy2INKLxWnzqpx3AVKCrAk4M3Ed985GhbP7wslFFM8zGzuyg/eAjwL8b4DOPALeBPuWLCMgaoIAEi8ojMm2cmfJr7/k32JjhUJW++CZgi6puAxCR7wP3A6eCSFU9UXF8I/3cCDpSA6TaC3OPAu/hnFOiNXc7sIZCfn6tGzIihdlv4YPtgRGZiMhSkJP4L1sTEXc38NPy/EEnyAp8WbVHqb8owQEkidsRaEaN76Pxj4hLzxMVVxB1LiPqXIZGP0PjVb7M6BlK+A+4mUigSFBAggmIpMuPFzgziNxXzRdhzJCpTl88FagcaNpdvq/7pUUeEJGNwE+B3+hPcy2IPBsfSN4LtNa6KedwMfAYhXzDOY+8MH0KeGxQzxSZi8gSYBkaPwVMAn0dyPoa26yn4ttcIgm2JtLURv1FMVHnV4lLi9BoMRovLd8yftd1XESjZ1Fdjyo+x2ucAX0OdA+oAxWgzhfiBpCYM0dRdg7vCzNmEM6vL86V1zJ23T7W48w9nTHSqKr/v6rOwc8OfKE/Tbbp7HMJc7+kkP8VfEqXkbyZZQbwH4Bv1rohI06YLVJo+TXgG/j1pAMkAbAU3GqI54OcAFYDAX4k+DND2NoasIDQ1FDTjF/Suusx4F2n7ouja3GyD5HJwO3l7Fi78NNst5x+slb8V34BwQRgIVBZraYTP/JizAh3Xn1xXlVv6OOx3fgsI12mcZYlHqq6XEQuF5GcqubPdlEbieyPMPcS8Fe1bkY/nLuO9IUqzBaBj+E3TA2OyM0+kJTbyqOTbfgPqOeHppE1ZCORprY+i38vdRmHRnvp+gBTbUX1OHG0l6i4CtWeRQX2Ia4OGI9IHd0/MLdaeh+TGNXpi9cAs0Rkpohk8Pmof9z9snKFlDe4icj1+EGzc+bMtpHI/vtj4DLgvbVuyFksppBvJMydrHVDRqQwq8AXKbSsxo9mFID9wO/hRy/OTWQx6GrgRpAm0DXUX3T2ut2JYAGhqaGmGRs4sfcXaDQJ9BgwBtVZaMmXIoUmjeNL0NIJEZlPXDyCBMtwwVgkmI2kWkFuAy2i+hTi3lFx9ldr86KMGYyh74tVtSQinwSews+gPayqr4vIx8uPP4jfA/JhESni33Pv1VNLRPpmQWR/hbkShfz7gZ8DX+L0ztyRpBl4nkL+I4Q5K/HVlzD7c/z/R6/Q8gN8Kbbf698J5GbQZcCS/j9nhLMY0tSaC2YSx9NB/Npu1RjkadAMqKClDrR0pyrbkOAtVFPEpQKwncxYV/4TTuOnvCv9ZDhfhjHnpUp9sao+Djze474HK/79Zfzn4IDYdPZAhDklzH0buAT4BLCpxi3qzTxgBYX8A7VuSGKE2Q7C7Kfxi4n7u8t6MSJbEfdaFVtmzIVD5CJcak3Fzw5hISIZxM0l1TALl1kG5NBoKVq6DS3dgpbmEXceKj9rJeIqkyQfZGQWjzBmVLAgcjDCXDth7kHgKuAO4B/xi747z/q84RMCP6CQf9c5jzSnhdkfAfPx5SXPQRz+//fq6jZqmNiaSFN74kf5u00/jwduRILN4twMSTcsJTO2hEstIz1mM6nGV0FeIurIAkWQS3qc8zOE2ZGeps2Y0xLWF1sQeT78yOQzhLkPE+YuAerxFVJGghTwKIX8f6eQr6t1YxIjzO4B3omvu9129oNlF2GufRhaVV2W4seMDA6REJc+gUs9C5Q3z8hKhAB8MmQRN1HSY5aKS82WIL2AdON4gro9wCpEKnPfPUqY/d6wvwpjBiuBfbEFkUPJlx+cVetmVAiAzwE/oZC39a/9FWaVMPswPn3P2SoBPX6WxxJEzuNmzJDxf1AityKuGZcuIsFPce52YCK4/fhdpt2f5DK7Jai7CuS6iruL+B3fxiRI8vpiCyKHXqnWDejFXSQ+l2ENhNmX8V8KPtXHET8dxtZUV8K+/ZpRr4BIDhe8E9w6CI4j7gokuBHceuCN8nE7QDuAVkSaKp7/FcLs5mFvtTHnK2F9sQWRQ2/XMF9vGf1LYfF5CvlstRsz6vhNN3/DmaUTNxJmt9WiSVWRsI7LjEr+DyqOXkT1SrpGHUWuRZjnMyJoEZF54K4CKScUlzrEXV1xnjeA/2c4G27MkElYX2xB5NAbzpxkLwG34XdkLzvHsWPw6/zM4HwKn6i8a6R5lExllyVrBsWMRhpvo1RYS1xcCLodyAFdScLT+KpRy0FeRNwaxB0B2Yq4JRVnOQ78GmE2+WuVzYUpYX2xBZFD79FhvFYB32nG+CDxXD5OIW8f/YMRZouE2S/iA/ZHGU1T2caMBFHnTKCrbNsEVKcCz1UccRC4DpGFiNyIuMtxqUU9RmE+SJjdOEwtNuaCZ0HkUAtzrzF8yW1vxe8I30T/Kq7MLN/MYIXZTYTZB4Bnat2UIZWwKRQzKgWgq4CfoVqEeAc+of8mIA+yEZGJ5WNjoJXuicX/gjBricVNsiWsL7Ygsjq+MYzXqgeuPudRp91crYZcUHwJxVEkYXMoZnRp3XUN0ABEoFeCjgMiVEvAlcA+kGkVz1iBnxXo8iLw+WFrrzFVk6y+2NK+VEOYe5JC/nvAr9e6Kb1oqHUDzAhjo4qmllp3zQJ+F78hpgTMIC69TFB3BHEtgJZvLfiUWyF+hLJLG/ABwuxIKfZgzOAksC+2ILJ6PgpMxle0GUmGe/e4SYKEdVxmVPkMEsxB3FTQg8AKXPpqxF3X47hlwLX4deCVf7C/Z+l8zKiRsL7YprOrJcx1AA/gd1CPFDGwttaNMCNQsmZQzOjyVcRNQSSNpISgbjHiJvY4Jo8vM3sAmF5x/w+BvxuuhhpTdQnriy2IrKYwdxx4O+dOvzNcVhPmjtS6EWYESthibjOKNM3YhAs+jaRiXLCklyNWAyeAbcDsivvfBH5r9K1PNhe0hPXFFkRWmw/a7gQ+BuyscWu+UuPrG2PMmSR4DJFN5Z9agI3AXuAoMA6/FnJRxTMOA+8kzB4e1nYaY7qxIHI4hLmIMPct/LfojwD/iu8Eh9OfEOYeGeZrmsRI2ByKGV3CbAy8H7gJuIgwexV+9/U+YA6wuOLoduAewuybw95OY6ouWX2xbawZTmGuE/gO8B0KeQfMxVecmQnMwK/1mYDfoXgE2I1fSH4p/Usm3puj+J2P3zuPlpvRzqamTa313BwTZo9QaPkoZ655/CJhds2wtcuY4ZSwvtiCyFoJczGwvnw7u0I+A3wC+G384vL+6AQeBv6YMHdokK00FwJb32hGqjC7Cv9l25jRL4F9sQWRSeBHML9GIf8/8cnC78anDroOGFtxZB54BV/X+R8teDT9lrCOyxhjRqWE9cUWRCZJmFPg+fLtT8t1sKfgq9YcBVrKxxhjjDHGVJUFkUnmA8Y9tW6GGQUS9u3XGGNGpYT1xRZEGmMS13EZY8yolLC+2FL8GGOMMcaYAbORSGNM4r79GmPMqJSwvtiCSGMueJY43Bhjai95fbFNZxtzoRMSV6/VGGNGnSr2xSJyj4hsEpEtIvK5Xh7/dRF5tXxbKSLX9KfJNhJpjAGx75PGGFNzVeiLRSQAvg7cha+Et0ZEfqyqGyoO2w4sVdUjInIv8BA+L/VZWRBpzAUveVMoxhgz+lStL74J2KKq2wBE5PvA/cCpIFJVV1Yc/zwwrT8ntiDSGGNT08YYMxJUpy+eCrxV8fNuzj7K+FHgif6c2OawjDFVVa21OMYYY07JicjaitvHKh7rLTLttbqdiLwNH0R+tj8XtZFIY0zV1kRWcy2OMcaMOoPvi/OqekMfj+0Gplf8PA3Ye8alRRYA3wbuVdWW/lzURiKNMZxeizPQ2zmdWoujqp1A11qcU1R1paoeKf/Y77U4xhgz+lSlL14DzBKRmSKSAd4H/LjbVUVmAD8EPqSqm/vbWhuJNOaCV9V0PVVbi2OMMaNLdfpiVS2JyCeBp4AAeFhVXxeRj5cffxD4YyALfEN8G0pnGdk8xYJIYwznMSmRE5G1FT8/pKoPVfw8mLU4tw+2McYYk2zVmSBW1ceBx3vc92DFv38T+M2BnteCSGMudF0JbgfnbOtwoIprcYwxZlQ5v764JiyINMZUs+M6tRYH2INfi/OB7pce3FocY4wZdSyINMYkS/WSjVdzLY4xxowuySv8YEGkMaaqqrUWxxhjTG1ZEGmMsdrZxhgzEiSsL7Yg0hiTuHU4xhgzKiWsL7Yg8mwKeQHuBN4DXA/MADrKt/FACBwEnsEn7nyaMNdem8Yacz6S1XEZY8zolKy+2ILIvhTyC4BvALed48ixwBXAbwEFCvlHgC8S5jZVuYXGDBFJ3BSKMcaMPsnri5PV2uFSyL8DWMm5A8ieQuBDwMsU8h8Z8nYZUw0CIjKomzHGmCGSwL7YgsieCvnZwCNA43mcpR54mEL+2xTywdA0zJhqqlrtbGOMMf2WrL7Ygsgz/S3QNETn+ijwP4boXMYYY4wxI4YFkZUK+UuAu4b4rL9PIX//EJ/TmCFUXoczmJsxxpghkry+2D4Furu2Suf9CoX8hCqd25ghkKwpFGOMGZ2S1RdbENldWKXzzgSeopCfVKXzG3N+RAZ3M8YYM3QS1hdbENnd9iqe+0bgoSqe35jBS9gUijHGjEoJ64vtU6C7l4GWKp7/3RTyuSqe35hBGOz0iY1EGmPM0EleX2xBZKUwVwS+XOWrfLVcCceYkSNhUyjGGDMqJawvtoo1Z/pHuk9rfxsYN4Tn/3VgNfA3Q3hOYwZPsKlpY4yptQT2xRZE9hTm9gP/curnQv5jDH3an69SyO8nzD0yxOc1xhhjjBkWyQp5a+OJKpzTAf9AIX9dFc5tzCAkax2OMcaMTsnqiy2IPLcfVOm8IfBDCvnxVTq/Mf00yDU4tibSGGOGUPL6YgsizyXM7QE2VunslwLfo5Cvq9L5jeknN8ibMcaYoZOsvtg+Bfrnm1U8933ATyjkL6/iNYw5u4R9+zXGmFEpYX2xBZH98xCwo4rnvwtYTyH/pxTyY6p4HWN6l7COyxhjRqWE9cUWRPZHmCsAn672VYDPAy9TyF9W5WsZU0FI2hSKMcaMPsnri+1ToL/C3I8YntyOVwAvUsi/fRiuZYwxxphRTkTuEZFNIrJFRD7Xy+NzRGSViHSIyB/297wWRA7Mp4GvD8N1xgNPUMj/n8NwLWMSN4VijDGjUhX6YhEJ8LHLvcBc4P0iMrfHYYeBTwF/OZDmWhA5EGEuxk85dw7D1VLAP1HI/8YwXMtc8AaSj6zyZowxZuhUpS++CdiiqttUtRP4PnB/5QGqelBV1wDFgbTWgsiBCnNHgAPDdLUA+DsK+R9SyE8ZpmuaC41gI5HGGFNr1euLpwJvVfy8u3zfebMgcnA2DPP1HgA2U8h/lkLeSlWaITbYb74WRBpjzNA5r744JyJrK24f63HinnQoWmwByeB8A3jHMF+zEfhz4N9RyP8qYe7QMF/fjGY2qmiMMbU3+L44r6o39PHYbmB6xc/TgL2DvVAlG4kcnJ8Az9To2ouA1RTy19To+mZUSlZaCWOMGZ2q0hevAWaJyEwRyQDvA348VK01AxXmFPg/8NF9LcwEnqeQ/48U8jaEZIwxxpheqWoJ+CTwFPAG8ANVfV1EPi4iHwcQkUkishv4DPBfRWS3iIw917ltOnuwwtxhCvl/DzwN1NeiBcDfAx+ikH8/Ye5gDdpgRgubzjbGmNqrUl+sqo8Dj/e478GKf+/HT3MPiI1Eno8wtwq4G2ivYSvuAFZQyA/JTitzIbKNNcYYU3vJ64stiDxfYe5Z4As1bsVs4FUK+ffUuB0mqSzFjzHG1F7C+mILIofGl4H/r8ZtmAj8M4X8fTVuh0mkZH37NcaY0SlZfbEFkUPBV7L5XeBIjVsSAP9CId+znJExZ5ewb7/GGDMqJawvtiByqIS5VuC7tW4GfpPPl2rdCJM0yfr2a4wxo1Oy+mILIofWV4CTtW4E8G4K+XG1boRJiMF+87WRSGOMGToJ7IstiBxKYW478GEgrnFLHHBpjdtgjDHGmFHMgsihFuZ+CLwHOF7jlrTW+PomUaxijTHG1F6y+mL7FKiGMPcocAXwUI1a8DKwvUbXNkmUsCkUY4wZlRLWF1sQWS1h7hBh7reBhcDXgdIwXv0/l0szGtNPyVrMbYwxo1Oy+mILIqstzL1EmPskcCuQH4Yr/hVh7slhuI4ZNQbbaVkQaYwxQyd5fbEFkcMlzK0BFgPrqnSFEvBp4I+qdH4zionIoG7GGGOGTtL6Ygsih1OY2wgsAl4a4jMvBxYR5r5m09hmcJL17dcYY0anZPXFqZpd+UIV5joo5O8BHgNu6uezTgIfAiYAC/Dpe47iRzUfJcztGPqGGmOMMcb0zYLIWghzhyjklwCfwU9BX3SWo5cDHyfMvTEsbTMXJpuaNsaY2ktYX2xBZK2EuQ7gv1PIfxV4B/AApxOEnwReB35ImFtVmwaaC0uyOi5jjBmdktUXWxBZa2GuHXi0fDNm+ImA2PJoY4ypqQT2xRZEGmNI2rdfY4wZnZLVF1sQaYxJ3DocY4wZlRLWF1sQaYwhad9+jTFmdEpWX2xBpDEXPKuDbYwxtZe8vjhZKziNMcYYY8yIYCORxhiSNoVijDGjU7L6YgsijTGJm0IxxphRKWF9sQWRxhiS9u3XGGNGp2T1xbYm0pgLXjnB7WBu/Tm7yD0isklEtojI53p5XETkf5Yff1VErh/yl2iMMSNe9friavXDFkQaY/DffgdzO8dZRQLg68C9wFzg/SIyt8dh9wKzyrePAd8875djjDGJNPR9cTX7YQsijbnQCeVyW4O4ndtNwBZV3aaqncD3gft7HHM/8A/qPQ+MF5HJQ/oajTFmpKteX1y1ftiCSGNMNU0F3qr4eXf5voEeY4wxZnCq1g/bxhpjLnAvvvTKU1LfnBvk00MRWVvx80Oq+lDFz719RdYeP/fnGGOMGdWq2BdXrR+2INKYC5yq3lPF0+8Gplf8PA3YO4hjjDFmVKtiX1y1ftims40x1bQGmCUiM0UkA7wP+HGPY34MfLi8O3ARcExV9w13Q40xZpSqWj9sI5HGmKpR1ZKIfBJ4CgiAh1X1dRH5ePnxB4HHgfuALUAb8JFatdcYY/43e+8dJsdx3Wu/v+4Jm3cBLIgcCIAAmCMYwKRsUcGS/dmSJVnBtmTpWpKvr4OuLUuysmRfK1iWZGVLVuZV8FWwJVGBAEGCYCZAkAAJEjmnzWFCn++P6sEOBrMRO9id3Xqfp5+d6a6uOtXdU3v61DmnphqVHIdl5l2PPB6Px+PxeDyjw09nezwej8fj8XhGjVciPR6Px+PxeDyjxiuRHo/H4/F4PJ5R45VIj8fj8Xg8Hs+o8Uqkx+PxeDwej2fUeCXS4/F4PB6PxzNqvBLp8Xg8Ho/H4xk1Xon0eDwej8fj8Ywar0R6PB6Px+PxeEaNVyI9Ho/H4/F4PKPGK5Eej8fj8Xg8nlEz5ZVISaskPSypU9KfT7Q8BSTdKemNYzjvvyW9vhIyeSYXkj4n6d1DHH+npC+dS5k8Ho/H4ykwIiVS0qslPSCpS9LBWJG5qdLCSTJJK86ymncAd5pZo5l96ixk+aqkD56lLCNt672SsvH1LmzvADCz28zsa2Osd9jrKWmepC/H97lT0jZJ75NUP5Y2i+pdGrefOJt6iurbJel5w5RpkvRJSXvia7gj/t46HjJUGjN7i5l9AEDSsyTtKzn+YTMb9YuIx+PxeDzjwbBKpKS/BD4JfBiYAywGPgu8rLKinR1FysoSYOtEyjJGvmtmDUXbPw13wtkqaJJmAhuBWuAGM2sEng+0AMvPpu5zjaQU8CvgYuCFQBOwFjgOXDuBonk8Ho/HMzUws0E3oBnoAn5/iDJpnJJ5IN4+CaTjY28ANpSUN2BF/PmrwGeAnwKdwCZgeXxsfVy2O5bhlfH+lwCPAG3APcBlRXXvAv43sBnoB34N5IG+uI6VwIuBh4EOYC/w3hL5borrbYuPvwH4UyALZOJ6flzal6L+fDD+PAP4CXAUOBl/XlhU9k7gjYNc0/cC3xjk2KnzYtnuBj4BnAA+CKwA1gHtwDGcMjro9Syp+4PAFiAY4n6vBe6P678fWFsi2wdimTqBXwCt8bE9cftd8XZDvP+PgSfia/RzYElRO8eARfH3y+N7shr4OhABvXFd7ygj5xuBw0DDEH25MJa5Dfei8dsl9/KzwH/HbdwNzMU93yeBbcCVJc/e3wGPx8f/HagpOv4mYEd8n34EzI/3K75/R+Jruhm4pPh5AurjvkZF129+6XMC/Hbcj7a4XxeWyPfXcf3twHeL5fOb3/zmN7/5bbTbcJbIG4Aa4IdDlPl74HrgCtw/+muBdw1TbzGvAt6HU7p2AB8CMLNb4uOXm7PEfVfSVcBXgDcDs4DPAz+SlC6p78VAi5k9B7gLeFtcx5M4Jep1OOvai4H/IenlAJIW45SGfwVmx316xMy+AHwT+Ke4npeOoF8BTpFYgrPe9gKfHsV1GSnXAc8A5+Gu3QdwytsMYCGuL2WvZ5m6ngf8wMyicg3FlsqfAp/CXf+PAz+VNKuo2KuBP4rlSeEUF4BC+y1x+xvj6/5O4Hdx1/su4NuxvPfg7u/6lvs7AAAgAElEQVTXJNXiFMd3mdk2M3stTil9qQ1upX0e8DMz6xqkL0ngx/G1Og94O/BNSauKir0C9yy34l5KNgIPxd+/F/e/mNcAv4Wz2q6Mz0XSc4CPxPXNA3YD34nPeUF8bVbinslX4qylpzCzbuA24IANWKYPlPRnZXzt/iK+lv8F/Di2yBb354XA+cBluJcQj8fj8XjGxHBK5CzgmJnlhijzGuD9ZnbEzI7iFMLXjkKGH5jZfXEb38QpboPxJuDzZrbJzPLmfAP7cUpsgU+Z2V4z6y1XgZndaWZbzCwys824f7y3FvXll2b2bTPLmtlxM3tkFH0pbue4mX3fzHrMrBOn4N063HlFvEJSW9E2f5ByB8zsX80sF/c5i1Nc55tZn5ltGEWbs4CDQxx/MfCUmX09bu/bOItcsVL972b2ZCzL7Qx9P98MfMTMnojv/4eBKyQtiY+/F2cNvw9n5f7MOPbleqAB+KiZZczs1zhr8auKyvzQzB40sz7ci1Sfmf2HmeVxlrwrS+r8dPzsncDd70JdrwG+YmYPmVk/zmJ5g6SluPvViLOwKr4WQ8k9GK8Efmpmd5hZFvhnnFvC2qIynzKzA7F8P2boe+PxeDwez5AMp0QeB1qH8bWbj7OsFNgd7xsph4o+9+D+sQ/GEuCvipUrYFFJe3uHakzSdZJ+I+mopHbgLTjLEnFdT49C9qHaqZP0eUm7JXXgppNbJIUjrOJ2M2sp2g4MUq60v+/ATZHeJ2mrpD8ehdjHcZaywSi918TfFxR9H+39/Jeie3kCJ/sCgFgZ+ipwCfAxM7MR9KHASPqyt8TqWtqXw0Wfe8t8L+1b8b0o/h2cdt1i6+hxYEGsvH4apyAflvQFSU1DyD0YpW1EsTxjvTcej8fj8QzJcErkRpw/4cuHKHMApwwUWBzvAzd1XFc4IGnuGGQsZi/woRLlqi62iBUYTtH4Fs4nbZGZNQOfwykuhfoHCyApV28PRf3D+cwV+CtgFXCdmTUxMJ0rxpfT5DKzQ2b2JjObj7P0fXYUEe6/BH5H0mDPRem9Bne/949Wzpi9wJtL7mdtPJWNpAXAP+DcAj5W4rYw3H3+JfBbQ0SVHwAWlfR1pH0ZjEUldRV+B6ddt1imWYW2zOxTZnY1LghoJfA3Zeoerr+lbSiW52z64/F4PB7PoAypRJpZO/Ae4DOSXh5b15KSbpNU8EP7NvAuSbPj1CnvAb4RH3sUuFjSFZJqcNOTo+EwsKzo+xeBt8TWREmql/RiSY2jqLMROGFmfZKuxfnwFfgm8DxJr5CUkDRLUmHKr1QWcAE+r5YUSnohp09XN+KsVW2xL+E/jELGMSPp9yUtjL+exCkf+fh7uT4U83FcFPPXClPKkhZI+riky3B+divjlE8JSa8ELsJNAw/HUVxgSHH7nwP+TtLFcVvNkn4//iycFfLLwJ/gpqY/UHTucH35Ok5J/b6k1ZKC+H6+U9KLcEFc3cA74mf6Wbhp+e8MXuWwvFXSwvh+vxM35Q3uxeWP4t9BGjdtv8nMdklaEz/PyViePgbuVzGHgVmSmgdp+3bgxZKeG9f1VzhXj3vOoj8ej8fj8QzKsCl+zOzjwF/iggSO4v4xvw34z7jIB4EHcFGfW3CBBx+Mz30SeD/OKvQUMBr/PHBK59fi6c5XmNkDOL/IT+MUpB2MPjjgz4D3S+rEKby3Fw6Y2R7gRbh/wCdwSuLl8eEvAxfFshT6/j9xikcbzu+tsB9cFG8tLsL4XuBno5RzrKwBNknqwllc/6eZ7YyPvZei61l6Yuwrtxbnp7cpvka/wkXz7jCz47jo+L/CTce+A3iJmR0bTigz68H5Cd4dt3+9mf0Q+EfgO/GU/2O4ABKAP8ellHp3PI39RzhF7Ob4+EdwLy9tkv6aEmLfw+fhfDbvwEXj34dzXdhkZhlcNPNtuHv0WeB1ZrZtuL4MwbdwgTrPxFvhd/Ar4N3A93HK8HLgD+JzmnAvRydx09HHcf6Mpf3Zhnthe6acj6yZbQf+EBdIdQz3XL407qfH4/F4POOORudm5vF4yiFpFy710i8nWhaPx+PxeM4FU37ZQ4/H4/F4PB7P+OOVSI/HUzEkfUXSEUmPDXJckj4ltyTlZrlcsB6Px+MZRyo1Fnsl0uMZB8xsqZ/KLstXcQnOB+M24IJ4+1Pg386BTB6PxzPd+CoVGIu9EunxeCqGma3HBakNxsuA/zDHvbhcqkPl9/R4PB7PKKnUWOyVSI/HM5Es4PQk7fs4PUG6x+PxeCrPmMbioVai8Xg804AVkvWM8dyDsBWX27LAF8ytNT9SyiXf9ykjPB7PtKMax2KvRHo805wenAPMWHifW0/8mrNofh+nr/SzkIGVfjwej2faUI1jsZ/O9nimOcINBGPZxoEfAa+LIwOvB9rN7OD4VO3xeDzVQzWOxd4S6fF4xn1B91P1St8GngW0StqHW/4zCWBmn8Mtpfki3OpTPbiViTwej2daUm1jsVciPR5PxaYkzOxVwxw34K0Vat7j8Xiqimobi70S6fFMcwpTKB6Px+OZOKpxLPZKpMfjqdgUisfj8XhGTrWNxV6J9Hg8Vff26/F4PFORahuLq01ej8fj8Xg8Hs8kwFsiPR5P1U2heDwez1Sk2sZir0R6PNOcanTm9ng8nqlGNY7FXon0eDxVN3B5PB7PVKTaxmKvRHo8nqqbQvF4PJ6pSLWNxV6JnMRY23YBYbyJAWt38ecEma4kUTaJyz5fODYYKvkLAysnhUV/w1Pf0zPyqm1NAqlTbZ5eJiw6N1n0ubiuREm5Ibs+yN9Cn4vrL2wq2n/q+phFOY5vSZXUA5AHovhvLv4cFe07pIXP+eowck4JqnEKxePxeKYa1TgWT2ol0tq2XwB8B3iWWlZ1xvuW4pbnyQNZnGIwoFANKBAJBhSOUkqVrFLFS0VbQfEoKCf5eJ/hFA6L2zCgNi4X4RSTLAOKSeEcAWnOVA5riuQvVpSGx/L3AGtHVHYsRNl1wK0Vq7+iqB1oHsOJDwFfHV9ZJi/VNnB5PB7PVKTaxuJJrUSqZdVT1ra9C7gZpzgC1AMXTpxUkxHZ8GXOhgpXPznJTLQAHo/H4/FMZia1EhnzbuBOa9veibPulbMsejyDMVYXk/y4SjHJqTY/HI/H45mKVNtYPOktp2pZtR64E2gCZjK2qcmpToVNhZP+MakEuYkW4FxR8J8Yy+bxeDye8aEax+Jq+T/wwYkWYJJTWSVSQbW9HI0HyYkW4FyiMW4ej8fjGT+qbSyuhulsgN8AG4EbJlqQSYlkk8Ft0cyO0b3/SQASdR0EiZb4iLDCs26lz70x8DJTHI1tA9+F0s1rxijWWH9f6TGeV5VUy9ukx+PxTGWqbSyuCiVSLavM2rZ/EPjpRMsyPRmpHmY99Bx2UeLplvtI1l87fjKM2YvBK5HDUI1pJTwej2eqUY1jcVUokTH/jUu7ctUIy0dU3/0YK5WzQ5o9Rf+JlOW67+eUQmZ26rMVrIsWEOUqpnhZ3/Ft9LW1QTSTgkXTrOg3ZwP5Ic1C990SmI11Wnq6PDuAn5r2eDyeyUC1jcVVo0QWWSN/MEzRg6BnCJJzgAxRJgGsrLyEE0lFH7s02a7ryXZVso3hibKryXXtARafoxar7bd8Vkwrjdnj8XgmKdU2FleNEhnz/4CtwMWDllD4lILkLYWvFqS2EWXvBbu+TOmHQD3x5wRYEhcFfsE4ylztLMTlTEwNV/B0bBJ4aXo8Ho/H46kUVaVEqmVVZG3bPwR8a/BSQcNp5yhYbUFyJ1FuHUSnr7oSJAMpvKm0BjM7hOWewvI1wGVMdv84qXJWMylAwR4sWjGq8yqjQp5L6+C0UYKr0Q/H4/F4phrVOBZXlRIZczvwPgazFipYcMYuBedbkGzC8ve6PZbDLA9aWrYKaS5KzoUkFmXvwiK3lKECp1hYvhG48qx7Mm5UUIkEUOIYlhmdEln9Slg00QKcS6bV3L3H4/FMUqptLK46JVItq/LWtv0jwFcGKVJf9jxpFkrMGnV7QfLm0n2Wj+6ufh1pFCjsP/XZzVK7wBqnuxZS8ZS+QFXbb6GUapd/xFTj26/H4/FMNapxLK46JTLmG8B7KRtkYSdADWfuH0eC5BywxzDrAssA5pSrkunyaibTuQeL5tqBpzeQ6Utryeo+XALuEJD1tT1D7azDCpM3YHYvlj89h2dlVLBppLmfW6pt4PJ4PJ6pSLWNxVWpRKplVdbatn8U+OwZBy2/EwUVjeCVAje1W6QomVkGOAZ2DPcc1BFlcsDSSspSaB7ojNstSdSN4aZmo1hOEeXc8SCMpODUM2vOyujqMOsSdFkua/T31tPf1wNEWBRZqiaSWW9RG2VUxgpPsVceP53t8Xg8nnNKtY3FValExvw78G5g3ml7Lb/MLGGqZLBJGSSlgFZQ6ylRgnQG6CgtysBzUvjbj0XPgGVQ0IpZJ+S7sGgGLrBnaBI1QkHjiAS1KMOBB1yk9YzzN1PTPFB/d9sOntjgFOQVV3RSUz+Tk20Jjh++0A4c2IMLMDLq62Zy/rIT1LWWaWDKEE60AOeKapxC8Xg8nqlGNY7FVatEqmVVn7Vt/z/Ax0sOLcLyd6PEjRMhVzGxYjmS1Dj1htogqJc0BxFBGACYRU8SZTLAJUM1NWKhzISCJwFD4emySYaCpwDIZY5ZLpElkeghDHezcH6bEokmQLS17ySbOUk+22NBYgv5bBtdJx8BTE2znSwKa0cs0+Rk2iiRHo/H4/GMhapVImO+ALwTON0kZrnLzIInpaBqkoxLwbKirwHwGHCJFKy0IA2WXYdF13OW6YakQMy9rOx1UW1TwEXXLwew9n1GV+cFWrrkAMuXr0TBgyhYDUDqQAcd7QHh/gSzF1zKySO9HNp9BYBdd2lFMw55KoO/Yx6PxzPxVNtYXNVKpFpWdVvb9k8AHyo51EiUOWZB6pkS5ayaaAOOArMlgVK3mkUHsPwOLL8QKO7XaJ67ELP748/x0pAWR11bJ3AC5y/ZgUXtUU9vB6b7LBcdDltn5gCoacigRC/p2jJWVrOK+UMGqZ1EmTQwpyL1T2OqbQrF4/F4piLVNhZXm7zl+Aywv8z+84kyyyyfWXeuBRonbgIeL94hBfMVJG8hSC8jSO1HiU2cHkQzPJKwaI3bLAGsIZ/rpb9tDf3tKwjCNQThtYSJxSSSa/L7Dzf1fPWH1/bfcfcMpOuQrqOh+WZmzXkB9Q0potxd1NadoHXuXcyas8Hl36wQNTNuJVH3JPBUxdoYYCr8NkZEwQ9nLJvH4/F4xodqHIur2hIJoJZV7dbxzCew6KVY/hrgGdxSfTNciehWizLrFKSqMf1OEngaWG5Rvo1czzYwQ2EaBUmC5BLy2fVku7MEyV0E4dIR1uvyPBaQMgSpDUA/CnbHe+cAKHDForaOplMnd3VuIJfLuzoMoJYgYUAkq3BUc6rxZqLseqJspZemnFY+kdU2heLxeDxTkWobi6teiQRQkPwq8F4zq5N0qVl0gHzfHuByACxaOnHSnRVrgQ3AcqLsQfrbyq3/PReAKNsOupdEugYlViPVDFFvFhfw4xQ+BSnCVOnyj08CUMgA1J9ZeOrI9q0ryfSfV7bmJdf2l91ffVTbb/ms8FZFj8fjmXiqbSyeEkokDYuO07X305L+Fty0r4W1c7HcPUS5kCBZi5savmhiBR0TLcBdWNQOXDhEuWaw68n1AexB4S6kgWnu4gnvMJlHCkH9WPTfKGxC4enT/rWzckS5g9R3n0xcsmodQHToQFYiRS67ZjAhbNNPN1kQoJmzugmoxyKdMnwGgXFqwRtg5sJuNc+pP30y3kIgIEhEBMnyEfZhuhtYz5nT+CLKtlKd93nCqMa0Eh6PxzPVqMaxeGookY6PAW8nXvZQUoCSawmS7qjZHrBNwHJKo7knN5eA7iesGU1U9mIsv3hQT8mgNovkLkzEeuBGdPqjq3pn4EysnLkusXj+rQC26c4t5HKXDtnyyUO3AFgie4+SybVDlq2fcRcWnbGspJMrv/7UvTu1L7cOLEThahK155c9L5vfgI3LjHpy+CJTh2lldvV4PJ5JSrWNxVNHiWxYdIyuvZ8F/qbscWkxaHEchbwOmOw+kjkIHkBBEmkNCrpINa8Hg0znQrCxR52bbWQg6Xl2xOfV1LXTVZo7ffBWhi8RDfF7iZaS719PmL5loHy+FYsuHqkAZ8nIr4vH4/F4PNOQqaNEOgrWyMH9ASVAt2LRZFYkn0EJQzrlAykFDdTOiq18dVuIMvfQ357E8oNOLQ+GRdk6halrAIjyP4P8ve5IkCFI3DLoifWN0SiUyJG8UA1VZjGWT5PrvQ+XgygJJM/he9q0Wqe7EEA1aqJpdZk8Ho+nolTbWDy1lMiGRYdja+RfDl9YN4DtBxZUWqwRkoPgQaR+0A2nppvLoGTdpVCHJer2kO9/EDB6j15TrqyZ5SQlir5HHHnqpPW03UvzvDwNs5AsR5C4yUVmD/FINLXUc7hcNqXyYo6gzHBP/RywgZyQFt0JPOLOU/G5hSjxAKNyKYamMGNPEO+VSI/H4xkvqm0snlpKpOP/AH/GUNZIACmF2W4mhxK5CyXqkK4bzUkKU4sJU4styrcPWqjn5N3WfnAOyboO8pkaejuWY9HzATj2DBzbuddmLTpM/YztUnCSIH301LmWP0lUNKvb0FQ+Irs8I3miR/trWQYsHrJ6sWGcfkvV5poyZiQIxvr261V2j8fjGReqcSyeekpkw6JDdO39AvDnIyidq7Q4I0LhbqSxT60raKRhwU5AdO2vA05X9vq6VtPXNcjJtojjexaR6VnPzIWXEPXNjCu9B7gO9PCpojW1C1kwbxtOQU/hnp8Ip9GV/h06AAfiVXJGRWYEZcbrdWwkbU0Z/FKVHo/HM/FU21g89ZRIxz8Cb2b4daYnQ0LpKDr6RC+9xzeQ7WnGoiRYAgUZmpcc14zllyiRnjFUBZICwvT5AAYHACzKP0rH4Q5O7Bs6QrpA57FbrOm8XytZ+5x4TxOoqdgepyAQQRBitnQM/TwTi0abzeBcRkxPhmfjHKGx++F4PB6PZ5yovrF4aiqRDYsO0LX3i8Dbhi6oFrBjTGDKHzuxYyNtz7zwzAMRtO18iubFXTC0EnkaTefPBuvn6fUBnQfLp88ZjP1PrLSm2evpbqvjvGVSbeNJ4FLSzW30HH2ETOcVNDYdJFFzjIZZlxMkN5GsW+P8E+Mls5+8pwtnCR2JElYJJ47xqrO6fslnSbW9/Xo8Hs9UpNrG4qmpRDo+CryJoayR0sUYu8EOAZecK8EKWK7vqJ3YUW4VmrhAdIHt+k2ehWu3qW7W6pHUKSkJwmqauug8OFqJFtJxxK1ME+U3AzMKD7QdO5Hg4DMJWluztNTWEgRGpt3oO1ZYu7tNzUtrWHXTHCy/3TJdq0nWryNRcyPOWyNPf0d/vJJOAPSRbh5+yvt0zqXXx1T+bXg8Ho/Hc9ZM3X+UDYv207X3S8BbhywnLXHBvecu5Y9lew5a+96nad/TCswepnhItrsTZo2uEWl4i5zCDM0LHteyW1vpOvKMPfnzQnqfPlI1pzc4d74xZ04DqJZU01Kgm/QMKQgbzWwr2a4Wy/X1E9YcxUgAR5Eip9TG09BhIsXAlHQNcAxoHEWvzmUy/+kzna2zSCvh8Xg8nvGhCsfiqatEOv4R+FNG5Eunm+Mk5NcQr3oz3lhf2w47+HA7+f6rgHkjPu/wo9dYx/715HqT5PsbCVPdhKkM+WySbM9SIEMQdpKoacMiiHK1NC/rZe4lG+jvyqtxbi0KAtu9cSHYXIKwT5f93nbC9IWSrgCgae5CVjx7ne34zVIUHAFmW65/FwXFLZ/rxfJ7sShD/95uANIz+i3dtBN0gmNP1wJQN+8EYdiD9SYJUznC9F4gwPJPAwM5KBVsRZoB7GdoC6MYmKI+FssTr6N4RjmhsA+L9sT7IlCh7hxB2EaQ7iOsSZJIz4AgCZYj23WETMcCsGCgXh2kc89CGhfvG+FtqlpE9U2heDwez1SjGsdi2egjZKuLrr2fwwXZjAyzjWA3jKcI1n10ix17ootszxoqqbgr3Basetmg097Wc/IX1DQsJEheqEGeVGvbvc4OPjCURXY36dolFE4PU79U/ZwUaDnSArvnJ+0E4QFd+/yh1vmOSM+4X6nGUaU0GpQgNS7VlOEOGhe/oFKVTxZWhYH9W8PQGbEG47kdvQ+aWdkcpR6Px+MZOdU4FlfbWt9j4aOMLpXPDcD68WrcTu7caAcfXEq25wYqbfkNEt1DHG1X3YzrFaYuGkyBBFDLkls154qh+r+EXPauU9+i3CzLZ2+xfCZlub5HqWvcQ0PTCbPoaRuwCJ5Oou6ucVMgYSypgkbKdPh9gITGuHk8Ho9nnKjCsXiqT2dDw6JddO39OvBHIyrvlkW8BYs2ADdyFlG61rHvfju+vWLWR827+gFSjc0ocP57YWqoxOlPA1eMqN6Zy28hym6wo1tvKlsgn7uGMPEMQbAMhUa+fzewBJjNhVe6Mrk+AAzdTaLmSkl1Tsb0empmja/vaeV+QNNGSxpzgluPx+PxjBvVNhZPD0sLfBiXBHvkKLgJuHusDVo+025Hti6gkop6w9wLVDvzAtW0LFNNyzIl6+YOUfoq4N4R1z1r1Y3MWnXPIEdryfQlsPAuFj1niWZfmSZZv4Eg+RBo1+lF7UZyvYfNrAO0hdrZ1477W1PlLJHV9WseIwU/nGp6+/V4PJ6pRjWOxVPfEgnQsGgHXXu/Cbx2dCdqMVgH0DTaJu3EjkfBbhm+5CgJkpu14oUrMCKCRPMoz67DrC9OszMkkqTzLllrdbPW2b5717ok6KexmIb5+4IgmEWQRq2XzgUwM6P7wD3WuW8u2LK47Pnk+h6w+nnHAgWdcQtwRoCMJYA1TBPlbdJQhRGBHo/HM+WowrF4eiiRjg8Br2E01ldpMcYhsDww8oTfAL0nKnFtewgS/QqSdWM8/wpgC2YXIo1MvtpZs85QIJMN+3X+s08qTJ2xGo4k0bBgLfXzsfan19F77DoUPoVZg8KaPEFqaF/IKHcXRKNLkl4+Wns8GJ312uPxeDyeacT0USIbFm2na++3gD8c1XnSXIz7wa5mhAqoRfkMma7LxiDl4CRq7w9W3LYGZ6kbPWa9wJPAMqSNwIgUNYWpS1hx2/3WtjND1+E5RLlQ5z+nTUHiyiHPk6B+YTPJpp1KNYw8qXiQuJkotyFW3M+odpDPo1U6R0p1vRKeBX5q2uPxeCaeahuLp48S6ShYI0d3l6Q1mN0JPGtE5dv3PIiL8h6u4ogw2YGCLFGulijXMFiN1MzoGZmwRThfwW1gJ8BmApcDhjEXgvWglUhD+VE6KZN1azT7Ymi96BmL8u2lCqR1HXjYOvd3nNl+1A+WNjhyal+yIQxalpUP2CkQJIY+fu44l2t1TyCVXa9V0guBf8ElcP+SmX205Hgz8A1gMW5M+mcz+/eKCeTxeDyTksqNxZUah6eXEtmwaBtde28HXjnCMzqAzUASNNOi3EawRsBQuDpejeUMrGPv8E9BouaIFq3dTHrGtZJmW/fR9bZnXXkfyhnLHw3mXD66iGazLRDVA6V5IwVcgEUXABlMm5D6gBCzNJAFDAXzkJbFdZ0AewyLLpB0/IymOvd30HN4ZPL1tz9Ky7Lhy00OpkvgWcXefiWFwGeA5wP7gPsl/cjMHi8q9lbgcTN7qaTZwHZJ3zSzTEWE8ng8nklKJcbiSo7D00uJdHyAckqkWWmqmE1AC8hZxSSIsnvs0P2L1bxsPQ3zB7/TDXOP07H/QSxfA8qRbu6hpklkuuqxKMCiUItuXIbCekkuaCeRTlA7a5tbrlA2EHhiIkh1YrYNMKQLY3n7sPz9YBFB8nQFzqwHoh5guGnkFNh1ZaObLW+YHgXyYEsprDYjPTlMncNg1WSrryZZx4wq68x9LbDDzJ5xbek7wMuA4sHLgMY4f2kDcILR5Xb1eDyeqqeCY3HFxuHpp0Q2LNpKx65/BbsahRdg0S4s3w+2ArSdIDEPBSstnzlGkFoMdhIIJTURJOoIUkdJ1kGUe9yCcBZonqANoscgmIu0Ipi16nJaVy8caFT3EIRnTG+b5TOWj7ZA1E+y7jwtvnW5SpNEmXVgufMgagVyRPnNQD9uze2bgSficrjPURfOb/Jsk3kL7PKzrKPa8ZbIs2cBsLfo+z7OfDY/DfwIOIBbS/2VZuaDms4CSe8ElpnZG8ez7AjqMuACM9txtnWdayQ9C/iGmS0crqxnYpF0M25KdtUgxxfjFKRms7L+9ZOWCo3FFRuHp58SCWC5LwNvj2M3ZhcdmEuU7TAlHqFr34uLzoisfsGT9J3YT5R5th17rOgc5Zhz1VYl0rdA1IHpxyh8HlH+QafQSSjoxoIIKQAws2NE2cfJ95daEDdaqjmvMHkTZl3AZiw3H1jqjkebcX6NYdFZARbdHafTGWqpwTFhmc5dZHvawEBBgEUiSG52XXeZ2cn1jPw5inLnR/vWbyZR2xHMXTNZfB8HIxy+yNTgLBLctkp6oOj7F8zsC0Xfy1Vcavr+LeAR4DnAcuAOSXe53KIeSW8A/gp3bTqAHwJ/Z2Ztg51jZh8eaf2jKXs2SLoY+AQDabyeBt5tZv91Lto/W2ILzduBPwXOB04CG4H3m9mWs6z7TpwC+6VxkPO9wAozGzKIVNKrgb/EuTx14n6DHzKzDWcrQ6Uxs7uAUwqkpF3AG83sl/HxPThrWtVRobG4YuPw9FQim1c8SvuO/wReXuZokyx3hdXMWk+ut4Zc3yqImsl0HCZZe/5pJRV2a9bqBwlTl5vZ3ZgZQeL5gt+gIAdqJMql47WMAjPbikVt5HrWUJgeLmDRXVj+ZvqPR1Y7Z7MstwQYSKFjtgfsPM5UbJqwaGWlXl/syKMHyHadkcrnLGgkyl1GtueJcayzUkyL6bcIyz8AACAASURBVOyz5Ngw67XuAxYVfV+Ie9Mt5o+Aj5qZATsk7cT9Y7tvXCWtQiT9FfAO4PXAr3AWhc/iBvgby/krSUqY2WR0B/gx8G/AS+Lv1ZYT9l+AFwNvwi1EEQK/E+87KyXyXCPpL4G/Bd4C/BzIAC/ETXFOeiXSU5ahxuKKjcPTZrquDB8Y6qASNbeoZsa1apjXTN2cX5NuWonCQwSpg6cKhanjpJpulNSMRQ0EYSQFO1DQQpCsJUj1k6i5kTDl8jrm+vrI9dwIpIqa6sXsMJavBa3H7Bl6j/VbtnurZbvdj9mihyBqwd34UkmfHi8F0vranooOblofHX5oXXR0y7roxPYN5HpnjkfdZaiGfx7TwxJZ2fVa7wcukHS+pBTwB7gpk2L2AM91omgOzsLwzDj2sCqJ/aXfB7zdzH5mZlkz2wW8ArfM6B/G5d4r6XuSviGpA3hDvO8bRXW9TtJuScclvVvSLknPKzr/G/HnpZJM0usl7ZF0TNLfF9VzraSNktokHZT06fi+DteXVpz17otmlom3u4utXpJeIumRuO57JF1WdGyRpB9IOhr34dPx/kDSu+K+HZH0H3GU6Uj6Uivpq5JOSnqcIdKnSboAF3jwKjP7tZn1m1mPmX2zEOUqqTlu/2gsz7sUzz5JeoOkDZL+OW5vp6Tb4mMfwrkmfVpSV1HfVku6Q9IJSdslvSLen4qv09vj76GkuyW9Ry4C953AK+O6Hi3Tl2bg/cBbzewHZtYdP1s/NrO/icukJX1S0oF4+6SkdHzsWZL2SXpHfM0PSnq5pBdJejKW951F7RWez+9K6pT0kKTLi45fKOnO+L5vlfTbRcdeJOnx+Lz9kv66WIb489dxEcU/jvv8jqJ7n4jLzJf0o1i2HZLeVCLf7fG964xlGOrFuHJUbiyu2Dg8fZXI5hUPAT8ZSVEFiecIahWmWoO5Vz2tedc9qnnXPq7Zl/UBGbNoHXAJZt0oDEA9QD0KZ2P2GNAFwZMk6hIouAeF9+OWIFwP1CDNIUheg8KbibJ9RJmZ5HrWggyzQ2AXMPiqOeN3DzOdJ+k7eQs9R26la/+ttO+8CcuXRnePE1YNz97oEsxXKcI5c49lG47YIvY2nLXjCeB2M9sq6S2S3hIX+wCwVtIWnLXtf5vZscr0tqpYC9QAPyjeac7V5b9xkZYFXgZ8D2gBvllcXtJFOOvla4B5QDPOojkUN+H+iTwXeI8KAX2QB/4X0IpLY/Zc4M9G0JfjwA7gG7HCMadExquArwBvBmYBnwd+FCszIW6s3o1z7VkAfCc+9Q3x9mxgGW4K89Mj7Ms/4KbtluOm8l4/hPzPBfaZ2VBWmX/FXdtlwK3A63DWnQLXAdtx1+6fgC9Lkpn9PXAX8DYzazCzt0mqB+4AvgWcB7wK+Kyki2Pr8x8C74/78re4F94PmdnPcMv8fjeuq5xf+w245+qHQ/Tl74HrcQtUXI4LzHhX0fG5cR0LgPcAX4xluhqnEL9HhewejpcB/xeYGffpPyUl5TKc/Bj4RdzPtwPflFSYqv4y8GYzawQuAX5dKqiZvRanAL007vM/lenPt3HWuPnA7wEflvTcouO/jXumWnDKVekzdE6o1FhcyXF4ek5nD/ABBqZWhqMJtAeFcyQWgj0AdjOAGZcD67H8zWB7CcLnA+sRiwiSm5FehFm38n27UDJ0vqr5qynOQ2gG+cx64FYsuguFy8n3rrREzVNyg1xjqUAWZR+27iNd9J1Yh0XQe2wB6ZYDBKFB4EK98v1CoZFqCoOZK4f2QVRw7hQ7i2ZGu+7cEK+GI7CAxgV9QevqyeQnOXv4IlODEbzJjpnY5+2/SvZ9rujzAeAFFROgemnFTVGVm5o+iPuHXWCjmf1n/Lm35H7+HvDjgtVP0nuAPx+m7feZW6Dg0diadTnwhJk9WFRml6TP4xSmTw5VmZmZpGfjFJ6PAedL2gD8iZk9hZsi/ryZbYpP+VpszboeN9U6H/ibomtRsGC+Bvh4UdTp3wGPSSpW3sr2BWfR/TMzOwGckPQpnEJUjlm4a16WWNF9JXClmXUCnZI+hltq98txsd1m9sW4/Ndwiv0c4FCZKl8C7CrK0/eQpO/j7uVWM3tM0gdxiuAc4NpRBJDMYvDnqsBrcBbwI7G878Mp9u+Oj2dxSmteLtL3C8C/xH3fKmkrcBkDlqwHzex7cV0fx/n4Xh8fa8BNo0bAryX9BKc0vzdu5yJJj5rZSZwf6qiQtAj3IvESM+sDHpH0Jdy9+VVcbEPBNze2bP7FaNsZLyo1FldqHJ7eSmTzivto3/EznC/IUOxH4Q7QzYXgGNDNWLQOi24UPIa4gCD9ILAEs3tRWA/MQXLWgih/DwqbkRaIMGOWWEe+d3Fc/iS5vofNorUQbVaitgWFjxKmj0q6EqPB+tt+bl0Hm1FgStRkSTZgbTvm0t9++soxfSdWlO1Bf9tjzFx5xm4zg77jW8l0dVqmo39U1+9sMEuQ65mP2cDb6smnj0Tte7aQrGvX/DUXFkLOCdOziLLtzuc0TCtIjHrZR4vyGU5fHlG4H6twg68oLHMoJaQgAdTTuaeWxsW9Z9HTyY9A1WAXnn4cwznLl/NxnBcfL7CXwZlffNzMelQm32sJxYpND3GQgqSVwMeBa4A63P+QB884uwxmtg9nDSn8Y/8C8B84y9gS4PWKp2hjUrHseZwCVk7pmY+zUBbYHctUbOks2xdKrktJPaUcx13zwWiN5S2Vpdjie0qO+B7A4MEfS4DrJBUHTyWArxd9/xpuAY3vx4r4SDnO4M9VgXLXdX5xHUVKa2F8PFx0vJfT+1b8/EXxVHShvr0lUcDF1+3/w1lAPyppM/C3ZrZxyN6V78uJWMEtbqN4yrr0GakZ5vpUhioci6e3Eul4P2WVSG1GYR6YjbSQMtM/hq4n13sPmEjUbpGzQCZwywvWDxS0PiPqI8rUArsIa+ukKEWQXGlR7jdE/bWkm6/gyBNbOLm7The/7KrCqdGeOx/E8mnMlhSmlstkdRyeKDcv2rfhbpzVD8yc9S/Xtwjs4rFUeVZILSjYjuWLpzzOI8qeR387tvOXA3vD1CPkM1fE304aKvzzLL4Ug72+xWVsDm76pRyn/w6Sdfdq6bMLb8mzcVMlU5pKWiI9Y2YjLp3X7wK3F3bGU5234XzfCgw1LBzk9EjWWpw1aiz8G/AwzjewU9Jf4Kxjo8LM9kr6DG6aEZyS8SEz+1BpWUk3AIsH+ad+AKdwFViMy213mLI+5KdxEBdssLXo3MH4FfAZSdeY2QNljh/DWc2WMJB7bzGwfxgZCpTev73AOjN7frnCMZ/FTfP/lqSbivxLh/sXsRHowwWWfm+QMoXrWnxtSgMxRsOpoA45Q0xxYMciucDTgiK5GPc/FDO7H3hZPO39NtzvoDhApMBQfT4AzJTUWKRIjubenFOqbSyuMp23AjSv2AgUaSxkUbAehSuRrowVyLJISpOoAYtuJp9Z5Jb30yawBJa/kSj/UBx13Um+r458303k+64j22lmUTfwNNmejGV7U7b9550IY/nNi82iAQtDvn8pUe6ScfBNnEW260ayXWvJdq8l13MDud7rwOYPf2qFCIK+EZUbUCABZoAtjrclRdviQbb4+KAK5JmcPhxNiyntSvlEesaOmbXjAmv+VdILYx+ypTjfsn2cbpUaiu8BL5W0Nnaqfx9jD2xrxKUZ6pK0GvgfIzlJ0gxJ75O0Qi4YphX4Y5xvODifurdIuk6OekkvltSIiw49iLNG1UuqkXRjfN63gf8VBww0MOAPOBIL0u3A38WyLcT545UltvR9Fvi2XFBHKpbjDyT9bWyVux34kKRGSUtw6XO+MVidJRzG+VIW+AmwUtJrC76DktYU/DklvRbnzvAGnGvC1+L+F+paKpW3acXP1XtwSvHLJdXF9d8mqeBP+G3gXZJmx/fqPaPoSzmulvS7coEuf4F7OboXt6hHN/COWIZnAS8FvhNf49dIajazLO65G2zKvvT6Ffd3L3AP8JH4nl0G/AklvsOThWobi70S6fgHXJDL/SixB4W3II1M6VDiSmpaHyY9Y4kUHEC6BFSwfl2FRTcDswlrQpJNR0g2QaLuQtBvGexDWkmyrl0rbl6pmUtultSK5YumqTR1p1KD8PzhC00AUbbOeo49br0ntuGcvT2eCSEOEngn8M+4f6KbcFaq55rZiNxPzGwrTkH6Dk4Z68StZz8W95W/Bl4d1/FF4LsjPC+DC4r5Ja4fj8XtvyGW8QGcX+SncX5vO4qO5XGKxQrcrMA+BlYd+wpOmV4P7MRZ2AZVBkt4H25acycusGM4pfzPY/k+A7Th8lz+Di4whLjdbpwf4AZcAMlXRijLvwC/Jxe5/anYYvYCXBTtAdx06z8CablE2p8EXmdmXWb2LeABXA5OcC8ZAMclPVSuMTP7OE7JfRdwFPdMvQ0o+NV+MK5zMy590UPxvrHy/3D37CTOF/F344jwDC6o5TacNfezcb+2xee9Fud724FLRzRY7suP4JTeNsUR3CW8Cvf8HcD5kf6Dmd1xFv3xxMjKLXk3HWnf8RvgWaD7ULgEF0XWjnuw51NYnnCAfiANgMINBImbwPqA4xgHwE5PF2H2INjV5pYrfJBcTwsW9SLNxr21FhFsUrr5OoBo5x07IRqLsnUCqAMdIt2ym/6TF+P8dsaDburmPKC682Zj+Zyd2FYbr8U9OqJoI9n+M1bymUT0ae6Vr9f8628fvmj1cnFNyr69dGyPxuXbDz44TJ5IzyQjtli14VaW2TnR8nimNhph8nNPdY7F3idygA8AzwK7loGZkNZ468f0GEGiA0iDulB4JZa/F4vqINcLYT+QxOwxFDYQ5X6GS/dwGXAIYn+PfN+D5PvmoaCdIBjkhkdLBz6PdK1p7UPhSZK1bWpZsYBk/TKwLFGuSWHqVst07bQjD4+HEnlIrZeeUE3LrQCWz2xmLCvUmXWQ7R9ube+JpsYOPbxI868fvmQ1U9m1sz2TAEkvxfn1CWfV3ALsmkiZPB5PCVU4FnslcoDf4FYhuLHMsTTYJUTZPhQ+QZCKLZPhGqLsEcwuJEjlcCb/yzHbg8IVRJkkzgl+ObDMougOov4ECubicmh1UT46r9+i6ATZnqMMnh/SocQWNS7sJN00S+nmEqVMScKUSxaerF+Km8IabHr2mOvnaamE8gwk3D6IgnbNvjylVMNFZtZh+zcdIdO9AmwPYWJdvDRiEmkRLvpyCLnVRBBsJoouG7LcxDM9fCKrzJnbM2pehpuuFW6a8g/MT0N5PJOOahuLvRJZoHmF0b7j/bhknINRg+WvJN8LaD/SCTCnuFn+lyh5KZCFqBZsDgruI589geiFoJUoG6AwBNviIr/D64GDYFkgB9ERl9wxuE75PrP+E3ug/ALzAKSb16v10ps1kqeu7/hmkvVdpBq3qWHBUjIdh4nyeYuyOQXJBHXnrUZBwg7d/xBhukcN82uobb3ITj51v9JNNdTPuw6Yd6opiw6R6VqKRSlgNblMceBPniB8gETyPJz/zpnkc+uIoqvLHptcTA8lssrefj2jw8zeCLxxouXwTD/M7L0TLUM1UW1jsVciT+cOnOP6dcMXtQWYDaT9yfc/m2RqG7AKgp1YvhHpuYTJfqL8vVjupKTncuYKYfMGAiWD4ugyUTPrCsLUA+Qz13CaVVC71HpJj2paTl9/ewhU23q5aotms5N1i10jJeXmX39VnMfLLdc1a/WtZ/TcrM8OP9ofK5DlCIny15DjAaS9hIlWIEE+dxCXnzFHLntGvZOUKa9EStX39uvxeDxTjWoci70SWUzzCrOTT7wHgs8rCJeO8uyQXHeGIJVlIP0ESGmCYAX5YZcZOwNJMPfaa+g+tIlEup5MVztBMkn9nKviZNgVYbDUEKfoO3kfPceGV2CjvPP5zJ/yMV1+lqJNBOMVjDSJ8el6PB6PZ+KpvrHYK5Gl5HruAHZbkNpzaoGTINGEwoVSMLRCYdGVRNl7CZLzTou4NjvO8GvVlkUSNMxzltGamWOpYtyxnuPh8KWmDFPeEgnV9/br8Xg8U5FqG4u9ElmCZl9tdvTBTxBl/vPUzigDgKGHSDYslYLBtTnLX08+Dwo3ESSXI7ViUdug5auT6nrKz45poUR6PB6PxzNafLLx8vwIePTM3XYV2c5DFmUfG7YGi9JE+d1E+SdNYd4sWjeGaMhdjC0hcMUwM8Py0+m5aY4e+rfBfD+nBgIFwZg2j8fj8YwTVTgWe0tkGWJr5AcZyPxfzEXketotSK0nSC1GwdIS8/NeFO4G5ZFc8IhFS8n1HEfBU6bwKMhQ0KVETb3l+/vBUrFxL68wHRDlVgHbcSs0TBqrn0X5J+3YtjY690/xxIlnMJtJus7qeFFtfjgej8czFam2sdgrkYPzA9zi8xeXOdZMlLmFKNMPdFiYfowon0Myolwd6ZkXSsGsQmFJKUs2Zcl2tWPZQtDNbkvWQaK2h1zvTrCbCFKPEiRXEUX3QfSSuNzTTIKAFLNov+25q5V8ZuVEyzIBtDKllUi5sECPx+PxTCDVNxZ7JXIQNPvqKLZGfnuIYmkgTb5/LeDicGAHnLFEIgrCfqubewWZ9v8iyjQS5ZpQsgXL7cRyz0I1vyBMzcXsEYhagR7gTtz6qROKmbXbrjubiHKNw5eekkxpv0hV4SoJHo/HM9WoxrHYOzUNzf/FTSsPRnuZfeeDdZbsyyPtlBQo3bJWta3zqJtTqyAUYfp6alrvJN14E1HUhYKZhDV9KNEPXMQ4KPqW6XzKomw5WYc+z+xEdPzJe2zXnTaNFUiY4kokVJ8fjmcEdO9fS/f+pRMthsfjGTnVNhZ7S+QQaPbVeTv64IeBr5UtkJ7Rj9lesp17gRCF/UTZJPnMcRI1s0FZpEawJUAay28gSNyKBTkp6sCig1LQgYK5wAYSNTcS5R5H6kUKMO01yx3GLIvCC8j1bCffj2pmDpuj0cywjt130d8WkutdA5ilZ6xTw7zZSjdfNOh5mc4nzczIZ/bTvqeVXN98omzL2K7glGHqK5FVNoXiGYbu/fOA7wMh3ftfQf2COydYIo/HMwKqbSz2SuTwfAv4JDCjZH8/BOcpEJaetUth4gZDP8WiBghaERksuhmzHNhDQI4o+xwU3I2CG4mIyPf1EKaBcA/STKSTpsTF9B5+FIV3o7CRbMcVls/spO9EC3ALifpHNHS+yD0kG3rs+BM76T542+kSn7zV+k9iibq7NeOChUrWncplaRblrWP33XQfSpPpC8hnnzMuV29qMDkSdHo8I6F7fxK4HZgb7/kU3ftfT/2ChydQKo/HMwXxSuQwaPbVOTv64BPA2pJD3TifyPjNQZuk4CXAz4lyCZQ6H6KnkZZjZOJztpDvrydI7SXXvQMlrifK3Uki8ULgfsz2EPXtJepvheAA+exs+o7uBu0GVpNu2aS6OavBTkD4OJLzwgxrmgiCVowTSHNQsJgoexiAIPkoCjOnpI6yDeR6brSjj2as7rx1StSmLNudIdcbku2+hXxuPVFuOgbPDMXjEy1ARZGgyvxwPEPyCeCmou+XAuvp3n8J9Qt2T5BMHo9nOKpwLPZK5MjYhhIRYQqCZAMW9RPljkrB+WAG1otFadBOzELymQAFT2FRL9AB1AJ1YMeI8v3k+/tQGCLVAtcQ2d2IkHzfXKLcccKaFrDDWLTf0jMTEETkejYoPaND0hFgPuTXYOSBiFxXRJB6hETtDcC9WJRU68WryF+wi0TdhQrCU3kOrWPPJju+FSBFz5Fbz0hcGSZuIaiPyGfXk+1fi39GwAU4TWm8f+MUoXv/q4G3ljlyDEieY2k8Hs8oqbax2CsIIyHd+piC8I8LX82snQS1oFXA3WAvwPKQz6wDex5BeBfYs82iu4HzAGHRY1JwGQruR0qCjkHwG7CZWDaJBScJkikUtKNgB5376kk2dAYzlj53QBADs4eBJ4Auokw3ud6bgSaIaoFNuOTkjQpTTxKm5oNiBdIeBjqxXGnQz5lIAYnULYTJLsyewKyPXKaRKLcMqROzMS3hWKVsDa76H0cmWohKU21+OJ4ydO+/DPjSIEeXAlvo3n8p9Qt2nDuhpjDdBwTMAZYTZRfjAiGX4pa4nQukcP9jf0LjkrdNlJie6qLaxmKvRI4ABeGpyGaz/K/J910A4WFLpFqE+oE98TEXD2NRnijaY5n2uVLQA4ggFRAk5hKkZiFmEkXHiDLLCRL9wOVIG1B4QkEiaShJpvMK0k33EuU2ovBSoB5YfyqBOUCQupeEbcCsNp6yrgUywFEXjKPdYM/gkpb3ALegcNPIO64GpDUAhLU4/06OAY/T39MIFmB2HlPbwrF+ogWoNNWYVsJTQvf+Flxu29ohStUAn6F7/8eoX/CLcyNYFdJ7JCTKzcYpgsXb4qLP8+K/NfFZO3DjbDkyg+z3eE6jGsdir0SOAMv1ZAkS6yDMk++fD+qB7FyyuSMk6hYDPQY5sp2LSDZtI8qFkOnp+8VPd9W+4MXzAYH1m9nDRNkmgkQvlouI8j0E4QnQbqEssARjt4JUu825epcstxDIgqWBNldP/ICZ7cJyV6MwibQRBWvA8hiPEeW2Od+KRCJWOn+Ge0OGVGMbNbPWE2VCMp2FxOdkT3Y+EtalG4N0avDE5lICWAZATX1Bjn5gG1H+MNn+ZVi0aDyv/STg1xMtQOWpPj8cTxHd+wNcBomhFiXYCzQDqym89PUeqQXS1J7XVmkRJyW9R2YBfwosBFbiFMMZuNmjYwwEJg2B3Rt/KKdA3odT6o+dvbCe6UH1jcVeiRwRJqLs+Vj/TLAGAIKaexQkBoJt8v3rIGgyi1qxXE/UfqJLmb5GEnWBFFyC5U+Y5XPk+0OILgG1o7CLXF8/YTrL/8/emwfpdWbnfb/zvvd+ay/oFd3YiYUgCJAA9xUAh8OZ4XAsWbbj8pQysexIVqJKSZGdVEpRXF4Va8pKWTORIimWy05lsRVJNZolwxluQwLESoDETmIj9qXRO7r7W++978kf7210o9FNcAYkwCb6KXz1Nb67b+ee95znPCfIrAC9gHfSLgicB9uNyEK80W9B9QFwb6K6CLSLaxFAfQJlN/AAIs9gQ1AtA2dQHUXkPrwTuVtyLc9L92OhxtWzev6ta7t/7j/8sNa2cf3IvMfW/HTdcUSywH3Y4D5sAKonSKLLRLWbyhDNErx1p3fgdkBkdvFw5jAJJvzvUJ0PugNN7gWOAgk+1dqI52V3AE1ABfgPlC9/B7EvAvOp9L4K/NJd5UxWeucBrwCPfMRc+xDjUNfMzFHGEqoP48/tVETA48Af3dK+zuGuwmyzxXNO5DTQ/gOvgzpMNiY7L0tmXlZMsERdsgdXG6I+0kRcGlYXHUKCIYIcKBXAgTtMUmt2g32XTXvr9XeD2H6MgKuXkWAAMa2IjAnEqDuLmAze4IPn1+Rx8WHErkakG2hC3SbATtllA8lTQA9q9wGtiOSANuA9PDdHgAFgCOhE3UnC4kUyzSOoy5cvDLS21OPqLZ88kVXYcBHGbieJFdUAEJLoiVte9+3HQfPwr33+owizMIUyhxSVvr+LmH89nqAgSXbjI2vL0l+O4Kkw7en/5/sv8xIwnjX4eeBPqfT+NvnOE7dhr+8sKr2NwI+Y2YEsgxzG2BcAUDdTw4mLIF8A3Qk8M830DcAZoO/WdngOdw1moS2ecyKnhT4JFNHoPbGZhwHUJecEOnDRAlU9j8nkcNEIGluS+ohkGr+qJnMKsY5keDBYusKyZGmJpH5JxQwiUpMgv1TROnGyAQm+h7GjKKomDAWeQN0+xIzh007HEAnVqaLRaSS4Atwv6Bs+Gip54CFM5gD+xTCGj2J2AhPDGVWHL8RpA2K8A7pVwsIyWbRpBbADePrBv/ju5YG/+P3BT+T0ieQR+wxmkq+rmX3UqwEueeAT2cbtwVt3egfmMIcZUenrAH4J1ZL6gWIkPvI1+S20dpolTyNyz5Tffh74Myq9XwfmAb+Dj15+DfgW+c4bhBxmLVT/V0TWAj1cn7I+nv52/zUH0qNhmpVU8XZ12H9kG74zmQHJIVIFWY3qEowZ+rQOZQ5zuNOYcyKnQ1DYiboQF6PVwZeJK+0IZcKGNiABUWxGMMEgLurEBBGq28UGNRUbYzMFgmyM5gTUgtaI6yVN4n6SeplMfgsiBglCjETEFdGguFeI10I47A28voWY59DoTWxW0eQq9dFDmm3NisZ1UIMJtwAGYbziuif9VtAEJEibuW8C3gUNuDYqvvYSyQBIEHQXH/rS+6WTe14rLuvqwtrliBQ/sXMq5iGyBVA9RL0S4JKVIFdB2xFzFnVLb76S24437/QO3C7MttHvXYtKXzNes3YD8HeAYUSKRKU9OGfU2DJiOoF7gJKITG2SAMj5dPpkZIC/nPT/b6TfHwBXqPQ24du8/iLwK+Q7r3yCR3V74eJDmHAZQjvXO5GrgHtRHWJyhayYC6juT+3pWjQeANYD3tEUMZhwzaT1XMDb2c50PRc+1eOZw+cKs80WzzmR00AyTU/hU0Ax6l4nKKwB3Ye6JWjcTFLdQa5liUBFYx1ENYuRAsY+IwCZxn5NqhWyLf2S1MdAnWI6tf/wOjSxtK4eFqkfxebq2KwSFAwiT6PyDj5a2I66+SAHwFRALBKUyTSXELJIuBpX70FdDTHrYboXBTtAARnnbT4B7AQKgAM9hh9FD4FsAe7PrV7/1NDZy9tP/Nbv11Z8fWOPaW6MyeZGCIIanZ0BQfjkrZ9ceYBMfgCftm8FTlErx7e83k8eCmy50ztxeyAwy3g4dzF+E/h7wFlgFSIFVbeXpO5VFJLrHqWMit2PCUYQsxjoFJEiYho/xnY60+8h4P+Z9PtxZn16Vr+Fqz+HCVdNchZHgCZUL6LJANhyykcHqCF8DWQfIovADqHJaSYc8RG8bV0L7AMexVMKwNuRZcQqnwAAIABJREFUOYH3OXxMzD5bPLv29rZBd4C+D3IKMY1oPIS6BlRPgzmCyWaAo6CXMNkG4nK31kYGtTq0W6PSB2ozpwibLqKaw9gSEnRigzKNi/ZjgmOIyeKiFuLyMqLRJmoDWar972hcVkWLQB5VJSrVxNUL4uoVIVGxQSAiNeAUYi6CJMABVLdPcxBP4+Un9nCNZylPAafxFYjn8S+I1T5CqXUROdjy5RefyD3zUq06MNJLqbSawYHHSOo5ei+vgfA14MNbPr0ibenH4I3tZ/E+PGAe/rW7Iw2V8nB+ls8cbjs2AssQ2ewdSI2pj7bPOLcmG0hqm4gr9xBXInXxFlWyqjqzI6gao7oTz6ee2r1qJfAtKr2PfgLHcmfQsMgB/wj04LXfVAdRHUHdRdAHQT9Mf6+DjhcJ+syMmFHEXgF68TSiGvAU3sEuA+9O2tpJCt21T/mI5vB5wSy0xXORyOnxHN4QLEP1Csg51DmghLoC2XmtqDYrGourqwbFIjCICS3G5EDmieglcDmUKiL9EFoyjfOxuT5B3sMlTUhSJ2yIUWJwDpPJ4uJhjN3ml00MmFEUUBJc4hCzBjErUHkbF2cRGQEZxtg9jBfNiGxIj2PcuF0AqvjowmZgGz7FvQ8vC7IC6AGtJJXKOyaTyaoxCbCTTJjF2kcJs7ulqetLqq5KqXcbLu4Cnali8adB4qOunzncBdI+HsLsS6F87lHpXQL0gnjb4geEL+E5zco471GTnajb+DHXOo+kvhoXH8NkWrDhFpBuRLyjqBqlkjUrgAzKkmmUjw3w66hupHz5JQrdl2/1UO8QOnDxV0FOItKLuiIiC/CcUlDX7CNCOoTnnI8Ci1B3FRgBsxFji6imXFEHPgKZQgfwFdufHy7pHD51zEZbPOdETo8QeNIbBj2H2Bya5MB0gWsiLp3QykCfZBoTtRkBc1SMCUBjlDyix1EJEFkKSSuKA82TlDto6M4gMki2JcRF50lqOVCHzYYiJgDNoMxH9SxI1WtEaoQ6BScojZjwDDCEMQ2oK+BiwdVbETuAmAaMfRPkEURK6fEsAg4AWZBm0EfwldpP4VO2m0lFdIfeeGPL0GvfbVnwP/9yxOjoGGE4jDVbkEwNQMTkaOh6VpP6VrLNVSTIMfD+RzmTvbL4CyH+5SPpP0n/Nurii1QHFiCUAEXVcWnfUZLa45/8Zf2pcNfwIWH2dUm4C/AdoJg6I30pZcUAT113seJajAR7MLaCmAKqFVycRZMleAOW8d/aCdSxuUDGGxa4uBsAMbsRMwKsxkc6ARaA9qHsQ+ShafbvHuD/onz5KxS6k0/jBHzK+Fv+S1eiuhI/oL7WHhYxKc9croK2AP3gFuM5oisZl1cTEW+bGcbb1BGgAmacV/D5r3afwyeK2WaL55zI6THOhbOoG0tlaharc6pDR9/w/bHjbh27uAZAGpf8hGLXPHBD4IqaJKtRBgiCY7j4KknlflQXicka0CbQxah7E5ttRoISLnFoXCOpCyZYhisvwoT3gDulUKA2dJigEEqQb/ARUduBSCtiWhCzFmQP6k7g6vPBnkFMjKAoBeAQIg/gieBvAxt9ZbdewbfnkvT3pai2tT7/HA3d1VMSBq20tGZRdbikm2L7ZeBiOv9lCfIhmaa1CorYQ2iyFq+LNg7nv6QiNtPGjbJE48hjgyRdbyOAGhvz0a8lh9fBC/C6dwl+xO8mzVPkZ++k4/DR2rsDIjDL+rXeBfgdvCM53l1gP0iSCv5fg9hwJRNSPX5uc/2jpj5a9j4uPgWuiJLFi2BXgbrvOpU8gMgYyC7ERHjN2Q7QDpQteAmbPtCT6UpDcM8Ar1K6+L8AP6a4cHZE3cYuBNwoyTPZdinIKv+XjgE9vt2r+zHqGhFzHkMfmijQANKEmHn4qvapmONDzuHjYxba4jknclqYPGg7sBx1u0DvU9Xv4yp/U5rv+SIuOke2tQZcBq2hikIoYluAYWrDl3wEseGLwNuYYAUuvgx0T7wTomdxMookBhe9A+KwgaLuhJ+PvKoGJLUeoEhSK6sEw9jAILJX0ADVhSgHU7mJ1ag7T5BbBXIY2JUWaS+HYACRNnyU4Ri+irsDeB/Y5BvqaA0XlW0uszkI5r1KNnkWgExjD9XhiwR2DBd/QFDIE+YyJHGJuPp9CfN/Xec/9ABQl8y8PjF20cR55AA+unEcmFy9eA1igkXkfTZbK1fOAUsQM5ML2Q84Wbyxl2LnOj316g5Z9twaCXI3FBa5D1/ZQW3k6WnW8XGwzzz8a3eP8PIcPovYj392/iW+CnuDf571JMgV4AnvUErpZhlTERFUiwgvMS3/2I2BGQIWgnaiCcAI2K1en1bXAttR1wA6NXX+vP/IX1C+/CPgP36mOYCjZwXMtxUeBXcRdUNoUkK1Bx88KIuxXVBrwoTHEJMHOYMEm0DKuPhJxGzFFyq+DqYV+ciONBdvy3HNYQ53CJ87J1KHji4h0/T3xWbmk+ajPVE8GcZ3fXFoUsNrMRZBrmDDbnxVdIzX+nocZQ/IRYL8RuA+Kr0FxK4kKLaQVOu4ehV1J3FRG+hGbOE9gvw6ICDbPILGMbb4Jq4mQIUwdxJ1p0jq7aCqSRRQOnVZ8h2LEAkwoaiIwUUW3G4wMVGpisaLsKFTjeuULooY8x65+Y4wH+N7ZPcBAeqGgRhNDiDmOTCHUdcLnAEdxb9p2oCFKGdB84hcSo85ADIgJ0Fb6u+fzpnG+NXs+vtaiSqXKbRbbNZhs43Y7Agma7D5eWCWgyYiYoFzIqYH1TPptmKvlcZ8pnMg1Q2i2q+ook7Sa1UGSuRbxxBzFFUfUknqiotFVn61Lja7DJF1ABqVW/XS3vdkybNfvH7deo6wYZR66WjawcPgo5X9ZJuGQZz35cUBgibpcyA+kunil3+mm28WY7bxcD73yHeeAaDS66ZMWZlykXtQjpNG728KjS8CM8lo9SKyfMpvTWiyCeU8sA+RL33E2ncj8reBvw38LuXLfwj8EYXuT0Z39pPC6Nk2Vf0DouH1eJu3MP0A8j7GrgLeAPsQMIyYFSA/BJ73dlbuw2ZfByn46fbLoKcZbwULvihJpB9fvJjF89Tn8FnD2HkDNNGw+DMXLJhttvhz40Tq0NEQ+IfAP0VMLxMdG0DdNuDZ9H+nmPzQoydRXclUHoLIY0Cs6n5CNPZNTPglTGaviKxB5APAqLqrqCugbj9aqRPms2CuSNiwAXQ3MA9NhsANYkKHCTYSFEZw9SZstBPtUJKkD7EBknyR+tX3CPItQCMa7yPTvIxo5AqYOkk5onbVkWkKcbUl6sIKIpdI4gATPCQijQT5lxGZD7oL1c2I7ACpkUQln+YKu1C3D9wLSLADZLOPbCSXUNcFWgcIVtxbjPZvybFhzTrEXsEEVkwGbA407tRobEywJcm3lVTMMKVLFZSETNMKvLPmEHMu5WilBQCuBxcfBzGY4EGS+iE03oxqD0l5XKvtLLBUWpaugaUgZgdiI4LiRhE5hAS+128Kc9/fWI031pMup75PUg/Mgke+AuCO/2AICMg0HJGmJYkWWx8R383no/DDm0z/3GG28XDuClR6nwL++gxTu0C7EDOCui1p5qSIF8ZuwBfiePjsxlNTlq/iMwU1MIuYHqN4NYcvzjDdr0dsDDqIl+yaj4+e/hbly/878PsUuu+8TuLo2S8B/4eILNCwoYeodEBdDCPnI8b667SuqEqx7TIiGxXZKya0+MisBXkX1SLGrAPJ4ZUvfFRYkzNAC2gZaEPsMeBJPMfS4Su453CnMXa+G3/dHgcew3cramLswp8T5H+LXNvpO7p/kzDbbPHnwonUcu+zBIVfxyULCAuXEMmjbrzFXxPoRApHk6mahCtRfQWR8Uq6bqCEJ0kvFTHPa5DfSjRWxNUfVLE9EhTyiCwTeECrw1vQ+mYyxcMghxGzAVXS4pVWgtx5kCzCUnwLrKuIGUZsGzZzL5bXSGJLXN1HWCzjomaxuXNAG7iaBvkY9CFBjxDkAjKNZcQME5UdwmaQMmFhP2LvBb6ISC7dvkNdHWQhxo6Ci9GkD0VBz0BSRpNjoKvxMhXNiBRRrWU2PLa+9J/+/RW7oPv1zKLuRvLuKi044vKoFLuewCXvaaW/S4qdCzxnMnbY7G4kyDHBTVwPHFDVkGjslXT0bkArxMk2McFL6flvwITbcNGzeDHjHYwbaZsLxWafBgYwmfXTXPo9iIwX4FSBIyS1JfhUvUdY/IBMY2SWPLNZ1Q1Ltf9mhJP90rpu903m+XxBBJllPJy7BH8Xr+s6M0SaELv5ht9VE/xzPQYGxB4GrfkiPS2hLsQ7kBahF18QUsBHNpvxWYE+RB7loyW4hhH7DBrvxTuR4ygC/wj4dUqX/gD4U4oLjn7M4/7kMHo2C/yrdF8AEDFdGuTz9B8aJUkGaVuelUJHFpFHfJbCzENkJch7iHkR1QPeZhIwEYwA3CXQF4CzIOfSCOSKdOJ4MdI/ptL7A/KdA7fhaOcwGWPnQ+A/wweXHptmjhFs9hngDaoDm8m1nb+t+zcdZqEtnt1OZKWvHfg9Efl7BPn9+ArjfrzxbMBX250EdcBWfBSrc/IagN2IyQJ1vAFo9t1ctI53JhETrtdsyzkgRF0t7aUqwFI0CYHEF8JwANWDoP14rtBWkI1+aKEK9HgHMrNZxG5Tk0mAJeAukESjQAR6BMxjBNkzuCQSjWqaRAOojKlYSGqJybc3q0tqxKWt5NpzYuz13D/xQgFAG5pcQGwOZBikhgDOjXmOlLSCOQlswO9iDxr3Ys35pv/ht2NBW/XCiZrpaLfS0CmYTJ6kshdjquQ7Dml95BxiSzQue0BcLY9Pl48XpTztNdY4Rn0oj2qAiwQxStjwksblV8HkMQGA4tzbiARezBeAGJMdBjmFJudJqgsx2YqXNKIR/5IamXTUp/Cjy+v4SWb5CwakiSTaRlweQWwjmmxg5jTg3ZfKZvalUD73qPT+Aj49/LPBU0ya8YPDid9VgeRdxMzUNzpd3hzCBE+ky+zFRc2gq6aZccx/2yIkF7mWHr62vRAvTfQPKV36K+BfU1xwewZpo2fvBf4T8PCUKUOIfU+aljVoVB6TpsWPAYO4+G1M5gHxTvVK0BVo8jbwLJgxYKJlqybb/LmUi16Fg6XAFl+MND6PgsgKVL9FueeXKXTVP90DngMA1YFmNPnPgd/A84qvmwpyELE1TLACMeP36xtUBzaRa+vhDmI22uLZ6UT6aNIv49MmR4ELk7QRu6bMvQSVfaB+ZChmzKeaJQ+sQEwGYbITdiW1tKN4h+g9PDf9eT/Z9COyAl/NfIhM41Vqw8O4ZABrnvbZXPakt0NmIjYtHfgI2dt45zQRkTyqawGDDX2PW5dswRfgRNhwCWr3iYvv1SDfLQ2LDqKJoklEUFhNPNqB8L6qlmTaFoWyFiij7jAiIZ7/mEOCEXBPoPo6uHbPhbSdqLsM+jVUm21L22HA0dIeYUKDmABkDa6Wkey8N1A3j6TWj4sWYmwjTsfv/D14DUqArIg8pTbbQ1Q5hrrNqIPayGsY+wUghOwIJjyAySQYGxHkq0QjF8nMOy4mfBgXH8K3eJsHjKJuO+oqQBaREhJsnXLQk4dxMZgEV+8GusRmgSwajfQDjZ4HFfTh4qZr9wd878bzeBdglqVQ7gL8An5QNhWKjxKmPZtJdQsZTb//Ph8VOXTxllSqZgtIxg+Y6Zpy/Y8gdoLHLPIoJlTQHbjoHny2Jp0W9AMrEVmD2mFIKvjK73FsZcIe/E3gHso9RxDz58APyXdO5XzeOkbPCvBfAt9mXCB8AhFijomxT1Lo3Iuqis9CNWHtMj+LjmerKlyTPFL/XvEdbU6i8ZNIMKhJ3CtBOO6IrPOFmLTjr10/qhfwLSSrlHt+lULX7Khgny2oDjThnfuH8UGER4E1iDXY3BmS6vvA/cAJJLiMCR+clL2ajFXAq1QHXiDXdmcpCLPMFss1rdTZgmr/euCPGef4qLq088n1UC2B24cSglvN9PILgNmJyFS+EMAukHZEVqJ6EbCIdKEulcmZvClXoja0HZtrwYSduPgEGhdBxrBZFZtxeMNaABJUKz61JBmv20geXA1VUJegiUOCK9jgUaAb1au4+iFcNALSCLpR1e0kqfr9zrb+SEzYipgnbjgKF70LDIEJIFkI5jTIk+AO4F88L+GS3aAxEvSj8UpUW3C1ErAKyXyIMStAtqrNdAIrRWQfyGNosl9dMiBiQlBJteYSfMFSBhgEWaCaxGg8ysiZVZjgPEGTwQbLkOA4QfYhETOZ13gCE1wGFqDuIqp5XL0GOCTzCOIu4lwv6EbEvooJsv4aaA50IUk9JyLtIEcwQQ5NenDxdXIeqRPZjwmvSNi4WV10nLjcjyZ54BFpXTfLHopbw4a2Rn3txY8OTM2Ezv+45V1Vnb3dSz6LqPS24HmI447hCN5ZvAqMke+c/v6s9N4PHJlxveo+xEWLmMQrTrEbJAbpQGQBJowRmd5eqo6hyX40eRYJtiDm+lS6xhNOo3+3XMVHRPsQcxoxk1/gB4H/CXj5k3Im3cnvtGKC35XmFc8RFpaDBJM4ZidS/RTB2F6FTupXjxM2tKIoYjaISBb0XbxDchh/DVYBFoKDaP1BUh627xZUOSK5pgiR8QzXGSacZvBV9mvxcmO/TqHrDz+J47zrUB0w+Ezhg5M+67mxB/z18PdgPyIzd3W6HgeBL5BruyNFYbPRFs+eSGS1vxH45/gQ9YQQ2nQOJIDvdf3s9NOuoW8GBxKgEbQ/5RZ1ARbVvXhph+uR1N5Hky8Tj2t7X1cFuRWbeQS4wrWCHt0GfAF0K2LGEHkElSokY4ht94cn76XLb0fEICGI+p7eGv8YZAHKy6AvEVcMobkKcgqR5TiXQNoDVuwI8BjoTxCjqLaibpfnMYYZYBc2W8TFJxHJge0lKQ/htefOofUQze5HWCPQkurULfRSaqZNjGwA/UnqEH8RkXdANl07dqgKFtSpBoVRkMVkG1XELpqUuh7HScT24o1wCTiC6oiPGmuI1mMwWdDxooEcXgh4CLRGfXgRyC5svgU4i8aQRAZ0C37ApMQVQK4SFpoFgaS+RUDUZiOS+h9Ly313lQPpMft4OJ9r5DuHgL/8GZZ8fsYpqhEuSrjRgQR4wgc4tYayCw3WzBgNEWnw1cvmB4j83I3bMYshGU6d0DP4QpsyYt4B+RKqVW9nrjnIfwW8T6X3XwB/dSvOpDv5nc3A/42LF+nQMYAYE+7VfFuVTFMimYYIdBEuuUp1oKzI+xJkCri4zXNFZScmsxi51vd6XfpdA4YQmlHzrmpiROR5EQnIFpuBIyABsBb0OD6COR6N3YCn9zwLfItyzxEKXXdVI4OfGtWBHN7xfgh//h7CO4zTZNsmQTXGB3smbl7/58d1IME7p6+kEcmrP9V+fyKYfbb4s+9EVvsFnwb5NlP5NjNB3W6SWoKYXSCP41v6nQV5POUKpZCjTC7CmEAf/iaeihu8fFWtEI0umHFfguJqkPHOE+NV4Q+OL85E54NcKtnRjo8mPIw3RgZ1dYQaIv3pg/IcGp8nqTyPybwJGmpSq4lhDJGXgTXE1XNoVAPJEjbsQkwrIKBlxD2M2CFcMoLIFURrCAVUY5K4jAkiMCFiejB2EchQKqvj8FWHI8DhVLT4FJgqggF24g3unvR7DM+H2o7Yr1CYf1LEfNTIMQ9aR/UtoOwruzUAWQ/a4bXsZBlwKT13ghjPU4pGxwXiBdT6l52BIP8YceUnaNKKcw/i6kXEHhN0NZP09QTGsJm/8RH7Noc5fNYxYxW1Xj21HbSJTNMWwkIDEtwrIlN5wVmQcFJUbcpKFGA7sAqRl4Bd+ErkCQgGZSfwVXzByVngPuBpfAvBD1HKqaTQ+CD/QbzTfIhyzz8F/QGF7qkFkDPCnfxOCPwz4H8EJnu/AS56lHLfSTJNS4jGjml99BLVqxkyRUNQaCVo6ZJxeSOxI6m4+DBe23bcQGRAhkCeVd+koY6E5xHpAQJEvjbpBLyAuskpfNLj/Aneqb7ycY/rrkB1oAXvKI47ixvwknAfzzdRHUGTU2hyFU3WIuYINndjodlPh0eBH1Id+Aq5ttJN577L8dl2IkdO30NY/BeI+QbgR9NwDLQ2IzFc9QxReTVomo6RS2m0agFQxwQ7fc0JDglmijqFjDspN0P96jv4toHTY0JOpjLp132TlmlOtRWX4NtpAQykI6hDIAt9b2npR4JGiIfVaR2nI6ge0LgaE1fKEjaIhq4PCZyI/cB3rQi6cfEwcTWPBBE2mIeYXlR2o3EjEIB5CXXfB3GalOajDIvJ/AI+AroYpIhIBjgM2uu798iTTKTNmoGT+DR2CBS8I0gV1CFyLOUY/UTENE86MXsRUwUE1WGEFtQ9jLrncNGPUNcE4kBLwFHQY2llqU0pDC/jtIiLXsFmCpgwxtWvXU91SQVixWbO4qLVIrKSsXO7sLmrBHnBV997I4Q2gbxG84rRm17vzylmm6zEHKag0muB56abpGOX9+rYxRbC4lKpj4ynqVWD/AkyTT2EDRabWQCyUILcqmmjkKolVPcjMpka8hhTHUkxSxGzFE22go5MilbuwvfpfhDvoBXw2Yb9+ChTQ/os/jHwq5R7fgT8ewpdYx953GMXVsn8R/8t6trRZA8uruOihKSORmUhLlURE0ql/0NyrSJhUxkTNCBBiJinictvExaXAyiUcVFOTFADnpmU5TqLmBDV0wJNiIkBTWXgrp0hVI+C9nJ98eZV4E+Ab1Pomq19xm8d1QHBt9+dHF18iJm1S2eGujMktUugS/H83EYwo5jwJBLcqgM5jmeA71MdeIlc220Vz59ttviz6USOnM4C/z3wj4lrRwly4ymQY0RjPsUg9jA2O4KYx/DtuHpw8RguaQJdNrEynRwlzODiiRS3NVuZHJj0kkAH8ZW7Uyv6boC66ENcfWr7rOvhovPYbDPXnWvJT4qCrcV3kDmAmDLqnsE7lNuBBNR3cVE3AlwmifpQbQf6SKJOicuNKraEyQgmUyKwsSbVTmymDnJZRJYALZDUwFxGpeB9YzOKsAw4gIs7VfVBqkMnyTQNI+bNtPKwF6QB1QrqclzjLro+PzLXPGK7EZ7A66EN+H2miu/VuxTVs4hYRJajMg9NDgEWMdW00roNL0eUwRf+HEaMA66iasB0gl4B04omFpA0KpBgbBakCmwUE6BwGLFDqu48LloAdOOidlQvK+z269MONFmmqj0i5v401f006K/e7Hp/biHALKsInMMNeJRpeN8aV6/o4AfLgVbQg3CN6yjElVXElVVpcCyiuGAXYeH6jjSqCep2gDYD61Fz3g8uAc+7eRyfgZhCC9ISIl8GfSulujydOqd7QB7DK1gA8gyqH4LbCboJOA7yIvAi8E8o9/we8CcUum5MLY6e+wbwSyLmOR8YCMCm2XqXbJFs0yYdvfA2SW0jyFaC3CbEvi65lgc0rldx1e8RFL4CHFQX9RJfLRCVxjTTUsFmdooJIkSeRoIyyCLEhUiQyhjJdny25TI+db0aH0FrwmfMzgPfAv6UQtfdNTitDljgXiYcxXHHcbpCsZvDDy68KLirn0bdZmAZYrdgwtCLwl+TVvok8Txeb/rYp7Du6TELbfFnz4kcOf0F4I/wKRDQeAMu3oKYgKQ2wW3QZB1xOcKf9gCfOt104wo/AkntXiR/Du9oARzio6KKk6CqUBsucbNz6KKrqWGbTHQY76DSlcpAdAFllAB4BeQrQBnkPtCtac/WDOpChDySGUJjsEEr2e73RUKRTNGAxihGMcPEFcGEpJXVsXfEaEXMMGhIkK3i4iEkyKLRfOAy+XbFZgPEXAVpQGQjqgdRWhCriPSmBTNjabW3gp7C85ssyBPAedA+ROoouxA60+l9+P60TXhHsCeNKIb+dGovmvQi9nlBRnzrQ1fw2zNfBg6gUR0oIqEiIoi5H9iTckyzhI0bxBOt+wiyD6iqw0VHKPe2YrMxmeYOaoMJ9ZHzWu4b1dpQhdbVK8UEb0j7hpkLEu4CzDYezhxuwA0dZVRVtWdPDz7SV/H2ZAbkO3dKw4JNkxaugL6Huk4mCgnr6WcyDKrd4LYBAS6uAwFoHsxujHkOdOukpE7Zf6WFDqpVPyjVL+HtxL2T1t0GfBPV/4rSpR8Af0hxwQnGLjSg7rfx6eudNxyL6hUmtIH9ho1VJNiNCZai7gMJMhnUtgA5dXGrjp6/Qr1UUgnGTLatBUwdH+UaRN2FtPvWuILDYZDFeFrNxDnzMmk7ge8Cf06ha3I/7s8nPH9xHdc7jA9yM33Tm0G1H1c7grqF+Axdk58gfZhwO2Ax4ScVdfwo3HaPbrbZ4s+OEzlyugv4PbwcwvVIqjPdLGH63Zl+zgGXUV2RjlwE6McPUzvwXRw6rvEi1ZVRdxKxS4B3uZEHOYiXELJMLaiJS9tAfVTT5rbgogyaPI7vujLREScut2pQGBWRceO7DZFmVI/hpQdSCQJdirAHxvtGiyBiUJ7EF6gsRcyHOLVizT3qgtMUusu4CFycAwpIOIghwVhL7Pxh+3RyI2KbEFtD5CmUHtDL2PBBkvoxEETMEGI6AZduO8DzM+9F5EN86HQ+Qgkfvm0E1oO8kh7XfGAvUEs5oA6hNT3nnSCjqCsDT4Ic8tshALoQE2EkT1QbwppLQA5lKS45AlTReDmwGsxu75y6KoiiujuVCgr8GRNUXY2kNoDNtuGi8yRxGfQ+kmo3uPfR+H6wrxNkctSk7HU/9U9muL/uCggy61Ioc7gB38bLU41rFi7SwaPduOiX0ukZfETl/huWzLZsoXHxhI1V3YI6m2ZL0pc3Q2B6ELm+hamPUq4HlqH6Puj4+mO8bm4FkU3gtqJmk+cqX9tOL7gjoEW87biSRkrXMC5crnoypSb9BvAbjF38Pp4L/XPqkl7g8evw6EwIAAAgAElEQVRuXdU9oEuAEa0MbtHq2DJNcj+S/LyaoIvFvxMsaGuqujEkYhdRWFCCS04IL4qxj0JSAjOCagGNFmEywwhvpWGiTci14MU4fgj8G8S8OWP1/GyHl9PZgM/SjTuM9zO50PVWoO4iSbUX74C2cUNAx7yNzW68zRI4t9Wjm422+LPhRI6c3ow3gM03m/UmWJJWU78LfCX9bcXkAgogRtkCPJCmwBsR+QCkjMhEuF11DJEj+IfE4B25RuAhVb1AUnd4h3EJSb2BsEExmV7ELKfaex5f3QzoGuLyNsLiMjwvqAbMV6SCJu+Iq18G6cdFGTINT+JT2xdAy6i+i0taQRNUT6mLElzscLWzkm//Mkm9oi4+j0hRNVFRJ2AsGpWJy0J2Xk6hQZAK3nh6A67xCSQoAAcwoUNdCUyEMIKLVZNKO7hRCRv24k/eYvwLSPGRiBye6/NK+neMl70YwhuUjtTRFNAL/vxpCTE23c4oMD8d5O1DdZ64pIMg24xqDdV0FCsBGt3PNWferAZp45ompu4ExtRFg9SGBz2Pkg7gEXXJGHBe0C6QYdA2MAM0Lt6OyXRJVBomLOxDkzGc/tVPfad9niDMOoHbOUxBvnMUn0k5dO230k/m4XmSSwFLfbSBbNPEMibYz7xVDRIWJzuQ+4GnEPMBsD4tpjkBnPfNCbQOkkkjiHu5voPLuND/QLr8GCLjVcqbwL2F2kcQQPU4JI3AF9LpW0G+hk8RT3DQxAyl0lvp/+XnVYmIy+9q6coVBo6tUWMz0vnQQcnN60BMBZhPkG+gaVnF9fa9E/2//9va8GsvnLP3vTBIkF+OuqMaVy3wmMAhxCZig0doXLo3dWjP4W1XFqQXsWf9cchaRBzXolN6FXgN+D3ynZ+vTEZ1oJsb09GfRsrYQ10vSXWAiWjvVOzHZlbPwNcdQeMexAyCWcuNBWO3gtsbFpyFtviz4UT6qsJbdSA9RO4B7kH1PabnNQagm4ELwEJMsMTLTjCG8g5QAV0IzEdlJdCDyFpgE77Ceq+I3EuubROAqlaJRktEI+sJCgcJGgYIG/uIRhdf22Jc6tKg0CJiziDyRVS3aGUkrJzYN6rZDtuwfFmUDj9+DBRQHQXNoM6gbgwJLEYTXBSrugZqo2NaHvyuFDvng3sK6CGJBlVdDVdXxagE2Raicpmwsa7RSECQTzBBDOb/E41fxMh2MM1aGxukNtJKU3ddxD6tUfllopEnCYrbCDTCV0fXgNhzGCWLf7AMPrqxGZ+m3oF3KC0+zfMkMOxfNp7pkVZ9voWXariMi2uoc6DrcMkBXLQJSDDBbsQsROQUhMcBMNan61yy1XfPYBQQTeqHcTWjLl4HhCT1C5T6dlLue5SFT6zEhOdFzDJV9xNcdD+YNlRPYbMOMaDxK9L5WHKrt92sxywb/c7h5jCrvz7sjv3ZL+IHwBZ1S1T1nNhMHw0LHLn2x66Leqgewae+Bf98jd8Xq/xHh4ELqDsLuojrHEh2gzQBpxBbBhqmDN4BngO3AzUBJGuZkGw5AtIKssUP9hgBngbZhsizYHvQ5ASeqhKgyS402SiFdjTXUqZ2dRfZBgEugs4H3tO4PES1hETDEj6x7oLESaiDR6vS9egoYv6a9h85IA0L92m2KRIxL4Acxobt+OxWCAyiugp0B8YGII0IY/hAQgn4U+D3yXeeu9XrdEfhC16WMRFdHP+e2rTj04NLDmpSyRNXRjHBYbHZ4bSo8gGQ49hMM2I3zLwCPQM86BvTuRIqbyP2nmkk5GYHZpkt/qw4kZ/CCEc6QEeZub2dv8HisiJmL0F+441Gz+WAKxPRemljCjlYRHJqwjxJpZm4vJGwoUJQWIfY/V63kAKwAN87egw/yi2RKQYHfvObnZWzZ5fd96/+5dsL/87f8hV/qk2o5sApqhlUG3BJj8alq5QuZqlXioTZDgZPafnVCxeC5cu3ZZYvWUq+owcbWBUbgxgkMwZlIa5GJHWnSbK0/1v/pq/lV/7rBls7fUQWPmkwmaye/NFTNC44JU0LInXxYYKMwbZ9D5t9CD8u+tAPjXQDE8UzMZ5MvsifH0p4rtNSvGN5BF+1mUVMxld0a+zXx2rgNKobUHdBVRPQfpJaBfSoBPkrmsRltLYXzNVUb25Yxq+BmHXotZaW+0RMpLYwyuCHI7jaIsSOUuzK0LJqADERSJsiewnylvJIBQjJNB3DFpsBISr9LHp8c5jDrIBZ/fUd7tif/TN8dy9F5DCt97eKDa8XU1Y9iM84jL/BnsVTeVIepZbxxSIP4J+9yZp9XtJGDCAR6KveXkwnWK4JJE9yXYRHDJhViAQ+xeza8BkPv22RLrDNaFJV1dAXA40vaQsUuxNs9knQ98Dl1CVZ4vKjKnEP85rLpvOFq1LsXkqQ6QT3IdglaDxfR8+up5x7nVzLVnKtw2LCJcACT9mhQ88d2kK+OZLOpXmMVVz8ARJ8FZH/lnzHH/z0V+MOwxe8rOZ6Z/EhZmzE8SnBR7ffBR0DiuBKuDiDuoS40k9QfC7ll9YQSUBqae3ADOtLJvN0i6Ab0WQrEny0E6nai7ozgCLm4ZSfPxW/CfzKz3CUdw0+K07kypvP8lNCZDGqh5kQjJ1xTqYZMqeY7qa6ESZQ4CSYEdBlIiYmyLWpnT+Ki4dIKsfS1lqFNN0+zwTB1ce//5eDO55/qdVFtSJoAecGUj7PO+m252EzVqNyqMMXWpOj+2OTT+ZLGJ6lVh3LmOEWmdfUBua4DpzIQaCy8GErYBQRYlNDYqvVsYCBMxez84vl8v/5rUzjf/GLWWw2AmmQZc+dIN9yQZA8YgNsXtC4FWO7gd14Ad3TeM7pVeApVPeBrgNOI2YVXrLI4SsVI7xRWox3OMNUKqPERGFNGmWwMa7mSGolRArY/GngKUR3+SviBJVO4FlNavsxmdUiMg8Jv4tIDmNfBIz2HTqKq+UICltpWoYEmRdw9Q/ArAMMYl/BaYjJnMTmjhA25lNzdITWNdf12r5bMdtSKHP4+DCrv/477tifbQdOm6UvngGg2m+BP0D1G/jn91luTN2ljqYewQ8avSaryCJUX0b1S/4lz/prS4hESPAIqgOQVPFRLvD24e3xXbp+M9qK11BcichC1PQAbyN8EdW0iE7yqBxE4+G0ihvEngRqhPm1guxApMMPWOMxxA5iXJNI8iiGNyXbOITqaYQQZIt0PBQgJqE2HGjp0iKxmbKKUdA9KM06dPEyR95cSGPbmHSt3EwSvUxSXUzY+B6qv0G59x0KnbenB/jPCl/08jg+W7QJeJpbLXj5RKBTdDTNYbGZOjarmOC5az+LZIGn0YS0veaNouHqTuBT7VMwk8Op4KK3QVfiC6e8HJMyCAxjwmpasDmOb1Ad+Afk2m4bz3W22eLPhhMpNkJdLyIjqPsYDqXsQ8wo6hrTtMp0guFwrRLwJlDX+hFT53/kKAgQEy7RXGcTQoOIOY0vrBkSkSI2vIgJHgdO40d/2wCL04agmB3buPO193FxFnXdeEO7C7HdIIvR6AzIch388Fh84YQb/d6P8w0/9/SJoLEBdRraRd2jfPiO1fLSVprbBzCJISoXyDR1oO48QU60/2wWN9ao9fJILp+YoKM7lFzz/cBp1O2XQrvBmFT0XPpQzSA2wnN9mvDRx358ZFGAEl5CaRvQnnbxeSR1FLvSa7EbH3Gt46OTZ0GeBD2QruM13xXCJhLkB9RkCyJaQEyepN4jEuRVoxbU9SB2AdCPsVcRuQgyH2MXYIIH0eQt4HnEVsh3HJdMQSlfWkOxewvRyHp8Sm4Mm68QFHLYbAaxiSS1KmKywLhA+d0N4Q7UIM7hdsKs/vr1XVJy7QnV/v8G/5z+7gyLPQ36cpqmHiau9CJ2CDF5cC+BbPftAmVyWltB3/O0ouAR1B0GVwYJELMZddunGbPP9xXa49mGtKuOujdQtwBsP54OM4yLPe3JZndJWHxSVY+ImB7QAsp80KoYu47svBpx/ZzmOn8ixS7BBAa0U128kmjsoNjcZtARci3PkZ1XwtWPoclIWhRoyYbr6F4wTFxP3Idvvind6/No/bzYzEsAqvwTqfT9A/Idl27hsnyyqA4U8FJL407jk0zfoejOQLWKum2IvDBlyhpMeJGJJhzT4UZfRRU0qU07TcyN+pOqMer2g268YZov5Gr1EczrxjhDH7FPnzxmoS2+805kdaBIWBzXWuxE9Rxon7/h4lQ/UDO4ZCFeexDQVV470rSjCnF1Cxrf+MCIWYDYN1HtQOPpIpLHMeEVTDjpppLDQAzahOf4pVwbMukM8/AV1SV8qrwOUhYRQRhhnO/nHcIV+HRvT7r8BdSV0GShxtUBjA1ETBEbhmlYPQDNgWlBOK6aPKpDp18mKa2Nasn7g0N1acgVKqXjl/KD39mCQ+PBU1fqK37+qbH64GgUjZazLS9tLhe+9OIVMo2WTGNGr54T+q5kono2X919clO4ctFrBU2aKfc2ke9sxdjUMaQEdCHSD5Kkx38fXjezHd8H+0EgREwXqhdAB9Nz8Ca+12wzPtr4FKrvIAT4kV4WH+1Yii96+gKQQXgDpCjGDCOS+J7YUlQxIVGpnyD71zxnkhAp3CeqlzBmJdCJi3ch0gJSlva1D+jYpdep9j2AzQyBPkFQ2ENcWQd6kqT6Iqp7CbLP+kpzuQCyBHj149yidwU+RR6OiLyIrx62wL9T1W9OM89zeF29EOhX1dsh33F3I9euwDep9FXw534yfNtVMS8BoDqEi04iySOYYMxz1pxDbGHSWy8Csw/kpWtrEWkFm+Natkm7gJ1gFLSCui/4AaiuQ3U7Pkp5FeFFVLcCLbi4HZEOkC2SaXhW1b0BYlAdE1+4EwIlRM7iSMBdAVOVMD9PWlYGwHy8xFkTEBGNrFd0h9hcBmgWkctqAouTEJGYqDwmNlivHYtP6ekPYk4dWkFDyxEJsvdqrv0tIXmOeCyn8C2p9P0S+Y7JjSRuH6oDjXhR7M3p51E+bvbsdkEV1O0BF+Ej2Q+jsg0wIE+kGsIWNefBLZm0ZB1/Y/njUXckNVJZkIe8ckkytTPQOHYg8vT1++EOp9rBM3VMi0B2IsHU9f3z2xmFBD41W/xp2eE770ROpDs8RJaALPF2aYpygOpp0EGS+v/P3nsH2XVfd56f87vhxY6vG93ImQgEQAAkkUiCFElJJDVylkcru7Que8ajddlez5Tt2bFnPbXr2VrVuOwd73iCves49jqMPZYlURRJiRQAAiCInHMjNrrR+XV44Ybf2T9+rxFISKIoQiIkfKtQZPd97/Z999537vmd8/1+T4ymIWI6EIEg9ySaOoKzoqT1SyCKn1mFmA+hWsMmLwF55wNjQa2PCUL3O7MN1KAYxGzm7fO4VY80Ji1M4yG+KfQAzuLCtXBVK2h6Qm2cozp8AbFzUfuohq0viQlT0A5gTG0smoyNM947jMjnMTST7zibXTVz1pyfS8up8bOZ7laZ+89/eIH2Dy6c3Te417a04eeNMYWuOLess6Ajlyq0L1IR0yqtbV22rWvAXLpipJCfSEemGtYZaR+uUpvHWRtNjzNsBRRkCleB3IgLvkO45HkrsA2RGOQp3D10GlexbEE1ArsfKDbsMHobJ2QxMOoqnTfUc43RaZqi6iGUMN7jgjmpuc5rpPWvEU904GUGsfXVwHLU34nxUtQ+jTKh4vejSa+Exc2ETS3Y+jFETiJ+AT93iKTSDgxho8dJ7DbCYAYmCPEyFXIzvvE0jO8j3K0cUpyd1n/E+RheBfaKyOdV9cQtr2nFecM+p6qX5euN3buPu4Nc5+9SHRwD/giXxO1A5O3VGsGESxsCwE5U94A+gcgp4AjitYOewLUIG9CzuNjhEkjV7WA6XFeCXWi6FtcNWAzMg7RRTDDHGiWZPJqeAA3AyyBmHXBWMOvAngYMyhXQLYiJEFmFyDaUJ8Ba1Jx3lmBpjJgpYKMY/wDFuRlNo6IbvpAOY8x8wc/gu5Gs6ucHqXu7aQkTWZRdqUntEJWy0rXyHDbqwnjgFzYCb6L6/1Lp/0ny3Xc/0XAjAjfjYvBTuKTx/bHXuRtQ7UPjXtwzPoDpuN+wxkP6uSng2Yzr1g2BDII8CXoI9DFUI2z15lAPMeeQoBd0wR0CV4r4c9RaFXQ/mlZxRvkreGeCPQBcRLwa4q12VlS37Ad+G/iDb/MsfMu4G7H4bsbhD0IS+e7HHoksBFmIn8XdYFzH+RPS8Hps6IDz83En6jROVezjBc9908vz9baKvIeJAzKtDN+F2stq49nEU5apXiWtr8XPnaFp3k4x/vM4w9wKmFWk8XFRe0nDbJ5rPSlLNgdM9hX6P/e5y0d+9XeLNk4yi39s80i5f+xEfH1sINfdMj7ruc3NHVsfEa+QM+QLGXy/hJ/J63j/acTM9NoW17xCyfgLFx/QqOYMcG1sEZnfqCYecuR2EnccGFzP6RqOq5THTaFJcbY+032nQw3CfYLzbewDW8XZK02i9jBIhWmukxPiTKC6q/G3NiGyCWQ/atfjOFMTYBeKlxHQqlZrk6hG4qb+nABpQfU6xjuFyhU0gbT+YcSATQ4iMnFjNen5YDJg06+STP4zbLIM1SZMuBX462/9mn6vQu7mlIQNwDlV7QEQkb8CfhC3IJnGp4D/rqqXAVR14G4dzH18HeQ6/5Tq4CjwPyPy9Du2qz2MMU82/n9bw+ECRK4g3nKcLc+DuEQAVN9EWM2tAhyRdhRxSmt9rPG7Gph5oDtAm3Bxx9GTjHmERL/qXsOhxl6W4roZTYBFZBIYAL3asAer4gRAVXdMOgfMGRDFLZQ3A4gXvoraBDfYwVebHCKeOAQyiHiGoOiJ8TaQfWCXaOppVCkiFLBRRiX7kniZ9UCL0wvqzwK//21fg1tRG+7AdXceafx7byMCvxtwbeYdYNfhjv0NuI3yMI1BppNIkZ2oWdtwVwHYhfIY6DY0KTT209i/XYLWl2DC87f/We1H5CxpPSSZilT8Cl5mk7ixvdO4BuYsxlsAMp87J0pfAX6JbOm7YNt012LxXYvDH4QkcsF7e5usBR0F9uJmuN6K7SBbmVZgf/tI3vM7RbaAuUi9fJ208nFMuBs/30Ouc70Yfz+qAxg/QTVVm5yjOjAfP39Wcp0P6bIF+0RkrQ6dvT7z8cVyLBPkNElXjV0beXnkRG91amTikdrpa2+OHb+qD/7T54LOp9bEiKRSq4wyOZwhsXPoXn6WZKpIUi9LphhgE6s9B97C+DmKFyqabTJ4mYK0zKxJsdMpp50o5gLO+7GCC+oV1wam1cV5mQN6sPGaEFdxWMXNYF8EHnMUKX0DTAmRLCJNqM5G9SQiuxtTaz4EZi9oDZUp13IGxBuT4pwskNW48mWCfFbEZHBBYUQ1nUtad1ZKavvQZBZwES/YgfgzSKvzEcni+fOlY9OXgC+95+v4PQyRb2v12yEi+275+Q9U9dbV+/QIuGlc5e3G/W5KSSAiX8MlB7+rqn/2no/oPt4bcp2fpzZURnUGMALqgSSgiqZu5KnqblTXAxbj7XBt6OQCmBFE3OQStV9G0yLiTyeQCmxHCdDkUW6rCEne3XzyBK4TchAYQPUokMcLE9el0cS1RL2zCB921rN6oEGtOQzkQIcwHqg3BnYIca1x1aSCSl6MZ3Fc7ghYhpgUTXeiKth4EjExYlrxcs1AAXJ7xfjtiIiEzXVV66O6Toy/F5EuVE9rXJnExnkpzH7v57023MLNhPHRxn8XvPcdfpeg2oum58C2cXPKEThu7ZuNCvStbxhpVG7eAN5uIr4Mkf2kSQtq72jvo85C7hqanAUgqW7Gqc8bYplkCUlyTb3sgJiggvHyYNYiMusOu6sAfwb8F7Klw9/6h39/cBdj8V2Lw/dwEgkgbaDrcWrmDY1fnuDr8x7eK7698ySygHxnTHXoFfzCI3jBPsQ7i03zLhEOExUegvgw2Y4rCK144X4xwRad6NuBZ5Yi8mjYXHirOlVj3xunOi1MZuG1CgTJRC1aPjRSo/faXBvkyuTznskVL0rrrAziidZGq9gkEV8FNCSJNkAEIxduHKJe9SLtXHJI5j7cLEFuFu4mW4erSk7hqr4LgZONKusIzlB8Fi7J3IVTYxdRVdyDowf0GuhGMGe5oZTXi26V6p0EKqi+hptc82ijwrwFGMYLT+ACfjPRuN/4W0OozQKrwe4AliPmJH6uSmSbEKlJYxyWerlXSGtnQKe+ret3H98IQ6r6yDfYfqeQ+PbWn497iD6DUwHvFpE3VfXM+3SM9/Fuke3YRnXg0zjP2hk3LpV4FnQbNloIVDF+DyLTfCnFxV8ftV/Aps2gK1C7HVVBZApMC5ps5B3K7BuPzCmQs4g8ieobiMSoFdAiSBFMDVS1NlrBz+7FhDNETA3Vh3CL/ElUDWm9jhe6botqKyIeGI9k0qrJlMXPdOO47ueBDpQA2ILa7Wo1Ec9UUJvBxgMiJgYvIq2mmDAnmAUYvoTxlgM70XQWJkzwgsVU+n3y3d+82FAbzuAEJI/iVMVPcMNG6duAqsVV9ixuKtt7f2Y5C574HZY3zvP3lNpokPpoBpsYkIhcR7s4gevsxr+TIFVuGs0bYFOD7pABaVj66QxgJ47X+XaUNI0OkEwpJhPLnex34okQl+zcytubrixOIN5RvKyPl3moofS+FRPA54HXcPnDObKl2rs4Ox9kfKNYfNfi8AchiVz0zV/yjSAezsNwF44cezcI+d9Ivf2uIGKWaq6zi6Syl6RidPRETf2cSuvSXtGkjo3fJI18jFdH0wmMP1MnLu8h07SF2Y9eiU5tP1Z8aNHoyLWhV3xoT8HE8EyrkVc7k6Q5am6usXhhKTlyqk8Tq5lNGzwKFUOQLxBPTeIFeVXr4/l5xMRkW3qpji4AINN8gCDTxND5VWq8Q8xec0RMAMYfREwXUEC1DfQtkBCRfpxqbboVfw20isiHUXkJ0h7cl3sJN/hQaQTeOOC5gCfDwEJEBlAtgsbY5C0wQ4hZixPz3OCoSH7GeWAhaXQFF4Dfcm2nQi+qTSKyQsPmAWxSxinJW0XkJ2hbdt/C593g7glrrnJjehPgugNvV7RexQXAKWBKRLbjeMf3k8jvBnIzDlIdeAxHXXHxWcSAPIkJX0LMI43KoONBuyrkLJxf5GrQ+YBgk61AjLIbZPOd7zFV12qWo47aAg2193nEWwzscqbffA1kFcY/STz5KDClYUssxg9RKWCkHxsVQVLEFFDNonEBNYfFeO2ELTVc8jiIq1oaVAugq1UV3fZfM2z42KRmWlVU1mu9/HnNdTULarHJfPASMd4F1AYopxESxBsX3zwPPA2sptL/SfLdfTc+Wm3Y4Cpjjzb+bcAljtPt1bhxPFdxC/H3pqS2ySnQZUxTu2AbmDU4HvsVkJk0iF4No/jFuGlrRZQhjGnG5QIBNikC8xrnagIYRcxxxFuF47uuBa+P8UtjoCsa12sb2fZbq4UrQPehrH+bvmAlcAA0Bgkan/1OwhhXh9C0FRs/itpt+Pnbn+vi78HYEWxc5KYXdAUxh/FyHl5mrbxdXOPwNeAPgf9OtvTu3Fu+07g7sfiuxeEPQhL5G8Cf4ypOXbgv03xc1WsebmXx9Sx8GpAQV726W1iES5qyuAw9xa1km4Ea7gtZwFVV3+llNX2UIs34+aXYxNfinGOIXwGb1WTSR/zZiFzC+A+TJj1EkxXJNM3XyYHDlC9uGHjr5N4LL+756ARsT2GNgd0Cu+cVs22Aphd6LWfPXw5XLQUxHmJzTA6ME+RCcm0BXqYGEmHThHkbXpfOpYZa+bIef3GTLHvmsuTbipqm50XTDNjNaCqkKTjSfBnjLwEWguZQTiA87TiRVHHelktBX3VqziBF7SsN02BwFiEPufaTLETMh0CP4kzJXwB2uOTU1FAibljvaK5xvnM4sc+4q1DodkS2Nr5qQ448r3tF0yZEpldiP0fTvPsJ5LvF3RvutRdYKo7r1At8Ese9uRX/APyeuOpJiGuz/F937Yju45sjN+Mc1YEtwEvAOled0h0IT+HGGj6Mylijc7ACGw8gxgeZ5GbVYxzkwtsEC7dDNQHrKleYk9zkMgpIPyKdiBis7URkiqDgYYLPkdbnYuNYxVuCJpfE+iEm0+bU4HoGmAFSaRxTCjrp5oETuPF4rAHtARbp9UsntNA8IMZL9Pq1gsyc+6IEeR9braMe2Kgb8Xeg5gnS6GuIaUWCrQ0B4TS2AgepDv4yYh7EJYyPcHP2ODiO2W7ct202Iotwz47NuO/GKN/c1/idEBlEdS6uYzQD2IjagyBzGlZmFeDhhuixF6QXpBnVNWCPozLbqd8BMXsbnR5UNYfaQ2jUhLNXu4JNmtFkJU3zYiYujQPN1Mdayb6jzvII0yb0t2M9qntQOwG2G+IjYMYwwdbp5ElVLbXBY6COpqbpVrXJUTHBTIx/yi0UvK3ihaKqEfHENrxMgJddJyKb73CGLgP/H/DHZEsf/IXp3YnFdy0Of/eTyGzpBLeTO2+HW809DPws759z/Flcgjq98qvilFpNODueY8AXcF6JKS4oDpEtKbVhH0jvKPuvDXfiSuSb3rFtGiLzCJsOG/Fa1HhtxFNdwBQa9QIfJ7U7GsRkH/HOkkYFtak58jt/+0D73NLuDs+UTTH3cnF2d7G4cnFUeWl7PDlY9jJNea8+Vkvk+IU4yGK0qaniPbDUw/Pr1Ceb8fM1ybcH0lZqc17k1Ch2jDBn/StkmgSoiefF4MeoPUBab8cl8mvQFCy7EG8TIm8gfBQ4AToM8gxudVcBeQH0FYRNjYXvIPCxWz79igaPciPIaqC3YethEdmIynaEEHQRLiBeBsZw7Y4aqs3uoaBzADfXW3UCIULTrdw00j3Id0FVdy9D7lIlUlUTEfl5bgqy/sh5+8lnGtv/i6qeFJEv4+ykLM5+4thdOaD7ePfIzbhOdezQUAQAACAASURBVOApVP+qoXBt8NzsCGpKuOEDOWx8HFjspmzRg+NWjTQcHh5s8J4v4jhZRZwApxfkGiLPNP7aGE5BO40joAtQPYrqFTTNIEFRxFO8oEONv1qjyVcpX/6C1iUvuXDStM5TVPoQU8CZns8HWYRNd4PNaVp3wpug2CxCb0Nsgx3t79EkqXjRVMHM6AabtONlRvAyeeLJmqbpMOlkIJm2HYi3AZueQ7y3J0hnEa+CmF/knRz9BtR1U5xYsc/Z2Um1kTzNxiWA21CdHr0ooAFuZvfXeVbrNZBy4/U+Tt18Gk2ngB4Ui5gOsF/EJQYfAf0asNCl+mYt2JdRNrv30oF7Fs4ADGltKc6W6XZ44TxyXfuoDfnEFdQmR8T4b/N51K0oO3HPw8PO3s5WgY/cXm2zYOuHMZlZimaojx7hhoIbAMHGIxh/NUiK8Z8EhkGOich8Mq136j6OAX8L/FfgDbIle+fz98HD3YjFdzMOi6Ov3QNwMz7/gPeeSO7AZdUHyJYuNfbXgkskh8mW3rt45vbjbMNxLL6xabpNt2s8sQlNT4GuAeqk6ReJx1/A+GfJtPahbBGRA0l5tHX8L/6gV69eyJ74u7fS1T/5eJR/YKEkD2+avesf/2plsqfPZtqbxiTwiqs3La+2rOwi+6FNmO7uhHotojzaRtfSssxabSTbnmvY8wA3pvUoLrgLrsXSgeoIsBgbnUBtB9CMmKuYYHmjdfUKrjJrcWunB4CjuNXLEdz87xgXQG5VwCnwVVcdwOJ4jpPu76rFVX3nAh7Iq4jkUR1EaQONwM7GtUEq2HQFanOghcbxT+MTNM27P87wXWJ9d6tu/4n3xgJp+p3P7/8mnMj7uNdR6c/gukU/5qZVUUA4j2oTmq5yrgzag/hNwMOgAyhjjlOnNWAcTAEjAjS7cCEDYB/D0VsqDT4kIAluutcImo6CNqGUQech/iqEl1EWqCZn9frhON63M64fP5NmOlsDf8NzefPgpryIN93VagM5hsaexpUusFdJEyP5zueAKVRPq03atHzxCNFERPO8nBg/0d5jJJdOJAT5wJTme1K/HkpTU03mb10pxr+Eph/GBPsaXY8ymCOIeazRur0ILADtB/pRWoCroA/ium0Bt4/OfRHkhUbmcBq1c3BFlelEdBuOm34M9/DfiMgZnBdxN7AM1Ytqk/nEk68RNq0SzBk0zYJd3RAdDYFsdG1pnoQGvcBB3b41xg3DQFWPoDbGJlVsPB/01jaoe5ON+6gOTaJaxCZHSKtzwVzDzwf4WSNeWCU/s0NEBJvUQG+tEO4B5jQcO27uU/U14vE5uGfJO/4kJrNbgmIZE7QCj7yDs+kcAr4I/AXwJbKl+h3284HGvRiLv/uVyHcLVwX8DC7R+Zlv4Z1jwJ8A/+o24qyrJI69n4fY2O8oteGP474ozV/3dcbbKl54QNOoFU12gkzh+T8KxRcx5mOYzDKx0TCQ9ZpbOtp+9hdnlF995VDXlXLzwNHL9Z4vHFxw/sx/nG/gvIWKPzxhCsCh7cfIHb/EU09vUMZGEmwK1tYxArXhJrVxjJ9DMi0pjuTcBZRBy4APUgMNXUVQrmLCTlAfmI1q7JJer4zIeuC0ewCwEZGjqGZwHnMtuODUjCujt+G4FVdci0k2A/udgl6P4No55kYXTHWwcf5agMWIJDdJ/N70a2JIp8cxDgB9IEM4C5DPMHl1guKcl9+HK/p9gbvoNX4f9zqSSoTjJD4Guk5VrXiZK4jxsPYw2E2AIgwgUsDqBNgqStW1VOkAexorRcSzGLMSWA5mG9ZmSCoG8RZhwvOINGOCpcBRVEbdfnUpyhCanFK8LGl9BC/TKu2Lh4InuyXYPO6lp49LcvlyGi5/RPG9hai9pja5oOWLQlROaV5Y1Gvn0+jw3jSztGsXK563EhQ6UDsh2VJWp4ZgalA0U9Le//zH0YWv7td5n/4fZd7PPpsyaurY+jpE+hHvQ2h6yZ0Y2YZ4axB5AtWYNNqF8VPQsQZXfynQ01Ce4xTneg0xH22c2UvAx0DPonoM5DlndaPP4JLHJ3EZd3NjX53Al1FmA1tvlKxEFqD276kOLsPGb5LreAHMOax9DfRxTeoHgVZs1IqXeQkv66PJq6T1DGImxJ3vZjXBJJocIaqMY8xzt9wB47iu0DgQqOocRs8KbsHvccMbNF1JVIaojMJ1KcyagYhg/Bqa7kXtdGK8EZfEHwJWIeKrtRFpzcPF71thEbOfoAlMZgnGe7slj7p7k78A/o5s6f1/pn+Hca/F4nsniQTIllJqw/8UV1X8Lb4pV5I/AX6VbGnwbh/abciWTlEbfgH4HN+AI4n414WoW/E2o+m+NKq85JEWbVz9ojHlJpvWU1Tt1Plrb/kShc1zZKP3Ux8/MXbiYrB6bs9Iz8XBy7UoEQOhB1EEhYkktTPWLDI0txaxqSWViDAjaJxqbcTDy2bRdEoyLRGu6ngNl+R1oJTAngUZQ2hHtYqmY0DWWfoANpmF4Tz4jVaU7gWyjtvEWuAKqgtdMKQTN66ss6H4m40zGh/ghiJP1oBOcmsl0VVK/5H7QeGmIW3jVzqEjS+BPowIKAmwAJHpAPQMjo5wP4l8t7jH5rXex3cI4z0twG8Cv+DYI3Y7qFEbtYjJjGC8AMwbYAwyHY/tEKpZ0AnUnsV4BcQsAukDZ40DnEbkOYzpx4RD2OgAadXDy4+gOoazEHKJjOtq+GjShtpLmKCZtF4RLzuLfLZCrrXsr+tK7eioFSPjGleugtY0qVh7+XgiHZ0lKv2X01P7vfjCBT98ZPWEUZsVWKlp/YsYE1MZaWLs8rrKuf7XR/ccszoyWej6yFOBhC0ztNAVMHmlqKNnU+lYtdPNV/YWYLw60IaqJanuB30YRDAmi9oYKCMy3vgMB8A+BKxGtYxIAWejdhHwUV0NdheYFkS+gqoPHEAbrWThSENtshG3MK85uxrjA6+KF3RqYWZW/EInNtkBmkWkgNILNiZN3sTWI6KxBeRnLQcmsHEN2K9JtQ+btIKdA2xBvO2YPDhKUYOjKje5mknlJLdTD+6EDmrDB8l1rEckC96ixvSxacZfQVUfwsZfJq0tRpMHgPmIdx2RbuAyXvYCQdMyMf6d6AFHcNXxvyRbuvpNjuXewj0Wi++tJBKmK4h/Sm3474GfBv4HXBl++rNcxiUQv0+2dPS7c5BAtrST2vCTOGPc7B1fY4JnEe9cbWx05MVf/o3a6Re/sljVmjSKO2etXDAwNTpRzDXnK52TU31L5nZUWbD0rdW/91vzC+svD+mlo17hD7/2eB40haMeTBjwm7rb0od//uMB2axPrWpRTzAG6hN5kqpqbTzSVLKyaKYRY2q4L3XkxC96CfTDDWUdqC3gEjLAvgqSxfgh8DE0uQbei8BHcC2ap3Er1RAYRDWDiEHVA3pxhu2uegkhTJu86tt9Pse5zY7gDl8oG19A05vvEbkTdeATTF79G4pz+u6w7T7ejnsrbt3Hdw6fAn4BQFUPoulWxN8v8DDYr2L8D+E27gJWoHYXmj4F7EXVqmodm4iYYBTDDEjyWO0FVoDsRWgDm4IuwWSOQFJ0/Dyz3TmIAZBDpAJeJGpF0UHS+kNqwmNifEfJ8nxjOjoSTeMUG5XBKPWyb7pmCrlSGfEC75FHHy0+/NheCi0r8XLjmtSO6sjJVrXepaldp6Tw1KNfntrzsorve2t+aFNTmO2fp9eGlmL8q0hwhtqw0bQ+Ln6u1TlUaCtqD5PUUGcn9LrYJAa/s9HKz6PajE3OIMYiZvoD7QTmo9quae0yxs+ImDZU+1STLJhUxMuADuF4isdB1rqE1JxE0wIuZu5DddglaRKJl+knqU5ACibMNqgEk6pYNDIkNRgf6rdf/JtB87FPLBaR2Yg/A+M9fNsVVxWc2LEVZDbo7SaYteEBbk8iLY4DO4aXuY4XJIiBeCom27bDTYQx6xDvjQZ3HQAREU0qa8FOTzlqxQS7CZvnYsJVInLrGERwz/a/BP6cbOl7lzN9j8Xiey+JnEa2NI6b8fjvqQ2HuIrfZOP3HwxkSyeoDf8y8Ht33C4SaFAsfOXf/Ku+Y3/7xdtUbL3HLrQAjPXCRCbIDQ5PXF0wY9HAauWStMyvyaJsbvNv/8qR4b/+Qv3YoXNREiVSEFn0yM98xNqh0Wj8b74WFZ5db7wwEFPMe5pOeoSZMu2dYf30NZtfkLQgQQ0IERkBfERmuDFirEf1BJrObvg79oAuRbgCWJDtqC4AfQyRsk72HyZX6gLtFy98Fje7dAGqZ4EnUN0HjCAygEsiV8INwm4WONrwIMsBV1w9X0/ieE1XcaRzdepCRhBvLuJd5ubIr2le563/Pwt4lergr5Pr/If3fA3v4z6+v+EMw1UrqF4DSYAY1f3YJME0HiEiOZRdqB0HOYbIRoQd4uJFBjEdqM7CJmeAJrxwKWrLIFcQU8TLXES8ApqGJNW38LKPYtkBeKCrwJxDzA+iaSpoWU1wFGNSFVHQIlAnmpgkaBJMxscLjPHn+BRnL9XayFHCJku2tMeExYymyQFs0o6mNQpzx+g7ZgsbV4yLxgs6fvonLpd+Jiv1A28NRbsP2swTj84l19mDTVSKs6sS5Bcz7euomqpN92HjIZJqJ0mlW/MzxwU7BN4PAG+gugnYDuaWNqx9CjWBqqqOXxwkyAWEbQd16npIkIkk35VHTKOvKYDOA7ncuBaPgnwJ1417AvSVRuW2A3SiMd6xA+W6oxHIsGCtjl/eAqCSnGGkfz6q/eRnnnfXIXmD2vC0kKUfPx8RNC0G5qLpTpLq7QrraLILmMQEJyVXismWVovxOtwxTGsBZC9eOIL4mxuioBOYYCtpeklVZ4Eex8ZlsA9igp0ETSF+fp2IPP+2+6+GE8j8IbD9XhLIfL/g3k0ib0W2FPFOz6MPCv4Trpr3w3faKCLzFj7zzIX9f/pXX3cHk/V41iTMmlXq3C259oKNpi7QPKd76Seer8xbNyc+9+nfZPLqUCFWPXzws/+ttHLryqTrhfVtXsaX5HxvFG5aV2JgoJepqUBamptyD8yuE9WymhVLNFkBQoyfIt44XqYgIlmSSg5NM5jsWUhnAM2KjGKCD4tQwMZvQKT4+RV6ff+jaNpMcXZduh8GZwmyE5cgHsSNnizgqrIhLtDswRmTdwCHcaTzAk4hn+IqpA/iVrnTrZRtwIe/RdLI56gO/j/APyfXed90/E4QuWvq7Pu4hzF59SOY8BeAi9jkopA+C95NL0O120BeBpnpuNG2hPGfcPw+fRETvIBriRax8ZvYCMDDZGYBX8R4i5wvrAroFiCL+ENuepW3DzdTMINNX4c0iwledlpQfY6k+kWM6UayV/CCZryw2Kh4hRg/EeN3oCYDpiz5rmXY+IL42QjVSRHxbL08ifhVJoY9HR+JAR8b9GnQJhRb0uxTL3iSn5FSvbTbtD3wIaAfL7On4Vm5D7UjoIl4wQuQ261e9mGC4kHxQgF9qrFIfhyROhJ4oJdx7hE+rtvSC2kGTYv4hX68oEnCfF2nrs+hOtylnQ8NCVJ26mwu4bo9ReDLiOkGHcQZZcdAN6pOqGi8APwaWOe5o7Tg5x8maH4DAcll8vJT//IKYfMMMf5RYJGK/xhB05cQsxC/sExcO7nxdnOrd6VV1TdpmleQTHNORO7UZj6KCaYQf1OjGPC1Bu9+JSIopod4pAamQtiUI9PWLCJ3Mhvfj0sc//J7gef4rnEPxuJ7R519L6M23I3zlczfabOqVv/9snXl8pWr3f/y6omjYbHQntTjM34mu2T4f/sX58zk2KzJXHNP9kc/ke9asdjXqetrmBqI06l6z1s/+uvZ0analWujUws7Zrdd2PpjGxb6gTfae+ByNPOhRaNBS973Z3WE0cDoVDRULmWXzR/Lz+vMyOpnstLcDdFUFU27UVvGzzbhhUlCPtr2f/y7smDlmf/1V5rAGoUp4koGTVcTtuwWFygHMOFFFRbqqddPEo3OkKVPjUphpge6GLV9iBHQEmovNPg7c4DTKBZsDjCI5+EmJFjgcZxx/GOoXkTTWUAvYiooMcJauDEJ4VvBKeAnyHUeeA/v/Z7G+plt+sZPPfWe3lv47Ofuq7O/F1Hpz6H6R6CfxLVUp0DOo6lPGq1x4hGKbnpMsM5x9/QAatc39jAFshsX86ZIqzOAGDF9KkFBjL+w4U04AlJEteyGFHiPIZJ1quJ0FsgpEKNpvQ6MY4ICtbGaTvSJFDtjjI9k2vJoGqlNHkH8t0SjApDHhLNwc7dPI95ToDtRW7VRNUvf/qnyiy9HZsHsME8tlvYZSa1v2M/Nnyl0zPSlaaZQ6MqYINeC6hR+1sdRdwZB96O6HLUXMP5sVIdRTRGZAvtRVe0TIcRZya0ByQMXQK6BesAmkO2IbNXK9ZcImjyMV1Sr3ZJMnkbVI2wORcwo4nVhPAPqqELKJK7LMgZMIfio9VCbcW1ojRBRoOBEkiwGPaO1ER/wMcETqFq8zCAwhab9pNUxvFwnwjgmMx8xg4156CNo2kNSbcFVBHOYcEi8YAE2uY7a0IkudRJoB3MdPzstGtoPJkRkdePnHpCrqOYV1ogxt86znsYwjuf4R2RLR96Hu/iew70Yi++exfB93ES21I8jp98RIpL7ic/9VQ/A7t/7gxEvCNJMMZ/xAk9zodcUBv6yUiEozVi+6EmNqzFR9TpQ9TKmafMX/8+Vk7lcu4HllYHxwqn/tqfj2F/tygwfvrgk+/DyeZl1DywZ+Ifd/uCLe5ePH7oQ1s73IV6QoWdfVS/trRKNCfHUCDaej/Ei0KIXBMtKSxZnnvxffikHqajqLNJ4DuJtwHhHsMk8Va2q6oSm9QdQWmXBIyVbmarYJPERQrX2DOhsVJeSRH2k8TpUm1GuojztjMh1U8PeaB2qD7jt1qK6AbV7UF0BZhJkyLW7tR0IQc+A9oK+8S1chQT4LaqDv0J18J0jtL7PIUbe07/7+B5Epd/Hcc/WAj3O/9DrwnhP44WbCAq7EO80QSHFBM8D3Q2B2wO4AQJvAntx3pILgVbEb0e8iqZxhw4cHVO1dbXpEVVmAu2InEb8x91+dA+kVbcv9VRTj6m+Lh07W9KBg0v1yp5M/Y2vVkkjRa0hjaZUbSgmOCaGEC8sgm7A1ieAXIPbdx2b1LFxSFrT+GpfPL7jkPqaJt7CRZiO1gdyKxe1S6krI1ODeYy3hrReQG0ragXVDlR7UT0JPIqYipu9rWWghOiDYBPQr5DWLqtNelV1I3AGVBuemGPAGMg+1FFxJDdjg3iZqmBqgj2Ony8R5EQ0EdB1aBqp6iNqkzZNk3mqcY60ul6TyhqdulrUiasFrQwpSIRL9mPE1MAMABEixxGvQNhSIWwFLzuEn4Nq/wTV/kXUBrcQT75AMhmh9hnS+hnqI7OoXm8jKkNSfRpoQ4whKD6A8RXjL8PPPklQ2IJfeBSk23E2vcItd9FsoAyyHeQqYhYhshVjHnlbAnkK+B1cgj6bbOmXvl8TyGnca7H4e6OdfW/gt3BmvS/caeOMlcu3/Mbk9cMisqpRz3bEZc/vBzCtpTpB6+vixW1qwiJj52OSOA+cx5PYQnnF//Qj8drP/FBQv3QtHPydPy8c+Be/PwPVYrGjaWikd2R05sc2pKUf2LyR+WvGGS+PMzE0rG1dEcTtYusV4jCrxj9H7WLf2k/9UEGvHK7q7Adr2KQHGz0KEgPrSKdOAUNkSiXqo83YyEKk5qHnH/qHX/iNg0f++gtbgkLh1K9dP2/AtkG6HC87hZj1aLoDx30MEa+I8+kMgINo+iTI6wgfwnE0AT0EshHV8zhe5GkgBQHhVuL1FdxquR+3OPIbP0/7gTrjY5gJuorqwO+Sm3G/KjmN+/ngfVT624FPA78OdDQ4edtxNJM2HAVlLiJFgvzjOMP/88BaVEcQRhrj9oZxI/MWAKD2DCJzVZmLTV4nzHs6cekq4uWlMPMNNUErNs5jk92IXxMjWRCDUwY/RVp/U6OJXurlOVSGR8Zf3ztllm7uyEz0jkvTLNQEHmndaq4zFtR3XrKyDTc95+FGHDmiqilJ4qutj9ffOpTr/Cc/POWPjxY0yuTtZG2Y0b6it+H5WGY/Cl7mCl6gqPah2gq2AnIGtZOIt0+rw4qfmRK/UFVNU9AzYvw8SW2ueGG/To2mjF57WbuXFiUsfAUkRiQDUnWfSx8kjS4j5io2KQEbSeu70bQIDOJnP4xN3tRkaoqk4qN2nKQ+AGa+1eQok9cmQVKKs2rSsjAHdg3GHEW8J4G9CFOobgG7E9UmMcEYNjaoParYVFWfJYnHGLt+hpG+SdrnjMncNa9TH7OgdbKlPXhhCfFjEZnQNJpNpf84YXOAF5wBhlB9HOxFkDpoH5p0oME2jFfAGaTfahg+jQh4HXgReJFsqef9v5Hvcdxjsfh+EvmdgrMn+hRu7NUd7RGMMTHoaaAJYRGgGEmBiuSLqfHDjCZpFhEIi4F+7atHr287GbUEpvmxP/n1/bM2rtwq0JNZMKsy57Ofab783K/WULyBCwOiVmdd+dzu8vxPP3c0O3F9ivpUu6KJpLUCtXJRw+IZgmJB8t1rdWC/6vilM7TOKhJX6qidg5g3VZOHUQ3EeJVGYK4RtmTR9CCwLK7W3nr6N35l1sU39l+bHBzK9B851t+9ZmWIU9VNC16quNZOtfGxA9ATuDFlLzeMzKd//ybIx5wAnZlg5wEHwGsFvYxqCFJHzAL3euZyu8/YAG7u50jj5y5QAZ4FPkV14LPAvyU3454zpX1fIdx75mT38f6i0v9J4FdwvLtbbck2Am+64QDTXq0NgZur7gc47rMPNIHsQmQLqhdBFwC4ip09LcJiDYp5KYYGE0zhheuIJwxU2/Bz2/FzzjOScCtoP3jnVJO9Wu5ppTZaJqlcttXIu/J3O6KJ3NHR9f/6kxIuaYeJ6yntSyOxcUHRLGqzJLUUP7dKbHIIE9RB66T1DGmtWn35tYz/7I/GGRkJU+tbs+rZMeOH7aR2Fr6PpNEYYhLnaYsAFdAQpBnxsqpaBc0Tjc/Ez65C012kUUpQjECXYpOlmkT7MGGreMFyjauvSZDLosTTZxuR46Bz0XQLzkg8wASziGtLgBa14VExEiHGahIdxCaI8S1pvYeRqyGBKSAkROOd+Nn1boGvS1D7JSAPMolN3gQVdQn5bNL6GJDRkd5JTrwWI2aMGQtqrHhys4TFK4gpAZP4uTOkUQabXCKeGFcxFdQqatej6T6QhrAo3kEa+ZggxQstYpYzLTq6HdeYThrhK2RL97npXw/3YCy+n0R+J5EtlRtG5G8B7xg2isgjzk9M54CcAPJNv/ZbHpDHWlUbg02vIMFc6uUJef7HF3c/XR7p1nQSMT5qtutof2BNpgk/PFSvRKuAcltXywa1ejBYMiuo9vSlfi7je035AmMjYxSLWTz/FDb2SaoRSeUUSA4/FwhWiMayePlj+JkHGevdzvhAjq7FTTTPN6gtAWPiZZaqCdKjf/b3any/7+f2v27+w5rHO37/8Q/n/814bwfGv4zVKh4tYOaCPdX4jNNtiwoiD4MUQacpFitwopyDIBOgAaoXEVN1Yw4Zc96VatB0T4MneQ1kNiJduIT1HO6h6EYsOlzGzXUF+NfAj1Ad+ClyM/a+z1f7nsE9GLfu4/1Epf8x4LdxXLsUJ2DbBFxq+BbeMkJDyzhe89uTzT5gMe77BW7KymVgHshKvLAb1SOC1vACgCLKm2q85WCOoXaSaPwpvPBA4305NBHSekJc6cfG3bUL1y4P/u1Xp8atMPCVPXFPKS/LfnMRIqERL1RGTz0OahHvAtnSgzo5fBwRT9oW1NUms7HRiCa2bhYujXMrVlo7cinwl26ZRK3FJqpT/UOM9XvaPi8jYWFc/DBGfKNqQZMIiDChiOBrpmULyAWQvWKCAC9TUZsmDF09rkl0RQePRzo0lJqmbCCZtnkEuXHQCZAC7rm7GWQf6AKNozGtTL6VXjpbTnuO9wSPP2ukNRfrxX15sEpz6xg27SDXfg0xAc2lOUT1q9Kx1CPT2k408TKZluedHY8kaNILkkPMuKq2kNZA03EwYLwxWmc1senHXxExLWi81HEnbQ1rTwIVNP2IG3WbbHOJ4w1BdIwJJl2Vl05M+Dhe5k6RQ3HPuOnE8eAdxwTfxztwL8bi+0nkdxrZ0nlqw5/AzeV+JydVpA2nWq7hLG6uAz1gUzFmi2aaT0lt5CrtywKCfAfNcxaRRnuojlS1Uo7sSCXUlmzNtM9cj1NCd9rUnhWRFQ/89Ef21470RMOvveWXPr4hrvWNBLr/JE3/6KMZMkZI6x7VwTrGy4OxBE2Jqk1IqnnS2kXCXJZCiw+qpHU3B1VMgp+PNR4fWP/pH17S8/rO03/xg5/UljkzR6eGhlrdZ/LWgz1Jqtsg7QaeBw7hZ9cCAw1l4XlgCcpJ0JmInAXpQmS5qk5ho9ewaYuYIIcR0/BGq6PpGSAPugwogoKalxGhQdAv40Y05nDz0iu3nO06jke0h+rA7wG/Rm7G5Pt+ze/jPj6oqPT/JPDH3HwWeLhJKYfBjN1i4N+AtIBOT1NxUKXBbfZw7cqdiCgq3cA50MXurbLmll6dgo6JyezABA9oGk3iZ8+jtqwSdIvwFvC4eCF0rN6lAwczYXOGwvJZuZN/8tVyyRPfXuuPqi9+Ocj96M/G4gf5htWPQdMFWhs5SO/RZbr4yV2kERhvBJu0Ymw1t2atJa1mJNshkslBkiYipq75zkRyJV+v7lmiLXNO0zLfE2NCNE2wicWERuPxotYnJyRX+pL4ubmK1rFxLMbPgO3Q5g4VQ0RGYrNyTov62T4xYYhiEIo4oZHXsL2ZwMYXETun/p//9wX10er2+mjFNM9ZPpp9qAOtjc1kxpIikpbxzEWtjRalOBdpWTSAjRPxc/OBo/i5Ita+2hgXMgFQLwAAIABJREFUmWtUjVcg5qiITqoptFAv+2i9QmozEhbnI/mLVIcsNnIejZoewcsC+gBp9ApuEf8EJjxP2NxLkM8h/goRuXWSza0YAb6KSxpfIlsa+NZvxvu4F3E/ifxuIFt6jdrwrwGffedGWYjql3Gr+nGQJmARyHlVewxNh0kqzQSFdcB1VE8RFIfItD8mubETXtu8iInemtpoT6G1sArV7Nwff3y4+6nVSwnD+czsPOHFtJsHVyyPBw8cGfnSG13Ff/xjNYnjABNOkFTnQjDMxACqXopY8LwlJNFJTeu+hJka4oVE5afwC3swoa829hg+G5Frvbr4yQ3PLX5y407xs49Vx8r7mZ4qZNNRRALE1Bor27TxgT3ANCwwRsHG2PRV1K7EBMMYbwdJvUA8/nGMvwvjW1wi+BzoGGKu47iSe8G6MZMi3YgsRXUQkTqu3TYP1Z3OTdJ+BWQOIoPAtAfaLwA/SHXgn5Gb8eX3+Yp/8HFfJPP9h0r/j+Cmenl32PogriJogVGczcwksOzGK1Rj1B5H0zJqs5hgDON99MZ2d0vtaKiS13P7fHtBJMYLNwIXxM8UsWmKpCWwe7GyGZG9qF0oJhjSlsVDXLooF7+wZ7wIitWk7/AFI9mMrPixn/KojqBxZRt+LguUqAyO07V0F0lN1QtyJtOimmntlzRJiCeLmDDCjmR0IjKmMKMF1RFjwtBOXLe0zD1BWivo4OmY0qKEZCogKHZSHx+kcm1MirM9xCjYa4IkiulSpFVM0EE6cY7JoR+QpnlvEBTXyNiV3bTNTVy1z3TiFq2GNPl8Iw4uwHiWlvZDpjU7KrMz2drQWJz1wpIs++hpvNCSRmjlumH8UqqTvU0SNjeJCWuINwoSOJcLjVVpF5ESmEHgksJG0vgI9ZGQtL7mxplPKuBGFd4UGNr4EWxyDqSLoDBI2HIRLxOIyGLcs+jtmAC242yGXgOO3PdwfJ9wj8Xi+0nkdw//DtgC/MDbN6jqZqLx44RNiYjEaLoftQlp/TJJNYufq+JldhFN1DGB4vtGxPSoF4SCTdTzC0JS9JuLko5P5tXqeKV3eGdabC57S+e3hUvnRfXewSPpVG1c/GCqtn1XGp27nG/5zD8BkTKa1rBJjtGLILaTfItFzAz6eqtaT3KyarO7y5PqfMKmc0TlsoTZFci0V6datcmb2eZCpGn9TRBIowkRCvg5H00/B5JF09dAluJI+x8BzoCMIdKMyhlQwSZtGFMmKG5HvDGMtxy0B2R/w3w8QkwRkYUo58A+C7odJQB6GvO8i6AXUOuqjGI+htpXnM0Q20GbccKbCvDzVPofIN/9f9/Vq/8Bw73WQrmPbwNT13yQTwG/CNQRuZP1WPr/s/feUXbd133vZ/9OuW16b+gdBHsvIAhSokQpkhU7tuPITiw/O4liv2Wv9xz/YSV5ie3kvdh5y3beSuy1kngpWpGdyF2W2Bs6QRIsAIheB5gZYHq7/Zzffn/8zgADcACwieTI97PWLBL3nnPuuefeu8/+7fLdwBTOwZwTkgaYdpkDfQvYiNoYtUlUUp7COUnz09yKyMPJwIG5MhKL04aNgLtRbQH7ElG+Q5ExUAv6XRG/wVrdM/Xn/1WqQ0Oxl59h6vigb8BOI/HyTcv9lb/8Vb94+LjGZw9m0p3pJf5Nd17U6eHjsztfr8Sj09rwk18zXk+HRWPFqmIj0dJ4JLklMSZbYuLcUup7z2OMj2psGjrTaFS1Y8erhOmyzp73mRmtlg6/M1DoPxebonq5zzyeCvrWGMJsLOn6EGOmiCuxHR84Z/c+qWbjxhe1IlPS3fiKNHSncDq5WWDM1WRLBuOpRlFgh99+G69zIPNPv6EZ43sNisFW2sEEBBmDmCUYb5xMm2hxuJOo0ENYF4GOo1g3Rta7RePKGxSGY003HSAqh8SlFmylnsuL5KuZp1AhecKG/YQNggnsNfQfI1yZwws4p3Ef6dboWl+xGh+cxWaLa07kJ0W6VSmN/SPgDZwMxiXEmEYVExPllaDOBx1EpAHxJvHTOWxsRcxDmmo9DjqI8dOIuQMJXqB0IZCgzpLybqm/be2+5nvXz/b/4V9t7P/Ozr654ze111+YJygbzz73Sr7xaz/1pnheI+LdKmEmr23LfX3l2dPUt56XDet6wE7Iqp6YINMG0ajb1UZiY4OXbtaw8QCo4KV2onaauHI/Gu9HzH3J66gqr1At9IiIgjRSpUyQ7sd1VE+jtpxcAPC8FqAMOiHieYiv2EoDNp50Bep2DDd2TPHCO0F2IiYGXkXjPsRsQ6Ub0bOozYAkxdzSiOopxDyO6qjTOJM2oC6RFwFYTuHifybb+bfDSLrU/yd9FjV+0BRHBHgczNfArsZF6PtR1r/78zdvI3LPAkdpQMyjaHwECBGzAo2TyTPSgpP4uQk4itoxxLhFsrIUdGfyOhtAbge2o/ZwUgfdR1B3Do2XJWMC/47GpRckykvjo1ssYyebqyfPz9z61Wrq/O7D1bKINqT9prE/+F+X0urTMNv6Nf+doC2jUwcGbNcv/0raW7bpCwKhjvZ/l8YWdGa0Ek9P1pmgfTIaOqF+55IztjKDBFkBsogH4mUl0zyuxTE/Gh62/X/4TXP0e6/o6PB0HBi49dnd0bp//hNN0rVsyqz9DESVio4dHS898z3flAtV7/wpa5auaJCujbMixriObpPBSUrESXbEUzWz5W//T6rTlaX1v/YbF022zkf8IiJtmGAKkSpOWWJCgswG2m7eR1S6gJu1XXR1j+KcxPzAOqCT4shCjS0LoQS5N0m1lDDBHSJy/wLbRDin8U+BvyTdOr7ANjU+ShahLa45kZ8k6dZJSmM/h5M8uJIg1wk2BE2DOQlxp/ipAqQgrk6g8TYxoU1qazzgGeLKDCboBKxG1WfW/MuffVwEOfnt556fHhg9G3liyhbSTdnmTOjPOZEeq1a/FKzobNby7AjG32s1kzvyv/2fUecT90y1fPmOBjLNF0VMFrXjiDcDKSUuvQyIRgUP8QQvVY9ISUxoNS7HaHTG1diwDfEtLmVdAU6reFMiMu0aY5jBGatVQBG1k4hXmed8JuhhTFhBo3FsZT0az9VqHcIEb4OsAknjUm9ZN182HkPpA5kA8xmEM8AQqjOofRskC2IRuZxmcz/gHuArFIePk+l4+0N/zouARWa3arwfiiM9wK8BXwPqMZ64aYI6oRrvBboF6jSuHiPKDxOXc4QNeQnqFj6eapW5MhWRFrwQnP5hMy5Negh4kLh0EDiLCU+4QQPiw7zpJKoF12zCBaABrIpIN8ZvU1t9hursF6gWX5K69kDD7FjQvjrbcvvdceOPnW8g1ThRPnlm2m8MdmKV8W89tSFYufZ8euuPNdrBd4aX/Na/+6yksq3ExUOKnqB96UbKM29hq5EdODwx/q0/0tPf3W29xgaz6quP2aZ/8EvtY88/P93w4AOVMBMYnRkiOvBKfO4P/pqTO49E2WVtQTQ8nc5bKpJLe4UX35zN/MhSY5Rg5s192fG/+p/S9aM/ORO/+JdelJ+1k6/vtr1P/GIGVNGoF/VTiIQIAzh7h/ipVLD10bKXr57FM4qXKSPUg++DFwMp0GEws4jUSxB8kSAH6NwP1qJ2AJdFuSIQcU281DFSzUP42XUicscCW4zh7kdPA39FunXsPR23xkfGYrPFNSfykybd+jKlsT8Avj7/YTHeWqw+j8ad2KgDGMWkblblMJ7XLmg94lURue3yXrodp0WJ+Olt5DqepDC8JcplO6ZmSreMwPYyPNycL7+RCS999FHrz/7kfUL+7ekjxxpHdx2eXPkLP26W/+IXo7B3SUrC4CGMdwwxa7Fsx/gqJviCItvQ6hbicj/G7wF2IUEd2FVo9DYmHBMvlQY2E+SGEenAxnvA3g/sApND7Sg26sU1vXhO1oPlIAdAnsNpSHYBPkIRtReTOa453Oiwo4g/gtKJ6HnQepwRjBApoXwO2AF6N+grqDyIEOOkfx5OUks7mV/n5WjGrb7LFIc/T6bj5Q//QX/KWWR1ODXeA8WRpcC/BH7+6qdU7TTV/EHiwkqQXZpqfRgvWE6pmAOWUp5ETbAdEz4gIj6qx3AakRngDFdKaQEsQ+1TiHcaV6MMc81sGp9FvDRiItTuByzoEHA3ai2wUWeH9oJUpK7rIIgRL3Of5rJvEVcMqBUJfLwg0nRLzkMu6OmDZDf2NOImXNH56//oiHTcfZ64WjA9GxuBPaq2BWvXEs20U55ot2NDJ6R1SRzc+6M+e45X0p0tOrL/tAx86zmvfPL8BHGVsWNHU92//KtCLkprc0sx7OqIPf9E5uKRwdiHand92u/5uw/7dVseC8i15ogr41O7XtPMHVtN6pa7vLhwtKe0463hxiVeUavFlRKm+xF/BpEi6ASK4CLAVdB6b8XGWb++I8JL1SnqC8bgnOolzuHWficzJDnejQF6VTVZpF+Dy47jMhFZC6y9aot+4Ns4m/d2rbbxE2aR2eKaE/np4D9wlRMJgEiIcjPIky4iKX1odJrKTIOKXpRUy1ZUS8TlEpDDRor4A+S6ZokKM5JubNFM2+gD//nXhwpj1bK0r1+jIhd8tZ3GxkekOJQGHfcyqV4tl0u53va++p/uqWN2oJS9+2EhyEQYfxrMNMgoJlXFBHciZidBXRel0dfBLiO2h6nmy9jqMq1fdgAvt1xEZjF+G9CPrYyCVFBbBAYwXtnV8sijqI4Rl94EvRUTgvFGwVbBPAScQeOGpJ6oB5EmvPQbLl3t9SOmEfg82F1gPJDVzlgzjaqPeDtxo70OOtUJzqAymnRxzv1Srze1KQV8l+LwVjId+z6qD/tTyWJb/ta4PsWRHwX+E24RBrh6EmzlENXZCTS6g2TBiY0uUrx4AhchuzPZ/CzFkc1gJjTdskc8/xEwB1Ctx9VKLsOpP8wd/AzoVtTkEWl1aTlzCrUW8bKuhs9mwPYBLajeDPoyGm9W1XGd6W+kaXUz1XyRyswUqaaDEuTKqEa2WqzGL/6FLZ06panWjPpf/BmRmx/zmBkaoTw2iUhguu48Q5CONC6vRnUlA6dO0NQ0jB+8xMihLaAXpPO2Gcl1LqVaGp88er7c//ZpMzJdJj4/RvHJV72wqc6nxzb2pBrvkXTjgfCeFQ8tufdn6P3/KtH5//ZHu0//xz8Y86JyWpo6msi0jYhflxfjad8/+3kPUcAas3R5nP37vVVmZnwmzp6hc32c1Gx7rvZTIgSLm3P9gDT0PiVhLkRtgJgQ5B5k/rxqWQosfVdH/BVoFWerkl3MBEHdMYL6Cl7qWo7jJPAd3JjBXTXH8VPEIrPFNSfy08HtOC/nym+PeA9joyNOukEeUtWdCAWCTAqN5wx4OvlvgJ+O0Xg/1dksttqAl6qKlxo37WtL9Z3+FH62yNTJm0B8jH+Ett6HqeQHqc52YPzPe/VN2zFeB/nSJpDXREzOHV/qQJogFmykakIVP7vCVvIvUxptpb53lWTaRhGvCPp5tLoHCYsalZaB9ZibXCFeCPYEcXwPqoLIMTHh8iR1PQgyDqxG43WonQA2IWYbmK3AKdAxpxMpBxHzJWAHUHXpb2nB1ZfGOBmNYdz3+1H3uoDqueR85m6UMP9GuDD1wNMUhzeT6Tjy/j7WRcLiK8OpsRClUQEeQfUrqL0ddBzkqKreQlw4SFTsAN141V6zhI0B2GEgjZd+FfFWgZ4BGQLdKOh9QA5sBZeu9kHCRIashEgTaIx4zyNyK66T+w68VJa5iKVqCexBnAOpaLwb9CG18cni0985ZtX3c49vuou4PECqaRIvDLGxj8aR+IF4KzdkdHa2EK9ZE/vVfAeVqSrTU0UdH6xWT1/cFt7nW7QaahSdk9blZ3TiWFm0uYvu2yqy8vG3tFIYNqmsElVOxvkLJshZnZ0uSwrU90OicrXcuqQnlf3K3wtV9U0RaRORU8A5E4Z3Lf36P3247XOPn66cOzpYf+99kfgpQfwWkElJpSwiAdCuqeZR8hc8OlalpL5rGeJN4+ZeW3ftdBAn2m7FeD6p+lbgAacHfl2utUFJxJzQTMcAXpjDBL0iZgVOJP5qKsDf4BzHp0i3/u0esvBpZBHa4poT+UlSGvOAXwf+NVc7kJcZACkgZpsIJfCziG1CPFDb74yXuEik8WO8dBu2fDewA1vNATeLeDOIWcJM/ywSjCDGU+OrLTEw9pdPT7Tft/IF2jobEVMWP1OmcekBUs1lTOCRajkrxrTjnNxHcR16W4Bt0rw6g64MVIIxiIWoOIba7UA9xiwRpVNViqAjwChYBVFU9oM2ignrgVm8lOJuNgXXmWleAhMiYoAGNH4VTBcivYjJg6xA2I3aCshbiDyGi468jvtO55LrsgXVMVSPgE6CdgObrv4U3sMn1Yba36Uw9PNkuwduvHmNGh8zpdEvA/8F6HB3ITOGxoOgW9DqCeIKc4KOzLc1JjhHkE2Jq6mbl6JOBMYVC7oHeBA3jaQJaELtoSQCFqEeYCbReD1i+hK5rifddvoWUAEtAgbVfWg0rKptWhj+vhanTVgZRCcms/DlCUwwQ1x8DI12alCfI8hlqczG2tE6Xbf10TRxsQnsg5JqLLH+nrSce3tH0FmoStcKNKwrGy+d1bgiDByPlUxeJKiKSIEgHSci58bkemTpv/q32nTXHXr+v/85K//vb2SmDo+ku3/mq5tMEC5PLsBOnK1YCUxoXNmebizfnm5akzdBJnJNLUYR6UQZQckg3Eq6+UWqs3W0b0BSDWl3TQVgPFnoXuTK+27MlZwDSUYB6jouR5LnxLrPgAzgQp8dwCpENklYf7Vdm2MaeBn4a+AvSLdOXmO7GjU+EDUn8pOiNNYF/AnwyHW3cwK9JxDvNpxOWxs2OoQEMVodBO0AbxBRJ4orthsvANVZMJBu2UdpokxxtJcgd5y6pUvFmKwOv3lCLg6emHn1Na+1K643GVMm1SQaBiFhXUnq+3pFvMvjGW31WdS2JefwAtAkMIGf6WN24A3QBrz0OOLF+CkL4uOliyKiWs2XQariZm9bFUDJu05FY7BVi/HPgDkPchHxwiT9E2KrJdCHQI4APmICvGANqs2IaUnO5xhwDmULcA40QmR1cv1akSuK+QFOoHYQtIUbRSJV82D34WRLnqYwtJls9w+fIV5sy98alymN/jTwLeY7hyKtqBwERUywmlTTagC18SCVqUGwdwFlUi2NAstB9y94bJEINT2gO0FTQCuq4hZl3AtYRF4DeRCNU2i8I2lW+wLut7nP2SjucbqS0evAE5offl73PelXz12ICvvP1oWb7rBBkGpSawto/CxeKgDNE+VLevFgOtr1vOdtuNUzPb23invNUaBLlt5RNGgKtdaoVlRtQdJNbbRvKNK1oijVfJNOnZ1W46ekcVkewYhv1G/roemnvi71j3wx4zXXZ3K35RowMm/QgGaBXWp1Q/nVXfvY/1TV9HRt9x/96gpMcDdu0bof5F6wr4B0gxwwrWufoPXqzDGw0IQyRxnYC1LBleyswo1vBWUUeAsnIL4SmEZkOXOZnYU5Drzirjs7gbdIt17tqNb4NLPIbHHNifwkcA7ky7y7oeNKVKfBmwUagCPAIHGlD/Fuhfggcw6oSycVwAxpceIc6p0nXZcTT26hOtuIrW5HvBnql7XInCacBJaoEq/8rV9ppFKMEPEoF4XZC9OydGNEVGpUP4vMfaEVHzcZZmmyJk4lEhRgPCFoaBdh3K3O/RKu+L4XEAkbctjqNM5hi0VMCmsb8FM5RPqwVVAdAl2HxgN44VZUB8CecQ4kgCbSFTKRXJ1zwGGQJTjR9RLO4N4KPINrvhnE1QqFyeNzP9DViLcatSdRvf5n4CIF87XW/prC0OfIdr+XCOai4cbZtBqfSkqjvw78GxbKZIi5zzl1Se0jIMbr0VRzF5WpHQRZlTmJGCfBc5DLkfpp3EznNbj0qOv+VT0L8WnQdpC9rvvYTiHyCkgBG9Uj3jIwO3ApWA9kGLUXVaMQ1Xbiyve1lO9mbCzj3ffZYuOXlngmnWpTazMUL86Sal5JXD6PSZWJbRhfGMtLJhNKdbaLVPsAcbGYlL74eKllYqv7EZNFvA5BVmhceUX61qVRhaANqe/tELUPqOpfEkcRaiNEVKtF31+6MkOlcJMe+b7QseG89N6pqvo8Gmf0/DtjU9/6L7tHXnrTZntabMfnMunkumzDdUbn7fix70mQLUtd7wAm+LHrfFIWZxMnk/2zQC8ioXNEF0Bkvj7ntZjE2bungGdJtw7dYPsan3IWmy2uOZEfN6WxJpxY6w2cF7XA3qSppJD8twkvzIM+TVy+rL/h0r3Lnegt9ez58y3csvVNulYK2PMEuSmyHftF5NG5XSpTFV8aetJhujnScr+iWDxfpaM3r6WRR5k88Sp13TuJy4ZUU0yqqV7EjOCkPZxDpzqK2nOETQU0GlOlAtIrYg3upjblohYIqpOgZcQTXB1VGQjc44DxY6AHK6dR+xZOxyIGDuNGcO0AQow3Z3AtyBJE+nASR+dcdFLecE07QNK5iZussBAXk5X/9T6HN7myoP1h4NsUhn6CbPcPzwp/ka1+awCl0RTwj3F2fAr4Y6AZ1fVoPIt4tyAmM2/2MQAiYjTdoiLm4XkPdmP1OMTPIl4K6AZ5YC50P2+7Zahx4/ZEHkDtDjS+G3wLus8WxyYkyI2K8RoQ8RUTI1IU8UIw66mMpZm9cErUjnD3lqzf0teHyCg2HiGunkKkDS8bgfWICxFxpd7fcFtJO5pgrD9Ndfo0QpVcb0r8bA6RLpDzmKAP9DSqexFJi/ET9QrzCLBDkX47cqKRysykNHSGZFpLJttYj3gdkmn22PRj/Uz2F1T1+6JxoMWRMhkvbPjFb3Tkvma7g+7uHlSfEmNacXJlJcRPm5Z1MWg+sVVzdka47NTHOLWH9Uk08TxXLkpPfYBP/g2c0/gUsLcm+v1DxiKzxTUn8uPnPpxTdH1UX8HVKFUQWYvqBVxhdAGYxoQb0XgbGm8GvRutHsXGip+KaWx+hspUBS89i58LEamjNF7RqHRSo/w5Sbc2jD39fa/YP1Ze9Y1fStmJ2appbVRSdYFWJqr46QuUp1qpTIumGoaJSkXxUrMEdYrQh+oLqLYCRWBGvPBhtWY7qn2IaXSRCEB1P8TO0dKoAzGKFyQSO9KHawrqRfyDyQ3pWcTEaFxM7l1lTNhFXHoJMQ8BAXGlHy84gasRqoIUcVMybgG7B/E/jzPmPbh53OO42qH5UZbk3Jgnj7TQZ2DfBF1IcNl1vhaGvk62Wxd4fnEx/5ZXY/GQbitTGr0JuAc4SrrNTYwqXDTAb6I2Bu2Zt4cF2YeY6qUI5Bxqj0G8HmhH7U7EW5ukuDtBjwBbQHCz6KOjQAcq20AqmKBONd5NJS9UJnNq/Ekk1SyY29F4EFt5XZGYqHhUy1Oz+Om0GM8j3VDBZTceAt0lfsrXsPcOVPdgowaiwjjGm8ZPq7SthPZVZTRuwcbTBHUxGu9BKWC8ZGyqFrFVEYgQP4vI7XPvTkTaTMeaKdAABBFJ4zRqe4AeCTJnaF9XAVKIv1Fy3b2Sc2OlveZLV2kZkDQmJT8Yed+30Hepui+wzRhwAliKa2QCp735+8B3SbdeeL8vWmORsAhtcc2J/PhZfd1nVSNgD65juy557GXgEdBXcE7oeuAUYizobq3mZ9AYSoWY0fNF+lYL4wNNasKKEVNCpKhBfRYTDpMf8rU4eptXLTyVqowH9uwxMGkF8qA54qpFzFvkOuqozEwjJosX5rDRtGrco6XJQ+KFIia4DfF2IGYLqoNi/DrglnnvZCcidyG+E+uOTYBaAYrJqv1ssl0/UEF1F7A8mYVdQaMsGq9AzAi2ei/i78Z4jaBgozLidyHMoFpxN7b4dRAPa1/FmDyuYUaAu4F9qBbReLdzcPUCV3ZoL/Q5kDQOZK6xxT8BZigM/dpidyTF3VQ/6dOo8UFIt+W5elhBttMC36Bw4WeBP8A1550AWYsbaXdlZF7tUTTuxDXNALoc1X6EItCZ/PWj9gwaZXFOqwU9C7peq4VdbvShPSe5nqr4GaNwQW38XWy+B9UvgO7S4ljA9LklmGCWtnUPqI3zTJ9/hUzTMUm1pLUyWcULD+PnoDTRjcZ5TDaNjSJsuYoXZPAyPfgiiDkJOoQYg4v2FUDWY8KLoCsQWTbvHcZAnYjcetUd+iQuMljG2dXr3Q8Pc8mB/EgRXGDgOVxkcRtwlHSrsymlsTpcac5ITYbnh5/FaItrTuTHz3XSp6q4mbQWGAQdRrUM4uEMoQ/2WVwErxP0VsQcJKj/LHFpl5pCSuOyyoXTtxCV28XqG5h4QFWVuJzWuFTGVu4HTPuXH+up/Omfzlaf/GuCr31dKc/EVGarBJmYVAPElSp2yiPVFAhYbNXTUsHr/+Z/61z6U393lLqeYQkb6lB9A/QunEHexeUuQgFexa20xb0lPNRGgGL80L03IreNzuDGHE4nOgclMGO4jnAPIYX4ZbD34iKIp3ETMpYjMg7+XHp/CngC12yzNjmvBqAbjbvReA/iP3DjlMElh/16/CquRuo3b7Ddp59FJnBb4z2Q7fomheFvJE1mvfOe2YzqIUQ2ovY4GrdzyYEEYAnEh1Fz17zfyVKw57g8/3oWt0DLonYC1QDI4WemQNLYapm48CNuU91LVFxBkA3wUmeIijdpXH0aGy2jOpvF86YJmwqYrAUmKU8ZkAPEFcWEBbAG8WNKE2vI5Q6BbkT0GEgI3I3IQWA1yFGEB7ksezbH1QvBKnCaue7mhangGlR24+zYOZwNjpL/Wi7bujkMbkxhG67spxUX6VyPK1/qTvbdjXMW9+LGRJ65Zko63TqbXOsaf1tYZLa45kR+/FyvfmX3pU5i1WFgArQJjTYAT4O5N+labsVWBeMfBOkUYa/CDOVigwwduZSm0vKUUAkwUXKNAAAgAElEQVQbNAwt5fEuZgcBUvHQ8I7id/7mHqI4BRBcOLGTXK5MOltHuTiGteAFMRKI+JmQoH4aL2ggsqMtj32lKnV9AeLvBbFATkvTL+mFNz1MELmbjiDdt0+K59eDVEHAS41i4xRiApzUR4wzwsnqWjpw6aVORBrdJBqdRu1uJ12UWQN0oLrHCRkzCRqiDLqmIkkhYnE3iKdwjiS4lPsm0GdwBv0BsHvAW2hWbHLh4usI+76L36AwNEO2+/fe4/Y1anx8iCzUACZACtUjWNsPmsY5kRb0TZciNj1gn0JZidIPckcyb9vinKBZ4AFVexFVC7oDL3W5Ucf4h4hlELVNVPM3aVzupzSRJba+Vs0uTLjU+LkybRtm8TIBXljGWiiN5qnM9KH2EQDi8nbqevOgFcIlf0FQ3wb6N4J8yb0VfQ4kg1soPrbAex3A2ZVtuAa7Dlx381pcU8p24AEu3wvPA/8P8Ccf+azo0pgAXq2GscYPEzUn8uNn5NpPyYOg54E+nKM1juoS1L4C0oDoFHH1Im713ICNAozvgawD2YXqJM292zG+amTj0m//i9Wo3m6Wr3gp9YWtq1R1prLtlT3VfQc2z3vRaZq7lhCGvYiZhpKHlw4l25KnLpjGS0f42UhE6sTTW+vXrH5JjBdgwtsQ3gEaiMuTzAw9csVb6bvnLG71nkYkxoRteLQDaVQP46IFhUSkt4hLaVdwUYOKuxzSCEbxs1lUi8AUxl8DhKAHXfTD5oEvAjEEOxF5GHQWd6N7AHcDeZ35Gnhq73cSP0yCjCDelqsikzcSIL+a36UwtBb4S2AP2e7FFzlYZCmUGu+Zft6tjQpuAdeGmBwaL8EtviJU+4CjqNYlDWob3aZqcML7Azjtw07QCpiDeGEVG1nxwiywDSRPVFTt37sBP/0mQkyuvYcL/Sd1enwJ5wZyTBePctODhrAxo8WxEkGuTwoXCtjqZTmuTOs2wvotiHkSMa14mUlxgxdKwHaQZYh8FkBVJ8Dux0ZTaFQQL92EmPW4COz8KOx8mnBNLmdwwwmeBX6bdOvMh7zmC+NS1DUHssb1WWS2uOZEfvwMX/VvxRmxIaCKtTNo1IBLiTyBxs+gmgPKaFSHS5dM41beXdh4O57fDiANbV3Ubx5WE3SVf/83YlSXAtj+s5vL33/uQHxuoN4WKn1XvX5D8Tt/vT/7M3//QRFzinTjUkR8TFCHn31TTOBhvOUg7ygUifOiXl0bNroITCBS0bETdVxNVDpKmEth4xFQQSkBY4h8FpFDuDogi0v7zDmbleR6eMnzWZBpUAE9icY3I8FxlEKSTWoAApBnneakPOH07JgBeSLprL4L2I6NIpxw8Bw97k9BowHwDiFmK24aR/Xdmaob8vXkz1IYegeXqnqGbPefvd8DfewIiy6FUuM9s1DjximcA9Xmblje68kErFuS2djdbpFGBpFtiEmhdgrkfuY0DAGQUIQevLAfL8wwb0qKBFlUvBPkR5xTODMMGhXx/JN0duQkk/K0NFGlcKGZVONFgXHq+jwKFw7iZ8bx0wEm2AAcRbwMIlXiYq/CMMZvxVZn0OgscXkCW+lLNGybgQJ+3dt4mbtwdgTUvg6UQJoQWcihXo6LUN5fqzus8YmyCG1xzYn8+NmBq7Up4wz5KpwGm9NhEzOFVXCisd0g6aR7cW7/TpyIbB/uwTmZGUF1AiXN7FDeW7VqOnr7zUFUe7DWt2fP3YLVXSiXV/oJdujiQ7O/8x+Hcl//hYJpaWvAz7yOyEMgmzDeHkRuxdrzYvyyemmlWhgnrG8A+ZKefvkQs0PvNsxRcQVhbo0bW6gBLio4kJy7nxS494KeAeqTfy/FOZXJlAZ9CmEtygncDeE0Il0IY6jngTWovQ/M6wgpbPwyIgV37poHuT1pkLGgd1/nM+kFmRMtnwVpS5pvuq6zz7UwwM3J38PAp9+JRBafOFmNG1McCYHPXvVoP65h77L+oHh3gYnQeDvYuXKYTSBvIF5S1iH9aBxx5T1jF5BDtQGN8m5WvaxApFdtfByRyysxEQiCBunr7iWoGyFdH0i2PYXqBH42g/EzqJ0l25VFzAgmNKh9HY0tUTHA+FsR2SNx4XHNT2xD4waC7B3ves9e9g3xUzPMGUy1O0GbQe5yC0beQOTd+zndxmZcZ3SNGp8Qi88W15zIj5t060lKY38G/IcFnxdpRMwObHUzzpFcSGKmhbkaH2NMsp+CsRrNZggzpfCxz0TxwPljOjJ8WeJDuAuYwBnLK1HtjvvPDZi+TYck1fRZtXZcNDoDWkH1OOiD2CqY4EW8lCdwTqf6LzI7tFAdEsTVuVqsEshUcr6rUU2+cyogQ4jEuJSzutpGJkEGAItqF9CHxucRI5hwFXAACBCZRk0b2KfAdqJyM2qfRLnH1YoSJeWWzdioibmoxMJcwDnxYXItQc1bYBu5dnf2e6HhQ+z78bLIUig13hMZ3GI1m/z7LK6MpONdWwogXh/WHgQaEG8YMXddfl6WomznssbhXkgWpCInMOk24tKM2qiDav45rcxspmXJCUbKu6kU7sN4+2hdtpY4epPy2G2IPUPzuiJibqUypcTVC6gUtThxkDOvtwN9dKw/JK1L6ymPxwT1T0tY92VVO1dLLcAYYfM41ZmLoBbxwPiCmCfQ+CWQDWhcBRkDsa6TW9tQyoikFrheddScyBqfNIvMFi8ul/eHh9/DRSMXxgR346W24dIsGVwRe2HeFhtxjR/3zwmViXhjhNk2CXJTiB8jXkCxeIUDJCIpCczC482Ayu69VeJSACDGtOCFd2DC2xE5ljh2iHh1IqZdYbMO7mu85ntQF05FJJ1MXrgN1yltcM5aiIs6NuGMdysuutoJ2pgEEhqBHa55WyZAjjvBXmkFaQDpQUWx8Rhqv4/GbWCHiSs2mYKzERuVrh2FlCOIvxMxx7l6QSVyG5hxrvc53Ziru0Q/ncylUD7IX41PL5n2KVzmA5wDmcJlMq5CFTftaSXir0f8pVc4kHOItxEnJzTAlRJZdUAvfmYDUeElqjOfFSEtxt9Ec980HeufYuXWvHjh25Ku/wotawrSff8qMf4TovaABLke8bLjoDGZ5i6ichcigzS03Y3GMV6qgp/5vKru0wv7t+lUf0jYOIVJvyJeOCrp1oyk2yIJ6ifFCwXkVUS2ojoDbE1UL95BtR+X7dh3jSv2g6mFrFHjvbIIbXEtEvlJkG6NKY19DWfMsu96XiSN+FsQ7zjoFGLuSsYCHgIsUfEu5hYANhaMvxfxtmKjPRivKlHk2+mC0UL+6vpHxJPVWr20kr8COz5+m06PH5TsvCyuSBsSfhFRBd2Li4yWBNnBui/eysTpvXrxYEDTsknJtjZg44t4QTeZllHgPKoK9DopINsGCGLKOAdrAFdovhz3XRxGtQWni3Y86SwtJc03OVwtaDX5/yZEVmH8VUSVM6g9BVoH5gToVpRMMse3+5orO/HUpb6vEaQU6UVNF9iFo7c35sNEMT9eFlkKpcZ75r/jFmrLWdCBBI1LbzI7mKaur5/i8Bly3bcJ3lwU/W3ge7hSkrMojwFbrzpEF/CClqfKVKbnIpVHCZtOS6Yzi62sJj84Q1B3mrB+m6SaygJbULsNbAZrvw9aJ16qTSv5GZbdNSwNHXP1lWUyHVlEBomjWTpuihAp4KUjTNALjCMyg2orxkvS7WYMtdtd1FEPgGxGMBAfRb3Dl8a1vpviB7rCNWp8lCwyW1xzIj8p0q1HKI1twokBf27BbUTWXPL1RLpB3PQCP3sIW53AVu/AeDEiD2hU2EZUzOJlcgT1E/bEy2Dtu7oSRaRXPHlVLSu9JSsPh1s+lzPdS119lI0tjS3dGsdxEglUjOeLCE4BVZpxJ5RB5HExoaV13UlpWbkcqCKBILThUmitQAG0itosamdQmwEEL2VxkciGZNu5CT5u9CE0gEyC3AS8mkiQTOK6Q+/DzR0PUYW4lKTY5BwmXIExG7HRi2hcBn0CVFGeR4J2RAqgERpnEJNH5MYyPiIeyjtcHqH43lGNKQwFZLuvddP6lFCLKv7Qkmn/E4ojfwX8LG6W/GvAjwP/O7BK1RaYHciAbmC2vwAspTi6TTMdD4mIBxwn0/EvLh0vP7gXuAP3W2zHZUmqaBQTlwxzAxLEH8Z4N4M9QX4wxMtOSa7r8wDYKtj4DFDBmDbQ21z00BuQIJOhZUUF1e9BnCIqFhGpCrSo8ayoaULMMMaPxQsTHVkVRF5A6XXasvFnQLcnAwY2AK+hNAMTiPoQVK+xsFzUQwNq/DCw+GxxzYn8JEm3nqY09gTwU7gUd/t72k9kI14IJphFbVWr0y9TmXqEsPmQiGxU8V61w8PvlhISM2SWrj6a2vxEk7f25lYxZvMCR78eV9YLiRjgAQgOo9UIjYcRrxl3I0m6yE0JYQAkhwnSgDhpEJlEpIRq5CbyaBoxd+IahJ4DrUf1WBKFbAQZdWWTOo3IbagqceVFsMk8cLsZWz6GpDzQFSDLgZdAt4Lek4xEXAUMI/4dvK9SDgne9/3FTeDxUL2V/OABcj3l93eAGjU+IjLtRdxidY7fpzjygtrq/2LmTDOXF3EuK1KdeZjq7FvasDISkSvtSK5nhvzgs7ia7lHgIk5rcZ+kW27TynQ70EuQawdOo7YdLzxHmFuu1ZkDEtTf7A5klwMzqGRwC8WKQozaOgQBW4f4ngT1LUATYs6LyF1q/EFgWowXIfIYqjtciQtpRNag2pmkrh9C49PJe7oXF2Uso/E04lVqlVw1anw01JzITxqnHfbHlMaeAX4H+Np73lekDvEeJWwax8++LDZqQ2OoFtVf0vRFv+OOkcqx4Tcl25wKHvxcu1mxfqMY033jA1+TyjXOYwMSDOCiiBnc3Nc0yFZEd6CSQWhApA/XMBPiul7KXJ7+IECA6gDEK4GVIILyAlBMtB+b0agfgk3YyvbLDuQl1hKXy4h5DTHdiNeE2u2IeJjgc8SV7SDWzdp9P8g9oKOojuNump2IrL3m5qoF3NhKcJEfJT84gJNWOY1r5Jm7AX/nU+FgLrJi7hofkkz7QSkM7dKw8SYqU/NtwhvAfdJ1//Wi5/8JpzrQT65n/urqzylNgvF/FZG5mpjdZHtWovFJbEVUdVZE6oD9IAXQIZz01mq8zHE0LmKrDwCglQEV/5CYcDjRrBRxk1/W4Rp7QMQthFVfAwwib4BnQUugAWoPg1zEhG0YUwZuQtn14S5ejRo/QBaZLa45kZ8W0q1jwM9RGvtN4CeAn+SyI3JdRKQFL/UIXgpUT4A/be78qb0Emeb0I2a9GG/phzizizin8CTXFeGWXtBJ3Jze+anfB5yOIwWc4LdxnZICyEZEmhHdiWryy7EncR2gu0E918VNCiUDtgCE2Mo2N6v3XRwHii766e1EZBPKLHGlHRvtQO1mQNTK83ipDSLSC6CqNnl/Im5E3HyGESmi5rCr6dS5m9YgrllhGSI9V+0T49J9ly4Ormmoj8vdrXP8E/KDP0au5+K1r+0PGAFMLTLztw2t5v8EW/n9qx6+A7iFazefQK6nhPvuX8n0qTR++leAM6gdBcpgAjGmC7wuvEvm45TCMuLyAbxgvYi3FBvvEDvTqKqjl44npoiXMojcDzSBnmIuXa52A6pjiLQmWzfjHEsPMY+rxs9jbUrQaYxXh6DAbc4+XpIYu5p4oQdr1PjYWIS2uOZEftpIt54G/j3w7ymNrcU5lD+NW33fGJHVEmavdoTm8yzwP67xXAmX9ikA48DJK6Y3lMa6gc9z5Zzd+S/ehGuUmeuCBMRDtA5kZTKiUIFRVGdc2oqp5DVj0JdBuoBnUVuXpJFbcZ0vfS4Tbk+j9soaUtUYtS/jha2IvwIjFSCP6kGEHF54irj8ebepjhIXNhHlcxo27kK8JVQmYzReA6B+dide5nYRySXXI59o3w2D3A52B2pvxqXr78dFVg8l78E1+8B+eLce5zV4EHid/OA/JNfz0nvc56Nnka1+a3wEFIffAP4CZw8u4AYeXMBFyz8IrSKiam0L6DDQ7LRczRsI64AYMW/jopGN6qfHsVGnKxWx64AOsMcBMOFuvNSsiDzuRqTqM8CjwDsgg4jXiep54I4k6im439IFVX2T/FAVJU9dbx9G1gBvofoscC/I+QXOvUJtmkyNTwOLzBbXnMhPM+nWY8BvURr7HeCPgH/wIY/4TeAfk279YI0e6dYhSmP/R3Iu16IN13V9AeeIFkE2A6dAO3CRhBhn9AeYE00X2QJyLHEyG1G7DJETiP8QcXUb2C242qsvgFwAjrqCfBqBZ/FTDaidRKMX0WBzMhWnG+wFkM8h/ja11Yew5fPJflCZfBDnKF6W4omKN2HCA2CWgjmdzDIfBW53TTamBWwIBFzW3NyY7G1RHeG9O5Bz9AEvkh/8PeDXyfV8zF2isuhWvzU+PNL1wBTwrz+yAzasHNCpk78E8T9E9SHQtzGpUYz3KC6LccGln/UpIBbjd2Gro2hkubRIlmb8zEuI1ydiBPgukjTxKIrITSDTiNyCkwMLkvR0CTiEKhQu9lMe/xHq+o5oXGyB8C3Ei1H9PFMnXyLbXpXUu8QWBpLSoho1PkEWny1eXGf7t5V0a5l061dx2pDPf4Aj5IFfBX7uAzuQl/km8NwNtunFRebGgTtBZ0DP4Vb6+3GRymHc6n+uuWYb1o6i8RQax1xOLUUY/37g+8ylgkW6EqczBNmGl2oG7yaMX8V4T4B9PdGGGwXZigthCmqfRuPbrjrX+VqOEWHjgIi5D+iBuCV5vMglHSAdQySbNPz0X3Usw3ttjlqYXwH2kR+884ZbfpQIbvX7Qf5q1JiHNK76FvAlRH4c8UPxgi8kWrEGkR5X8yzLQBpxC7D7uZxlGRM/e1jEK4vLUhRBMriJVnlE9gMHE7UGcJJFh3GLtsdxi7k2jN+m1p7X2YHDWhqbJSqA6s3kLzypk0MzVAsLOYtnfnBXpUaN98gitMU1J3IxkW7dTrr1s7gRgk9yrUaXy0wBfwysI936/34kK213jF9Ijn09VjA3t9rVKvYi7AM2Ad1JLVMDMA3SAgqidWh8Dxo/gPGPI2YSOIvwAmJuSo5zGZEMIsvA3ofIQTBpkOdAlroaS90MmKQe8mHEW87C18ylsYLG10REQA+CRsAMGp1xKXR9C9W9YO+ft9/slYcxr4AcveE1vD4bgFfID/4r8oMfX6ZgkRmuGp9epGldUZrW/Q3G3wL8X7h0+bdxGq9D2PJGbPkWosKaebtNI/4kGqVcZNLkEAkVXavF0WGdHTBazY+jGJD5kfqr67Sn8VJ3I3IUvJSY4AiYadG4AT8VSdfGkFTTQtNqrl0DWqPGx8kis8W1dPZiJN26B/gipTEPWAKsxY0yG8VF+EaAYdKtP5iu33TrWUpjPw/86Y22xEUPTwAXUZ2bFjHB5e5sgMA15shaMM8gksF1eQvoCcQ8gfGexHIXap8DPuOeIw/mHTBDgIdQBakHM4rTdTxLXD2I2i8BiMhN6mV2EpduAb08kjBoeA1brSDmYdz168RpUT4C8jRxpQ8xA4g0ute59IONQF5EKIFXh8jDqF5Eoylcmv2D4gP/Bjfe8lc+xHFq1PjEkIYV08BvXHpg9ty/BX0Y12A3//cxgHgnEXkYWIVaiEsTiK+UJ09Tnf0CMIJKBVvtBXkGP7Ud6NW4ulEvHtrJ8JFG/FReem6z6vsDkutqw6Sq2CiN8aZQ+4b46QCN+/BSuQVO97Uf4KWoUeOHlpoTuZhJt8a4NMyZT+C1/yyZuvN73NBhktWoZnASN5txKagNuCglSfPMGCIH8AIn+6PqJ7O016D2e6g+hshhxPOwPA9xCuhCSCGmFfRY0pRzK3AAEYPqMJ7/JdQ7jtrjYBvEslaDhteIZleD5AlyZRFzP8YbxY2I68F1pIcgryGmDS8Y5HLEYwT0CHAn4pGMaGwEnUg6PptBjoDe8iGv8BDw2x/yGO+RxVeHU2MRUrfkMHCYqRP/HGhEvLdAxoCtiJy4autmjUsdaDSFn/kbjYoxcaUN43eLiGilYPXCO0cZPQZqHwAMcQU9vSNm7dYpoIXZc0+jmiG1vg1kDfhvu8Wg98RVr1UEnvrBX4AaNW7E4rPFNSeyxgcn3fpNSmPPAX8I/J3rbivSi9INbEucxvnPTeNSygWc3I7BpbnXozYEvQsxhxBzC7AfsTnieB0gqF3rtMtNHhOuQ3U/UEb1MOim5PhrEDME5iGMj6guIdU8C3KTG4sW9+Mm5AB6FngMeBJMCDSBrAMtIGYDqs+D3oXKcbAlhBDMckQGge2gedDPfMgrWwX+HrmewQ95nPfGXB1OjRo/aPKDLXgZH5eNaEOjPtzvfQsuGnhpzr2YYJh0S6eqVhC/jPAQGn0fSW0RP6yTvtuh73ZUraUyO6BxaZhKoV781GpAqV/SplNnRpk8NSiNyxoxQQlJ5Rb4rv/ZFSoUNWp8UixCW1xzImt8ONKtA5TGvgz8M+B3cV3LC+Mm3GzBjV/bhfvJ+LgmmkdxN5EKLpW9BLiAmFncrOxVwCGQOxGzDeNPYaOe5Ll+xBtCNcDVWQ6CTiXPzXG5DsoJhQ+DDiFyM+pNMTeZQ7UHV2/agkgFuBlhN3rpfTVg41NAN2KmQRSR84h5CGgGkwd9Hb2idvL98svkenZ/iP3fN7LIRm3VWGTkB///9u483K27vvP4+3ukey1dL0ksW7m2E2dPnEASkjjO5thNJzAJW2BKO6EUyjBth7YwtE8pZVrKM7QMpaWlQEvLBEppShlmoBTSkA1I4tjO5uz74uxeZV+vydVdpPOdP366se71te9iHUlH/ryeR08i6Sy/Y1vf8z2/9STgN4Ffxyx0JfG4j9H3oPOBVYQYsYXwYHmSmZ1K18w7qA68RNR1Hmaj+kGaRZF3z8aGqseTP+IoAN+7Y41v3rCn0tc37DNnz7BXn3ywa9FsOPHik6L9W7P/OolLFpmOtMViJZFy6MJgm68y0LeOsJLFsQffwRYCC2urVTxD+Hf4GHBerRl6FfAKZoOEWsGdwCbcd73+lBZlL8Ayq3Gfj1kVeCvhxvMq+HgTkY+s8zur9n4TYT1ux+wVwojyR4ElQF+YON1mAvcB8zHbC/Y8eBlYCfYyFu3BMm+rJccAT2G2hNhzTN83CTW7zWXpakKRlOjfHOH+j4RuJkPAQ4Tf4LlYdHJYtjDurdvjQuA2sB7M5hH6d+ex6Ayy+Z0WZkkYO0BwqPZAuBT3NR7HWR64cZ6/2l8eWPdsz/CewQV7B4cfW/xHv9MTdedPH7Pv7eQKDyZz8SLTkLJYrCRSGidXuJeBvvOAfwLG9jsahy0AFtT6GA4DW3HWg/Vidhr4Otxvx6yXuLIHr76JqOvR2qNaFbOlWJTH3YGf1pLH3gOc60Tw+wgjxgeB7WCXEyZWPhGzJ3A/FeKHwM8Fexz3vUTRWwmTE4em8TguAX1EXc9idkVdAgmwHY/XgC9netYBvz1mKbnkmUHKnn4lNf4Ksw+M+sT94QNsWwbuA7tsvyY9jx8gruwl0/UmvLIRZyuWXQjsIfRhDlN3mS23TAZWvm99xuPu2VcdAUN7tsytVLqi2cWucap5vnjolyjSICmMxUoipbFyhW0M9L0NeD9h0M1+s/ruz5bUJhm/C+NS3G/B41ch2ks8dCbYA4Qm7tnEld1kuo8l1Eg8BpyPmQEF3O8irJRz/P7n8D2EmshbwS4ijHy+g9CUHgHHhlU2bDlEqzC7DNgcpvVhMfAgsBuvnkvU9Qhmb6zNFVlvBh5P9zFyG/ALtSXlmi9l/XCkTfVvzuP+NaqDT5OZsRyzK8bZ6jTCQ2MXRlSrV3wSLM/IWthjmc0FP8s9fsEsOgU4McyCYC9imWVhLtpR259MJrcpys440pm9g/yMLqLMrDFH3UjouiLSPlIWi5VESuOF5u1rGei7HvhD4CPU90kclxn4hcAdmJ2NMx98K9a1kSg6DtiCx0+CzSI0Tf+MkEiuITRvnY1FI32tVhFqDusH8DwFrABbS5hy6FTMXqt99yLuLwLdmPUBc8GGMTsBj18g9K3swqu1RNRmY3b060d2B7NXcD8Tj3dM409sEPglZi58ZRr7irSPngVlXtvUT2bGb1Fbm34/ZrnaALizcLsQ9+uwaAmwF/cHCdN/jSw4MIBXIfzWh4gr24m6jsOie8B7wediNge3HYR5ZE8h6r6dTO4oLMpi0fFkcjsgdrALxpTkW7UZLkRkmpRESnJyhR3Axxno+zIjK+bs65M4DouAFeAjq1Psxmw2YVDNqVh0C3BJLRE8lwOvDnMm4UZUP1/jMFiEV8sQOcYruB8NbMai+YQpfS4OU/WwEeIizkOEWdBfwuxMqpVKmATdTqwljncTBgdlcN9B6PN10iT+ZOJa/8pjauf9JDMX3D6J/ZKTsmklpI2ZfQq4eoKtduLxy/jQHuCdOHdh0b7BaO5D4KvBlwJHGOBR9nrgQvBVmM3A2YZF3eGUUTf5o4/36uCjWCYyi86uHel6y2SOgGyB0YtrxMA/NOiKRRonZbE4XaWVdMoVXiFX+BhhwM0kBo3YTLA3ga0EO5ewLu49QBWsm5AY7p9Ausd4vJrQVD2PUfNX2pzQid+6Ie7C4xOJq73ElW7iuEBoXtsF9hhYMfw/R9RqL3bifn+oBY3Oq13HatyPJCSOcwjJ44FW8dmLZVZh2Sex7L1Ytp8oezKWHcCy3yXKfmXiP5OEpWyVBGljPQv6CC0QBxYPDxEPzWOkrzHxcXh1De67altsAZ9F+E2t8nj4duJKL273QpQN3Ub8OLCRJUIXEMcDlunuMsscTZiT9kngGJwe9ltdiv9HrvBCIy5XpKFSFouVRErz5Aq7yBV+k7DW7WOT39Fmh36M9jbCqjxV9h+hCeGmMX6fKtiO2aVYNBOsCl4FfyHM+Ti8C/ezgMcxOx0zx14E72EAACAASURBVH0zHveH5RM5AdhL1PUCZiM1qbOAJbVphRYz0tw2WgzRvVh2AxatrB172evHMNuB2UfIz48n/2eRgOkGrUkGLjO7wsyeNrP1ZvbJg2x3vplVzew9Dbs2aZWvA4+M8/lmwqpVRwE9dZ8vDAPSqltx34bRA9YF9hShC8k54FugMgOzk3Bfjvt6jA3gq8C3Eg/f6tXhLRiDodUhXo/HWzFeAy+OKYem9ZH2k2AsTioOK4mU5ssV7iQ0R/9PRtatnrxFhCT0BULtZOC+BTx/kP1GBsHEuHfjvgmz48Huq5VlNWZOqPW8tNbUfC7hhlchDOA5ctTxwg+3SljNZhA4g/rk1rKPEGWWYTZ2WhGA14B3kZ+/c7IXnqgomt5rAmaWAb5KGK1/BvBeMzvjANv9OXBzg69MWqFnQYXQF7reGmAW2HlE2f66z18OXVSi1RCdgDEfmIfZuZgdAdGZZuYWzei2TK4bZwP4WseLvvOZft/9fNar1ae9Ws4yuPN497iEVzfhlUvweBbuFeA18PWEZU1LhKmGRNpPArE4yTisJFJaI1cYJlf4DHABU6qVfN2JwAW4r6pNq7O99tl4dlA/8bhFC4BTcHLgc7DMGszyYYofFte2yhAG4Cwk/E5mMvr3chLuNwPn1T4fIiSStdHV0T2Yvekg5f8A+fmPTuWCE5VcTeQyYL27P+/uQ8B3gavG2e6jwL8SbvDSCXoWrAa+TUjYHgJbHloVAKKTILoLoq1YZjEWXRJaCkZPJA4MYrYY66piUYYou9yjrh73eAevbqzi1dOoDl6CD0HX7KPpnjNgXs1h0QyirtVEWScsRXoR2MlAkdAfcrh5fxAiU5BMLE4sDmtgjbRWrvAAA31LCbWSn2CqDzZmK3GeAR/blDxisHbMc2rvBzA7FmdtbZ8MmBOmEBrA/VYgC1bA7Aw8vg23QcIUPKW6iWDzwH8kTHD+NFDG7ExCH678SIf/A/gC+fk/mNJ1Jsk4lLnJ5pnZfXXvr3H3a+reLwLqR51vIDw47Dt9GMX7bsKqRecjneQTYM8yevUoMFuERWXwo8ff7XVF8BcxO9497mFozzPEFSeuHEH3nKPx/B1UhnJkchebD99I1D0XsxzYNsxm4b6HMP9kvW/UZpAQaS/JxeLE4rCSSGm9XGEQ+B8M9P2I0JfqjVPa3+xUnHvBt7FvwM0GQlPzFsKP5S5Ck/ZpwKtYZi4ebyDKzgLLEKYg2kGoiTwZs824bwQuC6NEWUp98/k+vbXXxtr7MmFAzxHjbAtwNxMNOmg64xBWSdju7ksPfvD9jL2Bfwn4A3evmgbrdJaeBZvp3/IFwkNivR1YZgNeOXmCIywhdEG5CY9jIMaio4iic0KXlO7ZzJy70SxaDX4mXn0By+4EX4SzlTC7wrwxx7ytMRcn0miJxeLE4rCSSGkfucLdDPSdDbwL+GNGVqGYDLNlOIOhkz0LCatYLCOM0hxJ/rYCS8Hvx+xVLBMTkr4VwBOE5RXPDINuKBCWPAS4GLiXUFNZJfQbGWsh7muIumYSD/cy/o92N6EZe6r9QNNsA6OXwTyGsORkvaXAd2uBax7wVjOruPsPm1NESdhfAJcDswkrzCwCTsCiY0OiZ7sIy4qWscxM4GhgD14tAf3AqUR2hcWVu/FsxmN7Ca/uIh4eYMaRWeuaWST2WVDdDW44szHOIfwG7yAkoiOqjP8wKNLJEovDSiKnolwywnQuI00z28kXD9SMKtORK8TADxjo+zfgbYRkctmk9jWbAVZbN9uPInTkzxH6Py3H/c7alt3ASmAV+0aIvkKodVxFuOnMxawYphOpbtpXBr8N7LLxzg4sBx4kyt6Ej1vm3yY//9lJXUuzJbfU1jrgFDM7gVBbezXwy/UbuPsJI/9vZt8CrlcC2UF6esv0b7kWuGbU52YnkZkBIWkEwD3eQHXoebAuLFpimexmj+MFVAdvpFJeRCZnlu06mqhwbtieu4GdmM+BaDcen4jZFsLAu6fAHbP6AXf3kyu8hki7SiYWJxaHlUROpFzKAG8FPkBIPOrnJ3yVcumnhCfsYcJT83mEztvdhL+sO4DvATeQLx5ONVCHJvRZup6Bvh8DbyEkk5dM/gA2D/zngZ8AF+Je35l+ZC66iNDX8VbwBYRR2EZ4SrsOi94ZNsu8DH4/kKslqfWTmI91DtgajLnjfPfM5MvfZAk1I7t7xcw+QhjtlwG+6e6Pm9mHa99PYt5Q6QDXEpq0F479wj3eSXXoMeLhowhdWY7BfQvVgfWembETizZCPBvLbKM6FDvRSrPsRix6ycxOBbJhZLfPxaISXomx7BNhYJs9N+Z07dMXWWQ8CcTiJOOwksiDKZfOA74DnHqALWYRml4PZDHwK7XXI5RLv0RYmsvJF9WxezJCMnkzA323AD8HfIYDzwU5hgG8ubYMYsS+5vGRX+mlwEOYZXE2EWqYY8I62fMJI9SKmC0GW4z7dkLtZoYwz10f8AYYlTCu5cDJ7icpb/sg+fl7D/B9a5glukqCu9/AmDWKDxS03P2DiRVEWqend5D+LZ8D/rb+Y3eH4deGGPubNuslm++tvdsO0b0WRbOxKHLnKa8OPktmxiUWZXcAuTA2zubjHAV2H2Zvr+07tsnupsZfnEiDJBiLk4rDSiIPpFy6FLie0HzdCGcRJsM2YC/l0mrgG8APlVBOQkgmb2Og73bCqOj/RZjHcRJsJfg64DnwrcBJYOvAy2BvICSSOcL62m/BeSg0jfvLQAn3PGGS5LMI/SfrDRKmKIoJtc8XMX5/SID/MOnrbTYNaJHkfQP4feC4kQ/MDLfoGTyuH6XthN9Vrva+j67ZSzCepDq4zIz5Xh3ajVc30DVrK9jR4CdiNg+zuYT72sOE/pfn1B13E+NPgC7SPlIWizVP5HjKpSLwIxqXQI4Y+dcxm9BE/gPgFsql3gPvIqPkCk6ucBNhCoJfJEyvc3BmYNH5WNQP0QqwEnAKFi3FrECoUV5BGGVdxphFWCVjKdgbgecIHfK3jXP0GYQmuLMIfSkP9pt6d9vVQo5I2VJbkkI9vYPAn+z3eWbGPLAHgBeB7WR71tM1q5/MjDvonrOaGUdusSizDctU3bnbPV5LlJ2BWT/VgZnElSV4pUJcfQZsC1hcW22qQvhtj7hHU/tI20tZLFYSOb7PE5orm+Fy4H7KpdOadL7OkCvE5ArfJyRwlwO3TGKvizB7FLPlmG0k9IG8lX3zZfUDD9am/OkG310byf0WzFZidhIjN7rpOdjcka1l0fReIlNzLWP6BluUPd26Z51LduaLZPNPWpTZYBY9bdlcv1nUY+Hh+1zgnWS6TqE69KoP7Njuw/3bw0/VnyDq2oXHZapDLxBXhqiUu6gOjp0f8v4mXaPI9KUsFusuMFYYgT3eTO5JWgjcRrn0h5RLxzf53OmWK1TIFX4GXAEccD3QmgzwRrDthISxm1BTcTvut+H+GqFZeh74bMLN7ry6/e8JI7Z5cJql7Zp4E5EO1tNbAT693+fud5nxc2bRpbhbWLnGCoTYuILab8eiriV0z5lj+eI8y82dhVkZixyvZrEog0WLwRfilaV4deaYsyiJFGkwJZFjhf6JPRNu13gLCP38HqRc+lPKpQ9RLp1VS2plIqGZ6q8I3RAOptZUzTBwJ2GU9ZuA48Hm1B7pHiXUNo7M2l8hjLI/kZBAnk+YmHyqqtPYJ3l2CC+Rqfse9X0T3deAXxje2NNE2ZOw6DzMzif8PtcSHu7CFpZZZpmuLWZ2LDAb4l7c34TZCswW1R4GIeqaPea8SiKlvaUwFmtgzfheIqxs0gpHAp+qe/8c5dL/IcxpuJZ8cWwTjYzIFSoM9P0n4L8BnyP8WY7n+NrraeC02so0YU45bBb4LPYN2hkirDKzgrAG8ALMHsa9TKj9nIo2/b2pf6M0UU9vTP+WTwHX4X4HeBisZtHdWObsUfM6mvUAl+C+lzAwcQizObjNBT8d7AnwDJYZqk3D5UTZATLdW8Dq+5q/Qq4wXp9mkTaSvlismsjx3dvqAtQ5iZBU/gTYRrl0DeXSohaXqX2FvpJ/D/zBwTc0GOmjaLYJsysxuxx8ByGBXAM8XttmBSGJX0JIKlcSpvHZM8lSPQC8B/jp1C6miVLWmVtS73rc/+n1BDLKriLKXjhmYvB9zGZjtgyz5cCZWDQMUW0p0+h5zI7CohVYtBKzuVg0HxuVRN437nFF2k3KYrGSyPF9q9UFOICZwK8D91EuvZ1ySX9/B/ZtJm6+6gVuBPKM6iNpVbDlhKUPb+X1pm3LMTJC22w2oZntCcLk42PFhOTxvcBS8vP/lfz89q1FTlngkpTr6XXwrwOvEnXdi0UrJ72v2SBm5xFlLsKy/VhUITz0raq99gJbGH1/e6KBpRdJTspicZs2r7XcbYTk4spWF+QAeoF/J4zq/g3yxQdaXaC2kyv0M9D3DsLN5cTxN7I8r/8de4XQjeFywg3oWbATgDzuL0Nt0I29PmH5HZiFfd0B3kyYnPxYYAC4h/z8VxO4soQoIZQmm7lwLeVt38fsg1Pc82HgbNyfwWwI7ExCwvgEZpcSBsRtJ6zRPeLlhpRZJHHpisWqyRpPGFzz67T/0+t5wN2US7/d6oK0pVxhM2GC710TbQqWBTuu9gPuJaygYYTa35149VK8Oh/3HYRm6X0jP812YXYb+fmPkJ//Y/Lzf5auBJLUdeaWDmH2OcLAtdH8oNM5DhEmIl9PmOJrPvBSLYGEMHBu7PrYWw61qCJNkbJYrCTyQPLFjYRE4q5WF2UCXcDfUi5NNL3N4SlXeBH4z9SN7pyCRbifDt4FvAYeEdZDPwrsPOAZ3B/E/Vpy89pz5PVkGKlrQpEOkZv3LHH1s8SVB4krTxFXNhJX9uC+DveHcV/7+mjrfSIgDn2YGSAMkDu97vuR2RfqvZLcRYg0SApjsZLIg8kXdxCaKdOw3upnKZfe0OpCtKVc4RZCIjn2xjIxs67QYT+7G8vswiwD7AF/BvfNwJmEUaMiMi3+98DJhIFri4A54MPA2YQBbFEtmXwQ93twL+P+DO5bCc3WMbAO99WEZuv57H9ve7FJFyNyWFESOZF88TXgXcCzrS7KBDLA+1pdiLYVVre5DOib1v5mCzE7hXDDOhqsAnYUoV/xzxpWzpaY5pOvaiKlEXp6S8Cfj/7QL8b97tqbPCGZPIewutTlhITzWOAUQi3kCmAIbDHY6Yxe7nAHucLOJC9BpDHSF4uVRE5GvjgIfJjx+u60lxWtLkBbyxXWEv6M6h8IBiZ/ACuEwTbWBZwBvgXYSuiblW4pC1zScf6aMBNC3QCY+ETcV+F+J+6riKtriYd/Sjz0EHFlzZh+k6vBVoCvAt9LSDJHPNWMCxBpiJTFYiWRk5Uv3gq8gzACt11dQLl0easL0dZyhScINRe9hMnIe4CPEjrrT8ZCwrrqL4OdAtxKfv5BRwGkQ8p6c0tn6enth2gYWExYDepe4CmIj4J4GcQrobqQuNKFewbi5fjwJuKhu4krdwCLMboIc7g+Qqi9HHH3fucTaVvpisVKIqciX7yJMBrwrwidt9tNFvgJ5dKXKZc0fdOB5ApVcoWt5Aq7yRWcXOFvgQuZfI3iPOBVzI4Huz6pYjZVuuKWdKYwWA3mAssIrQa7wTYAtxDHjxAPnU914EwqA69QHdxJdTBHPBjVWgUgJKDHjDnud5p2BSKHKmWxWEnkVOWL28gXP07oj/N7tGdT5n8Hvke51NXqgqRGrvAgYaWab09yjzOA1Zh1xhydKWtCkQ5kloFo7EjsS8F7wY6mK38V3XP2YJm14MfgsePxHOLKcqpDI4PmHgc7rm7/28kVtGa2pEfKYrGSyOnKF3eRL36RsMb2pcAfAV9lugM3Gu9dwL9QLs2acEsJcoW95ArvB97N5LotLCJML5JuRuoCl3SkCLNzwH5MqFEcsQWLwhRaFvXSPfsSumZvovuIM+g+4kSirlXElQJhGp+L6vbbDXywWYUXOWQpjMVKIg9VvhiTL64hX/wc+eJHgJtbXaQ6vwg8Qbl0YasLkiq5wg+BNzDxqOtbyRU6oD+kSFsId0KLzoCoCrYG2ApRF3Ay7ve8vmWUWYRZhBlke06la2YZ2ARW343nz8gVXmrmBYgcbpRENt4bW12AMY4FbqJcOsDSfzKuXGE7YUnEPyVMMD6eHzevQEmabicc1URKQ438gzoBs6ewaDlEWzEbBB7E7AJgHaHfZL2tmA2AXVD32fPAl5tQZpEGSl8sVhLZeM1uzp7M/JVHAF9KuiAdJ1cYJlf4NGHE59i/1yFSPz9knZQ1oUhHqv8HdQawF7OzCCO2wX0AOJ8wMfka4IXaBONZnLPHHOu3yBWmMH2XSJtIWSxWEtl4zzXxXDFEuyFay/5rxY71Dsql85tRqI6TKzwHfIDRf8a3kyu04wj96UlZ4JKOZLi/jFfuqSWMI4PWsoQHuW24ryX0Vz61to79OWA5zGbWHedvyBXaqVuRyOSlLBYriWy8e5t3qmgNZksxuwSihyexw0cTL1KnyhVuICxxOFL7eEMLS9N46WpBkU7klbugWiSsSlOp/Xdz3RbHgs0B6wUrgp0K9hBmJ9dts5owa4ZIOqUsFiuJbLzvEtZzbYL4bNzvwP0piCfTF/MXKZdmJF6sTpUrvEBYS/1K4IctLk1jpezpVzrSRYQR1s8S1rp+iJBEPlH7/n7CgLfA7BHMltftvxF4D7nCMCJplbJYrAmpGy1f3Eu59M/A7zbhbEdAPJWlDnOEPkVrEipP5wujsW9qdTEaTwmhtFD/5i4gA5TBBjBbCWwCirXP7wYbxGyk4mMDoWVghAPvJ1do5xXFRCYhXbFYNZHJ+Evac0UbgFNaXQBpM9N98lVNpDTOuwkPuTvBl+L+GKFGMku4q55U+96BKrAXmFO3/1+QK9zW3CKLNFgKY7GSyCTki5uAXyUEvHajph4RaR/9mz8EfALsDmAAiKG6B1iGRdQ6fc0DBglN1j8FTq87wv3Ap5tbaBEBJZHJyRd/APxmq4sxjicm3kQOOyl7+pWOcgxklmCZFZDpwboqRN0XY1EeGPm3ZpjlCX0k31y3bz/wPnKFoRaUW6TxUhaL1ScySfni/6ZcOhL4fKuLUrMbmMwobjncKB+U1vkscCpwHBbNxyw3zjZ3EZqvT2N05cfHyBXSv/SoyIiUxWIlkUnLF/+ccmkj8DfAkS0uzb+RL1ZbXAZpR6pVlFbpWRAz0Pc/gacIg2jGuhM4nnC/qr9n/R3wD0kXT6SpUhaLlUQ2Q774bcql64GPEUZtH9GCUpQIT/wi40hX4JIOkyusZ6Dvq8ClwM2EeHUscA77BtMsrNvjBkItZDv2Oxc5BOmKxUoimyVf3AV8hnLpC8By4OeBFcBSoCvhs28C3k6+2MzVdCRNUvb0Kx0oV/jYfp8N9H0d+LUxn94P/AK5QqUZxRJpqpTFYiWRzZYv9gO31F7UJv9eRHjqXgwcRVitYSdh4t1zCGvF/gZhioupcOAfgY+TL+5sQOmlE2mQjLSvjwOP1b034N+0LrZ0pBTGYiWRrZYvDgLP117jCRODl0t/Arwf+BCjJ9kdTwX4PvAF8sUHJthWRKQ95Qq7gS+3uhgiMj4lkWmRL/YBXwK+RLm0ALgMOBdYAvQAu4AnCaOvf6KaR5mSlD39ioh0pJTFYiWRaZQvbga+U3uJiIiINJ2SSBFJ3dOviEhHSlksVhIpIqkLXCIiHSllsVhJpIikLnCJiHSklMViJZEihz0jbRPcioh0nvTF4mjiTURERERERlNNpMjhzkhdE4qISMdJYSxWEikiYGqUEBFpuZTFYiWRIoe99PXDERHpPOmLxUoiRSR1TSgiIh0pZbFYSaSIpK4JRUSkI6UsFiuJFBHS1oQiItKZ0hWLlUSKHPYsdU0oIiKdJ32xOF31piIiIiLSFlQTKSLoeVJEpB2kKxanq7Qi0ngjE9xO5zWZw5tdYWZPm9l6M/vkON+/z8weqb3uNLOzG32JIiJtL8FYnFQcVk2kiCTWD8fMMsBXgTcDG4B1Znaduz9Rt9kLwEp332lmVwLXABckUiARkXaWQCxOMg6rJlLksGeH8JrQMmC9uz/v7kPAd4Gr6jdw9zvdfWft7d3AMYd4QSIiKZRYLE4sDqsmUkSSnJtsEfBK3fsNHPzp9r8CNyZVGBGRtpZMLE4sDiuJFJFDaUKZZ2b31b2/xt2vqT/yOPv4+EWwywjBa/l0CyMikmrJxOLE4rCSyMkol2YAS4DFwGDtdSSQA0rAPeSL/a0roEjLbHf3pQf5fgNwbN37Y4BNYzcys7OAbwBXuntfY4soItLxDhaLE4vDSiIPplw6C/hj4O2EhPFABiiXfgL8GPg++aJugpIyiU1wuw44xcxOADYCVwO/POrMZouBHwDvd/dnkiqIiEj7SyQWJxaHlUSOp1yKgD8Dfp/J/Y3mgHfUXl+kXPoi8BnyxUpyhRRpFEusT6S7V8zsI8DNQAb4prs/bmYfrn3/NeDTQAH4OwtNOZUJajdFRDpQMrE4yTisJHKscsmArwMfmuYReoBPAT9HuXQ1+eLGhpVNJAkGluBSW+5+A3DDmM++Vvf/vwb8WmIFEBFJgwRjcVJxWFP87O8DTD+BrLccuI9y6YQGHEskYYlN8SMiIpOWrlisJLJeudQFfL6BR+wFfky5NLOBxxRpsFoTynReIiLSIOmLxboLjLaUkPg10unAnzb4mCINlq6nXxGRzpSuWKwkcrSFCR33o5RLVyR0bJFDl+Da2SIiMkkpi8VKIkcbd/LNBsgC11EuXTXhliIiIiIpoCRytHUJHrsL+Ept+iCR9pKyfjgiIh0pZbFYd4F6+eIrwNoEz7AYuDjB44tMw3T74Kg5W0SkcdIXi5VE7u8vgZ11r0b7F8qlpPpeikxPyvrhiIh0pJTFYiWRY+WLPyRfnPv6C55r8BkWA/9AuXSwZRRFmsdIXROKiEjHSWEs1l1gYnckcMwrgH+urY4j0gbS1YQiItKZ0hWLlURO7N8TOu57gE8mdGyRKZhm84mas0VEGih9sVhJ5MSuB8oJHfuzlEuXJnRsERERkcQoiZxIvjgM/Cyho0fAjyiXzk7o+CKTFE3zJSIijZOuWKy7wOQ0cj3tsY4C7qVc+owG20jLpKwJRUSkI6UsFiuJnIx8cS3wrwmeoRv4NPAU5dI7EzyPyPhSFrhERDpSymKxksjJ+x2SmTey3nGE5u0/0Mo20jxG2ppQREQ6T/pise4Ck5UvbgDeDbzWhLN9HriWcmlGE84lkrqnXxGRjpSyWKwkciryxVWEqXma4X3A/6Vc6m7S+eSwNpX5yOpfIiLSOOmKxUoip+4nJN+sPeIq4GeUS8c36XxyODJS9/QrItJxUhiLlUROVb5YBfqaeMblwGOUSx9XraSIiIi0CyWR03Njk883E/gC8DDl0oVNPrd0vOk2n6gmUkSkcdIXi5VETs8XgeEWnHcJcAfl0ntbcG7pZClrQhER6Ugpi8VKIqcjX3wR+ESLzt4FfIdy6S8pl7ItKoN0nHRNKyEi0pnSFYt1F5i+LwPfb+H5fw+4lXLp9BaWQTpFyp5+RUQ6UspisZLI6coXHfhVYE0LS3Ep8Ajl0tUtLIOkXvr64YiIdJ70xWIlkYciX+wH3gI83sJSZIF/oVz6qFa5kWlL2dOviEhHSlksVtJxqPLFMvAhoNzCUkTAVwhLJna1sBwiIiJymFAS2Qj54r3AL7e6GMDbga9TLqmKSKYoXU0oIiKdKV2xWElk4/wIeLDVhSD00/zVVhdCUiZlTSgiIh0pZbFYSWSjhIE2X2t1MWo+pdpImZp0Pf2KiHSmdMViJZGN9S3gnlYXAjgJWNzqQkhKTPfJVzWRIiKNk8JYrCSykfLFIeBdwBOtLgowt9UFkDRJ1wS3IiKdKV2xWHeBRssXtwDLgX8CvEWlGAaeb9G5JY1S9vQrItKRUhaLlUQmIV/cSb74QeAiYF0LSvBt8sXdLTivpFa6+uGIiHSmdMViJZFJyhfvAS4AzgLuatJZ+4BPNelcIiIicphSEpm0fNHJFx8FVgLfS/hs24B3kC9uSvg80lGm++SrmkgRkcZJXyxWEtks+eIwcDXwuwmdYS1wPvlis2o8pYOY2bReIiLSOGmLxUoimylfjMkXvwT88TT2fhkYHPNZBbgF+BVgJfniS4dYQjlspevpV0SkM6UrFmdbdubDWb74Wcql7cBfA7lJ7HEj8AuEpPEU4HhgF/C4BtBIQ6hWUUSk9VIWi5VEtkq++DXKpeuBjwHvB44eZ6vHgM8D36mtiANhDsp2mIdSOkq6ApeISGdKVyxWEtlK+eIG4Pcplz5JGMV9Qu2bVwmJ4vq65FEkGWZg6tkiItJSKYzFSiLbQb5YBe6svURERETanpJIESFtTSgiIp0pXbFYSaSIpK4zt4hIR0pZLFYSKSKk7elXRKQzpSsWK4kUOexZ6p5+RUQ6T/pisZJIESFtT78iIp0pXbFYSaSIpO7pV0SkI6UsFqdrQiIRERERaQuqiRQR0taEIiLSmdIVi1UTKXLYq62SMJ3XZI5udoWZPW1m683sk+N8b2b2ldr3j5jZuQ2/RBGRtpdcLE4qDiuJFBHC0+90XhMc1SwDfBW4EjgDeK+ZnTFmsyuBU2qv3wD+/pAvR0QklRofi5OMw0oiRQ53Rm3N1mm8JrYMWO/uz7v7EPBd4Kox21wFXOvB3cCRZragodcoItLukovFicVhJZEiQlI1kcAi4JW69xtqn011GxGRw0AisTixOKyBNSKHufsfePhmy8+bN83dc2Z2X937a9z9mrr340U3H/N+MtuIiHS0BGNxYnFYSaTIYc7dr0jw8BuAY+veHwNsmsY2IiIdLcFYnFgcVnO2iCRpHXCKmZ1gZt3A1cB1Y7a5DvhAbXTghcBud9/c7IKKiHSoxOKwdah2TQAAAH5JREFUaiJFJDHuXjGzjwA3Axngm+7+uJl9uPb914AbgLcC64F+4L+0qrwiIp0myThs7up6JCIiIiJTo+ZsEREREZkyJZEiIiIiMmVKIkVERERkypREioiIiMiUKYkUERERkSlTEikiIiIiU6YkUkRERESmTEmkiIiIiEzZ/wcQ/EZj75nn5QAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "DS_share.plot(plot_type = 'maps')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We can see that the counterfactual maps of the composition (outside of the main diagonal), in this case, are slightly different from the previous approach." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Dual Composition Approach" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The `dual_composition` approach is similar to the composition approach. However, it uses also the counterfactual composition of the cdf of the complementary group." + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlMAAAEVCAYAAADEqGAEAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAAgAElEQVR4nOzdd3hc1Zn48e876s3qsi1btmy5G4MNBkw3NZQQWiCQUBMCBNhswm52k/ySDSQbspuQLG0JSUjwAkuAJdRQAgEMpmPA2MbdsmQVq/c+5fz+OHfs0XjUpRlp9H6eR89I955776u5d+5955xzzxVjDEoppZRSanhckQ5AKaWUUmoi02RKKaWUUmoENJlSSimllBoBTaaUUkoppUZAkymllFJKqRHQZEoppZRSagSiNpkSkatFxIjI1SNcz63OelaPTmRKqWgjImtFxARNW+2cO26NUFhKqTAZVDIlIjEi8k0ReVNEGkTELSI1IrJRRB4QkS+NdaAhYhrXJyoRiReRb4jICyKyT0S6RaRVRDaIyJ0icmikY1SWiJSISEmk4whFRL7oXKibRaRNRD4QkavGel0icr6IPC4i20SkUUQ6RWSniPxZRFb2scz3RORF5/1sE5EWEdkkIr8RkZnDiXkQ/9MO5zzw7gDl+t3HzjrWjnZ84RAqkQvDNheJyD0istk5nnpEpNI5331DRBLDGY8KbbQqFYax3Zki8ifnmOh2Pn93ikjmENfzZec4W+ecT4yIPNJP+QIRuc85t1U52650lr9GROL6WG6uiPxRRMqcY7nKOdctGmyssYP4Z2KAvwJnAk3AC0A5kAUUAV8FFgHPDXajYfI08D6wL9wbFpEFwDPAYqAOeBXYC8QDS4AbgG+LyPnGmPH2vqlxQkRuBu4B6oFHgB7gy8AaEVlmjPnnMVzXecCRwEdApVN+HnAB8BURuc4Y80DQMtcDbcCbQDUQB6wAvgt8Q0RWG2M+HWzMg/ifTgbmAwY4RkQOMcZsHq31D9GVQHKEth1WIvJvwE+wX8bfB/4Hu9+nAquBB4BvASGTbhXdRKQIeBfIA54FtgFHAf8InCkixxlj6ge5uh8Bh2GPr3JsrtGfIuBrwAfYa3ADkA2cBfwJuFJETjfGeALiPRx4A5gCvA48BhQAFwHnishpxpj3B4zUGNPvD3A59mS1AUgPMT8ZOHmg9Yz2D/ZDa4Bbx3g7tzrbWT3I8lOBMmeZ/wKSQpTJA/4buCrc75v+hNxnJUBJpOMIiqkQ6MImP4UB0zOBXc7xdcxYrQtI7GNdy5x1NQHxg1zmm842Xhzl9+jPznr/w3m9e7j72Fl+7SjHF65z1Fp7Kg/LcflD53/aCxzdR5kvAm+EIx79GXB/Xe3sr6vDuM2/Odv8h6Dpv3Gm3z+Edfm/MEnA5+mRfsrHA64Q0+OwCZMBLgma96kz/btB048B3MAOIG7AWAfxz9znbOg7w9mBwDnYLLUdaASeBOaHWGaBc1JcD9QC3UAp8HtgZlDZNc76Q/2s7u8gcnbO74EtQAvQCWzGftM66GLA0JOpPzjlHx1E2YSgv6djk6wSbE1ALfAUcMQA7/HpwDps9l4LPAhkOOVWYGsWG535zxFwQQ1Y31pnfQnAvwN7nH2w23lv4vv4H04FXsZ+A+hyDrz/IHTi7d9GLPakvNPZRhnwn/1sY5Gzz8uc8tXAo8DCEGX9x0YhtqZkkxNXtbPf0wPKru7nOFoz2ON9LH6Anzpx3BZi3tedef8T7nU5y/hPPjMGWT7dKb9zFN+f7IDjLRaoco7BxKBy/e7jgM9RqJ9bnXUUBpRfADwO1AA+Dpxv1hKU0ARs+1bsifnvQDPQir3grOzv+A0xb//6guIK9bM2aNmZwL1AMfYzVI89Fxw5hPe8EHte6gEOGaBsQohplwBvOe9BJ/az+YM+ypY4P6nYL6VlzjIbgPOdMoHnkS7suerm/t63we6HgOP2F8B2Z/2NTvnTBtjGcmwLThPQga2pPbaPbcQCN2Jr+Fqc8p8CNxOUFND7OCzE1qDUObGtB74YVH5tP8fHQcfXKH0u5zrr3xMi/jTsNagdSBnGuv3vcZ/J1ADL/6Oz/P8LEW91cLzO/Ced+ecOtP4Bm/mwHzqwJ5GhuhBbvfa0s2OXY6vOThaRY40x24PK3oDNHt/FfmCXAtdiq9pWGmMqnLLPOK9XYQ/UtQHrKRkgpn/FXpzfxR7wicBx2A/BaqdKzzvE/xMAEUkCrnD+vG2g8saY7oBl5wBvA/nYqsY/Y6saLwbOEZGLjDF/DbGaL2G/Cf4VuB84FnuBmCMi3wdewyZaf8TWKpwLFDlNO74Q63sC27zzJDYrPw/73qwUkS8Z5whzYr4e+C32w/F/2AvMaux7fK5TndsUYhuPAicAL2FPIGcD/4KtsbsmsKCInIlNKOOA57E1KTOxx8s5InKyMeaTENv4JfAFZ5lXsEn0N7FNVac4ZUqw++k7zt93Biy/IcQ6w8kf48sh5r0UVCZs63KasBdiT+KDbUI/13ndOMjyg3EVNvFfY4zxiMj/ArdgPy8PB5Qrof997J//E+yXtzUB89cGbbMI23ywA/hfIAl7/A7kaGzS8Hfsl6V52OP3RBE5wxizbhDrCKXJif1qYDa9zzkl/l+cZoxXsF0z/ob9POUA5wNvi8gFxpgXB7G9a7Cfw8fMAM2pgec2J4bbse9BHfbz34a9NtwOfMFpenEHrSYO20UiC9tcFA9cBvxFRM7AJiFHY4/hbuy+v0dEao0xj4cIa9D7QUQygHew3TI+wh43OdiE8BUR+ZYx5nchtrESey57D9vcOQt7zXtNRJYHXvOc/jvPY89T2533pQt7rrrHifcKDjYb+BCbGD/svD9fAZ51rl9vOOXWYI+R85z3L/Cctv+87O9vZ4yRENsaKv955JXg64sxplVE3gHOAFZhr01h4XRXOtv5M/A8NM15LenjeljsvJ6K3Vd9G0Q2twKb2PiwO+5CYPYAy1zNgQw4OFv2Z4evBU2fQehvKGcAXuC3fX0TGCCGq0NkzhKi/M+c8l8Jmn4rg6yZwiYIBigfRtbsrxr9f0HTjwU82KQ2NcT/5wFOCpjuwp6ADPab+teC1vdHZ955QdPXOtN3AJkB0xOxJwYDXBEwfTb2BNYCLApal7828/d9bONjICtgego2SfIC0wKmZ2K/DdYBS4LWtRR7Qv4kaPoaDjRDzAqYHov9VmyAo4KWKWEYzXzYLwe3DvEnY5DrrnVize5jfpszP3ks1wWc5sR9OzbBb8N+ez6vn+1d6yxzB/a49jrv8UE10sP9wdYse3FqrYFDnP9hXR/l+93H9NPMR+8aoNv7KLOWvmumDEE1JtgLnMHWqrgCpvuP38IQ2/Cv79aBth103O/CXqRPCpqXD1Rgk+KDzr0h1vWas/1rh7ivjuHAZ3JaUGzPO/N+GGJ/GWd+QsB0/zm2AZvkZATMm4u9Vn06Cvvhd8703xFwvcA2OTVjz32FfWzj6qBtXO9Mvy9o+q3O9HuAmIDpMYQ4Twcdhz8JWtcXnOkvBk2/OlRMIY79kMfPUH+AXznr+6c+5t/rzP/WMNbtf48HrJnCJr63Yr9g3OfsX4P9EhS4Pxc406sInRf4a6ZeHnCbg/wnLnE+cCbgpx5b43RQ9VfADnwtxLwYDvTTmD3I7W8Eivt4Y2/tY5kBD6Kg8tlO+T/1ccCvHuT7ZID3h3iQzHSWKyVE2yw2iTXAlSH+v4dDlL/SmfdWiHkn9fFhXEtQwhTivX4jYNr/o4+LCzYJ8jehJoTYRqhq8tsISr45kHjf1Mf79l/O/CUB09bQxwkf+8061Am1hOElU/59MJSfwkGuu8cpH9vH/Apn/vSxXBcH+iP5f/YBXxhge+8HLfMhMG+o728/6z/RWe/fgqZ/7ExfHGKZfvcxg0umqugj6aD/ZKrXhTrE5+GkEMfvQccJw0um/MnCr/qY7/+MnT2I932LU/bMIe4vf9eH60LMW4BNioPP7yXOMkUhlil25p0SYt4b2C+YgcnJkPYDtkasHdsMmBWivP+L97+F2MbbIcrHYWv51wdMc3GgdvegzyWQga3AeCLEcVgS+P8FzC8F6oKmXc3AydQigr4QD/cH25Ui5PnXmf9zZ/4PhrFu/3s8mGRqEb3PQT5sohfq+rrdKfPtoOlHO/vNAB8MtM3BNPNhjHlCRJ7GVj8ej62tOh5bTXy+iDzk7CwTtOibIdblFZG3sVXmK5wDABERbC/8q7G99zOxiZdfz2BiHYiIpGBPIBdgP8hp2M5tfjNGsnrnNfh9GMgK53WdObiqG2yz3+VOuYeC5q0PUb7Sef04xDx/U2lft6oftM+wzYSegDgBDg+IrRdjTKOIfIq96C0CPhtEzGXOa+Cts8c4r4dJ6CEw/E3Pi7En+uFsY9iMMWvo3SwUTsM91oa0LmPM94HvO5+bBcA/Ay+JyI+NMT8PtTJjzCoAEcnGHic/Bz4Wka8YY0I1NQ7VN53XB4Omr3G2901sk99o+8wENV8N0joTuglhLfbLzQpCf+5Gg/8zNLuPz9B853UxMFBT33CPuf7OFTtEpBzbLSHD9O4W0GSM2R1ifZXAHPo+v8Vgm28qguYNdj8swt5Y9Y4xpiFE+dexd5mtCDHvoPOOMcYtItX0Pu8swH6B3wn8yF7+DtKJ3S/BNpjQXVHKOLC/B80Ys22wZUWkEHuNDl7HrYNdhX+RwW5zOJz/SZzmvRnY6/1PgeNF5Jyg/Xo9tgvEXSJyLrY51N+VZAtwKDbh79egkiknODe23f0V2N8GeRHO7YbYWqpnghar7mN1Vc5resC032D7NezDNg1UYA8mONAnYEScNurXsbdpbsZ2JK3FZp9g+00kjGAT/iRmqGPq+N+Hvvqg+KdnhJjXHGKaZxDzQo63QYh95iTA9dg+TX7DjtmE7kfljyswgc52Xr9J/1JDTBvsNsarZmxVdToH+i0GmuK8DqbPzojXZYxpx3aM/ZqIZAE/E5FXjDEf9bNMPfCqiHyEvT36IRGZbYzp7GuZgTjj1HwZu3+DzzePYpsWrxSRHwwz8elP1cBFQhrKeXC0+T9DFw9QLtRnKFglNtEYi/PbLKdc4Oc21PkLnM+xMWao57fB7oeRnI9DnXf8cYU6t83HXnf6Mthzm38bYz0QdyGh473VefXvk76O6SlB5caUk3TuxSZK1diuCj/FdvD3l1krIkdhE+STnJ8y7I1Yn2H7m9UMtK1BJ1N9BPmEiCxzgjiFg09uU/tY3N/pqxlARPKAb2MTnGONMa2BhUXksuHGGeQ8bCL1P8aYq4O2MZ3+D+rBWI9tS58pIgtN7w72/fEfWNP6mD89qNxYmoo9+PZzEudsel9sA2P+PMR6RiNm/7KHGWNGs/PyqBCR5dja2aG4s49kMth2bAK0ANtnLXC707H9zMqNMR1hXhfYb3FnYk86fSZTfsaYJhF5D/teLSV0reFgXYntx5cIdPbxjT4b+0Xv0RFsJ5Thfpse1HnQ4a85CXVuDnXxHoh/3eeZkY9p9zb2PH8qtk/PUGOYhr3jLli4zm+D3Q/hOB/7l33aGHPhCNYTVsaYtfRuyQnmv+b1dcOavyZ0x2jFNAT+m21WB89wri+XBE8XEf9NHQOe54adTAXwJz6h3uCTgic4F+bjnT/9A/jNxWbUr4RIpGY684P5q92GUsswz3n9y2BiHSpjTKeIPIztgPtjbNNcn0Qkwfn27H8fjheRWBMwoJjjZOc11F1ro+0ket8NBbbTZywH4sT5/ULsgdnrrgznTpjl2E6vW0cQy/vYi+IJjO6dYMG82DuFhmo5Q0/A19D3N8tAr2PvMj2ToAQIexeUv8xgjOa64EBTePBxOtrLhOKvpfwztiN8sHRszdU36Z1MDbSPfYxdjeXxIuIK0cS02nkN/Fw1Oq8F2L6lgfoaBNML9twaovnHP9jgCYx8YOUHsXfDXSQiS4wxwU3r+wWc28D+f4dj/9/dQeXmYWu69gzyS8ZIDHY/bMceW8tFJNMY0xhUfjTOx9uw54FVIhLXR/eO0TCc6+RIvOG8nhH8XotIGvY81MmB4zKchnQOEpEE7Jc3H3YYin4NWCUoIpeJyOkiclBZEZnGgZPbWyEWP0VEvhg07WZsf6k3jDGlzrQS5/V4J9nyrz8V23kxVNLnb66YNdD/EMC/ndWBE0VkLnaco9HwI+xIrV8TkV85wyX0IiI5InI3cCmAMaYcewdeIQdu4faXPRo7ynwjtil1rP1YAob8F/tYiF84fwb2UXkE2zz6D84JMdDPsNW5j4ywqeVB7AnnJ041bC8i4pLReWZiPZAbal/1xxizxhgjQ/wpGeTqH8TWct7s9FMA9jdz/dD58/7ABZzjapGI5IxkXSKSICLHhgpKRI7EDmHiI2CoBRGZ7XyOQi1zPXa4jTLs2EKB89bKIJ996cS0FNhqjPmqMeba4B/sLeKl2GFOAr8dD7SP67EJzFiYj72Nfz8ROQ/7xWUXtk+i34fO6zeDyi/D9vUMpb9z4bPYBOYmETk7xHxE5BgRGXD0dufYvRWblL4gfT9W6EwO1AKA7QoCtm9QbkC5GGyzrIuh1XQN16D2gzGmB3vXVyq2SSiwfBG2FcXNwV86B835wnwPtpbr7j6uE9NFZMlwt+EY8DrpnDMG/diU/jh93F7BXstuCpp9G7YW/CGn24B/+3FODEUj3b6IHB3qWHZyibucP18ImpcSmHf4Y8IO+1OIHUkgVI1qL4OpmToa+yGucjqO73Gmz8EOyJmE/cA+GWLZ54GnxXZe34XtWH429rbW/Qe1MaZKRB7DJhcbROQV7DfM07G1GxuwtQCBtmP7VV0qIj3YpimDvbutlND84xTd4pycPsUeZF/EvsFDScxCMsZUi8ip2CbPfwauEpHAx8ksxiZzCfRuIroBO67Jr8SOobKeA+NM+YBrgmvtxshW4HMRCRxnqgj7/uw/eRhjSkTkO9jxWj4RkSew/c9OwnaC3IYdb2rYjDH1IvJlnEcDichr2CZFH3ZfHYNt0hnpc8Bew17sXxaRt7CJx2fGmP7HFRlDxpg9IvI94G5gvYg8zoFHwMwEfm2MCa5luhlbU3YbB/owDGddScA7IrIN++27HNshdzEHxpH5XlDH1RXAU2KfkbcD2z8lGzuezDLskApXhKg58X9JG8y3xeuc1+DH2OxnjPGJyIPY//+bwPecWQPt49ew55LnsR2bPdi7YUN9SRyql4Ffi8hZ2D4Y/vGNuoBvBNWUPIvtlHyZUyv/AfZY948VdFBThBP7xdj3/0XsN/9SY8zDTufnC7H9UF9w9s8GbM1LgfOezMVe1Ads5jXG3C4isdjj7CNnfes58DiZE7FJy/qAZd4VkV9ix1/a7Jxb2rG1oodgmw9/NdC2R8FQ9sP3sbV5NztfIN7gwDhTadg7gvcwMj/DXhNvwI7L9zr2mpaHfQ+Pw9413WcN4CC8h92v3xHb19Hfb+yegD5n/taD0RhnCuy1/V1skniqs/6jsTV6O7D/U6AZTplSbPKyn4icz4HrpL/Z9RgRWeP8Xmd6PwrrB9gvUm9ir7n+4/wsbDP5uxyoHPA7GXhARP6O/cI3BZunFGKve4N7bNdAt/s5gdyEvaBtx/ab6cF2wnsR25QVPNLp1Ti3Y2ITlfewH54mbBPbghDbScbe9eMfE6UMe6HOpo9bf7Engtew7c8+AoYwoO9xpgqw3zr8Hdw/x37IYwlxezRDHAE9YLl44BvOe7TPec9asd/M7waWhVhmBjYbLnXK12GTsoNGKe7r/zO9byG9NcS8QmfemqDpa53pwSOgF+N0zO/j/zwD+02k0Sm/Cztg5kHjKfW1Hwfx/xRixyfxj3Tcgk3WHsYZDTmg7BqGfmt5ivO+l2Mvoge9P5H6wQ54+aZz7LRj2+6v6qPsraH+v6GuC9t598fYwQ3Lnfe809m3DxHiMSLYC/6vsTUr1dhEvBV70boDKAixjGC/Oe+hj2EbAsqmOzF3AzkDlC3ANm/U4IyqP9A+xl7AHnVi9wa+j319ZgY6tgOPNw6MvN3ivC+v0Mfo4078j2O/dHY6++lC+j5+Y7DjgBVz4FbutUFl8rDDXGzGXmDasJ+nJ7Hn8H7f/xAxLsbWrGym9zXhJex5L9SYgZdiE6dW55j6HHthDfXkiRL6GMoi1HsdMG8NQZ//EeyHDGyLhf9JDU3YFoQzQpQNuW8G+n+wn4ErsNexBud9rHDepx8S8LkZ6Djs633hQPO+fzy54PfH9PV+DvfHOYYf5MC1rxRbMxRqqAn//xXq/bk1IOZQPyVB5c/BXt93YPMCN/Y88Hfsl7FQw1AswOYl/idsNGHPk1cTYiiNvn7EWdmoEvuE6gextSlrRn0DatSJyFrsOCuj9e1EqX6JyKHYZOsmY8x9kY5HRSenCfkN7OOUbo1sNCpajfVtlEop1ZeTsDVBfxqooFJKjWeaTCmlIsIYc48xZpoxpivSsSil1EhoMqWUUkopNQJj0mdKKaWUUmqy0JoppZRSSqkR0GRKKaWUUmoENJlSSimllBoBTaaUUkoppUZAkymllFJKqRHQZEoppZRSagQ0mVJKKaWUGgFNppRSSimlRiA20gGo8S0nJ8cUFhZGOgyllJpQPv744zpjTG6k41DhocmU6ldhYSHr16+PdBhKKTWhiEhppGNQ4aPNfEoppZRSI6DJlFJKKaXUCGgypZRSSik1AppMKaWUUkqNgCZTSimllFIjoMlUlBCRP4lIjYhs7mO+iMjdIrJLRDaKyOHhjlEppZSKRppMRY81wJn9zD8LmO/8XAf8NgwxKaWUUlFPx5mKEsaYt0SksJ8i5wEPGWMM8L6IZIjIdGPMvrAEqJSatIwx+Az4jMHrM7R2eehye/H6DF0eLw3tPWDA4zN09Hipae0iIdaFz4DXZ/AZg89nKKnvYEpi78vWdScVkZoQMK2hGNpqwdMJ9btBXODzgNcNjXsgMWPwgR99PaTkjNK7oKKZJlOTxwygLODvcmfaQcmUiFyHrb1i1qxZYQlOKTW6fD5DXVs3Hp9NYLw+Q1OnG7fXh8dr/+7o8VDb1k2sS3B7DRvLm0iKi8FrDF6fTYK8PsP26lZyUhP2J0UGO884CVLg64clDcS4BJf4E6HR/99E7GssHq4ubICqt6FuF2x8bLBr6Hfu5644Hu7M4sZpRzJryRkjC1ZNCppMTR6hzh4hT3PGmN8DvwdYuXLlGJwKlYoexpj9CYvb66Ojx0tLp5sut499zZ3Exghe34Ealrq2bno8PoyBHdWtpCXG7a+x8Rn7s7umnSlJccCBGh2f8dfwGHw+2F7dSnZK/P55/oSpoqkTETAj+ORmpcTjEiHGBS4nc9lZ3cb8qakIICKI2HmCU0bA5YJj5mZT397NaYun4hLB5SRWLrGvIkJLp5ui3FRiY4TYGBcer48ZGUnExriIdQkxLiEzJZ4YZxmXS5zfhSlJsUhLBbxzF3z2ODzafCDw6cshczYs+iJMyYeYeEifCa44iHF+4lMG/P83/vsVXPX0ejovHP57qCYXTaYmj3KgIODvmUBlhGJRKqJ8PkNNazedbi9enw+Pz9DS6aGpo4ftVa14fIat+1rISI7D47NNTB6fYUtlC1kp8XxW3kRmcjxen6G+vWfE8UxJjCXGSSLESVDq2rpZPH1KryTkQFIizMtLpaG9h0XTpjjJBvuTl9YuN4umTaHT7WVuTsr+ddsESchOjSfW5SLGJcS6hJy0BOJcQkJcDOlJcSN/g8dKVzM8/yP49BEwPig6BZZeCNMOganLIGZ0Lmnz/rbNvi5cNSrrU9FPk6nJ4zngZhF5DDgaaNb+Umoia2zvoaS+ndL6DkSgvq2H1i4PPmMTofSkOLZVtZKaEIvH52NzRQuZyXE0drjpdHsHvR1bY2KTEAT2NXexam42PmMozE4h1iV0uX0U5qTsr1XxGUNBVjI+n2F6RpKtVXFhkxoRkuJt0hIf6yIhNmYM36UoUb4e3vwl7Pyb/XvpBXDiv8DUJaO+KV9PDwlNHZTOTmLxlCmjvn4VnTSZihIi8mdgNZAjIuXAT4A4AGPM/cCLwNnALqADuCYykarJxhjbqdjt9dHp9lLb2k1pfQexLnH65timq9YuD+/uqic2RvY3e3l9UN7YgdvrY3dtO6kJsfic9Q0k1iXkZyRRWt/OITPSOXJOFm1dbk5amEePx0dGchwLp6aRFB+zPwlyibBwWhozMpJwufrvV6PGkNdj+z/t+jvs2wgNu+30vKVwyo9g0dljtumuzZuJc/vYcnpRv7dHKxVIk6koYYy5bID5BrgpTOGoScAYw96GDiqbuli7vYaKpk4MsL2qlbTEWDxeQ5fby86atiGve15eqlObI8TGCC2dXk5emEtyfCzT0xOJjXHR5fYyNzeF2dkpzMhIJD4mhtTEWNKT4mwtkppYuttszdO630B1wHB5EgNHXQ/H/gNkFPS9/Cjp+nwLAGbJ/DHflooemkwppQ7i8fooa+ykx+PD7fVR395DeWMHW/e18M6ueiqa7Lxg2Snx5KYlUNHYydL8KcTGuCjKTcVrDMcWZRMb48LnMxRkJTFtim0+8/fjiREhb0oCiXHa7DVpNBTD1ufh1X/rPT1jFhx+FRxxDaRkhzWkruJddMRD0vQZYd2umtg0mVJK0eX28llZEy9/XsXr22oore/os2xBVhLzclNZNTebhDgXi6alUZCVzOJpU0iK10RI9aGtFna9ChUfQ9mHULXxwLzMOZC3BBZ/EZZdMmodyYejfcd2ynMgJzk3YjGoiUeTKaUmiYqmTjaVN/N+cT0tXW7ANslt3ddy0FhAi6dPYfH0NE5dNNXevu4SkuJiWJI/hYzk+AhEryYcdxdsfQ42Pg7VW6A16Obh5BwoOhmOvgHyV4BrfCTiPeXlVGcLS1O1ZkoNniZTSkWR4to2Kpo6eXtnHVUtXeypa2dLZQueECMn5qUlkJYYy1Fzspifl8aMzCRWFGRwxOxMYmP0SVNqGNrroHgtbP4L7HwVfDZpJ6sITvgnmzQVHg9JmRENsy++nh6ktp7qefCljKJIh6MmEE2mlJqAWrvcrNtZx8byZt7bXUdJfQfNne6QZWdlJVOUmwY/R8AAACAASURBVMLc3FQWT5/CYTPTmZeXioh20lYj1FxhE6f3/hs6G8HbbafHp9k77pZeCAvPgtiEyMY5SJ6aGsRnqE2PISdJHyOjBk+TKaXGufZuD3/fWk1Dew/PbqhkQ1lTyHJHz8li0bQ0jp6bzaysZBZOSyNOa5jUaDIG9rwF799na6A8XXZ6YoZtspu+3N5xd8iXIS4xoqEOh6eqCgBvTjqxLr08qsHTo0WpccQYQ3VLN5sqmnlgXTEf7GnoNV8EclITWJI/hRPn53Dyojzm5qRoLZMaW52N8N598N694HZuTkgvsCOQzz0JFp8X0U7jo8VTVweA5IT3DkI18U38o1+pCay0vp2/fFLBzupWXtpcFbLMkYWZXL5qNssLMpiWnqgjZqux5XVD5adQtQn2fQafPmwf3QIQmwQrvw5HXQd5iyMb5xjwVFcDEJurd/KpodFkSqkw8/kMn+xt5Jcvb+fDElvzlBDr4rCCDDq6PZy8KI8FU9M4bXGe3jmnxlZHA2x7wSZNJW9DWzV09q4NpWAVJGfZhwcv/6qtHo1S7uoa3LFCTEZ6pENRE4wmU0qFySd7G7n9ha2sL23cPy0+1sW9l63g9CVTtalOjS2fD6o3Qc022PseNO6x/Z784tMgPhmWnAe5i2HeaZC3CBLSIhZyuHkbG2hJhryUqZEORU0wmkwpNUZ8PsPu2jYe/XAvf924j9pWe6dTQqyLb60u4oT5ORwxOyvCUaqo5HXbgTH3fQbttVD5Se/ECcAVC8svtx3H554c9pHGx6Pu+lpakgx5yXmRDkVNMJpMKTWKjDFs2dfCI+/v5c8f7u01rzA7mf+86FCOnqsXLTWKjIHmcvjsMZs0tVXbUcYDxafZGqeUXFhyPuQuglTtFxSsp6aG5mTRYRHUkGkypdQIPfFRGVv2tfDJ3kY2ljfvnz4vL5VDZ6Zz3vIZHFuUrcMUqJHx+cDdbhOn+t1Q/iFsexHqd/Yul5wDh19pm+oKjoLchRCfGtV9nUaLt7WFtnTIj58S6VDUBKPJlFLD0Nzp5pO9jfzsr1sorm0HIDctgSNmZzIvN5XLV81m2UztxKqGyN1lhyGo/ATKP4LWapssNVcc/DgWgLR8mHkUZBfBgjMn1ACZ45FpaaU9D23mU0OmyZRSQ9De7eGWJzbwt8+r90/LSonn9X86Se+8U/3z9NgmuJYKaCqDlnLY+wE0lYK4oHpz6OUSM+yYTjNXQtYcW/OUswBmHA6petEfLcbtxtXaQXOKi8zE8fm4GzV+aTKl1CA0dfRw7+u7eODtPQDEx7i45YwFfGHpNObkpEQ4OjWuGGOHHKjeDOv/CO31UPp26LJxyTaRmjIDll1sO47PONwmTAVHQeacqBgMcyLwNNq7bJtTYIo286kh0k+pUv3w+gw/++sW1rxbAtg78b596nxuOnleZANTkdPVAj3tttmt7EMoX28TJ58H6neFXmbxuZCYDtMOs49bSZtua5v0Drpxw9tgx9fqSI0lKTYpwtGoiUaTKaX6sKumjdue/5x1O+tIT4rju6fN5+rj5kQ6LBUOxoC7ExqKYfdrsPNVqPjEdgDvS8YsWP41u1z2PNvxe86J2hQ3QXib7DMvE7JydMw3NWSaTCkVoKyhg0c+KOV3bxbvn3bywlz+cOVKYvVuvOjUsg/2vAl734fdrwMGmvYeXC5jNuSfBqnT7GCWxmf7Lk0/zNY6qQnN6zTzJWTpkBFq6DSZUgo7PtTTn1ZwyxOfAVCQlURWcjzfWl3EF5ZO02+qE50x9gG91Z9D8Zv22XPVm0InTck5sPIb4IqxiVLOQshfoX2Xopy/z1Rspg6kq4ZOzw5q0vtwTwOX/O49wA7Fc89lK/jiofkRjkqNiLvLDi+w+S/2jrnqTQeXSc62z53LXQBFp8DCs3VYgUnM38wXl6l38qmh02RKTVoPv1/KA+uKKa3vAODcw/K5/YJDSEuMi3BkatB8Xtv5e89bUL3FJk2ebqjb0btcwSqYtsyOxzTzSJhxhA5iqXrxNbfQGQ+pyRmRDkVNQJpMqUnnwz0NXP7HD+jx+AA4Zm42v/zyoRRkJUc4MtWnln22I3jVZuhqtmM1NRRDc9nBZTNmwVHXQ2YhLDoHMmeHPVw18fQ0N9KRgI4xpYZFkyk1qTzzaQX/+peN9Hh8nLwwl19ceCjT0hMjHZYK1N1qa5YqN8CmJ+2gli0VvcvEJdvapdnH2WRp9nH274TUyMSsJrzuxnpakyAzQZMpNXSaTKlJwecz/POTn/HUJ/ai/Mp3T2TB1LQIRzXJGWMfnVL8Bmx5DjrqoWTdweUS0mHFFTDnJNu3ScdmUmPAXV9HS7KQGa/nBTV0mkypqFfW0MElv3uPfc1dxLiEv99yko5aHk7G2Nql4rW21mnfZ/aOuvaa3uXi02wn8PSZ9nlzyZm2xilOB1BUY89XU0tjHsxL0mRdDZ0mUyqqvbOrjq898AEAN64u4p/OWEiMSzsej6muZqjZBjtegpK37QN7A7liISXPDjdQeALMPcl2ENcmOhUhxudD6ppoKNI+U2p4NJlSUev/1pfxvSc3AnD7Bcv46tGzIhxRFHJ32QEvt71gk6aaLQeXyV1sO4LPPgbylkLqVHDpAKhq/PA2NyM+H83JLtLjdQBWNXSaTKmo4/UZbnv+cx56rxSAl79zAoum6YNLR4XPC3vfg81P2QSqrerAvNgkmL4csubY5rqCo+2ddToEgRrn/M/l04ccq+HSZEpFlfLGDk759Zv7hz146sZjNZEaDp8PSt+2ww9UfGLHcqrZakcR95t5FMw+1jbXHXKh7euk1ATkbW4BoDsljrgYHWdODZ0mU1FCRM4E7gJigAeMMf8RND8deASYhd3vdxhjHgx7oGOorKGDE3/1BsbAhYfP4JcXHarP0xuMng7Y/iJUbbSjhddth84mwBwoE5cC+YdDUoYd/PLQSyBrbsRCVmo0eZvso2TMFO23p4ZHk6koICIxwH8DpwPlwEci8pwxJrADy03AFmPMuSKSC2wXkf81xvREIORR19Dewwm/fAOAfz//EC5fpQM1DqirGV75sW2y62m109LyISnL1jYtPBtmHA7Z8/RBviqqeRvto2RI11psNTyaTEWHo4BdxphiABF5DDgPCEymDJAm9om9qUAD4Al3oGNhb30HV/7J3rH30/OWaiLVF2PsYJgbHoXy9bYZD2DaoXDCLbaP0xR9JqGafPw1U/FZOiyCGh5NpqLDDCDwuRrlwNFBZe4FngMqgTTgK8YYX3jCGzv1bd2cc/c6Wrs9fO8LC7nymMJIhzS+GGP7O328Bj56oPe8uSfDcf8IRSdHJDSlxgtPXT3uWCFliiZTang0mYoOoW6XMkF/fwHYAJwCFAGvisg6Y0zLQSsTuQ64DmDWrPE7nMC+5k6O+cXrAPziwmVcdtT4jTVs3J1Q+SnUbocdL9sfv9hEmHcaHH+Lbb7Tu+yUAsBTW0tzmovUBB39XA2PJlPRoRwoCPh7JrYGKtA1wH8YYwywS0T2AIuAD4NXZoz5PfB7gJUrVwYnZeNCTWsXZ91lHz3yk3OXTO5Eyt0Fm/9iB8nc+nzvedOX2wRq6QUw7ZDIxKfUOOepq6Mh2eiAnWrYNJmKDh8B80VkDlABXAp8NajMXuBUYJ2ITAUWAsVhjXIUXfnHD2nqcPPriw/joiMm2S357k5b41S8FvZthMpPDsybuxrmfwHmnw6ZhaC3eSs1IHdjPa1JhuxEbeZTw6PJVBQwxnhE5Gbgb9ihEf5kjPlcRG5w5t8P/AxYIyKbsM2C/2qMqYtY0CPweWUz26pa+crKgsmTSNXvhg//AFuehdaASsfkbDj6Bph6CCw+1w5doJQaEk9dPU0zIV8fcqyGSZOpKGGMeRF4MWja/QG/VwJnhDuusfCLF7cR6xK+e/qCSIcytrqaYctz8PZ/QcNuOy0uGWYdCwvPgqXn2xHGlVLDZrxeTEMjTQthQZyOM6WGR5MpNaGs3V7D27vquHF1EdPSEyMdzthoKIZnbrSPbQGbQB3yZXvn3fRDIxubUlHGU1sLxtCQ5iJVkyk1TJpMqQnl9he3kpYQy7dWF0U6lNHV1Qwbn4CP/weqN9lpeUvh1H+z/Z9cMZGNT6ko5d63D4C6KZAar8mUGh5NptSE8UFxPTuq2/jh2YtIS4ySjtXt9fDOf8G79xyYlrcEzr/PjkKulBpTnuoaABrSRJMpNWyaTKkJ49ev7iDWJVx8RMHAhce79np44bu2QznYZ9+d9D046nqIT45sbEpNIp6aagDq0yAjQW/gUMOjyZSaEDaWN/HhngZuOKmIzJT4SIczfMbAU9fBpifs3ym5cP79MO9UHURTqQhwV1fji3XRlgTp8foMSjU8mkypCeHOv+8E4JrjCiMbyEjU7oA/nQGdjbYp76xfwpwTIh2VUpOaZ18VHZnJpCcmEKN9E9UwaTKlxr0NZU28vq2Gr6wsYOqUCXYHX/UWKPsAarbAJw/bjuSn/xSO/bbWRCk1DngaG2hLiyU3KTfSoagJTJMpNe49/lEZcTHCD85eFOlQBu/zZ+D/ruo9bdax8KW7IWd+ZGJSSh3EW1dHczI6+rkaEU2m1LjW7fHyzKcVHDUni4zkcd5XqqMB1v3ajlTu7bbTik6BE/7JNuslZWptlFLjiDEGd+U+apfFkJ6g/aXU8Gkypca1j/Y00un2jv8HGe9+Hf5yLXTUQ2wiLLvY9olKzop0ZEqpPnibmvC1t1OaGs/0lOmRDkdNYJpMqXHtmQ0VxLqEExeMw/4MPi98/CC8+D0wPkiYApc/ZWujtAZKqXHPU22HRahK8zAnMTPC0aiJTJMpNW41d7p5bkMlqxfmMWW8DdK55Vl46fv2ocNJWXaU8rPvgMQpkY5MKTVI/tHPG9JEx5hSI6LJlBq33t1VR4/Xx5XHzI50KAfU7oDnbrZ36CFwzM1w2m0Qox8lpSYab309AE0pkJOUE+Fo1ESmVwA1bj2/sZIYl3DUnHHQ76ixBF77GWx+0v69/Gu2T1SCPn5CqYmqZ28ZxuWiIQ3ykvMiHY6awDSZUuOS2+vjpc1VLM2fQmJchAfS2/gEPP+P4O6AhefAyT+AacsiG5NSasR6Skvpnp6JN6aZ3ORx2C9TTRiaTKlx6ZPSRoyBrx83J3JBtNXCIxdA1SbIng8XP6hJlFJRpGfvXtpyUhBayEzQDuhq+FyRDkCpUP73g73Ex7g4dfHU8G/cGHj3XvivJTaRmn8GXP+WJlJKRRHj8dCzZw9NU1NIjUvVR8moEdGaKTXueH2GN7bXsHphLulJYb6Lr7sVHr8citdCbBJ87Ul7p55SKqr07N2L6epiX36CDtipRkyTKTXubKtqobXLw2lLwlwrVb4envw6NJXCiivg3LvBpZW3SkUjd6UdFmFfutFhEdSIaTKlxp3tVa0ALC8I0wnO54N37oTXbrOjl1/2GCw8KzzbVkpFhLfBDotQndhFRqKOfq5GRpMpNe6U1LUjAnNyUsZ+Y8bAC7fYkcwLVsEF90NWBDu9K6XCwu2Mfl6e0MHieB1sV42MtmGocWdXbRuzs5KJiwnD4fnGz20iteIK+PrLmkgpNUn0lJQQk5lJtWkmK3EcjGWnJjStmVLjzmdlzSybMcYdQnf9Hdb9BkrfgaJT4dy79Hl6Sk0i3dt3EDO/iA7PBqYmR+CuYRVVtGZKjStlDR1UNHWO3ajnxsCrP4FHLrKJ1In/Al99AvS2aKUmDWMMPaWl9ORnAzAjbUaEI1ITndZMqXHl88oWAJbPGoPO5+Xr4fEr7MOJcxfDFU/BlPzR345SalzzVFXha22ldYY9z2jNlBopTabUuLJlXwsugYVT00ZvpW018Nfvwra/Qkw8HHmtfa6e1kYpNSl1bt4MQMXMRGiB/FT9UqVGRpMpNa68uaOWJflTSEkYpUOztQr+9AVoLIWjb4Djb4E0/Raq1GTWvXUbuFyU5kJCewI5STmRDklNcJpMqXGjrdvDxvImblo9b3RW+M7d9m49TxdcvAaWXjA661VKTWjdxcXEFxRQR5sO2KlGhSZTatzYuq8FY+CQGaMw5suOV+DVH0NiOlzxDMw+ZuTrVEpFhZ7iYuJmz6LN3UZa/Ch2KVCTlt7Np8aN93fbEYmPmpM9shXtfgMevRgyZsF3NmkipZTaz3i9dBcXkzB/PjUdNWQnjvB8oxSaTKlx5PPKFmZkJJGVEj/8lexZB49eApmF8I2/25oppZRydH3+OXg8xBcVUdxczKwpsyIdkooCmkxFCRE5U0S2i8guEfl+H2VWi8gGEflcRN4Md4wD2VrVwpL8ETTx1e2CJ6+BpEy45iXtaK6UOkjnpk0A+FYsod3dzqw0TabUyGkyFQVEJAb4b+AsYAlwmYgsCSqTAdwHfMkYsxS4OOyB9qOhvYfS+o7hP9y4fjc8dB70dMClf9bxo5RSIXXv2oUrLY26dPvEg6kp+qVLjZwmU9HhKGCXMabYGNMDPAacF1Tmq8BTxpi9AMaYmjDH2K9NFc0ArBjOYJ17P4DfnQgddXYgzplHjHJ0Sqlo0bNzFwlFRVS0VQAwM3VmhCNS0UCTqegwAygL+LvcmRZoAZApImtF5GMRubKvlYnIdSKyXkTW19bWjkG4B9teZUc+XzxtiM18tTtgzTkQmwjXvAizVo1BdEqpaGCMoWvHDhLmz2Nf+z4ApqdOj3BUKhro0AjRIdQTek3Q37HAEcCpQBLwnoi8b4zZcdCCxvwe+D3AypUrg9czJvbUtZOZHEfmUDqfdzXD/14EPjdc/QLkLRq7AJVSE17Xpk34WlpIWr6cyrZiEmISyEoco+eAqklFa6aiQzlQEPD3TKAyRJmXjTHtxpg64C3gsDDFN6BtVa0U5aYObaEX/wWa9sIlD2sipZQaUOurr4IIqSedxK6mXcxJn4NL9DKoRk6PoujwETBfROaISDxwKfBcUJlngRNEJFZEkoGjga1hjrNPxbXtLJw2hMHz3r4TNj4GR1wNS740ZnEppaJH25tvkbR8ObE5OZS3llOQVjDwQkoNgiZTUcAY4wFuBv6GTZCeMMZ8LiI3iMgNTpmtwMvARuBD4AFjzOZIxRyosb2H5k43hdkpg1ygFF7/dyhYBWf/emyDU0pFBU99Pd07dpBy/HH4jI/K9krtfK5GjfaZihLGmBeBF4Om3R/096+AX4UzrsHYVdsGwLy8QTTzGQNv3A7GB+ffBzF6CCulBta2di0AqSecQEt3Cx6fh7zkvMgGpaKG1kypiNtUbodFWDCYZr6PH7TNe4ddBtlFYxyZUipatH/wATEZGSQuW0ZTdxMA6Qn6hAQ1OjSZUhG3s6aVrJR4ZmQk9V+wegu88M8w7VA4987wBKeUmvCMMbS/+x7Jq1YhIvuTqYyEYQ4SrFQQTaZUxG3d1zpwE58x8Py3ISYeLvszxMSFJzil1ITXvXMn3ro6UlbZcejqOusAyEnKiWRYKopoMqUirrS+feBhET77M5R/BMf9I6Rrp1Gl1OB1vPceACnHHwdAZZsdOWZayrSIxaSiiyZTKqLauj00driZlZXcd6GuFnj132zz3onfC19wSqmo0LlpM7HTpxM/034Rq2yvJDk2WZv51KjRW6FURFU1dwEwPT2x70Lr/wTttXDRA3r3nlJqyLqLd5MwZ87+v2s7aslLzkMk1MMjlBo6rZlSEVXW0AFAfl+dz9vr4b17YcYRMHd12OJSSkUHd0UF3Vu2knjYofunlbWWMSM1+PGlSg2fJlMqovY6yVRhTh/NfK/dZmulzvplGKNSSkWL5hfs8Hvp5x54UkJleyUz07TvpRo9mkypiKps7iQ+xkVuasLBM7vbYNOTsPQCmLky/MEppSY0YwwtL75IwoIFJMy1zXydnk6au5v1Tj41qjSZUhFV0djJtPTE0H0XNv8F3O1w1HXhD0wpNeF1bdpE97ZtpJ933v5p+9r3AWgznxpVmkypiCpr7Aw9WKenG9bdAZmF9hl8Sik1RI2P/hliYki/8IL90ypaKwC0mU+NKk2mVERVNnWGvpNv81PQtBdO+TG49DBVSg2Nr6eHtrVrmXLmmcRmZu6fXt5WDsD0lOmRCk1FIb1KqYhp6XJT29pNUajRzzc/CekFcMhF4Q9MKTXhta1di7epiSlnn9VrenlrOQkxCUxNnhqhyFQ00mRKRcy2fa0ALJ4e9IDjtlooXguLzwUdB0YpNQzNTz+DKzWVlBNO6DW9oq2C/NR8HWNKjSpNplTElNS1AzAvNyiZ+mQN+Dxw6FfCH5RSasLz1NfT9tZbZFx0Ia74+F7z9jTvYXba7AhFpqKVJlMqYsoaO3AJTM8I6DNlDGx+GqYeAvnLIxecUmrCav37a+D1MuVLX+o1vcvTRUlLCfMz50coMhWtNJlSEVNS38H09CTiYgIOw5qtUPM5rLgicoEppSYs4/XS8NBDxM2YQeKSJb3mlbaU4jM+5mbMjVB0KlppMqUipryxg9nZQSOff/owILa/lFJKDVHLCy/Qs3s32ddfd1C/qOqOakDv5FOjT5MpFTHljZ3MzAwYY8rTAxufgHmnQroOqKeUGrrGJ54grqCAjC9/+aB5FW12jKmCtIJwh6WinCZTKiK6PV7q2rqZnh6QTG37K3TUweFXRi4wpdSE1b1zJ53rPyb9vPOQEOPT1XbU4hIX2YnZEYhORTNNplREVDd3Ywy9Rz/f8iwkTIGF50QuMKXUhFV7330QG0tGwIjngSrbK5maPJUYV0yYI1PRTpMpFRFljR0AB5r5ulpg2wuw5EsQExvByJRSE1Hr2rW0vvQy2dd+g7j8/JBlylrL9Jl8akxoMqUiYm+DTaZm56TYCZWfgM8NS0N/o1RKqb4YY2h4cA0xWVnk3nhjn+Uq2yqZNWVWGCNTk4UmUyoialu7AchJdQbUq9tpX/OW9LGEUkqF1vrqq3R88AFZV1yOBA3S6ef2uqnvrCcvOS/M0anJQJMpFRF7GzrIS0sgIdbpu1D6DqTkQpresqyUGjxPYyOV3/8Bcfn5ZF19dZ/lKtoqMBht5lNjQjunqIjY19zJDH9/KZ8Pit+EolP0WXxKqSGpvesuTEcH0+66C1dSUp/l9rbuBWBm6sxwhaYmEa2ZUhHR2O4mK9mpjq/eDJ0NUHRyZINSSk0obe+8Q9Njj5N66qmknnB8v2V3NO4AYFHWonCEpiYZTaZURNS1dZOV4iRTJevs65yTIheQUmpC6dm7l/KbbiZuxgzyb//5gOV3NOwgLzmP1PjUMESnJhtNplTY+XyGxo4eslMT7IRdr0HGbMjQUYmVUoNTd99vMV1dzLj7LmLS0wcsv71xO0uy9AYXNTY0mVJh19zpxu015KYlQE8H7HkLFn0x0mEppSaIjo8+ovmZZ8i4+GKSli4dsLzH52Fvy16KMorCEJ2ajDSZUmHnH2NqZmaSvYvP54a5qyMak1JqYugpr6DsWzcSk5FB7rf/YVDL7Gvbh8d4mD1l9hhHpyYrTaaihIicKSLbRWSXiHy/n3JHiohXRA5+CmiYlNS3A1CQmQw7X4WYeCg8LlLhKKUmCNPTQ8V3voOvu5uCBx4gNjd3UMsVNxcDaDKlxowmU1FARGKA/wbOApYAl4nIQZ0DnHL/CfwtvBH2trumDRGYm5MMW5+HeadDfEokQ1JKTQD7br2Nrs2byfvud0k6ZODmPb9dTbsAWJC5YKxCU5OcJlPR4ShglzGm2BjTAzwGnBei3D8AfwFqwhlcsLLGTvLTk0hsLYXWSlhwRiTDUUqNc8YYau64g+anniLt9NPI/vo1Q1q+rLWMtPg0vZNPjRkdtDM6zADKAv4uB44OLCAiM4ALgFOAI/tbmYhcB1wHMGvW6D/Hqqq5i2npiVC73U7IXTzq21BKRQfj8VB24420v7WO1NNOJf+OO4a8ji31W/ROPjWmtGYqOoQaNtwE/X0n8K/GGO9AKzPG/N4Ys9IYszJ3kH0ShqKkvt12Pq/daifk6SB6SqmDGWOo+N73aH9rHennfYmZ99yDKyFhSOvo8nSxo3EHi7P1S5saO1ozFR3KgcBBmmYClUFlVgKPiX1cSw5wtoh4jDHPhCdEy+czVLd02WSqajOkz4LEgceIUUpNPg1//COtL71M2plnkv+f/zmsdWxt2IrXeDks97BRjk6pAzSZig4fAfNFZA5QAVwKfDWwgDFmjv93EVkD/DXciRRAeWMnPgP5GUmw9WOYfmi4Q1BKTQANjz5KzR2/JnnVKmb85tfDXs/upt0ALMxaOFqhKXUQbeaLAsYYD3Az9i69rcATxpjPReQGEbkhstH1truuDYCFUzzQVAoFR0U4IqXUeNP4f/9H9U9/RtLy5cy8917ENfxL1We1n5GekE5+Sv4oRqhUb1ozFSWMMS8CLwZNu7+PsleHI6ZQ6lq7AShw77ETtPO5Usph3G7q//hHau+8i8SlSyl44AFiUkc2bMqGmg2syF1BjCtmlKJU6mCaTKmwau3yAJDWWW4nZOvjHZRS4Ovpoez66+l4730SFi1i5m/vG3Ei1drTSmlLKWfOOXOUolQqNG3mU2HV2NGDSyCpfgvEJkLG6A+9oJSaWDo+/ZS9V11Nx3vvk3Pjjcx5+ini8vJGvN63K97GYDhyar+jwSg1YlozpcKqorGTvLREpHozTFsGMXGRDkkpFSHdxXuovftuWl9+GYmLY+oPvk/WVVeN2vo/rfmUpNgkDp96+KitU6lQNJlSYbW3oYPC7CTY9xkcdmmkw1FKRUjLSy9R8d1bAMj82tfI+dYNxObkjOo2tjdsZ37GfGJdeqlTY0uPMBVWVS1dnJrvgX1tkKuDdSo12fSUlVH1s5/R/tY6YrKymPXHB0hcPPo3ori9brY2bOXcueeO+rqVCqbJlAobr89Q1dzFktm1dkKujvui1GTS/v4HlN90E6anh6yrriTn5puJSUsbk21tadhCp6eT1KQkHQAAIABJREFUI6drfyk19jSZUmFT29qNx2co8j9GUIdFUGrS6CkpoeKWW5DYWAoff4yEefPGdHs7GncAcEj2IWO6HaVA7+ZTYVTfbseYyuspt4+QSR395/4ppcaf5ueeY88lX8HX1UXBAw+MeSIFUNJcQmJMIvmpOlinGntaM6XCprnDDUBqTw2kFwxQWik10fk6Oqi5804aH3qY2KlTmXnvvSQtC09NUXFzMTPTZuISrTNQY0+TKRU2jU4yldTTAKmje9eOUmp86d69m7Lrb8BdXk7a6aeRf8cduBISwrJtYwyb6zazavqqsGxPKU2mVNg0dPQAkNC6F2acFeFolFJjwbjd1N53H/W/tU+zyv/Vr0g/94thjWFH4w6aups4YuoRYd2umrw0mVJh09zRQy5NuDrrdVgEpaJQ+7vvsu+223CX7iXxkEPI/8XtJMyfH/Y4nt39LIKwumB12LetJidNplTYtHR5WBBbbf/I0zv5lIoWxhgaH3qI6l/8BwDTbruNzK9cErFYXi19lWPyj2FayrSIxKAmH02mVNg0tPewNLEWPECWPuBYqYnO+Hw0P/00NXf8Gm9jI4nLljHz3nuJmzry5+oN1+a6zVS1V3HF4isiFoOafDSZUmFT2dTJsfE1YOL1bj6lJriubdso++Z1eGrtILwZl13KtB/9CImJiWhcL5W8BMA5c8+JaBxqctFkSoVNVUsXha5ayJgFMYM/9NxuN+Xl5XR1dY1hdEqpwTBeL96GRoy7B279Ca7UVFxpaTSJ0LRjR6TDY5VrFauWraKmpIYaasZ8e4mJicycOZO4OH1o+2SmyZQKm/q2HrKTGyFt+pCWKy8vJy0tjcLCQkRkjKJTSvXH296Ot6kJb1MTZGXiSk4mLj8fV2JipEPbr9PTia/JR25yLnnJY9/UaIyhvr6e8vJy5syZM+bbU+OXJlMqLNxeH82dbtIT6iF1wZCW7erq0kRKqQgxxuCuqLBJFOBKTSVu6lRcSUkRjuxgTV02xqzErLBsT0TIzs6m1mnqVJOXJlMqLOrbehB8pPXUQtrQ77DRREqp8PK2t+Opq8PX2go4SdSMGbjGaXOWMYZWdyspcSnEusJ3adNzkwJ9Np8Kk7q2bnJpJsbXA5mFkQ5nyGJiYli+fPn+n5KSEtavX8+3v/3tQa+jqamJ++67r8/5VVVVXHrppRQVFbFkyRLOPvtsdgyzD8qdd95JR0fHsJYFuP322/uc19bWxre+9S2KiopYsWIFRxxxBH/4wx+Gva3h+vDDDznxxBNZuHAhixYt4tprrx3R/zyaAo+NtWvX8u677+6fd//99/PQQw9FKrR+Ga8Xb2sb3Xv20LNnD77WVlwJCcRNn05CYeG4TaTANvG5vW5S41MjHYqahLRmSoVFQ3sP+VJv/5iAd/IlJSWxYcOGXtMKCwtZuXLlQWU9Hg+xsQd/tPzJ1I033njQPGMMF1xwAVdddRWPPfYYABs2bKC6upoFC4bWLAo2mbr88stJTk4e8rJgk6kf/vCHIedde+21zJ07l507d+Jyuait/f/snXd4VNXWuN8zk14JBAIBJQklgWSSkISEUBKKgBRpgkgN8CGCIEUpXlGK14KCgoDKRa4UBcInAvqDez9RDCWKBHIFDFJCCSAIKZCemUxZvz+GzE0giYAUwfM+z3kyM/vsvdfZ+2TOmrXXXiuLTz755IbzzGYz2ru0s+vy5csMGDCAxMREYmNjERG++OILCgoKbvua7yRRUVG2e2Pnzp24ubnRunVrAMaOHXs/RbsBEcGck4PpyhWktNT2udbdHTtf3z+1AlWeXIN1ia+GY437LInKXxHVMqVyT8gqMFBHuWp9cxvLfH9Gdu7cSc+e1jQZc+bMYcyYMXTp0oXhw4dz5MgRoqOjCQ8PJzQ0lPT0dF566SVOnTpFeHg406ZNq9BWUlIS9vb2FR604eHhtGvXDhFh2rRphISEoNPp2LBhg63/9u3b079/f4KCghgyZAgiwuLFi7l48SIdOnSgQ4cOAGzfvp3Y2FgiIiIYMGAAhYWF5OXlERgYyPHjxwEYNGgQH3/8MS+99BIlJSWEh4czZMiQCnKeOnWKlJQUXn/9dTQa69dH7dq1mTFjhk2mDh06MHjwYHQ6HQDvvfceISEhhISEsGjRIgAyMjIICflvwtsFCxYwZ84cANq3b8/kyZNp3bo1ISEhpKSk3DD2H3zwAQkJCcTGxgLWpZb+/fvj4+PDlStX6NOnD6GhobRq1YrDhw/b5ighIYEuXbrg5+fHpk2bmD59Ojqdjscffxyj0Zo70s/PjxkzZhAdHU10dDQnT54E4OzZs3Tq1InQ0FA6derEuXPnAPj8888JCQkhLCyMuLi4CvdGRkYGy5YtY+HChYSHh7Nnzx7mzJnDggULAKvC3KpVK0JDQ+nbty9Xr161jUGZDE2bNmXPnj3V3Im3j5hMlJ49i/HSJcRoxK5WLasVqmlTHBo2fGAUKaPZyFX9Vdwc3O7pEp+KShnqXadyT8gqNFBTsfpe4Hr7SY7n/r8j/HIx/w5JZaW5rweznwiu9pwy5QLA39+fzZs333BOamoqycnJODs78/zzzzNp0iSGDBlCaWkpZrOZefPmkZaWdoOFCyAtLY3IyMrziG3atImDBw9y6NAhsrOzadmype2h/dNPP3HkyBF8fX1p06YN33//PRMnTuS9994jKSkJb29vsrOzef311/n2229xdXXl7bff5r333mPWrFksXbqUESNGMGnSJK5evcozzzwDwNKlSyuV88iRI4SFhdkUqcpISUkhLS0Nf39/UlNTWblyJfv27UNEiImJIT4+Hi8vr2rHu6ioiB9++IHdu3czatQo0tLSbhivhISESuvOnj2bFi1asGXLFr777juGDx9uu5ZTp06RlJTEL7/8QmxsLF988QXvvPMOffv2Zdu2bfTp0wcADw8PUlJSWLNmDZMnT2br1q1MmDCB4cOHk5CQwCeffMLEiRPZsmULr732Gl9//TX169cn95qTdhl+fn6MHTsWNzc3pk6dCsCOHTts5cOHD2fJkiXEx8cza9Ys5s6da1M4TSYTKSkp/Otf/2Lu3Ll8++231Y7ZrSAWC6acHEyZWSAWtJ6e2Ddo8MD6/2SVWB3AfVx87rMkKn9VVMuUyj0hq8BAQ20OomjB7cGzTJUt8x08eLBSRQqgV69eOF/b4RQbG8ubb77J22+/zdmzZ22f3w7JyckMGjQIrVaLj48P8fHx7N+/H4Do6GgaNGiARqOx+XJdz48//sgvv/xCmzZtCA8PZ/Xq1Zw9exaAzp07o9PpGD9+PCtWrLhl2d544w3Cw8Px9fW1fRYdHW3bJp6cnEzfvn1xdXXFzc2Nfv363ZSVZdCgQQDExcWRn59/g5JSHcnJyQwbZo1+3bFjR3JycsjLywOgW7du2Nvbo9PpMJvNPP744wDodLoKY1fW/6BBg9i7dy8Ae/fuZfDgwQAMGzaM5ORkANq0acOIESP4+OOPMZvNNy1nXl4eubm5xMfHA5CQkMDu3btt5f369QMgMjKy0nm9HcRiwZiVheHECUyXL4NYcGjYEIdHHnlgFSmTxUSuPhd3B3ec7P48YRpU/lqolimVe8LV4lKi7K6iuNW7pYCd1/N7FqT7iaurq+314MGDiYmJYdu2bXTt2pUVK1YQEBBQZd3g4GA2btxYaZmIVFnP0dHR9lqr1WIymSqt37lzZ9avX39DmcVi4ejRozg7O3PlyhUaNGhQZV8AzZs359ChQ1gsFjQaDTNnzmTmzJm4uf3X6bf8OFQlu52dHRaLxfb++oCs1z/Yr38fHBxMamoqvXv3vqHtyvosq182XhqNBnt7e9vnGo2mwtiV768qJaPs82XLlrFv3z62bdtGeHh4pRa926FM1qrm9VYQkwnjpUu28AYoGux9fdF6eT2wSlQZmcWZCIK38+1bvFVU/iiqZUrlnpBXbKSOJg/c7l/OrnvJ6dOnCQgIYOLEifTq1YvDhw/j7u5OwbVt5tfTsWNHDAZDhV1x+/fvZ9euXcTFxbFhwwbMZjNZWVns3r2b6Ojoavsv31erVq34/vvvbb4/xcXFtl2CCxcupFmzZqxfv55Ro0bZ/Ibs7e1tr8vTuHFjoqKieOWVV2xWGL1eX6XSFBcXx5YtWyguLqaoqIjNmzfTrl07fHx8yMzMJCcnB4PBwNatWyvUK/MLS05OxtPTE09PzwrlEyZMYPXq1ezbt8/22WeffcalS5eIi4tj7dq1gNV3ydvbGw8Pj2rH63rK+t+wYYPNL6t169a2zQFr166lbdu2gHXpMCYmhtdeew1vb2/Onz9foa2q5t3T0xMvLy+bpe7TTz+1WanuBCKC6epV9MePoz92DHNuLoq9Pfb16uHUvBl2NWs+8IqURSzkGnJxtXfFxf7+bzxQ+euiWqZU7gn5eiN1yAGP0Pstyj1hw4YNfPbZZ9jb21O3bl1mzZpFzZo1adOmDSEhIXTr1o358+fbzlcUhc2bNzN58mTmzZuHk5MTfn5+LFq0iLi4OPbu3UtYWBiKovDOO+9Qt25djh07VmX/Y8aMoVu3btSrV4+kpCRWrVrFoEGDMBgMALz++usArFixgpSUFNzd3YmLi+P1119n7ty5jBkzhtDQUCIiImyKSRkrVqxg2rRpNG7cmJo1a+Ls7Mzbb79dqRwRERGMGDHCpvyNHj2aFi1aADBr1ixiYmLw9/cnKCioQj0vLy9at25Nfn5+pTsFfXx8SExMZOrUqWRmZqLRaIiLi6Nfv37MmTOHkSNHEhoaiouLC6tXr/696boBg8FATEwMFovFZtFbvHgxo0aNYv78+dSuXZuVK1cCMG3aNNLT0xEROnXqRFhYGLt27bK19cQTT9C/f3++/PJLlixZUqGf1atXM3bsWIqLiwkICLC1+UcQkwlTdjbm/HyktBRFq0Xr4YHW0xPtdUrpg05OSQ4ics+CdKqoVIVS3RKCikpUVJQcOHDgD7fT9b1dfFXwFI4xo+Dxt26p7tGjR2nWrNkflkHlwaB9+/YsWLCg0rAT9wI/Pz8OHDiAt/eDs2wkIpjz8jDn5mIpLLR9bl+3LtqaNVGq2TDwoGKymEi/mo6jnSP+Hv731cpW2XeUoiipInJ/bmKVe45qmVK5J5j0BTiK/qEJi6Cicj8REcRgwHzlCpaSEiwlJbYyracnWg8PNB4eD/wyXnVkFmdiEQv1XOs91Nep8mCgKlMq9wRHQw4ogGvt+y2Kyp+cnTt33tf+79TOuTuNGI3WZMPZ2Viuc9jXODmhcXPDrnZtlLsUKPXPRKm5lKv6q7g7uONs9+fLEajy10NVph4SFEV5HHgf0AIrRGTedeVDgBnX3hYC40Tk0L2QzWIR3I3Z4AC4qXFgVFRuFovBgDk/H0t+fjnrk4Ki1aIps0C5uv6lLDMWsXA67zRw7xIaq6j8Hqoy9RCgKIoW+ADoDPwK7FcU5SsR+aXcaWeAeBG5qihKN2A5EHMv5MspKsWTa7uZXGrdiy5VVB44RARLcTGWggJrCAOLBSkLH6HRYFerFhoPDzTOzg+lD9TNYLKYyMjPwGwxU8eljpqHT+VPg6pMPRxEAydF5DSAoiiJQG/ApkyJyA/lzv8RqD6g0B3kanEpdZRr8W1UnykVFRtisWApLsZ85Qrm/P9G9lfs7FBcXLBzdUVxckbj9teyPlWGRSycuHoCEaGOSx1qu6guAyp/HlRl6uGgPlA+uM2vVG91+h/g31UVKooyBhgD8Oijj/5h4QoNJmoruYiiQXF5cHZIqajcDcRiwZybi7mgAEu5+FOKnT3aGp7WQJoODn955ak8RrOR9KvpCKoipfLn5K9pK374qOxbt9KYF4qidMCqTM2orBxARJaLSJSIRNWu/ce/tK4WlVKbPEyONf9Q9PP7yRtvvEFwcDChoaGEh4dXCBZ5ryifWPl6UlJSiIuLIzAwkKCgIEaPHk1xcfEt95Gbm8uHH3542zJmZGSwbt26KsvT09Pp2bMnjRo1IjIykg4dOlRIoXKvWLNmDSEhIQQHB9O8eXNb4uG7iaW0FGNmJoZjxzFevIgUl1hz4vn64ti0KU5BgdjXrcvylSv59NNPAVi1ahUXL160tTF69Gh++eWXqrp4KDFbzJzOO40g1HSuqUY6V/lT8mA+2VSu51fgkXLvGwAXrz9JUZRQYAXQTURy7pFsXCkqxUspQB5Qf6m9e/eydetW/vOf/+Do6Eh2djalpaX3Wywbly9fZsCAASQmJhIbG4uI8MUXX1BQUICLy61FhS5Tpp577rnbkqVMmSrLYVcevV5Pjx49WLBgAb169QKsCYsPHDhgS9xchslkws7u7nw9/fvf/2bRokVs374dX19f9Hq9TXm5U1j0emvQTL0eKS3FUloK1/yfFK222lQuY8eOtb1etWoVISEhttyHt5M/8UHGbDFzKu8UJouJ2i61qePy18igoPLgoVqmHg72A00URfFXFMUBeBr4qvwJiqI8CmwChonIiXspXF6JkZpKARoXr3vZ7R3jt99+w9vb25Yrzdvb2/ZwS01NJT4+nsjISLp27cpvv/0GwMmTJ3nssccICwsjIiKCU6dOISJMmzaNkJAQdDqdLWXJzp07ad++Pf379ycoKIghQ4bY0rP83//9H0FBQbRt25ZNmzZVKt8HH3xAQkKCLe2Joij0798fHx8frly5Qp8+fQgNDaVVq1YcPnwYgDlz5jBq1Cjat29PQEAAixcvBuCll17i1KlThIeHM23aNADmz59Py5YtCQ0NZfbs2YA11U1oaCh6vZ6ioiKCg4NJS0vjpZdeYs+ePYSHh7Nw4cIKcq5du5bY2FibIgUQEhLCiBEjbDKNGTOGLl26MHz4cPR6PSNHjkSn09GiRQuSkpIAq4IxYcIEWxs9e/a0hVNwc3PjxRdfJCIigk6dOpGVlXXDeL311lssWLDANodOTk4888wzABw8eJBWrVoRGhpK3759uXr1KmANJDplyhTi4uJo1qwZ+/fvp1+/fjRp3Ji/TZmC8fJljiclERgQwNDevQkLDeWpoUMpuHwZi97Azv37iX36aaIHDmTcO+9gvrYD76WXXqJ58+aEhoYydepU2zgsWLCAjRs3cuDAAYYMGUJ4eDglJSW0b9+esiC669evR6fTERISwowZ/zU0u7m5MXPmTMLCwmjVqhWXL1+u9L75s2MwGTh+9ThGs5GaTjWp7awu7an8eVEtUw8BImJSFGUC8DXW0AifiMgRRVHGXitfBswCagEfXvs1bLpX0Xlzi414UoTWtepEvzfNv1+CSz//8XbKU1cH3eZVWdylSxdee+01mjZtymOPPcbAgQOJj4/HaDTy/PPP8+WXX1K7dm02bNjAzJkz+eSTTxgyZAgvvfQSffv2Ra/XY7FY2LRpEwcPHuTQoUNkZ2fTsmVLm0Xmp59+4siRI/j6+tKmTRu+//57oqKieOaZZ/juu+9o3LgxAwcOrFS+tLQ0EhISKi2bPXs2LVq0YMuWLXz33XcMHz7cloj32LFjJCUlUVBQQGBgIOPGjWPevHmkpaXZztm+fTvp6emkpKQgIvTq1Yvdu3cTFxdHr169eOWVVygpKWHo0KGEhIQwb948FixYcEOuPYAjR44QERFR7VSkpqaSnJyMs7Mz7777LgA///wzx44do0uXLracglVRVFREREQE7777Lq+99hpz585l6dKlN4xXZGRkpfWHDx/OkiVLiI+PZ9asWcydO5dFixYB4ODgwM5vvmHR/Pn07tmT7z//HC83N4K7dWP8k0+CycyJM2dYvnAhrVu1Ysy0aazctYsJEyYwptvj7Nixg6ZNmzJ8+HA++ugjhg8fzubNmzl27BiKopBbloT4Gv3792fp0qWVRoO/ePEiM2bMIDU1FS8vL7p06cKWLVvo06cPRUVFtGrVijfeeIPp06fz8ccf88orr1Q7bn82zuWfo6DU6k9Wy7kWdV3VjSsqf25Uy9RDgoj8S0SaikgjEXnj2mfLrilSiMhoEfESkfBrxz1Lc1BoMFFTU4ji8mDGhHFzcyM1NZXly5dTu3ZtBg4cyKpVqzh+/DhpaWl07tyZ8PBwXn/9dX799VcKCgq4cOECffv2BayWDxcXF5KTkxk0aBBarRYfHx/i4+PZv38/ANHR0TRo0ACNRkN4eDgZGRkcO3YMf39/mjRpgqIoDB069JZlT05OZtiwYYA1mXJOTg55eXkA9OjRA0dHR7y9valTp06lFozt27ezfft2WrRoQUREBMeOHSM9PR2w5tb75ptvOHDgANOnT79l2fr27UtISAj9+vWzfdarVy+cnZ1vkD0oKIiGDRv+rjKl0WhsSufQoUNJTk6+aXny8vLIzc21JRse9vTT7EpKovTCBSwlJXTV6TCkp9OsXj2aBQRQr3YdXOv50qhJE7JcXHBs0phHHnmE+N69sffxYdiIESQnJ3P8+HH8/f1p2rQpAAkJCezevRsPDw+cnJwYPXo0mzZtuqUl2f3799O+fXtq166NnZ0dQ4YMsfmeOTg42HzrIiMj/7RBSCtDRCooUgE1AlRFSuWBQLVMqdx18otLqUk+uN4Bf4dqLEh3E61WS/v27Wnfvj06nY7Vq1cTGRlJcHAwe/furXBufrkt7uWpLg9m2RJiWV8mkwngpnZ0BQcHk5qaSu/evW+qz7I2q+rz+vp/+9vfePbZZ28ou3LlCoWFhRiNRvR6Pa6urr8rZ3ln882bN3PgwAHb8hZQoY2qxsvOzg5LWfwlrL5YVVHZ+JWNV8eOHW2fWYxGzHl5YDajP3ECKS2l9Px5a9Txq1fBYsHRyQm7WrVwrF8f51q1cGpmTc6ssbPDXOYPdV1/iqJUex0pKSns2LGDxMREli5dynfffVfltZSnunvJ3t7eJkdV8/pnpCyGlMFkwNnOGT9PPzSK+ntf5cFAvVNV7jr6ghzsMIPrg7kL5/jx4zZrDFj9aho2bEhgYCBZWVk2ZcpoNHLkyBE8PDxo0KABW7ZsAcBgMFBcXExcXBwbNmzAbDaTlZXF7t27iY6OrrLfoKAgzpw5w6lTpwCrj0xlTJgwgdWrV1fYYfjZZ59x6dIl4uLiWLt2LWD1zfL29sbDw6PKPt3d3Skot12/a9eufPLJJxReS5574cIFMjMzARgzZgx///vfGTJkiM1n5/r65Rk8eDDff/89X331X3e+6nYclpf9xIkTnDt3jsDAQPz8/Dh48CAWi4Xz58+TkpJiq2OxWNi4cSMA69ato23bthXaFJOJ6ZMmMW3KFM7u348hPZ3c//yHhbNm4ZyfTw03N5J//BGNkzOJO3YQ37EjjoGBaFxdcfTzw75ePTROTlXKfO7cOdv9sH79etq2bUtQUBAZGRmcPHkSgE8//ZT4+HgKCwvJy8uje/fuLFq0yLa0Wp6qxjMmJoZdu3aRnZ2N2Wxm/fr1Novag4jepOdM3hkMJgOu9q74e/qripTKA4VqmVK562iKri0fPaCpZAoLC3n++efJzc3Fzs6Oxo0bs3z5chwcHNi4cSMTJ04kLy8Pk8nE5MmTCQ4O5tNPP+XZZ59l1qxZ2Nvb8/nnn9O3b1/27t1LWFgYiqLwzjvvULduXY4dO1Zpv05OTixfvpwePXrg7e1N27ZtSUtLu+E8Hx8fEhMTmTp1KpmZmWg0GuLi4ujXrx9z5sxh5MiRhIaG4uLiwurVq6u91lq1atGmTRtCQkLo1q0b8+fP5+jRozbndjc3Nz777DP+7//+Dzs7OwYPHozZbKZ169Z89913tGvXDjs7O8LCwhgxYgRTpkyxte3s7MzWrVt54YUXmDx5Mj4+Pri7u1fpz/Pcc88xduxYdDoddnZ2rFq1CkdHR9q0aYO/v7/N+bq8H5arqytHjhwhMiICD3d31n38McbffkNMJqvlCXgsKIiL/fvTffBgBOvuuhFPP419gwas+vRTnps4keIFCwgICGDlypVo7O2rHbPyNGvWjNWrV/Pss8/SpEkTxo0bh5OTEytXrmTAgAGYTCZatmzJ2LFjuXLlCr1790av1yMiNzjsA4wYMYKxY8fi7OxcwQJar1493nrrLTp06ICI0L1790otkw8C2SXZXL72HeHj6qOGPlB5IFGqMxerqERFRUnZ7qHbZfKb77GodC6M+Bf4tbnl+kePHqVZs2Z/SAaVhxsxmzHn5lLj0UfJTk1FKlna0jg7o9jZoa1RA8XZGaXcctidICMjg549e1aq8KpUzq8Fv5JnsCq5AZ4BONs/mEmLK/uOUhQl9V76pqrcX1TLlMpdx74k27rH8AG1TKn8OShLvWIpLEKMpcg1XymLwVDuJAGLBa2nJxo3NxRHRzT29ii3YF1SufvkG/LJKslCb9LjoHUgwDMArUZ7v8VSUbltVGVK5a6iN5pxtRRYlakHdDefyr3HUlKCxWDAkp+PGEqxGCpxMlc0KPb2aD08QaOgcXGhoKAARXt/Hsp+fn6qVaoaRITLxZe5or9ic6D3dPSkvlt9NXWOygOPqkyp3FVyi414cM3J2NH9/gqj8qdDRBC9HktJCWIwYCkqwnL97jxFsS3RaVxd0bi6ojg5qQ/gB4jC0kIuFF7AZLEuvzrbOdPQo6FqjVJ5aFCVKZW7ytXiUmoohRjt3LDXqkstf2XEaMRcWGhVnoqKEIsFqSQtj8bZGY2LCxoPDzROTvfN0qTyx7GIhVO5pyg1W+fZw9GDBm4NVEVY5aFDVaZU7ioFehM1lELMjjVQVamHH7FYrBYmvd7qBG4yYSkswlJqsPozlUdR0Hp4oDg4oHF3R+PgAHZ26oP2AcdsMZNZnEmxqRi9yWpltNPY4e/pj4PW4T5Lp6Jyd1CVKZW7Sn6JkVrkY3F+MJMcq9yImM2IwYAYjdZlOoMBS0kJmM1YSvRARaVJsbe3WpgcHdG6u1uX6e5SEmOV+0uRsYiMvAzbewetA7WcalHTWfWXVHm4UaM4ZnkRAAAgAElEQVSiqdxVMgsM1FAK0bg92MqUVqslPDzcdmRkZHDgwAEmTpx4023k5uby4YcfVll+6dIlnn76aRo1akTz5s3p3r3776ZPqYpFixZVGxDz93jj73/HnJeHMSsLY2YmpefPY8jIoCQtjezUVJ5JSKBJSAihUVF06N6dH3/4AUtJCVqvGtj7+uLQsCGOTZvi1Lw5ToGBODZqhEODBmg9PW9ZkcrIyCAkJOS2r+WP8Htz9kcpLCxk3LhxNGrUiBYtWhAZGcnHH3981/qripSUFOLi4ggMDCQoKIjRo0ff0v1jNBs5lXvKpkjVcalD81rNaeLV5A8rUuX/z3bu3MkPP/xgK1u2bBlr1qz5Q+2rqNwJ1J+HKneVrAIDNSjEwdXrfovyh3B2dr4hQrWfn98NCWgBTCYTdpUoDGUP5ueee+6GMhGhb9++JCQkkJiYCFgjrV++fNmW0+1WWLRoEUOHDq0235uIIKWlVguTwYCYzVgKChGDnrfeeosXruUWtKIAgsbNjfEvv4x/QADH046gdbDn9LlzHDtxAuf7pPDcTaqbs6oQEUQEjeb3f6uOHj2agIAA0tPT0Wg0ZGVl8cknn9xwntlsRnuXfMcuX77MgAEDSExMJDY2FhHhiy++oKCg4HfzBZosJi4WXrTl0gPw9/THxf7m8wz+HlFRUbb/s507d+Lm5kbr1q0BGDt27B3rR0XlD1H2j68e6lHZERkZKX+EVzb/LIWz64j8+6XbbuOXX375QzLcCVxdXW/4LCkpSXr06CEiIrNnz5ZnnnlGOnfuLIMGDZK0tDRp2bKlhIWFiU6nkxMnTsjAgQPFyclJwsLCZOrUqRXa2rFjh7Rr167Svi0Wi0ydOlWCg4MlJCREEhMTbf3Hx8fLk08+KYGBgTJ48GCxWCzy/vvvi729vYQEB0t8u3ZizMqSbevWSUxEhIQ3by59u3aVzH375LcffpAmfn5y8KuvpPjnn2VAt27ywdy58uIzz4hGo5EwnU4GDRwoFrPZJsvJkyfFz89PTCZTpbK+++67EhwcLMHBwbJw4UIRETlz5owEBgbK//zP/0hwcLAMHjxYvvnmG2ndurU0btxY9u3bZxvDoUOHSocOHaRx48ayfPlyW/3g4GARETGZTDJ16lSJiooSnU4ny5Yts41FXFycDBgwQJo0aSIzZsyQzz77TFq2bCkhISFy8uRJERHJzMyUfv36SVRUlERFRUlycrKt75EjR0p8fLz4+/vL+++/LyJyw5wVFBRIx44dpUWLFhISEiJbtmyxyRgUFCTjxo2T8PBwmTNnjkyePNk2LsuXL5cpU6ZUGKuTJ0+Kv7+/mMuN7/X3V/v27WXQoEHSrFmzase3bHxERObPny+zZ88WEZH4+HiZNGmSxMbGSnBwsG2sy/Pqq6/Kq6++WqkMOTk50rt3b9HpdBITEyOHDh0Si8UiL7/ysvQf1F9i28eK7yO+8sGaD2TiCxMlJCREunbtKqWlpSIi0rBhQ5k+fbq0bNlSWrZsKenp6SIikpGRIR07dhSdTicdO3aUs2fPiojI//7v/0pwcLCEhoba/h/K/s/OnDkjPj4+4uvrK2FhYbJ7926ZPXu2zJ8/X0REfvrpJ4mJiRGdTid9+vSRK1eu2MagTIYmTZrI7t27K73WP0Jl31HAAfkTfIerx705VMuUyl1FX5yPK/o7lpfv7ZS3OXal8vQrt0tQzSBmRM+o9pySkhLCw8MB8Pf3Z/PmzTeck5qaSnJyMs7Ozjz//PNMmjSJIUOGUFpaitlsZt68eaSlpVWagy0tLY3IyMhK+960aRMHDx7k0KFDZGdn07JlS+Li4hCTiZ9++onDP/5IXS8v4nv0IGnDBp7p1Il3a9fmXx99hLeXF78dPcqbCxaw9aOPcPP0ZMHHH7MkMZFXpk5l8YIFPPv3vzNxwgTyzWbGvfoqiqKwbN06Dh4+fIMsR44cITw8vFIrSWpqKitXrmTfvn2ICDExMcTHx+Pl5cXJkyf5/PPPWb58OS1btmTdunUkJyfz1Vdf8eabb9ryGB4+fJgff/yRoqIiWrRoQY8ePSr08c9//hNPT0/279+PwWCgTZs2dOnSBYBDhw5x9OhRatasSUBAAKNHjyYlJYX333+fJUuWsGjRIiZNmsSUKVNo27Yt586do2vXrhw9ehSAY8eOkZSUREFBAYGBgYwbN+6GOTOZTGzevBkPDw+ys7Np1aoVvXr1Aqw5HFeuXMmHH35IUVERoaGhvPPOO9jb27Ny5Ur+8Y9/3DCWYWFh1VqwUlJSSEtLw9/fv9rxrY6ioiJ++OEHdu/ezahRo26IhZWWlkZCQkKldWfPnk2LFi3YsmULO3bsYPDQwWz4bgNXDVc5deoUa75aQ+65XLrEd+GLL77g/Xffp2/fvmzbto0+ffoA4OHhQUpKCmvWrGHy5Mls3bqVCRMmMHz4cBISEvjkk0+YOHEiW7Zs4bXXXuPrr7+mfv365ObmVpDFz8+PsWPH4ubmZkuOvWPHDlv58OHDWbJkCfHx8cyaNYu5c+eyaNEi27ylpKTwr3/9i7lz5/Ltt99WO2YqKreKqkyp3FUMeVnWF661768gf5DKlvmup1evXjg7W9NhxMbG8sYbb/Drr7/Sr18/mjRpctt9Jycn8/RTT0FRETUtFtq2aEHyxo14uLkR1bw5dcxmLNnZ6Bo35uy5c7SOiABFwc7bGwdfX35KT+fY2bM8NmYMAKWlpcTGxuLg68vjTz7Jpq+/5vkpUzh06NAf2kmXnJxM3759cXV1BaBfv37s2bOHXr162XLpAQQHB9OpUycURUGn05GRkWFro3fv3jg7O+Ps7EyHDh1ISUmxKbEA27dv5/Dhw7Zkxnl5eaSnp+Pg4EDLli2pV68eAI0aNbIpWTqdjqSkJAC+/fZbfvnlF1t7+fn5tkTCPXr0wNHREUdHR+rUqcPly5dvuEYR4eWXX2b37t1oNBouXLhgO69hw4a0atUKsOYI7NixI1u3bqVZs2YYjUbb9VfFG2+8weeff05mZiYXL14EIDo6Gn9//98d3+oYNGgQYE0cnZ+fT25uLjVq1Ki2Ttm17tqziw9Xf0hGXgZ1w+qSnZNNQX4BznbOPNHjCYLrBCO1BbPZzOOPPw5ww5yW9T9o0CBbrsa9e/eyadMmAIYNG8b06dMBaNOmDSNGjOCpp56iX79+vytjGXl5eeTm5tqSPSckJDBgwABbeVlbkZGRFWRTUblTqMqUyl2lJD/H+sL5zvhM/Z4F6X5S9pADGDx4MDExMWzbto2uXbuyYsUKAgICqqwbHBxsUxBEBCkpscZkKi3FmJ2N8dIlSs+ds55ssaBotWjc3HDy8MDB3x/Fzg4Hb2+UOnVwatoUxc4O+9q1bQ7fnTt3Zv369Tf0a7FYOHr0KM7Ozly5coUGDRpUe43BwcEcOnQIi8Vyg0VFpOo8n46OjrbXGo3G9l6j0WAql0fvemXu+vciwpIlS+jatWuFz3fu3HlTfVgsFvbu3WtTequSUavVVpCrjLVr15KVlUVqair29vb4+fmhvxZktPz8g9Uf6s033yQoKIiRI0fe0Fbz5s0rjOXMmTOZOXMmbm5utnPKt1nV+NrZ2WGxWGzv9dcFPf29MQ0ODiY1NZXevXtjMBswmAxk67MpMZZQaiql0FhIkbEIDwcPNIqGJl5NcHdwx83FDUVRUBQF+3J5Dqub06qU9bLPly1bxr59+9i2bRvh4eG/+wPmZimb26rmVUXlj6Lu5lO5q2gNV60vnH7/l/DDxOnTpwkICGDixIn06tWLw4cP4+7ubrOCgPXhaCktxZyfT9vAIPR5eXz42mvojxzBcPo0P373HTu/+YZ2sbF88c03aHx8KKhVi+8PH6Ztv37Y165tTafi6orG0bHCg6p8X61ateL777/n5MmTABQXF9t2CS5cuJBmzZqxfv16Ro0ahdFoBMDe3t72ujyNGjUiKiqK2bNn2x7u6enpfPnll8TFxbFlyxaKi4spKipi8+bNtGvX7pbG7csvv0Sv15OTk8POnTtp2bJlhfKuXbvy0Ucf2WQ7ceIERUVFN91+ly5dWLp0qe397z2sr5+zvLw86tSpg729PUlJSZw9e7bKujExMZw/f55169bZrDPlady4MVFRUbzyyiuYzWbAqghVpTRVNb4+Pj5kZmaSk5ODwWBg69atFept2LABsFq2PD098fT0rFA+fvx4Vq5aSeL2RE5ePcn5gvP877r/JftyNm3btWXfv/YR7B3Mqf+cwqe2D7W8bm1nbln/GzZsIDY2FoDWrVvbNlqsXbuWtm3bAnDq1CliYmJ47bXX8Pb25vz58xXaun4+yvD09MTLy4s9e/YA8Omnn9qsVCoq9wLVMqVy17BYBKfSK9a77AFf5rtVNmzYwGeffYa9vT1169Zl1qxZ1KxZkzatWxPSrBld4uJ4c8oUa2DLa6xfuJAZCxbw7ief4OjoiJ+fP4uWLKZzkyYcOHOGyA4dUBSFd955h7p163LsWNW+Y2PGjKFbt27Uq1ePpKQkVq1axaBBgzBcSwr8+uuvA7BixQpSUlJwd3cnLi6O119/nblz5zJmzBhCQ0OJiIhg7dq1FdpesWIFL774Io0bN8bFxYVatWoxf/58IiIiGDFiBNHR0YDVMtOiRYtbWlaJjo6mR48enDt3jldffRVfX98K9UePHk1GRgYRERGICLVr17b5W90MixcvZvz48YSGhmIymYiLi2PZsmVVnl+rVi3atGlDSEgI3bp1Y8aMGTzxxBNERUURHh5OUFBQtf099dRTHDx4sEq/phUrVjBt2jQaN25MzZo1cXZ25u2336703KrGF2DWrFnExMTg7+9/g0xeXl60bt2a/Px8205Bi1jIL82nsLSQPLs85v1jHvNnzedqzlXstfbExcUxMWEiujd0jBw5ktDQUFxcXFi9enW111sZBoOBmJgYLBaLzTq6ePFiRo0axfz586lduzYrV64EYNq0aaSnpyMidOrUibCwMHbt2mVr64knnqB///58+eWXLFmypEI/q1evZuzYsRQXFxMQEGBrU0XlXqBUZ5pXUYmKipIDBw7cVt3MfD0fvD2dufarYdppcL29WFNHjx6lWbNmt1X3fiFmszXfXGmpNXWKXm8NdllOedK6u6NxcQV7O2sKlXLLTH9F5syZU8G5+GGgZ8+eTJkyhU6dOt2X/tu3b8+CBQtsoQVMFhOZxZlc1V+1naMoCl6OXvi4+qBR7uxihZ+fHwcOHMDb+85sQPmzUtl3lKIoqSJyY+wUlYcS1TKlcte4mKenppKPoKA4P9zLfGI0Ys7PtypQJXoshkqS9To6oa1Z07o05+mJchNxiFQeTHJzc4mOjiYsLOy+KVJ6kx6TxURWcRZn8s4AUGz8byDO2i61qeFYQ03xoqJyB1CVKZW7RoHeiA9XMTnVwv4hzQ5vKS7BmHkZS2Gh7TNFq8XO2xvFzg7FxcWaSkVVnH6XOXPm3G8R7hg1atS47ej1t4NFLBgtRnL1uRQaC2058f6xyRqOodhYjL3GHk9HT9wd3HF3cL/jVqjKUHfOqfxVUJUplbvGlaJS6ii5mN18Hpokx2I2Yykuxpybi7mgAK7tolIcHLD38UHj7q4qTip3FRGhxFRCobGQ/NJ8DCbDDedoNVqr4mTvjqPWETuNmkBaReVuoipTKneNq0WlNFGuovEIvN+i3DZiMmEuLLQm8S0qwpyfbytTtFq0NWuhrVXzL+/vpHLnsYgFs8VsVZjMBopNxZUqThpFg7OdM24ObjhpnXC1d1UVJxWVe4yqTKncNX7L11NHycW+hu/9FuWWELPZZnkqv3yHoqBxcUHr5YXW3f2WE/aqqFyPRSzoTXr0Jj0Gs4ESUwlmMVNqLq30fAetA45aRxy1jrg5uOFs53xPlutUVFSqR30aqNw1LmflUFPJR/GsPhDk/UbMZqvzeEEBFr0eKbU+yBStFm2NGmjc3NC4uqJoteoSnsotYxELRcYi9CY9peZSik3FaBSNza/pehQUXO2twTrdHNzQKlo8HDzQPqR+hyoqDwPqk0HlrlGceRoNAjX977coNsRiwVxYiOHsWQynTlOSlob+6FGMFy5gzs9HSkvRenjg8OijOAYF4dCgAXY1avDWO+8QotMRGhpKeHg4+/btu+ey79y5k549e1ZalpKSQlxcHIGBgQQFBTF69GiKi4srPbc6cnNz+fDDD29bxoyMDNatW1dl+YkTJ+jevTuNGzemWbNmPPXUU5WmbblTrFq1igkTJty19sswWowUG4spMhZRWFpIriGXb374ho/Wf8TRnKOcyz9HZnEmuYZcjBYjguDh4IGbgxt1XOrQ0KMhgTUDCfYOprl3c/w8/fDz9MPb2RsvJ69KFan09HR69uxJo0aNiIyMpEOHDuzevfuuX+v1rFmzhpCQEIKDg2nevDkLFiy45zJUxbJly1izZg1gvRfK0vSANU5X+dRCKip/BNUypXJXEBGc8jOs6rrX/VWmLEYjlsJCzHl5FZft4JrDuBath7vV+lTJ0t3evXvZunUr//nPf3B0dCQ7O5vS0sqXYe4Hly9fZsCAASQmJhIbG4uI8MUXX1BQUICLi8sttVWmTD333HO3JUuZMjV48OAbyvR6PT169OC9997jiSeeACApKYmsrCx8fHxuq797Sam5FJPFZFuK05v0lFpKKTWVItwYry8lNYUjB4/QqWsnvJy88HDwwF5rX+2ynMlkwu4mlo/LxnLBggW23HxpaWkcOHCAuLi422rzdvj3v//NokWL2L59O76+vuj1ej799NO70tftMHbsWNvrVatWERISgq+v1e1gxYoV90sslYcREVEP9ajyiIyMlNuhUG+Ut18eLTLbQ0Sff1ttlPHLL7/cch2zwSCG879KybHjUvzzz7aj5OhRMebkiMVovOm2vvjiC+nZs2elZQcOHJC4uDiJiIiQLl26yMWLF0VEJD09XTp16iShoaHSokULOXnypFgsFpk6daoEBwdLSEiIJCYmiohIUlKSxMfHy5NPPimBgYEyePBgsVgsIiLy73//WwIDA6VNmzby/PPPS48ePW6Q4dVXX5VXX321UvlycnKkd+/eotPpJCYmRg4dOiQiIrNnz5aRI0dKfHy8+Pv7y/vvvy8iIgMHDhQnJycJCwuTqVOniojIO++8I1FRUaLT6WTWrFkiIpKSkiI6nU5KSkqksLBQmjdvLj///LPExMSIh4eHhIWFyXvvvVdBln/+858ybNiwSuUsKSmRESNGSEhIiISHh8t3330nIiIrV66U3r17S8+ePcXPz0+WLFki7777roSHh0tMTIzk5OSIiEh8fLxMmjRJYmNjJTg4WPbt22erP378eDGZTXLx0kXp07ePREZFSmRUpOzYuUMKDAUyY+YMeXrI09K+U3tp8GgDWf7Zchk7aaw0bd5U2nVqJ8ezjktaVpps+HaDRMVGSfPQ5tK6fWtJ+jlJ0rLSJLpNtDw3+TlpEdlCGjVuJF9/97VcLbwqDR5pIN7e3hIWFiaJiYmyb98+iY2NlfDwcImNjZVjx47ZZOzfv7/07NlTOnToIEOHDpUtW7bYxmbw4MHy5ZdfVhivFStWyPDhwysdy7L5feaZZ6Rz584yaNCgasd3/Pjxtno9evSQpKQkERFxdXWVF154QVq0aCEdO3aUzMzMG/pp166d7Nixo1IZfvrpJ4mJiRGdTid9+vSRK1eu2OZq8uTJ0q5dOwkKCpKUlBTp27evNG7cWGbOnCkiImfOnJHAwEAZPny46HQ6efLJJ6WoqEhERL799lsJDw+XkJAQGTlypOj1ehERmTFjhjRr1kx0Op28+OKLtnGYP3++fP755+Lq6ipNmzaVsLAwKS4ulvj4eNm/f7+IiKxbt05CQkIkODhYpk+fbrsGV1dXefnllyU0NFRiYmLk0qVLlV5rZd9RwAH5E3yHq8e9Oe67AOrx5z5uV5k6m10kn7/SU4rfDLit+uUp/0X12xtvSMbQYZUeZwYPkdMDnpLT/Z6UU3372Y7T/QfImUGD5cyQoZXW++2NN6rtv6CgQMLCwqRJkyYybtw42blzp4iIlJaWSmxsrO0hk5iYKCNHjhQRkejoaNm0aZOIWBWFoqIi2bhxozz22GNiMpnk0qVL8sgjj8jFixclKSlJPDw85Pz582I2m6VVq1ayZ88eKSkpkQYNGsiJEyfEYrHIgAEDKlWm+vbtW+HhW54JEybInDlzRERkx44dEhYWJiLWh0xsbKzo9XrJysqSmjVrSmlpqZw5c0aCg4Nt9b/++mt55plnxGKxiNlslh49esiuXbtERGTmzJny4osvynPPPSdvvvmmiFgVw8pkFBGZMmWKLFq0qNKyBQsWyIgRI0RE5OjRo/LII49ISUmJrFy5Uho1aiRXc6/KxUsXxcPDQxYtWSTZxdny7Phn5e9v/10uF12WVm1bycDhA+VM7hlJ3JYoTZs1ldO5p2Xe0nky6H8GSVpWmnTv113W/L81kpaVJt/89I34N/GXtKw0GTdtnLSIbiE/XfxJNiZtFCdnJ1m+YbmcuHJCOnXvJP/47B+Snp0uEdERkn4uXQpLC2XturW2uY6Pj5cXXnhBRES2bdsmnTp1EpEbFZW8vDwxXlPiv/nmG+nXr5/tvPr169sUw507d0rv3r1FRCQ3N1f8/Pxs9W5mLMvmNyIiQoqLi393fKtSpgD57LPPRERk7ty5Fc4rw8vLS3JzcyuVQafT2f5XXn31VZk0aZJtvMoUlkWLFkm9evXk4sWLotfrpX79+pKdnS1nzpwRQJKTk0VEZOTIkTJ//nzb/8Tx48dFRGTYsGGycOFCycnJkaZNm9p+hFy9etU2DvPnz7f1W6Y8lX9/4cIFeeSRRyQzM1OMRqN06NBBNm/ebBuDr776SkREpk2bJn//+98rvVZVmVIPdZlP5a5wIbeEFko6xTWDcb6L/QiA0YgYjVi/v0DRKCh29ih2WpQ74LTr5uZGamoqe/bsISkpiYEDBzJv3jyioqJIS0ujc+fOAJjNZurVq0dBQQEXLlygb9++ADg5OQHWRLODBg1Cq9Xi4+NDfHw8+/fvx8PDg+joaBo0sDrqh4eHk5GRgZubG/7+/jRp0gSAoUOHsnz58luSPTk5mS+++AKAjh07kpOTQ15eHgA9evTA0dERR0dH6tSpU6nv0vbt29m+fbstB1xhYSHp6enExcUxa9YsWrZsiZOTE4sXL660f4tYMJqNmMSE0WzEYDJQUFqA0WKk1FyKgoJFLGzfuZ2Rz47kdO5p7Ora4VPfh3/t+xcXCy8SHhvOBeMF0IKLuwu6eB2Xii5Rv0l9jv9ynKziLEwWE136dKHEVEJ0m2gKCgooyC1Aq2ix09jh5eRFyp4UzqWfg2tRA/SFejzEgxqONejdszfN6zQnuHYwFrOF0QNGoygKrSNbU5xVjP43PelH0+n/RP8Kc11Gv379AIiMjKwyUGVeXh4JCQmkp6ejKEqFRNKdO3emZs2aAMTHxzN+/HgyMzPZtGkTTz755O8u0/Xt25f09HSaNm3Kpk2bAOjVqxfOzs62++D5558HICgoiIYNG/5uUFGNRsPAgQMB671Xdo03Q15eHrm5ubZkwwkJCQwYMMBWXrY0qdPpCA4Oto1lQEAA58+fp0aNGjzyyCO0adPG1v/ixYvp3Lkz/v7+NG3a1NbuBx98wIQJE3BycmL06NH06NGjSt/Cyti/fz/t27endm1r/tAhQ4awe/du+vTpg4ODg62tyMhIvvnmm5tuV+WvhapMqdwVin49TCPNb+Q8OvSOtlv35ZcBq0XVkp+P8bdLiMmIotWi8fDA3sfnroQs0Gq1tG/fnvbt26PT6Vi9ejWRkZEEBwezd+/eCufml4tFVZ4yZa8yHMvFqdJqtZiu5fC7mXhBwcHBpKam0rt375vqs6xNBwcHzBYzZjGj0Woo0hchiDUJrsF6DcXGYp5/8XkSRifY2jOLmQuFF7h48SK5+bk4GBw4fvk4Lq4unMs/R5GxiONXjmOymCr0W9u/Nsl7k+mR3+MGeUxmE3qTHgvW2EqKouDm4IaD1gEPFw+8nLxw1Dpir7XnUa9HqedZD193Xy7ZXaJ5rea42rviX8OfZrWs+dHsFDsa1miIt4s3Hg4e+Lr5IhYhZV+KTcEow0HrgKuzqy2tir29vW2MNBoNJpMJEal0rssom7/yc3c9r776Kh06dGDz5s1kZGTQvn17W5mrq2uFc4cNG8batWtJTEy0JScuT3BwcAVn882bN3PgwIEKeQ3Lt1nVvWdnZ4flWuBZsPpiVUVl92LZvdexY8cq61VG2XhpNJoK937ZeFfWn6Io1V5HSkoKO3bsIDExkaVLl/Ldd9/dlCzV/V+Wvxeqm1sVFXU330OCoiiPK4pyXFGUk4qivFRJuaIoyuJr5YcVRYm4m/L4HX4fANewm/81+3uIxYJFr8eUnYPh+AlKz58HsWDv62vdeVe//l1RpI4fP056errt/cGDB2nYsCGBgYFkZWXZHrBGo5EjR47g4eFBgwYN2LJlC2B9QBUWFdK2bVsSExMpNhRz/rfz7Nq9C12EjqLSIkwWE/mGfPIN+ehNegpKC6j1aC1Onj7J94e+50LBBf655p/oTXp+LfiVXwt+5XzBec4XnKfviL58suoTNu/YzMnck5zOO827/3iXXUd2oYvW8f6K9zl25RhrvlqDu5c7F4wXyCzO5HLxZY5dOUb61XRKzaWczT9LjiWH3PxcW9vhbcNZvWo1Zy6f4XLRZX4+9TMnzp0gV5/LjIkzGP/SeHr178W8OfMQBC9PL4oKi3C1d8XT0ZOazjWp41KH+m71eW7UcxxJPcLx748T4BlAE68mnNt/DvNFMz0e68Ge/7eHxjUao2QrXL5wmfiIeLydvXGxd8HXzZdazrXQKBpqONXA1d4VrUaLoii2h92GDRsAqxXG0+39MUMAAAqBSURBVNMTT0/PCvPYpUsXli5dWmEeb5aq5ro63N3dKSgosL3Py8ujfv36gNUZujpGjBjBokWLAKvCcj2DBw/m+++/56uvvrJ9Vt3uzbi4ONauXQtYd1SeO3eOwMBA/Pz8OHjwIBaLhfPnz5OSkmKrY7FY2LhxIwDr1q2jbdu2N7T7t7/9jenTp3Pp0iUADAYDixcvxtPTEy8vL/bs2QPAp59+arNS3Sznzp2zjff69etp27YtQUFBZGRkcPLkyQrtFhYWkpeXR/fu3Vm0aFGlc3v9fJQRExPDrl27yM7Oxmw2s379+luWVUVFtUw9BCiKogU+ADoDvwL7FUX5SkTK7/vtBjS5dsQAH137e1cw6Es4iy8NfZvfcl0pLcWUk4O5oADjuXOYHB3RHzuGlPtVqNjbY1+3rjVx8LXYT2VWE8C6u0qsf8tbSOTarquypSeLWFCurfuUlZXVNVqMKCiczjzNq1NfJT8vH62dFr8AP95e/DaXDZd595N3mfTiJAryCzCbzYwYNwLnBs688cEbvDLlFWbMnIGdnR3v/vNdguKDqL+zPmHhYSiKwsRXJlLsVExmSSYlphLOF5wHrNagfEM++ZZ8Zi2YxbD+w/Cq5UVkq0jSj6ZTYiqpMF4eNT1Y+PFC3nzlTbKzstFqtUS3jqZH7x5MfXkq08dPp19cP5ycnViyfAk1nGrgYueCs50zPq7WXXR2GjvqudajYcOGtGnThgHxA+j6eFfmvT2PwguFjHpiFGBd8lzz6Rp+2PYDNVxqMP3Z6ZjNZlq3bs2Z1DM83u5xFjktokfbHowYMYIpU6b8V1An2LZ1G5MnT2bG1BnY29sTGhrK+++/z3PPPcfYsWPR6XTY2dmxatWqChaLm8HLy4vWrVuTn59fqTVn8eLFjB8/ntDQUEwmE3FxcSxbtuym2nZwcGDjxo1MnDiRvLw8TCYTkydPrlTRKaNDhw7MmzeP8PBwm9KRkJDAe++997uWHB8fH5o1a0afPn0qLXd2dmbr1q288MILTJ48GR8fH9zd3XnllVcqPb+q8W3Tpg3+/v7odDpCQkKIiPjvbyxXV1eOHDlCZGQknp6eNmW1PN27d+fy5cs89thjiAiKojBqlPVeWb16NWPHjqW4uJiAgABWrlxZ7TVfT7NmzVi9ejXPPvssTZo0Ydy4cTg5ObFy5UoGDBiAyWSiZcuWjB07litXrtC7d2/0ej0iwsKFC29ob8SIEYwdOxZnZ+cKFsZ69erx1ltv0aFDB0SE7t27V2rlVVGpDqU6E6fKg4GiKLHAHBHpeu393wBE5K1y5/wD2Cki66+9Pw60F5Hfqms7KipKDhw4cMsybfufBHx/+hk3dw+wWKwKikVAxJrP7prT3vXvpaTkhraMHyyliY8PWg8PFEdHChyFy+artnKbEnQH7+X/394dhshx12Ec/z67t5eLnrXltorket4ZqkYaCzW2QVs5NaANgSL0RWkx0AhpkYqQNxVf6AvfKOSFiEgIJYhv7AstGqFaDBIr1Nja0CYXz5azxsvRQptVGuwVzCU/X+zeZXN3yc3d7MzczD0fWG5n5n97v4dd5n77n5ldoYXH7av1tRsuXdnWLSJo1BsL67sPTwhxKS6xqb6J/nr/wjlC8/fnzX932vy6mmrUVaemmr8aJIHx8XEOHjzIjh07ii6lJ2ZnZ9m+fTsnT55cMsOWl8HBQf676KNE8nL27Fn27NnDxMREIX9/tSYnJ9m2bdtV6yS9GBHVeEHaijwzVQ1bgHNdyzMsnXVabswWYEkzJWk/sB9gZGRkTQXddednaZ3+O++95+52M6AaSFDTisuXL1ygf+tW6oOD1JtNzjWbbL7ttoXHjndb1N6tccOmG640MJ2fC42Krqxf0ux0fvbV+qjXOg1LV2Pj5sWKdOzYMfbt28eBAwcKa6TMbHXcTFXDcv/9F0/TJBnTXhlxGDgM7ZmptRTUfGQ/zUf2r+VXl9Dk5FXLQ5uHGNo81JPHtmo4fvx40SX0zK5du5ieni66jMJmpQBGR0dLMytlBj4BvSpmgFu6loeB19cwxszMzFbJzVQ1vADcKmlMUj/wAHB00ZijwN7OVX07gbdXOl9qPfG5fWa2HnnfZODDfJUQEXOSHgOeAerAkYg4I+nRzvZDwNPAbmAKmAUeLqre1RoYGKDVajE0NOTzmcxs3YgIWq3Wwgfz2sblq/nsutZ6NV8vXbx4kZmZmet+oKCZWREGBgYYHh6m0Whctd5X820snpmyda/RaDA2NlZ0GWZmZsvyOVNmZmZmKbiZMjMzM0vBzZSZmZlZCj4B3a5L0lvAv9b4603gfA/LKQNn3hicufrS5v1wRNzcq2JsfXMzZZmR9NeNdjWLM28Mzlx9Gy2vpePDfGZmZmYpuJkyMzMzS8HNlGXpcNEFFMCZNwZnrr6NltdS8DlTZmZmZil4ZsrMzMwsBTdTlpqkL0t6RdKUpG8ts12SftTZfkrSHUXU2UsJMj/UyXpK0nOSbi+izl5ZKW/XuE9LuiTp/jzry0KSzJLGJb0k6YykP+ZdY68leF2/X9JvJL3cyVyaL0y/FklHJL0paeIa2yu3/7IMRIRvvq35BtSBfwAfAfqBl4FPLBqzG/gtIGAn8Jei684h82eAmzr37y1z5iR5u8b9AXgauL/ounN4jm8E/gaMdJY/UHTdOWT+NvCDzv2bgX8D/UXXnjL354A7gIlrbK/U/su3bG6embK07gSmIuK1iPgf8CRw36Ix9wE/i7YTwI2SPpR3oT20YuaIeC4i/tNZPAEM51xjLyV5jgG+AfwSeDPP4jKSJPODwFMRMQ0QEWXPnSRzAO+TJGCQdjM1l2+ZvRURz9LOcS1V239ZBtxMWVpbgHNdyzOddasdUyarzfM12u9sy2rFvJK2AF8BDuVYV5aSPMcfBW6SdFzSi5L25lZdNpJk/jGwDXgdOA18MyIu51NeYaq2/7IM9BVdgJWellm3+BLRJGPKJHEeSZ+n3UzdnWlF2UqS94fA4xFxqT1pUXpJMvcBnwK+CGwG/izpRES8mnVxGUmS+UvAS8AXgK3A7yX9KSIuZF1cgaq2/7IMuJmytGaAW7qWh2m/a13tmDJJlEfSJ4EngHsjopVTbVlIkncH8GSnkWoCuyXNRcSv8imx55K+rs9HxDvAO5KeBW4HytpMJcn8MPD9iAhgStI/gY8Dz+dTYiGqtv+yDPgwn6X1AnCrpDFJ/cADwNFFY44CeztXxewE3o6IN/IutIdWzCxpBHgK+GqJZyrmrZg3IsYiYjQiRoFfAF8vcSMFyV7XvwbukdQn6T3AXcBkznX2UpLM07Rn4pD0QeBjwGu5Vpm/qu2/LAOembJUImJO0mPAM7SvBjoSEWckPdrZfoj21V27gSlglva729JKmPk7wBDwk85szVyU9EtTE+atlCSZI2JS0u+AU8Bl4ImIWPby+jJI+Dx/D/ippNO0D389HhHnCyu6ByT9HBgHmpJmgO8CDajm/suy4U9ANzMzM0vBh/nMzMzMUnAzZWZmZpaCmykzMzOzFNxMmZmZmaXgZsrMzMwsBTdTZmZmZim4mTIzMzNLwc2UmZmZWQr/B7lIf3xAIhZRAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "DS_dual = DecomposeSegregation(G_la, G_ny, counterfactual_approach = 'dual_composition')\n", + "DS_dual.plot(plot_type = 'cdfs')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "It is possible to see that the component values are very similar with slight changes from the `composition` approach." + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAApEAAAK6CAYAAABhQAc+AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAAgAElEQVR4nOydd5wcR5m/n+/MbJC0siRLlmXZsmRLlnMEbJyQwQQTfOaAI5wBmwMTDsOPI2dsgo8Mh8kH2IAJJhzBYIyxseSccw6yZMlKVt6VNs3M+/vjrdH2jnp2ZzbPqp7PpzXaruqq6urq6rfeeustmRmRSCQSiUQikUgtZEa7AJFIJBKJRCKR+iMKkZFIJBKJRCKRmolCZCQSiUQikUikZqIQGYlEIpFIJBKpmShERiKRSCQSiURqJgqRkUgkEolEIpGaiUJklUg6W5JJOnuQ6ZwX0jllaEoWiUTGG5IWS7Kyc6eEvuO8USpWJBKJ9GJUhEhJWUnnSFoiaaOkbknrJN0r6UeS/mUUyjSmO2hJjZLeKumvklZL6pTUKuluSd+UdMRolzHiSFomadlolyMNSa8IAsoWSW2SbpF01nCnJemVki6V9LCkTZLaJT0m6VeSnl3hmg9JujzUZ5ukrZLuk/R1SfsMpMxV3NOjoR+4sZ94fT7jkMbioS7fSJAmwI5AngdJulDS/aE9dUlaFfq7t0pqHsnyRNIZKmXKAPLdR9JPQpvoDO/fNyVNqzGd14R2dl3oT0zSJX3EnyPpu6FvWxPyXhWuf4ukhgrX7S/px5JWhLa8JvR1B9V672Od3EhnKCkL/AU4DdgM/BVYCewOzAf+HTgI+PNIl60f/gDcDKwe6YwlLQT+CBwMrAf+ATwFNAKHAO8E3ivplWY21uotMkaQdC5wIbABuAToAl4DXCzpcDP74DCmdQbwHOA2YFWIvwD4V+B1kt5uZj8qu+YdQBuwBFgLNABHA/8FvFXSKWZ2V7VlruKeng8cABhwvKTDzOz+oUq/Rt4MTBylvEcUSZ8GPoMrNW4Gfoo/9z2BU4AfAe8CUgcbkfGNpPnAjcBM4E/Aw8CxwP8DTpN0opltqDK5TwJH4u1rJS5r9MV84EzgFvwbvBGYDrwU+AnwZkkvMrN8orzHANcAuwH/BH4NzAFeDZwu6YVmdnOV5R37mNmIHsAb8U76bmBKSvhE4PmjUK5TQrnOG+Z8zgv5nFJl/D2BFeGabwATUuLMBL4DnDXS9RaP1Ge2DFg22uUoK9M8oAMX+uYlzk8DHg/t6/jhSgtorpDW4SGtzUBjldecE/K4fIjr6Fch3S+G328N9BmH6xcPcflGqo9a7J+GEWmXHw/39BRwXIU4rwCuGYnyxKPf53V2eF5nj2Cefw95vqfs/NfD+e/XkFZpoKjE+3RJH/EbgUzK+QZcUDTgtWVhd4Xz/1V2/nigG3gUaBjtZzlkz2fEM4Tvhgp+Xw3X7Gi4wMvxUck2YBPwO+CAlGsWho/B7cAzQCewHPghsE9Z3ItD+mnHKeVlSGmUPwQeBLYC7cD9+Mh6p48gtQuR/xvi/7KKuE1lf++FC5fLcM3PM8D/Ac/qp45fBFyHj9aeAS4CpoZ4R+Oa5E0h/M8kBIlEeotDek3A54EnwzN4ItRNY4V7OBW4Ah/xdYQX7oukDzhKeeTwj9FjIY8VwJf6yOOg8MxXhPhrgV8CB6bELbWNebhm7L5QrrXhuU9JxD2lj3Z08Ui/a2X38dlQjvNTwv4jhP10pNMK15Q63b2rjD8lxH9sCOtneqK95YA1oQ02l8Xr8xkn3qO047yQxrxE/IXApcA6oEhPf7OYMkEukfd5+AfpKmAL0Ip/aJ/dV/tNCduRXlm50o7FZdfuA3wbWIq/QxvwvuA5NdT5PLxf6gIO6yduU8q51wLXhjpox9/Nj1WIuywcLfhgfEW45m7glSFOsh/pwPuqc/uqt2qfQ6Ld/jfwSEh/U4j/wn7yOAqfsdsMbMc18ydUyCMH/Ceu0d0a4t8FnEuZMETvdjgP15itD2W7HXhFWfzFfbSPndrXEL2X+4f0n0wp/2T8G7QNmDSAtEt1XFGI7Of6/xeu/0RKedeWlzeE/y6Enz4c9TUax4hPZ+OdDXjnWSuvwtXIf8Ab9FG4ivj5kk4ws0fK4r4THy3ciHdUhwJvw1XKzzazp0PcP4bfs/AXdHEinWX9lOkjuFByI/6iNwMn4i//KUF1XajxPgGQNAF4U/jz/P7im1ln4tr9gOuB2bhK/Ve4Sv3fgJdLerWZ/SUlmX/BR/5/Ab4PnIB/GPeT9FHgalzA/DGuRTodmB+mMIsp6f0Gn8b8HT4KOwOvm2dL+hcLb1Yo8zuA7+Gdwm/xD+speB2fHqYtNqfk8UvgZOBveMf5MuDDuIb2LcmIkk7DBekG4DJcc7YP3l5eLun5ZnZnSh5fBl4SrrkSHzycg0/JviDEWYY/p/eFv7+ZuP7ulDRHklIZr0gJ+1tZnBFLK5hqHIh/vKo1FTk9/N5bZfxqOAsf8FxsZnlJvwDej78vP0/EW0bfz7gU/hl80HpxInxxWZ7z8WmyR4FfABPw9tsfx+HC0lX4IHEB3n6fJ+nFZnZdFWmksTmU/WxgLr37nGWl/4TpuitxE6S/4+/TDOCVwPWS/tXMLq8iv7fg7+GvrR+zgWTfFspwAV4H6/H3vw3/NlwAvCRMMXaXJdOAmwLtjk+LNgJvAH4v6cW48HUc3oY78Wd/oaRnzOzSlGJV/RwkTQVuwM2PbsPbzQxcEL5S0rvM7AcpeTwb78tuwqf198W/eVdLOir5zQv2eZfh/dQjoV468L7qwlDeN7Ezc4Fb8QHBz0P9vA74U/h+XRPiXYy3kTNC/SX7tB39csme1syUkletlPqRK8u/L2bWKukG4MXAc/Fv04gQzPJeFv5M9kOzwu+yCt/DpeH3VPxZ1T8jLbXimqwufNT9c/ylm9vPNWfTM+IpHx2VRgNXl53fm/QR6YuBAvC9svOn0MdUEZU1kfsDSon/uRD/dWXnz6NKTSQuGBmwcgD1XJoC+ETZ+ROAPC7Mt6TcXx5YlDifwTtewzUzZ5al9+MQdkbZ+cXh/KPAtMT5ZrxDNOBNifNz8Y57K3BQWVol7fUPK+RxB7B74vwkXDgsALMS56fho//1wCFlaR2Kf4juLDt/MT3TbfsmzudwLYgBx5Zds4wBTGfjg6LzajymVpn2M6Gs0yuEt4XwicOZFvDCUO4L8IFNG64tOaOP/N4Wrvkq3q4LoY53moEY6IHPJBQIsxTAYeEerqsQv89nTB/T2fTW+F1QIc5iKmsijTINGf5hN1yLlkmcL7XfeSl5lNI7r7+8y9r947hwsqgsbDbwND4Y2KnvTUnr6pD/22p8VsfT807OKivbZSHs4ynPy0J4U+J8qY/diAt3UxNh++PfqruG4Dn8IJz/AYnvBT61ugXv++ZVyOPssjzeEc5/t+z8eeH8hUA2cT5LSj9d1g4/U5bWS8L5y8vOn51WppS2n9p+aj2Ar4T0PlAh/Nsh/F0DSLtUx/1qInGB/zx8YPXd8HwNH/wln+fCcH4N6XJBSRN5xVDUz1g4RidTH32tTjRgw4WaP5Ci5k003KtTwrL02GHNrTL/e4GlFRrUeRWu6fflKYs/PcT/Sdn50ot+SpX1ZMDNNdbvPuG65aTYXuDCuwFvTrm/n6fEf3MIuzYlbFGFTmgxZYJiSl1fkzj3CSp8VHHhr2Qq0JSSR9p00PmUDTroGXC8u0K9fSOEH5I4dzEVPnS4JiXtQ7KMgQmRpWdQyzGvyrS7QvxchfCnQ/hew5kWPfaGpWM18JJ+8ru57JpbgQW11m8f6T8vpPv3svN3hPMHp1zT5zOmOiFyDRWELfoWInsJKCnvw6KU9rtTO2FgQmRJSPpKhfDSO/ayKur9wRD3tBqfV8nE5+0pYQvxwUB5/74sXDM/5ZqlIewFKWHX4APrpFBW03PANaDb8Onu3VPilxQOn07J4/qU+A34rM7tiXMZerT5O72XwFRccfOblHa4LHl/ifDlwPqyc2fTvxB5EGWKgIEeuMlQav8bwr8Qwj82gLRLdVyNEHkQvfugIi7gpn1fHwlx3lt2/rjw3Ay4ZSjqZywcozGdjZn9RtIfcDX7Sbh28iR8OuSVkn6GN1Iru3RJSloFSdfjU0NH4w0fScJXVZ2Nr8aahgucJbqG4l4kTcI7zn/FO7DJuNFuib0Hk3z4La+H/jg6/F5nO0/pgE9vvzHE+1lZ2O0p8VeF3ztSwkomAZVcruz0zPDp8HyinADHJMrWCzPbJOku/GN/EHBPFWVeEX6TLiCOD79HKt2VU8nE4mD8AzeQPAaMmV1M7+nPkWSgba2mtMzso8BHw3uzEPgg8DdJnzKzL6QlZmbPBZA0HW8nXwDukPQ6M0ubUq+Vc8LvRWXnLw75nYNPbQ8191jZNG2VXGfpU2WL8UHd0aS/d0NB6R2aW+EdOiD8Hgz0N6U90DbXV1/xqKSVuPnNVOtt/rLZzJ5ISW8VsB+V+7csPk35dFlYtc/hIHzB6A1mtjEl/j/xVcNHp4Tt1O+YWbektfTudxbiiovHgE/6528n2vHnUs7dlm5ytYKe5101ZvZwtXElzcO/0eVpnFdtEqVLqs1zIIR7UpjG3hv/3n8WOEnSy8ue6ztwU5//kXQ6Pu1fMpl6EDgCH+iMC0ZFiAR/EXC7mithh43BqwnL5nGt5B/LLltbIbk14XdK4tzXcbul1fgU2NP4SwQ9Nj+DItig/BN3N3A/biD/DD7aALeLahpEFiXhrVafeKV6qGRjVjo/NSVsS8q5fBVhqf6ySHlmQfDfgNsslhhwmS3dTrJUruTAYXr4PYe+aUk5V20eY5Ut+JTMFHrskpPsFn6rsckbdFpmtg03+D9T0u7A5yRdaWa39XHNBuAfkm7D3Xz8TNJcM2uvdE1/BD9zr8Gfb3l/80t8Cv3Nkj42QIGvL9b0HyWVWvrBoab0Dv1bP/HS3qFyVuEC1nD0b/uGeMn3Nq3/gvAem1mt/Vu1z2Ew/XFav1MqV1rfdgD+3alEtX1bKY/h9iU9j/Tynhd+S8+kUpverSzesBKE7adwAXEtbpLzWXzhUinOYknH4gODReFYgS8wvQe3J103EuUdCUZNiCwnPJzfSDocr/wXsHOnvmeFy0vGrFsAJM0E3osLdieYWWsysqQ3DFGxz8AFyJ+a2dlleexF3y9zNdyO28rsI+lA671wqC9KL9SsCuF7lcUbTvbEX7odhAHDdHoLGckyP5CSzlCUuXTtkWY2lIsyhgRJR+Ha+Fr4ZgUhupxHcMFvIW6Tmsx3L9yOdKWZbR/htMBH7afhnW1FIbKEmW2WdBNeV4eSriWuljfjdrrNQHsFDc50fID7y0Hkk8ZAtSdV9YOBkqYsra9PE1r6o5T2GTZ4n7TX4/38qbjNXq1lmIWvoC5npPq3ap/DSPTHpWv/YGavGkQ6I4qZLab3zF05pW9epYW4Jc33o0NVphooLSI8pTwgfF9eW35eUmmxWr/9XL0wZoTIBCWBL61hLSo/EQSSk8KfJcfD++MjqCtTBMh9Qng5JfVyLVqlBeH399WUtVbMrF3Sz/GFBZ/Cp6ArIqkpaEtK9XCSpJwlHKEGnh9+01YhDzWL6L26FdyYPUdPOQn/fxX+QvZaZRdWNh6FG/M/NIiy3IwLAycztCt7yyngKz9r5ShqH3hcTGVNQpJ/4l4DTqNM8MNXtZbiVMNQpgU9Jh/l7XSor0mjpJX+Fb7Ap5wpuKbyHHoLkf094yLDp6E+SVImZSr1lPCbfK82hd85uO14kkrOuwvgfWvKNGfJSfLJDH5DiIvw1c2vlnSImZWbkOwg0beB398x+P0+URZvAa7ZfLLKwdVgqPY5PIK3raMkTTOzTWXxh6I/fhjvB54rqaGCGdNQMJDv5GC4Jvy+uLyuJU3G+6F2etrlSFJTHySpCR+0FnF3SuOCEd/2UNIbJL1I0k55S5pFT6d+bcrlL5D0irJz5+L2kNeY2fJwbln4PSkImaX0W3Cj7DThuTQtt29VN9I7n1OSJyXtj/spHAo+iXvWP1PSV4Lbn15ImiHpW8DrAcxsJb6ieh49rkhKcY/DdwXahJsMDDefUmJrKvn2Zf8d/kzaoF2CmwG8J3wIknwOn7a4ZJBTihfhHe1nwnRDLyRlNDR7mm8A9kh7Vn1hZhebmWo8llWZ/EW4VvvcYIcE7JjO/Xj48/vJC0K7OkjSjMGkJalJ0glphZL0HNwVV5GEyyBJc8N7lHbNO3C3UStw34DJsMWqcm/6UKZDgYfM7N/N7G3lB+7qZDnuriupDenvGW/ABbfh4ADcHc0OJJ2BD9gex22OS9wafs8pi384bsudRl994Z9wwe3dkl6WEo6k4yX1u9tOaLvn4cL4X1V5+8vT6NH6gJs8gdv+7ZGIl8XNDzLUptkcKFU9BzPrwlfxtuBTn8n48/FZs252HmxXTVAUXIhrNb9V4Tuxl6RDBppHoN/vZOgzhmR7v2DDeiX+LXt3WfD5+KzHz4J5TCn/hlCG+YPNX9JxaW05yBL/E/78a1nYpKTcUSoT7r5uHu4ZJk2DXpeMhibyOLzzWhMWxDwZzu+HOxKfgHdUv0u59jLgD/JFOY/jC2Zehrtn2PEym9kaSb/Ghaq7JV2JaxRehGuz7sa1Pkkewe0mXy+pC5+CNXy18nLSKfkZfH/olO/CX65X4A2rFoE0FTNbK+lUfGr/g8BZkpLbHh6MC7FN9J4KfSful+wrch9ot9PjJ7IIvKVcSztMPAQ8ICnpJ3I+Xj87Ok0zWybpfbi/tTsl/Qa3L12EG3c/jPuLHDBmtkHSawhbWEq6Gp86L+LP6nh86nKw+/RejQs5V0i6Fhe47jGzUfMLZmZPSvoQ8C3gdkmX0rNV4T7A18ysXKt4Lq4ZPZ8eG6WBpDUBuEHSw7i2ZSW+0OBgevzAfajMIP9o4P/ke1g/itufTcf9wR2OuwZ6U4qmrDQ4rUY78PbwW77d4g7MrCjpIvz+zwE+FIL6e8ZX433JZfiCjTzu3SBtcFwrVwBfk/RS3Maq5J+wA3hrmWbsT/hiizeEWZhb8LZe8vW305RbKPu/4fV/Oa7pWW5mPw+LOl6F25n/NTyfu3FN25xQJ/vjwky/5gxmdoGkHN7Obgvp3U7PtofPw4W12xPX3Cjpy7j/xPtD37IN14Ifhk+Tf6W/vIeAWp7DR3Ht7blh4HQNPX4iJ+MeHp5kcHwO/ya+E/er+0/8mzYTr8MTcS8YFTW+VXAT/lzfJ7dlLtmFXpiwKS3NFg2Fn0jwb/uNuHB8akj/OFyD+yh+T0n2DnGW40LbDiS9kp7vZMm84HhJF4f/r7feW7Z+DB9ALsG/uaV2/lLcHORGepQiJZ4P/EjSVfhAdzdcTpmHf/eq3l62Lqh2GfdQHfgDeDf+IX8Et4vrwo2LL8enbMs9059NcCuAC2g34Z3GZnwqeWFKPhPxVZwln2YrcAFlOhVcWOAd4NW4fUmRhCseKvuJnIOPMksLdx7AO7ccKW4+qHHHmsR1jcBbQx2tDnXWimtivgUcnnLN3vjoZ3mIvx4XRnfaVaLS/YWwU6jg/ojErgdl5xeH8+U71iwlLDiqcJ8vxkeem0L8x3FH3zv5Q6z0HKu4n3m4f7HSzhRbcSH154TdKxJxL6Z2FymTQr2vxIWHnepntA7cUfeS0Ha24bY5Z1WIe17a/dWaFr4o4VO4U+aVoc7bw7P9GSnb3eGCztdwTdpafADSin+svwrMSblGuKbkSSq4H0rEnRLK3AnM6CfuHHwabx1hF6T+njH+4f5lKHshWY+V3pn+2nayvdGzU8rWUC9XUmG3mFD+S/HBdnt4Tq+icvvN4n48l9LjkmRxWZyZuLum+/EPaxv+Pv0O78P7rP+UMh6Ma9Lup/c34W94v5fm8/f1uMDYGtrUA7hAkbZT2DIquGRKq+tE2MWUvf+DeA5T8Rmq0s5am/EZoxenxE19Nv3dD/4OvAn/jm0M9fh0qKePk3hv+muHleqFHjOWkj/Y8vqxSvU50CO04Yvo+fYtxzWBaS6TSveVVj/nJcqcdiwri/9y/Pv+KC4XdOP9wFX4IDTNndJCXC4p7Yi2Ge8nzybFJVS9Hwo3PaaRdDbegN5i7gYlMsaRtBj3kzZUo9FIpE8kHYELme82s++Odnki45NgKnENvu3neaNbmkhkdBlxm8hIJBIZJhbhmr+f9BcxEolEIoMnCpGRSGRcYGYXmtksM+sY7bJEIpHIrkAUIiORSCQSiUQiNVMXNpGRSCQSiUQikbFF1ERGIpFIJBKJRGomCpGRSCQSiUQikZqJQmQkEolEIpFIpGaiEBmJRCKRSCQSqZkoREYikUgkEolEaiYKkZFIJBKJRCKRmolCZCQSiUQikUikZqIQGYlEIpFIJBKpmShERiKRSCQSiURqJgqRkUgkEolEIpGaiUJkJBKJRCKRSKRmohAZiUQikUgkEqmZKERGIpFIJBKJRGomCpGRSCQSiUQikZqJQmQkEolEIpFIpGaiEBmJRCKRSCQSqZkoREYikUgkEolEaiYKkZFIJBKJRCKRmolCZCQSiUQikUikZupKiJT0cUk/Guq4VaRlkhYM4Lo2SfsPRRkiYxtJD0g6pY/wv0k6awSLFIlEIpHIsDJqQqSksyXdJ2m7pDWSvidpal/XmNkFZva2atKvJe5gkLRYUkcQGEvH8aEMLWa2dABpniJpZRXxjpV0uaTNkjZKulXSWwZyH2Xpni3p+sGmE9KaF4TwXD/xFkr6raT1krZIulfS+yVlh6Icw42ZHWpmiwEknSfpkrLwl5rZT0elcJFIJBKJDAOjIkRK+gDwJeBDwBTgucBc4B+SGitc06cQMsqcGwTG0nFTfxcMVjgKguo/gSXAAmA68C7gpYNJdzSQNB+4BVgBHG5mU4B/A54NTB7NskUikUgkEqmAmY3oAewGtAGvLTvfAqwD/iP8fR7wO+ASYCvwtnDuksQ1bwaWAxuATwHLgBcmrr8k/H8eYMBZwFPAeuATiXSOBW4CNgOrgW8DjYlwAxZUuJ/FwNsqhO24DrgY+B5wObANeCHwMuBBoBV4GvggMAloB4qhntqA2SlpXw98p5+6Pgd4HNgI/DmZTijbO4HHgE3AdwABBwMdQCHkvTnEbwK+GupvLfB9YEII+whwM5ALf78LeABoDvEtcS/Hp5TzEuCv/dzLv4Q0N4c6PzgRtgwfkNwb6vbHwJ7A30LdXgVMK2sLbwdWhef9gURaTcA3Q9iq8P+mEDYD+Esow0bgOiCTKMMLgdOALqA73O895e0EH7x9Em+764CfAVOqaavxiEc84hGPeIyVYzQ0kSfgwsX/JU+aWRv+0X9R4vQZuCA5FfhFMr6kQ4DvAmcCe+Eazb37yfsk4EDgVODTkg4O5wvAf+FCwvEh/D9rvK9q+HfgC7h27Xpc2HmHmU0GDgP+aWbbcG3iKuvRbK5KJiJpYijn7yplJOkFwH8Dr8XrZznw67JorwCeAxwZ4r3EzB7ChcubQt4lE4MvAQuBo3DN597Ap0PYV3DB6ZOSDgAuAN5oZh3A80KcqVZZS/vCfu5lIfAr4H3AHrggflmZ1vrVeNtZCJyOt6WP4880A7y3LNnnAwcALwY+KumF4fwncM34UaFejsUFPoAPACtDGfYM6VsyUTO7Itz/peF+j0y5pbPD8Xxgf3wA9e2yOJXaaiQSiUQiY4LRECJnAOvNLJ8StjqEl7jJzP5oZkUzay+L+xrgMjO73sy6cIHG6JvzzazdzO4B7sGFBMzsDjO72czyZrYM+AGwqIZ7+lawS9ws6c4+4v3JzG4I99OBa6sOkbSbmW0ys76uTTINf3ar+4hzJvATM7vTzDqBjwHHS5qXiPNFM9tsZk8B1+CC005IEq7V/C8z22hmrbig9HoAMyviWuH34hrPL5vZXVXeC/hUfF/38jpcU/kPM+vGNaIT8AFJiQvNbK2ZPY1rCG8xs7vCvf8BOLoszfPNbJuZ3QdcBLwhnD8T+KyZrTOzZ4DzgTeFsG5cIJ9rZt1mdp2Z9dfm0jgT+LqZLQ2Dp48Bry8z2Uhtq5FIJBKJjBVGQ4hcD8yoYOO4VwgvsaKPdGYnw81sOz6t3RdrEv/fjmuASos6/hIW+GzFBaQZaQlU4L1mNjUcx/QRr/x+Xo1PaS+XtKS0IKcKNuHT3Xv1EWc2rn0Edmh6N9BbW5taHynsAUwE7igJy8AV4Xwp/WW4IDoPnxqvhQ3Udi9FvC6T97I28f/2lL/L7y35LJaHPHbKqyzsK7h5wJWSlkr6aB9l7ou0PHK4drNEtc8mEolEIpFRYTSEyJuATuBVyZOSJuHTuFcnTvel5VkN7JO4fgKu0RoI3wMeBg4ws93waUoNMK2+KJ/6vM3MzgBmAn8EfpMWb6dEXGC+CRdCK7EKX6wE7Kjf6bjtZU3lxAX7duDQhLA8xcx2CDaSXoZPsV+NC1uV0krjKmq7FwFzqO5eKjEn8f99Qx475ZUMM7NWM/uAme2PT5m/X9KpKWn3d89peeTpLfhGIpFIJDKmGXEh0sy24FOEF0o6TVJDmGL9LW5v9vMqk/odcLqkE4Jt3PkMXPCbjC/eaZN0EL4wZFiR1CjpTElTwhTtVtw2E1yYmC5pSh9JfBg4W9KHJE0PaR4pqWT3+EvgLZKOktSEa1dvCRrD/lgL7FOyOQyav/8FviFpZshrb0kvCf+fgdt3vg1fEHJ6ECoBnsG1pn35y/wMcIKkr0iaFdJcIOmS4PbpN8DLJZ0qqQG3TewEbqziXirxKUkTJR0KvAW4NJz/FW7buUe4r0/jC3+Q9IpQLtHzvAopaa8F5kmq9H79CvgvSftJaqHHhjLNxCMSiUQikTHJqLj4MbMv49q+r+If45J7l1ODDVs1aTwAvAdfLLIaX4W7DhcuauWD+KKXVlxYurTv6EPGm4BlYQr9ncAbAczsYVzQWBqmj2eXX2hmNwIvCMdSSRuBH+KLTjCzq/EV67/H62c+wYaxCv6Jr4ReI6lkXvARfCr35lDeq/CFH4R8/2Rml5vZBuCtwI8kTQ9a0y8AN4R7eW7KvTyBazHnAQ9I2hLKfTvQamaPhLq5EIWSp+AAACAASURBVNeKng6cHmxhB8qScD9XA181syvD+c+HfO8F7gPuDOfAF+Jcha+6vgn4rgXfkGX8NvxuqGAj+xN8sHQt8CS+Gv49g7iXSCQSiURGHA1sXcDYI2h0NuNT0k+OdnkiY5Og9X4SaIiav0gkEolEBk5dbXtYjqTTw5TkJFyreR/ury8SiUQikUgkMozUtRCJ+5EsOYU+AHj9AF2uRCKRSCQSiURqYNxMZ0cikUgkEolERo5610RGIpFIJBKJREaBNIffkUhkF2KBZNsHeO1q+LuZnTakBYpEIpFdkHrsi6MQGYns4mwH3j7Aa8+vbWenSCQSiVSgHvviKERGIrs4Itq1RCKRyGhTj31xFCIjkciw7PEZiUQikdqot744CpGRSKTuRr+RSCQyHqm3vrjeyhuJRCKRSCQSGQNETWQksotTj3Y4kUgkMt6ox744CpGRSKTu7HAikUhkPFJvfXEUIiORSN2NfiORSGQ8Um99cRQiI5FI3Y1+I5FIZDxSb31xFCIjkV2cerTDiUQikfFGPfbFUYiMRCJ113FFIpHIeKTe+uIoREYikbqbQolEIpHxSL31xVGIjAwvHRsyQBZva9lwVBpsWdlv+fmStr+URvJQ2t9mRdG5SSlpF4FC+M2X/V0EujV1YWvtNxyJRCKRyK7B2BYi21bsC7wSuIiWOa3h3FTgbPyD340LBUnhovT/HD0CRQmV/RKuz5SdU+KwsjjFxLlC+M2G6yYk4pTKVyi7JgM00iNUlfJpAhrK7iUpeCXLlBSactbVuhYrzAvXl+63dD/GzvdWTqmeSnWWFPay5Cbcr6ZpR4RyK+STTTlKafQnLI4g2gJMGcCFdwHHDHFhxiT1aIcTiUQi44167IvHthAJa4H3Az9NnNsL+MboFGesYjcAJw5f8rYeOHjY0h+bdI92AUaSeuu4IpFIZDxSb33x2BYiW+Z00rbiu8D1tK34G67VmzHKpYrUFwM1MckPaSnGOPVmhxOJRCLjkXrri8e2EOlciGsjPzTaBRm7qNyGMDJ4dhkhsh6nUCKRSGS8UY998dgvb8ucduCro12MXRpl621wNBTsUvesAR6RSCQSGTrqrS+uB00kwPeBjwG7j3ZBxijF0S4AgJl1YsVHwAxlTK4hDYdBTzlLC42gZ/FS8v+lAVnPeWWeM8BiDfT9ahrgdXXJ2B9NRiKRyPin3vri+hAiW+a00bbiG8DnRrsoY5MxoxNay+ZHjwCgeffbaJw8UMFvZ3IThyypKmke6QwjkUgkEqkn6kOIdL6N20XuNtoF2aUw20gx32qF7tvo0RImbDAt/GNFivluYN9kwNCVo3CdWbFAj3sj652L9fprx3/NBDxvADnW07sxKOrRDicSiUTGG/XYF9fPh7JlzmbaVlwIfKLfuGYdwK34MzkKafIwl250ETbEIluSdbSveznt64Ytg6oodJ5Mvn05MHeEchwz6t2RYJe62UgkEhmj1FtfXG9C7zeBbX3GMLsWrBvseWAnA3ditryP+ONgZfOwNrs5w5l4jdTb+1U3lG//U+0RiUQikaGj3vri+voOtMxZD3yv70jWACQ0j7YIbCVmD+8ctXgHWAErdmPFzVhxNVZ8ELMlqfHHLMMoW0mTQGsGcGW9C+f1Xv6qKd8vsh46rkgkEhlv1GNfXD/T2T18DXgPlVfPzkw5dyLYIxh3hb+bgT3w+y/VwdRw7JWwp1sDWot0JGbbgXX4yuIZSGPHNlMaXg1dJreKYvesmq4ZHg3vSGoix8SK95EiqngjkUhk9Km3vrj+hMiWOWtoW/G/wLkVYuxV4fyBKcql/na/mQU2I9hYNgDz/LSWAIuqKe4IMcxCZLaNYo27ANbbm7ALU4/G3JFIJDLeqMe+uP6ESOfLwDtwwa6cbcBQ+oNJaitLCLMbQj7TgCzQjbT/EOY7qlj7xiVYXqBt5Du6lMlcyw7R0GT57g4ymW5gMpkGU8Okk3unMMza0eGn3t7lQbFL3WwkEomMUeqtL65PIbJlzgraVvwUeFtK6HJ8qnoYsTSXMaswluACpeHToUciTR3esgwT21bvT6FzDoXCtcBsJu95ZK/wjs0P0zRpE5nc8RTtZpg0EqUaSTvFXWbbw0gkEolEBkJ9CpHOF4H/YCfBXRqlNRGzwWaXnbsJoyslbnJnllJhc0gNQCdu7zkXmEI1Tq+VKVDovCklj53+b8VikaW3ZMHEzPmbaZ40tacMagNzabBxchvabRWbVm+mc5ustfUWT8fE5Kl5rDClH8dCURNZR9T7w4pEIpHxQL31xfUrRLbMeYK2Fb8E3lgWcgzwBDB/5Au1E8fXINA+hnLTkHrsNM0exQprPZ2+npWyFPPHV5VLsdhNd7ubAXRuvYesJTWMjwEHAJDJLZUy+5uvVD+ZxtztSF6Gzu0HkcutoPd2heXU++rm7GgXYKSoRzucSCQSGW/UY19cv0KkcwFwJkkhRhLGdrAuoHG0CjYAZlHsvg/kroUyublIC1FuIWYPY4Vmdizs2YnaBi8z5z4EQGNzuaAtlHkAgPaNG8yKHTRk28hNepBCcStYadHSY7RubSVf6GDCxKVIbbZ9w3LAtM/JGRBksofXVKaxxy4jREL9jX4jkUhkPFJvfXF9C5Etcx6ibcXvgdf0Oi8djnE92EmjU7ABMRk4oUeBZ/eB3NG3dBBkO7DiErB9gf0GnIuUpXnSwRVCs1LmUACzwqPAQrKZZyBzCOQ3USwcHNLYBKwk370FK+yPsR5lfCeZTMNwehwaSe3mLuXip95Gv5FIJDIeqbe+uL6FSOcLlAuRANJJGPeBCThsxEs1WIr53VDmejI5F4SlZpRdhBlg92K2CawZOK6WZCVlbMKMtSCRyT0GWkC+/V46NhwBtKLsekBkm9swW0fn9i5aN60nl2unZfKGkEyG3WfMwYqbd87BCqDh0eJlm/em0HE78CyGf8BWb+/ygKnHKZRIJBIZb9RjX1xv5d2Zljl3Az/AHYH3RjocNAN4ZKSLNQTMBQo7nZVAmSPIZBeh7OFmXEW+o7OWhKXsnspkZwo1S9oTZZqAPQG3yZSmAS1IM0GNmM2gUJiCND0cE5EayWSPIZNtI5M9GKkVabMVizuXeYiQlFNuwrMhc91w5ZFgl5vOHsgRiUQikaGj3vri8aCJBLgY9xt5IzALWAm4Gx5pFsbGulznYcVjKHQvIduwyIrdj9K5ZU/8mW0GOiGzEYrzgAXkJtxKoasBKxxdRcr5kI5XSsNE04SDoGef7Aztm+lVZ8Xinjv+P+PQzco29vydJJOtSaAdEMk17cNH/Q+wIpFIJBIZRsaHENky52baVlwJvDic2R9YCmwEng2sxwWvevPZOBnIYWYUC23AwnA+OGUs9jg3V+ZYcs1g9hRWeJJC9xyw0taMRRLGlqBOUJO79GGFyGzD7CncebvHzWS3UMw/jTIdoKeAIsZSpAwosTd5GVZYbkYDZubCnuVDmlm0Y5rb3RsZFnyS97g8smI7kEeZacrk9q2QS1cob+na0kCsgGtTh2JLyl1K0TacErOk04D/wbW7PzKzL5aFTwEuAfbF+6SvmtlFw1ikSCQSGZPUm/ZifAiRzmfpESLBBclZwAak52F2PW4/mLbLzRjGTqTY3YVyz1QVXdoX5fYl08ejzTR0IjUBsyjmrwVehvX2ra3dF+4DQDH/ODM7XZjLNj3e76483a0u6Ba6bgQ7oe+yZq5D2ZPTw3LX0jSllxBpZo+CFSl0tpDfni5g5lquR9mhWFBVb+/ygBlOOxz5wOE7wIvwGYLbJP3ZzB5MRHs38KCZnS5pD+ARSb8wszQfq5FIJDIuiTaRo0nLnBuAq8vOTgSmA6DMSaANoFuBx0e4dAPFUO4WshOeIdNwFPAoXvZtg0vVnnC3QfYwaXaXlS9cX0suVcSprO2z4gQr5ns/p85NedrXHUR++3NrKMdA2aVWZw+jHc6xwONmtjQIhb8GziiLY8Bk+bL+FnwGIe4YFIlEdjmiTeTo8jng1Iqh0ixgFsZmsHuAIyvGHW0yjdei7BFIx4F75mHirD0BrHPTEgpdU8H2xLWttWH5yViwf7TicpS5C/+QN6BMZf+OZp01tNb+YxqqHKv4HLq23m8Nk+4IeeexYhV7og+ZseSuJURmBtgNFfut772BFYm/V7KzR4FvA38GVuEmHK8zs12q/iORSASGry8eLrOi8SZEXhuOtL2te5CmYmzB53DHWB1kHifb1IpU8R7UNG0RgHW33Ui+fTlgWKFq7ZzlOx+g2PUMDZMOV75DFDr2B6ag7DKap/VxYbGxhkXL/b8J6k/is8Pobuv5s5i/Aqytj7QNFDVYA2Dgvj1thqTbEyd+aGY/TCaddlHZ3y8B7gZegO809Q9J15nZ1gEWKhKJROqSQfTFfaU5bGZFY0yAGiQtc4y2FZ8Bruk3rjQXs1vx6bbRpoNM4y1B87ig2ovU0HICDS2YFdto39nDEYAVum/F8p1kGiZihU66t+dp33AyFCcBbZZrhsYp3cKuQ5kukrviWPFeivmOxN99SJg7Z11D3CpTLC4E69smE7t+iHLbZRbWSJAZ6Oi3wHoze3YfMVbSs+ofYB9c45jkLcAXzcyAxyU9CRwE3DqwQkUikUj9Mci+uC92mBV5PiqZFSWFyAGZFY0vIdJZAlwPVLO4oqP/KCNApuF2MrlFg0jByDReCxjFrmfhDcApdLSzbXWltFvId7yYfMfTNnHGXCk7ga6tawHDeBCKs0DNPYt0bC6F7muDeGVhPXUaAptZRan7mM5OpRob3qESXruHKJ26YBh3GboNOEDSfsDTwOuBfy+L8xRuhnKdpD2BA3HvCpFIJLJLMYi+uK9ZoWEzKxp/QqRrIz8LXFlF7LGgbSqaWZ5C50MUuzZiZmBFyGRomHSUlGnpLwEpM5nm3Z8HYNvXrCIIkWbFR+ncMr2KMuzN9vWrbOLMB5XJBoHTNgCH4EJ5iQlYYQFo9o4zgxPZaq3/KnIbMgXo+Fl0NoqYWV7SucDfcVuIn5jZA5LeGcK/j9syXyzpPrxNfMSspkVckUgksqvT16zQsJkVjT8h0rkKuAk4vp94o268b1ZYTdeWA/CRQm/ybU9Y8x4b+/CXuDMNLU9ixcdt6/ImOjfVsiXibDo3P27N09rIdzwEWqtMw3rMOil0LTErdFDMN9PVtZVc032aMLkZXyXeW8hV9llIk6rMs1YhciQ1kbsQGrgxdxWY2eXA5WXnvp/4/yp6u+eKRCKRXZBh64uHzaxofAqRro08H7ii74haBNb/Qpxhwsygu62bpB1ib/agc+MD1jy9RcruXk2aamg5EcByE26mc1NtBSp0PY9tawGeQ8Ok+0nuOa7M5eQmiHXLJpBrmkbT/s+yfMcVFLoyuDCYV8OkHJncXcB2rDDBCt2tFDp7hMymqaaeCewiuUmVnZan07+AOHQi5FjQUo8YwzidHYlEIpEqGaa+eNjMisanEOlcSX/aSAnQ8zB7HGw7cMQIlQ0z66bQfiPQly3kbljheIqFx8hWJ0TuQJkqxSnlNfWAG6z9mel0bjqsYizMsELW9pi3nXx3M8reiHKdZJkCtEFmNzINGQqdC7DiBopdCyh0X4sVegT0fHs3Uo+z99yksTxlOWG0CzBiaBBuJSKRSCQyNAxTXzycZkXjV4h0beTnKJtGS0VagPE02FO4j6RhwcyMYvdtFDoEdhR9C5A9dG6QNc9YSjG/FctvQ7lmlG3BCtspdGwFQSabQ7mJFDpboWgouwVlHsKKU8k0rkIqUuh8zo40W/a5URNmFGlomS1lFjFxz622/p6H6dp6ELAS5XoLlGaTEScq13AnzVPzgJQtToTc8cD9KNuFN7wuUIFs420UC9uxHUvGlgL79SSorZRPhY8MG4GVIf8ikAGbBZSvit9ldksRURMZiUQio81w9sXDZVY0foVI5wrgdnz/7L6R9sboBrsBOHEoC2FmhuXvId8usIG4FFpARz8DApfVnqJxaiOYqaXlME3ep7SoZi8zw7Y8cZWyzc1MmK7StHcJSbsx48iCtT51NcXuGco1bygVP/y2AHdZsbCZ1qd2x5WTe5JtuEy5iTPJZFxzV+hcDtpGtmF3ck17Usy5I/NMbraSb0e2+TZyE6cC6nONdnIFeKYRYBMo01MuC3+Gv5VtIZO9ix2O/FWyo8yB9pK0O9BLq+s2IHY/CYkXVKR1+VeYPPdDFcs2joiayEgkEhl96q0vHt9CZM9K7T9XFV9qwDgY7BHcHmDQmBU30N26GjhqKNLrG21StjF1Fx5JeU1dOBOp4pS9pGlM3vcI2p/ZjuXnpkbKqJNMbhWFLtcqFrq3kek6BsvcB2oFjgRbBRwiZSGb4pxcmXuZtOeJUqa5ptvLVNr2PBNMEwaGC7dKm8ofy9PtQ4cUNZGRSCQy2tRhXzy+hUjnL/iy9eqEOGl3jIlDsS2iWXEr3a1bSS5QGUqUvRFlepyBZhr6WL2su5CeUzk8xJL2sAl7rKZ93dNYYacV45KabPKcbjYv7QZrAHZjwh430jBhImSm4ca5IO7FKNCxMUehI7GVopbSsvfMmgXI0aHq7XkikUgkEtnVGP9CZI9t5O+rvkZqxjgA7FFg4YDz7m5bynBqIJumHiBl96gush2D2ePV7IgjaS+bMPMp2tetxQp77hyeWWiT97me1pXP1R5HrSGTyVHsOpid3P0AE2YUyW9fQsfGRUAXLbOlTEPt+31HhpUB75IQiUQikSGj3vri8S9EOn8Eerus6Q9pIsamgfqMsULXnWDDoYF8imzzMsAgU4vtZtanmavbVlHSvjZh5lN0rH+cYvdO1yjXfJJNW/i4mqecCkHravY0ln+G7m0ZsCNCQhkaJi2i2H0DZIrKNp1cQ5lHm/p6mwdIXFgTiUQio0899sW7xq4cLXOKwOcHcOVxwLUDyrPY1QY0DujaPtEmNe72PDXutkhSjYMAOwGz66rOSdqX5ulFoLMsqEDD5Bs0adbknriZ3ZTJ7q1s01E0TTuChsn3gu7fcUXT1BNpmrYNMtsg0w6ZjrKjHTIbcNODWokOxgdDcCsxkCMSiUQiQ0Qd9sW7iiYS4HfAA8ChVV+xw49ksdq9uIHgRDzFnnCQPElu0moyuWp3g0kjB8WTsMydSMdUd4mmk5twL/n2kj2l0Tz9GuWaX1jxCgmyjUcYLQ/Q3XYtmYa9cdc/p/byE7kzE7BMAxQfxD3qi97rs8OKazJAAz2DoOF6g/rdfH68UG+j30gkEhmP1FtfvOsIkS1zCrSt+Dzwq9ov1rHuAqbK6XArPM7OfgcHh3Ir1TBpYFPBZvjOPLYvsBqK2yBXrX3kdJqmTbfGqd1gD1Ho3KBsU68dfnwqu9hGj0bQhT2zdWQaSqvcJ0DxGTM1SpkZfWS4G2QPGdB9Dj1No12AkSFqFSORSGT0qb++eNcRIp3fAudRvfuebcBypPkYK8HmU81OJoWO1VQjRGYnXEdDi1CmkXx7F91b07Wdmdx1NEyuTbNptg3sDrCZuAP1kuA3DwysGyxzC8o24JutrwbacMEpg9RLYyvowIqtZBqmIvWepu/cdBeFzjTH6XvtfEr30LhbZSFybLHLrM6ut9FvJBKJjEfqrS/etYTIHm3kz6uI/QS+QfnJwBqkF1nr2htt7YN7MWmPddrzkCMlpU8tm/Vva9o49RYyDV3KNvrClGzjtXRXiKsGU6Zh/5R8NoOtRJkUDWnxdvrdEad4HFYs/TGld9q6F+XagCwUu7HCicCJKDcwG9H6pL7e5kgkEolERpBdS4h0fo3Zx4B5vgLbAHsIK65D2f2AfYPj6pX0CGHukmbijGfT3dGmGQu29RIgzYrAk8BcpJwad2s2iqtdG6gcyjyBMs/BnVfngaKk48hk79uRRqbxECbu9TA9dn9yo0wrku9swIoPAYbZGqTJmG0HOwbI7tiUxe/ldrAu4FmDqyY7AkuRaqUUAbkmWaueBLN6KuuAUdw7OwJIOhD4NT6L8gkz+9YoFwkASYuBS8zsR6NdloEgyYADzOzx0S5LpG8ktQFHmNnSCuEPAO82s8XDk3/99cW7nhDZMifPlie+BHwNX2gzFzgYODho5e5AuSOx7oUocweQB+VRppu2tR3kO06zR65sscZJT9I8eZOap25j2pxtyjacBtyOKY+yx4lMG6IBmIK0xm392G1HOcwepqt1Ar6n9CTBM2QnriLbcATSrBCnC7ObyGQWhb83g83FLKkB7cKsC+ymsAd0/1s8DoZioYVsuRxZy+Jo280KHTdCpknZxkEKusNOnM6O1ISkfwfeDxwEtOLeBr5gZtcPc75DIah8GFhsZkcPsiwXAyvN7JODSafKvKYCXwdeBkzCzXJ+bGZfGu68hwpJLwE+ARwNdAAPAl8zs+p2Wquc7nnAAjN74xCU8RRckN+nn3jH4iZjJwBF4HHge2Z20WDLMBKY2Q5fx2nt2MyqX5g7QOqtL971hEjnl8BngLQdXJ6F5R8BmrBij5BjxZvINsz2/xcm0Ll1Pzq37medrUu1+755zDYA2xHTwW7Hiq1BU9iAaU8yDUWkDGbbKObvwwpHAcldW7ZR7DwJ695AbuI2rHAnVjiMkjbUtYyP4G6HkszHCtuR+pm6HhjWtXUJxe79wp9FfNo7OUoz4PCdLqzMPAqd84AHyQ6DB6ShZddwgUX9Obgdi0h6P/BR4J3A34Eu4DTgDGBYhcjBIClnZnl8QP3r0S5PjXwDFx4PBrbgm0MMzw5hw4Ck1wA/wQcep+MDj5OBN1Ltdr1jBEnHA/8APge8GdgAHAN8BKgLIXIsUG998S7zkezFlPl54II+YhwImodPP98MLAHNhjKrxQnTHs3MX7S/MrmFYCv8pA4FCmQbJ5Od8DDKdZFpWImUoZi/nkJnHis8l94CJJDpAgQ2x4qd11gxP9Ws6FoFszawW9hZgAS4Ax+NDxqz4lYr5p+wYmGVWXFrcFXUhC/M2ReYB+wH7J845gO7DyC7emh79fU2D5SwX+tAjogjaQrwWXyq6//MbJuZdZvZZWb2oRCnSdI3Ja0KxzclNYWwsyVdX5amKXhQkHSxpO9I+qukVkm3SJofwkp2yvdIapP0unD+FZLulrRZ0o2SjkikvUzSRyTdC2yT9E/g+cC3QxoLJb1c0l2StkpaETRbyfKdFNLdHMLPlvR24EzgwyGdy8rvJXE/nw//nybpL5KekbQp/L9PjVeC5wC/NLNNZlY0s4fN7HeJfA6S9A9JGyU9Ium1ibAJkr4mabmkLZKulzQhhP2LpAfCvS2WdHBZ3X1Q0r3hukslNSfCPyRpdXjG/1Gp4PIX6OvA58zsR2a2JdzDEjM7J8TJSPpkKOM6ST8LbQ1J80K9niXpKUnrJX0ihJ0GfBx4XXgO94TzUyT9OJTvaUmfl5QNYd+TlKy7L0m6Wm669TdgdkirTdLslFv6CvBTM/uSma035w4zS9b5OZIeD8/jz8l0wr38p6THQhv/nKT5km4KbfA3Cos6JZ0iaaWkj4f7XibpzERaU0JdPRPq7pMKpliSFkhaEp7dekmXlpVhQR/teJmkF4b/9/U+l8r3gfDcVkt6S6W2kGgUddcX18OHfLj4ObC87yiaAXou6ASwFUyYulHzF12u2Ucs0R4HXq/dZq01s62Y3Q/sAWpAuScg0xVsFtuRbgXbAlyHayYeA24DtoEtBbvBBcRiDss3Wr7zL3S1nkK+7XCK3d3B6eSTpAuQ4P4Sh4ZC1yN0bZlP1+bZdG7ajc6NYMXnDln6vakHCWQwPjnrBlF/Dm7HIMfjA8M/9BHnE8Bz8a1QjwSOBWqZ8n0DcD4wDZ8m/AKAmZU8LxxpZi1mdqncD+xPgHcA04EfAH8ufeQS6b0cmGpmL8D7qHNDGo/i3ineDEwN8d4l6ZUQNiJwweJCYI9wT3eb2Q+BXwBfDumcXsV9ZXBN1Vx8sNoOfLvKOrkZ+IKkt0g6IBkQhJ9/4DNPM8P9flc9nie+ituOn4APhD+M26svxF3BvS/c2+XAZertleK1uJZ5P+AI4OyQ52nAB4EXAQcAFf3p4l5C5uA+jCtxdjiejw/aW9i5bk4KaZ0KfFrSwWZ2Ba4ouTQ8hyND3J/idvkL8OnzFwNvC2EfAI6QDwZOBt4KnGVm24CXAqtCWi1mtipZAEkT8Xeg4r1IegHw33jd7YV/f8s136fhz+S5+PP4IS7MzcE1zG9IxJ0FzAD2Bs4Cfii36wVvl1NCnS3C23FJiPsccCX+Hu0T4vaiynbc3/s8K5Rhb7wuvyNpWmrlBOqxL951hcgp87uAL1YZuwE4SXCSmqdM0rT9GzRz4QLNWHCy3NZxMzAJ7CCwJ5Em4y/qcZDJo8yhKHMyykwkk3s2yh4I9iDewE/0eLbAjXmLLwPuAaCYn2XYbVSeLs4bZMyK661YWGXd266zYv5JKxaeNiusMSusc81i/imz4vqBV9awMNG62++w/I7jNit0jzXD8yr3Ja9/6m30OwaZDqwP08KVOBP4rJmtM7NncIHwTTXk8X9mdmvI4xf4x6sS5wA/MLNbzKxgZj/Fd55KDgq/ZWYrzKw9LQEzW2xm9wXt2L24YFUymzkTuMrMfhU0rhvMbCC7TRGu/b2ZbTezVlw4rtY85z14XZwLPBi0XC8NYa8AlpnZRWaWN7M7gd8Drwlaqf8A/p+ZPR3q6EYz6wReB/zVzP5hZt24sDkBFzZLfMvMVpnZRuAyep7Fa4GLzOz+IHyd10fZp4ff1X3EORP4upktNbM24GPA69V7t7LzzazdzO7Bvx1HpiUkaU9cGHxf0JSvw80BXg9gZtvxafSvA5cA7zGzlX2ULck0XJ7o715+YmZ3hnr+GHC8pHmJOF8ys61m9gC+VfGV4d634IOWcnvdT5lZp5ktAf4KvDZoVl8HfMzMWs1sGb4GovSudeMDltlm1jEIe+X+3ufuEN5tZpfjtI17EQAAIABJREFULvT6dS9Yb33xrmoTWeIifORQjQ/GVSjXusP20LLroPAIcCDSURh34CPY2WALIXMN0gNIJwCNFIt3YsUuYBNoOcq2Y4UdiVux8E+wQ4DtlDoXqVVktiNusWLBwNyHI2oBZlNov51CxxH0uOeZTaGjvNwz/Uf307x73/4Za95GcRCYNZHfehi9HHpn7rSGCTeg3ATlmqvcUWdY2Z3W5Vkmzy30H7WOEaStuY/UxAZghnrsC9OYTe/Zj+XhXLWsSfx/O66VqsRc4CxJ70mcayzLb0VfmUk6Dh9oHxaubcJ97YJrhp6orth9E7RY38C1UCVNzWRJWTPr890LAvAFwAVhQP9R4LdBUzoXOE7S5sQlOXwWagauOU67h17PycyKklbQ+ztR/ixmJ669IxHW12zXhvC7F+7dI420NpMD9uyjLJXaxVxcIbI6IXRkSLQDM7tV0lL8u/GbPspezibcZn4v4OEKcWYDdybyapO0Aa/XZeH02kT89pS/ZyXzDIJ6idL7NANvr+X1Vnp+H8a1kbdK2oQvYvpJP/dX6X76ep83lPUF/b2zddkX79pC5JT5nWx54oukqLOBTsjchdQZhLYjSdqBSDOx7DYoXA7shTIzyeT2wmwGcBPSicDEnuRsjZGdA/a4MnRg6gA9ZJbfSrG4ldzEBgqdd9K1WUzaex7+Uh1i+fbbwfIU83mKneVTyzXsYGPNVui6D18IY2GlTpFCVyvFrtl4pzGv+vQGiTQTZW/CCsf3nCweQ/c2gK3W3XoLpSnv3MQC+XZ3e6RMJz2ybmlLxErLw3u2TbS8sGIW1P9S8mxjUY2TTw7XTwfW1X6DkV2Mm/CVta+k8pTeKvxD/kD4e99wDnzqeEd/oZKHhoGzAl8V/oU+4vT3LvwSnzp9qZl1SPom/oEupX9sDelup1d/yCzcjRr4NOqBwHFmtkbSUcBd1GjyYmZbJV2Aa7j2C2VcYmYvKo8bNJEduE33PWXBq0jM/sglrjnA01UUY3WIW2LfPuI+Esr4alzbmUapzSTTy+PCVX92o+XPYQWujZ5RaaAj6d34YGEVLmz9d4W0emdktl3STfi9XFMhWq97CeYG06muXtOYJmlSQpDcF9derqdH2/hgIuzpUNY1uKYeSScBV0m61nb2bNDf+9HX+7zLsGsLkc6PcAPk5O4qz6DcWqS+7QGl/bDMKrCjwe4GrsVfDMOKBcjcDEwHW22FrgyWPwTotmzTYikzCTIHk89fQ7G7gHUbnZuPpHHqQ8AC/X/23jvKjjO9z3x+X9UNfTsi50ASAMEAgmAmhwQ4nBnOaCRLDmutjnZXlldrr1ZhbUle7a7WGtmWvDujrFGWJflIYwXLkizJI5HDmSEJgAEEGEASBECQRI4NNNDocGPV9+4fX110QDcAkmgS3bjPOX26771V1ZXuV+/3ht+b9Zi2ZOgWQk7Sh2UVjcGrsJmrymRf0i7Mj+SANoZGrZEyvr7pqpPaNuhsvprHdWBEtkLTHw4zOy/pC4S8p4SQc9Ug5MR90sx+nBAO/teSdhDu/S8QwoYQDJnbMgNqL5cOg07EKUJ6TPNB+B+A/yrpG8B2ggH3KLAlCxlfCZ3A2cyAvA/47uy4IISQf0KhUOUvCdGQZVlIu7kvo9kJfLeCzt5nCOHql0f9nwrQL2k2QTnjipD0k8CThPPngH9BSC96G9gHfFHS/8RI7t2dwJCZ7ZH0+8AvZp+fIhjFrxI8cP+XpE8BW7Jt1oAXrmCX/gz4j5L+kOAImPRYzMwUKvp/L/PI/QUh5PkQ8D1m9s8J98z/KekJ4DQjeY7JFXxnTwGfkeSylIQTkp4CfiE7b0MEY3upmW3OckF/hnCflAmeuidGXdM5krqz0PJE/DjwlKRDhLB1n6T1hLDydxEmJX8q6Y+BPdmxvJSFmz8o/1bSTxBqBr4N+CkzSyX9GSFX9nsI+a4/SmaoS/rHwItZqP4c4bs4kcd7ovt4NJf6Pn9gpttYPM0cp1NA901VQsjmELADRc+iOId0hTIRWoCirbhCAs4hd3fm7erE/AOYX43ZRlzscPnniAovg5XMrMPgedJqHZ+moBLFeR1E+U9jfnSY6aL49IzBxV2XX+jjwEZ/i6+LvMjplsx9LWJmv0h4WP1rwgP/CCFX76+yRX6GYDi9AbxJMFh+Jlt3H6G6+xuE4rv3m6f1b4A/UKgm/k4ze5ngbfk1woPyXbLij/fBDwD/TtIg4QF5IbxpZocJ2ow/BpwlGInNXLzfA27N9qV57P+CIGHTT8gla74P8MuEnMOmGsaT72MfjZCWdIbgBfoM8K1mNpQZy48Tcv6OE8K+X2IkheZfEa7DjuwYvgQ4M3ubkBv4q9l2/x7w98ysftmdMXsiO56nCef86css/+eE/L3/OdvHU4R74q+zRX6fEH7fQgh5Vwl5oFdCM/WgT1IzjPw9hFDvbsJ98efAoizH8j8RchJfN7N3CM6Vr0gqmNlegtG0P7uuF6VhmNkLwGPZz35JZwmFMX+Xff5N4CcJxvIJghf4u67wWCbiZHYMxwmTmu/P9hPCORomyNE9RzBgmyHre4GXFITF/4aQFztROsFE9/FoJv0+fxim21gss/cjFD1DGThQInxB54PbSqhMu3LkXkduPVgCPBMixYwLodhWsvCzmSWY30YyfDOKdoO7G2kkV8LlNisubgKwSu8hxoYz3i8NgvbYB5HhuRSHUXQYcFi6jlGuuyvGbB9pbc1V3q+rwSBwAlRTaf5P07niv1x2jWnMbcW8/cnKD9bOfP3bJ14xs6kVuG/RokWLUegKxc+nG9NxLG6FswG6bigzcODngJ8D/yCmHQQ5nhxYF+gsyLIiGRFmQPuAmzDrBH8A6TzBs7sE6SRhpj46H2Y5gFn6Ao3hO8HFKFdhIpFw31gxSkbSX/T5pTmFi9/GFQqYbyA5ouL9JMNbSGsbL7/6FeDiLeS6NkpabmbnqJ09Atz6vrZh1sA3JqwKvQboDD+GlXtnqfPD2PDTgGnYaqtFixYtZhzTcCxuGZEj/CZBWX8u2LhONs1aFD2PXBV4FLmFWW3KVszugOhGQqhmJ+hWpPcw30NI9O0CMGM7jUoHyu25TL7lEjNr5kZcQcqB3iDKnyMqLkOuS3IXGYsWtz9AWkv5sK38ouIW5do3mtmAJdXXSMod+HQIuTOEvKEFV1jlnWB+weUX+7ixRZdfZvoz3fJwWrRo0WImMt3G4pYR2aTrhmEGDvwCI9VoE2CfCIUd2kWQZ3BgIfRt9gRBn8ph6eugEmbPIHpAHrk78I2/wsX3EmQA3sDlhjDfuJCDZ76L0O3GYWnVksp5goDsZBwn312Wi++4xDIB39hDkIUo43JH8Gk7WETID6oRFUOFW1q5B+hD7iguXyOtrgKdJNfuketAcbPgpZPqufXgexipkgYYRG4fLucJFe2T9TY8GnJH7cNWoU41101OZIsWLVpMB8zsWS5fnT4tmW5jccuIHMuvA/8Hl80ftNsZL1/mkzuI8j1ZdfZmzD8SBGZsB5bMRtGTinLfQZSTmT8tucsafhYVh0gqVS7uSpOi6EXyXbdL7sp05lxuPYXZZWC+pBsBmvmwo2c+FuX3AxGK7pEUkWvHzBZfNDtKylvAN0Pxoz/sxPzdpDVwuc3gZgM3IZUw200Iz/eQ1pYSkumvda4LI7JFixYtWrR4v7SMyNF03TDIwIGfJ3RMeJ/TAVuCT76Ji/KYjVQdS/dCdBK5x5vblNwVGSaS67B893vUB/YhV8F8N6hKruQUFR5+P3uXGYGlCd4bu5yLL5I0GL+cWfo6tf7Ld5TwjXuAEnJvAA7zk3XeuZaZ8UakNP1CKC1atGgx05iOY3HLiLyY3yBouzWFdHOM6apyCSx9AM8+pLGtmaRzfEDxYLn4JivMQlLTc2j6uO+yRvlKdeZC72nzE7bhmibMeCMyaLhPr4GrRYsWLWYe028sbhmR4+m64TwDB54jaF01OUSoyDbG9p4dTzuWbsD0OnIJ0t3Z++c+zC41bcbs9zVwh11XslDXgRE5/Wa/LVq0aDETmW5jcUtsfGJ+haAV2GQFQRH/AWAzl7WibD2WrsL7v8VsK0bOzN6/IWlWxmyK27N8EKbXTf4hmWunts/s74lAzn2gnxYtWrRocZWYhmNxyxM5EV03nGXgwK8RerCOZxOhxdZKQquv8RjQAL2F9K0AZn4PSbVhcXELimYTzrskOczDaNmd4Muej9lpLD2CoveV+zjVmE9fpj40HXMbPygRoe3k2Y97R6aS6RZCadGiRYuZyHQbi1uuhMn5JUL/0IlYT8j3e4XgmRwi9EkdAL4GqoPuai4s6RYU7SWp3E9j6HYaQ2tpDA+Z2Wp844SltYS0diNpbQC4AfNP4+sLsfQRrqG+zVY9t4PyyXvAT2Q8z2RmeEhbzYzu9//TokWLFi2uEtNvLG4ZkZPRdcNpQpHNZMTA3QTPZJXgmewC7gFVkYqjF1aUv4d8925C4/k62B2YPWEutxCz2NB/M1dYhflv4BtzgCJoD++/Y82UYLX+bSTley+/5IxkRhuR0vTr19qiRYsWM43pOBa3jMhL8/PAlbTmG93s0jNRmFvuFUX5DSrMrpDrTMi1f1Nx4Vtw+QJRcR9xqQdLngW3GiIDbcHl+pA+to4pZjZolr5u9cGtNIYvVVA005nRRmSLGUr5RAflEx+uQ1WLFi1aXIJWTuSl6LrhFAMHfhv4l5MssYWQA3kLIbxdBeYD2wkSQXuBI8jlwQYxew0X3SXYhiWP49NtkhsgLnQADdQ+i7R6HBfPx9J5wHtmNkyQ9ekws3NYekguvvMKj+AccCT7e4jQv/uKVP7N7By+8Ra1/sX4xnSW6LkazHgjslUkM8MonxDwFeA85RM/SmnRjM7pbdFipjDdxuKWEXl5fg74QS7uGgNoIxIYm5G7CXQILIfceczvQrods0WYfwWISSoLiNuO46IHSP3z+HqEohW4+CRSN9IgUXGtJeVtoJWIGsnQadLEm2/soj5wJ1G+g87lk++t2XmwN0GZxJDGdcaxfYQe1xMVx/SZ8S6+0U+172YsvaaKej5GZr4R2cpvnGn8OPD3s7/rlE/8r5QWXVfaXC1aTEem21jcMiIvR9cNxxk48A5w67hPBgg5kCDFODcI9EB0DliIXDuW9iP1YL6NEOY+SFotEBUXg8VhymHHkVsD7AdWmm/soDHwAIq2o2g1jaEj+GSQtPp5XO4Qxbl9wCpgpG8htg2sHv5EWLIR5TYj13nxAWlNts4rwCyC57QCnAKW0xhsUB/47NU5eTOGoY97B6YUCVr5jTOH8onHgf931Dv/DLiJ8olvobSo/jHtVYsWLS7HNByLW0bklbEPuIFQgd1P6GBjo8TEAeqg9Zh/Efw6FG8F3gLrIRicBqzBp7vwQ19Hmo2L7wZ2AO8BC0hrb+HTO3GFV4BVWHKYpFoAC0ZoofugXPQwae0lQuh8BEUVosJsLB2E3LP4WjvGZnyyGKybpral4ndw8cOgu8FOAcPAHFDwtuU67yEu7aDSexPmL9ND/Lrh2Y97B6aa6RZCaTEJ5RPLgT/h4nz3WwmpLPs/8n1q0aLFFTPdxuKWEXlF6AXQp5FuufCW+ZOgvQTDchU+rQJfBVsNegOSR4CvATFyszA7CxwF82DzUdRLkAeK8A2PXAOz2fjkPVxuLr6+D58uZtaaIrgVYAnmV4HtxXyKpQk+6QTL2jNqB3L3IrcNuA+LduAbo/tbp+HHRl1zLbjoSKUiiu+10qJhfH0LjeE2fNKNr2ceTOpA/iqd2OlAH/Dmx70TU810C6G0mIDyiSLwl8BEk7/ZwM9SPvF9lBad/2h37Dpg6KgDlhBUOpYACwjOhhjYR8fSP//4dq7FdGK6jcUtI/JKkDsPdABgdghLTyD1I30Os1M0w8vYeeBmsK0gLKl0geVBhmKTi3PILQTmYf4U5pcjF8LIxk7iYo6o0CAZHqLS+x1Ebc8IdwdSIXSJ0XnwXcjNhrgL5YZJq8+AvxspwRgKXkfbgsvlUfwsaXUdWDcu/xJR4RNYqkzg/NKHLLUTFTYSFbLDtkNYcgyfNPCNiPrA9ZIvuVUL7rsmZJamiqasRItpz68RZMcmIg/8I+AblE/8DaVFxz+63ZrmhCKlHkLnsoWjfhYTjMYbCZGe2yfZwu8ALSOyxWWZjmNxy4i8Asz8MOigoIA1TgEF874Hn7ygKN8JvIYBltRxMXhfN0tes8GTp9W5YBWYD4YgG4BdSKfxvgH+PGgukpBuAI5JrtNyHUN0LH2CqPgA1tgKcRtYQhjIlmU7VcPSMi7+JHLPIT0MaYJxHHwKOo9cTK59DknlhRE1UtUJIew23ofEk6QVKLcCl8OsaMTtrwEeS8qkNdEor8CSZVftpF87PPNx70CLFpelfOL7gO+7giV/k1BY9x+ndoemCZXeOYQw/xpgESFPfBGWdhGcAwsIBuPE0RezwwQHw0RScAlBqWPfVd/vFi2uEVpG5JXgG23AMguSPcEj6XKDF/IIw0KHgFvN0j2Yb+AbUB9sg8V9SIsx3zCzHVhal6JFZmmEIifScxD14vQAZsPIBgXt5Dpuwmwr0rePatW9B7N9YKcwnwML2o3mb4VoCyJG+hTmhsC208ybjNuWgpYDZ5BbH4p+7CyWXAh7+R1/u03Lb61rwQ0bL3c6JAlFG8KrCKICluv0mH+NpDxEY/AWzM+99FamDU9/3Dsw9Uy/ZO4Wo6ic2gD8L4R2rOsJeY/ngaYUWAN4mTBp9MCDlE+eQu4BwqT0vwBP0jZ/RnvcL6LS+38ztgBpNCcJ+r+vEMb8yfLD3wJuJhia49mJ9BDh/LZocQVMv7G4ZUROxMDBnyb0HzKiuEqufSEu9yZJtYxvzMPS1aT1LWDnzOUWomil4DQAZhWs3mH9h85R61+KXCrpJrCjZr4B9ICtAc6Cb8d0Emhg9ibyS8ElBH1Hh/TtmH8Suc9l216DbzQIs+bRzMbSm8G9DQwhdYAey9bZjlQmaES+DnwqW+dN4DZg2CBPvZojadQ+6CmT5FC0gXwnluvoo3pmF2l9JVgHwQqeXt+MwGnCQ2LGI02vZO4WGZXTa1H0VRQtxsyw5Ama3rQw6e0ljPOfGLXWQ6D7CAYnwPcC/x2V3r+mbX7yEe79x0el90eY3IAEOAhRGel+LNnFxEZkAnwSs7cIIe3x5DGrIp358Dvc4nphuo3FLSNyQvw/AFYht42ouOmC9ZMrYY2hLTRqh0EJvvpZ0ioo2kyuczbSXoJBuIae5bPwi/dh1mHgwcAV8kANX+tHcS9iEIhweUdohdiD2X6kjcCzmH8Vn6xHbiuKHkaKCDPkRTRD0S5+DpSCORQ5zF4DCdEDVMHOgm4nzKgBXiDk8sxBcQXpoKRNrH3oXaqDV+XsSZpD27w5ZjZA8Ig0qJ9/l8bQfUyvLkmbteC+ma+tNw3zcFpc4IcxWzSqd+5GQuODJrdcvAoDXJy/9yfAnVR6zwLdtM1/m0qvgPm0zT91tXf6Y6V86vuRfnGST48D70J0K1IzmtIxybLbkR7CrEaYKPcBZ4BBYDiMw9pGMORbtLg803AsbhmRE+OBc5hfjE/2ktZOYWkFWCRso+FP4oqnkXsV/G0oFtI6iLtxuTpJZZVc8TAuzUN6M0YFlCh4EA8BqUi7IXeTwcv4eglXWCnz+5BtgOgc0izkHgJ9AwDzT5ImQnGMcz3AG1g6gKIbQbOyffZIBmag8BrNBysRqrMdIbS1AKmHkGN5DoB5y+/i8K6t5v1JOTdRaOZ9I6nrwotCz1zLd71DfbCXxtA6sK5LrHqtcN3kQ063geu6pnI6AuYAXwAeB2pZQ4MaZg9w+erO3Ujj25jmgKcIlcVQ6f01Qjh3BZXT30ZIjakCnwe+Sdu8K2kHe21i/h6ItiESYHSB4FvA0tBEYswapwiT9yoholInGOp54F2gDUWWGZ1zCWPti6O2/WNTeDQtZhjTbSxuGZETERVvxKwdDNLaLmAZ6AhYBBwiKuxBufko7sMnbwEDmL2Ei+7A0iGi4iCWiLg9kk+2g/cYBeQWIbXh6TG5Ms4dQVGXUIq0Bu8T0G5gPT7Zj6Lt+EZEVCgBQ1jaRlToAfZgjXW4/B7M94yaMY/CngQ9zMgs+m6C5FA72AsE+Ym7QKeBw5KW2/LbH/DP/ckOfP1NLbjRad7KPMX2NlycJ1dcI6n4YU6r5FZT6F5tudKL+LSOi4uktSq+XqQxfP+H2fYUcZ0YkYJpFkK5bqmc/j7gJwkTwqOEZgHnSWt3EgybGsYe0Fkgyq7rGqRR4Vilk2x9yai/fyj7vRtsZ5iMUidMVlcycSHJNMH+HfjfBjd6IlsH3YZZAn4LcqNyw6Nl4BNQH9IGLN0MrKUZ4nbuVdB24H6CJ/MIY43Tg1N7PC1mDtNvLG4ZkRNix0K1tPZhVgc7iVTDOAP0k1TyFAq9QkWTO0Zad+Y4g7kdgFBUCx5BUsLgFIMZlm5H8XwUHSUpz0f1dqTYFJ/AxX8HziM6FEIj67FkN1gNS8ooZ+RKDnQQWArxK/ikhtx8RnfPGWEj2DtZNfa9QETIh3yH4H1cCzwfDtdmI22VVHQPfecq/59/er4N9p7ivZeaeT7P09Z1hvv+0QG1dT3yYc+uXO5BXOgiaYpqlM9fix1hThFyymY+0zCEch3zCULDg/VIQQ0hbewCHso+LwC3XCjGsxSggekNpP7QTtWNz6meiISQAhOBmt26CgQjaSmV04O0zZvMGL22aV98mOHj3wB95yiv7VlgIdgLWLoR9DzSJ0JXMF8kGIz9ACi6BUvfAB7N1q2BbgZ7juCpXD3qvw3RjPa0aHE5puFY3DIiJ2Y22NdBn0duJ74eqhyNV5BuVK7zVVACVhAyUyTMD5HWK0htuPxtUvQmWBtyVVA7+GF8IzK5o/hGijEIPkK5BuY9ab2Oogi5QaSXsdST1ueAhjAfoTQPUS4rmrkLS78OtGO+Cu55UAnsRkKoOg+UCN6CBwii5hsJD4G5BNmKZuedjUA/Zh6Yi4u8+/s/ttc/+eWzFAorCTmNG2hU3rHK8QfxQ69RWrRME3o/PxDVcC6vOZ69LvIhyRRIp9nAdV1SOX0DoRJ43QXjx2w3ljx0qdWAHNgdXOiS6rejaDdy68Z6KIEwIX0t/KlNXMxiQlHeHwL/5AMdx7XBH2Dp90O0hVDseByjC/y9AGHMjSCMf81zFDy1ZocgehRsByE96DzSbIxHCPJJw2CbCSbBIKUF18U40uLDMx3H4pYROTGzgYfBXgbfh6KXMesAvxpLuwxnJJUYuT5JHXJuCXAOogVIB4FBzCwM9NYFhkndJPVzwTMYxUSK8GkKioK7wEkuduAX43GY9YH6w+cqAg3SWgUzI8ptwXwdn94PvAnWjaICcm+DDUFUzHQnm4PXJmALwWBcSNAtWxL+tt2Zp2ETULOT+79um79yO4vm10iSExgvkySfIM6X5VxMY2gDA/vPWHHOFuW7IsxSXHQpWaBB4NVx743+ltRxuQiL3s5eG76+hAsC7h8b14G0T4trlkrvHxA84QVgIHi6WEsITY/Eu3yjGVY+DDqVtTidzNNYB70WKrNNWAqm3WGiy0qkN4G7CGMBoWkC94EKF23J7HHKJ/8Q+F5KC6ejNND3AquwdPQ4c8eFv6SmUsW50IGMOlDE7DzYvaBzyAWDMxiMTSneQvjRXYQim9em9ChatPiYaRmRE3OSkF90D0FfLY9wZgjz38CSW0gq+5HmGhJRcY+i3HxIByHqBFseDEBq2WDTCT4lyuVxuRjJ8PXZyJ0BA5MQwrxhOgupkHsMsRlsk/nGfwNihXxGT5o8gnMv4KKjwDLM9oD1Ykkb6ABwK8TPIBwhGbxIMCC3AQ+A1oDtIlRo9gF7CFWcBRXbe2zu3L0qFDaSz0e0le7CuTm0zdpBlN8MAkuLNAbbifJ3Aw3U5i+hSzCM3EQejYz0MHFx+Zi36skLocXjx8p1kg8ZmG6ttq4DdgE/m/29mxA5uDUriBuFIhSdQlpOkPECs9OEAj4RUmrAfAOsDTQPsQtsGCiCLcJsAdAX0iz1DrAWqQQ8ArwLJtBN2bY9YXJ6ApgP9o8pn/gLSouuxWjCpVg/7nVj7MusJawYBoVJstk+zN8JvIjTPLC3CGH/MvAS4ZnRRSh66sx+xk+gW7S4JNNtLG4ZkRNzlDCb96Aq0GbGe1h6FJ8W8fU95DtTzHrBRGhnGMTC4V1rDD+NIcX5xaABsDmKS2vJ5UYVpuTfJq0VwWH49zDLg68itwDsjqz4ZS1mX8NS8FRxufC53NPZQ6AC+gxwGLMNWLofFzdAOxELQA1C6CmbMbMK2EowGOvAsezv2ZjtxNJ+dc5aqWWrDlLuC4Nje0+ZXPEpCt0VolIOEOYjrFG1pPqM4uInSWv7cFEvLq5lXtPmt2AQ1EGYkU/SEszNJSq8CEBaWw3MzSrLJycubSYqxNTOd1HoHsxcABrj36z2t4Nfd5nrPBknCFWX1wcSuOmVzH0d8CrBiPwu4NYsqHAU4w3gXqQ2AETnBYOniTQPmDfmPVwN7AShKGYc9jYQY7452auBew60EGlVeG0vYVaFC8tkzQb4LHCQ8ol/D/pTSguvxfzmsQwffwz478e8530V6RhmfUjnsSRFOojIA3+FojuBY+DXoChPEHJ/g5Dv2EUoqpmIVnvJFlfONByLZ6YRWT51M3JthEpCw8xjqc8GYo/5lDBr7AB5nIsIM/YESJG7D/NPgtqQK0L6S6T1fWDPEuVfwDlC+JhlYGfxDZnLPamosA6YFSLQ9IE7Ab4BOk/a+AZxfhNhdorJrSApb8FFPSFn0hVw8XwsTUA7Md9lvrEdS/IoEj7FGkMF5IYpzGqTZJgVwJ4Auy/k5/gbQCeB+zDbhWjql30VeBA0F3gE7DTBSO4nyPw44GYsrQPdzFl+CKtsJ017wPjHAAAgAElEQVS6iVyFYqep0BWD9aDoJFG+E4p5FFvYvl+D92243NwLDzfDB4+HWwg2f7JLJalEVHjQzCCtHSLkbE6cQ1Sc/SJyEXFpnVw822rnDpPWz6o0/yJPp9WHnsPX39dtM4rrJh+yyXTLw5nxtM3/JvBNKr1twA9n7y4FWwqcw9gO3AYqT/Z1GYu9RIhGTESJZjvVQAHzDwP7Mfckok7IEx8vC9TEAb8A/Dzlk78N/CqlhUevYKc+eoaOfgbzP5adjzagm+A5jDEtAY6BewSsH1wd9CbwAEZPSEVyz2DUQpSIxYRJ+O5L/MeTU31ILWYW020snllG5NCRZcAv43I3E7qxZNgbYHOAJQQB7BIXjt12MOKpG0HuU8BhjBpmMdg/weWekdyn8HYGS+eapS+APYSiHcj1gx0CN0S+M4dZP9LNpLVesE2IbQQh8lfxjRI+fQ+z+fg0j6Iqsrnm66cldzPYchTtISrcSNJIwQbxySCN4Rr5DkdaH7SocA9mpWz/uyV9Dou+ivkNyL0L9hnMgiHsk/NI23DxBrzthqQdxeeCqLlisP2IYyiqY+mncLmIQnseX7+XXNvTivJzwMrEhTUoZ0AFubsEfaBtZqkBZWHLLiTv43agqJqFyrJTbQPAMNIisG1At5kN0hjqIDyIBoAauY75wF6wWva/PHIdxKVULnfLhZBe+6IhFI0WVg74xlbyXXMwv5va2aUET0E/LreLuNSTXXsxInyeEJ7EDjAs/eqV33Qzg+kWQrkuqPQ201DGMwtsE6GI4y1C6HrFpNsJEZKJRMchpLPsB03U9/5G8HUMId082dZBewgeSYAfB36E8sn/BPwspYXXhsLB8LE24EtIP4zxHKHKXWZ+G+YPoGiRxGbQSkIEag8jqhbnwPqRW4vik0DoIIbA7GtgPcCWTJ+3knmCqwTtzVZl9rXC8DEROgvdm/0sBT1JVPgDinOumbze6TYWzwwjcvhEjCU/BPwr5N4DTmHpGYKhYFlHgSxp2l7jQuI4AHdkXWLGt606Twj3zsaSH5W0BvNvg6oo2oPcEixeCvakpM8h9wKwHGlpiKv6/UAHLncceAq5Ddn+nAPmIncfcXEeZn8L3rD0PKhq2F4pOomZSXSbK54GW4xjAFfoAeeFX2hJ5W3wK4FHidueQFGJXHEdqID5+cDzwbNoVVAn5j0+OYdZEexB8E+j6DWwWYRQ843IncNS1L5grQ0eOodr+wbt8+aBOw5KqJ7fSbF7GcYhfHqYfOdKpBWkSRk4jXKvEAwxRwinHc1asW3BfJsFrcrjuPiQpDkEKYwzhDZtESHU3hmMTMAVdiF3r6QqUeEUciOJ74CiYpFQrTpCWnsD8/fIxW0AFhLj99G+sBO5O2gMx4RJxGScQfFfXOLzmYeEpjCEIulzwK8QrvHvmtkXJ1jmUeCXCQ/eM2Z2iTza64b/nYtz90ZTQG5TkKHhHaAMVifk92UTIyPzVnYBBwiFH0WCUHaWPz1hFTYEVYcH0ASFNSP0gfss+NcYCXHngH8KfC/lk38F9kVKi7Zf0RFPBcPH1gN/RNOx4KKHMdtvSfVdfGI455Hbn+lGHsEYJHIPAk8SipmWB7UOzjA6bG1+M/jPQDP3XC8TvJOjx6m3qPT+Fm3zr6vIxjVDmDz8D8C3EyYOY9UIFC0D7qPa9wMU53z812iKx+KpYPobkeWTDyH9FsRLkLYTwsU5wkBqmEXgZxPaULUTcllGcwY0TKiEXE7IhSuBVgGhc0FULGP+WcwEHAabh3RjKL5OD4XN6EbQPmApZscIM569KNoUJHfsBSBBroTLL8DSzSHk7mPMqvikDSMH9CPXj5TH/GyJFHTKpBpRPBsXDyJ3C9jzGEPEbU8StX1uzPRFUZDf8fY85gdxzjDqwFEUJVhjC+bB5EFnwR8EncZsEHhELtdppYU7cVFFaT2h0A1xCcy7cL6oIp0y8wOgQVyuCM6DZfmQdgboweg3OEH9fBtmhq/vxMWeqHiPKbeNKL8KaS5xe5nGUAw8hPQSoa0jYEcl3YzZ6/hGAtERpNB5x0WOUPmdGf92BHCYX0QIUwWK8/YQ528X6rK0+ixwHyHNYbJv6pPqWfOBe4hPR6ZSVkKhVeevA58h5BrvkPQ3ZrZ71DI9wG8AnzOzw5ImTX+4bqj0xoQK4ssTvvuZNuEE11EQ7PcM81vANgI3YD505wpRgCzPmhroLC6eB7yKpXGoSJ6QIaS5mAYmCKsL7B8AsymfMOCLwFOUFn00D+vgefoh4OcIxvMFDHsXmIWLCkT581LUCKkCOoZcOVusm3Be9oPaGC0gHqq0DbQV1A3cCsRIYya6BGN6J/DlqTjEFpMwfHwu2A8Srv9EcnRvo+gkLt4EPAhUqfb96MdtSLYkfj5KKr1zMPt/gE2gs0gdBI/HOGwQ81mbKusn5K8UCKGglBAaWpQNBLsIhkk/2DHAgQxpDi73aNicpVj6FmY7wcoEvcihbPvrsfQAYdBZEiqzlQ/7oaaW22akgnAFpEcgItNt24CUw/xzwMO43ABSFz49TlrL4eISckOkSYN8aScuXkjt7GKitmWazP8ttxJLhjCOgavgIgsPjagKdgs+3Q0UEfuQawc/C/OvYLbAda/4NIAl5QO4XEMuVzO0jrTaSZT/Ji4y0kYJ8wuJ2yKZnQa7i2CE35ftwRaJDYY2Y+md1AfCoJzvfhq51TQuPPFywFGi4tu4fBu+Di63g6h4P5buAL8En6zAuUHMDmM2D7k5mD2HsslC6E97NyE8N3IKonwDnx4C1kH0KC6q4WunCVqZJwlemS5GjMq/m/yma/EBuA9418z2A0j6U+A7GJtH9t3AX5rZYQAza/Uahq8weQj6g+P9O+BTQpRlHnJ5QiRg1pjlFB9HWpz9DWZvBuFyG1es5o4CK7MK5hdDlGMMRwgeoJggzv0G5ZM/g6K/om3euIroq8jwsXnA7wPfdvGH2iHFC8lFi8ysV86NbqCwiuCBheB1DEV7WPnCEmaHseQ8ij6BlBu1bjuhSrvZ2ccRpNT+Nyq979A2/4mrdnwtxlLtazqI7gYewOW/Fd94Dfzo+/ogig6j+NYsPWN0FOtfEp79X/jodvqjZaoiQtPPiKz0OsIM/WeR5mAcATZMmEhgtgcoZ6PgHKAHaZwwr7YgNSuHN4z64AzwVhgcbXDURl8ieMwIYwuDYDsJRSqfBbpDRTY7CYPIWZoDdhhQBbwClhAqMPuDTpu9RBh4QijK/DYUPY7cXUSFV+UbK5E7iosfJS07vPsmcBP18/st33VWaDnjPThySwghq1Kof0kbIXytJWBns32Yhecg8nGmjbYRiDB/EFhKrjMhaMU9i9yrRIW8XNyB3IPm6s/ia8OS6wF/KjOAzwEdyM0leDR2EJc6MXuF2tk7QCeAKi53BNhLVOgg3/WIpBvMbCnYQXzhKeS6hb0AMowImIWZkMVg50mr84MYcDQICOnucVffo+g5sDZgHVzINSlY+IIA9CsurTXf2IZv3EaYVPz1RffR9cDU5eEsIdz3TY5ycSXrGiAn6VlCJOFXzOwPp2qHrnkqvT2EdJq/JHjCBrLX5wkPuiHCeNN8byB7PyZ0Wpr4YprVwQv4ZPbOGcwOZsvffeEeULQTaWzERlqXGZPbsGQ1oRhlD2TfO0mgB7H0TbLvW+aZbDDynHkZooXAfwaOUjn9JeD3aJtXff8naXJs4MBjuNwfSVo47qNy2Aergm4GlYQ/gNmCca1js4k/OwgybxHYCsy2Y6kDuwfAzL9IUhtQ3HZ3tv46gi7k6Pv76wQv/J9S6b2ftvnXRo7odKXaJ0ZSBtaP+r2W0dElCaL8JszvxZJTITrnbkNaeYmt/yTVPk9xzr+Zqt2/IqZgLJ7KiND0MiIrvbcDv8nosIImTAgHs/1YcrmZfJ1w802wPtuRFgbDyHKYN+RizN8wZjnnOoFVBCmb08ApsJvQhb6sWwgPxnkEoW8wewJ4CPQ6cjnkHsNsIMhKxLMwOxnC2bYV2IBcNy5/EJ+sCIafP4VPPwW8hqUbaAztJy6VUTzBRY/eBdogrYyEmzkANIJ+JedwLsYnhJC3ns8eNHXgsCyto2g10mJF+ea52h1OfbyWyAn8eVA+tG2UC+vKEXpt9yjX7vHJgEVtLxMX11HoOS0X53G525Cb09xTQahkd/HjhDBajuA17gQGwfZlIfUCF8J3FlIVvD9FUj4GGsDFjyL3DbA1mN+XPSgxs3lZpekruEIb0lLMDkvxInPuDXztOfWsGfE4XC98uFZbcyW9POr175jZ74zd+kWMDxnFBA/CpwipCC9K2mZm+z7oTk1r2ub3A9//vter9P5DJjMgAcxvY2yhzlxGQn0JZm8RUlUmz8OUHoC4D/NPge67oMYwskB13OVtbv9ZiB4d9YBcBvwg8J1UTv8ZV8GYtP53CsD/B/wIPtltcu/i4gKK7sXM5NzLQMOMx8Bvw/w+4edj7ACfx8WG9GlG5JHuJxjre4AG2BKwM1nRZI+wB83l6qFIUAY0CwRH82mC1vA9wF9nhmT/hznO64ZqX47wfN5A8DLeSTAa51xqtTHIrUX5iZ/xE/NTVPsqFOd86f3s6lVj6toeTllEaHoYkZXeduCngB/hSvbZ7DiWjP+ipoxJDAJgF9JdE6xfBh4PVdmj35+sgEsHw+BKB7B43Di+mpDjt5mRThD3ZuHzkdFW6sLYA8zKQuD3hO1ZHxAqjKVZmVeuLnjV0CLwBzDvLK2aKG4GV8SSMpZW8OkyFDeIczGmWUBX0Lb0c4HTmK+BS5DakRsAufAeNeRmg+pIJRR9FRf3YJZm4eMS5t9FHMR0J0QpjhsJM/jXQb0Eb0kdWI3ZPrAltM19D5c7Qdz22CSzrXeyY96LUcqKpVMUzcf8XCx9B6mbMJPaivl+FIWiqLT2JtgDWdX3c5h5pENACXwf2J1ARFptB7dSYnU4/ZadflYQFf7ZJBd4hvOhkrnPmAXPzCQEQfwRlnKxdt7RbDvDwLCkLQTvwvVpRH5wHpv0E5+8ivk86BQapysZiAnn/Ahm9WwCeDFBYeEt5JbRFDIf8zmzwW/OGgxsIeSZvwZaAH4zhkB3IPc6YTy8hWDY/gSV018Efpe2eZWLtnsZrP+dW4A/ZiTn/VbMQ1oHaOByR/F+tsEh0sYhsFtRtA2XX4tzXZnt9zxme5DWENKdPMHLWyRMjFNQf4gaqQi0y7lhUNDaHXk2vcFIcY0IYdMDBA/a57P9bDGaal8H4f67kxGj8XbG5bJOivnj+OQdpAiXe/jyK1ySL1LtK1Oc86sfcjsfgCkrrJmyiNC1b0RWer8D+FXGPogmx6wf7CSh7dT5EGpWEbgF7HXCzPim8JmGJ9nKOZp9Ui/PK5kBORnNO2L0uT7GhRm62YgsDk3v5a4sx2g3RCVIFwbNR+3B7EbCxT4JLMV4F/NVLCma1R6SczuBOfj0EOIYvgZJeg6X68mKUlJgGGNuyOVMb8e0A0gtrXcKq4A+gdwupDbkloIWZ+HtbZm38RHgPeBm8HNRtBdYHULkFAlepTPhOG0r+CGkjcp3DV4w2sMsp4+mlqfkkdZhVsP8NnxaAR9l8iL7MetFuhGzJHg9mY0YxtIquL1gA9m5E8FT/TSQEOU2kaQvAQM0Bl4EZuFylWyiwKh19tG1cs9lrvWMZQplJXYAqxXacB4jiGd/97hl/hr4NUkxYSJyP/BLU7VDM5hPTfSmmT9DUu7XBSNTx1B0GBcl4OYxupWiojM4N1l05xWClFDTm9kU5B/xDEk3YVEhG2sHgAWglYRJZS9oBVIfIwoZRvj+LcbsC+C/i/KpP0X6Y9rmj8lvnpDh4zLz/xSX+x/D2OB3Y9ZJaP/YBZwG7ZV5D64BVsW5k+Ak6fOZ3mO2LyqCHcQsTwiFtxOM4OWg58JvG0AScnMmCY2eJXgvx+wl4X7+SssLCVT7FjLWWNxAyEW98kHI0textD806bDFhBz3LpS/ci/lpfly5pH83au0vSvmQ4zFl4oKTVlE6No1IgcPrwC+jMt146IwqJkdJq2HIpko9x5oXeaZIvt8H3ASbGPm6epmjHyFHsmWqxHy4iaYSdtRwsNuEZNX8DapwmXzBprtwEZdRA1l10/ARvAvYLqZUByyhCBBsxc4iwRGkSAw/CDmnyBoelRJq/vxSQUooKiKyz1JruSBEi6KMObg6AZbg6+fx+V3InUGB5zvzoqH2iGpAUtIqxVTJEX5c0AMKgP7wBLMisETmp7G7AVw58HmoOg85oV0CnQb4ebbHox5fwtyy0EnQS8BcdYRAkKIZyHhRBzP/q4BEWmjCn4eUMcYwnwPUMv07mKCAX4Ac0uQjuHizyC3lmD8e8yOYI3ZwHpS9obrxH6S6jykCPMLLWqbLak7VKqyEfj3l7mOMxcBU1QRaGaJpB8CvkaIBPy+mb0l6fuzz3/LzPZIepLgwfGEpO9dU7JDM5VK7xImSM0xM6gPHgZ7zNBOSXeCLcGSJaQXOhUOo+hdXHwMl/v8Rds2O4v5l8BK4PKjogirgP2E73CYFEuENJH0HdA6QvenQdA8pE2EPMoi8Hy23r3ANsw6wC8EJUhfBr5Ipfd3gS/SNv/EhMc8fGwO8IuS+x6i/NjPzN41S0/jG4cwWwZ2DBd9WrityK3HN54DOwPmCJPZfkLjiG5wZ5Hbj3Q/UhdoC+gesDdR1FR/OJ/9pyHCWF3OzsEyRozstwmV4X9E2/yrmvc5Laj2OYLDZgNjDcaJPOFXhvl9+HqF4LV8F7ljKB4Atwhpw+VWf5/8DtW+r1Occ+gqb3dyPtxYfKmo0JRFhK49I3LwcJ4Qtv4CUAoNX9xbwArMH4CsWiitLwIdxUVvhjCrOrMCmTWX/R9B96ypl9acCYPZ88ADhBN8BeilbGC8FEcJhuHoO6NpeDbD6w8hewGLbof0TUIxUDlIZ6QnQr6k78f8AGIx5o5LdBqqErWlOJcqKpYILs0GPq0gn0PuXBiU3bMhFu8fhtyTSDmiuJ+0+lmU+yYkG8zMgb1HrlRCUT/mI6QOoIz5NPSQpZyFuU8j90nCwLsjO54qwaO4FLODweDUblAvkjESanuZcN/NBjtOGHgdZjW83wbpCqQezJXBcogbIRpCamTpBOXMO9mTaW++CuxBGsLlfeZNOIByXWDbzfsqybAnKhRw8WEaFY/qfRjDFhdmobiK3N9K7r9e2TWfmUylNpmZ/R3jqt7N7LfGvf45wgO3xQfj8QnfTSqbL4yZk49r7ZhvEBU/PSbNxKyK+e1gG4Bvyd7dw0jEBILE1n5CrlUu5FMrwnyZEJubC5QvVHqHvPEgLzTyfzrAryGMxc2HYImgk/nPKZ/6CvgvU1o0MrEYPvYQoUDn7EVHY3YSfFXheXAMsRp0nJD/lYLtxOXuBnsD+BTmt5hvlDC/Emy/lG8gH4PbDsoRihZ3MOI9TQge9v2EcW30g3s3IQrzC8BXaZt/zYhYTykhf/FW4C5GjMb1ZB3aPhDmj2Lp/pCGYc30ipWEZ+pruMJaQlvOqUKMlov7iJiisXjKIkLXlhE5eHgjoXDm1jHvp7UlhPy6cQabLcUnYWA0hnHRi6BFwMosiRzkOoDbmEgw1+x+gvv33tAXli4uzptsEGad47Wm9gPNSu8jBM/lROezqTnYHJ0PIncCS2cB92M2lBlrDyLbDa4f2AjuANINoNX49EWwHKgOqprTbHzDiIop2CnJ5UClYDQCLp6LJWfA5UInHVYjdxRFTyN9ayieoUJUfAVfj0H7JDdAvmsWigaRG0C6DTiNkUOsy453ELkact2E/MX1oHmEpPw7kJ7CzBOqP1PkGnDBE/gsUEP6LKFI5igh7DMMLMOsjbRyHJd7L1u+C/NnCIO+Bcet3QDqBPcGYJg9k4WUwgPJRc3rOlLhZvX9NIZW0BiKMJtDMjwXeJm0fj/W0UWusw/sN+hZPXVyIy1aTD3HCNWXywkh56XmGyfw9WZ+2CBB93Ai3s0aBzTdeScw/xrm72VsIc4WxudRhYjDGUKr1TPg59AMT6NesGWgFZjtyib50bj1vwm+k2CcNr15t4/63MDWAm9SPvE0Zr9ACLn9AMHTt5ixGzyFeBtTFUtl5juQ24vis4IKogS4bPwJ47XcRtDz4VjwOPWAEtCdQA+WPA1xgnQCqIBqwOfA9jASrUqBPwd+nrb5LzOTCfmLdzBiLG4gXLP8pVa7LGZg6TawBuYF9jBjJz77cfkB5G6fbBNTwPQSbZyEqYwIXRtG5ODhuYSZ2/dMskTPFWylHZ9uQm4L2HHS+qMjH+kIcmcJYt9lXLwQaTXmnyP1w0S5ZwhfgE+M2+YxUINg9AxwQdiaOmhwlEbYsfAeRwl6a7cwIiOzkTALiAnh1n1Ij2N6DuzhzPt5P+Z34KJ1XMgTtCMYK8BeyKwiwOpmVgYrk+tYSVpL5ZNh8EUsyUOcAxpm6Rl8o6RcWwMzB7yNnENuXRbObQPlEEUUnQY6EXm8X4Ql583lloGdCfqTVgO9SciVzBMG+jZC6H0vwciuIJ0lJJfXgdNIhzHWEGSE1hJc4lVgKz7tBz6PdBiYjVHFfI2osAmsF7NyMA71fBA6phbOvevKqt6zB5vtAoVWi+Z3gFUxb2CrQQfN143q+RIXHlzWR1w6Q3HWOczvBesLPdX59Su4v2YsQlOZE9nio6Bt/lPAU2Pe69/3MCOah52EKuLR+dsDKNpJrn19NjGE8B1V6A6lDrAdmK+Eqms9Ps5TuStr5NDUhd3NiNHZSzDybsz+9w0YryFlk35Ls7Gtmce5B1gFVsLoHSVXtgWs2VLxMaTHMDuIsdt8o4SvHweOExXnycW3EsakTSj6Gi4+QqNSotprFGbnKXTOCwagDZjZUmGDWai6Q4qMyHmCw2F59v9eCTl3rMXsdVAXUjdSKctjLxAmwb8L/BJt8z+6sOdHRbVvHmND0RsI0b6rP2D4xmbwk0f2XG4QuYuVA8JE4zk0Ru/zavGRto+ZyrF4qiJC14YRGVT9JzMg3x/mN2LWB3oXLHN12zIszfIqU/CNM0T5LaT1W4lLRUJI5AAhnLKfYBQCujebnUdZCupusGFQgyBWupOQPF7Kfj9IMEabeXZNKuG1vgb6NLDFzC8mqT1JlC/JksPAMizqJ3gSngF/I+ZfxuxOcNuACNIY0jZ8WiCNz4bqcbsJaA8yNomZEWFpBQxrlNuI2+qYpTLrxBr7cfF+ktoNuNxrOFfD5W7E0h7k3iPWKkvr+6mdyaP4PPnue8Fe5P9n7z1j7DrT/M7f877n3FQ5sJhzkkRRia1EUbFbrQ52e+CZMTwLf5hdY9YYA97wYW2sPxjrtcf2Low1dm3AwGJs73ii4Z3xzE5Lo25FZiozizmTVcXK6aZzzvvsh+cUWSRLmpZaLam6+QcKLNa9de+tc899z/M+zz+AR/wsCbeKFYqLsE5iG1ZUHsUKaEHkILAIYQjVGnDFLkJsyD/wDwCvmriHq4S0hIYETQ+CgMg1kFGQccSX7DnlGnAVkVGUTiyvdgzVV9BkGXPyzzVLzpNMpfhKgWLnACLvkjVGQFolKj6tqiUIBbJmB+hu6b5v8POebj8X+NnZStzFVwjp3LRHx0/9E8zZAuAbqjomIkWQ48Qtrbho7jo1iQn2NgG7rOCTR8k1N6ieBz2Fajdmvr2Dm53FSQi5qtrtBB5BuA43JkAtoJtROQnaDXoadPaifwbrOA1yczPeB5yzotHvhWzuBr+KZi+ANBD3vjlKyDga/gyRLqCG+IKiNXCDoB7RLs0aYxJXCihPktWPqos3iXAUWIZIHRetwVK7TmAb/ieBSSQ+lnPvh/LXtwmRYVT/LfDvKffdOVJfaDD/xZXcHEfP/vuTCkw/P1RTssZ+zEFD845vC9Y5b4K8g4tXzVtAGkZAn7boYI6A68sV9l8EvtyFcQGuxV+XInLtX36XzwCRHnDH0OyT+BK9ZM1ngEmy+kEkivDxs6gOAT2IrM/v9y7WaXsq34Hfd9s5NasEew/7wCUgJ4Ci7bJvjLufwAjYZUQ8aEaaHA9v/eEymo2Ce/5vXpBKRwmYQcMPgHOgMaprQDtQ3aAaTtEcD2hWVs2qTBxPaF++Bh8N4eJzuNjZuBsFdfhChZBW0RBIprvVF58krb5MobPI5OAZ2haDxDNUr46h2qRl+TS4t0lrINFl4pYMkT2oJDgXY+fKXHL4OLZLKwIh79iOmzWIBmaTf8R1oEzb7+slVGOQq4h0E7JRNPUg96tmR1F9SET2otoBmpli23Vg3NXZbscRRLbeuLABSvEAyfSP0dAK2gZct9cfNRCXirghlaiNUA8amrshEsTdhy8V4RZPw19c3O1E/rzin2Jqyx3YZ3iaqOUyPt7KrfYpTawbODuu3oQVlXP5j5exQIUjzNm0YRtwh/iXUP0Im2yc5k4+XCXvXA5gRcosukAugKzOeYqzhctkPjF5CvVHIVsFtJsjA4hIESk8BRzH+RH7e/QZVN8hq3kIgiYFSl0gUsDFLahGmKBuLVljibr4A8TPIDIokCCSYpOPSEM4ByRC2gU+BhnAuSew+MZ/QrlvYXrKmuBlA/YezC0auz/t175QWN77deASmg6j2WI0OwEEospyoARhD3gQ9/Snr0/hJEaD6AB22CBPZm2m/rLXAVa4ftIT3I81SL48LLC1+OtSRG78wh9R3DNoOAX6aTuSdjTsgGwnxCCy6LbbH8O6jT8pEpAuRO4xbqC+gRVPXVi3LgUOovqAFErvypYd/frqb/9V/Xj/sHzjOwnKetBDIAHx19FkHPF9qmm/JtMxmq3h/MErOM0ItU1MXO3XxfcmUu4S1AkO8C0O5wMi04RMCYkgcVXT5qsMHVmCFCa4eKZFnvivCuA2gj9Fqeu8GJvXUWgXIEXku8AQwseoJvnrT0zdHaqoxogjFxbtNeKzrAL6Qe4HLjDLZxSKqJG0B8gAACAASURBVE4DS3IFXR3lVTRtR7Wo6EGy+sP44iuI+y6avWt8LLcTZIaQ9uGi/Yg8iaVC7AcEiZYBLWT1Jpp9GxgEfxwXLQdWikhLfjLsRtx9oNPg+okrPSKuCZzlVkuEX1gstN3vXfxkkM5NqY6f+jVsRHUW5/8UH5ewC/jrWPfpDLZZnst3XMKst63xnHdjedtgn8G3uJl802Q2Qk7kYXBm63VzVD2LWX70rWk4VkBuyJXQO0B3YSruuUrxTcAMqkdQvdXb1xc6EXcF6EX1NJoOI/I86i7iC/cibqdEpfuBI6CpSSmjYzh3giwpQHIVF02jYTnizgGZoh1UByJc4RotS3eg+gahuQopBkT+CgvJzaE+shibjO3AisWHME/jrwaqh7EEueXAYnDv4fwjqPsA8au5kR7kcz5vuIC6bjs/7nisOvPa/31KBLaGj9FwHUKF2QaWiUBB/KPcaqD/r4A/+ux/5OfHQluLvy5F5Lq//C63YBhrd/9lyqnGX3K7YXbUPT/mN929FRUTe2iEsAl0tzUsnQe2oNnxXPAzkpugC6rPumUbfhx+8Hf/TEqVAqpdkHks8aaC6oR14SSQ1WaY6u/TI293i7ge4mgQ789SLhcZONPU7iVKXMoo9UTiK4hIrCiIbyDSSXMsJqsVs8HhAddeWuke/cEyiUvdKK9TWZxaao44IDGuEh7VA8AaRJ7BuFYlbPe62bqt4RqaRhAFRJ4CDmHcx3uwLmUDmAbpAb2MSBnV1cAekDoi3fjSSkI6JJoFjVsqIvEqNHmNgAcG0CxFg12IQjKDL74GUkQkQ2QrMI1ID1l9BbAbXBciAeikOXVKxU8horhiFV9QXMWhWpKQDmCZiX9G++pPWW1+QZAneN7Fzyekc9MV4NfuuKE+vB3jov8ydwoKAe4zmoyeA/rQ8BrICqzjdz/wPkgZ2DLnd4ZtDO6voHoZwgA2Fn4H5GHgyp0XeN0G7MK8ccn/3Yfqm6ARyDJgFfjDhMYsd3MQXxwyIY0rgsSgKxE5iY+/j0YTZM2zQCu+4PHFOqoZqtvR8JZEBXOLEF9HwwegdWAMDYsAJWs0wDvEjWlIdqGooGcJzVZwKfCPqA//A0q9X7/1oz6yHBOhPosVj58lseVnC9WzoKu5VeTViUQnEe5FpDLPb61hPhU+AOEd7hDcggkw53v+cB5N13FHLr0+Y0M8diLR3MdbRH3EUer5clT2C3At/uqLyPqIJ6o0Qd8DKaPpCBpKqLag2b3Mv7gN4Iv3mfgkDBDSTubrZoqvoWmNTy82D+E/1RR/M8Zp/JTHkAI2yq1i5PKngZ2gzwFvgGwGPkTkJVR+jOoasubrKq7ielbEWIdyBvuwjCPucZBrqKKhWdfp/nYmro4wOd2qvT2vSbkcMzXlNM1qzAy2EksViROqJ0os2jBD3z1lxGf4uML0tYZ1Hko11927qrHrnbHy6u2PaFI7LHG5DL4LYQRToBdNLCTt1uYPS1B9A3Gem92G3FNNHOiDaLbHHkMamH1PDdvdKWiMeVHtMOWjfgjSmnd8A8oxxK1DZFjgEioDwDKc79OQnULDFmAfIMRtD4rIiwCoHiNkh82E3e0iqsQk1TqaLkWz9ZB+BHSj6cOEcIBkukKhPcX5lUiU5srLdcCfftob/wuFBTZCuYsvAKXeK9SHfxNTc9+eXgHGD1+cx7KOEpICsBTxlxFZlHvqjtx27vSj2oZIPoL066345EVEQMM01vU8ga17ubefPoAFEPQABxHZbnxsLZioTxOghC92o+nbiG9F5BsgHvH3mo+lXDTepU4iMiRR6SWi0gxmIXYOuAd0lKy2Ghf3IzKNyCLEr8j55Q+h2gDdj7jHiFtOERJlut9T7JpCWIMvXUbCY2gYQP3/BPzvX/wb8xlRH1mDFYuzheP6T73/lw0bGR+BYOp3e4+nTbgFiGzEdASbP+VR5nNXOcmdYliAC3BbdKdqgqb77Hz6RPrcVcTfftsffmkF5CwW2Fr81ReRsByRe26U3zcEz5CPUcaAadCBPMWkREgfQsNHOL8NcSsRP2TKLnsENGwGMlxUR4oTiJwnrZZQbUdkGg2LgTK+eBTxa/M3LQVSJLrITTPZWY7hCEi3fU+CteH7MG5PKf8QgGoDkSKqJ/LFL6BaAc5BeIHAn6BZSdPmPjRpI6sv1WJXQ5AqIR1H9T3Qomr6FyiCpq3UxxoSV1JdtrVVym1vkVYdzUaizUYn5y7U6e6scvzYYoR+ypUGHV0VnenPpNipuCgiKj6kWXqY2kiHlEsPl77zzXfsMIVmLhCK8s5AC8ZxdNgHfRzcW9g50op1Fl8GFiOyGPEnUX/cOpU6lB+LrXYcsg/RMIT47nyH/wYmPipjM4PZD/hKxJ1Fw31AgmgE7n6Qk4hOoQ3BeKU1ssb7oEvxpS5gBvQ+YBwNTwhyUcVVIb6AppMIzxMVIKR7yEIE4WGa40MUOi7gfROJRhD/Bq0rTn/+0/bnCwts3bqLLwql3lHqw9/CPOJmvVw/wNa3x+ecGB0g7yEyhMhT+Vr1MMhpYATkKBa+sOWGAhvNgP3c3PydAybATQKrIRzipmK8E8JVYApcLtAJTVTvAU4i0mLuDNKJxItAx4E9wGqb9LhxhOdRdkK2HWUM/GUrRhnH1p6rwCSuWIJsGFzAAhcKICkunm0WLBKtnlDkKlmzHXEzaBbhy1cRt9SWR5YT0heoD5+j1Pv//kzem/lgApi1wHP517OYGPPrCQ3vmtBTnkZuENmHgdSuDbOja+7FrrcxZjEzmX//BKqKNhJgBmQSF5026pR65q1hZACRNTml7AzoMJq1M2/HEoAz4K4i/oFcmDWLy8Df/+kOwGfHQluLvw5F5JpPvMVOui77kpX4/Bx0haF8Rzt7v0X4ws0TRHUMaEVkKUb6TojbijnXoje/z2T+2DOILM15f7Oq69tfyDvcSiSfxa1j+FkvytmiWPUchGE0246GN1SDJ50pURtO8IUlRC1VVEvGG3TrgWE0UUJYTHPiHBrGiFu71Je+lVw5v3/qd//IazOrFzcsrkWthRBNVAuh0ub8yuVVXywoznmyhmfiSoGlvU6VksAVKXZUNW6BtPYaoWl+iJrN2N+sp4AIwVJh7MNdRYixD/WsKfsYqu0Yp6kB9CDuUdBdqNYQeQz0HBpG0OxR4CIaJoFHTeh04825SsiMoyjSa4uIvolmK9FgnBdhWnwUVJikOX0BX6iJdXVTssZrOL8K43FNgg6RNZ8WcRtVwwQi74K/DAjOOSRypPw5oeFoTvRR6B4mKt+HuLu5zHdxFwCl3mnqw98H/hDrBq3mTl/cozhvVjuqR6yAvOGzeOLGCNq6lyusG8hpjIdnEJlE5WlgL2RbgKdBXgX5CLSMjV1r3OhOuichPQpUwb2CuG8Du7GpzTOY6Ofd/P+CchDNHLYh7gLuzzexlZxCswLxfYi7BNEMqgU0bM/FjifQ9F00tyxzUZeI34wvXACqmjUDGtYTkghxlxA/irgiqr9Jtf/ELUboXyTMYmcbN212tvMTh2F8hVAdQdNTGJXhICYsneU0zp5bF29+L01sU3A/9vc18nPiOnYNzzvl2kJIltqvREfmqbhOAA+RNXZhItkt3BlAch3kBOLK4FZjhuVzRbgp8H8C/yulnknu4lPxdSgiV3/m37ARxLPmsRgewhaNubePgTsPbEZkfr6lkXTb5/w/5qa34+34fJFVIusQv47AG5o1KiTTz9OcepOsuZpCZ03i1gTLkj4CLlXCJFm9AlIjaunAx4IvbuHK7kuMja6b/PBkkzRb46rjuyYHJ8dmhqd7pwbGOrvWLx1b+mvPu9LG5YKq0BZlOvBBFy4uamXxRWltXS6iV4mKMZTqOPc+Sg20FQ2rEBlEKWAtyTLIKGgebyZ10H5soVaQrZjJbkDD25gCswmcRPWJ3GYBrNNg36m8ne9EPbAc9CyaToJvgowYV8qdsfG37AWquKhVQnZMo1In0KqqP0aiXhHpxNJ8HkD1A7LmIsjFfhJOgWs1Rac/jWZPIx4K8THp3Hg/gE5djBG3Drj0ud7Tn0vIzyz28C4WCEq9derDv4KFPfxGLoS7hE0hMjSd3XwnoEXs2nEekatYjN0urNNzAdWLEE6Ae2nOM1yyNSYc46a1D5hjxcP5pvsScBChANqJyBqIZjDT6X1o+MASs3gSK0p+hLjtuVAjAZ1EfA3CK/mG9DpQyTPJIlQPI/IcVug6LDb3LRtjh+vWMWMHLtoDUQPSK0jsgG7xBY+GIZCNiDuL888Dr5M1G6C/wheh4K2PdGHpN7Nf2/g818evEiGM5x3mrdj7BMZ/nA3zmIsr2N9n8XsiL9y4RfUMSD8hnYTwPPOjJ59WmreyphdQmYCsE9tkTOcq7Sex1LQPEV8A93DO9b8dE8DvAf+aUs/Jz/Pn//RYeGvx16GIXPO5f1PkKdSdhdDFLfYEbjwvzr4o/HTvqvPfxMU7EZmm2NlBedEV8YUy0AvyF9bR4yNBt6mLD4Dz4uVeXBRrc+pDJkdb4ijb5EuF/my6tuZP/3Cfb6TZ5rVt5dH+amO0zzv6LveX1SeLWbFiXFwEXa1DFLsqFCoJyeQgmgmuUMAXWiWqWExXaM6+wq0g53CFUURWgT4GHEZ1NSJDIJeATkRWgx7JyfSZcV1kDfbhG8VG2vMk++hSkOtYqg9Yl+AsqimiGbgRxG+1C4AOo9kKNIzhS0XxxfWgK7Ux+Q7el0GWY1YkDbuY6T2AIv4v0Ox7IG/jYiciT6vKLkJ6i5WJtK1OMBPku8hhccdf9au4i68cpd6M+vDfycfOv8UtyWH+BGRXQM0nEdmbC2XW2sRBmogcQhmwbqCuB6liBcIMyGLIWrijKJpz5olcBPkB6G6sALwHkQdBzpgXpBYI6Qjii4iUsLSaU9jofRq4jgaHuA7ETQIPg46iWZEsjfBxC/idGH9+CcKJvPPYAqEBUsZFBxH5DiEbQ/z7iFNUy7ZWuRiYzE2tG2iIzG5Ipz7zsa6PlLFYwCcwF5BHubUb9vWF6ihGEajlnd6GbS5CGxq2GmNJ5toFrbUplZ4CeWCOytph14wMkdvFrX3m96yfnCQWkpOIu4Bm27EGyO2Z3CWgBXH7kejh3N1jLjKMx/8e1i39z19153EhrsULu4gEEFmPuhMQImAIXPYFF5Bwe6fzc0Ci0rPq+w5JczJV3AatjxzGl2KJW1vRcAjVEprsBymBq6qLjpM1nLqoxJKtiV75qKOwdsmh6uFz10OaTYdGmpxpTD3dUinu2rh+WUOEBs6tp9k4z9S40NoREzWdKCWSyRSJPZHLEPcJJGFdR2isQzmB8+8h8RM414HtIjfkJrwD+Zg7w5JwHgQ9gOXiXkPEoXIYdNa4vQe4P6/Bd3GjiNQq6JPYDrITwjTKPtBF4IrcUM4F8se5RKFlEmiieg2Rb6LaBKZw0dvgSiLyPdXoKJrWJE+7EHH/WJFdoF9q6sCCxEJbue7iZwNTG/8LakNNTLltELkH9bmZM5dyG5RcSSsH887OcdDlmKXZcqNEsgFzbqhbZ/EOzKqb94E8kU8/ngZO51Sf/SBlxD+MSB9pfSchGQQ5jS+kID4fhU4S0hQNLbhCF+hUnpCjON+D+E5svWnkz/lObpr+FFDW5mQTX6mJhjI+GldN34bYi7iI0FiL+ASRK+Z5K6+hWgW68cUHEfkmtevDlPt+Z95jWh+JsDXtUaxgfAyLDWzcPIY/BVR35vzAErbYDuUb/dkPtcv/5pzTrzE3pk5asdaXNoAkL9bBBK2pPYSo+c5oBKxEs4hkekn+2lN86RDits95Qc+i7MVcO2axzr50jgqfXqDJzYSgmxBpR7OIkHwbcR8h7uHb7pGCtqDZrH/w7N+agXyEixpItNXEV3dgD/AfgD+m1DMxz+1fLRbYWvx1KCI/Bv4CG4kuxpJQchuJnxAi96BuEOi+jRj7ReELGSmIuAcptL1Fc6oTzVrI6uNEZczMkVRxRZxrITQqZDqFZvegIVAbHxo+8PGB47/zxovXas2dmoWXYhhNYOqph9cuL6XpVO3qSH95Vc8opVIb5TKk9T6a01fVxy0SlVK8n0bI0ExB+vGF84SkAw1bcIVXEQdZ2oBkEyH9PqQJmbyHixJc/ACQokmE4iCqIbyEdSBLwL2o9gNHEP8Cqsfy7vAak+bpHtAIlTdMOaUtIG/bxUYKwGHQ7Wh6EphG/BVsjNaJLQ6rRFwRWAxhV94pKYO8hPhr2AUnExhB/HdBx4DfoW31mwvr4/gV4m6ZfRdzUV70f1Abuo5dbGevE3Xjfbsn7Ge6FyuEnkbDTpBF+YZtbsrJXowX/Qm5ylpDeRuRJlbYxViHzgNFxHWh+hBwEdX3EDeBhnOg30CzI0j0GJq9bLGuUTdCAZELIN1oci/q9iO+iTCI6rJ8unIS2+BeArZoyIZJ6z1ElSHVbEaCnBPEoaqEFBPfhEuo+z6avQbUcPHjEM5y06Pw/6F2fQfw9xC/hJvF4mPYWDovFnO+vlmMVTAvzjYsnGE28ewzQltA5xZLF/O1tR0TNT6CTX9Aw/tWMLoE4TE0+xiZa3cT3mMu/19DDXG7UfrsPdHLaIgRfwbNngEiQprgb3/Z+jjKQURu8wRlu50rdGACmwq4KuJutSHKmnsJSWv+GpaCTOYdzASYwBVSVB+G8BEhuQc4g0QTuHjLJxSO14H/CPz2Vzeq/gmxwNbir76ILPX8S+Bf3vKz+ojHRhUrse7Vd4HvYwa480Pk9lb2T4OALX4/gpxRYzyaCON1NIDT2AehhhGEWzEey7/m0xYC8c9LVHkFkS7FtWvIzkPWrkgNeBqRD3BxRAibEDnJ2b0baEw9MXLgxHtxS3F4RW97euHKyOF7F7dvda3lDxY/uHZIs0DLY5siejrWUi6/h4YijdpVWnoLhKSdJF0PbfsodDWIKvfgi6NAhitcI2tMI66IyCRRXECjs2TJdTR9APRRQgIhaSDRTpw8BQwjbAPdCUSIexLVH+XHYjnwlu0iuY75yz2IWR4B+iHoOpA8C132YTSEOiINiNZCOM4scVx1H+hM3umcAs6jMoX5jE0A74M2UTaDvs8N9Z3E3H5O3cWn4m529l3cgfKi36M2NAT8CaqnISwHHgWdTQN5HOUchLdBXwR9BaWIdR8LzJqV3zy3LmHdp9nu2+Gc79iK8h4is8XLMDam7kG1ieow6CHEr8HFPYiroXqZkPYTwg8VVotwFueXgB/CErPuw8UXUd0GHEYDhPQcIgGJ+0xog6BAfewwMIqGdnGFAsIlxAfEtRCCwyzNCqZIl9UgKdZmvV1suQXcK9w0Yb8VVjwp0AfaNKER6ZzJ2VHs+vIZ1dYyYRt1ovzYX0DDGeO1R4tABo3PqRfztfMEQgfmrVtAww/zghMQBTWVumoDzVwe5HDbU3rQsBuLG9yAaj2nGMwiAl2NcvnGqFr1FHARwmKsM2saBM1mEL8PF1k3M6QfEZK5XcwlaNiD+HtwhQvAI4g4REbBTSJ+AHFb5zkwVeC/YDzH1yn1pJ/tuH41WGhr8VdfRM6HUk+Gyesv5z/549xAdS+fvytYxUaq72O7s1VYgVrAFrd+7AM8AHxMqWfkczzHh9RHLmAh5/P5Wxp84Xugr5LWBbJngTbQEZSD1EcLZPVtuMIJSt0rZd3T5xqnPjzN8FjHxm9u3e8S7Xz8731/MN60bsjfc+83R//t7/958/w1Td44XHDeS9f3Hlqui/uQRe0DoEV8oV9xy4grXkRK4uNL3LBPkEBUHsPUaCVQQQR8nKJ+NyHtQLPNwBI0fRGNDiLec9MOKM4LvTUgy0BPYPykKWyx9Pn/Z/GI3aavYRYNdSwu8VGgA8J14BugHwAtxsd0XRBGsXicKt5tBt1PljQQ9zwhOY9l7s71ufst2lZd/Rzv3y8mhAU3QrmLLwnlRT+iOvgs6Mvc4Dvrs2g4CHoFDctsPCqvmLOFXsHWhp2YMvsdVEdz258twFlw5xHyIIHZbG2t52NUBekBetGwD2SFxdrpOsQHlAwkRbiuWaNJc1K0OXOCuOypLBkXzwzqWkGmEB1AGEUzl4+6e1AdxkVdIOO5KAOKHVWaM01EZlDNldhphi/WQLpI6zVEalLsXIGmA5A9h8pbxhEH4BS4Rs65O37nQdRT2PVlMTeNv2v59ObMHMr9/Xb3cAAb/2aY3U0ZpAN0K5YsBuigPS8V0BXA5lw4dBwlgK4EPCE9BQjCI7nYdBN2jbORsggob9oafqN4PY3qBuCcrc/6wDxnxijiMjRcBC6SNfpU/DWc32j8V8ZE5DzouG1AdFP+3IuxBsxcEWsLmm0n071oSNF0nk6irjWrn1DF+UNYI2cbyLO3rV0Z8Brw+8CfUuqZvvOxvsZYgGvx17OInA+lnqvUR74FvM1nD4UfBn6JUs/eL/x13Y5Sz4+pj/yPwP/1qfdzhe0izSnFH0Gzh0DeR1iKhkBp0WV8sU8InUSFseK9jz91z+/97uuTf/Af/PU//oueuL3UP3PuevLBP/h3J93wWHvi3LRW66HFycxmbTYry3uy9r/xnSaF5iQz1wNJ9SPKfXU6VrZrVFmEi2Jxvo51US0T2/hHdUSaiKxF/CjO1wjhNJqdso6fFnPl5BQ3Cm6tYIrrfWbUyxpENiLuEqophJ3cOqY5Bv5xGynpNoyf8gg21ugDToNOg86APIZIH+p3IzKr6DwNsgEXL0KTt7ACdNby4iDWoZxm+vJyWlfeLSTv4i5+WlQWv8/MtV8C/hka1luB5mrA9/JUmXabMLhziDyXc/Qc8GOQ7wKjIB+AjCBSRNy3c0Pw/YRsm6WOiIAcylW0ESJbLDVL7wOdBA4SskiRcaBFkCWIm8aXxilGqmnVSW3wCpUlAR+9aNGpBA3ZBFmS4KQF1WskNU/WvEjc/qCIbCOwF82a+EiQKNMQKtnolUlmhpCWbnXtS0YgZPh4hYbsqrjoATRtYJOXMZCjIDsQEVvvaMciIUsIfZgAZRtWQDWY7c6aH2Uv5nKxE8Qh0ouGC1hz4zpWVJ4HtkOoAmfQcDbnlt7LTSHJJKpvk86sw5eGcPE21A+h6VlUn4KwH5WzSChaAS/dhOwyxh+cND6lnkTcqlwgcwINFe5IdaGBFbVVDUlq1wyG7f3HodnzhBsV8aTGrU+ICLkl1KyYpgOb2L2D2RbdnNppWkHDQ9wpZA0g/YgbQ/xma0DcgfewjuN/otQzON9pfBc/GyycIhKg1HOG+sh24A+Y36n+dkwA/xD4HUo9Mz/T13Yr/g02VvjvPvEeIu246COyjFxJuBlVT7FzMDctR4OegZASsrcol5a37Hjw+tqVpan6odNtgzuPt46futRI07C0Bpc6i3HS3lqqnf3R4TRuKcWP/dLzMRNDDRBP5CM09TrTXyZrDkixo4tSt3UjhaaNMnQM6M4XwhOARyRCdQZoR9y3ILxMaD5tSnO3GHEvEbI9oMfyLe2DwDVU2hA6ETmPus0gY6DHgU7EPYEpNpcirgPVl5hV4Fnk1YMgOzHj8gpm+TG3+5wnE+kBNHzTnlZ32WPf4N88i3VDPr2Qv4sbWGCb37v4MjF95TFsutKZK2avWmEnu/IOVjdmRJ6nemkrqpsxoc2PQdogtAMbIDqcU2HaQHoRf5kQahCWotkoUhCcbAcOID5X0+o5NNQgfA/kDVQ7gNMSlcq4uFU0q2rc4khnYoSY0NwLBA2hSTJVR6Ju1AuNUbQ2XJD2VTUJjVF8YQiyKRFf0FDtJjQe0iy8wugZzY4ebSt87zfKlDuFpFoHfQiy4+AnQU5i3pUTiNjoOqTvoOk6JO7Nu67HUK4CjXyNGsm7hw8CjbwDewwroopAO+go5qm7EtU9GG9zFnuwMfgGVMeBfTfELCJXUMkQfwHxi1A9g4YRcIsgO4jqIghFlD40u4ArbMGU7GuA/Yi7Bw1HQfai6RaQdpyf26jZiW3Uu4BHVXUYDbe7cNyO5ZgtXAsiW3Px61yLn8eBM6heAyQXYTW5tYDsR6JT+MJmxM3HczyDdRx/n1LPz01wxEJbixdWEQlQ6rlEfeQZ4G8B/zPz54JOYYTwf0qpZ+jLfHkAlHqU+sj/gI1Zf+sT7+dLKyQ0l6miYfDSu+HQ/gJeKtTr4+7+bUXq1UCh5PT8wTou66e8yEfP/Y2pyuoDnev6uhoXjl5uJlk2ljXSpXGaXZiZrNbKvW3j2/+XX11GFC8iTWJggqQBYSih0jZKliaaJSql7iK2g12G0IrIDlT3EdJl5v3mMkLWAuE5LFP7hyDPIP4oGp4BeQ/0knUK6OZmHu5FCFdRlyDSlpOh94H8ACvsMrjFhHgUE+fMHW+shhsCqW13HDfNdhGSmz5f83t+ff0Neb9OWGDeZHfxJWH6yveB/4xx5IZyUVwDeAlxuxHZgGoVoRfYhmo/qquBOui0bUplCHEpuBTNIlRrQIb4DtBpRCxGEKpodp8FQTiHuJxjJ9sQVyekL4tRZKpoVgEew/mDqARxHqJCFQ0eVQECWbMdJcHJJIInbi3hi3V86R7EX9AQHiVrnEPDJM2pBoW2t5m+Kk6Duh3PqXqNJa2XjQMp+0hr92jsD4vEJZy7D1u3GoT0AxvBygE0OHAlbJ1bhIiiYXfeGPhWflSPYBvp+00kqHUgP1aUwF1AcMCHWIG5B2ua7DLVtRaAb5hPr1QQuY64Er6wDc1+hGpLLlQaN96nXgL+GqofawibyWZO4AtTAoOgk6gs5hZ7HBXMBm0A28jfmvQS0hPMNZG/FYp1Xxuk1WNElacQGUTcdTQ0MVV6fk9dj2ad3GoL9ya4Ij6uINFDWGDIXAwBf4QVj+9S6vn6ZZf/tFhga/HCKyKBPMvyP1If+V3spHwCGwFMYx/QXZR6al/hK5wtJP85Nsr9K/PeR2S9Ri17w/F9afry7/9g7k3h9LGbd+vt/DCrZgOZgIiN/QAAIABJREFUjhE99t2i2/ytRpykhfYVb2WhWi0XJ2ZmskYSYu+2Ln9842VUL3Gtv0LkAnHciWork1N99IUJZkZX4EdOauf6hjjfiu0WZ7AFsQS6HNV1EDwaDoHsQ9gIxFj843UggfA0ylGQ86phvdju+zDwHMgBhEfQsAfCEcRvAXkzf4wa4r6D6gAazqJhIuf7aL4HG0ekDeP7tOQE9ll+qcvJ3iB+J58MAX2cmWv/HHH/jMqSz+7j9ouGhbVu3cWXhx5s9ArWOXsG4+u9i2bjSJRPELQN5a28QOwANoN4RO7Bum3XQB8zDjWKSCeajmN2Ye9at9LFECZQ+jFnhkP5hGMcpIaLvk/I9przg44ibhdIH7COEMYgu4ZEAQs1iPBFxRUeE00/UHEBX2qVQntRCEeBTjTbhzJDlgquNIm4xZR6p1na5slqQTRkaPo4cAEo4QrncYWWOZvWs2TJATRdRgjHQSdxvgK+jou+Bfq+mVNkFcTdSsES+TaqpzQ0hZA1cPELoHvQkIn4KzjflissatiIfA+ImqWdfoxFUz4FHDFFu/YCB81kXTeibhCRYRBURQiN/UA7Gi5QG9pEy9IC4g4gcQzhHTTM4ZQLiB8EKUFooLe5wmmYKxw9jPhxS3+RMuLWizmk1E2kIxdB1piqP66gyWy0JFiTJU9Gk4O4OMPFT+QTqbloAn+Cqatfp9Tzyd6RPw9YYGvxwiwiZ2G7kEP519cPVkj+bYyrd/uOCgBx0VPhzImPPu1hdHj8EQf4++/biy9O4YrjbtuvtGx/7cEO7T89+Z9+7R/Xm2f7yyt7W1/uXtrudWq6ofVGLKtXJFKppDSbdUJoMjO9jLaOK1RaH9CQHLddchYjror4RTKbIS6ynKy5E9UMF60ghLNAWZExce57IAmqryH0Ie5ZatcnVPxZfHFY4hZAu1EOYRFqQ2gWgWvNx12ChqOoXsCSL1pgdgeuhZwblWALjS2SNzK59UPQbyD+k5KFbsczwK9SHfhbVJYc+Al/5xcPIgtOEXgXXwJmrj1sEwTdhQkTt4MMYN2mx7DI0/fNWcEFJDiQbdiY8QriCqheRvwmQtoLuhvL295jvyOrUAYRnmE2MlYly1XMwYrH8D00vAs+w8mHeUHTkW9CHU7OgvThC54siaxwicC5PtFsBOUQ4ttEg8NFVowGApqNCQTFp2TNJoSILPFS6rDNrCZJPmI9RNT6oIigLj4s5lE7jK1LLbjoJUI4h2OckHQhxar9LboXeMA6iu69vDM4m562FdXjGoInrTkkEjR7nay5AnQAF7Xhyisx/rc3jrikQITqeYwqdQ7rJA4C7aguAT7ERQKMgk4Aa1A9hfPrCFhKl7hB4tZhJAq46D5ElqGuH22+AzKDi1oR//SNBUHdvhvJY4Cq1oE6LtqH+PUibj7RzUemopcnMDHrELAhd+1427rFYRnIKK6Q4OKtiDw2z+McBP4d8AeUekY/49m7MLEA1+KFXUQuBJR6rlMf+XXMLmheRN//9bbmqY8CGlz0wi/volBSTZtNieKCjg8FoijSof4ihTglmS7o1NVWrU9kWmiZ4eKF7P4ty/T42f5m0/ukmYqns9NJs/kAIRwgzRwtrSWdnKzL1PQIzmVMTR6X3vsSpP0bJFMf5l5ooyq+QdRyHl8cpDo5xcxIhyxaOwhUUV1F1hxQFx3AF1sFrRCyKSR6nbhVSKaXkVR7NCq/KuIFtBXkKrhtwBVUu1DN8gWxjHU4WkEXI5RAPkTcjHUkuI7xgvpNDSkTiNuRcyd/0gJyFuuBPVQH/hHwv1FZkn2Od/HnHwtr3bqLLwPivoXoLwOYaE73gT6OKYJHgTLCOOJiVHuACbNak8XAeZA2xFWBS/n9e4A9OLcB5CyWZ70FS586ALoFcacRvwMT7WUg7yBuFEvHaoBkaDiSj41rhKwTH0+iGuHcJuA6ZE1UM8S1IHjQJhJvBD0NoQa0alpraKNWwwuiicOmHYMkM464IviyIyrV0GxYRN5AoobAkzZdYRK0QAhVfFRA/Bjimrg4IHI/sw0D1RSRCJGtWEH0DhoGgS0gl8TJd3D+MK6gwIj6wnWyZhuaeTS7Ah6zx5Er9vp0o/ExpQPbfJtyW7UM4VS+vvbasSNF5DxImwhNdYX9oCtFpBVfCMY31QsmggIk6gParHvJADebHrN+zeeAyyLOEZUdZhU0OwI/a8edKVy0HuRhRKaxydQjILPWfBPgmzZ6jxchsn6es24cG1X/e0o9H37WU/bnAgtsLb5bRH45eA14FfjOfDdKXNjgn/2l3dnbf/K0rFg/4/qWVzAlXIG03gE8oiHZTTL1rNauv0F1qElS8/gYCsXy5KnBtgpsL8XRm20PrPeN4Wmi6cmPo77eolZnsuTA4UaYaRRdV3trYfMKoVS8T8dOHcNFk1LsrOGiIrCCYsePRdONqgXRD1/ulAe+NYbxS18AfReRXkIjQ1yCuOdtAWq2iCvcq674Ec2xCO0s42IH2kJIlyD+PbKmB30A8ftsm6UdwASWr1qD6H1AUFoQHgVaUL2AhimgCKHLbC/cJMJebGscMEL/fP5gt8Nj3NRnqA78HSpLLv5U7+bPIWSB8XDu4meM2vVfBfnr1nR0uxCp4OR5VDM0vIamHabQ9jtASjZ1lhnIxjABhge9jmUm1zBu3WZUBzVLP5Ko+KtYYXISpACyFNWDmCn5HlSn8oJ1CfA+oTGpaVB8XCatjZFUhWK7iERV7LLrEHcWCKguQsN2VHfi3A6smDljzc2gGtJIk8YUE2eUSl9BCy1NiYpe03osrhAIjRjnl5PVL4uLu1GNcZKg2gnsQJgB3kOoofoy4laCLkU5huqQhvRDnC8LPIDyce4ssQWjA5QwHrhtZqMWRTMBXhDxJ5HSYlTHUS1AdhENp/HxX0PDLmAdGgbRbBpLmNkIEqHhY1xUsmMemohvx1JpJhFJwY2IZAXQa9bZxBHSN0D7QM3CDfcm4l4wJXV2GNVLKAGhC0v6WYFEY9Y9dC8CGUoVkSpZ4xLwPOJ2IW62MPwYeBzkQi6U7Aa24OM7PSetcHwd83T8L185Fe0rxkJbi+8WkV8GbKz9m5hHZc98d/GPvbhFepe9ofVGCRfDjR1gIwEFF5fwxVcFF7R1SYmZQaT/rLB+/WYpld4vFKOdbRtWTbqVa7u0XlOJMiZ2HY8JocRktSWZmIkKa5r90eLO2D36wGGisiekFzRtlEUaLyLuRxQ6Ig3ZED5Dnv2vN9KYOKmqj4K+TVZvA2ZAM7JGVUVexReLZI0EST8ArWnUUmLgaKoiMWl9wK14fBjNSqBVcB8i7psIrwHDqI6B7Mfiq7yR6TVC5RWMUyMIz5kCVLZg47RZC41ZvD/PoQzc9PwfwIrxq9iFpgT8NtWBPwB+h8qST4iA/AXEwlq37uJnhdr1pcB/D/x9oAH+NURezG8dMGsuV0EKW2+qscEoKfo+uE7AYVF2ZsWiYRcizxBCCnqetFbWkL6KSC9RZbEIm4D9CPeaKEZPAN9G6UeYJATVkLYQsh6y+lltThbIEpW4RRW8mPCvhis4RDtBimh2AtTZONsNIyiBSULWBozSnFJK3UpcVIkKS0EziUslJBrHFQUXXRUXVRCpAi4XDr6DZtNIlBr1xmOTE70GNEEfR8MHiPsGITmtxiv0gttpcbOy3Mb4OFQLubVPN1ZUniakTaBo3HP/rEUshgJJc28uFvr/QCsq/jyaKSG5Cn6dRAUP6kECREux9W4acS+h+hYiz+ML+9HwJJqNgtZyC58uVVVCcgTVGYlbThLSS6DtiJ9BpIH4NFd/70DTKuIbILtBe3DuPlQ9Vuj3o6EN1WlEjufiq/68qJyv43gM+CHwMrB/oRiBfylYYGvx3SLyy0Kp5wL1kV/Gdlx3HHcR1+3Xb41Q3YHZQsySi98FEKRKoaNds0Y3GlZTHTrI2OhUcuLsOy2x9i769e/7Vf/tX18ft1U2UZ14i0LZNf/wzUeAtpnB0R8n07Vvu0uDUdsDa1YSsiP4wgRZvYWs2q0zYx9J50ohrW2j2H5eh444ssZF6Vi7iKgMadWj2QxGmI+ABrjlIAP4oiNkMSId4uJxOpZ16sW9j+ALxzCj8aWgZ3EuQiSyMTfbEZkTr6XDmB1IFzAN8iRmLD+N+au9k19c2oArIIOI1DF/SvJP3f789d1nr48qtriF/Of7seQjsGLyb1Md+G+oLDn1Rby9d3EXCxrVgbUgvwH8JpInSlkCyYugh7DUlmeBJYjsA520L85jn7krSG7NYxZhDWYNrRELH3AuIgQvvtSByLC6wr2EZt4lFI/zZwiJIP4FYABchuoJNGmioQpaV9XlTF47ge+OKDVSpFzUtJHgC17EtSNagfAQyg+BVaCXQT1Bx422Q0oyk4H2SKV3nGRyDaWeMXCdNMYbFLtWiymn1yLuFGiw7qv2IlIDvxbVQbK6Q0NEVBIzwc6G8cUuNP22wIRqGKc5FaTU9QwiP7LOoUxjaV1diDxHSKeBrnxdWwPyLoTZTi6gG8xCLesE6mjwgJDVJ0FagBriruGL3VZEE6EyBjiQGA37bXPOUVQ9mg0B1zRtXCaZ7oAQo1okqtSIKh1YAMSEvV+SINE2NJzHFOjvoGkfXgSRHaZdDGfImpNAQNx1JLICXtx8/MY65p/5Q+AVSj0XvoCz9i6+BrhbRH6ZKPXspD7yd4H/e97bVR9BszdycQlAGR+P54rGqmroNIWe+wCREqsfrLj0SLrhX/zDsXjZ8ihyMyOM9V+BsEkrHes7tizZrWlICovKHSj7SFwX69ZcYGakSXVsI609p0hqbcAwIkWcf1dcoRPn1quUGiSTSjKZUewp4uJ7CY19ZI0CQQPlnosi0g0S8OJRn4aJK9NS6kpk/Ysf6Pk37w2nXz3uNr50GWQCDYLIbDrOK9xqzXQMkWdR9wHC5vxnG4A3cn5VH9BEwzLEnULc86BvMGveq6qYAnQKK8CLWCd3N8hqrEswq478iJv2FIdyruS/orLkF3cnvABTEu7iC0R1oA34N6DfA46gjCKyDtuA7Qa+kRctYGlX20CKWCDAE/ZjXYONpwPI4/kouwkUENkM8TE0u4aTTUjUDpQl8AZoCaSBSBUNS0BmOctLIFxAdZlmzQkIT6omr1Mf+1iHhwIXdgUeeKogyx+so4kQlZVkKs5FPgcQeUBxGRqa4rhuhWSoIGFa6xM9dKwZIq054taTYp3BKY3betCgqiGIyHk0JDifgCrKqB0DPQjaios3YyPpXsRfxEX9oBeAjRrSlLTWQpZe17T5loiswpf6EZ0AGQEtmo0a41jBeA1Yo2grWWMI8WM4xkE2oVmGhnHQsohrB2rgimjm8KWA+BkNaa/4Qr4hD++h4VngAKojqAoaJrF1NwUczikuauALHld42IQcbhAr/lsQeRTCebL6QeDW8bOyN3+95wCHL913Y9NxJ65incY/B978/9l78xg7riy98/fdiHhL7iv3XaREidRCrdRGlqqrq0pVXe0eTNvuBroxsI0ZwOPxwG4vsKdhGD1jNwbGLI2BgbHR4/EfY3fbbWM87eoqValKJZEiJUqUSJGUKIqruGaSmUnm+taIe+aPG8lMriKrVBKz+n1Akpnv3RcvXsSLG+ee853vo9Rfuavv5Z9HLMC5uBVEftEo9f8htbHN3EyIXOqEqB3seeBVYCDnKz6Fz0IG00UjuPgp2pd+xOCicrT8wbhs6YjSmdiacUKXNSA9RNTlo2L8IkUsmSm/4WvZ6rb/+i/MpPsOXlStQry8v4RcH+aXsGTlFfWsNJozg6ZoxHwqFNUo9QcRrmZ1UFHyqfm0SPVySVGhIC0qkNVjwJN0RWTVy2ofWG1XTk1Tn27DSEir64BFuJi8k/NiIIHbeuA0LhEwRrA8ey2Ur5nlK34C+lWCE4SH7LtYthppArOgf4aeCFkSW8IcEXwPxqIg86EVobTCUuyqY8J80fkSZn8N7GVmLvwO7cs++BzP9ILBApy3Wvi8UBleBvx75hZWD4M1MXYjZXn2cT66CNWRp+cCS4NgUfsAQbbFgy6H8jYdwDNIRRRvnredPpwleE3gkkl82h+aXnQFRXsImasE2ae44iS+7mjWK370bPu5f/lHk4u2bXIlqU5jylPui+VcRGZPYlYCP2wW1UgnU6LyeVRqhhK8dZjZFde9Ysi8L6MYosSZ+UwuSWk2zpL5C5DeZ4o/lStmyGK8GfiZfCFcNPN1wUFc4hAew4DMzMc0K68SFcB7IylHyF0mKtQQxbwK45FmQGtAr2LZTvNpjcnTo5bVMywbpXuDk6xOY3wJruBwcScgM0tx0ThxuQxWxyUdClJIizE/FTKnmgR2oGgTsjrmixA1yeoP4wp18Kni+DvE5R14X8Q33g/6lFbNExcrML+fsCBfk5+raVzyMS6pomgDaCmwLNArr4ERMtHfI2QcD/5C6jj+HLEQ5+JWEPnl4O8Aj3G13DMP0vOYf5uwyp0AjeddeF7SU0b8seAwpd4iaD1xsQcKP6DQYWpWBmgfnGDq/EPm4kWW+R2AXMHNRKXoot/55tp4af9F9fdtYcP6CS5eqnLlSpOB7i02eSai0LWDrN5L0iHMsKwBWf0gipZTG78U3HOaEJebVh9vJy6NySWLsTS2tFEHf4HuVStk6RCuENnE2WHgq/knizAvAsH+fmAKaW34W09i2Y4wxk4BZ5GaBJHdFw120az8MnBCaDtOPwGty2UslhLISScI3JtnkDsCtOXb7wU+BLcW/HGCkO77wGaMDwjWiw8A7zFz4Z8B/yPty2qf+xm/17HAyNwtfA6oDC8GXuNGw4YE7HlMryDeJGQky4Trq5/QKDMHs8tgU5i9iosGCQHgRtBGgh1dylyX79VXIa0nLu0HSqCLIcgyQ+5BoAJ2DvQULv4uvnlScUF+vDZVcljc221+/GymrB671c/GZurNO41XAmuw5n4UNVGUms9MTgVwQ5IIGUknnHN4nyqOClhWV1KUNaoZ3k8Qu6L5ZhasqrMY5Mx8jbQe4eIiLq6BFTAJn3rkynKuSFTK8PXHrNh9RC7uMN8cyak306AVhHtuJW+UqQNfR9E0lnZgfj/NSgdTp6fUu+ERS7pex8UFLJvEp92Q9WNuTE4OXAVFizG7iHNTeejxJLAb3CSwB7QaRTNkjSDlllXbCVWdD8J428JV/rh9nGdSR4BHUXQGVxjCxQ3gwZCdvCk+AX6S/7xOqX/sM793LdweC2wubgWRXwZK/Sm1sd8glFYX3/C8qRvSDNwQsAT0CGYjZtlrZI0icr0oSrHsPYx+krZeyT1j3o+BVSh2lZyikhFtJUuLcWdhv5y2uMce2qHB/s0ygyhabR3tZ6nUTxKVxeTIAD0dEY2p+0ibn1C7shqYpn1wmqx+zKJSA5dEuOI0Lo7AvkJa32ulco2sPkFzchMuOaOo8DAUpuSSh9S3bk4bM6t3gJbhkhizPUGj0oYxfwTsBEEK4gOw8J002wbuLJb9gMCdzIgKo4GgThrKS4wiZ4gywTXnVSzbBDaC3DbMXkFaDXohL68dyV0h1hCsvHqAc8AQofT2FPDHzFz4XdqXHf65nPt7FAtt9dvCz4jK0CbgX+WB3s3QJASXa+c9ZsDbYNMEzrLhsxnw3wD6UPwD0JbrtlMjBJCfMpfZgpB0OUqwvzuJENms1E52JoxXyeB7VrnogAbNmSQq1xsD33ommj5wMi0/20myegUQ1aw2PiP5NlwizN6wtCGy6pSSSBTb2sEquMjwqUGGiDIzy3DWgQr12a5lxYXMLBklnRlA0WUyH5uZgc9Im1nofm7LDIT5SHIFokRAZN7XSCsN5Ir45pgpLodmQYuQK+Sf+TzeCsgwyzyWvQVuHV1r9kkRuKihkL2tKWlLkWtg3sKCvnoRS79uUccHwblHnTilOZ1nlKz5Oi7eAhzApxFZYzoIs7OO+R7V8BjckCC8H8U1osI0iiZzkfibfTdOExYerxOCxvO3+P608FNioc3FrSDyy0KpfygPJF9jrps4wLmHyPyBwO1TAZ++hdSLzy7i3BJU6pCLVhvux4Gb5MaB87jkI5rTy0m6PsTFa+noTqhNd4ztP92ezdQb2nvmcYxk6W+9OCUpwuxZQcTBvRfoG7zEQNwhFy2iVJ60UneBrH6crF4MQsJOuKhJXEqCXRmAXyJUNAQu+Th0CIYnzNJJzKo0fUSuE4J0Sd4eA05hrMH8Xlw8qyGW5hPbYoII+WvgHwWWCmok7dW87PJarocG4EL3tzoIwWABsTz47OpdsEeC7EaaEER5I0JGZVOuXXYEOJO//1pCN+kZ4PeYufCbtC/788GTlBbezNXCT4fqSBuW/SbwXxH8mnfcpGQNaC9z4thXHyQ4cMFsUCh3Zp6jSZnAoXwRaGB2AOkhpBizEYIV6TGCpuBaYByzRsg48hwu+R7mV+HTc0grwMbxXsRFUZ9cg6WnKHYWpocmmpcOX4ju+/VfLdCcXmyj+wDWm4tP0r78GC7qZ+yT03Qui2nrGJCcLGtclnIlciOWVAUTzayK8w0UJUgpLi4ICuYLo5BF5rOmVS/75vF9vnHyU19cPpBEqzYmrm9lgag4TbGniHlvzWpG7ZKRNUHaSdyeqK1guNiBN3AVQrOf4ZSFTmpXZPrsDGltiJ71mUQ3uBHwAs6Aqsj1gHmiuJMsHkP+Y9DDYG+DToF+GQkaU3vAtubCQcvu+Pug+ABRcQq5TeiGBcAs9hIoD/+JUv/JO952C3ePBTgXt4LILxOl/jeojf1T4B/d8JziCpZNILUhVwP/nOLSO5g9gG/uBlst9ARSN1iG6XjgMvkU6LO0PpJ885cjFQsr9Mk/n2a6VrBGGlaj3l8gigYVNNmg1PYJK+4zjJqZf9W8StmJkxOux5Vd39Ir9KxcKpdcRGpi9hK++U7u5tBmWXMcF3UQlzMwj+IpzIM13wd7OHcsFLAaMzPL3kOuIrnLoA25LlwbZtN58HgF1ECa7aQOE2JwiSgjZ5gVEHkHoD7GGMYlvXkZbBT8NOavBEK5OaACbkkeePYRspBtwFcI3J/OeUd+FWB/bgLIHAts3mrhblEdeQT4beBlcCuBqbCw8jZP4QDMJrDsKC5J0FWR6OvRIGTLAFYgFzRcg6rCBUIguSXYGuojLOpFXCaUUZ8EHsxf+wnYW4Qs2dvMKj+4qDN0E6cPi+wocSnDxcfwzQGKPeNd/8Vy1/nrRaf6+GJc3I6LHGl1EebblHS+Z1llmP6Ny1y5byNR4RhGH3H8DNZ8jdrEFepTeCTGT2e0D2aW9aO23jbqlQ6LSsOOrI5vZjRrsukLyi4czqr7Trmh//xG3DRrbvjbfzUpPtZhKvcmGAXLaiVrjBfJmsNqViJDIq011LYoAQzzfYgJULB9hQQk5OpYVkI6g2864rZcxsw1UNQbKD1WBo0KV6DQ8VJuZ+JBXwN7Ny/hO7CbdUTfAu4scfEkiu9DevQWg/YCfwL8x1Yn9ReLhTYXt4LILx//BPg1Zq39ZqHocSwbx+wY5hPM/wgXfRXFb+LiQZx2gnsaSbkjAkyf30njyqOA4UpvqVQqY55zJy5OTOz/ZPHpRrpzspk99Z1HV0+te2KedNf6R8oUSlf85OUUT4db3L2k8d4H55LN67xrL3+TnvuOoujrmN9JFL+ruPQVS2s7kW3D6hP42AF1ULtEp/m0AepVVOwGJUTF0SBUnr2dNw29i1kd6QJms12fDUIJLQpSGu4nhAxtyGTKTwObwLoR87sBJ3GF58D24htvE25u0+G19gKBMlAFliG3HrM9YI8TuJIfETokn7/unKxm5sIYwdrsV2lfNvnTn94WWvgSUR15Bvhd4FvMetCHu1QXRic+24/ZT4gKMT7L8PVngafw6Shx23mk5TfZajRvWw6i0KFt7ACeAy5i1gG2FLPNwSAg7iA0tU3nDSZHMdbnlnrOzK5gvibntoKbxrm9WHSeLC3KuU1Y/X2LogkXlRZZVDonX88o910hlwmztPam4tKk4qSM6yrKRTHmB0hrS8C/L0WnLa16okJMqTtj/ISzK+fNLp5wrncxNvDAFPLjxGVn5b4EqUxWb1C9nGp6un384OFs2VP3+YZFUbL2Pqnc2yBuK5tvlu3ShxUakxkrXigyfbqk5kzDmrWCoVjkfEiz5ThNYNSDtqJVca5EeXGsKC6juBySBdZJWOh+CqzD7DzwKHLzs4uzlasQONqd9K7oPFHxBC4ZQHqIwB2djxGCP/WPaXEbW7gLtILILxul/ga1sb/L9baIoZR9CfwLmN9NcBU4gPmqZY0hPG2Ky2dBQ3gfBLYtmwY3San3A5lNW2mDmBnasfqv/dr0+T/58XBx0Zrm+Pjk/vLGJ2oM9o2T1Q3nUtq7v4Zlr2M0/ehow3V3Zm2/9RszuNjAdmBWQX4oSPSoDfghUSElq+3CvEOcw6cp2LQlnf9ZUakbGA96clJeXi5hNg62A2kaRSvBvo75t3JLtQJQD1ZlynDRcsz6sOwjwqT5S8AxzD4i2CWmoDR0iDZ/CCxCrphnN8cwq2HZKUKm8etgH2F8iFiKsT/f3iZC887N0AdsB/6UmQsv/8I32ywwMncLn4HqSC/wvwJ/5ZrHzcD8YXzjSr6Y2o75vXiX5tziy8AysAHSyihRYSeKloNNgnMEP+j3uarxenW7k+B7sKiONNswWAAaeebzIug+8G8DGwh85KFcfsZozigEOIVjmB3GuW+g+BDOxsyyd7E0w6fe0vp5Cu1NKDjMZmbTNko6GooKHVhWlYu+AnYYeNV8swo2gDVmMIok5bqiZJFd/nS4XpWr7D5A77bHIUs9aSOmZ2m7ula2Y9bAJf0UOjtdacnUyr/aP9k8cbTatm5N7Hr624jbpuWSGSSjd61XoaNmipqUetpJ2hvyKfi6JyoZinpxLtBtAvdSiASz9RTazyOXgK0CfxKWxlTTAAAgAElEQVTUC24TwT4RggbneYJt4mO3ONs1gvbttVB0FJcM5YHjJuD6BUGF4BLzb4EfU+pv3mL7LXyRWGBzcSuIvDdwiGudVgJc0k1W2wlMgR7AeD/YyZrwmcA2YLYB36wDRRS9jotOE7evIp05IcnTsXzbwDde/rPB7/zFmLYl25gZfiv3qp5BfIusuQ9L9xruPtc+Za5z9cfUxjdR6htXXBIufg7pOEG38QeYlUxMKy5929LKK2T1Nsw/jaKf5Dpqz4DtBrca4zyWGcqSvFzWa2admG8Co8AbiuIEs2fB3ie0Qvbj02WYDeXHpBqkj3gr/G1FoAPcBqSjwBPI/QS5en7UXiWUwPtRNB6cGWw0n0Q3YbYfeGneUb5x8r0WXwH+HTMXfv0XusS90GooLdwa1UsvY/xNAk3jFNJazKbwzQ+wdAkhMJmDolF8YwmwEUUf4+JjuZLCNKgd8yNIW8F2gu3HMOQyrrl/2ChoFOky8AJSAsn5IN9FR2jGsToQ3G/MH8SydUCnb0wfBMYk14ZvHgba8NlPUGJYFuP9Iurj4zY9XKPY01SxcxEuqeAbKWnjx/hmnUJ3l6WVMcwS0A9oTkcUutYTt00gS2k2xklK43Jxj9UnzzNxzo/88X9y2UxFbU8+ZoVCRa5ncTtXLm5hlU7JuTqFTqdC52raBwds2SMUlh54k8ZkRvuiceIyyJVAMyr1BqkzXDcqFYidoOSxbCB3bDmYn4sZRIPgUpNI0TqcTmO2CVgUmgBviuUEUfdboQQcRVGKS0aDLJzWI91PUMKYj4xgw/tvgD+l1D99m+228GVggc3FrSDyy0ZtbD1hNehueE5aBVYJ3BgZTqugKBFvJHhP78gHZkCkQpcsaesmnVkFnCVrZFh2SoXOLtIqduZHCSG7Bm1LX1HHkl3m6+OSu0/SKmtfvIPa5a0Uu3ZjWYbPCsRtP8EVEsRFTGWkKRR1YfYKSUcDVCZu3wM+kzSO2QGC80wF/HbwO3MdtRrBCusysiJGhOQwvw0Xvw0UMNqAK8C6/IZzCdy6PIDeHYJMjYNdIUyqQ8AO0Ffy43cQ2AI6S+gi7EJuCvPDmJ0kfN8fu+5Y38nq+y8A/zvVkf+e8uAvnu7ZwuNyt3A9aqMFArf6N0CrQsbPHgZKeP8KvvkCoeHleowRFYvABMHG8HEAzKaQOvMmtkthqPUSaDfnMXv7akONix4FjoK6kJ7D/AGC6H8EeiTf3gDYISAGu4hl95v3O8gadWpjBXxqdK46hdwKwKHII01D0iR2KeVBkXSmcm6xsBcNmyAqfULWKGP2CdgUioSUoriEzypk9SZxaViukFJwTRQLmCAqwrLHtOS/EX74tCWLVyViPNGSh4usW7RYoYR/kDBXNIGdgkUM3p+RNSaVtBXBO4iewLl3CD7VJUHZaETAUqLyBRU6mkA9p+xUCI5ZOwkd6bMoIC267pxcYVbIfA7zLVqz/HiPAkJaQtK5PlALbol3gD8C/j2l/ou3GdfCl4kFOBe3gsgvE7Wx3wL+T+ZI6jdCrg8YR24QXBWISGsf4ZKRQNJWJ0G77SGz7LukjTNgZ0CXwbURF85h/gpJuY/e+19V25IuXNxFYyK1ytg0J99ZaisfKlO7/CnFLqNzZQ1YofYl53CFlYIhsIys2QX+QcIk+CBQU1S4SNL5hDUnX8NUMIgkVVE8BjwG0ZsocvjmA8AoYloow1RA1o2iDuCdEFC6+5AdAPqR2xckMZRh6TG8HwSXgCLM9+PipwmdPcGbV9oFqhDsDdchrSSUqR8PV6UDsyYwDP6d8LutIHSfZtweHjiNooeB3wf+4d2f6AWAhTZztTCH2ugiggB4yGRJoGg7PtsJtg25l3EFA/sYn13KVQ8CrzguHw3NLnYt7zdk/wPn0TgLNk6gfwAsx/wQWOBfm70B7jHIlmDuCIEvuRnsIOb3Ea7TAeB5zH8P7D7z2W6aU5GlTcjSBlEcKUq+idlBzFcwJpC6cYppTI5Rm4hUaF8DWmNmSHLExactGvwg8AhVEZYaVsJUw9cLFLrPyKzD0voVFJUVqwqERuyupUru74WVI15dKwtEhaeB0tVmw8Df/BDYbOZXUB39kKyeUOrPKTPxWaQp4NsYRwkZX6M0uBHzJhc9Oe9YrrrN2Zudf46BhggZy8dyk4XdYMqTBBXmZMnuR3rwFtuD0Cl1hDAHvgG8Qan/wm3Gt3AvYYHNxa0g8stAbUzA/wz8/duOM/OgD/Nv1S7MZ6GcHS3FfAN4GqwfRRfAfww4w5qYbZOLduCSlXJxp6XVj8lq29S+7C1Fha0Ahk4yemKAVY8spTmVEhcTfOZk6SU6V9fk4tlmk+X58mgHRgfhhnAaWIyZgmatj1EUVt24Zq7leARUAjyysyF7qDR8FBeBzRAVCijqwDcd+COgAczO4RtrwYaIShnmHwP6wHdgeHDD+X59DAzlHKMVYCfCcbKTmJ0DPZ6PmQbuQ+oDVkK08qrBvc8+Aj9fB+9mqOCStZitArZTHRmiPPh/3NF5XkC4bQ6jhXsXtdHNhErGjaVQuaVYNkzwuxboQSL3IOY/wTcbyI0iFyR7jI9zXvL8rNhB4ArSC+CiQDHxRzF7BGwdcCgsVikQtCD34JtdQeRbZ4Ctebbsk1w54lOwb2J2hLRWpzHp8D4hir2S9jLwHuaHkIshy/DZCN4vozEtskqDJhcpds8oLCANsyflCsNhLvTrwJ1Grii0ztoWfyLzhtSDS0pBMcLOm5kwy4RQnEjdazaYr81QudxOsfcAcWk7Qb+yz3x20WaGvsvkpwWiglexp4b5As61Ac9iHLCsPg52Xq7QhfS0pNJNnFyux3lCF3uF4DBzGWkDgSs67/zp+atd87eHJzjF/JCwyN9LqX/m9i9p4V7FQpuLW0HkF40QQP4+nxVABhxB7qugncAixFoUH8IYxWcbCRlIMDuCyJBLyBoxp/eM27LHCmofWIRlH4BPKfS8qahwtZxligssWn+/APONFIiRK1DsvcTYoWdM7gh9m1fjm0eICuvk05Tgcd0GNkDw0G1i5uUKEdI3QT9CbnEe9BqQgWVEBWHZYrAKyBBFzHqRykgr88ByD1DEsiKWbQY2k1Z34uIl+cpsFaC83AWoAaxGbg3hJlYDe4SQkSmAHQfNWrntYLaMfw1slLnsyi2gU8DDoTQHwB9QHRmmPPgnd3D+Fg4W2Oq3BaA2WiTw22aleIJXtVkN7BToQeQ+Dp7U8yD3AK74Di5aMfeYnsH714ERpC6CN/L2a4IYaSlESzE/jWw36Buh8S5bQuB15xJjmg7Wo+5ToAOzXgIHehqfHcbSEaKkSFwuu0L3DKgGKuOzcSz9GiR7kRtH6kQMq9jdYS4ygj/3IXAduHiGqHgQuW+SpT/EJTNAp6CbrPGhXLwoBHzJekkfYbbRmtXLwVcuaiDXFHEBNKmk/Rtm9haNySUWFV+Vz6qW1ftIpycQELeLcl83pb4JFdr7gJMYhyGrhvlQhN8jmFWYmKPMXCJoY3pCFjElcByX58d0F6GJ725xCfgB8H3gR5T6L/8U22jhXsQCm4tbQeQXj6eBf/CZo8z2YH4juAx4FmGEwGwDxG/itAyfHgt/+/7QxGIeYwVZc5q05oETuKRTScc0PpsmrezEaBCXn+HC8RQ1ztG/ZAVTFzwYdCwbtIlTJuc8rvAAE8dGKXQKRRcsbu+SohrYJsIN4X5gEvO7cMlKfPNPsayIiy/hknWEJhgw73N9xqEQQLqlBFtDD4rxaQNFnwJrguxFBCrNCoAnSO9j2aP5Zz8GNomxFskI2Y+IMJEuwWf/Hy76NcJqPAabysv9ywllo7kUQRAuX/MZZ6GGovbrHhPw/1AdGaE8+PpnnseFAHGHCY8W7imUBurURv8G8BcJnLd/DrSBPYf5P0DRScxfL9XiQftw7sE8WAwIot8loAfTBNL2sMiyj4B1oDlJGNnHmBWRxkAOxRcxy/BpxbJKhpIKLm5KWpM34pxBLkLaik/fAV8QLCbpqGD2DKIP7DSueCasB62K+S58MwN6QBdJ2hN84yNgAMwTlzpAizG/J+8+HiYYy4zj4kXIVVD0bFC5wAHtxIVeMBOkENVwEpCB9qnQOWNJh4WErSsrLg2StL0oCTquxtr7mOWMClAckqbh+HHtRWSz/yyCaziPO687H3dz5b0P/ClhvttPqd9/xvgWFhoW4FzcCiK/eDzwmSPMjmDpDEErrAA6j1kPUAvcSN2H3Kco2oxlO81sEfgiPnWKkzPWsyRj6kxi/fcX5BJDTGB14dMuYJRm8zwXT7bbyJlLeukv9dCx+DT1yWmsuQLvMYv2iFqXqTBJc3q9FE1DXKHQvgk4hFkBS88Al4hKBRSfR24Q6bl5n2EvZp0ENxlDedbUJW2YL4AtARWRlgHdyA1g2a7A53LHsKwQXu8u49OPULQBuS05mf8NcIuB88hVMOvCsinMerHoQn4RbiWs1J8EzmD+MOh5oB/8u5gP3KLbQdF7oZR3AwrAd6mOfI3y4J7PPJ8ttPDzQmng/yXo+81iEvgBleEXsOzfEaSsAIaR+wT0wFWdyFmYNUPFYtaNxp/N11uHCRn8St7EtwmfHQYLEj6WHQHXBC8s7QFbiStN4KJ2SdOY/wlGJ+Y7sUxmWTvm24GyXPxYeGv7EWaPStFH+DRF0etIDXyjj9BY91WkH8vUxBVfRm4X0nIMjzU/xEXN/K7rgU6kGPMpLv7WvGNSRTokxcsJ+ojl/PFZofMpIJHUAzyHu6nGyjg3OvjM4Ybska7+c7Mn5mF+8XIfoWqym5C9XEUocXcQtBtvJUfWQgtfGlpB5BeP9bd91mw31lwF/BJmM0CKNAJ6CngT8xEowcwhDqHoEXz6IWljGb55iaxWpa13JWlpk8SnmD9vKCYqlFBcx9c3Cla4LV+bAroNptU2OGDF7nEaUzWyRpPOpYnVx8epjjra+i4RFQEvyxpHLas/Lbm9ipJVxG1HgbVYdhl0XcefjSAmIXoCMCydABy+0QFKUNRL6EKcBitg2YfAU+DeJqzgk/znWaCMZe+gqBNoB9YCo6AC5svhOOn+QEb37yP3EMEBYxvhhlECbQZfw+x7YN++g/N0BW5LXm8HXqE68hXKgwfuYHv3LIRyI4wWfmHQtmSUyvDXUfQ9YBDYMs+BxjHr1GSWYdl+ZoWrA7Zi2WvIfWV2a8B2zI4y54wyTliQbcSyfcAW4LScmwamMdowvzl/7yqwF2M/lj0EFM27N8AqWPp1YG/oEHeGZVFghbmLmDUR38WynrxL/BByTxM6mj9AsUfqJQTOq5HrRG6K2WzhvKPBnF3jfDx3k8eux2WCe8sHzJWjM0LQer1SgwjNfQP55+4nyI3Nr2bMvmaMQL3ZBfxL4FVK/UPXbe/gHexfC79AWIhzcSuI/OLRe8tnzA6AfwacB3sXzGPWg2Vt4F7BRX2YvwC2ndDcsglI5OJnLS79mFoltemhh8BCoJpWT+GKM+BFVn8JuR0KnMKRoOPG/QK89BrNmRr1iUt0LKtTHXNESUyhoy7vO1Fm1CeaJB3nGTm2m2WP9IB2o6gfyy6ZZevwWYqLhoA4b3bpFs4IN5AsEOwt77KedaKxGJSXZJSA7QMFIV4lazAbystxGVHBQOX8+JVAFaQSsCYn8bflR7GPcIO8nyCMPuvlO8uL7Cf4bM/xwW6AjqCo7TO6KiHcVF6lOvIi5cGjnzH23sYCE7ht4Q7QtsRTG13NnM3gLBYRrovnMP8j4JtXnzE7B4whPYnZqwSNxzWglVhWJWgSHiIEkbPBWhtmx4EUue1AhtleAt0E8BcsNOMcwDQMNqbIvQTUzdzOMC5qIK3C+4tYOoj5bmA9pjdRfAVHHbNuouIeLKtithLp25i9lfOkpwgL9GubUwI6CcHgGULA6QjzxGVgI9dK6UAI3v418ApwlFL/Ty/rFTjwywkVqKX5o/8tcPhn2m4Lv7hYYHNxK4j84jFym+d6gRmkbtDTmN9LmAAbYAOYrxA6+t5B2h5kNtgPPC6zbjMaYIsJnMWGTZysmfkeyotnVOw6JGl7Pn4lufuBmVUZOxYRJ2VcXKJ2JSUuexU6C7jI45LVJB2HFDIAj2vlk7uBR4lKZ4DjKCqTNY4xfuzasm/fQ51BS41jKAIlnUEvzZ8iZB8PEcrYEWFVfw4jAd8JUQ8wiZhBURdqOw1ewFmME8g9Dn4M82uBAwT3DEPxCKEj9CPmvtuDYGN55ylIJWxWLsNiQqbg2g7t0F36WQHkLBYBr1Ed+RXg4ILVkVxgq98W7hi3sq/bSsiErcD8foKKAYTSdYQ5h2gDXgylbPuEEBTuIGTTHgc+ALscrlsiFDnC9fCpoSv49D0kw+wpYBxLm2S1EXzDzDq/p0J7U1gH2BUkh08nsGwTV4MtHUVxH1IGFImLZwNtxiWEEu8u0ApgzsM1SHmdAS4GfV06CQvGPm7ewDKdf6atwAng94D/8LkFeGE75/KfFlr4bCywubgVRH7xuFUQaUgZ3nZhvhN8CfPLgH3gvobYiWUlFHUg5WK1agdrI0yUUrE7Uan3InLr/cyFXVQuvgzAzPkJ4uJHvj7+pkp96xQV5q+8E/WsWURWewizUYo9R3HRVlyxTpS8J7kqiiZBu8F3g8ZxxQpoOdhJYIBm7WZuCnUU9YXA12LMHDBByBisA10JxHxWEspFK5HOgysTXC4M6A3esb4Xs4nQmKOUUBqDEECuIEj5COe25I/NBBs2PiZwnj4gON3kh23WyUEEK0Z2gG0EFuen4vJdsptXhPfgFNWRXYQmh3cIQWXjbjb0pUAsuNVvC3eM60ukEMqx7wPPIpfl5eh5QuQiBI6KCQvSNmDxTRZWz4PexKkXGEaa5V8mYIvIqh1gPYTM5FF85rGsHhrq6nXLEuEi8KmHrKBQmh4ELoBGUNwbpG90HDGE9zWiuIB4EsMBTbBL+PQc5kv4bBD8anBnictPEOZFMD8NHM5pLtejg1ChOA5sp9Q/eveHuIUWPicswLm4FUR+8TiZ/3+GsDptEjKQ9wFrUVTDN+bKT2afQuYxvhH+TkHRDpzbjtSFkc7SbMw3PWR18/ZDqiNLCE8Iy7pt/NhzxOVdtC2+Ru5DUmxtix8krewgq3tc9BJwNARauh9Fn1yV73HFFZgJa3wMyWXktlhj8igzZ2/kGPrmIuLSatA5sAT8c4RGmDJohlAWiwj6ZilB5Lc/yIFoCSEoG0V6CnQazGFZP0RnCRZhw5gtBh4BTiJXw+xtgo9sO7A8Fx0HuyqQfiMCmX47xrtgR4E2zPcTNC3v9vpYm//8dv73fm7kZ92D0MITJ2vhTnF9Y5gRFjiBDyhFuOQpsGP4tMGc5NV2zL6PXA9yT2F+D9j1QeSHhHvIGKGkXQmSN3RK6jSXvI9vPAFESE8SxUCygywVhc4MuQGwMeJyJ8F16iA+fR+4lIudn8PsEE4GPATZMrLqSszvxHwvck9yA8dce3LnmjyAtItgB0G/jPnjoB6k68vX5Nup3e3BbaGFzxcLby5uBZFfPF4F/hj4TWYdV+ZDehD0A8yvImQt27mWmE0oN9kwMIz5euho1jguMVRco2xyBV1rztvU2bfwzeevviytruEm9oqSRNK+3bCTJB27SDoHyJo/kW+0IZcCUyh6Jt+P95ATchvM/GUmT93MSg18cyrEiWqAVQnBcxGo5noYRvDabQKDmH1IaKQZB84ErqQJ7Bw+Oxt2NKohHgGGwRVBW7DsDHAKrC+8pysF9xu9h9lizJ8FPwHqv/UpsTpiBWhZ+NMOgL0JeunWr7kjXG9ndu9igZVQWrgD1EYHmOPhQQgg3wKev2acBGgDLpnGNy8Tyr57kfvK3EJKW8EOM+e7fRbYnP8+DjqAZU1M+xDjljVdThdpEq7rSRTtg6hAHNfwzbIKXVWwMj59jtCRnBrWi28kwDRxeUBmY2TNtbj4ONIWoIhZmavzmHaCPUlooBtFroS0Ep+9gtSWqzk8kn+/14O9BTcNIsk/d8tLuoUvFwtsLm4FkV80Sv1GbezvA99mvszGfESl1aTVDrCblV/A/Av55LgEuVndsdBs4tOPiAprSasp5q/n9aygPr6XUu9TN3/f4llwTnIbiYsboQiW7cen+4JuHKDIUPRN89n7XDnayc08v/O9DONdAVwS4kZ/HPMdhA5HQ1EfofGmSmh46SSI6NbBMsz3gQ2DFVBUwcXtBKeHJZhNg32IpRcRKWZjmF8P/jymQ7hoOu8kHQK+dePuQUjrcpRQRJiTXpIeBV/B2AF6/GpW4+5R+ilf10ILPztKA6PURg8SsvU3DyBnYfY2WAdyM0AR9NQ1NzMJzDWDsxQXCdfryvy5Cyjajrkj+MYIWfMFQXu47PUaljZwhbpEm5mtxzhJ0lFH0ZNgH+D4EGwSnzmwHtLKWsK96SCuCPg6Zn1IJy1rnMR8VS5ugH6IK3QA+0HjWDNG0SqkdrAnMOsCmwLOYNlxcM8jPYfZIaSHb3IU7n3qSQst3GNoBZFfBkr956iN/R3gD2/6vPQgcbmGT3divkyUpJhv4LM2QFj65LzRhtk+FMU4PY1xgLQ+bIpTsBuCVKsMO5Vu0SCueB2+ca1Uj6ItSBdB7xEi1+3A+3JRj3WuuMjUmUl8+ji447honCBmLOSuAJNgE4TvmQcZWA2zPLi1UQI/KyEEkldClsF7UBX0HLAXxZsJHt4joC7gxGx3Oa7QiTXOYZYGWzVlSNvwZsj9Gehb6Jb1gT2Ect85bgyG28BvB85gUcdPqbuwMILIBcjDaeGOsQt4mCB5dfMA0vvT+EaGS+7D7EKeyZ8/YpTgDX0aow/46nVbeAiz85hF+OZKQsWiArxDVGhA8SXhd2BZj+Riknbhol/G7BSWdQbVBjqQhjA1UfwOSftDUrQVeAMVRxElYC3SARRHKDZcVEcqBOMCgEI9cKh1ArE9b0x8jNAdvQT8bsw9iXTlFsdq6q6PbgstfJ5YgHNxK4j88vCvCHZl/4jQ/HEtpBJRsm3ubwcuBjPDaxe+GfTSsAi5x83sDFnjUyRD0TTpVIr5R27Yrk+fsLR2RnFpFVABdxC5enhLk6nYDG4uVxHj3GJgMeg8gWT/BNi0Cp0j9G+KrTGzm7icSW4z8HEQE2dR4D5aGZ+VMD8Fvh3IUNwMQaAtAtUIeo4AR4BlIfjVm4EnqWC3GMpiRYJA+DEC0b8EfgbjWeR2h0YjPQi2C6wd7FfADmNuOHeumKUGrAc7wZw23m3kflhFaNZ59DZjboU2qiNaEB3bC4yH08Id43cIUjX/E8Hp5D3gv2S+3WdW+xRLt+Obb4E9R1Q+iqJZIf5/QXnRX786tjL0KMF15RShUS4BYvBj+LoDvp6P3I/iXqFOfPN9sC244gTSEiztw9iB2RRBuPwo0IFcFeygCt3twImcB+1xSW8QIPfHpHgNcBa5JnIlQjWnFvaByaBsQR9mH2P2ONj7hGv+GDCN2IfJblEyzH7GY91CCz87Fthc3AoivywE6Yd/Qm3sPxDEZm/i7XwTSCIqvIBLpjH/Dr5ZNLNDpNUHUHRW0tfNFd6lWblVF/gkzZlDFHuGcIVHkbZes/nbv/sws56vwYlmK5hXoX0XZovADoAeBXsvJ3ZkmNVzeR4IupGEzIFrIMZzW8RX8rcuEsrZVVAf2JuYrwJ1UCVcXdqBWQG4AvYDLH2OYHG4FemdvGO9L/zPCeAh8LnenHse7BLhRvowNwvebwqbuMtubYDzBB5oB/d8hkMLbvXbwh2iNFAH/iz/CaiN/h7w1/H+fyOrvY2l+dxjodkmqy7FxzuIS9sJjk9zaFt6gMrQ9wic7llcAo7iCv1ktSBijnPAMvB7wV5G0c5cF3YDUMCn2wnzyWmkNcAHGCU5vQj6MCgkRAeQ60XqAyKcO47ZWSDDRT0o2kJw9XqCUKr/DmYfgV0Ic4A/wNwCNf+I/q0QrLbQwr2IhTcXt4LILxul/k+ojb0E/BXgf+F2YuTzIXWg6EXkZvDpuyjyzE745j0uXkNU2EHW2AgUSNo/UtuyMuWBh+WiO3FsuRlmbrIjjjBRvw5+K1DIBYffA5Yjdw5zZWTduCRkNywdAy6BJsA3gp2tlZF7EjMfCPzp5pxVeSZIi2gHhsM3fF4KOwx+JbMyHoHAuQ1sPyE4vJ+g/5aBhlD0PPhdmLWHju+7gX8AUz3PZlaZs027FTKCqPEq4PtUR44RAspT+c8QoaN16p7JUi4wMncLPwNKA57a6L8A/zyWbbvu2U+AP8DS85j9TpDdugH/mPA9fj8ff4S2pRmVIYH+AeibuZajgbbiklfBloKtx2xW9WAK+AApIlwPG1B0CvNXwB4BIvB78sXbx8BzoK/N+56+jtSO2YZ8P0aAXUgJ5rswmsCafOwH4C7h4lVAP8atytkttPDlY4HNxa0g8l5AyEr+39TGvgf8LeAvc70A9q0gtStKXiLqBrPj+MYFrGoq9hRoX+IsbjuuqPSsbu4Bfbe4dcAjvYS5PTlv8hGk0LVtloGOg5UJLhkiiKfXQQm4MrKxnAAP8EbO5ZwM/EfLMKtiWSPv9F6VB5ArmAsg5+MBAv9rDLQNeA3zReRO47NcdNi9xXyf79vDA5+AVTH6kTYRPIVHCBZnj93kNVPMSQqt5kaZlVnUqI78TcqD/9cd7svPByJPHLXw5walgYyZoR/hkmX4xvJ5z6wC/oSudZdv+dq2pceA373hcZ+Bi58l8IvbCTSQDlBwxDG7wlV+NEeBTZiVkQYwm0Z2BEWHsewb+RZfRPoxcr+SU2xmXafALHSdB2mwJwiqDj3ADMSbwJ/FOALZEdBXUfQOckVgOOzoTeE/46i10MLPFwtwLm4FkfcSSv0XgX9Ibex/IGQV/zLwl5jtgvwsSOuJiusVFaHYEx66cdQMQb/wZqgTCPFVQqbsBIFLdJyQeXiJ25XdQ2l8D5NFQk4AACAASURBVPMliaQNuGgKos3zBp4HXQZW4Vx38Av3bWBDIbuAwn5YSuArjgFduezl2WANeV1nu9m+kP1QROiyvA/sR8AW0If4dK772qcOaQ+KNgLdYG/iswHA42LlgeIs3gyf2e8AtWFuAml+1/x7BE5WAuQi8EwRbmifhRLwh1RHHgX+LuXB+h285ueDBbb6beFzQFbdBfxTwnV+kZARHCZcc7cOIm+NNaDvhF9tN2GumPOVD2LiAK8grcBnh0OpWgNgE1j6MkF7EuAKLjkEegTsbUQnZs8TuNEV0GXMdiLNZlJjguTQGwhv3o/iG3VFhRTFbwXFBcYDD1PRrY7IT/GZW2jh88UCm4tbQeS9iJCZ3AvszeWAfgn4I270eL1bDAMvU+r/4Kd8/fepjf0b4LduPURbQ2MLLxCkfPYRMhM7gATzJYIWW50gJrw87+DuBB1CWoGckTWmkU5hWgPZMEFzcRRsHcaHoIeQBgEw24tlKb5ZxSXjuORbYMHFxuwi0krMjgL3Y7YTbBtmYP4Scu9hfq6k55seF78KKgIulzbyhMziIvDH8P5E+KjxE0jzOWMHgSuE7OPd4L8DvkJ15LcpD/6056aFFu4OXeuOEWw/Py+cBvs+UMLMYf6HyJWRjhN4k02k7TmneRMu8VjmMR98vAMmwjwQlUDdSCcxymCnka5g1gaujoueI5Sx3yZUJEIAaLYNn/2AZmUdUTwIGgGewuw02DCW9aP4ZlqQlyj1t4LIFlq4S7SCyHsdpX4P/Ija2NOEDsvf5NbajLfDh8CvUOo//TPu0d8GvkGwJ7sF9ALYTkIi9MWgMWc7gc15qfpTYDxvcikChZxcv5rQkLIMqGIkuGgYcynWrADrCOLJG8GamO0GdYMmcYVSEBVnBZb9MOc9DiJNA2sxfYj53eDnl5YXYf5aQXC5N4Gv55X73Xku9yhoI0BwwJgtT9tx0HzHjBu74e8cm4F3qY78Y+CfUR78Am9oWnAllBbuQXSs8MC3mT67DelvoWgraHEusTV7nRhSP2EOKIBd6yQlZ+CmkFIwn9uSNkFPEqS9HgXNVlKewOwIyq/NwM88T1brlWyjmf0Y30gwe4+o9Khh0zQmhhSV2kk6rt/7lrd1C/cAFt5cvLD29s8zSv2nKPX/FrAR+NfceellGvh7wBOfQwBJ7i37Nz57oLYRFinHMdtBkAYaAXcKdIkgDwJwGhDGXnx2kqzeT1YvIh1Fro70Yl7yukyQRJpFAjyfE/bvx+wyoYRcYS4LmgeQdg58P8GT+zbfee3Jm4Jm0cBsJ2aDYOcwq4LNlwO6lqBvVvns43JbJMDvAzupjqz/rMGfGwS569Hd/7TQwvXoWLmTQMX5e0jnCHPVOABm72KWBXOA7DoOonYQGtIug0vA1ZHrx6yJz85g3Af6CGy+qsLYvN8f4P9n787D46jORP9/3+qWVJKxvHTbeAdjbMAYYwIYsxhnWBKWyTAkv8k6yUz25WaS3GQmmZs7yc0CWWYmCVkgDEkI2QlJGBLCNoGAMRiMzQ6OMXjBO7jlTbbckrrr/f1xqu1WW2urS61qvZ/nqUfq7qpTp7ql02+dFU5DkuMVvY+gPan5zjFIYh/Cs+SyG5G6diTRXbeRZyt2/caUK4ZlsdVExo2fehF4D9mWL+H6KM4BZgNH4wZ7vBr+fCX8fRl+anuF8/Absi0/xo0o74WcHf6yFbQDaEJkk5u+hwQuoAsAP+zsPg73hdOAJGeBbiTI/w/iHYckPDR4BoIJdG2Cew5YgsgERBSlDZGnkEQeVAhyeTTfBExGZDKqj3F4fshCPh8FnYJ4c3FNZGNxtRqvQ4NNwHMoe0HmIXLcocNUD0KwE9UtrsZTj0d5DkmUpD9g5wBPc3DnB2mc8PNBptU/ERZCInIJ8G3cZ/5DVf1aD/udietT+xZV/W1kGTLRO2p6J/ALDmz9NW42gzHAPwFz3fytR3iGwqpYBFk0eAJJTkWDPPmDpwBNeMmnIOmBbEAorF41WoN8hlzbWrykj9cwGg32I3V5EskzgVGINBDkd4qXGIV6PpIc1c35V0XwLhgzcDG7ObcgMq781EZcjWS1fAwXwHa/CkYxkSUoD4I+C1yEm7JjPvAwKG4gjTYgkkHqtiHeZIL8dtA61+meLF7CR2U7mmhDOzcCU0DWg6eI7MNNoXMqwgEkebyb1Fi3I8mdINvR/F7QWSAnIt49h0eAynLEOwV4DJFjcH0f63GDY15BEi8T5HJ43jxck9fLuCXf5rsR28GroPvcBMbeZGAyGjyOeKcP8v1twtWqDoHomlDETeFyLXAx7v1bKSJ/UNXV3ez3deCeSDJiqmPU1Bzuf6kV+Az7N3u4G79CM/bjIAHFg/HcgLNzCDq3E3RkgTWKbEc5XUQngbaq6jEEHQfpbN1L0JnncJ/K9dQ1zxDxTiefvQ90DMlRDcBYkE6E5nCqn1L3RnH5xgxMpGVxJDfzFkSa8vip/WRbluBqF75CX3MnipyPshp0I672sY5C07IwGrzxIIrqLlT34yVmA6+g2o54o4EdiDfGTVBeNx4NjsXNA7cedBPi7QdvDQS73bRANIHuRGQ+koSApWhwLMILoIpXtwKkCTfCZjRu8NJ64D7cF9wu8F5BaMRLnACaBzkWFwALsBTNTwe2g4xD2IMb+b4CwumNBucrNE64tQLp9K3QhBKNhcBLqroeQERuBq7ATZNU7J+A3wEDnMPTxIqXTKLBOlwryVRc8HgibtDfftzk/CFZg9cwB3Qz+Y4k6E5UNyHeZDTXAXoUCb8DL/kiQX4NSBLN5UFOC08miu5Hc9tEkmPwEnkkuR+R2SW5WoWfWhP9xRvTh4jK4ihv5q1PpCmfn8rjp67B1Sr23RwkMhdkGq65vTBCUnFfKKNAGyBoAG04NGGwSBtoBvQEXKC6GGRf0fmOA+aBdCByAnhn4QLUpyge6CLSGG5nIt4l4bOnuFVsvIfBewG8HHgTQF4GrxMhDYkEyBrwngFmoDoHDV5Gg3AaIk5xTdmJRpAmxJuC8JdBva9wN/D5QaYxIOJJWVs/TAU2Fz3ewqFVj8Jzi0wFrgSur9gFmeGnbfsJwLcR72LX91j24QJIcP2dX8VNKQaQRxiFsAuRKyRRN0ZE5rqbOdIiMkq85ExJ+qdL3VHnSX3zuZJsXCB1o88XkdGqulMTdSnQgKBzrKqKBrlGVe1ubtnvRX/xxvRPRGXxoZt5Ve0ACjfzpQo386/2N79WE2kGz0+9RLblPOBbwId73deth32BGwijB3GB3rO4GoiXQHxcXycPYTKutvEoXF/FJIiHkIPEuaD3ADnwZoX7/QmRPJACPePIk3cx001HIpch8hqQ+0HnAg0oE4FN4AUI8yCx28W6uhShgyD317gn7kaSdYh3PkKA6+R/Im7akXKtB94+tKOzYRDrtaZFpPgG4gZVvaE45W6OKZ20/hrgM6qal5j1BzL90Lb9dbj1uhcA4zk8KPA03DrchSm2jsPNVbkPeAg3dc9BYGnYFP0A4v0V3Q8qfBBYBKxW1eNozwTk2lvp3J/UIJeko20HY49vlqOmnFBy3A7gV5W7WGMGKZq1s7u7mT+reIeim/kLGECLkAWRpjL8VDvwEbIty4Ef4Po19cyNuH49GmSARtAXgB2I+CBX4iY7fhq0EEDOxc3DeBCoc8Gidw4io1F9CTdS+vU9nA3wFoZr6Z4aZmANIpfhmq9PRGQ2qtvcCOvgFNwck6uR5HSEdSBzQJYQ5B9yh3t/RpKzEJlTOAHoBtyo81MH+O4VtAFX0jghTsuyZVR7Ddi30HWy/Gm4m4RiZwA3hwFkGrhMRHKqeltFc2qGXtuOC0DuxPXDCuly4BxEBKWu5J5iD67/5GUlKa0GNqN6n2ux8Mbg/s/W4hZCOB3Xj3gu8AL14zaQ7GiiblRG8u2jGNUo0pTuxEuML0n3u/ipjspdsDFV09sNfWQ38xZEmsryUz8n2/IY8CN6Xu7vMPHSwGI3GXhwIm6U+d1hcDgV9wWRxi1jeCFuBZkU7kspHEwjx6P6NK7D/rxuz+Om/DkAPABeAiGLW9nmBJDHgQtBd4BOBfkTIpcCraiCyEJUnwN2oMEUxFuGJMYWBZAFB4EdILP6/X519V4aJzxT5rHlE4H+NU2XYyUwW0Rm4uYAfSvw9uIdVPXQEp8ichPwRwsgY6ptRx2wmCD3IpI4D5Fv0CWABFyNY0gLAVyA+98+r5v9wX0JngY6FqTera7KCpCxiEzB/X+7HUVOQJIn4NU9SN3YsYgmkUTWtYJ00QncgDHDxeDK4t5u6CO7mbcg0lSen1obDrp5H/BFus7v2D2ROai3AYIM6FHhiO1NQBakEfcl8RDQBLIX9H7c5OQ5YD0io1CdjltmrZXSAFZ1G8gJiPeSO0Z9kMKyacei+hRwAJHFIK+6ScclgebXo5oCFgN/BH0NeLtASkZfaweuFmRnme/aN2mccHOZxw5eRM3IqpoTkY/iOmongBtV9XkR+VD4uvWDrC2K6tcQrxXXvNx05C4yKfzfngFyEuhq3KwHzbibDg/3t+I21QRuadHRuFGj5+OavE8C3YN4J6C6qegEa0B2I14bicQlBLkHCXJJEnWliwH8Ppz31pjhI5qyOLKbeQsiTTTcSjs3kG35JfBx3Eo3qV6PEZmJeluBADQBcjJuhZo1HB7NuRmR6SC7ccFpgJtqqPDPd2r4hbIB10+y8B+5FpGL0GAlsBDx1ocB5J24L7p64BLgCdADaDAKZBToTJD94K0j6GwGeRSR8eG59gEtaLAFt0TiHA5PXTIQdwKfKeO4yolwlQRVvRN3jcXPdRs8quo/RpYRE72mSTnadnwK5ME+9tyE6gzXAqFHAwsQmdxlD9UM7n//XNz/8R0gKeBukNGuNU5ywAwgIOGvJt++m0R9K17iknDy/3vwkg2IN40jV9m6cfAXbEyFRVAWR3kzb0GkiZaf2g9cTbblGuBdwJfobQ1w17l36qHYT3Ur8Gq4XOLLiFwAuD5V3VHdhwsuC3M9FkZjTnVLFuokoBnNT0bZhuoYJHkcwnPAgyDtoONBx4EKkpwTLr+WA61DElnguHCFnHWItLsmNhpQNiFeT8tBrsc1HzTimtXH4/p9tgIfpHFCrofjhoYNaDGV0jRpGW07bsbVdnRPNQhv6AotBo+jOs71iQZU1wEZ3CCaLagmgdEIHbjo8QBwMiKuplPkaLxEI15TJ+huONRdZSxuhazSfo+rsTlJzXAUXatQJDfzFkSaoeGnDgDfJ9vyG+Df6XO1m1BxUKnaAvyJnkaOudfrcAEkHA4gQdjpJjWWMWjwopuPMr8Pt6bvcyBnId7LeMlTUM0RdD4N7AbNIChoK+IF4WAcINgD3vxwBZxpwBa33u8R8sDDuCkWjit5LQAuonHC1n69F1GxJQxN5f0z8Dd025zNCjQYT9f+y6cD2XCJ1CWIzEK1E5jl1qjXfbgbtQ5XY6kLgOWInHOo5SGfn4Dn7UJE3fyv5IEEIsdzeEqxgv8MW0uMGT5iWBbbPJFmaPmpDH7qPbglG18a0LEiKZCLcV8OD1Jcu6DajqtdaO7+YAU4mcPLQSrIJSAb0PxpbrCMl0CDB11TuiroRW7OSj0TmIp4xSM7dyLSgKtZbMRNQ1RaC/kwrjblfLofrf5pGifcP6D3ICqeV95mTHeaJm0Frip5dhdu+quzEK+l5LUcsBHX1LYUWImIBzwFIoi8DvE0rHncGe6zl1z7Hwnye0HnoR3byGfbUD2aQM8m6Gwi6Dwa1TEcufrTLZW9YGMqJGZlsdVEmurwUw+QbVkAfBU3wekASAo4H3S7a6JmFvAkh+eb605d4eBw/+cQ7ykImsDbghsQMLfoLtA1O6suQFiOG1hT3M/rGDT/Z1zTuY8bmT2BcDg37gvxbHq+Ufs58M0BXbYx8fJNXIvDbFzwOAf3PwHIWNyCAHtx62qfiMiJR6QgsgM4C2UZIq3gnQysRvOdaDAKzS9x84833I/ndaJBE0HnQSRxJ8gEvGQ7QgLXfWQl7m4yz5HN28aYMlhVgqkeP3UAP/Ux3JKDLw88AZmMCwhX4kaCHkkVNP8QUJhkuAMkhTA77HZZj3h7XTr6IKp7UD0IshVkMwR/dKO+dSVoe1HKk3Ad/ncCm3D9HSfgah7BTeza0//X08AHaJxQOk9X9RSaUQa6GdOTpklu7lj3v302XQfWnYLIsYgsQWTBob6QR3LT/YgsBsaiwVaCXALNp9F8DjeArgXPq0M8wavbjXi7EU9I1O8Htob9K0/BdYNZCGzGT3VGccnGDFrMymILIk31+ak/41au+eGAjxVvNOJdgKvp6CYo0xW4zvtJ3OoUoxFpBNkOtCGJVsTrBHkZqINgBQR5ROYDM92xugX3BVTav6sBWAKMBaaEz40Kf07rIcf7gDfROOHggK81KoKbm6yczZjeNE26F7pZBlTEAyldP7075wJPofoIqgrBmaAuGBTvQrzkTLy6x9162Bog3hl4CUWYjuti4rmR3F38frCXZUwkYlgWW3O2GR781D7g/WRbbsKtG/26gSUgS4BHQKfhJlV9ENVG0HnAKpBx4dx0fwW6HjgG5Bk3jY+cj8gmlAA0bG6jE3geeA0wFtXHgbYe7viagZmo7kBkLa5Zvaf/6k/QOGHdwK4takJES20ZA26QzcW4WsXdwLMgrgVAu6xg2AHek4hkQRNoMD/cf6+b/ks3AG0gS0Gb0CCBJJtJ1DeB7gcdj+Y2IXWTcKtgTcf9Dx9bkp+Hor5gY8oTv7I4Xrk1tc9PPYyfej1uXc/b+32cq9I/2/W1ktVAJyJHg6xCvAZEmkEawr3XurkmaQZtCDvwr3Vxn6zENVGPQ+RVxHsYNyDndOBiVF/sIQeNoHk3MbKu6mGfG2mc8ON+X9NQitndr4mRpknPg/yHq+2XhFtrXhYh3qVIchWS/AuSfAVJJvESZ4GcA955SKINvBY36T8BGrSjtOAlJ5NsvJSEP5tE3U5EOsB7GReknoOyB9fFZCNuAYEpRbnZjJ/a1E0ujRkeYlYWW01kf2QzSdxo4vNxncMLTZbrgLtxzSaduBGAZwATcdPMbMUNxliOn85j+s9PPQb8TTj45nPAG/t1nMhoYC7IXDTY7oJHOkAmgBaa1WYU9sY1gT+O6jQItuIGyJwI3A+JSxABZRkE9UAOvIawb2QDR5oKOslNU+Kd3k2t5ff7/wYMMevfaKIk8l/Av1C6pKGIW6ZNtRXNP0KQbwQWoPosGuxFEm2I+GjwCm7ZwxcgmId6HXiJcbiy2EPYDYl6VB8G7UBlBiKdbh7XLu6K/FqNGYyYlcUWRPYmm6kDPgF8jJ77uH2sHyltI5v5OvA9/LTNTTYQfuop4E1kW+YB/xd4Cz03FXcl3mRUR7lR3METoIUpeArTiywEuRcYBboXJAF44ZKIWUTcPHNeYvGh7z7VLOhzIAdB53PklEI7wJtC9yvYn8TBnU/TOGF4deoXsel6TLQaJ27k4Ks/B/6hy/OqEHQud8uJcm7RKycj3h7QMcBDiLS61W1oJwgEL38/klwAci5uKcRxQBYhD1oPchRucFvpKOz+t24YM9RiWBZbENmTbGYU8FvcUniDNQX4NnAF2cwGYA+uhvJu/LRNNdEffuo54G1kW64Cvgxc2a/jRJoJtBO0EZgMugEXhD7m5p1MnAFsRrw5wDpUDyLeSsSbjeojHF5RYw3Qgsg5kHDrZrtl1R4BDcI08yBTu52qxPkpbsWA0jnyqi9md78mlr4IvIPi7x0Rwv/NrqOzXReTwrys50BiKaIJhAuB1QT5BjRYRaKhEZEL0OAu4NJw/6WuKwsZXKtQQTswPOZlNaYnMSuLLYjsTjbjAbcy4MEdfbqg6PdP4WooP4Gf/k2Fz1O7/NTzwBvJtpwJfAW4qM9jPC+Fsg94yk0enm+HxJnhF5WAPoVrFutAZBHICmA7IovD6UGew00h1DU4dBMfn93filHcgKE9/d3ZmJrSOHEDB1/9AfDhLs9Loq3rABtZinh1aL4J8Xbh1eURbxSqLQS529H8EkQywCSCvI/nrUADD+R2xGsG2RveLE4GKV4gYGW4cpYxpkLiVW86dN5L5QPI7kwBbiGbuY5sJtHn3uYwP7USP3Uxbo7JW3C1DD0TbyYiKcSbgld3ISKv4Nbf3eaaxMTD9YdcCSzALUkIrjbjr3A1GuH62mV7hMYJw7NvbMzmJjOxdTVuXevDJHEGXt0WJPEn8O7Aq5uBlxQSDT5ew3TEmwjkEDkTDZpVg02q2qpu6dJXCHL7Uc2j+Wa3jr2m0WAzqk+WnPvxobpIY8oWs7LYgsju/e8hPt+HgZvIZtJDfN7481N/xk+9BRf4Let9ZzkOyLhlddmIG539NOheNFiOajNwEJGnUT0P1btwo8SbcdWN+8KE+jhPj7objDM8iFfeZsxANE7cClzb5TmRBhAfkVPwvMtx0/oIyG6EUcBc3KDGiSQblpBo2AvBWCRxAEnsQRKdeIkm8NoJ8nsIcvvId5xJvqP0/82CSDP8xawstm+BUtmM4JbpGmp/D+wkm/kV2cx0q5kcID+1BngXbhm1XsiJiCzF9XW8D7fizRRcTeM+EEHVx9U4Xlh04Cu4Ud1jOVxLOVDDZ4WaYjKIzZiB+zqw/9Aj1R0QtOJWgdJwecNFiHc2bqqeLv/TIt40Sfh1IoyFYDaabyTI5xCOQmQJMBpoxEuUfr/1NPWWMcNDDMtiCyJL+WmlugMf3oorOA+QzTxCNvNpspnpVcxPfPipjbi+i0/0secSYDvoQmAWqsvCichBRHFfcPNx0zSBW3FjFG4apym4wPORMnI4TEfml9l8Ys3ZphyNE3cC3wJAdRMEedzqUHuRuqeRxJLDf1uyCMjhbupWAasRmQa0It5rQdpw/ZLrgKOBnSB7EG8pkigeVHMAWDsEV2fMIMSvLLaBNd17HlcgVVMDLiBaBHw9HNV9F3AjftqaZXrip9aQbTkLuB7Xt7UbAiJT0WAZ6GJgKnjHAZtRXYNrGn8q3DmJWwHnVWBXuATiebiVMwaSs//B3RwMTxYQmqH1DVQvg2A6MBFkPZJMIrLgyF1lEq6WMqSFYLAdGAfyGF5iyeHdaUbqFuPm7S14Ej81PPsjG1MsZmWx1UR273fVzkA3ZgIfAVaRzfyAbKa+rwNGLD+VA/6T0g78R5D5wEpEWsO7uem4oHEMrrYyiat1TAPpcGLkwnQ+c0CX9yM39wMLaZzwehon9Get4OqI2d2vibnGiXsh+BUwEbyVSHIiIjP6PA4AmYOXvBBJtiKJjYiXB1YDL+IGwk3D9assXuv+qW4SMmb4iVlZbDWR3fs58G/A5GpnpAfvA15HNvMV4Ac2gXk3XI3ku4Bf01OVocgY1Evhgs2HcfOMNOHW5j2Fw2vuPgSchGoLblJjcF9KR4e1IruAR3DLKk4L01sOPETjBKs1NqZ730MS54F3Bd1Pzt8DXQ3sRjgDpAmkMJfrX3A3fLtwfZjHFR20vkJ5NsYUsSCyO356H9nMR3A1ksO1tnYGrsn278lm3o6f3lztDA07fuo3ZFvGAjf0uI/IcUUPDv+q7AJeAj0WEERGocEq3NRPG4GpQGEFnAC4jMYJuyuZ/aFltYpmiDVNbifb8hvgbwd45G7c6jb3AI24abmywKKwRqaNI6f82ja4zBozVOJVFg/XAKn6/PRtwJvos0m06s4DVpLNnFLtjAxLfuoHuGB7YETGu5GecgB3szUe8V4H3BG2H3SALMMtq3YbjRNjHEASuxGBpmbcjAa/R/OPEuSXEeSWEuSWosGfQB8B7a78zeFmOpiJiCKSRWQcInXh61mODCK3R3kRxlRMzMpiCyJ74wLJS4HWamelD0cDfySbaepzz5HpY8AfyzpSZC4i5wNL0eAeYBLo80DKrbHNc7j+WPElxK4fjqkRfipA89egwSIIFoMuCbd64GygE/Qht169Es6SVQ88DGzFfYcJbiBiYQqtgCOn03p5KC7HmEGJYVlsQWRf/PQDwGtxNU7D2QzgH6qdiWHJT3UCbwR+WF4CkgBZAt5Y4BSQUcAKXG3Ha4B7K5TTKonftBKmhjRNeoDSmzwNFqC6HTfn43nAPNzsBi244PI83EpSi8PfZ+MGsT0JnE7Xif07gC1RXoIxlRG/stiCyP7w008A36h2Nvqh73WkRyoXSH4AN2CqPCJngbcC5NywdrIN9wX1aGUyWUUxK7hMzfkMXW/Ux6DBNlQzAKi2orqPINhGkH8E1dJFBbbjAsex4QC34rl119n0PiY2YlYW28Ca/vs8cBzwlmpnpBeLyWZG4acPVDsjw5KfUuBqsi0rcLUZWWAH8HFc7UXfRBaDrgDOBBkNupLGib2v2x0LFhCaKmqatJq2V/8MOgl0L3AU6Gw034xyEBiNBseguh+RU9D8bjehuNcMMgeRVtxgm07Qe0BeX5T6M1W5JmPKEq+y2ILI/vLTObKZt+GaLr/C4ZG5w8kE4FGymXfjp22Jr574qXspboLOttyCW4rt4/1LQM4CXYpbz7efxwxz8Sq3TC0SmQlMB3F9u1UD3NKk9aCCajsEF6KsB28zmk9CPgtsIFHvhbUxdbjVpYrdPoRXYczgxKwstubsgfDTip/+IXAM8GHghSrnqDvzgGVkM1dWOyOx4afa8VOfwE010t9R1osRWYd4z0aYM2NGDpGJICuLHnuInI5IPeLNxaubjSSWAmkIlkBwLgRnQzAPDXaGRy3n8LyR4FaaGo6LRxhTEyyILIefPoifvh44CbgA+Bmu0/dwGXzjA7eQzfx1tTMSK37q98ApuOUl+yAe7vNeEW2mhkjM+uGYmiTAWXRtfh6L6zqyFs+bQaJ+CQk/h3hLSdSvxat/BngCzaVwa9sfU5LmJ/FTw32aNmMOi1lZbEHkYLiayfvx0+/CTx+Dm/j219XOVigJ3EY2mlTIWwAAIABJREFU81WymYY+9zaOn9oKXI5bd7ut951lE3764BDkKloxnFbC1CQPER9kP26VqMLgmeVAAtX9AIiMJ9GwBEnMwUvMJ9EwFklsxa0aNbUovdvwU78Y0iswZjBiWBZbEFlJbvnB2dXORpEE8K/A7WQz1v+1v/yU4qduxE0d0ttKQHcOUY4iJoPYjKkY9wclcg7IBFzN4h1h8/R4kB241WlKjvK24CVPAk4rerYTN+LbmBiJX1lsQWTl5aqdgW5cDHyy2pmIHT/1JO6m4GM97HHHEOYmWjG7+zU1LwuSBrkct079PkSOBzkTN8H/XwBQ3YhqO0oryOii47+Fn1o79Nk2ZpBiVhZbEFl5m4b4fEvp3xQWnyObSUWdmZrjBt18lyOXTlyDn1pfjSxFImYFl6lJ7g9Kg8eBEzhc67gAmIcGS1HtBJkHnITqk+HrDYicXJTOX4AvDE2WjamwmJXFFkRW3lDOSfYEbm60ebhgsjdH4fr5mfJ8DDdReaGmuUaaskPxakExtUh1PUFuFRqcDmwA0kBhkvA6YAnwIPA4yEqQ3cA6kPOLUtkHvBE/Ff++ymZkillZbEFk5d02hOfK4grNABck9uVDZDP21V8OP9WJn7oaF7DfRi01ZRszHGh+JnBG+GgcIlNxa2QXvIrr93g6cCYisxBvUUktzN/jp9YMSX6NMRZEVpyffpahm9z2HNyI8Bfo34orM8PNlMtPvYCfuhK3Tm/tiFkTiqlJCdwI6z/hBsZsxC0v+gKQAVmDyPhw3wBopevE4v+On7KJxU28xawstiAyGtcN4bkagZP73Ouws6LKyIjillCsITFrQzG1pW3HqUATkAc9ARjjfieHyAm4tbGnFR2xDNcqUPA48Lkhyq0xEYpXWWzTvkTBT99NNvML4B3Vzko3mqqdATPMWK2iqaa2HbOBf8INiMkBM9DgSfB2I9ICKCIKtOCm3PJxS44eSgF4O35quCz2YEx5YlgWWxAZnfcCk3Er2gwnQz163MRBzAouU1M+iXgn4iYKfxXVZYh3MiKnley3FDdSex9dq14+btP5mJoRs7LYmrOj4qfbgStxI6iHiwBYVe1MmGEoXi0oprZcAzIFkTpEBC+xuKjvY0EGt8zsK8D0oudvBX40VBk1JnIxK4stiIySn94HXETf0+8MlRX46d3VzoQZhmLWmdvUkKZJLyDyCSAoma6nYAWwH1gPzCl6/kXg/bXXP9mMaDEriy2IjJoL2i4EPgC8XOXcfKvK5zfGmG7IH0FeCB+0AGuAbcAe3CCbzcCiogN2AZfjp3YNaTaNMV1YEDkU/HQeP/0D3F30u4Hf4QrBofRF/PRvhvicJjZi1oZiaoufCoC3AQuBifipk3Cjr7cDJwKLi/Y+CFyCn3pxyPNpTOTiVRbbwJqh5Kc7gJuAm8hmPGAubsWZmcAMXF+fcbgRiruBLbiO5MfSv8nEu7MHN/LxF4PIual11jRtqq10cIyf2k225b0c2efxavzUSoypRTEriy2IrBY/HQDPhVvvspl64MPAB3Gdy/ujA7gR+Dx+emeZuTQjgfVvNMOVn3oEd7NtTO2LYVlsQWQcuBrMb5PNfAc3WfjrcFMHnQY0F+2ZAZ7Grev8MwseTb/FrOAyxpiaFLOy2ILIOPHTCjwabl8K18Geglu1Zg/QEu5jjDHGGBMpCyLjzAWMW6udDVMDYnb3a4wxNSlmZbEFkcaY2BVcxhhTk2JWFtsUP8YYY4wxZsCsJtIYE7u7X2OMqUkxK4stiDRmxLOJw40xpvriVxZbEGnMSCfE7u7XGGNqTgzLYgsijTEg1j3aGGOqLmZlsQWRxox48WtCMcaY2hO/stiCSGNM7JpQjDGmJsWsLI5XvakxJnZE5BIReUFEXhKRf+3m9XeIyDPhtlxETq1GPo0xxgyMBZHGGNcPp5ytr2RFEsC1wKXAXOBtIjK3ZLcNwBJVnQ98GbihwldnjDHxEF1ZHMnNvDVnG2OIsB/OQuAlVV0PICI3A1cAqws7qOryov0fBaZFlRljjBneKl8WF93MXwxsAVaKyB9UdXXRboWb+d0icinuZv6svtK2INKYEU+i7IczFdhc9HgLvRdM7wXuiiozxhgzfEVWFkd2M29BpDGGQfRsSYvIqqLHN6hqcXN0dyWidpeQiPwVLog8r9zMGGNMvEXSyzCym3kLIo0Z6QY3wW1GVc/o5fUtwPSix9OAbUdkQWQ+8EPgUlVtKTczxhgTW4Mri3u7oY/sZt6CSGNMlM3ZK4HZIjIT2Aq8FXh711PLDOBW4J2qujaqjBhjzLAXzQ19ZDfzFkQaM+JFN8GtquZE5KPAPUACuFFVnxeRD4WvXw98HkgB14krQHN91G4aY0wNiqwsjuxm3oJIY0ykVPVO4M6S564v+v19wPuGOl/GGDMSRHkzb0GkMSZ267UaY0xNiqgsjupm3oJIY0zsltoyxpiaFLOy2ILI3mQzAlwIvAl4DTADaA+3sYAPvArcD/wBuA8/fbA6mTVmMOJVcBljTG2KV1lsQWRPspn5wHXAuX3s2QwcD7wfyJLN/Aa4Gj/9QsQ5NKZCxJqzjTGm6uJXFscrt0Mlm3k9sJy+A8hSPvBO4EmymXdXPF/GREFARMrajDHGVEgMy2ILIktlM3OA3wCjBpFKI3Aj2cwPyWYSlcmYMVGSMjdjjDGVE6+y2ILII30PGF2htN4L/EeF0jLGGGOMGTYsiCyWzRwDXFzhVP832cwVFU7TmAoK++GUsxljjKmQ+JXF9i3Q1YKI0v0W2cy4iNI2pgLi1YRijDG1KV5lsQWRXfkRpTsTuIdsZlJE6RszOCLlbcYYYyonZmWxBZFdbYgw7TOBGyJM35jyxawJxRhjalLMymL7FujqSaAlwvTfQDaTjjB9Y8pQbvOJ1UQaY0zlxK8stiCymJ/uBL4e8VmuCVfCMWb4iFkTijHG1KSYlcW2Ys2RfkbXZu0fAmMqmP47gBXAdyuYpjHlE6xp2hhjqi2GZbEFkaX89A7gt4ceZzMfoPLT/lxDNrMDP/2bCqdrjDHGGDMk4hXyVsddEaTpAT8lmzktgrSNKUO8+uEYY0xtildZbEFk326JKF0fuJVsZmxE6RvTT2X2wbE+kcYYU0HxK4stiOyLn94KrIko9WOBX5DNNESUvjH95JW5GWOMqZx4lcX2LdA/348w7cuA28lmZkV4DmN6F7O7X2OMqUkxK4stiOyfG4CNEaZ/MfAc2cyXyGaOivA8xnQvZgWXMcbUpJiVxRZE9oefzgKfiPoswOeAJ8lmjov4XMYUEeLWhGKMMbUnfmWxfQv0l5/+PUMzt+PxwONkMxcNwbmMMcYYY8piQeTAfAK4dgjOMxa4i2zm74bgXMbErgnFGGNqUszKYgsiB8JPB7gm544hOFsS+BXZzHuG4FxmxBvIfGTFmzHGmMqJV1lsQeRA+endwCtDdLYE8COymVvJZqYM0TnNSCPE7u7XGGNqTgzLYgsiy7N6iM93JbCWbOYzZDO2VKWpsHLvfC2INMaYyolfWWxBZHmuq8I5RwFfA5aRzUyowvlNLYvZ3a8xxtSkmJXFFkSW53bg/iqdexGwgmzm1Cqd39SkeE0rYYwxtSleZbF9C5TDTyvw/wFbqpSDmcCjZDP/SDZj1UHGGGOMGXIWRJbLT+8C3gwcrFYOgB8D95LNTKxSHkytiFkTijHG1KSYlcUWRA6Gn34EeB3VCyQBLsD1k5xaxTyYWItfZ25jjKk98SuLLYgcLD/9EPDlKudiDvAM2cybqpwPE1cxu/s1xpiaFLOy2ILIyvg68JMq52E88GuymcuqnA8TS/G6+zXGmNoUr7LYgshKcCvZ/BOwu8o5SQC/JZuZW+V8mLiJ2d2vMcbUpJiVxRZEVoqfbgV+Xu1sAI3AV6qdCRM38br7NcaY2hSvstiCyMr6FnCg2pkA3kA2M6bamTAxUe6dr9VEGmNM5cSwLLYgspL89AbgXUBQ5Zx4wLFVzoMxxhhjapgFkZXmp28F3gTsq3JOWqt8fhMr8VolwRhjalO8ymL7FoiCn74NOB64oUo5eBLYUKVzmziKWROKMcbUpJiVxRZERsVP78RPfxA4HbgWyA3h2T8bLs1oTD/FqzO3McbUpniVxRZERs1PP4Gf/ihwDpAZgjN+Az999xCcx9SMcgstCyKNMaZy4lcWWxA5VPz0SmAx8FREZ8gBnwD+JaL0TQ0TkbI2Y4wxlRO3stiCyKHkp9cAi4AnKpzyg8Ai/PS3rRnblCded7/GGFOb4lUWJ6t25pHKT7eTzVwC/BFY2M+jDgDvBMYB83HT9+zB1Wrehp/eWPmMGmOMMcb0zILIavDTO8lmzgc+iWuCntjL3g8CH8JP/2VI8mZGJmuaNsaY6otZWWxBZLX46Xbgq2Qz1wCvB67k8AThB4DngVvx049UJ4NmZIlXwWWMMbUpXmWxBZHV5qcPAreFmzFDTwTEukcbY0xVxbAstiDSGEPc7n6NMaY2xasstiDSGBO7fjjGGFOTYlYWWxBpjCFud7/GGFOb4lUWWxBpzIhn62AbY0z1xa8sjlcPTmOMMcYYMyxYTaQxhrg1oRhjTG2KV1lsQaQxJnZNKMYYU5NiVhZbEGmMIW53v8YYU5viVRZbn0hjRrxwgttytv6kLnKJiLwgIi+JyL9287qIyHfC158RkddU/BKNMWbYi64sjqoctiDSGIO7+y1n6yNVkQRwLXApMBd4m4jMLdntUmB2uH0A+P6gL8cYY2Kp8mVxlOWwBZHGjHRCuNxWGVvfFgIvqep6Ve0AbgauKNnnCuCn6jwKjBWRyRW9RmOMGe6iK4sjK4ctiDTGRGkqsLno8ZbwuYHuY4wxpjyRlcM2sMaYEe7xJ56+RxonpMs83BeRVUWPb1DVG4oed3eLrCWP+7OPMcbUtAjL4sjKYQsijRnhVPWSCJPfAkwvejwN2FbGPsYYU9MiLIsjK4etOdsYE6WVwGwRmSki9cBbgT+U7PMH4F3h6MBFwF5V3T7UGTXGmBoVWTlsNZHGmMioak5EPgrcAySAG1X1eRH5UPj69cCdwGXAS0Ab8O5q5dcYY2pNlOWwqFrXI2OMMcYYMzDWnG2MMcYYYwbMgkhjjDHGGDNgFkQaY4wxxpgBsyDSGGOMMcYMmAWRxhhjjDFmwCyINMYYY4wxA2ZBpDHGGGOMGTALIo0xxhhjzIBZEGmMMcYYYwbMgkhjjDHGGDNgFkQaY4wxxpgBq/kgUkROEJEnRaRVRD5W7fwUiMgDIvK+Mo67S0T+IYo8meFFRK4Xkc/18vpnReSHQ5knY4wxpqBfQaSIvF1EVonIfhHZHgYy50WdORFRETl+kMl8GnhAVUer6ncGkZebROSqQealv+f6goh0hu93Yfs0gKpeqqo/KTPdPt9PEZksIj8KP+dWEVkjIl8UkVHlnLMo3WPD8ycHk05RehtF5KI+9mkWkWtEZFP4Hr4UPk5XIg9RU9UPqeqXAUTktSKypeT1r6jqgG9EjDHGmEroM4gUkU8C1wBfAY4GZgDXAVdEm7XBKQpWjgGer2ZeyvRrVT2qaPv3vg4YbIAmIuOBR4BG4GxVHQ1cDIwFZg0m7aEmIvXAfcDJwCVAM3AO0AIsrGLWjDHGmNqgqj1uwBhgP/B3vezTgAsyt4XbNUBD+No/Ag+V7K/A8eHvNwHXAncArcAKYFb42oPhvgfCPLwlfP6vgaeAPcByYH5R2huBzwDPAO3An4E8kA3TmANcDjwJ7AM2A18oyd95Ybp7wtf/EfgA0Al0hOncXnotRddzVfj7OOCPwE5gd/j7tKJ9HwDe18N7+gXg5z28dui4MG8PA98CdgFXAccDS4G9QAYXjPb4fpakfRXwLOD18nmfA6wM018JnFOSty+HeWoF/gdIh69tCs+/P9zODp9/D/CX8D26Bzim6DwZYHr4+NTwMzkR+BkQAAfDtD7dTT7fB7wCHNXLtZwU5nkP7kbjb0o+y+uAu8JzPAxMwv197wbWAKeV/O39H2B1+PqPAb/o9fcDL4Wf0x+AKeHzEn5+r4bv6TPAvOK/J2BUeK1B0fs3pfTvBPib8Dr2hNd1Ukn+/jlMfy/w6+L82WabbbbZZttAt75qIs8GfOC/e9nn/wKLgAW4L/qFwL/1kW6xtwFfxAVdLwFXA6jq+eHrp6qrifu1iLwGuBH4IJAC/gv4g4g0lKR3OTBWVS8AlgEfDdNYiwui3oWrXbsc+LCI/C2AiMzABQ3fBSaE1/SUqt4A/AL49zCdN/TjujxcIHEMrvb2IPC9Abwv/XUWsB6YiHvvvowL3sYB03DX0u372U1aFwG3qmrQ3YnCmso7gO/g3v9vAneISKpot7cD7w7zU48LXAAK5x8bnv+R8H3/LPBG3Pu9DPhVmN/luM/3JyLSiAsc/01V16jqO3FB6Ru051rai4C7VXV/D9dSB9wevlcTgX8CfiEiJxTt9mbc33Iad1PyCPBE+Pi34fUXewfwelyt7ZzwWETkAuCrYXqTgZeBm8NjXhe+N3Nwf5NvwdWWHqKqB4BLgW16uGZ6W8n1zAnfu0+E7+WdwO1hjWzx9VwCzATm425CjDHGmLL0FUSmgIyq5nrZ5x3Al1T1VVXdiQsI3zmAPNyqqo+F5/gFLnDryfuB/1LVFaqaV9c3sB0XxBZ8R1U3q+rB7hJQ1QdU9VlVDVT1GdwX75Kia7lXVX+lqp2q2qKqTw3gWorP06Kqv1PVNlVtxQV4S/o6rsibRWRP0Talh/22qep3VTUXXnMnLnCdoqpZVX1oAOdMAdt7ef1y4EVV/Vl4vl/hauSKg+ofq+raMC+30Pvn+UHgq6r6l/Dz/wqwQESOCV//Aq42/DFcLfe1FbyWRcBRwNdUtUNV/4yrLX5b0T7/raqPq2oWdyOVVdWfqmoeV5N3Wkma3wv/9nbhPu9CWu8AblTVJ1S1HVdjebaIHIv7vEbjalglfC96y3dP3gLcoap/UtVO4D9x3RLOKdrnO6q6Lczf7fT+2RhjjDG96iuIbAHSffS1m4KrWSl4OXyuv3YU/d6G+2LvyTHAp4qDK2B6yfk293YyETlLRO4XkZ0ishf4EK5miTCtdQPIe2/naRKR/xKRl0VkH645eayIJPqZxC2qOrZo29bDfqXX+2lcE+ljIvK8iLxnANluwdWU9aT0syZ8PLXo8UA/z28XfZa7cHmfChAGQzcB84BvqKr24xoK+nMtm0tqXUuv5ZWi3w9287j02oo/i+L/gy7vW1g72gJMDYPX7+EC5FdE5AYRae4l3z0pPUcQ5qfcz8YYY4zpVV9B5CO4/oR/28s+23DBQMGM8DlwTcdNhRdEZFIZeSy2Gbi6JLhqCmvECvoKNH6J65M2XVXHANfjApdC+j0NIOku3TaKrg/XZ67gU8AJwFmq2szh5lyhsrrkS1V3qOr7VXUKrqbvugGMcL8XuFJEevq7KP2swX3eWweaz9Bm4IMln2dj2JSNiEwF/h+uW8A3Srot9PU53wu8vpdR5duA6SXX2t9r6cn0krQK/wdd3rcwT6nCuVT1O6p6Om4Q0BzgX7pJu6/rLT2HhPkZzPUYY4wxPeo1iFTVvcDngWtF5G/D2rU6EblURAr90H4F/JuITAinTvk88PPwtaeBk0VkgYj4uObJgXgFOK7o8Q+AD4W1iSIio0TkchEZPYA0RwO7VDUrIgtxffgKfgFcJCJvFpGkiKREpNDkV5oXcAN83i4iCRG5hK7N1aNxtVV7wr6E/28AeSybiPydiEwLH+7GBR/58HF311Dsm7hRzD8pNCmLyFQR+aaIzMf1s5sTTvmUFJG3AHNxzcB92YkbGFJ8/uuB/yMiJ4fnGiMifxf+LrhayB8B78U1TX+56Ni+ruVnuCD1dyJyooh44ef5WRG5DDeI6wDw6fBv+rW4Zvmbe06yT/9LRKaFn/dncU3e4G5c3h3+HzTgmu1XqOpGETkz/HuuC/OT5fDnVewVICUiY3o49y3A5SJyYZjWp3BdPZYP4nqMMcaYHvU5xY+qfhP4JG6QwE7cF/NHgdvCXa4CVuFGfT6LG3hwVXjsWuBLuFqhF4GB9M8DF3T+JGzufLOqrsL1i/weLkB6iYEPDvgI8CURacUFvLcUXlDVTcBluC/gXbgg8dTw5R8Bc8O8FK7947jAYw+u31vheXCjeBtxI4wfBe4eYD7LdSawQkT242pcP66qG8LXvkDR+1l6YNhX7hxcP70V4Xt0H24070uq2oIbHf8pXHPsp4G/VtVMX5lS1TZcP8GHw/MvUtX/Br4O3Bw2+T+HG0AC8DHclFKfC5ux340LxBaHr38Vd/OyR0T+mRJh38OLcH02/4Qbjf8YruvCClXtwI1mvhT3GV0HvEtV1/R1Lb34JW6gzvpwK/wf3Ad8DvgdLhieBbw1PKYZd3O0G9cc3YLrz1h6PWtwN2zru+sjq6ovAH+PG0iVwf1dviG8TmOMMabiZGDdzIwx3RGRjbipl+6tdl6MMcaYoVDzyx4aY4wxxpjKsyDSGBMZEblRRF4Vked6eF1E5DvilqR8RtxcsMYYYyooqrLYgkhjKkBVj7Wm7G7dhJvgvCeXArPD7QPA94cgT8YYM9LcRARlsQWRxpjIqOqDuEFqPbkC+Kk6j+LmUu1tfk9jjDEDFFVZbEGkMaaaptJ1kvYtdJ0g3RhjTPTKKot7W4nGGDMCHC+ibWUeux2ex81tWXCDurXm+6u7yfdtyghjzIgTx7LYgkhjRrg2XAeYcnzRrSd+xiBOv4WuK/1M4/BKP8YYM2LEsSy25mxjRjjBFQTlbBXwB+Bd4cjARcBeVd1emaSNMSY+4lgWW02kMabiC7ofSlfkV8BrgbSIbMEt/1kHoKrX45bSvAy3+lQbbmUiY4wZkeJWFlsQaYyJrElCVd/Wx+sK/K+ITm+MMbESt7LYgkhjRrhCE4oxxpjqiWNZbEGkMSayJhRjjDH9F7ey2IJIY0zs7n6NMaYWxa0sjlt+jTHGGGPMMGA1kcaY2DWhGGNMLYpbWWxBpDEjXBw7cxtjTK2JY1lsQaQxJnYFlzHG1KK4lcUWRBpjYteEYowxtShuZbEFkcPZ3nUCJMJNOFzbXfx7Mti0so79r9ThZp8vvNYTKfkJh1dOShT9TBx6fPS8vDdlQR1QXzhnyT6JomPrin4vTitZsl9vtIefhWsuTr+wSdHzh94fDfI53XxffUk6AHkgCH/mwt+Doud2eCe87aY+8lkT4tiEYowxtSaOZfHwDiL3rpsN3Ay8ljGzWsPnjsUtz5MHOnGBwaGAisMBRJLDAUep0iCrNPCSoq0QeBSCk3z4nOICDg3PoUBjuF+AC0w6ORyYFI4RoIEjg0O/KP/FgVLfOg4sB87p177laN+3FFgSWfpREm8vMKaMI58AbqpsZoavuBVcxhhTi+JWFg/vIHLMrBfZu24/sBgXOAKMAk6qXqaGIRHte6dB0GiTH6Y6qp0BY4wxZjgb3kGk8zngAfaua8XV7nVXszjCRd2LItZBZLlvTr6iuRjm4tYPxxhjalHcyuLhX3M6ZtaDwANAMzCe8poma5tEHOUl6vvep/bkqp2BoVLoP1HOZowxpjLiWBbH5XvgqmpnYFgTL+Igsi5uN0eVUFftDAwlKXMzxhhTOXEri+PQnA1wP/AIcHa1MzIsSSLiPpH93E2DTLD8D2sB5Pj5+2T80WPDgw//rauW/t0rh29mikdjK4R9PQWk7qgzy8x9uf9fDWUeF0txuZs0xphaFreyOB5B5JhZyt51VwF3VDsrw5JEfB/S3/SDoE2fuNeNEm9qfEzGjFlYsTzUHVXukRZE9iGO00oYY0ytiWNZHI8g0rkLN+3Ka/qzs6oGIhK3z6NM0Y3O1nz+RX1ieb2ueWElGoQBmbqpijSsZQwCIZ/zaG+LLPDS9r1rdM+Lewjy4wEBDWs1NfyM1UPD59EEqh5oEg3KbZYeIX87jjVNG2NM9cWtLI5PEHm4NvLW3nZT1e2g68l3HK3QQaIhKSJzhiiX1RFlrCzSwMtrF1V9fLbmTiS7exPojCE6Y9z+lwdlREXMxhgzTMWtLI5PEOn8HngeOLnHPTT/IkHH+Yce59vXaKL+URFv0RG7qj4BQVsYLySBOpBmEZld8ZxHyYtw1iORaYh0oDqwIdo6MieXNMYYY0aKeAWRY2YF7F13NfDLHvfRfEnnueBE8u0b1KtbKl6y66orQYeH5s87IglkB17yRSThg8wXkeHdPy6RjKzWTEQ8HdW0if0Hjh/QgRpEkp0oEu3BiAmC49gPxxhjak0cy+J4BZHOLcAXge5rCzWY2s2TMwk6mlWDRwEQyYHk0eDY7k+hkwg6J0EneHXLlIQHGqBBOFo4OVpEThv8pVSIJKINrppHZwYeRMa+JjKSKHi4GlFt98YYM0zFrSyOXxA5Zlaeveu+CtzY/Q46qocjU2gu5XYZwPmCzsVuCewiicTDw+ujjjYvMvqo9kNz77jYsLAGeOF3PWIQk0Q9ZDxycc9/v8Xx7tcYY2pNHMvi+AWRzs+BLwDdDLKQXaBlzwfTL/mOo1V4Drz9iHS40dGCeIklfR8cgQjCnZc+d+OmzsyeSZ05fcjzpGHqguOzuAm4E4BsXvXC+jFTU6/UNdSfnWise3TCwmO6zuEZzWCfuNduDltxK7iMMaYWxa0sjmcQOWZWJ3vXfQ247ojXvLoNBB0Rj+ANjnfhTFAc1nRoIBmQDOCBNpHwcyJybLR5AfBUVVvdeQsTdXeZuDsIN1RVOvccUALVZHNj4CWTXkkQ6gHqJb39IrI/fzCrnaqjOrMdbUCggQZJvy4QzzuIHjrHkWFs/GsirTnbGGPMkIpbWRzPINL5MfA5YHKXZyVxHF2bW4dKPWjabaH8wQ6FfSX7Fa/WUvjZjiTWS92oDsRLo9qK5vejwThgfl8nlroxos89P7o/mQw68x0Pf+aX9QDHLpzzTPN0b+VwAAAgAElEQVTR44rTf8lLJo4HOPqEqa3evBnjX7jryWTrlsxJq+9etUndBNza0Fg/PlmX2NU8aZw7qjbrByMc8j68xLEJxRhjak0cy+L4BpFjZmXZu+4/gG8WPy0i01WSD6O5c6uUs2L14daXUWiwR5FRIEcjEiCeJyKgwVryHR3AvF6OH0DArCIJby2gXjJRmjcFXgRo39eW8RJeJ2ibePJyfX39HvGkGRBV3ZDrzO/uzHa0JeqSz9KZ27Nv486nQLT5xBkCIKOaG/ufp2FpxASRxhhjTDniG0Q6NwCfBdJdnvXq5pMP1kIQo0nG9Tg69hYeeNSNfo5E3TzEm0OiAYLOpWiwiO6W4xtAy7GXTMgpl53Z0/vi1Y9tmgWwddmzqoHOrke3TZgybs7BA+2P5zrzJwIIsq9tb5v3ygtbk6PGNJ4iIgcTL3gLAOZd9b0aaMkeeewTM8aY6otbWRzvIHLMrAPsXfct4Orip0VktCYaMuSz60GPq1LuBifo3KNeYqeINwERSNQvQYNtBPmX0Pw0oOi6BhS1Jbym+pUgJNLNgddQ5+V2tZLL7ENEWhF2AZpoqN8X5PJ7g6BzX74z95gIr9TVJ3NhGh1NzY0HxZMja1mDQElENOVQ/egNdOxrAI6OJP0RLG5NKMYYU4viVhbHO4h0rlXVj4hIl/khRWQmyUY0yC8laK/OqOnByGfPQ4Ol1B91OO/iTSHhTUGTgG5Fgy0EuYWH5q/sBxGRcVcsPFNEoKHhcURO79iSeXDvXY+fr+imhJ+cAZDw69YmguSc9vbOpZltexYm6xMPpSaNPauQjt9UTxDocg2CZYgcEJFlgGgut0gSiUj+rmTc7CXaumUZba/uA416VaG4/S+XLY79cIwxptbEsSyOfxA5ZtZe9rz4LVXeAJwBrAemicg4APESS5T6pQQd8QskNV+nQW6deMlZmmvfw55NawjySl1TA4m6OvzmY7T11Qd106pOGho20t5+bH9TpqjWPDGuuaPpokUPSV2yPXlUw8t4HvLYi0creqhpOp8Lmgv7+zMmPpRoasgDgucBNAKKaoAnkY5qltHTFmvngf+fvfeOs+MqD/6/z8zcvr1Jq5VWqy5ZliVX2ZIlG4ypBhLCCyRAgDfllwKkvelAIARSfgkBQggJpJAAISQhCeSl2ARbsoplSZZlFUuyrL5aaXu/bWae948zK12ttkna1eruzvfzubv3zpw5c87M3HOf85ynbCXfP9VC5KyyiSy2JZSQkJCQmUixjcXFL0QCoP8A+lEgCawBzqtaZ0RkLQBiN01b024E9TaQH9hGrHwJmZ4Wbd53Vf5vYK5EQJcu7iGXe4aLrXH6+leiGh+j5jzG4ccHsKsroqnb1lyZ/tG2j+FdlgfV1/lD7xf8/JuWR6pK60as2bazE+7fdXNTvmbF9l2+IYpt9hsSEhIyEym2sXhGCJFSsbxDu499DvitYNM88Oeqyg4QG/UTwGHgtulr5XWifoXmB5/W3GAPsGq0YiJSTix2P40LUNUzDAyewnWDNI2X/hiqqj0sy8a2s+Ry38Wxyxjs2YJIEK5HKdu81vW6+1uc3v4up6F6iwJl82vy4jhROxW7d9T2nnpml4oF6ewAmcEU6guqxmxTbL0iHlAyNYAtV2YY8vI2vmdRtcCXuatG9rD3ZICujq0myHvhtVKhvKIG2y6++zyNFOMSSkhISMhMoxjH4hkhRAb8GfABYEgosUA3gAZ3JnIGP78LWMJwb+5bGr0dZDfJmqu9skdBRBopSY0ecL20LI9IxBRmK76/Ee/K1I5Vj20wb/r6t9DSYkwBGuoPYFlrxjz5YOdmADo6d+B5G8Ysm40/TTy+acR9va1bmXulzKwXT2wh3WfTenIl/Z2LRjwukdhGIjnmaSdIZDIqKRZmldo1JCQk5Bal2MbiGSNESsXydu0+9nng10cuYDVixxpRBXW3oP6tbiPp4iT34KQiYtn34uX7tW7VVlSh/dh81L9+r/NMeqcxdlTB9/PjHzDUIreH6ETCXgITCUGuY3xfBjub9MxzW6Xxrs2Xtp0/VkPX+dUTbcANMvHrEhISEhISMguZMUJkwJA2cnR7QBGQyENB3MVbU5AU5wTxahWRSzaQYkdKpOHuzQBaWn+ATM8ObTsSIT84+tLyKOhgf1Js+x4A70Lb9xhIPwMgiXjOalqweVjpy29zef8ahMgJTKh09DKqjXScimlf67OA4nsRBnpupnZwZubhGQWxrnP+O/HAACEhISEh41BsY/GMEiKlYvnFQBv5q+MXdh5Ac81Aw7hlbw4uTnIvdjyLFXlAhpabR0DKG9ZQ3gBl886Q7tqL+qpndt4zUllVdUXEKfjsd39/d1f6xTPPpO5a5qXmlSOdXa5mcg9qSfK01bRg9BZmsylKUqPvH9bMCRQZ76mfQ27wUkxI7et5ikz2eYwOs/DYoU8Wnu8V23LArcD1B4gPhciQkJCQyaLYxuIZJUQG/P/ALzCWNhJAJApyGnT6hUhxThGvTorI+vELFxyWqGgkUdGobrZntDLpw6e39+04NCdSV9Hr9g7Es6cuLtFs/lGAnh88R4/I2ap7Fl1MNFYdlYjTpdlsm5H/FFrbuujpQYa0j7n8yB7ZIzOBJ3oMTeRIZDKLyeVHt/UE8L1t11Tn6MwaWVQErOud/XqT25aQkJCQ2UoxjsUzToiUiuUXtPvY3wAfnEBxd/wiN4FI6rSIXP/Suh0plRVvOIkgeuQ7SdDLwp4I2dMXV2ZPXxz5WNUFnbtPLCjpGthaua7xdp57vgoAz9uB768nFtt3aQnbdefT2nYEI6BHMc+PjxEYh/8f2wHnehArN24ZnbTp2PjnmkGEqSpDQkJCpp9iG4tnnBAZ8MfA/8dIeaav5FYIKO1ry4G0DrRvI9tXjvoRVB3EylG7vEPqbrtdIvHKsSoQsSySlYsAFM4D+Jn8/v7dR3q7f7B3bA/pgP7jFzcnGyp+GKsueSUAqmVA2TCFoqBqI9J07d0cAb3GaAaqE7CJnDSV/q3wbNwk5PrtcEJCQkJCJoniG4tnpBApFcvPa/exLwLvH7Og5VTg59uZxpA/2v7yTtpPvPbqHR60HnmJ6iX9jCNEFiJr31ELmu346Ies9N7dI4fPGYXWrUeXpxbWbM1c6EmWLq6TaGmiCwbXcKa7O9sz+Hy+K73u5WePtpQvrG5f9po71vqqu/C5F1BVRSzBWdHUD9SJyESEsGuU+CayQq6TJUUW1zf5Bim22W9ISEjITKTYxuIZKUQG/BHwM4yljRRrNVbkNH7+AnD7zWrYEJrPtNF+YqQsNEEBb5ke/pbHslcfkdI5KydSp1h2BCDSuLA/vffZa2wQ8wdOtc83bfNfQLkkvCYWVjslaxNOSXNr3h3IJlDV3qMXNdc5qBhHl+7K1fPj3u5jc/ycdzTXnVmZ7uzdku8d2Iix1vBq7l6cFbHioBaWlYm/+t411/R1ERnf6sOftKyLM/m7ERISEhIScsPM2B9KqVjerN3HvgT84tgFrYXYMW5myB/NpVvoPvcyXWdrgNpxitvk+vpgzjjFhmFZ42rkJBLNJe5df7j2Nz9ckzl88MTF3/7VofA+GTsRqb6izf0Z9QazJcseXZOIzKtqAgYq4xEh75YCh8SxKoBstj3ThuAAbfi+jwnabZahPY1i+ea978WBdqB0wn2ayPK3TFq8/9mznC03EFYiJCQkJGRyKMKxeMYKkQF/DPwsE8k+Is4mcLeg/j1cznozqWi65zjN+3tws3cB9RM+7vTOe7Tz5FZyAxHcTCl2bAAnnsPLRsj2NyGSQ+w+oslufBc8N1Gy/ra0WO/Y5rZe9OK335GQSMRq/+yn5uP7cyUWy8z/h68ftUrLVonIOoDEHevm133441taP/l7TVbUaY3UVNSCngIsFCRqpVE9q2gul3YHBHC7B7M2etJJRjvxNQHg5bxOgcHkgtKI62bd/ED6LIoVKU28LJZcikEp5SWHRKQSpJmx/coCV3HAstsRywo+D/+mCSbUTwY4E2zyC+p2sZxu7FiGSDKCk6hErAiqLrmeVjLdDZiMU0G90qLt++dLzdpzE71PxYpQfEsoISEhITONYhyLZfJMyG5NtPvYFzBONhPDd3ei3gOT2ob+tgO0HusnN3gvUym4W84Ra+3/GnXZO3vixOOR+ob5kkiuklGeVG0/vkVPbhtVI6uud/rU73154dDnSCr+g8rbFkTFkSUi0pBrT/cA56OV8VHzfAN+5JFHd0fuvOuaQhqNijMlMj/AE1Kz9tVTVfmtwgrb0r8qGTsi1mg80pveq6ojxigNCQkJCZk4xTgWF1uu7+vhj7iWUD5iP4BYWyfr5Npxaifnnm8iN/gAU635tZyBMfb2xBYvu99Kpm4bTYAEkJqlD0nj+lH7L469sPLV9zw99NnN5Kq9vtxmL29FvUhiv1VXecaur+6UqvKXpbz0zEh12KtWPz1pAiTA1E2EZsP3A0SQ63yFhISEhEwSRTgWz/TlbKRi+SntPvZPwPsmdoCARDbju9tQbyM34KWr3c27aXtpyrSP0rh+D/HyckRsEHCiYwROl5eBdROqd86qzXj5bdr83IMj7S/fvOaegQMnT+RaOhZHFtRr6QffflpsayEj2Hf6Hd3bs/936524bhLAamzcGn39GybX9nTqvkCzRkq67gC3ISEhISGTRrGNxbND0wKfxATBnjiW8yDI9us9oXq5Hi682MBUCurlDcskVb1MklWLJVm5WKKpuWO06C7gmQnXXb9mI3PX7Bhpl4gk5v38Y075K9c/3fCFry60mh6JES3fhh17DuRUYVmrumJj/J1vuEg00kssdiD2o2+9b9JnTVOniSyub/N1MmSHU0yz35CQkJCZRjGOxTNeEwkgFcuPa/exrwLvvqYDLacRP98LlF3zSdtP7AfdPH7Ba8SOviCr37QU8LGc8ms72E+iVgaRcY0uRERkwd0btHTOFj3+ww2of4Vzkth2Y9W73nHOsu1q7CQy/8G5EASM7H55h3a/NBf1FwdlF8V/9FV7/EysXSLRvoJqhjvIOKD3MkuEt1uGIvQIDAkJCZlxFOFYPCuEyIBPAO/kWrSvYjViRS/g5zxgwgG/ARjonIprO4jlZMWOJK/vcF0H/gHUWoXIxNpXUls9XIAkVtYsqx/rEid2VTYcEREql26gYgnatn8L/c3rEfslKUmV2A2LPJzk2LaQXvZp1L2mIOmM7K09GUxa0MmQkJCQkJCZxqwRIqVi+VHtPvY14F3XdqDMRZzdqHs3ExRA1fdy5AbuuI5mjk4kudu6/c33Avde1/GqadBjIIsR2QkyIUFNnNjt3PHW3dr+Uo6e5jl4eVtWv6lbbOfOMY8TQSuWluPET0q0dOJ5tO3YJjzZBv5IYX/kUtYavUJovFahc6IU15TwBgiXpkNCQkKmn2Ibi2eNEBkwpI28trtk2ffi+U+B//CEynef2wtMIEyQ+NjRXiwrj+cm8PMloxTsIVk1OMHWXkYV0COodqJ+FbAWUHDnYkW2IvZyRMawowxaGSu5VxruhHnrTqiX7RkuQGrnqX3aeaL3UlbCoavruVnUjSm0XiocK7GldsmIDjuXsKNj7795TCBX90xgavO1ishrgc9gArh/SVX/aNj+cuArQCNmTPpTVf37KWtQSEhIyC3J1I3FUzUOzyohUiqWH9HuY98A3j7BQ3qBF4AIllPl9ffs9F23FEWdspKVIjKykNF1dvynIJJolcUPvUCq9j4RqdW+i1v12PdHtqGsXb7fmn/3tXk0q38A30sBw+NGCrAMP78M8jnE3oXYGfBtVGMgeUCxnHpEFpu6tBP1D+Lnl4lYHVedquNELz1nJ9a+dPd+apdcU1emkdnieDZls98gh/pfAo8C54DdIvItVT1cUOwXgcOq+kYRqQWOishXVTU3JY0KCQkJuUWZirF4KsfhWSVEBnyckYRI1eGhYnYBFSBGKyZC5kLnmd2P/ljj0g//ytaG97xt9DtdVt9BT/NefC+OiEu8YpBEuZDtT+F7FurbsuThxdiRlIgYpx0n5lBSdwQkyEUtmPcqOPE+VI8E21cF7c3gu7tBfezolQKc6iC+NwiMt4wcRb316Agrx56riLUfxEO9JsAIuJZ9bJw6x0a1mHT1xdTW60am1pj7PuC4qp4w55KvA28GCgcvBUqD+KUlQCfXEts1JCQkZAYwhWPxlI3Ds06IlIrlh7Tt+b9A/btxEsvwMqdwB7P4+aXYsaNESuuxo8txs+3YsUbQLsBGpMwpK01G59S2pZYtwu3pPWyXpKrFtusF7SY/eBAnPhfLWSpzVq1l7ur5l09q7xDLuWp5W910Tt3MAdTN4sTrZNmrl8jwIFGqvXjZOtSvAVy8/AtAFhOTcRPwYlAO0BfxvX6M3eSNBvMW1F87wZIzlVATeeM0AGcLPp/j6mfzc8C3gPOYXOpvV9XQqekGEJHfARar6k9PZtkJ1KXAMlU9fqN13WxE5GHgK6o6f7yyIdOLiGzCLMmuGGV/I0ZAKlcdSUty6zJFY/GUjcOzTogEINf9t8AHyPdCYYBsLzsXL9tLrOp5+s++oeAIn8TcY93bdzTnLra9Yv9PfvDSMRJx3PXf/ftD8Xl1m8kP9GInvk009irc9F68TD9iCVZsQKNlvohYAKraTq73MOnWKzWI8cqdmpzriR19ENV+0Bfw8vOAJgDUfwFj12gXHGXhe9uDcDpjpRq8LjTdfYpcf7fxf7YsVIVI4gXTeQREyPZN/Dny3UV67KkXiCZ7pem+W8X2cTTs8YvMDG4gwG2NiOwp+Pw3qvo3BZ9Hqnh4YM/XAM8DrwSWAE+IyNOq2nu9jZpJiMh7gV/DXJte4D+A31bV7tGOUdVPTrT+ayl7I4jIauDPMZNcAV4GPqyq37kZ579RAg3NB4CfBRYBXcBO4PdV9cAN1v0URoD90iS086PAUlUd04lURH4C+FWMyVMf5jv4CVXddqNtmGpU9WngkgApIqeAn1bVHwT7z2C0aUXHFI3FUzYOz0ohUhoe3q/NT/0n8CMj7C4j27kOO74VdeP47gqgHLfvYmpZ06LCgnYqMXD75z66Nza3di3qb0c9xUk+irpPYsdcxCol1xtDHBERS9U7hJfvpv/cvVfFkLScpxF7E+k2X1PzXhAvuxC4HEJH9Qzq1XG1YFOG7y2fqumLnt51nmzvVaF8boBSfPcOcgMvTmKdU8XM1bFOHu3j5Gs9Bywo+DwfM9Mt5H3AH6mqAsdF5CTmh+3ZSW1pESIivwb8BvAe4H8wGoXPYwb4jSPZK4mIo6q3ojnAt4G/Ah4LPhdbTNjPAG8AfgbYjhmLfzTYdkNC5M1GRH4V+C3g54DvAzngtZglzlteiAwZkbHG4ikbh2fNct0IfHzMvZa9GTt2H5FUOU7yhzgly+1U/EJsXl3LkO1kbG5tR8V9azeKJeX4+RKcpI8dOY7YFeIkE8QqsiRqNxItM3EdBy9m6D+7ETR66Twm9M5FIqkEXnar+t4Jbd2X9XtOHdLeM+bLrP5zqFuBufHDkJcnS4DUgY6X/ONPbvVPbt/in92zxW85sI38YNVk1H31yYrix2N2aCKnNl/rbmCZiCwSkSjwDsySSSFngEdMU2QORsNwYhJ7WJQE9tIfAz6gqt9T1byqngLeBiwkCFcmIh8VkX8Tka+ISC/w3mDbVwrq+kkROS0iHSLyYRE5JSKvKjj+K8H7JhFREXmPiJwRkXYR+d2Ceu4TkZ0i0i0iLSLyueC+jteXGoz27ouqmgte2wu1XiLymIg8H9S9Q0TuKNi3QES+KSJtQR8+F2y3RORDQd9aReQfAy/TifQlISL/ICJdInKYMcKnicgyjOPBj6vqD1U1q6qDqvrVIS9XESkPzt8WtOdDQ6tPIvJeEdkmIn8anO+kiLwu2PcJjGnS50Skv6BvK0XkCRHpFJGjIvK2YHs0uE4fCD7bIrJdRD4ixgP3d4C3B3XtH6Ev5cDvA7+oqt9U1YHg2fq2qv56UCYmIp8WkfPB69MiEgv2PSwi50TkN4Jr3iIiPyIirxeRY0F7f6fgfEPP57+ISJ+IPCciawv2rxKRp4L7fkhE3lSw7/Uicjg4rllE/k9hG4L3/4TxKP520OffKLj3TlBmnoh8K2jbcRH5mWHt+0Zw7/qCNow1MZ46pm4snrJxeFZqIgGk4eHntPmp/+byrHiMwvJK3P7exJzSmgee+IeXvYzbqp4bEct2gBy++yzqPYhYj+Mkq0AGUT+FODHEOohY/Yh1jFS9w0DLDpAI+X4P38sFgbUTDLbOUVVlsO0QdqQKsZZQ1vQ0qhdQbxnGRmEkJm8ikOnpYqB98rPsjIgWwwTm2gLMFynC1DnWqKorIu/HaDts4O9U9ZCI/Fyw/wuYCd0/iMiBoDm/qartU9Kg4mIDEAe+WbhRVftF5LsYT8u/Cza/GfhfwE8CMeA3h8qLyG0Y7eVrMVqFT2I0mmPxIOZHZDnwrIh8U1VfBDzgV4A9mEntd4FfAD49Tn0dwHHgKyLyJWCnql4saONdQV/eGNT9LuBbIrICY9z/38APMVnHPGDoR/69wesVmFBi/4ix7SrMTjZaX34Ps2y3BEgFfRmNR4BzqjqWVuYvgHJgMVANPA60AH8b7F8PfBmowSyJ/62INKjq74rIRgqWs0UkBTwBfAR4HXAH8LiIHAq+P+8CnhaRHwBvwXy3PqGqnoh8krGXsx/APFf/MUZffhe4H1iHWfb8L+BDwIeD/XODOhow1/+LQXvvxgh0e0Xk60OOHJjn88cx9/WXgP8UkeXBvm9j7v2rMffqv0TkHlU9Gly7t6nq0yJSiZmIXIGqvluMjeSl5WwRaRpW7J+BQ8A8jHbtCRE5oar/E+x/E+Y6vg/4A8wzdP8Y12dKmKqxeCrH4VkrRAZ8nIkIkYYyrMgZouVz7Djz8bJ7cNNBkGt7LeJsRb1N+O5ZceKPgmwVYQF27AVEXq+qA+T6ThFJ2Xg58LJ3UxCHUFUh17sV9CF872lsa4kOtCwnNe8lMYPcVUKkevl92nO+n/7WLfge9F1sIFV9HstWxAIE3Ixg2Uqi0rbq14xtgyjWzRPs1K/yt/37NjwvgqqgatGwNGMtv+dWspOsHb/IzGACM9nrJrB5+86wbV8oeH8e8wMSciU1mCWqkZamWzA/2EPsVNX/DN6nh93PtwLfHtL6ichHgA+Oc+6PqWoa2B9os9YCL6rq3oIyp0Tkr4GHGEeIVFUVkVdgllD/DFgkItuAn1LVlzBLxH+tqruCQ74caLPuxyy1zgN+veBaDGkw3wl8qsDr9LeBgyLyvvH6gtHo/oKqdgKdIvJZjNA2EtWYaz4iYkKovB24U1X7gD4R+TOMMDskRJ5W1S8G5b+MEeznABdGqPIx4FRBnL7nROTfMffykKoeFJE/wAiCc4D7rsGBpJrRn6sh3onRgLcG7f0Y8NdcFiLzXBZavw78DfCZoO+HROQQRvAdEiL3quq/BXV9CmPjOySklWCWUX3ghyLy3xiB86PBeW4Tkf2q2oWxQ70mRGQBRjh9TFUzwPPBRObdGBMRgG1DtrmBZvOXr/U8k8VUjcVTNQ7PaiFSGh5+Vpuf+h5mhj5GQasZJ3UcO7aJYHkCJ74JkS3kBzcicpBIchmRkr3AQlV9Riw7BcxB5FEAvPyOINd1A1YkR1nTFnpPN4IuVNUuBrv2qegGfP8FSdVWYEf3S2pum9iRO4ES7W/9vnaeKkcslWgiT7wMvXB4LoOdV2aO6W9dOmIfBjoPUn91xB9Vhf7WQ2R6+zTdlb3GS3jdqKpDbnAeufziSxtPHGj1zxw5QLK0R+5+dBUaGP7G4tXkcz2oKrYTE+fa0z6q5+a4lB5RIHALAgQz+ApDaQ5FnEDLnNL2/QmpWZu+oc7e6ghIMeiFZx/tGGP5kWwc64P9Q5xldOYV7lfVQRG5Kt7rMAoFm0ECJ4VAe/QpjCYwifkN2XvV0SOgqueA9wf1LMAIHv+I0YwtBN4jwRJtQDRou4cRwEYSeuYBpws+nw7aNGe8vjDsugyrZzgdmGs+GjVBe4e3pVDje6kdwT2A0Z0/FgLrRaTQecoB/qng85cxCTT+PRDEJ0oHoz9XQ4x0XecV1lEgtA6NjxcL9qe5sm+Fz58fLEUP1Xd2mBdw4XX7MYwG9I9E5AXgt1R155i9G7kvnYGAW3iOwiXr4c9IfJzrMzUU4Vg8q4XIgN9nJCHSir5AtNQDqUVkPiMt/1jR+7HZgagg9gHs6KOAg3rHwE5dshlXzeDnM5puT4CckpL5SdSNUta4XDPdT9J7ISGND63TXd874B/alYz8zMfvGjqFf+A/9uK7MVQX4rsr4WqXqgnh5+v9o9/fbmwRFQi0f7nBBaCrr6fKG0FEKjQWO3qFEInW4ebq6O1An/z65c3R+PPkMuuCT10q1tCPZ+GlGG36ZsqoPwez/DISV34PkmXPyOa3Ds2SazG2IjOaqdREhlw3OzHhvN4CfGNoY7DU+TqM7dsQYw0LLVzpyZrAaKOuh78C9mFsA/tE5Jcx2rFrQlXPishfYpYZwQgZn1DVTwwvKyIPAI2j/KifxwhcQzRilr8vMqIN+RW0YJwNDhUcOxr/A/xlsMy6Z4T97Rit2UIux95rBJrHacMQw+/fWWCLqj46xjGfxyzzv0ZEHiywLx3vJ2InkME4lv7bKGWGrmvhtRnuiHEtXHLqEKOIKXTsWCAiVoEg2QgcA1DV3cCbxST2eD/me1DoIDLEWH0+D1SJSGmBIHkt9+amUmxjcZHJvJOPNDy8E/hBwaY8kdRWomXLEevOQIAc5WCJ4URArE2IswCJtiLOLsDBdzfiu8/he0/j5/t04EKSvnMP0nduvbYfUvXzA8DLvLg7pwf2RN2/+1if5jvVeuyxRvVylzUM+XQTXv72IQHyBqgm07uRbO8Gsn0byPY/QG5gPYwVfWwAACAASURBVOi88Q+dIuKxzITKXRYgASpRvzF4LSx4NY7yMvtHFyCvRq8Yj2bFkrZYcl2vkKlDVXswjjV/ISKvFZFIYOv1rxhvy38a4/BC/g14o4hsCIzqP8b1e0WXYsIM9YvISuDnJ3KQiFSKyMdEZKkYZ5ga4H8DzwRFvgj8nIisF0NKRN4gIqUYO84WjDYqJSLxwIYQjBD6K4HDQAnG3vNfJqhB+gbw20Hb5mPC94xIoOn7PPDPYpw6okE73iEivxVo5b4BfEJESkVkISZ8zldGq3MYFzG2lEP8N7BcRN4d3PeIiNwrQbIJEXk3xpzhvRjThC8H/R+qq0lkZJ1W8Fx9BCMU/4iIJIP6XycifxIU+2fgQyJSG9yrj1xDX0bibhF5ixhHl1/GTI6ewST1GAB+I2jDwxi72K8H1/idIlKuqnnMczfakv3w61fY37PADuAPg3t2B/BTwFdvoD9TRrGNxbNeiDTI7yHOVuzobuI1Z3CSmxGZoNAhdxKr2kesfKFY9nmxnNtF7CHt112otwmolZK5NnV3tlK3DiqXrAJ5jWZ6zpGylnP7HT32G9+43FqxcpOI1OBlC5apZOYupSaTVxlJ3xK4uaR2nD+snReOAHXT3ZyQ2Yuq/glG4/inmB/RXRgt1SOqOiHzE1U9hBGQvo4RxvowTijXY77yf4CfCOr4IvAvEzwuh4l3+wNMPw4G539v0MY9GLvIz2Hs3o4X7PMwgsVSzKrAOS5nHfs7jDC9FTiJ0bCNKgwO42OYZc2TGCeY8YTyDwbt+0ugGxPn8kcxjiEE5x3A2AFuA77GZcen8fgM8FYxntufDTRmr8Z40Z7HLLf+MRATE0j708BPqmq/qn4N44z050Fd/xr87xCR50Y6map+CiPkfghowzxT7weG7Gr/IKjzBUz4oueCbdfLf2HuWRfGFvEtgUd4DuPU8jqMNvfzQb+OBMe9G2N724sJRzSas9AfYoTebgk8uIfx45jn7zzGjvT3VPWJG+hPSICoXtfi6IxDW3c/CTyM2M9iRRcCVUAP5sGex1B6wstkMV6QYMW2iRN/EPUzQAeq58G/IlyEqr8X9e5W1Qy5/r10vlSBm0mTrKjFzFovY0d3WbXr1gP4+75+EvWvR9jqBJKIdYGSutP0XViNsduZDAaoWrRHKhpr8V1XTz+TCDzIrwnN53fS3HJVJp9biIysfcV7rDU/8o3xixYvq+NR/eem63s01h5t2atjx4kMucUINFbdmMwyJ6e7PSEzG5lg8POQ4hyLQ5vIy3wceBj17sO7pPyrCV5ZxDqIHe8FiSFWP3b8TrzsM/j5JH42DbEsIhFUD2LZJfj6PdByjIfaBRBj79F1Yi99zfWkqnqIJUa+4V6uqeDTBPXUcg7b6SJW1i3z72wgXrEY9fN4+TKJxB/SdPdJPfbEJAiRckEWb+6U0rqHADSXfmHE3NvjoKq9nL8wXm7v6Sau+59cwJqRYtLPIKY2d3bILYCIvBFj1ycYreYB4NR0tikkJGQYRTgWh0LkZZ7EZCHYOMK+GOrfjjuYwY69iFM2T0TK1I7dizvQivqrNFLqilH5r1XkDFZ0KX4+IpBCZImgi3038wTZboeSmrmILAb6GdE7T7Lq+51k+9pQHa4BvRI7ckBqV/RRUlstqZorhTKxI1i2CRYeL2vCLGGNtjzbjtGsFoYS8rgUcFtasOweWfJwVJKVt6lqr7/1q630dS7Fsc5QVroF9SEajRCJLAi8L0dFRMo0Hn+BdPqOscrdAswOm8giM+YOuWbejFmuFcwy5Ts0XIYKCbnlKLaxOBQiA6TuXtXW3b+PCcY5GnG87J14bajYzYjdiXpGcHPTP8BJrVHI42UTqDcH9Z9VN92JHU3jpGrAsiiZY+NlD0iixiNRdz9+rgX186i65PtbEUuIV68X9VTTnWdg5ATzAJTUbZXFmzbJRKYuvS0vEK/oJ1V1RGqWNTHQcRHf9dTNuuLEHCobVyK2o0e+8xyRxKDULItT3nCbnntut6Sq41QvWQ/UX3rAPfcCve1N+F4Uj5W0ZQsdfzxNpfZQU1UX2O9chfb1byGTuXukfbcYs0OILLLZb8i1oao/Dfz0dLcjZPahqh+d7jYUE8U2FodC5JU8gTFcXz9uSfUaUO9y2J987ys0kjoCsgIrchLPK0WsR3CSWfz8M6jfZUWTjxAdFsbRjl2OPRZJFnqXCWUN64gk9pBP30OhVlCsU7Jo06CU1k04u4yUN6yV8oIoRfGyRnOSYeVWv+kuVd+XIPC4LFz/0FVdV834u7+dxfdGS3dmMzBwD7BHHfss5WU1gENvXwuqguO4dHReVe8tyowXIkWKb/YbEhISMtMoxrE4FCILCLSRH8FE5m+6xsNt0u05nGSey+EnTBggO7pULHu8NGNXt0cEVr3hHjpO7CKaSpHu7MGJR6hceFcQDHtKkPEy17SffZbWk+MLsEaQhJ7eoS1LbrBp08FkOSPdwoThekJCQkKmn+Ibi0Mh8irkCdDTXBlgugwTHHVsgULzd+Kln8FO1F/pcW11MH6u2pFbIwI1S4xmtGzu9VQx6Wj7GXu623ATmfGaSCi+2W9ISEjITKTYxuJQiByG1N2j2rrnz7kcL6sAfQ6joawatQI/dz9+DqzoLuzEEkRqEKt71PLFiGpxPeU3xqwQIkNCQkJCQq6VMNj4yHwL2H/1ZrkLE/T14Lg1qBfDz53Gzx9TL+dprm/LtXpDquqpiQYUvlmoquK5s+m5Kfe+8kuj2X7ODATEsq7rFRISEhIySRThWBxqIkcg0Eb+AZcj/xfuvQ20B5MhoZGrbCflLJZzGiwPkYdAQXNN2ryrg1j5S5qobhOxFCfRLyVzU9p3NovvRoOnx5OyRgtYofmBo2S6llIy/5bR+qmbP6YHn+zW0wfuH7/0jKKWWzTP6mRRbHY4ISEhITORYhuLQyFydL6JST6/+updUg5sBs1yOYWXi0kCn0ScVYhUXyotVlTnrM3T/mIP3Sc2GnWknCZaCvGqQe0/fxI/96DEa/ar6goyXc+S733MHK0vg0y7Q4r6frP/xJdqyA0un+62TAM1zGghUoxbYEhISEjINFJ8Y3G4HjUKUnePz7i5QiUGUgayAWQzyENAJcYR58qSkWSWRa9bR/mi7xArfxrL6cZJAJwk3/8wsaofkqiOoN7zuP01wCDRiu/AsJSI04Cq9vjf/XwZucHRbUFnNjPaLlKCLAnX8woJCQkJmRyKcSwONZFj86/AR4HRAn73AOXDti0KthcKXB5W5KSILJa6tRvws+2q6ovYopH4/TL3vqcQ+0HNdD0vkWQVqYZ+3IEskbLbRGQy7tFLmEw1w9s6JqraqS9uO6KnD9yGmy0d/4gZy4wWIoHQvnEmMtC8AThPquHUdDclJCRkYhTbWBwKkWMgdfd42rrnk8CXRy5gZ4GzqHcWsWyws6gXATpAahE7j+WUgr0QdWN4mW04iYewYq742V5Vt0VwehFrLsg24pUbcdOHEUkjtoX6Z9XNXsR380RKlum5l49qxwXsOzdNNMj405gA5fdiltq3YASi28Y45piqKv2dzf6hLTUM9s0jl66Y6DWbocx8IbLIllBCxmGguR74d8BmoPltpBqemuYWhYSETIBiG4tDIXJ8vgZ8GrNMXUgWqEME7JJTEkk+gFj/FyhBpAb1cvjuJlV18QaeA3XJ516plrNdrMhGJeKTax3USClix88AVSLS5dvx1ZzYsp/yudslVVuq559Z57e1n/S276nA9zfLwmXP23duGrWxqnqGdOsgsfKT4iReN2z3Q0Gh7Zi4l4VL5R6wXXOZmB7eaunpA6+8oas2s5ity/ghxchAcwT4BjAUWPazDDS/h1TDvmlsVUhIyAwkFCLHQerucbV1z4vAhmG7BoCYKSSA7ELkMVX9Pr7rYEUWCd7LIixRJGcUgXKAbFdKo5VnyXQeJ1J6P+o9hVivBXaremck035WBztr8AfO+xcO1urW7acVOY3vr7RW37nLefDRlapeJ557GMH46OR6y/DyNVhOJ35+Duo1ov5FAPW9/aC5yx2ySkSsjajmMJrJKJADbEQ209u6VdtOz0bnmbE4PN0NmFJEILRvnEn8OfBgwec1wFYGmm8n1XB6mtoUEhIyHkU4FodC5MQ4AuJj2SBWCapZ1G/DshehKOqlVd0YGjmJejZu1sLWl9R306C9iJ1AJYlKO146S/58Bidpi0gCnHtQf7siNpnOueqmO6ieW6G+d5H+vmbmL3aIV/ty4cw2a8XaXkRaSbfNA+5F1QN8wCdW/jzxqgdAnwGJ0HNihWZ7TuHnV2EERUOkZBeJahCJMqSZLEBqF262Hv0ZX0/s26oHn9qA+uEzAk9NdwOmmmKzwwkZhYHmnwB+cYQ97UDkJrcmJCTkGim2sTgUECaCEz+IWP/70mfVHiCBOCuA7aCvxstCrm8L+K9CnKcRXqFedjtKHSCIHBSRO7Cju/HdCGK1q3pPolIlmo4gTheR0qiI00NJ5Li/9dspqZ7b5/zIrzxScF5U/X3Ai6jfT75vgGzXJqAM9RMisgskC5RqaeMx+s/NY0iAFHsfdrQPJ943XndFxJIld23WxXf2k+57kXRfxj++u5T2s4uJJvoY6L6uFI5FyiH7XZ9pne5GTDXFZocTMgIDzXcAXxplbxNwgIHmNaQajt+8Rs1gBs4LMAdYgp9vxNiaN2FS3M7FjL0O8N+ULnz/dDUzpLgotrE4FCInglg9l967mR8ycGGZOqmLxCsrxIpkGcqzrS6IBep56vtn9OL+uWJZg4BQttAiXjEXK1otdqxKvWw72f4lRMqyIGvFjm7Dcjpx4hHNE9Gzx9fJwtuewXd3IvYaVFPgbxXUaA8FiKSeUdiG+gnsSA7fSwA50DYRyWvpgtO4gydIdywlWjYoiZrN+O4u1J1Yt0VKSJbdS7IMu7oBVXXxvXZ877C/5SulqFqk++rwvZms4dg63Q2YaobCSoQUMQPNFZjYtokxSsWBv2Sg+c9INTx+cxpWhKRbbXy3FiMIFr4aC97XB//jwVHHgaWj1JgbZXtIyBUU41gcCpETQPua80RLtmDHPdId87Aig+R655IfbKWsoREYRNUl17eASMkRzfbZuAODp7/wH6eafv4t8xAE9bKov0/ddBlOPK1uxsdND4pT0qninBasPLAQ9LSUVvQ4P/fHpwR/PurnQWNAN0Z0DBqlp/Cyd4vlRBBrJ5ZzL/gecBAvfwSxEDviEC17SH3ve9jxJgBEulHZCtigG4eqy7R1PB8pSZXaifiogc1FxMF2FmM72K/6qaAZmsXLH6HtzEX/0JbF9HctmPw7MK38cLobMPUUnx1OSAEDzRYmgsRYSQnOYkJ8rWRoWTvdmgBiJOq6p7qJtyTp1mrgZzFOhssxgmElJhxaO5cdk8ZAnwnejCRAPosR6ttvvLEhs4PiG4tDIXIiqC9k+xbhtVehXgkAJQ07xIlddrbx81uAMnXTNWTaB7PNZ/v9/r5SKpdZYkdux013arrdJdtrEy+/HTfbg5PoJ9ORJVKS10hyiah/DmQxIudE5Cxq1SM0YAb9SlTXoN6T+O580LkM/Riovx7YBaxBrI04MVAdBE6h2ifxypUgTaC7EOuV2NEIqqfxL0+QD37yU9n5b3xt79xXbrqm7DgiEsOJrqR+6Uq7finq5l/Ss4dbdP8TEw1DdKvz1HQ34GYgUlx2OCEFWJFfQ3UO6A7UWw4cwURbmAOUYrJq1WKSIKSBv2ew5ZuI/VpgDunWx4H3zCphMt1aAXwfuHuMUvsQy0f9ckbXMg6gehcjJJgA8sB9wOdvqK0hs4piG4tDIXIEtHXvD1DXx0m5xKtjUrsuJpbTqG52N9muLm0/VEb78W7tOH+AeGkXNQuRVHUa8PFyBxnsKs+ea21Jzqu68mmwou3EK8DLDWLHOoAqxOrHclzUO404UaAXVUBvA03g5Q5iRVcgUg+U4ec3Y2I/XlEzXu4B4AJ2dB9IFSJxoBp4DmObI0AH0IWZaR8HaUakV5VE30snqrxsNnOj106cyDKa7pgvVfXb9cLLSjbtoL7oyefX32jd08AL9rs+M/O1CEW4hBISkG77ScT6k0trFJ63C6NZawq2HAJSmNSdYARLwHo9MLRq8Cbgi6Rbf4dE3Us3odXTS7q1FPguowuQgyAHsexXAaD+0VHKNYO8AnQnsHGE/euAU0DbjTU4ZNZQhGNxKESOhJe5H0iR739OUvV3AaiXPYNQS75nHpm+s6TmxBF6yfbZ9LX3Uj7vddjxE4j4tB3rLLtrjV22ZvkA6fbzakc6ESsrZQsXon6O7uPrJFr6XziJPpWISiQVEWQ9vrcPkX5EyoGjiEQUS8n3n8RJXQRuE7H/B5ESVBOodyeRkv0gc4B+YDFGQLw8nVHfB14EqkFcUBvYikgTdmwJsENgw0Pf/teWC0883jkZl09EEpTXbZTyukvbdOWGff7e7zq0nlwzGee4STw13Q0ICRmVdFst8B5UB9RMFPNiNF+Fv0KrRzjyJCKLhm17E/B10q3vACowKV9rgTcAnyZRp5PfgWlC9bOIrAYucOWS9bFg222XBEhDyQiVZDDjard5yTbAM+OuxBHJgKxAtRHL6pqqroSETDehEDkS0bKd+G4EP4/2n/8O7kAN6g8iVAMeYiklc4QlFZ1kOuqIVeRRtuNEsyIRV0vmJIkmXSxbULVRL4s4A4jdjvqDwBbEtoiURkQkr9keIV65R/z8aqxoN1iLEHkKsR4mffFJ4jWKn+1hsP2Ali6ICeTAtbDjW0AtIPC41gtBDxQVj8v3dzOwF9Th0qz40o9IFMBynPrS5SsOt+149onyVcvnRirKF4tIarIuqcSSd9obfgzNZQ74u/7ToatlKZF4D9mBGkqrT9PXMe05wkfgyeluwM2i2Ga/s5Z0WzkmZu064O1ANyIp8gO78X1LLXsQseow6VcHRGR4kgRAzgb7C4kC/1bw+V3B/xeBi6RbyzDpXH8C+GkSdRcnsVc3F989gBVpQqjhSiFyGbAc1S4KPWTFOofq8yAOIqtRtwNYCxhBU8TCiqwqqOccZpytC+o5N6X9CZlRFNtYHAqRIyDxqgcwS0CuetkfEEmuQt19uJlG/Hw5ktohiZpGRNLq5zvxNYZIUuyYWdKomN+u3SfTMueedvK9/Xg5H9U6xLodJ2ljJ7q188wRSgZzxCtV4uUWYm1ArGeNtpAafHcOlr0fO55GLBsrMkhqzgAiMTPD5QLqZsFei1yVTQfQHUFvhuw21wM7gSTggx7FzKC7MEHHbytZvPiBzt37tj/1mrdmnUjkQtXda93SZUt6ozVV2UXve6eTWtR4/w1f22h8jfXg2zswdlpV+N4Jf9u/TMxd/OYylCZyFiAmqkBIMfDLwHuB08AyRJKq/h683L0AeFd8laIq9vNYTi9iLQDqRCSFWKUTOM/QMkIX8NWC7cco+uVZ/TR+7mGsyLICYbEXKEO1GfU6wB5EZCiUWRbhDSD7EJkPdhfqneSyIN6LGVtXA/uAezAmBWDGkTDAe8gEKb6xOBQiR0L9HSANiDiIXUquuwukBDiJFYkQi0ZVOSJ4EZL1NbTsqtCBljZ1EruIlZVJ6YI+qb3DB8qx4hexIgvJ9Z9j8MLzJOaUgN9IursSHUyRab+o4CL2s5qsViltSiFOAlWl71wOL5dE7LREUooTd4I4kCewnC5Uk6D7USKIDLfJ2YCxh9wNrADKQB4A3YJx0jkL4iKswCzh5ETk5ca3/9j6vuMnDhz75J+2dj6z54HOZ/YA7Hnpz/9q2YY//qUn6n72g4vFiVyT881wRKT60qW27PmonrmR+qaI/fa7PjM7lqGK0A5nFrMJaEKkCTBht3J9NaOWVm8dnjf0qVvt6BYsuzYIAzZyTnhVF9htJqzcOWzvUuDTpFv/kUTdnhvqyXRRMt+n/9yvgn4WAkFR1ZjyqN8Meh/oVpAGk9lLh5wEzcqMWH3AAOqlMJPyLGa1Zw8wCOwNPgMcJ1mfvUk9Cyl2inAsDoXIkXkYdC9KE8pFxDqD+j7qD+BlklK3ugrRclXflXyfas3KFKqdOCW2CHHEqgA9j7px0AzitBMtsxk4P4doRZvmc88RccpI9+coX+QiuHiuT7w6hpvpxolvw8vE8XMWltMXzJY99V0fcVaJZS/Bzz+tXi4G0otldYsV2w10gdYhsi7oRxZ4ALOcksFoFx5C2RYMjPtAlmBCg1wA0u5g+lkrGo3Z4Plmdh0D7klUJHdVZJofzX3+Q5nI235xm1TXz5VIZDSPxWvBo79rziTUM9nMgtA+BqH4Bq4ZT7q1EWgFSQGdmHiEr8c41SlDdo/q7UT9TROstQIvtwLfPYoVrcSObAGpR8SkOVXNByFrlgBRlMYRIh9bwAdQ3cRgy+tJ1rfcaFeniVp893UgxxFpRf0UIvMwNqWgfrnRCGkXxhmpD5iP+j1AL1ibsOwUqoGtqA9GAxmgHRiP7ZljSxoy5RTjWBwKkSMTAe4HRfDPqJ2I42XiqD8XL1em3cdf4vzxNmqbPE2UCZZ9RMRy8HMuTiKBesdQcRBZiOaqwPdRTWj78VoG26M48U6qF0fI9p4l2xnHzfskayIiliOWRBWZg7qnESeDWDFMDEnFTQvqleIkT4F2iUiJqiZxM6JkqrDiHQglYjlPItbdiAwE/ZkP7AdiIOWI3o3SAfoA6m9BrIcIgui2fPfxLS/+/h9WlsYjec/1+6OJSLciW2IVSTObdvPx/Nc+/aB1x/qtzr33ZVAvLhVLxxImWxE7gvnxGfp2SPCy8AabuWPdPPAHUBTU59ALR8jl7pv0u3ptzBp7SCi+LAmzgG8CqUAYaQOpxHyHHrjiZrlZF3F2Y9lpxEqimsZ3Y6jXiJFsoua/1gE57LgjIiZhge/WAyDWLsTqxaxYDAmk80DbUPYhMlwbCWYp958YbHkNyXpvhP23Oj9m/ulSVJdilqEvp4c12kZAekArgXbwF2BsRJcyFF5NRFBfMQ42Q2Y6abCG7Apmvrd7yKRSbGNxKESOzJAtnI1qP+Y6LVDfV04+/z/4auPn6jl70BhT16/6ITULK/DzXfi5lGazK8DukGjsKFg9WNHb1IrOl2Wvt1QpE5EFDF58Uu14OXZ8ADfn4w1myfaKxkqayHbPx0ksQt0TqJ3UntMHNVkTkUiyBC/jqxWvFUuqELtSLGu1irUb9V8i3zMHcU4RLXURW4Ek6AGQNRhD8KeBTSAJkIugDRhh7mlgIarV9a95hLqlC09kz52vkogdi6diPkp9w0NrWpzbFjUDguu1eK0nI5pbtVpEVH33AGKvBvIFXwA/+J/GLF8PD0sUIAmxLS+IsFoKoLY9no2kj4mD52Di3nmYGb9fUCbF9ecK9oFt13ls8SECRZavdRbwBxhBMvhC6fMgHiJXjNliR5ZyOVRPMDW78qumRlt2GN89AX4KJYYJgp0BcqjWgbcGkX6QZxArD6xBpBa0FmULJoRNG+jxoNII+BuBxxlo/lPge6QaikPr1n/O4eqQPPmC9wqyzLzTfuACIn2o/z3UL0Wss1i0oZ4CJSBlZvWJihHOFtpDhkycIhyLQyFyRCQBWgMsRqxnRGSlenyLvtNvYe6CR8j0nGHeA1lEWlDN4mdR9SNixyuBbs6/eB7JxahZ+AiqTwNLpHJ5i0i0fkjG0mTdg3Qd70N7LXK9zyKWT2mD4uVfAupBE6o4ZDovkOtOke8b1NKmbokkLET2AA5oA773gqifUfVXkE+fJTV3GWIdBIYyKSw22gypxmgZjgIXQGuBwyDGdkc1izswGInLQ/Mfe9XjZ/7+nx8EqG6ovjDn7qXNkdub+qWy4kWi0QSOE7UH0wN67sy3ZMHCN9P54hogR+XKNpz4fC6zH7FXgH8MKPRevHylI8n5siBQjJzdega0EcsaRbMh7YBvbfrxVuoW3+4//oUd1kPvXiWx1FWORd4TX9hBb/uGESqZCPvsd31m9gReDrkVeR6jGfw4xgt7HSioHjcTQNYbgVIGxlsxFRFBNYXweow2cxh+P1hdQANoHeoB9IK91cSn1dXAdtQvAR2+dP5K85J/ZbDlu8DXbmkbwL7TAtZnFO4Bvxn1u1BvANULGOXBoFj2XMiWYUWOIlYC5BTibAYZxHfvR6ytGEfFH4BVhYyZkab5pvQrJGSamHlCZM/LjTiJ92E5czAaJUXVxc93g1ai6qNeFpMCLAVyETtSD7jBy0PkPlR2I1YzTmQTsFLbXkjipJZSNr+SgQs5Bi9k8L3jZDqr8XObpGL5c1JSdzvgsOD2XnWzLomqJ8n2CmiafP9x7KoTqlqDuqqe53Bwawv19fOxLIdYqaiqJdkeGze9i0StS9/5DF0X5pMq8zWdy3H4m6KpxHPWykd8Khpc1G8zL3Xw3W78rIuX3o+UPIz4B/FpxbJOAX2YCObVQAOqp1FNIHI+6LMDRME6Dn5lSXVZvKah6vF8JlflJKIt0YqYHSlL+KRSpZTV9xKNWSJWBbHSxbiDHmCDnBE7dgHVUxg7ABesDMae6GoB0hiytyuq5PrE3CsdBB2grKIfsf4fe28ebNeVnff91t7n3PG9++aHhxkgJg4gMRAgQXAAyWZ3s9lSrMhSosgdyY7jllPW5FSqYieKLFmuqBOV7e7SPMQly6lYUmIN3W52s9lkEzNAzCMxTw/Dw5uHO59z9sof+z7gAXgA2SRBEiS+qlcXuGe4555z7j5rr/V93zqGqk+pRLESx2Je+YW6pPMLEFkOQHms3e3+z3vt0//1527ctV4g3zZBafQYSbwU/+BMQAZpahpFxHkGszhQwbkABYw4FEjiVz+s2/Fewb3Gw/nUI9t9DoBKv7tpyWLQxUAfygka2ft3hcaXgNvZaPUj8sBN7xXQ5DmUXmAfIp+/w953IvKTwE8Cv0n5yu8Av0du5ofiO/uhN2GO1gAAIABJREFUYeJ8h6r+NtHoCvyYN7vxB8hRjF0CvAF2FTCKmEUg3wZeRHUA5EFs+vsgOb/cfgH0LN6f10M1RmQQ3z4xjVe338cnDcVeAxRomvuJSxbca2PxpyeIHDsdAv8U+Bcg/Vzv2ACabAF9pvG/M0z90aOnUF3MzTwEYS24WJ2+SfHi1yTT8nlSLbsR+xBi3gGMJpUxkBxtS/cTZOponMaEVyXXs1LQnQqtJLURXDxMkHXAs6DjRMUCcXU7s+YpUXWA0AZEpc8xeHSvFua0ibpm6uP7pG3RAq1WrhKk61oejzRKnG3tDtHiPE3qFVxyWatDgWQ7V4kxzdo051VgBprsQM0GcNtwWtOkWgJBgkwPLt6HJi9hUtsQu8GXp/QyQg9Bpk5cJvPII3mb+utMEsXLmxd0XTXZlEUVDdJIOuxGkyKxlqRQKJFuHdXx8xXQRNBF+NKyA3sBY3OoCoBq0kdcPYEYIzbzGHAIL/Lp0/79Da82PQ/MlzlzfdBpM9sI0pG0LnlWxBwizPhevw3YH/ufl8GN9kaq7ij1scCsfvGLAO7bfzgCBOTbjsi8RxKa9PFGN5874dvvsvxTh3uNh/OZQKX/KeDv3GZpD2gPYsZRt7FROcnjjbGb8EIcD3Un8QK7qajiedI1MHOYHhPAWeBzt1nu9yM2Bh0G2vGTxt8A/hnlK38I/FtyMz9+n8SJ858H/lREZmnY1EdUOqAuhvHeiOJgnfZFVcl3XEHkWUV2iwktPjNrQfagmseY5SAZvPOFzwprcg5o8xNgOhB7HFiH51g6oP9j+b73cSOKvTPx1+0JYC2+W1GB4sW/JMj+MzIdZz/W45uCe20s/nQEkaXLz2DCX0DdLEx4GTSLiydb/BXQ5HoJR5Ob+XaLgddAGko6nQmUQIZA5ouRFzXbtYlib576+GPYTB/N87IiZoHAoxqVNqLxBoLsYZDD15TRqo8LtGumsxchLT4LcK7BkRzFJB1km5eSb32dKLZM9O+jY06Z6kgLLQsuAB3gatIxN8ZFq4wJjlAcDGjuKIOM6vAxR1LdgNgyzfP2Y1NLBfkcIhlU8RlXrYOZLSY9gYtikvoAGEX1HOrKqDuOyLIG76eRmaXW9MwzK4Js+mrLgzO/37Z8TjMzOsdMU8bpocMT8njwJM7tpVzroXPRLFV1aOwIm3ZiUpnGOXQgK4ADqhrq+NnXEJsDDOoqqm6LaVn4SuP8N0lh/hYdP/8M3sx4G41BWvI9oeS61gNDpFtWTHPld3FNTalV0CPUhuc1SvUeuZZ3aO6I7Pqf2KBJNKp9u96NcLLfLP3Jne+yzqcLIsg9xsP5jOBn8BYyt4dIwU8Gb4Jqgu9iVQQDYg+D1kAjVEuoC/EBpEXoxwtCcvjMZgveqmYAkTVMWwK/hlHEPo3Gu/FB5CTywP8I/AKly78N/DH5Wcfe4/f+8DBxPg38741jAUDE9GiQzTJ4aIIkGabjgbTkutKIPA7iENOKyGKQvYh5GdUDoOfwz8tnru/cXQZ9CTgPcqGRgZy0P5sUI/0Klf5vke0e+gi+7X1MRbE3BH4Cn1xaO80a43hv5zeoDm0g09H7kR7fdLgHx+J7O4gsX+kEfguRv48N94PpAQbxg2cTXm13Chc7YBM+i9U9ZQ8VYCdi00AdWOTVy7LQB2CUACTMr9DWZReAEE1qOHccnIDOBxcCCRIsROQAqgdRHcRzhTaJyLNewacK9ImRUVLNGwhyW5jZlqBuHppcJCpNoC4CdwQTriVVOEdSjxBbozY6RJgp0twOtVpCV08LcbXG6OlNMmtdRoLMjdw/Ed9FwZkOXP0iYjPYcBQxNRCIakWczUPcjsgpfPcLUO1T1X4svfP+6BuxCO3u6LaanTPHmu65Qqo5y9DR3dhUlZb8IR09ewEbluh47FHRKAtJB9dFKetR6sBxevdm1SVBsm2vSEtB7YbnX3HD579HWMh6JYAqE6ObyWQDwlQjKyIx6ZZRMGc0KfdSujybTGdFRMaBZiTI4x98kzgD+njj+l+D+dzPGCQoaFzbohMXxwmyzcSVldy+DPjZK2Vz75VQPvWo9P8Yvjz8/iBi8cFgyw1VFlUg2YOY2/WNbmxvDmGCJxvb7MZFLaBLplmx6F9tHpJLXCsPX/u8EG9N9E8pXf5r4P8kP+ujmaRNnF8K/Edg9U1LRhC7VwoLmjQqF6Uwdy0wjIs3Y1KPig+qF4MuQpPNwDNgisD1lq2abPHnUi4hMh+fJNjIVO9NVRBZhOrXKff9Q3I99bv7he8DgOpQC5r8PeAX8bziG5aCHERsDRMsQszk/foG1aHnyHT08THiXhyL780gstJvgH8I5jeAY8DFKd6IPTetPQ8x+1DXmBmaIuhOL55hEWJSoFODsKuNgG8CcCh78dz0F/1iO4iVRWDno3oImxsjLo6iyRAq61EHmF2NQC51LTftB5cuvBK6JJ57mQXzCJoYwtwjAJrUN4KbidhIwtw8tel9xNWlZDMzmdN2kLimxLVImuYs09HTXYg5qqqlaVsUesV0GXWHEROCxGiSwWbGwT2JRt/HuU4VewoTduOiK7jql1FtCduaDoM6XfVURKbZSJgNVMxDmCAls59+Q4J0qxu/MEh1cLbYsJk4mrzzd3HdaDctwlPa2tPHWP9xSuUNWiqTbNn4un1g7gtwKQTGaeo+QK47obktkpb5Ve0/cEk6Hz0hYX61JtVDqFuJVz5OoG6rOleBKI2Ykphwk/+oa+KCqdO4GBMmxJWZQI/kuyHfjQ4cGgSaEXOUVPMAUamAiyczB397m7vu0417rITyGcCP4TnMN0PxWcJGz2YavoVMNF7/AXfKHLp4Y8OqZiNICmQh0HPT9T+C2Os8ZpE1mFBBt+GihcDM68uCQWAxIg+hdhSSCl75PYlNXB8PfhxYSLnvCGL+Evg22e6bOZ8fHBPnBfjvgG8waRB+HRFijoux68h170ZVRaQAFLB2gV9FJ6tVFa5ZHql/rviONqfQeB0SDGsS90sQTgYiy1G3A+jEX7tBVC/iW0hWKfd9lVzPvaFgv1dQHSrgg/vV+BL1GuAhxBps5hxJ9SjwMHASCa5gwscQmc4+bgnwPapDL5Hp+HgpCPfYWCzXvFLvFVT6VwC/zyTHR9X5pvc3QbWEJvtQDdFkGdPbL4DY7YjczBcC2AHSichiVC8BFpGexsz0BoWiqiuBbBW0DXXdiD2JSB6kiMik9UwWXy5KUK14cY+kkKAFNIvGNZxDXZTgag6buSpBZg0wU1XHqI8fIiqO45JmNHlWXbydUt9TADLj8e+QKrTLZOZgKuLyHmAETIAmsxFzFjHrUHcAL7h5RZPaTlRjgswg0cRioI1SXwlYQm7WaYxZhNhNhPlukMUisg8xa3Hxfo1rQ2JsqKgIMo7vLZ5HJAUyDGaWJtUYl0xEv/vPl8jMrl6z7kUjze0LSBVOSLZzlYTZ67xG1ZPAFWAWLr6kmmSpj9XQxJHufFxILmkS9aPJs9j098SGab+ZZnDRbKJSBqETCY4Q5DK4eh9J/QY7Dx04NIiYQVKFq6Zt8QatF0/o+PlB4koWeNws/cl77EfxwbCyo1lff/nOianbofv/2bhHVde8+5r38Z5R6W/D8xAnA8NxfLA4BhTJdk9/f1b6HwaO3Ha/6k7jojlM4RU3sBMkBulCZBYmjBGZfrxULaLJfjR5BgkmPWanLI+vB43+2TKGz4gONMaeqQ/wg8D/Crz6YQWT7tRftWOC35SWRc8T5h4ACaZwzE42/FMEY/sVuqmPnSBsakdRxKwUkTToHnxAchh/DZYAFoKDaP0xGjxs3y2ockQyhQiRyQrXOa4HzeBV9o/g7cZ+gVzP73wY3/Mzh+qQwVMFHpvyt4Jbe8DfCH8PDiJy+65ON+Ig8AKZjo9FFHYvjsX3Tiay0t8M/Do+RX3dCG26ABIA3YeLn5l+2TUM3CaABLQZdBAlwWc3LcpuvLXDDRAxRxHzhSlvTVVBbsIPSFeZFPSo2wLygl+mRYx9HDVVtFYUm+rEpkBkb2P7rSJiNGwG1adA89THvyvGztIw/yr14ita6jNi02OIPYPIAziXKO4SLhrChOOirEXdm5hQUdeOS3YAzgd6dgdhIU9SPSWQ0SDfT1QZQexc4ALV/pBs936Qh0DaxPvUzfalGtshQXYlGr8pSAoxn0Pk7Wu2Qf67V8VmgJraZ56YIAzmypw1KkFmjojcSOhXPYUnoj+H56UeQRnHZrMklZD6RKzGpLkmGtAMfkAfAa0xenIOYneQn9EG5jxJDaKi8cIDREEZ6wWTGpO2RS0AGpU2IiJSmBtpeeD3zbyXPlMBpMe9x8P5VCPbPQL8f+9jyxdvu0Q1wkUJtwaQAE/6BKfWUHagwUO3zYaINHn1svkWIj966+eYuZCMNoLQc3ihTRkxb4N8HtVqQ9g2GSD/NXCUSv+/BP76gwST7tRfbQD+b1w8R0eOg69E7NZsR5VUIZFUUwQ6B5eMUR0qK3JUglQOF3d4rqhsx6TmItf6Xi9vvNaAEYQW1OxRTYyIvCgiAel8C3AEJAAeAT2Bz2BOZmNX4uk9zwBfp9x3hFzPZ6qRwQ+N6lAGH3ivwp+/VfiA8dZq21T4dp32BmWK/+d7DSDBB6evNTKSYz/UcX8ouPfG4k9+EFnpF3wZ5BvczLe5HVR3kkQJ3ivxCXxLv/ONf08JQM0xfIn55h0M4G/imzFdlF8BmXWHo1kGMtl5YlIV/tjkByEy2fkgA5zA3/BHQFb7fWNQV0eoIQyixAjPo9qLCV5E3Q9AQ6rDNTJSxNhXUX2IqHSB+liNuJrWlgd2iLHtgEBQhmg16kZwbhxJrgpSw9icqsZE1TKuHpHtCDHpPmx6DiIjSLhcwKG6DxhHOAykQc8gpoovoW3HD7i7Gq9FPB9qK8Z+0az6r05JmLnTzDEL1FH3llc7OhE0ULErgC6MHRGRBQqXQVRUBW+kDsXLkwbxgliLSJOIRTMda6kMvomL2jVJHpNyf55U0/FGdnoqipLr+i/vcGz3cR+fdNxWRa1jZ7aCFkgVNhLmmpBgqYjczAtOg4RTsmo37UQBtgJLEHkFP76uu2EdwaBsB76EF5ycBx4E1uNbCJ5GKTcshSYn+Y/hg+ZDlPv+Bei3yM18t4YD1+BO/VUI/Brwz7lmzg5AgIvWUB44Raowj6h4XOsTl6mOpUjlDUGunaCtRybtjcSON0SGo/ixeHJCmQIZAXlG0atAHQl7EekDAkS+POUEvIS6qSV8Gt/zTXxQffW9fq/PBKpDbfhAcTJYXIm3hHtvsYnqOJqcQZMxNHkEMUewmVuFZj8c1gDfpjr0RTIdpXdd+zOOT3QQqcNHFpLp+Jci5isA6nu7Hgetidjpc76q59BkGca2Nv5/GWhDZBaqddRtb4wNzienpkUIU/rT3hHyNpNtxKbHpNVGZcp7+wC/jboWkHPAPLxSHGCoMYM6hASzcdUZggxq2NxMNDEKUlen41RLB6hXYq6eLGtzl2hLMiBh3mFS74ixkOmYqfXxUSpXs5pqibDZVjGmH8xOXNyMJgHKK4j9pqJOywMz0GRU0oUfQ91WxMyVa6XpxPtOQoCYdWCP+FPkWkBOISZpnLccaB2lCs4h5ji4GHhTgnTLlOu0G7Tqz7GMItKGyGpUn9do4jsk9QKCQynhkmNodByIVNV6CoN5VTXOE5dfk1QhR7o1pj52/XrGlYq6WEk1nycuL0NYzGv/cYfmM2PSM0/ofNCrJV0yjosKIK9Lz5MT7369P52412wl7uMmVPot8Px0i7R4ZbcWL7UR5udLfXyyTK0aZE+SKvQRNllsahbIbAkyS6bNQqqWUN2PyFRqyFpuDiTFzEfMfDTZBDo+JVu5A9+n+zF8gJbDCxf347NMTaiOg/4+8FXKfd8B/h25nuIdv3fx4hKZseaPUNeJJrtwcR0XJSR1NCoLcamKmFAqg6fJtIuEhTImaEKCEDHricubCfMPACiUcVFGTFADnp5S5TqPmBDVswIFxMT4BMBUxa+iegy0nxvFm2PAHwDfINdzr/YZ/+CoDgm+/e7U7OIqbu9denuoO0dSu+yFrcwEmsFMYMJTSPBBA8hJPA18k+rQK2Q6PlLz/HttLP5EBpE6fCQN/E/Ar1CfOKapQlVEMqDHqQ4tB1ATHiZsGkfsWmAA6BO0iGqBqR6RMiVLKJJC7NQS96abPnkEz4lo5lZF33Q4za3ts25GL54TdP1ci2S5zkV9BE36EHMAE5Rx8dP4gHIrSAJ6AZin6sbR5Ar14gBJ1ImxAwxd6KYeN5PKlkjVhfJwiUI+Jhrv1rCljsgVjJkHQRtJrYYJrqCpHAgqMoGLF0BwQJJatzr3GJf3nKJj6SjZjh/4cnXQj0gTSgWNMkjguYsuGkCSESCL2JkIT6Laj5ghIPHBoXaDzkf1PGIsYh4AWlE9BNhGADkOdDQsgVKoxmhy2NtsyBjqDGK7MXoVsu24yALiM6OaYHNpRKqgz0qQQTGHCbIjuLiX6vAs0JnUxzpV9YqI7CRJDFG9i7HBBRpHfRKED5PUNuKi9cBX38P1/nRCaHSdvI97GGuYhvetcfWqDr/zANAOehCucR2FuLKEuLKkkRyLyM/aQZi7sSONaoK6baAtwArU9CIy2WbR4qs727nFh1JLiHwB9K2GgGd9IzjdBbIWtOGiIE+jehrcdtDngBMgLwMvA79Kue+3gD8g13NraXHiwleAnxUxzyMGCMA2qvUu2SjpwnM6cXEzSe1ZkE0EmecQ+33JtD2qcb2Kq/4tQe6LwEF1UT/xWI6oVNRUWwWb2i4miBBZjwRlkDmIC5GgYWMkW/HVliv4CsoyfAatgK+Y9QJfB/6YXM9na3JaHbLAUq4HipOB43RCsXeHn1x4U3BXP4u6DcACxG7EhKE3hb9mrfRh4kV8LHH8Lux7etyDY/EnLojU4SMvAL+HL4GAq68kqW1UEwREE9e5DS5aTm0kwmeyAsJ8ERM+N+1Ob4+lwAV80AaTBtjvGVK6uZftNJgc/KYQHYyBxHMtvQ1ED+rKnlcjryHyRbBlRB5UdZtIou/iohQahwSZrIb5EWpjkMq00z37KLlOkXyXQV0MaiAYJRoXbBqCvMGkYtRdFWhH7CgQYrNV1I1gs2ni0gwRc4VZa5RcdyBixzz3SZ/1Dx7XhqTV+8mZFEgRY3y21rkzoBP4B8qTiPSiDCBSB9kB0o3nPw3g+9MWAEHpA+doZH01KvWT1PsJcy+KmHEVk6CaQySFyXwBOEBSq4PmMSlFjIixDwO7UN0CmqblgZXAQtABKTQ9qqqO8ugRffWP23XB0lizua7awdOJq5/tDQ6enEjN766w/OHFEqbeMI/8/dsLEj4DuNd4OPdxC27pKKOqqn27+vCZvgrIg7fdOtu9XZpmPTdl4wroXtR1c11IWG/8TYVBdSa4LUCAi+v4lqxZMDsx5nnQTVOKOmX/0hA6qFbBDYB+Hj9OLJ2y7w7ga6j+HKXL3wJ+h/yskxQvNqHuf8GXr7ff8l1Ur/px0H+QP0qrSLATE8xH3TsSpFKobQMy6uJ2nei9Sr1UUgmKJt3RBqaOz3INo+6in6xe8348DDIXuMzUsrUIqG4H/gb4S3I9U/txfzrh+YvLuTFgfIx38zd9N6gO4mpHUDcbX6Er+AUygAm3AhYTflhZxzvhI4/o7rWx+BMTROrwkR7gt/B2CDcimrjdzRI2tu4mKnarmAuETVfALKJ4YRQQbGaQTLtBgi58ablLvIcaqq4MekrEzmso8m7mQQ7jLYR8gHQDZAsik1nNjXhPyifw3MupLcTaG0FWfcp2LWhyHG89MGlBMB9017W+0YIgYgSzTtFNiJmPzZ9GYyuYhRrUz7LoxbLUxyCuZkBzEuSGFRKkZqkOQaoF4DiaNIsJC5iwhshTqtoncIUw/xj14nFMChE7grHdoA5jBdWgMdAvReQ0vnY9A5ESiMVna1cg8lrjdzYD2I1qDU+AdiDtjXPejcgE/gGyrpGNdA0yeg9ohM1kKfePEGQvg2SQYD6ucoSEKnHpAWAZQX4nYur4bhuqLtmJCV8QNAAadpyuRlwe0iDXQVLr1YFLZaLag5w8NJPEHXWV6GEpZL9vOlsy4MokSQ2b/MFt7q/PBPytdm/Nfu/jFnwDb0816Vk4R4ePzcRFP9tYnsJnVB6+Zct020aa514fY1U3os42aD+NhzcjYPoQubGFqc9SrgAWoHoUdHL/MXAA1Qoiz4HbhJrn/OT02uf0gzsCmgd2A1cbmdKHmDQuVz0F2ooXVP4ixUvfxKsPflRd0g88ccOtq7oLdB4wrpXhjVotLtAk8x3JttYEnSt+sLKg7Q3XjRERO4fcrBJcdkJ4SYxdA0kJzDiqOTSag0mNIrzVSBM9hyDc+Pz8NvBvEPOD26rn73V4O52V+CrdZMD4MFN1Bh8E6i6RVPvxAWgHtyR0zGZs+tmP2ALnI43o7sWx+BMRROrwkQ34AbDl3da9847cPOrFhKS2h6T2RQCS2iLqN1RCYs3N3EjY9CjVoT5M0Ey67R18gDM13V7EC1weBoyfTdOM/+FcxNv2nMdnMZvwI24/PoDsBSZLPg/h1XkL8LygGiIzVIIKrv42Lr6CxoMk9ZRkO9eh2gfuIpqUUfbgonaQBDFniEuJ1kuO2uh5M2P1F6iPV1RdL66WJyqrJrFgAqtRpUx5RCTTlcHYJkxQAZXGcUJSO6k2nRM4QJh3qCshJsJkxnGJ6sSVTlxtQlrm7/aemToX5DgYxQfDGXyG9bWGIChmUiXt+113NcyOxfukqUEp4QebCE0mQGY0BoN9qLbi4i7yM1qAml6bxZqAeOJhYBjkGDa9DGM6uKbS0+1AUZPaMJWBYdQV8N1qHtfoSlEvnOyl93QP6cwotWoH+aah7H/7/FbT0dbD8MVRqpV9lEtFyqW/fl/326cFwj1ncHsfNyHbPYGvpBy69l7pzVY8T3I+YKlPNJEuXN/GBPtpXdIkYX5qALkfeKrR2nVFg3ZzEuhFpB203qCeVMHt5sYOLpNG/0ON7YveCxeA58C9hdrHG/0FTkDSDLzQWL4J5Mv4EvF1DpqYETS57jsp8l+oEhGX92jp6lWGjj+kxqake9VBybR2IaYCzCDINlFYUHH9A29Hf/G7j4RffumCffClYYLsA6g7pnHVAmsFDiE2ERs8TvP83Y2A9gIgoGmQfsSe999DHkHEcS07pWPA68Bvke3+dFUyqkMzubUcfTdKxh7q+kmqQ1zP9t6M/djUstvwdcfRuA8xw2Ae4VbB2AfBR5sWvAfH4k9EEIlXFX6wAPIa3EJsuBCb3ktSm47XGFC+sgETXsRFs2ldOk/RqiBF0LfxZZ/Z+Mza4oYC7xGQ51Adws+Yl/rZNeCzYiV8yeggMIQv3c6d8pk9QBuYc4h8Dtio5eGweGznhDYtsIX53VEjjfZdcDm8qXZKXWTQuIhNWZREaxOxJkmTjA8U3chrf0P3whniqk+B6dOoPEwyWqMyqqSblWxLm46dLdO2pM7VIwFt8xKCXIwJ/zNJ5WXEbMWGLVoeG6Y42E7XA3WxwXo3dOJVho6to2XBFinMi9AkQIIaIjGew5jG91EzoCn8bDECtvkMoljQy3iy/ShoFUUQDNDtOVLkgSuoq+Fih6svJ64cIC4/ByQEzTsxdjZB9oyETSdUHeAa5TqzCRO2NLK7AnqYqGzURcuBkLh2kf4L2/XAnjVs+OJiWbC0V2x6gca1N6U69DBBrgM4Q1OLI8xAVH3NrPkfkg940937uMdmv/fx7jDLfmrUHf/zn8Zzvy3q5qnqBbGpAZpmOTKda2/IeqgewY9jgi8tT94XS/yfjgIXUXcedA43BJDsxLeOPYPYMtB0Xdx8Dc+D24aaAJJHuG7ZcsRXLWQjaAd+nFl/vdpj+9DkJN4TMECTHWjyrOQ60UxbmdrYDtJNAlwCnQHs1bg8QrWERKMSPrn8osRJqMPHqtKzZgIxP6KDRw5I0+x9mi5EIuYlkMPYsBNf3QqBYVSXgG7D2ACkGaGITySUgD8G/i3Z7gsf9Dp9rPCClwVczy5Ovt7ctOPuwSUHNalkiSsTmOCw2PQoiAN9FOQENtWC2JW334GeAx7zjT5cCZXNiF3IzRZy9wrusbH4kxJEfvgznLC5i6Q+ATr9rMSb7sLoCcVmdlOY/+w09IcMUy0ZRDq4lRycwROrW4BnwVaA5aD7wc3BZ9Vm+VctglwASqQLwfZf/jfdpfMXFqz62q9vXvjf/GQMql4YZDK4RFGXAm0iifp04tKYHnwzXTp2Np9pSnXt+z++pYVHl1yc+crjWwpLZ85nzsN9hKEl1xFjQiNhvqjVUaHcH1GfcFq6Mv/8r399oPvnvtq095/8b0fW/sWfmXR3V1rf+pOn6F50RroXRRrXD0u+25Dr+lsyLasQI4g5jT8xK4F+RIaA2HOemNM4PyWg3FDLpfCGxzuANGJSCIH38FIBliHmLKoriSsX1RP3B7U0UMEGxyTbfZX6eJm4tJtU85imWlrRZPT6D8stB5pETArYBxJppmOCwaPjROU5IBM05VLyhZ8YwqQiRDowqd00d1mGT1dgNKR9yXFpmt2CiOjo6ffjx3cf93FPwCz7qW3u+J//GvAbeEXxYdofbhcb3mimrHoQP/Gd/KE9g6fyNHiUWsZXWB7F/8anevZ5SxsxgESg3wNdOUXEM/WDEkjWcUOGRwyYJYgEvsTsOvAVD//ZIj1gW9CkqqqhFwNNbmlz5Gcm2PQ60L3gMuqSNHF5jUrcR2tL2XS/NCb5mfMJUt3gToOdh8YzdOL8CsqZ75Np20SmfVRMOA+YhVACuvTCoY1kWyLpnp/FWMXF7yDBlxD5JbJdv/3DX42PGV7wsowbg8VV3K4Rx92Cz27v8c9D8uBKuDiFuoS4MkiQf77BL60hkoDUGtqB2+wvmcrTzYM+iybmr93LAAAgAElEQVSbkODOQaRqP+rOAYqY1dfs9m7ELwP//fv4lp8ZfFKCyMXvvsoPCZG5mOAwPkN1xzURcyern/cCBU7hZ9ALgBikA8wEyAgkx0EKKDk/iGqrsWbsxVf/0/D3nvtye1Kr51GXQxkCNw+St1VMiMat2KzV8khY2fH99r7N++Oz/++WGfFo8XxgTbH01p622T+6ukMrlRMcejtDc5eaJ16xiDUgQqa7RjRhtTYecObYpaj3YvnkV38xteDvvpBOtbdGiDTJup8+SUvnRRGTxZqAbIfg+UgzgZ14nuhZvG3FGKpPoW4fmixHzFlMsARvWeTwSsUIPyjNxWdlQ/wDo9R4wBSYzDKYMMZFjiQqibE5sl1nxZinFHagDuolIa50k9SewWb3k2lf5k2M9W+QIIMJXkbEaO+WY0TlDGI2ketEsu0vaWnkHXKp5SJiCHKvASHZjlNkO47QMi/rH3gcMUv+7g29tj+ruNdKKPfx3mGW/dS/csf/fCtw1sx/+RwA1UEL/DaqX8H/fp/h1tJdI9DUI/iJsvdkFZmD6quoft4/5FlxbQuRCAke91WbpMp1pwyHb/nKrZ+j7XgPxcWIzEZNH7AZ4XOoKiLiHS3kIBqPNlTcIPYUUCPMPiLINkS6PJc7LiJ2GOMKIskaDD+QdPMIqmcRQpCN0rUqQExCbTTQ0uU5YlNlFaOgu1BadOTSFY78YDbNHUXpWbyBJHqVpDqXsHkvqr9Iuf9tct0fTQ/w9wsvenkCXy16DljPBxW8fCjQm3w0zWGxqTo2rZjg+Wtvi6SB9WhCo73mrabh6k7iExw34XYBp4KLNoMuxj/jvB2TMgyMYsIqYqbyhr9Cdegfken4yHiu99pY/MkIIk0qQuN+xIzj4vcQUMo+xE6gSXOjrDKNYTj4ssp7EMgl1fY7LJ3x7jtgHpgCnnN4FtwDwAhi8sAlVJ4AOYuw2nerUasuaQrSUnxl56tHtTaWRt1M/EC7AxPMBJmLi88h9oH6ptePD7662R3607eyBk5aIzghbGrLT2z/+d+zi77wWHvHQ3OG6JphWpY+ljPti7oc9JLOi165nGbgUnPp0Inxy0cvmDCXDh/70hMPS2DOom6/tPcYxCo+2BvAZxki4HXPMZR+RAbxmUXBZx0XILLFe7PpbuDxhqdaT+Na7MTziuqozsdzR9ehegBv0fM6whxMKhETDqlJ5yTVlMOEWaJiH2Euq0mtjfpEHzaYBQxKqnmMMH8JMTNQnYUvX7wF5kVMUMGGJ1CUsSsPKcFGzu5fAUwoUtR8e0VmLciQyqZIpROpj1UxNo0XRN2H8DFoEO/jo4RZ9lM3dknJdCZUB/8J/nf6m7fZbD3oq40y9ShxpR+xI4jJgnsFZKtvFyhTy9oKuheRhRA8jrrD0HCeELMBdVunKXPP8Arthj5DGl111L2BullgBwGDyCgu9rQnm94hYX6dqh4RMX2gOZQZoFUxdjnp1hpx/YJmut+UfI9gAgParS5eTFQ8KDazAXScTNvzpFtLuPpxNBnHN4awpMPlzJw1SlxP3Okf/EBmrsii9V6xqVcAVPlVqQz8I7Jdlz/AZflwUR3K4a2WJoPGdUzfoejjgWoVdVsQeemmJQ9hwktcb8IxHW6NVVTx7YOnWSbmVv9J1Rh1+0GfvWWZT5y0+wzmDXOckTsc04ePe3As/viDyOpQXjLtk16L3ap6AdwA6qokNYcmKVRTuPrsht0EoEtINVdFTKeqQjSxERfd+oMJm2YRZH9AUu8iLk2TkZQTpFuvku2aclPJYbxQpIBvq9fg2pBqrNAKchSk5EvlUkdMueHvMA7kUbmCDwgX4RWHfZ4/KBdRLWlcnK2VwSFMLpBMc95k20N18TnEBAIZVNtAT2hcXeM2/u2reuLtR9JdrUfzczskVa5VXKLZ0liJ4aFiXFXqvdtOFE9vPhYlUZKe99ah8sO/8g+u0j3X0tSTcn2HxV28kiLflF340JznxsW8TlJv0dLVgjTNbsdYHxh64UsP6CAiCUoB9EFEDgKdiAyj+hgQYmwPai6iyTCeI/QD4HGQFtAI5CmcexvRAOhGSYPu8+Vu2YOYF/z51DdQ8mLMKJgEpR8xeWw6JKoMEhV/hAhvA9T24IO46LIEmcVAN0l9hzcoN2WZsfJR7dv3fUZ7H0VkhOKlJ2nv2MXoyHIdHTvFyVMv63D/blm8+BnC3GkkuOgzvnzvA9y5ny7cRR6OiLyMVw9b4E9U9WvTrPM83lcvBAZV9aOw7/hsI9OpwNeoDFTw534qfNtVMa8AoDqCi04hyeOYoOg5a84hNjflqReB2QfyyrW9iLSDzXCt2qQ9wHYv0tMK6l7wE1BdjupWfJZyDOFlVDcBbbi4E5EukI2SanpG1b0BYlAtihfuhEAJkfM4EnBXwVQlzLZK2+IAmIHvNFMAIqLxFYpuE5tJAS0ickVNYHESIhITlYtigxXaNfeMnn0n5syhRTS1HZEgvVQznW8JyfPExYzC16Uy8LNku6Y2kvjoUB1qxvsUb2j8reG9V88+GqiCul3gInwmezUqW/C8+icRsYhY1PQ2xuRJ1PE3lv8+6o40Bqk0yCpEjDe0v6Ez0CS2IbL+xuNwh3HRLLhtr+0IZDsS3Ly/X/8os5DAXRuL79Y4/PEHkVONwQERmQd2HmLB3Ph7UNWzqBsmLkW4KIVNd4oIpAob1MWTBGclKp1HjBLml4uYF1S1SlT8DmJymECIa+BqAdmulCA5RDbi/c4MYp/i5n7cqgcbnRYmsYJp0bj4YkB1L7gDqEbgCqgraxId1aic1b6jZ2Wody5RZS2Ln/6OFroTXNSJi0e1Oio6PjDuDh4cksB+k9GrhdTTT55sSzXPmr312FhoJVMaGpd6FC+YKNUW5oRdlWKFIAxNJrRRcf+JfN/fvF7u+YmXFK212pbMDOlZ2x9cGjK2cGiiI7Q+6xqVr4CUQXKgjyDsQxn3PCZRhBISDoI+iR98B/F2RM+huhGIMPb5hk/mcbwyvQWljqvtAZqQQBo2GgCLfGmfFKrNiDQeULqj0dPXgnZgwmdE7DsU5lzWSuYtxi52km0boDLwKPCguuatYlMJmryIMqES9BGNXyLT/BQzH2lh+MxhRN4hbfO0tu0nSdoZGhnk/LlntF7bKE/M6ibVnJJUoUx+1p27YXyGcLdiyIad1u/ifQwvArtE5JuqenTKOq14b9iXVfWC3K7t3n3cHWS7vkFlYBT4d/ggbjMiN2drBJNa0vAf6UJ1J+iziBwDDiK2HfQovkTYgJ7Ejx0+gFTdBKYTZB2wDU1W4qsBi4B5kDSSCeZwIyWTQ5OjoCHYNGJWAScFswrcccCg9IKuR0wdkeWIbER5FpxDzWlE6mgSIaYEPCkm2EvT3LQm9SYwV9BkCGPmC0GawCwE0CA3QM1upyUVywOZhzWu7qc8psx4+BSuPgNjIcg/CexA9U8o932FXM/dDzR8i8Cn8IHT8/ig8cOx17kbUL2CRpfwz/gQJlXT2shcSx/XBTxP4WlTgyADIBu8rkCfRrWOq1xv6iHmFBJeAl0wzcCVIMEcdU4F3YMmFbxR/kPcGmD3A+cQW0Xso1PEsn4/8K+BP/qAZ+GHxt0Yi+/mOPxJCCLfc9sjEVmI2IWkCt6KQuOrNMrNYoLrs5h0y3zgIpjjiMQiEpBue/maAVPYNN3ub59G9h6HPxxEVvvft27DxRc0iWbryDnnju3UaMvbK828uSfCH/3KVjKFL6G6HZspE9jlWiseIS6flybJ6Xg1kZd+PBx7Y2P+9H/68wuHtx9rcko6DcMiHE2gv6SMF6wtWCNiRYwI6f6NRzrafuRLufrm3cfTLXZmav3z1Ux4yPT82j/eq9VahCtDZcTRpvN9NlH2I2IQYlTLKAZB8Wa654Cct/TQBHiNyYFLzH5Uy3gOqKLuChpXgC8CRVxyAJEyiOc6wRxUJ9BkGyoxYtYhsg4T7iGpr8ZzpibQZCGpVhFNKjrcWySK6qi2IOYomrTg4quIPQb0EpegOvR5MQatl/eRLUwQZP1g0ATSPhfteeANNn//57hyZZn2DzdL29LngL/4oa/ppxZyN7skPAGcUtUzACLy58DfwU9IJvHTwF/5KgSoav/dOpj7uA2yXf+eysAI8EuIvHjLcnUHMGayVetGaGQoRHoR+yDelmeSPw2qOxAeZaoAR6QdRbzSWp9uvFcFMw90c0MEqUzSk4xZQ6xv+HXY39jLEmAPvgLiECkC/aAXUa15k3R68W1ma57uZE7gW9zuo9FZR2zqdd+cQb4IBOri/UQT+0EGEGsIm6wY+wSZpdtEE6v1chNCHldPq2S+Iza9GmhBY0C/CvzhB74GU1Ed6gQexweKa3i/LQI/Dvgy82Zwq/DHvgVuoDxMYoDJIFJkK2pWehoEANtQngbdiMb5xn4a+3eL0dpiTOr0jR+rfYicJKmliEt1laCMTa8TkdSU1S6DOYmxC0DmM32g9H3gl8l0fAy2TXdtLL5r4/AnIYhc8L62ElkJwQia7AJde+Myswmxz+HVwx8G4ve9pch6TPqcXtx9lfGLP0pU225XPXkmWP/8aknl9wD92FSMSqLxxCmuHJpPU/tJeeiJFVKYuxtYef5f/9lVylXBk9uXl+A1lAqwRmFHqVzX9sCEucBGzmmSGR0dOfvzv55OtzXPmfGPf/xkaux0E2PjYyZjQ3Jtjq41byMmS1Qqq7EGTB4TVMUEy4CzoHNRzuJ7jpfxg3oZzEWEVm+lIHNQ3QfaBpLyghltqNIBb/HxdEOJtwVsByIZRJpRZoO+A2zH+/e8gE3tQpMqakqInBYsKuGozFyeAc1o8ep3pXluBmPTiKQQGVbVuVQG5gKoi69QG5mFmHNk2jaTau5mvHc+QkYKrfPNz//pq8Cr7/s6fooh8oFmv50isnvK//9IVafO3idbwE3iIrcY97MUCEXkLXxw8A1V/bP3fUT38f6Q7fom1cExVLuBYVAL0nCNSHzLU9XtqK4GHMZu9mXo+CyYYUR85xJ130WTJiSYDCAV2IQSovFabsgISc7ffPIsXpi4D+hvNCTIYVMxaCdo7Eui9iTC5711r+5FTE+Da50FHcRYUDsKbrBhKzamGpdRyYmxDu/ZW8e7RCRoshVVwUVFxESIacVmC0AesrvEBO2IiKQKNVUXoLpKTLALkRmoHteoXMRFOcnPfv/nvTrUwvWAcW3jdcH73+HHBNVLaHIKXBvXuxyB59buaGSgp24w3MjcbAFuNhFfhsgekrgFddPa+yiMonoZjU8CEFeewqvPG2KZeDFxfFltpl9MWMbYHJiVTG2FfB1l4M+APyDTceCH//IfDu7iWHzXxuF7N4gEEGkDuxpN3gZ9ovHmUTC34z28X3yw8ySyQOaui/TSru+ZzgVrbLptt4ZNJ7GpHMiIEMQqukI0OaAzHuyVdEsrYvaQal4/sWPr5pErw0tQ1hrkbYdyFbocFNPwZgRhBuq52FWT2M0VGBsdmLDzVz1wruOZB9PZghWO7q1onMS0FERShZSEWX+uNIakER8n1NWk9hNkCyJmFv4mW8WkslrkKp5P8g5iVqM6DFiQWQ1V5Da8GnvSeF2BM/hs5pN4w+IGL1XPoW4VmHcQysCbKD2YYK3PMCfrIRmSdOEoUAct6PCpQIlniaQGQTLAoyS1zaAPYlLvSH52ReulZmxYlXTLBgAtzP0excsncHHpA12/+7gTBlV1zR2WTzck3lz6C/AP0c/hJ0rbRWSHqp74kI7xPt4rMp0bqfT/DPBdvK+rf1+sA92Iqy8EKpjgDCKTfCnFZzoC1H0LlxRAH0LdJlQFkRKYFjR+kluU2dcemSWQk4hsQHULIhHqBLQJpAlMFVS1OlImyOzCpLpFTBXVFfhJfhFVQ1KrYVNeTanaiogFY4mLTk16TIJ0D96W7TTQiRIC61G3SZ3GYk0ZdWlc1C9iIrB1kkqCSWUFswDDqxj7ILAVTWZhUjE2XES5LyDX8+7JhupQGi8gWYtXFT/LNRulDwA/GR/Ac/G7ePd2vHfaF0B0i+WNahU4pq4+QG0kjYsNSJ1sZ7t4gevsxt87IBWuG80bYF2D7pAGaVj6aTewFc/rvBkdmtT3EpcUk45kOvudaCKFD3am8vYmM4sTiD2EzQTY9IqG0nsqJoBvAm8CbwOnyHRU38PZ+STjTmPxXRuHPwlB5APvvsodIGLBrkTdNm8vYe4GIf9O6u33BDHBEuasm0F5YJeOXzX6nd+uaq5Nzcs/c0klqVEr7sBVAoytaXV4QloWztTerTvzC4L1T7/29d5Nn/+lw6E1I6U4+Z744zE1+FwOXu/yvKOqQIdLkiu1ck2L/aM2e/KKSc+bka+f7isGczpzqeamgOJIDogQcwl1C/zRmb2IaSapLSep7Vc46PtuZwdE7Awgj2obmryN2BTQh1etfQmfTbwMVBD5PNjvoMkZoBmRxcDiBrm6DmYcsH7AkyF8UNqPahNoRFR7G2MHEbMSb+fQ4KgIZta608BCXNwLuhZ1b2MCQ/OCS6hrFpGH6Hy0X5PqGLgdQKuI+Xsy/+X7Fj7vBXdPWHORG4335+AnFjevM6iqJaAkIpvwvOP7QeTHgWz3Pir9T+OpK358FjEgGzCp7yBmTSMz6HnQPgs5C+8X+agX0CG4+DkgQtkO8tT095iqLzXLIaSRqfJq79OIXQRs86bfvAWyHBO8Q1RcC5Q01RKJCVKo5DHSh6s34bt75VHNoFEeNQfE2HZSLVV88DiAz1oaVPOgj6oquvE/pHniy0VNt6qorNba2Dc1O6MgqMPF88HGYuxZ1IUoxxFixI5LYL4EvAg8Srnvp8j1XLn21apDBp8ZW9v4ewIfOE6WV6PG8VzEV3ven5LaxcdAl3HdSWQjmMfwPPZekJn4IMI0jOIX4R0zmlAGMaaAjwVCXNyE78KWwQdaI4g5gtjleL7rSrBXGD8/CvpQ43ptJNM+NVv4EOhulNU36QseBvY2xJeTbiDTCWMajdKSVly0FnUbCXI3Ptcl2Ilxw7ioCR9IApQRcwCbtdj0SrlZXOPxFvB/AX9FpqP8Lmf248HdGYvv2jj8SQgifxX+f/bePMyu+rzz/Ly/s9y1bi23FqlKpX0HCRCbECDAYIwhS8eJE7fdndXj8WTiJPNMkp7E3fNHln7cySTpZNLtzBInk8QTOul0iDcMGDBCEghJCO17SVWqUpVq3+56zvm988fvCkkgJ7YHbGTX93l4UNW599S9Z3nP+3vf7/v98te4FkMX7mZahkswluJWFteX8LkMkRDxrnfBvFNwkj1XhMUT3Eq2gHOs6cdxf5ZzPS2rNz+mFDTbsUbiWV9vf+AI6eayRqU05VGfINtDEveTKd5OabhPZ86VNQiWjXzx5YNnfv/Ju8qx3TsbJx+Ygx0JbPbhFeCVIrRat6KwHgxkmzKIiDczOpspTJZnqwf7Qr8tH5jWQpXmjjpBPsbPvIgJDWoHiOa2EuQHxPPzmiRniedS2PgekqqQVFHkEF5qBj+zWtSuQG0G8Y8hvA/kDRz3aCmOq/ScG5aRBJJnUW0Is2sB9BbXfpIVCA8Bh0GPgnnc8aEIMV4VpY6ok95RMo3jncF9x1mUCNxUXoPiOo6Yuqrdi8ZNzvfWA/h5aVm3kEB+s3j3zL32AmvEcZ2GgI/guDdX4x+BPxFXPQlxles/fNc+0QL+eWQ6z1AZ3QY8DdzmqlP6MsKDOFvD21GZbtBXNmCjUcT4IPNcqXrMgpx7y8DCtVCNwbrKFeY4V7iMAjKCSAciBms7ECkR5DxM8BRJrRcbRSreajTuF+uHmFSrmwbXU0AnSLnxmRLQeecHTuDs8dgM2ges1Ev9xzRXGBXjxXrpYk4W935ZgqyPrdRQD2x9EeK/jJr7SepfR0wLEmwHu/+qb7IdOEBl7FcQcxMuYbyDK97jOK9wXsHdbT2IrMQ9O+7B3RtTvNmt+RYgMoZqL05+rRO4G7UHQJYgJoVr1d6Oah3sEMgQSMGpbdijqPS46XdAzF7Upt3H1Qxq30DrTYgMgVzAxgU03kjT0oi5/lmgQG26hfTb6ix3cFmE/lpsQXUPaufALoLoEJhpTLD9cvKkqpbq2JE3aWqabFcbHxYTLMb4J9xCwdsuXiiqWieaewkvFeClbxORe65zhAaA/xf4c9LF9/7C9N2Jxe9aHP7uJ5Hp4jGuJXdeC7eaux34BO+ccvxpXOJzeeVXwU1qNeGqbEeAL+J8URNcUBwnXVSqEz6QXHfsvzrRgSuRb33btgZEZKk2rThovFyzGq+VyVNd2HqJqDSEmB/UqPqyjE2BjX3yzadLg6VcXK6asWq01nNJ44zCM8V8Ot9czNeHL0xEiVXPd5lTHMU28gXjZYKynw48EWp2tlJQvCrtPYEsvqNVTKCgVcSfVD/zLMYIUBXjRaRaIrXJ69Sm2oAVoJtJqqB2tzqS8k6EDwDHQCcQ8zCqX8cFqsdBn0XY2iiUj4E+ceXb6wbHo5S7EdmEsynbBVjE3I3qDkRDVFfiAuIAzjrxXpAqIgWM72PtErD7MIFqUp9zE5jRdq4I6R7guzBVdyND3qVKpKrGIvILXBnI+pzT9pNPNrb/qaoeF5Gv4mxDLU5+4si78oEW8M0j03mJyuiDqD7ZmHBt8NzsJGqKwAyQwUZHgVVgFaUPx62aBCkBN6FqETmP42TlcQM4QyAXcTawANO4CdrLOAS6HNXDqF5AkxQS5EU8xQva1fibtD7/HDMDX9SaZCUTzpuWpYrKMGJyrivlLwNZiU1eAZvRpOYGb4J8QYShxrANdmqkT+O47NVLOdO5CGzchpeaxEtliearmiQTJPOBpFpfRry7sMkZxHtrgnQa8cqI+UVc1fE6UNdNccOKw6gONNq+4NrAncBLqF62XhTQAOfZ/Q2e1XoRZKbxeh833XwSTUpAH4pFTDvYL+ESg0dx1rMrXKpvbgX7DMo97r20456FnYAhqa7ByTJdCy9cSqZrH9Vxn6iM2viQGP8tOo+6HWUX7nl4ELUl1FaAR6+ttlmwtYOYVLeiKWpTh3hzghsAwUaTGH8TSILxHwAmQI6IyDJSLdfrPk4D/xX4K2An6aK9/vF77+HdiMXvZhwW1e+sBNK3Defx+X/y7SeSL+Oy6tdJF/sb+2vGJZITpIvf/vDMtZ+zFcex+CdF0zWp79DZ81upjJ8grm4GaholX+K5Lz9OR9dpue3hYYrFbQKvl4aGW3Z84tND4/uPpmNIQqg3FzKydvOynj17z5bjWmQtTCvkC1DJp3w6uprpvWt9LGlTnx+ZbG197J6Z1h/5kJFFWzIiXgR6+Wq9zF/M45LlCGhX1UnQVdTnjmHjdtACJhwUP7seY7pRfRaRNO5iM7gHx2HgbmehZuecvJFu5QpPBfe35HnES0AtSDcwDxqh1uKqvr04vuVziGRRxhDTCtQR6UF1DBuVVWQD0VwGVwW+euT+w9KybsHO8JvElkUtuuNj3x4LpOkPvrD/n+FELuBGR3kkhesW/ZhbBJJDOItqE5rcjOowaB/iNwG3g46iTDtOnVaBWTe8JwIUXLiQUbD34ugt5QYfEpAYkQIwiSZToE0oM6BLEf9mhGdQlqvGp/XSwSjatyuqHT2VpDpaAv+ux7Lmpq1ZEe9yV6sV5AgaeRqVu8AOksRGsh2PASVUT6qNW3Xm/CHqc3UKSzNi/FiHjhD3H4sJsoEpLvOkdimUpqaqLNu+UYzfjybvxwT7ELkDmAFzCDH3Nlq354HloCPACEozMAh6E67bFnCtde6XQR5vxOKTqF2CK6pcTkRfwnHTj+Ae/ncjcgrnDrYIWIfqebXxMqL5FwibbhbMKTRJg93UGDoadwt3cxThAWjQCxzU7VsjnBUiqnoItRE2rmCjZaBXt0Hdm2w0TGV8HtU8Nj5EUukFcxE/G+CnjXhhhezidhERbFwFvbpCuAdY0lDsuLJP1ReIZpfgniVv+5OY1CsS5GcwQQtwx9s4m04h4EvA54GvkC7WrrOf9zRuxFj83a9EfrNwVcBP4hKdn/sW3jkN/AXw69cQZ10lcfqd/IiN/U5RnfhB3I1S+EYvEy/cTtj0ukIL88O7CLMlE9of1Xsf+jLF4hO0rFgn8dwE1qazi4rtH3jyNztP/tVX3jjwW39WiJTa2Fxl+YmdJ5YJnC1DOQTTgisNlOoJLdVIx0+cj7EQ16Ja9sApyuW/a/Jv6ovCO9ZjOjYnKCmELmAGtTOo+oipAqFAiJhBwkIHGvtAD6oRGp1AgxlgC5iTqC3jAtth1KZAXgZpBqOIFlDd25jWuwW40Fit3wPsB7O9kXDeA5g3nQJUxxrHrxlY5fhHcuXOEkFNEFGfvWzHOIoLquO4tvondfrUnLSsfeYdPLPf03gXtcYXcKMjLtdxnMR7QW9TVSte6gJiPKw9CHYroAijiOSwOge24hQkZAlCO9iTWMkjnsWYjcB6MC9hbYq4bBBvJSY867oNwRrgMCpTbr+6BmUcjU8oXpqkNomXapG2VePBA4skuGfWS04elXhgIAnX36H43grUXlQbn9OZ80J9JqGwIq8Xzyb1g3uT1Jqu3Wz4oJUg147aOUkX01oah9KYaKqoQ5/98/q55/fr0p/8KVn6iUcSpkwNW7sNkRHEewhN+t2BkZcQbzMi96MakdR3Y/wEdBrEA10D9DUmz3ET53oRMR9oHNl+4AnQ06geAXnMSd3ow7jk8QFcxl1o7KsD+KpTt2D7myUrkeWo/QcqY+uw0atk2h8HcwZrXwC9T+PaAaAFW2/BSz2Nl/bR+DmSWgoxc+KOd0FNMI/Gh6iXZzHmsauugFlcV2gWCFR1CVOnBbfg93hTGzTZSH0G6jMoXJJcdycigvGraLIXtZcT47txSfwbwM2I+GptnaTq4eL31bCI2U/QBCa1GuO9VZJH3bXJ54G/J11855/p32HcaLH4xkkiAdLFhELKg9EAACAASURBVOrEf4erKv4e/xxX0iWPv0a6OPZuf7RrkC6eoDrxOPAU/wRHEj97SWqTi8gW79H63D47M/W0JFHejo9+ycRhk8aVRJPYTp84/9rsoRPh6J9/8e6e1b3H5ocuBRPl+qTCQAxiIfSgHkPOA5tCjVXNTw5PW8/36mEqkMrwVBJon9f6vlvTTA+W6NhUx6n0X8St2NsRik7DzUwj0oa1lYZXbRpkCSgktW6Qs5jQtaKUvaBpx23iVrAXwKxAzC5UOxAM4nU0Jv56EGnCJX2XdeI2o8xzdSVRvAiRHwAuTwpe005R1XHicj/Y292aQmNgOcjlAPQwjo6wkER+s7jB/FoX8B3CbF8z8FvAp0BRtTtAjdp6s5jUJMYLwOwEY5DL8diOo5oGnUPtaYyXQ8xKkGFw0jjASUQew5gRTDiOrb9OUvHwspOoTuMkhFwiozoH6qNxK2r7MUGBpFYWL91NNl0m0zLj39aV2KkpK0ZmNSoPglY1Lls7cDSW9o4i5ZGB5MR+Lzp3zg/v2DRn1KYFNmpS+xLGRJQnm5geuK18ZuTFqT1HrE7O57oefTCQsLlTc10B8xfyOnU6kfabdzl/ZW85xqsBraha4sp+0NtBBGPSqI2AGURmG9/hdbC3AJtQnUEkh9PUPA/4qG4CuxtMMyJfQ9UHXkcbrWThUGPa5G4cv63q5GqMDzwnXtChucVp8XMd2Phl0DQiOZQhsBFJ/Cq2Vqc+vZxs93pgDhtVgf0aV4axcQvYJcA2xNuByYKjFDU4qnKFqxmXj3Mt9eB6aKc6cYBM+xbXsfJWNjpNlxl/OVW9BRt9laS6Co3XAssQ7xIii4ABvPQ5gqZ1Yvzr0QMO4arjf0O6OPjPfJYbCzdYLL6xkki4XEH8f6hO/APws8C/xJXhL3+XAVwC8X+QLh7+7nxIIF3cRXXiAZwwbvq6rwkLj1DLnqlPXJp87X/5g+rgs7tWYa2xcdLRtrZntDpdyodNmXKtb3hYoNK87bbXHviL31l2/rNPjp/4j3/tVeLkPnUZ1GHcJJ1vIMkjgTHGr5ZqVrUuZa1QKUfZpqEJ7f/Zz9SX/eAd6fbffMyISBVVg0gdkQKqrlWD3YcKYHO4hAzUPgek8TIhwhNodBHrfxn0UVyL5n0428fQ2VZKChGDqgcM4QTbt+DcbUJoiLyq3cu1HKJZrpYjuN6yLC6fw9aveo9cjzrwYZ0+9bfSsnb4OtsW8FbcWHFrAd85fBT4FICqHkCT7Yi/X+B2sM9j/IdwG3cDG1C7G00eBPaialW1ho1FTDCFoRPiLFaHgA0gexFawSagqzGpQxDnHT/P7EDeNGPJOL1ary5qRdExktotasIjYnxHyfJ8Y9rbY02iBFufAaPUZnzTtVjIFGcQL/DuuPPO/O337iXXvBEvM6tx9bBOHm9R6/WXdp+Q3IN3frW05xkV3/c2/4utTWF6ZKleHF+D8QeR4BTVCaNJbVb8TAsiI6AtqD1IXEWdnNCLYuMI/I5GKz+LagEbn0KMRczlL7QLWIZqmybVAYyfEjGtqA6rxmkwiYiXAh3HdVeOgtzqElJzHE1yuJi5D9UJl6RJXbzUCHFlDhIwYbpBJZhXxaJ1Q1yF2fER+6W/HTNPfHiViPQgfifGu/2aM64qwMs497Ie0GtFMKsTo1ybRFocB3YaL3UJL4gRA1EpIt36snOEMbch3k40eZNHKiKicflWsJddjlowwSuEhV5MeLNzr7sGA8DfAH9Nuvi9y5m+wWLxjZdEXka6OIvzePyPVCdCXMVvvvH79wbSxWNUJ34F+JPrbRaRQJuW5V7/n397uP8LL14zxTZxYrAZoDQyhXHTyYOtzblRkbh/2Sc/WvWLXZne3c8fOrfzRO3cVKledWJqKzNgI9X68OhMPURMKvQkia1nZ0qe75sZP/TC8T1nbHut0kw6W8UldJOAj5hOkAugW1TtMZJqj0hwWkX6UF0jIhcQY0F2AMtRvReRGZ25cJBcZxfoiPjhIyC7EZaj9jSa3I+yD7xJjBkFToJudO0bCy7BPtwIeBmQC42b6DjO83YQRzpXVOuKTuKlevFSA1yx/LrM67z6393Ac5RHPk120T++I+dzAQv4/oMTDFctOykviYEI1f3YOMY0HiEiGZTdqJ0FOYLI3QgvC1iQFGLaUe3GxqeAJrxwDWpn3P1u8nip84iXQ5OQuPIaXvpOLC/j7FBvBnMGMT+MJomgM2qCwxiTqIiC5oEa9bl5gibBpHy8wBh/iU++Z41WJw8TNlnSxT0mzKc0iV/Hxm1oUiXXO83wEZu7e8OsaLS8/Wc/NlD8ubTUXn9tvP7KAZu6/85eMh192Fgl31ORILuKy7qOqonaZB82GieudBCXF2l28axgx8H7IWAnqluBHWCuasPaB1ETqKrq7PkxgkxA2HpAS5dCglRdsl1ZxDQW0ALoUpCBxrm4E+QruG7c/aDPNiq37aBzDXvHdpRLjkYgE4K1OjuwDUAlPsXkyDJUR8guPuvOQ7yT6sTlQZYR/GydoGkV0Ismu4gr105Y1+e7gHlMcFwyxYh0cZMYr919hsuzALIXL5xE/HsaQ0HHMMF2kqRfVbtBj2KjGbA3YYJdBE0hfvY2EfngW66/Km5A5s+AHTfSgMz3C27cJPJqpIt13q559F7Bf8ZV837kehtFzNLFj/7AubN//Y3zHOsSou5M57JXTMetuWRi8FzvT/7Yoo5qf9mMTEWnD5ynGtucBwdzUBSIE6U1SHmSyoR143nFWqU+VJ6rBNmmdFN1ar6mUTWN71kdP14mqYeEuUSC7CxN3TkRL01pOENSS2m64zS22olIQdVMkW5+v7hWxE4Rq+Bt0PO77sQmBVqX1WT5NkBvQ+0uIA1yADRGNIcm+8GECKtB9wB5VNtBD4LUXYtHmnAT8QY3xWm5IlL+ksD7v0XSyFOUR/4v4H8iu2hBdPx6EHnXprMXcANjfvBRTPgp4Dw2Pi8kj4B3RctQ7Usgz4AsdsMxtojx73cLRP0yJngc1xLNY6NXsXUAD5PqBr6E8VaCGUdUQLcBacQfB7MXvH0NmkoKm7wISRoTPONmQfUx4sqXMGYRkr6AFxTwwnyj4hVi/FiM346aFJgZyXatw0bnxE/XUZ0XEc/WZuYRv8LchKezkxHgY4NhDVqFfHOSfvBxT7KdCZX+V0zr2oeAEbzUnoZm5T7UToLG4gWPQ+YV9dK3E+QPiBcK6IOgR4D7EKkhgQc6gFOP8HHdliFIUmiSx8+N4AVNEmZrWrq0hMpEl3bcMi7IjJvOph/X7ckDX0XMItAxnFB2BCxCNcFRAALwq2Cd5o7SjJ+9naCwEwHJpLLy0//mAmGhU4x/GFip4t9L0PQVxKzAz60T105uvN1crV1pVfVVmpbmJFXIiMj12syHMUEJ8be6OK1fB+kCNiKCYvqIJqtgyoRNGVKtBRG5ntj4flzi+DffCzzHbxo3YCy+caazb2RUJxbhdCWz19usqpWn1t02U7owuOjD/W8cDvK5tqQWnfLS6dW1wWNnvJTXPX/yVB+nD2abFhf9vj/8+82TF6ej9R/e2vfsHz+dnrd6YQpWZOBcrycr1OpURalnjUx5go/nhYm1JVGKqcCb9tNB6s5PfzKd2v4wxgxXpDS5iNHRGdbd1GRaumPbtL5+/Hd+d0ZsTTb+xi82uba0Len48RT10ia673xFvOBBVEfxMucxsiLZ/Y/HqU10enf+8JS09HposgqbDKsYQW0RG53D+L7AEpCTjsppM4DB+B5IhIgF7gN2g9yL6nmSajcwhAnKboJQbr3KCeFbwQngY2QXvf7tnsbvVWxZ3Ko7f/rBb+u9uc88tTCd/b2I8kgG1c+BfgTXUi2BnEUTn6S+2Q2PkHfuMcFtjrunr6N2S2MPJZBXcDGvRFLpxJkcDKsEOTH+ioY24SRIHtUZSPrAuxeRtJsqTrpBToAYTWo1YBYT5KhOV3VuWCTfEWF8JNWaRZO62vgOxH9NtJ4DspiwG+e7fRLxHgTdhdqKrVfSDO8vzXz5mbpZ3hNmqUbS1hlXhyf8zLLFQvtiX5oWC7mulAkyzaiW8NM+8ChOtmw/qutRew7j96A6gWqCSAnsB1R1WIQQJyW3GSQLnHP8c/WArSA7ENmu5UtPEzR5GC+vVhdJPH8SVY+wEIqYKcTrwnjmTaqQ449344ZCSwg+aj3UplwbWuuIKJADqQKrQE9pddIHfExwP6oWLzUGlNBkhKQyjZfpQJjFpJYhZqzhhz6JJn3ElWZcRTCDCcfFC5Zj40uoDUF90HmgDcwl/PTloaFGwUA2NX7uAxlENauwWYy52s/6MiZwPMfPkS4eegeu4hsON2IsfvckhhdwBeniCI6cfl2ISOahp57sAzj+nz43aYIgCfLZlPE9TRebm4JcZl3LxjXFliWtD1T7hyON7aW27tbK5IG+pi13rdoYp/w2H9ZbyE0l2j6jpOqwOvTMUt/zVk9FsT8Z2/WTiQ2ricVPBanpr3+9MvWHn6lU/+6LEu16fdKOTi6TIF9Xm+RNEKzLr16dWvdrn8qAFVXt1sr4ElJNd5EuHEJ1qVpb0aQ2p/XptSgt5uYHijo3W9Yk9oFQrZ5qcGnWEM0PE1duw02rD4K+D5IiareidrOrXCZrUS2g1qJ6FxrvQeMNGH8e8cZRW0W1DTRE7SnUDqF25zd3AhRX1dDfozz8q5SH326h9X0OMfJt/beA70GUR3wc9+xWoM8pKnhdGO99eOFWgtxuxDtJkEswwQeBRYiAshY4CrwK7MVpS64AWhC/DfHKmkTtOnp4WtXW1CaHVFkMtCFyEvHvc/vRPZBU3L7UU008SsNdOn26qKMH1uiFPanazucrJHVFrSGpl1RtKCY4IoYQL8yD3oWtzeEoMi0gl7BxDRuFJFWNBoej2ZffUF+T2FuxEtPesjazcWWbFLtSUhrLYrzNJLUcaltQK6i2ozqE6nHgTsSUnfe2zgBFRG8CG4N+jaQ6oDYeUtW7gVNuOlAuIjINTIPsQx0VRzKdd4mXqgimKtij+NkiQUZEY2nExbqq3qE2btUkXqoaZUgqWzQub9bSYF7nBnNaHleQOi7Zj5zChhnFSaIdRbwcYXOZsAW89Dh+Biojc1RGVlId20Y0/zjxfB21D5PUTlGb7KZyqZX6DMSV9wGtiDEE+bUYXzH+Ovz0AwS5bfi5O0EWucW9l7vqKuoBZhz1SQYRsxKR7Rhzx1sSyBPAH+AS9B7SxV/+fk0gL+NGi8XfG+3sGwO/hxPrffx6G1s2rt/20flLB0Xk5kY9u2EpZUbQBMm21PS+n3gxd9PF1tVruvOnf+vJ6NSBc9medd1nUxBZmFm1tBit7G0PauV6OH5+NNc3VerEtUDGE5hKQRJHyd29m5bNFlZ3zJYuTE9oktRrY7NtYTUqy+iFNEHLmeqLfzXc/fDDOX3tmQp3v79KZbiPqXN34lontxG9fgLjjcvirUW9tL+gqRZLZVzNrbfccvrT/+7A+LOvbfOy2RNbD+01okmr2tp6Um0lMf4WNHkZF9hDhDxOpzMAPUBSewDjvYiYhwC/8UB5A5G7UT0LKGpPgiQNvtBVxGu9gFstj+AWR37j58t6oE742MlR3Ex5+I/ILl6oSl7GQj64gPJIG/CTwKeB9sY9tgPHxWvFyW71IpInyN4H7MN1WG5FdRJhsmG3N4Eb9FsOgNpTiPSq0ouNXyTMejrXP4h4Wckt3qkmaMFGWWz8CuJXxUgap/dVAR4kqb2q9bkhajNLKE9Mzr64t2TW3NOemhualaZu1AQeSc1qpiMS1AfbA/ISzj3n9kZb9ZCqJsSxr7Y2W3vtjUzHx3+k5M9O5bSeytr56gRTw3nvrg9G0nMneKkLeIGiOoxqC9gyyCnUziPePq1MKH6qJH6uopokoKfE+Fniaq944YiWphKmLj6ji9bkJcx9rdFpSYFU3PfSm0jqA4gZxMZF4G6S2itokgfG8NPvx8avalwqEZd91M4S10bBLLMaH2b+4jxIQr67Ks0rMmA3Y8xhxHsA2ItQQnUb2F2oNokJprGRQe1hxSaq+ghxNM30pVNMDs/TtmRaeje/SG3agtZIF/fghUXEj0RkTpN6D+WRo4SFAC84BYyjeh/Y8yA10GE0bkeDlzBeDieQfrVg+GXUgReBLwNfJl3se+cv5BscN1gsXkgiv1Nw8kQfxdleXVcewRgT4aaXm0BX4hwVEpwnaCKpXEpTqbQYQ7pYCCKRw0eODtZJBYU7b1+xvyUdbo+qUd/08GS5d9OyQt+OY1XAS9xl2V2HmfZc6nB5tlzKTJfbbGTjufOTubEzg/n1H7n3lMQ2Zzbfe2v0uU/pxH958lTPJz6Yt+dO1ShES0S8V6mWb1fVAKUs2SZQrUrnljRx+YCi67RSfW35L328e/bwwMVofCJVOn5iJLd+behI4aoNvZ4KTtqi0vjaAarHQDoR7xnEdL/5e3gVkScafJ/FaLIUeB3jtwADriqpNUSWN17fy7U6Y6M438/Jxs9duGPxCPBRysOfAX6b7OIbTpT2HYVw44mTLeCdRXnkI8Cv4hadV8uS3Q28CpLAZa1WrePuqRh336Vxz5ImN1Qn21A9D7ocwFXs7EkRVmmQz0o+NJighBfeRjRnoNKKn9mBn3GakYTbQUfAO6Ma79WZvhaqUzPE5QFbqXsX/v7l+lzm8NSWf/sRCVe3wdylhLY1dbFRTtE0atPE1QQ/c7PY+A1MUAOtkdRSJNVK5ZkXUv4jPxqlZDJMrG/NzY9MGz9sI7Hd+D6S1KcRE4OUEQQog4YgBcRLq2oFNEt9djF++mY02U1STwjyddA12HiNxvV9mLBFvGC9RpUXJMiknWWrO9qIHAXtRZNtOCHxABN0E1VXA81qw8NipI4Yq3H9ADZGjG9Jan1MDoYEJocQU5/twE9vAYlAV6P2K0AWZB4bvwoq6hLyHpLaNJDSyaF5jr0QIWaazuVVNjxwj4T5C4gpAvP4mVMk9RQ27ieam1UxZdQqaregyT6QxmBR9DJJ3ccECV5oEbOey0NH1+Iil5NG+Brp4gI3/RvhBozFC0nkdxLp4kxDiPw14G1mo4jcgU1ex6n5HwPNSmG5B2Sxidr6HFRnL2hba29Sjeae2PGHq479+ycnVz6+aT6dC/3xrx/acey/7QvSubApbMu9kXIDKTMKd1k4UGjOBJ6YZPTsiD/VP5brvLl3unTyQjrdVjihcexT17qdunRCfD/TvHJxQK0uen5vWnqXHKGt4yadnt5R23csE89oU9Mv/bJBkyLotKSLa0i1JmOf/7yKHw5vefops/+RJ9rf+KEfy9576lA7fm4A1QqqzSi9YE+472gabQstI+Z2RPJcoVhscEM5cgDROdU4wMbnMX5F3Gp2GlgCalDd0/DZvohIDyJduB72GTe0LpucZyzgZCIu80b+LfAh5od+mnzP3nf+hN8YuAHj1gLeSZRH7gV+H8e1S3BC11uB/oZu4VUWGjoDLOHtyeYwsAp3f4FzWRkAloJsxAsXoXpI0CpeAJBHeVWNtx7MEdTOU599EC98vfG+DBoLSS0mKo9go0XVcxcHxv7r86VZK4x+bU/UV8zKut9aiUhoxAuVqRP3gVrEO0e6eJPOTxxFxJPW5TW1cQ+2PqmxrZkVa6LMho3WTvYH/ppt86i12Fi1NDLO9IinbUtTEuZmxQ8jxDeqFjSuA3VMKCL4mmreBnIOZK+YIMBLldUmMeODRzWuX9Cxo3UdH09MUzqQVOtSgsws6BxIDvfcvQdkH+hyjerTWp5/Lek/PZP0He0L7nvESEsm0vP7smCVQss0Nmkn03YRMQGF4hLqtUFpX+ORammjPvcMqeYPOjkeidF4CCSDmFlVbXa2tcksGDDeNC3dTWz98WdFTDMarXHcSVvF2uNAGU0eRROw8UsucXxzIDrCBPOuyksHJrwPL3W9yKG4Z9zlxPHAdW2CF/A23IixeCGJ/E4jXTxLdeLDOF/ut3NSxbSC5lGt4ipnl4A+NE6MH27T7s0nzNSFwZW///MBncvbb/qjX19JZXpPvGN3pfWOdfW7774prO45Wc30FLbw1N4Q6IgdwXvDoo7C/qnxufroRMnP51LR2EvHArXKig1BauLQBWmu1L1gcLhmUmRJh9as6I2TehwzNZG1o2Pn8b109cSg73d3q85PlCCqiB/GtBUjnTk32vXYLaunX33j5NF/9VFNdbZORROTLQDihVtQe5wkfgmSRcAHgTfwM7eCjIImwFm3ktbjwGLEnAbpQmS9KiWtz7xAXG2WVGtGxTMikkakhuoplCzoOty0N+A902jFpXGCv882ksylOI9vB9UaaseBPcwP/gnwG+SXzL9LZ34BC3jvoTzyr4A/58qzwMM5pRxsmA68xUFEmkEvu6k4qAK6ufHeOrALEUVlEXAGdJV7q2y+qlenoNNiUi9jgrWa1Ofx02dRO6MSLBLhNeA+8UJo37RbRw+kwkKK3PruzPG/eH6m6IlvL47UK1/+apD50U9E4gfZhtSPQZPlWp08wNDhdbrqgd0kdTDeJDZuwdhKZvOtlqSSknS7SCoDcRKLmJpmO2LJFH0d3LNam5ecpHmZJ8aEaBJjY4sJjUazea3Nz0mm+BXxM72K1rBRJMZPgW3XQruKoU5KIrNxSbP66WExYYhiGvSdLOA1ZG/msNF5xC6pffY3l9emKjtqU2VTWLJ+Kn1LO1qdXkzn6jySzOCZ81qdyku+F2leOYqNYvEzy4DD+Jk81j7XsIvMNKrGGxBzWETn1eSaqc34aK1MYlMS5pch2fNUxi227jQaNTmElwZ0LUn9WVy37H5MeJawMESQzSD+BhG52snmakwCz+OSxqdJF0e/9YtxATciFpLI7wbSxReoTvwG8Jm3bRNZgepXXeDV2YbDy0qFs6g9QlKdAC3g+7cBl7DJCVpWjfs/cee9DO895pXLdYbGql5reo/CzQppDyYMrBnsH1+WMnIs45u29rb8+vn56qHp2UpXKvSqk0cGgmi6Mtc0Mtdrsv7E5JFhku5jie8J2Z6W1fHYzPF4bMYn5VeDrkzI6d0P0r1uj7b0+MRVj3MH64TJYMumxY+1/NEv75JCz73xbGk/DVchjcpTiAnEC6sNScek8Y09EIMmA8BUw+nhOdCNYCbAvIyNc0yf+UGCwm5SrRa0DPKY00eTSwiKshe1zmbSmEWIrEF1DJEakEa8pWiyq/HA+xrIkoa94mUNtE8BP8z84H9PfslX361T/57FwpDM9x/KIx/CuXp519l6E64iaIEpnMzMPLDuzVeoRqg9iiYzqE1jgmmM94E3t7tL6uXGVPIWrvW3F0QivPBu4Jz4qTw2SZCkCHYvVu5BZC9qV4gJxrV51Tj95+X8F/fM5kGxGg8fPGcknZINP/bTHpVJNCq/hJ9JA0XKY7N0rdlNXFX1goxJNaumWkYkiWOi+TwmrGMnUzpXNybX2YzqpDFhaOcuWZp7j5FUczp2MqK4MiYuBQT5DmqzY5QvTku+x0OMgr0oSKyYLkVaxATtJHNnmB//IWlaupMgv1mmL7xCa2/sqn2mAzf8YkjiLzQqfMsxnqW57Q3Tkp6SnlS6Oj4dpb2wKOs+cBIvtCR1tHzJMNuf6PxQk4SFJjFhFfGmQAKncqGRKm0iUgQzBvQr3E0SHaI2GZLUNr955OMyOG74lQFDG92Bjc+AdBHkxgibz+OlAhFZhaswvxVzwA6czNALwKEFDcd3CDdYLF5IIr97+F1gG/BDb9ui3IOtH0WChrBvsh+bxFqdGmCmP01zR4W2ZbuZnagRekqYNyKmTzNtIZg4tbY7RyqVD5oyUp+rZIFZC7ty+fRMPhO2GtV6HCWH1OpsKhWU5sq1ZGpoMnvTym5sNZlJ6kk1nqtkLj35Ir5HR2Vy3uY6WzvV2krYns0U7lzprvLRc8tYfPMZvXRqhvHBDbQ0XySdBrVW6/Ovemmpa3nsVQS0PjcnJshppsPHRk8hJo3xXxAxa3Ck/UdBTiEyjdoCyimwgiatwIw0Ld1BkJ8W468H7XMyG9SdpIWXR2QFcAZNHkHtDjABaB9KCsiDnsPaeVAQeQL0WdwDcgduaryEq1L+AvODa8kv+eN3/Qp4D+FGa6Es4P8HShd9kI8CvwjUELme9FgCzOASzMtC0gCzjqOsbwAbUZugtlGVlKdxSdLVbW5FZDuq+7hCI7HAQRyn8k6numBfJC51KjIBakG/IOIXrNVXZv7+/5ZoeDjxSnPMnL7oG7CzSLL85uX+yl/6mF85flqT/iOZdFe617/p9ks6O3p6fue+ejI+q4Wf+BnjdXdaNFGsKjYWrU7GkutNMNkqUxeW0tQziDE+qokpdKXROLITpyPCdE3nB33mxqPq8aND5YELiamol3vk0VSwZI0hzCaSbgoxZoakntjJoQt2z1fUbNz4gtZlRhY3vyqFxSkgbhzjCVAByWA81TgO7OjBg3hdQ5lPflozxvcKisHWO8AEBBmDmF6MN0mmXbQy2kVc7ibMx6CTKNYVGbzNmtRfpzyaaLrlMHEtJKm2YetNXFkkvxVXKVRIibBwiLAgmMB+A/3HGEdzeB6XNO4nXYy/0SW2gG8fN1osXkgiv1tIF5XqxE8Br+NkMK7AmGasSdBEMZ6P6kXxggJeepqm7hy5yBJk7mPRhtOIuYgJ0iJmC9mu55nsD7hpo8XzNrct69zfGnjzx48ObIzq8ZLhqRJMlWiGEWn4USskQyeHS6u3rDogIs0m8G9JL8qX8ktb/bG9586Fa3oGu7as6ZYwNeV1tiVBW6FdLl0cByCOYkENxZ5WXbbxMElFyC/eiY1nqU7fg00OqcjWxrdSFfMqNuoW4yte2IxIjSA/4Ej0zKK2xpvGM9IG1IApQTwyHYqNC6idRiVCdAJocX6y0e2I2Yl4Cchr2GgJxn8JZDHYfmyScRpuADSjgyJjqgAAIABJREFU2ofIowjjKPOItHNtlWQ5paH/TK7n+yNIitx4kWsB3zoqYwI8CuZnwK7GDcQMoKx/+/k3BxG56zp7KSDmfWhyAggRswJNGs4z0oaT+LkJOInaCcS4RbKyFHRn4+9sALkN2IHa46AGWEKQv4Amyxo2gT+gSfV5iUvS/L4HLBNnW6Ozg3O3fCxKDe4+HtVEtJD2WyY++1/ebKvPwnzxZ/yjQXtGZw4P2UW/9Mtpb9nNjwuEOj7wBZrb0LnxejI7nTdBx3Q8fEb9rt7ztj6HBFkBsogH4mUl0zqplQk/Hh21A3/6F+bkl17V8dHZJDBwy7O743W/+uMtsmjZjFn7CMT1uk6cnKw+8yXf1MqRN9hnzdIVBVm0cV7EGDfRbTKANJQlaoCnauZrn3+SaLa+tOnXfvOSyeZ9xK8g0o4JZhCJcMoSUxJkNtC+aT9xdQTntV1xvEdxSWJpaB3QRWXseoMt14MS5A6Qaqtigi0ics91XhPjksa/A/6BdHHyOq9ZwDuJGzAWLySR302ki9NUJ34WJ3lwLUzYha2HqE0r5ixol6TbyqTb0Lg0RVx5CT9nG9waT5FnbP/ZuWTP/i5EbNzZ+czG1YsfBeR036WvletxfwwmArLQGjaSSAFv8fqeFzvWLGqN56tj5amZPblNi3NPf+Yf445caqbbM4WOj//4JZPPZ4mrk3jhHNk2ZWzg62BFp/o9wlBobm5CC1XJdVmtTCXYyfPkFoNnXsKEFhGDTeqoPad+ZkZMahYnPD4HxI32fQWYRkwdMVuvOR6qx/FSddROonY9qONqiRzDyxxEvFWOA6lTIFmSOIdGE2CXIGYKMY8A550Uhc45MWOyuKpInmvRDfwLSkOnyfUcfKdO93sZN1jcWsC3gspYN/BrwM8ATRhPnJugTqkme4DFAnlNolPEpVGSWo6wUJLgrbdFA6oRDZoKIm14ITj9w1Zcm/QYcC9J9QjQjwnPIMYH8eEqdxLVshs2YQQogFURWYzx29VGzxDNP05UeVHyHYGG2YmgY3W27bY7k+YfHSyQap6qnT0/6zcHO7HK5F8+vSFYuXYw/dCPNtuLR0d7f/vfv19S2SJJ5ZiiZ+hYupHa3BvYKLZDx6cm//Jzeu4Lu63XXDCrPvawbfnoL3RMfO1rs4V7t9XDTGB0bpj48KvJhc/+I2d3noizy9qDeHQ2XbLUJZf2yi8cmM/88FJjlGDuwP7s5FNPyqIP/cRc8sI/eHFp3k7v2217Pvg/ZkAVjXtQP4VIiDCES84QP5UKHnpfzStF/XhG8TI1hCbwfSeqQQp0FMw8Ik0SBE8Q5Gh0UwAsaodwXZRrCxHfCF7qFKnWYfzsOhHZcp1XTOCeR18FniJdnPim9ruAdww3WixeSCK/20gXv0514rPA/3DN741Zi+Vr2LjLuT3IOEFukyLHCZs7CPJN4qUjRG69/BYdHdvB9Mz9AIFvXsref8dXyi/veyDIBJ3RDJunYUcE25vg9avUXuMNj926VRI9eGm63Dx2YXK6ZVOv2frzT8TVEwOp2qmh+0hnT+H5a7HeDlItKi2tj2sQvERl4gHmLgyQbupGdRepQh4brSKaP0imdUJy7WnE3E+mc1REOjWpvYKN7wHZJX4qp9aOo0kPzhvcQ3UEWI6Yw+A9h0jKOWHgI0kF1UvYeDsiOVRngZMIY6h0ofVBoAkXBGOEKmo/AOZlkDtxAsj3ukoAo6hux7G2dnI1z8uhFbf6rlEaeoxcz9ffsfP9XsUNxsNZwDeBythS4N8BH3/rJlU7S1Q6QlJeCbJLU8XteMFyqpUcsJTaNGqCHZhwm4j4qJ7CaURmgPNcK6UFsAy1TyPeOUAd97gxzKZJP+KlEROj9hBgQYeBO1FrgY06P7wHpC75RUdAjHiZrZrLvkFSN6BWJPDxgljTbTkPGdFzR8hu7G7GOVzR9Rs/dUI67xwkicqme2Mz8IqqbcPatcRzHdSmOuzE8Bkp9ibB3R/yeeV0Pd3VpmOHzsnQXz7n1c4OTpFETJw6mVr8S78i5OK0trZVwkWdieefyVw6cTHxIVrclPa7f2S7n3/g4YBcMUdSn5zZtVczWx4yqc13eEn5ZHf15TdGm3u9ikaVlRKmBxB/DpEK6BSK4CrAEWiTt2LjvN/UGeOl8or6gjG4pLrXJdw64GSGJMfbYYAeVbX8U8YhVxLHZSKyFlj7llcMAJ/HxbyDC9zG7zJusFi8kES+N/C/8dYkEkBMiMabwPsKaBoxS4gr53TuQgG1l6Rt/UMoVaJSFciR1JRC65D/E5+Y59KZuUI+15bddtf4Hb/7p8Mlk6t1/85/WIPIiERRl0TRCfqeS9v50mRwtr9HM6mq7ju7pDOfyg8/f7Ta8+PbpPNfPhhTbJtFq7PU6+OEzRGZttvxUjspblzEmef3EVWXMTx8vD40UUsmSssyP/lzh6Vl1XLEzOOl2oEBorlxhbqrNOoQJqwBTYJ9nybJBPXZA9joFsImxEuNoyZCvPuA82hcwFUMu0FbwL6OtUsw/gDiNaP6GBrtQowHstoFa2ZR9THBTqCE2iOOxC7nERlHNc+VMdF/yrUpBXyB0tBD5Hr2v2Nn+72IG235u4B/GpWxDwH/iUbHAXDMD1s/RjQ/hcZbcOYHYONLVC6dwVXIbm+8vJ/K2P1gpjTd9op4/oNgDqPahONKLgOurEWdLuRDqCkhUnRtOdOHWot4WcfhsxmwS4A2VDeBfh1N7lfVSZ0baKZldStRqUJ9boZUyxEJcjVUYxtVouSF/2arfX2aKmbUf+Jfi2x62GNueIzaxDQigVl0+3mCdKxJbTWqKxnqO0NLyyh+8CJjxx4AHZGuW+ck17WUqDo5fXKwNnDwnBmbrZEMTlD5ymte2JL36bbN3anmuyTdfDi8a8V9vXf/a3r+93o8+Gef233ujz874cW1tLR0tpBpHxM/XxLj6ZKf/7jnJH2tMUuXJ9mP9ETMzflM9Z+na32CmDwinuN+SoxgcT7X26TQ87SEuRC1AWJCkLuQq/2qZSmw9G0T8ddAI1ysarzFTBHkTxE01fFS3yhxnAb+FmczuGshcXwP4QaLxQtJ5HsDt+HIgNdePV64nbh8QoQC4t2nVneCXybfm5Jo7nIATzf+H8iqdYlo5RCjJ7KUxgqkl0Z+c2py8b/5eLUyUJ8JZyYrF//XX78JxE+v6jmx+Ofev11L5Yssbu4EHsvuP7vj/2PvzYPkuPL7zs/vZWZVVlXf1Xc37vsiQBC8AYLkXOSMRhppJHm1OsJSyMdY8kq7odXaGq8tWXbYsqzVaB2yHdauLU1YGksrjS1pZngMhyQukiABkkOCAHGDALqBvu86M99v/3jV6EajcZEAiKbqE1EBdFdmVmZ25Xu/9zu+P4pR6/Dx8xtR3pBkIgOEFf3GBspTwsQ51bBZTW33sjjHy5z/IEuYXJF48NFB0rV50egpSqOvkmzIUxhZQmnMA7MUAYJMQksTJyiOPaAuP+iY1C1aigkewkv0ImYYdCW2vAZXEboRZBdinkA4hTKEmDxiDmH8L6K6B5EyJijhdDffxBUEpCveRh940g3OgOo51HrMTJQweyKcn1rgWaZ6dpDpev9D/XXvdhZeGk6V+SgMCvA4ql9C7b2gwyBHVfUe4twhonyrUz24jEkS9QHYfiDEC193qSF6BuQC6HpBHwIyYEu4cLUPkqjIkBUQaQCNEe8FRDbjKrm34iXTTHssVQtgD+EMSEXjV0C3q41P5p/9s2NWfT/z2Y3biIs9JBtG8RIJbOyjcSR+IN7ydSmdnMzFq1bFfnmqldJYmfGxvA73lsun+3YlHvItWk5oFJ2T7NIzOnKsKNrYTseWkiz/7NtayvWbZFqJSifjqYsmyFidHC9KEtT3E0TFcjG7qDOZ/tKPJlT1LRFpFpFTwDmTSGxb/JW//1jz5z57unTuaG/tgw9F4icF8ZtARiWZtIgEQIsmGweZuujRuiIpte1LEG8c1/faununvRXRdivG80nWZoFHnB74NbnaBgURc0JTrT14iQwm6BIxy3Ai8XMpAX+NMxyfIcz+zW6ycDeyAMfiqhH5cVIY8oBfA36duQbkJUwPIjnE2yVCAT9ME+UaCJvAxmcRCRC/AGSkpSX2Upua6T91P7CHwbMZ4miTn2mYqNnStejC7/y7yaC1dQDxvIYvfU6jINtz4Zm/GmlbUf89qa+tb/j0vcXS6b5iet2id/0lG4rUNXuy5qEPJBG2VMTgnpxZEesus/XzKTZ9NtAwNSTlolAaHiIu7kapRRKLkHwbido8pYkBvHAQVEnWKyZ4R6J8PZn2Wmx5kmSTAqtEyznAgnkJJIEbOOuw5dcRv90JiXtTuEHyFVznjLcR+RTOO3LA5V2RAQLE24nqEKrvQzwK6loezvkr3MBfqhnM75If+HlSLT3X37xKlTtMYfAHgT8AWt0sZIbQuBd0J1o+QVxiWtCR2WONCc4RpJPicupmhagrAuOKBX0VeBTXjaQBaEDt4YoHLEI9wIyi8VrEdIOeBb7jttO3uRSFwKB6EI36VbVZc/3f1vy4SZR60ZHRNPzgCCaYIM5/Co32alCbIcikKU3G2podr3niyZA43wD2UUnWF1j7QCjnvr8naMuVpX0ZmqgpGi9Ma1wSeo7HSmpKJCiLSI4gjCsi58ZkOmXxP/2X2rBtq57/o79g+b/6amrsyEDY8dM/udEEiaWVG7AXN1YsB0Y0Lu0O64v3hg2rpkyQiipi3opIG8oASgphM2Hji5Qna2hZhyTrQndPBWC4UnjUx+XzbszlnAOptALUNcx4kqcrDs+A9OBcn63ACkQ2SqJ27rg2zTjwMvCXwDcJs6NX2a5KlQ9F1Yj8uCgMtQPfAB6/5nbGuwc4gfG2IN4kaDOl8cMk6mK1xV40bsVL9wqaoDAWkRvsILYQ1kzS2AbNmw7Sc7goxw50df7UU8dl65cXizFpe3bfiaFvfvPE8Iuveg351bUX9hwp1m1dKW1f3pGgobNg1j/dJUFypj1jlH8eGzUDk6DfAxpEzAg1Td165tk3VamjtmtYgnRM2GxR65PM5hFRSpNFoAxSFsQiBkSmMH6MCQylcUuQOaPinQf6KgakJ2ISxPkCardD+X3AR/wA31+FamNlUJ4EjoGcw4V7zqEaIbISoBJae/TSQt7NoyfQuBe1TVzfEzmF+AdBmoFnyQ/sINXyyRuIF9ryt8oMhcGfAr7ObONQJIvKIVDEBCtJNqwEUBv3UhrrBbsNKJJsqhdYCvrOvMcWiVDTCboXNAlkURXQUZy3yyLyBsijaJxE4z0gFpHP457Ng6CtwANOVzI6ADytU/0v6MHv+OVzF6PcOx/UJDZutUGQbFBrc2j8PF4yAJ0imipo36Ew2veC563b7JnOrs3iPnMQaJfFW/MGTaLWGtWSqs1J2NBMy7o87cvyUp5q0LEPxtX4SalfMoVgxDfqN3fS8BNfkdrHv5DyGmtTmS2ZOozMajSgaWCfWl1XfH3fQd55pmw623f7T/7kMkxwP27R+g7Ig2Bfc0oQ8q7Jrn6a7NzIMTBfhzJHEdgPUgI6cbqMi9wpMAi8jRMQXw6MV1q8Lr3Gt+E4Lv/7IM4QfpswO9dQrXI3s8DG4qoR+XHgDMiXubKg43JUx12bKeqA91HbS1ToliCzWePcIaYNUJEGrM2RbLwQTx45V7owfD65rC5jjHePTJ2v1/LYboJwQrZ+uUmMSQOoSdvobG+86acerR/ZfybKrl3smdgKtnE8HjERPR/Um8UrEWMqp2L9ysC62K2JNYnYsgDSvEHwa1qw5WHEU7ygIC7/sAtVoXF1RqP8OGISIhIrTUk0rhM/ncH43UQF1JYvoKwhLvUw1fsE0KN1y84IdnvlZqytXOtI5e6cA3MEMYuAPtQWKtp1m4HnwGScyDFJnKG4ubI/LnfSrMTak2j52n8DiBEzW2vtL8kPfI5Uy414MBcM14+mVbkrKQz+GvAbzBfJEPOQM+oquY+AGK9Tk43tlMb2EKRVpiVinATPIWY89eO4ns6rKp5/V/2r+gHEp0FbQPa76mM7hshrIDlsVIt4S1xBGwbXTKAftX2qUQLVFuLSt7Uw1cHQUMp76DP5+i8u8kyYbFZrU+T7Jkk2Licunscki8Q2EV8cmpJUKiHlyXaSLT3E+TzIMODjJZeILb+DmDTitQqyTOPSa9K9JkQVgmaktqtV1D6iqv+dOIpQGyGiWs77/uLlKUq5Dfr+t4XWdeel6z5V1RfQOKXn3xsa+/ofvDLw0ls23dlkWz+XCiv3ZReuMnrKDh/7lgTpotR09WCCL1/jL2VxBUmjlf3TQBciCWeIzoOTHmue970ZRoHngGeA5wmzF66zfZW7nIU2FleNyDtNYagBJ9Z6PQPSgu53IrUmh5AGGggyU2j0LKVyjRuXAFt6XSWxVISx0hS1B//+7+1c869+6a2Wz7QLpcnz1HWMSfeD74gxT04fvjhe8uvuXRFKY200OfiOElub3dCtpTPnpuzpo09q3TOvB5/68l5tTRpSrbGE9bV4iQEwLWjsDDplEGvPEdTnXCcdW8ILu8T4BjepjTlxXQTxR0GLldKzAkgRCFzXGRA/FQOdKt5pgpq3AaUwGGuy8YiIrAP2AAlM4AZcl5y+CJFunCDyOeedNG9WuvxApXITJyg+D1FfZeV/dcR7i8sT2h8D/pj8wI+TavnkrPAX2Oq3ClAYTAJ/FzeOjwF/AjSiuhaNJxHvHsSkZvU+BkBEjIZNKrMXRyIdWD0O8fOIlwQ6QB6puO5n77wENa7dnsgjqN2DxveDb0EP2vzQiASZQTFeHSK+YmJE8iJeAsxaSkMhkxdPidoB7t+Z9pu6uxEZxMYDxOVTiDTjpSOwHnEuIi7V+uu2FLS1AYbOhpTHTyOUyXQlxU9nEGkHOY8JukFPo7ofkVCMX4t4ZcQ8DuxR5KwdOFFPaWJU6toSpLIFk66vRbxWSTV6bPzyWUbP5lT126JxoPmBIikvUfcLX23N/KztCDo6OlF9RozJAga0gPihaVoTg06BxMyMM8KMUR/j1B7WVryJ57lcAPzUh/jLv4kzGp8B9ldFvz9hLLCxuGpE3nkewvUlvTaqrzktRFNCZLWTv9ESSA7xxglq1xPnd2FLO7D2fuzEUS2Nq1eTioOGmudGXj5YavnSj0ySak6I8WsYP1vSyVMnMf456pbW9X73RW9s35vFe3/xB5K5oYlyNJnX2o6mwL77TtnPJC56NYmsfeNbIo1N/TQ25nXTE5OmoUsR6Uble2icBfJgJyQIH1PsbtR2g9SDLHHXYN/BxjGAGK8VUIwXC/QjyW4wIRp34QWHEO8RbPS8eImY2kX5ysRXVPHbtTTykpjkdkQC4uJZvOBEJSeojJDHdcm4Bxu9ip98CjeYd4KedB4LbQUOgczkDTmpkS1cE/MWmPkEl13la37gK6RadJ73Fxazp7wqC4ewuUhhcAPwAHCUsLkXgFyfAX4TtTFo56w9LMhBxJQveSCnUXsM4rVAC2r3It7qSoi7DfR9YCcIqI5BdBRoRWUXSAkT1KjGr1CaEkqjGTX+KJJsFMy9aNyLLR1QJCbKH9Xi2CR+GIrxPMK6EpAG3Q66T/ykr4murai+io3qiHLDGG8cP1RpXg4tK4po3ISNxwlqYjR+FSWH8YzLw9Q8tiwCEeKnEbl3+upEpNm0rhoDDUAQkRDXuq8T6JQgdYaWNSUgifjrJdPRJRnXVtprvHSXlgCVwqTKAyM3PYVeoeo+zzZDwAlgMa6QCZz25u8Bf0WYvXizH1plgbAAx+KqEXnnWXnNd1UjNzjG9zItgq28XFlRv4arlFwryCm80KrxX9H+9yYo59BiIfbHB/KLf2SHTL56uAG/sSResgCS13RrmiDdT2ncZ+r8Fj8TPpPZsD4g28HSL96r40cvTGmsmdJY3kpz49tTx4ZrrInHM2v9tBdHGRnuH6eurVMLI4fFSwjoFrxwD2J2otIrQaYGuGfWlewF2YbxnFi3jQJAwORxq/MPKrniZ1Etge4DliJeH2gJG6XRaBmeDFCaeFADXhE/rAcFGxUxfjswgWoJtWPExQOIeNjodYw/hSuYEeB+4KDr8KCvgCxByxe5vEJ7fsQrV3Tx5uPvARPkB351oRuS4ibVj/s0qnwYwuYp5jYrSLdZ4KvkLv5t4D8APSAnQFbjWtpd7plXexSN23BFM4AuRfVsZYHWVnmdRe0ZNErjjFYL+gHoWi3n9rnWh/acZDrL4qeMwkW18V9hpzpR/TzoPs0PBYyfW4QJJmle84jaeIrx86+RajgmyaZQS6NlvMQR/AwURjrQeAqTDrFRhC2W8YIUXqoTXwQxJ0EvVPJtYiAHshaT6ANdhlQWso4YqBGRzXNm6JM4z2ARt7i/1nx4hEsG5C1FcO1Wv4vzLO4CjhJm3ZhSGKrBFQoOVGV4PvksxLG4akTeea4ePnXSF2+jsQV6Ue1HbdFpIGqME/19Ho1D0DZgs4h3iNZNn2H8/D479V6yPIF6vf331GYzLcSlNzX2e7CR6lRfiJaLIjwMmCU//NlO1E4ChA/3qwmT8diB0+WgrT5OrFmEaUqUhw+e8ZKDk4EdL1qvo88zzZ1e3ze+3tb+o18clExrP2FzDapvotE2kJOI7ONSFaEKwus48dzpp8JDowhEET8BWkQkAgwaTwDFiog4iCmANwTyZGW/JCYogj4IbAE5jUgj2KUIw/jJSnsNGQOexhXbrHbeSOqADrAdqL6K61l+HcxrzLRsvBq/gsuR+s3rH+8uZ4EJ3Fa5AdLtf0iu/6uVIrOuWe/sQPUwIutRexyNW7hkQAKwCOIjqNk2K7S2GOw5ZvpfT+IWaGnUjqAaABn81BhIiC0XiXM/5DbV/UT5ZQTpAC95hii/QePys9hoCeXJNJ43TqIhh0lbYJTimAF5l7ikmEQOrEH8mMLIKjKZw6DrET1WKcC7H5FDwEqQowiPMiN7Ns3chWAZOM10dfP8lHAFKq8ArwPncMZoVPnXMlMxPY3BtSlsxnX0yeI8nWtx6UsdlX1fwRmL+3FtIs9cNSQdZicr97rK3xQW2FhcNSLvPNfKX3kF9FHEgGo/2BHQBuLCOsR7Fi/5IKgHmnXfNHsIaBOR/dYLJqIJqRv5+l9eClPFw6fFpBvrSBgr+b52wkZAksAexDyA8ZIAZ7+xe68ZHi4We4Zr6htSQxN73qJhdXvcsHWleK2NCbP6oXHT0Fanmhysf/KHy1LfFYC3HzEWbMYO9r1UeuGbniRDd23GI/jcj42aMKytdFoE4w+iNonxAlxOUYwbhN3qWqQVF15qA6lHggHwxlFewc/EJBtWIbQ6I9AAjKKaAHpxXogkIrbyec+APF0Z4/O4YoHncNWPj1QMyfl6xTrE34WYqwj7XsE/Jz8wQarlaze4fZUqdw6R+QrABEii+j7WngUNcUakBX3LhYhNJ9hnUJajnAXZWum3bXFG0CTwiKrtq+Rv78FLzhTqGP8wsfSitoHy1AaNi2cpjKSJra9lsw+TWGz8TJHmdZN4qQAvUcRaKAxOUZroRu3jAMTF3dR0TYGWSCz6JkFtM+hfC/JFdyn6XZAUbqH4qXmutQc3ruzCFdi14qqbV+OKUnbjFpXTc+F54F8D37jlvaILQwJ41RzGKp8kqkbknWfgqu+IPIpyHujGaaoNoyzC+K+BqVONxkD6BLMCkTrUBGA9YI14/j6sN5rYuHG3JBKKSNz/q/9sJar3Jjaueyn7Cz+3ApgAeRUxl6o1VXW8oUYWmbrmLpZkx0mGXrB2ScLbsGrKTzeMk2qIpHF5JF6yBnRzpr7hJcQLCGq2AO+BV6f53Kg9cejx2ZeS+IGf+sDJ7miIeDEizai2VCasIzhvQQ4xAZCvhLRLbkKQUkXOrl4EJWxMu3C0jGH8VUAC1UOgAapTwBeAGJPci0tanwReqRQGTAAHmK2BJ+ZhVHtxk8gA6ByDUa4n+zOX3yU/sBr478CrpFoWnudggYVQqtwwZ7lSGxXcA9aMmAwaL8J55yJUu4GjqNZUCtTWu03V4IT3e3Dah23ueTWH8BJlbGTFS6SBXSBTRHnVs/vX4YdvIcRkWjq5ePakjg8v4lxPhvH8UTY8akjUpzQ/VCDIdEvuYg5bnumtncruIlG7EzHfQUwWLzUqInUgBWA3yBJEPgOgqiNg38FGY2iUEy9sQMxanAd2thd2Ng248eIM0A88D/wbwuzER7zn8+NC1FUDssq1WWBjcdWIvPP0z/lZcYPYBaCMMkE0WYcLiTytynP4yQw2KhKXazB+vZrkuEAdIu2o2Q22BSCxvKO9aemP9Guirr3/q/8iRnUxQOnIsR3D//6/vFs8frK25R//r91Be9ulDxeRurqf+/l3yv/jvz1KOjwV3Ld+sYj4ZDI1NC19S4KMh59aish7Lp9RBS9sRrUPdETjuFR+c0/N3IvUqfGjUt+UROMBNBbwCsAQyGdAD7sCIbG4sM85REIwpcr98FDNgaSBccQTsCfReBPiH0fJOUcmdUAAPA8mxoWx9zrDUZ4G3sKF33aDjXDCwdMX3okLNYHS486JJwAfbNkVfN8UX6m8LPmB93ChqudItfz5zR7ojiMsuBBKlRtmvsKNUzgDqtlNWN4BNE4A91RygDtADzkBbdmFmCRqx0AeZlrDEABJiNCJlziLl0gxq0uKBGlUvBNMDTijcKIfNMrj+Sdpa81IKulpYaRM7mIjyfo+gWFquj1yFw/hp4bxwwATrAOOIl4KkTJxvkuhH+NnseUJNPqAuDiCLXWjthlXBZ3Dr/k+Xmob0w+x2gM4RYgGROYzqJfiPJQPV/MOq3ysLMCxuGpE3nn24HJtiriBfAVOg83psBl/zIlq6HFcDk1IlNt+aW9bbgPZi5fsVlXFWWgAQlwaQQk5fWAqXNk2njs42ovVTuLYL757+B6/u3NNnu1mAAAgAElEQVRf0N42s9KvYFrbtyd+/n+5oCdez4kf1FHTcgApb0e8jXjhqyKyGfHPY/wiNlbi4jB+WKfIF4t/+u8O25PvXTEw6+TYMuqbVoHschWR+gjQg5i9YKa/d104A7q2svpa7LyVtCMeqH0GdDWuUtHD5TG1IzIEngdqUPsQyAFEk9jyy4jJIWZ7RXbjXudEUYtw/1X/IiJdKJOgx4BJNG4Gc9HJh9w0BthUeT0G3P1GJLLwxMmqXJ/8QAL4zJzfnsUV7M3oD4q3DUyExrvBTqfDbAR5E/EqXno5i8YRl88Z+4AMqnVoNIV4e0GWIdKlNj6OyEzOoAgEQZ10d3QR1AwQ1gaSbkmiOoKfTmH8FGonSbenETOASRjUHkBjS5QPMP4TiLwqce6zOjWyC43rCNJbr7hmL/2m+MkJpvMV1e4FbQTZBgrKm4hcuZ/TbWzEVUZXqfIxsfDG4qoReacJsycpDP058G/nfV+kHi+xhzi/A9d94EqJGY2b1JZ3Oe+BGIwPXkJJt1jKuZTU1xXqHl4XlU71HIuGJi5JfETne7fFE5MjXm1N49xDijEd1DT2SOv6w9Ky6jNq42Gi3BlcgvlxxDwKCsZ7ETUequfiIwf77Mn35stDgnyukotlCghjzpi0K9F4+jsn4F1AJMZVWSuuSnEU6AG1YNtBu7HRecQXvOQK1L4LBIgZB212hqZtQ2UTNvoOYh7ACw6BRGhEZQJpALm6a1H1IrDssjC2xm+DV3+N6uwboe4j7HtnWWAhlCo3RAq3WE1Xfv4Al0bSesWWAojXjbWHgDrE60fMtpn3ZTHKbmY0DvfjWiGCyAlM2ExcmFAbtVKe+q6WJnbQtOgEA8VXKOUewngHyS5ZTRy9RXFoC2LP0Lgmj5jNlMaUuHwRlbzmRw5x5kAL0E3r2sOSXVxLcTgmqH1WEjU/qGqnc6kFGCLROEx5og/UIh4YXxDzNBq/BLIOjcsgQ7hOWcaNGRQRSc5zv2qoGpFVPm4W2Fi8sEzeTw5fw3kj58dP309QuwsXZkmBTOIMLIfG64kLO7Hlh5GKV89LDkmYbRY/NYbnx3heYAuluQZQcvybfz1/ezOA7KKy5kcDADFekyRqt0qQuRcTHEPE9YwWU4PxWlTtjtKzf1p/1WOpdZ4AkRAxzbiK6pOuWtsk3IvpqtAaIAva7arOtX46JxLYg3ggZgSR4xhvOcbLYrw6xOsE1PXHtt9WGzVjS/2U85a4AOh6kEJF1mSec9T3Ud2LM9bnLKh0CxoNO73OD83cKtG7k+kQyod5Vbl7SbWM4SIf4AzIJE6uZw6quPZ6yxF/LeIvvsyAnEa89Tg5oR4ul8iqAbrwU+uIci9RnviMCKEYfyON3eO0rn2G5U9MiZf4voS1X6JpVU46Hl4hxn9a1L4rQaZTvPQwaEyqsZ2o2I5IL3XN96NxjJcs4aeeUtWDevGdXTp2NkGifgwTviZeYlDCbErC5kiC2lEnPyavI/IEqhPAE+769D1Uz+K0Fw9e5Y7dnlzIKlVulAU4Flc9kR8HYTamMPSzuMEsPfdtEQnxkjvVJI6DHRPxtqnqBbCHUSylkW1MLwBsWVSC/SLBE2qnXlW1ZQoFP5bQ2Hype+6x868dWNnw039LxczzrUuktjB67tDlJ2Oa8ZJfqHgK9+M8owUx3p7UL/3rzdHbe/eXX/rLwN9w/6jpWlqn5VKfJFMdpn3JIMh5UEW1C7VvYsvNgCBeEQgxfg94Ec5Y9oF+VJvQOANyHOMVwCsg4uRDnJxOufL/BkRW4CVXEOXPKJwiztWonzohok+gcQo1exCvg/mo5Aww09VmPrrQqB38EScndNN8FC/mnWWBhVCq3DB/hFuoLWVeAxI0LrzFZG9ITfdZ8v1nyHRsEbxpL/r3gW8BpxH5AOVTuNzh2bQD39PiWJHS+LSn8iiJhtOSaktjSyuZ6p0gqDlNonaXJBuKAjtRuwtsCmu/DVojXrJZS1MTLNnWL3Wt0/mVRVKtaUR6iaNJWjdEiOTwwggTdAHDiEygmsV4lXC7GULtbud11HdBdiAYiI+i3hFEyle5V/kPdYerVLmVLLCxuGpEflyE2fcpDG3EiQF/br5NRGTVdG64iHSA14GAJpsOE+VHiPNbET8WkUe0MLJLiyNpEpkMLatGyrv/GKxeWZVobVfulddfz2x/aDleeISwKYOXbAYQsDSs7FDV6XZ+CvgiQkUBtdFtRgrks+KLDbY9fjK4b+dSNC67AhiaUVsEsojksFrGltNq4wm0nAKERJ0VJ7dRhwu3VTr4SIwrdqlDzCjIBpxGW4gLc9eCPAT6Mq5C20mAwGOCnNNk0zIxZj02erFyDk+jsaLyAmJaEMnhKlBTwBSXtzO8Gh5Oy+1axubViMkPBKRarjZp3SVUvYqfWFIt3yA/8D+Av42Tw3oD+DHgHwIrVG2OyZ4U6Domz+aAxeQHd2mqdbuIeMBxUq3/5NLxpnr3A1txldotOCWEMhrFxAXDdIME8fsx3iawJ5jqTeClxyTT/hTg6tZsfAYoYUwz6BbnPfR6JEilaFpWQvVbECeJ8nlEygJNajwrahoQ04/xY/ESQ8CTTpNWvofSBWYI4k+D7kY1j8brgDdQGoERRH0IylcJGS7opgFVPgksvLG4akR+nITZ0xSGngZ+AhfibrmR3UTMeoIM6qcnsVFZpy68rFM9j5NpOyxi1msQvl7uG7lSSsiYC4l1G48Gax9ooGFNVkR2zHP4azEnX0gM8AjCEdREqO1HTCNuIqkHxhFTQEwPnmSQMEQQNC4h/ihCAY0iVF9GNcSY+3BG6ndRW4uNjlW8kPWIGUQF1I4jsgVVxUYvglb6gesO0fgYKh6qy0CWovoSIk+APgD6KsgKp7/JVm4mlUNtcK2UyquwD2eAbiY/8C6pluLNHqBKlVtCqiWPW6xO83vkB76ntvynTJxpZKYNq4uKlCceozz5ttYtj0Tk8nEk0znBVO/zuJzuQaAPp7V4UMKmLVoabwG6CDItwGnUtuAlzpHILNXyxLsS1G5yB7JLgQlUUsDroCWFGLU1CAK2BvE9CWqbgAbEnBeRbWr8XmBcjBch8ilU9+B6UoeIrEK1rRK63o7GpyvX9CDOy1hE43HEK1UzuapUuTVUjciPG6cd9icUhp4Dfhv42RvdVURq8IIntXbRsISNLxNNNRMXIF/QTDbxhdSDSwbGL0RvSbYjWfMDP9KS3LB5vRgzf3j3xihd5UzWIaYHbCdoCpETIGHFgNuDSEpU6zCmG7CoTbjCGSky0/1BgADVHjReDiwHEZTvgeZRnUSk0fXODjdio90zBuQlVmOjIs7b0oGYBpyenId4n8OWdwMW8W5yBrEPoGYQkWHcpNmGEyu+Gjlgum/vG4CSH+jBSaucBi4yMwH/2V1hYC6wZO4qH5FUyyHJXdinifoNlMZmjwlvAg9J+8PX8p7/Pk514CyZztneu7+gMArG/5VZygavkO5cjsYnsSVR1UkRqQHeAcmBXsBJb63ESx1H4zy27DpKaalHxT8sJtFf0awUcZ1f1uBSa2B6Iaz6BmAQeRM8C1pwOrL2CEgfJtGMMUVgA8q+j3bzqlS5jSywsbhqRN4thNkh4OcoDP0m8OPA32LGELkmItJEovZxErWo2hPijY37P/Mb+0nXNTYbs1Y8f/FHOLM+nMTOSVwI+mon0YWaUdAeRGaHfh/B+M+jNocT/Dau040Ash4TNKK6F7XiGmbYk7gK0Fcq3Xkq3TXiFNbmgAQ22nWlQDjgCmTyQAExexHZiOokttSClT1gdwCiRC9gEutEpAtAVW3l+kRci7jZ9AN5ND4CpnmWUHsvrlhhCdN6kzPEuHDfpbuDE5DvZqa6dZq/R37gy6Ra+q56b283QqU7ZZW/SWh56hvY0u/N+fVW4B6uXnwCmc4C7rt/OeOnQvzwl4EzqB0EimACMaYdvHa8S8PHKYUlxMV38YK1It5ibLxH7ES9qg5eOp6YPF7SIPIw0AB6iulwudp1qA4hkq1s3YgzLD3EfFY1fgFrk4KOY7waBAW2oHoC8GHeiTqe75dVqtwxFuBYXDUi7zbC7Gngt4DfojC0GmdQ/hRu9X1dRMxK0o1zDaHZPA/816u8V8AZYTlgGDh5WfeGwlAH8BSX99md/eENuI4M01WQIOKh1CBmOUpvpVJysCIILqiOVT4zBl7GBO1o/Dw2qgEChSxqPaAbEVBOi9rPzV6tqWpMeeJl/FQWL7VMREpOJ1IPIZLBBKewpacq2w4S5zdCLqNB7T7EW0R5PEbjVQDqpfbihfeKSKZyP6aAZaD9YO914TOzCaivTG4WOFy5hmndz3eYlj+5Po8CB8gP/AyplpducJ9bzwJb/Va5BeT73wS+iRsPLuIaHlzEecs/DFkRUbW2yT0vNII1qHkTYQ0QI+b7OG9kvfrhMDZqc6mIdg3QCvY4ACbxCl5yUkQ+i2oM+hzwJPAeSC/itaF6Htha8XoK7lm6qKpvMXWhjDJFTVc3RlYBb6P6PPCgK/i7ghLVbjJV7gYW2FhcNSLvZsLsMeBfUBj6beA/A//zRzziHwJ/lzD74Qo9wuwFCkP/W+VcroI0g/bgJqNhII/IDpRToK2gNUBcMSB7cN45RWQneMfc//164uISjH9CjL9dy/ldaLQTZLeI+TxwEZWjiLcFkXqi3PMEmTpsPEqcfxE/vQMxh1HtAL2I8Dkk2KW2tB1bOu8S+YHy+KM4Q3FGiicubMAE74IsBnMakUdxoed7AQ+1TWiUAAJMYrpqe31lb4tra3mjBuQ03cCL5Ae+BvxaJYftDiILbvVb5aMj7Y+MAb9+yw5Yt7xHx07+IsQ/g+p20O9jkoMY70lcFOOiCz/rM0Asxm/HlgfRyHJpkSyN+KmXEK9bxAjwV0iliEdRRDaAjCNyD9DmQtbswz3Hh1GFXN9ZisM/RE33+xrnmyDxNuLFqD7F2MmXSLeUJXmF2EJPJbWoSpWPkYU3Fi+ss/2bSpgtEmZ/EldN/MKHOMIU8CvAz31oA3KGPwS+e+1NpAvnmRsG7nN6bXoOt9J/B+ep7He9d20BbITqLrV2UKPimEbFWJ2hCZgIP/0w4n1bxEyHgttBd6KRC20HNY1iEhvES5bFJJ5G4wNOp1IHgSdARDUSNH4WjbfMOdnZWo4RQW2PiDwEdKJxU+X3eS71QdQhXLJ+APbsnGMZbrA46ir8MnCQ/MB9193yViK41e+HeVWpMgupX/F14IuI/BjiJ8QLPu+0YsUg0ukWjrKkogHbCDzMTJRlSPz0ERGvKIIAeZAUTpVhCpF3gEOg089sG3AEt2j7LG4x14zxm9Xa8zrZc0QLQ5NEOVDdxNTF7+johQnKufmMxTO3765UqXKDLMCxuGpELiTC7G7C7GeAR4DvcNVCl0uMAX8CrCHM/s4tWWm7Y/ydyrGvgSzjUt9qPQ50IRxEzEbE60DIIqYO8cYR44w1jWqICw8QFx7BSxx3Mj98IML3xEtswOU8ziYFukS0/BAihzBeiJjvOi8iAuwAjMbFPdjyY6guZf575sJYQc0bAoLqIVQjYAIbnUHtaVw4bD+qD1/aS3XysqOofQ3Vo9e/iddkHfAa+YF/Sn7gzkUKFtjAVeXuRRrW5KVhzV9j/J3AP8OFy/8Yp/F6AVtcjy3eQ5RbNWu3ccQfRaOk80yaDCIJRVdrfrBfJ3uMlqeGUQzIbE/93Dztcbzk/YgcBS8pJngfzLhoXIefjKR9fYJkw3zdaq6eA1qlyp1kgY3F1XD2QiTMvgp8gcKQByzCVQq34sKu/biQaj9h9vZU/YbZDygM/Tzw/117QwmBx8CcANvHTLeIEVwVzfT5BaBdiLcak3gOMSnngVBB4xMY/2lM8B2Qbdjyd1H7aZyROIWY9xBzAecpLCNSiwkGQbYDH2hcOIQtf9GdjmwAfy8a3wM605IwqHkDG5XAPIa7f23Ay8DjKuZZimPdeIkevGQ9iCeXHliNKpqUBURqEHkM6EO9MUSu3s3n+vjAbwBNOO9klSoLDqlbNg7880u/mDz3L0EfwxXYzX4+ehDvZOX5WYFaiAsjiK8UR09Tnvw8MIBKCVvuAnkOP7kb6NK4vF77Du+l//16/OSUdG6x6vs9kmlvxiTL2CjEeGOofVP8MEDjbrxkZp7TfeM23ooqVT6xVI3IhUyYjXFhmDMfw2f/eaXrzte4fEK4EpGVqEmBPYXzDh7Bedx2A6BkQYZE5F38sIhIjFoftTmn/Wa/hZhPYYIjmMDDll9AbRKkHZEkYrLAMVyYezPIu4gYVPvFS3xRTXAcWzqOjeqw0Wq85BvEhZXAFH66KGIexvMGXdEMnbiK9ATIGyKmWZN1vQKJSh/HAeB9XJgeNK4HWw/eSEVLshH0fZB7PuIdvgD8m494jBtk4eXhVFmA1Cw6Ahxh7MT/DtQj3tsgQ8ATThbsMho1LrSi0Rh+6q81ysfEpWaM3yEioqWc1YvvHWXwGKh9BDDEJfT0npjVT4wBTUyeexbVFMm1zSCrwP8+YnoQ7+k5n5UHnrn9N6BKleux8MbiqhFZ5cMTZv+QwtB3gf8I/MA1t3USQB3ALrDZy9/UcSBCTA61FlXjkuf9tRAnQLYBhyvJ9O9gggy2vAbnjVyNWsBM4QVrUH0HtIhyBOxG99GyCvEv4JnteAlUdZF4yUlENqD6LhqfBRnFGLD2A4RPgXwHMQmgQTBrwOZEzDpUXwC2oXoc16A7gXhLEdOL06ScAvn0R7yzZeBHSbX0fsTj3BjTeThVqtxupnqb8FI+LhrRjEbduLSqnThv4KU+92KCfsKmNlUtIX4RYTsafRtJ7hQ/USPd90L3vahaS2myR+NCP6VcrfjJlYBSu6hZx84MMnqqV+qX1GOCApLMzPNd//PLVCiqVPm4WIBjcdWIrPLRCLM9FIZ+EPgHwO8CwVW3FXGThZpesPtwj4wPxKBPOsFgLeF6Ti8CvQhmEie3swI4DHIfwi7EG0PjTlwf7bMY7wJogFAH9IKOVd6rfDbJ6aZmIrIatB/lAiKbwBtjujOHkU6Q7wBNiJRANiG8AgRoBFCHLZ8COipVoop45xGzHbQRmAI9ADKTO3nz/BKpllc+wv43jSywVltVFhhTvSuArwB/BxGXSqJ2iMvnoPuBXTiD8iIuV3mFiKwmyOwmLnyACe5D5LI8SBFjNFGLlOKlpOobAXRieK9eOD8eDQ2VNVOblMkjbwVdtbD8kRXmymj2796OS65S5cOw0MbiqhFZ5aPjim1+n8LQG7hOFouuub1IJ3idqL0Aegz3PTwE9j6cV2IXyDnQIiKfwnktenH9sx3GexA1e4AWRGLASf/A5PxC5KYF7CTTYsXQCzKKkxc6B3QB74KsrVRgj4JkEDmAaovTtTSnwOaBnSBnMf44JvhCxTgG1feBtZVc0A/Lf8Z5du8ssrBCKFUWCLkLBtX/AmzGFbW9jXsGtyJmpUshse2z9ngIeAkkjUgzLr87hZj1+KkRcbnPcwsES6AXENmG6l611ufNZ5p1MpcvvHE8XR4vdkwUy4cWf/WX0yaRWjdn35cJs2/dnouvUuVDsMDG4qoRWeXWEWZfpzB0H/BHwNy8oysR0wF0uBxCW0bVdccRaQdZA/oGrsClHRgHtoC+i/NgxohsqxTgKE76aGdl23k+S5ajHMBVjBdBBhH5NOhpkOUgh1FdjUZvg24FeQ+YQMznQc8DGxEBG/cDQ6563HvqkgHpPmQQdC+Xd+y5Gd4AfoFUy53VqxOBBbb6rbJg+B1Efuay36h+/yrb5oEDIE9cEdJT+yY2msALtqBRD0of4nfixoU+wEl3iWwXz4OdP3nCU5uo/aF6KI1fbIqiwNS2BvO4ef6vj36JVarcIhbgWFw1IqvcWsLsAIWhLwA/jSu6uULV9wpE1qJGEX0VdAeuq84kMAFswvXzrejFMYbzdHrAIeD+ShJJFvRVXAX40is+Q3XcHdO8iJiHQZtwOYwxrufuIjTqB7Yj/i7QJ4ALqO53x9S3UMbQeCte4h3E24jInNC9Jj/CMnIA+DKplsKH3P+jscDycKrcpeQupFD9j8TFo3jJ7Yg8Nc9Wa3B5vwGCqfgVj4CkmO6FPReRJtB7VO1pEbMKWI5GYyBnEO8BFym4bPuVeGGv8ZMNSu0wqWSA8WrmHLUHJ5VWpcrdwwIbi6tGZJVbjwtvf53C0LeAXwN+EZhPm20GEUF5CKcruRm0BedhqIgTcxH0CFAD0gL6PZwhuRcX3toMlVwrdBewEZgp4FF9H+QxhH1gTwCrXRGMAeEMas+AJBCGwDYhQRmRZWh0GpdbGaB2HGQSpBaRtlnHBjgHbAIZvvkbpkWQHyfVcu7m961S5S4i3ZFnqjeHl/wHVHrTX4FI6ArguAeVh1D9K8SsBSZQfQvX+SmuvApoDO5ZL2GjQUywBDH7QdtBmxCpQ2UYpyO7CpN4GS9sRIyPmKV44TBYBXlwzpn8YUXhokqVKh+SqhFZ5fYRZoeBX6Ew9HtMd8yZyUm8EhED8hiqU7jONmOgtaArcFqYz4M8CuwD2crVu8Nswk1EY8zID5URMdg4jxgFzoG2uVwqrwUkAfIIMALag5ZbUd4Go4j5AJFN2EKECY670LiCyGuAgPWc8aglRFZc/8aoBU7h2h0mgH9EquXl6+93G1lgshJV7mJE/gnwP11nqxHUnkVL48APorzqIgQVVEuge0C3AfUCqPG/BTwEuguRJMpARUEBEZMg1bZU4+K7iGdEzObKkb4lnlcPfpbLm2tY4P+9RVdcpcqtY4GNxQvrbKssTMLsOcLsL+HC0NcvGhHJILIFkZ2I2QqmAGZ/JfScwBmG8xiQat3EQxPQzGz9SpE6l8QvCdQGqF2uNmrXKJ9Qa7OgZdBRxDuE+K24Ip56jPcgMIKND4LUIOY+dx26B9UGXLFAXcXQvUoXH51w3lE9Avo6kANW4vr9/jfg/76R23hbWWBdEqrcxaQ7hnARiKtjyyVsqRkXMQDsEjTei+p08dxF0BrcM7VLbfllbNSOyutgfNQa0CUg0y1CO7C2IF4iEPHacIu0I0A3ShqXHjObPyPMnr4Vl1ulyi1lgY3FVSOyyp0jzI4SZr+C63V76Ib3E6lF5GHEfMEVrxBzZYUmuElj/pwqdBAxOzBeBjEuVGbLp9HyNspTo9j4HsR7D5F1iCiqF1Cbw6qALgMm8BKnEal4UrUGZC2qAS4P0wOZ01JRbcVoPI8r+lkHPMCMN3YY+EVSrfaG78Xt4MMOWjc4cInIUyJyVEROiMg/usZ294tILCI/esuurcrHxR/goglzuYDrWtWI60E/TSfodoj7UB1ASIMEIO8DkyD3OsmvKInIClS3o3oC4XxlgdaHLb+ocfkiQhHEoPYEavsQpkBb55xHVdanyt3HbRyLb9c4XDUiq9x5wuwrwFbg15nuW32jiHQh5lGQ08D+mTf0Iq745mpMF8FYVBOo7RUxSxH/gAhbEbMHEcV5B3eAdrtz1IOgEcL9iDRcdjz34E57R4vAelQrxq2Cm0QfwBmPc5kCvkSqdeSmrv92YcyHe10HEfGA38dV668HfkJE1l9lu98CnrvFV1bl4yDdEeFyoWezF5fTfB/Gz836/VmQfWD2gFmG0AI0I7IVkXowm0RExSQT4oUJlPOg+xRt1ZFjOR075WscH9U471McWapq+9G4F40eRW0NqhFOv/UErq1pP05qqEqVu4/bMBbfznG4akRW+XgIs2XC7G8AD3IzXslpRJYj5kFgF+heXN/w5fNuqzrMZcLjpgNYhfihIHWYxF6EFKqrcV5FcIn8JyqC5qay/+znZQUaPTdL27KEMySnq6v3My07Mj8/Q6r13Zu65tvJ7fNEPgCcUNVTqlrChe9/aJ7t/iHwF7gJvsongXTHHuC/4gy2t0G2g9S6N80KMK+C6UO8xYh5FJEdzBESB4qILEaCGDEext+uJkir2mEme2I0XkNcfBQtQVDbRqKuIBqHiEligj0YX4FGkIdBVgKtuHzI8p27EVWq3AS3Zyy+beNwtbCmysdLmH2TwtA2nFfyV7nZhY2YnageA1ua933VIqgB7q38poDIIuf50BLgVQptUmALKC+C+GCyCOuBlyrHGAD6Zyn4pIDP4QTOj+I07jbhcrhSOO/k1fhtUq3fvKnrvJ0IH0WbrFlEDsz6+T+p6n+a9XMXrnJ9mvO4hcPMx7sq3h8GnmRW27sqnwh+FeQ4sxdxMB1RyLvitmvSCnoGkaWqNk1p/Bg2UmxUT6KuDU3tJiqFeOEjouVnMIkmREKQAURqKtJe+TnH/H8qChJVqtxd3L6x+LaNw1UjssrHT5gtAv+YwtBf4nKpNt7U/iKrXcK9DjBTcHMe1bgS5n4QeBUX0l4DTGK8Jqw9jx/WIMYDSQLDYBeDrkS4gNORe6JSrLONy8Lnl2ivvHoqP+dxBT3182wL8BrXKzq44wgfoUvCoKpuu/bBr2DuBP414P9Q1ViqxTqfLNIdF8hd/G3cInE2w4h3Ho1WXucIa3EpKM+i1gIWMY0Ycy+qvUiilkxTj4jZA7oJjU8j/ghoF0ofoCDNc4750q25uCpVbjW3bSy+beNw1YiscvcQZl+jMLQZ+BLwf3LtcPDliHnAeQztLqATpzH5AK5Kc9r46wO2oXoQ/v/27j5KrrrO8/j7e6s7qZsnCJUKTYBAwGBAAYEQQEIis+gBF0R3dBd1UJZ1XHdH150zOsPZZTzryDjM6Djq6Mii4zqMsu6RUWR4fjQhgUCAAEIMEJ6TELiEEBL6djrV9ds/ftVQ3emkuyt1q+p3+/M65x6oqvvwq3T3937v75EdRFYFlwJLgLX45RWP9cknJWDwqe69wP1AH84N4PuNDDfHN6tXp0Khh5H/aLfhm7HH1w80bBsYugzmIfglLOstBH5eC1yzgA+aWcU5d21riigZ+xvgLPxiAW/ga0GBLvUAABveSURBVEXmYdGhPtGz1zHbDpZihanAgcAbuIFX8DMZHEVkZ1u1sgrXVXBVex438DrVXX1M3r/LuqfOpuqmwcA2cIZjOsYJ+L/B5fhEdNAAIz8MiuRZZnFYSeR4pIkBM3i7aeZV4vLIzajSmGKpCvySvi2/Av4tPplcNKZjzSZDwa+b7dxMqK4AVwTbhUWLcdV7/MNXdRJ+tPQy3h4h+iLYmThbBm4BcAB0zcasC7drU10Z7gLOHOnqwGK/sk3lZogWjdBP5Y+IZz81xn+J1spuqa3VwHwzm4evrb0A+ET9Ds65eYP/b2Y/Aa5XApkjU3pSejdfBVw55H2zIylMBp80AuBcdQMD/c+AdWPRAit0veSq1YMY2HkTlfRgCkWzru4DiUon+v1ZBWzF3AyItuGqR2C2GXgWWAfOYVY/4O5BiqU3s/7KIg3LJhZnFoeVRI4mTQrAB4FP4ROP+vkJd5Amt+OfsHfhn5pPwnfenoT/YS0HfgHcSFyeSDVQ+8b3Wbqevi03AB/AJ5Onj/l4s1kQ/R6O24BTca7q54IEsNdrNfkRkEB0J656EFQq+PaEQyC6jij6kN+/+wWoPghWBFvqazz22Fx9AtgKzA4Y4bMnx1z+VsuoGdk5VzGzz+NH+xWAHzvnHjezz9U+H33eUMmDq/BN2nOGf+BcdSsD/Y9R3TUT35XlEJzbzEDfeleYvBWLNkJ1OlZIGOivOqKlZl0bseh5MzsK6PIju90BWPQKrlLFutZi9h6wp4ddrnP6IouMJINYnGUcVhK5N2lyEnA1frWUkUzDN73uyVzgD2rbo6TJv8cvzeWIy+rYPRY+mbyFvi23Au8Dvsoe54Icxgys8H6qA8ugGvFW87hZLYk8AwoPY3QBm6Bram1uxzUQlfEj1GZjNhcKc8G9imMFRAVgJrgt4N6Fn9x88KIr8avqjOQS0lcuIp69fQ+ft4dZpqskOOduZNgaxXsKWs65izIriLTPlJ6d9G7+OvC9+redc7DrzX6G/02b9dAV99RevQrR/RZF07Eoco51bmDnUxQmn25R12tAEXOAlXHMBHsAs3Nrxw5vsru5+V9OpEkyjMVZxWElkXuSJmcA1+Obr5vhOPxk2AZsJ03uBn4EXKuEcgx8MnkXfVt+gx8V/Zf4uSZHZ9FSXHU18DTOvQzVI7HCapxLMXsX8DAWFf362nwAooexaDLwAvAKuBg/SfJxGEve7u5otdHfPIafNmQScBp77pX8bxr67q2gAS2SvR8BXwYOG3zDzHAWPYmr1o/Sdvjpsoq111vonr4A43cM7FxkRtkN9G/DDWyge9rLYAeCOwKzWbUWgC7gEXz/yxPqzruJkSdAF+kcgcVizRM5kjSZDfya5iWQgwZ/O6bjm8h/CdxKmvTs+RAZolhyFEs346cg+Bh+ep29MwPrOhkr9GKFJVjhFbD5RIWFmJXwNcpL8KOsU7BpwA7MFmL2buBpfIf8ZIRzT8bs3Zgdh9kCbK9D6z7ScbWQgwJbaksCNKVnJ/AXu71fmDwL7CHgOeBVuqasp3taL4XJy5k0424m77/ZokKCFQacY5Vz1ZVEXZMx62WgbyrVygJcpUJ14EmwzWBVXLW3Nsn4tLor3aepfaTjBRaLlUSO7HL8slytcBbwIGnyzhZdLx+KpSrF0jX4PlRnAbfudX8zwE7D7LdYtBizjfjVcu7krfmyXC+wpjb6ehLObfMjue0Dvi+kHcngja4xe5s7sr0samwTGZ+rGNY32KKuo23StBPpmvocXfHvLCpsMIuesK5ir1k0xfzD94nAhyh0z2egf4fre+1Vt6v3VawAuLVE3a/jqikD/c9SrfRTSbsZ2Dl8fsgHW/QdRRoXWCzWXWA4PwJ7pJncszQHuIs0+R+kyeEtvnbYiqUKxdIdwNnAHtcDBfDJob0bv/52Lz6pmwb8Ble9C9ybYFX89AbT8Te7k+rOcB/YbGBNg6XtHn0XkRyb0lMBvrLb+87da8b7zKIzcM78yjVWwsfGJdT+dizqXsCkGTMsnj3LigdMwyzFIocb6MKiAhbNBTcHV1mIG5g67CpKIkWaTEnkcL5/4pRR92u+g/D9/NaQJl8jTS4mTY6rJbUyGt9M9bf4bgh7ZjYNbAd+NP09+FHW7wE7HKIZWBQBv8XXNg7O2l/Bj7I/Ap9Angy81kApBxo4Jnu2D5vI+P2C+r6Jzq0Ad6p/YU8QdR2JRSdhdjL+73Mlvs+x38MKi6zQvdnMDgWmQ7UH596D2RLMDsY5P4VP1D192HWVREpnCzAWa2DNyJ7Hr2zSDvsDl9a9fpo0+b/4OQ1XEpeHN9HIoGKpQt+Wfwf8Z+Dr+H/L3ZkdjosOh+oTwDtxbiO4dfgO/dNq2+CgnX78KjNLgIfBHYTvtJ/iaz/Ho0P/3tS/UVpoSk+V3s2XAtfh3HJwSwCwaBVWOH7IvI5mU4DTcW47fmBiP2YzcHYAuKPB1oIrYIV+cA8Cjqirj8KkzWD1fc1fpFjavU+zSEcJLxarJnJk97e7AHWOxCeVtwEJaXIlaXJwm8vUuXxfyR8Af7bX/cyAaFLt/zdhhXOwwln4GsYTgRXA4/gm7yXA4CTk/fj5Qk/Hj/4ci4eAjwK3j/frtExgnbkleNfj3D+9lUBGXcuIuk4dNjH428ymY7YIs8XAsVi0C6LaUqbRM5jNxKIlWLQUswOwqIwNSSIfGPG8Ip0msFisJHJkP2l3AfZgKvCHwAOkybmkiX5+e/ZTRm++6gFuAmKG9pEcABbjlz68k7eatq3I2yO0p+Ob2dbilzMcropPHj8OLCSe/S/Eszu3FjmwwCWBm9LjwP0Q2EHUfT8WLR3zsWY7MTuJqHAa1tWLRRX8Q9+y2rYd2MzQ+9vaJpZeJDuBxeIObV5ru7vwycU57S7IHvQA/4of1f1Z4vJD7S5QxymWeunbch7+5nLEiPuYxVDwP2M/Hcjz+JHem4GnwM3DJ5gvAG/6icjfWs97OUN/P96Pn5z8UKAPuI949o4mf6sMKSGUFps6ZyVpcg1mF43zyEeA43HuScz6wY7FJ4xrMTsDPyDuVfwa3YNeaEqZRTIXVixWTdZI/OCaP6Tzn15PAlaRJn/U7oJ0pGLpJfwE36+Puq9ZF2aH1Z7qevzNyAxf+7sVv6JGGd/cfTtvr59O7fx3Ec9+lHj2DcSz7wgrgSS4ztySE2Zfxw9cG8rtdTrHfvxE5OvxU3yVgedrCSTADmD4+tib97WoIi0RWCxWErkncXkjPnG4t91FGUU38D3SZO/T20xUxdJzwH+gbnTnmJkdDHY0WDf+phQBG8FmYtFJYE/i3Bpc9Sri2Z058nosjOCaUCQnirOeojpwGdXKGqqVdVQrG6lW3sC51Tj3CM6tfGu09dsioIrZWfha/yeAo+s+H5x9od6L2X0JkSYJMBYridybuPwavpkyhPVWLyNN3tXuQnSkYulWfCI5/MYyOrNuzJaAbcPXOBbAvYFzT+KqL4E7Fj9qVEQa4n4AvANYgG+CngFuF3A8fgBbVEsm1+DcfTiX+r8/9zK+2boKrMa5u/HN1mV2v7c916IvIzKhKIkcTVx+E/gw8FS7izKKAvDJdheiY/nVbc4EtjR0vNkciObjb1gHAhXMZuL7Fd/RrGK2R4NPvqqJlGaY0vMK8NdD33TvxblVtRcxPpk8Ab+61Fn4hPNQYD6+FnIJ0A8217ceDFnu8DWKpa1ZfgWR5ggvFiuJHIu4vBP4HCP13eksS9pdgI5WLK3E/xvVPxD0jfl4sxJE82rN28fg3GbgZXzfrLAFFrgkd/4OPxNC3QCY6hE4twzn7sG5ZVQHVlLddTvV/oepVlYM6zd5N9gScMvAbccnmYPWteILiDRFYLFYSeRYxeU7gfPwI3A71SmkyVntLkRHK5bW4msuevCTkU8BvoDvrD86szlgM4EXwOYDd/rpSkIXWG9uyZcpPb0Q7QLm4gev3Q+sg+pMqC6C6lIYmEO10o1zBaguxu3aRLV/FdXKcmAuRjd+DtdH8bWXg1btdj2RjhVWLFYSOR5x+Wb8aMC/xXfe7jRdwG2kyXdIE03ftCfF0gDF0ssUS9solhzF0veAUxlrjaLZLLAdmB0O0fUZlrR1wopbkk8n4afnOQBYhG812Aa2AbiVavVRqv0nM9B3LJW+FxnYuZWBnUWqOyNwg6OvXwMOGXbeq1v2DUT2VWCxWEnkeMXlhLj8JXx/nD+hM5sy/xvwC9Kku90FCUaxtAa/Us1Px7S/2THA3ZjlY47OwJpQJIfMChANH4l9BrgesAPpjs9n0ow3sMJKcIfgqg5XnUG1spiB/sFBc4+DHVZ3/G8olrRmtoQjsFisJLJRcfl14vK38GtsnwH8T+D7NDpwo/k+DPyMNJk26p7iFUvbKZYuBD7CmLot2MH46UXCZgQXuCSXIsxOALsBX6M4aDMW+Sm0LOph0vTT6Z6+iUn7HcOk/Y4g6l5GtVLCT+NzWt1x24CLWlV4kX0WYCxWErmv4nKVuLyCuPx14vLngVvaXaQ6HwPWkiantrsgQSmWrgXexWijrs3urE1MLyL7zt8JLToGogGwFcDLEHUD78C5+97aMyocjFmEGXRNOYruqSmwCay+G89fUSw938ovIDLRKIlsvne3uwDDHArcTJqMvPSfjKxYehW/rOHXgI172OuG1hUoS412wlFNpDTV4C/UPMzWYdFiiF7GbCewBrNTgNX4fpP1XsasD+yUuveeAb7TgjKLNFF4sVhJZPO1ujl7LPNX7gd8O+uC5E6xtIti6Sv4EZ/Df679BD8/ZJ3AmlAkl+p/oY4BtmN2HH7ENjjXB5yMn5h8BfBsbYLxLhzHDzvXf6VYGvv0XSKdIrBYrCSy+Z5u4bWq+H4/K9l9rdjhziNNTs6+SDlULD0NfIqh/8a/oVjqxBH6jQkscEkuGc69gKvcV0sYBwetdeEf5BKcW4nvr3wUzr0GnABWxKx+Lfu/p1jqpG5FImMXWCxWEtl897fwWiswW4jZ6cAjY9j/C1kXKLeKpRuBY3m79vHGNpam+cJqQZE8cpV7YWA2flWaSu2/L9XtcSjYDLAesNlgR4E9jNk76va5Gz9rhkiYAovFSiKb7+f49Vxb4XicW45z6xhbX8yPkSaTsy5UbhVLz+LXUj8HuLbNpWmuwJ5+JZdOw4+wfgq/1vXD+CRybe3zB/ED3jyzRzFbXHf8RuCjFEu7EAlVYLFYE1I3W1zeTpr8M/DHLbjafoxvqcMivk/RimyKMwEUSw64ud3FaD4lhNJGvS91AwUgBevDbCmwCZhde38V2E7MBis+NuBbBgY54EKKpU5eUUxkDMKKxaqJzMY36cwVbQDmt7sA0mEaffJVTaQ0z0fwD7lbwS3EucfwNZJd+LvqkbXPHTAAbAdm1B3/NxRLd7W2yCJNFmAsVhKZhbi8Cfg0PuB1GjX1iEjn6H3pYuBPwZYDfUAVBt4AFmERtU5fs4Cd+Cbr24Gj687wIPCV1hZaREBJZHbi8i+B/9LuYoxg7ei7yIQT2NOv5MohUFiAFZZAYQrWXSGa9F4sioHB3zXDLMb3kXx/3bG9wCcplvrbUG6R5gssFqtPZJbi8v8mTfYHLm93UWq2MbZR3DLRKB+U9rkMOAo4DIvKmBVH2OdefPP1Oxla+fFFiqXwlx4VGRRYLFYSmbW4/NekyUbg74H921yaXxGXB9pcBulEqlWUdplyUJW+Lf8LWIcfRDPcPcDh+PtV/T3rH4B/zLp4Ii0VWCxWEtkKcfmnpMn1wBfxo7b3a0MpXsE/8YuMIKzAJTlTLK2nb8v3gTOAW/Dx6lDgBN4eTDOn7ogb8bWQndjvXGQfhBWLlUS2Slx+HfgqafINYDHwe/jpeRYC3RlffRNwLnG5lavpSEgCe/qVHCqWvrjbe31bfgh8Zti7DwK/T7FUaUWxRFoqsFisJLLV4nIvcGttozb598H4p+65wEz8ag1b8RPvnoBfK/az+CkuxsMB/wf4EnF5axNKL3mkQTLSub4EPFb32oBfaV1syaUAY7GSyHaLyzuBZ2rbSPzE4GnyF8CFwMUMnWR3JBXgGuAbxOWHRtlXRKQzFUvbgO+0uxgiMjIlkaGIy1uAbwPfJk0OAs4ETgQWAFOA14Hf4Udf36aaRxmXwJ5+RURyKbBYrCQyRHH5JeDq2iYiIiLSckoiRSS4p18RkVwKLBYriRSR4AKXiEguBRaLlUSKSHCBS0QklwKLxUoiRSY8I7QJbkVE8ie8WByNvouIiIiIyFCqiRSZ6IzgmlBERHInwFisJFJEwNQoISLSdoHFYiWRIhNeeP1wRETyJ7xYrCRSRIJrQhERyaXAYrGSSBEJrglFRCSXAovFSiJFhNCaUERE8imsWKwkUmTCs+CaUERE8ie8WBxWvamIiIiIdATVRIoIep4UEekEYcXisEorIs03OMFtI9tYTm92tpk9YWbrzeySET7/pJk9WtvuMbPjm/0VRUQ6XoaxOKs4rJpIEcmsH46ZFYDvA+8HNgCrzew659zaut2eBZY657aa2TnAlcApmRRIRKSTZRCLs4zDqokUmfBsH7ZRLQLWO+eecc71Az8Hzq/fwTl3j3Nua+3lKuCQffxCIiIByiwWZxaHVRMpIlnOTXYw8GLd6w3s/en2PwE3ZVUYEZGOlk0sziwOK4kUkX1pQpllZg/Uvb7SOXdl/ZlHOMaNXAQ7Ex+8FjdaGBGRoGUTizOLw0oixyJNJgMLgLnAztq2P1AEXgHuIy73tq+AIm3zqnNu4V4+3wAcWvf6EGDT8J3M7DjgR8A5zrktzS2iiEju7S0WZxaHlUTuTZocB/w5cC4+YdyTPtLkNuAG4Brism6CEpjMJrhdDcw3s3nARuAC4BNDrmw2F/glcKFz7smsCiIi0vkyicWZxWElkSNJkwj4K+DLjO0nWgTOq23fIk2+BXyVuFzJrpAizWKZ9Yl0zlXM7PPALUAB+LFz7nEz+1zt8yuArwAl4B/MN+VURqndFBHJoWxicZZxWEnkcGliwA+Bixs8wxTgUuB9pMkFxOWNTSubSBYMLMOltpxzNwI3Dnvvirr//wzwmcwKICISggxjcVZxWFP87O5TNJ5A1lsMPECazGvCuUQyltkUPyIiMmZhxWIlkfXSpBu4vIln7AFuIE2mNvGcIk1Wa0JpZBMRkSYJLxbrLjDUQnzi10xHA19r8jlFmiysp18RkXwKKxYriRxqTkbn/QJpcnZG5xbZdxmunS0iImMUWCxWEjnUiJNvNkEXcB1pcv6oe4qIiIgEQEnkUKszPHc38N3a9EEinSWwfjgiIrkUWCzWXaBeXH4RWJnhFeYC783w/CINaLQPjpqzRUSaJ7xYrCRyd98EttZtzfYz0iSrvpcijQmsH46ISC4FFouVRA4Xl68lLh/w1gZPN/kKc4F/JE32toyiSOsYwTWhiIjkToCxWHeB0S3P4JxnA/9cWx1HpAOE1YQiIpJPYcViJZGj+9eMzvtR4JKMzi0yDg02n6g5W0SkicKLxUoiR3c9kGZ07stIkzMyOreIiIhIZpREjiYu7wLuyOjsEfBr0uT4jM4vMkZRg5uIiDRPWLFYd4GxaeZ62sPNBO4nTb6qwTbSNoE1oYiI5FJgsVhJ5FjE5ZXAv2R4hUnAV4B1pMmHMryOyMgCC1wiIrkUWCxWEjl2/51s5o2sdxi+efvPtLKNtI4RWhOKiEj+hBeLdRcYq7i8AfgI8GYLrnY5cBVpMrkF1xIJ7ulXRCSXAovFSiLHIy4vw0/N0wqfBP4faTKpRdeTCW0885HVbyIi0jxhxWIlkeN3G9k3aw86H7iDNDm8RdeTicgI7ulXRCR3AozFSiLHKy4PAFtaeMXFwGOkyZdUKykiIiKdQklkY25q8fWmAt8AHiFNTm3xtSX3Gm0+UU2kiEjzhBeLlUQ25lvArjZcdwGwnDT5eBuuLXkWWBOKiEguBRaLlUQ2Ii4/B/xpm67eDVxNmnyTNOlqUxkkd8KaVkJEJJ/CisW6CzTuO8A1bbz+nwB3kiZHt7EMkheBPf2KiORSYLFYSWSj4rIDPg2saGMpzgAeJU0uaGMZJHjh9cMREcmf8GKxksh9EZd7gQ8Aj7exFF3Az0iTL2iVG2lYYE+/IiK5FFgsVtKxr+JyClwMpG0sRQR8F79kYncbyyEiIiIThJLIZojL9wOfaHcxgHOBH5ImqiKScQqrCUVEJJ/CisVKIpvn18CadhcC30/z0+0uhAQmsCYUEZFcCiwWK4lsFj/Q5op2F6PmUtVGyviE9fQrIpJPYcViJZHN9RPgvnYXAjgSmNvuQkggGn3yVU2kiEjzBBiLlUQ2U1zuBz4MrG13UYAD2l0ACUlYE9yKiORTWLFYd4Fmi8ubgcXAPwGuTaXYBTzTpmtLiAJ7+hURyaXAYrGSyCzE5a3E5YuA04DVbSjBT4nL29pwXQlWWP1wRETyKaxYrCQyS3H5PuAU4Djg3hZddQtwaYuuJSIiIhOUksisxWVHXP4tsBT4RcZXS4DziMubMr6O5EqjT76qiRQRaZ7wYrGSyFaJy7uAC4A/zugKK4GTicutqvGUHDGzhjYREWme0GKxkshWistV4vK3gT9v4OgXgJ3D3qsAtwJ/ACwlLj+/jyWUCSusp18RkXwKKxZ3te3KE1lcvow0eRX4O6A4hiNuAn4fnzTOBw4HXgce1wAaaQrVKoqItF9gsVhJZLvE5StIk+uBLwIXAgeOsNdjwOXA1bUVccDPQdkJ81BKroQVuERE8imsWKwksp3i8gbgy6TJJfhR3PNqn+zAJ4rr65JHkWyYgalni4hIWwUYi5VEdoK4PADcU9tEREREOp6SSBEhtCYUEZF8CisWK4kUkeA6c4uI5FJgsVhJpIgQ2tOviEg+hRWLlUSKTHgW3NOviEj+hBeLlUSKCKE9/YqI5FNYsVhJpIgE9/QrIpJLgcXisCYkEhEREZGOoJpIESG0JhQRkXwKKxarJlJkwqutktDINpazm51tZk+Y2Xozu2SEz83Mvlv7/FEzO7HpX1FEpONlF4uzisNKIkUE//TbyDbKWc0KwPeBc4BjgI+b2THDdjsHmF/bPgv8YJ+/johIkJofi7OMw0oiRSY6o7ZmawPb6BYB651zzzjn+oGfA+cP2+d84CrnrQL2N7ODmvodRUQ6XXaxOLM4rCRSRMiqJhI4GHix7vWG2nvj3UdEZALIJBZnFoc1sEZkgnvwoUdusXjWrAYPL5rZA3Wvr3TOXVn3eqTo5oa9Hss+IiK5lmEsziwOK4kUmeCcc2dnePoNwKF1rw8BNjWwj4hIrmUYizOLw2rOFpEsrQbmm9k8M5sEXABcN2yf64BP1UYHngpsc8691OqCiojkVGZxWDWRIpIZ51zFzD4P3AIUgB875x43s8/VPr8CuBH4ILAe6AX+Y7vKKyKSN1nGYXNOXY9EREREZHzUnC0iIiIi46YkUkRERETGTUmkiIiIiIybkkgRERERGTclkSIiIiIybkoiRURERGTclESKiIiIyLgpiRQRERGRcfv/Wa1XrrNQ/2gAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "DS_dual.plot(plot_type = 'maps')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The counterfactual distributions are virtually the same (but not equal) as the one from the `composition` approach." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Inspecting a different index: Relative Concentration" + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "-0.4252237137424809" + ] + }, + "execution_count": 21, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "from segregation.spatial import RelativeConcentration\n", + "\n", + "RCO_la = RelativeConcentration(la_2010, 'nhblk10', 'pop10')\n", + "RCO_ny = RelativeConcentration(ny_2010, 'nhblk10', 'pop10')\n", + "\n", + "RCO_la.statistic - RCO_ny.statistic" + ] + }, + { + "cell_type": "code", + "execution_count": 22, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "-0.37586237172215886" + ] + }, + "execution_count": 22, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "RCO_DS_composition = DecomposeSegregation(RCO_la, RCO_ny)\n", + "RCO_DS_composition.c_s" + ] + }, + { + "cell_type": "code", + "execution_count": 23, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "-0.049361342020322" + ] + }, + "execution_count": 23, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "RCO_DS_composition.c_a" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "It is possible to note that, in this case, the spatial component is playing a much more relevant role in the decomposition." + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.8.8" + }, + "widgets": { + "application/vnd.jupyter.widget-state+json": { + "state": {}, + "version_major": 2, + "version_minor": 0 + } + } + }, + "nbformat": 4, + "nbformat_minor": 4 +} diff --git a/_sources/references.rst.txt b/_sources/references.rst.txt new file mode 100644 index 00000000..09d2529e --- /dev/null +++ b/_sources/references.rst.txt @@ -0,0 +1,7 @@ +.. reference for the docs + +References +========== + +.. bibliography:: _static/references.bib + :cited: diff --git a/_sources/tutorial.rst.txt b/_sources/tutorial.rst.txt new file mode 100644 index 00000000..adda6cb1 --- /dev/null +++ b/_sources/tutorial.rst.txt @@ -0,0 +1,13 @@ +Segregation Tutorial +====================== + +.. toctree:: + :maxdepth: 1 + :caption: Contents: + + notebooks/01_singlegroup_indices.ipynb + notebooks/02_multigroup_indices.ipynb + notebooks/03_local_indices.ipynb + notebooks/04_multiscalar_example.ipynb + notebooks/05_inference_example.ipynb + notebooks/06_decomposition_example.ipynb diff --git a/_static/basic.css b/_static/basic.css index 01192852..7ebbd6d0 100644 --- a/_static/basic.css +++ b/_static/basic.css @@ -1,12 +1,5 @@ /* - * basic.css - * ~~~~~~~~~ - * * Sphinx stylesheet -- basic theme. - * - * :copyright: Copyright 2007-2020 by the Sphinx team, see AUTHORS. - * :license: BSD, see LICENSE for details. - * */ /* -- main layout ----------------------------------------------------------- */ @@ -15,6 +8,12 @@ div.clearer { clear: both; } +div.section::after { + display: block; + content: ''; + clear: left; +} + /* -- relbar ---------------------------------------------------------------- */ div.related { @@ -109,22 +108,18 @@ img { /* -- search page ----------------------------------------------------------- */ ul.search { - margin: 10px 0 0 20px; - padding: 0; + margin-top: 10px; } ul.search li { - padding: 5px 0 5px 20px; - background-image: url(file.png); - background-repeat: no-repeat; - background-position: 0 7px; + padding: 5px 0; } ul.search li a { font-weight: bold; } -ul.search li div.context { +ul.search li p.context { color: #888; margin: 2px 0 0 30px; text-align: left; @@ -216,7 +211,7 @@ table.modindextable td { /* -- general body styles --------------------------------------------------- */ div.body { - min-width: 450px; + min-width: 360px; max-width: 800px; } @@ -231,14 +226,8 @@ a.headerlink { visibility: hidden; } -a.brackets:before, -span.brackets > a:before{ - content: "["; -} - -a.brackets:after, -span.brackets > a:after { - content: "]"; +a:visited { + color: #551A8B; } h1:hover > a.headerlink, @@ -271,25 +260,25 @@ p.rubric { font-weight: bold; } -img.align-left, .figure.align-left, object.align-left { +img.align-left, figure.align-left, .figure.align-left, object.align-left { clear: left; float: left; margin-right: 1em; } -img.align-right, .figure.align-right, object.align-right { +img.align-right, figure.align-right, .figure.align-right, object.align-right { clear: right; float: right; margin-left: 1em; } -img.align-center, .figure.align-center, object.align-center { +img.align-center, figure.align-center, .figure.align-center, object.align-center { display: block; margin-left: auto; margin-right: auto; } -img.align-default, .figure.align-default { +img.align-default, figure.align-default, .figure.align-default { display: block; margin-left: auto; margin-right: auto; @@ -313,24 +302,35 @@ img.align-default, .figure.align-default { /* -- sidebars -------------------------------------------------------------- */ -div.sidebar { +div.sidebar, +aside.sidebar { margin: 0 0 0.5em 1em; border: 1px solid #ddb; - padding: 7px 7px 0 7px; + padding: 7px; background-color: #ffe; width: 40%; float: right; + clear: right; + overflow-x: auto; } p.sidebar-title { font-weight: bold; } +nav.contents, +aside.topic, +div.admonition, div.topic, blockquote { + clear: left; +} + /* -- topics ---------------------------------------------------------------- */ +nav.contents, +aside.topic, div.topic { border: 1px solid #ccc; - padding: 7px 7px 0 7px; + padding: 7px; margin: 10px 0 10px 0; } @@ -352,10 +352,6 @@ div.admonition dt { font-weight: bold; } -div.admonition dl { - margin-bottom: 0; -} - p.admonition-title { margin: 0px 10px 5px 0px; font-weight: bold; @@ -366,9 +362,34 @@ div.body p.centered { margin-top: 25px; } +/* -- content of sidebars/topics/admonitions -------------------------------- */ + +div.sidebar > :last-child, +aside.sidebar > :last-child, +nav.contents > :last-child, +aside.topic > :last-child, +div.topic > :last-child, +div.admonition > :last-child { + margin-bottom: 0; +} + +div.sidebar::after, +aside.sidebar::after, +nav.contents::after, +aside.topic::after, +div.topic::after, +div.admonition::after, +blockquote::after { + display: block; + content: ''; + clear: both; +} + /* -- tables ---------------------------------------------------------------- */ table.docutils { + margin-top: 10px; + margin-bottom: 10px; border: 0; border-collapse: collapse; } @@ -398,10 +419,6 @@ table.docutils td, table.docutils th { border-bottom: 1px solid #aaa; } -table.footnote td, table.footnote th { - border: 0 !important; -} - th { text-align: left; padding-right: 5px; @@ -416,32 +433,34 @@ table.citation td { border-bottom: none; } -th > p:first-child, -td > p:first-child { +th > :first-child, +td > :first-child { margin-top: 0px; } -th > p:last-child, -td > p:last-child { +th > :last-child, +td > :last-child { margin-bottom: 0px; } /* -- figures --------------------------------------------------------------- */ -div.figure { +div.figure, figure { margin: 0.5em; padding: 0.5em; } -div.figure p.caption { +div.figure p.caption, figcaption { padding: 0.3em; } -div.figure p.caption span.caption-number { +div.figure p.caption span.caption-number, +figcaption span.caption-number { font-style: italic; } -div.figure p.caption span.caption-text { +div.figure p.caption span.caption-text, +figcaption span.caption-text { } /* -- field list styles ----------------------------------------------------- */ @@ -468,10 +487,71 @@ table.field-list td, table.field-list th { /* -- hlist styles ---------------------------------------------------------- */ +table.hlist { + margin: 1em 0; +} + table.hlist td { vertical-align: top; } +/* -- object description styles --------------------------------------------- */ + +.sig { + font-family: 'Consolas', 'Menlo', 'DejaVu Sans Mono', 'Bitstream Vera Sans Mono', monospace; +} + +.sig-name, code.descname { + background-color: transparent; + font-weight: bold; +} + +.sig-name { + font-size: 1.1em; +} + +code.descname { + font-size: 1.2em; +} + +.sig-prename, code.descclassname { + background-color: transparent; +} + +.optional { + font-size: 1.3em; +} + +.sig-paren { + font-size: larger; +} + +.sig-param.n { + font-style: italic; +} + +/* C++ specific styling */ + +.sig-inline.c-texpr, +.sig-inline.cpp-texpr { + font-family: unset; +} + +.sig.c .k, .sig.c .kt, +.sig.cpp .k, .sig.cpp .kt { + color: #0033B3; +} + +.sig.c .m, +.sig.cpp .m { + color: #1750EB; +} + +.sig.c .s, .sig.c .sc, +.sig.cpp .s, .sig.cpp .sc { + color: #067D17; +} + /* -- other body styles ----------------------------------------------------- */ @@ -495,26 +575,53 @@ ol.upperroman { list-style: upper-roman; } -li > p:first-child { +:not(li) > ol > li:first-child > :first-child, +:not(li) > ul > li:first-child > :first-child { margin-top: 0px; } -li > p:last-child { +:not(li) > ol > li:last-child > :last-child, +:not(li) > ul > li:last-child > :last-child { margin-bottom: 0px; } -dl.footnote > dt, -dl.citation > dt { - float: left; +ol.simple ol p, +ol.simple ul p, +ul.simple ol p, +ul.simple ul p { + margin-top: 0; } -dl.footnote > dd, -dl.citation > dd { - margin-bottom: 0em; +ol.simple > li:not(:first-child) > p, +ul.simple > li:not(:first-child) > p { + margin-top: 0; } -dl.footnote > dd:after, -dl.citation > dd:after { +ol.simple p, +ul.simple p { + margin-bottom: 0; +} + +aside.footnote > span, +div.citation > span { + float: left; +} +aside.footnote > span:last-of-type, +div.citation > span:last-of-type { + padding-right: 0.5em; +} +aside.footnote > p { + margin-left: 2em; +} +div.citation > p { + margin-left: 4em; +} +aside.footnote > p:last-of-type, +div.citation > p:last-of-type { + margin-bottom: 0em; +} +aside.footnote > p:last-of-type:after, +div.citation > p:last-of-type:after { content: ""; clear: both; } @@ -531,10 +638,6 @@ dl.field-list > dt { padding-right: 5px; } -dl.field-list > dt:after { - content: ":"; -} - dl.field-list > dd { padding-left: 0.5em; margin-top: 0em; @@ -546,7 +649,7 @@ dl { margin-bottom: 15px; } -dd > p:first-child { +dd > :first-child { margin-top: 0px; } @@ -560,6 +663,21 @@ dd { margin-left: 30px; } +.sig dd { + margin-top: 0px; + margin-bottom: 0px; +} + +.sig dl { + margin-top: 0px; + margin-bottom: 0px; +} + +dl > dd:last-child, +dl > dd:last-child > :last-child { + margin-bottom: 0; +} + dt:target, span.highlighted { background-color: #fbe54e; } @@ -573,14 +691,6 @@ dl.glossary dt { font-size: 1.1em; } -.optional { - font-size: 1.3em; -} - -.sig-paren { - font-size: larger; -} - .versionmodified { font-style: italic; } @@ -621,8 +731,9 @@ dl.glossary dt { .classifier:before { font-style: normal; - margin: 0.5em; + margin: 0 0.5em; content: ":"; + display: inline-block; } abbr, acronym { @@ -630,6 +741,14 @@ abbr, acronym { cursor: help; } +.translated { + background-color: rgba(207, 255, 207, 0.2) +} + +.untranslated { + background-color: rgba(255, 207, 207, 0.2) +} + /* -- code displays --------------------------------------------------------- */ pre { @@ -637,29 +756,69 @@ pre { overflow-y: hidden; /* fixes display issues on Chrome browsers */ } +pre, div[class*="highlight-"] { + clear: both; +} + span.pre { -moz-hyphens: none; -ms-hyphens: none; -webkit-hyphens: none; hyphens: none; + white-space: nowrap; +} + +div[class*="highlight-"] { + margin: 1em 0; } td.linenos pre { - padding: 5px 0px; border: 0; background-color: transparent; color: #aaa; } table.highlighttable { - margin-left: 0.5em; + display: block; +} + +table.highlighttable tbody { + display: block; +} + +table.highlighttable tr { + display: flex; } table.highlighttable td { - padding: 0 0.5em 0 0.5em; + margin: 0; + padding: 0; +} + +table.highlighttable td.linenos { + padding-right: 0.5em; +} + +table.highlighttable td.code { + flex: 1; + overflow: hidden; +} + +.highlight .hll { + display: block; +} + +div.highlight pre, +table.highlighttable pre { + margin: 0; +} + +div.code-block-caption + div { + margin-top: 0; } div.code-block-caption { + margin-top: 1em; padding: 2px 5px; font-size: small; } @@ -668,12 +827,14 @@ div.code-block-caption code { background-color: transparent; } -div.code-block-caption + div > div.highlight > pre { - margin-top: 0; -} - -div.doctest > div.highlight span.gp { /* gp: Generic.Prompt */ - user-select: none; +table.highlighttable td.linenos, +span.linenos, +div.highlight span.gp { /* gp: Generic.Prompt */ + user-select: none; + -webkit-user-select: text; /* Safari fallback only */ + -webkit-user-select: none; /* Chrome/Safari */ + -moz-user-select: none; /* Firefox */ + -ms-user-select: none; /* IE10+ */ } div.code-block-caption span.caption-number { @@ -685,21 +846,7 @@ div.code-block-caption span.caption-text { } div.literal-block-wrapper { - padding: 1em 1em 0; -} - -div.literal-block-wrapper div.highlight { - margin: 0; -} - -code.descname { - background-color: transparent; - font-weight: bold; - font-size: 1.2em; -} - -code.descclassname { - background-color: transparent; + margin: 1em 0; } code.xref, a code { @@ -740,8 +887,7 @@ span.eqno { } span.eqno a.headerlink { - position: relative; - left: 0px; + position: absolute; z-index: 1; } diff --git a/_static/bootstrap-2.3.2/css/bootstrap-responsive.css b/_static/bootstrap-2.3.2/css/bootstrap-responsive.css new file mode 100644 index 00000000..09e88ce3 --- /dev/null +++ b/_static/bootstrap-2.3.2/css/bootstrap-responsive.css @@ -0,0 +1,1109 @@ +/*! + * Bootstrap Responsive v2.3.2 + * + * Copyright 2012 Twitter, Inc + * Licensed under the Apache License v2.0 + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Designed and built with all the love in the world @twitter by @mdo and @fat. + */ + +.clearfix { + *zoom: 1; +} + +.clearfix:before, +.clearfix:after { + display: table; + line-height: 0; + content: ""; +} + +.clearfix:after { + clear: both; +} + +.hide-text { + font: 0/0 a; + color: transparent; + text-shadow: none; + background-color: transparent; + border: 0; +} + +.input-block-level { + display: block; + width: 100%; + min-height: 30px; + -webkit-box-sizing: border-box; + -moz-box-sizing: border-box; + box-sizing: border-box; +} + +@-ms-viewport { + width: device-width; +} + +.hidden { + display: none; + visibility: hidden; +} + +.visible-phone { + display: none !important; +} + +.visible-tablet { + display: none !important; +} + +.hidden-desktop { + display: none !important; +} + +.visible-desktop { + display: inherit !important; +} + +@media (min-width: 768px) and (max-width: 979px) { + .hidden-desktop { + display: inherit !important; + } + .visible-desktop { + display: none !important ; + } + .visible-tablet { + display: inherit !important; + } + .hidden-tablet { + display: none !important; + } +} + +@media (max-width: 767px) { + .hidden-desktop { + display: inherit !important; + } + .visible-desktop { + display: none !important; + } + .visible-phone { + display: inherit !important; + } + .hidden-phone { + display: none !important; + } +} + +.visible-print { + display: none !important; +} + +@media print { + .visible-print { + display: inherit !important; + } + .hidden-print { + display: none !important; + } +} + +@media (min-width: 1200px) { + .row { + margin-left: -30px; + *zoom: 1; + } + .row:before, + .row:after { + display: table; + line-height: 0; + content: ""; + } + .row:after { + clear: both; + } + [class*="span"] { + float: left; + min-height: 1px; + margin-left: 30px; + } + .container, + .navbar-static-top .container, + .navbar-fixed-top .container, + .navbar-fixed-bottom .container { + width: 1170px; + } + .span12 { + width: 1170px; + } + .span11 { + width: 1070px; + } + .span10 { + width: 970px; + } + .span9 { + width: 870px; + } + .span8 { + width: 770px; + } + .span7 { + width: 670px; + } + .span6 { + width: 570px; + } + .span5 { + width: 470px; + } + .span4 { + width: 370px; + } + .span3 { + width: 270px; + } + .span2 { + width: 170px; + } + .span1 { + width: 70px; + } + .offset12 { + margin-left: 1230px; + } + .offset11 { + margin-left: 1130px; + } + .offset10 { + margin-left: 1030px; + } + .offset9 { + margin-left: 930px; + } + .offset8 { + margin-left: 830px; + } + .offset7 { + margin-left: 730px; + } + .offset6 { + margin-left: 630px; + } + .offset5 { + margin-left: 530px; + } + .offset4 { + margin-left: 430px; + } + .offset3 { + margin-left: 330px; + } + .offset2 { + margin-left: 230px; + } + .offset1 { + margin-left: 130px; + } + .row-fluid { + width: 100%; + *zoom: 1; + } + .row-fluid:before, + .row-fluid:after { + display: table; + line-height: 0; + content: ""; + } + .row-fluid:after { + clear: both; + } + .row-fluid [class*="span"] { + display: block; + float: left; + width: 100%; + min-height: 30px; + margin-left: 2.564102564102564%; + *margin-left: 2.5109110747408616%; + -webkit-box-sizing: border-box; + -moz-box-sizing: border-box; + box-sizing: border-box; + } + .row-fluid [class*="span"]:first-child { + margin-left: 0; + } + .row-fluid .controls-row [class*="span"] + [class*="span"] { + margin-left: 2.564102564102564%; + } + .row-fluid .span12 { + width: 100%; + *width: 99.94680851063829%; + } + .row-fluid .span11 { + width: 91.45299145299145%; + *width: 91.39979996362975%; + } + .row-fluid .span10 { + width: 82.90598290598291%; + *width: 82.8527914166212%; + } + .row-fluid .span9 { + width: 74.35897435897436%; + *width: 74.30578286961266%; + } + .row-fluid .span8 { + width: 65.81196581196582%; + *width: 65.75877432260411%; + } + .row-fluid .span7 { + width: 57.26495726495726%; + *width: 57.21176577559556%; + } + .row-fluid .span6 { + width: 48.717948717948715%; + *width: 48.664757228587014%; + } + .row-fluid .span5 { + width: 40.17094017094017%; + *width: 40.11774868157847%; + } + .row-fluid .span4 { + width: 31.623931623931625%; + *width: 31.570740134569924%; + } + .row-fluid .span3 { + width: 23.076923076923077%; + *width: 23.023731587561375%; + } + .row-fluid .span2 { + width: 14.52991452991453%; + *width: 14.476723040552828%; + } + .row-fluid .span1 { + width: 5.982905982905983%; + *width: 5.929714493544281%; + } + .row-fluid .offset12 { + margin-left: 105.12820512820512%; + *margin-left: 105.02182214948171%; + } + .row-fluid .offset12:first-child { + margin-left: 102.56410256410257%; + *margin-left: 102.45771958537915%; + } + .row-fluid .offset11 { + margin-left: 96.58119658119658%; + *margin-left: 96.47481360247316%; + } + .row-fluid .offset11:first-child { + margin-left: 94.01709401709402%; + *margin-left: 93.91071103837061%; + } + .row-fluid .offset10 { + margin-left: 88.03418803418803%; + *margin-left: 87.92780505546462%; + } + .row-fluid .offset10:first-child { + margin-left: 85.47008547008548%; + *margin-left: 85.36370249136206%; + } + .row-fluid .offset9 { + margin-left: 79.48717948717949%; + *margin-left: 79.38079650845607%; + } + .row-fluid .offset9:first-child { + margin-left: 76.92307692307693%; + *margin-left: 76.81669394435352%; + } + .row-fluid .offset8 { + margin-left: 70.94017094017094%; + *margin-left: 70.83378796144753%; + } + .row-fluid .offset8:first-child { + margin-left: 68.37606837606839%; + *margin-left: 68.26968539734497%; + } + .row-fluid .offset7 { + margin-left: 62.393162393162385%; + *margin-left: 62.28677941443899%; + } + .row-fluid .offset7:first-child { + margin-left: 59.82905982905982%; + *margin-left: 59.72267685033642%; + } + .row-fluid .offset6 { + margin-left: 53.84615384615384%; + *margin-left: 53.739770867430444%; + } + .row-fluid .offset6:first-child { + margin-left: 51.28205128205128%; + *margin-left: 51.175668303327875%; + } + .row-fluid .offset5 { + margin-left: 45.299145299145295%; + *margin-left: 45.1927623204219%; + } + .row-fluid .offset5:first-child { + margin-left: 42.73504273504273%; + *margin-left: 42.62865975631933%; + } + .row-fluid .offset4 { + margin-left: 36.75213675213675%; + *margin-left: 36.645753773413354%; + } + .row-fluid .offset4:first-child { + margin-left: 34.18803418803419%; + *margin-left: 34.081651209310785%; + } + .row-fluid .offset3 { + margin-left: 28.205128205128204%; + *margin-left: 28.0987452264048%; + } + .row-fluid .offset3:first-child { + margin-left: 25.641025641025642%; + *margin-left: 25.53464266230224%; + } + .row-fluid .offset2 { + margin-left: 19.65811965811966%; + *margin-left: 19.551736679396257%; + } + .row-fluid .offset2:first-child { + margin-left: 17.094017094017094%; + *margin-left: 16.98763411529369%; + } + .row-fluid .offset1 { + margin-left: 11.11111111111111%; + *margin-left: 11.004728132387708%; + } + .row-fluid .offset1:first-child { + margin-left: 8.547008547008547%; + *margin-left: 8.440625568285142%; + } + input, + textarea, + .uneditable-input { + margin-left: 0; + } + .controls-row [class*="span"] + [class*="span"] { + margin-left: 30px; + } + input.span12, + textarea.span12, + .uneditable-input.span12 { + width: 1156px; + } + input.span11, + textarea.span11, + .uneditable-input.span11 { + width: 1056px; + } + input.span10, + textarea.span10, + .uneditable-input.span10 { + width: 956px; + } + input.span9, + textarea.span9, + .uneditable-input.span9 { + width: 856px; + } + input.span8, + textarea.span8, + .uneditable-input.span8 { + width: 756px; + } + input.span7, + textarea.span7, + .uneditable-input.span7 { + width: 656px; + } + input.span6, + textarea.span6, + .uneditable-input.span6 { + width: 556px; + } + input.span5, + textarea.span5, + .uneditable-input.span5 { + width: 456px; + } + input.span4, + textarea.span4, + .uneditable-input.span4 { + width: 356px; + } + input.span3, + textarea.span3, + .uneditable-input.span3 { + width: 256px; + } + input.span2, + textarea.span2, + .uneditable-input.span2 { + width: 156px; + } + input.span1, + textarea.span1, + .uneditable-input.span1 { + width: 56px; + } + .thumbnails { + margin-left: -30px; + } + .thumbnails > li { + margin-left: 30px; + } + .row-fluid .thumbnails { + margin-left: 0; + } +} + +@media (min-width: 768px) and (max-width: 979px) { + .row { + margin-left: -20px; + *zoom: 1; + } + .row:before, + .row:after { + display: table; + line-height: 0; + content: ""; + } + .row:after { + clear: both; + } + [class*="span"] { + float: left; + min-height: 1px; + margin-left: 20px; + } + .container, + .navbar-static-top .container, + .navbar-fixed-top .container, + .navbar-fixed-bottom .container { + width: 724px; + } + .span12 { + width: 724px; + } + .span11 { + width: 662px; + } + .span10 { + width: 600px; + } + .span9 { + width: 538px; + } + .span8 { + width: 476px; + } + .span7 { + width: 414px; + } + .span6 { + width: 352px; + } + .span5 { + width: 290px; + } + .span4 { + width: 228px; + } + .span3 { + width: 166px; + } + .span2 { + width: 104px; + } + .span1 { + width: 42px; + } + .offset12 { + margin-left: 764px; + } + .offset11 { + margin-left: 702px; + } + .offset10 { + margin-left: 640px; + } + .offset9 { + margin-left: 578px; + } + .offset8 { + margin-left: 516px; + } + .offset7 { + margin-left: 454px; + } + .offset6 { + margin-left: 392px; + } + .offset5 { + margin-left: 330px; + } + .offset4 { + margin-left: 268px; + } + .offset3 { + margin-left: 206px; + } + .offset2 { + margin-left: 144px; + } + .offset1 { + margin-left: 82px; + } + .row-fluid { + width: 100%; + *zoom: 1; + } + .row-fluid:before, + .row-fluid:after { + display: table; + line-height: 0; + content: ""; + } + .row-fluid:after { + clear: both; + } + .row-fluid [class*="span"] { + display: block; + float: left; + width: 100%; + min-height: 30px; + margin-left: 2.7624309392265194%; + *margin-left: 2.709239449864817%; + -webkit-box-sizing: border-box; + -moz-box-sizing: border-box; + box-sizing: border-box; + } + .row-fluid [class*="span"]:first-child { + margin-left: 0; + } + .row-fluid .controls-row [class*="span"] + [class*="span"] { + margin-left: 2.7624309392265194%; + } + .row-fluid .span12 { + width: 100%; + *width: 99.94680851063829%; + } + .row-fluid .span11 { + width: 91.43646408839778%; + *width: 91.38327259903608%; + } + .row-fluid .span10 { + width: 82.87292817679558%; + *width: 82.81973668743387%; + } + .row-fluid .span9 { + width: 74.30939226519337%; + *width: 74.25620077583166%; + } + .row-fluid .span8 { + width: 65.74585635359117%; + *width: 65.69266486422946%; + } + .row-fluid .span7 { + width: 57.18232044198895%; + *width: 57.12912895262725%; + } + .row-fluid .span6 { + width: 48.61878453038674%; + *width: 48.56559304102504%; + } + .row-fluid .span5 { + width: 40.05524861878453%; + *width: 40.00205712942283%; + } + .row-fluid .span4 { + width: 31.491712707182323%; + *width: 31.43852121782062%; + } + .row-fluid .span3 { + width: 22.92817679558011%; + *width: 22.87498530621841%; + } + .row-fluid .span2 { + width: 14.3646408839779%; + *width: 14.311449394616199%; + } + .row-fluid .span1 { + width: 5.801104972375691%; + *width: 5.747913483013988%; + } + .row-fluid .offset12 { + margin-left: 105.52486187845304%; + *margin-left: 105.41847889972962%; + } + .row-fluid .offset12:first-child { + margin-left: 102.76243093922652%; + *margin-left: 102.6560479605031%; + } + .row-fluid .offset11 { + margin-left: 96.96132596685082%; + *margin-left: 96.8549429881274%; + } + .row-fluid .offset11:first-child { + margin-left: 94.1988950276243%; + *margin-left: 94.09251204890089%; + } + .row-fluid .offset10 { + margin-left: 88.39779005524862%; + *margin-left: 88.2914070765252%; + } + .row-fluid .offset10:first-child { + margin-left: 85.6353591160221%; + *margin-left: 85.52897613729868%; + } + .row-fluid .offset9 { + margin-left: 79.8342541436464%; + *margin-left: 79.72787116492299%; + } + .row-fluid .offset9:first-child { + margin-left: 77.07182320441989%; + *margin-left: 76.96544022569647%; + } + .row-fluid .offset8 { + margin-left: 71.2707182320442%; + *margin-left: 71.16433525332079%; + } + .row-fluid .offset8:first-child { + margin-left: 68.50828729281768%; + *margin-left: 68.40190431409427%; + } + .row-fluid .offset7 { + margin-left: 62.70718232044199%; + *margin-left: 62.600799341718584%; + } + .row-fluid .offset7:first-child { + margin-left: 59.94475138121547%; + *margin-left: 59.838368402492065%; + } + .row-fluid .offset6 { + margin-left: 54.14364640883978%; + *margin-left: 54.037263430116376%; + } + .row-fluid .offset6:first-child { + margin-left: 51.38121546961326%; + *margin-left: 51.27483249088986%; + } + .row-fluid .offset5 { + margin-left: 45.58011049723757%; + *margin-left: 45.47372751851417%; + } + .row-fluid .offset5:first-child { + margin-left: 42.81767955801105%; + *margin-left: 42.71129657928765%; + } + .row-fluid .offset4 { + margin-left: 37.01657458563536%; + *margin-left: 36.91019160691196%; + } + .row-fluid .offset4:first-child { + margin-left: 34.25414364640884%; + *margin-left: 34.14776066768544%; + } + .row-fluid .offset3 { + margin-left: 28.45303867403315%; + *margin-left: 28.346655695309746%; + } + .row-fluid .offset3:first-child { + margin-left: 25.69060773480663%; + *margin-left: 25.584224756083227%; + } + .row-fluid .offset2 { + margin-left: 19.88950276243094%; + *margin-left: 19.783119783707537%; + } + .row-fluid .offset2:first-child { + margin-left: 17.12707182320442%; + *margin-left: 17.02068884448102%; + } + .row-fluid .offset1 { + margin-left: 11.32596685082873%; + *margin-left: 11.219583872105325%; + } + .row-fluid .offset1:first-child { + margin-left: 8.56353591160221%; + *margin-left: 8.457152932878806%; + } + input, + textarea, + .uneditable-input { + margin-left: 0; + } + .controls-row [class*="span"] + [class*="span"] { + margin-left: 20px; + } + input.span12, + textarea.span12, + .uneditable-input.span12 { + width: 710px; + } + input.span11, + textarea.span11, + .uneditable-input.span11 { + width: 648px; + } + input.span10, + textarea.span10, + .uneditable-input.span10 { + width: 586px; + } + input.span9, + textarea.span9, + .uneditable-input.span9 { + width: 524px; + } + input.span8, + textarea.span8, + .uneditable-input.span8 { + width: 462px; + } + input.span7, + textarea.span7, + .uneditable-input.span7 { + width: 400px; + } + input.span6, + textarea.span6, + .uneditable-input.span6 { + width: 338px; + } + input.span5, + textarea.span5, + .uneditable-input.span5 { + width: 276px; + } + input.span4, + textarea.span4, + .uneditable-input.span4 { + width: 214px; + } + input.span3, + textarea.span3, + .uneditable-input.span3 { + width: 152px; + } + input.span2, + textarea.span2, + .uneditable-input.span2 { + width: 90px; + } + input.span1, + textarea.span1, + .uneditable-input.span1 { + width: 28px; + } +} + +@media (max-width: 767px) { + body { + padding-right: 20px; + padding-left: 20px; + } + .navbar-fixed-top, + .navbar-fixed-bottom, + .navbar-static-top { + margin-right: -20px; + margin-left: -20px; + } + .container-fluid { + padding: 0; + } + .dl-horizontal dt { + float: none; + width: auto; + clear: none; + text-align: left; + } + .dl-horizontal dd { + margin-left: 0; + } + .container { + width: auto; + } + .row-fluid { + width: 100%; + } + .row, + .thumbnails { + margin-left: 0; + } + .thumbnails > li { + float: none; + margin-left: 0; + } + [class*="span"], + .uneditable-input[class*="span"], + .row-fluid [class*="span"] { + display: block; + float: none; + width: 100%; + margin-left: 0; + -webkit-box-sizing: border-box; + -moz-box-sizing: border-box; + box-sizing: border-box; + } + .span12, + .row-fluid .span12 { + width: 100%; + -webkit-box-sizing: border-box; + -moz-box-sizing: border-box; + box-sizing: border-box; + } + .row-fluid [class*="offset"]:first-child { + margin-left: 0; + } + .input-large, + .input-xlarge, + .input-xxlarge, + input[class*="span"], + select[class*="span"], + textarea[class*="span"], + .uneditable-input { + display: block; + width: 100%; + min-height: 30px; + -webkit-box-sizing: border-box; + -moz-box-sizing: border-box; + box-sizing: border-box; + } + .input-prepend input, + .input-append input, + .input-prepend input[class*="span"], + .input-append input[class*="span"] { + display: inline-block; + width: auto; + } + .controls-row [class*="span"] + [class*="span"] { + margin-left: 0; + } + .modal { + position: fixed; + top: 20px; + right: 20px; + left: 20px; + width: auto; + margin: 0; + } + .modal.fade { + top: -100px; + } + .modal.fade.in { + top: 20px; + } +} + +@media (max-width: 480px) { + .nav-collapse { + -webkit-transform: translate3d(0, 0, 0); + } + .page-header h1 small { + display: block; + line-height: 20px; + } + input[type="checkbox"], + input[type="radio"] { + border: 1px solid #ccc; + } + .form-horizontal .control-label { + float: none; + width: auto; + padding-top: 0; + text-align: left; + } + .form-horizontal .controls { + margin-left: 0; + } + .form-horizontal .control-list { + padding-top: 0; + } + .form-horizontal .form-actions { + padding-right: 10px; + padding-left: 10px; + } + .media .pull-left, + .media .pull-right { + display: block; + float: none; + margin-bottom: 10px; + } + .media-object { + margin-right: 0; + margin-left: 0; + } + .modal { + top: 10px; + right: 10px; + left: 10px; + } + .modal-header .close { + padding: 10px; + margin: -10px; + } + .carousel-caption { + position: static; + } +} + +@media (max-width: 979px) { + body { + padding-top: 0; + } + .navbar-fixed-top, + .navbar-fixed-bottom { + position: static; + } + .navbar-fixed-top { + margin-bottom: 20px; + } + .navbar-fixed-bottom { + margin-top: 20px; + } + .navbar-fixed-top .navbar-inner, + .navbar-fixed-bottom .navbar-inner { + padding: 5px; + } + .navbar .container { + width: auto; + padding: 0; + } + .navbar .brand { + padding-right: 10px; + padding-left: 10px; + margin: 0 0 0 -5px; + } + .nav-collapse { + clear: both; + } + .nav-collapse .nav { + float: none; + margin: 0 0 10px; + } + .nav-collapse .nav > li { + float: none; + } + .nav-collapse .nav > li > a { + margin-bottom: 2px; + } + .nav-collapse .nav > .divider-vertical { + display: none; + } + .nav-collapse .nav .nav-header { + color: #777777; + text-shadow: none; + } + .nav-collapse .nav > li > a, + .nav-collapse .dropdown-menu a { + padding: 9px 15px; + font-weight: bold; + color: #777777; + -webkit-border-radius: 3px; + -moz-border-radius: 3px; + border-radius: 3px; + } + .nav-collapse .btn { + padding: 4px 10px 4px; + font-weight: normal; + -webkit-border-radius: 4px; + -moz-border-radius: 4px; + border-radius: 4px; + } + .nav-collapse .dropdown-menu li + li a { + margin-bottom: 2px; + } + .nav-collapse .nav > li > a:hover, + .nav-collapse .nav > li > a:focus, + .nav-collapse .dropdown-menu a:hover, + .nav-collapse .dropdown-menu a:focus { + background-color: #f2f2f2; + } + .navbar-inverse .nav-collapse .nav > li > a, + .navbar-inverse .nav-collapse .dropdown-menu a { + color: #999999; + } + .navbar-inverse .nav-collapse .nav > li > a:hover, + .navbar-inverse .nav-collapse .nav > li > a:focus, + .navbar-inverse .nav-collapse .dropdown-menu a:hover, + .navbar-inverse .nav-collapse .dropdown-menu a:focus { + background-color: #111111; + } + .nav-collapse.in .btn-group { + padding: 0; + margin-top: 5px; + } + .nav-collapse .dropdown-menu { + position: static; + top: auto; + left: auto; + display: none; + float: none; + max-width: none; + padding: 0; + margin: 0 15px; + background-color: transparent; + border: none; + -webkit-border-radius: 0; + -moz-border-radius: 0; + border-radius: 0; + -webkit-box-shadow: none; + -moz-box-shadow: none; + box-shadow: none; + } + .nav-collapse .open > .dropdown-menu { + display: block; + } + .nav-collapse .dropdown-menu:before, + .nav-collapse .dropdown-menu:after { + display: none; + } + .nav-collapse .dropdown-menu .divider { + display: none; + } + .nav-collapse .nav > li > .dropdown-menu:before, + .nav-collapse .nav > li > .dropdown-menu:after { + display: none; + } + .nav-collapse .navbar-form, + .nav-collapse .navbar-search { + float: none; + padding: 10px 15px; + margin: 10px 0; + border-top: 1px solid #f2f2f2; + border-bottom: 1px solid #f2f2f2; + -webkit-box-shadow: inset 0 1px 0 rgba(255, 255, 255, 0.1), 0 1px 0 rgba(255, 255, 255, 0.1); + -moz-box-shadow: inset 0 1px 0 rgba(255, 255, 255, 0.1), 0 1px 0 rgba(255, 255, 255, 0.1); + box-shadow: inset 0 1px 0 rgba(255, 255, 255, 0.1), 0 1px 0 rgba(255, 255, 255, 0.1); + } + .navbar-inverse .nav-collapse .navbar-form, + .navbar-inverse .nav-collapse .navbar-search { + border-top-color: #111111; + border-bottom-color: #111111; + } + .navbar .nav-collapse .nav.pull-right { + float: none; + margin-left: 0; + } + .nav-collapse, + .nav-collapse.collapse { + height: 0; + overflow: hidden; + } + .navbar .btn-navbar { + display: block; + } + .navbar-static .navbar-inner { + padding-right: 10px; + padding-left: 10px; + } +} + +@media (min-width: 980px) { + .nav-collapse.collapse { + height: auto !important; + overflow: visible !important; + } +} diff --git a/_static/bootstrap-2.3.2/css/bootstrap-responsive.min.css b/_static/bootstrap-2.3.2/css/bootstrap-responsive.min.css new file mode 100644 index 00000000..f4ede63f --- /dev/null +++ b/_static/bootstrap-2.3.2/css/bootstrap-responsive.min.css @@ -0,0 +1,9 @@ +/*! + * Bootstrap Responsive v2.3.2 + * + * Copyright 2012 Twitter, Inc + * Licensed under the Apache License v2.0 + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Designed and built with all the love in the world @twitter by @mdo and @fat. + */.clearfix{*zoom:1}.clearfix:before,.clearfix:after{display:table;line-height:0;content:""}.clearfix:after{clear:both}.hide-text{font:0/0 a;color:transparent;text-shadow:none;background-color:transparent;border:0}.input-block-level{display:block;width:100%;min-height:30px;-webkit-box-sizing:border-box;-moz-box-sizing:border-box;box-sizing:border-box}@-ms-viewport{width:device-width}.hidden{display:none;visibility:hidden}.visible-phone{display:none!important}.visible-tablet{display:none!important}.hidden-desktop{display:none!important}.visible-desktop{display:inherit!important}@media(min-width:768px) and (max-width:979px){.hidden-desktop{display:inherit!important}.visible-desktop{display:none!important}.visible-tablet{display:inherit!important}.hidden-tablet{display:none!important}}@media(max-width:767px){.hidden-desktop{display:inherit!important}.visible-desktop{display:none!important}.visible-phone{display:inherit!important}.hidden-phone{display:none!important}}.visible-print{display:none!important}@media print{.visible-print{display:inherit!important}.hidden-print{display:none!important}}@media(min-width:1200px){.row{margin-left:-30px;*zoom:1}.row:before,.row:after{display:table;line-height:0;content:""}.row:after{clear:both}[class*="span"]{float:left;min-height:1px;margin-left:30px}.container,.navbar-static-top .container,.navbar-fixed-top .container,.navbar-fixed-bottom .container{width:1170px}.span12{width:1170px}.span11{width:1070px}.span10{width:970px}.span9{width:870px}.span8{width:770px}.span7{width:670px}.span6{width:570px}.span5{width:470px}.span4{width:370px}.span3{width:270px}.span2{width:170px}.span1{width:70px}.offset12{margin-left:1230px}.offset11{margin-left:1130px}.offset10{margin-left:1030px}.offset9{margin-left:930px}.offset8{margin-left:830px}.offset7{margin-left:730px}.offset6{margin-left:630px}.offset5{margin-left:530px}.offset4{margin-left:430px}.offset3{margin-left:330px}.offset2{margin-left:230px}.offset1{margin-left:130px}.row-fluid{width:100%;*zoom:1}.row-fluid:before,.row-fluid:after{display:table;line-height:0;content:""}.row-fluid:after{clear:both}.row-fluid [class*="span"]{display:block;float:left;width:100%;min-height:30px;margin-left:2.564102564102564%;*margin-left:2.5109110747408616%;-webkit-box-sizing:border-box;-moz-box-sizing:border-box;box-sizing:border-box}.row-fluid [class*="span"]:first-child{margin-left:0}.row-fluid .controls-row [class*="span"]+[class*="span"]{margin-left:2.564102564102564%}.row-fluid .span12{width:100%;*width:99.94680851063829%}.row-fluid .span11{width:91.45299145299145%;*width:91.39979996362975%}.row-fluid .span10{width:82.90598290598291%;*width:82.8527914166212%}.row-fluid .span9{width:74.35897435897436%;*width:74.30578286961266%}.row-fluid .span8{width:65.81196581196582%;*width:65.75877432260411%}.row-fluid .span7{width:57.26495726495726%;*width:57.21176577559556%}.row-fluid .span6{width:48.717948717948715%;*width:48.664757228587014%}.row-fluid .span5{width:40.17094017094017%;*width:40.11774868157847%}.row-fluid .span4{width:31.623931623931625%;*width:31.570740134569924%}.row-fluid .span3{width:23.076923076923077%;*width:23.023731587561375%}.row-fluid .span2{width:14.52991452991453%;*width:14.476723040552828%}.row-fluid .span1{width:5.982905982905983%;*width:5.929714493544281%}.row-fluid .offset12{margin-left:105.12820512820512%;*margin-left:105.02182214948171%}.row-fluid .offset12:first-child{margin-left:102.56410256410257%;*margin-left:102.45771958537915%}.row-fluid .offset11{margin-left:96.58119658119658%;*margin-left:96.47481360247316%}.row-fluid .offset11:first-child{margin-left:94.01709401709402%;*margin-left:93.91071103837061%}.row-fluid .offset10{margin-left:88.03418803418803%;*margin-left:87.92780505546462%}.row-fluid .offset10:first-child{margin-left:85.47008547008548%;*margin-left:85.36370249136206%}.row-fluid .offset9{margin-left:79.48717948717949%;*margin-left:79.38079650845607%}.row-fluid .offset9:first-child{margin-left:76.92307692307693%;*margin-left:76.81669394435352%}.row-fluid .offset8{margin-left:70.94017094017094%;*margin-left:70.83378796144753%}.row-fluid .offset8:first-child{margin-left:68.37606837606839%;*margin-left:68.26968539734497%}.row-fluid .offset7{margin-left:62.393162393162385%;*margin-left:62.28677941443899%}.row-fluid .offset7:first-child{margin-left:59.82905982905982%;*margin-left:59.72267685033642%}.row-fluid .offset6{margin-left:53.84615384615384%;*margin-left:53.739770867430444%}.row-fluid .offset6:first-child{margin-left:51.28205128205128%;*margin-left:51.175668303327875%}.row-fluid .offset5{margin-left:45.299145299145295%;*margin-left:45.1927623204219%}.row-fluid .offset5:first-child{margin-left:42.73504273504273%;*margin-left:42.62865975631933%}.row-fluid .offset4{margin-left:36.75213675213675%;*margin-left:36.645753773413354%}.row-fluid .offset4:first-child{margin-left:34.18803418803419%;*margin-left:34.081651209310785%}.row-fluid .offset3{margin-left:28.205128205128204%;*margin-left:28.0987452264048%}.row-fluid .offset3:first-child{margin-left:25.641025641025642%;*margin-left:25.53464266230224%}.row-fluid .offset2{margin-left:19.65811965811966%;*margin-left:19.551736679396257%}.row-fluid .offset2:first-child{margin-left:17.094017094017094%;*margin-left:16.98763411529369%}.row-fluid .offset1{margin-left:11.11111111111111%;*margin-left:11.004728132387708%}.row-fluid .offset1:first-child{margin-left:8.547008547008547%;*margin-left:8.440625568285142%}input,textarea,.uneditable-input{margin-left:0}.controls-row [class*="span"]+[class*="span"]{margin-left:30px}input.span12,textarea.span12,.uneditable-input.span12{width:1156px}input.span11,textarea.span11,.uneditable-input.span11{width:1056px}input.span10,textarea.span10,.uneditable-input.span10{width:956px}input.span9,textarea.span9,.uneditable-input.span9{width:856px}input.span8,textarea.span8,.uneditable-input.span8{width:756px}input.span7,textarea.span7,.uneditable-input.span7{width:656px}input.span6,textarea.span6,.uneditable-input.span6{width:556px}input.span5,textarea.span5,.uneditable-input.span5{width:456px}input.span4,textarea.span4,.uneditable-input.span4{width:356px}input.span3,textarea.span3,.uneditable-input.span3{width:256px}input.span2,textarea.span2,.uneditable-input.span2{width:156px}input.span1,textarea.span1,.uneditable-input.span1{width:56px}.thumbnails{margin-left:-30px}.thumbnails>li{margin-left:30px}.row-fluid .thumbnails{margin-left:0}}@media(min-width:768px) and (max-width:979px){.row{margin-left:-20px;*zoom:1}.row:before,.row:after{display:table;line-height:0;content:""}.row:after{clear:both}[class*="span"]{float:left;min-height:1px;margin-left:20px}.container,.navbar-static-top .container,.navbar-fixed-top .container,.navbar-fixed-bottom .container{width:724px}.span12{width:724px}.span11{width:662px}.span10{width:600px}.span9{width:538px}.span8{width:476px}.span7{width:414px}.span6{width:352px}.span5{width:290px}.span4{width:228px}.span3{width:166px}.span2{width:104px}.span1{width:42px}.offset12{margin-left:764px}.offset11{margin-left:702px}.offset10{margin-left:640px}.offset9{margin-left:578px}.offset8{margin-left:516px}.offset7{margin-left:454px}.offset6{margin-left:392px}.offset5{margin-left:330px}.offset4{margin-left:268px}.offset3{margin-left:206px}.offset2{margin-left:144px}.offset1{margin-left:82px}.row-fluid{width:100%;*zoom:1}.row-fluid:before,.row-fluid:after{display:table;line-height:0;content:""}.row-fluid:after{clear:both}.row-fluid [class*="span"]{display:block;float:left;width:100%;min-height:30px;margin-left:2.7624309392265194%;*margin-left:2.709239449864817%;-webkit-box-sizing:border-box;-moz-box-sizing:border-box;box-sizing:border-box}.row-fluid [class*="span"]:first-child{margin-left:0}.row-fluid .controls-row [class*="span"]+[class*="span"]{margin-left:2.7624309392265194%}.row-fluid .span12{width:100%;*width:99.94680851063829%}.row-fluid .span11{width:91.43646408839778%;*width:91.38327259903608%}.row-fluid .span10{width:82.87292817679558%;*width:82.81973668743387%}.row-fluid .span9{width:74.30939226519337%;*width:74.25620077583166%}.row-fluid .span8{width:65.74585635359117%;*width:65.69266486422946%}.row-fluid .span7{width:57.18232044198895%;*width:57.12912895262725%}.row-fluid .span6{width:48.61878453038674%;*width:48.56559304102504%}.row-fluid .span5{width:40.05524861878453%;*width:40.00205712942283%}.row-fluid .span4{width:31.491712707182323%;*width:31.43852121782062%}.row-fluid .span3{width:22.92817679558011%;*width:22.87498530621841%}.row-fluid .span2{width:14.3646408839779%;*width:14.311449394616199%}.row-fluid .span1{width:5.801104972375691%;*width:5.747913483013988%}.row-fluid .offset12{margin-left:105.52486187845304%;*margin-left:105.41847889972962%}.row-fluid .offset12:first-child{margin-left:102.76243093922652%;*margin-left:102.6560479605031%}.row-fluid .offset11{margin-left:96.96132596685082%;*margin-left:96.8549429881274%}.row-fluid .offset11:first-child{margin-left:94.1988950276243%;*margin-left:94.09251204890089%}.row-fluid .offset10{margin-left:88.39779005524862%;*margin-left:88.2914070765252%}.row-fluid .offset10:first-child{margin-left:85.6353591160221%;*margin-left:85.52897613729868%}.row-fluid .offset9{margin-left:79.8342541436464%;*margin-left:79.72787116492299%}.row-fluid .offset9:first-child{margin-left:77.07182320441989%;*margin-left:76.96544022569647%}.row-fluid .offset8{margin-left:71.2707182320442%;*margin-left:71.16433525332079%}.row-fluid .offset8:first-child{margin-left:68.50828729281768%;*margin-left:68.40190431409427%}.row-fluid .offset7{margin-left:62.70718232044199%;*margin-left:62.600799341718584%}.row-fluid .offset7:first-child{margin-left:59.94475138121547%;*margin-left:59.838368402492065%}.row-fluid .offset6{margin-left:54.14364640883978%;*margin-left:54.037263430116376%}.row-fluid .offset6:first-child{margin-left:51.38121546961326%;*margin-left:51.27483249088986%}.row-fluid .offset5{margin-left:45.58011049723757%;*margin-left:45.47372751851417%}.row-fluid .offset5:first-child{margin-left:42.81767955801105%;*margin-left:42.71129657928765%}.row-fluid .offset4{margin-left:37.01657458563536%;*margin-left:36.91019160691196%}.row-fluid .offset4:first-child{margin-left:34.25414364640884%;*margin-left:34.14776066768544%}.row-fluid .offset3{margin-left:28.45303867403315%;*margin-left:28.346655695309746%}.row-fluid .offset3:first-child{margin-left:25.69060773480663%;*margin-left:25.584224756083227%}.row-fluid .offset2{margin-left:19.88950276243094%;*margin-left:19.783119783707537%}.row-fluid .offset2:first-child{margin-left:17.12707182320442%;*margin-left:17.02068884448102%}.row-fluid .offset1{margin-left:11.32596685082873%;*margin-left:11.219583872105325%}.row-fluid .offset1:first-child{margin-left:8.56353591160221%;*margin-left:8.457152932878806%}input,textarea,.uneditable-input{margin-left:0}.controls-row [class*="span"]+[class*="span"]{margin-left:20px}input.span12,textarea.span12,.uneditable-input.span12{width:710px}input.span11,textarea.span11,.uneditable-input.span11{width:648px}input.span10,textarea.span10,.uneditable-input.span10{width:586px}input.span9,textarea.span9,.uneditable-input.span9{width:524px}input.span8,textarea.span8,.uneditable-input.span8{width:462px}input.span7,textarea.span7,.uneditable-input.span7{width:400px}input.span6,textarea.span6,.uneditable-input.span6{width:338px}input.span5,textarea.span5,.uneditable-input.span5{width:276px}input.span4,textarea.span4,.uneditable-input.span4{width:214px}input.span3,textarea.span3,.uneditable-input.span3{width:152px}input.span2,textarea.span2,.uneditable-input.span2{width:90px}input.span1,textarea.span1,.uneditable-input.span1{width:28px}}@media(max-width:767px){body{padding-right:20px;padding-left:20px}.navbar-fixed-top,.navbar-fixed-bottom,.navbar-static-top{margin-right:-20px;margin-left:-20px}.container-fluid{padding:0}.dl-horizontal dt{float:none;width:auto;clear:none;text-align:left}.dl-horizontal dd{margin-left:0}.container{width:auto}.row-fluid{width:100%}.row,.thumbnails{margin-left:0}.thumbnails>li{float:none;margin-left:0}[class*="span"],.uneditable-input[class*="span"],.row-fluid [class*="span"]{display:block;float:none;width:100%;margin-left:0;-webkit-box-sizing:border-box;-moz-box-sizing:border-box;box-sizing:border-box}.span12,.row-fluid .span12{width:100%;-webkit-box-sizing:border-box;-moz-box-sizing:border-box;box-sizing:border-box}.row-fluid [class*="offset"]:first-child{margin-left:0}.input-large,.input-xlarge,.input-xxlarge,input[class*="span"],select[class*="span"],textarea[class*="span"],.uneditable-input{display:block;width:100%;min-height:30px;-webkit-box-sizing:border-box;-moz-box-sizing:border-box;box-sizing:border-box}.input-prepend input,.input-append input,.input-prepend input[class*="span"],.input-append input[class*="span"]{display:inline-block;width:auto}.controls-row [class*="span"]+[class*="span"]{margin-left:0}.modal{position:fixed;top:20px;right:20px;left:20px;width:auto;margin:0}.modal.fade{top:-100px}.modal.fade.in{top:20px}}@media(max-width:480px){.nav-collapse{-webkit-transform:translate3d(0,0,0)}.page-header h1 small{display:block;line-height:20px}input[type="checkbox"],input[type="radio"]{border:1px solid #ccc}.form-horizontal .control-label{float:none;width:auto;padding-top:0;text-align:left}.form-horizontal .controls{margin-left:0}.form-horizontal .control-list{padding-top:0}.form-horizontal .form-actions{padding-right:10px;padding-left:10px}.media .pull-left,.media .pull-right{display:block;float:none;margin-bottom:10px}.media-object{margin-right:0;margin-left:0}.modal{top:10px;right:10px;left:10px}.modal-header .close{padding:10px;margin:-10px}.carousel-caption{position:static}}@media(max-width:979px){body{padding-top:0}.navbar-fixed-top,.navbar-fixed-bottom{position:static}.navbar-fixed-top{margin-bottom:20px}.navbar-fixed-bottom{margin-top:20px}.navbar-fixed-top .navbar-inner,.navbar-fixed-bottom .navbar-inner{padding:5px}.navbar .container{width:auto;padding:0}.navbar .brand{padding-right:10px;padding-left:10px;margin:0 0 0 -5px}.nav-collapse{clear:both}.nav-collapse .nav{float:none;margin:0 0 10px}.nav-collapse .nav>li{float:none}.nav-collapse .nav>li>a{margin-bottom:2px}.nav-collapse .nav>.divider-vertical{display:none}.nav-collapse .nav .nav-header{color:#777;text-shadow:none}.nav-collapse .nav>li>a,.nav-collapse .dropdown-menu a{padding:9px 15px;font-weight:bold;color:#777;-webkit-border-radius:3px;-moz-border-radius:3px;border-radius:3px}.nav-collapse .btn{padding:4px 10px 4px;font-weight:normal;-webkit-border-radius:4px;-moz-border-radius:4px;border-radius:4px}.nav-collapse .dropdown-menu li+li a{margin-bottom:2px}.nav-collapse .nav>li>a:hover,.nav-collapse .nav>li>a:focus,.nav-collapse .dropdown-menu a:hover,.nav-collapse .dropdown-menu a:focus{background-color:#f2f2f2}.navbar-inverse .nav-collapse .nav>li>a,.navbar-inverse .nav-collapse .dropdown-menu a{color:#999}.navbar-inverse .nav-collapse .nav>li>a:hover,.navbar-inverse .nav-collapse .nav>li>a:focus,.navbar-inverse .nav-collapse .dropdown-menu a:hover,.navbar-inverse .nav-collapse .dropdown-menu a:focus{background-color:#111}.nav-collapse.in .btn-group{padding:0;margin-top:5px}.nav-collapse .dropdown-menu{position:static;top:auto;left:auto;display:none;float:none;max-width:none;padding:0;margin:0 15px;background-color:transparent;border:0;-webkit-border-radius:0;-moz-border-radius:0;border-radius:0;-webkit-box-shadow:none;-moz-box-shadow:none;box-shadow:none}.nav-collapse .open>.dropdown-menu{display:block}.nav-collapse .dropdown-menu:before,.nav-collapse .dropdown-menu:after{display:none}.nav-collapse .dropdown-menu .divider{display:none}.nav-collapse .nav>li>.dropdown-menu:before,.nav-collapse .nav>li>.dropdown-menu:after{display:none}.nav-collapse .navbar-form,.nav-collapse .navbar-search{float:none;padding:10px 15px;margin:10px 0;border-top:1px solid #f2f2f2;border-bottom:1px solid #f2f2f2;-webkit-box-shadow:inset 0 1px 0 rgba(255,255,255,0.1),0 1px 0 rgba(255,255,255,0.1);-moz-box-shadow:inset 0 1px 0 rgba(255,255,255,0.1),0 1px 0 rgba(255,255,255,0.1);box-shadow:inset 0 1px 0 rgba(255,255,255,0.1),0 1px 0 rgba(255,255,255,0.1)}.navbar-inverse .nav-collapse .navbar-form,.navbar-inverse .nav-collapse .navbar-search{border-top-color:#111;border-bottom-color:#111}.navbar .nav-collapse .nav.pull-right{float:none;margin-left:0}.nav-collapse,.nav-collapse.collapse{height:0;overflow:hidden}.navbar .btn-navbar{display:block}.navbar-static .navbar-inner{padding-right:10px;padding-left:10px}}@media(min-width:980px){.nav-collapse.collapse{height:auto!important;overflow:visible!important}} diff --git a/_static/bootstrap-2.3.2/css/bootstrap.css b/_static/bootstrap-2.3.2/css/bootstrap.css new file mode 100644 index 00000000..b725064a --- /dev/null +++ b/_static/bootstrap-2.3.2/css/bootstrap.css @@ -0,0 +1,6167 @@ +/*! + * Bootstrap v2.3.2 + * + * Copyright 2012 Twitter, Inc + * Licensed under the Apache License v2.0 + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Designed and built with all the love in the world @twitter by @mdo and @fat. + */ + +.clearfix { + *zoom: 1; +} + +.clearfix:before, +.clearfix:after { + display: table; + line-height: 0; + content: ""; +} + +.clearfix:after { + clear: both; +} + +.hide-text { + font: 0/0 a; + color: transparent; + text-shadow: none; + background-color: transparent; + border: 0; +} + +.input-block-level { + display: block; + width: 100%; + min-height: 30px; + -webkit-box-sizing: border-box; + -moz-box-sizing: border-box; + box-sizing: border-box; +} + +article, +aside, +details, +figcaption, +figure, +footer, +header, +hgroup, +nav, +section { + display: block; +} + +audio, +canvas, +video { + display: inline-block; + *display: inline; + *zoom: 1; +} + +audio:not([controls]) { + display: none; +} + +html { + font-size: 100%; + -webkit-text-size-adjust: 100%; + -ms-text-size-adjust: 100%; +} + +a:focus { + outline: thin dotted #333; + outline: 5px auto -webkit-focus-ring-color; + outline-offset: -2px; +} + +a:hover, +a:active { + outline: 0; +} + +sub, +sup { + position: relative; + font-size: 75%; + line-height: 0; + vertical-align: baseline; +} + +sup { + top: -0.5em; +} + +sub { + bottom: -0.25em; +} + +img { + width: auto\9; + height: auto; + max-width: 100%; + vertical-align: middle; + border: 0; + -ms-interpolation-mode: bicubic; +} + +#map_canvas img, +.google-maps img { + max-width: none; +} + +button, +input, +select, +textarea { + margin: 0; + font-size: 100%; + vertical-align: middle; +} + +button, +input { + *overflow: visible; + line-height: normal; +} + +button::-moz-focus-inner, +input::-moz-focus-inner { + padding: 0; + border: 0; +} + +button, +html input[type="button"], +input[type="reset"], +input[type="submit"] { + cursor: pointer; + -webkit-appearance: button; +} + +label, +select, +button, +input[type="button"], +input[type="reset"], +input[type="submit"], +input[type="radio"], +input[type="checkbox"] { + cursor: pointer; +} + +input[type="search"] { + -webkit-box-sizing: content-box; + -moz-box-sizing: content-box; + box-sizing: content-box; + -webkit-appearance: textfield; +} + +input[type="search"]::-webkit-search-decoration, +input[type="search"]::-webkit-search-cancel-button { + -webkit-appearance: none; +} + +textarea { + overflow: auto; + vertical-align: top; +} + +@media print { + * { + color: #000 !important; + text-shadow: none !important; + background: transparent !important; + box-shadow: none !important; + } + a, + a:visited { + text-decoration: underline; + } + a[href]:after { + content: " (" attr(href) ")"; + } + abbr[title]:after { + content: " (" attr(title) ")"; + } + .ir a:after, + a[href^="javascript:"]:after, + a[href^="#"]:after { + content: ""; + } + pre, + blockquote { + border: 1px solid #999; + page-break-inside: avoid; + } + thead { + display: table-header-group; + } + tr, + img { + page-break-inside: avoid; + } + img { + max-width: 100% !important; + } + @page { + margin: 0.5cm; + } + p, + h2, + h3 { + orphans: 3; + widows: 3; + } + h2, + h3 { + page-break-after: avoid; + } +} + +body { + margin: 0; + font-family: "Helvetica Neue", Helvetica, Arial, sans-serif; + font-size: 14px; + line-height: 20px; + color: #333333; + background-color: #ffffff; +} + +a { + color: #0088cc; + text-decoration: none; +} + +a:hover, +a:focus { + color: #005580; + text-decoration: underline; +} + +.img-rounded { + -webkit-border-radius: 6px; + -moz-border-radius: 6px; + border-radius: 6px; +} + +.img-polaroid { + padding: 4px; + background-color: #fff; + border: 1px solid #ccc; + border: 1px solid rgba(0, 0, 0, 0.2); + -webkit-box-shadow: 0 1px 3px rgba(0, 0, 0, 0.1); + -moz-box-shadow: 0 1px 3px rgba(0, 0, 0, 0.1); + box-shadow: 0 1px 3px rgba(0, 0, 0, 0.1); +} + +.img-circle { + -webkit-border-radius: 500px; + -moz-border-radius: 500px; + border-radius: 500px; +} + +.row { + margin-left: -20px; + *zoom: 1; +} + +.row:before, +.row:after { + display: table; + line-height: 0; + content: ""; +} + +.row:after { + clear: both; +} + +[class*="span"] { + float: left; + min-height: 1px; + margin-left: 20px; +} + +.container, +.navbar-static-top .container, +.navbar-fixed-top .container, +.navbar-fixed-bottom .container { + width: 940px; +} + +.span12 { + width: 940px; +} + +.span11 { + width: 860px; +} + +.span10 { + width: 780px; +} + +.span9 { + width: 700px; +} + +.span8 { + width: 620px; +} + +.span7 { + width: 540px; +} + +.span6 { + width: 460px; +} + +.span5 { + width: 380px; +} + +.span4 { + width: 300px; +} + +.span3 { + width: 220px; +} + +.span2 { + width: 140px; +} + +.span1 { + width: 60px; +} + +.offset12 { + margin-left: 980px; +} + +.offset11 { + margin-left: 900px; +} + +.offset10 { + margin-left: 820px; +} + +.offset9 { + margin-left: 740px; +} + +.offset8 { + margin-left: 660px; +} + +.offset7 { + margin-left: 580px; +} + +.offset6 { + margin-left: 500px; +} + +.offset5 { + margin-left: 420px; +} + +.offset4 { + margin-left: 340px; +} + +.offset3 { + margin-left: 260px; +} + +.offset2 { + margin-left: 180px; +} + +.offset1 { + margin-left: 100px; +} + +.row-fluid { + width: 100%; + *zoom: 1; +} + +.row-fluid:before, +.row-fluid:after { + display: table; + line-height: 0; + content: ""; +} + +.row-fluid:after { + clear: both; +} + +.row-fluid [class*="span"] { + display: block; + float: left; + width: 100%; + min-height: 30px; + margin-left: 2.127659574468085%; + *margin-left: 2.074468085106383%; + -webkit-box-sizing: border-box; + -moz-box-sizing: border-box; + box-sizing: border-box; +} + +.row-fluid [class*="span"]:first-child { + margin-left: 0; +} + +.row-fluid .controls-row [class*="span"] + [class*="span"] { + margin-left: 2.127659574468085%; +} + +.row-fluid .span12 { + width: 100%; + *width: 99.94680851063829%; +} + +.row-fluid .span11 { + width: 91.48936170212765%; + *width: 91.43617021276594%; +} + +.row-fluid .span10 { + width: 82.97872340425532%; + *width: 82.92553191489361%; +} + +.row-fluid .span9 { + width: 74.46808510638297%; + *width: 74.41489361702126%; +} + +.row-fluid .span8 { + width: 65.95744680851064%; + *width: 65.90425531914893%; +} + +.row-fluid .span7 { + width: 57.44680851063829%; + *width: 57.39361702127659%; +} + +.row-fluid .span6 { + width: 48.93617021276595%; + *width: 48.88297872340425%; +} + +.row-fluid .span5 { + width: 40.42553191489362%; + *width: 40.37234042553192%; +} + +.row-fluid .span4 { + width: 31.914893617021278%; + *width: 31.861702127659576%; +} + +.row-fluid .span3 { + width: 23.404255319148934%; + *width: 23.351063829787233%; +} + +.row-fluid .span2 { + width: 14.893617021276595%; + *width: 14.840425531914894%; +} + +.row-fluid .span1 { + width: 6.382978723404255%; + *width: 6.329787234042553%; +} + +.row-fluid .offset12 { + margin-left: 104.25531914893617%; + *margin-left: 104.14893617021275%; +} + +.row-fluid .offset12:first-child { + margin-left: 102.12765957446808%; + *margin-left: 102.02127659574467%; +} + +.row-fluid .offset11 { + margin-left: 95.74468085106382%; + *margin-left: 95.6382978723404%; +} + +.row-fluid .offset11:first-child { + margin-left: 93.61702127659574%; + *margin-left: 93.51063829787232%; +} + +.row-fluid .offset10 { + margin-left: 87.23404255319149%; + *margin-left: 87.12765957446807%; +} + +.row-fluid .offset10:first-child { + margin-left: 85.1063829787234%; + *margin-left: 84.99999999999999%; +} + +.row-fluid .offset9 { + margin-left: 78.72340425531914%; + *margin-left: 78.61702127659572%; +} + +.row-fluid .offset9:first-child { + margin-left: 76.59574468085106%; + *margin-left: 76.48936170212764%; +} + +.row-fluid .offset8 { + margin-left: 70.2127659574468%; + *margin-left: 70.10638297872339%; +} + +.row-fluid .offset8:first-child { + margin-left: 68.08510638297872%; + *margin-left: 67.9787234042553%; +} + +.row-fluid .offset7 { + margin-left: 61.70212765957446%; + *margin-left: 61.59574468085106%; +} + +.row-fluid .offset7:first-child { + margin-left: 59.574468085106375%; + *margin-left: 59.46808510638297%; +} + +.row-fluid .offset6 { + margin-left: 53.191489361702125%; + *margin-left: 53.085106382978715%; +} + +.row-fluid .offset6:first-child { + margin-left: 51.063829787234035%; + *margin-left: 50.95744680851063%; +} + +.row-fluid .offset5 { + margin-left: 44.68085106382979%; + *margin-left: 44.57446808510638%; +} + +.row-fluid .offset5:first-child { + margin-left: 42.5531914893617%; + *margin-left: 42.4468085106383%; +} + +.row-fluid .offset4 { + margin-left: 36.170212765957444%; + *margin-left: 36.06382978723405%; +} + +.row-fluid .offset4:first-child { + margin-left: 34.04255319148936%; + *margin-left: 33.93617021276596%; +} + +.row-fluid .offset3 { + margin-left: 27.659574468085104%; + *margin-left: 27.5531914893617%; +} + +.row-fluid .offset3:first-child { + margin-left: 25.53191489361702%; + *margin-left: 25.425531914893618%; +} + +.row-fluid .offset2 { + margin-left: 19.148936170212764%; + *margin-left: 19.04255319148936%; +} + +.row-fluid .offset2:first-child { + margin-left: 17.02127659574468%; + *margin-left: 16.914893617021278%; +} + +.row-fluid .offset1 { + margin-left: 10.638297872340425%; + *margin-left: 10.53191489361702%; +} + +.row-fluid .offset1:first-child { + margin-left: 8.51063829787234%; + *margin-left: 8.404255319148938%; +} + +[class*="span"].hide, +.row-fluid [class*="span"].hide { + display: none; +} + +[class*="span"].pull-right, +.row-fluid [class*="span"].pull-right { + float: right; +} + +.container { + margin-right: auto; + margin-left: auto; + *zoom: 1; +} + +.container:before, +.container:after { + display: table; + line-height: 0; + content: ""; +} + +.container:after { + clear: both; +} + +.container-fluid { + padding-right: 20px; + padding-left: 20px; + *zoom: 1; +} + +.container-fluid:before, +.container-fluid:after { + display: table; + line-height: 0; + content: ""; +} + +.container-fluid:after { + clear: both; +} + +p { + margin: 0 0 10px; +} + +.lead { + margin-bottom: 20px; + font-size: 21px; + font-weight: 200; + line-height: 30px; +} + +small { + font-size: 85%; +} + +strong { + font-weight: bold; +} + +em { + font-style: italic; +} + +cite { + font-style: normal; +} + +.muted { + color: #999999; +} + +a.muted:hover, +a.muted:focus { + color: #808080; +} + +.text-warning { + color: #c09853; +} + +a.text-warning:hover, +a.text-warning:focus { + color: #a47e3c; +} + +.text-error { + color: #b94a48; +} + +a.text-error:hover, +a.text-error:focus { + color: #953b39; +} + +.text-info { + color: #3a87ad; +} + +a.text-info:hover, +a.text-info:focus { + color: #2d6987; +} + +.text-success { + color: #468847; +} + +a.text-success:hover, +a.text-success:focus { + color: #356635; +} + +.text-left { + text-align: left; +} + +.text-right { + text-align: right; +} + +.text-center { + text-align: center; +} + +h1, +h2, +h3, +h4, +h5, +h6 { + margin: 10px 0; + font-family: inherit; + font-weight: bold; + line-height: 20px; + color: inherit; + text-rendering: optimizelegibility; +} + +h1 small, +h2 small, +h3 small, +h4 small, +h5 small, +h6 small { + font-weight: normal; + line-height: 1; + color: #999999; +} + +h1, +h2, +h3 { + line-height: 40px; +} + +h1 { + font-size: 38.5px; +} + +h2 { + font-size: 31.5px; +} + +h3 { + font-size: 24.5px; +} + +h4 { + font-size: 17.5px; +} + +h5 { + font-size: 14px; +} + +h6 { + font-size: 11.9px; +} + +h1 small { + font-size: 24.5px; +} + +h2 small { + font-size: 17.5px; +} + +h3 small { + font-size: 14px; +} + +h4 small { + font-size: 14px; +} + +.page-header { + padding-bottom: 9px; + margin: 20px 0 30px; + border-bottom: 1px solid #eeeeee; +} + +ul, +ol { + padding: 0; + margin: 0 0 10px 25px; +} + +ul ul, +ul ol, +ol ol, +ol ul { + margin-bottom: 0; +} + +li { + line-height: 20px; +} + +ul.unstyled, +ol.unstyled { + margin-left: 0; + list-style: none; +} + +ul.inline, +ol.inline { + margin-left: 0; + list-style: none; +} + +ul.inline > li, +ol.inline > li { + display: inline-block; + *display: inline; + padding-right: 5px; + padding-left: 5px; + *zoom: 1; +} + +dl { + margin-bottom: 20px; +} + +dt, +dd { + line-height: 20px; +} + +dt { + font-weight: bold; +} + +dd { + margin-left: 10px; +} + +.dl-horizontal { + *zoom: 1; +} + +.dl-horizontal:before, +.dl-horizontal:after { + display: table; + line-height: 0; + content: ""; +} + +.dl-horizontal:after { + clear: both; +} + +.dl-horizontal dt { + float: left; + width: 160px; + overflow: hidden; + clear: left; + text-align: right; + text-overflow: ellipsis; + white-space: nowrap; +} + +.dl-horizontal dd { + margin-left: 180px; +} + +hr { + margin: 20px 0; + border: 0; + border-top: 1px solid #eeeeee; + border-bottom: 1px solid #ffffff; +} + +abbr[title], +abbr[data-original-title] { + cursor: help; + border-bottom: 1px dotted #999999; +} + +abbr.initialism { + font-size: 90%; + text-transform: uppercase; +} + +blockquote { + padding: 0 0 0 15px; + margin: 0 0 20px; + border-left: 5px solid #eeeeee; +} + +blockquote p { + margin-bottom: 0; + font-size: 17.5px; + font-weight: 300; + line-height: 1.25; +} + +blockquote small { + display: block; + line-height: 20px; + color: #999999; +} + +blockquote small:before { + content: '\2014 \00A0'; +} + +blockquote.pull-right { + float: right; + padding-right: 15px; + padding-left: 0; + border-right: 5px solid #eeeeee; + border-left: 0; +} + +blockquote.pull-right p, +blockquote.pull-right small { + text-align: right; +} + +blockquote.pull-right small:before { + content: ''; +} + +blockquote.pull-right small:after { + content: '\00A0 \2014'; +} + +q:before, +q:after, +blockquote:before, +blockquote:after { + content: ""; +} + +address { + display: block; + margin-bottom: 20px; + font-style: normal; + line-height: 20px; +} + +code, +pre { + padding: 0 3px 2px; + font-family: Monaco, Menlo, Consolas, "Courier New", monospace; + font-size: 12px; + color: #333333; + -webkit-border-radius: 3px; + -moz-border-radius: 3px; + border-radius: 3px; +} + +code { + padding: 2px 4px; + color: #d14; + white-space: nowrap; + background-color: #f7f7f9; + border: 1px solid #e1e1e8; +} + +pre { + display: block; + padding: 9.5px; + margin: 0 0 10px; + font-size: 13px; + line-height: 20px; + word-break: break-all; + word-wrap: break-word; + white-space: pre; + white-space: pre-wrap; + background-color: #f5f5f5; + border: 1px solid #ccc; + border: 1px solid rgba(0, 0, 0, 0.15); + -webkit-border-radius: 4px; + -moz-border-radius: 4px; + border-radius: 4px; +} + +pre.prettyprint { + margin-bottom: 20px; +} + +pre code { + padding: 0; + color: inherit; + white-space: pre; + white-space: pre-wrap; + background-color: transparent; + border: 0; +} + +.pre-scrollable { + max-height: 340px; + overflow-y: scroll; +} + +form { + margin: 0 0 20px; +} + +fieldset { + padding: 0; + margin: 0; + border: 0; +} + +legend { + display: block; + width: 100%; + padding: 0; + margin-bottom: 20px; + font-size: 21px; + line-height: 40px; + color: #333333; + border: 0; + border-bottom: 1px solid #e5e5e5; +} + +legend small { + font-size: 15px; + color: #999999; +} + +label, +input, +button, +select, +textarea { + font-size: 14px; + font-weight: normal; + line-height: 20px; +} + +input, +button, +select, +textarea { + font-family: "Helvetica Neue", Helvetica, Arial, sans-serif; +} + +label { + display: block; + margin-bottom: 5px; +} + +select, +textarea, +input[type="text"], +input[type="password"], +input[type="datetime"], +input[type="datetime-local"], +input[type="date"], +input[type="month"], +input[type="time"], +input[type="week"], +input[type="number"], +input[type="email"], +input[type="url"], +input[type="search"], +input[type="tel"], +input[type="color"], +.uneditable-input { + display: inline-block; + height: 20px; + padding: 4px 6px; + margin-bottom: 10px; + font-size: 14px; + line-height: 20px; + color: #555555; + vertical-align: middle; + -webkit-border-radius: 4px; + -moz-border-radius: 4px; + border-radius: 4px; +} + +input, +textarea, +.uneditable-input { + width: 206px; +} + +textarea { + height: auto; +} + +textarea, +input[type="text"], +input[type="password"], +input[type="datetime"], +input[type="datetime-local"], +input[type="date"], +input[type="month"], +input[type="time"], +input[type="week"], +input[type="number"], +input[type="email"], +input[type="url"], +input[type="search"], +input[type="tel"], +input[type="color"], +.uneditable-input { + background-color: #ffffff; + border: 1px solid #cccccc; + -webkit-box-shadow: inset 0 1px 1px rgba(0, 0, 0, 0.075); + -moz-box-shadow: inset 0 1px 1px rgba(0, 0, 0, 0.075); + box-shadow: inset 0 1px 1px rgba(0, 0, 0, 0.075); + -webkit-transition: border linear 0.2s, box-shadow linear 0.2s; + -moz-transition: border linear 0.2s, box-shadow linear 0.2s; + -o-transition: border linear 0.2s, box-shadow linear 0.2s; + transition: border linear 0.2s, box-shadow linear 0.2s; +} + +textarea:focus, +input[type="text"]:focus, +input[type="password"]:focus, +input[type="datetime"]:focus, +input[type="datetime-local"]:focus, +input[type="date"]:focus, +input[type="month"]:focus, +input[type="time"]:focus, +input[type="week"]:focus, +input[type="number"]:focus, +input[type="email"]:focus, +input[type="url"]:focus, +input[type="search"]:focus, +input[type="tel"]:focus, +input[type="color"]:focus, +.uneditable-input:focus { + border-color: rgba(82, 168, 236, 0.8); + outline: 0; + outline: thin dotted \9; + /* IE6-9 */ + + -webkit-box-shadow: inset 0 1px 1px rgba(0, 0, 0, 0.075), 0 0 8px rgba(82, 168, 236, 0.6); + -moz-box-shadow: inset 0 1px 1px rgba(0, 0, 0, 0.075), 0 0 8px rgba(82, 168, 236, 0.6); + box-shadow: inset 0 1px 1px rgba(0, 0, 0, 0.075), 0 0 8px rgba(82, 168, 236, 0.6); +} + +input[type="radio"], +input[type="checkbox"] { + margin: 4px 0 0; + margin-top: 1px \9; + *margin-top: 0; + line-height: normal; +} + +input[type="file"], +input[type="image"], +input[type="submit"], +input[type="reset"], +input[type="button"], +input[type="radio"], +input[type="checkbox"] { + width: auto; +} + +select, +input[type="file"] { + height: 30px; + /* In IE7, the height of the select element cannot be changed by height, only font-size */ + + *margin-top: 4px; + /* For IE7, add top margin to align select with labels */ + + line-height: 30px; +} + +select { + width: 220px; + background-color: #ffffff; + border: 1px solid #cccccc; +} + +select[multiple], +select[size] { + height: auto; +} + +select:focus, +input[type="file"]:focus, +input[type="radio"]:focus, +input[type="checkbox"]:focus { + outline: thin dotted #333; + outline: 5px auto -webkit-focus-ring-color; + outline-offset: -2px; +} + +.uneditable-input, +.uneditable-textarea { + color: #999999; + cursor: not-allowed; + background-color: #fcfcfc; + border-color: #cccccc; + -webkit-box-shadow: inset 0 1px 2px rgba(0, 0, 0, 0.025); + -moz-box-shadow: inset 0 1px 2px rgba(0, 0, 0, 0.025); + box-shadow: inset 0 1px 2px rgba(0, 0, 0, 0.025); +} + +.uneditable-input { + overflow: hidden; + white-space: nowrap; +} + +.uneditable-textarea { + width: auto; + height: auto; +} + +input:-moz-placeholder, +textarea:-moz-placeholder { + color: #999999; +} + +input:-ms-input-placeholder, +textarea:-ms-input-placeholder { + color: #999999; +} + +input::-webkit-input-placeholder, +textarea::-webkit-input-placeholder { + color: #999999; +} + +.radio, +.checkbox { + min-height: 20px; + padding-left: 20px; +} + +.radio input[type="radio"], +.checkbox input[type="checkbox"] { + float: left; + margin-left: -20px; +} + +.controls > .radio:first-child, +.controls > .checkbox:first-child { + padding-top: 5px; +} + +.radio.inline, +.checkbox.inline { + display: inline-block; + padding-top: 5px; + margin-bottom: 0; + vertical-align: middle; +} + +.radio.inline + .radio.inline, +.checkbox.inline + .checkbox.inline { + margin-left: 10px; +} + +.input-mini { + width: 60px; +} + +.input-small { + width: 90px; +} + +.input-medium { + width: 150px; +} + +.input-large { + width: 210px; +} + +.input-xlarge { + width: 270px; +} + +.input-xxlarge { + width: 530px; +} + +input[class*="span"], +select[class*="span"], +textarea[class*="span"], +.uneditable-input[class*="span"], +.row-fluid input[class*="span"], +.row-fluid select[class*="span"], +.row-fluid textarea[class*="span"], +.row-fluid .uneditable-input[class*="span"] { + float: none; + margin-left: 0; +} + +.input-append input[class*="span"], +.input-append .uneditable-input[class*="span"], +.input-prepend input[class*="span"], +.input-prepend .uneditable-input[class*="span"], +.row-fluid input[class*="span"], +.row-fluid select[class*="span"], +.row-fluid textarea[class*="span"], +.row-fluid .uneditable-input[class*="span"], +.row-fluid .input-prepend [class*="span"], +.row-fluid .input-append [class*="span"] { + display: inline-block; +} + +input, +textarea, +.uneditable-input { + margin-left: 0; +} + +.controls-row [class*="span"] + [class*="span"] { + margin-left: 20px; +} + +input.span12, +textarea.span12, +.uneditable-input.span12 { + width: 926px; +} + +input.span11, +textarea.span11, +.uneditable-input.span11 { + width: 846px; +} + +input.span10, +textarea.span10, +.uneditable-input.span10 { + width: 766px; +} + +input.span9, +textarea.span9, +.uneditable-input.span9 { + width: 686px; +} + +input.span8, +textarea.span8, +.uneditable-input.span8 { + width: 606px; +} + +input.span7, +textarea.span7, +.uneditable-input.span7 { + width: 526px; +} + +input.span6, +textarea.span6, +.uneditable-input.span6 { + width: 446px; +} + +input.span5, +textarea.span5, +.uneditable-input.span5 { + width: 366px; +} + +input.span4, +textarea.span4, +.uneditable-input.span4 { + width: 286px; +} + +input.span3, +textarea.span3, +.uneditable-input.span3 { + width: 206px; +} + +input.span2, +textarea.span2, +.uneditable-input.span2 { + width: 126px; +} + +input.span1, +textarea.span1, +.uneditable-input.span1 { + width: 46px; +} + +.controls-row { + *zoom: 1; +} + +.controls-row:before, +.controls-row:after { + display: table; + line-height: 0; + content: ""; +} + +.controls-row:after { + clear: both; +} + +.controls-row [class*="span"], +.row-fluid .controls-row [class*="span"] { + float: left; +} + +.controls-row .checkbox[class*="span"], +.controls-row .radio[class*="span"] { + padding-top: 5px; +} + +input[disabled], +select[disabled], +textarea[disabled], +input[readonly], +select[readonly], +textarea[readonly] { + cursor: not-allowed; + background-color: #eeeeee; +} + +input[type="radio"][disabled], +input[type="checkbox"][disabled], +input[type="radio"][readonly], +input[type="checkbox"][readonly] { + background-color: transparent; +} + +.control-group.warning .control-label, +.control-group.warning .help-block, +.control-group.warning .help-inline { + color: #c09853; +} + +.control-group.warning .checkbox, +.control-group.warning .radio, +.control-group.warning input, +.control-group.warning select, +.control-group.warning textarea { + color: #c09853; +} + +.control-group.warning input, +.control-group.warning select, +.control-group.warning textarea { + border-color: #c09853; + -webkit-box-shadow: inset 0 1px 1px rgba(0, 0, 0, 0.075); + -moz-box-shadow: inset 0 1px 1px rgba(0, 0, 0, 0.075); + box-shadow: inset 0 1px 1px rgba(0, 0, 0, 0.075); +} + +.control-group.warning input:focus, +.control-group.warning select:focus, +.control-group.warning textarea:focus { + border-color: #a47e3c; + -webkit-box-shadow: inset 0 1px 1px rgba(0, 0, 0, 0.075), 0 0 6px #dbc59e; + -moz-box-shadow: inset 0 1px 1px rgba(0, 0, 0, 0.075), 0 0 6px #dbc59e; + box-shadow: inset 0 1px 1px rgba(0, 0, 0, 0.075), 0 0 6px #dbc59e; +} + +.control-group.warning .input-prepend .add-on, +.control-group.warning .input-append .add-on { + color: #c09853; + background-color: #fcf8e3; + border-color: #c09853; +} + +.control-group.error .control-label, +.control-group.error .help-block, +.control-group.error .help-inline { + color: #b94a48; +} + +.control-group.error .checkbox, +.control-group.error .radio, +.control-group.error input, +.control-group.error select, +.control-group.error textarea { + color: #b94a48; +} + +.control-group.error input, +.control-group.error select, +.control-group.error textarea { + border-color: #b94a48; + -webkit-box-shadow: inset 0 1px 1px rgba(0, 0, 0, 0.075); + -moz-box-shadow: inset 0 1px 1px rgba(0, 0, 0, 0.075); + box-shadow: inset 0 1px 1px rgba(0, 0, 0, 0.075); +} + +.control-group.error input:focus, +.control-group.error select:focus, +.control-group.error textarea:focus { + border-color: #953b39; + -webkit-box-shadow: inset 0 1px 1px rgba(0, 0, 0, 0.075), 0 0 6px #d59392; + -moz-box-shadow: inset 0 1px 1px rgba(0, 0, 0, 0.075), 0 0 6px #d59392; + box-shadow: inset 0 1px 1px rgba(0, 0, 0, 0.075), 0 0 6px #d59392; +} + +.control-group.error .input-prepend .add-on, +.control-group.error .input-append .add-on { + color: #b94a48; + background-color: #f2dede; + border-color: #b94a48; +} + +.control-group.success .control-label, +.control-group.success .help-block, +.control-group.success .help-inline { + color: #468847; +} + +.control-group.success .checkbox, +.control-group.success .radio, +.control-group.success input, +.control-group.success select, +.control-group.success textarea { + color: #468847; +} + +.control-group.success input, +.control-group.success select, +.control-group.success textarea { + border-color: #468847; + -webkit-box-shadow: inset 0 1px 1px rgba(0, 0, 0, 0.075); + -moz-box-shadow: inset 0 1px 1px rgba(0, 0, 0, 0.075); + box-shadow: inset 0 1px 1px rgba(0, 0, 0, 0.075); +} + +.control-group.success input:focus, +.control-group.success select:focus, +.control-group.success textarea:focus { + border-color: #356635; + -webkit-box-shadow: inset 0 1px 1px rgba(0, 0, 0, 0.075), 0 0 6px #7aba7b; + -moz-box-shadow: inset 0 1px 1px rgba(0, 0, 0, 0.075), 0 0 6px #7aba7b; + box-shadow: inset 0 1px 1px rgba(0, 0, 0, 0.075), 0 0 6px #7aba7b; +} + +.control-group.success .input-prepend .add-on, +.control-group.success .input-append .add-on { + color: #468847; + background-color: #dff0d8; + border-color: #468847; +} + +.control-group.info .control-label, +.control-group.info .help-block, +.control-group.info .help-inline { + color: #3a87ad; +} + +.control-group.info .checkbox, +.control-group.info .radio, +.control-group.info input, +.control-group.info select, +.control-group.info textarea { + color: #3a87ad; +} + +.control-group.info input, +.control-group.info select, +.control-group.info textarea { + border-color: #3a87ad; + -webkit-box-shadow: inset 0 1px 1px rgba(0, 0, 0, 0.075); + -moz-box-shadow: inset 0 1px 1px rgba(0, 0, 0, 0.075); + box-shadow: inset 0 1px 1px rgba(0, 0, 0, 0.075); +} + +.control-group.info input:focus, +.control-group.info select:focus, +.control-group.info textarea:focus { + border-color: #2d6987; + -webkit-box-shadow: inset 0 1px 1px rgba(0, 0, 0, 0.075), 0 0 6px #7ab5d3; + -moz-box-shadow: inset 0 1px 1px rgba(0, 0, 0, 0.075), 0 0 6px #7ab5d3; + box-shadow: inset 0 1px 1px rgba(0, 0, 0, 0.075), 0 0 6px #7ab5d3; +} + +.control-group.info .input-prepend .add-on, +.control-group.info .input-append .add-on { + color: #3a87ad; + background-color: #d9edf7; + border-color: #3a87ad; +} + +input:focus:invalid, +textarea:focus:invalid, +select:focus:invalid { + color: #b94a48; + border-color: #ee5f5b; +} + +input:focus:invalid:focus, +textarea:focus:invalid:focus, +select:focus:invalid:focus { + border-color: #e9322d; + -webkit-box-shadow: 0 0 6px #f8b9b7; + -moz-box-shadow: 0 0 6px #f8b9b7; + box-shadow: 0 0 6px #f8b9b7; +} + +.form-actions { + padding: 19px 20px 20px; + margin-top: 20px; + margin-bottom: 20px; + background-color: #f5f5f5; + border-top: 1px solid #e5e5e5; + *zoom: 1; +} + +.form-actions:before, +.form-actions:after { + display: table; + line-height: 0; + content: ""; +} + +.form-actions:after { + clear: both; +} + +.help-block, +.help-inline { + color: #595959; +} + +.help-block { + display: block; + margin-bottom: 10px; +} + +.help-inline { + display: inline-block; + *display: inline; + padding-left: 5px; + vertical-align: middle; + *zoom: 1; +} + +.input-append, +.input-prepend { + display: inline-block; + margin-bottom: 10px; + font-size: 0; + white-space: nowrap; + vertical-align: middle; +} + +.input-append input, +.input-prepend input, +.input-append select, +.input-prepend select, +.input-append .uneditable-input, +.input-prepend .uneditable-input, +.input-append .dropdown-menu, +.input-prepend .dropdown-menu, +.input-append .popover, +.input-prepend .popover { + font-size: 14px; +} + +.input-append input, +.input-prepend input, +.input-append select, +.input-prepend select, +.input-append .uneditable-input, +.input-prepend .uneditable-input { + position: relative; + margin-bottom: 0; + *margin-left: 0; + vertical-align: top; + -webkit-border-radius: 0 4px 4px 0; + -moz-border-radius: 0 4px 4px 0; + border-radius: 0 4px 4px 0; +} + +.input-append input:focus, +.input-prepend input:focus, +.input-append select:focus, +.input-prepend select:focus, +.input-append .uneditable-input:focus, +.input-prepend .uneditable-input:focus { + z-index: 2; +} + +.input-append .add-on, +.input-prepend .add-on { + display: inline-block; + width: auto; + height: 20px; + min-width: 16px; + padding: 4px 5px; + font-size: 14px; + font-weight: normal; + line-height: 20px; + text-align: center; + text-shadow: 0 1px 0 #ffffff; + background-color: #eeeeee; + border: 1px solid #ccc; +} + +.input-append .add-on, +.input-prepend .add-on, +.input-append .btn, +.input-prepend .btn, +.input-append .btn-group > .dropdown-toggle, +.input-prepend .btn-group > .dropdown-toggle { + vertical-align: top; + -webkit-border-radius: 0; + -moz-border-radius: 0; + border-radius: 0; +} + +.input-append .active, +.input-prepend .active { + background-color: #a9dba9; + border-color: #46a546; +} + +.input-prepend .add-on, +.input-prepend .btn { + margin-right: -1px; +} + +.input-prepend .add-on:first-child, +.input-prepend .btn:first-child { + -webkit-border-radius: 4px 0 0 4px; + -moz-border-radius: 4px 0 0 4px; + border-radius: 4px 0 0 4px; +} + +.input-append input, +.input-append select, +.input-append .uneditable-input { + -webkit-border-radius: 4px 0 0 4px; + -moz-border-radius: 4px 0 0 4px; + border-radius: 4px 0 0 4px; +} + +.input-append input + .btn-group .btn:last-child, +.input-append select + .btn-group .btn:last-child, +.input-append .uneditable-input + .btn-group .btn:last-child { + -webkit-border-radius: 0 4px 4px 0; + -moz-border-radius: 0 4px 4px 0; + border-radius: 0 4px 4px 0; +} + +.input-append .add-on, +.input-append .btn, +.input-append .btn-group { + margin-left: -1px; +} + +.input-append .add-on:last-child, +.input-append .btn:last-child, +.input-append .btn-group:last-child > .dropdown-toggle { + -webkit-border-radius: 0 4px 4px 0; + -moz-border-radius: 0 4px 4px 0; + border-radius: 0 4px 4px 0; +} + +.input-prepend.input-append input, +.input-prepend.input-append select, +.input-prepend.input-append .uneditable-input { + -webkit-border-radius: 0; + -moz-border-radius: 0; + border-radius: 0; +} + +.input-prepend.input-append input + .btn-group .btn, +.input-prepend.input-append select + .btn-group .btn, +.input-prepend.input-append .uneditable-input + .btn-group .btn { + -webkit-border-radius: 0 4px 4px 0; + -moz-border-radius: 0 4px 4px 0; + border-radius: 0 4px 4px 0; +} + +.input-prepend.input-append .add-on:first-child, +.input-prepend.input-append .btn:first-child { + margin-right: -1px; + -webkit-border-radius: 4px 0 0 4px; + -moz-border-radius: 4px 0 0 4px; + border-radius: 4px 0 0 4px; +} + +.input-prepend.input-append .add-on:last-child, +.input-prepend.input-append .btn:last-child { + margin-left: -1px; + -webkit-border-radius: 0 4px 4px 0; + -moz-border-radius: 0 4px 4px 0; + border-radius: 0 4px 4px 0; +} + +.input-prepend.input-append .btn-group:first-child { + margin-left: 0; +} + +input.search-query { + padding-right: 14px; + padding-right: 4px \9; + padding-left: 14px; + padding-left: 4px \9; + /* IE7-8 doesn't have border-radius, so don't indent the padding */ + + margin-bottom: 0; + -webkit-border-radius: 15px; + -moz-border-radius: 15px; + border-radius: 15px; +} + +/* Allow for input prepend/append in search forms */ + +.form-search .input-append .search-query, +.form-search .input-prepend .search-query { + -webkit-border-radius: 0; + -moz-border-radius: 0; + border-radius: 0; +} + +.form-search .input-append .search-query { + -webkit-border-radius: 14px 0 0 14px; + -moz-border-radius: 14px 0 0 14px; + border-radius: 14px 0 0 14px; +} + +.form-search .input-append .btn { + -webkit-border-radius: 0 14px 14px 0; + -moz-border-radius: 0 14px 14px 0; + border-radius: 0 14px 14px 0; +} + +.form-search .input-prepend .search-query { + -webkit-border-radius: 0 14px 14px 0; + -moz-border-radius: 0 14px 14px 0; + border-radius: 0 14px 14px 0; +} + +.form-search .input-prepend .btn { + -webkit-border-radius: 14px 0 0 14px; + -moz-border-radius: 14px 0 0 14px; + border-radius: 14px 0 0 14px; +} + +.form-search input, +.form-inline input, +.form-horizontal input, +.form-search textarea, +.form-inline textarea, +.form-horizontal textarea, +.form-search select, +.form-inline select, +.form-horizontal select, +.form-search .help-inline, +.form-inline .help-inline, +.form-horizontal .help-inline, +.form-search .uneditable-input, +.form-inline .uneditable-input, +.form-horizontal .uneditable-input, +.form-search .input-prepend, +.form-inline .input-prepend, +.form-horizontal .input-prepend, +.form-search .input-append, +.form-inline .input-append, +.form-horizontal .input-append { + display: inline-block; + *display: inline; + margin-bottom: 0; + vertical-align: middle; + *zoom: 1; +} + +.form-search .hide, +.form-inline .hide, +.form-horizontal .hide { + display: none; +} + +.form-search label, +.form-inline label, +.form-search .btn-group, +.form-inline .btn-group { + display: inline-block; +} + +.form-search .input-append, +.form-inline .input-append, +.form-search .input-prepend, +.form-inline .input-prepend { + margin-bottom: 0; +} + +.form-search .radio, +.form-search .checkbox, +.form-inline .radio, +.form-inline .checkbox { + padding-left: 0; + margin-bottom: 0; + vertical-align: middle; +} + +.form-search .radio input[type="radio"], +.form-search .checkbox input[type="checkbox"], +.form-inline .radio input[type="radio"], +.form-inline .checkbox input[type="checkbox"] { + float: left; + margin-right: 3px; + margin-left: 0; +} + +.control-group { + margin-bottom: 10px; +} + +legend + .control-group { + margin-top: 20px; + -webkit-margin-top-collapse: separate; +} + +.form-horizontal .control-group { + margin-bottom: 20px; + *zoom: 1; +} + +.form-horizontal .control-group:before, +.form-horizontal .control-group:after { + display: table; + line-height: 0; + content: ""; +} + +.form-horizontal .control-group:after { + clear: both; +} + +.form-horizontal .control-label { + float: left; + width: 160px; + padding-top: 5px; + text-align: right; +} + +.form-horizontal .controls { + *display: inline-block; + *padding-left: 20px; + margin-left: 180px; + *margin-left: 0; +} + +.form-horizontal .controls:first-child { + *padding-left: 180px; +} + +.form-horizontal .help-block { + margin-bottom: 0; +} + +.form-horizontal input + .help-block, +.form-horizontal select + .help-block, +.form-horizontal textarea + .help-block, +.form-horizontal .uneditable-input + .help-block, +.form-horizontal .input-prepend + .help-block, +.form-horizontal .input-append + .help-block { + margin-top: 10px; +} + +.form-horizontal .form-actions { + padding-left: 180px; +} + +table { + max-width: 100%; + background-color: transparent; + border-collapse: collapse; + border-spacing: 0; +} + +.table { + width: 100%; + margin-bottom: 20px; +} + +.table th, +.table td { + padding: 8px; + line-height: 20px; + text-align: left; + vertical-align: top; + border-top: 1px solid #dddddd; +} + +.table th { + font-weight: bold; +} + +.table thead th { + vertical-align: bottom; +} + +.table caption + thead tr:first-child th, +.table caption + thead tr:first-child td, +.table colgroup + thead tr:first-child th, +.table colgroup + thead tr:first-child td, +.table thead:first-child tr:first-child th, +.table thead:first-child tr:first-child td { + border-top: 0; +} + +.table tbody + tbody { + border-top: 2px solid #dddddd; +} + +.table .table { + background-color: #ffffff; +} + +.table-condensed th, +.table-condensed td { + padding: 4px 5px; +} + +.table-bordered { + border: 1px solid #dddddd; + border-collapse: separate; + *border-collapse: collapse; + border-left: 0; + -webkit-border-radius: 4px; + -moz-border-radius: 4px; + border-radius: 4px; +} + +.table-bordered th, +.table-bordered td { + border-left: 1px solid #dddddd; +} + +.table-bordered caption + thead tr:first-child th, +.table-bordered caption + tbody tr:first-child th, +.table-bordered caption + tbody tr:first-child td, +.table-bordered colgroup + thead tr:first-child th, +.table-bordered colgroup + tbody tr:first-child th, +.table-bordered colgroup + tbody tr:first-child td, +.table-bordered thead:first-child tr:first-child th, +.table-bordered tbody:first-child tr:first-child th, +.table-bordered tbody:first-child tr:first-child td { + border-top: 0; +} + +.table-bordered thead:first-child tr:first-child > th:first-child, +.table-bordered tbody:first-child tr:first-child > td:first-child, +.table-bordered tbody:first-child tr:first-child > th:first-child { + -webkit-border-top-left-radius: 4px; + border-top-left-radius: 4px; + -moz-border-radius-topleft: 4px; +} + +.table-bordered thead:first-child tr:first-child > th:last-child, +.table-bordered tbody:first-child tr:first-child > td:last-child, +.table-bordered tbody:first-child tr:first-child > th:last-child { + -webkit-border-top-right-radius: 4px; + border-top-right-radius: 4px; + -moz-border-radius-topright: 4px; +} + +.table-bordered thead:last-child tr:last-child > th:first-child, +.table-bordered tbody:last-child tr:last-child > td:first-child, +.table-bordered tbody:last-child tr:last-child > th:first-child, +.table-bordered tfoot:last-child tr:last-child > td:first-child, +.table-bordered tfoot:last-child tr:last-child > th:first-child { + -webkit-border-bottom-left-radius: 4px; + border-bottom-left-radius: 4px; + -moz-border-radius-bottomleft: 4px; +} + +.table-bordered thead:last-child tr:last-child > th:last-child, +.table-bordered tbody:last-child tr:last-child > td:last-child, +.table-bordered tbody:last-child tr:last-child > th:last-child, +.table-bordered tfoot:last-child tr:last-child > td:last-child, +.table-bordered tfoot:last-child tr:last-child > th:last-child { + -webkit-border-bottom-right-radius: 4px; + border-bottom-right-radius: 4px; + -moz-border-radius-bottomright: 4px; +} + +.table-bordered tfoot + tbody:last-child tr:last-child td:first-child { + -webkit-border-bottom-left-radius: 0; + border-bottom-left-radius: 0; + -moz-border-radius-bottomleft: 0; +} + +.table-bordered tfoot + tbody:last-child tr:last-child td:last-child { + -webkit-border-bottom-right-radius: 0; + border-bottom-right-radius: 0; + -moz-border-radius-bottomright: 0; +} + +.table-bordered caption + thead tr:first-child th:first-child, +.table-bordered caption + tbody tr:first-child td:first-child, +.table-bordered colgroup + thead tr:first-child th:first-child, +.table-bordered colgroup + tbody tr:first-child td:first-child { + -webkit-border-top-left-radius: 4px; + border-top-left-radius: 4px; + -moz-border-radius-topleft: 4px; +} + +.table-bordered caption + thead tr:first-child th:last-child, +.table-bordered caption + tbody tr:first-child td:last-child, +.table-bordered colgroup + thead tr:first-child th:last-child, +.table-bordered colgroup + tbody tr:first-child td:last-child { + -webkit-border-top-right-radius: 4px; + border-top-right-radius: 4px; + -moz-border-radius-topright: 4px; +} + +.table-striped tbody > tr:nth-child(odd) > td, +.table-striped tbody > tr:nth-child(odd) > th { + background-color: #f9f9f9; +} + +.table-hover tbody tr:hover > td, +.table-hover tbody tr:hover > th { + background-color: #f5f5f5; +} + +table td[class*="span"], +table th[class*="span"], +.row-fluid table td[class*="span"], +.row-fluid table th[class*="span"] { + display: table-cell; + float: none; + margin-left: 0; +} + +.table td.span1, +.table th.span1 { + float: none; + width: 44px; + margin-left: 0; +} + +.table td.span2, +.table th.span2 { + float: none; + width: 124px; + margin-left: 0; +} + +.table td.span3, +.table th.span3 { + float: none; + width: 204px; + margin-left: 0; +} + +.table td.span4, +.table th.span4 { + float: none; + width: 284px; + margin-left: 0; +} + +.table td.span5, +.table th.span5 { + float: none; + width: 364px; + margin-left: 0; +} + +.table td.span6, +.table th.span6 { + float: none; + width: 444px; + margin-left: 0; +} + +.table td.span7, +.table th.span7 { + float: none; + width: 524px; + margin-left: 0; +} + +.table td.span8, +.table th.span8 { + float: none; + width: 604px; + margin-left: 0; +} + +.table td.span9, +.table th.span9 { + float: none; + width: 684px; + margin-left: 0; +} + +.table td.span10, +.table th.span10 { + float: none; + width: 764px; + margin-left: 0; +} + +.table td.span11, +.table th.span11 { + float: none; + width: 844px; + margin-left: 0; +} + +.table td.span12, +.table th.span12 { + float: none; + width: 924px; + margin-left: 0; +} + +.table tbody tr.success > td { + background-color: #dff0d8; +} + +.table tbody tr.error > td { + background-color: #f2dede; +} + +.table tbody tr.warning > td { + background-color: #fcf8e3; +} + +.table tbody tr.info > td { + background-color: #d9edf7; +} + +.table-hover tbody tr.success:hover > td { + background-color: #d0e9c6; +} + +.table-hover tbody tr.error:hover > td { + background-color: #ebcccc; +} + +.table-hover tbody tr.warning:hover > td { + background-color: #faf2cc; +} + +.table-hover tbody tr.info:hover > td { + background-color: #c4e3f3; +} + +[class^="icon-"], +[class*=" icon-"] { + display: inline-block; + width: 14px; + height: 14px; + margin-top: 1px; + *margin-right: .3em; + line-height: 14px; + vertical-align: text-top; + background-image: url("../img/glyphicons-halflings.png"); + background-position: 14px 14px; + background-repeat: no-repeat; +} + +/* White icons with optional class, or on hover/focus/active states of certain elements */ + +.icon-white, +.nav-pills > .active > a > [class^="icon-"], +.nav-pills > .active > a > [class*=" icon-"], +.nav-list > .active > a > [class^="icon-"], +.nav-list > .active > a > [class*=" icon-"], +.navbar-inverse .nav > .active > a > [class^="icon-"], +.navbar-inverse .nav > .active > a > [class*=" icon-"], +.dropdown-menu > li > a:hover > [class^="icon-"], +.dropdown-menu > li > a:focus > [class^="icon-"], +.dropdown-menu > li > a:hover > [class*=" icon-"], +.dropdown-menu > li > a:focus > [class*=" icon-"], +.dropdown-menu > .active > a > [class^="icon-"], +.dropdown-menu > .active > a > [class*=" icon-"], +.dropdown-submenu:hover > a > [class^="icon-"], +.dropdown-submenu:focus > a > [class^="icon-"], +.dropdown-submenu:hover > a > [class*=" icon-"], +.dropdown-submenu:focus > a > [class*=" icon-"] { + background-image: url("../img/glyphicons-halflings-white.png"); +} + +.icon-glass { + background-position: 0 0; +} + +.icon-music { + background-position: -24px 0; +} + +.icon-search { + background-position: -48px 0; +} + +.icon-envelope { + background-position: -72px 0; +} + +.icon-heart { + background-position: -96px 0; +} + +.icon-star { + background-position: -120px 0; +} + +.icon-star-empty { + background-position: -144px 0; +} + +.icon-user { + background-position: -168px 0; +} + +.icon-film { + background-position: -192px 0; +} + +.icon-th-large { + background-position: -216px 0; +} + +.icon-th { + background-position: -240px 0; +} + +.icon-th-list { + background-position: -264px 0; +} + +.icon-ok { + background-position: -288px 0; +} + +.icon-remove { + background-position: -312px 0; +} + +.icon-zoom-in { + background-position: -336px 0; +} + +.icon-zoom-out { + background-position: -360px 0; +} + +.icon-off { + background-position: -384px 0; +} + +.icon-signal { + background-position: -408px 0; +} + +.icon-cog { + background-position: -432px 0; +} + +.icon-trash { + background-position: -456px 0; +} + +.icon-home { + background-position: 0 -24px; +} + +.icon-file { + background-position: -24px -24px; +} + +.icon-time { + background-position: -48px -24px; +} + +.icon-road { + background-position: -72px -24px; +} + +.icon-download-alt { + background-position: -96px -24px; +} + +.icon-download { + background-position: -120px -24px; +} + +.icon-upload { + background-position: -144px -24px; +} + +.icon-inbox { + background-position: -168px -24px; +} + +.icon-play-circle { + background-position: -192px -24px; +} + +.icon-repeat { + background-position: -216px -24px; +} + +.icon-refresh { + background-position: -240px -24px; +} + +.icon-list-alt { + background-position: -264px -24px; +} + +.icon-lock { + background-position: -287px -24px; +} + +.icon-flag { + background-position: -312px -24px; +} + +.icon-headphones { + background-position: -336px -24px; +} + +.icon-volume-off { + background-position: -360px -24px; +} + +.icon-volume-down { + background-position: -384px -24px; +} + +.icon-volume-up { + background-position: -408px -24px; +} + +.icon-qrcode { + background-position: -432px -24px; +} + +.icon-barcode { + background-position: -456px -24px; +} + +.icon-tag { + background-position: 0 -48px; +} + +.icon-tags { + background-position: -25px -48px; +} + +.icon-book { + background-position: -48px -48px; +} + +.icon-bookmark { + background-position: -72px -48px; +} + +.icon-print { + background-position: -96px -48px; +} + +.icon-camera { + background-position: -120px -48px; +} + +.icon-font { + background-position: -144px -48px; +} + +.icon-bold { + background-position: -167px -48px; +} + +.icon-italic { + background-position: -192px -48px; +} + +.icon-text-height { + background-position: -216px -48px; +} + +.icon-text-width { + background-position: -240px -48px; +} + +.icon-align-left { + background-position: -264px -48px; +} + +.icon-align-center { + background-position: -288px -48px; +} + +.icon-align-right { + background-position: -312px -48px; +} + +.icon-align-justify { + background-position: -336px -48px; +} + +.icon-list { + background-position: -360px -48px; +} + +.icon-indent-left { + background-position: -384px -48px; +} + +.icon-indent-right { + background-position: -408px -48px; +} + +.icon-facetime-video { + background-position: -432px -48px; +} + +.icon-picture { + background-position: -456px -48px; +} + +.icon-pencil { + background-position: 0 -72px; +} + +.icon-map-marker { + background-position: -24px -72px; +} + +.icon-adjust { + background-position: -48px -72px; +} + +.icon-tint { + background-position: -72px -72px; +} + +.icon-edit { + background-position: -96px -72px; +} + +.icon-share { + background-position: -120px -72px; +} + +.icon-check { + background-position: -144px -72px; +} + +.icon-move { + background-position: -168px -72px; +} + +.icon-step-backward { + background-position: -192px -72px; +} + +.icon-fast-backward { + background-position: -216px -72px; +} + +.icon-backward { + background-position: -240px -72px; +} + +.icon-play { + background-position: -264px -72px; +} + +.icon-pause { + background-position: -288px -72px; +} + +.icon-stop { + background-position: -312px -72px; +} + +.icon-forward { + background-position: -336px -72px; +} + +.icon-fast-forward { + background-position: -360px -72px; +} + +.icon-step-forward { + background-position: -384px -72px; +} + +.icon-eject { + background-position: -408px -72px; +} + +.icon-chevron-left { + background-position: -432px -72px; +} + +.icon-chevron-right { + background-position: -456px -72px; +} + +.icon-plus-sign { + background-position: 0 -96px; +} + +.icon-minus-sign { + background-position: -24px -96px; +} + +.icon-remove-sign { + background-position: -48px -96px; +} + +.icon-ok-sign { + background-position: -72px -96px; +} + +.icon-question-sign { + background-position: -96px -96px; +} + +.icon-info-sign { + background-position: -120px -96px; +} + +.icon-screenshot { + background-position: -144px -96px; +} + +.icon-remove-circle { + background-position: -168px -96px; +} + +.icon-ok-circle { + background-position: -192px -96px; +} + +.icon-ban-circle { + background-position: -216px -96px; +} + +.icon-arrow-left { + background-position: -240px -96px; +} + +.icon-arrow-right { + background-position: -264px -96px; +} + +.icon-arrow-up { + background-position: -289px -96px; +} + +.icon-arrow-down { + background-position: -312px -96px; +} + +.icon-share-alt { + background-position: -336px -96px; +} + +.icon-resize-full { + background-position: -360px -96px; +} + +.icon-resize-small { + background-position: -384px -96px; +} + +.icon-plus { + background-position: -408px -96px; +} + +.icon-minus { + background-position: -433px -96px; +} + +.icon-asterisk { + background-position: -456px -96px; +} + +.icon-exclamation-sign { + background-position: 0 -120px; +} + +.icon-gift { + background-position: -24px -120px; +} + +.icon-leaf { + background-position: -48px -120px; +} + +.icon-fire { + background-position: -72px -120px; +} + +.icon-eye-open { + background-position: -96px -120px; +} + +.icon-eye-close { + background-position: -120px -120px; +} + +.icon-warning-sign { + background-position: -144px -120px; +} + +.icon-plane { + background-position: -168px -120px; +} + +.icon-calendar { + background-position: -192px -120px; +} + +.icon-random { + width: 16px; + background-position: -216px -120px; +} + +.icon-comment { + background-position: -240px -120px; +} + +.icon-magnet { + background-position: -264px -120px; +} + +.icon-chevron-up { + background-position: -288px -120px; +} + +.icon-chevron-down { + background-position: -313px -119px; +} + +.icon-retweet { + background-position: -336px -120px; +} + +.icon-shopping-cart { + background-position: -360px -120px; +} + +.icon-folder-close { + width: 16px; + background-position: -384px -120px; +} + +.icon-folder-open { + width: 16px; + background-position: -408px -120px; +} + +.icon-resize-vertical { + background-position: -432px -119px; +} + +.icon-resize-horizontal { + background-position: -456px -118px; +} + +.icon-hdd { + background-position: 0 -144px; +} + +.icon-bullhorn { + background-position: -24px -144px; +} + +.icon-bell { + background-position: -48px -144px; +} + +.icon-certificate { + background-position: -72px -144px; +} + +.icon-thumbs-up { + background-position: -96px -144px; +} + +.icon-thumbs-down { + background-position: -120px -144px; +} + +.icon-hand-right { + background-position: -144px -144px; +} + +.icon-hand-left { + background-position: -168px -144px; +} + +.icon-hand-up { + background-position: -192px -144px; +} + +.icon-hand-down { + background-position: -216px -144px; +} + +.icon-circle-arrow-right { + background-position: -240px -144px; +} + +.icon-circle-arrow-left { + background-position: -264px -144px; +} + +.icon-circle-arrow-up { + background-position: -288px -144px; +} + +.icon-circle-arrow-down { + background-position: -312px -144px; +} + +.icon-globe { + background-position: -336px -144px; +} + +.icon-wrench { + background-position: -360px -144px; +} + +.icon-tasks { + background-position: -384px -144px; +} + +.icon-filter { + background-position: -408px -144px; +} + +.icon-briefcase { + background-position: -432px -144px; +} + +.icon-fullscreen { + background-position: -456px -144px; +} + +.dropup, +.dropdown { + position: relative; +} + +.dropdown-toggle { + *margin-bottom: -3px; +} + +.dropdown-toggle:active, +.open .dropdown-toggle { + outline: 0; +} + +.caret { + display: inline-block; + width: 0; + height: 0; + vertical-align: top; + border-top: 4px solid #000000; + border-right: 4px solid transparent; + border-left: 4px solid transparent; + content: ""; +} + +.dropdown .caret { + margin-top: 8px; + margin-left: 2px; +} + +.dropdown-menu { + position: absolute; + top: 100%; + left: 0; + z-index: 1000; + display: none; + float: left; + min-width: 160px; + padding: 5px 0; + margin: 2px 0 0; + list-style: none; + background-color: #ffffff; + border: 1px solid #ccc; + border: 1px solid rgba(0, 0, 0, 0.2); + *border-right-width: 2px; + *border-bottom-width: 2px; + -webkit-border-radius: 6px; + -moz-border-radius: 6px; + border-radius: 6px; + -webkit-box-shadow: 0 5px 10px rgba(0, 0, 0, 0.2); + -moz-box-shadow: 0 5px 10px rgba(0, 0, 0, 0.2); + box-shadow: 0 5px 10px rgba(0, 0, 0, 0.2); + -webkit-background-clip: padding-box; + -moz-background-clip: padding; + background-clip: padding-box; +} + +.dropdown-menu.pull-right { + right: 0; + left: auto; +} + +.dropdown-menu .divider { + *width: 100%; + height: 1px; + margin: 9px 1px; + *margin: -5px 0 5px; + overflow: hidden; + background-color: #e5e5e5; + border-bottom: 1px solid #ffffff; +} + +.dropdown-menu > li > a { + display: block; + padding: 3px 20px; + clear: both; + font-weight: normal; + line-height: 20px; + color: #333333; + white-space: nowrap; +} + +.dropdown-menu > li > a:hover, +.dropdown-menu > li > a:focus, +.dropdown-submenu:hover > a, +.dropdown-submenu:focus > a { + color: #ffffff; + text-decoration: none; + background-color: #0081c2; + background-image: -moz-linear-gradient(top, #0088cc, #0077b3); + background-image: -webkit-gradient(linear, 0 0, 0 100%, from(#0088cc), to(#0077b3)); + background-image: -webkit-linear-gradient(top, #0088cc, #0077b3); + background-image: -o-linear-gradient(top, #0088cc, #0077b3); + background-image: linear-gradient(to bottom, #0088cc, #0077b3); + background-repeat: repeat-x; + filter: progid:DXImageTransform.Microsoft.gradient(startColorstr='#ff0088cc', endColorstr='#ff0077b3', GradientType=0); +} + +.dropdown-menu > .active > a, +.dropdown-menu > .active > a:hover, +.dropdown-menu > .active > a:focus { + color: #ffffff; + text-decoration: none; + background-color: #0081c2; + background-image: -moz-linear-gradient(top, #0088cc, #0077b3); + background-image: -webkit-gradient(linear, 0 0, 0 100%, from(#0088cc), to(#0077b3)); + background-image: -webkit-linear-gradient(top, #0088cc, #0077b3); + background-image: -o-linear-gradient(top, #0088cc, #0077b3); + background-image: linear-gradient(to bottom, #0088cc, #0077b3); + background-repeat: repeat-x; + outline: 0; + filter: progid:DXImageTransform.Microsoft.gradient(startColorstr='#ff0088cc', endColorstr='#ff0077b3', GradientType=0); +} + +.dropdown-menu > .disabled > a, +.dropdown-menu > .disabled > a:hover, +.dropdown-menu > .disabled > a:focus { + color: #999999; +} + +.dropdown-menu > .disabled > a:hover, +.dropdown-menu > .disabled > a:focus { + text-decoration: none; + cursor: default; + background-color: transparent; + background-image: none; + filter: progid:DXImageTransform.Microsoft.gradient(enabled=false); +} + +.open { + *z-index: 1000; +} + +.open > .dropdown-menu { + display: block; +} + +.dropdown-backdrop { + position: fixed; + top: 0; + right: 0; + bottom: 0; + left: 0; + z-index: 990; +} + +.pull-right > .dropdown-menu { + right: 0; + left: auto; +} + +.dropup .caret, +.navbar-fixed-bottom .dropdown .caret { + border-top: 0; + border-bottom: 4px solid #000000; + content: ""; +} + +.dropup .dropdown-menu, +.navbar-fixed-bottom .dropdown .dropdown-menu { + top: auto; + bottom: 100%; + margin-bottom: 1px; +} + +.dropdown-submenu { + position: relative; +} + +.dropdown-submenu > .dropdown-menu { + top: 0; + left: 100%; + margin-top: -6px; + margin-left: -1px; + -webkit-border-radius: 0 6px 6px 6px; + -moz-border-radius: 0 6px 6px 6px; + border-radius: 0 6px 6px 6px; +} + +.dropdown-submenu:hover > .dropdown-menu { + display: block; +} + +.dropup .dropdown-submenu > .dropdown-menu { + top: auto; + bottom: 0; + margin-top: 0; + margin-bottom: -2px; + -webkit-border-radius: 5px 5px 5px 0; + -moz-border-radius: 5px 5px 5px 0; + border-radius: 5px 5px 5px 0; +} + +.dropdown-submenu > a:after { + display: block; + float: right; + width: 0; + height: 0; + margin-top: 5px; + margin-right: -10px; + border-color: transparent; + border-left-color: #cccccc; + border-style: solid; + border-width: 5px 0 5px 5px; + content: " "; +} + +.dropdown-submenu:hover > a:after { + border-left-color: #ffffff; +} + +.dropdown-submenu.pull-left { + float: none; +} + +.dropdown-submenu.pull-left > .dropdown-menu { + left: -100%; + margin-left: 10px; + -webkit-border-radius: 6px 0 6px 6px; + -moz-border-radius: 6px 0 6px 6px; + border-radius: 6px 0 6px 6px; +} + +.dropdown .dropdown-menu .nav-header { + padding-right: 20px; + padding-left: 20px; +} + +.typeahead { + z-index: 1051; + margin-top: 2px; + -webkit-border-radius: 4px; + -moz-border-radius: 4px; + border-radius: 4px; +} + +.well { + min-height: 20px; + padding: 19px; + margin-bottom: 20px; + background-color: #f5f5f5; + border: 1px solid #e3e3e3; + -webkit-border-radius: 4px; + -moz-border-radius: 4px; + border-radius: 4px; + -webkit-box-shadow: inset 0 1px 1px rgba(0, 0, 0, 0.05); + -moz-box-shadow: inset 0 1px 1px rgba(0, 0, 0, 0.05); + box-shadow: inset 0 1px 1px rgba(0, 0, 0, 0.05); +} + +.well blockquote { + border-color: #ddd; + border-color: rgba(0, 0, 0, 0.15); +} + +.well-large { + padding: 24px; + -webkit-border-radius: 6px; + -moz-border-radius: 6px; + border-radius: 6px; +} + +.well-small { + padding: 9px; + -webkit-border-radius: 3px; + -moz-border-radius: 3px; + border-radius: 3px; +} + +.fade { + opacity: 0; + -webkit-transition: opacity 0.15s linear; + -moz-transition: opacity 0.15s linear; + -o-transition: opacity 0.15s linear; + transition: opacity 0.15s linear; +} + +.fade.in { + opacity: 1; +} + +.collapse { + position: relative; + height: 0; + overflow: hidden; + -webkit-transition: height 0.35s ease; + -moz-transition: height 0.35s ease; + -o-transition: height 0.35s ease; + transition: height 0.35s ease; +} + +.collapse.in { + height: auto; +} + +.close { + float: right; + font-size: 20px; + font-weight: bold; + line-height: 20px; + color: #000000; + text-shadow: 0 1px 0 #ffffff; + opacity: 0.2; + filter: alpha(opacity=20); +} + +.close:hover, +.close:focus { + color: #000000; + text-decoration: none; + cursor: pointer; + opacity: 0.4; + filter: alpha(opacity=40); +} + +button.close { + padding: 0; + cursor: pointer; + background: transparent; + border: 0; + -webkit-appearance: none; +} + +.btn { + display: inline-block; + *display: inline; + padding: 4px 12px; + margin-bottom: 0; + *margin-left: .3em; + font-size: 14px; + line-height: 20px; + color: #333333; + text-align: center; + text-shadow: 0 1px 1px rgba(255, 255, 255, 0.75); + vertical-align: middle; + cursor: pointer; + background-color: #f5f5f5; + *background-color: #e6e6e6; + background-image: -moz-linear-gradient(top, #ffffff, #e6e6e6); + background-image: -webkit-gradient(linear, 0 0, 0 100%, from(#ffffff), to(#e6e6e6)); + background-image: -webkit-linear-gradient(top, #ffffff, #e6e6e6); + background-image: -o-linear-gradient(top, #ffffff, #e6e6e6); + background-image: linear-gradient(to bottom, #ffffff, #e6e6e6); + background-repeat: repeat-x; + border: 1px solid #cccccc; + *border: 0; + border-color: #e6e6e6 #e6e6e6 #bfbfbf; + border-color: rgba(0, 0, 0, 0.1) rgba(0, 0, 0, 0.1) rgba(0, 0, 0, 0.25); + border-bottom-color: #b3b3b3; + -webkit-border-radius: 4px; + -moz-border-radius: 4px; + border-radius: 4px; + filter: progid:DXImageTransform.Microsoft.gradient(startColorstr='#ffffffff', endColorstr='#ffe6e6e6', GradientType=0); + filter: progid:DXImageTransform.Microsoft.gradient(enabled=false); + *zoom: 1; + -webkit-box-shadow: inset 0 1px 0 rgba(255, 255, 255, 0.2), 0 1px 2px rgba(0, 0, 0, 0.05); + -moz-box-shadow: inset 0 1px 0 rgba(255, 255, 255, 0.2), 0 1px 2px rgba(0, 0, 0, 0.05); + box-shadow: inset 0 1px 0 rgba(255, 255, 255, 0.2), 0 1px 2px rgba(0, 0, 0, 0.05); +} + +.btn:hover, +.btn:focus, +.btn:active, +.btn.active, +.btn.disabled, +.btn[disabled] { + color: #333333; + background-color: #e6e6e6; + *background-color: #d9d9d9; +} + +.btn:active, +.btn.active { + background-color: #cccccc \9; +} + +.btn:first-child { + *margin-left: 0; +} + +.btn:hover, +.btn:focus { + color: #333333; + text-decoration: none; + background-position: 0 -15px; + -webkit-transition: background-position 0.1s linear; + -moz-transition: background-position 0.1s linear; + -o-transition: background-position 0.1s linear; + transition: background-position 0.1s linear; +} + +.btn:focus { + outline: thin dotted #333; + outline: 5px auto -webkit-focus-ring-color; + outline-offset: -2px; +} + +.btn.active, +.btn:active { + background-image: none; + outline: 0; + -webkit-box-shadow: inset 0 2px 4px rgba(0, 0, 0, 0.15), 0 1px 2px rgba(0, 0, 0, 0.05); + -moz-box-shadow: inset 0 2px 4px rgba(0, 0, 0, 0.15), 0 1px 2px rgba(0, 0, 0, 0.05); + box-shadow: inset 0 2px 4px rgba(0, 0, 0, 0.15), 0 1px 2px rgba(0, 0, 0, 0.05); +} + +.btn.disabled, +.btn[disabled] { + cursor: default; + background-image: none; + opacity: 0.65; + filter: alpha(opacity=65); + -webkit-box-shadow: none; + -moz-box-shadow: none; + box-shadow: none; +} + +.btn-large { + padding: 11px 19px; + font-size: 17.5px; + -webkit-border-radius: 6px; + -moz-border-radius: 6px; + border-radius: 6px; +} + +.btn-large [class^="icon-"], +.btn-large [class*=" icon-"] { + margin-top: 4px; +} + +.btn-small { + padding: 2px 10px; + font-size: 11.9px; + -webkit-border-radius: 3px; + -moz-border-radius: 3px; + border-radius: 3px; +} + +.btn-small [class^="icon-"], +.btn-small [class*=" icon-"] { + margin-top: 0; +} + +.btn-mini [class^="icon-"], +.btn-mini [class*=" icon-"] { + margin-top: -1px; +} + +.btn-mini { + padding: 0 6px; + font-size: 10.5px; + -webkit-border-radius: 3px; + -moz-border-radius: 3px; + border-radius: 3px; +} + +.btn-block { + display: block; + width: 100%; + padding-right: 0; + padding-left: 0; + -webkit-box-sizing: border-box; + -moz-box-sizing: border-box; + box-sizing: border-box; +} + +.btn-block + .btn-block { + margin-top: 5px; +} + +input[type="submit"].btn-block, +input[type="reset"].btn-block, +input[type="button"].btn-block { + width: 100%; +} + +.btn-primary.active, +.btn-warning.active, +.btn-danger.active, +.btn-success.active, +.btn-info.active, +.btn-inverse.active { + color: rgba(255, 255, 255, 0.75); +} + +.btn-primary { + color: #ffffff; + text-shadow: 0 -1px 0 rgba(0, 0, 0, 0.25); + background-color: #006dcc; + *background-color: #0044cc; + background-image: -moz-linear-gradient(top, #0088cc, #0044cc); + background-image: -webkit-gradient(linear, 0 0, 0 100%, from(#0088cc), to(#0044cc)); + background-image: -webkit-linear-gradient(top, #0088cc, #0044cc); + background-image: -o-linear-gradient(top, #0088cc, #0044cc); + background-image: linear-gradient(to bottom, #0088cc, #0044cc); + background-repeat: repeat-x; + border-color: #0044cc #0044cc #002a80; + border-color: rgba(0, 0, 0, 0.1) rgba(0, 0, 0, 0.1) rgba(0, 0, 0, 0.25); + filter: progid:DXImageTransform.Microsoft.gradient(startColorstr='#ff0088cc', endColorstr='#ff0044cc', GradientType=0); + filter: progid:DXImageTransform.Microsoft.gradient(enabled=false); +} + +.btn-primary:hover, +.btn-primary:focus, +.btn-primary:active, +.btn-primary.active, +.btn-primary.disabled, +.btn-primary[disabled] { + color: #ffffff; + background-color: #0044cc; + *background-color: #003bb3; +} + +.btn-primary:active, +.btn-primary.active { + background-color: #003399 \9; +} + +.btn-warning { + color: #ffffff; + text-shadow: 0 -1px 0 rgba(0, 0, 0, 0.25); + background-color: #faa732; + *background-color: #f89406; + background-image: -moz-linear-gradient(top, #fbb450, #f89406); + background-image: -webkit-gradient(linear, 0 0, 0 100%, from(#fbb450), to(#f89406)); + background-image: -webkit-linear-gradient(top, #fbb450, #f89406); + background-image: -o-linear-gradient(top, #fbb450, #f89406); + background-image: linear-gradient(to bottom, #fbb450, #f89406); + background-repeat: repeat-x; + border-color: #f89406 #f89406 #ad6704; + border-color: rgba(0, 0, 0, 0.1) rgba(0, 0, 0, 0.1) rgba(0, 0, 0, 0.25); + filter: progid:DXImageTransform.Microsoft.gradient(startColorstr='#fffbb450', endColorstr='#fff89406', GradientType=0); + filter: progid:DXImageTransform.Microsoft.gradient(enabled=false); +} + +.btn-warning:hover, +.btn-warning:focus, +.btn-warning:active, +.btn-warning.active, +.btn-warning.disabled, +.btn-warning[disabled] { + color: #ffffff; + background-color: #f89406; + *background-color: #df8505; +} + +.btn-warning:active, +.btn-warning.active { + background-color: #c67605 \9; +} + +.btn-danger { + color: #ffffff; + text-shadow: 0 -1px 0 rgba(0, 0, 0, 0.25); + background-color: #da4f49; + *background-color: #bd362f; + background-image: -moz-linear-gradient(top, #ee5f5b, #bd362f); + background-image: -webkit-gradient(linear, 0 0, 0 100%, from(#ee5f5b), to(#bd362f)); + background-image: -webkit-linear-gradient(top, #ee5f5b, #bd362f); + background-image: -o-linear-gradient(top, #ee5f5b, #bd362f); + background-image: linear-gradient(to bottom, #ee5f5b, #bd362f); + background-repeat: repeat-x; + border-color: #bd362f #bd362f #802420; + border-color: rgba(0, 0, 0, 0.1) rgba(0, 0, 0, 0.1) rgba(0, 0, 0, 0.25); + filter: progid:DXImageTransform.Microsoft.gradient(startColorstr='#ffee5f5b', endColorstr='#ffbd362f', GradientType=0); + filter: progid:DXImageTransform.Microsoft.gradient(enabled=false); +} + +.btn-danger:hover, +.btn-danger:focus, +.btn-danger:active, +.btn-danger.active, +.btn-danger.disabled, +.btn-danger[disabled] { + color: #ffffff; + background-color: #bd362f; + *background-color: #a9302a; +} + +.btn-danger:active, +.btn-danger.active { + background-color: #942a25 \9; +} + +.btn-success { + color: #ffffff; + text-shadow: 0 -1px 0 rgba(0, 0, 0, 0.25); + background-color: #5bb75b; + *background-color: #51a351; + background-image: -moz-linear-gradient(top, #62c462, #51a351); + background-image: -webkit-gradient(linear, 0 0, 0 100%, from(#62c462), to(#51a351)); + background-image: -webkit-linear-gradient(top, #62c462, #51a351); + background-image: -o-linear-gradient(top, #62c462, #51a351); + background-image: linear-gradient(to bottom, #62c462, #51a351); + background-repeat: repeat-x; + border-color: #51a351 #51a351 #387038; + border-color: rgba(0, 0, 0, 0.1) rgba(0, 0, 0, 0.1) rgba(0, 0, 0, 0.25); + filter: progid:DXImageTransform.Microsoft.gradient(startColorstr='#ff62c462', endColorstr='#ff51a351', GradientType=0); + filter: progid:DXImageTransform.Microsoft.gradient(enabled=false); +} + +.btn-success:hover, +.btn-success:focus, +.btn-success:active, +.btn-success.active, +.btn-success.disabled, +.btn-success[disabled] { + color: #ffffff; + background-color: #51a351; + *background-color: #499249; +} + +.btn-success:active, +.btn-success.active { + background-color: #408140 \9; +} + +.btn-info { + color: #ffffff; + text-shadow: 0 -1px 0 rgba(0, 0, 0, 0.25); + background-color: #49afcd; + *background-color: #2f96b4; + background-image: -moz-linear-gradient(top, #5bc0de, #2f96b4); + background-image: -webkit-gradient(linear, 0 0, 0 100%, from(#5bc0de), to(#2f96b4)); + background-image: -webkit-linear-gradient(top, #5bc0de, #2f96b4); + background-image: -o-linear-gradient(top, #5bc0de, #2f96b4); + background-image: linear-gradient(to bottom, #5bc0de, #2f96b4); + background-repeat: repeat-x; + border-color: #2f96b4 #2f96b4 #1f6377; + border-color: rgba(0, 0, 0, 0.1) rgba(0, 0, 0, 0.1) rgba(0, 0, 0, 0.25); + filter: progid:DXImageTransform.Microsoft.gradient(startColorstr='#ff5bc0de', endColorstr='#ff2f96b4', GradientType=0); + filter: progid:DXImageTransform.Microsoft.gradient(enabled=false); +} + +.btn-info:hover, +.btn-info:focus, +.btn-info:active, +.btn-info.active, +.btn-info.disabled, +.btn-info[disabled] { + color: #ffffff; + background-color: #2f96b4; + *background-color: #2a85a0; +} + +.btn-info:active, +.btn-info.active { + background-color: #24748c \9; +} + +.btn-inverse { + color: #ffffff; + text-shadow: 0 -1px 0 rgba(0, 0, 0, 0.25); + background-color: #363636; + *background-color: #222222; + background-image: -moz-linear-gradient(top, #444444, #222222); + background-image: -webkit-gradient(linear, 0 0, 0 100%, from(#444444), to(#222222)); + background-image: -webkit-linear-gradient(top, #444444, #222222); + background-image: -o-linear-gradient(top, #444444, #222222); + background-image: linear-gradient(to bottom, #444444, #222222); + background-repeat: repeat-x; + border-color: #222222 #222222 #000000; + border-color: rgba(0, 0, 0, 0.1) rgba(0, 0, 0, 0.1) rgba(0, 0, 0, 0.25); + filter: progid:DXImageTransform.Microsoft.gradient(startColorstr='#ff444444', endColorstr='#ff222222', GradientType=0); + filter: progid:DXImageTransform.Microsoft.gradient(enabled=false); +} + +.btn-inverse:hover, +.btn-inverse:focus, +.btn-inverse:active, +.btn-inverse.active, +.btn-inverse.disabled, +.btn-inverse[disabled] { + color: #ffffff; + background-color: #222222; + *background-color: #151515; +} + +.btn-inverse:active, +.btn-inverse.active { + background-color: #080808 \9; +} + +button.btn, +input[type="submit"].btn { + *padding-top: 3px; + *padding-bottom: 3px; +} + +button.btn::-moz-focus-inner, +input[type="submit"].btn::-moz-focus-inner { + padding: 0; + border: 0; +} + +button.btn.btn-large, +input[type="submit"].btn.btn-large { + *padding-top: 7px; + *padding-bottom: 7px; +} + +button.btn.btn-small, +input[type="submit"].btn.btn-small { + *padding-top: 3px; + *padding-bottom: 3px; +} + +button.btn.btn-mini, +input[type="submit"].btn.btn-mini { + *padding-top: 1px; + *padding-bottom: 1px; +} + +.btn-link, +.btn-link:active, +.btn-link[disabled] { + background-color: transparent; + background-image: none; + -webkit-box-shadow: none; + -moz-box-shadow: none; + box-shadow: none; +} + +.btn-link { + color: #0088cc; + cursor: pointer; + border-color: transparent; + -webkit-border-radius: 0; + -moz-border-radius: 0; + border-radius: 0; +} + +.btn-link:hover, +.btn-link:focus { + color: #005580; + text-decoration: underline; + background-color: transparent; +} + +.btn-link[disabled]:hover, +.btn-link[disabled]:focus { + color: #333333; + text-decoration: none; +} + +.btn-group { + position: relative; + display: inline-block; + *display: inline; + *margin-left: .3em; + font-size: 0; + white-space: nowrap; + vertical-align: middle; + *zoom: 1; +} + +.btn-group:first-child { + *margin-left: 0; +} + +.btn-group + .btn-group { + margin-left: 5px; +} + +.btn-toolbar { + margin-top: 10px; + margin-bottom: 10px; + font-size: 0; +} + +.btn-toolbar > .btn + .btn, +.btn-toolbar > .btn-group + .btn, +.btn-toolbar > .btn + .btn-group { + margin-left: 5px; +} + +.btn-group > .btn { + position: relative; + -webkit-border-radius: 0; + -moz-border-radius: 0; + border-radius: 0; +} + +.btn-group > .btn + .btn { + margin-left: -1px; +} + +.btn-group > .btn, +.btn-group > .dropdown-menu, +.btn-group > .popover { + font-size: 14px; +} + +.btn-group > .btn-mini { + font-size: 10.5px; +} + +.btn-group > .btn-small { + font-size: 11.9px; +} + +.btn-group > .btn-large { + font-size: 17.5px; +} + +.btn-group > .btn:first-child { + margin-left: 0; + -webkit-border-bottom-left-radius: 4px; + border-bottom-left-radius: 4px; + -webkit-border-top-left-radius: 4px; + border-top-left-radius: 4px; + -moz-border-radius-bottomleft: 4px; + -moz-border-radius-topleft: 4px; +} + +.btn-group > .btn:last-child, +.btn-group > .dropdown-toggle { + -webkit-border-top-right-radius: 4px; + border-top-right-radius: 4px; + -webkit-border-bottom-right-radius: 4px; + border-bottom-right-radius: 4px; + -moz-border-radius-topright: 4px; + -moz-border-radius-bottomright: 4px; +} + +.btn-group > .btn.large:first-child { + margin-left: 0; + -webkit-border-bottom-left-radius: 6px; + border-bottom-left-radius: 6px; + -webkit-border-top-left-radius: 6px; + border-top-left-radius: 6px; + -moz-border-radius-bottomleft: 6px; + -moz-border-radius-topleft: 6px; +} + +.btn-group > .btn.large:last-child, +.btn-group > .large.dropdown-toggle { + -webkit-border-top-right-radius: 6px; + border-top-right-radius: 6px; + -webkit-border-bottom-right-radius: 6px; + border-bottom-right-radius: 6px; + -moz-border-radius-topright: 6px; + -moz-border-radius-bottomright: 6px; +} + +.btn-group > .btn:hover, +.btn-group > .btn:focus, +.btn-group > .btn:active, +.btn-group > .btn.active { + z-index: 2; +} + +.btn-group .dropdown-toggle:active, +.btn-group.open .dropdown-toggle { + outline: 0; +} + +.btn-group > .btn + .dropdown-toggle { + *padding-top: 5px; + padding-right: 8px; + *padding-bottom: 5px; + padding-left: 8px; + -webkit-box-shadow: inset 1px 0 0 rgba(255, 255, 255, 0.125), inset 0 1px 0 rgba(255, 255, 255, 0.2), 0 1px 2px rgba(0, 0, 0, 0.05); + -moz-box-shadow: inset 1px 0 0 rgba(255, 255, 255, 0.125), inset 0 1px 0 rgba(255, 255, 255, 0.2), 0 1px 2px rgba(0, 0, 0, 0.05); + box-shadow: inset 1px 0 0 rgba(255, 255, 255, 0.125), inset 0 1px 0 rgba(255, 255, 255, 0.2), 0 1px 2px rgba(0, 0, 0, 0.05); +} + +.btn-group > .btn-mini + .dropdown-toggle { + *padding-top: 2px; + padding-right: 5px; + *padding-bottom: 2px; + padding-left: 5px; +} + +.btn-group > .btn-small + .dropdown-toggle { + *padding-top: 5px; + *padding-bottom: 4px; +} + +.btn-group > .btn-large + .dropdown-toggle { + *padding-top: 7px; + padding-right: 12px; + *padding-bottom: 7px; + padding-left: 12px; +} + +.btn-group.open .dropdown-toggle { + background-image: none; + -webkit-box-shadow: inset 0 2px 4px rgba(0, 0, 0, 0.15), 0 1px 2px rgba(0, 0, 0, 0.05); + -moz-box-shadow: inset 0 2px 4px rgba(0, 0, 0, 0.15), 0 1px 2px rgba(0, 0, 0, 0.05); + box-shadow: inset 0 2px 4px rgba(0, 0, 0, 0.15), 0 1px 2px rgba(0, 0, 0, 0.05); +} + +.btn-group.open .btn.dropdown-toggle { + background-color: #e6e6e6; +} + +.btn-group.open .btn-primary.dropdown-toggle { + background-color: #0044cc; +} + +.btn-group.open .btn-warning.dropdown-toggle { + background-color: #f89406; +} + +.btn-group.open .btn-danger.dropdown-toggle { + background-color: #bd362f; +} + +.btn-group.open .btn-success.dropdown-toggle { + background-color: #51a351; +} + +.btn-group.open .btn-info.dropdown-toggle { + background-color: #2f96b4; +} + +.btn-group.open .btn-inverse.dropdown-toggle { + background-color: #222222; +} + +.btn .caret { + margin-top: 8px; + margin-left: 0; +} + +.btn-large .caret { + margin-top: 6px; +} + +.btn-large .caret { + border-top-width: 5px; + border-right-width: 5px; + border-left-width: 5px; +} + +.btn-mini .caret, +.btn-small .caret { + margin-top: 8px; +} + +.dropup .btn-large .caret { + border-bottom-width: 5px; +} + +.btn-primary .caret, +.btn-warning .caret, +.btn-danger .caret, +.btn-info .caret, +.btn-success .caret, +.btn-inverse .caret { + border-top-color: #ffffff; + border-bottom-color: #ffffff; +} + +.btn-group-vertical { + display: inline-block; + *display: inline; + /* IE7 inline-block hack */ + + *zoom: 1; +} + +.btn-group-vertical > .btn { + display: block; + float: none; + max-width: 100%; + -webkit-border-radius: 0; + -moz-border-radius: 0; + border-radius: 0; +} + +.btn-group-vertical > .btn + .btn { + margin-top: -1px; + margin-left: 0; +} + +.btn-group-vertical > .btn:first-child { + -webkit-border-radius: 4px 4px 0 0; + -moz-border-radius: 4px 4px 0 0; + border-radius: 4px 4px 0 0; +} + +.btn-group-vertical > .btn:last-child { + -webkit-border-radius: 0 0 4px 4px; + -moz-border-radius: 0 0 4px 4px; + border-radius: 0 0 4px 4px; +} + +.btn-group-vertical > .btn-large:first-child { + -webkit-border-radius: 6px 6px 0 0; + -moz-border-radius: 6px 6px 0 0; + border-radius: 6px 6px 0 0; +} + +.btn-group-vertical > .btn-large:last-child { + -webkit-border-radius: 0 0 6px 6px; + -moz-border-radius: 0 0 6px 6px; + border-radius: 0 0 6px 6px; +} + +.alert { + padding: 8px 35px 8px 14px; + margin-bottom: 20px; + text-shadow: 0 1px 0 rgba(255, 255, 255, 0.5); + background-color: #fcf8e3; + border: 1px solid #fbeed5; + -webkit-border-radius: 4px; + -moz-border-radius: 4px; + border-radius: 4px; +} + +.alert, +.alert h4 { + color: #c09853; +} + +.alert h4 { + margin: 0; +} + +.alert .close { + position: relative; + top: -2px; + right: -21px; + line-height: 20px; +} + +.alert-success { + color: #468847; + background-color: #dff0d8; + border-color: #d6e9c6; +} + +.alert-success h4 { + color: #468847; +} + +.alert-danger, +.alert-error { + color: #b94a48; + background-color: #f2dede; + border-color: #eed3d7; +} + +.alert-danger h4, +.alert-error h4 { + color: #b94a48; +} + +.alert-info { + color: #3a87ad; + background-color: #d9edf7; + border-color: #bce8f1; +} + +.alert-info h4 { + color: #3a87ad; +} + +.alert-block { + padding-top: 14px; + padding-bottom: 14px; +} + +.alert-block > p, +.alert-block > ul { + margin-bottom: 0; +} + +.alert-block p + p { + margin-top: 5px; +} + +.nav { + margin-bottom: 20px; + margin-left: 0; + list-style: none; +} + +.nav > li > a { + display: block; +} + +.nav > li > a:hover, +.nav > li > a:focus { + text-decoration: none; + background-color: #eeeeee; +} + +.nav > li > a > img { + max-width: none; +} + +.nav > .pull-right { + float: right; +} + +.nav-header { + display: block; + padding: 3px 15px; + font-size: 11px; + font-weight: bold; + line-height: 20px; + color: #999999; + text-shadow: 0 1px 0 rgba(255, 255, 255, 0.5); + text-transform: uppercase; +} + +.nav li + .nav-header { + margin-top: 9px; +} + +.nav-list { + padding-right: 15px; + padding-left: 15px; + margin-bottom: 0; +} + +.nav-list > li > a, +.nav-list .nav-header { + margin-right: -15px; + margin-left: -15px; + text-shadow: 0 1px 0 rgba(255, 255, 255, 0.5); +} + +.nav-list > li > a { + padding: 3px 15px; +} + +.nav-list > .active > a, +.nav-list > .active > a:hover, +.nav-list > .active > a:focus { + color: #ffffff; + text-shadow: 0 -1px 0 rgba(0, 0, 0, 0.2); + background-color: #0088cc; +} + +.nav-list [class^="icon-"], +.nav-list [class*=" icon-"] { + margin-right: 2px; +} + +.nav-list .divider { + *width: 100%; + height: 1px; + margin: 9px 1px; + *margin: -5px 0 5px; + overflow: hidden; + background-color: #e5e5e5; + border-bottom: 1px solid #ffffff; +} + +.nav-tabs, +.nav-pills { + *zoom: 1; +} + +.nav-tabs:before, +.nav-pills:before, +.nav-tabs:after, +.nav-pills:after { + display: table; + line-height: 0; + content: ""; +} + +.nav-tabs:after, +.nav-pills:after { + clear: both; +} + +.nav-tabs > li, +.nav-pills > li { + float: left; +} + +.nav-tabs > li > a, +.nav-pills > li > a { + padding-right: 12px; + padding-left: 12px; + margin-right: 2px; + line-height: 14px; +} + +.nav-tabs { + border-bottom: 1px solid #ddd; +} + +.nav-tabs > li { + margin-bottom: -1px; +} + +.nav-tabs > li > a { + padding-top: 8px; + padding-bottom: 8px; + line-height: 20px; + border: 1px solid transparent; + -webkit-border-radius: 4px 4px 0 0; + -moz-border-radius: 4px 4px 0 0; + border-radius: 4px 4px 0 0; +} + +.nav-tabs > li > a:hover, +.nav-tabs > li > a:focus { + border-color: #eeeeee #eeeeee #dddddd; +} + +.nav-tabs > .active > a, +.nav-tabs > .active > a:hover, +.nav-tabs > .active > a:focus { + color: #555555; + cursor: default; + background-color: #ffffff; + border: 1px solid #ddd; + border-bottom-color: transparent; +} + +.nav-pills > li > a { + padding-top: 8px; + padding-bottom: 8px; + margin-top: 2px; + margin-bottom: 2px; + -webkit-border-radius: 5px; + -moz-border-radius: 5px; + border-radius: 5px; +} + +.nav-pills > .active > a, +.nav-pills > .active > a:hover, +.nav-pills > .active > a:focus { + color: #ffffff; + background-color: #0088cc; +} + +.nav-stacked > li { + float: none; +} + +.nav-stacked > li > a { + margin-right: 0; +} + +.nav-tabs.nav-stacked { + border-bottom: 0; +} + +.nav-tabs.nav-stacked > li > a { + border: 1px solid #ddd; + -webkit-border-radius: 0; + -moz-border-radius: 0; + border-radius: 0; +} + +.nav-tabs.nav-stacked > li:first-child > a { + -webkit-border-top-right-radius: 4px; + border-top-right-radius: 4px; + -webkit-border-top-left-radius: 4px; + border-top-left-radius: 4px; + -moz-border-radius-topright: 4px; + -moz-border-radius-topleft: 4px; +} + +.nav-tabs.nav-stacked > li:last-child > a { + -webkit-border-bottom-right-radius: 4px; + border-bottom-right-radius: 4px; + -webkit-border-bottom-left-radius: 4px; + border-bottom-left-radius: 4px; + -moz-border-radius-bottomright: 4px; + -moz-border-radius-bottomleft: 4px; +} + +.nav-tabs.nav-stacked > li > a:hover, +.nav-tabs.nav-stacked > li > a:focus { + z-index: 2; + border-color: #ddd; +} + +.nav-pills.nav-stacked > li > a { + margin-bottom: 3px; +} + +.nav-pills.nav-stacked > li:last-child > a { + margin-bottom: 1px; +} + +.nav-tabs .dropdown-menu { + -webkit-border-radius: 0 0 6px 6px; + -moz-border-radius: 0 0 6px 6px; + border-radius: 0 0 6px 6px; +} + +.nav-pills .dropdown-menu { + -webkit-border-radius: 6px; + -moz-border-radius: 6px; + border-radius: 6px; +} + +.nav .dropdown-toggle .caret { + margin-top: 6px; + border-top-color: #0088cc; + border-bottom-color: #0088cc; +} + +.nav .dropdown-toggle:hover .caret, +.nav .dropdown-toggle:focus .caret { + border-top-color: #005580; + border-bottom-color: #005580; +} + +/* move down carets for tabs */ + +.nav-tabs .dropdown-toggle .caret { + margin-top: 8px; +} + +.nav .active .dropdown-toggle .caret { + border-top-color: #fff; + border-bottom-color: #fff; +} + +.nav-tabs .active .dropdown-toggle .caret { + border-top-color: #555555; + border-bottom-color: #555555; +} + +.nav > .dropdown.active > a:hover, +.nav > .dropdown.active > a:focus { + cursor: pointer; +} + +.nav-tabs .open .dropdown-toggle, +.nav-pills .open .dropdown-toggle, +.nav > li.dropdown.open.active > a:hover, +.nav > li.dropdown.open.active > a:focus { + color: #ffffff; + background-color: #999999; + border-color: #999999; +} + +.nav li.dropdown.open .caret, +.nav li.dropdown.open.active .caret, +.nav li.dropdown.open a:hover .caret, +.nav li.dropdown.open a:focus .caret { + border-top-color: #ffffff; + border-bottom-color: #ffffff; + opacity: 1; + filter: alpha(opacity=100); +} + +.tabs-stacked .open > a:hover, +.tabs-stacked .open > a:focus { + border-color: #999999; +} + +.tabbable { + *zoom: 1; +} + +.tabbable:before, +.tabbable:after { + display: table; + line-height: 0; + content: ""; +} + +.tabbable:after { + clear: both; +} + +.tab-content { + overflow: auto; +} + +.tabs-below > .nav-tabs, +.tabs-right > .nav-tabs, +.tabs-left > .nav-tabs { + border-bottom: 0; +} + +.tab-content > .tab-pane, +.pill-content > .pill-pane { + display: none; +} + +.tab-content > .active, +.pill-content > .active { + display: block; +} + +.tabs-below > .nav-tabs { + border-top: 1px solid #ddd; +} + +.tabs-below > .nav-tabs > li { + margin-top: -1px; + margin-bottom: 0; +} + +.tabs-below > .nav-tabs > li > a { + -webkit-border-radius: 0 0 4px 4px; + -moz-border-radius: 0 0 4px 4px; + border-radius: 0 0 4px 4px; +} + +.tabs-below > .nav-tabs > li > a:hover, +.tabs-below > .nav-tabs > li > a:focus { + border-top-color: #ddd; + border-bottom-color: transparent; +} + +.tabs-below > .nav-tabs > .active > a, +.tabs-below > .nav-tabs > .active > a:hover, +.tabs-below > .nav-tabs > .active > a:focus { + border-color: transparent #ddd #ddd #ddd; +} + +.tabs-left > .nav-tabs > li, +.tabs-right > .nav-tabs > li { + float: none; +} + +.tabs-left > .nav-tabs > li > a, +.tabs-right > .nav-tabs > li > a { + min-width: 74px; + margin-right: 0; + margin-bottom: 3px; +} + +.tabs-left > .nav-tabs { + float: left; + margin-right: 19px; + border-right: 1px solid #ddd; +} + +.tabs-left > .nav-tabs > li > a { + margin-right: -1px; + -webkit-border-radius: 4px 0 0 4px; + -moz-border-radius: 4px 0 0 4px; + border-radius: 4px 0 0 4px; +} + +.tabs-left > .nav-tabs > li > a:hover, +.tabs-left > .nav-tabs > li > a:focus { + border-color: #eeeeee #dddddd #eeeeee #eeeeee; +} + +.tabs-left > .nav-tabs .active > a, +.tabs-left > .nav-tabs .active > a:hover, +.tabs-left > .nav-tabs .active > a:focus { + border-color: #ddd transparent #ddd #ddd; + *border-right-color: #ffffff; +} + +.tabs-right > .nav-tabs { + float: right; + margin-left: 19px; + border-left: 1px solid #ddd; +} + +.tabs-right > .nav-tabs > li > a { + margin-left: -1px; + -webkit-border-radius: 0 4px 4px 0; + -moz-border-radius: 0 4px 4px 0; + border-radius: 0 4px 4px 0; +} + +.tabs-right > .nav-tabs > li > a:hover, +.tabs-right > .nav-tabs > li > a:focus { + border-color: #eeeeee #eeeeee #eeeeee #dddddd; +} + +.tabs-right > .nav-tabs .active > a, +.tabs-right > .nav-tabs .active > a:hover, +.tabs-right > .nav-tabs .active > a:focus { + border-color: #ddd #ddd #ddd transparent; + *border-left-color: #ffffff; +} + +.nav > .disabled > a { + color: #999999; +} + +.nav > .disabled > a:hover, +.nav > .disabled > a:focus { + text-decoration: none; + cursor: default; + background-color: transparent; +} + +.navbar { + *position: relative; + *z-index: 2; + margin-bottom: 20px; + overflow: visible; +} + +.navbar-inner { + min-height: 40px; + padding-right: 20px; + padding-left: 20px; + background-color: #fafafa; + background-image: -moz-linear-gradient(top, #ffffff, #f2f2f2); + background-image: -webkit-gradient(linear, 0 0, 0 100%, from(#ffffff), to(#f2f2f2)); + background-image: -webkit-linear-gradient(top, #ffffff, #f2f2f2); + background-image: -o-linear-gradient(top, #ffffff, #f2f2f2); + background-image: linear-gradient(to bottom, #ffffff, #f2f2f2); + background-repeat: repeat-x; + border: 1px solid #d4d4d4; + -webkit-border-radius: 4px; + -moz-border-radius: 4px; + border-radius: 4px; + filter: progid:DXImageTransform.Microsoft.gradient(startColorstr='#ffffffff', endColorstr='#fff2f2f2', GradientType=0); + *zoom: 1; + -webkit-box-shadow: 0 1px 4px rgba(0, 0, 0, 0.065); + -moz-box-shadow: 0 1px 4px rgba(0, 0, 0, 0.065); + box-shadow: 0 1px 4px rgba(0, 0, 0, 0.065); +} + +.navbar-inner:before, +.navbar-inner:after { + display: table; + line-height: 0; + content: ""; +} + +.navbar-inner:after { + clear: both; +} + +.navbar .container { + width: auto; +} + +.nav-collapse.collapse { + height: auto; + overflow: visible; +} + +.navbar .brand { + display: block; + float: left; + padding: 10px 20px 10px; + margin-left: -20px; + font-size: 20px; + font-weight: 200; + color: #777777; + text-shadow: 0 1px 0 #ffffff; +} + +.navbar .brand:hover, +.navbar .brand:focus { + text-decoration: none; +} + +.navbar-text { + margin-bottom: 0; + line-height: 40px; + color: #777777; +} + +.navbar-link { + color: #777777; +} + +.navbar-link:hover, +.navbar-link:focus { + color: #333333; +} + +.navbar .divider-vertical { + height: 40px; + margin: 0 9px; + border-right: 1px solid #ffffff; + border-left: 1px solid #f2f2f2; +} + +.navbar .btn, +.navbar .btn-group { + margin-top: 5px; +} + +.navbar .btn-group .btn, +.navbar .input-prepend .btn, +.navbar .input-append .btn, +.navbar .input-prepend .btn-group, +.navbar .input-append .btn-group { + margin-top: 0; +} + +.navbar-form { + margin-bottom: 0; + *zoom: 1; +} + +.navbar-form:before, +.navbar-form:after { + display: table; + line-height: 0; + content: ""; +} + +.navbar-form:after { + clear: both; +} + +.navbar-form input, +.navbar-form select, +.navbar-form .radio, +.navbar-form .checkbox { + margin-top: 5px; +} + +.navbar-form input, +.navbar-form select, +.navbar-form .btn { + display: inline-block; + margin-bottom: 0; +} + +.navbar-form input[type="image"], +.navbar-form input[type="checkbox"], +.navbar-form input[type="radio"] { + margin-top: 3px; +} + +.navbar-form .input-append, +.navbar-form .input-prepend { + margin-top: 5px; + white-space: nowrap; +} + +.navbar-form .input-append input, +.navbar-form .input-prepend input { + margin-top: 0; +} + +.navbar-search { + position: relative; + float: left; + margin-top: 5px; + margin-bottom: 0; +} + +.navbar-search .search-query { + padding: 4px 14px; + margin-bottom: 0; + font-family: "Helvetica Neue", Helvetica, Arial, sans-serif; + font-size: 13px; + font-weight: normal; + line-height: 1; + -webkit-border-radius: 15px; + -moz-border-radius: 15px; + border-radius: 15px; +} + +.navbar-static-top { + position: static; + margin-bottom: 0; +} + +.navbar-static-top .navbar-inner { + -webkit-border-radius: 0; + -moz-border-radius: 0; + border-radius: 0; +} + +.navbar-fixed-top, +.navbar-fixed-bottom { + position: fixed; + right: 0; + left: 0; + z-index: 1030; + margin-bottom: 0; +} + +.navbar-fixed-top .navbar-inner, +.navbar-static-top .navbar-inner { + border-width: 0 0 1px; +} + +.navbar-fixed-bottom .navbar-inner { + border-width: 1px 0 0; +} + +.navbar-fixed-top .navbar-inner, +.navbar-fixed-bottom .navbar-inner { + padding-right: 0; + padding-left: 0; + -webkit-border-radius: 0; + -moz-border-radius: 0; + border-radius: 0; +} + +.navbar-static-top .container, +.navbar-fixed-top .container, +.navbar-fixed-bottom .container { + width: 940px; +} + +.navbar-fixed-top { + top: 0; +} + +.navbar-fixed-top .navbar-inner, +.navbar-static-top .navbar-inner { + -webkit-box-shadow: 0 1px 10px rgba(0, 0, 0, 0.1); + -moz-box-shadow: 0 1px 10px rgba(0, 0, 0, 0.1); + box-shadow: 0 1px 10px rgba(0, 0, 0, 0.1); +} + +.navbar-fixed-bottom { + bottom: 0; +} + +.navbar-fixed-bottom .navbar-inner { + -webkit-box-shadow: 0 -1px 10px rgba(0, 0, 0, 0.1); + -moz-box-shadow: 0 -1px 10px rgba(0, 0, 0, 0.1); + box-shadow: 0 -1px 10px rgba(0, 0, 0, 0.1); +} + +.navbar .nav { + position: relative; + left: 0; + display: block; + float: left; + margin: 0 10px 0 0; +} + +.navbar .nav.pull-right { + float: right; + margin-right: 0; +} + +.navbar .nav > li { + float: left; +} + +.navbar .nav > li > a { + float: none; + padding: 10px 15px 10px; + color: #777777; + text-decoration: none; + text-shadow: 0 1px 0 #ffffff; +} + +.navbar .nav .dropdown-toggle .caret { + margin-top: 8px; +} + +.navbar .nav > li > a:focus, +.navbar .nav > li > a:hover { + color: #333333; + text-decoration: none; + background-color: transparent; +} + +.navbar .nav > .active > a, +.navbar .nav > .active > a:hover, +.navbar .nav > .active > a:focus { + color: #555555; + text-decoration: none; + background-color: #e5e5e5; + -webkit-box-shadow: inset 0 3px 8px rgba(0, 0, 0, 0.125); + -moz-box-shadow: inset 0 3px 8px rgba(0, 0, 0, 0.125); + box-shadow: inset 0 3px 8px rgba(0, 0, 0, 0.125); +} + +.navbar .btn-navbar { + display: none; + float: right; + padding: 7px 10px; + margin-right: 5px; + margin-left: 5px; + color: #ffffff; + text-shadow: 0 -1px 0 rgba(0, 0, 0, 0.25); + background-color: #ededed; + *background-color: #e5e5e5; + background-image: -moz-linear-gradient(top, #f2f2f2, #e5e5e5); + background-image: -webkit-gradient(linear, 0 0, 0 100%, from(#f2f2f2), to(#e5e5e5)); + background-image: -webkit-linear-gradient(top, #f2f2f2, #e5e5e5); + background-image: -o-linear-gradient(top, #f2f2f2, #e5e5e5); + background-image: linear-gradient(to bottom, #f2f2f2, #e5e5e5); + background-repeat: repeat-x; + border-color: #e5e5e5 #e5e5e5 #bfbfbf; + border-color: rgba(0, 0, 0, 0.1) rgba(0, 0, 0, 0.1) rgba(0, 0, 0, 0.25); + filter: progid:DXImageTransform.Microsoft.gradient(startColorstr='#fff2f2f2', endColorstr='#ffe5e5e5', GradientType=0); + filter: progid:DXImageTransform.Microsoft.gradient(enabled=false); + -webkit-box-shadow: inset 0 1px 0 rgba(255, 255, 255, 0.1), 0 1px 0 rgba(255, 255, 255, 0.075); + -moz-box-shadow: inset 0 1px 0 rgba(255, 255, 255, 0.1), 0 1px 0 rgba(255, 255, 255, 0.075); + box-shadow: inset 0 1px 0 rgba(255, 255, 255, 0.1), 0 1px 0 rgba(255, 255, 255, 0.075); +} + +.navbar .btn-navbar:hover, +.navbar .btn-navbar:focus, +.navbar .btn-navbar:active, +.navbar .btn-navbar.active, +.navbar .btn-navbar.disabled, +.navbar .btn-navbar[disabled] { + color: #ffffff; + background-color: #e5e5e5; + *background-color: #d9d9d9; +} + +.navbar .btn-navbar:active, +.navbar .btn-navbar.active { + background-color: #cccccc \9; +} + +.navbar .btn-navbar .icon-bar { + display: block; + width: 18px; + height: 2px; + background-color: #f5f5f5; + -webkit-border-radius: 1px; + -moz-border-radius: 1px; + border-radius: 1px; + -webkit-box-shadow: 0 1px 0 rgba(0, 0, 0, 0.25); + -moz-box-shadow: 0 1px 0 rgba(0, 0, 0, 0.25); + box-shadow: 0 1px 0 rgba(0, 0, 0, 0.25); +} + +.btn-navbar .icon-bar + .icon-bar { + margin-top: 3px; +} + +.navbar .nav > li > .dropdown-menu:before { + position: absolute; + top: -7px; + left: 9px; + display: inline-block; + border-right: 7px solid transparent; + border-bottom: 7px solid #ccc; + border-left: 7px solid transparent; + border-bottom-color: rgba(0, 0, 0, 0.2); + content: ''; +} + +.navbar .nav > li > .dropdown-menu:after { + position: absolute; + top: -6px; + left: 10px; + display: inline-block; + border-right: 6px solid transparent; + border-bottom: 6px solid #ffffff; + border-left: 6px solid transparent; + content: ''; +} + +.navbar-fixed-bottom .nav > li > .dropdown-menu:before { + top: auto; + bottom: -7px; + border-top: 7px solid #ccc; + border-bottom: 0; + border-top-color: rgba(0, 0, 0, 0.2); +} + +.navbar-fixed-bottom .nav > li > .dropdown-menu:after { + top: auto; + bottom: -6px; + border-top: 6px solid #ffffff; + border-bottom: 0; +} + +.navbar .nav li.dropdown > a:hover .caret, +.navbar .nav li.dropdown > a:focus .caret { + border-top-color: #333333; + border-bottom-color: #333333; +} + +.navbar .nav li.dropdown.open > .dropdown-toggle, +.navbar .nav li.dropdown.active > .dropdown-toggle, +.navbar .nav li.dropdown.open.active > .dropdown-toggle { + color: #555555; + background-color: #e5e5e5; +} + +.navbar .nav li.dropdown > .dropdown-toggle .caret { + border-top-color: #777777; + border-bottom-color: #777777; +} + +.navbar .nav li.dropdown.open > .dropdown-toggle .caret, +.navbar .nav li.dropdown.active > .dropdown-toggle .caret, +.navbar .nav li.dropdown.open.active > .dropdown-toggle .caret { + border-top-color: #555555; + border-bottom-color: #555555; +} + +.navbar .pull-right > li > .dropdown-menu, +.navbar .nav > li > .dropdown-menu.pull-right { + right: 0; + left: auto; +} + +.navbar .pull-right > li > .dropdown-menu:before, +.navbar .nav > li > .dropdown-menu.pull-right:before { + right: 12px; + left: auto; +} + +.navbar .pull-right > li > .dropdown-menu:after, +.navbar .nav > li > .dropdown-menu.pull-right:after { + right: 13px; + left: auto; +} + +.navbar .pull-right > li > .dropdown-menu .dropdown-menu, +.navbar .nav > li > .dropdown-menu.pull-right .dropdown-menu { + right: 100%; + left: auto; + margin-right: -1px; + margin-left: 0; + -webkit-border-radius: 6px 0 6px 6px; + -moz-border-radius: 6px 0 6px 6px; + border-radius: 6px 0 6px 6px; +} + +.navbar-inverse .navbar-inner { + background-color: #1b1b1b; + background-image: -moz-linear-gradient(top, #222222, #111111); + background-image: -webkit-gradient(linear, 0 0, 0 100%, from(#222222), to(#111111)); + background-image: -webkit-linear-gradient(top, #222222, #111111); + background-image: -o-linear-gradient(top, #222222, #111111); + background-image: linear-gradient(to bottom, #222222, #111111); + background-repeat: repeat-x; + border-color: #252525; + filter: progid:DXImageTransform.Microsoft.gradient(startColorstr='#ff222222', endColorstr='#ff111111', GradientType=0); +} + +.navbar-inverse .brand, +.navbar-inverse .nav > li > a { + color: #999999; + text-shadow: 0 -1px 0 rgba(0, 0, 0, 0.25); +} + +.navbar-inverse .brand:hover, +.navbar-inverse .nav > li > a:hover, +.navbar-inverse .brand:focus, +.navbar-inverse .nav > li > a:focus { + color: #ffffff; +} + +.navbar-inverse .brand { + color: #999999; +} + +.navbar-inverse .navbar-text { + color: #999999; +} + +.navbar-inverse .nav > li > a:focus, +.navbar-inverse .nav > li > a:hover { + color: #ffffff; + background-color: transparent; +} + +.navbar-inverse .nav .active > a, +.navbar-inverse .nav .active > a:hover, +.navbar-inverse .nav .active > a:focus { + color: #ffffff; + background-color: #111111; +} + +.navbar-inverse .navbar-link { + color: #999999; +} + +.navbar-inverse .navbar-link:hover, +.navbar-inverse .navbar-link:focus { + color: #ffffff; +} + +.navbar-inverse .divider-vertical { + border-right-color: #222222; + border-left-color: #111111; +} + +.navbar-inverse .nav li.dropdown.open > .dropdown-toggle, +.navbar-inverse .nav li.dropdown.active > .dropdown-toggle, +.navbar-inverse .nav li.dropdown.open.active > .dropdown-toggle { + color: #ffffff; + background-color: #111111; +} + +.navbar-inverse .nav li.dropdown > a:hover .caret, +.navbar-inverse .nav li.dropdown > a:focus .caret { + border-top-color: #ffffff; + border-bottom-color: #ffffff; +} + +.navbar-inverse .nav li.dropdown > .dropdown-toggle .caret { + border-top-color: #999999; + border-bottom-color: #999999; +} + +.navbar-inverse .nav li.dropdown.open > .dropdown-toggle .caret, +.navbar-inverse .nav li.dropdown.active > .dropdown-toggle .caret, +.navbar-inverse .nav li.dropdown.open.active > .dropdown-toggle .caret { + border-top-color: #ffffff; + border-bottom-color: #ffffff; +} + +.navbar-inverse .navbar-search .search-query { + color: #ffffff; + background-color: #515151; + border-color: #111111; + -webkit-box-shadow: inset 0 1px 2px rgba(0, 0, 0, 0.1), 0 1px 0 rgba(255, 255, 255, 0.15); + -moz-box-shadow: inset 0 1px 2px rgba(0, 0, 0, 0.1), 0 1px 0 rgba(255, 255, 255, 0.15); + box-shadow: inset 0 1px 2px rgba(0, 0, 0, 0.1), 0 1px 0 rgba(255, 255, 255, 0.15); + -webkit-transition: none; + -moz-transition: none; + -o-transition: none; + transition: none; +} + +.navbar-inverse .navbar-search .search-query:-moz-placeholder { + color: #cccccc; +} + +.navbar-inverse .navbar-search .search-query:-ms-input-placeholder { + color: #cccccc; +} + +.navbar-inverse .navbar-search .search-query::-webkit-input-placeholder { + color: #cccccc; +} + +.navbar-inverse .navbar-search .search-query:focus, +.navbar-inverse .navbar-search .search-query.focused { + padding: 5px 15px; + color: #333333; + text-shadow: 0 1px 0 #ffffff; + background-color: #ffffff; + border: 0; + outline: 0; + -webkit-box-shadow: 0 0 3px rgba(0, 0, 0, 0.15); + -moz-box-shadow: 0 0 3px rgba(0, 0, 0, 0.15); + box-shadow: 0 0 3px rgba(0, 0, 0, 0.15); +} + +.navbar-inverse .btn-navbar { + color: #ffffff; + text-shadow: 0 -1px 0 rgba(0, 0, 0, 0.25); + background-color: #0e0e0e; + *background-color: #040404; + background-image: -moz-linear-gradient(top, #151515, #040404); + background-image: -webkit-gradient(linear, 0 0, 0 100%, from(#151515), to(#040404)); + background-image: -webkit-linear-gradient(top, #151515, #040404); + background-image: -o-linear-gradient(top, #151515, #040404); + background-image: linear-gradient(to bottom, #151515, #040404); + background-repeat: repeat-x; + border-color: #040404 #040404 #000000; + border-color: rgba(0, 0, 0, 0.1) rgba(0, 0, 0, 0.1) rgba(0, 0, 0, 0.25); + filter: progid:DXImageTransform.Microsoft.gradient(startColorstr='#ff151515', endColorstr='#ff040404', GradientType=0); + filter: progid:DXImageTransform.Microsoft.gradient(enabled=false); +} + +.navbar-inverse .btn-navbar:hover, +.navbar-inverse .btn-navbar:focus, +.navbar-inverse .btn-navbar:active, +.navbar-inverse .btn-navbar.active, +.navbar-inverse .btn-navbar.disabled, +.navbar-inverse .btn-navbar[disabled] { + color: #ffffff; + background-color: #040404; + *background-color: #000000; +} + +.navbar-inverse .btn-navbar:active, +.navbar-inverse .btn-navbar.active { + background-color: #000000 \9; +} + +.breadcrumb { + padding: 8px 15px; + margin: 0 0 20px; + list-style: none; + background-color: #f5f5f5; + -webkit-border-radius: 4px; + -moz-border-radius: 4px; + border-radius: 4px; +} + +.breadcrumb > li { + display: inline-block; + *display: inline; + text-shadow: 0 1px 0 #ffffff; + *zoom: 1; +} + +.breadcrumb > li > .divider { + padding: 0 5px; + color: #ccc; +} + +.breadcrumb > .active { + color: #999999; +} + +.pagination { + margin: 20px 0; +} + +.pagination ul { + display: inline-block; + *display: inline; + margin-bottom: 0; + margin-left: 0; + -webkit-border-radius: 4px; + -moz-border-radius: 4px; + border-radius: 4px; + *zoom: 1; + -webkit-box-shadow: 0 1px 2px rgba(0, 0, 0, 0.05); + -moz-box-shadow: 0 1px 2px rgba(0, 0, 0, 0.05); + box-shadow: 0 1px 2px rgba(0, 0, 0, 0.05); +} + +.pagination ul > li { + display: inline; +} + +.pagination ul > li > a, +.pagination ul > li > span { + float: left; + padding: 4px 12px; + line-height: 20px; + text-decoration: none; + background-color: #ffffff; + border: 1px solid #dddddd; + border-left-width: 0; +} + +.pagination ul > li > a:hover, +.pagination ul > li > a:focus, +.pagination ul > .active > a, +.pagination ul > .active > span { + background-color: #f5f5f5; +} + +.pagination ul > .active > a, +.pagination ul > .active > span { + color: #999999; + cursor: default; +} + +.pagination ul > .disabled > span, +.pagination ul > .disabled > a, +.pagination ul > .disabled > a:hover, +.pagination ul > .disabled > a:focus { + color: #999999; + cursor: default; + background-color: transparent; +} + +.pagination ul > li:first-child > a, +.pagination ul > li:first-child > span { + border-left-width: 1px; + -webkit-border-bottom-left-radius: 4px; + border-bottom-left-radius: 4px; + -webkit-border-top-left-radius: 4px; + border-top-left-radius: 4px; + -moz-border-radius-bottomleft: 4px; + -moz-border-radius-topleft: 4px; +} + +.pagination ul > li:last-child > a, +.pagination ul > li:last-child > span { + -webkit-border-top-right-radius: 4px; + border-top-right-radius: 4px; + -webkit-border-bottom-right-radius: 4px; + border-bottom-right-radius: 4px; + -moz-border-radius-topright: 4px; + -moz-border-radius-bottomright: 4px; +} + +.pagination-centered { + text-align: center; +} + +.pagination-right { + text-align: right; +} + +.pagination-large ul > li > a, +.pagination-large ul > li > span { + padding: 11px 19px; + font-size: 17.5px; +} + +.pagination-large ul > li:first-child > a, +.pagination-large ul > li:first-child > span { + -webkit-border-bottom-left-radius: 6px; + border-bottom-left-radius: 6px; + -webkit-border-top-left-radius: 6px; + border-top-left-radius: 6px; + -moz-border-radius-bottomleft: 6px; + -moz-border-radius-topleft: 6px; +} + +.pagination-large ul > li:last-child > a, +.pagination-large ul > li:last-child > span { + -webkit-border-top-right-radius: 6px; + border-top-right-radius: 6px; + -webkit-border-bottom-right-radius: 6px; + border-bottom-right-radius: 6px; + -moz-border-radius-topright: 6px; + -moz-border-radius-bottomright: 6px; +} + +.pagination-mini ul > li:first-child > a, +.pagination-small ul > li:first-child > a, +.pagination-mini ul > li:first-child > span, +.pagination-small ul > li:first-child > span { + -webkit-border-bottom-left-radius: 3px; + border-bottom-left-radius: 3px; + -webkit-border-top-left-radius: 3px; + border-top-left-radius: 3px; + -moz-border-radius-bottomleft: 3px; + -moz-border-radius-topleft: 3px; +} + +.pagination-mini ul > li:last-child > a, +.pagination-small ul > li:last-child > a, +.pagination-mini ul > li:last-child > span, +.pagination-small ul > li:last-child > span { + -webkit-border-top-right-radius: 3px; + border-top-right-radius: 3px; + -webkit-border-bottom-right-radius: 3px; + border-bottom-right-radius: 3px; + -moz-border-radius-topright: 3px; + -moz-border-radius-bottomright: 3px; +} + +.pagination-small ul > li > a, +.pagination-small ul > li > span { + padding: 2px 10px; + font-size: 11.9px; +} + +.pagination-mini ul > li > a, +.pagination-mini ul > li > span { + padding: 0 6px; + font-size: 10.5px; +} + +.pager { + margin: 20px 0; + text-align: center; + list-style: none; + *zoom: 1; +} + +.pager:before, +.pager:after { + display: table; + line-height: 0; + content: ""; +} + +.pager:after { + clear: both; +} + +.pager li { + display: inline; +} + +.pager li > a, +.pager li > span { + display: inline-block; + padding: 5px 14px; + background-color: #fff; + border: 1px solid #ddd; + -webkit-border-radius: 15px; + -moz-border-radius: 15px; + border-radius: 15px; +} + +.pager li > a:hover, +.pager li > a:focus { + text-decoration: none; + background-color: #f5f5f5; +} + +.pager .next > a, +.pager .next > span { + float: right; +} + +.pager .previous > a, +.pager .previous > span { + float: left; +} + +.pager .disabled > a, +.pager .disabled > a:hover, +.pager .disabled > a:focus, +.pager .disabled > span { + color: #999999; + cursor: default; + background-color: #fff; +} + +.modal-backdrop { + position: fixed; + top: 0; + right: 0; + bottom: 0; + left: 0; + z-index: 1040; + background-color: #000000; +} + +.modal-backdrop.fade { + opacity: 0; +} + +.modal-backdrop, +.modal-backdrop.fade.in { + opacity: 0.8; + filter: alpha(opacity=80); +} + +.modal { + position: fixed; + top: 10%; + left: 50%; + z-index: 1050; + width: 560px; + margin-left: -280px; + background-color: #ffffff; + border: 1px solid #999; + border: 1px solid rgba(0, 0, 0, 0.3); + *border: 1px solid #999; + -webkit-border-radius: 6px; + -moz-border-radius: 6px; + border-radius: 6px; + outline: none; + -webkit-box-shadow: 0 3px 7px rgba(0, 0, 0, 0.3); + -moz-box-shadow: 0 3px 7px rgba(0, 0, 0, 0.3); + box-shadow: 0 3px 7px rgba(0, 0, 0, 0.3); + -webkit-background-clip: padding-box; + -moz-background-clip: padding-box; + background-clip: padding-box; +} + +.modal.fade { + top: -25%; + -webkit-transition: opacity 0.3s linear, top 0.3s ease-out; + -moz-transition: opacity 0.3s linear, top 0.3s ease-out; + -o-transition: opacity 0.3s linear, top 0.3s ease-out; + transition: opacity 0.3s linear, top 0.3s ease-out; +} + +.modal.fade.in { + top: 10%; +} + +.modal-header { + padding: 9px 15px; + border-bottom: 1px solid #eee; +} + +.modal-header .close { + margin-top: 2px; +} + +.modal-header h3 { + margin: 0; + line-height: 30px; +} + +.modal-body { + position: relative; + max-height: 400px; + padding: 15px; + overflow-y: auto; +} + +.modal-form { + margin-bottom: 0; +} + +.modal-footer { + padding: 14px 15px 15px; + margin-bottom: 0; + text-align: right; + background-color: #f5f5f5; + border-top: 1px solid #ddd; + -webkit-border-radius: 0 0 6px 6px; + -moz-border-radius: 0 0 6px 6px; + border-radius: 0 0 6px 6px; + *zoom: 1; + -webkit-box-shadow: inset 0 1px 0 #ffffff; + -moz-box-shadow: inset 0 1px 0 #ffffff; + box-shadow: inset 0 1px 0 #ffffff; +} + +.modal-footer:before, +.modal-footer:after { + display: table; + line-height: 0; + content: ""; +} + +.modal-footer:after { + clear: both; +} + +.modal-footer .btn + .btn { + margin-bottom: 0; + margin-left: 5px; +} + +.modal-footer .btn-group .btn + .btn { + margin-left: -1px; +} + +.modal-footer .btn-block + .btn-block { + margin-left: 0; +} + +.tooltip { + position: absolute; + z-index: 1030; + display: block; + font-size: 11px; + line-height: 1.4; + opacity: 0; + filter: alpha(opacity=0); + visibility: visible; +} + +.tooltip.in { + opacity: 0.8; + filter: alpha(opacity=80); +} + +.tooltip.top { + padding: 5px 0; + margin-top: -3px; +} + +.tooltip.right { + padding: 0 5px; + margin-left: 3px; +} + +.tooltip.bottom { + padding: 5px 0; + margin-top: 3px; +} + +.tooltip.left { + padding: 0 5px; + margin-left: -3px; +} + +.tooltip-inner { + max-width: 200px; + padding: 8px; + color: #ffffff; + text-align: center; + text-decoration: none; + background-color: #000000; + -webkit-border-radius: 4px; + -moz-border-radius: 4px; + border-radius: 4px; +} + +.tooltip-arrow { + position: absolute; + width: 0; + height: 0; + border-color: transparent; + border-style: solid; +} + +.tooltip.top .tooltip-arrow { + bottom: 0; + left: 50%; + margin-left: -5px; + border-top-color: #000000; + border-width: 5px 5px 0; +} + +.tooltip.right .tooltip-arrow { + top: 50%; + left: 0; + margin-top: -5px; + border-right-color: #000000; + border-width: 5px 5px 5px 0; +} + +.tooltip.left .tooltip-arrow { + top: 50%; + right: 0; + margin-top: -5px; + border-left-color: #000000; + border-width: 5px 0 5px 5px; +} + +.tooltip.bottom .tooltip-arrow { + top: 0; + left: 50%; + margin-left: -5px; + border-bottom-color: #000000; + border-width: 0 5px 5px; +} + +.popover { + position: absolute; + top: 0; + left: 0; + z-index: 1010; + display: none; + max-width: 276px; + padding: 1px; + text-align: left; + white-space: normal; + background-color: #ffffff; + border: 1px solid #ccc; + border: 1px solid rgba(0, 0, 0, 0.2); + -webkit-border-radius: 6px; + -moz-border-radius: 6px; + border-radius: 6px; + -webkit-box-shadow: 0 5px 10px rgba(0, 0, 0, 0.2); + -moz-box-shadow: 0 5px 10px rgba(0, 0, 0, 0.2); + box-shadow: 0 5px 10px rgba(0, 0, 0, 0.2); + -webkit-background-clip: padding-box; + -moz-background-clip: padding; + background-clip: padding-box; +} + +.popover.top { + margin-top: -10px; +} + +.popover.right { + margin-left: 10px; +} + +.popover.bottom { + margin-top: 10px; +} + +.popover.left { + margin-left: -10px; +} + +.popover-title { + padding: 8px 14px; + margin: 0; + font-size: 14px; + font-weight: normal; + line-height: 18px; + background-color: #f7f7f7; + border-bottom: 1px solid #ebebeb; + -webkit-border-radius: 5px 5px 0 0; + -moz-border-radius: 5px 5px 0 0; + border-radius: 5px 5px 0 0; +} + +.popover-title:empty { + display: none; +} + +.popover-content { + padding: 9px 14px; +} + +.popover .arrow, +.popover .arrow:after { + position: absolute; + display: block; + width: 0; + height: 0; + border-color: transparent; + border-style: solid; +} + +.popover .arrow { + border-width: 11px; +} + +.popover .arrow:after { + border-width: 10px; + content: ""; +} + +.popover.top .arrow { + bottom: -11px; + left: 50%; + margin-left: -11px; + border-top-color: #999; + border-top-color: rgba(0, 0, 0, 0.25); + border-bottom-width: 0; +} + +.popover.top .arrow:after { + bottom: 1px; + margin-left: -10px; + border-top-color: #ffffff; + border-bottom-width: 0; +} + +.popover.right .arrow { + top: 50%; + left: -11px; + margin-top: -11px; + border-right-color: #999; + border-right-color: rgba(0, 0, 0, 0.25); + border-left-width: 0; +} + +.popover.right .arrow:after { + bottom: -10px; + left: 1px; + border-right-color: #ffffff; + border-left-width: 0; +} + +.popover.bottom .arrow { + top: -11px; + left: 50%; + margin-left: -11px; + border-bottom-color: #999; + border-bottom-color: rgba(0, 0, 0, 0.25); + border-top-width: 0; +} + +.popover.bottom .arrow:after { + top: 1px; + margin-left: -10px; + border-bottom-color: #ffffff; + border-top-width: 0; +} + +.popover.left .arrow { + top: 50%; + right: -11px; + margin-top: -11px; + border-left-color: #999; + border-left-color: rgba(0, 0, 0, 0.25); + border-right-width: 0; +} + +.popover.left .arrow:after { + right: 1px; + bottom: -10px; + border-left-color: #ffffff; + border-right-width: 0; +} + +.thumbnails { + margin-left: -20px; + list-style: none; + *zoom: 1; +} + +.thumbnails:before, +.thumbnails:after { + display: table; + line-height: 0; + content: ""; +} + +.thumbnails:after { + clear: both; +} + +.row-fluid .thumbnails { + margin-left: 0; +} + +.thumbnails > li { + float: left; + margin-bottom: 20px; + margin-left: 20px; +} + +.thumbnail { + display: block; + padding: 4px; + line-height: 20px; + border: 1px solid #ddd; + -webkit-border-radius: 4px; + -moz-border-radius: 4px; + border-radius: 4px; + -webkit-box-shadow: 0 1px 3px rgba(0, 0, 0, 0.055); + -moz-box-shadow: 0 1px 3px rgba(0, 0, 0, 0.055); + box-shadow: 0 1px 3px rgba(0, 0, 0, 0.055); + -webkit-transition: all 0.2s ease-in-out; + -moz-transition: all 0.2s ease-in-out; + -o-transition: all 0.2s ease-in-out; + transition: all 0.2s ease-in-out; +} + +a.thumbnail:hover, +a.thumbnail:focus { + border-color: #0088cc; + -webkit-box-shadow: 0 1px 4px rgba(0, 105, 214, 0.25); + -moz-box-shadow: 0 1px 4px rgba(0, 105, 214, 0.25); + box-shadow: 0 1px 4px rgba(0, 105, 214, 0.25); +} + +.thumbnail > img { + display: block; + max-width: 100%; + margin-right: auto; + margin-left: auto; +} + +.thumbnail .caption { + padding: 9px; + color: #555555; +} + +.media, +.media-body { + overflow: hidden; + *overflow: visible; + zoom: 1; +} + +.media, +.media .media { + margin-top: 15px; +} + +.media:first-child { + margin-top: 0; +} + +.media-object { + display: block; +} + +.media-heading { + margin: 0 0 5px; +} + +.media > .pull-left { + margin-right: 10px; +} + +.media > .pull-right { + margin-left: 10px; +} + +.media-list { + margin-left: 0; + list-style: none; +} + +.label, +.badge { + display: inline-block; + padding: 2px 4px; + font-size: 11.844px; + font-weight: bold; + line-height: 14px; + color: #ffffff; + text-shadow: 0 -1px 0 rgba(0, 0, 0, 0.25); + white-space: nowrap; + vertical-align: baseline; + background-color: #999999; +} + +.label { + -webkit-border-radius: 3px; + -moz-border-radius: 3px; + border-radius: 3px; +} + +.badge { + padding-right: 9px; + padding-left: 9px; + -webkit-border-radius: 9px; + -moz-border-radius: 9px; + border-radius: 9px; +} + +.label:empty, +.badge:empty { + display: none; +} + +a.label:hover, +a.label:focus, +a.badge:hover, +a.badge:focus { + color: #ffffff; + text-decoration: none; + cursor: pointer; +} + +.label-important, +.badge-important { + background-color: #b94a48; +} + +.label-important[href], +.badge-important[href] { + background-color: #953b39; +} + +.label-warning, +.badge-warning { + background-color: #f89406; +} + +.label-warning[href], +.badge-warning[href] { + background-color: #c67605; +} + +.label-success, +.badge-success { + background-color: #468847; +} + +.label-success[href], +.badge-success[href] { + background-color: #356635; +} + +.label-info, +.badge-info { + background-color: #3a87ad; +} + +.label-info[href], +.badge-info[href] { + background-color: #2d6987; +} + +.label-inverse, +.badge-inverse { + background-color: #333333; +} + +.label-inverse[href], +.badge-inverse[href] { + background-color: #1a1a1a; +} + +.btn .label, +.btn .badge { + position: relative; + top: -1px; +} + +.btn-mini .label, +.btn-mini .badge { + top: 0; +} + +@-webkit-keyframes progress-bar-stripes { + from { + background-position: 40px 0; + } + to { + background-position: 0 0; + } +} + +@-moz-keyframes progress-bar-stripes { + from { + background-position: 40px 0; + } + to { + background-position: 0 0; + } +} + +@-ms-keyframes progress-bar-stripes { + from { + background-position: 40px 0; + } + to { + background-position: 0 0; + } +} + +@-o-keyframes progress-bar-stripes { + from { + background-position: 0 0; + } + to { + background-position: 40px 0; + } +} + +@keyframes progress-bar-stripes { + from { + background-position: 40px 0; + } + to { + background-position: 0 0; + } +} + +.progress { + height: 20px; + margin-bottom: 20px; + overflow: hidden; + background-color: #f7f7f7; + background-image: -moz-linear-gradient(top, #f5f5f5, #f9f9f9); + background-image: -webkit-gradient(linear, 0 0, 0 100%, from(#f5f5f5), to(#f9f9f9)); + background-image: -webkit-linear-gradient(top, #f5f5f5, #f9f9f9); + background-image: -o-linear-gradient(top, #f5f5f5, #f9f9f9); + background-image: linear-gradient(to bottom, #f5f5f5, #f9f9f9); + background-repeat: repeat-x; + -webkit-border-radius: 4px; + -moz-border-radius: 4px; + border-radius: 4px; + filter: progid:DXImageTransform.Microsoft.gradient(startColorstr='#fff5f5f5', endColorstr='#fff9f9f9', GradientType=0); + -webkit-box-shadow: inset 0 1px 2px rgba(0, 0, 0, 0.1); + -moz-box-shadow: inset 0 1px 2px rgba(0, 0, 0, 0.1); + box-shadow: inset 0 1px 2px rgba(0, 0, 0, 0.1); +} + +.progress .bar { + float: left; + width: 0; + height: 100%; + font-size: 12px; + color: #ffffff; + text-align: center; + text-shadow: 0 -1px 0 rgba(0, 0, 0, 0.25); + background-color: #0e90d2; + background-image: -moz-linear-gradient(top, #149bdf, #0480be); + background-image: -webkit-gradient(linear, 0 0, 0 100%, from(#149bdf), to(#0480be)); + background-image: -webkit-linear-gradient(top, #149bdf, #0480be); + background-image: -o-linear-gradient(top, #149bdf, #0480be); + background-image: linear-gradient(to bottom, #149bdf, #0480be); + background-repeat: repeat-x; + filter: progid:DXImageTransform.Microsoft.gradient(startColorstr='#ff149bdf', endColorstr='#ff0480be', GradientType=0); + -webkit-box-shadow: inset 0 -1px 0 rgba(0, 0, 0, 0.15); + -moz-box-shadow: inset 0 -1px 0 rgba(0, 0, 0, 0.15); + box-shadow: inset 0 -1px 0 rgba(0, 0, 0, 0.15); + -webkit-box-sizing: border-box; + -moz-box-sizing: border-box; + box-sizing: border-box; + -webkit-transition: width 0.6s ease; + -moz-transition: width 0.6s ease; + -o-transition: width 0.6s ease; + transition: width 0.6s ease; +} + +.progress .bar + .bar { + -webkit-box-shadow: inset 1px 0 0 rgba(0, 0, 0, 0.15), inset 0 -1px 0 rgba(0, 0, 0, 0.15); + -moz-box-shadow: inset 1px 0 0 rgba(0, 0, 0, 0.15), inset 0 -1px 0 rgba(0, 0, 0, 0.15); + box-shadow: inset 1px 0 0 rgba(0, 0, 0, 0.15), inset 0 -1px 0 rgba(0, 0, 0, 0.15); +} + +.progress-striped .bar { + background-color: #149bdf; + background-image: -webkit-gradient(linear, 0 100%, 100% 0, color-stop(0.25, rgba(255, 255, 255, 0.15)), color-stop(0.25, transparent), color-stop(0.5, transparent), color-stop(0.5, rgba(255, 255, 255, 0.15)), color-stop(0.75, rgba(255, 255, 255, 0.15)), color-stop(0.75, transparent), to(transparent)); + background-image: -webkit-linear-gradient(45deg, rgba(255, 255, 255, 0.15) 25%, transparent 25%, transparent 50%, rgba(255, 255, 255, 0.15) 50%, rgba(255, 255, 255, 0.15) 75%, transparent 75%, transparent); + background-image: -moz-linear-gradient(45deg, rgba(255, 255, 255, 0.15) 25%, transparent 25%, transparent 50%, rgba(255, 255, 255, 0.15) 50%, rgba(255, 255, 255, 0.15) 75%, transparent 75%, transparent); + background-image: -o-linear-gradient(45deg, rgba(255, 255, 255, 0.15) 25%, transparent 25%, transparent 50%, rgba(255, 255, 255, 0.15) 50%, rgba(255, 255, 255, 0.15) 75%, transparent 75%, transparent); + background-image: linear-gradient(45deg, rgba(255, 255, 255, 0.15) 25%, transparent 25%, transparent 50%, rgba(255, 255, 255, 0.15) 50%, rgba(255, 255, 255, 0.15) 75%, transparent 75%, transparent); + -webkit-background-size: 40px 40px; + -moz-background-size: 40px 40px; + -o-background-size: 40px 40px; + background-size: 40px 40px; +} + +.progress.active .bar { + -webkit-animation: progress-bar-stripes 2s linear infinite; + -moz-animation: progress-bar-stripes 2s linear infinite; + -ms-animation: progress-bar-stripes 2s linear infinite; + -o-animation: progress-bar-stripes 2s linear infinite; + animation: progress-bar-stripes 2s linear infinite; +} + +.progress-danger .bar, +.progress .bar-danger { + background-color: #dd514c; + background-image: -moz-linear-gradient(top, #ee5f5b, #c43c35); + background-image: -webkit-gradient(linear, 0 0, 0 100%, from(#ee5f5b), to(#c43c35)); + background-image: -webkit-linear-gradient(top, #ee5f5b, #c43c35); + background-image: -o-linear-gradient(top, #ee5f5b, #c43c35); + background-image: linear-gradient(to bottom, #ee5f5b, #c43c35); + background-repeat: repeat-x; + filter: progid:DXImageTransform.Microsoft.gradient(startColorstr='#ffee5f5b', endColorstr='#ffc43c35', GradientType=0); +} + +.progress-danger.progress-striped .bar, +.progress-striped .bar-danger { + background-color: #ee5f5b; + background-image: -webkit-gradient(linear, 0 100%, 100% 0, color-stop(0.25, rgba(255, 255, 255, 0.15)), color-stop(0.25, transparent), color-stop(0.5, transparent), color-stop(0.5, rgba(255, 255, 255, 0.15)), color-stop(0.75, rgba(255, 255, 255, 0.15)), color-stop(0.75, transparent), to(transparent)); + background-image: -webkit-linear-gradient(45deg, rgba(255, 255, 255, 0.15) 25%, transparent 25%, transparent 50%, rgba(255, 255, 255, 0.15) 50%, rgba(255, 255, 255, 0.15) 75%, transparent 75%, transparent); + background-image: -moz-linear-gradient(45deg, rgba(255, 255, 255, 0.15) 25%, transparent 25%, transparent 50%, rgba(255, 255, 255, 0.15) 50%, rgba(255, 255, 255, 0.15) 75%, transparent 75%, transparent); + background-image: -o-linear-gradient(45deg, rgba(255, 255, 255, 0.15) 25%, transparent 25%, transparent 50%, rgba(255, 255, 255, 0.15) 50%, rgba(255, 255, 255, 0.15) 75%, transparent 75%, transparent); + background-image: linear-gradient(45deg, rgba(255, 255, 255, 0.15) 25%, transparent 25%, transparent 50%, rgba(255, 255, 255, 0.15) 50%, rgba(255, 255, 255, 0.15) 75%, transparent 75%, transparent); +} + +.progress-success .bar, +.progress .bar-success { + background-color: #5eb95e; + background-image: -moz-linear-gradient(top, #62c462, #57a957); + background-image: -webkit-gradient(linear, 0 0, 0 100%, from(#62c462), to(#57a957)); + background-image: -webkit-linear-gradient(top, #62c462, #57a957); + background-image: -o-linear-gradient(top, #62c462, #57a957); + background-image: linear-gradient(to bottom, #62c462, #57a957); + background-repeat: repeat-x; + filter: progid:DXImageTransform.Microsoft.gradient(startColorstr='#ff62c462', endColorstr='#ff57a957', GradientType=0); +} + +.progress-success.progress-striped .bar, +.progress-striped .bar-success { + background-color: #62c462; + background-image: -webkit-gradient(linear, 0 100%, 100% 0, color-stop(0.25, rgba(255, 255, 255, 0.15)), color-stop(0.25, transparent), color-stop(0.5, transparent), color-stop(0.5, rgba(255, 255, 255, 0.15)), color-stop(0.75, rgba(255, 255, 255, 0.15)), color-stop(0.75, transparent), to(transparent)); + background-image: -webkit-linear-gradient(45deg, rgba(255, 255, 255, 0.15) 25%, transparent 25%, transparent 50%, rgba(255, 255, 255, 0.15) 50%, rgba(255, 255, 255, 0.15) 75%, transparent 75%, transparent); + background-image: -moz-linear-gradient(45deg, rgba(255, 255, 255, 0.15) 25%, transparent 25%, transparent 50%, rgba(255, 255, 255, 0.15) 50%, rgba(255, 255, 255, 0.15) 75%, transparent 75%, transparent); + background-image: -o-linear-gradient(45deg, rgba(255, 255, 255, 0.15) 25%, transparent 25%, transparent 50%, rgba(255, 255, 255, 0.15) 50%, rgba(255, 255, 255, 0.15) 75%, transparent 75%, transparent); + background-image: linear-gradient(45deg, rgba(255, 255, 255, 0.15) 25%, transparent 25%, transparent 50%, rgba(255, 255, 255, 0.15) 50%, rgba(255, 255, 255, 0.15) 75%, transparent 75%, transparent); +} + +.progress-info .bar, +.progress .bar-info { + background-color: #4bb1cf; + background-image: -moz-linear-gradient(top, #5bc0de, #339bb9); + background-image: -webkit-gradient(linear, 0 0, 0 100%, from(#5bc0de), to(#339bb9)); + background-image: -webkit-linear-gradient(top, #5bc0de, #339bb9); + background-image: -o-linear-gradient(top, #5bc0de, #339bb9); + background-image: linear-gradient(to bottom, #5bc0de, #339bb9); + background-repeat: repeat-x; + filter: progid:DXImageTransform.Microsoft.gradient(startColorstr='#ff5bc0de', endColorstr='#ff339bb9', GradientType=0); +} + +.progress-info.progress-striped .bar, +.progress-striped .bar-info { + background-color: #5bc0de; + background-image: -webkit-gradient(linear, 0 100%, 100% 0, color-stop(0.25, rgba(255, 255, 255, 0.15)), color-stop(0.25, transparent), color-stop(0.5, transparent), color-stop(0.5, rgba(255, 255, 255, 0.15)), color-stop(0.75, rgba(255, 255, 255, 0.15)), color-stop(0.75, transparent), to(transparent)); + background-image: -webkit-linear-gradient(45deg, rgba(255, 255, 255, 0.15) 25%, transparent 25%, transparent 50%, rgba(255, 255, 255, 0.15) 50%, rgba(255, 255, 255, 0.15) 75%, transparent 75%, transparent); + background-image: -moz-linear-gradient(45deg, rgba(255, 255, 255, 0.15) 25%, transparent 25%, transparent 50%, rgba(255, 255, 255, 0.15) 50%, rgba(255, 255, 255, 0.15) 75%, transparent 75%, transparent); + background-image: -o-linear-gradient(45deg, rgba(255, 255, 255, 0.15) 25%, transparent 25%, transparent 50%, rgba(255, 255, 255, 0.15) 50%, rgba(255, 255, 255, 0.15) 75%, transparent 75%, transparent); + background-image: linear-gradient(45deg, rgba(255, 255, 255, 0.15) 25%, transparent 25%, transparent 50%, rgba(255, 255, 255, 0.15) 50%, rgba(255, 255, 255, 0.15) 75%, transparent 75%, transparent); +} + +.progress-warning .bar, +.progress .bar-warning { + background-color: #faa732; + background-image: -moz-linear-gradient(top, #fbb450, #f89406); + background-image: -webkit-gradient(linear, 0 0, 0 100%, from(#fbb450), to(#f89406)); + background-image: -webkit-linear-gradient(top, #fbb450, #f89406); + background-image: -o-linear-gradient(top, #fbb450, #f89406); + background-image: linear-gradient(to bottom, #fbb450, #f89406); + background-repeat: repeat-x; + filter: progid:DXImageTransform.Microsoft.gradient(startColorstr='#fffbb450', endColorstr='#fff89406', GradientType=0); +} + +.progress-warning.progress-striped .bar, +.progress-striped .bar-warning { + background-color: #fbb450; + background-image: -webkit-gradient(linear, 0 100%, 100% 0, color-stop(0.25, rgba(255, 255, 255, 0.15)), color-stop(0.25, transparent), color-stop(0.5, transparent), color-stop(0.5, rgba(255, 255, 255, 0.15)), color-stop(0.75, rgba(255, 255, 255, 0.15)), color-stop(0.75, transparent), to(transparent)); + background-image: -webkit-linear-gradient(45deg, rgba(255, 255, 255, 0.15) 25%, transparent 25%, transparent 50%, rgba(255, 255, 255, 0.15) 50%, rgba(255, 255, 255, 0.15) 75%, transparent 75%, transparent); + background-image: -moz-linear-gradient(45deg, rgba(255, 255, 255, 0.15) 25%, transparent 25%, transparent 50%, rgba(255, 255, 255, 0.15) 50%, rgba(255, 255, 255, 0.15) 75%, transparent 75%, transparent); + background-image: -o-linear-gradient(45deg, rgba(255, 255, 255, 0.15) 25%, transparent 25%, transparent 50%, rgba(255, 255, 255, 0.15) 50%, rgba(255, 255, 255, 0.15) 75%, transparent 75%, transparent); + background-image: linear-gradient(45deg, rgba(255, 255, 255, 0.15) 25%, transparent 25%, transparent 50%, rgba(255, 255, 255, 0.15) 50%, rgba(255, 255, 255, 0.15) 75%, transparent 75%, transparent); +} + +.accordion { + margin-bottom: 20px; +} + +.accordion-group { + margin-bottom: 2px; + border: 1px solid #e5e5e5; + -webkit-border-radius: 4px; + -moz-border-radius: 4px; + border-radius: 4px; +} + +.accordion-heading { + border-bottom: 0; +} + +.accordion-heading .accordion-toggle { + display: block; + padding: 8px 15px; +} + +.accordion-toggle { + cursor: pointer; +} + +.accordion-inner { + padding: 9px 15px; + border-top: 1px solid #e5e5e5; +} + +.carousel { + position: relative; + margin-bottom: 20px; + line-height: 1; +} + +.carousel-inner { + position: relative; + width: 100%; + overflow: hidden; +} + +.carousel-inner > .item { + position: relative; + display: none; + -webkit-transition: 0.6s ease-in-out left; + -moz-transition: 0.6s ease-in-out left; + -o-transition: 0.6s ease-in-out left; + transition: 0.6s ease-in-out left; +} + +.carousel-inner > .item > img, +.carousel-inner > .item > a > img { + display: block; + line-height: 1; +} + +.carousel-inner > .active, +.carousel-inner > .next, +.carousel-inner > .prev { + display: block; +} + +.carousel-inner > .active { + left: 0; +} + +.carousel-inner > .next, +.carousel-inner > .prev { + position: absolute; + top: 0; + width: 100%; +} + +.carousel-inner > .next { + left: 100%; +} + +.carousel-inner > .prev { + left: -100%; +} + +.carousel-inner > .next.left, +.carousel-inner > .prev.right { + left: 0; +} + +.carousel-inner > .active.left { + left: -100%; +} + +.carousel-inner > .active.right { + left: 100%; +} + +.carousel-control { + position: absolute; + top: 40%; + left: 15px; + width: 40px; + height: 40px; + margin-top: -20px; + font-size: 60px; + font-weight: 100; + line-height: 30px; + color: #ffffff; + text-align: center; + background: #222222; + border: 3px solid #ffffff; + -webkit-border-radius: 23px; + -moz-border-radius: 23px; + border-radius: 23px; + opacity: 0.5; + filter: alpha(opacity=50); +} + +.carousel-control.right { + right: 15px; + left: auto; +} + +.carousel-control:hover, +.carousel-control:focus { + color: #ffffff; + text-decoration: none; + opacity: 0.9; + filter: alpha(opacity=90); +} + +.carousel-indicators { + position: absolute; + top: 15px; + right: 15px; + z-index: 5; + margin: 0; + list-style: none; +} + +.carousel-indicators li { + display: block; + float: left; + width: 10px; + height: 10px; + margin-left: 5px; + text-indent: -999px; + background-color: #ccc; + background-color: rgba(255, 255, 255, 0.25); + border-radius: 5px; +} + +.carousel-indicators .active { + background-color: #fff; +} + +.carousel-caption { + position: absolute; + right: 0; + bottom: 0; + left: 0; + padding: 15px; + background: #333333; + background: rgba(0, 0, 0, 0.75); +} + +.carousel-caption h4, +.carousel-caption p { + line-height: 20px; + color: #ffffff; +} + +.carousel-caption h4 { + margin: 0 0 5px; +} + +.carousel-caption p { + margin-bottom: 0; +} + +.hero-unit { + padding: 60px; + margin-bottom: 30px; + font-size: 18px; + font-weight: 200; + line-height: 30px; + color: inherit; + background-color: #eeeeee; + -webkit-border-radius: 6px; + -moz-border-radius: 6px; + border-radius: 6px; +} + +.hero-unit h1 { + margin-bottom: 0; + font-size: 60px; + line-height: 1; + letter-spacing: -1px; + color: inherit; +} + +.hero-unit li { + line-height: 30px; +} + +.pull-right { + float: right; +} + +.pull-left { + float: left; +} + +.hide { + display: none; +} + +.show { + display: block; +} + +.invisible { + visibility: hidden; +} + +.affix { + position: fixed; +} diff --git a/_static/bootstrap-2.3.2/css/bootstrap.min.css b/_static/bootstrap-2.3.2/css/bootstrap.min.css new file mode 100644 index 00000000..b6428e69 --- /dev/null +++ b/_static/bootstrap-2.3.2/css/bootstrap.min.css @@ -0,0 +1,9 @@ +/*! + * Bootstrap v2.3.2 + * + * Copyright 2012 Twitter, Inc + * Licensed under the Apache License v2.0 + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Designed and built with all the love in the world @twitter by @mdo and @fat. + */.clearfix{*zoom:1}.clearfix:before,.clearfix:after{display:table;line-height:0;content:""}.clearfix:after{clear:both}.hide-text{font:0/0 a;color:transparent;text-shadow:none;background-color:transparent;border:0}.input-block-level{display:block;width:100%;min-height:30px;-webkit-box-sizing:border-box;-moz-box-sizing:border-box;box-sizing:border-box}article,aside,details,figcaption,figure,footer,header,hgroup,nav,section{display:block}audio,canvas,video{display:inline-block;*display:inline;*zoom:1}audio:not([controls]){display:none}html{font-size:100%;-webkit-text-size-adjust:100%;-ms-text-size-adjust:100%}a:focus{outline:thin dotted #333;outline:5px auto -webkit-focus-ring-color;outline-offset:-2px}a:hover,a:active{outline:0}sub,sup{position:relative;font-size:75%;line-height:0;vertical-align:baseline}sup{top:-0.5em}sub{bottom:-0.25em}img{width:auto\9;height:auto;max-width:100%;vertical-align:middle;border:0;-ms-interpolation-mode:bicubic}#map_canvas img,.google-maps img{max-width:none}button,input,select,textarea{margin:0;font-size:100%;vertical-align:middle}button,input{*overflow:visible;line-height:normal}button::-moz-focus-inner,input::-moz-focus-inner{padding:0;border:0}button,html input[type="button"],input[type="reset"],input[type="submit"]{cursor:pointer;-webkit-appearance:button}label,select,button,input[type="button"],input[type="reset"],input[type="submit"],input[type="radio"],input[type="checkbox"]{cursor:pointer}input[type="search"]{-webkit-box-sizing:content-box;-moz-box-sizing:content-box;box-sizing:content-box;-webkit-appearance:textfield}input[type="search"]::-webkit-search-decoration,input[type="search"]::-webkit-search-cancel-button{-webkit-appearance:none}textarea{overflow:auto;vertical-align:top}@media print{*{color:#000!important;text-shadow:none!important;background:transparent!important;box-shadow:none!important}a,a:visited{text-decoration:underline}a[href]:after{content:" (" attr(href) ")"}abbr[title]:after{content:" (" attr(title) ")"}.ir a:after,a[href^="javascript:"]:after,a[href^="#"]:after{content:""}pre,blockquote{border:1px solid #999;page-break-inside:avoid}thead{display:table-header-group}tr,img{page-break-inside:avoid}img{max-width:100%!important}@page{margin:.5cm}p,h2,h3{orphans:3;widows:3}h2,h3{page-break-after:avoid}}body{margin:0;font-family:"Helvetica Neue",Helvetica,Arial,sans-serif;font-size:14px;line-height:20px;color:#333;background-color:#fff}a{color:#08c;text-decoration:none}a:hover,a:focus{color:#005580;text-decoration:underline}.img-rounded{-webkit-border-radius:6px;-moz-border-radius:6px;border-radius:6px}.img-polaroid{padding:4px;background-color:#fff;border:1px solid #ccc;border:1px solid rgba(0,0,0,0.2);-webkit-box-shadow:0 1px 3px rgba(0,0,0,0.1);-moz-box-shadow:0 1px 3px rgba(0,0,0,0.1);box-shadow:0 1px 3px rgba(0,0,0,0.1)}.img-circle{-webkit-border-radius:500px;-moz-border-radius:500px;border-radius:500px}.row{margin-left:-20px;*zoom:1}.row:before,.row:after{display:table;line-height:0;content:""}.row:after{clear:both}[class*="span"]{float:left;min-height:1px;margin-left:20px}.container,.navbar-static-top .container,.navbar-fixed-top .container,.navbar-fixed-bottom .container{width:940px}.span12{width:940px}.span11{width:860px}.span10{width:780px}.span9{width:700px}.span8{width:620px}.span7{width:540px}.span6{width:460px}.span5{width:380px}.span4{width:300px}.span3{width:220px}.span2{width:140px}.span1{width:60px}.offset12{margin-left:980px}.offset11{margin-left:900px}.offset10{margin-left:820px}.offset9{margin-left:740px}.offset8{margin-left:660px}.offset7{margin-left:580px}.offset6{margin-left:500px}.offset5{margin-left:420px}.offset4{margin-left:340px}.offset3{margin-left:260px}.offset2{margin-left:180px}.offset1{margin-left:100px}.row-fluid{width:100%;*zoom:1}.row-fluid:before,.row-fluid:after{display:table;line-height:0;content:""}.row-fluid:after{clear:both}.row-fluid [class*="span"]{display:block;float:left;width:100%;min-height:30px;margin-left:2.127659574468085%;*margin-left:2.074468085106383%;-webkit-box-sizing:border-box;-moz-box-sizing:border-box;box-sizing:border-box}.row-fluid [class*="span"]:first-child{margin-left:0}.row-fluid .controls-row [class*="span"]+[class*="span"]{margin-left:2.127659574468085%}.row-fluid .span12{width:100%;*width:99.94680851063829%}.row-fluid .span11{width:91.48936170212765%;*width:91.43617021276594%}.row-fluid .span10{width:82.97872340425532%;*width:82.92553191489361%}.row-fluid .span9{width:74.46808510638297%;*width:74.41489361702126%}.row-fluid .span8{width:65.95744680851064%;*width:65.90425531914893%}.row-fluid .span7{width:57.44680851063829%;*width:57.39361702127659%}.row-fluid .span6{width:48.93617021276595%;*width:48.88297872340425%}.row-fluid .span5{width:40.42553191489362%;*width:40.37234042553192%}.row-fluid .span4{width:31.914893617021278%;*width:31.861702127659576%}.row-fluid .span3{width:23.404255319148934%;*width:23.351063829787233%}.row-fluid .span2{width:14.893617021276595%;*width:14.840425531914894%}.row-fluid .span1{width:6.382978723404255%;*width:6.329787234042553%}.row-fluid .offset12{margin-left:104.25531914893617%;*margin-left:104.14893617021275%}.row-fluid .offset12:first-child{margin-left:102.12765957446808%;*margin-left:102.02127659574467%}.row-fluid .offset11{margin-left:95.74468085106382%;*margin-left:95.6382978723404%}.row-fluid .offset11:first-child{margin-left:93.61702127659574%;*margin-left:93.51063829787232%}.row-fluid .offset10{margin-left:87.23404255319149%;*margin-left:87.12765957446807%}.row-fluid .offset10:first-child{margin-left:85.1063829787234%;*margin-left:84.99999999999999%}.row-fluid .offset9{margin-left:78.72340425531914%;*margin-left:78.61702127659572%}.row-fluid .offset9:first-child{margin-left:76.59574468085106%;*margin-left:76.48936170212764%}.row-fluid .offset8{margin-left:70.2127659574468%;*margin-left:70.10638297872339%}.row-fluid .offset8:first-child{margin-left:68.08510638297872%;*margin-left:67.9787234042553%}.row-fluid .offset7{margin-left:61.70212765957446%;*margin-left:61.59574468085106%}.row-fluid .offset7:first-child{margin-left:59.574468085106375%;*margin-left:59.46808510638297%}.row-fluid .offset6{margin-left:53.191489361702125%;*margin-left:53.085106382978715%}.row-fluid .offset6:first-child{margin-left:51.063829787234035%;*margin-left:50.95744680851063%}.row-fluid .offset5{margin-left:44.68085106382979%;*margin-left:44.57446808510638%}.row-fluid .offset5:first-child{margin-left:42.5531914893617%;*margin-left:42.4468085106383%}.row-fluid .offset4{margin-left:36.170212765957444%;*margin-left:36.06382978723405%}.row-fluid .offset4:first-child{margin-left:34.04255319148936%;*margin-left:33.93617021276596%}.row-fluid .offset3{margin-left:27.659574468085104%;*margin-left:27.5531914893617%}.row-fluid .offset3:first-child{margin-left:25.53191489361702%;*margin-left:25.425531914893618%}.row-fluid .offset2{margin-left:19.148936170212764%;*margin-left:19.04255319148936%}.row-fluid .offset2:first-child{margin-left:17.02127659574468%;*margin-left:16.914893617021278%}.row-fluid .offset1{margin-left:10.638297872340425%;*margin-left:10.53191489361702%}.row-fluid .offset1:first-child{margin-left:8.51063829787234%;*margin-left:8.404255319148938%}[class*="span"].hide,.row-fluid [class*="span"].hide{display:none}[class*="span"].pull-right,.row-fluid [class*="span"].pull-right{float:right}.container{margin-right:auto;margin-left:auto;*zoom:1}.container:before,.container:after{display:table;line-height:0;content:""}.container:after{clear:both}.container-fluid{padding-right:20px;padding-left:20px;*zoom:1}.container-fluid:before,.container-fluid:after{display:table;line-height:0;content:""}.container-fluid:after{clear:both}p{margin:0 0 10px}.lead{margin-bottom:20px;font-size:21px;font-weight:200;line-height:30px}small{font-size:85%}strong{font-weight:bold}em{font-style:italic}cite{font-style:normal}.muted{color:#999}a.muted:hover,a.muted:focus{color:#808080}.text-warning{color:#c09853}a.text-warning:hover,a.text-warning:focus{color:#a47e3c}.text-error{color:#b94a48}a.text-error:hover,a.text-error:focus{color:#953b39}.text-info{color:#3a87ad}a.text-info:hover,a.text-info:focus{color:#2d6987}.text-success{color:#468847}a.text-success:hover,a.text-success:focus{color:#356635}.text-left{text-align:left}.text-right{text-align:right}.text-center{text-align:center}h1,h2,h3,h4,h5,h6{margin:10px 0;font-family:inherit;font-weight:bold;line-height:20px;color:inherit;text-rendering:optimizelegibility}h1 small,h2 small,h3 small,h4 small,h5 small,h6 small{font-weight:normal;line-height:1;color:#999}h1,h2,h3{line-height:40px}h1{font-size:38.5px}h2{font-size:31.5px}h3{font-size:24.5px}h4{font-size:17.5px}h5{font-size:14px}h6{font-size:11.9px}h1 small{font-size:24.5px}h2 small{font-size:17.5px}h3 small{font-size:14px}h4 small{font-size:14px}.page-header{padding-bottom:9px;margin:20px 0 30px;border-bottom:1px solid #eee}ul,ol{padding:0;margin:0 0 10px 25px}ul ul,ul ol,ol ol,ol ul{margin-bottom:0}li{line-height:20px}ul.unstyled,ol.unstyled{margin-left:0;list-style:none}ul.inline,ol.inline{margin-left:0;list-style:none}ul.inline>li,ol.inline>li{display:inline-block;*display:inline;padding-right:5px;padding-left:5px;*zoom:1}dl{margin-bottom:20px}dt,dd{line-height:20px}dt{font-weight:bold}dd{margin-left:10px}.dl-horizontal{*zoom:1}.dl-horizontal:before,.dl-horizontal:after{display:table;line-height:0;content:""}.dl-horizontal:after{clear:both}.dl-horizontal dt{float:left;width:160px;overflow:hidden;clear:left;text-align:right;text-overflow:ellipsis;white-space:nowrap}.dl-horizontal dd{margin-left:180px}hr{margin:20px 0;border:0;border-top:1px solid #eee;border-bottom:1px solid #fff}abbr[title],abbr[data-original-title]{cursor:help;border-bottom:1px dotted #999}abbr.initialism{font-size:90%;text-transform:uppercase}blockquote{padding:0 0 0 15px;margin:0 0 20px;border-left:5px solid #eee}blockquote p{margin-bottom:0;font-size:17.5px;font-weight:300;line-height:1.25}blockquote small{display:block;line-height:20px;color:#999}blockquote small:before{content:'\2014 \00A0'}blockquote.pull-right{float:right;padding-right:15px;padding-left:0;border-right:5px solid #eee;border-left:0}blockquote.pull-right p,blockquote.pull-right small{text-align:right}blockquote.pull-right small:before{content:''}blockquote.pull-right small:after{content:'\00A0 \2014'}q:before,q:after,blockquote:before,blockquote:after{content:""}address{display:block;margin-bottom:20px;font-style:normal;line-height:20px}code,pre{padding:0 3px 2px;font-family:Monaco,Menlo,Consolas,"Courier New",monospace;font-size:12px;color:#333;-webkit-border-radius:3px;-moz-border-radius:3px;border-radius:3px}code{padding:2px 4px;color:#d14;white-space:nowrap;background-color:#f7f7f9;border:1px solid #e1e1e8}pre{display:block;padding:9.5px;margin:0 0 10px;font-size:13px;line-height:20px;word-break:break-all;word-wrap:break-word;white-space:pre;white-space:pre-wrap;background-color:#f5f5f5;border:1px solid #ccc;border:1px solid rgba(0,0,0,0.15);-webkit-border-radius:4px;-moz-border-radius:4px;border-radius:4px}pre.prettyprint{margin-bottom:20px}pre code{padding:0;color:inherit;white-space:pre;white-space:pre-wrap;background-color:transparent;border:0}.pre-scrollable{max-height:340px;overflow-y:scroll}form{margin:0 0 20px}fieldset{padding:0;margin:0;border:0}legend{display:block;width:100%;padding:0;margin-bottom:20px;font-size:21px;line-height:40px;color:#333;border:0;border-bottom:1px solid #e5e5e5}legend small{font-size:15px;color:#999}label,input,button,select,textarea{font-size:14px;font-weight:normal;line-height:20px}input,button,select,textarea{font-family:"Helvetica Neue",Helvetica,Arial,sans-serif}label{display:block;margin-bottom:5px}select,textarea,input[type="text"],input[type="password"],input[type="datetime"],input[type="datetime-local"],input[type="date"],input[type="month"],input[type="time"],input[type="week"],input[type="number"],input[type="email"],input[type="url"],input[type="search"],input[type="tel"],input[type="color"],.uneditable-input{display:inline-block;height:20px;padding:4px 6px;margin-bottom:10px;font-size:14px;line-height:20px;color:#555;vertical-align:middle;-webkit-border-radius:4px;-moz-border-radius:4px;border-radius:4px}input,textarea,.uneditable-input{width:206px}textarea{height:auto}textarea,input[type="text"],input[type="password"],input[type="datetime"],input[type="datetime-local"],input[type="date"],input[type="month"],input[type="time"],input[type="week"],input[type="number"],input[type="email"],input[type="url"],input[type="search"],input[type="tel"],input[type="color"],.uneditable-input{background-color:#fff;border:1px solid #ccc;-webkit-box-shadow:inset 0 1px 1px rgba(0,0,0,0.075);-moz-box-shadow:inset 0 1px 1px rgba(0,0,0,0.075);box-shadow:inset 0 1px 1px rgba(0,0,0,0.075);-webkit-transition:border linear .2s,box-shadow linear .2s;-moz-transition:border linear .2s,box-shadow linear .2s;-o-transition:border linear .2s,box-shadow linear .2s;transition:border linear .2s,box-shadow linear .2s}textarea:focus,input[type="text"]:focus,input[type="password"]:focus,input[type="datetime"]:focus,input[type="datetime-local"]:focus,input[type="date"]:focus,input[type="month"]:focus,input[type="time"]:focus,input[type="week"]:focus,input[type="number"]:focus,input[type="email"]:focus,input[type="url"]:focus,input[type="search"]:focus,input[type="tel"]:focus,input[type="color"]:focus,.uneditable-input:focus{border-color:rgba(82,168,236,0.8);outline:0;outline:thin dotted \9;-webkit-box-shadow:inset 0 1px 1px rgba(0,0,0,0.075),0 0 8px rgba(82,168,236,0.6);-moz-box-shadow:inset 0 1px 1px rgba(0,0,0,0.075),0 0 8px rgba(82,168,236,0.6);box-shadow:inset 0 1px 1px rgba(0,0,0,0.075),0 0 8px rgba(82,168,236,0.6)}input[type="radio"],input[type="checkbox"]{margin:4px 0 0;margin-top:1px \9;*margin-top:0;line-height:normal}input[type="file"],input[type="image"],input[type="submit"],input[type="reset"],input[type="button"],input[type="radio"],input[type="checkbox"]{width:auto}select,input[type="file"]{height:30px;*margin-top:4px;line-height:30px}select{width:220px;background-color:#fff;border:1px solid #ccc}select[multiple],select[size]{height:auto}select:focus,input[type="file"]:focus,input[type="radio"]:focus,input[type="checkbox"]:focus{outline:thin dotted #333;outline:5px auto -webkit-focus-ring-color;outline-offset:-2px}.uneditable-input,.uneditable-textarea{color:#999;cursor:not-allowed;background-color:#fcfcfc;border-color:#ccc;-webkit-box-shadow:inset 0 1px 2px rgba(0,0,0,0.025);-moz-box-shadow:inset 0 1px 2px rgba(0,0,0,0.025);box-shadow:inset 0 1px 2px rgba(0,0,0,0.025)}.uneditable-input{overflow:hidden;white-space:nowrap}.uneditable-textarea{width:auto;height:auto}input:-moz-placeholder,textarea:-moz-placeholder{color:#999}input:-ms-input-placeholder,textarea:-ms-input-placeholder{color:#999}input::-webkit-input-placeholder,textarea::-webkit-input-placeholder{color:#999}.radio,.checkbox{min-height:20px;padding-left:20px}.radio input[type="radio"],.checkbox input[type="checkbox"]{float:left;margin-left:-20px}.controls>.radio:first-child,.controls>.checkbox:first-child{padding-top:5px}.radio.inline,.checkbox.inline{display:inline-block;padding-top:5px;margin-bottom:0;vertical-align:middle}.radio.inline+.radio.inline,.checkbox.inline+.checkbox.inline{margin-left:10px}.input-mini{width:60px}.input-small{width:90px}.input-medium{width:150px}.input-large{width:210px}.input-xlarge{width:270px}.input-xxlarge{width:530px}input[class*="span"],select[class*="span"],textarea[class*="span"],.uneditable-input[class*="span"],.row-fluid input[class*="span"],.row-fluid select[class*="span"],.row-fluid textarea[class*="span"],.row-fluid .uneditable-input[class*="span"]{float:none;margin-left:0}.input-append input[class*="span"],.input-append .uneditable-input[class*="span"],.input-prepend input[class*="span"],.input-prepend .uneditable-input[class*="span"],.row-fluid input[class*="span"],.row-fluid select[class*="span"],.row-fluid textarea[class*="span"],.row-fluid .uneditable-input[class*="span"],.row-fluid .input-prepend [class*="span"],.row-fluid .input-append [class*="span"]{display:inline-block}input,textarea,.uneditable-input{margin-left:0}.controls-row [class*="span"]+[class*="span"]{margin-left:20px}input.span12,textarea.span12,.uneditable-input.span12{width:926px}input.span11,textarea.span11,.uneditable-input.span11{width:846px}input.span10,textarea.span10,.uneditable-input.span10{width:766px}input.span9,textarea.span9,.uneditable-input.span9{width:686px}input.span8,textarea.span8,.uneditable-input.span8{width:606px}input.span7,textarea.span7,.uneditable-input.span7{width:526px}input.span6,textarea.span6,.uneditable-input.span6{width:446px}input.span5,textarea.span5,.uneditable-input.span5{width:366px}input.span4,textarea.span4,.uneditable-input.span4{width:286px}input.span3,textarea.span3,.uneditable-input.span3{width:206px}input.span2,textarea.span2,.uneditable-input.span2{width:126px}input.span1,textarea.span1,.uneditable-input.span1{width:46px}.controls-row{*zoom:1}.controls-row:before,.controls-row:after{display:table;line-height:0;content:""}.controls-row:after{clear:both}.controls-row [class*="span"],.row-fluid .controls-row [class*="span"]{float:left}.controls-row .checkbox[class*="span"],.controls-row .radio[class*="span"]{padding-top:5px}input[disabled],select[disabled],textarea[disabled],input[readonly],select[readonly],textarea[readonly]{cursor:not-allowed;background-color:#eee}input[type="radio"][disabled],input[type="checkbox"][disabled],input[type="radio"][readonly],input[type="checkbox"][readonly]{background-color:transparent}.control-group.warning .control-label,.control-group.warning .help-block,.control-group.warning .help-inline{color:#c09853}.control-group.warning .checkbox,.control-group.warning .radio,.control-group.warning input,.control-group.warning select,.control-group.warning textarea{color:#c09853}.control-group.warning input,.control-group.warning select,.control-group.warning textarea{border-color:#c09853;-webkit-box-shadow:inset 0 1px 1px rgba(0,0,0,0.075);-moz-box-shadow:inset 0 1px 1px rgba(0,0,0,0.075);box-shadow:inset 0 1px 1px rgba(0,0,0,0.075)}.control-group.warning input:focus,.control-group.warning select:focus,.control-group.warning textarea:focus{border-color:#a47e3c;-webkit-box-shadow:inset 0 1px 1px rgba(0,0,0,0.075),0 0 6px #dbc59e;-moz-box-shadow:inset 0 1px 1px rgba(0,0,0,0.075),0 0 6px #dbc59e;box-shadow:inset 0 1px 1px rgba(0,0,0,0.075),0 0 6px #dbc59e}.control-group.warning .input-prepend .add-on,.control-group.warning .input-append .add-on{color:#c09853;background-color:#fcf8e3;border-color:#c09853}.control-group.error .control-label,.control-group.error .help-block,.control-group.error .help-inline{color:#b94a48}.control-group.error .checkbox,.control-group.error .radio,.control-group.error input,.control-group.error select,.control-group.error textarea{color:#b94a48}.control-group.error input,.control-group.error select,.control-group.error textarea{border-color:#b94a48;-webkit-box-shadow:inset 0 1px 1px rgba(0,0,0,0.075);-moz-box-shadow:inset 0 1px 1px rgba(0,0,0,0.075);box-shadow:inset 0 1px 1px rgba(0,0,0,0.075)}.control-group.error input:focus,.control-group.error select:focus,.control-group.error textarea:focus{border-color:#953b39;-webkit-box-shadow:inset 0 1px 1px rgba(0,0,0,0.075),0 0 6px #d59392;-moz-box-shadow:inset 0 1px 1px rgba(0,0,0,0.075),0 0 6px #d59392;box-shadow:inset 0 1px 1px rgba(0,0,0,0.075),0 0 6px #d59392}.control-group.error .input-prepend .add-on,.control-group.error .input-append .add-on{color:#b94a48;background-color:#f2dede;border-color:#b94a48}.control-group.success .control-label,.control-group.success .help-block,.control-group.success .help-inline{color:#468847}.control-group.success .checkbox,.control-group.success .radio,.control-group.success input,.control-group.success select,.control-group.success textarea{color:#468847}.control-group.success input,.control-group.success select,.control-group.success textarea{border-color:#468847;-webkit-box-shadow:inset 0 1px 1px rgba(0,0,0,0.075);-moz-box-shadow:inset 0 1px 1px rgba(0,0,0,0.075);box-shadow:inset 0 1px 1px rgba(0,0,0,0.075)}.control-group.success input:focus,.control-group.success select:focus,.control-group.success textarea:focus{border-color:#356635;-webkit-box-shadow:inset 0 1px 1px rgba(0,0,0,0.075),0 0 6px #7aba7b;-moz-box-shadow:inset 0 1px 1px rgba(0,0,0,0.075),0 0 6px #7aba7b;box-shadow:inset 0 1px 1px rgba(0,0,0,0.075),0 0 6px #7aba7b}.control-group.success .input-prepend .add-on,.control-group.success .input-append .add-on{color:#468847;background-color:#dff0d8;border-color:#468847}.control-group.info .control-label,.control-group.info .help-block,.control-group.info .help-inline{color:#3a87ad}.control-group.info .checkbox,.control-group.info .radio,.control-group.info input,.control-group.info select,.control-group.info textarea{color:#3a87ad}.control-group.info input,.control-group.info select,.control-group.info textarea{border-color:#3a87ad;-webkit-box-shadow:inset 0 1px 1px rgba(0,0,0,0.075);-moz-box-shadow:inset 0 1px 1px rgba(0,0,0,0.075);box-shadow:inset 0 1px 1px rgba(0,0,0,0.075)}.control-group.info input:focus,.control-group.info select:focus,.control-group.info textarea:focus{border-color:#2d6987;-webkit-box-shadow:inset 0 1px 1px rgba(0,0,0,0.075),0 0 6px #7ab5d3;-moz-box-shadow:inset 0 1px 1px rgba(0,0,0,0.075),0 0 6px #7ab5d3;box-shadow:inset 0 1px 1px rgba(0,0,0,0.075),0 0 6px #7ab5d3}.control-group.info .input-prepend .add-on,.control-group.info .input-append .add-on{color:#3a87ad;background-color:#d9edf7;border-color:#3a87ad}input:focus:invalid,textarea:focus:invalid,select:focus:invalid{color:#b94a48;border-color:#ee5f5b}input:focus:invalid:focus,textarea:focus:invalid:focus,select:focus:invalid:focus{border-color:#e9322d;-webkit-box-shadow:0 0 6px #f8b9b7;-moz-box-shadow:0 0 6px #f8b9b7;box-shadow:0 0 6px #f8b9b7}.form-actions{padding:19px 20px 20px;margin-top:20px;margin-bottom:20px;background-color:#f5f5f5;border-top:1px solid #e5e5e5;*zoom:1}.form-actions:before,.form-actions:after{display:table;line-height:0;content:""}.form-actions:after{clear:both}.help-block,.help-inline{color:#595959}.help-block{display:block;margin-bottom:10px}.help-inline{display:inline-block;*display:inline;padding-left:5px;vertical-align:middle;*zoom:1}.input-append,.input-prepend{display:inline-block;margin-bottom:10px;font-size:0;white-space:nowrap;vertical-align:middle}.input-append input,.input-prepend input,.input-append select,.input-prepend select,.input-append .uneditable-input,.input-prepend .uneditable-input,.input-append .dropdown-menu,.input-prepend .dropdown-menu,.input-append .popover,.input-prepend .popover{font-size:14px}.input-append input,.input-prepend input,.input-append select,.input-prepend select,.input-append .uneditable-input,.input-prepend .uneditable-input{position:relative;margin-bottom:0;*margin-left:0;vertical-align:top;-webkit-border-radius:0 4px 4px 0;-moz-border-radius:0 4px 4px 0;border-radius:0 4px 4px 0}.input-append input:focus,.input-prepend input:focus,.input-append select:focus,.input-prepend select:focus,.input-append .uneditable-input:focus,.input-prepend .uneditable-input:focus{z-index:2}.input-append .add-on,.input-prepend .add-on{display:inline-block;width:auto;height:20px;min-width:16px;padding:4px 5px;font-size:14px;font-weight:normal;line-height:20px;text-align:center;text-shadow:0 1px 0 #fff;background-color:#eee;border:1px solid #ccc}.input-append .add-on,.input-prepend .add-on,.input-append .btn,.input-prepend .btn,.input-append .btn-group>.dropdown-toggle,.input-prepend .btn-group>.dropdown-toggle{vertical-align:top;-webkit-border-radius:0;-moz-border-radius:0;border-radius:0}.input-append .active,.input-prepend .active{background-color:#a9dba9;border-color:#46a546}.input-prepend .add-on,.input-prepend .btn{margin-right:-1px}.input-prepend .add-on:first-child,.input-prepend .btn:first-child{-webkit-border-radius:4px 0 0 4px;-moz-border-radius:4px 0 0 4px;border-radius:4px 0 0 4px}.input-append input,.input-append select,.input-append .uneditable-input{-webkit-border-radius:4px 0 0 4px;-moz-border-radius:4px 0 0 4px;border-radius:4px 0 0 4px}.input-append input+.btn-group .btn:last-child,.input-append select+.btn-group .btn:last-child,.input-append .uneditable-input+.btn-group .btn:last-child{-webkit-border-radius:0 4px 4px 0;-moz-border-radius:0 4px 4px 0;border-radius:0 4px 4px 0}.input-append .add-on,.input-append .btn,.input-append .btn-group{margin-left:-1px}.input-append .add-on:last-child,.input-append .btn:last-child,.input-append .btn-group:last-child>.dropdown-toggle{-webkit-border-radius:0 4px 4px 0;-moz-border-radius:0 4px 4px 0;border-radius:0 4px 4px 0}.input-prepend.input-append input,.input-prepend.input-append select,.input-prepend.input-append .uneditable-input{-webkit-border-radius:0;-moz-border-radius:0;border-radius:0}.input-prepend.input-append input+.btn-group .btn,.input-prepend.input-append select+.btn-group .btn,.input-prepend.input-append .uneditable-input+.btn-group .btn{-webkit-border-radius:0 4px 4px 0;-moz-border-radius:0 4px 4px 0;border-radius:0 4px 4px 0}.input-prepend.input-append .add-on:first-child,.input-prepend.input-append .btn:first-child{margin-right:-1px;-webkit-border-radius:4px 0 0 4px;-moz-border-radius:4px 0 0 4px;border-radius:4px 0 0 4px}.input-prepend.input-append .add-on:last-child,.input-prepend.input-append .btn:last-child{margin-left:-1px;-webkit-border-radius:0 4px 4px 0;-moz-border-radius:0 4px 4px 0;border-radius:0 4px 4px 0}.input-prepend.input-append .btn-group:first-child{margin-left:0}input.search-query{padding-right:14px;padding-right:4px \9;padding-left:14px;padding-left:4px \9;margin-bottom:0;-webkit-border-radius:15px;-moz-border-radius:15px;border-radius:15px}.form-search .input-append .search-query,.form-search .input-prepend .search-query{-webkit-border-radius:0;-moz-border-radius:0;border-radius:0}.form-search .input-append .search-query{-webkit-border-radius:14px 0 0 14px;-moz-border-radius:14px 0 0 14px;border-radius:14px 0 0 14px}.form-search .input-append .btn{-webkit-border-radius:0 14px 14px 0;-moz-border-radius:0 14px 14px 0;border-radius:0 14px 14px 0}.form-search .input-prepend .search-query{-webkit-border-radius:0 14px 14px 0;-moz-border-radius:0 14px 14px 0;border-radius:0 14px 14px 0}.form-search .input-prepend .btn{-webkit-border-radius:14px 0 0 14px;-moz-border-radius:14px 0 0 14px;border-radius:14px 0 0 14px}.form-search input,.form-inline input,.form-horizontal input,.form-search textarea,.form-inline textarea,.form-horizontal textarea,.form-search select,.form-inline select,.form-horizontal select,.form-search .help-inline,.form-inline .help-inline,.form-horizontal .help-inline,.form-search .uneditable-input,.form-inline .uneditable-input,.form-horizontal .uneditable-input,.form-search .input-prepend,.form-inline .input-prepend,.form-horizontal .input-prepend,.form-search .input-append,.form-inline .input-append,.form-horizontal .input-append{display:inline-block;*display:inline;margin-bottom:0;vertical-align:middle;*zoom:1}.form-search .hide,.form-inline .hide,.form-horizontal .hide{display:none}.form-search label,.form-inline label,.form-search .btn-group,.form-inline .btn-group{display:inline-block}.form-search .input-append,.form-inline .input-append,.form-search .input-prepend,.form-inline .input-prepend{margin-bottom:0}.form-search .radio,.form-search .checkbox,.form-inline .radio,.form-inline .checkbox{padding-left:0;margin-bottom:0;vertical-align:middle}.form-search .radio input[type="radio"],.form-search .checkbox input[type="checkbox"],.form-inline .radio input[type="radio"],.form-inline .checkbox input[type="checkbox"]{float:left;margin-right:3px;margin-left:0}.control-group{margin-bottom:10px}legend+.control-group{margin-top:20px;-webkit-margin-top-collapse:separate}.form-horizontal .control-group{margin-bottom:20px;*zoom:1}.form-horizontal .control-group:before,.form-horizontal .control-group:after{display:table;line-height:0;content:""}.form-horizontal .control-group:after{clear:both}.form-horizontal .control-label{float:left;width:160px;padding-top:5px;text-align:right}.form-horizontal .controls{*display:inline-block;*padding-left:20px;margin-left:180px;*margin-left:0}.form-horizontal .controls:first-child{*padding-left:180px}.form-horizontal .help-block{margin-bottom:0}.form-horizontal input+.help-block,.form-horizontal select+.help-block,.form-horizontal textarea+.help-block,.form-horizontal .uneditable-input+.help-block,.form-horizontal .input-prepend+.help-block,.form-horizontal .input-append+.help-block{margin-top:10px}.form-horizontal .form-actions{padding-left:180px}table{max-width:100%;background-color:transparent;border-collapse:collapse;border-spacing:0}.table{width:100%;margin-bottom:20px}.table th,.table td{padding:8px;line-height:20px;text-align:left;vertical-align:top;border-top:1px solid #ddd}.table th{font-weight:bold}.table thead th{vertical-align:bottom}.table caption+thead tr:first-child th,.table caption+thead tr:first-child td,.table colgroup+thead tr:first-child th,.table colgroup+thead tr:first-child td,.table thead:first-child tr:first-child th,.table thead:first-child tr:first-child td{border-top:0}.table tbody+tbody{border-top:2px solid #ddd}.table .table{background-color:#fff}.table-condensed th,.table-condensed td{padding:4px 5px}.table-bordered{border:1px solid #ddd;border-collapse:separate;*border-collapse:collapse;border-left:0;-webkit-border-radius:4px;-moz-border-radius:4px;border-radius:4px}.table-bordered th,.table-bordered td{border-left:1px solid #ddd}.table-bordered caption+thead tr:first-child th,.table-bordered caption+tbody tr:first-child th,.table-bordered caption+tbody tr:first-child td,.table-bordered colgroup+thead tr:first-child th,.table-bordered colgroup+tbody tr:first-child th,.table-bordered colgroup+tbody tr:first-child td,.table-bordered thead:first-child tr:first-child th,.table-bordered tbody:first-child tr:first-child th,.table-bordered tbody:first-child tr:first-child td{border-top:0}.table-bordered thead:first-child tr:first-child>th:first-child,.table-bordered tbody:first-child tr:first-child>td:first-child,.table-bordered tbody:first-child tr:first-child>th:first-child{-webkit-border-top-left-radius:4px;border-top-left-radius:4px;-moz-border-radius-topleft:4px}.table-bordered thead:first-child tr:first-child>th:last-child,.table-bordered tbody:first-child tr:first-child>td:last-child,.table-bordered tbody:first-child tr:first-child>th:last-child{-webkit-border-top-right-radius:4px;border-top-right-radius:4px;-moz-border-radius-topright:4px}.table-bordered thead:last-child tr:last-child>th:first-child,.table-bordered tbody:last-child tr:last-child>td:first-child,.table-bordered tbody:last-child tr:last-child>th:first-child,.table-bordered tfoot:last-child tr:last-child>td:first-child,.table-bordered tfoot:last-child tr:last-child>th:first-child{-webkit-border-bottom-left-radius:4px;border-bottom-left-radius:4px;-moz-border-radius-bottomleft:4px}.table-bordered thead:last-child tr:last-child>th:last-child,.table-bordered tbody:last-child tr:last-child>td:last-child,.table-bordered tbody:last-child tr:last-child>th:last-child,.table-bordered tfoot:last-child tr:last-child>td:last-child,.table-bordered tfoot:last-child tr:last-child>th:last-child{-webkit-border-bottom-right-radius:4px;border-bottom-right-radius:4px;-moz-border-radius-bottomright:4px}.table-bordered tfoot+tbody:last-child tr:last-child td:first-child{-webkit-border-bottom-left-radius:0;border-bottom-left-radius:0;-moz-border-radius-bottomleft:0}.table-bordered tfoot+tbody:last-child tr:last-child td:last-child{-webkit-border-bottom-right-radius:0;border-bottom-right-radius:0;-moz-border-radius-bottomright:0}.table-bordered caption+thead tr:first-child th:first-child,.table-bordered caption+tbody tr:first-child td:first-child,.table-bordered colgroup+thead tr:first-child th:first-child,.table-bordered colgroup+tbody tr:first-child td:first-child{-webkit-border-top-left-radius:4px;border-top-left-radius:4px;-moz-border-radius-topleft:4px}.table-bordered caption+thead tr:first-child th:last-child,.table-bordered caption+tbody tr:first-child td:last-child,.table-bordered colgroup+thead tr:first-child th:last-child,.table-bordered colgroup+tbody tr:first-child td:last-child{-webkit-border-top-right-radius:4px;border-top-right-radius:4px;-moz-border-radius-topright:4px}.table-striped tbody>tr:nth-child(odd)>td,.table-striped tbody>tr:nth-child(odd)>th{background-color:#f9f9f9}.table-hover tbody tr:hover>td,.table-hover tbody tr:hover>th{background-color:#f5f5f5}table td[class*="span"],table th[class*="span"],.row-fluid table td[class*="span"],.row-fluid table th[class*="span"]{display:table-cell;float:none;margin-left:0}.table td.span1,.table th.span1{float:none;width:44px;margin-left:0}.table td.span2,.table th.span2{float:none;width:124px;margin-left:0}.table td.span3,.table th.span3{float:none;width:204px;margin-left:0}.table td.span4,.table th.span4{float:none;width:284px;margin-left:0}.table td.span5,.table th.span5{float:none;width:364px;margin-left:0}.table td.span6,.table th.span6{float:none;width:444px;margin-left:0}.table td.span7,.table th.span7{float:none;width:524px;margin-left:0}.table td.span8,.table th.span8{float:none;width:604px;margin-left:0}.table td.span9,.table th.span9{float:none;width:684px;margin-left:0}.table td.span10,.table th.span10{float:none;width:764px;margin-left:0}.table td.span11,.table th.span11{float:none;width:844px;margin-left:0}.table td.span12,.table th.span12{float:none;width:924px;margin-left:0}.table tbody tr.success>td{background-color:#dff0d8}.table tbody tr.error>td{background-color:#f2dede}.table tbody tr.warning>td{background-color:#fcf8e3}.table tbody tr.info>td{background-color:#d9edf7}.table-hover tbody tr.success:hover>td{background-color:#d0e9c6}.table-hover tbody tr.error:hover>td{background-color:#ebcccc}.table-hover tbody tr.warning:hover>td{background-color:#faf2cc}.table-hover tbody tr.info:hover>td{background-color:#c4e3f3}[class^="icon-"],[class*=" icon-"]{display:inline-block;width:14px;height:14px;margin-top:1px;*margin-right:.3em;line-height:14px;vertical-align:text-top;background-image:url("../img/glyphicons-halflings.png");background-position:14px 14px;background-repeat:no-repeat}.icon-white,.nav-pills>.active>a>[class^="icon-"],.nav-pills>.active>a>[class*=" icon-"],.nav-list>.active>a>[class^="icon-"],.nav-list>.active>a>[class*=" icon-"],.navbar-inverse .nav>.active>a>[class^="icon-"],.navbar-inverse .nav>.active>a>[class*=" icon-"],.dropdown-menu>li>a:hover>[class^="icon-"],.dropdown-menu>li>a:focus>[class^="icon-"],.dropdown-menu>li>a:hover>[class*=" icon-"],.dropdown-menu>li>a:focus>[class*=" icon-"],.dropdown-menu>.active>a>[class^="icon-"],.dropdown-menu>.active>a>[class*=" icon-"],.dropdown-submenu:hover>a>[class^="icon-"],.dropdown-submenu:focus>a>[class^="icon-"],.dropdown-submenu:hover>a>[class*=" icon-"],.dropdown-submenu:focus>a>[class*=" icon-"]{background-image:url("../img/glyphicons-halflings-white.png")}.icon-glass{background-position:0 0}.icon-music{background-position:-24px 0}.icon-search{background-position:-48px 0}.icon-envelope{background-position:-72px 0}.icon-heart{background-position:-96px 0}.icon-star{background-position:-120px 0}.icon-star-empty{background-position:-144px 0}.icon-user{background-position:-168px 0}.icon-film{background-position:-192px 0}.icon-th-large{background-position:-216px 0}.icon-th{background-position:-240px 0}.icon-th-list{background-position:-264px 0}.icon-ok{background-position:-288px 0}.icon-remove{background-position:-312px 0}.icon-zoom-in{background-position:-336px 0}.icon-zoom-out{background-position:-360px 0}.icon-off{background-position:-384px 0}.icon-signal{background-position:-408px 0}.icon-cog{background-position:-432px 0}.icon-trash{background-position:-456px 0}.icon-home{background-position:0 -24px}.icon-file{background-position:-24px -24px}.icon-time{background-position:-48px -24px}.icon-road{background-position:-72px -24px}.icon-download-alt{background-position:-96px -24px}.icon-download{background-position:-120px -24px}.icon-upload{background-position:-144px -24px}.icon-inbox{background-position:-168px -24px}.icon-play-circle{background-position:-192px -24px}.icon-repeat{background-position:-216px -24px}.icon-refresh{background-position:-240px -24px}.icon-list-alt{background-position:-264px -24px}.icon-lock{background-position:-287px -24px}.icon-flag{background-position:-312px -24px}.icon-headphones{background-position:-336px -24px}.icon-volume-off{background-position:-360px -24px}.icon-volume-down{background-position:-384px -24px}.icon-volume-up{background-position:-408px -24px}.icon-qrcode{background-position:-432px -24px}.icon-barcode{background-position:-456px -24px}.icon-tag{background-position:0 -48px}.icon-tags{background-position:-25px -48px}.icon-book{background-position:-48px -48px}.icon-bookmark{background-position:-72px -48px}.icon-print{background-position:-96px -48px}.icon-camera{background-position:-120px -48px}.icon-font{background-position:-144px -48px}.icon-bold{background-position:-167px -48px}.icon-italic{background-position:-192px -48px}.icon-text-height{background-position:-216px -48px}.icon-text-width{background-position:-240px -48px}.icon-align-left{background-position:-264px -48px}.icon-align-center{background-position:-288px -48px}.icon-align-right{background-position:-312px -48px}.icon-align-justify{background-position:-336px -48px}.icon-list{background-position:-360px -48px}.icon-indent-left{background-position:-384px -48px}.icon-indent-right{background-position:-408px -48px}.icon-facetime-video{background-position:-432px -48px}.icon-picture{background-position:-456px -48px}.icon-pencil{background-position:0 -72px}.icon-map-marker{background-position:-24px -72px}.icon-adjust{background-position:-48px -72px}.icon-tint{background-position:-72px -72px}.icon-edit{background-position:-96px -72px}.icon-share{background-position:-120px -72px}.icon-check{background-position:-144px -72px}.icon-move{background-position:-168px -72px}.icon-step-backward{background-position:-192px -72px}.icon-fast-backward{background-position:-216px -72px}.icon-backward{background-position:-240px -72px}.icon-play{background-position:-264px -72px}.icon-pause{background-position:-288px -72px}.icon-stop{background-position:-312px -72px}.icon-forward{background-position:-336px -72px}.icon-fast-forward{background-position:-360px -72px}.icon-step-forward{background-position:-384px -72px}.icon-eject{background-position:-408px -72px}.icon-chevron-left{background-position:-432px -72px}.icon-chevron-right{background-position:-456px -72px}.icon-plus-sign{background-position:0 -96px}.icon-minus-sign{background-position:-24px -96px}.icon-remove-sign{background-position:-48px -96px}.icon-ok-sign{background-position:-72px -96px}.icon-question-sign{background-position:-96px -96px}.icon-info-sign{background-position:-120px -96px}.icon-screenshot{background-position:-144px -96px}.icon-remove-circle{background-position:-168px -96px}.icon-ok-circle{background-position:-192px -96px}.icon-ban-circle{background-position:-216px -96px}.icon-arrow-left{background-position:-240px -96px}.icon-arrow-right{background-position:-264px -96px}.icon-arrow-up{background-position:-289px -96px}.icon-arrow-down{background-position:-312px -96px}.icon-share-alt{background-position:-336px -96px}.icon-resize-full{background-position:-360px -96px}.icon-resize-small{background-position:-384px -96px}.icon-plus{background-position:-408px -96px}.icon-minus{background-position:-433px -96px}.icon-asterisk{background-position:-456px -96px}.icon-exclamation-sign{background-position:0 -120px}.icon-gift{background-position:-24px -120px}.icon-leaf{background-position:-48px -120px}.icon-fire{background-position:-72px -120px}.icon-eye-open{background-position:-96px -120px}.icon-eye-close{background-position:-120px -120px}.icon-warning-sign{background-position:-144px -120px}.icon-plane{background-position:-168px -120px}.icon-calendar{background-position:-192px -120px}.icon-random{width:16px;background-position:-216px -120px}.icon-comment{background-position:-240px -120px}.icon-magnet{background-position:-264px -120px}.icon-chevron-up{background-position:-288px -120px}.icon-chevron-down{background-position:-313px -119px}.icon-retweet{background-position:-336px -120px}.icon-shopping-cart{background-position:-360px -120px}.icon-folder-close{width:16px;background-position:-384px -120px}.icon-folder-open{width:16px;background-position:-408px -120px}.icon-resize-vertical{background-position:-432px -119px}.icon-resize-horizontal{background-position:-456px -118px}.icon-hdd{background-position:0 -144px}.icon-bullhorn{background-position:-24px -144px}.icon-bell{background-position:-48px -144px}.icon-certificate{background-position:-72px -144px}.icon-thumbs-up{background-position:-96px -144px}.icon-thumbs-down{background-position:-120px -144px}.icon-hand-right{background-position:-144px -144px}.icon-hand-left{background-position:-168px -144px}.icon-hand-up{background-position:-192px -144px}.icon-hand-down{background-position:-216px -144px}.icon-circle-arrow-right{background-position:-240px -144px}.icon-circle-arrow-left{background-position:-264px -144px}.icon-circle-arrow-up{background-position:-288px -144px}.icon-circle-arrow-down{background-position:-312px -144px}.icon-globe{background-position:-336px -144px}.icon-wrench{background-position:-360px -144px}.icon-tasks{background-position:-384px -144px}.icon-filter{background-position:-408px -144px}.icon-briefcase{background-position:-432px -144px}.icon-fullscreen{background-position:-456px -144px}.dropup,.dropdown{position:relative}.dropdown-toggle{*margin-bottom:-3px}.dropdown-toggle:active,.open .dropdown-toggle{outline:0}.caret{display:inline-block;width:0;height:0;vertical-align:top;border-top:4px solid #000;border-right:4px solid transparent;border-left:4px solid transparent;content:""}.dropdown .caret{margin-top:8px;margin-left:2px}.dropdown-menu{position:absolute;top:100%;left:0;z-index:1000;display:none;float:left;min-width:160px;padding:5px 0;margin:2px 0 0;list-style:none;background-color:#fff;border:1px solid #ccc;border:1px solid rgba(0,0,0,0.2);*border-right-width:2px;*border-bottom-width:2px;-webkit-border-radius:6px;-moz-border-radius:6px;border-radius:6px;-webkit-box-shadow:0 5px 10px rgba(0,0,0,0.2);-moz-box-shadow:0 5px 10px rgba(0,0,0,0.2);box-shadow:0 5px 10px rgba(0,0,0,0.2);-webkit-background-clip:padding-box;-moz-background-clip:padding;background-clip:padding-box}.dropdown-menu.pull-right{right:0;left:auto}.dropdown-menu .divider{*width:100%;height:1px;margin:9px 1px;*margin:-5px 0 5px;overflow:hidden;background-color:#e5e5e5;border-bottom:1px solid #fff}.dropdown-menu>li>a{display:block;padding:3px 20px;clear:both;font-weight:normal;line-height:20px;color:#333;white-space:nowrap}.dropdown-menu>li>a:hover,.dropdown-menu>li>a:focus,.dropdown-submenu:hover>a,.dropdown-submenu:focus>a{color:#fff;text-decoration:none;background-color:#0081c2;background-image:-moz-linear-gradient(top,#08c,#0077b3);background-image:-webkit-gradient(linear,0 0,0 100%,from(#08c),to(#0077b3));background-image:-webkit-linear-gradient(top,#08c,#0077b3);background-image:-o-linear-gradient(top,#08c,#0077b3);background-image:linear-gradient(to bottom,#08c,#0077b3);background-repeat:repeat-x;filter:progid:DXImageTransform.Microsoft.gradient(startColorstr='#ff0088cc',endColorstr='#ff0077b3',GradientType=0)}.dropdown-menu>.active>a,.dropdown-menu>.active>a:hover,.dropdown-menu>.active>a:focus{color:#fff;text-decoration:none;background-color:#0081c2;background-image:-moz-linear-gradient(top,#08c,#0077b3);background-image:-webkit-gradient(linear,0 0,0 100%,from(#08c),to(#0077b3));background-image:-webkit-linear-gradient(top,#08c,#0077b3);background-image:-o-linear-gradient(top,#08c,#0077b3);background-image:linear-gradient(to bottom,#08c,#0077b3);background-repeat:repeat-x;outline:0;filter:progid:DXImageTransform.Microsoft.gradient(startColorstr='#ff0088cc',endColorstr='#ff0077b3',GradientType=0)}.dropdown-menu>.disabled>a,.dropdown-menu>.disabled>a:hover,.dropdown-menu>.disabled>a:focus{color:#999}.dropdown-menu>.disabled>a:hover,.dropdown-menu>.disabled>a:focus{text-decoration:none;cursor:default;background-color:transparent;background-image:none;filter:progid:DXImageTransform.Microsoft.gradient(enabled=false)}.open{*z-index:1000}.open>.dropdown-menu{display:block}.dropdown-backdrop{position:fixed;top:0;right:0;bottom:0;left:0;z-index:990}.pull-right>.dropdown-menu{right:0;left:auto}.dropup .caret,.navbar-fixed-bottom .dropdown .caret{border-top:0;border-bottom:4px solid #000;content:""}.dropup .dropdown-menu,.navbar-fixed-bottom .dropdown .dropdown-menu{top:auto;bottom:100%;margin-bottom:1px}.dropdown-submenu{position:relative}.dropdown-submenu>.dropdown-menu{top:0;left:100%;margin-top:-6px;margin-left:-1px;-webkit-border-radius:0 6px 6px 6px;-moz-border-radius:0 6px 6px 6px;border-radius:0 6px 6px 6px}.dropdown-submenu:hover>.dropdown-menu{display:block}.dropup .dropdown-submenu>.dropdown-menu{top:auto;bottom:0;margin-top:0;margin-bottom:-2px;-webkit-border-radius:5px 5px 5px 0;-moz-border-radius:5px 5px 5px 0;border-radius:5px 5px 5px 0}.dropdown-submenu>a:after{display:block;float:right;width:0;height:0;margin-top:5px;margin-right:-10px;border-color:transparent;border-left-color:#ccc;border-style:solid;border-width:5px 0 5px 5px;content:" "}.dropdown-submenu:hover>a:after{border-left-color:#fff}.dropdown-submenu.pull-left{float:none}.dropdown-submenu.pull-left>.dropdown-menu{left:-100%;margin-left:10px;-webkit-border-radius:6px 0 6px 6px;-moz-border-radius:6px 0 6px 6px;border-radius:6px 0 6px 6px}.dropdown .dropdown-menu .nav-header{padding-right:20px;padding-left:20px}.typeahead{z-index:1051;margin-top:2px;-webkit-border-radius:4px;-moz-border-radius:4px;border-radius:4px}.well{min-height:20px;padding:19px;margin-bottom:20px;background-color:#f5f5f5;border:1px solid #e3e3e3;-webkit-border-radius:4px;-moz-border-radius:4px;border-radius:4px;-webkit-box-shadow:inset 0 1px 1px rgba(0,0,0,0.05);-moz-box-shadow:inset 0 1px 1px rgba(0,0,0,0.05);box-shadow:inset 0 1px 1px rgba(0,0,0,0.05)}.well blockquote{border-color:#ddd;border-color:rgba(0,0,0,0.15)}.well-large{padding:24px;-webkit-border-radius:6px;-moz-border-radius:6px;border-radius:6px}.well-small{padding:9px;-webkit-border-radius:3px;-moz-border-radius:3px;border-radius:3px}.fade{opacity:0;-webkit-transition:opacity .15s linear;-moz-transition:opacity .15s linear;-o-transition:opacity .15s linear;transition:opacity .15s linear}.fade.in{opacity:1}.collapse{position:relative;height:0;overflow:hidden;-webkit-transition:height .35s ease;-moz-transition:height .35s ease;-o-transition:height .35s ease;transition:height .35s ease}.collapse.in{height:auto}.close{float:right;font-size:20px;font-weight:bold;line-height:20px;color:#000;text-shadow:0 1px 0 #fff;opacity:.2;filter:alpha(opacity=20)}.close:hover,.close:focus{color:#000;text-decoration:none;cursor:pointer;opacity:.4;filter:alpha(opacity=40)}button.close{padding:0;cursor:pointer;background:transparent;border:0;-webkit-appearance:none}.btn{display:inline-block;*display:inline;padding:4px 12px;margin-bottom:0;*margin-left:.3em;font-size:14px;line-height:20px;color:#333;text-align:center;text-shadow:0 1px 1px rgba(255,255,255,0.75);vertical-align:middle;cursor:pointer;background-color:#f5f5f5;*background-color:#e6e6e6;background-image:-moz-linear-gradient(top,#fff,#e6e6e6);background-image:-webkit-gradient(linear,0 0,0 100%,from(#fff),to(#e6e6e6));background-image:-webkit-linear-gradient(top,#fff,#e6e6e6);background-image:-o-linear-gradient(top,#fff,#e6e6e6);background-image:linear-gradient(to bottom,#fff,#e6e6e6);background-repeat:repeat-x;border:1px solid #ccc;*border:0;border-color:#e6e6e6 #e6e6e6 #bfbfbf;border-color:rgba(0,0,0,0.1) rgba(0,0,0,0.1) rgba(0,0,0,0.25);border-bottom-color:#b3b3b3;-webkit-border-radius:4px;-moz-border-radius:4px;border-radius:4px;filter:progid:DXImageTransform.Microsoft.gradient(startColorstr='#ffffffff',endColorstr='#ffe6e6e6',GradientType=0);filter:progid:DXImageTransform.Microsoft.gradient(enabled=false);*zoom:1;-webkit-box-shadow:inset 0 1px 0 rgba(255,255,255,0.2),0 1px 2px rgba(0,0,0,0.05);-moz-box-shadow:inset 0 1px 0 rgba(255,255,255,0.2),0 1px 2px rgba(0,0,0,0.05);box-shadow:inset 0 1px 0 rgba(255,255,255,0.2),0 1px 2px rgba(0,0,0,0.05)}.btn:hover,.btn:focus,.btn:active,.btn.active,.btn.disabled,.btn[disabled]{color:#333;background-color:#e6e6e6;*background-color:#d9d9d9}.btn:active,.btn.active{background-color:#ccc \9}.btn:first-child{*margin-left:0}.btn:hover,.btn:focus{color:#333;text-decoration:none;background-position:0 -15px;-webkit-transition:background-position .1s linear;-moz-transition:background-position .1s linear;-o-transition:background-position .1s linear;transition:background-position .1s linear}.btn:focus{outline:thin dotted #333;outline:5px auto -webkit-focus-ring-color;outline-offset:-2px}.btn.active,.btn:active{background-image:none;outline:0;-webkit-box-shadow:inset 0 2px 4px rgba(0,0,0,0.15),0 1px 2px rgba(0,0,0,0.05);-moz-box-shadow:inset 0 2px 4px rgba(0,0,0,0.15),0 1px 2px rgba(0,0,0,0.05);box-shadow:inset 0 2px 4px rgba(0,0,0,0.15),0 1px 2px rgba(0,0,0,0.05)}.btn.disabled,.btn[disabled]{cursor:default;background-image:none;opacity:.65;filter:alpha(opacity=65);-webkit-box-shadow:none;-moz-box-shadow:none;box-shadow:none}.btn-large{padding:11px 19px;font-size:17.5px;-webkit-border-radius:6px;-moz-border-radius:6px;border-radius:6px}.btn-large [class^="icon-"],.btn-large [class*=" icon-"]{margin-top:4px}.btn-small{padding:2px 10px;font-size:11.9px;-webkit-border-radius:3px;-moz-border-radius:3px;border-radius:3px}.btn-small [class^="icon-"],.btn-small [class*=" icon-"]{margin-top:0}.btn-mini [class^="icon-"],.btn-mini [class*=" icon-"]{margin-top:-1px}.btn-mini{padding:0 6px;font-size:10.5px;-webkit-border-radius:3px;-moz-border-radius:3px;border-radius:3px}.btn-block{display:block;width:100%;padding-right:0;padding-left:0;-webkit-box-sizing:border-box;-moz-box-sizing:border-box;box-sizing:border-box}.btn-block+.btn-block{margin-top:5px}input[type="submit"].btn-block,input[type="reset"].btn-block,input[type="button"].btn-block{width:100%}.btn-primary.active,.btn-warning.active,.btn-danger.active,.btn-success.active,.btn-info.active,.btn-inverse.active{color:rgba(255,255,255,0.75)}.btn-primary{color:#fff;text-shadow:0 -1px 0 rgba(0,0,0,0.25);background-color:#006dcc;*background-color:#04c;background-image:-moz-linear-gradient(top,#08c,#04c);background-image:-webkit-gradient(linear,0 0,0 100%,from(#08c),to(#04c));background-image:-webkit-linear-gradient(top,#08c,#04c);background-image:-o-linear-gradient(top,#08c,#04c);background-image:linear-gradient(to bottom,#08c,#04c);background-repeat:repeat-x;border-color:#04c #04c #002a80;border-color:rgba(0,0,0,0.1) rgba(0,0,0,0.1) rgba(0,0,0,0.25);filter:progid:DXImageTransform.Microsoft.gradient(startColorstr='#ff0088cc',endColorstr='#ff0044cc',GradientType=0);filter:progid:DXImageTransform.Microsoft.gradient(enabled=false)}.btn-primary:hover,.btn-primary:focus,.btn-primary:active,.btn-primary.active,.btn-primary.disabled,.btn-primary[disabled]{color:#fff;background-color:#04c;*background-color:#003bb3}.btn-primary:active,.btn-primary.active{background-color:#039 \9}.btn-warning{color:#fff;text-shadow:0 -1px 0 rgba(0,0,0,0.25);background-color:#faa732;*background-color:#f89406;background-image:-moz-linear-gradient(top,#fbb450,#f89406);background-image:-webkit-gradient(linear,0 0,0 100%,from(#fbb450),to(#f89406));background-image:-webkit-linear-gradient(top,#fbb450,#f89406);background-image:-o-linear-gradient(top,#fbb450,#f89406);background-image:linear-gradient(to bottom,#fbb450,#f89406);background-repeat:repeat-x;border-color:#f89406 #f89406 #ad6704;border-color:rgba(0,0,0,0.1) rgba(0,0,0,0.1) rgba(0,0,0,0.25);filter:progid:DXImageTransform.Microsoft.gradient(startColorstr='#fffbb450',endColorstr='#fff89406',GradientType=0);filter:progid:DXImageTransform.Microsoft.gradient(enabled=false)}.btn-warning:hover,.btn-warning:focus,.btn-warning:active,.btn-warning.active,.btn-warning.disabled,.btn-warning[disabled]{color:#fff;background-color:#f89406;*background-color:#df8505}.btn-warning:active,.btn-warning.active{background-color:#c67605 \9}.btn-danger{color:#fff;text-shadow:0 -1px 0 rgba(0,0,0,0.25);background-color:#da4f49;*background-color:#bd362f;background-image:-moz-linear-gradient(top,#ee5f5b,#bd362f);background-image:-webkit-gradient(linear,0 0,0 100%,from(#ee5f5b),to(#bd362f));background-image:-webkit-linear-gradient(top,#ee5f5b,#bd362f);background-image:-o-linear-gradient(top,#ee5f5b,#bd362f);background-image:linear-gradient(to bottom,#ee5f5b,#bd362f);background-repeat:repeat-x;border-color:#bd362f #bd362f #802420;border-color:rgba(0,0,0,0.1) rgba(0,0,0,0.1) rgba(0,0,0,0.25);filter:progid:DXImageTransform.Microsoft.gradient(startColorstr='#ffee5f5b',endColorstr='#ffbd362f',GradientType=0);filter:progid:DXImageTransform.Microsoft.gradient(enabled=false)}.btn-danger:hover,.btn-danger:focus,.btn-danger:active,.btn-danger.active,.btn-danger.disabled,.btn-danger[disabled]{color:#fff;background-color:#bd362f;*background-color:#a9302a}.btn-danger:active,.btn-danger.active{background-color:#942a25 \9}.btn-success{color:#fff;text-shadow:0 -1px 0 rgba(0,0,0,0.25);background-color:#5bb75b;*background-color:#51a351;background-image:-moz-linear-gradient(top,#62c462,#51a351);background-image:-webkit-gradient(linear,0 0,0 100%,from(#62c462),to(#51a351));background-image:-webkit-linear-gradient(top,#62c462,#51a351);background-image:-o-linear-gradient(top,#62c462,#51a351);background-image:linear-gradient(to bottom,#62c462,#51a351);background-repeat:repeat-x;border-color:#51a351 #51a351 #387038;border-color:rgba(0,0,0,0.1) rgba(0,0,0,0.1) rgba(0,0,0,0.25);filter:progid:DXImageTransform.Microsoft.gradient(startColorstr='#ff62c462',endColorstr='#ff51a351',GradientType=0);filter:progid:DXImageTransform.Microsoft.gradient(enabled=false)}.btn-success:hover,.btn-success:focus,.btn-success:active,.btn-success.active,.btn-success.disabled,.btn-success[disabled]{color:#fff;background-color:#51a351;*background-color:#499249}.btn-success:active,.btn-success.active{background-color:#408140 \9}.btn-info{color:#fff;text-shadow:0 -1px 0 rgba(0,0,0,0.25);background-color:#49afcd;*background-color:#2f96b4;background-image:-moz-linear-gradient(top,#5bc0de,#2f96b4);background-image:-webkit-gradient(linear,0 0,0 100%,from(#5bc0de),to(#2f96b4));background-image:-webkit-linear-gradient(top,#5bc0de,#2f96b4);background-image:-o-linear-gradient(top,#5bc0de,#2f96b4);background-image:linear-gradient(to bottom,#5bc0de,#2f96b4);background-repeat:repeat-x;border-color:#2f96b4 #2f96b4 #1f6377;border-color:rgba(0,0,0,0.1) rgba(0,0,0,0.1) rgba(0,0,0,0.25);filter:progid:DXImageTransform.Microsoft.gradient(startColorstr='#ff5bc0de',endColorstr='#ff2f96b4',GradientType=0);filter:progid:DXImageTransform.Microsoft.gradient(enabled=false)}.btn-info:hover,.btn-info:focus,.btn-info:active,.btn-info.active,.btn-info.disabled,.btn-info[disabled]{color:#fff;background-color:#2f96b4;*background-color:#2a85a0}.btn-info:active,.btn-info.active{background-color:#24748c \9}.btn-inverse{color:#fff;text-shadow:0 -1px 0 rgba(0,0,0,0.25);background-color:#363636;*background-color:#222;background-image:-moz-linear-gradient(top,#444,#222);background-image:-webkit-gradient(linear,0 0,0 100%,from(#444),to(#222));background-image:-webkit-linear-gradient(top,#444,#222);background-image:-o-linear-gradient(top,#444,#222);background-image:linear-gradient(to bottom,#444,#222);background-repeat:repeat-x;border-color:#222 #222 #000;border-color:rgba(0,0,0,0.1) rgba(0,0,0,0.1) rgba(0,0,0,0.25);filter:progid:DXImageTransform.Microsoft.gradient(startColorstr='#ff444444',endColorstr='#ff222222',GradientType=0);filter:progid:DXImageTransform.Microsoft.gradient(enabled=false)}.btn-inverse:hover,.btn-inverse:focus,.btn-inverse:active,.btn-inverse.active,.btn-inverse.disabled,.btn-inverse[disabled]{color:#fff;background-color:#222;*background-color:#151515}.btn-inverse:active,.btn-inverse.active{background-color:#080808 \9}button.btn,input[type="submit"].btn{*padding-top:3px;*padding-bottom:3px}button.btn::-moz-focus-inner,input[type="submit"].btn::-moz-focus-inner{padding:0;border:0}button.btn.btn-large,input[type="submit"].btn.btn-large{*padding-top:7px;*padding-bottom:7px}button.btn.btn-small,input[type="submit"].btn.btn-small{*padding-top:3px;*padding-bottom:3px}button.btn.btn-mini,input[type="submit"].btn.btn-mini{*padding-top:1px;*padding-bottom:1px}.btn-link,.btn-link:active,.btn-link[disabled]{background-color:transparent;background-image:none;-webkit-box-shadow:none;-moz-box-shadow:none;box-shadow:none}.btn-link{color:#08c;cursor:pointer;border-color:transparent;-webkit-border-radius:0;-moz-border-radius:0;border-radius:0}.btn-link:hover,.btn-link:focus{color:#005580;text-decoration:underline;background-color:transparent}.btn-link[disabled]:hover,.btn-link[disabled]:focus{color:#333;text-decoration:none}.btn-group{position:relative;display:inline-block;*display:inline;*margin-left:.3em;font-size:0;white-space:nowrap;vertical-align:middle;*zoom:1}.btn-group:first-child{*margin-left:0}.btn-group+.btn-group{margin-left:5px}.btn-toolbar{margin-top:10px;margin-bottom:10px;font-size:0}.btn-toolbar>.btn+.btn,.btn-toolbar>.btn-group+.btn,.btn-toolbar>.btn+.btn-group{margin-left:5px}.btn-group>.btn{position:relative;-webkit-border-radius:0;-moz-border-radius:0;border-radius:0}.btn-group>.btn+.btn{margin-left:-1px}.btn-group>.btn,.btn-group>.dropdown-menu,.btn-group>.popover{font-size:14px}.btn-group>.btn-mini{font-size:10.5px}.btn-group>.btn-small{font-size:11.9px}.btn-group>.btn-large{font-size:17.5px}.btn-group>.btn:first-child{margin-left:0;-webkit-border-bottom-left-radius:4px;border-bottom-left-radius:4px;-webkit-border-top-left-radius:4px;border-top-left-radius:4px;-moz-border-radius-bottomleft:4px;-moz-border-radius-topleft:4px}.btn-group>.btn:last-child,.btn-group>.dropdown-toggle{-webkit-border-top-right-radius:4px;border-top-right-radius:4px;-webkit-border-bottom-right-radius:4px;border-bottom-right-radius:4px;-moz-border-radius-topright:4px;-moz-border-radius-bottomright:4px}.btn-group>.btn.large:first-child{margin-left:0;-webkit-border-bottom-left-radius:6px;border-bottom-left-radius:6px;-webkit-border-top-left-radius:6px;border-top-left-radius:6px;-moz-border-radius-bottomleft:6px;-moz-border-radius-topleft:6px}.btn-group>.btn.large:last-child,.btn-group>.large.dropdown-toggle{-webkit-border-top-right-radius:6px;border-top-right-radius:6px;-webkit-border-bottom-right-radius:6px;border-bottom-right-radius:6px;-moz-border-radius-topright:6px;-moz-border-radius-bottomright:6px}.btn-group>.btn:hover,.btn-group>.btn:focus,.btn-group>.btn:active,.btn-group>.btn.active{z-index:2}.btn-group .dropdown-toggle:active,.btn-group.open .dropdown-toggle{outline:0}.btn-group>.btn+.dropdown-toggle{*padding-top:5px;padding-right:8px;*padding-bottom:5px;padding-left:8px;-webkit-box-shadow:inset 1px 0 0 rgba(255,255,255,0.125),inset 0 1px 0 rgba(255,255,255,0.2),0 1px 2px rgba(0,0,0,0.05);-moz-box-shadow:inset 1px 0 0 rgba(255,255,255,0.125),inset 0 1px 0 rgba(255,255,255,0.2),0 1px 2px rgba(0,0,0,0.05);box-shadow:inset 1px 0 0 rgba(255,255,255,0.125),inset 0 1px 0 rgba(255,255,255,0.2),0 1px 2px rgba(0,0,0,0.05)}.btn-group>.btn-mini+.dropdown-toggle{*padding-top:2px;padding-right:5px;*padding-bottom:2px;padding-left:5px}.btn-group>.btn-small+.dropdown-toggle{*padding-top:5px;*padding-bottom:4px}.btn-group>.btn-large+.dropdown-toggle{*padding-top:7px;padding-right:12px;*padding-bottom:7px;padding-left:12px}.btn-group.open .dropdown-toggle{background-image:none;-webkit-box-shadow:inset 0 2px 4px rgba(0,0,0,0.15),0 1px 2px rgba(0,0,0,0.05);-moz-box-shadow:inset 0 2px 4px rgba(0,0,0,0.15),0 1px 2px rgba(0,0,0,0.05);box-shadow:inset 0 2px 4px rgba(0,0,0,0.15),0 1px 2px rgba(0,0,0,0.05)}.btn-group.open .btn.dropdown-toggle{background-color:#e6e6e6}.btn-group.open .btn-primary.dropdown-toggle{background-color:#04c}.btn-group.open .btn-warning.dropdown-toggle{background-color:#f89406}.btn-group.open .btn-danger.dropdown-toggle{background-color:#bd362f}.btn-group.open .btn-success.dropdown-toggle{background-color:#51a351}.btn-group.open .btn-info.dropdown-toggle{background-color:#2f96b4}.btn-group.open .btn-inverse.dropdown-toggle{background-color:#222}.btn .caret{margin-top:8px;margin-left:0}.btn-large .caret{margin-top:6px}.btn-large .caret{border-top-width:5px;border-right-width:5px;border-left-width:5px}.btn-mini .caret,.btn-small .caret{margin-top:8px}.dropup .btn-large .caret{border-bottom-width:5px}.btn-primary .caret,.btn-warning .caret,.btn-danger .caret,.btn-info .caret,.btn-success .caret,.btn-inverse .caret{border-top-color:#fff;border-bottom-color:#fff}.btn-group-vertical{display:inline-block;*display:inline;*zoom:1}.btn-group-vertical>.btn{display:block;float:none;max-width:100%;-webkit-border-radius:0;-moz-border-radius:0;border-radius:0}.btn-group-vertical>.btn+.btn{margin-top:-1px;margin-left:0}.btn-group-vertical>.btn:first-child{-webkit-border-radius:4px 4px 0 0;-moz-border-radius:4px 4px 0 0;border-radius:4px 4px 0 0}.btn-group-vertical>.btn:last-child{-webkit-border-radius:0 0 4px 4px;-moz-border-radius:0 0 4px 4px;border-radius:0 0 4px 4px}.btn-group-vertical>.btn-large:first-child{-webkit-border-radius:6px 6px 0 0;-moz-border-radius:6px 6px 0 0;border-radius:6px 6px 0 0}.btn-group-vertical>.btn-large:last-child{-webkit-border-radius:0 0 6px 6px;-moz-border-radius:0 0 6px 6px;border-radius:0 0 6px 6px}.alert{padding:8px 35px 8px 14px;margin-bottom:20px;text-shadow:0 1px 0 rgba(255,255,255,0.5);background-color:#fcf8e3;border:1px solid #fbeed5;-webkit-border-radius:4px;-moz-border-radius:4px;border-radius:4px}.alert,.alert h4{color:#c09853}.alert h4{margin:0}.alert .close{position:relative;top:-2px;right:-21px;line-height:20px}.alert-success{color:#468847;background-color:#dff0d8;border-color:#d6e9c6}.alert-success h4{color:#468847}.alert-danger,.alert-error{color:#b94a48;background-color:#f2dede;border-color:#eed3d7}.alert-danger h4,.alert-error h4{color:#b94a48}.alert-info{color:#3a87ad;background-color:#d9edf7;border-color:#bce8f1}.alert-info h4{color:#3a87ad}.alert-block{padding-top:14px;padding-bottom:14px}.alert-block>p,.alert-block>ul{margin-bottom:0}.alert-block p+p{margin-top:5px}.nav{margin-bottom:20px;margin-left:0;list-style:none}.nav>li>a{display:block}.nav>li>a:hover,.nav>li>a:focus{text-decoration:none;background-color:#eee}.nav>li>a>img{max-width:none}.nav>.pull-right{float:right}.nav-header{display:block;padding:3px 15px;font-size:11px;font-weight:bold;line-height:20px;color:#999;text-shadow:0 1px 0 rgba(255,255,255,0.5);text-transform:uppercase}.nav li+.nav-header{margin-top:9px}.nav-list{padding-right:15px;padding-left:15px;margin-bottom:0}.nav-list>li>a,.nav-list .nav-header{margin-right:-15px;margin-left:-15px;text-shadow:0 1px 0 rgba(255,255,255,0.5)}.nav-list>li>a{padding:3px 15px}.nav-list>.active>a,.nav-list>.active>a:hover,.nav-list>.active>a:focus{color:#fff;text-shadow:0 -1px 0 rgba(0,0,0,0.2);background-color:#08c}.nav-list [class^="icon-"],.nav-list [class*=" icon-"]{margin-right:2px}.nav-list .divider{*width:100%;height:1px;margin:9px 1px;*margin:-5px 0 5px;overflow:hidden;background-color:#e5e5e5;border-bottom:1px solid #fff}.nav-tabs,.nav-pills{*zoom:1}.nav-tabs:before,.nav-pills:before,.nav-tabs:after,.nav-pills:after{display:table;line-height:0;content:""}.nav-tabs:after,.nav-pills:after{clear:both}.nav-tabs>li,.nav-pills>li{float:left}.nav-tabs>li>a,.nav-pills>li>a{padding-right:12px;padding-left:12px;margin-right:2px;line-height:14px}.nav-tabs{border-bottom:1px solid #ddd}.nav-tabs>li{margin-bottom:-1px}.nav-tabs>li>a{padding-top:8px;padding-bottom:8px;line-height:20px;border:1px solid transparent;-webkit-border-radius:4px 4px 0 0;-moz-border-radius:4px 4px 0 0;border-radius:4px 4px 0 0}.nav-tabs>li>a:hover,.nav-tabs>li>a:focus{border-color:#eee #eee #ddd}.nav-tabs>.active>a,.nav-tabs>.active>a:hover,.nav-tabs>.active>a:focus{color:#555;cursor:default;background-color:#fff;border:1px solid #ddd;border-bottom-color:transparent}.nav-pills>li>a{padding-top:8px;padding-bottom:8px;margin-top:2px;margin-bottom:2px;-webkit-border-radius:5px;-moz-border-radius:5px;border-radius:5px}.nav-pills>.active>a,.nav-pills>.active>a:hover,.nav-pills>.active>a:focus{color:#fff;background-color:#08c}.nav-stacked>li{float:none}.nav-stacked>li>a{margin-right:0}.nav-tabs.nav-stacked{border-bottom:0}.nav-tabs.nav-stacked>li>a{border:1px solid #ddd;-webkit-border-radius:0;-moz-border-radius:0;border-radius:0}.nav-tabs.nav-stacked>li:first-child>a{-webkit-border-top-right-radius:4px;border-top-right-radius:4px;-webkit-border-top-left-radius:4px;border-top-left-radius:4px;-moz-border-radius-topright:4px;-moz-border-radius-topleft:4px}.nav-tabs.nav-stacked>li:last-child>a{-webkit-border-bottom-right-radius:4px;border-bottom-right-radius:4px;-webkit-border-bottom-left-radius:4px;border-bottom-left-radius:4px;-moz-border-radius-bottomright:4px;-moz-border-radius-bottomleft:4px}.nav-tabs.nav-stacked>li>a:hover,.nav-tabs.nav-stacked>li>a:focus{z-index:2;border-color:#ddd}.nav-pills.nav-stacked>li>a{margin-bottom:3px}.nav-pills.nav-stacked>li:last-child>a{margin-bottom:1px}.nav-tabs .dropdown-menu{-webkit-border-radius:0 0 6px 6px;-moz-border-radius:0 0 6px 6px;border-radius:0 0 6px 6px}.nav-pills .dropdown-menu{-webkit-border-radius:6px;-moz-border-radius:6px;border-radius:6px}.nav .dropdown-toggle .caret{margin-top:6px;border-top-color:#08c;border-bottom-color:#08c}.nav .dropdown-toggle:hover .caret,.nav .dropdown-toggle:focus .caret{border-top-color:#005580;border-bottom-color:#005580}.nav-tabs .dropdown-toggle .caret{margin-top:8px}.nav .active .dropdown-toggle .caret{border-top-color:#fff;border-bottom-color:#fff}.nav-tabs .active .dropdown-toggle .caret{border-top-color:#555;border-bottom-color:#555}.nav>.dropdown.active>a:hover,.nav>.dropdown.active>a:focus{cursor:pointer}.nav-tabs .open .dropdown-toggle,.nav-pills .open .dropdown-toggle,.nav>li.dropdown.open.active>a:hover,.nav>li.dropdown.open.active>a:focus{color:#fff;background-color:#999;border-color:#999}.nav li.dropdown.open .caret,.nav li.dropdown.open.active .caret,.nav li.dropdown.open a:hover .caret,.nav li.dropdown.open a:focus .caret{border-top-color:#fff;border-bottom-color:#fff;opacity:1;filter:alpha(opacity=100)}.tabs-stacked .open>a:hover,.tabs-stacked .open>a:focus{border-color:#999}.tabbable{*zoom:1}.tabbable:before,.tabbable:after{display:table;line-height:0;content:""}.tabbable:after{clear:both}.tab-content{overflow:auto}.tabs-below>.nav-tabs,.tabs-right>.nav-tabs,.tabs-left>.nav-tabs{border-bottom:0}.tab-content>.tab-pane,.pill-content>.pill-pane{display:none}.tab-content>.active,.pill-content>.active{display:block}.tabs-below>.nav-tabs{border-top:1px solid #ddd}.tabs-below>.nav-tabs>li{margin-top:-1px;margin-bottom:0}.tabs-below>.nav-tabs>li>a{-webkit-border-radius:0 0 4px 4px;-moz-border-radius:0 0 4px 4px;border-radius:0 0 4px 4px}.tabs-below>.nav-tabs>li>a:hover,.tabs-below>.nav-tabs>li>a:focus{border-top-color:#ddd;border-bottom-color:transparent}.tabs-below>.nav-tabs>.active>a,.tabs-below>.nav-tabs>.active>a:hover,.tabs-below>.nav-tabs>.active>a:focus{border-color:transparent #ddd #ddd #ddd}.tabs-left>.nav-tabs>li,.tabs-right>.nav-tabs>li{float:none}.tabs-left>.nav-tabs>li>a,.tabs-right>.nav-tabs>li>a{min-width:74px;margin-right:0;margin-bottom:3px}.tabs-left>.nav-tabs{float:left;margin-right:19px;border-right:1px solid #ddd}.tabs-left>.nav-tabs>li>a{margin-right:-1px;-webkit-border-radius:4px 0 0 4px;-moz-border-radius:4px 0 0 4px;border-radius:4px 0 0 4px}.tabs-left>.nav-tabs>li>a:hover,.tabs-left>.nav-tabs>li>a:focus{border-color:#eee #ddd #eee #eee}.tabs-left>.nav-tabs .active>a,.tabs-left>.nav-tabs .active>a:hover,.tabs-left>.nav-tabs .active>a:focus{border-color:#ddd transparent #ddd #ddd;*border-right-color:#fff}.tabs-right>.nav-tabs{float:right;margin-left:19px;border-left:1px solid #ddd}.tabs-right>.nav-tabs>li>a{margin-left:-1px;-webkit-border-radius:0 4px 4px 0;-moz-border-radius:0 4px 4px 0;border-radius:0 4px 4px 0}.tabs-right>.nav-tabs>li>a:hover,.tabs-right>.nav-tabs>li>a:focus{border-color:#eee #eee #eee #ddd}.tabs-right>.nav-tabs .active>a,.tabs-right>.nav-tabs .active>a:hover,.tabs-right>.nav-tabs .active>a:focus{border-color:#ddd #ddd #ddd transparent;*border-left-color:#fff}.nav>.disabled>a{color:#999}.nav>.disabled>a:hover,.nav>.disabled>a:focus{text-decoration:none;cursor:default;background-color:transparent}.navbar{*position:relative;*z-index:2;margin-bottom:20px;overflow:visible}.navbar-inner{min-height:40px;padding-right:20px;padding-left:20px;background-color:#fafafa;background-image:-moz-linear-gradient(top,#fff,#f2f2f2);background-image:-webkit-gradient(linear,0 0,0 100%,from(#fff),to(#f2f2f2));background-image:-webkit-linear-gradient(top,#fff,#f2f2f2);background-image:-o-linear-gradient(top,#fff,#f2f2f2);background-image:linear-gradient(to bottom,#fff,#f2f2f2);background-repeat:repeat-x;border:1px solid #d4d4d4;-webkit-border-radius:4px;-moz-border-radius:4px;border-radius:4px;filter:progid:DXImageTransform.Microsoft.gradient(startColorstr='#ffffffff',endColorstr='#fff2f2f2',GradientType=0);*zoom:1;-webkit-box-shadow:0 1px 4px rgba(0,0,0,0.065);-moz-box-shadow:0 1px 4px rgba(0,0,0,0.065);box-shadow:0 1px 4px rgba(0,0,0,0.065)}.navbar-inner:before,.navbar-inner:after{display:table;line-height:0;content:""}.navbar-inner:after{clear:both}.navbar .container{width:auto}.nav-collapse.collapse{height:auto;overflow:visible}.navbar .brand{display:block;float:left;padding:10px 20px 10px;margin-left:-20px;font-size:20px;font-weight:200;color:#777;text-shadow:0 1px 0 #fff}.navbar .brand:hover,.navbar .brand:focus{text-decoration:none}.navbar-text{margin-bottom:0;line-height:40px;color:#777}.navbar-link{color:#777}.navbar-link:hover,.navbar-link:focus{color:#333}.navbar .divider-vertical{height:40px;margin:0 9px;border-right:1px solid #fff;border-left:1px solid #f2f2f2}.navbar .btn,.navbar .btn-group{margin-top:5px}.navbar .btn-group .btn,.navbar .input-prepend .btn,.navbar .input-append .btn,.navbar .input-prepend .btn-group,.navbar .input-append .btn-group{margin-top:0}.navbar-form{margin-bottom:0;*zoom:1}.navbar-form:before,.navbar-form:after{display:table;line-height:0;content:""}.navbar-form:after{clear:both}.navbar-form input,.navbar-form select,.navbar-form .radio,.navbar-form .checkbox{margin-top:5px}.navbar-form input,.navbar-form select,.navbar-form .btn{display:inline-block;margin-bottom:0}.navbar-form input[type="image"],.navbar-form input[type="checkbox"],.navbar-form input[type="radio"]{margin-top:3px}.navbar-form .input-append,.navbar-form .input-prepend{margin-top:5px;white-space:nowrap}.navbar-form .input-append input,.navbar-form .input-prepend input{margin-top:0}.navbar-search{position:relative;float:left;margin-top:5px;margin-bottom:0}.navbar-search .search-query{padding:4px 14px;margin-bottom:0;font-family:"Helvetica Neue",Helvetica,Arial,sans-serif;font-size:13px;font-weight:normal;line-height:1;-webkit-border-radius:15px;-moz-border-radius:15px;border-radius:15px}.navbar-static-top{position:static;margin-bottom:0}.navbar-static-top .navbar-inner{-webkit-border-radius:0;-moz-border-radius:0;border-radius:0}.navbar-fixed-top,.navbar-fixed-bottom{position:fixed;right:0;left:0;z-index:1030;margin-bottom:0}.navbar-fixed-top .navbar-inner,.navbar-static-top .navbar-inner{border-width:0 0 1px}.navbar-fixed-bottom .navbar-inner{border-width:1px 0 0}.navbar-fixed-top .navbar-inner,.navbar-fixed-bottom .navbar-inner{padding-right:0;padding-left:0;-webkit-border-radius:0;-moz-border-radius:0;border-radius:0}.navbar-static-top .container,.navbar-fixed-top .container,.navbar-fixed-bottom .container{width:940px}.navbar-fixed-top{top:0}.navbar-fixed-top .navbar-inner,.navbar-static-top .navbar-inner{-webkit-box-shadow:0 1px 10px rgba(0,0,0,0.1);-moz-box-shadow:0 1px 10px rgba(0,0,0,0.1);box-shadow:0 1px 10px rgba(0,0,0,0.1)}.navbar-fixed-bottom{bottom:0}.navbar-fixed-bottom .navbar-inner{-webkit-box-shadow:0 -1px 10px rgba(0,0,0,0.1);-moz-box-shadow:0 -1px 10px rgba(0,0,0,0.1);box-shadow:0 -1px 10px rgba(0,0,0,0.1)}.navbar .nav{position:relative;left:0;display:block;float:left;margin:0 10px 0 0}.navbar .nav.pull-right{float:right;margin-right:0}.navbar .nav>li{float:left}.navbar .nav>li>a{float:none;padding:10px 15px 10px;color:#777;text-decoration:none;text-shadow:0 1px 0 #fff}.navbar .nav .dropdown-toggle .caret{margin-top:8px}.navbar .nav>li>a:focus,.navbar .nav>li>a:hover{color:#333;text-decoration:none;background-color:transparent}.navbar .nav>.active>a,.navbar .nav>.active>a:hover,.navbar .nav>.active>a:focus{color:#555;text-decoration:none;background-color:#e5e5e5;-webkit-box-shadow:inset 0 3px 8px rgba(0,0,0,0.125);-moz-box-shadow:inset 0 3px 8px rgba(0,0,0,0.125);box-shadow:inset 0 3px 8px rgba(0,0,0,0.125)}.navbar .btn-navbar{display:none;float:right;padding:7px 10px;margin-right:5px;margin-left:5px;color:#fff;text-shadow:0 -1px 0 rgba(0,0,0,0.25);background-color:#ededed;*background-color:#e5e5e5;background-image:-moz-linear-gradient(top,#f2f2f2,#e5e5e5);background-image:-webkit-gradient(linear,0 0,0 100%,from(#f2f2f2),to(#e5e5e5));background-image:-webkit-linear-gradient(top,#f2f2f2,#e5e5e5);background-image:-o-linear-gradient(top,#f2f2f2,#e5e5e5);background-image:linear-gradient(to bottom,#f2f2f2,#e5e5e5);background-repeat:repeat-x;border-color:#e5e5e5 #e5e5e5 #bfbfbf;border-color:rgba(0,0,0,0.1) rgba(0,0,0,0.1) rgba(0,0,0,0.25);filter:progid:DXImageTransform.Microsoft.gradient(startColorstr='#fff2f2f2',endColorstr='#ffe5e5e5',GradientType=0);filter:progid:DXImageTransform.Microsoft.gradient(enabled=false);-webkit-box-shadow:inset 0 1px 0 rgba(255,255,255,0.1),0 1px 0 rgba(255,255,255,0.075);-moz-box-shadow:inset 0 1px 0 rgba(255,255,255,0.1),0 1px 0 rgba(255,255,255,0.075);box-shadow:inset 0 1px 0 rgba(255,255,255,0.1),0 1px 0 rgba(255,255,255,0.075)}.navbar .btn-navbar:hover,.navbar .btn-navbar:focus,.navbar .btn-navbar:active,.navbar .btn-navbar.active,.navbar .btn-navbar.disabled,.navbar .btn-navbar[disabled]{color:#fff;background-color:#e5e5e5;*background-color:#d9d9d9}.navbar .btn-navbar:active,.navbar .btn-navbar.active{background-color:#ccc \9}.navbar .btn-navbar .icon-bar{display:block;width:18px;height:2px;background-color:#f5f5f5;-webkit-border-radius:1px;-moz-border-radius:1px;border-radius:1px;-webkit-box-shadow:0 1px 0 rgba(0,0,0,0.25);-moz-box-shadow:0 1px 0 rgba(0,0,0,0.25);box-shadow:0 1px 0 rgba(0,0,0,0.25)}.btn-navbar .icon-bar+.icon-bar{margin-top:3px}.navbar .nav>li>.dropdown-menu:before{position:absolute;top:-7px;left:9px;display:inline-block;border-right:7px solid transparent;border-bottom:7px solid #ccc;border-left:7px solid transparent;border-bottom-color:rgba(0,0,0,0.2);content:''}.navbar .nav>li>.dropdown-menu:after{position:absolute;top:-6px;left:10px;display:inline-block;border-right:6px solid transparent;border-bottom:6px solid #fff;border-left:6px solid transparent;content:''}.navbar-fixed-bottom .nav>li>.dropdown-menu:before{top:auto;bottom:-7px;border-top:7px solid #ccc;border-bottom:0;border-top-color:rgba(0,0,0,0.2)}.navbar-fixed-bottom .nav>li>.dropdown-menu:after{top:auto;bottom:-6px;border-top:6px solid #fff;border-bottom:0}.navbar .nav li.dropdown>a:hover .caret,.navbar .nav li.dropdown>a:focus .caret{border-top-color:#333;border-bottom-color:#333}.navbar .nav li.dropdown.open>.dropdown-toggle,.navbar .nav li.dropdown.active>.dropdown-toggle,.navbar .nav li.dropdown.open.active>.dropdown-toggle{color:#555;background-color:#e5e5e5}.navbar .nav li.dropdown>.dropdown-toggle .caret{border-top-color:#777;border-bottom-color:#777}.navbar .nav li.dropdown.open>.dropdown-toggle .caret,.navbar .nav li.dropdown.active>.dropdown-toggle .caret,.navbar .nav li.dropdown.open.active>.dropdown-toggle .caret{border-top-color:#555;border-bottom-color:#555}.navbar .pull-right>li>.dropdown-menu,.navbar .nav>li>.dropdown-menu.pull-right{right:0;left:auto}.navbar .pull-right>li>.dropdown-menu:before,.navbar .nav>li>.dropdown-menu.pull-right:before{right:12px;left:auto}.navbar .pull-right>li>.dropdown-menu:after,.navbar .nav>li>.dropdown-menu.pull-right:after{right:13px;left:auto}.navbar .pull-right>li>.dropdown-menu .dropdown-menu,.navbar .nav>li>.dropdown-menu.pull-right .dropdown-menu{right:100%;left:auto;margin-right:-1px;margin-left:0;-webkit-border-radius:6px 0 6px 6px;-moz-border-radius:6px 0 6px 6px;border-radius:6px 0 6px 6px}.navbar-inverse .navbar-inner{background-color:#1b1b1b;background-image:-moz-linear-gradient(top,#222,#111);background-image:-webkit-gradient(linear,0 0,0 100%,from(#222),to(#111));background-image:-webkit-linear-gradient(top,#222,#111);background-image:-o-linear-gradient(top,#222,#111);background-image:linear-gradient(to bottom,#222,#111);background-repeat:repeat-x;border-color:#252525;filter:progid:DXImageTransform.Microsoft.gradient(startColorstr='#ff222222',endColorstr='#ff111111',GradientType=0)}.navbar-inverse .brand,.navbar-inverse .nav>li>a{color:#999;text-shadow:0 -1px 0 rgba(0,0,0,0.25)}.navbar-inverse .brand:hover,.navbar-inverse .nav>li>a:hover,.navbar-inverse .brand:focus,.navbar-inverse .nav>li>a:focus{color:#fff}.navbar-inverse .brand{color:#999}.navbar-inverse .navbar-text{color:#999}.navbar-inverse .nav>li>a:focus,.navbar-inverse .nav>li>a:hover{color:#fff;background-color:transparent}.navbar-inverse .nav .active>a,.navbar-inverse .nav .active>a:hover,.navbar-inverse .nav .active>a:focus{color:#fff;background-color:#111}.navbar-inverse .navbar-link{color:#999}.navbar-inverse .navbar-link:hover,.navbar-inverse .navbar-link:focus{color:#fff}.navbar-inverse .divider-vertical{border-right-color:#222;border-left-color:#111}.navbar-inverse .nav li.dropdown.open>.dropdown-toggle,.navbar-inverse .nav li.dropdown.active>.dropdown-toggle,.navbar-inverse .nav li.dropdown.open.active>.dropdown-toggle{color:#fff;background-color:#111}.navbar-inverse .nav li.dropdown>a:hover .caret,.navbar-inverse .nav li.dropdown>a:focus .caret{border-top-color:#fff;border-bottom-color:#fff}.navbar-inverse .nav li.dropdown>.dropdown-toggle .caret{border-top-color:#999;border-bottom-color:#999}.navbar-inverse .nav li.dropdown.open>.dropdown-toggle .caret,.navbar-inverse .nav li.dropdown.active>.dropdown-toggle .caret,.navbar-inverse .nav li.dropdown.open.active>.dropdown-toggle .caret{border-top-color:#fff;border-bottom-color:#fff}.navbar-inverse .navbar-search .search-query{color:#fff;background-color:#515151;border-color:#111;-webkit-box-shadow:inset 0 1px 2px rgba(0,0,0,0.1),0 1px 0 rgba(255,255,255,0.15);-moz-box-shadow:inset 0 1px 2px rgba(0,0,0,0.1),0 1px 0 rgba(255,255,255,0.15);box-shadow:inset 0 1px 2px rgba(0,0,0,0.1),0 1px 0 rgba(255,255,255,0.15);-webkit-transition:none;-moz-transition:none;-o-transition:none;transition:none}.navbar-inverse .navbar-search .search-query:-moz-placeholder{color:#ccc}.navbar-inverse .navbar-search .search-query:-ms-input-placeholder{color:#ccc}.navbar-inverse .navbar-search .search-query::-webkit-input-placeholder{color:#ccc}.navbar-inverse .navbar-search .search-query:focus,.navbar-inverse .navbar-search .search-query.focused{padding:5px 15px;color:#333;text-shadow:0 1px 0 #fff;background-color:#fff;border:0;outline:0;-webkit-box-shadow:0 0 3px rgba(0,0,0,0.15);-moz-box-shadow:0 0 3px rgba(0,0,0,0.15);box-shadow:0 0 3px rgba(0,0,0,0.15)}.navbar-inverse .btn-navbar{color:#fff;text-shadow:0 -1px 0 rgba(0,0,0,0.25);background-color:#0e0e0e;*background-color:#040404;background-image:-moz-linear-gradient(top,#151515,#040404);background-image:-webkit-gradient(linear,0 0,0 100%,from(#151515),to(#040404));background-image:-webkit-linear-gradient(top,#151515,#040404);background-image:-o-linear-gradient(top,#151515,#040404);background-image:linear-gradient(to bottom,#151515,#040404);background-repeat:repeat-x;border-color:#040404 #040404 #000;border-color:rgba(0,0,0,0.1) rgba(0,0,0,0.1) rgba(0,0,0,0.25);filter:progid:DXImageTransform.Microsoft.gradient(startColorstr='#ff151515',endColorstr='#ff040404',GradientType=0);filter:progid:DXImageTransform.Microsoft.gradient(enabled=false)}.navbar-inverse .btn-navbar:hover,.navbar-inverse .btn-navbar:focus,.navbar-inverse .btn-navbar:active,.navbar-inverse .btn-navbar.active,.navbar-inverse .btn-navbar.disabled,.navbar-inverse .btn-navbar[disabled]{color:#fff;background-color:#040404;*background-color:#000}.navbar-inverse .btn-navbar:active,.navbar-inverse .btn-navbar.active{background-color:#000 \9}.breadcrumb{padding:8px 15px;margin:0 0 20px;list-style:none;background-color:#f5f5f5;-webkit-border-radius:4px;-moz-border-radius:4px;border-radius:4px}.breadcrumb>li{display:inline-block;*display:inline;text-shadow:0 1px 0 #fff;*zoom:1}.breadcrumb>li>.divider{padding:0 5px;color:#ccc}.breadcrumb>.active{color:#999}.pagination{margin:20px 0}.pagination ul{display:inline-block;*display:inline;margin-bottom:0;margin-left:0;-webkit-border-radius:4px;-moz-border-radius:4px;border-radius:4px;*zoom:1;-webkit-box-shadow:0 1px 2px rgba(0,0,0,0.05);-moz-box-shadow:0 1px 2px rgba(0,0,0,0.05);box-shadow:0 1px 2px rgba(0,0,0,0.05)}.pagination ul>li{display:inline}.pagination ul>li>a,.pagination ul>li>span{float:left;padding:4px 12px;line-height:20px;text-decoration:none;background-color:#fff;border:1px solid #ddd;border-left-width:0}.pagination ul>li>a:hover,.pagination ul>li>a:focus,.pagination ul>.active>a,.pagination ul>.active>span{background-color:#f5f5f5}.pagination ul>.active>a,.pagination ul>.active>span{color:#999;cursor:default}.pagination ul>.disabled>span,.pagination ul>.disabled>a,.pagination ul>.disabled>a:hover,.pagination ul>.disabled>a:focus{color:#999;cursor:default;background-color:transparent}.pagination ul>li:first-child>a,.pagination ul>li:first-child>span{border-left-width:1px;-webkit-border-bottom-left-radius:4px;border-bottom-left-radius:4px;-webkit-border-top-left-radius:4px;border-top-left-radius:4px;-moz-border-radius-bottomleft:4px;-moz-border-radius-topleft:4px}.pagination ul>li:last-child>a,.pagination ul>li:last-child>span{-webkit-border-top-right-radius:4px;border-top-right-radius:4px;-webkit-border-bottom-right-radius:4px;border-bottom-right-radius:4px;-moz-border-radius-topright:4px;-moz-border-radius-bottomright:4px}.pagination-centered{text-align:center}.pagination-right{text-align:right}.pagination-large ul>li>a,.pagination-large ul>li>span{padding:11px 19px;font-size:17.5px}.pagination-large ul>li:first-child>a,.pagination-large ul>li:first-child>span{-webkit-border-bottom-left-radius:6px;border-bottom-left-radius:6px;-webkit-border-top-left-radius:6px;border-top-left-radius:6px;-moz-border-radius-bottomleft:6px;-moz-border-radius-topleft:6px}.pagination-large ul>li:last-child>a,.pagination-large ul>li:last-child>span{-webkit-border-top-right-radius:6px;border-top-right-radius:6px;-webkit-border-bottom-right-radius:6px;border-bottom-right-radius:6px;-moz-border-radius-topright:6px;-moz-border-radius-bottomright:6px}.pagination-mini ul>li:first-child>a,.pagination-small ul>li:first-child>a,.pagination-mini ul>li:first-child>span,.pagination-small ul>li:first-child>span{-webkit-border-bottom-left-radius:3px;border-bottom-left-radius:3px;-webkit-border-top-left-radius:3px;border-top-left-radius:3px;-moz-border-radius-bottomleft:3px;-moz-border-radius-topleft:3px}.pagination-mini ul>li:last-child>a,.pagination-small ul>li:last-child>a,.pagination-mini ul>li:last-child>span,.pagination-small ul>li:last-child>span{-webkit-border-top-right-radius:3px;border-top-right-radius:3px;-webkit-border-bottom-right-radius:3px;border-bottom-right-radius:3px;-moz-border-radius-topright:3px;-moz-border-radius-bottomright:3px}.pagination-small ul>li>a,.pagination-small ul>li>span{padding:2px 10px;font-size:11.9px}.pagination-mini ul>li>a,.pagination-mini ul>li>span{padding:0 6px;font-size:10.5px}.pager{margin:20px 0;text-align:center;list-style:none;*zoom:1}.pager:before,.pager:after{display:table;line-height:0;content:""}.pager:after{clear:both}.pager li{display:inline}.pager li>a,.pager li>span{display:inline-block;padding:5px 14px;background-color:#fff;border:1px solid #ddd;-webkit-border-radius:15px;-moz-border-radius:15px;border-radius:15px}.pager li>a:hover,.pager li>a:focus{text-decoration:none;background-color:#f5f5f5}.pager .next>a,.pager .next>span{float:right}.pager .previous>a,.pager .previous>span{float:left}.pager .disabled>a,.pager .disabled>a:hover,.pager .disabled>a:focus,.pager .disabled>span{color:#999;cursor:default;background-color:#fff}.modal-backdrop{position:fixed;top:0;right:0;bottom:0;left:0;z-index:1040;background-color:#000}.modal-backdrop.fade{opacity:0}.modal-backdrop,.modal-backdrop.fade.in{opacity:.8;filter:alpha(opacity=80)}.modal{position:fixed;top:10%;left:50%;z-index:1050;width:560px;margin-left:-280px;background-color:#fff;border:1px solid #999;border:1px solid rgba(0,0,0,0.3);*border:1px solid #999;-webkit-border-radius:6px;-moz-border-radius:6px;border-radius:6px;outline:0;-webkit-box-shadow:0 3px 7px rgba(0,0,0,0.3);-moz-box-shadow:0 3px 7px rgba(0,0,0,0.3);box-shadow:0 3px 7px rgba(0,0,0,0.3);-webkit-background-clip:padding-box;-moz-background-clip:padding-box;background-clip:padding-box}.modal.fade{top:-25%;-webkit-transition:opacity .3s linear,top .3s ease-out;-moz-transition:opacity .3s linear,top .3s ease-out;-o-transition:opacity .3s linear,top .3s ease-out;transition:opacity .3s linear,top .3s ease-out}.modal.fade.in{top:10%}.modal-header{padding:9px 15px;border-bottom:1px solid #eee}.modal-header .close{margin-top:2px}.modal-header h3{margin:0;line-height:30px}.modal-body{position:relative;max-height:400px;padding:15px;overflow-y:auto}.modal-form{margin-bottom:0}.modal-footer{padding:14px 15px 15px;margin-bottom:0;text-align:right;background-color:#f5f5f5;border-top:1px solid #ddd;-webkit-border-radius:0 0 6px 6px;-moz-border-radius:0 0 6px 6px;border-radius:0 0 6px 6px;*zoom:1;-webkit-box-shadow:inset 0 1px 0 #fff;-moz-box-shadow:inset 0 1px 0 #fff;box-shadow:inset 0 1px 0 #fff}.modal-footer:before,.modal-footer:after{display:table;line-height:0;content:""}.modal-footer:after{clear:both}.modal-footer .btn+.btn{margin-bottom:0;margin-left:5px}.modal-footer .btn-group .btn+.btn{margin-left:-1px}.modal-footer .btn-block+.btn-block{margin-left:0}.tooltip{position:absolute;z-index:1030;display:block;font-size:11px;line-height:1.4;opacity:0;filter:alpha(opacity=0);visibility:visible}.tooltip.in{opacity:.8;filter:alpha(opacity=80)}.tooltip.top{padding:5px 0;margin-top:-3px}.tooltip.right{padding:0 5px;margin-left:3px}.tooltip.bottom{padding:5px 0;margin-top:3px}.tooltip.left{padding:0 5px;margin-left:-3px}.tooltip-inner{max-width:200px;padding:8px;color:#fff;text-align:center;text-decoration:none;background-color:#000;-webkit-border-radius:4px;-moz-border-radius:4px;border-radius:4px}.tooltip-arrow{position:absolute;width:0;height:0;border-color:transparent;border-style:solid}.tooltip.top .tooltip-arrow{bottom:0;left:50%;margin-left:-5px;border-top-color:#000;border-width:5px 5px 0}.tooltip.right .tooltip-arrow{top:50%;left:0;margin-top:-5px;border-right-color:#000;border-width:5px 5px 5px 0}.tooltip.left .tooltip-arrow{top:50%;right:0;margin-top:-5px;border-left-color:#000;border-width:5px 0 5px 5px}.tooltip.bottom .tooltip-arrow{top:0;left:50%;margin-left:-5px;border-bottom-color:#000;border-width:0 5px 5px}.popover{position:absolute;top:0;left:0;z-index:1010;display:none;max-width:276px;padding:1px;text-align:left;white-space:normal;background-color:#fff;border:1px solid #ccc;border:1px solid rgba(0,0,0,0.2);-webkit-border-radius:6px;-moz-border-radius:6px;border-radius:6px;-webkit-box-shadow:0 5px 10px rgba(0,0,0,0.2);-moz-box-shadow:0 5px 10px rgba(0,0,0,0.2);box-shadow:0 5px 10px rgba(0,0,0,0.2);-webkit-background-clip:padding-box;-moz-background-clip:padding;background-clip:padding-box}.popover.top{margin-top:-10px}.popover.right{margin-left:10px}.popover.bottom{margin-top:10px}.popover.left{margin-left:-10px}.popover-title{padding:8px 14px;margin:0;font-size:14px;font-weight:normal;line-height:18px;background-color:#f7f7f7;border-bottom:1px solid #ebebeb;-webkit-border-radius:5px 5px 0 0;-moz-border-radius:5px 5px 0 0;border-radius:5px 5px 0 0}.popover-title:empty{display:none}.popover-content{padding:9px 14px}.popover .arrow,.popover .arrow:after{position:absolute;display:block;width:0;height:0;border-color:transparent;border-style:solid}.popover .arrow{border-width:11px}.popover .arrow:after{border-width:10px;content:""}.popover.top .arrow{bottom:-11px;left:50%;margin-left:-11px;border-top-color:#999;border-top-color:rgba(0,0,0,0.25);border-bottom-width:0}.popover.top .arrow:after{bottom:1px;margin-left:-10px;border-top-color:#fff;border-bottom-width:0}.popover.right .arrow{top:50%;left:-11px;margin-top:-11px;border-right-color:#999;border-right-color:rgba(0,0,0,0.25);border-left-width:0}.popover.right .arrow:after{bottom:-10px;left:1px;border-right-color:#fff;border-left-width:0}.popover.bottom .arrow{top:-11px;left:50%;margin-left:-11px;border-bottom-color:#999;border-bottom-color:rgba(0,0,0,0.25);border-top-width:0}.popover.bottom .arrow:after{top:1px;margin-left:-10px;border-bottom-color:#fff;border-top-width:0}.popover.left .arrow{top:50%;right:-11px;margin-top:-11px;border-left-color:#999;border-left-color:rgba(0,0,0,0.25);border-right-width:0}.popover.left .arrow:after{right:1px;bottom:-10px;border-left-color:#fff;border-right-width:0}.thumbnails{margin-left:-20px;list-style:none;*zoom:1}.thumbnails:before,.thumbnails:after{display:table;line-height:0;content:""}.thumbnails:after{clear:both}.row-fluid .thumbnails{margin-left:0}.thumbnails>li{float:left;margin-bottom:20px;margin-left:20px}.thumbnail{display:block;padding:4px;line-height:20px;border:1px solid #ddd;-webkit-border-radius:4px;-moz-border-radius:4px;border-radius:4px;-webkit-box-shadow:0 1px 3px rgba(0,0,0,0.055);-moz-box-shadow:0 1px 3px rgba(0,0,0,0.055);box-shadow:0 1px 3px rgba(0,0,0,0.055);-webkit-transition:all .2s ease-in-out;-moz-transition:all .2s ease-in-out;-o-transition:all .2s ease-in-out;transition:all .2s ease-in-out}a.thumbnail:hover,a.thumbnail:focus{border-color:#08c;-webkit-box-shadow:0 1px 4px rgba(0,105,214,0.25);-moz-box-shadow:0 1px 4px rgba(0,105,214,0.25);box-shadow:0 1px 4px rgba(0,105,214,0.25)}.thumbnail>img{display:block;max-width:100%;margin-right:auto;margin-left:auto}.thumbnail .caption{padding:9px;color:#555}.media,.media-body{overflow:hidden;*overflow:visible;zoom:1}.media,.media .media{margin-top:15px}.media:first-child{margin-top:0}.media-object{display:block}.media-heading{margin:0 0 5px}.media>.pull-left{margin-right:10px}.media>.pull-right{margin-left:10px}.media-list{margin-left:0;list-style:none}.label,.badge{display:inline-block;padding:2px 4px;font-size:11.844px;font-weight:bold;line-height:14px;color:#fff;text-shadow:0 -1px 0 rgba(0,0,0,0.25);white-space:nowrap;vertical-align:baseline;background-color:#999}.label{-webkit-border-radius:3px;-moz-border-radius:3px;border-radius:3px}.badge{padding-right:9px;padding-left:9px;-webkit-border-radius:9px;-moz-border-radius:9px;border-radius:9px}.label:empty,.badge:empty{display:none}a.label:hover,a.label:focus,a.badge:hover,a.badge:focus{color:#fff;text-decoration:none;cursor:pointer}.label-important,.badge-important{background-color:#b94a48}.label-important[href],.badge-important[href]{background-color:#953b39}.label-warning,.badge-warning{background-color:#f89406}.label-warning[href],.badge-warning[href]{background-color:#c67605}.label-success,.badge-success{background-color:#468847}.label-success[href],.badge-success[href]{background-color:#356635}.label-info,.badge-info{background-color:#3a87ad}.label-info[href],.badge-info[href]{background-color:#2d6987}.label-inverse,.badge-inverse{background-color:#333}.label-inverse[href],.badge-inverse[href]{background-color:#1a1a1a}.btn .label,.btn .badge{position:relative;top:-1px}.btn-mini .label,.btn-mini .badge{top:0}@-webkit-keyframes progress-bar-stripes{from{background-position:40px 0}to{background-position:0 0}}@-moz-keyframes progress-bar-stripes{from{background-position:40px 0}to{background-position:0 0}}@-ms-keyframes progress-bar-stripes{from{background-position:40px 0}to{background-position:0 0}}@-o-keyframes progress-bar-stripes{from{background-position:0 0}to{background-position:40px 0}}@keyframes progress-bar-stripes{from{background-position:40px 0}to{background-position:0 0}}.progress{height:20px;margin-bottom:20px;overflow:hidden;background-color:#f7f7f7;background-image:-moz-linear-gradient(top,#f5f5f5,#f9f9f9);background-image:-webkit-gradient(linear,0 0,0 100%,from(#f5f5f5),to(#f9f9f9));background-image:-webkit-linear-gradient(top,#f5f5f5,#f9f9f9);background-image:-o-linear-gradient(top,#f5f5f5,#f9f9f9);background-image:linear-gradient(to bottom,#f5f5f5,#f9f9f9);background-repeat:repeat-x;-webkit-border-radius:4px;-moz-border-radius:4px;border-radius:4px;filter:progid:DXImageTransform.Microsoft.gradient(startColorstr='#fff5f5f5',endColorstr='#fff9f9f9',GradientType=0);-webkit-box-shadow:inset 0 1px 2px rgba(0,0,0,0.1);-moz-box-shadow:inset 0 1px 2px rgba(0,0,0,0.1);box-shadow:inset 0 1px 2px rgba(0,0,0,0.1)}.progress .bar{float:left;width:0;height:100%;font-size:12px;color:#fff;text-align:center;text-shadow:0 -1px 0 rgba(0,0,0,0.25);background-color:#0e90d2;background-image:-moz-linear-gradient(top,#149bdf,#0480be);background-image:-webkit-gradient(linear,0 0,0 100%,from(#149bdf),to(#0480be));background-image:-webkit-linear-gradient(top,#149bdf,#0480be);background-image:-o-linear-gradient(top,#149bdf,#0480be);background-image:linear-gradient(to bottom,#149bdf,#0480be);background-repeat:repeat-x;filter:progid:DXImageTransform.Microsoft.gradient(startColorstr='#ff149bdf',endColorstr='#ff0480be',GradientType=0);-webkit-box-shadow:inset 0 -1px 0 rgba(0,0,0,0.15);-moz-box-shadow:inset 0 -1px 0 rgba(0,0,0,0.15);box-shadow:inset 0 -1px 0 rgba(0,0,0,0.15);-webkit-box-sizing:border-box;-moz-box-sizing:border-box;box-sizing:border-box;-webkit-transition:width .6s ease;-moz-transition:width .6s ease;-o-transition:width .6s ease;transition:width .6s ease}.progress .bar+.bar{-webkit-box-shadow:inset 1px 0 0 rgba(0,0,0,0.15),inset 0 -1px 0 rgba(0,0,0,0.15);-moz-box-shadow:inset 1px 0 0 rgba(0,0,0,0.15),inset 0 -1px 0 rgba(0,0,0,0.15);box-shadow:inset 1px 0 0 rgba(0,0,0,0.15),inset 0 -1px 0 rgba(0,0,0,0.15)}.progress-striped .bar{background-color:#149bdf;background-image:-webkit-gradient(linear,0 100%,100% 0,color-stop(0.25,rgba(255,255,255,0.15)),color-stop(0.25,transparent),color-stop(0.5,transparent),color-stop(0.5,rgba(255,255,255,0.15)),color-stop(0.75,rgba(255,255,255,0.15)),color-stop(0.75,transparent),to(transparent));background-image:-webkit-linear-gradient(45deg,rgba(255,255,255,0.15) 25%,transparent 25%,transparent 50%,rgba(255,255,255,0.15) 50%,rgba(255,255,255,0.15) 75%,transparent 75%,transparent);background-image:-moz-linear-gradient(45deg,rgba(255,255,255,0.15) 25%,transparent 25%,transparent 50%,rgba(255,255,255,0.15) 50%,rgba(255,255,255,0.15) 75%,transparent 75%,transparent);background-image:-o-linear-gradient(45deg,rgba(255,255,255,0.15) 25%,transparent 25%,transparent 50%,rgba(255,255,255,0.15) 50%,rgba(255,255,255,0.15) 75%,transparent 75%,transparent);background-image:linear-gradient(45deg,rgba(255,255,255,0.15) 25%,transparent 25%,transparent 50%,rgba(255,255,255,0.15) 50%,rgba(255,255,255,0.15) 75%,transparent 75%,transparent);-webkit-background-size:40px 40px;-moz-background-size:40px 40px;-o-background-size:40px 40px;background-size:40px 40px}.progress.active .bar{-webkit-animation:progress-bar-stripes 2s linear infinite;-moz-animation:progress-bar-stripes 2s linear infinite;-ms-animation:progress-bar-stripes 2s linear infinite;-o-animation:progress-bar-stripes 2s linear infinite;animation:progress-bar-stripes 2s linear infinite}.progress-danger .bar,.progress .bar-danger{background-color:#dd514c;background-image:-moz-linear-gradient(top,#ee5f5b,#c43c35);background-image:-webkit-gradient(linear,0 0,0 100%,from(#ee5f5b),to(#c43c35));background-image:-webkit-linear-gradient(top,#ee5f5b,#c43c35);background-image:-o-linear-gradient(top,#ee5f5b,#c43c35);background-image:linear-gradient(to bottom,#ee5f5b,#c43c35);background-repeat:repeat-x;filter:progid:DXImageTransform.Microsoft.gradient(startColorstr='#ffee5f5b',endColorstr='#ffc43c35',GradientType=0)}.progress-danger.progress-striped .bar,.progress-striped .bar-danger{background-color:#ee5f5b;background-image:-webkit-gradient(linear,0 100%,100% 0,color-stop(0.25,rgba(255,255,255,0.15)),color-stop(0.25,transparent),color-stop(0.5,transparent),color-stop(0.5,rgba(255,255,255,0.15)),color-stop(0.75,rgba(255,255,255,0.15)),color-stop(0.75,transparent),to(transparent));background-image:-webkit-linear-gradient(45deg,rgba(255,255,255,0.15) 25%,transparent 25%,transparent 50%,rgba(255,255,255,0.15) 50%,rgba(255,255,255,0.15) 75%,transparent 75%,transparent);background-image:-moz-linear-gradient(45deg,rgba(255,255,255,0.15) 25%,transparent 25%,transparent 50%,rgba(255,255,255,0.15) 50%,rgba(255,255,255,0.15) 75%,transparent 75%,transparent);background-image:-o-linear-gradient(45deg,rgba(255,255,255,0.15) 25%,transparent 25%,transparent 50%,rgba(255,255,255,0.15) 50%,rgba(255,255,255,0.15) 75%,transparent 75%,transparent);background-image:linear-gradient(45deg,rgba(255,255,255,0.15) 25%,transparent 25%,transparent 50%,rgba(255,255,255,0.15) 50%,rgba(255,255,255,0.15) 75%,transparent 75%,transparent)}.progress-success .bar,.progress .bar-success{background-color:#5eb95e;background-image:-moz-linear-gradient(top,#62c462,#57a957);background-image:-webkit-gradient(linear,0 0,0 100%,from(#62c462),to(#57a957));background-image:-webkit-linear-gradient(top,#62c462,#57a957);background-image:-o-linear-gradient(top,#62c462,#57a957);background-image:linear-gradient(to bottom,#62c462,#57a957);background-repeat:repeat-x;filter:progid:DXImageTransform.Microsoft.gradient(startColorstr='#ff62c462',endColorstr='#ff57a957',GradientType=0)}.progress-success.progress-striped .bar,.progress-striped .bar-success{background-color:#62c462;background-image:-webkit-gradient(linear,0 100%,100% 0,color-stop(0.25,rgba(255,255,255,0.15)),color-stop(0.25,transparent),color-stop(0.5,transparent),color-stop(0.5,rgba(255,255,255,0.15)),color-stop(0.75,rgba(255,255,255,0.15)),color-stop(0.75,transparent),to(transparent));background-image:-webkit-linear-gradient(45deg,rgba(255,255,255,0.15) 25%,transparent 25%,transparent 50%,rgba(255,255,255,0.15) 50%,rgba(255,255,255,0.15) 75%,transparent 75%,transparent);background-image:-moz-linear-gradient(45deg,rgba(255,255,255,0.15) 25%,transparent 25%,transparent 50%,rgba(255,255,255,0.15) 50%,rgba(255,255,255,0.15) 75%,transparent 75%,transparent);background-image:-o-linear-gradient(45deg,rgba(255,255,255,0.15) 25%,transparent 25%,transparent 50%,rgba(255,255,255,0.15) 50%,rgba(255,255,255,0.15) 75%,transparent 75%,transparent);background-image:linear-gradient(45deg,rgba(255,255,255,0.15) 25%,transparent 25%,transparent 50%,rgba(255,255,255,0.15) 50%,rgba(255,255,255,0.15) 75%,transparent 75%,transparent)}.progress-info .bar,.progress .bar-info{background-color:#4bb1cf;background-image:-moz-linear-gradient(top,#5bc0de,#339bb9);background-image:-webkit-gradient(linear,0 0,0 100%,from(#5bc0de),to(#339bb9));background-image:-webkit-linear-gradient(top,#5bc0de,#339bb9);background-image:-o-linear-gradient(top,#5bc0de,#339bb9);background-image:linear-gradient(to bottom,#5bc0de,#339bb9);background-repeat:repeat-x;filter:progid:DXImageTransform.Microsoft.gradient(startColorstr='#ff5bc0de',endColorstr='#ff339bb9',GradientType=0)}.progress-info.progress-striped .bar,.progress-striped .bar-info{background-color:#5bc0de;background-image:-webkit-gradient(linear,0 100%,100% 0,color-stop(0.25,rgba(255,255,255,0.15)),color-stop(0.25,transparent),color-stop(0.5,transparent),color-stop(0.5,rgba(255,255,255,0.15)),color-stop(0.75,rgba(255,255,255,0.15)),color-stop(0.75,transparent),to(transparent));background-image:-webkit-linear-gradient(45deg,rgba(255,255,255,0.15) 25%,transparent 25%,transparent 50%,rgba(255,255,255,0.15) 50%,rgba(255,255,255,0.15) 75%,transparent 75%,transparent);background-image:-moz-linear-gradient(45deg,rgba(255,255,255,0.15) 25%,transparent 25%,transparent 50%,rgba(255,255,255,0.15) 50%,rgba(255,255,255,0.15) 75%,transparent 75%,transparent);background-image:-o-linear-gradient(45deg,rgba(255,255,255,0.15) 25%,transparent 25%,transparent 50%,rgba(255,255,255,0.15) 50%,rgba(255,255,255,0.15) 75%,transparent 75%,transparent);background-image:linear-gradient(45deg,rgba(255,255,255,0.15) 25%,transparent 25%,transparent 50%,rgba(255,255,255,0.15) 50%,rgba(255,255,255,0.15) 75%,transparent 75%,transparent)}.progress-warning .bar,.progress .bar-warning{background-color:#faa732;background-image:-moz-linear-gradient(top,#fbb450,#f89406);background-image:-webkit-gradient(linear,0 0,0 100%,from(#fbb450),to(#f89406));background-image:-webkit-linear-gradient(top,#fbb450,#f89406);background-image:-o-linear-gradient(top,#fbb450,#f89406);background-image:linear-gradient(to bottom,#fbb450,#f89406);background-repeat:repeat-x;filter:progid:DXImageTransform.Microsoft.gradient(startColorstr='#fffbb450',endColorstr='#fff89406',GradientType=0)}.progress-warning.progress-striped .bar,.progress-striped .bar-warning{background-color:#fbb450;background-image:-webkit-gradient(linear,0 100%,100% 0,color-stop(0.25,rgba(255,255,255,0.15)),color-stop(0.25,transparent),color-stop(0.5,transparent),color-stop(0.5,rgba(255,255,255,0.15)),color-stop(0.75,rgba(255,255,255,0.15)),color-stop(0.75,transparent),to(transparent));background-image:-webkit-linear-gradient(45deg,rgba(255,255,255,0.15) 25%,transparent 25%,transparent 50%,rgba(255,255,255,0.15) 50%,rgba(255,255,255,0.15) 75%,transparent 75%,transparent);background-image:-moz-linear-gradient(45deg,rgba(255,255,255,0.15) 25%,transparent 25%,transparent 50%,rgba(255,255,255,0.15) 50%,rgba(255,255,255,0.15) 75%,transparent 75%,transparent);background-image:-o-linear-gradient(45deg,rgba(255,255,255,0.15) 25%,transparent 25%,transparent 50%,rgba(255,255,255,0.15) 50%,rgba(255,255,255,0.15) 75%,transparent 75%,transparent);background-image:linear-gradient(45deg,rgba(255,255,255,0.15) 25%,transparent 25%,transparent 50%,rgba(255,255,255,0.15) 50%,rgba(255,255,255,0.15) 75%,transparent 75%,transparent)}.accordion{margin-bottom:20px}.accordion-group{margin-bottom:2px;border:1px solid #e5e5e5;-webkit-border-radius:4px;-moz-border-radius:4px;border-radius:4px}.accordion-heading{border-bottom:0}.accordion-heading .accordion-toggle{display:block;padding:8px 15px}.accordion-toggle{cursor:pointer}.accordion-inner{padding:9px 15px;border-top:1px solid #e5e5e5}.carousel{position:relative;margin-bottom:20px;line-height:1}.carousel-inner{position:relative;width:100%;overflow:hidden}.carousel-inner>.item{position:relative;display:none;-webkit-transition:.6s ease-in-out left;-moz-transition:.6s ease-in-out left;-o-transition:.6s ease-in-out left;transition:.6s ease-in-out left}.carousel-inner>.item>img,.carousel-inner>.item>a>img{display:block;line-height:1}.carousel-inner>.active,.carousel-inner>.next,.carousel-inner>.prev{display:block}.carousel-inner>.active{left:0}.carousel-inner>.next,.carousel-inner>.prev{position:absolute;top:0;width:100%}.carousel-inner>.next{left:100%}.carousel-inner>.prev{left:-100%}.carousel-inner>.next.left,.carousel-inner>.prev.right{left:0}.carousel-inner>.active.left{left:-100%}.carousel-inner>.active.right{left:100%}.carousel-control{position:absolute;top:40%;left:15px;width:40px;height:40px;margin-top:-20px;font-size:60px;font-weight:100;line-height:30px;color:#fff;text-align:center;background:#222;border:3px solid #fff;-webkit-border-radius:23px;-moz-border-radius:23px;border-radius:23px;opacity:.5;filter:alpha(opacity=50)}.carousel-control.right{right:15px;left:auto}.carousel-control:hover,.carousel-control:focus{color:#fff;text-decoration:none;opacity:.9;filter:alpha(opacity=90)}.carousel-indicators{position:absolute;top:15px;right:15px;z-index:5;margin:0;list-style:none}.carousel-indicators li{display:block;float:left;width:10px;height:10px;margin-left:5px;text-indent:-999px;background-color:#ccc;background-color:rgba(255,255,255,0.25);border-radius:5px}.carousel-indicators .active{background-color:#fff}.carousel-caption{position:absolute;right:0;bottom:0;left:0;padding:15px;background:#333;background:rgba(0,0,0,0.75)}.carousel-caption h4,.carousel-caption p{line-height:20px;color:#fff}.carousel-caption h4{margin:0 0 5px}.carousel-caption p{margin-bottom:0}.hero-unit{padding:60px;margin-bottom:30px;font-size:18px;font-weight:200;line-height:30px;color:inherit;background-color:#eee;-webkit-border-radius:6px;-moz-border-radius:6px;border-radius:6px}.hero-unit h1{margin-bottom:0;font-size:60px;line-height:1;letter-spacing:-1px;color:inherit}.hero-unit li{line-height:30px}.pull-right{float:right}.pull-left{float:left}.hide{display:none}.show{display:block}.invisible{visibility:hidden}.affix{position:fixed} diff --git a/_static/bootstrap-2.3.2/img/glyphicons-halflings-white.png b/_static/bootstrap-2.3.2/img/glyphicons-halflings-white.png new file mode 100644 index 00000000..3bf6484a Binary files /dev/null and b/_static/bootstrap-2.3.2/img/glyphicons-halflings-white.png differ diff --git a/_static/bootstrap-2.3.2/img/glyphicons-halflings.png b/_static/bootstrap-2.3.2/img/glyphicons-halflings.png new file mode 100644 index 00000000..a9969993 Binary files /dev/null and b/_static/bootstrap-2.3.2/img/glyphicons-halflings.png differ diff --git a/_static/bootstrap-2.3.2/js/bootstrap.js b/_static/bootstrap-2.3.2/js/bootstrap.js new file mode 100644 index 00000000..638bb187 --- /dev/null +++ b/_static/bootstrap-2.3.2/js/bootstrap.js @@ -0,0 +1,2287 @@ +/* =================================================== + * bootstrap-transition.js v2.3.2 + * http://twitter.github.com/bootstrap/javascript.html#transitions + * =================================================== + * Copyright 2012 Twitter, Inc. + * + * Licensed under the Apache License, Version 2.0 (the "License"); + * you may not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + * ========================================================== */ + + +!function ($) { + + "use strict"; // jshint ;_; + + + /* CSS TRANSITION SUPPORT (http://www.modernizr.com/) + * ======================================================= */ + + $(function () { + + $.support.transition = (function () { + + var transitionEnd = (function () { + + var el = document.createElement('bootstrap') + , transEndEventNames = { + 'WebkitTransition' : 'webkitTransitionEnd' + , 'MozTransition' : 'transitionend' + , 'OTransition' : 'oTransitionEnd otransitionend' + , 'transition' : 'transitionend' + } + , name + + for (name in transEndEventNames){ + if (el.style[name] !== undefined) { + return transEndEventNames[name] + } + } + + }()) + + return transitionEnd && { + end: transitionEnd + } + + })() + + }) + +}(window.$jqTheme || window.jQuery); +/* ========================================================== + * bootstrap-alert.js v2.3.2 + * http://twitter.github.com/bootstrap/javascript.html#alerts + * ========================================================== + * Copyright 2012 Twitter, Inc. + * + * Licensed under the Apache License, Version 2.0 (the "License"); + * you may not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + * ========================================================== */ + + +!function ($) { + + "use strict"; // jshint ;_; + + + /* ALERT CLASS DEFINITION + * ====================== */ + + var dismiss = '[data-dismiss="alert"]' + , Alert = function (el) { + $(el).on('click', dismiss, this.close) + } + + Alert.prototype.close = function (e) { + var $this = $(this) + , selector = $this.attr('data-target') + , $parent + + if (!selector) { + selector = $this.attr('href') + selector = selector && selector.replace(/.*(?=#[^\s]*$)/, '') //strip for ie7 + } + + $parent = $(selector) + + e && e.preventDefault() + + $parent.length || ($parent = $this.hasClass('alert') ? $this : $this.parent()) + + $parent.trigger(e = $.Event('close')) + + if (e.isDefaultPrevented()) return + + $parent.removeClass('in') + + function removeElement() { + $parent + .trigger('closed') + .remove() + } + + $.support.transition && $parent.hasClass('fade') ? + $parent.on($.support.transition.end, removeElement) : + removeElement() + } + + + /* ALERT PLUGIN DEFINITION + * ======================= */ + + var old = $.fn.alert + + $.fn.alert = function (option) { + return this.each(function () { + var $this = $(this) + , data = $this.data('alert') + if (!data) $this.data('alert', (data = new Alert(this))) + if (typeof option == 'string') data[option].call($this) + }) + } + + $.fn.alert.Constructor = Alert + + + /* ALERT NO CONFLICT + * ================= */ + + $.fn.alert.noConflict = function () { + $.fn.alert = old + return this + } + + + /* ALERT DATA-API + * ============== */ + + $(document).on('click.alert.data-api', dismiss, Alert.prototype.close) + +}(window.$jqTheme || window.jQuery); +/* ============================================================ + * bootstrap-button.js v2.3.2 + * http://twitter.github.com/bootstrap/javascript.html#buttons + * ============================================================ + * Copyright 2012 Twitter, Inc. + * + * Licensed under the Apache License, Version 2.0 (the "License"); + * you may not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + * ============================================================ */ + + +!function ($) { + + "use strict"; // jshint ;_; + + + /* BUTTON PUBLIC CLASS DEFINITION + * ============================== */ + + var Button = function (element, options) { + this.$element = $(element) + this.options = $.extend({}, $.fn.button.defaults, options) + } + + Button.prototype.setState = function (state) { + var d = 'disabled' + , $el = this.$element + , data = $el.data() + , val = $el.is('input') ? 'val' : 'html' + + state = state + 'Text' + data.resetText || $el.data('resetText', $el[val]()) + + $el[val](data[state] || this.options[state]) + + // push to event loop to allow forms to submit + setTimeout(function () { + state == 'loadingText' ? + $el.addClass(d).attr(d, d) : + $el.removeClass(d).removeAttr(d) + }, 0) + } + + Button.prototype.toggle = function () { + var $parent = this.$element.closest('[data-toggle="buttons-radio"]') + + $parent && $parent + .find('.active') + .removeClass('active') + + this.$element.toggleClass('active') + } + + + /* BUTTON PLUGIN DEFINITION + * ======================== */ + + var old = $.fn.button + + $.fn.button = function (option) { + return this.each(function () { + var $this = $(this) + , data = $this.data('button') + , options = typeof option == 'object' && option + if (!data) $this.data('button', (data = new Button(this, options))) + if (option == 'toggle') data.toggle() + else if (option) data.setState(option) + }) + } + + $.fn.button.defaults = { + loadingText: 'loading...' + } + + $.fn.button.Constructor = Button + + + /* BUTTON NO CONFLICT + * ================== */ + + $.fn.button.noConflict = function () { + $.fn.button = old + return this + } + + + /* BUTTON DATA-API + * =============== */ + + $(document).on('click.button.data-api', '[data-toggle^=button]', function (e) { + var $btn = $(e.target) + if (!$btn.hasClass('btn')) $btn = $btn.closest('.btn') + $btn.button('toggle') + }) + +}(window.$jqTheme || window.jQuery); +/* ========================================================== + * bootstrap-carousel.js v2.3.2 + * http://twitter.github.com/bootstrap/javascript.html#carousel + * ========================================================== + * Copyright 2012 Twitter, Inc. + * + * Licensed under the Apache License, Version 2.0 (the "License"); + * you may not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + * ========================================================== */ + + +!function ($) { + + "use strict"; // jshint ;_; + + + /* CAROUSEL CLASS DEFINITION + * ========================= */ + + var Carousel = function (element, options) { + this.$element = $(element) + this.$indicators = this.$element.find('.carousel-indicators') + this.options = options + this.options.pause == 'hover' && this.$element + .on('mouseenter', $.proxy(this.pause, this)) + .on('mouseleave', $.proxy(this.cycle, this)) + } + + Carousel.prototype = { + + cycle: function (e) { + if (!e) this.paused = false + if (this.interval) clearInterval(this.interval); + this.options.interval + && !this.paused + && (this.interval = setInterval($.proxy(this.next, this), this.options.interval)) + return this + } + + , getActiveIndex: function () { + this.$active = this.$element.find('.item.active') + this.$items = this.$active.parent().children() + return this.$items.index(this.$active) + } + + , to: function (pos) { + var activeIndex = this.getActiveIndex() + , that = this + + if (pos > (this.$items.length - 1) || pos < 0) return + + if (this.sliding) { + return this.$element.one('slid', function () { + that.to(pos) + }) + } + + if (activeIndex == pos) { + return this.pause().cycle() + } + + return this.slide(pos > activeIndex ? 'next' : 'prev', $(this.$items[pos])) + } + + , pause: function (e) { + if (!e) this.paused = true + if (this.$element.find('.next, .prev').length && $.support.transition.end) { + this.$element.trigger($.support.transition.end) + this.cycle(true) + } + clearInterval(this.interval) + this.interval = null + return this + } + + , next: function () { + if (this.sliding) return + return this.slide('next') + } + + , prev: function () { + if (this.sliding) return + return this.slide('prev') + } + + , slide: function (type, next) { + var $active = this.$element.find('.item.active') + , $next = next || $active[type]() + , isCycling = this.interval + , direction = type == 'next' ? 'left' : 'right' + , fallback = type == 'next' ? 'first' : 'last' + , that = this + , e + + this.sliding = true + + isCycling && this.pause() + + $next = $next.length ? $next : this.$element.find('.item')[fallback]() + + e = $.Event('slide', { + relatedTarget: $next[0] + , direction: direction + }) + + if ($next.hasClass('active')) return + + if (this.$indicators.length) { + this.$indicators.find('.active').removeClass('active') + this.$element.one('slid', function () { + var $nextIndicator = $(that.$indicators.children()[that.getActiveIndex()]) + $nextIndicator && $nextIndicator.addClass('active') + }) + } + + if ($.support.transition && this.$element.hasClass('slide')) { + this.$element.trigger(e) + if (e.isDefaultPrevented()) return + $next.addClass(type) + $next[0].offsetWidth // force reflow + $active.addClass(direction) + $next.addClass(direction) + this.$element.one($.support.transition.end, function () { + $next.removeClass([type, direction].join(' ')).addClass('active') + $active.removeClass(['active', direction].join(' ')) + that.sliding = false + setTimeout(function () { that.$element.trigger('slid') }, 0) + }) + } else { + this.$element.trigger(e) + if (e.isDefaultPrevented()) return + $active.removeClass('active') + $next.addClass('active') + this.sliding = false + this.$element.trigger('slid') + } + + isCycling && this.cycle() + + return this + } + + } + + + /* CAROUSEL PLUGIN DEFINITION + * ========================== */ + + var old = $.fn.carousel + + $.fn.carousel = function (option) { + return this.each(function () { + var $this = $(this) + , data = $this.data('carousel') + , options = $.extend({}, $.fn.carousel.defaults, typeof option == 'object' && option) + , action = typeof option == 'string' ? option : options.slide + if (!data) $this.data('carousel', (data = new Carousel(this, options))) + if (typeof option == 'number') data.to(option) + else if (action) data[action]() + else if (options.interval) data.pause().cycle() + }) + } + + $.fn.carousel.defaults = { + interval: 5000 + , pause: 'hover' + } + + $.fn.carousel.Constructor = Carousel + + + /* CAROUSEL NO CONFLICT + * ==================== */ + + $.fn.carousel.noConflict = function () { + $.fn.carousel = old + return this + } + + /* CAROUSEL DATA-API + * ================= */ + + $(document).on('click.carousel.data-api', '[data-slide], [data-slide-to]', function (e) { + var $this = $(this), href + , $target = $($this.attr('data-target') || (href = $this.attr('href')) && href.replace(/.*(?=#[^\s]+$)/, '')) //strip for ie7 + , options = $.extend({}, $target.data(), $this.data()) + , slideIndex + + $target.carousel(options) + + if (slideIndex = $this.attr('data-slide-to')) { + $target.data('carousel').pause().to(slideIndex).cycle() + } + + e.preventDefault() + }) + +}(window.$jqTheme || window.jQuery); +/* ============================================================= + * bootstrap-collapse.js v2.3.2 + * http://twitter.github.com/bootstrap/javascript.html#collapse + * ============================================================= + * Copyright 2012 Twitter, Inc. + * + * Licensed under the Apache License, Version 2.0 (the "License"); + * you may not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + * ============================================================ */ + + +!function ($) { + + "use strict"; // jshint ;_; + + + /* COLLAPSE PUBLIC CLASS DEFINITION + * ================================ */ + + var Collapse = function (element, options) { + this.$element = $(element) + this.options = $.extend({}, $.fn.collapse.defaults, options) + + if (this.options.parent) { + this.$parent = $(this.options.parent) + } + + this.options.toggle && this.toggle() + } + + Collapse.prototype = { + + constructor: Collapse + + , dimension: function () { + var hasWidth = this.$element.hasClass('width') + return hasWidth ? 'width' : 'height' + } + + , show: function () { + var dimension + , scroll + , actives + , hasData + + if (this.transitioning || this.$element.hasClass('in')) return + + dimension = this.dimension() + scroll = $.camelCase(['scroll', dimension].join('-')) + actives = this.$parent && this.$parent.find('> .accordion-group > .in') + + if (actives && actives.length) { + hasData = actives.data('collapse') + if (hasData && hasData.transitioning) return + actives.collapse('hide') + hasData || actives.data('collapse', null) + } + + this.$element[dimension](0) + this.transition('addClass', $.Event('show'), 'shown') + $.support.transition && this.$element[dimension](this.$element[0][scroll]) + } + + , hide: function () { + var dimension + if (this.transitioning || !this.$element.hasClass('in')) return + dimension = this.dimension() + this.reset(this.$element[dimension]()) + this.transition('removeClass', $.Event('hide'), 'hidden') + this.$element[dimension](0) + } + + , reset: function (size) { + var dimension = this.dimension() + + this.$element + .removeClass('collapse') + [dimension](size || 'auto') + [0].offsetWidth + + this.$element[size !== null ? 'addClass' : 'removeClass']('collapse') + + return this + } + + , transition: function (method, startEvent, completeEvent) { + var that = this + , complete = function () { + if (startEvent.type == 'show') that.reset() + that.transitioning = 0 + that.$element.trigger(completeEvent) + } + + this.$element.trigger(startEvent) + + if (startEvent.isDefaultPrevented()) return + + this.transitioning = 1 + + this.$element[method]('in') + + $.support.transition && this.$element.hasClass('collapse') ? + this.$element.one($.support.transition.end, complete) : + complete() + } + + , toggle: function () { + this[this.$element.hasClass('in') ? 'hide' : 'show']() + } + + } + + + /* COLLAPSE PLUGIN DEFINITION + * ========================== */ + + var old = $.fn.collapse + + $.fn.collapse = function (option) { + return this.each(function () { + var $this = $(this) + , data = $this.data('collapse') + , options = $.extend({}, $.fn.collapse.defaults, $this.data(), typeof option == 'object' && option) + if (!data) $this.data('collapse', (data = new Collapse(this, options))) + if (typeof option == 'string') data[option]() + }) + } + + $.fn.collapse.defaults = { + toggle: true + } + + $.fn.collapse.Constructor = Collapse + + + /* COLLAPSE NO CONFLICT + * ==================== */ + + $.fn.collapse.noConflict = function () { + $.fn.collapse = old + return this + } + + + /* COLLAPSE DATA-API + * ================= */ + + $(document).on('click.collapse.data-api', '[data-toggle=collapse]', function (e) { + var $this = $(this), href + , target = $this.attr('data-target') + || e.preventDefault() + || (href = $this.attr('href')) && href.replace(/.*(?=#[^\s]+$)/, '') //strip for ie7 + , option = $(target).data('collapse') ? 'toggle' : $this.data() + $this[$(target).hasClass('in') ? 'addClass' : 'removeClass']('collapsed') + $(target).collapse(option) + }) + +}(window.$jqTheme || window.jQuery); +/* ============================================================ + * bootstrap-dropdown.js v2.3.2 + * http://twitter.github.com/bootstrap/javascript.html#dropdowns + * ============================================================ + * Copyright 2012 Twitter, Inc. + * + * Licensed under the Apache License, Version 2.0 (the "License"); + * you may not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + * ============================================================ */ + + +!function ($) { + + "use strict"; // jshint ;_; + + + /* DROPDOWN CLASS DEFINITION + * ========================= */ + + var toggle = '[data-toggle=dropdown]' + , Dropdown = function (element) { + var $el = $(element).on('click.dropdown.data-api', this.toggle) + $('html').on('click.dropdown.data-api', function () { + $el.parent().removeClass('open') + }) + } + + Dropdown.prototype = { + + constructor: Dropdown + + , toggle: function (e) { + var $this = $(this) + , $parent + , isActive + + if ($this.is('.disabled, :disabled')) return + + $parent = getParent($this) + + isActive = $parent.hasClass('open') + + clearMenus() + + if (!isActive) { + if ('ontouchstart' in document.documentElement) { + // if mobile we we use a backdrop because click events don't delegate + $('