-
Notifications
You must be signed in to change notification settings - Fork 1
/
main.py
509 lines (423 loc) · 21.1 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
#!/usr/bin/env python3
from __future__ import absolute_import, division, print_function, unicode_literals
import argparse
import os
import warnings
import time
import random
import accimage
import numpy as np
import sys
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
import torchvision
import torchvision.transforms as transforms
from torch.autograd import Variable
from utils import *
import modelarchs
import admm
def test(val_loader, model, epoch, args):
batch_time = AverageMeter('Time', ':6.3f')
losses = AverageMeter('Loss', ':.4e')
top1 = AverageMeter('Acc@1', ':6.2f')
top5 = AverageMeter('Acc@5', ':6.2f')
progress = ProgressMeter(
len(val_loader),
[batch_time, losses, top1, top5],
prefix='Test: ')
# switch to evaluate mode
model.eval()
with torch.no_grad():
end = time.time()
if args.admm:
admm.applyquantW()
for i, (images, target) in enumerate(val_loader):
#if args.gpu is not None:
# images = images.cuda(args.gpu, non_blocking=True)
#target = target.cuda(args.gpu, non_blocking=True)
images, target = Variable(images.cuda()), Variable(target.cuda())
#downsample the input since resnet18 is called by torchvision
# but in resent 20 we have already write the downsample function
if args.arch == 'resnet18':
if args.ds != args.crop:
images = F.interpolate(images, args.ds, mode = 'bilinear')
# compute output
output = model(images)
loss = criterion(output, target)
#print("loss.size:",loss.size())
#print("images.size(0)",images.size(0))
# measure accuracy and record loss
acc1, acc5 = accuracy(output, target, topk=(1, 5))
losses.update(loss.item(), images.size(0))
top1.update(acc1[0], images.size(0))
top5.update(acc5[0], images.size(0))
# measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
if i % 10 == 0:
progress.display(i)
# TODO: this should also be done with the ProgressMeter
print(' * Acc@1 {top1.avg:.3f} Acc@5 {top5.avg:.3f}'
.format(top1=top1, top5=top5))
if args.admm:
admm.restoreW()
if args.evaluate:
weightsdistribute(model)
return top1.avg
def mixtest(val_loader, model_big, model_small, epoch, args):
model_big.eval()
model_small.eval()
confidence_small_record = torch.tensor([],dtype=torch.float32).cuda()#np.array([])
confidence_big_record = torch.tensor([],dtype=torch.float32).cuda()#np.array([])
pred_small_record = torch.tensor([], dtype=torch.int).cuda()#np.array([]).astype(int)
pred_big_record = torch.tensor([], dtype=torch.int).cuda()#np.array([]).astype(int)
target_record = torch.tensor([], dtype=torch.int).cuda()#np.array([]).astype(int)
with torch.no_grad():
for i, (images, target) in enumerate(val_loader):
images, target = Variable(images.cuda()), Variable(target.cuda())
# Crop
_, _, w, h = images.shape
th, tw = args.crop, args.crop
i = int(round((h - th) / 2.))
j = int(round((w - tw) / 2.))
#i (int): i in (i,j) i.e coordinates of the upper left corner.
#j (int): j in (i,j) i.e coordinates of the upper left corner.
#th (int): Height of the cropped image.
#tw (int): Width of the cropped image.
images_small = images[:,:,i:i+th,j:j+tw]
# ds
# downsample the input since resnet18 is called by torchvision
# but in resent 20 we have already write the downsample function
if args.arch == 'resnet18':
if args.ds != args.crop:
images_small = F.interpolate(images_small, args.ds, mode = 'bilinear')
# compute output
output_big = model_big(images)
output_small = model_small(images_small)
#loss = criterion(output, target)
# confidence and pred of the output
_, pred_big = output_big.topk(1, 1, True, True)
_, pred_small = output_small.topk(1, 1, True, True)
pred_big_record = torch.cat((pred_big_record, pred_big.type(torch.int).reshape(-1)), 0)
pred_small_record = torch.cat((pred_small_record, pred_small.type(torch.int).reshape(-1)), 0)
confidence_small = F.softmax(output_small.data, dim=1).max(1)[0]
confidence_big = F.softmax(output_big.data, dim=1).max(1)[0]
#print(confidence_small)
confidence_small_record = torch.cat((confidence_small_record, confidence_small.type(torch.float).reshape(-1)), 0)
confidence_big_record = torch.cat((confidence_big_record, confidence_big.type(torch.float).reshape(-1)), 0)
target_record = torch.cat((target_record, target.type(torch.int)), 0)
print('Threshold, Acc, big_compute_ratio, total_compute')
sorted_confidence_small_record, _ = torch.sort(confidence_small_record,descending=True)
#sorted_confidence_big_record, _ = torch.sort(confidence_big_record,descending=True)
step = int(0.01* (len(confidence_small_record)))
for index in range(0, len(confidence_small_record) , step):
threshold = sorted_confidence_small_record[index]
mask = (confidence_small_record <= threshold).type(torch.int)
final_pred = pred_small_record * (1-mask) + pred_big_record * mask
correct = (target_record == final_pred).float().sum(0)
acc = correct.mul_(100.0 / len(confidence_small_record))
big_compute_ratio = mask.type(torch.float).sum(0) / len(confidence_small_record)
total_compute = float(big_compute_ratio+ float(args.ds/224)**2)
print('{:8.6f},{:4.2f},{:5.4f},{:5.4f}'.format(threshold,acc, big_compute_ratio, total_compute))
small_acc = (target_record == pred_small_record).float().sum(0).mul_(100.0/ len(confidence_small_record))
print('{:8.6f},{:4.2f},{:5.4f},{:5.4f}'.format(0 , small_acc , 0 , float((args.ds/224))**2))
#print(target_record)
print('relationship of confidence and acc')
print('confidence , Acc1_small, Acc1_big')
for i in range(10):
thr_confidence = 1 - i*0.1
mask_small = ((confidence_small_record <= thr_confidence) & (confidence_small_record > thr_confidence-0.1)).type(torch.int)
mask_big = ((confidence_big_record <= thr_confidence) & (confidence_big_record > thr_confidence-0.1)).type(torch.int)
acc_small = (pred_small_record * mask_small == target_record).float().sum(0) / mask_small.sum()
acc_big = (pred_big_record * mask_big == target_record).float().sum(0) / mask_big.sum()
print('{:.1f} - {:.1f},{:5.3f},{:5.3f}'.format(thr_confidence-0.1, thr_confidence,acc_small, acc_big))
sys.stdout.flush()
return acc
def train(train_loader,optimizer, model, epoch, args):
batch_time = AverageMeter('Time', ':6.3f')
data_time = AverageMeter('Data', ':6.3f')
losses = AverageMeter('Loss', ':.4e')
top1 = AverageMeter('Acc@1', ':6.2f')
top5 = AverageMeter('Acc@5', ':6.2f')
progress = ProgressMeter(
len(train_loader),
[batch_time, data_time, losses, top1, top5],
prefix="Epoch: [{}]".format(epoch))
end = time.time()
model.train()
for i, (images, target) in enumerate(train_loader):
# measure data loading time
data_time.update(time.time() - end)
#if args.gpu is not None:
#images = images.cuda(args.gpu, non_blocking=True)
#target = target.cuda(args.gpu, non_blocking=True)
images, target = Variable(images.cuda()), Variable(target.cuda())
#downsample the input since resnet18 is called by torchvision
# but in resent 20 we have already write the downsample function
if args.arch == 'resnet18':
if args.ds < 224:
images = F.interpolate(images, args.ds, mode = 'bilinear')
# compute output
output = model(images)
loss = criterion(output, target)
# measure accuracy and record loss
acc1, acc5 = accuracy(output, target, topk=(1, 5))
losses.update(loss.item(), images.size(0))
top1.update(acc1[0], images.size(0))
top5.update(acc5[0], images.size(0))
# compute gradient and do SGD step
optimizer.zero_grad()
loss.backward()
# updata W gra, \partial_W L = \partial_W f + \rho (W-Z^K+U^K)
if args.admm:
admm.loss_grad()
optimizer.step()
# measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
if i % 100 == 0:
progress.display(i,optimizer)
# update U,Z every admm_iter
if args.admm:
admm.update(epoch)
admm.print_info(epoch)
if epoch == args.epochs-1 :
admm.apply_quantval()
print('Finished Training')
return
def accuracy(output, target, topk=(1,)):
"""Computes the accuracy over the k top predictions for the specified values of k"""
with torch.no_grad():
maxk = max(topk)
batch_size = target.size(0)
_, pred = output.topk(maxk, 1, True, True)
pred = pred.t()
correct = pred.eq(target.view(1, -1).expand_as(pred))
res = []
for k in topk:
correct_k = correct[:k].view(-1).float().sum(0, keepdim=True)
res.append(correct_k.mul_(100.0 / batch_size))
return res
if __name__=='__main__':
imagenet_datapath= '/data2/jiecaoyu/imagenet/imgs/'
parser = argparse.ArgumentParser(description='PyTorch MNIST ResNet Example')
parser.add_argument('--ds', type=int, default=32,
help = 'down sample size')
parser.add_argument('--crop', type=int, default=32,
help = 'crop size')
parser.add_argument('--no_cuda', default=False,
help = 'do not use cuda',action='store_true')
parser.add_argument('--epochs', type=int, default=450, metavar='N',
help='number of epochs to train (default: 450)')
parser.add_argument('--start-epoch', default=0, type=int, metavar='N',
help='manual epoch number (useful on restarts)')
parser.add_argument('--lr_epochs', type=int, default=100, metavar='N',
help='number of epochs to change lr (default: 100)')
parser.add_argument('--pretrained', default=None, nargs='+',
help='pretrained model ( for mixtest \
the first pretrained model is the big one \
and the sencond is the small net)')
parser.add_argument('--resume', action='store_true',
default=False, help='resume start_epoch')
parser.add_argument('--seed', default=None, type=int,
help='seed for initializing training. ')
parser.add_argument('--lr', '--learning-rate', default=0.1, type=float,
metavar='LR', help='initial learning rate', dest='lr')
parser.add_argument('--momentum', default=0.9, type=float, metavar='M',
help='momentum')
parser.add_argument('--wd', '--weight-decay', default=1e-4, type=float,
metavar='W', help='weight decay (default: 1e-4)',
dest='weight_decay')
parser.add_argument('-e', '--evaluate', dest='evaluate', action='store_true',
default=False, help='evaluate model on validation set')
parser.add_argument('--gpu', default=None, type=int,
help='GPU id to use.')
parser.add_argument('--arch', action='store', default='resnet20',
help='the CIFAR10 network structure: resnet20 | resnet18 | all_cnn_net')
parser.add_argument('--dataset', action='store', default='cifar10',
help='pretrained model: cifar10 | imagenet')
parser.add_argument('-m', '--mix', dest='mix', action='store_true',
default=False, help='mix model of frontend and beckend, used with -e')
parser.add_argument('--admm', action='store_true',
default=False, help='use admm to quantize weights')
parser.add_argument('--admm-iter', default=10, type=int,
help='admm iter')
parser.add_argument('--rho', default=1e-4, type=float,
help='admm rho parameter')
parser.add_argument('--bits', default = [2,2,2,2,2,2,2,2,2], type = int,
nargs = '*', help = ' num of bits for each layer')
args = parser.parse_args()
args.cuda = not args.no_cuda and torch.cuda.is_available()
print(args)
if args.seed is not None:
random.seed(args.seed)
torch.manual_seed(args.seed)
cudnn.deterministic = True
warnings.warn('You have chosen to seed training. '
'This will turn on the CUDNN deterministic setting, '
'which can slow down your training considerably! '
'You may see unexpected behavior when restarting '
'from checkpoints.')
if not args.mix:
testcrop = args.crop
else:
testcrop = 224
if args.dataset == 'cifar10':
# load cifa-10
nclass = 10
normalize = transforms.Normalize(
mean=[0.491, 0.482, 0.447], std=[0.247, 0.243, 0.262])
trainset = torchvision.datasets.CIFAR10(root='./data', train=True,
download=True, transform=
transforms.Compose([
transforms.RandomCrop(args.crop,padding=2),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
normalize,
]))
trainloader = torch.utils.data.DataLoader(trainset, batch_size=64,
shuffle=True, num_workers=16)
testset = torchvision.datasets.CIFAR10(root='./data', train=False,
download=True, transform=
transforms.Compose([
transforms.RandomCrop(testcrop,padding=2),
transforms.ToTensor(),
normalize,
]))
testloader = torch.utils.data.DataLoader(testset, batch_size=64,
shuffle=False, num_workers=16)
if args.dataset == 'imagenet':
nclass = 100
traindir = os.path.join(imagenet_datapath,'train')
testdir = os.path.join(imagenet_datapath,'val')
torchvision.set_image_backend('accimage')
normalize = transforms.Normalize(
mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
trainset = torchvision.datasets.ImageFolder(root=traindir,transform=
transforms.Compose([
#transforms.Resize(256),
#transforms.CenterCrop(args.crop),
#transforms.RandomCrop(args.crop),
transforms.RandomResizedCrop(args.crop, scale=(0.25, 1.0)),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
normalize,
]))
trainloader = torch.utils.data.DataLoader(trainset, batch_size=64,
shuffle=True, num_workers=16)
testset = torchvision.datasets.ImageFolder(root=testdir,transform=
transforms.Compose([
transforms.Resize(256),
transforms.CenterCrop(testcrop),
transforms.ToTensor(),
normalize,
]))
testloader = torch.utils.data.DataLoader(testset, batch_size=64,
shuffle=False, num_workers=16)
if args.arch == 'resnet20':
if not args.mix:
model = modelarchs.resnet20(nclass=nclass,ds=args.ds)
else:
model_big = modelarchs.resnet20(nclass=nclass,ds=args.ds)
model_small = modelarchs.resnet20(nclass=nclass,ds=args.ds)
elif args.arch == 'resnet18':
pretrained = False if args.pretrained is not None else True
if not args.mix:
model = torchvision.models.resnet18(pretrained = pretrained)
bestacc = 0
else:
model_big = torchvision.models.resnet18(pretrained = pretrained)
model_small = torchvision.models.resnet18(pretrained = pretrained)
bestacc = 0
elif args.arch == 'all_cnn_c':
if not args.mix:
model = modelarchs.all_cnn_c()
#print("--------model state dict--------")
#for key, _ in model.named_parameters():
# print(key)
criterion = nn.CrossEntropyLoss().cuda()
if not args.mix:
optimizer = optim.SGD(model.parameters(),
lr=args.lr, momentum=args.momentum, weight_decay= args.weight_decay)
if not args.pretrained:
bestacc = 0
elif not args.mix:
pretrained_model = torch.load(args.pretrained[0])
#print('bestacc',bestacc)
if args.resume: # resume from previous training, otherwise just load parameters
args.start_epoch = pretrained_model['epoch']
bestacc = pretrained_model['acc'].item()
else:
bestacc = 0
load_state(model, pretrained_model['state_dict'])
optimizer.load_state_dict(pretrained_model['optimizer'])
to_cuda_optimizer(optimizer)
else:
pretrained_model_big = torch.load(args.pretrained[0])
bestacc = pretrained_model_big['acc']
args.start_epoch = pretrained_model_big['epoch']
load_state(model_big, pretrained_model_big['state_dict'])
pretrained_model_small = torch.load(args.pretrained[1])
bestacc = pretrained_model_small['acc']
args.start_epoch = pretrained_model_small['epoch']
load_state(model_small, pretrained_model_small['state_dict'])
if args.cuda:
if not args.mix:
model.cuda()
model = nn.DataParallel(model,
device_ids=range(torch.cuda.device_count()))
#model = nn.DataParallel(model, device_ids=args.gpu)
else:
model_big.cuda()
model_big = nn.DataParallel(model_big,
device_ids=range(torch.cuda.device_count()))
model_small.cuda()
model_small = nn.DataParallel(model_small,
device_ids=range(torch.cuda.device_count()))
if not args.mix:
print(model)
else:
print(model_big)
# admm
if args.admm:
#if args.arch == 'all_cnn_c':
#bits = [1,2,2,2,2,2,2,2,2]
admm = admm.admm_op(model,b=args.bits,admm_iter=args.admm_iter)
''' evaluate model accuracy and loss only '''
if args.evaluate:
if not args.mix:
test(testloader, model, args.start_epoch, args)
exit()
else:
#test(testloader, model_small, args.start_epoch, args)
mixtest(testloader, model_big, model_small, args.start_epoch, args)
exit()
''' train model '''
for epoch in range(args.start_epoch,args.epochs):
running_loss = 0.0
adjust_learning_rate(optimizer, epoch, args)
train(trainloader,optimizer, model, epoch, args)
acc = test(testloader, model, epoch, args)
if (acc > bestacc):
bestacc = acc
save_state(model,bestacc,epoch,args, optimizer, True)
else:
save_state(model,bestacc,epoch,args,optimizer, False)
print('best acc so far:{:4.2f}'.format(bestacc))
layerdict = ['module.conv1.0.weight', 'module.conv2.0.weight', 'module.conv3.0.weight','module.conv4.0.weight','module.conv5.0.weight','module.conv6.0.weight','module.conv7.0.weight']
if args.admm:
# save the last quantized value
save_state(model,acc,epoch,args, optimizer, True)
weightsdistribute(model)
total_bit = 0
total_param = 0
i = 0
for key, value in model.named_parameters():
#if '.0.weight' in key:
if key in layerdict:
total_param = total_param + value.numel()
total_bit = total_bit + value.numel() * args.bits[i]
i = i + 1
print('aver bits: {:10d} / {:5d} = {:5.3f}'.format(total_bit, total_param, total_bit / total_param))