-
Notifications
You must be signed in to change notification settings - Fork 1
/
admm_run.sh
73 lines (63 loc) · 2.86 KB
/
admm_run.sh
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
#! /bin/bash
export LD_LIBRARY_PATH=/home/panyj/.local/lib/:$LD_LIBRARY_PATH
DIR=all_cnn_net_log/cifar10
mkdir -p ${DIR}
mkdir -p saved_models
echo "" >> ${DIR}/admm.layerwise.log
i=0
<<COMMAND0
for conv0 in 1 2
do
for conv1 in 1 2
do
for conv2 in 1 2
do
for conv3 in 1 2
do
for conv4 in 1 2
do
for conv5 in 1 2
do
for conv6 in 1 2
do
for conv7 in 1 2
do
for conv8 in 1 2
do
echo "" >> ${DIR}/admm.layerwise.log
echo ${conv0},${conv1},${conv2},${conv3},${conv4},${conv5},${conv6},${conv7},${conv8} >> ${DIR}/admm.layerwise.log
CUDA_VISIBLE_DEVICES=0,1 python3 main.py --arch all_cnn_c --dataset cifar10 --lr 1e-2 --epochs 450 --wd 1e-3 --admm --admm-iter 10 --pretrained saved_models/best.all_cnn_c.32.32.ckp_origin.pth.tar --bits ${conv0} ${conv1} ${conv2} ${conv3} ${conv4} ${conv5} ${conv6} ${conv7} ${conv8} &> ${DIR}/admm.pretrained.log 2>&1
#cat ${DIR}/admm.pretrained.log | tail -n12 >> ${DIR}/admm.layerwise.log
tac ${DIR}/admm.pretrained.log | sed -e 'Acc@1' | tac >> ${DIR}/admm.layerwise.log
done
done
done
done
done
done
done
done
done
COMMAND0
<<COMMAND1
for SIZE in 8 12 16 20
do
CUDA_VISIBLE_DEVICES=0,3 python3 main.py --ds ${SIZE} &> ${DIR}/small.${SIZE}.log
done
COMMAND1
#CUDA_VISIBLE_DEVICES=0,1 python3 main.py --arch all_cnn_c --dataset cifar10 --lr 1e-2 --epochs 450 --wd 1e-3 --admm --admm-iter 10 --pretrained saved_models/best.all_cnn_c.32.32.ckp_origin.pth.tar --bits 2 1 2 2 2 2 2 2 2 &> ${DIR}/admm.pretrained.log 2>&1
bitsets=(
" 1 1 1 1 1 1 1 "
#" 2 2 1 1 1 2 2 "
#" 2 2 2 2 2 1 1 "
#" 1 1 1 1 1 2 2 "
#" 1 1 2 2 2 1 1 "
#" 2 2 1 1 1 1 1 "
)
for i in "${bitsets[@]}"; do
echo "" >> ${DIR}/admm.layerwise.log
echo "$i" >> ${DIR}/admm.layerwise.log
echo "--arch all_cnn_c --dataset cifar10 --lr 1e-3 --epochs 1000 --wd 1e-3 --admm --admm-iter 10 --pretrained saved_models/best.all_cnn_c.32.32.ckp_origin.pth.tar --bits ${i}" >> ${DIR}/admm.layerwise.log
CUDA_VISIBLE_DEVICES=2 python3 main.py --arch all_cnn_c --dataset cifar10 --lr 1e-3 --epochs 1000 --wd 1e-3 --admm --admm-iter 10 --pretrained saved_models/best.all_cnn_c.32.32.ckp_origin.pth.tar --bits ${i} --lr_epochs 100 &> ${DIR}/admm.pretrained.log 2>&1
tac ${DIR}/admm.pretrained.log | sed -e '/Acc@1/q' | tac >> ${DIR}/admm.layerwise.log
done