From a15b5d949e46dde97a2ce79e5313db1e8a98284a Mon Sep 17 00:00:00 2001 From: cophus Date: Tue, 14 Nov 2023 10:15:09 -0800 Subject: [PATCH 01/46] initial commit for projected potential --- py4DSTEM/process/diffraction/crystal.py | 115 ++++++++++++++++++++++++ 1 file changed, 115 insertions(+) diff --git a/py4DSTEM/process/diffraction/crystal.py b/py4DSTEM/process/diffraction/crystal.py index fb2911992..2d666c3c3 100644 --- a/py4DSTEM/process/diffraction/crystal.py +++ b/py4DSTEM/process/diffraction/crystal.py @@ -876,6 +876,121 @@ def generate_ring_pattern( if return_calc is True: return radii_unique, intensity_unique + + + + def generate_projected_potential( + self, + im_size = (256,256), + pixel_size_Ang = 0.1, + orientation: Optional[Orientation] = None, + ind_orientation: Optional[int] = 0, + orientation_matrix: Optional[np.ndarray] = None, + zone_axis_lattice: Optional[np.ndarray] = None, + proj_x_lattice: Optional[np.ndarray] = None, + zone_axis_cartesian: Optional[np.ndarray] = None, + proj_x_cartesian: Optional[np.ndarray] = None, + ): + """ + Generate a single diffraction pattern, return all peaks as a pointlist. + + Parameters + ---------- + edge_blend: int, optional + Pixels to blend image at the border + + Returns + -------- + orientation (Orientation): an Orientation class object + + Returns: + im_potential: (np.array) + + """ + + # Determine image size in Angstroms + im_size = np.array(im_size) + im_size_Ang = im_size * pixel_size_Ang + + # Parse orientation inputs + if orientation is not None: + if ind_orientation is None: + orientation_matrix = orientation.matrix[0] + else: + orientation_matrix = orientation.matrix[ind_orientation] + elif orientation_matrix is None: + orientation_matrix = self.parse_orientation( + zone_axis_lattice, proj_x_lattice, zone_axis_cartesian, proj_x_cartesian + ) + # projection directions of potential image + proj_x = orientation_matrix[:,0] \ + / np.linalg.norm(orientation_matrix[:,0]) + proj_y = orientation_matrix[:,1] \ + / np.linalg.norm(orientation_matrix[:,1]) + proj_z = orientation_matrix[:,2] \ + / np.linalg.norm(orientation_matrix[:,2]) + + # Determine unit cell axes to tile over + uvw = self.lat_real / \ + np.linalg.norm(self.lat_real, axis = 1) + test = np.abs(uvw @ proj_z) + inds_tile = np.argsort(test)[:2] + m_tile = self.lat_real[inds_tile,:] + + # Determine tiling range + p = np.array([ + [-im_size_Ang[0]*0.5,-im_size_Ang[1]*0.5, 0.0], + [ im_size_Ang[0]*0.5,-im_size_Ang[1]*0.5, 0.0], + [ im_size_Ang[0]*0.5, im_size_Ang[1]*0.5, 0.0], + [-im_size_Ang[0]*0.5, im_size_Ang[1]*0.5, 0.0], + ]) + + ab = np.floor(np.linalg.lstsq( + m_tile.T, + p.T, + rcond=None)[0]) + a_range = np.array((np.min(ab[0]),np.max(ab[0]))) + b_range = np.array((np.min(ab[1]),np.max(ab[1]))) + + # Tile unit cell + a_ind, b_ind, atoms_ind = np.meshgrid( + np.arange(a_range[0],a_range[1]), + np.arange(b_range[0],b_range[1]), + np.arange(self.positions.shape[0]), + ) + abc_atoms = self.positions[atoms_ind.ravel(),:] + abc_atoms[:,inds_tile[0]] += a_ind.ravel() + abc_atoms[:,inds_tile[1]] += b_ind.ravel() + xyz_atoms_ang = abc_atoms @ self.lat_real.T + # xyz_atoms_pixels = xyz_atoms_ang / pixel_size_Ang \ + # + im_size/2.0 + + # Project into projected potential image plane + x = proj_x + + # # Lookup table for atomic projected potentials + + # # initialize + im_potential = np.zeros(im_size) + # # im_potential[10:20,10:20] = 1 + + + # Add atoms to potential + + + # test plotting + fig,ax = plt.subplots(figsize = (6,6)) + ax.imshow( + im_potential, + cmap = 'gray', + ) + ax.set_axis_off() + + return im_potential + + + + # Vector conversions and other utilities for Crystal classes def cartesian_to_lattice(self, vec_cartesian): vec_lattice = self.lat_inv @ vec_cartesian From 5b9080d55a11fde3a353979042d48d12c3ff4242 Mon Sep 17 00:00:00 2001 From: cophus Date: Tue, 14 Nov 2023 10:32:33 -0800 Subject: [PATCH 02/46] Atom coordinates mostly working Some tiling issue for image corners --- py4DSTEM/process/diffraction/crystal.py | 35 +++++++++++++++++-------- 1 file changed, 24 insertions(+), 11 deletions(-) diff --git a/py4DSTEM/process/diffraction/crystal.py b/py4DSTEM/process/diffraction/crystal.py index 2d666c3c3..3a661583e 100644 --- a/py4DSTEM/process/diffraction/crystal.py +++ b/py4DSTEM/process/diffraction/crystal.py @@ -938,19 +938,20 @@ def generate_projected_potential( m_tile = self.lat_real[inds_tile,:] # Determine tiling range - p = np.array([ + p_corners = np.array([ [-im_size_Ang[0]*0.5,-im_size_Ang[1]*0.5, 0.0], [ im_size_Ang[0]*0.5,-im_size_Ang[1]*0.5, 0.0], [ im_size_Ang[0]*0.5, im_size_Ang[1]*0.5, 0.0], [-im_size_Ang[0]*0.5, im_size_Ang[1]*0.5, 0.0], ]) - - ab = np.floor(np.linalg.lstsq( + p_corners_proj = p_corners @ \ + np.linalg.inv(np.vstack((proj_x, proj_y, proj_z))) + ab = np.round(np.linalg.lstsq( m_tile.T, - p.T, + p_corners_proj.T, rcond=None)[0]) - a_range = np.array((np.min(ab[0]),np.max(ab[0]))) - b_range = np.array((np.min(ab[1]),np.max(ab[1]))) + a_range = np.array((np.min(ab[0])-1,np.max(ab[0])+1)) + b_range = np.array((np.min(ab[1])-1,np.max(ab[1])+1)) # Tile unit cell a_ind, b_ind, atoms_ind = np.meshgrid( @@ -962,15 +963,25 @@ def generate_projected_potential( abc_atoms[:,inds_tile[0]] += a_ind.ravel() abc_atoms[:,inds_tile[1]] += b_ind.ravel() xyz_atoms_ang = abc_atoms @ self.lat_real.T - # xyz_atoms_pixels = xyz_atoms_ang / pixel_size_Ang \ - # + im_size/2.0 # Project into projected potential image plane - x = proj_x + x = (xyz_atoms_ang @ proj_x) / pixel_size_Ang + im_size[0]/2.0 + y = (xyz_atoms_ang @ proj_y) / pixel_size_Ang + im_size[1]/2.0 + atoms_del = np.logical_or.reduce(( + x < 0, + y < 0, + x > im_size[0], + y > im_size[1], + )) + x = np.delete(x, atoms_del) + y = np.delete(y, atoms_del) + + # Lookup table for atomic projected potentials + + - # # Lookup table for atomic projected potentials - # # initialize + # initialize potential im_potential = np.zeros(im_size) # # im_potential[10:20,10:20] = 1 @@ -984,7 +995,9 @@ def generate_projected_potential( im_potential, cmap = 'gray', ) + ax.scatter(y,x) ax.set_axis_off() + ax.set_aspect('equal') return im_potential From 36ddbcc656c9d1fc006bcc1759ec7290d2c27389 Mon Sep 17 00:00:00 2001 From: cophus Date: Tue, 14 Nov 2023 11:12:11 -0800 Subject: [PATCH 03/46] Projected potential now working with bugs projection algebra definitely has a bug --- py4DSTEM/process/diffraction/crystal.py | 73 ++++++++++++++----- py4DSTEM/process/utils/single_atom_scatter.py | 31 +++++++- 2 files changed, 84 insertions(+), 20 deletions(-) diff --git a/py4DSTEM/process/diffraction/crystal.py b/py4DSTEM/process/diffraction/crystal.py index 3a661583e..eb8642b25 100644 --- a/py4DSTEM/process/diffraction/crystal.py +++ b/py4DSTEM/process/diffraction/crystal.py @@ -1,6 +1,7 @@ # Functions for calculating diffraction patterns, matching them to experiments, and creating orientation and phase maps. import numpy as np +from scipy.ndimage import gaussian_filter import matplotlib.pyplot as plt from matplotlib.patches import Circle from fractions import Fraction @@ -883,6 +884,9 @@ def generate_projected_potential( self, im_size = (256,256), pixel_size_Ang = 0.1, + potential_radius_Ang = 3.0, + sigma_image_blur_Ang = 0.1, + plot_result = False, orientation: Optional[Orientation] = None, ind_orientation: Optional[int] = 0, orientation_matrix: Optional[np.ndarray] = None, @@ -963,6 +967,7 @@ def generate_projected_potential( abc_atoms[:,inds_tile[0]] += a_ind.ravel() abc_atoms[:,inds_tile[1]] += b_ind.ravel() xyz_atoms_ang = abc_atoms @ self.lat_real.T + atoms_ID_all = self.numbers[atoms_ind.ravel()] # Project into projected potential image plane x = (xyz_atoms_ang @ proj_x) / pixel_size_Ang + im_size[0]/2.0 @@ -975,35 +980,65 @@ def generate_projected_potential( )) x = np.delete(x, atoms_del) y = np.delete(y, atoms_del) + atoms_ID_all = np.delete(atoms_ID_all, atoms_del) - # Lookup table for atomic projected potentials - - + # Coordinate system for atomic projected potentials + potential_radius = np.ceil(potential_radius_Ang / pixel_size_Ang) + R = np.arange(0.5-potential_radius,potential_radius+0.5) + R_ind = R.astype('int') + R_2D = np.sqrt(R[:,None]**2 + R[None,:]**2) + # Lookup table for atomic projected potentials + atoms_ID = np.unique(self.numbers) + atoms_lookup = np.zeros(( + atoms_ID.shape[0], + R_2D.shape[0], + R_2D.shape[1], + )) + for a0 in range(atoms_ID.shape[0]): + atom_sf = single_atom_scatter([atoms_ID[a0]]) + atoms_lookup[a0,:,:] = atom_sf.projected_potential(atoms_ID[a0], R_2D) # initialize potential im_potential = np.zeros(im_size) - # # im_potential[10:20,10:20] = 1 - - - # Add atoms to potential + # Add atoms to potential image + for a0 in range(atoms_ID_all.shape[0]): + ind = np.argmin(np.abs(atoms_ID - atoms_ID_all[a0])) + + x_ind = np.clip( + np.round(x[a0]).astype('int') + R_ind, + 0, + im_size[0]-1) + y_ind = np.clip( + np.round(y[a0]).astype('int') + R_ind, + 0, + im_size[1]-1) + + im_potential[x_ind[None,:],y_ind[:,None]] += atoms_lookup[ind] + + # if needed, apply gaussian blurring + if sigma_image_blur_Ang > 0: + sigma_image_blur = sigma_image_blur_Ang / pixel_size_Ang + im_potential = gaussian_filter( + im_potential, + sigma_image_blur, + mode = 'nearest', + ) - # test plotting - fig,ax = plt.subplots(figsize = (6,6)) - ax.imshow( - im_potential, - cmap = 'gray', - ) - ax.scatter(y,x) - ax.set_axis_off() - ax.set_aspect('equal') + if plot_result: + # test plotting + fig,ax = plt.subplots(figsize = (6,6)) + ax.imshow( + im_potential, + cmap = 'gray', + ) + # ax.scatter(y,x) + ax.set_axis_off() + ax.set_aspect('equal') return im_potential - - - # Vector conversions and other utilities for Crystal classes def cartesian_to_lattice(self, vec_cartesian): vec_lattice = self.lat_inv @ vec_cartesian diff --git a/py4DSTEM/process/utils/single_atom_scatter.py b/py4DSTEM/process/utils/single_atom_scatter.py index 8d6e2a891..9085afd93 100644 --- a/py4DSTEM/process/utils/single_atom_scatter.py +++ b/py4DSTEM/process/utils/single_atom_scatter.py @@ -1,6 +1,6 @@ import numpy as np import os - +from scipy.special import kn class single_atom_scatter(object): """ @@ -46,6 +46,35 @@ def electron_scattering_factor(self, Z, gsq, units="A"): elif units == "A": return fe + def projected_potential(self, Z, R): + ai = self.e_scattering_factors[Z - 1, 0:10:2] + bi = self.e_scattering_factors[Z - 1, 1:10:2] + + # Planck's constant in Js + h = 6.62607004e-34 + # Electron rest mass in kg + me = 9.10938356e-31 + # Electron charge in Coulomb + qe = 1.60217662e-19 + # Permittivity of vacuum + eps_0 = 8.85418782e-12 + # Bohr's constant + a_0 = 5.29177210903e-11 + + fe = np.zeros_like(R) + for i in range(5): + # fe += ai[i] * (2 + bi[i] * gsq) / (1 + bi[i] * gsq) ** 2 + pre = 2*np.pi/bi[i]**0.5 + fe += (ai[i] / bi[i]**1.5) * \ + (kn(0, pre * R) + R * kn(1, pre * R)) + + # kappa = (4*np.pi*eps_0) / (2*np.pi*a_0*me) + return fe * 2 * np.pi**2# / kappa + # if units == "VA": + # return h**2 / (2 * np.pi * me * qe) * 1e18 * fe + # elif units == "A": + # return fe * 2 * np.pi**2 / kappa + def get_scattering_factor( self, elements=None, composition=None, q_coords=None, units=None ): From a0d0f15e60618c962a0667801cdf1ccdc20312d4 Mon Sep 17 00:00:00 2001 From: cophus Date: Tue, 14 Nov 2023 11:14:18 -0800 Subject: [PATCH 04/46] minor tweak --- py4DSTEM/process/diffraction/crystal.py | 3 ++- 1 file changed, 2 insertions(+), 1 deletion(-) diff --git a/py4DSTEM/process/diffraction/crystal.py b/py4DSTEM/process/diffraction/crystal.py index eb8642b25..603e1a6cb 100644 --- a/py4DSTEM/process/diffraction/crystal.py +++ b/py4DSTEM/process/diffraction/crystal.py @@ -966,7 +966,8 @@ def generate_projected_potential( abc_atoms = self.positions[atoms_ind.ravel(),:] abc_atoms[:,inds_tile[0]] += a_ind.ravel() abc_atoms[:,inds_tile[1]] += b_ind.ravel() - xyz_atoms_ang = abc_atoms @ self.lat_real.T + # NOTE - should this be self.lat_real.T? + xyz_atoms_ang = abc_atoms @ self.lat_real atoms_ID_all = self.numbers[atoms_ind.ravel()] # Project into projected potential image plane From 9b726e55bf8d0581a2116cf083997a3fe4ad0282 Mon Sep 17 00:00:00 2001 From: Colin Date: Fri, 8 Dec 2023 13:49:03 -0800 Subject: [PATCH 05/46] Projected potentials fixed? --- py4DSTEM/process/diffraction/crystal.py | 52 +++++++++++-------------- 1 file changed, 23 insertions(+), 29 deletions(-) diff --git a/py4DSTEM/process/diffraction/crystal.py b/py4DSTEM/process/diffraction/crystal.py index 603e1a6cb..d1cb04401 100644 --- a/py4DSTEM/process/diffraction/crystal.py +++ b/py4DSTEM/process/diffraction/crystal.py @@ -926,36 +926,31 @@ def generate_projected_potential( orientation_matrix = self.parse_orientation( zone_axis_lattice, proj_x_lattice, zone_axis_cartesian, proj_x_cartesian ) - # projection directions of potential image - proj_x = orientation_matrix[:,0] \ - / np.linalg.norm(orientation_matrix[:,0]) - proj_y = orientation_matrix[:,1] \ - / np.linalg.norm(orientation_matrix[:,1]) - proj_z = orientation_matrix[:,2] \ - / np.linalg.norm(orientation_matrix[:,2]) - - # Determine unit cell axes to tile over - uvw = self.lat_real / \ - np.linalg.norm(self.lat_real, axis = 1) - test = np.abs(uvw @ proj_z) - inds_tile = np.argsort(test)[:2] - m_tile = self.lat_real[inds_tile,:] + + # Rotate unit cell into projection direction + lat_real = self.lat_real.copy() @ orientation_matrix + + # Determine unit cell axes to tile over, by selecting 2/3 with largest in-plane component + inds_tile = np.argsort( + np.linalg.norm(lat_real[:,0:2],axis=1) + )[1:3] + m_tile = lat_real[inds_tile,:] # Determine tiling range p_corners = np.array([ [-im_size_Ang[0]*0.5,-im_size_Ang[1]*0.5, 0.0], [ im_size_Ang[0]*0.5,-im_size_Ang[1]*0.5, 0.0], - [ im_size_Ang[0]*0.5, im_size_Ang[1]*0.5, 0.0], [-im_size_Ang[0]*0.5, im_size_Ang[1]*0.5, 0.0], + [ im_size_Ang[0]*0.5, im_size_Ang[1]*0.5, 0.0], ]) - p_corners_proj = p_corners @ \ - np.linalg.inv(np.vstack((proj_x, proj_y, proj_z))) - ab = np.round(np.linalg.lstsq( - m_tile.T, - p_corners_proj.T, - rcond=None)[0]) - a_range = np.array((np.min(ab[0])-1,np.max(ab[0])+1)) - b_range = np.array((np.min(ab[1])-1,np.max(ab[1])+1)) + ab = np.linalg.lstsq( + m_tile[:,:2].T, + p_corners[:,:2].T, + rcond=None + )[0] + ab = np.floor(ab) + a_range = np.array((np.min(ab[0])-1,np.max(ab[0])+2)) + b_range = np.array((np.min(ab[1])-1,np.max(ab[1])+2)) # Tile unit cell a_ind, b_ind, atoms_ind = np.meshgrid( @@ -966,13 +961,12 @@ def generate_projected_potential( abc_atoms = self.positions[atoms_ind.ravel(),:] abc_atoms[:,inds_tile[0]] += a_ind.ravel() abc_atoms[:,inds_tile[1]] += b_ind.ravel() - # NOTE - should this be self.lat_real.T? - xyz_atoms_ang = abc_atoms @ self.lat_real + xyz_atoms_ang = abc_atoms @ lat_real atoms_ID_all = self.numbers[atoms_ind.ravel()] - # Project into projected potential image plane - x = (xyz_atoms_ang @ proj_x) / pixel_size_Ang + im_size[0]/2.0 - y = (xyz_atoms_ang @ proj_y) / pixel_size_Ang + im_size[1]/2.0 + # Center atoms on image plane + x = xyz_atoms_ang[:,0] / pixel_size_Ang + im_size[0]/2.0 + y = xyz_atoms_ang[:,1] / pixel_size_Ang + im_size[1]/2.0 atoms_del = np.logical_or.reduce(( x < 0, y < 0, @@ -1032,7 +1026,7 @@ def generate_projected_potential( fig,ax = plt.subplots(figsize = (6,6)) ax.imshow( im_potential, - cmap = 'gray', + cmap = 'turbo', ) # ax.scatter(y,x) ax.set_axis_off() From a9b05edc7bd344757479ac662db8cd6866d2638f Mon Sep 17 00:00:00 2001 From: Colin Date: Fri, 2 Feb 2024 10:43:53 -0800 Subject: [PATCH 06/46] adding figsize --- py4DSTEM/process/diffraction/crystal.py | 3 ++- 1 file changed, 2 insertions(+), 1 deletion(-) diff --git a/py4DSTEM/process/diffraction/crystal.py b/py4DSTEM/process/diffraction/crystal.py index d1cb04401..7d2606576 100644 --- a/py4DSTEM/process/diffraction/crystal.py +++ b/py4DSTEM/process/diffraction/crystal.py @@ -887,6 +887,7 @@ def generate_projected_potential( potential_radius_Ang = 3.0, sigma_image_blur_Ang = 0.1, plot_result = False, + figsize = (6,6), orientation: Optional[Orientation] = None, ind_orientation: Optional[int] = 0, orientation_matrix: Optional[np.ndarray] = None, @@ -1023,7 +1024,7 @@ def generate_projected_potential( if plot_result: # test plotting - fig,ax = plt.subplots(figsize = (6,6)) + fig,ax = plt.subplots(figsize = figsize) ax.imshow( im_potential, cmap = 'turbo', From 43a396cf7fd5ef7211e3c9431259b77ebc42c429 Mon Sep 17 00:00:00 2001 From: Colin Date: Mon, 4 Mar 2024 11:33:34 -0800 Subject: [PATCH 07/46] update docstring --- py4DSTEM/process/diffraction/crystal.py | 39 ++++++++++++++++++++----- 1 file changed, 32 insertions(+), 7 deletions(-) diff --git a/py4DSTEM/process/diffraction/crystal.py b/py4DSTEM/process/diffraction/crystal.py index 50ddc3087..6f10d8ab1 100644 --- a/py4DSTEM/process/diffraction/crystal.py +++ b/py4DSTEM/process/diffraction/crystal.py @@ -988,19 +988,44 @@ def generate_projected_potential( proj_x_cartesian: Optional[np.ndarray] = None, ): """ - Generate a single diffraction pattern, return all peaks as a pointlist. + Generate an image of the projected potential of crystal in real space, + using cell tiling, and a lookup table of the atomic potentials. Parameters ---------- - edge_blend: int, optional - Pixels to blend image at the border + im_size: tuple, list, np.array + (2,) vector specifying the output size in pixels. + pixel_size_Ang: float + Pixel size in Angstroms. + potential_radius_Ang: float + Radius in Angstroms for how far to integrate the atomic potentials + sigma_image_blur_Ang: float + Image blurring in Angstroms. + plot_result: bool + Plot the projected potential image. + figsize: + (2,) vector giving the size of the output. + + orientation: Orientation + An Orientation class object + ind_orientation: int + If input is an Orientation class object with multiple orientations, + this input can be used to select a specific orientation. + orientation_matrix: array + (3,3) orientation matrix, where columns represent projection directions. + zone_axis_lattice: array + (3,) projection direction in lattice indices + proj_x_lattice: array) + (3,) x-axis direction in lattice indices + zone_axis_cartesian: array + (3,) cartesian projection direction + proj_x_cartesian: array + (3,) cartesian projection direction Returns -------- - orientation (Orientation): an Orientation class object - - Returns: - im_potential: (np.array) + im_potential: (np.array) + Output image of the projected potential. """ From 16c727f7a84e74bada2c9fc118d4de49aea7c6a0 Mon Sep 17 00:00:00 2001 From: Colin Date: Mon, 4 Mar 2024 13:16:53 -0800 Subject: [PATCH 08/46] Adding thickness projection --- py4DSTEM/process/diffraction/crystal.py | 56 +++++++++++++++---------- 1 file changed, 35 insertions(+), 21 deletions(-) diff --git a/py4DSTEM/process/diffraction/crystal.py b/py4DSTEM/process/diffraction/crystal.py index 6f10d8ab1..de82f443d 100644 --- a/py4DSTEM/process/diffraction/crystal.py +++ b/py4DSTEM/process/diffraction/crystal.py @@ -974,9 +974,10 @@ def generate_ring_pattern( def generate_projected_potential( self, im_size = (256,256), - pixel_size_Ang = 0.1, - potential_radius_Ang = 3.0, - sigma_image_blur_Ang = 0.1, + pixel_size_angstroms = 0.1, + potential_radius_angstroms = 3.0, + sigma_image_blur_angstroms = 0.1, + thickness_angstroms = 100, plot_result = False, figsize = (6,6), orientation: Optional[Orientation] = None, @@ -995,12 +996,14 @@ def generate_projected_potential( ---------- im_size: tuple, list, np.array (2,) vector specifying the output size in pixels. - pixel_size_Ang: float + pixel_size_angstroms: float Pixel size in Angstroms. - potential_radius_Ang: float + potential_radius_angstroms: float Radius in Angstroms for how far to integrate the atomic potentials - sigma_image_blur_Ang: float + sigma_image_blur_angstroms: float Image blurring in Angstroms. + thickness_angstroms: float + Thickness of the sample in Angstroms. plot_result: bool Plot the projected potential image. figsize: @@ -1031,7 +1034,7 @@ def generate_projected_potential( # Determine image size in Angstroms im_size = np.array(im_size) - im_size_Ang = im_size * pixel_size_Ang + im_size_Ang = im_size * pixel_size_angstroms # Parse orientation inputs if orientation is not None: @@ -1052,6 +1055,8 @@ def generate_projected_potential( np.linalg.norm(lat_real[:,0:2],axis=1) )[1:3] m_tile = lat_real[inds_tile,:] + # Vector projected along zone axis + m_proj = np.squeeze(np.delete(lat_real,inds_tile,axis=0)) # Determine tiling range p_corners = np.array([ @@ -1082,8 +1087,8 @@ def generate_projected_potential( atoms_ID_all = self.numbers[atoms_ind.ravel()] # Center atoms on image plane - x = xyz_atoms_ang[:,0] / pixel_size_Ang + im_size[0]/2.0 - y = xyz_atoms_ang[:,1] / pixel_size_Ang + im_size[1]/2.0 + x = xyz_atoms_ang[:,0] / pixel_size_angstroms + im_size[0]/2.0 + y = xyz_atoms_ang[:,1] / pixel_size_angstroms + im_size[1]/2.0 atoms_del = np.logical_or.reduce(( x < 0, y < 0, @@ -1095,7 +1100,7 @@ def generate_projected_potential( atoms_ID_all = np.delete(atoms_ID_all, atoms_del) # Coordinate system for atomic projected potentials - potential_radius = np.ceil(potential_radius_Ang / pixel_size_Ang) + potential_radius = np.ceil(potential_radius_angstroms / pixel_size_angstroms) R = np.arange(0.5-potential_radius,potential_radius+0.5) R_ind = R.astype('int') R_2D = np.sqrt(R[:,None]**2 + R[None,:]**2) @@ -1111,6 +1116,13 @@ def generate_projected_potential( atom_sf = single_atom_scatter([atoms_ID[a0]]) atoms_lookup[a0,:,:] = atom_sf.projected_potential(atoms_ID[a0], R_2D) + # Projected thickness + num_proj = thickness_angstroms / m_proj[2] + vec_proj = num_proj / pixel_size_angstroms * m_proj[:2] + print(m_proj) + print(vec_proj) + + # initialize potential im_potential = np.zeros(im_size) @@ -1118,20 +1130,22 @@ def generate_projected_potential( for a0 in range(atoms_ID_all.shape[0]): ind = np.argmin(np.abs(atoms_ID - atoms_ID_all[a0])) - x_ind = np.clip( - np.round(x[a0]).astype('int') + R_ind, - 0, - im_size[0]-1) - y_ind = np.clip( - np.round(y[a0]).astype('int') + R_ind, - 0, - im_size[1]-1) + x_ind = np.round(x[a0]).astype('int') + R_ind + y_ind = np.round(y[a0]).astype('int') + R_ind + x_sub = np.logical_and( + x_ind >= 0, + x_ind < im_size[0], + ) + y_sub = np.logical_and( + y_ind >= 0, + y_ind < im_size[1], + ) - im_potential[x_ind[None,:],y_ind[:,None]] += atoms_lookup[ind] + im_potential[x_ind[x_sub][:,None],y_ind[y_sub][None,:]] += atoms_lookup[ind][x_sub,:][:,y_sub] # if needed, apply gaussian blurring - if sigma_image_blur_Ang > 0: - sigma_image_blur = sigma_image_blur_Ang / pixel_size_Ang + if sigma_image_blur_angstroms > 0: + sigma_image_blur = sigma_image_blur_angstroms / pixel_size_angstroms im_potential = gaussian_filter( im_potential, sigma_image_blur, From a1c83c35044bc55a86f8746594f5b1226ec4e9d6 Mon Sep 17 00:00:00 2001 From: Colin Date: Mon, 4 Mar 2024 14:24:32 -0800 Subject: [PATCH 09/46] Fourier method makes boundary conditions difficult --- py4DSTEM/process/diffraction/crystal.py | 63 +++++++++++++++++++++---- 1 file changed, 55 insertions(+), 8 deletions(-) diff --git a/py4DSTEM/process/diffraction/crystal.py b/py4DSTEM/process/diffraction/crystal.py index de82f443d..ed09203ab 100644 --- a/py4DSTEM/process/diffraction/crystal.py +++ b/py4DSTEM/process/diffraction/crystal.py @@ -1055,7 +1055,7 @@ def generate_projected_potential( np.linalg.norm(lat_real[:,0:2],axis=1) )[1:3] m_tile = lat_real[inds_tile,:] - # Vector projected along zone axis + # Vector projected along optic axis m_proj = np.squeeze(np.delete(lat_real,inds_tile,axis=0)) # Determine tiling range @@ -1116,13 +1116,6 @@ def generate_projected_potential( atom_sf = single_atom_scatter([atoms_ID[a0]]) atoms_lookup[a0,:,:] = atom_sf.projected_potential(atoms_ID[a0], R_2D) - # Projected thickness - num_proj = thickness_angstroms / m_proj[2] - vec_proj = num_proj / pixel_size_angstroms * m_proj[:2] - print(m_proj) - print(vec_proj) - - # initialize potential im_potential = np.zeros(im_size) @@ -1142,6 +1135,59 @@ def generate_projected_potential( ) im_potential[x_ind[x_sub][:,None],y_ind[y_sub][None,:]] += atoms_lookup[ind][x_sub,:][:,y_sub] + + # Projected thickness + num_proj = thickness_angstroms / m_proj[2] + vec_proj = num_proj / pixel_size_angstroms * m_proj[:2] + num_points = (np.ceil(np.linalg.norm(vec_proj))*2+1).astype('int') + x = np.linspace(-0.5,0.5,num_points)*vec_proj[0] + im_size[0]/2 + y = np.linspace(-0.5,0.5,num_points)*vec_proj[1] + im_size[1]/2 + xF = np.floor(x).astype('int') + yF = np.floor(y).astype('int') + dx = x - xF + dy = y - yF + im_thickness = np.reshape( + np.bincount( + np.ravel_multi_index((xF ,yF ),im_size,mode='wrap'), + (1-dx)*(1-dy) / num_points, + np.prod(im_size), + ) + \ + np.bincount( + np.ravel_multi_index((xF+1,yF ),im_size,mode='wrap'), + ( dx)*(1-dy) / num_points, + np.prod(im_size), + ) + \ + np.bincount( + np.ravel_multi_index((xF ,yF+1),im_size,mode='wrap'), + (1-dx)*( dy) / num_points, + np.prod(im_size), + ) + \ + np.bincount( + np.ravel_multi_index((xF+1,yF+1),im_size,mode='wrap'), + ( dx)*( dy) / num_points, + np.prod(im_size), + ), + im_size, + ) + # pad images and perform correlation in Fourier space + im_potential = np.real( + np.fft.ifft2( + np.fft.fft2(np.pad(im_potential,((0,im_size[0]),(0,im_size[1])))) \ + * np.fft.fft2(np.pad(im_thickness,((0,im_size[0]),(0,im_size[1])))), + ), + )[im_size[0]//2:im_size[0]+im_size[0]//2,im_size[1]//2:im_size[1]+im_size[1]//2] + + # fig,ax = plt.subplots(figsize=(12,12)) + # ax.imshow( + # np.pad(im_thickness,((0,im_size[0]),(0,im_size[1]))), + # ) + # im_thickness = np.zeros(im_size) + # for a0 in range(num_points): + # x = + + + + # if needed, apply gaussian blurring if sigma_image_blur_angstroms > 0: @@ -1152,6 +1198,7 @@ def generate_projected_potential( mode = 'nearest', ) + if plot_result: # test plotting fig,ax = plt.subplots(figsize = figsize) From c8d661ac49e8c3ba5bfc36a681fe4e3aa34ee5d8 Mon Sep 17 00:00:00 2001 From: Colin Date: Mon, 4 Mar 2024 15:19:37 -0800 Subject: [PATCH 10/46] Updated plotting --- py4DSTEM/process/diffraction/crystal.py | 123 +++++++++++------------- 1 file changed, 54 insertions(+), 69 deletions(-) diff --git a/py4DSTEM/process/diffraction/crystal.py b/py4DSTEM/process/diffraction/crystal.py index ed09203ab..8b59c3c92 100644 --- a/py4DSTEM/process/diffraction/crystal.py +++ b/py4DSTEM/process/diffraction/crystal.py @@ -978,6 +978,7 @@ def generate_projected_potential( potential_radius_angstroms = 3.0, sigma_image_blur_angstroms = 0.1, thickness_angstroms = 100, + power_scale = 1.0, plot_result = False, figsize = (6,6), orientation: Optional[Orientation] = None, @@ -1003,7 +1004,10 @@ def generate_projected_potential( sigma_image_blur_angstroms: float Image blurring in Angstroms. thickness_angstroms: float - Thickness of the sample in Angstroms. + Thickness of the sample in Angstroms. + Set thickness_thickness_angstroms = 0 to skip thickness projection. + power_scale: float + Power law scaling of potentials. Set to 2.0 to approximate Z^2 images. plot_result: bool Plot the projected potential image. figsize: @@ -1090,10 +1094,10 @@ def generate_projected_potential( x = xyz_atoms_ang[:,0] / pixel_size_angstroms + im_size[0]/2.0 y = xyz_atoms_ang[:,1] / pixel_size_angstroms + im_size[1]/2.0 atoms_del = np.logical_or.reduce(( - x < 0, - y < 0, - x > im_size[0], - y > im_size[1], + x <= -potential_radius_angstroms/2, + y <= -potential_radius_angstroms/2, + x >= im_size[0] + potential_radius_angstroms/2, + y >= im_size[1] + potential_radius_angstroms/2, )) x = np.delete(x, atoms_del) y = np.delete(y, atoms_del) @@ -1115,6 +1119,15 @@ def generate_projected_potential( for a0 in range(atoms_ID.shape[0]): atom_sf = single_atom_scatter([atoms_ID[a0]]) atoms_lookup[a0,:,:] = atom_sf.projected_potential(atoms_ID[a0], R_2D) + atoms_lookup **= power_scale + + # Thickness + if thickness_angstroms > 0: + thickness_proj = thickness_angstroms / m_proj[2] + vec_proj = thickness_proj / pixel_size_angstroms * m_proj[:2] + num_proj = (np.ceil(np.linalg.norm(vec_proj))+1).astype('int') + x_proj = np.linspace(-0.5,0.5,num_proj)*vec_proj[0] + y_proj = np.linspace(-0.5,0.5,num_proj)*vec_proj[1] # initialize potential im_potential = np.zeros(im_size) @@ -1123,71 +1136,37 @@ def generate_projected_potential( for a0 in range(atoms_ID_all.shape[0]): ind = np.argmin(np.abs(atoms_ID - atoms_ID_all[a0])) - x_ind = np.round(x[a0]).astype('int') + R_ind - y_ind = np.round(y[a0]).astype('int') + R_ind - x_sub = np.logical_and( - x_ind >= 0, - x_ind < im_size[0], - ) - y_sub = np.logical_and( - y_ind >= 0, - y_ind < im_size[1], - ) + if thickness_angstroms > 0: + for a1 in range(num_proj): + x_ind = np.round(x[a0]+x_proj[a1]).astype('int') + R_ind + y_ind = np.round(y[a0]+y_proj[a1]).astype('int') + R_ind + x_sub = np.logical_and( + x_ind >= 0, + x_ind < im_size[0], + ) + y_sub = np.logical_and( + y_ind >= 0, + y_ind < im_size[1], + ) - im_potential[x_ind[x_sub][:,None],y_ind[y_sub][None,:]] += atoms_lookup[ind][x_sub,:][:,y_sub] + im_potential[x_ind[x_sub][:,None],y_ind[y_sub][None,:]] += atoms_lookup[ind][x_sub,:][:,y_sub] - # Projected thickness - num_proj = thickness_angstroms / m_proj[2] - vec_proj = num_proj / pixel_size_angstroms * m_proj[:2] - num_points = (np.ceil(np.linalg.norm(vec_proj))*2+1).astype('int') - x = np.linspace(-0.5,0.5,num_points)*vec_proj[0] + im_size[0]/2 - y = np.linspace(-0.5,0.5,num_points)*vec_proj[1] + im_size[1]/2 - xF = np.floor(x).astype('int') - yF = np.floor(y).astype('int') - dx = x - xF - dy = y - yF - im_thickness = np.reshape( - np.bincount( - np.ravel_multi_index((xF ,yF ),im_size,mode='wrap'), - (1-dx)*(1-dy) / num_points, - np.prod(im_size), - ) + \ - np.bincount( - np.ravel_multi_index((xF+1,yF ),im_size,mode='wrap'), - ( dx)*(1-dy) / num_points, - np.prod(im_size), - ) + \ - np.bincount( - np.ravel_multi_index((xF ,yF+1),im_size,mode='wrap'), - (1-dx)*( dy) / num_points, - np.prod(im_size), - ) + \ - np.bincount( - np.ravel_multi_index((xF+1,yF+1),im_size,mode='wrap'), - ( dx)*( dy) / num_points, - np.prod(im_size), - ), - im_size, - ) - # pad images and perform correlation in Fourier space - im_potential = np.real( - np.fft.ifft2( - np.fft.fft2(np.pad(im_potential,((0,im_size[0]),(0,im_size[1])))) \ - * np.fft.fft2(np.pad(im_thickness,((0,im_size[0]),(0,im_size[1])))), - ), - )[im_size[0]//2:im_size[0]+im_size[0]//2,im_size[1]//2:im_size[1]+im_size[1]//2] - - # fig,ax = plt.subplots(figsize=(12,12)) - # ax.imshow( - # np.pad(im_thickness,((0,im_size[0]),(0,im_size[1]))), - # ) - # im_thickness = np.zeros(im_size) - # for a0 in range(num_points): - # x = - - + else: + x_ind = np.round(x[a0]).astype('int') + R_ind + y_ind = np.round(y[a0]).astype('int') + R_ind + x_sub = np.logical_and( + x_ind >= 0, + x_ind < im_size[0], + ) + y_sub = np.logical_and( + y_ind >= 0, + y_ind < im_size[1], + ) + im_potential[x_ind[x_sub][:,None],y_ind[y_sub][None,:]] += atoms_lookup[ind][x_sub,:][:,y_sub] + if thickness_angstroms > 0: + im_potential /= num_proj # if needed, apply gaussian blurring if sigma_image_blur_angstroms > 0: @@ -1198,15 +1177,21 @@ def generate_projected_potential( mode = 'nearest', ) - if plot_result: - # test plotting + # quick plotting of the result + int_vals = np.sort(im_potential.ravel()) + int_range = np.array(( + int_vals[np.round(0.02*int_vals.size).astype('int')], + int_vals[np.round(0.98*int_vals.size).astype('int')], + )) + fig,ax = plt.subplots(figsize = figsize) ax.imshow( im_potential, cmap = 'turbo', + vmin = int_range[0], + vmax = int_range[1], ) - # ax.scatter(y,x) ax.set_axis_off() ax.set_aspect('equal') From 3905e8d12c633290e9d552116ca24880cf1175c2 Mon Sep 17 00:00:00 2001 From: Colin Date: Thu, 7 Mar 2024 21:37:10 -0800 Subject: [PATCH 11/46] Adding robust fitting to ACOM strain mapping --- py4DSTEM/process/diffraction/crystal_ACOM.py | 102 ++++++++++++++----- 1 file changed, 78 insertions(+), 24 deletions(-) diff --git a/py4DSTEM/process/diffraction/crystal_ACOM.py b/py4DSTEM/process/diffraction/crystal_ACOM.py index 83dff29e1..f4a309aa8 100644 --- a/py4DSTEM/process/diffraction/crystal_ACOM.py +++ b/py4DSTEM/process/diffraction/crystal_ACOM.py @@ -2025,6 +2025,9 @@ def calculate_strain( tol_intensity: float = 1e-4, k_max: Optional[float] = None, min_num_peaks=5, + intensity_weighting = False, + robust = True, + robust_thresh = 3.0, rotation_range=None, mask_from_corr=True, corr_range=(0, 2), @@ -2039,24 +2042,46 @@ def calculate_strain( TODO: add robust fitting? - Args: - bragg_peaks_array (PointListArray): All Bragg peaks - orientation_map (OrientationMap): Orientation map generated from ACOM - corr_kernel_size (float): Correlation kernel size - if user does - not specify, uses self.corr_kernel_size. - sigma_excitation_error (float): sigma value for envelope applied to s_g (excitation errors) in units of inverse Angstroms - tol_excitation_error_mult (float): tolerance in units of sigma for s_g inclusion - tol_intensity (np float): tolerance in intensity units for inclusion of diffraction spots - k_max (float): Maximum scattering vector - min_num_peaks (int): Minimum number of peaks required. - rotation_range (float): Maximum rotation range in radians (for symmetry reduction). - progress_bar (bool): Show progress bar - mask_from_corr (bool): Use ACOM correlation signal for mask - corr_range (np.ndarray): Range of correlation signals for mask - corr_normalize (bool): Normalize correlation signal before masking + Parameters + ---------- + bragg_peaks_array (PointListArray): + All Bragg peaks + orientation_map (OrientationMap): + Orientation map generated from ACOM + corr_kernel_size (float): + Correlation kernel size - if user does + not specify, uses self.corr_kernel_size. + sigma_excitation_error (float): + sigma value for envelope applied to s_g (excitation errors) in units of inverse Angstroms + tol_excitation_error_mult (float): + tolerance in units of sigma for s_g inclusion + tol_intensity (np float): + tolerance in intensity units for inclusion of diffraction spots + k_max (float): + Maximum scattering vector + min_num_peaks (int): + Minimum number of peaks required. + intensity_weighting: bool + Set to True to weight least squares by experimental peak intensity. + robust_fitting: bool + Set to True to use robust fitting, which performs outlier rejection. + robust_thresh: float + Threshold for robust fitting weights. + rotation_range (float): + Maximum rotation range in radians (for symmetry reduction). + progress_bar (bool): + Show progress bar + mask_from_corr (bool): + Use ACOM correlation signal for mask + corr_range (np.ndarray): + Range of correlation signals for mask + corr_normalize (bool): + Normalize correlation signal before masking - Returns: - strain_map (RealSlice): strain tensor + Returns + -------- + strain_map (RealSlice): + strain tensor """ @@ -2098,6 +2123,8 @@ def calculate_strain( # Loop over all probe positions for rx, ry in tqdmnd( + # range(220,221), + # range(40,41), *bragg_peaks_array.shape, desc="Calculating strains", unit=" PointList", @@ -2143,16 +2170,43 @@ def calculate_strain( (p_ref.data["qx"][inds_match[keep]], p_ref.data["qy"][inds_match[keep]]) ).T - # Apply intensity weighting from experimental measurements - qxy *= p.data["intensity"][keep, None] - qxy_ref *= p.data["intensity"][keep, None] # Fit transformation matrix # Note - not sure about transpose here # (though it might not matter if rotation isn't included) - m = lstsq(qxy_ref, qxy, rcond=None)[0].T - - # Get the infinitesimal strain matrix + if intensity_weighting: + weights = np.sqrt(p.data["intensity"][keep, None])*0+1 + m = lstsq( + qxy_ref * weights, + qxy * weights, + rcond=None, + )[0].T + else: + m = lstsq( + qxy_ref, + qxy, + rcond=None, + )[0].T + + # Robust fitting + if robust: + for a0 in range(5): + # calculate new weights + qxy_fit = qxy_ref @ m + diff2 = np.sum((qxy_fit - qxy)**2,axis=1) + + weights = np.exp(diff2 / ((-2*robust_thresh**2)*np.median(diff2)))[:,None] + if intensity_weighting: + weights *= np.sqrt(p.data["intensity"][keep, None]) + + # calculate new fits + m = lstsq( + qxy_ref * weights, + qxy * weights, + rcond=None, + )[0].T + + # Set values into the infinitesimal strain matrix strain_map.get_slice("e_xx").data[rx, ry] = 1 - m[0, 0] strain_map.get_slice("e_yy").data[rx, ry] = 1 - m[1, 1] strain_map.get_slice("e_xy").data[rx, ry] = -(m[0, 1] + m[1, 0]) / 2.0 @@ -2160,7 +2214,7 @@ def calculate_strain( # Add finite rotation from ACOM orientation map. # I am not sure about the relative signs here. - # Also, I need to add in the mirror operator. + # Also, maybe I need to add in the mirror operator? if orientation_map.mirror[rx, ry, 0]: strain_map.get_slice("theta").data[rx, ry] += ( orientation_map.angles[rx, ry, 0, 0] From 771ab1f5626c2c8cdba8573050f7379d8c3a06af Mon Sep 17 00:00:00 2001 From: Colin Date: Wed, 13 Mar 2024 13:12:48 -0700 Subject: [PATCH 12/46] Updating matching --- py4DSTEM/process/diffraction/crystal_calibrate.py | 8 ++++---- 1 file changed, 4 insertions(+), 4 deletions(-) diff --git a/py4DSTEM/process/diffraction/crystal_calibrate.py b/py4DSTEM/process/diffraction/crystal_calibrate.py index c068bf79e..b15015c62 100644 --- a/py4DSTEM/process/diffraction/crystal_calibrate.py +++ b/py4DSTEM/process/diffraction/crystal_calibrate.py @@ -21,7 +21,7 @@ def calibrate_pixel_size( k_max=None, k_step=0.002, k_broadening=0.002, - fit_all_intensities=True, + fit_all_intensities=False, set_calibration_in_place=False, verbose=True, plot_result=False, @@ -50,7 +50,7 @@ def calibrate_pixel_size( k_broadening (float): Initial guess for Gaussian broadening of simulated pattern (Å^-1) fit_all_intensities (bool): Set to true to allow all peak intensities to - change independently False forces a single intensity scaling. + change independently. False forces a single intensity scaling for all peaks. set_calibration (bool): if True, set the fit pixel size to the calibration metadata, and calibrate bragg_peaks verbose (bool): Output the calibrated pixel size. @@ -138,7 +138,7 @@ def fit_profile(k, *coefs): if returnfig: fig, ax = self.plot_scattering_intensity( - bragg_peaks=bragg_peaks, + bragg_peaks=bragg_peaks_cali, figsize=figsize, k_broadening=k_broadening, int_power_scale=1.0, @@ -151,7 +151,7 @@ def fit_profile(k, *coefs): ) else: self.plot_scattering_intensity( - bragg_peaks=bragg_peaks, + bragg_peaks=bragg_peaks_cali, figsize=figsize, k_broadening=k_broadening, int_power_scale=1.0, From 938c965535c044cb2adc9e111753137a58417d68 Mon Sep 17 00:00:00 2001 From: Colin Date: Wed, 20 Mar 2024 15:07:40 -0700 Subject: [PATCH 13/46] Fixing thickness projection in 2D potentials --- py4DSTEM/process/diffraction/crystal.py | 17 +++++++++++------ 1 file changed, 11 insertions(+), 6 deletions(-) diff --git a/py4DSTEM/process/diffraction/crystal.py b/py4DSTEM/process/diffraction/crystal.py index 8b59c3c92..85f8160b7 100644 --- a/py4DSTEM/process/diffraction/crystal.py +++ b/py4DSTEM/process/diffraction/crystal.py @@ -1036,6 +1036,7 @@ def generate_projected_potential( """ + # Determine image size in Angstroms im_size = np.array(im_size) im_size_Ang = im_size * pixel_size_angstroms @@ -1123,11 +1124,15 @@ def generate_projected_potential( # Thickness if thickness_angstroms > 0: - thickness_proj = thickness_angstroms / m_proj[2] - vec_proj = thickness_proj / pixel_size_angstroms * m_proj[:2] - num_proj = (np.ceil(np.linalg.norm(vec_proj))+1).astype('int') - x_proj = np.linspace(-0.5,0.5,num_proj)*vec_proj[0] - y_proj = np.linspace(-0.5,0.5,num_proj)*vec_proj[1] + num_proj = np.round(thickness_angstroms / np.abs(m_proj[2])).astype('int') + if num_proj > 1: + vec_proj = m_proj[:2] / pixel_size_angstroms + shifts = np.arange(num_proj).astype('float') + shifts -= np.mean(shifts) + x_proj = shifts * vec_proj[0] + y_proj = shifts * vec_proj[1] + else: + num_proj = 1 # initialize potential im_potential = np.zeros(im_size) @@ -1136,7 +1141,7 @@ def generate_projected_potential( for a0 in range(atoms_ID_all.shape[0]): ind = np.argmin(np.abs(atoms_ID - atoms_ID_all[a0])) - if thickness_angstroms > 0: + if num_proj > 1: for a1 in range(num_proj): x_ind = np.round(x[a0]+x_proj[a1]).astype('int') + R_ind y_ind = np.round(y[a0]+y_proj[a1]).astype('int') + R_ind From 6938fe375a60f4e8c99ddee550120673cba433fb Mon Sep 17 00:00:00 2001 From: Colin Date: Wed, 20 Mar 2024 15:08:23 -0700 Subject: [PATCH 14/46] black --- py4DSTEM/process/diffraction/crystal.py | 168 +++++++++--------- py4DSTEM/process/diffraction/crystal_ACOM.py | 55 +++--- py4DSTEM/process/utils/single_atom_scatter.py | 10 +- 3 files changed, 118 insertions(+), 115 deletions(-) diff --git a/py4DSTEM/process/diffraction/crystal.py b/py4DSTEM/process/diffraction/crystal.py index 85f8160b7..dc50be154 100644 --- a/py4DSTEM/process/diffraction/crystal.py +++ b/py4DSTEM/process/diffraction/crystal.py @@ -968,19 +968,16 @@ def generate_ring_pattern( if return_calc is True: return radii_unique, intensity_unique - - - def generate_projected_potential( self, - im_size = (256,256), - pixel_size_angstroms = 0.1, - potential_radius_angstroms = 3.0, - sigma_image_blur_angstroms = 0.1, - thickness_angstroms = 100, - power_scale = 1.0, - plot_result = False, - figsize = (6,6), + im_size=(256, 256), + pixel_size_angstroms=0.1, + potential_radius_angstroms=3.0, + sigma_image_blur_angstroms=0.1, + thickness_angstroms=100, + power_scale=1.0, + plot_result=False, + figsize=(6, 6), orientation: Optional[Orientation] = None, ind_orientation: Optional[int] = 0, orientation_matrix: Optional[np.ndarray] = None, @@ -1004,7 +1001,7 @@ def generate_projected_potential( sigma_image_blur_angstroms: float Image blurring in Angstroms. thickness_angstroms: float - Thickness of the sample in Angstroms. + Thickness of the sample in Angstroms. Set thickness_thickness_angstroms = 0 to skip thickness projection. power_scale: float Power law scaling of potentials. Set to 2.0 to approximate Z^2 images. @@ -1012,31 +1009,30 @@ def generate_projected_potential( Plot the projected potential image. figsize: (2,) vector giving the size of the output. - - orientation: Orientation + + orientation: Orientation An Orientation class object ind_orientation: int If input is an Orientation class object with multiple orientations, this input can be used to select a specific orientation. - orientation_matrix: array + orientation_matrix: array (3,3) orientation matrix, where columns represent projection directions. - zone_axis_lattice: array + zone_axis_lattice: array (3,) projection direction in lattice indices - proj_x_lattice: array) + proj_x_lattice: array) (3,) x-axis direction in lattice indices - zone_axis_cartesian: array + zone_axis_cartesian: array (3,) cartesian projection direction - proj_x_cartesian: array + proj_x_cartesian: array (3,) cartesian projection direction Returns -------- - im_potential: (np.array) + im_potential: (np.array) Output image of the projected potential. """ - # Determine image size in Angstroms im_size = np.array(im_size) im_size_Ang = im_size * pixel_size_angstroms @@ -1056,78 +1052,78 @@ def generate_projected_potential( lat_real = self.lat_real.copy() @ orientation_matrix # Determine unit cell axes to tile over, by selecting 2/3 with largest in-plane component - inds_tile = np.argsort( - np.linalg.norm(lat_real[:,0:2],axis=1) - )[1:3] - m_tile = lat_real[inds_tile,:] + inds_tile = np.argsort(np.linalg.norm(lat_real[:, 0:2], axis=1))[1:3] + m_tile = lat_real[inds_tile, :] # Vector projected along optic axis - m_proj = np.squeeze(np.delete(lat_real,inds_tile,axis=0)) + m_proj = np.squeeze(np.delete(lat_real, inds_tile, axis=0)) # Determine tiling range - p_corners = np.array([ - [-im_size_Ang[0]*0.5,-im_size_Ang[1]*0.5, 0.0], - [ im_size_Ang[0]*0.5,-im_size_Ang[1]*0.5, 0.0], - [-im_size_Ang[0]*0.5, im_size_Ang[1]*0.5, 0.0], - [ im_size_Ang[0]*0.5, im_size_Ang[1]*0.5, 0.0], - ]) - ab = np.linalg.lstsq( - m_tile[:,:2].T, - p_corners[:,:2].T, - rcond=None - )[0] + p_corners = np.array( + [ + [-im_size_Ang[0] * 0.5, -im_size_Ang[1] * 0.5, 0.0], + [im_size_Ang[0] * 0.5, -im_size_Ang[1] * 0.5, 0.0], + [-im_size_Ang[0] * 0.5, im_size_Ang[1] * 0.5, 0.0], + [im_size_Ang[0] * 0.5, im_size_Ang[1] * 0.5, 0.0], + ] + ) + ab = np.linalg.lstsq(m_tile[:, :2].T, p_corners[:, :2].T, rcond=None)[0] ab = np.floor(ab) - a_range = np.array((np.min(ab[0])-1,np.max(ab[0])+2)) - b_range = np.array((np.min(ab[1])-1,np.max(ab[1])+2)) + a_range = np.array((np.min(ab[0]) - 1, np.max(ab[0]) + 2)) + b_range = np.array((np.min(ab[1]) - 1, np.max(ab[1]) + 2)) # Tile unit cell a_ind, b_ind, atoms_ind = np.meshgrid( - np.arange(a_range[0],a_range[1]), - np.arange(b_range[0],b_range[1]), + np.arange(a_range[0], a_range[1]), + np.arange(b_range[0], b_range[1]), np.arange(self.positions.shape[0]), ) - abc_atoms = self.positions[atoms_ind.ravel(),:] - abc_atoms[:,inds_tile[0]] += a_ind.ravel() - abc_atoms[:,inds_tile[1]] += b_ind.ravel() + abc_atoms = self.positions[atoms_ind.ravel(), :] + abc_atoms[:, inds_tile[0]] += a_ind.ravel() + abc_atoms[:, inds_tile[1]] += b_ind.ravel() xyz_atoms_ang = abc_atoms @ lat_real atoms_ID_all = self.numbers[atoms_ind.ravel()] # Center atoms on image plane - x = xyz_atoms_ang[:,0] / pixel_size_angstroms + im_size[0]/2.0 - y = xyz_atoms_ang[:,1] / pixel_size_angstroms + im_size[1]/2.0 - atoms_del = np.logical_or.reduce(( - x <= -potential_radius_angstroms/2, - y <= -potential_radius_angstroms/2, - x >= im_size[0] + potential_radius_angstroms/2, - y >= im_size[1] + potential_radius_angstroms/2, - )) + x = xyz_atoms_ang[:, 0] / pixel_size_angstroms + im_size[0] / 2.0 + y = xyz_atoms_ang[:, 1] / pixel_size_angstroms + im_size[1] / 2.0 + atoms_del = np.logical_or.reduce( + ( + x <= -potential_radius_angstroms / 2, + y <= -potential_radius_angstroms / 2, + x >= im_size[0] + potential_radius_angstroms / 2, + y >= im_size[1] + potential_radius_angstroms / 2, + ) + ) x = np.delete(x, atoms_del) y = np.delete(y, atoms_del) atoms_ID_all = np.delete(atoms_ID_all, atoms_del) # Coordinate system for atomic projected potentials potential_radius = np.ceil(potential_radius_angstroms / pixel_size_angstroms) - R = np.arange(0.5-potential_radius,potential_radius+0.5) - R_ind = R.astype('int') - R_2D = np.sqrt(R[:,None]**2 + R[None,:]**2) + R = np.arange(0.5 - potential_radius, potential_radius + 0.5) + R_ind = R.astype("int") + R_2D = np.sqrt(R[:, None] ** 2 + R[None, :] ** 2) # Lookup table for atomic projected potentials atoms_ID = np.unique(self.numbers) - atoms_lookup = np.zeros(( - atoms_ID.shape[0], - R_2D.shape[0], - R_2D.shape[1], - )) + atoms_lookup = np.zeros( + ( + atoms_ID.shape[0], + R_2D.shape[0], + R_2D.shape[1], + ) + ) for a0 in range(atoms_ID.shape[0]): atom_sf = single_atom_scatter([atoms_ID[a0]]) - atoms_lookup[a0,:,:] = atom_sf.projected_potential(atoms_ID[a0], R_2D) + atoms_lookup[a0, :, :] = atom_sf.projected_potential(atoms_ID[a0], R_2D) atoms_lookup **= power_scale - # Thickness + # Thickness if thickness_angstroms > 0: - num_proj = np.round(thickness_angstroms / np.abs(m_proj[2])).astype('int') + num_proj = np.round(thickness_angstroms / np.abs(m_proj[2])).astype("int") if num_proj > 1: vec_proj = m_proj[:2] / pixel_size_angstroms - shifts = np.arange(num_proj).astype('float') + shifts = np.arange(num_proj).astype("float") shifts -= np.mean(shifts) x_proj = shifts * vec_proj[0] y_proj = shifts * vec_proj[1] @@ -1143,8 +1139,8 @@ def generate_projected_potential( if num_proj > 1: for a1 in range(num_proj): - x_ind = np.round(x[a0]+x_proj[a1]).astype('int') + R_ind - y_ind = np.round(y[a0]+y_proj[a1]).astype('int') + R_ind + x_ind = np.round(x[a0] + x_proj[a1]).astype("int") + R_ind + y_ind = np.round(y[a0] + y_proj[a1]).astype("int") + R_ind x_sub = np.logical_and( x_ind >= 0, x_ind < im_size[0], @@ -1154,11 +1150,13 @@ def generate_projected_potential( y_ind < im_size[1], ) - im_potential[x_ind[x_sub][:,None],y_ind[y_sub][None,:]] += atoms_lookup[ind][x_sub,:][:,y_sub] - + im_potential[ + x_ind[x_sub][:, None], y_ind[y_sub][None, :] + ] += atoms_lookup[ind][x_sub, :][:, y_sub] + else: - x_ind = np.round(x[a0]).astype('int') + R_ind - y_ind = np.round(y[a0]).astype('int') + R_ind + x_ind = np.round(x[a0]).astype("int") + R_ind + y_ind = np.round(y[a0]).astype("int") + R_ind x_sub = np.logical_and( x_ind >= 0, x_ind < im_size[0], @@ -1168,7 +1166,9 @@ def generate_projected_potential( y_ind < im_size[1], ) - im_potential[x_ind[x_sub][:,None],y_ind[y_sub][None,:]] += atoms_lookup[ind][x_sub,:][:,y_sub] + im_potential[ + x_ind[x_sub][:, None], y_ind[y_sub][None, :] + ] += atoms_lookup[ind][x_sub, :][:, y_sub] if thickness_angstroms > 0: im_potential /= num_proj @@ -1179,26 +1179,28 @@ def generate_projected_potential( im_potential = gaussian_filter( im_potential, sigma_image_blur, - mode = 'nearest', - ) + mode="nearest", + ) if plot_result: # quick plotting of the result int_vals = np.sort(im_potential.ravel()) - int_range = np.array(( - int_vals[np.round(0.02*int_vals.size).astype('int')], - int_vals[np.round(0.98*int_vals.size).astype('int')], - )) + int_range = np.array( + ( + int_vals[np.round(0.02 * int_vals.size).astype("int")], + int_vals[np.round(0.98 * int_vals.size).astype("int")], + ) + ) - fig,ax = plt.subplots(figsize = figsize) + fig, ax = plt.subplots(figsize=figsize) ax.imshow( im_potential, - cmap = 'turbo', - vmin = int_range[0], - vmax = int_range[1], - ) + cmap="turbo", + vmin=int_range[0], + vmax=int_range[1], + ) ax.set_axis_off() - ax.set_aspect('equal') + ax.set_aspect("equal") return im_potential diff --git a/py4DSTEM/process/diffraction/crystal_ACOM.py b/py4DSTEM/process/diffraction/crystal_ACOM.py index f4a309aa8..a0f8468ed 100644 --- a/py4DSTEM/process/diffraction/crystal_ACOM.py +++ b/py4DSTEM/process/diffraction/crystal_ACOM.py @@ -2025,9 +2025,9 @@ def calculate_strain( tol_intensity: float = 1e-4, k_max: Optional[float] = None, min_num_peaks=5, - intensity_weighting = False, - robust = True, - robust_thresh = 3.0, + intensity_weighting=False, + robust=True, + robust_thresh=3.0, rotation_range=None, mask_from_corr=True, corr_range=(0, 2), @@ -2044,22 +2044,22 @@ def calculate_strain( Parameters ---------- - bragg_peaks_array (PointListArray): + bragg_peaks_array (PointListArray): All Bragg peaks - orientation_map (OrientationMap): + orientation_map (OrientationMap): Orientation map generated from ACOM - corr_kernel_size (float): + corr_kernel_size (float): Correlation kernel size - if user does not specify, uses self.corr_kernel_size. - sigma_excitation_error (float): + sigma_excitation_error (float): sigma value for envelope applied to s_g (excitation errors) in units of inverse Angstroms - tol_excitation_error_mult (float): + tol_excitation_error_mult (float): tolerance in units of sigma for s_g inclusion - tol_intensity (np float): + tol_intensity (np float): tolerance in intensity units for inclusion of diffraction spots - k_max (float): + k_max (float): Maximum scattering vector - min_num_peaks (int): + min_num_peaks (int): Minimum number of peaks required. intensity_weighting: bool Set to True to weight least squares by experimental peak intensity. @@ -2067,20 +2067,20 @@ def calculate_strain( Set to True to use robust fitting, which performs outlier rejection. robust_thresh: float Threshold for robust fitting weights. - rotation_range (float): + rotation_range (float): Maximum rotation range in radians (for symmetry reduction). - progress_bar (bool): + progress_bar (bool): Show progress bar - mask_from_corr (bool): + mask_from_corr (bool): Use ACOM correlation signal for mask - corr_range (np.ndarray): + corr_range (np.ndarray): Range of correlation signals for mask - corr_normalize (bool): + corr_normalize (bool): Normalize correlation signal before masking Returns -------- - strain_map (RealSlice): + strain_map (RealSlice): strain tensor """ @@ -2170,21 +2170,20 @@ def calculate_strain( (p_ref.data["qx"][inds_match[keep]], p_ref.data["qy"][inds_match[keep]]) ).T - # Fit transformation matrix # Note - not sure about transpose here # (though it might not matter if rotation isn't included) if intensity_weighting: - weights = np.sqrt(p.data["intensity"][keep, None])*0+1 + weights = np.sqrt(p.data["intensity"][keep, None]) * 0 + 1 m = lstsq( - qxy_ref * weights, - qxy * weights, + qxy_ref * weights, + qxy * weights, rcond=None, )[0].T else: m = lstsq( - qxy_ref, - qxy, + qxy_ref, + qxy, rcond=None, )[0].T @@ -2193,16 +2192,18 @@ def calculate_strain( for a0 in range(5): # calculate new weights qxy_fit = qxy_ref @ m - diff2 = np.sum((qxy_fit - qxy)**2,axis=1) + diff2 = np.sum((qxy_fit - qxy) ** 2, axis=1) - weights = np.exp(diff2 / ((-2*robust_thresh**2)*np.median(diff2)))[:,None] + weights = np.exp( + diff2 / ((-2 * robust_thresh**2) * np.median(diff2)) + )[:, None] if intensity_weighting: weights *= np.sqrt(p.data["intensity"][keep, None]) # calculate new fits m = lstsq( - qxy_ref * weights, - qxy * weights, + qxy_ref * weights, + qxy * weights, rcond=None, )[0].T diff --git a/py4DSTEM/process/utils/single_atom_scatter.py b/py4DSTEM/process/utils/single_atom_scatter.py index 9085afd93..90397560f 100644 --- a/py4DSTEM/process/utils/single_atom_scatter.py +++ b/py4DSTEM/process/utils/single_atom_scatter.py @@ -2,6 +2,7 @@ import os from scipy.special import kn + class single_atom_scatter(object): """ This class calculates the composition averaged single atom scattering factor for a @@ -58,18 +59,17 @@ def projected_potential(self, Z, R): qe = 1.60217662e-19 # Permittivity of vacuum eps_0 = 8.85418782e-12 - # Bohr's constant + # Bohr's constant a_0 = 5.29177210903e-11 fe = np.zeros_like(R) for i in range(5): # fe += ai[i] * (2 + bi[i] * gsq) / (1 + bi[i] * gsq) ** 2 - pre = 2*np.pi/bi[i]**0.5 - fe += (ai[i] / bi[i]**1.5) * \ - (kn(0, pre * R) + R * kn(1, pre * R)) + pre = 2 * np.pi / bi[i] ** 0.5 + fe += (ai[i] / bi[i] ** 1.5) * (kn(0, pre * R) + R * kn(1, pre * R)) # kappa = (4*np.pi*eps_0) / (2*np.pi*a_0*me) - return fe * 2 * np.pi**2# / kappa + return fe * 2 * np.pi**2 # / kappa # if units == "VA": # return h**2 / (2 * np.pi * me * qe) * 1e18 * fe # elif units == "A": From 26508318ebc2b39610bab24f56db8767f7167203 Mon Sep 17 00:00:00 2001 From: Colin Date: Thu, 21 Mar 2024 11:27:45 -0700 Subject: [PATCH 15/46] Remove testing lines. --- py4DSTEM/process/diffraction/crystal_ACOM.py | 2 -- 1 file changed, 2 deletions(-) diff --git a/py4DSTEM/process/diffraction/crystal_ACOM.py b/py4DSTEM/process/diffraction/crystal_ACOM.py index a0f8468ed..c2bac6424 100644 --- a/py4DSTEM/process/diffraction/crystal_ACOM.py +++ b/py4DSTEM/process/diffraction/crystal_ACOM.py @@ -2123,8 +2123,6 @@ def calculate_strain( # Loop over all probe positions for rx, ry in tqdmnd( - # range(220,221), - # range(40,41), *bragg_peaks_array.shape, desc="Calculating strains", unit=" PointList", From 1e700803684514b5bb8589b32600016812b8d0af Mon Sep 17 00:00:00 2001 From: Colin Date: Thu, 21 Mar 2024 13:53:44 -0700 Subject: [PATCH 16/46] Trying (and failing) to figure out the potential units --- py4DSTEM/process/diffraction/crystal.py | 3 +++ py4DSTEM/process/utils/single_atom_scatter.py | 21 ++++++++++++------- 2 files changed, 17 insertions(+), 7 deletions(-) diff --git a/py4DSTEM/process/diffraction/crystal.py b/py4DSTEM/process/diffraction/crystal.py index dc50be154..97d596ec4 100644 --- a/py4DSTEM/process/diffraction/crystal.py +++ b/py4DSTEM/process/diffraction/crystal.py @@ -989,6 +989,9 @@ def generate_projected_potential( """ Generate an image of the projected potential of crystal in real space, using cell tiling, and a lookup table of the atomic potentials. + Note that we round atomic positions to the nearest pixel for speed. + + TODO - fix scattering prefactor so that output units are sensible. Parameters ---------- diff --git a/py4DSTEM/process/utils/single_atom_scatter.py b/py4DSTEM/process/utils/single_atom_scatter.py index 90397560f..54443b68f 100644 --- a/py4DSTEM/process/utils/single_atom_scatter.py +++ b/py4DSTEM/process/utils/single_atom_scatter.py @@ -57,6 +57,8 @@ def projected_potential(self, Z, R): me = 9.10938356e-31 # Electron charge in Coulomb qe = 1.60217662e-19 + # Electron charge in V-Angstroms + # qe = 14.4 # Permittivity of vacuum eps_0 = 8.85418782e-12 # Bohr's constant @@ -64,16 +66,21 @@ def projected_potential(self, Z, R): fe = np.zeros_like(R) for i in range(5): - # fe += ai[i] * (2 + bi[i] * gsq) / (1 + bi[i] * gsq) ** 2 pre = 2 * np.pi / bi[i] ** 0.5 fe += (ai[i] / bi[i] ** 1.5) * (kn(0, pre * R) + R * kn(1, pre * R)) - # kappa = (4*np.pi*eps_0) / (2*np.pi*a_0*me) - return fe * 2 * np.pi**2 # / kappa - # if units == "VA": - # return h**2 / (2 * np.pi * me * qe) * 1e18 * fe - # elif units == "A": - # return fe * 2 * np.pi**2 / kappa + # Scale output units + # kappa = (4*np.pi*eps_0) / (2*np.pi*a_0*qe) + # fe *= 2*np.pi**2 / kappa + # # # kappa = (4*np.pi*eps_0) / (2*np.pi*a_0*me) + + # # kappa = (4*np.pi*eps_0) / (2*np.pi*a_0*me) + # # return fe * 2 * np.pi**2 # / kappa + # # if units == "VA": + # return h**2 / (2 * np.pi * me * qe) * 1e18 * fe + # # elif units == "A": + # # return fe * 2 * np.pi**2 / kappa + return fe def get_scattering_factor( self, elements=None, composition=None, q_coords=None, units=None From c8a81f557d794f0083d9c09bcd8d3d0def52c74f Mon Sep 17 00:00:00 2001 From: Colin Date: Thu, 21 Mar 2024 13:54:16 -0700 Subject: [PATCH 17/46] Black formatting --- .../diffraction/WK_scattering_factors.py | 4 ++- py4DSTEM/process/diffraction/crystal_viz.py | 3 +- py4DSTEM/process/fit/fit.py | 3 +- .../magnetic_ptychographic_tomography.py | 28 +++++++++---------- .../process/phase/magnetic_ptychography.py | 28 +++++++++---------- py4DSTEM/process/phase/parallax.py | 24 ++++++++-------- .../process/phase/ptychographic_methods.py | 4 ++- .../process/phase/ptychographic_tomography.py | 28 +++++++++---------- py4DSTEM/process/phase/utils.py | 4 ++- py4DSTEM/process/utils/utils.py | 18 ++++++++++-- 10 files changed, 82 insertions(+), 62 deletions(-) diff --git a/py4DSTEM/process/diffraction/WK_scattering_factors.py b/py4DSTEM/process/diffraction/WK_scattering_factors.py index eb964de96..70110a977 100644 --- a/py4DSTEM/process/diffraction/WK_scattering_factors.py +++ b/py4DSTEM/process/diffraction/WK_scattering_factors.py @@ -221,7 +221,9 @@ def RI1(BI, BJ, G): ri1[sub] = np.pi * (BI * np.log((BI + BJ) / BI) + BJ * np.log((BI + BJ) / BJ)) sub = np.logical_and(eps <= 0.1, G > 0.0) - temp = 0.5 * BI**2 * np.log(BI / (BI + BJ)) + 0.5 * BJ**2 * np.log(BJ / (BI + BJ)) + temp = 0.5 * BI**2 * np.log(BI / (BI + BJ)) + 0.5 * BJ**2 * np.log( + BJ / (BI + BJ) + ) temp += 0.75 * (BI**2 + BJ**2) - 0.25 * (BI + BJ) ** 2 temp -= 0.5 * (BI - BJ) ** 2 ri1[sub] += np.pi * G[sub] ** 2 * temp diff --git a/py4DSTEM/process/diffraction/crystal_viz.py b/py4DSTEM/process/diffraction/crystal_viz.py index 47df2e6ca..da016b3ed 100644 --- a/py4DSTEM/process/diffraction/crystal_viz.py +++ b/py4DSTEM/process/diffraction/crystal_viz.py @@ -454,7 +454,8 @@ def plot_scattering_intensity( int_sf_plot = calc_1D_profile( k, self.g_vec_leng, - (self.struct_factors_int**int_power_scale) * (self.g_vec_leng**k_power_scale), + (self.struct_factors_int**int_power_scale) + * (self.g_vec_leng**k_power_scale), remove_origin=True, k_broadening=k_broadening, int_scale=int_scale, diff --git a/py4DSTEM/process/fit/fit.py b/py4DSTEM/process/fit/fit.py index 5c2d56a3c..9973ff79f 100644 --- a/py4DSTEM/process/fit/fit.py +++ b/py4DSTEM/process/fit/fit.py @@ -169,7 +169,8 @@ def polar_gaussian_2D( # t2 = np.min(np.vstack([t,1-t])) t2 = np.square(t - mu_t) return ( - I0 * np.exp(-(t2 / (2 * sigma_t**2) + (q - mu_q) ** 2 / (2 * sigma_q**2))) + C + I0 * np.exp(-(t2 / (2 * sigma_t**2) + (q - mu_q) ** 2 / (2 * sigma_q**2))) + + C ) diff --git a/py4DSTEM/process/phase/magnetic_ptychographic_tomography.py b/py4DSTEM/process/phase/magnetic_ptychographic_tomography.py index c9efae806..0a58a514b 100644 --- a/py4DSTEM/process/phase/magnetic_ptychographic_tomography.py +++ b/py4DSTEM/process/phase/magnetic_ptychographic_tomography.py @@ -1188,20 +1188,20 @@ def reconstruct( # position correction if not fix_positions and a0 > 0: - self._positions_px_all[batch_indices] = ( - self._position_correction( - object_sliced, - vectorized_patch_indices_row, - vectorized_patch_indices_col, - shifted_probes, - overlap, - amplitudes_device, - positions_px, - positions_px_initial, - positions_step_size, - max_position_update_distance, - max_position_total_distance, - ) + self._positions_px_all[ + batch_indices + ] = self._position_correction( + object_sliced, + vectorized_patch_indices_row, + vectorized_patch_indices_col, + shifted_probes, + overlap, + amplitudes_device, + positions_px, + positions_px_initial, + positions_step_size, + max_position_update_distance, + max_position_total_distance, ) measurement_error += batch_error diff --git a/py4DSTEM/process/phase/magnetic_ptychography.py b/py4DSTEM/process/phase/magnetic_ptychography.py index 2e887739f..67e315234 100644 --- a/py4DSTEM/process/phase/magnetic_ptychography.py +++ b/py4DSTEM/process/phase/magnetic_ptychography.py @@ -1490,20 +1490,20 @@ def reconstruct( # position correction if not fix_positions and a0 > 0: - self._positions_px_all[batch_indices] = ( - self._position_correction( - self._object, - vectorized_patch_indices_row, - vectorized_patch_indices_col, - shifted_probes, - overlap, - amplitudes_device, - positions_px, - positions_px_initial, - positions_step_size, - max_position_update_distance, - max_position_total_distance, - ) + self._positions_px_all[ + batch_indices + ] = self._position_correction( + self._object, + vectorized_patch_indices_row, + vectorized_patch_indices_col, + shifted_probes, + overlap, + amplitudes_device, + positions_px, + positions_px_initial, + positions_step_size, + max_position_update_distance, + max_position_total_distance, ) measurement_error += batch_error diff --git a/py4DSTEM/process/phase/parallax.py b/py4DSTEM/process/phase/parallax.py index aa9323900..79392f6e6 100644 --- a/py4DSTEM/process/phase/parallax.py +++ b/py4DSTEM/process/phase/parallax.py @@ -2195,16 +2195,16 @@ def score_CTF(coefs): measured_shifts_sx = xp.zeros( self._region_of_interest_shape, dtype=xp.float32 ) - measured_shifts_sx[self._xy_inds[:, 0], self._xy_inds[:, 1]] = ( - self._xy_shifts_Ang[:, 0] - ) + measured_shifts_sx[ + self._xy_inds[:, 0], self._xy_inds[:, 1] + ] = self._xy_shifts_Ang[:, 0] measured_shifts_sy = xp.zeros( self._region_of_interest_shape, dtype=xp.float32 ) - measured_shifts_sy[self._xy_inds[:, 0], self._xy_inds[:, 1]] = ( - self._xy_shifts_Ang[:, 1] - ) + measured_shifts_sy[ + self._xy_inds[:, 0], self._xy_inds[:, 1] + ] = self._xy_shifts_Ang[:, 1] fitted_shifts = ( xp.tensordot(gradients, xp.array(self._aberrations_coefs), axes=1) @@ -2215,16 +2215,16 @@ def score_CTF(coefs): fitted_shifts_sx = xp.zeros( self._region_of_interest_shape, dtype=xp.float32 ) - fitted_shifts_sx[self._xy_inds[:, 0], self._xy_inds[:, 1]] = ( - fitted_shifts[:, 0] - ) + fitted_shifts_sx[ + self._xy_inds[:, 0], self._xy_inds[:, 1] + ] = fitted_shifts[:, 0] fitted_shifts_sy = xp.zeros( self._region_of_interest_shape, dtype=xp.float32 ) - fitted_shifts_sy[self._xy_inds[:, 0], self._xy_inds[:, 1]] = ( - fitted_shifts[:, 1] - ) + fitted_shifts_sy[ + self._xy_inds[:, 0], self._xy_inds[:, 1] + ] = fitted_shifts[:, 1] max_shift = xp.max( xp.array( diff --git a/py4DSTEM/process/phase/ptychographic_methods.py b/py4DSTEM/process/phase/ptychographic_methods.py index fa0b1db9f..cb109073e 100644 --- a/py4DSTEM/process/phase/ptychographic_methods.py +++ b/py4DSTEM/process/phase/ptychographic_methods.py @@ -351,7 +351,9 @@ def _precompute_propagator_arrays( propagators[i] = xp.exp( 1.0j * (-(kx**2)[:, None] * np.pi * wavelength * dz) ) - propagators[i] *= xp.exp(1.0j * (-(ky**2)[None] * np.pi * wavelength * dz)) + propagators[i] *= xp.exp( + 1.0j * (-(ky**2)[None] * np.pi * wavelength * dz) + ) if theta_x is not None: propagators[i] *= xp.exp( diff --git a/py4DSTEM/process/phase/ptychographic_tomography.py b/py4DSTEM/process/phase/ptychographic_tomography.py index f3b2991ab..8b4d4d984 100644 --- a/py4DSTEM/process/phase/ptychographic_tomography.py +++ b/py4DSTEM/process/phase/ptychographic_tomography.py @@ -1080,20 +1080,20 @@ def reconstruct( # position correction if not fix_positions: - self._positions_px_all[batch_indices] = ( - self._position_correction( - object_sliced, - vectorized_patch_indices_row, - vectorized_patch_indices_col, - shifted_probes, - overlap, - amplitudes_device, - positions_px, - positions_px_initial, - positions_step_size, - max_position_update_distance, - max_position_total_distance, - ) + self._positions_px_all[ + batch_indices + ] = self._position_correction( + object_sliced, + vectorized_patch_indices_row, + vectorized_patch_indices_col, + shifted_probes, + overlap, + amplitudes_device, + positions_px, + positions_px_initial, + positions_step_size, + max_position_update_distance, + max_position_total_distance, ) measurement_error += batch_error diff --git a/py4DSTEM/process/phase/utils.py b/py4DSTEM/process/phase/utils.py index a5a541795..f53637184 100644 --- a/py4DSTEM/process/phase/utils.py +++ b/py4DSTEM/process/phase/utils.py @@ -203,7 +203,9 @@ def evaluate_gaussian_envelope( self, alpha: Union[float, np.ndarray] ) -> Union[float, np.ndarray]: xp = self._xp - return xp.exp(-0.5 * self._gaussian_spread**2 * alpha**2 / self._wavelength**2) + return xp.exp( + -0.5 * self._gaussian_spread**2 * alpha**2 / self._wavelength**2 + ) def evaluate_spatial_envelope( self, alpha: Union[float, np.ndarray], phi: Union[float, np.ndarray] diff --git a/py4DSTEM/process/utils/utils.py b/py4DSTEM/process/utils/utils.py index ddeeb2c36..60da616d1 100644 --- a/py4DSTEM/process/utils/utils.py +++ b/py4DSTEM/process/utils/utils.py @@ -93,7 +93,12 @@ def electron_wavelength_angstrom(E_eV): c = 299792458 h = 6.62607 * 10**-34 - lam = h / ma.sqrt(2 * m * e * E_eV) / ma.sqrt(1 + e * E_eV / 2 / m / c**2) * 10**10 + lam = ( + h + / ma.sqrt(2 * m * e * E_eV) + / ma.sqrt(1 + e * E_eV / 2 / m / c**2) + * 10**10 + ) return lam @@ -102,8 +107,15 @@ def electron_interaction_parameter(E_eV): e = 1.602177 * 10**-19 c = 299792458 h = 6.62607 * 10**-34 - lam = h / ma.sqrt(2 * m * e * E_eV) / ma.sqrt(1 + e * E_eV / 2 / m / c**2) * 10**10 - sigma = (2 * np.pi / lam / E_eV) * (m * c**2 + e * E_eV) / (2 * m * c**2 + e * E_eV) + lam = ( + h + / ma.sqrt(2 * m * e * E_eV) + / ma.sqrt(1 + e * E_eV / 2 / m / c**2) + * 10**10 + ) + sigma = ( + (2 * np.pi / lam / E_eV) * (m * c**2 + e * E_eV) / (2 * m * c**2 + e * E_eV) + ) return sigma From e362b6b197cfd75c12da30a70d27e719704a4c0e Mon Sep 17 00:00:00 2001 From: Colin Date: Thu, 21 Mar 2024 14:03:20 -0700 Subject: [PATCH 18/46] Black again --- .../diffraction/WK_scattering_factors.py | 4 +-- py4DSTEM/process/diffraction/crystal_viz.py | 3 +- py4DSTEM/process/fit/fit.py | 3 +- .../magnetic_ptychographic_tomography.py | 28 +++++++++---------- .../process/phase/magnetic_ptychography.py | 28 +++++++++---------- py4DSTEM/process/phase/parallax.py | 24 ++++++++-------- .../process/phase/ptychographic_methods.py | 4 +-- .../process/phase/ptychographic_tomography.py | 28 +++++++++---------- py4DSTEM/process/phase/utils.py | 4 +-- py4DSTEM/process/utils/utils.py | 18 ++---------- 10 files changed, 62 insertions(+), 82 deletions(-) diff --git a/py4DSTEM/process/diffraction/WK_scattering_factors.py b/py4DSTEM/process/diffraction/WK_scattering_factors.py index 70110a977..eb964de96 100644 --- a/py4DSTEM/process/diffraction/WK_scattering_factors.py +++ b/py4DSTEM/process/diffraction/WK_scattering_factors.py @@ -221,9 +221,7 @@ def RI1(BI, BJ, G): ri1[sub] = np.pi * (BI * np.log((BI + BJ) / BI) + BJ * np.log((BI + BJ) / BJ)) sub = np.logical_and(eps <= 0.1, G > 0.0) - temp = 0.5 * BI**2 * np.log(BI / (BI + BJ)) + 0.5 * BJ**2 * np.log( - BJ / (BI + BJ) - ) + temp = 0.5 * BI**2 * np.log(BI / (BI + BJ)) + 0.5 * BJ**2 * np.log(BJ / (BI + BJ)) temp += 0.75 * (BI**2 + BJ**2) - 0.25 * (BI + BJ) ** 2 temp -= 0.5 * (BI - BJ) ** 2 ri1[sub] += np.pi * G[sub] ** 2 * temp diff --git a/py4DSTEM/process/diffraction/crystal_viz.py b/py4DSTEM/process/diffraction/crystal_viz.py index da016b3ed..47df2e6ca 100644 --- a/py4DSTEM/process/diffraction/crystal_viz.py +++ b/py4DSTEM/process/diffraction/crystal_viz.py @@ -454,8 +454,7 @@ def plot_scattering_intensity( int_sf_plot = calc_1D_profile( k, self.g_vec_leng, - (self.struct_factors_int**int_power_scale) - * (self.g_vec_leng**k_power_scale), + (self.struct_factors_int**int_power_scale) * (self.g_vec_leng**k_power_scale), remove_origin=True, k_broadening=k_broadening, int_scale=int_scale, diff --git a/py4DSTEM/process/fit/fit.py b/py4DSTEM/process/fit/fit.py index 9973ff79f..5c2d56a3c 100644 --- a/py4DSTEM/process/fit/fit.py +++ b/py4DSTEM/process/fit/fit.py @@ -169,8 +169,7 @@ def polar_gaussian_2D( # t2 = np.min(np.vstack([t,1-t])) t2 = np.square(t - mu_t) return ( - I0 * np.exp(-(t2 / (2 * sigma_t**2) + (q - mu_q) ** 2 / (2 * sigma_q**2))) - + C + I0 * np.exp(-(t2 / (2 * sigma_t**2) + (q - mu_q) ** 2 / (2 * sigma_q**2))) + C ) diff --git a/py4DSTEM/process/phase/magnetic_ptychographic_tomography.py b/py4DSTEM/process/phase/magnetic_ptychographic_tomography.py index 0a58a514b..c9efae806 100644 --- a/py4DSTEM/process/phase/magnetic_ptychographic_tomography.py +++ b/py4DSTEM/process/phase/magnetic_ptychographic_tomography.py @@ -1188,20 +1188,20 @@ def reconstruct( # position correction if not fix_positions and a0 > 0: - self._positions_px_all[ - batch_indices - ] = self._position_correction( - object_sliced, - vectorized_patch_indices_row, - vectorized_patch_indices_col, - shifted_probes, - overlap, - amplitudes_device, - positions_px, - positions_px_initial, - positions_step_size, - max_position_update_distance, - max_position_total_distance, + self._positions_px_all[batch_indices] = ( + self._position_correction( + object_sliced, + vectorized_patch_indices_row, + vectorized_patch_indices_col, + shifted_probes, + overlap, + amplitudes_device, + positions_px, + positions_px_initial, + positions_step_size, + max_position_update_distance, + max_position_total_distance, + ) ) measurement_error += batch_error diff --git a/py4DSTEM/process/phase/magnetic_ptychography.py b/py4DSTEM/process/phase/magnetic_ptychography.py index 67e315234..2e887739f 100644 --- a/py4DSTEM/process/phase/magnetic_ptychography.py +++ b/py4DSTEM/process/phase/magnetic_ptychography.py @@ -1490,20 +1490,20 @@ def reconstruct( # position correction if not fix_positions and a0 > 0: - self._positions_px_all[ - batch_indices - ] = self._position_correction( - self._object, - vectorized_patch_indices_row, - vectorized_patch_indices_col, - shifted_probes, - overlap, - amplitudes_device, - positions_px, - positions_px_initial, - positions_step_size, - max_position_update_distance, - max_position_total_distance, + self._positions_px_all[batch_indices] = ( + self._position_correction( + self._object, + vectorized_patch_indices_row, + vectorized_patch_indices_col, + shifted_probes, + overlap, + amplitudes_device, + positions_px, + positions_px_initial, + positions_step_size, + max_position_update_distance, + max_position_total_distance, + ) ) measurement_error += batch_error diff --git a/py4DSTEM/process/phase/parallax.py b/py4DSTEM/process/phase/parallax.py index d366a01df..060a151aa 100644 --- a/py4DSTEM/process/phase/parallax.py +++ b/py4DSTEM/process/phase/parallax.py @@ -2195,16 +2195,16 @@ def score_CTF(coefs): measured_shifts_sx = xp.zeros( self._region_of_interest_shape, dtype=xp.float32 ) - measured_shifts_sx[ - self._xy_inds[:, 0], self._xy_inds[:, 1] - ] = self._xy_shifts_Ang[:, 0] + measured_shifts_sx[self._xy_inds[:, 0], self._xy_inds[:, 1]] = ( + self._xy_shifts_Ang[:, 0] + ) measured_shifts_sy = xp.zeros( self._region_of_interest_shape, dtype=xp.float32 ) - measured_shifts_sy[ - self._xy_inds[:, 0], self._xy_inds[:, 1] - ] = self._xy_shifts_Ang[:, 1] + measured_shifts_sy[self._xy_inds[:, 0], self._xy_inds[:, 1]] = ( + self._xy_shifts_Ang[:, 1] + ) fitted_shifts = ( xp.tensordot(gradients, xp.array(self._aberrations_coefs), axes=1) @@ -2215,16 +2215,16 @@ def score_CTF(coefs): fitted_shifts_sx = xp.zeros( self._region_of_interest_shape, dtype=xp.float32 ) - fitted_shifts_sx[ - self._xy_inds[:, 0], self._xy_inds[:, 1] - ] = fitted_shifts[:, 0] + fitted_shifts_sx[self._xy_inds[:, 0], self._xy_inds[:, 1]] = ( + fitted_shifts[:, 0] + ) fitted_shifts_sy = xp.zeros( self._region_of_interest_shape, dtype=xp.float32 ) - fitted_shifts_sy[ - self._xy_inds[:, 0], self._xy_inds[:, 1] - ] = fitted_shifts[:, 1] + fitted_shifts_sy[self._xy_inds[:, 0], self._xy_inds[:, 1]] = ( + fitted_shifts[:, 1] + ) max_shift = xp.max( xp.array( diff --git a/py4DSTEM/process/phase/ptychographic_methods.py b/py4DSTEM/process/phase/ptychographic_methods.py index cb109073e..fa0b1db9f 100644 --- a/py4DSTEM/process/phase/ptychographic_methods.py +++ b/py4DSTEM/process/phase/ptychographic_methods.py @@ -351,9 +351,7 @@ def _precompute_propagator_arrays( propagators[i] = xp.exp( 1.0j * (-(kx**2)[:, None] * np.pi * wavelength * dz) ) - propagators[i] *= xp.exp( - 1.0j * (-(ky**2)[None] * np.pi * wavelength * dz) - ) + propagators[i] *= xp.exp(1.0j * (-(ky**2)[None] * np.pi * wavelength * dz)) if theta_x is not None: propagators[i] *= xp.exp( diff --git a/py4DSTEM/process/phase/ptychographic_tomography.py b/py4DSTEM/process/phase/ptychographic_tomography.py index 8b4d4d984..f3b2991ab 100644 --- a/py4DSTEM/process/phase/ptychographic_tomography.py +++ b/py4DSTEM/process/phase/ptychographic_tomography.py @@ -1080,20 +1080,20 @@ def reconstruct( # position correction if not fix_positions: - self._positions_px_all[ - batch_indices - ] = self._position_correction( - object_sliced, - vectorized_patch_indices_row, - vectorized_patch_indices_col, - shifted_probes, - overlap, - amplitudes_device, - positions_px, - positions_px_initial, - positions_step_size, - max_position_update_distance, - max_position_total_distance, + self._positions_px_all[batch_indices] = ( + self._position_correction( + object_sliced, + vectorized_patch_indices_row, + vectorized_patch_indices_col, + shifted_probes, + overlap, + amplitudes_device, + positions_px, + positions_px_initial, + positions_step_size, + max_position_update_distance, + max_position_total_distance, + ) ) measurement_error += batch_error diff --git a/py4DSTEM/process/phase/utils.py b/py4DSTEM/process/phase/utils.py index f53637184..a5a541795 100644 --- a/py4DSTEM/process/phase/utils.py +++ b/py4DSTEM/process/phase/utils.py @@ -203,9 +203,7 @@ def evaluate_gaussian_envelope( self, alpha: Union[float, np.ndarray] ) -> Union[float, np.ndarray]: xp = self._xp - return xp.exp( - -0.5 * self._gaussian_spread**2 * alpha**2 / self._wavelength**2 - ) + return xp.exp(-0.5 * self._gaussian_spread**2 * alpha**2 / self._wavelength**2) def evaluate_spatial_envelope( self, alpha: Union[float, np.ndarray], phi: Union[float, np.ndarray] diff --git a/py4DSTEM/process/utils/utils.py b/py4DSTEM/process/utils/utils.py index 60da616d1..ddeeb2c36 100644 --- a/py4DSTEM/process/utils/utils.py +++ b/py4DSTEM/process/utils/utils.py @@ -93,12 +93,7 @@ def electron_wavelength_angstrom(E_eV): c = 299792458 h = 6.62607 * 10**-34 - lam = ( - h - / ma.sqrt(2 * m * e * E_eV) - / ma.sqrt(1 + e * E_eV / 2 / m / c**2) - * 10**10 - ) + lam = h / ma.sqrt(2 * m * e * E_eV) / ma.sqrt(1 + e * E_eV / 2 / m / c**2) * 10**10 return lam @@ -107,15 +102,8 @@ def electron_interaction_parameter(E_eV): e = 1.602177 * 10**-19 c = 299792458 h = 6.62607 * 10**-34 - lam = ( - h - / ma.sqrt(2 * m * e * E_eV) - / ma.sqrt(1 + e * E_eV / 2 / m / c**2) - * 10**10 - ) - sigma = ( - (2 * np.pi / lam / E_eV) * (m * c**2 + e * E_eV) / (2 * m * c**2 + e * E_eV) - ) + lam = h / ma.sqrt(2 * m * e * E_eV) / ma.sqrt(1 + e * E_eV / 2 / m / c**2) * 10**10 + sigma = (2 * np.pi / lam / E_eV) * (m * c**2 + e * E_eV) / (2 * m * c**2 + e * E_eV) return sigma From 0d772ad91a5fbfbe5ecc4e512b1a3e829288ceaf Mon Sep 17 00:00:00 2001 From: Colin Date: Mon, 8 Apr 2024 21:21:28 -0700 Subject: [PATCH 19/46] updating phase mapping --- py4DSTEM/process/diffraction/crystal_phase.py | 1353 ++++++++++++++--- 1 file changed, 1122 insertions(+), 231 deletions(-) diff --git a/py4DSTEM/process/diffraction/crystal_phase.py b/py4DSTEM/process/diffraction/crystal_phase.py index d28616aa9..508a01c79 100644 --- a/py4DSTEM/process/diffraction/crystal_phase.py +++ b/py4DSTEM/process/diffraction/crystal_phase.py @@ -3,12 +3,14 @@ from scipy.optimize import nnls import matplotlib as mpl import matplotlib.pyplot as plt +from scipy.ndimage import gaussian_filter from emdfile import tqdmnd, PointListArray from py4DSTEM.visualize import show, show_image_grid from py4DSTEM.process.diffraction.crystal_viz import plot_diffraction_pattern + class Crystal_Phase: """ A class storing multiple crystal structures, and associated diffraction data. @@ -19,8 +21,9 @@ class Crystal_Phase: def __init__( self, crystals, - orientation_maps, - name, + crystal_names = None, + orientation_maps = None, + name = None, ): """ Args: @@ -33,76 +36,964 @@ def __init__( self.num_crystals = len(crystals) else: raise TypeError("crystals must be a list of crystal instances.") - if isinstance(orientation_maps, list): + + # List of orientation maps + if orientation_maps is None: + self.orientation_maps = [crystals[ind].orientation_map for ind in range(self.num_crystals)] + else: if len(self.crystals) != len(orientation_maps): raise ValueError( "Orientation maps must have the same number of entries as crystals." ) self.orientation_maps = orientation_maps + + # Names of all crystal phases + if crystal_names is None: + self.crystal_names = ['crystal' + str(ind) for ind in range(self.num_crystals)] else: - raise TypeError("orientation_maps must be a list of orientation maps.") - self.name = name - return + self.crystal_names = crystal_names + + # Name of the phase map + if name is None: + self.name = 'phase map' + else: + self.name = name + + # Get some attributes from crystals + self.k_max = np.zeros(self.num_crystals) + self.num_matches = np.zeros(self.num_crystals, dtype='int') + self.crystal_identity = np.zeros((0,2), dtype='int') + for a0 in range(self.num_crystals): + self.k_max[a0] = self.crystals[a0].k_max + self.num_matches[a0] = self.crystals[a0].orientation_map.num_matches + for a1 in range(self.num_matches[a0]): + self.crystal_identity = np.append(self.crystal_identity,np.array((a0,a1),dtype='int')[None,:], axis=0) - def plot_all_phase_maps(self, map_scale_values=None, index=0): + self.num_fits = np.sum(self.num_matches) + + + + def quantify_single_pattern( + self, + pointlistarray: PointListArray, + xy_position = (0,0), + corr_kernel_size = 0.04, + allow_strain = True, + # corr_distance_scale = 1.0, + include_false_positives = True, + weight_false_positives = 1.0, + max_number_phases = 1, + sigma_excitation_error = 0.04, + power_experiment = 0.25, + power_calculated = 0.25, + plot_result = True, + plot_only_nonzero_phases = True, + plot_unmatched_peaks = False, + plot_correlation_radius = False, + scale_markers_experiment = 40, + scale_markers_calculated = 500, + crystal_inds_plot = None, + phase_colors = None, + figsize = (10,7), + verbose = True, + returnfig = False, + ): + """ + Quantify the phase for a single diffraction pattern. """ - Visualize phase maps of dataset. - Args: - map_scale_values (float): Value to scale correlations by + # tolerance + tol2 = 4e-4 + + # calibrations + center = pointlistarray.calstate['center'] + ellipse = pointlistarray.calstate['ellipse'] + pixel = pointlistarray.calstate['pixel'] + rotate = pointlistarray.calstate['rotate'] + if center is False: + raise ValueError('Bragg peaks must be center calibration') + if pixel is False: + raise ValueError('Bragg peaks must have pixel size calibration') + # TODO - potentially warn the user if ellipse / rotate calibration not available + + if phase_colors is None: + phase_colors = np.array(( + (1.0,0.0,0.0,1.0), + (0.0,0.8,1.0,1.0), + (0.0,0.6,0.0,1.0), + (1.0,0.0,1.0,1.0), + (0.0,0.2,1.0,1.0), + (1.0,0.8,0.0,1.0), + )) + + # Experimental values + bragg_peaks = pointlistarray.get_vectors( + xy_position[0], + xy_position[1], + center = center, + ellipse = ellipse, + pixel = pixel, + rotate = rotate) + # bragg_peaks = pointlistarray.get_pointlist(xy_position[0],xy_position[1]).copy() + keep = bragg_peaks.data["qx"]**2 + bragg_peaks.data["qy"]**2 > tol2 + # ind_center_beam = np.argmin( + # bragg_peaks.data["qx"]**2 + bragg_peaks.data["qy"]**2) + # mask = np.ones_like(bragg_peaks.data["qx"], dtype='bool') + # mask[ind_center_beam] = False + # bragg_peaks.remove(ind_center_beam) + qx = bragg_peaks.data["qx"][keep] + qy = bragg_peaks.data["qy"][keep] + qx0 = bragg_peaks.data["qx"][np.logical_not(keep)] + qy0 = bragg_peaks.data["qy"][np.logical_not(keep)] + if power_experiment == 0: + intensity = np.ones_like(qx) + intensity0 = np.ones_like(qx0) + else: + intensity = bragg_peaks.data["intensity"][keep]**power_experiment + intensity0 = bragg_peaks.data["intensity"][np.logical_not(keep)]**power_experiment + int_total = np.sum(intensity) + + # init basis array + if include_false_positives: + basis = np.zeros((intensity.shape[0], self.num_fits)) + unpaired_peaks = [] + else: + basis = np.zeros((intensity.shape[0], self.num_fits)) + if allow_strain: + m_strains = np.zeros((self.num_fits,2,2)) + + # kernel radius squared + radius_max_2 = corr_kernel_size**2 + + # init for plotting + if plot_result: + library_peaks = [] + library_int = [] + library_matches = [] + + # Generate point list data, match to experimental peaks + for a0 in range(self.num_fits): + c = self.crystal_identity[a0,0] + m = self.crystal_identity[a0,1] + # for c in range(self.num_crystals): + # for m in range(self.num_matches[c]): + # ind_match += 1 + + # Generate simulated peaks + bragg_peaks_fit = self.crystals[c].generate_diffraction_pattern( + self.crystals[c].orientation_map.get_orientation( + xy_position[0], xy_position[1] + ), + ind_orientation = m, + sigma_excitation_error = sigma_excitation_error, + ) + del_peak = bragg_peaks_fit.data["qx"]**2 \ + + bragg_peaks_fit.data["qy"]**2 < tol2 + bragg_peaks_fit.remove(del_peak) + + # peak intensities + if power_calculated == 0: + int_fit = np.ones_like(bragg_peaks_fit.data["qx"]) + else: + int_fit = bragg_peaks_fit.data['intensity']**power_calculated + + # Pair peaks to experiment + if plot_result: + matches = np.zeros((bragg_peaks_fit.data.shape[0]),dtype='bool') + + if allow_strain: + # Initial peak pairing to find best-fit strain distortion + pair_sub = np.zeros(bragg_peaks_fit.data.shape[0],dtype='bool') + pair_inds = np.zeros(bragg_peaks_fit.data.shape[0],dtype='int') + for a1 in range(bragg_peaks_fit.data.shape[0]): + dist2 = (bragg_peaks_fit.data['qx'][a1] - qx)**2 \ + + (bragg_peaks_fit.data['qy'][a1] - qy)**2 + ind_min = np.argmin(dist2) + val_min = dist2[ind_min] + + if val_min < radius_max_2: + pair_sub[a1] = True + pair_inds[a1] = ind_min + + # calculate best-fit strain tensor, weighted by the intensities. + # requires at least 4 peak pairs + if np.sum(pair_sub) >= 4: + pair_basis = np.vstack(( + qx[pair_inds[pair_sub]], + qy[pair_inds[pair_sub]], + )).T + pair_obs = np.vstack(( + bragg_peaks_fit.data['qx'][pair_sub], + bragg_peaks_fit.data['qy'][pair_sub], + )).T + + # weights + dists = np.sqrt( + (bragg_peaks_fit.data['qx'][pair_sub] - qx[pair_inds[pair_sub]])**2 + \ + (bragg_peaks_fit.data['qx'][pair_sub] - qx[pair_inds[pair_sub]])**2) + weights = np.sqrt( + int_fit[pair_sub] * intensity[pair_inds[pair_sub]] + ) * (1 - dists / corr_kernel_size) + + # wtrain tensor + m_strain = np.linalg.lstsq( + pair_basis * weights[:,None], + pair_obs * weights[:,None], + rcond = None, + )[0] + m_strains[a0] = m_strain + + # Transformed peak positions + qx_copy = qx.copy() + qy_copy = qy.copy() + qx = qx_copy*m_strain[0,0] + qy_copy*m_strain[1,0] + qy = qx_copy*m_strain[0,1] + qy_copy*m_strain[1,1] + + # dist = np.mean(np.sqrt((bragg_peaks_fit.data['qx'][pair_sub] - qx[pair_inds[pair_sub]])**2 + \ + # (bragg_peaks_fit.data['qx'][pair_sub] - qx[pair_inds[pair_sub]])**2)) + # print(np.round(dist,4)) + + # Loop over all peaks, pair experiment to library + for a1 in range(bragg_peaks_fit.data.shape[0]): + dist2 = (bragg_peaks_fit.data['qx'][a1] - qx)**2 \ + + (bragg_peaks_fit.data['qy'][a1] - qy)**2 + ind_min = np.argmin(dist2) + val_min = dist2[ind_min] + + if val_min < radius_max_2: + # weight = 1 - np.sqrt(dist2[ind_min]) / corr_kernel_size + # weight = 1 + corr_distance_scale * \ + # np.sqrt(dist2[ind_min]) / corr_kernel_size + # basis[ind_min,a0] = weight * int_fit[a1] + basis[ind_min,a0] = int_fit[a1] + if plot_result: + matches[a1] = True + elif include_false_positives: + # unpaired_peaks.append([a0,int_fit[a1]*(1 + corr_distance_scale)]) + unpaired_peaks.append([a0,int_fit[a1]]) + + if plot_result: + library_peaks.append(bragg_peaks_fit) + library_int.append(int_fit) + library_matches.append(matches) + + # If needed, augment basis and observations with false positives + if include_false_positives: + basis_aug = np.zeros((len(unpaired_peaks),self.num_fits)) + for a0 in range(len(unpaired_peaks)): + basis_aug[a0,unpaired_peaks[a0][0]] = unpaired_peaks[a0][1] + + basis = np.vstack((basis, basis_aug * weight_false_positives)) + obs = np.hstack((intensity, np.zeros(len(unpaired_peaks)))) + + else: + obs = intensity + + # Solve for phase coefficients + try: + phase_weights = np.zeros(self.num_fits) + inds_solve = np.ones(self.num_fits,dtype='bool') + + search = True + while search is True: + phase_weights_cand, phase_residual_cand = nnls( + basis[:,inds_solve], + obs, + ) + + if np.count_nonzero(phase_weights_cand > 0.0) <= max_number_phases: + phase_weights[inds_solve] = phase_weights_cand + phase_residual = phase_residual_cand + search = False + else: + inds = np.where(inds_solve)[0] + inds_solve[inds[np.argmin(phase_weights_cand)]] = False + + except: + phase_weights = np.zeros(self.num_fits) + phase_residual = np.sqrt(np.sum(intensity**2)) + + if verbose: + ind_max = np.argmax(phase_weights) + # print() + print('\033[1m' + 'phase_weight or_ind name' + '\033[0m') + # print() + for a0 in range(self.num_fits): + c = self.crystal_identity[a0,0] + m = self.crystal_identity[a0,1] + line = '{:>12} {:>8} {:<12}'.format( + np.round(phase_weights[a0],decimals=2), + m, + self.crystal_names[c] + ) + if a0 == ind_max: + print('\033[1m' + line + '\033[0m') + else: + print(line) + # print() + + # Plotting + if plot_result: + # fig, ax = plt.subplots(figsize=figsize) + fig = plt.figure(figsize=figsize) + # if plot_layout == 0: + # ax_x = fig.add_axes( + # [0.0+figbound[0], 0.0, 0.4-2*+figbound[0], 1.0]) + ax = fig.add_axes([0.0, 0.0, 0.66, 1.0]) + ax_leg = fig.add_axes([0.68, 0.0, 0.3, 1.0]) + + if plot_correlation_radius: + # plot the experimental radii + t = np.linspace(0,2*np.pi,91,endpoint=True) + ct = np.cos(t) * corr_kernel_size + st = np.sin(t) * corr_kernel_size + for a0 in range(qx.shape[0]): + ax.plot( + qy[a0] + st, + qx[a0] + ct, + color = 'k', + linewidth = 1, + ) + + # plot the experimental peaks + ax.scatter( + qy0, + qx0, + s = scale_markers_experiment * intensity0, + marker = "o", + facecolor = [0.7, 0.7, 0.7], + ) + ax.scatter( + qy, + qx, + s = scale_markers_experiment * intensity, + marker = "o", + facecolor = [0.7, 0.7, 0.7], + ) + # legend + k_max = np.max(self.k_max) + dx_leg = -0.05*k_max + dy_leg = 0.04*k_max + text_params = { + "va": "center", + "ha": "left", + "family": "sans-serif", + "fontweight": "normal", + "color": "k", + "size": 14, + } + if plot_correlation_radius: + ax_leg.plot( + 0 + st*0.5, + -dx_leg + ct*0.5, + color = 'k', + linewidth = 1, + ) + ax_leg.scatter( + 0, + 0, + s = 200, + marker = "o", + facecolor = [0.7, 0.7, 0.7], + ) + ax_leg.text( + dy_leg, + 0, + 'Experimental peaks', + **text_params) + if plot_correlation_radius: + ax_leg.text( + dy_leg, + -dx_leg, + 'Correlation radius', + **text_params) + + + # plot calculated diffraction patterns + uvals = phase_colors.copy() + uvals[:,3] = 0.3 + # uvals = np.array(( + # (1.0,0.0,0.0,0.2), + # (0.0,0.8,1.0,0.2), + # (0.0,0.6,0.0,0.2), + # (1.0,0.0,1.0,0.2), + # (0.0,0.2,1.0,0.2), + # (1.0,0.8,0.0,0.2), + # )) + mvals = ['v','^','<','>','d','s',] + + for a0 in range(self.num_fits): + c = self.crystal_identity[a0,0] + m = self.crystal_identity[a0,1] + + if crystal_inds_plot == None or np.min(np.abs(c - crystal_inds_plot)) == 0: + + qx_fit = library_peaks[a0].data['qx'] + qy_fit = library_peaks[a0].data['qy'] + + # if allow_strain: + # m_strain = m_strains[a0] + # # Transformed peak positions + # qx_copy = qx_fit.copy() + # qy_copy = qy_fit.copy() + # qx_fit = qx_copy*m_strain[0,0] + qy_copy*m_strain[1,0] + # qy_fit = qx_copy*m_strain[0,1] + qy_copy*m_strain[1,1] + + int_fit = library_int[a0] + matches_fit = library_matches[a0] + + if plot_only_nonzero_phases is False or phase_weights[a0] > 0: + + if np.mod(m,2) == 0: + ax.scatter( + qy_fit[matches_fit], + qx_fit[matches_fit], + s = scale_markers_calculated * int_fit[matches_fit], + marker = mvals[c], + facecolor = phase_colors[c,:], + ) + if plot_unmatched_peaks: + ax.scatter( + qy_fit[np.logical_not(matches_fit)], + qx_fit[np.logical_not(matches_fit)], + s = scale_markers_calculated * int_fit[np.logical_not(matches_fit)], + marker = mvals[c], + facecolor = phase_colors[c,:], + ) + + # legend + ax_leg.scatter( + 0, + dx_leg*(a0+1), + s = 200, + marker = mvals[c], + facecolor = phase_colors[c,:], + ) + else: + ax.scatter( + qy_fit[matches_fit], + qx_fit[matches_fit], + s = scale_markers_calculated * int_fit[matches_fit], + marker = mvals[c], + edgecolors = uvals[c,:], + facecolors = (uvals[c,0],uvals[c,1],uvals[c,2],0.3), + # facecolors = (1,1,1,0.5), + linewidth = 2, + ) + if plot_unmatched_peaks: + ax.scatter( + qy_fit[np.logical_not(matches_fit)], + qx_fit[np.logical_not(matches_fit)], + s = scale_markers_calculated * int_fit[np.logical_not(matches_fit)], + marker = mvals[c], + edgecolors = uvals[c,:], + facecolors = (1,1,1,0.5), + linewidth = 2, + ) + + # legend + ax_leg.scatter( + 0, + dx_leg*(a0+1), + s = 200, + marker = mvals[c], + edgecolors = uvals[c,:], + facecolors = (uvals[c,0],uvals[c,1],uvals[c,2],0.3), + # facecolors = (1,1,1,0.5), + ) + + # legend text + ax_leg.text( + dy_leg, + (a0+1)*dx_leg, + self.crystal_names[c], + **text_params) + + + # appearance + ax.set_xlim((-k_max, k_max)) + ax.set_ylim((-k_max, k_max)) + + ax_leg.set_xlim((-0.1*k_max, 0.4*k_max)) + ax_leg.set_ylim((-0.5*k_max, 0.5*k_max)) + ax_leg.set_axis_off() + + if returnfig: + return phase_weights, phase_residual, int_total, fig, ax + else: + return phase_weights, phase_residual, int_total + + def quantify_phase( + self, + pointlistarray: PointListArray, + corr_kernel_size = 0.04, + # corr_distance_scale = 1.0, + allow_strain = True, + include_false_positives = True, + weight_false_positives = 1.0, + max_number_phases = 2, + sigma_excitation_error = 0.02, + power_experiment = 0.25, + power_calculated = 0.25, + progress_bar = True, + ): """ - phase_maps = [] - if map_scale_values is None: - map_scale_values = [1] * len(self.orientation_maps) - corr_sum = np.sum( - [ - (self.orientation_maps[m].corr[:, :, index] * map_scale_values[m]) - for m in range(len(self.orientation_maps)) - ] - ) - for m in range(len(self.orientation_maps)): - phase_maps.append(self.orientation_maps[m].corr[:, :, index] / corr_sum) - show_image_grid(lambda i: phase_maps[i], 1, len(phase_maps), cmap="inferno") - return - - def plot_phase_map(self, index=0, cmap=None): - corr_array = np.dstack( - [maps.corr[:, :, index] for maps in self.orientation_maps] + Quantify phase of all diffraction patterns. + """ + + # init results arrays + self.phase_weights = np.zeros(( + pointlistarray.shape[0], + pointlistarray.shape[1], + self.num_fits, + )) + self.phase_residuals = np.zeros(( + pointlistarray.shape[0], + pointlistarray.shape[1], + )) + self.int_total = np.zeros(( + pointlistarray.shape[0], + pointlistarray.shape[1], + )) + + for rx, ry in tqdmnd( + *pointlistarray.shape, + desc="Matching Orientations", + unit=" PointList", + disable=not progress_bar, + ): + # calculate phase weights + phase_weights, phase_residual, int_peaks = self.quantify_single_pattern( + pointlistarray = pointlistarray, + xy_position = (rx,ry), + corr_kernel_size = corr_kernel_size, + allow_strain = allow_strain, + # corr_distance_scale = corr_distance_scale, + include_false_positives = include_false_positives, + weight_false_positives = weight_false_positives, + max_number_phases = max_number_phases, + sigma_excitation_error = sigma_excitation_error, + power_experiment = power_experiment, + power_calculated = power_calculated, + plot_result = False, + verbose = False, + returnfig = False, + ) + self.phase_weights[rx,ry] = phase_weights + self.phase_residuals[rx,ry] = phase_residual + self.int_total[rx,ry] = int_peaks + + + def plot_phase_weights( + self, + weight_range = (0.0,1.0), + weight_normalize = False, + total_intensity_normalize = True, + cmap = 'gray', + show_ticks = False, + show_axes = True, + layout = 0, + figsize = (6,6), + returnfig = False, + ): + """ + Plot the individual phase weight maps and residuals. + """ + + # Normalization if required to total DF peak intensity + phase_weights = self.phase_weights.copy() + phase_residuals = self.phase_residuals.copy() + if total_intensity_normalize: + sub = self.int_total > 0.0 + for a0 in range(self.num_fits): + phase_weights[:,:,a0][sub] /= self.int_total[sub] + phase_residuals[sub] /= self.int_total[sub] + + # intensity range for plotting + if weight_normalize: + scale = np.median(np.max(phase_weights,axis=2)) + else: + scale = 1 + weight_range = np.array(weight_range) * scale + + # plotting + if layout == 0: + fig,ax = plt.subplots( + 1, + self.num_crystals + 1, + figsize=(figsize[0],(self.num_fits+1)*figsize[1])) + elif layout == 1: + fig,ax = plt.subplots( + self.num_crystals + 1, + 1, + figsize=(figsize[0],(self.num_fits+1)*figsize[1])) + + for a0 in range(self.num_crystals): + sub = self.crystal_identity[:,0] == a0 + im = np.sum(phase_weights[:,:,sub],axis=2) + im = np.clip( + (im - weight_range[0]) / (weight_range[1] - weight_range[0]), + 0,1) + ax[a0].imshow( + im, + vmin = 0, + vmax = 1, + cmap = cmap, + ) + ax[a0].set_title( + self.crystal_names[a0], + fontsize = 16, + ) + if not show_ticks: + ax[a0].set_xticks([]) + ax[a0].set_yticks([]) + if not show_axes: + ax[a0].set_axis_off() + + # plot residuals + im = np.clip( + (phase_residuals - weight_range[0]) \ + / (weight_range[1] - weight_range[0]), + 0,1) + ax[self.num_crystals].imshow( + im, + vmin = 0, + vmax = 1, + cmap = cmap, ) - best_corr_score = np.max(corr_array, axis=2) - best_match_phase = [ - np.where(corr_array[:, :, p] == best_corr_score, True, False) - for p in range(len(self.orientation_maps)) - ] - - if cmap is None: - cm = plt.get_cmap("rainbow") - cmap = [ - cm(1.0 * i / len(self.orientation_maps)) - for i in range(len(self.orientation_maps)) - ] - - fig, (ax) = plt.subplots(figsize=(6, 6)) - ax.matshow( - np.zeros((self.orientation_maps[0].num_x, self.orientation_maps[0].num_y)), - cmap="gray", + ax[self.num_crystals].set_title( + 'Residuals', + fontsize = 16, ) - ax.axis("off") - - for m in range(len(self.orientation_maps)): - c0, c1 = (cmap[m][0] * 0.35, cmap[m][1] * 0.35, cmap[m][2] * 0.35, 1), cmap[ - m - ] - cm = mpl.colors.LinearSegmentedColormap.from_list("cmap", [c0, c1], N=10) - ax.matshow( - np.ma.array( - self.orientation_maps[m].corr[:, :, index], mask=best_match_phase[m] - ), - cmap=cm, + if not show_ticks: + ax[self.num_crystals].set_xticks([]) + ax[self.num_crystals].set_yticks([]) + if not show_axes: + ax[self.num_crystals].set_axis_off() + + if returnfig: + return fig, ax + + + def plot_phase_maps( + self, + weight_threshold = 0.5, + weight_normalize = True, + total_intensity_normalize = True, + plot_combine = False, + crystal_inds_plot = None, + phase_colors = None, + show_ticks = False, + show_axes = True, + layout = 0, + figsize = (6,6), + return_phase_estimate = False, + return_rgb_images = False, + returnfig = False, + ): + """ + Plot the individual phase weight maps and residuals. + """ + + if phase_colors is None: + phase_colors = np.array(( + (1.0,0.0,0.0), + (0.0,0.8,1.0), + (0.0,0.8,0.0), + (1.0,0.0,1.0), + (0.0,0.4,1.0), + (1.0,0.8,0.0), + )) + + phase_weights = self.phase_weights.copy() + if total_intensity_normalize: + sub = self.int_total > 0.0 + for a0 in range(self.num_fits): + phase_weights[:,:,a0][sub] /= self.int_total[sub] + + # intensity range for plotting + if weight_normalize: + scale = np.median(np.max(phase_weights,axis=2)) + else: + scale = 1 + weight_threshold = weight_threshold * scale + + # init + im_all = np.zeros(( + self.num_crystals, + self.phase_weights.shape[0], + self.phase_weights.shape[1])) + im_rgb_all = np.zeros(( + self.num_crystals, + self.phase_weights.shape[0], + self.phase_weights.shape[1], + 3)) + + # phase weights over threshold + for a0 in range(self.num_crystals): + sub = self.crystal_identity[:,0] == a0 + im = np.sum(phase_weights[:,:,sub],axis=2) + im_all[a0] = np.maximum(im - weight_threshold, 0) + + # estimate compositions + im_sum = np.sum(im_all, axis = 0) + sub = im_sum > 0.0 + for a0 in range(self.num_crystals): + im_all[a0][sub] /= im_sum[sub] + + for a1 in range(3): + im_rgb_all[a0,:,:,a1] = im_all[a0] * phase_colors[a0,a1] + + if plot_combine: + if crystal_inds_plot is None: + im_rgb = np.sum(im_rgb_all, axis = 0) + else: + im_rgb = np.sum(im_rgb_all[np.array(crystal_inds_plot)], axis = 0) + + im_rgb = np.clip(im_rgb,0,1) + + fig,ax = plt.subplots(1,1,figsize=figsize) + ax.imshow( + im_rgb, + ) + ax.set_title( + 'Phase Maps', + fontsize = 16, ) - plt.show() + if not show_ticks: + ax.set_xticks([]) + ax.set_yticks([]) + if not show_axes: + ax.set_axis_off() + + else: + # plotting + if layout == 0: + fig,ax = plt.subplots( + 1, + self.num_crystals, + figsize=(figsize[0],(self.num_fits+1)*figsize[1])) + elif layout == 1: + fig,ax = plt.subplots( + self.num_crystals, + 1, + figsize=(figsize[0],(self.num_fits+1)*figsize[1])) + + for a0 in range(self.num_crystals): + + ax[a0].imshow( + im_rgb_all[a0], + ) + ax[a0].set_title( + self.crystal_names[a0], + fontsize = 16, + ) + if not show_ticks: + ax[a0].set_xticks([]) + ax[a0].set_yticks([]) + if not show_axes: + ax[a0].set_axis_off() + + # All possible returns + if return_phase_estimate: + if returnfig: + return im_all, fig, ax + else: + return im_all + elif return_rgb_images: + if plot_combine: + if returnfig: + return im_rgb, fig, ax + else: + return im_rgb + else: + if returnfig: + return im_rgb_all, fig, ax + else: + return im_rgb_all + else: + if returnfig: + return fig, ax + + + def plot_dominant_phase( + self, + rel_range = (0.0,1.0), + sigma = 0.0, + phase_colors = None, + figsize = (6,6), + ): + """ + Plot a combined figure showing the primary phase at each probe position. + Mask by the reliability index (best match minus 2nd best match). + """ + + if phase_colors is None: + phase_colors = np.array([ + [1.0,0.9,0.6], + [1,0,0], + [0,0.7,0], + [0,0.7,1], + [1,0,1], + ]) + + + # init arrays + scan_shape = self.phase_weights.shape[:2] + phase_map = np.zeros(scan_shape) + phase_corr = np.zeros(scan_shape) + phase_corr_2nd = np.zeros(scan_shape) + phase_sig = np.zeros((self.num_crystals,scan_shape[0],scan_shape[1])) + + # sum up phase weights by crystal type + for a0 in range(self.num_fits): + ind = self.crystal_identity[a0,0] + phase_sig[ind] += self.phase_weights[:,:,a0] + + # smoothing of the outputs + if sigma > 0.0: + for a0 in range(self.num_crystals): + phase_sig[a0] = gaussian_filter( + phase_sig[a0], + sigma = sigma, + mode = 'nearest', + ) + + + # find highest correlation score for each crystal and match index + for a0 in range(self.num_crystals): + sub = phase_sig[a0] > phase_corr + phase_map[sub] = a0 + phase_corr[sub] = phase_sig[a0][sub] + + # find the second correlation score for each crystal and match index + for a0 in range(self.num_crystals): + corr = phase_sig[a0].copy() + corr[phase_map==a0] = 0.0 + sub = corr > phase_corr_2nd + phase_corr_2nd[sub] = corr[sub] + + + + + + # for a1 in range(crystals[a0].orientation_map.corr.shape[2]): + # sub = crystals[a0].orientation_map.corr[:,:,a1] > phase_corr + # phase_map[sub] = a0 + # phase_corr[sub] = crystals[a0].orientation_map.corr[:,:,a1][sub] + + # # find the second correlation score for each crystal and match index + # for a0 in range(len(crystals)): + # for a1 in range(crystals[a0].orientation_map.corr.shape[2]): + # corr = crystals[a0].orientation_map.corr[:,:,a1].copy() + # corr[phase_map==a0] = 0.0 + # sub = corr > phase_corr_2nd + # phase_corr_2nd[sub] = corr[sub] + + # Estimate the reliability + phase_rel = phase_corr - phase_corr_2nd + + # # Generate a color plotting image + # c_vals = np.array([ + # [0.7,0.5,0.3], + # [1,0,0], + # [0,0.7,0], + # [0,0.7,1], + # [0,0.7,1], + # ]) + phase_scale = np.clip( + (phase_rel - rel_range[0]) / (rel_range[1] - rel_range[0]), + 0, + 1) + + + phase_rgb = np.zeros((scan_shape[0],scan_shape[1],3)) + for a0 in range(self.num_crystals): + sub = phase_map==a0 + for a1 in range(3): + phase_rgb[:,:,a1][sub] = phase_colors[a0,a1] * phase_scale[sub] + # normalize + # phase_rgb = np.clip( + # (phase_rgb - rel_range[0]) / (rel_range[1] - rel_range[0]), + # 0,1) + + + + fig,ax = plt.subplots(figsize=figsize) + ax.imshow( + phase_rgb, + # vmin = 0, + # vmax = 5, + # phase_rgb, + # phase_corr - phase_corr_2nd, + # cmap = 'turbo', + # vmin = 0, + # vmax = 3, + # cmap = 'gray', + ) + + return fig,ax + + + # def plot_all_phase_maps(self, map_scale_values=None, index=0): + # """ + # Visualize phase maps of dataset. + + # Args: + # map_scale_values (float): Value to scale correlations by + # """ + # phase_maps = [] + # if map_scale_values is None: + # map_scale_values = [1] * len(self.orientation_maps) + # corr_sum = np.sum( + # [ + # (self.orientation_maps[m].corr[:, :, index] * map_scale_values[m]) + # for m in range(len(self.orientation_maps)) + # ] + # ) + # for m in range(len(self.orientation_maps)): + # phase_maps.append(self.orientation_maps[m].corr[:, :, index] / corr_sum) + # show_image_grid(lambda i: phase_maps[i], 1, len(phase_maps), cmap="inferno") + # return + + # def plot_phase_map(self, index=0, cmap=None): + # corr_array = np.dstack( + # [maps.corr[:, :, index] for maps in self.orientation_maps] + # ) + # best_corr_score = np.max(corr_array, axis=2) + # best_match_phase = [ + # np.where(corr_array[:, :, p] == best_corr_score, True, False) + # for p in range(len(self.orientation_maps)) + # ] - return + # if cmap is None: + # cm = plt.get_cmap("rainbow") + # cmap = [ + # cm(1.0 * i / len(self.orientation_maps)) + # for i in range(len(self.orientation_maps)) + # ] + + # fig, (ax) = plt.subplots(figsize=(6, 6)) + # ax.matshow( + # np.zeros((self.orientation_maps[0].num_x, self.orientation_maps[0].num_y)), + # cmap="gray", + # ) + # ax.axis("off") + + # for m in range(len(self.orientation_maps)): + # c0, c1 = (cmap[m][0] * 0.35, cmap[m][1] * 0.35, cmap[m][2] * 0.35, 1), cmap[ + # m + # ] + # cm = mpl.colors.LinearSegmentedColormap.from_list("cmap", [c0, c1], N=10) + # ax.matshow( + # np.ma.array( + # self.orientation_maps[m].corr[:, :, index], mask=best_match_phase[m] + # ), + # cmap=cm, + # ) + # plt.show() + + # return # Potentially introduce a way to check best match out of all orientations in phase plan and plug into model # to quantify phase @@ -124,187 +1015,187 @@ def plot_phase_map(self, index=0, cmap=None): # ): # return - def quantify_phase( - self, - pointlistarray, - tolerance_distance=0.08, - method="nnls", - intensity_power=0, - mask_peaks=None, - ): - """ - Quantification of the phase of a crystal based on the crystal instances and the pointlistarray. + # def quantify_phase( + # self, + # pointlistarray, + # tolerance_distance=0.08, + # method="nnls", + # intensity_power=0, + # mask_peaks=None, + # ): + # """ + # Quantification of the phase of a crystal based on the crystal instances and the pointlistarray. - Args: - pointlisarray (pointlistarray): Pointlistarray to quantify phase of - tolerance_distance (float): Distance allowed between a peak and match - method (str): Numerical method used to quantify phase - intensity_power (float): ... - mask_peaks (list, optional): A pointer of which positions to mask peaks from + # Args: + # pointlisarray (pointlistarray): Pointlistarray to quantify phase of + # tolerance_distance (float): Distance allowed between a peak and match + # method (str): Numerical method used to quantify phase + # intensity_power (float): ... + # mask_peaks (list, optional): A pointer of which positions to mask peaks from - Details: - """ - if isinstance(pointlistarray, PointListArray): - phase_weights = np.zeros( - ( - pointlistarray.shape[0], - pointlistarray.shape[1], - np.sum([map.num_matches for map in self.orientation_maps]), - ) - ) - phase_residuals = np.zeros(pointlistarray.shape) - for Rx, Ry in tqdmnd(pointlistarray.shape[0], pointlistarray.shape[1]): - ( - _, - phase_weight, - phase_residual, - crystal_identity, - ) = self.quantify_phase_pointlist( - pointlistarray, - position=[Rx, Ry], - tolerance_distance=tolerance_distance, - method=method, - intensity_power=intensity_power, - mask_peaks=mask_peaks, - ) - phase_weights[Rx, Ry, :] = phase_weight - phase_residuals[Rx, Ry] = phase_residual - self.phase_weights = phase_weights - self.phase_residuals = phase_residuals - self.crystal_identity = crystal_identity - return - else: - return TypeError("pointlistarray must be of type pointlistarray.") - return + # Details: + # """ + # if isinstance(pointlistarray, PointListArray): + # phase_weights = np.zeros( + # ( + # pointlistarray.shape[0], + # pointlistarray.shape[1], + # np.sum([map.num_matches for map in self.orientation_maps]), + # ) + # ) + # phase_residuals = np.zeros(pointlistarray.shape) + # for Rx, Ry in tqdmnd(pointlistarray.shape[0], pointlistarray.shape[1]): + # ( + # _, + # phase_weight, + # phase_residual, + # crystal_identity, + # ) = self.quantify_phase_pointlist( + # pointlistarray, + # position=[Rx, Ry], + # tolerance_distance=tolerance_distance, + # method=method, + # intensity_power=intensity_power, + # mask_peaks=mask_peaks, + # ) + # phase_weights[Rx, Ry, :] = phase_weight + # phase_residuals[Rx, Ry] = phase_residual + # self.phase_weights = phase_weights + # self.phase_residuals = phase_residuals + # self.crystal_identity = crystal_identity + # return + # else: + # return TypeError("pointlistarray must be of type pointlistarray.") + # return - def quantify_phase_pointlist( - self, - pointlistarray, - position, - method="nnls", - tolerance_distance=0.08, - intensity_power=0, - mask_peaks=None, - ): - """ - Args: - pointlisarray (pointlistarray): Pointlistarray to quantify phase of - position (tuple/list): Position of pointlist in pointlistarray - tolerance_distance (float): Distance allowed between a peak and match - method (str): Numerical method used to quantify phase - intensity_power (float): ... - mask_peaks (list, optional): A pointer of which positions to mask peaks from - - Returns: - pointlist_peak_intensity_matches (np.ndarray): Peak matches in the rows of array and the crystals in the columns - phase_weights (np.ndarray): Weights of each phase - phase_residuals (np.ndarray): Residuals - crystal_identity (list): List of lists, where the each entry represents the position in the - crystal and orientation match that is associated with the phase - weights. for example, if the output was [[0,0], [0,1], [1,0], [0,1]], - the first entry [0,0] in phase weights is associated with the first crystal - the first match within that crystal. [0,1] is the first crystal and the - second match within that crystal. - """ - # Things to add: - # 1. Better cost for distance from peaks in pointlists - # 2. Iterate through multiple tolerance_distance values to find best value. Cost function residuals, or something else? + # def quantify_phase_pointlist( + # self, + # pointlistarray, + # position, + # method="nnls", + # tolerance_distance=0.08, + # intensity_power=0, + # mask_peaks=None, + # ): + # """ + # Args: + # pointlisarray (pointlistarray): Pointlistarray to quantify phase of + # position (tuple/list): Position of pointlist in pointlistarray + # tolerance_distance (float): Distance allowed between a peak and match + # method (str): Numerical method used to quantify phase + # intensity_power (float): ... + # mask_peaks (list, optional): A pointer of which positions to mask peaks from - pointlist = pointlistarray.get_pointlist(position[0], position[1]) - pl_mask = np.where((pointlist["qx"] == 0) & (pointlist["qy"] == 0), 1, 0) - pointlist.remove(pl_mask) - # False Negatives (exp peak with no match in crystal instances) will appear here, already coded in + # Returns: + # pointlist_peak_intensity_matches (np.ndarray): Peak matches in the rows of array and the crystals in the columns + # phase_weights (np.ndarray): Weights of each phase + # phase_residuals (np.ndarray): Residuals + # crystal_identity (list): List of lists, where the each entry represents the position in the + # crystal and orientation match that is associated with the phase + # weights. for example, if the output was [[0,0], [0,1], [1,0], [0,1]], + # the first entry [0,0] in phase weights is associated with the first crystal + # the first match within that crystal. [0,1] is the first crystal and the + # second match within that crystal. + # """ + # # Things to add: + # # 1. Better cost for distance from peaks in pointlists + # # 2. Iterate through multiple tolerance_distance values to find best value. Cost function residuals, or something else? - if intensity_power == 0: - pl_intensities = np.ones(pointlist["intensity"].shape) - else: - pl_intensities = pointlist["intensity"] ** intensity_power - # Prepare matches for modeling - pointlist_peak_matches = [] - crystal_identity = [] - - for c in range(len(self.crystals)): - for m in range(self.orientation_maps[c].num_matches): - crystal_identity.append([c, m]) - phase_peak_match_intensities = np.zeros((pointlist["intensity"].shape)) - bragg_peaks_fit = self.crystals[c].generate_diffraction_pattern( - self.orientation_maps[c].get_orientation(position[0], position[1]), - ind_orientation=m, - ) - # Find the best match peak within tolerance_distance and add value in the right position - for d in range(pointlist["qx"].shape[0]): - distances = [] - for p in range(bragg_peaks_fit["qx"].shape[0]): - distances.append( - np.sqrt( - (pointlist["qx"][d] - bragg_peaks_fit["qx"][p]) ** 2 - + (pointlist["qy"][d] - bragg_peaks_fit["qy"][p]) ** 2 - ) - ) - ind = np.where(distances == np.min(distances))[0][0] - - # Potentially for-loop over multiple values for 'tolerance_distance' to find best tolerance_distance value - if distances[ind] <= tolerance_distance: - ## Somewhere in this if statement is probably where better distances from the peak should be coded in - if ( - intensity_power == 0 - ): # This could potentially be a different intensity_power arg - phase_peak_match_intensities[d] = 1 ** ( - (tolerance_distance - distances[ind]) - / tolerance_distance - ) - else: - phase_peak_match_intensities[d] = bragg_peaks_fit[ - "intensity" - ][ind] ** ( - (tolerance_distance - distances[ind]) - / tolerance_distance - ) - else: - ## This is probably where the false positives (peaks in crystal but not in experiment) should be handled - continue - - pointlist_peak_matches.append(phase_peak_match_intensities) - pointlist_peak_intensity_matches = np.dstack(pointlist_peak_matches) - pointlist_peak_intensity_matches = ( - pointlist_peak_intensity_matches.reshape( - pl_intensities.shape[0], - pointlist_peak_intensity_matches.shape[-1], - ) - ) + # pointlist = pointlistarray.get_pointlist(position[0], position[1]) + # pl_mask = np.where((pointlist["qx"] == 0) & (pointlist["qy"] == 0), 1, 0) + # pointlist.remove(pl_mask) + # # False Negatives (exp peak with no match in crystal instances) will appear here, already coded in - if len(pointlist["qx"]) > 0: - if mask_peaks is not None: - for i in range(len(mask_peaks)): - if mask_peaks[i] == None: # noqa: E711 - continue - inds_mask = np.where( - pointlist_peak_intensity_matches[:, mask_peaks[i]] != 0 - )[0] - for mask in range(len(inds_mask)): - pointlist_peak_intensity_matches[inds_mask[mask], i] = 0 + # if intensity_power == 0: + # pl_intensities = np.ones(pointlist["intensity"].shape) + # else: + # pl_intensities = pointlist["intensity"] ** intensity_power + # # Prepare matches for modeling + # pointlist_peak_matches = [] + # crystal_identity = [] - if method == "nnls": - phase_weights, phase_residuals = nnls( - pointlist_peak_intensity_matches, pl_intensities - ) + # for c in range(len(self.crystals)): + # for m in range(self.orientation_maps[c].num_matches): + # crystal_identity.append([c, m]) + # phase_peak_match_intensities = np.zeros((pointlist["intensity"].shape)) + # bragg_peaks_fit = self.crystals[c].generate_diffraction_pattern( + # self.orientation_maps[c].get_orientation(position[0], position[1]), + # ind_orientation=m, + # ) + # # Find the best match peak within tolerance_distance and add value in the right position + # for d in range(pointlist["qx"].shape[0]): + # distances = [] + # for p in range(bragg_peaks_fit["qx"].shape[0]): + # distances.append( + # np.sqrt( + # (pointlist["qx"][d] - bragg_peaks_fit["qx"][p]) ** 2 + # + (pointlist["qy"][d] - bragg_peaks_fit["qy"][p]) ** 2 + # ) + # ) + # ind = np.where(distances == np.min(distances))[0][0] - elif method == "lstsq": - phase_weights, phase_residuals, rank, singluar_vals = lstsq( - pointlist_peak_intensity_matches, pl_intensities, rcond=-1 - ) - phase_residuals = np.sum(phase_residuals) - else: - raise ValueError(method + " Not yet implemented. Try nnls or lstsq.") - else: - phase_weights = np.zeros((pointlist_peak_intensity_matches.shape[1],)) - phase_residuals = np.NaN - return ( - pointlist_peak_intensity_matches, - phase_weights, - phase_residuals, - crystal_identity, - ) + # # Potentially for-loop over multiple values for 'tolerance_distance' to find best tolerance_distance value + # if distances[ind] <= tolerance_distance: + # ## Somewhere in this if statement is probably where better distances from the peak should be coded in + # if ( + # intensity_power == 0 + # ): # This could potentially be a different intensity_power arg + # phase_peak_match_intensities[d] = 1 ** ( + # (tolerance_distance - distances[ind]) + # / tolerance_distance + # ) + # else: + # phase_peak_match_intensities[d] = bragg_peaks_fit[ + # "intensity" + # ][ind] ** ( + # (tolerance_distance - distances[ind]) + # / tolerance_distance + # ) + # else: + # ## This is probably where the false positives (peaks in crystal but not in experiment) should be handled + # continue + + # pointlist_peak_matches.append(phase_peak_match_intensities) + # pointlist_peak_intensity_matches = np.dstack(pointlist_peak_matches) + # pointlist_peak_intensity_matches = ( + # pointlist_peak_intensity_matches.reshape( + # pl_intensities.shape[0], + # pointlist_peak_intensity_matches.shape[-1], + # ) + # ) + + # if len(pointlist["qx"]) > 0: + # if mask_peaks is not None: + # for i in range(len(mask_peaks)): + # if mask_peaks[i] == None: # noqa: E711 + # continue + # inds_mask = np.where( + # pointlist_peak_intensity_matches[:, mask_peaks[i]] != 0 + # )[0] + # for mask in range(len(inds_mask)): + # pointlist_peak_intensity_matches[inds_mask[mask], i] = 0 + + # if method == "nnls": + # phase_weights, phase_residuals = nnls( + # pointlist_peak_intensity_matches, pl_intensities + # ) + + # elif method == "lstsq": + # phase_weights, phase_residuals, rank, singluar_vals = lstsq( + # pointlist_peak_intensity_matches, pl_intensities, rcond=-1 + # ) + # phase_residuals = np.sum(phase_residuals) + # else: + # raise ValueError(method + " Not yet implemented. Try nnls or lstsq.") + # else: + # phase_weights = np.zeros((pointlist_peak_intensity_matches.shape[1],)) + # phase_residuals = np.NaN + # return ( + # pointlist_peak_intensity_matches, + # phase_weights, + # phase_residuals, + # crystal_identity, + # ) # def plot_peak_matches( # self, From 304e35b8688c45c16bc4edf02aff81f59b3ab3d9 Mon Sep 17 00:00:00 2001 From: Colin Date: Wed, 10 Apr 2024 08:06:21 -0700 Subject: [PATCH 20/46] adding single phase method --- py4DSTEM/process/diffraction/crystal_phase.py | 341 ++++++++++-------- 1 file changed, 200 insertions(+), 141 deletions(-) diff --git a/py4DSTEM/process/diffraction/crystal_phase.py b/py4DSTEM/process/diffraction/crystal_phase.py index 508a01c79..bc5f10721 100644 --- a/py4DSTEM/process/diffraction/crystal_phase.py +++ b/py4DSTEM/process/diffraction/crystal_phase.py @@ -78,20 +78,22 @@ def quantify_single_pattern( pointlistarray: PointListArray, xy_position = (0,0), corr_kernel_size = 0.04, + sigma_excitation_error = 0.02, + power_experiment = 0.25, + power_calculated = 0.25, + max_number_patterns = 3, + single_phase = False, allow_strain = True, - # corr_distance_scale = 1.0, + strain_iterations = 5, + strain_max = 0.02, include_false_positives = True, weight_false_positives = 1.0, - max_number_phases = 1, - sigma_excitation_error = 0.04, - power_experiment = 0.25, - power_calculated = 0.25, plot_result = True, plot_only_nonzero_phases = True, plot_unmatched_peaks = False, plot_correlation_radius = False, scale_markers_experiment = 40, - scale_markers_calculated = 500, + scale_markers_calculated = 200, crystal_inds_plot = None, phase_colors = None, figsize = (10,7), @@ -161,6 +163,8 @@ def quantify_single_pattern( basis = np.zeros((intensity.shape[0], self.num_fits)) if allow_strain: m_strains = np.zeros((self.num_fits,2,2)) + m_strains[:,0,0] = 1.0 + m_strains[:,1,1] = 1.0 # kernel radius squared radius_max_2 = corr_kernel_size**2 @@ -202,56 +206,71 @@ def quantify_single_pattern( matches = np.zeros((bragg_peaks_fit.data.shape[0]),dtype='bool') if allow_strain: - # Initial peak pairing to find best-fit strain distortion - pair_sub = np.zeros(bragg_peaks_fit.data.shape[0],dtype='bool') - pair_inds = np.zeros(bragg_peaks_fit.data.shape[0],dtype='int') - for a1 in range(bragg_peaks_fit.data.shape[0]): - dist2 = (bragg_peaks_fit.data['qx'][a1] - qx)**2 \ - + (bragg_peaks_fit.data['qy'][a1] - qy)**2 - ind_min = np.argmin(dist2) - val_min = dist2[ind_min] - - if val_min < radius_max_2: - pair_sub[a1] = True - pair_inds[a1] = ind_min - - # calculate best-fit strain tensor, weighted by the intensities. - # requires at least 4 peak pairs - if np.sum(pair_sub) >= 4: - pair_basis = np.vstack(( - qx[pair_inds[pair_sub]], - qy[pair_inds[pair_sub]], - )).T - pair_obs = np.vstack(( - bragg_peaks_fit.data['qx'][pair_sub], - bragg_peaks_fit.data['qy'][pair_sub], - )).T - - # weights - dists = np.sqrt( - (bragg_peaks_fit.data['qx'][pair_sub] - qx[pair_inds[pair_sub]])**2 + \ - (bragg_peaks_fit.data['qx'][pair_sub] - qx[pair_inds[pair_sub]])**2) - weights = np.sqrt( - int_fit[pair_sub] * intensity[pair_inds[pair_sub]] - ) * (1 - dists / corr_kernel_size) - - # wtrain tensor - m_strain = np.linalg.lstsq( - pair_basis * weights[:,None], - pair_obs * weights[:,None], - rcond = None, - )[0] - m_strains[a0] = m_strain - - # Transformed peak positions - qx_copy = qx.copy() - qy_copy = qy.copy() - qx = qx_copy*m_strain[0,0] + qy_copy*m_strain[1,0] - qy = qx_copy*m_strain[0,1] + qy_copy*m_strain[1,1] - - # dist = np.mean(np.sqrt((bragg_peaks_fit.data['qx'][pair_sub] - qx[pair_inds[pair_sub]])**2 + \ - # (bragg_peaks_fit.data['qx'][pair_sub] - qx[pair_inds[pair_sub]])**2)) - # print(np.round(dist,4)) + for a1 in range(strain_iterations): + # Initial peak pairing to find best-fit strain distortion + pair_sub = np.zeros(bragg_peaks_fit.data.shape[0],dtype='bool') + pair_inds = np.zeros(bragg_peaks_fit.data.shape[0],dtype='int') + for a1 in range(bragg_peaks_fit.data.shape[0]): + dist2 = (bragg_peaks_fit.data['qx'][a1] - qx)**2 \ + + (bragg_peaks_fit.data['qy'][a1] - qy)**2 + ind_min = np.argmin(dist2) + val_min = dist2[ind_min] + + if val_min < radius_max_2: + pair_sub[a1] = True + pair_inds[a1] = ind_min + + # calculate best-fit strain tensor, weighted by the intensities. + # requires at least 4 peak pairs + if np.sum(pair_sub) >= 4: + # pair_obs = bragg_peaks_fit.data[['qx','qy']][pair_sub] + pair_basis = np.vstack(( + bragg_peaks_fit.data['qx'][pair_sub], + bragg_peaks_fit.data['qy'][pair_sub], + )).T + pair_obs = np.vstack(( + qx[pair_inds[pair_sub]], + qy[pair_inds[pair_sub]], + )).T + + # weights + dists = np.sqrt( + (bragg_peaks_fit.data['qx'][pair_sub] - qx[pair_inds[pair_sub]])**2 + \ + (bragg_peaks_fit.data['qx'][pair_sub] - qx[pair_inds[pair_sub]])**2) + weights = np.sqrt( + int_fit[pair_sub] * intensity[pair_inds[pair_sub]] + ) * (1 - dists / corr_kernel_size) + # weights = 1 - dists / corr_kernel_size + + # strain tensor + m_strain = np.linalg.lstsq( + pair_basis * weights[:,None], + pair_obs * weights[:,None], + rcond = None, + )[0] + + # Clamp strains to be within the user-specified limit + m_strain = np.clip( + m_strain, + np.eye(2) - strain_max, + np.eye(2) + strain_max, + ) + m_strains[a0] *= m_strain + + # Transformed peak positions + qx_copy = bragg_peaks_fit.data['qx'] + qy_copy = bragg_peaks_fit.data['qy'] + bragg_peaks_fit.data['qx'] = qx_copy*m_strain[0,0] + qy_copy*m_strain[1,0] + bragg_peaks_fit.data['qy'] = qx_copy*m_strain[0,1] + qy_copy*m_strain[1,1] + + # qx_copy = qx.copy() + # qy_copy = qy.copy() + # qx = qx_copy*m_strain[0,0] + qy_copy*m_strain[1,0] + # qy = qx_copy*m_strain[0,1] + qy_copy*m_strain[1,1] + + # dist = np.mean(np.sqrt((bragg_peaks_fit.data['qx'][pair_sub] - qx[pair_inds[pair_sub]])**2 + \ + # (bragg_peaks_fit.data['qx'][pair_sub] - qx[pair_inds[pair_sub]])**2)) + # print(np.round(dist,4)) # Loop over all peaks, pair experiment to library for a1 in range(bragg_peaks_fit.data.shape[0]): @@ -289,25 +308,53 @@ def quantify_single_pattern( else: obs = intensity - # Solve for phase coefficients + # Solve for phase weight coefficients try: phase_weights = np.zeros(self.num_fits) - inds_solve = np.ones(self.num_fits,dtype='bool') - search = True - while search is True: - phase_weights_cand, phase_residual_cand = nnls( - basis[:,inds_solve], - obs, + if single_phase: + # loop through each crystal structure and determine the best fit structure, + # which can contain multiple orienations. + crystal_res = np.zeros(self.num_crystals) + + for a0 in range(self.num_crystals): + sub = self.crystal_identity[:,0] == a0 + + phase_weights_cand, phase_residual_cand = nnls( + basis[:,sub], + obs, + ) + phase_weights[sub] = phase_weights_cand + crystal_res[a0] = phase_residual_cand + + ind_best_fit = np.argmin(crystal_res) + phase_residual = crystal_res[ind_best_fit] + sub = np.logical_not( + self.crystal_identity[:,0] == ind_best_fit ) + phase_weights[sub] = 0.0 - if np.count_nonzero(phase_weights_cand > 0.0) <= max_number_phases: - phase_weights[inds_solve] = phase_weights_cand - phase_residual = phase_residual_cand - search = False - else: - inds = np.where(inds_solve)[0] - inds_solve[inds[np.argmin(phase_weights_cand)]] = False + # Estimate reliability as difference between best fit and 2nd best fit + crystal_res = np.sort(crystal_res) + phase_reliability = crystal_res[1] - crystal_res[0] + + else: + # Allow all crystals and orientation matches in the pattern + inds_solve = np.ones(self.num_fits,dtype='bool') + search = True + while search is True: + phase_weights_cand, phase_residual_cand = nnls( + basis[:,inds_solve], + obs, + ) + + if np.count_nonzero(phase_weights_cand > 0.0) <= max_number_patterns: + phase_weights[inds_solve] = phase_weights_cand + phase_residual = phase_residual_cand + search = False + else: + inds = np.where(inds_solve)[0] + inds_solve[inds[np.argmin(phase_weights_cand)]] = False except: phase_weights = np.zeros(self.num_fits) @@ -322,7 +369,7 @@ def quantify_single_pattern( c = self.crystal_identity[a0,0] m = self.crystal_identity[a0,1] line = '{:>12} {:>8} {:<12}'.format( - np.round(phase_weights[a0],decimals=2), + f'{phase_weights[a0]:.2f}', m, self.crystal_names[c] ) @@ -330,7 +377,17 @@ def quantify_single_pattern( print('\033[1m' + line + '\033[0m') else: print(line) - # print() + print('----------------------------') + line = '{:>12} {:>15}'.format( + f'{sum(phase_weights):.2f}', + 'fit total' + ) + print('\033[1m' + line + '\033[0m') + line = '{:>12} {:>15}'.format( + f'{phase_residual:.2f}', + 'fit residual' + ) + print(line) # Plotting if plot_result: @@ -380,7 +437,7 @@ def quantify_single_pattern( "family": "sans-serif", "fontweight": "normal", "color": "k", - "size": 14, + "size": 12, } if plot_correlation_radius: ax_leg.plot( @@ -422,6 +479,7 @@ def quantify_single_pattern( # )) mvals = ['v','^','<','>','d','s',] + count_leg = 0 for a0 in range(self.num_fits): c = self.crystal_identity[a0,0] m = self.crystal_identity[a0,1] @@ -431,83 +489,84 @@ def quantify_single_pattern( qx_fit = library_peaks[a0].data['qx'] qy_fit = library_peaks[a0].data['qy'] - # if allow_strain: - # m_strain = m_strains[a0] - # # Transformed peak positions - # qx_copy = qx_fit.copy() - # qy_copy = qy_fit.copy() - # qx_fit = qx_copy*m_strain[0,0] + qy_copy*m_strain[1,0] - # qy_fit = qx_copy*m_strain[0,1] + qy_copy*m_strain[1,1] + if allow_strain: + m_strain = m_strains[a0] + # Transformed peak positions + qx_copy = qx_fit.copy() + qy_copy = qy_fit.copy() + qx_fit = qx_copy*m_strain[0,0] + qy_copy*m_strain[1,0] + qy_fit = qx_copy*m_strain[0,1] + qy_copy*m_strain[1,1] int_fit = library_int[a0] matches_fit = library_matches[a0] if plot_only_nonzero_phases is False or phase_weights[a0] > 0: - if np.mod(m,2) == 0: + # if np.mod(m,2) == 0: + ax.scatter( + qy_fit[matches_fit], + qx_fit[matches_fit], + s = scale_markers_calculated * int_fit[matches_fit], + marker = mvals[c], + facecolor = phase_colors[c,:], + ) + if plot_unmatched_peaks: ax.scatter( - qy_fit[matches_fit], - qx_fit[matches_fit], - s = scale_markers_calculated * int_fit[matches_fit], + qy_fit[np.logical_not(matches_fit)], + qx_fit[np.logical_not(matches_fit)], + s = scale_markers_calculated * int_fit[np.logical_not(matches_fit)], marker = mvals[c], facecolor = phase_colors[c,:], ) - if plot_unmatched_peaks: - ax.scatter( - qy_fit[np.logical_not(matches_fit)], - qx_fit[np.logical_not(matches_fit)], - s = scale_markers_calculated * int_fit[np.logical_not(matches_fit)], - marker = mvals[c], - facecolor = phase_colors[c,:], - ) - - # legend - ax_leg.scatter( - 0, - dx_leg*(a0+1), - s = 200, - marker = mvals[c], - facecolor = phase_colors[c,:], - ) - else: - ax.scatter( - qy_fit[matches_fit], - qx_fit[matches_fit], - s = scale_markers_calculated * int_fit[matches_fit], - marker = mvals[c], - edgecolors = uvals[c,:], - facecolors = (uvals[c,0],uvals[c,1],uvals[c,2],0.3), - # facecolors = (1,1,1,0.5), - linewidth = 2, - ) - if plot_unmatched_peaks: - ax.scatter( - qy_fit[np.logical_not(matches_fit)], - qx_fit[np.logical_not(matches_fit)], - s = scale_markers_calculated * int_fit[np.logical_not(matches_fit)], - marker = mvals[c], - edgecolors = uvals[c,:], - facecolors = (1,1,1,0.5), - linewidth = 2, - ) - - # legend - ax_leg.scatter( - 0, - dx_leg*(a0+1), - s = 200, - marker = mvals[c], - edgecolors = uvals[c,:], - facecolors = (uvals[c,0],uvals[c,1],uvals[c,2],0.3), - # facecolors = (1,1,1,0.5), - ) - # legend text - ax_leg.text( - dy_leg, - (a0+1)*dx_leg, - self.crystal_names[c], - **text_params) + # legend + if m == 0: + ax_leg.text( + dy_leg, + (count_leg+1)*dx_leg, + self.crystal_names[c], + **text_params) + ax_leg.scatter( + 0, + (count_leg+1) * dx_leg, + s = 200, + marker = mvals[c], + facecolor = phase_colors[c,:], + ) + count_leg += 1 + # else: + # ax.scatter( + # qy_fit[matches_fit], + # qx_fit[matches_fit], + # s = scale_markers_calculated * int_fit[matches_fit], + # marker = mvals[c], + # edgecolors = uvals[c,:], + # facecolors = (uvals[c,0],uvals[c,1],uvals[c,2],0.3), + # # facecolors = (1,1,1,0.5), + # linewidth = 2, + # ) + # if plot_unmatched_peaks: + # ax.scatter( + # qy_fit[np.logical_not(matches_fit)], + # qx_fit[np.logical_not(matches_fit)], + # s = scale_markers_calculated * int_fit[np.logical_not(matches_fit)], + # marker = mvals[c], + # edgecolors = uvals[c,:], + # facecolors = (1,1,1,0.5), + # linewidth = 2, + # ) + + # # legend + # ax_leg.scatter( + # 0, + # dx_leg*(a0+1), + # s = 200, + # marker = mvals[c], + # edgecolors = uvals[c,:], + # facecolors = (uvals[c,0],uvals[c,1],uvals[c,2],0.3), + # # facecolors = (1,1,1,0.5), + # ) + # appearance @@ -531,7 +590,7 @@ def quantify_phase( allow_strain = True, include_false_positives = True, weight_false_positives = 1.0, - max_number_phases = 2, + max_number_patterns = 2, sigma_excitation_error = 0.02, power_experiment = 0.25, power_calculated = 0.25, @@ -571,7 +630,7 @@ def quantify_phase( # corr_distance_scale = corr_distance_scale, include_false_positives = include_false_positives, weight_false_positives = weight_false_positives, - max_number_phases = max_number_phases, + max_number_patterns = max_number_patterns, sigma_excitation_error = sigma_excitation_error, power_experiment = power_experiment, power_calculated = power_calculated, From 909b84f4140ca6c0f543df9e93fc5be2e0528dfc Mon Sep 17 00:00:00 2001 From: Colin Date: Wed, 10 Apr 2024 08:32:47 -0700 Subject: [PATCH 21/46] updating plotting function --- py4DSTEM/process/diffraction/crystal_phase.py | 130 +++++++++--------- 1 file changed, 68 insertions(+), 62 deletions(-) diff --git a/py4DSTEM/process/diffraction/crystal_phase.py b/py4DSTEM/process/diffraction/crystal_phase.py index bc5f10721..b997fb9d1 100644 --- a/py4DSTEM/process/diffraction/crystal_phase.py +++ b/py4DSTEM/process/diffraction/crystal_phase.py @@ -263,15 +263,6 @@ def quantify_single_pattern( bragg_peaks_fit.data['qx'] = qx_copy*m_strain[0,0] + qy_copy*m_strain[1,0] bragg_peaks_fit.data['qy'] = qx_copy*m_strain[0,1] + qy_copy*m_strain[1,1] - # qx_copy = qx.copy() - # qy_copy = qy.copy() - # qx = qx_copy*m_strain[0,0] + qy_copy*m_strain[1,0] - # qy = qx_copy*m_strain[0,1] + qy_copy*m_strain[1,1] - - # dist = np.mean(np.sqrt((bragg_peaks_fit.data['qx'][pair_sub] - qx[pair_inds[pair_sub]])**2 + \ - # (bragg_peaks_fit.data['qx'][pair_sub] - qx[pair_inds[pair_sub]])**2)) - # print(np.round(dist,4)) - # Loop over all peaks, pair experiment to library for a1 in range(bragg_peaks_fit.data.shape[0]): dist2 = (bragg_peaks_fit.data['qx'][a1] - qx)**2 \ @@ -356,9 +347,33 @@ def quantify_single_pattern( inds = np.where(inds_solve)[0] inds_solve[inds[np.argmin(phase_weights_cand)]] = False + # Estimate the phase reliability + inds_solve = np.ones(self.num_fits,dtype='bool') + inds_solve[phase_weights > 1e-8] = False + search = True + while search is True: + phase_weights_cand, phase_residual_cand = nnls( + basis[:,inds_solve], + obs, + ) + if np.count_nonzero(phase_weights_cand > 0.0) <= max_number_patterns: + phase_residual_2nd = phase_residual_cand + search = False + else: + inds = np.where(inds_solve)[0] + inds_solve[inds[np.argmin(phase_weights_cand)]] = False + + # print(inds_solve) + # phase_weights_cand, phase_residual_cand = nnls( + # basis[:,inds_solve], + # obs, + # ) + phase_reliability = phase_residual_2nd - phase_residual + except: phase_weights = np.zeros(self.num_fits) phase_residual = np.sqrt(np.sum(intensity**2)) + phase_reliability = 0.0 if verbose: ind_max = np.argmax(phase_weights) @@ -578,22 +593,24 @@ def quantify_single_pattern( ax_leg.set_axis_off() if returnfig: - return phase_weights, phase_residual, int_total, fig, ax + return phase_weights, phase_residual, phase_reliability, int_total, fig, ax else: - return phase_weights, phase_residual, int_total + return phase_weights, phase_residual, phase_reliability, int_total def quantify_phase( self, pointlistarray: PointListArray, corr_kernel_size = 0.04, - # corr_distance_scale = 1.0, - allow_strain = True, - include_false_positives = True, - weight_false_positives = 1.0, - max_number_patterns = 2, sigma_excitation_error = 0.02, power_experiment = 0.25, power_calculated = 0.25, + max_number_patterns = 3, + single_phase = False, + allow_strain = True, + strain_iterations = 5, + strain_max = 0.02, + include_false_positives = True, + weight_false_positives = 1.0, progress_bar = True, ): """ @@ -610,36 +627,44 @@ def quantify_phase( pointlistarray.shape[0], pointlistarray.shape[1], )) + self.phase_reliability = np.zeros(( + pointlistarray.shape[0], + pointlistarray.shape[1], + )) self.int_total = np.zeros(( pointlistarray.shape[0], pointlistarray.shape[1], )) + self.single_phase = single_phase for rx, ry in tqdmnd( *pointlistarray.shape, - desc="Matching Orientations", + desc="Quantifying Phase", unit=" PointList", disable=not progress_bar, ): # calculate phase weights - phase_weights, phase_residual, int_peaks = self.quantify_single_pattern( + phase_weights, phase_residual, phase_reliability, int_peaks = self.quantify_single_pattern( pointlistarray = pointlistarray, xy_position = (rx,ry), corr_kernel_size = corr_kernel_size, - allow_strain = allow_strain, - # corr_distance_scale = corr_distance_scale, - include_false_positives = include_false_positives, - weight_false_positives = weight_false_positives, - max_number_patterns = max_number_patterns, sigma_excitation_error = sigma_excitation_error, power_experiment = power_experiment, power_calculated = power_calculated, + max_number_patterns = max_number_patterns, + single_phase = single_phase, + allow_strain = allow_strain, + strain_iterations = strain_iterations, + strain_max = strain_max, + include_false_positives = include_false_positives, + weight_false_positives = weight_false_positives, plot_result = False, verbose = False, returnfig = False, ) self.phase_weights[rx,ry] = phase_weights self.phase_residuals[rx,ry] = phase_residual + self.phase_reliability[rx,ry] = phase_reliability self.int_total[rx,ry] = int_peaks @@ -877,7 +902,7 @@ def plot_phase_maps( def plot_dominant_phase( self, - rel_range = (0.0,1.0), + reliability_range = (0.0,1.0), sigma = 0.0, phase_colors = None, figsize = (6,6), @@ -918,52 +943,33 @@ def plot_dominant_phase( mode = 'nearest', ) - # find highest correlation score for each crystal and match index for a0 in range(self.num_crystals): sub = phase_sig[a0] > phase_corr phase_map[sub] = a0 phase_corr[sub] = phase_sig[a0][sub] - # find the second correlation score for each crystal and match index - for a0 in range(self.num_crystals): - corr = phase_sig[a0].copy() - corr[phase_map==a0] = 0.0 - sub = corr > phase_corr_2nd - phase_corr_2nd[sub] = corr[sub] - - - - + if self.single_phase: + phase_scale = np.clip( + (self.phase_reliability - reliability_range[0]) / (reliability_range[1] - reliability_range[0]), + 0, + 1) - # for a1 in range(crystals[a0].orientation_map.corr.shape[2]): - # sub = crystals[a0].orientation_map.corr[:,:,a1] > phase_corr - # phase_map[sub] = a0 - # phase_corr[sub] = crystals[a0].orientation_map.corr[:,:,a1][sub] + else: - # # find the second correlation score for each crystal and match index - # for a0 in range(len(crystals)): - # for a1 in range(crystals[a0].orientation_map.corr.shape[2]): - # corr = crystals[a0].orientation_map.corr[:,:,a1].copy() - # corr[phase_map==a0] = 0.0 - # sub = corr > phase_corr_2nd - # phase_corr_2nd[sub] = corr[sub] - - # Estimate the reliability - phase_rel = phase_corr - phase_corr_2nd - - # # Generate a color plotting image - # c_vals = np.array([ - # [0.7,0.5,0.3], - # [1,0,0], - # [0,0.7,0], - # [0,0.7,1], - # [0,0.7,1], - # ]) - phase_scale = np.clip( - (phase_rel - rel_range[0]) / (rel_range[1] - rel_range[0]), - 0, - 1) + # find the second correlation score for each crystal and match index + for a0 in range(self.num_crystals): + corr = phase_sig[a0].copy() + corr[phase_map==a0] = 0.0 + sub = corr > phase_corr_2nd + phase_corr_2nd[sub] = corr[sub] + + # Estimate the reliability + phase_rel = phase_corr - phase_corr_2nd + phase_scale = np.clip( + (phase_rel - reliability_range[0]) / (reliability_range[1] - reliability_range[0]), + 0, + 1) phase_rgb = np.zeros((scan_shape[0],scan_shape[1],3)) From 932fe5689b24ccac60bfbd48fc77a1fcb2c9377d Mon Sep 17 00:00:00 2001 From: Colin Date: Wed, 10 Apr 2024 13:48:34 -0700 Subject: [PATCH 22/46] Adding new weights for cost function --- py4DSTEM/process/diffraction/crystal_phase.py | 73 ++++++++++++------- 1 file changed, 47 insertions(+), 26 deletions(-) diff --git a/py4DSTEM/process/diffraction/crystal_phase.py b/py4DSTEM/process/diffraction/crystal_phase.py index b997fb9d1..45219f10f 100644 --- a/py4DSTEM/process/diffraction/crystal_phase.py +++ b/py4DSTEM/process/diffraction/crystal_phase.py @@ -84,7 +84,7 @@ def quantify_single_pattern( max_number_patterns = 3, single_phase = False, allow_strain = True, - strain_iterations = 5, + strain_iterations = 3, strain_max = 0.02, include_false_positives = True, weight_false_positives = 1.0, @@ -270,17 +270,33 @@ def quantify_single_pattern( ind_min = np.argmin(dist2) val_min = dist2[ind_min] - if val_min < radius_max_2: - # weight = 1 - np.sqrt(dist2[ind_min]) / corr_kernel_size - # weight = 1 + corr_distance_scale * \ - # np.sqrt(dist2[ind_min]) / corr_kernel_size - # basis[ind_min,a0] = weight * int_fit[a1] - basis[ind_min,a0] = int_fit[a1] - if plot_result: + if include_false_positives: + weight = np.clip(1 - np.sqrt(dist2[ind_min]) / corr_kernel_size,0,1) + basis[ind_min,a0] = int_fit[a1] * weight + unpaired_peaks.append([ + a0, + int_fit[a1] * (1 - weight), + ]) + if weight > 1e-8 and plot_result: matches[a1] = True - elif include_false_positives: - # unpaired_peaks.append([a0,int_fit[a1]*(1 + corr_distance_scale)]) - unpaired_peaks.append([a0,int_fit[a1]]) + else: + if val_min < radius_max_2: + basis[ind_min,a0] = int_fit[a1] + if plot_result: + matches[a1] = True + + + # if val_min < radius_max_2: + # # weight = 1 - np.sqrt(dist2[ind_min]) / corr_kernel_size + # # weight = 1 + corr_distance_scale * \ + # # np.sqrt(dist2[ind_min]) / corr_kernel_size + # # basis[ind_min,a0] = weight * int_fit[a1] + # basis[ind_min,a0] = int_fit[a1] + # if plot_result: + # matches[a1] = True + # elif include_false_positives: + # # unpaired_peaks.append([a0,int_fit[a1]*(1 + corr_distance_scale)]) + # unpaired_peaks.append([a0,int_fit[a1]]) if plot_result: library_peaks.append(bragg_peaks_fit) @@ -347,34 +363,39 @@ def quantify_single_pattern( inds = np.where(inds_solve)[0] inds_solve[inds[np.argmin(phase_weights_cand)]] = False + # Estimate the phase reliability inds_solve = np.ones(self.num_fits,dtype='bool') inds_solve[phase_weights > 1e-8] = False - search = True - while search is True: + + if np.all(inds_solve == False): + phase_reliability = 0.0 + else: + search = True + while search is True: + phase_weights_cand, phase_residual_cand = nnls( + basis[:,inds_solve], + obs, + ) + if np.count_nonzero(phase_weights_cand > 0.0) <= max_number_patterns: + phase_residual_2nd = phase_residual_cand + search = False + else: + inds = np.where(inds_solve)[0] + inds_solve[inds[np.argmin(phase_weights_cand)]] = False + phase_weights_cand, phase_residual_cand = nnls( basis[:,inds_solve], obs, ) - if np.count_nonzero(phase_weights_cand > 0.0) <= max_number_patterns: - phase_residual_2nd = phase_residual_cand - search = False - else: - inds = np.where(inds_solve)[0] - inds_solve[inds[np.argmin(phase_weights_cand)]] = False - - # print(inds_solve) - # phase_weights_cand, phase_residual_cand = nnls( - # basis[:,inds_solve], - # obs, - # ) - phase_reliability = phase_residual_2nd - phase_residual + phase_reliability = phase_residual_2nd - phase_residual except: phase_weights = np.zeros(self.num_fits) phase_residual = np.sqrt(np.sum(intensity**2)) phase_reliability = 0.0 + if verbose: ind_max = np.argmax(phase_weights) # print() From e306c5dcad9632bbb98b2552e4f5a803a641b9d2 Mon Sep 17 00:00:00 2001 From: Colin Date: Thu, 11 Apr 2024 09:48:34 -0700 Subject: [PATCH 23/46] change to strain iteration default --- py4DSTEM/process/diffraction/crystal_phase.py | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/py4DSTEM/process/diffraction/crystal_phase.py b/py4DSTEM/process/diffraction/crystal_phase.py index 45219f10f..f6d916a95 100644 --- a/py4DSTEM/process/diffraction/crystal_phase.py +++ b/py4DSTEM/process/diffraction/crystal_phase.py @@ -628,7 +628,7 @@ def quantify_phase( max_number_patterns = 3, single_phase = False, allow_strain = True, - strain_iterations = 5, + strain_iterations = 3, strain_max = 0.02, include_false_positives = True, weight_false_positives = 1.0, From 217d71f60761bac311a28e2ce9bf8e08046b92c0 Mon Sep 17 00:00:00 2001 From: Colin Date: Sun, 28 Apr 2024 14:43:04 -0700 Subject: [PATCH 24/46] precession electron diffraction added --- py4DSTEM/process/diffraction/crystal.py | 153 ++++++++++++++++++------ 1 file changed, 115 insertions(+), 38 deletions(-) diff --git a/py4DSTEM/process/diffraction/crystal.py b/py4DSTEM/process/diffraction/crystal.py index e0fe59eee..6667e6cf5 100644 --- a/py4DSTEM/process/diffraction/crystal.py +++ b/py4DSTEM/process/diffraction/crystal.py @@ -712,39 +712,65 @@ def generate_diffraction_pattern( foil_normal_cartesian: Optional[Union[list, tuple, np.ndarray]] = None, sigma_excitation_error: float = 0.02, tol_excitation_error_mult: float = 3, - tol_intensity: float = 1e-4, + tol_intensity: float = 1e-5, k_max: Optional[float] = None, + precession_angle_degrees = None, keep_qz=False, return_orientation_matrix=False, ): """ Generate a single diffraction pattern, return all peaks as a pointlist. - Args: - orientation (Orientation): an Orientation class object - ind_orientation If input is an Orientation class object with multiple orientations, - this input can be used to select a specific orientation. - - orientation_matrix (array): (3,3) orientation matrix, where columns represent projection directions. - zone_axis_lattice (array): (3,) projection direction in lattice indices - proj_x_lattice (array): (3,) x-axis direction in lattice indices - zone_axis_cartesian (array): (3,) cartesian projection direction - proj_x_cartesian (array): (3,) cartesian projection direction - - foil_normal: 3 element foil normal - set to None to use zone_axis - proj_x_axis (np float vector): 3 element vector defining image x axis (vertical) - accel_voltage (float): Accelerating voltage in Volts. If not specified, - we check to see if crystal already has voltage specified. - sigma_excitation_error (float): sigma value for envelope applied to s_g (excitation errors) in units of inverse Angstroms - tol_excitation_error_mult (float): tolerance in units of sigma for s_g inclusion - tol_intensity (np float): tolerance in intensity units for inclusion of diffraction spots - k_max (float): Maximum scattering vector - keep_qz (bool): Flag to return out-of-plane diffraction vectors - return_orientation_matrix (bool): Return the orientation matrix + Parameters + ---------- - Returns: - bragg_peaks (PointList): list of all Bragg peaks with fields [qx, qy, intensity, h, k, l] - orientation_matrix (array): 3x3 orientation matrix (optional) + orientation (Orientation) + an Orientation class object + ind_orientation + If input is an Orientation class object with multiple orientations, + this input can be used to select a specific orientation. + + orientation_matrix (3,3) numpy.array + orientation matrix, where columns represent projection directions. + zone_axis_lattice (3,) numpy.array + projection direction in lattice indices + proj_x_lattice (3,) numpy.array + x-axis direction in lattice indices + zone_axis_cartesian (3,) numpy.array + cartesian projection direction + proj_x_cartesian (3,) numpy.array + cartesian projection direction + + foil_normal + 3 element foil normal - set to None to use zone_axis + proj_x_axis (3,) numpy.array + 3 element vector defining image x axis (vertical) + accel_voltage (float) + Accelerating voltage in Volts. If not specified, + we check to see if crystal already has voltage specified. + + sigma_excitation_error (float) + sigma value for envelope applied to s_g (excitation errors) in units of inverse Angstroms + tol_excitation_error_mult (float) + tolerance in units of sigma for s_g inclusion + tol_intensity (numpy float) + tolerance in intensity units for inclusion of diffraction spots + k_max (float) + Maximum scattering vector + precession_angle_degrees (float) + Precession angle for library calculation. Set to None for no precession. + keep_qz (bool) + Flag to return out-of-plane diffraction vectors + return_orientation_matrix (bool) + Return the orientation matrix + + Returns + ---------- + bragg_peaks (PointList) + list of all Bragg peaks with fields [qx, qy, intensity, h, k, l] + orientation_matrix (array) + 3x3 orientation matrix (optional) + """ if not (hasattr(self, "wavelength") and hasattr(self, "accel_voltage")): @@ -779,17 +805,27 @@ def generate_diffraction_pattern( # Calculate excitation errors if foil_normal is None: - sg = self.excitation_errors(g) + sg = self.excitation_errors( + g, + precession_angle_degrees = precession_angle_degrees, + ) else: foil_normal = ( orientation_matrix.T @ (-1 * foil_normal[:, None] / np.linalg.norm(foil_normal)) ).ravel() - sg = self.excitation_errors(g, foil_normal) + sg = self.excitation_errors( + g, + foil_normal = foil_normal, + precession_angle_degrees = precession_angle_degrees, + ) # Threshold for inclusion in diffraction pattern sg_max = sigma_excitation_error * tol_excitation_error_mult - keep = np.abs(sg) <= sg_max + if precession_angle_degrees is None: + keep = np.abs(sg) <= sg_max + else: + keep = np.min(np.abs(sg),axis=1) <= sg_max # Maximum scattering angle cutoff if k_max is not None: @@ -799,9 +835,17 @@ def generate_diffraction_pattern( g_diff = g[:, keep] # Diffracted peak intensities and labels - g_int = self.struct_factors_int[keep] * np.exp( - (sg[keep] ** 2) / (-2 * sigma_excitation_error**2) - ) + if precession_angle_degrees is None: + g_int = self.struct_factors_int[keep] * np.exp( + (sg[keep] ** 2) / (-2 * sigma_excitation_error**2) + ) + else: + g_int = self.struct_factors_int[keep] * np.mean( + np.exp( + (sg[keep] ** 2) / (-2 * sigma_excitation_error**2) + ), + axis = 1, + ) hkl = self.hkl[:, keep] # Intensity tolerance @@ -1323,21 +1367,54 @@ def excitation_errors( self, g, foil_normal=None, + precession_angle_degrees=None, + precession_steps=180, ): """ Calculate the excitation errors, assuming k0 = [0, 0, -1/lambda]. If foil normal is not specified, we assume it is [0,0,-1]. + + Precession is currently implemented using numerical integration. """ - if foil_normal is None: - return (2 * g[2, :] - self.wavelength * np.sum(g * g, axis=0)) / ( - 2 - 2 * self.wavelength * g[2, :] - ) + + if precession_angle_degrees is None: + if foil_normal is None: + return (2 * g[2, :] - self.wavelength * np.sum(g * g, axis=0)) / ( + 2 - 2 * self.wavelength * g[2, :] + ) + else: + return (2 * g[2, :] - self.wavelength * np.sum(g * g, axis=0)) / ( + 2 * self.wavelength * np.sum(g * foil_normal[:, None], axis=0) + - 2 * foil_normal[2] + ) + else: - return (2 * g[2, :] - self.wavelength * np.sum(g * g, axis=0)) / ( - 2 * self.wavelength * np.sum(g * foil_normal[:, None], axis=0) - - 2 * foil_normal[2] + t = np.deg2rad(precession_angle_degrees) + p = np.linspace( + 0, + 2.0*np.pi, + precession_steps, + endpoint = False, + ) + if foil_normal is None: + foil_normal = np.array((0.0,0.0,-1.0)) + + k = np.reshape( + (-1/self.wavelength) * np.vstack(( + np.sin(t)*np.cos(p), + np.sin(t)*np.sin(p), + np.cos(t)*np.ones(p.size), + )), + (3,1,p.size), ) + term1 = np.sum( (g[:,:,None] + k) * foil_normal[:,None,None], axis=0) + term2 = np.sum( (g[:,:,None] + 2*k) * g[:,:,None], axis=0) + sg = np.sqrt(term1**2 - term2) - term1 + + return sg + + def calculate_bragg_peak_histogram( self, bragg_peaks, From 264deba5e5c9f52554962539c6d5108b207b807a Mon Sep 17 00:00:00 2001 From: Colin Date: Sun, 28 Apr 2024 14:55:52 -0700 Subject: [PATCH 25/46] New default values for diffraction sigma and intensity threshold --- py4DSTEM/process/diffraction/crystal.py | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/py4DSTEM/process/diffraction/crystal.py b/py4DSTEM/process/diffraction/crystal.py index 6667e6cf5..9694111c9 100644 --- a/py4DSTEM/process/diffraction/crystal.py +++ b/py4DSTEM/process/diffraction/crystal.py @@ -710,7 +710,7 @@ def generate_diffraction_pattern( zone_axis_cartesian: Optional[np.ndarray] = None, proj_x_cartesian: Optional[np.ndarray] = None, foil_normal_cartesian: Optional[Union[list, tuple, np.ndarray]] = None, - sigma_excitation_error: float = 0.02, + sigma_excitation_error: float = 0.01, tol_excitation_error_mult: float = 3, tol_intensity: float = 1e-5, k_max: Optional[float] = None, From ba5e0a215c3c5fb59c01729b4352f72fa71a24e1 Mon Sep 17 00:00:00 2001 From: Colin Date: Sun, 28 Apr 2024 15:07:15 -0700 Subject: [PATCH 26/46] Adding precession to orientation plans, update docstring --- py4DSTEM/process/diffraction/crystal_ACOM.py | 101 ++++++++++++------- 1 file changed, 67 insertions(+), 34 deletions(-) diff --git a/py4DSTEM/process/diffraction/crystal_ACOM.py b/py4DSTEM/process/diffraction/crystal_ACOM.py index fc6e691c3..f81ad53cc 100644 --- a/py4DSTEM/process/diffraction/crystal_ACOM.py +++ b/py4DSTEM/process/diffraction/crystal_ACOM.py @@ -29,6 +29,7 @@ def orientation_plan( corr_kernel_size: float = 0.08, radial_power: float = 1.0, intensity_power: float = 0.25, # New default intensity power scaling + precession_angle_degrees = None, calculate_correlation_array=True, tol_peak_delete=None, tol_distance: float = 0.01, @@ -41,39 +42,60 @@ def orientation_plan( """ Calculate the rotation basis arrays for an SO(3) rotation correlogram. - Args: - zone_axis_range (float): Row vectors give the range for zone axis orientations. - If user specifies 2 vectors (2x3 array), we start at [0,0,1] - to make z-x-z rotation work. - If user specifies 3 vectors (3x3 array), plan will span these vectors. - Setting to 'full' as a string will use a hemispherical range. - Setting to 'half' as a string will use a quarter sphere range. - Setting to 'fiber' as a string will make a spherical cap around a given vector. - Setting to 'auto' will use pymatgen to determine the point group symmetry - of the structure and choose an appropriate zone_axis_range - angle_step_zone_axis (float): Approximate angular step size for zone axis search [degrees] - angle_coarse_zone_axis (float): Coarse step size for zone axis search [degrees]. Setting to - None uses the same value as angle_step_zone_axis. - angle_refine_range (float): Range of angles to use for zone axis refinement. Setting to - None uses same value as angle_coarse_zone_axis. - - angle_step_in_plane (float): Approximate angular step size for in-plane rotation [degrees] - accel_voltage (float): Accelerating voltage for electrons [Volts] - corr_kernel_size (float): Correlation kernel size length. The size of the overlap kernel between the measured Bragg peaks and diffraction library Bragg peaks. [1/Angstroms] - radial_power (float): Power for scaling the correlation intensity as a function of the peak radius - intensity_power (float): Power for scaling the correlation intensity as a function of the peak intensity - calculate_correlation_array (bool): Set to false to skip calculating the correlation array. - This is useful when we only want the angular range / rotation matrices. - tol_peak_delete (float): Distance to delete peaks for multiple matches. - Default is kernel_size * 0.5 - tol_distance (float): Distance tolerance for radial shell assignment [1/Angstroms] - fiber_axis (float): (3,) vector specifying the fiber axis - fiber_angles (float): (2,) vector specifying angle range from fiber axis, and in-plane angular range [degrees] - cartesian_directions (bool): When set to true, all zone axes and projection directions - are specified in Cartesian directions. - figsize (float): (2,) vector giving the figure size - CUDA (bool): Use CUDA for the Fourier operations. - progress_bar (bool): If false no progress bar is displayed + Parameters + ---------- + zone_axis_range (float): + Row vectors give the range for zone axis orientations. + If user specifies 2 vectors (2x3 array), we start at [0,0,1] + to make z-x-z rotation work. + If user specifies 3 vectors (3x3 array), plan will span these vectors. + Setting to 'full' as a string will use a hemispherical range. + Setting to 'half' as a string will use a quarter sphere range. + Setting to 'fiber' as a string will make a spherical cap around a given vector. + Setting to 'auto' will use pymatgen to determine the point group symmetry + of the structure and choose an appropriate zone_axis_range + angle_step_zone_axis (float): + Approximate angular step size for zone axis search [degrees] + angle_coarse_zone_axis (float): + Coarse step size for zone axis search [degrees]. Setting to + None uses the same value as angle_step_zone_axis. + angle_refine_range (float): + Range of angles to use for zone axis refinement. Setting to + None uses same value as angle_coarse_zone_axis. + + angle_step_in_plane (float): + Approximate angular step size for in-plane rotation [degrees] + accel_voltage (float): + Accelerating voltage for electrons [Volts] + corr_kernel_size (float): + Correlation kernel size length. The size of the overlap kernel between the measured Bragg peaks and diffraction library Bragg peaks. [1/Angstroms] + radial_power (float): + Power for scaling the correlation intensity as a function of the peak radius + intensity_power (float): + Power for scaling the correlation intensity as a function of the peak intensity + precession_angle_degrees (float) + Tilt angle of illuminaiton cone in degrees for precession electron diffraction (PED). + calculate_correlation_array (bool): + Set to false to skip calculating the correlation array. + This is useful when we only want the angular range / rotation matrices. + tol_peak_delete (float): + Distance to delete peaks for multiple matches. + Default is kernel_size * 0.5 + tol_distance (float): + Distance tolerance for radial shell assignment [1/Angstroms] + fiber_axis (float): + (3,) vector specifying the fiber axis + fiber_angles (float): + (2,) vector specifying angle range from fiber axis, and in-plane angular range [degrees] + cartesian_directions (bool): + When set to true, all zone axes and projection directions + are specified in Cartesian directions. + figsize (float): + (2,) vector giving the figure size + CUDA (bool): + Use CUDA for the Fourier operations. + progress_bar (bool): + If false no progress bar is displayed, """ # Check to make sure user has calculated the structure factors if needed @@ -717,7 +739,18 @@ def orientation_plan( ): # reciprocal lattice spots and excitation errors g = self.orientation_rotation_matrices[a0, :, :].T @ self.g_vec_all - sg = self.excitation_errors(g) + if precession_angle_degrees is None: + sg = self.excitation_errors(g) + else: + sg = np.min( + np.abs( + self.excitation_errors( + g, + precession_angle_degrees = precession_angle_degrees, + ), + ), + axis = 1, + ) # Keep only points that will contribute to this orientation plan slice keep = np.abs(sg) < self.orientation_kernel_size From 3ee1adf8d6fa0b039221e1b1516f9f31ca7525fb Mon Sep 17 00:00:00 2001 From: Colin Date: Mon, 6 May 2024 14:04:35 -0700 Subject: [PATCH 27/46] adding precession to orientation plans --- py4DSTEM/process/diffraction/crystal_ACOM.py | 50 +++++++++++++------- 1 file changed, 33 insertions(+), 17 deletions(-) diff --git a/py4DSTEM/process/diffraction/crystal_ACOM.py b/py4DSTEM/process/diffraction/crystal_ACOM.py index f81ad53cc..f7406b590 100644 --- a/py4DSTEM/process/diffraction/crystal_ACOM.py +++ b/py4DSTEM/process/diffraction/crystal_ACOM.py @@ -27,9 +27,10 @@ def orientation_plan( angle_step_in_plane: float = 2.0, accel_voltage: float = 300e3, corr_kernel_size: float = 0.08, + sigma_excitation_error: float = 0.01, + precession_angle_degrees = None, radial_power: float = 1.0, intensity_power: float = 0.25, # New default intensity power scaling - precession_angle_degrees = None, calculate_correlation_array=True, tol_peak_delete=None, tol_distance: float = 0.01, @@ -68,13 +69,17 @@ def orientation_plan( accel_voltage (float): Accelerating voltage for electrons [Volts] corr_kernel_size (float): - Correlation kernel size length. The size of the overlap kernel between the measured Bragg peaks and diffraction library Bragg peaks. [1/Angstroms] + Correlation kernel size length. The size of the overlap kernel between the + measured Bragg peaks and diffraction library Bragg peaks. [1/Angstroms] + sigma_excitation_error (float): + The out of plane excitation error tolerance. [1/Angstroms] + precession_angle_degrees (float) + Tilt angle of illuminaiton cone in degrees for precession electron diffraction (PED). + radial_power (float): Power for scaling the correlation intensity as a function of the peak radius intensity_power (float): Power for scaling the correlation intensity as a function of the peak intensity - precession_angle_degrees (float) - Tilt angle of illuminaiton cone in degrees for precession electron diffraction (PED). calculate_correlation_array (bool): Set to false to skip calculating the correlation array. This is useful when we only want the angular range / rotation matrices. @@ -108,6 +113,7 @@ def orientation_plan( # Store inputs self.accel_voltage = np.asarray(accel_voltage) self.orientation_kernel_size = np.asarray(corr_kernel_size) + self.orientation_precession_angle_degrees = np.asarray(precession_angle_degrees) if tol_peak_delete is None: self.orientation_tol_peak_delete = self.orientation_kernel_size * 0.5 else: @@ -739,25 +745,35 @@ def orientation_plan( ): # reciprocal lattice spots and excitation errors g = self.orientation_rotation_matrices[a0, :, :].T @ self.g_vec_all - if precession_angle_degrees is None: - sg = self.excitation_errors(g) - else: - sg = np.min( - np.abs( - self.excitation_errors( - g, - precession_angle_degrees = precession_angle_degrees, - ), - ), - axis = 1, - ) + # if precession_angle_degrees is None: + sg = self.excitation_errors(g) + # else: + # sg = np.min( + # np.abs( + # self.excitation_errors( + # g, + # precession_angle_degrees = precession_angle_degrees, + # ), + # ), + # axis = 1, + # ) # Keep only points that will contribute to this orientation plan slice - keep = np.abs(sg) < self.orientation_kernel_size + keep = np.logical_and( + np.abs(sg) < self.orientation_kernel_size, + self.orientation_shell_index >= 0, + ) # in-plane rotation angle phi = np.arctan2(g[1, :], g[0, :]) + # calculate intensity of spots + # if precession_angle_degrees is None: + # Ig = np.exp(sg**2/(-2*sigma_excitation_error**2)) + # else: + # pass + + # Loop over all peaks for a1 in np.arange(self.g_vec_all.shape[1]): ind_radial = self.orientation_shell_index[a1] From 19058a5b4cd1664352cf72ad82f4d3d2f18fc6eb Mon Sep 17 00:00:00 2001 From: Colin Date: Mon, 6 May 2024 16:29:02 -0700 Subject: [PATCH 28/46] precession added to orientation plans! --- py4DSTEM/process/diffraction/crystal_ACOM.py | 104 ++++++++++++------- py4DSTEM/process/diffraction/crystal_viz.py | 1 + 2 files changed, 66 insertions(+), 39 deletions(-) diff --git a/py4DSTEM/process/diffraction/crystal_ACOM.py b/py4DSTEM/process/diffraction/crystal_ACOM.py index f7406b590..960461669 100644 --- a/py4DSTEM/process/diffraction/crystal_ACOM.py +++ b/py4DSTEM/process/diffraction/crystal_ACOM.py @@ -113,7 +113,11 @@ def orientation_plan( # Store inputs self.accel_voltage = np.asarray(accel_voltage) self.orientation_kernel_size = np.asarray(corr_kernel_size) - self.orientation_precession_angle_degrees = np.asarray(precession_angle_degrees) + if precession_angle_degrees is None: + self.orientation_precession_angle_degrees = None + else: + self.orientation_precession_angle_degrees = np.asarray(precession_angle_degrees) + self.orientation_precession_angle = np.deg2rad(np.asarray(precession_angle_degrees)) if tol_peak_delete is None: self.orientation_tol_peak_delete = self.orientation_kernel_size * 0.5 else: @@ -764,45 +768,67 @@ def orientation_plan( self.orientation_shell_index >= 0, ) - # in-plane rotation angle - phi = np.arctan2(g[1, :], g[0, :]) - # calculate intensity of spots - # if precession_angle_degrees is None: - # Ig = np.exp(sg**2/(-2*sigma_excitation_error**2)) - # else: - # pass - - - # Loop over all peaks - for a1 in np.arange(self.g_vec_all.shape[1]): - ind_radial = self.orientation_shell_index[a1] - - if keep[a1] and ind_radial >= 0: - # 2D orientation plan - self.orientation_ref[a0, ind_radial, :] += ( - np.power(self.orientation_shell_radii[ind_radial], radial_power) - * np.power(self.struct_factors_int[a1], intensity_power) - * np.maximum( - 1 - - np.sqrt( - sg[a1] ** 2 - + ( - ( - np.mod( - self.orientation_gamma - phi[a1] + np.pi, - 2 * np.pi, - ) - - np.pi - ) - * self.orientation_shell_radii[ind_radial] - ) - ** 2 - ) - / self.orientation_kernel_size, - 0, - ) - ) + if precession_angle_degrees is None: + Ig = np.exp(sg[keep]**2/(-2*sigma_excitation_error**2)) + else: + # precession extension + prec = np.cos(np.linspace(0,2*np.pi,90,endpoint=False)) + dsg = np.tan(self.orientation_precession_angle) * np.sum(g[:2,keep]**2,axis=0) + Ig = np.mean(np.exp((sg[keep,None] + dsg[:,None]*prec[None,:])**2 \ + / (-2*sigma_excitation_error**2)), axis = 1) + + # in-plane rotation angle + phi = np.arctan2(g[1, keep], g[0, keep]) + phi_ind = phi / self.orientation_gamma[1] # step size of annular bins + phi_floor = np.floor(phi_ind).astype('int') + dphi = phi_ind - phi_floor + + # write intensities into orientation plan slice + radial_inds = self.orientation_shell_index[keep] + self.orientation_ref[a0, radial_inds, phi_floor] += \ + (1-dphi) * \ + np.power(self.struct_factors_int[keep] * Ig, intensity_power) * \ + np.power(self.orientation_shell_radii[radial_inds], radial_power) + self.orientation_ref[a0, radial_inds, np.mod(phi_floor+1,self.orientation_in_plane_steps)] += \ + dphi * \ + np.power(self.struct_factors_int[keep] * Ig, intensity_power) * \ + np.power(self.orientation_shell_radii[radial_inds], radial_power) + + + # # Loop over all peaks + # for a1 in np.arange(self.g_vec_all.shape[1]): + # if keep[a1]: + + + # for a1 in np.arange(self.g_vec_all.shape[1]): + # ind_radial = self.orientation_shell_index[a1] + + # if keep[a1] and ind_radial >= 0: + # # 2D orientation plan + # self.orientation_ref[a0, ind_radial, :] += ( + # np.power(self.orientation_shell_radii[ind_radial], radial_power) + # * np.power(self.struct_factors_int[a1], intensity_power) + # * np.maximum( + # 1 + # - np.sqrt( + # sg[a1] ** 2 + # + ( + # ( + # np.mod( + # self.orientation_gamma - phi[a1] + np.pi, + # 2 * np.pi, + # ) + # - np.pi + # ) + # * self.orientation_shell_radii[ind_radial] + # ) + # ** 2 + # ) + # / self.orientation_kernel_size, + # 0, + # ) + # ) orientation_ref_norm = np.sqrt(np.sum(self.orientation_ref[a0, :, :] ** 2)) if orientation_ref_norm > 0: diff --git a/py4DSTEM/process/diffraction/crystal_viz.py b/py4DSTEM/process/diffraction/crystal_viz.py index 47df2e6ca..fdb313cbb 100644 --- a/py4DSTEM/process/diffraction/crystal_viz.py +++ b/py4DSTEM/process/diffraction/crystal_viz.py @@ -848,6 +848,7 @@ def plot_orientation_plan( bragg_peaks = self.generate_diffraction_pattern( orientation_matrix=self.orientation_rotation_matrices[index_plot, :], sigma_excitation_error=self.orientation_kernel_size / 3, + precession_angle_degrees = self.orientation_precession_angle_degrees, ) plot_diffraction_pattern( From 3e656b6df981908e96904616b6c77416528dcb4c Mon Sep 17 00:00:00 2001 From: Colin Date: Mon, 6 May 2024 19:20:31 -0700 Subject: [PATCH 29/46] Fiddling with matching routines --- py4DSTEM/process/diffraction/crystal_ACOM.py | 38 ++++++++++++++++---- 1 file changed, 31 insertions(+), 7 deletions(-) diff --git a/py4DSTEM/process/diffraction/crystal_ACOM.py b/py4DSTEM/process/diffraction/crystal_ACOM.py index 960461669..bdff28de2 100644 --- a/py4DSTEM/process/diffraction/crystal_ACOM.py +++ b/py4DSTEM/process/diffraction/crystal_ACOM.py @@ -27,7 +27,7 @@ def orientation_plan( angle_step_in_plane: float = 2.0, accel_voltage: float = 300e3, corr_kernel_size: float = 0.08, - sigma_excitation_error: float = 0.01, + sigma_excitation_error: float = 0.02, precession_angle_degrees = None, radial_power: float = 1.0, intensity_power: float = 0.25, # New default intensity power scaling @@ -1034,12 +1034,7 @@ def match_single_pattern( if np.any(sub): im_polar[ind_radial, :] = np.sum( - np.power(radius, self.orientation_radial_power) - * np.power( - np.maximum(intensity[sub, None], 0.0), - self.orientation_intensity_power, - ) - * np.maximum( + np.maximum( 1 - np.sqrt( dqr[sub, None] ** 2 @@ -1062,6 +1057,35 @@ def match_single_pattern( ), axis=0, ) + # im_polar[ind_radial, :] = np.sum( + # np.power(radius, self.orientation_radial_power) + # * np.power( + # np.maximum(intensity[sub, None], 0.0), + # self.orientation_intensity_power, + # ) + # * np.maximum( + # 1 + # - np.sqrt( + # dqr[sub, None] ** 2 + # + ( + # ( + # np.mod( + # self.orientation_gamma[None, :] + # - qphi[sub, None] + # + np.pi, + # 2 * np.pi, + # ) + # - np.pi + # ) + # * radius + # ) + # ** 2 + # ) + # / self.orientation_kernel_size, + # 0, + # ), + # axis=0, + # ) # Determine the RMS signal from im_polar for the first match. # Note that we use scaling slightly below RMS so that following matches From e768a517285007dc3b2195dc471c95ef6e8d5a5f Mon Sep 17 00:00:00 2001 From: Colin Date: Tue, 7 May 2024 05:18:36 -0700 Subject: [PATCH 30/46] adding intensity scaling back into experiment --- py4DSTEM/process/diffraction/crystal_ACOM.py | 40 ++++++++++++-------- 1 file changed, 24 insertions(+), 16 deletions(-) diff --git a/py4DSTEM/process/diffraction/crystal_ACOM.py b/py4DSTEM/process/diffraction/crystal_ACOM.py index bdff28de2..b1f64aa58 100644 --- a/py4DSTEM/process/diffraction/crystal_ACOM.py +++ b/py4DSTEM/process/diffraction/crystal_ACOM.py @@ -29,8 +29,9 @@ def orientation_plan( corr_kernel_size: float = 0.08, sigma_excitation_error: float = 0.02, precession_angle_degrees = None, - radial_power: float = 1.0, - intensity_power: float = 0.25, # New default intensity power scaling + power_radial: float = 1.0, + power_intensity: float = 0.25, + power_intensity_experiment: float = 0.25, calculate_correlation_array=True, tol_peak_delete=None, tol_distance: float = 0.01, @@ -76,10 +77,12 @@ def orientation_plan( precession_angle_degrees (float) Tilt angle of illuminaiton cone in degrees for precession electron diffraction (PED). - radial_power (float): + power_radial (float): Power for scaling the correlation intensity as a function of the peak radius - intensity_power (float): - Power for scaling the correlation intensity as a function of the peak intensity + power_intensity (float): + Power for scaling the correlation intensity as a function of simulated peak intensity + power_intensity_experiment (float): + Power for scaling the correlation intensity as a function of experimental peak intensity calculate_correlation_array (bool): Set to false to skip calculating the correlation array. This is useful when we only want the angular range / rotation matrices. @@ -136,8 +139,9 @@ def orientation_plan( self.wavelength = electron_wavelength_angstrom(self.accel_voltage) # store the radial and intensity scaling to use later for generating test patterns - self.orientation_radial_power = radial_power - self.orientation_intensity_power = intensity_power + self.orientation_power_radial = power_radial + self.orientation_power_intensity = power_intensity + self.orientation_power_intensity_experiment = power_intensity_experiment # Calculate the ratio between coarse and fine refinement if angle_coarse_zone_axis is not None: @@ -788,12 +792,12 @@ def orientation_plan( radial_inds = self.orientation_shell_index[keep] self.orientation_ref[a0, radial_inds, phi_floor] += \ (1-dphi) * \ - np.power(self.struct_factors_int[keep] * Ig, intensity_power) * \ - np.power(self.orientation_shell_radii[radial_inds], radial_power) + np.power(self.struct_factors_int[keep] * Ig, power_intensity) * \ + np.power(self.orientation_shell_radii[radial_inds], power_radial) self.orientation_ref[a0, radial_inds, np.mod(phi_floor+1,self.orientation_in_plane_steps)] += \ dphi * \ - np.power(self.struct_factors_int[keep] * Ig, intensity_power) * \ - np.power(self.orientation_shell_radii[radial_inds], radial_power) + np.power(self.struct_factors_int[keep] * Ig, power_intensity) * \ + np.power(self.orientation_shell_radii[radial_inds], power_radial) # # Loop over all peaks @@ -807,8 +811,8 @@ def orientation_plan( # if keep[a1] and ind_radial >= 0: # # 2D orientation plan # self.orientation_ref[a0, ind_radial, :] += ( - # np.power(self.orientation_shell_radii[ind_radial], radial_power) - # * np.power(self.struct_factors_int[a1], intensity_power) + # np.power(self.orientation_shell_radii[ind_radial], power_radial) + # * np.power(self.struct_factors_int[a1], power_intensity) # * np.maximum( # 1 # - np.sqrt( @@ -1034,7 +1038,11 @@ def match_single_pattern( if np.any(sub): im_polar[ind_radial, :] = np.sum( - np.maximum( + np.power( + np.maximum(intensity[sub, None], 0.0), + self.orientation_power_intensity_experiment, + ) + * np.maximum( 1 - np.sqrt( dqr[sub, None] ** 2 @@ -1058,10 +1066,10 @@ def match_single_pattern( axis=0, ) # im_polar[ind_radial, :] = np.sum( - # np.power(radius, self.orientation_radial_power) + # np.power(radius, self.orientation_power_radial) # * np.power( # np.maximum(intensity[sub, None], 0.0), - # self.orientation_intensity_power, + # self.orientation_power_intensity, # ) # * np.maximum( # 1 From 8792a7249485b2e04e1b08f3ee309799fa79a21e Mon Sep 17 00:00:00 2001 From: Colin Date: Wed, 8 May 2024 11:35:25 -0700 Subject: [PATCH 31/46] adding normalization testing --- py4DSTEM/process/diffraction/crystal_ACOM.py | 6 ++++++ 1 file changed, 6 insertions(+) diff --git a/py4DSTEM/process/diffraction/crystal_ACOM.py b/py4DSTEM/process/diffraction/crystal_ACOM.py index b1f64aa58..0c8776010 100644 --- a/py4DSTEM/process/diffraction/crystal_ACOM.py +++ b/py4DSTEM/process/diffraction/crystal_ACOM.py @@ -834,6 +834,8 @@ def orientation_plan( # ) # ) + # normalization + # self.orientation_ref[a0, :, :] -= np.mean(self.orientation_ref[a0, :, :]) orientation_ref_norm = np.sqrt(np.sum(self.orientation_ref[a0, :, :] ** 2)) if orientation_ref_norm > 0: self.orientation_ref[a0, :, :] /= orientation_ref_norm @@ -1095,6 +1097,10 @@ def match_single_pattern( # axis=0, # ) + + # # normalization + # self.im_polar -= np.mean(im_polar) + # Determine the RMS signal from im_polar for the first match. # Note that we use scaling slightly below RMS so that following matches # don't have higher correlating scores than previous matches. From 04bbbaf1faf2a2313b9db99f774a073896ee51c4 Mon Sep 17 00:00:00 2001 From: Colin Date: Thu, 9 May 2024 09:32:40 -0700 Subject: [PATCH 32/46] Making kernel a Gaussian function instead of cone --- py4DSTEM/process/diffraction/crystal_ACOM.py | 64 ++++++++++++++------ 1 file changed, 46 insertions(+), 18 deletions(-) diff --git a/py4DSTEM/process/diffraction/crystal_ACOM.py b/py4DSTEM/process/diffraction/crystal_ACOM.py index 0c8776010..3acce396c 100644 --- a/py4DSTEM/process/diffraction/crystal_ACOM.py +++ b/py4DSTEM/process/diffraction/crystal_ACOM.py @@ -1039,34 +1039,62 @@ def match_single_pattern( sub = dqr < self.orientation_kernel_size if np.any(sub): - im_polar[ind_radial, :] = np.sum( + + dist = im_polar[ind_radial, :] = np.sum( np.power( np.maximum(intensity[sub, None], 0.0), self.orientation_power_intensity_experiment, ) - * np.maximum( - 1 - - np.sqrt( - dqr[sub, None] ** 2 - + ( - ( - np.mod( - self.orientation_gamma[None, :] - - qphi[sub, None] - + np.pi, - 2 * np.pi, - ) - - np.pi + * np.exp( + (dqr[sub, None] ** 2 + + ( + ( + np.mod( + self.orientation_gamma[None, :] + - qphi[sub, None] + + np.pi, + 2 * np.pi, ) - * radius + - np.pi ) - ** 2 + * radius ) - / self.orientation_kernel_size, - 0, + ** 2) + / (-2*self.orientation_kernel_size**2) ), axis=0, ) + + # im_polar[ind_radial, :] = np.sum( + # np.power( + # np.maximum(intensity[sub, None], 0.0), + # self.orientation_power_intensity_experiment, + # ) + # * np.maximum( + # 1 + # - np.sqrt( + # dqr[sub, None] ** 2 + # + ( + # ( + # np.mod( + # self.orientation_gamma[None, :] + # - qphi[sub, None] + # + np.pi, + # 2 * np.pi, + # ) + # - np.pi + # ) + # * radius + # ) + # ** 2 + # ) + # / self.orientation_kernel_size, + # 0, + # ), + # axis=0, + # ) + + # im_polar[ind_radial, :] = np.sum( # np.power(radius, self.orientation_power_radial) # * np.power( From e8a02ae20ae97515dd877dd5c918958eaed712e6 Mon Sep 17 00:00:00 2001 From: Colin Date: Thu, 9 May 2024 14:59:58 -0700 Subject: [PATCH 33/46] tweaking multiple match finder --- py4DSTEM/process/diffraction/crystal_ACOM.py | 6 +++++- 1 file changed, 5 insertions(+), 1 deletion(-) diff --git a/py4DSTEM/process/diffraction/crystal_ACOM.py b/py4DSTEM/process/diffraction/crystal_ACOM.py index 3acce396c..be8ae1f50 100644 --- a/py4DSTEM/process/diffraction/crystal_ACOM.py +++ b/py4DSTEM/process/diffraction/crystal_ACOM.py @@ -116,6 +116,7 @@ def orientation_plan( # Store inputs self.accel_voltage = np.asarray(accel_voltage) self.orientation_kernel_size = np.asarray(corr_kernel_size) + self.orientation_sigma_excitation_error = sigma_excitation_error if precession_angle_degrees is None: self.orientation_precession_angle_degrees = None else: @@ -837,6 +838,7 @@ def orientation_plan( # normalization # self.orientation_ref[a0, :, :] -= np.mean(self.orientation_ref[a0, :, :]) orientation_ref_norm = np.sqrt(np.sum(self.orientation_ref[a0, :, :] ** 2)) + # orientation_ref_norm = np.sum(self.orientation_ref[a0, :, :]) if orientation_ref_norm > 0: self.orientation_ref[a0, :, :] /= orientation_ref_norm @@ -1327,6 +1329,7 @@ def match_single_pattern( np.clip( np.sum( self.orientation_vecs + # self.orientation_vecs * np.array([1,-1,-1])[None,:] * self.orientation_vecs[inds_previous[a0], :], axis=1, ), @@ -1625,7 +1628,8 @@ def match_single_pattern( bragg_peaks_fit = self.generate_diffraction_pattern( orientation, ind_orientation=match_ind, - sigma_excitation_error=self.orientation_kernel_size, + sigma_excitation_error = self.orientation_sigma_excitation_error, + precession_angle_degrees = self.orientation_precession_angle_degrees, ) remove = np.zeros_like(qx, dtype="bool") From daae2258aaa9ae43f056356318fcba57fb5f2d4e Mon Sep 17 00:00:00 2001 From: Colin Date: Fri, 17 May 2024 10:28:04 -0700 Subject: [PATCH 34/46] fix typo --- py4DSTEM/process/diffraction/crystal_ACOM.py | 6 +++--- 1 file changed, 3 insertions(+), 3 deletions(-) diff --git a/py4DSTEM/process/diffraction/crystal_ACOM.py b/py4DSTEM/process/diffraction/crystal_ACOM.py index be8ae1f50..74e842817 100644 --- a/py4DSTEM/process/diffraction/crystal_ACOM.py +++ b/py4DSTEM/process/diffraction/crystal_ACOM.py @@ -1042,7 +1042,7 @@ def match_single_pattern( if np.any(sub): - dist = im_polar[ind_radial, :] = np.sum( + im_polar[ind_radial, :] = np.sum( np.power( np.maximum(intensity[sub, None], 0.0), self.orientation_power_intensity_experiment, @@ -1128,8 +1128,8 @@ def match_single_pattern( # ) - # # normalization - # self.im_polar -= np.mean(im_polar) + # normalization + # im_polar -= np.mean(im_polar) # Determine the RMS signal from im_polar for the first match. # Note that we use scaling slightly below RMS so that following matches From 4a183dfb2c7bd868e2b060f73e71178d21d7309c Mon Sep 17 00:00:00 2001 From: Colin Date: Fri, 21 Jun 2024 13:11:15 -0700 Subject: [PATCH 35/46] Changing default settings, fiddling with plots --- py4DSTEM/process/diffraction/crystal.py | 2 +- py4DSTEM/process/diffraction/crystal_phase.py | 219 ++++++++++++++---- py4DSTEM/process/diffraction/crystal_viz.py | 44 +++- 3 files changed, 213 insertions(+), 52 deletions(-) diff --git a/py4DSTEM/process/diffraction/crystal.py b/py4DSTEM/process/diffraction/crystal.py index 9694111c9..ed4f9ca6b 100644 --- a/py4DSTEM/process/diffraction/crystal.py +++ b/py4DSTEM/process/diffraction/crystal.py @@ -1368,7 +1368,7 @@ def excitation_errors( g, foil_normal=None, precession_angle_degrees=None, - precession_steps=180, + precession_steps=72, ): """ Calculate the excitation errors, assuming k0 = [0, 0, -1/lambda]. diff --git a/py4DSTEM/process/diffraction/crystal_phase.py b/py4DSTEM/process/diffraction/crystal_phase.py index f6d916a95..c18865071 100644 --- a/py4DSTEM/process/diffraction/crystal_phase.py +++ b/py4DSTEM/process/diffraction/crystal_phase.py @@ -78,16 +78,19 @@ def quantify_single_pattern( pointlistarray: PointListArray, xy_position = (0,0), corr_kernel_size = 0.04, - sigma_excitation_error = 0.02, - power_experiment = 0.25, - power_calculated = 0.25, - max_number_patterns = 3, + sigma_excitation_error: float = 0.02, + precession_angle_degrees = None, + power_intensity: float = 0.25, + power_intensity_experiment: float = 0.25, + k_max = None, + max_number_patterns = 2, single_phase = False, - allow_strain = True, + allow_strain = False, strain_iterations = 3, strain_max = 0.02, include_false_positives = True, weight_false_positives = 1.0, + weight_unmatched_peaks = 1.0, plot_result = True, plot_only_nonzero_phases = True, plot_unmatched_peaks = False, @@ -102,10 +105,32 @@ def quantify_single_pattern( ): """ Quantify the phase for a single diffraction pattern. + + Parameters + ---------- + + corr_kernel_size: (float) + Correlation kernel size length. The size of the overlap kernel between the + measured Bragg peaks and diffraction library Bragg peaks. [1/Angstroms] + sigma_excitation_error: (float) + The out of plane excitation error tolerance. [1/Angstroms] + precession_angle_degrees: (float) + Tilt angle of illuminaiton cone in degrees for precession electron diffraction (PED). + + power_radial: (float) + Power for scaling the correlation intensity as a function of the peak radius + power_intensity: (float) + Power for scaling the correlation intensity as a function of simulated peak intensity + power_intensity_experiment: (float): + Power for scaling the correlation intensity as a function of experimental peak intensity + k_max: (float) + Max k values included in fits, for both x and y directions. + """ + # tolerance - tol2 = 4e-4 + tol2 = 1e-6 # calibrations center = pointlistarray.calstate['center'] @@ -137,7 +162,16 @@ def quantify_single_pattern( pixel = pixel, rotate = rotate) # bragg_peaks = pointlistarray.get_pointlist(xy_position[0],xy_position[1]).copy() - keep = bragg_peaks.data["qx"]**2 + bragg_peaks.data["qy"]**2 > tol2 + if k_max is None: + keep = bragg_peaks.data["qx"]**2 + bragg_peaks.data["qy"]**2 > tol2 + else: + keep = np.logical_and.reduce(( + bragg_peaks.data["qx"]**2 + bragg_peaks.data["qy"]**2 > tol2, + np.abs(bragg_peaks.data["qx"]) < k_max, + np.abs(bragg_peaks.data["qy"]) < k_max, + )) + + # ind_center_beam = np.argmin( # bragg_peaks.data["qx"]**2 + bragg_peaks.data["qy"]**2) # mask = np.ones_like(bragg_peaks.data["qx"], dtype='bool') @@ -147,12 +181,12 @@ def quantify_single_pattern( qy = bragg_peaks.data["qy"][keep] qx0 = bragg_peaks.data["qx"][np.logical_not(keep)] qy0 = bragg_peaks.data["qy"][np.logical_not(keep)] - if power_experiment == 0: + if power_intensity_experiment == 0: intensity = np.ones_like(qx) intensity0 = np.ones_like(qx0) else: - intensity = bragg_peaks.data["intensity"][keep]**power_experiment - intensity0 = bragg_peaks.data["intensity"][np.logical_not(keep)]**power_experiment + intensity = bragg_peaks.data["intensity"][keep]**power_intensity_experiment + intensity0 = bragg_peaks.data["intensity"][np.logical_not(keep)]**power_intensity_experiment int_total = np.sum(intensity) # init basis array @@ -190,16 +224,25 @@ def quantify_single_pattern( ), ind_orientation = m, sigma_excitation_error = sigma_excitation_error, + precession_angle_degrees = precession_angle_degrees, ) - del_peak = bragg_peaks_fit.data["qx"]**2 \ - + bragg_peaks_fit.data["qy"]**2 < tol2 + if k_max is None: + del_peak = bragg_peaks_fit.data["qx"]**2 \ + + bragg_peaks_fit.data["qy"]**2 < tol2 + else: + del_peak = np.logical_or.reduce(( + bragg_peaks_fit.data["qx"]**2 \ + + bragg_peaks_fit.data["qy"]**2 < tol2, + np.abs(bragg_peaks_fit.data["qx"]) > k_max, + np.abs(bragg_peaks_fit.data["qy"]) > k_max, + )) bragg_peaks_fit.remove(del_peak) # peak intensities - if power_calculated == 0: + if power_intensity == 0: int_fit = np.ones_like(bragg_peaks_fit.data["qx"]) else: - int_fit = bragg_peaks_fit.data['intensity']**power_calculated + int_fit = bragg_peaks_fit.data['intensity']**power_intensity # Pair peaks to experiment if plot_result: @@ -321,20 +364,38 @@ def quantify_single_pattern( if single_phase: # loop through each crystal structure and determine the best fit structure, - # which can contain multiple orienations. + # which can contain multiple orientations up to max_number_patterns crystal_res = np.zeros(self.num_crystals) for a0 in range(self.num_crystals): - sub = self.crystal_identity[:,0] == a0 + inds_solve = self.crystal_identity[:,0] == a0 + search = True - phase_weights_cand, phase_residual_cand = nnls( - basis[:,sub], - obs, - ) - phase_weights[sub] = phase_weights_cand - crystal_res[a0] = phase_residual_cand + while search is True: + + basis_solve = basis[:,inds_solve] + obs_solve = obs.copy() + + if weight_unmatched_peaks > 1.0: + sub_unmatched = np.sum(basis_solve,axis=1)<1e-8 + obs_solve[sub_unmatched] *= weight_unmatched_peaks + + phase_weights_cand, phase_residual_cand = nnls( + basis_solve, + obs_solve, + ) + + if np.count_nonzero(phase_weights_cand > 0.0) <= max_number_patterns: + phase_weights[inds_solve] = phase_weights_cand + crystal_res[a0] = phase_residual_cand + search = False + else: + inds = np.where(inds_solve)[0] + inds_solve[inds[np.argmin(phase_weights_cand)]] = False ind_best_fit = np.argmin(crystal_res) + # ind_best_fit = np.argmax(phase_weights) + phase_residual = crystal_res[ind_best_fit] sub = np.logical_not( self.crystal_identity[:,0] == ind_best_fit @@ -452,19 +513,22 @@ def quantify_single_pattern( ax.scatter( qy0, qx0, - s = scale_markers_experiment * intensity0, + # s = scale_markers_experiment * intensity0, + s = scale_markers_experiment * bragg_peaks.data["intensity"][np.logical_not(keep)], marker = "o", facecolor = [0.7, 0.7, 0.7], ) ax.scatter( qy, qx, - s = scale_markers_experiment * intensity, + # s = scale_markers_experiment * intensity, + s = scale_markers_experiment * bragg_peaks.data["intensity"][keep], marker = "o", facecolor = [0.7, 0.7, 0.7], ) # legend - k_max = np.max(self.k_max) + if k_max is None: + k_max = np.max(self.k_max) dx_leg = -0.05*k_max dy_leg = 0.04*k_max text_params = { @@ -607,7 +671,7 @@ def quantify_single_pattern( # appearance ax.set_xlim((-k_max, k_max)) - ax.set_ylim((-k_max, k_max)) + ax.set_ylim((k_max, -k_max)) ax_leg.set_xlim((-0.1*k_max, 0.4*k_max)) ax_leg.set_ylim((-0.5*k_max, 0.5*k_max)) @@ -623,9 +687,14 @@ def quantify_phase( pointlistarray: PointListArray, corr_kernel_size = 0.04, sigma_excitation_error = 0.02, - power_experiment = 0.25, - power_calculated = 0.25, - max_number_patterns = 3, + + precession_angle_degrees = None, + power_intensity: float = 0.25, + power_intensity_experiment: float = 0.25, + k_max = None, + # power_experiment = 0.25, + # power_calculated = 0.25, + max_number_patterns = 2, single_phase = False, allow_strain = True, strain_iterations = 3, @@ -670,8 +739,12 @@ def quantify_phase( xy_position = (rx,ry), corr_kernel_size = corr_kernel_size, sigma_excitation_error = sigma_excitation_error, - power_experiment = power_experiment, - power_calculated = power_calculated, + + precession_angle_degrees = precession_angle_degrees, + power_intensity = power_intensity, + power_intensity_experiment = power_intensity_experiment, + k_max = k_max, + max_number_patterns = max_number_patterns, single_phase = single_phase, allow_strain = allow_strain, @@ -923,10 +996,15 @@ def plot_phase_maps( def plot_dominant_phase( self, + use_correlation_scores = False, reliability_range = (0.0,1.0), sigma = 0.0, phase_colors = None, + ticks = True, figsize = (6,6), + legend_add = True, + legend_fraction = 0.2, + print_fractions = False, ): """ Plot a combined figure showing the primary phase at each probe position. @@ -950,10 +1028,18 @@ def plot_dominant_phase( phase_corr_2nd = np.zeros(scan_shape) phase_sig = np.zeros((self.num_crystals,scan_shape[0],scan_shape[1])) - # sum up phase weights by crystal type - for a0 in range(self.num_fits): - ind = self.crystal_identity[a0,0] - phase_sig[ind] += self.phase_weights[:,:,a0] + if use_correlation_scores: + # Calculate scores from highest correlation match + for a0 in range(self.num_crystals): + phase_sig[a0] = np.maximum( + phase_sig[a0], + np.max(self.crystals[a0].orientation_map.corr,axis=2), + ) + else: + # sum up phase weights by crystal type + for a0 in range(self.num_fits): + ind = self.crystal_identity[a0,0] + phase_sig[ind] += self.phase_weights[:,:,a0] # smoothing of the outputs if sigma > 0.0: @@ -992,25 +1078,68 @@ def plot_dominant_phase( 0, 1) + # Print the total area of fraction of each phase + if print_fractions: + phase_mask = phase_scale >= 0.5 + phase_total = np.sum(phase_mask) + + print('Phase Fractions') + print('---------------') + for a0 in range(self.num_crystals): + phase_frac = np.sum((phase_map == a0) * phase_mask) / phase_total - phase_rgb = np.zeros((scan_shape[0],scan_shape[1],3)) + print(self.crystal_names[a0] + ' - ' + f'{phase_frac*100:.4f}' + '%') + + + self.phase_rgb = np.zeros((scan_shape[0],scan_shape[1],3)) for a0 in range(self.num_crystals): sub = phase_map==a0 for a1 in range(3): - phase_rgb[:,:,a1][sub] = phase_colors[a0,a1] * phase_scale[sub] + self.phase_rgb[:,:,a1][sub] = phase_colors[a0,a1] * phase_scale[sub] # normalize - # phase_rgb = np.clip( - # (phase_rgb - rel_range[0]) / (rel_range[1] - rel_range[0]), + # self.phase_rgb = np.clip( + # (self.phase_rgb - rel_range[0]) / (rel_range[1] - rel_range[0]), # 0,1) - fig,ax = plt.subplots(figsize=figsize) + fig = plt.figure(figsize=figsize) + if legend_add: + width = 1 + + ax = fig.add_axes((0,legend_fraction,1,1-legend_fraction)) + ax_leg = fig.add_axes((0,0,1,legend_fraction)) + + for a0 in range(self.num_crystals): + ax_leg.scatter( + a0*width, + 0, + s = 200, + marker = 's', + edgecolor = (0,0,0,1), + facecolor = phase_colors[a0], + ) + ax_leg.text( + a0*width+0.1, + 0, + self.crystal_names[a0], + fontsize = 16, + verticalalignment = 'center', + ) + ax_leg.axis('off') + ax_leg.set_xlim(( + width * -0.5, + width * (self.num_crystals+0.5), + )) + + else: + ax = fig.add_axes((0,0,1,1)) + ax.imshow( - phase_rgb, + self.phase_rgb, # vmin = 0, # vmax = 5, - # phase_rgb, + # self.phase_rgb, # phase_corr - phase_corr_2nd, # cmap = 'turbo', # vmin = 0, @@ -1018,6 +1147,12 @@ def plot_dominant_phase( # cmap = 'gray', ) + if ticks is False: + ax.set_xticks([]) + ax.set_yticks([]) + + + return fig,ax diff --git a/py4DSTEM/process/diffraction/crystal_viz.py b/py4DSTEM/process/diffraction/crystal_viz.py index fdb313cbb..649f26faa 100644 --- a/py4DSTEM/process/diffraction/crystal_viz.py +++ b/py4DSTEM/process/diffraction/crystal_viz.py @@ -393,7 +393,7 @@ def plot_scattering_intensity( k_step=0.001, k_broadening=0.0, k_power_scale=0.0, - int_power_scale=0.5, + int_power_scale=1.0, int_scale=1.0, remove_origin=True, bragg_peaks=None, @@ -948,12 +948,27 @@ def plot_diffraction_pattern( scale_markers: float = 500, scale_markers_compare: Optional[float] = None, power_markers: float = 1, + power_markers_compare: float = 1, + + color = (0.0, 0.0, 0.0), + color_compare = None, + facecolor = None, + facecolor_compare = (0.0, 0.7, 1.0), + edgecolor = None, + edgecolor_compare = None, + linewidth = 1, + linewidth_compare = 1, + + marker = '+', + marker_compare = 'o', + plot_range_kx_ky: Optional[Union[list, tuple, np.ndarray]] = None, add_labels: bool = True, shift_labels: float = 0.08, shift_marker: float = 0.005, min_marker_size: float = 1e-6, max_marker_size: float = 1000, + show_axes: bool = True, figsize: Union[list, tuple, np.ndarray] = (12, 6), returnfig: bool = False, input_fig_handle=None, @@ -990,7 +1005,7 @@ def plot_diffraction_pattern( marker_size = scale_markers * bragg_peaks.data["intensity"] else: marker_size = scale_markers * ( - bragg_peaks.data["intensity"] ** (power_markers / 2) + bragg_peaks.data["intensity"] ** power_markers ) # Apply marker size limits to primary plot @@ -1013,7 +1028,7 @@ def plot_diffraction_pattern( else: marker_size_compare = np.clip( scale_markers_compare - * (bragg_peaks_compare.data["intensity"] ** (power_markers / 2)), + * (bragg_peaks_compare.data["intensity"] ** power_markers), min_marker_size, max_marker_size, ) @@ -1022,19 +1037,30 @@ def plot_diffraction_pattern( bragg_peaks_compare.data["qy"], bragg_peaks_compare.data["qx"], s=marker_size_compare, - marker="o", - facecolor=[0.0, 0.7, 1.0], + marker=marker_compare, + facecolor=facecolor_compare, + edgecolor=edgecolor_compare, + color=color_compare, + linewidth=linewidth_compare, ) ax.scatter( bragg_peaks.data["qy"], bragg_peaks.data["qx"], s=marker_size, - marker="+", - facecolor="k", + marker=marker, + facecolor=facecolor, + edgecolor=edgecolor, + color=color, + linewidth=linewidth, ) - ax.set_xlabel("$q_y$ [Å$^{-1}$]") - ax.set_ylabel("$q_x$ [Å$^{-1}$]") + if show_axes: + ax.set_xlabel("$q_y$ [Å$^{-1}$]") + ax.set_ylabel("$q_x$ [Å$^{-1}$]") + else: + ax.get_xaxis().set_visible(False) + ax.get_yaxis().set_visible(False) + if plot_range_kx_ky is not None: plot_range_kx_ky = np.array(plot_range_kx_ky) From 7f3eca729c618322b24ee1f07821f061e3202487 Mon Sep 17 00:00:00 2001 From: Colin Date: Mon, 24 Jun 2024 09:01:21 -0700 Subject: [PATCH 36/46] adding robust fitting to polar --- py4DSTEM/process/polar/polar_fits.py | 43 ++++++++++++++++++++++++++++ 1 file changed, 43 insertions(+) diff --git a/py4DSTEM/process/polar/polar_fits.py b/py4DSTEM/process/polar/polar_fits.py index 7760726a7..ea83cc866 100644 --- a/py4DSTEM/process/polar/polar_fits.py +++ b/py4DSTEM/process/polar/polar_fits.py @@ -16,6 +16,9 @@ def fit_amorphous_ring( show_fit_mask=False, fit_all_images=False, maxfev=None, + robust=False, + robust_steps = 3, + robust_thresh = 1.0, verbose=False, plot_result=True, plot_log_scale=False, @@ -50,6 +53,13 @@ def fit_amorphous_ring( Fit the elliptic parameters to all images maxfev: int Max number of fitting evaluations for curve_fit. + robust: bool + Set to True to use robust fitting. + robust_steps: int + Number of robust fitting steps. + robust_thresh: float + Threshold for relative errors for outlier detection. Setting to 1.0 means all points beyond + one standard deviation of the median error will be excluded from the next fit. verbose: bool Print fit results plot_result: bool @@ -206,8 +216,41 @@ def fit_amorphous_ring( maxfev=maxfev, )[0] coefs[4] = np.mod(coefs[4], 2 * np.pi) + + if robust: + for a0 in range(robust_steps): + # find outliers + int_fit = amorphous_model(basis, *coefs) + int_diff = vals / int_mean - int_fit + int_diff /= np.median(np.abs(int_diff)) + sub_fit = int_diff**2 < robust_thresh**2 + + # redo fits excluding the outliers + if maxfev is None: + coefs = curve_fit( + amorphous_model, + basis[:,sub_fit], + vals[sub_fit] / int_mean, + p0=coefs, + xtol=1e-8, + bounds=(lb, ub), + )[0] + else: + coefs = curve_fit( + amorphous_model, + basis[:,sub_fit], + vals[sub_fit] / int_mean, + p0=coefs, + xtol=1e-8, + bounds=(lb, ub), + maxfev=maxfev, + )[0] + coefs[4] = np.mod(coefs[4], 2 * np.pi) + + # Scale intensity coefficients coefs[5:8] *= int_mean + # Perform the fit on each individual diffration pattern if fit_all_images: coefs_all = np.zeros((datacube.shape[0], datacube.shape[1], coefs.size)) From b921a47b12ff004aedf0dda00fc68ee362887c59 Mon Sep 17 00:00:00 2001 From: Colin Date: Thu, 27 Jun 2024 09:08:20 -0700 Subject: [PATCH 37/46] Adding docstrings, cleaning up code --- py4DSTEM/process/diffraction/crystal.py | 12 ++-- py4DSTEM/process/diffraction/crystal_phase.py | 72 +++++++++++++++++-- 2 files changed, 73 insertions(+), 11 deletions(-) diff --git a/py4DSTEM/process/diffraction/crystal.py b/py4DSTEM/process/diffraction/crystal.py index ed4f9ca6b..9aa436cbc 100644 --- a/py4DSTEM/process/diffraction/crystal.py +++ b/py4DSTEM/process/diffraction/crystal.py @@ -719,7 +719,11 @@ def generate_diffraction_pattern( return_orientation_matrix=False, ): """ - Generate a single diffraction pattern, return all peaks as a pointlist. + Generate a single diffraction pattern, return all peaks as a pointlist. This function performs a + kinematical calculation, with optional precession of the beam. + + TODO - switch from numerical precession to analytic (requires geometry projection). + TODO - verify projection geometry for 2D material diffraction. Parameters ---------- @@ -740,7 +744,6 @@ def generate_diffraction_pattern( cartesian projection direction proj_x_cartesian (3,) numpy.array cartesian projection direction - foil_normal 3 element foil normal - set to None to use zone_axis proj_x_axis (3,) numpy.array @@ -748,7 +751,6 @@ def generate_diffraction_pattern( accel_voltage (float) Accelerating voltage in Volts. If not specified, we check to see if crystal already has voltage specified. - sigma_excitation_error (float) sigma value for envelope applied to s_g (excitation errors) in units of inverse Angstroms tol_excitation_error_mult (float) @@ -768,8 +770,8 @@ def generate_diffraction_pattern( ---------- bragg_peaks (PointList) list of all Bragg peaks with fields [qx, qy, intensity, h, k, l] - orientation_matrix (array) - 3x3 orientation matrix (optional) + orientation_matrix (array, optional) + 3x3 orientation matrix """ diff --git a/py4DSTEM/process/diffraction/crystal_phase.py b/py4DSTEM/process/diffraction/crystal_phase.py index c18865071..cb99a99a9 100644 --- a/py4DSTEM/process/diffraction/crystal_phase.py +++ b/py4DSTEM/process/diffraction/crystal_phase.py @@ -106,9 +106,15 @@ def quantify_single_pattern( """ Quantify the phase for a single diffraction pattern. + TODO - determine the difference between false positive peaks and unmatched peaks (if any). + Parameters ---------- + pointlistarray: (PointListArray) + Full array of all calibrated experimental bragg peaks, with shape = (num_x,num_y) + xy_position: (int,int) + The (x,y) or (row,column) position to be quantified. corr_kernel_size: (float) Correlation kernel size length. The size of the overlap kernel between the measured Bragg peaks and diffraction library Bragg peaks. [1/Angstroms] @@ -116,19 +122,73 @@ def quantify_single_pattern( The out of plane excitation error tolerance. [1/Angstroms] precession_angle_degrees: (float) Tilt angle of illuminaiton cone in degrees for precession electron diffraction (PED). - - power_radial: (float) - Power for scaling the correlation intensity as a function of the peak radius power_intensity: (float) - Power for scaling the correlation intensity as a function of simulated peak intensity + Power for scaling the correlation intensity as a function of simulated peak intensity. power_intensity_experiment: (float): - Power for scaling the correlation intensity as a function of experimental peak intensity + Power for scaling the correlation intensity as a function of experimental peak intensity. k_max: (float) Max k values included in fits, for both x and y directions. + max_number_patterns: int + Max number of orientations which can be included in a match. + single_phase: bool + Set to true to force result to output only the best-fit phase (minimum intensity residual). + allow_strain: bool, + Allow the simulated diffraction patterns to be distorted to improve the matches. + strain_iterations: int + Number of pattern position refinement iterations. + strain_max: float + Maximum strain fraction allowed - this value should be low, typically a few percent (~0.02). + include_false_positives: bool + Penalize patterns which generate false positive peaks. + weight_false_positives: float + Weight strength of false positive peaks. + weight_unmatched_peaks: float + Penalize unmatched peaks. + plot_result: bool + Plot the resulting fit. + plot_only_nonzero_phases: bool + Only plot phases with phase weights > 0. + plot_unmatched_peaks: bool + Plot the false postive peaks. + plot_correlation_radius: bool + In the visualization, draw the correlation radius. + scale_markers_experiment: float + Size of experimental diffraction peak markers. + scale_markers_calculated: float + Size of the calculate diffraction peak markers. + crystal_inds_plot: tuple of ints + Which crystal index / indices to plot. + phase_colors: np.array + Color of each phase, should have shape = (num_phases, 3) + figsize: (float,float) + Size of the output figure. + verbose: bool + Print the resulting fit weights to console. + returnfig: bool + Return the figure and axis handles for the plot. + + + Returns + ------- + phase_weights: (np.array) + Estimated relative fraction of each phase for all probe positions. + shape = (num_x, num_y, num_orientations) + where num_orientations is the total number of all orientations for all phases. + phase_residual: (np.array) + Residual intensity not represented by the best fit phase weighting for all probe positions. + shape = (num_x, num_y) + phase_reliability: (np.array) + Estimated reliability of match(es) for all probe positions. + Typically calculated as the best fit score minus the second best fit. + shape = (num_x, num_y) + int_total: (np.array) + Sum of experimental peak intensities for all probe positions. + shape = (num_x, num_y) + fig,ax: (optional) + matplotlib figure and axis handles """ - # tolerance tol2 = 1e-6 From cd48bea268ac02ee29f70372ed2e19e731966690 Mon Sep 17 00:00:00 2001 From: Colin Date: Thu, 27 Jun 2024 15:53:17 -0700 Subject: [PATCH 38/46] more docstrings added --- py4DSTEM/process/diffraction/crystal_phase.py | 141 +++++++++++++++++- 1 file changed, 136 insertions(+), 5 deletions(-) diff --git a/py4DSTEM/process/diffraction/crystal_phase.py b/py4DSTEM/process/diffraction/crystal_phase.py index cb99a99a9..f05d304c1 100644 --- a/py4DSTEM/process/diffraction/crystal_phase.py +++ b/py4DSTEM/process/diffraction/crystal_phase.py @@ -747,13 +747,10 @@ def quantify_phase( pointlistarray: PointListArray, corr_kernel_size = 0.04, sigma_excitation_error = 0.02, - precession_angle_degrees = None, power_intensity: float = 0.25, power_intensity_experiment: float = 0.25, k_max = None, - # power_experiment = 0.25, - # power_calculated = 0.25, max_number_patterns = 2, single_phase = False, allow_strain = True, @@ -765,6 +762,44 @@ def quantify_phase( ): """ Quantify phase of all diffraction patterns. + + Parameters + ---------- + pointlistarray: (PointListArray) + Full array of all calibrated experimental bragg peaks, with shape = (num_x,num_y) + corr_kernel_size: (float) + Correlation kernel size length. The size of the overlap kernel between the + measured Bragg peaks and diffraction library Bragg peaks. [1/Angstroms] + sigma_excitation_error: (float) + The out of plane excitation error tolerance. [1/Angstroms] + precession_angle_degrees: (float) + Tilt angle of illuminaiton cone in degrees for precession electron diffraction (PED). + power_intensity: (float) + Power for scaling the correlation intensity as a function of simulated peak intensity. + power_intensity_experiment: (float): + Power for scaling the correlation intensity as a function of experimental peak intensity. + k_max: (float) + Max k values included in fits, for both x and y directions. + max_number_patterns: int + Max number of orientations which can be included in a match. + single_phase: bool + Set to true to force result to output only the best-fit phase (minimum intensity residual). + allow_strain: bool, + Allow the simulated diffraction patterns to be distorted to improve the matches. + strain_iterations: int + Number of pattern position refinement iterations. + strain_max: float + Maximum strain fraction allowed - this value should be low, typically a few percent (~0.02). + include_false_positives: bool + Penalize patterns which generate false positive peaks. + weight_false_positives: float + Weight strength of false positive peaks. + progressbar: bool + Display progress. + + Returns + ----------- + """ # init results arrays @@ -836,6 +871,33 @@ def plot_phase_weights( ): """ Plot the individual phase weight maps and residuals. + + Parameters + ---------- + weight_range: (float, float) + Plotting weight range. + weight_normalize: bool + Normalize weights before plotting. + total_intensity_normalize: bool + Normalize the total intensity. + cmap: matplotlib.cm.cmap + Colormap to use for plots. + show_ticks: bool + Show ticks on plots. + show_axes: bool + Show axes. + layout: int + Layout type for figures. + figsize: (float,float) + Size of figure panel. + returnfig: bool + Return the figure and axes handles. + + Returns + ---------- + fig,ax: (optional) + Figure and axes handles. + """ # Normalization if required to total DF peak intensity @@ -931,6 +993,45 @@ def plot_phase_maps( ): """ Plot the individual phase weight maps and residuals. + + Parameters + ---------- + weight_threshold: float + Threshold for showing each phase. + weight_normalize: bool + Normalize weights before plotting. + total_intensity_normalize: bool + Normalize the total intensity. + plot_combine: bool + Combine all figures into a single plot. + crystal_inds_plot: (tuple of ints) + Which crystals to plot phase maps for. + phase_colors: np.array + (Nx3) shaped array giving the colors for each phase + show_ticks: bool + Show ticks on plots. + show_axes: bool + Show axes. + layout: int + Layout type for figures. + figsize: (float,float) + Size of figure panel. + return_phase_estimate: bool + Return the phase estimate array. + return_rgb_images: bool + Return the rgb images. + returnfig: bool + Return the figure and axes handles. + + Returns + ---------- + im_all: (np.array, optional) + images showing phase maps. + im_rgb, im_rgb_all: (np.array, optional) + rgb colored output images, possibly combined + fig,ax: (optional) + Figure and axes handles. + """ if phase_colors is None: @@ -1065,10 +1166,40 @@ def plot_dominant_phase( legend_add = True, legend_fraction = 0.2, print_fractions = False, + returnfig = True, ): """ Plot a combined figure showing the primary phase at each probe position. Mask by the reliability index (best match minus 2nd best match). + + Parameters + ---------- + use_correlation_scores: bool + Set to True to use correlation scores instead of reliabiltiy from intensity residuals. + reliability_range: (float, float) + Plotting intensity range + sigma: float + Smoothing in units of probe position. + phase_colors: np.array + (N,3) shaped array giving colors of all phases + ticks: bool + Show ticks on plots. + figsize: (float,float) + Size of output figure + legend_add: bool + Add legend to plot + legend_fraction: float + Fractional size of legend in plot. + print_fractions: bool + Print the estimated fraction of all phases. + returnfig: bool + Return the figure and axes handles. + + Returns + ---------- + fig,ax: (optional) + Figure and axes handles. + """ if phase_colors is None: @@ -1212,8 +1343,8 @@ def plot_dominant_phase( ax.set_yticks([]) - - return fig,ax + if returnfig: + return fig,ax # def plot_all_phase_maps(self, map_scale_values=None, index=0): From 316bded092e46e73f59186d67d4a1e6927f3cb68 Mon Sep 17 00:00:00 2001 From: Colin Date: Thu, 27 Jun 2024 15:53:45 -0700 Subject: [PATCH 39/46] Cleaning up, removing residual comments --- py4DSTEM/process/diffraction/crystal_phase.py | 293 ------------------ 1 file changed, 293 deletions(-) diff --git a/py4DSTEM/process/diffraction/crystal_phase.py b/py4DSTEM/process/diffraction/crystal_phase.py index f05d304c1..750ea4670 100644 --- a/py4DSTEM/process/diffraction/crystal_phase.py +++ b/py4DSTEM/process/diffraction/crystal_phase.py @@ -1346,296 +1346,3 @@ def plot_dominant_phase( if returnfig: return fig,ax - - # def plot_all_phase_maps(self, map_scale_values=None, index=0): - # """ - # Visualize phase maps of dataset. - - # Args: - # map_scale_values (float): Value to scale correlations by - # """ - # phase_maps = [] - # if map_scale_values is None: - # map_scale_values = [1] * len(self.orientation_maps) - # corr_sum = np.sum( - # [ - # (self.orientation_maps[m].corr[:, :, index] * map_scale_values[m]) - # for m in range(len(self.orientation_maps)) - # ] - # ) - # for m in range(len(self.orientation_maps)): - # phase_maps.append(self.orientation_maps[m].corr[:, :, index] / corr_sum) - # show_image_grid(lambda i: phase_maps[i], 1, len(phase_maps), cmap="inferno") - # return - - # def plot_phase_map(self, index=0, cmap=None): - # corr_array = np.dstack( - # [maps.corr[:, :, index] for maps in self.orientation_maps] - # ) - # best_corr_score = np.max(corr_array, axis=2) - # best_match_phase = [ - # np.where(corr_array[:, :, p] == best_corr_score, True, False) - # for p in range(len(self.orientation_maps)) - # ] - - # if cmap is None: - # cm = plt.get_cmap("rainbow") - # cmap = [ - # cm(1.0 * i / len(self.orientation_maps)) - # for i in range(len(self.orientation_maps)) - # ] - - # fig, (ax) = plt.subplots(figsize=(6, 6)) - # ax.matshow( - # np.zeros((self.orientation_maps[0].num_x, self.orientation_maps[0].num_y)), - # cmap="gray", - # ) - # ax.axis("off") - - # for m in range(len(self.orientation_maps)): - # c0, c1 = (cmap[m][0] * 0.35, cmap[m][1] * 0.35, cmap[m][2] * 0.35, 1), cmap[ - # m - # ] - # cm = mpl.colors.LinearSegmentedColormap.from_list("cmap", [c0, c1], N=10) - # ax.matshow( - # np.ma.array( - # self.orientation_maps[m].corr[:, :, index], mask=best_match_phase[m] - # ), - # cmap=cm, - # ) - # plt.show() - - # return - - # Potentially introduce a way to check best match out of all orientations in phase plan and plug into model - # to quantify phase - - # def phase_plan( - # self, - # method, - # zone_axis_range: np.ndarray = np.array([[0, 1, 1], [1, 1, 1]]), - # angle_step_zone_axis: float = 2.0, - # angle_coarse_zone_axis: float = None, - # angle_refine_range: float = None, - # angle_step_in_plane: float = 2.0, - # accel_voltage: float = 300e3, - # intensity_power: float = 0.25, - # tol_peak_delete=None, - # tol_distance: float = 0.01, - # fiber_axis = None, - # fiber_angles = None, - # ): - # return - - # def quantify_phase( - # self, - # pointlistarray, - # tolerance_distance=0.08, - # method="nnls", - # intensity_power=0, - # mask_peaks=None, - # ): - # """ - # Quantification of the phase of a crystal based on the crystal instances and the pointlistarray. - - # Args: - # pointlisarray (pointlistarray): Pointlistarray to quantify phase of - # tolerance_distance (float): Distance allowed between a peak and match - # method (str): Numerical method used to quantify phase - # intensity_power (float): ... - # mask_peaks (list, optional): A pointer of which positions to mask peaks from - - # Details: - # """ - # if isinstance(pointlistarray, PointListArray): - # phase_weights = np.zeros( - # ( - # pointlistarray.shape[0], - # pointlistarray.shape[1], - # np.sum([map.num_matches for map in self.orientation_maps]), - # ) - # ) - # phase_residuals = np.zeros(pointlistarray.shape) - # for Rx, Ry in tqdmnd(pointlistarray.shape[0], pointlistarray.shape[1]): - # ( - # _, - # phase_weight, - # phase_residual, - # crystal_identity, - # ) = self.quantify_phase_pointlist( - # pointlistarray, - # position=[Rx, Ry], - # tolerance_distance=tolerance_distance, - # method=method, - # intensity_power=intensity_power, - # mask_peaks=mask_peaks, - # ) - # phase_weights[Rx, Ry, :] = phase_weight - # phase_residuals[Rx, Ry] = phase_residual - # self.phase_weights = phase_weights - # self.phase_residuals = phase_residuals - # self.crystal_identity = crystal_identity - # return - # else: - # return TypeError("pointlistarray must be of type pointlistarray.") - # return - - # def quantify_phase_pointlist( - # self, - # pointlistarray, - # position, - # method="nnls", - # tolerance_distance=0.08, - # intensity_power=0, - # mask_peaks=None, - # ): - # """ - # Args: - # pointlisarray (pointlistarray): Pointlistarray to quantify phase of - # position (tuple/list): Position of pointlist in pointlistarray - # tolerance_distance (float): Distance allowed between a peak and match - # method (str): Numerical method used to quantify phase - # intensity_power (float): ... - # mask_peaks (list, optional): A pointer of which positions to mask peaks from - - # Returns: - # pointlist_peak_intensity_matches (np.ndarray): Peak matches in the rows of array and the crystals in the columns - # phase_weights (np.ndarray): Weights of each phase - # phase_residuals (np.ndarray): Residuals - # crystal_identity (list): List of lists, where the each entry represents the position in the - # crystal and orientation match that is associated with the phase - # weights. for example, if the output was [[0,0], [0,1], [1,0], [0,1]], - # the first entry [0,0] in phase weights is associated with the first crystal - # the first match within that crystal. [0,1] is the first crystal and the - # second match within that crystal. - # """ - # # Things to add: - # # 1. Better cost for distance from peaks in pointlists - # # 2. Iterate through multiple tolerance_distance values to find best value. Cost function residuals, or something else? - - # pointlist = pointlistarray.get_pointlist(position[0], position[1]) - # pl_mask = np.where((pointlist["qx"] == 0) & (pointlist["qy"] == 0), 1, 0) - # pointlist.remove(pl_mask) - # # False Negatives (exp peak with no match in crystal instances) will appear here, already coded in - - # if intensity_power == 0: - # pl_intensities = np.ones(pointlist["intensity"].shape) - # else: - # pl_intensities = pointlist["intensity"] ** intensity_power - # # Prepare matches for modeling - # pointlist_peak_matches = [] - # crystal_identity = [] - - # for c in range(len(self.crystals)): - # for m in range(self.orientation_maps[c].num_matches): - # crystal_identity.append([c, m]) - # phase_peak_match_intensities = np.zeros((pointlist["intensity"].shape)) - # bragg_peaks_fit = self.crystals[c].generate_diffraction_pattern( - # self.orientation_maps[c].get_orientation(position[0], position[1]), - # ind_orientation=m, - # ) - # # Find the best match peak within tolerance_distance and add value in the right position - # for d in range(pointlist["qx"].shape[0]): - # distances = [] - # for p in range(bragg_peaks_fit["qx"].shape[0]): - # distances.append( - # np.sqrt( - # (pointlist["qx"][d] - bragg_peaks_fit["qx"][p]) ** 2 - # + (pointlist["qy"][d] - bragg_peaks_fit["qy"][p]) ** 2 - # ) - # ) - # ind = np.where(distances == np.min(distances))[0][0] - - # # Potentially for-loop over multiple values for 'tolerance_distance' to find best tolerance_distance value - # if distances[ind] <= tolerance_distance: - # ## Somewhere in this if statement is probably where better distances from the peak should be coded in - # if ( - # intensity_power == 0 - # ): # This could potentially be a different intensity_power arg - # phase_peak_match_intensities[d] = 1 ** ( - # (tolerance_distance - distances[ind]) - # / tolerance_distance - # ) - # else: - # phase_peak_match_intensities[d] = bragg_peaks_fit[ - # "intensity" - # ][ind] ** ( - # (tolerance_distance - distances[ind]) - # / tolerance_distance - # ) - # else: - # ## This is probably where the false positives (peaks in crystal but not in experiment) should be handled - # continue - - # pointlist_peak_matches.append(phase_peak_match_intensities) - # pointlist_peak_intensity_matches = np.dstack(pointlist_peak_matches) - # pointlist_peak_intensity_matches = ( - # pointlist_peak_intensity_matches.reshape( - # pl_intensities.shape[0], - # pointlist_peak_intensity_matches.shape[-1], - # ) - # ) - - # if len(pointlist["qx"]) > 0: - # if mask_peaks is not None: - # for i in range(len(mask_peaks)): - # if mask_peaks[i] == None: # noqa: E711 - # continue - # inds_mask = np.where( - # pointlist_peak_intensity_matches[:, mask_peaks[i]] != 0 - # )[0] - # for mask in range(len(inds_mask)): - # pointlist_peak_intensity_matches[inds_mask[mask], i] = 0 - - # if method == "nnls": - # phase_weights, phase_residuals = nnls( - # pointlist_peak_intensity_matches, pl_intensities - # ) - - # elif method == "lstsq": - # phase_weights, phase_residuals, rank, singluar_vals = lstsq( - # pointlist_peak_intensity_matches, pl_intensities, rcond=-1 - # ) - # phase_residuals = np.sum(phase_residuals) - # else: - # raise ValueError(method + " Not yet implemented. Try nnls or lstsq.") - # else: - # phase_weights = np.zeros((pointlist_peak_intensity_matches.shape[1],)) - # phase_residuals = np.NaN - # return ( - # pointlist_peak_intensity_matches, - # phase_weights, - # phase_residuals, - # crystal_identity, - # ) - - # def plot_peak_matches( - # self, - # pointlistarray, - # position, - # tolerance_distance, - # ind_orientation, - # pointlist_peak_intensity_matches, - # ): - # """ - # A method to view how the tolerance distance impacts the peak matches associated with - # the quantify_phase_pointlist method. - - # Args: - # pointlistarray, - # position, - # tolerance_distance - # pointlist_peak_intensity_matches - # """ - # pointlist = pointlistarray.get_pointlist(position[0],position[1]) - - # for m in range(pointlist_peak_intensity_matches.shape[1]): - # bragg_peaks_fit = self.crystals[m].generate_diffraction_pattern( - # self.orientation_maps[m].get_orientation(position[0], position[1]), - # ind_orientation = ind_orientation - # ) - # peak_inds = np.where(bragg_peaks_fit.data['intensity'] == pointlist_peak_intensity_matches[:,m]) - - # fig, (ax1, ax2) = plt.subplots(2,1,figsize = figsize) - # ax1 = plot_diffraction_pattern(pointlist,) - # return From 9ada2d86fb44d6e21165aff2b4499cb3083b2b23 Mon Sep 17 00:00:00 2001 From: Colin Date: Thu, 27 Jun 2024 15:54:15 -0700 Subject: [PATCH 40/46] black --- py4DSTEM/process/diffraction/crystal.py | 74 +- py4DSTEM/process/diffraction/crystal_ACOM.py | 125 +-- py4DSTEM/process/diffraction/crystal_phase.py | 946 +++++++++--------- py4DSTEM/process/diffraction/crystal_viz.py | 30 +- py4DSTEM/process/polar/polar_fits.py | 9 +- 5 files changed, 620 insertions(+), 564 deletions(-) diff --git a/py4DSTEM/process/diffraction/crystal.py b/py4DSTEM/process/diffraction/crystal.py index 9aa436cbc..5cea7afb4 100644 --- a/py4DSTEM/process/diffraction/crystal.py +++ b/py4DSTEM/process/diffraction/crystal.py @@ -714,7 +714,7 @@ def generate_diffraction_pattern( tol_excitation_error_mult: float = 3, tol_intensity: float = 1e-5, k_max: Optional[float] = None, - precession_angle_degrees = None, + precession_angle_degrees=None, keep_qz=False, return_orientation_matrix=False, ): @@ -730,49 +730,49 @@ def generate_diffraction_pattern( orientation (Orientation) an Orientation class object - ind_orientation + ind_orientation If input is an Orientation class object with multiple orientations, this input can be used to select a specific orientation. - orientation_matrix (3,3) numpy.array + orientation_matrix (3,3) numpy.array orientation matrix, where columns represent projection directions. - zone_axis_lattice (3,) numpy.array + zone_axis_lattice (3,) numpy.array projection direction in lattice indices - proj_x_lattice (3,) numpy.array + proj_x_lattice (3,) numpy.array x-axis direction in lattice indices - zone_axis_cartesian (3,) numpy.array + zone_axis_cartesian (3,) numpy.array cartesian projection direction - proj_x_cartesian (3,) numpy.array + proj_x_cartesian (3,) numpy.array cartesian projection direction - foil_normal + foil_normal 3 element foil normal - set to None to use zone_axis - proj_x_axis (3,) numpy.array + proj_x_axis (3,) numpy.array 3 element vector defining image x axis (vertical) - accel_voltage (float) + accel_voltage (float) Accelerating voltage in Volts. If not specified, we check to see if crystal already has voltage specified. sigma_excitation_error (float) sigma value for envelope applied to s_g (excitation errors) in units of inverse Angstroms tol_excitation_error_mult (float) tolerance in units of sigma for s_g inclusion - tol_intensity (numpy float) + tol_intensity (numpy float) tolerance in intensity units for inclusion of diffraction spots - k_max (float) + k_max (float) Maximum scattering vector precession_angle_degrees (float) Precession angle for library calculation. Set to None for no precession. - keep_qz (bool) + keep_qz (bool) Flag to return out-of-plane diffraction vectors return_orientation_matrix (bool) Return the orientation matrix Returns ---------- - bragg_peaks (PointList) + bragg_peaks (PointList) list of all Bragg peaks with fields [qx, qy, intensity, h, k, l] - orientation_matrix (array, optional) - 3x3 orientation matrix - + orientation_matrix (array, optional) + 3x3 orientation matrix + """ if not (hasattr(self, "wavelength") and hasattr(self, "accel_voltage")): @@ -809,7 +809,7 @@ def generate_diffraction_pattern( if foil_normal is None: sg = self.excitation_errors( g, - precession_angle_degrees = precession_angle_degrees, + precession_angle_degrees=precession_angle_degrees, ) else: foil_normal = ( @@ -818,8 +818,8 @@ def generate_diffraction_pattern( ).ravel() sg = self.excitation_errors( g, - foil_normal = foil_normal, - precession_angle_degrees = precession_angle_degrees, + foil_normal=foil_normal, + precession_angle_degrees=precession_angle_degrees, ) # Threshold for inclusion in diffraction pattern @@ -827,7 +827,7 @@ def generate_diffraction_pattern( if precession_angle_degrees is None: keep = np.abs(sg) <= sg_max else: - keep = np.min(np.abs(sg),axis=1) <= sg_max + keep = np.min(np.abs(sg), axis=1) <= sg_max # Maximum scattering angle cutoff if k_max is not None: @@ -843,10 +843,8 @@ def generate_diffraction_pattern( ) else: g_int = self.struct_factors_int[keep] * np.mean( - np.exp( - (sg[keep] ** 2) / (-2 * sigma_excitation_error**2) - ), - axis = 1, + np.exp((sg[keep] ** 2) / (-2 * sigma_excitation_error**2)), + axis=1, ) hkl = self.hkl[:, keep] @@ -1394,29 +1392,31 @@ def excitation_errors( t = np.deg2rad(precession_angle_degrees) p = np.linspace( 0, - 2.0*np.pi, + 2.0 * np.pi, precession_steps, - endpoint = False, + endpoint=False, ) if foil_normal is None: - foil_normal = np.array((0.0,0.0,-1.0)) + foil_normal = np.array((0.0, 0.0, -1.0)) k = np.reshape( - (-1/self.wavelength) * np.vstack(( - np.sin(t)*np.cos(p), - np.sin(t)*np.sin(p), - np.cos(t)*np.ones(p.size), - )), - (3,1,p.size), + (-1 / self.wavelength) + * np.vstack( + ( + np.sin(t) * np.cos(p), + np.sin(t) * np.sin(p), + np.cos(t) * np.ones(p.size), + ) + ), + (3, 1, p.size), ) - term1 = np.sum( (g[:,:,None] + k) * foil_normal[:,None,None], axis=0) - term2 = np.sum( (g[:,:,None] + 2*k) * g[:,:,None], axis=0) + term1 = np.sum((g[:, :, None] + k) * foil_normal[:, None, None], axis=0) + term2 = np.sum((g[:, :, None] + 2 * k) * g[:, :, None], axis=0) sg = np.sqrt(term1**2 - term2) - term1 return sg - def calculate_bragg_peak_histogram( self, bragg_peaks, diff --git a/py4DSTEM/process/diffraction/crystal_ACOM.py b/py4DSTEM/process/diffraction/crystal_ACOM.py index 74e842817..ae71c20bc 100644 --- a/py4DSTEM/process/diffraction/crystal_ACOM.py +++ b/py4DSTEM/process/diffraction/crystal_ACOM.py @@ -28,10 +28,10 @@ def orientation_plan( accel_voltage: float = 300e3, corr_kernel_size: float = 0.08, sigma_excitation_error: float = 0.02, - precession_angle_degrees = None, + precession_angle_degrees=None, power_radial: float = 1.0, - power_intensity: float = 0.25, - power_intensity_experiment: float = 0.25, + power_intensity: float = 0.25, + power_intensity_experiment: float = 0.25, calculate_correlation_array=True, tol_peak_delete=None, tol_distance: float = 0.01, @@ -56,53 +56,53 @@ def orientation_plan( Setting to 'fiber' as a string will make a spherical cap around a given vector. Setting to 'auto' will use pymatgen to determine the point group symmetry of the structure and choose an appropriate zone_axis_range - angle_step_zone_axis (float): + angle_step_zone_axis (float): Approximate angular step size for zone axis search [degrees] - angle_coarse_zone_axis (float): + angle_coarse_zone_axis (float): Coarse step size for zone axis search [degrees]. Setting to None uses the same value as angle_step_zone_axis. - angle_refine_range (float): + angle_refine_range (float): Range of angles to use for zone axis refinement. Setting to None uses same value as angle_coarse_zone_axis. - angle_step_in_plane (float): + angle_step_in_plane (float): Approximate angular step size for in-plane rotation [degrees] - accel_voltage (float): + accel_voltage (float): Accelerating voltage for electrons [Volts] - corr_kernel_size (float): - Correlation kernel size length. The size of the overlap kernel between the + corr_kernel_size (float): + Correlation kernel size length. The size of the overlap kernel between the measured Bragg peaks and diffraction library Bragg peaks. [1/Angstroms] sigma_excitation_error (float): The out of plane excitation error tolerance. [1/Angstroms] precession_angle_degrees (float) Tilt angle of illuminaiton cone in degrees for precession electron diffraction (PED). - - power_radial (float): + + power_radial (float): Power for scaling the correlation intensity as a function of the peak radius - power_intensity (float): + power_intensity (float): Power for scaling the correlation intensity as a function of simulated peak intensity - power_intensity_experiment (float): + power_intensity_experiment (float): Power for scaling the correlation intensity as a function of experimental peak intensity - calculate_correlation_array (bool): + calculate_correlation_array (bool): Set to false to skip calculating the correlation array. This is useful when we only want the angular range / rotation matrices. - tol_peak_delete (float): + tol_peak_delete (float): Distance to delete peaks for multiple matches. Default is kernel_size * 0.5 - tol_distance (float): + tol_distance (float): Distance tolerance for radial shell assignment [1/Angstroms] - fiber_axis (float): + fiber_axis (float): (3,) vector specifying the fiber axis - fiber_angles (float): + fiber_angles (float): (2,) vector specifying angle range from fiber axis, and in-plane angular range [degrees] - cartesian_directions (bool): + cartesian_directions (bool): When set to true, all zone axes and projection directions are specified in Cartesian directions. - figsize (float): + figsize (float): (2,) vector giving the figure size - CUDA (bool): + CUDA (bool): Use CUDA for the Fourier operations. - progress_bar (bool): + progress_bar (bool): If false no progress bar is displayed, """ @@ -120,8 +120,10 @@ def orientation_plan( if precession_angle_degrees is None: self.orientation_precession_angle_degrees = None else: - self.orientation_precession_angle_degrees = np.asarray(precession_angle_degrees) - self.orientation_precession_angle = np.deg2rad(np.asarray(precession_angle_degrees)) + self.orientation_precession_angle_degrees = np.asarray(precession_angle_degrees) + self.orientation_precession_angle = np.deg2rad( + np.asarray(precession_angle_degrees) + ) if tol_peak_delete is None: self.orientation_tol_peak_delete = self.orientation_kernel_size * 0.5 else: @@ -775,37 +777,46 @@ def orientation_plan( # calculate intensity of spots if precession_angle_degrees is None: - Ig = np.exp(sg[keep]**2/(-2*sigma_excitation_error**2)) + Ig = np.exp(sg[keep] ** 2 / (-2 * sigma_excitation_error**2)) else: # precession extension - prec = np.cos(np.linspace(0,2*np.pi,90,endpoint=False)) - dsg = np.tan(self.orientation_precession_angle) * np.sum(g[:2,keep]**2,axis=0) - Ig = np.mean(np.exp((sg[keep,None] + dsg[:,None]*prec[None,:])**2 \ - / (-2*sigma_excitation_error**2)), axis = 1) + prec = np.cos(np.linspace(0, 2 * np.pi, 90, endpoint=False)) + dsg = np.tan(self.orientation_precession_angle) * np.sum( + g[:2, keep] ** 2, axis=0 + ) + Ig = np.mean( + np.exp( + (sg[keep, None] + dsg[:, None] * prec[None, :]) ** 2 + / (-2 * sigma_excitation_error**2) + ), + axis=1, + ) # in-plane rotation angle phi = np.arctan2(g[1, keep], g[0, keep]) phi_ind = phi / self.orientation_gamma[1] # step size of annular bins - phi_floor = np.floor(phi_ind).astype('int') + phi_floor = np.floor(phi_ind).astype("int") dphi = phi_ind - phi_floor # write intensities into orientation plan slice radial_inds = self.orientation_shell_index[keep] - self.orientation_ref[a0, radial_inds, phi_floor] += \ - (1-dphi) * \ - np.power(self.struct_factors_int[keep] * Ig, power_intensity) * \ - np.power(self.orientation_shell_radii[radial_inds], power_radial) - self.orientation_ref[a0, radial_inds, np.mod(phi_floor+1,self.orientation_in_plane_steps)] += \ - dphi * \ - np.power(self.struct_factors_int[keep] * Ig, power_intensity) * \ - np.power(self.orientation_shell_radii[radial_inds], power_radial) - + self.orientation_ref[a0, radial_inds, phi_floor] += ( + (1 - dphi) + * np.power(self.struct_factors_int[keep] * Ig, power_intensity) + * np.power(self.orientation_shell_radii[radial_inds], power_radial) + ) + self.orientation_ref[ + a0, radial_inds, np.mod(phi_floor + 1, self.orientation_in_plane_steps) + ] += ( + dphi + * np.power(self.struct_factors_int[keep] * Ig, power_intensity) + * np.power(self.orientation_shell_radii[radial_inds], power_radial) + ) # # Loop over all peaks # for a1 in np.arange(self.g_vec_all.shape[1]): # if keep[a1]: - # for a1 in np.arange(self.g_vec_all.shape[1]): # ind_radial = self.orientation_shell_index[a1] @@ -1048,21 +1059,23 @@ def match_single_pattern( self.orientation_power_intensity_experiment, ) * np.exp( - (dqr[sub, None] ** 2 - + ( - ( - np.mod( - self.orientation_gamma[None, :] - - qphi[sub, None] - + np.pi, - 2 * np.pi, + ( + dqr[sub, None] ** 2 + + ( + ( + np.mod( + self.orientation_gamma[None, :] + - qphi[sub, None] + + np.pi, + 2 * np.pi, + ) + - np.pi ) - - np.pi + * radius ) - * radius + ** 2 ) - ** 2) - / (-2*self.orientation_kernel_size**2) + / (-2 * self.orientation_kernel_size**2) ), axis=0, ) @@ -1096,7 +1109,6 @@ def match_single_pattern( # axis=0, # ) - # im_polar[ind_radial, :] = np.sum( # np.power(radius, self.orientation_power_radial) # * np.power( @@ -1127,7 +1139,6 @@ def match_single_pattern( # axis=0, # ) - # normalization # im_polar -= np.mean(im_polar) @@ -1628,8 +1639,8 @@ def match_single_pattern( bragg_peaks_fit = self.generate_diffraction_pattern( orientation, ind_orientation=match_ind, - sigma_excitation_error = self.orientation_sigma_excitation_error, - precession_angle_degrees = self.orientation_precession_angle_degrees, + sigma_excitation_error=self.orientation_sigma_excitation_error, + precession_angle_degrees=self.orientation_precession_angle_degrees, ) remove = np.zeros_like(qx, dtype="bool") diff --git a/py4DSTEM/process/diffraction/crystal_phase.py b/py4DSTEM/process/diffraction/crystal_phase.py index 750ea4670..3db718555 100644 --- a/py4DSTEM/process/diffraction/crystal_phase.py +++ b/py4DSTEM/process/diffraction/crystal_phase.py @@ -10,7 +10,6 @@ from py4DSTEM.process.diffraction.crystal_viz import plot_diffraction_pattern - class Crystal_Phase: """ A class storing multiple crystal structures, and associated diffraction data. @@ -21,9 +20,9 @@ class Crystal_Phase: def __init__( self, crystals, - crystal_names = None, - orientation_maps = None, - name = None, + crystal_names=None, + orientation_maps=None, + name=None, ): """ Args: @@ -39,7 +38,9 @@ def __init__( # List of orientation maps if orientation_maps is None: - self.orientation_maps = [crystals[ind].orientation_map for ind in range(self.num_crystals)] + self.orientation_maps = [ + crystals[ind].orientation_map for ind in range(self.num_crystals) + ] else: if len(self.crystals) != len(orientation_maps): raise ValueError( @@ -49,60 +50,64 @@ def __init__( # Names of all crystal phases if crystal_names is None: - self.crystal_names = ['crystal' + str(ind) for ind in range(self.num_crystals)] + self.crystal_names = [ + "crystal" + str(ind) for ind in range(self.num_crystals) + ] else: self.crystal_names = crystal_names # Name of the phase map if name is None: - self.name = 'phase map' + self.name = "phase map" else: self.name = name # Get some attributes from crystals self.k_max = np.zeros(self.num_crystals) - self.num_matches = np.zeros(self.num_crystals, dtype='int') - self.crystal_identity = np.zeros((0,2), dtype='int') + self.num_matches = np.zeros(self.num_crystals, dtype="int") + self.crystal_identity = np.zeros((0, 2), dtype="int") for a0 in range(self.num_crystals): self.k_max[a0] = self.crystals[a0].k_max self.num_matches[a0] = self.crystals[a0].orientation_map.num_matches for a1 in range(self.num_matches[a0]): - self.crystal_identity = np.append(self.crystal_identity,np.array((a0,a1),dtype='int')[None,:], axis=0) + self.crystal_identity = np.append( + self.crystal_identity, + np.array((a0, a1), dtype="int")[None, :], + axis=0, + ) self.num_fits = np.sum(self.num_matches) - - def quantify_single_pattern( self, pointlistarray: PointListArray, - xy_position = (0,0), - corr_kernel_size = 0.04, + xy_position=(0, 0), + corr_kernel_size=0.04, sigma_excitation_error: float = 0.02, - precession_angle_degrees = None, - power_intensity: float = 0.25, - power_intensity_experiment: float = 0.25, - k_max = None, - max_number_patterns = 2, - single_phase = False, - allow_strain = False, - strain_iterations = 3, - strain_max = 0.02, - include_false_positives = True, - weight_false_positives = 1.0, - weight_unmatched_peaks = 1.0, - plot_result = True, - plot_only_nonzero_phases = True, - plot_unmatched_peaks = False, - plot_correlation_radius = False, - scale_markers_experiment = 40, - scale_markers_calculated = 200, - crystal_inds_plot = None, - phase_colors = None, - figsize = (10,7), - verbose = True, - returnfig = False, - ): + precession_angle_degrees=None, + power_intensity: float = 0.25, + power_intensity_experiment: float = 0.25, + k_max=None, + max_number_patterns=2, + single_phase=False, + allow_strain=False, + strain_iterations=3, + strain_max=0.02, + include_false_positives=True, + weight_false_positives=1.0, + weight_unmatched_peaks=1.0, + plot_result=True, + plot_only_nonzero_phases=True, + plot_unmatched_peaks=False, + plot_correlation_radius=False, + scale_markers_experiment=40, + scale_markers_calculated=200, + crystal_inds_plot=None, + phase_colors=None, + figsize=(10, 7), + verbose=True, + returnfig=False, + ): """ Quantify the phase for a single diffraction pattern. @@ -110,21 +115,21 @@ def quantify_single_pattern( Parameters ---------- - + pointlistarray: (PointListArray) Full array of all calibrated experimental bragg peaks, with shape = (num_x,num_y) xy_position: (int,int) The (x,y) or (row,column) position to be quantified. - corr_kernel_size: (float) - Correlation kernel size length. The size of the overlap kernel between the + corr_kernel_size: (float) + Correlation kernel size length. The size of the overlap kernel between the measured Bragg peaks and diffraction library Bragg peaks. [1/Angstroms] sigma_excitation_error: (float) The out of plane excitation error tolerance. [1/Angstroms] precession_angle_degrees: (float) Tilt angle of illuminaiton cone in degrees for precession electron diffraction (PED). - power_intensity: (float) + power_intensity: (float) Power for scaling the correlation intensity as a function of simulated peak intensity. - power_intensity_experiment: (float): + power_intensity_experiment: (float): Power for scaling the correlation intensity as a function of experimental peak intensity. k_max: (float) Max k values included in fits, for both x and y directions. @@ -171,7 +176,7 @@ def quantify_single_pattern( Returns ------- phase_weights: (np.array) - Estimated relative fraction of each phase for all probe positions. + Estimated relative fraction of each phase for all probe positions. shape = (num_x, num_y, num_orientations) where num_orientations is the total number of all orientations for all phases. phase_residual: (np.array) @@ -193,45 +198,49 @@ def quantify_single_pattern( tol2 = 1e-6 # calibrations - center = pointlistarray.calstate['center'] - ellipse = pointlistarray.calstate['ellipse'] - pixel = pointlistarray.calstate['pixel'] - rotate = pointlistarray.calstate['rotate'] + center = pointlistarray.calstate["center"] + ellipse = pointlistarray.calstate["ellipse"] + pixel = pointlistarray.calstate["pixel"] + rotate = pointlistarray.calstate["rotate"] if center is False: - raise ValueError('Bragg peaks must be center calibration') + raise ValueError("Bragg peaks must be center calibration") if pixel is False: - raise ValueError('Bragg peaks must have pixel size calibration') + raise ValueError("Bragg peaks must have pixel size calibration") # TODO - potentially warn the user if ellipse / rotate calibration not available if phase_colors is None: - phase_colors = np.array(( - (1.0,0.0,0.0,1.0), - (0.0,0.8,1.0,1.0), - (0.0,0.6,0.0,1.0), - (1.0,0.0,1.0,1.0), - (0.0,0.2,1.0,1.0), - (1.0,0.8,0.0,1.0), - )) + phase_colors = np.array( + ( + (1.0, 0.0, 0.0, 1.0), + (0.0, 0.8, 1.0, 1.0), + (0.0, 0.6, 0.0, 1.0), + (1.0, 0.0, 1.0, 1.0), + (0.0, 0.2, 1.0, 1.0), + (1.0, 0.8, 0.0, 1.0), + ) + ) # Experimental values bragg_peaks = pointlistarray.get_vectors( xy_position[0], xy_position[1], - center = center, - ellipse = ellipse, - pixel = pixel, - rotate = rotate) + center=center, + ellipse=ellipse, + pixel=pixel, + rotate=rotate, + ) # bragg_peaks = pointlistarray.get_pointlist(xy_position[0],xy_position[1]).copy() if k_max is None: - keep = bragg_peaks.data["qx"]**2 + bragg_peaks.data["qy"]**2 > tol2 + keep = bragg_peaks.data["qx"] ** 2 + bragg_peaks.data["qy"] ** 2 > tol2 else: - keep = np.logical_and.reduce(( - bragg_peaks.data["qx"]**2 + bragg_peaks.data["qy"]**2 > tol2, - np.abs(bragg_peaks.data["qx"]) < k_max, - np.abs(bragg_peaks.data["qy"]) < k_max, - )) + keep = np.logical_and.reduce( + ( + bragg_peaks.data["qx"] ** 2 + bragg_peaks.data["qy"] ** 2 > tol2, + np.abs(bragg_peaks.data["qx"]) < k_max, + np.abs(bragg_peaks.data["qy"]) < k_max, + ) + ) - # ind_center_beam = np.argmin( # bragg_peaks.data["qx"]**2 + bragg_peaks.data["qy"]**2) # mask = np.ones_like(bragg_peaks.data["qx"], dtype='bool') @@ -245,9 +254,14 @@ def quantify_single_pattern( intensity = np.ones_like(qx) intensity0 = np.ones_like(qx0) else: - intensity = bragg_peaks.data["intensity"][keep]**power_intensity_experiment - intensity0 = bragg_peaks.data["intensity"][np.logical_not(keep)]**power_intensity_experiment - int_total = np.sum(intensity) + intensity = ( + bragg_peaks.data["intensity"][keep] ** power_intensity_experiment + ) + intensity0 = ( + bragg_peaks.data["intensity"][np.logical_not(keep)] + ** power_intensity_experiment + ) + int_total = np.sum(intensity) # init basis array if include_false_positives: @@ -256,9 +270,9 @@ def quantify_single_pattern( else: basis = np.zeros((intensity.shape[0], self.num_fits)) if allow_strain: - m_strains = np.zeros((self.num_fits,2,2)) - m_strains[:,0,0] = 1.0 - m_strains[:,1,1] = 1.0 + m_strains = np.zeros((self.num_fits, 2, 2)) + m_strains[:, 0, 0] = 1.0 + m_strains[:, 1, 1] = 1.0 # kernel radius squared radius_max_2 = corr_kernel_size**2 @@ -271,8 +285,8 @@ def quantify_single_pattern( # Generate point list data, match to experimental peaks for a0 in range(self.num_fits): - c = self.crystal_identity[a0,0] - m = self.crystal_identity[a0,1] + c = self.crystal_identity[a0, 0] + m = self.crystal_identity[a0, 1] # for c in range(self.num_crystals): # for m in range(self.num_matches[c]): # ind_match += 1 @@ -282,40 +296,46 @@ def quantify_single_pattern( self.crystals[c].orientation_map.get_orientation( xy_position[0], xy_position[1] ), - ind_orientation = m, - sigma_excitation_error = sigma_excitation_error, - precession_angle_degrees = precession_angle_degrees, + ind_orientation=m, + sigma_excitation_error=sigma_excitation_error, + precession_angle_degrees=precession_angle_degrees, ) if k_max is None: - del_peak = bragg_peaks_fit.data["qx"]**2 \ - + bragg_peaks_fit.data["qy"]**2 < tol2 + del_peak = ( + bragg_peaks_fit.data["qx"] ** 2 + bragg_peaks_fit.data["qy"] ** 2 + < tol2 + ) else: - del_peak = np.logical_or.reduce(( - bragg_peaks_fit.data["qx"]**2 \ - + bragg_peaks_fit.data["qy"]**2 < tol2, - np.abs(bragg_peaks_fit.data["qx"]) > k_max, - np.abs(bragg_peaks_fit.data["qy"]) > k_max, - )) + del_peak = np.logical_or.reduce( + ( + bragg_peaks_fit.data["qx"] ** 2 + + bragg_peaks_fit.data["qy"] ** 2 + < tol2, + np.abs(bragg_peaks_fit.data["qx"]) > k_max, + np.abs(bragg_peaks_fit.data["qy"]) > k_max, + ) + ) bragg_peaks_fit.remove(del_peak) # peak intensities if power_intensity == 0: int_fit = np.ones_like(bragg_peaks_fit.data["qx"]) else: - int_fit = bragg_peaks_fit.data['intensity']**power_intensity - + int_fit = bragg_peaks_fit.data["intensity"] ** power_intensity + # Pair peaks to experiment if plot_result: - matches = np.zeros((bragg_peaks_fit.data.shape[0]),dtype='bool') + matches = np.zeros((bragg_peaks_fit.data.shape[0]), dtype="bool") if allow_strain: for a1 in range(strain_iterations): # Initial peak pairing to find best-fit strain distortion - pair_sub = np.zeros(bragg_peaks_fit.data.shape[0],dtype='bool') - pair_inds = np.zeros(bragg_peaks_fit.data.shape[0],dtype='int') + pair_sub = np.zeros(bragg_peaks_fit.data.shape[0], dtype="bool") + pair_inds = np.zeros(bragg_peaks_fit.data.shape[0], dtype="int") for a1 in range(bragg_peaks_fit.data.shape[0]): - dist2 = (bragg_peaks_fit.data['qx'][a1] - qx)**2 \ - + (bragg_peaks_fit.data['qy'][a1] - qy)**2 + dist2 = (bragg_peaks_fit.data["qx"][a1] - qx) ** 2 + ( + bragg_peaks_fit.data["qy"][a1] - qy + ) ** 2 ind_min = np.argmin(dist2) val_min = dist2[ind_min] @@ -327,19 +347,32 @@ def quantify_single_pattern( # requires at least 4 peak pairs if np.sum(pair_sub) >= 4: # pair_obs = bragg_peaks_fit.data[['qx','qy']][pair_sub] - pair_basis = np.vstack(( - bragg_peaks_fit.data['qx'][pair_sub], - bragg_peaks_fit.data['qy'][pair_sub], - )).T - pair_obs = np.vstack(( - qx[pair_inds[pair_sub]], - qy[pair_inds[pair_sub]], - )).T + pair_basis = np.vstack( + ( + bragg_peaks_fit.data["qx"][pair_sub], + bragg_peaks_fit.data["qy"][pair_sub], + ) + ).T + pair_obs = np.vstack( + ( + qx[pair_inds[pair_sub]], + qy[pair_inds[pair_sub]], + ) + ).T # weights dists = np.sqrt( - (bragg_peaks_fit.data['qx'][pair_sub] - qx[pair_inds[pair_sub]])**2 + \ - (bragg_peaks_fit.data['qx'][pair_sub] - qx[pair_inds[pair_sub]])**2) + ( + bragg_peaks_fit.data["qx"][pair_sub] + - qx[pair_inds[pair_sub]] + ) + ** 2 + + ( + bragg_peaks_fit.data["qx"][pair_sub] + - qx[pair_inds[pair_sub]] + ) + ** 2 + ) weights = np.sqrt( int_fit[pair_sub] * intensity[pair_inds[pair_sub]] ) * (1 - dists / corr_kernel_size) @@ -347,9 +380,9 @@ def quantify_single_pattern( # strain tensor m_strain = np.linalg.lstsq( - pair_basis * weights[:,None], - pair_obs * weights[:,None], - rcond = None, + pair_basis * weights[:, None], + pair_obs * weights[:, None], + rcond=None, )[0] # Clamp strains to be within the user-specified limit @@ -361,34 +394,42 @@ def quantify_single_pattern( m_strains[a0] *= m_strain # Transformed peak positions - qx_copy = bragg_peaks_fit.data['qx'] - qy_copy = bragg_peaks_fit.data['qy'] - bragg_peaks_fit.data['qx'] = qx_copy*m_strain[0,0] + qy_copy*m_strain[1,0] - bragg_peaks_fit.data['qy'] = qx_copy*m_strain[0,1] + qy_copy*m_strain[1,1] + qx_copy = bragg_peaks_fit.data["qx"] + qy_copy = bragg_peaks_fit.data["qy"] + bragg_peaks_fit.data["qx"] = ( + qx_copy * m_strain[0, 0] + qy_copy * m_strain[1, 0] + ) + bragg_peaks_fit.data["qy"] = ( + qx_copy * m_strain[0, 1] + qy_copy * m_strain[1, 1] + ) # Loop over all peaks, pair experiment to library for a1 in range(bragg_peaks_fit.data.shape[0]): - dist2 = (bragg_peaks_fit.data['qx'][a1] - qx)**2 \ - + (bragg_peaks_fit.data['qy'][a1] - qy)**2 + dist2 = (bragg_peaks_fit.data["qx"][a1] - qx) ** 2 + ( + bragg_peaks_fit.data["qy"][a1] - qy + ) ** 2 ind_min = np.argmin(dist2) val_min = dist2[ind_min] if include_false_positives: - weight = np.clip(1 - np.sqrt(dist2[ind_min]) / corr_kernel_size,0,1) - basis[ind_min,a0] = int_fit[a1] * weight - unpaired_peaks.append([ - a0, - int_fit[a1] * (1 - weight), - ]) + weight = np.clip( + 1 - np.sqrt(dist2[ind_min]) / corr_kernel_size, 0, 1 + ) + basis[ind_min, a0] = int_fit[a1] * weight + unpaired_peaks.append( + [ + a0, + int_fit[a1] * (1 - weight), + ] + ) if weight > 1e-8 and plot_result: matches[a1] = True else: if val_min < radius_max_2: - basis[ind_min,a0] = int_fit[a1] + basis[ind_min, a0] = int_fit[a1] if plot_result: matches[a1] = True - # if val_min < radius_max_2: # # weight = 1 - np.sqrt(dist2[ind_min]) / corr_kernel_size # # weight = 1 + corr_distance_scale * \ @@ -402,22 +443,22 @@ def quantify_single_pattern( # unpaired_peaks.append([a0,int_fit[a1]]) if plot_result: - library_peaks.append(bragg_peaks_fit) + library_peaks.append(bragg_peaks_fit) library_int.append(int_fit) library_matches.append(matches) # If needed, augment basis and observations with false positives if include_false_positives: - basis_aug = np.zeros((len(unpaired_peaks),self.num_fits)) + basis_aug = np.zeros((len(unpaired_peaks), self.num_fits)) for a0 in range(len(unpaired_peaks)): - basis_aug[a0,unpaired_peaks[a0][0]] = unpaired_peaks[a0][1] + basis_aug[a0, unpaired_peaks[a0][0]] = unpaired_peaks[a0][1] basis = np.vstack((basis, basis_aug * weight_false_positives)) obs = np.hstack((intensity, np.zeros(len(unpaired_peaks)))) else: obs = intensity - + # Solve for phase weight coefficients try: phase_weights = np.zeros(self.num_fits) @@ -428,16 +469,16 @@ def quantify_single_pattern( crystal_res = np.zeros(self.num_crystals) for a0 in range(self.num_crystals): - inds_solve = self.crystal_identity[:,0] == a0 + inds_solve = self.crystal_identity[:, 0] == a0 search = True while search is True: - basis_solve = basis[:,inds_solve] + basis_solve = basis[:, inds_solve] obs_solve = obs.copy() if weight_unmatched_peaks > 1.0: - sub_unmatched = np.sum(basis_solve,axis=1)<1e-8 + sub_unmatched = np.sum(basis_solve, axis=1) < 1e-8 obs_solve[sub_unmatched] *= weight_unmatched_peaks phase_weights_cand, phase_residual_cand = nnls( @@ -445,7 +486,10 @@ def quantify_single_pattern( obs_solve, ) - if np.count_nonzero(phase_weights_cand > 0.0) <= max_number_patterns: + if ( + np.count_nonzero(phase_weights_cand > 0.0) + <= max_number_patterns + ): phase_weights[inds_solve] = phase_weights_cand crystal_res[a0] = phase_residual_cand search = False @@ -457,9 +501,7 @@ def quantify_single_pattern( # ind_best_fit = np.argmax(phase_weights) phase_residual = crystal_res[ind_best_fit] - sub = np.logical_not( - self.crystal_identity[:,0] == ind_best_fit - ) + sub = np.logical_not(self.crystal_identity[:, 0] == ind_best_fit) phase_weights[sub] = 0.0 # Estimate reliability as difference between best fit and 2nd best fit @@ -468,15 +510,18 @@ def quantify_single_pattern( else: # Allow all crystals and orientation matches in the pattern - inds_solve = np.ones(self.num_fits,dtype='bool') + inds_solve = np.ones(self.num_fits, dtype="bool") search = True while search is True: phase_weights_cand, phase_residual_cand = nnls( - basis[:,inds_solve], + basis[:, inds_solve], obs, ) - if np.count_nonzero(phase_weights_cand > 0.0) <= max_number_patterns: + if ( + np.count_nonzero(phase_weights_cand > 0.0) + <= max_number_patterns + ): phase_weights[inds_solve] = phase_weights_cand phase_residual = phase_residual_cand search = False @@ -484,9 +529,8 @@ def quantify_single_pattern( inds = np.where(inds_solve)[0] inds_solve[inds[np.argmin(phase_weights_cand)]] = False - # Estimate the phase reliability - inds_solve = np.ones(self.num_fits,dtype='bool') + inds_solve = np.ones(self.num_fits, dtype="bool") inds_solve[phase_weights > 1e-8] = False if np.all(inds_solve == False): @@ -495,10 +539,13 @@ def quantify_single_pattern( search = True while search is True: phase_weights_cand, phase_residual_cand = nnls( - basis[:,inds_solve], + basis[:, inds_solve], obs, ) - if np.count_nonzero(phase_weights_cand > 0.0) <= max_number_patterns: + if ( + np.count_nonzero(phase_weights_cand > 0.0) + <= max_number_patterns + ): phase_residual_2nd = phase_residual_cand search = False else: @@ -506,7 +553,7 @@ def quantify_single_pattern( inds_solve[inds[np.argmin(phase_weights_cand)]] = False phase_weights_cand, phase_residual_cand = nnls( - basis[:,inds_solve], + basis[:, inds_solve], obs, ) phase_reliability = phase_residual_2nd - phase_residual @@ -516,34 +563,25 @@ def quantify_single_pattern( phase_residual = np.sqrt(np.sum(intensity**2)) phase_reliability = 0.0 - if verbose: ind_max = np.argmax(phase_weights) # print() - print('\033[1m' + 'phase_weight or_ind name' + '\033[0m') + print("\033[1m" + "phase_weight or_ind name" + "\033[0m") # print() for a0 in range(self.num_fits): - c = self.crystal_identity[a0,0] - m = self.crystal_identity[a0,1] - line = '{:>12} {:>8} {:<12}'.format( - f'{phase_weights[a0]:.2f}', - m, - self.crystal_names[c] - ) + c = self.crystal_identity[a0, 0] + m = self.crystal_identity[a0, 1] + line = "{:>12} {:>8} {:<12}".format( + f"{phase_weights[a0]:.2f}", m, self.crystal_names[c] + ) if a0 == ind_max: - print('\033[1m' + line + '\033[0m') + print("\033[1m" + line + "\033[0m") else: print(line) - print('----------------------------') - line = '{:>12} {:>15}'.format( - f'{sum(phase_weights):.2f}', - 'fit total' - ) - print('\033[1m' + line + '\033[0m') - line = '{:>12} {:>15}'.format( - f'{phase_residual:.2f}', - 'fit residual' - ) + print("----------------------------") + line = "{:>12} {:>15}".format(f"{sum(phase_weights):.2f}", "fit total") + print("\033[1m" + line + "\033[0m") + line = "{:>12} {:>15}".format(f"{phase_residual:.2f}", "fit residual") print(line) # Plotting @@ -558,39 +596,40 @@ def quantify_single_pattern( if plot_correlation_radius: # plot the experimental radii - t = np.linspace(0,2*np.pi,91,endpoint=True) + t = np.linspace(0, 2 * np.pi, 91, endpoint=True) ct = np.cos(t) * corr_kernel_size st = np.sin(t) * corr_kernel_size for a0 in range(qx.shape[0]): ax.plot( qy[a0] + st, qx[a0] + ct, - color = 'k', - linewidth = 1, - ) + color="k", + linewidth=1, + ) # plot the experimental peaks ax.scatter( qy0, qx0, # s = scale_markers_experiment * intensity0, - s = scale_markers_experiment * bragg_peaks.data["intensity"][np.logical_not(keep)], - marker = "o", - facecolor = [0.7, 0.7, 0.7], - ) + s=scale_markers_experiment + * bragg_peaks.data["intensity"][np.logical_not(keep)], + marker="o", + facecolor=[0.7, 0.7, 0.7], + ) ax.scatter( qy, qx, # s = scale_markers_experiment * intensity, - s = scale_markers_experiment * bragg_peaks.data["intensity"][keep], - marker = "o", - facecolor = [0.7, 0.7, 0.7], - ) + s=scale_markers_experiment * bragg_peaks.data["intensity"][keep], + marker="o", + facecolor=[0.7, 0.7, 0.7], + ) # legend if k_max is None: k_max = np.max(self.k_max) - dx_leg = -0.05*k_max - dy_leg = 0.04*k_max + dx_leg = -0.05 * k_max + dy_leg = 0.04 * k_max text_params = { "va": "center", "ha": "left", @@ -601,34 +640,25 @@ def quantify_single_pattern( } if plot_correlation_radius: ax_leg.plot( - 0 + st*0.5, - -dx_leg + ct*0.5, - color = 'k', - linewidth = 1, - ) + 0 + st * 0.5, + -dx_leg + ct * 0.5, + color="k", + linewidth=1, + ) ax_leg.scatter( 0, 0, - s = 200, - marker = "o", - facecolor = [0.7, 0.7, 0.7], - ) - ax_leg.text( - dy_leg, - 0, - 'Experimental peaks', - **text_params) + s=200, + marker="o", + facecolor=[0.7, 0.7, 0.7], + ) + ax_leg.text(dy_leg, 0, "Experimental peaks", **text_params) if plot_correlation_radius: - ax_leg.text( - dy_leg, - -dx_leg, - 'Correlation radius', - **text_params) - + ax_leg.text(dy_leg, -dx_leg, "Correlation radius", **text_params) # plot calculated diffraction patterns uvals = phase_colors.copy() - uvals[:,3] = 0.3 + uvals[:, 3] = 0.3 # uvals = np.array(( # (1.0,0.0,0.0,0.2), # (0.0,0.8,1.0,0.2), @@ -637,25 +667,35 @@ def quantify_single_pattern( # (0.0,0.2,1.0,0.2), # (1.0,0.8,0.0,0.2), # )) - mvals = ['v','^','<','>','d','s',] + mvals = [ + "v", + "^", + "<", + ">", + "d", + "s", + ] count_leg = 0 for a0 in range(self.num_fits): - c = self.crystal_identity[a0,0] - m = self.crystal_identity[a0,1] + c = self.crystal_identity[a0, 0] + m = self.crystal_identity[a0, 1] - if crystal_inds_plot == None or np.min(np.abs(c - crystal_inds_plot)) == 0: + if ( + crystal_inds_plot == None + or np.min(np.abs(c - crystal_inds_plot)) == 0 + ): - qx_fit = library_peaks[a0].data['qx'] - qy_fit = library_peaks[a0].data['qy'] + qx_fit = library_peaks[a0].data["qx"] + qy_fit = library_peaks[a0].data["qy"] if allow_strain: m_strain = m_strains[a0] # Transformed peak positions qx_copy = qx_fit.copy() qy_copy = qy_fit.copy() - qx_fit = qx_copy*m_strain[0,0] + qy_copy*m_strain[1,0] - qy_fit = qx_copy*m_strain[0,1] + qy_copy*m_strain[1,1] + qx_fit = qx_copy * m_strain[0, 0] + qy_copy * m_strain[1, 0] + qy_fit = qx_copy * m_strain[0, 1] + qy_copy * m_strain[1, 1] int_fit = library_int[a0] matches_fit = library_matches[a0] @@ -666,33 +706,35 @@ def quantify_single_pattern( ax.scatter( qy_fit[matches_fit], qx_fit[matches_fit], - s = scale_markers_calculated * int_fit[matches_fit], - marker = mvals[c], - facecolor = phase_colors[c,:], - ) + s=scale_markers_calculated * int_fit[matches_fit], + marker=mvals[c], + facecolor=phase_colors[c, :], + ) if plot_unmatched_peaks: ax.scatter( qy_fit[np.logical_not(matches_fit)], qx_fit[np.logical_not(matches_fit)], - s = scale_markers_calculated * int_fit[np.logical_not(matches_fit)], - marker = mvals[c], - facecolor = phase_colors[c,:], - ) + s=scale_markers_calculated + * int_fit[np.logical_not(matches_fit)], + marker=mvals[c], + facecolor=phase_colors[c, :], + ) # legend if m == 0: ax_leg.text( dy_leg, - (count_leg+1)*dx_leg, + (count_leg + 1) * dx_leg, self.crystal_names[c], - **text_params) + **text_params, + ) ax_leg.scatter( 0, - (count_leg+1) * dx_leg, - s = 200, - marker = mvals[c], - facecolor = phase_colors[c,:], - ) + (count_leg + 1) * dx_leg, + s=200, + marker=mvals[c], + facecolor=phase_colors[c, :], + ) count_leg += 1 # else: # ax.scatter( @@ -727,14 +769,12 @@ def quantify_single_pattern( # # facecolors = (1,1,1,0.5), # ) - - # appearance ax.set_xlim((-k_max, k_max)) ax.set_ylim((k_max, -k_max)) - ax_leg.set_xlim((-0.1*k_max, 0.4*k_max)) - ax_leg.set_ylim((-0.5*k_max, 0.5*k_max)) + ax_leg.set_xlim((-0.1 * k_max, 0.4 * k_max)) + ax_leg.set_ylim((-0.5 * k_max, 0.5 * k_max)) ax_leg.set_axis_off() if returnfig: @@ -745,21 +785,21 @@ def quantify_single_pattern( def quantify_phase( self, pointlistarray: PointListArray, - corr_kernel_size = 0.04, - sigma_excitation_error = 0.02, - precession_angle_degrees = None, - power_intensity: float = 0.25, - power_intensity_experiment: float = 0.25, - k_max = None, - max_number_patterns = 2, - single_phase = False, - allow_strain = True, - strain_iterations = 3, - strain_max = 0.02, - include_false_positives = True, - weight_false_positives = 1.0, - progress_bar = True, - ): + corr_kernel_size=0.04, + sigma_excitation_error=0.02, + precession_angle_degrees=None, + power_intensity: float = 0.25, + power_intensity_experiment: float = 0.25, + k_max=None, + max_number_patterns=2, + single_phase=False, + allow_strain=True, + strain_iterations=3, + strain_max=0.02, + include_false_positives=True, + weight_false_positives=1.0, + progress_bar=True, + ): """ Quantify phase of all diffraction patterns. @@ -767,16 +807,16 @@ def quantify_phase( ---------- pointlistarray: (PointListArray) Full array of all calibrated experimental bragg peaks, with shape = (num_x,num_y) - corr_kernel_size: (float) - Correlation kernel size length. The size of the overlap kernel between the + corr_kernel_size: (float) + Correlation kernel size length. The size of the overlap kernel between the measured Bragg peaks and diffraction library Bragg peaks. [1/Angstroms] sigma_excitation_error: (float) The out of plane excitation error tolerance. [1/Angstroms] precession_angle_degrees: (float) Tilt angle of illuminaiton cone in degrees for precession electron diffraction (PED). - power_intensity: (float) + power_intensity: (float) Power for scaling the correlation intensity as a function of simulated peak intensity. - power_intensity_experiment: (float): + power_intensity_experiment: (float): Power for scaling the correlation intensity as a function of experimental peak intensity. k_max: (float) Max k values included in fits, for both x and y directions. @@ -803,72 +843,79 @@ def quantify_phase( """ # init results arrays - self.phase_weights = np.zeros(( - pointlistarray.shape[0], - pointlistarray.shape[1], - self.num_fits, - )) - self.phase_residuals = np.zeros(( - pointlistarray.shape[0], - pointlistarray.shape[1], - )) - self.phase_reliability = np.zeros(( - pointlistarray.shape[0], - pointlistarray.shape[1], - )) - self.int_total = np.zeros(( - pointlistarray.shape[0], - pointlistarray.shape[1], - )) + self.phase_weights = np.zeros( + ( + pointlistarray.shape[0], + pointlistarray.shape[1], + self.num_fits, + ) + ) + self.phase_residuals = np.zeros( + ( + pointlistarray.shape[0], + pointlistarray.shape[1], + ) + ) + self.phase_reliability = np.zeros( + ( + pointlistarray.shape[0], + pointlistarray.shape[1], + ) + ) + self.int_total = np.zeros( + ( + pointlistarray.shape[0], + pointlistarray.shape[1], + ) + ) self.single_phase = single_phase - + for rx, ry in tqdmnd( - *pointlistarray.shape, - desc="Quantifying Phase", - unit=" PointList", - disable=not progress_bar, - ): + *pointlistarray.shape, + desc="Quantifying Phase", + unit=" PointList", + disable=not progress_bar, + ): # calculate phase weights - phase_weights, phase_residual, phase_reliability, int_peaks = self.quantify_single_pattern( - pointlistarray = pointlistarray, - xy_position = (rx,ry), - corr_kernel_size = corr_kernel_size, - sigma_excitation_error = sigma_excitation_error, - - precession_angle_degrees = precession_angle_degrees, - power_intensity = power_intensity, - power_intensity_experiment = power_intensity_experiment, - k_max = k_max, - - max_number_patterns = max_number_patterns, - single_phase = single_phase, - allow_strain = allow_strain, - strain_iterations = strain_iterations, - strain_max = strain_max, - include_false_positives = include_false_positives, - weight_false_positives = weight_false_positives, - plot_result = False, - verbose = False, - returnfig = False, + phase_weights, phase_residual, phase_reliability, int_peaks = ( + self.quantify_single_pattern( + pointlistarray=pointlistarray, + xy_position=(rx, ry), + corr_kernel_size=corr_kernel_size, + sigma_excitation_error=sigma_excitation_error, + precession_angle_degrees=precession_angle_degrees, + power_intensity=power_intensity, + power_intensity_experiment=power_intensity_experiment, + k_max=k_max, + max_number_patterns=max_number_patterns, + single_phase=single_phase, + allow_strain=allow_strain, + strain_iterations=strain_iterations, + strain_max=strain_max, + include_false_positives=include_false_positives, + weight_false_positives=weight_false_positives, + plot_result=False, + verbose=False, + returnfig=False, ) - self.phase_weights[rx,ry] = phase_weights - self.phase_residuals[rx,ry] = phase_residual - self.phase_reliability[rx,ry] = phase_reliability - self.int_total[rx,ry] = int_peaks - + ) + self.phase_weights[rx, ry] = phase_weights + self.phase_residuals[rx, ry] = phase_residual + self.phase_reliability[rx, ry] = phase_reliability + self.int_total[rx, ry] = int_peaks def plot_phase_weights( self, - weight_range = (0.0,1.0), - weight_normalize = False, - total_intensity_normalize = True, - cmap = 'gray', - show_ticks = False, - show_axes = True, - layout = 0, - figsize = (6,6), - returnfig = False, - ): + weight_range=(0.0, 1.0), + weight_normalize=False, + total_intensity_normalize=True, + cmap="gray", + show_ticks=False, + show_axes=True, + layout=0, + figsize=(6, 6), + returnfig=False, + ): """ Plot the individual phase weight maps and residuals. @@ -906,43 +953,45 @@ def plot_phase_weights( if total_intensity_normalize: sub = self.int_total > 0.0 for a0 in range(self.num_fits): - phase_weights[:,:,a0][sub] /= self.int_total[sub] + phase_weights[:, :, a0][sub] /= self.int_total[sub] phase_residuals[sub] /= self.int_total[sub] # intensity range for plotting if weight_normalize: - scale = np.median(np.max(phase_weights,axis=2)) + scale = np.median(np.max(phase_weights, axis=2)) else: scale = 1 weight_range = np.array(weight_range) * scale # plotting if layout == 0: - fig,ax = plt.subplots( + fig, ax = plt.subplots( 1, self.num_crystals + 1, - figsize=(figsize[0],(self.num_fits+1)*figsize[1])) + figsize=(figsize[0], (self.num_fits + 1) * figsize[1]), + ) elif layout == 1: - fig,ax = plt.subplots( + fig, ax = plt.subplots( self.num_crystals + 1, 1, - figsize=(figsize[0],(self.num_fits+1)*figsize[1])) + figsize=(figsize[0], (self.num_fits + 1) * figsize[1]), + ) for a0 in range(self.num_crystals): - sub = self.crystal_identity[:,0] == a0 - im = np.sum(phase_weights[:,:,sub],axis=2) + sub = self.crystal_identity[:, 0] == a0 + im = np.sum(phase_weights[:, :, sub], axis=2) im = np.clip( - (im - weight_range[0]) / (weight_range[1] - weight_range[0]), - 0,1) + (im - weight_range[0]) / (weight_range[1] - weight_range[0]), 0, 1 + ) ax[a0].imshow( im, - vmin = 0, - vmax = 1, - cmap = cmap, + vmin=0, + vmax=1, + cmap=cmap, ) ax[a0].set_title( self.crystal_names[a0], - fontsize = 16, + fontsize=16, ) if not show_ticks: ax[a0].set_xticks([]) @@ -952,18 +1001,19 @@ def plot_phase_weights( # plot residuals im = np.clip( - (phase_residuals - weight_range[0]) \ - / (weight_range[1] - weight_range[0]), - 0,1) + (phase_residuals - weight_range[0]) / (weight_range[1] - weight_range[0]), + 0, + 1, + ) ax[self.num_crystals].imshow( im, - vmin = 0, - vmax = 1, - cmap = cmap, + vmin=0, + vmax=1, + cmap=cmap, ) ax[self.num_crystals].set_title( - 'Residuals', - fontsize = 16, + "Residuals", + fontsize=16, ) if not show_ticks: ax[self.num_crystals].set_xticks([]) @@ -974,23 +1024,22 @@ def plot_phase_weights( if returnfig: return fig, ax - def plot_phase_maps( self, - weight_threshold = 0.5, - weight_normalize = True, - total_intensity_normalize = True, - plot_combine = False, - crystal_inds_plot = None, - phase_colors = None, - show_ticks = False, - show_axes = True, - layout = 0, - figsize = (6,6), - return_phase_estimate = False, - return_rgb_images = False, - returnfig = False, - ): + weight_threshold=0.5, + weight_normalize=True, + total_intensity_normalize=True, + plot_combine=False, + crystal_inds_plot=None, + phase_colors=None, + show_ticks=False, + show_axes=True, + layout=0, + figsize=(6, 6), + return_phase_estimate=False, + return_rgb_images=False, + returnfig=False, + ): """ Plot the individual phase weight maps and residuals. @@ -1035,69 +1084,77 @@ def plot_phase_maps( """ if phase_colors is None: - phase_colors = np.array(( - (1.0,0.0,0.0), - (0.0,0.8,1.0), - (0.0,0.8,0.0), - (1.0,0.0,1.0), - (0.0,0.4,1.0), - (1.0,0.8,0.0), - )) + phase_colors = np.array( + ( + (1.0, 0.0, 0.0), + (0.0, 0.8, 1.0), + (0.0, 0.8, 0.0), + (1.0, 0.0, 1.0), + (0.0, 0.4, 1.0), + (1.0, 0.8, 0.0), + ) + ) phase_weights = self.phase_weights.copy() if total_intensity_normalize: sub = self.int_total > 0.0 for a0 in range(self.num_fits): - phase_weights[:,:,a0][sub] /= self.int_total[sub] + phase_weights[:, :, a0][sub] /= self.int_total[sub] # intensity range for plotting if weight_normalize: - scale = np.median(np.max(phase_weights,axis=2)) + scale = np.median(np.max(phase_weights, axis=2)) else: scale = 1 weight_threshold = weight_threshold * scale # init - im_all = np.zeros(( - self.num_crystals, - self.phase_weights.shape[0], - self.phase_weights.shape[1])) - im_rgb_all = np.zeros(( - self.num_crystals, - self.phase_weights.shape[0], - self.phase_weights.shape[1], - 3)) + im_all = np.zeros( + ( + self.num_crystals, + self.phase_weights.shape[0], + self.phase_weights.shape[1], + ) + ) + im_rgb_all = np.zeros( + ( + self.num_crystals, + self.phase_weights.shape[0], + self.phase_weights.shape[1], + 3, + ) + ) # phase weights over threshold for a0 in range(self.num_crystals): - sub = self.crystal_identity[:,0] == a0 - im = np.sum(phase_weights[:,:,sub],axis=2) + sub = self.crystal_identity[:, 0] == a0 + im = np.sum(phase_weights[:, :, sub], axis=2) im_all[a0] = np.maximum(im - weight_threshold, 0) # estimate compositions - im_sum = np.sum(im_all, axis = 0) + im_sum = np.sum(im_all, axis=0) sub = im_sum > 0.0 for a0 in range(self.num_crystals): im_all[a0][sub] /= im_sum[sub] for a1 in range(3): - im_rgb_all[a0,:,:,a1] = im_all[a0] * phase_colors[a0,a1] + im_rgb_all[a0, :, :, a1] = im_all[a0] * phase_colors[a0, a1] if plot_combine: if crystal_inds_plot is None: - im_rgb = np.sum(im_rgb_all, axis = 0) + im_rgb = np.sum(im_rgb_all, axis=0) else: - im_rgb = np.sum(im_rgb_all[np.array(crystal_inds_plot)], axis = 0) + im_rgb = np.sum(im_rgb_all[np.array(crystal_inds_plot)], axis=0) - im_rgb = np.clip(im_rgb,0,1) + im_rgb = np.clip(im_rgb, 0, 1) - fig,ax = plt.subplots(1,1,figsize=figsize) + fig, ax = plt.subplots(1, 1, figsize=figsize) ax.imshow( im_rgb, ) ax.set_title( - 'Phase Maps', - fontsize = 16, + "Phase Maps", + fontsize=16, ) if not show_ticks: ax.set_xticks([]) @@ -1108,24 +1165,26 @@ def plot_phase_maps( else: # plotting if layout == 0: - fig,ax = plt.subplots( + fig, ax = plt.subplots( 1, self.num_crystals, - figsize=(figsize[0],(self.num_fits+1)*figsize[1])) + figsize=(figsize[0], (self.num_fits + 1) * figsize[1]), + ) elif layout == 1: - fig,ax = plt.subplots( + fig, ax = plt.subplots( self.num_crystals, 1, - figsize=(figsize[0],(self.num_fits+1)*figsize[1])) - + figsize=(figsize[0], (self.num_fits + 1) * figsize[1]), + ) + for a0 in range(self.num_crystals): - + ax[a0].imshow( im_rgb_all[a0], ) ax[a0].set_title( self.crystal_names[a0], - fontsize = 16, + fontsize=16, ) if not show_ticks: ax[a0].set_xticks([]) @@ -1154,20 +1213,19 @@ def plot_phase_maps( if returnfig: return fig, ax - def plot_dominant_phase( self, - use_correlation_scores = False, - reliability_range = (0.0,1.0), - sigma = 0.0, - phase_colors = None, - ticks = True, - figsize = (6,6), - legend_add = True, - legend_fraction = 0.2, - print_fractions = False, - returnfig = True, - ): + use_correlation_scores=False, + reliability_range=(0.0, 1.0), + sigma=0.0, + phase_colors=None, + ticks=True, + figsize=(6, 6), + legend_add=True, + legend_fraction=0.2, + print_fractions=False, + returnfig=True, + ): """ Plot a combined figure showing the primary phase at each probe position. Mask by the reliability index (best match minus 2nd best match). @@ -1201,148 +1259,142 @@ def plot_dominant_phase( Figure and axes handles. """ - + if phase_colors is None: - phase_colors = np.array([ - [1.0,0.9,0.6], - [1,0,0], - [0,0.7,0], - [0,0.7,1], - [1,0,1], - ]) - + phase_colors = np.array( + [ + [1.0, 0.9, 0.6], + [1, 0, 0], + [0, 0.7, 0], + [0, 0.7, 1], + [1, 0, 1], + ] + ) # init arrays scan_shape = self.phase_weights.shape[:2] phase_map = np.zeros(scan_shape) phase_corr = np.zeros(scan_shape) phase_corr_2nd = np.zeros(scan_shape) - phase_sig = np.zeros((self.num_crystals,scan_shape[0],scan_shape[1])) + phase_sig = np.zeros((self.num_crystals, scan_shape[0], scan_shape[1])) if use_correlation_scores: # Calculate scores from highest correlation match for a0 in range(self.num_crystals): phase_sig[a0] = np.maximum( phase_sig[a0], - np.max(self.crystals[a0].orientation_map.corr,axis=2), + np.max(self.crystals[a0].orientation_map.corr, axis=2), ) else: # sum up phase weights by crystal type for a0 in range(self.num_fits): - ind = self.crystal_identity[a0,0] - phase_sig[ind] += self.phase_weights[:,:,a0] + ind = self.crystal_identity[a0, 0] + phase_sig[ind] += self.phase_weights[:, :, a0] # smoothing of the outputs if sigma > 0.0: for a0 in range(self.num_crystals): phase_sig[a0] = gaussian_filter( phase_sig[a0], - sigma = sigma, - mode = 'nearest', - ) + sigma=sigma, + mode="nearest", + ) # find highest correlation score for each crystal and match index for a0 in range(self.num_crystals): - sub = phase_sig[a0] > phase_corr + sub = phase_sig[a0] > phase_corr phase_map[sub] = a0 phase_corr[sub] = phase_sig[a0][sub] - + if self.single_phase: phase_scale = np.clip( - (self.phase_reliability - reliability_range[0]) / (reliability_range[1] - reliability_range[0]), + (self.phase_reliability - reliability_range[0]) + / (reliability_range[1] - reliability_range[0]), 0, - 1) + 1, + ) else: # find the second correlation score for each crystal and match index for a0 in range(self.num_crystals): corr = phase_sig[a0].copy() - corr[phase_map==a0] = 0.0 + corr[phase_map == a0] = 0.0 sub = corr > phase_corr_2nd phase_corr_2nd[sub] = corr[sub] - + # Estimate the reliability phase_rel = phase_corr - phase_corr_2nd phase_scale = np.clip( - (phase_rel - reliability_range[0]) / (reliability_range[1] - reliability_range[0]), + (phase_rel - reliability_range[0]) + / (reliability_range[1] - reliability_range[0]), 0, - 1) + 1, + ) # Print the total area of fraction of each phase if print_fractions: phase_mask = phase_scale >= 0.5 phase_total = np.sum(phase_mask) - print('Phase Fractions') - print('---------------') + print("Phase Fractions") + print("---------------") for a0 in range(self.num_crystals): phase_frac = np.sum((phase_map == a0) * phase_mask) / phase_total - print(self.crystal_names[a0] + ' - ' + f'{phase_frac*100:.4f}' + '%') - + print(self.crystal_names[a0] + " - " + f"{phase_frac*100:.4f}" + "%") - self.phase_rgb = np.zeros((scan_shape[0],scan_shape[1],3)) + self.phase_rgb = np.zeros((scan_shape[0], scan_shape[1], 3)) for a0 in range(self.num_crystals): - sub = phase_map==a0 + sub = phase_map == a0 for a1 in range(3): - self.phase_rgb[:,:,a1][sub] = phase_colors[a0,a1] * phase_scale[sub] + self.phase_rgb[:, :, a1][sub] = phase_colors[a0, a1] * phase_scale[sub] # normalize # self.phase_rgb = np.clip( # (self.phase_rgb - rel_range[0]) / (rel_range[1] - rel_range[0]), # 0,1) - - - + fig = plt.figure(figsize=figsize) if legend_add: width = 1 - ax = fig.add_axes((0,legend_fraction,1,1-legend_fraction)) - ax_leg = fig.add_axes((0,0,1,legend_fraction)) + ax = fig.add_axes((0, legend_fraction, 1, 1 - legend_fraction)) + ax_leg = fig.add_axes((0, 0, 1, legend_fraction)) for a0 in range(self.num_crystals): ax_leg.scatter( - a0*width, + a0 * width, 0, - s = 200, - marker = 's', - edgecolor = (0,0,0,1), - facecolor = phase_colors[a0], + s=200, + marker="s", + edgecolor=(0, 0, 0, 1), + facecolor=phase_colors[a0], ) ax_leg.text( - a0*width+0.1, + a0 * width + 0.1, 0, self.crystal_names[a0], - fontsize = 16, - verticalalignment = 'center', + fontsize=16, + verticalalignment="center", + ) + ax_leg.axis("off") + ax_leg.set_xlim( + ( + width * -0.5, + width * (self.num_crystals + 0.5), ) - ax_leg.axis('off') - ax_leg.set_xlim(( - width * -0.5, - width * (self.num_crystals+0.5), - )) + ) else: - ax = fig.add_axes((0,0,1,1)) + ax = fig.add_axes((0, 0, 1, 1)) ax.imshow( self.phase_rgb, - # vmin = 0, - # vmax = 5, - # self.phase_rgb, - # phase_corr - phase_corr_2nd, - # cmap = 'turbo', - # vmin = 0, - # vmax = 3, - # cmap = 'gray', ) if ticks is False: ax.set_xticks([]) ax.set_yticks([]) - if returnfig: - return fig,ax - + return fig, ax diff --git a/py4DSTEM/process/diffraction/crystal_viz.py b/py4DSTEM/process/diffraction/crystal_viz.py index 649f26faa..56d4520ee 100644 --- a/py4DSTEM/process/diffraction/crystal_viz.py +++ b/py4DSTEM/process/diffraction/crystal_viz.py @@ -848,7 +848,7 @@ def plot_orientation_plan( bragg_peaks = self.generate_diffraction_pattern( orientation_matrix=self.orientation_rotation_matrices[index_plot, :], sigma_excitation_error=self.orientation_kernel_size / 3, - precession_angle_degrees = self.orientation_precession_angle_degrees, + precession_angle_degrees=self.orientation_precession_angle_degrees, ) plot_diffraction_pattern( @@ -949,19 +949,16 @@ def plot_diffraction_pattern( scale_markers_compare: Optional[float] = None, power_markers: float = 1, power_markers_compare: float = 1, - - color = (0.0, 0.0, 0.0), - color_compare = None, - facecolor = None, - facecolor_compare = (0.0, 0.7, 1.0), - edgecolor = None, - edgecolor_compare = None, - linewidth = 1, - linewidth_compare = 1, - - marker = '+', - marker_compare = 'o', - + color=(0.0, 0.0, 0.0), + color_compare=None, + facecolor=None, + facecolor_compare=(0.0, 0.7, 1.0), + edgecolor=None, + edgecolor_compare=None, + linewidth=1, + linewidth_compare=1, + marker="+", + marker_compare="o", plot_range_kx_ky: Optional[Union[list, tuple, np.ndarray]] = None, add_labels: bool = True, shift_labels: float = 0.08, @@ -1004,9 +1001,7 @@ def plot_diffraction_pattern( if power_markers == 2: marker_size = scale_markers * bragg_peaks.data["intensity"] else: - marker_size = scale_markers * ( - bragg_peaks.data["intensity"] ** power_markers - ) + marker_size = scale_markers * (bragg_peaks.data["intensity"] ** power_markers) # Apply marker size limits to primary plot marker_size = np.clip(marker_size, min_marker_size, max_marker_size) @@ -1061,7 +1056,6 @@ def plot_diffraction_pattern( ax.get_xaxis().set_visible(False) ax.get_yaxis().set_visible(False) - if plot_range_kx_ky is not None: plot_range_kx_ky = np.array(plot_range_kx_ky) if plot_range_kx_ky.ndim == 0: diff --git a/py4DSTEM/process/polar/polar_fits.py b/py4DSTEM/process/polar/polar_fits.py index ea83cc866..34630dbc2 100644 --- a/py4DSTEM/process/polar/polar_fits.py +++ b/py4DSTEM/process/polar/polar_fits.py @@ -17,8 +17,8 @@ def fit_amorphous_ring( fit_all_images=False, maxfev=None, robust=False, - robust_steps = 3, - robust_thresh = 1.0, + robust_steps=3, + robust_thresh=1.0, verbose=False, plot_result=True, plot_log_scale=False, @@ -229,7 +229,7 @@ def fit_amorphous_ring( if maxfev is None: coefs = curve_fit( amorphous_model, - basis[:,sub_fit], + basis[:, sub_fit], vals[sub_fit] / int_mean, p0=coefs, xtol=1e-8, @@ -238,7 +238,7 @@ def fit_amorphous_ring( else: coefs = curve_fit( amorphous_model, - basis[:,sub_fit], + basis[:, sub_fit], vals[sub_fit] / int_mean, p0=coefs, xtol=1e-8, @@ -250,7 +250,6 @@ def fit_amorphous_ring( # Scale intensity coefficients coefs[5:8] *= int_mean - # Perform the fit on each individual diffration pattern if fit_all_images: coefs_all = np.zeros((datacube.shape[0], datacube.shape[1], coefs.size)) From 88994879694c43680926ea7d9bddb649edf75412 Mon Sep 17 00:00:00 2001 From: cophus Date: Wed, 17 Jul 2024 20:18:04 -0700 Subject: [PATCH 41/46] black formatting, updated variable name --- .../diffraction/WK_scattering_factors.py | 4 +- py4DSTEM/process/diffraction/crystal_ACOM.py | 1 - py4DSTEM/process/diffraction/crystal_phase.py | 68 ++++++++++--------- py4DSTEM/process/diffraction/crystal_viz.py | 3 +- py4DSTEM/process/fit/fit.py | 3 +- .../magnetic_ptychographic_tomography.py | 28 ++++---- .../process/phase/magnetic_ptychography.py | 28 ++++---- py4DSTEM/process/phase/parallax.py | 24 +++---- .../process/phase/ptychographic_methods.py | 4 +- .../process/phase/ptychographic_tomography.py | 28 ++++---- py4DSTEM/process/phase/utils.py | 4 +- py4DSTEM/process/utils/utils.py | 18 ++++- 12 files changed, 117 insertions(+), 96 deletions(-) diff --git a/py4DSTEM/process/diffraction/WK_scattering_factors.py b/py4DSTEM/process/diffraction/WK_scattering_factors.py index eb964de96..70110a977 100644 --- a/py4DSTEM/process/diffraction/WK_scattering_factors.py +++ b/py4DSTEM/process/diffraction/WK_scattering_factors.py @@ -221,7 +221,9 @@ def RI1(BI, BJ, G): ri1[sub] = np.pi * (BI * np.log((BI + BJ) / BI) + BJ * np.log((BI + BJ) / BJ)) sub = np.logical_and(eps <= 0.1, G > 0.0) - temp = 0.5 * BI**2 * np.log(BI / (BI + BJ)) + 0.5 * BJ**2 * np.log(BJ / (BI + BJ)) + temp = 0.5 * BI**2 * np.log(BI / (BI + BJ)) + 0.5 * BJ**2 * np.log( + BJ / (BI + BJ) + ) temp += 0.75 * (BI**2 + BJ**2) - 0.25 * (BI + BJ) ** 2 temp -= 0.5 * (BI - BJ) ** 2 ri1[sub] += np.pi * G[sub] ** 2 * temp diff --git a/py4DSTEM/process/diffraction/crystal_ACOM.py b/py4DSTEM/process/diffraction/crystal_ACOM.py index ae71c20bc..f7a4a20db 100644 --- a/py4DSTEM/process/diffraction/crystal_ACOM.py +++ b/py4DSTEM/process/diffraction/crystal_ACOM.py @@ -1052,7 +1052,6 @@ def match_single_pattern( sub = dqr < self.orientation_kernel_size if np.any(sub): - im_polar[ind_radial, :] = np.sum( np.power( np.maximum(intensity[sub, None], 0.0), diff --git a/py4DSTEM/process/diffraction/crystal_phase.py b/py4DSTEM/process/diffraction/crystal_phase.py index 3db718555..c161304f9 100644 --- a/py4DSTEM/process/diffraction/crystal_phase.py +++ b/py4DSTEM/process/diffraction/crystal_phase.py @@ -10,7 +10,7 @@ from py4DSTEM.process.diffraction.crystal_viz import plot_diffraction_pattern -class Crystal_Phase: +class CrystalPhase: """ A class storing multiple crystal structures, and associated diffraction data. Must be initialized after matching orientations to a pointlistarray??? @@ -194,8 +194,8 @@ def quantify_single_pattern( """ - # tolerance - tol2 = 1e-6 + # tolerance for separating the origin peak. + tolerance_origin_2 = 1e-6 # calibrations center = pointlistarray.calstate["center"] @@ -231,11 +231,15 @@ def quantify_single_pattern( ) # bragg_peaks = pointlistarray.get_pointlist(xy_position[0],xy_position[1]).copy() if k_max is None: - keep = bragg_peaks.data["qx"] ** 2 + bragg_peaks.data["qy"] ** 2 > tol2 + keep = ( + bragg_peaks.data["qx"] ** 2 + bragg_peaks.data["qy"] ** 2 + > tolerance_origin_2 + ) else: keep = np.logical_and.reduce( ( - bragg_peaks.data["qx"] ** 2 + bragg_peaks.data["qy"] ** 2 > tol2, + bragg_peaks.data["qx"] ** 2 + bragg_peaks.data["qy"] ** 2 + > tolerance_origin_2, np.abs(bragg_peaks.data["qx"]) < k_max, np.abs(bragg_peaks.data["qy"]) < k_max, ) @@ -303,14 +307,14 @@ def quantify_single_pattern( if k_max is None: del_peak = ( bragg_peaks_fit.data["qx"] ** 2 + bragg_peaks_fit.data["qy"] ** 2 - < tol2 + < tolerance_origin_2 ) else: del_peak = np.logical_or.reduce( ( bragg_peaks_fit.data["qx"] ** 2 + bragg_peaks_fit.data["qy"] ** 2 - < tol2, + < tolerance_origin_2, np.abs(bragg_peaks_fit.data["qx"]) > k_max, np.abs(bragg_peaks_fit.data["qy"]) > k_max, ) @@ -473,7 +477,6 @@ def quantify_single_pattern( search = True while search is True: - basis_solve = basis[:, inds_solve] obs_solve = obs.copy() @@ -685,7 +688,6 @@ def quantify_single_pattern( crystal_inds_plot == None or np.min(np.abs(c - crystal_inds_plot)) == 0 ): - qx_fit = library_peaks[a0].data["qx"] qy_fit = library_peaks[a0].data["qy"] @@ -701,7 +703,6 @@ def quantify_single_pattern( matches_fit = library_matches[a0] if plot_only_nonzero_phases is False or phase_weights[a0] > 0: - # if np.mod(m,2) == 0: ax.scatter( qy_fit[matches_fit], @@ -877,27 +878,30 @@ def quantify_phase( disable=not progress_bar, ): # calculate phase weights - phase_weights, phase_residual, phase_reliability, int_peaks = ( - self.quantify_single_pattern( - pointlistarray=pointlistarray, - xy_position=(rx, ry), - corr_kernel_size=corr_kernel_size, - sigma_excitation_error=sigma_excitation_error, - precession_angle_degrees=precession_angle_degrees, - power_intensity=power_intensity, - power_intensity_experiment=power_intensity_experiment, - k_max=k_max, - max_number_patterns=max_number_patterns, - single_phase=single_phase, - allow_strain=allow_strain, - strain_iterations=strain_iterations, - strain_max=strain_max, - include_false_positives=include_false_positives, - weight_false_positives=weight_false_positives, - plot_result=False, - verbose=False, - returnfig=False, - ) + ( + phase_weights, + phase_residual, + phase_reliability, + int_peaks, + ) = self.quantify_single_pattern( + pointlistarray=pointlistarray, + xy_position=(rx, ry), + corr_kernel_size=corr_kernel_size, + sigma_excitation_error=sigma_excitation_error, + precession_angle_degrees=precession_angle_degrees, + power_intensity=power_intensity, + power_intensity_experiment=power_intensity_experiment, + k_max=k_max, + max_number_patterns=max_number_patterns, + single_phase=single_phase, + allow_strain=allow_strain, + strain_iterations=strain_iterations, + strain_max=strain_max, + include_false_positives=include_false_positives, + weight_false_positives=weight_false_positives, + plot_result=False, + verbose=False, + returnfig=False, ) self.phase_weights[rx, ry] = phase_weights self.phase_residuals[rx, ry] = phase_residual @@ -1178,7 +1182,6 @@ def plot_phase_maps( ) for a0 in range(self.num_crystals): - ax[a0].imshow( im_rgb_all[a0], ) @@ -1315,7 +1318,6 @@ def plot_dominant_phase( ) else: - # find the second correlation score for each crystal and match index for a0 in range(self.num_crystals): corr = phase_sig[a0].copy() diff --git a/py4DSTEM/process/diffraction/crystal_viz.py b/py4DSTEM/process/diffraction/crystal_viz.py index 56d4520ee..1663a6198 100644 --- a/py4DSTEM/process/diffraction/crystal_viz.py +++ b/py4DSTEM/process/diffraction/crystal_viz.py @@ -454,7 +454,8 @@ def plot_scattering_intensity( int_sf_plot = calc_1D_profile( k, self.g_vec_leng, - (self.struct_factors_int**int_power_scale) * (self.g_vec_leng**k_power_scale), + (self.struct_factors_int**int_power_scale) + * (self.g_vec_leng**k_power_scale), remove_origin=True, k_broadening=k_broadening, int_scale=int_scale, diff --git a/py4DSTEM/process/fit/fit.py b/py4DSTEM/process/fit/fit.py index 5c2d56a3c..9973ff79f 100644 --- a/py4DSTEM/process/fit/fit.py +++ b/py4DSTEM/process/fit/fit.py @@ -169,7 +169,8 @@ def polar_gaussian_2D( # t2 = np.min(np.vstack([t,1-t])) t2 = np.square(t - mu_t) return ( - I0 * np.exp(-(t2 / (2 * sigma_t**2) + (q - mu_q) ** 2 / (2 * sigma_q**2))) + C + I0 * np.exp(-(t2 / (2 * sigma_t**2) + (q - mu_q) ** 2 / (2 * sigma_q**2))) + + C ) diff --git a/py4DSTEM/process/phase/magnetic_ptychographic_tomography.py b/py4DSTEM/process/phase/magnetic_ptychographic_tomography.py index be6332c74..9ffcc6212 100644 --- a/py4DSTEM/process/phase/magnetic_ptychographic_tomography.py +++ b/py4DSTEM/process/phase/magnetic_ptychographic_tomography.py @@ -1196,20 +1196,20 @@ def reconstruct( # position correction if not fix_positions and a0 > 0: - self._positions_px_all[batch_indices] = ( - self._position_correction( - object_sliced, - vectorized_patch_indices_row, - vectorized_patch_indices_col, - shifted_probes, - overlap, - amplitudes_device, - positions_px, - positions_px_initial, - positions_step_size, - max_position_update_distance, - max_position_total_distance, - ) + self._positions_px_all[ + batch_indices + ] = self._position_correction( + object_sliced, + vectorized_patch_indices_row, + vectorized_patch_indices_col, + shifted_probes, + overlap, + amplitudes_device, + positions_px, + positions_px_initial, + positions_step_size, + max_position_update_distance, + max_position_total_distance, ) measurement_error += batch_error diff --git a/py4DSTEM/process/phase/magnetic_ptychography.py b/py4DSTEM/process/phase/magnetic_ptychography.py index 19f306188..0949a02eb 100644 --- a/py4DSTEM/process/phase/magnetic_ptychography.py +++ b/py4DSTEM/process/phase/magnetic_ptychography.py @@ -1497,20 +1497,20 @@ def reconstruct( # position correction if not fix_positions and a0 > 0: - self._positions_px_all[batch_indices] = ( - self._position_correction( - self._object, - vectorized_patch_indices_row, - vectorized_patch_indices_col, - shifted_probes, - overlap, - amplitudes_device, - positions_px, - positions_px_initial, - positions_step_size, - max_position_update_distance, - max_position_total_distance, - ) + self._positions_px_all[ + batch_indices + ] = self._position_correction( + self._object, + vectorized_patch_indices_row, + vectorized_patch_indices_col, + shifted_probes, + overlap, + amplitudes_device, + positions_px, + positions_px_initial, + positions_step_size, + max_position_update_distance, + max_position_total_distance, ) measurement_error += batch_error diff --git a/py4DSTEM/process/phase/parallax.py b/py4DSTEM/process/phase/parallax.py index e12d6a133..3d8c09635 100644 --- a/py4DSTEM/process/phase/parallax.py +++ b/py4DSTEM/process/phase/parallax.py @@ -2202,16 +2202,16 @@ def score_CTF(coefs): measured_shifts_sx = xp.zeros( self._region_of_interest_shape, dtype=xp.float32 ) - measured_shifts_sx[self._xy_inds[:, 0], self._xy_inds[:, 1]] = ( - self._xy_shifts_Ang[:, 0] - ) + measured_shifts_sx[ + self._xy_inds[:, 0], self._xy_inds[:, 1] + ] = self._xy_shifts_Ang[:, 0] measured_shifts_sy = xp.zeros( self._region_of_interest_shape, dtype=xp.float32 ) - measured_shifts_sy[self._xy_inds[:, 0], self._xy_inds[:, 1]] = ( - self._xy_shifts_Ang[:, 1] - ) + measured_shifts_sy[ + self._xy_inds[:, 0], self._xy_inds[:, 1] + ] = self._xy_shifts_Ang[:, 1] fitted_shifts = ( xp.tensordot(gradients, xp.array(self._aberrations_coefs), axes=1) @@ -2222,16 +2222,16 @@ def score_CTF(coefs): fitted_shifts_sx = xp.zeros( self._region_of_interest_shape, dtype=xp.float32 ) - fitted_shifts_sx[self._xy_inds[:, 0], self._xy_inds[:, 1]] = ( - fitted_shifts[:, 0] - ) + fitted_shifts_sx[ + self._xy_inds[:, 0], self._xy_inds[:, 1] + ] = fitted_shifts[:, 0] fitted_shifts_sy = xp.zeros( self._region_of_interest_shape, dtype=xp.float32 ) - fitted_shifts_sy[self._xy_inds[:, 0], self._xy_inds[:, 1]] = ( - fitted_shifts[:, 1] - ) + fitted_shifts_sy[ + self._xy_inds[:, 0], self._xy_inds[:, 1] + ] = fitted_shifts[:, 1] max_shift = xp.max( xp.array( diff --git a/py4DSTEM/process/phase/ptychographic_methods.py b/py4DSTEM/process/phase/ptychographic_methods.py index 283ddb1ba..cbc0b2fde 100644 --- a/py4DSTEM/process/phase/ptychographic_methods.py +++ b/py4DSTEM/process/phase/ptychographic_methods.py @@ -356,7 +356,9 @@ def _precompute_propagator_arrays( propagators[i] = xp.exp( 1.0j * (-(kx**2)[:, None] * np.pi * wavelength * dz) ) - propagators[i] *= xp.exp(1.0j * (-(ky**2)[None] * np.pi * wavelength * dz)) + propagators[i] *= xp.exp( + 1.0j * (-(ky**2)[None] * np.pi * wavelength * dz) + ) if theta_x is not None: propagators[i] *= xp.exp( diff --git a/py4DSTEM/process/phase/ptychographic_tomography.py b/py4DSTEM/process/phase/ptychographic_tomography.py index 3639096dc..e1dc33abb 100644 --- a/py4DSTEM/process/phase/ptychographic_tomography.py +++ b/py4DSTEM/process/phase/ptychographic_tomography.py @@ -1088,20 +1088,20 @@ def reconstruct( # position correction if not fix_positions: - self._positions_px_all[batch_indices] = ( - self._position_correction( - object_sliced, - vectorized_patch_indices_row, - vectorized_patch_indices_col, - shifted_probes, - overlap, - amplitudes_device, - positions_px, - positions_px_initial, - positions_step_size, - max_position_update_distance, - max_position_total_distance, - ) + self._positions_px_all[ + batch_indices + ] = self._position_correction( + object_sliced, + vectorized_patch_indices_row, + vectorized_patch_indices_col, + shifted_probes, + overlap, + amplitudes_device, + positions_px, + positions_px_initial, + positions_step_size, + max_position_update_distance, + max_position_total_distance, ) measurement_error += batch_error diff --git a/py4DSTEM/process/phase/utils.py b/py4DSTEM/process/phase/utils.py index 5742ff7e7..1b12da6a0 100644 --- a/py4DSTEM/process/phase/utils.py +++ b/py4DSTEM/process/phase/utils.py @@ -203,7 +203,9 @@ def evaluate_gaussian_envelope( self, alpha: Union[float, np.ndarray] ) -> Union[float, np.ndarray]: xp = self._xp - return xp.exp(-0.5 * self._gaussian_spread**2 * alpha**2 / self._wavelength**2) + return xp.exp( + -0.5 * self._gaussian_spread**2 * alpha**2 / self._wavelength**2 + ) def evaluate_spatial_envelope( self, alpha: Union[float, np.ndarray], phi: Union[float, np.ndarray] diff --git a/py4DSTEM/process/utils/utils.py b/py4DSTEM/process/utils/utils.py index ddeeb2c36..60da616d1 100644 --- a/py4DSTEM/process/utils/utils.py +++ b/py4DSTEM/process/utils/utils.py @@ -93,7 +93,12 @@ def electron_wavelength_angstrom(E_eV): c = 299792458 h = 6.62607 * 10**-34 - lam = h / ma.sqrt(2 * m * e * E_eV) / ma.sqrt(1 + e * E_eV / 2 / m / c**2) * 10**10 + lam = ( + h + / ma.sqrt(2 * m * e * E_eV) + / ma.sqrt(1 + e * E_eV / 2 / m / c**2) + * 10**10 + ) return lam @@ -102,8 +107,15 @@ def electron_interaction_parameter(E_eV): e = 1.602177 * 10**-19 c = 299792458 h = 6.62607 * 10**-34 - lam = h / ma.sqrt(2 * m * e * E_eV) / ma.sqrt(1 + e * E_eV / 2 / m / c**2) * 10**10 - sigma = (2 * np.pi / lam / E_eV) * (m * c**2 + e * E_eV) / (2 * m * c**2 + e * E_eV) + lam = ( + h + / ma.sqrt(2 * m * e * E_eV) + / ma.sqrt(1 + e * E_eV / 2 / m / c**2) + * 10**10 + ) + sigma = ( + (2 * np.pi / lam / E_eV) * (m * c**2 + e * E_eV) / (2 * m * c**2 + e * E_eV) + ) return sigma From 0ecf427c287b217d635b6200e436c3e61782c22c Mon Sep 17 00:00:00 2001 From: cophus Date: Wed, 17 Jul 2024 20:20:39 -0700 Subject: [PATCH 42/46] updating black version --- .../diffraction/WK_scattering_factors.py | 4 +-- py4DSTEM/process/diffraction/crystal_viz.py | 3 +- py4DSTEM/process/fit/fit.py | 3 +- .../magnetic_ptychographic_tomography.py | 28 +++++++++---------- .../process/phase/magnetic_ptychography.py | 28 +++++++++---------- py4DSTEM/process/phase/parallax.py | 24 ++++++++-------- .../process/phase/ptychographic_methods.py | 4 +-- .../process/phase/ptychographic_tomography.py | 28 +++++++++---------- py4DSTEM/process/phase/utils.py | 4 +-- py4DSTEM/process/utils/utils.py | 18 ++---------- 10 files changed, 62 insertions(+), 82 deletions(-) diff --git a/py4DSTEM/process/diffraction/WK_scattering_factors.py b/py4DSTEM/process/diffraction/WK_scattering_factors.py index 70110a977..eb964de96 100644 --- a/py4DSTEM/process/diffraction/WK_scattering_factors.py +++ b/py4DSTEM/process/diffraction/WK_scattering_factors.py @@ -221,9 +221,7 @@ def RI1(BI, BJ, G): ri1[sub] = np.pi * (BI * np.log((BI + BJ) / BI) + BJ * np.log((BI + BJ) / BJ)) sub = np.logical_and(eps <= 0.1, G > 0.0) - temp = 0.5 * BI**2 * np.log(BI / (BI + BJ)) + 0.5 * BJ**2 * np.log( - BJ / (BI + BJ) - ) + temp = 0.5 * BI**2 * np.log(BI / (BI + BJ)) + 0.5 * BJ**2 * np.log(BJ / (BI + BJ)) temp += 0.75 * (BI**2 + BJ**2) - 0.25 * (BI + BJ) ** 2 temp -= 0.5 * (BI - BJ) ** 2 ri1[sub] += np.pi * G[sub] ** 2 * temp diff --git a/py4DSTEM/process/diffraction/crystal_viz.py b/py4DSTEM/process/diffraction/crystal_viz.py index 1663a6198..56d4520ee 100644 --- a/py4DSTEM/process/diffraction/crystal_viz.py +++ b/py4DSTEM/process/diffraction/crystal_viz.py @@ -454,8 +454,7 @@ def plot_scattering_intensity( int_sf_plot = calc_1D_profile( k, self.g_vec_leng, - (self.struct_factors_int**int_power_scale) - * (self.g_vec_leng**k_power_scale), + (self.struct_factors_int**int_power_scale) * (self.g_vec_leng**k_power_scale), remove_origin=True, k_broadening=k_broadening, int_scale=int_scale, diff --git a/py4DSTEM/process/fit/fit.py b/py4DSTEM/process/fit/fit.py index 9973ff79f..5c2d56a3c 100644 --- a/py4DSTEM/process/fit/fit.py +++ b/py4DSTEM/process/fit/fit.py @@ -169,8 +169,7 @@ def polar_gaussian_2D( # t2 = np.min(np.vstack([t,1-t])) t2 = np.square(t - mu_t) return ( - I0 * np.exp(-(t2 / (2 * sigma_t**2) + (q - mu_q) ** 2 / (2 * sigma_q**2))) - + C + I0 * np.exp(-(t2 / (2 * sigma_t**2) + (q - mu_q) ** 2 / (2 * sigma_q**2))) + C ) diff --git a/py4DSTEM/process/phase/magnetic_ptychographic_tomography.py b/py4DSTEM/process/phase/magnetic_ptychographic_tomography.py index 9ffcc6212..be6332c74 100644 --- a/py4DSTEM/process/phase/magnetic_ptychographic_tomography.py +++ b/py4DSTEM/process/phase/magnetic_ptychographic_tomography.py @@ -1196,20 +1196,20 @@ def reconstruct( # position correction if not fix_positions and a0 > 0: - self._positions_px_all[ - batch_indices - ] = self._position_correction( - object_sliced, - vectorized_patch_indices_row, - vectorized_patch_indices_col, - shifted_probes, - overlap, - amplitudes_device, - positions_px, - positions_px_initial, - positions_step_size, - max_position_update_distance, - max_position_total_distance, + self._positions_px_all[batch_indices] = ( + self._position_correction( + object_sliced, + vectorized_patch_indices_row, + vectorized_patch_indices_col, + shifted_probes, + overlap, + amplitudes_device, + positions_px, + positions_px_initial, + positions_step_size, + max_position_update_distance, + max_position_total_distance, + ) ) measurement_error += batch_error diff --git a/py4DSTEM/process/phase/magnetic_ptychography.py b/py4DSTEM/process/phase/magnetic_ptychography.py index 0949a02eb..19f306188 100644 --- a/py4DSTEM/process/phase/magnetic_ptychography.py +++ b/py4DSTEM/process/phase/magnetic_ptychography.py @@ -1497,20 +1497,20 @@ def reconstruct( # position correction if not fix_positions and a0 > 0: - self._positions_px_all[ - batch_indices - ] = self._position_correction( - self._object, - vectorized_patch_indices_row, - vectorized_patch_indices_col, - shifted_probes, - overlap, - amplitudes_device, - positions_px, - positions_px_initial, - positions_step_size, - max_position_update_distance, - max_position_total_distance, + self._positions_px_all[batch_indices] = ( + self._position_correction( + self._object, + vectorized_patch_indices_row, + vectorized_patch_indices_col, + shifted_probes, + overlap, + amplitudes_device, + positions_px, + positions_px_initial, + positions_step_size, + max_position_update_distance, + max_position_total_distance, + ) ) measurement_error += batch_error diff --git a/py4DSTEM/process/phase/parallax.py b/py4DSTEM/process/phase/parallax.py index 3d8c09635..e12d6a133 100644 --- a/py4DSTEM/process/phase/parallax.py +++ b/py4DSTEM/process/phase/parallax.py @@ -2202,16 +2202,16 @@ def score_CTF(coefs): measured_shifts_sx = xp.zeros( self._region_of_interest_shape, dtype=xp.float32 ) - measured_shifts_sx[ - self._xy_inds[:, 0], self._xy_inds[:, 1] - ] = self._xy_shifts_Ang[:, 0] + measured_shifts_sx[self._xy_inds[:, 0], self._xy_inds[:, 1]] = ( + self._xy_shifts_Ang[:, 0] + ) measured_shifts_sy = xp.zeros( self._region_of_interest_shape, dtype=xp.float32 ) - measured_shifts_sy[ - self._xy_inds[:, 0], self._xy_inds[:, 1] - ] = self._xy_shifts_Ang[:, 1] + measured_shifts_sy[self._xy_inds[:, 0], self._xy_inds[:, 1]] = ( + self._xy_shifts_Ang[:, 1] + ) fitted_shifts = ( xp.tensordot(gradients, xp.array(self._aberrations_coefs), axes=1) @@ -2222,16 +2222,16 @@ def score_CTF(coefs): fitted_shifts_sx = xp.zeros( self._region_of_interest_shape, dtype=xp.float32 ) - fitted_shifts_sx[ - self._xy_inds[:, 0], self._xy_inds[:, 1] - ] = fitted_shifts[:, 0] + fitted_shifts_sx[self._xy_inds[:, 0], self._xy_inds[:, 1]] = ( + fitted_shifts[:, 0] + ) fitted_shifts_sy = xp.zeros( self._region_of_interest_shape, dtype=xp.float32 ) - fitted_shifts_sy[ - self._xy_inds[:, 0], self._xy_inds[:, 1] - ] = fitted_shifts[:, 1] + fitted_shifts_sy[self._xy_inds[:, 0], self._xy_inds[:, 1]] = ( + fitted_shifts[:, 1] + ) max_shift = xp.max( xp.array( diff --git a/py4DSTEM/process/phase/ptychographic_methods.py b/py4DSTEM/process/phase/ptychographic_methods.py index cbc0b2fde..283ddb1ba 100644 --- a/py4DSTEM/process/phase/ptychographic_methods.py +++ b/py4DSTEM/process/phase/ptychographic_methods.py @@ -356,9 +356,7 @@ def _precompute_propagator_arrays( propagators[i] = xp.exp( 1.0j * (-(kx**2)[:, None] * np.pi * wavelength * dz) ) - propagators[i] *= xp.exp( - 1.0j * (-(ky**2)[None] * np.pi * wavelength * dz) - ) + propagators[i] *= xp.exp(1.0j * (-(ky**2)[None] * np.pi * wavelength * dz)) if theta_x is not None: propagators[i] *= xp.exp( diff --git a/py4DSTEM/process/phase/ptychographic_tomography.py b/py4DSTEM/process/phase/ptychographic_tomography.py index e1dc33abb..3639096dc 100644 --- a/py4DSTEM/process/phase/ptychographic_tomography.py +++ b/py4DSTEM/process/phase/ptychographic_tomography.py @@ -1088,20 +1088,20 @@ def reconstruct( # position correction if not fix_positions: - self._positions_px_all[ - batch_indices - ] = self._position_correction( - object_sliced, - vectorized_patch_indices_row, - vectorized_patch_indices_col, - shifted_probes, - overlap, - amplitudes_device, - positions_px, - positions_px_initial, - positions_step_size, - max_position_update_distance, - max_position_total_distance, + self._positions_px_all[batch_indices] = ( + self._position_correction( + object_sliced, + vectorized_patch_indices_row, + vectorized_patch_indices_col, + shifted_probes, + overlap, + amplitudes_device, + positions_px, + positions_px_initial, + positions_step_size, + max_position_update_distance, + max_position_total_distance, + ) ) measurement_error += batch_error diff --git a/py4DSTEM/process/phase/utils.py b/py4DSTEM/process/phase/utils.py index 1b12da6a0..5742ff7e7 100644 --- a/py4DSTEM/process/phase/utils.py +++ b/py4DSTEM/process/phase/utils.py @@ -203,9 +203,7 @@ def evaluate_gaussian_envelope( self, alpha: Union[float, np.ndarray] ) -> Union[float, np.ndarray]: xp = self._xp - return xp.exp( - -0.5 * self._gaussian_spread**2 * alpha**2 / self._wavelength**2 - ) + return xp.exp(-0.5 * self._gaussian_spread**2 * alpha**2 / self._wavelength**2) def evaluate_spatial_envelope( self, alpha: Union[float, np.ndarray], phi: Union[float, np.ndarray] diff --git a/py4DSTEM/process/utils/utils.py b/py4DSTEM/process/utils/utils.py index 60da616d1..ddeeb2c36 100644 --- a/py4DSTEM/process/utils/utils.py +++ b/py4DSTEM/process/utils/utils.py @@ -93,12 +93,7 @@ def electron_wavelength_angstrom(E_eV): c = 299792458 h = 6.62607 * 10**-34 - lam = ( - h - / ma.sqrt(2 * m * e * E_eV) - / ma.sqrt(1 + e * E_eV / 2 / m / c**2) - * 10**10 - ) + lam = h / ma.sqrt(2 * m * e * E_eV) / ma.sqrt(1 + e * E_eV / 2 / m / c**2) * 10**10 return lam @@ -107,15 +102,8 @@ def electron_interaction_parameter(E_eV): e = 1.602177 * 10**-19 c = 299792458 h = 6.62607 * 10**-34 - lam = ( - h - / ma.sqrt(2 * m * e * E_eV) - / ma.sqrt(1 + e * E_eV / 2 / m / c**2) - * 10**10 - ) - sigma = ( - (2 * np.pi / lam / E_eV) * (m * c**2 + e * E_eV) / (2 * m * c**2 + e * E_eV) - ) + lam = h / ma.sqrt(2 * m * e * E_eV) / ma.sqrt(1 + e * E_eV / 2 / m / c**2) * 10**10 + sigma = (2 * np.pi / lam / E_eV) * (m * c**2 + e * E_eV) / (2 * m * c**2 + e * E_eV) return sigma From 564999ced7732db821b8d628e466be52c89d684e Mon Sep 17 00:00:00 2001 From: cophus Date: Thu, 18 Jul 2024 15:07:42 -0700 Subject: [PATCH 43/46] testing fix for drawing legend --- py4DSTEM/process/diffraction/crystal_viz.py | 4 ++-- 1 file changed, 2 insertions(+), 2 deletions(-) diff --git a/py4DSTEM/process/diffraction/crystal_viz.py b/py4DSTEM/process/diffraction/crystal_viz.py index 56d4520ee..ab4b259f1 100644 --- a/py4DSTEM/process/diffraction/crystal_viz.py +++ b/py4DSTEM/process/diffraction/crystal_viz.py @@ -1416,8 +1416,8 @@ def plot_orientation_maps( # Triangulate faces p = self.orientation_vecs[:, (1, 0, 2)] tri = mtri.Triangulation( - self.orientation_inds[:, 1] - self.orientation_inds[:, 0] * 1e-3, - self.orientation_inds[:, 0] - self.orientation_inds[:, 1] * 1e-3, + self.orientation_inds[:, 1].astype('float') - self.orientation_inds[:, 0].astype('float') * 1e-3, + self.orientation_inds[:, 0].astype('float') - self.orientation_inds[:, 1].astype('float') * 1e-3, ) # convert rgb values of pixels to faces rgb_faces = ( From fece355625672eb90dd2a8e987fd668d46b91be2 Mon Sep 17 00:00:00 2001 From: cophus Date: Thu, 18 Jul 2024 15:21:35 -0700 Subject: [PATCH 44/46] Revert "testing fix for drawing legend" This reverts commit 564999ced7732db821b8d628e466be52c89d684e. --- py4DSTEM/process/diffraction/crystal_viz.py | 4 ++-- 1 file changed, 2 insertions(+), 2 deletions(-) diff --git a/py4DSTEM/process/diffraction/crystal_viz.py b/py4DSTEM/process/diffraction/crystal_viz.py index ab4b259f1..56d4520ee 100644 --- a/py4DSTEM/process/diffraction/crystal_viz.py +++ b/py4DSTEM/process/diffraction/crystal_viz.py @@ -1416,8 +1416,8 @@ def plot_orientation_maps( # Triangulate faces p = self.orientation_vecs[:, (1, 0, 2)] tri = mtri.Triangulation( - self.orientation_inds[:, 1].astype('float') - self.orientation_inds[:, 0].astype('float') * 1e-3, - self.orientation_inds[:, 0].astype('float') - self.orientation_inds[:, 1].astype('float') * 1e-3, + self.orientation_inds[:, 1] - self.orientation_inds[:, 0] * 1e-3, + self.orientation_inds[:, 0] - self.orientation_inds[:, 1] * 1e-3, ) # convert rgb values of pixels to faces rgb_faces = ( From a70970588fd1322f17feefb52ecff7b0f8458462 Mon Sep 17 00:00:00 2001 From: cophus Date: Thu, 18 Jul 2024 15:38:54 -0700 Subject: [PATCH 45/46] adding option to hide legend --- py4DSTEM/process/diffraction/crystal_viz.py | 437 ++++++++++---------- 1 file changed, 221 insertions(+), 216 deletions(-) diff --git a/py4DSTEM/process/diffraction/crystal_viz.py b/py4DSTEM/process/diffraction/crystal_viz.py index 56d4520ee..88cc16853 100644 --- a/py4DSTEM/process/diffraction/crystal_viz.py +++ b/py4DSTEM/process/diffraction/crystal_viz.py @@ -538,6 +538,7 @@ def plot_orientation_zones( proj_dir_cartesian: Optional[Union[list, tuple, np.ndarray]] = None, tol_den=10, marker_size: float = 20, + plot_zone_axis_labels: bool = True, plot_limit: Union[list, tuple, np.ndarray] = np.array([-1.1, 1.1]), figsize: Union[list, tuple, np.ndarray] = (8, 8), returnfig: bool = False, @@ -553,6 +554,7 @@ def plot_orientation_zones( dir_proj (float): projection direction, either [elev azim] or normal vector Default is mean vector of self.orientation_zone_axis_range rows marker_size (float): size of markers + plot_zone_axis_labels (bool): plot the zone axis labels plot_limit (float): x y z plot limits, default is [0, 1.05] figsize (2 element float): size scaling of figure axes returnfig (bool): set to True to return figure and axes handles @@ -727,47 +729,47 @@ def plot_orientation_zones( zorder=10, ) - text_scale_pos = 1.2 - text_params = { - "va": "center", - "family": "sans-serif", - "fontweight": "normal", - "color": "k", - "size": 16, - } - # 'ha': 'center', - - ax.text( - self.orientation_vecs[inds[0], 1] * text_scale_pos, - self.orientation_vecs[inds[0], 0] * text_scale_pos, - self.orientation_vecs[inds[0], 2] * text_scale_pos, - label_0, - None, - zorder=11, - ha="center", - **text_params, - ) - if self.orientation_full is False and self.orientation_half is False: - ax.text( - self.orientation_vecs[inds[1], 1] * text_scale_pos, - self.orientation_vecs[inds[1], 0] * text_scale_pos, - self.orientation_vecs[inds[1], 2] * text_scale_pos, - label_1, - None, - zorder=12, - ha="center", - **text_params, - ) + if plot_zone_axis_labels: + text_scale_pos = 1.2 + text_params = { + "va": "center", + "family": "sans-serif", + "fontweight": "normal", + "color": "k", + "size": 16, + } + # 'ha': 'center', ax.text( - self.orientation_vecs[inds[2], 1] * text_scale_pos, - self.orientation_vecs[inds[2], 0] * text_scale_pos, - self.orientation_vecs[inds[2], 2] * text_scale_pos, - label_2, + self.orientation_vecs[inds[0], 1] * text_scale_pos, + self.orientation_vecs[inds[0], 0] * text_scale_pos, + self.orientation_vecs[inds[0], 2] * text_scale_pos, + label_0, None, - zorder=13, + zorder=11, ha="center", **text_params, ) + if self.orientation_full is False and self.orientation_half is False: + ax.text( + self.orientation_vecs[inds[1], 1] * text_scale_pos, + self.orientation_vecs[inds[1], 0] * text_scale_pos, + self.orientation_vecs[inds[1], 2] * text_scale_pos, + label_1, + None, + zorder=12, + ha="center", + **text_params, + ) + ax.text( + self.orientation_vecs[inds[2], 1] * text_scale_pos, + self.orientation_vecs[inds[2], 0] * text_scale_pos, + self.orientation_vecs[inds[2], 2] * text_scale_pos, + label_2, + None, + zorder=13, + ha="center", + **text_params, + ) # ax.scatter( # xs=self.g_vec_all[0,:], @@ -1118,6 +1120,7 @@ def plot_orientation_maps( dir_in_plane_degrees: float = 0.0, corr_range: np.ndarray = np.array([0, 5]), corr_normalize: bool = True, + show_legend: bool = True, scale_legend: bool = None, figsize: Union[list, tuple, np.ndarray] = (16, 5), figbound: Union[list, tuple, np.ndarray] = (0.01, 0.005), @@ -1139,6 +1142,7 @@ def plot_orientation_maps( dir_in_plane_degrees (float): In-plane angle to plot in degrees. Default is 0 / x-axis / vertical down. corr_range (np.ndarray): Correlation intensity range for the plot corr_normalize (bool): If true, set mean correlation to 1. + show_legend (bool): Show the legend scale_legend (float): 2 elements, x and y scaling of legend panel figsize (array): 2 elements defining figure size figbound (array): 2 elements defining figure boundary @@ -1413,189 +1417,190 @@ def plot_orientation_maps( ax_x.axis("off") ax_z.axis("off") - # Triangulate faces - p = self.orientation_vecs[:, (1, 0, 2)] - tri = mtri.Triangulation( - self.orientation_inds[:, 1] - self.orientation_inds[:, 0] * 1e-3, - self.orientation_inds[:, 0] - self.orientation_inds[:, 1] * 1e-3, - ) - # convert rgb values of pixels to faces - rgb_faces = ( - rgb_legend[tri.triangles[:, 0], :] - + rgb_legend[tri.triangles[:, 1], :] - + rgb_legend[tri.triangles[:, 2], :] - ) / 3 - # Add triangulated surface plot to axes - pc = art3d.Poly3DCollection( - p[tri.triangles], - facecolors=rgb_faces, - alpha=1, - ) - pc.set_antialiased(False) - ax_l.add_collection(pc) - - if plot_limit is None: - plot_limit = np.array( - [ - [np.min(p[:, 0]), np.min(p[:, 1]), np.min(p[:, 2])], - [np.max(p[:, 0]), np.max(p[:, 1]), np.max(p[:, 2])], - ] + if show_legend: + # Triangulate faces + p = self.orientation_vecs[:, (1, 0, 2)] + tri = mtri.Triangulation( + self.orientation_inds[:, 1] - self.orientation_inds[:, 0] * 1e-3, + self.orientation_inds[:, 0] - self.orientation_inds[:, 1] * 1e-3, ) - # plot_limit = (plot_limit - np.mean(plot_limit, axis=0)) * 1.5 + np.mean( - # plot_limit, axis=0 - # ) - plot_limit[:, 0] = ( - plot_limit[:, 0] - np.mean(plot_limit[:, 0]) - ) * 1.5 + np.mean(plot_limit[:, 0]) - plot_limit[:, 1] = ( - plot_limit[:, 2] - np.mean(plot_limit[:, 1]) - ) * 1.5 + np.mean(plot_limit[:, 1]) - plot_limit[:, 2] = ( - plot_limit[:, 1] - np.mean(plot_limit[:, 2]) - ) * 1.1 + np.mean(plot_limit[:, 2]) - - # ax_l.view_init(elev=el, azim=az) - # Appearance - ax_l.invert_yaxis() - if swap_axes_xy_limits: - ax_l.axes.set_xlim3d(left=plot_limit[0, 0], right=plot_limit[1, 0]) - ax_l.axes.set_ylim3d(bottom=plot_limit[0, 1], top=plot_limit[1, 1]) - ax_l.axes.set_zlim3d(bottom=plot_limit[0, 2], top=plot_limit[1, 2]) - else: - ax_l.axes.set_xlim3d(left=plot_limit[0, 1], right=plot_limit[1, 1]) - ax_l.axes.set_ylim3d(bottom=plot_limit[0, 0], top=plot_limit[1, 0]) - ax_l.axes.set_zlim3d(bottom=plot_limit[0, 2], top=plot_limit[1, 2]) - axisEqual3D(ax_l) - if camera_dist is not None: - ax_l.dist = camera_dist - ax_l.axis("off") - - # Add text labels - text_scale_pos = 0.1 - text_params = { - "va": "center", - "family": "sans-serif", - "fontweight": "normal", - "color": "k", - "size": 14, - } - format_labels = "{0:.2g}" - vec = self.orientation_vecs[inds_legend[0], :] - cam_dir - vec = vec / np.linalg.norm(vec) - if np.abs(self.cell[5] - 120.0) > 1e-6: - ax_l.text( - self.orientation_vecs[inds_legend[0], 1] + vec[1] * text_scale_pos, - self.orientation_vecs[inds_legend[0], 0] + vec[0] * text_scale_pos, - self.orientation_vecs[inds_legend[0], 2] + vec[2] * text_scale_pos, - "[" - + format_labels.format(label_0[0]) - + " " - + format_labels.format(label_0[1]) - + " " - + format_labels.format(label_0[2]) - + "]", - None, - zorder=11, - ha="center", - **text_params, - ) - else: - ax_l.text( - self.orientation_vecs[inds_legend[0], 1] + vec[1] * text_scale_pos, - self.orientation_vecs[inds_legend[0], 0] + vec[0] * text_scale_pos, - self.orientation_vecs[inds_legend[0], 2] + vec[2] * text_scale_pos, - "[" - + format_labels.format(label_0[0]) - + " " - + format_labels.format(label_0[1]) - + " " - + format_labels.format(label_0[2]) - + " " - + format_labels.format(label_0[3]) - + "]", - None, - zorder=11, - ha="center", - **text_params, - ) - vec = self.orientation_vecs[inds_legend[1], :] - cam_dir - vec = vec / np.linalg.norm(vec) - if np.abs(self.cell[5] - 120.0) > 1e-6: - ax_l.text( - self.orientation_vecs[inds_legend[1], 1] + vec[1] * text_scale_pos, - self.orientation_vecs[inds_legend[1], 0] + vec[0] * text_scale_pos, - self.orientation_vecs[inds_legend[1], 2] + vec[2] * text_scale_pos, - "[" - + format_labels.format(label_1[0]) - + " " - + format_labels.format(label_1[1]) - + " " - + format_labels.format(label_1[2]) - + "]", - None, - zorder=12, - ha=ha_1, - **text_params, - ) - else: - ax_l.text( - self.orientation_vecs[inds_legend[1], 1] + vec[1] * text_scale_pos, - self.orientation_vecs[inds_legend[1], 0] + vec[0] * text_scale_pos, - self.orientation_vecs[inds_legend[1], 2] + vec[2] * text_scale_pos, - "[" - + format_labels.format(label_1[0]) - + " " - + format_labels.format(label_1[1]) - + " " - + format_labels.format(label_1[2]) - + " " - + format_labels.format(label_1[3]) - + "]", - None, - zorder=12, - ha=ha_1, - **text_params, - ) - vec = self.orientation_vecs[inds_legend[2], :] - cam_dir - vec = vec / np.linalg.norm(vec) - if np.abs(self.cell[5] - 120.0) > 1e-6: - ax_l.text( - self.orientation_vecs[inds_legend[2], 1] + vec[1] * text_scale_pos, - self.orientation_vecs[inds_legend[2], 0] + vec[0] * text_scale_pos, - self.orientation_vecs[inds_legend[2], 2] + vec[2] * text_scale_pos, - "[" - + format_labels.format(label_2[0]) - + " " - + format_labels.format(label_2[1]) - + " " - + format_labels.format(label_2[2]) - + "]", - None, - zorder=13, - ha=ha_2, - **text_params, - ) - else: - ax_l.text( - self.orientation_vecs[inds_legend[2], 1] + vec[1] * text_scale_pos, - self.orientation_vecs[inds_legend[2], 0] + vec[0] * text_scale_pos, - self.orientation_vecs[inds_legend[2], 2] + vec[2] * text_scale_pos, - "[" - + format_labels.format(label_2[0]) - + " " - + format_labels.format(label_2[1]) - + " " - + format_labels.format(label_2[2]) - + " " - + format_labels.format(label_2[3]) - + "]", - None, - zorder=13, - ha=ha_2, - **text_params, + # convert rgb values of pixels to faces + rgb_faces = ( + rgb_legend[tri.triangles[:, 0], :] + + rgb_legend[tri.triangles[:, 1], :] + + rgb_legend[tri.triangles[:, 2], :] + ) / 3 + # Add triangulated surface plot to axes + pc = art3d.Poly3DCollection( + p[tri.triangles], + facecolors=rgb_faces, + alpha=1, ) + pc.set_antialiased(False) + ax_l.add_collection(pc) + + if plot_limit is None: + plot_limit = np.array( + [ + [np.min(p[:, 0]), np.min(p[:, 1]), np.min(p[:, 2])], + [np.max(p[:, 0]), np.max(p[:, 1]), np.max(p[:, 2])], + ] + ) + # plot_limit = (plot_limit - np.mean(plot_limit, axis=0)) * 1.5 + np.mean( + # plot_limit, axis=0 + # ) + plot_limit[:, 0] = ( + plot_limit[:, 0] - np.mean(plot_limit[:, 0]) + ) * 1.5 + np.mean(plot_limit[:, 0]) + plot_limit[:, 1] = ( + plot_limit[:, 2] - np.mean(plot_limit[:, 1]) + ) * 1.5 + np.mean(plot_limit[:, 1]) + plot_limit[:, 2] = ( + plot_limit[:, 1] - np.mean(plot_limit[:, 2]) + ) * 1.1 + np.mean(plot_limit[:, 2]) + + # ax_l.view_init(elev=el, azim=az) + # Appearance + ax_l.invert_yaxis() + if swap_axes_xy_limits: + ax_l.axes.set_xlim3d(left=plot_limit[0, 0], right=plot_limit[1, 0]) + ax_l.axes.set_ylim3d(bottom=plot_limit[0, 1], top=plot_limit[1, 1]) + ax_l.axes.set_zlim3d(bottom=plot_limit[0, 2], top=plot_limit[1, 2]) + else: + ax_l.axes.set_xlim3d(left=plot_limit[0, 1], right=plot_limit[1, 1]) + ax_l.axes.set_ylim3d(bottom=plot_limit[0, 0], top=plot_limit[1, 0]) + ax_l.axes.set_zlim3d(bottom=plot_limit[0, 2], top=plot_limit[1, 2]) + axisEqual3D(ax_l) + if camera_dist is not None: + ax_l.dist = camera_dist + ax_l.axis("off") + + # Add text labels + text_scale_pos = 0.1 + text_params = { + "va": "center", + "family": "sans-serif", + "fontweight": "normal", + "color": "k", + "size": 14, + } + format_labels = "{0:.2g}" + vec = self.orientation_vecs[inds_legend[0], :] - cam_dir + vec = vec / np.linalg.norm(vec) + if np.abs(self.cell[5] - 120.0) > 1e-6: + ax_l.text( + self.orientation_vecs[inds_legend[0], 1] + vec[1] * text_scale_pos, + self.orientation_vecs[inds_legend[0], 0] + vec[0] * text_scale_pos, + self.orientation_vecs[inds_legend[0], 2] + vec[2] * text_scale_pos, + "[" + + format_labels.format(label_0[0]) + + " " + + format_labels.format(label_0[1]) + + " " + + format_labels.format(label_0[2]) + + "]", + None, + zorder=11, + ha="center", + **text_params, + ) + else: + ax_l.text( + self.orientation_vecs[inds_legend[0], 1] + vec[1] * text_scale_pos, + self.orientation_vecs[inds_legend[0], 0] + vec[0] * text_scale_pos, + self.orientation_vecs[inds_legend[0], 2] + vec[2] * text_scale_pos, + "[" + + format_labels.format(label_0[0]) + + " " + + format_labels.format(label_0[1]) + + " " + + format_labels.format(label_0[2]) + + " " + + format_labels.format(label_0[3]) + + "]", + None, + zorder=11, + ha="center", + **text_params, + ) + vec = self.orientation_vecs[inds_legend[1], :] - cam_dir + vec = vec / np.linalg.norm(vec) + if np.abs(self.cell[5] - 120.0) > 1e-6: + ax_l.text( + self.orientation_vecs[inds_legend[1], 1] + vec[1] * text_scale_pos, + self.orientation_vecs[inds_legend[1], 0] + vec[0] * text_scale_pos, + self.orientation_vecs[inds_legend[1], 2] + vec[2] * text_scale_pos, + "[" + + format_labels.format(label_1[0]) + + " " + + format_labels.format(label_1[1]) + + " " + + format_labels.format(label_1[2]) + + "]", + None, + zorder=12, + ha=ha_1, + **text_params, + ) + else: + ax_l.text( + self.orientation_vecs[inds_legend[1], 1] + vec[1] * text_scale_pos, + self.orientation_vecs[inds_legend[1], 0] + vec[0] * text_scale_pos, + self.orientation_vecs[inds_legend[1], 2] + vec[2] * text_scale_pos, + "[" + + format_labels.format(label_1[0]) + + " " + + format_labels.format(label_1[1]) + + " " + + format_labels.format(label_1[2]) + + " " + + format_labels.format(label_1[3]) + + "]", + None, + zorder=12, + ha=ha_1, + **text_params, + ) + vec = self.orientation_vecs[inds_legend[2], :] - cam_dir + vec = vec / np.linalg.norm(vec) + if np.abs(self.cell[5] - 120.0) > 1e-6: + ax_l.text( + self.orientation_vecs[inds_legend[2], 1] + vec[1] * text_scale_pos, + self.orientation_vecs[inds_legend[2], 0] + vec[0] * text_scale_pos, + self.orientation_vecs[inds_legend[2], 2] + vec[2] * text_scale_pos, + "[" + + format_labels.format(label_2[0]) + + " " + + format_labels.format(label_2[1]) + + " " + + format_labels.format(label_2[2]) + + "]", + None, + zorder=13, + ha=ha_2, + **text_params, + ) + else: + ax_l.text( + self.orientation_vecs[inds_legend[2], 1] + vec[1] * text_scale_pos, + self.orientation_vecs[inds_legend[2], 0] + vec[0] * text_scale_pos, + self.orientation_vecs[inds_legend[2], 2] + vec[2] * text_scale_pos, + "[" + + format_labels.format(label_2[0]) + + " " + + format_labels.format(label_2[1]) + + " " + + format_labels.format(label_2[2]) + + " " + + format_labels.format(label_2[3]) + + "]", + None, + zorder=13, + ha=ha_2, + **text_params, + ) - plt.show() + plt.show() images_orientation = np.zeros((orientation_map.num_x, orientation_map.num_y, 3, 2)) if self.pymatgen_available: From f7bde15b2dc97b9a619ff572e8bb3f7e6bf5be13 Mon Sep 17 00:00:00 2001 From: cophus Date: Thu, 18 Jul 2024 15:59:38 -0700 Subject: [PATCH 46/46] option to hide legend axes --- py4DSTEM/process/diffraction/crystal_viz.py | 2 ++ 1 file changed, 2 insertions(+) diff --git a/py4DSTEM/process/diffraction/crystal_viz.py b/py4DSTEM/process/diffraction/crystal_viz.py index 88cc16853..402f6f964 100644 --- a/py4DSTEM/process/diffraction/crystal_viz.py +++ b/py4DSTEM/process/diffraction/crystal_viz.py @@ -1601,6 +1601,8 @@ def plot_orientation_maps( ) plt.show() + else: + ax_l.set_axis_off() images_orientation = np.zeros((orientation_map.num_x, orientation_map.num_y, 3, 2)) if self.pymatgen_available: