diff --git a/py4DSTEM/process/diffraction/crystal.py b/py4DSTEM/process/diffraction/crystal.py index e0fe59eee..5cea7afb4 100644 --- a/py4DSTEM/process/diffraction/crystal.py +++ b/py4DSTEM/process/diffraction/crystal.py @@ -710,41 +710,69 @@ def generate_diffraction_pattern( zone_axis_cartesian: Optional[np.ndarray] = None, proj_x_cartesian: Optional[np.ndarray] = None, foil_normal_cartesian: Optional[Union[list, tuple, np.ndarray]] = None, - sigma_excitation_error: float = 0.02, + sigma_excitation_error: float = 0.01, tol_excitation_error_mult: float = 3, - tol_intensity: float = 1e-4, + tol_intensity: float = 1e-5, k_max: Optional[float] = None, + precession_angle_degrees=None, keep_qz=False, return_orientation_matrix=False, ): """ - Generate a single diffraction pattern, return all peaks as a pointlist. + Generate a single diffraction pattern, return all peaks as a pointlist. This function performs a + kinematical calculation, with optional precession of the beam. - Args: - orientation (Orientation): an Orientation class object - ind_orientation If input is an Orientation class object with multiple orientations, - this input can be used to select a specific orientation. - - orientation_matrix (array): (3,3) orientation matrix, where columns represent projection directions. - zone_axis_lattice (array): (3,) projection direction in lattice indices - proj_x_lattice (array): (3,) x-axis direction in lattice indices - zone_axis_cartesian (array): (3,) cartesian projection direction - proj_x_cartesian (array): (3,) cartesian projection direction - - foil_normal: 3 element foil normal - set to None to use zone_axis - proj_x_axis (np float vector): 3 element vector defining image x axis (vertical) - accel_voltage (float): Accelerating voltage in Volts. If not specified, - we check to see if crystal already has voltage specified. - sigma_excitation_error (float): sigma value for envelope applied to s_g (excitation errors) in units of inverse Angstroms - tol_excitation_error_mult (float): tolerance in units of sigma for s_g inclusion - tol_intensity (np float): tolerance in intensity units for inclusion of diffraction spots - k_max (float): Maximum scattering vector - keep_qz (bool): Flag to return out-of-plane diffraction vectors - return_orientation_matrix (bool): Return the orientation matrix + TODO - switch from numerical precession to analytic (requires geometry projection). + TODO - verify projection geometry for 2D material diffraction. + + Parameters + ---------- + + orientation (Orientation) + an Orientation class object + ind_orientation + If input is an Orientation class object with multiple orientations, + this input can be used to select a specific orientation. + + orientation_matrix (3,3) numpy.array + orientation matrix, where columns represent projection directions. + zone_axis_lattice (3,) numpy.array + projection direction in lattice indices + proj_x_lattice (3,) numpy.array + x-axis direction in lattice indices + zone_axis_cartesian (3,) numpy.array + cartesian projection direction + proj_x_cartesian (3,) numpy.array + cartesian projection direction + foil_normal + 3 element foil normal - set to None to use zone_axis + proj_x_axis (3,) numpy.array + 3 element vector defining image x axis (vertical) + accel_voltage (float) + Accelerating voltage in Volts. If not specified, + we check to see if crystal already has voltage specified. + sigma_excitation_error (float) + sigma value for envelope applied to s_g (excitation errors) in units of inverse Angstroms + tol_excitation_error_mult (float) + tolerance in units of sigma for s_g inclusion + tol_intensity (numpy float) + tolerance in intensity units for inclusion of diffraction spots + k_max (float) + Maximum scattering vector + precession_angle_degrees (float) + Precession angle for library calculation. Set to None for no precession. + keep_qz (bool) + Flag to return out-of-plane diffraction vectors + return_orientation_matrix (bool) + Return the orientation matrix + + Returns + ---------- + bragg_peaks (PointList) + list of all Bragg peaks with fields [qx, qy, intensity, h, k, l] + orientation_matrix (array, optional) + 3x3 orientation matrix - Returns: - bragg_peaks (PointList): list of all Bragg peaks with fields [qx, qy, intensity, h, k, l] - orientation_matrix (array): 3x3 orientation matrix (optional) """ if not (hasattr(self, "wavelength") and hasattr(self, "accel_voltage")): @@ -779,17 +807,27 @@ def generate_diffraction_pattern( # Calculate excitation errors if foil_normal is None: - sg = self.excitation_errors(g) + sg = self.excitation_errors( + g, + precession_angle_degrees=precession_angle_degrees, + ) else: foil_normal = ( orientation_matrix.T @ (-1 * foil_normal[:, None] / np.linalg.norm(foil_normal)) ).ravel() - sg = self.excitation_errors(g, foil_normal) + sg = self.excitation_errors( + g, + foil_normal=foil_normal, + precession_angle_degrees=precession_angle_degrees, + ) # Threshold for inclusion in diffraction pattern sg_max = sigma_excitation_error * tol_excitation_error_mult - keep = np.abs(sg) <= sg_max + if precession_angle_degrees is None: + keep = np.abs(sg) <= sg_max + else: + keep = np.min(np.abs(sg), axis=1) <= sg_max # Maximum scattering angle cutoff if k_max is not None: @@ -799,9 +837,15 @@ def generate_diffraction_pattern( g_diff = g[:, keep] # Diffracted peak intensities and labels - g_int = self.struct_factors_int[keep] * np.exp( - (sg[keep] ** 2) / (-2 * sigma_excitation_error**2) - ) + if precession_angle_degrees is None: + g_int = self.struct_factors_int[keep] * np.exp( + (sg[keep] ** 2) / (-2 * sigma_excitation_error**2) + ) + else: + g_int = self.struct_factors_int[keep] * np.mean( + np.exp((sg[keep] ** 2) / (-2 * sigma_excitation_error**2)), + axis=1, + ) hkl = self.hkl[:, keep] # Intensity tolerance @@ -1323,20 +1367,55 @@ def excitation_errors( self, g, foil_normal=None, + precession_angle_degrees=None, + precession_steps=72, ): """ Calculate the excitation errors, assuming k0 = [0, 0, -1/lambda]. If foil normal is not specified, we assume it is [0,0,-1]. + + Precession is currently implemented using numerical integration. """ - if foil_normal is None: - return (2 * g[2, :] - self.wavelength * np.sum(g * g, axis=0)) / ( - 2 - 2 * self.wavelength * g[2, :] - ) + + if precession_angle_degrees is None: + if foil_normal is None: + return (2 * g[2, :] - self.wavelength * np.sum(g * g, axis=0)) / ( + 2 - 2 * self.wavelength * g[2, :] + ) + else: + return (2 * g[2, :] - self.wavelength * np.sum(g * g, axis=0)) / ( + 2 * self.wavelength * np.sum(g * foil_normal[:, None], axis=0) + - 2 * foil_normal[2] + ) + else: - return (2 * g[2, :] - self.wavelength * np.sum(g * g, axis=0)) / ( - 2 * self.wavelength * np.sum(g * foil_normal[:, None], axis=0) - - 2 * foil_normal[2] + t = np.deg2rad(precession_angle_degrees) + p = np.linspace( + 0, + 2.0 * np.pi, + precession_steps, + endpoint=False, ) + if foil_normal is None: + foil_normal = np.array((0.0, 0.0, -1.0)) + + k = np.reshape( + (-1 / self.wavelength) + * np.vstack( + ( + np.sin(t) * np.cos(p), + np.sin(t) * np.sin(p), + np.cos(t) * np.ones(p.size), + ) + ), + (3, 1, p.size), + ) + + term1 = np.sum((g[:, :, None] + k) * foil_normal[:, None, None], axis=0) + term2 = np.sum((g[:, :, None] + 2 * k) * g[:, :, None], axis=0) + sg = np.sqrt(term1**2 - term2) - term1 + + return sg def calculate_bragg_peak_histogram( self, diff --git a/py4DSTEM/process/diffraction/crystal_ACOM.py b/py4DSTEM/process/diffraction/crystal_ACOM.py index fc6e691c3..f7a4a20db 100644 --- a/py4DSTEM/process/diffraction/crystal_ACOM.py +++ b/py4DSTEM/process/diffraction/crystal_ACOM.py @@ -27,8 +27,11 @@ def orientation_plan( angle_step_in_plane: float = 2.0, accel_voltage: float = 300e3, corr_kernel_size: float = 0.08, - radial_power: float = 1.0, - intensity_power: float = 0.25, # New default intensity power scaling + sigma_excitation_error: float = 0.02, + precession_angle_degrees=None, + power_radial: float = 1.0, + power_intensity: float = 0.25, + power_intensity_experiment: float = 0.25, calculate_correlation_array=True, tol_peak_delete=None, tol_distance: float = 0.01, @@ -41,39 +44,66 @@ def orientation_plan( """ Calculate the rotation basis arrays for an SO(3) rotation correlogram. - Args: - zone_axis_range (float): Row vectors give the range for zone axis orientations. - If user specifies 2 vectors (2x3 array), we start at [0,0,1] - to make z-x-z rotation work. - If user specifies 3 vectors (3x3 array), plan will span these vectors. - Setting to 'full' as a string will use a hemispherical range. - Setting to 'half' as a string will use a quarter sphere range. - Setting to 'fiber' as a string will make a spherical cap around a given vector. - Setting to 'auto' will use pymatgen to determine the point group symmetry - of the structure and choose an appropriate zone_axis_range - angle_step_zone_axis (float): Approximate angular step size for zone axis search [degrees] - angle_coarse_zone_axis (float): Coarse step size for zone axis search [degrees]. Setting to - None uses the same value as angle_step_zone_axis. - angle_refine_range (float): Range of angles to use for zone axis refinement. Setting to - None uses same value as angle_coarse_zone_axis. - - angle_step_in_plane (float): Approximate angular step size for in-plane rotation [degrees] - accel_voltage (float): Accelerating voltage for electrons [Volts] - corr_kernel_size (float): Correlation kernel size length. The size of the overlap kernel between the measured Bragg peaks and diffraction library Bragg peaks. [1/Angstroms] - radial_power (float): Power for scaling the correlation intensity as a function of the peak radius - intensity_power (float): Power for scaling the correlation intensity as a function of the peak intensity - calculate_correlation_array (bool): Set to false to skip calculating the correlation array. - This is useful when we only want the angular range / rotation matrices. - tol_peak_delete (float): Distance to delete peaks for multiple matches. - Default is kernel_size * 0.5 - tol_distance (float): Distance tolerance for radial shell assignment [1/Angstroms] - fiber_axis (float): (3,) vector specifying the fiber axis - fiber_angles (float): (2,) vector specifying angle range from fiber axis, and in-plane angular range [degrees] - cartesian_directions (bool): When set to true, all zone axes and projection directions - are specified in Cartesian directions. - figsize (float): (2,) vector giving the figure size - CUDA (bool): Use CUDA for the Fourier operations. - progress_bar (bool): If false no progress bar is displayed + Parameters + ---------- + zone_axis_range (float): + Row vectors give the range for zone axis orientations. + If user specifies 2 vectors (2x3 array), we start at [0,0,1] + to make z-x-z rotation work. + If user specifies 3 vectors (3x3 array), plan will span these vectors. + Setting to 'full' as a string will use a hemispherical range. + Setting to 'half' as a string will use a quarter sphere range. + Setting to 'fiber' as a string will make a spherical cap around a given vector. + Setting to 'auto' will use pymatgen to determine the point group symmetry + of the structure and choose an appropriate zone_axis_range + angle_step_zone_axis (float): + Approximate angular step size for zone axis search [degrees] + angle_coarse_zone_axis (float): + Coarse step size for zone axis search [degrees]. Setting to + None uses the same value as angle_step_zone_axis. + angle_refine_range (float): + Range of angles to use for zone axis refinement. Setting to + None uses same value as angle_coarse_zone_axis. + + angle_step_in_plane (float): + Approximate angular step size for in-plane rotation [degrees] + accel_voltage (float): + Accelerating voltage for electrons [Volts] + corr_kernel_size (float): + Correlation kernel size length. The size of the overlap kernel between the + measured Bragg peaks and diffraction library Bragg peaks. [1/Angstroms] + sigma_excitation_error (float): + The out of plane excitation error tolerance. [1/Angstroms] + precession_angle_degrees (float) + Tilt angle of illuminaiton cone in degrees for precession electron diffraction (PED). + + power_radial (float): + Power for scaling the correlation intensity as a function of the peak radius + power_intensity (float): + Power for scaling the correlation intensity as a function of simulated peak intensity + power_intensity_experiment (float): + Power for scaling the correlation intensity as a function of experimental peak intensity + calculate_correlation_array (bool): + Set to false to skip calculating the correlation array. + This is useful when we only want the angular range / rotation matrices. + tol_peak_delete (float): + Distance to delete peaks for multiple matches. + Default is kernel_size * 0.5 + tol_distance (float): + Distance tolerance for radial shell assignment [1/Angstroms] + fiber_axis (float): + (3,) vector specifying the fiber axis + fiber_angles (float): + (2,) vector specifying angle range from fiber axis, and in-plane angular range [degrees] + cartesian_directions (bool): + When set to true, all zone axes and projection directions + are specified in Cartesian directions. + figsize (float): + (2,) vector giving the figure size + CUDA (bool): + Use CUDA for the Fourier operations. + progress_bar (bool): + If false no progress bar is displayed, """ # Check to make sure user has calculated the structure factors if needed @@ -86,6 +116,14 @@ def orientation_plan( # Store inputs self.accel_voltage = np.asarray(accel_voltage) self.orientation_kernel_size = np.asarray(corr_kernel_size) + self.orientation_sigma_excitation_error = sigma_excitation_error + if precession_angle_degrees is None: + self.orientation_precession_angle_degrees = None + else: + self.orientation_precession_angle_degrees = np.asarray(precession_angle_degrees) + self.orientation_precession_angle = np.deg2rad( + np.asarray(precession_angle_degrees) + ) if tol_peak_delete is None: self.orientation_tol_peak_delete = self.orientation_kernel_size * 0.5 else: @@ -104,8 +142,9 @@ def orientation_plan( self.wavelength = electron_wavelength_angstrom(self.accel_voltage) # store the radial and intensity scaling to use later for generating test patterns - self.orientation_radial_power = radial_power - self.orientation_intensity_power = intensity_power + self.orientation_power_radial = power_radial + self.orientation_power_intensity = power_intensity + self.orientation_power_intensity_experiment = power_intensity_experiment # Calculate the ratio between coarse and fine refinement if angle_coarse_zone_axis is not None: @@ -717,45 +756,100 @@ def orientation_plan( ): # reciprocal lattice spots and excitation errors g = self.orientation_rotation_matrices[a0, :, :].T @ self.g_vec_all + # if precession_angle_degrees is None: sg = self.excitation_errors(g) + # else: + # sg = np.min( + # np.abs( + # self.excitation_errors( + # g, + # precession_angle_degrees = precession_angle_degrees, + # ), + # ), + # axis = 1, + # ) # Keep only points that will contribute to this orientation plan slice - keep = np.abs(sg) < self.orientation_kernel_size + keep = np.logical_and( + np.abs(sg) < self.orientation_kernel_size, + self.orientation_shell_index >= 0, + ) + + # calculate intensity of spots + if precession_angle_degrees is None: + Ig = np.exp(sg[keep] ** 2 / (-2 * sigma_excitation_error**2)) + else: + # precession extension + prec = np.cos(np.linspace(0, 2 * np.pi, 90, endpoint=False)) + dsg = np.tan(self.orientation_precession_angle) * np.sum( + g[:2, keep] ** 2, axis=0 + ) + Ig = np.mean( + np.exp( + (sg[keep, None] + dsg[:, None] * prec[None, :]) ** 2 + / (-2 * sigma_excitation_error**2) + ), + axis=1, + ) # in-plane rotation angle - phi = np.arctan2(g[1, :], g[0, :]) - - # Loop over all peaks - for a1 in np.arange(self.g_vec_all.shape[1]): - ind_radial = self.orientation_shell_index[a1] - - if keep[a1] and ind_radial >= 0: - # 2D orientation plan - self.orientation_ref[a0, ind_radial, :] += ( - np.power(self.orientation_shell_radii[ind_radial], radial_power) - * np.power(self.struct_factors_int[a1], intensity_power) - * np.maximum( - 1 - - np.sqrt( - sg[a1] ** 2 - + ( - ( - np.mod( - self.orientation_gamma - phi[a1] + np.pi, - 2 * np.pi, - ) - - np.pi - ) - * self.orientation_shell_radii[ind_radial] - ) - ** 2 - ) - / self.orientation_kernel_size, - 0, - ) - ) + phi = np.arctan2(g[1, keep], g[0, keep]) + phi_ind = phi / self.orientation_gamma[1] # step size of annular bins + phi_floor = np.floor(phi_ind).astype("int") + dphi = phi_ind - phi_floor + + # write intensities into orientation plan slice + radial_inds = self.orientation_shell_index[keep] + self.orientation_ref[a0, radial_inds, phi_floor] += ( + (1 - dphi) + * np.power(self.struct_factors_int[keep] * Ig, power_intensity) + * np.power(self.orientation_shell_radii[radial_inds], power_radial) + ) + self.orientation_ref[ + a0, radial_inds, np.mod(phi_floor + 1, self.orientation_in_plane_steps) + ] += ( + dphi + * np.power(self.struct_factors_int[keep] * Ig, power_intensity) + * np.power(self.orientation_shell_radii[radial_inds], power_radial) + ) + # # Loop over all peaks + # for a1 in np.arange(self.g_vec_all.shape[1]): + # if keep[a1]: + + # for a1 in np.arange(self.g_vec_all.shape[1]): + # ind_radial = self.orientation_shell_index[a1] + + # if keep[a1] and ind_radial >= 0: + # # 2D orientation plan + # self.orientation_ref[a0, ind_radial, :] += ( + # np.power(self.orientation_shell_radii[ind_radial], power_radial) + # * np.power(self.struct_factors_int[a1], power_intensity) + # * np.maximum( + # 1 + # - np.sqrt( + # sg[a1] ** 2 + # + ( + # ( + # np.mod( + # self.orientation_gamma - phi[a1] + np.pi, + # 2 * np.pi, + # ) + # - np.pi + # ) + # * self.orientation_shell_radii[ind_radial] + # ) + # ** 2 + # ) + # / self.orientation_kernel_size, + # 0, + # ) + # ) + + # normalization + # self.orientation_ref[a0, :, :] -= np.mean(self.orientation_ref[a0, :, :]) orientation_ref_norm = np.sqrt(np.sum(self.orientation_ref[a0, :, :] ** 2)) + # orientation_ref_norm = np.sum(self.orientation_ref[a0, :, :]) if orientation_ref_norm > 0: self.orientation_ref[a0, :, :] /= orientation_ref_norm @@ -959,14 +1053,12 @@ def match_single_pattern( if np.any(sub): im_polar[ind_radial, :] = np.sum( - np.power(radius, self.orientation_radial_power) - * np.power( + np.power( np.maximum(intensity[sub, None], 0.0), - self.orientation_intensity_power, + self.orientation_power_intensity_experiment, ) - * np.maximum( - 1 - - np.sqrt( + * np.exp( + ( dqr[sub, None] ** 2 + ( ( @@ -982,12 +1074,73 @@ def match_single_pattern( ) ** 2 ) - / self.orientation_kernel_size, - 0, + / (-2 * self.orientation_kernel_size**2) ), axis=0, ) + # im_polar[ind_radial, :] = np.sum( + # np.power( + # np.maximum(intensity[sub, None], 0.0), + # self.orientation_power_intensity_experiment, + # ) + # * np.maximum( + # 1 + # - np.sqrt( + # dqr[sub, None] ** 2 + # + ( + # ( + # np.mod( + # self.orientation_gamma[None, :] + # - qphi[sub, None] + # + np.pi, + # 2 * np.pi, + # ) + # - np.pi + # ) + # * radius + # ) + # ** 2 + # ) + # / self.orientation_kernel_size, + # 0, + # ), + # axis=0, + # ) + + # im_polar[ind_radial, :] = np.sum( + # np.power(radius, self.orientation_power_radial) + # * np.power( + # np.maximum(intensity[sub, None], 0.0), + # self.orientation_power_intensity, + # ) + # * np.maximum( + # 1 + # - np.sqrt( + # dqr[sub, None] ** 2 + # + ( + # ( + # np.mod( + # self.orientation_gamma[None, :] + # - qphi[sub, None] + # + np.pi, + # 2 * np.pi, + # ) + # - np.pi + # ) + # * radius + # ) + # ** 2 + # ) + # / self.orientation_kernel_size, + # 0, + # ), + # axis=0, + # ) + + # normalization + # im_polar -= np.mean(im_polar) + # Determine the RMS signal from im_polar for the first match. # Note that we use scaling slightly below RMS so that following matches # don't have higher correlating scores than previous matches. @@ -1186,6 +1339,7 @@ def match_single_pattern( np.clip( np.sum( self.orientation_vecs + # self.orientation_vecs * np.array([1,-1,-1])[None,:] * self.orientation_vecs[inds_previous[a0], :], axis=1, ), @@ -1484,7 +1638,8 @@ def match_single_pattern( bragg_peaks_fit = self.generate_diffraction_pattern( orientation, ind_orientation=match_ind, - sigma_excitation_error=self.orientation_kernel_size, + sigma_excitation_error=self.orientation_sigma_excitation_error, + precession_angle_degrees=self.orientation_precession_angle_degrees, ) remove = np.zeros_like(qx, dtype="bool") diff --git a/py4DSTEM/process/diffraction/crystal_phase.py b/py4DSTEM/process/diffraction/crystal_phase.py index d28616aa9..c161304f9 100644 --- a/py4DSTEM/process/diffraction/crystal_phase.py +++ b/py4DSTEM/process/diffraction/crystal_phase.py @@ -3,13 +3,14 @@ from scipy.optimize import nnls import matplotlib as mpl import matplotlib.pyplot as plt +from scipy.ndimage import gaussian_filter from emdfile import tqdmnd, PointListArray from py4DSTEM.visualize import show, show_image_grid from py4DSTEM.process.diffraction.crystal_viz import plot_diffraction_pattern -class Crystal_Phase: +class CrystalPhase: """ A class storing multiple crystal structures, and associated diffraction data. Must be initialized after matching orientations to a pointlistarray??? @@ -19,8 +20,9 @@ class Crystal_Phase: def __init__( self, crystals, - orientation_maps, - name, + crystal_names=None, + orientation_maps=None, + name=None, ): """ Args: @@ -33,306 +35,1368 @@ def __init__( self.num_crystals = len(crystals) else: raise TypeError("crystals must be a list of crystal instances.") - if isinstance(orientation_maps, list): + + # List of orientation maps + if orientation_maps is None: + self.orientation_maps = [ + crystals[ind].orientation_map for ind in range(self.num_crystals) + ] + else: if len(self.crystals) != len(orientation_maps): raise ValueError( "Orientation maps must have the same number of entries as crystals." ) self.orientation_maps = orientation_maps + + # Names of all crystal phases + if crystal_names is None: + self.crystal_names = [ + "crystal" + str(ind) for ind in range(self.num_crystals) + ] + else: + self.crystal_names = crystal_names + + # Name of the phase map + if name is None: + self.name = "phase map" else: - raise TypeError("orientation_maps must be a list of orientation maps.") - self.name = name - return + self.name = name - def plot_all_phase_maps(self, map_scale_values=None, index=0): + # Get some attributes from crystals + self.k_max = np.zeros(self.num_crystals) + self.num_matches = np.zeros(self.num_crystals, dtype="int") + self.crystal_identity = np.zeros((0, 2), dtype="int") + for a0 in range(self.num_crystals): + self.k_max[a0] = self.crystals[a0].k_max + self.num_matches[a0] = self.crystals[a0].orientation_map.num_matches + for a1 in range(self.num_matches[a0]): + self.crystal_identity = np.append( + self.crystal_identity, + np.array((a0, a1), dtype="int")[None, :], + axis=0, + ) + + self.num_fits = np.sum(self.num_matches) + + def quantify_single_pattern( + self, + pointlistarray: PointListArray, + xy_position=(0, 0), + corr_kernel_size=0.04, + sigma_excitation_error: float = 0.02, + precession_angle_degrees=None, + power_intensity: float = 0.25, + power_intensity_experiment: float = 0.25, + k_max=None, + max_number_patterns=2, + single_phase=False, + allow_strain=False, + strain_iterations=3, + strain_max=0.02, + include_false_positives=True, + weight_false_positives=1.0, + weight_unmatched_peaks=1.0, + plot_result=True, + plot_only_nonzero_phases=True, + plot_unmatched_peaks=False, + plot_correlation_radius=False, + scale_markers_experiment=40, + scale_markers_calculated=200, + crystal_inds_plot=None, + phase_colors=None, + figsize=(10, 7), + verbose=True, + returnfig=False, + ): """ - Visualize phase maps of dataset. + Quantify the phase for a single diffraction pattern. + + TODO - determine the difference between false positive peaks and unmatched peaks (if any). + + Parameters + ---------- + + pointlistarray: (PointListArray) + Full array of all calibrated experimental bragg peaks, with shape = (num_x,num_y) + xy_position: (int,int) + The (x,y) or (row,column) position to be quantified. + corr_kernel_size: (float) + Correlation kernel size length. The size of the overlap kernel between the + measured Bragg peaks and diffraction library Bragg peaks. [1/Angstroms] + sigma_excitation_error: (float) + The out of plane excitation error tolerance. [1/Angstroms] + precession_angle_degrees: (float) + Tilt angle of illuminaiton cone in degrees for precession electron diffraction (PED). + power_intensity: (float) + Power for scaling the correlation intensity as a function of simulated peak intensity. + power_intensity_experiment: (float): + Power for scaling the correlation intensity as a function of experimental peak intensity. + k_max: (float) + Max k values included in fits, for both x and y directions. + max_number_patterns: int + Max number of orientations which can be included in a match. + single_phase: bool + Set to true to force result to output only the best-fit phase (minimum intensity residual). + allow_strain: bool, + Allow the simulated diffraction patterns to be distorted to improve the matches. + strain_iterations: int + Number of pattern position refinement iterations. + strain_max: float + Maximum strain fraction allowed - this value should be low, typically a few percent (~0.02). + include_false_positives: bool + Penalize patterns which generate false positive peaks. + weight_false_positives: float + Weight strength of false positive peaks. + weight_unmatched_peaks: float + Penalize unmatched peaks. + plot_result: bool + Plot the resulting fit. + plot_only_nonzero_phases: bool + Only plot phases with phase weights > 0. + plot_unmatched_peaks: bool + Plot the false postive peaks. + plot_correlation_radius: bool + In the visualization, draw the correlation radius. + scale_markers_experiment: float + Size of experimental diffraction peak markers. + scale_markers_calculated: float + Size of the calculate diffraction peak markers. + crystal_inds_plot: tuple of ints + Which crystal index / indices to plot. + phase_colors: np.array + Color of each phase, should have shape = (num_phases, 3) + figsize: (float,float) + Size of the output figure. + verbose: bool + Print the resulting fit weights to console. + returnfig: bool + Return the figure and axis handles for the plot. + + + Returns + ------- + phase_weights: (np.array) + Estimated relative fraction of each phase for all probe positions. + shape = (num_x, num_y, num_orientations) + where num_orientations is the total number of all orientations for all phases. + phase_residual: (np.array) + Residual intensity not represented by the best fit phase weighting for all probe positions. + shape = (num_x, num_y) + phase_reliability: (np.array) + Estimated reliability of match(es) for all probe positions. + Typically calculated as the best fit score minus the second best fit. + shape = (num_x, num_y) + int_total: (np.array) + Sum of experimental peak intensities for all probe positions. + shape = (num_x, num_y) + fig,ax: (optional) + matplotlib figure and axis handles - Args: - map_scale_values (float): Value to scale correlations by """ - phase_maps = [] - if map_scale_values is None: - map_scale_values = [1] * len(self.orientation_maps) - corr_sum = np.sum( - [ - (self.orientation_maps[m].corr[:, :, index] * map_scale_values[m]) - for m in range(len(self.orientation_maps)) - ] - ) - for m in range(len(self.orientation_maps)): - phase_maps.append(self.orientation_maps[m].corr[:, :, index] / corr_sum) - show_image_grid(lambda i: phase_maps[i], 1, len(phase_maps), cmap="inferno") - return - - def plot_phase_map(self, index=0, cmap=None): - corr_array = np.dstack( - [maps.corr[:, :, index] for maps in self.orientation_maps] - ) - best_corr_score = np.max(corr_array, axis=2) - best_match_phase = [ - np.where(corr_array[:, :, p] == best_corr_score, True, False) - for p in range(len(self.orientation_maps)) - ] - - if cmap is None: - cm = plt.get_cmap("rainbow") - cmap = [ - cm(1.0 * i / len(self.orientation_maps)) - for i in range(len(self.orientation_maps)) - ] - fig, (ax) = plt.subplots(figsize=(6, 6)) - ax.matshow( - np.zeros((self.orientation_maps[0].num_x, self.orientation_maps[0].num_y)), - cmap="gray", + # tolerance for separating the origin peak. + tolerance_origin_2 = 1e-6 + + # calibrations + center = pointlistarray.calstate["center"] + ellipse = pointlistarray.calstate["ellipse"] + pixel = pointlistarray.calstate["pixel"] + rotate = pointlistarray.calstate["rotate"] + if center is False: + raise ValueError("Bragg peaks must be center calibration") + if pixel is False: + raise ValueError("Bragg peaks must have pixel size calibration") + # TODO - potentially warn the user if ellipse / rotate calibration not available + + if phase_colors is None: + phase_colors = np.array( + ( + (1.0, 0.0, 0.0, 1.0), + (0.0, 0.8, 1.0, 1.0), + (0.0, 0.6, 0.0, 1.0), + (1.0, 0.0, 1.0, 1.0), + (0.0, 0.2, 1.0, 1.0), + (1.0, 0.8, 0.0, 1.0), + ) + ) + + # Experimental values + bragg_peaks = pointlistarray.get_vectors( + xy_position[0], + xy_position[1], + center=center, + ellipse=ellipse, + pixel=pixel, + rotate=rotate, ) - ax.axis("off") + # bragg_peaks = pointlistarray.get_pointlist(xy_position[0],xy_position[1]).copy() + if k_max is None: + keep = ( + bragg_peaks.data["qx"] ** 2 + bragg_peaks.data["qy"] ** 2 + > tolerance_origin_2 + ) + else: + keep = np.logical_and.reduce( + ( + bragg_peaks.data["qx"] ** 2 + bragg_peaks.data["qy"] ** 2 + > tolerance_origin_2, + np.abs(bragg_peaks.data["qx"]) < k_max, + np.abs(bragg_peaks.data["qy"]) < k_max, + ) + ) - for m in range(len(self.orientation_maps)): - c0, c1 = (cmap[m][0] * 0.35, cmap[m][1] * 0.35, cmap[m][2] * 0.35, 1), cmap[ - m - ] - cm = mpl.colors.LinearSegmentedColormap.from_list("cmap", [c0, c1], N=10) - ax.matshow( - np.ma.array( - self.orientation_maps[m].corr[:, :, index], mask=best_match_phase[m] + # ind_center_beam = np.argmin( + # bragg_peaks.data["qx"]**2 + bragg_peaks.data["qy"]**2) + # mask = np.ones_like(bragg_peaks.data["qx"], dtype='bool') + # mask[ind_center_beam] = False + # bragg_peaks.remove(ind_center_beam) + qx = bragg_peaks.data["qx"][keep] + qy = bragg_peaks.data["qy"][keep] + qx0 = bragg_peaks.data["qx"][np.logical_not(keep)] + qy0 = bragg_peaks.data["qy"][np.logical_not(keep)] + if power_intensity_experiment == 0: + intensity = np.ones_like(qx) + intensity0 = np.ones_like(qx0) + else: + intensity = ( + bragg_peaks.data["intensity"][keep] ** power_intensity_experiment + ) + intensity0 = ( + bragg_peaks.data["intensity"][np.logical_not(keep)] + ** power_intensity_experiment + ) + int_total = np.sum(intensity) + + # init basis array + if include_false_positives: + basis = np.zeros((intensity.shape[0], self.num_fits)) + unpaired_peaks = [] + else: + basis = np.zeros((intensity.shape[0], self.num_fits)) + if allow_strain: + m_strains = np.zeros((self.num_fits, 2, 2)) + m_strains[:, 0, 0] = 1.0 + m_strains[:, 1, 1] = 1.0 + + # kernel radius squared + radius_max_2 = corr_kernel_size**2 + + # init for plotting + if plot_result: + library_peaks = [] + library_int = [] + library_matches = [] + + # Generate point list data, match to experimental peaks + for a0 in range(self.num_fits): + c = self.crystal_identity[a0, 0] + m = self.crystal_identity[a0, 1] + # for c in range(self.num_crystals): + # for m in range(self.num_matches[c]): + # ind_match += 1 + + # Generate simulated peaks + bragg_peaks_fit = self.crystals[c].generate_diffraction_pattern( + self.crystals[c].orientation_map.get_orientation( + xy_position[0], xy_position[1] ), - cmap=cm, + ind_orientation=m, + sigma_excitation_error=sigma_excitation_error, + precession_angle_degrees=precession_angle_degrees, ) - plt.show() - - return - - # Potentially introduce a way to check best match out of all orientations in phase plan and plug into model - # to quantify phase - - # def phase_plan( - # self, - # method, - # zone_axis_range: np.ndarray = np.array([[0, 1, 1], [1, 1, 1]]), - # angle_step_zone_axis: float = 2.0, - # angle_coarse_zone_axis: float = None, - # angle_refine_range: float = None, - # angle_step_in_plane: float = 2.0, - # accel_voltage: float = 300e3, - # intensity_power: float = 0.25, - # tol_peak_delete=None, - # tol_distance: float = 0.01, - # fiber_axis = None, - # fiber_angles = None, - # ): - # return + if k_max is None: + del_peak = ( + bragg_peaks_fit.data["qx"] ** 2 + bragg_peaks_fit.data["qy"] ** 2 + < tolerance_origin_2 + ) + else: + del_peak = np.logical_or.reduce( + ( + bragg_peaks_fit.data["qx"] ** 2 + + bragg_peaks_fit.data["qy"] ** 2 + < tolerance_origin_2, + np.abs(bragg_peaks_fit.data["qx"]) > k_max, + np.abs(bragg_peaks_fit.data["qy"]) > k_max, + ) + ) + bragg_peaks_fit.remove(del_peak) + + # peak intensities + if power_intensity == 0: + int_fit = np.ones_like(bragg_peaks_fit.data["qx"]) + else: + int_fit = bragg_peaks_fit.data["intensity"] ** power_intensity + + # Pair peaks to experiment + if plot_result: + matches = np.zeros((bragg_peaks_fit.data.shape[0]), dtype="bool") + + if allow_strain: + for a1 in range(strain_iterations): + # Initial peak pairing to find best-fit strain distortion + pair_sub = np.zeros(bragg_peaks_fit.data.shape[0], dtype="bool") + pair_inds = np.zeros(bragg_peaks_fit.data.shape[0], dtype="int") + for a1 in range(bragg_peaks_fit.data.shape[0]): + dist2 = (bragg_peaks_fit.data["qx"][a1] - qx) ** 2 + ( + bragg_peaks_fit.data["qy"][a1] - qy + ) ** 2 + ind_min = np.argmin(dist2) + val_min = dist2[ind_min] + + if val_min < radius_max_2: + pair_sub[a1] = True + pair_inds[a1] = ind_min + + # calculate best-fit strain tensor, weighted by the intensities. + # requires at least 4 peak pairs + if np.sum(pair_sub) >= 4: + # pair_obs = bragg_peaks_fit.data[['qx','qy']][pair_sub] + pair_basis = np.vstack( + ( + bragg_peaks_fit.data["qx"][pair_sub], + bragg_peaks_fit.data["qy"][pair_sub], + ) + ).T + pair_obs = np.vstack( + ( + qx[pair_inds[pair_sub]], + qy[pair_inds[pair_sub]], + ) + ).T + + # weights + dists = np.sqrt( + ( + bragg_peaks_fit.data["qx"][pair_sub] + - qx[pair_inds[pair_sub]] + ) + ** 2 + + ( + bragg_peaks_fit.data["qx"][pair_sub] + - qx[pair_inds[pair_sub]] + ) + ** 2 + ) + weights = np.sqrt( + int_fit[pair_sub] * intensity[pair_inds[pair_sub]] + ) * (1 - dists / corr_kernel_size) + # weights = 1 - dists / corr_kernel_size + + # strain tensor + m_strain = np.linalg.lstsq( + pair_basis * weights[:, None], + pair_obs * weights[:, None], + rcond=None, + )[0] + + # Clamp strains to be within the user-specified limit + m_strain = np.clip( + m_strain, + np.eye(2) - strain_max, + np.eye(2) + strain_max, + ) + m_strains[a0] *= m_strain + + # Transformed peak positions + qx_copy = bragg_peaks_fit.data["qx"] + qy_copy = bragg_peaks_fit.data["qy"] + bragg_peaks_fit.data["qx"] = ( + qx_copy * m_strain[0, 0] + qy_copy * m_strain[1, 0] + ) + bragg_peaks_fit.data["qy"] = ( + qx_copy * m_strain[0, 1] + qy_copy * m_strain[1, 1] + ) + + # Loop over all peaks, pair experiment to library + for a1 in range(bragg_peaks_fit.data.shape[0]): + dist2 = (bragg_peaks_fit.data["qx"][a1] - qx) ** 2 + ( + bragg_peaks_fit.data["qy"][a1] - qy + ) ** 2 + ind_min = np.argmin(dist2) + val_min = dist2[ind_min] + + if include_false_positives: + weight = np.clip( + 1 - np.sqrt(dist2[ind_min]) / corr_kernel_size, 0, 1 + ) + basis[ind_min, a0] = int_fit[a1] * weight + unpaired_peaks.append( + [ + a0, + int_fit[a1] * (1 - weight), + ] + ) + if weight > 1e-8 and plot_result: + matches[a1] = True + else: + if val_min < radius_max_2: + basis[ind_min, a0] = int_fit[a1] + if plot_result: + matches[a1] = True + + # if val_min < radius_max_2: + # # weight = 1 - np.sqrt(dist2[ind_min]) / corr_kernel_size + # # weight = 1 + corr_distance_scale * \ + # # np.sqrt(dist2[ind_min]) / corr_kernel_size + # # basis[ind_min,a0] = weight * int_fit[a1] + # basis[ind_min,a0] = int_fit[a1] + # if plot_result: + # matches[a1] = True + # elif include_false_positives: + # # unpaired_peaks.append([a0,int_fit[a1]*(1 + corr_distance_scale)]) + # unpaired_peaks.append([a0,int_fit[a1]]) + + if plot_result: + library_peaks.append(bragg_peaks_fit) + library_int.append(int_fit) + library_matches.append(matches) + + # If needed, augment basis and observations with false positives + if include_false_positives: + basis_aug = np.zeros((len(unpaired_peaks), self.num_fits)) + for a0 in range(len(unpaired_peaks)): + basis_aug[a0, unpaired_peaks[a0][0]] = unpaired_peaks[a0][1] + + basis = np.vstack((basis, basis_aug * weight_false_positives)) + obs = np.hstack((intensity, np.zeros(len(unpaired_peaks)))) + + else: + obs = intensity + + # Solve for phase weight coefficients + try: + phase_weights = np.zeros(self.num_fits) + + if single_phase: + # loop through each crystal structure and determine the best fit structure, + # which can contain multiple orientations up to max_number_patterns + crystal_res = np.zeros(self.num_crystals) + + for a0 in range(self.num_crystals): + inds_solve = self.crystal_identity[:, 0] == a0 + search = True + + while search is True: + basis_solve = basis[:, inds_solve] + obs_solve = obs.copy() + + if weight_unmatched_peaks > 1.0: + sub_unmatched = np.sum(basis_solve, axis=1) < 1e-8 + obs_solve[sub_unmatched] *= weight_unmatched_peaks + + phase_weights_cand, phase_residual_cand = nnls( + basis_solve, + obs_solve, + ) + + if ( + np.count_nonzero(phase_weights_cand > 0.0) + <= max_number_patterns + ): + phase_weights[inds_solve] = phase_weights_cand + crystal_res[a0] = phase_residual_cand + search = False + else: + inds = np.where(inds_solve)[0] + inds_solve[inds[np.argmin(phase_weights_cand)]] = False + + ind_best_fit = np.argmin(crystal_res) + # ind_best_fit = np.argmax(phase_weights) + + phase_residual = crystal_res[ind_best_fit] + sub = np.logical_not(self.crystal_identity[:, 0] == ind_best_fit) + phase_weights[sub] = 0.0 + + # Estimate reliability as difference between best fit and 2nd best fit + crystal_res = np.sort(crystal_res) + phase_reliability = crystal_res[1] - crystal_res[0] + + else: + # Allow all crystals and orientation matches in the pattern + inds_solve = np.ones(self.num_fits, dtype="bool") + search = True + while search is True: + phase_weights_cand, phase_residual_cand = nnls( + basis[:, inds_solve], + obs, + ) + + if ( + np.count_nonzero(phase_weights_cand > 0.0) + <= max_number_patterns + ): + phase_weights[inds_solve] = phase_weights_cand + phase_residual = phase_residual_cand + search = False + else: + inds = np.where(inds_solve)[0] + inds_solve[inds[np.argmin(phase_weights_cand)]] = False + + # Estimate the phase reliability + inds_solve = np.ones(self.num_fits, dtype="bool") + inds_solve[phase_weights > 1e-8] = False + + if np.all(inds_solve == False): + phase_reliability = 0.0 + else: + search = True + while search is True: + phase_weights_cand, phase_residual_cand = nnls( + basis[:, inds_solve], + obs, + ) + if ( + np.count_nonzero(phase_weights_cand > 0.0) + <= max_number_patterns + ): + phase_residual_2nd = phase_residual_cand + search = False + else: + inds = np.where(inds_solve)[0] + inds_solve[inds[np.argmin(phase_weights_cand)]] = False + + phase_weights_cand, phase_residual_cand = nnls( + basis[:, inds_solve], + obs, + ) + phase_reliability = phase_residual_2nd - phase_residual + + except: + phase_weights = np.zeros(self.num_fits) + phase_residual = np.sqrt(np.sum(intensity**2)) + phase_reliability = 0.0 + + if verbose: + ind_max = np.argmax(phase_weights) + # print() + print("\033[1m" + "phase_weight or_ind name" + "\033[0m") + # print() + for a0 in range(self.num_fits): + c = self.crystal_identity[a0, 0] + m = self.crystal_identity[a0, 1] + line = "{:>12} {:>8} {:<12}".format( + f"{phase_weights[a0]:.2f}", m, self.crystal_names[c] + ) + if a0 == ind_max: + print("\033[1m" + line + "\033[0m") + else: + print(line) + print("----------------------------") + line = "{:>12} {:>15}".format(f"{sum(phase_weights):.2f}", "fit total") + print("\033[1m" + line + "\033[0m") + line = "{:>12} {:>15}".format(f"{phase_residual:.2f}", "fit residual") + print(line) + + # Plotting + if plot_result: + # fig, ax = plt.subplots(figsize=figsize) + fig = plt.figure(figsize=figsize) + # if plot_layout == 0: + # ax_x = fig.add_axes( + # [0.0+figbound[0], 0.0, 0.4-2*+figbound[0], 1.0]) + ax = fig.add_axes([0.0, 0.0, 0.66, 1.0]) + ax_leg = fig.add_axes([0.68, 0.0, 0.3, 1.0]) + + if plot_correlation_radius: + # plot the experimental radii + t = np.linspace(0, 2 * np.pi, 91, endpoint=True) + ct = np.cos(t) * corr_kernel_size + st = np.sin(t) * corr_kernel_size + for a0 in range(qx.shape[0]): + ax.plot( + qy[a0] + st, + qx[a0] + ct, + color="k", + linewidth=1, + ) + + # plot the experimental peaks + ax.scatter( + qy0, + qx0, + # s = scale_markers_experiment * intensity0, + s=scale_markers_experiment + * bragg_peaks.data["intensity"][np.logical_not(keep)], + marker="o", + facecolor=[0.7, 0.7, 0.7], + ) + ax.scatter( + qy, + qx, + # s = scale_markers_experiment * intensity, + s=scale_markers_experiment * bragg_peaks.data["intensity"][keep], + marker="o", + facecolor=[0.7, 0.7, 0.7], + ) + # legend + if k_max is None: + k_max = np.max(self.k_max) + dx_leg = -0.05 * k_max + dy_leg = 0.04 * k_max + text_params = { + "va": "center", + "ha": "left", + "family": "sans-serif", + "fontweight": "normal", + "color": "k", + "size": 12, + } + if plot_correlation_radius: + ax_leg.plot( + 0 + st * 0.5, + -dx_leg + ct * 0.5, + color="k", + linewidth=1, + ) + ax_leg.scatter( + 0, + 0, + s=200, + marker="o", + facecolor=[0.7, 0.7, 0.7], + ) + ax_leg.text(dy_leg, 0, "Experimental peaks", **text_params) + if plot_correlation_radius: + ax_leg.text(dy_leg, -dx_leg, "Correlation radius", **text_params) + + # plot calculated diffraction patterns + uvals = phase_colors.copy() + uvals[:, 3] = 0.3 + # uvals = np.array(( + # (1.0,0.0,0.0,0.2), + # (0.0,0.8,1.0,0.2), + # (0.0,0.6,0.0,0.2), + # (1.0,0.0,1.0,0.2), + # (0.0,0.2,1.0,0.2), + # (1.0,0.8,0.0,0.2), + # )) + mvals = [ + "v", + "^", + "<", + ">", + "d", + "s", + ] + + count_leg = 0 + for a0 in range(self.num_fits): + c = self.crystal_identity[a0, 0] + m = self.crystal_identity[a0, 1] + + if ( + crystal_inds_plot == None + or np.min(np.abs(c - crystal_inds_plot)) == 0 + ): + qx_fit = library_peaks[a0].data["qx"] + qy_fit = library_peaks[a0].data["qy"] + + if allow_strain: + m_strain = m_strains[a0] + # Transformed peak positions + qx_copy = qx_fit.copy() + qy_copy = qy_fit.copy() + qx_fit = qx_copy * m_strain[0, 0] + qy_copy * m_strain[1, 0] + qy_fit = qx_copy * m_strain[0, 1] + qy_copy * m_strain[1, 1] + + int_fit = library_int[a0] + matches_fit = library_matches[a0] + + if plot_only_nonzero_phases is False or phase_weights[a0] > 0: + # if np.mod(m,2) == 0: + ax.scatter( + qy_fit[matches_fit], + qx_fit[matches_fit], + s=scale_markers_calculated * int_fit[matches_fit], + marker=mvals[c], + facecolor=phase_colors[c, :], + ) + if plot_unmatched_peaks: + ax.scatter( + qy_fit[np.logical_not(matches_fit)], + qx_fit[np.logical_not(matches_fit)], + s=scale_markers_calculated + * int_fit[np.logical_not(matches_fit)], + marker=mvals[c], + facecolor=phase_colors[c, :], + ) + + # legend + if m == 0: + ax_leg.text( + dy_leg, + (count_leg + 1) * dx_leg, + self.crystal_names[c], + **text_params, + ) + ax_leg.scatter( + 0, + (count_leg + 1) * dx_leg, + s=200, + marker=mvals[c], + facecolor=phase_colors[c, :], + ) + count_leg += 1 + # else: + # ax.scatter( + # qy_fit[matches_fit], + # qx_fit[matches_fit], + # s = scale_markers_calculated * int_fit[matches_fit], + # marker = mvals[c], + # edgecolors = uvals[c,:], + # facecolors = (uvals[c,0],uvals[c,1],uvals[c,2],0.3), + # # facecolors = (1,1,1,0.5), + # linewidth = 2, + # ) + # if plot_unmatched_peaks: + # ax.scatter( + # qy_fit[np.logical_not(matches_fit)], + # qx_fit[np.logical_not(matches_fit)], + # s = scale_markers_calculated * int_fit[np.logical_not(matches_fit)], + # marker = mvals[c], + # edgecolors = uvals[c,:], + # facecolors = (1,1,1,0.5), + # linewidth = 2, + # ) + + # # legend + # ax_leg.scatter( + # 0, + # dx_leg*(a0+1), + # s = 200, + # marker = mvals[c], + # edgecolors = uvals[c,:], + # facecolors = (uvals[c,0],uvals[c,1],uvals[c,2],0.3), + # # facecolors = (1,1,1,0.5), + # ) + + # appearance + ax.set_xlim((-k_max, k_max)) + ax.set_ylim((k_max, -k_max)) + + ax_leg.set_xlim((-0.1 * k_max, 0.4 * k_max)) + ax_leg.set_ylim((-0.5 * k_max, 0.5 * k_max)) + ax_leg.set_axis_off() + + if returnfig: + return phase_weights, phase_residual, phase_reliability, int_total, fig, ax + else: + return phase_weights, phase_residual, phase_reliability, int_total def quantify_phase( self, - pointlistarray, - tolerance_distance=0.08, - method="nnls", - intensity_power=0, - mask_peaks=None, + pointlistarray: PointListArray, + corr_kernel_size=0.04, + sigma_excitation_error=0.02, + precession_angle_degrees=None, + power_intensity: float = 0.25, + power_intensity_experiment: float = 0.25, + k_max=None, + max_number_patterns=2, + single_phase=False, + allow_strain=True, + strain_iterations=3, + strain_max=0.02, + include_false_positives=True, + weight_false_positives=1.0, + progress_bar=True, ): """ - Quantification of the phase of a crystal based on the crystal instances and the pointlistarray. + Quantify phase of all diffraction patterns. - Args: - pointlisarray (pointlistarray): Pointlistarray to quantify phase of - tolerance_distance (float): Distance allowed between a peak and match - method (str): Numerical method used to quantify phase - intensity_power (float): ... - mask_peaks (list, optional): A pointer of which positions to mask peaks from + Parameters + ---------- + pointlistarray: (PointListArray) + Full array of all calibrated experimental bragg peaks, with shape = (num_x,num_y) + corr_kernel_size: (float) + Correlation kernel size length. The size of the overlap kernel between the + measured Bragg peaks and diffraction library Bragg peaks. [1/Angstroms] + sigma_excitation_error: (float) + The out of plane excitation error tolerance. [1/Angstroms] + precession_angle_degrees: (float) + Tilt angle of illuminaiton cone in degrees for precession electron diffraction (PED). + power_intensity: (float) + Power for scaling the correlation intensity as a function of simulated peak intensity. + power_intensity_experiment: (float): + Power for scaling the correlation intensity as a function of experimental peak intensity. + k_max: (float) + Max k values included in fits, for both x and y directions. + max_number_patterns: int + Max number of orientations which can be included in a match. + single_phase: bool + Set to true to force result to output only the best-fit phase (minimum intensity residual). + allow_strain: bool, + Allow the simulated diffraction patterns to be distorted to improve the matches. + strain_iterations: int + Number of pattern position refinement iterations. + strain_max: float + Maximum strain fraction allowed - this value should be low, typically a few percent (~0.02). + include_false_positives: bool + Penalize patterns which generate false positive peaks. + weight_false_positives: float + Weight strength of false positive peaks. + progressbar: bool + Display progress. + + Returns + ----------- + + """ + + # init results arrays + self.phase_weights = np.zeros( + ( + pointlistarray.shape[0], + pointlistarray.shape[1], + self.num_fits, + ) + ) + self.phase_residuals = np.zeros( + ( + pointlistarray.shape[0], + pointlistarray.shape[1], + ) + ) + self.phase_reliability = np.zeros( + ( + pointlistarray.shape[0], + pointlistarray.shape[1], + ) + ) + self.int_total = np.zeros( + ( + pointlistarray.shape[0], + pointlistarray.shape[1], + ) + ) + self.single_phase = single_phase + + for rx, ry in tqdmnd( + *pointlistarray.shape, + desc="Quantifying Phase", + unit=" PointList", + disable=not progress_bar, + ): + # calculate phase weights + ( + phase_weights, + phase_residual, + phase_reliability, + int_peaks, + ) = self.quantify_single_pattern( + pointlistarray=pointlistarray, + xy_position=(rx, ry), + corr_kernel_size=corr_kernel_size, + sigma_excitation_error=sigma_excitation_error, + precession_angle_degrees=precession_angle_degrees, + power_intensity=power_intensity, + power_intensity_experiment=power_intensity_experiment, + k_max=k_max, + max_number_patterns=max_number_patterns, + single_phase=single_phase, + allow_strain=allow_strain, + strain_iterations=strain_iterations, + strain_max=strain_max, + include_false_positives=include_false_positives, + weight_false_positives=weight_false_positives, + plot_result=False, + verbose=False, + returnfig=False, + ) + self.phase_weights[rx, ry] = phase_weights + self.phase_residuals[rx, ry] = phase_residual + self.phase_reliability[rx, ry] = phase_reliability + self.int_total[rx, ry] = int_peaks + + def plot_phase_weights( + self, + weight_range=(0.0, 1.0), + weight_normalize=False, + total_intensity_normalize=True, + cmap="gray", + show_ticks=False, + show_axes=True, + layout=0, + figsize=(6, 6), + returnfig=False, + ): + """ + Plot the individual phase weight maps and residuals. + + Parameters + ---------- + weight_range: (float, float) + Plotting weight range. + weight_normalize: bool + Normalize weights before plotting. + total_intensity_normalize: bool + Normalize the total intensity. + cmap: matplotlib.cm.cmap + Colormap to use for plots. + show_ticks: bool + Show ticks on plots. + show_axes: bool + Show axes. + layout: int + Layout type for figures. + figsize: (float,float) + Size of figure panel. + returnfig: bool + Return the figure and axes handles. + + Returns + ---------- + fig,ax: (optional) + Figure and axes handles. - Details: """ - if isinstance(pointlistarray, PointListArray): - phase_weights = np.zeros( + + # Normalization if required to total DF peak intensity + phase_weights = self.phase_weights.copy() + phase_residuals = self.phase_residuals.copy() + if total_intensity_normalize: + sub = self.int_total > 0.0 + for a0 in range(self.num_fits): + phase_weights[:, :, a0][sub] /= self.int_total[sub] + phase_residuals[sub] /= self.int_total[sub] + + # intensity range for plotting + if weight_normalize: + scale = np.median(np.max(phase_weights, axis=2)) + else: + scale = 1 + weight_range = np.array(weight_range) * scale + + # plotting + if layout == 0: + fig, ax = plt.subplots( + 1, + self.num_crystals + 1, + figsize=(figsize[0], (self.num_fits + 1) * figsize[1]), + ) + elif layout == 1: + fig, ax = plt.subplots( + self.num_crystals + 1, + 1, + figsize=(figsize[0], (self.num_fits + 1) * figsize[1]), + ) + + for a0 in range(self.num_crystals): + sub = self.crystal_identity[:, 0] == a0 + im = np.sum(phase_weights[:, :, sub], axis=2) + im = np.clip( + (im - weight_range[0]) / (weight_range[1] - weight_range[0]), 0, 1 + ) + ax[a0].imshow( + im, + vmin=0, + vmax=1, + cmap=cmap, + ) + ax[a0].set_title( + self.crystal_names[a0], + fontsize=16, + ) + if not show_ticks: + ax[a0].set_xticks([]) + ax[a0].set_yticks([]) + if not show_axes: + ax[a0].set_axis_off() + + # plot residuals + im = np.clip( + (phase_residuals - weight_range[0]) / (weight_range[1] - weight_range[0]), + 0, + 1, + ) + ax[self.num_crystals].imshow( + im, + vmin=0, + vmax=1, + cmap=cmap, + ) + ax[self.num_crystals].set_title( + "Residuals", + fontsize=16, + ) + if not show_ticks: + ax[self.num_crystals].set_xticks([]) + ax[self.num_crystals].set_yticks([]) + if not show_axes: + ax[self.num_crystals].set_axis_off() + + if returnfig: + return fig, ax + + def plot_phase_maps( + self, + weight_threshold=0.5, + weight_normalize=True, + total_intensity_normalize=True, + plot_combine=False, + crystal_inds_plot=None, + phase_colors=None, + show_ticks=False, + show_axes=True, + layout=0, + figsize=(6, 6), + return_phase_estimate=False, + return_rgb_images=False, + returnfig=False, + ): + """ + Plot the individual phase weight maps and residuals. + + Parameters + ---------- + weight_threshold: float + Threshold for showing each phase. + weight_normalize: bool + Normalize weights before plotting. + total_intensity_normalize: bool + Normalize the total intensity. + plot_combine: bool + Combine all figures into a single plot. + crystal_inds_plot: (tuple of ints) + Which crystals to plot phase maps for. + phase_colors: np.array + (Nx3) shaped array giving the colors for each phase + show_ticks: bool + Show ticks on plots. + show_axes: bool + Show axes. + layout: int + Layout type for figures. + figsize: (float,float) + Size of figure panel. + return_phase_estimate: bool + Return the phase estimate array. + return_rgb_images: bool + Return the rgb images. + returnfig: bool + Return the figure and axes handles. + + Returns + ---------- + im_all: (np.array, optional) + images showing phase maps. + im_rgb, im_rgb_all: (np.array, optional) + rgb colored output images, possibly combined + fig,ax: (optional) + Figure and axes handles. + + """ + + if phase_colors is None: + phase_colors = np.array( ( - pointlistarray.shape[0], - pointlistarray.shape[1], - np.sum([map.num_matches for map in self.orientation_maps]), + (1.0, 0.0, 0.0), + (0.0, 0.8, 1.0), + (0.0, 0.8, 0.0), + (1.0, 0.0, 1.0), + (0.0, 0.4, 1.0), + (1.0, 0.8, 0.0), ) ) - phase_residuals = np.zeros(pointlistarray.shape) - for Rx, Ry in tqdmnd(pointlistarray.shape[0], pointlistarray.shape[1]): - ( - _, - phase_weight, - phase_residual, - crystal_identity, - ) = self.quantify_phase_pointlist( - pointlistarray, - position=[Rx, Ry], - tolerance_distance=tolerance_distance, - method=method, - intensity_power=intensity_power, - mask_peaks=mask_peaks, + + phase_weights = self.phase_weights.copy() + if total_intensity_normalize: + sub = self.int_total > 0.0 + for a0 in range(self.num_fits): + phase_weights[:, :, a0][sub] /= self.int_total[sub] + + # intensity range for plotting + if weight_normalize: + scale = np.median(np.max(phase_weights, axis=2)) + else: + scale = 1 + weight_threshold = weight_threshold * scale + + # init + im_all = np.zeros( + ( + self.num_crystals, + self.phase_weights.shape[0], + self.phase_weights.shape[1], + ) + ) + im_rgb_all = np.zeros( + ( + self.num_crystals, + self.phase_weights.shape[0], + self.phase_weights.shape[1], + 3, + ) + ) + + # phase weights over threshold + for a0 in range(self.num_crystals): + sub = self.crystal_identity[:, 0] == a0 + im = np.sum(phase_weights[:, :, sub], axis=2) + im_all[a0] = np.maximum(im - weight_threshold, 0) + + # estimate compositions + im_sum = np.sum(im_all, axis=0) + sub = im_sum > 0.0 + for a0 in range(self.num_crystals): + im_all[a0][sub] /= im_sum[sub] + + for a1 in range(3): + im_rgb_all[a0, :, :, a1] = im_all[a0] * phase_colors[a0, a1] + + if plot_combine: + if crystal_inds_plot is None: + im_rgb = np.sum(im_rgb_all, axis=0) + else: + im_rgb = np.sum(im_rgb_all[np.array(crystal_inds_plot)], axis=0) + + im_rgb = np.clip(im_rgb, 0, 1) + + fig, ax = plt.subplots(1, 1, figsize=figsize) + ax.imshow( + im_rgb, + ) + ax.set_title( + "Phase Maps", + fontsize=16, + ) + if not show_ticks: + ax.set_xticks([]) + ax.set_yticks([]) + if not show_axes: + ax.set_axis_off() + + else: + # plotting + if layout == 0: + fig, ax = plt.subplots( + 1, + self.num_crystals, + figsize=(figsize[0], (self.num_fits + 1) * figsize[1]), ) - phase_weights[Rx, Ry, :] = phase_weight - phase_residuals[Rx, Ry] = phase_residual - self.phase_weights = phase_weights - self.phase_residuals = phase_residuals - self.crystal_identity = crystal_identity - return + elif layout == 1: + fig, ax = plt.subplots( + self.num_crystals, + 1, + figsize=(figsize[0], (self.num_fits + 1) * figsize[1]), + ) + + for a0 in range(self.num_crystals): + ax[a0].imshow( + im_rgb_all[a0], + ) + ax[a0].set_title( + self.crystal_names[a0], + fontsize=16, + ) + if not show_ticks: + ax[a0].set_xticks([]) + ax[a0].set_yticks([]) + if not show_axes: + ax[a0].set_axis_off() + + # All possible returns + if return_phase_estimate: + if returnfig: + return im_all, fig, ax + else: + return im_all + elif return_rgb_images: + if plot_combine: + if returnfig: + return im_rgb, fig, ax + else: + return im_rgb + else: + if returnfig: + return im_rgb_all, fig, ax + else: + return im_rgb_all else: - return TypeError("pointlistarray must be of type pointlistarray.") - return + if returnfig: + return fig, ax - def quantify_phase_pointlist( + def plot_dominant_phase( self, - pointlistarray, - position, - method="nnls", - tolerance_distance=0.08, - intensity_power=0, - mask_peaks=None, + use_correlation_scores=False, + reliability_range=(0.0, 1.0), + sigma=0.0, + phase_colors=None, + ticks=True, + figsize=(6, 6), + legend_add=True, + legend_fraction=0.2, + print_fractions=False, + returnfig=True, ): """ - Args: - pointlisarray (pointlistarray): Pointlistarray to quantify phase of - position (tuple/list): Position of pointlist in pointlistarray - tolerance_distance (float): Distance allowed between a peak and match - method (str): Numerical method used to quantify phase - intensity_power (float): ... - mask_peaks (list, optional): A pointer of which positions to mask peaks from - - Returns: - pointlist_peak_intensity_matches (np.ndarray): Peak matches in the rows of array and the crystals in the columns - phase_weights (np.ndarray): Weights of each phase - phase_residuals (np.ndarray): Residuals - crystal_identity (list): List of lists, where the each entry represents the position in the - crystal and orientation match that is associated with the phase - weights. for example, if the output was [[0,0], [0,1], [1,0], [0,1]], - the first entry [0,0] in phase weights is associated with the first crystal - the first match within that crystal. [0,1] is the first crystal and the - second match within that crystal. + Plot a combined figure showing the primary phase at each probe position. + Mask by the reliability index (best match minus 2nd best match). + + Parameters + ---------- + use_correlation_scores: bool + Set to True to use correlation scores instead of reliabiltiy from intensity residuals. + reliability_range: (float, float) + Plotting intensity range + sigma: float + Smoothing in units of probe position. + phase_colors: np.array + (N,3) shaped array giving colors of all phases + ticks: bool + Show ticks on plots. + figsize: (float,float) + Size of output figure + legend_add: bool + Add legend to plot + legend_fraction: float + Fractional size of legend in plot. + print_fractions: bool + Print the estimated fraction of all phases. + returnfig: bool + Return the figure and axes handles. + + Returns + ---------- + fig,ax: (optional) + Figure and axes handles. + """ - # Things to add: - # 1. Better cost for distance from peaks in pointlists - # 2. Iterate through multiple tolerance_distance values to find best value. Cost function residuals, or something else? - pointlist = pointlistarray.get_pointlist(position[0], position[1]) - pl_mask = np.where((pointlist["qx"] == 0) & (pointlist["qy"] == 0), 1, 0) - pointlist.remove(pl_mask) - # False Negatives (exp peak with no match in crystal instances) will appear here, already coded in + if phase_colors is None: + phase_colors = np.array( + [ + [1.0, 0.9, 0.6], + [1, 0, 0], + [0, 0.7, 0], + [0, 0.7, 1], + [1, 0, 1], + ] + ) - if intensity_power == 0: - pl_intensities = np.ones(pointlist["intensity"].shape) - else: - pl_intensities = pointlist["intensity"] ** intensity_power - # Prepare matches for modeling - pointlist_peak_matches = [] - crystal_identity = [] - - for c in range(len(self.crystals)): - for m in range(self.orientation_maps[c].num_matches): - crystal_identity.append([c, m]) - phase_peak_match_intensities = np.zeros((pointlist["intensity"].shape)) - bragg_peaks_fit = self.crystals[c].generate_diffraction_pattern( - self.orientation_maps[c].get_orientation(position[0], position[1]), - ind_orientation=m, - ) - # Find the best match peak within tolerance_distance and add value in the right position - for d in range(pointlist["qx"].shape[0]): - distances = [] - for p in range(bragg_peaks_fit["qx"].shape[0]): - distances.append( - np.sqrt( - (pointlist["qx"][d] - bragg_peaks_fit["qx"][p]) ** 2 - + (pointlist["qy"][d] - bragg_peaks_fit["qy"][p]) ** 2 - ) - ) - ind = np.where(distances == np.min(distances))[0][0] + # init arrays + scan_shape = self.phase_weights.shape[:2] + phase_map = np.zeros(scan_shape) + phase_corr = np.zeros(scan_shape) + phase_corr_2nd = np.zeros(scan_shape) + phase_sig = np.zeros((self.num_crystals, scan_shape[0], scan_shape[1])) - # Potentially for-loop over multiple values for 'tolerance_distance' to find best tolerance_distance value - if distances[ind] <= tolerance_distance: - ## Somewhere in this if statement is probably where better distances from the peak should be coded in - if ( - intensity_power == 0 - ): # This could potentially be a different intensity_power arg - phase_peak_match_intensities[d] = 1 ** ( - (tolerance_distance - distances[ind]) - / tolerance_distance - ) - else: - phase_peak_match_intensities[d] = bragg_peaks_fit[ - "intensity" - ][ind] ** ( - (tolerance_distance - distances[ind]) - / tolerance_distance - ) - else: - ## This is probably where the false positives (peaks in crystal but not in experiment) should be handled - continue - - pointlist_peak_matches.append(phase_peak_match_intensities) - pointlist_peak_intensity_matches = np.dstack(pointlist_peak_matches) - pointlist_peak_intensity_matches = ( - pointlist_peak_intensity_matches.reshape( - pl_intensities.shape[0], - pointlist_peak_intensity_matches.shape[-1], - ) + if use_correlation_scores: + # Calculate scores from highest correlation match + for a0 in range(self.num_crystals): + phase_sig[a0] = np.maximum( + phase_sig[a0], + np.max(self.crystals[a0].orientation_map.corr, axis=2), ) + else: + # sum up phase weights by crystal type + for a0 in range(self.num_fits): + ind = self.crystal_identity[a0, 0] + phase_sig[ind] += self.phase_weights[:, :, a0] - if len(pointlist["qx"]) > 0: - if mask_peaks is not None: - for i in range(len(mask_peaks)): - if mask_peaks[i] == None: # noqa: E711 - continue - inds_mask = np.where( - pointlist_peak_intensity_matches[:, mask_peaks[i]] != 0 - )[0] - for mask in range(len(inds_mask)): - pointlist_peak_intensity_matches[inds_mask[mask], i] = 0 - - if method == "nnls": - phase_weights, phase_residuals = nnls( - pointlist_peak_intensity_matches, pl_intensities + # smoothing of the outputs + if sigma > 0.0: + for a0 in range(self.num_crystals): + phase_sig[a0] = gaussian_filter( + phase_sig[a0], + sigma=sigma, + mode="nearest", ) - elif method == "lstsq": - phase_weights, phase_residuals, rank, singluar_vals = lstsq( - pointlist_peak_intensity_matches, pl_intensities, rcond=-1 + # find highest correlation score for each crystal and match index + for a0 in range(self.num_crystals): + sub = phase_sig[a0] > phase_corr + phase_map[sub] = a0 + phase_corr[sub] = phase_sig[a0][sub] + + if self.single_phase: + phase_scale = np.clip( + (self.phase_reliability - reliability_range[0]) + / (reliability_range[1] - reliability_range[0]), + 0, + 1, + ) + + else: + # find the second correlation score for each crystal and match index + for a0 in range(self.num_crystals): + corr = phase_sig[a0].copy() + corr[phase_map == a0] = 0.0 + sub = corr > phase_corr_2nd + phase_corr_2nd[sub] = corr[sub] + + # Estimate the reliability + phase_rel = phase_corr - phase_corr_2nd + phase_scale = np.clip( + (phase_rel - reliability_range[0]) + / (reliability_range[1] - reliability_range[0]), + 0, + 1, + ) + + # Print the total area of fraction of each phase + if print_fractions: + phase_mask = phase_scale >= 0.5 + phase_total = np.sum(phase_mask) + + print("Phase Fractions") + print("---------------") + for a0 in range(self.num_crystals): + phase_frac = np.sum((phase_map == a0) * phase_mask) / phase_total + + print(self.crystal_names[a0] + " - " + f"{phase_frac*100:.4f}" + "%") + + self.phase_rgb = np.zeros((scan_shape[0], scan_shape[1], 3)) + for a0 in range(self.num_crystals): + sub = phase_map == a0 + for a1 in range(3): + self.phase_rgb[:, :, a1][sub] = phase_colors[a0, a1] * phase_scale[sub] + # normalize + # self.phase_rgb = np.clip( + # (self.phase_rgb - rel_range[0]) / (rel_range[1] - rel_range[0]), + # 0,1) + + fig = plt.figure(figsize=figsize) + if legend_add: + width = 1 + + ax = fig.add_axes((0, legend_fraction, 1, 1 - legend_fraction)) + ax_leg = fig.add_axes((0, 0, 1, legend_fraction)) + + for a0 in range(self.num_crystals): + ax_leg.scatter( + a0 * width, + 0, + s=200, + marker="s", + edgecolor=(0, 0, 0, 1), + facecolor=phase_colors[a0], ) - phase_residuals = np.sum(phase_residuals) - else: - raise ValueError(method + " Not yet implemented. Try nnls or lstsq.") + ax_leg.text( + a0 * width + 0.1, + 0, + self.crystal_names[a0], + fontsize=16, + verticalalignment="center", + ) + ax_leg.axis("off") + ax_leg.set_xlim( + ( + width * -0.5, + width * (self.num_crystals + 0.5), + ) + ) + else: - phase_weights = np.zeros((pointlist_peak_intensity_matches.shape[1],)) - phase_residuals = np.NaN - return ( - pointlist_peak_intensity_matches, - phase_weights, - phase_residuals, - crystal_identity, + ax = fig.add_axes((0, 0, 1, 1)) + + ax.imshow( + self.phase_rgb, ) - # def plot_peak_matches( - # self, - # pointlistarray, - # position, - # tolerance_distance, - # ind_orientation, - # pointlist_peak_intensity_matches, - # ): - # """ - # A method to view how the tolerance distance impacts the peak matches associated with - # the quantify_phase_pointlist method. - - # Args: - # pointlistarray, - # position, - # tolerance_distance - # pointlist_peak_intensity_matches - # """ - # pointlist = pointlistarray.get_pointlist(position[0],position[1]) - - # for m in range(pointlist_peak_intensity_matches.shape[1]): - # bragg_peaks_fit = self.crystals[m].generate_diffraction_pattern( - # self.orientation_maps[m].get_orientation(position[0], position[1]), - # ind_orientation = ind_orientation - # ) - # peak_inds = np.where(bragg_peaks_fit.data['intensity'] == pointlist_peak_intensity_matches[:,m]) - - # fig, (ax1, ax2) = plt.subplots(2,1,figsize = figsize) - # ax1 = plot_diffraction_pattern(pointlist,) - # return + if ticks is False: + ax.set_xticks([]) + ax.set_yticks([]) + + if returnfig: + return fig, ax diff --git a/py4DSTEM/process/diffraction/crystal_viz.py b/py4DSTEM/process/diffraction/crystal_viz.py index 47df2e6ca..402f6f964 100644 --- a/py4DSTEM/process/diffraction/crystal_viz.py +++ b/py4DSTEM/process/diffraction/crystal_viz.py @@ -393,7 +393,7 @@ def plot_scattering_intensity( k_step=0.001, k_broadening=0.0, k_power_scale=0.0, - int_power_scale=0.5, + int_power_scale=1.0, int_scale=1.0, remove_origin=True, bragg_peaks=None, @@ -538,6 +538,7 @@ def plot_orientation_zones( proj_dir_cartesian: Optional[Union[list, tuple, np.ndarray]] = None, tol_den=10, marker_size: float = 20, + plot_zone_axis_labels: bool = True, plot_limit: Union[list, tuple, np.ndarray] = np.array([-1.1, 1.1]), figsize: Union[list, tuple, np.ndarray] = (8, 8), returnfig: bool = False, @@ -553,6 +554,7 @@ def plot_orientation_zones( dir_proj (float): projection direction, either [elev azim] or normal vector Default is mean vector of self.orientation_zone_axis_range rows marker_size (float): size of markers + plot_zone_axis_labels (bool): plot the zone axis labels plot_limit (float): x y z plot limits, default is [0, 1.05] figsize (2 element float): size scaling of figure axes returnfig (bool): set to True to return figure and axes handles @@ -727,47 +729,47 @@ def plot_orientation_zones( zorder=10, ) - text_scale_pos = 1.2 - text_params = { - "va": "center", - "family": "sans-serif", - "fontweight": "normal", - "color": "k", - "size": 16, - } - # 'ha': 'center', - - ax.text( - self.orientation_vecs[inds[0], 1] * text_scale_pos, - self.orientation_vecs[inds[0], 0] * text_scale_pos, - self.orientation_vecs[inds[0], 2] * text_scale_pos, - label_0, - None, - zorder=11, - ha="center", - **text_params, - ) - if self.orientation_full is False and self.orientation_half is False: - ax.text( - self.orientation_vecs[inds[1], 1] * text_scale_pos, - self.orientation_vecs[inds[1], 0] * text_scale_pos, - self.orientation_vecs[inds[1], 2] * text_scale_pos, - label_1, - None, - zorder=12, - ha="center", - **text_params, - ) + if plot_zone_axis_labels: + text_scale_pos = 1.2 + text_params = { + "va": "center", + "family": "sans-serif", + "fontweight": "normal", + "color": "k", + "size": 16, + } + # 'ha': 'center', ax.text( - self.orientation_vecs[inds[2], 1] * text_scale_pos, - self.orientation_vecs[inds[2], 0] * text_scale_pos, - self.orientation_vecs[inds[2], 2] * text_scale_pos, - label_2, + self.orientation_vecs[inds[0], 1] * text_scale_pos, + self.orientation_vecs[inds[0], 0] * text_scale_pos, + self.orientation_vecs[inds[0], 2] * text_scale_pos, + label_0, None, - zorder=13, + zorder=11, ha="center", **text_params, ) + if self.orientation_full is False and self.orientation_half is False: + ax.text( + self.orientation_vecs[inds[1], 1] * text_scale_pos, + self.orientation_vecs[inds[1], 0] * text_scale_pos, + self.orientation_vecs[inds[1], 2] * text_scale_pos, + label_1, + None, + zorder=12, + ha="center", + **text_params, + ) + ax.text( + self.orientation_vecs[inds[2], 1] * text_scale_pos, + self.orientation_vecs[inds[2], 0] * text_scale_pos, + self.orientation_vecs[inds[2], 2] * text_scale_pos, + label_2, + None, + zorder=13, + ha="center", + **text_params, + ) # ax.scatter( # xs=self.g_vec_all[0,:], @@ -848,6 +850,7 @@ def plot_orientation_plan( bragg_peaks = self.generate_diffraction_pattern( orientation_matrix=self.orientation_rotation_matrices[index_plot, :], sigma_excitation_error=self.orientation_kernel_size / 3, + precession_angle_degrees=self.orientation_precession_angle_degrees, ) plot_diffraction_pattern( @@ -947,12 +950,24 @@ def plot_diffraction_pattern( scale_markers: float = 500, scale_markers_compare: Optional[float] = None, power_markers: float = 1, + power_markers_compare: float = 1, + color=(0.0, 0.0, 0.0), + color_compare=None, + facecolor=None, + facecolor_compare=(0.0, 0.7, 1.0), + edgecolor=None, + edgecolor_compare=None, + linewidth=1, + linewidth_compare=1, + marker="+", + marker_compare="o", plot_range_kx_ky: Optional[Union[list, tuple, np.ndarray]] = None, add_labels: bool = True, shift_labels: float = 0.08, shift_marker: float = 0.005, min_marker_size: float = 1e-6, max_marker_size: float = 1000, + show_axes: bool = True, figsize: Union[list, tuple, np.ndarray] = (12, 6), returnfig: bool = False, input_fig_handle=None, @@ -988,9 +1003,7 @@ def plot_diffraction_pattern( if power_markers == 2: marker_size = scale_markers * bragg_peaks.data["intensity"] else: - marker_size = scale_markers * ( - bragg_peaks.data["intensity"] ** (power_markers / 2) - ) + marker_size = scale_markers * (bragg_peaks.data["intensity"] ** power_markers) # Apply marker size limits to primary plot marker_size = np.clip(marker_size, min_marker_size, max_marker_size) @@ -1012,7 +1025,7 @@ def plot_diffraction_pattern( else: marker_size_compare = np.clip( scale_markers_compare - * (bragg_peaks_compare.data["intensity"] ** (power_markers / 2)), + * (bragg_peaks_compare.data["intensity"] ** power_markers), min_marker_size, max_marker_size, ) @@ -1021,19 +1034,29 @@ def plot_diffraction_pattern( bragg_peaks_compare.data["qy"], bragg_peaks_compare.data["qx"], s=marker_size_compare, - marker="o", - facecolor=[0.0, 0.7, 1.0], + marker=marker_compare, + facecolor=facecolor_compare, + edgecolor=edgecolor_compare, + color=color_compare, + linewidth=linewidth_compare, ) ax.scatter( bragg_peaks.data["qy"], bragg_peaks.data["qx"], s=marker_size, - marker="+", - facecolor="k", + marker=marker, + facecolor=facecolor, + edgecolor=edgecolor, + color=color, + linewidth=linewidth, ) - ax.set_xlabel("$q_y$ [Å$^{-1}$]") - ax.set_ylabel("$q_x$ [Å$^{-1}$]") + if show_axes: + ax.set_xlabel("$q_y$ [Å$^{-1}$]") + ax.set_ylabel("$q_x$ [Å$^{-1}$]") + else: + ax.get_xaxis().set_visible(False) + ax.get_yaxis().set_visible(False) if plot_range_kx_ky is not None: plot_range_kx_ky = np.array(plot_range_kx_ky) @@ -1097,6 +1120,7 @@ def plot_orientation_maps( dir_in_plane_degrees: float = 0.0, corr_range: np.ndarray = np.array([0, 5]), corr_normalize: bool = True, + show_legend: bool = True, scale_legend: bool = None, figsize: Union[list, tuple, np.ndarray] = (16, 5), figbound: Union[list, tuple, np.ndarray] = (0.01, 0.005), @@ -1118,6 +1142,7 @@ def plot_orientation_maps( dir_in_plane_degrees (float): In-plane angle to plot in degrees. Default is 0 / x-axis / vertical down. corr_range (np.ndarray): Correlation intensity range for the plot corr_normalize (bool): If true, set mean correlation to 1. + show_legend (bool): Show the legend scale_legend (float): 2 elements, x and y scaling of legend panel figsize (array): 2 elements defining figure size figbound (array): 2 elements defining figure boundary @@ -1392,189 +1417,192 @@ def plot_orientation_maps( ax_x.axis("off") ax_z.axis("off") - # Triangulate faces - p = self.orientation_vecs[:, (1, 0, 2)] - tri = mtri.Triangulation( - self.orientation_inds[:, 1] - self.orientation_inds[:, 0] * 1e-3, - self.orientation_inds[:, 0] - self.orientation_inds[:, 1] * 1e-3, - ) - # convert rgb values of pixels to faces - rgb_faces = ( - rgb_legend[tri.triangles[:, 0], :] - + rgb_legend[tri.triangles[:, 1], :] - + rgb_legend[tri.triangles[:, 2], :] - ) / 3 - # Add triangulated surface plot to axes - pc = art3d.Poly3DCollection( - p[tri.triangles], - facecolors=rgb_faces, - alpha=1, - ) - pc.set_antialiased(False) - ax_l.add_collection(pc) - - if plot_limit is None: - plot_limit = np.array( - [ - [np.min(p[:, 0]), np.min(p[:, 1]), np.min(p[:, 2])], - [np.max(p[:, 0]), np.max(p[:, 1]), np.max(p[:, 2])], - ] + if show_legend: + # Triangulate faces + p = self.orientation_vecs[:, (1, 0, 2)] + tri = mtri.Triangulation( + self.orientation_inds[:, 1] - self.orientation_inds[:, 0] * 1e-3, + self.orientation_inds[:, 0] - self.orientation_inds[:, 1] * 1e-3, ) - # plot_limit = (plot_limit - np.mean(plot_limit, axis=0)) * 1.5 + np.mean( - # plot_limit, axis=0 - # ) - plot_limit[:, 0] = ( - plot_limit[:, 0] - np.mean(plot_limit[:, 0]) - ) * 1.5 + np.mean(plot_limit[:, 0]) - plot_limit[:, 1] = ( - plot_limit[:, 2] - np.mean(plot_limit[:, 1]) - ) * 1.5 + np.mean(plot_limit[:, 1]) - plot_limit[:, 2] = ( - plot_limit[:, 1] - np.mean(plot_limit[:, 2]) - ) * 1.1 + np.mean(plot_limit[:, 2]) - - # ax_l.view_init(elev=el, azim=az) - # Appearance - ax_l.invert_yaxis() - if swap_axes_xy_limits: - ax_l.axes.set_xlim3d(left=plot_limit[0, 0], right=plot_limit[1, 0]) - ax_l.axes.set_ylim3d(bottom=plot_limit[0, 1], top=plot_limit[1, 1]) - ax_l.axes.set_zlim3d(bottom=plot_limit[0, 2], top=plot_limit[1, 2]) - else: - ax_l.axes.set_xlim3d(left=plot_limit[0, 1], right=plot_limit[1, 1]) - ax_l.axes.set_ylim3d(bottom=plot_limit[0, 0], top=plot_limit[1, 0]) - ax_l.axes.set_zlim3d(bottom=plot_limit[0, 2], top=plot_limit[1, 2]) - axisEqual3D(ax_l) - if camera_dist is not None: - ax_l.dist = camera_dist - ax_l.axis("off") - - # Add text labels - text_scale_pos = 0.1 - text_params = { - "va": "center", - "family": "sans-serif", - "fontweight": "normal", - "color": "k", - "size": 14, - } - format_labels = "{0:.2g}" - vec = self.orientation_vecs[inds_legend[0], :] - cam_dir - vec = vec / np.linalg.norm(vec) - if np.abs(self.cell[5] - 120.0) > 1e-6: - ax_l.text( - self.orientation_vecs[inds_legend[0], 1] + vec[1] * text_scale_pos, - self.orientation_vecs[inds_legend[0], 0] + vec[0] * text_scale_pos, - self.orientation_vecs[inds_legend[0], 2] + vec[2] * text_scale_pos, - "[" - + format_labels.format(label_0[0]) - + " " - + format_labels.format(label_0[1]) - + " " - + format_labels.format(label_0[2]) - + "]", - None, - zorder=11, - ha="center", - **text_params, - ) - else: - ax_l.text( - self.orientation_vecs[inds_legend[0], 1] + vec[1] * text_scale_pos, - self.orientation_vecs[inds_legend[0], 0] + vec[0] * text_scale_pos, - self.orientation_vecs[inds_legend[0], 2] + vec[2] * text_scale_pos, - "[" - + format_labels.format(label_0[0]) - + " " - + format_labels.format(label_0[1]) - + " " - + format_labels.format(label_0[2]) - + " " - + format_labels.format(label_0[3]) - + "]", - None, - zorder=11, - ha="center", - **text_params, - ) - vec = self.orientation_vecs[inds_legend[1], :] - cam_dir - vec = vec / np.linalg.norm(vec) - if np.abs(self.cell[5] - 120.0) > 1e-6: - ax_l.text( - self.orientation_vecs[inds_legend[1], 1] + vec[1] * text_scale_pos, - self.orientation_vecs[inds_legend[1], 0] + vec[0] * text_scale_pos, - self.orientation_vecs[inds_legend[1], 2] + vec[2] * text_scale_pos, - "[" - + format_labels.format(label_1[0]) - + " " - + format_labels.format(label_1[1]) - + " " - + format_labels.format(label_1[2]) - + "]", - None, - zorder=12, - ha=ha_1, - **text_params, - ) - else: - ax_l.text( - self.orientation_vecs[inds_legend[1], 1] + vec[1] * text_scale_pos, - self.orientation_vecs[inds_legend[1], 0] + vec[0] * text_scale_pos, - self.orientation_vecs[inds_legend[1], 2] + vec[2] * text_scale_pos, - "[" - + format_labels.format(label_1[0]) - + " " - + format_labels.format(label_1[1]) - + " " - + format_labels.format(label_1[2]) - + " " - + format_labels.format(label_1[3]) - + "]", - None, - zorder=12, - ha=ha_1, - **text_params, - ) - vec = self.orientation_vecs[inds_legend[2], :] - cam_dir - vec = vec / np.linalg.norm(vec) - if np.abs(self.cell[5] - 120.0) > 1e-6: - ax_l.text( - self.orientation_vecs[inds_legend[2], 1] + vec[1] * text_scale_pos, - self.orientation_vecs[inds_legend[2], 0] + vec[0] * text_scale_pos, - self.orientation_vecs[inds_legend[2], 2] + vec[2] * text_scale_pos, - "[" - + format_labels.format(label_2[0]) - + " " - + format_labels.format(label_2[1]) - + " " - + format_labels.format(label_2[2]) - + "]", - None, - zorder=13, - ha=ha_2, - **text_params, - ) - else: - ax_l.text( - self.orientation_vecs[inds_legend[2], 1] + vec[1] * text_scale_pos, - self.orientation_vecs[inds_legend[2], 0] + vec[0] * text_scale_pos, - self.orientation_vecs[inds_legend[2], 2] + vec[2] * text_scale_pos, - "[" - + format_labels.format(label_2[0]) - + " " - + format_labels.format(label_2[1]) - + " " - + format_labels.format(label_2[2]) - + " " - + format_labels.format(label_2[3]) - + "]", - None, - zorder=13, - ha=ha_2, - **text_params, + # convert rgb values of pixels to faces + rgb_faces = ( + rgb_legend[tri.triangles[:, 0], :] + + rgb_legend[tri.triangles[:, 1], :] + + rgb_legend[tri.triangles[:, 2], :] + ) / 3 + # Add triangulated surface plot to axes + pc = art3d.Poly3DCollection( + p[tri.triangles], + facecolors=rgb_faces, + alpha=1, ) + pc.set_antialiased(False) + ax_l.add_collection(pc) + + if plot_limit is None: + plot_limit = np.array( + [ + [np.min(p[:, 0]), np.min(p[:, 1]), np.min(p[:, 2])], + [np.max(p[:, 0]), np.max(p[:, 1]), np.max(p[:, 2])], + ] + ) + # plot_limit = (plot_limit - np.mean(plot_limit, axis=0)) * 1.5 + np.mean( + # plot_limit, axis=0 + # ) + plot_limit[:, 0] = ( + plot_limit[:, 0] - np.mean(plot_limit[:, 0]) + ) * 1.5 + np.mean(plot_limit[:, 0]) + plot_limit[:, 1] = ( + plot_limit[:, 2] - np.mean(plot_limit[:, 1]) + ) * 1.5 + np.mean(plot_limit[:, 1]) + plot_limit[:, 2] = ( + plot_limit[:, 1] - np.mean(plot_limit[:, 2]) + ) * 1.1 + np.mean(plot_limit[:, 2]) + + # ax_l.view_init(elev=el, azim=az) + # Appearance + ax_l.invert_yaxis() + if swap_axes_xy_limits: + ax_l.axes.set_xlim3d(left=plot_limit[0, 0], right=plot_limit[1, 0]) + ax_l.axes.set_ylim3d(bottom=plot_limit[0, 1], top=plot_limit[1, 1]) + ax_l.axes.set_zlim3d(bottom=plot_limit[0, 2], top=plot_limit[1, 2]) + else: + ax_l.axes.set_xlim3d(left=plot_limit[0, 1], right=plot_limit[1, 1]) + ax_l.axes.set_ylim3d(bottom=plot_limit[0, 0], top=plot_limit[1, 0]) + ax_l.axes.set_zlim3d(bottom=plot_limit[0, 2], top=plot_limit[1, 2]) + axisEqual3D(ax_l) + if camera_dist is not None: + ax_l.dist = camera_dist + ax_l.axis("off") + + # Add text labels + text_scale_pos = 0.1 + text_params = { + "va": "center", + "family": "sans-serif", + "fontweight": "normal", + "color": "k", + "size": 14, + } + format_labels = "{0:.2g}" + vec = self.orientation_vecs[inds_legend[0], :] - cam_dir + vec = vec / np.linalg.norm(vec) + if np.abs(self.cell[5] - 120.0) > 1e-6: + ax_l.text( + self.orientation_vecs[inds_legend[0], 1] + vec[1] * text_scale_pos, + self.orientation_vecs[inds_legend[0], 0] + vec[0] * text_scale_pos, + self.orientation_vecs[inds_legend[0], 2] + vec[2] * text_scale_pos, + "[" + + format_labels.format(label_0[0]) + + " " + + format_labels.format(label_0[1]) + + " " + + format_labels.format(label_0[2]) + + "]", + None, + zorder=11, + ha="center", + **text_params, + ) + else: + ax_l.text( + self.orientation_vecs[inds_legend[0], 1] + vec[1] * text_scale_pos, + self.orientation_vecs[inds_legend[0], 0] + vec[0] * text_scale_pos, + self.orientation_vecs[inds_legend[0], 2] + vec[2] * text_scale_pos, + "[" + + format_labels.format(label_0[0]) + + " " + + format_labels.format(label_0[1]) + + " " + + format_labels.format(label_0[2]) + + " " + + format_labels.format(label_0[3]) + + "]", + None, + zorder=11, + ha="center", + **text_params, + ) + vec = self.orientation_vecs[inds_legend[1], :] - cam_dir + vec = vec / np.linalg.norm(vec) + if np.abs(self.cell[5] - 120.0) > 1e-6: + ax_l.text( + self.orientation_vecs[inds_legend[1], 1] + vec[1] * text_scale_pos, + self.orientation_vecs[inds_legend[1], 0] + vec[0] * text_scale_pos, + self.orientation_vecs[inds_legend[1], 2] + vec[2] * text_scale_pos, + "[" + + format_labels.format(label_1[0]) + + " " + + format_labels.format(label_1[1]) + + " " + + format_labels.format(label_1[2]) + + "]", + None, + zorder=12, + ha=ha_1, + **text_params, + ) + else: + ax_l.text( + self.orientation_vecs[inds_legend[1], 1] + vec[1] * text_scale_pos, + self.orientation_vecs[inds_legend[1], 0] + vec[0] * text_scale_pos, + self.orientation_vecs[inds_legend[1], 2] + vec[2] * text_scale_pos, + "[" + + format_labels.format(label_1[0]) + + " " + + format_labels.format(label_1[1]) + + " " + + format_labels.format(label_1[2]) + + " " + + format_labels.format(label_1[3]) + + "]", + None, + zorder=12, + ha=ha_1, + **text_params, + ) + vec = self.orientation_vecs[inds_legend[2], :] - cam_dir + vec = vec / np.linalg.norm(vec) + if np.abs(self.cell[5] - 120.0) > 1e-6: + ax_l.text( + self.orientation_vecs[inds_legend[2], 1] + vec[1] * text_scale_pos, + self.orientation_vecs[inds_legend[2], 0] + vec[0] * text_scale_pos, + self.orientation_vecs[inds_legend[2], 2] + vec[2] * text_scale_pos, + "[" + + format_labels.format(label_2[0]) + + " " + + format_labels.format(label_2[1]) + + " " + + format_labels.format(label_2[2]) + + "]", + None, + zorder=13, + ha=ha_2, + **text_params, + ) + else: + ax_l.text( + self.orientation_vecs[inds_legend[2], 1] + vec[1] * text_scale_pos, + self.orientation_vecs[inds_legend[2], 0] + vec[0] * text_scale_pos, + self.orientation_vecs[inds_legend[2], 2] + vec[2] * text_scale_pos, + "[" + + format_labels.format(label_2[0]) + + " " + + format_labels.format(label_2[1]) + + " " + + format_labels.format(label_2[2]) + + " " + + format_labels.format(label_2[3]) + + "]", + None, + zorder=13, + ha=ha_2, + **text_params, + ) - plt.show() + plt.show() + else: + ax_l.set_axis_off() images_orientation = np.zeros((orientation_map.num_x, orientation_map.num_y, 3, 2)) if self.pymatgen_available: diff --git a/py4DSTEM/process/polar/polar_fits.py b/py4DSTEM/process/polar/polar_fits.py index 7760726a7..34630dbc2 100644 --- a/py4DSTEM/process/polar/polar_fits.py +++ b/py4DSTEM/process/polar/polar_fits.py @@ -16,6 +16,9 @@ def fit_amorphous_ring( show_fit_mask=False, fit_all_images=False, maxfev=None, + robust=False, + robust_steps=3, + robust_thresh=1.0, verbose=False, plot_result=True, plot_log_scale=False, @@ -50,6 +53,13 @@ def fit_amorphous_ring( Fit the elliptic parameters to all images maxfev: int Max number of fitting evaluations for curve_fit. + robust: bool + Set to True to use robust fitting. + robust_steps: int + Number of robust fitting steps. + robust_thresh: float + Threshold for relative errors for outlier detection. Setting to 1.0 means all points beyond + one standard deviation of the median error will be excluded from the next fit. verbose: bool Print fit results plot_result: bool @@ -206,6 +216,38 @@ def fit_amorphous_ring( maxfev=maxfev, )[0] coefs[4] = np.mod(coefs[4], 2 * np.pi) + + if robust: + for a0 in range(robust_steps): + # find outliers + int_fit = amorphous_model(basis, *coefs) + int_diff = vals / int_mean - int_fit + int_diff /= np.median(np.abs(int_diff)) + sub_fit = int_diff**2 < robust_thresh**2 + + # redo fits excluding the outliers + if maxfev is None: + coefs = curve_fit( + amorphous_model, + basis[:, sub_fit], + vals[sub_fit] / int_mean, + p0=coefs, + xtol=1e-8, + bounds=(lb, ub), + )[0] + else: + coefs = curve_fit( + amorphous_model, + basis[:, sub_fit], + vals[sub_fit] / int_mean, + p0=coefs, + xtol=1e-8, + bounds=(lb, ub), + maxfev=maxfev, + )[0] + coefs[4] = np.mod(coefs[4], 2 * np.pi) + + # Scale intensity coefficients coefs[5:8] *= int_mean # Perform the fit on each individual diffration pattern